
CAL TECH FORTH

by MARTIN S. EWING

ewing@alum.mit.edu

Copyright (C> 1983 Martin s. Ewing

Copyright eC) 2006 Martin S. Ewing

CON TEN T S

PREFACE

1. I NTRODUCTI ON

1..1
1.2
1.3
1.4

Beginnings.
General Characteristics.
Definitions and Standards.
Organization of the Book.

2. FORTH OVERVIEW

2.1 Words and the Dictionary.
2.2 The Stack.
2.3 Block Storage.
2.4 Defining new Words.
2.5 Storing and retrieving data in memory.
2.6 Controlling Forth -- The Text Interpreter.
2.7 Terminal Output.
2.8 Conditional Branches.
2.9 The Editor.

THE STRUCTURE OF FORTH

3.1 General Re~arks.
3.2 the Stacks.
3.3 The Dictionary.

3.3.1 Branch Structure.
3.3.2 Header Section.
3.3.3 Code and Parameter Sections.
3.3.4 Expanding and Contracting the Dictionary.

3.4 Program Control -- The Addr-ess Interpreter'.
3.5 The Te)·:t Interpreter.
3.6 Error Messages -- ABORT.
3.7 Bloc~ Input/Output.
3"8 Forth Assemblers.
3.9 Compilation of : Words.
3.10 Defining Words -- ;CODE.
3.11 Branches in : Words.

3.11.1 An Unconditional Branch.
3. 11. 2 Conditional Branches.

3.12 Interfacing with an Operating System.
3.12.1 To Stand Alone or Not to Stand Alone.
3.12.2 OS Interfacing Techniques.

3.13 Multipro(;;Iramming and Real-Time Applications.
3.13.1 Priority Scheduling.
3.13.2 Round-Robin Scheduling.
3.13.3 Scheduling through Operating Systems.

1-1

1-1
1-·2
1-4
1-4

2-·1

2-1

2-4
2-5
2-9
2-10
2-11
2-12
2-17

::-1

.:,-1
3-,2
3-4
3-4
3-9
3-14
3--17
3-18
3-23
::;.-26
::;·-27
3-28
3-32

3-39
3-39
3-39
3-42
3-42
3-45
3-46
3-46
3-49
::;.-49

4. FORTH VOCABULARIES

4.1 Introduction.
4.2 Notation.
4.3 Standard Vocabulary List.
4.4 Special vocabularies.

4.4.1 Standard Editor.
4.4.2
4.4.3
4.4.4
4.4.5

Character Strings.
The Extended Editor.
Deferred Operations.
File System.

5. Advanced Topic: Larger Forth Systems;.
5.1 Why Larger Forth Systems?
5.2 Forth for' VAX-ll.

5.2. 1
I:", ""):.. . ..:..
5.2.3
5.2.4
~ ~ ~
0 • ..::.0

Te>:t Files
Data Width
Address Interpreter
In--Line Code
Operating System Interface

A P PEN DIe E S

A. PDP-l1 Iml=)]_ementation.

B. Forth Bibliography.

4-1

4--1
4-1
4-2
4-31
4-::1
4-32
4--35
4-38
4-39

5-3
5-4
5-5
5-8

PREFACE

Forth is a computer language and programming style that

produces ef·fic:ient programs and allows programmers to wor-k very

productively. At the same time~ it is unor-thodm·(~ rEsi stant to

standardization~ and difficult to describe. In a profession (and

hobby) filled with individLlalists~ Forth almost enCOLtra9E'S

per-sana.l and non-standard computi ng.

With al 1 its peculiarities and despite its uneven

Forth has grown from a specialized labor-atory acceptance,

minicomputer system in the early 19705 to a widely popular

language for both mini and mi crocomputers. Con temp or al~y

implementations range from the smallest 8-bit machines to 32-bit

superminicomputers and even some mainframe systems. Forth

systems have found significant application in commercial markets.

but their peak acceptance (in numbers~

personal computer world.

at least) has been in the

This book addresses two needs. First, it provides a mati VB-

tion and description for the basic Forth vocabulary, as embodied

in the Forth-79 standard. The treatment is conCIse and directed

toward readers with some familiarity with computing~ but it

should be accessible to newcomers with general mathematical back­

ground.

The second purpose of this wor~ is to satisfy the curiosity

and needs of programmers who have developed e}(perience in Forth

but who seek a more complete understanding of the internal struc-

ture of Forth. With this material~ the Forth programmer should

be able to adapt his system to new requirements~ 01'· to recode it

Cal tech Forth Preface-2

for different processors.

descr-iption cof Forth is based con ten years of

e?:perience at the Owens Valley Radio Observatory <OVRO) and the

Jet Propulsion Laboratory (JPL) of the California Institute of

Technology. Based on a presentation of Charles Moore at the U.S.

Nati onal Radio Astronomy Observatory in 1972 and Moore's

assembler-coded IBM 360 version~ we undertook a series cof

implementations that began with the DEC PDP-10 and the SDS 920.

The PDP-lO was a convenient timesharing development system~ while

SDS 920 Forth successfully controlled the OVRO 40-meter

telescope for many years.

H. w. Hammond continued with our first DEC PDP-11

radio

system,

which still provides control and data collection for the dual 27-

me-t.E:r radio interferometer at OVRO. Yet another generation cof

Forth~ r-unning under the RT-l1 oper-ating system~ supports an

OVRD/,]PL pl'"·ocessor for Very Long Baseline Intel'"·feromet.ry (VLBI) ~

accepting 20 million samples per second of digit"'.l data or"igina.--·

ting at observatories arbund the world.

Further developments at OVRO have led to a distributed

networ~· cof more than 7 DEC LSI-!! computers running self-

contained For-th systems under the directfon of a central F'DF'-!!

whose For-th system runs under the RSX-11/M operating system.

Currently, JF'L and OVRO are readying a DEC VAX-11/VMS Forth

program to control a new generation VLBI processor handling more

than BOO million samples per second.

A version of Forth for the PDP-l1 running under the RT11

operating system is available from the Digital Equipment Users

Society (Maynard~ Massachusetts). This releas€~~ numbered 11-232~

Cal tech Forth Preface-3

incorporates some~ but not all of the features described in this

book.

While developments werE' occLlring at Caltech~ Forth was evol-

ving in various directions in other user communities. Vocabu-

laries naturally tended to diverge as the larger Forth community

shi fted to 8- and 16-bit microcomputers~ especially "personal"

computers, while Cal tech worked with Forth under operating sys-

tems and running on larger processors, such as the 32-bit VAX-11.

With the publication of the Forth-79 standard, however, there has

been a convergence of vocabularies and synta}:, even though the

language retains the flexibility that allows it to expand and

adapt to new problems and computing environments.

I would like to thank H. w. Hammond, D. H. Rogstad, and J.

Ln Vavrus who have been responsible for many of the developments

in PDP-II and VAX-I! versions of Forth.

Martin S. Ewing

Altadena~ California

May, 1983

1.1 BEGINNINGS.

CHAPTER 1
INTRDDUCTI m,

In the early 1970s~ Charles Moore revealed a new and icono-

clastic approach to pr-ogramming computers. The environment In

which Moor-e worked was that of a national scientific labor-story

(the U.S. National Radio Astronomy Observatory) that was begin-

ning to apply early It,-bit minicomputers for data collect.ion and

instrument control.

Progr-amming the new minicomputers was an arduous process,

styled after earli.er e:>:perience with second- and third-generation

mainfr-ames (IBM 7040 and 360 series), Since the new small sys-

terns could not Llsefully support Fortran or Algol compilers (which

at that time wer-e lar-~Iely unsuitable for real-time operat.ions.),

they had to be programmed with machine language assemblers.

Input would be on pLlnched cards or" paper tape; the operating

system~ if any ~ would reside on magnetic tape. Programs would

oft.en be assembled on mainframe computers and transported on tE!pe

or cards to the minicomputer. This process was so laborious~ and

debugginq tools were so limited, that minicomputer simulator

programs running on mainframes were sometimes the most efficient.

way to check out new programs.

Moore unclerstood that there should be a better way to pro-

gram small machines. He developed a uniquE' set of tools to

per""mit efficient prDgramming~ but.~ more important, a new gtl::!.§: of

working, which brought the programmer into intimate contact with

his object code and the machine on which it ran.

He named his new system Egctb.. The name stands for "four"th

Cal tech For-th 1-2

gener-ation" softwar-e; one letter- had to be r-emoved to fit a 5-

char-acter- field in the IBM 1130 computer- that was used for ear-Iv

development.

For-th has been r-efined and tr-anspor-ted to near-Iy all types

of small computers. The language has been adopted in many envi-

r-onments besides the scientific labor-atory: microprocessor de-

velopment systems fo,.- industry, and personal computer-s a,.-e two

major- e:<amples.

1 • 2 GENERAL CHARACTER I STI CS.

Fo,.-th e>:ists in numerous varying implementations, but a

numbe,.- of distinctive featu,.-es are common to most For-th systems.

1. Forth is at heart an inter-active system.

You prepare programs through an on-line editor and are able to

compile them rapidly. This approach was almost revolutionary in

Forth's early days. Even now, the For-th pr-ogrammer spends much

less time going through the mechanics of editing, compiling,

linking, and testing new code than does a Fortran pr-ogrammer.

"' ~. For-th's basic

uni ts of code, "words." tend to have short definitions - a few

lines each. As you enter a new word definition, it is natural to

ma~:e an immediate test of its oper-ation. Program modula,.-ity is

encour-aged because wor-ds tend to be si mpl e ancl logically well-

defined; they can be tested e:-:haustively before being Llsed in

higher-level constructs.

and outPLlt is a push-down parameter stack. Foe keyboard

Cal tech Forth 1-3

i nput ~ you must type parameters g~fQ!:~ a command word that

erates on To users accustomed to other high-level

op-

1 an-

guages, this makes Forth programs somewhat difficult to read. In

practice~ however, the transition to Forth's parameter ordering

is no more difficult thatn switching from a Instruments

(algebraic) pocket calculator to a Hewlett-Packard (RF'N) unit.

The push-down stack simplifies communication and facilitates

program re-entrancy~ allowing code to be shared between multiple

tasks in a real-time or timesharing environment.

4. Only the most basic program

branches and loops are provided in Forth. It is difficult and

unnatur"al to write Forth that is not well-structured. (Unfor-

tunately, this does not mean that all Forth programs are clear!)

5. r;.0..t~[l2iQiLi.t:t~ Forth has built-in capabilies for e>(ten-

£-1 on to new data and operation types. List processing and data

base management are examples of extensions that are possible with

thi!:. technique.

6. tLLu.§Q !:::H .. 9b.= ~m! bg"tI"::"b§~~l.. E!:Q9r:.~I!!I!!i.!J.g.!.. Forth war"ds can

be defined either as combinations of basic Forth vocabulary wards

(the "high-level" approach) or directly as machine-language in-

structions ("law-level"), In a natural way, you can shift be-

tween compact (and readable) high-level code and very fast mach-

ine code.

7. t1~~b.i!J.§'. .!.!J.9§f1.§'.!J.9§'.[l!;"~"~ Hi gh-l eve I Forth programs adher-

lng to the Forth-79 standard can easily be transported between

different computer types.

Cal tech Forth 1-4

1.3 DEFINITION AND STANDARDS.

Forth is a very personal and malleable language that has

historically resisted being formalized with the precision of some

high-level languages, such as Pascal or Ada. In the hands of an

e>:pert~ Forth can easily be recast into for-ms which emphasize one

oc another desireable attribute, but which lose compatibility

with "mainstream" Forth.

Despite its susceptability to rapid evolution, Forth has:-

been regularized with some success through the work of the "Forth

Standar·ds Team." This private group published the Forth-79 docu-

ment which forms the basis of the notation and vocabulary Llsed in

this book.

1.4 ORGANIZATION OF THE ~OOK

Chapter 2 is an introduction for the new user of Forth.

That chapter and the vDcabulary lists of Chapter 4 should provide

you with enough information to begin programming at a Forth

termi nal .

Chapter· 3 provides more detailed descriptions of the

internal mechanisms of Forth; the presentation assumes some prac-

tical knowledge of Forth. This chapter should help you if you

develop or maintain Forth systems.

Chapter· 4 contains the standard Forth vocabulary, Fort.h-

79, and additions that have proven useful at Caltech-DVRO and

JPL.

Cha~)ter 5 treats the special problems of implementing Forth

in large-memory systems, including the new 16-bit microcomputers,

such as the Motorola 68000, as well as the DEC VAX-11 series.

Cal tech Forth 1-5

Appendix A provides details of a PDP-l1 implementation~

including a PDP-11 Forth assembler.

bibliography of the Forth literature.

Appendix B is an annotated

CHAPTER 2

FORTH OVERVIEW

2.1 WORDS AND THE DICTIONARY.

The centr-al element of the For-th system is the

Forth wor-d is like a subr-outine or- pr-oc:edur-e in other-

e>~ecuting, or calling, a wor-d causes a definite

"wor-d". A

languages;

sequence of

actions to be per-for-med. The r-eason for- calling a Forth r-outine

a "word" is that it nearly always has a name that is known to the

keyboard interpreter: it can be e:~ecuted simply by typing its

name. Thus Forth words are equivalent to words of te>:t that you

can type on the keyboard.

NOTE, You must be ~areful to distinguish a "Forth word" ,

which is to be executed like a subr-outine, a

"memory wor-d" , which is a unit of stor-age (e.q., 16

bits).

War-ds ar-e defined in the For-th "dictionar-y", which. 1 i ke

or-dinar-y dictionar-ies~ is a table of wor-d-names and their- defini-

tions. Two types of definitions occur- in the For-th dictionary.

are defined War-ds may be def i ned in terms of other wor-ds tha.t

earlier·. Dr words may be defined by a sequence of machine lan-

guage instr-uctions. Ultimately, of course. all For-th war-ds must

r-esolve into machine instructions.

As a For-th user-, you type in wOI~ds or, mar-I? precisely, te)·:t

str-ings or "tokens" to your- terminal. Forth permi ts a very

general and free-form input. Wi th few e>(ceptions, any combi n2l-

Cal tech Forth

tion of letters, numbers, or- other- characters can be used to name

a word. One character, normally "blank" or- "space", is r-eserved

to separate tokens. A few other character-s are reser-ved to let

you correct errors in typing. Under DEC operating systems "del"

or "r-ubout" lets you retract t.he last character- you typed, and

"CTRL-LJ" or ""'U tl cancels the entir-e cur-rent line you are typing.

One r'ule for r-ecognizing Forth wor'd names may be unfamiliar.

Words are distinguished on the basis of their- fir-st N character-s

and their total length. In many Forth var-iations, N=3, while in

the Caltec:h-OVRO systems discussed here, The number of

characters to recognize is a tr-adeoff between memory savings and

freedom in choosing names. E>(amples of recognizable and disting-

uishable Forth wor-d names are presented in Fig. 2.1.

lA?:])XX. :
X
FOURTEEN

ABCDEFG
ABCDXXX

ABCDEFG
ABCDEFGH

SOME-ARE-LONG

SUM

(recogni z<3.bl e wor-ds)

(equivalent -- not distinguishable)

(not equivalent -- distinguishable)

Fig. 2.1 Recognition and Distinction of Forth wor·ds.

If you type ina token (sequence of char-acters) that can"t

be found in the dictionary, Forth sees if it maJ(ES sense as a

number. If so, the token i.s converted from ASCI I to bi. nary and

pushed on the stack (discussed below). If you type a string that

is not in the dictionary and is not a number~ Forth issues its

Cal tech Forth 2-3

standard error message -- a question mark.

2.2 THE STACI·<'

Numbers and other data are normally handled through t.he

Forth "stack". This is a so-called "pLIsh-down" stack. Such

stack is a way to store data such that the most recently

items are immediately accessible. New data is pushed down on top

of 01 der items. When an item is no longer requir-ed~ it is "pop-

ped" from the top of the stack, making older items available

again. In other words. the push-down stack is a last-in first-

out queue.

The purpose of the stack is to provide you with an efficient

means of handling data and intermediate results in the course of

a calculation. Labelled variables to hold intermediate data ace

not required in most cases. Since the space used by the stac~ is

shar-ed by nearly all Forth words,

in memory.

there is a considerable saving

Most Forth wor-ds 8perat.e on input data you supply on the

stack, pop the input data, and push the results onto the stack.

Foe simplicity, the Forth convention is that you must type the

arguments of a function (Forth word) before you type the wor-d

itself; i . e. you must give commands in "rever-se Polish nota-

t i on". As an example, the algebr-aic expr-ession

1 + 2 * 3 + 4)

may be wr-i tten

12+34+*-

Cal tech Forth 2-4

BLOCf: STORAGE.

In most practical applications Forth requires an au>:iliary

mass-storage device. Various devices such as floppy disks~ hard

disks, DC magnetic tape~ ma.y be used, but some random-access

technique is required.

The storage device is divided into fixed-length "blocks",

normally 512 words = 1024 bytes long. These blocks may be used

as sort of "virtual memory", i . e. ~ you may store data in

blocks when you don't have enough room in main memory. Blocks

are suitEl.ble fOf""· holding large amounts of business or e>:perimE~n-

tal data~ f or e)·: amp 1 e. They are also used for the Forth system

itself: the Forth binary object program and the Forth source

(te;.:t) foc loading the standard system and for users' applica-

tions. When a Forth bl·ock is used to hold text~ it is called a

"sc:reen. "

Forth handles its transactions with the block storage device

in a simple and device-independent way. Bloc~:s are simply num·-

bered sequentially from 0 to some high number. Two buffers in

main memory hold the last two blocks you have used. In or-der to

retrieve a new block. you type ~LQ~~*~ which takes the number you

have put on the top of the stack as a block number~ reads t.he

block into a buffer~ and returns the address of that buffer on

t.op of the stack. If there are multiple disk drives in a Fort.h

syst.em~ they are normally treated together as a single unit.

Floppy disk drive "O"~ for example~ might be accessed as blocks 0

- 300, while drive "1" might be 1000 - 1300.

* Forth words written in this text will be written in capitals
and underscored.

Cal tech Forth 2-5

If you want to change the data in a block, you type !:JEJ2BIs

after Then, before the buffer holding your block is

released for a new ~bQ~t command, it will be rewritten to block

storage.

E)<pl i ci tl y.

You can type Eb\Jf2t:! to rewrite updated blocks

2.4 DEFINING NEW WORDS.

The "standard" Forth syst.em has around 200 words defined in

its dict.ionary. These provide the functions most commonly needed

in useful application programs. "Writing" a Forth program act-

ually consists of defining new Forth words, which draw on the old

vDcabular-y, and which in turn may be used to define even more

complex applications.

Forth provides a number of ways of defining new words. The

language even gives you ways of defining words that. define words.

(It is an extensible language.)

The word ~QQ~ permits you to define word!::; whose actions are

e~·:pressE'cI directly in machine- or assembly-language (terms used

synonymou~31 y). hQJ2S words are clearly machine-dependent.,

they give you the means to get. m<3>:imum e)":ecut:ion speed. If

tightest. loops of your- program are in ~QQs words, you may

but.

the

find

that your Forth progr-am is as fast as a pure assembler progr-am.

Figure 2.! shows a typical screen fr-om a PDP-I! Forth system

that contains hQQS definitions. A very simple example is the one

Cal tech Forth 2-6

......•• • 1 ••••••.• . 2 ••••••••• 3 •••••••• • 4•..•. 5•... . 6 ••••
1234567890123456789012345678901234567890123456789012345678901234

1 (SOME PDP-11 CODE DEFINITIONS) ASSEMBLER
2 CODE + S) S)+ ADD, NEXT,
~ CODE S) S)+ SUB~ NEXT~

4 CODE @ S -) S @)+ MOV~ NEXT,
5 CODE C@ S) \ 0 S @I) MOV~ S) 177400 # BIC~ NEXT~

6 CODE! T S)+ MOV~ T) S)+ MOV~ NEXT,
7 CODE C! T S)+ MOV, T) \ S) MOV, S)+ TST, NEXT.
8 CODE OR S) S)+ BIS, NEXT,
9 CODE AND S) COM, S) S)+ BIC, NEXT,

10 CODE MINUS S) NEG, NEXT,
11 CODE OVER S -) 2 S I) MOV, NEXT,
12 CODE HERE S -) DF' F' MOV, NEXT,
13 CODE SOB T S)+ MOV, 6 # T ASH~ T 77000 # ADD,
14 S) 2 S I) SUB, S 177700 # BIC, T S)+ ADD,
15 S) T MOV, NEXT,
16 END-CODE ;8

Figure 2.1. Typical ~gQ~ Definitions in a screen.

shown in line 2, for the word :t. This definition consists of

only one machine instruction (ADD) with source and destination

parameters that tell the PDP-11 to add the top two stack words

and leave the result on the stack. The notation for m2l.chine

instrLlctions and arguments is peculiar to your particular cornpu-

ter. (In fact, there is little standardization of assembler'

synta.'< even amon(J implementations of Forth on the PDP-ll.) The

bas i c: ("kernel") definitions of most Forth systems will

fined in ~QQ~ words.

Wi th the word : (colon) you can define Forth words in terms

of other Forth words. Colon definitions are much better stand-

a,dized among Forth implementations and are relatively machine

independent. They do not have the full speed of a ~QQ~ word~ but

they are much easier to write. Colon words often use less memory

than ~QP"~ words.

Most words that are referenced (functions that are invoked)

Cal tech Forth 2-7

in a ! definition take one memory word. This memory word holds a

pointE~r to (address of) the Forth word that is to be invoked.

The computer operates in an interpretive mode while a! word is

being e~~ec:uted: a sequence of pointers controls the computer.

The interpreter overhead is quite tolerable in most cases

ranging from 2 to 8 microseconds for the PDP-11/40 version.

These figures are comparable to and often somewhat better than

equivalent subroutine calls in assembler language.

Figure 2.2 gives an example of the use of colon definitions.

In fact. this one screen is a complete text editor for Forth

screens~ showing how succinctly it is possible to write useful

applications programs in Forth. The standard text editor is

described more fully in Section 2.9 •

•••••••• • 1 ••••..•.• 2 ••••••..• 3 ••••••••• 4 ••••••••• 5 ••.•••••• 6 ••••
1234567890123456789012345678901234567890123456789012345678901234

(FORTH STANDARD TEXT EDITOR)
2 VOCABUl_,;RY EDIT EDIT DEFINITIONS
" : ED I TOR; : FOFIGET SAVE -BUFFERS FORGET BASE :. OCTAL

4 VARIABLE TEXT 76 ALLOT
EtLANf:::r T SPACES ;J) OVER ~ DUP 2+ 37 MOVE

6 STRING TEXT BLANI<IT DELIM ! WORD HERE COUNT TEXT SWAP CMOVE
7 42 STRING ;
B (i 51 STR I NG ;
9 : HOLD DUP LINE TEXT 40 MOVE ;

10 T HOLD LINE 100 -TRAILING 2 SPACES TYPE
11 R LINE TEXT SWAF' 40 MOVE UPDATE ;
12 D HOLD DUP 20 <: IF 20 SWAP DO I 1+ LINE DUP 100 _. 40 MOVE
13 LC!OF' ELSE DROF' THEN 20 LINE BLANnT UPDATE;
14 I DUP 17 DO I LINE DUP 100 + 40 MOVE -1 +LOOP 1 + R ;
15 BT SCR ;j) DUP . CP LIST
16 BASE I ; S

Figure Standard Forth Te)<t Editor.

Cal tech Forth 2-8

Another useful Forth colon definition is

Here the word ~ (period) is defined as the sequence !:Q!.'1~.~.8.I.

where these words are assumec:1 present in the

dictionary when you type in the e:·:ample. Semicolon (L) IS a word

with the special meaning: "end ~ definition".

There are other~ more specialized, ways to define Forth

words. Numeric constants can be defined with the word ~Q~5Ie~I.

For example,

defines the Forth word El=Illj~Q=!'QQQ.Q. Whenever you type this

word, the constant value 31415 will be pushed on the stack.

Often you find that it is awkward to have all your data on

the stack at once. You C<3.n store dat.a in single named memory

words. The Forth word ~BBIBf!'=!; I ats YOLl res-,erve and name such

locations. Type

to define the Forth word Q. When you type Q, the address of the

storage location corresponding to Q is pushed on the stack.

storage area is two bytes long.

This

If you need to reserve a multiword block of memory for data,

you can LIse B~'=QI:

This e>:ample reserves 50 bytes (inclLtding two from the definition

of VARIABLE) named "DATA". When YOLI type "DATA", yOLl get back the

address of the first memory word. You can add an index to the

first address if you want the address of a later word.

Cal t.ech Forth 2-9

2.5 STORING AND RETRIEVING DATA IN MEMORY.

The word ~ (called "fetch") is provided so you can "read

out" data from any address. You type

where <address> is any valid memory address to retrieve the data

stored there. (The data r-eplaces <addr-ess> on the stack.) Thus

type

to get the integer in variable Q.

To "store" data from the :itack into a location in memory you

type

Here <value> is stored in location <address) More concretely~

1.~.e g 1.

stores a new value (148) in variable g. (Note that both "148"

and 9 push numbers on the stack. The "store" word [lJ stores the

data away and then pops both input quantitites from the stack.)

Another little program might run

~BB16~b~ 6~b 1 e~b 1
B~b P !::J.lNJJ§ B~.~ 1

In the first line B~b is defined (~B8!6~b~ 6~b) and set to the

value 1. In the second, the address of the integer 1S

placed on the stack, the value at that address is fetched

the value is negated (~l~jJ§), the address is again placed on the

stack. (B~t;:;;.), and the negated value is stored back in the integer

location This is a slow but feasible way to negate an

integer.

Cal tech Forth 2-10

2.6 CONTROLLING FORTH -- THE TEXT INTERPRETER.

You normally control a Forth computer from your termi nal .

The system is idle and listening for anything from the keyboard

until you type in a complete line. When Forth gets a full line

(ended with "return")~ it attempts to e>:ecute the wards (oc

convert. the numbers) you have typed.

Many times you wjll want to avoid typing long~ standard~ Dr

repetitive sequences of words. For e>:ample, once

debugged a new word, you don't want to have to type it in again.

The Forth te;·:t editor (described below) lets you store away the

program in source text form in a block (screen). To def i ne the

word, or collection of words, in the future all you need to do is

type

is a word that temporarily redirects Forth's

interpreter away from your terminal to the screen number yDL!

f;pecify. Almost any user commands (Forth words) you could type

directly can be executed· from a block via lQ6Q.

Each screen to be loaded may end with the special word ~5.

which restores the text interpreter to the source previously in

effect. If .t9 is not found, i nterpretati on of the =;creen ends

after the last line. Note that ~QBRs may be nested; a blocI-:: to

be loaded may contain !o:QBf)s itself.

A screen might contain the following text:

If you were to load this screen. Forth's response would be to

convert and push "2" on the stack (twice)~ add those nLlmbers~ and

Cal tech Forth 2-11

type the result (4) on the typewriter. After this, screen number

13 is loaded (wi th what.ever commands are contai ned there).

2.7 TERMINAL OUTPUT.

Output from Forth normally comes to your terminal. A few

basic words will suffice for many applications.

number from the stack with the word ~ (period).

You can type a

Quest. i on mar k ?

uses an address on the stack and types the number that lies at

that address.

The base used for numeric input and output is determined by

the variable I289~' I289~ may have any value from 2 thr-ough 10.

Some implement.ations allow base 16 as well. The special words

QGIfl.1: , R~~I~Bb, and ~~! let you set I2B§~ automatically to 8, 10~

or 16~ respectively. The de·fault number bCl.se is normally deci-

mal, but you should check this on your system.

For typing arbitrary strings of characters you may use IYE~.

ItE~ takes two numbers on the stack:

~~l2.Qi.!J.igC2 :££.b.~c§.£.i~r.:. I.;Q~Qi2 IY.E~

In most Forth systems, a pointer for a character string is

simply the byte address of the beginning of the string.

Beginning with the specified character,

characters until the count is satisfied.

IY.E~ puts out sequential

In some "traditional" Forth systems, terminal

save space by using the same buffer in main

input

memory.

and

To out.put

avoid pr-oblems in these systems you should use only one output

word on a command line; you should place an output word at the

end of the command. For e>: amp 1 e

Ca.l tech Forth 2-12

typed in as one line will give you only "123" on youI'"" terminal.

This is because the part of the command line containing "456 "

is obliterated when Forth writes "123" into the buffer for

typing.

2. B CONDITIONAL BRANCHES.

Forth gives you several means to direct the flow of

The methods described here wor~ only within

definitions;

assembl ers.

other similar words are available in the Forth

The simplest conditional branch is specified by the words

!;I!;§l~ and Wt'JII!::. Consi der the foIl owi ng e>: ampl e:

l.. l;;1;ijt!Ebl;; 1 lll;;l;;ll\i 1 = QI,JE I,JI\iIlb QBoE L

~~~l~ signals the beginning of a loop. 

the !:Jt:lIlb (during e:·:ecLltion of ~~e1jEbl;:). 

When the program gets to 

control will return to 

the £~~.§lt;.! if and only if the cut'"Tent stack value is zero. The 

value is popped after testing jLlst as most Forth words pop their 

input arguments. 

This is what happens when YOLI e:·:ecute ~~8t1E!::~: The val u€'~ 1 

1S pushed on the stack and the program enters the loop. Again, 1 

is pushed.~ then subtracted from 1 to leavE' O. The 0 valuE' is 

dupl. icated Q2WE) and tested by !:Jt:!II!:::; then the duplicated valuE' 

15 popped from the stack. Since W~II!:: found a O~ control returns 

1 is again subtracted, leaving -1. W~II!:: finds -1 and 

control passes through to QBQE where the remaining -1 value is 

popped. Control returns to the calling word. E'. g. ~ to the 

interpreter if you were typing. 



Cal tech For-th 2-13 

The ~.I;§l~ - b!~I16 constr-uction is useful for- progr-am loops 

where the loop termi nat ion cond i t i on can conven i ent 1 y be e;·: pr-es­

sed by leaving a zero or- non-zero value on the stack. 

A var-iant of §!;:!2.!t:J = !J~Ilb is useful for- situations in which 

the ter-mination condition is gener-ated in the body of the loop. 

You may pr-ogr-am the following: 

<: cond i t i on > ~!::!Jb!;; • • B!;;E!;;BI . 

If <condition> produces a non-zer-o result on the stack~ e>:ecution 

continues with the code between !~:H::!16!;; and B!;:E:!;'6I, and the loop is 

repeat.ed from £~~§It:J. If <condition> is zero, the remaining loop 

code is skipped, and excution continues following B~E~8!. 

A looping facility more like the Fortran "do-loop" is 

provided through the wor-ds QQ, bQQE:, and ~bQQE:. 

~ ~!~ ~ Q QQ ! ~ bQQE: L 

Anot.her e>:ample:: 

When you e>:ec.ute ~X£, the constants 5 and (I ar-e pushed on the 

stack. QQ takes these numbers to be the limit and initial index 

for thE' loop, respecti vel y. The limit and index disappear from 

the stad and are placed on a hidden internal return stack 

stack Control passes into the loop. The word! retrieves the 

current loop inde;·: vi'!lue and pushes it on the stack. The value 

is typed ( and popped) by - bQQE increments the i nde;{ value by 

1 • then tests it against the 1 i mi t. If the new i nde>: value is 

still 1 ess than the limi.t, control returns to the Q[) (i.e., to 

the point jLlst a.fter :QQ) • Otherwise the 1 i mi t and i nde>: are 

popped from the internal stack and control passes out of the loop. 

Thus when you execute ~XZ~ you get 

o 1 234 

typed on your terminal. 



Cal tech For-th 2-14 

NOTE: The i nde~: of a QQ stops one shor-t of the Ii mi t. The 

limit gives the number- of times the loop is e:·(ecuted 

if the initial index is O. The r-ange of a loop IS 

always executed at least once. 

War-ds ~ and L ar-e defined like I to let you r-etr-ieve indices 

in nested QQ loops. In the wor-d !;X::, defined as 

.:. "z;;; ;:; ~ QQ 7 

" 1 QQ 1 =1 QQ I ~ J ~ L ~ !eB bQQE bQQE bQQE ~ 

I r-etr-ieves the i nner-mo!::,t i ndex ~ J the neNt outer-, and I" " t.he 

outer-most; !:.8 causes a car-r-iage r-et.urn. ~~~ should give you the 

following output. (Again, each index stops one short of its 

limit.) 

-1 1 7 
'-' 

0 1 c' 
-1 2 3 

(I 2 c' 
-1 1 4 

(> 1 4 
-1 2 4 

(I 2 4 

If you need an incr-ement other than +1 in your loop, you can 

LIse ::thQQE. Her-e is an e~:ample: 

Here again 0 is the limit and 5 the initial index for the loop. 

eNcept that :tbQQE takes the cLlrrent stack 

value to be the loop incr-ement. 

:tbQQE tests the index in a way that depends on the sign of 

the incr-ement; this is a historical peculiarity likely t.o change 

in futur-e language revisions. For a ~Q§iti~g increment the test 



Cal tech Forth 2-15 

is the same as for kQQE; when the increment is Q~g£t~~€, thE' 

loop will run once with the index equal to the limit. Thus the 

output of EX~ is 

543 2 1 (1 

Variable increments are also possible with ~kggE: whatever wor-d 

15 left on the stac~, when ±,=QQE is e>:ecuted will be used for the 

increment. 

The general conditional branch in Forth will be familiar to 

Llsers of Al gal or PLI 1: an IE - It:!!;~ - ~'=J2f,; constr-uction. 

Assume that ImJ!;=g!:::B!::!§~ and EB!:::§£;=b!:::B!::!§!; are words that have 

previously been defined; then define £~~ as follows: 

When you run f,;X~~ IE tests <and pops) the current stack value; 

In general~ control flows as shown in the following line -

if <value> = 0 
l------------------l 

v 
<value> IF (true-code> ELSE <false-code> THEN 

l-------------------------l 

In some cases you only need to test for a "true" condition~ 

e. g. ~ 

Here !By~=glBY§~ 1S run if and only if the current stack value is 

non-zero ("true"). The logical diagram is 

if <valLIe"> = 0 
:--------------------: 

v 
<value> IF <true-code> THEN 



Cal tech Forth 

A more realistic example of a program uSlng conditional 

branches might look like this: 

E!lt/!:IIQt! takes the current stack value (say 1i) as input and 

returns 

o if 1i )= (greater than or equal to) 0, and 

(Fortran notation) 

Let. us briefly explain what happens in E!lt/!:IIQt:!. The word <: 

is a binary function that returns 1 if the next-to-current stack 

value is less than the current value; otherwise it returns 0. 

tllt:!!d§ replaces the current stack value with its negative~ and ! 

returns the product of the top two values. 

When you e}: ecuted E!d~~IJQ~, the input val ue is 

dupl icated and tested against 0 (2 ~). 
If " 

0, 

returns 1 ~ and IE will transfer control to the true-clause 

( tH. t:HJ £\) • The current s~ack value at this time will be K. since 

both <: and IE will have popped the stack tlIt!!d9 then negates 1i~ 

and control bypasses the ~~§~ clause (the false-clause) and 

resumes fall owi ng It!r;:ri. The current stack value (-~) is then 

cubed (Q!dE .Q!JE ! !), and E!Jt!bIIQt! is done. 

On the other hand, if K were )= 0, IE would transfer to the 

false-clause q;1!'lQ!" Q). Here li is popped and replaced with O. 

Control then passes over It!gt!, o is cubed, leaving 0 on the 

stack. U. ke Fortran and other common languages, Forth lets you 

QQ - bQQE:s, IE - It!gt!s~ etc., provided th<3.t 

the range of a nested loop or branch lies strictly within the 



Cal tech Forth 2-17 

range of all the branches and loops that contain it. For 

E'>: amp 1 e ~ 

... DO IF IF THEN ELSE THEN LOOF' 
N.L.=! ~ 3 3 2 2 1 

is a valid ordering. (Note the indication of nesting levels.) 

The following is in~§!i~: 

QQ ..• IE ... LQQE ... IH~~ '" 

In this case the range if the IE-I~~N does not lie within the 

range of the QQ-bQQE. 

Unlike Fortran~ Forth does not 1 et you "GO TO" em arbi trary 

location with a statement label (number). In general, IE is the 

only way you have to ma,ke a forward jump. The loss is not seriOLlS 

if you take care to "structure" your progr-ams -- it turns out 

that most "GO T05" al~e unnecessary. 

2.9 THE EDITOR. 

In prEceding sections~ the Forth block storage scheme was 

introduced, A ma.jor use for- block storage is to hold te>:t data, 

called sc!'"'een!::;, of which For-th source code is an e~-:ample. The 

way you can enter and modify text in Forth screens is with a 

Forth text editor-. 

Many cliffer"ent Forth editors have been written. 

Forth editor (~Q1I), shown in FigurE 2.2, is common to most Forth 

systems; it is VEry compact but giVES you ever-ything you need to 

modify text a line at a time. The E>:tended editor used at Cal-

tech includes flexible str-ing manipulations and lets yoLl 

sear-eh for, insert~ or delet.e te>:t strings ,"anywhere in a block. 



Cal tech Forth 2--18 

!'lost computer systems now support either"" fast (9,600 baud) 

serial terminals~ or memor""y-mapped display terminals. Such dis-

plays enable you to use "screen editors" that, show an entire 

screen at a time and immediately update the full screen whenever 

you change any part. A flashing cursor indicates where you may 

enter By typing control keys you can reposition the 

cursor at any place on the screen. Screen edi tors havE-~ been 

written in FOr""th, but a detailed description is beyond the scope 

of this book. 

The standard block length for Forth systems is 512 16-bit 

words = 1024 8-bit characters. For use as a te>:t screen a block 

is conventionally divided into 16 lines of 64 characters. Divi-

sion of text into lines is only for convenient display; as far 

as the Forth interpreter is concerned, the 64th character" of 

line is immediately adjacent to the first character of the next 

line. 

The variable ~g8 is used to hold the Forth block to be 

edited~ thus to edit block we type 

If you want to list the entire block you type 

Bs a side effect bIgI. sets §Q8 to equal the specified block. To 

list blocks 35 through 40 at once, you type 

To list just one line (say the 5th) of the current block, 

you type 



Ca1tec:h Forth 2-19 

You can delete the second line by typing 

~ deletes the line by moving up all the lines following the one 

you del ete. The last line (16) should be filled with blanks. 

To enter new te>:t into a block you first need the special 

words " or i to put a line of text into an internal buffer. 

QLlote (~) enters all text up to the next quote into the buffer. 

Left parenthesis (1) does the same except that the text line must 

be terminated with a right parenthesis (L). Thus 

:: It:!l§ 1§ 6 Il;n §IB1t!§:: 

and 

1 It:!l§ 1§ 6 II;KI §IBlt!§L 

both place "THIS IS A TEXT STRING" (without quotation marks) into 

the buffer" If needed, blanks are added to the right to make 64 

Note that, like any words, ~ and 1 must have a blank 

following in the input. The text string to go into the buffer 

begj, ns Eft.!E!: thi s necessary bl ank. The ~ or 1 that termi nates 

the text is just a "delimiter"; it needs no preceding blank. 

Once you haVe got the new te>:t entered in the bLlffer with" 

or i, you may LIse it to replace (8) an e~dsting line or to insert 

following an existing line. To replace line 3 of bIDC~( 10 

with "FDD BAR", yOLI could type 

" EQQ ~BB~ :::;: B· 

To insert ·'THIS IS A QUOTE: ,,~ after line 12 of block 1n 

you can type 



Cal tech Forth 2-20 

(Here you must use the i - 1 construction to enter a string 

containing a quote.) ! inserts the line following line 12 by 

first moving lines 13 through 15 down one. 

lost. 

The old line 16 is 

After a lor Q operation the line that was typed or deleted 

is automatically copied into the internal buffer~ ready for a 

possible B or I· For e>:ample 

1.~ Q £ ! 

has the effect of moving line 14 to line 3, with lines 4 - 13 

moving down one. 

After an editing session you should be careful that the 

updated blocks are actually written back into block storage. 

Forth usually takes care of this correctly~ but you still may 

want to type §6~~=~YEEgB§ to make certain. You get rid of the 

editor by typing EQB§E;.I £.!21.IQB:, i.e q the editor's dictionary 

space is reclaimed. 



CHAPTER 3 

THE STRUCTURE OF FORTH. 

This chapter more thoroughly describes the Forth system. 

The ,..-eader should be familiar with the preceding chapters and 

should have had a significant amount of "hands-on" e;.:peri ence 

with a Forth computer. The present.ation is intended for imple'-

menters and systems programmers, but. it should be useful to more 

casual programmers who want to know how to make the most ef -f i -

cient USE' of Forth. 

3.1 GENERAL REMARKS. 

It is important. to stress that Forth is a campI et.e 

pI'· og r amm l n 9 not merely a language. In some version=.~~ 

Forth provi des all the software functions of the computer on 

whi.ch it is run. This includes preparation of programs ( te>:t 

editing) • campi 1 at i on (or assembly) of programs~ debugging and 

input/output operati ons through direct-access or typewriter-

device!:;. In other- versions of For-th, including several Cal tech-

OVRO systems~ Forth runs as a pr-oce~s or task uncler- a 

oper-ating system. The oper-ating system provides 

inter-faces for- 110, scheduling~ and memDr-y management. 

standi:lrd 

standar-d 

Forth has been designed ar-Dunel certain basic concepts which 

ser-ve to distinguish it from other- systems. These include the 

di cti ona!'"'y, 

compilation. 

the addr-E'ss 

Less cruci al 

i nterprete!'"", and the technique 

but still distinctive featur-es 

blocl·· 110, the parameter- stack~ the text interpr-eter, and 

assembly technique. 

of 

are 

thE~ 



Forth Manual 

Such featu~es do not ~eally define a language. There 1§ a 

For-th language. however-. In this language concrete war-ds ace 

defined. such as", ±~ and QQ. In this light~ Forth may be 

compared with other pr-ogr-amming languages like For-tran~ Basic, or 

Algol. The For-th language could in principle be implemented with 

compiler- like a For-tran compiler~ and run like Fortran in 

pr-ocessor- • But distinct.ive incremental 

compile/debug approach is mLlch more productive and is well suited 

to the way real minicomputer-s ar-e used. 

3.2 THE STACKS. 

Moder-n minicomputers generally have very flexible addressing 

methods; these a~e heavily used in Forth systems. An i mportc.>.nt 

e;.; amp Ie is the use of push-down stacks. Most Forth systems use 

two stacks extensively: a parameter stac~ and a return stack. 

The pari:>.meter stac:k~ often simply called "the stac:I .. ". is t.he 

one most visible to the applications pr-ogr-ammer. It lS used as 

the primar-y vehicle for input and output data for Forth words. 

Usually data types such as integer. double p~ecision integer~ and 

floating point intermixed fr-eely on the stack. Conte>:t. 

usually suffices to distinguish types. 

The push-down stack accounts for- the reverse 

Polish notation of Forth. That is~ all parameters must be placed 

on the stac~ befor-e they ar-e operated upon. Thus the algebr2.ic 

e;.; pressi on 

could be written in Forth as 



For-t.h Manual ._' . .;, 

The advantages derived from the stacK technique include 

simplicity in the compiler, easy addressing at execution time. 

economy of main storage, and ease of providing reentrant code for 

real-time systems. Against such advantages must be counted the 

inconvenience, especially for new Forth programmers, of placing 

all the arguments before the operators. 

The paramet.er stack is commonly implemented beginning near 

the high end of main memory and growing downward toward the 

dictionary, which grows upward (see Fig. 3. 1) • 



Forth Manual 

high limit 

increasing 
memory 

addresses 

low limit 

Figure 3.1. 

, 

..... 

.. '. return stack 
(grows upward) 

v 
v parameter stack 
v (grows downward) 

(available space) 

A user application 
dictionary 

(grows upward) .c •• 

3-4 

I ••••••••••••••••••••••••••••••• 

, 

"standard" Forth 
dictionary 

I ••••••••••••••••••••••••••••••• 

Forth object dictionary 
(kernel) 

block buffer 2 

block buffer 1 

Memory layout of a typical Forth system. 

The "return stack" is separate from the parameter stack; it 

is used primarily for the el-:ecution of I.-words; this application 

is described later in this chapter. 

Various other information may be placed on the return stack. 

Thi s stack is normally used to hold indices and limits for llQ 

loops. Using the return stack for this purpose~ the implementer 

avoids having the loop information on thE> parameter- stack where 

it might lie in the way of data for other calculations. 

In the same vein~ the word 28 is defined to take one ward 

from the parameter stack and save it on the return stack. R· .. ,. has 



Forth Manual 3-5 

the reverse effect. 

, .• ,. THE D len ONARY • 

The Forth dictionary is the heart of the system. All 

programs written in Forth appear as words or collections of words 

in the dictionary. The organization of the dictionary and the 

details of dictionary entries differ between various Forth 

imp I ementat ion!:;. In this Section we will principally describe 

the Caltech-DVRO Forth for the Digital Equipment Corporation PDP-

11. 

Branch Structure. 

Forth dictionaries are organized as threaded lists each of 

whose elements is the definition of a word. The simplest 1 i st 

structure would have a single linear thread connecting the Forth 

words in the order they have been defined. Few Forth systems use 

this s.imple method~ since efficiency in search time and memcwy 

space can be gained rather easily. 

The dictionary list structure developed for the CCi.ltech-OVRO 

PDP-I1 systems is sketched in Fig. 



Forth Manual 

:-------: 
o 

,-------, , , 
] parm 
lfields ] 
1-------: 

link 
1-------] 
I par-m 
lfields : 
1-------: 

link 
1-------: 
: parm 
:fields 1 

l-------] 

:-------] 
1 ink 

1 -----.--: 

: parm 
lfields : 
:-------: 

<--

<--

< 

:-------] 
o 

: parm 
lfields : 
]-------1 

1-------] 
link 

1-------] 
: parm 
lfields : 
]-------: 

-------: 
link 

-------] 

parm 
fields : 
-------: 

:-------] 
, , linh 
1-------: 
: parm 
lfields : 
1-------] 

':.--

<--

3-6 

-------l 
(> 

-------] 

parm 
fields ] 
-------] 

]-------] 

: link 
1-------: 
: parm 
:fields] 
]-------] 

-------] 
link 

-------] 

parm 
fields: 
-------1 

:-------] 
1 ink 

:-------: 
: parm 
lfields : 
: -------- 1 

-:: --

.,"--

<"--

HEAD 
VECTOR 

1----------------1------------------:-- -:----------: 
HEAD<O) HEAD (1) : HEAD (15) 

:----------------l------------------J-- -:----------J 

Fig. 3.2 Dictionary Organization. 

The diLtionary is split into 16 threads or branches. The branLh 

in whiLh a word appears is a function of its name. Thus to find a 

particular word by name, it is only neLessar-y to search one 

branch. (The scheme amounts to a "hash code" for BLcessing words 

by name.) 

The head. or- growing end, of the list is defined by a 16-

el ement poi nter- vector-. These pointers aim at the most reLently 

de'fined word in eaLh branch. A link field in each word 



Forth Manual 3-7 

definition is a pointer to the next previous word in the same 

branch. (The exact target of the link may not be the link of the 

previous word; some versions have the link pointing to the 

previous link plus one~ for instance.) Each b!'"'anch termi nat.es 

with a word having zero link field. Definitions in different 

branches may be interleaved arbitrarily in memory. 

A different dictionary organization has been adopted by most 

Forth users. The principle is to divide the dictionary into 

branches similar to those discussed above. In this scheme 

the branch in which a given word appears is under control of the 

USEr. The programmer segregates words according to the conte~[t 

Df t.heir application; such gr·oupi ngs are known as 

"voca.bul ari es". The words ~Q~B~!Jb:B8:r and QS:El~.!I'!Q~§ control t.he 

br-~'1.nching. Figure 3.3 illustrates the ~Q~B~~bB8Y technique. 



Forth Manual 

)---------------: 
central 
vocabulary 
(FORTH) 

:---------------) 

3-8 

\-----------------------\ 

\---------------: 
more 
(FORTH) 

:---------------: 

)-----------------------: 

:---------------: 
editor-

: vocabular-y 
(EDITOR) 

:---------------: 

HEAD (ED ITOR) 

]---------------) 
: mor-e 

(FORTH) 
:---------------: 

HEAD(FORTH) 

:---------------) 
assembler 

) vocabulary 
(ASSEMBLER) 

:---------------: 

HEAD (ASSE~lBLER) 

Fig. 3.3 VOCABULARY br-anching. 

The number- of HEAD point.ers is unlimited; each one points to the 

last wor-d defined in a d~ctionar-y branch. Br-anches mer-ge as you 

trace back in memor-y until finally all sear-ches end at the first 

For-th word in the r-oot (FORTH) segment. A For-th word 1n one 

br-anch cannot execute (or interfere with) a word in another 

par-ailel branch except by explicit ar-r-angement. Thus the 

~Q[B~~~BBY arr-angement gives you some pr-ogram secur-ity and can 

eliminate problems with unintentional multiple wor-d definitions. 

Ther-e are just two circumstances in which you Ilave to 

specify what branch you ar-e using. Most obvi Dusl y~ you need to 

say what branch the i nterpeter wi 11 search when you type Cl. Forth 

word. Only one br-anch and its HEAD are active at a time. Thus if 

EDITOR is the current branch for searching! you cannot type a 



For-th I'lanLlal 3-9 

wor-d defined only in the ASSEMBLER br-anch. The other- cir-cumstance 

is when you ar-e definining new wor-ds; 

compiled into? 

what br-anch should they be 

The br-anches in effect for- wor-d look-ups and for- compiling 

do not have to be the same. For- example, you may wish to use the 

ASSEMBLER vocabul ar-y when you are campi 1 i ng a ~QQ~ wor--d in some 

other- bl~anch. 

We br-iefly descr-ibe the action of and 

)2t;:ElbiII1QbI§· If you type 

\lQ(;2Bl2lJbBBt mid 
a new br-anch of the dictionar-y is for-med. The br-anch leaves the 

cur-r-ent dictionar-y br-anch <EQ8It! or- the last one specified by 

at its eurrent head. A new Forth word Egg is 

cr-eated. When you type EQQ, the dictionary br-anch to be used for 

further dictionary searches is switched to the EQQ branch, i . e. ~ 

the one you've just cr-eated. Similarly, any time you type EQBI~~ 

B§§5;rj~bs8~ etc., you switch to the corresponding branch. 

If you type Q~EI~IIIQt;!§~ the dictionary branch to be used 

for- !;.Q!l\12.iJ_io.Q is swi tched to the curr-ent br-anch used for 

2~2r_!;bi[lQ • 

3.3.2 Header Section. 

The detailed for-mat of a wor-d in the dictionary var-ies 

between For-th implementations. This section descr-ibes the for-mat 

used in the Caltech-OVRO PDP-II Forth. This format is notable in 

its ver-y efficient use of memory. Only two memory words of 



For-th 1'1anual 3-10 

header- ar-e r-equir-ed in most cases~ even when we lise 4 char-acter-s 

plus count for a wor-d name.* 

*Pr-evious For-th implementations for- i6-bit computer-s have 

gener-all y requir-ed - 5 wor-ds for- header- and 

typically r-ecognized only the first 3 char-acters plus count. The 

cor-e savings for the Cal tech-OVRO PDP-i1 system may e)·:ceed 

l~OOO memo,y wor-ds in a lar-ge Forth application. 

Each wo,d definition In the 16-way PDP-11 di ct i oni:\r-y 

contains a "heade," which defines the wor-d name (fir-st 4 

cha,acter-s and count)~ precedence, and the link to the pr-evious 

wor-d in the same dictionar-y branch. These data are efficiently 

encoded into two 16-bit memory war-ds as shown in Fig. :::.~. 4. 



Forth Manual 

-------------- BJT NUMBER ----------------------
1 1 1 1 1 1 0 0 0 (> (I 0 0 0 0 (; 
~ 
~ 4 '3 2 1 0 9 8 7 6 5 4 ~ 2 1 0 

l--.--.--.--.--.--.--.--.--.--.--.--.--.--.--.--I 

I C 1" C2 C3 I C4 
I high: 

1--.--.-- --.-- --.-- --.-- --.--.--1 

C4 low L' IF' : OFFSET LI Nf< 

--.-- --.-- --.--.--.--.--1 

BEGIN MACHINE INSTRUCTIONS 
1, PARArlETERS 

First four characters of word name: 

Cl = Cl' * 16 + THREAD# 
C2~ C3. C4 

3-11 

WORD 1 

WORD 2 

THREAD# (0 - 15) is the thread in which the word 
is found. 
Characters are 6-bit ASCII codes. 

Length of word name: 

L L' + 4 if L' ,., . 
0 

4 if L' = 0, C4 <> blank 
3 if L' = O. C4 = b 1 an k ~ 

C3 < > blank 
= 2 if L' = 0, C4 = C3 = blank 

C2 <: .~ blank 
1 if L' = 0, C4 = C3 = 

C2 = blank 

Range of L is 1 11 charact.ers. Names wi th 

identlcal first 4 characters and lengths greater than or 

equal to 11 are indistinguishable. 

Fig 3.4 Dictionary Header for PDP-II (part 1) 

("::">" means "not equal to") 



Forth Manual 

Precedence bit: 

F' = 1 
o 

3-12 

immediate e~{ecLltion (compiler directive) 
normal word~ may be compiled. 

Link to previous entry: 

Previous address = cLlrrent address 
(if offset link <> 0) 

2 * (offset link) 

PrevioLls address = long link field 
(if offset link = 0) 

Long link field is absent if the link span is less 
than 512 bytes. 

Fig. 3.4 Dictionary Header for PDP-II (part 2) 

Some restrictions on the generality of Forth names have 

allowed the preservation of 4 characters plus count~ The 

character set is limited tD the 6-bit ASCII subset, which 

includes nearly all of the ASCII characters except the lower case 

al phabet. The 3-bit length field (L') allows lengths of 1 to 10 

characters to be distinguished uniquely. Names of 11 or more 

characters are allowed, but these will be equivalent to Forth if 

the first 4 characters are the same. The limitation is slight, as 

most practical Forth code has few names as long as 10 characters. 

The following are examples of distinguishable names: 

However, the following pairs of names are indistinguishable: 

Even with the 6-bit coding and the restricted length field, 

a further savings in bits is required to fit all the header data 



Forth Manua.l 3-13 

into two words. This is accomplished easily since a natural 

"key" or hash code for choosing a dictionary branch for a Forth 

word is one of the characters of the name. In particular the 4 

low-order bits of the first character are distributed fairly 

randomly and are suited for the purpose. 

function: 

We define the following 

THREAD# = HASH( NAME) 

where the hashing function "HASH" is just equal to the number 

e;<pressed by the 4 low-order bits of the first character of the 

"NAME" string. 

If the HASH function is used to select a branch for the word 

entry~ the Forth word header does not need to contain those bits 

selected by HASH; the~ would be redundant. Thus the field C1' 

Fig. 3.4 contains only the two highest order bits of the 

first character; the low-order bits are implied from conte>(t~ 

that is~ 

One 

from the thread number. 

bit of the Forth word header 15 reserved for 

"precedence". Normally this bit is zero~ but for "immediate" 

words the bit is one. This bit has speci",l i mport.ance for 

campi. 1 ati on; it is discussed below in Section 3.9. 

The fin"'l header field consists of 8 bits reserved for the 

offset link. The link points to the last previous word in the 

same dictionary thread. In most cases the memory spanned by the 

lin~' is less than 256 words (512 bytes)~ so that the offset link 

has enough bits. In cases where the link must cover more than 

256 words, the offset link is set to zero and an additional 16-

bit "long lin~ field" is allocated. The long link field 15 a 



Forth Manual 3-14 

complete byte address that may direct the dictionary search 

anywhere in memory. In the special case of the first word (foot) 

of a dictionary thread, both the offset and the long link field 

ar-e zero. 

3.3.3 Code And Par-ameter Sections. 

A complete dictionary entry contains one or two sections in 

addition to the header discussed above. These are shown 

schematically in Fig. -:r """ ._'. ~. 

Fig. 

--------1 
HEADER 

\--------
(2 OR 3 LOCATIONS) 

:-----------------------1 
CODE SECT! ON 

--------- : 
(1 OR MORE LOCATIONS): 

: --_._._._-_.-

:-----------------------: 

PARAMETER SECTION 
(OPTIONAL) 

General Forth Dictionary Entry. 

Evel'·Y wor-d must contain a I;.QQ~ 2~«;.t .. ;LQlJ.; this is one or- more 

m2chine instructions that are e~ecuted when t.he Forth word is 

invoked. The address of the first location of the code section 

IS the one compiled into address sequences in L efinitions (see 

Section 3.9). For ~Q:g~ words, i . e. , those defined by assembly 

instructions, the code section is nor·mally the final part of the 

dictionary entry. I t wi 11 finish by "calling" the address 

interpreter thr·oLlgh e~ecuting the instruction ~~~I~ (JMP :1) (Ie) +. 



Forth Manual 3-15 

see Section 3.4). 

Other 

additional 

kinds of words, in particular L words, require 

QeC~m§t§c §§£t~QD in their dictionary entries. In 

an 

words the parameter section contains compiled 

direct the execution of the address interpreter. 

addresses which 

Words defined 

by ~Bt~:IB~'=~ or ~Q~§IB~I use locations in the parameter section to 

hal d data" 

Some more concrete examples of dictionary entries foc 

various types of words are presented in Fig. 3.6. 



For-th f>1anual 3-16 

SEMI: 

CONST: 

VAR: 

CODE WORD 

J---------------
HEADER 

)---------------

MACHINE 
INST. CTRS 

]---------------: 
: JMF :i)(IC)+ 
:---------------) 

CONSTANT WORD 
:---------------] 

HEADER 
:---------------: 
: JSR IC,@# , . . . , 
:---------------] 
] ADP( CONST ) 
)---------------: 

VALUE 
:---------------] 

COLON WORD 

]---------------: 
HEADER 

)---------------J 
: JSR IC,@# , . . . , 
)---------------: 
: 1 ST WORD ADR 
)---------------: 

ADDITIONAL 
WORD 
ADDRESSES 

:---------------: 
: ADR' SEM I ) 
:---------------: 

VARIABLE WORD 
)---------------: 

HEADER 

JSF( IC,@# , . . . , 
---------------: 

ADF< ( VAR ) 
---------------) 

VALUE 
---------------) 

'. -- 45:-·7 (8) 

(CODE SECTIONS ABOVE REFER TO FOLLOWING CODE) 

MOV (R) +, IC 
JMP ;iI(IC)+ 

MOV ;ilIC, - (SP) 
MOV (R) +, IC 
JMF' ;.v(IC)+ 

MOV IC,-(SP) 
MOV (R) +, IC 
JMF' ;iI<IC)+ 

FOP I NST. CTR FRO~l RETURN STACf< 
"NEXT" = ADDRESS INTERPETEP 

MOVE ,'ALUE TO PAPAMETER STAG 
RESTORE IC FROM RETURN STACK 
"NEXT" 

MOVE ADP. OF VALUE TO PARM. STACK 
RESTORE Ie FROM RETUF(N STACb:: 
"NEXT" 

Fig. 3.6 Common For-th Wor-d For-mats 
(Cal tech-DVRO PDF'-ll). 

Note a little tr-ick in the L word: the code section instr-uction 

(JSR IC,@#addr-ess) is a double-wor-d instr-uction, but the second 

location is r-eally just the first location of the parameter field 

-- as far as the Forth compiler- is concerned. This address and 

those following comprise the sequence that dir-ects the address 



Forth Manual 3-17 

interpreter. It turns out that the PDP-II instruction JSR 

IC,@#address has precisely the right action to start the address 

interpreter; it saves the instruction counter on the return 

stack and directs e~(ecution t.o the code located by the first 

address of the address sequence. 

3.3.4 Expanding And Contracting The Dictionary. 

The Forth dictionary is initially set up when the program is 

fi rst 

called 

loaded. This dictionary and its associated code are 

the program" DC "kernel" . Foe Caltech-DVRO 

systems the 

"object 

kernel is defined in assembly language. Other 

Forth systems sometimes use so-called "Metaforth", which is a 

program that cross-compiles code from one Forth computer to 

genera.te a new kernel foe another (DC possibly the same) 

computer. 

YOL.1 e;.:tend the dictionary by e:·(ecuting "defining words" 

words that define new dictionary entries. You can do this 

directly from a terminal (typing ~, !::QQ~, etc.) or indirect.ly by 

~.Q8.Qi ng blocks that contain defining words. The defining words 

ha,vE' the.1 ogi c requi red to compute the proper threc\d number and 

to enter a new element in the corresponding dictionary branch. 

At times you need to truncate the dictionary and free up 

memory i;\reas. You do this with EQ8~~I. Type 

EQB§I;I !lBB 

to look up ~BB in the dic:tionar-y and truncate ~Ll branches at the 

highest possible memory addresses lower than the beginning of 

!leBo 

ThLIS ~B8 and all words defined after ~B8 (in time sequence) 



Forth Manual 3-18 

are deleted. Judicious use of EQB§~I gives you a simple overlay 

capability in Forth. 

3.4 PROGRAM CONTROL -- THE ADDRESS INTERPRETER. 

Another central element of the Forth system is the function 

This code directs the execution 

of Forth words from address sequences in memory. The normal 

termination of every ~QQs word is an invocation of the addr·ess 

interpreter. 

The interpreter opera.tes on a sequence of memory addresses 

which lie in consecutive words of main memory. Such an address 

sequence is the parameter field of a ! word. Each address points 

to the code section of an earlier dictionary entry. 

3.7. ) 

(See Fi~1. 



For-th Manual 3-19 

]---------------1 ]---------------1 
HEADER "ABC" l HEADER "A" 

]---------------1 
JSR IC,@# ••• +------>: JSR IC,@# .•• 

1---------------: 
ADDRESS < A ) -------+ : ADDRESS ( AA ) 

:---------------: 
(ICI---) ADDRESS ( B ) -------+ : ADDRESS ( AB ) 

]---------------] 
ADDRESS ( C ) ,---+ : ADDRESS (SEM II 

---------------] 
ADDRESS (SEm ) 

---------------: 

For-th definitions: 

A AA AB 
B BA 
C CA 
ABC ABC 

:---------------: 

1---------------] 
: HEADER "B" 
1---------------: 

+------>: JSR IC,@# ••. 
:---------------: 
: ADDRESS ( BA ) 
]---------------: 
: ADDRESS (SEM [ 1 
1---------------: 

:---------------: 
: HEADER "C" 
:---------------: 

+---------->: JSR IC,@# ... 
:---------------: 
: ADDRESS ( CA ) 
]----------------] 
: ADDRESS (SEMI) 
]---------------: 

Fig. 3.7 Compilec;l addr-ess sequences. 

In each definition an addr-ess sequence specifies 

For-th wor-ds to be r-un when the _ wor-d itself is e}(ecut.ed. 

the 

I . e. , 

if e~~ is defined L 6~~ B ~ ~ L' the addr-esses of wor-ds 6, ~. ~, 

and i ar-e found in the par-ameter field of 6~~. These addr-esses 

define what actions occur- when 6~~ is e~(ecuted. 

We can descr-ibe the effect of the AI 1n the following 

general terms. A register- (or- memar-y location) is reser-ved as 

the Forth "instr-uction counter-" (Ie). Like har-dwar-e instruction 

counter-s, IC points to the next (Forth) instr-uction to be 



Forth Manual 3-20 

"Instructions" to the AI are just the addresses of 

For·th words. 

The Forth interpreter- must pick up the addr-ess that Ie 

points to. increment IC to point to the next address in sequence~ 

and finally jump to the code specified by the first address. In 

terms of Fig. 3.7~ the ne)·( t i nvoc:at i on of the i nterprete,r wi 11 

pick up the address of the word ~~ IC will be incremented to 

point to the next address (address of g), and control passes to 

the JSR instruction in the code section of f!.* 

*Most Forth imp 1 ementati on:; use a slightly different 

algorithm foe the AI. In these systems, the first word of the 

code section is always instead of an 

instruction. The add~ess in turn points to the actual code to 

be e~<ecuted. Thus the AI jump instruction must be a double 

indirect jump. In implementing the Caltech-DVRO system for 

the PDP-1!, we found that core and speed savings could be achie-

ved through adopting the. technique described here. 

Several computer:; are so appropri atel y desi gned that the 

entire AI function can be achieved in a single instruction. The 

DEC PDP-11 and PDP-10 are examples. Fig. 3.8 displays the AIs 

(NEXT instructions) for 3 types of computer. 



Forth Manual 

(PDF'-ll ) NEXT: JMP 

(PDP-10) NEXT: AOJA 

(8080) NEXT: LHLD 
MOV 
INX 
MOV 
INX 
SHLD 
XCHG 
PCHL 

:iHIC)+ 

IC,:l)O(IC) 

IC 
E,M 
H 
D,M 
H 
IC 

3-21 

IC is a register 

ditto 

IC is a 16-bit 
double-word 

Fig. 3.8 Address Interpreters for 3 Computers 

The discussion to this point tells how the Forth AI 

progresses through an address sequence a step at a time. The 

linear flow of e>:ecution may be modified in several ways. The 

simplest would be to alter IC directly in a ~Q!2J;-defined word~ 

and then to invoke the interpreter. 

A more subtle~ but more useful redirection of instruction 

flow lS performed evel~y time a.!. word is e;-:ecuted from a __ 

word. This is the situation presented above in Fig. 3.7. 

A good way to divert the AI is to store away the contents of 

Ie on a stack (the return stac~(), and to set IC so that it points 

to the first word of the parameter section of the new word to be 

interpreted. (In this way, the AI algorithm is recursive.) 

In gener- al ~ what is the appropr-iate instruction to put in 

the code section so that the AI is redirected? We need an 

instruction that. lets us push a r-egister on a stack and somehow 

"r-emember-s" where it is when e>:ecuted. Usually some kind of 

subroutine call instruction is appropriate. 

As we suggested air-eady, the PDP-ii has an instruction which 

per-forms all the right operations by itself. With most other 

computers you need to write a 2 or 3 word subroutine 



Forth Manual 

(conventionally called COLON) to redirect the AI. 

for 3 computers are illustrated in Fig. 3.9. 

(PDP-i1) 

Appearance of code section: 

No subroutine required. 

(PDP-iO) 

Appearance of code section: 

Required subroutine: COLON, 

(8080) 

Appearance of code section: 

Required subroutine: COLON, 

JSR Ie, :illl 
addt-essi 
address2 

PU5HJ RP,COLON 
addressl 
address2 

EXCH Ie, (; CRP) 
AOJA IC,:])O(IC) 

CALL COLON* 
addressl 
address2 

LHLD IC 
XCHG 
CALL RPUSH 
PDF' H 
SHLD IC 
JMP NEXH 

3-22 

The techniques 

really one 
i ns;tructi on 

(NEXT) 

two bytes 
two bytes 

(DE)-->RSTK 
FROM C?iLL INST. 

*The CALL COLON and JMP NEXT instructions can be replaced 
by hardware reset (RST) instructions, with a savings 
of 2 bytes per use. You must have appropriate code at 
the cor-r-espondi ng low-memory I Deati ons. 

Fig. 3.9 The COLON Function for 3 Computers. 

You end~. normal _ definition with .t. The semicolon 

compiles an address called "SEMI" into the dictionary as the last 

entry in the parameter section of the word you re currently 

defining. also resets the compile state.) SEMI is the 



Forth Manual 3-23 

address of a machine code routine that undoes the effect of the 

COLON function. It must restorE' the old contents of Ie from the 

return stack. The SEMI routines fOF" the same 3 computers are 

given in Fig. 3.10. 

(PDP-111 SEMI: MOV (RP)+,IC 
JMP :iHIC)+ (NEXT) 

(PDP-10) SEMI: F'OP RP,IC 
AOJA IC, ;;)0 (IC) ( NEXT) 

(8080) SEMI: CALL RF'OF' 
XCHG 
SHLD IC 
JMF' NEXT 

Fig. 3.10 The SEMI Function for three Computers. 

The discussion and figures above indicate that the address 

interpreter may be nested very deeply, limited only by stack 

space. In other WOF"ds, FOF"th.t WOF-ds can refer to earl i ef'" 

words. which can refer to yet earlier words, etc. The time 

overhead for the AI F"ecursian (or the "calling" of one _ word by 

another-) is seen to be very nominal -- about equivalent to a 

conventional subr-outine call. 

In summary we can say that the address interpreteF" IS the 

engine that makes.t words go. The techniquE' is not new~ it IS 

also used in DEC's "threaded code" in PDP-11 Fortran. But in 

combination wi th the te}: t i ntel~preter (see below) it is 

responsible for the unique power of the Forth system. 

3.5 THE TEXT INTERPRETER. 

In the preceding Section we discussed the acldr"ess 

interpreter- and how Forth e>:ecutes _ words containing campi led 

address sequences. There is one fundamental Forth _ word (§Q*) 



Forth Manual 3-24 

whose job it is to interpret what you type into your termi nal . 

This is called the "text interpreter" (TIl. It is distinguished 

from the address interpreter because its input is text from a 

terminal (or block) rather than addresses. 

*Actuall y gQ is an "anonymous" word (wi thout a header) and can 

not directly be accessed from your terminal. 

The TI is really a Forth program in its own right. In fact 

it is the basi c program that executes in normal Forth systems. 

When you type in a word ("command") to Forth~ it is the TI that 

interprets your command and actually begins e>~ecution. 

A structured program (in pseLldo-code) for a typical 

follows in Fig. 3. 11 • 

GO: IF( Input is from typewriter) 
THEN IF( Text buffer is empty) 

THEN Wait for next full input line 
from typewriter; 

IFC Input is from typewriter) 
THEN Prepare to r;ead typewriter buffer 
ELSE Prepare to read selected block buffer; 

Collect a te>:t string (word) from buffer; 

IF( Word exists in dictionary) 
THEN IF C In compi I estate ) 

THEN Compile a pointer to dictionary 
word; 

ELSE Execute the dictionary word 

ELSE IF C Input string converts to a number 
in current radix ) 

GO TO GO; 

THEN IF( In compile state) 
THEN Compile a pointer to "LITERAL" 

followed by number value 
ELSE Push number value on stack 

ELSE Abort; 

Fig. 3.11 A Structured Pseudo-code Text Interpreter. 

TI 



For-th Manual 3-25 

We can elabor-ate a bit on this program. The input to the TI 

can be either- fr-om the ter-minal ("typewriter") or from block 

storage. Nothing happens with typewriter input until you enter a 

complete 1 i ne~ ended with "return". If a screen is the input 

source, TI runs straight thr-ough without a pause until L§ or- the 

end of the screen is encounter-ed. 

"Collecting a text str-ing" means scanning the input source 

unti 1 a campI ete word-name-c.::'lndi date <token) is found. That i.s, 

scanning begins from the current position of an input 

poi nter· until the fir-st non-blank char-acter is found. Then all 

t.he non-blank character-s up to the nE?>:t bl.ank (or- other- specified 

delimiter) are moved to a special place*. 

Hic.tuall y to the next sever-al available dictionar-y locations In 

case this wor-d is to be enter-ed in the dictionary. 

Using the appr-opriate rules for- identifying word names with 

dictionar-y entries (e.g.; first 4 characters plus length), the 

TI attempts to find a match wi.th an e;·(isting entry In the 

di ct i onary. If the TI will normally simply 

execute that word. There is one case where, if you type a word, 

you don't want it e;·:ecuted: this is when you are defining a 

wor-d. If you are defining a _ word, the TI will store a pointer 

to the word in the next available dictionary location. 

If there is no matching entry, the TI will tr-y to see if its 

token will convert properly as a number. If the string does make 

sense as a number, that number is normally just pushed on the 

stack. If you happen to be compiling a ~ word~ the TI compiles 



Forth Manual 3-26 

a call to a special word "b!I~8eb" followed by the value~ so that 

the number you ve t.yped ~L!..!. be pushed on the stack when you 

execute your new word. 

If the "word" you"ve typed can"t be found in the dictionary 

or converted as a legal number~ the TI g1.ves up and B~QBls. All 

the stacks are reset, the compile state is reset, the word itself 

1.5 typed again followed by a question mark~ 

TI allover again. 

and Forth starts the 

3.6 ERROR MESSAGES -- BllQBI. 

The only "standard" error routine 1.n Forth is called B~QBI. 

B§QBI simply resets nearly everyth1.ng in the Forth system: the 

parameter and return stacks, the compile/execute state (to 

the term1.nal buffer, etc. Only the dict1.onary and the 

current state (block contents and update flags) of the block lID 

system are not affected. 

In addition to the reset function~ B~Q81 types a very simple 

er-ror message on the termi nal : the name of the last word 

processed by the te)·:t interpreter followed by a question mark. 

The action of B~QBI in a real time Fortrl system is not 

standardized. In most situat.ions with Caltech-OVRO Forth. an 

B~QBI caused by an error in a background (user-terminal) task 

wi 11 not. affect a foreground, real-time task. This is simply 

because the background task only runs when the foreground tas~ is 

finished, i . e. , when the foreground task has nothing to keep on 

the stacks. 



Forth Manual 

3.7 BLOCK INPUT/OUTPUT. 

Forth normally maintains a single direct-access file on 

secondary storage (such as disk). This storage is not logically 

required to run Forth; mi cro-compLlters ~ for example, may use a 

Forth system permanently written in read-only memory. But 1 n 

general purpose minicomputer systems, much of Forth's versatility 

depends on adequate block storage. 

The conventional record size for block storage is 1024 8-bit 

bytes~ or 512 16-bit words. Blocks are simply numbered 

sequentially from 0; thousands are typically available. 

Typical systems have two block buffers in main memory. When 

you type 

Forth chooses the less recently used buffer, writes its contents 

back to disk if necessary (i.e., if that block has been 

and then finally reads in block aaa from disk. The 

buffer address is returned on the stack. 

Once in main memory, a block ma,y be read or altered in any 

way. If you want to change a block's contents QO di§t, you must 

be sure to type YEQeI~ fallowing ~bQgt. YEQ6I~ sets a flag that 

insures that the buffer last returned by ~~Q~t will be rewritten 

to disk before the buffer is reused for some other block. You 

can type 2B~~=~YEE~8Q at any time to force rewriting of any 

YEQ6I~d blocks to disk. 

If you want to be sure that you are dealing with "fresh" 

copies of disk blocks, 

~tlEIX=E!~EEsB§ simply sets a flag that marks all block buffers 

empty; thus any ~bQG~ following will force a read dis~ 



Forth Manual 3-28 

operatlon. 

Forth blocks are perfectly general in the types of dat.a that 

t.hey may hold. However one important use for blocks is to hold 

input for the te):t interpreter. In this mode a 

known as a "screen", and is considered to be a single block 

string of 1024 characters. That. is, the text interpreter may 

scan the entire block without any division into smaller records 

such as; lines. 

For te)-:t. entry, editing, and listing, however, it is 

convenient. to divide the 1024 character block into 16 lines of 64 

characters. 

separati on 

The lines have fixed length 

(carTi age return or line feed) 

and there 

between the 

character of one line and the beginning of the next. 

When you type 

!J.!J.!J. ~QBQq 

Forth fetches block st.ores the teNt interpeters 

is no 

last 

input 

pointers on the return stack. and sets the input pointers to the 

beginning of the block. The interpreter will then scan the block 

words as t.hey are encountered, unti 1 

The end of the block or a semicolon-S 

e;·:ecuti ng 

otherwi 5e. 

terminate the scan on each block. 

3.8 FORTH ASSEMBLERS. 

Section 2.4 described generally how input 

told to do 

wi 11 

can be 

converted into machine-language instructions. This process is 

called 

compLlt.ers will 

Forth 

naturally 

assemblers 

differ 

foe di fferent 

according to their 



Forth Manual 3-29 

instruction sets. The full assemblers for some representative 

Forth systems are presented in the Appendices. This section 

deals with aspects of assembly that are common to 

most Caltech-DVRO Forth systems. 

You can assemble code any time the system is in the 

e>:ecuti on state, i . e. ~ when it is not compiling _ words. 

Usually you 

definition. 

assemble code in the course of word 

The assembler vocabulary consists mainly of QR=~Qd~ words 

whose names are normally chosen to reflect the conventional 

assembler codes in a macro assembler. In fact the op-code names 

are usually just the conventional mnemonic with an appended 

comma. Thus the PDP-11 ,move instruction, MDV~ becomes !.'1Q~-'.. tn 

Forth. 

To assemble a machine instruction into the dictionary, you 

type the address fields and modifiers you need followed by an op-

code word. (Remember reverse Polish notation?) There is normally 

a set of special words to help you set up the correct addressing 

modes, branch conditions, etc. 

A sample ~QQ~ definition for the PDP-11 might loo~ like: 

~QQ£ BQQ:2 Q § l.:!. t!Q~",," Q e Lt 61212",," Q 1. Q 61212",," ~~~I~ 

This word will add up the top 3 numbers on the stack~ leaving the 

sum. 

The first part of the definition (~QQ~ 6Q12~) set.s up a new 

dictionary entry (header only) with the name 61212;':. The code 

section of B!2Q~ is filled in with 4 machine instructions: a MOV. 

two ADDs, and a JMP Ce:<pansion of ~S:XI.s..). The first instruction 



Forth Manual 3-30 

moves the contents of the top stack location to register (I and 

adds 2 bytes to the stack pointer register. The ne>:t instruction 

adds the contents of the neNt stack location to register 0, 

incrementing the stack pointer aga1n. The second ADD adds 

register 0 to the contents of the next (originally the third) 

stack location without changing the stack pointer. ~~XI..L expands 

into the instruction JMP @(IC)+, the address interpreter. 

An equivalent MACRO-11 program would look like this: 

.WoRD 
• WORD 
MOV 
ADD 
ADD 
JMP 

HEADER1 
HEADER2 
(S)+,RO 
(S)+,RO 

RO, (S) 
:])(IC)+ 

; MOVE ST ACb:: TO REG. (1 

; ADD NE XT STAn:: VAL" TO RO 
;ADD TO NEXT STACK VAL. 
;Go TO NEXT FORTH INSTR. 

Forth assemblers provide forward condi.tional branches 

similar to the compiler directives IE, ~b§~, and I~~~. These are 

the macro instructions lE..L' and I~gN..L (with ~s). In the 

case of the PDP-l1~ these macros set up appropriate conditional 

branch instructions that test a register. An e:-:ampl e: 

This expands into the equivalent of the following MACRO code: 

1$, 
2$: 

<load reg. 1> 
TST R1 
BED 1$ 
<true code> 
BR 2$ 
<false code> 

set up data in register 1 
test. regi ster 1 
branch if equal zero 
do if Rl .NE. (I 

branch around false routine 
do if Rl .EQ. (I 

end 

The "else clause" is optional, thus you can write 

whi ch e>:pands to 



Forth Manual 3-31 

<load reg. 2> 
TST R2 
BLE 1$ 
<true code> 

1 $: end 



Cal tech Forth 3-32 

3.9 COMF'I LAT ION OF ~ WORDS. 

The use of words has been discussed above and the dict-

ionary format was presented in Fig. 3.6. The process of pro-

ducing a dictionary entry from the input text is called 

tiQO fDr _ definitions. Compilation is distinct from 9§§§ID= 

QIY~ a term which applies only to ~QQg words. 

Forth has two "states": e:·: ecut i on and compilation. In 

e~:ecuti on state the te>:t interpreter operates normal 1 y, e>:ecut i ng 

words as they are found in the input text. The word .!.. in t.he 

te>: t stream changes the state to compilation; it also invokes 

~QBQ to collect the next properly delimited token from the text 

stream. The token becomes the name of the new word; it is placed 

,. n the next available dictionary locations in the correct die-

1 ast-tionary format.. The link field is set to point to the 

defined word in the same dictionary branch, and the HEAD pointer 

is set to point to the new entry. A call to the COLON funct.ion 

is placed in the code section. (This is the "half-instruction" 

JSR IC, ;il# •• " in the PDP-II system.) 

(At. this point in compilation t.he dictionary formally con-

tains the new entry, which is not yet fully defined. To prevent 

f al se, premature references to t.he entry, al so ial ters:. 

("smudges" ) the name field slightly so that t.he name becomes 

unrecogni:::: abl e. At. t.he conclusion of t.he definition, 1. or .i~gQs 

restores the correct. name.) 

It now remains to create the parameter field of the new 

word. In the compile state, the te>:t interpreter- (Fig. 3.11) i.s 

modified so that when an input word is found in the dictionary it 



Cal tech Forth 3-33 

is not executed; rather, its address is stored in the ne)~ t 

available dictionary location. Similarly, numbers are not imme-

diately pushed on the stack~ but the address LITERAL is compiled 

followed by the literal value of the number. (LITERAL points to 

a simple code routine that picks up the number following LIT-

ERAL's invocation point~ pushes the number on the stack, and 

increments Ie in order to skip to the next compiled address.) 

Thu~5 the number is not pushed on the stack until the new word i!;:, 

E)·:Ecuted. 

The interpreter will proceed to compile the input te:·:t 

stream into the dictionary until a "compiler directive" is en-

coun-tered. A compiler directive is a word with a precedence bit 

set to 1. Such words are e>:ecuted i mmedi atel y, even when FOI-th 

is compiling. 

The most common compiler directive is .i~ which compiles 

SEMICOLON into the dictionary and also resets the compile state, 

Other comp i I er d i r·ect i ves are IE, IIj~r:!, t;;.!:§!;:, i.!;;.:.m2.~. et.c. 

If you want to make a word you~ve just defined into a compi-

ler directive, simply type l~~~~!BI~. (Since !~~~~!BI~ is itself 

i mmedi ate, you can make a word immediate either by typing "IMME-

DIATE" inside or outside the definition. For e:·: amp Ie, 

are equivalent.) 

X !~~.I;Q!BI~ B f! b.i and 
X e ~ ~ ~ 1~~~QleI~ 

3.10 DEFINING WORDS -- QQ§§2. 

A special technique is available in Forth to define words 

whose function will be to define words. Some of these "defining 



Cal tech For-th 3-34 

wor-ds" ar-e built into the ker-nel: A new 

defining wor-d is appr-opriate whenever a new class of wor-d func-

tions is r-equir-ed. The avail~bility of defining wor-ds makes 

For-th an unusually extensible language system. 

which is defined in the stan-

dar-d system. The new cl~ss of wor-ds pr-ovided by ~8BI6~b£ con-

sists of wor-ds that push the addr-ess of their- par-ameter field on 

the stack. ~ may be defined a ~B8!B~b~ by typing 

The dictionar-y entr-y cr-eated for- ~ is shown in Fig. 3.12. 

:--------------------: 
header-

:---
"N" 

:--------------------! 
JSR Ie, @# 

:--------------------
: Address (var) 
:--------------------

value (=0) 
:--------------------

Fig. 3.12 Dictionar-y Entry for- ~eBIB~b~ ~. 

The entr-y differ-s fr-om an entry produced by ~Q~§I8~I only in the 

addre.s that appears in the second word of the code secti~n. All 

~8Ble~b~ wor-ds will have the ~ddr-ess "var-" in this location. 

This code must pick up the addr-es-,s of the par-ameter- field of thE' 

var-iable wor-d being e>(E'cuted and then push it on the stack. 

~BBI6I2b~ may be defined in ter-ms of the mor-e fundament.al 

For-th words ~8£BI£ and QQ£§2= 

The definition has two par-ts; the fir-st is like a nor-mal 



Cal tech Forth 

definition. 

dicitionary. 

3-35 

Word names appearing here are compiled into the 

The _ part of ~B81B~b~ contains only ~8~BI~. 

~8~BI~ makes a new entry in the dictionary (when ~BBle~bs is 

The name of the new entry is taken from the token in 

the input stream that follows ~BB.!B~b~~ for e>:ample~ "N" in the 

case above. 

The second part of the example begins with QQ~§~. QQ~§~ is a 

compiler directive that compiles an address (called does» ~ but 

keeps the system in compile state. Following QQ~§.2: are more words 

to be compile. These instructions define the address sequence 

("variable") which will be associated with all ~B8.!B~b~ words. 

When this address sequence is interpreted (when "N" is e:·:ecuted, 

for e)~ample), there will be a single parameter passed: the add-

ress of the parameter field of the ~BBIB§bs word. In the case of 

that parameter is exactly the desired result of the 

therefore, only the terminating definition~ L is 

required. 

The dictionary entry for ~BB.!B~b!:;;' is shown in Fig. 3.13. 



Cal tech Forth 3-36 

header 

"VARIABLE" 

JSR IC,@# 
l----------------
l Adr(create) 
l----------------
l Adr (does» 

var: 1 NOV IC,-(SP) 
1----------------
: NOV (RP) +, IC 
1----------------1 

1----------------] < insert longer address seq. 
: Adr(semicolon) 
1----------------1 

Fig. 3.13 Dictionary Entry for ~B818~b~. 

What happens when we e>:ecute ~68If.!~b~? First, g8~BI~ makes 

a dlcti-onary entry using the next token in the input stream as 

its name ("N", for e>:ample, in Fig 3.12>. At this point, the new 

dictionary entry has an undefined code section. The code addres-

sed by "does)" causE'S the code section to be filled in with a 

"JSR IC,@#var-" J.nstruct~on. When the new word (~) is executed, 

the "does_start" code will collect the parameter field address of 

~, which the JSR instruction has placed on the return stack, and 

push it on the parameter stack. This code furthermore starts the 

Address Interpreter running at location "var" with the correct 

return stac~ contents so that after the terminal 1 is inter-

preted, (of ~ > , control returns correctl y 

through the Address Interpreter. 

The code routine "var" for any ~B8.le!2b~ wor-d works In the 

following way. When ~ is executed (for example), "var" pushes 

the contents of register IC on the stack. (It tur-ns out that the 



Cal tech Forth 3-37 

"JSR IC~ @#var" instruction puts the address of the first word of 

the parameter field in that r-egister.) The code must now restore 

the last generation of the IC from the return stack. 

there will be further Forth words compiled in the 

. " 
~ 

In general 

sect i on ~ so the Address Interpreter is invoked through the usual 

JSR mechanism. In the case of a ~68IB~k~ word~ however~ there is 

nothing further to do~ and the address of "semicolon" terminates 

the address sequence. 

To sumrnarize~ ~8~6II;. and QQ~§2: are used to creat.e new code 

rout.ines which are associated with a defining word. All words 

defined with that defining word will employ the new code routine. 

Thus a new Forth word class is defined. 

A word closely related to ~Q~§2 is iGQ~~. You may use iGQQE 

to make a defining wor-d for a class of words whose action 1S 

specified by an assembly language routine. The parameter field 

address is passed in the same way as for QQ~§2. Thus an alterna-

tive definition of ~BBl.B!2'=E would be 

The associated code routine is null in this case. Fi gure 3.14 

i llustra.tes the appearance of the ihQQ~ form of ~BB.!B~'=E. 



Cal tech Forth 3-38 

header 
:---

"VARIABLE" 
:----------------: 

JSR IC,@# 
:----------------: 
: Adr(create) 

Adr (does:» 

var; MOV IC,-(SP) 

MOV (RP)+,IC 
---------------- <-- insert further machine 

JMP ;j)(IC)+ i nstructi ons 

Fig. 3.14 Alternate Dictionary Entry for ~BB!B~b~. 

Defining words may be established to define any data type or 

operation class; If 

a class of fixed repetitive operations can be identified it may 

be most economical of storage and execution time to create an 

appropriate defining word. An example with ~Q~§IB~I: the line 

defines Qbls as a constant word that will push the value 1 on the 

stack. This will always be more efficient that using the number 

1 (In the text interpreter the number conversion is 

avoided. and in a compiled definition the call to LITERAL is not 

needed. ) 

In practice we use the name "1" instead of ONE. Thus the 

dubious definition 

Of coursE, you could also define! with the following line 

1 

but this way two e>:tra storage locations are Llsed -- for" LITERAL 



Ca.ltech For-th 3-39 

and for- SEMICOLON. Because of the r-etur-n stack operation and the 

extr-a interpreter- cycles, execution of the _ defined 1 would be 

much slower than the gQ~§IB~I wor-d. 

3.11 BRANCHES IN 1 WORDS. 

3.11.1 An Unconditional Branch. 

An unconditional branch to any Forth wor-d is pr-ovlded by the 

~X~g function. You type 

:£~QQr:~§§ Y~!..!::!§2 ~X~g 

to jump to the addr-ess specified. 

Forth word, you could type 

If the addr-ess is that of a 

% i~gt::.g. !l§.!!l§2: ~X~~· 

(% retur-ns the code section address of the word whose name fol-

low!s. Note that in non-Caltech-OVRO systems, the word ~ gives 

the right address. In the Caltech-DVRO system: returns the 

addr-ess of the parameter field.) 

3.11.2 Conditional Branches. 

Use of the branches !E, was described in Chap-

ter- 2. The discussion here concerns the dictionary entries 

produced by these words and the state of the stack dur-ing 

compilation. 

Consider- Q=~ which might be defined 

L Q= IE Q ~b§s 1 Itf!;.!::! i. 

This wDr-d tests the value passed to it on the stack; if the 

value lS non-zero~ zer-o is r-eturned. Zero input pr-oduces one. 

The compiled dictiona,...y ent,...y for Q::=. is presented in Fig. 3.15. 



Cal tech Forth 3-40 

1---------------------
header 

1---
"0:::" 

JSR IC,@# 

address (XIF) 

, address = 1$ 

address (0) 

address (XSKF') 

address = 2$ 

1$: 1 address (1) 

1---------------------
2$: : address (SEMICOLON) 

1---------------------

Fig. 3.15 Dictionary Entry Illustrating IF. 

The words IE~ and I~~~ are compiler directives; they 

are not compiled in the Q= definition~ they are executed. Their 

execution does compile word addresses and address constants~ 

however. The word addresses are shown in the figure as XIF and 

XSKP~ which actually control branching at execution time. 

The e;.:ample illustrates the operation of IE - !;;!:::§!;; 

sequences. The address interpreter begins with the address XIF. 

XIF tests and pops the stack. A false outcome (zero) will re-

quire a branch to the "false clause", i . e" the words compiled 

between ~!:::§~ and I~~~. The branch is carried out by loading Ie 

with the contents of the location following the address XIF 

("1$"). The interpreter continues at that locCl_tion, pushing 1 on 

the stack. 

The "true clause"~ between IE and ~!:::§~. wi 11 be e:·:ecuted if 

the stac~ tests true (non-zero). In this case XIF simply incre-



Cal tech Forth 3-41 

ments Ie so that the interpreter skips over the address 1$. Zero 

is pushed on the stack. The interpreter then encounters the 

address XSKP which unconditionally loads IC with the contents of 

the following location (2$). Finally SEMICOLON terminates execu-

tion of either case. 

Other forms of compiled branches work like .!E~ etc. 

Fig. 3.16 is the dictionary entry of a typical QQ b,QQE: con-

struction: 

_ !.:..E: ~ Q QQ 8B~!2~ bQQE BEI~8 i.. 

]---------------------] 
header 

"LP" 
]---------------------] 

JSR ~C,@# 

]---------------------] 
: address(LITERAL) 
J---------------------J 

4 
]---------------------] 
J address(O) 
]---------------------] 
J address (XDO) 
:-------~-------------: 

1$: : address(RANGE) 

: address(XLOOP) 
]---------------------] 

1$ 

: address(AFTER) 
]---------------------
: address(SEMICOLON) 
:---------------------

Fig. 3.16 Illustration of DO - LOOP. 

A few peculiarities should be explained. We assume that Q is 

defined by 

Q ~Q~§IB~I Q 

as di scussed above. HowEver ~ is not so defined in this e}:ample; 



Cal tech FOI~th 3-42 

it is treated the way arbitrary numbers are. Thus LITERAL must" 

be e;";ecuted with argument 4 to get 4 on the stack. (IC increments 

after LITERAL picks up its argument so that the interpreter" 

resumes with the Q word. .BB~§!;; and BEI~B ar-e just random wor-ds 

pr-edefined in the dictionary. 

XDO takes the top two stack variables (0 and 4) and pushes 

them on the return stack as discussed in Chapter- 2. E>:ecuti on 

proceeds with ~B~Q~" XLOOP increments the loop index, checks the 

i nde~"; against the limit, and either branches back to BB~Q~ (by 

loading IC with 1$) or skips to BEI~B . 

..:"' 12 INTERFACING WITH AN OPERATING SYSTEM. 

A controversial topic among For-th users is the rol e of 

general purpose oper-ating systems. The computer- vendors supply 

operati.ng systems with varying levels of function and comple>:ity. 

Generally their purpose is to allocate, schedule, and 

sharing of computer r-esoUr""ces for- a single task or- for 

concurrent tasks. The"question is whether- the function, 

promote 

sevel~al 

stan-

dardization, and economy of the operating systems are worth the 

overhead in speed and memor-y for particular Forth applications. 

Cal tech-DVRO systems have been developed both wi th and wi th--

out OS support. In this section we consider some criteria foe 

these choices. These topics will be taken up again in Chapter 5 

when we consider large-memory Forth systems. 

3.12.1 To Stand Alone Or Not To Stand Alone. 

We can attack the problem either economically or technical-

ly. In economic terms, the price of computer memory (particular-



Cal tech Forth 3-43 

ly semiconductor memory) is falling rapidly. Low cost peri ph-

erals such as floppy disks are widely available. These techno-

logical forces tend to reduce the economic penalty for relatively 

large, general purpose operating systems. 

In contrast, the cost of software development steadily 

rises. So there is an economic: incentive favoring utilization of 

off-the-shelf software systems when possible. Reinvention of 

complex scheduling and I/O algorithms is rarely justified. 

Technical analysis is more difficult. One (promi nent) 1 i ne 

of thinking is that much can be done with extremely simple soft-

ware. Thus Forth standalone systems with minimal multiprogramm-

ing~ no concurrent I/O~ and practically no error recovery capabi-

lities haye been very Successful. The same thought prOcess leads; 

to the idea that practically ~ll computing can be handled by 

Forth programming on 16 bit computers with no more than 32K 

memory words. (Thus the mapping pr-oblem for- larger memor-ies is 

avoided. ) 

With standalone For-th~ cross assemblers (such as MetaForth) 

can be developed that generate systems with nearly identical 

structure for- widely different types of computer. Mai ntenc!nce 

and development effort are reduced accordingly. 

TE,c:hni cal arguments for Forth rLlnni ng uncler- operati ng sys-

terns have a few major- themes: 

bility~ and tr-snspor-tability. 

ccncurr-ency of large tasks~ relia­

Programming for- many large jobs lS 

simp1er" 

c:heap~ 

when large amounts of memory are available. Memor-y is 

16 bit computers can give you instant access to 32K words 

oc more; so why not allow each task in the system to use up to 



Cal tech Forth 3-44 

this amount? 

The difficulty with large tasks in a multitasking system is 

that physical memory has to be mapped into the 32K task address 

space. The mapping problem is fairly severe if you require 

efficient use of physical memory and CPU time. Vendors" operating 

systems usually cope with this problem; development of gener-

alized Forth memory mapping software is a nontrivial project. 

Concurrency of large tasks may include non-Forth tasks. For 

e)·(ampl e a Forth real-time control task may have to co-exist with 

Fortran data reduction. This is feasible if both tasks run under 

a common operating system. 

Reliability of a software system is hard to def i ne. One 

useful pr-inciple is that a software fault in one task of the 

system should be isolated from other tasks. Commonly this fea-

is provided by memory mapping and by carefull y defining 

user- and syst.E~m-states of the CPU. Again~ it is a major effort 

to provide these functions in standalone Forth. 

Another aspect of the reliability problem is what to do in 

the event of hardware faults. Large peripheral devices (particu-

larly disks) can be very compl e>(. Many opE-rating and error-

recovery modes are available. The manufacturer's device driving 

software (a component of oper-ating systems) becomes correspond-

ingly elaborate and difficult to repeat in Forth. 

One hindrance to the wider propagation of Forth has been 

that many implementations ~c~ constructed using the MetaForth 

crass-c:ompiling scheme. Forth defined in terms of Forth is 

difficult to learn and difficul.t to transport to a non-Forth 

computer. Implementations in the standard assemble~ code of 



Cal tech Forth 3-45 

particular machine can easily be transferred to other machines of 

the same type, particularly if standard file structures and 

formats are observed. 

3.12.2 OS Interfacing Techniques. 

Implementation of Forth as a task under an operating system 

such as RT-ll or VAX/VMS is generally simpler than as a stand-

alone system. The OS provides macro instructions for termi nal 

and disk I/O. 

OS. 

Buffering and error checking are provided by the 

WhEm you have to connect non-standard I/O devi ces or respond 

to special hardware interrupts, the situation is a little more 

complicated. The general purpose operati ng systems necessar·i 1 y 

restrict your freedom of interfacing with external devices, since 

the systE~m'!:;. i ntegri t.y must be preset-ved for- other system users. 

In particular for RT-l1 you must carefully observe the interrupt 

protocol s wi t.h appropri at.e use of the .INTEN and . SYNCH macros. 

Of course any macro defined in the conventional assemblers 

can be expressed in terms of the Forth assembler. Unfor-tun2l.tel y 

standard Forth lacks a true macro-processing capability~ so that 

it is difficult to define macros with the generality available in 

the conventional a5sE~mbler. The pr-oblem is not too bad~ since 

you rar-ely need more than a few types of macro in a given For-th 

applic:ation. VAX/VMS FOrth (Chapter 5) has an interesting Forth-

based macro capability. 



Calteeh Forth 3-46 

3. 13 MUL T I F'ROGRAMM I NG AND REAL - TI ME APF'L1 CAT IONS. 

In real-time control or data acquisition jobs it is often 

necessary for a Forth system to interact with external devices on 

a prescribed time schedule, e.g. sample data every 10 msec or 

update telescope drives every 0.5 sec. You usually want to be 

able to conve,..·se with Forth in a normal way while the real-time 

processes are running. In some cases, unrelated users may want 

to share the computer at the same time. 

All such situations require some multiprogramming scheme. 

Multiprogramming is the general technique of sharing the compu-

ter' 5 time, memory, and peripheral devices between multiple job 

tasks or users. A number of schemes have been used for Forth 

multiprogramming. Most Caltech-OVRO systems use a multilevel 

priority scheduling system. Other Forth systems use a round-

robin scheduler, especially for multiuser "timesharing" applica-

tions. When running under a multiprogramming operating system, 

independent copies of Forth may be run as separate tasks under 

the operating system. 

3.13.1 Priority Scheduling. 

A simplified priority scheduling algorithm is used in sev-

eral Caltech-OVRO systems. Figure 3.17 illustrates the method. 



Cell tech Forth 

(recurrent interrupt) 

:real-time task 
#1 

]---------------: 
(no) : interval T2 

: elapsed? : -----_.>: 

(yes) 

]---------------] 
lreal-time task 

#2 

:---------------: 
(no) : interval T3 

: elapsed? :------"> 
]---------------] 

(yes) 

]---------------] 
:real-time task 

#N 
:---------------: 

: return from 
: interrupt : <-------: 
:---------------: 

Fig. 3.17 Priority scheduled Multiprogramming. 

3-47 

A recurrent interTupt (say 60 Hz) initiates the "foreground 

tasks" shown in the figure. Task 1 contains all the functions 

to be performed every interrupt. When tas~: 1 is campI eted a 

counter is e>:amined to see if a predetermined number of i nter-

rupts has been processed. If the interval T2 has elapsed, t.he 

counter- is reset and the lower level task (#2) begi.ns. If T2 has 



Cal tech Forth 3-48 

not elapsed, a return from interrupt instruction is performed: 

the "background" (e. g. Text Interpreter) then has the use of the 

machine until the next interrupt. 

This multiprogramming technique lets you set up an arbitrary 

number of execution levels each of which is initiated after-

certain integral number of insta.nces of the ne}(t 

interrupt return information is stored 

higher level. 

If the careful I y, the 

foreground structure is at least partially reentrant. The level 

1 task may interrupt the level 2 task many times before level 2 

completes. You must insure that there is enough time for each 

task level to complete before it is next scheduled to run. 

Advantage:; of this priority scheduling method include the 

minimal context switchiAg requirements~ 

teed servicing of high priority tasks. 

simplicity~ a.nd guaran-

The context that has to 

be pl~eserved when entering a. given foreground level is just the 

general registers including the Forth instruction cOLlnter IC~ and 

the hardware instruction counter. If disk and terminal I/O are 

to be allowed from more that one e}(ecution level, 

buffers must be maintained. 

then separate 

A lower level task in general does not have to be aware of 

the existence of higher level tasks, except that higher 

tasks effectively slow down the computer. I f a low I eve 1 

hangs up in a IDDP~ higher level tasks will still execute. 

Problems with the method include the awkwardness of 

level 

task 

multi-

level I /O~ the requirement that the basic Forth routines be 

reentrant, and that the programmer must see that the completion 

time of an execution level never exceeds its scheduling interval. 



Cal tech Forth 3-49 

3.13.2 Round-robin Scheduling. 

A second popular Forth multiprogramming scheme is the round-

robin. As the name suggests, the principle is to allow one task 

to finish, then to begin the next in a chain. After the last task 

in the chain completes, the first begins again. 

The method is well suited to an environment with multiple 

users all having equal claim to the computer. Performance de-

grades gracefully as more tasks are added to the loop. 

Proper operation of the round-robin requires that tasks be 

"cooper-ati ve", i. e. willing to r-elinquish rights to the CPU in a 

timely way. A task does not have to complete its total function 

before it allows other-s to e~ecute, but it must reI ease contr-ol 

fr-equently so that response time to other user-s is acceptable. 

The round-r-obin is not well matched to real-time situations 

in which guaranteed response to e>:ternal events is r-equired. It 

also lacks "r-obustness" in the face of any user who wants to 

monopolize the CPU. 

:-.,13.3 Schedul i ng Through Operati ng Systems. 

Multiprogramming facilities are available in most 

operating systems. These range from simple foreground-background 

( dua.l task) systems like DEC's RT-11 to full-scale priority 

scheduled systems like RSX-ll. For a price, the RSX-ll system 

will give you priority scheduling, time-slicing between tasks of 

similar priority, and memory protection between tasks. As dis-

cussed in the previous Section, you save imp I ementat.i on e~: pense 

but suffer greater- memory ancl CPU time overheads to implement 

Forth mUltiprogramming through operating systems. 



4.1 INTRODUCTION. 

CHAF'TER 4 

FORTH VOCABULARIES. 

In this chapter we present definitions of some of the most 

useful and most standardized Forth words. The vocabulary 

eludes the Forth-79 standard! as well as the Double Number Word 

Set and the Assembler Word Set that were published in the Forth-

79 document. Also included ar-e words that are used in the Cal-

tech Forth versions. 

4.2 NOTATION. 

The style of notation in this chapter follows the AST.Ol 

document (see Bibliogr-aphy). 

Words are listed in "alphabetical" sequence! based on t.he 

ASCI I character set. The action of each word is described in 

conCIse form: A string of symbols that tells which par-ameters 

should be placed on the·stac~ before the word is executed; the 

itself~ then! any parameters that the word leaves on the 

stac~ A parameter appearing to the Cigbt of another on the 

definition 

stack. 

line is meant to be ~bgy§ the other on the parameter 



Cal tech Forth 4-2 

The following symbols are used: 

b 

c 

f 

m n p 

q r s 

u v w 

Block or screen number. 

7-bit ASCII character code. 

Flag: O=False~ nan-zero=True. All words which 
return a flag return O=False or l=True. 

16-bit integers (or addresses) 

Double-precision (2 cell) numbers. 

nnnn pppp Names of words. 

ssss A string of characters. 

vvvv A vocabulary name. 

Preceding a verbal description of each word~ certain charac-

ters may appear in parentheses. These denote some special action 

or characteristics~ as follow: 

c The word may be used only within colon-definition. A 

following digit (CO or C2) indicates the number of memory 

cells used when the word is compiled~ if other than one. A 

following + or slgn indicates that the word either pushes 

a value onto the stac~ or remOVES one from the stack dLlring 

compilation. (This is not related to its action during 

execution. ) 

V The word is not part of Forth-79. 



Cal tech Forth 4-3 

4.3 STANDARD VOCABULARY LIST. 

m p 

Stores word m at address p. 

" sssss" 

(V) Enters a string of up to 63 characters into buffer 

TEXT (or onto string stack in XED) for use by editor. 

This word is in editor vocabularies only. Note that a 

null message <single blank between "s) is 

permitted. 

~1. nnnn p 

<V) Li ke (below) , e){cept returns the address of 

code section of nnnn. 

nnnn p 

Called "tick". Ti cJ:: leaves the address of 

parameter field of nnnn. This is a "smart" 

not 

the 

the 

word; 

inside a colon-definition, it produces code that causes 

the address to appear on the stack at eXEcution 

The cellon definition 

o.QIJ.Q 1. 

is equivalent to 

QQQQ 1 blI~8Bb i.. 

ssss) 

Ignores a comment string terminated by a 

ti me. 

right 

parenthesis. 

allowed. 

A single blank between parentheses is not 



Cal tech Forth 4-4 

* 

*l 

*/MOD 

+ 

+' 

+LOOP 

,CODE 

m n * q 

16-bit integer multiply with sign. 

fTl n p *1 q 

Leaves q= (m*n)/p. Retention of an intermediate 32-bit 

product permits greater accuracy than the otherwise 

equivalent sequence: 

m n p */MOD r q 

m n * p I. 

e>:cept leaves both remainder (r) and quotient 

(q) • Has full 32-bit intermediate accuracy. 

m n + q 

16-bit integer addition with sign. 

m p +! 

Adds integer m to value at address p. 

m +LOOP 

(C) Adds m to the loop inde>:. If m.>O~ the loop will 

ter-mi nate if the new inde>: equals or passes the limit. 

If m(O, the loop will terminate if the new inde>: passes 

the 1 i mi t. Loop inde)·: checking 1S unsigned;; this 

allows pr-oper- oper-ation with 16-bit addr-esses > 32767~ 

m , 

Stores m into the ne}( t available dictionary cell, 

advancing 

wor-d) . 

the dictionary pointer by two bytes 

m ~CODE nnnn 

(V) Begin a code definition named nnnn as for 

(one 

CODE. 

Allow space for m cells for par-ameters before beginning 

machi ne code. (' nnnn will give the addr-ess of t.he 

first reser-ved par-ameter-.) 



Cal tech Forth 4-5 

-TRAILING 

! 

IMOD 

0< 

0(= 

m n - q 

16-bit signed integer subtraction q=(m-n). 

m n -TRAILING m p 

Eliminate trailing blanks from a text string beginning 

at address (m) with initial length < n) • Returns 

or:iginal value em) with new length em). 

Types the value on the stack as a signed integer~ 

converted according to the current number base CBASE! • 

If the value is negative~ 

positive~ types no sign. 

types a minus sign; if 

(C) Transmits a message of up to 127 characters delim-

it.ed by " to the selected output device. 

null message 

permitted. 

m n I q 

(single blank between 

Note that a 

"s) is not 

16-bit integer divide~ q=m/n. The quotient is 

truncated; any remainder is lost. 

m n iMOD r q 

16-bit signed integer divide, q=m/n. The quotient (q) 

is left on top of the stack, the remainder (r) beneath. 

The remainder has the sign of the dividend (m). 

m 0< f 

Leaves a true flag (f) if (m) is negative. 

m 0<= f 

(V) Flag <f) is true if em) is zero or negative. 



Cal tech Forth 4-6 

0< "> 

0= 

0> 

0:·= 

OSET 

1+ 

1+' 

1-

lSET 

2! 

2* 

2+ 

m 0< >- f 

(V) Flag (f) is true if (m) is non-zero. 

m 0= f 

Flag (f) is true if (m) is zero. 

m 0> f 

Flag (f) is true if (m) is positive and non-zero. 

m 0>= f 

(V) Flag (f) is true if em) is greater than or- equal to 

zero. 

P OSET 

(V) Store zero at location p. 

m 1+ q 

Incr-ement value em); q=(m+l). 

p 1+! 

(V) Add 1 to the contents of address p. 

p 1 SWAP +!. 

m 1- q 

(V) Decr-ement. var-iable em); q=(m-l). 

p lSET 

(V) Stor-e one at location (p). 

u P 2! 

Stor-e 32-bit var-iable eu) at location (p). 

m 2* q 

(V) Double var-iable (m); q=2*m. 

m 2+ q 

Add two to variable (m); q=m+2. 

m 2- q 

Subtrac:t two from variable em); q=m-2. 

EqLli val ent to 



Cal tech Forth 4-7 

2/ m 2/ q 

(V) Halve variable (m); q=m/2. 

Lt 2<R 

Move the 32-bit number (u) from the user stack to the 

return stack. 

P 2@ u 

Fetch 32-bit value (u) from location (p). 

2CONSTANT u 2CONSTANT nnnn 

2DROP 

2DUP 

2R> 

2ROT 

2SWAP 

Defines Fort.h word (nnnn) which will push 32-bit valuE 

(u) on the stack. 

u 2DROP 

Eliminates a 32-bit variable from the top of the stack. 

Equivalent to .DROP DROP. 

u 2DUP u Ll 

Duplicates a 32-bit variable on the top of the stack. 

Equivalent to OVER OVER. 

2R"-:- U 

Move the 32-bit number (u) from the return stack from 

the user stack. 

u v w 2ROT v w u 

Rotates 3 32-bit variables, similar to ROT. 

Ll v 2SWAP v u 

Exchange the top two 32-bit variables~ similar to SWAP. 



Cal tech Forth 4-8 

2VARIABLE 

2VARIABLE nnnn 

Define a Forth word (nnnn) which returns the address of 

a 32-bit quantity contained in the parameter field. 

Like VARIABLE, except that four bytes are reserved. 

79-STANDAFiD 

79-STANDARD 

;CODE 

If this word exists, and can be executed successfully~ 

a minimal Forth-79 system is guaranteed to b~ 

aVi:dlable. No parameters. 

nnnn 

Create a dictionary entry for a colon-definition, set 

compi.lati on mode, and set the vocabulary 

equivalent to the current vocabulary. 

: :> 

(CV) Switch mode from compilation to e;·:ecLltion. 

Compiles a word address that, at e>:ecut i on, will 

restore Ie and branch to the code beginning after : :> 

If the code ends with NEXT, the return will be correct. 

E;{ampl e: NNNN ... 

NEXT , 

(C) Terminates a 

compilation. 

; CODE 

: :> (assembly instructions) 

colon-definition and stops 

(C) Stops compilation and terminates a defining word 

ennnn) • Switch the context vocabulary to ASSEMBLER in 



Cal tech Forth 4-9 

;5 

<: 

.. -.= 

<> 

= 

:> 

>: 

anticipation of a machine-code sequence. When (nnnn) 

is subsequent lye}: ecuted to def i ne a new word (pppp) , 

the execution-address of (pppp) will point to the 

machine code sequence following the ;CODE of (nnnn) . 

Then, sLlbsequent use of (pppp) (or any other ward 

defined by nnnn) will cause this machine-code sequence 

to be e){ecuted. The assembly language equivalent of 

DOES>. 

;S 

(V) Stops interpreta.tion of a Forth screen. 

m n <: f 

Flag <f) is true if (m) is less than (n), 

of 2's complement, 16-bit arithmetic. 

m n <= f 

in the sense 

(V) Flag <f) is true if em) does nat eNceed (n), in the 

sense of 2~s complement, 16-bit arithmetic. 

m n <: > f 

Flag (f) is true if (m) is nat equal to (n). 

m n = f 

FL"OIg (f) is trLle if (m) is equal to (n). 

m n :> f 

Flag (f ) is true if (m) is greater than (n), 

sense of 2's complement 16-bit arithmetic. 

in the 

(V) Switch mode from ex ecut i on t.o compilation. 

Assembles instructions that save Ie and begin the 

Address Interpreter just after ">:. If the compiled 



Cal tech Forth 4-10 

code ends with ;, the return will be correct. 

E:·:ampl e: CODE nnnn ....• 
.' . (compiled Forth 

words) 

Not.e t.hat >: and :~ can be used freely in either CODE 

or : definitions. 

>= m n >= f 

(V) Flag (f) is true if (m) is greater than or equal to 

(n) in the sense of 2"5 complement 16-bit arithmetic. 

>IN >IN m 

Returns the current character offset (m) in the input 

te>:t stream, range 0 - 1023. 

>R m ·>R 

Pushes (m) onto the return stack. See R>. 

P ? 

Prints the value contained at address p in free format~ 

according to the current base. Equivalent to p @ . 

'JDUP m ?DUP m [m] 

If value (m) is non-zero, push a copy of it on the 

st ac k. 

p :j) q 

Called "fetch" , leaves the contents (q) of memory 

address (p). 

ABORT ABORT 

Enter the abort sequence, clearing all stacks, printing 

simple error message, and returning control to the 

terminal. 

A8S m ABS q 

Leaves the absolute value of a number. 



Cal tech Forth 4-11 

ALLOT n ALLOT 

Allocate (n) bytes to the parameter- field of the most 

recent Forth definition. 

AND m nAND q 

Bitwise logical AND of (m) and (n). 

ASH n mASH r 

Arithmetic* shift, result (r) = (n) * 2**(m). If m::O. shift 

is to left; m(O, to the right. 

*An ecit!J.m@ti£ shift is a shift in which the sign bit is 
"sticky"; it never changes when data are shifted left. When data 
are shifted right, the sign bit is copied into successive bits to 
the right, but the sign itself never changes. In a iggi£~l shift 
the sign bit is treated like any other. 

ASSEMBLER 

ASSEelBLER 

Switch the context vocabulary pointer so that 

dictionar-y searches wi 11 begin at the Assembler 

Vocabulary. The Assembler- Vocabulary is always chained 

to the cur-rent vocabulary. 

BASE BASE P 

An integer point.ing to the current conversion base 

value. 

BEGIN BEGIN 

(CO+) Mark the start of a BEGIN - UNTIL or BEGIN 

WHILE - REF'EAT loop. The words bet.ween BEGIN and its 

corr-espondi.ng termination will be repetitively 8;.:ecuted 

unti 1 the termination condition is satisfied. Loops 



Cal tech Forth 4-12 

BELL 

BLY 

BLODe:: 

BUFFEF( 

C' 

c. 

may be nested. 

BELL 

Activate terminal bell or tone. 

BU< p 

An integer~ equal to the number of the block being 

interpreted or zero if 

termi nal . 

input is coming from the 

b BLOCK P 

Leaves the address of a buffer containing Block (b). 

If the block is not already in memory~ it 1S 

transferred from disk or tape into whichever core 

buffer has been least recently accessed. If the block 

occupying that buffer has been updated ~ it is rewritten 

on disk or tape before Block (b) is read into the 

bU,ffer. 

b BUFFEH P 

Obtains a core buffer for block b. 1 eavi ng the first 

buffer cell address. The block is D9t read from disk~ 

and is automatically marked as updated. 

m p CI 

The low order 8 bi ts of (m) is stored at the byte 

address (p) 

p C:]) m 

The 8-bi t byt.e at address (p) is retur-ned in the low 

order part of (m). 

n C~ 

The high order bits are cleared. 

Compile the low-order byte of n into the dictionary and 

increment the dicitionary pointer by one byte. 



Cal tech Forth 4-13 

CHAIN 

CMOVE 

CODE 

CDM 

COelF'I LE 

CHAIN vvvv 

Connects the current vocabulary to all definitions that 

might be entered into Vocabulary (vvvv) in the future. 

The current vocabulary may not be FORTH or ASSEMBLER. 

Any given vocabulary may be chained only once~ but may 

be the object of any number of chainings. For e),(ample~ 

every Llser-def i ned vocabul ary ffi"'.Y i ncl ude the sequence, 

CHAIN FORTH. 

m n r CMOVE 

Move (r) bytes from area beginning at byte address (m) 

to area beginning at byte address (n). 

CODE nnnn 

Creates a di~tionary entry for a code definition named 

(nnnn), and sets the context vocabulary to Assembler. 

m COM q 

Leaves the one's complement of (m). 

COMPILE (non-standard parameter~) 

Thi s word pl~ovi des a way to cause spec i f 1 C data to be 

compiled into the dictionary~ When COMPILE e~<ecutes 

(it must be called from within a colon definition)~ the 

16-bit 

picked 

LITERAL 

word next following in the address sequence 

up. This data is not pushed on the stack 

would do) , but it is stored at the 

IS 

(as 

ne~<t 

available dictionary location, and the dictionary 

pointer is incremented accordingly. 

E>:ampl e if X is defined by _ X ~Q~El~~ 1 Q ~ ] 

then e>:ecuting x campi I es a "0" at 



Cal tech Forth 4-14 

COI-.lSTANT 

CONTEXT 

CONVERT 

COpy 

COUNT 

dictionary location. 

m CONSTANT nnnn 

Creates a word which when e>:ecuted pLlshes (m) onto the 

stack. (Since the "constant" (m) may be 

the sequence; q nnnn it is 

advantageous to def i ne a variable as 

particularly if the variable is 

than it is modified.) 

CONTEXT P 

An integer that indicates in 

dictionary searches are to begin. 

u p CONVERT v q 

accessed 

which 

modified by 

oftentimes 

a constant ~ 

more often 

vocabulary 

Convert an A'SCll string beginning at memory location 

(p)+l to a double precision integer according to BASE. 

Add the result to eu). The sum is returned as (v)~ and 

the address of the first character that could not be 

converted is r~turned as (q). 

m n COpy 

(!.,n Copy the contents of block em) into block en) and 

mad: block en) as updated. 

p COUNT (p+l) n 

The count-byte (n) is extracted from the first byte of 

a message string beginning at address (p)~ and left on 

the stack. The string address is incremented by one 

to point to the first character of text. 



Cal tech Forth 4-,15 

CR 

CREATE 

CURF~ENT 

D+ 

D-

D. 

D.R 

DO= 

D< 

CR 

Transmit carriage return/line feed 

selected output device. 

CREATE nnnn 

codes 

Creates a skeleton word definition with name 

to the 

(nnnn) . 

As initialized, this word will push the address of the 

parameter field on the stack, although no parameter 

field space is reserved by CREATE. 

CURRENT p 

An integer that indicates the vocabulary into which new 

words are to be entered. 

u v D+ I'll 

Double precision (32-bit) addition; w=u+v. 

U v D- w 

Double precision (32-bit) subtraction; w=u-v. 

u D. 

Output 

BASE. 

u n D.R 

a 32-bit value according to current 

a 32-bit vB.lue according to cur-rent 

value of 

val ue of Output 

BA!;E. Align output in a field of (n) characters in 

width. 

u DO= f 

Return (f) non-zero if (u) is non-zero. 

u v D< f 

Flag (f) is true if (u) is less than (v) in the sense 

of 32-bit, two's complement integers. 



Cal tech Forth 4-16 

u v D= f 

Return non-zero valuE> of (f) if u=v. 

DABS Lt DABS v 

Returns (v) equal to the absolute value of (u). 

DASL LI m DASL v 

Arithmetic 32-bit shift left by (m) places. (m) must be 

positive. 

DASR u m DASR v 

Arithmetic 32-bit shift right by em) places. 

DATAN u v DATAN w 

Return = Arctan (u/v) preserving quadrant. 

information. The resul t is an angle expressed in 

Binary Angular Measure (BAM).* 

lIn Binar·y Angular Measure~ 0 degrees = O~ 90 degrees = 40000(8), 
180 degrees = -180 degrees = 100000(8), etc. In this way, a 
fraction of a turn is represented with the greatest possible 
accuracy by a signed integer. 

DCOS Ll DeOS v 

CompLlte (v) - cosine(u)~ similar to DSIN. 

DECIMAL 

Sets the numeric conversion base to decimal mode. (Set 

BASE to ten.) 

DEFINITIONS 

DEFINITIONS 

Sets the current vocabulary (into which new definitions 

are placed) to the context vocabulary (the vocabulary 

currentl y bei ng used for searches). 



Cal tech Forth 4-17 

DEF'TH 

Di'1AX 

Di'1JN 

DNEGATE 

DO 

DOES: 

DEPTH n 

Leaves the number (n) of 16-bit words currently on the 

stack, before (n) is pushed on. 

u v DMAX w 

Return (w) equal to the larger of eu) and (v), 

as 32-bit two's complement values. 

u v DMIN w 

Return (w) equal to the lesser of (u) and (v), 

as 32-bit two's complement values. 

u DNEGATE (-u) 

Leaves the negative of 32-bit quant i t y; 

complement. 

n m DO 

(C) Begin a loop, to be terminated by LOOP or 

t.reated 

treated 

two' 5 

+LO[)P. 

The loop inde>: begins at em). and may be modified at the 

end of the loop by any positive or negative value. The 

I cop is termi nated when an incremented i nde>: reaches or 

e;·:ceeds (n) , .or· when a decremented i nde;< becomes less 

than (n) • Within a 1 oop ~ the word I will place the 

current. inde;·: value on t.he st.ack. 

E;·:ecution 

return stack: 

of DO places three parameters on 

The starting location of the loop. 

i nde>: 1 i m:i. t, and the i nde:-:. 

DOES> 

(C) Terminates a defining word nnnn, which 

the 

t.he 

can 

subsequently be e>:ecuted to de·f i ne a new word (pppp) . 

Subsequent use of (pppp) will cause the words between 

DOES: and to be e:-:ecut.ed with the par2'l.meter-field 



Cal tech Forth 4-18 

DROF' 

DSIN 

DSQRT 

DU< 

DUMF' 

DUF 

EDITOR 

ELSE 

EMIT 

addl~ess of (pppp) on the stack" 

Section 3.10. 

m DFiOP 

Drop the topmost value from the stack. 

u DSIN v 

Result (v)~ scaled in the int.erval -1 -- +1 (binary point 

to the right of the sign bit)~ is the sine of angle (u) 

1 n BAr·l. 

LI DSQRT v 

RetLlrn (v) ~ the square root of (u). (u) must be a 

positive value. 

u v DU< f 

Returns (f) ,non-zero if (u) is less than (v) in t.he 

sense of 32-bit unsigned integers. 

m n DUMP 

Dump (n) memory cells beginning at address (m). Dump 

is in current number base. 

m DUP m m 

Returns a duplicate of the topmost stack value. 

EDITOR 

The name of t.he Edi t.or Vocabul ary. If that vocabulary 

is loaded. EDITOR establishes it as the context 

vocabulary~ thereby making its definitions accessible. 

ELSE 

Precedes the false part of an IF-ELSE-THEN condit.ional. 

c EMIT 

Send character (c) to the current output device. 



Cal tech Forth 4--19 

Er1F'TY - BUFFERS 

Er1F'TY -BUFFERS 

Marks all block-buffers as empty~ without affecting 

their actual contents. Updated blocks are not flushed. 

END-CODE END-CODE 

EXCHANGE 

EXECUTE 

EXIT 

EXPECT 

FILL 

Terminate an assembly-language CODE definition or 

series of definitions~ resetting the conte}:t vocabulary 

to CURRENT. See ASSEMBLER. 

m n EXCHAN(3E 

(V) Exchange the contents of blocks (m) and (n) and 

flush. 

p EXECUTE 

E>:ecute the Forth definition who=--e code address is (p). 

EXIT 

Used in a colon definition~ EXIT forces an immediate 

termination of execution of the definition. Not for-

used in DO LOOP constr-Llctions. 

p n EXPECT 

Loo~ for- a sequence of up to (n) char-acter-s to be input 

from the current terminal. Store these beginning at 

address (p) • An input "ret.urn" character will 

terminate the sequence early, if encountered. One or 

two "null" characters (zero bytes) will be appended to 

the sequence in memory. 

p n m FILL 

Treat: (m) as a byte value and store (n) copies of it 

into memory starting at address (p). Do nothing if (n) 



Cal t.E'ch Forth 4-20 

FIND 

FORGET 

FORTH 

HERE 

HEX 

I 

is less than or equal to zero. 

FIND p 

Search for the word whose name is the next "token" in 

the te>:t input stream. If the word can be found in 

either CONTEXT or FORTH vocabularies, leave its address 

(p); otherwise leave zero. 

FORGET nnnn 

Delete the word (nnnn) and all dictionary entries 

following it. Although (nnnn) must be in the conte>:t 

vocabulary to be found~ the words that follow it ace 

deleted no matter which vocabulary they belong tD. 

Normally, FORGET should not be used within a colon-

definition~ as it is not a compiler directive. 

FORTH 

Make FORTH the context vocabulary. Since FORTH cannot 

be chained to anything~ it becomes the only vocabulary 

that is search~d for dictionary entries. 

HERE p 

Leave (p), the address of the next available dictionary 

location. 

HEX 

Switch the number base to hexadecimal. 

I m 

(C) Push the topmost return stack value onto the user 

stacJ: without disturbing the return stack. TypiC<B.lly I 

is used to return the index of an innermost. DO-:toop~ 

but it can also be used to access values pushed onto 



Cal tech Forth 4-21 

IF 

IFEND 

IFTRUE 

IMMEDIATE 

J 

the return stack by >R. 

f IF 
f IF 

(C2+) 

ELSE 
THEN 

THEN or 

IF is the first word of a conditional. If f is 

true (non-zero) , the words fall owi ng I F are eN ecuted 

and the words following ELSE are not e)·:ecuted. The 

ELSE part of the conditional is optional. If f is 

false (zero), words between IF and ELSE, or between IF 

and THEN when no ELSE is used, are skipped. IF-ELSE-

THEN conditionals may be nested. 

IFEND 

Terminates a conditional interpretation sequence begun 

by IFTRUE. 

f IFTRUE ... OTHERWISE ... IFEND 

Unlike IF-ELSE-THEN, these conditionals may be employed 

during interpretation. In conjunction with [ and ] , 

they may be used within a colon-definition to control 

compilation, althoUI;Jh they are not to be compiled. 

These words cannot be nested. 

IMMEDIATE 

(CV) Set the precedence bit of the word just defined in 

the di.ctionary. 

J m 

(C) If the current DO - LOOP is nested within another 

DO LOOF', J may be used to obtain the inde~ of the 

outer loop. 



Cal tech Forth 4-22 

f<EY 

LEAVE 

LINE 

LIST 

LITEF\AL 

LOAD 

LOOF' 

(C) If the current DO - LOOP is nested within two DO -

LOOPS, K wi 11 return the i nde>: of the outermost loop. 

VEY c 

Return the nE'Nt character available from t.he current. 

input devi CE'. 

LEAVE 

CaLlses the termination of a DO - LOOP (+LOOP) the ne)·:t 

time the indeN is checked. This is done by adjusting 

the limit value stored on the return stack. 

m LINE p 

Leaves the character address (p) of the be!;/inning of 

1 i ne (m) for the block whose number is contained at 

BU<. 

b LIST 

List the block (b) as 16 lines of 64 ASCII characters on 

the select.ed output device. 

n LITERAL 

Set SCH to (b). 

Compile the address of the code routine called LITERAL 

followed by the value en) into the dictionary. 

the currently defined word is e;·:ecuted, 

pushed on the stack. 

b LOAD 

B£:-!gin interpreting block (b). 

LOOF' 

(n) will 

When 

be 

(e) Increment the DO-loop indeN by one, terminating the 

loop if the new index is equal to or greater than the 

1 i mi t. 



Cal tech Forth 4-23 

LSH 

MAX 

MIN 

M!< ! 

MOD 

MOVE 

NEGATE 

NEXT, 

n m LSH r 

Logical shift left (m) places. (m) may be negative. 

m n MAX q 

Leaves (q), t.he great.er of (m) and (n). 

m n MIN q 

Leaves (q), the lesser of (m) and (n). 

MK! 

(V) Mark the present value of OP. Equivalent to HERE 

Mf<VAR Useful in assembler programming for passing 

parameter addresses. See MK@. 

M~<;i) n 

(V) Obtain the value of DP t.hat was last marked with 

MK! . EquivaJent to MKVAR @. Example: MK! 

CODE nnnn S -) MK@ P MOV, NEXT, This PDP-11 routine 

will push 123456 on the stack. 

m n MOD r 

Leaves the remainder of (m)/(n), 

(m) • 

p q n MOVE 

with the same sign as 

Moves t.he content.s of (n) 16-bit words beginning at 

address (p) into (n) words beginning at address (q) • 

The order of transfer is lowest-first .. 

n NEGATE (-n) 

Leave minus the number (n) on t.he stack, two"s 

complement. 

NEXT, 

(V) An assembler word that may be used to terminate a 



Cal tech Forth 4-24 

NOT 

NUMBER 

OCTAL 

O. 

OF.: 

OR! 

OTHERWISE 

OVER 

CODE word. It invokes the Address Interpreter. In 

OVRO PDP-l1 versions, NEXT, assembles a "jump indirect 

through IC and increment IC" instruction. 

m NOT f 

Invert a boolean condition. Equivalent to 0=. 

NUMBER 

Convert a character string left in the dictionary buf­

fer by WORD as a number, returning the result in reglS-

ters, internal temporary locations, or on the stack. 

The appearance of characters that cannot be properly 

interpreted will cause an error eNit. 

OCTAL 

Set the number base to octal. 

n O. 

(V) Type n as an unsigned oct.al number, 

current value of BASE. 

m n OR q 

See 00. 

Bit.wise logical inclusive OR; q=m or n. 

m p OR! 

regClrdless of 

(V) Form t.he logical OR of (m) and the contents of (p). 

Store at address (p). 

OTHERWISE 

An interpreter-level conditional word. 

m n OVER m n m 

See IFTRUE. 

Copy the stack value Cm) under t.he top value Cn) 

the t.op of the stack. 

onto 



Cal tech Forth 4--25 

F'AD 

F'AGE 

PICf< 

PRINT 

F'r< INTER 

QUERY 

QUIT 

F'AD P 

Leaves the address (p) of a 64-byte buffer that is used 

for intermediate storage during some string processing 

functions. 

F'AGE 

Clears the terminal scr-een aI" per-far-ms a simi lar action 

on the cur-rent terminal. 

n PICI.::" m 

Returns (m)~ the (n)-th stac~ value beneath the cur-r-ent 

top stack value, not counting (n) itself. 

equivalent to OVER.) 

p n PRINT 

(2 PIG:': is 

Transmit en) char-acter-s to the selected output pr-inter-

star-ting at. character address ep)~ which will have been 

placed 

COUNT. 

F'RINTER 

on the stac~' or- in an inter-nal register- by 

Select a hard-copy printer as the out.put device for all 

output directed through EMIT or PRINT. 

QUERY 

See TERMINAL. 

Accept input characters from CLlrrent input devi ce CI.nel 

place into terminal buffer. Input is terminated by a 

'return' character- DC by the transmission of 80 

char-acters. 

QUIT 

Clear the return stack, for-ce e){ecution mode, and 

continuE' by interpreting text from the terminal. No 

error message results. This is a "softer" reset. than 



Cal tech For-th 4-26 

REF'EAT 

ROL 

ROLL 

ROT 

S>D 

ABORT. 

R> n 

Pop the topmost value fr-om the retur-n stack and push it 

onto the user stack. 

R;il n 

See >R. 

Take the top value on the return stack and push on the 

user stack the r-eturn stack is not alter-ed. 

REF'EAT 

ec) Signifies the end of a loop in a BEGIN - WHILE 

REPEAT loop. Causes control to pass to the point just 

following BEGIN. 

n m ROL r 

Rotate en) left (m) places. Bit 15 (the sign) rotates 

into bit O. 

r-ight. 

If em) is negative, the rotation is to the 

u[n] LIEn-I] LlE1] n ROLL u[n-i] ••• LI[I] uEn] 

Extract the (n)-th value from the stack, leaving it on 

top and moving the remaining values into the vacated 

position. The depth of the stack is unchanged. (3 ROLL 

is equivalent to ROT; 2 ROLL is equivalent to SWAP; i 

ROLL is a null operation; 

m n pROT n p m 

o ROLL is undefined.) 

Rotate the topmost thr-ee stack values so that the 

pr-evlOUs top value becomes the second; the second 

becomes the thir-d; and the third becomes the top. 

n S>D t.\ 

Convert a 16-bit number (n) into a 32-bit number- (u) by 



Cal tech Forth 4-27 

extending the sign to the left. 

SAVE-BUFFERS 

SAVE-BUFFERS 

SCR 

SEMI ~ 

SET 

SHOW 

SIGN 

SPACE 

SPACES 

STATE 

Write all blocks that have been flagged as "updated" to 

disk or tape. 

SCR p 

Returns the address (p) of a variable that indicates 

the most recently edited screen. 

SEMI, 

(V) This word must be used to terminate ;CODE words. 

m p SET nnnn 

(V) Defines a word (nnnn) which, when executed, 

cause the value em) to be stored at address (p). 

m n SHOW 

(V) Type blocks (m) through (n) at t.he termi nal, 

to a page (for hardcopy terminals). 

n SIGN 

will 

3 blocks 

If (n) < 0, . put a mi nus si gn ("_") into t.he number 

OL~tput string. 

SPACE 

Send a blank character to the current output. terminal. 

m SF'ACES 

Send (m) blanks to the current output terminal. 

STATE p 

Returns the address (p) of a variable that contains the 

flag that indicates whether the input text stream is 

being campi led or e;-;ecLtted. A non-2 ero VCt.l ue 

corresponds to the compi.lation state. 



Cal tech Forth 4-28 

SWAB 

SWAP 

TERMINAL 

THEN 

TYF'E 

U. 

U/Mon 

U< 

n SWAB m 

(V) E;·:change the left and right bytes of (n). 

n m SWAP m n 

E:-:change the topmost. two stack val ues. 

TERMINAL 

Select the terminal as the output device~ 

any previous selection of the printer. 

THEN 

cancelling 

(CO-) Terminates an IF-ELSE-THEN conditional sequence. 

m n TYPE 

Transmi ts en) characters to the current output device, 

starti ng at .the character addr-ess (m) • 

PRINT. 

m n U* u 

Leaves the unsi gned 32-bi t product ~ 

unsigned 16-bit numbers, (m) and (n). 

m U. 

See COUNT ~ 

(u) , of two 

Type (m) as a 16-bit unsigned number according the 

current. val ue of BASE. 

u n U/MOD r q 

Leaves remainder (r) and quotient (q) of the result of 

an unsigned division of the 32-bit value (u) by the 16-

bit value en). 

m n U< f 

Like <, U< compares (m) and en) and returns a flag that 

is true (non-zero) if m <: n; however, the comparison 



Cal tech Forth 4-29 

U<= 

u< 

UNTIL 

UF'DATE 

VARIABLE 

treats the inputs as unsigned values (integers in the 

range 0 65535) • 

m n U<= f 

Like <=, but an unsigned comparison. 

m n U> f 

Like but an unsigned comparison. 

m n U>= f 

Like .... = but. an unsigned comparison. 

f UNTIL 

(e) Signals the end of a BEGIN - UNTIL loop in a colon 

definition. If (f) is true (non--zel'"·o) ~ the loop is 

terminated; e}:ecution continues at the first 

word following the corresponding BEGIN. 

UF'DATE 

Flag the most-recently referenced block as updat.ed. 

The block will later be transferred automatically to 

disk if its buffer is needed to store a different 

block. See SAVE-BUFFERS. 

VARIABLE nnnn 

Creates a word (nnnn) which~ when executed~ pushes the 

address of a variable onto the stack. 

reserved to hold the variable. 

Two bytes are 

VOCABULARY 

VOCABULAF.:Y vvvv 

Define a vocabulary name. Subsequent use of ( .... 'vvv) 

wi 11 make (vvvv) the conte:-:t vocabu1 ary. The sequence 

vvvv DEFINITIONS wi 11 make (vvvv) the current 



Cal tech Forth 4-30 

WHILE 

WORD 

XOR 

[ 

vocabulary~ into which future definitions are placed. 

f WHILE 

If (f> is true (non-zero), 

in a BEGIN ... f WHILE 

execution proceeds normally 

REPEAT loop - through to the 

REPEAT is encountered. After REPEAT~ e;.:ecution loops 

back to the word following BEGIN. If (f) is false~ 

however~ execution skips out of the loop, to the word 

following REPEAT. 

c WORD p 

(eN) Read the ne}:t word from the input stream~ up to 63 

characters or until the delimiter (c) is found~ storing 

the packed character string in an internal buffer. The 

address (p) points to the beginning of the buffer. The 

first byte of the buffer contains a count of characters 

in the buffer. The buffer is terminated by an 

occurenee of (c) ~ or by a null (0). 

m n XOR q 

Leave (q)~ the bit-wise logical exclusive OR of (m) and 

en) • 

[ 

Stop compilation. The words following the left bracket 

in a colon-definition are e~:ecuted~ not compiled. 

Permits calculations to be made during compilation. 

[COMPILE] [COMPILE] nnnn 

ee) Force the compilation of the word (nnnn). 

the way to compile an "immediate" word. 

Thi 5 is 



Cal tech Forth 4-31 

J J 

Resume compilation. 

are compiled. 

Words following the right bracket 

4. 4 SF'EC I AL VOCABULAR I ES. 

Of the vocabularies presented here~ only t.he standard edit:or 

is generally used out.side of Caltech-OVRO syst.ems. 

however, are frequently used in OLlr local systems. 

The others~ 

4.4.1 Standard Editor. 

The "standard" Forth editor is a very simple editor based on 

substitution of fixed-length lines in t.he fixed-format block. 

There are 16 lines of 64 characters in each Forth block The 

following vocabulary 15 available with the standard edit.or. 

" 

BU< 

BT 

" 5555" 

Copies strin(J (SSSS) into buffer TEXT. String is 

padded to the right with blanks as needed to make 64 

characters. 

( ssss) 

Copies string (ssss) into TEXT like (") ~ e};cept t.hat a 

right parenthesis [)J serves as t.he delimiter. 

BLI< p 

An int.eger that specifies the number of the block 

(screen) you~re currently working with. 

E:~ampl e: Type 144 BU=: to edit. block 144. 

BT 

Type the current block. Equivalent. to BLK @ LIST. 



Cal tech Forth 4-32 

D 

I 

R 

T 

line (n) f,.-om the current blocK and move lines 

n D 

Delete 

(n)+l, (n)+2, . . . , 16 down one line . Line 16 is filled 

with blanks. The old contents of line (n) are moved 

into buffer TEXT. 

n I 

Lines (n)+l, (n)+2, ... , 15 are moved down one line. 

(Li ne 16 is lost.) The contents of TEXT are moved into 

line (n)+!. 

n R 

The contents of TEXT are moved into line (n). 

n T 

Type 1 ine (n). 

4.4.2 Character Strings. 

Character 

sophisticated 

string manipulations are a central part of more 

editors. Standard Forth has no explicit 

support of strings. The following vocabula,.-y is one approach to 

providing string handling in Forth. 

Vi:triable length character strings (0-63 characters) may be 

placed 

depth) . 

stack. 

" 

on a special string stack {which has a fixed rna}: 1 mum 

Various operations, prefi>:ed by (II), operate on this 

" ssss" 

Push 1 i t.er·al string (ssss) onto st,.-ing st ae k. 

Similar- to " in standard edi to,.-. In compile mode: 

Compile ssss into the dictionary with a call to a 



Cal tech For-th 4-33 

str-ing liter-al r-outine that will push SSS5 onto the 

stack at execution time. 

( ( « ssss) 

Like " except the delimiter- is ). « lets you enter-

quotes in a text str-ing. 

-TRAILING ssss -TRAILING tttt 

=STRINGS 

" , 

" :i) 

"-LEN 

"e! 

Str-ing (tttt) IS (S55S) with all tr-ailing blanks r-emoved. 

r-r-r-r- ssss =STRINGS f 

Compar-e str-ings (r-r-r-r-) and (ssss)~ r-etur-n (f) = 1 if 

equal (including in length) ~ 0 other-wise. 

ssss p "! 

Pop (5S5S) fr-om the str-ing stack and stor-e at location 

(p) • 

P ":]) ssss 

Get str-ing (ssss), located at (p), and push it on the 

string stack. 

"-LEN n 

(Byte 0 of the str-ing is its length.) 

Get length (n) of second str-ing on str-ing stack. 

c nile! 

ASCII char-"acter- (c) r-eplaces (n) -th char-acter- of 

str-ing. 

n "C:]) c 

Retr-"i eve (n)-th character- fr-om top str-ing, push 

ASCI I value (e) on For-th stack. Char-acter 0 is 

string length. 

top 

its 

the 



Cal tec:h For-·th 4-34 

"CAT 

"CLR 

"INDEX 

"LEN 

"LEN' 

"LINE 

"LINE' 

"NULL 

"PAD 

rrrr ssss "CAT tttt 

Strings (rrrr) and (ssss) are concatenated to form 

string (tttt). 

"CLR 

Clear the string stack 

cleared by ABORT. 

Note: the string stack is QQt 

ssss tttt "INDEX m 

Sea,..-ch st,..-ing (ssss) fcll'"" the fit""st occurrence of (tttt) 

as a subst,..-ing. Retu,..-ns characte,..- position of ffiC".tch if 

founLi~ 0 otherwi se .. 

"LEN n 

Get length (n) of top st,..-ing on st,..-ing stack. 

n "LEN! 

Set length of top string to (n) .. Equivalent to n 0 

"C ~ • 

n "LINE ssss 

St,..-ing (ssss) is dt""awn from line (n) of the bloc~( whose 

number is in BLV Trailing spaces are deleted. 

ssss n "LINE~ 

String (sss!:;) is stored in line (n) of BU 

added to the right to make 64 characters. 

Blanks are 

"NULL ssss 

Push null string (ssss) (length c) on string stack. 

,..-,..-rr ssss n "PAD tttt 

String is padded to the right using the first 

character of essss) so that the resulting string (tttt) 

is (n) characters long. 



Cal tech Forth 4-35 

"STRING 

" SlJBSTFi 

"SUBSTR! 

"TYPE 

sess "STRING nnnn 

Like CONSTANT~ def i ne (nnnn), which~ when e>:ecuted~ 

will push (ssss) an the string stack. 

ssss n m "SUBSTR tttt 

New string (tttt) is the substring of (ssss) beginning 

at character (n) and ending with character (m). 

rrrr ssss n m "SUBSTR! tttt 

Result is string (rrrr) with string (ssss) i nsert.Ed 

instead of substring en) through em) of (rrrr) . ThE' 

length of (ssss) does nat have to equal the length of 

the substring to be replaced. 

ssss "TYPE 

Type (ssss) and pap off string stack. 

4.4.3 The E>:tended Editor. 

The Forth E>:tended Edi tor (XED) is a superset of the 

standard editor developed at Cal tech. In addition to the line-

at-a-time commands, it allows you to search for character 

strit'gs, alter strings identified by conte>:t~ etc. XED uses the 

Character Str-ings vocabular-y described above. 

FT ssss FT 

Find the first occurrence of (ssss) beginning at the 

CLII'"Tent 1 i ne number (L#) in the cur-rent bloc k (BUn and 

type the whole line containing the string. 

is not faund in the cur-r-ent block, continue at BLV + 1 

etc. (You have to type 2 CTRL-Cs to stop in RT11 DC 



Cal tech Forth 4-36 

FR 

FD 

FI 

HT 

HR 

HD 

RSXll.l 

ENample: " THIS" FT to find the first occurrence of 

"THIS" in or after the current block. 

rrrr ssss FR 

Find the first occurrence of (rrrr) in t.he current 

block beginning at the current line; replace it with 

(ssss) . The resulting line is t.runcated at. 64 

characters. 

E;{ amp Ie: " THIS" " THAT" FR to replace the first 

occurrence of "THIS" wi th "THAT". 

ssss FD 

Find t.he first occurrence of (ssss) in t.he current 

block beginning at the current line; delete this 

substring of the 1 i ne. Pad the line back to 64 

characters with blanks. 

rrrr ssss FI 

Find the first occurrence of (rrrr) as abovE'; insert 

(ssss) immediately following (r-rrr). Truncate the line 

at 64 charact.ers. 
n HT 

Hold line (n) of current block on string stack and type. 

n HR 

Replace line (n) with the string on the stack (like R)~ 

but save the old contents of line (n) on string stack. 

n HD 

Delete line en) (like D), but hold its former contents 

on the string stack. 



Cal tech Forth 4-37 

HI 

LT 

BT 

L? 

L1 

HOLD 

UNHOLD 

+B 

-B 

ENTER 

n HI 

Insert string on line following (n) (like 1), but hold 

old contents of line 16. 

LT 

Type current 1 i ne number and 1 i ne. 

BT 

Type current block. Reset line number to 1. 

L? 

Type current line number. 

L1 

Set current line to 1. 

n m HOLD 

Put lines (n) - (m) of current block on string stack. 

n m UNHOLD 

Replace lines (n) - em) from string stack. 

+B 

Increment BlK by 1. 

-B 

Decrement BlK by 1. 
ENTEF! 

Beginning at the current line of the current block, 

insert te>:t e>:8ctly as typed. Each line is terminated 

by the user typing 8 carriage return, whl.ch fills out 

the current line with blanks and advances L#. Typing 

more than 64 characters between carriage returns 

reSLllts in a "bell" and automatic line advance. The 

line number and a backslash are output before each line 

is input. Input terminates with a CTRL-Z character. 



Cal tech For-th 4-38 

CLR-BLY 

BLI< automatically advances after- line 16 of the cur-rent 

block is entered. 

n CLR-BU< 

Sf?t. block (n) to blanks. 

4.4.4 Defer-r-ed Oper-ations. 

A class of oper-ations modelled on the addr-essing modes of 

the PDP-II has been developed by H. W. Hammond. These are par-ti-

cular-Iy valuable when you need to wor-k wit.h pointers to access 

successive elements of data str-uctures. Straightfor-war-d gener-ali­

zations to data types ot.her than 16-bit. int.eger-s are possible. 

) ! 

) +! 

-) , 

) :i) 

m p ) ~ 

Store at the addr-ESS (q) found at location 

Equivalent to m Q ~ 1. 

m p ) +! 

Stor-e (m) at address (q) found at location (p) , 

(p) • 

t.hen 

increment (p) by 2 bytes. (F'DF'-!! "auto-·i ncrement") 

Equivalent to m Q @ I 

P ) +:i) m 

Get the contents of (q) found at. location then 

increment (p) by 2 bytes. 

m p -) ~ 

Equivalent to Q ~ ~ ~ ~ +1 

Decrement. contents of (p) by 2 bytes, then store (m) at 

location (q) whose address is found at location 

("Auto-decrement") Equi val ent to =6: l2::tl Q ~ l. 

p )@ m 

(p) • 

Get the contents of address (q) which is found at 



Cal tech Forth 

location (p). 

P ) @ ~ 

Equivalent to Q ~ ~. 

Equivalent to Q ~ ~ Q 

-) ;j) p -):j) m 

4-39 

Decrement contents of (p) by 2, then get contents of 

location (q) whose address is found at location (p) • 

Equivalent to =~ Q ±l Q ~ ~. 

4.4.5 File System. 

The typical Caltech-DVRD Forth system has one "user" at. 

ti me, but many users sequentially in time. In this environment, 

confusion over allocations of block st.orage is a signlficant 

problem. Sometimes, many non-e;..:pert per-sons potentially need to 

edit blocks on the same disk. The For-th File System 

pr-ovides one approach to alleviating the pr-oblem of 

(FFS) 

disk 

allocation and pr-otection. 

extensibility of Forth. 

This system is another e>:ample of t.he 

We provide a brief descr-iption of the 

technique and t.he vocabulary of FFS. 

FFS divides the For-th block file (which may be a file within 

the file st.ructure of an operating system) into "Llser f i I es" . 

Each user file may contain up to 512 blocks, numbered 0 - 511. A 

user refers to his blocks just. as in Forth without FFS, i . e. ~ 

through BLOCK, LIST, etc. Block numbers that. the user deals with 

are consi dered lQg~£~.!. block number-s; FFS maintains a map, 

call ed the User-

Fi I e Di rectory or UFD, of correspondences bet.ween logical and 

QOY§i££i1. block numbers. The "physical" block number refers to the 

location of a blocf: as it exists relative to the beginning of the 



Cal tech Forth 

complete block f i 1 e~ as understood by the operating 

Physical blocks may be arbitrarily assigned to a users 

block =;pace (logical disk). 

A table of available disk blocks is maintained in 

called "AVAIL". This is a bit map in which each bit 

the availability (if 1) of a particular physical block. 

4-40 

system. 

logical 

a block 

signifies 

A user, 

after his UFD is set up, may request up to 512 blocks to be 

placed in his file. Initially, DQ blocks arE> allocated to the 

user; i . e. , any block ,.-eference will cause an e,.-,.-or message. 

The user must assign himself blocks using the word ASNBU:::. 

Blocks are assigned one at a time and are given specific logic.:d 

block numbers the user's file. Blocks do not have to be 

assigned contiguously; blocks O~ 1~ and 3 may be assigned (using 

ASNBUO while block 2 is unsassigned. Thus the useI'"" only needs 

to assign the pa,.-ticular logical blocks he will be using. 

An unneeded block can be returned to the available pool with 

thE? word FlLSBU<. 

A user file is specified by a numeric constant (1 - 511). A 

suitable constant word would normally be defined to specify the 

file symbolically, e. g. , SYSTEM~ STRINGS, VLBI. et.c. At. all 

times. Forth/FFS maintains a disk "context'! which specifies the 

user file from which all blocks are taken. The user may change 

user files with the word DISK~ e.g., 

have been previously defined. 

SYSTEM DISf<. The file must 

Special user files are defined for software packages such as 

edi tors, floating point, diagnostics, etc. A special word has 

been defined to load such packages: ILDAD. If the user types 



Cal tech Forth 4-41 

DIAGNOSTICS (LOAD, the diagnostics user file is loaded beginning 

with logical block O. ILOAD preserves contE>:t~ i . E. if the 

current user file is SYSTEM, SYSTEM will be current after a ILOAC 

command. Thus ILOADs may be nested. 

A separate 

manipulate UFDs. 

(FILES) vocabulary is available to create and 

It 1S intended that only system maintainers 

("experts") will need to run (FILES). 

A system using FFS has the following small added vocabulary 

/COpy 

IEXCHANGE 

ASNBL~:" 

m n r- ICOPY 

Copy bloc~ (m) from user file (n) to block (r) of the 

current user file. 

E:.:ample: USF.;1.' DISV 13 USR2 10 leopv 

copies block 13 of disk USR2 to block 10 of disk USR1. 

m n r IEXCHANGE 

This word is' like leOPY. 

e>(changed. 

but the two block~, are 

n ASNBLb:: 

Get a bloc~ from the available pool, clear it with 

and assign in the logical bloc~( number In) in 

the range 0 - 511 in the current user- file. 

must previously have been unassigned. 

n DISV 

Set the current user file (disk context) 

Block en) 

to (n) • 

Values of (n) ewe normally defined by constants giving 

the symbolic names of the USEr disks, e. g. ~ SYSTEM. 



Cal tech Forth 

STRINGS~ EDITOR, etc. 

n RLSBLV 

4-42 

Deassign logical block (n) from the current user file 

and return it to the available pool. 

In addit.ion to the new words described above, some standard 

disk-related Forth words are modified to support FFS. These are 

BLOCK, COPY, EXCHANGE~ LIST, LOAD, and SHOW. The modified words 

refer only to a user's current logical disk. 



CHAF'TER 5 

ADVANCED TOF' I C: LARGER FORTH SYSTEMS 

5.1 WHY LARGER FORTH SYSTEMS? 

The "classical" Forth computer is a minicomputer having 16-

bit data words and 16-bit addressing. Typical of such systems 

would be the DEC PDP-l1~ the Hewlett-Packard HPI00i)~ the Data 

Genel~al Nova/Eclipse, 

the 8080 and the ZBO, 

etc. Common 8-bit microcomputers, such as 

employ 16-bit addressing, and can also be 

made to perform 16-bit arithmetic. 

Addressing capability (the width of address fields) is 

particularly important for Forth, 

addreSSES and data on the same stacks. 

their OHn address arithmetic, 

arrays. 

because Forth i ntermi NEB 

Users are eNpected to do 

when i nde): i ng data 

The newe,..." generat.ion of 16-bit microcomputers (such as the 

Motorola 68000 and the Intel 8086) respond to the requirement for 

address spaces much larger than the 64K bytes allowed by 16-bit 

addl~essi ng. A cCJmplete~ general address reference for the new 

microcomputers is typically 32 bits wide. In this regard, they 

are similar to the larger scale "midicomputers", such as DEC's 

VAX-II and Data General"s MV/8000, 

addressing. 

which also have 32-blt 

Two recent Forth systems have faced the addressing problem 

for the new machines, and adapted a 32-bit word length for all 

normal Forth data. These are polyFORTH!32 (a trademark of Forth, 

Inc. ) for the 68000 and JPL's Forth for the DEC VAX-II" 

PolyFORTH!32 is described in the article "Design Considerations 



Cal tech Forth 5-2 

for a 32-bit Forth" by Mike La Manna and Ray Van de Walker in the 

Proceedings of the 1982 FORML Conference. (See Bibliography.) 

FORTH FOR VAX-II. 

The VAX implement.atian of Forth is interesting in several 

ways, since it not only confronts the 32-bit addressing problem. 

but interacts in an articulate manner with the comple;.( VMS 

operating system. We will describe the highlights of JPLlVAX 

Forth as an e:<ample of how Forth may be effectively employed in 

larger computer systems. 

5.2.1 TEXT FILES 

It is very convenient, when Forth runs under an operating 

system, to employ "line-structured" files for text and source 

code. Most larger operating systems represent teNt files with 

variable-length records, each of which corresponds to a single 

print.ed line. Furthermore, special formatting characters, such 

as "tab" and "form feed", may be used to position teNt without 

redundant blank characters. Wi th a slight increase in the 

comple)dty of the Fort.h system (and some loss in compatibility 

with smaller Forth systems), line-structured files can replace or 

supplement the traditional fiNed-length block-structured For-t.h 

f i Ie. 

In addition to economizing on disk storage, line-

structured files have several further advantages. The files can 

easily be formatted according to the normal formats of t.he 

operating system. Thus all the normal non-Forth system editors 

cCin operat.e on Forth source dat.a. Files can be interchanged with 



Cal tech For-th 

user- pr-ogr-ams wr-itten in other- languages~ such as For-tr-an 

Pascal. 

In pr-Clctice, we have fOLlnd~ one of the significant 

advantages of line-str-uctur-ed files with tab char-acter-s and 

an indefinite number- of lines per file is that pr-ogr-ammer-s find 

it convenient to wr-ite nicely indented~ logically clear- For-th 

code. This has always been a pr-oblem with the standar-d fi>:ed 16 

line scr-een of ear-liEr- For-th systems, in which ther-E is always a 

tempt,:\tion to pack definitions tightly into the minimum possible 

space. 

5.2.2 DATA WIDTH 

As mentioned above! a 32-bit addr-ess must be convenient to 

mani pul ate in For-th systems for- the newer- mi crocomputer-s and fOl~ 

the VAX-class midicomputer-so It is ver-y awkwar-d to deal with 

data having mixed lengths on the same stack~ so it is natur-al to 

consider- making a 32-bit stack width standar-d for- these machines. 

What ar-e the penalties? There is an obvious penalty in that 

mor-e memor-y will be used if all (or- most) data take 32 bits when 

16 bits might be adequate in many cases. The pr-ocessor- may be 

slower in oper-ations involving 32-bit data, particular-Iy if the 

data buses are only 16 bits wide. 

Double precision (32-bit) oper-ations on the Intel 8086 ar-e 

definitely slower- than single precision~ especially for the 8088 

ver-sion which has only 8-bit data paths. The memory segmentation 

scheme of this pr-ocessor- makes it somewhat awkwar-d to deal with 

data sets greater- than 64K bytes in length. For these reasons. a 



Cal tech Forth 5-4 

number of 808b-based Forth systems have chosen to retain !6-bit 

addressing and not to support the full addressing capacity of the 

processor. 

The Motorol a 68000, however, has more of t.he att.ri butes of a 

true 32-bi t computer, having 32-bit data and address r-egi sters, 

for e){ampl e. Except for e>:tra bus cycles required, there is not 

much speed penalty in double precision over- single precision 

operations. In fact, as La Manna and Van de Walker point out, an 

address interpreter (NEXT function) using 16-bit addresses is 

considerably slower than the c:orresponding 32-bit rout.ine because 

of the lack of c.n i nstructi on to convert from 16- to 3:2-bit 

addresses without sign extension. The full 24-bit address space 

is available without segmentation. On balance, the 68000 appears 

well-!=.,uit.e;>d to 32-bit Forth implementations. 

The VAX-I! is designed as a true 32-bit computer, having 

Dr 64-bit data buses~ depending on model number. There is 

essentially no performance cost. in choosing 32- over 16-bit 

arithmetic. and memory space in the virtual VMS environment is 

quite inexpensive. The choice of 32-bit data width for JPL/V?iX 

Forth was e~.sy. 

5.2.3 ADDRESS INTERPRETER 

JPL/VAX Forth has abandoned t.he Forth address interpreter in 

favor of using the VAX JSB (jump to subroutine) instruction. 

This is a major departure from earlier Forth systems~ but there 

are few, if any, ca.ses in which this change is apparent to the 

user at the colon-definition level. Incidentally, this 

development has established that the "threaded code" technique 



Cal tech Forth 5-5 

IS not fundamentally required in Forth systems. 

Why not use the standard address interpreter? In a 32-bit 

envi. ronment! address sequences consist of 32-bit fields~ each 
32 

specifying a particular address from a possible space of 2 

or over 4 gigabytes. Of course, no Forth program will approach 

this size! and many bits of each address will be zero. The memory 

"wasted" on wide address fields can be reclaimed, and a substan-

t i. al performance increased can be gained! by compiling complete 

VAX instructions instead of 32-bit addresses. 

The JSB instruction has several variants. If the distance 

between the JSB instruction and the routine being called i s 

closer than +127 or -128 bytes, the byte offset form of JSB is 

USE>cI~ this requires only two bytes (16 bits) of memory. 

commonly, the spacing between call and routine will be gl-eater 

than 128, and a word offset form of JSB C","In be Llsed. With this:, 

variant. ta~~ing three bytes (24 bits), a JSB can call a routInE! 

as far away as +32767 or -32768 bytes. If this is insufficient, 

a longword (32-bit) form is available. 

Compiling JS8 calls optimized for the shortest lengths com-

patible with the required offsets allows colon def:i.nitions to 

less than 32 bits on average. Performance i =.~ i ncr-eEl.sed 

£,j nee the NEXT function (address inter-preter) is effectively 

by the one-byte RSB (return fr-om subroutine) instruc-

tion. 

5.2.4 IN-LINE CODE 

Traditional Forth provides three levels of programming for 



Cal tech Forth 5-6 

the user: direct execution from the terminal or from screens via 

the te>:t interpreter; execution of colon definitions via the 

address interpreter; and ENEcution of ~QQ~ definitions thr-ough 

the address interpreter. JPL/VAX Forth adds a fourth level, the 

"in~line" definition with two new defining words I~QQ!;' and II .• 

When you are compiling a word and you refer to a previoLlsly-

defined in-line word, a JSB instruction is not compiled. Instead 

a £QI2:i of the parameter- field of the word you are referring to is 

placed in the parameter field of the word you are now compiling. 

This has 

terns, but 

always been a possible technique for older Forth 

without the JPL/VAX JSB technique, there WDLII d 

sys­

have 

been little advantage. But with JSB compilation, a transition 

from "compiled" sequences of addresses (JSB 

machine code inserted in-line costs nothing, 

instructions) 

since the VAX 

to 

CF'U 

interprets either as a valid list of i nstructi ons. In-line 

c:ompilatlon for functions like ~, etc, costs very 

little since these functions often take no more memory than a JSB 

instruction. Performance is improved because the overheed due to 

the JSBfRSe instructions is eliminated. 

Figure 5.1 summarizes JPL/VAX Forth compilation. 



Cal tech Forth 

WORD BEING COMPILED 
(PARAMETER FIELD) 

: HEADER (NEW> : 
:------------ I 

/ 
/ 

: JSB A -/ 

: JSB B ----I 
\ 

: JSB CA 

I 
.I 

/ 

I 
I 

I 

: JSB CB <---/ 

] JSB CC 
]------------: ./ 

/ 

I 

I 

5-7 

WORDS BEING REFERENCED 

HEADER (A) 

./--> JSB AA ------ (AI\) 

/ ------------
/ JSB AB ------ (AB) 

,------------
RSB :------------1 

: HEADER (8) 
: -------_._----: 

-------------------------~ machine 
: i nstructi ons: 

:------------: 
: HEADER (C) : -----------_.-: 

./ :------------: RSB 
: JSB CA -.::- (CA) : -----------.-: 

/----: : ~TSB CB l->(CD) 
]------------: 
: JSB CC :->(CC) 

\ 1------------: 
: RSB 

: HEADER (+) 
] ADD ... : <----------\ 
1------------: \------------------------] ADD .•. 

: -------------: 
:------------] ] RSB 
: RSB 

Figure 5.1 VAX Colon Definition with In-line refences. 

The Figure corresponds to the following definitions: 

: A AA AB AC ; 
CODE B <machine instructions> NEXT, 
I: C CA CB CC ; 
IeODE + <source, destination fields> ADD, NEXT~ 

: NEW < ••• > ABC + < ••• > ; 

Note that the parameter fields (e}(cluding terminal RSBs) of the 

in-line words ~ and ~ are copied into the parameter field of the 

new wor-·d. 

Fields have been allocated in the JPL/VAX Forth word header 



Cal tech FOI~th 5-8 

to indicate whether a word is an in-line word. and, if so, what 

the length of its parameter field is. The format of the header 

is shown in Figure 

+---------+---+-----------+-----------+-----------+-----------+-+ 

COUNT : CHil CH2 CH3 CH4 CH5 : c: 

+---------+---+-----------+-----------+-----------+-----------+-+ 

INLINE LINI< IPI 

+-------------+-----------_._----------------------------------+-+ 

COUNT 
CHI 

CH2 
CH3 
CH4 
CH5 
C 

WORD £1. 

LINI< 

P 

§I~~ 
(bi ts) 

6 
6 
6 
6 
1 

24 

1 

ENTRY LENGTH TRUNCATED AT 32 
TWO MSB OF SIX BIT CHARACTER 
FOUR LOW ORDER BITS ARE A THREAD 
FOR A 16 WAY INTERLEAVED DICTIONARY 
CHARACTER 2 OF ENTRY 
CHARACTER 3 OF ENTRY 
CHARACTER 4 OF ENTRY 
CHARACTER 5 OF ENTRY 
"SMUDGE" BIT, SET DURING ENTRY DEFINITION 

DISPLACEMENT TO THE LAST DEFINED 
ENTRY IN THIS THREAD 
PRECEDENCE BIT, SET FOR COMF'ILER DIRECTIVE 

Figure 5.2. VAX definition Header Format. 

Definition names are treated much as they are in PDP-l1 Forth: 

seven-bit ASCII characters are compressed into six-bit fields, 

and the leading character is used as a key into a 16-way threaded 

dictionary structure. 

5.2.5 OPERATING SYSTEM INTERFACE 

In a comple>: environment such as the VAX/VMS operating 



Cal tech Forth 5-9 

system~ the user may demand correspondingly more capability from 

his Forth system. The JPL/VAX Forth system attempts to provide 

this flexibility at two levels: the user command level~ and the 

system service level. At the user command level, the ability to 

invoke subprocesses to run any standard VMS utility programs~ or 

even to run other 1 anguage processors is avai I abl e through the 

word. Forth text files are normally edited by calling 

VMS editor (EDT) with this mechanism. The Forth interpreter can 

be used as a form of command line interpreter under VMS. 

A great variety of system service routines is available 

through VMS; these include mathematical routines (square root, 

logarithms, trigonometric functions, etc.), string manipulations~ 

memory management operations, the high level RMS file system. and 

basic 1/0 (IQlO") calls'. Conventi onall y, these routines are 

invoked through a Macro assembler and a complex macro library 

which translates a programmer's statements like 

into a 

ters. 

$QIOW S CHAN=@TTCHAN(R9),EFN=RAB$L_CTX(R3'.­
FUNC=#Io$ SETMoDEIIO$M_CTRLYAST.­
F'1=CYA5T. P2=R9. P3=#PSL$C EXEC 

series of MOV and PUSH instructions that set up parame-

selected from a wide range of possible values and formats, 

finiShing with a CALL to the appropriate system routine. Refer-

ences to symbolic values, such as 10$ SETMODE. are evaluated 

either from the macro library or at the time the object program 

is linked for execution. 

In JPL/VAX Forth, links to most VMS system routines are made 

through address tables in the Forth kernel. (The tables are 

filled in by the VMS linker.) Since VMS is a virtual memory 

system~ there is little overhead incurred by linking to many 



Cal tech Forth 5-10 

unused routines in system memory space. 

It would be possible to define each possible symbolic system 

call or parameter valUE as a separate Forth word. but the number 

of possible words is quite large. A better scheme has been 

developed for such references. For e>:ampl e~ 

return status codes in VM8 prefixed by 88$, 

indicating normal completion of a routine. 

there are numer"ous 

such as 58$ NORMAL 

In Forth~ a word §§~ 

15 defined which takes the literal token following in the input 

stream as a modifier. Thus 

would 

symbol. 

pref i;-: 

§§! i'jQBIj6b 

produce the value corresponding to the VMS S5$_~NORMAL 

Tables of modifiers and values are established for each 

type, but these tables are not linked in the dictionary; 

therefore dictionary search time is not increased, and dictionary 

headers are not required. 



APPENDIX A 

PDF'-ll IMPLEMENTATION. 

A. I GENERAL CHARACTERISTICS. 

The DEC PDP-·ii is a popul ar 16-bi t computer- archi tecture 

that is available in many models. Caltech-OVRO operates 4 types 

of F'DP-II: two PDP-l1/40s (VLBI Processor and 10 m telescope 

control ) ~ a PDP-11/20 (27 m telescopes), numerOLlS LSI-l1/03s for 

control of three 10 m antennas~ the 40 m antenna, and special 

equipment~ and a PDP-II/OS used for the 1024-channel autocorrela­

tion receiver. 

Several Forth systems have been developed for these rna 

hines. One (for the 11/20) runs as a standalone system using 9-

track magnetic tape for block 110. Other systems have dis~ 

stD,age and so can run the DEC operating systems, RT-l1 and R!:;X--

II 1M. The LSI-II systems are normally operator-Ed without 

operating systems or disks; they are "down-line loaded" from a 

larger computer over serial communications lines. PDP--ll FOI~th 

is also found running on the 32-bit VAX-ll computers in their 

PDP-ll compatibility mode. 

PDP-lls use the standard 7-bit ASCII character set with one 

character right-justified in an 8-bit byte. 

recognizes certain characters for control purposes: 

PDP--ll Forth 



Cal tech Forth A-2 

CTRL-C 

CTRL-O 

CTRL-Q 

CTRL-!:) 

CTRL --U 

RUBOUT 

Interrupts e:{ecution of any program and retul'""ns control 

to the keyboard. Two CTRL-Cs may be r-equi red if the 

program is not listening to the keyboard. 

RT -11 : RT-ll types and you may type any monitor 

command (e.g. REENTEF( or RUN). REENTER will let you 

resume Forth in most cases. 

RSX-ll: RSX types "MCR:>" and you may type any moni t.or 

command~ such as ABORT. Forth can not be reentel-ed 

after aborting. 

Inhibits terminal output from a running program~ but 

program continues. Allows you to skip lengthy lis-

ting=.,. A second CTRL-O turns on output again. 

After you type CTRL-S to stop type out~ 

CTRL-Q to resume. 

you may type 

Stops terminal output from a running program in such a 

way that no output will be lost. 

after the output buffer is full. 

restart. output. 

The progr'am hangs up 

CTRL-Q may be used to 

Cancels the entire line you have just typed in. 

effective !2§iQ!:§ you type "retur-n". 

Cancels the last character you have just typed in. 

as DEL or DELETE. 

Only 

SamE;1 



Cal tech Forth A-c: 

The 8 PDP-1i registers are allocated according to the 

following table: 

REG. NAME 

0 
1 T 
:' TT 
. ..:. 

4 S 
5 IC 
6 R 

7 

A.2 DICTIONARY FORMAT. 

FUNCTION 

General Use 
Stack top or General 
Multiply/Divide or General 
General Use 
Forth Stack Pointer 
Forth InstrLlcti on Counter 
Forth Return Stack Pointer and 
PDP-i1 Hardware Stack Pointer 
PDP-i1 Program Counter 

The PDP-i1 dictionary format was featured in Section 

this Manual and will not be repeated here. 

A.3 ASSEMBLER. 

...,.. . .,. 

.":" ._' of 

Three types of instructions are supported by PDP-l1 Forth: 

zer-o--~ one-, and two-operand instr-uctions. Forth wor-ds !QE and 

are provided to define single and doub 1 e oper-and 

instructions, respectively. 

!QE defines wor-ds (like Q~BL) which require one argument on 

the stack The argument specifies the addressing mode and 

reg i ster. For e}:ample 

is equivalent to the Macro-11 line 

CLR R3, 

which clears register 3. 



Cal tech Forth A-4 

For more complicated types of addressing a set of auxilliary 

words has been provided as follows: 

BB[l§ §i:t:!~Qb ','BbldO: B1212BO:§§lt1[l EE'O: 

c 10 register deferred 
c ) + 20 auto-increment 
c ;j»+ 30 auto-increment deferred 
c -) 40 auto-decrement 
c @-) 50 auto-decrement deferred 
0 c 1) 60 i nde;.:ed 
0 c @l) 70 i nde}: ed deferred 

dst \ 100000 byte mode 
dst £< 100000 byte mode (preferred 
notation) 

y # 27 i mmedi ate mode 
a @# 37 absolute mode 
a F' 67 relative mode 
a ;;)F' 77 relative deferred mode 

In this table r stands for any register (O-7)~ 9 stands for a 16-

bit offset~ Q~t. stands for a complete destination specification 

(e. g. ~ stands for a 16-bit integer value, emd ~ for <B. 

16-bit address. 

Examples of typical assembl er constructi ons for si ngl e 

operand instructions follow with their Macro-II counterparts: 

3 CLR, CLR R3 

Clear register 3 to zero. 

s -) TST ~ TST -(8) 

Subtract 2 from register S (4) and test the data at the location 

to which S now points. This is a simple way to reserve a word on 

the st.ack. 

134 1 I) INC, INC 134 (Rl) 

Increment the data word found at the address 134 + (contents of 

regi ster 1). 

134 1 II £< INC, INC£< 134(Rl1 



Cal tech Forth A-5 

Increment the data ~~t~ found at the address 134 + (contents of 

register I), 

XYZ P CLR. CLR XYZ 

Clear the data in variable XYZ. (The assembler uses the relative 

addressing mode.) 

XYZ @# CLR. CLR @#XYZ 

Clear the data in variable XYZ. (The assembler uses the absolute 

addressing mode.) 

cases. 

The E and ~~ modes are equivalent In most 

Double operand instructions require both a source ane! a 

destination field which can be defined with the mode words as 

described above. A few e>:amples: 

S -) 11:C :c j) MOV. MOV 112(R2)~-(S) 

t-1ove d~,ta from address 112 + (contents of register 2) to the 

after having subtracted 2 from register 5 (4), (You use 

the construction -) as a destination to push data on the Forth 

stack.) 

xvz P -10 # MOV, MOV #-10.XYZ 

Move the immediate value (-10) into variable XVZ. 

S )+ T NUL, MUL T, (5)+ 

Multiply r-egister T (1) by the top stack valLle~ pop the stack, 

and return the prOdLtct in T (1) and TT (2), Note that the NUL 

instruction (like DIV, ASH, etc.) may have only .3. register type 

"source" field. 



C".'Il tech Forth A-6 

Conditional branches (lE~ etc.) are handled 

through the PDP-11 BR-type instructions. The following Forth 

words are available as constant. definition!:;: 

t,I;c 1;1:] Elo t!.!. ','c; ~g C;C; C;§ 
121; loI !21 lol; tn lo§ t:!§ loQ 

These t.est. the PDP-11 condition codes the same way as the branch 

instructions Bxx~ where xx is replaced by one of the two letter 

codes. 

To make an assembler conditional branch you give the 

following assembler commands: 

<set up condition codes (TST» )0: IEj.. <true code> Iljf;::t!.,.. 

You first set up the condition codes; this can be a byproduct of 

some arithmetic (e.g. from an ADD instruct.ion) or the result of 

an e)·:plicit. TST or CM,P oper-ation. Ne;,:t give the two letter 

condition code fr-om the list above, followed by IE 3.,' The IE.!.. 

will assemble the appropriate branch instruction. (Actually, the 

branch around t.he "tr-ue code" must occur when the condition you 

specify is f~!§g! so the branch t.hat is assembled is the logical 

inverse of the condition type you specify.) 

This is assembled like the following Macro-11 code: 

1 $: 

eMP 2!3 
BNE 1$ 
MOV #1, FLAG 



Cal tech Forth A-7 

The ~~!.21~.!_ - ~~Q . .!.. constr-Ltction works in a similar way: 

~~!.21~.!- <: loop code:> N ).~ ~~P...!.. 

wher-e )-:){ is a condition fr-om the same list. As a concrete 

e)-:ample 

tr-anslates to the following Macro-lt code: 

1$: DEC 0 
BPL 1$ 

Following is a list of the PDP-l1 For-th assembler op-codes: 

010000 20P MOV, 020000 20P CMP, 030000 20P BIT, 
040000 20P PIC, 050000 20P BIS~ 060000 20P ADD, 
160000 20P SUB, 070000 20P MUL, 071000 20P DIV, 
072000 20P ASH, 073000 20P ASHC, 074000 20F" XOF<, 
004000 20P J E>F.:, 

5000 IOF' CLR, 5100 lOF' COl'l, 5200 lOP INC, 5300 lOP DEC, 
5400 IOF' NEG. 5500 IOF' ADC, 5600 lOP SBC, 5700 lOP TST, 
6000 lDP ROR, 6100 lOr: HOL, 6200 lOP ASR, 6300 lDF' ASL, 
OlOl) 1 DF' JI'lP, 0200 lOP RTS, 0300 IOF' SWAB, 0240 IOF' CLEAR, 
0260 lOF' SET , 6700 lOP SXT, 

: SEM I, IC R 20 + MOV, NEXT, NEXT, Ie 30 + JMP, 
CLC, 1 CLEAH, RT I, 2 , ; 

: J, P JMP, ; 
WA IT, 1, : HALT, 0 , ; 

SEC, 1 SET, ; 

Note: The following oper-ations ar-e invalid on the PDP-11/04, 105, 

110, and /20: ASH, ASHC, XDR, SXT, MUL, DIV, . 



AF'F'END I X B 

FORTH BIBLIOGRAPHY. 

BOOKS. The following are some contemporary books that descr-ibe 

Forth or Forth-like languages. For the most part they are writ-

ten in a semi-technical style and are aimed at the small computer 

Llser. 

1. Br-odi e~ Leo~ Prentice-Hall, Englewood 

Cliffs~ New Jersey, 1981. 

Hogan, Thorn, Qt§£Q~~r.:. Egctb., Osborne/McGraw-Hill, Berkeley, 

California, 1982. 

3. Loeliger, R. G. , Byte 

Books, Peterborough, New Hampshire, 1981. 

JOURNALS. Many of the personal computer journals carry articles 

on Forth and Forth programs. 

noteworthy. 

The following are particularly 

1. A special Forth issue appeared in September", 1980. A 

collection of Forth reprints from Byte issues is available 

from the Forth Interest Group (FIG)*. 

*Forth Interest Group~ P.O. Bo}: 1105~ San Carlos, California 

94070. 



Cal tech Forth 

2. 

. ..: .. 

~r~ ~QQQ§ JQ~co£l· 

1982. 

EQctQ Qim§o§iQo§· 

published by FIG. 

cm~FERENCE PROCEEDINGS. 

B-2 

A spec i al issue appeared in September ~ 

This is a journal specializing in Forth~ 

There have been a number of conferences 

dealing with Forth issues. The proceedings are a useful source 

for both theoretical and practical understanding of Forth. 

1. FORML (Forth Modification Laboratory) Conference Procee-

dings~ 1980, 1981 (Volumes 1 and 2) ~ and 1982. Available 

from FIG. 

2. Rochester Forth Conference on Databases and Control, Pr-ocee-

dings, May, 1982. Available from FIGa 

STANDARDS. 

EQct.o.::Z5! , 

The latest available Forth standards document is 

a publ i.cation of the Forth Standards Team, October- , 

1980, 

tion. 

distributed by FIG. 

HI STOf', I CAL REFERENCES. 

A "Forth-83" standard is in prepara-

For-th had its beginning in the early 

19705 in scientific and astr-onomical communities. The following 

are some of the r-eferences from that era. 



Cal tech Forth B-3 

1. Ewing~ Martin s. ~ Ib.~ g§.!.t~!;b EQctb. t!§m~e!..~ Internal Report~ 

Owens Valley Radio Observatory, California Institute of 

Technology, Pasadena~ California~ First Edition, 1974, Sec-

ond Edition, 1978. 

2. Ewing~ Martin S., and Hammond, H. Wayne, Ib.§ EQct.b. ECQgCs,ffi= 

Proceedings of the Digital Equipment Computer 

Users Society~ Nov., 1974~ pp 477 - 482. 

. ..: .. Mi edaner, 

dum to the Astronomy Forth Users Group, Kitt Peak National 

Observatory, Tucson, Arizona~ 1977. 

4. Moore, c. H. , and Rather, E. D. , 

Proc. I.E.E.E. , 9~ p. 1346, 

Sept., 1973. 

Moore, c. 

Astronomy and Astrophysics Supplement, pp 497 - 511, 

1974. 

6. Rather, E. D. , Moore~ c. H. , and Hall i s, Jan M. ~ !2e§t!; 

National Radio Astronomy Observatory, Charlottesville, 

Virginia, Computer Division Internal Report No. 17, 1974. 

7. Sachs, Jonathan, eO !otcQQ~~tiQO tQ §tQi~, Technical Report 

BMEC TR001, Harvard-MIT Program in Health Sciences and Tech-



Cal tech Forth B-4 

nology~ Biomedical Engineering Center for Clinical Instru-

mentation, June~ 1976. 

8. Sinclair, w. s. , 

Proc. ACM ~76~ pp. 

Ib~ EQ8I~ BQQCQ~£b iQ QQ~C~~tQg §~~t§m~, 

233-240, October~ 1976. 


	Title
	Contents
	Preface
	1. Introduction
	2. Forth Overview
	3. The Structure of Forth
	4. Forth Vocabularies
	5. Advanced Topic: Larger Forth Systems
	Ap. A. PDP-11 Implementation
	Ap. B. Forth Bibliography



