
1
6
0

· control data
••••••••••••••••••••••••••

.RECEI.VEO.

Ju. ~ "" ,"\ : L J I, -...

corporation
COMPUTER DIVISION
•••••••••••••••
501 Park Avenue
Minneapolis

SYSTEMS

PROGRAMS

FOR THE

160

COMPUTER

Publication No. 084b

June 1961

CONTROL DATA CORPORATION

Foreword

Section 1.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Section 7.

Section 8.

SYSTEMS PROGRAMS

FOR THE 160 COMPUTER

The Control Data 160 Computer

Satellite Computer System

160 Standards

Program Descriptions

OSAP and OCR

FPP-33 - 1604 Simulator with Subroutines

Programming Aids

Programming Systems

FOREWORD

The 160 Systems programs described in this volume have been prepared by the

programming staff of Control Data Corporation. · This manual was prepared to aid the

experienced programmer by collecting the existing material on the 160 computer in a

standardized form for easy reference.

Section 3 describes standards and procedures utilized in organizing programming

for the 160.

Programs (Section 4) are discussed in full, and detailed operating instructions

furnished. The machine language listing of these programs were not included because

tapes are available either at the installation or by request from Control Data Corporation.

Flow charts have also been omitted since the programs are fully operational. Should

a programmer wish to obtain flow charts they will be mailed upon application from

Control Data Corporation.

The manual is not to be construed as a replacement for the Programming Manual

nor was it meant as a study guide. As new routines are generated and approved they

will be distributed to holders of this manual.

Corrections and additions to this manual may become necessary and the pro­

gramming staff of Control Data Corporation welcomes any suggestions.

CONTROL DATA CORPORATION

160 COMPUTER

Figure 1. Model 160 Computer

CONTROL DAT A CORPORATION MODEL 160

The MODEL 160, figure 1, is a desk-sized, general purpose digital computer that is

completely transistorized; the memory is high-speed ferrite core storage. Significant

advantages in the design of the Model 160 are:

Average instruction execution time
(including memory access time)

4096 12-bit words of storage

All transistorized 5 megacycle
circuitry

Complete line of input-output equipment

Compatibility with 1604 computer in
the Satellite Computer Configuration

High Reliability

Low Power Consumption

Versatile Addressing

64 Instructions

Programming packages available

Projection Display

1

15 microseconds

6. 4 microseconds cycle time

identical to 1604 circuits

750 watts

direct, indirect and relative

concise presentation of computer
status and register contents

FUNCTIONAL CHARACTERISTICS

The CONTROL DATA 160 is a stored program, high-speed, digital computer. The

instruction logic is single address with one instruction per computer word.

The computer memory consists of 4096 12-bit words of magnetic core storage. The

complete memory cycle is 6. 4 microseconds. Instructions and operands are

available for use by the computer control unit 3. 2 microseconds after the initiation of

a memory reference.

The CONTROL DAT A 160 instruction repertoire provides 64 instructions which are

classified into 20 functional groups. Instruction execution times range from 6. 4

microseconds to 2 5. 6 microseconds.

Information transfer and arithmetic operations are done in the parallel mode. When

information is transferred within the computer, all bits of the 12-bit word in a com­

puter register are transmitted simultaneously.

2

INPUT-OUTPUT CHARACTERISTICS

Standard input-output equipment consists of a photoelectric paper tape reader that

operates at 350 characters per second; and a high-speed paper tape punch that operates

at 110 characters per second. The computer console provides a display of the

principal registers and the key lever switches for manual control of the computer.

The contents of the displayed registers can be altered manually to facilitate program

checkout and to allow decisions made at the console to affect the course of action taken

by a program.

Binary or binary coded information (BCD) is transmitted into and out of the computer at

a maximum transfer rate of 78, 000 words per second. Input and output transmission

is done in the parallel mode with up to 12 binary bits of information being transmitted

simultaneously. Up to five external control units may be attached to the Model 160.

Paper tape input-output is not considered external equipment. Separate external

function logic is employed to achieve a high degree of flexibility in controlling data

transmission to and from peripheral equipment. Control transmission paths are

independent of those used for the transmission of data.

3

APPLICATIONS

The 160 can perform many functions for which special purpose devices are normally

required.

a) punched card to magnetic tape conversion

b) magnetic tape to punched card conversion

c) paper tape to punched card or magnetic tape conversion

d) magnetic tape to line printer output

e) magnetic tape duplication and comparison

f) typewriter input to any of the above

In addition to the normal peripheral operations listed above the 160 can be programmed

to do the following:

a) character validity checking

b) record sequence checking

c) binary to BCD and BCD to binary conversion

d) editing and format control

e) merge-sort

f) code conversion

A floating point arithmetic subroutine package enables the solution of engineering and

statistical analysis problems with great precision.

The Control Data 160 can be connected as a satellite to the large scale Control Data

1604 computer by means of the 1607 magnetic tape system. This allows data trans­

mission to take place between the two computers at a rate of 78, 000 12-bit words per

second. Economy is effected by the fact that one tape system is used jointly by the

two computers.

4

160 COMPUTER, SIMPLIFIED LOGICAL BLOCK DIAGRAM

Register

p

12-bit
~"

s

A - Accumulator

__,,,, ,.

A

12-bit

_I

BORROW

PYRAMID

t.
B

12-bit

B - Auxiliary Arithmetic Register

F - Function Code Register

P - Program Address Register

S - Memory Address Register

Z - Communication Register

..._
I""'

INPUT-OUTPUT CONTROL

Output Channel
•

Input Channel

l
z

12-bit

F

6-bit

t-- STORAGE

5

holds the result of all arithmetic and
logical operations.

transient register used in conjunction with
the borrow pyramid in additions and
subtractions .

holds the function code of the instruction
currently being executed.

holds the address of the instruction
currently being executed.

holds the address of the memory location
being referenced.

transmits information between the computer
and its memory and between the computer
and its associated input-output equipment.

INSTRUCTION FORMAT

When a computer register .is used to hold an instruction, the contents of that register

are interpreted as shown:

F

11 .

F is the 6- bit function code.
(bits 06 through 11)

E is the execution address.
(bits 00 through 05)

06

E

0 5 . 00

The function code determines which of the
64 possible instructions will be performed.

The normal use of E is to determine the
location of an operand to be used in
executing an instruction. E is always
treated as a positive q.iantity.

Each of the 40 9 6 memory locations has a unique address. Depending on the function

code used, E will be interpreted in one of the following ways to refer to any of the

memory locations.

No address mode (n).

E is used as the lower 6-bits of a 12-bit operand.
The upper 6-bits are zeros. No storage reference
is made. For the shift A instruction, E specifies
a particular type of shift operation.

Direct address mode (d).

E is interpreted as the address of one of the first
64 words in core storage and the contents of that
memory location become the operand.

Indirect address mode (i).

E is used to address one of the first 64 memory
locations. The 12-bit contents of that location are
then used as the operand address.

6

Relative address forward (f).

E is added to the contents of P (P is the address of
the current instruction) to obtain the operand address.
The operand thus addressed cannot be further than
63 locations forward of the current instruction. P
is unchanged.

Relative address backward (b).

E is subtracted from the contents of the P register
to obtain the operand address. The operand cannot
be further than 63 locations immediately preceding
the current instruction. P is unchanged.

7

ARITHMETIC

The arithmetic performed by the Control Data 160 is called one's complement

arithmetic.

When a computer register or core memory location contains a word which is to be

interpreted as an arithmetic operand, or result, the following rules apply.

All positive numbers have a "O" in the most significant position, and all negative

numbers have a 11 1 11 in that position. The leftmost position is thus the sign digit and

can be handled as any other digit in the word. The concept of a 11011 for positive and

a 111 11 for negative in the most significant position (12th bit) is used.

The complement representation of any binary number is derived from the normal one

by interchanging "1's 11 and "O's". The most direct way to determine the magnitude of

a negative number is to form the one's complement of that number.

Examples:

Sign ~000 000 010 110

111 111 101 001

= +268 or +22 10

= -268 or -22 10

Normally positive zero (all zeros) is used in computation; however, negative zero

(all ones) may be used if needed. An exception being negative zero I zero for a

zero-non-zero jump.

8

INSTRUCTION GROUPS

The 64 instructions may be classified according to the functions listed below.

Legend:

ADD:

SUBTRACT:

LOAD:

STORE:

LOAD COMPLEMENT:

LOGICAL PRODUCT:

LOGIC SUM:

INPUT:

OUTPUT:

CONDITIONAL JUMP:

UNCONDITIONAL JUMP:

SHIFT:

REPLACE SHIFT:

REPLACE ADD:

REPLACE ADD ONE:

HALT:

()
M

(M)'

indicates contents of the register named.
designates an operand address.
indicates location of result of operation.
designates the logical, bit-by-bit, product operation.

(A) + (M)~A

(A) - (M)~A

(M)~A

(A)-.M

(M)1~ A

Form in A the logical product of original contents
of A and operand.

Form in A the logic sum of original contents of A
and operand.

Transfer a word or successive units of information
from an external device to computer memory.

Transfer successive or E portion of instruction
computer memory to the external equipment.

Jump depending on the status of A register.

Jump regardless of the status of A register.

E = 02 shift (A) left one position
E = 10 shift (A) left three positions
E = 12 mult. (A) by octal 12
all shifts are end-around (circular)

Shift (M) left one place in A and replace (M) with
(A).

(A) + (M)~A, M

(M) + l~A, M

Stop computer operation.

9

PROGRAMMING EXAMPLE: DUPLICATE PAPER TAPE

Memory
Location Content

0000 7507

0001 7210

0002 0072

0003 7505

0004 7305

0005 0072

0006 6506

0007 4102

0010 4104

0011 0070

Comment

External Function: select paper tape reader input

Input Instruction: read in two frames

Terminating Address + 1

External Function: select paper tape punch output

Output Instruction: punch out two frames

Terminating Address + 1

(A) Non-Zero Jump: go back to the instruction at
location 0000

Function Code to Select Reader Input (used by
instruction at 0000)

Function Code to Select Punch Output (used by
instruction at 0003)

Starting Address for Input and Output Area (used by
instructions at 0001 and 0004)

10

PROGRAMMING AIDS

160 Assembly Program (OSAP):

Service Routine Library:

Library of Subroutines:

Interpretive Arithmetic Packages:

Binary:

Binary Floating Point:
(FPP-33)

Decimal Arithmetic:
(BC.K)

Decimal Floating Point:
(CALINT)

A two pass symbolic assembly program and

assembly correction program.

A set of general purpose programs for input,

output, and translation of data and programs.

A set of arithmetic routines and elementary

function routines.

The following routines employ an extremely

fast interpretation program to perform

arithmetic operations on extended precision

operands.

22 bit fractional arithmetic.

3 3 bit fraction, 10 bit exponents.

3N digit decimal operands.

3 digit exponent and 9 digit fraction.

11

INPUT-OUTPUT SYSTEMS, FUNCTIONAL BLOCK DIAGRAM

CONTROL DA TA CORPORATION

INPUT
CHANNEL

MODEL 160 COMPUTER

INPUT-OUTPUT
SYSTEM #1

INPUT-OUTPUT H
SYSTEM #3 '. I

INPUT-OUTPUT
SYSTEM #4

INPUT-OUTPUT
SYSTEM #5

12

OUTPUT
CHANNEL

PAPER TAPE PUNCH

As many as five of the following input-output systems may be connected to the

Control Data 160.

Magnetic Tape System

One to four 163 tape handlers may be associated with the

same magnetic tape system. Character transmission rate

is 30 kc.

or

One to four 164 tape handlers may be attached to each

magnetic tape system. Character transmission rate

is 15 kc.

In both cases there is complete compatibility with IBM

magnetic tape units.

Typewriter System

A Soroban modified IBM electric typewriter is operated

on- line. The computer accepts input at normal typing

speeds and prints output data at a rate of 10 characters

per second.

1606 High Speed Line Printer System

This output system operates at speeds up to 1000 lines

per minute in an alpha- numeric mode.

1609 Punched Card System

Punched card input and output is provided by an IBM 521,

or 523 card read-punch unit.

1610 Adaptor

Punched card input is provided by an IBM 088. Punched

card output is through an IBM 52 3. For on line printing

the 407 is used.

13

1607 Magnetic Tape System

In a satellite system, the 160 7 magnetic tape system

provides communication between a 1604 computer aid

a 160 computer.

Real Time Clock

A continuously running clock provides programmed

real time information.

Communication Line Buffer

Allows direct hook up of Teletype input lines to the 160.

Other forms of communication can be handled in similar

manner.

14

THE SATELLITE COMPUTER SYSTEM

INTRODUCTION

General purpose computers have emerged as the most consistently economical

and dependable devices in the industry. The reasons behind this emergence

are numerous and strongly support new ways of exploiting these computers.

Control Data's two general purpose computers, the small-scale 1 6 0 and the

large-scale 1604, offer a unique new approach in the Satellite Computer System.

It will be as difficult to describe all the potential uses of this system as it is

to describe the different uses of the 1604 alone. Some uses should become obvious

as the concept is described below.

BASIC SATELLITE COMPONENTS

Figure 1 shows the basic satellite system of the 160 and 1604 computers and

the 1607 magnetic tape subsystem. In this combination, the two computers can

share the magnetic tape unit properties. The two computers could be connected

to each other directly, but with the loss of certain advantages which will become

evident.

160 COMPUTER

1607 MAGNETIC TAPE

SUBSYSTEM

1604 COMPUTER

Figure 1. Basic Satellite System

- 1 -

As shown in Figure 1, the 160 communicates on a 1 2 - bit two-way channel,

and the l 6 0 4 communicates on two 4 8 - bit channels. Dealing first with the

1 6 0 4, these two 4 8 - bit channels provide the means of writing on tape and

simultaneously reading from tape. Within the 1607 there are two complete

channel controls, one for the write channel and one for the read channel.

These controls are largely independent of each other as shown in Figure 2.

1607 12 12

WRITE READ
CONTROL CONTROL

48 48

Figure 2. 1607 Controls

The four magnetic tape handlers are shown as circles with connection to the

write and read controls. Data is recorded in six bits plus parity, commonly

referred to as character-serial. Each 48-bit word is made up of eight charac­

ters (six bits each) with no parity. To record one 48-bit word therefore, the

word is disassembled as shown in Figure 3, the upper six bits first, etc. A

parity bit is added at this point.

- 2 -

ENTER FROM 1604

ENTER FROM 160

,----A----,
47 0

~TAPE

Figure 3. Disassembly of Words Into Characters

To read tape, the characters are read, checked for parity, and assembled into

the 48-bit word, first character to the upper six bits, etc. When reading or

writing on the tape, one 48-bit word is transferred between the 160 4 and 1607

for every eight characters on the tape. The rate of transfer is dependent on

the tape speed and the recording density. These are 150 inches per second and

200 per inch respectively. Therefore, the characters pass the head at 30, 000

per second and 48-bit words transfer at 3750 per second.

The above system of channel controls in the 1607 are easily adapted to handle

12-bit words from the 160 computer. The 12 bits are positioned in the upper

two character positions of the 48-bit register (see Figure 3). In this case, the

upper six bits are recorded first, then the lower, followed by another word

transfer from the 1 6 0. Again characters pass the head at 30, 000 per second

but 12-bit words transfer at 15, 000 per second.

Briefly summarizing the above, the 1 6 0 7 tape subsystem allows either the

160 or 160 4 computers access to the tape handlers. The nature of the read

and write controls allows each to be used with a great deal of independence.

Therefore, the read channel may be used by the 160 while the write channel

is used by the 1604, and vice versa. The read or write control may be used

by only one computer at a time.

- 3 -

An added feature of the 1 6 0 7 not shown in figure 2 is a 6 - bit path from the

write channel control to the read channel control. This path bypasses tape

completely and allows for a direct transfer of data between the computers.

When using this path, the write control is assigned to one computer, and the

read control is assigned to the other. Twelve-bit words from the 160 are

disassembled into characters in the write control, passed to the read control,

assembled into 48-bit words and transferred to the 1604. Similarly 48-bit words

from the 1604 are disassembled into characters in the write control, passed to

the read control, assembledinto12-bit words and transferred to the160. Since

this path does not use magnetic tape, the rate of transfer is dependent only on

the read and write controls and the transfer rates of the two computers. These

rates are listed below:

1604 Word Rate (8 characters)

160 Word Rate (2 characters)

5, 000/sec. minimum
50, 000/sec. maximum
78, 000 I sec.

This requires the read and write controls to operate at 1 5 6, 0 0 0 characters

per second maximum and 40, 000 characters minimum.

The following operations are available:

Transfer from 1604 to 160

Transfer from 160 to 1604

Read tape x to 1604 while
write tape y from 1604

Reatl tape x to 1604 while
write tape y from 160

Read tape x to 160 while
write tape y from 1604

Read tape x to 1604

Read tape x to 160

Write tape y from 1604

Write tape y from 160

- 4 -

SATELLITE PROGRAMMING

Independent Operation

A method of operation is to assign the 1607 tape subsystem to either of the two

computers. With this method the effect is to organize two independent computer

systems. Programs can run in both systems without fear of interplay between

the two. Although it may appear to be a trivial interconnection of equipments,

the convenience of placing the 1607 in either system is important.

With an independent operation, the control and transfer of data to and from mag­

netic tape is accomplished exactly as in a non-satellite system. The following

external functions apply:

Select 1604 Code 160 Code

Select read tape n, binary 320nl 50nl * Select read tape n, coded 320n2 50n2 *
Read selected read tape, binary 32001 5001
Read selected read tape, coded 32002 5002
Interrupt when selected read tape ready 32004
Rewind selected read tape 32005 5005
Backspace selected read tape 32006 5006
Rewind selected read tape, interlock 32007 5007

Select write tape n, binary 420nl 60nl ~c

Select write tape n, coded 420n2 60n2 *
Write selected write tape, binary 42001 6001
Write selected write tape, coded 42002 6002
Write end-of-file mark 42003 6003
Interrupt when selected write tape ready 42004
Rewind selected write tape 42005 6005
Backspace selected write tape 42006 6006
Rewind selected write tape, interlock 42007 6007

Enter status 6053

* Available only when 1607 manually assigned to the 160.

- -5 -

The External Sense instruction of the 1604 obtains specific status information.

The 160 computer causes all status indicators to enter as a single 12-bit word,

which is examined by the 160 program. The correspondence between the 1604

Sense Codes and the bit position of each indicator in the 160 input word is as

follows:

Sense

Ready to read
Read parity error
Read length error
End-of-file mark

Ready to write
Write reply parity error
Write reply length error
End of tape marker

1604 Sense Code

32000-1
32002-3
32004-5
32006-7

42000-1
42002-3
42004-5
42006-7

160 Word

X2XX
XX4X

XXlX

XlXX
XX2X

XXX4

Operation of the magnetic tape subsystem from either computer entails use of

the above SELECT and SENSE codes. Issuance of a SELECT causes that selec­

tion to be made and subsequent motion, if any, to begin. Word transfers

through the 1604 buffer system or the 160 input-output system, are made at a

rate determined in the 1607 ta-pe subsystem. The determination of unit readi­

ness, error, etc. can be made at any time through use of the SENSE codes.

Any selection made before the unit is ready is apt to be rejected.

On-Line Operation

A more powerful interconnection of the basic Satellite System allows the assign­

ment of either computer to the tape subsystem under program control. An added

feature of this programmed interconnection allows direct word transfers between

the memories of the two computers without any tape motion. Programming for

this interconnection is necessarily more complicated.

- 6 -

Several additional SELECT and SENSE codes are provided specifically to aid in

the on-line sharing of the 1607.

Select

Select Read control for 160

Select read control for 1604

Select Write control for 160
Select Write control for 1604
Select Direct 1604 to 160
Select Direct 160 to 1604
Release Direct selections

Select 160 action request
Select Interrupt
Release Interrupt
Release 160 action request

Sense

Read control available
Write control available

160 action request

Direct 160 to 1604
Direct 1604 to 160

160 interrupt

1604 Code

32501

32502

42501
42502
42503
32503
42500

42504

32505

1604 Code

32500-1
42500-1

32504-5

160 Code

5051

5052

6051
6052

6050

160 Code

4XXX
2XXX

XXX2

lXXX
X4XX

Typical operation of an on-line Satellite System assigns the 1604 as the master

control. When a 160 desires a share of the 1607 or a direct transfer, it does

so by interrupting the 1604. A typical sequence then follows:

160 interrupts 1604

1604 recognizes interrupt and selects a direct transfer
from 160 to 1604

160 recog!lizes direct selection

- 7-

The request is tr an sf erred from 160 to 1604

Any return communication is set up and transferred

The 1604 releases a read or write control to the 160

When the 160 is finished, it releases the read or write control back to the 1604.

Further complication may be introduced if the 1604 allows only a set time period

for the 160 to use the control. In that event, the 1604 is able to withdraw the

control. The action taken in the 1607 is to complete the current record (or

motion).

- 8 -

1606

1607

LINE
PRINTER

COMPUTER

CENTER

1607

ACCOUNTING DEPARTMENT

to--- 1610 CARD
EQUIP.

1604

LINE
PRINTER

COMPUTATION LAB

1607

Figure 4.. Typical Satellite System

- 9 -

160 "----1610

1606

1607

CARD
EQUIP.

CARD
EQUIP.

LINE
PRINTER

SUMMARY

A summary of main features of the Satellite System:

Large-scale 1604 computer

Up to six small-scale 160 computers

Computers can share magnetic tape units

Direct communication allows access to any part of the system from
any other part

Problem preparation on 160

Programmed on-line or off-line 160

Programmed on-line or off-line peripheral units

Use of 160' s as external buffer

Handling of tape not necessary between on-line and off-line operations

Accessibility to 160 of full computing capability of 1604

Sharing of peripheral units limits costly duplication

Transfers between 160 and 1604 may be direct or via magnetic tape

Magnetic tape recording and read back at 30, 000 characters per

second from either computer

Up to 158, 000 characters per second direct connection between 160

and 1604

- 10-

160 STANDARDS

CONTENTS

1 . TERMS AND ABBREVIATIONS

1 . 1 Minimum 160 Computer

1. 2 Standard 160 Computer

2. CHARACTER CODES

2.1 160 48-Character Codes

2.2 160 64-Character Codes

2.3 Teletype Codes

2.4 Console Typewriter Codes

2.5 Flexowri ter Codes

3. INPUT/ OUTPUT FORMATS

3. 1 Card Formats

3. 2 Magnetic Tape Formats

3. 3 Paper Tape Formats

3. 3. 1 Program Load Paper Tape

3.3.2

3.3.3

Binary Paper Tape

Octal Paper Tape

4. PROORAMMING STANDARDS

4. 1 Memory Allocations

4. 1 . 1 Temporary Storage

Service Routines 4.1. 2

4.1. 3 Resident Service Routines

4. 2 Subroutine Entry and Exit

4. 3 Alarms

5. PUBLICATIONS STANDARDS

5. 1 Program Abstracts

5. 2 Program Descriptions

5. 3 Identification

1

1. TERMS AND ABB RE VIA TIONS

1.1 Minimum 160 Computer - - The term "160 Computer" denotes a Control

Data 160 have 4, 096 words of core storage, a photoelectric paper tape

reader, and a high-speed paper tape punch.

1. 2 Standard 160 Computer - - The term "Standard 160 Computer" denotes a

Control Data 160 having 4, 096 words of core storage, a photoelectric paper

tape reader, a high-speed paper tape punch, an input/ output typewriter and

a magnetic tape handler.

2. CHARACTER CODES

2. 1 160 Forty- eight Character Codes - - The codes on Table 2. 1 shall be used

where compatibility with off-line card-to-tape, tape-to-card, and tape-to­

line-printer equipment is desired. It should be noted that there is no

automatic alteration in the 160 from a BCD code on magnetic tape to the

corresponding BIN code, and vice-versa.

If alteration must be performed, for compatibility with tapes produced by

other data processing systems or to alter information from a BCD tape

to the more- easily- sorted BIN codes, the computer program shall perform

the alteration, which consists of complementing the 2 5 bit if the 2 4 bit equals
11 1 11 (from left to right, the bits .are denoted as 2 5, 24, 2 3, 22, 21, and 2°).

2. 2 160 Sixty-four Character Codes for Anelex Printer -- The set of codes

given in Table 2. 2 are used in output programs for the Anelex printer.

2. 3 Teletype Codes -- For programs producing or processing five-bit Teletype

codes, the codes listed in Table 2. 3 shall be used. When stored in the

computer memory, the codes shall be treated as six-bit codes, by prefixing

the five-bit Teletype code by a binary "O".

2. 4 Console Typewriter Codes - - For console typewriter alarms, etc., the

standard console typewriter codes listed in Table 2. 4 shall be used.

2. 5 Flexowriter Codes -- For programs employing seven-level paper tape,

prepared or listed off-line by means of a Flexowriter, the six-bit Flexowriter

codes listed in Table 2. 5 shall be used.

2

TABLE 2.1

48-CHARACTER con:m

II _!_ 11 _l I 7
.... -

I 8 ~ 8 ~ I I I I I qj q, _Jl qj ca;

0 0 12 00 + 12 60 20 - 11 i.o 40 20 60
~

12 11 0
1 l 01 01 A 1 61 21 J l 41 41 I l 21 61

12 11 0 2 2 02 02 B 2 62 22 K 2 42 42 s 2 22 62

12 11 0
3) 03 O) c 3 6) 23 L J 43 43 T' 3 23 63

12 11 0
4 4 04 04 D 4 64 2~ M 4 44 44 u 4 24 64

12 11 0
s s os os E s 6S 2$ N ~ 4S 4S v s 2S 6S

12 ll 0
6 6 06 o6 F 6 66 26 0 6 46 46 w 6 26 66

12 11 ()
7 7 07 07 0 7 67 27 p 7 47 47 x 7 27 67

12 ll 0
8 8 10 10 H 8 70)0 Q a so so y 8)0 70

12 11 0
9 9 11 11 I 9 71)1 R 9 Sl Sl z 9 31 71

12 11 0
• 8,3 13 13 • 8,) 73)) $ 8,3 $3 53 J 8,3 33 73

12 11 0 . - B,4 '14 14) 8,4 74 34 * 8,4 S4 S4 .(8,4 34 74

3

CHAR CODE

Blank 20

0 12

l 01

2 02

3 03

4 04

5 05

6 06

7 07

8 10

9 11

A 61

B 62

c 63

D 64

E 65

TABLE 2.2

ANELEX PRINTm CODES

CHAR CODE CHAR CODE CHAR CODE

F 66 v 25 < 15 -
G 67 w 26 t 16

H-<o 70 x 27 [17

I 71 y 30 J 32

J 41 z 31 ~ 35

K 42 73 - .36 • -
L 43 - 40 U', /\ 37

M 44 + 60 % orV 52

N 45 • 13 $ or I 53

0 46 (34 1' 55
p 47) 74 ~ 56

Q 50 I 21 > 57

R 51 * 5~ < 72

s 22 33 > 75 , -
T 23 : 00 ? 76

u 24 I 14 ; 77

Notes: 1. Codes within heavy lines same as Table 2-1.

2. In last column, codes V' % $ appear if business

application, /\ V I for scientific application.

4

LC1

A

B

c

D

E

F

G

H

I

J

K

L

M

N

0

p

N•tes: 1.

2.

3.

4.

5.

6.

1.

TABLE 2.3

TELETYPE CODES

FC2 CODE3 LCl

30 Q

? 23 R

16 s

$ 22 T

3 20 u

t 26 v

& 13 w

05 x

8 l1 y

32 z
(36 space

) 11 CR

• 01 FIG

, 06 LET

9 03 LF

0 15

ULCll - Letters Case

11 FC11 - Figures Case

Octal equivalent of five-bit

CR - Carriage Return

I.Er - Shift to letters case

FIG. - Shift to figures case

LF - Line feed

5

FC2 CODE3

l 35

4 12

bell 20

5 01

1 34

. 17 I

2 31

I 27

6 25

lt 21

space 04

CR 02

FIG 33

LET 31

LF 10

code given

L. C. l

a
b
c
d
e
f
g
h
i
j
k
l
m
n
0

p
q
r
s
t
u
v
w
x
y
z

Notes:

TABLE 2 .. 4

CONSOLE TYPEWRITER CODES

u. c. 2 CCDE3 L. c. 1

A 30 0
B 23 l
c 16 2
D 22 3
E 20 4
F 26 5
G 13 6
H 05 7
I 14 8
J 32 9
K 36 -L 11 I
M 07 ,
N 06 +
0 03 • p 15 J
Q 35 CR
R 12 UC
s 24 IC
T 01 BS
u 34 •
v 17 TAB
w .31 SPACE
x 27
y 25
z 21

l. L.C. = Lower case
2. u.c. = Upper case

u. c. 2

)

* @

$
%
¢
&

t
?
It

0

•
:
CR
UC
IC
BS
.&
•
TAB
SPACE

3. Code = Octal equivalent of six-bit code
4. CR = Carriage return
5. LC = Shift to lower case
6. TAB = Move to next tabulator stop
7. UC • Shift to upper case
8. BS • Back-space

6

CODE3

56
74
70
64
62
66
72
60
33
37
52
44
54
46
42
50
45
47
51
61
02
51
04

TABLE 2.5

FLEXOWRITER CODES

UC LC CODE UC LC CODE

A a 30 y y 25

B b 23 z z 21

c c 16 0 0 56

D d 22 1 1 74

E e 20 2 2 10

F f 26 3 3 64

G g 1.3 4 4 62

H h 05 s 5 66

I 1 lh 6 6 72

J j 32 7 7 60

K k 36 e 8 33

L l 11 e 9 37

M m 07 52

N n o6 I 44

0 0 03 () 54

p p 15 + , 46

Q q 35 • • 42

R r 12 • 50 ,
s 8 24. CR 45

Upper Case (UC) 47
T t 01 LoWer Case (LC) 57

Back Space (BS) 61
u u 34· Color Shift (CS) 02

Tabulate (TAB) 51
v v 17 Stop 4.3

Space . 04
w w 31 Tape Feed 00

Delete 77
x x 27

Notes: l. Leader • Blank Tape, Delete = Deleted Character,
Stop • Stop Flexowriter reader,

2. 10, 40, 41, 53, 55, 63, 65, 67, 71, 13, 15, and 76- illegal

7

3. INPUT/OUTPUT FORMATS

3 .1 Card Formats -- The standard card, for programming purposes, shall be

the 80-column, 12-row card in which information is represented by a

pattern of rectangular holes. Alphanumeric data (letters, numerals, aid

special symbols) shall be entered or punched on standard 80-column cards

in the card codes described in Section 2.

3. 2 Magnetic Tape Formats - - The standard magnetic tape shall be one-half

inch plastic tape, carrying data on six levels and either an odd or an even

parity (check) bit on a seventh level. Recording shall be in the form of

variable- length records. The load point (beginning) and end of the tape shall

be marked by reflective coatings.

A special mark, consisting of an even-parity 1 7 code, shall be used to denote

"end-of-file".

No restrictions shall be placed on record le~gth or format other than a

record shall be more than one character long; however, when optional tape

or card input or output is desired, the information written onto the tape,

when examined frame-by-frame, should duplicate the column-by-column

(or half-column-by-half-column) information on the corresponding card

format.

3. 3 Paper Tape Formats - - The standard paper tape shall be non-oiled, 0. 8 7 5"

wide seven-level perforator tape.

3.3.1 Program Load Paper Tape

The program load format requires that the first two frames following

the blank tape leader contain the insert address of the block of data.

The first frame of the insert address must also contain a seventh

level hole. The two frames following the insert address must be

blank. The block of bi-octal data is then recorded on the following

frames with the first frame of each word containing a seventh

level hole. At the end of the data block, up to ten blank frames of

tape are allowed before the next insert address without coming to a

program stop.

8

3. 3. 2

3. 3. 3

Binary Paper Tape - - Binary paper tape, sometimes called

"bi-octal". Bi-octal paper tape can be read directly into the

computer. Place initial address into the P register, set Load­

Clear switch to LOAD and press the Run switch. Every other frame

contains a seventh level hole. The absence of the seventh level hole

terminates the read. Pis advanced by one for each new word read.

P is advanced by one for each new word read, with the exception of

the first.

Octal Paper Tape - - The octal paper tape format, often called the

"Flex- Load" format, is produced by or is reproducible on a

Flexowriter.

4. PROGRAMMING STANDARDS

4. 1 Memory Allocations

4.1.1 Temporary Storage -- Computer locations 0070 through 0077 (octal)

shall be used for temporary storage. Storage locations 0-77 are

unique in their use for direct and indirect addressing because they

can be ref erred to by an instruction any place in storage. These

locations should be reserved for use as indirect addresses and as

counters which are used by more than one routine. Certain locations

should be reserved for subroutine return addresses.

To maintain compatibility with Control Data Corporation programming

aids the following conventions will be observed:

1) Locations 70 to 77 will be used as transient locations within a

subroutine. The subroutines will have to preset these locations

before using them.

2) Location 0 to 1 will be us ed. as the entry to a program where the

instructions are:

Locations

0000
0001

Contents

7001
Address of Program

3) Locations 2 through 7 will be used for subroutine exits.

Location 7 is the exit for the highest-order subroutine, 6 the next

lowest, and so forth.

9

4.1. 2

4.1. 3

4) Locations 10 to 6 7 may be used as permanent storage by any

program.

Service Routines - - Service routines will be distributed in relocatable

binary or symbolic assembly language.

Resident Service Routine - - Computer locations 7 400- 7 7 7 6.

Locations 7400 to 7776 are used by service routines. Any pro­

grammer wishing to use these services should not use these

locations in his program.

4. 2 Subroutine Entry and Exit

4. 2 .1 Subroutines shall be entered with A containing the address of the

first parameter. Additional parameters will be in successive

locations.

Return shall be to the location following the last parameter.

4. 3 Alarms - - Any alarm routine shall first store the contents of all registers,

next perform the alarm operations, and finally restore the registers.

5. 1 Program Abstracts - - Abstracts shall contain the following:

160 identification (as specified in Section 5. 5)

Purpose (Brief)

Space Required

5. 2 Program Descriptions (Detailed)

5.3.1

5.3.2

The published material for each routine shall constitute a distinct

package, separate from material for all other routines; this shall

be done to facilitate revisions and republication of the material for

one routine without the necessity for republishing others.

The published material for each routine shall consist of the following:

A. IDENTIFICATION

Title

Identification (as specified in Section 5. 5)

Category

Programmer

Date

10

5.2.3

5.2.4

B. PURPOSE -- A BRIEF DESCRIPTION

c. USAGE

1.

2.

3.

4.

5.

6.

Calling Sequence, or Operational Procedure

Arguments, or Parameters

Space Required (decimal and octal)

Temporary Storage Requirements (decimal and octal)

Alarms, or Print-Outs

Error Returns, or Error Codes (left in accumulator or
elsewhere)

7. Error Stops

8. Input and Output Tape Mountings

9. Input and Output Formats

10. Timing

11 . Accuracy

12. Cautions to User: (e.g., do not step through routine, etc.)

13. Equipment Configuration

14. References

D. METHOD OR ALGORITHM -- A BRIEF DESCRIPTION OF THE

MATHEMATICS

E. FLOW CHART

If any of the above items are not applicable, the item will not

appear. The numbering system will be maintained.

The master copy of the published material for a routine shall be

furnished to Control Data Corporation in a form that they specify.

Each routine shall also be stored and distributed in relocatable

binary or symbolic assembly language.

5. 3 Identification

Each program shall be identified on the program description and on the

abstract by a designator consisting of the following parts:

1. Classification Code

2. Sequence number

3. 160 reference number

11

5.3.1

5.3.2

5. 3. 3

Classification Code

The classification code shall consist of letters which identify the

class to which the routine belongs according to the following list:

1 . L - Library routine

2. RS - Resident service routine

3. S - Service routine

4. T - Test routine

Sequence Numbers

Three digits. The sequence number is assigned according to the

order in which it was submitted.

Reference number

The reference number consists of the number 160 with a decimal

point followed by 3 digits which are assigned in order of origination

of the routine. The reference number is an index number which can

be used in ordering or ref ering to any of the routines.

12

A. IDENTIFICATION 160 .010

TITLE: Tape Leader Preparation

IDENTIFICATION: S 001 (Replaced by S 024)

CATEGORY: Ser·dce Routines

PROGRAMMER: J. A. Pederson

DATE: August 1960

B. PURPOSE

Used to prepare tape leaders which identify program tapes. The

characters 0 to 9, as S,T,P,R ,-,., can be punched on a tape leader.

C. USAGE

1. Operational Procedure

a. Load program starting at location zero.

b. Master Clear, turn on the punch and start. The program will

punch two frames of leader.

c. Place in A the desired character to be punched from the following

table.

d. Push Run switch. The program will punch the character and stop.

e. After preparing the leader on the punch, run out about two inches

and then the desired program may be copied.

If the program is internal the resident service routine may be

used to punch out the information from core storage. By clearing

and starting at location 0050, the information on the photoelectric

paper tape reader may be repunched on the high sp~ed punch.

Character Code in A Register:

0

1

2

s 001 - 1

0

1

2

Character Code in A Register (Cont.)

3 3

4 4

5 5

6 6

7 7

8 10

9 11

12

s 13

T 14

p 15

16

R 17

3. Space required 3118 = 20110 locations

4. Temporary Storage Requirements - 7 locations

10. Timing - Output approximately 6o frames per second

14. Equipment Configuration - Minimum 160 computer

s 001 - 2

A. IDENTIFICATION 160.0ll

TITLE: Duplicate Paper Tape

IDENTIFICATION: s 003

CATEGORY: Service Routines

PROGRAMMER: J • A. Pederson

DATE: August 1960

B. PURPOSE

This routine duplicates information on paper tape from the photoelectric

reader to the high speed punch.

C. USAGE

1. Operational Procedure - The routine floats and may be loaded anywhere in

memory.

a. Load, set P = any arbitrary address.

7507 select reader

7210 read 2 frames

0072

7505 select punch

7305 punch 2 frames

0072

6506 go back

4102 reader code

4104 punch code

0070 start of I/O

b. Master Clear

c. Set P = starting address selected

d. Turn on reader and punch

e. Place tape to be duplicated in the reader

s 003 - 1

f. Press Run switch

g. To stop duplication return switch to center. The duplication

process stops automatically after the tape in the reader has

been read.

3. Space required - 128 = 1010 locations

13. Equipment Configuration - Minimum 16o computer.

s 003 - 2

A. IDENTIFICATION

TITLE: Paper Tape Duplicator

IDENTIFICATION: S 013 (Replaced by S 023)

CATEGORY: Service Routines

PROGRAMMER: L. Kuller

DATE: August 196o

B. RJRPOSE

160.012

The program is used to generate and verify copies of an original paper

tape.

C. USAGE

1. Operational Procedure

1. Load the tape containing S 013 beginning at location zero.

2. Load Mode Stop

P=0072

A=0073

The program functions in three modes.

Load Tape - Makes an image of the tape in the memory of the computer.

Verify Tape - Compares the original tape, or any of the copies, with

the image of the original tape stored in memory.

Punch Tape - Punches duplicate paper tapes from the image stored in

the computer memory.

a. Load Tape

l. Master Clear

2. Insert tape to be duplicated into reader

3. Press Run switch.

4. Program Stop

P=0034

s 013 - 1

A=OOOO

Z=7707

Program Stop occurs after the computer has read twenty blank frames

of tape. To continue on the same tape push the Run switch after

returning it to the center position. Restarting may be done as

many times as necessary unless an overflow occurs.

5. Overflow condition - More than 4037 frames of punched paper tape

have been entered.

P=0023

A=OOOO

Z='T750

After an o·:erflow stop the program readies itself to read a new

tape into the memory if the Run-Step switch is returned to the

center position and then to the RUN position.

b. Verify Tape

1. Set P=OOOl

2. Turn on reader and insert tape to be verified.

3. Press Run switch

4. Discrepancy stop

P=0064

A=the image for that frame in memory

Z=0007

The program will continue to check the remainder of the tape if the

Run switch is returned to the center position and then to the RUN

position.

5 • Program Stop

P=0054
s 013 - 2

A=OOOO

Z=7720

The Punch Tape mode is selected after the program stop by returning

the Run-Step switch to the center position and then to the RUN

position.

c. Punch Tape

1. Start Punch Motor

2. Set P to 0002

3. Press Run switch

4. Computer stop

P=0060

A=last address in the field

Z=HlO

The Verify Tape mode is selected after the program stop by

returning the Run-Step switch to the center position and then to

the RUN position

3. Space Required - '728 = 5810 locations

13. Equipment Configuration - Minimum 160 Computer.

s 013 - 3

A. IDENTIFICATION 160.013

TITLE: Resident Service Library (SLOOP)

IDENTIFICATION: RS 016 (Replaced by RS 022)

CATEGORY: Service Routines

PROGRAMMERS: L. Kuller

DATE: July 1960

B. PURPOSE

These routines enable the operator to read instructions into the 160

memory from punched paper tape, dump the contents of the memory on punched

paper tape or on the on-line typewriter, and verify the accuracy of the

punched paper tape. The resident service library of the 160 computer is

composed of the following service routines:

C. USAGE

Program Load

Program Punch

Program Verify

Bi-Octal Punch

Bi-Octal Verify

Flex Dump

1. Operational Procedure

Load the tape containing SLOOP starting at location 7400 with the

Load-Clear switch in the LOAD position. The P Register will contain

7776 when loading is completed.

a. Program Load - Program Load is used to enter blocks of data in

program load format into the memory of the 160 computer from

punched paper tape.

1. Set the P Register to 74oo

2. Turn on the reader and insert tape

3. Press the Run switch

4. Program Stop

RS 016 - 1

A=OOOO

P=7767

Z=7707

5. Format Error

P=7755

A=OOOO

Z=0007

After a format error tape must be removed from the reader

because the program will not accept the remainder of the tape.

The Program Load format requires that the first two frames following

the blank tape leader contain the insert address for the block of

data. The first frame of the insert address must also contain a

seventh level hole. The two frames following the insert address

must be blank. The block of bi~octal data is recorded on the

following frames with the first frame of each word containing a

seventh level hole. At the end of each data block, up to ten

blank frames are allowed before the next insert address without

coming to a program stop.

b. Program Punch - Program Punch is used to punch out portions of the

160 memory on paper tape in a form suitable for reloading by the

service routine Program Load.

1. Start Punch Motor

2. Set P Register to 7401

3. Place the initial address of the region to be punched in A

Register.

4. Press Run switch

RS 016 - 2

5. Computer will stop with

P=76o7

A=OOOO

Z=7701

6. Place the address of the last word to be punched in the A

Register.

7. Press Run switch; program will punch blocks of 64 words where

the block division is at addresses divisible by 64, i.e., octal

XXOO. A blank leader and trailer will also be punched.

Program Stop - Operation completed

P=7604

A=OOOO

Z=7707

c. Program Verify - Program Verify is used to compare the data on

punched paper tape in the Program Load format with the current

contents of the 16o memory.

1. Set the P Register to 7402

2. Place tape in the reader which must be turned on.

3. Press Run switch.

4. Discrepancy - Computer stops. A contains the address of the

discrepancy.. Return Run switch to center position and press

again to RUN. Program will check the remainder of the tape.

5. Format Error - Computer stops. Remo ·/e the tape from the

reader because the program will not accept the remainder of

the tape.

6. At the end of a data block, up to ten blank frames are allowed

~efore the next insert address without coming to a program stop.

RS 016 - 3

Discrepancy

P=7731

A=address of discrepancy

Z=OOOl

Format Error

P=7755

A=OOOO

Z=0007

Program Stop

P=7767

A=OOOO

Z=7707

d. Bi-Octal Punch - Used to punch out portions of the 160 memory on

paper tape in bi-octal format.

1. Start Punch Motor

2. Set P Register to 7403

3. Set A Register to initial address of the region to be punched

4. Press Run switch

5. Computer will stop with

P=7417

A=OOOO

Z=7701

6. Set A Register to last address to be punched

7. Press Run switch again

8. Program Stop

P=7414

A=OOOO

Z=7707
RS 016 - 4

The program will punch a blank leader followed by the specified

region of memory and a blank trailer.

e. Bi-Octal Verify - Used to compare bi-octal data on punched paper

tape with the current contents of the 160 memory.

1. Set P=7404

2. Set A= location of first data word on the pa,~r tape

3. Turn on reader and insert paper tape

4. Press Run switch. Tape will be checked against current contents

of the computer's memory.

5. Discrepancy - Computer stops.

P=7731

A=address of the discrepancy

Z=OOOl

To continue return switch to neutral and then RUN.

6. Format Error

P=7755

A=OOOO

Z=0007

Remove tape because program will not accept the remainder

7. Program Stop

P=7767

A=OOOO

Z=7707

Occurs when the eleventh blank frame on the trailer is

encountered.

f. Flex Dump - Produces a punched paper tape of a program suitable for

off-line listing on a Flexowriter, or to print the listing directly

on the on-line typewriter.

RS 016 - 5

1. Set P=7405

2. Set A=initial address of region to be listed

3. Press Run switch

4. The computer will stop with

P=7462

A=OOOO

Z=7701

5. Set A=last address to be listed

6. Press Run switch again

7. Program Stop

P=7466

A=OOOO

Z=7702

8. Set program option in A Register

A=OOOO Punch listings on paper tape for off line printing

A=OOOl Punch listings on paper tape with tab code and stop code

following each listing.

9. Turn on proper output device

10. Press Run switch again

Flex Dump will produce the specified listing allowing up to

48 listings on each page, with a double space following each

listing with an address divisible by eight. Each listing shows

the address where the information was stored (4 digits) followed

by the information (4 digits). A stop code is punched at the

end of each page when a punch option is chosen. When the on-line

typewriter option is selected, computer operation stops at the

end of each page to allow the operator to change paper. When

RS 016 - 6

this occurs P=7545; A=0002; Z=7703. When a punch option is

chosen a blank leader and a trailer are punched in addition to

the listings.

3. Space Required - 3768 = 25410 locations

4. Temporary Storage Requirements - locations 0070 through 0077

5. Alarms or Print Outs - Discrepancy or format error. See discussion of

the routines.

7. Error Stops - Machine stops on discrepancy or format error. For octal

display on the console see discussion of routines.

8. Input/Output Tape Mountings - Paper Tape Punch under program control,

P/T Reader under load mode or program control. See discussion of routines

9. Input/Output Format - Output controlled by program. Input bi-octal

format or program load format.

10. Timing - Output approximately 60 frames per second. Input approximately

350 frames per second.

12. Caution to user - locations 7400 to 7776 are used by the service routines

which make up SLOOP. Do not use these locations in the program. The

contents of location 7777 cannot be loaded, verified, punched or listed

by any of the service routines in SLOOP unless it is the first location

of the selected region.

Temporary storage location contents may be altered if a service routine

in SLOOP is used.

14. Equipment Configuration - Minimum 160 Computer.

RS 016 - 7

A. IDENTIFICATION

TITLE: Flexo

IDENTIFICATION: RS 017 {Replaced by RS 022)

CATEGORY: Service Routines

PROGRAMMERS: L. Kuller

DATE: August 1960

B. PURPOSE

160.014

l. Read instructions into the memory from punched paper tape prepared on a

Flexowriter.

2. Dump the contents of memory on punched paper tape for off-line listing

in a Flexowriter.

3. Dump the contents of memory directly on the on-line typewriter.

4. Verify the accuracy of punched Flexowriter tape.

5. Dump the contents of memory on punched paper tape in bi-octal format.

The following Service Routines are included in Flexo:

Flex Load

Flex Dump

Flex Verify

Bi-Octal Punch

C. USAGE

l. Operational Procedure -

Load the tape containing Flexo starting at location 7400 with the Load­

Clear switch in LOAD position. The P and A Register will contain 7776

when loading is completed.

a. Flex Load - This program reads 160 tapes prepared on a Flexowriter

or by the Flex Dump program and stores them in the locations as

specified by the tape.

RS 017 - l

1. Turn on reader and insert flex tape.

2. Set P=7400

3. Press Run switch

4. Program Stop

P=7711

A=7711 or 0000

Z=7707

b. Flex Dump - Used to produce punched paper tape listings of a program

suitable for off-line printing on a Flexowriter, or to print the

listing directly on the on-line typewriter.

1. Set P=7405

2. Set A=initial address of the region to be listed

3. Press Run switch

4. Computer will stop with

P=7466

A=OOOO

Z=7702

5. Set the program option in A as follows:

A=OOOO Punch listings on paper tape for off line printing

A=OOOO Punch listings on paper tape with tab code and stop

code following each listing.

A.::0002 Print listings on the on-line typewriter

6. Turn on the proper output device

7. Press Run switch

If the typewriter is selected the computer will stop at the end

of each page to permit change of paper.

P=7545

RS 017 - 2

A=0002

Z=7703

To continue the program return the Run switch to center position

and then to RUN position.

c. Flex Verify - The program is designed to check the 160 tapes

prepared on a Flexowriter or by the Flex Dump program against the

current contents of the 160 storage locations specified by the

tape.

1. Turn on reader

2. Insert tape on the blank leader

3. Set P=74ol

4. Press Run switch

5. Discrepancy - Computer stops

P=7732

A=address where discrepancy was found

Z=OOOl

6. Program Stop

P=7711

A=OOOO or 7711

Z=7707

d. Bi-Octal Punch - Used to punch out portions of the 160 memory on

paper tape in a form suitable for re-loading with the load-Clear

switch in the LOAD position.

1. Start Punch motor

2. Set P=7403

3. Set A=initial address of the region to be punched

4. Press Run switch

RS 017 - 3

5. Computer stops

P=7417

A=OOOO

Z=7701

6. Set A=last address of last word to be punched

7. Press Run switch after returning it t•) center postion

8. Program Stop

P=7414

A=OOOO

Z=7707

3. Space Required - 3028 = 19410 locations

4. Temporary Storage Requirements - Locations 0070 through 0077

7. Error Stops - See Flex Verify for Discrepancy stop

13. Caution to User - The service routines which make up SLOOP cannot be in

the 160 memory simultaneously with Flexo. Flexo uses locations 7400

through 7776 and they should not be used by any program.

The contents of location 7777 cannot be punched by Bi-Octal Punch or

listed by Flex Dump unless it is first location of a selected region.

Location 7777 can not be loaded or verified by Flex Load and Flex

Verify unless it is referenced in eight digit format. If location 7777

is referenced in the four digit format the data will be stored at

location 0000.

14. Equipment Configuration - Minimum 160 Computer. If Flex Dump with the

typewriter option is chosen an electric typewriter must be provided.

15. References - See RS 022 which replaces RS 017.

RS 017 - 4

A. IDENTIFICATION 160.016

TITLE: Flex wad and Flex Verify

IDENTIFICATION: S 018

CATEGORY: Service Routines

PROGRAMMER: L. Kuller

DATE: September 1960

B. PURPOSE

Flex wad is designed to read 160 program tapes prepared on a Flexo-

writer or by the Flex Dump program and store them in memory at addresses

specified by the tape.

Flex Verify is designed to check 160 program tapes prepared on a

Flexowriter or by the Flex Dump program against the current contents of the

160 storage locations as specified by the tape. The program indicates any

discrepancies that are found.

C. USAGE

1. Operational Procedure

a. Turn on reader

b. Insert tape someplace on blank leader

c. Flex Load set P=0400

Flex Verify set P=04ol

d. Press Run switch

e. Discrepancy stop (Flex Verify)

P=0434

A=address of the discrepancy

Z=OOOl

f. Program Stop

P=0414

Z=7707 s 018 - 1

3. Space Required - 1778 = 12710 locations

4. Temporary Storage Required - locations 0072 through 0077

12. Caution to User - location 7777 can not be loaded or verified by these

programs unless it is referenced in the eight digit format. If 7777

is referenced in the four digit format the data will be stored at

location 0000.

13. Equipnent Configuration - Minimum 160 Computer

15. References - See RS 022 for a discussion of tape preparation and format.

s 018 - 2

A. IDENTIFICATION

TITLE: Flex Tape to Magnetic Tape Converter

IDENT NUMBER: S 019

CATEGORY: Conversjon Routine

PROGRAMMER: L. Kuller

DATE: August, 1960

160.021

B. pu:qposE

Produce a copy of a Flexowriter tape on magnetic tape in a form

suitable for listing.

C. USAGE

1. Operational Procedure

a. Load program tape S 019

1. Turn on reader, insert tape and set P=OOOO.

2. Set Load switch and press Run.

3. First stop

P=OOOu

A=llll

Z=OOOO

u. Set P=lOOO, press Run switch

S. Program Stop

P=ll77

A=OOOO

Z=OOOO

b• Convert Flexowriter tape to magnetic tape

1. Turn on reader and .; nsert Flexm.Jriter tape.

2. ~et CODED oarity selection on magnetic tape unit.

s 019 - 1

3. Set P=lOOO

ho Press Run switch

5. Program Stop (16 consecutive blank frames read)

P=l021

A= 0000

Z=7707

1600022

60 Option-write end-of-file mark, clear computer and press

Run switch.

7. To convert more Flexowriter tape, return :tun switch to

center and then to RT.J:IJ.

3. Space required - 204R = 132
10

locations

?. Error - parity, routfoe attempts to write output block on tape

until the error disapnears.

13 o Equipment Configura t:ion - l~inimum 160 co111puter w"'i th magnetic tape

unitso

Do METHOD

Punched paper tape characters are translated ~nto equivalent line

printer codes. If there is no equivalence, the punched paper tape

character is j gnored. v·lhen a CR :is read, blank codes to fill the 120

character line printer line are inverted on the rnagnet:ic tape. The

output from the 160 is copies on magnetic tape with parity checking.

s 019 - 2

A. IDENTIFICATION 16o.Ol5

TITLE: Floating Bi-Octal Punch and Floating Bi-Octal Verify

IDENTIFICATION: S 020

CATEGORY: Service Routines

PROGRAMMERS: L. Kuller

DATE: September 1960

B. PURPOSE

Floating Bi-Octal Punch is used to punch out portions of the 160 memory

in bi-octal format. Floating Bi-Octal Verify compares bi-octal data on

punched paper tape with the current contents of the 160 memory.

C. USAGE

1. Operational Procedure - load the tape beginning at any location except

7766 through 0077 with the load-Clear switch in IDAD position

a. Floating Bi -Octal Punch

1. Start Punch motor

2. Set P=initial address of the floating bi-octal routine

3. Set A=initial address of the region to be punched

4. Press Run switch

5. Computer stops

A=OOOO

Z=7701

6. Set A=last address to be punched

7. Press Run switch after returning to center position

8. Program Stop

A=OOOO

Z=7707

b. Floating Bi-Octal Verify

s 020 - 1

1. Set P to the third location of the region containing the

floating bi-octal routines

2. Set A=first data word location on the tape

3. Turn on reader and insert tape

4. Press Run switch

5. Discrepancy Stop

.A::address at which discrepancy was found

Z=OOOl

6. Format error on the tape

Z=0007

The tape must be removed because the computer will not accept

the remainder.

7. Program Stop

A=OOOO

i,:7707

3. Space Required - 1068 = 7010 locations

4. Temporary Storage Requirements - locations 0074 through 0077

12. Caution to User - The contents of location 7777 can not be verified or

punched unless it is the first location of the selected region. The

tape containing the bi-octal routines can not be loaded beginning at

locations 7776 through 0077 since some part of the floating bi-octal

will overlap temporary storage regions.

13. Equipnent Configuration - Minimum 160 Computer

s 020 - 2

A. IDENTIFICATION 160.017

TITLE: Convert Binary Coded Decimal to Binary

IDENTIFICATION: L 021

CATEGORY: Information Processing

PROGRAMMERS: J. Pederson

DATE: August 1960

B. PURPOSE

This subroutine will convert a binary coded decimal number of up to

six digits to the equivalent binary number in 22 bit arithmetic format.

The binary coded decimal number is stored one digit per word with the digit

as the low order four bits of the word.

C. USAGE

1. Operational Procedure

The address of the high order digits of the decimal number is specified

by the contents of storage location 0010. The number of digits in the

decimal number is specified by the contents of storage location 0011.

The resulting binary number will be stored in location 0012 and 0013

with the high order portion of the word in 0012.

The 22 bit arithmetic format uses the high order bit of the low order

word as a buffer to catch overflows, thus this bit must be a zero and

is not considered as an information bit. The low order bit of the high

order word will be considered as the 211 bit.

On completion, the contents of location 10 will point one location beyond

the low order digit of the decimal number. Contents of 0011 will be

unchanged. The routine uses the high order four bits of location 0013

to catch the overflow from the multiply process. This overflow is

added to the low order four bits of 0012. On completion of the routines,

L 021 - 1

the program reassembles words 0012 and 0013 to the 22 bit arithmetic

format. The assumption in the conversion routine is that the numbers

are positive. Any sign indication will have to be added later.

2. Argument or Parameters - None

3. Space Required - 37 locations

4. Temporary Storage Requirements

0010 - Contains address of high order digit of decimal number

0011 - Contains count of number of digits in decimal number

0012 - High order binary result

0013 - I.ow order binary result

0070 - Counter used in routine

0077 - Mask (0377)

10. Timing - The routine takes 230.4 + 198.4 N microseconds where N is the

number of decimal digits to be converted. The routine will take

approximately 1.2 milliseconds to convert a five decimal digit number.

The time to convert binary coded decimal information to the correspond­

ing binary information is given in the table below. These times are

derived on the assumption that the binary coded decimal information is

stored one digit per word with the high order digit of the number given

first.

The break in the time sequence between 3 and 4 digits, 6 and 7 digits,

9 and 10 digits is based on changing from a single to double to triple

to quadruple precision binary representation.

CONVERSION TIME

Number of decimal digits

2

3

L 021 - 2

Conversion time in milliseconds

0.11

0.18

CONVERSION TIME (Cont.)

Jlumber of decimal digits

4

5

6

7

8

9

10

Conversion time in milliseconds

1.03

1.23

1.43

2.6

2.9

3.4

5.0

11. Accuracy - The routine is good for up to six decimal digit numbers.

13. Equipment Configuration - Minimum 160 Computer.

L 021 - 3

A. IDENTIFICATION

TITLE: Resident Service Library

IDENTIFICATION: RS 022 (Replaces RS 017)

CATEGORY: Service Routines

PROGRAMMERS: L. Kuller

DATE: December 1960

B. PURPOSE

16o.018

Selecting the proper routine enables instructions to be loaded into the

memory from punched paper tape or the on-line electric typewriter; or the

contents of the memory to be dumped on punched paper tape or the on-line

typewriter. The accuracy of the punched paper tape may be verified and the

check sum of a block of memory may be determined. The contents of memory

exclusive of RS 022 may be cleared.

The following service routines comprise the resident service library:

Check Sum

Bi -Octal Punch

Bi -Octal Verify

Flex Tape Load

C. USAGE

Flex Tape Punch

Flex Tape Verify

Type Load

Type Dump

Clear Memory

1. Operational Procedure - Load the tape of RS 022 as follows:

1. Set P=7400

2. Set Load-Clear switch in LOAD position

3. Program Stop

P=7776

A=7776

4. If Check Sum is desired: Select Check Sum Program and sum from

location 74oo through 7776; If RS 022 has been correctly loaded

a check sum of 0160 will be obtained.
RS 022 - l

a. Check Sum - Used to determine if the data or instructions are

correctly stored in a specified region of memory. A che~k sum is

performed by summing all the words within a region.

1. Set P=74oO

2. Set A=initial address of the region

3. Press Run switch

4. Computer stops with P=7610, A=OOOO, Z=7701

5. Set A=last address of the region

6. Press Run switch again after returning it to center position

7. Program Stop

P=7604

A=Check sum of the region

Z=7707

8. Compare A w1 th known check sum

9. To rerun program clear A and proceed from Step 2 above.

b. Bi-Octal Punch - Used to punch out portions of the 160 memory in

bi-octal format.

1. Start Punch motor

2. Set P=7401

3. Set A=initial address of the region

4. Press Run switch

5. Computer stops with P=7624; A=OOOO; Z=7701

6. Set A=last address to be punched

7. Press Run switch after returning it to center pesition

8. Program Stop

P=7621

A=OOOO

Z=7707
RS 022 - 2

9. To repeat, go back to Step 3 above.

c. Bi -Octal Verify - Bi-Octal Verify is used to verify the accuracy of

a tape prepared by Bi-Octal Punch.

1. Set P=74o2

2. Set A-location of first data word on the tape

3. Turn on reader and insert tape anywhere on the blank leader

4. Press Run switch. Canputer checks the data on the tape against

the current content of the memory. The format is also verified.

5. Canputer stops on finding a discrepancy or format error:

P=7441

h:address where error occured

Z=OOOl

To continue checking the tape press Run switch after returning

it to center position.

6. Program Stop

P=7432

A=OOOO

Z=7707

7. To repeat the program insert new tape into reader, set initial

address and press Run switch after returning it to center position.

d. Flex Tape wad - Used to read 160 program tapes prepared on a

Flexowriter, by the Flex Tape Dump program or an OSAP listing and

store in the storage locations specified by the tape.

1. Tur~ on reader

2. Insert tape saneplace on the blank leader

3. Set P=74o3

RS 022 - 3

4. Press Run switch. Program will store and check the information

following the first carriage return character on the tape.

5. Computer stops on finding a discrepancy:

P=7515

A=address at which the discrepancy occured

Z=OOOl

6. Program Stop:

P=7470

A=OOOO

Z=7707

7. Repeat the program by putting a new tape in the reader. Push

Run switch after returning it to the center position.

Characters 0 through 7, carriage return, tab, and period are recognized

by the program. The illegal code 75 will cause canputation to stop as

explained in the paragraph on limitations (see No. 13 - Caution to user).

The illegal code 76, which can be punched by OSAP, causes the program to

ignore all characters on that line. All other characters are ignored by

the program. The carriage return defines the beginning of a line.

Tape may be prepared in an eight digit format giving the four digits of

the address followed by the four digits of the instruction or constant. A

space or tab may or may not be inserted between the address and the data in

this format. The program always takes the last four characters and stores

them at the address specified by the first four characters.

Tape may also be prepared in a four digit format in which a carriage

return followed by a tab followed by four characters of data make up the

line. The program will take the four characters and store them at the next

consecutive memory location following that at which information was last

stored.
RS 022 - 4

If an insufficient number of digits in either format is present on a

line, the data on that line will be discarded. A period appearing af'ter a

carriage return or a tab is interpreted as an end of' f'ile code and will

cause the program to stop.

Example of' format accepted by Flex Tape IA>ad, Flex Tape Verify and Type Load

The following format will be accepted.

1463

1502

30 51

41 63

54o3

6552

43 05

0112

0273

1783

Comments on the program

No periods are allowed except as an end of'

file mark

The period causes the program to stop.

The Flex Tape wad program would process the above tape and cause the

following information to be stored in memory:

wcation Contents

1463 3051

1464 4163

1465 54o3

1502 6552

1503 4305

4506 0112

5602 0273

RS 022 - 5

The last entry is missing because the program ignored the 8 and rejected the

data because only three recognizable che.racters appeared on the line.

e. Flex Tape Punch - Used to produce punched paper tape listings of a

program suitable for off-line printing on a Flexowriter.

1. Turn on Punch

2. Set P=7404

3. Set A=initial address

4. Press Run switch

5. Computer stops with

P=7677

A=OOOO

Z=7701

6. Set A=address of last word to be listed

7. Press Run switch after returning it to center position

Flex Tape Punch will produce the specified listing allowing up to

48 listings on each page, with a double space preceding each listing with an

address divisible by eight. Each listing shows the address where the

information was stored (4 digits) followed by a tab, followed by the infor­

mation (4 digits). A stop code is punched at the end of each page. A

blank leader and trailer are punched in addition to the listings.

8. Program Stop

P=7674

A=OOOO

Z=7707

9. To repeat insert initial address in A and press Run switch after

returning it to center position.

f. Flex Tape Verify - Used to verify the accuracy of a tape prepared

RS 022 - 6

by Flex Tape Punch.

1. Turn on reader

2. Insert Flexowriter tape into reader someplace on the blank

leader.

3. Set P=74o5

4. Press Run switch. On encountering a carriage return the program

will begin assembling information according to the format rules

given under Flex Tape wad. It will check this information

against the current contents of the memory.

5. Discrepancy - Computer stops

P=7515

A=address of discrepancy

Z=OOOl

Press Run switch a~er returning it to center position.

Program will continue to check the rest of the tape.

6. Program Stop

P=7470

A=OOOO

Z=7707

7. T6 repeat the program insert a new tape in the reader and press

the Run switch after returning it to center position.

g. Type wad - Used to store data received from the on-line electric

typewriter.

1. Turn on the electric typewriter

2. Put Operation Mode switch into CLEAR position

3. Press Operation Mode switch into COMPUTER position. The ready

light should be on and the Input Request light off.

RS 022 - 7

4. Check to ensure Input Disconnect switch is in center position.

5 • Set P:s7406

6. Press Run switch. The status indicator will immediately show

an input (IN) condition. The input request light and the ready

light on the typewriter cabinet will also be on.

7. Type in instructions and data using the format described in the

Flex Tape Load program.

8. Discrepancy - Canputer stops

P=7515

A=address of the discrepancy

Z=OOOl

To continue the program press the Run switch after returining

it to the center poation.

9. End of File code typed. Computer stops

P=7470

A=OOOO

Z=7707

10. To repeat the program press the Run switch after returning it

to the center position.

h. Type Dump - Produces listings of programs and data directly on the

on-line electric typewriter.

1. Turn on the typewriter

2. Put Operation Mode switch in the CLE.AR position

3. Put Operation Mode switch in the COMPUTER position

4. Check to ensure Input Disconnect switch is in center position

5 • Set P= 74o7

6. Set A=initial address of the region to be listed

RS 022 - 8

7. Press Run switch

8. Canputer stops

P=7677

A=OOOO

Z=7701

9. Set A=address ot the last word to be listed.

10. Press Run switch atter returning it to center position. Type

Dump will produce the specitied listing allowing up to 48

listings on each page, with a double s:pace preceding each

listing with an address divisible by eight. Each listing

shows the address where the information was stored (4 digits)

followed by a tab, followed by the information (4 digits).

Canputer stops to allow the operator to change paper.

11. End of Page

P=7743

A=OOOO

Z=7702

Continue by pressing the Run switch a~er returning it to

center posit:l:oll.

12. Program Stop - Typewriter shows listing is completed by an end

of file code {carriage return followed by a period).

P=7674

A=OOOO

Z=7707

13. To repeat insert the initial address in A and press the Run

switch after returning it to center position.

i. Clear Memory - Clears locations 0000 through 7377. The region

RS 022 - 9

occupied by RS 022 and 7777 are not cleared.

1. Set P=7410

2. Press Run switch

3. Program Stop (0000 through 7377 clear)

P= 7417

A=OOOO

Z=7707

4o Computer will start the Flex Tape Load program automatically

and read a Flexowriter program tape jnserted in the reader

if the Run switch is pressed after returning it to center

position.

3. Space required - 3778 = 25510 locations

4. Temporary Storage Requirements - Locations 0070 through 0077

10. Tjmjng - Output approximately 60 frames ner second

Input approxjmately 350 frames oer second

12. Caution to user - Locations 7400 through 7776 are used by RS 022.

Location 7777 cannot be loaded, verified, surmned, punched or

listed by any of the service routines in RS 022 unless it is the

first locat-ion of the selected region. Due to storage limitations

in RS 022, when the illegal Flexowriter code 75 is received in the

Flex Load, Flex Verify of Type Load programs, the computatfon

stops v.Ji th the computer i.n an OUTPUT status. If the Hun-Step

switch is returned to the center position, P and A will both

contain 7545 and Z=7465. The Clear switch must be pressed to

clear this condition.

RS 022 - 10

14. Equipment

Configuration - Standard 160 Computero

RS 022 - 11

A. mENTIFICATION

TITLE: Punched Paper Tape Duplicator

mERTIFICATIOif: S 023 (Replaces S 013)

CATEGORY: Service Routines

PROGRA»IERS: J. Pederson

DATE: December 1960

B. PURPOSE

160.019

This program produces multiple copies of a given seven level punched pa.per tape.

C. USAGE

1. Operation Procedure

a. Enter Tape

1. Turn on reader, insert S 023 tape and load starting P • 0000

2. Place tape to be duplicated on the reader and enter with

P•OOOO. Tape will be read in until succeeding blank frames

indicate the end of the tape.

3. Program Stop

P=0214

A=OOOO

Z•770l

4. If more information renains to be duplicated press switch after

returning it to center position.

5. Error Stop - More than 6395 frames have been entered.

P=0206

A=7777

b. Verify

1. Place tape on reader and run with P=OOOl

2. Program Stop

P•0034

Z-7707

s 023-1

3. Error Stop

P=0361

A•OOOO

Z=7705

c. Punch

1. Turn on Punch

2. Set P=0002 A=number of copies desired (in octal)

3. Press Run switch

4. Program Stop

P=0320

Z=7707

The program will punch an 18 inch leader between copies.

d. To Verify multiple copies

1 • Place tape in the reader

2. Set P=OOOl; A=number of copies to be verified

3. Error Stop

P=0361

Z=7705

Tear out bad copy. Master Clear. Place tape on the reader and set

P=0030. Press Run switch. Alternative method: Set P=OOOl, A=remainder

of the tape to be verified and press Run switch. Program Stop with

P=0034

Z=7707

The program will copy up to 6395 frames of seven level tape and produce

the number of copies specified by the A Register. It also produces an

18 inch leader between copies. Use S 025 for tapes greater than

6395 frames.

3. Storage Requirements: Program 0000 - 0377

Tape Inage 00400 - 7775

13. Equipment Configuration - Minimum 160 Computer

s 023 -- 2

A. IDENTIFICATION

TITLE: Tape Leader Preparation

IDENTIFICATION: S 02Li (replaces S-001)

CATEGORY: Service Routines

PRO}R.AM}'!ERS: R. Olson

DATE: December 1960

B. PURPOSE:

160.020

Used to prepare paper tape leaders for identifying program tapes.

The numerical characters 0 through 9, the letter~ of the alphabet, as

well as < ,) , (, can be punched on a tape leader.

C. USAGE:

1. - Operational Procedures - Prot;ram S 024 can be loaded anywhere :in

memory except locat1 ons 0016 throutr,h OlO~J. ~'he P reg:i ster will

contain t:ie inHial address + 221 when loading :is completed.

1. !faster Clear

2. Turn on Punch

3 o Enter jni tial address of program in both the P and A registers.

L.o i>ress Run switch - Two frames of blank leader 'Will be punched.

5. Set A to code for the desired character to be punched from the

character code table.

6. Press Run switch - Desired character will be punched ~E'I'URN

to step (5) to, continue punching additional characters.

In order to space words enter 0050 into the A register jn

step (S) aboveo

s n2L. - 1

The programmer must allow sufficient blank leader between his

program and the program heading. Most of the resident service routines

used to dump the contents of memory or reproduce paper tape are de-

signed to prepare sufficient blank leader for spacing.

CHARACTER CODES:

Character Code Chara.cter Code

0 0 I 24
1 1 L 25
2 2 M 26

3 3 N 27

4 4 0 30

5 5 p 31
6 6 Q 32

7 7 R 33

8 10 s 34

9 11 T 35
A 12 u 36
B 13 v 37
c 14 w 40
D 15 x 41
F. 16 y 42
F 17 z 43
G 20 ~ 44
H 21 45
I 22 (46
J 23) 47

space 50

s 024 - 2

2. Arguments or Parameters - None

3o s~ace ?equired - 1723 = 12210 locations

4o r_I_'emnorary Storage Requirements - Locations 0070 through 0076

10. T:i ming - Output approximately 60 frames per second

120 Ca 1.:tion to nser - ~'ake certa~n that at least two inches of

tlank tape senarate headinr and nrogram.

J_J. ·z,;onj D~rient confi.~urat:i ons - m nirnuJYJ 160 comnuter

1 1io :>eferen.ces - ~ee c:-001 '11 ape Leader Preparation

s 021+ - 3

160.024

A. IDENTIFICATION

TITLE: Punched Paper Tape Duplicator (for tapes of more than
6395 frames)

IDENTIFICATION: S 025

CATEGORY: Service Routines

PROGRAMMER: R. M. Olson

DATE: February, 1961

B. PURPOSE

This routine is designed to reproduce paper tapes of more than 63 95 frames

by placing the paper tape image on magnetic tape.

C. USAGE

1 . Operational Procedure

a. Load Program Tape S 025

1) Place S 02 5 tape in the reader and set P = 0050.

2) Set load switch and press run.

3) Program stop

p = 0406

A = 2161

z = 0000

b. Enter Tape to be Duplicated

1) Place tape to be duplicated in the reader.

2) Load a reel of magnetic tape onto tape unit. Check the following

items:

a) Magnetic tape unit 1 selected.

b) BINARY parity selected.

s 025 - 1

c) The tape is run forward past load-point, or is set to load

point and the CLEAR button has been pushed.

d) The magnetic tape unit has a green ready light on.

The magnetic tape units need not be touched during the rest of the

operations.

3) Set P = 0050

4) Press Run switch

5) Temporary program stop

p = 0167

A= 0000

z = 7700

At this stop there are two options:

a) If more tape is to be duplicated; press the Run switch after

returning it to the center position.

b) If at the end of the tape: Master Clear, set P = 0166, and

press the Run switch. This will transfer the last partial

block of data onto magnetic tape.

6) Final program stop.

p = 0204

A = 2161

A = 7700

7) Error Halt (parity error)

p = 0207

A = 2161

z = 7750

s 025 - 2

c. Verify Master Tape and Copies

1) Place tape in reader.

2) Set P = 0052

3) Press the Run switch

4) Proper verify stop

p = 0320

A = 2161

z = 7700

5) Improper verfiy stop

p = 0316

A = 2161

z = 7700

6) Error Halt (parity error)

p = 0306

A = 2161

z = 7752

d. Punch New Copies

1) Turn on punch

2) Set P = 0054

3) Press the Run switch

4) Program stop

p = 0400

A = 2161

z = 7700

5) Error Halt fparity error)

p = 0376

A = 2161

z = 7754

s 025 - 3

3. Space Required - 3248 = 212 10 locations.

4. Temporary Storage Requirements - locations 0070 through 0076.

12. Caution to user - Make certain that the magnetic tape unit is set to

BINARY mode and the Tape Unit 1 is selected.

13. Equipment configurations - Standard 160 computer.

s 025 - 4

A. IDENTIFICATION 160.025

TITLE: Flexowriter Tape to ANelex

IDENTIFICATION: S 026 (Flexlex)

CATF.GORY: Service Routines

PROGRAMMER: Bud Vitoff

DArE: February, 1961

B. PURPOSE

1. Flexlex was designed primarily for printing OSAP listing tapes. It

can be used efficiently whenever the ANelex is available for use

irmiediately after assembly.

2. The routine can be used for printing any paper tape prepared by or

for a Flexowriter.

C. USAGE

1. Operational Procedure

a. Load program into 0000 through 0650.

b. Turn on reader. Insert tape to be printed anywhere on its blank

leader.

c. Master clear and start. A page eject is executed before printing

starts.

d. When ten consecutive blank frames are detected, a page eject is

executed and printing stops. Starting at this point enters a

closed "page eject and stop" loop.

e. A master clear restarts the program.

f. A clos~d "page eject and stop" loop can be entered by setting

P = ocxn.

?. Pro~ramrned Stops

Z = 7700: Page eject loop entered at 0001

Z = 7702: Page eject loop entered after ten consecutive blank frames.

s 026 -1

Z = 0004: Program check sum failure. Reload program.

9. Output format

a. Lines per page: 56

b. Fl.exowriter code interpretation (7th level is ignored):

1. carriage return and tabulator codes cause appropriate

printing action, with tab stops after every 12 columns

-~
(i.e. in colunms 13, 25, 37, etc.)'

2. delete codes and illegal codes are ignored.

3. all other non-printing codes are represented by the

indicated substitutes:

Cone Meaning Substitute

02 color shift

43 stop *
47 upper case

57 lower case ?

61 backspace (

c. An automatic carriage return is executed after 120 columns have

been "set" for a line of print.

10. Timing

Printing speed varies with the amount to be printed on each line,

but OSAP listings run about 325 lines per minute.

11. Equipment configuration

Basic 160 computer and ANelex.

s 026 -2

* Tab stops ~be equally spaced across the page; however, the routine

may be easily changed to provide one of the following options:

1. tab interval fixed at a value other than 12, or

2. tab interval fixed, with provision for changing it at the

beginning of each run (by manually changing the contents of

register A at a proGrarmned stop).

The tab interval is set at the beginning of a run by the instructions

in locations 0107 and 0110:

Location

0107

0110

Current

LDN 14

LDN 14 LDNxx

£~ange 2

LDN xx

HLT 01

Load the program, and make the change in core. Master clear and start.

Error stop 0004 will display the calculated new check sum in register A.

Permanent change:

Enter the new check sum into location 0650 and punch a new bi-octal tape.

Temporary change:

Start. Program stop 7704 will display the programmed check sum in register

A. (Of course, the check sum difference should be accounted for by your

changes.) Start to enter the program.

s 026 -3

A. IDENTIFICATION

TITLE: 160 ANelex Dump

IDENT NUMBER: S 029

CATEGORY: Composite Output

PROGRAMMER: T. A. Ammerman

DATE: April, 1961

B. PURPOSE

List 120 character BCD tapes on the ANelex printer, 1000 lines per

minute. The tapes may be prepared either on or off line. The 160 Com­

puter provides control.

C. USAGE

1. Operational Procedure:

a. Load program tape

1) Turn on reader and insert S 029 tape

2) Master Clear

3) Set Load-Clear switch to LOAD

4) Run

b. Load magnetic tape

1) Place tape to be listed on tape unit.

2) Select unit number 1

3) Select CODED mode

4) Press WRITE LOCKOUT button

c. Select 160 - ANelex

1) Set 160 - 1604 ANelex switch to the 160 position.

d. Set desired parameters in A

A= 0000

A = 0001

A = 0002

A = 0003

A> 0003

Eject enough paper to clear printer

Single space

Double space

Spacing under program control

Illegal code (however will result in single spaced
listing

s 029 - 1

0

1

2

3

4

5

6

7

8

9

e. Set P = 0100

f. Run

g. Stop

A= 0020

This denotes end of file. If more records are to be printed,

reset parameters and Run. A stop with A -/: 002 0 indicates an

error (see Error Stops).

3. Space required: 62178 = 321510 locations

7. Error Stops:

a. Parity error - record will be read three times before the com­

puter stops. To continue listing press Run, bad record will be

printed and routine will continue

b. ANelex drops out of READY - depress Ready button on the

ANelex and printing will continue.

9. Output: Print out of the BCD tape at 1000 lines per minute.

12. Restrictions:

In order to obtain the maximum speed of 1000 lpm from the ANelex

it is necessary to restrict the number of characters to the first 47

on the print wheels. Those used are shown in table 1. Table 2 lists

the characters which will appear as blanks.

Table 1. Usable Characters

A K u (

B L v)

c M w I
D N x :::::

E 0 y

F p z
G Q __,,

H R

I s +
J T

s 029 - 2

Table 2. Non-recognized Characters

I- - ' >
~ [/\ i ?

% J v >
$ ~ --, <

13. Machine Configuration:

ANelex printer, 160 computer, Amper FR 3 I 4 00 tape handler.

s 029 - 3

A. IDENTIFICATION
TITLE: Single Precision Fractional Square Root
IDENTIFICATION: S 042
CATEGORY: Demonstration Routine
PROGRAMMER: Sanford Elkin
DATE: February, 1961

B. PURPOSE

c.

This is a demonstration routine. It will find the square root of a proper
fraction with a maximum error of 2-ll.

USAGE
1. Operational Procedure: Load the bioctal tape starting at cell O, and

clear. Place the number Nin the A register, and start. · X =.J°N will
appear in the A register. Place a new N in A and repeat.

3. Space Used: Octal cells 100-206, plus locations·o, 1, 7, and 55-67.

10. Timing: Each iteration about 2.25 milliseconds, maximum of 25 milli­
seconds.

11. Accuracy:
-11

Maximum error is 2 .

D. MATHEMATICAL METHOD
Newton-Raphson iteration with X. = 1/2 (X. + N/X.) and X = 1, stopping

h AV~ 2 11 Th s• 1 i+l. •' 0 di Sb i • 0 d w en L.:A ~ - • e ing e Precision Divi e u routine is use .

s 042 - 1

A. IDENTIFICATION

TITLE: Single Precision Divide Subroutine
IDENTIFICATION: S 043
CATEGORY: Library Routine
PROGRAMMER: Sanford Elkin
DATE: February, 1961

B. PURPOSE

This subroutine will divide a positive 23-bit fraction by a positive 11-bit
fraction, giving a rounded 11-bit fractional quotient.

C. USAGE:

1. Operational Procedure: The dividend (a and b) must be placed in loca­
tions 60 and 61 respectively, and the divisor (x) in 62. The contents
of a must be less than the contents of x, and both must be positive.
b contains 12 low order magnitude bits, which may be all zeroes. The
routine is entered at the symbolic address DVDSBR, and the return address
must be in cell 7. The quotient (y) will be in cell 63.

3. Space Required: 27
10

= 33
8

locations, plus locations 7 and 60-63.

10. Timing: 2.0 milliseconds

11. Accuracy: 11 bits, with answer being rounded.

12. Cautions to User: The dividend is de~£2oyed by the subroutine. If the
true quotient equals or exceeds 1 - 2 , the octal value 4000 will be
in cell 63.

D. MATHEMATICAL METHOD:

~:.Repeated subtractions are used.

s 043 - 1

A. IDENTIFICATION
TITLE:
IDENTIFICATION
CATEGORY:
PROGRAMMER:
DATE:

B. PURPOSE

9-Bit Quick Multiply
s 044
Library Routine
Sanford Elkin
February, 1961

This subroutine will multiply two signed 11-bit numbers together in about
600 microseconds, giving a signed answer accurate to approximately 10 bits.

C. USAGE

1. Operational Procedure: The two numbers and their product are inter­
preted as signed fractions with magnitude less than unity. The multi­
plicand must be in cell 10 and the multiplier in cell 11. Cells 70-72
are used for temporary storage, and the product will be placed in the
A register. The routine is entered at the symbolic address MPY9B, and
cell 2 must contain the return address.

3. Space Required: 181
10

or 265
8

locations, plus locations 10, 11, and
70-72.

10. Timing: Average - 595 microseconds, maximum - 660 microseconds.

11. Accuracy:
-11 -11

Average - 1 X 2 , worst case - 3 X 2 .

D. ~IHEMATICAL METHOD
2 is added to the absolute value of each factor, and the two low-order
bits of each are truncated. If either resulting number is 0 or 1, 0 or the
other factor becomes the answer. Each of the three octal digits of the re­
sultant multiplier is examined, and the partial product of each with the
resultant multiplicand is obtained. The bits in each partial product which
are less significant than 2-12 are truncated, and the sum of the partial
products is truncated to 2-ll. The sign of the product is then obtained,
and the answer is placed in the A register.

s 044 - 1

A.

B.

IDENTIFICATION

TITLE: Integer Divide
IDENTIFICATION: s 045
CATEGORY: Library Routine
PROGRAMMER: Sanford Elkin
DATE: March, 1961

PURPOSE

This subroutine will divide a positive 23 bit integer by a positive 11 bit
integer, giving a 12 bit quotient with an 11 bit remainder.

C. USAGE

1. Operational Procedure: The 23 bit integer must be placed in a (70) and
b (71), the divisor in x (72), and the return address in exit (7). x
must be greater than a (a being the more significant half). The routine
must be entered at DVDINT. The quotient will be in y (73) and the re­
mainder in a (70).

3. Space Required: 22
10

= 26
8

locations.

4. Temporary Storage: Octal locations 7 and 70-74.

10. Timing: 2.0 milliseconds.

D. MATHEMATICAL METHOD

Repeated subtractions are used.

s 045 - 1

A. IDENTIFICATION.
TITLE:
IDENTIFICATION:
CATEGORY:
PROGRAMMER:
DATE:

Paper Tape Edit Program
s 046
Service Routine
Harold C. Schnackel
February 8, 1961

B. PURPOSE
This program permits changes to be made to symbolic paper tapes prepared

for assembly via FLAP, OAR, or OSAP. Changes may be in the form of replace­
ments, insertions, or deletions of complete lines relative to the tape to be
corrected.

C. USAGE
1. Operational procedure

a.) Machine load bioctal program tape at location 0000.
b.) Position correction tape in reader, master clear, and run.
c.) When correction tape has stopped, position the tape to be cor­

rected in the reader, and run. The original tape will be read
in and the corrected tape will be punched out.

d.) Normal stops (octal)
1.) Location 0611: correction tape has been read in cor­

rectly. Run from here to read tape to be corrected.
2.) Location 1026:' END psuedo-op on the original tape has

been encountered and the tape has been edited correctly
and completely.

3.) Location 1116: WAI psuedo-op on the original tape has
been encountered. Continuation is left to the discretion
of the user.

2. Arguments, or Parameters: none
3. Space required

a.) Program plus transient storage occupies locations 0000 through
1122.

b.) Input from the correction tape occupies locations 1123 through
7776 as needed.

4. Temporary storage requirements: see C3
5. Alarms, or Print-outs: none
6. Error Returns: none
7. Error Stops (octal)

a.) Location 0444: The additive field of the current correction
code caused reference to be made to a line which should have
been referenced by the next location symbol on the original
tape. Continuation will cause the current correction code
to be bypassed and the next to be processed.

b.) Location 0524: Computer capacity for holding the corrections
has been exceeded. Corrections must be reorganized into two
or more passes.

s 046

-1-

c.) Location 0707: A non-digit character with the exception of
blank, space, and delete code, is present in the additive field
of the correction code line. A CR is the only legal termina­
tion- of this field. Correction tape must be corrected.

d.) Location 0764: Computer storage was completely searched with­
out finding a correction code. This is due to a machine error.

e.) Location 1011: An illegal edit code (outside the set d,i,r,z)
has been encountered. User must correct the correction tape
and restart.

f .) Location 1027: The tape to be corrected has been processed.
However, all corrections were NOT processed. Somewhere on
the correction tape a correction code has referenced a non­
existent location symbol. Depressing RUN here will cause the
first unprocessed correction code to be punched out and a stop
to occur at 1112.

8. Input and Output Tape Mountings: none
9. Input and Output Formats

FLAP, OSAP, and OAR formats may be used on the tape to be cor~
rected. The format of a correction specification line on the cor­
rection tape is as follows:
a.) Tab
b.) A letter of the set·d,i,r,z where

d delete
i = insert
r = replace
z = end of correction tape

c.) Tab
d.) Location symbol on original tape
e.) Tab
f.) Pure decimal digit address relative to the location symbol.

The absence of a location symbol means that this numerical
quantity is an absolute line count.

g.) Carriage Return

The following example illustrates formats of input and output
tapes.

Input tape to be corrected:

abed ldf qxr
adn 22
sbf qxr 1
sti cntr
ldf 02
jfi 02

next
subr

next aod cntr
hlt 00
end

s 046

-2-

Corrections to be applied:

r abed 1
adn 33
sti ef g
d abed 2
r abed 6

return
i abed 8

4756
r next

return aod cntr
nzb abed
z

Corrected tape:

abed ldf qxr
adn 33
sti ef g
sti cntr
ldf 02
jfi 02

return
subr
4756

return aod cntr
nzb abed
hlt 00
end

10. Timing: Limited by paper tape reader and paper tape punch.
11. Accuracy: not applicable.
12. Cautions to user:

a.) Tape to be corrected must begin with a carriage return.
b.) Tape containing the corrections must begin with a carriage

return.
c.) Any character in the additive field of the correction specifi­

cation line that is not of the set (null, space, digit, delete
code) will cause an error stop.

d.) The additive field of the correction specification line may
be terminated only by a carriage return.

e.)' The correction specification line identification, i.e., the
symbol and additive fields, is always relative to the original
program listing.

f .) There must be a delete code for every line to be deleted.

s 046

-3-

g.) There may be any number (within the capacity of the Edit Pro­
gram) of consecutive insertions or replacements following a
single insertion or replacement code, respectively.

h.) A replacement of line n with m new lines is equivalent to de­
leting line n and inserting them new lines at n + 1.

i.) An insertion results in a line or lines inserted AHEAD of the
line specified in the correction code.

j.) The order of corrections (correction line identification) must
be according to the original list.

k.) The symbolic identification of a line of the original listing
must be made either by the location symbol of the line itself
or by relative reference to the last symbol preceding the line.

1.) The same line in the original listing may not be referenced
by more than one correction code.

13. Equipment configuration: minimum
14. References: none

s 046

-4-

A. IDENTIFICATION
TITLE:
IDENTIFICATION:
CATEGORY:
PROGRAMMER:
DATE:

B. PURPOSE

Prime Factor Extractor
s 047
Demonstration Routine
Sanford Elkin
February, 1961

This is a demonstration routine which will find the prime factors of
any number up to 4095

10
(=7777

8
).

C. USAGE
1. Operational Procedure:

a) Load the bioctal tape starting at location zero, and clear.
b) Place the number in the A register
c) Run. A prime factor will appear in A.
d) Run again. The quotient will appear in A. If the quotient is one,

the prime factors have been extracted and the routine may be begun
again with b). Otherwise repeat c) and d).

3. Space Required: 11210 = 1608 locations (including the divide subrou­
tine), plus locations O, 1, 6, 7, and 31-64.

D. METHOD
The number is divided by primes from 2 to 61

10
(=75

8
), and the remainder

tested for zero.

s 047 - 1

A. IDENTIFICATION

TITLE:
IDENTIFICATION:

BI-OCTAL DUMP 2
s 049

CATEGORY: Resident Service Routine
PROGRAMMER:
DATE:

H. C. Schnackel modified by C. M. Atchison
April 4, 1961

B. PURPOSE

This program will sequencially dump in BI-OCTAL (machine-load format), the
information stored in core memory beginning with the starting address, and
ending at the terminating address minus one. The output tape can be loaded
by use of the "Load" reader mode on the 160 computer.

Co USAGE

1. Operational Procedure
a. Load BI-OCTAL Program Tape at 7732

8
.

b. Set P register at 7732g.
c. Set A register equal to first word location to be dumped.
d. Run.
e. Set A register to last word location to be dumped plus one.
f. Punch on.
g. Run.

3. Space Required
a. Decimal--37 locations high core
b. Octal----45 locations high core

4. Temporary Storage Requirements
Uses and restores location 0.

12. Cautions to User
a. The program is not relocatable.
b. The program does not punch leader or trailer in the output tape.

13. Equipment Configuration
a. Basic 4k 160 with paper tape input and output.

s 049 - 1

A.

B.

IDENTIFICATION

TITLE: TRACK
IDENTIFICATION: s 050
CATEGORY: Service Routines
PROGRAMMER: R. Beale
DATE: March, 1961

PURPOSE

Trace a program, providing a flex-coded paper tape as output. Only the begin­
ning and ending addresses of a consecutive instruction string appear as out­
put, thus the object program is executed at higher speed than is possible
using a full trace.

C. USAGE

1. Operational Procedure
a. Clear memory
b. Machine load the bioctal tape starting at 7000--correct loading will

end with P = 7577.
c. Machine load the object program without altering locations 7000-76003.

Position input data tape in paper tape reader if required.
d. Set P = 7000 A = starting address of program to be traced. Run. Halt

7701 will irru:nediately occur--P = 7002. Without otherwise altering
console, set A = normal contents of A at start of object program. Turn
on punch, run.

3. Space required
7000 through 7534

5358 = 34\o

10. Timing
Depending on the nature of the object program, its instructions are exe­
cuted at 10-500 per second. The average is close to 75 per second.

12. Cautions to User
Because each instruction must be interpreted before execution, the timing
relationships within a program are altered--it is not possible to trace
most card to tape programs for this reason. The track program attempts
to faithfully execute a sequence of instructions regardless of its cor­
rectness. If proper selection of peripheral equipment does not precede
the activation of the equipment, the computer hangs on a "sel" error indi­
cation. Punching by the track program does not alter the object program
external function selections or senses. Each instruction is executed
from upper core, rather than from its normal position in memory; there­
fore prograrru:ned error stops or halts in the object program show P = 7146.

s 050 - 1

A. IDENTIFICATION

TITLE:
IDENTIFICATION:
CATEGORY:
PROGRAMMER:
DATE:

Bo PURPOSE

Binary to 4-bit Decimal Conversion
s 051
Library Routine
Sanford Elkin
March 1961

This subroutine will convert a 24 bit binary integer into a decimal integer
with each digit in successive cells.

Co USAGE

1. Operational Procedure: The 24 bit integer must be placed in locations
BINDEC + 100 and BINDEC + 1018 , and the return address in cell 6. The
8-digit answ~r will be put in cells 108-118 , with the units digit in

778.

3. Space Required: 67
10

= 103
8

locations.

4. Temporary Storage: Octal locations 6 and 70-77.

10. Timing = Approximately 4.3 milliseconds per decimal digit.

D. MATHEMATICAL METHOD

The binary integer is divided by 128 . The remainder is stored in the appro­
priate location and the quotient used as a new binary integer.

s 051 - 1

A. IDENTIFICATION
TITLE: Paper Tape Verify
IDENTIFICATION: S 052
CATEGORY: Service Routines
PROGRAMMER: R. Beale
DATE: January, 1961

B. PURPOSE
The program is used to verify copies of an original paper tape.

C. USAGE
1. Operation procedure:

a. Master Clear
b. Machine load Paper Tape Verify program at zero
c. Master Clear
d. Insert original tape into reader
e. Run
f. On HLT 01, P = 0107; insert second tape into reader and run

without altering console
g. On HLT 02, P = 0130: the last tape is equivalent to original-­

to verify another tape, place it in reader and run without al­
tering console--upon successful verification step g may be re­
peated.

3. Space Required: 135
8

= 93
10

7. Error Stops: On ERR 01, P = 0132: the last tape is not equivalent
to the original--to continue verifying tapes, place new tape in
reader and run without altering console. This will execute Step lg.

10. Timing: 350 frames/second

13. Equipment Configuration: Minimum System

D. METHOD OR ALGORITHM
A series of sequence-sensitive check sums is formed for each tape
and tested for equivalence. There is no limit on the lengths of tapes
to be verified.

E • FLOW CHART
Not applicable.

s 052 - 1

A.

B.

IDENTIFICATION

TITLE: ALNUP
IDENTIFICATION: D 053
CATEGORY: Resident Display Routine
PROGRAMMER: C. M. Atchison
DATE: April 7, 1961

PURPOSE

This routine will punch character messages in paper tape that are legible
to an unskilled observer. These characters are formed in a 5 by 7 matrix
on an output tape. The standard 160 Flexowriter coded paper tape is used
as input.

C. USAGE

1. Operational Procedure:
a. Prepare Flexowriter (Standard CDC 160 code) input tape.
b. Load BI-OCTAL program tape at location zero.
c. Turn punch on.
d. Place Flex input tape in reader.
e. Run from zero.
f. Normal stop: P = 140, Z = HLT 77.

3. Space Required
a. 5748 locations.
b. 38010 locations.

4. Temporary Storage Requirements
a. Variable according to length of input file starting at location 6003.

5. Cautions to User
a. The program does not punch leader or trailer on the output paper tape.

13. Equipment Configuration
a. Standard 160 coded Flexowriter for preparation of input tape.
b. 160 computer with paper tape input and output.

D 053 - 1

A. IDENTIFICATION

TITLE: PARBIT
IDENTIFICATION: s 054
CATEGORY: Subroutine
PROGRAMMER: R. A. Zemlin
DATE: 3 May 1961

B. PURPOSE

For applications in which the 160 is to punch paper tape for subsequent re­
reading, it is desirable practice to use the seventh level as a parity check
on the remaining six levels, preferably using odd parity. PARBIT is a routine
for calculating even or odd parity bits for 6-bit characters, and may con­
veniently be used to form 7-bit checked characters for output or to check
7-bit input characters for proper parity.

C. USAGE

1. Return address should be stored at location "exit". Transfer to loca­
tions "even" or "odd" for forming even or odd parity.

2. Enter with 6-bit character in AS-AO. Contents of the remaining positions
of A are ignored. On return AS contains the parity bit, and the remain­
ing positions of A contain zeros.

3,4. Space required is 13 (decimal) or 15 (octal) cells, of which one is a
temporary cell.

10. Execution time is 115.2 µs. (odd) or 108.8 µs. (even).

PARBIT

odd lsn 40 entrance for odd parity
even stf x entrance for even parity

sha 02
lsf x
stf x
lpn 12
sha 12
sha 02
lsf x
lpn 40
jfi 1

exit bss 1 storage for return address
x bss 1 temporary storage

s 054 - 1

A. IDENTIFICATION

TITLE: One Sixty Assembly Program

IDENTIFICATION: OSAP

CATEGORY: Assembly Program

PROGRAMMERS: R. Hyer

DATE: September 1960

B. PURPOSE

160.002

The OSAP Program accepts 160 Computer instructions expressed in

symbolic form, assigns absolute locations to the symbolic addresses,

performs the necessary work of relative addressing to provide an ab­

solute machine code for input to the 160 Computer.

Data prepared on punched paper tape or punched cards will be accepted

by the OSAP assembly program, or the input may be converted to mag­

netic tape and then this medium used for input.

The final output will be punched paper tape suitable for input to the

160 Computer using one of the program controlled loading routines.

OSAP is available in various versions for 160 Computers with differ­

ent peripheral equipment. The version described here assumes a

minimum 160 Computer using only paper tape input and output.

C. USAGE

1. Theory of Operation - OSAP operates as a two pass assembly

program with an optional correction pass and an optional final

conversion pass.

During the first pass OSAP reads the symbolic tape and produces

a symbol table which specifies the location of symbols found in

the location portion of the program and also an undefined symbol

OSAP - 1

table.

The undefined symbol table lists all symbols occurring in the

Address and Additive field which did not occur in the location

field. At the end of the first pass OSAP will punch out the con­

tents of the undefined symbol table. On the second pass 0 SAP

reads in the symbolic tape and produces a listing tape which in­

cludes the information from the original symbolic tape and the

final absolute assignment of the program. The listing tape then

can be used to produce an optional binary tape for input to the

160 Computer. Optionally, the contents of the symbol table may

be punched out. Two location counters are used. Absolute loca­

tions are assigned to symbolic instructions and quantities accord­

ing to the current value of a location counter. The location

counter is set to an initial value by an origin type pseudo instruc -

tion and is then advanced by one for each computer word created

by the assembly program. Each time a symbol occurs in the lo­

cation field of the coding form, the corresponding value of the

location counter is assigned as the absolute location of that sym­

bolic location.

The two counters used are the program location counter (PRG) and

the constant location counter (CON). The program location counter

normally set to 0100 at the start of an assembly run but may be

set by a pseudo instruction to any value from 0000 to 7776. (In

order not to interfere with the CON locations from 0000 to 0 0 7 7

PRG should be set to 0100 and no lower). When in use, the pro­

gram location counter is advanced by one for each line of coding

assembled. In other words, PRG creates the contents of the P

register for the machine language program being assembled. The

constant location counter is used to assign constants and special

information in the range of 0000 to 0077 and the constant location

counter is limited to this range. An Error Stop will occur if the

OSAP - 2

CON exceeds this range.

The symbols TEM 0, TEM 1, ... , TEM 7 are permanently

assigned to give corresponding location values of 70 to 77. Other

symbols may be assigned to these locations in the course of a

program.

2. Operation Codes

The mnemonic operation codes accepted by OSAP expressed as 3

characters - normally the first two characters define the instruc­

tion and the third character defines the address mode, unique in­

structions are given a three character operation code.

The codes are:

LP Logical Product (02, 10, 11, 12, 13)
LS Logic Sum (03, 14, 15, 16, 1 7)
LD Load (04, 20, 21, 22, 23)
LC Load Complement (05, 24, 25, 26, 27)
AD Add (06' 30, 31, 32, 33)
SB Subtract (07' 34, 35, 36, 37)
ST Store (40, 41, 42, 43)
SR Shift Replace (44, 45, 46' 4 7)
RA Replace Add (50, 51, 52, 5 3)
AO Replace Add One (54, 55, 5 6, 5 7)
ZJ Zero Jump (60, 64)
NZ Non-Zero Jump (61, 65)
PJ Positive Jump (62, 6)
NJ Negative Jump (6 3, 67)

The address mode control characters are:

N No Address
D Direct Address
I Indirect Address
F Forward Relative
B Backward Relative
R Relative

If the address mode is R, OSAP will select the correct direction.

OSAP - 3

The unique operations are:

SHA
HLT
JPI
JFI
INP
OUT
OTN
EXF
INA

Shift A (01)
Halt (77)
Indirect Jump (70)
Forward Indirect (71)
Input (72)
Output (73)
Output (74)
External Function (75)
Input to A (76)

3. Control (PSEUDO) Instructions

Control instructions are included in OSAP to control the advanc -

ing and setting of the location counters, to provide convenient

methods of controlling the operation of OSAP and to introduce in­

formation in a form different from the normal format. Control

instructions are written in the same format as the standard 160

instructions and any special meaning is explained under each in­

struction.

a. ORG (Origin) The instruction ORG will cause the current lo­

cation counter to be assigned the numeric value as specified

by the sum of the Address and the Additive field. Normally

the quantity in the Address and Additive field will be a num­

ber, however, it is legal to use a symbol in either or both

fields, provided the symbol has been assigned a numeric

value by the time the ORG instruction occurs during the first

pass. If an undefined symbol is given in either field, the

OSAP will stop and indicate the fact by the stop coding.

b. CON (Constant Location Counter) Normally the CON instruc­

tion is given with no information in the Address or Additive

field, OSAP will use the constant location counter as the cur­

rent location counter which will continue from its previous

value.

OSAP - 4

If a value is given in Address or Additive field, the numeric

value will be calculated as in origin and this numeric value

will be used as the current value of the constant location

counter.

c. PRG (Program Location Counter) This instruction causes

the program location counter to be used as the current loca­

tion counter in a manner similar to CON as given above.

Comments on ORG, CON and PRG

These three instructions do not cause the location counter to

advance on assembling. Thus the address specified applies

to the next instruction to be assembled. If a symbol is given

in the location field, this symbol will be assigned the numeric

value assigned to the next location.

d. BLR (Block Reserve) The BLR instruction will advance the

current location counter by the amount specified in the

Address plus Additive field; in addition if a symbol is given

in the Location field, that symbol will be assigned to the first

numeric address in the block. The Code BSS will also cause

the same action.

e. WAI (Wait Input) WAI will cause OSAP to stop and allow for

insertion of a new tape for input. On pressing the run switch,

assembly will continue.

If on a Wait the operator desires to execute the END function,

the program will be started at a different location after master

clearing.

f. END (End of Data for Assembly) The occurrence of an end

code will cause OSAP to prepare for the next pass. On re­

positioning paper tape, the operator operates the Run switch

OSAP - 5

to continue with the next pass.

g. EQU (Equivalence Statement) The EQU instruction assigns

the numeric value of Address plus Additive to the symbol

given in Location. Address and Additive may be symbolic

provided they are defined prior to their occurrence on the

first pass. Equivalence will not cause the location counter

to step.

h. REM (Remarks Statement) All that follows the OP code on

a REM statement will be taken as remarks and will be ig­

nored by OSAP. A REM instruction will not cause the loca­

tion counter to advance.

i. DEC (Decimal Number) This instruction will cause the

digits given in Address field to be converted from decimal to

binary and stored.

j. BCD, FLX, TTY These three instructions will cause the

information given, starting in the comment field, to be con­

verted to BCD (for printer listing), Flexowriter code (for

typewriter listing) or Teletype code, and store two charac­

ters per word in successive locations. The maximum num­

ber of characters under this option is 56. The end of the

characters to be coded in this form is indicated by occurrence

of slash followed by a period (I .) .

The coded information then can be used by a short subroutine

to provide output from the 160. The subroutine will use the

occurrence of the pair I . to indicate the end of data. If an

odd number of characters are given, an additional space will

be included to provide complete words.

k. BCR, FLR, TTR These three instructions will cause infor -

mation to be converted as above and stored one character per

OSAP - 6

word in the right six bits of the word. Conversion will be

stopped by the occurrence of the character pair I . and these

two characters will not be included in the converted data.

This form of information may be obtained as output with single

output instruction, but require twice as much storage as in­

formation prepared by the BCD, FLX and TTY instructions.

4. Preparation of Input

a. Card Input

The card format is as follows:

Columns 2-7 10-12 15-20

Location OP Address

23-28

Additive

3.1-80

Comment

Numbers and symbols may be punched left justified and OSAP

will right justify the numbers. Also blank columns in a field

will be ignored as for example the symbol A P will be treated

as AP.

Column 1 is reserved for identification and the character in

that column will be used to indicate differing card formats.

b. Punched Paper Tape

For punched paper tape input, the tab function indicates the

end of a field and a carriage return (CR) indicates the end

of the last field of a line. The format is then:

LOC TAB OP TAB ADDRESS TAB ADDITIVE COMMENT CR

A tab may be replaced by a carriage return at any position

in the line. Spaces, code delete, and stop code are ignored

in the assembly. A line of typing may be eliminated in the

case of an error by typing a slash followed by a carriage re­

turn (/CR).

OSAP - 7

5. Rules of Operation

The following rules are followed by the assembly program:

a. A line containing no information in Location, OP, Address,

and Additive fields will be ignored by the assembly, but will

appear in the listing tape.

b. If no information appears in the OP field, the quantity formed

by the Address plus the Additive will be stored- as a full 12-

bit number.

c. Information specified by the Additive field will be added to

information specified in the Address Field modulus 212 -1.

If a minus sign (-) is the first character of the Additive field,

the Additive is subtracted from Address.

d. All non-printing characters are ignored (except control char­

acters).

e. All symbols are left justified and spaces are added to make

a total of six characters.

f. All numbers are right justified and left most zeros are assumed

in the conversion from octal or decimal to binary.

g. Symbols in the Address and Additive field are converted to

numeric by table lookup using the symbol table. The two

numbers are then combined according to rule c to produce a

numeric value. The resulting 12-bit number is then reduced

to an execution address.

h. If the numeric value is between 0000 and 0077, combine it

with the operation code to form the instruction.

i. If the operation code indicates a relative address operation

and the numeric value is greater than 0077, attempt to make

OSAP - 8

a relative address by subtracting the location of the instruc­

tion from the numeric value and obtain a number less than

0077 for forward relative. If this fails, subtract the numeric

value from the location of the instruction to obtain a relative

backward address. If this fails, assume the address zero

and flag a possible error on the listing.

j. If no operation code is given, use the four digit numeric value

as the word.

k. If the operation code does not indicate relative addressing,

use the value 00 and flag a possible error in the listing.

6. Operating Instructions

a. Load OSAP Model Zero program starting at location zero us -

ing machine load. Turn on the punch and reader and place

the tape to be assembled on the reader: start with P = 0000.

The program will come to a stop with P = 1044; return the

run switch to neutral and run again. The undefined symbols

in your program (if any) will be punched and the program will

stop with P - 1270, a = 0000, and Z - 7750. This last stop

indicates the first pass of the assembly is completed.

b. Rewind input tape and place it on the reader. Return the

Run switch to neutral (do not Step or Clear) and run again to

perform the second pass. A stop with P - 2126 and Z = 7776

indicates the program is complete and the punched tape may

be listed on a Flexowriter. If a sorted symbol list is desired,

return the Run switch to RUN after the above stop and a sym­

bol listing will be punched. Program stop at this time is

P = 2243, A = 0000, Z = 0000.

OSAP - 9

OSAP CODING FORM 1

LOCATION OP

I I I

_J I

I I I _J I I

I _J__ I _J I

l

__. _J I I

_l _l _J__

_j I

I I I _J _J_

_J _J _J I l

_J _l _J I _J

...1 I I I _J _j_ I

_J I

I I I _j_ _j_ _J_

I I _j ..l _J

...J _l

j I

_J I _J _J

I _J _l

I _J ..l I

--'- ...J. _J_ _J_ --'- _J

_J I _J ...1 _J I

I

J

J _J_ ...1 _J_

I

I

I I _1 _J_ _J_

_J _J I I _J

-1 _l _J_

CDC 138 b

ADDRESS

_J I I _J _l

_J I _J ...1 ...1

I l _J I

...1 I _J ...1 _l

I l _J _J

l l I

J I _l _l ...1

..l _J_ I ..J. ..l

_J__ I _j_ _j_ _l

_l I I

I _J

j I _1 _J

I I I

_J _j_ ...1

..l _J_ _l _J

I _J

I I I _1

_J _J I _J_

_ _J_ _1 I _l

--'- --'- _J_ I ..J.

_1 I

_J _J

I I

I _J

J

_ _J_ I

_J _l l

I

I _J_

.l

ADDITIVE

_J I _J

_J__ I

_J

I I

I

I I

1 I l

I

I I

I

I I I

j I _J_

I _l I _J

J _j_ l _J

_J ...1 _j_

_l I _l

I I I

__. ...J I

J ..l

I

I --'- _J_

_J

_J __.

_l

__.

_l

I _1 J

I _J

_l ...1 _J_

_l ..l

_J ...1 _J _J_

_J

• • CONTROL DAT A CORPORATION

PAGE NO.

DATE

PROGRAMMER
COMMENTS

-

::::0 -u
0 ::::0
c 0
--t G)

z ::::0
rn)>

~

-u
)>
G)
rn

A. IDENTIFICATION

TITLE: OSAP Correction Routine

IDENTIFICATION: OCR

CATEGORY: Assembly Routines

PROGRAMMERS: A. Perro

DATE: December 1960

B. PURPOSE

160.006

OCR is designed to correct an OSAP listing tape and to produce a new

tape suitable for assembly under OSAP control. OCR is capable of

changing an address, deleting an address (or addresses) three types

of additions and one special corrective routine.

C. USAGE

1. Operational Procedure

a. Load bi-octal tape containing OCR with P = 0000

b. Place correction tape into reader and set P = 0002 (Flexo­
writer Format)

c. Press Run switch

d. Program Stop

p = 0754
A = 0000
z = 7770

e. Turn on punch. Insert assembly tape to be corrected in
reader. Set P = 0000. Run.

f. OCR will output corrected flex tape for new OSAP assembly.

g. Load OSAP

h. Assemble new flex tape under OSAP control.

OCR - 1

Correction Tape Preparation - The tape must be in Control Data Flexo­

writer coding in the following format:

Location Addition Type

4 Characters 4 Characters 3 Characters

These must be in sequence and immediately followed by the correction

in OSAP input format and a period at the end.

EXAMPLE: Change location 0120 to 7505

OCR /OCR OSAP Format

Location Actct!tio~ype / / f \ \
I

0120 0001 CHG Tab EXF Tab 005 CR (42)

All of this must be in sequence with no additional spaces. Each

change or group must end with a period (Flexcode 42). The end of a

correction tape must be a Flexowriter stop code (77).

Correction Entries:

Corrections to areas with existing locations:

ADD - Addition

Insertion of a new instruction or instructions between exist­

ing instructions. The new instruction will be inserted at the

location specified and the existing instruction will be moved

forward according to the number of insertions.

CHG -Change

Replace an instruction with another. This restricts the oper -

a tor to one change per location on a line basis.

DEL- Delete

Delete an address or addresses beginning with the location

specified.

OCR - 2

New insertions where no locations are listed:

This format varies from the others being preceded by NLL.

Format: NLL Location Add. Type OSAP input format

EAL - Add just after a location

EBL - Instructions added before a group of addresses, but

not at the beginning of a program.

EXAMPLE:

6000

PRG

WAI

2114 LDI

6000

P - - - etc.

Add instructions starting at 5 770 to 6000 between WAI and

6000.

OCR format: Location contains the location nearest - 6000

Additions contain the number 0010

Type EBL - This will save the WAI, insert the octal 10

instructions and continue.

EAL - Address just after a location

EXAMPLE: 0025 1750 KILO 1750

WAI

PRG 6000

Add instructions between 0025 and WAI

Use the same format as for EBL.

To correct a pseudo Op at the beginning of a program with no locations

listed:

NPO - Followed by the OSAP input format and ending with a period.

This one entry will not have any location or type instruction.

OCR - 3

EXAMPLE: CON 0010

0010 0000 B

0011 0000 c
Change CON to CON 0050

CON 0050

0050 0000 B

0051 0000 c

OCR - 4

USE OF THE FPP-33 SIMULATOH

WITH THE MODEL 160 COMPUTEH

The FPP-33 is an easy to use programming language designed for

solving scientific computing problems on the Model 16 0 Computer.

A limited repertoire of 1604 instructions is used. These are written

in 1604 format, with an upper and lower instruction in each address.

Each instruction in the Simulator consists of an operation code, an

index designator, a break-point code, and a base execution address.

All addresses are in octal notation. In section 7 there is a short table

showing octal to decimal conversions.

The FPP-33 occupies a portion of the computer memory, leaving octal

addresses 0020 to 1017 available to the programmer. This is the

equivalent of 512 decimal 1604 addresses. (This represents 160

locations 0100 through 4074.) Each of these addresses may hold two

instructions or one data word. Data words are entered as decimal

floating point numbers.

A repertoire of 21 instructions is ava'ilable in the FPP- 33. These are

standard 1604 numeric operation cod.es. Mnemonic codes are not

available in the Simulator.

1

OPERATIONAL PROCEDURE

A. LOAD SIMULA TOR TAPE

1. Clear Memory - Clears all of memory without exceptions

1) Master Clear

2) Set Enter -Sweep switch to Sweep

3) Hold Clear button on Z Register down

4) Press Run switch while holding clear button on Z Register

5) Return Run switch to neutral position

6) Master Clear

2. Load FPP-33 Tape - Uses all of memory except 0020 through 1017

(1604 Locations)

1) Turn on Paper Tape Reader

2) Insert tape on the blank leader

3) Master Clear - This must follow any readjustment of the

reader

4) Set P:'.;4100

5) Set Load switch

6)

7)

Press Run switch

Computer stops with P=0060

A=0024

Z=OOOO

8) If tape fails to read in correctly. repeat starting with step :2).

2

3a. Check Sum - Tests ~ mory to determine if the FPP-33 or any

other routine has been read in correctly.

The Check Sum routine, including a floating

bi-octal dump, occupies 46 octal locations and

may be loaded anywhere,

1) Turn on the reader and position tape

2) Master Clear

3) Set P= first 160 location to be used. Start at any location

between 0100 and 4030

4) Set Load Clear switch to LOAD

5) Push Run switch

3b.. Verify - Verifies the loading of a program tape thr01.gh the

check sum

1) Master Clear

2) Set P to the first 160 location into which the check sum

routine was loaded.

3) Set A to the first lGO address of the area to be summed

4) Press Run switch

5) Computer will stop with Z=7700

6) Set A to the last 160 address of the area to be summed

7) Press Run Switch

8) Program Stop A= check sum

Z= 7730

3

To check the loading of the FPP-33 simulator tape set

A=4100, then to 0060. The check sum 0035 will be dis­

played in A if the tape has been read correctly into memory.

B. LOAD A PROGRAM OF INSTRUCTIONS

1 a. Loading Instructions from Flexowriter Tape

1) Place tape in reader

2) Turn on reader

3) Master Clear

4) Set P= 7 400

5) Set A=OOOO (unless offsetloading is desired)

6) Press Run switch

7) Program Stop P=7462

A=OOOO

Z=7777

1 b. Find and Correct Input Instruction - In loading Flexowriter tape

if the last instruction is not followed by a carriage return and

a semicolon, the instruction tape will not stop. If it goes com­

pletely out of the reader, the input instruction of the reader

subroutine is destroyed.

If is then necessary to reload the 1604 Simulatoc or to find and

correct the input instruction.

4

1) Reinsert the Flexowriter tape in the rea(1er

2) Master Clear

3) Set P-=7400

4) Press Run switch

5) Com'Juter stops with P-=address of the innut instructirm

6) Master Clear

7) Set P= address of the input instruction

8) Set Enter-Sweep Switch to Enter position

9) Set Z=7667

10) Press Step switch once

11) Return Enter switch to neutral

12) Master Clear

2. Entering Instructions Directly from the Typewriter

1) Master Clear

2) Set P=7402

3) Press Run switch

4) Type in locations and instructions in one of the acceptable

formats for paper tape

5) Return Run switch to neutral position after entering the

entire program

6) Master Clear

NOTE: In case of error: Carriage return and retype the

location and instructions.

5

C. DATA LOAD

1. Loading Data (Including constants for use in a program) - Data

must be entered in floating point format. The numbers are

expressed as decimal fractions followed by an unbiased exponent.

Example: 1604. 0 is • 1604

1) Insert tape in reader

2) Turn on reader

3) Master Clear

4) Set P=7404

5) Press Run switch

6) Program error-Address is out of range or exponent can not

be converted, master clear, set P= 7 404 and press Run

switch

7) Program Stop - P=7761

A=OOOO

Z=7722

NOTE: If the tape has run out of the reader because the last

data word was not followed by a carriage return and

a semi-colon proceed as in Blb above, however, set

P-7404 in step 3.

2. Loading Data directly from the Typewriter

1) Master Clear

2) Set P=7406

6

3) Press Run switch

4) Type in locations and data in the format used for Flexowriter

tape

5) Return Run switch to center position after all data have been

entered

6) Master Clear

NOTE: If an error is made in typing a location, set Run switch

to center, master clear, reset P to 7 406, Run and

start typing the location again.

If . d . d t d t " " d b . an error is ma e in a a a wor , ype x an eg1n

the data word again, provided the x is used before the

exponent reading has been completed with tab or C.R.

The x causes the routine to ignore the previous infor-

mation in the data word. It has no effect on the address.

The X may be followed by a carriage return and/ or a

tab. The input routine looks for a minus sign, a decimal

point, or a final semi-colon, ignoring everything else.

E. PROGRAM START

1. Start operation uf the program -

1) Load reader if program calls for tape input

2) Start punch if program calls for tape output

3) Master Clear

4) Set A=first 1604 instruction address of the program

7

5) Press Run switch

F. MANUAL DATA OUTPUT

1. Simulator A Register Dump - dumps a floating decimal number.

via the typewriter

1) Master Clear

2) Set P=7410

3) Press Run switch

4) Program Stop

P=7766

A=OOl 3

Z=7713

2. Instruction Dump - The contents of consecutive locations may

be punched on paper or listed on the typewriter in octal notation.

1) Master Clear

2) Set P=7401 (produces octal tape)

Set P= 7 403 (typewriter listing)

3) Set A=first 1604 location to be dumped

4) Press Run switch

5) Computer stops

6) Set A=last 1604 location to be dumped (for one instruction

A~ first location step 3)

7) Press Run switch

8

Data may be dumped using the instruction dump routine to

punch a tape. This produces a data tape in octal format.

Such a tape may be read back into the 160 in the same way

that instruction tapes are loaded, using the instruction load

routine (P= 7400). If the A register contains zeros, the

tape reads into the same data locations from which it was

punched. The data may be offset loaded into different loca­

tions. by setting the desired increment in the A register.

3. Data Dump - The contents of consecutive locations may be

punched on paper or listed on the typewriter in decimal notation.

1) Master Clear

2) Set P=7405 (data dump via tape output not presently available)

Set P= 7 407 (typewriter listing)

3) Set A=first FPP-33 data location

4) Press Run switch

5) Computer stops; Set A=last FPP-33 data location

NOTE: To dump a single location, set A=the same address

as step 3).

6) Press Run switch

G. MANUAL INPUT-OUTPUT OPERATIONS

1. Instruction Load and Dump

9

Paper Tape: load, P=7400, run

dump, P=7401, A=first address, run

A-last address, run

Typewriter: load, P=7402, run

dump, P=7403, A=first address, run

2. Data Load and Dump

Paper Tape: load, P=7404, run

dump, P=7405, (not presently available)

Typewriter: load, P-7406, run

dump, P=7404, A=first address, run

For successive addresses move

switch to center and back to RUN.

3. A Register Dump P-7410, run

H. PROGRAMMED INPUT-OUTPUT SUBROUTINES (under program control)

These subroutines permit input and output under program control.

In each case an exit is made to the next upper instruction of the program

following execution of the subroutine. They are all entered by a selec­

tive return jump command (75 4 m). The various subroutine entry

instructions are tabulated below:

10

1. Input Subroutine Entry

Paper Tape

Typewriter

75

75

40

40

2. Output Subroutine Entry

Paper Tape

1224

1226

data word followed by tab

data word followed by C. R.

Typewriter

I. STOPS

data word followed by tab

data word followed by C.R.

1. Normal Stops

75

75

75

75

40

40

40

40

1230

1232

1234

1236

Stops in machine operation occur at the end of manual load and

dump operations, at breakpoint stops and error stops. For each

of these stops certain specific digits will be displayed in the P,

A and Z registers of the Control panel. In order to determine

whether, for example, information has been correctly entered,

the display panel should be checked to see whether a normal stop

has occurred, or if an error produced the stop. The numbers

displayed by the P, A and Z registers of the console following

various stops are listed below:

11

Normal Stop p A z

1604 Simulator Load 0060 0024 0000 ,,, ,,,

Instruction Load 7462 0000 7777

Data Load 7761 0000 7722

Breakpoint Stop 6515 (address) 7700

Selective Stop 7650 0 or 4 7707

Instruction Dump 4111 0000 7777

Data Dump 7766 (address + 1) 7707

A Register Dump 0013 7713

~:(This is the only stop for which the Z register is not illuminated with

a green background display.

2. Breakpoint Stops

The breakpoint operation is useful for the initial check-out of

a program; as soon as a program works, it is usual to set all the

breakpoint designators to zero. This must be done before a

FPP-33 program can be run on the 1604. Such a program will

run about a thousand times faster on the 1604 than on the 160

using the FPP-33.

Using breakpoint designators, an octal breakpoint code number,

0001, 0002, or 0004 is manually entered into the 160 location

0005 as follows:

12

1) Master Clear

2) Set P register to 0005

3) Set Z to desired octal digit

4) Set Enter-Sweep switch to Enter

5) Set Run-Step switch to Step

6) Return the Enter-Sweep switch to center position

7) Master Clear

The FPP-33 takes the logical product of the digit in the break­

point designator of an instruction and the number in 160

location 0005. If the result is zero, the program continues,

if non- zero, the program stops with the location of the instruc­

tion displayed in the A register. If the breakpoint occurs on

a lower instruction, 4000 plus the address will be displayed.

The following are some combinations that may be used to

cause breakpoint stops:

Contents of location 0005 Breakpoint designator

0001 1, 3, 5,

0002 2, 3, 6,

0004 4, 5, 6,

To restart the program after a breakpoint stops:

1) Master Clear

13

7

7

7

2) Set desired address in A

3) Press Run switch

3. Program Error Stops

If an error has been made in writing the program or a data

error occurs the computer will stop and the following will be dis­

played on the console.

p 7766 A = 0013 z - 7713

Typewriter Output

Move the run switch to center and back to Run and the error

information will be typed out:

Paper Tape Output

1) Master Clear

2) Turn punch on

3) Set P = 7762

4) Run

When paper tape is used, the error code is preceded by a stop

code to allow the operation in the Flexowriter prior to listing.

In both cases the format is:

1) an error code

2) contents of the designated index register of the instruc­

tion which caused the error stop

14

~) upper or lower instruction and its location

4) both instructions of the program step

An example of error output is:

c

b 0005

u 0042 6010

7540

0020

1157

This shows an illegal operation code, c, was used in the upper in­

struction at location 0042. The content of index register number 1,

used in this instruction, is 5. Both the upper and lower instructions

at location 0042 are outputted, the u indicates the illegal operation

code 6 0 in the upper instruction.

The following error codes are used to show the cause of error stops:

c - illegal operation ~ode

d - index ~esignator fault

e - ~xponent fault, the exponent exceeds the permitted range

of ± three decimal digits

i - fault caused by contents of _lndex register

a) index register negative for search instruction

b) contents of index register greater than y for an index

skip instruction.

15

r - address ~ange fault, an address outside the permitted

octal range 0020 to 1017

s - ~kip instruction placed in lower position in equality or

threshold search,, and in storage or index skip instructions.

a - an illegal .§:_rgument has been presented to a subroutine

16

FPP-33 INSTRUCTIONS

A. INSTRUCTION REPERTOIRE

(1) Load A (12, b, m)+

(2) Load A, complement (13, b, m)+

(3) Store A(20, b, m)+

(4) A Jump (22, j, m)

(5) Floating Add (30, b, m)+

(6) Floating Subtract (31, b, m)+

(7) Floating Multiply (32, b, m)+

(8) Floating Divide (33, b, m)+

(9) Storage Skip (36, b, m)+ (upper instruction only)

(10) Enter Index (50, b, y)+

(11) Exit to 160 (51, o, m)

(12) Increase Index (51, b, y)++

(13) Load Index Upper (52, b, mu)+

(14) Load Index Lower (53, b, m 1)+

(15) Index Skip (54, b, y)+ (upper only)

(16) Store Index Upper (56, b, ffiu)

(17) Store Index Lower (57, b, mi)

(18) Equality Search (64, b, m) (upper only)

(19) Threshold Search (65, b, m) (upper only)

(20) Selective Jump (75, j, m)+++

(21) Selective Stop (76, j, m)+++

1 7

+ Indirect addressing is not provided, b+7 will produce an error

stop.

++(51, 0, y) is the Exit to 16 0 instruction.

+++j = 0 or 4 only j + any other number produces an error stop.

18

B. INSTRUCTION EXPLANATION

A program using the FPP-33 has an upper and lower instruction

in each location. Each instruction is made up of eight octal

digits. The first two octal digits are the operation code, the

next one is the index designator, b, this is followed by a one

digit break-point code and a four digit execution address. The

index designator, b, is used to specify which one of the six

available index registers is to be used in performing the instruc­

tion. If no index register is to be used, the index designator

is zero. The break-point code permits interruption of the pro­

gram at any desired instruction. If no interruption is desired,

the break-point code is zero.

In the enter index and increase index instructions, the last four

octal digits specify an octal number, y, rather than an octal

execution address, m. The A jump, selective jump, and selec­

tive stop instructions are not indexable; a jump designator, j,

replaces the usual index designator b as the third octal digit of

each jump instruction.

The index registers, numbered 1 through 6, are used as address

modifiers or an skip or jump conditioners. When used as an

address modifier, the content of the designated index register

is added to the base execution address before the specific instruction

19

is interpreted by the computer. This permits ready programming

of a loop to perform the same series of operations on a number

of data words arranged in sequence. Index registers may be used

to modify the base execution address of such instructions as load

A; load A complement; store A; floating add, subtract, multiply,

and divide; and storage skip. The result must be a valid address

within the range 0020 to 101 7 or a range fault stop will occur.

The second function of index designators, to control skip and

jump operations, will be explained in the detailed description of

these operations.

A program step is shown below:

0076 12

30

00

50

0165

0273

(upper instruction)

(lower instruction)

The program step is in location 0076. The upper instruction is

Load A(12) with the contents of address 0165 (no index register

is used). The lower instruction is floating add (30) the contents

of address 0273 + B where B is the contents of index register 5.

The next instruction of the program will be the upper instruc­

tion in location 0077. Locations are in octal notation, so loca­

tion 0077 will be followed by location 0100.

20

Detailed operation of the various available instructions is

explained below:

1. Load A (12 b m)

This instruction clears the A register and replaces its contents

with an operand whose location is specified by the sum of the

base execution address, m, and the contents of the designated

index register.

2. Load A, Complement (13 bm)

This instruction clears the A register and replaces its contents

with the negative of an operand whose location is specified by

the sum of the base execution address, m, and the contents

of the designated index register.

3. Store A (20 bm)

This instruction stores the contents of the A register at the

storage location specified by the sum of the base execution

address, m, and the contents of the designated index register.

The contents of the A register are not modified by this instruc­

tion.

21

4. A Jump (22 j m)

This instruction has eight sub-instructions which cause a change

in the program sequence because of a specified condition of the

A register. The index registers are not used for address

modification in this instruction. The jump designator, j, in

the instruction specified which sub-instruction is to be performed.

In jump conditions 22 0, 22 1, 22 4, and 22 5, both negative and

positive zero are treated as zero. In jump conditions 22 2, 22 3,

22 6, and 22 7, plus zero is treated as a positive number and

minus zero is treated as a negative number.

Assuming the jump condition is satisfied, any jump instruction

interrupts the normal program sequence and transfers program

control to the location specified in the execution address, m.

A return jump includes a provision for later return to the next

upper instruction of the main program sequence. This is

explained later in the instructions for writing subroutines.

The sub-instructions and the conditions required to cause a

jump in the program sequence are as follows:

22 0 m - Jump if the A register content is zero

22 1 m - Jump if the A register content is not zero

22 2 m - Jump if the A register content is positive

22

22 3 m - Jump if the A register content is negative

22 4 m - Return jump if the A register content is zero

22 5 m - Return jump if the A register content is not zero

22 6 m - Return jump if the A register content is positive

22 7 m - Return jump if the A register content is negative

5. Floating Add (30 b m)

This instruction forms the algebraic sum of two floating-point

quantities. An operand is read from the storage location specified

by the sum of the base execution address and the contents of the

specified index register. This operand is added to the previous

contents of the A register. The result is normalized and rounded

and left in the A register at the end of the sequence.

6. Floating Subtract (31 b m)

An operand in floating-point format is subtracted from the previous

contents of the A register, also in floating-point format. The

operand is read from the storage location specified by the sum of

the base execution address and the contents of the specified index

register. The result is normalized and rounded in the A register.

23

7. Floating Multiply (32 b m)

This instruction forms the product of a floating-point operand

with the previous contents of the A register, also in floating­

point format. The operand is read from the storage location

specified by the sum of the base execution address and the

contents of the specified index register. The result is rounded

and normalized in the A register.

8. Floating Divide (33 b m)

This instruction forms the quotient of two quantities in floating­

point format. The dividend must be loaded into the A register

prior to the execution of this instruction. The divisor is read

from the storage location specified by the sum of the base

execution address and the contents of the specified index

register. The quotient is rounded and normalized in the A

register at the end of the operation.

9. Storage Skip (36 b m)

This instruction should always be an upper instruction in a

program step. It causes the computer to sense the sign bit

of the quantity in the storage location designated by the sum of

the base execution address and the contents of the specified

24

index register. If the quantity is negative, an exit is performed.

If the quantity is positive, a half exit is performed. None of the

quantities in the operational registers are modified by this

instruction. A half exit proceeds to the lower instruction of

the program step, while an exit proceeds to the upper instruction

of the next program step. Therefore a skip instruction should

always be an upper instruction. The Simulator gives an error

stop if this restriction is violated.

10. Enter Index (50 by)

This instruction replaces the contents of the designated index

register with the octal number y contained in the instruction

itself. No storage reference is made in this instruction. If

zero is used as the index designator, this instruction becomes

the pass instruction.

There are six index registers available, numbered one through

six. The operand y may be any number from 0000 through 7777

in octal notation. Note that the largest positive number that

can be used in the Simulator system is 3 7 7 7 (octal). Numbers

4000 to 7777 are treated as negative numbers in the 160. The

following brief table may be helpful in using this instruction

and the increase index instruction:

25

Octal

0000

0001

3776

3777

4000

4001

7776

7777

Decimal

0000

0001

2046

2047

-2047

-2046

-0001

-0000

To enter minus two into Index 3, the command would be;

50 30 7775. The result of indexing must yield a valid address

within the address range 0020 to 101 7. If the address lies outside

this range, a range fault stop occurs for the instruction which uses

the index register to generate the address- - and not on the 50 or

51 instruction which sets the number into the index register.

26

11. Exit from Simulator to 160 (51 0 m)

This command is used to enter a subroutine written in basic

160 language. Its use is explained in more detail in the section

on subroutines.

12. Increase Index (51 by)

This instruction adds the operand y to the contents of the

designated index register. No storage reference is made in

this instruction. See number 10 above.

13. Load Index (upper) (52 b mu)

This instruction replaces the contents of the designated index

register with the address from the upper instruction at the

designated storage location.

14. Load Index (lower) (53 b m 1)

This instruction replaces the contents of the designated index

register with the address from the lower instruction at the

designated storage location.

27

15. Index Skip (54 by)

This instruction compares the quantity in the designated index

register with the operand, y. If the quantity, B, in the index

register is less than y, the B is increased one count and half

exit is performed. When the two quantities y and B become

equal, the designated index register is cleared to zero and a

full exit is performed. A half exit proceeds to the lower instruc­

tion of the program step, and a full exit proceeds to the upper

instruction of the next program step. If the quantity in the index

register is greater than the operand, y, there is an error stop.

That is, the Simulator assumes the operand, y, is the maximum

value the index register will be allowed to attain.

16. Store Index (upper) (56 b mu)

This instruction stores the contents of the designated index

register in the address portion of the upper instruction contained

in the storage location specified by the base execution address.

The remaining bits at the specified storage location are not mod­

ified in this operation. This instruction effectively inserts an

address in the upper or first instruction of the specified storage

location.

28

1 7. Store Index (lower) (57 b m 1)

This instruction stores the contents of the designated index

register in the address portion of the lower instruction contained

in the storage location specified by the base execution address.

The remaining bits at the specified storage location are not mod­

ified in this operation. This instruction effectively inserts an

address in the lower or second instruction at the specified storage

location.

18. Equality Search (64 b m)

A list of operands is searched to find one that is equal to the

content of the A register. The number of items in the list is

specified by the content of the designated index register. These

items are located in a consecutive list beginning at the location

specified by the base execution address. The search begins with

the last operand in the list, namely the one at address m + B - 1,

where B is the contents of the designated index register. The

content of the designated index register is reduced by one for

each operand examined. The search continues until an operand

is reached that is equal to the contents of the A register or

until the contents of the designated index register are reduced

to zero. If the search is terminated by finding an operand equal

29

to the value in A, an exit is performed. The address of the operand

which satisfied the criterion is given by the sum of the base execu­

tion address and the final contents of the index register. If no

operand in the list is equal to the value in A, then a half exit is

performed. In the equality comparison made here, plus zero and

the minus zero are treated as equal.

19. Threshold Search (65 b m)

This instruction searches a list of operands to find the first one

that is greater than the contents of the A register. The number

of items in the list is specified by the contents of the designated

index register. These items are located in a consecutive list

beginning at the location specified by the base execution address.

The search begins with the last operand in the list. The content

of the designated index register is reduced by one for each

operand examined. The search continues until an operand is

reached that is greater than the contents of the A register or

until the contents of the designated index register are reduced

to zero. If the search is terminated by finding an operand greater

than the value in A, an exit is performed. The address of the

operand which satisfied the criterion is given by the sum of the

base execution address and the final contents of the index register.

If no operand in the list is greater than the value in A, then a

30

half exit is performed. In the comparison made here plus zero

is considered as greater than minus zero.

20. Selective Jump (75 j m)

This instruction has two sub-instructions in the Simulator

system which cause a jump in program sequence. The index

registers are not used for address modification in this instruc­

tion. The index designator in the instruction specified which

of the two jumps is to be made.

75 0 m - Jump unconditionally

7 5 4 m - Return jump unconditionally

The use of any number other than 0 or 4 as the index designator

will cause an error stop.

21. Selective Stop (76 j m)

This instruction has two sub-instructions which cause the pro­

gram to stop. The index registers are not used for address

modification in this instruction. The index code in the instruc­

tion specifies which of the two stops is to be made. A normal or

a return jump to the base execution address occurs on restart.

7 6 0 m - Stop unconditionally (normal jump on re start)

76 4 m - Stop unconditionally (return jump on restart)

31

The use of any number other than 0 or 4 as the index designator

will cause an error stop.

Note that in using a storage skip (36 b m) or index skip (54 b y)

command, the instruction is followed by either an exit or half

exit. An exit proceeds to the next program step, a half exit

proceeds to the lower instruction of a program step. There­

fore, these two commands should always be used as upper

instructions. Similarly, the equality search (64 b m) and thres­

hold search (65 b m) commands should be used only as upper

instructions. The Simulator gives an error stop if this require­

ment is not satisfied.

The enter index (50 b y) instruction becomes a pass or "do

nothing" instruction if 0 is used as the index designator. The

instruction 5000 0000 performs a pass to the next instruction.

It may be used, for example, to fill a lower instruction in order

to place a skip or search command in an upper instruction.

The various commands to enter index, load index, increase

index, and store index may be used to modify instructions dur­

ing the operation of a program. This is useful in writing a

program that requires the repeated execution of a small loop

within a larger loop.

32

C. BREAKPOINT

Breakpoint provides a means of stopping the operation of a pro-

gram at a desired point. The digit immediately following the

index designator of an instruction is used for this purpose. If

no breakpoint stop is desired, this digit is zero. The Simulator

takes the logical product (the bit by bit product) of the digit

in the breakpoint field of the instruction and the number in basic

160 location 0005. If the result is zero, the program continues,

if non-zero, the program stops with the address of the instruc-

tion displayed in the A panel. If the instruction to be executed

is a lower instruction, 4000 plus the address will be displayed.

For example: if a one, a three, or a seven is entered in 160

location, 0005 and the following program is being operated:

Breakpoint
designator

0037 12 00 0166

30 00 0167

0040 20 00 0172

32 01 0172

The program will stop on the lower instruction in location 0040

and the octal number 4040 will be displayed in the A panel.

After a breakpoint stop, the operator may examine a portion of

33

memory, or insert anything into memory. To restart, master

clear, insert the desired address in A, and hit the Run switch

to continue the program.

D. ARITHMETIC SUBROUTINES

Subroutines are relocatable. They may be loaded in any port-

ion of the available memory, using the off set load routine to

be described later.

A subroutine is entered using a selective return jump instruc-

tion (75 4 address). On completion of the subroutine, the next

upper instruction of the program is performed. The selective

return jump may be either a lower or an upper instruction. If

it is an upper instruction, the lower half is not used and is

filled in with zeros. On completion of the subroutine, the de-

sired function is in the A register.

E. PROGRAM EXAMPLE

A Simple program example is given below:

To compute (xi - x) for 100 values of xi.

Store x. in locations 0100-0243 (octal).
1

Store constant x in 0247.

34

0476 50 10 0000 set index register 1 to zero

50 00 0000 pass to next instruction

0477 12 10 0100 load A with xi using index 1

31 00 0247 floating subtract x

0500 30 10 0100 store x. - x in 0100 plus i,
1

using index 1

50 00 0000 pass to next instruction

0501 54 10 0143 index skip

0502 (next instruction in the program.)

This short program loop computes (xi - x) for 100 values of

xi, and stores (xi - x) in the locations where the original xi

were stored. The loop is part of a program to compute a

serial correlation with variable lag. Note the use of pass

instructions, the selective jump goes to an upper instruction

and the index skip must be used as an upper instruction. To

avoid interrupting the sequence of commands, a pass instruc-

tion is used. This part of the serial correlation program

occupies octal locations 0476-0501 of the 1604 Simulator.

F. DATA WORD FORMAT

Data and constants are entered as a decimal fraction followed

by an unbiased exponent. Each is preceded by the appropriate

sign. If no sign is given, the quantity is assumed to be positive,

35

For example,

coefficient

1046.

-10.46

Would be entered - • 1046

-. 1046

The format of an input or output word is:

± • coefficient (tab) ± exponent

followed by carriage return or tab.

exponent

4

2

The plus sign is not required. You may use a space or nothing

preceding the decimal point. The coefficient may be any

number of decimal digits up to and including nine digits, with

the decimal point to the left of the most significant digit. The

exponent carries its own sign and may be any number of decimal

digits up to and including three digits.

36

ELABORATIONS ON OPERATIONAL PROCEDURE

A. TO LOAD INSTRUCTIONS (a program of instructions)

Instructions may be entered directly from the typewriter, or

from paper tape prepared on the Flexowriter, or may be re­

entered from paper tape prepared by the 16 0.

1. Flexowriter instruction tapes may be parpared in

several formats. An acceptable format is:

1) C.R. (carriage return)

2) 1604 location (4 octal digits)

3) Tab

4) 16 04 upper instruction (8 octal digits)

5) C.R. and tab

6) 16 04 lower instruction (8 octal digits)

Step 2) through 7) are repeated as often as required to complete

the program. The lower instruction area of the last instruction

must be filled in. The last 1604 instruction is followed by a

carriage return and a semicolon to indicate the end of the tape

operation.

Other instruction formats are acceptable. The one most often

used specifies only the first 1604 location (step 2), above) and

repeats steps 4) - 7) as often as required to complete the program.

37

Alphabetic comments may follow the instructions; letters and

spaces are ignored by the Simulator's instruction reader

subroutine.

The following instruction format corresponds to Steps 2) - 7)

preceded by a carriage return:

Location

0035

0036

Instruction

12 00 0166

31 00 0170

20 00 01 70

76 00 0035

Upper

Lower

Upper

Lower

Or step 5) may be a tab, step 7) a carriage return and tab,

and steps 1 - 3 may be performed only once:

Location Upper Instruction Lower Instruction

0035 1200

2000

0166

0171

3100

7600

2. To load instructions from Flexowriter tape:

0170

0035

1) Race tape in reader, wider side toward the console,

and depress the reader arm.

2) Turn reader on

3) Master clear

38

4) Set P to 7400

5) Set A to zero unless offset loading is desired

6) Run

Offset loading is discussed in the section on subroutines. On

a normal stop the following will be displayed on the console:

p 7642 A 0000 F 7777

If the last instruction is not followed by a carriage return and

a semicolon, the instruction tape will not stop. If it goes

completely out of the reader the input instruction of the reader

subroutine is destroyed. It is then necessary eithe to reload

The Simulator or to find and correct the input instruction:

1) Reinsert the tape in the reader

2) Master Clear

3) Set P to 7400 and Run

4) A stop will occur with P at the address of the input

instruction.

,,,

5) Master Clear,,,

,,,

6) Set P to the address shown in step 4 ,,,

7) Set Enter-Sweep to Enter

8) Set Z to 7667

9) Step once with Run-Step switch

10) Return Enter-Sweep switch to center position

11) Master Clear

39

~:~ Master Clear and reset P to have the 160 operating rn

the correct phase for re-entry.

3. To enter instructions directly from the typewriter:

a. Master Clear

b. Set P to 7402

c. Set Run-Step switch to Run

d. Type in locations and instructions in one of the

acceptable formats for paper tape.

e. When the entire program has been entered, set Run

switch to center position and

f. Master Clear

If an error is made in typing an instruction, carriage return

and retype the location and instruction. Typing a wrong loca­

tion will probably also require restoring the proper contents

of that location.

B. TO LOAD DAT A (including constants for use in a program)

Data must be entered in floating point form. The numbers

are expressed as decimal fractions followed by an unbiased

exponent.

For example: 1604. 0 would be entered as . 1604 4

1. Flexowriter data tapes are prepared in the following

format:

40

1) C.H. (carriage return)

2) 1604 location (4 octal digits)

3) Tab

4) Sign of the coefficient (plus, space, minus or nothing).

5) Decimal point

6) The coefficient, any number of decimal digits up to

nine digits. Digits after the first nine will be ignored.

Missing digits will be assumed to be trailing zeros.

7) Tab

8) Sign of the exponent (plus, space, minus or nothing).

9) The exponent. any number of decimal digits up to three

digits. Digits after the third one will be ignored.

10) C.R.

Steps 2) through 10) are repeated as often as necessary. After

the last piece of data, the carriage return must be followed by a

semicolon to indicate the end of the data tape. A location must

be specified for each data word.

Both the coefficient and the exponent carry a sign. If no sign

is used, the sign is assumed to be positive. For example, to

enter the decimal numbers 1234. 5, - 12. 34 and. 00012 into

locations 0116 and the following format could be used:

41

location

0116

0117

0120

coefficient

. 12'.)45

- . 12 34

. 12

exponent

4:

2

-3

Leading zeros on the exponent, and trailing coefficient zeros

need not be entered. A coefficient followed by a carriage

return, or by two tabs, will indicate an exponent of zero.

Spaces or non-numeric comments may be entered before, in,

or after a data word. The letter x has a special function and

should not be used in any comments made before the exponent

field is terminated. Any kind of comment except a period or

minus sign may follow the termination of the exponent reading.

To correct an error in preparing the tape, a delete code or an

x may be used. An x following the data causes all previous

information in the data word to be ignored, provided that the

x is used before the exponent reading has been completed with

a tab or carriage return. The x will not have any effect on the

location field. An error in a location may be corrected only

by using the delete code.

An entry - . 0 followed by C.R. may be used as an end of file

mark for program convenience in dealing with records of

variable length. This ''file mark" must be sensed by programming.

42

If instructions and data are punched on the same tape for con­

venience in reading, each group is terminated by a semicolon.

A few inches of leader between them helps the operator to

identify the end of the instructions and the beginning of the data.

Data tapes may be prepared without having the location

specified. These tapes must be read into the desired locations

under control of the user's program. How to enter data under

program control will be discussed later.

2. To load prepared data tapes into tape specified locations:

a. Insert data tape in reader, wide side nearer the console,

and depress reader arm.

b. Turn reader on

c. Master Clear

d. Set P to 7404

e. Run

When the data tape has read in the following should be displayed

on the console:

p = 7761 A 0000 z 7722

A program error stop will occur if an address is out of range

or if an exponent cannot be converted. To attempt reloading

after an error stop: reposition the tape, master clear, set P

to 7 404 and run.

If the last data word is not followed by a carriage return and

a semi-colon, the data tape will not stop. If it goes completely

out of the reader, the input instruction of the Simulator 1 s data

reading subroutine is de strayed. In this event, either reload the

Simulator or correct the input instruction as described in

section Blb, but with P set to 7404 to enter data.

3. To load data directly from the typewriter:

a. Master Clear

b. Set P to 7406.

c. Run

d. Type in locations and data in the format used for

Flexowriter tape.

e. When data have been entered set Run switch to

center position.

f. Master Clear

If an error is made in typing a location, set Run switch to

center, Master Clear, reset P to 7406, Run and start typing

the location again.

If an error is made in a data word, type 1'x 11 and begin the

data word again, provided the x is used before the exponent

reading has been completed with tab or C.R. The x causes

the routine to ignore the previous information in the data

44

ff h dd Th I! Tr b word. It has no e ect on t e a ress. c x may e

followed by a carriage return and/ or a tab. The input

routine looks for a minus sign, a decimal point. or a final

semicolon, ignoring everything.

C. DATA INPUT UNDER PROGRAM CONTROL

Data input called for during a program may be from prepared

paper tape or directly from the typewriter. Input and output dur-

ing a program are obtained by using subroutines. In each case,

the sub-routine is entered by a return jump. On completion of the

sub-routine, an exit to the next upper instruction of the program

is made. The return jump may be either a selective return jump

(75 4 m) or an A jump (22 b m) as desired.

1. Input from paper tape, under program control. The word

format for the data tapes differs from that described in

section Bl in that the 1604 location need not be specified.

Tapes that have been prepared with the location specified

may be loaded under program control into any desired

location because the subroutine recognizes a minus sign or

period as the beginning of the data word. The format for

data tapes to be loaded under program control is the same

as that shown in Section Bl a with steps b) and c) omitted~

The tape is begun with a carriage return. Each data word

45

may then be entered in the following format:

sign. coefficient (tab) sign exponent (C.R.)

If the sign is negative, a minus sign is typed; if positive,

the sign may be omitted. After the last piece of data,

the carriage return is followed by a semicolon to mark

the end of input.

The instruction used to enter the input subroutine is

7540 1224

This causes one data word to be read from the data tape

into the A register of the Simulator. To read a block of

date into sequential locations, a program is required.

As an example, a program is shown below. This program

is written in the form of a single loop to store 150 data

words in locations 0100 to 0326.

Location Upper Instruction Lower Instruction

0023 (previous . .) 5050 0000

0024 7540 1224 0000 0000

0025 2050 0100 5000 0000

0026 5450 0225 7500 0024

0027 (next instruction ..)

46

The program example is based on the following reasoning:

The upper instruction in location 002 3 may be any previous

part of the program.

002 3 lower - enter zero in index register 5

0024 upper - return jump to data input subroutine

lower this instruction is not used

002 5 upper - store data word in location (0100 + B) where

B is the content of index register 5.

lower - pass to the next instruction

0026 upper - index skip. Compare the contents, B of index

5 with octal 0225 (the number of times the

register should be incremented, which is the

number of data locations minus one). If B is

not equal to 0225, the instruction adds one to

B and proceeds to the lower instruction. When

B = 0225, index 5 is cleared to 0000 and the

lower instruction is skipped.

lower - selective jump to location 0024. The next data

word is read and stored in the next location in

sequence.

0027 (next upper instruction) - When 226 octal locations

(150 decimal) have been filled with data words,

,_17

the program proceeds to location 002 7 for the

next instruction of the program.

2. Data input from the typewriter, under program control.

When the program calls for direct typed input, the letters

"IN" will be displayed in the Status Display panel. The instruc­

tion to call for typewriter input is:

7540 1226

The data format is the same as that described for paper tape

in Section C 1. An x may be used to correct typing errors in

the data word, if used before the carriage return. The input

subroutine reads one data word from typed input. To read

a block of data into sequential locations, a program loop is

required. See Section C 1 for an example of such a loop.

If input from the typewriter is called for more than once dur -

ing the operation of a program, the operator needs to know

which of the inputs is desired. This may be accomplished in

several ways. One of these is for the program to contain

instructions to position the typewriter so input would follow

one or more carriage returns or one or more tabs. The

position of the typewriter carriage would thus identify the

input called for by the program. Another method is for the

programmer to use a subroutine which would type a tabulating

4B

number when data input is called for. The subroutine is entered

by a return jump and the tabulating number typed would be the

contents of the execution address plus B (where B is the content

of the disignated index register). The instructions to enter the

subroutine are 7540 (addr.) upper, return jump to first address

of subroutine, OObO y lower, tabulating number (y + B) where y

is a four digit octal number and B the contents of the de signa­

ted index register, b.

D. DATA OUTPUT UNDER PROGRAM CONTROL

The results of computations may be punched on paper tape or typed

out by the typewriter. In either case, output is handled by a sub­

routine in the Simulator. The subroutine is entered by a return

jump. On completion of the output subroutine, an exit is made to

the next upper instruction of the main program.

L Output Punched on Paper Tape.

The output subroutine punches the word contained in the Simu­

lator accumulator. During this operation, the contents of

the accumulator are lost. Therefore, if an answer is to be

used in later computations, it. should be stored before the

punch instruction is given. Two output formats are provided.

To obtain a data word followed by a carriage return, the

instruction is:

49

7540 1236

For data followed by a tab, use

7540 1234

SUBROUTINES

Subroutines are always entered by using a return jump. There are

three instructions which have return jump capabilities, viz. the

Selective Jump, the "A" Jump and the Selective Stop. Normal exits

from subroutines are usually made through use of a normal jump.

The following is an example of a subroutine to square the contents

of the accumulator.

Program to enter Subroutine to square the
"square" subroutine contents of the accumulator

program Square SLJ 0 0

STA 0 Below

Trash SLJ 4 Square FMU 0 Below

0 0 0 SLJ 0 Square

STA 0 Garbage Below 0 0 0

SLS 0 Wait 0 0 0

Garbage 0 0 0

0 0 0

Wait program

50

At "TRASH" a return jump is made to the subroutine i.e. , "SQUARE".

The return jump causes the address "TRASH+ 1" to be inserted in

the address field of the upper instruction of "SQ1ARE". The return

jump then jumps to the lower instruction of "SQUARE". When the

subroutine has finished squaring the number a normal jump is made

to "SQUARE". The·upper instruction of square now reads "SLJ 0

TRASH + 1 ". Hence, the exit from the subroutine is made to the next

upper instruction following "TRASH". Had the instruction "SLJ 4

SQUARE" been the lower instruction of "TRASH" the exit from the

subroutine would still have been made to the upper instruction of

"TRASH+ 1 ".

OFFSET LOADING

For some programs especially subroutines, it is desirable to be able

to relocate them.

To allow the programmer to do this with a minimum amount of

difficulty, offset loading capabilities have been incorporated in the

instruction load routine and the data load routine.

To illustrate the usage of offset loading consider the following program

to transfer five numbers from one area in memory to another.

51

Symbolic Coding Absolute Coding

Start PAS 0 0 0020 50 0 00000

ENI 1 0 50 1 00000

LDA 1 A 0021 12 1 00030

STA 1 B 20 1 00040

ISK 1 M-1 0022 54 1 00004

SLJ 0 Start+ 1 75 0 00021

SLS 0 Start 0023 76 0 00020

PAS 0 0 50 0 00000

A al 0030 . 1 1

A+ 1 a2 0031 . 34 2

A+2 a3 0032 . 6 0

A+3 a4 0033 . 85 9

A+4 a5 0034 . 0 0

To place the above program beginning in location fifty it would be

necessary to type the program in the following manner:

Absolute Coding

0020 50 0 00000

50 1 00000

0021 12 1 00030/

20 1 00040/

0022 54 1 00004

75 0 00021/

52

0023 76

50

0

0

00020/

00000

To use the instruction load routine for paper tape, it is necessary

to set P = 7 400. To load the above instructions at location 0050

it is necessary to set P ~ 7 400 and set A = 0030, i. e. , the incre­

ment. The load routine adds the increment to the locations, i. e. ,

0020, 0021, etc. The load routine also adds the increment to those

addresses in instructions which are followed by a slash.

Since the addresses in location 0051 have been modified, it is

therefore necessary to load the data beginning at location 0060

rather than at location 0030.

To use the data load routine for paper tape, it is necessary to set

P !'.:: 7721. The data tape is prepared as originally indicated. To

load the data tape beginning at location 0060 rather than at location

0030, it is necessary to set P = 7721 and A 3 0030, i.e., the

increment. The data load routine than adds the increment to the

locations, i.e., 0030, 0031, etc.

If the programmer desires to offset certain locations and not offset

others, a minus is used to indicate those locations which are not

to be offset. Consider the following example.

53

-0020

0021

0022

75

50

12

20

75

50

0

0

0

0

0

0

00021/

00000

00023/

00024/

00025

00000

If, for example, an increment of 0020 is used, the first 1604 word

will still be placed in location 0020. The following two 1604 words

will be placed in locations 0041 and 0042.

The final property necessary for off set loading Simulator programs

is the capability of modifying 160 addresses in Simulator programs

containing both 1604 instructions and 160 instructions. 160 addresses

which must be modified are followed by a period. Consider the

following example.

0020 12 0 00300/

51 0 00023/

0021 20 3 00102

67 0 16002

0022 70 0 17101

03 0 00000

0023 75 4 01066

00 0 00000

54

0024 76

00

0

0

00020/

00000

In the above example those addresses followed by a slash are offset

by the increment. The 160 address, 0300, os offset by 4 times

the increment. This is consistent with the fact that 4 160 words

are needed to make up 1 1604 word.

BASIC 160 INSTRUCTIONS IN A FPP-33 PROGRAM

When it is desirable to write a subroutine or some other part of a

program in basic 16 0 language, the command used to exit from

the FPP-33 to basic 160 is:

510 b m

No index register is used. A breakpoint may be used if desired.

The execution address is the address of the first instruction to be

executed on normal re-entry to FPP-33. The instruction immed­

iately following the "exit to 160" instruction is the first 160

instruction to be executed.

Normal re-entry to FPP-33 is effected by the 160 instruction 7001.

The next FPP-33 instruction to be executed is the upper instruc­

tion of the location specified by the address of the last executed

"exit to 160" command. An example of exit to 160 and re-enter

FPP- 3 3 follows:

55

Location Instruction

0021 5100 0023 exit to 160, 0023 is the FPP-33

address of the first instruction to

be executed on re-entry.

0504 fir st basic 16 0 instruction

0022 7001 0000 re-enter FPP-33

0000 0000 This is not used. An upper instruc-

tion is the first to be executed on

re-entry.

0023) next instruction of FPP-33 program

In using exit to 160 commands, remember that one Simulator loca­

tion is equivalent to four basis 160 locations. A basic 160 instruc­

tion contains four octal digits.

C. TO OFFSET LOAD A PROGRAM THAT CONTAINS 160 INSTRUCTIONS

The program is off set by placing the desired increment in the A

register as before. This modifies the storage locations of the

instructions.

The following codes are used in preparing a routine that can be off set

loaded:

A slash following an address: the load routine

adds the increment which was entered in the A

register to the address.

56

A minus sign preceding a location indicates that

this location is not to be off set.

An address followed by a period is offset by four

times the specified increment. This allows 160

insertions in a 1604 program to be offset loaded

by the same load procedure.

A semicolon is used to indicate the end of the

routine.

The program steps in the following example may be off set loaded:

0020 1200 0300/ 16 04 instructions
exit to 16 0, set normal return

5100 0023/ for 0023 I

0021 2030 0102 16 0 instructions

6701 6002 7001 is a normal return, 7101

is a special return to 0300.

0022 7001 7101

0300 0000 (which is the 1604 address 0060/)

0023 7540 1066

0000 0000

0024 7600 0020/ 1604 instructions

0000 0000

D. STANDARD SUBROUTINE ENTRY AND EXIT

The practice that a subroutine is entered by a return jump instruction

has been adopted. Three instructions in the Simulator have return

57

jump possibilities, namely the A jump, the selective jump and the

selective stop. The usual exit from a subroutine is by means of

a pair of normal jumps, one at the end of the subroutine and the

other in the upper instruction of the first location. The return

jump may be located in either an upper or a lower instruction, but

the first instruction of the main program to be executed after per­

forming a standard subroutine is always the upper instruction of

the next 1604 word after the one which contained the return jump.

Example:

Location Instruction

0076 1210 0026

7540 0125

0077 2010 0526

The subroutine:

0125 7500 0000

return jump to subroutine.

load A with the contents of address

(0026 + B)

return jump to location 0125. This

is an exit to a subroutine whose first

instruction is in location 012 5.

next step in m3.in program,. store the

function of x in address (0526 + B).

The return jump causes the next loca­

tion in the main program (0076 + 1)

to be inserted in the address field of

the upper instruction of the fir st

58

(

subroutine location. This instruction

then becomes 7500 0077, a jump to

location 0077.

The lower instruction of location 0125

is the first instruction of the subroutine.

The last instruction of the subroutine is a normal jump to the entry

location 0125 (7500 012 5). The upper instruction in this location

now reads jump to location 0077, an exit to the next upper instruc­

tion of the main program.

When control is returned to the main program, the desired function

is uaually in the Simulator accumulator A and may be stored or

operated on in the next sequence of instructions of the main program.

E. MATHEMATICAL SUBROUTINES FOR USE ON 33-BIT FLOATING

POINT PACKAGE (FPP-33)

The subroutines are written in a combination of FPP-33 instructions

and basic 160 instructions. All subroutines are relocatable in the

available storage locations by use of the offset load routine of FPP-33.

All of the subroutines are on punched paper tape in Flexowriter

code (which is used for the off set load routine) and if a listing of the

routine is desired, it may be obtained by typing out the tape on the

Flexowriter.

59

The subroutine available are:

ARCTANGENT X

SINE X

COSINE X

ARCCOSINE X

ARCSINE X

SERIES EXPANSION (BASIC)

EXPONENTIAL (2x, ex, 10X)

SQUARE ROOT

LOG TO BASE 2

PLOT

All routines are written as having location 00000 as the starting

point and must be offset loaded to the desired location in the FPP.-33

program. Off set locations are indicated by a slash (I) as for

example, 0034/ refers to a location which is 34B locations follow­

ing the base location to which a routine is offset loaded.

Routines are entered by performing a return jump (7540 xxx) in­

struction to the location specified as the entrance of the subroutine.

The return jump may be in the upper or lower instruction of the

particular word. Return from the subroutine will, in all cases, be

to the upper instruction of the next word of the main program.

60

A. IDENTIFICATION
TITLE: FPP-33 Subroutine: Arctangent
IDENTIFICATION NUMBER: FPP 33-1
PROGRAMMER: Payne

B. PURPOSE

Given a number X. Find the arctangant of X using the Maclaurin

series as given on page 137 in Hastings.

C. USAGE

1. Operational Procedure:

If -1 ~ X '- 1, use the series directly.

If X > 1, then take Arctangent of 1 /X and subtract this value

from -:Y2 to get arctangent of X ..

If X < -1 then subtract Arctangent 1 IX from--'% to get

Arctangent of X.

2. Entry:

A contains the number X in floating point

3. Exit:

A contains the answer in radians

B6 is used, but is reset to its original value before exit.

4. Error Conditions:

None

5. Subroutines Used:

Basic

61

6. Remarks and Restrictions:

Uses 51
8

permanent and 0 erasable locations.

Basic is located at 0040 I (incorporated on an offset Flex

tape)

62

A. IDENTIFICATION
TITLE: FPP-33 Subroutine: Sine Cosine
IDENTIFICATION NUMBER: FPP-33-2
PROGRAMMER: Payne

B. PURPOSE

Given X, compute the Sin X or Cos X (where X is in radians)

C. USAGE

1. Operational Procedure:

The framework for the program is around the Sin X routine.

Cos X uses the Sin X as a subroutine where Cos X =

S.in (~ + X)

2. Entry:

A contains the angle in radians (X)

3. Exit:

A contains the value of Sin X or Cos X.

B6 is used, but reset to its original value before exit.

4. Error Conditions:

None.

5. Subroutines Used:

Basic is incorporated in Sin X. Cos X incorporated both

Basic and Sin X.

6. Remarks and Restrictions:

Sin X uses 44 permanent FPP-33 locations and 0 erasable.

Cos x uses 4 permanent FPP-33 locations and 0 erasable.

63

This is an off set program on flex tape with Sin X at 0000 I

and Cos X at 0045 I. Basis is at 0033 I. (entry addresses).

Accuracy is within 1 or 2 in the ninth decimal place.

64

A. IDENTIFICATION
TITLE: FPP-33 Subroutine: Arcsine, Arccosine
IDENTIFICATION NUMBER: FPP 33-3
PROGRAMMER: Payne

B. PURPOSE

Given a number X, this subroutine will find the Arccos of X or

the Arc sin of X.

C. USAGE

1. Operational Procedure:

The formula for the program is found on page 163 in Hastings.

Arccos X = ~ ~(X), where 'f' (X)= a 0 + a
1

x + a 2 x
2 + .•• + a 7x

7

Arcsin X is evaulated by using Arccos X as a subroutine

where Arcsin X = % - Arccos X.

2. Entry:

A contains the number X.

3. Exit:

A contains Arcsin X or Arccos X.

B6 is used, but reset to its original value.

4. Error Conditions:

None.

5. Subroutines Used:

Arccos X incorporated SQRT and Basic.

Arcs in X incorporated SQRT, Basic, and Arccos X.

65

6. Remarks and Restrictions:

Arccos X uses 55 permanent locations, 0 erasable locations.

Arcsin X uses 5 permanent locations, 0 erasable locations.

This is an off set program on flex tape entry is a Arccos

X 0000 I Arc sin X 0055 I. Basic is used to evaluate the

series. The SQRT subroutine is also incorporated with

the following entry points: Basic 0022/, SQRT 0034/.

Accuracy is within 3 or 4 in the eighth decimal place.

66

A. IDENTIFICATION
TITLE: FPP-33 Subroutine - Basic (series expansion)
IDENTIFICATION NUMBER: FPP 33-4
PROGRAMMER: Mansfield

B. PURPOSE
n

Compute the value of a given series ~ixi

(n = 1, 2 • • • n)
i=o

C. USAGE

1. Operational Procedure:

of n terms.

A code word must have been previously loaded in A before

going to Basic. The code word contains in octal

for which the following interpretations are used.

NNNOXXXX
OOOOTTTT

NNN is the number of terms in the series not including CO-

XXXX is the address of the floating point number X to be

used by the series.

TTTT is the address of the first coefficient C in the table
0

of coefficients.

0000 are trash and ignored by the subroutine.

2. Entry:

A contains the code word.

3. Exit:

A contains the answer

B6 is used, but reset to its original value before exit.

67

4. Error Conditions:

None

5. Remarks and Restrictions:

Uses 11 8 FPP-33 locations (permanent) and 0 erasable

locations. This routine is on offset flexowriter tape.

68

A. IDENTIFICATION
TITLE: FPP-33 Subroutine - Exponential
IDENTIFICATION NUMBER: FPP 33-5
PROGRAMMER:

B. PURPOSE

C. USAGE

1. Operational Procedure:

This basic subroutine calculates 2x, but ex and 1ox may be

calculated by performing one preliminary multiplication on

X using a constant contained in the subroutine. The multipli-

cation factors for ex and 1 ox are stored in the subroutine

as shown:

eX factor is stored at 00338 plus the starting address

1ox factor is stored at 00348 plus the starting address

As an example of the use of this subroutine, it is assumed that

the subroutine has been offset loaded by 07008. The main

program to enter the subroutine by a return jump is as

Loe. Upper inst.

0400 1200 0100

69

Lower inst.

7540 0700

Remarks

Load x in accumu -
lator from 0100 and
Jump to the sub­
routine.

For ex a possible entrance is

Loe. Upper inst.

0377 1200 0100

0400 7540 0700

0401 2000 0200

2. Entry:

Lower inst. Remarks

3200 0733

0000 0000

Load x into ace.
Mult. by factor in
0733 (in subroutine)

Return jump to sub­
routine, lower
instruction is skipped.

On return from sub­
routine, store ex in
0200, the lower in­
struction is up to you.

A contains the number x (premul tiplied if ex and 1 ox are

desired)

3. Remarks and Restrictions:

Entry is by a return jump to the first address in the subroutine.

358 permanent locations are required. This routine is on an

offset flex tape.

70

A. IDENTIFICATION
TITLE: FPP-33 Subroutine-Square Root
IDENTIFICATION NUMBER: FPP 33-6
PROGRAMMER:

B. PURPOSE

Given a number X in the accumulator, find the square root of the

number by the use of the Newton iteration method and leave the

square root in the accumulator.

C. USAGE

1. Entry:

A contains the number X in floating point

2. Exit:

A contains the square root in floating point

3. Remarks:

This routine used 21 permanent locations and is on off set

flex tape.

71

A. IDENTIFICATION
TITLE: FPP- 3 3 Subroutine - Log to Base 2
IDENTIFICATION NUMBER: FPP 33-7
PROGRAMMER:

B. PURPOSE

Given a floating point number in A, calculate the log to the base

2 of this number.

C. USAGE

1. Entry:

A contains the number X in floating point.

2. Exit:

A contains the log to the base 2 of the value of X.

3. Remarks and Restrictions:

Routine uses 478 permenent locations and is on an offset

flex tape.

73

A. IDENTIFICATION
TITLE: FPP-33 Subroutine-Trig Routines
IDENTIFICATION: FPP 33-8
PROGRAMMER:

B. PURPOSE

This tape combines the following subroutines with the given

entrances:

SIN X 0000/

cos x 0045/

ARCTAN X 0051/

BASIC 0033/

c. USAGE

See writeups of the original routines.

75

A. IDENTIFICATION

TITLE: FPP-33 Subroutine: Plot

IDENTIFICATION: FPP 33-9

CATEGORY: Mathematical Subroutine

PROGRAMMER: H. Theiste

DATE: March, 1961

B. PURPOSE

160. 005

The purpose of this routine is to plot results on the on-line plotter in

either of two ways:

1. Moving from previous plot point to present plot point in a

straight line with pen down.

2. Moving from previous plot point to present plot point with

pen up, plot a symbol to represent desired point.

As written, the routine uses output from routines written in 1604 simu­

lator language. The method is applicable for plotting either fixed or

floating point results.

C. USAGE

1. Operational Procedure -

Before any plotting can be done, the routine must be pro­

vided with the X and Y scale factors. The scale factor (F)

is determined by dividing 100 by the number of units per

inch on the plotted output. Thus, if the X scale were l" =
4 units and the Y scale were 1" = . 5 units, the scale factors

are
100

F (X) = ~ =

F (Y) 100
G.D

25

200

These are stored in locations (0073) and (0074) respectively.

It is the task of the user to set the X and Y scale factors

in these locations.

77

After the scale factors have been set up, the initial values

of X and Y n1ust be provided to the routine. This is
0 0

accon.plished by a return jun1p to location 0070/of the plot

routine with the address of X in B6.
0

Two entries are provided for plotting results from the 1604

simulator routine, depending on whether the plot is to be a

line plot or a point plot. In either case, X and any Yvalues

must be stored in consecutive locations with X first.

If a line plot is desired, i.e., move between points with

the pen down, a return jump is made t 0 location ooou/with

the address of the X value in B6. The pen will move from

its present position to the point X, Y along a nearly straight

line, and will exit.

If a point plot is desired, i.e. , move between points with

the pen up and plot a symbol at the desired point, a return

jump is made to location 0110/with the address of X in B6.

This routine uses Bl, but restores the original contents.

To load the plot subroutine:

a. FPP-33 routine must be in the computer.

b. Turn on reader and insert PLOT tape any­

where on leader.

c. Set P = 7400

d. A = First 1604 location of subroutine

e. Press Run Switch

f. Line Plot
Set B6 to location of X-coord. Return jump

to first location of Plot routine.

g. Point Plot
Set B6 to location of X-coord. Return jump

to location 01] 0/of Plot routine.

h. Set X0 and Y
0

Set B6 to location of X -coord. Return jump
0

to location 0070/ .)f Plot routine.

78

3. Space Required -

llOd FPP-33 locations 440 8 or 288
10

160 locations.

4. Temporary Storage -

The point plot routine uses B 1, but restores the original

contents before exit. The contents of B6 remain unchanged

by the routine. Therefore, if several points are to be

plotted, the address of X will always be in B6. Also X and

Y are left unchanged by the routine.

11. Accuracy -

The plotted point will be accurate to the nearest 1/1 OOth

of an inch.

13. Equipment Configuration -

Minimum 160 computer with California Computer Products

Company Plotter.

D. METHOD

To plot a given point, the routine multiplies each coordinate (XL or

Y L) by its scale factor and retains only the integer portion of the co­

efficient of the floating point number, discarding the fractional portion.

It then subtracts the previous coordinates to obtain values of Li X and

6 Y, representing actual pen motion.

The routine then determines which value has the greater magnitude, L\ X

or /J,. Y. This indicates along which axis most of the pen motion w i 11

occur. The larger quantity (in magnitude) is called RL and the other L.

RL is divided by L to obtain the ratio R between the two motions. The

directions of pen motion for RL and L are determined and two plotter

outputs are set up P 1 and P 2 . P 1 to move the pen one unit in the R L

and L directions and P 2 to move the pen only in the RL direction. The

three quantities RL' Land Rare made positive to serve as counters

and a fourth quantity T is obtained by R-2.

79

L is decremented by one and, if it remains positive, a P 1 output is given

to the plotter; whereupon T is decremented by one and, if it remains

positive, RL is decremented by one and a P 2 pulse is given to the plotter.

If, however, T goes negative R is added to the negative quantity, RL is

decremented by one and process is repeated starting with decrementing

L by one. If L goes negative, and if RL is at least one, RL is decre­

mented and a P 2 output is given to the plotter until RL goes negative,

at which time the X and Y coordinate values are updated and an exit is

made from the routine.

80

160 LOW SPEED EQUIPMENT

SELECT S'l'ATUS :RESPONSE

4102 Select Pr reader 0010 Typewriter not ready

4104 Select PT punch

4210 Select typewriter output

4220 Select keyboard jnput

~-240 Request typewriter response

163 and 164 MAGNETIC TAPES

SELECT STATUS RESPONSE

lllx

113x

112x

116x

115x

ll!µc

Write

Read forward

Backspace

Re-wj.nd

Rewind unload

Request tape status

x = 1, 2, 3 or 4 for tape units
For alternate I'·~S use 12 --
For assembly mode use 21 --

0001

0002

0004

0010

0020

0040

Coded mode

Not ready

Parity error in last
operation
Program error

End-of-f:i_le mark read

End of tape or load
point

For alternate MTS assewbly mode use 22 --

160 COMPUTER PROGRAMMING TRAINING PROBLEMS

The following series of problems is designed to introduce the programmer to

the various features of the 160 Computer in an orderly sequence.

Problem 1: This problem is designed to show the addressing modes of the 160

Computer. Write the problem with the following specifications:

NOTE:

Add two numbers A and B together and store the results

in location C.

a. - A is in location 0040, B is in location 0065, C is in location 0072.

The program is stored somewhere between locations 1000 to 1100.

b. - A is in 1000, Bis in 1002, C goes to 1005. Program is in the

range of locations 1010 to 1100.

c. - A, Band C as in b. Program is in 0700 to 0777.

d. - A, B, C as in b. Program is in locations 4000 to 4100.

Problem a. can be written using direct addressing.

Problem b. can be written as backward relative addressing.

Problem c. can be written as forward relative addressing.

Problem d. can be written as indirect addressing.

Problem 2: This problem is designed to show the conditional jump ability of

the 160 computer.

- 1 -

a. If A is equal to B, do C plus D

b. If A is larger than B, do C minus D

c. If A is less than B, do D minus C

NOTE: In all cases store the sum at E, stop if condition is not satisfied.

The following conditions apply: Location 0040 holds A

Location 0132 holds B

Location 1000 holds C

Location 1 750 holds D

Location 0050 holds E

The program is written to start at location 0140 or higher.

Problem 3: This is a problem in controlling the execution of a subroutine and

loop control. A tape with the program will be provided. Execute

the routine which starts at location 1000. This routine ends with

the instruction 7007 (i.e., the routine exists to the location speci­

fied in location 000 7).

a. Execute the above routine 10 times (decimal). The program is

written to start at location 2035.

h. Execute the routine 100 times (decimal}. The control program

starts at location 4070.

Problem 4: Given 100 (decimal) numbers in successive storage locations start­

ing at location 0476. Add up this list of numbers and store the

sum at location 0050. The program starts at location 4730.

- 2 -

Problem 5: Given 100 (decimal) pairs of numbers which are stored starting at

location 1000 and 2000 respectively. Add the pairs and store the

sums in a list starting at location 3000. (i.e. add the number in

2000 and store the sum at 3000 and do it for the next locations,

etc.)

Problem 6: Read in information from punched paper tape until the code octal

45 is encountered, then read in the next ten frames of tape and

store the information in locations 0150 and up.

Problem 7: (Problem 7 is designed to show use of paper tape input and output.)

a. Duplicate paper tape from the reader to the punch.

b. Duplicate paper tape with levels 6 to 1 only (no seventh level)

c. Generate a binary output pattern on punched paper tape. (the

binary output pattern consists of all possible binary configurations

of hole and no hole on paper tape.

Problem 8: (Sideways add) Count the number of ones contained in the accumu­

lator on starting the routine. Display the binary count in the A

register after stopping the machine.

Problem 9: (Table lookup) Take the number contained in the A register and

see if it is in a table of numbers in locations 1000 to 1011. If the

number in A is in the table, stop and display the address of the

number in the table. If the number is not in the table, stop the

machine with all zeros in A.

- 3 -

TABLE OF POWERS OF 2

2n n 2-n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 o. 001 953 125

1 024 10 0. 000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 ?5

134 217 728 27 0.000 000 0(}7 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

1 7 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

0000
to

0777
(Octal)

0000
to

0511
(Decimal

Octal Decimal
10000- 4096
20000- 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000
to

1777
(Octal)

0512
to

1023
(Decimal)

0000
0010
0020
0030
0040
0050
0060
0070

0100
0110
0120
0130
0140
0150
0160
0170

0200
0210
0220
0230
0240
0250
0260
0270

0300
0310
0320
0330
0340
0350
0360
0370

1000
1010
1020
1030
1040
1050
1060
1070

1100
1110
1120
1130
1140
1150
1160.
1170

1200
1210
1220
1230
1240

11250
1260
1270

1300
1310
1320
1330
1340
1350
1360
1370

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0000 0001 0002 000,;3 0004 0005 0006 0007 0400 0256 0257 0258 0259 0260 0261 0262 0263
0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266 0267 0268 0269 0270 0271
0016 0017 0018 0019 0020 0021 0022 0023
0024 0025 0026 0027 0028 0029 0030 0031

0420 ~?272 0273 0274 0275 0276 0277 0278 0279
0430 0280 0281 0282 0283 0284 0285 0286 0287

0032 9033 0034 0035 0036 0037 0038 0039 0440 0288 0289 0290 0291 0292 0293 0294 0295
0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297 0298 0299 0300 0301 0302 0303
0048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305 0306 0307 0308 0309 0310 0311
005i) 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318 0319

0064 0065 0066 0067 0068 0069 0070 0071 0500 0320 0321 0322 0323 0324 0325 0326 0327
0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329 0330 0331 0332 0333 0334 0335
0080 0081 0082 0083 0084 0085 0086 0087 0520 0336 0337 0338 0339 0340 0341 0342 0343
0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346 0347 0348 0349 0350 0351
0096 0097 0098 0099 0100 0101 0102 0103 0540 0352 0353 0354 0355 0356 0357 0358 0359
0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361 0362 0363 0364 0305 0366 0367
0112 0113 0114 0115 0116 0117 0118 0119 0560 0368 0369 0370 0371 0372 0373 0374 0375
0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377 0378 0379 0380 0381 0382 0383

0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 0388 0389 0390 0391
0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394 0395 0396 0397 0398 0399
0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401 0402 0403 0404 0405 0406 0407
0152 0153 0154 0155 0156 0157 0158 0159 0630 0408 0409 0410 0411 0412 0413 0414 0415
0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0418 0419 0420 0421 0422 0423
0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426 0427 0428 0429 0430 0431
0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 0436 0437 0438 0439
0184 0185 0186 0187 0188 0189 0190 0191 0670 0440 0441 0442 0443 0444 0445 0446 0447

0192 0193 0194 0195 0196 0197 0198 0199 0700 0448 0449 0450 0451 0452 0453 0454 0455
0200 0201 0202 0203 0204 0205 0206 0207 0710 0456 0457 0458 0459 0460 0461 0462 0463
0208 0209 0210 0211 0212 0213 0214 0215 0720 0464 0465 0466 0467 0468 0469 0470 0471
0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474 0475 0476 0477 0478 0479
0224 0225 0226 0227 0228 0229 0230 0231
0232 0233 0234 0235 0236 0237 0238 0239

0740 0480 0481 0482 0483 0484 0485 0486 0487
0750 0488 0489 0490 0491 0492 0493 0494 0495

0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498 0499 0500 0501 0502 0503
0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0512 0513 0514 E>515 0516 0517 051.8 0519 1400 0768 0769 0770 0771 0772 0773 0774 0775
0520 0521 0522 0523 0524 0525 0526 0527
0528 05~9 0530 .0531 0532 0533 0534 0535

1410 0776 0777 0778 0779 0780 0781 0782 0783
1420 0784 0785 0786 0787 0788 0789 0790 0791

0536 05;17 0538 0539 0540 0541 0542 0543 1430 0792 0793 0794 0795 0796 0197 0798 0799
0544 0545 0546 0547 0548 0549 0550 0551 1440 0800 0801 0802 0803 0804 0805 0806 0807
0552 0553 0554 0555 0556 0557 0558 0559 1450 0808 0809 0810 0811 0812 0813 0814 0815
0560 0561 0562 0563 05"$4 0565 0566 0567 1460 0816 0817 0818 0819 0820 0821 0822 0823
0568 0569 0570 0571 0572 057'3 0574 0575 1470 0824 0825 0826 0827 0828 0829 0830 0831

0576 0577 0578 0579 0580 os8·i 0582 0583 1500 0832 0833 0834 0835 0836 0837 0838 0839
0584 0585 0586 0587 0588 0589 0590 0591 1510 0840 0841 0842 0843 0844 0845 0846 0847
0592 0593 0594 0595 0596 0591 Q598 0599 1520 0848 0849 0850 0851 0852 0853 0854 0855
0600 0601 0602 0603 0604 0605 0606 0607 1530 0856 0857 0858 0859 0860 0861 0862 0863
0608 0609 0610 0611 0612 0613 0614 0615 1540 0864 0865 0866 0867 0868 0869 0870 0871
0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873 0874 0875 0876 0877 0878 0879
0624 0625 0626 0627 0628 0629 0630 0631 1560 0880 0881 0882 0883 0884 0885 0886 0887
0632 0633· 0634 0635 0636 0637 0638 0639 1570 0888 0889 0890 0891 0892 0893 0894 0895

0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897 0898 0899 0900 0901 0902 0903
0648 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905 0906 0907 0908 0909 0910 0911
0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913 0914 0915 0916 0917 0918 0919
0664 0665 0666 0667 0668 0669 0670 0671 1630 0920 0921 0922 0923 0924 0925 0926 0927
0672 0673 0674 0675 0676 0677 0678 0679 1640 0928 0929 0930 0931 0932 0933 0934 0935
0680 0681 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0939 0940 0941 0942 0943
0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946 0947 0948 0949 0950 0951
0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954 0955 0956 0957 0958 0959

0704 0705 0706 0707 0708 0709 0710 0711 1700 0960 0961 0962 0963 0964 0965 0966 0967
0712 0713 0714 0715 0716 0717 0718 0719 1710 0968 0969 0970 0971 0972 0973 0974 0975
0720 0721 0722 0723 0724 0725 0726 0727 1720 0976 0971 0978 0979 0980 0981 0982 0983
0728 0729 0730 0731 0732 0733 0734 0735 1730 0984 0985 0986 098"t 0988 0989 0990 0991
0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993 0994 099.5 0996 0997 0998 0999
0744 0745 0746 0747 0748 0749 0750 0751 1750 1000 1001 1002 1003 1004 1005 1006 1007.
0752 0753 0754 0755 0756 0757 0758 0759 1760 1008 1009 1010 1011 1012 1013 1014 1015
0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1019 1020 1021 1022 1023

0

2000 1024
2010 1032
2020 1040
2030 1048
2040 1056
2050 1064
2060 1072
2070 1080

2100 1088
2110 1096
2120 1104
2130 1112
2140 1120
2150 1128
2160 1136
2170 1144

2200 1152
2210 1160
2220 1168
2230 1176
2240 1184
2250 1192
2260 1200
2270 1208

2300 1216
2310 1224
2320 1232
2330 1240
2340 1248
2350 1256
2360 1264
2370 1272

0

3000 1536
3010 1544
3020 1552
3030 1560
3040 1568
3050 1576
3060 1584
3070 1592

3100 1600
3110 1608
3120 1616
3130 1624
3140 1632
3150 1640
3160 1648
3170 1656

3200 1664
3210 1672
3220 1680
3230 1688
3240 1696
3250 1704
3260 1712
3270 1720

3300 1728
3310 1736
3320 1744
3330 1752
3340 1760
3350 1768
3360 1776
3370 1784

OCTAL-DECIMAL INTEGER CONVERSION TABLE

1 2 3 4 5 6 7 I 0 1 2 3 4 5 6

1025 1026 1027 1028 1029 1030 .1031 2400 1280 1281 1282 1283 1284 1285 1286
1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 1290 1291 1292 1293 1294
1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 1298 1299 1300 1301 1302
1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 1306 1307 1308 1309 1310
1057 1058 1059 1060 1061 1062 1063 2440 1312 1313 1314 1315 1316 1317 1318
1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 1322 1323 1324 1325 1326
1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 1330 1331 1332 1333 1334
1081 1082 1083 1084 1085 1086 1087 2470 1336 1337 1338 1339 1340 '1341 1342

1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 1346 1347 1348 1349 1350
1097 1098 1099 1100 1101 1102 1103 2510 1352 1353 1354 1355 1356 1357 1358
1105 1106 1107 1108 1109 1110 1111 2520 1360 1361 1362 1363 1364 1365 1366
1113 1114 1115 1116 1117 1118 1119 2530 1368 1369 1370 1371 1372 1373 1374
1121 1122 1123 1124 1125 1126 1127 2540 1376 1377 1378 1379 1380 1381 1382
1129 1130 1131 1132 1133 1134 1135 2550 1384 1385 1386 1387 1388 1389 1390
1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 1394 1395 1396 1397 1398
1145 1146 1147 1148 1149 1150 1151 2570 1400 1401 1402 1403 1404 1405 1406

1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412 1413 1414
1161 1162 1163 1164 1165 1166 1167 2610 1416 1417 1418 1419 1420 1421 1422
1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 1426 1427 1428 1429 1430
1177 1178 1179 1180 1181 1182 1183 2630 1432 1433 1434 1435 1436 1437 1438
1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444 1445 1446
1193 1194 1195 1196 1197 1198 1199 2650 1448 1449 1450 1451 1452 1453 1454
1201 1202 1203 1204 1205 1206 1207 2660 1456 1457 1458 1459 1460 1461 1462
1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 1466 1467 1468 1469 1470

1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476 1477 1478
1225 1226 1227 1228 1229 1230 1231 2710 1480 1481 1482 1483 1484 1485 1486
1233 1234 1235 1236 1237 1238 1239 2720 1488 1489 1490 1491 1492 1493 1494
1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 1498 1499 1500 1501 1502
1249 1250 1251 1252 1253 1254 1255 . 2740 1504 1505 1506 1507 1508 1509 1510
1257 1258 1259 1260 1261 1262 1263 2750 1512 1513 1514 1515 1516 1517 1518
1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 1522 1523 1524 1525 1526
1273 1274 1275 1276 1277 1278 1279 2770 1528 1529 1530 1531 1532 1533 1534

1 2 3 4 5 6 7 0 1 2 3 4 5 6

1537 1538 1539 1540 1541 1542 1543 3400 1.792 1793 1794 1795 1796 1797 1798
1545 1546 1547 1548 1549 1550 1551 3410 1800 1801 1802 1803 1804 1805 1806
1553 1554 1555 1556 1557 1558 1559 3420 1808 1809 1810 1811 1812 1813 1814
1561 1562 1563 1564 1565 1566 1567 3430 1816 1817 1818 1819 1820 1821 1822
1569 1570 1571 1572 1573 1574 1575 3440 1824 1825 1826 1827 1828 1829 1830
1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 1834 1835 1836 1837 1838
1585 1586 1587 1588 1589 1590 1591 3460 1840 1841 1842 1843 1844 1845 1846
1593 1594 1595 1596 1597 1598 1599 3470 1848 1849 1850 1851 1852 1853 1854

1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 1858 1859 1860 1861 1862
1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 1866 1867 1868 1869 1870
1617 1618 1619 1620 1621 1622 1623 3520 1872 1873 1874 1875 1876 1877 1878
1625 1626 1627 1628 -1629 1630 1631 3530 1880 1881 1882 1883 1884 1885 1886
1633 1634 1635 1636 1637 1638 1639 3540 1888 1889 1890 1891 1892 1893 1894
1641 1642 1643 1644 1645 1646 1647 3550 1896 1897 1898 1899 1900 1901 1902
1649 1650 1651 1652 1653 1654 1655 3560 1904 1905 1906 1907 1908 1909 1910
1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 1914 1915 1916 1917 1918

1665 1666 1667 1668 1669 1670 1671
1673 1674 1675 1676 1677 1678 1679

3600 1920 1921 1922 1923 1924 1925 1!126
3610 1928 1929 1930 1931 1932 1933 1934

1681 1682 1683 1684 1685 1686 1687 3620 1936 1937 1938 1939 1940 1941 1942
1689 1690 1691 1692 1693 1694 1695 3630 1944 1945 1946 1947 1948 1949 1950
1697 1698 1699 1700 1701 1702 1703 3640 1952 1953 1954 1955 1956 1957 1958
1705 1706 1707 1708 1709 1710 1711 3650 1960 1961 1962 1963 1964 1965 1966
1713 1714 1715 1716 1717 1718 1719 3660 1968 1969 1970 1971 1972 1973 1974
1721 1722 1723 1724 1725 1726 1727 3670 1976 1977 1978 1979 1980 1981 1982

1729 1730 1731 1732 1733 1734 1735 3700 1984 1985 1986 1987 1988 1989 1990
1737 1738 1739 1740 1741 1742 1743 3710 1992 1993 1994 1995 1996 1997 1998
1745 1746 1747 1748 1749 1750 1751 3720 2000 2001 2002 2003 2004 2005 2006
1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 2010 2011 2012 2013 2014
1761 1762 1763 1764 1765 1766 1767 3740 2016 2017 2018 2019 2020 2021 2022
1769 1770 1771 1772 1773 1774 1775 3750 2024 2025 2026 2027 2028 2029 2030
1777 1778 1779 1780 1781 1782 1783 3760 2032 2033 2034 2035 2036 2037 2038
1785 1786 1787 1788 1789 1790 1791 3770 2040 2041 2042 2043 2044 2-045 2046

7

1287
1295
1303
1311
1319
1327
1335
1343

1351
1359
1367
1375
1383
139i
1399
1407

1415
1423
1431
1439
1447
1455
1463
1471

1479
1487
1495
1503
1511
1519
1527
1535

7

1799
1807
1815
1823
1831
1839
1847
1855

1883
1871
1879
1887
1895
1903
1911
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2007
2015
2023
2031
2039
2047

2000 1024
to to

2777 1535
(Octal) (Decimal)

Octal Decimal
10000- 4096
20000- 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000
to

3777
'Octal)

1536
to

2047
(Decimal)

4000 2048
to to

4777 2559
(Octal) (Decimal)

Octal Decimal
10000- 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 2457 6
70000 - 28672

5000 2560
to to

5777 3071
'Octal} (Decimal)

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4:>70

4300
4310
4320
4330
4340
4350
4360
4370

5000
5010
5020
5030
5040
5050
5060
5070

5100
5110
5120
5130
5140
5150
5160
5170

5200
5210
5220
5230
5240
5250
5260
5270

5300
5310
5320
5330
5340
5350
5360
5370

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2048 2049 2050 2051 2052 2053 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310 2311
2056 2057 2058 2059 2060 2061 2062 2063 4410 2312 2313 2314 2315 2316 2317 2318 2319
2064 2065 2066 2067 2068 2069 2070 2071 4420 2320 2321 2322 2323 2324 2325 2326 2327
2072 20,73 2074 2075 2076 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334 2335
2080 2081 2082 2083 2084 2085 2086 2087 4440 2336 2337 2338 2339 2340 2341 2342 2343
2088 2089 2090 2091 2092 2093 2094 2095 4450 2344 2345 2346 2347 2348 2349 2350 2351
2Q96 2097 2098 2099 2100 2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358 2359
2104 2105 2106 2107 2108 2109 2110 2111 4470 2360 2361 2362 2363 2364 2365 2366 2367

2112 2113 2114 2115 2116 2117 2118 2119 4500 2368 2369 2370 2371 2372 2373 2374 2375
2120 2121 2122 2123 2124 2125 2126 2127 4510 2376 2377 2378 2379 2380 2381 2382 2383
2128 2129 2130 2131 2132 2133 2134 2135 4520 2384 2385 2386 2387 2388 2389 2390 2391
2136 2137 2138 2139 2140 2141 2142 2143 4530 2392 2393 2394 2395 2396 2397 2398 2399
2144 2145 2146 2147 2148 2149 2150 2151 4540 2400 2401 2402 2403 2404 2405 2406 2407
2152 2153 2154 2155 2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415
2160 2161 2162 2163 2164 2165 2166 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423
2168 2169 2170 2171 2172 2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431

2176 2177 2178 2179 2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438 2439
2184 2185 2186 2187 2188 2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447
2192 2193 2194 2195 2196 2197 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455
2200 2201 2202 2203 2204 2205 2206 2207 4630 2456 2457 2458 2459 2460 2461 2462 2463
2208 2209 2210 2211 2212 2213 2214 2215 4640 2464 2465 2466 2467 2468 2469 2470 2471
2216 2217 2218 2219 2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479
2224 2225 2226 2227 2228 2229 2230 2231 4660 2480 2481 2482 2483 2484 2485 2486 2487
2232 2233 2234 2235 2236 2237 2238 2239 4670 2488 2489 2490 2491 2492 2493 2494 2495

2240 2241 2242 2243 2244 2245 2246 2247 4700 2496 2497 2498 2499 2500 2501 2502 2503
2248 2249 2250 2251 2252 2253 2254 2255 4710 2504 2505 2506 2507 2508 2509 2510 2511
2256 2257 2258 2259 2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518 2519
2264 2265 2266 2267 2268 2269 2270 2271 4730 2520 2521 2522 2523 2524 2525 2526 2527
2272 2273 2274 2275 2276 2277 2278 2279 4740 2528 2529 2530 2531 2532 2533 2534 2535
2280 2281 2282 2283 2284 2285 2286 2287 4750 2536 2537 2538 2539 2540 2541 2542 2543
2288 2289 2290 2291 2292 2293 2294 2295 4760 2544 2545 2546 2547 2548 2549 2550 2551
2296 2297 2298 2299 2300 2301 2302 2303 4770 2552 2553 2554 2555 2556 2557 2558 2559

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2560 2561 2562 2563 2564 2565 2566 2567 5400 2816 2817 2818 2819 2820 2821 2822 2823
2568 2569 2570 2571 2572 2573 25';'4 2575 5410 2824 2825 2826 2827 2828 2829 2830 2831
2576 2577 2578 2579 2580 2581 2582 2583 5420 2832 2833 2834 2835 2836 2837 2838 2839
2584 2585 2586 2587 2588 258!:1 2590 2591 5430 2840 2841 2842 2843 2844 2845 2846 2847
2592 2593 2594 2595 2596 2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854 2855
2600 2601 2602 260l 2604 2605 2606 2607 5450 2856 2857 2858 2859 2860 2861 2862 2863
2608 2609 2610 2611 2612 2613 2614 2615 5460 2864 2865 2866 2867 2868 2869 2870 2871
2616 2617 2618 2619 2620 2621 2622 ,2623 5470 2872 2873 2874 2875 2876 2877 2878 2879

2624 2625 2626 2627 2628 2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
2632 2633 2634 2635 2636 2637 2638 2639 5510 2888 2889 2890 2891 2892 2893 2894 2895
2640 2641 2642 2643 2644 2645 2646 2647 5520 2896 2897 2898 2899 2900 2901 2902 2903
2648 2649 2650 2651 2652 2653 2654 2655 5530 2904 2905 2906 2907 2908 2909 2910 2911
2656 2657 2658 2659 2660 2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918 2919
2664 2665 2666 2667 2668 2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926 2927
2672 2673 2674 2675 2676 2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934 2935
2680 2681 2682 2683 2684 2685 2686 2687 5570 2936 2937 2938 2939 2940 2941 2942 2943

2688 2689 2690 2691 2692 2693 2694 2695 5600 2944 2945 2946 2947 2948 2949 2950 2951
2696 2697 2698 2699 2700 2701 2702 2703 5610 2952 2953 2954 2955 2956 2957 2958 2959
2704 2705 2706 2707 2708 2709 2710 2711 5620 2960 2961 2962 2963 2964 2965 2966 2967
2712 2713 2714 2715 2716 2717 2718 2719 5630 2968 2969 2970 2971 2972 2973 2974 2975
2720 2721 2722 2723 2724 2725 2726 2727 5640 2976 2977 2978 2979 2980 2981 2982 2983
2728 2729 2730 2731 2732 2733 2734 2735 5650 2984 2985 2986 2987 2988 2989 2990 2991
2736 2737 2738 2739 2740 2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998 2999
2744 2745 2746 2747 2748 2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 3007

2752 2753 2754 2755 2756 2757 2758 2759 ~700 3008 3009 3010 3011 3012 3013 3014 3015
2760 2761 2762 2763 2764 2765 2766 2767 5710 3016 3017 3018 3019 3020 3021 3022 3023
2768 2769 2770 2771 2772 2773 2774 2775 5720 3024 3025 3026 3027 3028 3029 3030 3031
2776 2777 2778 2779 2780 2781 2782 2783 5730 3032 3033 3034 3035 3036 3037 3038 3039
2784 2785 2786 2787 2788 2789 2790 2791 5740 3040 3041 3042 3043 3044 3045 3046 3047
2792 2793 2794 2795 2796 2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055
2800 2801 2802 2803 2804 2805 2806' 2807 5760 3056 3057 3058 3059 3060 3061 3062 3063
2808 2809 2810 2811 2812 2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070 3071

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 l 2 3 4 5 6 iJ 0 1 2 3 4 5 6

6000 3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332 3333 3334
6010 3080 3081 3082 3083 3084 3085 3086 3087 6410 3336 3337 3338 3339 3340 3341 3342
6020 3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348 3349 3350
6030 3096 3097 3098 3099 3100 3101 3102 3103 6430 3352 3353 3354 3355 3356 3357 3358
6040 3104 3105 3106 3107 3108 3109 3110 3111 6440 3360 3361 3362 3363 3364 3365 3366
6050 3112 3113 3114 3115 3116 3117 3118 3119 6450 3368 3369 3370 3371 3372 3373 3374
6060 3120 3121 3122 3123 3124 3125 3126 3127 6460 3376 3377 3378 3379 3380 3381 3382
607(} I 3128 3129 3130 3131 ~132 3133 3134 3135 6470 3384 3385 3386 3387 3388 3389 3390

610013136 3137 3138 3139 3140 3141 3142 3143
6110 3144 3145 3146 3147 3148 3149 3150 3151

6500 3392 3393 3394 3395 3396 3397 3398
6510 3400 3401 3402 3403 3404 3405 3406

6120 3152 3153 3154 3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412 3413 3414
6130 3160 3161 3162 3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420 3421 3422
6140 3168 3169 3170 3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 3429 3430
6150 3176 3177 3178 3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436 3437 3438
6160 3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446
6170 3192 3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 3453 3454

6200 3200 3201 3202 3203 3204 3205 3206 3207 6600 3456 3457 3458 3459 3460 3461 3462
6210 3208 3209 3210 3211 3212 3213 3214 3215 6610 3464 3465 3466 3467 3468 3469 3470
6220 3216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478
6230 3224 3225 3226 3227 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 3485 3486
6240 3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3494
6250 3240 3241 3242 3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500 3501 3502
6260 3248 3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 3509 3510
6270 3256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518

6300 3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526
6310 3272 3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532 3533 3534
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 3541 3542
6330 3288 3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 3549 3550
6340 3296 3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556 3557 3558
6350 3304 3305 3306 3307 3308 3309 3310 3311 6750 3560 3561 3562 3563 3564 3565 3566
6360 3312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 3573 3574
6370 3320 3321 3322 3323 3324 3325 3326 3327 6770 3576 3577 3578 3579 3580 3581 3582

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

7000 3584 3585 3586 3587 3588 3589 3590 3591
7010 3592 3593 3594 3595 3596 3597 3598 3599
7020 3600 3601 3602 3603 3604 3605 3606 3607
7030 3608 3609 3610 3611 3612 3613 3614 3615
7040 3616 3617 3618 3619 3620 3621 3622 3623
7050 3624 3625 3626 3627 3628 3629 3630 3631
7060 3632 3633 3634 3635 3636 3637 3638 3639
7070 3640 3641 3642 3643 3644 3645 3646 3647

7400 3840 3841 3842 3843 3844 3845 3846
7410 3848 3849 3850 3851 3852 3853 3854
7420 3856 3857 3858 3859 3860 3861 3862
7430 3864 3865 3866 3867 3868 3869 3870
7440 3872 3873 3874 3875 3876 3877 3878
7450 3880 3881 3882 3883 3884 3885 3886
7460 3888 3889 3890 3891 3892 3893 3894
7470 3896 3897 3898 3899 3900 3901 3902

7100 3648 3649 3650 3651 3652 3653 3654 3655 7500 3904 3905 3906 3907 3908 3909 3910
7110 3656 3657 3658 3659 3660 3661 3662 3663 7510 3912 3913 3914 3915 3916 3917 3918
7120 3664 3665 3666 3667 3668 3669 3670 3671 7520 3920 3921 3922 3923 3924 3925 3926
7130 3672 3673 3674 3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932 3933 3934
7140 3680 3681 3682 3683 3684 3685 3686 3687 7540 3936 3937 3938 3939 3940 3941 3942
7150 3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948 3949 3950
7160 3696 3697 3698 3699 3700 3701 3702 3703 7~60 3952 3953 3954 3955 3956 3957 3958
7170 3704 3705 3706 3707 3708 3709 3710 3711 7570 3960 3961 3962 3963 3964 3965 3966

7200 3712 3713 3714 3715 3716 3717 3718 3719 7600 3968 3969 3970 3971 3972 3973 3974
7210 3720 3721 3722 3723 3724 3725 3726 3727 7610 3976 3977 3978 3979 3980 398t 3982
7220 3728 3729 3730 3731 3732 3733 3734 3735 7620 3984 3985 3986 3987 3988 3989 3990
7230 3736 3737 3738 3739 3740 3741 3742 3743 7630 3992 3993 3994 3995 3996 3997 3998
7240 3744 3745 3746 3747 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004 4005 4006
7250 3752 3753 3754 3755 3756 3757 3758 3759 7650 4008 4009 4010 4011 4012 4013 4014
';'260 3760 3761 3762 3763 3764 3765 3766 3767 7660 4016 4017 4018 4019 4020 4021 4022
7270 3768 3769 3770 3771 3772 3773 3774 3775 7670 4024 4025 4026 4027 4028 4029 4030

7300 3776 3777 3778 3779 3780 3781 3782 3'783 7700 4032 4033 4034 4035 4036 4037 4038
7310 3784 37·85 3786 3787 3788 3789 3790 3791 7710 4040 4041 4042 4043 4044 4045 4046
7320 3792 3793 3794 3795 3796 3797 3798 3799 7720 4048 4049 4050 4051 4052 4053 4054
7330 3800 3801 3802 3803 3804 3805 3806 3807 7730 4056 4057 4058 4059 4060 4061 4062
7340 3808 3809 3810 3811 3812 3813 3814 3815 7740 4064 4065 4066 4067 4068 4069 4070
7350 3816 3817 3818 3819 3820 3821 3822 3823 7750 4072 4073 4074 WIS 4076 4077 4078
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760 4080 4081 4082 ... , 4084 4085 4086
7370 3832 3833 3834 3835 3836 3837 3838 3839 7770 4088 4089 4090 4091 4092 4093 4094

7

3335
3343
·3351
3359
3367
3375
3383
3391

3399
3407
3415
3423
3431
3439
3447
3455

3463
3471
3479
3487
3495
3503
3511
3519

3527
3535
3543
3551
3559
3567
3575
3583

7

3847
3855
3863
3871
3879
3887
3895
3903

3911
3919
3927
3935
3943
3951
3959
3967

3975
3983
3991
3999
4007
4015
4023
4031

4039
4047
4055
4063
4071
4079
4087
4095

6000
to

6777
(Octal)

3072
to

3583
(Decimal)

Octal Decimal
10000- 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7000 3584
to to

7777 4095
(Octal) (Decimal)

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC. .
.000000 .000000 • 000100 .000244 • 000200 .000488 • 900300 • 000732
.000001 .000003 .000101 .000247 .000201 • 000492 • 000301 .000736
.000002 .000007 . 000102 ,000251 • 000202. • 000495 .000302 .000740
.000003 • 000011 .000103 .000255 • 000203 • 000499 • 000303 .000743
• 000004 • 000015 .. 000104 .000259 .000204 ,000503 ,000304 • 000747
.000005 • 000019 .000105 .000263 .000205 • 000507 .000305 ,000751
,000006 ,OOOQ22 .000106 ,000267 . 000206 . 000511 .000306 .000755
,000007 • 000026 • 000107 .000270 .000207 .000514 .000307 .000759
,000010 . 000030 .000110 • 000274 • 000210 . 000518 .000310 .000762
• 000011 • 000034 .000111 .000278 • 000211 • 000522 • 000311 .000766
,000012 .000038 ,000112 • 000282 • 000212 • 000526 ,000312 .000770
.000013 • 000041 ,000113 .000286 • 000213 . 000530 • 000313 .000774
• 000014 . 000045 • 000114 ,000289 • 000214 • 000534 .000314 .000778
,000015 • 000049 .000115 ,000293 ,000215 • 000537 .000315 . 000782
. 000016 • 000053 • 000li6 .000297 • 000216 • 000541 • 000316 • 000785

.• 000017 • 000057 • 000117 .000301 • 000217 • 000545 .000317 • 000789
,000020 . 000061 • 000120 ,000305 .000220 .000549 • 000320 • 000793
,000021 .000064 • 000121 ,000308 • 000221 • 000553 ,000321 • 000797
,000022 • 000068 ,000122 .000312 ,000222 • 000556 • 000322 • 000801
,000023 ,000072 ,000123 ,000316 • 000223 .000560 • 000323 • 000805
,000024 ,000076 • 000124 • 000320 ,000224 .000564 . 000324 .000808
.000025 .000080 .000125 ,000324 • 000225 ,000568 .000325 • 000812
,000026 • 000083 "000126 .000328 • 000226 • 000572 • 000326 • 000816
,000027 .000087 .000127 ,000331 • 000227 • 000576 • 000327 ,000820
,000030 .000091 ,000130 ,000335 • 000230 • 000579 • 000330 • 000823
. 000031 ,000095 .000131 .000339 • 000231 • 000583 . 009331 ,000827
,000032 • 000099 .000132 • 000343 ,000232 • 000587 ,000332 • 000831
,000033 • 000102 ,000133 ,000347 ,000233 • 000591 .000333 .000835
• 000034 • 000106 • 000134 • 000350 • 000234 • 000595 • 000334 • 000839
.000035 • 000110 .000135 .000354 .000235 • 000598 .000335 .000843
,000036 • 000114 .000136 .000358 .000236 • 000602 • 000336 • 000846
,000037 • 000118 ,000137 • 000362 • 000237 • 000606 • 000337 • 000850
.000040 • 000122 .000140 .000366 ,000240 .000610 .000340 .000854
,000041 .000125 • 000141 .000370 • 000241 . 000614 .000341 .000858
,000042 • 000129 ,000142 • 000373 ,000242 • 000617 .000342 .000862
.000043 .000133 • 000143 • 000377 • 000243 .000621 • 000343 .000865
.000044 . 000137 .000144 ,000381 .000244 .000625 .000344 ,000869
.000045 • 000141 ,000145 • 000385 ,000245 .000629 . 000345 .000873
,000046 • 000144 ,000146 ,000389 ,000246 • 000633 ,000346 .000877
,000047 • 000148 .000147 .000392 ,

00
000247 • 000637 ,000347 ,000881

. 000050 • 000152 ,000150 ,000396 • 000250 .000640 ,000350 .000885
,000051 • 000156 .000151 ,000400 .000251 • 000644 .000351 .000888
.000052 . 000160 . 000152 . 000404 .000252 • 000648 • 000352 .000892
.000053 • 000164 • 000153 .000408 ,000253 • 000652 • 000353 .000896
,000054 ,000167 ,000154 • 000411 • 000254 • 000656 • 000354 ,000900
• 000055 .000171 • 000155 ,000415 • 000255 .000659 .000355 ,000904
.000056 • 000175 .000156 .000419 .000256 .000663 • 000356 .000907
,000057 • 000179 .000157 ,000423 .000257 .000667 .000357 • 000911
,000060 • 000183 .000160 .000427 .000260 • 000671 .000360 .000915
.000061 • 000186 ,000161 .000431 • 000261 • 000675 • 000361 • 000919
.000062 • 000190 • 000162 • 000434 • 000262 • 000679 • 000362 .000923
,000063 • 000194 .000163 ,000438 • 000263 • 000682 ,000363 ,000926
.000064 .000198 .000164 ,000442 • 000264 • 000686 • 000364 • 000930
,000065 • 000202 ,000165 • 000446 . 000265 • 000690 .000365 .000934
• 000066 • 000205 .000166 .000450 • 000266 • 000694 .000366 ,000938
.000067 • 000209 .000167 ,000453 .000267 • 000698 • 000367 • 000942
.000070 • 000213 .000170 .000457 ,000270 • 000701 • 000370 .000946
• 000071 .000217 • 000171 .000461 .000271 • 000705 • 000371 .000949
• 000072 • 000221 • 000172 • 000465 .000272 • 000709 • 000372 .000953
• 000073 • 000225 ,000173 • 000469 .000273 • 000713 • 000373 .000957
• 000074 • 000228 • 000174 . 000473 • 000274 • 000717 • 000374 ,000961
• 000075 .000232 • 000175 • 000476 .000275 • 000720 ,000375 ,000965
. 000076 ,000236 .000176 .000480 • 000276 ,000724 . 000376 .000968
.000077 • 000240 • 000177 .000484 • 000277 • 000728 • 000377 • 000972

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC, OCTAL DEC. OCTAL DEC.
,-

• 000400 ,000976 .000500 .001220 • 000600 .001464 • 000700 ,001708
,000401 ,000980 ,000501 .001224 • 000601 . 001468 • 000701 . 001712
. 000402 ,000984 .000502 ,001228 ,000602 • 001472 .000702 . 001716
• 000403 ,000988 ,000503 . 001232 • 000603 • 001476 . 000703 .001720
,000404 ,000991 • 000504 ,001235 ,000604 • 001480 .000704 ,001724
• 000405 .000995 ,000505 • 001239 ,000605 • 001483. . 000705 ,001728
• 000406 .000999 ,000506 ,001243 ,000606 • 001487 .000706 ,001731
.000407 • 001003 ,000507 .001247 ,000607 • 001491 .000707 ,001735
• 000410 • 001007 ,000510 • 001251 • 000610 .001495 ,000710 ,001739
• 000411 • 001010 • 000511 .001255 • 000611 • 001499 • 000711 ,001743
• 000412 • 001014 ,000512 .001258 • 000612 • 001502 • 000712 ,001747
,000413 • 001018 ,000513 ,001262 • 000613 • 001506 • 000713 ,001750
.000414 • 001022 ,000514 • 001266 • 000614 • 001510 • 000714 ,001754
.000415 .001026 .000515 • 001270 • 000615 • 001514 • 000715 .001758
,000416 .001029 .000516 .001274 ,000616 • 001518 • 000716 ,001762
• 000417 .001033 .000517 • 001277 .000617 • 001522 • 000717 .001766
.000420 • 001037 ,000520 ,001281 • 000620 • 001525 .000720 ,001770
,000421 • 001041 • 000521 • 001285 • 000621 • 001529 • 000721 . 001773
.000422 .001045 .000522 .001289 .000622 • 001533 • 000722 .001777
.000423 ,001049 .000523 .001293 • 000623 • 001537 .000723 ,001781
,000424 ,001052 ,000524 .001296 ,000624 • 001541 • 000724 ,001785
.000425 • 001056 ,000525 ,001300 • 000625 • 001544 • 000725 .001789
,000426 • 001060 .000526 ,001304 • 000626 • 001548 • 000726 ,001792
• 000427 .001064 ,000527 ,001308 ,000627 • 001552 .000727 .001796
.000430 • 001068 .000530 • 001312 • 000630 ,001556 • 000730 .001800
• 000431 • 001071 ,000531 ,001316 • 000631 • 001560 .000731 ,001804
,000432 • 001075 .000532 .001319 • 000632 • 001564 .000732 .001808
• 000433 • 001079 ,000533 • 001323 ,000633 • 0_01567 ,000733 .001811
.000434 • 001083 ,000534 .001327 .000634 • 001571 .000734 .001815
,000435 ,001087 .000535 ,001331 .000635 • 001575 • 000735 • 001819
,000436 ,001091 • 000536 • ()01335 • 000636 • 001579 . 000736 ,001823
• 000437 • 001094 ,000537 ,001338 • 000637 • 001583 .000737 .001827
.000440 . 00109, .000540 • 001342 • 000640 • 001586 • 000740 .001831
.000441 • 001102 • 000541 ,001346 • 000641 ,001590 .000741 .001834
,000442 • 001106 .000542 • 001350 • 000642 • 001594 . 000742 .001838
,000443 • 001110 • 000543 • 001354 ,000643 • 001598 ,000743 ,001842
,000444 • 001113 • 000544 • 001358 ,000644 .001602 ,000744 ,001846
. 000445 • 001117 • 006545 .001361 • 000645 • 001605 .000745 .001850
,000446 • 001121 ,000546 .001365 • 000646 ,001609 .000746 .001853
.000447 • 001125 ,000547 • 001369 • 000647 • 001613 • 000747 .001857
• 000450 • 001129 ,000550 • 001373 ,000650 • 001617 .000750 ,001861
.000451 • 001132 .000551 • 001377 • 000651 • 001621 .000751 • 001865
,000452 • 001136 ,000552 • 001380 • ()00652 • 001625 ,000752 • 001869
,000453 • 001140 ,000553 • 001384 • 000653 • 001628 ,000753 ,001873
• 000454 ,001144 ,000554 .001388 ,000654 • 001632 ,000754 ,001876
,000455 • 001148 .000555 .001392 ,000655 • 001636 .000755 ,001880
• 000456 • 001152 .000556 ,001396 .000656 • 001640 • 00-0756 .001884
• 000457 • 001155 ,000557 ,001399 .000657 • 001644 • 000757 ,001888
• 000460 • 001159 .000560 • 001403 ,000660 ,001647 • 000760 .001892
.000461 • 001163 • 000561 • 001407 • 000661 • 001651 ,000761 ,001895
,000462 • 001167 ,000562 .001411 • 000662 • 001655 .000762 ,001899
,000463 • 001171 • 000563 ,001415 • 000663 .001659 .000763 ,001903
,000464 • 001174 ,000564 .001419 • 000664 • 001663 .000764 ,001907
,000465 • 001178 .000565 .001422 .000665 • 001667 .000765 • 001911
,000466 • 001182 ,000566 .001426 • 000666 ,001670 • 000766 ,001914
. 000467 • 001186 ,000567 • 001430 .000667 • 001674 • 000767 • 0"01918
• 000470 • 001190 .000570 .001434 ,000670 • 001678 • 000770 ,001922
. 000471 • 001194 • 000571 .001438 . 000671 • 001682 • 000771 . 001926
• 000472 • 001197 • 000572 • 001441 • 000672 • 001686 • 000772 . 001930
,000473 • 001201 • 000573 • 001445 .000673 • 001689 . 000773 ,001934
,000474 • 001205 ,000574 • 001449 • 000674 ,001693 • 000774 • 001937
• 000475 .001209 • 000575 • 001453 .000675 • 001697 ,000775 .001941
• 000476 . 001213 .000576 • 001457 ,000()76 . 0017..01 • 000776 ,001945
.000477 • 001216 ,000577 • 001461 • 000677 • 001705 • 000777 ,001949

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC •

.000 .000000 .100 • 125000 .200 • 250000 . 300 .375000
• 001 • 001953 .101 .126953 .201 .251953 .301 .376953
.002 • 003906 .102 .128906 .202 .253906 .302 .378906
.003 .005859 .103 .130859 .203 • 255859 .303 .380859
.004 • 007812 .104 .132812 .204 . 257812 .304 .382812
.005 • 009765 .105 .134765 .205 • 259765 .305 .384765
.006 .011718 .106 .136718 .206 .261718 .306 .·386718
.007 • 013671 .107 .138671 .207 • 263671 .307 .388671

.010 • 015625 .110 .140625 .210 • 265625 .310 .390625

.011 .017578 .111 .142578 .211 • 267578 .311 .392578

.012 • 019531 .112 .144531 .212 • 269531 .312 .394531

.013 .021484 .113 .146484 .213 .271484 .313 ,396484

.014 .023437 .114 .148437 .214 • 273437 .314 .398437

.015 .025390 .115 .150390 .215 .275390 .315 .400390

.016 .027343 .116 .152343 .216 • 277343 .316 .402343

.017 .029296 .117 .154296 .217 .279296 .317 .404296

.020 .031250 .120 .156250 .220 • 281250 .320 .406250

.021 • 033203 .121 .158203 .221 ~ 283203 .321 .408203

.022 .035156 .122 .160156 .222 .285156 .322 .410156

.023 • 037109 .123 .162109 .223 • 287109 .323 • 412109

.024 .039062 .124 .164062 .224 • 289062 .324 • 414062

.02P. • 041015 .125 .166015 .225 • 291015 .~25 .416015

.026 .042968 .126 .167968 .226 • .292968 .326 .417968

.027 .044921 .127 .169921 .227 .294921 .327 .419921

.030 .046875 .130 .171875 .230 • 296875 .330 • 4'21875

.031 • 048828 .131 .173828 .231 .298828 .331 .423828

.032 • 050781 .132 .175781 .232 .300781 .332 • 426781

.033 .052734 .133 .177734 .233 • 302734 .333 . 427734

.034 .054687 .134 .179687 .234 • 304687 .334 .429687

.035 .056640 .135 .181640 .235 • 306640 .335 .431640

.036 .058593 .136 .183593 .236 .308593 .336 .433593

.037 • 060546 .137 .185546 .237 .310546 .337 ,435546

.040 • 062500 .140 .187500 .240 • 312500 .340 • 437500

.041 • 064453 .141 .189453 .241 • 314453 .341 .439453

.042 .066406 .142 .191406 .242 • 316406 .342 .441406

.043 .068359 .143 .193359 .243 .318359 .343 .443359

.044 • 070312 .144 .195312 .244 .320312 .344 .445312

.045 .072265 .145 .197265 .245 .322265 .345 .447265

.046 • 074218 .146 .199218 .246 .324218 .346 .449218

.047 • 076171 .147 • 201171 .247 .326171 .347 .451171

.o5o .078125 .150 .203125 .250 .328125 .350 .453125

.051 • 080078 .151 .205078 .251 .330078 .351 ,'455078

.052 .082031 .152 .207031 .252 .332031 .352 .457031

.053 .083984 .153 .208984 .253 .333984 .353 .458984

.054 .085937 .154 .210937 .254 .335937 .354 ,460937

.055 • 087890 .155 .212890 .255 • 337890 .355 .462890

.056 • 089843 .156 .214843 .256 .339843 .356 .464843

.057 .0917~6 .157 .216796 .257 .341796 .357 .466796

.060 .093750 .160 • 218750 .260 .343750 .360 .468750

.061 .095703 .161 .220703 .261 .345703 .361 .470703

.062 .097656 .162 • 222656 .262 .347656 .362 .472656

.063 ,099609 .163 .224609 .263 • 349609 .363 .474609

.064 .101562 .164 .226562 .264 .351562 .364 .476562

.065 .103515 .165 .228515 .265 .353515 .365 .478515

.066 .105468 .166 .230468 .266 • 355468 .366 .480468

.067 .107421 .167 .232421 .267 • 357421 .367 .482421

.070 .109375 .170 .234375 .270 .359375 .370 .484375

.071 .111328 .171 .236328 .271 • 361328 .371 .486328

.072 .113281 .172 • 238281 .272 .363281 .372 .488281

.073 ."115234 .173 .240234 .273 • 365234 .373 .490234

.074 .117187 .174 .242187 .274 • 367187 .374 .492187

.075 .119140 .175 ;244140 .275 .369140 .375 .494140

.076 .121093 .176 .246093 .276 . 37-1093 .376 .496093

.077 , 123046 .177 • 248046 • 277 • 373046 .377 ,498046

160.007

A. IDENTIFICATION

TITLE: Business Calculations Komplete

IDENTIFICAT.ION: ECK

CATEGORY: Decimal Computation

PROGRAMMER: H. Theiste

DATE: March, 1961

B. PURPOSE

ECK refers to a technique of representing decimal numbers in the 160 Com-

puter to combine the advantages of decimal arithmetic with the binary nature

of the 160 Computer.

C. USAGE

Each word of data in ECK is the binary representation of three consecutive

digits of a decimal number. By combining 2, 3, or 4 consecutive BCK data

words we can obtain numbers of 6, 9, or 12 decimal digits with the low order

ECK word in the lowest addressed location and higher order ECK words in

higher addressed locations. Examples of the ECK representation of some

decimal numbers are illustrated below (assume storage beginning at location

1000).

Decimal Number

654

654, 321

12, 345, 678, 901

Location

1000

1000
1001

1000
1001
1002
1003

ECK

Contents

1216

0501
1216

1605
1246
0531
0014

The ECK range for one address in octal notation. is 000 - 1 747.

ECK - 1

Negative numbers in BCK are expressed in tens' complement form. The

ten's complement is obtained by subtracting the number from the next higher

power of 10, e.g., 1, 000 for a 3-digit number, 1,000, 000 for a 6-digit

number, etc. The three numbers in the previous example would be repre-

sented negatively as follows:

Decimal Number BCK
Location Contents

-654 1000 0532
(346)

-654, 321 1000 1247
(345, 679) 1001 0531

1000 0143
-12, 345, 678, 901 1001 0501
(987, 654, 321, 099) 1002 1216

1003 1 733

This notation hnplies that the range of the most significant word, W H' of a

number in BCK is -(500)10 < WH < (500)10 . That is, if the most significant

word of a BCK number is (500)10 = (0764)8 or greater, the BCK arithmetic

routines will treat the number as a negative number.

1 . Principle of Operation - BCK consists of a control routine and a number

of arithmetic and logical subroutines. Through the use of the control

routine, it is possible to link together a number of BCK subroutines with-

out the necessity of generating a subroutine linkage in the main program

each time a routine is used. If desired, basic 160 Computer coding may

be used at any time.

The BCK subroutines are designed to operate on up to six specification

parameters which will be called P, A, B, C, D, E in the following

discussion.

BCK - 2

2. Control Routine - The control routine provides the means of tying BCK

subroutines together and performs the function of getting the parameters

from memory to a standard location for use by the subroutines.

The two entrances to the control routine are DO and INTERP. The DO

entrance causes the specified BCK subroutine to be executed once with

control to be returned to 160 coding on completion. The INTERP

entrance causes the control routine to continue to interpret calling

sequences until the subroutine BASIC is called for.

A calling sequence consists of the address of a subroutine followed by the

parameters required by the subroutine.

Examples -

To perform a multiply operation and return to basic 160 Computer coding

a DO entrance is used. It is necessary that on entrance to the control

routine, the A register of the 1 60 contains the address of the location

which specifies the address of the subroutine to be executed. The

parameters for the subroutine are in successive locations after the

location specifying the address of the subroutine. The following coding

(expressed in Assembly Language) will do the job.

Location

Ll

L2

L3

NEXT

L4

Op

LDF

JPI

JFI

BCK - 3

Address Additive

02

DO

NEXT

MPY

0404

FACTOR

P2

RES

01

LOOP

In the INTERP mode, the subroutine calling sequences are listed

sequentially. Thus, if it is required to add the 6-digit numbers A and

B, store the result at C, multiply by the 9- digit number D and return

to basic 160 coding, the following sequence is used (expressed in

Assembly Language).

Location

Ll
L2
L3
CODE

L4 (etc.)

3. BCK Subroutines

(a) ADDITION

Op

LDF
JPI

Calling Sequence
ADDX
A
B
c

Address

02
IN TERP
CODE
ADD 6
A
B
c
MPY
0203
c
D
E
BASIC

Additive

Description - The X in the name of the subroutine may be 3, 6, 9

or 12 to specify operation on 3, 6, 9 or 12 decimal digit numbers

expressed as 1, 2, 3 or 4 BCK words. Operation is to add the ECK

number starting at location A to the ECK number starting at location

E and store the sum starting at location C.

ECK - 4

(b) SUBTRACTION

Calling Sequence
SUBX
A
B
c

Description - Subtract the BCK number starting at location B from

the BCK number starting at location A and place the difference

starting at location C.

The X in the name of the subroutine may be 3, 6, 9 or 12 as in the

ADDX subroutine.

(c) MULTIPLICATION

Calling Sequence
MPY
p
A
B
c

Description - Multiply the BCK number starting at location A by

the BCK number starting at location B and store the product starting

at location C.

The parameter P is coded as a four- digit octal number where the

digits are WXYZ with the following interpretation.

WX - indicates the number of BCK words required to represent the

number at A. X must be at least 1 and no more than 4.

YX - indicates the number of BCK words required to express the

number at B. Z must be at least 1 and no more than 4.

BCK - 5

The product stored starting at C will occupy WX + Y Z BCK words.

The multiplication takes place as if the numbers were whole

numbers. The location of any assumed decimal point in the product

follows the normal rules of decimal arithmetic.

(d) DIVISION

Calling Sequence
DIVIDE
p
A
B
c

Description - Divide the BCK number starting at location A by the BCK

number at location B. Store the quotient starting at location C.

The parameter P is coded as a four-digit octal number where the

digits are WXYZ with the following interpretation.

WX - indicates the number of BCK words required to represent the

number at A. WX must be at least 2 and no greater than 10

(decimal 8).

YZ - indicates the number of BCK words required to express the

divisor at location B. YZ must be at least 1 and no more than 4.

The division follows the rules of decimal arithmetic and the quotient

stored at C will consist of WX - Y Z BCK words. The remainder

from the division, if desired, may be found starting at location REM

and consists of WX BCK words.

(e) COMPARISON

Calling Sequence

BCK - 6

COMP AR
p
A
B
c
D
E

Description - The quantity starting at location A is compared with

the quantity starting at location B. As a result of the comparison,

a transfer of control will take place as follows:

If A is greater than B, the next instruction will be obtained from

location C. If A is equal to B, the next instruction will be obtained

from location D. If A is less than B, the next instruction will be

obtained from location E.

The parameter P is coded as a four-digit octal number where the

digits are WXY Z with the following interpretation.

XYZ - indicates in octal the number of words to be compared in

A and B.

W=O - indicates that the numbers being compared are in BCK notation

and that an algebraic comparison is to be made.

W=4 - indicates that the numbers being compared are in input/ output

form and have the high order digits first. This is a

magnitude comparison only.

(f) DATA MOVING

Calling Sequence
MOVE
p
A
B

BCK - 7

Description ... BCK information will be moved from the area starting

at location A to the area starting at location B.

The number of words to be moved and the operation are controlled

by the parameter P, coded as a four-digit octal word. The octal

digits are WXYZ with the following interpretation.

XYZ - indicates the number of words to be moved. XYZ is in octal

notation.

W=O - indicates words are selected from A, A+ 1, A+ 2, etc., and

are stored at B, B + 1, B + 2, etc.

W=4 - indicates words are selected from A, A - 1, A - 2, etc., and

are stored at B, B - 1, B - 2, etc.

(g) UNCONDITIONAL TRANSFER

Calling Sequence
GOTO
A

Description - The next instruction to be executed will be obtained

from location A.

(h) RETURN TO BASIC COMPUTER CODING

Calling Sequence
BASIC

Description - The next instruction to be executed will be in basic 160

Computer code and is in the next location.

(i) CODE CONVERSION

Calling Sequence
RECODE
p
A
B

BCK - 8

Description - Change the coding of information starting at location

B by a table lookup and simple substitution using the table starting

at A.

The operation of the process is controlled by the parameter P which

is coded as four octal digits WXYZ. The interpretation of the

parameter is as follows:

XYZ - is the count of the number of words to be converted expressed

in octal.

W=O - indicates that the six-bit information is stored one character

per word in the lower six bits of a word.

W=4 - indicates that the information is stored in the form of two six-

bit characters per word.

(j) DECIMAL TO BCK CONVERSION

Calling Sequence
BC DB CK
p
A
B

Description - Convert the decimal information starting with the higher

order digit in location A and lower order digits in higher storage

locations to BCK form and store in memory starting at location B.

Operation of the process is controlled by the parameter P which is

coded as WXYZ. WXYZ is interpreted as an octal number which

specifies the total number of decimal digits to be converted.

The number of BCK words generated as a result of the conversion will

be A/3 or A/3 + 1, whichever is required to provide sufficient storage.

BCK - 9

If there is not an even multiple of 3 decimal digits available for

recoding, high order zeros will be assumed.

(k) BCK TO DECIMAL CONVERSION

Calling Sequence
BCKBCD
p
A
B

Description - Convert the BCK information starting at location A to

decimal information and store the result starting at location B.

B specifies the location of the high order digits of the converted

result with lower order digits placed in successively higher storage

locations.

Operation of the routine is controlled by the parameter P which is

coded as WXYZ. WXYZ is an octal number which specifies the total

number of BCK words to be converted.

The number of decimal digits generated as a result of the conversion

will be Ax 3.

4. Space required: (1046)8 = (550)10 locations. In addition, locations

0040-0067 are used by the routine. Each subroutine is an entity in itself

so only as much of the package as is needed must be loaded into memory.

Only locations 0057, 0066, and 0067 need be kept permanently.

9. Input: Three tapes are available for loading BCK into memory.

(a) Bioctal tape which includes RS-22. This tape is loaded beginning at

6332 and ends at 0067.

BCK - 10

(b) Bi-octal tape of ECK only. Beginning location is 6731, ending

location is 0067.

(c) OSAP symbolic tape for assembly. Must be preceded by an ORG

instruction.

10. ECK Subroutines

Name of Starting Location Execution

Subroutine 6332 6731 Time

ADD 3 6366 6765 .27 ms

ADD 6 6365 6764 . 48-. 54 ms

ADD 9 6364 6763 . 69-. 79 ms

ADD 12 6363 6762 . 90-1. 03ms

SUB 3 6421 7020 .26 ms

SUB 6 6420 7017 .45-.54ms

SUB 9 641 7 7016 . 65-. 79 ms

SUB 12 6416 7015 . 85-1. 03ms

MPY 6740 7337 8-36 ms
Variable

COMP AR 6622 7221 . 32 ms

MOVE 6713 7312 Inc• 6. 4(12+21 W)ms
Dec= 6. 40.5+21 W)ms

GOTO 6704 7303 44. 8 us

BASIC 6710 7307 38. 4 us

RECODE 6450 7047 Variable

BCDBCK 6521 7120 . 41ms min.

BCKBCD 6561 7160 . 40ms min.

DO 0066 0066

INTERP 0067 0067

ECK - 11

A. IDENTIFICATION

TITLE: Calculational Interpretive Programming System

IDENTIFICATION: CALINT 3-61

CATEGORY: Floating Point Decimal Computation

PROGRAMMER: J. A. Pederson

DATE: March, 1961

B. PURPOSE

CALINT is an interpretive programming system for the 160 Computer. It is

particularly suitable for calculations involving formula evaluation and parameter

studies. CALINT performs arithmetic in floating point decimal format. Thus, in

programming it is only necessary to specify the decimal point in any convenient

form and the system will take care of positioning throughout operation.

Input of the program and data is either via the on- line typewriter or by punched

paper tape prepared off- line on a Flexowriter. Output is to the typewriter or on

paper tape for listing on a Flexowriter.

C. USAGE

1. Theory of Operation - CALINT instructions consist of the basic arithmetic

operations, decision operations and single valued higher function such as sine,

cosine, square root, etc.

The result of most operations usually goes to the CALINT accumulator. Hence,

instructions are considered to be in the form

A= B opn C

where A is the CA LINT accumulator, B is the first operand, C the second

operand and opn the operation to be performed.

2. Operation Codes - The instructions available in CALINT are listed below.

Detailed descriptions of the individual instructions are given in a later paragraph.

CALINT -1

Instruction Code

add + (,)

subtract

multiply x

divide I

transfer positive pg

transfer negative ng

transfer zero zg

pass ps

subroutine entry se

square root rt

sine si

cosine co

tangent tn

arctangent at

logarithm lg

exponential e

subroutine return sr

input in

output, tab ot

output, carriage return oc

General Form

A=B+C

A=B-C

A=Bx.C

A= BI c

pg c

ng C

zg C

ps

B se C

rt C

si C

co c

tn C

at C

lg c

e C

sr C

in C

ot C

oc c

CALINT -2

Operation

B+ C~A

B - C ---?>A

B C-?A

B-:- C -+A

if A ? 0, go to C

if A < 0, go to C

if A = 0, go to C

do nothing

C ·-->A, enter subroutine
at B

sin C ____:,,.A

cos C--,;; A

tan C~A

atan C _,,.A

return to main program

one number from input
device -->c

one number from C,
followed by a tab,-?>
output device

output one number from
C, followed by CR,----->
output device

Instruction Code General Form Operation

unconditional transfer go go C unconditional transfer
to C

data transfer p Bp C B-;>c

clear C z z c zero's~C

execute machine code me mcC next instruct in machine
code

set index register sn sn C set index register n
to C

test index register nt nt C index register n
increased by 1 ~ c
execute next instruction;

> C execute second
following instruction.

halt h h stop, type a::ldress of
halt instruction

CALINT -3

3. Storage Allocations - Three areas are provided in storage for CALINT. These

are for instructions, constants and variables; and are referenced i, c and v,

respectively. The storage reference followed by the decimal address within a

particular area selects a specific location. Thus il 10, c3 and v22 specify

locations instruction 110, constant 3 and variable 2 2.

When used as operands B and C addresses usually refer to constants or

variables and are flagged with c or v. If B and C do specify an instruction,

they must be preceded by i.

An operand may be complemented by preceding its storage address with a

minus sign. Thus -v2 causes the complement of the quantity at variable a:ldress

2 to be entered into the operation.

The cccumulator address can be specified either by the notation "a", or by

leaving the address blank. For example, squaring the accumulator quantity

can be expressed either as a x a, or x . This is true for most instructions.

One index register is available in CALINT. The letter "n" in a storage reference

specifies the use of the index quantity in the selection of the location of an

operand. If the current index quantity is 5, nvl 2 will specify the variable

address 1 2 + 5 or 1 7.

4. Coding Format - Normal input to CALINT operation is either from the on-line

typewriter or from punched paper tape. The paper tape is prepared by

Flexowriter, or it is the Flexcode output of the 160 from typewriter input.

The coding follows the general form

LOCN B OPN c COMMENTS

4 6 2 6

The digits represent the maximum number of characters to be used for each

code. Each code, except LOCN, is preceded by a tab. A carriage return sets

up the next line of coding.

CALINT -4

The LOCN is given in the form ixxx, where xxx is the instruction address in

which the instruction is to be stored. It is sufficient to specify only the first

and in succeeding instructions leave LOCN blank, except for a tab, in which

case the next instruction location is selected. The tab sets up the B operand.

B is the first operand reference. Instructions not using B ignore this code.

The OPN code is a one or two character mnemonic code. See the list in

section 2. The code must be immediately followed by a tab or carriage return.

A space will cause an error in translation.

C is the second operand reference. Similar to B, it may take the form ixxx,

vxxx, cxxx or nothing. The implication is that the location may be preceded

by either or both - and n, if the operation requires these codes. Spaces with-

in a code are ignored, thus Cl = C 1 = COOl = COl.

The comments are used to annotate the program and are ignored on input to the

computer. If the comments are extended beyond one line of coding, pass

instructions (ps) must be used to cause the computer to ignore the operation

portion of the next line.

All instructions are written in the lower case mode of the typewriter or

Flexowriter. Since + is upper case on some Flexowriters, the lower case for

this key , (comma) is the proper code for addition.

If an error in coding is made, the code pair, x carriage return, causes the

line to be deleted. Two cautions are advised with this regard. First, if

multiplication (x) is specified with a blank C address the x must be followed by

a tab. Second the comments line must not end with an x code.

CALINT routines are terminated by coding a carriage return, semicolon and

a carriage return.

5. Number Format - Numbers are written in the general form

sign value exponent

The sign may be+, - or blank (positive).

CALINT -5

The value consists of significant numbers with any number of leading or

trailing zeros. A decimal point must be some where in the number.

The exponent is the power of the base 10, the quantity when multiplied times

the value yields the true value of the expression. The exponent is expressed

as the letter e, with the sign of the exponent (+, - , or blank) and up to three

decimal digits as the exponent value. If the number can be conveniently

expressed without exponent, the exponent does not need to be written.

The following numbers are examples of proper expression for CALINT input

1., +1. 00234e-896, -3.14, . 0000000000034, 7840000000000. The number zero

must be written 0. 0.

Numbers in CALINT output appear in the form:

decimal point, value, exponent

An example of which is

. 359674421 e 005

6. Detailed Operation Description

a. ADDITION

General Form: A = B +

Examples: vl +

+

v2 +

+

nvl +

-nvl +

-nvl +

vl +

nvl +

a +

v2 +

a +

Description

c
v2

v2

v2

v2

-v2

-v2

nv2

v2

a

a

Form in the accumulator the sum of the two specified operands. The

result is a normalized floating point number. If either operand is the

CALINT -6

accumulator, the initial contents of the accumulator, apply as either or

both operands. A test is made to see if one of the operands is zero. In

this case, the addition is suppressed to avoid the loss of significance in the

floating point addition operation. If the result of the addition is a zero,

normalization is suppressed and the result will contain zero with the exponent

of the operand with the greater exponent.

b. SUBTRACTION

General Form:

Examples:

Description:

A = B - C

(see addition)

Form in the accumulator the result of the second operand subtracted from

first operand. The remarks on addition apply to subtraction.

c. MULTIPLICATION

General Form:

Examples:

Description:

A = B x C

(see addition)

Form in the accumulator the algebraic product of the two floating point

operands. The product is normalized and rounded to nine decimal digits.

d. DIVISION

General Form:

Examples:

Description:

A = B I c
(see addition)

Form the result from dividing the first floating point operand by the second

floating point operand. This quotient is normalized, rounded to nine

decimal digits and placed in the accumulator register. Note that the

forms a I vl and vl I a are available, thus it is possible to divide the

contents of storage by the contents of the accumulator.

e. TRANSFER ON POSITIVE

General Form: pg C

Example: pg i219

Description:

If the number contained in the accumulator is positive,

CALINT -7

obtain the next instruction from the instruction location specified by the C

address. If the number contained in the accumulator is negative, obtain

the next instruction from the next sequential instruction location.

f. TRANSFER ON NEGATIVE

General Form: ng C

Example: ng i238

Description:

If the number contained in the accumulator is negative, obtain the next

instruction from the instruction location specified by the C address. If the

number contained in the accumulator is positive, obtain the next

instruction from the next sequential instruction location.

g. TRANSFER ON ZERO

General Form:

Example:

Description:

zg

zg

c
il 98

If the number contained in the accumulator is zero, obtain the next inst­

ruction from the instruction location specified by the C address. If the

number contained in the accumulator does not equal to zero, obtain the

next instruction from the next sequential instruction location.

h. PASS OR DO NOTHING

General Form:

Example:

Description:

ps

c12 ps v39

Execute the next sequential instruction. The B and C address of the

instruction are ignored.

i. SUBROUTINE ENTRY

General Form:

Example:

B se

il 01 se

104 se

105 se

CALINT -8

c
v3

-nv6

j.

Description:

The operand specified by the C address (or the accumulator if no C address

value is given) is placed in the accumulator and a transfer is made to the

instruction at the instruction location specified by B. In making the

transfer, the current specification of the next instruction is saved as well

as the contents of the index register n. The current contents of index

register are unchanged and may be used by the subroutine. The saved

contents of n and the location of the next instruction will be restored by the

subroutine return instruction. Thus, the subroutine may change the con­

tents of n.

SQUARE ROOT

General Form: rt c
Examples: rt nv45

rt -v32

rt

rt

Description:

Obtain the square root of the floating point number specified by the C

operand. If a negative number is used as the operand, a halt will occur.

Accuracy is to within 2 in the ninth significant digit.

k. SINE

General Form: si c
Description:

Obtain the sine of the number specified by the C operand. The value of C

must be express in radians.

1. CONSINE

General Form:

Description:

co c

Obtain the cosine of the number specified by the C operand. The value of

C must be expressed in radians.

m. TANGENT

General Form: tn c

CALINT -9

Description:

Obtain the tangent of the number specified by the C operand. The value of

C must be express in radians.

n. ARCTANGENT

General Form: at c
Description:

Obtain the arctangent of the number specified by the C operand.

o. NATURAL LOGARITHM

General Form: lg C

Description:

Obtain the logarithm of the number specified in location C.

p. EXPONENTIAL

General Form: e c
Description:

Raise the value e (2. 7 · · ·) to the power given by the value of the C

operand.

q. SUBROUTINE RETURN

r.

General Form: sr

Description:

Exit from a subroutine. The values of the next instructions and the index

register saved by the subroutine entry are restored. The next instruction

executed is immediately following the instruction which caused entry into

the current subroutine.

INPUT

General Form: in c
Examples: in a

in

in nv39

in c21

CALINT -10

Description:

Read one number in from the selected input device and store it in the

specified C address. If no C address is given, input will be to the

accumulator. The input number must be terminated by a carriage return.

s. OUTPUT FOLLOWED BY TAB

General Form: ot C

Examples:

Description:

ot v46

ot a

ot

ot nv54

Output one number from the C location on the selected output device. The

number is followed by a tab code so the next outputted information will fall

in a column to the right of the current number.

t. OUTPUT FOLLOWED BY A CARRIAGE RETURN

General Form: oc C

Description:

Output one number from the location specified by C on the selected output

device. The number is followed by a carriage return code, so it will be

the rightmost number on the current line.

u. UNCONDITIONAL TRANSFER OR GO

General Form: go C

Example: go i89

Description:

Obtain the next instruction from the location specified by the C address.

v. DATA TRANSFER OR PUT

General Form: B p c
Examples: -vl p vl

-a p v35

p

nv56 p nv78

-nv34 p nv65

v67 p c63

CAL INT -11

Description:

Take the number specified by the B address and place in the location

specified by the C address. If a minus sign is used in the B specification,

the negative of the number from B will be placed in C. Both B and C may

be the accumulator.

w. SET ZERO

General Form:

Examples:

Description:

z

z

z

z

c
v3

nv56

Replace the previous contents of the C address with the number zero. The

C address may be any of the storage locations of CALINT or the

accumulator.

x. MACHINE CODE

General Form:

Example:

Description:

me

me

c
68

The next instruction to be executed will be from the 160 computer location

C and will be 160 machine code. This instruction is used to obtain oper­

ations w:Oich are not supplied in the CALINT instruction code. It is re com -

mended that a listing of the current version of CALINT be used in deciding

which locations are available as the C address. On performing a jump to

RNI in machine code, the next instruction after the machine code exit

instruction will be executed in CALINT. (The location of RNI in the 3-61

version of CALINT is 1220.)

y. SET INDEX

General Form:

Example:

Description:

sn C

sn 5

sn 0

Replace the contents of the index regi~ter with the numerical value C given

in this instruction.

CALINT -12

z. INDEX TEST AND INCREMENT

General Form: nt C

Example: nt 15

Description:

The index register is incremented by one and then the result is compared

with the value C given in the nt instruction. If the current value of the

index register is less than or equal to the value C, the next sequential

instruction will be executed. If the value of the index register is greater

than the value C, the second instruction following the nt instruction will

be executed.

7. Operating Instructions (3-61 version) - CALINT 3- 61 tapes include the RS 022

service routine and thus must be loaded starting at 7400.

The memory allocation is such that constants are available from Cl to C12 7,

variables from Vl to V12 7, and instructions from iO to i305. The instruction

range iO to i2 09 may be used without destroying the RS 022 service routine.

If this storage allocation is not satisfactory, it may be changed by changing the

contents of locations 2 3, 2 4, and 2 5 which define the beginnnng of each of the

mentioned storage areas.

Presently the area of storage from 4633 and up to 7776 is allocated for instruc­

tions, constants, and variables. A suggested assignment which will give 600

instructions, 50 constants and 50 variables is:

location

0023

0024

0025

specifies

instructions

constants

variables

current

6633

4633

5633

suggested

5500

5150

4640

It should be noted that each instruction requires two 160 locations while each

constant or variable requires four 160 locations.

1. TO LOAD CALINT MASTER TAPE

a. Clear 1 60 memory by the following steps.

CALINT -13

1) Place enter Sweep switch in SWEEP

2) Run.

3) Depress clear button on right side of Z register.

4) Return all switches to neutral position.

5) Depress Clear switch.

b. Load master program tape by the following steps.

1) Turn on reader, turn off punch, place CALINT master tape in

reader with seventh level toward the operator.

2) Depress Load-Clear switch to CLEAR, then place it in LOAD

position.

3) Set P = 7400.

4) Run. The paper tape will pass through the reader and stop with

p = 4400

A = 4400

z = 0000

2. TO LOAD PROGRAMS AND CONSTANTS TO BE EXECUTED BY CALINT

a. To load a program prepared on Flexowriter, or by the duplicate mode.

1) Turn on reader, place program tape on reader with seventh level

toward the operator.

2) Depress the Load-Clear switch to CLEAR.

3) Set P = 0001.

4) Run. Program and data will be converted to internal form and

stored in the CALINT storage. The tape will stop on reaching a

semicolon followed by a carriage return as specified in the pro­

gram preparation section.

b. To load a program and constants from the on- line typewriter.

1} Turn on typewriter and place typewriter in computer control.

2) Depress the Load-Clear switch on the 160 to CLEAR.

3) Set P = 0002.

4) Run. Type in program and data according to program preparation

specifications.

c. To load a program and constants from the on-line typewriter and

obtain a punched paper tape copy of the program and constants.

1) Turn on typewriter and place typewriter in computer control.

CALINT -14

2) Depress the Load-Clear switch on the 160 to CLEAR.

3) Turn on punch.

4) Set P = 0003.

5) Run. Type in program and data according to program preparation

specifications. The end of typing must be specified by typing

carriage return, semicolon, carriage return.

6) The punch will punch out a trailer to bring the program tape out of

the punch well. This tape may be used subsequently to reload the

program.

3. TO START A PROGRAM MANUALLY

a. Depress the Load-Clear switch to CLEAR.

b. Set A = Oxxx, where xxx is the three decimal digits of the first

instruction of the program. Note that only the values 0 to 7 are

available at the console and thus it is not possible to manually start

at an address with an 8 or 9 as one of its digits.

c. Run. The program then will start execution.

4. TO START A PROGRAM UNDER TYPEWRITER CONTROL

a. Depress Load-Clear switch to CLEAR position.

b. Turn on typewriter and place typewriter under computer control .

c. Set P = 0002.

d. Run.

e. Type si xxx, where xxx is the decimal address of the first instruc-

tion to be executed. Type a carriage return.

5. TYPEWRITER CONTROL OPERATIONS

a. Depress the Load-Clear switch to the CLEAR position.

b. Turn on typewriter and place typewriter under computer control.

c. Set P = 0002.

d. Run.

e. The input light will come on the typewriter control panel and the

operator may type in data and request various services. The services

available are:

1) Start a program as in section 4.

2) Type in instructions according to input format.

CALINT -15

3) Type in constants and variables according to the input format.

4) Start a program and trace the operation of all instructions.

5) Examine the contents of any variable or constant location (PEEK).

6) If program stopped due to a halt instruction, resume operation.

f. The typewriter control functions may be executed any time a start has

been made as given above, or any time that a halt instruction has been

executed and the address of the halt is typed out. After the halt, the

input light will come on indicating a request for more control operations.

The typewriter control operations are selected by typing the one or two

characters on a line after the conditions mentioned above (f) occur.

The characters with their meaning are as follows:

i INSTRUCTION. The character i specifies an instruction. It must

be followed by the address where the instruction is to be stored,

then a tab, and then the instruction according to the input format

specifications.

v VARIABLE. The character v indicates what follows is a number

to be stored in the variable storage area of the CALINT memory.

c CONST ANT. The character c indicates what follows is a number

to be stored in the constant storage are of CALINT memory.

siXXX START - followed by a carriage return. Start operation of

the program at address xxx.

tiXXX TRACE - followed by a carriage return. Start operation of

the program at location XXXX and trace the operation of each

instruction.

ri RESUME OPERATION - followed by a carriage return. After

a HALT typeout, the computer resumes operation at the next

sequential CALINT instruction.

pcxxx\ PEEK - followed by a carriage return. Typeout the number

pvxxxf in constant or variable location xxx.

6. TO STOP A PROGRAM

a. If there is no output, move the Run-Step switch to NEUTRAL and then

restart, or examine contents under typewriter control. All routines

in CALINT are self restoring and no damage will be done to the control

program.

CALINT -16

b. If output is taking place on the typewriter, move the typewriter control

lever to NEUTRAL. The computer will complete the present output

and stop with a "sel" status. Do step a.

c. If the program is requesting input from the typewriter, do step a.

7. TO TRACE A PROGRAM

a. Under typewriter control, initiate the trace by typing tixxx. This will

start the program under Trace control.

b. On initiation of each instruction, the typewriter will type out the

contents of the accumulator, or the results of the last instruction. It

will then do two carriage returns and type out the address of the

instruction about to be initiated as bpXXX.

c. If it is an input instruction, the typewriter will type the address of the

input instruction and then request the input. The operator should

provide the input. The contents of the accumulator will then be typed

out.

d. On an output instruction, the first number typed after the address is

the output word and the second number is the contents of the

accumulator.

e. To stop the trace, stop the program as in section 6 above and then

start under typewriter control and type siXXX. The start command

will reset the Trace operation.

8. Sample Program - A short example of a CALINT routine involving the use

of indexed constants is presented below.

Problem:

Method:

Evaluate a polynomial where coefficients A0, A1, A2, A3 and

A4 are in clO, ell, cl2, c13 and c14 and a table of variables

x 0, x 1, x 2, x 3 and x 4 is in v6, v7, v8, v9 and vl 0.

The problem is essentially performed:

c (1 0 + 0) xv (6 + 0) + c (1 0 + 1) xv (6 + 1) + . . . + c (1 0 + 4) xv (6 + 4) =

CALINT -17

Coding:

LOCN B OPN c COMMENTS

il sn o. set index register to 0

z cl form sum in cl set 0

nclO x nv6 A Xk
k k-1

+ cl + l_ Ak-1 x
p cl

nt 4. increase index; end test

go i3 loop

h halt

9. CALINT Subroutines - As a supplement to the instructions contained

in CALINT, a group of subroutines have been written to increase the

variety of problems which may be solved by the user. Included in this

package are the following: Square Root, Exponential, Sine, Cosine,

Tangent, Arc-tangent, and Natural Logarithm. These subroutines are

directly addressable, and a description of their use by the programmer

may be found in the CALINT 3-61 write-up. The following is a des­

cription of the individual subroutines and the mathematical method used

in their solution.

a. Square Root

Space Required: Instructions 11 through I20.

Accuracy: The use of this method gives eight decimal

digits of accuracy.

Mathematical Method: Newton's approximation for the

square root.

Xi+ 1 = 1/2 (Xi+ N /Xi), where N is the argument

for which the square root is desired, and an initial

approximation of Xi = N is made.

Error Stops: HALT I20 with a negative argument.

CALINT - 18

b. Exponential

Space Required: Instructions I21 through I51.

Accuracy: The use of this method gives at least

seven decimal digits of accuracy.

Mathematical Method: Maclaurin's series for the

exponential.
co n

Exp x = ~ L
L h!
n=o

Error Stops: HALT I49 with an argument greater

than 2300. 28.

c. Sine - Cosine

Space Required: Instructions I5 2 through Il 13.

Accuracy: The accuracy of this method is dependent

on the magnitude of the argument. For

arguments between 0 and 1, the accuracy

is eight decimal places; for arguments

between 1 and 10, the accuracy is seven

decimal places; for arguments between 10

and 100, the accuracy is six decimal

places; etc.
,1,
'I'

Mathematical Method: Method by Hans J. Maehly

2 2 2 2 2
SIN X = X(S l + X (S 2+ X (S

3
+ X (S 4+ X (S5+ X S6)))))

s1 = 1.

82 = -.166666666

s
3

= .833333073 e-2

s4 = -.198408338 e-3

s5 = .275240118 e-5

s6 = -.2386893 e-7

Error Stops: HALT 1113 with argument greater than 1. e9.

d. Tangent

Space Required: Instructions 1114 through I125.

Accuracy: This method gives an accuracy which is one

place less than that of the Sine.

Mathematical Method: Trigonometric identity.

Tangent X =Sine X
Cosine X

Note: If Cosine X = 0, 1. e3 88 is placed in

the accumulator.

Error Stops: None.

CALINT - 19

e. Arctangent

Space Required: Instructions I126 through I173.

Accuracy: This method gives an accuracy of at least

seven decimal digits.

Mathematical Method: Method by Hans J. Maehly

Arctan z = PSI + PSI k

GROUP I: t = z, PSI k = 0

z less than f2 - 1

GROUP II: t = z-1/z+l, PSI k = PI/4
/2 - 1 less z less J2 + 1

GROUP III: t = 1/-z, .PSI k = PI/2
z greater than./2 + 1

Error Stops: None.

*'.

f. Natural Logarithm

Space Required: Instruction I174 through I204.

Accuracy: This method gives an accuracy of at least

seven decimal digits.

Mathematical Method: Maclaurin's series for the

natural logarithm.
00

Ln x = L (X - l)n
n:l n

Error Stops: HALT I204 with argument less than or

equal to zero.

'::::
Hans J. Maehly, "Approximations for the Control Data 1604",

':::: ::i::::

Department of Mathematics, Syracuse University.

All of the subroutines in this package make use of an additional area

of twenty-six permanent constants and seven common erasable con­

stants. The permanent constants, C 1 through C 26, are part of th is

package and contain some constants which may be useful to the pro­

grammer such as; PI, Ln 10,.... The common erasable constants

are C27 through C33.

CALINT - 20

22 BIT ARITHMETIC

The 22 bit arithmetic subroutines include Add, Multiply, and Divide.
Either positive or negative numbers may be used. The subroutines are
so coded that they can be stored anywhere in the m.emory, with the ex­
ception of the first 64 words.

Addresses 0002, 0003, and 0004 contain the starting addresses of the
Add, Multiply, and Divide subroutines, respectively. Addresses 0010,
0011, 0020, 0021, 0030, 0031, 0040, and 0044 are used by the different
subroutines and must be reserved. All results appear in 0030, 0031.
Address 0007 is used as the exit address of each of the subroutines.

Two 12 bit words are used for each 22 bit quantity; the left-most bit
in each word is not used. The most significant bit of the 22 bits is
a sign bit.

The annotated subrouti!les (below) are entered at addresses 0100-01.146
but (as me!ltioned above) could be located almost anywhere else in
memory. With the routines located as shown, these address assignments
are fixed:

0002
0003
0004

0175
0104
0337

Entrance for Add Subroutine
Entrance for Multiply Subroutine.
Entrance for Divide Subroutine

If the subroutines are stored elsewhere, (only) these three addresses
need be chan~ed.

ADD SUBROUTINE

The Add subroutine adds the 22 bit quantity in 0010, 0011 to that in
0020, 0021. The result appears in 0030, 0031. The average execution
time is 185 microseconds.

MULTIPLY SUBROUTINE

The Multiply subroutine multiplies the 12 bit quantity in 0040 to the
12 bit quantity in 0044. Th~ left-most bit is a sign bit. The (22 bit)
result appears in 0030, 0031. The average execution time is 1.8 milli­
seconds.

DIVIDE SFBROUTINE

The Divide subroutine divides the 22 bit quantity in 0010, 0011 by
that in 0020, 0021. The result appears in 0030, 0031. The average
executio~ time is 1.8 milliseconds.

CONTROL DATA CORPORATION
•••

501 PARK AVENUE• MINNEAPOLIS 15, MINNESOTA

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-S001-1
	4-S001-2
	4-S003-1
	4-S003-2
	4-S013-1
	4-S013-2
	4-S013-3
	4-S016-1
	4-S016-2
	4-S016-3
	4-S016-4
	4-S016-5
	4-S016-6
	4-S016-7
	4-S017-1
	4-S017-2
	4-S017-3
	4-S017-4
	4-S018-1
	4-S018-2
	4-S019-1
	4-S019-2
	4-S020-1
	4-S020-2
	4-S021-1
	4-S021-2
	4-S021-3
	4-S022-01
	4-S022-02
	4-S022-03
	4-S022-04
	4-S022-05
	4-S022-06
	4-S022-07
	4-S022-08
	4-S022-09
	4-S022-10
	4-S022-11
	4-S023-1
	4-S023-2
	4-S024-1
	4-S024-2
	4-S024-3
	4-S025-1
	4-S025-2
	4-S025-3
	4-S025-4
	4-S026-1
	4-S026-2
	4-S026-3
	4-S029-1
	4-S029-2
	4-S029-3
	4-S042-1
	4-S043-1
	4-S044-1
	4-S045-1
	4-S046-1
	4-S046-2
	4-S046-3
	4-S046-4
	4-S047-1
	4-S049-1
	4-S050-1
	4-S051-1
	4-S052-1
	4-S053-1
	4-S054-1
	5-01_OSAP
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11_OCR
	5-12
	5-13
	5-14
	6-01_FPP-33
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-73
	6-75
	6-77
	6-78
	6-79
	6-80
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01_BCK
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	9-01_CALINT
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	xBack

