

| € Burroughs <3) " a

Computer

Management

systems (CMS)

SYSTEM SOFTWARE .
OPERATION GUIDE

THIS MANUAL REPLACES FORM 2007258 DATED FEBRUARY 1977

CINCLUDES PCN-001)
COPYRIGHT © 1976, 1977 BURROUGHS MACHINES LIMITED, Hounslow, England
COPYRIGHT © 1976, 1977 BURROUGHS CORPORATION, Detroit, Michigan 48232

PRICED ITEM)
Printed in U.S.A. September 1977 Form No 2007258

Burroughs é)

 Computer

Management

Systems (CMS)

SYSTEM SOFTWARE

OPERATION GUIDE

-- . THIS MANUAL REPLACES FORM 2007258 DATED FEBRUARY 1977

COPYRIGHT © 1976, 1977 BURROUGHS MACHINES LIMITED, Hounslow, England

~COPYRIGHT © 1976, 1977 BURROUGHS CORPORATION, Detroit, Michigan 48232

PRICED ITEM fs

Printed in U.S.A. oo , - September 1977

mee

ge PUBLICATION
Burroughs <3) CHANGE

a | NOTICE

PCN No:: 2007258-001
Date:_ January 1978

Publication Title: Computer Management System (CMS) System Software

Operation Guide

 Other Affected Publications: None

 Su persedes:

Description

This Publication Change Notice incorporates the Table of Contents into the basic manual. Insert pages iii through vi.

Retain this PCN as a record of changes made to the basic publication.

 BMG activities may obtain additional copies of this PCN by

ordering the above form number from Literature Distribu-

tion, Dearborn, Michigan.

International activities requiring additional copies of this

PCN should determine their annual requirements and sub-

mit them to their literature Coordinator. |

Printed in U.S. America

iv

LIST OF EFFECTIVE PAGES

Page No.

Title

iiithru vi. .

1—1 thru 1-2

2—1 thru 2—5

2-6

3—1 thru 3-84 .

4-1 thru4-17 .

4-18. . . ,

5—1 thru 5—34 .

6—1 thru 6—41

6-42 . .

A-—1 thru A-10.

B—1 thru B-16 .- .

Issue

September 1977

January 1978
September 1977

September 1977

~ Blank

September 1977

September 1977

Blank

September 1977

December 1977

Blank

September 1977
September 1977

3S TABLE OF CONTENTS (Continued)

Section Page Section Page

6 Question-Answer Routine . 6—5 Declare (DECL) Registers . . . 6-31

‘Prompting Mode Operating Instructions 6—6 Display . . ~ + « « 6-32
Prompting Error Messages . . . 6-6 Miscellaneous (MISC) - 2 « e) 6-32

No-Prompting Mode Operating Task Control Block (TCB). . . 6-32

Instructions . - . . 6-8 Message (MSG) Reference Area . 6-33

No-Prompting Error Messages . . 6-8 Data Segment Table. 6-—33

Copy. . - 2... 6-8 Control Stack 6-33

Bootstrap Warmstart 6-10 Data Segments - - 6-34
Release Letter . . . « 6-10 File Analysis. . - . . - - 6-35
Patch. e.- 6-11 Control Stack 6-35

Warm Start 6-16 Registers 6-36

Warm-Start Operating Procedure . . 6-16 Descriptor Information . . .« . 6-36

Restart Procedure . . . *., . 6-18 COBOL Dump Analyzer

Restart Operating Instructions. . . 6-18 (COBOLDUMP). 6-36

Clear Start Procedure. 6-18 Heading . . . 6-37

System Dump Analyzer (SYSDUMP). 6—21 Program Parameter Block (PPB) of

Heading . . . 6—23 Code File. . 6—37

patch History- -. . - 6-23 Task Control Block (TCB) Preset Area 6—38

Hardware Registers. 6-24 Data Segment Table . . 6—39

Operating System Registers . . . 6-24 Control Stack 6-39

Virtual Memory Links .. . 6—25 Data Segments . . . 6-40

Peripheral Assignments and Descriptors 6—25 Current Operation (COP) Table . . 6-41
Task Detail Table - 6-26

Print TCB 6-27

ce Print Slices . 6—28 APPENDIX A

\ MPLII Dump Analyzer (MPL2DUMP). 6—29 System Control Language Commands A-I

Li, \ Explanation of Formatted Dumps . 6—30

P © i Heading 6-30 APPENDIX B
/ S-Registers - 6-31 System Output Messages . . B-l

TABLE OF CONTENTS

Section Page Section Page.

1 GENERAL INFORMATION

Introduction . 1-1 Stand-Alone Sort-Merge Initiation - 4-9 _
nput Medium ~ . 2. . 4-9 | Interpe cee Program ocr) a | Input Restrictions . . - . 4-9

} Invoking the Sort Language Compilers 1-2 Processor . 4-9 Utilities 1-2 Se ees To the User 1-2 The Sort Language . 2. . . . , 4-10 |
General . - 2 we ww. 410 :
The File Statement se ew ww. 64-10 2 EN ONS AND *XPLANATIONS 11 The Key Statement . -. 412

Disc and Disc Pack 2-1 The User Option Statement. - . . 4-43 Disc Initialization | 4-4 Soni pansuage Processor Messages. . . 4-14
Magnetic Tape File Names . . 2-2 Warning Messages ST Sts 4a Line Printer and Console File Names . 2-2 E BE Disk File Names . 4-2 mror Messages. 2. . |, 45 Group Names 2 Sort-Merge Intrinsic Messages. . . . 4— 16
Disk Directory 2-3 poneral moe ee ek kk. 416
Available Table. . 3 ntrinsic Messages . . . , |, 4—16
Program Names . 2-4 Sort Language Reserved Words . . . 4-17 Mix Numbers 2—4 :
Peripherals - 2—4 3 B 80 DEPENDENT ROUTINES
Message Syntax . . , 2-5 Functional Summary 5-1

CMS B 80 Bootstrap 5—2
3 SYSTEM CONTROL LANGUAGE Bootstrap Load .- 5—2 (Refer to Appendix A) . Possible Errors . 5-2 a . | Table of Keyboard Indicators . 5-3 a - 4 SORT/MERGE INTRINSICS Stand-Alone Utility. 2... 5—4 | @ \ Introduction . . re | Loading the Utility . 5-4 i Related Documents . 4—1 Operation. 5-6 Me ° General Description . 4—] Functional Descriptions. 5-6

Functional Description , Lo. 4-2 Copy (Stand-Alone Disc Copy) 5-7 Keys . . Lok ek eg 42 FE (Initialise MTR Disc) 5-9
Deleted Records . . 4-3 IN (Initialise Disc) 3-11 Regular Sort Intrinsic 4—3 LD (Load Disc) . 5-13 Capabilities . 4-3 LS (List Size) 5-15 Complete File Ordering. 4—3 OL (Print Status of Cassette Drives) 5~ 16

Partial File Ordering 4—3 RF(Reference Disc). . » . 5-17 Tagfile Creation . 4-3 RL (Relabel Disc) , 5-19
Keyfile Creation . | RM (Remove Files). . . 2. . . . 5-21 Invalid Index Keys . 4-4 WS (Warm Start) s 2 2 wh lehlehCleCUS§ D3 Input Medium 4—5 Warm Start Procedure . . ~ »« . 5-24 Input Restrictions 4—4 Initiating Warm Start 5-24 Main Memory Requirements 4-5 Memory Dump .. - 2. . 5-26 Output Medium . . 4-5 Memory Dump to Disc ~ 2. . . 5-29 “Inplace Sort Intrinsic 4-6 Customer Confidence Routine. . . . 5-31 Capabilities 4-6 FunctionalSummary 5~—3] Input Medium 4-6 Requirements . . . - . §-—32 Input Restrictions 4-6 Confidence Routine Operation - . 5-32

Main Memory Requirements ~ 4-6

Output Medium . 4—6 6 B 800 DEPENDENT ROUTINES Merge Intrinsic 4—6 General ; | Capabilities 4—6 Create . 6—1 Disk Space Requirements . 4-7 Set-Up Procedure 6-1 Input Medium 4-7 Operating Instructions . 6-1 Input Restrictions 4-7 Bootstrap Error Handling . 6-1 Main Memory Requirements 4—7 Error Messages and Recovery . 6—2 Output Medium . . 4—7 Disk Generator noe 6—3 Invocation of the Sort-Merge Intrinsics 4—8 General Description. . 6-3
General . . - 4-8 Operating Instructions ._ . 6—4 COBOL Generated Sorts and Merges . 4-8 Initialization Routine (INIT) 6—4

COBOL Sort Verb 4-8 System Disk Generation Routine COBOL Merge Verb 4—8 (DSKGEN) . 6—£

2007 258-001 y

SECTION 1

GENERAL INFORMATION

INTRODUCTION

The Computer Management System (CMS) is the realization of a concept on a range of Burroughs hardware

equipment. The concept provides for complete portability of source and object programs, and user files, and

provides an identical interface between the user and the system, across the range of equipment which supports CMS.

The realization consists of a Master Control Program (MCP) which has a well defined user interface, together with -

System Language Interpreters, and a suite of compilers and utilities. The MCP and interpreters are written in the

machine language (micro-code) of the appropriate equipment, whereas the compilers and utilities are written in the

Burroughs CMS implementation language (BIL) and interpreted using the appropriate micro-coded interpreter.

The following paragraphs describe briefly the functions of the various components of CMS.

Master Control Program (MCP)

The Master Control Program is the intelligent interface between the user, user programs, system functions, and

‘system resources. It assigns resources to tasks and interleaves task executions allowing multiple tasks to proceed

_ asynchronously as their respective resources become available. The following list shows some of the characteristics

~ of the MCP.

It provides a simple command/response interface between the operator of the system and the system resources.

It provides complete resource management including all Input-Output devices, memory (using Burroughs proven

Virtual Memory Techniques), and the processor .

It provides an interface between user programs and Input-Output devices which includes

—Automatic Label Recognition and Maintenance.

—File Handling as defined for COBOL.

File access methods such as RANDOM, INDEXED SEQUENTIAL.

—Error Handling.

It provides automatic switching from one task to another when the executing task has to wait for an autonomous

system function to complete.

Full details of the Master Control Program are to be found in the CMS Master Control Program (MCP) Reference

Manual, form number 2007555.

Interpreters

An interpreter is an organized set of micro-coded routines which interfaces a user program with the MCP, and,

together with the MCP, performs the hardware actions required to execute the user program instructions (S-codes).

A full description of each CMS interpreter is to be found in the Virtual Machine sections of the CMS Master

Control Program (MCP) Reference Manual, form number 2007555.

September 1977 1-1

Compilers

The function of a compiler is to translate a machine-readable copy of a source program into an executable @
object program, after checking that the syntax of the source is correct. Full descriptions of each CMS compiler
are to be found in the following manuals. ,

CMS COBOL Reference Manual, form number 2007266
CMS RPG _ Reference Manual, form number 2007274
CMS MPLII Reference Manual, form number 2007563

Utilities
Utilities are provided which allow efficient system, media, and file maintenance. The utilities available with CMS |
are fully described in this manual. :

TO THE USER

This manual is written both as a book to be read from beginning to end to provide an introduction to CMS, and
as a reference manual to be consulted from time to time on various points.

As a book, the manual explains how the MCP may be installed on a new machine and how it may be restarted after
the machine is switched off. Each system function provided with the machine is described, both how it is used,
and why. These sections cover the basic operation of the system and, together with the language manuals, provide
all the information required to write, compile and execute programs on the system. |

All messages which may be printed by the MCP or by the system functions are listed in alphabetical order together
with a description of the message, the reasons for which it has been printed, and, in the case of error messages, the
corrective action which can be taken.

If the manual is to be used as a reference manual, it is recommended that the user familiarize himself with section 2,
which defines the notation and abbreviations used throughout the manual. For ease of reference, the description of
each system function begins on a new page with the function mnemonic printed in bold type at the top of the page.
The list of system messages provides a rapid cross reference between system messages and required operator actions. Finally a list of system functions and their various formats is provided in a concise form for ease of reference.

1-2

SECTION 2

DEFINITIONS AND EXPLANATIONS

FILES

All information, programs and data, used by the system is manipulated as files. A file is simply a collection of

related records. Each record of a file is of the same size. For more efficient use of media, records may be

grouped into blocks whose size 1s always a multiple of the record size. All blocks in a file have the same size.

A file is referenced by its file name which must be known to the system before a file can be used. The

identifier < file—name > is used in this manual to indicate that any format of file—name for a particular device

type is permitted in the syntax. The various formats are described below for each device type.

The system regards all input-output operations, including keyboard input and printing, as file input or output. In the

case of a printer file, the block size is the same as the record size which is one line. Keyboard or console files have

special constructs to enable the reading and writing of particular fields within a record. Magnetic Tape files normally

have a special label record at their start to enable the system to determine the file name, record size and block

size of the file. It is the systems responsibility to write such a label record at the beginning of a tape being created

by a program unless the program requests otherwise. Many files, including all program and system files, are maintained

on disk.
:

DISC AND DISC PACK

A disc consists of one platter, both surfaces of which may be used to record data. A disc pack consists of more than

one disc mounted upon the same spindle, which therefore rotate as a unit. The recording area of discs and disc packs

is divided into the following physical levels of addressing space.

Cylinder __An area on both surfaces of the disc (or all surfaces of all discs in a pack) which is at the same

radial distance from the centre of the disc.

Track __An area on one surface of a disc which is at the same radial distance from the centre of the disc.

There are 2n tracks per cylinder, where n is the number of discs per pack.

Sector

(or Segment)—The basic unit of disc address. The sector is that portion of a track which is read or written as a

unit. One sector contains 180 bytes of data, and several additional bytes used by the disc controller.

These additional bytes are not accessible by user programs.

DISC INITIALIZATION

Before a disc can be used with a CMS machine, certain information must be present on the disc. This information

cannot be installed during the manufacture of the disc, since the disc may be used on many different systems, with

entirely different implementations. The CMS MCP gains access to particular disc sectors through a sector address

field in the additional bytes mentioned above, and locates disc files through a disc directory which is maintained on

the disc. It is the function of the initialisation stand-alone utility to construct, on a disc of unknown format, the

correct sector addresses and directory structure required by CMS. A brief description of the CMS disc directory

structure is to be found below, and full details are available in the CMS Master Control Program (MCP) Reference

Manual, form number 2007555.

September 1977
2-1

MAGNETIC TAPE FILE NAMES

Note: the term “magnetic tape” is used to include tape cassette unless otherwise stated.

A magnetic tape may be used to store one file (a “single file tape’) or more than one file (a “multifile tape’’). A single file tape will have a beginning label and an ending label to delimit the file. A file which is too large to be contained on a single reel may extend to subsequent reels, each of which will contain a beginning and an ending label. A multifile tape will have a beginning and an ending label to delimit each file. The last file on a reel may extend to subsequent reels. | :

Magnetic tape labels contain fields for the multifile-identifier (mfid) and file-identifier (fid) of the file. Each field is seven characters long. The < mfid > in each label of a single file tape will contain “OOOOOOO”. The < mfid > of each label of each file of a multifile tape will contain the tapé name, (multifile-identifier).

The <fid > of each label of single or multifile tapes will contain the appropriate file-identifier. Refer to the CMS Master Control Program (MCP) Reference Manual, form number 2007555 for full details of Magnetic Tape Labels.

LINE PRINTER AND CONSOLE FILE NAMES

Line printer (which includes serial printer used as line printer) and console files may be labelled: The file-identifier (fid) consists of up to seven characters, and is printed as part of the beginning and ending labels of the file. Refer to the CMS Master Control Program (MCP) Reference Manual, form number 2007555 for full details of these labels.

DISK FILE NAMES

A disk file name has the following format:

< disk—id > / < file—id >

< disk—id > is the name of the cartridge which contains the file. The < disk—id + consists of between one and seven alpha-numeric characters. In some cases, it is not necessary to specify the disk—id and in those cases, the current system disk is assumed to be the one required. Specifying a <disk—id > of 0000000 will imply the current system disk.
| a

< file—id > consists of between one and twelve alpha-numeric characters or hypens. It is used to identify the particular file on the specified disk. All files on a particular disk will have unique file—names; this is enforced by the MCP. A full description of the Disc Cartridge Label (which contains the disk—id) and the Disc Directory (which contains the file—ids) is to be found in the CMS Master Control Program (MCP) Reference Manual, form number 2007555.

GROUP NAMES

In some utilities it is possible to perform a function on a group of disk files. Such a group specification has the following format: | | }

< disk—id> / < group—id > =

< group—id > consists of between zero and eleven alpha-numeric characters or hyphens and specifies the characters which define the group. All files on the specified disk (groups do not extend over more than one disk) whose < file—id’s > begin with the characters specified in < group—id > are considered members of the group.

2-2

| © Examples:

If a disk contains files with ids

A,ABC,ABCD,BCD,BCDE

then the following < group—ids > refer to these files

= A= AB= ABC= BC=

A A ABC ABC BCD

ABC ABC ABCD ABCD BCDE

ABCD ABCD

BCD

BCDE

Specifying a < group—id > with no characters refers to all files on-the specified disk. Also, different < group—id >’s

may give rise to the same group (see AB = and ABC = above).

The use of the file-group is most effective if the creation of < file—id >’s is given careful thought: for example,

in a payroll suite, all files may be given < file—ids >’s beginning “PAY”. Program files within the suite could

begin “PAYP”, with “PAYPS”, and “PAYPC” designating source and code files. Data files for use with the

suite could begin “PAYD”’, with futher identification for different types of data files, for example “PAYDT”’ for

transaction data. Thus the whole payroll suite, all data, source and object programs be referenced by the group

“PAY =”, all programs by the group PAYP = and all source programs by PAYPS =. The SCL command RM

PAYDT = will remove all transaction files of the payroll suite.

DISK DIRECTORY

The disk-directory is a table which contains an entry which describes each file on the disk. In particular, the name of

each file and where on the disk its information is stored, is kept in the directory. Thus, whenever a program

requires to read a file, the directory on the specified disk is searched for the required < file—id> and the directory

entry points to the information required. Whenever a file is to be created, an available entry is found in the directory

and this is filled with information related to the new file.

The directory on a CMS disk is a fixed size determined at disk initialization time and any attempt to create more

files than there are entries in the directory will cause an error message to be printed.

The disk space required for the directory is allocated by the initialize stand alone utility, which also makes all

entries in the directory available.

AVAILABLE TABLE

The available table enables the operating system to find available space on the disk whenever new files are created or

files are extended. If there is insufficient available space on the disk, a message is printed and the operator may remove

@ files from the appropriate disk in order to make space available. The KA utility provides information as to available

space on the disk. When a disk is initialized, the available table built by the initialize stand—alone utility indicates

that the whole disk except the directory and other system reserved areas is available space.

September 1977
2-3

PROGRAM NAMES

A “program” is a special disk file whose type is “CODE”. The program name is the < file—id > of this program
file. This program file is generated by a compiler, which translates the program source code into the machine under-
standable form of a program file. In order to execute this program, it is necessary to “load” it, that is, build the tables
and structures required by the MCP to maintain control of the program and hence the total system. Compilers
translate their source programs into an S-code and this S-code must be interpreted on the hardware in order to execute
the program. This interpretation is performed by an interpreter which depends upon the language being executed.
COBOL and RPG programs are both interpreted by the COBOL S-CODE interpreter called “COBOLINT’”, MPL
programs are interpreted by the BIL S-CODE interpreter called “BILINTERP”. Both interpreters will appear as files
on a disk containing the complete system, and their type will be “INT80” (which will appear as “SYSTEM” in a
listing produced by the LR utility). If it is never required to run MPL programs then “BILINTERP” may be
removed and similarly if neither COBOL or RPG programs will be run, the “COBOLINT” file may be removed.

MIX NUMBERS

As a program is loaded, it is assigned a mix number. This is the system’s unique identifier for the current execution of
the program. Mix numbers will cycle from | thru 9 and back as programs are executed. All messages to or from the
operator concerning any program will always quote the mix number. Messages to the operator from the system will
also always quote the program name which is optional in most messages from the operator but if specified must be
correct.

PERIPHERALS

In some cases, it is necessary for the operator to indicate to the system a particular peripheral unit, for example, to
request the status of a particular unit. The specification of a peripheral unit is via a three character mnemonic where
the first two characters specify the peripheral type and the last character specifies the particular unit on the users
system. Thus DK is the mnemonic for a cartridge disk and the first drive will be specified by DKA, the second
by DKB etc. The various peripheral types are listed below:

R8 = 80 column reader

R9 96 column reader
P8 80 column punch

P9 96 column punch

M8 _— 80 column reader/printer/punch

M9 96 column reader/printer/punch
AR Any card reader

CP = Any card punch

AM _ Any reader/printer/punch
AC Console with any output device
PC Console with serial printer

. SC Console with self-scan
AP Any record printer a
.SP Serial printer (used as record printer) Cow 29+ seat,
VLP Line printer :
AT Any magnetic tape

MT Magnetic tape (reel)
a CT Cassette tape

Y DK _ Disk cartridge (any type or speed)
DP _ Disk pack

.HT Disk Head per Track
A F Burrevughs-Super-Mintdisk e MAG FQ J

DC Data Comm

SSS gar } SOpy 180 Ley

Jan Codes ve Ss YARD
2.4 7

“ae f

f ha ‘tv ho} ws s_-

In some messages, only certain types of peripheral specification are permitted. For example, the PO function is only

applicable to disks. For such cases, the construct “< disk peripheral >” or “‘< cassette peripheral >” will be used

to indicate a subset of the full < peripheral > specification.

MESSAGE SYNTAX

The complete syntax for each system function is described at the beginning of each description as a “railroad”

diagram. These diagrams are reproduced at the end of the manual as a quick reference guide to the System Control

Language (SCL). The railroad diagram provides a compact and easy to use definition of the syntax of each SCL

command and it allows the operator to make a rapid check of the syntax of any doubtful message.

Below is the railroad diagram for the syntax of the PD function described in Section 3 of the manual. Here we are

concerned only with the interpretation of the diagram.

_ | gx 1 pp —

< group—name >

 | < file—name > |

The diagram should be read from left to right unless flow arrows indicate differently. By typing in or checking each

unit as it is encountered, an SCL command may be constructed or validated.

The diagram should be read from left to right following the lines or railroad. All valid variations of a command may

be generated by starting on the left, typing each unit as it is encountered until the end point on the right is reached.

In the PD diagram above, the first construct encountered is:

[gx

this indicates that, syntactically, “EX” is optional as the first characters of this SCL command.

The next construct

ppp

indicates that “PD” must occur as the next two characters in the command. The track then splits indicating another

option. Taking an overall view of the diagram, it can be seen that the two options available at this point do not rejoin

until the end point, indicating two formats of the PD command. On the upper track a single < group—name >

is required and on the lower track, the construct

< file—name >

indicates that at least one < file—name > must be specified. By following the return track of this construct, a comma

must be the next character and the lower track is rejoined before the file—name specifier. This construct then indicates

a list of < file—names > separated by commas and containing at least one file name. A number in a loop of a track

indicates the maximum number of passes through that track, for example:

~ indicates that ““CRD A” and “‘A CRD” are valid constructs whereas “A A” or “A CRD N” are not valid constructs.

When following a railroad diagram, multiple spaces are allowed between each syntax element, and at least one

space should be typed between syntactic elements that are not recognised delimiters (for example, comma).

September 1977 | 2-5

SECTION 3

SYSTEM CONTROL LANGUAGE

Communication with the MCP is through the console keyboard and printer. The MCP prints its messages on the left

hand tractor of multiple tractor consoles, otherwise, the leftmost 50 character positions of a solitary tractor are

reserved for system communication. This system communication area is called the system journal or “SPO”. In order

to prepare the MCP to accept command input, the Ready Request key must be pressed. If the MCP is able to accept input

it responds by lighting the ready and alpha lights and extinguishing all others. If the system is unable to accept input

because, for example, it is loading a program or performing functions previously typed in, then the Ready Request key is

ignored and the operator should press it every few seconds until a response is obtained. When the alpha and ready

lights are lit, all keyboard input is directed to the MCP as SCL commands. Input on the keyboard is echoed im-

mediately, but if the console printer is being used by an executing program, then the current output to the console is

completed before the print head is released to echo SCL input. Termination of an SCL command is by an OCK.

This terminator is not recorded as part of the command. While typing commands, the backspace key may be used to

erase characters typed in error and the whole message which was typed may be voided by typing RESET. The numeric

keyboard is not enabled during SCL input and using it or any invalid alpha key will cause the error light to be lit and the

alarm to be sounded. This error may only be cleared by typing RESET which allows continued typing of the

command. All messages from the system to the operator are indented three spaces and echoing of operator input

begins in the first character position. Note: messages from the system (as distinct from a utility—see below)

contain an ‘event number” enclosed in square brackets. A glossary of event numbers and their meanings is to be

found in Appendix B.

The MCP contains certain embedded functions which are invoked through the SCL handler. These functions are

concerned with intimate details of the system, for example, the MX and OL commands, and are known as

““intrinsics’’. The SCL handler recognizes these functions, when requested, by their unique mnemonics. Any character

string not recognized as an intrinsic is assumed to be a program name, and the loader is invoked. Refer to the

description of the EX intrinsic for details of program initiation.

Additional non-intrinsic utilities are available for use with the system. These utilities exist as BIL programs, but may

be viewed as extensions to the intrinsic utility functions, since the initiating procedure is identical when the utility is

present on the system disc. Examples of these programs are LIST and KA. In the following alphabetically ordered

descriptions, the terms “‘intrinsic’”’ and “‘utility’’ are used to distinguish the two types.

The SCL handler is able to pass characters following the program name in an SCL message to the program, as

“Initial Parameters” (or “Initiating Message”). This ability is taken advantage of by the BIL utilities, allowing an

entire task specification to be input as a single SCL message.

All BIL utilities provide a “macro—call” facility which permits a frequently used task specification to be input

from a file on disc. The utilities are directed to the file by using the construct

** < disc—id > / < file—id >

at the appropriate point in the initiating message as shown in the following alphabetically ordered descriptions. The

file containing the parameters must exist as a maximum of five 80 character records. No nested macro-calls are

permitted, that is, a file which is to be used as an *< file—name > must not contain the *< file—name > construct.

If the specified file cannot be found the message < file—name > NOT FOUND will be displayed by the utility.

Note: it is worth emphasizing that a BIL utility, since it is an S-code program, may be executed from any

disc on the system which contains a copy of the program code—file. This capability may become necessary if the

system disc becomes too full to allow execution of any program. The system disc may then be tidied by executing the

“remove” utility, RM, from an alternative disc. Refer to the description of the EX intrinsic for details of program

initiation.

September 1977 3-1

AD (Assign Peripheral)

 AD <mix #> | /— < prog—id > ——*— < peripheral > .

This intrinsic command may be used to assign a particular peripheral to a program that has called for an unlabelled
input file, or has requested a line printer containing special forms.

The system informs the operator of the requirement for an unlabelled file by a message of the following format:

< mix—number > / < program—name > [14] WAITING UNLABELLED < device—mnemonic >
DEVICE REQUIRED

The command must only be used when the named program is suspended, waiting for the appropriate type of
peripheral. At any other time, the message

< mix—number > / < program—name > AD INVALID

is displayed.

3-2

ADD (Add Files from Library Tape)

 EX <disc—id—1>—*——_-LD ADD———

 * < file—name>

9

<disc—id—2>

| <group—id> |

 FROM —— <library—tape—name> —_t_TO

Note that this function is a sub-program within the utility LD. MCP recognises the mnemonic ADD if LD is not

specified, and will automatically initiate a load of the LD utility. The < file—id > of LD should not therefore be
changed if the ADD function is to be invoked in this manner. To discontinue the ADD function, “DS
< mix—number > / LD” must be used.

This function may be executed from a disc other than the system disc by specifying LD and < disc—id—1 >.

The function provides the capability of copying files or groups of files from a “‘library tape” to the disc specified

by < disc—id—2> (or the system disc if < disc—id—2> is not specified). A library tape is defined to be a tape output
by the DUMP or UNLOAD functions. The < library—tape—name > identifies the library tape containing the files or ~
groups of files to be copied to the disc. The file list identifies the particular files or groups of files to be copied from
the library tape. Note that the file list may contain a mixture of files and groups of files. Only the files which do

not have copies already on the disc are loaded.

Output Messages

The following messages will be output by the utility in the event of the corresponding error or condition.

Errors in Initial Parameters

The following messages are output, and the utility will terminate, if the initial parameters are incorrect or invalid.

1) ILLEGAL PARAMETER LIST

This message is displayed if the parameters supplied in the input message are incorrect. The utility will attempt
to follow the message with a character string from the area of the input message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >

This message is displayed if the < library—tape—name >, < disc—id >, or < file—id > entries in the input

message contain characters which are illegal in identifiers.

3) < file—name > NOT FOUND

This message is displayed if the function was invoked through the LD * < file—name > format, and the parameter—

file cannot be located.

4) DISK < disc—id > NOT AVAILABLE

This message is displayed if the specified disc is not on line.

September 1977 3-3

5) NO SPECIFICATION GIVEN

This message is displayed if no parameters are input following LD in the SCL input string.

Normal Execution

The following message is displayed for each file which is added :—

| < file—name > LOADED

Errors During Execution

The following messages are displayed if the utility cannot perform some part of its function. The utility will
continue to execute wherever possible. | |

1) < library—tape—name > NOT A RECOGNIZED DUMP TAPE

This message is displayed if the tape which has been provided for loading does not have a recognizable header.
The correct tape should be provided, or the utility should be DS’ed (discontinued). If the tape is provided, the
GO command may be required in some CMS implentations in order to restart the utility.

2) NO FILES IN THE FAMILY < group—id > ON TAPE < library—tape—name > FOR ADD

This message is displayed if the utility is unable to find any files in the specified group on the library tape.

The utility will continue with the next file in the input parameters list.

3) NO FILE <file—name > ON TAPE < library—tape—name > FOR ADD

This message is displayed if a specified file is not present on the library tape. The utility will continue with the
next file in the input parameter list. |

4) < file—name > LOAD/DUMP DISCREPANCY

This message will be displayed if end of file has been reached before it is expected, and implies erroneous
information in the Disk File Header. The utility will continue with the next file in the input parameter list.

5) NO FILES TO LOAD
This message is displayed if no files will be loaded from the tape. The utility will terminate.

6) < file—name > LOADED

This message will be displayed for each file which is added from the tape.

7) < file—name > NOT LOADED—ALREADY ON DISK

This message will be displayed for each tape file not loaded because a file with the same identity already exists
on disc. |

8) ALTHOUGH WITH DIFFERENT ATTRIBUTES

This message will immediately follow message 7 above if the two files differ in record size, block size, file size,
_ or file type. This is for information only.

Note that the above messages are output by the utility. Any applicable system message may be output by the
MCP (for example ERROR WHILE IN < verb > if the tape cassette drive is opened while in use).

3-4

- AMEND (Disk file amending)

 * < file—name >

| py 7

__|_ Ex _ <disk—id>/—+— AMEND —1— <file—name> |

Ln
This utility may be used to modify records within an existing file using data input through the console keyboard.

The utility may be executed from a disc other than the system disc by specifying < disc—id >. The utility can

only be used with systems incorporating a console keyboard. No new file is created. The file to be modified is

< file—name >, and it must be a file of type “source” or type ‘data’. If the file is a data file, then input

may be specified to be alphunumeric (A) or hexidecimal (N). The default input type is alphanumeric (A). Source

file input and Data file type A input is accepted as direct keyboard input, whereas type N will require the input

of two characters (0-9, A-F) for each byte of the récord. |

The integer list specified in the syntax may be used to provide “tab” positions within the record. The use of OCK1

when keying input data causes the utility to reposition the input point in the record to the next tab position. During

this repositioning, the utility will fill all character positions left unspecified in the record with a fill character

determined by the input type. For source input, the fill character will be an ASCII space, for alphanumeric input

an ASCII zero, and for hexidecimal input a binary—zero—filled character. The record length plus one is used as a

terminating tab position (whether or not other tabs are specified). The utility can be used for record sizes up to 500

bytes, but, since the utility cannot be given input greater than the width of the console, tab positions are mandatory

on files of larger record sizes. For example, a file of 180 byte records requiring alphanumeric input will require

at least one tab position (for instance at position 100), whereas a file of 180 byte records requiring hexidecimal

input will require a minimum of two tab positions (for instance at positions 60 and 120).

The utility operates in two modes—Record Modify Mode (entered from PK2) or Record Select Mode (entered from

PK3). The PK associated with the currently active mode is disabled (the light is turned off) to indicate the

appropriate mode. PK1 and PK6 are enabled at appropriate points in either mode to a) select and print the next

sequential record from the file (PK1), b) close the file and terminate the utility (PK6). When execution of the

utility begins, Record Select Mode is automatically entered.

PK3 Record Select Mode

The required record is identified by logical record number using the following syntax

 —_—_t——_ RECORD —_—*_ < integer >

_ Where < integer > may take any value from 1 to the number of records inthe file.

The required record is located and printed on the console. The print format used corresponds to the input mode

selected, that is alphanumeric, source, or hexidecimal. Record Modify Mode may then be entered to alter the

data in the record.

PK2 Record Modify Mode

The point in the record at which alterations are to be made is selected by presenting an identifying character

string which immediately precedes the required byte of the record.

The character string for insertion or replacement follows the identifying string, delimited by colons (:). If alterations

September 1977
3-5

are to be made at the beginning of the record, no identifying string is input. The syntax of the keyboard input is:— oe

, B identifying—string > | : < modifying—string > :

The use of OCK1 or OCK2 to terminate the input determines whether the < modifying—string > will replace or
_ be added to the existing characters in the record.

OCK1 —Replacement

The < modifying—string > replaces the corresponding number of characters in the record if OCK1 is used to
terminate the input. For example, with a record containing

ABCD0123

the amendment C: XY: would result in a record containing

ABCXY 123.

OCK2— Insertion

The < modifying—string > is inserted at the indicated point if OCK2 is used. The insertion can cause characters
in the record to be moved to the right. The shifting of characters applies only only to those characters from the
starting byte to the next higher relevant tab position; characters beyond this tab position will not be affected.

For example, with a record containing |

ABCDEFGH1234

the amendment C: WXYZ: would result in the record

ABCWXYZD1234

if the tabs specified were 7 and 9, or the record

ABCWXYZDEFGH

if the tab specified was 7 alone.

On completion of a modification, the utility will print the amended record with its associated record number, and
then illuminate all other usable PK options for possible selection.

When all modifications have been completed PK6 will take the utility to end—of—job.

PK1 Next Record Select

PK1 will cause the next record in the file to be selected and printed. The print format is identical to that provided
by PK3. The use of PK1 terminates the Record modify and Record Select modes, therefore a reselection of mode
must be made before continuing. |

PK6 Terminate

PK6 will close the disk and console files, and cause orderly termination of the utility.

Output Messages —_ ee

The following messages will be output by the utility in the event of the appropriate error.

3-6

Errors in Initial Parameters

These errors occur if the initial parameters following “AMEND” in the SCL input string are incorrect. After the

message is displayed, the utility terminates.

© 1) FILE TYPE IS NOT SOURCE OR DATA
This message is displayed if the file identified for amendment is of an incorrect file-type.

2) < file—name > NOT FOUND
This message is displayed if the file identified for amendment or the parameter—file identified by the * < file—name >
macro—call cannot be located.

3) ILLEGAL PARAMETER LIST—ATTRIBUTE SPECIFICATION INVALID
There is an incompatibility between the specified record and block sizes.

4) ILLEGAL PARAMETER LIST—TABS ERROR
If tab positions beyond the end of the record are specified, or imply input fields larger than the capability of the

console, this message is displayed.

- 5) ILLEGAL PARAMETER LIST
The utility will attempt to follow this message with a number of characters from the area of the input message which
caused the failure.

6) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the < disk—id > or < file—id > portions of the file—name contain characters which

are illegal in file—names. " |

7) NO SPECIFICATION GIVEN

This message is displayed if no parameters are entered following AMEND in the SCL input string.
Errors During Execution.

© The following errors may be encountered during execution of the utility and do not cause the utility to terminate.

The messages are displayed via the console file.

1) NOT HEXADECIMAL CHARACTER INPUT—RESUBMIT

If the input mode is hexadecimal, any character other than 0—9 and A—F will cause the above message to be

displayed. The complete entry must be resubmitted.

2) ODD NUMBER OF HEXADECIMAL CHARACTERS INPUT
If the input mode is hexadecimal, and the number of hexadecimal characters is odd, then this warning is

displayed. The utility processes the hexadecimal string by extending it on the right with a zero character.

3) INPUT ERROR—RESUBMIT RECORD MODIFICATION

If the syntax of the keyboard input in Record Modify Mode is incorrect, the above message is displayed. The

entire entry is discarded.

4) BYTE WITHIN RECORD SPECIFIED NOT FOUND

The <identifying—string > in the keyboard input in Record Modify Mode could not be found in the record.

The entire entry is discarded.

5) RECORD SELECTION ERROR

The above message is displayed if, in Record Select Mode, an invalid record request is made.

6) ILLEGAL RECORD NUMBER SPECIFIED |

This message is displayed if the record number specified in Record Select Mode is greater than the number of

records in the file, or is zero.

7) UNWANTED KEY PRESSED—PLEASE RE-INPUT

This message is displayed if an inappropriate OCK is used to terminate a record.

8) INPUT IMMEDIATELY BEFORE PK6 HAS BEEN LOST

This warning message is displayed if characters were input immediately before PK6 was pressed to terminate the

utility. The characters will not be written to the output file, and the utility will terminate normally.

Note that all the above messages are generated by the utility. Any applicable system message may be output by

the MCP in addition to the above (for example, NO FILE if the console is in use). September 1977 | 3.7

AX (Accept a message for a task).

 AX

This function, implemented as an intrinsic within the MCP, allows the operator to communicate with a task in the mix.
The program must already be suspended waiting for an accept, that is, a message of the format

 <mix #> Le < prog—id > < text >

< mix—number > / < program—name > ACPT

has been displayed by the system. The maximum length of the text is 50 characters and any characters in excess of the
length requested by the program are truncated. The input buffer is binary zero filled before accepting characters. If
the specified program is not waiting for an accept from the operator or if the mix number and prog—id if specified
do not match, then the message | |

<mix # > /< prog—id > AX INVALID

is displayed.

3-8

CH (Change < file—identifiers >) ICH|

— < disc—id—2 > /- < group—id> LDATA+TO— < sroup—id >—

LEX-+ 1 < disc—id—1 > /+~CH— -

 Ire disc—id—2 > /—-<file—id > DATA-TO—< file —id > —H

This utility allows the file identifiers of disc files to be changed, either individually or as one of a group of files.

The utility may be executed from a disc other than the system disc by specifying < disc—id—1 >.

If the group change is specified, for each file in the source group, the < group—id > part of the < file—id > is

changed to the destination < group—id >. Each individual file—id generated is checked for legality: illegal changes
are not performed.

If the file list is specified, each file—id which is found is changed as requested. Each change is checked for

legality: illegal changes are not performed.

If the utility detects that a key file has been submitted, and DATA has been specified, then the utility will not change

the name of the key file. In this case, the name of the data file to which the key file points will be changed, and the
utility will update the pointers in the key file to reference the renamed data file. This change is only performed if
both files are on line. |

Output Messages

The utility will output the following messages as appropriate during execution.

Errors in Initial Parameters

These errors occur if the initial parameters following “CH” in the SCL input string are incorrect. After the

message is displayed, the utility terminates.

1) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the < disk—id > or < file—id > portions of the file—name contain characters which
are illegal in file—names.

2) ILLEGAL PARAMETER LIST
The utility will attempt to follow this message with a number of characters from the area of the input message which
caused the failure.

3) < file—name > NOT FOUND

This message is displayed if the utility cannot find the parameter—file identified by the * < file—name > macro-call.

4) NO SPECIFICATION GIVEN
This message is displayed if no parameters are entered following CH in the SCL input string.

Normal Execution

For each file—name changed, the utility will output the message

< file—name > CHANGED TO < file—name >

Errors During Execution

The following errors may be encountered during execution of the utility. The file—name related to the errors will not

be changed, but the utility will continue to execute wherever possible.

1) NO FILES FOUND FOR CHANGING IN THE FAMILY < group—id >
The utility will display this message and terminate if the specified < group—id > cannot be located.

September 1977 3-9

2) <file—name > NOT CHANGED—NOT FOUND
This message is displayed if a specified file cannot be located. The utility will proceed to the next requested change,
or terminate (if no further changes are outstanding). If a file is partly on line, this message will also be displayed.

3) < file—name > NOT CHANGED IN USE
This message is displayed if a specified file is in use.

4) < identifier > FILE IDENTIFIER TOO LONG
If, when changing a < group—id > toalonger < group—id >, an individual file—name is generated which is longer

than the permissible twelve characters, the above message is displayed. The file—name is not changed, and the

utility proceeds to the next requested change, or terminates (if no further changes are outstanding).

5) < file—name > NOT CHANGED—ILLEGAL REQUEST
If, when changing a < group—id > to another < group—id >, an individual file—name is generated which is
“SYSMEM” (a name reserved for system use) or all spaces, the above message is displayed. The file—name is

not changed and the utility proceeds to the next requested change, or terminates (if no further changes are

outstanding).

6) < file—id > NOT CHANGED-— < file—id > ALREADY ON DISK
This message is displayed for each change requested which would have generated a duplicate file audition.

7) DISK < disc—id > NOT OPENED—NOT ON LINE
This message is displayed if the disc specified in a group change specification is not available. The utility will
terminate.

8) KEYFILE < file—id> NOW POINTS TO DATA FILE < file—id >
This message is displayed for information purposes when a key file is updated in response to a change specifying
DATA.

Note that all the above messages are generated by the utility. Any applicable system message may be output by the

MCP in addition to the above (for example, DUPLICATE FILE).

3-10

CHECKADUMP (Compare Library Tape with Disk) | CHECKADUMP|

 trxtt <disc—id—1>/+—-CHECKADUMP—— <library—tape—name>+_wiTH disk —id_2>L This utility will compare information in the files on a Library Tape (that is, a tape produced by the LD utility) with the

corresponding files on a disc. The utility may be executed from a disc other than the system disc by specifying

< disc—id—1 >. The utility may be used to verify that a Library Tape is correct after files have been DUMPed or

UNLOADed, or that disc files are correct after files have been ADDed or LOADed. The tape identified by

< library—tape—name > is processed sequentially, file by file, and the disc identified by < disk—id—2 > (or the

system disc if < disk—id—2 > is omitted) is searched for corresponding files. The utility will comment on up to four

errors in a given file. If there are more than four errors, it will ignore the rest of that file, and proceed to the next

file on the tape.

Output Messages

The utility will output the following messages as appropriate during execution.

Errors in Initial Parameters

1) < parameter—list > ILLEGAL PARAMETER LIST

This message is displayed if the initial parameters following “CHECKADUMP” in the SCL input string are

incorrect. The < parameter list > portion of the message attempts to isolate the area containing the error.

2) INVALID CHARACTER IN IDENTIFIER < identifier >

This message is displayed if the character strings representing < library—tape—name > or < disc—id—2 >

contain characters which are invalid in identifiers.

3) NO SPECIFICATION GIVEN

This message is displayed if no parameters are entered following CHECKADUMP in the SCL input string.

Errors in Execution

1) < library—tape—name > NOT A RECOGNISED DUMP TAPE

This message is displayed if the first record of the tape < library—tape—name > is not recognised. The utility will

terminate. : |

2) < library—tape—name > INVALID DIRECTORY ON TAPE

This message is displayed if there are more or less entries in the directory on the tape than are specified in the

first record of the tape. [Refer to the CMS Master Control Program (MCP) Reference Manual, form number 2007555

for a description of the Library Tape format] The utility will then terminate.

3) COMPARISON ERROR ON < library—tape—name > ON DISK FILE HEADERS

This message is displayed if the header in the body of the tape <library—tape—name > is not identical to the

respective header in the directory. One is added to the error count for that file. The utility will continue to

execute.

4) COMPARISON ERROR ON < file—id > FILE NOT FOUND FOR CHECK

This message is displayed if, for a file on the tape, the corresponding disk file cannot be found. The utility will

then advance to the next file on the tape.

5) COMPARISON ERROR ON < file—id > FILE NOT AVAILABLE FOR CHECK

This message is displayed if, for a file on the tape, the corresponding disk file cannot be successfully opened. The

utility will then advance to the next file on the tape.

6) COMPARISON ERROR ON < file—id > (AROUND RECORD < number >)

This message is displayed if the utility finds a discrepancy between the tape file and the disc file. The utility will

print out a record number in the vicinity of the error in the file, if it is possible for this to be done. One is

added to the error count for that file,

° 7) COMPARISON ERROR ON < file—id > AROUND END OF FILE

This message is displayed if there is found to be a difference in the length of the tape and disc files. One is

added to the error count for that file.

September 1977
3-11

End-of-Job Messages

id) NO DISCREPANCIES BETWEEN DUMP TAPE < library—tape—name > AND DISK < disk—id > © This message is displayed if no discrepancies were found between the files on tape and the files on disk.
_ 2) DISCREPANCIES FOUND BETWEEN DUMP TAPE < library—tape—name > AND DISK < disk—id > This message is displayed if any discrepancy was discovered between the respective tape and disc files.

Note that all the above messages are generated by the utility. Any applicable system message may be output by the
MCP in addition to the above (for example, NO FILE if the required Library Tape is not present).

3-12

°o CO (Compilation Utility)

 —_t—EX <disc—iqd—1>/—*—-CO

 (A) <disc—id—2 > /_—“—_ < object— program—name > —_¥__. (B) —_

COBOL

® caineit-3>) [Gone ®—®@
— RPG

—— (B) —— @ —— PRINT —“—®——_

 © PSSIZE < integer > - lk .(B) ———

 —_NAME < file _name >.

_-MFID < multifile—id >

--FID < file—id >

PATCHFILE— DEVICE < hardware—-mnemonic > —
FI-—_!_ LSOURCEIN—4 | | ;

(A FILE_I-L.SOURCEOUT RECORD ————_- =< integer > [te

OO 7 L-RECORDS. BLOCK - < integer > |
FILE.SIZE ——____—- < integer >
FILESIZE —_________. < integer >

 ©. MESSAGE <text> 1 _.®)

This utility provides a standard procedure for initiating COBOL and RPG compilations. The utility provides common

syntax to be used to define and modify the operating environment of the compiler. The utility may be executed

from a disc other than the system disc by specifying < disc—id—1 >.

The order in which the syntactic elements are described reflects the order in which they are acted upon during a

compilation, after the syntax of the message is determined to be correct.

The PRINT clause will cause an analysed listing of the input message to be printed on a line printer (or the

console printer if no line printer is available). The analysis includes the information passed to the compiler through

a “parameter file” to provide the file equate function. Note: the PRINT clause will be acted upon, if detected, when
the syntax of the message is incorrect. Syntax errors prior to the position of the PRINT clause in the message will

normally prevent detection of the PRINT clause.

COBOL, RPG or RPGXREF must be specified as shown in the syntax. COBOL and RPG initiate the appropriate

compiler, whereas RPGXREF will initiate the cross reference program (RPGXREF) for RPG programs. The

compiler may be executed from a disc other than the system disc by specifying < disc—id—3>. Note that all

passes of the specified compiler, and its global files, must be present on the same disc. The utility will build the

appropriate parameter file, ZIP the first pass of the specified compiler or RPGXREF (if no syntax errors are

detected in the message), and terminate.

9 The FILE clauses provide the file equate function. Two input files (PATCHFILE and SOURCEIN) and one

output file (SOURCEOUT) may be equated to any file—name, or any device—type available on CMS systems

September 1977 3-13

through the attribute clauses (MFID, FID, DEVICE, RECORD, RECORDS, BLOCK, and FILE. SIZE). These
clauses are described below. Note that RECORD, RECORDS.BLOCK and FILE.SIZE are only applicable to the
output file identified by the SOURCEOUT clause. The file identified by each FILE clause will be referred to as
[PATCHFILE], [SOURCEIN], and [SOURCEOUT].

[PATCHFILE] is the primary input file for the compilation. If all source statements of the source program are
contained in one file, then the compiler is directed to this file through the PATCHFILE clause.

[PATCHFILE] may be merged with [SOURCEIN] under control of option records in [PATCHFILE]. When
[PATCHFILE] and [SOURCEIN] are merged, records in [PATCHFILE] will override corresponding records of
[SOURCEIN]. [SOURCEOUT] may be produced under control of option records in [PATCHFILE]. [SOURCEOUT]
will contain the merged contents of [PATCHFILE] and [SOURCEIN] when two input files are used. Refer to the
appropriate language reference manual for details of the option records available when using each compiler.

The NAME clause is valid for all files. The < file—name > entry permits MFID and FID to be entered in
standard CMS format as follows:

—— < mfid > /—*— < fid > ——

If < mfid > is omitted (where applicable) the default ‘0000000’ is used.

The MFID clause is valid for disc and magnetic tape files. The clause allows the < disc—id > or < tape—name >
of a file to be defined. The default is “0000000”, that is the system disc for disc files, or a single—file tape for
magnetic tape and cassette. Note that the use of NAME (above) allows MFID and FID to be entered as a

: single entry.

The FID clause is valid for all files. The clause allows the < file—id> of a file to be defined. The default is
defined in the appropriate language reference manual. Note that NAME (above) allows MFID and FID to be
entered as a single entry.

The DEVICE clause is valid for all files. The clause allows the device—type on which the file resides to be defined.
The allowable < hardware—mnemonics > are any one of the following: |

CR 80 or 96 Column Card Reader

CP 80 or 96 Column Card Punch

CR80 80 Column Card Reader

CP80 80 Column Card Punch ~

CR96 96 Column Card Reader

CP96 96 Column Card Punch

CRP80 80 Column Card Multifunction Unit

CRP96 96 Column Card Multifunction Unit.
CS
CASSETTE Magnetic Tape Cassette

MT Magnetic Tape (Reel to Reel)

DC :
DISK Any Disc

The default is DISK.

The RECORD clause is valid only in the FILE SOURCEOUT clause. The clause permits the record size of the
output file to be defined. The default is 80 characters. A warning is issued if the default is used.

The RECORDS.BLOCK clause is valid only in the FILE SOURCEOUT clause. The clause allows the blocking
factor of the output file to be defined. The default is nine(9). A warning is issued if the default is used.

FILE.SIZE and FILE SIZE are synonymous.

The clause is valid only in the FILE SOURCEOUT clause. The clause allows the maximum size of the output
file to be defined. The default is 5000 records. A FILE.SIZE of greater than 5000 will be replaced by 5000.
A warning is issued if the default is used.

3-14

The message clause allows certain control options to be passed to the RPG compiler. Any options supplied in this way

will override any corresponding control options in [PATCHFILE] or [SOURCEIN]. The < text > is a list of the

options, each option introduced by a dollar sign ($) and terminated by a space, the dollar sign of the next option,

or the end of the message. Spaces are otherwise ignored. The following are the dollar options which may be specified

LIST

LOGIC

SEVERE

SUPR

XMAP

MAP

NAMES

NEW

MERGE

SEQ (resequence will start at 00100 by increments of + 10)

XREF

A full description of these options is to be found in the CMS RPG Reference Manual, form number 2007274.

An option may be reset by inserting the character “N” immediately before the name of the option, for example

$NSEVERE.

Although any option specified in < text > will override any corresponding option in [PATCHFILE] or [SOURCEIN],

it will not replace any such option in a [SOURCEOUT] file created by the compilation. The < text > options alter

the performance of this compilation only—a subsequent compilation from [SOURCEOUT] will be unaffected.

Example CO RPG SY FI SOURCEIN FID MASTER
FI PATCHFILE FID PATCHES. FI SOURCEOUT
FID NEWMAST RECORD 80 RECORDS.BLOCK 9
FILE.SIZE 50 MESSAGE $NEW $MERGE $NLIST

If PATCHES contains $LIST, NEWMAST will contain $LIST although no listing will be produced by the example

compilation. NEWMAST will not contain $NEW or $MERGE.

The PSSIZE clause allows the perform stack size of an RPG program to be defined. The < integer > may

optionally be followed by the character “K” to denote multiples of 1024. The evaluated result of < integer >

(including modification by K) must not exceed 65535. The default value is 10.

The LIBRARY or SYNTAX clause determines whether the compiler is to generate an object program code-file

or not. LI or LIBRARY will cause the compiler to build an object-program file of name < object—program—name >

on the disc identified by < disc—id—2 > (or the system disc if < disc—id—2 > 1s omitted). The appropriate language

reference manual defines the default name used if none is specified. The object—program will only be output if

no syntax errors were discovered in the source program. SY or SYNTAX will cause the compiler to check the

source for correct syntax only, and no object—program will be generated.

The utility provides extensive macro—call facilities as follows:

 The construct * <disc—id > / < file—id>

may be used to replace any part or parts of the input message between a circled A and any following circled B.

Examples

1) EX ABC/CO *ABC/COMPILE
Where the file COMPILE on disc ABC contains a full specification string

September 1977 3-15

2) CO ABC/OBJECT *DEF/COMPOPTION FI PATCHFILE FID SOURCE
Where the file COMPOPTION on disc DEF contains DEF /COBOL LI PRINT

3) CO OBJECT RPG LI *SOURCE *NEW MESSAGE $NEW | where the file SOURCE on the system disc contains FI PATCHFILE FID PATCHES FI SOURCEIN FID SOURCE DEVICE CASSETTE and the file NEW on the system disc contains FI SOURCEOUT FID > CLEANSO RECORD 80 RECORDS.BLOCK 2 DEVICE CASSETTE FIL.SIZE 400

Output Messages

The following messages will be output by the utility in response to incomplete specifications or in the event of the appropriate error. | |

Warnings

1) KEYWORD ONLY VALID FOR FILE MODIFICATION—IGNORED A keyword used for file modification has been found outside a file modification clause.
2) WARNING—PROG—ID TRUNCATED TO 12 CHARS

A program—id of greater than 12 characters has been found. Only the leftmost 12 characters are used.
3) WARNING—PROG—PACK —ID TRUNCATED TO 7 CHARS , A program—pack—id of greater than 7 characters has been found. Only the leftmost 7 characters are used. 4) INVALID VALUE IN STACK CLAUSE—DEFAULT USED

An invalid value was found in the PSSIZE clause. The default value of 10 is taken.
5) WARNING—THE FILE ATTRIBUTES OF SOURCEOUT WERE INCOMPLETE An attribute RECORD, RECORDS.BLOCK or FILE.SIZE was not specified.

Errors

The following errors will prevent the Z\Ping of the compiler.

1) ILLEGAL PARAMETER LIST—JOB TERMINATED
An * has been found with no immediately following < file—name >.

2) <file—name >—FILE NOT F OUND |
The file specified in an * < file—name > construct is not on line.

3) KEYWORD TOO LARGE IN INPUT
A keyword greater than 32 characters has been found. This may occur as the result of a previous error

4) INVALID KEYWORD IN INPUT— < text > oe | | | | An expected keyword was not found. < text > identifies the characters found where the keyword was expected.
5) INVALID KEYWORD IN FILE MOD

An expected keyword in the file modification was not found. The next word is skipped on the assumption that the keyword was mistyped.

6) INVALID ATTRIBUTE FOR OLD FILE .
The keywords RECORD, RECORDS.BLOCK, and FILE.SIZE are only valid for the file SOURCEOUT.

7) INVALID DEVICE TYPE < text + oe
A non—CMS device identified by < text > has been found in a file modification.

8) NO COMPILER GIVEN BEFORE FILE—JOB TERMINATED
No compiler was specified before the first file modification.

9) INVALID CALL OF *FILE—NAME — JOB TERMINATED
A * < file—name > construct has been found in an illegal location.

3-16

10) NESTED MACRO CALL FOUND—JOB TERMINATED
An * < file—name > construct has been found within the expansion of another similar construct.

11) NO SPECIFICATIONS GIVEN—JOB TERMINATED
The initiating message was empty.

12) NO COMPILER SPECIFIED—JOB TERMINATED
No specific compiler was identified in the initiating message.

13) ERROR WHEN EXPECTING §
The message clause contains an option not immediately preceded by a dollar sign.

14) NO KEYWORD FOUND AFTER §
The MESSAGE clause contains a dollar sign with no immediately following option. _

15) INVALID KEYWORD FOUND AFTER DOLLAR
A dollar option not in the permitted list has been specified in the MESSAGE clause. The description of the

MESSAGE clause earlier in this section contains a full list of the permitted options.

16) ZIP FAILURE— < reason >
< reason > may bb PROGRAM NOT FOUND

INTERPRETER NOT FOUND

NO MEMORY AVAILABLE

NO DISK AVAILABLE

MIX IS FULL

Execution of the specified compiler did not commence.

The cause of the failure is identified by < reason >.

Note that all the above messages are output by the utility. Any applicable system message may be output by the

MCP, (for example DUPLICATE FILE).

 September 1977 3-17

| COMPARE | [: NN

 \ EX-+ <disc—id—1> compare —

& ; LA ,
1 Z

<mfid—l > /* < file—id —I > (4 P—-+ <integer—1 S4~< integer
| R 7

}

Me igg

7
" / i o. * 7 ra .

LL <disc—id—2 > je <group—id— Ls:

s
s

as

DSK

in

4 | A ”

WITH disc——id—3 > /-* < group—id—2 >-EDSK. < integer==3 > <integer—4 >
4 aN ee em

Na we ei oe

 | <disc—id=24 > /< fileid —3 >

This utility allows a list of files (or groups of files) to be compared with other files (or groups of files). The utility
may be executed from a disc other than the system disc by specifying < disc—id—1>. A line printer or equivalent
(for example, console printer) is required to use this utility.

The utility will accept a list, separated by commas, of comparison specifications. Each comparison specification
consists of two file specifications separated by the word ““WITH”, and followed by the optional realignment character,
R. Any or all trailing comparison specifications may be input to the utility via the file identified by < file—id—3 >,
which is assumed to be on the system disc unless < disc—id—4 > is specified.

Semantics

When the device type is CRD, MTP, or PTR, or is DSK and the group—id construct is not used, then the following
semantics apply.

The < mfid—1 > and < mfid—2> entries may only be used for disc and magnetic tape (including cassette) files.
If the < mfid > field is left blank, then, for disc the system disc is assumed, and for magnetic tape a single file
tape is assumed.

The files to be compared are identified by < file—id—1 > and < file—id—2>. The files are assumed to be on disc
unless the associated device option, CRD, MTP, PTR, is used. CRD defines any 80 column or 96 column punched
card device. MTP indicates that the corresponding file is on magnetic tape or cassette. A paper tape input file may
be defined by PTR. The DSK entry may be used for documentary purposes, since the default device type is disc.

The record size in bytes of the files to be compared may be defined using < integer—1 > and < integer—3 >. The
blocking factor (number of records per block) may be defined using < integer—2 > and < integer—4 >. The record
size of files being compared must not exceed 1024 bytes. If the record size of a file does exceed this figure, then, in
most cases, the blocking factor option may be used to enable comparison of the files. For example, a file with record
size 4160 can be reblocked as 104 blocked 40. If the card file is a large prime number P, the file may be compared
using a record size of 1 and blocking factor of P, but this method will be very slow.

If the records to be compared are of different lengths, only the number of characters corresponding to the shorter
record are compared.

If the realignment option (R) is specified, the: following algorithm is used in an attempt to realign the records being
compared:

3-18

If three consecutive records fail to compare, then the utility will attempt to compare the 3rd of these records from

< file—id—2 > with the next two records from < file—id—1 >.

If all five comparisons fail, then the utility will attempt to compare the 5th non-comparing record from < file—id—1 >

with the 4th, 5th, 6th, and 7th from < file—id—2).

If realignment fails, then the utility will discontinue the comparison, and proceed to the next comparison required by

the input specifications.

If a correct comparison occurs at any stage, the normal mode of processing restarts.

The following additional semantics apply to disc files when the group—id construct is used.

Membership of the group of files to be compared is determined by < group—id—1 >. The non-group—id—1 portion

of each related file is concatenated with < group—id—2> to generate the name of the file with which it is to be

compared. The groups are assumed to be on the system disc unless the associated < disc—id > is specified.

~ Examples

DISK 1 contains files A, B, C, D, AB, AC, ABC, BC |

DISK 2 contains files A, B, C, D, AB, AC, ABC, BC, BD, EF

(System Disc)

COMPARE DISK 1/= WITH =
will compare all files on DISK 1 with the corresponding files on DISK 2.

COMPARE = WITH DISK 1/ =
will compare all files on DISK 2 with the corresponding files on DISK 1. It will fail to find DISK 1/BD and

DISK 1/EF.

COMPARE DISK 1/A= WITH A=

will compare files A, AB, AC, and ABC on DISK 1 with the corresponding files on DISK 2.

COMPARE DISK 1/A= WITH AB=
will compare

DISK. 1/A with Disk 2/AB
DISK 1/AB with DISK 2/ABB*
DISK 1/AC with DISK 2/ABC
DISK 1/ABC with DISCK 2/ABBC*

* Note that a “‘file not found” condition will result for these cases.

COMPARE A with=
will compare A with itself.

The following messages may be output by the utility to the printer in the event of the corresponding error or condition.

1) CANNOT OPEN FILE— < file—id >
This message is output if a file cannot be opened—usually because it is not present.

2) END OF FILE < file—id—1 > BEFORE END OF FILE < file—id—2>

This message is output if the end of one file is detected before the end of the other.

3) <file—id—1> WITH < file—id—2> COMPARISON COMPLETE < integer > ERRORS

This message is output if the ends of both files have been reached together. The number of errors is indicated by

< integers >.

September 1977 3-19

4) ILLEGAL SYNTAX FOR ITEM—< input string > |
This message is output if an item in the comma list is not syntactically correct. The utility will attempt to follow the message with a character string which identifies the area in error.

5) FAILED TO REALIGN—COMPARISON TERMINATED
This message is output if realignment has been specified but has failed.

6) DIFFERENCE DETECTED AT BYTE n
This message is output if two records fail to compare. This is followed by

< filename 1> RECORD n IS: |
< record—print>
< filename 2> RECORD m IS:
< record—print >

where < record—print > has the format: | | |
< byte—offset > < 32—bytes—in—hex > “‘< 32—bytes—in—ASCII >” _ | and .. is used to represent a 00 character in < 32—bytes—in—hex > and a blank is used to represent a non-printable character in < 32—bytes—in— ASCII >

Any applicable system message may be displayed on the system journal by the MCP (for example, NO FILE if no printer is available).
|

las nd
5 y A ‘e

_eomaser CER ee cc cagetne g Sw / a of | A 4 ve ? peso Oa as ae . ae ig
3 ‘ a ve r Ww ie me a

i / “So ' r } fy yo é el Sous winLe
; S * Ss &, ‘ A ‘ ; wm) ode gy on | { <i a nn oe f eos, Fs Oe a {Oo kle hep -

i 4 & nse at e } : 4 ¢ x ei EE One Po oY

3-20

fe SS a PO ee ae a LS Ee OR, eS ee TL TR
ge RE RT BRR OTS RTREES ga FOR TUE =e ‘ . oes aor

COPY (File Copy) Pp COPY

1-EX + <disc—id—1>— /—+_ COPY —

[apse 1 > Ak <fteia—1 > SH
Pryce Po

<KEY>

UT <disc—id—2> j& <group—id—1> te [~ BOTH ~| TO+ < disc—id—3 > /* < group—id—2 >

3

 —i_RECORD—< inyeger >

e <integer >
 4 ST -BLOCK—< ingeger >—

Le NN < _—_FILE¥IZE— & integer >—
\ / _(N_SINGREAREA

 = % jpt€ger > <integer >

Ke 2 integer >> <record—key > sy
RK S — < integer >— ~—<record—key>

 «Te disc—id—4 > jk <file—id—3

This utility provides for the copying of files, either in whole or in part, from any CMS device to any other CMS device.

The utility allows the names and attributes of the copies to be specified, and also permits groups of files to be

copied on disc. A list of copy requests, separated by commas, may be presented to the utility, and each request

will be processed in sequence. The failure of a particular request will not necessarily prevent compliance with

subsequent requests.

The utility may be executed from the system disc, or any other disc if < disc—id—1 > is specified.

Specific File Copy |

The file to be copied is identified by < file—id—1 >. The name of the output file 1s determined by < file—id—2 >

(and will always be a new file except when the EXTENDING option is used as described below). When either file |

resides or is to reside on magnetic media, the associated < mfid > may be used to specify the disc—id or multifile

identifier. If an < mfid > is omitted, then, for disc, the system disc is assumed, and for magnetic tape (and cassette),

a single file tape is assumed.

The utility assumes that all files reside or are to reside on disc unless the relevant device identifier is used.

CRD refers to punched card files, MTP refers to magnetic tape (and cassette) files, and PTP refers to paper tape files.

Attributes of the input and output files may be set as follows:

Record and Block Size

The. RECORD and BLOCK options may be used with both input and output files.

The number of bytes in the record of block is specified using the corresponding < integers >. The record and block

sizes of input disc files are always taken from the Disc File Header. The record and block sizes of non-disc input
files are determined in the following order:

~ RECORDRECORD <integers> then <device—default>

BLOCK <integers> then RECORD <integer> then < device—default >

where < device—default> 1s

180 characters (PTP and unlabelled MTP)
Device Capability (CRD—either 80 or 96 characters)

Label Value of Attribute (labelled MTP)

Note that the utility will be unable to copy labelled MTP files whose record/block sizes are greater than 1024

characters unless the record and block sizes are specified in the input specifications.

September 1977 3-21.

The record and block sizes of output files will be indentical to the defined or defaulted in put file values unless the
record or block options are used. If the output record size is less than the input record size, then bytes will be lost
from the right of the record. If the output record size is greater than the input record size, the additional bytes will
be filled with ASCII spaces (if the file type is SOURCE or DATA) or binary zeroes (for any other file type).
Note: the utility will check that the record and block values to be used are consistent (that is, the block size must
be an integer multiple of the record size). |

Care should therefore be taken when only specifying block-size, since the default record size may not be compatible.

Example. A labelled magnetic tape contains nine 8 character records per block. If the record size is not specified and
the block size is specified as 36, then the BAD ATTRIBUTE message will be output when the utility opens the file.

Filesize

The FILESIZE < integer > option may be used to declare the maximum size for output files.

Singlearea

The SINGLEAREA option may be used to specify that an output disc file is to occupy a single disc area. SINGLE-
AREA is automatically set when the file being copied is of filetype SYSTEM or CODE.

Crunch

If the CRUNCH option is used, the output disc file will occupy the minimum area of disc, but can never be extended.
CRUNCH is automatically used when the file being copied is of filetype SYSTEM or CODE. a

Extending

The EXTENDING option allows records to be added to the end of an existing disc file. The existing file must have
identical attributes to the file being copied.

Unlabelled Magnetic Tapes

The NO.LABEL option is provided to permit the COPYing of unlabelled (or labelled non-CMS) files. The
< file—id—1 > entry must be used in order to identify the file for SCL purposes. MCP will output the message
“<mx >/COPY < 14> WAITING UNLAB SPURIUS/ < file—id—1 > MT DEVICE REQUIRED”’.

An “AD < mx >/COPY < tape—peripheral > message must be used to identify the unlabelled file. The end of file
recognition for unlabelled files is determined by tapemark count as described below. oe

The TAPE.MARKS option allows the user to specify the aggregate number of tape marks which will indicate end
of file to the utility when copying an unlabelled file. The default value is 2. Each tape mark which is encountered
will attribute to this total, thus a standard labelled CMS file will be copied up to, but excluding, the trailing label if
NO.LABEL and two tape marks are specified. (A labelled CMS file consists of ““Label TM data TM label’’).
The user must therefore be aware of the format of any file which is to be copied when using the NO.LABEL option.

Disc Indexed Files

The utility assumes that a copy of the associated data file is required (in key order) when the file identified by
< file—id—1 > is recognised as a key file. If a copy of the key file only is required, the < KEY > option may be
used. In either case, the output file is identified by < file—id—2>. Ifa copy of both the data file and the key file is
required, the < BOTH > option may be used. The output key file will be identified by < file—id—2>, and the
output data file will be identified by the concatenation of < file—id—2> and QQ. The output key file parameter

3-22

block will be altered to refer to the output data file. When copying a data file via a key file, the < record—key >

options of the selective copy specification may be used as described below. Note that selective copying cannot be

performed if < BOTH > is specified. :

Selective Copy

The capability is provided to copy only selected portions of an input file via the selective copy specification. The

various formats of selective copy specification apply to disc and non-disc files as follows.

Non-disc files—The <integer—list > may be specified for paper tape (PTP), punched card (CRD), magnetic tape and

cassette (MTP). Each < integer > is a decimal number of up to 7 digits, and each pair of < integers > in the string

specify a starting record number and the number of records required from that point respectively, Relative record

numbers commence with record 1. If there is an odd number of <integers>, then the last <integer> is equivalent to

a pair of < integers > which would cause COPY to process to the end of the file. The < integer—list > must not

specify any random access of the file, that is, the first < integer > of each < integer > pair must identify a higher

record number than any previously copied record. The < record—key > option is not applicable to non-disc files.

Disc files—The < integer—list > applies to all disc files and has identical use to that described above for non-disc

devices, except that random access is permitted when using disc. The < record—key > option allows selective copying

of an indexed file by reference to the key value contained in each record. The user may specify a number of records

* to be copied via the < integer > option, or a terminating key value via the-< record—key > option. The copy will

include the records containing the starting and terminating values of < record—key >. Selective copying cannot be

performed when < BOTH > is specified.

Disc Group Copy

rs] The group to be copied is identified by < group—id—1> and is assumed to be on the system disc unless

rx < disc—id—2 > is specified. Each file which is found to be a member of the group will be copied to the disc identified

by < disc—id—3 > (or the system disc if < disc—id—3> is omitted), and the non-< group—id—1l > portion of

the file—id will be concatenated with < group—id—2>.

Indexed Files

If any file in the input group is recognised as a key file, then a copy of the data file associated with the key file will

be produced (in key order) unless the < KEY > or < BOTH > option is used. The file—id of the output data file will

be developed as described above. If < KEY > is specified, then, when any file is recognised as a key file, only the

key file will be copied, and the output file—id will be developed as described above.

If < BOTH > is specified, then, when any file is recognised as a key file, both the key file and the associated data

file will be copied. The file—id of the output key file will be developed as described above. The file—id of the output

data file will be the file—id of the output key file concatenated with QQ. The key file parameter block of the output

key file will be altered to refer to the output data file.

Output Messages

The following messages are printed after a request has been processed. The utility will then continue with the next

request, or terminate if the list of requests is exhausted.

1) NO FILES FOUND IN THE FAMILY <group—id >

No file whose name contains the leading characters < group—id > was found on the specified disc.

2) DISK < disc—id > NOT AVAILABLE

The disc identified by < disc—id > is not ready or not installed.

© oe 3) < file—name > NOT FOUND

No file of name < file—name > was found on the specified disc. If the specified file contained the input para-

meters, the utility will terminate.

September 1977
3-23

4) < integer >, < integer > IN < file—name > NOT COPIED |

If a record number in an integer pair indicates a section of the file at a lower file address than a previously

specified section then the pair is ignored by the utility and the above message is output.

5) < file—name > EXHAUSTED DURING < integer >, < integer >

If end-of-file is encountered while the section of the file indicated is being copied, then the above message is
displayed.

6) < file—name > TO < file— name > BAD ATTRIBUTES

If a particular attribute specification is either meaningless or inconsistent, then this message will be displayed.
The inconsistencies will be in the relationship between output device, record size, and block size.

7) FILE IDENTIFIER < file—name > TOO LONG

If a copy of a group of files is requested and a < file—name > generated by the utility is longer than twelve
characters, then the above message is output, and the file is not copied.

8) < file—name > TO <file—name > COPY DISCREPANCY

This message is output if end- of-file has been reached before it is expected, and implies erroneous information
in the Disk File Header. :

9) < file—name > TO < file—name > COPIED |

This message will be displayed at the conclusion of each successful file copy.

10) < file—name > NOT COPIED—ILLEGAL REQUEST
If, when copying a < group—id > to another < group—id > an individual file—name is generated which is
“SYSMEM” (a name reserved for system use) or all spaces, the above message is displayed, and the file will not be
copied.

11) <file—name > NOT ACCEPTABLE—RECORD SIZE OF m IS GREATER THEN THE MAXIMUM
SPECIFIED FOR THIS RUN—RESUBMIT
This message will be displayed if a file is submitted to the utility with a record size greater than that expected.
This can happen if an MTP file with a record size greater than 1024 characters is submitted to the utility
without the record size being properly specified in the parameters. This request should be respecified, since this

invocation of the utility will ignore it and continue with the next request, if any.

12) < file—name > EXHAUSTED DURING RANGE < record—key > < integer >

This message is displayed if end of file is | encountered while the section of the file indicated by <record—key >
< integer > is being copied.

13) < file—name > EXHAUSTED DURING RANGE < record—key > — < record—key >

This message is displayed if no records were found in the range < record—key > < record—key >.

14) NO RECORDS FOR COPYING FROM < file—name >
This message is displayed if no records were found for copying in the specified file.

15) INPUT RECORD < integer > OUTPUT RECORD < integer > |
This message is displayed if an irrecoverable error is encountered. One of the following messages will be
displayed to identify the error

PERMANENT ERROR ON INPUT FILE
PERMANENT ERROR ON OUTPUT FILE
OUTPUT FILE TOO SMALL

The request will be aborted, and message 16) below will be displayed.

16) < file—name > TO < file—name > COPY FAILURE | |
This message will be displayed for each file copy which has failed for some previously specified reason.

17) NO RECORDS IN THE KEY FILE
This message is displayed if, during a copy of < BOTH > files, the utility was denied access to a data file

3-24

through some failure in the key file.

18) < file—names > NOT FOUND FOR EXTENDING
This message will be displayed if a file requested for extension is not found.

19) < file—name > REMOVED

This message is displayed when a previously existing file of the same < file—id > is removed to permit closing

the new file.

20) < file—name > TO < file—name >

This message will! be followed by one of

SELECTION CRITERIA IGNORED
EXTENDING FLAG IGNORED

_ When parameters are input which would require re-creating a key file.

The following messages will be output, and the utility will terminate, if errors are found in the initiating message.

1) ILLEGAL PARAMETER LIST
The utility will attempt to follow this message with a number of characters from the area of the input message which

caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the < disk—id > or < file—id > portions of the file—name contain characters which

are illegal in file—names.

3) BAD ATTRIBUTES SPECIFIED
This message will be displayed if inconsistent attributes are specified for an input file. The utility will then display

ILLEGAL PARAMETER LIST and terminate.

Note that all the above messages are generated by the utility. Any applicable system message may be output by the

MCP in addition to the above (for example, NO FILE).

September 1977 3-25

CP (Compute) ©

EX —¥ <disc—id > /— cP

| P74 |
< integer > — < integer >

_* os .

/ +

M

This utility displays the calculated value of <compute—string > (an input calculation specification). The utility
may be executed from a disc other than the system disc by specifying < disc—id >.

The utility will return the value of <compute—string > in both hexadecimal and decimal formats, the calculation
being performed on a strictly left to right basis; that is, parentheses etc. are not allowed.
The < integers > accepted by the utility are any hexadecimal or decimal numbers in the range

— 999 999 999 999 999 [—@ 38D7EA4C67FFF@ |]

to

+999 999 999 999 999 [(@38D7EA4C67FFF@).

The operators +, —, *, /, M provide addition, subtraction, multiplication, division, and modulus division (the result ©
is the remainder) respectively. ,
If the < computer—string > is provided in the initial parameters, then the utility will terminate after computing the
value. |
If the < compute—string > is omitted from the initial parameters, then the utility will issue ACCEPTS through which
subsequent < compute—strings >s may be input, for example AX < mix—number > <compute—string >. The
utility will continue to execute until an AX is input with no < compute—string >.

Output Format

The computed value of < compute—string > will be output in the form

CP: < hexadecimal—value > = < decimal—value >

Error Messages

The following error messages may be displayed by the utility. If the utility is in the ACCEPT mode of operation,
the utility will not terminate.

1) CP: NUMBER TOO LARGE
This message is displayed if at least one number in < compute—string > is out of range.

2) CP: MISSING OPERAND
This message is displayed if two consecutive operators, or an illegal symbol, is detected in < compute—string >.

3) CP: HEX. NO. WITH MISSING “@”
This message is displayed if an ““@”’ sign is omitted, or if an illegal symbol is found in < compute—string >.

4) CP: INVALID OPERATOR
This message is displayed if an operator is omitted, or an invalid symbol appears in < compute—string >.

5) CP: OVERFLOW ©.
This message is displayed if an intermediate value became out of range in the course of the calculation. |

6) CP: DIVISION BY ZERO

3-26

CREATE (Disc File Create) - CREATE

|_EX— _ <disc—id—1> CREATE

 * < file—name>

r S 7 —RECORD <integer > —

-— <disc—id—2>/ LL <file—id> r A | BLOCK <integer>
| N -

FILESIZE < integer > — -< integer >

__CRUNCH | |

| _
— EXTENDING <disc—id—2 > /*— <file—id>

N 4

This utility will create or extend disc—files using data input through the console keyboard. The utility may only be

used with systems incorporating a console keyboard. The utility can be executed from a disc other than the system

disc by specifying < disc—id—1 >.

The file to be created or extended is identified by < file—id >. The file is assumed to be on, or will be output to, the

system disc unless < disc—id—2 > is specified. The utility may only be used with files of type Source or Data.

When the utility is used to create a new file, certain attributes may be defined. These attributes will be taken from the

old file when the extend mode is used. In the create mode, S specifies a source file, and the keyboard input will be

in alphanumeric format. A or N specifies a Data file with keyboard input in alphanumeric or numeric (hexadecimal)

format respectively. The default filetype is S. In the extend mode the filetype is taken from the old file, and A or N defines

the type of keyboard input as above. The default is A. Alphanumeric input is accepted as direct keyboard input, whereas

numeric input will require two characters (0-9, A—F) for each byte of the record.

The RECORD clause allows the number of characters per record of a new file to be defined. If no record size

is specified then the utility assumes a record size of 80 bytes for source files, and 180 bytes for data files.

The BLOCK clause allows the number of characters per block of a new file to be defined. If a record size is specified

but no block size is specified then the block size is taken to be equal to the record size. If neither record size

not block size is specified, then the record sizes as defined in the RECORD clause, above, are assumed, and

the block size is taken to be 160 bytes for source files and 180 bytes for data files.

The FILESIZE clause allows the maximum number of records likely to be written to the new file to be specified. This

facility may be usefully exployed to allocate only as much disc space as is required. The default is 32,768.

The CRUNCH clause allows the new file to be closed with the crunch flag set. The new file will occupy the

minimum area of disc, but can never be extended.

The integer list specified in the syntax may be used to provide “tab” positions within the record. The use of OCK 1 when

keying input data causes the utility to reposition the input point in the record to the next tab position. During this

repositioning, the utility will fill all character positions left unspecified in the record with a fill character determined

September 1977
3-27

by the input type. For source input, the fill character will be an ASCII space, for alphanumeric input an ASCII zero,
and for numeric input a binary-zero filled character. The record length plus one is used as a terminating tab position
(whether or not other tab positions are specified). |

The utility can be used for record sizes up to 500 bytes, but, since the utility cannot be given input greater than
the width of the console, tab position are mandatory on files of larger record sizes. For example, a file of 180 byte records
requiring alphanumeric input will require at least one tab position (for instance at position 100), whereas a file of 180
byte records requiring hexidecimal input will require a minimum of two tab positions (for instance at positions 60 and
120).

|

The utility operates in two modes; Record Input Mode (entered from PK1) or Record Modify Mode (entered
from PK2). The PK associated with the currently active mode is disabled (the light is turned off) to indicate the
appropriate mode. PK6 is enabled at appropriate points in either mode to close the file and terminate the utility.
When execution of the utility begins, Record Input Mode is automatically entered.

PK1 Record Input Mode

In Record Input Mode, the utility will print a sequential record number and then allow the operator to input
characters until the record is complete. OCK1 will terminate each line of input as either a whole record is completed or

_ Input is complete up to the next relevant tab position. Where possible, echo-typing during record input will show the
relevant position of the input characters in the record. When the record is completed the utility will illuminate all other
usable PK options for possible selection. oO

PK2 Record Modify Mode ©

The point in the record at which alterations are to be made is selected by presenting an identifying character
string which immediately precedes the required byte of the record. The character string for insertion or replacement
follows the identifying string, delimited by colons (:). If alterations are to be made at the beginning of the record, no
identifying string is input. The syntax of the keyboard input is:—

| < identifying—string > | : < modifying—string >:

The use of OCK1 or OCK2 to terminate the input determines whether the < modifying—string > will replace or be
added to the existing characters in the record. |

OCK1— Replacement

The < modifying—string > replaces the corresponding number of characters in the record if OCK1 is used to
terminate the input. For example with a record containing ,

ABCD0123

the amendment C:XY: would result in a record containing

ABCXY123.

OCK2—Insertion

The < modifying—string > is inserted at the indicated point of OCK2 is used to terminate the record. The
insertion can cause characters in the record to be moved to the right. The shifting of characters applies only to those ©
characters from the starting byte to the next higher relevant tab position; characters beyond this tab position will
not be affected. _ 7

3-28

For example, with a record containing

ABCDEFGH1234

The amendment C:WXYZ: would result in the record

ABCWXYZD1234 if the tabs specified were 7 and 9, or the record

ABCWXYZDEFGH if the tab specified was 7 alone.

On completion of a modification, the utility will print the amended record with its associated record number, and

then illuminate all other usable PK options for possible selection.

PK6—Terminate

PK6 will take the utility to end-of-job when all desired keyboard input has been made.

Note that the EXTENDING facility allows the creation of large files to be performed in more than one run of the

utility.

Output Messages

The following messages will be output by the utility in the event of the appropriate error.

Errors in Initial Parameters

These errors occur if the initial parameters following “CREATE” (or “EXTENDING”? in the SCL input string

are incorrect. After the message is displayed, the utility terminates. |

1) FILETYPE IS NOT SOURCE OR DATA

This message is displayed if the file identified for extension is of an incorrect file—type.

2) < file—name > NOT FOUND

This message is displayed if the file identified for extension or the parameter —file identified by the * < file—name >

macro-call cannot be located.

3) ILLEGAL PARAMETER LIST—ATTRIBUTE SPECIFICATION INVALID

This message is displayed if there is an incompatibility between the specified record and block sizes.

4) ILLEGAL PARAMETER LIST—TABS ERROR

This message is displayed if tab positions beyond the end of the record are specified, or imply input fields larger than

the capability of the console.

5) ILLEGAL PARAMETER LIST
The utility will attempt to follow this message with a number of characters from the area of the input message

which caused the failure.

6) INVALID CHARACTER IN IDENTIFIER < identifier >

This message is displayed if the < disk—id > or < file—id > portions of the filename contain characters which are

illegal in file—names.

7) NO SPECIFICATION GIVEN :

This message is displayed if no parameters are entered following CREATE in the SCL input string.

Errors During Execution

The following errors may be encountered during execution of the utility, and do not cause the utility to terminate.

The messages are displayed via the console file.

September 1977
3-29

1) NOT HEXADECIMAL CHARACTER INPUT—RESUBMIT
If the input mode is hexadecimal, any character other than 0—9 and A—F will cause the above message to be
displayed. The complete entry must be resubmitted. |

2) ODD NUMBER OF HEXADECIMAL CHARACTERS INPUT
If the input mode is hexadecimal, and the number of hexadecimal characters is odd, then this warning is displayed.
The utility processes the hexadecimal string by extending it on the right with a zero character.

3) INPUT ERROR—RESUBMIT RECORD MODIFICATION
If the syntax of the keyboard input in Record Modify Mode is incorrect, the above message is displayed. The
entire entry is discarded.

4) BYTE WITHIN RECORD SPECIFIED NOT FOUND
The < identifying—string > in the keyboard input in Record Mofify Mode could not be found in the record. The
entire entry is discarded.

5) UNWANTED KEY PRESSED—PLEASE RE-INPUT
This message is displayed if an unexpected terminating key is used. The entry should be re-submitted.

6) INPUT IMMEDIATELY BEFORE PK6 HAS BEEN LOST |
This warning message is displayed if characters were input immediately before PK6 was pressed to terminate the
utility. The characters will not be written to the output file, and the utility will terminate normally.

Note that all the above messages are generated by the utility. Any applicable system message may be output by the
MCP in addition to the above (for example, DUPLICATE FILE). |

3-30

DP (Discontinue and Dump)

DP————- < mix # > ——_/—— < prog—id >

This function, implemented as an intrinsic within the MCP, has the same effect as a DS command with the exception

that the virtual memory space allocated on the disk is updated to include the complete run structure of the

task and the whole is closed as a file and locked. The name of the file is DMFILE n, where n is the mix number of

the dumped program. This may be analyzed by a dump analyze program. All the restrictions of the DS command

apply and the message

< mix # >/ < prog—id > DP'ED

is displayed on successful completion of the function.

An invalid DP request is rejected, and the invalid DP message is returned with an added rejection clause as follows:

< invalid—request > INVALID

is displayed if the mix—number does not correspond to an executing task, the program—id does not correspond to the

mix—number, the target task is an MCS, or the request is not correctly formatted.

< invalid—request > INVALID—NEEDS PROGRAM ID.

is displayed if the mix—number alone has been specified.

September 1977 3-31

DS (Discontinue Program)

DS ———— < mix # > ——/—— < prog—id >

This function, an intrinsic within the MCP, causes the orderly termination of the specified task. All resources used by
the task are released to the MCP for reallocation and all files opened by the task are closed. The disk space
allocated for the virtual memory of the task is deallocated.

The MCP checks that the mix number and program name quoted in the command match. Otherwise, the command
is ignored and the invalid DS message is displayed. A data communication Message Control System (MCS) cannot
be the object of a DS command and the invalid DS message will be displayed if this is attempted.

Upon successful completion of the DS, the message

<mix # >/ < prog—name > DS‘ED

is displayed. If the DS is invalid then the request is rejected and the message is returned with an added rejection
clause as follows:

< invalid—request > INVALID

is displayed if the mix—number does not correspond to an executing task, the program—id does not correspond to
the mix—number, the target task is an MCS, or the request is incorrectly formatted

< invalid—request > INVALID—-NEEDS PROGRAM ID
is displayed if the mix—number alone has been specified.

3-32

DT (Date and Time)

pr eum s/<pps/<yy>—+—-_ <HHMM >)

This intrinsic allows the system date and time to be interrogated or changed.

If DT is used alone, the current system date (and time if the system contains a real-time clock) will be displayed.

If date and time are both input they must be in that order. The date field is eight bytes in size and the time
field is four bytes. The <MM>, <DD>, and <YY > fields are one or two digit fields which will be range

checked for respective validity (for example, an < MM > entry of 0, or greater than 12 will be rejected). The

<HHMM > field must be a four digit entry not greater than 2359. Bad data in “date” or “time” will not
result in rejection of the entire input. Any remaining or prior field with good data will be accepted.

Output Messages

The system will display the following messages in response to the DT command.

1) DD MON YY YYDDD Le HHMM 1 | pow tl

This message is displayed at the end of the DT command to show the current (or new) value of the system date
and time. DD represents the day of the month, MON is a three character abbreviation of the month, YY

represents the least significant digits of the year. YYDDD shows the date in the Julian form. The time entry

HHMM will only be displayed by systems containing a real-time clock. The DOW entry may be output by some

CMS implementations, and consists of a three character abbreviation of the day of the week.

2) < INVALID >

This message is displayed if the field size of either date or time is incorrect. The entire input is rejected.

3) < INVALID DATE >
This message is displayed if any of the fields <MM>, <DD>, or <YY> are outside the appropriate

range. The entire date is rejected, but a valid time entry in the same message will be accepted.

4) < INVALID TIME >
This message is displayed if a time entry of greater than 2359 is detected. The time will be rejected, but a

valid date entry in the same message will be accepted.

5) <NO CLOCK >
This message is displayed if a time entry is input to a system with no real-time clock. A valid date entry in the

same message will be accepted.

September 1977 3-33

|DUMP|
DUMP (Dump Files to Library Tape) ©

 tt py tt < disc—id—1 > jt LD : DUMP

* < file—name >

a
>

< file—id >
—— TO—— < library—tape—name > __|_ F-rom— < disc—id—2 > +h

< group—id >|

Note that this function is a sub-program within the utility LD. MCP recognises the mnemonic DUMP if LD is
not specified, and will automatically initiate a load of the LD utility. The < file—id > of LD should not therefore
be changed if the DUMP function is to be invoked in this manner. To discontinue the DUMP function,
“DS < mix—number / LD” must be used.

This function may be executed from a disc other than the system disc by specifying LD and < disc—id—1 >.

The function will create a library tape of name <library—tape—name > containing files copied from the disc
specified by < disc—id—2 > (or the system disc if < disc—id—2 > is omitted).

The contents of the disc will not be altered. The file list identifies the particular files or groups of files to be
copied to the library tape. Note that the file list may contain a mixture of files and groups of files.

Output Messages | ©

The following messages will be output by the utility in the event of the corresponding error or condition.

Errors in Initial Parameters

The following messages are output, and the utility will terminate, if the initial parameters are incorrect or invalid.

1) ILLEGAL PARAMETER LIST
This message is displayed if the parameters supplied in the input message are incorrect. The utility will attempt to

follow the message with a character string from the area of the input message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the <library—tape—name >, <disc—id >, or < file—id > entries in the input
message contain characters which are illegal in identifiers.

3) <file—name > NOT FOUND
This message is displayed if the function was invoked through the LD *<file—name > format, and the
parameter—file cannot be located.

4) DISK < disc—id > NOT AVAILABLE
This message is displayed if the specified disc is not on line.

5) NO SPECIFICATION GIVEN
This message is displayed if no parameters are entered following LD in the SCL input string.

3-34

Errors During Execution

The following messages are displayed if the utility cannot perform some part if its function. The utility will

continue to execute wherever possible.

1) NO FILES IN THE FAMILY < group—id > ON DISK < disk—id > FOR DUMP
This message is displayed if the utility is unable to find any files in the specified group on the disc. The utility
will continue with the next file in the input parameter list.

2) NO FILE < file—id > ON DISK < disk—id > FOR DUMP
This message is displayed if a specified file is not present on the disc. The utility will continue with the next

file in the input parameter list. |

3) < file—name > NOT DUMPED—IN OUTPUT USE

This message will be displayed if a particular file is found to be in use. The tape will be purged and the utility

will terminate.

4) < file—name > NOT DUMPED—HAS BEEN REMOVED

5) < file—name > NOT DUMPED—HAS BEEN ALTERED
This message is displayed if the contents of a file are altered between the start of a dump and the time that the
file is to be copied to tape. The tape will be purged and the utility will terminate.

6) < file—name > LOAD/DUMP DISCREPANCY
This message will be displayed if end of file is reached before it is expected, and implies erroneous in-

formation in the Disk File Header.

7) NO FILES TO DUMP
This message is displayed if no files will be dumped to a tape. The utility will terminate.

8) < file—name > DUMPED

This message is displayed for each file dumped to tape.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP

(for example ERROR WHILE IN < verb > if the tape cassette drive is opened while in use).

September 1977 3-35

IDUMPANALYSE|

DUMPANALYSE (Analyse B80 Dump Files)

l_px tt < disc—id—1 > | -~_DUMPANALYSE

 * < file—name >

 — iL < disc—id—2 > je < dump—file—id > Li < disc—id—3 > ja < code—file—id > —

This utility provides the facility of analysing dump files produced by the B80 MCP through the SCL command
“DP < mix—number > / < program—id >”. Such a dump—file will have a file—id of DMFILEn where n is the
mix number of the program before dumping.

Since the format of dump files is implementation dependent, this utility will only analyse B80 dump files. The
utility may be executed from a disc other than the system disc by specifying < disc—id—1 >.

awe utility will analyse dump files of programs which have been running using the interpreters “BILINTERP”
tr “COBOLINT”’. In order to produce a full analysis of a COBOL dump—file, both the dump—file and the

code file must be present. If the code—file is not present, no COP table data will be analysed. A full analysis of
BIL/MPLII programs requires only the dump—file. 7

If the dump—file is on a disc other than the system disc, then < disc—id—2 > must be specified.

If the COBOL code—file is on a disc other than the system disc, then < disc—id—3 > must be specified. The
< code—file—id > defaults to the program name held in the Program Parameter Block (PPB) of the dump—file,
and is assumed to be on the same disc as the dump—file, if no code—file—name is specified.

On completion of the analysis, the dump—file will be closed with purge.

Analysis Output

When the utility is analysing a BIL or MPLII dump file, the following information is output to the line printer.

1) Information from the PPB of the program file which caused the dump. This information will include the program
name, the interpreter name, the s-language, the compiler name, and compilation date, and also the reason for the
dump.

2) An analysis of the files being used by the program file. This information will include the state of the file and,
if the file is open, an analysis of the file information block including the file buffers.

3) An analysis of the BIL/MPLII S-registers.

4) A formatted analysis of the BIL/MPLII data and control stacks giving the dynamic procedure levels which had
been entered at the time the dump was caused. This information will also include an analysis of descriptors and
data of the identifiers of each entered procedure.

Note—a descriptor may be marked as illegal if the code which declares it has not yet been executed.

5) An unformatted analysis of all the accessible data segments used by the program.

6) An uneditted analysis of the dump—file.

When the utility is analysing a COBOL or RPG dump file, the following information is output to the line printer.

1) Information from the PPB of the program file which caused the dump.

2) Partial analysis of the COBOL S-interpreter Work Area. This information will include the season for the dump,
interpreter version number, last communicate response, and the current code segment pointer.

3-36

3) An analysis of the control stack.

4) An analysis of all the files being used by the program file. This information will include the state of the file, and, .
if the file is open, an analysis of the file information block including the file buffers.

5) An unformatted analysis of all the accessible data segments used by the program.

6) An analysis of the COBOL Current Operand (COP) table. This includes the COP number, data type, data

length, segment number and digit displacement, whether it is indexed or subscripted, the index or subscript

values, the table bound, and, if accessible, the contents of the COP. .

7) An uneditted analysis of the dump file.

Output Messages

The following messages will be output by the utility in the event of the appropriate error or inconsistency.

Warnings

1) **WARNING** BIL DUMP FILE, SECOND PARAMETER IN INIT.MESS. IGNORED.

This message will be displayed when the code—file—id has been specified for a BIL/MPLIT dump—file.

Fatal Errors

The following messages will be output and the utility will terminate in the event of the appropriate error.

1) PACK ID TOO LONG < disc—id >
This message will be displayed when the < disc—id > exceeds seven characters.

2) FILE ID TOO LONG < file—id >
This message will be displayed when the < file—id > exceeds twelve characters.

3) INVALID CHARACTERS IN FILE < file—name >
This message will be displayed when invalid characters are encountered in the < disc—id > or the < file—id >.

4) <file—name > NOT FOUND

This message will be displayed when the < file—name > specified cannot be located.

5) NO SPECIFICATION GIVEN
This message will be displayed when no specifications are given in the initiating message.

6) INTERPRETER VERSION NOT SUPPORTED < file—id >
This message will be displayed when the interpreter name < file—id > from the PPB of the dump file is not
recognised by the utility.

Note: the above messages are output by the utility. Any other applicable system message may be output by the

MCP in addition to the above (for example, NO FILE if no printer is available).

September 1977 3-37

© EX (Execute) : -

lt px si < disc—id > je < prog—id > 1 < real—store > yb < text > 1

This intrinsic command initiates the loading and subsequent execution of the program identified by < prog—id >.
The program is assumed to be on the system disc unless <disc—id > is specified. If the program is an MCS

(Message Control System) then, in addition to loading the task, the data communication subsystem will be initialised.
Only one MCS may exist in the mix, consequently, an attempt to execute a second program of that type will be
rejected.

The (< real—store >) field is implementation dependent and indicates the magnitude in bytes of the immediate access
storage (that is core memory, random access memory etc.) which is required for efficient execution of the program.
This field is not required for the B80 implementation of CMS.

The < text > field is an optional character string which, if requested by the object program will be passed into the
program’s data space. If not requested, < text > will be discarded; it is not processed by the system.

 Output Messages

One of the following messages will be displayed if the specified program cannot be loaded.

1) [50] LOAD FAILURE DISK NOT FOUND
The disc identified by < disc—id > cannot be found. | 7 @

2) [51] LOAD FAILURE PROGRAM NOT FOUND
The program identified by < prog—id > cannot be found.

3) [52] LOAD FAILURE FULL MIX
The specified program’s priority class is full, or the program currently executing requires that no other programs
may co-exist.

4) [53] LOAD FAILURE NO USER DISK |
There is insufficient available space on the specified disc for needed backing store.

5) [54] LOAD FAILURE INTERPRETER NOT FOUND
The interpreter file required to execute the program cannot be found.

6) [55] LOAD FAILURE USER COUNT ERROR.
The system only permits 7 concurrent users of a file: this includes program code files.

7) [56] LOAD FAILURE CODE FILE ERROR
The loader has detected an inconsistency in the code—file.

8) [57] LOAD FAILURE INVALID LOAD REQUEST
There is an error in the parameter of the SCL load request, for example, a thirteen character program—id.

9) [58] LOAD FAILURE INSUFFICIENT MEMORY
There 1s not enough main memory (core, RAM etc.) to hold this program’s TCB and PCB.

10) [59] LOAD FAILURE MCS ALREADY PRESENT
Only one MCS may exist in the mix.

11) [60] LOAD FAILURE DUPLICATE PACK
The loader detected two or more discs on the system having the specified < disc—id >. ©

12) [61] LOAD FAILURE NULL MIX REQUIRED
The specified program must only be loaded if the system mix is empty and this is not the case.

3-38

FL (Display File Attributes on Self Scan)

 * < file—name >

 text <disc—id—1>/ FL Tr |

<disc—id—2> pt group—id >——

 | edisc—id—3> /+-<file—id >

This utility will display upon a Self Scan the properties of particular files or groups of files. The utility may be

executed from a disc other than the system disc by specifying < disc—id—1>. A group of files may be identified

for analysis by specifying < group—id >. The group is assumed to be on the system disc unless < disc—id—2 >

is specified. Alternatively, a list of files may be presented. Each file in the list is assumed to be on the system disc

unless the respective < disc—id—3 > 1s specified.

If the input parameters specify a single file, or a group containing a single file then the properties of the file will be

displayed, and the utility will terminate. If more than one file is to be analysed, then the utility will enable PK! and

PK6 after displaying the properties of the first file to be analysed. Depression of PK1 (or any OCK) will cause the

attributes of the next file in the list or group to be displayed. The utility may be terminated by pressing PKO.

Output Format

The following information is displayed upon the Self Scan for each file which is found for analysis.

FL < disc—id—1 >/< file—id> <filetype> USING <integer—1> OF <integer—2> RECORDS

RECSIZE <integer—3>, BLOCKFACT <integer—4> CREATED < julian—date>, ACCESSED

< julian—date > AREA MAP: < 16 characters > OVERFLOW ON DISK < disc—id—4 >.

(OVERFLOW ON DISK will not be displayed if the file has no overflow areas allocated)

The < disc—id—1> entry contains the name of the disc containing the file described by the display. The entry will

contain the name of the system disc if no < disc—id—2 > or < disc—id—3 > was specified in the input parameters.

The < file—id > entry contains the name of the file described by the display. This entry will contain one of

*RESERVED

*AVAIL. TABLE

*FILE DIREC ©

*FILE HEADRS

identifying the components of the CMS disc directory, if the group—id identifies all files on a disc (that is,

“EL < disc—id > /=’’), when these areas of the disc are analysed.

The < filetype > entry will contain one of

SYSTEM (System file)
CODE (Object code file)

DATA (Normal Data file)

SRCELANG (Source language file)

The actual file-size of the file described by the display is indicated by < integer—1 >; < integer—2 > identifies the

maximum file-size specified for the file.

The number of characters per record is identified by < integer—3 >, and < integer—4 > indicates the number of

records per block.

The creation date and last access date are shown in julian format (YYDDD) in the <julian—date> entries.

September 1977 3-39

Sixteen characters are output at the end of the display to show the allocation of the 16 areas into which a file may
be broken. Each character may be one of

* Unallocated

B allocated on this disc

O allocated on overfiow disc

The utility will display the message , |

FILE NAME = < disc—id > /< file—id >—-NOT FOUND IN DISC DIRECTORY

on the Self Scan for any file which is not located. |

The message |

< disc—id > /< group—id > —NO FILES FOUND IN DIRECTORY FOR FAMILY

will be displayed upon the Self Scan if no files are found in the specified group.

Output Messages

The following 1 messages will be output by the utility i in the event of the corresponding error.

Errors in Initial Parameters

The following messages are displayed if there are errors in the initial parameters following FL in the SCL input
message. The utility will terminate. ,

1) NO SPECIFICATION GIVEN |
This message is displayed in no initial parameters are entered.

2) ILLEGAL PARAMETER LIST <string>
This message is displayed if the initial parameters are incorrect. The utility will attempt to follow the message with
a number of characters from the area of the input message which caused the failure.

3) INVALID CHARACTER IN IDENTIFIER < string >
This message is displayed if the < disc—id >, < group—id >, or < file—id > entries in the input message contain
characters which are illegal in identifiers. :

4y< file—id > NOT FOUND

This message is displayed if the utility cannot find the parameter- -file identified by the < file— —name > macro-call.

Errors During Execution

1) DISK < disc—id > NOT OPENED— NOT ON LINE |
This message is displayed if a disc identified by < disc—id—3 > in the input message cannot be found. The utility

_ will continue scanning the parameters, ignoring all references to files on the identical disc.

Note that the above messages are output by the utility. Any applicable system message may be output by the
MCP (for example NO FILE, if no Self Scan is available).

3-40

FS (File Squash) . [FS|

-* < file—name >

| px tb < disc—id—1 > / L FS te. disc—id—2 > jt < file—id > —*——

This utility removes all deleted records from a data file or from the data file portion of an indexed file with a

consequent reconstruction of the key file portion of the indexed sequential file. Deleted records in the data contain

the hexadecimal value FF in every byte.

The utility may be executed from a disc other than the system disc by specifying <disc—id—] >. The file to

be squashed is identified by < file—id > and is assumed to be on the system disc unless < disc—id—2> is

specified. If <file—id > refers to a key file, the disc—id and file—id of the associated data file are taken from

parameters held in the key file, and the keyfile will be reconstructed so that it relates to the modified data file.

While the utility is running, no other task may gain access to the data file or the key file if one is specified.

Output Messages

The utility will output the following messages as appropriate during execution.

Normal End-of-Job

_ These messages are output after completion of all or part of the file squash.

1) <file—name > SQUASHED FROM n RECORDS TO m RECORDS

This message indicates the original and resulting filesizes of the data file. The integers n and m are decimal

numbers of up to seven digits each.

2) KEYFILE < file—name > RECONSTRUCTED

This message is output in addition to the above if the file name specified to the utility identified a keyfile and the

utility has successfully squashed the data file and reconstructed the key file.

3) KEYFILE SORT FAILURE
This message is output if SORT has indicated that it was not possible to properly construct a key file.

Errors in Initial Parameters

The following messages are displayed if there are errors or inconsistencies in the initial parameters. The utility will

them terminate.

1) <file—name > NOT ON LINE |

This message is displayed if the specified data file (or if a key file has been specified, the key file or the

associated data file) cannot be located.

2) ILLEGAL PARAMETER LIST
This message is displayed if the initial parameters following “FS” in the SCL input string are incorrect. The utility

will attempt to follow the message with a number of characters from the area of the input message which

caused the failure. |

3) INVALID CHARACTER IN IDENTIFIER < identifier >

This message is displayed if the < disc—id > or <file—id > portions of the file name contain characters which

are illegal in identifiers.

4) < file—name > NOT FOUND |

This message is displayed if the utility cannot find the parameter—file identified by the * < file—name >

macro—call. , |

5) NO SPECIFICATION GIVEN | |

This message is displayed if no parameters are input following FS in the SCL input.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP

(for example ERROR WHILE IN <verb>).

September 1977
3-4]

[IGEN.DUMPFL| ©

GEN. DUMPFL (Create Empty Memory Dump File)

text | edise—ia—1s L. GEN.DUMPFL

L <integer > Lon <disc—id—2> 4ttas— <file—id > +t

This utility will create an empty file on disc into which memory dumps can be made, and which can then be
analysed by PMB80. The utility may be executed from a disc other than the system disc by specifying < disc—id—1 >.

If the optional < integer > is specified, it must be in the range 60 to 16383. The value refers to the filesize of the
file to be created, and is in units of 1024 bytes (kilobytes). The default is 60.

If < disc—id—2 > is omitted, the system disc is assumed.

The file will be given the identifier “MEMDUMP?” unless the optional < file—id > is specified.

Any previous file of the same identity will be removed.

Output Messages

The following messages may be displayed in the event of the corresponding condition or error.

Errors in Initial Parameters

The following messages will be displayed, and the utility will terminate, in the event of the corresponding error. ©

1) ILLEGAL PARAMETER LIST <character—string>
This message is displayed if the parameters following GEN. DUMPFL in the SCL input string are incorrect. The
utility will attempt to identify the portion of the message containing the error through the < character—string >.

2) SIZE TOO SMALL
This message will be displayed if the < integer > specified is less than 60.

3) SIZE TOO LARGE
This message is displayed if the < integer > specified is larger than 16383.

Warnings

The following messages are displayed if the <file—id> or <disc—id—2> entries are longer than permitted for the
type of identifier. The entry will be truncated on the right. e

1) DISK NAME TOO LONG

2) FILE NAME TOO LONG

Normal Termination

The utility will display the following message, and go to normal end of job, when the file has been created:

SPACE RESERVED |

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP (for
example ERROR WHILE IN < verb >). |

3-42

GO (Restart a previously stopped program)

 ———GO < mix a> L)_<prop—id> —t._

This function, implemented as an intrinsic within the MCP, allows the operator to restart a task which has either

been stopped with the ST command, has issued a pause awaiting operator action, or is waiting for user disk space or

special forms.

If the GO is accepted, the program will be allowed to continue executing. If the specified task is not waiting for a

GO, the message |

<mix # >/ < prog—id > NOT STOPPED

is displayed and the GO is ignored.

If the optional <prog—id > is specified in the command, then it must match with the mix number quoted

otherwise the message

<mix # >/ <prog—id > INVALID

is displayed.

September 1977 | 3-43

[KA]
KA (Analyse Disc Space Assignment)

 * < file—name >

fer — : | < disc—id—2 > pe < group—id > — EX <diso—id—1>/—-KA-L{ | | |

spy DARA MAPCAs hg arrest ay . compe a

 9

 |

-

8

Ly disc—id—
2 > / 4

<disc—id—2> | psKAVL—_! |

 < file—id >

This utility provides a map of the usage of a particular disc in ascending disc address order in terms of areas and their
assignment. The utility may be executed from a disc other than the system disc by specifying < disc—id—1 >.
The disc which is to be analysed is identified by < disc—id—2> or is the system disc if < disc—id—2> is not
specified. The utility will analyse the space assigned to a single file, a list of files, a group of files or will list the
available space on a disc. Special reporting is given if the group identifies all files on the disc (that is KA
< disc—id > / =). In addition to an analysis of the areas allocated to each file, this report will show the space
assigned to the disc directory, any areas temporarily assigned (for example, a program’s virtual memory space),
available areas, and bad or missing areas. If files are created or deleted by the system during an execution of KA the
map will be inaccurate. It is therefore recommended that the utility be executed when no other programs are in the
mix. The analysed output will be to a line printer (or a console printer if no line printer is available) and will list the
areas in ascending disc address order, associating with each area its initial sector address, its length in sectors, and its
status which will be allocated, available, temporary, or bad. If the area is allocated, the file—id of the file to which the
area is assigned will also be listed. If the reserved file—id “DSKAVL” is specified alone, then an analysis of the
available space on the disc identified by < disc—id—2 > will be printed. Use of the file—id ‘““DSKAVL” in a list of
files will cause the utility to search the directory for a file of that name, in the normal manner. ©

Output Format

Four columns of information will be output to the printer. The column headings, the format of the values these
columns contain, and the significance of these values is as follows:— _ a

HEADING VALUE SIGNIFICANCE

AREA ADDRESS 8 digits @ 6 digits @ Sector Address of start of Area
AREA LENGTH — 8 digits @ 6 digits @ Number of Sectors in this Area
STATUS 7 9 characters | See Note 1

FILE NAME 12 characters See Note 2
(The area address and area length will also be printed in hexadecimal
format alongside the decimal values). | |

Note 1 The status will be one of AVAILABLE, ASSIGNED, TEMPORARY, BAD, or *MISSING* depending |
on whether the area is available, allocated to a file, denoted as temporary, unusable, or lost. ,

Note 2 If the area status is ASSIGNED then this field will contain the identifier of the file which has the area
allocated to it. |

a

The status *MISSING* occurs if an area is not referenced from anywhere within the file directory or available table.
This may be because the area is in fact lost, or because existing files have been opened, have had further areas
allocated to them and are still open during the execution of the utility. Oe

If an area is contained partly or completely in an area previously listed, the message :—

_*AREA APPARENTLY ASSIGNED TWICE*

will be printed with the area information.

3-44

If an area is assigned beyond the addressable space then the message

AREA ASSIGNED BEYOND MAXIMUM ADDRESS

will be printed with the area information.

If the utility finds that files are open on the disc then the message :-—

NOTE: OUTPUT FILES ON DISK WERE OPEN DURING THIS EXECUTION OF KA

will be printed at the end of the KA listing.

If a specified < file—id > is not found then the message

—NOT FOUND IN DIRECTORY ON THIS DISC

is printed to the right of the file—name column in the KA listing.

Ifa < group—id > is specified, and no files in that group are found, then the message

- —_-NO FILES IN DIRECTORY FOR THIS FAMILY

is printed to the right of the file—name column in the KA listing.

Output Messages

The following messages may be output by the utility in the event of the appropriate error. The utility will then

terminate.

1) ILLEGAL PARAMETER LIST

The character string following “KA” in the SCL input message is incorrect. The utility will attempt to follow the .

message with a character string from the area of the message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >

This message is printed if a character which is not allowed in identifiers is found in the <disc—id > or

< file—id > of the specified file.

3) DISK <disc—id > NOT OPENED—NOT ON LINE |

This message is displayed if the disc identified by < disc—id > has not been installed on the system.

4) TABLE SIZE EXCEEDED

This message is displayed if the number of lines of output required is greater than that permitted by the utility.

5) < file—name > NOT FOUND

This message is displayed if the utility cannot find the parameter—file identified by the * < file—name > macro-call.

6) NO OUTPUT GENERATED BY KA

This message is displayed if there is no output for printing.

T) NO SPECIFICATION GIVEN

This message is output if no parameters are entered following KA in the SCL input string.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP

(for example NO FILE if no printer 1s available).

September 1977
3-45

LD (Tape Library Utility)

| Ext | < disc—id— 1 5; ppt

* < file—name >

ADD _
+ FROM - < library—tape—name > | to- < disc—id—2 se

LOAD < file—id >—

< group—id |
DUMP :

Yo +t TO- < library—tape—name > 1 FRom— < disc—id—3 +
UNLOAD |

This utility provides library tape maintenance facilities through the four functions ADD, LOAD, DUMP, and
_ UNLOAD. LD will automatically be invoked if these mnemonics are used without the preceding LD, therefore the

<file—id > of LD should not be changed if this facility is required. LD must be initiated by name if the
* < file—name > construct is to be used, or it the utility is‘to be executed from a disc other than the system disc.

LOAD and ADD provide the capability of copying files or groups of files from a library tape to the disc identified
by <disc—id—2 >, of the system disc if <disc—id—2 > is omitted. The < library—tape—name > following
“FROM” identifies the library tape containing the file or group of files to be copied to the disc. The file—list
identifies the particular files or groups of files to be copied from the library tape. Note that the file list may contain
a mixture of files and groups of files. |

If LOAD is specified, then the files are copied to the disc and any duplicates are removed. If ADD is specified,
then only those files which do not have copies already on the disc are loaded.

DUMP and UNLOAD provide the capability of copying files or groups of files from. the disc specified by
< disc—id—3 > (or the system disc if < disc—id—3 > is omitted) to a library tape. The <library—tape—name >
following “TO” specifies the name which will be given to the library tape. The file list identifies the particular files or
groups of files to be copied to the tape. Note that the file list may contain a mixture of files and groups of files.

If UNLOAD is specified, then the files are deleted from the disc after they have been copied to the tape. If DUMP
is specified, the disc is not altered. . | 7

Output Messages

The following messages may be output by the utility in the event of the-corresponding error or condition.

Errors in Initial Parameters

The following messages will be output, and the utility will terminate, if the initial parameters following LD in the
SCL input string are invalid. |

1) ILLEGAL PARAMETER LIST |
This message will be displayed if the input parameters are incorrect. The utility will attempt to follow the message
with a number of characters from the area of the input message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier > | :
This message is displayed if the < library—tape—name >, < file—id >, or <disc—id > entries in the input
Message contain characters which are illegal in identifiers. 7 .

3-46

ee

3) < file—name > NOT FOUND

This message is displayed if the utility cannot locate the parameter file identified by the * < file—name > construct.

4) DISK < disc—id > NOT AVAILABLE
This message is displayed if the specified disc is not on line.

5) NO SPECIFICATION GIVEN
This message is displayed if no parameters are entered following LD in the SCL input string.

Normal Execution

The following messages are displayed as each file is successfully loaded, unloaded, or added.

1) <file—name > REMOVED
This message is displayed for each file removed as a result of LOAD or UNLOAD.

2) <file—name > LOADED
This message is displayed for each file loaded or added.

3) < file—name > DUMPED

This message is displayed for each file dumped or unloaded.

Errors During Execution The following messages are displayed if the utility cannot perform some part of its function. The utility will

continue to execute wherever possible.

1) <library—tape—name > NOT A RECOGNISED DUMP TAPE |

This message is displayed if the tape which has been provided for loading does not have a recognisable header.

The correct tape should be provided or the utility should be DS’ed (discontinued). If the tape is provided, the GO

command may be required in same CMS implementations in order to restart the utility.

ADD
. TAPE , . LOAD

2) NO FILES IN THE FAMILY < group—id > ON | TAFE | < identifier > FOR DUMP

UNLOAD

This message is displayed if the utility is unable to find any files in the specified group on the specified disc or tape.

The utility will continue with the next file in the input parameter list.

ADD
, TAPE ; . LOAD

3) NO FILE < file—id > ON \ Tare | < identifier > FOR DUMP

UNLOAD

This message is displayed if a particular file is not present on the library tape or on the disc. The utility will

continue with the next file in the input parameter list.

4) < filename > NOT DUMPED—IN OUTPUT USE

This message will be displayed for each file found to be open by an unload or dump. The file will not be dumped.

The tape will be purged and the utility will terminate.

5) <file—name > NOT DUMPED—HAS BEEN REMOVED |
This message will be displayed if a file has been removed between the start of a dump or unload and the time that

the file is to be copied to tape. The tape will be purged and the utility will terminate.

6) <file—name > NOT DUMPED—HAS BEEN ALTERED

This message is displayed if the contents of a file are changed between the start ofa dump or unload and the time

that the file is copied to tape. The tape will be purged and the utility will terminate.

September 1977 — 3-47

7) <file—name > LOAD/DUMP DISCREPANCY |
This message will be displayed if end of file is reached before it is expected, and implies erroneous information in
the Disk File Header.

8) NO FILES TO LOAD |
This message is displayed if no files will be dumped to a tape. The utility will terminate.

9) NO FILES TO DUMP
This message is displayed if no files will be dumped to a tape. The utility will terminate.

10) < file—id > NOT LOADED— ALREADY ON DISK.
This message is displayed during an ADD function for each requested file on the tape which is not loaded because
a file with the same identity already exists on disc.

11) ALTHOUGH WITH DIFFERENT ATTRIBUTES
This message is displayed immediately following the ALREADY ON DISC message (above) if the two files differ
in record size, block size, file size, or file type. The message is for information only.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP
(for example NO FILE if no purged output tape is available).

3-48

© LIST (File List). LIST

px-Ll <disc—id> jist —
* < file—name>

MTP-
1 PTP—
a < integer > : ie g |

< integer >

1“--RECORD

| T emfid> -L <fite—ia> +} | Block <integer>—| b [Le
1-U-TAPE.MARKS— <integer > —
11_NO.LABEL | < integer >

<record—key >—
TT r< KEY>-— ——<record—key >—

This utility gives extensive file listing capabilities. It allows a file or a series of files on any CMS device or devices

to be displayed in whole or in part, and in various formats, on a line printer (or console printer if no line printer is

available). The utility may be executed from a disc other than the system disc by specifying < disc—id >.

A string of LIST specifications may be given, each specification separated by a comma. If the utility is unable to

perform a particular request in the specification list, it will proceed to the next request in the list. Each field in a list

request is described below.

File Name

The <mfid > applies only to disc or magnetic tape (including cassette) files. For disc files, if <mfid > is not

specified, the system disc is assumed. For magnetic tape and cassette files, if <mfid > is not specified, a single

file tape is assumed. The < file—id > identifies a particular file to be listed.

Print Format

The output format of the listing may be specified as alpha (A), numeric (N) or alphanumeric (no entry). A ten

character column on the left hand side of the printer page is reserved for the record number. This field is left empty

when a file is listed in key order via an associated key-file (that is, an indexed file, see device type DISK). For indexed

files, the record key is printed on a separate line using the requested print format (A, N, both) prior to the printing

of each data record. The data records will be printed to the right of the record number field (which may be empty)

as follows. If A is specified each record will be output in 100 character lines across the page until the complete record

is printed. If N is specified, then each byte of the record is printed as two hexidecimal digits, 80 characters to the line,

until the complete record is printed. If neither A nor N is specified, then each record is output in both character and

hexidecimal formats, 32 bytes per line, until the complete record is printed. The first 32 print positions will display the

_ character representation of each byte. The next four print positions are spaces. The next 64 print positions are used

‘to display the hexidecimal equivalent of the 32 characters printed at the start of the line.

The following points should be noted with regard to each CMS device type.

Paper Tape

Any labelled CMS paper tape file may be listed by specifying PTP. The format option (A, N) determines the output

mode. The record size is assumed to be 180 characters. Other options (for example, RECORD < integer >, or

< KEY >) are invalid for paper tape files.

3-49
September 1977

Punched Card

Any labelled CMS punched card file may be listed by specifying CRD. The format option (A, N) determines the
output mode. The record size is assumed to be the same as the physical record size of the device (that is, 80 or 96
characters). Other options (for example, RECORD < integer >, or < KEY >) are invalid for punched card files.

Magnetic Tape and Cassette

Any magnetic tape or cassette file may be listed by specifying MTP. If the file is not a labelled CMS file (either
unlabelled or containing non-CMS labels) then it may be listed by using the unlabelled option described below. The
format option (A, N) determines the output mode. The RECORD, BLOCK, TAPE. MARKS, and NO. LABEL
options may be used when listing magnetic tape and cassette files. The < KEY > option does not apply to magnetic
tape and cassette.

Record and Block

RECORD and BLOCK may be used to specify the number of characters in 1 each record and block in the file. The
record and block sizes are determined as follows.

LABELLED CMS FILES.

RECORD and BLOCK need not be specified when the record size is less than 1024 characters, since the utility will
take the values from the file label. RECORD andBLOCK must be specified when the record size is greater than 1024
characters, otherwise the file will not be listed. The record and block sizes used are chosen in the following order

RECORD < integer > then label value of record size.

BLOCK < integer > then RECORD < integer > then label value of block size.

UNLABELLED FILES.

The utility defaults to block and record sizes of 180 characters unless the RECORD and BLOCK options are
specified. The record and block sizes used are chosen in the following order

RECORD < integer > then 180 characters.

BLOCK < integer > then RECORD < integer > then 180 characters.

Note 7
Care should be taken to ensure that the record and block sizes specified are compatible with the physical block size
on the tape. The block size selected must be an integer multiple of the record size, therefore the defaults must be
considered when specifying only RECORD or BLOCK. The utility will attempt to identify inconsistencies when —
using labelled CMS files. Any inconsistency not isolated by LIST will cause MCP to discontinue (DS/DP) the utility.

No. Label

The NO. LABEL option is provided to permit the LISTing of unlabelled (or labelled non-CMS) files. The < file—id >
entry must be included in order to identify the file for SCL purposes.

MCP will output the message

‘“< mx >/LIST < 14> WAITING UNLAB SPURIUS/< file—id > MT DEVICE REQUIRED”

An “AD <mx>/LIST < tape—peripheral >” message must be used to identify the labelled file. The end of file
recognition for unlabelled files is determined by tape mark count as described below.

Tape.Marks

The TAPE. MARKS option allows the user to specify the aggregate numbers of tape marks which will indicate end
of file to the utility when listing an unlabelled file. The default value is 2. Each tape mark which is encountered will
contribute to this total, thus a standard labelled CMS file will be listed up to, but excluding, the trailing label if NO.
LABEL and two tape marks are specified. (A labelled CMS file consists of “Label TM data TM label”). The user
must therefore be aware of the format of any file which is to be listed when using the NO. LABEL option.

3-50

Disk

Any CMS disc file may be listed. The disc device type is specified by omitting the device specifier. The format option

(A, N) determines the output mode. Record and block sizes are taken from the disc file header. The RECORD,

BLOCK, TAPE. MARKS, and NO. LABEL options are ignored if specified. Indexed files may have their keyfile or

data file portions listed by use of the < KEY > option described below.

Indexed Files

The utility assumes that a listing of the associated data file is required (in key order) when the file identified by

< file—id > is recognised as a keyfile. If a listing of the contents of a keyfile is required, then the < KEY > option

must be specified.

When listing a data file via a keyfile, the < record—key > options of the selective list specification may be used as

described below.

Partial File List

Listings of selected portions ofa file may be requested via the selective list specification. The various formats of selective

list specification apply to disc and non-disc files as follows.

Non-disc Files

The < integer—list > may be specified for paper tape (PTP), punched card (CRD), magnetic tape and cassette (MTP).

Each < integer > is a decimal number of up to 7 digits, and each pair of < integer >s in the string specify a starting

record number and the number of records required from that point respectively. Relative record numbers commence

with record 1. If there is an odd number of < integer >s, then the last < integer > is equivalent to a pair of

< integers > which would cause LIST to process to the end of the file. The < integer—list > must not specify any

random access of the file, that is, the first < integer > of each < integer > pair must identify a higher record number

than any previously listed record.

The < record—key > option is not applicable to non-disc files.

Disc Files

The < integer > list applies to all disc files and has identical use to that described above for non-disc devices, except

that random access is permitted when using disc.

The < record—key > option allows selective listing of an indexed file by reference to the key value contained in each

record. The user may specify a number of records to be listed via the < integer > option, or a terminating key value

via the-< record—key > option. The listing will include the records containing the starting-and terminating values of

< record—key >.

Output Messages

The following messages may be output by the utility in the event of the corresponding error or condition.

Errors in Initial Parameters

The following messages will be displayed, and the utility will terminate, if there are errors in the initial parameters

following LIST in the SCL input message.

September 1977 3-51

1) ILLEGAL PARAMETER LIST :
This message is displayed if the initial parameters are incorrect or invalid. The utility will attempt to follow the
message with a number of characters from the area of the input message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the <mfid > or < file—id > entries in a request contain characters which are
illegal in identifiers.

3) NO SPECIFICATION GIVEN
This message is displayed if no parameters are entered following LIST in the SCL input string.

Errors During Execution

The following messages are displayed if the utility ; is unable to perform some part of its function. The utility will
continue to execute wherever possible.,

1) < file—name > NOT FOUND

This message is displayed if the specified file cannot be located. The utility will proceed to the next request in the
specification string, unless the missing file was identified as containing the input parameters (*file—id), when the
utility will go to end-of-job.

2) < integer >, < integer > IN < file—name > NOT LISTED

This message is displayed if a record number in an < integer > pair indicates a section of the file at a lower
file address than a previously specified section. The < integer > pair is ignored.

3) < file—name > EXHAUSTED DURING < integer >, < imteger > :
This message is displayed if end: of file is encountered while the section of the file indicated by the < integer >
pair is being listed. The utility will proceed to the next request in the specification string.

4) <file—name > EXHAUSTED DURING RANGE < key—1> 17 . key— ; 4
< integer >

This message is displayed if end of file is encountered while the section of the file indicated by < key—1>
< integer > is being listed, or if no records were found in the range < key—1 > — < key—2>.

5) NO RECORDS FOR LISTING FROM < file—id > |
This message is displayed if the identified file contains no records for listing.

6) < file—id > NOT ACCEPTABLE—RECORD SIZE OF < integer > IS GREATER THAN THE MAXIMUM
SPECIFIED FOR THIS RUN—RESUBMIT
This message will be displayed if a file is submitted to the utility with a record size greater than that expected.
This can happen if an MTP file with a record size greater than 1024 characters is submitted to the utility without
the record size being properly specified in the parameters. This request should be re- -specified, since this invocation
of the utility will ignore it and continue with the next request if any.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP
(for example, NO FILE if no printer is available).

3-52

eo LOAD (Load Library Tape Files) LOAD

 —tl pt | < disc—id—1 > ; Lp LOAD

* < file—name >

|
<file—id > —

—— FROM — < library—tape—name > | to < disc—id—2 > te

< group—id > Z

Note that this function is a sub-program within the utility LD. MCP recognises the mnemonic LOAD if LD is not

specified, and will automatically initiate a load of the LD utility. The <file—id > of LD should not therefore be

changed if the LOAD function is to be invoked in this manner. To discontinue the LOAD function, “DS

< mix—number > / LD”’ must be used.

This function may be executed from a disc other than the system disc by specifying LD and < disc—id—1 >.

The function provides the capability of copying files or groups of files from a “library tape” to the disc specified by

< disc—id—2 > (or the system disc if < disc—id—2 is omitted). A library tape is defined to be a tape output by the

DUMP or UNLOAD functions. The < library—tape—name > identifies the library tape containing the files or groups

of files to be copied to the disc. The file list identifies the particular files or groups of files to be copied from the

library tape. Note that the file list may contain a mixture of files and groups of files. Any corresponding files

which are already on the disc will be removed.

Output Messages

The following messages will be output by the utility in the event of the corresponding error or condition.

Errors in Initial Parameters

The following messages are output, and the utility will terminate, if the initial parameters are incorrect or invalid.

1) ILLEGAL PARAMETER LIST

This message is displayed if the parameters supplied in the input message are incorrect. The utility will attempt to

follow the message with a character string from the area of the input message which contains the errors.

2) INVALID CHARACTER IN IDENTIFIER < identifier >

This message is displayed if the <library—tape—name >, <disc—id >, or < file—id > entries in the input

message contain characters which are illegal in identifiers.

3) <file—name > NOT FOUND

This message is displayed if the function was invoked through the LD *< file—name > format, and the

parameter—file cannot be located.

4) DISK < disc—id > NOT AVAILABLE
This message is displayed if the specified disc is not on line.

5) NO SPECIFICATION GIVEN
This message is displayed if no parameters are entered after LD in the SCL input string.

September 1977 3-53

Normal Execution

The following messages are displayed for each file which is successfully loaded

1) < file—name > LOADED

2) <file—name > REMOVED |
This message is displayed if there was a corresponding file already resident on the disc. The old version is removed.

Errors During Execution

The following messages are displayed if the utility cannot perform some part of its function. The utility will
continue to operate wherever possible.

1) <library—tape—name > NOT A RECOGNISED DUMP TAPE
This message is displayed if the tape which has been provided for loading does not have a recognisable header.
The correct tape should be provided or the utility should be DS’ed (discontinued). If the tape is provided, the GO
command may be required in some CMS implementations in order to restart the utility.

2) NO FILES IN THE FAMILY < group—id > ON TAPE < library—tape— name > FOR LOAD
This message is displayed if the utility is unable to find any files in the specified group on the library tape. The
utility will continue with the next file in the input parameter list.

3) NO FILE <file—name > ON TAPE < library—tape—name > FOR LOAD
This message is displayed if a specified file is not present on the library tape. The utility ¥ will continue with the next
file in the input parameter list.

4) <file—name > LOAD/DUMP DISCREPANCY
This message will be displayed if end of file has been reached before it is expected, and implies erroneous
information in the Disk File Header. The utility will continue with the next file in the input parameter list. .

5) NO FILES TO LOAD

This message is displayed if no files will be loaded from the tape. The utility will terminate.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP
(for example ERROR WHILE IN < verb > if the tape cassette drive is opened while in use).

3-54

LR (List Directory) |

I_EX L | < disc—id—1 +/+ _1R——

 * < file—name >

a < disc—id—2 > j+ < group—id > ——

 | < disc—id—3 > je < file—id >

This utility provides for the generation ofa listing on a printer of the properties of particular files or a group of files. The

utility may be executed from a disc other than the system disc by specifying < disc—id—1 >. A group of files may be

identified for analysis by specifying <group—id >. The group is assumed to be an the system disc unless

< disc—id—2 > is specified. Alternatively, a list of files may be presented. Each file in the list is assumed to be

on the system disc unless the respective < disc—id—3 > is specified.

For each file identified in the input specification, the following attributes are analysed:

Number of Records in the file

Record Size

Block Size

Creation Date

Last Access Date

File Type

Area Sizes

If a particular file is not located, this will be indicated on the output listing.

Output Format

Twelve columns of information will be output to the printer for each disc for which information is requested. The

column headings, the format of the values which these columns contain, and the significance of these values is as

follows:

HEADING VALUE SIGNIFICANCE

FILE NAME 12 characters File identifier

ACTUAL SIZE 7 digits The number of records in the file

MAXIMUM SIZE 7 digits The maximum number of records which may

be written to the file

RECORD SIZE 5 digits The number of characters in the record

RECORDS PER BLOCK 5 digits | The number of records in each block

CREATION DATE 5 digits File Creation Date (Julian, YYDDD)

LAST ACCESS DATE 5 digits Last Access Date (Julian, YYDDD)

FILE TYPE | 8 characters See Note | |

NO. AREAS 2 digits Number of Areas currently allocated

OVERFLOW DISC 7 characters See Note 2

AREA ADDRESSES 8 digits @ 4 digits @ Starting sector address of each allocated area

in decimal and hexadecimal. See Note 3

AREA SIZES 8 digits @ 4 digits @ The length on sectors of each allocated. See

Note 3 |

September 1977 | 3-55

Note 1 The FILE TYPE entry will be one of :—

DATA —. Normal Data File

CODE — §S-CODE File
KEY — Key File (see Note 4 below)
SYSTEM — System File (interpreter, etc.)
SRCELANG — Source Language File

SRCELIBR — Source Library File

Note 2 Ifa file has areas allocated on an overflow pack the disc—id of the overflow pack will be listed.

Note 3 For areas on overflow packs, the characters ‘““OVF”’ will follow the size.

Note 4 Ifa file is found to bea Key File, then a second line will be printed giving information about the Data File
with which it is associated.

Output Messages

The following messages will be output by the utility in the event of the corresponding error.

Errors in Initial Parameters

The following messages are displayed if there are errors in the initial parameters following LR in the SCL input message.
The utility will terminate.

1) ILLEGAL PARAMETER LIST
This message is displayed if the initial parameters are incorrect. The utility will attempt to follow the message with
a number of characters from the area of the input message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the <disc—id>, <group—id >, or <file—id > entries in the input message
contain characters which are illegal in identifiers.

3) < file—name > NOT FOUND

This message is displayed if the utility cannot find the parameter—file identified by the * < file—name > macro-call.

4) NO SPECIFICATION GIVEN |
This message is displayed if no parameters are entered after LR in the SCL input string.

Errors During Execution

1) DISK < disc—id > NOT OPENED— NOT ON LINE
This message is displayed if a disc identified by < disc—id—3 > in the input string cannot be found. The utility
will continue scanning the parameters, ignoring all references to files on the identified disc.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP
(for example NO FILE if no printer is available). |

3-56

MODIFY (Program File Modification) MODIFY

* < file—name > ——> (A)

_—tpy tt < disc—id—1 > / _|_ MODIFY

a CODE.FILE——_ < disc—id—2 > jp < file—id > —— , ——

___ < file—attribute > — < attribute—value >—— ‘|

—~FILE- < internal—file—name >—— , |

 PRINT.FPB

— < ppb—attribute > -— < ppb—attribute—value > 7

 |_ PPB — PRINT.PPB

 END—+——>@)

Note: this utility should not be used until the information presented in the CMS Master Control Program (MCP)

Reference Manual, form number 2007555, is thoroughly understood. The utility is primarily intended for Burroughs

Field Support personnel, and is included for the benefit of users who are prepared to acquire the necessary depth

of knowledge.

This utility allows a number of attributes within the file parameter block (FPB) and program parameter

block (PPB) of program files on disc to be modified. The utility may be executed from a disc other than the

system disc by specifying < disc—id—l >.

Each program codefile to be modified is identified by < file—id >, and is assumed to be on the system disc

unless <disc—id—2> is specified. Any number of code files may be modified during one execution of

MODIFY. |

If modifications are to be made to an FPB within a program code file, then the particular FPB is identified by

specifying < internal—file—name >. Each < internal—file—name > of a CMS program may be up to 30 characters

in length, and can be found from a source listing of the appropriate program. Any number of FPB’s may be

modified in each code file.

A list of attributes and their new values may be presented in any order within a FILE clause, and the utility may be

directed to produce an analysed printer listing of the appropriate FPB by specifying PRINT.FPB. Note that the

modification string is processed sequentially, so the printer listing will reflect the state of the FPB after any

modifications preceding the print request, but before any modifications succeeding the print request. The following

attributes may be modified by specifying the identifier indicated under < file—attribute >, followed by a legal value

as shown under < file—attribute—value > :—

< file—attribute > < file—attribute—value >

MFID Up to 7 alphanumeric characters

FID Up to 12 alphanumeric characters

REEL 3 decimal digits less than or equal to 999

September 1977 | 3-57

< file—attribute >

DEVICE

RECORD
BUFFER
FILESIZE
NO.BUFFERS
CYCLE
FORMS
SET.UPDATE
NO.LABEL
CONDITIONAL
SINGLEAREA
GEN.CHECK
NO.REWIND
CLOSEMODE
CRUNCH
MERGE
OTHERUSE
MYUSE
EXTEND
ACCESSMODE
GEN.NO
LAST.ACCESS
SAVE
FILE.DEFAULT
D.MFID
D.FID
ROUGH.TABLE
KEY .LENGTH
KEY .OFFSET

3-58

< file—attribute—value >

PR (any Printer)

KP (Keyboard Printer)

KD (Keyboard Display)

KB (Keyboard any output)
SP (Serial Printer)

LP (Line Printer)
CR (Any Card Reader)
CP (Any Card Punch)

CRP (Any Card Reader-Punch)

CR80 (80 Column Card Reader)

CP80 (80 Column Card Punch)

CRP80 = (80 Column Card Reader-Punch)

CR96 (96 Column Card Reader)

CP96 (96 Column Card Punch)

CRP96 = (96 Column Card Reader-Punch)

PTR (Paper Tape Reader)

PTP (Paper Tape Punch)
MT (Magnetic Tape Reel or Cassette)

MT9 (Magnetic Tape Reel)

CS (Magnetic Tape Cassette)
MT9IN (Magnetic Tape Reel without Write Permit)

(Magnetic Tape Cassette without Write Permit)
DC (any Disc)
Up to 5 decimal digits less than or equal to 65535 (216— 1)
Up to 5 decimal digits less than or equal to 65535 (216— 1) -
Up to 7 decimal digits less than or equal to 1048560 (220— 16)
Up to 2 decimal digits less than or equal to 16 -

Two decimal digits =
ON or OFF

ON or OFF

ON or OFF

ON or OFF

ON or OFF

ON or OFF

ON or OFF

LOCK, PURGE, REMOVE, RELEASE, or HALF.CLOSE
ON or OFF
ON or OFF

FREE, LOCK.ACCESS, or LOCKED
INPUT, OUTPUT, or IO | a
ON or OFF

SEQUENTIAL, STREAM, or RANDOM
Up to 5 decimal digits less than or equal to 65535 (216— 1)
Five decimal digits

Up to 3 decimal digits less than or equal to 999
TYPE | thru TYPE 29. Refer to the CMS MPLII Reference Manual form number 2007563 |
Up to 7 alphanumeric characters

Up to 12 alphanumeric characters
Up to 5 decimal digits less than or equal to 65535 (216~ 1)
Up to 3 decimal digits less than or equal to 255 (28— 1)
Up to 5 decimal digits less than or equal to 65535 (216— 1)

The last 5 attributes above are only applicable to Indexed Files.

Refer to the CMS Master Control Program (MCP) Reference Manual, form number 2007555 for details of the

significance of the above attributes.

The PPB clause allows limited modification of the execution environment specified by the program parameter

block. A list of the permitted attributes may be presented in any order within a PPB clause, and the utility may

be directed to produce an analysed printer listing of the PPB by specifying PRINT.PPB.

Note that the modification string is processed sequentially, so the printed listing will reflect the state of the PPB

after modifications preceding the print request but before any modifications succeeding the print request. The

following attributes may be modified by specifying the identifier indicated under < ppb—attribute >, followed

by a legal value as shown under < ppb—attribute—value > :—

< ppb—attribute > < ppb—attribute—value >

INTERP.PACK Up to 7 alphanumeric characters

INTERP.NAME _ Up to 12 alphanumeric characters

CLASS A or Bor C

EOJ.SUPPRESS ON or OFF

Refer to the CMS Master Control Program (MCP) Reference Manual, form number 2007555 for details of the

significance of the above attributes.

Output Messages

The following messages may be displayed by the utility if the input parameters are incorrect. The utility will teminate.

1) ILLEGAL PARAMETER LIST < character string >

This message is displayed if file—id or disc—id containing characters illegal in identifiers is found.

inconsistent. The utility will attempt to identify the area containing the errors by presenting a < character string >

from the message.

2) INVALID CHARACTER IN IDENTIFIER < identifier >

This message is displayed if file—id or disc—id containing characters illegal in identifiers is found.

3) NO SPECIFICATION GIVEN

This message is displayed if no parameters are entered following MODIFY in the SCL input string.

4) < file—id > NOT FOUND

This message is displayed if the parameter file to be used for the input message cannot be located.

The following messages may be displayed during the execution of the utility.

1) ATTRIBUTE VALUE MISSING

The attribute value is either missing or incorrect.

2) KEYWORD IN ERROR |

Either the attribute name or the value name is not correct.

3) ATTRIBUTE— VAL INCONSISTENT

The attribute being assigned to cannot accept the value being given.

4) INCORRECT ATTRIBUTE

A value is being assigned to a value, rather than to an attribute.

September 1977
3-59

5) DEVICE—MYUSE INCONSISTENT |
The value of MYUSE and the value of DEVICE are incompatible, and will cause an error.

6) FILE—SIZE TOO LARGE
The file size is greater than 220-16.

7) TOO MANY BUFFERS
The value assigned to NO.BUFFERS is greater than 16.

8) REC. NOT INTEGRAL OF BUF.
_ The buffer size is not an integer multiple of the record size.

9) CODE FILE NAME IN ERROR
The format of the code—file—name is incorrect. All modifications to this codefile are ignored.

10) FILE NAME NOT FOUND , |
The name of the file associated with the FILE clause does not exist in the code file being modified. All
modifications to this file are ignored. |

11) MISSING SEPARATOR |
The information up to the point where the separator is missing is processed, but from that point until the
next separator all information is lost.

12) NUMERIC ATTRIBUTE—VAL REQD
Non-numeric characters were input where a numeric value was expected.

13) FILE NOT SPECIFIED | | | ©
An attempt has been made to modify an FPB without specifying FILE.

14) PPB NOT SPECIFIED
An attempt has been made to modify a PPB without specifying PPB.

15) NOT AN INDEXED FILE . |
An attempt has been made to modify an indexed file attribute for a non-indexed file.

Errors 1 to 4 only affect the one modification to which they refer. That particular modification is not processed,
but all other correct ones are.

Errors 5 to 8 indicate that the specified modification has been effected, but that an inconsistency in the fields
exists, and should be rectified.

Note that the use of this utility results in permanent modification of the object code file, and should therefore be
used with care.

Note that the above messages are output by the utility. Any applicable system message may be output by the
MCP (for example NO FILE if no printer is available).

3-60

MX (Diagnose Current Mix) IMX|

 —____- MX —_!—- < mix # > L < prog—id> th

This function, an intrinsic within the MCP, displays on the system journal the status of the specified task. If no task is

specified, the status of all tasks currently in the mix is displayed.

If the requested task is not in the mix, the message

<INVALID MX >

is displayed,

If there are no tasks in the mix, the message

< NULL MIX >

is displayed.

If the program—id specified does not correspond to the mix-number, the message

< INVALID PROGRAM ID >

is displayed.

The information displayed for each task is described in the chart below:

£

pi
—— <mix # > —/— <prog—id> —— <priority> EXECUTING aa bys

A SHORT WAITED ON sey? ca f

IO SUSPENDED WAITED ON, p2*”
a a ~

SWAPPED OUT WAITED ON-

-O/C

-VM

-_SCL TASK

+ | OPERATOR INPUT—

2% LACCEPT—L& 57,

2? f al | ZIP .

ym |
i? fr _1/0-OR EVENT

fn he se LNO FILE

#e | DUP FILE

eee. -SYSMEM FILE
pp ORE ER 2 EE

2 Fooaplé Senee %& NO USER DISK —
cout gh USAR Pf Pee

| DIRECTORY SPACE-

3 “DEVICE
Wort. gid be Tie eS Ok >

Where < priority > is A, B or C indicating the class of the program.

September 1977 3-61,

A task is SHORT WAITED if it requires a resource, such as Virtual Memory, or an I—O buffer, which the ©
system can guarantee will be made available in a relatively short time. Any task waiting for operator action will be
suspended. Suspended. tasks are candidates for swapping to disk if their real memory space is required for other
tasks in the mix.

Task States and Transitions

| EXECUTING

Operator/program suspension
or operator action

required

resource

becomes

available

task —

needs a

resource not

currently available
Condition cleared

SUSPENDED

Condition cleared

by operator
Memory

space required
for other tasks

SHORT WAIT}

SWAPPED OUT

3-62

OL (Request for status information of a peripheral)

 OL —— < peripheral > —- y

This function, an intrinsic within the MCP, allows the operator to request the status of peripherals on the system.

If a peripheral is specified then the status of that peripheral is displayed, otherwise, the status of all peripherals on

the system is displayed. A request for the status of an illegal or non-existent device will result in the message

OL < peripheral > INVALID

or OL < peripheral > NOT ON SYSTEM

being displayed.

The message resulting from the OL command depends upon the type of peripheral and is summarized in the

syntax charts below:

 < disk—peripheral > — < disk—id > FILES OPEN

SYS DISK ——

NOT READY -

 — < integer >

 PO‘D

where < integer > specifies the number of files currently in use on the disk. For a magnetic—tape device.

— < magnetic—tape—peripheral > —_— NOT READY
< mfid > ——/—-

For any other device:

— < peripheral >

September 1977

< file—id >

PURGED

UNLABELLED —

 — < mfid > ——/

i— < file—id > ‘\— UNLABELLED —

—Nor READY

SAVED

—IN USE BY- < mix # > / < prog—id >

 p NOT READY-;

READY

 —_—_—- < mfid > -

—_—— < fjle—id > —— UNLABELLED J
sor READY—

SAVED

IN USE BY- <mix # > / < prog—id>

3-63

[PD]
PD (Interrogate Disc Directory) se

a a tp

Low de 66% Rrogea™

—Lextl < disc—ia—1 5; —_ pp —

 * < file-name >

Ll < disc—id—2 > ji < group—id > —

 | AW disc—id—3 > /-L < file—id > 1

This utility will verify the presence on—line of particular files or groups of files on disc. The utility may be executed
from a disc other than the system disc by specifying < disc—id—1 >.

If the on—line presence of a group of files is to be verified, the particular group is identified by < group—id >.
The group is assumed to be on the system disc unless < disc—id—2 > is specified. The utility will display a list of
file—identifiers belonging to the group, or indicate that no such group has been found.

The on—line presence of specific files may be verified by specifying the <file—id > list. Each file is assumed
to be on the system disc unless its respective <disc—id—3 > is specified. The utility will display a list of file-
identifiers found to be on-line, and a list of file-identifiers which cannot be found.

Output Format

If the < group—id > has been specified and files are found which belong to that group, then

< group—id > ON < disc—id—2 > CONTAINS:—

is displayed on the system journal (SPO) followed by the file—identifiers of the files contained in the group,
three identifiers per line. The list is completed with the message a

END PD.

If the < group—id > has been specified and no relevant files are found, then the message

NO FILES FOUND IN THE FAMILY < group—id >

is displayed on the SPO, followed by the message

END PD.

Ifa list of files has been specified, then for those files specified in the parameters list which have been found the message

ON LINE

is displayed on the SPO, followed by the file—ids of the located files, two identifiers per line. If any of the files
specified in the parameter list are not found, then the message | |

NOT ON LINE

is displayed on the SPO, followed by the identifiers of those files which have not been located. After all the
specified files have been processed, the message

END PD

is displayed.

3-64

se
en

AE
an

#e

i

Output Messages

The following message may be displayed by the utility in the event of the corresponding error or condition.

Errors in Initial Parameters

The following messages will be displayed, and the utility will terminate, if errors are found in the initial parameters

following PD in the SCL input string.

1) ILLEGAL PARAMETER LIST
This message is displayed if the initial parameters are incorrect. The utility will attempt to follow the message
with a number of characters from the area of the input message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the <disc—id >, <group—id >, or < file—id > entries in the input message

contain characters which are illegal in identifiers.

3) < file—name > NOT FOUND
This message is displayed if the utility cannot locate the parameter—file identified in an *< file—name > macro-call.

4) < file—name > REQUIRES OVERFLOW DISK < disc—id >

This message is displayed if a file which extended over two discs has only the base disc on line.

5) NO SPECIFICATION GIVEN
This message is displayed if no parameters are entered after PD in the SCL input string.

Errors During Execution

The following messages will be displayed, and the utility will proceed to the next request in the parameter string, if

the corresponding error is encountered during execution of the utility. ©

1) PACK < disc—id > NOT OPENED— NOT ON LINE
This message is displayed if the identified disc cannot be located. All subsequent references to this disc in the

input parameters will be ignored.

Note that the above messages are output by the utility. Any applicable system message may be output by the

MCP (for example ERROR WHILE IN < verb > if disc parity errors are encountered).

September 1977 3-65

PG (Purge Tape)

 —l_Ex +t < disc—id > 7 pg— LI < mfid > /--— < file—id > 11

This utility provides for the purging (labelling as available for output) of magnetic tape and cassette files. The
utility may be executed from a disc other than the system disc by specifying < disc—id >.

A list of labelled tape <tape—names > may be input, in which case the <mfid > and <file—id > of each
< tape—name > specified must exactly correspond to the first label of each tape (that is, a multifile tape must have
the < mfid > and < file—id > of the first file correctly identified). For example, PG MEMDUMP/MEMORY.

One unlabelled tape may be purged in each execution of PG by entering no parameters in the input message.
In this case, the utility may be directed to the required tape by use of the AD intrinsic. For example

<input> PG |

< output > 10/PG [14] WAITING UNLAB TAPE MT DEVICE REQUIRED
<input> AD 10/PGCSA

This method may be used to purge a labelled tape for which the exact < tape—name > is not known.

| Output Format

The following messages may be output by the utility during execution.

1) < file—name > HAS BEEN PURGED

This message is displayed for each file which is purged. The utility will proceed with the next file in the

file—name list.

2) <file—name > NOT ON LINE |
The specified file has not been located. The utility will proceed with the next file in the file—name list.

3) < file—name > NO WRITE PERMIT |

A request has been made to purge a file which has been found, but which has no write capability. The

utility will proceed with the next file in the file—name list.

4) UNLABELLED TAPE—NO WRITE PERMIT
As (3) above, but when an unlabelled tape has been specified. The utility will terminate.

5) UNLABELLED TAPE—HAS BEEN PURGED
As (1) above, but when an unlabelled tape has been specified. The utility will terminate.

6) < file—name > NOT FOUND

This message is displayed if the file containing the input parameters (* file) cannot be found.

Errors in Initial Parameters

The following messages will be displayed and the utility will terminate, if errors are found in the initial parameters

following PG in the SCL input message.

1) ILLEGAL PARAMETER LIST |

This message is displayed if the initial parameters are incorrect. The utility will attempt to follow the message
with a number of characters from the area of the input message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the < mfid > or < file—id > entries in the input message contain characters which
are illegal in identifiers.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP

(for example ERROR WHILE IN < verb > if tape write errors are encountered).

3-66

} PMB80 (Analyse B80 RAM Dump) PIMIB80

This utility performs selective and comprehensive analysis of the cassette tapes MEMDUMP/MEMORY which are

output by the Warmstart Memory Dump facility on B80. The utility is not applicable to other CMS implementations.

Operation of the utility requires a full understanding of the information presented in the CMS MCP Reference Manual,
form number 2007555, therefore details of the utility are provided in the B80 dependent section of that manual. Two

parameter files are provided for use by the utility. These files are identified by the prefix ““PM”’ in their file—ids.

September 1977 3-67

PO (Power off a disk drive)

—— PO—— < disk peripheral > ——

This 3 MCP intrinsic allows the operator to logically power off a disk drive. If no files on the disk specified are in @ |

use by any program, the disk is logically powered off and the message

< disk peripheral > OK

is printed. _

If files on the specified disk are in use, the OL message for the disk is printed. No further task will be allowed to open
files on the disk and when all files in use have been closed, the disk will be logically powered off and 2

< disk peripheral > OK

will be printed.

A disk should not be physically powered off until it has been logically powered off otherwise information being
written to the disk may be lost. If a disk is physically powered off before a logical PO then the message

< disk peripheral > REMOVED WITHOUT PO ~ | |

is printed. Any program using files on that disk will eventually terminate with an error condition indicating
hardware failure.

A PO’d may be made ready again by the RY command or by physically powering the unit off and on.

If the specified unit is invalid or not on the system, the messages

PO < disk peripheral > INVALID

or PO < disk peripheral > NOT ON SYSTEM

will be printed. | ©

If the disc specified is the system disc, then the command is taken to be a command to power off the system.

Invalid attempts to power off the system result in the message :

CANNOT POWER OFF SYSTEM. MIX NOT EMPTY

An invalid attempt to power off the system has no consequence beyond the printing of the message.

3-68

eo RM (Remove Disc Files from Directory)
RM

| px tl < dise—id—1 > /—+- RM———

 * < file-name >

|_| < disc—id—2 > / t_.« group—id > --<BOTH> +

fo?

LPS discia_3 > j4— < file—id > -<BOTHS +_1_

This utility provides for the removal of files from disc. The utility may be executed from a disc other than the

system disc by specifying < disc—id—1 >.

If a group of files is specified for removal, the group is assumed to be on the system disc unless < disc—id—2 > is

specified. The required group is identified by < group—id >. If the group is not found then the message NO FILES

FOUND FOR REMOVAL IN THE FAMILY < group—id > is displayed.

A list of files, not necessarily on the same disc, may be specified. Each file identified in the <file—id > list is

assumed to be on the system disc unless its respective < disc—id—3 > 1s specified.

The disc areas associated with those files which are found and which can be removed are returned to the available

table. A request for the removal of system files causes the utility to output:

_L <disc—id > /-- <file—id > IS A SYSTEM FILE

The utility will then issue an ACCEPT to which the response

AX < mix-number > tiRMti< disc—id > j—- < file—id >—OK

will cause the removal of the identified file.

Note that the file must be identified in the AX exactly as identified by the utility. For example, if the file is known to be

on the system disc, the AX must still include <disc—id > if the utility message specifies <disc—id >. Any

response other than that shown above will be treated as a request not to remove the system file, and the

utility will continue as if the request to remove the file had not been made.

The utility will remove both files of an indexed pair if the relevant keyword is included in the parameter list. The

keyword “‘“< BOTH >” may be specified after any < file—id > in the file—name list, or after < group—id >. If RM

detects that a Key File is being removed and < BOTH > has been specified then it will remove both the Key File and

the associated Data File if both are on-line. If neither, or only one is on-line then neither the Key File nor the

Data File will be removed.

Output Messages

The following messages will be output by the utility after a request has been processed. The utility will then

continue with the next request, or terminate if the list of requests is exhausted.

1) <file—name > REMOVED

This message is displayed for each file removed.

3-69

2) < file—name > NOT REMOVED—NOT FOUND

This message is displayed if the identified file is off-line.

3) < file—name > NOT REMOVED—IN USE ry
This message is displayed if a request is made for the removal of a file which is in use at the time of the request. |

4) < file—name > NOT REMOVED—SYSTEM FILE
This message is displayed if the response to a request to remove a system file was not < file—name > OK.

5) < file—name > AND < file—name > REMOVED

This message is displayed for each pair of Key and Data files removed.

6) NO SPECIFICATION GIVEN
This message is displayed if no parameters are entered following RM in the SCL input string.

The following messages are displayed, and the utility terminates, in the event of the corresponding error or condition.

1) ILLEGAL PARAMETER LIST
This message is displayed if the input message following RM in the SCL input ‘string is incorrect. The utility
will attempt to follow the message with a number of characters from the area of the input message which caused
the failure. .

2) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the < disc—id > or < file—id > entries in the input parameters contain characters
which are illegal in identifiers.

3) < file—name > NOT FOUND

This message is displayed if the parameter file identified by an * < file—name > macro—call cannot be located.

4) DISK < disc—id > NOT OPENED—NOT ON LINE
This message is displayed if the identified disc cannot be located.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP ©
(for example ERROR WHILE IN < verb > if a disc containing files for removal has been illegally powered—off.)

3-70

RY (Ready a peripheral)

RY

 < peripheral >

This intrinsic is used to ready a peripheral that has been made logically not ready, to enable it to be assigned for future

use. The RY command may be used to ready a PO‘d disk, SV’d printer or tape unit, or any peripheral that has pro-

grammatically been closed with lock. If a peripheral is awaiting a PO or SV command because it is still in use then the

RY command will cancel the previous SV or PO.

If the operator attempts to ready a peripheral that is physically not ready then the appropriate OL message for that

peripheral is printed.

An attempt to ready an illegal peripheral or a peripheral not on the system, then the messages

RY < peripheral > INVALID

or RY <peripheral > NOT ON SYSTEM

are printed.

September 1977 3-71

| :
ST (Temporarily Suspend a Running Task)

 ST <mix #> / < prog—id> ee

This intrinsic causes all real store currently in use by the task to be removed to the virtual memory disk space
allocated for this task. The task still appears in the mix and all peripheral assignments are maintained. All real
store thus freed is released for re-allocation. If the option < prog—id > is specified, then the mix number and prog—id
must match, otherwise, the invalid stop message is displayed. :

_If the stop is accepted, the message

<mix #> / <prog—id > STOPPED

is displayed. If the specified task does not exist or is already stopped, then the message

<mix # >/ < prog—id > ST INVALID

is displayed.

The task may be restarted by the GO command.

3-72

SV (Save Peripheral)

SV < tape peripheral > —_——

 < line printer peripheral >

This MCP intrinsic allows the operator to logically power off a line printer or a tape unit in order to prevent its use by

any program.

If no program is using the specified device, it is marked as being logically not ready and the message

< peripheral > OK

is printed.

If the device is in use, the OL message for that peripheral is output. When the device is released by the program, it 1s

marked as being logically not ready and the message

< peripheral > OK

is printed.

A saved device may be made ready again by the RY command or by physically powering the unit off and on.

If the specified peripheral is invalid or non-existent on the system, one of the messages

SV < peripheral > INVALID

or SV <peripheral > NOT ON SYSTEM

will be printed.

September 1977
3-73

TAPELR |

TAPELR (List Library Tape Directory)

| py} fo < disc—id > / __TAPELR < library—tape—name > |

This utility will produce a listing on a line printer (or the console printer if no line printer is available) of the
attributes of files contained on library tapes. A library tape is a tape produced by the DUMP or UNLOAD
functions of the LD utility. The utility may be executed from a disc other than the system disc by specifying
< disc—id >.

One or more library tapes may be analysed during one execution of the utility. The required tapes are
identified by specifying a < library—tape—name > list. For each tape identified in the input specifications the
following attributes are analysed:

Number of Records in the file

Record Size

Block Size

Creation Date

Last Access Date

File Type

Area Sizes

Output Format

Eight columns of information will be output to the printer for each library tape for which information is requested.
The column headings, the format of the values which these columns contain, and the significance of these values is
as follows:

Heading Value - Significance

FILE NAME | 12 characters The File identifier
ACTUAL SIZE 7 digits The number of records in the file
MAXIMUM SIZE 7 digits The maximum number of records which may be

written to the file :
RECORD SIZE 5 digits The number of characters in the record
RECORDS PER BLOCK 5 digits The number of records in each block
CREATION DATE 5 digits File Creation Date (Julian, YYDDD)
LAST ACCESS DATE 5 digits Last Access Date (Julian, YYDDD)
FILE TYPE 8 characters See Note Below

Note. The FILE TYPE entry will be one of:

DATA — Normal Data File
CODE — S-code File
KEY — Key File
SYSTEM — System File (interpreter, etc.)
SRCELANG — Source Language File
SRCELIBR — Source Library File

Output Messages

The following messages will be displayed by the utility in the event of the corresponding error.

3-74

Errors in Initial Parameters

The following messages are displayed, and the utility will terminate, if errors or inconsistencies are detected in

the input parameters.

1) ILLEGAL PARAMETER LIST

This message is displayed if the input parameters following LR in the SCL input message are incorrect. The

utily will attempt to follow the message with a number of characters from area of the input message which

caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >

This message is displayed if any of the < library—tape—names > specified contain characters which are

illegal in identifiers.

3) < file—name > NOT FOUND

This message is displayed if the parameter—file identified in an * < file—name > macro-call cannot be located.

4) NO SPECIFICATION GIVEN |

This message is displayed if no parameters are entered following TAPELR in the SCL input string.

Errors During Execution

The following message is displayed if a specified < library—tape—name > is of an incorrect format.

< library—tape—name > NOT A RECOGNISED DUMP TAPE

The utility will ignore this tape and process any further requests in the specification string.

Note that the above messages are output by the utility. Any applicable system message may be output by the

MCP (for example NO FILE, if an identified < library—tape > cannot be found).

September 1977
3-75

TAPEPD

TAPEPD (Interrogate Library Tape Directory)
©

mo
| px tl < disc—id > 1 Tapepp__- < library—tape—name > |

This utility will display, upon the console, a list of the files dumped on specified library—tapes. A library
tape is a tape produced by the DUMP or UNLOAD functions of the LD utility. The utility may be executed from a
disc other than the system disc by specifying < disc—id >. oo |

One or more library tapes may be interrogated during one execution of TAPEPD. The required tapes are
identified by the < library—tape—name > list. | | ,

Output Format

For each library tape identified in the input parameters, the following information is displayed:

MT <library—tape—name > DUMPED ON <day—of—week > <DD> <month> <YY> CONTAINS :—
This message precedes the list of files found on each tape. The < day—of—week > and < _month> entries are
three character abbreviations. The < DD > and < YY > entries are two digit entries showing the day of the month
and the year respectively. The message is followed by the list of files, three files per line. At the end of the last list of
files, the message

END TAPEPD

is displayed. :

Output Messages

_ The following messages are output by the utility in the event of the corresponding error or condition. ©

Errors in Initial Parameters

The following messages are displayed, and the utility will terminate, if errors or inconsistencies are detected in the
initial parameters following TAPEPD in the SCL input message.

1) ILLEGAL PARAMETER LIST | |
This message is displayed if the initial parameters are incorrect. The utility will attempt to follow the
message with a number of characters from the area of the input message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier > |
This message is displayed if any < library—tape—name > contains characters which are illegal in identifiers.

3) < file—name > NOT FOUND

This message is displayed if the parameter—file identified by an * < file—name > macro-call cannot be located.

4) NO SPECIFICATION GIVEN |
This message is displayed if no parameters are entered following TAPEPD in the SCL input string.

Errors During Execution

The following message is displayed if a specified < library—tape—name > is of an incorrect format.

< library—tape—name > NOT A RECOGNISED DUMP TAPE

The utility will ignore this tape and process any further request in the specification string.

Note that the above messages are output by the utility. Any applicable system message may be output by the @
MCP (for example, NO FILE if an identified < library—tape > cannot be located).

3-76

UNLOAD (Unload files to Library Tape) UNLOAD

 |i pt | < disc—id—1 > / _t ip — UNLOAD

* < file—name >

< file—id >
—— TO-—— < library—tape—name > __| pRom— < disc—id—2 > ae | |

< group—id >

Note that this function is a sub-program within the utility LD. MCP recognises the mnemonic UNLOAD if LD 1s

not specified, and will automatically initiate a load of the LD utility. The < file—id > of LD should not therefore

be changed if the UNLOAD function is to be invoked in this manner. To discontinue the function, “DS

< mix—number > /LD” must be used.

This function may be executed from a disc other than the system disc by specifying LD and < disc—id—1 >.

The function will create a library tape of name < library—tape—name > containing files copied from the disc

specified by < disc—id—2 > (or the system disc if <disc—id—2 > is omitted). Each disc file copied to tape is

deleted from the disc after the file has been copied. The file list identifies the particular files or groups of files to be

copied to the library tape.

Note that the file list may contain a mixture of files and groups of files.

Output Messages

The following messages will be output by the utility in the event of the corresponding errors or conditions.

Errors in Initial Parameters

The following messages are output, and the utility will terminate, if the initial parameters are incorrect or invalid.

1) ILLEGAL PARAMETER LIST
This message is displayed if the parameters supplied in the input message are incorrect. The utility will attempt

to follow the message with a number of characters from the area of the input message which caused the failure.

2) INVALID CHARACTER IN IDENTIFIER < identifier >

This message is displayed if the <library—tape—name >, <disc—id >, or < file—id > entries in the input

message contain characters which are illegal in identifiers. |

3) < file—name > NOT FOUND
This message is displayed if the parameter—file identified by an * < file—name > macro-call cannot be located.

4) DISK <disc—id> NOT AVAILABLE
This message is displayed if the specified disc is not on line.

5) NO SPECIFICATION GIVEN
This message is displayed if no parameters are entered following LD in the SCL input string.

Errors During Execution

The following messages are displayed if the utility cannot perform some part of its function. The utility will

continue to execute wherever possible.

September 1977 3-77

1) NO FILES IN THE FAMILY < group—id > ON DISK < disc—id > FOR UNLOAD
This message is displayed if the utility is unable to find any files in the specified group on the disc. The utility will ©
continue with the next file in the input parameter list.

2) NO FILE < file—id > ON DISK < disc—id > FOR UNLOAD
This message is displayed if a specified file is not present on the disc. The utility will continue with the next
file in the input parameter list.

3) < file—name > NOT DUMPED—IN OUTPUT USE : |
This message will be displayed if a particular file is found to be in use. The tape will be purged and the utility
will terminate.

4) < file—name > NOT DUMPED—HAS BEEN REMOVED. oo
This message is displayed if a file is removed between the start of UNLOAD and the time when the file is to be
copied to tape. The tape will be purged and the utility will terminate.

5) < file—name > NOT DUMPED—HAS BEEN ALTERED
This message is displayed if the contents of a file are changed between the start of UNLOAD and the time when
the file is to be copied to tape. The tape will be purged and the utility will terminate.

6) < file—name > LOAD/DUMP DISCREPANCY . |
This message will be displayed if end of file has been reached before it is expected, and implies erroneous
information in the Disk File Header.

Normal Execution

The following message is displayed for each file removed. ©

<file—name > REMOVED
The following message is displayed for each file which is copied to tape.

< file—name > DUMPED

Note that the above messages are output by the utility. Any applicable System message may be output by the MCP
(for example, ERROR WHILEIN < verb > if the tape cassette drive is opened while in use).

3-78

UPDATE (Disc File Update) UPDATE

_ | px tb < disc—id—1 > / _4 _UPDAT E——

 -A < integer >

tle disc—id—2 > / a= < file—id—1 > —— Lo _ LN-

 * — file—name >

_FILESIZE— < integer > -—

- CRUNCH

to < disc—id—3 > pe < file—id—2 >

This utility may be used to construct new disc files from existing files and information specified through the

console keyboard. The utility may be executed from a disc other than the system disc by specifying < disc—id—1 >.

The utility may only be used with systems incorporating a console keyboard.

The existing file is identified by < file—id—1> and is assumed to be on the system disc if < disc—id—2 > is

omitted. The file must be of type Source or type Data, and the necessary attributes, such as Record Size, will be taken

from this file. For files of type Data, the input format may be specified to be alphanumeric (A) or hexadecimal (N).

The default if no specification is given is alphanumeric (A). Source file input and Data file type A input is accepted

as direct keyboard input, whereas type N will require the input of two characters (0-9, A—F) for each byte of the

record.

The integer list specified in the syntax may be used to provide “tab” positions within the record. The use of

OCK1 when keying input data causes the utility to reposition the mput point in the record to the next tab position.

During this repositioning, the utility will fill all character positions left unspecified in the record with a fill

character determined by the input type. For source input, the fill character will be an ASCII space, for alpha-

numeric input, an ASCII zero, and for hexidecimal input, a binary—zero—filled character. The record length plus

one is used as a terminating tab position (whether or not other tabs are specified).

The utility can be used for record sizes up to 500 bytes, but, since the utility cannot be given input greater than

the width of the console, tab positions are mandatory on files of larger record sizes. For example, a file of 180 byte —

records requiring alphanumeric input will require at least one tab position (for instance at position 100), whereas

a file of 180 byte records requiring hexadecimal input will require a minimum of two tab positions (for instance

at positions 60 and 120).

The new file to be created is identified by < file—id—2 >. The file will be output to the system disc unless

< disc—id—3 > is specified. The maximum number of records likely to be written to the new file may be

specified using the FILESIZE clause. The < integer > specifies the total number of records, and will be taken from

the old file if not specified. The CRUNCH clause allows the new file to be closed with the crunch flag set. The

new file will occupy the minimum area of disc, but can never be extended.

The utility operates in three modes—Record Modify Mode (PK2), Record Select Mode (PK3), or Record Insert Mode

(PK4). The PK associated with the currently active mode is disabled (the light is turned off) to indicate the

appropriate mode. PK 1, PK5, and PK6 are enabled at appropriate points in each mode to:—

a) PK1. Write the last record processed to the new file then select and print the next logical record from the

old file. The printout will show the record number in the old file of the selected record, together with the next

record number to be written to the new file.

b) PK5. Delete the last record printed by selecting and printing the next logical record from the old file without

writing the last record to the new file. The printout will show the record numbers in the old file of the

selected record, together with the next record number to be written to the new file.

September 1977
3-79

c) PK6. Terminate the utility. All records in the old file not processed will be copied to the new file, and all files
will be closed.

When execution of the utility begins, Record Select Mode is automatically entered.

PK3 Record Select Mode ©

The required record is identified by logical record number using the following syntax

| RECORD to < integer >

where < integer > cannot be less than the number of the last record obtained from the old file, or greater than
the number of records in the file. During the process of locating the required record, all records from, and
including, the last record processed, up to the one immediately prior to the selected record, will be copied from the
existing file to the new file. The record selected, when found, will be printed with its record number in the old file followed
by the record number that the next record written to the new file will take. The print format of the record
contents will correspond to the input mode selected, that is alphanumeric, source, or hexadecimal. Record Modify
Mode or Record Insert Mode may then be selected. Note that a record inserted by Record Insert Mode will be
positioned after the selected record in the new file. Selecting Record 0 allows records to be inserted before
Record | of the old file. | | | | |

PK2 Record Modify Mode

The point in the record at which alterations are to be made is selected by presenting an identifying character
string which immediately precedes the required byte of the record. The character string for insertion or replacement
follows the identifying string, delimited by colons (:). If alterations are to be made at the beginning of the record, no
identifying string is input. The syntax of the keyboard input is :—

< identifying—string > | : < modifying—string >:

The use of OCK1 or OCK2 to terminate the input determines whether the < modifying—string > will replace
or be added to the existing characters in the record. | |

OCK1— Replacement

The < modifying—string > replaces the corresponding number of characters in the record ifOCK 1 is used to terminate
the input. For example, with a record containing

ABCD0123

the amendment C:XY: would result in a record containing

ABCXY 123.
OCK2—Insertion

The < modifying—string > is inserted at the indicated point if OCK2 is used to terminate the input. The insertion
can cause characters in the record to be moved to the right. The shifting of characters applies only to those characters |
from the starting byte to the next higher relevant tab position ; characters beyond this tab position will not be affected. ©

For example, with a record containing

3-80

ABCDEFGH 1234

the amendment C:WXYZ: would result in the record

ABCWXYZD1234 if the tabs specified were 7 and 9, or the record

ABCWXYZDEFGH

if the tab specified was 7 alone.

On completion of a modification, the utility will print the amended record with its associated record number, and
then illuminate all other usable PK options for possible selection.

PK4 Record Insert Mode

This mode allows additional records to be inserted in the new file after the last selected record of the old file. The
keyboard input format is determined by the mode specified in the input message, that is alphanumeric or hexa-
decimal with appropriate character fill when required. The input must be made in accordance with the specified

tab stops.

The utility prints the record number in the old file of the last record taken from the old file, and the record
number in the new file of the next record to be output, prior to accepting keyboard input. The input is echo-printed

When all insertions have been made at a particular point in the file, an available PK may be pressed to select the

next mode or terminate the utility. Note that to insert a record at the beginning of the new file, Record 0 should be

- selected in Record Select Mode, prior to selecting Record Insert Mode.

Output Messages

The following messages will be output by the utility in the event of the appropriate error.

Errors in Initial Parameters

These errors occur if the initial parameters following ““UPDATE” in the SCL input string are incorrect.

After the message is displayed, the utility terminates

1) FILETYPE IS NOT SOURCE OR DATA
_ This message is displayed if the file identified as the old file is of an incorrect file-type.

2) < file—name > NOT FOUND

macro-call, cannot be located.

3) ILLEGAL PARAMETER LIST—ATTRIBUTE SPECIFICATION INVALID
This message is displayed if there is an incompatibility between the specified record and block sizes.

4) ILLEGAL PARAMETER LIST—TABS ERROR
This message is displayed if tab positions beyond the end of the record are specified, or imply input fields larger

than the capability of the console..

5) ILLEGAL PARAMETER LIST
The utility will attempt to follow this message with a number of characters from the area of the input message which

caused the failure.

6) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the < disk—id > or < file—id > portions of the file names contain characters which
are illegal in file—names.

September 1977 3-81

7) NO SPECIFICATION GIVEN
This message is displayed if no parameters are entered following UPDATE in the SCL input string.

Errors During Execution
The following errors may be encountered during the execution of the utility, and do not cause the utility to terminate.
The messages are displayed via the console file.

1) NOT HEXADECIMAL CHARACTER INPUT—RESUBMIT
If the input mode is hexadecimal, any character other than 0-9 and A-F will cause the above message to be

displayed. The complete entry must be resubmitted.

2) ODD NUMBER OF HEXADECIMAL CHARACTERS INPUT
If the input mode is hexadecimal, and the number of hexadecimal characters is odd, then this warning is
displayed. The utility processes the hexadecimal string by extending it on the right with a zero character.

3) INPUT ERROR—RESUBMIT RECORD MODIFICATION

If the syntax of the keyboard input in Record Modify Mode is incorrect, the above message is displayed.

The entire entry is discarded.

' 4) BYTE WITHIN RECORD SPECIFIED NOT FOUND
The < identifying—string > in the keyboard input in Record Modify Mode could not be found in the record.

The entire entry is discarded.

5) RECORD SELECTION ERROR
This message is displayed if, when in Record Select Mode, an invalid record request is submitted.

6) UNWANTED KEY PRESSED—PLEASE RE-INPUT
This message is displayed if an unexpected terminating key is used. The entry should be re-submitted.

7) INPUT IMMEDIATELY BEFORE PK6 HAS BEEN LOST
This warning message is displayed if characters were input immediately before PK6 was pressed to terminate the

_ utility. The characters will not be written to the output file, and the utility will terminate normally.

The following errors may be encountered during the execution of the utility, and will cause a normal termination
(that is, identical to selecting PK6) of the utility.

1) RECORD REQUESTED IS BEYOND E.O.F.
This message is displayed if, when in Record Select Mode, a request is made for a record beyond the end of the old

file.

2) E.O.F. REACHED DURING DELETIONS
This message is displayed if, when in record delete mode, a request is made to delete a record beyond the end of the

old file.

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP
(for example DUPLICATE FILE if the new file has the same name as a file already present on the disc).

3-82

XD (Delete Bad Sectors)

 | px Le disc—id—1 > + —__ xp ——_

—— < disc—id—2 > —— < address > —— < length > ——

This utility will allow the removal of contiguous disc sectors from the Available Table of the required disc. Once

the sectors are removed, they may only be restored to use following a successful disc initialisation, so care must

be exercised in the use of this utility. The utility should be executed as the only task in the mix, and should not be

executed from the disc from which it is intended to remove sectors.

The utility may be executed from a disc other than the system disc by specifying < disc—id—1 >. The disc from

which sectors are to be deleted is identified by < disc—id—2 >. The utility will delete one contiguous block of

sectors in each execution of the utility. The disc address of the first sector to be deleted is specified, in hexadecimal,
in the <address > entry. The number of sectors to be deleted from that point is specified, in hexadecimal, in the
< length > entry. Note that “@” characters are not required to delimit these fields.

In order to remove the disc space, the relevant sectors must be in the available table.

identification of Bad Sectors

The appearance of bad sectors on a particular disc will be evidenced by recurrent errors of the following type

whilst using the disc:

< mix—number > / < program—id > [< event—number >] < file—name > DK < function >

< message > ERROR WHILE IN <verb> < status >

where < event—number > and < message > will be as shown below.

< event—number > < message >

2 PARITY
3 TIMEOUT /; Program will continue to execute

4 ADDRESS
45 PARITY
46 TIMEOUT ?; Program will require DS or DP

47 ADDRESS

For the above events, < status > will show the appropriate disc sector address (PARITY and ADDRESS) or disc

cylinder address (TIMEOUT) in hexadecimal.

Important Note

This utility is a task which runs under MCP control, and as it is a utility which writes records to the disc directory,

it will not be able to exercise a great deal of control over tasks attempting to, for example, acquire disc space at the same

time. XD should therefore be run as the only task in the mix, and should not be executed from the disc from

which it is intended to remove sectors if this can possibly be avoided.

Output Messages

The following messages will be output by the utility in the event of the corresponding error or condition.

September 1977 3-83

Errors in Initial Parameters

The following messages will be displayed, and the utility will terminate, if errors are detected in the initial parameters
following “XD” in the SCL input message.

1) < parameter—list > ILLEGAL PARAMETER LIST |
This message is displayed if the parameters are found to be unacceptable.

2) DISK < disc—id > FOR XD NOT AVAILABLE
This message is displayed if the specified disc is not on line.

3) INVALID CHARACTER IN IDENTIFIER < identifier >
This message is displayed if the character string representing < disc—id—2 > contains characters which are invalid
in identifiers.

4) NO SPECIFICATION GIVEN
_ This message is displayed if no parameters are entered following XD in the SCL input string.

Errors During Execution

_ The following messages will be displayed if the utility cannot entirely perform the requested deletion.

1) ONLY @ < length > @ SECTORS CAN BE DELETED
This message is displayed if the number of sectors spécified for deletion is greater than the number contained in the
Available Table entry. The utility will proceed with the reduced number indicated by @ < length > @

2) AVAILABLE TABLE FULL—ENTRY @< address >@. @< length > @ LOST
This message is displayed if, following the removal of the requested sectors, there are no entries left in the available
table for the inclusion of the zero, one, or two new available areas created. The utility will proceed otherwise
normally to end of job. The disc concerned may still be used for running tasks, but there will be sectors
which cannot be accessed by any task (these may be shown by a KA listing of the disc); they may only be
retrieved by initialising the disc.

3) SECTORS FOR XD NOT IN AVAILABLE TABLE |
This message is displayed if the sectors requested for removal are allocated to a \ tile, previously removed, or
missing. The utility will terminate.

Normal Execution

The normal, successful, termination message 1s

-@< length > @ SECTORS FROM @ < address > @ DELETED

Note that the above messages are output by the utility. Any applicable system message may be output by the MCP
(for example, ERROR WHILE IN < verb > if the directory structure of the target disc contains bad sectors).

3-84

ag | | SECTION 4

Se SORT/MERGE INTRINSICS

INTRODUCTION

This Section is intended as a comprehensive description of the capabilities, the requirements, and the visible inter-

faces of the CMS sort-merge intrinsics.

Syntactic and semantic definitions of sort and merge constructs appearing in applications languages are not

discussed in detail (although the CMS COBOL sort and merge verbs are briefly introduced). Refer to the relevant
language manuals for precise definitions.

The sort language (used to initiate a ‘stand-alone’ sort or merge) is defined in detail.

RELATED DOCUMENTS

2007555 CMS Master Control Program (MCP) Reference Manual.

2007266 CMS COBOL Reference Manual.
2007274 CMS RPG Reference Manual.

GENERAL DESCRIPTION

The CMS sort-merge intrinsics provide the following capabilities:

a) The records contained within a designated data file may be sorted on a series of specified keys, each key ascending

or descending as required.

b) A tagfile (suitable for use as an ADDROUT file in RPG and for limited indexed access in COBOL) may be created

from a designated data file using a series of specified keys, each key ascending or descending as required.

c) A keyfile (suitable for full CMS indexed access) may be created from a designated data file using | a specified

unsigned key (ordered ascending). Optionally, a check for duplicate key values may be requested.

d) A number of designated files may be merged together using a series of specified keys, each key ordered ascending

or descending as required.

Any of the above functions may be invoked using the sort language (that is, by executing a stand-alone sort or

merge).

Sort and merge constructs found in applications languages are in general defined such that only a subset of the

above functions may be invoked. The facilities available in CMS COBOL are outlined in COBOL GENERATED

SORTS AND MERGES; however, for both COBOL and other CMS application languages, consult the appropriate
language manual for a precise definition of the functions to which access may be made.

Function a) listed above can be performed using a minimal amount of disk space as work space. This is requested by
specifying that the INPLACE sort intrinsic is to be used.

Logically, the CMS sort-merge software consists of the regular sort intrinsic, the inplace sort intrinsic, the merge
intrinsic, and the sort language processor. The latter is a pre-pass to the intrinsics and is used when a stand-alone

sort-merge is executed.

September 1977 | 4-]

FUNCTIONAL DESCRIPTION

KEYS

A field within a record which is specified as containing a value to be used when the record is sorted or merged is a
**key”’.

If several distinct fields within a record are specified then each field is a separate key, and the sort or merge
required is a hierarchical multi-key sort or merge. The hierarchical ordering (that is, the relative order of importance)
of the keys is determined by the order in which they are specified to the intrinsics.

In a multi-key sort or merge, each key may be specified to be ordered ascending or descending as required.

It isa CMS restriction that a key associated with a keyfile must be unsigned ascending and no greater than 28 bytes in
length. It is further restricted to being a whole number of bytes in length and aligned on a byte boundary. These
restrictions apply when the keyfile building function of the regular sort intrinsic is invoked (see KEYFILE
CREATION).

With the exception of the latter type of invocation, the sum of the lengths of all keys (including signs) specified
for use during any sort or merge must not exceed 29 bytes.

The maximum permissible number of keys for a sort or merge (except for the keyfile building function) is ten (10). A
keyfile creation request must only specify one (1) key (a CMS keyfile may only relate to one key).

There are no restrictions on the contents of keys but note should be taken of the CMS deleted record format
(see DELETED RECORDS) and of the CMS invalid index key values (see INVALID INDEX KEYS).

The CMS sort-merge intrinsics support the following key types:

a) 4-bit unsigned numeric.

—each 4-bit unit is a binary coded decimal digit.

b) 8-bit unsigned alphanumeric.

—an ordinary character field i.e. each byte contains an ASCII alphanumeric code.

c) 4-bit signed numeric. |
—each 4-bit unit is a binary coded decimal digit except that the most or least significant 4-bit unit is

interpreted as a sign.

d) 8-bit signed alphanumeric. | | |
—each byte contains an ASCII alphanumeric code except that the most significant 4-bits of the most or

least significant byte are interpreted as a sign.

e) 8-bit alphanumeric with separate sign.

—each byte contains an ASCII alphanumeric code except that the most or least significant byte is interpreted
as a sign.

Cases c) and d) assume the standard CMS sign conventions for 4-bit sign zones i.e. 0011 (#3) for positive and
0101 (#5) for negative; note however, that in practice a value other than #5 will be interpreted as positive.

Case e) assumes that the sign byte will contain the appropriate ASCII code for positive (#2B) or negative (#2D);
note however, that in practice a value other than #2D will be interpreted as positive.

It should be noted that by definition cases b) and d) include 8-bit numeric (i.e. each byte contains the ASCII code for a
decimal digit).

4-2

8-bit keys, with the exception of case e), may start on digit rather than byte boundaries.

A signed key may have the sign positioned at either end of the field but it must appear in the same position for all

occurrences of the key.

Signed keys are ordered algebraically, that is, negative values are less than any positive value.

DELETED RECORDS

A deleted record in the CMS system is denoted by the fact that every byte in the record contains #FF. Most

of the sort-merge functions will exclude either the deleted record itself or a reference to it from the sort-merge output

file. A minority of the sort functions will not do this. The action taken by each sort-merge option is indicated at the

relevant point in the following text.

REGULAR SORT INTRINSIC

Capabilities

The regular sort intrinsic may be invoked to perform one of the following four distinct functions.

Complete File Ordering

All the records contained within a designated input file will be ordered using a series of one or more specified keys.

Deleted records occurring in the input file will not be included in the output file.

The intrinsic will use disk work space of up to 2.2 times the size of the specified input file. In cases where the

input file is resident on a user disk (cartridge or mini) the intrinsic may locate up to half the work space on that disk.

In all other cases all work space will be resident on the system disk.

All sort disk work space will be returned to the system as free disk space prior to the sort going to (normal or abnormal)

end of job.

Partial File Ordering

A partition (a contiguous group) of records contained within a designated input file will be ordered using a series of

one or more specified keys.

Deleted records occurring in the input partition will not be included in the output files except in the case where the

ordered partition is written back into the input file (overwriting the unordered copy of itself). The latter will

occur only during a partition sort where the specified output file is the same as the specified input file, and the

device type is disc. In such cases the deleted records will be suitably collated in the re-ordered partition.

The intrinsic will use disk work space of up to 2.2 times the input partition size. In cases where the file within which the

input partition is located is resident upon a user disk (cartridge or mini) the intrinsic may locate up to half its work

space on that disk. In all other cases all work space will be located on the system disk. All sort disk work space is

returned to the system as free disk space prior to the sort going to (normal or abnormal) end of job.

Tagfile Creation

The intrinsic will create a tagfile corresponding to a designated input file using a series of one or more specified keys.

September 1977 | 4-3

The intrinsic will create a file having the format of a CMS keyfile. However, unlike a keyfile, the tagfile will not contain
any key values. The order in which the records will appear in the tagfile will correspond to the collating sequence of
the data records to which they refer (based upon the key(s) specified for the sort): Deleted Tecords occurring in the
input data file will not be referenced in the tagfile.

Note that the data records contained in the specified input file will not be re-ordered by this sort option and that
deleted records occurring in the file will not be removed.

The newly created tagfile will be given the same generation number as the specified input file.

The tagfile will be suitable for use as an ADDROUT file in RPG and for limited indexed access in COBOL
(sequentially by the value(s) of the (original) key(s), that is, the tagfile is read sequentially). The legal indexed
operations will be restricted to read and re-write.

The intrinsic will use disk work space of up to 2.2 times the size of the temporary file initially created by it. This file
will contain records each of which will consist of the relative record number of the data record (in the input file)
to which it refers and a copy of the data record’s key value(s). In cases where the specified input file is located
on a user disk (cartridge or mini) the intrinsic may locate up to half its work space on that disk. In all other
cases all work space will be resident on the system disk. All sort disk work space will be returned to the system as
free disk space prior to the sort going to (normal or abnormal) end of job.

Keyfile Creation

The intrinsic will create a keyfile corresponding to the designated input file using the specified unsigned key. Note
that the specified key must total no more than 28 bytes in length, be a whole number of bytes, be aligned on a byte
boundary and be specified to be collated ascending. The keyfile created will provide full CMS indexed access
capability. Any deleted records occurring in the input data file will not be referenced in the keyfile (see also
INVALID INDEX KEYS).

Note that the data records contained in the specified input file will not be re-ordered by this sort option nor will
deleted records be removed.

The newly created keyfile will be given the same generation number as the specified input file.

Upon initiation of this sort option the acceptability or otherwise of duplicate key values in the keyfilé may be
specified. If they are unacceptable then the intrinsic will check for their presence. If a duplicate (or triplicate etc.)
situation occurs the following action will be taken:

a) the relative record number of each record concerned will be displayed on the SPO.

b) the sort will continue but the output keyfile will be CLOSED with PURGE.

The intrinsic will use disk work space of up to 2.2 times the size of the temporary file initially created by it. This
file will contain records each of which will consist of the relative record number of the data record (in the input file)
to which it refers and a copy of the data record’s key value. In cases where the specified input file is resident on a user
disk (cartridge or mini) the intrinsic may locate up to half the work space on that disk. In all other cases all
work space will be resident on the system disk. All sort disk work space will be returned to the system as free
disk space prior to the sort going to (normal or abnormal) end of job.

Invalid Index Keys

It is a CMS restriction that the sequence of bytes in a record specified to be the key to be used during a
keyfile creation sort may not:

4-4

a) consist of all binary zeros

or

b) contain any byte whose value is #FF.

If, during a keyfile creation sort, such a key is encountered the following action will be taken:

a) the relative record number of the record concerned will be displayed on the SPO.

b) the sort will continue but will create a keyfile that does not reference records containing an invalid index key.

Input Medium

The medium containing a specified input file to the regular sort intrinsic may be any one of the following:

a) 80—column cards.

b) Reel—to—reel tape.

c) Cassette.

d) Disk (cartridge or mini).

Input Restrictions

An input file must be wholly contained on one hardware type.

An input file myst be of type data or of type source.

Upon initiation of the intrinsic the specified input file must have.no write-permitted users.

Main Memory Requirements

For the purposes of speed and efficiency the intrinsic will make use of a non-overlayable memory area for work space.

At initiation the size of this work area may be specified. The intrinsic will use the specified size unless it calculates
that it is inadequate for a successful sort, in which case it will use the minimum acceptable size.

If the work space size is not specified to the intrinsic at initiation it will compute and use a size that it considers will

produce a reasonable sort time while not unacceptably degrading overall system performance.

Output Medium

The medium specified to contain the required output file, with the exception of the keyfile and tagfile creation

options, may be any one of the following:

a) 80—column cards.

b) Reel—to—reel tape.

c) Cassette.

d) Printer.

e) Disk (cartridge or mini).

Newly created keyfiles and tagfiles will always be made resident on a disk device.

With the exception of the keyfile and tagfile creation options, the type of the output file will correspond to the

type of the input file (source or data).

_ September 1977 4-5

Records that are output to a printer and that are smaller than a printer line will appear left justified with space fill on
the right.

INPLACE SORT INTRINSIC

Capabilities

The inplace sort intrinsic will order the records contained within a designated input file on the key(s) specified. Note

_ that the records are actually re-sequenced within the same file—a new output file is not created. The time taken will
be substantially greater than that which the regular sort intrinsic would take to sort the.same file.

Deleted records will not be removed; they will appear (appropriately located) in the re-ordered file.

Typically the inplace sort intrinsic will use disk work space of 0.2—0.3 times the size of the input file. All sort
_ workspace will be returned to the system as free disk space prior to the sort going to (normal or abnormal) end of

job. - |

Input Medium

The medium containing the specified input file to the inplace sort intrinsic must be disk (cartridge or mini).

Input Restrictions

An input file must be wholly contained on one disk.

An input file must be of type data or of type source.

Upon initiation of the intrinsic the input file must have a user count of zero.

Main Memory Requirements

The intrinsic will use a non-overlayable area of main memory for work space. The size of the area may not be
specified at initiation. |

Output Medium

The output file specified for an inplace sort must be the same file as was specified for input; therefore, like the
input medium, the output medium must be disk (cartridge or mini).

MERGE INTRINSIC

Capabilities

The merge intrinsic will merge up to sixteen designated input files (using a series of one or more specified
keys) and produce a designated output file.

Deleted records occurring in the input files will not be included in the output file.

4-6

The order in which the input files are specified to the intrinsic will determine the order in which records (from

different input files) with the same key values will be ordered in the output file.

Disk Space Requirements

The merge intrinsic will not require any disk work space.

Input Medium

A file specified for input to the merge intrinsic may reside on any of the following media:

a) 80—column cards.

b) Reel—to—reel tape.

c) Cassette.

d) Disk (Cartridge or mini).

Input Restrictions

An input file must be wholly contained on one hardware type.

An input file must be of type data or source.

Upon initiation of the intrinsic no specified input file may have write-permitted users.

At any initiation of the merge intrinsic each physical non-disk hardware unit may contain not more than one specified

input file. Any number of input files may be resident on the same disk.

The merge intrinsic will expect the record size associated with any particular input file to be equal to the record size

associated with each of the other input files. It will also expect that the set of merge keys (which may consist of only

one) will have the same position(s) and length(s) within a record and have the same format(s) for all the input files.

The merge intrinsic will assume that the records containéd within each specified input file are already correctly

ordered on the specified key(s). If the intrinsic detects that this is not the case, it will display an appropriate message

on the system SPO detailing the input file in error and then go to abnormal end of job.

Main Memory Requirements

The merge intrinsic will use a non-overlayable area of main memory for work space. The size of this area may not

be specified at initiation; it will always be approximately equal to the sum of the input files’ block sizes plus twice the

output file’s block size.

Output Medium

The specified medium for the output file may be any one of the following:

a) 80—column cards.

b) Reel—to—reel tape.

c) Cassette.

d) Printer.

e) Disk (cartridge or mini).

September 1977 | 4-7

Records that are output to a printer and that are smaller than a printer line will appear left justified with space fill on @ | the right.

The output file type will be made the same as that of the first specified input file.

INVOCATION OF THE SORT-MERGE INTRINSICS

GENERAL

The sort-merge intrinsics may be invoked by the following methods:
a) by an executing S-program |

b) more directly by the user, by executing a stand-alone sort or merge.
Case a) will occur when sort or merge source constructs are used by the applications programmer.

Case b) requires the programmer to create a set of stand-alone sort language statements (see STAND-ALONE - SORT-MERGE INITIATION) and to deliberately request the system (using the system control language) to execute SORT. |

Regardless of the manner in which the sort-merge intrinsics are initiated they will always require certain information in a well defined format. This information will include the type of sort or order of merge, the sort or merge key(s), required disposition of the input file(s), special options, etc. This information will always be constructed by the CMS system on behalf of the user, and is not, therefore, defined in this manual.

COBOL GENERATED SORTS AND MERGES | ©

A brief note of the actions invoked by use of the CMS COBOL sort and merge verbs follows; for more precise details the reader should consult the CMS COBOL manual. .

Cobol Sort Verb

Use of this verb will always result in the intiation of the regular sort intrinsic for a full record sort on the whole of the specified file. :

If the USING < file—name—2 > giving < file—name—3 > format is used then < file—name | —2 > will be passed to the intrinsic as the input file and < file—name—3 > will be the newly ordered output file.

If the INPUT PROCEDURE, OUTPUT PROCEDURE option is used then an intermediate disk file will be created as records are RELEASEd from the INPUT PROCEDURE. When control exits from the INPUT PROCEDURE the temporary file will be CLOSED with LOCK and passed to the intrinsic for sorting. After the sort has completed, the COBOL program will be restarted and as it executes RETURNs it will be passed records from a temporary disk file containing the original records correctly ordered.

Cobol Merge Verb

Use of this verb will always result in the initiation of the merge intrinsic to merge together the records contained within the specified input files to form a new file as indicated in the MERGE source statement.

4-8

STAND-ALONE SORT-MERGE INITIATION

A sort-merge intrinsic may be invoked as a free standing task either by an execution request from the system

SPO or by a ZIP from an applications s-program. This is done by using the stand-alone sort language. The language

allows the programmer to specify to the particular intrinsic invoked all relevant information concerning the job

to be done. The language is processed by a dedicated module (the sort language processor) which will then invoke

the required intrinsic.

Input Medium

The sort language processor will accept sort language statements from a card, cassette or disk (cartridge or mini)

file. It will also accept the specification statements directly from an initiating message, that is, as a text string

immediately following the system control command to execute the language processor. Whether initiated directly from

the system SPO, or via a ZIP from an application task, the format of the text string must conform to the rules given

in INVOKING THE SORT LANGUAGE PROCESSOR.

Details of the initiating message concept and the ZIP communicate may be found in the CMS Master Control

Program (MCP) Reference Manual, form number 2007555.

Input Restrictions

Any record size up to a maximum of 90 bytes can be chosen for the specification file (if present) when on a magnetic

medium; for a card file the record size is defaulted to that of the physical record. If an initiating message is chosen as

the specification method, its length is governed purely by the length of the specification statements (up to the CMS

defined maximum of 255 characters). This restriction however does not apply to initiating messages generated by a ZIP

from a user task to the sort language processor. The maximum length of such messages is implementation

dependent.

As it may not be possible to completely specify a large merge in an initiating message of 255 characters, in such

circumstances, the input to the processor should come from a file containing the merge statements.

Normally the processor will list the statements (together with any applicable error messages) on the printer; however,

this may be inhibited by use of a particular sort language construct (see THE USER STATEMENT). The listing of the

statements is automatically inhibited when the input comes from an initiating message.

The specification input file (if present) must be of type data or source.

Invoking the Sort Language Processor

* tt < file—name > {|

text < disc—id > / _ sort —| ——

< sort—merge—specification >—

The system control string used to initiate the sort language processor and hence a stand-alone sort or merge may

optionally contain the name (preceded by an asterisk (*)) of the (card, cassette or disk) file containing the sort language

statements or else (by omitting the asterisk) it may contain the sort language statements themselves. The

< sort—merge—specifications > are described in the SORT LANGUAGE.

If the control string only contains an asterisk (but no following file name) the sort language processor will look for

a file named SORTSPEC on the system disk.

September 1977 |
| 4-9

If a file name is also present, then:

1) if it is a one part name containing seven characters or less a search of the following devices (in the specified order)
will be executed for the named file: |

a) Cards.

b) Cassette.

c) System disk.

2) if it is a two part name or one part containing more than seven characters a disk will be assumed and a check

will be made for the presence of both the disk and the file.

If, in any of the above cases, the required file is not found the operator will be given the opportunity to load the file or
DS the job.

|

THE SORT LANGUAGE

GENERAL

The sort language will allow the user to invoke any of the functions that the intrinsics provide. There are three
sort language statements. These are:

the File statement

the Key statement

the User Option statement

In any complete and valid group of sort language statements there will be one instance of the file statement, one
instance of the key statement, and zero, one, or more clauses of the user option statement.

The statements are in free field format and may be arranged in any order consistent with the rules given below for
~each statement.

THE FILE STATEMENT

{ ILE DISK “a PURGE 4
he <mfid > / < file—id > -()-— Lees DISK

CARD

| purGEL < record—size > I < records—per—block >
TAPE

CASSETTE-

DISK

CARD—— — |
(L < record—size > 1 < records—per—block Wy TAPE |

CASSETTE
—OUT—_ < mfid > /* < file—id > PRINTER |

— (KEYFILE)

(TAGFILE)

4-10

The file statement consists of two parts, the first of which describes the input file(s) and the second of which

describes the output file. If more than one input file is specified then the MERGE clause of the user option statement

must also be specified (see THE USER OPTION STATEMENT).

Each input file is described by a list of input descriptions. A sort request may only contain one input description;

a merge request may contain up to sixteen. The parameters enclosed in parentheses must be separated from each

other by at least one space.

The output file to be produced by sort-merge is specified by the output description. The parameters enclosed in

parentheses must be separated from each other by at least one space.

Within a keyfile creation sort request:

a) The output file < file—name > must refer to a disk file.

b) The output parameters enclosed in parentheses must be replaced by the reserved word KEYFILE.

A newly created keyfile will always be made resident on a disk: the record size and.blocking factor are not user definable.

Within a tagfile creation sort request:

a) The output file < file—name > must refer to a disk file.

b) The output parameters enclosed in parentheses must be replaced by the reserved word TAGFILE.

A newly created tagfile will always be made resident on a disk; the record size and blocking factor are not user definable.

The medium upon which a specified input file is resident is indicated by the appropriate reserved word, DISK, CARD

etc. The required medium type of the output file is similarly specified. When the medium specified is DISK and there

is no < mfid > present then the system disk is assumed.

The PURGE option is used to indicate that an input file is to be purged after use.

For both sort and merge input files, when the input medium is DISK, the <record size > and

< records—per—block > parameters may optionally be omitted for each input file description. This applies to all

options of the sort and merge functions. In the case of a merge, it is possible to intersperse disk input file

descriptions which omit these parameters with some that do not.

Irrespective of the output medium, for both record sort and merge output files, it is always possible to omit the

< record size > and < records—per—block > parameters from the output file description. In the case of a record sort,

the values assumed will be those possessed by the input file (regardless of whether they were also omitted from the |

input file description). For a merge, the record and block sizes of the first specified input file (with the same non

specification proviso as for the sort) will be used if the output parameters are omitted.

In all cases (except an index sort) the input and output files must have the same record sizes.

The < records—per—block > entry may be omitted from both input and output file specifications in all cases where

the < record size > is specified. In such conditions, its omission is taken to imply a blocking factor of one (1).

The < record—size > and < records—per—block > entries must be unsigned integers.

September 1977 4-11

THE KEY STATEMENT

- ALPHA —,
| UA

-NUMERIC:!
ASCENDING— -UN
A -SA ——_—_.

___KEY to (< relative—location > — < field—length > DUNG HL Son a ‘ 4 oo

The key statement is used to define the key(s) that the sort-merge is to use to collate the input records.

The elements of each key description must be enclosed in parentheses and each must be separated from the next
by at least one space.

A number of keys may be specified, each key description being enclosed in parentheses. The first key will be the
major key and any additional keys will be minor keys of decreasing significance.

The < relative location > is used to specify the position of the key relative to the start of the record. The unit of
measurement is a digit (that is, a 4-bit unit). The first 4-bit unit in the record is taken to be relative position one. The
relative position of the left-hand 4-bit unit of the key (which, depending upon the key format, may contain a sign) is
used to specify the key location. :

The length of the key is indicated by the < field length >.. The unit of measurement is the 4-bit unit. In the case of
signed keys the length must include the sign.

The sequence reserved words specifies whether the key is to be collated ascending or descending. Ascending sequence
(ASCENDING or A) need not be specified as this is the default. DESCENDING or D may be used to indicate
descending collation.

The format reserved words describe the format of the data within the key. ALPHA or UA indicates that the data is
unsigned 8-bit alphanumeric. This need not be specified as it is the default. NUMERIC or UN indicate that the data is
unsigned 4-bit numeric (that is, each 4-bit unit contains a binary coded decimal digit). SA specifies signed 8-bit
alphanumeric. The sign is assumed to be resident in the most significant 4-bits of the most or least significant byte as given
by the sign position character (see later). SN indicates that the data is signed 4-bit numeric. The sign is assumed to be
resident in the most or least significant 4-bits as given by the sign position character. SSA indicates that the data is
8-bit alphanumeric with a leading or trailing 8-bit separate sign (the sign position will be indicated by the sign position
character).

The sign position character is used in the description of a signed key to specify whether the sign is located at the left-hand
(most significant) end or the right-hand (least significant) end of the key. If the sign position character is absent within
the definition of a signed key then the left-hand end is assumed.

For a full discussion of sort-merge key types and sign zone interpretation refer to KEYS.

4-12

THE USER OPTION STATEMENT

INDEX ——

INPLACE— |

MERGE—
— SYNTAX

| --NOPRINT
|_ PARTITION —(< starting—record—number > — < number—of—records >)—

'— NODUPLICATES
_- COMMENT — < comment—string >
| FILESIZE — < number—of—records >
MEMORY < memory size >

The purpose of the user option statement is three fold:

a) to specify to the intrinsics (where necessary) which particular function is required.

b) to tailor a sort or merge to the particular target machine configuration (amount of main memory, printer

availability, etc.).

c) to add comments to the sort language statements.

A valid set of sort language statements need not contain any part of the user option statement.

The clauses of the user option statement may be coded in any order relative to each other and to the file and key

statements.

The sort type option is used to indicate which sort-merge function is required. If the clause is omitted then a regular

full record sort is assumed. The INDEX sort type option will cause either a keyfile or a tagfile to be created for the

specified input file. The choice will depend upon the value of the output file parameters in the file statement (see THE

FILE STATEMENT). The INPLACE sort type option causes the execution of a full record sort using a minimal

amount of disk work space. The MERGE sort type option causes the contents of the specified input files to be merged

together producing the required output file. |

By use of the SYNTAX option, the programmer may specify that he only requires his sort language statements to be

checked for correctness and does not wish an intrinsic invoked.

The NOPRINT option may be used to inhibit the listing of the sort language statements on the printer.

NOPRINT should be the first entry in the specification statement list. If the statements are input via an initiating

message (see INPUT MEDIUM), they are treated as if the NOPRINT option is set, that is, the listing is always

inhibited. If the sort language processor detects an error in the statements while the NOPRINT option is set, the

error number (as defined in SORT LANGUAGE PROCESSOR MESSAGES) will be printed on the system SPO. Note

that warning message numbers (where corrective action is taken) will not appear on the SPO. A maximum of five error

numbers will be displayed. —

The PARTITION option is used to specify that only a particular part of the input file is to be sorted. The < starting

record number > and < number of records > must be enclosed in parentheses and separated by at least one space. A

partition is always inclusive of the <starting record number >. If < number of records > is zero then all records

between < starting record number > and end—of—file are sorted. The PARTITION option may not be used with the

INDEX or MERGE options. 7

Within a keyfile creation request, the NODUPLICATE option may be used to specify whether or not duplicate

records are allowable in the required keyfile. Absence of the clause will imply that they are. This option 1s not valid

in other than a keyfile creation request.

The COMMENT option is used to document a sort language statement list. A comment is delimited by the reserved

word COMMENT and the end of a record (or the end of the message if an initiating message is used). Comments

may appear between statements and between clauses of the user option statement. They may also appear between file

September 1977 4-13

descriptions in the file statement and key descriptions in the key statement provided that the syntactic rules of these © statements are not contravened. |
An estimate of the size of the requested output file may be specified to the intrinsic by use of the FILESIZE option. The value given should be approximately equal to (or greater than) the number of sort-merge records that the intrinsic will produce. This will aid disk space optimisation whilst a larger value than the true output file size will enable the file to be subsequently extended by the addition of extra records. Where possible (that is, input files on disk) the intrinsic will calculate a minimum size for the specified output file and use this value in preference to the FILESIZE option, if the calculated value is larger than the option size. Any inaccuracy in the option is therefore not fatal to the sort-merge. If the FILESIZE option is not given, the intrinsic will either assume a default file size (all input files not resident on disk) or calculate an optimum value (all input files resident on disk). The presence of this option is not a prerequisite for a successful sort-merge. This option is not applicable to the INDEX or PARTITION (when the sorted section is inserted back into the original file) functions of the regular intrinsic or to the INPLACE intrinsic.

The programmer may specify to the regular sort intrinsic how much main memory it may use as a non-overlayable work area by use of the MEMORY option. If the intrinsic calculates that the amount specified is less than the minimum required for a successful sort it will ignore the programmer’s directive and use the minimum satisfactory size.

SORT LANGUAGE PROCESSOR MESSAGES

GENERAL

Sort language processor messages are divided into two classes, viz. ERROR messages and WARNING messages. ERROR messages are further subdivided into two sections, that is, SY NTAX errors where the grammar of the language has been contravened and SEMANTIC errors where an inconsistency has been detected in the parameters specified (for example, key position outside the record boundary). In the case of WARNING messages, corrective action is always attempted. The action taken is explained in the appropriate message. | ©

The messages are numbered from 0 to 99. Those in the range 0 to 39 are warnings, whilst those from 40 onwards fall into the two error classes, that is, 40 to 59 are syntax messages and 60 to 99 are semantic messages. _

Messages appearing below that are followed by a series of dots (...) should be read with the phrase NEAR COL XXX inserted in place of the dots. All messages are sent to the printer.

WARNING MESSAGES

_ Number Message

EXPECTED SLASH NOT FOUND, “/” INSERTED ...
EXTRA “FILE IN”...
INPUT, OUTPUT FILES IDENTICAL, < PURGE OPT > INSERTED
OVERLENGTH PART OF < LABEL NAME > IGNORED...
IGNORE < FILE SIZE OPT > SINCE LESS THAN < PARTIT OPT >
EXPECTED BRACKET NOT FOUND, “(” INSERTED...
< DUPLICATE OPTION > VALID IN INDEX—KEYFILE SORT ONLY
EXPECTED BRACKET NOT FOUND, “)” INSERTED...
ILLEGAL TO DELETE INPUT FILE, < PURGE OPT > IGNORED
PARTITN TO IN—FILE, ALTERED OUT—FILE PARAMS IGNORED 10 < USER OPTION > ALREADY INVOKED, LATEST USE...

11 MERGE <SORT TYPE OPTION > NOT SPECIFIED
12 < PARTITION OPT > VALID FOR INPLACE/REGULAR SORT ONLY 13 MISSING “FILE IN”...
14 _ INDEX < SORT TYPE OPTION > NOT SPECIFIED
15 EXTRA “KEY”...

 O
O

I
N

MN
B
W
N
R
 O

C

16 MERGE INTRINSIC IGNORES < FILE SIZE OPTION >

17 MISSING “KEY’”’...

18 INPLACE INTRINSIC IGNORES < MEMORY OPTION >

19 < M—FILE/DP ID > IGNORED ON NON—MAGNETIC MEDIA FILE...

20 NUMBER TOO BIG, MAXIMUM VALUE ALLOWABLE ASSUMED...

21 NOT NECESSARY TO PURGE CARD FILE...

22 < SIGN POSITION > GIVEN FOR UNSIGNED KEY...

23 FIRST UNIT NUMBERED 0 RATHER THAN lI...

24 < FILE SIZE OPT > IGNORED SINCE OUT OF RANGE...

25 MERGE INTRINSIC IGNORES < MEMORY OPTION >

26 < BLOCK FACTOR > OF 0 NOT ALLOWED, 1 ASSUMED...

27 IN— & OUT—FILE RECORD SIZES MADE EQUAL

28 < BLOCK FACTOR > TOO LARGE, MAXIMUM ASSUMED...

29 INPLACE SORT MUST HAVE IDENTICAL IN— & OUT—FILES

30 PARTITION SIZE TOO BIG, SORT TO EOF ASSUMED...

ERROR MESSAGES

Number Message

40 < KEY STATEMENT > ALREADY PROCESSED, NOW...

41 < DIGIT STRING > EXPECTED...

42 < CHARACTER STRING > EXPECTED...

43 < SEPARATOR STRING > EXPECTED...

50 NO < FILE STATEMENT > SPECIFIED

51 STATEMENT PARTLY IGNORED, ILLEGAL WORD...

52 < LETTER STRING > EXPECTED...

53 MISSING “<..>/<..>” OR “<..>”...

54 UNSUPPORTED < IN/OUT MEDIA >...

55 ~UNSUPPORTED < SORT TYPE OPTION >...

56 PART OF < FILE STATEMENT > MISSING, NOW...

57 NO < KEY STATEMENT > SPECIFIED

58 < FILE STATEMENT > ALREADY PROCESSED, NOW ...

59 REMAINDER OF STATEMENT MISSING

Number Message 60 TOO MANY KEY SPECIFICATIONS...

61 TOO MANY FILE SPECIFICATIONS...

62 INPUT FILES RECORD SIZES NOT IDENTICAL...

63 < RECORD SIZE > OUT OF RANGE...

64 EXTRA DIGITS IN OVERLENGTH STRING IGNORED...

65 (CURRENT SUM OF) KEY LENGTH(S) OUT OF RANGE...

66 MIN LENGTH OF SN KEY IS TWO 4-BIT UNITS...

67 BUFFER SIZE TOO LARGE... .

68 DUPLICATE < IN—FILE PARAMS >, LATEST INSTANCE...

69 BUFFER SIZE TOO BIG FOR <IN/OUT MEDIA >...

70 ONLY ONE IN—FILE LEGAL FROM MULTIFILE TAPE...
71 MERGE INTRINSIC NEEDS AT LEAST 2 INPUT FILES

~ September 1977
4-15

72 INDEX PARAM MUST BE “OUT.. .(KEYFILE/TAGFILE)”’ | © 73 KEY OVER—RUNS RECORD BOUNDARY
74 ILLEGAL TO OVERWRITE INPUT FILE WITH TAG/KEY FILE
75 ALPHANUMERIC KEY LENGTH NOT EVEN NUMBER OF 4-BITS...
76 < MEDIA > MUST BE DISK IF SORTING BACK TO IN—FILE

T7 IN— & OUT—FILE RECORD SIZES MUST BE IDENTICAL
78 INDEX—KEYFILE KEY LENGTH NOT EVEN NUMBER OF 4—BITS
79 ONLY ONE KEY. LEGAL IN INDEX—KEYFILE SORT |

— 80 INDEX—KEYFILE SORT KEY TOO LONG
81 INDEX—KEYFILE SORT KEY MUST BE“... A UA/UN)”
82 ONLY INDEX SORT CAN SPECIFY “KEYFILE/TAGFILE”
83 INDEX—KEYFILE SORT KEY MUST START ON BYTE BOUNDARY
84 MIN LENGTH OF SSA KEY IS FOUR 4—BIT UNITS...
85 SSA KEY MUST START ON BYTE BOUNDARY...

SORT—MERGE INTRINSIC MESSAGES

GENERAL

The intrinsic messages are a mixture of error and information messages. Each message is preceded by the phrase
< mix number > / < program name > and they are all directed to the system SPO. Note that individual message
numbers are not printed.

INTRINSIC MESSAGES

Number Message

170 DUPLICATE RECORD < record number >
171 ILLEGAL INDEX KEY IN RECORD < record number >
172 RECORDS LOST OR GAINED BY SORT-MERGE
173 < number > DUPLICATE RECORDS |
174 < number > RECORDS CONTAINING INVALID INDEX KEYS
175 < number > RECORDS DELETED
176 < number > RECORDS MERGED
177 < number > FILES MERGED
178 SORT-MERGE OUTPUT FILE NOT CREATED
179 SORT-MERGE ABNORMAL EOJ
180 SORT-MERGE SOFTWARE ERROR
181 < number > RECORDS REFERENCED BY KEY FILE/TAGFILE
182 NO INITIATING MESSAGE
183 < number > RECORDS SORTED
184 FILE ERROR (< number >) ON SORT-MERGE FILE < file name >
185 UNORDERED MERGE INPUT FILE < file name >
186 TOO MANY RECORDS FOR SORT-MERGE
187 DUPLICATE RECORDS—KEYFILE NOT BUILT
188 INIT MESSAGE INVALID
189 SORT-MERGE INITIATED FROM < mix number > / < program name >

Message 184 represents differing file errors depending upon the value of < number >. Defined meanings are as

follows:

. EOF on output file
parity on input file

EOF on sort workfile
bad disk address

. sort workfile error

. input file error

. output file error. I
D
A
R
W
N
 >

SORT LANGUAGE RESERVED WORDS

/ DECENDING
(DISC
) DISK
A FILE
ALPHA FILES
ASCENDING FILESIZE
CARD IN
CASSETTE INDEX
COMMENT INPLACE
D KEY

September 1977

KEYFILE
L
MEMORY
MERGE
NODUPLICATES
NOPRINT
NUMERIC
OUT
PARTITION
PRINTER

PURGE
R
SA
SN
SSA
SYNTAX
TAGFILE
TAPE
UA
UN

4-17

SECTION 5
B80 DEPENDENT ROUTINES

FUNCTIONAL SUMMARY

The B80 processor executes machine language instructions (micro-instructions) which are taken by the processor from

main memory. The B80 main memory consists of 4K bytes of Read-only Memory (ROM) and up to 60K bytes of

Random Access Memory (RAM). ROM will retain its contents when power is removed from the system, whereas

RAM will not.

When power is applied to the system, or when the Load Enable button is pressed, the contents of RAM are deemed

invalid. Execution control is passed to the permanent routines in ROM. The main function of the ROM routines is to

load RAM with, and pass control to, executable system software.

The ROM routines provide the ability to load system software from cassette or from disc, selected by Program Key

(PK) depression. PK1 will cause entry to the cassette load permanent ROM routine. This routine is provided for

ACSYS use, and is described in the B80 ACSYS System Software Operation Guide, form number 2007639. PK2 will

cause entry to the disc load permanent ROM routine, which will search for the B80 Bootstrap on a correctly formatted

B80 CMS disc. The facilities provided by the B80 Bootstrap are described below.

September 1977 | 5-]

CMS B80 BOOTSTRAP

The CMS B80 Bootstrap occupies sectors 2 through 9 on all B80 initialised CMS discs. The bootstrap provides the @
following facilities, which may be invoked by the indicated PK.

PK3 Warmstart MCP (See Warmstart Procedure)

PK4 Memory Dump to cassette (See Memory Dump)

PK5 Memory Dump to disc (See Memory Dump)

PK6 Load Stand-Alone Utility from disc (See Stand-Alone Utility)

Bootstrap Load

The following procedure will cause the B80 Bootstrap to be loaded and executed.

I)

2)

3)

Apply power to the system or press the Load Enable button if power is already applied to the system. The power
on switch and the Load Enable button are located behind the processor door. The power on switch is below and
to the left of the lower switch panel, and should be transferred upwards to apply power to the system. The Load
Enable button is the “bell push” type switch on the right of the top panel immediately behind the processor door.
The system will illuminate all keyboard indicators, then sequentially, with decreasing time interval, extinguish
them, leaving the lights associated with PK1 and PK2 illuminated. PK1 will cause entry to the Cassette Load
permanent ROM routine and PK2 will cause entry to the Disc Load permanent ROM routine

Install a WRITE-ENABLED B80 initialised CMS disc in any suitable disc drive and make the drive ready. The B80
Equipment Reference Mannual, form number 2007233 gives full details of the insertion/readying procedure for
each type of disc drive which may be used with the system.

Press PK2. PK2 is the rightmost blue key below the illuminated keyboard indicators, that is, the second key from
the left in the row of blue keys. The Disc Load permanent ROM routine will search the available disc drives for
a B80 Bootstrap routine. The search will commence with the bottom disc drive of the disc drive unit with the highest
channel address. If no bootstrap is found on that disc, the search will continue with the top drive of that channel,
then the bottom drive of the next lower channel address, etc., until a bootstrap is found. If no bootstrap is found,
an error pattern is displayed on the keyboard indicators as described in POSSIBLE ERRORS. The channel
location of each peripheral device may be found by consulting the initial serial printer output produced by.- the
CUSTOMER CONFIDENCE ROUTINE. When a bootstrap is found, it is loaded into Random Access Memory
(RAM), and execution control is passed to it. The bootstrap will illuminate the keyboard indicators associated
with PK’s 3 through 6. These PK’s will invoke the following functions which are described in detail in the
indicated subsection of this section.

PK3 Warmstart MCP (WARMSTART PROCEDURE)

PK4 Memory Dump to Cassette (MEMORY DUMP)

PK5 Memory Dump to Disc (MEMORY DUMP)

PK6_ Load Stand-Alone Utility (STAND-ALONE UTILITY)

Possible Errors

The following errors may be encountered whilst loading the bootstrap.

1) The sequential extinguishing of keyboard indicators does not occur.
—The MTR switch (behind the processor door, above and to the right of the power on switch) is in the MTR

position. Transfer the MTR switch to NORMAL and press Load Enable.

2) PK2 is ignored.
—The keyboard is locked in “‘shift” mode. Press the shift key below the shift-lock key, and press PK2 again.

5-2

3) The numeric light illuminates instead of PK3 through PK6.
—PK1 was pressed. Press Load Enable then PK2.

4) The keyboard error light illuminates, and a keyboard light pattern is displayed when PK2 is pressed.

—If the lights D1 through D8 are illuminated, no bootstrap was found. Check that a correct disc is installed and

ready, press Load Enable, and select PK2 again. |

—If one of the lights D1 through D8 is extinguished, a disc error was encountered whilst attempting to locate a

bootstrap. The extinguished D light indicates the channel number of the disc in error. D1 corresponds to channel

0, D8 corresponds to channel 7. Other keyboard lights indicates relevant information as shown in the table below.

Take a note of the light pattern for field engineering use. Power off the faulty disc and replace with a back up

copy. Press Load Enable, then PK2.

Note: Error 4 above may be caused by a disc drive fault. This may be checked by using the disc in another drive.

If the bootstrap successfully loads, run the Customer Confidence Routine (see CUSTOMER CONFIDENCE

ROUTINE) and notify field engineering.

Table of Keyboard Indicators

Channel Indicators

D1i—Channel 0 D5—Channel 4

D2—Channel 1 D6—Channel 5

D3—Channel 2 D7—Channel 6

D4—Channel 3 D8—Channel 7

If an error is encountered whilst the ROM Disc Load Routine is attempting to locate bootstrap, the D light

corresponding to the channel in error will be extinguished. All other D lights will be illuminated. The PK lights have

the significance shown below. If all D lights are illuminated, no bootstrap was found, and the PK lights have no

significance.

Primary Status Indicators

PK1—Off indicates top drive; On indicates bottom drive
PK2—Off indicates SEEK COMPLETE
PK3—Off indicates END OF CYLINDER
PK4— Off indicates SEARCH COMPLETE
PK5—Off indicates SECONDARY STATUS Condition (below)

PK6—On indicates OPERATIONAL
PK7—Off indicates SEEK INCOMPLETE
PK8—On indicates GOOD STATUS (will not be seen).

Secondary Status Indicators

PK9 —On indicates EQUAL

PK10—On indicates ON CYLINDER

PK11—Off indicates ILLEGAL SEEK

PK 12—On indicates WRITE INHIBIT

PK13—Off indicates SECTOR NOT FOUND

PK 14— Off indicates LRC ERROR (Parity)

PK15—Off indicates ILLEGAL COMMAND SEQUENCE

PK 16— Off indicates DEVICE ERROR.

These indicators are only significant if SECONDARY STATUS (PKS5 above) is OFF.

September 1977 5-3

Retry Count Indicators

The indicators associated with PK 17 through PK 24 indicate the number of retries attempted before an error is declared.

STAND-ALONE UTILITY

The B80 CMS Stand-Alone Utility is micro-programmed and supplied on disc as a single file. It is not portable to
other CMS machines. The file contains a number of functions, any of which can be used without reloading the utility.
The functions are: initialise a disc to CMS format, reformat a disc, load a disc from cassette, enter Warm Start, copy
files from disc to disc, delete disc files, list disc file names, list cassette names, and initialise an MTR disc. Each function
is requested by typing a command message terminated by an OCK. The Ready Request key is not required prior
to keyboard input. |

LOADING THE UTILITY |

The following procedure must be followed to load the Stand-Alone Utility.

1) Perform the bootstrap load procedure using a B80 CMS disc containing the Stand-Alone Utility, file identity
“SAU”. The bootstrap load is fully described in BOOTSTRAP LOAD, but the salient features are:
—-Apply power to the system (and disc drives)
—Install the disc and ready the unit
—Press PK2

The system should halt with the keyboard indicators associated with PK’s 3 through 6 illuminated.

2) Press PK6. PK6 is the sixth key from the left in the row of blue keys. The bootstrap routine will search the disc
directory of the disc from which the bootstrap was loaded for a system file called “SAU”. If no such file is found,
and another disc containing bootstrap is located at a lower unit address then the ROM disk loader will be invoked
automatically, and this step should be repeated when PK’s 3 through 6 are illuminated. If no disc on the system
contains the file “SAU”, then an error indicator as described in Possible Errors, below, is displayed. When the
Stand-Alone Utility is located, it is loaded to RAM and execution control is passed to it. Completion of a
successful load is indicated by the printing of the start up message.

Possible Errors

The following errors may be encountered whilst loading the Stand-Alone Utility.

1) The sequential extinguishing of keyboard indicators does not occur. . |
—The MTR switch (behind the processor door, above and to the right of the power on switch) is in the MTR

position. Transfer the MTR switch to NORMAL, and press Load Enable.

2) PK2 is ignored.
—The keyboard is locked in “‘shift.. mode. Press the shift key below the shift-lock key, and press PK2 again.

3). The numeric light illuminates instead of PK’s 3 through 6.
—PK1 was pressed. Press Load Enable then PK2.

4) The keyboard error light illuminates, and a keyboard light pattern is displayed when PK2 is pressed.
—If the lights D1 through D8 are illuminated, no bootstrap was found. Check that a correct disc is installed and

ready, press Load Enable, and select PK2 again.
—If one of the lights D1 through D8 is extinguished, a disc error was encountered whilst attempting to locate a

bootstrap. The extinguished D light indicates the channel number of the disc in error. D1 corresponds to channel
0, D8 corresponds to channel 7. Other keyboard lights indicate relevant information as shown in the table below.
Take a note of the light pattern for field engineering use. Power off the faulty disc and replace with a backup
Press Load Enable, then PK2. | a

5-4

5) The keyboard error light illuminates, and a keyboard light pattern 1s displayed when PK6 is pressed.

— Bootstrap has been loaded from a disc, but SAU could not be loaded from that disc. This may be caused if a disc

error exists, or if no disc on the system contains an SAU file. The D light which 1s illuminated indicates the

channel number of the disc in error. D1 corresponds to channel 0, D8 corresponds to channel 7. Other

keyboard lights indicate relevant information as shown in the table below. Note that both a bootstrap and an

SAU must be present be present on the same disc. If a suitable disc is present on the system, take a note of

the light pattern for field engineering use. Power off the disc and replace with a backup copy. Press Load

Enable, PK2, and PK6. | 7

Note: Errors 4 and 5 above may be caused by a disc drive fault. This may be checked by using the disc in another

drive. If the disc successfully loads, run the Customer Confidence Routine (see CUSTOMER CONFIDENCE

ROUTINE) and notify field engineering.

6) All keyboard indicators alternatively illuminate and extinguish.

—PK4 or PK5 was pressed during the load, and the system has just been powered up. Random Access Memory

contains parity errors which have not been deleted by execution of MCP. Press Load Enable, PK2, and PKO.

7) The load stops with all keyboard indicators illuminated.

—The serial printer is not ready. Check that the forms transport is properly closed, and the printer cover is

properly latched. The variable forms spacing lever (60 cps printer) may be unlatched. The utility will continue

when the fault has been corrected.

Table of Keyboard Indicators

Channel Indicators

D1—Channel 0 D5—Channel 4

D2—Channel | D6—Channel 5

D3—Channel 2 D7—Channel 6

D4—Channel 3 D8—Channel 7

If an error is encountered whilst the ROM Disc Load Routine is attempting to locate bootstrap, the D light »

corresponding to the channel in error will be extinguished. All other D lights will be illuminated. The PK lights have

the significance shown below. If all D lights are illuminated, no bootstrap was found, and the PK lights have no

significance.

If an error is encountered whilst the bootstrap is attempting to locate SAU, the D light corresponding to the

channel in error will be illuminated. All other D lights will be extinguished. The PK lights have the significance

shown below. .

Primary Status Indicators

PK 1—Off indicates top drive; On indicates bottom drive

PK2—Off indicates SEEK COMPLETE

PK3—Off indicates END OF CYLINDER

PK4— Off indicates SEARCH COMPLETE

PK5—Off indicates SECONDARY STATUS Condition (below)

PK6—On indicates OPERATIONAL

PK7—Off indicates SEEK INCOMPLETE

PK8—On indicates GOOD STATUS (will not be seen).

September 1977
5.5

Secondary Status Indicators ©

PK9 —On indicates EQUAL

PK10—On indicates ON CYLINDER

PK11—Off indicates ILLEGAL SEEK

PK12—On indicates WRITE INHIBIT

PK 13—Off indicates SECTOR NOT FOUND ©
PK 14— Off indicates LRC ERROR (Parity)
PK15—Off indicates LEGAL COMMAND SEQUENCE
PK 16—Off indicates DEVICE ERROR.

These indicators are only significant if SECONDARY STATUS (PK5 above) is OFF.

Retry Count Indicators

The indicators associated with PK 17 through PK 24 indicate the number of retries attempted before an error is declared.

OPERATION

The Stand-Alone Utility is loaded as described above. Completion of a successful load is indicated by the message:

STAND-ALONE UTILITY

VERSION < version—number >
REQUEST “HELP” FOR FUNCTION SUMMARY

The utility then enters the Function Select State. Any Stand-Alone function may be selected by typing the appropriate
command as detailed in FUNCTION DESCRIPTIONS, and terminating with an OCK. At the completion of the
function (except warm-start, WS) control returns to the Function Select State with the prompt “FUNCTION’’? The ©

_ utility is terminated either by entering warm-start through the WS command, or by pressing the Load Enable button.

Use of the backspace key (shifted or unshifted) during keyboard input will backspace the print head and delete the
last character entered.

Use of the Reset key during keyboard input allows invalid input to be cancelled. The current message is ignored,
and the console forms are advanced one line.

Invalid Input

Invalid input from the keyboard will either be ignored with an appropriate message, for example:

INVALID REQUEST
or a prompt to the operator will be repeated.

Note: The drive containing the disc to be initialised is identified by:
DFA, DFB, DFC....Burrough’s Super Mini-Disc
DKA, DKB, DKC.... Cartridge Discs.

FUNCTION DESCRIPTIONS

The following functions are provided in the Stand-Alone Utility. Once a function has been initiated, it must be
taken to completion before another function may be executed (that is, no multi-tasking is permitted).

5-6

COPY (Stand-alone Disc Copy) [COPY]

<disc—id—1 >/< file—id—1 >—TO— < disc—id—2 >/< file—id—2 >

—copy—|

<disc—id—1 >/< group—id—1 > —TO— < disc—id—2 >/< group—id—2 > —

This function copies a file or a group of files from one disc to another, initialised, disc.

The disc containing the file or group of files to be copied is identified by < disc—id—l >. The destination disc is

identified by < disc—id—2 >. A single file, identified by < file—id--1 > may be copied. The file will appear in the

directory of the destination disc as < file—id—2 >. Alternatively, a group of files, identified by < group—id—1 >,

may be copied. The group identity portion of each file copied will take the value specified by < group—id—2 >.

Note that disc identifiers must always be specified since there is no system disc during Stand-Alone Utility execution.

Key-files and overflow files will not be copied.

OUTPUT MESSAGES

The following messages may be output by the utility during execution of the COPY function.

Normal Execution

The message
< file—id > COPIED

will be displayed for each file successfully copied. The < file—id > displayed identifies the name entered in the

destination disc directory. |

Normal Termination

The message

END COPY

is displayed when the function terminates. The utility enters the Function Select-state. This will be described as “the

function ENDS”.

Abnormal Termination

The message

FUNCTION ABORTED

is displayed if a hardware error prevents proper execution of the function. The utility enters the Function Select state.

This will be described as “‘the function ABORTS”.

Errors During Execution

The following messages are displayed when the corresponding errors are encountered.

1) PACK < disc—id > NOT ON LINE.

This message is displayed, and the function ENDS, if either the source or the destination disc is not found.

2) < file—id > NOT FOUND.

This message is displayed, and the function ENDS, if the specified < file—id > is not present on the source disc.

3) < file—id > TOO LARGE
This message is displayed if there is insufficient available space on the destination disc to allow the specified file to

be copied.

September 1977 5-7

4) DUPLICATE FILE NAME — < file—id >. |
This message is displayed if a file of the displayed name already exists in the directory of the destination disc.
The function will continue if there are further files to be copied.

5) NAME LIST FULL. |
This message is displayed if there is no room in the directory of the destination disc for the name of the file.
The function ENDS.

6) O/P ERROR~— < file—id >.
This message is displayed if a write error is encountered on the destination disc during a copy. The function will
continue if there are further files to be copied.

7) 1/P ERROR~— < file—id >. |
This message is displayed if a read error is encountered on the source disc during a copy. The function will continue
if there are further files to be copied. |

8) CANNOT ALLOCATE AREAS FOR — < file—id >. ,
This message is displayed if there is no available area of appropriate size on the destination disc for the specified
file. The function will continue if there are further files to be copied.

9) Dxy DIRECTORY I/O ERROR. ; 7
This message is displayed if a read or write error is encountered whilst attempting to access the directory. of the
specified disc. The directory structure of an input disc may be corrupted.
x identifies the type of disc: F—Burroughs Super Mini-disc; K—Cartridge Disc.
y identifies the unit: A, B, C, etc. |

The function ABORTS.

10) O/P DISC IS NOT WRITE PERMIT. | | |
This message is displayed if the destination disc is write inhibited. The write lockout hole on Burroughs Super
Mini-Disc should be covered. The write lockout plug on cartridge disc should be flush with the outer surface of the ©}
cartridge.

The function ENDS.

11) Dxy DEVICE ERROR.
This message is displayed if a hardware error is encountered during copy. Dxy is as specified in 8 above. The
message will be followed by one of the following displays: | | |

DRIVE INOPERABLE
OFF CYLINDER
SEEK TIMEOUT
CONTROLLER PROBLEM.

These messages indicate a malfunction in the specified drive unit. The customer confidence routine (see
CUSTOMER CONFIDENCE ROUTINE) should be executed, and field engineering should be notified. Note that
DEVICE INOPERABLE will be displayed if the specified drive is accidentally made not ready.

5-8

FE (Initialise MTR Disc)

 FE

A virgin or a formatted disk is initialised to CMS format with suitable sectors reserved for MTR test routines.

(These sectors will be denoted as BAD sectors on a KA map of the disk.) The surface is checked by writing and

reading test patterns to each sector. Bad sectors and the six MTR tracks are made unavailable. A disk label is written

and the file directory is created with a single, SYSMEM, entry. Sectors | through 31 are loaded from a file

“CMSBOOTxxxxx” which can be contained by any on-line disk. The correct identification string must be found in

sector one before loading can begin.

The xxxxx characters are ignored by the utility; only the seven leading characters are compared when the on-line discs

are searched (that is, the file specification searched for is equivalent to CMSBOOT =). The discs are searched in

descending channel order, cartridge discs first, then a further scan of Burroughs Super Mini Discs.

PROMPTS AND RESPONSES

The function will request the necessary input by means of prompt messages as detailed below. Invalid input will

cause the prompt to be repeated. |

PROMPT INPUT FORMAT REMARKS

DRIVE 3 characters The drive unit containing the disc to be

initialised DFA, DKA, etc.

Note: At this point the function will perform the disc surface test. The sector address of

each track is displayed in binary upon the keyboard indicators (PK24 = 1, PK23 = 2,

PK22 = 4 etc.). The disc surface test will take several minutes, the exact time depending

upon the type of disc being initialised.

DATE MM/DD/YY Eight characters, for example 01/01/76

FILES Up to 3 numerals The maximum number of files which the disc

less than 255 is to contain. This number determines the
number of sectors to be allocated as the disc

directory.

SERIAL 6 numerals The user’s identifying serial number.

PACK Up to 7 characters The name by which the disc will be known

to the system, that is, the < disc—id >.

OWNER Up to 14 characters Any identifying character string.

RESTRICTED YorN This option is included for future CMS

implementations. The normal response is N.

OUTPUT MESSAGES

The following messages may be output by the utility during the execution of the function.

Normal Execution

The message

NO. OF BAD SECTORS: < integer >
is displayed when a disc has been successfully initialised.

September 1977 5-9

Normal Termination

The message

END FE

is displayed, and the Function Select state is entered, whenever the function is discontinued. This will be described as
“the function ENDS”.

Errors During Execution

The following messages are displayed in the event of the corresponding error.

1) TRACK 0 BAD,
This message is displayed if any sector in Track 0 cannot be used. A CMS disc contains reserved information in
Track 0 (for example, the warmstart bootstrap). The function will END.

2) Dxy DEVICE ERROR.

3)

4)

This message is displayed if a hardware error is encountered during FE.

x identifies the type of disc: F—Burroughs Super Mini-disc ; K—Cartridge Disc.
y identifies the unit: A, B, C, etc.

This message is displayed if a hardware error is encountered during FE.

DRIVE INOPERABLE
WRITE INHIBITED
OFF CYLINDER
SEEK TIMEOUT
CONTROLLER PROBLEM.

DRIVE INOPERABLE may be caused if the associated disc is made not ready accidentally.

WRITE INHIBITED indicates that the disc in the specified drive has its write lockout indicator set. Ensure that
the write lockout hole (Burroughs Super Mini-disc) is covered, or the write lockout plug (Cartridge Disc) is flush
with the surface of the disc cartridge.
All other messages indicate a malfunction of the drive unit. The customer confidence routine (see CUSTOMER
CONFIDENCE ROUTINE) should be executed, and field engineering should be notified.

LOAD CMS BOOTSTRAP FILE AND HIT OCK 1 TO CONTINUE.
This message is displayed if no file in the group CMSBOOT = can be found on any disc on the system. A suitable
file may be LD’ed to any on-line disc, of a disc, or a disc containing a suitable file may be installed in an
available drive.

BOOTSTRAP VERSION < bootstrap version string> USED
This message is displayed when the bootstrap file has been successfully written.

510

IN (Initialise Disc)

IN

It is a requirement of the Master Control Program that any disc to be used on the system must have a valid CMS disc

label, anda CMS disc directory. In addition, each sector of the disc must be initialised with its address. The IN function

will check the recording surface of the disc to be initialised by writing and reading test patterns in each sector of the disc.

Bad sectors are made unavailable. The number of bad sectors detected is displayed to allow badly worn discs to be

discarded. The function will write a disc label containing the parameters supplied by the responses to the appropriate -

prompts, below, and create a disc directory of the appropriate size required for the number of files specified. Sectors

1 through 31 of the disc are loaded from a file “CMSBOOTxxxxx” which may be located on any on-line disc. The

xxxxx characters are ignored by the utility; only the leading seven characters are compared when the on-line discs

are searched (that is, the file specification, searched for is equivalent to CMSBOOT=). The discs are searched in

descending channel order, cartridge discs first, then a further scan of Burroughs Super Mini Disks.

PROMPTS AND RESPONSES

The function will request the necessary input by means of prompt messages as detailed below. Invalid input will

cause the prompt to be repeated.

PROMPT INPUT FORMAT REMARKS

DRIVE 3 characters The drive unit containing the disc to be
initialised DFA, DKA, etc.

Note: At this point the function will perform the disc surface test. The sector address of

each track is displayed in binary upon the keyboard indicators (PK24 = 1, PK23 = 2,

PK22 = 4 etc.). The disc surface test will take several minutes, the exact time depending
upon the type of disc being initialised. |

DATE MM/DD/YY Eight characters, for example 01/01/76

FILES Up to 3 numerals The maximum number of files which the disc

less than 255 is to contain. This number determines the
number of sectors to be allocated as the disc

directory.

SERIAL 6 numerals The user’s identifying serial number.

PACK Up to 7 characters The name by which the disc will be known
to the system, that is, the < disc—id >.

OWNER Up to 14 characters Any identifying character string.

RESTRICTED YorN This option is included for future CMS

implementations. The normal response is N.

OUTPUT MESSAGES

The following messages may be output by the utility during the execution of the function.

Normal Execution

The message

NO. OF BAD SECTORS: < integer >

is displayed when a disc has been successfully initialised.

September 1977 5-11

Normal Termination

The message

END IN

is displayed, and the Function Select state is entered, whenever the function i is discontinued. This will be described as
“the function ENDS”.

Errors During Execution

The following messages are displayed in the event of the corresponding error.

1) TRACK 0 BAD.
This message is displayed if any sector in Track 0 cannot be used. A CMS disc contains reserved information in
Track 0 (for example, the warmstart bootstrap). The function will END.

2) Dxy DEVICE ERROR.
This message is displayed if a hardware error is encountered during IN.

x identifies the type of disc: F— Burroughs Super Mini-disc; K—Cartridge Disc.
y identifies the unit: A, B, C, etc.

The message will be followed by one of the following displays:

DRIVE INOPERABLE
WRITE INHIBITED
OFF CYLINDER
SEEK TIMEOUT
CONTROLLER PROBLEM.

DRIVE INOPERABLE may be caused if the associated disc is made not ready accidentally.

WRITE INHIBITED indicates that the disc in the specified drive has its write lockout indicator set. Ensure that
the write lockout hole (Burroughs Super Mini-disc) is covered, or the write lockout plug (Cartridge Disc) is flush
with the surface of the disc cartridge.
All other messages indicate a malfunction of the drive unit. The customer confidence routine (see CUSTOMER
CONFIDENCE ROUTINE) should be executed, and field engineering should be notified.

3) LOAD CMS BOOTSTRAP FILE AND HIT OCK1 TO CONTINUE.
This message is displayed if no file in the group CMSBOOT= can be found on any disc on the system. A
suitable file may be LD’ed to any on-line disc, of a disc, or a disc containing a suitable file may be installed in an
available drive.

4) BOOTSTRAP VERSION < bootstrap version string> USED
This message is displayed when the bootstrap file has been successfully written.

5-12

LD (Load Disc)

LD— < disc—id > —_FROM— < mfid >

This function will load all files contained on the dump tape identified by < mfid > to the disc identified by < disc—id >.

A dump tape is one produced by the DUMP or UNLOAD functions of the BIL utility “LD” (which executes under

MCP control). Each sector written to disc is verified.

OUTPUT MESSAGES

The following messages will be output by the utility during the execution of the function.

Normal Execution

The message

< file—id > LOADED

is displayed for each file loaded and verified.

If the dump tape is a reel from a multi-reel dump, then the message

LOAD REEL < integer >

will be displayed when the next reel is required. This message will be repeated if the reel number specified by

< integer > is incorrect.

Normal Termination

The message

END LD

is displayed when the function terminates. The utility ends the Function Select state. This will be described as “the

function ENDS”.

Abnormal Termination

The message

FUNCTION ABORTED

is displayed if a hardware error prevents proper execution of the function. The utility enters the Function Select state.

This will be described as “‘the function ABORTS”.

Error During Execution

The following messages will be output by the utility in the event of the corresponding error.

1) NOT DUMP TAPE.
This message is displayed, and the function ENDS, if the tape identified by < mfid > is not a correctly formatted

dump tape. |

2) <mfid > NOT PRESENT.
This message is displayed, and the function ENDS, if the tape identified by < mfid > is not installed and ready.

3) UNRECOVERABLE CASSETTE ERROR.

This message is displayed if an error is encountered whilst attempting to read the tape. The function will END.

This error may be caused by accidentally opening the cassette drive unit.

4) PACK < disc—id > NOT FOUND

This message will be displayed if the specified output disc is not installed and ready. The function will END.

September 1977
5-13

5) O/P DISC NOT WRITE PERMIT.
This message is displayed if the specified output disc is write protected. Ensure that the write lockout hole
(Burroughs Super Mini-disc) is covered, or that the write lockout plug (cartridge disc) is flush with the surface of
the cartridge. The function will END.

6) DUPLICATE FILE NAME~— < file—id >.
This message is displayed if a file of the specified name already exists in the directory of the destination disc. The
function will continue with the next file on the tape. |

7) CANNOT ALLOCATE AREAS FOR~— < file—id >.
This message is displayed if there is no appropriately sized available area on the destination disc for the specified file.
The function will continue with the next file on the tape.

8) O/P ERROR— < file—id >. .
This message will be displayed if a disc write error is encountered whilst loading the file identified by < file—id >.
The function will continue with the next file on the tape.

9) AREA SIZES TOO SMALL FOR— < file—id >.
This message will be displayed if a multi-area file cannot be allocated areas of a suitable size, the function will
continue with the next file on the tape.

10) NAME LIST FULL.
This message is displayed if no space is left in the directory of the destination disc to take the name of the specified
file. The function will END.

11) Dxy DEVICE ERROR. a |
This message is displayed if a hardware error is encountered on the destination disc.

x identifies the type of disc: F—Burroughs Super Mini-disc; K —Cartridge Disc.
y identifies the unit: A, B, C, etc.

This message will be followed by one of the following displays:

DEVICE INOPERABLE
OFF CYLINDER
SEEK TIMEOUT
CONTROLLER PROBLEM.

These messages indicate a malfunction of the specified drive unit. The customers confidence routine (see
CUSTOMER CONFIDENCE ROUTINE) should be executed, and field engineering should be notified. Note that
DRIVE INOPERABLE will be displayed if the specified drive is accidentally made Not Ready.

5-14

[LS |

LS (List Size)

 LS— < disc—id >

This function will list the filenames and corresponding file-sizes (in sectors) of the files on the disc identified by

< disc—id >.

OUTPUT MESSAGES

The following messages may be output by the utility during the execution of the LS function.

Normal Execution

The message

< file—id > SIZE < integer >

is displayed for each file found in the directory of the specified disc. If no files are found, the utility will produce no

output. The < file—id > and < integer > entries identify the file-name and number of sectors respectively.

Normal Termination

The message

END LS

will be displayed when the function terminates. The utility will enter the Function Select state. This will be described as

“the function ENDS”.

Abnormal Termination

The message

FUNCTION ABORTED

will be displayed ifa hardware error prevents proper execution of the function. The utility will enter the Function Select

state. This will be referred to as “‘the function ABORTS”.

Errors During Execution

The following messages will be output by the utility in the event of the corresponding errors.

1) PACK < disc—id > NOT ON LINE.

This message is displayed if the specified disc is not installed or ready. The function will END.

2) Dxy DIRECTORY I/O ERROR.

This message is displayed if a read or write error is encountered whilst attempting to access the directory of the

specified disc. The directory structure of the disc may be corrupted.

x identifies the type of disc: F—Burroughs Super Mini-disc; K Cartridge Disc.

y identifies the unit: A, B, C, ete.

3) Dxy DEVICE ERROR.
This message is displayed if a hardware error is encountered during the execution of the function. Dxy is as

specified in 2 above. The message will be followed by one of the following messages:

DRIVE INOPERABLE
WRITE INHIBITED
OFF CYLINDER
SEEK TIMEOUT
CONTROLLER PROBLEM.

DEVICE INOPERABLE may be caused if the specified disc is made not ready accidentally.

WRITE INHIBITED indicates that the disc in the specified drive has its write lockout indicator set. Ensure that the

Write Lockout Hole (Burroughs Super Mini-disc) is covered, or that the Write Lockout Plug (Cartridge Disc) is

flush with the surface of the cartridge.

All other messages indicate a malfunction of the drive unit. The customer confidence routine (see CUSTOMER

CONFIDENCE ROUTINE) should be executed, and field engineering should be notified.

September 1977
5-15

OL (Print Status of G

He Drives)

OL

This function will display a one line message for each (potential) cassette drive on the system, giving the status of
the respective drive. |

OUTPUT MESSAGES

For each cassette drive, one of the following messages is printed to indicate its current state:

< file—name > ON CTx
NO CASSETTE ON CTx
STAND ALONE CASSETTE ON CTx
UNLABELLED CASSETTE ON CTx

The function terminates with message:

END OL

 5-16

RF (Reformat Disc) [RE|

RF < disc—id >

This function provides all the facilities of IN, except the disc recording surface test. A CMS label, and a CMS

directory structure are written to the disc. Any information previously contained on the disc will be lost. The disc

label will contain parameters supplied by the responses to the appropriate prompts, below, and the directory will be

of the minimum size required for the number of files specified. The original parameters are displayed to record the change

and to assist re-input of the same data when required. Sectors | through 31 are not altered.

PROMPTS AND RESPONSES

The function will request the necessary input by means of prompt messages as detailed below. Invalid input will cause

the prompt to be repeated. | :

PROMPT INPUT FORMAT REMARKS

DATE MM/DD/YY Eight characters, for example 01/23/77.

FILES Up to 3 numerals The maximum number of files which the disc is to contain.

Less than 255 - This number determines the number of sectors to be allo-

| cated as the disc directory.

SERIAL 6 numerals The user’s identifying serial number.

PACK Up to 7 characters The name by which the disc will be known to the system,

that is, the < disc—id >.

OWNER Up to 14 characters Any identifying character string.

RESTRICTED Yor N . This option is included for future CMS implementations.

The normal response is N.

OUTPUT MESSAGES

The following messages may be output by the utility during the execution of the function.

Normal Execution

The function will display the current values of the fields which may be changed prior to allowing keyboard input to

change the fields. The display is in the following format.

DATE < mm/dd/yy >
FILES < integer >
SERIAL < integer >

PACK < disc—id >
OWNER < character-string >
RESTRICTED <Y>or<N>.

Normal Termination

The message

END RF

is displayed, and the Function Select state 1s entered, whenever the function is discontinued. This will be described as

“the function ENDS”.

September 1977 5-17

Abnormal Termination
:

The message

FUNCTION ABORTED

is displayed, and the Function Select state is entered, if a hardware error prevents proper execution of the function.
This will be described as “‘the function ABORTS”’. |

Errors During Execution

The following messages will be displayed in the event of the corresponding error.

1) PACK < disc—id > NOT ON LINE.
This message is displayed if the specified disc cannot be found. The function ENDS.

_ 2) Dxy DIRECTORY I/O ERROR.
This message is displayed if a read or write error is encountered whilst attempting to access the directory of the
specified disc. The directory structure of the disc may be corrupted.

x identifies the type of disc: F—Burroughs Super Mini-disc; K —Cartridge Disc.
y identifies the unit: A, B, C, etc.

The function ABORTS.

3) Dxy DEVICE ERROR.
This message is displayed if a hardware error is encountered during RF. Dxy is as specified in 2 above. The
message will be followed by one of the following displays: 7

DRIVE INOPERABLE
WRITE INHIBITED |
OFF CYLINDER | ® SEEK TIMEOUT | | CONTROLLER PROBLEM.

DRIVE INOPERABLE may be caused if the specified drive is accidentally made not ready.
WRITE INHIBITED indicates that the disc in the specified drive has its write lockout indicator set. Ensure that
the write lockout hole (Burroughs Super Mini-disc) is covered, or the write lockout plug (cartridge disc) is flush with
the surface of the cartridge.
All other messages indicate a malfunction of the drive unit. The customer confidence routine (see CUSTOMER
CONFIDENCE ROUTINE) should be executed, and field engineering should be notified.

5-18

RL (Relabel Disc) | | OT RL}

RL < dise—id >=

This function allows the identity of any CMS disc to be changed. The function will prompt the operator to supply

the new identity.

PROMPT AND RESPONSE

The function will display the message

PACK

and expect the new disc identity to be input. Up to seven characters may be entered as the new disc identity.

OUTPUT MESSAGES

The following messages may be output by the utility during the execution of the function.

Normal Termination

The message

END RL

is displayed, and the Function Select state is entered, whenever the function is discontinued. This will be described as

“the function ENDS”.
|

Abnormal Termination

The message

FUNCTION ABORTED |

is displayed, and the Function Select state is entered, if a hardware error prevents proper execution of the function.

This will be described as “‘the function ABORTS”.

Errors During Execution

The following messages will be displayed in the event of the corresponding error.

1) PACK < disc—id > NOT ON LINE.

This message is displayed if the specified disc cannot be found. The function ENDS.

2) Dxy DIRECTORY I/O ERROR. |

This message is displayed if a read or write error is encountered whilst attempting to access the directory of the

specified disc. The directory structure of the disc may be corrupted.

x identifies the type of disc: F—Burroughs Super Mini-disc; K—Cartridge Disc

y identifies the unit: A, B, C, etc.

The function ABORTS.

September 1977 5-19

3) Dxy DEVICE ERROR.
This message is displayed if a hardware error is encountered during RL. Dxy is as specified in 2 above. The
message will be followed by one of the following displays:

DRIVE INOPERABLE
WRITE INHIBITED
OFF CYLINDER
SEEK TIMEOUT
CONTROLLER PROBLEM.

DRIVE INOPERABLE may be caused if the specified drive is accidentally made not ready.
WRITE INHIBITED indicates that the disc in the specified drive has its write lockout indicator set. Ensure that
the write lockout hole (Burroughs Super Mini-disc) is covered, or the write lockout plug (cartridge disc) is flush with
the surface of the cartridge.

All other messages indicate a malfunction of the drive unit. The customer confidence routine (see CUSTOMER
CONFIDENCE ROUTINE) should be executed, and field engineering should be notified.

5-20

RM (Remove Files) | |

| < disc—id >/< file—id > | |

——RM-—_ < disc—id >/< group—id st

This function will remove a file, or group of files from disc. The disc from which files are to be removed is identified by

< disc—id >. A single file identified by <file—id >, or a group of files identified by <group—id > may be

removed: that is, the space occupied by the specified file(s) is returned to the available table, and the name(s) are

deleted from the directory. Note that to remove all files from a disc, it may be faster to “RF” the disc rather than

to use the format “RM < disc—id >/=”, if the disc contains a large number of files.

OUTPUT MESSAGES

The following messages may be output by the utility during the execution of the function.

Normal Execution

The following message is displayed for each file successfully removed:

< file—id > REMOVED

Normal Termination

The message
/

END RM /
is displayed, and the utility enters the Function Select state, when execution of the function is discontinued. This is

described as “‘the function ENDS”.

Abnormal Termination

The message

FUNCTION ABORTED

is displayed and the Function Select state is entered, if a hardware error prevents proper execution of the utility. This is

described as ‘‘the function ABORTS”.

Errors During Execution

The following messages will be displayed in the event of the corresponding error

1) PACK < disc—id > NOT ON LINE.
This message is displayed, and the function ENDS, if the specified disc is not located.

2) < file—id > NOT FOUND.

This message is displayed if the specified file cannot be found. If a group remove is in progress, the function

will proceed with the next file, otherwise the function ENDS.

3) Dxy DEVICE ERROR.

This message is displayed if a hardware error is encountered on the specified drive.

x identifies the disc type: F—Burroughs Super Mini-disc; K—Cartridge Disc.

y identifies the unit: A, B, C, etc.

The message will be followed by one of the following displays:

DRIVE INOPERABLE
WRITE INHIBITED
OFF CYLINDER
SEEK TIMEOUT
CONTROLLER PROBLEM.

September 1977
5-21

DRIVE INOPERABLE may be caused if the specified disc is accidentally made not ready. ©
WRITE INHIBITED indicates that the disc in the specified drive has its write lockout indicator set. Ensure that
the write lockout hole (Burroughs Super Mini-disc) is covered, or that the write lockout plug (cassette disc) is
flush with the surface of the disc cartridge. — |
All other messages indicate a malfunction of the drive unit. The customer confidence routine (see CUSTOMER
CONFIDENCE ROUTINE) should be executed, and field engineering should be notified.

— 5-22

WS (Warm Start)

WS

This function causes execution control to be passed to the disk load permanent ROM routine. Refer to WARM START

PROCEDURE later in this section for full details of warm start.

5-23
September 1977

WARM START PROCEDURE

The B80 CMS Warm Start Procedure is the means by which a B80 CMS Master Control Program (MCP) on disc may be made operational. Warm Start may be initiated as described below, or via the WS function of the Stand-Alone Utility, see STAND ALONE UTILITY.

INITIATING WARM START

The following procedure must be followed to place the system under MCP control.

1) Perform the bootstrap load procedure using a B80 CMS disc containing the Master Control Program, file identity “MCP” (and the file “SYSCONFIG”, if extended memory is in use). The bootstrap load is fully described in
BOOTSTRAP LOAD, but the salient features are:

—Apply power to the system (and disc drives)
—Install the disc and ready the unit
—Press PK2

The system should halt with the keyboard indicators associated with PK’s 3 through 6 illuminated.
2) Press PK3. PK3 is the leftmost blue key below the i//uminated keyboard indicators, that is, the third key from the left in the row of blue keys. The Warmstart bootstrap will search the disc directory of the disc from which the bootstrap was loaded for a system file called ““MCP”’. If no such file is found, the ROM search for a disc containing bootstrap

is resumed, starting with the next lower address disc (that is, the top drive of the same channel, or the bottom
disc of the next lower channel, as applicable). When an MCP file is found, the relevant portions of MCP code are
loaded to main memory (RAM) and execution control is passed to MCP.

3) Enter the current date when requested. The MCP will display a message of the form:

B-830 MCP VERSION < version—number > < Julian—date > , followed by the current status of all disc units on
the system. The system disc will be presented last.

The message

ENTER DATE AS MM/DD/YY

is displayed.

Press the Ready Request key (the rectangular blue button above the PK lights) and enter the current date in the format specified. Leading zeros are optional. Terminate with any OCK. The MCP will display the date in conventional and Julian forms, and identify the day of the week. The MCP idle loop will be entered, and the system
will be ready for use.

|

Possible Errors

The following errors may be encountered whilst loading the Stand-Alone Utility.

1) The sequential extinguishing of keyboard indicators does not occur.
—The MTR switch (behind the processor door, above and to the right of the power on switch) is in the MTR

position. Transfer the MTR switch to NORMAL and press Load Enable.

2) PK2 is ignored.

—The keyboard is locked in “shift” mode. Press the shift key below the shift-lock key, and press PK2 again.
3) The numeric light illuminates instead of PK3 through PK6.

—PK1 was pressed. Press Load Enable then PK2.

5-24

4) The keyboard error light illuminates, and a keyboard light pattern is displayed when PK2 is pressed.
—If the lights D1 through D8 are illuminated, no bootstrap was found. Check that a correct disc is installed and

ready, press Load Enable, and select PK2 again.

—If one of the lights D1 through D8 is extinguished, a disc error was encountered whilst attempting to locate a
bootstrap. The extinguished D light indicates the channel number of the disc in error. D1 corresponds to channel
0, D8 corresponds to channel 7. Other keyboard lights indicate relevant information as shown in the table below.

Take a note of the light pattern for field engineering use. Power off the faulty disc and replace with a backup

copy. Press Load Enable, then PK2.

5) The keyboard error light illuminates, and a keyboard light pattern is displayed when PK3 is pressed.
—Bootstrap has been loaded from a disc, but MCP could not be loaded from that disc. This may be caused if a disc

error exists, or if no disc on the system contains an MCP file. The D light which is i/luminated indicates the

channel number of the disc in error. D1 corresponds to channel 0, D8 corresponds to channel 7. Other
keyboard lights indicate relevant information as shown in the table below. Note that both a bootstrap and an
MCP must be present on the same disc—this is a safeguard to prevent the MCP of another CMS implementation
being accepted by Warm Start. If a suitable disc is present on the system, take a note of the light pattern for

field engineering use. Power off the disc and replace with a backup copy. Press Load Enable, PK2, and PK3.

Note: Errors 4 and 5 above may be caused by a disc drive fault. This may be checked by attempting to warm start the

disc in another drive. If the disc successfully warm starts, run the Customer Confidence Routine (see CUSTOMER

CONFIDENCE ROUTINE) and notify field engineering.

6) All keyboard indicators alternatively illuminate and extinguish.
—PK4 or PK5 was pressed during warmstart, and the system has just been powered up. Random Access Memory

contains parity errors which have not been deleted by execution of MCP. Press Load Enable, PK2, and PK3.

7) The Warm start stops with D2 illuminated. The error light is not illuminated.
—The serial printer is not ready. Check that the forms transport is properly closed, and the printer cover is

properly latched. The variable forms spacing lever (60 cps printer) may be unlatched. The Warm Start will

continue when the fault has been corrected. It may be necessary to press Ready followed by OCK1 with 180

cps printers.

8) The system may print one of the following messages when displaying the status of Burroughs Super Mini-disc units:

DKX < disc—id > SHOULD BE RE-INITIALISED SOON

DKX < disc—id > BAD DISK—CANNOT BE LOADED.

These messages indicate respectively that 16 or 32 bad sectors were identified on the specified disc. All required

information should be copied from the disc to a new, initialised disc. The second message should not be

encountered in normal use if notice is taken of the first message. Receipt of the second message may be caused by
mistreatment of discs, for example, handling the exposed recording surface.

Table of Keyboard Indicators

Channel Indicators
D1—Channel 0 D5—Channel 4

D2—Channel 1 D6—Channel 5

D3—Channel 2 D7— Channel 6

D4—Channel 3 D8—Channel 7

If an error is encountered whilst the ROM Disc Load Routine is attempting to locate bootstrap, the D light

corresponding to the channel in error will be extinguished. All other D lights will be illuminated. The PK lights have

the significance shown below. If all D lights are illuminated, no bootstrap was found, and the PK lights have no

significance.

If an error is encountered whilst the bootstrap is attempting to locate MCP, the D light corresponding to the

channel in error will be illuminated. All other D lights will be extinguished. The PK lights have the significance

shown below.

September 1977 5-25

Primary Status Indicators ©

PK 1—Off indicates top drive; On indicates bottom drive

PK2—Off indicates SEEK COMPLETE
PK3—Off indicates END OF CYLINDER
PK4— Off indicates SEARCH COMPLETE

PK5—Off indicates SECONDARY STATUS Condition (below)

PK6—On indicates OPERATIONAL
PK7—Off indicates SEEK INCOMPLETE
PK8—On indicates GOOD STATUS (will not be seen).

Secondary Status Indicators

PK9 —On indicates EQUAL

PK10—On indicates ON CYLINDER

PK11—Off indicates ILLEGAL SEEK

PK 12—On indicates WRITE INHIBIT

PK 13—Off indicates SECTOR NOT FOUND
PK 14— Off indicates LRC ERROR (Parity)

PK15— Off indicates ILLEGAL COMMAND SEQUENCE
PK 16— Off indicates DEVICE ERROR.

These indicators are only significant if SECONDARY STATUS (PKS above) is OFF.

Retry Count Indicators ©

The indicators associated with PK17 through PK 24 indicate the number of retries attempted before an error is declared.

MEMORY DUMP

This facility is provided in bootstrap to allow the contents of Random Access Memory to be written to cassette or to
a file on disc. A memory dump should be taken immediately if the system enters the Bootstrap Load State (PK 1 and
PK2 lit) spontaneously (that is, not in response to a PO of the system disc), or if Load Enable has to be pressed to
“unlock” the system. Note that the contents of memory will be destroyed if PK1 is pressed in the Bootstrap Load
State, or if the machine power is removed. The utility PMB80 (refer to the CMS Master Control Program (MCP)
Reference Manual, form number 2007555) may be used to produce an analysed listing of the contents of the cassette
or disc file. :

The Memory Dump will destroy the contents of the following locations:

4096 (@ 1000 @)—4110 (@ 100E @)
4118 (@ 1016 @)—4127 (@ 101F @)
4144 (@ 1030 @)—4159 (@ 103F @)
4208 (@ 1070 @)—4223 (@ 107F @)
4225 (@ 1081 @) -
8192 (@ 2000 @)—9517 (@ 252D @).

Memory Dump to Cassette

The contents of Random Access Memory may be dumped to cassette as detailed below. The cassette will be given
the identity “MEMDUMP/MEMORY”.

5-26

1) Perform the bootstrap load procedure using any B80 CMS disc. The bootstrap load is fully described in
BOOTSTRAP LOAD, but the salient features are;

—Press Load Enable (Note—power off will corrupt memory)
—Install a suitable disk and ready the unit
—Press PK2

The system should halt with the keyboard indicators associated with PK’s 3 through 6 illuminated.

2) Press PK4. |

The numeric light will be illuminated.

3) Insert a Write Enabled cassette (that is, the red tabs cover the write enable holes) in a cassette drive unit. Ensure

that the supply reel is to the left. If the tape is not fully rewound, wait until the tape has rewound, and is halted at
clear leader. Press the numeric or alphanumeric numeral key which corresponds to the drive unit containing the
tape. Cassette unit 1 is the rightmost unit. Any key except the numerals | through 4 will be ignored. The selected
cassette will be labelled MEMDUMP/MEMORY, the contents of Random Access Memory will be written to the

tape in 256 byte blocks, and an ending label will be written. During the dump, the memory address being dumped 1s

displayed on the PK9 through PK 16 keyboard indicators in increments of 256 bytes. At the end of the dump, PK17
through PK 24 indicators are illuminated. Press Load Enable and Warm Start the system to continue operation (see

INITIATING WARM START).

4) PK’s 3 through 6 will be illuminated for further selection (for example—warm start MCP).

Possible Errors

The following errors may be encountered during a Memory Dump.

1) The sequential extinguishing of keyboard indicators does not occur.
—The MTR switch (behind the processor door, above and to the right of the power on switch) is in the MTR
position. Transfer the MTR switch to NORMAL and press Load Enable.

2) PK2 is ignored.
—The keyboard is locked in “‘shift’’ mode. Press the shift key below the shift-lock key, and press PK2 again.

3) The numeric light illuminates instead of PK3 through PK6.

—PK1 was pressed. A memory dump must not be taken if PK1 is accidentally pressed. Press Load Enable and

warmstart the system (see INITIATING WARM START).

4) The keyboard error light illuminates, and a keyboard light pattern is displayed when PK2 is pressed.

—If the lights D1 through D8 are illuminated, no bootstrap was found. Check that a correct disc is installed and
ready, press Load Enable, and select PK2 again.

—If one of the lights D1 through D8 is extinguished, a disc error was encountered whilst attempting to locate a

bootstrap. The extinguished D light indicates the channel number of the disc in error. D1 corresponds to channel

0, D8 corresponds to channel 7. Other keyboard lights indicate relevant information as shown in the table below.

Take a note of the light pattern for field engineering use. Power off the faulty disc and replace with a backup
copy. Press Load Enable, then PK2.

The system warmstarts instead of illuminating the numeric light.
—PK3 was pressed. A memory dump must not be taken if PK3 is accidentally pressed, as portions of memory will

be overwritten by MCP. Allow the warmstart to complete.

All keyboard indicators alternatively illuminate and extinguish when PK4 is pressed.

—The system has just been powered up, and Random Access Memory contains parity errors which have not

been deleted by execution of MCP. A memory dump is therefore pointless at this time. Press Load Enable to exit

from the condition.

7) The keyboard error light illuminates when a numeral is pressed.

—The wrong cassette drive has been selected.

- September 1977 5-27

—The cassette is Write Inhibited.
—The tape is rewinding.
—Correct the fault, press Reset, then the correct numeral.

8) The keyboard error light illuminates after approximately ten seconds.
—The cassette is installed backwards (that is, the supply reel is on the right). Install the tape correctly, press Reset,

then the correct numeral.

9) The keyboard error light illuminates during the dump. |
—An unrecoverable tape error has been encountered. This may be caused by accidental opening of the cassette

drive unit. Install a new tape (or allow the tape to rewind if the drive was accidentally opened), press Reset, then
the correct numeral.

Table of Keyboard Indicators

Channel Indicators

D1—Channel 0 D5—Channel 4

D2—Channel 1 D6—Channel 5

D3—Channel 2 D7—Channel 6

D4—Channel 3 D8—Channel 7

If an error is encountered whilst the ROM Disc Load Routine is attempting to locate bootstrap, the D light
corresponding to the channel in error will be extinguished. All other D lights will be illuminated. The PK lights have
the significance shown below. If all D lights are illuminated, no bootstrap was found, and the PK lights have no
significance.

If an error is encountered whilst the bootstrap is attempting to locate MCP, the D light corresponding to the
channel in error will be illuminated. All other D lights will be extinguished. The PK lights have the significance
shown below. Refer to Error 5 above.

Primary Status Indicators

PK 1—Off indicates top drive; On indicates bottom drive
PK2—Off indicates SEEK COMPLETE

PK3—Off indicates END OF CYLINDER

PK4— Off indicates SEARCH COMPLETE
PK5— Off indicates SECONDARY STATUS Condition (below)
PK6—On indicates OPERATIONAL

PK7— Off indicates SEEK INCOMPLETE
PK8—On indicates GOOD STATUS (will not be seen).

Secondary Status Indicators

PK9 —On indicates EQUAL

PK10—On indicates ON CYLINDER

PK 11—Off indicates ILLEGAL SEEK

PK 12—On indicates WRITE INHIBIT
PK 13—Off indicates SECTOR NOT FOUND ©
PK 14—Off indicates LRC ERROR (Parity)
PK 15— Off indicates ILLEGAL COMMAND SEQUENCE
PK 16—Off indicates DEVICE ERROR.

These indicators are only significant if SECONDARY STATUS (PK5 above) is OFF.

5-28

Retry Count Indicators

The indicators associated with PK 17 through PK 24 indicate the number of retries attempted before an error is declared.

Memory Dump to Disc

The contents of Random Access Memory may be dumped to disc as detailed below. The contents of Random Access

Memory will be written into an existing file of identity MEMDUMP which will be searched for on the disc from which

bootstrap was loaded.

1) Perform the bootstrap load procedure using a B80 CMS disc containing an empty file of identity MEMDUMP.

(The utility GEN.DUMPFL may be used to create a suitable empty file.) The bootstrap load is fully described in

BOOTSTRAP LOAD, but the salient features are;

—Press Load Enable (Note—power off will corrupt memory)

—Install the disk and ready the unit
—Press PK2

The system will halt with the keyboard indicators associated with PK’s 3 through 6 illuminated.

2) Press PKS.

The disc from which bootstrap was loaded will be searched for a file of identity MEMDUMP.

The contents of Random Access Memory will be copied into this file.

3) PK’s 3 through 6 will be illuminated for further selection (for example, warm start MCP).

Possible Errors

The following errors may be encountered whilst taking a memory dump.

1) The sequential extinguishing of keyboard indicators does not occur.

—The MTR switch (behind the processor door, above and to the right of the power on switch) is in the MTR

position. Transfer the MTR switch to NORMAL and press Load Enable.

2) PK2 is ignored.
—The keyboard is locked in “‘shift”” mode. Press the shift key below the shift-lock key, and press PK2 again.

3) The numeric light illuminates instead of PK’s 3 through 6.

—PK1 was pressed. A memory dump must not be taken if PK1 is accidentally pressed. Press Load Enable and

warm start the system (see INITIATING WARM START).

4) The keyboard error light illuminates, and a keyboard light pattern is displayed when PK2 is pressed.

—TIf the lights D1 through D8 are illuminated, no bootstrap was found. Check that a correct disc is installed and

ready, press Load Enable, and select PK2 again.

—If one of the lights D1 through D8 is extinguished, a disc error was encountered whilst attempting to locate a

bootstrap. The extinguished D light indicates the channel number of the disc in error. D1 corresponds to channel

0, D8 corresponds to channel 7. Other keyboard lights indicate relevant information as shown in the table below.

Take a note of the light pattern for field engineering use. Power off the fauity disc and replace with a backup

copy. Press Load Enable, then PK2.

5) The keyboard error light illuminates, and a keyboard light pattern is displayed when PKS is pressed.

—Bootstrap has been loaded from a disc, but no file MEMDUMP was found. This may be caused if a disc error

exists, or if no disc on the system contains a MEMDUMP file. The D light which is il/uminated indicates the

channel number of the disc in error. D1 corresponds to channel 0, D8 corresponds to channel 7. Other keyboard

lights indicate relevant information as shown in the table below. Note that both a bootstrap and a MEMDUMP

file must be present on the same disc. If a suitable disc is present on the system, take a note of the light pattern

for field engineering use. Power off the disc and replace with a backup copy. Press Load Enable, PK2, and PKS.

September 1977 5-29

Note: Errors 4 and 5 above may be caused by a disc drive fault. This may be checked by using the disc in another
drive. If the disc successfully dumps, run the Customer Confidence Routine (see CUSTOMER CONFIDENCE
ROUTINE) and notify field engineering.

6) The system warmstarts instead of dumping memory.
—PK3 was pressed. A memory dump must not be taken if PK3 is accidentally pressed, as portions of memory will

be over written by MCP. Allow the warmstart to complete.

7) All keyboard indicators alternatively illuminate and extinguish when PKS is pressed.
—The system has just been powered up, and Random Access Memory contains parity errors which have not

been deleted by execution of MCP. A memory dump is therefore pointless at this time. Press Load Enable to exit.

Table of Keyboard Indicators

Channel Indicators

D1—Channel 0 D5—Channel 4

D2—Channel 1 D6—Channel 5

D3—Channel 2 D7—Channel 6

D4—Channel 3 D8—Channel 7

If an error is encountered whilst the ROM Disc Load Routine is attempting to locate bootstrap, the D light
corresponding to the channel in error will be extinguished. All other D lights will be illuminated. The PK lights have
the significance shown below. If all D lights are illuminated, no bootstrap was found, and the PK lights have no
significance.

If an error is encountered whilst the bootstrap is attempting to locate the MEMDUMP file, the D light corresponding
to the channel in error will be illuminated. All other D lights will be extinguished. The PK lights have the
significance shown below. |

Primary Status Indicators

PK 1—Off indicates top drive; On indicates bottom drive

PK2—Off indicates SEEK COMPLETE
PK3— Off indicates END OF CYLINDER

PK4— Off indicates SEARCH COMPLETE

PK5—Off indicates SECONDARY STATUS Condition (below)
PK6—On indicates OPERATIONAL

PK7—Off indicates SEEK INCOMPLETE
PK8—On indicates GOOD STATUS (will not be seen).

Secondary Status Indicators

PK9 —On indicates EQUAL

PK 10—On indicates ON CYLINDER

PK 11—Off indicates IBLEGAL SEEK

PK 12—On indicates WRITE INHIBIT

PK 13—Off indicates SECTOR NOT FOUND

PK14— Off indicates LRC ERROR (Parity)

PK15—Off indicates ILLEGAL COMMAND SEQUENCE

PK 16— Off indicates DEVICE ERROR.

These indicators are only significant if SECONDARY STATUS (PKS above) is OFF.

Retry Count Indicators

The indicators associated with PK 17 through PK 24 indicate the number of retries attempted before an error is declared.

5-30

CUSTOMER CONFIDENCE ROUTINE

The Customer Confidence Routine (CCR) is a stand-alone, micro-programmed utility which allows all hardware

functions of the B80 system to be exercised. The processor, memory, and all peripheral devices (and associated con-

trollers) are dynamically tested, and a listing is produced identifying areas of potential failure. It 1s recommended that the

routine is executed periodically to identify such areas before actual failure. Note that the routine tests “worst case”’

conditions, therefore errors which are detected by the routine may be causing no errors in normal operation.

FUNCTIONAL SUMMARY

The initial section of the CCR is stored in an alternate area of Read only Memory (ROM). This area is inaccessible

until the System Test Switch labelled MTR, behind the processor door, is transferred. The normal (execution) state

of this switch is down; the switch must be moved up to permit execution of the Customer Confidence Routine.

The remaining sections of the routine are stored on cassette or disk (for cassetteless systems). The system will contain

a cassette or a disk version of the initial routines in ROM as appropriate.

The ROM portion of the tests determine whether sufficient system resources are available to allow loading from the

cassette (or disc). The processor, a portion of Random Access Memory (RAM), and the appropriate device controller

are tested. Failures in these areas will be indicated upon the keyboard lights, and will require field engineering analysis.

If no faults are found, the cassette (or disc) is read, and control is passed into RAM. The individual cassette or disc

programs are automatically read into memory as required, and will be referred to as ‘‘overlayable routines’.

The overlayable routines provide three levels of testing which are to be used as follows.

1) Automatic—Quick Test

Basic confidence test to be executed weekly in order to identify potential trouble areas.

2) Automatic—Full Test

A more comprehensive test of the system to be executed when a fault is suspected.

3) Manual—Field Engineering Test
Diagnostic tool for use by trained Field Engineers.

The level 3 routines above are not within the scope of this manual.

The overlayable routines communicate with the operator using English language statements, and all input communi-

cation is through the keyboard. The keys PK1 through PK8 are used to provide almost all the required input, therefore

these keys are tested before any further tests are attemped. The operator will be requested to assist the routine when

some action is required which cannot be performed programmatically, for example, installing a disc.

The overlayable routines will perform full tests of the processor and memory, and will test each peripheral controller

present in the system. In the event that more than one device of the same type is present, the operator should

identify the correct device by the channel number which is printed at the start of each test. A list of all channels and

their corresponding peripheral devices is produced before any tests are commenced.

The output listing produced by each test is in the form of three columns. The leftmost column is reserved for

narrative displays, and requests for assistance. The central column displays test results and responses. The rightmost

column is reserved for error reporting in the form of “FIELD CODES”. The presence of a FIELD CODE on the

output listing should be reported to the Burroughs Field Engineer. All listings should be kept and presented to the

September 1977 5-31

Burroughs Field Engineer on his next visit, even when no FIELD CODE is present. The listings contain
information which will assist the Field Engineer to identify degraded performance before components fail.

REQUIREMENTS

If the system to be tested is a cassetteless system, at least one Write Enabled disc (initialised using the FE Stand-Alone
Function—see STAND-ALONE UTILITY) containing the CCR programs should be provided. The CCR programs
have identities BDSMTRO1xx through BDSMTR24xx where xx is a version number and is not taken as part of the
file—id for location purposes (that is, the file searched for is equivelant to—for example “BDSMTRO1=”). The disc
must be installed in a drive on physical channel 2.

If the system to be tested contains both cassettes and discs and contains MTR ROM which expects cassette then a
Write Enabled cassette tape version of CCR must be provided. This tape must be installed in a drive on physical
channel 2.

For each disc drive which is on the system, the CCR program will expect a Write Enabled FE initialised disc to be
installed when the drive is tested. When using the Quick Test facility, the user should, when directed by program
printout, install separate discs in each drive in order to minimise operator intervention (if a drive does not contain a
disc when the drive is scheduled for testing, the operator will be requested to install a suitable disc). If the Quick
Test facility is not being used, a suitable disc should be installed in each drive as directed by the program printout.
These extra discs need not contain the BDSMTRxxxx programs. It is possible to transfer the disc on channel 2 as
each drive is tested, but the disc should be restored to the original drive when disc testing is finished.

A Write Enabled cassette tape version of CCR should be installed in each cassette drive when requested by the
program printout. In the Quick Test mode of operation, all cassette drives to be tested should have suitable cassette
tapes installed when requested. Any drive not containing a cassette tape will be skipped in the Quick Test. Drives
containing an incorrect (not CCR) tape will generate a Field Code when tested.

Each printer (including the console printer) which is available on the system must be fitted with listing paper of at
least 134” (343mm) printing area (144” including pin feed perforations). Each Wide Line Printer should be fitted with
a format tape loop containing a Channel 1 hole. |

If the system is installed in a data communication network, then the operator disconnect data communications plugs
should be removed.

CONFIDENCE ROUTINE OPERATION

The confidence routine is mainly automatic in operation, but in addition to loading and initiating the test program,
the operator may be required to monitor the system indicator lights and operate the system controls as and when
directed by the printout. To execute the Customer Confidence Routine, perform the following procedure.

1) Remove all normal system media (discs, cassettes, listing paper) from the system, and install the listing paper,
format tapes, and ONE CCR disc OR cassette (as appropriate) in a drive unit on channel 2. Ensure that the
console printer left pin feed tractor is set to position zero.

2) Insert the PK identification strip associated with the Customer Confidence Routine into the plastic cover which is
located over the PK lights. If no such strip is available, refer to the table of PK assignments later in this section.

3) Set the System Test Switch to the Test (up) position.

4) Press the Load Enable Button. This initiates the ROM portion of the test program. If no faults occur, the second
section of the test program will be initiated automatically.

5-32

5) Ensure that the second section of the test program is initiated within 60 seconds—at the beginning of the

second section, the serial printer is initialised (the carrier moves to the right bumper and then to the zero print

position), and the program title is printed.

6) Perform the first block of instructions which appear on the printout.

7) Select “Automatic Test”’.

8) If the basic confidence routine is to be executed, select Quick Test, and install the media detailed in REQUIRE-

MENTS above. The routines will then execute automatically. If insufficient discs are available, then a disc may

be moved from drive to drive as requested. Cassette drive and printers which have no media installed will not be

tested. If the Full Test is to be executed then the media should be mounted and dismounted as directed by

program printout.

9) Remove and retain the program printout and report any fault conditions, that is, FIELD CODES, which have

been printed on the right hand side of the form. Enter the date and time on the printout as indicated.

10) Restore the System Test Switch to the normal (down) position.

11) Remove the Customer Confidence Routine media and restore all normal media.

TABLE OF PK ASSIGNMENTS

PK1 —YES
PK2 —CONTINUE
PK3 —NO
PK4 —RESTART (this test)

PK5 —field engineering use
PK6 —CANCEL (this test)
PK 7—24 — field engineering use

POSSIBLE ERRORS

The following conditions may prevent proper execution of the Confidence Routine.

1) The second section of the test program is not initiated at Step 7 of CONFIDENCE ROUTINE OPERATION.

a) the System Test Switch is not in the TEST (up) position

—correct the condition and press Load Enable.

b) more than one cassette drive unit contains a cassette (cassette version CCR)

—remove all cassettes except the Confidence Routine cassette, and press Load Enable.

c) the cassette is installed backwards (cassette version CCR)

—ensure that the cassette is installed with the supply reel to the left.

d) the cassette or disc contains an irrecoverable read error

—install another (backup) copy, and press Load Enable.

e) the cassette of disc drive unit has a fault

—_if more than one unit is available on channel 2, install the media in an alternative unit, and press Load Enable.

f) The serial printer is in an error condition

—ensure that the forms transport is properly closed and that the printer cover is properly latched. ‘The variable

forms spacing lever (60 cps printer) may be unlatched. Press Load Enable.

If none of the above conditions apply, it must be assumed that an error has been discovered by the ROM routine.

Notify the local Burroughs Field Engineering Representative.

September 1977
| 5-33-

2) If, at any time during the execution of the test program, an incorrect response is made (for example, PK 1 = YES is
pressed accidentally instead of PK3 = NO) then the test may be restarted by pressing PK4. An incorrect response of
this type will usually cause a FIELD CODE to be issued if the test is allowed to continue. The FIELD CODE will be
incorrect and should be disregarded.

3) On systems containing more than one peripheral device of the same type, it is possible for the operator to
perform some requested action upon the wrong device. Press PK4 to restart the test. :

KEYTOP LEGENDS

The following key is identified by the corresponding description in the Customer Confidence Routine printout.

“ON/OFF KEY” describes the Ready Request key, that is, the retangular blue key above the PK lights.

5-34

SECTION 6

B 800 DEPENDENT ROUTINES

GENERAL

This section describes the routines that are executed on the B 776/B 800 hardware only. These routines will

cold start a CMS system disk for B 776/B 800 systems, will warm start an existing CMS system disk, and are

dump analyzers for the dump files on disk created by the operating system on B 776/B 800 systems.

CREATE

The CREATE program will load the release tape to create a TOTALDISK. Since the TOTALDISK is also

released with the release tape, this routine is only necessary if the release disk (TOTALDISK) can not be used

locally due to a read error.

SET-UP PROCEDURE

Before loading the bootstrap loader, perform the following steps to enable loading CREATE:

1. Depress tape unit POWER switch to power up unit.
2. Mount release magnetic tape on a tape drive. Bring tape to BOT marker by depressing the LOAD switch

on the tape unit twice in succession.

OPERATING INSTRUCTIONS

To load the bootstrap loader: : ~

1. Depress the LOAD/NORMAL pushbutton on the CPU. It should be illuminated red for load.

2. Depress ‘the system CLEAR pushbutton.
3. Start papertape reading by depressing upper rocker of memory loader switch_and inserting paper. The pro-

gram on papertape is loaded in memory starting at location 0000. |

4. After papertape loading is complete, depress the LOAD/NORMAL pushbutton on the CPU to return to

normal mode (it should be illuminated white). |

5. Depress the system CLEAR pushbutton.
6. Depress the READY pushbutton or the INPUT REQUEST on the operator console.

7. Depress the numeric key whose number corresponds to the tape port, to load CREATE; or the disk port

to load DSKGEN. If the port number is greater than 9, depress J, K, or L for port numbers 10, 11 and

12: respectively.

BOOTSTRAP ERROR HANDLING

If a disk error occurs during execution of the bootstrap, the program waits with the disk status in MIR.

. If a tape error occurs during execution of the bootstrap, the program waits with the tape status in MIR.

c. If a fatal hardware error occurs during execution of the bootstrap, the program halts with the error number

in MIR. Successive force stepping of the program will place the contents of MPCR and BMAR in MIR.

d. If a disk error occurs while DSKGEN is loading (system loader) the program waits with the disk status

in MIR.
e. If a fatal error occurs while DSKGEN is loading (system loader) the program waits with the error code

in MIR.

oT
’

Operating in CREATE mode, the disk cartridge on unit 1 of drive 1 will first be initialized. If no bad sectors

are found, the DSKGEN segments will be read from tape and written to disk, followed by the RELEAS,

FIGTRE, NAMESS, and LETTER files. The actual start and stop disk address of each file will be printed on |

the operator’s interface device when the entire segment or file has been successfully written to disk (see figure

6-1).

2007258

8S

BOW CREATE

DATE (MMDD YY) 048977

MiSk PORT # Do 4%

JNIT ALT ZONG DISK

INITIALIZE COMPLETE

Sh So GOLS OO158 LOADED
SEG OO OOL?F 0039 LOADED

SEG Ob O85 OO3B LOADED

SiG O82 OO30 0044 LOAGIED
SEG OF 00485 O04 LOATIED

SEG OF 9048 OO4F LOADED

SiG OF OO8350 OOS7 LOADED

SEG O44 OO3B 0060 LOADED

SG OG? OOS) G07) LOADED

Bhi Ge OOF 0074 LOABED

SiG OF OO?7S OORE LOADED

SEG GA OOBF 0094 LOATIED

SIG OB OO9S OOS9 LOADED

SiG OU OOPA OOAZ LOADED

Skil OD GOA OOATC LOADED

SiO OF OGAD OOBR LOADED

Gis OF COB OOS LOADED

SO LO OOBS OOBR LOADED

SEG Lh OOBY OOCS LOADED

RELEAS O0C6 I1F8D LOADED

FIGTRE 2FRE LF9D LOADED
NAMESS LFVE FBS LOADED

LETTER 1FB6&6 2275 LOADED

EOJ CREATE

Figure 6-1. Sample CREATE Printout

ERROR MESSAGES AND RECOVERY

The following is a summary of tape and disk error messa
CREATE.

ges of conditions which can occur while operating

TAPE ERROR MESSAGES

ERROR PRINTOUT PROBABLE CAUSE OPERATOR ACTION

TAPE LABEL ERROR

C OR P NOT SPECIFIED ERROR

DSKGEN FILE ERROR #* *

DSKGEN INDEX ERROR * *

TAPE. READ ERROR * #

TAPE NOT READY ERROR

File-ID is not ““GENSYS”

User’s portion of label does
not contain a C or P in
position 81.

DSKGEN loader (Seg 63)
was not the first DSKGEN
segment read from tape.

DSKGEN segment - was not
between 0 and 22.

A Service Too Late, Parity
Error, or Tape Error has

been detected.

Tape unit is not ready to
accept a command from the
processor.

These errors indicate a tape
format error in the release
tape

Reload program from
bootstrap and allow one

retry. If unsuccessful, a new
tape will have to be used.

Reload program from
bootstrap

6—2

DISK ERROR MESSAGES

ERROR PRINTOUT PROBABLE CAUSE OPERATOR ACTION

BAD SEG - CANNOT BE
TOTALDISK

NO AVAILABLE DISK ERROR x
xX

DISK NOT READY

ADDR DISK ERROR xX x

DVCE DISK ERROR x x

FILE DISK ERROR x xX

PRTY DISK ERROR

SEEK DISK ERROR x xX

SERV DISK ERROR xX x

TIME DISK ERROR X xX

A bad sector has been found

during initialization.

NOTE:
The above error condition
may indicate a serious
misalignment of the
cartridge. Do not attempt
more than one retry with the
same cartridge, otherwise the

read/write heads may be
damaged.

No more space on disk for
files.

Disk unit unable to accept
commands from processor.

1. Bad sector on disk

cartridge; Operate-Compare
successful but returned

address incorrect.

2. Illegal track address.

Status error in disk unit
which firmware does not
recognize. Disk unit,
processor or firmware error.

1. Disk unit not operational.
2. Write lockout on disk

drive.

3. Cable connector to disk

unit not properly seated.

During any phase of
initialization indicates an

LRC read error on the

cartridge.

Seek error on disk unit.

Service late on disk read or

write. Disk unit, processor,
or firmware error.

Instruction timeout on disk

unit. Can be caused by

hardware malfunction or bad

cartridge sector address.

1. Re-try CREATE.
2. Try another cartridge.
3. Check for proper
functioning of the disk unit.

Technical assistance required.

Ready disk unit.

1. Initialize cartridge.
2. This error usually
indicates a firmware or

hardware malfunction.

1. Ready unit and retry.

1. Ready unit.
2. Enable write on cartridge.
3. Ensure proper connection
to disk unit.

A re-try of the operation
may be successful, however,

a true LRC error means that
the cartridge is no longer
usable. First determine that
the disk unit is operating
properly before attempting
retry.

Techniocal assistance
required.

CREATE source may be

.faulty try again.

'1. Disk cartridge may
require initialization.
2. System clear button

should be pressed.

DISK GENERATOR

GENERAL DESCRIPTION

The Disk Generator program (DSKGEN) can perform the following functions:

a. Initiate unit 1, drive 2 and build the initial CMS directory.

b.Execute a system generation in either prompting or no-prompting mode.

Copy from any drive to any other drive.
d. Warmstart the user system cartridge.
e. Print the release letter on the operator console, or line printer.

f. Replace firmware segments and programs on the user ‘System cartridge.

OQ
6

2007258 6—3

The individual functions are described in detail in the following sections.

The disk generator program consists of 18 code segments. DSKGEN is microprogrammed for speed and access
to all areas of disk. The System Loader resides at track 0, face 1 on TOTALDISK and is read into memory
using the bootstrap papertape. After load time, always resident in core are: 256 registers; ACOMMON (which
consists of a manager routine, input/output control, read/write routines, accept/display routines, etc.); a disk
controller and a SPO or console controller. The overlay region is used for various functions by DSKGEN, in-
cluding:

. Initial setup procedures.
. Disk initialization and build CMS directory code.
. Disk generation in prompting or no-prompting code.
. Copy disk to disk. |

. Bootstrap to warmstart.
Fatal error routines.

. Printing the LETTER file.
- Patching the user’s system cartridge. st

e
>
O
A

O
D

It is important to realize that disk accesses are necessary to perform the functions of DSKGEN. Only remove
TOTALDISK at the appropriate times as specified in the operating instructions.

OPERATING INSTRUCTIONS

1. Execute the DSKGEN bootstrap loader.
2. Depress the READY button or the INPUT REQUEST key on the operator console to define to the pro-

gram which device is on the particular system. :
3.Index the numeric port number for the disk unit. The bootstrap will now wait if the disk unit is not ready,

then proceed to the DISKGEN code segments.

NOTE
If any error occurs in the above sequence, return to Step 1.

4. DSKGEN will print: :
, B 700/B 800 SYSTEM DISK GENERATION

ENTER DATE (MMDDYY)
Enter the six-digit date.
DSKGEN will print:

ENTER TIME (HHMM)
Enter the time.

| NOTE
Date will be syntaxed for validity and the message repeated if invalid. Time will be
syntaxed for valid numerics. |

3. DSKGEN will print:
1 INIT
2 DSKGEN
3 COPY
4 BOOT
5 LETTER
6 PATCH
SELECT

Select the option by entering a number 1-6. The message will be repeated for an invalid selection. This is
referred to as the SELECT routine throughout the rest of the instructions.

The selected routine Initialize, System Generation, Copy, Bootstrap, Letter, or Patch will now be loaded from
disk and begin execution. The routines are described below.

INITIALIZATION ROUTINE (INIT)

Before selecting Option 1, the user must first install a scratch disk cartridge in unit 1, drive 2. The option
will then cause the program to print “INITIALIZING DISK” and begin initializing the cartridge. If a disk car-
tridge is not present, or is not write enabled, this will result in a disk error message and return to the SELECT
routine. After the disk is initialized, CMS directory will be built and then return to the SELECT routine after
printing any bad segments found (up to 50 bad segments are allowed for a system disk). Other messages should
be handled as previously described under disk error messages. |

6-4

After an CMS disk has been initialized, there will follow a series of displays to the operator for which re-

sponses are required to specify disk directory size and cartridge label fields.

Operating procedures for the Question-Answer routine are as follows (responses must be directed to the al-

. phanumeric keyboard if entered on an electronic console):

"1. “ENTER NO OF TRACKS FOR DIR (1-9):” will print. Only a numeric response from 1-9 will be al-

lowed, with the resulting directory format given in table 6-1, Directory Format Table. ,

2. “ENTER SERIAL NUM77 will print. One to six numeric keys (0-9) on the alpha keyboard must be en-

tered.
3. “ENTER PACK ID” will print. One to seven valid alphanumeric characters must be entered.

4. “ENTER OWNERS ID” will print. One to fourteen valid alphanumeric characters must be entered.

Table 6-1. Directory Format Table

Requested Tracks (Sectors) Available Entries Directory (File) Entries

1 (32) 116 25

2 (64) 116 55

3 (96) 116 84

4 (128) 116 113

5 (160) 116 143

6 (192) 116 172

7 (224) 116 201

8 (256) 116 231

9 (288) 116 , 256
SYSTEM DISK GENERATION ROUTINE (DSKGEN)

If Option 2 is selected, the system disk generation procedure will be entered, starting with a Question-Answer

routine in which the user can specify which operating mode prompting or no-prompting will be used for the

disk generation. In both methods, selections of the subsystems to be loaded to the user’s system disk are made

by entering the subsystem numbers via the keyboard.

As part of the release procedure, the subsystems are assigned into three groups: choices, exclusive options,

and options. The number of allowable selections from any one group of subsystems depends~on the type of

the subsystem group. When only one subsystem must be selected from the subsystem group, this is a choice.

When only one subsystem may be selected from the subsystem group, this is an exclusive option. When any

number of subsystems may be selected from the subsystem group, this is an option. The choices, options, and

exclusive options are predetermined. In prompting mode, subsystem groupings are printed for the user and each

selection is syntaxed as it is made. In no-prompting mode, selections are syntaxed after all entries are complete.

The first selection of both prompting and no-prompting is always the selection of the system to be generated.

QUESTION-ANSWER ROUTINE

Operating procedures for the Question-Answer routine are as follows: |

1. “RESPOND TO -QUESTIONS WITH 1 FOR YES AND 2 FOR NO” will print.

2. “FE MODE?” will print. If a.user requires a listing of the segment type, segment name, and segment load

address, the response should be a 1, otherwise a 2.

3. “DO YOU REQUIRE PROMPTING?” will print. The user should respond 1 or 2.

4. If the user responds YES to prompting, the following will print:

PLEASE CHECK DRIVE 2 FOR
SCRATCH DISK PRESENT
DISK DRIVE ON
DISK WRITE ENABLED

ARE DISKS READY? |

When all conditions are true, the user should respond 1. : .

5. If the user responds NO to the Step 3 prompt, then the message “ARE DISKS READY?” will print.

If the scratch disk is present, on, and write enabled, the user should enter a 1. |

6. “INITIALIZING DISK” will print. At this time the scratch disk will be initialized. If any errors occur

during initialization the appropriate error message will be displayed. |

The same Question-Answer routine as described for INIT will be entered, requiring the same operator re-

sponses as specified therein. :

2007258 65

PROMPTING MODE OPERATING INSTRUCTIONS

|. “SELECTIONS ARE MADE BY ENTERING THE 4-DIGIT SUBSYSTEM NUMBERS?” will print.

2. System Selection: 7

a. “SELECT SYSTEM:” will print followed by the valid system numbers and system names to be selected.

b. “SELECTION 001” will print. The user should respond by entering one of the system numbers. If an
invalid selection is made, an appropriate error message will appear. “SELECTION 001” will print. The
user should re-enter a valid system number; the previous selection is ignored. |

3. Subsystem selection:

a. If selection is a choice, “YOU MUST SELECT (ONLY) ONE OF:” will print followed by the group
of subsystem numbers and subsystem names to be selected.

b. If selection is an exclusive option, “YOU MAY SELECT (ONLY) ONE OF:” will print followed by
the group of subsystem numbers and subsystem names to be selected. The last selection to print will
be “9999 NO SELECTION”. |

c. If selection is an option, “YOU MAY SELECT ANY NUMBER OF:” will print followed by the group
of subsystem numbers and subsystem names to be selected. The last selections to print will be “9998
ALL SELECTIONS” and “9999 END SELECTION”. |

d. “SELECTION XXX” (where XXX = the number) will print. XXX is incremented by one before dis-
play.

e. If selection is a choice, the user should enter the subsystem number from the group of choices displayed.
If an invalid selection is made, the appropriate error message will appear and “SELECTION XXX”
(XXX will not change) will print again. The user should re-enter a valid selection: the previous selection
is ignored. When a valid selection is entered, the object code for that subsystem is then loaded to disk.

f. If selection is an exclusive option, the user should enter a subsystem number from the group of exclusive
options displayed or a “9999” if no selection is to be made. If an invalid selection is made the appropriate
error message will appear and “SELECTION XXX” (XXX will not increment) will print again. The user
should re-enter a valid selection; the previous selection is ignored. When a valid selection is entered,
the object code for that subsystem is then loaded: to disk. |

g. If selection is an option, the user should enter the subsystem number(s) from the group of options dis-
played, or a “9999” if no selection is to be made, or a “9998” if all selections are to be made. If an
invalid selection is made, the appropriate error message will appear and “SELECTION XXX” (XXX
will not increment) will print again. The user should re-enter a valid selection; the previous selection
is ignored. When a valid selection is entered, the object code for that subsystem is then loaded to disk.
“SELECTION XXX” (XXX has been incremented by 1) will print. If another selection is to.be made,
enter the next subsystem number. Duplicate selections will be ignored. When all subsystems have been
selected from the group, enter a “9999” to end selections for that group.

h. Procedures for subsystem selection will be repeated until all subsystems have been selected. The message
“SYSTEM DISK COMPLETE XX:XxX” will print, where XX:XX represents the time. “SELECT” will
then print, meaning that the user has been returned to the Select routine.

PROMPTING ERROR MESSAGES

“ERROR - NOT A SYSTEM”

The first selection is not a system.

“ILLEGAL SELECTION”

The selection made is an invalidgelection for that group of systems. The user should make another selection.

6-6

B700 SYSTEM DISK GENERATION

RELEASE Le?

ENTER DATE CMMDDYY? Leese

HAPPY HOLIDAYS

ENTER TIME CHHMM? = 1344
tL oINTT

& BOOT
2 LETTER
& PATCH

SELECT 2

SYSTEM DISK GENERATION 13544

RESPOND TO QUESTIONS WITH 1 FOR YES ¢ FOR NO

FE MODE? 2
DO YOU REGUIRE PROMPTING? 4
SYSTEM WILL BE GENERATED ON DRIVE B
PLEASE CHECK DRIVE B FOR

~SORATCH DISK PRESENT
“DISK DRIVE ON
“~“BISK WRITE ENABLED

ARE DISKS READY? 1

INITIALIZING DISK
ENTER NO OF TRACKS FOR DIR Cin?) 2 5
ENTER SERIAL NUM = 1357990
ENTER PACK TD REL B74
ENTER OWNERS ID TIODTN
SELECTIONS ARE MADE BY ENTERING A 4-DIGIT SYSTEM NUMBERS

 SELECT SYSTEM s

OO87 CéMS-SYSTEM

SELECTION O01 OO37 CMS~SYSTEM

YOU MAY SELECT ANY NUMBER OF:

OOO1 MPLe-COMPILER OOL3 COBOL-COMPILER GO25 RPG-COMPTILER

0036 NDL-COMPILIER 0040 PSL-COMPILIER 6044 SQMCS—- PROGRAM

0046 CMCS--PROGRAM 0048 NDL-~SAMPLE $998 ALL SELECTIONS

Y9O99 END SELECTION

SELECTION 002 0001 MPL2-COMPILER

SELECTION 003 OO13 COBOLCOMPILER

SELECTION 904 0025 RPG-COMPILER

SELECTION O03 9999
SYSTEM DISK COMPLETE 13:3.

Figure 6-1. Sample DSKGEN, Prompting Mode

2007258

hy

“i
‘e

NO-PROMPTING MODE OPERATING INSTRUCTIONS | ©

1. Upon entering no-prompting mode, the following instructions will be displayed:
9999 —- ENDS SELECTION
9998 —- INCLUDES ALL OPTIONS
IST SELECTION MUST BE A SYSTEM

2. The above information is followed by a display of the heading format to be used in the selection process:
SELECTION - SS-NO DESCRIPTION YES-NO?

3. The system selection process will then commence:
a. “001” will print under SELECTION.
. The user should enter the system number of the system to be coldstarted.

c. The system name will print under DESCRIPTION and the printing element will proceed to the YES-
NO column.

d. If the selection is correct as displayed, enter a “1” under YES-NO. If the selection must be changed
or corrected, enter a “2” under YES-NO; the printing element will proceed to the next line, print 001
(SELECTION - remains the same), and a new selection can be made (previous selection is ignored).

e. Following the entry of a “1” (YES response) the selection will be checked for validity. If an invalid
system selection was made, an appropriate error message will be printed and the procedure will return
to the “001” selection state. This process will continue until a valid selection is made or the procedure
is terminated. |

4. Following successful system selection, the procedure then proceeds to subsystem selection:
a. The print element returns to the SELECTION column, and the selection number is printed incre-

mented by one. : |
b. Select appropriate subsystem(s):

1) Enter “9998” if all options are to be included; or
2) Enter subsystem selections individually.

In either case, the printing element will proceed to the YES-NO column after the selection is made. Enter
a ‘1” if the entry is correct, or a “2” if the subsystem number requires correction. If a “1”, the SELEC-
TION _ will be incremented allowing additional subsystem selections to be made; if a **2”’, the same selec-
tion number will be repeated.
c. Terminate the selection routine by entering ‘9999”.

5. The object code for all selected subsystems is loaded to disk, providing that the selection is valid.
6. If an invalid subsystem number is detected, the subsystem number and appropriate error message will print.
7. The message “SYSTEM DISK COMPLETE XX:XX” will print, where XX:XX represents the time in

hours and minutes of the day.
8. The message “SELECT” will print, notifying the user that control has been returned to the Select routine.

o
f

NO-PROMPTING ERROR MESSAGES

“ERROR -— NOT A SYSTEM”
The first selection is not a system.

“ILLEGAL SELECTION”
The selection made is an invalid selection for the system being generated.

“AMBIGUOUS SELECTION - IGNORED”
More than one choice or option of the same group was entered. The second one was ignored.

“XXXX DUP SELECTION —- IGNORED”
Duplicate selection, where XXXX is the subsystem number. Identical selections were made. The second
one was ignored. |

“ROD CHOICE XXX NOT MADE” :
Required choice not made, where XXX is the choice number. A required subsystem was not entered. Sys-

_ tem disk will not be generated.
“SEL: TABLE FULL”

Selection table full (100 selections allowed per system generation). .

COPY

If Option 3 is selected, the program will print messages prompting the user for the source and destination
drive numbers. To return to the SELECT routine enter zero, (0 from the alpha keyboard) for the source drive.

6—8

BOO SYSTEM DISK GENERATION
RELEASE 22/6

ENTER DATE CRMDDYY? Leaves

APPY HOLIDAYS
ENTER TIME CHHMM) D3?

Lo oINIT
 ROKOEN

2 COPY
& BOOT

LETTER
& PATCH

SELECT <

SYSTEM DISK GENERATION 13257

ESPOND TO QUESTIONS WITH 1 FOR YES @ FOR NO
E MODE? 2 |

DO YOU REQUIRE PROMPTING? 2
GRE DISKS READY? J

“
t }: .

fF

ENITIALIZING DISK

ENTER HO OF TRACKS FOR DIR Cl-9o8 &
ENTER SERTAL HUM LSS 79O

ENTER PACK TD RELB?Z74
ENTER OWNERS ID TIODTN

2999 ENDS SELECTIONS
2993 INCLUDES ALL OPTIONS

Sy SELECTION MUST GE A SYSTEM
SELECTION #% SS-HO DESCRIPTION YES-HO’?

GOL OO87 CMS-SYSTEM
OO2 OOO) MPLa-COMPILER
OO3 OO13 COBOL-COMPILER
O04 OO235 RPG-COMPILER
O08 0036 NDL-COMPILER
O09 O99

SYSTEM DISK COMPLETE 14204

-

2007258

Figure 6—3. Sample DSKGEN, Prompting Mode

6—9

In order to prime the CMS destination cartridge label, copy will print the following: ©
a. For Copying TOTALDISK: | |
SOURCE DRIVE A-H (0 TO TERMINATE: A
DESTINATION DRIVE A-H: B
ARE YOU COPYING TOTALDISK? 1
COPYING
SOURCE DRIVE A-H (0 TO TERMINATE): O

b. For Copying a CMS System Disk:
SOURCE DRIVE A-H (0 TO TERMINATE): A
DESTINATION DRIVE A-H: B |
ARE YOU COPYING TOTALDISK? 2
ENTER PACK ID ABCDEFG | |
ENTER OWNERS ID ABCDEFG12345 |
COPYING
SOURCE DRIVE A-H (0 TO TERMINATE): O |

The expected responses to the “ENTER PACK ID” and “ENTER OWNERS ID’ displays are as described
for those fields in INIT Question-Answer Routine.

TOTALDISK may be removed during this process but must be replaced before entering “0”. A disk error
message will result if a disk cartridge is not present or if a disk error occurs. A new cartridge must be initialized
before being copied to. A cartridge with any bad sectors cannot be used in COPY.

COPY performs a disk-to-disk copy of the first 203 cylinder of the source disk. A read-after-write check is
done for each track. If the validity check. fails, a message “COPY ERROR XXXX” will be printed (where
XXXX = disk address). Since DSKGEN is limited by the virtual machine, the copy is a full copy on a single
density drive and a half copy on a double density drive. This is sufficient to copy TOTALDISK and any new
users system disk but should not be used to copy double density data platters.

NOTE
DSKGEN can be used to create copies between single and double density drives
of TOTALDISK and the users system cartridge, but it should be realized it is the
directory information of the original disk that will govern the limits of the second
disk.

BOOTSTRAP WARMSTART

In CMS the system disk may be placed on any unit and drive. When the system disk is ready, the operator
will enter the desired drive. The warmstart routine will be read from the specified disk and begin execution.
The typical printout is as follows: |

BOOTSTRAP WARMSTART
REMOVE TOTALDISK |
PLACE SYSTEM DISK ON DESIRED DRIVE

ENTER DRIVE NUMBER (A-H) WHEN READY

NOTE
Unless TOTALDISK is removed before a CMS Warmstart, it will be destroyed.

RELEASE LETTER

GENERAL DESCRIPTION

The release letter which always accompanies a release may be printed for the user’s benefit. If the user does
not specify a dump to the line printer, the letter is automatically dumped to the console. If the line printer
is selected, and an error occurs, “LINE PRINTER ERROR” will print and the program will return to the SE-
LECT routine. At the end of the dump of the letter file, the program will return to the SELECT routine.

OPERATING INSTRUCTIONS

1. “DO YOU REQUIRE A PRINTER LISTING” will print.
2. User responds “1” (YES) or “2” (NO). | ©
3. If YES, “PRINTER PORT ” will print.
4. User should enter printer port number. The line printer should be ready.
5. If NO, the letter will begin printing on the console.

6—10

PATCH

GENERAL DESCRIPTION
The function of the patching capability is to replace firmware segments of code files, and programs on a user’s

system cartridge. The user selects the segments, files, or programs that he wishes to replace. There are two

restrictions when patching code segments: (1) The selected segment to be patched must be present on the user’s.

system cartridge and (2) there must be enough disk area to load the patched segment into the same disk area

as the selected segment. When patching programs and files, if the selected program or file is present on disk,

that program or file will. be purged first and then the patched program or file will be loaded. If the selected

program or file is not present on disk, the patched program or file will be loaded to disk. The user should

be aware that if the disk space cannot be found for the patched program or file, it will not be loaded and the

previous program or file has been purged. This is a very important aspect when patching subsystems pf programs

and files; for example a compiler, because some programs and files of that subsystem possibly will not be

loaded. In some cases, the selected program or file cannot be purged, therefore the user’s disk is left unchanged

and a message is displayed to inform the user. |

There are two modes of patching, prompting and no-prompting. In the prompting mode, a list of segments,

subsystems, programs, and file names along with their appropriate subsystem number are displayed for the sys-

tem to be patched. In the no-prompting mode no list is displayed. Selections are made by entering the 4 digit

subsystem number. In both modes the first selection must be a system selection.

OPERATING INSTRUCTIONS

1. Upon entering patch the following instructions will be displayed:

RESPOND TO QUESTIONS WITH 1 FOR YES 2 FOR NO
SELECTIONS ARE MADE BY ENTERING 4-DIGIT SYSTEM NUMBERS
DO YOU REQUIRE PROMPTING?

2. Enter a 1 (yes) or 2 (no)
3. If a 1 is entered:

a. The group of system names and their system numbers will be displayed. _

b. “SELECT SYSTEM:” will print followed by the heading format below which is to be used in the selec-

tion process. | | |

SELECTION - SS-NO DESCRIPTION YES-NO?

c. “001” will print under selection. |

d. The user should enter the system number of the system to be patched.

e. The system name will print under DESCRIPTION and the printing element will proceed to the YES-

NO column.
f. If the selection is correct as displayed, enter a ‘1’? under YES-NO. If the selection must be changed

or corrected, enter a “2” under YES-NO; the printing element will proceed to the next line, print 001 -

(SELECTION - remains the same), and a new selection can be made (previous selection is ignored.

g. Following the entry of a “1” (YES response) the selection will be checked for validity. If an invalid

system selection was made, an appropriate error message will be printed and the procedure will return

to the “001” selection state. This process will continue until a valid selection is made or the procedure

is terminated.
h. All segment, subsystem, program, and file names of the selected system along with their appropriate

subsystem number will be displayed followed by the message “9999 ends selections’.

4. If a 2 is entered:
a. The following instructions will be displayed:

1ST SELECTION MUST BE A SYSTEM
9999 ENDS SELECTIONS

b. The above information is followed by a display of the heading format to be used in the selection process:

SELECTION - SS-NO DESCRIPTION YES-NO?
c. “001” will print under SELECTION .
d. The user should enter the system number of the system to be patched.

e. The system name will print under DESCRIPTION and the printing element will proceed to the YES-

NO column.

2007258 6—11

f. If the selection is correct as displayed, enter a “1” under YES-NO. If the selection must be changed
or corrected, enter a “2” under YES-NO; the printing element will proceed to the next line, print 001 ©
(SELECTION - remains the same), and a new selection can be made (previous selection is ignored).

g. Following the entry of a “1”? (YES response), the selection will be checked for validity. If an invalid
system selection was made, an appropriate error message will be printed and the procedure will return
to the “001” selection state. This process will continue until a valid selection is made or the procedure
is terminated.)

5. Following successful system selection, the procedure then proceeds to the selection routine:
a. The print element returns to the SELECTION - column, and the selection number is printed incre-

mented by one. | |
b. The user should enter the subsystem number of the program, file, subsystem, or segment to be patched.
c. The printing element will proceed to the YES-NO column after the selection is made. Enter a “1” if

the entry is correct, or a “2” if the subsystem number requires correction. If a “1”, the SELECTION
- will be incremented allowing additional subsystem selections to be made; if a “2”, the same selection
number will be repeated. | :

d. The selection will then be syntaxed for validity and patchability. If patchable and valid, the patched seg-
ment, program or file will replace the present code on disk and a message will be displayed to inform
the user. If the selection is not valid or patchable, the appropriate message will be displayed to inform
the user. |

e. Terminate the selection routine by entering “9999”. The message “SELECT” will print, notifying the
user that control has been returned to the select routine. :

ERROR MESSAGES AND RECOVERY

FATAL ERROR MESSAGES

The occurrence of a fatal error condition while operating DSKGEN will cause a branch to the fatal error
routine, resulting in an error alarm, an error printout and display, and a program halt.

Recovery may be possible from some fatal error conditions by attempting to re-run the program; however,
if recovery fails after repeated re-tries (one re-try for hardware errors), the operator has no recourse other than
to obtain technical assistance. When a fatal error condition is detected, the system will respond in the following
manner: :

ja
h The FATAL error routine segment will be loaded from TOTALDISK‘’ to program memory if not already

resident there. 7
The console ERROR indicator will be turned on.
The console audible alarm will be sounded.
The “D” indicator bank will display the binary value of the error type.
The appropriate error message will be printed on the console. A

Y
N

HARDWARE FATAL ERRORS

The console message format for a hardware fatal error condition is:

(REASON FOR ERROR) AAA A BBBB CCCC DD DD

Error Message Error MIR MPCR BMAR & | a, Contents Contents Contents

6-12

A typical fatal error message format is as follows:
NAND ADDRESS ERR 8005 9001 2020 007B

“9”

INDICATOR ERROR MESSAGE DESCRIPTION
PATTERN

00 MEMORY ERROR

01 LOADER ADDRESS ERR Hardware has detected an error in papertape during read-in of data.

02 LOAD ADDRESS ERR Hardware has detected an addressing error while loading papertape; that is, an
attempt was made to load beyond physical confines of memory.

03 LOAD MPM PARITY ERR Hardware has detected a parity error while loading papertape.

04 NANO PARITY ERROR Hardware has detected a parity error in an MPM word while ? attempting to read
a nano instruction.

05 NANO ADDRESS ERROR Hardware has detected an addressing error while attempting to read a nano
instruction; that is, an attempt was made to read outside the physical confines of
the nano memory.

MPM PARITY ERR Hardware has detected a parity error while attempting to access a micro
instruction. |

MPM ADDRESS ERROR Hardware has detected an addressing error while attempting to fetch a micro
instruction; that is, an attempt was made to execute a micro instruction outside

the physical. confines of the memory.

09 DPM WRITE ERR Hardware has detected a memory address in excess of the memory limit register
setting while the processor was attempting a write operation.

0A DPM PARITY ERR Hardware has detected a parity error while the processor was attempting to read
data memory.

OB . DPM READ ERR Hardware ‘has detected a memory address in excess of the memory limit register
setting while the processor was attempting a read operation.

0D WRITE STEAL ERR Hardware has detected a memory address in excess of the memory limit register
. setting while one of the direct memory access channels was attempting to write to

memory.

OE STEAL PARITY ERR Hardware has detected a parity error while one of the direct memory access
channels was attempting to read data memory.

OF READ STEAL ERR Hardware has detected a memory address in excess of the memory limit register
setting while one of the direct memory access channels was attempting to read
from memory.

SOFTWARE FATAL ERRORS

The console error message format for software fatal errors is as follows:

(REASON FOR ERROR) AAAA BBBB CCCC DDDD

Error Message — Error # MIR MPCR BMAR

(See listing next page) MATOT Contents Contents Contents

FIB Description

EEEE FFFF GGGG HHHH III! JIIJ KKKK

K Max. Current Records/ Segs/ D-Words/ Start

“y Key Page Page Page Record Address

LLLL MMMM NNNN Ooo00oOo OQO00O0 O0O0O0 OO00O0

Unit D-Words/ Total fo el

nt Segment D-Words {| ©. ©.

2007258 6-13

Example: . | | @

INVALID KEY 0002 0001 1796 1002
0001 0064 FFFF 005A 0004 0004 0598
0000 005A 0168 0000 0000 0005 9808

Software fatal error messages having the above format includes:

ERROR MESSAGE | DESCRIPTION

ILLEGAL-—1V/O Interpreter has detected an ilegal request to an I/O device.

INVALID KEY An attempt was made to read an item record with a disk key
| beyond the file limits. |

In addition to containing the above formatted information, the software fatal error messages listed below also include
FGTRE record information following the data field. The format is:

PPPP PPPP PPPP PPPP

~---~--~~- FIGTRE Record — — —- ~--——

Example:

SEG NOR ERROR 0004 2064 1467 175A
0031 FFFF FFFF 0020 0010 0020 0000
0000 O00SA OAEO 0000 0000 0000 0008
0000 0000 0000 0000

ERROR MESSAGE DESCRIPTION

INVALID TYPE FIGTRE file contains a record type.

SEG HDR ERROR Segment header error. Invalid header type has been detected. .

NO PROGRAM SEG No program segment. An attempt was made to load a program segment
not on disk.

POSITIONING Carrier stall was detected while positioning; carrier overspeed was detected
| _ While printing; or the interpreter detected as attempt to position the

carrier beyond the limit imposed by the platen size value of the keyboard
dataseg currently in use by the interpreter.

STACK OVERFLOW Occurs when choice option stack (max. 20 entries) or substyles stack
(max. 4 entries) exceeds limit.

Disk Error Messages

ERROR MESSAGE DESCRIPTION | OPERATOR ACTION:

ADDR DISK ERROR * * * 1. Bad sector on disk cartridge; Operate- 1. Initialize cartridge.

Compare successful but returned address 2. This error usually indicates a firmware
incorrect. . .

or hardware malfunction. °
2. Illegal track address.

DVC DISK ERROR * * * Status error in disk unit which firmware does. Ready unit and retry.
. not recognize. Disk unit, processor, or firm-

ware error.

ERROR MESSAGE DESCRIPTION OPERATOR ACTION

FILE DISK ERROR * * *

INIT DISK ERROR * * *

PRTY DISK ERROR * * *

SEEK DISK ERROR * * *

SERV DISK ERROR * * *

TIME DISK ERROR * * *

1. Disk unit not operational.

2. Write lockout on disk drive.

3. Cable connector to disk unit not properly

seated.

More than 50 bad segments or 9 bad areas
have been found while initializing disk cart-
ridge. This condition may also be caused by

a malfunctioning disk drive.

During any phase of initialization indicates

an LRC read error on the cartridge.

Seek error on disk unit.

Service late on disk read or write. Disk unit,

processor, or firmware error.

Instruction timeout on disk unit. Can be

caused by hardware malfunction or bad

cartridge sector address.

1. Ready unit.

2. Enable write on cartridge.

3. Ensure proper connection to disk unit.

1. Retry initialization.

2. Try another cartridge.

3. Check for paper functioning of the

disk unit.

A retry of the operation may be successful,

however, a true LRC error means that the

cartridge is no longer usuable. First deter-

mine that the disk unit is operating prop-

erly before attempting retry.

Technical assistance required.

Create source may be faulty - try again.

1. Disk cartridge may require initializa-

tion.

2. System CLEAR button should be

pressed.

Other Error Messages

The following error messages may appear while operating DSKGEN:

ERROR MESSAGE DESCRIPTION

DIRECTORY MESSAGE * * *

BAD SEGMENT: XXXX

NOT FOR INTERPRETER USE

COPY ERROR XXXX

LINE PRINTER ERROR

 TRACK O BAD — DISK UNUSABLE

NO ROOM FOR DIRECTORY — DISK UNUSABLE

system platter.

size specified during initialize.

Indicates no avilable entries in user’s protected directory for program date

segment. IO-data or utility load.

Indicates that a bad segment was detected where XXXX is the disk address.

There are bad sectors in the protected area, therefore, this disk cannot bea

Indicates read-after-write check failure, where XX XX is the disk address.

Indicates that the line printer is in a Not Ready condition.

CMS — Bad sectors in necessary disk area.

CMS — An area on disk cannot be found to contain the disk directory of the

2007258
6—15

CMS System Disk Layout

CMS system disk segments are divided into the following sections:

Disk Segments | | Use

0
Label information

1 ” Security Information

2 thru 9 B 80 Bootstrap Area

OA thru 11 _B 1700 Bootstrap Area

12 thru 18 B 700/B 800 Bootstrap Area

19 thru 1F Reserved for Operating System

20 thru END Directory Space
Disk File Areas

WARM START
The warm start procedure enables an operator to define the system configuration. The system is placed in a normal operating status at the conclusion of a warm start. |
The bootstrap loader (COMMON BOOT paper tape) is loaded in the same manner as in CREATE and DSKGEN up to the point of entering a port number. The entry is now the disk drive number A through H which contains the CMS system disk with a B 700MCP file. ©

WARM-START OPERATING PROCEDURE

NOTE
If an error condition is indicated at any time when performing the following proce-
dure, refer to information under WARM START ERROR HANDLING, table 6-
3, for error definitions and operation actions.

All entries are made on the operator console. Proceed as follows:
1. Warm start will print the messages WARMSTART, SYSTEM PACK ID IS pack-id, and HARDWARE CONFIGURATION. /
2. Enter the configuration of the system. A valid entry will consist of a two-character mnemonic (table 6- 2), a two-character port number, and a one-character device number. The one-character device number has a range of A-H for all devices except DC, for which the range is 0 or 1. If two device numbers are entered, only the first is used except for a multiqueue device, such as disk. Blanks may be entered at any time. Only 40 characters are valid per entry.

NOTE
If an error has occurred during warm start, one of the error messages will be printed
on the operator console. The entire configuration of the system must be reentered.

3. Termination of any entry is made by pressing END OF MESSAGE pushbutton or the OCK1 on the nv- meric keyboard.

4. If an entry is not complete, and an error has been made, pressing the ERROR or RESET button will allow a recreation of that entry. | ~
5. When configuration is complete, END must be entered to allow warm start to continue. _ 6. To the question DUMP FILE? a YES or NO must be entered. A YES response will cause a file named DMFIL00 to be created on the system disk cartridge. Also, disk space will be allocated to DMFILOO equal to the size of the main memory of the system. In the unlikely event of a processor or system firmware failure (for example, Memory Address Error) the MCP will store the contents of main memory to DMFIL00. When the system is restored, see clear start, the operator ‘should execute the utility SYSDUMP. SYSDUMP will convert the dump file to a formatted listing which will be of use to support personnel.

6—16

-A NO response will remove an existing DMFILOO from the system disk and return the disk space to the

available directory.
7. Message ENTER DATE: is printed on the system console. The expected response is mm/dd/yy, where

mm = month, dd = day, and yy = year. The entry may be preceded or followed by blanks, but may

not contain blanks.
8. If the real time clock (RT) has been configured into the system, the message ENTER TIME: will print

on the system console. Warmstart expects a four character response of hhmm (where hh = hour and mm.

= minute). The entry may be preceded or followed by blanks, but may not contain blanks.

Table 6-2. Valid Device Mnemonics

VALUE DESCRIPTION

CT Cassette Tape

DC Disk Communication!

DF Mini Disk

DK Disk Cartridge

KB Console Keyboard

LP Line Printer

MT Magnetic Tape

M8 80-Column Card Reader/Printer/Punch

RT Real-Time Clock and Event Timer

R8 80-Column Card Reader

R9 96-Column Card Reader —

SP Serial Printer

The only valid device numbers are 0 or 1 for this mnemonic.

Warm start also contains the following stand-alone functions:

a. IN (INITIALIZE)
DISK CARTRIDGES MAY BE INITIALIZED BY ENTERING “IN” FOR THE HARDWARE CON-

FIGURATION DURING A WARMSTART. WARMSTART WILL PRINT:

INIT
ENTER DATE (MMDDYY): | ~

ENTER THE 6-DIGIT DATE AND WARMSTART WILL PRINT:

ENTER DRIVE NO (A-H): |

ENTER THE DISK DRIVE NUMBER AND INITIALIZING WILL COMMENCE. AFTER THE EN-

TIRE CARTRIDGE IS INITIALIZED THEN THE FOLLOWING WILL PRINT:

ENTER NO OF TRACKS FOR DIR (1-9):

AFTER THE ENTRY THEN THE FOLLOWING WILL PRINT:

ENTER SERIAL NUM
ENTER THE SERIAL NUMBER AND THE NEXT REQUEST IS:

ENTER PACK ID
UP TO 7 CHARACTERS MAY BE ENTERED, THEN THE NEXT REQUEST Is:

ENTER OWNERS ID . |

UP TO 14 CHARACTERS MAY BE ENTERED. THE CMS DIRECTORY IS THEN ESTABLISHED

ON THE DISK CARTRIDGE. WARMSTART WILL THEN ASK FOR THE HARDWARE

CONFIGURATION.

b. CO (COPY) ~ | -

CMS CARTRIDGES MAY BE COPIED BY ENTERING “CO” FOR THE HARDWARE

CONFIGURATION DURING A WARMSTART. TOTALDISK MAY NOT BE COPIED BY THIS

COPY, ONLY BY THE COPY FUNCTION IN DSKGEN. WARMSTART WILL PRINT:

COPY: ENTER SOURCE DRIVE (A-H):

AFTER THIS IS ENTERED THEN THE NEXT LINE IS:

ENTER DESTINATION DRIVE (A-H):

WHEN THIS IS ENTERED IT WILL ASK:
ENTER PACK ID

FINALLY IT WILL REQUEST:
ENTER OWNERS ID |

WHEN THE COPY IS COMPLETED, WARMSTART WILL ASK FOR THE HARDWARE CONFIG-

URATION. |

2007258 6—17

c. PA (PATCH)
A_ FIRMWARE PATCH FUNCTION IS NOW AVAILABLE THROUGH WARMSTART. THIS IS THE ONLY TIME A PATCH MAY BE ENTERED TO THE SOFTWARE. IT CAN BE USED TO UP. DATE ANY OPERATING SYSTEM OR INTERPRETER SEGMENT VIA THE OPERATOR CONSOLE. THE PATCH FUNCTION IS INVOKED BY ENTERING “PA” AS THE FIRST ENTRY OF THE HARDWARE CONFIGURATION. THE KEYBOARD IS ENABLED FOR THE ENTRY OF PATCHES. A PATCH CONSISTS OF ONE OR MORE LINES OR ENTRIES. EACH ENTRY IS TERMINATED BY EOM OR OCKI (NUMERIC KEYBOARD ONLY). THE PATCH FUNCTION IS TERMINATED BY KEYING IN “END” AT WHICH POINT WARMSTART IS RESTARTED.

Possible error messages and reasons:

Number of Dwords not in 01-06 range
Format error detected by checking slash positions
Correct check digit not present

l PO! PATCH FORMAT ERROR

2. . PO2 PATCH SEGMENT ERROR Segment to be patched not present in MCP file
Patch history segment not present (should not occur)

>
D>

A
D
D

3: PO3 PATCH CODE ERROR Current code for the patch does not compare with actual code
. | in the segment: |

4. PO4 PATCH HISTORY NOT RECORDED > Over 89 patches have been recorded so there is no more
room in the history file. The patch has still been made on
disk, but not recorded.

“ee

ap

!

_In addition to patching the appropriate segment on disk, a record of all patches is kept in a patch history file. | | |
RESTART PROCEDURE

The restart procedure provides the means to reinstate or restore the system firmware and MCP in memory following any abnormal condition that may have affected the integrity of the system in memory, and also after the system is powered on. Restart reinitiates the system as it had been configured by the most recent warm Start. | - |

RESTART OPERATING INSTRUCTIONS
Perform the following procedure to restart the system:

| - OO NOTE
Refer to warm start error handling for any errors which may occur.

1. Warm start will print the messages WARMSTART and HARDWARE CONFIGURATION. 2. Enter END on the operator console to request the hardware configuration by the most recent warm start. 3. A successful restart places the system in a system idle state.

NOTE
The dump file, DMFILOO, will remain in the same state as the most recent warm
Start.

4. ENTER DATE: will be printed on the system console. The expected response is mm/dd/yy where mm = month, dd = day, and yy = year. The entry may be preceded or followed by blanks, but may not con- tain blanks.
| 5. If the real-time clock (RT) has been configured into the system, the message ENTER TIME: will print on the system console. start expects a four-character response of hhmm (where hh = hour and mm = minute). The entry may be preceded or followed by, but may not contain blanks.

CLEAR START PROCEDURE
Clear Start will be invoked by the MCP when a condition demands the abrupt termination of all tasks active in the system. The may normally invoke Clear Start by pressing the processor clear button. However, this should be avoided, if at all possible, during a probable disk access. In the process of the Clear Start the MCP will: 1. Create a copy of system memory in the system dump file, DMFILOO, if it exists. (Refer to warmstart proce- dure). Regardless of the existence of DMFILOO, if a memory parity error is the termination cause, no _dump of system memory is performed.

6—18

2. Display to the operator console:
a. A termination cause.
b. A set of MCP registers, current mix No. and current slice.

c. The contents of the processor registers MIR, BMAR, and MPCR.

3. Request the operator to input the date and time (if a clock was identified in warm start).

4. Re-establish the system integrity (for example, load system firmware from disk,disk directories are

validated . . .)
5. Display the MCP banner and enter system idle.

\

MCP invoked Clear Starts are of three classes: Central processing Unit failures, virtual memory failures, MCP

failures. The CPU failures result in the following termination messages:

MEMORY ERROR There is a borderline error in the memory. The field engineer should be alerted so that he may run

the memory test. Being borderline, it may take some time to locate.

MPM PARITY There is a memory parity error in the location indicated by the contents of MPCR.

DPM PARITY There is a memory parity error in the location indicated by the contents of BMAR.

STEAL PARITY There is a memory parity error, location unknown.

NANO PARITY There is nano parity error. The exact name can be determined by:

1. Execute the “HEX” option of SYSDUMP.

2. Locate the contents of the word indicated by MPCR.

3. The lower 10 bits indicate address of the nano with bad parity.

Virtual memory failures may be distinguished by the following messages:

VIRTUAL MEMORY: INSUFFICIENT LOCK SPACE

a“

| |

The memory required for the system firmware and the resident code and data segments of.all the active tasks

is greater than the physical memory of the system.

VIRTUAL MEMORY: INSUFFICIENT OVERLAY SPACE

~.

Given this set of tasks the unused memory in the system is less than the memory required by a user’s overlay-

able code or data segment.
VIRTUAL MEMORY: PERMANENT ERROR

The virtual memory routines have encountered a disk error in the process of accessing disk for a segment

overlay. An additional display is made to aid in the resolution of the error:

VMIO DESCRIPTOR + XO X1 X2.. . X23

Xn are hexadecimal digits. The fields within this string which may be of use to the operator are:

X3: = Read, 1 = Write 3 = Write with Read After Write.

4 = Firmware read, 6 = Directory search

X5: Type of error.
000 = Parity
0010 = Timeout/seek

0011 = Address .

X6,X7: Lower eight bits of hardware DDP Status

X12...X15:~ Disk Address in hexadecimal

X16...X19: Length in 16 bit words

2007258
6—19

&

Termination messages which will usually indicate MCP failures are:

** NANO ADDRESS** | This refers to a nano address error and may occur due to a bad B 700MCP file on the system cartridge, a bad read from disk, or an MCP failure. At the very least system support will require a HEX version of SYSDUMP; the formatted dump would also be helpful.
** MPM ADDRESS This error is provided for but due to the minimum memory requirements of a B 776 user it will ERROR ** never occur.

** DPM ADDRESS The contents of BMAR can be used to confirm the correctness of either of these errors. The READ ¥** oO discussion of reasons and steps to take outlined in NPM ADDRESS ERROR also apply for these _ ¥**DPM ADDRESS two messages.
WRITE *x« |

** STEAL ADDRESS This indicates a direct memory access device, that is, DCP or disk, has accessed a word beyond the READ *x memory limits. At the very least, system support will need a formatted version of SYSDUMP for
either of these errors.

** 0S TASK HAD BAD | This message will have been preceeded by a message with the event number 70, 71, 72, or 73. DATA **

This normally implies an MCP failure and a formatted dump should be taken.

_ Examples of CLEAR/START printouts follow:
a. CLEAR/START |

** DPM PARITY ERROR #*#
DMFILO0 NOT CREATED
CURRENT MIX NO. = 0001
CURRENT SLICE = 001B
MIR = 0005 |
BMAR = 2D67
MPCR = 0130
ENTER DATE: 11/21/75
ENTER TIME: 1045
MCP2. 0 R #######HHEHEHHH 75326

This indicates a memory parity error at location 2D67 while task 1 was executing. As indicated earlier, memory parity errors do not create a DMFILOO.
b. CLEAR/START
DMFILOO CREATED
CURRENT MIX NO. = 0010
CURRENT SLICE = 0020
MIR = 0000
BMAR = BE2C:
MPCR = 0000
ENTER DATE: 11/21/75
ENTER TIME: 1110
MCP 2.0 R #########HHHHHE 75326

Since both MIR and MPCR = 0000 this indicates that the operator probably pressed the clear button on the processor control panel.

| NOTE
It is strongly recommended that the clear button not be pressed when the system has active tasks since in process disk write operations may be corrupted.

c. CLEAR/START
DMFILOO0 CREATED
CURRENT MIX NO. = 0S TASK 000E
CURRENT SLICE = 0040
MIR = 4C09
BMAR = BDF4
MPCR = 0000
ENTER DATE: 11/21/75
ENTER TIME: 1200
MCP 2.0 R #####HHHHHHHHH 75326

6—20

Since MPCR = 0000, this cannot be. a hardware trap to location 0. Since MIR = 0000 this cannot be a result

of the clear button. The conclusion is that there has been an MCP failure. The operator should take a HEX

version of SYSDUMP.
d. CLEAR/START

** DPM ADDRESS READ **
DMFILOO CREATED
CURRENT MIX NO. = 0001
CURRENT SLICE = 0022

MIR = 2030. .
BMAR = F3B5
MPCR = 0131
ENTER DATE: 11/21/75
ENTER TIME: 1231
MCP 2.0 R ####HHHHAHHAHE 75326

BMAR is certainly out of range, therefore, it is likely to be an MCP failure. Take a HEX dump.

e. CLEAR/START. ,

VIRTUAL MEMORY: PERMANENT ERROR

DMFILOO CREATED
CURRENT MIX NO. = 0001
CURRENT SLICE = 002C
VM10 DESCRIPTOR = 0000014028000272005A2234

ENTER DATE: 11/21/75
ENTER TIME: 1335
MCP 2.0 R ######HHHHH HAH 75326

This indicates that Virtual Memory has encountered a parity error while reading sector -0272-. X5 indicates

a parity error for software.

SYSTEM DUMP ANALYZER (SYSDUMP)

The System Dump Analyzer is a debugging aid for the programmer. In order to operate SYSDUMP the sys-

tem dump file DMFILOO must be present on the system disk. Space is reserved for it at warm start time if

the operator responds yes (‘““Y”) to DUMP FILE?. Any system dump file which was previously on disk is re-

moved. During restart the system dump file previously on disk is left unharmed. The dump file is created during

the system clear start routine which may be initiated by (1) the operating system when it detects a fatal error,

or (2) by the operator who may initiate a hard clear by pushing the Clear button on the processor. SYSDUMP

examines this file and arranges it into an easily readable format.

While the system is operating, the command to execute the dump is given via the system console. If an unfor-

matted dump is desired, HEX is entered with the execute command.

After a formatted dump, SYSDUMP will go to EOJ. After an unformatted dump, the program will display

the message FORMATTED DUMP?. If a formatted dump is desired, the alphabetic character Y is entered via

an AX command. SYSDUMP will terminate automatically after the formatted dump. If a formatted dump is

not desired, the alphabetic character N is entered via the AX command. The character N, in response to FOR-

MATTED DUMP?, causes SYSDUMP to go to EOJ.

OPERATING INSTRUCTIONS

The System Dump Utility may be executed at any time the system is operating by entering via the operator

console:
SYSDUMP HEX

HEX is an option that, if entered, will produce an unformatted memory dump. Default is a formatted dump.

After an unformatted dump, the program will display:

FORMATTED DUMP?

A yes (Y) or no (N) answer is expected. After a formatted dump, the program will go to end-of-job (EOJ).

If, during the execution of the formatted dump, the program detects a virtual memory address error (due

usually to the timing of the creation of DMFILO00), the formatted dump will be discontinued and replaced by

an unformatted dump and the message: |

PROCEEDING WITH UNFORMATTED DUMP

2007258 | 6-21

TABLE 6-3. WARM START ERROR MESSAGES.

MESSAGE CAUSE

W00 BAD MCP FILE

W01 PORT ALREADY
. WARMSTARTED

Wo02 INVALID PORT.

W03 PORT NOT ON 1 TO 12

W04 DEVICE ALREADY
WARMSTARTED

W05 INVALID MNEMONIC
Wo6 INVALID DISK PORT _
W07 DISK NOT WARMSTARTED
W08 TWO DISK ENTRIES

W09 DISK DEVICE NOT A TO H
W10 DC NOT ON 0 OR 1
W11 TOO MANY ENTRIES
W12 DISK NEVER WARMSTARTED

W13 NO DDP

W14 NO DEVICE

W15 DUMP FILE SIZE TOO SMALL

| W16 INVALID

-| TROUBLE X1X2 X3X4X5X6
‘| XTX8X9X10

The contents of the B 700MCP file are corrupt and as such are unusable
by warmstart.

Two different devices warmstarted to one port.

Invalid Port number.

Port number greater than 12.

Two entries of the same device with the same device number.

The mnemonic is not one specified in Table 2-1.

The port number for the disk entry is not 4.

Disk not entered when warmstarting.

The disk has been specified twice during the input of the hardware
configuration.

Disk Device number not in the range of A to H.

Data Communications not an 0 or 1 for device number.

More than 40 characters entered.

A restart has been attempted before this disk has ever been
warmstarted.

No DDP number entered:

No device number entered.

In the process of a restart, the size allocated to the DMFILOO is less.
than that required for the size of memory.

An invalid date or time entry has been made.

Where X1 thru X10 are hexadecimal digits the trouble message will
occur when warmstart has detected a hardware fatal error. X3X4X5X6
will be the contents of processor MPCR register at the time the error
occurred. X7X8X9X10 will be the address contained in the processor .
register BMAR. X1X2 is the error code and may be decoded as follows.
(Refer to Clear Start procedure for additional details).

80 MEMORY ERROR

| 84 NANO PARITY
85 NANO ADDRESS

86 MPM PARITY
87 MPM ADDRESS

| 89 DPM ADDRESS WRITE
|| 84 DPM PARITY
| 8B DPM ADDRESS READ

8D STEAL ADDRESS WRITE
| 8E STEAL PARITY
8F STEAL ADDRESS READ
HELP XX X
X is a hexadecimal digit. If XXE0O, a failure has occurred when trying to read or write to the disk. The B 700MCP
file cannot be found.

The eight binary bits in hexadecimal di
Bit Setting:

= Write Inhibit set.

K Illegal address error.

File not operational.

Seek incomplete.
Parity Error.

“
1

O
t

mm
CO

ND

em

to
w

it
ott

= Seek on the drive not working.

Time Error (Operation Timed Out).

gits xx are numbered as: 76543210

6—22

SYSDUMP ERROR MESSAGES

CANNOT OPEN FILE - SYSDUMP TERMINATING

The operating system detected an error, such as file not present, while trying to open DMFILOO.

DMFIL00 BAD DUMP FILE OR HAS NOT BEEN CREATED

The flag which specifies that DMFILOO has been created is not set.

CANNOT OPEN FILE B 700MCP — SYSDUMP PROCEEDING WITH UNFORMATTED DUMP

The operating system has detected an error while trying to open the driver file. An unformatted dump will

‘be produced. |
ERROR DETECTED - FILE B 700MCP

A disk error has been detected during a read of the file B 700MCP. If an unformatted dump has already

been created during this run of the program, SYSDUMP will terminate. Otherwise an unformatted dump

_will be produced.
ERROR DETECTED - DUMP DRIVER

A disk error has been detected during a read from the driver file. Unless already created, an unformatted

dump will be produced.
EOF DETECTED DUMP DRIVER

End of file has been detected during an attempted read of the dump driver. Unless already created, an

unformatted dump will be produced.
ERROR DETECTED -— DMFILO0O

A disk error has been detected during a read from DMFIL00. SYSDUMP will immediately terminate.

EOF DETECTED - DMFILOO
End of file has been detected during an attempted read of DMFILO0. SYSDUMP will immediately termin-

ate.
PROCEEDING WITH UNFORMATTED DUMP

_ SYSDUMP has detected a bad operator in the driver table and is unable to complete the formatted dump.

EXPLANATION: OF FORMATTED DUMPS
This section explains and gives examples of a formatted dump analysis listing in the actual order listed.

The following paragraphs explain the individual sections of the analysis.

HEADING

The format and content of the first page heading section of the printout will be as follows:

8776 OCPERATING SYSTEM DUMP ANALYZER

O4.v29/77 00:00:00

ANALYZER VERSION? 1.0(10/01/76)

OPERATING SYSTEM VERSION: 02/28

DUMP FILE CREATION DATE: 04/29/77

PATCH HISTORY

The program lists the patch number and segment number of each patch made to the MCP or Data Comm

Firmware files. This section of the printout will be as follows:

PATCH HISTORY

PATCH NO }#£SEG NO

0001 O04F

0001 OO4F

0002 0020
0002 0003

0003 0065

0003 0003
0003 0003
C006 0014

2007258 | 6—23

HARDWARE REGISTERS

This section of the printout will be as follows:

MPCR ERROR
6009 0990

PAGE
0000

BMAR
BN49

 The hardware registers are identified as follows:

MIR Memory Information Register.
BMAR Memory Address Register.
MPCR Micro Program Count Register.
ERROR Hardware Error Code from the External Bus.
 OPERATING SYSTEM REGISTERS

This section of the printout will be as follows:

os fF CURRENT PIRS / . LOCKS / TASK/ WSB /ERROR FLAGS MAT TID SLICE MAD VM SCL O/C SPO EQJ TIMER FLAGS COUNT 0080 0000 8049 .0000 0040 0140 FFFF FRFF FFFF FFFF FFFF 8000 0000 ooo00o

/ EXTENTS / LAST VM HOLE HOLE SLICE SDT BVM PSEUDO MICRO SLICE OC. TVM ALLOC OBJECT SIZE ADOR FLAGS BASE 1688 1886 102F 1644 8005 A440 QOO00 BE9B 0370 102F 0018 BD05B

LOADER REGISTERS
0000 0000 0000 0000 0000 0000 0000 o00G0 0000 coDD 0000 0000 0000 0000 0000 o000

Iscr . .
0000 BFE2 BFCF BFO9 BFA9 0000 BFC2 BFEB BFF3 0000 0000 ODDD 0000

 The operating system registers are identified as follows:

OS Flags Flags for use by operating system routines.
CURRENT PTRS | 3
HAT Address of the current task’s entry in the Mix Attribute table.
TID Task-ID of currently (at the time of creation of DMFILO0) processing task. SLICE Slice number of currently executing slice.
MAD The last Micro Address Descriptor processed by the operating system.

LOCKS Flags used by the operating system to protect the non-reentrant code of:
VM Virtual Memory.
SCL SCL Slice.
O/C Open/Close. |
SPO SPO or operator console.
A/D Allocate/Deallocate.

DMAC-ERR COUNT Register used internally to the DMAC-Disk Controller to count retries on a particular Disk I/O.
BVM Address of Beginning of Virtual Memory.
EXTENTS .
PSEUDO Address of the first D-word after pseudo-nucleus.
MICRO Address of the first D-word after micro slice area.
SLICE Address of the first D-word after slice area.
DC Address of the first D-word of data comm area.

TVM Total number of bytes of Virtual Memory.
LAST ALLOC . Address of end of last allocated segment in overlayable area.
VM OBJECT Address of object descriptor (slice or segment).
HOLE SIZE ‘Size of hole required for VM access.
HOLE ADDR Address of hole required for VM access.
SLICE FLAGS Flags used by the operating system for VM access.
SDT BASE Address of base of SDT.
LOADER REGISTERS Workspace reserved exclusively for the loader.
ISCT | Base address of Interrupt Scan Control Table.
MIX ATTRIBUTES

6—24

Lists each currently scheduled task by mix number, gives the current state of the task (runnable, short waited,
suspended — swappable, suspended — swapped out) and its wait key. If the task is not marked runnable, this
column provides the reason for the suspension. This section of the printout will be as follows:

14 SHORT WAITED HELP TASK NOT IN USE
16 SHORT WAITED DC Q SUSPENDED
12 SHORT WAITEO OC SPACE HANOLER IDLE

VIRTUAL MEMORY LINKS

This section of the dump verifies the virtual memory links in each of the four areas of memory: pseudo-nu-
cleus area, micro slice area, TCB/PCB slice area, and the overlayable area. It analyzes the usage of the overlay-
able area by listing each data segment and available area by length (in D-words). This section of the printout
will be as follows:

ANALYZE MEMORY LINKS
PSEUDO NUCLEUS AREA LINKS OK

MICRO SLICE AREA LINKS OK

TCB/sPCB SLICE AREA LINKS OK
AVATLABLE s 0642

SEGMENT : 0048
AVAILABLE 2 9834

OVERLAYABLE AREA LINKS OK VM LINKS OK

PERIPHERAL ASSIGNMENTS AND DESCRIPTORS

This section of the printout will be as follows:

PERIPHERAL ASSIGNMENTS AND DESCRIPTORS
PORT # 004 |

OKA POWER OFF
PACK-I0 =
¢ OPEN FILE ‘00000
DIRECTURY INFORMATION = 0000 0000 0C00 0000 9000 0000
1/0 DESCRIPTORS?

NONE
OKB SYSTEM ROY.
PACK-I0 = CHS6890
8 OPEN FILE 90060
VI@ECTURY INFORMATION = 0020 0004 0024 0008 OOeF 00r1
1/0 DESCRIPTORS:

NONE

PORT # O06
MTA NOT ROY
MFID/FIO = UNLABELLED
ASSIGNED TO TASK UNASSIGNED

REEL &
1/0 DESCRIPTORS:

NONE

PORT # Q02
LPA NOT ROY
MFIO/FIO = UNLABELLED

ASSIGNED TO TASK UNASSIGNED
1/0 DESCRIPTORS:

NONE

PORT # O03
R&A NOT ROY

MFIO/FIO = UNLABELLED
ASSIGNED TO TASK UNASSIGNED
1/0 DESCRIPTIRS:

NONE.

PORT # O01
oco

PORT # 007
RTC

PORT #¢ 008
SPO ROY
1/0 OESCRIPTORS:

- NONE

2007258 6—25

Lists each warmstarted device by port number and then lists: | ©

Device Mnemonic Code ‘name characterizing a certain device.
Current Status RDY, NOT RDY, Power Off.

PACK-ID File name assigned to device (disk only).
MFIL/FID File name assigned to device (card readers, tape units, printers only). |
ASSIGNED TO TASK Mix number of task to which device is currently assigned. For card readers, tape units, printers only.
OPEN FILE The number of files currently in use on a particular disk. a
REEL | The number assigned to each tape unit; used for multi-reel files.
DIRECTORY Directory information block ~ disk only - 12 byte block consisting of 6 fields:
INFORMATION |

- (1)non-file directory disk address.
(2)length of non-file directory (sectors).
(3)file directory disk address.
(4)length of file directory (sectors).
(5)disk file header disk address.
(6)length of disk file header list (sectors). io

1/0 DESCRIPTORS I/O descriptors currently in device’s queue.

TASK DETAIL TABLE
This section of SYSDUMP consists of one entry per task and contains task history information.

This area of the printout will be as follows:

TASK DETAIL TABLE -= OFSK COPY
CO00 0000 0000 0000 0000 0000 0000 O0CO 0000 0000 0000 0000 0000 0000 LOU0 0000 0000 a000 0000 0000 ooDG an0D
0015 0900 9000 0000 0000 0000 0000 0000 NCOC 0000 G000 0000 0000 0009 0000 0000 vo00 0000 0000 CD00 002c D000
COZA 0000 0000 0099 0000 0000 0000 O0CO 0000 0000 0000 0000 0000 0090 0000 0000 0600 0000 C000 On00 oonOD 00c0
OO3F COS9 6G90 COCO C000 0000 0000 OGCN O0NG 0000 0000 0000 0000 0000 0000 oD000 0000 cNn00 0000 D000 cna|aO anDO

0954 8000 0000 02N9 G90 GoNN O0NN ONCO 0ONG OND OGOV GOOO 0000 COUN C000 NV0O 0000 OOVO OCOL ONDO OD00 oOCDD
006? CN00 COG0 0990 0050 0000 NN00 NNGA HANA ONAN ANNN HNNN ANNO HOON ONNON ONON KOHU BOLO VOVO VUvVO VOLE VBUOUU
GUE COUN UUOG U9UU GLOC CULO O00G GECO “UtUC 0000 0000 0000 0000 0000 0000 0000 0000 0090 O000 aonD ConO oOOCN
0093 C000 000C 0000 0000 CONO00 0000 OGLO 0000 0000 0NV0 0000 0000 0000 0D0VO 0000 0000 0000 0000 0000 OOD0 c0D_a
OOA8 OC0O0 0000 0000 COON 0000 90N0 NCCO 0000 00ND O000 0000 0000 0000 0000 OLN 0000 0000 ovOD COLD foDD C000
00890 G900 0000 0000 0090 0000 0000 00CO 0900 0000 OC00 0000 ONGO O00 GOON NN00 DOND ONO OONO ONON D000 D000
NNDe2 0009 8090 GONN G000 0000 0090 OUCU “OOU DOLD OVO 0000 OVOO 0000 0000 0900 0000 0000 0000 0000 0000 oDDD
OOE7 C000 GCOO 0090 C090 G00 0000 ONCD 0050 O00 0000 0000 0000 cOVvO 0000 0000 0000 GooO0 oo00 ODDD oOD0 0000

SOT
0050 0000 0009 CD90 0000 0900 0000 O0CO 0090 0000 0000 0000 0000 0000 0000 0000 0000 0000 D000 OD000 oD00
0014 0000 0000 0009 0990 GNO0 NNO0 OCCO 0006 0000 0000 0000 0000 0000 0000 0000 0000 O000 0000 cD0D oDDD
0026 0000 00009 0000 0000 0000 0900 0000 0000 0009 0000 0900 0000 9000 0000 0000 4200 anno 0076 On00 OC00
NN3C C290 0090 O9CC 1076 0001 C200 COGN 0029 1030 0001 C200 OV00 O0NID 105A OU01 4200 0000 OO2ZE DD00 0000 ©
0950 AC10 0479 0954 O6CA 6000 281G OOCN 0000 0000 0000 2810 0000 CODD OVOD 0000 AC10 O4AF OES2 101F 6000
0364 2819 0247 OTAF CO90 OG00 2810 G264 O2F3 ONDO DOGO 2810 0275 0158 OOOO 0000 2810 0251 0238 0000 OC00
0073 2610 O25€ OOFE 0590 GOCO 2816 0200 0238 0000 NOOD 2810 0309 O2F6 0000 UN00 2810 027n 02464 GD00 “ODDN
ONAC e810 Nese O532 CAND 0090 28610 GULCO 0900 VOUU OLLUU 2810 Uo71 1139 OOOO 0000 2810 01A4 0265 0000 OOD0
ON AD 2810 0178 02NC CND0 C000 2816 0399 0289 NNON 0000 2810 0381 016C 0000 0000 2810 016D 01C0 0000 o000
O64 6810 0182 GO75 1894 001 A810 0185 0125 1COA 0001 2810 0192 O2FB 0000 0000 2810 0184 0267 OO0DD O0N00
03C8 2610 O3F0 0273 00090 ONNO 2810 0654 O05SE 0000 0000 2810 0430 0209 0000 0000 2810 0441 O2NC DODD OCOD
OQO30C 2610 0452 0270 0090 O0UD 2810 0461 O28F 0000 0000 2810 0470 0131 0000 0000 2810 0000 00ND oODDN oDnD
OOFO 2610 018C 018C 0990 0000 2810 01C6 OU9B OUND Q000 2810 O1£2 0148 OOOO OUOU 2810 O1EC O14E 0000 OCQ00
0104 2810 O1F 4 O1E8 0090 0000 2810 O2CO O24cC 20A0 0000 2810 O1CA 0419 0000 ON00 8810 0102 010B 1A88 0001 -
0118 B819 0159 O1CE 1849 OON1 281C 0613 O37F 00ND OOOO 2810 0628 0318 OCOO ON0D 2810 063A 0008 OOUD OCOD
O012C 2819 C638 034% 0090 O00 2810 0662 0599 39000 OCOD 2810 0668 0068 0000 N000 2810 OSD9 O1FC QOD00 0000
0149 2810 6593 O36F 10930 CH00 281C 0527 02C8 0NN0D0 OCOD 2810 0591 O37F C000 0000 2810 0332 0083 20090 0000
0154 2870 0427 0176 OC00 COU0 2810 065F O20A 0000 OGO0 2810 0517 019% 0000 OU00 2810 0213 008A 0000 0000
0168 2810 0227 0397 0000 0000 2810 0650 0041 0000 0000 2810 0657 0141 0000 O000 2810 OSES OBC 0000 0000 017C 2610 O5FO O15C 0690 0000 2810 O5SF8 0187 0000 O000 2810 023C 01E€5 0000 0000 2810 0384 OAS8 0000 0000
0199 2810 0164 0391 0000 0000 2810 O66E 0053 0000 0000 2810 0288 O2ED 0000 0000 2810 029¢ 0302 0000 0090
O1A4 2610 02C5 0416 0030 0000 2810 O2EA O2A3 0000 D000 2810 O2FA 0297 0000 0G00 2810 0318 O2AE 0000 0000
0168 2810 0328 0120 0000 0900 2810 O3FF 01£0 O00 O000 2810 O40A O1FE OOOO 0000 2810 0348 0205 0000 0000 O1CC 2810 G38A 0289 0C0D00 0000 2810 014C 0236 0000 0000 2810 0336 0298 0000 0000 2810 0346 O20R 0000 0000
O1E0 2810 C352 C271 COI0 0900 2810 0361 0252 0900 0000 2810 O36F 0300 0000 0000 3816 O0S5Cc8 O2DcC CODD 0c00
O1F4 AC10 O0C9 0186 0543 6900 3810 05A6 05C8 0000 0000 2810 059C 0185 ON00 OCOD 3810 0117 035B 0000 O00G
C268 3810 O10€ 0035 0000 0000 3810 0109 OOCC OND0N 0000 3810 0089 0543 0000 0000 0000 o0000 0000 0000 ocna
O21C 005 0000 6000 0000 ONU0 0000 OOUU GLUU0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0230 0000 0000 0000 0000 0000 0000 0000 9000 0000 0000 0000 0000 0000 0000 0000 0000 o000 0000 0000 0000
0244 C009 0000 0009 C000 0000 0000 O0GO 000C 0000 ox00 .

6—26

PRINT TCB

This section of SYSDUMP prints out the contents of the Task Control Block (TCB) of five independent run-

ners and eleven possible user mix numbers. The user task numbers are 1 through 11. The independent runners

are the SCL-Loader, the help task, the working set bailiff, the result queue processor, and the data comm space

handler (Task 12). This area of the printout will be as follows: |

SEGMENT O37
SEGMENT NOT PRESENT

SEGMENT 032

SEGMENT NOT PRESENT

HELP TASK TCB

TCB

- POINTERS
0000 0000 1D3D 1045 1D47 1058 0000 OGCO 0000 1030 0000 0000 0000

CPA | |
ocoo 0000 1030 1045 1D47 1058 0000 0000 0n00

OST ,
0900 0010 0000 0037 0000 0510 0000 OOSA 2iFeE

STACK |
TOS (9 RELATIVE): 0002 | |
0300 0140 8490 4018 4040 0000 O0CO1 ODCO 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

SEGMENT OOO.
SEGMENT NOT PRESENT

SEGMENT 001

SEGMENT NOT PRESENT

WORKING SET BAILLIF TCS

TCB POINTERS
0000 COOO 1067 1067 1068 1077 0000 0000 0000 1067 0000 0000 0000

CPA | oo
0000 CO00 1067 1D67 1068 1077 0000 OOCO 0000

OST
0009

STACK
TOS (O RELATIVE): 0001
0000 BA79 0000 ‘0090 0000 0000 0000 0000 0000 0000 0000 0000 0000 G000 0000 0000 H000

RESULT QUEVE PROCESSOR
TASK NOT PRESENT

WORK REGISTERS .

0009 836C 0888 2184 FFFF FFFF FFFF FFFF FFFF 0000 BD49 O00D 1030 0040 0140 BD46 1888

0010 1888 102F 164% BDOS BDOS CODD A44D BDSB BFA BF72 0068 C002 0000 C000 BE9B 0370

0020 1D2F 00718 O00C FC90 0370 2401 2487 0049 0017 4018 FFFF 1804 0000 2810 0200 O24C

0030 2070 SFA9 0100 8000 0000 0440 BDGS O9EA 3FFF OOFE 0014 FFFF 0005 BFA9 0100 BFF3

0049 0000 BFEB BN4F 0000 O0UD BFAS 0100 BD37 0080 O0DD 0000 0000 0000 0000 0000 0000

0050 ceed 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 BDDS

0060 0000 0000 0000 0000 C000 0000 O0CO 0000 0000 0000 0000 0000 CO00 0000 0000 0000

c070 0000 O00U0 CO00 0090 0000 0000 O000 C000 0000 2494 241F 4448 BFCF BFDS BFAI 0000

0080 BFC2 BFEB 0000 BD49 0000 0000 0000 25N0 0076 2296 2256 BFF3 42FA 0057 OCOe 283E

0099 BDC5 OCOO 0609 8048 0000 0000 OOCO 0000 0000 0000 0000 ov00 OC00 O000 0900 0000

OO0A0. coco C000 0900 CCOO C000 BFR3 4229 O022 0000 0000 0000 0000 0009 6000 O0CO 0000

0089 0O00 OVO 0OD0 OO00 0000 0000 oCDtO 0000 0000 OCND 0000 0000 0000 0000 0000 0000

ooco 090) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Ovv0 00C0 O0VO 0000 C000 C000 0000 COCO 0006 0000 0000 0000 0000 0000 0000 0000 0000

OOE0 0000 0000 0000 0000 0000 0000 0000 000C 0000 0000 0000 0000 0000 0000 C000 0000

OOFO 0000 CO00 0000 0000 0000 0000 00CO 0000 0000 0000 0000 0000 0000 0000 0000 0000

2007 258 6—27

If a task is present, the Task Control Block is broken out as follows: ©

Pointers. | The first 12 entries of the TCB:
PSN/ISN . The entry numbers in the SDT of the Program Control Block and the Interpreter. DST Base Absolute address of base of Data Segment Table.
DST Limit Address of the first word after DST.
TOS Address of the next available entry of data stack.
Stack Limit Address of first word after stack.
MCH TOS Recover The difference between the present TOS and the base of the TCB. Use for error recovery in the Master Communicate Handler. :
MCH Active Verb Relative address of the CPA from the base of the TCB. | TCB Flags Flags used by the operating system to interface between system modules. MRA Base Address of base of Message Reference Area (used by data comm tasks). COMM Result A Result of an I/O communicate returned by some OS module.
COMM Result B
S-Start PCA Program Count Address. The Interpreter’s offset into the current program segment.

IPA The Interpreter Preset Area is a work area where the S-Interpreter will store relative addresses before relinguishing control to the operating system.
CPA The Communicate Parameter Area contains all the parameters and variables required for a particular | communicate S-Operation.
DST Data Segment Descriptors listed in the order of increasing segment number.
Stack Area in TCB -used by the OS for control and storage of parameters, data, relative returns, etc.
Data Segments Each data segment which is currently present in memory listed in order of increasing segment number. A data segment which is an FIB is listed as such and if it is open SYSDUMP also lists certain pertinent information from its FIB.

PRINT SLICES

This section of the dump prints the disk open and close slices, the allocate, deallocate slice and the reconstruc- © tor slice if they are present in memory. | |

DATA COMM AREA ANALYSIS (ONLY IF RELEVENT)

Registers

DC LOCK Contains the lockout-ID of the processor which is currently in control of the queue of available
buffers.

BUFFER SIZE Contains the text capacity of a
DC buffer. It equals the DC
buffer size minus two specified in one’s complement form.

LOGICAL LISTS a
LINE Address of list of line table addresses.
STATION Address of list of station table addresses.

TERMINAL ADDRESS Address of list of terminal table addresses. .
SUBNET Q TABLE Address of the subnet queue table or all ones if no files were declared in the NDL program.
DC XREGS Address of the base of the table known as “DC Extended Registers”.
AVAILABLE BUFFER

:
POOL |
HEAD The address of the first buffer in the queue of available buffers.
TAIL The address of the final buffer in the queue of available buffers.
COUNT The number of data comm buffers which are currently available for use. Any buffer that is currently being used as part of a message is not counted.
STATUS Contains run time information as to whether or not a particular task is being waited because of a deficiency of available buffers.

RESERVE BUFFER POOL
/

HEAD . The address of the first buffer being held in the reserve pool. TAIL The address of the final buffer being held in the reserve pool. COUNT The number of buffers currently being held in the réserve pool. LIMIT The number of buffers needed in the reserve pool before the space can be released to the operating system.
XTENT The highest address that can be written a DC buffer in the reserve area. BASE 7 . The lowest address that can be within a DC buffer in the reserve area.

6—28

PMLC 0

REQUEST
HEAD The address of the next message to be processed by PMLC-O.

TAIL The address of the final message that is currently waiting to be processed by PMLC-0.

RESULT
HEAD The address of the next message that has been processed by the PMLC-0 firmware but has not yet

been handled by the PMLC interrupt processor. :

TAIL The address of the final message that has been processed by the PMLC-O firmware but has not yet

been handled by the PMLC interrupt processor.

PMLC 1

REQUEST
HEAD See PMLC 0 REQUEST, HEAD.
TAIL See PMLC 0 REQUEST, TAIL.

RESULT ,
HEAD See PMLC 0 RESULT, HEAD.
TAIL See PMLC 0 RESULT, TAIL.

DC EXTENDED REGS

Contains implementation dependent DC registers and pointers that are not appropriate in any of the NDL

tables. |

LINE TABLES

Contains information about the line as described in the NDL program.

STATION TABLES

Contains information about the station as described in the NDL program.

TERMINAL TABLES |
Contains information about the terminal as described in the NDL program.

SUBNET QUEUE TABLE

Contains implementation dependent registers and points for each subnet queue (file) defined in the NDL pro-

gram.

PMLC 0 Request Buffers Contains pointers to messages that have not been processed by PMLC 0. |

PMLC 0 Result Buffers Contains pointers to messages that have been processed by PMLC 0 and are being forwarded to the

| data comm module for further processing. |

PMLC 1 Request Buffers See PMLC 0 Request Buffers.
PMLC 1 Result Buffers See PMLC 0 Result Buffers.

AVAILABLE BUFFER POOL

Contains pointers to DC buffers that are not currently in use.

RESERVE BUFFER POOL

Contains pointers to DC buffers that are not currently in use and reside in an area that is about to be returned

to the OS overlayable data area.

DC STATE SPACE

Contains all of the data comm tables and buffers that reside in main memory as well as the NDL S-OPs.

MPLI| DUMP ANALYZER (MPL2DUMP)
The MPLII Dump Analyzer is a debugging aid for the programmer. When an MPL program is DP-ed, a dump

file is created on disk. MPL2DUMP examines this file and arranges it into an easily readable format.

2007258 6—29

OPERATING INSTRUCTIONS

MPL2DUMP may be executed any time the system is operating by entering via the system console:
~MPL2DUMP filename HEX | | |

“filename” is the name of the dump file created when the MPL program was DP’ed. It will reside on the same
disk as the object code file.

HEX is an option that, if entered, will produce an unformatted dump. Default is a formatted dump.
ERROR MESSAGES |

If an error is detected in the execute command, MPL2DUMP will display the message:

*** INVALID UTILITY PARAMETER ##«

Check the execute statement just entered as described in the procedure below: |
1. Check that the file-id of the dump file was entered. If it was not entered, re-enter the execute statement

and be sure to include the file-id. |
2. If the file-id was entered, count the number of characters in the file-id. There should be 12 characters

or less. If the file-id was greater than 12 characters, re-enter the execute statement using the correct file-
id.

3. If the file-id was entered correctly, check if the dump file is on the disk. If the dump file is not on the
disk, then the disk containing the dump file must be installed in a disk drive.

4. If the pack-id was entered, check that is does not contain more than 7 characters. If the pack-id was en-
tered incorrectly, re-enter the execute statement with the correct pack-id.

If an error is detected in the dump file, MPL2DUMP will display the message

*** FRROR DETECTED IN DUMP FILE ###

If an unformatted dump has not been produced, MPL2DUMP will print one and terminate automatically.
EXPLANATION OF FORMATTED DUMPS

This section explains and gives examples of a formatted dump analysis listing in the actual order listed.

NOTE
Whenever both the hexadecimal (hex) and decimal values are given, they will ap-
pear in the form: |

HHHH/DDDDD

where
HHHH is the hex and DDDDD is the decimal equivalent.

The following paragraphs explain the individual sections of the analysis.

HEADING:

_ The format and content of the first page heading will be as follows:

MPL2 DUMP ANALYZER 04/29/77
PROGRAM ID CMSBBOO/KA |
DMFILE ID OOO0000/0MF IL11

REASON FOR DUMP: COOO0} USER REQUESTED

The actual data, program identification, dumpfile identification, and reason for the dump will vary accord-
ingly. | : | | |

6—30

S-REGISTERS

The format and content of the S-Register section will be as follows:

S°REGISTERS

PSN 0003700003 LVL 0002/00002
SPN 0000700000 REG1 0001/00001
PCA 0133/00307 REG2 0000/00000
LSA 0001/00001 CARRY 0013700019
NLD 0007700007 PCC 0002/00002
STA O57A/01402 NMR 0000700000
TOS 0000/00013
MODE PROCESS

The register name is listed and the data it stores is listed next to it. The following identifies the data.

Register Name Data Stored in Register

PSN
SPN
PCA
LSA
NLD
STA
TOS
MODE

REG1
REG2
CARRY
PCC
NMR

Segment number of the currently active procedure.
Procedure number of the currently active procedure.
Address of the S-instruction currently being executed. .
Size of the literal pool for the currently active procedure.
Number of local descriptors in the currently active procedure.
Address of the next available byte in the data stack (segment 0).
Address of the next available byte in the control stack.
Mode of the MPLII Virtual Machine: PROCESS, REMAP, or DECLARE.

The lexical (lex) level of the currently active procedure.
The lex level of the most referenced region.
The lex level of the next most referenced region.
Interpreter arithmetic work register used by certain S-OPs (DIVIDE, MOD, etc).

Number of the currently called procedure. |
Number of the next available message reference.

DECLARE (DECL) REGISTERS
The format and content of the Declare Registers section will be as follows:

DECL REGISTERS

\

\
NDA 0574701402 SOL 0233/00563,
SEGN 0000700000 EOL 0273/00627\

\

.

The following table lists the registers and identifies their contents. \

Register Name Data Stored in Register

NDA Next Descriptor Address. The offset into segment 0 of the next descriptor to be declared.

SEGN Segment number of the data currently being declared. |

SOL Start Of Last. The offset into segment number SEGN of the start of the last descriptor’s data area.

EOL End Of Last. The offset into segment number SEGN of the end of the last descriptor’s data area.

2007 258 6—31

DISPLAY

_ The display section contains the lex level and corresponding offset into segment 0 of the base of the descrip- @
tors for each lex level’s most recent procedure invocation. The format and content of the display section will
be as follows:

DISPLAY

LEX LEVEL DATA STACK PTR
00 0900700000
01 - 0355700853
02 0550/01373
a3 0000700000
04 0000700000
a5 0c00/0c0c00
06 0000/00000
07 0000/00000
08 9000790000
99 ~ 0000700000
10 0000700000
1 | 0900/00000
12 0000700000
13 0000/00000
14 0900700000
15 0000/00000

MISCELLANEOUS (MISC)

The format and content of the MISC section will be as follows:

MISC

FETCH VALUE 000000

OPCODE 0073 | |
TEMPS 0002 0383 0003 O3FC 3631 FFFF O002 OOCA FFON 13F8 20CE 2710 CPA | 8402 1010 0010 GO0O COO 0000 0000 oD00 :

MISCELLANEOUS (MISC) (Continued)
The table below lists the miscellaneous registers and identifies their contents.

‘Register Name Data Stored in Register

FETCH VALUE Last communicate response.
OPCODE The opcode of the current instruction.
TEMPS Internal temporary registers used by the interpreter.
CPA ; Communicate Parameter Area. Last communicate issued to the virtual machine.

TASK CONTROL BLOCK (TCB)

The format and contents of the TCB Registers section will be as follows:

TCB REGISTERS 011€/00286 BYTES

0000700000 6010 2219 2241 2314 234A O0C5 0079 0151 2219 0000 0000 0133 0003 O0D0 0000 0000 C02C/00032 — 0000 0090 0000 00N0 CN00 0000 0000 O000 0000 O000 FFFF O282 FFFF 270C 0000 0000 9040/60064 6907 9000 0009 2710 20CE 0006 0000 03FC 3031 0000 0000 0000 0000 0073 O6CE 0€37 0660/C9096 ~~ O£74 OCOO O067C 0949 CO10 O6CA 0000. 0000 0013 0000 0355 055D 0000 o000 0000 0000 9060/00128 0000 0000 0000 0000 CO00 0000 0000 0000 0000 0001 O02 0007 0002 0001 0000 0000 0040/00160 O57A 0273 0233 OGOO O57A 0002 0383 0003 O3FC 3631 FFFF 0002 OOCA FFOO 13F8 20CE “00CC/00192 2710 9000 0000 0000 C090 OCOD 0000 0000 on00 0000 0000 0000 0000 000G 0000 0000 NCEO/090224 0900 0000 0000 0000 C000 0000 0000 0000 0000 8402 1010 0010 0000 oD00 0000 0000 - 0100700256 0000 0000 00C4 0000 C000 0000 0000 BFA9 015A D501 BFBO 0000 OF27 1S5EB FF72

6—32

Next to the title is the length given in bytes. Below the section title, the relative byte address of the first
register of each line is listed. Next to each address is an unedited hexadecimal printout of the contents of those
registers. The contents of the MISC section are included in this section.

MESSAGE (MSG) REFERENCE AREA

The format and contents of this section will be as follows:

MSG REFERENCE AREA O000/00000 BYTES

This section contains an unedited hexadecimal printout of the program’s message reference area.

DATA SEGMENT TABLE - |

The format and contents of this section will be as follows:

DATA SEGMENT TABLE 90950/00080 BYTES

c60¢67/00000 8210 0000 1388 234A 8510 OEDS ONC 6879 9200 0000 OOAS 3602 1210 0008 0000 0000
J020/0IU32 1200 0009 0000 0000 8710 DEDS8 0126 408A 8310 OFIN OIFE 3031 8310 OF 24 0020 6CBAS
0040/G60064 8710 OF25 0020 6C43 8710 OF 26 D020 6C64

CONTROL STACK

The format and contents of this section will be as follows:

CONTROL STACK -0212/00530 BYTES

9006700900 0000 0000 9000 0000 C220 OCOO0 5818 O000 0206 0306 1001 1C00 0000 0328 89BA BAGA
2026/60932 OO7A 2200 1E€FO 10C4 C010 939F 9170 1EFD 10C4 0010 939F 917D 0000 0001 FFFF O00D
0046/090564 293A 6085 0002 0042 CD01 006A 600C 0000 0209 0002 0007 0215 89BA BAGA DADO 0000
0660/00096 ~ 0900 0000 oc00 0000 C000 OGO00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0980/00128 0900 0000 09090 0000 0000 O0C00 0000 9000 0000 0000 0000 0000 0000 0000 0000 0000
994C/00160 oo00 0000 0000 O0GO0aQ Cco00 OG00 0000 0000 0000 0000 0000 0000 0000 o00c 0000 0000
00C6/00192 0000 0000 00900 0000 Co000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00900
OCEC/09224 60900 0000 0000 0000 0000 0CN0 0000 0000 0000 0000 0000 0000 0000 0000 Q000 0000
0106/09256 0000 9000 OCG00 0000 C000 0000 0000 0000 0000 0000 Go000 0000 0000 0000 0000 0000
0720/00288 0000-0000 0000 0000 C000 0C00 0000 6000 0000 0000 0000 0000 0000 0000 0000 0000 a
0140700320 0000 0000 0000 0000 cO000 0000 C000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0160/00352 0000 0000 0000 0000 C000 cocoon 0000 0000 0000 0000 0000 o0cd 0000 0090 090N 0000
0130/003 84 0000 0000 0000 0000 C000 occO 0000 0000 0000 0000 0000 0000 0000 0000 0900 2609
01A0/00416 7FOQ 0000 0428 101C GAOO 2000 0000 BFC2 0080 OOOA 68FF 4C€50 4120 00NG 0000 0000
01€0/00448 0020 2000 0000 BFCF C042 0015 69FF 5238 4120 0000 0000 0000 0020 2000 3AF8 7F00
01€6/00480 0900 0358 3AF8 0000 C000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0200/00512 0000 0000 0000 0000 Cco00 0000 0000 0000 0000

This section of the listing is an unedited printout of the control stack.

2007258 6-33

DATA SEGMENTS | @

The format and contents of this section will be listed as follows:

DATA SEGMENT 00 2710710000 BYTES

SEGMENT ATTRIBUTES?
PRESENT
LUCKED
READ/WRITE

cCIJ0/0C000 0101 0178 0101 0188 0184 O1FB 0178 O1FB 010C O1FB 0101 O1F8 0107 0207 0002 020€
002C/00032 0106 9210 0107 O2AF C101 O2AF 010C 0286 0101 0286 0107 O2C2 0103 02C9 0101 O2¢9
IC4 0/0064 QOC2 O2CA 0101 O2CA C284 O2CA 0101 O2CB 0120 O2cc 0281 O2cCc FFOO 0000 FFOO 0000
QCo06/00096 FFOO 0000 FFOO OCOO FFOO 0001 FFOO 0000 FFOO 0000 FFOO O1F2 FFOO O1DA FFOO 0090
QUSC/00128 FFOO 0000 FFOO OGOO FFOO O0C6 FFOO OO00 FFOO 0000 FFOO 0080 FFCO 0040 FFOO 0000
JJAC/00160 FFOO 0090 FFOO OGAE FFOO OQ000 FFOO O1F8 FFOO O24C FFOO O3FC FFOO 0000 FFCO O02F
auccsna192 FFOO 0024 FFOO O02F FFOO 0024 FFOO 024C FFOO O3FC FFOO 036C FFOO O0DD FFOO OCcDD
OCEC/00224 FFOO 32CO FFOO O0N0 FFOO OCOO FFOO 0000 FFOO Q0U0 FFOO 0000 FFOO 0000 FFOO 00ND
0100/00 256 FFOQ 0CO0 FFNO O000 FFOO O0CO FFOO 0900 FFOO O000 FFOO 0001 FFON OCO1 FFOD 0000
0120/00288 FFOO FFBB FFOO OOOO C107 O2EC 0101 O2EC O13C O2F3 0120 O2F3 O117 O2F3 0101 O2F3
014C/C0320 0106 O32F O019€ 0335 C501 OCOO 0550 0000 0106 0343 010C 0349 1506 0000 190C 0090
J166/00352 0000 CO00 0N00 0000 CO00 ONLU 0000 0090 0000 CO00 OVOO DODO DONO OGC1 cC2c3 C4cs
018C/C03a4 Coc? C8C9 DID2 D03D4 N5D6 D7D8 O9E2 E3E4 ESESH ETES E9FO FIF2 F3F4 FSF6 FTFB F940
Q1AC/09416 4A4B8 4C4D 4ESO SASB SCOD SE60 6168 GCE 6F7A 7B7C 7E7F 7F00 D000 0041 4243 4445
J1CO/00448 4647 4849 4A4K3 4C4D GE4F 5051 5253 5455 5657 5859 5A30 3132 3334 3536 3738 3920
Q160/09430 SHZE 3C28 2826 5024 2A29 3820 2F2C 253€ 3F3A 2340 3D22 0000 0000 0020 2020 2020
020G/00512 3531 3651 2020 2020 2020 20620 2020 2020 2033 3220 202G 2020 4153 5349 474E 4544
U220/00544 2020 2020 2020 2041 4045 4F4% 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
0240/00576 2020 2020 2020 2020 2020 2C20 2020 2020 2020 2020 2020 2029 2020 2020 2020 2020
J260/U0008 2020 2020 2020 2020 2020 2620 2020 2020 20920 2000 0000 0100 0100 0000 0100 0100
V2aC/C0649 0900 9100 0100 00C0 C100 0100 G000 0100 0100 0000 0100 0100 0000 9100 0100 oOD0D
J2AC/U0672 O100 9100 OLUNO 0100 C100 COC OVUUD 0050 3030 3050 $030 2020 2029 2020 2020 2020
O2cC/CI70% 2020 46340 5342 3830 3900 0019 0000 0000 FF56 FFFB FFFF FFFF FFFF FFFE 0000 0000
32€£0/00736 0900 0090 0000 0000 GO00 DG00 3030 3030 3030 3000 0000 0000 0000 0000 4O000 vD00
2500/00768 0000 0000 0000 0000 C000 OG0O0 0000 0000 00N0 O000 O00 D000 0000 0000 0000 OD00
0320/09800 0000 0000 0000 0000 CO00 OCN0 0000 OOF1 F3F5 F/F9 F054 494F 4454 &4€20 2020 2020
I346/00832 2020 2000 O0UU 0000 C020 20620 2020 2020 2020 2020 2015 0600 0019 OCOO 0014 0200 ©
0360/09364 0014 0200 0214 0200 0416 8400 0419 OCOO 0019 0100 0001 7801 FBFF 0013 FAaFF 0000
0380/00896 31FF 0014 29FF OCOO 20FF 0014 49FF 0000 2601 7803 C501 3C03 C501 0093 C501 0703
O3A0/00928 | EN01 3C04 0101 0604 C101 UEO4S OFO1 0404 2401 7804 3001 7804 8501 OCOS 20FF L000
O3c0/00960 O1FF 0000 2746 5249 2032 3920 4156 5220 3737 2020 44469 5348 2041 5245 4120 5553
ISEU/00992 4147 4520 4&F4b6 2044 SOZ2E 4964 2043 4053 4238 3030 2020 5345 5249 &14C 204E 4F2E
U4GG/01026 2031 3335 3739 3020 204F S74E 4552 2054 494F 4454 4E20 2020 2020 2020 2020 2050
9420/061056 4147 4520 2020 2051 2620 2C20 2020 2020 2020 2020 2020 2020 2020 2020 2041 5245
O440/01088 4120 4164 4452 4553 5320 2020 4152 4541 204C 454E 4754 4820 2020 2053 5441 5455
046¢6/01120 53320 2C20 2020 2020 2046 494C 4520 4E41 4045 2020 2020 2020 2020 2020 2020 2020
0480/01152 2020 2020 2029 2020 2020 2620 2020 2020 2026 2020 2020 2020 2020 2020 2020 2020

This section of the listing contains information about each of the program’s data segments. The segment’s size and
attributes are obtained from the data segment table. Following this information, is an unedited hex dump of that
segment. |

When a data segment is assigned the attiibutes ABSENT and FIB, the virtual machine had not yet formed that
Segment at the time of the dump. A sample of this is shown in the following:

DATA SEGMENT O2 - 0146700526 BYTES

SEGMENT ATTRIBUTES:
PRESENT

LOCKED
REAO/WRITE
FIB

 Data segment 00 contains all the data descriptors for the task. It is the data stack. The information contained in
segment OO is further analyzed during the control stack analysis.

6-34

FILE ANALYSIS

This section of the listing contains information about the task’s files. A sample analysis is shown in the following for

both open and closed files.

FILE ANALYSIS

FILE / ' € OPEN)

FIB SEGMENT 0902/00002
FP SEGMENT 0007700007

FILE STATE:

. WRITE
OUTPUT

FILE TYPE 2092 DATA
DEVICE KIND UNKNOWN

RECORD LENGTH 0000700000 —
BUFFER LENGTH 0090/00000
BUFFERS 0000/0000
MAX FILE SIZE 200000002

MYUSE ILLEGAL
OTHERUSE LOcK

ACCESSMODE ILLEGAL

FILE / (CLOSED)

FIB SEGMENT 0003700003
FPS SEGMENT 0008/00008
FILE TYPE 20339 DATA .
OEVICE KIND. UNKNOWN

RECORD LEKGTH 0000/00009
SUFFER LENGTH 0000/00000

& SUFFERS 00900/00900
MAX FILE SIZE 309000000

MYUSE “TLLEGAL
BOIHEPUSE LOCK ACCESSMODE ILLEGAL

‘CONTROL STACK

This portion of the dump decodes the information in the stack and lists the data descriptors and data values

of all the task’s currently active variables. The analysis begins with the oldest procedure and progresses level

by level to the most recently called procedure. A sample analysis is shown in the following.

CONTROL STACK ANALYSIS” NEXT LEVEL

PSN 0000700000 ~—sR EG! 0000/00000
SPN 0000/00000 REG2 0000700000:
PCA 0220/00544 NLD: 0058/00088
LVL -» 9000700000 LSA 001B/00027

ADDRESS DESCRIPTOR OCCUR DATA TYPE. SEG ORIGIN DATA |

0009/9C000 01010178 000 CHARACTER(001) 00 0178 c1 | non

0004/V0004 01010188 ~ 001 CHARACTERCOO01) 00 0188 41 ; "A™ oo

0008/0cc08 018401FB 002 CHARACTER(180) | O00 O1FB 202020 20203531363120202020202020 * 5161 7
20202020202033322020202020415353 ” 32 ASS”
4947 4E4544202020202020204140454E “IGNED AMEN?
442020 20202020202020202020202020 "D0. -

20202020202020202020202020202020 *
20202020202020202020202020202020 ™
20202020202020202020202020202020 *

2007258 6—35

REGISTERS
©

The registers and their functions are listed in the following table. |

Register Name Data Stored in Register

PSN SPN
The segment number of the currently active procedure. The procedure number of the currently active procedure.

IME The address of the S-instruction currently being executed.
REG1 The lex level of the currently active procedure.
REG? The lex level of the most referenced region.
NLD The lex level of the most referenced region.
LSA The number of local descriptors in the procedure.

The size of the literal pool for the currently active procedure.

DESCRIPTOR INFORMATION

The descriptor information is formatted into seven columns with the following headings:
c

Heading | Data in Column

ADDRESS _ The byte offset into segment 00 of the start of the data description.
DESCRIPTOR | The actual value of the four-byte descriptor.
OCCUR | The occurrence number of the data descriptor. | :
DATA TYPE The data can be of five types: FIXED, Bit (00=00), MSG REFERENCE, SELF RELATIVE, and

CHARACTER (000). The BIT data type is followed by parentheses. The data enclosed is: bit
position=bit length. The CHARACTER data type is followed by its length enclosed in parentheses. SEG _The segment number of the data.

ORIGIN The byte offset in segment <SEG> of the data.
DATA The value of the data stored at that address.

COBOL DUMP ANALYZER (COBOLDUMP)

The COBOL Dump Analyzer is a debugging aid for the programmer. When a COBOL program is DP-ed,
a dump file is created on disk. COBOLDUMP examines this file and arranges it into an easily readable format.
OPERATING INSTRUCTIONS

COBOLDUMP may be executed any time the system is operating by entering via the system console:
COBOLDUMP filename HEX

“filename” is the name of the dump file created when the COBOL program was DP-ed. It will reside on the
same disk as the program code file.

HEX is an option that, if entered, will produce an unformatted dump. Default is a formatted dump.
After a formatted dump, COBOLDUMP will go to EOJ. After an unformatted dump, the program will dis-

play the message FORMATTED DUMP?. If a formatted dump is desired, the alphabetic character Y is entered
via the AX command. COBOLDUMP will terminate automatically after the formatted dump. If the formatted
dump is not desired, the alphabetic character N causes COBOLDUMP to go to EOJ.

ERROR MESSAGES

The same error messages, causes, and corrections apply to COBOLDUMP as was defined for MPLZDUMP.

6—36

EXPLANATION OF FORMATTED DUMPS _
This section explains and gives examples of a formatted dump analysis listing in the actual order listed.

NOTE
- Whenever both the hexadecimal (hex) and decimal values are given, they will ap-

pear in the form:

HHHH/DDDDD

. where
HHHH is the hex value and DDDDD is the decimal equivalent.

The following paragraphs explain the individual sections of the analysis.

HEADING

‘The format and content of the first page heading section of the printout will be as follows:

aoe

COBOL DUMP/ANALYZER

DATE 2 06/29/77 ‘
DUMPFILE NAME ¢ Q0O00000/0MF IL01
CODEFILE NAME 2 CMS201/TEAM@STATS
REASON FOR DUMP : O UNKNOWN

The actual data, program identification, dumpfile identification, and reason for the dump will vary accord-—
ingly. |

PROGRAM PARAMETER BLOCK (PPB) OF CODE FILE

This section of the printout defines the structure within the code file and provides identifying information con-
cerning the program. The format and content of the PPB section of the printout will be as follows:

@{Qeananean ooaoaoveeeaane

PPB OF CODE FILE

IMPLEMETATION NUMBER 5 00
PRUGRAM NAME : TEAM=STATS
S.LANGUAGE NAME 2 COBOL
INTERPRETER PACK : gooocco
INTERPRETER NAME : COBOLINT
CUNPILER NAME : -SL9/COBOL
COMPILATION DATE 2 03/11/77
PRICRITY CLASS : 0400
INIT SEGMENT NUMBER = FF
INTERP ENTRY SEGMENT 3 00

—INTERP ENTRY DISP.. 2 0017
PST LENGTH > 0006
PST LOCATION : 0007
OST LENGTH : O03C
DST LOCATION : 0008
STACK LENGTH : 003C
COP TABLE LENGTH 2. 0234
COP TABLE ADORESS : 0003

2007258 | 6—37

The program parameter is listed and the field content it stores is listed next to it. The table below identifies
the field | content.

Program Parameter Field Contents

IMPLEMENTATION Level number of the implementation.
NUMBER
PROGRAM NAME Name of user’s program.
S.LANGUAGE NAME © Name of language created by compiler.
INTERPRETER PACK Pack on which the interpreter resides.
INTERPRETER NAME Name of interpreter.
‘COMPILATION DATE Date of compilation.
PRIORITY CLASS Priority class of program.
INIT SEGMENT NUMBER Initiating message segment number.
INTERP ENTRY Segment in which execution of the program begins.
SEGMENT
INTERP ENTRY DISP. Byte displacement into interpreter entry segment at which execution begins
PST LENGTH Length of program segment table.
PST LOCATION Location of program segment table in CODE-FILE.
DST LENGTH Length of data segment table.
DST LOCATION Location of data segment table in CODE.FILE.
STACK LENGTH Length of control stack.
COP TABLE LENGTH Length of current operation table.
COP TABLE ADDRESS Location of current operation table in CODE.FILE.

TASK CONTROL BLOCK (TCB) PRESET AREA

The format and content of the TCB section of the printout will be as follows:

0034 ¢ 52)
0000 ¢ 0)
000000
OO2F

S“START PCA
S*START PSN
LAST COMM RESP
CURRENT OP

PSN 2 0068
ISN s 0013
DST BASE 2 2271
OST LIMIT. 2 2299
TOP OF STACK 2 22C2 /
STACK LIMIT 2 «622F8 fo
MCH TOS RECOVER : 0088 /
MCH ACTIVE VERB : OO7A
TCB.FLAGS : 0051
MRA.BASE 2 2271
COMM RESULT A : 0040
COMM RESULT 8 : 0000

oe

of

OVEPFLOA FLAG QCO0O0 CRESET)

LINE COUNT : O76 °(118)
A REGISTER : 00090 0000 aCOo0 o000
8 REGISTER : 0000 0000 OC00 oonOD
C REGISTER : 0000 00CG0 cCCOO oODN

00900 0000 0000 0000 OC900 0000 0000 0000 0000 0000 0000 0000 0000 0000 2070 0452 FFFF
00964 Co00 0000 0000 CCOO 8000 0019 0420 2096 8000 0014 042A 2091 0000 0000 cO00 0000
00128 OO2F 11AF OOOO 18CF O0GD N67C 11C9 001A 101F 0000 0076 0000 0000 0000 0000 0000
00192 0001 0000 6000 CCOO a00d2 0000 G000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00256 C309 0000 0000 OCO0O0 C000 N000 00GO0 0000 0000 0000 0000 0000 0000 0000 0000 0000
00320 0000 0000 0002 OCO00 0048 NON02 0002 0000 0000 acn0 0000 0000 0000 0000 0000 0000
00384 1021 0000 00C0 OCOG 0000 0000 0000 0000 0000 0000 0000 0000 0000 0103 0000 0040
00448 0000 0000 0000 0000 0000 0088 0000 0000 0000 0000 BFAY 015A C101 BFBO 0000 310F
00512 0116 FF72 .

6—38 ,

The preset program parameter or register is listed and. the field content it stores is listed next to it.

Preset Parameter or Field Contents

Register

PSN/ISN The first 12 entries of the task control block, reflecting the entry numbers in the slice descriptor table

of the program control block and the interpreter.

DST BASE Absolute address of the base of the data segment table.

DST LIMIT Address of last entry of DST + 1.

TOP OF STACK
STACK LIMIT
MCH TOS RECOVER

MCH ACTIVE VERB
TCB.FLAGS
MRA.BASE
COMM RESULT A
COMM RESULT B
S-START PCA
S-START PSN
LAST COMM RESP
CURRENT OP
OVERFLOW FLAG
LINE COUNT
A REGISTER
B REGISTER
C REGISTER

Absolute address of base of partial interpreter stack.

Address of last entry of stack + 1.

Difference between the present top of stack and the base of the task control block. Used for error

recovery in the master communicate handler. |

Relative address of the current program address from the base of the task control block.

Flags used by the operating system to interface between system modules.

Address of base of message reference area (used by data comm).

Result of an I/O communicate.

Result returned by an operating system module.

Program count address. The interpreter’s offset into the current program segment.

The interpreter segment offset into the program’s code file.

Last Communicate response.
The operation currently being executed.
Indicates if overflow is present.

Line of program currently being executed.

Contents of the registers that the interpreter uses for numeric operations.

DATA SEGMENT TABLE

The format and content of the data segment table section of the printout will be as follows:

2

0510 30F6 0091 22F5
6510 30F8 0015 22F5
8710 30F9 OO2F 2758
1200 0092 0900 0000
0510 30FA 0018 22F5
0510 30FB OO2F 22F5
1200 0035 0000 0000
0510 30FC 0042 22F5
0510 30FD OSBF 22F5
C510 319 ON3C 22-5

This section contains an unedited hexadecimal printout of all eight-byte table entries.

CONTROL STACK

The format and content of the control stack section of the printout will be as follows:

009300 0164 OO7A 0114 8490 0328 89BA BAGA BAGA 4152 2020 2020 2020 2020 2020 2020 2020

00964 2020 6441 S441 2049 4£20 1000 0009 0123 0002 0C01 0000 0000 0000 0000 0000 0000

00128 C000 0000 0000 OC90 0900 0000 0000 0000 0428 131c 0000 0000 0000 0000 0000 0000 .

00192 0000 0000 0000 0000 0000 0000 a000 0000 0000 0000 O000 0000 0000 0000 0000 0000

00256 CO00 ON00 0000 OC00 COOO 0000 00090 0000 0000 0000 0000 0000 4305 0000 0101 8000

00320 COOO0 0000 0100 0037 0084 000A C3FF 0000 0000 00B4 BFAD OD2F 0038 0037 0007

The control stack dump is an unedited hexadecimal printout of the control stack contents. The first column

of the printout gives the decimal values of the control stack address of each first hexadecimal character in that

row. Each control stack entry consists of three words, the last entry being at the head of the control stack.

2007 258 6-39

The format of each entry is:
©

First Word, First Byte | K. — Value sometimes used by the interpreter to determine whether or not to use the | Stack entry to obtain the address of the next S-instruction to be executed. First Word, Second Byte Segment No. - The number of the code segment.
Second Word Digit displacement of the next sequential instruction relative to the segment base. Third Word Line Count - Line of program being executed.

DATA SEGMENTS

The format and contents of this section will be listed as shown in the following:

SOB ene anwaneaaweanaweeana oe

DATA SEGMENT 0000700000

00900 0000 0000 0000 0000 0000 0000 o000 0000 o000 oDDD 0000 0000 0000 0000 CODD oOonD 00064 0000 0000 0000 0C00 0000 0000 0000 0000 0000 oD00 0000 0000 0000 0000 0000 on00

00128 0000 0000 0000 OCO0 0000 0000 0000 0000 0000 0000 oNDD 0000 0000 0000 0000 0000 00192 C000 0000 0000 CCO0 00C0 0000 O000 0000 ocoDD 0000 0000 0000 0000 0000 d000 0000

00256 6900 0009 0900 OCND 000 O000 2100 8020 0054 ONBO 2000 5401 BO23 ONBO 2154 O2R0 -004$20 0000 G000 0000 OCOO 0000 0000 0000 0000 on00 0000 0000 0000 0000 0000 0000 0009 00384 = 5052 4F47 5241 4D20 4142 4GFS52 5445 6420 2020 59553-4520 5052 4F43 4544 5552 4520 00448 4049 5353 494E 474E &F20 5459 5045 2032 4E4F 2054 5950 4520 3150 5S24F 4752 4149 60512 2041 424F 5254 4544 2020 204E 4F20 5354 4F50 2052 S54E 2045 4E43 4FS5S 4ES% 4552 00576 4544 |. .

00300 0000 9000 0000 0000 0000 0000 0900 0000 COND oDNnD 0C0O0 N000 9NN0 ON00 COD9 conn: 00064 900 0000 0000 0C00 0000 0000 o000 0000 on00 0000 0000 0000 0000 0000 oCO0 oDD0D

00128 = 0000 0000 0000 OC00 0000 0000 o000 0000 0000 0000 0000 0000 0000 0000 on00 oCODD 00192 0000 0000 0000 OC00 0000 0000 a000 0000 voDD 0000 0000 0000 0000 0000 0000 oDD0 00256 COOO 0000 0000 OC00 COtN 0000 2100 8020 0054 OORD 2000 5407 B023 0080 2154 0280 09320 | 0000 0000 0000 OcC00 0000 0000 oN000 nN0D0 0000 0000 0000 0000 0000 0000 OD00 ODND 00384 5052 4F47 5241 4020 4142 4F5S2 5445 4420 2020 5553 4520 5052 4F43 4544 5552 4520 00448 4049 5353 494E 474E 4F20 5459 5045 2032 GE4F 2054 53950 4520 3150 S24F 4752 414D 00512 C041 424F 5254 4544 2020 204EF 4F20 5354 4F50 C052 SS4E 2045 4E43 4F55 4E5S4 4552 00576 4544

DATA SEGMENT 0001/00901

00900 0000 0000 0000 OCOO 0000 9000 0000 0000 D000 oD00 0000 0000 0000 0000 0000 O000 00064 0000 0000 0000 0C00 0000

SOM RN BKK SOB M BBE MDH BDanaenuaam

DATA SEGMENT 0002/00002

00000 0030 3030 3030 3C30 4441 5441 2049 4E20 2020 2020 2030 3031 0000 0000 1104 0000 00064 0030 0030 0000 0002 00G0 3108 3031 0000 3737 3131 3900 0000 0000 0000 3030 3100 00128 0000 0000 0000 0000 0000 0000 0000 0000 0000 o000 0000 0000 0000 0000 0000

6—40

This section contains a unedited hexadecimal listing of each data segment.

CURRENT OPERATION (COP) TABLE

The format and content of the COP table section of the printout will be as follows:

COP TABLE

. COP TYPE - LENGTH DESPCDIGITS) SEG NUM DATA

0 U-% 5 —~0 0 00000
1 LS-4 a 38 0 0000

. SUB FACTOR O : 4
TABLE BOUND 3 48

3 Un8 3 86 0 000000
4 U-8 1 92 0 00

3 U-& 1 94 0 090
6 U-8 1 96 0 00
v Un8 1 98 0 00
8 U-8 1 100 0 00

9 u=-8 1 0 00
uU-8 1 0 - 00

U~3 1. 0 00
Un4 3 0
LS-4 0

 562020202020

B45455S0494E47

5
108 uU-8 7 310 8 S3G3GFS2496E47
109 U-8 1 390 8 474F 414 C4B45455S0494E47
110 U=-8 131 412 8 202051205653 204FS0504F4E456E54 20202020202020202020202020

2020202020202020202020202020202020204E 41404520 2026202020
20202020 20202020 202047 20202 04120205450202020202020202047
4F 414048 454550455220202020202020202020205045522E 2047 4F 41
4053 2020415647 26 20534 15646553205043542E

141 u-8 14 416 8 51205653 2046F S050 4F 4645465420
112 U-8 & 504 8 6E414045
113 u=8 9 ' 544 8 47202020 4120205450
Tih u-8 10 578 8 47 4F 414604B4545504552
115 unB 27 620 8 504552 2E 2047 4F 414053 2020415647 2620534 156655320504 3542E
116 u=8 2604 674 8 - NOKVUDDDDDODNGOONDDDONNONDNOONONDNNN DONC NON OND ONCOOHNN00000N

o00000DDD DOOONNGOONONONNNNNN CONDON OONNGONONOOONCOOOOOCOONG

ENDCOBOLP

The dump of the current operation table lists the contents of all declared variables. The information consists

of:

Entry | . Description

COP Table entry number.
TYPE Data type, may be one of the following:

U-8 8-bit unsigned
LSS-8 | 8-bit separate leading sign.
LS-4 : 4-bit leading sign
LOS-4 8-bit overpunched leading sign
U-4 4-bit unsigned
TSS-8 8-bit separate trailing sign
TS-4 4-bit trailing sign
TOS-8 8-bit overpunched trailing sign

LENGTH Data length. This is a decimal number and does not include a sign unless the sign is

overpunched.
DISP (DIGITS) Digit displacement.
SEG NUM Segment number.
DATA Unedited hexadecimal printout. Data may be:
SUBSCRIPTED DATA The first item will appear, followed by:

SUB FACTOR (no. of subscript) : (subscript factor)
TABLE BOUND : (table bound)

INDEXED DATA The first item will appear, followed by:
INDEX < : (no of indexes)
TABLE BOUND : (table bound)

2007258 6-41

'

APPENDIX A>

AD (Assign Peripheral)

AD <mix #> Li < prog—id > 41 < peripheral >

| ADD

ADD (Add Files from Library Tape)

Lex <disc—id—1> LD— ADD——

* <file—name>

|

L < file—id > | :

FROM —— <library—tape—name> ——TO <disc—id—2> L | :

__<group—id>

| [AMEND|
AMEND (Disk file amending)

* < file—name>

[_
_ [< integer > |

EX <disk—id > /—+— AMEND —— <file—name> r

v
[AX |

AX (Accept a message for a task)

AX <mix # 5 L) eprop—id> Ab cts

CH (Change < file—identifiers >)

L< disc—id—2 > /- < group—id> CDATA--TO— < group—id >—-

_ Ppxt © e dise—id—1 > (+ —-CH—

 lex disc—id—2 > /—-< file—id > ~DATA*TO—< file—id > ——

September 1977

A-l

BN

[CHECKADUMP]
7

CHECKADUMP (Compare Library Tape with Disk) | @ |

Hb with <disk—id—2 .

 po
 tpytt <disc—id—1> /-4_CHECKADUM P—— <library—tape—name>

col

CO (Compilation Utility)

 EX <disc—id—1 > / ——c0

 ——— @) <disc—id—2 > / 1 < object—program—name > —“— (BR) —_—_

TR

a 4 COBOI- —_—__ @—— <disc—id—3>/ Ht RPGXREF ®@—@©
RPG

 @) PSSIZE < integer > - | K -

NAME < file _name >
| | MFID < multifile—id >

, FID < file—id >
| PATCHFILE— DEVICE < hardware—mnemonic > — r_(A) - FI | SOURCEIN RECORD——________< integer > [ie zt

(A) >
— oO “FILET”! SOURCEOUTT TPE CORDS. BLOCK. integer > |

-FILE.SIZE—________ < integer >
LFILESIZE _______ < integer >

@. MESSAGE: <text>_/

| COMPARE |

 ell <disc—id—1> | compare

PTR
PTR DSK.
DSK

TP. Come TP < mfid—1 > /* < file—id-—1 > —+MTP. <integer—1 >+- <integer—2 >+-4.WITH <mfid—2 > ;-*-< file—id—2 >—L-MTP. <integer—3 >4+.< integer—4 >

 UL <disc—id—2 > pL <group—id—1> incall <integer— 1 a <integer—2 > Lint < disc--id—3 > jhe group—id—2 . Gell <integer—3 > t <integer—4>

| < lneidas file—id—3 >
 A-2

COPY (File Copy)

lO EX+L <disc—id—1>— /—+- COPY ——

COPY

9

RD
; MTP-

PTP— LD <integer > 7

' ‘ <KEY>— . __FILESIZE— <integer >—-

if <mfid—1 > <file—id—t > <BOTH >+ LoL cima —2 > Ae «< fiteid—2 > 4] SINGLEAREA

<record—key >

—7_RECORD—< integer >
|_IT\-BLOCK—< integer > —+4

 |
_|

=

| SL—CRUNCH

—/N—RECORD— < integer > <integer > _f7_EXTENDING

—7\—-BLOCK— < integer > | | #N_CRD

|_7L-T APE.MARKS— <integer >—+~ —— <record—key> | /N_MTP.

1_NO.LABEL
/}\— pTP

<KEY>

I <disc—id—2> j <group—id— 1 >—+- < BOTH > TOL < disc—id—3 > /-* < group—id—2 >

 »Tediseid—4> < fileia—3

COPY (Stand-alone Disc Copy)
anal

<disc—id—1 >/< file—id—1 > —TO— < dise—id—2 >/< file—id—2 > —_—_

copy—|
<disc—id—1 >/< group—id—1 > —-TO— < disc—id—2 >/< group—id—2 > —

-CP (Compute)

—__|_EX <disc—id > /—*_——CP

_

| 2 +
i________ < integer > [— < integer >

. *

_-M

September 1977

[COPY]

CREATE

CREATE (Disc File Create)

 ne ee ee eee

* < file—name>

 p> RECORD < integer >
—_— BLOCK <integer>

FILESIZE < integer > 4

'_-CRUNCH

|

| Ss.
<disc—id—2> / L <file—id> LA “A

 < integer >,

A-

__ EXTENDING | <disc—id—2> —_ <file—id > Ls.
N

|
DP (Discontinue and Dump)

DP—— < mix # > ——/—— < prog—id >

DS (Discontinue Program)

DS <mix # >——_/—— < prog—id >

DT (Date and Time)

———pt——l_<wm3/<pps/eyys < HHMM >

[DUMP]

DUMP (Dump Files to Library Tape)

—ttepxt le gise iat +/+ pp—_4 DUMP

* < file—name >

| |

< file—id >
—— TO —— < library—tape—name > | FROM — < disc—id—2 > ty |

<

9

group—id > J

[DUMPANALYSE|

DUMPANALYSE (Analyse B80 Dump Files) :

— tpt. < disc—id—1 > / _4_DUMPANALYSE—

* < file—name >

tle. disc—id—2 > je < dump—file—id > LL < disc—id—3 > je < code—file—id >

[EX]
EX (Execute)

_ tex tt < disc—id > pe < prog—id > 1 < real—store > y tt < text > 1

LFE|

FE (Initialise MTR Disc)

FE

FL (Display File Attributes on Self Scan)

, : * < file—name >

dextl <disc—id—1 >/ ! FL IP pe

<disc—id—2> pe < sroup—id >——

Le disc—id—3> pte file—id >

[FS]

FS (File Squash)

 * < file—name >

__| gxtt < disc—id—1 > / | FS L < disc—id—2 > je < file—id >—*——

|GEN.DUMPEFL|

GEN. DUMPEL (Create Empty Memory Dump File) | |

dextte disc—id—1> 4. GEN.DUMPFL

a < integer > J _lon <disc—id—2> 4 tas— < file—id > jt

|GO}
GO (Restart a previously stopped program)

 ———GO < mix > L)_<prop—id> —

September 1977 , A-5

LIN]
IN (Initialise Disc)

IN

KA (Analyse Disc Space Assignment)

* < file—name >

LL < disc—id—2 > ja < —id— group—id > —
—_tepx tl < disc—id—1 > jt KA

| . | ?

L < disc—id—2 > /-““— < file—id > i

i <disc—id—2> /4_DSKAVL

|

LD (Tape Library Utility)

Tex < disc—id—1 > jt LD i

 * < file—name >

ADD , ,
{ [-FRom- < library—tape—name > 1_To- < disc—id—2 > L | LL
LOAD Jp < file—id >

| | < group—id |
DUMP

 ct TO- < library—tape—name > L F ROM— < disc—id—3 +
UNLOAD

LD (Load Disc)

LD— < disc—id > —-FROM~— < mfid >

A-6

| LIST]

LIST (File List)

text < disc—id > just —

* < file—name>

_ -A- mf
MTP-

i PTP—
CRD- CT <integer > 7

+ <mfid>/<file—id>- 1'-BLOCK -<integer > - Le

1--TAPE.MARKS— <integer > — :

{_NO.LABEL a rs integer >
<record—key >—

mM < KEY>- ——<record—key >—

LOAD (Load Library Tape Files) | {LOAD

 —tt gx t L <dise—ia—1 >; LOAD
* < file—name >

{ |
<file—id > 7

—— FROM — < library—tape—name > | TO < disc—id—2 > whey |
< group—id >

LR (List Directory) 7 , |

tl py tl diso—ia—1 > ; 4 — LR —

* < file—name >

pt < disc—id—2 > / a < group—id > ——

 L < disc—id—3 > / to < file—id >

LS (List Size)

LS— < disc—id >

September 1977 : A-7

MODIFY
S

MODIFY (Program File Modification)

lpr ble dise—ia_1 5 ;—4—_ MODIFY
 * < file—name > ——> T (A)

+7 CODE.FILE—_L- < disc—id—2 > / at < file—id > —— ——

—— < file—attribute >-— < attribute—value > —— |
-FILE- < internal—file—name > , ,

| PRINT.FPB

~ < ppb—attribute >- < ppb—attribute—value > -—

\— PPB , TT >
PRINT.PPB |

END—+——-@)

MX (Diagnose Current Mix)

—— MX <mix #> | / < prog—id st)

OL (Request for status information of a peripheral)

OL | < peripheral > 4}

[ou]
OL (Print Status of Cassette Drives)

 OL
wonnoe

FO aaah

PD (Interrogate Disc Directory)

—Lextt < disc—id—1 > ;—L___ pp —__

 * < file-name >

eee rrnemaemternennneesined

Hl < dise—id—2 > /L < group—id > —

 Ll < disc—id—3 > /-L < file—id > LJ

A-8

PG (Purge Tape)

_l px tl < disc—id > jl pg—IE < mfid > /-+— < file—id > tt

- PO (Power off a disk drive) | |

—— PO —— < disk peripheral > ——

RF (Reformat Disc)

RF < disc—id > —

RL (Relabel Disc) RL]

—___——RL~— < disc—id >

RM (Remove Files)

< disc—id >/< file—id >
[yb ——RM ! < disc—id >/< group—id

RM (Remove Disc Files from Directory)

tepxtl < dise—id—1 > /-+- RM———

 ;——_—_— * < file-name >

|_| < disc—id—2 > / t_< group—id > -<BOTH>+

fo
LL PS discid—3 > j+— < file—id > F< BOTHS 2

RY (Ready a peripheral)

RY < peripheral >

ST (Temporarily Suspend a Running Task) |

ST <mix #> / < prog—id> 4

SV (Save Peripheral) |

SV - < tape peripheral > ——

< line printer peripheral >

TAPELR (List Library Tape Directory) | TAPELR| ©

_ | px tt < disc—id > / _t TAPELR < library—tape—name > [|

September 1977 | : A-9

- [TAPEPD |]
_ TAPEPD (Interrogate Library Tape Directory)

Co
—l py tl < disc—id > _t _TAapepp__!- < library—tape—name > _L_

UNLOAD (Unload files to Library Tape)

tt px t [< disc—id—1 > / tip To UNLOAD——

* < file—name >

| _ < file—id >
—— TO—— < library—tape—name > tf ROM — < disc—id—2 > Ld mi +

< group—id > |

-LUPDATE

_ UPDATE (Disc File Update)

—Lpxt le dise—ia—1 5 jt —uppatr —

 TT | A- < integer >
| < disc—id—2 > / fo < file—id—1 > __| { |

-N4~

 * < file—name >

-F ILESIZE — < integer > —

~LCRUNCH

__To—_|- < disc—id—3 > ja < file—id—2 >

XD (Delete Bad Sectors)

—__[py t < disc—id—1 > j++ xp

—— < disc—id—2 > —— < address > —— < length > ——

WS (Warm Start)

WS

— A-10

APPENDIX B

SYSTEM OUTPUT MESSAGES

The following lists show the messages which may be displayed upon the system journal (SPO) by the Master Control

Program (MCP) or the system utilities. ,

MCP OUTPUT MESSAGES

Two forms of messages are output by the MCP. The first form of message is considered to be self-documenting and

no event number is included. These messages are listed with minimum explanation. The second form of message includes

an event number enclosed in square brackets (for example [14]). These messages are listed in order of event number,

and contain explanatory detail.

Basic Messages

NO CLOCK
INVALID DATE
INVALID TIME
INVALID PROGRAM ID
INVALID MIX
NULL MIX
< intrinsic—mnemonic > < peripheral > INVALID

(for example PO CSAINVALID) |
< intrinsic—mnemonic > < peripheral > NOT ON SYSTEM

(for example SV LPB NOT ON SYSTEM)

< peripheral > IN USE

< peripheral > OK

(response to PO or SV)

PO ERROR ON < peripheral >
< mix >/< prog—id > ACPT

(request for AX response)

< mix >/< prog—id > DS’ED

< mix >/< prog—id > DP’ED
< mix >/< prog—id > STOPPED

< mix >/< prog—id > NOT STOPPED
(response to invalid GO)

< mix >/< prog—id > DS OR DP

(an unrecoverable condition has been encountered)

< mix >/< prog—id > ZIP: < text >
(The < text > is supplied by the ZIPPING program)

< mix >/< prog—id > DISP: < text >
(The < text > is supplied by the program)

< mix >/< prog—id > < intrinsic—mnemonic > INVALID

(for example 10/PD AD INVALID)

< peripheral > INVALID CONTROL CARD

< peripheral > INVALID CARTRIDGE

September 1977

B-1

< mix >/< prog—id > BOJ PR IS < priority—letter >
< mix >/< prog—id > EOJ |
< disc—id >/DMFIL < mix > CREATED

(This message records the creation of a dumpfile)
< mix >/< prog—id > DUMP FILE NOT CREATED
< faulty—input—message > INVALID
DS < mix > INVALID—NEEDS PROGRAM ID
CANNOT POWER DOWN SYSTEM. MIX NOT EMPTY.
< peripheral > REMOVED WITHOUT PO
Dxy < disc—id > SHOULD BE RE-INITIALISED SOON
Dxy < disc—id > BAD DISK—CANNOT BE LOADED
(The previous two messages are output by the “End of Life” detection which is performed during Automatic Volume
Recognition (AVR) when a Burroughs Super Mini-disc is RY-ed.

Numbered Events

Exception Events 1—9, Software Information

FORMAT OF MESSAGE: | a |
< MIX >/< PROGRAM—ID s+ [<EVENT #> <FILENAME> < PERIPHERAL > < FUNCTION > < MESSAGE > ERROR WHILE IN < VERB > < STATUS >.

Event Message and Explanation
] TAPE FORMAT

The ending label on a labeled tape is missing or invalid. The program has indicated it can handle this error
itself.

-— 2 PARITY
A hard parity error has been discovered on the device. The program has indicated it can handle such an error
itself. < STATUS > shows the disk address for disk errors.

3. TIMEOUT :
If the device is tape, then no data has been encountered for quite a distance on the tape (exact length depends upon the unit). For disk it means the cylinder specified could not be found. The program has indicated that it can handle such an error itself. < STATUS > shows the disk address for disk errors.

4 ADDRESS
The sector could not be found on disk (cylinder was found). Either the software has specified an invalid sector or the sector address on disk has become corrupt. The program has indicated it can handle such an error. < STATUS > shows the disk address.
REWIND

6 DESCRIPTOR
|

This message identifies all I/O errors that are not PARITY, TIMEOUT, ADDRESS, or REWIND errors. The program has indicated that it can handle such an error.
7 NON-FILE FULL ON MFID

It is possible for all entries in the non-file directory (available table) to be in use. If a file then releases its disk space it may not be possible to enter it in the non-file directory.

GN

Exception Events 10-19, Software Suspensions |

FORMAT OF MESSAGE:
< MIX >/< PROGRAM~—ID > [EVENT #] [WAITING < FILENAME > < DEVICE >] [< MESSAGE >].

Event Message and Explanation
10 NOFILE |

The MFID or FID requested cannot be located at OPEN time. If it is the MFID which cannot be located, the < FILENAME > will contain < MFID > /. Ifthe FID cannot be located the < FILENAME > will contain the <FID >, if a single file device, or < MFID > / <FID > if a multi-file device. The operating system
will cancel the suspension when the file is made present.

 B-2

11 DUPLICATE FILE
Either OPEN or CLOSE has detected two or more files of the same name and type. Contents of the

< FILENAME > is based on the same criteria as no file (see event 11).

The operating system will cancel the suspension when the duplicate is removed.

12 NO USER DISK :

The mentioned file requires an area of disk for its data but the specified disk 1s either too fragmented or

too full to accommodate. The operator may remove files from the specified disk, or terminate the task. If the

first option is used the operator must index a “GO” to the task to alert the operating system to try again.

The < FILENAME > field will contain < MFID >/< FID>. .

13. DIRECTORY FULL
The file directory of the specified disk has no blank entries for creation of a new file. The < FILENAME >

will contain < MFID >/< FID >. Thesystem operator may remove files from that disk or terminate the task.

14 DEVICE REQUIRED
An output device of the specified kind is needed. The operating system will cancel the suspension when the

device becomes available. The < FILENAME > will be < FID > or < MFID >/< FID >.

‘15 FORMS REQUIRED
The specified file has the FPB special forms flag set. This suspension notifies the system operator to insert the

correct forms and then index an ‘““AD” to the task < FILENAME > will be < FID >.

16 BAD FILE TYPE |

The specified file has been located, but its file type in the Disk File Header does not match that in the

program’s File Parameter Block. (Only applies to disk files.) The operator may remove the file presently on the

disk and load the correct one or terminate the task. The operating system will cancel the suspension when the

correct file is made present.

17 NOFILE
The MFID requested cannot be located at open time. The < FILENAME > field will contain < MFID >.

The operating system will cancel the suspension when the file is made present.

18 DUPLICATE FILE
Either OPEN or CLOSE has detected two or more <MFID>s of the same type and name. The

< FILENAME > field will contain < MFID >/. The operating system will cancel the suspension when the

duplicate is removed.

Exception Events 20—40, Invalid Request on Class A or B Comm —

FORMAT OF MESSAGE:

< MIX >/<PROGRAM-—ID > [< EVENT # >] [CANNOT < VERB TEXT >] < PARAMETER >
[< MESSAGE >].
Event Message and Explanation

** Resident Communicate Handler**

20 (NUL)
The cause of the invalid request is an illegal verb.

21 NOT FIB .

Byte 1 of Class A or Class B communicate should contain a Data Segment Table Index of a File Information

Block. This error is reported if that DST entry does not describe a FIB.

23 ATTRIBUTE MISMATCH

The attributes of a file define which verbs may operate on that file. (Attributes include such things as the

DEVICE, MYUSE, ACCESS MODE, etc.) Each Class A communicate is checked against the file’s attributes.

This message indicates a failure of this check, for example, READ on an output file, START on a non-disk

file, etc.

24 BAD SEQUENCE

This is a Class A error which may be noted when OPENED I/O with Sequential Access.

1. A REWRITE was not immediately preceded by a successful READ.

2. An OVERWRITE was immediately preceded by an OPEN or START communicate.

3. An OVERWRITE or REWRITE was preceded by a conditional READ which failed.

25 BAD WORK AREA
The Work Area segment specified within the FIB cannot be used, because either it indicates a FIB segment

or it is a Read Only segment—yet the communicate requests a data transfer to that segment.

September 1977 B-3

26

30

31

32

33

34

35

36

37

38

39

40

ILLEGAL KEY
© The key requested on a Class A communicate for a disk file was equal to zero.

Non-resident Communicate Handler | |
ALREADY OPEN
The communicate requested an OPEN on an already Open file.
ALREADY CLOSED _ -
The communicate requested a CLOSE of an already Closed file.
BAD ADVERB |
The adverb to OPEN was determined to be illegal for any of the following reasons:
1. MYUSE equal to zero.
2. MYUSE incompatible with device, e.g. I/O for line printer.
3. Access Mode Random for non-disk device. :
4. Access Mode not equal to Sequential or Random (if Stream Files are not implemented in this CMS
Implementation). |
BAD BLOCK OR RECORD SIZE
The Record and/or Block size has been determined to be incompatible or illegal for any of the following
reasons: | | |
1. Buffer or Record length equal to zero for new disk or tape files.
2. Record length exceeds physical Block size.
3. Buffer length not an integer multiple of Record length.
4. FPB or DFH buffer length is not a multiple of 180 if an old file is opened with a specified Buffer length

other than zero. |
5. DFH Buffer length is not a multiple of FPB Buffer length if an old file is opened with a specified Buffer

length other than zero.
BAD FILE SIZE |
The maximum file size specified exceeds 1048560, or 65535 if a single area file.
BAD NUMBER OF BUFFERS
The number of Buffers specified exceeded 16.
BAD DEVICE |
The device requested is not supported by CMS. The device code is illegal.
BAD FILE TYPE |
1. An OPEN has been requested on the “SYSMEM” file by an unprivileged user program. |
2. An unprivileged user program has requested a CLOSE with Lock or Purge of a file with a SYSMEM

VMFILE, or Firmware File Type.
PROTECTION ERROR
A privileged user attempted to CLOSE with Lock or Purge a VMFILE or Firmware file while the file was
still in use.

7
BAD FILENAME
OPEN or CLOSE has detected an illegal special character imbedded in the filename.
BAD KEYSIZE
During the OPEN of a new index file, the MCP has discovered in the File Parameter Block (FPB) a key
length of zero or one that exceeds 28 characters.

Exceptign Events 41—49, Fatal Device Errors

FORMAT OF MESSAGE:
< MIX >/< PROGRAM—ID > [<EVENT #>] <FILENAME> <PERIPHERAL> < FUNCTION > <MESSAGE > ERROR WHILE IN < VERB> < STATUS >. : |
Event

44

45

B-4

Message and Explanation

TAPE FORMAT ;
The ending label on a labeled tape is missing or invalid. The program has not indicated it can handle such an
error.
PARITY | |
A hard parity error has been discovered on the device. The program has not indicated that it can handle such
an error. < STATUS > shows the disk address for disk errors.

46

47

48
49

TIMEOUT :

If the device is tape, then no data has been encountered for quite a distance on the tape (exact length

depends upon the unit). For disk it means the cylinder specified could not be found. < STATUS > shows

the disk address for disk errors. In either case the program has not indicated that it can handle such an error.

ADDRESS

The sector could not be found on disk (cylinder was found). Either the software has specified an invalid sector

or the sector address on disk has become corrupt. The program has not indicated it can handle such an error.

< STATUS > shows the disk address.

REWIND
DESCRIPTOR

This error message identifies all I/O errors that are not PARITY, TIMEOUT, ADDRESS, or REWIND errors.

The program has not indicated it can handle such an error.

Exception Events 50—69, Loader Detected Failures

FORMAT OF MESSAGE:
[< EVENT # >] LOAD FAILURE [< MESSAGE >].
Event

50

St

52

53

54

55

56

57

58

59

60

61

Message and Explanation
DISK NOT FOUND
The specified disk is not online or not ready.
PROGRAM NOT FOUND
The specified file is not on disk.
MIX FULL
The requested program’s Priority Class is full or the program presently executing requires that no other tasks

may co-exist.
NO USER DISK
There is insufficient available space on the disk containing the program for the program’s VMFILE.

INTERPRETER NOT FOUND
The interpreter file required cannot be located.

USER COUNT ERROR
This message occurs when the eighth user tries to use the program.

CODE FILE ERROR :

The loader has noted an object code inconsistency. For example, an inconsistency exists if the PPB specifies

an initiating message segment that is a Read Only segment. |

INVALID LOAD REQUEST

There is an error in a parameter of the SCL load request, e.g. too many characters in the program name.

INSUFFICIENT MEMORY

There is not enough memory to hold this program’s TCB and PCB.

MCS ALREADY PRESENT
Only one MCS may be in the mix.
DUPLICATE DISK
The DISK—ID specified in the load request has been found to be the name of two or more disks on the

system. |

NULL MIX REQUIRED
The program specified may only be loaded if the system is in a “NO MIX” state. The load is aborted if this

condition is not met.

Exception Events 70—99, Run Structure Problems

FORMAT OF MESSAGE:

< MIX >/< PROGRAM~—ID > [< EVENT # >] [SLICE < # > < MESSAGE >].

Event

710

Message and Explanation

SEGMENT OUT OF RANGE

The segment number exceeds the number of segments declared in the program.

September 1977
B-5

71 SEGMENT SIZE ERROR |
The Offset-+ Length value exceeds the declared size of the segment.

72 STACK OVERFLOW ,
The amount of Control Stack requested during execution has exceeded the declared stack size. 73 STACK UNDERFLOW |
The designated code has attempted to retrieve more information from the Control Stack than is present.

Exception Events 100-169, Interpreters ___

FORMAT OF MESSAGE:
< MIX >/< PROGRAM~—ID > [< EVENT # >] [< SOURCE REFERENCE > SEGMENT < PROGRAM SEGMENT # > ADDRESS < PROGRAM COUNTER ADDRESS > [< MESSAGE >].
Event Message and Explanation

** All Interpreters**

100 COMMUNICATE ERROR
_ The MCP has returned @80@ in Byte 0 of the Fetch Message on a communicate.

101 COMMUNICATE EOF ERROR
The MCP has returned an End of File indication in the Fetch Message (@20 20 00@) and the user has not specified any action to take if EOF occurs.

102 COMMUNICATE I/O ERROR
The MCP has returned an I/O error indication in the Fetch Message (@20 30 00@) and the user has not specified any action to take if an error occurs. |

103 =SEGMENT NUMBER ERROR
The interpreter has detected an invalid code or data segment number.

104. WRITE ERROR
The interpreter has detected an attempt to WRITE into a Read Only segment or literal.
The Code File has become corrupt or an error exists in the compiler or interpreter.

105 SEGMENT BOUNDARY VIOLATION
The interpreter, in calculating an address, has discovered that the address of the data or code is out of range.
The code file has become corrupt or an error exists in the compiler or interpreter. |

Interpreter for MPLII

110 INVALID OP |
The code file has become corrupt or an error exists in the MPLII compiler or interpreter.

115 =DESCRIPTOR ACCESS ERROR
116 SEGMENT SIZE ERROR
117 ADDRESS ERROR
118 MESSAGE REFERENCE ERROR
119 STRING STORAGE ERROR
120 REMAP ERROR
12] SUBSTRING ERROR
122. INDEX ERROR
123. EXIT ERROR
124. CPAERROR
125. DIVIDE ERROR
126 ZIPERROR
127 BIT DESCRIPTOR ERROR
128 FPB ERROR
129 CONTROL STACK ERROR
130 DATA STACK ERROR
13] DECLARATION MODE ERROR
132 DATA STRUCTUR ERROR
136 BOUND ERROR
137 ARRAY BOUND ERROR
138 DO LOOP ERROR

B-6

139 CASE ERROR

Interpreter for COBOL and RPG

140

141

142

143

144

145

146

147

148

149

160

161

162

164
166

CODE FILE ERROR
Invalid S—Op—Code.

The code file has become corrupt or an error exists in the COBOL/RPG compiler or interpreter.

CODE FILE ERROR
Invalid COPX—greater than size of COP table. The code file has become corrupt or an error exists in the

COBOL/RPG compiler or interpreter.

CODE FILE ERROR

Alphanumeric field type not 8-bit unsigned. The code file has become corrupt or an error exists in the

COBOL/RPG compiler or interpreter.
CODE FILE ERROR |

Invalid EDIT Micro Operator. The code file has become corrupt or an error exists in the COBOL/RPG

compiler or interpreter.
CODE FILE ERROR

Inline EDIT MASK not correctly terminated. The code file has become corrupt or an error exists in the

COBOL/RPG compiler or interpreter.

CODE FILE ERROR
EXAMINE source field error. The code file has become corrupt or an error exists in the COBOL/RPG

compiler or interpreter.
CODE FILE ERROR

EXAMINE parameter field not 8-bit unsigned one character. The code file has become corrupt or an error exists

in the COBOL/RPG compiler or interpreter.

CODE FILE ERROR
EXAMINE control byte error. The code file has become corrupt or an error exists in the COBOL/RPG

compiler or interpreter.
CODE FILE ERROR
COMPARE for CLASS—CLASS and FIELD type incompatible. The code file has become corrupt or an error

exists in the COBOL/RPG compiler or interpreter.

SUBSCRIPTED OR INDEXED SUBSCRIPT OR INDEX

The code file has become corrupt or an error exists in the COBOL/RPG compiler or interpreter.

PERFORM STACK OVERFLOW

Indicates too many PERFORMS without a return for the Perform Stack specified at compile time (if not

specified then the default was used). If this did not result from a programming error, the Perform Stack should

be increased. |

NON-POSITIVE SUBSCRIPT
Subscripts must be positive.

ARRAY BOUND VIOLATION

Subscript outside upper bound of OCCURS Clause.

TRANSLATION SOURCE ERROR

INVALID SIGN CODE

Exception Events 170—199, Sort

FORMAT OF MESSAGE:

< MIX >/< PROGRAM > [< EVENT # >] < MESSAGE >. Note that some CMS implementations of SORT

may not display the event number.

Event

170

171

172

Message and Explanation

DUPLICATE RECORD < RECORD NUMBER > >

Only for keyfile creation. Another Record in the file has the same key as this record.

ILLEGAL INDEX KEY IN RECORD < RECORD NUMBER >

Only for keyfile creation. Either the key field is all binary 0 or has one or more bytes with hex’ FF. This

record will not be referenced from the keyfile.

RECORDS LOST OR GAINED BY SORT—MERGE

Probably indicates an error in SORTINTRINS. See note below for what to do.

September 1977
B-7

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

Note:

N
A
A
R

W
N

=

< NUMBER > DUPLICATE RECORDS
Tells the operator the total number of records that have duplicates. See event 170.
< NUMBER > RECORDS CONTAINING INVALID INDEX KEYS
Tells the operator the total number of records that contain invalid index keys. See event 171 for further information.
< NUMBER > RECORDS DELETED | |
Records with hex FF in every byte position will be deleted by SORT. This message informs the operator how many records were deleted.
< NUMBER > RECORDS MERGED |
For MERGE only. Informs the operator of the total number of records merged from all files.
< NUMBER > FILES MERGED : |
For MERGE only. Informs operator of the total number of files merged. Should be the same as the number
of files requested in the Sort Specs.
SORT-MERGE OUTPUT FILE NOT CREATED
This message occurs if SORTINTRINS is DS-ed.
SORT-MERGE ABNORMAL EOJ
Informs the operator of an early termination due to errors.
SORT-MERGE SOFTWARE ERROR
Error in SORTINTRINS. See note below for what to do.
< NUMBER > RECORDS REFERENCED BY KEYFILE/TAGFILE
Only for keyfile/tagfile creation. Tells the operator the number of entries in the keyfile/tagfile.
NO INITIATING MESSAGE
The SORT INTRINSIC requires a properly coded Initiating Message. This should be properly formatted

bySORT or Sorts within programming languages such as COBOL. This message probably indicates an attempt to execute the SORT INTRINSIC directly.
< NUMBER > RECORDS SORTED
This is a normal message to inform the operator how many records have been Sorted.
FILE ERROR (< NUMBER >) ON SORT-MERGE FILE < FILENAME > | © The < NUMBER > means: | |

EOF on Output File. .
PARITY on Input File.

. EOF on Sort Workfile.

Bad Disk Address.

SORT Workfile Error.
Input File Error.

. Output File Error. |
Except for 2, this probably indicates an error in SORTINTRINS—in which case see note below for what to do. UNORDERED MERGE INPUT FILE < FILENAME >
The files to be merged were found not to be in increasing/decreasing key value. Either the file is incorrect or the key position has been incorrectly specified.
TOO MANY RECORDS FOR SORT-MERGE
A machine dependent limitation. For the B80 this limit is currently about 65000 records.
DUPLICATE RECORDS—KEYFILE NOT BUILT | |
If NO DUPLICATES are specified and duplicates exist, the keyfile will not be built and this message will be given. | |
INIT MESSAGE INVALID |
The initiating message to the SORT INTRINSIC is not in the proper format. This could possibly be caused
by a fault in the program that zipped the SORT INTRINSIC. | -
SORT— MERGE INITIATED FROM < MIX >/< PROGRAM—10 >
This is a normal event to inform the operator which program called the SORT INTRINSIC.
All SORT errors should be accompanied by either the Sort Spec or the COBOL program that invoked the
SORT INTRINSICS as well as the input file(s). Since SORTINTRINS is a machine dependent implementa-
tion the method of getting a program dump may vary. To get a program dump on the B80: © Rerun with GT on. This will cause SORTINTRINS to dump its run structure on the console printer. : Printing will take about 15 minutes. | oo |

This note is for the assistance of Burroughs Field Support Personnel. The normal user should notify Burroughs Field

Support in the event of any of these errors.

UTILITY OUTPUT MESSAGES

The following messages are output by the utility shown in brackets below each message. Note that the Sort Language

Processor messages may be output to line printer in some cases. All messages which commence with a variable

(for example “‘ < file—id >”’) are listed first, followed by an alphabetic list of the remainder.

< disc—id > NOT ON LINE

(COPY)

< file—id > AND < file—id > REMOVED

(RM)

< file—id > CHANGED TO < file—id >
(CH)

< file—id > DUMPED

(LD)

< file—id > EXHAUSTED DURING < integer >

< integer >

(COPY, LIST)

< file—id > EXHAUSTED DURING RANGE
—< key—2>

< key—1 > .;
< integer >

(COPY, LIST)

< file—id > FILE IDENTIFIER TOO LONG

(CH)

< file—id > IS A SYSTEM FILE
(RM)

< file—id > LOAD/DUMP DISCREPANCY

(LD)

< file—id > LOADED
(LD)

< file—id > NO LONGER ON LINE

(LD)

September 1977

<file—id> NOT ACCEPTABLE—RECORD SIZE
OF <integer> IS GREATER THAN THE
MAXIMUM SPECIFIED FOR THIS RUN—
RESUBMIT
(LIST)

< file—id > NOT CHANGED—ILLEGAL REQUEST

(CH)

< file—id > NOT CHANGED—NOT ON LINE

(CH)

< file—id > NOT CHANGED—IN USE
(CH)

< file—id > NOT CHANGED — < file—id >

ALREADY ON DISK

(CH)

< file—id > NOT COPIED—ILLEGAL REQUEST
(COPY)

< file—id > NOT DUMPED—

HAS BEEN REMOVED
IN OUTPUT USE
HAS BEEN ALTERED

(LD)

< file—id > NOT FOUND
(any utility)

< file—id > NOT LOADED—ALREADY ON DISK

(LD)

< file—id > NOT ON LINE
(FS)

< file—id > NOT REMOVED—IN USE
(RM)

< file—id > NOT REMOVED—NOT FOUND
(RM)

< file—id > NOT REMOVED OR DUMPED—
IN USE
(LD)

< file—id > NOT REMOVED—SYSTEM FILE
(RM)

< file—id > REMOVED
(LD, RM)

< file—id > REQUIRES OVERFLOW DISK
< disc—id >

(PD)

< file—id > SQUASHED FROM < integer >
RECORDS TO < integer > RECORDS
(FS)

<file—id> TO <file—id> BAD ATTRIBUTES
(COPY)

< file—id > TO < file—id > COPY COMPLETED
(COPY)

< file—id > TO < file—id +> COPY DISCREPANCY
(COPY)

< group—id > ON < disc—id >
CONTAINS: — < file—list >

(PD)

<identifier> FILE IDENTIFIER TOO LONG ©

(CH)

< integer > < integer > < file—id > NOT COPIED
(COPY)

< integer > < integer > IN < file—id >
NOT LISTED
(LIST)

B-10

@ <length > @SECTORS FROM @ <address > @
DELETED

(XD)

| s

< mfid > HAS BEEN PURGED
(PG)

< mfid > INVALID DIRECTORY ON TAPE
(CHECKADUMP)

< mfid > NOT A RECOGNISED DUMP TAPE
(LD, CHECKADUMP, TAPELR, TAPEPD)

< mfid > NOT ON LINE
(PG)

< mfid > NO WRITE PERMIT
(PG)

< parameter—list > ILLEGAL PARAMETER LIST
(CHECKADUMP, XD)

ALPHANUMERIC KEY LENGTH NOT EVEN
NUMBER OF 4-BITS NEAR COL Xxx
(SORT LANGUAGE PROCESSOR)

ALTHOUGH WITH DIFFERENT ATTRIBUTES
(LD)

ATTRIBUTE VALUE MISSING
(MODIFY)

ATTRIBUTE—VAL INCONSISTENT
(MODIFY)

AVAILABLE TABLE FULL—ENTRY
@ <address > @ @ < length > @ LOST

(XD)

< BLOCK FACTOR > OF 0 NOT ALLOWED,
1 ASSUMED NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

©

< BLOCK FACTOR > TOO LARGE,
MAXIMUM ASSUMED NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

BUFFER SIZE TOO BIG FOR < IN/OUT MEDIA >

NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

BUFFER SIZE TOO LARGE NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

< CHARACTER STRING > EXPECTED NEAR

COL XxX

(SORT LANGUAGE PROCESSOR)

CODE FILE NAME IN ERROR
(MODIFY)

COMPARISON ERROR ON < file—id >
AROUND END OF FILE
(CHECKADUMP)

COMPARISON ERROR ON < file—id >
(AROUND RECORD < integer >)

(CHECKADUMP)

COMPARISON ERROR ON < file—id >
FILE NOT AVAILABLE FOR CHECK
(CHECKADUMP)

COMPARISON ERROR ON < file—id >
FILE NOT FOUND FOR CHECK
(CHECK ADUMP)

COMPARISON ERROR ON < mfid >
ON DISK FILE HEADERS
(CHECKADUMP)

CP: DIVISION BY ZERO
(CP)

CP: HEX. NO. WITH MISSING “@”
(CP)

September 1977

CP: < hex—value > = < decimal—value >

(CP)

CP: INVALID OPERATOR
(CP)

CP: MISSING OPERAND
(CP) | |

CP: NUMBER TOO LARGE
(CP)

CP: OVERFLOW
(CP)

(CURRENT SUM OF) KEY LENGTH(S) OUT OF
RANGE NEAR COL XXX |
(SORT LANGUAGE PROCESSOR)

DEVICE—MYUSE INCONSISTENT
(MODIFY) |

< DIGIT STRING > EXPECTED NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

DISCREPANCIES FOUND BETWEEN DUMP

TAPE < mfid > AND DISK < disc—id >

(CHECKADUMP)

DISK < disc—id > NOT OPENED—NOT ON LINE
(LR, KA, RM, CH, FL)

DISK < disc—id > NOT AVAILABLE . —
(LD)

DISK < disc—id > FOR XD NOT AVAILABLE
(XD) a |

DUPLICATE < IN—FILE PARAMS >,

LATEST INSTANCE NEAR COL XXX

(SORT LANGUAGE PROCESSOR)

B-I1

< DUPLICATE OPTION > VALID IN
INDEX—KEYFILE SORT ONLY
(SORT LANGUAGE PROCESSOR)

ERROR WHEN EXPECTING §
(CO).

| EXPECTED BRACKET NOT FOUND,
_“(” INSERTED NEAR COL XXX
_ (SORT LANGUAGE PROCESSOR)

EXPECTED BRACKET NOT FOUND,
“)” INSERTED NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

EXPECTED SLASH NOT FOUND,
“[? INSERTED NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

EXTRA DIGITS IN OVERLENGTH STRING
IGNORED NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

EXTRA “FILE IN” NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

EXTRA “KEY” NEAR COL XXX |
(SORT LANGUAGE PROCESSOR)

FILE ID TOO LONG < file—id >
(DUMPANALYSE)

FILE NAME NOT FOUND
(MODIFY)

< FILE SIZE OPT > IGNORED SINCE OUT OF
RANGE NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

—B-12

FILE-SIZE TOO LARGE
(MODIFY)

< FILE STATEMENT > ALREADY PROCESSED,
NOW NEAR COL XxX
(SORT LANGUAGE PROCESSOR)

FILE TYPE IS NOT SOURCE OR DATA
(AMEND, CREATE, UPDATE)

FIRST UNIT NUMBERED 0 RATHER THAN 1
NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

ILLEGAL PARAMETER LIST
(Any utility)

IGNORE < FILE SIZE OPT > SINCE LESS THAN
< PARTIT OPT >
(SORT LANGUAGE PROCESSOR)

ILLEGAL PARAMETER LIST—ATTRIBUTE
SPECIFICATION INVALID
(AMEND, CREATE, UPDATE)

5 |

ILLEGAL PARAMETER LIST—JOB
TERMINATED
(CO)

ILLEGAL PARAMETER LIST—TABS ERROR
(AMEND, CREATE, UPDATE)

ILLEGAL TO DELETE INPUT FILE,
< PURGE OPT > IGNORED
(SORT LANGUAGE PROCESSOR)

ILLEGAL TO OVERWRITE INPUT FILE WITH
TAG/KEY FILE
(SORT LANGUAGE PROCESSOR)

IN- & OUT-FILE RECORD SIZES MADE EQUAL
(SORT LANGUAGE PROCESSOR)

y
I

IN- & OUT-FILE RECORD SIZES MUST BE
IDENTICAL
(SORT LANGUAGE PROCESSOR)

INCORRECT ATTRIBUTE
(MODIFY)

INDEX-KEYFILE KEY LENGTH NOT EVEN

NUMBER OF 4-BITS

(SORT LANGUAGE PROCESSOR)

INDEX-KEYFILE SORT KEY MUST BE
«A UA/UN)”
(SORT LANGUAGE PROCESSOR)

INDEX-KEYFILE SORT KEY MUST START ON
BYTE BOUNDARY
(SORT LANGUAGE PROCESSOR)

INDEX-KEYFILE SORT KEY TOO LONG

(SORT LANGUAGE PROCESSOR)

INDEX PARAM MUST BE
-“QUT...(KEYFILE/TAGFILE)”
(SORT LANGUAGE PROCESSOR)

INDEX < SORT TYPE OPTION > NOT SPECIFIED

(SORT LANGUAGE PROCESSOR)

INPLACE INTRINSIC IGNORES

< MEMORY OPTION >

(SORT LANGUAGE PROCESSOR)

INPLACE SORT MUST HAVE IDENTICAL IN- & |

OUT-FILES
(SORT LANGUAGE PROCESSOR)

INPUT FILES RECORD SIZES NOT IDENTICAL

NEAR COL XXX

(SORT LANGUAGE PROCESSOR)

INPUT, OUTPUT FILES IDENTICAL,

< PURGE OPT > INSERTED

(SORT LANGUAGE PROCESSOR)

September 1977

INTERPRETER VERSION NOT SUPPORTED

< file—id >

(DUMPANALYSE)

INVALID ATTRIBUTE FOR OLD FILE

(CO)

INVALID CALL OF *FILE-NAME—
JOB TERMINATED
(CO)

INVALID CHARACTER IN IDENTIFIER

< identifier > |

(any utility)

INVALID CHARACTERS IN FILE < file—id >
(DUMPANALYSE)

INVALID DEVICE TYPE < text
(CO) :

INVALID KEYWORD IN FILE MOD

(CO)

INVALID KEYWORD FOUND AFTER DOLLAR

(CO)

INVALID KEYWORD IN INPUT— | text >

(CO)

INVALID VALUE IN STACK CLAUSE—
DEFAULT USED
(CO)

KEYFILE < file—id > NOW POINTS TO DATA

FILE < file—id >

(CH)

KEYFILE < file—id > RECONSTRUCTED

(FS)

KEYFILE SORT FAILURE
(FS)

B-13

KEY OVER-RUNS RECORD BOUNDARY
(SORT LANGUAGE PROCESSOR) _

< KEY STATEMENTS > ALREADY PROCESSED,
NOW NEAR COL XXX
(SORT LANGUAGE PROCESSOR).

KEYWORD IN ERROR
(MODIFY)

KEYWORD ONLY VALID FOR FILE
MODIFICATION—IGNORED
(CO)

KEYWORD TOO LARGE IN INPUT
(CO)

< LETTER STRING > EXPECTED NEAR
COL XXx |
(SORT LANGUAGE PROCESSOR)

< MEDIA > MUST BE DISK IF SORTING BACK
TO IN-FILE
(SORT LANGUAGE PROCESSOR)

MERGE INTRINSIC IGNORES
< FILE SIZE OPTION >
(SORT LANGUAGE PROCESSOR)

MERGE INTRINSIC IGNORES
< MEMORY OPTION > |
(SORT LANGUAGE PROCESSOR)

MERGE INTRINSIC NEEDS AT LEAST 2 INPUT
FILES
(SORT LANGUAGE PROCESSOR)

MERGE < SORT TYPE OPTION >
NOT SPECIFIED
(SORT LANGUAGE PROCESSOR)

< M—FILE/DP ID > IGNORED ON
NON-MAGNETIC MEDIA FILE NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

B-14

MIN LENGTH OF SN KEY IS TWO 4-BIT UNITS
NEAR COL XxX
(SORT LANGUAGE PROCESSOR)

MIN LENGTH OF SSA KEY IS FOUR 4-BIT UNITS
NEAR COL XxX
(SORT LANGUAGE PROCESSOR)

MISSING “<..>/<..>” OR “<..>”
_~ NEAR COL Xxx
(SORT LANGUAGE PROCESSOR)

MISSING “FILE IN” NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

MISSING “KEY” NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

MISSING SEPARATOR
(MODIFY)

MT < mfid > DUMPED ON < date > CONTAINS:
< file—list >

(TAPEPD)

NESTED MACRO CALL FOUND —.
JOB TERMINATED
(CO) |

NO COMPILER GIVEN BEFORE FILE
JOB TERMINATED
(CO)

NO COMPILER SPECIFIED—JOB TERMINATED
(CO)

NO DISCREPANCIES BETWEEN DUMP TAPE
< mfid > AND DISK < disc—id >
(CHECKADUMP)

NO FILES FOUND FOR CHANGING IN THE
FAMILY < group—id >

— (CH)

{ NO FILES IN THE FAMILY
|NO FILE
a TAPE| .,_..

< identifier > ON | TAPE < identifier > {

| LOAD

| ADD
FOR DUMP

UNLOAD
(LD)

NO FILES FOUND FOR REMOVAL IN THE

FAMILY < group—id >

(RM)

NO FILES FOUND IN THE FAMILY < group—id >
(COPY, PD)

NO FILES TO DUMP
(LD)

NO FILES TO LOAD
(LD)

NO < FILE STATEMENT > SPECIFIED

(SORT LANGUAGE PROCESSOR)

NO < KEY STATEMENT > SPECIFIED
(SORT LANGUAGE PROCESSOR)

NO KEYWORD FOUND AFTER $
(CO)

NO OUTPUT GENERATED BY KA
(KA)

NO RECORDS FOR LISTING FROM < file—id >
(LIST) |

NO SPECIFICATION GIVEN
(all utilities)

NO SPECIFICATION GIVEN—JOB TERMINATED

(CO)

September 1977

NOT NECESSARY TO PURGE CARD FILE

NEAR COL XXX

(SORT LANGUAGE PROCESSOR)

NOT ON LINE < file—list >
(PD)

NUMBER TOO BIG, MAXIMUM VALUE

ALLOWABLE ASSUMED NEAR COL XXX

(SORT LANGUAGE PROCESSOR)

ON LINE < file—list >

(PD)

ONLY @ < length > @ SECTORS CAN BE
DELETED
(XD)

ONLY INDEX SORT CAN SPECIFY
“KEY FILE/TAGFILE”
(SORT LANGUAGE PROCESSOR)

ONLY ONE IN-FILE LEGAL FROM MULTIFILE

TAPE NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

ONLY ONE KEY LEGAL IN INDEX-KEYFILE

SORT
(SORT LANGUAGE PROCESSOR)

OVERLENGTH PART OF < LABEL NAME >
IGNORED NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

PACK < disc—id > NOT AVAILABLE
(any utility) :

PACK ID TOO LONG < disc—id >
(DUMPANALYSE)

< PARTITION OPT > VALID FOR

INPLACE/REGULAR SORT ONLY

(SORT LANGUAGE PROCESSOR)

B-15

PARTITION SIZE TOO BIG, SORT TO EOF
ASSUMED NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

PARTITN TO IN-FILE, ALTERED OUT-FILE
PARAMS IGNORED
(SORT LANGUAGE PROCESSOR)

PART OF < FILE STATEMENT > MISSING,
NOW NEAR COL XxX
(SORT LANGUAGE PROCESSOR)

REC. NOT INTEGRAL OF BUF.
(MODIFY)

< RECORD, SIZE > OUT OF RANGE
NEAR COL XXX :
(SORT LANGUAGE PROCESSOR)

REMAINDER OF STATEMENT MISSING
(SORT LANGUAGE PROCESSOR)

SECTORS FOR XD NOT IN AVAILABLE
TABLE |
(XD)

< SEPARATOR STRING > EXPECTED NEAR
COL KKX
(SORT LANGUAGE PROCESSOR)

< SIGN POSITION > GIVEN FOR UNSIGNED
KEY NEAR COL XxX
(SORT LANGUAGE PROCESSOR)

SSA KEY MUST START ON BYTE BOUNDARY
NEAR COL XXX | |
(SORT LANGUAGE PROCESSOR)

STATEMENT PARTLY IGNORED,
ILLEGAL WORD NEAR COL Xxx
(SORT LANGUAGE PROCESSOR)

TABLE SIZE EXCEEDED
(KA)

TOO MANY BUFFERS
(MODIFY)

B-16

TOO MANY FILE SPECIFICATIONS NEAR
COL XXX
(SORT LANGUAGE PROCESSOR)

TOO MANY KEY SPECIFICATIONS NEAR
COL XXX
(SORT LANGUAGE PROCESSOR)

UNLABELLED TAPE—HAS BEEN PURGED
(PG)

UNLABELLED TAPE—NO WRITE PERMIT
(PG)

UNSUPPORTED < IN/OUT MEDIA >
NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

UNSUPPORTED < SORT TYPE OPTION >
NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

< USER OPTION > ALREADY INVOKED,
LATEST USE NEAR COL XXX
(SORT LANGUAGE PROCESSOR)

WARNING BIL DUMPFILE, SECOND
PARAMETER IN INIT. MESS IGNORED
(DUMPANALYSE),

WARNING—PROG—PACK-—ID TRUNCATED
TO 7 CHARS
(CO)

WARNING—PROG—ID TRUNCATED TO
12 CHARS
(CO)

WARNING—THE FILE ATTRIBUTES OF
SOURCEOUT WERE INCOMPLETE
(CO)

ZIP FAILURE— < reason >

(CO)

Notes

