CALTECH FORTH

by MARTIN 8. EWING

ewing@alum.mit.edu

Capyright {(C) 1983 Martin 5. Ewing

Copyright (C) 2006 Martin S. Ewing

FREFACE

CeCNTENTS

1. INTRODUCTION

1

Beginnings.

General Uharacteristics.
Definitions and Standards.
Organization of the Book.

« 1
ﬂE
4

x

2. FORTH OVERVIEW

BRI RI BRI R R ORI R R

Words and the Dictionary.

The &Stack.

Elock Storage.

Defining new Words.

Storing and retrieving data in memory.
Controlling Forth —— The Text Interpreter.
Terminal Qutput.

Canditional Branches.

The Editor.

1IN et B S R N B

. THE STRUCTURE OF FORTH

] e

L T Y o R BT

o

.1 General Remarks.

2 the Stacks.

« 3 The Dictionary.

Z.3.1 Branch Structure.

FZ.Z2.2 Header Section.

Ze 3.3 Code and FParameter Sections,

Z.3.4 Expanding and {ontracting the Dictionary.
-3 Frogram fontrol —— The Address Interpreter.
<0 The Text Interpreter.

& Error Messages —— ABDRT.

» ¢ Block Input/Cutput.
.8 Forth Assemblers.
.7 Compilation of @ Words.

210 Defining Words —— ;0C0DE.
«» 11 Branches in & Words.
1101 A Unconditiomnal Branch.
P B R Conditional Branches.
a1 Iinterfacing with an Uperating System.

1201 To Stand Alone or Not to Stand Alone.
»12.2 0S8 Interfacing Technigues.
Multiprogramming and Real-Time Applications,.
12,1 Priority Scheduling.

Ta13.2 Roungd-Robin Scheduling.

ZL1E0E Scheduling through Operating bystems.

t o T L L R A]

b L L e
}
BB

J
!
—

}

b

3 kYRR bil B3R PRI ORD
o s O P]

|
j
et

!
Yo

=r
o
T
-
O
-
)
-
D

I-14

=37

-
-
4
S
-
o
¥
o
-
-t

Lo
N N

i
—
us}

—26

4.

\—II

-

e

E(I

FORTH VOCABULARIES

4.1
4.2
4.7
4.4

Introduction.

Notation.

Standard Vocabulary List.
Special vocabularies.

UULIE SR o B

bR bp
pbEn bR

Advanced Topics:
S.1 Why larger Forth Gystems?
2 Forth for VAX~11,
H.2.1 Texnt Files
D.2.2 Data Width

[=
|

[2

g
[

oo

-

~

Standard Editor,
Character Strings.
The Extended Editor.
Deferred (Jperations.
File System.

lL.arger Forth Systems.

I Address Interpreter
In-Ling Cnode
Operating System Interface

AFPFENDTICES

FOP-11 Imglementation.

Forth Ribliography.

i

[

L I S O Y T O B

I L A 0 A
. -

FREFACE

Forth is a computer language and programming style that
produces efficient programs and allows programmers to work very
productively. At the same time, it is unprthodor, resistant to
standardization, and difficult to describe. In a profession (and
hobby}? +illed with individualists, Forth almost encourages
personal and non-standard computing.

With all its peculiarities and despite its uneven
acceptance, Forth has qgrown from a sSpeclalized laboratory
minicomputer system 1in the early 19708 to a widely popular
language for both mini and microcomputers. Contemporary
implementations range from the smallest B-bait machines to Id-big
superminicomputers and even soame mainframe systems., Forth
systems have found significant appliication in commercial markets,
but their pealk acceptance {in numbers, at least) has been in the
personal computer world.

This book addresces-two needs. First, it provides a motiva—
tion and description for the basic Forth vocabulary, as embodied
in the Ferth-7%9 standard. The treatment is concise and directed
toward readers with some familiarity with computing, but it
should be accessible to newcomers with general mathematical back-
ground.

The sepcond purpose of this work is to satisfy the curiosity
and needs of programmers who have developed experience in Forth
but who seek a more complete understanding of the internal struoc-—
ture of Forth. With this material, the Forth programmer should

he able to adapt his system to new reguirements, or to recode it

Caltech Forth Freface-2

for different processors.

Thi = description of Forth 1s based on ten vyears of
experience at the Owens Valley Radio Observatory (OVRO) and the
Jet FPropulsion baboratory (JFL) of the California Ipstitute of
Technology. Based on a presentation of Charles Moore at the U.S.
Mational Radio Astronomy Observatory 1in 19272 and Moore™ s
aseembler—-coded IBM 32460 version, we undertook a series of
implementations that began with the DEC FDF-10 and the 5D 920G,
The FDF-10 was a convenient timesharing development system, while
cE 920 Forth succeszfully controlled the OVRO 40-meter radio
telescope for many vYeEars.

H. W. Hammond continued with opur first DEC FDF-11 system,
which still provides control and data collection for the dual Z7-
meter radio interfermméter at QOVRO. Yet another generation of
Forth, running uwnder the RT-11 pperating system, supports an
OVRD/IFL processor for Very Long Haseline Interferometry (VLERID,
accepting 20 million samples per second of digital data origina-
ting at observatories around the world.

Further developments at OVRO have led to a distributed
netword of more than 7 DEC LEBI-11 computers running seltf-
contained Forth systems under the direction of a central FLOP-11
whose Forth system runs under the R8X-11/M operating system.
Currently, JFL and QOVRO are readvying a DEC WVAX-11/VME Forth
program to control a new generation VYLEI processor handling more
than B0OO million =amples per second.

A version of Forth for the PDF-11 running wnder the RT11
operating system is available from the Digital Equipment tsers

vy

Society (Maynard, Massachusetts). This release, numbered 11-272,

Caltech Forth Freface—-3

incorporates some, but not all of the featuwres described inm this
book.

While developments were ocewring at Caltech, Forth was evol-
ving in various directions in other user communities. Vocabu-
laries naturally tended to diverge as the larger Forth community
shifted to 8- and lé&—bit microcomputers, especially ‘'"personal®
computers, while Caltech worked with Forth under operating sys-—
tems and running on larger processors, such as the Z2-bit VAX-11.
With the publication of the Forth-79 standard, however, there has
been a gonvergence of veocabularies and syntax, even thouwgh the
language retains the flexibility that allows it to expand and
adapt to new problems and computing enviromnments.

I would like to thank H. W, Hammond, D, H. Rogstad, and J.
L. Vavrus who have been responsible for many of the developments
in FDF-11 and VAX-11 versions of Forth,

Martin S. Ewing
Altadena, Lalifornia

May, 19BZ

CHAFTER 1
INTRODUETIDN
1.1 BEGINNINGS.

In the early 19705, Charles Moore revealed a new and icono-
clastic appreoach to programming computers. The environment in
which Moore worked was that of & national scientific laboratory
{the U.S5. National Radio Astronomy Observatory) that was begin-
ning to apply early l1é-bit minicomputers for data ceollection and
instrument control.

Frogramming the new minicomputers was an ardubus process,
styled after earlier euyperience with second- and third-generation
mainframes (IBM 7040 and 260 series), Since the new small ays-—
tems could net usefully support Fortran or Algol compilers {(which
at that time were 1argé1y unsuwitable for real—-time pperaticons),
they had to be programmed with machine language assemblers.
Input would be on punched cards or paper tape; the operating
system, if any, would reside on magnetic tape. Frograms would
often be azsembled on mainframe computers and transported on tape
ar cards to the minicomputer. This process was so laborious, and
debugging ftoolsz wereg o limited, that minicomputer simulator
programs running on mainframes were sometimes the most efficient
way to check out new programs.

Moore wnderstoed that there should be a better way to pro-
nram small machines. He developed a unique set of tools to
permit efficient programming. but, more important, a new stvle of
working, which brought the programmer into intimate comtact with
his object code and the machine on which it ran.

He named his new system Forth. The name stands for "fourth

Caltech Forth 1—

rJ

generation” software; one letter had to be removed to fit a -
character field in the IEM 1130 computer that wacs used for early
devel opment.

Forth has been refined and transported to nearly all types
nf small computers. The language has been adopted in many envi-
ronments besides the scientific laboratory: microprocessor de—
velapment systems for industry, and personal computers are two

major examples.

.2 BENERAL CHARACTERISTICS.

Forth exists in numerous varving implementations, but a
numbar of distinctive features are common to most Forth syvstems.

i, Interaction. Forth is at heart an interactive system.
You prepare programs through an on—-line editor and are able +to
compile them rapidly. This approach was almost revolutionary in
Forth’ s early days. Even now, the Forth programmer spends much
less time going through the mechanics of editing, compiling,
linking, and testing newlcode than does a Fortran programmer.

2. Incremental Compilation end Aszembly. Forth® s basic
units of code, "words," tend to have short definiticons — a few
lines each. As yvou enter a new word definiticn, it is natural to
make an immediate test of its operation. Program modularity is
encouraged because words tend to be simple and logically well-
defined; they can be tested exhaustively before being used in
higher—level constructs,

. Reverse Folish Notation. The normal location of program

input and output is a push-down parameter stach. For keyboard

Caltech Forth 1-3

input, youu must type parameters before a command word that op-

erates on them. To users accustomed to other high-level lan-
guages, this makes Forth programs somewhat difficult to read. in
practice, bhowever, the transition to Forth™ s parameter wordering

is no more difficult thatn switching from a Texas Instruments
(algebraic) pocket calculator to a Hewlett-Fackard (RFN) wrnit.
The push-down stack simplifies communication and facilitates
program re—entrancy, allowing code to be shared between multiple

tasks in & real—-time or timesharing environment.

4. Simple Logical Structure. Only the most basic program
branches and loops are provided in Forth. It is difficult and
unnatural to write Forth that is not well-structured. (Unfor—

tunately, this does not mean that all Forth programs are clear!)

S, Extensibility. " Forth has built—in capabilies for exten-
gicgn to new data and operation types. List processing and data
bage management are examples of extensions that are possible with
this technique,

&. Mined High- and Low-lLevel Frogramming. Ferth words can
be defined sither as combimations of basic Forth vocabulary words
{(the "high-level" approcach) or directly as machine—language i1in-
structions ("low-level'). In a natural way, you can shift be-
tween compact (and readablie) high-~level code and very fast mach—
ine code.

7 Machine Independence. High—level Forth programs adher-

ing to the Forth-79 standard can easily be transported between

diftferent computer types.

faltech Forth 1-4

1.7 DEFINITION AND STANDARDS.

Farth is a very personal and malleable language that has
Historically resisted being formalized with the precision of some
high-level languages, such as Fascal or Ada. In the hands of an
expert, Forth can easily be recast into forms which emphasize one
or arnother desireable attribute, but which loze compatibility
with "mainstream" Forth.

Pezpite its susceptability to rapid evoiution, Forth has
been regularized with zome success through the work of the "Forth
Standards Team." This private group published the Forth-79 docu-
mert which forms the basis of the notation and vocabulary used in

this book.

1.4 ORGANIZATION OF THE "ROGE

Chapter 2 is an introduction for the new user of Forth.
That chapter and the vopcabulary lists of Chapter 4 should provide
vou with enouwgh information to begin programming at a Forth
terminal.

Chapter 23 provides more detasiled descriptions of the
internal mechanisms of Forth; the presentation assumes some prac-—
tical knowledge of Forth. This chapter should help you i+ vyou
develon ar maintain Forth svetems.

Chapter 4 contains the standard Forth vocabulary, Forth-
79, and additions that have proven useful at Caltech~0OVRD and
JPL..

Chapter % treats the special preblems of implementing Forth
in Iarge-—-memory systems, i1ncluding the new 16-bit microcomputers,

such as the Motorola 68000, as well as the DEC VAX-11 series.

Caltech Forth 1-5

Appendisr A provides details of a FDP-11 implementation,
including a FDP~-11 Forth assembler. Appendix B is an annotated

bibliograpby of the Farth literatuwre.

CHAFTER 2

FORTH OVERVIEW

2.1 WORDS AND THE DICTIOMARY.

The central element of the Forth system is the T“word". A
Forth word i=s like a subroutine or procedure in other languages;
executing, or calling, a word causes a definite sequence of
actions to be performed. The reason for calling a Forth routine
a "word" is that it nearly alwaye has a name that is known to the
keyhoard interpreter: it can be executed zcimply by typing its
name. Thus Forth worde are egquivalent to words of text that veou

can type on the keyboard.

NOTE: Yot must be careful to distinguish a “Forth word'",
which is to be executed like a subroutine, from a
"memory word", which is a unit of storage {2.0u.4 1&

bitsd.

Words are defined in the Forth '"dictionary', which, like
ordinary dictionaries, is a table of word-names and their defini-
tions. Two types of definitions ccowwr in the Forth dictionary.
Words may be defined in terms of other words that are defined
earlier, e words may be defined by a sequence of machine lan-
guage instructions. Ultimately, of course, all Forth words must
resolve into machine instructions.

Az a Forth user, vou type in words or, more precisely, teut
strings o Ttokens" to your terminal. Forth permits & very

general and free—-form input. With few exceptions, any combina-

Caltech Forth 2-

k3

tien of letters, numbers, or other characters can be used to name
a word. One character, normally "blank" or "space”, is reserved
to separate tokens. A few other characters are reserved to let
you correct errors in typing. Under DEC operating svstems "del"
o~ Yrubout" lets vou retract the last character you typed, and
"CTRL-U" or "W cancels the entire current line you are typing.
One rule for recognizing Forth word names may be unfamiliar.
Words are distinguished on the basis of their +irst N characters
and their total length. In many Forth variations, N=3, while in
the Caltech~0OVRO systems discussed here, N=4. The number of
characters to recognize is a tradeoff between memory savings and

Freedom in choosing names. Evamples of recognizable and disting—

uishable Forth word names are presented in Fig. Z2.1.
IATDXX. 3 SOME-ARE~LONG
X # (recognizabkle words)
FOURTEEN SHM
ARCDEFG fequivalent -— not distinguishable?
ABCDX XX
ARCDEFG (not eqguivalent —— distinguishable?
ABCDEF GH

Fig. Z2.! Receognition and Distinction of Forth words.

If wvou type in a token (sequence of characters) that can’t
be +Found in the dictionary, Forth sees if it makes sense as a
number, I¥ =0, the token is converted from ASCII to binary and
pushed on the stack {(discussed below). I you type a string that

isg not in the dictionary and is not a number, Forth issues 1ts

Caltech Forth 23

standard error meszage —— a guestion mark.
2.2 THE BTACH.

Numbers and other data are normally handled through the
Farth "stack". Thi=s is a so—called "push—down" stack. Such a
stack iz a way to store data such that the most recently stored

items are immediately accessible. New data is pushed down on top

of older items. When an item is no longer reguired, it is Ypop-
ped” Afrom the top of the stack, making older items available
AQa1inN. In other words, the push-down stack i1s @ last—-in first-

oult gueue.

The purpose of the stack is to provide yvou with an efficient
means of handling data and intermediate resulis in the course of
a calculation. Labelled variables to hold intermediate data are
not reguired in most cases. Since the space used by the stack is
shared by nearly all Forth words, there is a considerable saving
in memnory.

Most Forth words operate on input data you supply on the
stack, pop the input data, and push the results onto the stack.
For simplicity, the Forth convention is that you must type the
arguments of & function {(Forth word) before you type the word
itself; i.e., you must give commands in "reverse Folish nota-
tion". fAs an example, the algebraic expression

1+ 2) ¥ (5 + 4)

may be written

Caltech Forth

k]
}
J=

2.5 BLOCE STORAGE.

In most practical applications Forth requires an auxiliary
mass-storage device. Various devices such as floppy disks, hard
disks, or magnetic tape, may he used, but some random—agcess

technique is required.

The storage device is divided into fixed-length '"blocks",
rormally S12 words = 1024 bytes long. These blocks may be used
ag a sort of "virtual memory®, ieeay vou may store data in
blocks when vou don®t have enough room in main memory. Blocks

are suwitable for holding large amounts of business or experimen—
tal data, for example. They are alsc used for the Forth system
iteself: the Forth bBinary object preogram and the Forth source
{(text) for leoading the standard system and for users? applica—
tions. When a Forth bhlock is used to hold text, it is called a
n

"erreen.

Forth handles its transactions with the block storage device

in a simple and device-independent way. Blocks are simply num-
beared sequentially from O to some high number. Two buffers in
main memory hold the last two blocks you have used. In order to

retrieve a new block, you type BLOCEX, which takes the number you

have put on the top of the stack as a block number, Feads the
block into a buffer, and returns the address of that buffer on
top of the stack. I+ there are multiple disk drives in a Forth
system, they are normally treated together as a single unit.

Floppy disk draive "D", for example, might be accessed as blocks ©

-

— X200, while drive 1" might be 1000 - 1300,
¥ Forth words written in this text will be written 1n capitals
and underscored.

Caltech Forth 2-5

I+ vou want to change the data in a block, vou tyvpe UFDATE

after BLOCE. Then, before the buffer holding youwr block is

released for & new BLOLCE command, it will be rewritten to block

storage. Y o can type FELUSH to rewrite updated blocks

explicitly.

Z.4 DEFINING MEW WORDS.

The "standard" Forth system has around 200 words defined in
its dictionary, These provide the functions most commonly needed
in useful application programs. "Writing" & Forth program act-
uvally conszists of defining new Forth words, which draw on the old
vorabul ary, and which in twn may be used to define even more
complexr applications.

Forth preovides a number of ways of defining new words. The
language even gives you ways of defirning words that define words.
(It iz an extensible language.)

The wod CODE permits you to define words whose actions are
expressed directly in méchinE" or assembly-language (terms used
synonymoislyv) . COPE words are clearly machine-—dependent, but
they give you the means to get maximum execution speed. I+ +the
tightest loops of your program are in CODE words, you may find
that your Forth program is as fast as a pure assembler program.

Figure 2.1 shows a typical screen from a FDF-11 Forth system

that contains COPE definitions, A very simple example is the one

Caltech Forth

+J
t
-

il

-~ - =
...... Iknlll-ll-.i.a."_t---nlllll%—o—lll’t..'un4-------.-hi----;.n-:é‘n-un

123404878901 2345678901 23454678901 27454678701 2345678201 2345678701224

(SOME FDF-11 CODE DEFINITIONS) ASSEMELER
CODE + §) §)+ ADD, NEXT,
CODE — S) S)+ SUR, NEXT,
CODE 2 § -) §)+ MOV, NEXT,
CODE €2 S) N\ 0 S 2I) MOV, § 3 177400 # RIC, NEXT,
CODE ! T &)+ MOV, T) §)+ MOV, NEXT,
CODE C!' T S)+ MOV, T ¥ N\ 8) MOV, S)+ TST, NEXT,
CODE OR &) §)+ RIS, NEXT,
CODE AND ©) CODM, S) 8)+ BIC, NEXT,
10 CODE MINUS &) NEG, NEXT,
11 CODE OVER S -) 2 S I) MDV, NEXT,
©? CODE HERE S -) DF P MOV, NEXT,
1% CODE SOR T 8)+ MOV, & # T ASH, T 77000 # ADD,
14 &) 28 1) SUR, &) 177700 # RIC, T &)+ ADD,
15 8) T MOV. NEXT,
16 END-CODE ;8

P2 s TN I Y 1 Y Y [%

Figure Z.1. Typical CODE Definitions in a screen.

showrn in line 2, for the word +. This definition caonsists of
only one machine instruction (ADD) with source and destination
parameters that tell the FDF-11 to add the top two stack words
and leave the result cn the stack. The notation for machine
instructions and arguments is peculiar to your particular compu-
ter. (In +act, there ic little standardization of assembler
syntaxr even among implementations of Forth on the FDP-11.}) The
bazmic ("kernel") defimnitions of most Forth systems will bhe de-—
fined in CODRDE words.

With the word @ (colon! you can define Forth words in terms
of other Forth words. Colon definitions are much better stand-

ardized among Forth implementations and are relatively machine

independent. They do not have the full speed of & COD

word, but
they are much easier to write. Colon words often use less memary
than CODE words.

Most words that are referenced (functions that are invaked)

Caltech Forth

ir

?‘IJ
~d

a : definition take one memory word. This memory word holds a

pointer to (address of) the Forth word that is to be invoked.

The computer operates in an interpretive mode while a @ word is

bBeing executed: a sequente of pointers controls the computer.

The

interpreter overbead 135 guite tolerable in most cases -

ranging Ffrom 2 to 8 microseconds for the FDF-11/40 version.

These figures are comparable to and often somewhat better than

eguivalent subroutine calls 1n assembler language.

In

Figure 2.2 gives an example of the use of colon definitions.

fact, this one screen is a complete text editor for Forth

sctreens, showing bhow succinctly 1t is possible to write usetful

applications preograms in Forth. The standard text editor is

described more fully in .Section 2.9.

OO s R

1G
11

12

14
13

16

e e N T Y-

1273456708901 2745678901 2T3453678Y 0123456787 CG1 23454678901 2745678901254

{ FORTH STANDARD TEXT EDITOR)

VOCARULARY EDIT EDIT DEFINITIONS

: EDITOR 3 : FORGET SAVE-FUFFERS FORGET 3 EASE @ OCTAL
VARIARLE TEXT 7& ALLOT

ELANKIT SPACES @ OVER ! DUF 2+ =7 MOVE ;

STRING TEXT BLANKIT DELIM ! WORD HERE COUNT TEXT SWAF CMOVE ;
" 47 GTRING 3

{{ 51 STRING :

HOLD DUF LINE TEXT 40 MOVE ;

T HOLD LINE 100 -TRAILING 2 SFACRES TYPE ;

R OLINE TEXT SWAR 40 MOVE UFDATE

D HOLD DUF 20 = IF 20 SWAF DO I 1+ LINE DUF 100 -~ 40 MOVE
LOOF ELSE DROF THEM 20 LINE BLANKIT UPDATE ;

I DUF 17 DO I LINE DUP 100 + 40 MOVE —1 +LDOOF 1+ R

BT SCR @ DUF . CR LIST

wa =i gm A ky EF wy T3

BASE ' 38

Figure Z.:2. Standard Forth Text Editor.

Caltech Forth 2-8
Another useful Forth colon definition is .=
: = CONVERT COUNT TYPE 3
Here the word , {period) is defined as the seguence CONVERT,
COLINT, TYFE. where these words are assumed present in the

dictionary when you type in the example. Semicolon (1) is a word

with the special meaning: "end ; definition".
There are other, more speciralized, ways to define Forth
words., Numeric constants can be defined with the word CONZTANT.

For example,
21415 CONSTANT FI-TIMEE-10000

defines the Forth word PI-TIMES—-10000, Whenever you type this
word, the constant value 21415 will be pushed on the stack.

Often vyou find that it is awkward to have all your data on
the stack at once. You can store data in single named memory
words, The Forth word VARIABLE lets you reserve and name such

locations. Type
to define the Forth word @. When you type [, the address of the
storage lecation corresponding to @ is pushed on the stack. This
storage area is two bytes long.

If you need to reserve a multiword block of memory for data,
you can use ALLOT:
This esxample reserves S0 bytes (including two from the definition
of VARIABLE) pamed "DATAY,. When you type “DATA", you get back the
address of the first memory word. You tan add an index ton the

first address if you want the address of a later word.

Caltech Forth 2-2
2.5 STORING AND RETRIEVING DATA IN MEMORY.
The word 2 (called "fetch") is provided so you can '"read

out' data from any address. You type
caddress: @

where <address> is any valid memory address to retrieve the data
stored there. (The data replaces <address> on the stack.) Thus
type
to get the integer in variable E.

To "store" datea from the stack into a locaticn in memory you
type

iyalue: faddressr L
Here <value:r is stored in location <address>, More concretely,
142 O ¢

stores a new value (148) in variable 0. (Note that both Yi4gt
and & push numbers on the stack. The '"store" word [!] stores the

data away and then pops both input guantitites from the stack.)

Frother little program might run

In the first line ARD is defined (VARIABLE AEBL) and set to the
value 1. In the second, the address of the integer (ABD) 1s
ptaced on the stack, the value at that address is fetched (D),
the value iz negated (MINUS). the address iz again placed on the
stack, (ABEY, and the negated value is stored back in the integer

location €1y, This is a slow but feasible way to negate an

integer.

Caltech Forth 2=10

2.8 CONTROLLING FORTH —— THE TEXT INTERFRETER.

You neormally contral a Forth computer from your terminal.
The system is idle and listening for anvithing from the kevboard
until vyou type in a complete line. When fForth gets a full lines
tended with '"retuwrn”), it attempis to erecute the worde (or
caonvert the numbers!) you have typed.

Many times you will want to avoid typing lomg. standard, or
repetitive cequences of words. For ezample, once you have
debugged a new word, vou dont want to have to tvpe it in again.
The Forth text editor (described below) lets you store away +the
pragram in source tedt form in a block (=creen). To define the
word, or collection of words, in the future 211 you need to do is
tyvpe

cocreen #3 LOAD

i

AR is a word that temporarily redirects Forth™ s text
interpreter away from your terminal to the screen number youw
speclty, Almost any user commands (Forth words) yvou could type

directly can be executed from a block via LIOAD.

Each screen to be loaded may end with the special word

[T
A
-

which restores the text interpreter to the source previously in
effect. I+ 38 is not found, interpretation of the screen ends
atter the last line. Note that LOADRs may be nested; a block tc
be loaded may contain LOADs i1tself.

A screen might contain the following text:

2
=

tes 11

14

t e
LOAD
I+ vou were to load this screen, Forth's response would be to

convert and push "2'" on the stack {twice), add those numbers, and

Caltech Forth =2—11

tvype the result (4) on the typewriter. After this, screen number

1% is lopaded {with whatever commands are contained there).

2.7 TERMINAL QUTFUT.

Output from Forth normally comes to your terminal. A few
basic words will suffice for many applications. You can tvype a
number from the stack with the word . (pericd). Question mark 7
u=es an addreses on the stack and types the number that lies at
that address.

The base used for numeric input and output is determined by
the wvariable BASE. BASE may have any value from 2 through 14,
Some implementations allow hase 146 as well. The special words
OCTAL, DECIMAL, and HEX let you set BASE automatically to B, 10,
or &, respectivel v. " The detault number base is normally deci-
mal, but you should check this on your system.

For typing arhitrary strings of characters you may use TYFE.

TYFE takes two numbers on the stack:

In most Forth systems, a pointer for & character string is
simply the byte addresszs of the beginning of the string.
Beginmning with the specified character, T¥FE puts out seguential
characters until the count is satisfied.

In =ome "traditional" Forth systems, terminal input and
output save space by wsing the same buffer in main memory. To
aveid problems in these systems you should use only one output
ward on a command line; vou should place an output word at the
end of the command. For example

123 . 456 .

it

Caltech Forth

bIJ
-
rJ

typed in as one line will give wvou only "123" on yvour terminal.
This is because the part of the command lirne containing "45346 .
ies obliterated when Forth writes "12Z" into the buffer for

typing.

2.8 CONDITIONAL EBRANCHES,

Forth gives vyou several means to direct the flow of
execution. The methods described here work only within
definitionss other similar words are available in the Forth
assemhlers.

The simplest conditional branch is specified by the words
BEGIN and UNTIL. Consider the following examp]e:

£ EXAMELE 1 BEGIN 1 - DUF UNTIL DROF 3

q
the UNTIL {during execution of EXAMPLE). control will return to

t+

=3

m
o
im
{0
{=

N if and only if the current stack value is zerp. The
value is popped after testing just as most Forth words pop their
input arguments.

Thizs is what happens when you execute EXAMFLE: The value 1
is pushed on the stack and the program enters the loop. Again, 1
is pushed: then subtracted from 1| to leave O. The O value is
duplicated (DUF) and tested by UNTIL: then the duplicated value

popped fraom the stack. Since UWTIL found & O, controcl returns
to BEGIN: 1 is again subtracted, leaving —1. LUNTIL finds —-1 and
control passes through te DROE where the remaining —1 value is

popped. Control returns to the calling word, e.gQ.. to the

interpreter if you were typing.

Caltech Forth 213

The BEGIN — UNTIL construction i useful for pregram loops

where the loop termination condition can conveniently he eupres—
sed by leaving a zero or non—zern value on the stack.

A variant of BEGIN — UNTIL 1s wseful for situations in which

the terminaticon condition is generated in the body of the loop.
You may program the following:

« «» = BEGIN . . . <gondition> WHILE . . « BEFEAT . . .

I+ “condition® produces a non-zero result on the stack, execution

continues with the code between WHILE and REFEAT., and the locop is=s

repeated from HBEGIN. 1+ <condition® is zero, the remaining loop

code is skipped, and excution continues following REFEAT.

A loopping Ffacility more like the Fortran "do-loop" 1is

pravided through the words DQ. LOGQFE., and +LOGFE. Another examples

>
-3
i

2 BEXS @ DO I . LQOF 3

When vyou execute EXZ, the constants 5 and O are pushed on the
stack. L0 takes these numbers to be the limit and initial inde:x
for the loop. respectively. The limit and index disappesr from
the stacit and are placed on a hidden internal return stack
stacl. Control passes into the 1oop. The word I retrieves the
current loop index value and pushes 1t on the stack. The wvalue
ie typed (and popped) by .. LOOF increments the index value by
1. then tests it against the 1imit. I+ the new index value 1is
atill less than the limit, control retuwns to the DO (P.e.4 to
the point just after DO). Mtherwise the limit and index are
popped from the internal stack and control passes out of the laop.
Thus when you execute EXZ. you get

01

+

=z 4

typed on vyvour terminal.

Caltech Forth 2-14

NOTE: The index pf a DO stops one short of the limit. The
limit gives the number of times the loop is executed
it the initial index is O. The range of a loop is

2lways executed at least once.

Words J and K are defined like I to let you retrieve indices
in nested DD loops. In the word EXZ, defined as

: EX2 2 2D

[
14
I

PO f -1 DO 1 . J . K . CfE LODOFE LOOF LOOE :
I retrieves the innermost indexs, d the next outer, and ¥ the

outermost; CR causes a carriage return. EXZ should give you the

following output. tAgain, each index stops owne short of its
Timit.)
-1 1=
S R
-1 2 3
023
-1 1 4
a1 4
~1 2 4
02 4

If yvou need an increment other than +1 in your loop, vou can
uwse +L00F. Here is an example:

£ EX4 ¢ Dg I . =i *xLOOE 3

11

Here again © is the limit and © the initial index for the loop.
EX4 proceeds like EXZ., except that +L.00F takes the current stack
value to be the lopop increment.

+_00F tests the index in a way that depends on the sign of

the increment; this is a historical pecuwliarity likely to change

in future language revisions. For a positive increment the test

Caltech Forth 215

is the same as +or LOOF; when the increment is negative, the

loop will run once with the index equal to the limit. Thus the

output of EX4 is

S 4 321 0,

Variable increments are also possible with +L.00F: whatever word

iz left on the stack when +LOOF is executed will bhe used for the
increment.

The general conditional branch in Forth will he familiar to
users of Algol or FPL/L: an IF - THEW — ELSE construction.
Aswsume that TRUE-CLAUSE and FALSE-CLALSE are words that have
previously been defined; then define EXS as ftollows:

: EXS IF TRUE-CLAUSE ELSE FALSE-CLAUSE THEN 3
When vou run EXS, IF tests (and pops) the current stack values

In general, control flows as shown in the following line -

<

<vatuer IF <true-coder ELBE <false-code> THEN

In sompe cases yvou only need to test for a "true" condition,

€.
: EX6 IF TRUE-CLAUSE THEN 3

Here TRUE-CLAUEE is run i+ and only if the current stack value is

non-zero {(“true'). The logical diagram is

Tvaluer IF <true-code> THEN

Caltech Forth 216

A more realistic example of a program using conditional

bBiranches might look like this:

2 EUNCTION DUF O 5 1F MINUG ELSE DROE O THEN DUF DUR X X

FLUNCTIDN @ takezs the cwrrent stack value (zsay %) as input and

H

T
[y
-+

¥ = (greater than or equal te) 0O, and

L

-x if u o O (Fortran rmotation?

Let us briefly explain what happens in FUNCTION. The word <

is a binary function that returns 1 if the next—-to-current scstack
value i=s less than the current valuwe; otherwise it returns O,

MINUS replaces the current stack wvalue with 1ts negative, arnd ¥

returns the product of the top two values.

When yvou executed FURNCTION, the input wvalue {0 i

duplicated (DUF) and tested against O (0 1), I+ » < O

retuwrns 1. and IF will transfer control to the true-clause

(

=
[T
=

1INUIS)Y & The current stack value at this time will be x,. since

]

0

th <« and 1F will have popped the stack. MINUS then negates .

and control bypazses the ELSE clause (the false-clause) and
resumes following THEN. The current stack value (-x) ts then
cubed (DUF DUF %X %), and FUNCTION is done.

On the other hand, it ¥ were »= 0, IF would transt+er to the
false-clause (DROF 01}, Here x is popped and replaced with O,
Control then passes over THEN, 0 is cubed, leaving O on the
statk. Like Fortram and other common languages, Forth lets vou
nest BEGIN -~ UNTILs, DO -~ LOOFs, IF - THENs, etc., provided that

the range of a nested loop or branch lies strictly within the

Caltech Forth 217

+,
i

range of all the branches and 1lpoeps that comntain it For
example,

DO ... ¥IF ... IF ... THEW ... ELSE ... THEN ... LOOF

N.L.=1 e 3 2 2 2 i
is a valid ordering. (Npte the indication of nesting levels.)
The following ie invalid:

In this case the range if the IF-THEN does not lie within the
range of the DO-LOGOF.

Unlike Fortran, Forth does pot let you "GO TQY an arbitrary
location with a statement label {(number). In geperal. IF is the
crly way you have to make a forward jump. The loss is not serious

if vyou take care to "structure" your programs -- it turns out

that most "GO TOs" are unnecessary.

2.9 THE EDITOR.

In preceding sectlons, the Forth block storage scheme was
introduced. A major wse for block storage is to hold text data,
called screens, of which Forth sowcece code is an example. The
Way vyou can enter and modify text in Forth streens ig with a
Forth text editor.

Many different Forth editors have been written. The bhasic
Forth editor (EDIT), shown in Figwe 2.2, is common tao most Forth
svestems; it ig very compact but gives yvou evervithing yvou need to
modify text a line at a time. The extended editor used at Cal-
tech (ZED} includes flexible string manipulations and lets you

search for, insert, or delete text strings anvwhere in a block.

Caltech Forth

|

-18

Most computer systems now support either fast (2,600 baud)
serial terminals, or memory-—mapped display terminals. Such dis-
plays enable vyou to use "screen editors” that show an entire

acreen at a time and immadiately update the full screen whenever

vou change any part. A flashing cursor indicates where yvou may
enter new text. By typing control keys you can reposition the
cursor at any place on the screena Screen editors have been

written in Forth, but a detailed description is bevond the scope
of this boolk.

The standard blpck length for Forth systems 1s 512 1lé-bit

words = 1024 B-bit characters. For use as a text screen a block
is conventionally divided into 14 lines of &4 characters. Diwvi-
sion of test into lines is only for convenient displavs as far

as the Forth interpreter is concerned, the &4th character of a
line is immediately adjacent to the first character ot the next
line.

The variahle SCR i1g used to hold the Forth block to be

edited, thus to edit block 35, we type

i
in
I

CR .

It vou want to list the entire block 35, vou type

As a side effect LIS

-

sete SCR to eaqual the speciftied block. To

lizst blocks 35 through 40 at once, you type

To list just one line (say the %th) of the current block,

v type

1%
=~

Caltech Forth

k3

-19

You can delete the second line by typing

2 D.
D deletes the line by moving up all the lines following the one
vou delete. The last lipe (1&4) should be filled with blanks.

To enter new text into a block you first npeed the special
werdse Y oo { to put a limne of text into an internal butfer.
Ounte (") enters all text up to the next gquote into the buffer.
Left parenthesis ({) does the same except that the text line must
be terminated with a right parenthesis ()). Thus

*OTHIS 18 A& TEXT STRING"

and

both place "THIS IS A TEXT STRING" (without guotatiorn marks) into
the buffer. If needed, blanks are added to the right to make &4
characters. Note that, like any words, " and { must have & blank
following inm the input. The text string to go into the buffer

begins after this necessary blank. The " or)} that terminates

the text is Jjust a ”delihiter”; it needs no preceding blank.
Once vyou have got the new text entered in the buffer with

or (. you may use it to replace (BY an existing line or to insert

(I foliowing an existing line, To replace line 2 of block 14

with "FOD BAR", vyou could tvype

10 SCR 1 " EQOD BAR! = E.
To insert "THIS IS A GQUITE: "oafter line 12 of block 10
vyou can type
10 BCR ! (THIS 186 A QUOTE: ") 12 1.

Caltech Forth 220

(Here vyou must use the (— } construction to enter a string
containing a quote.) I inserts the line following line 12 by
first moving limes 13 through 15 down one. The old line 14 1=
lost,.

After a T or D operation the line that was typed or deleted
iz automatically copied into the internal buffer, ready {for a

possible R or I. For example

4 D

Ih3

I
has the effect of moving line 14 to line 3, with linpes 4 =~ 173
moving down one.

After an editing zession youw showld be careful that the
updated blockes are actually written back into block storage.
Forth usually takes Eare of this correctly., but you still may
want fto tvpe SAVE-RBUFFERS to make certain. You get rid of +the

pditor by typing FORGET EDITOR, di.e.. the editopr’s dictionary

gpace is reclaimed.

CHAFTER 3

THE STRUCTURE OF FORTH.

This chapter more thoroughly describes the Forth system.
The reader should be familiar with the preceding chapters and
should have had a significant amount of “hands-on'" experience
with a Forth computer. The presentation is intended for imple-
menters and systems programmers, but it should be useful to more
caszual programmers who want to know how to make the most effi-

cient use of Forth.

.1 GENERAL REMARFEG.

It is important to stress that Forth i=s a complete
programming system, not merely a language. In zome versions,
Forth provides all the software functioms of the computer on
which it is run. This includes preparation of programs (text
editing). compilation (or assembly}) of programs, debugging and
input /output operations: through direct—access or typewriter
devices. In other versicns of Forth, including several Caltech-
OVRD svetems, Forth rums 8as & process or task uwnder a standard
ocperating system. The operating system provides standard

interfaces for /0, scheduling, and memory management.

Forth has been designed around certain basic concepts which

saerve to distinguish it from other systems. These include the
dictionary, the address interpreter, and the technique of
campilation, Less crucial but =stiill distinctive features are

block 1/0, the parameter staclk, the text interpreter, and the

asgaembly technigue.

Forth Manual T

8]

Buch featuwres do not reaslly define & language. There is a
Forth language., however. In this language concrete words are
defined, suech as +, ELGOCE, and DQG. In this light, Forth may be
compared with other programming languages like Fortran, Hasic, or
Algol. The Forth language could in principle be implemented with
a compiler like a Fortran compiler, and rum like Fortram in a
batch processor., Eut Forth's distinctive incremental
compile/debug approach is much more productive and is well suited

to the way real minicompuiers are used.

Z.2 THE STACKES.

Modern minicomputers generally have very flexible addressing
methada{ these are heévily used in Forth zystems. AN important
example is the use 0Ff push-down stacks. Most Forth systems use

two stacks extensivelv: a parameter stack and a return stack.

The parameter Etaﬁk? often simply called "the stachk", is the
one most visible to the applications programmer. It is wused as
the primary vehicle for 1npout and ocutpot data for Forth words.
LUsually data types such as integer, double precision i1nteger, and
tloating point are intermixed freely on the stack. Context
usually suffices to distinguish types.

The push-down stack accounts for the Tunnatural"” reverse
Folish notation of Forth. That is. all parameters must be placed
on the stack betore thevy are operated wpon. Thus the algebraic

ExXpression
B2 - 3¥A%E

could be written in Forth as

Forth Manual %

i

I
It
¢
I3
I
I9¢
10
I9¢
I
In

The advantages derived from the stack technigque include
simplicity in the compiler, easy addressing at execution time,
ecanomy of main storage, and gase of providing reentrant code for
real—-time systems. Against such advantages must be counted the
inconvenience, especially for new Forth programmers, of placing
all the arguments before the operators,

The parameter stack is commonly implemented beginning near
the high end of main mamory and growing downward toward the

dictionary, which grows upward {(see Fig. 3.1).

Forth Manpual AT

high limit

F X W E E M NN MW EAFFEEEEa 4 4w W E R XKD R ®ER =@

return stack
{grows upward)

v
v parameter stack
v (grows downward)

e
L] - L] L] - " [

increasing
memory
addresses

(available space)

- [= [l L] = »

user application
dictionary
(grows upward)

A F R FET T EEEEE 4 8 @ A R ®EE N ® F & & & ¥ 3R g5

Yetandard" Forth
dictionary

= 2w 4w W ¥ E N A KWW E Em N = E 4 FEEER®EEREER

Forth object dictionary
(kernel)

bBlock buffer 2

block buffer 1

A =2 = B O M M A M KSR E S wow W MEA W EEEE X LI)

lovw limit

Figure Z.1. Memory layout of a typical Forth system.

The "return stack" is separate from the parameter stack; it
is uwsed primarily for the execution of i-words; this application
is described later in this chapter.

Various other information may be placed on the return stack.
This stack is normally used to hold ipdices and limits Far DO
loops. Using the returm stack for thie purpose, the implementer
avaide having the leoop information on the parameter stack where
it might lie in the way of data for other calculations.,

In the same vein, the word R ie defined to take one word

from the parameter stack and save it on the return stack, R has

Forth Manual

L
n

the reverse effect.

2.2 THE DICTIONARY.

The Forth dictionary is the heart of the system, All
programs written in Forth appear as worde or collections of words
in the dictionary. The organization of the dictionary and the
details of dictionary entries differ between varigus Forth
implementations. In this Section we will principally describe

the Caltech-OVRO Forth for the Digital Equipment Corporation FDRF-

ii.

Zala.1 Branch Btructure.

Forth dictionaries are organized as threaded lists each of
whpse elements is the definitiorm of a word. The simplest list
structure world have a single linear thread comnecting the Forth
words in the order they have been defined. Few Forth systems use
this simple metheod, since efficiency in search time and memory

space tan be gained rather easily.

The dictionary list structure developed for the Caltech-0VRO

FDF-11 systems is sketched in Fig. 3.2,

Forth Mancal S3-b

R A N | - . PooQ P
| g : | i g o e e g :
}oparm g ! parm | ' - Poparm |)
ifielde | i tfields | ; ifields | }
[—————— } ! = ' : . e — : i
P link] ——— oS- P link @ ——— e Volink e e
| 1) b o o e eers e rere e 1 3 | 1]
| parm | i i parm : ioparm | '
ifields | d ifields | ' . ifields | '
e —— | i P : : § o — e : '
i ' . }
i link e i 1ink H —— e i link A
toparm i i Ioparm | d I parm ' H
ifields | : tfields | ' . ifields | H
Polink poom -1 link §omem— ==, o Lint P e
j ' ! o — | } f o e e | i
i parm ! ' i parm H : " oparm i }
ifields | ; itields d ifields | '
f———— | | Jm—————— H g . o e : i
HERAD J e e e frmm e — e — == & & ¢ =
VECTOR HERD () ' HEARD (1) | ! HEAD(1IS)
Fig. 3.2 Dictiomnary Organization.

The dictionary iz split into 14 threads or branches. The branch
in which a word appears is & function of its name. Thus to find a
particular word by name, i1t is only necessary to search one
branch. {The scheme amounts to a "hash code" for accessing words
by name.)

The head, or growing end, of the list is defined by & 16—
element pointer vector. These pointers aim at the most recently

defined word i1in each branch. f link +Field in each word

Forth Manual A7

definition 1is a pointer to the next previous word in the same
branch. {The exact target of the link may not be the link of the
previous word; some versions have the link pointing to the
previous link plus one. for instance.) Each branch termipates
with a word having zero link +ield. DPetinttions in different
branches may be interleaved arbitrarily in memory.

A different dictionary arganizatibn hes been adopted by most
Foarth users. The principle is to divide the dictionary into
branches similar to those discussed above. In this scheme
the branch in which a given word appears 15 under control of the
LSEF . The programmer segregates words according to the contest
of their applicationg such groupings are Hnown =33

"vocabularies". The words YOCABULARY and DEFINITIONS control the

bhranching. Figure 3.2 illustrates the VACARULARY technigue.

Forth Manual -8

i tentral H
i vocabulary '
P (FORTH) H
i more ; i assembler |
i (FORTH) ; i vocabulary i
{ | I {ASSEMELER)]
i eaditor ' P more }
I vocabul ary] !\ (FORTH} :
i (EDITOR) H P — e — H -
HEAD (EDITOR) HEAD(FORTH? HEAD (ASSEMELER)

Fig. IZ.7% VOCARULARY branching.

The number of HEAD pointers is unlimited; each one points to the
last word defined in & dictiepnary branch. Branches merge as you
trace back in memery wuntil finally all searches end at the first
Forth word in the root (FORTH) segment. A Farth word 1in one
branch cannot execute (or interfere with?) a word in another
parallel branch esxcept by explicit arrangement. Thus the
YOCARULARY arrangement glives you some program security and can
eliminate problems with wunintentional multiple word definitions.

There are just two circumstances in which vyou tave to
sperity what branch vou are using. Most obviously, vou need to
say what branch the interpeter will search when yvou typz a Forth

word. Oriy one bramnch and its HEAD are active at a time. Thus if

EDITOR 13 the current branch for searching, yvou cannot type a

Forth Manual S

woard defined only in the ASSEMBLER branch. The other circumstance
15 when you are definining new words: what branch should they be
comp:ied into?

The hranches in effect for word look-ups and for compiling
do not have to be the same. For example, you may wish to uze the
QSSEMQLER vocabulary when you are compiling a CORE word in some

other branch.

We briefly describe the action of YOCABLILARY and

DEFINITIONS. If vou type

VOCAEBLIEARY FOOQ

a new branch of the dictionary is {formed. The branrnch leaves the
current dictionary branch (FURTH or the last one specified by

DEFINITIGNS? at its current head. A new Forth word FOO is
created, When you type FQO. the dictionary bramnch to be used for
further dictionary cearches is switched to the EOO bramnch, iy
the one vou’'ve just created. Similarly, any time vou type FORTH,
ASEEMELER, etc., yvou switch to the corresponding bkranch.

I+ vyou type DEFINITIONG, the dictionary branch to be vused

mpiling is switched to the current branch uwsed for

Z.Z2 Header Section.

The detailed +format of a word in the dictionary varies
between Forth implementations. This section describes the format
used in the Caltech-0VRD FDF-11 Forth. This format 1s notable in

its wvery efficient use of memory. Only two memory words of

Forth Manual I-10

header are required in most cases, even when we use 4 characters

pius count for a word name,. X

¥Frevious Forth implementations for l6—bhit computers Fave
generally required 3 -~ & words for header information and
typically recognized only the first 3 characters plus count. The

core savings for the Caltech-UVRO FDF-11 syvstem may exceed

1,000 memory words in & large Forth application.

Each word definition in the lé-way FDF-11 dictionary
containeg a "header" which defines the word rame (first 4
characters and count?, precedence, and the link to the previous
word in the same dictionary branch. These data are efficiently

encoded into two Iﬁ—bit‘memory words as shbown in Fig. R

Forth Manual 11

BEGIMN MACHINE INSTRUCTIONS
Y FARAMETERS

—————————————— BIT NIMBER ——————— e — i e

1 i 1 1 1 A o s e L ¢

= 4 I 2 1 o 9 g 7 & 5 4 % 21 O

V- - - I - - - I - - = - — - m»”*. __lI

I 0 T G2 } A i C4 } WORD 1
i g i i high

| C4 low L IF 1 DFFSET LINK WORD 2
i

Firaet four characters of word name:

C1 = Ci” % 1&6 + THREAD#
c2, C3. 04

THREADH (O - 153) is the thread in which the word
is found.

Characters are &—bhit ASCII] codes,

lL.ength of word name:

L =L + 4 if LY <X 0
= 4 if L7 = 0, C4 <> blank
= 3 if LT = O, C4 = blank,
C3 <% blank
= 2 if L7 = o0, 04 = C3 = blank,
: 2 W blank
= 1 if LY = O, €4 = C3 =
EZ = blank
Range of L is 1 - 11 characters. Names with

identical First 4 characters and lengths greater than or

egqual to 11 are indistinguishable.

Fig Z.4 Dictionary Header for FDF-1i1 (part 1)

("<=»" means "mot egual to')

Forth Manual el

Frecedence bits

il

F 1 immediate execution (compiler directive)

O normal word, may be compiled.

Link to previous entry:

Previous address = current address — 2 ¥ (affset link)
(if offset linmk <= Q)

Frevious address = long link field
(if offset link = Q)

lLong link field is absent if the link span is less
than 512 bytes.

Fig. %.4 Dictionary Header for FDF-11 (part 2}

Some restrictions on the generality of Forth names have
allowed the preservation of 4 characters plus count. The
charagter set is limited +to the 6-bit ASCII subset, which
includes neariy all of the ASCII characters except the lower case
alphabet. The 3-bit length field (L") allows lengths of 1 to 10
characters to be distinguished uniguely. Names @f 11 or more
characters are allowed, but these will be eguivalent to Forth 1€
the first 4 characters afe the same. The limitation is slight, as
most practical Forth code haz few names &5 long as 10 characters.

The following are examples of distinguishable names:

A B ARCD ABCE ARBCEL.
HMowever, the following pairs of names are indistinguishable:
ABCD1 ARCDZ

Cl2T45678B720 Cl1Z234547d901

ABRCD1 2345467 ABLDOPH7654221EWERTY.,

Even with the &6-bit coding and the restricted length +Ffield,

a further savings in bits is reguired to fit all the header data

Forth Manual Z-13

into two words. This is accomplished easily since a natural
"key" or hash code for choosing a dictionary bramnch for a Forth
word is one of the characters of the name. In particular the 4

low~order bits o0f the first character are distributed Jfairly
randomly and are suited for the purpose. We define the following
function:

THREADH# = HASH(NAME

where the hashing furnction "HASH" is just egual to the number
expressed by the 4 low-order bits of the firzt character of the
"NAMEY =string.

It the HABH function is used to select a branch for the word
entryv, the Forth word header doss not need to contain those bits
selected by HASH; they would be redundant. Thus the ftield C1L°
in Fig. Z.4 contains only the two highest order bite of the
first cCcharacter; the low-order bits are implied from context.

that is, trom the thread number.

One bit of the Forth word header 1s reser-ved for
"precedence!., Normally this bit is zero, but for "immediate®
wards the bit is one. This hit has special impartance for

complilations; it is discussed below in Section 2.9,

The Ffinal header field congsists of 8 bits reserved for the
offset link. The link points to the last previous word in the
same dictiomary thread. I most cases the memory spanned by the
link is less than 25&6 words (512 byvtes), s that the offgset link
has enough bits. In cases where the link must cover more than
e

96 words, the offset link is set to zero and an additional 16—

bit "long link field" is allocated. The long link field is &

Fprth Manual

e

—-14

complete byte address that may direct +the dicticnary search
anvwhere in memory. In the special case of the first word {(foot)
ot a dictionary thresd, both the offset and the long link field
are Tero.

ZeFa> Code And Parameter Sections.

A complete dicticnary entry containg one or two sections in

addition to the header discussed above. These are shown
schematically in Fig. Z.5.

R ;'

H HEADER H

! (2 OR % LOCATIOME)Y |
CODE SECTION g

(1 O MORE LOCATIONS?

. PARAMETER SECTION -

. (OFT IONAL) .
Fig. 3.% BGeneral Fortbh Dictionary Entrv.
Every word must contain a code secgticon; this is one or more

mathine instructicons that are execuvted when the Forth word is
invoked. The addrezse of the first location of the code section
is the one compiled into address sequences in ¢ efinitions (see
Bection Z.9). For CORE words, LaBay those defined by assembly
instructions, the code section ig normally the final part of the
dictionary entry. It will +Finish by "calling" the address

interpreter through executing the instruction NEXT. {(JMF (10 +,

Forth Manual 215

see Section Z.4).

Other kinds of words, in particular § words, reqguire an
additional parameter section in their dictionary entries. In &
words the parameter section contains compiled addresses which
direct the execution of the address interpreter. Words detined

hold data.

Some more concrete examples of dictionary entries for

various types of words are preszented in Fig. Z.6.

Forthk Manual S—14A

CODE WORD COLON WORD
! HEADER ! ! HEADER !
: ' I ISR OIC,9% ...! <-— 4SE7(8)
! MACHINE ! o e e !
! INGT. CTRS ! ! 15T WORD ADR !
: ! i ADDITIONAL :
{ e e i ; ! WORD !
LOIMF DI + : ! ADDRESSES :
! ADR(SEMI) :
CONSTANT WORD VARIAELE WORD
! HEADER ; i HEADER !
P ISR IC.9H ...l P OJSR OIC,DH L.
! ADR(CONET) | ! ADR{ VAR) !
1 VALUE " | VALUE :

{CODE SECTIONS AERGVE REFER TO FOLLOWING CODE)

SEMT & MOV {FD +, I
JMP 2 CICY+

FOF INET. CTR FROM RETURN STACK
"NEXT" = ADDRESS INTERFETER

xn car

CONGT: MOV 21C, - (5F)
MOV (R +, IC
JMP D (IC)+

MOVE VALUE TO FPARAMETER STALKE
RESTORE 1L FROM RETURN STALCK
"NMEXT"Y

mm Az e

VAR MOV IC, —(SF)
MOV (RO +, IC
JMF D CIC) +

MOVE ADR, OF VAILLUE TO PARM. STACK
RESTORE TC FROM RETURN STACK
UNEXTY

am xR s

Fig. Z.&8 Common Forth Word Formats
(Caltech-0OVRD FDF-11).
Mote a little trick in the 3§ word: the code section instruction
(JSR IC, d4address) is & double—-word instruction, but the second
location is really just the first location of the parameter field
-- as Far as the Forth compiler is concerned. Thiz address and

those following comprise the sequence that directs the address

Forthk Manual 217

i

interpreter. It turmns out that the PDF-i1 instruction JBR
IC, P#address has precisely the right action toc start the address
interpreter; it saves the instruction counter on the return
stack and directs execution to the code located by the First

address of the address seqguence.

T.%.4 Expanding And Contracting The Dictionary.

The Forth dictionary is initially set up when the program is
first loaded. This dictionary and its associated code are
called +the "objiect program” or "kernel . For Caltech-0GVRDO
zystems the kernel is defined in aszembly language. Other
systems sometimes use so—called "Metaforth', which 1s a Farth
program that cross-compiles code from one Forth computer to
generate- a nesd kernei far another {or possibly the zamed
computer,

You extend the dictionary by executing "defining words" —-—
words that define new dictionary entries. You can o this
directly from a terminal (typing :, CODE, etc.) or indirectly by
LOARIing blocks that contain defining words. The defining words
have the logic reguired to compute the proper thresd number and
to enter a new element in the corresponding dictionary branch.

At times you need to truncate the dicticnary and free up
memory areas. You oo this with EORGET. Type

FORGET EAR
to look up BAR in the dictionary and truncate all branches at the
highest possible memory addregses lower than the beginning of
EAR.

Thus BAR and all words defined after BAR (in time segquence)

Forth Manual Z~-18

are deleted. Judicious use of FORGET gives you a mimple overlay

capability in Forth.

Z.4 FROGRAM CONTROL —— THE ADDRESS INTERFRETER.

Ancther central element of the Forth system is the function
of the address interpreter (AI), This code directs the execution
of Forth words from address seguences in memory. The normal
termination of every CODE word is an invocation of the address
itnterpreter.

The interpreter operates on a sequence of memory addresses
which lie in consecutive words of main memory. Such an address
csequence is the parameter field of & @ word. Each address points
to the code section of an earlier dictionary entrv. (See Fig.

[—

Ta Fw }

Forth Manual TZ-19

i HEADER "“ARLCY ' i HEADER "A" E
P ISR I, .. | R—— -} JSR IC, 0% ...
{ ADDRESS(A) f-——mmm . | ADDRESS(AR) i
(IC)===3| ADDRESS(B) |-—m—mmm . . ADDRESS(AB) |
| ADDRESS(C) {--—+ . ADDRESS (SEMI) |

i HEADER “RB" i

! e 30 JGR IC, O ... |

Forth definitions: ! O '

d i ADDRESS(BA)

:QQQAE‘: ' e e e e e bt 2 !

: B EA 3 : i ADDRESS (SEMI) |

: C CA ; ! S :
: ABEC A B C ; !

' i HEADER "“C" :

o e » JSR OIC, 9% ... i

Fig. 2.7 Compiled address seguences.

In each i definition an address sequence specities the
Forth words to be run when the @ word itself is executed. I.e.,
if ABC is defined § ABC A B C i, the addresses of words A, B, C,
arnd 3§ are found in the parameter field of ARC. These addresses
define what actions occur when ABC iz executed.

We can describe the effect of the AL 1n the following
general terms. A register (or memory location) is reserved as
the Forth "instruction counter" (IC). Like hardware instruction

counters, IC points +to the next {(Forth) instruction to be

Forth Manusal Z-20

executed. "Instructions”" to the AI are just the addresses of
Forth words.

The Forth interpreter must pick up the address that IC
points to, increment IC to poeint to the next address in sequence,
and fimpally Jjump to the code specified by the first addrecs. In
terms of Fig. 2.7, the next invocation of the interpreter will
pick up the address of the word E, IC will be incremented to
point to the next address (address of C, and control passes to

the JSR instruction in the code section of B.¥

¥Most Forth implementations use a slightly different
algorithm for the AT. In these systems, the first word of the

code section is slways an ad 25 instead of an

10.
175
g

instruction. The address in turn points to the actual code to
be executed. Thus the Al jump instruction must be a double
indirect jump. In implementing the Caltech-BVRO system for
the FDF-11, we found that core anmd speed savings could be achie—

ved through adopting the. technique described here.

Several computers are so appropriately designed that the
entire Al function can be achieved in a single instruction. The
DEC FDF-11 and FPDF~10 are examples. Fig. 3.8 displays the flIs

(HNEXT instructions) for 2 types aof computer.

Forth Manual S-21

(FDF—-11) NEXT: JMEP D (IC) + ;3 IC is a register
(FDP—10) NEXT: ADJA IC,R0CIC) 5 ditto
(BOBOD) NEXT: LHLD IC 3 IC is a 16-bit
MOV E,M i double-word
INX H
MOV D,M
INX H
SHL.D IC
XCHG
FCHL

Fig. .8 Address Interpreters for 3 Computers

The discusesion to this point tells how the Forth A
progresses through an address seguence a step at a time. 7The
linear +low of execution may be modified in several wavs. The
simplest would be to alter IC directly in a CODE-defined word,
and then to invoke the interpreter.

8 more subtle, bqt more useful redirection of instruction

+ilow 1s performed every time a § word i1s executed +from &

word. Thig ig the situation presented above in Fig. Z.7.

A good way to divert the Al is to store away the contents of
IC on a stack (the returﬁ stack), and to set IC so that 1t points
to the first word of the parameter section of the new word to be
interpreted. (In this way, the A algorithm is recursive.}

In general, what is the appropriate instruction to put in
the tode section so that the Al is redirected? Wa need an
instructicn that lets us push & register on & stack and somehow
"remembers" where it is when executed. Usually some kind of
subroutine call instruction is appropriate.

As we suggested already. the FDF~1!1 has an instruction which
pertorms all the right operations by itself. With most other

computers youl need to wite a 2 or I word subroutine

Forth Manual z_mo

(conventionally called COLON) to redirect the Al. The techrnigues

tor I comprters are illustrated in Fig., 3.9,

(FDF-11:

Appearance of code section: JSKR IC,9# it really one
addressl i1 instruction
address?

No subroutine required.

(FDF-10)

Appearance of code section: FUSHI RF,COLON
addressl
address?

Fequired subroutine: COLON: EXCH IC,CdRF)

A0JA IC,20(I8) 1 (NEXT)H

{2080

Appearance of code sectiocn: CALL COLONX
address] y two bytes
addreses? ; two bytes

Reguired subroutine: COLON: LHLD IC
X(CHEG
ALl RFLSH i (DE)Y ——FRETHE
FOF M : FROM CALL INET.
SHLD I

JMF NEXTx*
¥The CALL COLON and JMP NEXT instructions can be replaced
by hardware reset (R5T) instructions, with a savings
of 2 bytes per use. You must have appropriate cpde at

the corresponding low-memory locations.

Fig. 5.9 The COLON Function for 3 Computers.

You end & normal 3 definition with j. The semicolon (37
compiles an address called "SEMI" into the dictionary as the last
entry in the parameter section of the word vyou're currently

deftining. {3 also resets the compile state.} SEMI 1s the

Forth Manual I-23

address of a machine cade routine that undoes the effect of the
CoL.eN function. It must restore the old contente of IC from the
return stack. The SEMI routines for the same I computercs are
given in Fig. J. 10,

(FDF—11) SEMI: MOV (RF)Y+, IC
JME I+ i (NEXT)

(FDF—10) SEMI : FOF RF,IC
ADJA IC,R0(IC) 3 (NEXT)

(BOBO) SEMI: ALl RFOF
XCHG
SHLD IC
JMF NEXT

Fig. Z.10 The SEMI Function for three Computers.

The discussion and figures above indicate that the address
interpreter may be nested very deeply. limited only by stack
space. -In other wmrdg, Forth @ wards can refer to sarlier 3
words, which can refer to vet earlier words, etc. The time
overhead for the Al recursion {or the Ycalling" of one ;3 word by
another) is seen to be very nominal —— about equivalent to a
conventional subroutine call.

In summary we can say that the address interpreter 1s the

engine that makes 3 worde go. The technigue i1s not news it 1s
alsc uwused in DEC's "threaded code” in PDF-11 Fortran. Eut in
combination with the text interpreter {(zee below? it is

responsible for the unique power of the Forth system.

2.5 THE TEXT INTERFRETER.
In the preceding Section we digouszed the atdress
interpreter and how Forth executes : words containing compiled

address sequences. There is one fundamental Forth 3 word {(G0OX)

Forth Manual =24

whose Jjob it is to interpret what you type in to your terminal.
This is called the "text interpreter” (TI). It is distinguished
+rom the address interpreter because its input is text Ffrom a

terminal (or bleock) rather than addresses.

¥Botually GO is an "anonymous” word (withovt a header) and can

not directly be accessed from your terminal.

The TI is really a Forth program in i1ts own right. In fact
it ie the bagsic program that executes in normal Forth systems.
When vyou type in a word ("command") to Forth, it is the TI that
interprets vour command and actually begins execution.

A structured program (in pseudo-code) for & typical TI
follows in Fig. E011.

GOz IFC Imput is from typewriter 3
THEN IF{ Text buffer is empliy ?
THEN Wait for next full input line
from typewriters;

IF(Input is from typewriter)
THEN Frepare to read typewriter buffer
ELSE Frepare to read selected block buffer;

Collect & text string {(word) from buffer;

IF{ Word exists in dictionary)
THEN IF(In compile state)
THEN Compile a pointer to dictionary
words;
ElL.SE Execute the dictionary word

ELSE IF{ Imput string converts to a number

in current radix 3

THEN IF¢ In compile state}
THEN Compile a pointer to "LITERAL"

followed by number value

ELSE Push number value on stack

ELSE Abort;

GO TO GG;

Fig.: 3.11 A Structured Fseudo-code Text Interpreter.

Forth Manual 535

We can elaborate a bit on this program. The input to the TI
can be either from the terminal ("typewriter!") or From block
storage. Mothing happens with typewriter input until vou enter a
complete line, ended with "return”. If a screen is the input
saource, T1 runs straight through without a pause until ;8 or the
and of the screen is encountered,

"Collecting a text string"” means scanning the input source
until & complete word-name—candidate {(token) :1s +ound. That is,
scanning begins from the cwrent position of an input ftext
oointer owntil the first non-blank character is found. Then all

the pon-blank characters up to the next blank (or other specified

delimiter) are moved to a special placeX.

¥actually to the next several available dictionary locations in

case thi

th
z
2

i

d is to be entered in the dictionary.

Using the appropriate rules for identifying word names with
dictionary entries (e.g.. firet 4 characters plus length), the
TI attempts to Ffind a match with an existing entry in the
dictionary. I+ a match exists, the T will normally simply
execute that word. There is one case where, if vou tvpe a word,
you don’t want it executed: this is when vou are defining a g
word. If you are defining a 3 word, the TI will store a pointer
to the word in the next available dictionary location.

If there is no matching entry, the TI will try to see if 1ts
token will convert properly as a number. I¥ the string does make

sense as a number, that number is normally just pushed on the

stack. I+ you happen to be compiling a @ word, the TI compiles

Forth Manual E-26

a call to a special word "LITERAL" followed by the value. so that
the npumber you've typed will be pushed on the stack when vyou
execute yvour new word.

I+ the "word" you've typed can’t be found in the dictionary
or converted as a legal number, the TI gives up and ABORTs. ALl
the gfacka are reset, the compile state is reset, the word itseldf

igs typed again followed by & questicon mark, and Forth starts the

TI all over again.

Z.4 ERROR MESSAGES -- ABORT.

The only "standard" error routine in Forth is called ARORT.
ABCRT simply resets nearly evervything in the Forth system: the
parameter and return stacks, the compile/execute =tate (to
execute}, the terminal buffer, etc. Only the dictionary and the
current state (block ceontents angd update flags) of the block 170
svetem are not affected.

In addition to the reset function, ABDRT types a very simple
errar message on the terminal: the name of the last word
processed by the text interpreter followed by a guestion mark.

The action of ABORT in a real time Forth system 1s not
standardized. In most situations with Caltech-OVRO Forth, an
ABORY caused by an error in a background (user~terminal} tasi:
will not affect a foreground, real-time task. This is simply
because the background task only runs when the foreground tashk is

finished, i.e., when the foreground task hazs nothing to keep on

the stacks.

Forth Manual 3~27

Z.7 RLOCE INFUT/QUTRUT.

Forth normally maintains & single direct-~access +ile on

sgcondary storage (such as disk). This storage is not logically
required to run Forth: micro—-computers, for example., may use a
Forth system permanently written in read-only memory. But inp

general purpose minicomputer systems, much of Forth™s versatility
depends on adequate block storage.

The conventional record size for block storage is 1024 8-bit
bytes, or 512 1é-bit words. Blocks are simply nuimbered
sequentially from O thousande are typically available.

Typical systems have two block buffercs in main memory. wWhen

vou type

Forth chooses the less recently used buffer, writes its contents
back to disk 1if neceszsary (i.8.. if that block has been
UFDATEd), and then finally reads in block nop from disk. The

buffer address is returned on the stack.

Once in main memory, & block may be read or altered in any
WAaY . I+ vou want to change a block’™ s contents on disk., you must
e swre to type UPDATE following BLOCE. LUFDATE sets a flag that
imsures that the buffer last returned by BLOCKE will be rewritten
to disk before the buffer is reused tor some other block. You

can type SAVE-RBUFFERE: &t any time to force rewriting of any

LFDATED blocks to disk.

I+ you want to be sure that vouw are dealing with "fresh"

copies of disk blocks, you can type EMPTY~BUFFERS before BLOCE.

EMPTY-BUFFERS simply sets a flag that marks all block buffers

empty; thus any BLOCK Ffollowing will Fforce a read disk

Forth Manual S8

operation.

Forth blocks are perfectly general in the tvpes of data that
they may hold. However one important use for blocks is to hold
Forth text., i1.8.« input for the text interpreter. In this mode a
block kpnown as a "screen”, and is considered to be a single
EtFiHQ of 1024 characters. That is, the text interpreter may
scan the entire block without any division into smaller records
such as lines.

For text entry, editing, and listing, however, it ism
convenient to divide the 1024 character bloeck into 16 lines of &4
characters. The lings have Ffixed length and there i1is no

separation {carriage return or line feed) between the last

character of one line and the beginning of the next.

When you type
nnn LOAD,
Forth Ffetehes block noo. stores the texst interpeters input
printers on the return stack, and sets the input pointers to the
beginning of the block,. The interpreter will then scan the block
executing words as they are engountered, until told to do
otherwise, The end of the block or a semicolon—-8 {(:9) will

terminate the scan on each block.

3.8 FORTH ASS5EMBLERS.

Section 2.4 described generally how input text can bEe
converted into machine-~language instructions, This process 1s
called assembly. Forth assembhlers for different

computers will naturally dgiffer accarding to their

Forth Manual 329

instruction sets. The full assemblers for some representative
Forth s=systems are presented in the Appendices. This section
deals with aspects of assembly that are comman to

most Caltech-0VRO Forth systems.

You can assemble copde any time the system is in the
executicon state, 1a.8., when it is not compiling : words.,
Usually vouw assemble code in the course of a CODE WO d

definition.

The assembler vocabulary consists mainly of op-code words
whose names are normally chosen to reflect the conventional
acssembler codes in a macro assembler. In fact the op-code names
are usually Jjust the conventional mnemonic with an appended
comma. Thus the FDF-11 move instruction, MOV, hecomes MOV, in
Forth.

To assemble & machine instruction into the dictionary, vyou
type the address fielids and modifiers you need followed by an op-
code word. {(Remember reverse Folish notation?) There is normally
a set of special words to help you set up the correct addressing
modes, branch conditions, etc.

A sample CODRE defimnition for the FPDF-11 might iook like:s

CODE ADDT © &)+ MOV, O S)+ ADD, S) © ADD, NEXT,
This word will add up the top 3 nombers on the stack, leaving the
SLMm .
The first part of the definition (CODRE ADDI) sets up & new

dictionary entry t(header only) with the name ARDE. The code

section of ADDZ is filled in with 4 machine instructions: a MDY,

two ADDs, and a JMF (expansion of NEXT.). The first instruction

£

Forth Manual

moves the contents of the top stack location to register ¢ and
adds 2 hytes to the stack pointer register. The next instruction
adds the contente of the next stack location to register O,
incrementing the stack pointer again. The second ADRD adds
register © to the contenrnts of the next (originally the third)
stack location without changing the stack pointer. NEXT, expands
into the instruction JMF 2{IC)+, the address interpreter.

an equivalent MACRO-11 program would look like this:

- WORD HEADER1
« WORD HEADERZ

MOy (5)+,R0 s MOVE STACK 70 REG. ©
ADD {(8)+, R0 s ADD NEXT STACE VAL. TO RO
ADD RO, (8) sADD TO NEXT STACE VAL.
JMF DCICHY+ 160 TO MEXT FORTH INSTR.
Forth assembiers provide forward conditional branches

similar to the compiler directives JF, ELSE, and THEN. These are

the macro instructions IF,., ELSE,, and THEN, (with ,s). In the
case of the FDF-11, these macros set up appropriate conditionsasl
Branch instructions that test a regicster. On example:

Zlpad R1x 1 TST, NE IF, itrue codes ELSE, ifalse coder THEN,

Thi= expands into the equivalent of the following MACRO code:

“load reg. 13- set up data in register 1

H
TST R1 i test register 1
BE® 1% ; branch if equal zero
“true codel s de i¥ RI O JNE. O
BR 2% ;7 branch around false routine
1%: “false codel: : do if R1 JEQG. O
2%1 . s o= 3 end

The "else clause”" is optional, thus yvou can write

wload reg. 2»

IF3
I~

8T. GT IE, <true coder THEN.

which expands to

Forth Manual

1%

“load reg.
TST o)
BLE 1%

“true codes:

S
e

end

Caltech Forth 3-32

.2 COMFILATION OF WORDS.

The wuse of : words has been discussed above and the dict-
ionary format was presented in Fig. S b. The process of pro-
ducing a dictionary entry from the input text is called compila-
tion for : definitions. Compilation is distinct from assem
blv:, a term which applies only to LODE words.

Forth has twn "states": execution and compilation. In
execution state the text interpreter operates normally, executing
words as they are found in the input tewt. The word ¢ in the
text stream changes the state to compilationg it aleoc invokes
WORD to vollect the next properly delimited token from the text
stream. The token becomes the name of the new word; it is placed
in the next available dictionary locations in the correct dig-
tionary {format. The link field is set to point to the last-
defined word in the same dictionary branch, and the HEAD pointer
is set to point to the new entry. A call to the COLONM function
is placed in the code géction. (Thi=s is the "hailf-instruction"
JE5R IC, 2#. .. in the FDF-11 system.,)

(At this point in compilation the dictionary formally con—
tains the new entry, which is not yet fully detfined. To prevent
fal se, premature references to the entry., 3§ also alters
("emudges"} the name field slightly =0 that the name becomes
unrecognizable. At the conclusion of the defimition, 3 or ;CODE

restores the correct name.)

It now remains to create the parameter field of the new

word. In the compile state, the teut interpreter (Fig. Z.11} is

modified =0 that when an input word is found in the dicticonary it

Caltech Forth I3

is not executeds; rather, 1its address is stored in the next
available dictionary location. Similarly, numbers are not imme-—
diately pushed on the stack, but the address LITERAL is compiled
followed by the literal value of the number. (LLITERAL points to
a simple code routine that picks up the numbher Following LIT-
ERQL’% invocation ppoint, pushes the number on the stack, and
increments IC im order to skip to the next compiled address.)
Thus the number is not pushed om the stack until the new word is
executed.

The interpreter will proceed to compile the input text
stream into the dictionary until a "compller directive'" is en-
coun—tered. A compiler directive is a word with a precedence bit
set to 1. Such words are executed immediately, even when Forth
is compiling.

The most common compiler directive is 3. which compiles
SEMICOLON into the dictionary and also resets the compile state.
Other compiler directives are IF, THEW, ELSE, iCODE. etc.

I+ you want to make a word you’ve 3just defined intoe a compi-
ler directive, simply type IMMEDIATE. (S8ince IMMEDIATE is itself

immedi ate, vou can make a word immediate either by typing "IMME-

DIATE" inside or outside the defipition. For esample,

: X IMMEDIATE A B C ;3 and
: XA EC3: IMMEDIATE
are equivalent.)
Z.10 DEFINING WORDS —— DOES:.

A special technigue is available in Forth to define words

whose function will be to define words. Some of these "defining

Ealtech Forth I—34

words” are built into the kernel: CODE, :. CONSTANT, etc. A new

defining wotrd is appropriate whenever a new class of word func-—
ticons is required. The aveilahility of detining words makes
Forth an unusually extensible language system.

As an example take VARIAERLE, which is defined in the stan-

dard 'syst@m. The new class of words provided by VARIABRLE con-—-

sists of words that push the address of their parameter field on

the stack. N may be defined a VARIABLE by typing

The dictionary entry created for N is shown 1in Fig. el

! value (=) !

Fig. 5.12 Dictionary Entry for YARIABLE N.

The entry diftfers from an entry produced by CONSTANT only in the

address that appears in the second word of the code section. All

VARIARELE words will have the address "var" in this location.

This code must pick up the address of the parameter field of the
variable word being esecuted and then push it on the stack.

VARIABLE may be defined in terms of the more fundamental

Forth words CREATE and DOES:

1 YARIABLE CEREATE DOES: 1.

The definition has two partsg the first is like a normal @

Caltech Forth T35

definition. Word names appearing here are compiled into the

dicitionary. The

jur

part of VARIAEBLE contains only CREATE.

CREATE makes a new entry in the dictionary (when VARIAEBLE is

ecuted). The name of the new entry is taken from the token in

the input stream that follows YARIABLE, for example, "N'" in the

case above.

The second part of the example begins with DOEE>. DOES: is a

compiller directive that compiles an address (called does»y, but

keope the system in compile state. Feollowing DRDES: are more words

to be compile. These instructions detfine the address sequence

("variable"? which will be associated with all VARIABLE @ words.

When this address seguence is interpreted (when "N'" is executed,
for example), there will be a single parameter passed: the add-

ress of the parameter field of the VARIADLE word. In the case of

VARIABLE . that parameter is exactly the desired result of the

VarRIABLE word; therefore, eonly the terminating definition, 3 is

required.

The dictionary entry for VYARIABLE is shown in Fig. el

Caltech Forth a3=3h

var: VMOV IC, - {(5F) d

! v - insert longer address seq.

What happens when we execute VARIABLE? First, CREATE makes

a dictionary entry usimg the next token in the input stream as
its name ("N, for example, in Fig 3.12). At this point, the new
dictionary entry has an undefined code section. The code addres—
sed by "doeszs>" causes the cede section to be filled in with a
ISR IC, 2Hvar” instruction. When the new word {N) is executed,
the "does_start” code will collect the parameter field address of
I, which the JSR instruction has placed on the return stactk, and
push it on the parameter stack. This code furthermore starts the
Address Interpreter running at location "var' with the correct
retuwrn stack contents so that after the terminal 3 is inter—
prated, at execution~time {(of N), control returns correctly

through the Address Interpreter.

The code routine "var” for any VARIABLE word works in the

following way. When N is executed (for examplel, var'" pushes

the contents of register IC on the stack. (It turns out that the

Caltech Forth aI-37

"IGR IC, dHvaer" instruction pute the address of the first word of
the parameter field in that register.) The code must now restore
the last generation of the IC from the return stack. In general

there will be further Forth words compiled in the

section, =20 the Address Interpreter is invoked through the usual
JSR mechanism. In the case of a VARIABLE word, however, there is
nothing further to do, and the address of '"semicolon"” terminates
the address sequence.

To =zsummarize, CREATE and DRDOES: are used to create new code

routines which are associated with a defining word. All words
defined with that defining word will empnloy the new code routine.
Thus a new Forth word class is defined.

tee make a defining word for a class of words whose action 1s
specified by an assembly language routine. The parameter field
address is passed in the same way asz for DOESX. Thuse an alterna-
tive definition of VARIAELE would be

The associated code routine is null in this case. Figure 7Z.14

illustrates the appearance of the ;CODE form of VARIABLE.

Faltech Forth BT

header

i "VARIABLE"

VA PoMOv IC, - (8F) '

P e e }oA-— dinsert further machine
i JMP I8 + ; instructions

Fig. Z.14 Alternate Dictionary Entry for VARIABLE.

Defining words may be established to define any data type or

operation class; examples inciude VARIARBLE., AREAY,

SET, etc. 1+
a Cclase of fixved repetitive operations can be 1dentitied it may
be mozt economical of storage and erecution time o create an

apprepriate defining word. An example with CONSTANT: the line

defines ONE as a constant word that will push the valus 1 on tha
stack. Thiz will always be more efficient that using the number
1 literally. {In the text interpreter the number conversion is
avolded, and in a compiled definiticon the call to LITERAL is not
neaded .,)

In practice we use the name "1" instead of ONE. Thus the
dubious detinition

1 COUNSTANT 1.

0f course, vou could also define | with the following line

£ 1 1 .

but this way two extra storage locations are used -- for LITERAL

Caltech Forth m=ng

and +or SEMICOLON. Because of the return stack operation and the
extra interpreter cycles, execution of the : defimed 1 would be

much slower than the CONETANT word.

Z.11 BRANCHES IN :; WORDG.
Z.11.1 An Unconditiconal Branch.
An unconditional branch to any Forth word is provided by the
EXED function. You type
waddress value:> EXEC
to Jump to the address specified. If¥ the address is that of a
Forth word, you could type
% =word pame:x EXEC.
(% returns the code section address of the word whose name fol-
lows. ﬁute that in nDe—Caltech—DVHD systems, the word 7 gives

the right addrecss. In the Caltech-0VRD system * returns the

address of the parameter +ield.)

3.11.2 Conditional Branches.

ilse of the branches IF, BEEBIN, etc. was described in Chap-
ter 2. The discussion here concerns the dictionary entries
produced by these words and the state of fthe stack during

compilation.

Consider 0=, which might be defined

1T
Hi

iF ¢ ELSE 1 THEN 3

This word tests the value passed to it on the stack; it the
value 18 non-zero, rero is retuwrned. Zero input produces one.

The compiled dictionary entry for 0= is presented in Fig. I.13.

Caltech Forth H-40

| address (XIF) '

i address = 2% H
1$: ! address (1) H
o e e et e e et P At o o e e o o o e o o e :
2% | address (SEMICOLON) |

Fig. 2.15% Dictionary Entry Illustrating IF.

The words IF, ELSE, and THEN are tompiler directives: they
are not compiled in the 0= definition, they are executed. Their
execution deoes compile word addresses and address constants,

however . The word addresses are shown in the figure as XIF and

XGKF., which actually control branching at execution time.

The example illustrates the operatiocn of IF —~ ELSE - THEN
SEqUEnCes, The address interpreter begins with the address XIF.
XIF tests and pops the stack. A false outcome {(zero) will re-

quire a branch to the "false clause', i.e. the words compiled
between ELSBE and THEN. The bBrarnch is carried out by loading IC
with the contents of the locetion following +the address XIF
("1%") . The interpreter continues at that location, pushing 1 on
the stack.

The "true clause"”, between IF and ELBE. will be executed if

the stack tests true (non—zero). In this case XIF simply incre-

“altech Faorth Z-a41
ments IC sc that the interpreter skips over the address 1%. Zero
is pushed on the stack. The interpreter then erncounters the

address XS5EF which unconditionally loads IC with the contents of
the following location (2%). Finally SEMICOLON terminates exacu-
tion of either case.

Cther +orms of compiled branches wordk like IF,. THEN, eto.
Fig. Z.16 is the dictionary entry of & typical DO - LOOF con-

astruction:

: LF 4 O DO RANGE LOOFP AFTER 3.

P JER IC, D4 d

1%

u
(v 4
(a1
!
m
Y
It
1
D
pd
m
m

Fig. Z.1&6 Illustration of DO - LOOF.

A few peculiarities should be explained. We assume that O is

defined by

as discussed above. However 4 iz not so defined in this example;

Galtech Forth -4

it i=s treated the way arbitrary numbers are. Thus LITERAL must
be executed with argument 4 to get 4 on the stack. (IC increments
atter LITERAL picks wp its argument so that the interpreter
resumes with the @ word. KRANGE and AFTER are just random words
predefined in the dictionary.

XEG takes the top two stack variables (0O and 4) and pushes
them on the return stack as discussed in Chapter 2. Execution
proceeds with RANGE. XLOOF i1ncrements the loop index, checks the

index against the limit, and either branches back to RANGE (by

lopading IC with 1%) or skips to AETER.

.12 INTERFACDING WITH AN OFERATING SYSTEM.

A controversial topic amaong Forth users i=s the rele of
general purpose nneratigg csystems. The computer vendors supply
operating systems with varving levels of function and complexity.
Generally their purpose i1is to allocate, schedule, and promocte
sharing of computer resources for a single task or for several
concurrent tasks. The'queatiun iz whether the {function, stan—
dardization, and economy of the operating systems are worth the
gverhead in speed and memory for particular Forth appl:ications.

Caltech—~0OVRO systems have been developed both with and with-
out {05 support. In thics zection we consider some criteria for

these choices. These topics will be taken up again in Chapter ©

when we consider large—-memory Forth systems.

F.12.1 To Stand Alone (r Not To Stand Alone.
We can attack the problem either economically or technical-

ly. In economic terms, the price of computer memory {(particular-—

Caltech Forth T~47

ly semiconductor memory) is falling vrapidly. Low cost periph-
erals such as floppy disks are widely available. These techno-
logical forces tend to reduce the sconomic penalty for relatively
large. general purpose operating systems.

In contrast, the cost of software development steadily
riges. So there is an egonomic incentive favoring wtilization of
off-the—-shelf software systems when possible. Reinvention of
compler scheduling and I/0 algorithms is rarely justified.

Technical analysis is more difficult. One f{prominent) line
nf thinking is that much can be done with extremely simple soft-
Ware. Thus Forth standalone systems with minimal multiprogramm—
ing. no concurrent I/0;, and practically no error recovery capabi-
lities have heen very successful, The same thought process leads
to the ides that practically all computing can ke handled by
Farth programming on 14 bit computers with no more than 32K
memory words. (Thus the mapping problem for larger memories is
avoided. }

With standalone Forth, c¢roszs assemblers {(such as MetaForih)
can be developed that generate systemz with nearly identical
structure Ffor widely different types of computer. Maintenance
and development etfort are reduced accordingly.

Technical arguments for Forth running uander operating sys—
tems have a few major themes: concurrency of large tasks, relia-
Bilitye and transportability. Frogramming for many large jobs i1s
simpler when large amounte of memory are available. Memory is

cheap, 16 bit computers can give you instant access to 22K words

or mores; so why not allow each task in the system to use wup to

Caltech Forth =—44

this amount?

The difficulty with large tasks in a multitasking system is
that physical memory has to be mapped into the 232K task address
SpACEe. The mapping problem 12 fairly severe 1if you reguire
efficient use of physical memory and CPU time. Vendors®™ operating
systems usually cope with this problem; development of gener-—
alized Forth memory mapping software is a nontrivial project.

Concurrency of large tasks may include non—-Forth taskse. For
example a Forth real-time control task may have to co—exist with
Fortran data reduction. This is feasible i+ both tasks run under
& common cperating system.

Reliability of a sottware system is hard to define. 0One
wseful principle is that a software fault in one task of the
svstem should be isolated from other tasks. izommonly this fea-—
ture dis provided by memary mapping and by carefully defining
nser— and system-states of the CFRU. Again, it 1s a malor etftort
to provide these functions in standalone Forth.

Another aspect of fhe reliability problem is what to do in
the event of hardware faults. Large peripheral devices {(particu-
larly disks) can be very complex, Many operating and error
recevery modes are available. The manufactuwer s device driving
software {(a component of operating systems) becomes correspond-
ingly elaborate and difficult to repeat in Forth.

One hindrance to the wider propagation of Forth has been
that many implementations are constructed wusing the MetaForth
crose—-compiling scheme. Forth detined in terms of Forth is
difficult to learn and difficult to transport to a non—-Forth

computer. Implementations in the standard assembler code of =1

Caltech Forth

particular machine tan easily be transferred to other machines of

the same type, particularly if standard file structuwres and

tormats are observed.

12.2 05 Interfacing Technigues.
Implementation of Forth as a task under an gperating system

such as RT-11 or VAX/VME is generally simpler than as a stand-

alone system. The 0S5 pravides macro instructions for terminal
and disk I/0. Buffering and error checking are provided by the
0s.

When you have to connect non-standard I/0 devices or respond
to special hardware interrupts, the =sitwation is a little more
complicated. The general purpose operalting systems necessarily
rastrict your freedom of interfacing with external devices, since
the system™s integrity must be pressrved for other system users.
In particular for RT-1! vou must carefully cbserve the interrupt
protocols with apprapriate use of the JINTEN and .5YNCH macros.

Gf course any macro defined in the conventional assemblers
can be eidpresszed in terms of the Forth assembler, Untortunately
standard Forth lacks a true macro—processing capability, so that
it is difficult to define macros with the generality available in
the conventional assembler. The problem is not too bad, since
vyou rarely need more than a few types of macro in a given Forth
application. Vax/vYMs Faoarth (Chapter Z) has an interesting Forth-

based macro capability.

Caltech Forth Sed

1T MULTIFROGRAMMING AND REAL-TIME APFLICATIONS.

In real-time control or data acquisition jobs it is often
necessary for a Forth system to interact with external devices on
a prescribed time schedule, 2.0, sample data every 10 msec or
update telescope drives every 9.3 sec, You usually want to be
able to converse with Forth in & normal way while the real-time
prOCESSes are Funning. In =ome cases, unrelated users may want
to share the computer at the same time.

All such situations reguire some multiprogramming scheme.,
Multiprogramming is the general technigue of sharing the compu-—

ter*s time, memary, and peripheral devices between multiple Job

tasks or users. A number of schemes have been used for Forth
multiprogramming. Most Caltech-0OVRO systems use a multilevel
priority scheduling system. Other Forth systems use & round-

robin scheduler, especially for multiuser "timesharing” applica-—
tions. When running wnder a multiprogramming operating system,
independent copies of Forth may be run as separate tasks under

the opesrating system.

Z.13.1 Friority Schedeling.
R simplified priority scheduling algorithm is used in sev-

=

eral Caltech—-0OVRD systems. Figure Z.17 illustrates the method.

Caltech Farth 3-47

(recurrent interrupt)

$#1

bointerval T2 ! (no}
i elapsed” f—————= =

vointerval T3 Io(no)
i elapsed? D it e =

#N H

return from
interrupt

Fig. 2.17 Priority scheduled Multiprogramming.

A recurrent interrupt (say &0 Hz) initiates the "foreground
taske" shown in the figure. Task 1 contains all the Ffunctions
to bhe performed every interrupt. When task 1 is completed &
counter is examined tao see if a predetermined number of inter-—
rupts has been processed, I+ the interval T2 has elapsed, the

counter is reset and the lower level task (#2) begins. If T2 has

Caltech Forth T-4B

not elapsed, a return from interrupt instruction is performed:
the "background® (e.g. Text Interpreter) then has the use of the
machirmne wuntil the next interrupt.

This multiprogramming technique lets you set up an arbitrary
number of execution levels each of which is initiated after a
certain integral number of instances of the next higher level.
I+ the interrupt return information is stored carefully, the
foreground structure is at least partially reentrant. The lewvel
1 task may interrupt the level 2 task many times before level 2
completes. You must insure that there is enouwgh time for each
task level to complete before it is next scheduled to run.

fdvantages of this priority scheduling method include the
minimal context switching reguirements, simplicity., and guaran-—
teed servicing of high priority tasks. The context that has teo
be preserved when entering & given foreground level is just +the
general registers including the Forth instructicon counter IC, and
the hardware instruction counter. I+ disk and terminal 1/0 ere
to bhe allowed from more that one execution level, then separate
buffers must bhe maintained.

A lower level task in general does not have to be aware of
thae existence of higher level tagks, except that higher level
tasks effectively slow down the computer, I+ a low level task
hangs up in a lopop, higher level tasks will still execute.

Froblems with the method include the awkwardness of multi-
level 174, the requirement that the basic Forth routines be
reentrant, and that the pregrammer must see that the completion

time of an execution level never exceeds its scheduling interval.

Caltech Forth 345

J.17.2 FRound-robin Scheduling.

A second popular Forth multiprogramming scheme is the round-
Fobin. As the name suggests, the principle is to allow one task
te finish, then to begin the next in a chain. After the last task
irn the chain completes, the first beging again.

The method is well suited to an environment with multiple
users all bhaving equal claim to the computer. Ferformance de-
grades gracefully as more tasks are added to the loop.

Proper operation of the round-robin requires that tasks be
"cooperative", 1i.e. willing to relinguish rights to the CFU in a
timely way. A task does not have to complete its total function
before it allows others to execute, but it must release contrel
freqguently so that response time to other users is acceptable.

The. Found-—robin ig not well matched to real-time situations
in which guaranteed response to external events is required. 1t
also lacks "robustness" in the face of any user who wants to

monopelize the CFLL

221533 Scheduwling Throuwgh Operating Systems.

Multiprogramming facilities are available in most generatl
ocperating systems. These range ftrom =imple foreground-—-background
(cdual task) systems like DEC's RT-11 to +ull-scale priority
scheduled systems like REX-11. For a price, the REX-11 system
will give vou priority scheduling, time—-slicing between tasks of
similar priority. and memory protection between tasks. Az dis—
cussed in the previous Section, you save implementation expense
but suffer greater memory and CFU time overheads to implement

Forth multipreogramming through operating systems.

CHAFTER 4

FORTH VOCABULARIES.

4.1 INTRODUCTION.

In this chapter we present definitions of some of the most
useful and most standardized Forth words. The vocabulary in-
cludes the Forth-7% standard, as weall as the Double Number Word
Set and the Assembler Word Set that were published in the fForih-
77 document. Also included are words that are used in the Cal-

tech Forth versions.

4.2 NOTATION.
The styvle of notation in this chapter follows the AST.O01

document (see Bibliography).

Words are listed in "alphabetical" sequence, based on the
ASCII character set. The action of each word is described in
concise forms: f string of symbols that tells which parameters

should be placed on the stack before the word iz esecuted; the
word iteelfy then, any parameters that the word leaves on the
atack. A parameter appearing to the right of ancother on the

definition line is meant to be abgve the other on the parameter

stack.

Caltech Forth 4-2

The following symbols are used:

b Block or =screen number.

= 7-bit ASCII character code.

f Flag: ©O=False, non=-zero=True. All words which
return a2 flag return O=False or 1=True.

mon op

qr = 16-bit integers (or addresses)

U v oW Doutrle-precision (2 cell) numbers.

nnpn pppp Names of words.

S555 A =tring of characters.

VWY A vocabul ary name.

Freceding a verbal description of each word, certain charac-—
ters may appear in parentheses. These denote some special action

or characteristics, as follow:

c The word may be used only within a colon—definition. A
following digit (CO or C2) indicates the number of memory
cells used when the word is compiled, i+ other than one. A
following + or — signh indicates that ths word either pushes
& value onto the stack or removes one from the stack during
compilation. (This is not related te 1t action during
execution.)

Y The word is not part of Forth-7%.

Caltech Farth 43

4.

*
in

STANDARD VOCABULARY LIST.

mp !

Stores word m at address p.

Y smsssg”

(V) Enters a string of up to &7 characters into buffer

TEXT f{or onto string stack in XED) for use by editor.

Thig word ig in editor vocabularies only. Note that =a
rnull message (zingle blank between "s} 1is not
permitted.

% onnnn op

(V) Like " (below), except retwrns the address of the

code section of nnnp.

nonn R
Called "tick". Tick leaves the address of the
parameter field of nnnn. This is a ‘“"smart" word;

inside a colon—-definitiocn, it produces code that causes
the address to appear on the stack at execution time.
The colon definition

ioRpeR I onnon g
is eguivalent to

: peee [7 nonn 1 LITERAL 3.

{ s=5%)
Ignores a comment string terminated by & right
parenthesis. A single blank bhetween parentheses ise not

allowed.

Caltech Forth 4—4

¥/

¥ /MOD

+1_00F

. CODE

mn ¥ q

16-bit integer multiply with sign.
mnp ¥/ g
Leaves = (m¥n)/p. Retention of an intermediate 3I2-bit
product permits greater accuracy than the otherwise
equivalent seguence: mmn X p /.
mnop kMO o

lLike ¥/, except leaves both remsainder () and gquotient
(q). Has full 32-bit intermediate accuracy.
m n o+ oq

14—-bit integer additioprn with sign.
m g 4!
Adds integer m fto value at address p.

m +L.OOF

{(C) Adds m to the loop index, I m>0, the loop will
terminate if the new index egquals or passes the limit.
I+ m<0, the loop will terminate if the new index passes
the 1limit. Lonp index echecking 1s unsigned; this
allows proper operstion with l1é6-bit addresses > 227467.
LI
Stores m into the pnext availabkle dictiomary cell,
advancing the dictionary pointer by two bvtes {(one
word) .
m ,CODRE nnnn

(V) EBegin & code definition named nnnn as for CODE.
Allow space for m cells for parameters befare beginning
machine code. {" pnnn will give the address of the

first reserved parametar.)

Caltech Forth 4

~TRAILING

AM0AD

|

mn - g

16-bit signed integer subtraction g=(m—-n?.

m n ~THAILING m p
Eliminate trailing blapks from a text string beginning
at address m) with initial length (nd. Returns

original value (m) with new length (m).

Types the wvalue on the stack azs & signed integer,
converted according to the cuwrent number base (BASE) .
If the wvalue is negative, types a minus sign; 1Ff

positive, types no sign.

() Transmits a meszage of up to 127 characters delim-

ited by Y to the selected output device. Note that =a

null message (single blank between "s) is not
permitted.

mn /q

isH-bit integer divide, g=m/N. The quotient is

truncated; any remainder is lost.

mn AMOD r g

i6-bit signed integer divide, g=m/n. The qguotient (q)
is lett on top of the stack, the remainder {(r) beneath.
The remainder has the sign of the dividend (m).

m O Ff

ipaves a true flag (§) i+ {(m) i1is negatiwve.

m O<= §

(VY Flag (f) is true i¥ (m) is zero or negative,.

Caltech Forth g—g

04

OSET

1+

1+

1SET

m 00 f

(V) Flag (f) 1s true if (m}) is non-zero.
m O= +

Flag (£) is ftrue i+ (m} is zero.

Flag () is true if (m) is positive and non-zerco.

(V) Flag (£} is true i+ (m) is greater than or esgual
Zero.

p OBET

(V) Gtrore zeroc at lecation p.

m 1+ g

Increment value {(m); g=(m+i).

p o1+

(V) Add 1 to the contents of address p. Eguivalent
p 1 SWARP +1,

m 1- o

(V) Decrement variable {(m); g=(m-1).

p 1GET

() Store one at loecation {(p).

wp 2!

=

Store Z2-bit wvariable (u) at locatiocn {(p}.

(V) Double variable (m)ji; g=2¥m.
m 2+ q
Add two to variable (m); g=m+2.
m Z— q

Subtract two from variable (m); g=m-Z.

to

to

Caltech Forth 4-7

ZCONSTANT

ZDROF

2DLF

2R0OT

2SWAF

(V) Halve variable (m):; g=m/2.
o 2R

B

Move the 32-bit rnumber (1w} from the user stack to the
return stack.

p 24 u

Fetch 22-bit value (W) from location (p).

u ZCONSTANT nnnn

Detines Forth word (npnn) which will push 32-hit value
{u) on the stack.

w 2DROF

Eliminates a 32-hit variable from the top of the stack.
Equivalent to DROF DROP.

w ZDUF u u

Duplicates a 32-bit variable on the top of the stack.
Egquivalent to OVER OVER.

IR u

Move the Z2-bit number (u) from the return stack from
the user stack.

u v w ZROT v w w

Rotates 3 322-bit variables, similar to ROT.

oy 25WAF v u

Exchange the top two 3Z-bit variables, similar to SWAF.

Caltech Forth 4-8

2VARIAEBLE

FVARIABLE nnnn
Detine a Forth word (nnnn) which returns the address of
a 322-bit quantity contained in the parameter field.

Like VARIABLE, except that four bytes are reserved.

79-8TANDARD

aw

;: CODE

79-5TANDARD
I+ this word exists, and can be executed successfully,
a minimal Forth—-7%? system is guaranteed to be

available. No parameters.

: nnnrn
Create a dictionary entry for a colon—definition, set
compilation mode, and set the context veocabulary

equivalent to the current vocabulary.

(CV) Switech mode from compilation to execution.
Compiles a word address that, at execution, will
restore IC and branch to the code heginning aftter >,
I+ the code ends with MEXT, the return will be correct.
Example: : MNNNN ... - {assembly instructions?
rea NEXT,

[y Terminates & colon—definition and stops
compilation.

; CODE

(CY Stops compilation amd terminates a defining word

(nnnn’. Switch the tontext vocabulary to ASSEMRBRLER in

Caltech Forth 4-9
anticipation of a machine—-code sequence. When {(nnnn)
ies subsequently executed to define a new word (ppppl .,
the erecution—address of (pppp} will paoint to the
machine code sequence following the ;CODE of {(nnnn).
Then, subseguent use of (pppp) (or any other ward
defined by nnnn) will cause this machine—code sequence
to be executed. The assembly language equivalent of
DOES>.

1 5]

(V) Stops interpretation of a Forth screen.
mn < f
Flag () is true if (m) is less thanm (n), in the sense
of 2°s u::t:nmpl\c_jm:ar"nt,J l6—-hit arithmetic.
= mn <= +
(M} Flag) iz true if (m) does not exceed (n)y in the
sense of 27s complement, 1é6-bhit arithmetic.
mn <> F
Flag {(f) ism trﬁe if (m) is not equal to (n).

= m n o= +
Flag () is true i+ (m} is equal to (n).
mn * +
Flag (+3 is true if (m) is grester than n}, in the
sense Of 2'e complement 1&-bit aritheetic,

(V)] Switch mode from execution to compilation.
Assembles instructions that save IC and begin the
Address Interpreter just after :. I+ the compiled

Caltech Forth 410

IN

2DUF

ARRORT

code ends with 3, the return will be correct.

Example: COPE nnnn ...

aaw {compiled Forth
words) ... ;

Note that &z and ¥ can be used freely in either CODE
ar detinitions.

mn = f

(V¥ Flag (£} 1s true if (m}) is greater than or equal to
in) in the sense pf 27s complement 16-bit arithmetic.
=IN m

FReturns the cuwrrent character offset (m) in the input
text stream, range 0 -~ 1023,

m *R

Fushes {(m) onto the return stack. GSee R>».

2

#]

Frints the value contained at addrese p in free format,
according to the current base. Egquivalent top @& . .

m YDUF m [m3

If value (m) is non-zero, push a copy of it on the
astack.

P2 Qg

Called "fetch", leaves the contents () of memory
address (p).

ARAORT

Enter the abort seguence, clearing all stacks, printing
a simple error message, arnd returning control to the
terminal .

m ARS g

Leaves the absolute value of a number.

Caltech Forth 411

ALLOT n ALLOT

Allocate (n) bytes to the parameter field of the most
recent Forth definition.
AND m n AND g

Bitwise logical AND of (m) and (n).

ASH n m ASH r
Arithmetick shift, result (r} = (n} 2%% (m), If mxo,

is to lefty mi0, to the right,

¥An arithmetig shift is a shift in which the sign bit is
"oticky's it never changes when data are shifted left. When data
are shifted right, the sign bit is copied into successive bits to
the right, but the sign itself never changes. In a lpogical shift

the sign bit is treated like any other.

ASSEMBLER
ASSEMBLER
Switch the context wvocabulary pointer S0 that
dictionary searches will begin at the Assembler

Vaocabulary. The Assembler Vocabulary is always chained
te the current vocabulary.

BASE BABE p
An integer pointing to the current conversion base
value.,

BEGIN BEGIN
{CO+) Mark the start of a BEGIN - UNTIL ar EBEGIN -
WHILE - REFEAT loop. The worde between BEGSIN and its
corresponding termination will be repetitively executaed

until the termination condition is satisfied. Loops

shift

Caltech Forth 4-12

EELL

BL K

BLOCE:

BUFFER

Ca

may be mested.

BELL

Activate terminal bell or tone.

BLE p

An integer, equal to the number of the block being
interpreted or zero tf input is coming Ffrom the

terminal .

b BLOCK p
Leaves the address of a buffer containing BRlock (by.
I+ the block is not already 1in memory, it is

transferred from disk or tape into whichever core
buffer has been least recently accessed. I¥ the blaoack
occupying that buffer has been updated, it i rewitten
on digk or \tape hetore Blogk (b)) iz read into the
bu+fer.

b BUFFER p

Ohtaing a core buffer for block b, lpaving the First
buffer cell address. The block is nogt read from disk,
and is automatically marked as updated.

m p !

The low order B8 bits of (M) is stored at the byte

address {p?

F C9 m

The 6B-bit byte at address (p) is returned in the low

arder part of (m). The high order bits are cleared.
o,
Compile the low-order byte of n into the dictionary and

ingrement the dicitiomnary pointer by one byte.

Caltech Forth 4-17=

CHAIN

EmMave

CUDE

CiiM

COMFILE

CHAIN wvwvvv

Connects the current vocabulary to all definitions that
might be entered into VYocabulary (vvwvy) in the future,
The current vocabulary may not be FORTH or ASEEMELER.
Any given vocabulary may be chained only onte, but may
be the object of any number of chainings. For example,
every user—defined vocabulary may inglude the sequence,
CHAIN FORTH.

m n r CHMOVE

Move (r) bytes from area keginning at byvte address (m)
to area beginning at byte address (n).

CODE nnnn

Creates a dictionary entry for a code definition named
(nnnn}, and sets the context vocabulary to Assembler.

m C0OM g

l.eaves the one’ s complement of (m).

COMFILE (non—-standard parameter!)

This word provides a way to cause specific data ta he
compiled into the dictieonary. When COMFILE executes
{it must be called from within a colon definition), the
16-bit word next following in the address sequence 1is
picked up. This data is not pushed on the stack f(as
LITERAL weanld dod, but it is stored at the next
available dictionary location, and the dictionary

pointer it intremented accordingly.

=

Exvample — if X i¢ defined by @ X COMPILE [© , 1 3.

then executing X compiles a "0' at the current

Caltech Forth 4--14

CONSTANT

CONTEXT

CONVERT

COFY

COUNT

dictionary location.

m CONSTANT nrnn

Creates a word which when executed pushes (m) onto the
stack. (8ince the "constant" (m) may bhe modified by
the sequence: g ' nnnn ! it is oftentimes
advantageous to define a wvariable as a constant,
particularly 1f the variable is accessed more often
than it is modified.)

CONTEXT p

An integer that indicates in which vorahul ary
dictionary searches are to begin.

u p CONMVERT v q

Convert an ASCII string beginning at memory location
{pi+l]l to & double precision integer according to BASE.
Add the result to (k). The sum is returned as (v, and
the address of the first character that could not bhe
converted is retuwned as (gl.

m n COPY

(V) Copy the contents of block (m) inte block (n) ard
mar¥ block (n) as updated.

p COUNT {(p+1}) n

The count-byte (n) is extracted from the first byte of
a message string beginning at address (p), and left on
the stack. The string address is incremented by one

to point teo the first character of tedt.

Caltech Forth 4-15

R

CREATE

CURRENT

D

D.

DO=

ER

Transmit carriage return/line +eed codes to the
selected output device.

CREATE nnnn

Creates a skeleton word definition with name (nnnn).
As 1nitialized, this word will push the address of the
parameter field on the stack, although no parameter
field space is reserved by CREATE.

CURRENT p

An integer that indicates the vocabulary into which new
words are to be entered.

v D+ ow

Double precicsion (Z2-bit) addition; w=u+v,

¢t v D- w

Double precision {(3Z2-bit) subtraction; w=u-—v.

u D,

Jutput a Z22-bit value according to current value of
BASE.

un DL.R

Output a Z2-bit value according to current value of
BALE. Aligrn ouwtput in a field of (n} characters in
width.

u bo= F

Return () mon—-zero i+ (W) is non—zero.

w v Do F

Flag (f) is true if (U} is less than (v} in the sense

of 32-bit, two’ s complement integers.

Caltech Forth G4—14&

D= u v b= f
Return non-zerto value of (£) if u=wv.
DARS u PABRS v
Feturns {(v) eqgual to the absclute value of (u).
DASL wom DARASL v
Arithmetic Z22-bit shift left by (M) places. (m) must bhe
positive.
DABR w m DASRK v

Arithmetic ZF2-bit shift right by (m) places.

DATAN u v DATAN w
Retuwrn (W) - Arctan (L/v) preserving guadrant
information. The recsult is an angle exupressed 1in

Finary Angular Measure (BAM) X

¥In Einary Angular Measure, O degrees = 0, 90 degrees = 4000008),
180 degrees = —-180 degress = 10Q000(83), etc. In this way, a
fraction of & turn is represented with the greatest possible
accuracy by a signed integer.

nCos . BCOS v
Compute (v) = cosine(uw), similar to DSIN.

DECIMAL DECIMAL
hets the numeric conversion base to decimal mode. {Set
BASE to ten.)

DEFINITIONSG
DEFINITIONG
Sets the current vocabulary {(into which rew definitions
are placed! to the conteut vocabulary (the vocabulary

currently being used for searches).

Caltech Forth 4-17

PEFTH

DMAX

DMIN

DNEGATE

baO

DOES

DEFTH n

teavaes the number (n) of 1é4-bit wordg currently pn the
stack, before (n) is pushed on.

u v DMAX w

Return (w) equal to the larger of {(u) and (v), treated
as SZ2-bit two's complement values.

B ov DMIN w

Return (W) equal to the lesser of {(w) ard (v}, treated
as 32-bit two's complement values,

1w DNEGATE (—wu)

Leaves the negative of a 3F2-bit guantityy two =
camplement.

rm m DD

(€) PBegin a loop, to be terminated by LOOF or +LODOF,
The loop index begins at (m). and may be modified at the
end of the loop by any positive or negative value. The
loop is terminated when an incremented index reaches or
excedds inY, or when & decremented indexr becomes less
than (nl. Within a loop, the word I «will place the
current indes value on the stack.

Execution of DO places three parameters on the
return stack: The starting locaticon of the loop, the
index limit, and the index.

DOES =

L) Terminates a defining word nnnn, which Ccan
subsequently be executed to define a new word (ppRpR} .
Subseqguent use of (pppp) will cause the words hetween

LOES = and to be executed with the parameter—field

Caltech Forth 4—-18

DROF

DEIN

DEORT

D+

DLIMF

DLF

EDITOR

EL SE

EMIT

address of (pppp? on the stack. Further explained in
Section Z.10.

m DROF

Drop the topmost value $rom the stack.

W DSIN v

FResult (v}, scaled i1in the interval -1 —— +1 (binary point

to the right of the sign bit), is the sine of angle (W)

in BAM.
w DSERT v
Return v, the sguare root of (u). (L) must be a

positive value.

u v DU f

Returns () non—-zero if () ie less than (v) in the
sense of I2-bit unsigned integers.

o DUMF

Pump (n} memory cells beginning at address {(m). Dump
is in cwrent number base.

m DUF m m

Feturns a duplicete of the topmost stack value.

EDITOR

The name of the Editor Vecabulary. If that wvocabulary
is loaded, EDITOR establishes it az the context
voacahulary, thereby making ite definitions accessible.
El GF

Frecedes the false part of an IF-ELSE-THEN conditicnal.
c EMIT

Send character (¢) to the cuwrrent output device.

Caltech Foarth 419

EMFTY-BUFFERS

END—-LODE

EXCHAMNGE

EXECUTE

EXIT

EXFECT

FILL

EMPTY-BUFFERS

Marks all block-butfers as empty., without affecting
their actual contents. Updated blocks are not flushed.
END-CODE

Terminate an assembly-language CODE definition or
setries of definitions, resetting the context vocabulary

to CURRENT. Bee ASSEMBLER.

m n EXCHANGE

(V) Exchange the contents of blocks (m} and (n) and
flush.

p EXECUTE

Execute the Férth definition whose code address is (p).
EXIT

Heed in A colon detinition, EXIT forcezs an immediate

termination of execution of the definition. Not for
uwsed in DO — LOOFP constructions.
p n EXPECT

ook for a sequence of up to (n) characters to be input

fram the current terminal. Store these beginning at
address {p). A input “return" character will
terminate the seguence early, i+ encountered. One or

two "null" characters {(zerp bhytes) will be appended to
the sequence in memory.

pomnom FILL

Treaat (m! as a byte value and store (n) copies of it

into memory starting at address (p). Do nothing i+ (n)

Caltech Forth 4220

FIND

FORGET

FORTH

HERE

HE X

is less than or equal to zero.

FIND p
Segarch for the word whose nameg is the next "token" in
the text input stream. If the word can be found in

either CONTEXT or FORTH vocabularies., leave its address
(p)s otherwise leave zero.

FORGET nnnn

Delete the word {(nrnnn? and all dictionary entries
following it. Although {nnpn) must be in the context
vocabulary to be founmd, the words that follow it are

deleted no matter which wvocabulary they belong to.
Normally, FORGET should not be uzed within a colon-
definition, as it is not a compiler directive.

FORTH

Make FORTH the context vocabulary. Hince FORTH cannot
be chained to anvthing, i1t becomes the only vocabulary
that is searched for dictionary entries.

HERE p

tLeave {p), the address of the next available dictionary
location.

HEX

Switch the number base to hexadecimal.

I m

() Fush the topmost return stack value onto the user
stack without disturbing the return stack. Typically I
is used tao return the index of an innermocst DO-toop,

but it can also be used to access values pushed onto

Caltech Forth 4-221

IF

IFEND

IFTRUE

IMMEDTIATE

the return stack by R,

¥ IF ... ELSE ... THEN or
f IF ... THEN

{C2+) IF 1is the first word of a conditional. I+ £ is
true <{(non—-zern}, the words ftollowing IF are executed
and the words following ELSE are not executed. The
ELSE part of the conditional is optional. I+ £ is
falee (zero), words bhetween IF and ELSE, or between IF
arnd THEMN when no ELSE is used, are skipped. IF-ELSE~
THEM conditionals may be nested.

IFEND

Terminates a conditional interpretation seguence begun
by IFTRUE.

£ IFTRUE ... OTHERWISE ... IFEND

Unlike IF-ELSE~THEN, these conditiecnals may be employed
during interpretation. In conjunction with £ and Ja
they may be used within a colon—-definition to control

compilation, although they are not to be compiled.

These words cannot be nested.

IMMEDIATE

(CV) Set the precedence bit of the word Jjust defined in
the dictionary.

J om

(c I+ the current DO — LOOF is nested within another
DG - LOOF, J may be used to obtain the index of the

outer loop.

Caltech Forth 4-22

E . om
¢2) I+ the current DO — LOOFP is nested within two DO -
LODPG, K will retuwrn the index of the outermost loop.

KEY HEY
Return the next character available from the current
input device.

LEAVE LEAVE
Causes the termingtion of a DO -~ LOOF (+LO0OF) the next
time the index is checked. This is done by adjusting
the limit value stored on the return stack.

LINE m ILINE p
Leaves the character address (pY of the beginning of
line {m3 for the block whose number is contained at
R

LIST B LIST
List the block (b)) as 16 lines of &4 ASCII characters on
the selected output device. Set SUR to (b).

LITERAL n LITERAL
Compile the address of the code routine called LITERAL
followed by the value (n)} into the dictionary. When
the currently defined word is executed, (nd will he
pushed on the stack.

£.0AD b LOAD
Begin interpreting block (b).

L oaF Logr
(C) Ingrement the DO-loop index by one, terminating the
loop if the new index is eqgual to or greater thanm the

limit.

Caltech Forth 427

[-SH

MAX

MIN

M !

MGDn

MOVE

NEGATE

NEXT,

n m LSH r

Logical shift left (m) places. {m) may be negative.
m n MAX g

Leaves {Ql). the greater of (m) and (n).

mn MIN q

lLeaves (), the lesser of (m} and (n}).

M !

(M) Mark the present value of DF. Eguivalent to HERE
MENVAR . Useful in assembler programming for passing
parameter addresses. See MED.

MED N

(V) fObtain the wvalue of DF that was last marked with
MELLL Equivalent to MEVAR 2. Examples ME 127454
CODE nnnre § -3 MED P MOV, NEXT, This FPDF-11 routine
will push 122454 on the stack.

m n MOD r

Leaves the remainder of {(m)/{n), with the same sign as
{m).

P n MOVE

Moves the contents of (n) lé-bit words beginning at
address (p) into () words beginning at address (g).
The order of transfer 1s lowest—first.

n NEGATE (—n)

Leave wminuse the npumber (R on the stack, two' s
complament.

MEXT,

(V) An assembler word that may be used to terminate a

Caltech Forth 4—"24

NOT

NUMEER

aOCTAL

Ok

GR!

OTHERWISE

OVER

CODE word. It invokes the Address Interpreter. In
OVRO PDF-11 versionsy NEXT, azgemblesz a "jump indirect
through IC and increment IC" instruction.

m NOT ¢

Invert a boolean condition. Eguivalent to 0=,

NUMBER

Convert a character string left in the dictionary buf-—
fer by WORD as a number, returning the result in regis-—
ters, internal temporary locations, or on the stack.
The appearance of characters that cannot be properly
interpreted will cause an error exit.

OCTAL

Set the number base to octal.

rt 0.

My Type n & an unsigned octal number, regardless of
current value of RASE. See (0.

m n OR q

RBitwise lpgicel inclusive OR: g=m or n.

m p OR?

(V) Form the lcgical OR of (m) and the contents of (p).

Btore at address (p).

OTHERWISE

An interpreter—level conditional word. See IFTRUE.

mn OVER m n m

Copy the stack value (m) under the top value) onto

the top of the stack.

Caltech Forth 4--25

FAD

FAGE

FICHE

PRINT

FRINTER

QUERY

auIT

FAD p
Leaves the address (p) of a d4-byte buffer that is used

for intermediate storage during some string processing
functions.

FAGE

Elears the terminal screen or performs a similar action
on the current terminal.

rn FICK m

Returns (m), the (M) -th stack value beneath the current
top stack value, not counting (n) itself. (2 FICE is
equivalent to DVER.)

p n FRINT

Transmit (n) characters to the selected ocubtput printer
starting at cheracter address (p), which will have been
placed on the stack or in an internatl register by
COUNT .

FRINTER

Select a hard-copy printer as the output device for all
output directed through EMIT or FRINT. See TERMINAL.
GUERY

Accept input characters from cuwrrent input device and
place into terminal buffer. Input is terminated by a
"raturn’ tharacter or by the transmission of 80
characters.

GuUIT

Clear the retwn stack, force execution mode, and
continue by interpreting texnt from the terminal. No

error message results. This is & "softer" reset than

Caltech Forth 4-24&

ABORT.

R R> n
Fop the topmost value from the return stack and push it
ornto the user stack. See *H.

R Ra n
Take the top value on the return stack and push on the
user stacks the return stack is not altered.

REFEAT REFEAT
(L) Signifies the end of a loop in & BEGIN - WHILE -
REFEAT loop. Causes control to pass to the point just
following BEGIN.

ROL n m ROL r
Rotate (n) }eft (m) places. Bit 15 (the sign) rotates
into bhit O, If (m) ie negative, the rotationm iz to the
right.

ROLL ulnd win-13J . will n ROLL wipn—-13 ... wlilld ulni
Extract the (n)-th value from the stack, leaving it on
top and moving the remaining values into the vacated
position. The depth of the stack is unchanged. (3 ROLL
is eguivelent to ROT; 2 RML i= equivalent to SWAF; 1
ROLL is a null operation: O ROLL is undefined.)

ROT mmnp ROT m pm
Rotate the +topmost three stack values so that the
previous top value becomes the second; the second

becomes the third; and the third becomes the top.

e
o

n S:D ow

Convert & 1é6-bit number {(n) into a 32-bit number {(u} by

Caltech Forth 4-27

extending the sign to the left.

SAVE-BUFFERS

SEMI,

SET

SIGN

SFACE

STATE

SAVE-RUFFERS

Write &ll blocks that have been flagged as "updated" to
gdizk or tape.

BCR p

Retuwrns the address (p) of & variable that indicates
the most recently edited screen.

SEMI,

(V) Thizs worcd must be used to terminate ;CODE words,.

m p SET nnnn

(VY Defines a word (nnnn) which, when executed, will
cause the value (m) to be stored at addressz ().

m n SHOW

(VY Type blocks (m} through (n} at the terminal., 3 bklocks

to a page (for bardcocopy terminals).

n SIGN

I+ (nYy < 0, put a minus sign ("—") into the number
putput string.

SPACE

Hend a blank character to the current output terminal.
m SFACES

Send (m} blanks to the current cutput terminal.

STATE p

Returns the address (p) of a variable that contains the
flag that indicates whether the input tezt stream is
being compiled or executed. & nNon—Zero value

correcsponds to the compilation state.

Caltech

SWAE

SWAF

TERMINAL

THEN

TYFE

Li%k

U/Man

Forth 428

n SWAE m
(V) Exchange the left and right bytes of (n).
n m SWAF m n

Evchange the topmost two stack values.

TERMINAL

Select the terminal as the output device, cancelling
any previous selection of the printer.

THEN

(COo-) Terminates an IF-ELSE-THEN conditional sequence.
m n TYFE

Transmits (n) characters to the current output device,
starting at the character addrecss (m). See COUNT,
FRINT.

mn Ux u

Leaves the unsigned 3IZ2-bit product, {u), of two
unsigned 1&~bit numbers, (m) and (n).

m .,

Type (m) as a lé-bit wnsigned number according the
current value of BASE.

o U/MOD - g

Leaves remoainder ((r) and quotient (g} of the result of
an unsigned division of the 22«-bit value {(u) by the 1&6~
bit value {(n).

m o U f

Like <, < compares (m) and (n) and returns a flag that

is true {non-zere) if m < n; however, the comparison

Caltech Fo

b

LINTIL

UFDATE

VARTIARLE

VOCARULARY

Fth 4-29

treats the inputs as unsigned values {(integers in the

range O — &GLEDS).
mn U= f
Like <=, but an wunsigned comparison.

mn Ur +
Like >, bhut an unsigned comparison.

mn U= F

It

Like =, but an unsigned comparison.

+ UNTIL

o) Signals the end of a REGIN — UNTIL leoop in & colon
detinition. If (¥ i=s true (non-zTerol, the loop is
terminateds; if not, pxecution continues at the +First
word following the corresponding BEGIN.

LFDATE

Flag the most-recently referenced block as updated.
The block will later be transferred automatically to
giek if its buffer is needed to store a different

Block. Bee LAVE-RUFFERS.

VARIAEBLE nnnn
Crreates a word (nnnn) which, when executed, pushes the
address of a variable ontc the stack. Two bytes are

reserved to hold the variable.

VOCARULARY vvwy
Detine a vocabulary name. Subzsequent use of {(vvvw?
will make (vvvvy) the context vocabulary. The sequence

VN VY DEFINITIONSG will make [QVAVAVAVS the current

Caltech Forth A-Z0

WHILE

WORD

X0

CCOMFILED

vocabulary, intc which future definitions are placed.

¥+ WHILE

I+ () is true {(non-zero), execution proceeds normally
in a BEGIN ... f WHILE ... REFEAT loop — through to the
REFEAT is encountered. After REFEAT, execution loops
back to the word feollowing BEGIN. I (f} is +alse,
however, execution skips out of the loop, to the word
foellowing REFEAT.

o WOIRD p

(CN) Read the next word from the input stream, up to &3

characters or until the delimiter {(c) iz found, storing

the packed character string in an internal buftfer. The
address (p) points to the beginning of the buffer. The
first byte of the buffer contains a count of characters
in the buffer. The buffer is terminated by an
pccurence of (o), or by a null (O).

m n XOR o

Leave (Ql, the.bitwwise logical exclusive OR of (m) and

in).

Stop compilation. The wprdgs following the left bracket
in a colon—-definition are executed, not compiled.
Fermitzs calculations to be made during compilation.
CCOMFILET nnpn

(C) Force the compilation of the ward (nnnn}. This is

the way to compile an "immediate" word.

Caltech Forth 4-71

3 3
Resume compilation. Wordes following the right bracket

are compiled.

4,4 SPECIAL VOCABULARIES.
U+ the vocabularies presented here, only the standard editor
is generally used outside pf Caltech-0VRO systems. The others,

however, are frequently used in ow local systems.

4.4.1 Standard Editor.

The "standard” Forth editor is a very simple editor based on
substitution pf fixed—-length lines in the fiuwed-format block,
There are 14 lines of 64 characters in each Forth block. The
following vocabulary 1s available with the standard editor.

" " sees"
Copies string {(ssss) into buffer TEXT. Strinmg is
padded to the right with blanks as needed to make &4
characters. |

((s5us5)
Copies string (ssss) into TEXT like ("}, except that a
right parenthesis [)1 serves as the delimiter.

ELE BRL_E g
An integer that specifies the number of +the block
(screen) you're currently working with.
Example: Type 144 BLE ! to edit block 144,

BT BT

Tvpe the cuwrrent block. Eguivalent to BLE » LIST.

Caltech Forth {32

D n D
Delete lime (n) from the cuwrrent block and move lines
(n)+1, N)+2, ...4 1& down one line. Linme 1& is filled
with blanks. The old contents of line ()Y are moved
into buffer TEXT.

I n I
Lines {n)+1, (ny+2, -y 15 are moved down one line.
(Lime 16 is lost.) The contents of TEXY are moved into
line (n)+1.

R n R
The contents of TEXT are moved into line (n}.

T T

Type line (n).

4.4.2 Character Strings.

Character string manipulations are a central part of more
spphisticated texst editors. Standard Forth has no explicit
support of strings. The following vocabulary is one approach to
providing string handling i Forth.

Variable 1length character strings (0-462 characters) may be

placed on a special string stack {(which has a fixed maximum

depth). Various operations, prefixed by ("), operate on this
stack.
L It 5555”
Fuish a literal string (ssss) onto string stack.
Gimilar to " in standard editor. In compile mode:

Compile =sss inte the dictionary with a c¢all o a

Caltech Forth 43
string literal routine that will push sses onto the
stack at execution time.

i {{ ssEs)

Like " except the delimiter is). (¢ lets you enter
quotes in a text string.

~TRAILING ssss —TRAILING ttit

String {(tttt) is (ssss) with all trailing blanks removed.

=STRINGS
revr ssss =STRINGD |
Compare strings {rrrr) and (ssss), return (£3=1 if
equal {including in lengthl), O otherwise.
" smss p !
Fop (ssss) from the string stack and store at location
{p!.
" p "D ssss
Get string (sscss), located at (p}, and push it on the
string stack. {Byte 0O of the string is its lengith.:?
el EN "—LEN R |
Get length (n} of second string on string stack.
"C! cn "C!
ASCII character () replaces (n)-—-th character of top
string.
"Ci m "Cd o

FRetrieve (n)-th character from top string, push i1ts
ASCIT value () on Forth stackhk. Character 0 is the

string length.

Caltech Forth 4§74

"CAT rrrr ssss "CAT titt
Strings (rrrr) and (ssss) are concatenated to form
strimg (tttt).

"CLR "CLR
Clear the string stack. Note: the string stack is npot
cleared by AROKNT.

"INDEX ssgx thtt "INDEX m
Search string {(ssss) for the first occocurrence of (tttt)
as a substring. Returnse character position of mateh if
found, O otherwise.

"ILEN "LLEM R
Get lerngth (n) of top string om string stack.

"LEN! - on MLEN!
Set length of top string to (n). Eguivalent taon O
R DR

"L INE n "LINE sssc
String (ssss) is drawn from line (n) of the block whose
number is in HLH. Trailing spacesz are deleted,

"LINE! sess n "LINE!?

String (ssss) is stored in lime (n) of BLE. Blanks are

T

added to the right to make &4 characters.
["NULE ssss
Fush null string {(ssss) (length 0) on string stack.
"FAD rrrr ssss n YFAD tttt
String {rrrr}) is padded to the right using the First
character of {(ss5ss8) so that the resulting string (titt)

is (n) characters lang.

Caltech Forth 435

"ETRING ssas "HETRING nrnn
l-ike CONSTANT, define {(nnnnl), which, when executed,
will push (ssss) on the string stack.

"SURSTR
ss=s n om "SUBSTR tttt
New string (tttt) is the substring of (ssss) beginning
at character (n) and ending with character {(m).

"SUBRSTR! rrrr ssss nom "SUBSBTR! tttt
Result i1s string (rerr) with string (sssg) inserted
instead of substring {(n) through (m) of (rEry). The
length of (ssss) does npt have to equal the length of
the substring to be replaced.

"TYPE sess "TYFPE

Type (ssss) amd pop off string stack.

4.4.7 The Eutended Editor.

The Forth Extended Editor {(XEIY is a superset of the
standard editor developed at Caltech. In addition to the line-
at—a—-time commands, it &llows vou to search for character
strings, alter strings identified by context, etc. XED uses the

Character Strings vorabulary described above.

FT ssss FT
Find the first occocurrence of (ssss) beginning &t the
current line number (L#} in the cwrent block (BLE) and
tyvpe the wheole line containing the string. I+ a match
is not found in the current block, continue at BLE + §

etc. (Youw have to type Z CTRL~Cs to stop in RT11 o

Caltech Forth 426

RSX11.2
Example: " THIS" FT to find the first occurrence of
"THIE" in or after the current block,
FR rrrr sses FR
Find the Ffirst occurrence of (rrrr) in the current

block beginning at the current line; replace it with

(woeg) . The resulting line i1is truncated at &Ha
characters,
Example: "THIS" " THAT" FR to replace the +irst

oocourrence of "THIS" with "THAT".

I sess FD
Find the first occocurrence of {(s5ss5) in the current
block beginning at the current linej delete this
substring of the line. Fad the line back to &4
characters with blanks.

FI rrrr ssss FI
Find the first cccurrence of (rrrr) as above; insert
{ssss) immediately following (rrrrd. Truncate the line

at &4 characters.
HT n HY

Hold lime {n? of current block on string stack and type.
HF n HR

FReplace line (n) with the string on the stack (like R),

but save the old contents of line (n! om string stack.
HD n HD

Delete line (n) {(iike D}, but held its former contents

on the string stack.

Caltech Forth A4-37

HI

LT

BT

L?

i-1

HOLD

UNHOLD

+R

EMTER

n HI

Insert string on line following (n} (like I), but hold
pld contents of line 1é6.

[

Type current line number and line.

BT

Type current block. Recset line number to 1.

L?

Type current line number,

|

Set current line to 1.

n m HOLD

Fut lines (n) -~ (m} of current block on string stack.
n m LNHOLD

Replace lines (n) — (m) from string stack.

+ER

Increment BLE by L.
—F

Decrement BLE by 1.
ENTER

Beginmning at the cwrrent line of the current block,
insert text evactly as typed. Fach line i1s terminated

by the user typing & carriage retuwrn, which fill=s out

the current line with blanks and advances L#. Typing
more than &4 characters between carriage returns
results in a "hell"” and automatic line advance. The

line number and a backzlash are output before each line

is input. Input terminates with a CTRL-Z character.

Caltech Forth 4-38

Bik auvtomatically advances after line 16 of the current
block is entered.
CLR—RL& n CLR-BLE

Set block (n) to blanks.

4,4,.4 Deferred Operations.

A class of operations model led on the addressing modes of
the FLEF-11 has been developed by H. W. Hammond. These are parti-
cularly valuable when vou need to work with pointers to access
surcesstve elements of data structures. Straightforward generali-

zaticns to data tyvpes other than 14-bit integers are possible,

3 mp)
Store {m} at the address (g) found at locstion {pY.

Equivalent to m g 2 1.

Y+ ! mp JI+!
Store (m) at address (g) found at location (p)l,: then
increment (p)lby 2 bytes, {(FDF-11 "anto-increment ")
Egquivalent tomp & ! 2 p +!.

) p)+ m
bet the contents of (g) fFound at location {p). then

increment (p) by 2 bytes. Equivalent top @ 2 2 p +!'.
-3 ! mp —)!

Decrement contents of (p) by 2 byites., then store (m} at

location {g) whose address is found at location (p).

{("Auto—-decrement") Eguivalent to -2 p+! p 2 !.

VA P X2 m

Get the contents of address (g) which 1s found &t

Caltech Forth 4-39

location (p). Equivalent to p 3 2.
ya! p la!
Eguivalent top @ 2 p L.
-3 po—-YE om
Decrement contents of (p) by 2, then get contents of

location (3} whose address is found at locsation (p).

Equivalent to -2 g +! p 2 2.

4.4.% File System.

The typical Caltech-0OVRO Forth system has one "user" at a
time, but many users seqguentially in time. In this environment,
confusion over allocations of hlock storage is a sigpificant
problem. Sometimes, many non—-expert persons potentially need to
edit blocks on the same disk. The Forth File System (FFS)
provides ore approach to alleviating the problem of disk
allocation and protection. This system is anocther example of the
extensibility of Forth. We provide a bhrief description aof the
technique and the vocabulary of FFS.

FFS divides the Forth block file (which may be a file within
the file structure of an operating system) into "user files",
Each user +ile may contain up to 512 blocks, numbered O -~ S11. A
user refers to his blocks just as in Forth without FFS, 1a8ay
through BLOCE, LIST, etc. Block numbers that the user deals with
are considered logical block numbhers; FFE maintains a map,
called the User
File Directory or UFD, of correspondences between logical and
physical block numbers. The "physical® block number refers to the

location of a block as it exists relative to the beginning of the

Caltech Forth G0

conplete block File, as understood by the operating system.
Fhysical blocks may be arbitrarily assigned to a users logical
block space (logical disk).

i/ table of available disk blocks is maintained in a block
called "AVAIL". This is a bit map in which each bit signifies
the availability (if 1} of a particular physical block. A user,
aftter his UFD ias set up, may reguest up to 512 blocks to be
placed in his file. Initiallvy, no blocks are allocated to the
user; le@w s any block reference will cCcause an error message.
The wser must assign himzself blocks using the word ASKHEBLE.
Blocks are assigned one at a time and are given specific logical
block numbers 1in the user’s file. Elocks do not have to be
asgigned contiguouslys; blocks O, 1, and 3 may be assigned (using
AEMNBLE) while block 2 1is unsassigned. Thus the user only needs
to assign the particular logical blocks he will be using.

aArn unneeded block can be returned to the available pool with
the word RLSBLE.

A user file iz gpecified by a pumeric constant (1 - Sil1). (&)
suitable constant word would normally be detined to specify the
file symbolically, (3= BYSTEM, STRINGS, VLEI. etc. At all
times, Forth/FFS maintains a disk "context” which specifies the
user file from which all blocks are taken. The user may change
usar files with the word DISE, e.g., SYSTEM DISEKE. The file must
have been previously defined.

Special user files are defined for software packages such as
editores, floating point, diagnostics, etc. A special word has

been defined to load such packages: /LDAD. I¥f the user types

Caltech Forth 4-41

DIAGNOSTICES /LO0AD, the diagnostics user file is loaded beginning
with logical block O. /LLDAD presesrves context, i.e. if the
current user file is SYSTEM, SYSTEM will be current after a /L0OAD
command. Thus /LOADs may be nested.

A separate {FILES)} wocabulary is available to create and
manipuwlate UFDs. It iz intended that only system maintainers
("experts") will need to run (FILES).

A system using FFS has the foliowing small added vocabulary

for all users.

SCOFY mn +r /COFY
Eopy block (m) from user file (n) to block (r) of the
current user file.
Example: USRI DISK 13 USR2 10 /COPY
copies block 13 of disk USRZ to block 10 of disk USKI.
FEXCHANGE
m n r /EXCHANGE
Thiz word is' like /COFY, but the two blocks are
exchangeda.
ASNELE n ASNELE
Get a block from the available ponl, clear it with
blanks, and assign in the logical block number (n) in
the range © — 11 in the cwrent user file. Elock (n)
must previouwsly have been unassigned.
DISE n DISHE
Set the current user file {disk context) to (n).
Values of (n) are normally defined by constants giving

the symbelic names of the user disks, e.g.., 5S5Y&TEM,

Caltech Forth 4-437

STRINGS, EDITOR, etc.
RLSELE n RLSELE
Deassign logical block (n} from the current user file

and return it to the available pool.

In addition to the new words described above, some standard
disk-related Farth words are modidied to support FFS. These are
BLOCH, COFY, EXCHANGE, LIST, LOAD., and SHOW, The modified words

refer only to a user®s current logical dishk,.

CHAFTER =

ADVANCED TOFIC: LARGER FORTH SYSTEMS

3.1 WHY LARGER FORTH B[YSTEME?

The "classical" Forth computer is a minicomputer having 1&6—
bit data wordz amd lé-bit addressing. Typical of such systems
would be the DEC FDF-11, the Hewlett-Packard HF1000, the Data
General Mova/Eciipses etc. Common 8~bit microcomputers. such as
the 8080 and the ZIBO, employ 1lé&-bit addressing, and can also bhe
made to perform 1é6-bit arithmetic.

Addressing capability {(the width of address fields) i
particularly important for Forth, because Forth intermixes
addreszses and data on the same stacks. tlsers are expected to do
their own address arithmetic, for example, when indexing data
Arr ays.

The newer generation of 16—-bit microcomputers (such as the
Motorola &2000 and the Intel BOZS) respond to the reguirement for
address spaces much larger than the &4F bytes allowed by 15-bit
addressing. A complete, general address reference for the new
microcomputers is typically T2 bits wide. In this regard, they
are similar to the larger scale "midicomputers”, such as DEC s
VaX-11 and Data General’™s MV/B0O0G, which also have 322-bit
addressing.

Two recent Forth systems have faced the addreszing problem
for the new machines, and adopted a JZ-bit word length for all
normal Forth data. These are polyFORTH/ZFZ (a trademark of Forth,
Ince) For the &8B000 and JFL's Farth +or the DEC VAX-11.

FolyFORTH/Z2 is described in the article "Design Considerations

Caltech Forth o

i3

ey

for a Ad-bit Forth” by Mike LLa Manna and Ray Van de Walker in the

Froceedings of the 19782 FORML Conference. {See EFibliography.)

5.2 FORTH FOR VAX-11.

The VAX implementation of Forth is interesting in several
ways., since it mot only confronts the 22-bit addressing problem,
but 1t interacts in an articulate manner with the complex VME
operating zsystem. We will describe the highlights of JFL/VAX
Forth as an example of how Forth may be effectively employed in

larger computer systems.

9.2.1 TEXT FILEG

It is very convenient, when Forth runs under an operating
Eygtemﬁ‘ to employ ”1ine~5tructured“ files for text and source
code. Most larger pperating systems represent text files with

variable-length records, each of which corresponds tc a single

printed line. Furthermore, spscial formatting characters, such
as "tab" and "form {eed*, may be used to position text without
redurndant blank characters. With a =mlight increase in the

complexity of the Forth system (and some loss in compatibility
with smaller Forth systems), line-structured files can replace or
supplement the traditional fixed-length block—-structured Forth
file.

In addition to economizing on disk storage, line—
ctructured files have several further advantages. The files can
easily be formatted according to the normal formats of the
operating system. Thus all the normal non—-Forth system editors

can operate on Forth source data. Files can be interchanged with

Caltech Forth o

i

user programs written in other languages, such as Fortran or
Fascal.

In practice, we have found, one of the significant
advantages of line-structured Files with tab characters and
ar indetfinite number of linezs per file is that programmers find
it convenient to write nicely indented, logically clear Forth
code. This has alwayzs been a problem with the standard fised 1é&
line screen of earlier Forth systems, in which there is always a
temptation to psck definitions tightly into the minimum possible
space.

=

2
e

-2 DATA WIDTH

As . mentioned above, a 32-bi1t address must be convenient to
manipulate in Forth systems for the newer microcomputers and for
the WVAX-class midicomputers. It is very awkward to deal with
data having mixed lengths on the same stack, so it is natural to
conzider making a IZ2«bit stack width standard for these machines.

What are the penalties? There is an obvious penalty in that
more memory will be used it all {(or most) data take 32 hits when
14 bits might be adeguate in many Cases. The processor may be
slower in operations involving 3Z-~bit data, particularly if the
data buses are only 146 bhits wide.

Double precision (Z2-bit) operations on the Intel BOB&S are
definitely slower than single precision, ecpecially for the BOEB
version which has only 8-bit data paths. The memory segmentatiaon
scheme of this processor makes it somewhat awkward to deal with

data zets greater than 44K bytes in length. For these reasons. =

Caltech Forth o=4

number of 808&6~based Forth systems have chosen to retain 16-hit
addressing and not to support the full addressing capacity of the
Processor.

The Matorola &8000, however, has more of the attributes of a
true 3Z2-bit compuiter, having 32-bit data and address registers,
for example. Except for extra bus cycles reqguired, there is not
much épeed penalty in double precision over single precision
operations. In fact, as La Manna and VYan de Walker point out, an
address interpreter (NEXT function) using 1&6-bit addresses 1is
considerably slower than the corresponding Z2-bit routine because
of the lack of an instruction to convert from 16— to 3Z2-bit
addresses without sign estension. The full 24-bit address space
is available without segmentation. On balance, the 48000 appears
wall-suited to Z2-bit Farth implementations.

The VYAX-11 1=z designed as a true 32-bit computer, having ZI2-
or &4-bit data buses, depending on model number. There is
essentially no performance cost in choosing 32— over 16-bit
arithmetic, and memory space in the virtual VME environment is
quite inexpensive. The choice of I2-bit data width for JFL/VAX
Forth was easy.

5.2.7% ADDRESS INTERFRETER

JFL/VAX Forth has abandoned the Forth address interpreter in
favor of using the VAX JSFE {(jump to subroutine) instruction.
This is a major departure from earlier Forth systems, bhut there
are +few, if any, cases in which this change is apparent to the
user at the colon-definition level. Incidentallya. this

development has established that the "threaded code” technigue

Ealtech Forth 50

ig not fundamentally required in Forth syatems.
Why not use the standard address interpreter? In 2 322-bit

environment, address sequences consist of 3IZ2-bit fields, each

52

specifying a particular address trom a possible space of 20,
or over 4 gigabytes. 4 course, no Forth program will approach
this size, and many bits of each address will be zero. The memory
"wasted" on wide address fields can be reclaimed, and a suhstan-
tial performance ingreased can be gained, by compiling complete
VAX dnstructions instead of 3Z2-bit addresses.

The JSEB instruction has several variants. I1f the disctance

hetween the JSB instruction and the routinme being called i

m

closer than +127 or —-128 bytes, the byte offset form of JE5B is

veed: this requires only two bytes (14 bits) of memory. More

commonly, the spacing between call and routine will be greater

than 128, and a word offset form of JI5R can be used. With this
variant, taking three bytes (24 bits), a J88 can call a routine
as far away as +I2767 or ~IZ76B bytes. If this is insufficient,

a longword (22-bit? form is available.

Compiling JSB calls optimized for the shortest lengths com-—
patible with the required offsets allows colon definitiens to
take less than 232 bits on average. Ferformance 1is increased
since the NEXT function (address interpreter) i1z effectively
replaced by the cne-byte REE {(return from subroutine) instruc-—-

tion.

S.2.4 IN-LINE CODE

Traditional Forth provides three levels of programming for

Caltech Forth S-5

the user: direct erecution from the terminal or from screens via
the +text interpreter; execution of colon definitions wvia the
address interpreter; and execution of CODE definitions through
the address interpreter. JPL/VAX Foarth adds a fourth level, the
"in-lire" definitiorn with two new defining words [CODE and Iz.
When vou are compiling a word and vou refer to a previpusly-
defined in—line word, & JSE instruction is not compiled. Instead
a copy Of the parameter field of the word you are referring to is
placed in the parameter +field of the word you are now compiling.
This has always been a possible technigue for older Forth sys—
tems, but without the JFL/VAX JEBR technigue, there would have
been little advantage. But with JER compilation, & transition
from “compiled" senuences of addresses {(IJSB instructions) to
machine -cmde inserted iﬁ“line costs nothing., since the VAX CFU
interprets either as a valid 1list of instructions. In-line
compilation for functions like +, HERE, DUF, etc, costs very
little =ince these functions often take no more memory than & JGH
instruction. Per%mrmancé is improved because the overhesd dues to

the JSR/REE instructions is eliminated.

Figure 5.1 summarizes JFL/VAX Forth compilation.

Caltech Forth 57

WORD BEING COMFILED WORDS EBEING REFERENCED
(FPARAMETER FIELD)

i HEADER (/) !
o 1
/=== 1 J8E AA P om———— o CARY
i f———— e i
! i JSE AR f (AR}

' p o ;
/! ! REE ' P i i e }
o ————— : s o e o e] i HEADER {B» i
; HEADER (NEW) | / b e e e :
o i e i e t machine ;
H A = e ; / /! tinstructions!
f———————————— 1 / ! b o e o s e ! } . e . !
i JSE A Y ! i HEADER () oo e e e e H
e ! / I T ! : RSE :
i JSE B y———t it JEER CA I —»{CA) | ——ere—————— :

§r———— AN Pl — i

i JSHE CA . F et R €. I Y = P —F{0RY
e I s T '
i JSH CE ' i 1 J8R CC HE e

f——_—————— I N e e e !
i JBR CO b i RSE H fmm T |
R e e o e e VoS j————————— : i HEADER (+))
T ADD ... Pl N el
P —_————————— ' e e e e e V ADD ... '
§ o e e ' i FRSHE !
{ RSER g P ;

Figure T.1 VAX Colon Definition with In—line refences.

The Figuwre corresponds to the following definitions:
: & AA AR AC 3
CODRE B <machine instructions: NEXT,
I: C CA CB CC ;
ICODE + <source, destination fieldsl> ADD, NEXT,
¢ NEW <...3% A BC + <...% 3
Note that the parameter fields (excluding terminal RSBs) of the
in—-line words [and + are copied into the parameter field of the

new word.

Fields have been allocated in the JPL/VAX Forth word header

Caltech Forth o—a

to indicate whether a word is an in-line word, and, if so,. what
the length of its parameter field is. The format of the header

is shown in Figure S.2.

e e e e o e e e e e o o o e e o e At
1 1 1 H i) 1]
v COWUNT 1CHIL CHZ2 g CHZ } CH4 g CHS Ch
e s e e e e e s it s s et e o e e e — e ——— e R—
' INL INE H) P
o o e e .
WORD 1: SIZE
(bits)
COUNT S ENTRY LENGTH TRUNCATED AT 22
CH1 2 TWO MSE OF 28IX RIT CHARACTER
FOUR LOW ORDER EBITS ARE A THREAD
FOR A 16 WAY INTERLEAVED DICTIONARY
CHZ2 & CHARACTER 2 0OF ENTRY
LHE & CHARALCTER = OF ENTRY
CH4 & CHARACTER 4 OF ENTRY
CHS = CHARACTER S OF ENTRY
c 1 "aMUDGE" BIT, B8ET DURING ENTRY DEFINITION
WORD Z:
L. TNk 24 DISFLACEMENT TO THE La&ST DEFINED
ENTRY IN THIS THREAD
F 1 FRECEDENCE BIT, SET FOR COMRILER DIRECTIVE
Figure 3.2. VAX definition Header Format.

Definition names are treated much as they are in FDF-11 Forth:
seven—-bit ASCII ¢haracters are compreseed into six-bit fields,
and the leading character is used as a key into a lé—way threaded

dictionary structure.

S.2.5 DOPERATING SYSTEM INTERFACE

In a complex envirgnment such as the VAX/VME operating

Caltech Forth

L1ﬂ
-

system, the user may demand correspondingly more capability from
his Forth system. The JFL/VAX Forth system attempts to provide
thie +lexibility at two levels: the user command level, and the
system service level. At the user command level, the ability to
invoke subprecesses to run any standard VMS utility programs, or
even to run other language processors is available through the
SPAWN word. Forth text files are normally edited by calling a
VMS editor (EDT) with this mechanism. The Forth interpreter can
be used as a form of command line interpreter under VMS.

A great wvariety of gystem service routines is available
through VHEG; these include mathematical routines {sguare root,
logarithms, trigonometric functions, etc.), string manipulations,
memory management operations, the high level RMS file system, and
basic I/0 ("RIOD") calls. Conventionally, these routines are
invoked through a Macro assembler and a complex macro library
which translates a programmer”s statements like

FCIOW S CHAN=2TTCHAN{R?) ,EFN=RAE®L CTX{(R3} . —
FUNC=#70% SETMODE'IOsM CTRLVYAST, -
F1=CYAST,F2=R?,FI=#FSL$C_EXEC

inte a series of MOV and FUSBH instructions that set up parame-

ters, selected from a wide range of possible values and formats,
finishing with a CALL to the appraopriate system routine. Refer—
ences to symbolic values, such as J0O% SETMODE, are evaluated

either from the macro library or at the time the obiect program
is linked +for execution.

In JPL/VAX Forth, links to most VMS cyetem routines are made
through address tables in the Forth kernel. (The tables are
fililed in by the VMS linker.) Sipce VME iz a wvirtuwal memory

system, there is little overhead incurred by linking to many

Caltech Forth 510

unused reoutines in system memory sSpace.

It would be possible to define each possible symbolic svstem
call or parameter value as a separate Forth word, but the number
of possible words is guite large. & better scheme has been
developed for such refarencecs. For example, there are numerocus
return status codes in VMS prefixed by 88%, such as S55%_NORMAL
indicating normal completion of a rovtine. In Forth, & word So$
iz defined which takes the literal tobken following in the input

stream as a modifier. Thus

would produce the value corresponding o the VMBS S55% NORMAL
svymbol. Tables of modifiers and values are established for each
prafin type, but these tables are not linked in the dictionarys
therefore dictionary search time is not increased, and dictionary

beaders are not reguired.

AFFENDIX A
FDF—-11 IMFLEMENTATION,
A. 1 DBENERAL CHARACTERISTICS.

The DEC FDF-11 is & popular 15-bit computer architecture
that is available in many models. Caltech~0OVRO operates 4 types
ot FDP-11: two FPRF-11/40s (VLRI Frocessor and 10 m telescope
control), a FDFP-11/20 (27 m telescopes), numerous LSI-11/07s for
control of three 10 m anternnas, the 40 m antenna, and special
equipment, and a PDF-11/05 uzed for the 1024-channel autocorrela-—
tion receiver.

Several Forth systems have been developed {for these ma
hines. Ore (for the 11/20) runs as a standalone system using 9
track magnetic tape for block 1/0. Other systems have disk
storage énd S0 Can run t%e DEC operating systems, RT—11 and REX-
P1/8. The LS5I-11 systems are normally operatored without
operating systems or disk=sz thevy are “down-line loaded" from a
larger computer over serial communications lines. FOF-11 Forth
iz also found running on the Z2-hit VAX-11 computers in their
FDF-11 compatibility mode.

FOF-11s use the standard 7-hit ASCII character set with one
character right-justified in an 8-bit bhvte. FIOF~-11 Forth

recognizes certain characters for control purposes:

Caltech F

EHARACTER

CTRL-C

CTRL-0

CTRL_ -0

CTRL-5

CTRi.—-U

RUBOUT

orth A2

FUNCT ION
Interrupts execution of any program and returns contrel
to the keyboard. Two CTHL~Cs may be required if the
program is not listening to the kevboard.
F¥f—1iiz RT~11 types Y." and you may type any monitor
command {e.g. REENTEFR or RUN). REENTER will let you
resume Forth 1n most cases.
REX-113 RSX types "MCR*" and vou may type any monitor
command, wsiich as ABORT, Forth can not be reentered
after aborting.
Inhibits terminal output from a running program, but
program continues. Allows vou to skip lengthy lis-
tings. A second CTRL-0 turns on output agsin.,
After you tyﬁe CTRL-5 to stop type out, vouw may type
CTRL-A to resume.
Stopz terminal output from a running program in such a
way that mno output wiil be lost. The program hangs up
after the Dutpﬁt buffer ig full. CTRL-Q may be used to
restart output.
Cancels the entire line you have just typed in. Ol
effective before yvou type "return'.

Cancels the last character you have just typed in. Same

as DEL or DELETE.

Caltech Forth AT

The B8 FDF~-il registers are allocated according to the

following table:

REM. NAME FINCTION

Q - General lUse

1 T Stack top or General

2 TT Multiply/Rivide or General

= - General Use

4 5 Forth Stack Fointer

= IC Forth Instruction Counter

& 2 Forth Return Stack Fointer and

FDFP-11 Hardware Stack FPointer
FDF-11 Program Counter

~3
i

fA.2 DRICTIONARY FORMAT.
The FDF-11 diectionary format was featured in Section 2.3 of

this Manual and will not be repeated here.

A. % ASSEMELER.
Three types of instructions are supported by FPDF-11 Forth:

ZEero-, Bne-, and two—-operand instructions. Forth words 10F and

3

20F are provided to define single and double cperand

It

instructions, respective}y.
10F defines words (like CLKR,) which require one argument on
the stack. The argument specities the addressing mede and
register. For example
7 CLR,
is equivalent to the Macro-1i1 line
CiiR R3.

L]
—

which clears register

Caltech Forth A—4

For more complicated types of addressing a set of auxilliary

words has heen provided as follows:

ARGS SYMBOL VALUE ADDRESSING TYFE

r) 10 register deferred

r I+ 20 auto—-increment

r)+ S0 anto-increment deferred
*) 40 auto—decrement

I »-2 S0 auto—decrement deterred
o r I &0 i ndexed

O r ol 70 indexed deferred

dest N 100000 bvyvte mode

dst E 100000 byte mode (preferred
notation:

v # 27 immedi ate mode

E ard 7 abzolute mode

& F o7 relative mode

a »P 77 relative deferred mode

In this table r stands for any register (0-7), g stands for a 1lé&-
bit offgset, dst stands for a complete destination specification
(2.Q. 4 }+), v stands for a 1lé-bit integer value, and a for a
15-bit address.
Exvamples of typical aszembler constructions for =single
operand instructions follow with their Macro—-1!l counterpartss
= CLR, CLR RZ

Clear register I to zero.

s -y TST, TST — (&)
Subtract 2 from register § (4) and test the data at the location
to which 8 now points. This 15 a simple way top reserve a word oan
the stack.

i74 1 I} INC, INC 1324(R1)
Increment the data word found at the address 134 + (contents of

register 1).

174 1 1) B INC, INCR 134{R1)

Caltech Forth A-5

Increment +the data byte found at the address 134 + (contents of
register 1).

XYZ P CLR, CLR XY2Z
Clear the data in variable XYZ. {The assembler uses the relative
addressing mode.)

XYL 2% CLR, CLR D#HXYZ
Clear the data in variable XYZ. {The assembler uses the absolute
addressing mode.)? The F and 2# modes are equivalent 1in most
CASES.

Double operand instructions require both a source and a
destination field which can be defined with the mode words as
described above. A few ernamples:

g —) 112 2 1) MoV, MOV 112¢(RZ) ,—(3)

Move data from address 112 + (contents of register 2D to the

stach. after having subtracted 2 fraom register 5 (4). (You use
the construction —) as a destimation to puszh data on the Forth
stack.)

AYZ B —-10 # MOV, MOV #-10, XYZ

Move the immediate value (~10) into variable XYZ.

S)+ T MUL, MUL T, (8)+
Multiply register T (1) by the top stack value, pop the =stack,
and retuwn the product in T (1) anmd TT (2). Note that the MUL
instruction (like DIV, AGH, etc.} may have only a register type

"eource"” {field.

Caltech Forth A&

Conditional branches (IF, THEN, BEBIN, etc.) are handled

through the FDF—-11 EBR~type instructions. The +following Forth

wards are available as constant definitions:

[iaa IR

iz
mim
i—1im
=g
e L
I
=
H e
1<
iy
01

These test the FDF-11 condition codes the same way as the branch
instructions Bxx, where xx is replaced by one of the two letter
codes.

T make an assembler conditiocnal branch vyou give the
following assembler commandss

“zet up condition codes {(TBTY> wx IF, “true codel THEN,
You +irst set up the condition codess this can be a byvproduct of
some arithmetic (e.g. from ann ADD instruction) or the result of
an explicit T8T or CMF operation. Next give the two letter
condition code +rom the list above, +tollowed by IF,. The IF,
will azsemble the appropriate branch instruction. {Actually, the
brarnch around the "true code" must ccoccur when the condition you
spacify 1s false. =0 the branch that is assembled 15 the logicsl
inverse of the condition type yvou specify.}

An example:

N

= £ CME. ER IE. ELAG F 1 # MOV, THEN,
This is assembled like the following Macro-11 code:

CHMe 2,3

BENE 1%

MOV #1,FLAG
1%:

Caltech Forth

where =i

example

transl ates to the follow

Following is a list

onetruction works in a similar way:

“loop coder xx END.

on from the same list. As & concrete
GiM, © DE&, MI END,

ing Macro-11 code:

i$: DEC O

BFL. 1%

of the FDF-11 Forth assembler op-codes:

Q10000 20F MOV, DZOO0D 20F CMF, OZO000 20F BIT,

040000 20F RIC, Q50000 20F RIS, O&LO000 Z0F ADD,

160000 20F SuRB, Q70000 20 MUL, 071000 20F DIV,

DTZ000 20F ABH, OT7IO00 20F ASHC, 974000 20F XK,

Q04000 20 JBR,

SG00 10 LR, D100 10FP COM, 5200 10F INC, S300 10F DEC,

340G 10 NEG, SS00 10F ADC, S600 10F SR, 5700 16F TEST,

6000 10FP RDR, 6100 10F ROL, G200 10OF ABR, &300 10F ASL,

0100 10F JIMF, Q200 10F RTS, OZ00 10OF SWAE, 0240 10F CLEAR,

GORe&0 10F BET, &H700 18aF S5XT,

: NEXT, IC 20 + JMFP, ; s BEMI, IE R 20 + MOV, NEXT,

: ClLC., 1 CLEAR, 3 :t RTI, 2 4 3 : WAIT, 1 , = = HALT, © , 3

t SEC, 1 SET, ;3 : J, F OJMF,

Note: The following operations are invalid on the FDF-11/04, /05,
A10, and /20: ASH, ASHC, XOR, SXT, MU, DIV, .

AFFENDIX B
FORTH BIELIOGRAFPHY.
BOOKS. The following are some contemporary books that describe
Farth or Forth—~like languages. For the most part they are writ-—
ten in a semi-technical style and are aimed at the small computer

USsEr.

1. Brodie, Leao, Starting Forth, Prentice—-Hall, Engl ewond

Cliftfs, New Jersev, 19281.

2. Hogan, Thom, Discover Forth, Osborne/Mcbraw-Hill, Berkeley,

Catifornia, 19B2.

Z. Loeliger, R. &G., Threaded Interpretive Languages., Evte

Book=s, Feterborough, New Hampshire, 1981.

JOURNALS. Many of the personal computer journals carry articles
on Forth and Forth programs. The +ollowing are particularly

noteworthy.

1. Evyte. A special Forth issue appeared in September, 1980, A
collection of Forth reprints from RByte issues is available
from the Forth Interest Group (FIG)X.

¥Forth Interest Group, F.0. Box 1105, Han Carlaos, California

F407T0,

Caltech Farth B-2

2. Dr. Dophbs Journal. A special issue appeared in September,
1982,

. Forth Dimensions. This 15 a journal specializing inm Forth,
published by FIG.

COMNFERENCE FROCEEDINGS. There have been a number of conferences

dealing with Forth issues. The proceedings are a useful source

for both theoretical and practical wunderstanding of Forth.

i. FORML. (Forth Modification Laboratory) Conference Procee-—
dings, 1980, 17281 {(Volumes 1 and 2, and 1982, Available
from FIG.

2. Rochester Forth Conference on Databases and Control, Frocee-

dings. May, 12832, Available from FIG.

STANDARDS. The latest available Forth standards document is

72, a publication of the Forth Standards Team, Qotober,

1980, distributed by FIG. A "Forth-83" standard is in prepara-

tion.
HISTORICAL REFERENCES. Forth had its beginning in the early
19705 in scientific and astronomical communities. The following

are some of the references from that era.

Caltech Forth B2

Ewing, Martin ., The Caltech Forth Manual, Internal Report,

Owens Valley Radio UObservatory, California Institute of
Technoleogy, Fasadena, California, First Edition, 1974, Sec-

ond Edition, 19278.

Ewing. Martin S., and Hammond, H. Wayne, The Forth Program-—

ming System, Froceedings of the Digital Equipment Computer

Users Society, Nov.. 1974, pp 477 — 482.

Miedaner, Terrell, AGRT-01 and AST-01X Definitions, Memoran-—~

dum to the Astronomy Forth Users Group, Kitt FPeak National

Observatory, Tucson, Arizona, 1977.

Moore, C. H., and Rather, E. D., The Forth Freogram for

Spectral Lipe Observing, FProc. I.E-E.E., &1, 9. p. 13464,

Sept.. 12775,

Moore, €. H., Eorth: 6 New Way to Frogram a Mini-computer,

Rstronomy and Astrophysics Supplement, 19, pp 497 - 5it.,
1974,
Rather, E. D., Moore, (. H., and Hollis, Jan M., Easic

ter, National Radio Astronomy Observatory, Charlottesville,

Virginia, Computer Division Internal Report Mo. 17, 1974,

Sachs, Jonathan, An Introduction to S5toic, Technical Report

BMEC TROOI1, Harvard—-MIT Frogram in Health Sciences and Tech-

Caltech Forth E-4

nulogy. HRiomedical Engineering Center for Clinical Instru-

mentation, June, 1974.

B. Sinclair, W. §&., The EURTH Approach to

{m]
hal
1Ly
5
Ul
*
e
J
(1]
1N
[
n
r+
1LY
3
n

Froc. ACM 76, pp. 2TE5-240, October, 1976.

	Title
	Contents
	Preface
	1. Introduction
	2. Forth Overview
	3. The Structure of Forth
	4. Forth Vocabularies
	5. Advanced Topic: Larger Forth Systems
	Ap. A. PDP-11 Implementation
	Ap. B. Forth Bibliography

