
~

I
t ·-

Printed in U.S.A .

Burroughs m

Computer Management System
(CMS)

Network Definition
Language (NDL)

REFERENCE MANUAL

PRICED ITEM

June 1980 1090925

Printed in U.S.A.

Burroughs~

Computer Management System
(CMS)

Network Definition
language (NDL)

REFERENCE MANUAL

Copyright© 1980 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

June 1980 1090925

"The names used in this publication are not of individuals living or
otherwise. Any similarity or likeness of the names used in this publi
cation with the names of any individuals, living or otherwise, is purely
coincidental and not intentional."

Hurroughs believes that the software described in this manual is
ltccurate and reliable, at1d much care has been taken in its preparation.
However, no responsiblHty, financial or otherwise, can be accepted for
any cdttsequences arising out of the use of this material, including loss
of profit, indirect, sptit!ial, or consequential damages. There are no
warranties which exumd beyond the program specification.

!he Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respeet to which it is used.

The irtfonnation contltirted herein is subject to change. Revisions may
be issued from time t<J time to advise of changes and/or additions.

This edition includes the information released under the following:

PCN 1090925-001 (November 30, 1977)

PCN 1090925-002 (October 30, 1978)

Correspondence regarding this document should be addressed directly to Burroughs Corporation, Techni~al
Infonnation Organization, Software Systems Support, P. 0. Box 235, Downingtown, Pennsylvania 19335.

TABLE OF CONTENTS

Section Title Page Section Title Page

INTRODUCTION viii UR Register 2-11
THE NETWORK DEFINITION LCHAR Register 2-11
LANGUAGE 1-1 TOGGLES 2-11
General 1-1 Byte-Variable Bit Reference 2-11
NDLConcept 1-1 CRC Toggle 2-12

Constant Section 1-1 Error Flags 2-12
Translation Section 1-2 Item Error Flags 2-13
Line Control Section 1-2 BCCERR 2-13
Request Section 1-2 ADDERR 2-13
Modem Section 1-2 TRANERR 2-13
Terminal Section 1-2 ENDOFBUFFER 2-13
Station Section 1-2 CRCERR 2-13
Line Section 1-2 FORMATTER 2>13
DCP Section 1-2 PARITY 2-13
File Section 1-2 STOPBIT 2-13

NDL Line and Station Tables 1-3 TIMEOUT 2-13
NDL Program Structure 1-3 BREAK 2-14

2 NDLLANGUAGEELEMENTS 2-1 BUFOVFL 2-14
General 2-1 LOSSOFCARRIER 2-14
Character Set 2-1 ABORT 2-14
Notation Description 2-1 IDLE 2-14

Key Words 2-1 INVALID 2-14
Lower Case Words 2-2 Break Error Flags 2-14
Braces 2-2 BREAK [RECEIVE] 2-14
Consecutive Periods 2-2 BREAK [TRANSMIT] 2-14
Brackets 2-2 LINE Toggles 2-14
Parentheses 2-2 AUXILIARY LINE Toggles 2-15
Punctuation 2-3 LINE STATUS Toggles 2-15

Identifiers 2-3 BUSY 2-15
Integers 2-3 AUX(LINE)STATUS Toggles 2-15
Strings 2-3 QUEUED 2-15

Character Strings 2-3 NORESPONSE Toggle 2-16
Hexadecimal Strings 2-3 NOSPACE Toggle 2-16
Unitary String 24 REQUEST Toggles 2-16

Value 24 NAKONSELECT 2-16
Reserved Words 2-4 NAKFLAG 2-16
Labels 24 CONTROLFLAG 2-16

Null and Empty Labels 24 WRUFLAG 2-16
Byte-Variables or Special BLOCK/BLOCKED 2-17
Register Names 2-5 TRAN SP ARENT 2-17
BCC/CRC Register 2-6 EVENTl 2-17
CHARACTER Register 2-6 STATION STATUS Toggles 2-17
LINE TALLY Register 2-7 READY 2-17
AUXILIARY LINE Registers 2-7 QUEUED 2-17
RETRY Register 2-7 ENABLED 2-17
STATION FREQUENCY Register 2-8 VALID 2-17
STATION Register 2-8 SYNCS Toggle 2-18
TOGS Register 2-8 USER Toggle 2-18
STATION TALLY Register 2-9 UNDERFLOW Toggle 2-19
USER TALLY Registers 2-9 VARIANT Toggles 2-19
MAXSTATIONS Register 2-10 SKIP 2-19
SKIPCONTROL Register 2-10 PAGE 2-19
IR Register 2-10 CARRIAGE 2-19

iii

TABLE OF CONTENTS (CONT)
')

Section Title Page Section Title Page

LINEFEED 2-19 ADDRESS-Item 4-22
PAPERMOTION 2-20 BCC-Item 4-22
SPACE 2-20 STRING-Item 4-23

3 CONSTANT AND TRANSLA- CRC-Item 4-23
TION SECTION 3-1 FRAMEADDR-Item 4-23
General 3-1 RESTORE 4-25
Constant Section Description 3-1 RETURN 4-25

" Translation Section Description 3-1 SHIFT 4-26
General 3-1 STORE 4-26

Translation BYTE 3-3 STORE CHAR 4-27
Translation SHIFT 3-3 STORE String 4-27
Translation DEFAULTCHAR 3-3 SUM 4-27
Translation TRANSLATE 34 TERMINATE 4-28

4 REQUEST AND LINE CONTROL TERMINATE NOINPUT 4-28
SECTIONS 4-1 TERMINATE NORMAL 4-28
General 4-1 TERMINATE ERROR 4-28
General Line Control Section TERMINATE BLOCK 4-29
Description 4-1 TERMINATE ENABLEINPUT 4-29

Line Control/Request Differences 4-1 TERMINATE 4-29
Line Control Format 4-1 TERMINATE NOLABEL 4-29

General Request Section TERMINATE SAVE 4-29
Description 4-1 TERMINATE PRIORITYSAVE 4-29
Request Section Format 4-2 TIMER 4-29

ACU 4-3 TRANSMIT 4-30
ADDRESS 4-3 WAIT 4-31
ASSIGNMENT 4-3 5 MODEM SECTION 5-1
BACKSPACE 4-5 General 5-1 '
BINARY (Request) 4-6 MODEM Section Description 5-1
CONTINUE 4-6 LOSSOFCARRIER 5-2
DATASET 4-6 NOISEDELAY 5-2
DELAY 4-6 SPEED 5-2
DELIVER 4-7 TRANSMITDELAY 5-3
DISABLE 4-7 TYPE 5-3
DISCONNECT 4-8 ANSWER TONE 54
ENABLE 4-8 6 TERMINAL SECTION 6-1
ERROR 4-8 General 6-1
FETCH 4-10 TERMINAL Definition Description 6-1
FINISH TRANSMIT 4-10 ADDRESS 6-2
FLAG FILL 4-11 BACKSPACE 6-2
FORK 4-11 BLOCKED 6-2
GETSPACE 4-12 BYTE 6-3
GOTO 4-13 CARRIAGE

~

6-3
,,

IDLE 4-13 CLEAR 6-3
IF 4-14 CODE 64
INCREMENT 4-16 CONTROL 64
INITIALIZE 4-16 DEFAULT 6-5
INITIATE 4-17 END 6-5
LABEL 4-18 HOME 6-5
PAUSE 4-18 LINEDELETE 6-6
RECEIVE 4-19 LINEFEED 6-6
CHARACTER-Item 4-20 MAXINPUT 6-6
TEXT-Item 4-21 MOD 6-6
TRAN-Item 4-22 PAGE 6-7

iv

TABLE OF CONTENTS (CONT)

Section Title Page Section Title Page

PARITY 6-7 MODEM 8-4
REQUEST 6-8 TELEX 8-4
SAVE 6-8 DIA LIN 8-5
SCREEN 6-9 DIALOUT 8-5
SPEED 6-9 DUPLEX 8-5
TALLIES 6-9 BITS 8-5
TIMEOUT 6-10 9 DCPSECTION 9-1
TRANSMISSION 6-10 General 9-1
TRANSPARENT 6-10 DCP Definition Description 9-1
TURNAROUND 6-11 BUFFERCOUNT 9-2
TYPE 6-11 BUFFER 9-2
WRAPAROUND 6-12 CO DEFILE 9-2
WIDTH 6-12 DCPMEMORY 9-2
WRU 6-13 MEMORY 9-3

7 STATION SECTION 7-1 LIMIT 9-3
General 7-1 TERMINAL 9-3
STATION DEFAULT Description 7-1 10 FILE SECTION 10-1
ADDRESS 7-2 General 10-1
CONTROL 7-2 FAMILY 10-2
DEFAULT 7-2
ENABLEINPUT 7-3 11 OPERATION OF CMS NDL

FREQUENCY 7-3 COMPILER 11-1

INITIALIZE 7-3 General 11-1

LOGIN 7-4 Hardware 11-1

MODEM 7-4 Software 11-1

MYUSE 7-4 Compiler Operation 11-1

PAGE 7-5 Execute 11-1

PHONE 7-5 Value Clause 11~1

RETRY 7-5 File Equate Clause 11-2

SPEED 7-6 Syntax 11-3

SPO 7-6 Continuation 11-4

TALLIES 7-7 Console Input 11-4

TERMINAL 7-7 Source Merge Process 11-4

TYPE 7-7 Library Generation and Usage 11-4

WIDTH 7-8 Compiler Options 11-4

WRAPAROUND 7-8 Option Format 11-4

8 LINE SECTION 8-1 Option Control 11-5

General 8-1 Dollar Options 11-5

LINE DEFINITION Description 8-1 Dollar LIST 11-5

ADDRESS 8-2 LSTl 11-5

B 800 Systems 8-2 VOID NNNNNNNN 11-5

B 800 and B 77 6 Systems 8-2 RSEQ NNNNNNNN +MMMM-

B 900 Systems 8-2 MMMM 11-5

B 1800 Systems 8-2 CODE 11-5

DEFAULT 8-2 MTCH 11-5

MAXSTATIONS 8-3 SUPR 11-5
MODEM 8-3 NPRT 11-5

RATESELECT 8-3 SPEC 11-5

STANDBY 8-4 LNXX 11-5
STATION 8-4 CARD 11-6

TYPE 8-4 DISK or DISC 11-6

DIRECT 8-4 TAPE 11-6

BDI 8-4 NEWC 11-6

v

TABLE OF CONTENTS (CONT)

Section Title Page Section Title Page

NEWD 11-6 Program Flow 13-10

NEWT 11-6 Accessing the NDLSYS File 13-10

LGEN 11-6 Generating Microcode 13-13

LIBR 11-6 S-Instruction Processing 13-16

TBLS 11-6 S-Instruction Processing
Comments 11-6 Examples 13-16
Top of Page 11-6 Label Resolution 13-21

12 B 800 POST PROCESSOR 12-1 S-Label Generation 13-21
PROGRAM 12-1 M-Label Resolution 13-21
General 12-1 Control/Request Label
Post Processor Action 12-1 Resolution 13-22

Execution of Post Processor Line Discipline 13-23
Program 12-1 Subroutines 13-23

Data Comm Loader 12-1 Subroutine Generation 13-24
Microcode Listing 12-1 Microcode Space Overflow

13 NDL POST COMPILER 13-1 Detection 13-25
Introduction 13-1 Types of Storing 13-25
Overview 13-1 Microcode Storing 13-25
Operating Procedures 13-1 Data Storing 13-26
Executive NPC 13-3 Manager Schemes 13-26

DBG 13-3 Multi-Line Manager 13-26
NO.LIST 13-3 Idle 13-27
FILE 13-3 Pause 13-27
WORK 134 Delay 13-28
STATUS 134 Receive 13-28

Error Messages 134 Transmit 13-28
Definitions 134 Full-Duplex Managers 13-28

NDLSYS 134 Single-Line Manager 13-28
S-CODE 134 Code Optimization 13-28
S-OP 134 Terminal Types 13-28
S-LABEL/S-ADDRESS 13-5 Terminal Code Reduction 13-29
LABEL RESOLUTION 13-5 DCP-Related Optimization 13-30
MANAGER SCHEME 13-5 Adapter 13-30
HOST CONTROL 13-5 Registers 13-30
POST COMPILER/NPC NDL Compiler-Related

MEMORY 13-5 Optimization 13-30
NPC Functions 13-5 Line Busy Information 13-31
Program Structure 13-5 TRANSPARENT= TRUE/

Environment Establishment 13-5 FALSE 13-31
Microcode Generation 13-7 TERMINATE BLOCK 13-31
Microcode Listing Generation 13-7 SYNC = TRUE/FALSE 13-31

File Structure 13-7 CRC = TRUE/FALSE 13-31
Generated Microcode File SHIFT= UP/DOWN/

(M .CODE.FILE) 13-7 MIDDLE 13-31
Known S-Label Address File STATION = LIS/VARIABLE 13-31

(SLBL.K) 13-7 Debug Option 13-31
Unknown S-Label Address Printer File Listing 13-32

File (SLBL.UN) 13-8
NDL Object Code File A NDL RESERVED WORD LIST A-1

(NDLSYS) 13-8 B NETWORK SEMANTIC
Printer Backup File (PBM) 13-9 CONSIDERATIONS B-1
Printer Backup Key File Terminal-Control/Request B-1

(PBM.KEY) 13-9 TERMINATE ENABLEINPUT B-1

vi

Section

Figure

13-1
13-2

Table

1-1

TABLE OF CONTENTS (CONT)

Tide Page Section Title

TRANSMIT TEXT B-1 MYUSE
RECEIVE TEXT B-1 ADDRESS
GETSPACE B-1 WIDTH
STORE B-1 PAGE
TEXT CONTROL CHARACTERS B-1 WRAPAROUND
WRUFLAG B-1 Line-Modem

Station-Control/Request B~l SPEED
CONTROL B-1 DIALIN
CONTROL FLAG B-1 DIALOUT

Station-Modem B-1 DUPLEX
TYPE B-1 Line-Terminal
SPEED B-2 DUPLEX

Station-Terminal B-2 CONSISTENCY ALONG LINE
TYPE B-2 Line-Station
TYPE OPTION B-2 CONNECT TYPE
SPEED B-2 CONSISTENCY ALONG LINE
STOPBITS B-2 c SAMPLE NDL PROGRAM

LIST OF ILLUSTRATIONS

Title

NDL Post Compiler Flow
NDL Post Compiler Flow

Title

The NDL Program

Page

13-2
13-6

Figure

13-3

LIST OF TABLES

Page Table

1-1 2-1

PBM File
Listing

Title

Title

Character Set

Page

B-2
B-2
B-2
B-2
B-2
B-2
B-2
B-2
B-3
B-3
B-3
B-3
B-3
B-3
B-3
B-3
C-1

Page

13-33

Page

2-1

vii

Introduction

INTRODUCTION
The Burroughs Network Defmition Language (NDL) is a high-level language that enables a user pro

grammer to efficiently define and implement a unique data communications environment.

The NDL source statements discussed in this manual are converted by the NDL compiler into the tables
and codes needed for a custom data communications environment. The output of the compiler is used by the
communications subsystem to perform the various line disciplines, buffer management, message queueing, au
tomatic retries, and character translation.

In this manual, the various sections of NDL and the statements within each section are covered in de
tail. Examples are provided to give the programmer direct insight into the practical use of NDL in solving
data communications problems.

viii

SECTION 1

Section 1
The Network Definition Language

THE NETWORK DEFINITION LANGUAGE
GENERAL

This section provides a general description of the Network Definition Language (NDL). Succeeding sec
tions explain in detail the information introduced in this section.

NOL CONCEPT

The NDL_,QatiL~2mmyn!<:;l!llQ.!L~!!Yi!:Q!!J:!l~!l.Li~ .. m~!!!Y ... ~.J11,~!~:::QTIY~n J?!Q.£~§.§. The written description
in the NDL produces tables which the software uses to control the data communications network. An NDL
program produces a description summarized by its various tables.

NDL has a subset of constructs which comprise a programming language. In this language, an NDL
user programs (describes) the line discipline routines through which the communications subsystem communi
cates with the remote devices.

An NDL program is divided into sections which are arranged in the order given in Table 1-1.

Table 1-1. The NOL Program

Name of Section Function

Constant To equate names with strings for convenience in other descriptions.

Translation Provides for user-defined translation tables.

Line Control To define line control procedures.

Request To define line disciplines used for remote devices.

Modem To describe the modems used for lines.

Terminal To describe physical hardware characteristics of remote devices.

Station To describe logical characteristics and file characteristics for specified remote devices.

Line To specify type of line and connected station(s).

DCP To define the message space requirements for the communications subsystem.

File To specify related sets of stations included as a file.

Constant Section

This section provides a method for equating identifiers with strings of characters. Constant identifiers
may then be used outside of the Constant sections syntactically and semantically equivalent to the occurrence
of that string named by the identifier.

1-1

Section 1
The Network Definition Language

Translation Section

Thi~ section provides the user with the capability to translate one character set (via user-supplied trans
lation tables) to the internal character set ASCII. Translation is performed automatically by the system. This
Translation section provides the user with the ability to define non-standard character sets.

Line Control Section

This section provides the logic that initiates line functions and specifies stations on a particular line.
This line control logic is invoked in the communications subsystem operating system at several distinct times.

Line control logic is initiated whenever:
1. The line is not busy and an action is queued for the line.
2. A request is terminated.
3. A line is initialized.

Request Section

Within this section the user gives the line disciplines for the different types of terminals within the net
work to the data communications system. The program or description provided by the user is converted by
the NDL compiler into S-language.

Modem Section

This section describes the modems that may be included with the data communications network. The
important considerations in describing a modem are the devices it is compatible with and the timing
considerations needed to calculate delays when "turning a line around". Compatibility depends upon the type
of transmission (SYNC or ASYNC) and the speed of the lines to which the modem can be connected.

Terminal Section

This section describes the physical aspects of the terminal devices within the data communications net
work required by the data communications software to receive and transmit messages. Among the required
features that must be included in a terminal definition are buffer size, character set (code), parity, and the
requests (as specified within the Request section) to be used by the system to communicate with that type
of device. It is important to point out that terminals are physical devices having, primarily, physical properties,
while stations represent the individual remote elements in the system and are described by location and termi
nal type.

Station Section

This section provides the means to specify the logical characteristics of the remote elements within the
data communications network. This section is used to specify the type of terminal a station is associated with
and how it is used (such as input, output, or both). Also, each station has characteristics which make it unique
within the system.

Line Section

This section provides the means to describe the logical and physical characteristics of the lines into the
data communications system.

DCP Section

This section provides the means to define the message buffer size and the number of buffers to utilize
message space in memory more efficiently.

File Section

This section provides the association of stations that are part of the network with the data communica
tions file of an object job. The station referenced in the File section must be defined in the Station section.

1-2

NOL LINE AND STATION TABLES

Section 1
The Network Definition Language

The communications subsystem software uses a set of line and station tables created by the NDL com
piler and contained in the main storage.

The tables contain status information and parameters to modify or select communications subsystem log
ic. They also contain memory addresses that structure the table space to match the structured data communi
cations network being controlled by the communications subsystem.

NOL PROGRAM STRUCTURE

The following represents the basic structure of an NDL program:

program structure

{ CONSTANT } . . .
empty

{ TRANSLATION}
empty

CONTROL

REQUEST

{ MODEM}·
empty

TERMINAL

STATION

LINE

p~:ty}
{

FILE }
empty

1-3

GENERAL

SECTION 2

NOL LANGUAGE ELEMENTS

Section 2
NDL Language Elements

NDL is a descriptive language and certain aspects must be previously stated so that the language can
be understood. The following elements of NDL are used throughout this manual.

CHARACTER SET

The basic character set of NDL consists of 56 characters including letters, digits, and special characters.
(See Table 2-1 .)

Table 2-1. Character Set

0 9
A z

blank or space
+ plus sign

minus sign or hyphen

* asterisk

I slash
equal sign

$ dollar sign
comma
period or decimal point
semicolon
quotation mark

(left par en thesis
) right parenthesis

~ greater than symbol
less than symbol
colon

@ at sign
% percent sign
] left bracket

right bracket

NOTATION DESCRIPTION

The following notation conventions enable the reader to interpret the NDL syntax presented in this man-
ual.

Key Words

All underscored, uppercase words are key words. Key words are required when the functions of which
they are a part are used. The omission of key words causes an error condition during compilation. In the fol
lowing example, the key words are IF, THEN, and GO TO.

IF toggle THEN GO TO label

2-1

Section 2
NDL Language Elements

Lower Case Words

All lower case words represent generic terms that must be supplied in that format position by the NDL
programmer. In the following example, "break-time" and "break-delay-time" are generic terms.

BREAK

Braces

{
break-t. ime,

NULL

brnfil<-dofay-timo }

When words or phrases are enclosed in braces, { } , a choice of one of the words or phrases is to be
made. In the following example, one of the key words must be chosen.

TIMEOUT integer {
MILLI }
SEC
MIN

Generic terms may also be enclosed in braces and a choice of one is to be made.

{
receive-error }
item-error
transmit-error

When the lower case term "empty" appears with the braces, words and phrases enclosed in the braces
represent optional portions of a statement. If the programmer wishes to include the optional feature, the entry
shown between the braces may be included. Otherwise, it may be omitted. In the following example, the use
of FETCH by itself is valid.

FETCH ~
Consecutive Periods

{
ENDOFBUFFER:
action-label
NULL

empty

S action-label
I NULL

The presence of ellipsis (...)within any format indicates that the data immediately preceding the notation
may be gone through, repeated, and another choice made, depending on the requirements of problem solving.

Brackets

Brackets, [], (when appearing in a statement's notation) must appear in the same position whenever
the source program calls for the use of that statement.

Parentheses

Parentheses, (), appearing in a statement's notation must appear in the same position whenever the
source program calls for the use of that statement.

2-2

Punctuation

Section 2
NDL Language Elements

Periods(.), commas (,), and equal signs (=)must appear in the same position in the source statement
as they appear in the syntactical notation of that statement.

IDENTIFIERS

Identifiers are used to name constants, line control and request procedures, terminals, modems, stations,
DCPs, translate tables, files, and lines. They have no intrinsic meanings.

An identifier may consist of letters and digits, but must begin with a letter. The maximum length of
an identifier is 17 characters, of which the first 12 characters must be unique. characters. For file names and
station names, the maximum length is 12 characters.

INTEGERS

Valid Identifiers

ETX
NULL
TC500
LNOl 75

Invalid Identifiers

ENQ-1
17LINE
9352
TC500

An integer consists of one or more digits. Only positive integers are allowed in NDL; spaces may not
appear within an integer. They may be up to five digits in length with a maximum value of 65535.

STRINGS

Valid Integers

1
123
255

Invalid Integers

Al
1 6 2 6 3
215C098575

A string (literal) is defined as an item composed of any allowable characters or hexadecimal values.
The beginning and end of a string is denoted by a quotation mark. Any character enclosed within quotation
marks is part of that string; subsequently, all spaces enclosed in the quotation marks are considered part of
the string.

To represent a quotation mark in a string, two quotation marks in succession are used.

Character Strings

Simple character strings may be up to 248 characters in length and may contain any allowable character.

Examples
"YOU ARE NOW ON LINE"
"THIS IS TRANSMISSION NO. 1"

When characters are to be represented as hexadecimal strings, their ASCII representation must be used.

Hexadecimal Strings

A simple hexadecimal string may be up to 248 hexadecimal elements in length. A hexadecimal string
must be preceded by a 4. If a hexadecimal string has an odd length, a single leading zero is assumed.

2-3

Section 2
NDL Language Elements

Examples

Unitary String

Valid Hex String

4"05"
4"A305"
4"A30"

Invalid Hex String

4"FIG2"

A unitary-string is defined as one character ("A") or two hexadecimal (4"03") elements.

VALUE

A value is either an identifier of a declared constant, an integer, or a unitary string (character or
hexadecimal type) used as an operand in a CONTROL/REQUEST statement. Most values expressed in NDL
compiler language are those which can be transformed by the NDL compiler into an eight-bit configuration
because most of the value-receiving fields are that length. The only divergences from this rule are the STORE,
RECEIVE, and TRANSMIT statements, which allow strings of multiple characters, and the toggle ASSIGN
MENT statement.

Examples

RESERVED WORDS

Valid

STATION= 40.
RETRY= 20.
RECEIVE [4"03":22].
TOG [7] = TRUE.

Appendix A provides a list of reserve words.

LABELS

Invalid

STATION= 300.
RETRY= 4 "FOFOFO".
RECEIVE ["STOP":34].
TOG [7] = 1.

Statements in the Line Control and Request sections are executed sequentially as listed. However, when
it is desired to alter the order of execution of statements, the statement to which control is to transfer must
be designated. A statement is designated by assigning a label to that statement.

A label may consist of up to five digits followed by a colon and then followed by the statement associ
ated with that label.

Examples
Valid Labels

01:
12345:
1:

Null and Empty Labels

Invalid Labels

lA:
Bl:
1 23456:

An empty label within a statement causes control to be passed to the next sequential instruction. A
NULL label also does this, except when used in a RECEIVE or TRANSMIT TEXT instruction. In that case,
control remains in that statement.

2-4

BYTE-VARIABLES OR SPECIAL 'REGISTER NAMES

Section 2
NDL Language Elements

The NDL provides various registers that may be utilized by the NDL programmer to aid in the control
of the data communications environment. Some of these are read only registers (value may not be changed
by the NDL programmer), while others may be used on either side of the equal (=) sign in the ASSIGNMENT
statement. The byte-variable names are:

BCC
CHAR
LINE(TALLY[O or 1])
AUX(LINE(TALLY [O or 1]))
MAXSTATIONS
IR
IIR
LC HAR
CRC[O]

CRC [1]

RETRY
STATION
STATION(FREQUENCY)
TALLY [0-18]
TOGS
SKIPCONTROL
STATION(TALLY)

2-5

BCCiCRC
CHARACTER REGISTER

BCCiCRC

Section 2
NDL Language Elements

This register is a work area used to collect a value derived from the technique specified in the PARITY
statement (Terminal section), the INITIATE and SUM statements (Line Control and Request section), AS
SIGNMENT of the CRC toggle (Control/Request), and the choices of the NDL programmer with respect to
the SUM statement. Any RECEIVE, TRANS CHAR or TEXT updates the value in this register.

~ :::
l CRC

[OJ

[1]

BCC/CRC may be used in control and request sets and may only be interrogated (IF statement) for
a specific value. BCC/CRC may appear only on the right side of an ASSIGNMENT statement (c.f., INITIAL
IZE, SUM).

The CRC register is 16 bits in length in contrast to the eight-bit length of the BCC value. Syntactically,
CRC is a toggle. To resolve ambiguity of toggle-versus-register reference, the left-most eight bits of CRC [1)
and the remainder as CRC [0] are shown in the examples below.

Examples
CRC [1] = CRC [0].
IF CRC [0] GTR 4 "OF" THEN CRC [1] 1.

CHARACTER REGISTER

CHAR and CHARACTER are synonyms. The contents of this register may be tested for only a single
value at a time. The register is loaded by an instruction such as the following:

RECEIVE CHAR.
TRANSMIT TEXT.
RECEIVE TEXT.

The character register contains the last character that was received or transmitted. Thus, upon the suc
cessful completion of TRANSMIT TEXT, the character register contains the text character transmitted last.
Similarly, upon successful completion of RECEIVE TEXT, the character register contains the last character
of the received text. These general rules are overridden in the following cases:

1. A FETCH statement causes the character register to be filled with the next character of the text buffer
which has not already been fetched explicitly by a FETCH statement or implicitly by a TRANSMIT TEXT
construct.

2. An explicit ASSIGNMENT statement such as CHARACTER = S causes a change in the contents of
the character register.

3. If a TIMEOUT, LOSS OF BUFFER, or END OF BUFFER occurs, the character register contains the
last previously received, transmitted, or loaded character.

4. If exit via an error such as STOPBIT, PARITY, or BYTE OVERFLOW occurs, the character register
contains the last character received, untranslated.

5. If a BREAK occurs, the character register contains binary zeroes.
6. If a match was made on a specified literal (such as ETX), the character register contains that value.
7. Whenever an address function value is referenced in NDL, the contents of the character register is de

stroyed.
8. If an INVALID FRAME occurs, the character register contains a flag sequence. This is valid only for

bit-oriented line disciplines.
9. If an exit via an error such as ABORT or IDLE occurs, the character register contains the abort sequence

previously detected on the line. This is valid only for bit-oriented line disciplines.

2-6

Section 2
NDL Language Elements

CHARACTER REGISTER
LINE TALLY REGISTERS

AUXILIARY LINE REGISTERS
RETRY REGISTER

The character register may be used in a logical expression or an ASSIGNMENT statement.

Examples
IF CHAR NEQ ETX THEN GO TO 10.
CHARACTER = 4"03".
TALLY [1] = CHARACTER.

LINE TALLY REGISTERS

There are two of these registers associated with each line. They are general purpose registers and may
be used by the NDL programmer for any control or storage across messages.

UNE (TALLY

These tallies may be referenced in both line control and request procedures in ASSIGNMENT and
logical statements. In two-way simultaneous procedures, these tallies are implicitly the primary line's tallies.

Examples
LINE (TALLY[l]) = RETRY - 1.
IF LINE (TALLY[l]) = 5 THEN GO TO 12.

AUXILIARY LINE REGISTERS

In full-duplex procedures, a second set of elements is emitted by the NDL compiler (c.f., Line section,
TYPE statement) to provide for the management of the host input side or auxiliary line. As in the primary
line table, these are general purpose byte-variables and may be used for whatever use invented by the NDL
programmer. The auxiliary line is associated with the input side of a full-duplex line.

Examples

l AUX l
r"UXILIARY ~

IF AUX(LINE(TALLY[O])) GTR 0 THEN
AUXILIARY (LINE(TALLY[l])) = 1.

RETRY REGISTER

(LINE(TALLY [~ l I]))

The contents of this register is initially set by the NDL programmer with the RETRY statement in the
NDL Station section. The number of actual retries that were performed is available to the user. The value
of retry is re-initialized upon execution of a TERMINATE ERROR, TERMINATE NORMAL, or TERMIN
ATE BLOCK or execution of an INITIALIZE statement.

RETRY

The maximum value that may be specified for a retry value is 255 decimal. In line control it has a valid
value only if the station processed at the time is valid. Each station table has a retry value stored in it. The

2-7

RETRY REGISTER
STATION FREQUENCY REGISTER
STATION REGISTER
TOGS

RETRY statement is generally used in a request procedure.

Example
IF RETRY GT ZERO THEN

BEGIN
RETRY = RETRY - 1
TERMINATE NOINPUT.

STATION FREQUENCY REGISTER

Section 2
NDL Language Elements

This register is the read-only value corresponding to the value which is declared in the FREQUENCY
statement in the Station section. It may be referenced in both a line control and request procedure.

STATION (FREQUENCY)

Examples
STATION(TALLY) = STATION(FREQUENCY).
STATION(TALLY) = STATION(TALLY) - 1.

The STATION (FREQUENCY) may be changed via the MPL statement REDEFINE.STATION.

STATION REGISTER

This register contains an implicit index to the stations on the communications subsystem. Station may
not be referenced in a request procedure.

STATION

If the station index is assigned to a value out of range, that is, a value which is greater than or equal
to MAXSTATIONS, the station status is not valid and not ready, and references to station table items are
inhibited.

Examples

TOGS

IF STATION = ZERO THEN GO TO 14.
ST A TION = ST A TION - 1. GO TO 01.
14: STATION = MAXSTATIONS.

These provide a means of referencing the entire user tog array as a byte variable.

Examples

2-8

IF TOGS = KONl THEN TOGS = 4"00".
TOGS = "F".
TOGS = 4"FF".
TOGS= BCC

Section 2
NDL Language Elements

STATION TALLY REGISTER
USER TALLY REGISTERS

STATION TALLY REGISTER

There is one of these registers for each station on the system. It is a general purpose register and may
be used by the NDL programmer for any desired control or storage across messages. This register is line table
resident.

STATION (TALLY)

This tally may be referenced in both line control and request procedures in ASSIGNMENT or logical
statements.

Examples
STATION(TALLY) = STATION(TALLY) + 1.
IF STATION(TALLY) CTR 5 THEN GO TO 7.

USER TALLY REGISTERS

There are at least three of these registers associated with each station that provide the user with at
least three separate bytes that may be used in any way. An additional sixteen tallies may be referenced only
if the TALLIES statement is set true. (Refer to Station section, Section 7.) The maximum decimal value that
may be stored in each of these tallies is 255. If a number that exceeds 255 is assigned to a tally, the left
most bits are truncated during the decimal-to-binary conversion and assignment process. User tally registers
are station table resident.

TALLY[< integer>]
<:integer> = 0 to 18

inclusive

The bytes are referenced by a tally number corresponding to the separate bytes. The first three user
tallies (0,1,2) may be changed by Jbe MCS or NDL ASSIGNMENT statement, while the remaining sixteen
user tallies (3-18) may only be changed by an NDL ASSIGNMENT statement. The first three user tallies
(0,1,2) are returned with each result header for MCS information, while the remaining sixteen (3-18) are not
returned with each result header. All user tallies are maintained across messages on a station-by-station basis.
They may be referenced in both line control and request procedures. The first three tallies (0,1,2) must be
stored (to be passed to the MCS) and initialized (to be made available to NDL.)

Examples

Note
The first three tallies (0,1,2) are located in every station table. The remaining 16
tallies (3-18 inclusive) are only located in station tables which have tallies set true.
(Refer to TALLIES statement in Section 7.)

1. CHAR = TALL Y[O].
2. STORE TALLY[2].
3. INITIALIZE TALLY[l].

Example 1 is a simple assignment causing the value user TALL Y[O] to be copied into the CHAR regis-
ter.

Example 2 causes the current value in user TALL Y[2] of the station being addressed to be copied into
a result header for return to MCS.

Example 3 copies the value in a message header defined for the purpose into the user TALLY [1] of
the station being addressed or if no header is present, and sets the user TALLY[l] of the station currently
addressed to zeros.

2-9

MAXSTATIONS REGISTER
SKIPCONTROL
IR

MAXSTATIONS REGISTER

Section 2
NDL Language Elements

The max.stations register is the maximum number of stations to be associated with the line, as declared
for that line in the Line section. Max.stations is a read-only register and may be referenced in both request
and line control procedures. Max.stations register is line table resident.

MAXSTATIONS

Examples
STATION = STATION + 1.
IF STATION NEQ MAXSTATIONS
THEN GO TO 11.

SKIPCONTROL

This is an eight-bit read only register maintained by the MCS via the message header.

SKIPCONTROL

The value of skipcontrol is used in conjunction with the skip and space toggles (refer to variant toggles).

IR

This register is a hardware register that provides the NDL programmer with access to various system
status flags.

2-10

IR [bit-index]

The bits in IR are used as follows:

BIT

0
1

2
3
4
5
6
7

MEANING

RCV-DATA-LINE is in a space condition.
Change in line status has occurred since this bit was last tested
(mark to space or space to mark).
Dataset is ready.
Data-Carrier detect is true.
Downstream request-to-send is true.
Ring.indicator is true.
Clear-to-send is true.
Unused.

Section 2
NDL LaKLguage Elements

HR

This register is supplement to IR and is used in the same manner.

IIR [bit-index]

The bits in IIR are used as follows:

BIT

0
1 to 7

LC HAR

MEANING

Data-line-occupied (ACU) is true.
Reserved.

This register contains the image of the latest received character in its transmitted form.

LC HAR

The value of this register depicts the character before any translation is done.

TOGGLES

HR
LCHAR

TOGGLES

These are single bit fields that can assume a value of true or false only. All toggles are tested independ
ently. Toggles are .divided into different function areas.

toggle=

Byte-Variable Bit Reference

error-flag-toggle
binary-toggle
ere-toggle
line-toggles
line-status-toggles
NO RESPONSE
NOSPACE
request-toggles
station-status-toggles
syncs-toggle
underflow toggle
user-toggles
variant-toggles

Each of the eight (0-7) bits of a byte-variable may be interrogated and, if the particular byte-variable
can be assigned a value, so may each bit be set true/false. The syntactic device to address the bits consists
in suffixing a bracketed bit number to the byte reference. The right-most low order bit is 0.

Examples
STATION(TALLY)[l] = TRUE.
AUX(LINE(TALLY[0]))[7] = FALSE.
IF MAXSTATIONS[O] THEN
IF CRC[l] [2] THEN CRC[O] [4] = FALSE.

Toggles may be reference toggles or assignable toggles. Assignable toggles may have their value changed
by the NDL programmer. Reference toggles may only appear on the right side of the ASSIGNMENT by use

2-11

TOGGLES
CRC TOGGLE
ERROR FLAGS

Section 2
NDL Language Elements

of the statement. Both assignable and reference toggles may be tested in an IF statement.

Assignable Toggles

TOG [tog index]
LINE (line-status)
CRC
SYNCS
Request-toggles
AUX (Line (line-status))
NOSPACE

Reference Only Toggles

Variant toggles
STATION (station-status)
UNDERFLOW

CRC TOGGLE

The CRC toggle provides the ability to exclude input or output characters from the CRC value accumu
lation. CRC block accumulation is declared in the PARITY statement (Terminal section), invoked by the use
of the INITIALIZE statement (Line Control and Request section), altered by the SUM statement directly, and
enabled/disabled by this toggle.

CRC

Examples
CRC = FALSE.
TRANSMIT SOH.
TRANSMIT ADDRESS (TRANSMIT).
TRANSMIT STX.
INITIALIZE CRC.
CRC =TRUE.
INITIALIZE TEXT.
TRANSMIT TEXT.
CRC =FALSE.
TRANSMIT ETX.
TRANSMIT CRC.
FINISH TRANSMIT.

Note
When "CRC'" appears as the operand of an INITIALIZE, TRANSMIT, or RE
CEIVE statement, it implicitly references the CRC register. When CRC appears
as the left part of an assignment (CRC=TRUE), it is an implicit reference to the
CRC toggle. The CRC register can only appear in an ASSIGNMMENT statement
left part as CRC [1] and CRC [0], referencing the high-order and low-order bits,
respectively.

ERROR FLAGS

These references are not allowed in a line control definition. Error flags are divided into the following
categories. (Bits designated in the header are associated with each error-flag toggle.)

error-flags { item-error-flags }
receive-error-glags
break-error-flags

These error-flag-toggles are normally set by firmware upon detection of the condition. These error flags
are reset by an ASSIGNMENT statement that references them or by any TERMINATE statement.

2-12

Section 2
NDL Language Elements

ERROR FLAGS

Item Error Flags

These toggles may not be used in control procedures except in RECEIVE statements.

BCCERR

This is true if the block check character (BCC) computed by the communications subsystem is not
equivalent to the BCC received from a station. The parity of the BCC is defined in the PARITY statement
of the terminal description associated with a station.

ADDERR

This is true on a RECEIVE ADDRESS statement when an error in the station address is detected. The
size and value of the station address, as defined in the terminal description and station attribute list, allow
the communications subsystem to check the correct value against the value received.

TRAN ERR

This is true on input from a station if the transmission number received is not one greater than the
number of the previously received message from the same station.

ENDOFBUFFER

In the case of a receive request, this occurs when the RECEIVE TEXT exceeds the maximum allowed.
The maximum allowed size is specified by the MAXINPUT statement in the terminal description.

CRCERR

If true (is set implicitly), this indicates that the CRC received was not equal to the CRC that was locally
computed.

During bit-oriented communications, if true, indicates an end flag is detected and the frame is rejected.
However, if during a receive CRC, the toggle is not set, the CRC is valid, but more than two characters are
received.

FORMATTER

This is true if an NDL request used the RECEIVE STRING option to input data to the communications
subsystem and the characters received do not correspond to the string specified.

Receive Error Flags

These toggles may not be used in control procedures except in RECEIVE statements and ERROR
SWITCH statements.

PARITY

As its name implies, PARITY is true when a parity error is detected by the communications subsystem
while receiving a message, but only if PARITY has been defined by a PARITY statement in the terminal de
scription for the station.

STOPBIT

This is true if the communications subsystem is expecting to receive a STOPBIT on an asynchronous
line· as the next input on that line and, due to parity or noise, the STOPBIT is not received. This toggle may
not be specified if the bits toggle is specified.

TIMEOUT

This is true if a character is not received from a station within the time specified in the TIMEOUT
statement of the terminal description for a station; i.e., maximum time between input characters or in the re
ceive statement being executed.

2-13

ERROR FLAGS
LINE TOGGLES

BREAK

This is true if a BREAK was received by the communications subsystem.

BUFOVFL

Section 2
NDL Language Elements

This is true if the communications subsystem was unable to serve the interrupt before the next character
was received on the line, thereby having destroyed the previous character.

LOSSOFCARRIER

This bit is set true if loss of carrier. LOSSOFCARRIER is detected by the firmware.

ABORT

This is true if the communications subsystem receives 7 to 14 continuous one-bits. This toggle can only
be referenced in procedures used by a terminal of type bits and takes the place of STOPBIT. (Refer to TYPE
statement in Section 6.)

IDLE

This is true if the communication subsystem detects 14 contiguous one-bits while in receive. This toggle
can only be referenced in procedures used by a terminal of type bits and take the place of BREAK-ON-RE
CEIVE. (Refer to TYPE statement in Section 6.)

INVALID

This is set true if the communications subsystem detects the following conditions:
1. An end flag is sensed during a receive other than RECEIVE TEXT or RECEIVE CRC.
2. An end flag is sensed during a RECEIVE TEXT that checks for a text control character.
3. An end flag is sensed before two characters are received or an invalid CRC is received during a RE

CEIVE TEXT which does not check for text control character.
4. During a RECEIVE CRC and the CRC is valid but more than two characters are received.

This toggle can only be referenced in procedures used by a terminal of type bits and takes the place
of PARITY. (Refer to TYPE statement in Section 6.)

Break Error Flags

BREAK[RECEIVEJ

Refers to BREAK ON INPUT. It may not be used in control procedure.

BREAK[TRANSMIT]

Refers to BREAK ON OUTPUT. It may not be used in control procedures.

LINE TOGGLES

In the line table that is created for each line by the NDL compiler, two bits have been reserved as
line toggles.

line-toggle LINE ({
TOG[O]

TOG[l]
})

These two line toggles are general purpose bit variables. These may be used for any purpose by the
NDL programmer. Line toggles reset by the "MAKE LINE READY" message from the MCS, if the line
was in "not ready" state.

2-14

Section 2
NDL Language Elements

AUXILIARY LINE TOGGLES

AUXILIARY LINE TOGGLES
LINE STATUS TOGGLES

AUX(LINE) STATUS TOGGLES

If in the Line section, a duplex declaration is specified, an Auxiliary Line Table exists and AUXILIARY
(LINE(TOG[O or 1])) is liable to interrogation and alteration.

Aux-line-toggle

Examples

IF LINE (TOG[O]) THEN
AUX(LINE(TOG[l])) = TRUE.

AUXILIARY (LINE (

AUXILIARY(LINE(TOG[O])) = FALSE.

LINE STATUS TOGGLES

{ TOG[O)

TOG[l] })

Each line has two status toggles associated with it. These toggles are maintained in its associated line
table.

lin~-status-toggles LINE
BUSY }

~UED)

BUSY

The LINE (BUSY) status toggle allows system contention for the line; that is, the processing of any
MCS queued functions for that line. If a line is not busy, the MCS may initiate and perform functions. If
a line is busy, the MCS functions are queued until the line is available (not busy). The LINE (BUSY) status
toggle can be set or reset explicitly by the NDL programmer. It is set implicitly by an MPL QUEUE state
ment, NDL FORK statement, or when line control is initiated and is implicitly reset by a NDL terminate in
struction.

AUX(LINE)STATUS TOGGLES

In the case of two-way simultaneous procedures, if LINE (BUSY) is false, a FORK statement executed
by the AUX line causes the primary LINE(BUSY) to be set. If AUX(LINE(BUSY)) is false and the primary
executes a FORK statement, AUX(LINE(BUSY)) is set.

When LINE (BUSY) is set true, interruption of a primary control or primary request procedure by the
auxiliary is inhibited.

The AUXILIARY line is associated with the input side of the line.

QUEUED

The LINE QUEUED status toggle is set true (implicitly) if a message is queued for a ready station
on a ready line, or when a station on a ready line is made ready or enabled. It is the NDL programmer's
responsibility to reset LINE (QUEUED). AUX(LINE (QUEUED)) is totally under NDL programmer control.

aux-line-status· toggles AUXILIARY(LINE ({ BUSY }))
QUEUED

2-15

AUX(LINE)STATUS TOGGLES
NORESPONSE
NOSPACE
REQUEST

Examples
LINE (QUEUED) = FALSE .
IF NOT AUX(LINE(BUSY)) THEN FORK 22.

NORESPONSE

Section 2
NDL Language Elements

This line-oriented toggle indicates that a timeout interrupt has occurred from the gross timer. This toggle
is used primarily by bit-oriented line disciplines. Although the toggle is set by the communications subsystem,
it can be reset by the load timer instruction. The NORESPONSE toggle may be accessed at any time by
either co-line of a full-duplex pair.

NO RESPONSE

NOSPACE

This toggle is used to determine if space is available for a particular station. When a check for NOS
PACE is made, the system checks that enough buffer space is in the available buffer poll and that the MCS
input queue limit for the station h:as not been exceeded.

NOSPACE

If this toggle is set by a lack of available buffers, it is reset by available buffers. A NOSPACE indication
caused by exceeding the MCS input queue limit for a particular station is reset by the MCS construct CON
TINUE.STATION. CONTINUE.TASK resets NOSPACE caused by exceding the MCS input queue limit for
a particular task.

REQUEST

These toggles may not be referenced in a Line Control section. All of the request toggles may be set,
reset, and tested independently. Request toggles are used in controlling the line.

request-toggle

NAKONSELECT

NAKONSELECT
NAKFLAG
CONTROLFLAG
WRUFLAG
BLOCK/BLOCKED
TRANSPARENT
EVENTl

This denotes that NAK (to a select message) was received and is maintained explicitly by the NDL
programmer.

NAKFLAG

This toggle is maintained by the NDL programmer. It may be used to indicate that a transmitted output
was NAK-ed.

CONTROLFLAG

This toggle is set true (implicitly) if, in the RECEIVE statement, the receive action specifies a check
and receive for the control character that was defined for that statfon.

WRUFLAG

This toggle is set true (implicitly) if, in the RECEIVE statement, the receive action specifies a check
and receive for the WRU (who-are-you) character that was defined for that station.

2-16

Section 2
NDL Language Elements

BLOCK8LOCKED

REQUEST
STATION STATUS TOGGLES

This toggle indicates that this message is only a part of a larger logical record. It is implicitly set on
input when a TERMINATE BLOCK statement is-executed.

TRANSPARENT

This toggle indicates that this message is not to be translated on output or was not translated on input.
This toggle is set by the NDL programmer.

EVENT1

This is a general-purpose toggle available to the NDL programmer.

STATION STATUS TOGGLES

These toggles are read-only to the NDL programmer; that is, they may be used only in logical expres
sions (IF statements) or only to the right of the equal (=) sign in an ASSIGNMNET statement.

station-status-toggle

READY

STATION
READY
QUEUED
ENABLED
VALID

The communications subsystem never attempts to automatically initiate any function for stations that
are not ready. With the definition of a valid station status, the communications subsystem may distinguish
between invalid stations and valid ones which are not ready. Although the communications subsystem does
not automatically initiate any functions for not ready stations, the communications subsystem is guaranteed
a station table to read or update for valid stations, ready or not ready. If a station is marked invalid, it is
also marked not ready.

The ready station status causes the same action to occur as for the make station ready/not ready type
(MCS write) or TERMINATE ERROR statement. The ready station is a necessary condition for initiating RE
QUESTS or ENABLEINPUT.

The station (ready) toggle is implicitly set false if:
1. TERMINATE ERROR statement is executed.
2. TERMINATE NOLABEL statement is executed.

The ready status toggle may be reset or set by means of a user command.

QUEUED

This toggle is true if the station queue contains at least one user function that could not be handled
by the communications subsystem at the time the function was issued (LINE BUSY).

ENABLED

This toggle is true/false as dictated by the MCS QUEUE statement (enable input/disable input). This
toggle must be set true before an INITIATE ENABLEINPUT can be executed.

VALID

This toggle is used to indicate that the station variable index is pointing to a valid station for that line
for initiating request for that station.

2-17

STATION STATUS TOGGLES
SYNCS
USER

Example

SYNCS

CONTROL TOP2BOTTOM:

LINE(QUEUED) = FALSE.
IE LINE (TOG [1]) THEN GO TO 20.

% IF THE STATION HAS MORE THAN 1 MSG TO SEND TO
% THE HOST. THE REQUEST WILL SIGNAL
% THIS LINE CONTROL WITH A NON-ZERO STATION TALLY.

IF STATION (TALLY) GTR 0 THEN GO TO 40.
5: STATION = MAXSTATIONS - 1.

10: IF NOT STATION (VALID)
THEN GO TO 100.

20: IF NOT STATION (READY)
THEN GO TO 100.

30: IF STATION (QUEUED) THEN
BEGIN
LINE (TOG[l]) = TRUE.

END.

INITIATE REQUEST.
GOTO 20.

LINE (TOG [1]) = FALSE.
40: IF STATION (ENABLED) THEN

INITIATE ENABLEINPUT.
100: IF STATION GTRO THEN

BEGIN
STATION = STATION - 1.
GO TO 10.

END.
IF LINE (QUEUED) THEN GO TO 5.
IDLE.

Section 2
NDL Language Elements

When this toggle is true, recognition of sync characters is inhibited so sync characters are passed

through the RECEIVE statement as part of the text. If syncs is false, all sync characters are automatically

removed. Syncs is an assignable toggle.

Example

SYNCS

USER

SYNCS

FALSE.

In the header of each message, eight bits have been reserved as user toggles. These toggles may be

used by the message control system and, in NDL requests, as supplementary flags. User toggle settings may

be carried between inputs as they are maintained on a station basis. The format for user toggle representation

is as follows.

2-18

Section 2
NDL Language Elements

USER
UNDERFLOW

VARIANT

Example
TOG[5]

user-toggle TOG

7
6
5
4
3
2
1
0

Note
TOG [integer] is a reference to that tog value in the currently addressed station
table. Values are assigned to togs via INITIALIZE and ASSIGNMENT state
ments. TOG [7] is the left-most or high-order bit.

UNDERFLOW

This toggle is a reference-only toggle that is associated with each station. It is set true during synchro
nous operation whenever a character is transmitted too late.

UNDERFLO

VARIANT

These toggles are part of the message header prefixing an output request. They are set by MCS and
may only be interrogated by an NDL request set.

Variant toggles, when true, indicate if certain device dependent operations are to be performed. Refer
ences to variant toggles in line control are not allowed.

variant-toggles

SKIP

~ SKIP ~ PAGE
CARRIAGE
LINEFEED
PAPERMOTION
SPACE

When true, indicates that a value is present in the variant, read-only byte, SKIPCONTROL. The NDL
request set is free to take whatever action is appropriate if SKIP is true.

PAGE

When true, indicates page format control is to be done.

CARRIAGE

When true, indicates that a carriage return format is to be sent. The true state of this bit is 0 or reset.
When CARRIAGE appears in an IF statement, the compiler generates IF NOT CARRIAGE.

LINEFEED

When true, indicates that line feed format control information is to be sent. The true state of this bit
is 0 or reset. When LINEFEED appears in an IF statement, the compiler generates IF NOT LINEFEED.

2-19

UNDERFLOW

PAPERMOTION

Section 2
NDL Language Elements

When true, indicates that a new line should be started before the next line is transmitted.

SPACE

When true, indicates that horizontal spacing of SKIPCONTROL number of characters can be done.

The above descriptions represent the conventional application of these toggles. Each name (SKIP, etc.)
is converted by the compiler into a bit address of a variant toggle appearing in the output message header
generated by an MCS. Any communication use, from MCS to NDL, capable of expression in eight toggles
and one byte, can be served.

2-20

Section 3
Constant and Translation Sections

SECTION 3

CONSTANT AND TRANSLATION SECTION
GENERAL

This section provides a method for equating user-defined indentifiers with data strings. The occurrence

of the user-defined identifier outside of the Constant section is equivalent to the occurrence of the string de
fined by that identifier.

CONSTANT SECTION DESCRIPTION

The format for this section is:

CONSTANT l identifier- I
identifier-2
identifier-n

"character")
4 ."hex-string".
" "

A simple hexadecimal string should consist of an even number of hexadecimal characters; odd-length
strings are zero-padded at the left. When transmitted, data strings are translated to the appropriate code re
quired by the remote device.

The maximum length of a string is 248 characters or 248 hexadecimal elements. Hexadecimal character
strings must hiwe a 4 preceding the first quote marks.

Examples

CONSTANT

NUL = 4"00", % HEX STRING
STX = 4"02",
ERRl "ERRORl", %

ERR2 = "ERROR2":

Constant definitions are separated by commas and more than on~ definition may be placed on a card.

The Constant section is terminated by a period (.} following the last defined identifier.

Note

When a hexadecimal representation of a character is desired, the ASCII represen
tation for that character must be used (i.e., POL = 4"70'').

TRANSLATION SECTION DESCRIPTION

General

This section provides the NDL programmer with the ability to specify non-standard translation tables
to transform characters to and from internal machine representation. The format of this section is:

3-1

Section 3
Constant and Translation Sections

TRANSLATION table-id: BYTE=integer

l DEFAULTCHAR = variables.]
SHIFT = variables.
empty.

TRANSLATE variables.

The Translation Table consists of two or more translate modes. Two most common modes are the input
and output modes. Other modes are implemented whenever shift modes are included in the translation. There
are four shift positions permitted for a character set: up, down, middle, and allcase. Allcase is when the char
acter is common to all cases; therefore, no shift is ever necessary on output. Thus, there are five possible
translation modes:

1. Upper ~ Internal.
2. Lower ~ Internal.
3. Middle ~ Internal.
4. Allcase ~ Internal.
5. Internal ~ Output.

Shift-mode translation is required when a subset of data is liable to different interpretation. In order
to detect which shift mode translation applies at any particular time during data transfers, a shift mode flag
is a typical convention used to precede the data, such as FIGS character in Baudot code.

If there are no shift modes in the character set, only two modes are possible:
1. Input ~ Output.
2. Output ~ Input.

The use of a translation table is invoked by the CODE statement in the Terminal section. The table
id specifies the name associated with each user defined translation table.

Note
DEFAULTCHAR and SHIFT, if used, appear prior to any translation variable.

3-2

Section 3
Constant and Translation Sections

TRANSLATION BYTE

TRANSLATION BYTE
TRANSLATION SHIFT

TRANSLATION DEFAUL TCHAR

This statement specifies the number of bits in a character. Parity bits are not included in this value.
The format is:

This statement must appear prior to a TRANSLATE statement. The maximum size for a character is
eight bits, except when a multicase character set is being defined, in which case the maximum size is six bits.
This statement is a required statement.

Example
BYTE 7.

TRANSLATION SHIFT

The SHIFT statement specifies the characters that are to be used to cause the translation process to
switch from one case to another. The format is:

SHIFT l I UPPER: l
LOWER:
MIDDLE:

unitary-string } ' ...

This SHIFT statement must appear prior to a TRANSLATE statement and is required when a multicase
character set is being defined.

Example
SHIFT UPPER : 4"06", LOWER : 4"09".

Note
Refer to the description of SHIFT statement in Section 4.

TRANSLATION DEFAUL TCHAR

The DEF AULTCHAR statement specifies to which character all translation table entries are initialized.
Any translations not explicitly specified in a TRANSL A TE statement translates into the character declared
in this statement. This format is:

INPUT:

DEFAULTCHAR OUTPUT:

unitary string

(UPPER)
(LOWER)
(MIDDLE)
(ALLCASE)
empty

unitary-string

The input clause ~pecifies to which undefined incoming characters are translated. The output clause
specifies to which undefined outgoing characters are translated. The default input character is a question mark
(?), and the default output character is a NULL (4"00"). For a multi-case character set, translate mode
specifies the case of the output default character.

3-3

TRANSLATION DEFAUL TCHAR
TRANSLATION TRANSLATE

Section 3
Constant and Translation Sections

The DEFAULTCHAR statement must appear prior to a TRANSLATE statement.

Examples

DEFAULTCHAR
DEFAULTCHAR
DEFAULTCHAR

4"3F".
INPUT: "?".
OUTPUT: (MIDDLE) 4"37", INPUT: "?".

TRANSLATION TRANSLATE

This statement specifies the actual translations to be performed on input and output. In a single case
character set, translate mode must be empty. Each "string TO string" construct specifies that each received
character (which appears in the first string) is translated into the corresponding character in the second string.
If a received character does not appear in the TRANSLATE statement, it is translated to the DEFAULT
CHAR statement.

(LOWER)
(MIDDLE) string-1 TO string-2

TRANSLATE

{~PER) }
(ALLCASE) ' ...
empty

l rn=l 1 (LOWER)
(OUTPUT) string-1 TO (MIDDLE) string-2

(ALLCASE

The output translation is calculated from the input specification. However, if two or more input charac
ters translate into the same character, the output form of the translate element is used to specify the proper
output chara~ter translation. This form permits resolution of conflicting input translations and allows non-sym
metrical translation on output (i.e., on input "A" translates to "B" and on output "B" translates to "C'',
instead of "A").

When defining a multi-case character set, translate mode specifies in which case the character belongs.
If translate mode is empty , it defaults to the most recently specified translate mode. If translate mode is
empty for the first string, ALLCASE is assumed. ALLCASE specifies that a character is common to each
case. The ALLCASE default also applies to the first output clause without a specified case.

Each string in a pair must be the same length in bytes. An odd length hexadecimal string has a zero
inserted in the first digit position.

The TRANSLATE statement must appear last in a translation table definition; it is a required statement.

3-4

Section 3
Constant and Translation Sections

Example

TRANSLATE
(ALLCASE)

(LOWER)

(LOWER)

(UPPER)

(UPPER)

(MIDDLE)

(MIDDLE)

(OUTPUT)

(OUTPUT)

TRANSLATION DEFAULTCHAR

4"000204081BlF20242E32333B3F" TO
4 "OOOD200A0000071l001205087F",
4"101112131415161718191A1C1D" TO
4 "OOOD200A00000711001205087F"·,
4"O103050607090AOBOCODOEOF" TO
4"3F3F62676C3F683F63673F6D",
4"21222325262728292A2B2C2D2F" TO
4"693F773F3F617 A3F723F3F7964",
4 "30313435363738393A3C3D3E" TO
4 "3F3F3F6E3F7 6'78733F3F3F3F",
4"O103050607090AOBOCODOEOF" TO
4"524947424E4B4546554F5843",
4 "101112131415161718191AlC1DlE" TO
4 "523F53564154445A3F5148593F4A",
4 "2 l 222325262728'.f92A2B2C2D2F" TO
4"3426383F4D3F503F333F37394C",
4"30313435363738393A3C3D3E" TO
4 "323F3F353F3F30313F363F3F",
4 "0103050607090AOBOCODOEOF" TO
4 "343862293E2E333F3739282C",
4"101112131415161718191AlC1DlE" TO
4"322F3F652D353F2B2C3171363F3A",
4 "21222325262728292A2B2C2D" TO
4 "233D3F3F2A303F253F402464",
4"30313435363738393A3C3D3E" TO
4 "3F3F3F3F3F3F5F033F3F3F3.F",
4 "00" TO (ALLCASE) 4 "00",
4 "2C" TO (MIDDLE) 4 "OF",
4"3F" TO (MIDDLE) 4"37",
4"62" TO (LOWER) 4"05",
4"64" TO (LOWER) 4"2F",
4"65" TO (LOWER) 4"13",
4 "30313233343536373839" TO
4 "3839302A21353C2C232D".

3-5

Section 4
Request and Line Control Section

SECTION 4

REQUEST AND LINE CONTROL SECTIONS
GENERAL

These NDL sections function differently, but many of the statements and the syntax are alike. The actu
al programming is done in these sections, while the remaining sections describe the network. The Request and
Line sections are discussed as one, with the differences in syntax and semantics noted. By convention, both
line control and request set execution begins at the top or first executable statement following the set identifier.

GENERAL LINE CONTROL SECTION DESCRIPTION

In this section, the NDL programmer specifies the logical statements that determine the initiation of
station-oriented functions for each line. All statements end with a period.

Line control logic is initiated whenever the communications subsystem detects the normal termination
of a request. Line control is also initiated when a line is initially connected.

It is in the line control procedure that a station is selected; the order of output and/or input request
execution is then selected for that station.

Line Control/Request Differences

Most, though not all, of NDL constructs defined for a request definition are also allowable in a control
definition. The language restrictions are generally derived from the limitation that a line control procedure may
never have a message space associated with it. The statement structure of a control definition is the same
as that for a request: a list of labeled or unlabeled statements. Language constructs that are restricted or disal
lowed in either the Control section or the Request section are noted.

Line Control Format

The general format for the Line Control section is as follows:

CONTROL identifier: ! control-statement]
empty

The control statements and their line control restrictions are discussed later in this section.

More than one NDL line control procedur-.:: may be in a NDL program.

GENERAL REQUEST SECTION DESCRIPTION

Within this section the NDL programmer defines the data transfer protocols to be used with the differ
ent types of terminals described in the network. All statements end with a period.

A request must be defined for each capability of a terminal. If it is possible for a terminal to send input
to the system and receive output from the system, then both a receive and transmit request procedure must
be defined for that terminal.

The communications subsystem initiates these NDL-defined request procedures upon command from the
various parts of the data communications system. For instance, if a user program outputs a message to a termi
nal, the system first informs the communications subsystem as to which station the message is to go. Then
the communications subsystem executes the defined line control logic for the line, which in tum, selects the
transmit request as specified in the network definition for the desired station and executes the series of com
mands as described in the request definition. It is up to the line control logic to cause execution· of that sta
tion's input request when a station wishes to send a message to the system.

4-1

Section 4
Request and Line Control Section

Request Section Format

The general format for the Request section is as follows:

REQUEST identifier:

4-2

I request-statement)
empty

Section 4
Request and Line Control Sections

ACU

ACU
ADDRESS

ASSIGNMENT

The ACU statement allows the NOL programmer to condition the hardware by loading a descriptor to
the line adapter.

ACU =Value

Each bit of the value raises or lowers the corresponding ACU signal as shown below:

ADDRESS

Bit

0 (right-most)

l to 7

Meaning

Call request (CRC)

Reserved

address-function = RECEIVE
{

(time) }

empty
ADDRESS

[{

ERR~R[error-id] l
error-id

empty
j , ADDERR

empty

empty

j (TRANSMIT) l
(RECEIVE)
empty

This is a special case of NOL syntax, allowed in byte-variable assignment and IF statements in a line
control set only. (Not allowed in IF statements or byte-variable assignments in request sets.) Functions are
to:

1. Accept the specified ADDRESS from a station;
2. Scan all station tables resident on that line and validate the RECEIVED ADDRESS; and
3. Either: (a) assign the station table index to the byte-variable if the ADDRESS is found in a station table;

or (b) execute the ERROR action if specified, or mark the line not ready and return an ERROR result.

Note
Refer to the description of the RECEIVE statement.

The value of the character register is destroyed.

ASSIGNMENT

The ASSIGNMENT statement enables an NOL request set to assign and/or update a byte-variable or
to condition a toggle. A toggle can only assume a value of true or false.

There are three formats for the ASSIGNMENT statement. The first is to m:ake a toggle assume a value
of true or false, or make one toggle assume the value of another toggle.

assignable-toggle = {
toggle }
TRUE
FALSE

4-3

ASSIGNMENT

Example

TOG[4] = TRUE.
LINE(TOG[l]) = TRUE.

Section 4
Request and Line Control Sections

The second format for the ASSIGNMENT statement is to place a value in a byte-variable.

byte-variables

Examples

LINE (TALLY[l]) = 0.
CHAR= CR.
RETRY= 255.

value

add re ss-f unction

STATION(TALLY) = SKIPCONTROL.
LINE(TALLY[O]) = RECEIVE(30 MILLI)

-value
+value
AND value
OR value
XOR value
empty

ADDRESS(TRANSMIT) [ADDERR:42].
STATION = RECEIVE ADDRESS [1.ADDERR:NULL].
TALLY [OJ TALLY [1] AND 10.
TALLY [2] TALLY [2] XOR 4 "AA".

The third format for the ASSIGNMENT statement is to extract a bit field from a value and position
these bits in fields of a source value.

1. value [(tog index) : (number of bi ts)] = value [(tog index) : (number of bits)] .

2. value-I [(tog index) : (number of bits)] = value-x [(tog index) : (number of bits)] .

value-8 (tog index) (number of bits > = value-x (tog index) : (number of bits)] .

3. value-x (tog index) (number of bits) = value-I (tog index) : (number of bits)] ,

value-x [(tog index) (number of bits)] = value-8 [(tog index) (number of bits)] .

The extracted bit field is zero-filled on the left to obtain the same size field as the receiving value. The
bit field cannot exceed eight bits; the number of bits of the extracted field must be less than or equal to the
number of bits of the receiving field. Bit assignment cannot contain a literal value.

In forms 2 and 3 (in the third format of the ASSIGNMENT statement), either all values to the right
of the equal signs (form 2) or all values to the left of the equal signs (form 3) must be the same, although
the bit field may vary. Also, if form 2 or 3 is used, the list may not exceed eight assignments.

4-4

Section 4
Request and Line Control Sections

Examples

TALLY [15] [1:3] = TALLY [O] [0:3]

CHAR [0:8] =TALLY [5] [2:2].

TALLY [6] [2:1] =CHAR [4:1].

TALLY [O] [0:2] =TALLY [1] [0:1],
TALLY [2] [0:1] =TALLY [1] [1:1].

TALLY [1] [0:1] = TALlY [O] [0:1],
TALLY [1] [1:1] =TALLY [2] [7:1].

CHAR [0:2] =TALLY [5] [0:2],

assignable-toggle

CHAR [2:6] = TALLY [7] [0:6]

CRC
SYNCS
NOSPACE

LINE

TOG[

request-toggle
error-flag

(

7
6
5
4
3
2
1
0

TOG

BUSY
QUEUED

Note' 1

TOG

BUSY
QUEUED

Note 2

% FORM 1

% FORM 1

% FORM 1

% FORM 2

% FORM 3

% FORM 3

)

)

)

ASSIGNMENT
BACKSPACE

Byte-variable, value, and toggle are defined in Section 2. Implementation and
limitations are also specified.

BACKSPACE

This statement allows the NDL programmer to backup the message text pointer to retrieve, overwrite,
or delete characters that are embedded within the text.

BACKSPACE

This statement may only be used in a receive request set.

4-5

BINARY (REQUEST)
CONTINUE
DATASET
DELAY

Section 4
Request and Line Control Sections

BINARY (REQUEST)

This statement provides the NDL programmer with the ability to inhibit the automatic character transla
tion pe~ormed when characters are received. or transmitted.

The format of the BINARY statement is·

BINARY { ~:i:E }
The FALSE option specifies that characters are to undergo translation to or from internal machine rep

resentation. The TRUE option inhibits any translation and parity checking.

Example
BINARY = TRUE.

CONTINUE

This statement is used in conjunction with the WAIT statement and the CONTINUE option of the RE
CEIVE statement. It enables code execution synchronization in control and request sets peculiar to two-way
simultaneous (TWS) or duplex communication channels. In TWS channels, there are two active paths (or
lines); CONTINUE enables an active side to prompt a WAITing side back into action.

CONTINUE

Example
IF NOT LINE (TOG[l]) THEN CONTINUE.

Note
If the "other" side is not W AITing, CONTINUE is a NO-OP.

DATASET

This statement allows the NDL programmer to condition the hardware by loading a dataset descriptor
to the line adapter.

DATASET = Value

Each bit of the value raises or lowers a specified dataset signal as follows:

DELAY

BIT

0 (right-most)
1
2
3
4
5 to 7

MEANING

Request-to-send (RTS)
Originate (ORIG)
Data-terminal-ready (DTR)
Data-mode (DM)
New-synchronous (NEW-SYNCH)
Reserved

This statement specifies the time lapse before executing the next statement of the request or control
sequence. It suspends activity on the line and yields control to the firmware to address interrupts and other
processing management until the specified time expires when control is returned to the next sequential instruc
tion.

DELAY (integer

4-6

MICRO
MILLI
SEC
MIN

)

Section 4
Request and Line Control Sections

The maximum allowable value for the DELAY statement is 65535 milliseconds.

Examples
DELAY (50 MILLI).
DELAY (1 MIN).
73. GETSPACE[94].

INITIATE RECENE.

94. DELAY (200 MILLI).
GO 73.

DELIVER

DELAY
DELIVER
DISABLE

This statement is used exclusively by bit-oriented line disciplines. It gives the NOL programmer the
ability to remove messages from the input save queue.

DELIVER (< value >) {NULL}

label
ALL (DISCARD)

When using the DELIVER statement, if <value> is specified, that number of messages is removed from
the top of the input save queue and queued to the bottom of the result queue. The input queue count is decre
mented by the <value>, which is a literal, or is derived from the contents of a specified byte variable. If
<value> is greater than the queue count, a branch to the specified label is executed, and no messages are
removed from the input save queue.

If <value> is zero, the instruction is a NO-OP.

If ALL is specified, then all messages are removed from the input save queue and queued to the result
queue. The input save queue count is zeroed. If the input save queue count is zero, this instruction is a NO
OP.

If DISCARD is specified, all messages are removed but not queued to the result queue. The message
space is released. If the input save queue count is zero, this instruction is a NO-OP.

The DELIVER statement is valid only in a procedure referenced by a terminal of type bits. (Refer to
TYPE statement in Section 6.)

Examples
DELIVER (TALLY[O]) [1].
DELIVER (5).
DELIVER ALL (DISCARD).

DISABLE

This statement gives the NOL programmer the ability to control concatenated terminals.

The format for this statement is:

DISABLE I DOWNSTREAM I
TRANSMIT

If DOWNSTREAM is specified, the request-to-send signal is blocked from passing upstream and inhibits
the clear-to-send signal passing downstream on concatenated terminals.

4-7

DISABLE
DISCONNECT
ENABLE
ERROR

Section 4
Request and Line Control Sections

If TRANSMIT is specified, then this statement causes the request-to-send signal to be dropped; this
signal is blocked from passing upstream on concatenated terminals.

DISABLE, when executed by the auxiliary half of full-duplex pair, is a NO-OP.

Examples
DISABLE DOWNSTREAM.
DISABLE TRANSMIT.

DISCONNECT

This statement allows the NOL programmer to hang up a switched line (at one's own discretion) or
make a leased line not ready. The line is marked not ready and the MCS is notified that the line has been
disconnected.

DISCONNECT

ENABLE

This statement gives the NOL programmer the ability to control concatenated terminals.

The format of this statement is:

DOWNSTREAM
ENABLE

TRANSMIT I (<time>

empty

, <label>)

If DOWNSTREAM is specified, the request-to-send and the clear-to-send signals pass upstream and
downstream, respectively, from/to this terminal.

If TRANSMIT is specified, a request-to-send signal is raised. Procedure execution for this line is sus
pended until clear-to-send is true or the specified time expires. If clear-to-send becomes true, the next instruc
tion in sequence is executed. If the timer expires, a branch to the label is taken. If empty, the next instruction
in sequence is executed after raising request-to-send. When executed by the auxiliary half of a full-duplex pair,
ENABLE is a NO-OP.

Examples
ENABLE DOWNSTREAM
ENABLE TRANSMIT (1 sec, 50).

ERROR

This statement provides: 1) a means to specify a table of receive type errors and associated transfer
labels on error occurrence; and 2) a convenient shorthand reference to an error table within a RECEIVE state
ment. Only by specifying a transfer label can the NOL request set retain control to perform cleanup, pass
signals to the MCS through user tallies and toggles, or retry the input. If a receive error occurs for which
no transfer label was specified, the system marks the active station not ready, and returns a TERMINATE
NOLABEL indication in the result header passed to the host.

4-8

Section 4
Request and Line Control Sections

ERROR [integer] =

ABORT
IDLE
INVALID
PARITY
STOP BIT
BUFOVFL
TIMEOUT
BREAK
LOSSOFCARRIER

[
action-label J
NULL

ERROR

Each control or request set can have a maximum of 40 error statements. This number includes implicit
error switches declared in RECEIVE statements which directly specify all or part of the receive errors instead
of referring to a declared error switch number.

If NULL is specified as an action label, the result is dependent upon the RECEIVE statement being
executed. In the case of RECEIVE TEXT, the error is ignored and RECEIVE TEXT continues. In the case
of any other type of receive, control is then transferred to the next instruction on error occurrence.

ABORT, IDLE, and INVALID can be specified only in a procedure that is used by a terminal of type
bits. (Refer to TYPE statement in section 6). PARITY, STOPBIT, and BREAK cannot be used if the terminal
is of type bits.

Examples

1. RECEIVETEXT [TIMEOUT:NULL,
LOSSOFCARRIER: 102,
PARITY:l03,
BUFOVFL: 104] .

2. RECEIVE [STOPBIT:NULL,
BREAK:123,
BUFOVFL:125,
LOSSOFCARRIER: 173].

3. ERROR[2] = PARITY: 10,
STOPBIT: 11,
BUFOVFL: 12,
TIMEOUT: 13,
BREAK:14,
LOSSOFCARRIER:lS.

ERROR[l] = LOSSOFCARRIER:103,
PARITY:17,
BUFOVFL:l2,
TIMEOUT:22.

ERROR[4] PARITY:39,
TIMEOUT:42,
LOSSOFCARRIER: 103.

4. ERROR[l] ABORT:720,
TIMEOUT:720,
BUFOVFL:700,
IDLE:605,
INV ALID:720,
LOSSOFCARRIER:720.

4-9

ERROR
FETCH
FINISH TRANSMIT

FETCH

ERROR[3] ABORT:SO,
TIMEOUT:60,
BUFOVLF:70,
IDLE:lOO,
INVALID: 50,
LOSSOFCARRIER:55.

RECEIVE[ERROR[4]].
RECEIVE SOH[l].
RECEIVE TEXT[2].

Section 4
Request and Line Control Sections

This statement loads the character register with the bytes in the message text buffer pointed to by the
message pointer. FETCH is valid only for output from the communications subsystem to a station and may
only be used in a Request section. (FETCH is a NO-OP in an input request.)

The format for the FETCH statement is:

FETCH ---
I ENDOFBUFFER

action-label
NULL

empty

(action-label

l NULL

When using the FETCH statement, provision should be made for taking action on an ENDOFBUFFER
condition. (A FETCH is performed after the last character has been removed from the message text.) An EN
DOFBUFFER condition on a FETCH statement is not considered an error. Thus, the ENDOFBUFFER flag
is not set.

Successive FETCH statements cause the message pointer to be incremented by one.

Examples
FETCH [ENDOFBUFFER:3].
FETCH [3].

Both of these statements have the same result.
FETCH [ENDOFBUFFER:NULL].
FETCH [NULL].

Both of these statements have the same result (a fall-through occurs).
FETCH.

In this example, no ENDOFBUFFER action is specified and a TERMINATE NOLABEL occurs.

Note
A TERMINATE NOLABEL results when an error occurs for which the program
mer has no disposition. The MCS is informed through an error result.

FINISH TRANSMIT

This statement provides the delay time needed for the last character transmitted to propagate down the
line before a LINE TURNAROUND is initiated. This command places the line back into receive mode.

4-10

Section 4
Request and Line Control Sections

The format for this statement· is:

FINISH TRANSMIT

(integer MICRO)
(integer MILLI)
(integer SEC)
(integer Mlli)

(NULL)
empty

FINISH TRANSMIT
FLAG FILL

FORK

The FINISH TRANSMIT statement is used to get a line ready to receive (data or EOT) following a
POLL. The, time specified is the actual delay before turning the line around. If the time specified is NULL
or 0 (zero), no delay occurs. If empty, a delay of two bit times at the specified line rate is used.

Examples
FINISH TRANSMIT.
FINISH TRANSMIT (8 MILLI).

FLAG FILL

This statement is used exclusively by bit-oriented line disciplines, and turns on automatic interframe
time fill in the line adapter. A minimum of two flag sequences is transmitted. Flags continue to be transmitted
until an INITIATE TRANSMIT, TRANSMIT, or FINISH TRANSMIT is executed.

The format for this statement is:

FLAG FILL [UNDERFLO l NULL

Label I
If a synchronous underflow is detected, a branch to the specified UNDERFLOW ADDRESS is per

formed.

FLAGFILL, when executed by the auxiliary half of a full-duplex pair, is a NO-OP.

The FLAGFILL statement can be executed only in a procedure reference by terminals of type bits.
(Refer to TYPE statement in Section 6.)

Examples
FLAG FILL.
FLAGFILL [UNDERFLO : 50].

FORK

This statement is used in duplex communication control and request sets to engage the ''other'' line
to begin code execution at the specified label. If the other line is busy, FORK is treated as a NO-OP .. In
either case, code execution continues at the next sequential instruction by the side which executed the FORK.
Code execution by the "other" line begins if the other line is not busy, or as soon as the FORK-executing
side fails into a yielding position, such as TRANSMIT, WAIT, or RECEIVE.

~ label-id l .
~ empty ~

FORK

Either the primary or auxiliary code may execute a FORK. If the primary side executes a FORK, the
intent is to direct the auxiliary to begin execution at label-id. FORK empty initiates the "other lines" line
control procedure. .

4-11

FORK
GETSPACE

Section 4
Request and Line Control Sections

The Line section TYPE statement enables explicit declaration of the primary and implicit declaration
of the auxiliary sides or lines of a TWS channel. The Terminal section CONTROL statement enables the ex
plicit declaration of the primary control set and optional auxiliary control set and also enables naming the input
and output request sets. The station declaration names an associated terminal declaration, and the Line section
STATION statement names the stations resident on a line, thereby completing the circle of relationships.

Any MCS originated function intended to cause execution of a line control set exercising a duplex chan
nel results in "waking up" the declared primary line control set. Therefore, the NDL programmer has two
choices of levels at which to execute a FORK on the primary side code:

1. In the control set ("FORK label-id", where "label-id" points to a place in that control set which includes
an INITIATE ENABLEINPUT statement).

2. In the output request set ("FORK label-id", where "label-id" points to a place in that request set which
includes a RECEIVE statement).

All output (TRANSMIT statements) must be done on the primary line, and all input (RECEIVE state
ments) must be done on the auxiliary line. Any input or output to a station involves interaction which includes
both TRANSMIT and RECEIVE. The .FORK statement provides the ability, in an output request, to engage
the AUX line, if not busy, and to execute the RECEIVE of a station message response (ACK, NAK, etc.).
Conversely, FORK enables the input request set (being executed on the AUX line) to engage the primary to
execute a TRANSMITTED message response to a station. Whenever it is necessary for one side of a duplex
channel to perform an action not related to it (RECEIVE in the primary, TRANSMIT on the auxiliary), the
NDL programmer can choose a signaling convention using the line and AUX line tallies and toggles, or directlv
engage the "other" side through the use of FORK.

Example

REQUEST DUPLXOUT:

FINISH TRANSMIT.
62. IF NOT AUX(LINE(BUSY)) THEN

BEGIN
FORK 101.
WAIT.

END
ELSE

WAIT (500 MILLI).
GO TO 62.

END.

101. INITIATE RECEIVE.
RECEIVE[ACK:102. ERROR[2]].

CONTINUE

102. TERMINATE.

In the previous example, the primary side of the line executes the statements from label 62 onwards.
On detecting AUX line "not busy", the primary "forks" the auxiliary and then suspends itself. On execution
of the WAIT statement by the primary, the auxiliary starts execution of code at statement 101. Execution of
CONTINUE, by the auxiliary, causes the primary to restart at the statement following the WAIT. TERMIN
ATE causes the auxiliary to go to the top of the auxiliary line control.
GETSPACE

This statement allocates buffer space in the processor main memory for the storage of input data. The
action-label is taken if no buffer space is available. This statement is allowed only in an input request proce
dure.

The format for the GETSPACE statement is:

GETSPACE [action-label]

4-12

Section 4
Request and Line Ccmtrol Sections

GETSPACE
GO TO

IDLE

GETSPACE is a NO-OP if space already has been obtained; otherwise, it obtains space, if possible,
or branches to the label specified, if not. In the POLL logic for a TC500, a GETSPACE statement is placed
just before the RECEIVE TRAN statement, but is repeated again before the RECEIVE TEXT statement. Only
enough space for one block of data is obtained.

Example
GETSPACE [2].
RECEIVE TRAN [ERROR[O]. TRANERR:NULL].
RECEIVE STX [ERROR[O]. FORMATERR:2].
INITIALIZE TEXT.
RECEIVE TEXT [ERROR[O]. ENDOFBUFFER:2].

In the above example, buffer space is allocated and the TRAN number is read and stored in the message
header, and the text is stored in the space allocated.

GO TO

Note
If a GETSPACE is not executed prior to a RECEIVE, the system attempts to get
adequate space; if successful, the RECEIVE proceeds normally; if unsuccessful,
a TERMINATE NO-LABEL occurs.

This statement provides a way of breaking out of sequential, statement-by-statement execution and per
mits continuation at some other location indicated by the specified label.

The format for the GO TO statement is:

GO TO
{ :::. fabolli•t }

The label may consist of up to five digits.

The first option is a simple GO TO. The second method is a variable GO TO. A list of labels is provided
and the desired label is indicated by the value specified. A value greater than the number of labels is a NO
OP. A value of zero causes a branch to the first label in the list.

Examples
GO TO STATION(TALLY): 76, 91, 7.

Note
If STATION(TALLY) = 2, then a branch to label 7 is taken.

IDLE

This statement halts the processing of the line control procedure in which it is contained. IDLE causes
the line to be marked not busy and left in a ready state. The IDLE statement is valid only in a line control
procedure. This is the only way to do a terminate in line control.

IDLE

Upon execution of IDLE, the line is not busy and the next function to be initiated for that line
automatically begins the line control at the first statement.

Example
IDLE.

4-13

IF

IF

Section 4
Request and Line Control Sections

The function of this statement is to control the sequence of operations (as described by NOL state
ments) to be executed depending upon some relational conditions or true/false value.

The general format for the IF statement is:

IF if-clause THEN statement { ELSE statement }
empty

There are two variations of this format. The first option involves a test condition (true/false) of certain
toggles and flags. The if-clause is replaced with the flag or toggle being tested.

IF

The format for Option 1 of the IF statement is:

NOT
empty

I toggle
request-toggles
error-flags
variant-toggle

THEN statement { ELSE statement }
empty

The underlined lower case terms in the if-clause position may only be used in a Request section. The
toggles and flags are explained in Section 2.

The second option pertains to a relational condition between two values.

The format for Option 2 of the IF statement is:

IF { NOT } value relational-operator value
empty

THEN statement { ELSE statement }
empty

The relational version of the IF statement provides a way of comparing the relationship between the
members of a set of values. A byte variable may be used as a value.

The possible relational-operators are:
GTR - Greater than.
GEQ - Greater than or equal to.
LSS - Less than.
LEQ - Less than or equal to.
NEQ - Not equal to.
EQL - Equal to.
> - Greater than.
< - Less than.

- Equal to.

The following table lists the allowable entries in the IF statement and the section in which they are
allowed. The entries in the table are explained in Section 2 ..

4-14

Section 4
Request and Line Control Sections IF

OPTION 1

Entry Request Line Control

TOG x x
LINE [TOG(humber)] x x

Toggle NOSPACE x x
STATION [TOG(number)] x x
CRC x x
SYNCS x x

NAKONSELECT x
NAKFLAG x

Request-toggle CONTROLFLAG x
WRUFLAG x
BLOCK/BLOCKED x
TRANSPARENT x
EVENTl x

PARITY x
STOPBIT x
BUFOVFL x
TIMEOUT x
BREAK x
BITS x

error-flags LOSSOFCARRIER x
BCCERR x
AD DERR x
TRANERR x
FORMATER x
ENDOFBUFFER x
BREAK RECEIVE x
BREAK TRANSMIT x
CRCERR x

PAPERMOTION x
CARRIAGE x

variant-toggle PAGE x
LINEFEED x
SKIP x
SPACE x

OPTION2
IR x x
STATION (FREQUENCY) x x
MAXSTATIONS x x
CHARACTER x x

value STATION(TALLY) x x

r""·) 1
RECEIVE ADDRESS

(NULL) x
STATION x
RETRY x x
BCC x x

4-15

IF
INCREMENT
INITIALIZE

Entry Request

LINE (TALLY[number]) X
AUX (LINE(TALLY[number])) X
unitary-string X
~~~r X 

value TALLY(n) X 
LC HAR X 
SKIPCONTROL X 
TOGS X 
CRC[O] X 
CRC[l] X 

Examples 
Option 1: 

IF TOG [6] THEN TRANSMIT LF. 
IF BREAK THEN GO 86 ELSE 
TRANSMIT EOT. 

Option 2: 
IF CHARACTER= NAK THEN GO 02. 
IF RETRY GTR ZERO THEN GO 07 
ELSE TERMINATE NOINPUT. 

INCREMENT 

This statement adds one (1) to the transmission number (TRAN). 

The format for the INCREMENT statement is: 

INCREMENT TRAN 

Section 4 
Request and Line Control Sections 

Line Control 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

No overflow is detected. If overflow occurs, the TRAN value becomes zero. 

Example 
INCREMENT TRAN 

Note 
TRAN INCREMENT IS MOD 10 (e.g. 012345678901234567890) 

INITIALIZE 

This statement causes the function specified to be initialized in the communications subsystem. The 
INITIALIZE statement has some restrictions in the Line Control section; that is, TEXT, TRAN, TALLY and 
TOG items may not be used. 

INITIALIZE 

BCC 
CRC 
TEXT 
TRAN 
TOG [integer] 
TALLY [integer] 
RETRY 
TOGS 

INITIALIZE BCC causes the block check character for horizontal parity to be initialized in the commu
nications subsystem. For even parity, this character is initialized to all zeroes; for odd parity, all ones. The 
BCC should always be re-initialized for error recovery. 

4-16 



Section 4 
Request and Line Control Sections 

INITIALIZE 
INITIATE 

INITIALIZE TEXT sets the message pointers in the communication subsystem to the first byte of the 
message. This statement must be executed before the STORE or FETCH commands are used. 

INITIALIZE TRANSMISSION number (TRAN) resets the value to zero. 

The INITIALIZE TALLYffOG LIST format causes the tallies and toggles listed to be initialized from 
the message header, if there is one, or to be set to zero or false. 

The TOG integer value may be a digit from 0 (zero) through 7 and the TALLY integer value may be 
a 0, l, or 2. 

TRAN, TEXT and TALLYffOG LIST are not allowed as initialized items in the Line Control section. 

INITIALIZE TRAN is illegal in a procedure I referenced by a terminal of type bits. (Refer to TYPE state
ment in Section 6.) 

INITIALIZE BCC/CRC should be executed immediately prior to transmitting or receiving the first char
acter to be included in the check sum. 

INITIALIZE RETRY replaces the working copy retry count with the NDL declared retry value. 

Examples 
INITIALIZE BCC. 
INITIALIZE TALLY [2]. 
INITIALIZE TOG [ 1] . 

INITIALIZE CRC causes the cyclic redundancy character to set to zero, except if the station is type 
bits, then CRC is set to ones. 
INITIATE 

This statement has two variations: one for the Request section and one for the Line Control section. 

The format for the Line Control section INITIATE statement is: 

INITIATE { REQUEST } 
ENABLEINPUT 

The INITIATE REQUEST format is actually a GO TO a request set, dependent on the type of message 
on the top of the current station's station queue. If this message is of type output or priority output, the trans
mit request will be entered. If this message is of type input, the receive request will be entered. 

NOTE 
The description of the TERMINATE instruction explains under which conditions 
a message of type input may be found on the top of the station queue. The station 
must be valid, ready, and queued; otherwise, the INITIATE REQUEST statement 
is treated as a NO-OP. 

The INITIATE ENABLEINPUT format is actually a GO TO to a receive request set. The GO TO is 
inh:iated if the ·station indexed is valid, ready, and enabled; otherwise, the statement is treated as a NO-OP. 

The transmit and receive request sets that are associated with the indexed station are determined in 
the Terminal section that describes that station. 

The format for the Request section INITIATE statement is: 

INITIATE l RECENE I 

TRANSMIT' 

(integer MICRO) 
(integer MILLI) 
(integer SEC) 
{integer MIN) 

(NULL) 
empty 

4-17 



INITIATE 
LABEL 
PAUSE 

Section 4 
Request and Line Control Sections 

The INITIATE RECEIVE form of the Request section INITIATE statement commands the initiation 
of receive de.lays as follows: 

1. If the delay part is zero or null, receive delay is disabled and the line is enabled to the receive mode. 
2. If the delay part is empty, the time-to-delay is the time stored in the station tables "initiate receive delay" 

value. This value is a result of the NOISEDELA Y statement in the Modem section. 
3. If the delay value is a specified time, then this is the delay time. 

When condition 2 or 3 is present, the amount of time is the delay time prior to enabling the receive 
mode. This function is referred to as "sequelching" the line. Any data or other transitions on the line is dis
carded. If synchronous operations are present, this action initiates the required search for sync characters. 

Time may be specified in microseconds, milliseconds, seconds, or minutes. The integer preceding the 
time delimiter is the number or time periods. 

The INITIATE TRANSMIT statement sets the line adapter to a transmit state and implements delays. 
The delay part indicates the amount of time to delay prior to testing for the clear-to-send (CB) signal from 
the modem. After the delay is executed and CB is true, the next instruction is executed. If the delay part 
is NULL, no delay is used. If the delay part is empty, the time used is the value delay stored in the station 
tables ACTIVE TRANSMIT DELAY. This value is the greater of the terminal TURNAROUND time, or the 
line modem TRANSMIT delay or the station modem NOISEDELAY. 

Examples 
INITIATE REQUEST. 
INITIATE RECEIVE (10 MILLI). 
INITIATE TRANSMIT. 

Note 
For INITIATE RECEIVE (transmit to receive mode change) the default time value 
is the line modem NOISEDELAY value. For INITIATE TRANSMIT (receive to 
transmit mode change) the greater of the following is used as the default value: 
1. Station Turnaround. 
2. Station Noise Delay. 
3. Transmit Delay. 

LABEL 

Statements in the Request and Line Control sections are executed sequentially as listed. When it is de
sirable to alter the order of execution of statements, the labeled statement is one way of doing this. The 
maximum length of a label is five digits. The label must be followed by a colon (:) to separate it from its 
associated statement. The GO TO statement is used to transfer control unconditionally to a labeled statement. 

The format for using a label is as follows: 

label: 

Examples 

86: BEGIN 
IF STATION(QUEUED) THEN 
GO TO 11. 

END 
11: INITIATE REQUEST. 

PAUSE 

{ 
statement } 
compound-statement 
empty 

This statement temporarily suspends processing of NDL instructions to allow other line interrupts to 
be processed. 

4-18 



Section 4 
Request and Line Control Sections 

The format for the PAUSE statement is: 

PAUSE 

PAUSE 
RECEIVE 

When a number of non-transmit or non-receive instructions are to be processed, a PAUSE must be in
serted to provide processor time to the other lines in the system. 

Control procedures that search a station list for something to initiate must include a PAUSE in the loop. 

Example 

PAUSE. 
Note 

Refer to the description of the DELAY statement. 
RECEIVE 

This statement accepts characters from a line and recognizes error conditions on a line. The line for 
which the RECEIVE statement is issued must be in a ready and receive mode. 

The general format for the RECEIVE statement is: 

RECEIVE 

(integer 

(NULL) 
empty 

I ~~~~? ) 
SEC 
MIN 

CRC-item 
BCC-item 
ADDRESS-item 
string-item 
CHARACTER-item 
TEXT-item 
TRAN-item 
FRAMEADDR-item 

A RECEIVE statement receives the specified item. The "integer MILLI/MICRO/etc", if specified, re
places the terminal TIMEOUT value. 

The following is a description of the receive-items and the specific action to be taken upon receipt of 
specific characters or occurrences of specific error conditions. 

A receive-item is either a BCC-item or an ADDRESS-item (etc), and each is expressed in the following 
general format: 

receive-item 

empty 

[ :NULL I receive-action-part 

item-error {:action-label} 
empty 

There are two formats for the receive-action part. 

receive-action -0 

ERROR [integer] 
[integer] 

ABORT 
IDLE 
mvALID 
PARITY 
STOPBIT 
BUFOVFL 
TIMEOUT 
BREAK 
LOSSOFCARRIER 

' . . . ] 

{ 
:NULL } 
: action -label 
empty 

4-19 



RECEIVE 

receive-action-I 

receive-action-0 
CONTINUE 
CONTROL 
BACKSPACE 
LINEDELETE 
END 
WRU 
unitary-string 

Section 4 
Request and Line Control Sections 

{
:NULL } 
:action label 
empty 

CONTROL, BACKSPACE, LINEDELETE, END and WRU are all indirect references to the Station 
and Terminal section declared values and cause a character-by-character comparison of each input character 
against each of the above named characters. 

Unitary-string provides the ability to code a literal character within a RECEIVE statement causing a 
transfer out of the RECEIVE as described for CONTROL, WRU, etc. 

CONTINUE allows the primary side of a duplex channel to "awaken" the auxiliary side out of a wait
ing type RECEIVE. 

Item-error may only contain an item-error that corresponds to the receive items. 

item-error 

BCCERR 
AD DERR 
FORMATERR 
ENDOFBUFFER 
TRANERR 
BLKNERR 
XMTADD 
GLOBAL 

The ERROR designator in receive-action-0 is appropriate for all items; it specifies the action to be taken 
when the various error conditions occur. The presence of a receive-error-flag creates an error-switch that is 
unique to that RECEIVE statement. An error switch (refer to ERROR statement) and a receive-error-flag 
(PARITY, STOPBIT, etc) may not be used together in the same RECEIVE statement. 

The following are various receive-item syntaxes. 

CHARACTER-Item 

In this syntax, one character is received. Refer to the TEXT-item because all of the attributes for the 
text item apply to the CHARACTER-item, except ENDOFBUFFER. 

CHARACTER-item 

4-20 

j CHARACTER i 
/ empty ) l empty 

[receive-action-I 
l 

' . . . ] ~ 



Section 4 
Request and Line Control Sections RECEIVE 

TEXT-Item 

Characters are received (and stored in the text part of the obtained message space) until an action item's 
action label results in a branch to a label, a terminate error, or a nonrecoverable error (such as a disconnect). 
If the occurrence of a character results in a branch outside the RECEIVE statement, that character is not 
stored automatically. Appropriate action items are text control characters, unitary-strings, and ENDOFBUF
FERS. (An ENDOFBUFFER condition exists when too many characters have been received as specified by 
the terminal MAXINPUT statement.) The following explains these points and enumerates the special actions 
taken when text control characters are received. 

TEXT-item TEXT 

Example 

l:TALLY[2] = TALLY[2] + 1. 

empty 

{ 
receive-action-1 

ENDOFBUFFER 

RECEIVE TEXT [END, WRU, BACKSPACE: 1] 

TERMINATE NORMAL. 

1:NULL ~} 
:action-label 
empty 

' . . . ] 

In this example, as each character is received by the communications subsystem, a check is made to 

determine if the character is the END, WRU, or BACKSPACE code for the station. If the character is END 

or WRU, an exit to the statement immediately following the RECEIVE statement is made. 

If the BACKSPACE character is received, control is transferred to the statement labelled 1. If none 

of these three characters is found, the next character in the message is received, and the process continues. 

If the WRU, CONTROL, END, BACKSPACE, or LINEDELETE is used as action items, the system 

takes automatic action appropriate for the character, and then branches to the indicated label or the next state

ment depending on the action-label specified. The action taken for the WRU and CONTROL characters is 

to set the pertinent flag. The action for the END character is to do nothing except take the branch as specified 

by the action-label. (Note that the BACKSPACE and LINEDELETE characters are never stored in the text 
part of the message space, even if the action-label is ":NULL".) Text may not be specified as an item in 

a control definition. 

If a station has been declared as type bits, the last two characters received are assumed to be the CRC. 
(Refer to TYPE statement in Section 7 .) These last two assumed CRC characters are compared against the 
calculated CRC. If at least two characters were not received, or if the assumed CRC did not validate, an IN
VALID FRAME error is generated causing a branch to the specified label. 

4-21 



RECEIVE 

TRAN-Item 

Section 4 
Request and Line Control Sections 

The proper number of transmission number characters are received and checked for agreement with the 

(receive) transmission number kept for the station with which the communications subsystem is communi
cating. If the numbers do not coincide, a transmission error (TRANERR) condition is obtained. The received 

transmission numbers are stored in the station table for subsequent transmission number functions. The trans
mission numbers are explicitly incremented by the NDL programmer. (The number of transmission number 

characters is specified in the station terminal description.) The transmission number is stored in the message 

header. TRAN may not be specified as an item in a control definition. 

TRAN-item TRAN 

ADDRESS-Item 

empty 

j receive-action-0 

iTRANERR l :NULL ~ 
:action-label 
empty 

' . . . ] 

The proper number of receive or transmit address characters (the number of which is specified by the 
definition of the station terminal) are received and checked for agreement. Should the address characters nQt 

correspond, an address error condition results. If the receive action part has ADDERR action specified, the 

action-label is adhered to but otherwise an automatic TERMINATE NOLABEL is performed. (The analogous 
action occurs for all error conditions covered by item flags except CHARACTER and empty.) 

This item is run-time conditional in control definitions. 

ADDRESS-item ADDRESS 

BCC-Item 

empty 

[ :NULL I receive-action-0 

ADDERR ~:actfcm-label l 
1 empty ~ 

\ 

' ... l 
l (RECEIVE) I 
. (TRANSMIT) ( 

empty J 

A character is received and checked against the block check character which the communications sub
system has been accumulating during the processing of the request. BCCERR is appropriate for this item. 

empty 

BCC-item BCC 
' . . . ] 

{ 

receive-action-0 

BCCERR J ~~~~~-label l } 
l empty ~ 

4-22 



Section 4 
Request and Line Control Sections RECEIVE 

STRING-Item 

Characters are received (and stored in the text string) and a check is made for correspondence, which 
if not found, results in a format error condition. FORMA TIER is the item error flag for this item. 

string-item string 

CRC-ltem 

empty 

{ 

receive-action-0 

FORMATERR I I :NULL ( 
:action-label 
empty 

' . . . ] 

Sixteen bits are received and checked against the CRC that has been locally computed. For a station not 
of type bits, RECEIVE CRC collects two characters from the line and then immediately performs validation. 
For a station of type bits, this instruction receives characters until it detects the flag sequence ending the 
frame. The last two characters received before the end flag are then used for CRC validation. 

A branch to the receive-action-0 is performed if any status errors occur during the receive of the CRC. For 
a station of type bits, an INVALID FRAME occurs whenever more than two characters are received and the 
CRC validates. 

If a CRC does not validate or if a bits station sees less than two characters during a RECEIVE CRC, then 
the CRCERR branch is performed. 

empty 

{ rnoeivo-aotion-0 I CRC-item CRC J :NULL } 
CRCERR ( :action label ' . . . ] 

empty 

FRAMEADDR-ltem 

This instruction conditions the DCS to receive a character and to compare it with the receive address 
character found in the station table. RECEIVE FRAME ADDRESS is used exclusively by bit-oriented line 
disciplines. 

FRAMEADDR 

empty 

I receive-action-0 f 
XMTADD 
GLOBAL 
AD DERR 

:NULL I 
:action label 
empty 

4-23 



RECEIVE 
Section 4 

Request and Line Control Sections 

XMT ADD and GLOBAL can be used only with RECEIVE FRAMEADDR. If the character received 
equals the GLOBAL ADDRESS (all ones), the GLOBAL BRANCH is taken. If the character equals the 
TRANSMIT ADDRESS, the XMT ADD BRANCH is taken. If the character equals the RECEIVE ADDRESS, 
the next statement is executed; otherwise, the ADDERR BRANCH is taken. The RECEIVE FRAMEADDR 
can be used only if the terminal is defined as type bits. (Refer to TYPE statement in Section 6.) 

Note 1 
If NULL is used as an action-label in a RECEIVE TEXT statement, control re

turns to the RECEIVE statement after appropriate action is taken by the system. 

If "empty" is used as an action-label, control is forced to the next sequential in
struction. 

If NULL is used as an action-label in any receive except RECEIVE TEXT state
ment, control is forced to the next sequential instruction. 

Note2 
If a receive error flag, that was not specified in an error switch or the RECEIVE 

statement, is set or an unspecified item error flag is set, a TERMINATE NOLA
BEL occurs. 

Examples 

The ERROR switch designator is a grouping. 

Example 1 

ERROR [0] = STOPBIT: 1, 
TIMEOUT:2. 
BREAK :3, 

RECEIVE TEXT [ERROR[O] ]. 
RECEIVE TEXT [0]. 

Both of these RECEIVE statements perform the same function. 

Example 2 
RECEIVE (NULL) TEXT [0. 

ENDOFBUFFER:4, 
END, 
BACKSPACE:NULL, 
LINEDELETE:3, 
CONTROL: NULL, 
WRU]. 

Example 3 
RECEIVE (1 SEC) EOT [ERROR[l], 

FORMATERR:4]. 

Example 4 
RECEIVE [0, ETX:ll, DEL:lO]. 
RECEIVE CHAR [0, ETX:ll, DEL:lO]. 

Both of these RECEIVE statements perform the same function. 

Example 5 
RECEIVE (1 SEC) ADDRESS [ERROR[O]. ADDERR:21]. 

4-24 



Section 4 
Request and Line Control Sections 

Example 6 
RECEIVE (50 MILLI) [ERROR[O], PARITY]. 

RECEIVE 
RESTORE 
RETURN 

This example shows an invalid RECEIVE statement. It utilizes an ERROR switch and a receive-error
item in the same RECEIVE statement. 

Example 7 
RECEIVE TEXT [l. ETX, ENDOFBUFFER:l, CONTROL:NULL]. 

This RECEIVE TEXT statement shows a check for an ETX (literal string) with no action-label. If an 
ETX is detected, a transfer of control to the next sequential statement occurs. 

Example 8 
RECEIVE TEXT [0, CONTINUE:17]. 
RECEIVE [2, SOH:l3, CONTINUE:22]. 

These statements result in a transfer out of the receive state if the primary side should execute a CON
TINUE. 

Example 9 
RECEIVE TEXT [4, CONTINUE:NULL]. 
17: RECEIVE [3], CONTINUE:17]. 

These statements are equivalent. If the primary executes a CONTINUE, control passes back to the re-
ceive. 

Example JO 
RECEIVE (500 MILLI) FRAMEADDR [2, XMT ADD : 20, 

GLOBAL : 100, 
ADDERR : 125]. 

RESTORE 

This statement is used exclusively with bit-oriented line disciplines. It allows the NDL programmer to 
move messages from the output save queue to the station queue. 

The format for the statement is: 

RESTORE {ALL } 

This instruction removes either one message from the top (RESTORE) or all messages (RESTORE 
ALL) from the output save queue and queues with message(s) to the top of the station queue. The output 
save queue count is decremented by one or zeroed (if ALL is specified). 

In addition, the toggle "EVENTl" is marked true in the header of that message space. If the output 
save queue count is zero when this instruction is executed, it is a NO-OP. 

If the RESTORE statement is executed by the auxiliary half of a full-duplex pair, the instruction is a 
NO-OP. 

The RESTORE statement can only be executed in a procedure used by a terminal of type bits. (Refer 
to the TYPE statement in Section 6.) 

RETURN 

This statement is used exclusively by bit-oriented line disciplines, and gives the NDL programmer the 
ability to remove messages from the output save queue. 

4-25 



RETURN 
SHIFT 
STORE 

The format for this statement is: 

RETURN value 

ALL 

) 

Section 4 
Request and Line Control Sections 

NULL 

label 

When using the RETURN statement (if <value> is specified), the number of messages is removed from 
the top of the output save queue and queued to the bottom of the result queue. The output queue count is 
decremented by the <value> which is a literal or is derived from the contents of a specified byte variable. · 
If <value> is greater than the output save queue count, a branch to the specified label is executed, and no 
messages are removed from the output save queue. If <value> is zero, the instruction is a NO-OP. 

If ALL is specified, all messages are removed from the output save queue, and are queued to the result 
queue. The output save queue count is zeroed. If the output save queue count is zero, the instruction is a 
NO-OP. 

This statement is valid only in a procedure referenced by a terminal of type bits. (Refer to TYPE state
ment in Section 6.) 
Examples 

SHIFT 

RETURN (TALLY [1] ) [0] 
RETURN (2) [1]. 

This statement allows the programmer to set the case of the character set. This statement is used to 
change the case of a character set to ensure current translation. An example of a two-level character set is 
the Baudot character set. 

The format for the SHIFT statement is: 

SHIFT 

Examples 
IF CHAR = FIGSHIFT THEN 
SHIFT UP. 
SHIFT MIDDLE. 

{ UP } DOWN 
MIDDLE 

Note 
For automatic shifting, refer to Translation Table Syntax in Section 3. 

STORE 

Generally, this statement is used in receive request only. It takes a store item and stores it in the appro
priate place. It is possible for an ENDOFBUFFER condition to occur when using this statement. If the 
specified MAXINPUT size is exceeded, the ENDOFBUFFER flag is set. The STORE TALLY, TOGS, or 
TOG may be used in an output request. 

The format for the STORE statement is: 

STORE 

{ i~~L~\o] } 
[1] 
[2] 

~CTER 
string 
IQQ§ 
empty 

label 

[label] NULL 
[NULL] -

empty 



Section 4 
Request and Line Control Section 

The STORE and STORE CHARACTER forms of this statement are equivalent. 

STORE 
SUM 

An ENDOFBUFFER condition is an error condition. If empty is chosen as the action part, an automatic 
TERMINATE NOLABEL results. A NULL causes the program to transfer to the next statement in sequence 
and a label causes a branch to the specified label. The ENDOFBUFFER toggle is implicitly set true. 

STORE CHAR 

This version of the STORE statement stores the contents of the character register into the next sequen
tial position in the text buffer. The text message pointer is incremented by one. 

STORE String 

This version of the STORE statement stores the designated string into the text buffer. Tne text message 
pointer is advanced by the length of the string. 

STORE TOGS, TOG, or TALLY (0,1,2) provides a means of communicating with a MCS. The data 
is made available to the MCS. 

STORE TALLY only allows the user to store the first three tallies (0, 1,2). If a station i~ of type bits, 
TALLIES 3-18 cannot be stored. (Refer to TYPE statement in Section 7.) 

Examples 

SUM 

010 
020 
030 

040 

RECENE CHAR [ERROR[O] ] . 
STORE CHAR [ENDOFBUFFER:2]. 
STORE [2] This line of code accomplishes the same 

thing as line 020. 
STORE 4"2A" [NULL]. 

This statement either negates the horizontal summation (for BCC) for the previous character transmitted 
or received, or causes a character (for CRC) to be included in the CRC calculation. 

The format for the SUM statement is: 

SUM I unitary-string I 
CHARACTER 
empty 

For example, assume that a character has been received as part of a message and has been included 
in the horizontal block check character (BCC) being accumulated. The character may be eliminated from the 
BCC by the instruction SUM CHARACTER which causes the character contained in the character register 
to be exclusively ORed with the BCC, thus deleting the character from the partial sum. 

The SUM and SUM CHARACTER forms of this statement are equivalent. 

Examples 
RECEIVE. 
IF CHAR= STX THEN SUM. 

RECEIVE. 
IF CHAR = STX THEN SUM CHAR. 

4-27 



SUM 
TERMINATE 

Section 4 
Request and Line Control Section 

In both examples, the start-of-text character is eliminated from the BCC. 
RECEIVE. 
IF CHAR = ETX THEN SUM 4" I I". 

RECEIVE. 
IF CHAR = FLAG THEN 

BEGIN 
BINARY = FALSE 
SUM 
GO TO 27 

END. 

TERMINATE 

This statement provides for exits and/or recognition of some event in a request procedure. This state-
ment is not permitted in a line control procedure. TERMINATE statements may result in: 

I. Control passing from the current request set to the appropriate line control procedure. 
2. Control passing from an output request to an input request. 
3. Recognizing the end of a block of input data. 
4. Informing the system, upon recognition of an error, to create the proper result and transfer control to 

a line control procedure. 

The format for the TERMINATE statement is: 

TERMINATE 

TERMINATE NOINPUT 

NOINPUT 
NORMAL 
ERROR 
BLOCK 
ENABLEINPUT 
SAVE 
PRIORITYSA VE 
empty 

This statement indicates that an attempt to receive input from a station or transmit to a station was 
unsuccessful and no data transmission errors occurred. Control passes to the first executable statement in line 
control. 

TERMINATE NORMAL 

This statement indicates the satisfactory completion of an input (EN ABLEINPUT) or output (RE
QUEST) function. Control then passes to the first executable statement of line control. 

TERMINATE ERROR 

This statement informs the system of a failure, completes a requested or enabled function, and inhibits 
initiation of any new functions for the station until the functions are requested by the system (MCS). 

An error message is formulated to be returned to the host system (MCS error result). The station initiate 
queue is left intact (enable an MCS recall function to be performed) if the error occurred on an output request; 
only the first element of the queue is returned. The station status is marked as not ready. The appropriate 
line initiate routine is entered which idles a contention line but proceeds for other ready stations on a multi
point line. 

The result flags and retry tally (which are copied from the currect message) are placed into the error 
message and its header. If there is no current message (e.g., ENABLEINPUT), the result flags and retry tally 

4-28 



Section 4 
Request and Line Control Section 

TERMINATE 
TIMER 

are copied from the station table, tally, toggles, message class, and line and station fields. Control is passed 
to the first statement of line control. 

TERMINATE BLOCK 

This statement for input is used to indicate a normal terminate for a block of information received from 
the station; subsequent blocks may follow. Control is immediately given back to the Receive Request section 
at the next executable statement that continues to process the next block of input from the station. On output, 
TERMINATE BLOCK is performed to ensure consecutive outputs to a station. Control is given to the next 
instruction in sequence when another block is available for output. The line is inactive if there is no block 
queued for output. 

TERMINATE ENABLEINPUT 

This statement provides an output request with the possibility of suspending itself in favor of the input 
request logic for the same station, as would be appropriate to some devices which may NAK the select if 
in the transmit ready mode. 

If the station is input enabled, the current request and its message are held in the station initiate queue 
to be re-initiated later from the start, and the input logic is initiated; otherwise, control is immediately returned 
to the write request program at the next statement in sequence. 

TERMINATE 

The use of unqualified TERMINATE can be divided into two distinct functions, the half-duplex and 
full-duplex. 

Full-Duplex 

Since the primary side is dedicated to TRANSMIT and the auxiliary side to RECEIVE, each side has 
the ability to invoke the other (co line) to perform its specific function. When the co line has completed its 
function, an unqualified TERMINATE will return control to the top of the respective line control, that is, the 
primary line control when executed by the primary side, and the auxiliary line control when executed by the 
auxiliary side. 

If message space is owned at the time the terminate is executed, in the case of the auxiliary side, this 
is discarded. In the case of the primary side, this is top queued to the station queue. 

Helf-Duplex 

When executed in the TRANSMIT request, the current message is returned to the top of the station 
queue. When executed in the RECEIVE request and message space has been obtained (via GETSPACE), this 
space is placed on the top of the station queue. The next INITIATE REQUEST to be executed will find this 
input space at the top of the station and enter the RECEIVE request. This feature provides for temporary 
suspension of an input function. 

TERMINATE NOLABEL 

A TERMINATE NOLABEL statement results when an error occurs for which the programmer has no 
disposition. This error is reported to the MCS through an error result header. Control is passed to the be
ginning statement of line control. 

TERMINATE SAVE 

This statement is used to bottom queue (save) message space to the input save queue (when executed 
in the write request). The appropriate queue count (input save queue count or output save queue count) is 
incremented by one. Control passes to the line control procedure if the statement is executed in a write re
.quest. If executed in the read request, control passes to the next instruction. 

TERMINATE PRIORITYSAVE 

This statement is used to top queue message space to the input save queue (when executed in the read 
request) or the output save queue (when executed in the write request). The appropriate queue count is incre-

4-29 



TIMER 
TRANSMIT 

Section 4 
Request and Line Control Section 

mented by one (input or output save queue count). Control passes to the line control procedure (PRIMARY) 
if executed in a write request. If executed in a read request procedure, control passes to the next instruction. 

TIMER 

This statement provides the ability to vary the time given over to manager options. 

The format for this statement is: 

TIMER ~time> 

This statement loads a GROSS TIMER with 2's complement of the stated time. The noresponse refer
ence toggle is reset on execution of this statement. Once primed, the GROSS TIME indicates a timeout by 
marking the noresponse true. 

If the time value is zero, the noresponse toggle is reset and the GROSS TIMER is disabled. The 
maximum time allowed is 65 seconds. 

Both halves of a full-duplex pair can reprime the GROSS TIMER. Both can test or alter the noresponse 
toggle. 

Example 
TIME = 10 MILLI. 
TIMER = 1 SEC. 

TRANSMIT 

This statement is used for output operations to a station. When the TRANSMIT statement appears in 
a line control definition, TRAN and TEXT are not allowed. 

CHARACTER 

ADDRESS l (TRANSMIT) 
(RECEIVE) 
empty 

BCC 

{ 
l'mpty f } 

STRING [BREAK :NULL ] 
empty :label 

TRANSMIT 
TRAN 

BLKN 

TEXT 

CRC 

empty 

[ [~ERRn 
l l BITS {(integer) } l empty I 

~mitary string) :NULL 
:label 

4-30 



Section 4 
Req1Jest and Line Control Section 

TRANSMIT 
WAIT 

If the TRANSMIT empty format is used, the current contents of the character register are transmitted; 
otherwise, the item specified indicates the value to be loaded into the character register before transmission. 
The ADDRESS, TRAN, and BCC forms cause the station address, transmission number, and block-check
character, respectively, to be loaded and transmitted down the line. The CRC form causes the 16-bit CRC 
value to be transmitted. 

The BITS form is used· exclusively with bit-oriented line disciplines. When executed, the instruction 
causes the specified eight-bit <integer> or <unitary string> to be transmitted "as is", with the option selected 
to inhibit zero insertion. Translation is not performed on the <integer> or <unitary string> , nor is the <inte
ger> or <unitary string> included in the CRC calculation. 

If a synchronous underflow is detected while executing this instruction, a branch to the specified UN
DERFLOW ADDRESS is performed. 

"TRANSMIT string" loads and transmits each character of the string specified until the string is ex
hausted. The transmit action part specifies the action strobe taken upon detection of a break. If it is empty, 
then an automatic TERMINATE NOLABEL results from a break; otherwise, an empty label signifies a branch 
to the next statement. A :NULL label signifies that execution should proceed as if the condition associated 
with the label did not occur. A :label specifies that a branch to the designated label should occur. An empty 
ADDRESS qualifier defaults to the receive address. 

The TRANSMIT and TRANSMIT CHAR forms are equivalent. The statement TRANSMIT TEXT is 

equivalent to: 
FETCH [ENDOFBUFFER :2] 
TRANSMIT, 
GO TO 1. 

Examples 
1. TRANSMIT EOT. 

TRANSMIT ADDRESS. 
TRANSMIT SEL. 
TRANSMIT ENQ. 
FINISH TRANSMIT. 

2. TRANSMIT BITS 65 [UNDERFLO:l]. 

WAIT 

This statement is used in conjunction with the CONTINUE statement. WAIT provides a way for one 
side of a duplex channel to synchronize activity with the other. WAIT causes suspension of code execution 
on the line which executes it. 

empty 

[
MICRO} 
MILLI {:action label } 
SEC empty 
MIN 

) WAIT (INTEGER 

WAIT may be used in both control and request sets. 

4-31 



WAIT 

Examples 

1. WAIT. 
2. WAIT (100 MILLI). 
3. WAIT (1 SEC:24). 

Section 4 
Request and Line Control Section 

Example 1 illustrates an unconditional suspension that requires the "other" side of a duplex channel 
to execute a CONTINUE in order to free the W AITing side. 

Example 2 causes the line executing the WAIT to continue the next instruction if: 1) the "other" side 
executes a CONTINUE; or 2) the expressed time value expires. This type of WAIT might be illustrated in 
part of an output request which contains code executed by both the primary and auxiliary sides. The primary 
is executing from the first line of the example. 

IF NOT AUX (LINE(BUSY)) THEN 
BEGIN 

FORK 105. 
WAIT. 
IF LINE (TOG [ 1]) THEN 

TERMINATE NORMAL 
ELSE TERMINATE ERROR. 

END. 

LINE (TALLY[O] = 1 + LINE (TALLY[O]). 
LINE (BUSY) = FALSE 
WAIT (100 MILLI). 
LINE (BUSY) = TRUE 
TERMINATE. 

105. INITIATE RECEIVE. % AUX PORTION 
RECEIVE ACK [ERROR[2], FORMATERR: 109]. 
IF LINE (TALLY[O]) NEQ 0 THEN 

LINE (TALLY[O]) = LINE (TALLY[O]) -1. 

LINE (TOG[l]) =TRUE. 
106. CONTINUE 

TERMINATE. 
109. LINE (TOG [ 1]) = FALSE. 

GO 106. 

LINE (TOG[l]) is used as a signal between sides. LINE (TALLY [O]) contains a count of output mes
sages for which a response has not yet been received. These conventions are not exhausted, nor is the re
sponse code elaborated to treat numbered responses from separate stations. 

Example 3 illustrates a conditional WAIT in which, if the "other" side executes· a CONTINUE before 
the time limit expires, execution proceeds at the next instruction. If the time limit expires, execution resumes 
by the W AITing side at the declared label. 

4-32 



SECTION 5 

MODEM SECTION 
GENERAL 

Section 5 
Modem Section 

This section provides information to the communications subsystem to enable proper communication be
tween it and its attached modems/data sets. The pertine:nt characteristics of each type of modem/data set are 
described in the statements contained in this section. 

MODEM SECTION DESCRIPTION 

The statements that allow these characteristics to be entered into the system are shown below and de
scribed on the following pages. All statements end with a period. 

The format for the Modem section is: 

MODEM identifier 

SPEED = integer. 

TRANSMITDELAY = time. 

TYPE = type, options. 

NOISEDELAY = time. 

I
LOSSOFCARRIER = DISCONNECT. I. 

empty 

For each type of modem/data set on the system there must exist some variation. of the above syntax. 

5-1 



LOSSOFCARRIER 
NOISEDELAY 
SPEED 

LOSSOFCARRIER 

Section 5 
Modem Section 

The LOSSOFCARRIER statement is used only for a switched network (dial up). It indicates the action 
to be taken when LOSSOFCARRIER is detected by the communications subsystem. When a modem is 
declaredwith this statement, special logic is invoked in addition to the normal Modem section code. 

The format for the LOSSOFCARRIER statement is: 

LOSSOFCARRIER = DISCONNECT 

If this statement is included, the line will disconnect if LOSSOFCARRIER is detected. If not, a persis
tent LOSSOFCARRIER causes the line to go not ready without disconnecting it. 

A terminal initiated disconnect (unexpected disconnect) is determined under normal switched logic by 
carrier detected false. This is construed as an unexpected disconnect. 

Example 
LOSSOFCARRIER = DISCONNECT. 

NOISEDELAY 

This statement defines the amount of time delay needed to compensate for the noise on the line to which 
the modem is connected. For INITIATE RECEIVE, the value of the line modem is used. The NOISEDELAY 
statement is required. 

The format for the NOISED ELA Y statement is: 

NOISEDELAY = integer f 
MICRO 1 MILLI 
SEC 
MIN 

The time must be defined as an integer in microseconds, milliseconds, seconds, or minutes. If a zero 
(0) is specified as the transmit delay value (time), the time unit specifier need not be represented. 

Examples 
NOISEDELA Y = 0. 
NOISED ELA Y = 10 MILLI. 

Note 
The NOISED ELA Y should be non-zero only when the modem is connected in a 
half-duplex mode of operation. 

SPEED 

This statement is used in conjunction with the modem TYPE statement. If an asynchronous type is 
specified, the integer is used to represent the maximum baud rate at which the modem may operate. If the 
modem is synchronous, the stated speed is inferred to be that baud rate at which the modem will operate. 

The format for the SPEED statement is: 

SPEED = integer 

Example 
SPEED = 9600. 

5-2 



Section 5 
Modem Section 

The allowable speed value is: 

ASYNC 

50 
75 

100 
110 
150 
200 
300 
600 

1200 
1800 
2400 
4800 
9600 

19200 
38400 

SYNC 

600 
1200 
2000 
2400 
3600 
4800 
7200 
9600 

SPEED 
lRANSMITDB.A Y 

TYPE 

If neither the RATESELECT nor ST AND BY options are specified in the modem TYPE statement, only 

one speed may be specified. 

lRANSMITDB.A Y 

This statement defines the amount of time required for the data set to go from a request-to-send status 

to a ready-to-send status. The TRANSMITDELA Y statement is required. 

The format for the modem TRANSMITDELA Y statement is: 

TRANSMITDELA Y = integer ! ~o l SEC 
MIN 

The time must be defined in microseconds, milliseconds, seconds, or minutes. 

If zero (0) is specified as the transmit delay value, the time unit specifier need not be represented. 

Example 

TRANSMITDELA Y 

TYPE 

250 MILLI. 

This statement is used to define the modem's capability to the system. The DIALOUT option specifies 

that the modem itself has dialout capability. 

The format for the TYPE statement is: 

5-3 



TYPE (MODEM) 
ANSWERTONE 

TYPE = 

SYNC, 

ASYNC, 

The empty option implies leased-line connection. 

Examples 
TYPE= ASYC. 
TYPE = ASYNC, DIALIN, DIALOUT. 

,RATESELECT 
,RATESELECT, STANDBY 
,STANDBY, RA TESELECT 
,DUPLEX 
,DIALIN 
,DIALOUT 
,DIALIN, DIALOUT 
,DIALOUT, DIALIN 
empty 

Section 5 
Modem.Section 

The DIALIN option informs the system that the specified modem is connected in a 4-wire duplex mode 
of operation. 

The STANDBY option may only be selected if the RATESELECT option is specified. 

ANSWERTONE 

This statement indicates that the modem does not have the capability to generate the ANSWERTONE 
on a dial-in connection. 

ANSWERTONE = NEEDED 

It is the responsibility of the line procedure to provide the ANSWERTONE if this statement is used. 

5-4 



SECTION 6 

TERMINAL SECTION 
GENERAL 

Section 6 
Terminal Section 

This section provides a description of the physical aspects of different types of terminals that may be 
on the data communications system. This description is required so that the communications subsystem may 
handle communications with each type of device. 

TERMINAL DEFINITION DESCRIPTION 

For each type of terminal with different physical aspects, a terminal specification must exist. For termi
nals with like characteristics, one terminal specification is required. 

The general format for a terminal definition is: 

TERMINAL { DEFAULT} 
empty 

terminal
identifier: 

terminal-attribute-I. 
terminal-attribute-2. 

terminal-attribute-n. 
empty 

!f_Qg_F ~!JLT j~ .. ~£lf~d, thL';'.91!!.Qiles.. re5_Q8!Iize§_th.!l!Jh.e.J~!!!~!laj __ !l!tr.i!2!1.t~~--~P~me.Q.<l.r~_!Q .. !2<! .. ~~.!'Q£i
~~~iLWitlLth~-1~!.!P.inajj9en!...~§~cifl~.!L. W_Q..e.!L!h.e._!~I..I!!!.Q.<:t!_<:t.!!ri1'J!t~.J2EEA1ILLi§. .. !!,§~.Q.,,1h~L£QID~.ileLr.\;Jers 
to th~Ji~LQ.fJ~rm.ili!Li!tt~b!!1~.~--4~.§.i&n~t~<lJ2y_~tb1!Lt~.rmim~ljll~nt.ill.~_,,_AJl~f!lll!L!~rmi.D.1llm!lY.nQtJte.J:l.e.§!8n!l!~.d
~~CT.J!L~ . .fil.~ti!tn.

The various terminal attribute statements are discussed in the following pages. All statements end with
a period.

6-1

ADDRESS
BACKSPACE
BLOCKED

ADDRESS

Section 6
Terminal Section

This statement specifies the number .of characters tbal a.re ui;i:;g tQ .l!ddress a s!fil!Q.n associated with a
terminal type. The ADDRESS statement is required.

The format for the ADDRESS statement is:

ADDRESS {tJ Ltl
NULL

A device having a receive address and a transmit address is possible. The first to be specified is the
number of characters that make up the receive address (1, 2, 3). The second is the number of characters that
make up the transmit address. If NULL or 0 is specified, an address does not exist and the address length
is not required.

If the transmit address is the same length as the receive a<.!2.r~s 1 the l~ng!h ne<?d !1uot b~ specifi~d. If
the terminal is type bits, the receive address size must be 1. The transmit address size must be 1 or 0. (Refer
to TYPE statement in Section 6.)

Examples
ADDRESS
ADDRESS
ADDRESS
ADDRESS

BACKSPACE

2.
NULL.
2.
0.

% BIDS
% CONTENTION

This statement defines the character that is to be recognized as the ~k~pac~ character: for the asso£i:
ated terminal. ·

The format for the BACKSPACE statement is:

BACKSPACE = unitary-string

The unitary-string may be a hexadecimal or ASCII value, or a constant that is declared in the Constant
section. The backspace character causes a backspace; a delete of the preceding character results if a check
for backspace is in the RECEIVE statement.

Examples
BACKSPACE
BACKSPACE

BS.
4"16".

Note
This character must be specified if it is referenced in the terminal's request or con
trol procedures.

BLOCKED

This statement, if TRUE, informs the communications subsystem that the terminal is capable of sending
and/or receiving data in blocked format.

The format for the BLOCKED statement is:

{ BLOCK }
BLOCKED

{ .TRUE }
FALSE

6-2

Section 6
Terminal Section

BLOCKED
BYTE

CARRIAGE
CLEAR

The request procedure ~etined for the terminal should be coded in a manner that allows blocked format.

Examples

BYTE

BLOCKED = FALSE.
BLOCK = TRUE.

This statement describes the transmission byte to the number of data bits contained and whether or
not a parity bit exists. The BYTE statement is required.

The format for the BYTE statement is:

BYTE integer { ,PARITY}
empty

The integer specifies the number of data bits in the transmitted character. The values for integer are:
4, 5, 6, 7, and 8. Parity may not be specified if a value of 8 is used. Parity must be specified if a value of
4 is used.

The parity action must be consistent with the terminal PARITY statement. That is, if odd or even verti
cal parity is declared, the BYTE PARTIY option must be specified. The parity bit may be declared present
even though it is not used (vertical parity is null) as it is relevant for teletypes and similar devices. All termi
nals on a line must have the same byte size. If the terminal is type bits, then the integer that specifies the
number of data bits must equal 8. (Refer to TYPE statement in Section 6.)

Example
BYTE = 7, PARITY.

CARRIAGE

This statement defines the character that is to be recognized as the carriage return character for the
associated terminal.

The format for the CARRIAGE statement is:

CARRIAGE= Unitary-string

The unitary-string may be a hexadecimal or ASCII value, or a constant that is declared in the Constant
section.

Examples
CARRIAGE = CR.
CARRIAGE = 4 "OD".

Note
Unless declared as an NDL constant, this data character is available only to the
MCS.

CLEAR

This statement defines the clear character for the associated terminal.
The format for the CLEAR statement is:

CLEAR unitary-string

6-3

CLEAR
CODE
CONTROL

Section 6
Tenninal Section

The clear character normally causes the terminal to execute a combined home and clear function by
moving the cursor to the home position and erasing all data. For the clear character to be recognized, the
SCREEN statement must be set to TRUE.

The unitary-string may be a hexadecimal or ASCII value, or a constant that is declared in the Constant
section.

Examples
CLEAR FF.
CLEAR = 4 "OC".

Note
Unless declared as an NDL constant, this data character is available only to the
MCS.

CODE

This statement specifies the character set that is used to communicate with a specific terminal type.
The CODE statement is required.

The format for the CODE statement is:

CODE

BAUDOT
BCL
ASC67
EBCDIC
BINARY
Translate-table-id

Translation of input to the communications subsystem from a terminal is always ASCII. If the terminal
is type bits, then code must be EBCDIC on ASC67. (Refer to TYPE statement in Section 6.)

Examples
CODE

CONTROL

ASC67.

This statement designates the name of the line control procedure to be used on the line to which the
specified terminal is attached. The control statement is required.

The format for the CONTROL statement is:

CONTROL control-identifier-I f ,control-identifier-2 }
) empty

All terminals on a line must specify the same line control procedure.

Examples
CONTROL
CONTROL

POLL. IDLE.
CONTENTION.

If two control procedures are specified, the terminal must be full duplex. The second procedure specifies
the control procedure to be used on the auxiliary line, while the first control is designated on the primary.

6-4

Section 6
Terminal Section

CONTROL
DEFAULT

END
HOME

If a full duplex terminal does not have two control procedures specified, a dummy procedure containing
an IDLE only is created.

DEFAULT

Ih!!! .. §!!!teJD~n.Lspecifie_L th~Llitentifi~L.!!§~Q.~!l!~AwiHL~--§eLgLpre.Q~fm~_g_<:f_eil!!lJL!ermJ1mL~t!ri!2!lte§.
These attributes are assigned to the terminal presently being defined.

The format for the DEFAULT statement is:

DEFAULT = terminal-identifier

Terminal-identifier refers to the terminal-identifier of the default terminal-definition in which the desired
terminal attributes exist. If the DEFAULT statement is used, it must be the first statement in the definition.

Example
DEFAULT

END

TCTYPE.

This statement defines the character to be recognized, if referenced in a RECEIVE statement, as the
ending (terminating) character for a transmission from the associated terminal.

The format for the END statement is:

END = unitary-string.

The unitary-string may be an ASCII or hexadecimal value, or a constant that is declared in the Constant
section.

Examples
END
END

HOME

ETX.
4"03".

Note
This character must be specified if it is referenced in the terminal's request or con
trol procedures.

This statement defines the home character for the associated terminal.

The format for the HOME statement is:

HOME = unitary-string.

The home character normally causes the terminal to execute a cursor home function by moving the cur
sor to the first position on the first line.

The unitary-string may be a hexadecimal or ASCII value, or a constant that is declared in the Constant
section.

Examples
HOME
HOME

DC4.
4"14".

Note
Unless declared as an NDL constant, this data character is available only to the
MCS.

6-5

LINEDELETE
LINEFEED
MAXI NP UT
MOD

LINEDELETE

Section 6
Terminal Section

If referenced in a RECEIVE statement, this statement defines the character to be recognized as the
line delete character for the associated terminal.

The format for the LINEDELETE statement is:

LINEDELETE = unitary-string

The unitary-string may be a hexadecimal or ASCII value, or a constant that is declared in the Constant
section.

Examples
LINEDELETE
LINEDELETE

DCl.
4"11".

Note
This character must be specified if it is referenced in the terminal's request or con
trol procedures.

LINEFEED

This statement defines the line feed character for the associated terminal.

The format for the LINEFEED statement is:

LINEFEED = unitary-string.

The unitary-string may be a hexadecimal or ASCII value, or a constant that is declared in the Constant
section.

Examples
LINEFEED LF.
LINEFEED = 4"0A".

Note
Unless declared as an NDL constant, this data character is available only to the
MCS.

MAXINPUT

ThJs.w.S.!1!:1~1!1~!!!~P~.91!JY.JQjnJ?..~!§.Jm.rrt ... th~J.~nn!ni!l .. ~n1L<i~fi11~.s .. !h~ m~~ivmrrt.§i?;~_J!ll!,n~'.!!h!~. The
MAXINPUT statement is required.

The format for the MAXINPUT statement is:

MAXIN PUT integer

Examples
MAXINPUT 80
MAXINPUT = 255.

MOD

This statement determines the range of the sequence field during bit-oriented communications. The se
quence range is from 0 through MOD value - 1.

The format for the MOD statement is:

MOD

6-6

Section 6
Terminal Section

MOD
PAGE

PARITY

The MOD statement is required in each terminal of type bits. (Refer to TYPE statement in Section 6.)
It is illegal for other terminal types. The MOD value must be the same for all terminals on the same line.

Example

PAGE

MOD= 8

This statement specifies the number of physical lines that are equal to physical page.

The format for the PAGE statement is:
PAGE = integer.

A zero value indicates that the page format is arbitrary.

Example
PAGE= 80.

PARITY

This statement defines the type of vertical or character parity technique and the horizontal or message
block integrity technique, both of which ~l'P!Y.~!5L~!IL!~~.tt~MIIJ2 .. 2LJ~.§~§~_Y!LJr~<?l}!Jh,i~-~~rmin!!L A
PARITY statement is require,d. · ·

NULL /._,;;;
-- -
VERTICAL: {ODD } .. { } EVEN //

PARITY

HORIZONTAL {bee-type l
ere-type f ·{: }

bee-type I (!) I ODD) (Q) -empty EVEN

ere-type - CRC ({ EC~6A})

If only one type is specified, only that type of checking is performed. If PARITY = NULL is specified,
vertical parity and horizontal integrity generation/checking are not performed. Horizontal or vertical checking
may be done for even or odd parity.

The vertical specification refers to the character itself, while the horizontal is used for parity checking
of the block check character (BCC).

If a request procedure defined in a terminal REQUEST statement references the BCC, it is mandatory
that the horizontal parity be specified. If the option value (1) is specified, it indicates that the vertical parity
bit of the BCC is the sum of the vertical parity bits of the summed characters. If the option is omitted or
zero, the vertical parity bit of the BCC is a true parity bit of the BCC character.

If vertical parity is specified, the BYTE statement must include the PARITY option. If
PARITY=NULL and a parity bit is specified in the BYTE statement, the parity bit is ignored. All terminals

6-7

PARITY
REQUEST
SAVE

Section 6
Terminal Section

on a line must specify the same vertical parity. If the terminal is type bits, then PARITY must be HORIZON
TAL : CRC (ECMA). (Refer to TYPE statement in Section 6.)

Example

PARITY = VERTICAL : ODD, HORIZONTAL (0) : ODD
PARITY = VERTICAL: EVEN, HORIZONTAL: CRC (ECMA)

REQUEST

This statement associates the input/output capabilities of a terminal with the request procedures that
handle input from (RECEIVE) and output to (TRANSMIT) the associated terminal. This statement is required.

The format for the REQUEST statement is:

REQUEST=

identifier: { TRANSMIT}
RECEIVE {~} identifier: { RECEIVE }

TRANSMIT

The REQUEST action defined for the terminal is checked for consistency with the MYUSE statement
in the Station section for any station definition that refers to this terminal type. If, for example, a station
specifies both input and output capabilities in the MYUSE statement, but the associated terminal has only
a receive request defined, an error is indicated.

Examples
REQUEST
REQUEST
REQUEST
REQUEST

SELECTBID : TRANSMIT, POLLDISPLAY : RECEIVE.
SELECTTC5 : TRANSMIT, POLLTC5 : RECEIVE.
BLOCKTC7 : RECEIVE.
TESTTC35 : RECEIVE, DOTC35 : TRANSMIT.

SAVE

Note
A request statement such as REQUEST = TESTTC5 TRANSMIT, INTC5
TRANSMIT

or
REQUEST= TESTTC5: RECEIVE, INTC5: RECEIVE, is invalid and causes
the message "MISSING OR INVALID REQUEST ID QUALIFIER" to be
printed.

This statement determines the number of items that may be contained in the input and the output save
queues.

The format for the SA VE statement is:

SAVE = inte.ger

The integer value is a number from 1 to 7 if the MOD statement has been declared as MOD = 8, or
1 to 127 if the MOD statement has been declared as MOD = 128.

The SA VE statement is required in each terminal of type bits, and is illegal for other terminal types.
(Refer to TYPE statement in Section 6.)

6-8

SAVE
SCREEN

Section 6 SPEED
Terminal Section TAU.IES

Examples
SAVE 6.

SCREEN

This .~tat.~_!!lent j~s,~,!_!RVlL()~!L~L~!!~iss~.£~~!~.~L.t~!Pi!!~l}!~S.-s!L~elax .. E~E~iliti~:

The format for the SCREEN statement is:

SCREEN { TRUE }
FALSE

Example
SCREEN = TRUE.

SPEED

Note
This data is available only to the MCS.

This statement defines the line speed(s) possible for that terminal. This statement is required.

SPEED f
' Q) l

integer Lm~~)

If t1!~.J~II!!~.!!.~Lty~,J§.l~.s,ym~hr.m1@J> . ..,!h~,,t~JJI!i11aj ~PJ;:EJ? ... §.t;:t!~m~.11t §l?~fi,fi~,S .. \lP.JQ.fiY~ ... SP.~~.Q§.J!! .. .wJt!fh.
th.~.~mi!nl!!.m~Y .. Ql!~~!~,JL!!!QL~JhJ!!LQmL§P~.!!~<t .. i§ .. J.i§!t!<L .. !!:i~Q .. !'tJl.tiQIJ§.Y!..hQ.!>~ ... !~.i:m!!!s~L§!~!~!l!~Qtl1l!.ffi~.8-.§!1£.!i
!L!~i:minfil I!!Y!'!J,I!i~ ... !ht! .. s,ta!i9!L SJ?EEP. !iliil~m~nL!Q . .l!P~~·~!fLQtJ~. gJtb~Jis,tJ;~L s,p~~gs,,, No STOPBIT option
is allowed. Also, the STOPBIT option may be empty and, as such, implies one stop bit.

If the terminal TYPE is synchronous, one maximum speed is specified.

Examples
SPEED = 2400.
SPEED = %00 (1).

TAU.IES

Note
Possible asynchronous speeds are: 75, 100, 110, 150, 200, 300, 600, 1200, 1800,
2400, 4800, 9600, 19200, and 38400.

Possible synchronous speeds are: 1200, 2000, 2400, 3600, 4800, 7200, and 9600.

This statement specifies whether or not the control and request procedures used by this terminal may
reference tally [3] through tally [18].

The format for the TALLIES statement is:

TALLIES { TRUE }
FALSE

If TALLIES is set TRUE, the additional tallies (3-18) may be referenced; if FALSE, the tallies may
not be referenced. The default value is FALSE.

6-9

TAll.IES
TIMEOUT
lRANSMISSION
lRANSPARENT

Section 6
Terminal Section

The TALLIES statement must agree with the TALLIES statement for all stations that use the same
terminal. (Refer to TALLIES statement in Section 7.)

Examples
TALLIES
TALLIES

TRUE
FALSE % DOCUMENTATIONAL

TIMEOUT

This statement defines the time period: 1) between the receipt of one character (indicated by the last
stop bit of that character for asynchronous lines) and the start of the next character (indicated by the start
bit of that character for asynchronous lines) from a terminal; or 2) between the initiation of a read and the
receipt of the first character from the station. The TIMEOUT statement is required.

TIMEOUT fit•~< { f 1

The time must be defined as an integer of microseconds, milliseconds, seconds, or minutes. This time
may also be used to specify the time period allowed for a response to an output.

Examples
TIMEOUT 10 MILLI.
TIMEOUT = 3 SEC.

lRANSMISSION

This statement defines the length of the transmission number for the associated terminal.

The format for the TRANSMISSION statement is:

TRANSMISSION {Tl
The number zero and NULL are equivalent and specify that no transmission number is to be used.

NULL may not be used if the item TRAN is mentioned in a request procedure of the terminal. If the terminal
is type bits, the transmission statement is disallowed. (Refer to TYPE statement in Section 6.)

Examples

TRANSMISSION= NULL.
TRANSMISSION = 2.

lRANSPARENT

This statement allows an MCS to know, by a communicate, that a terminal is capable of sending or
receiving transparent data.

The format of the TRANSPARENT statement is:

TRANSPARENT { TRUE }
FALSE

The TRANSPARENT statement is only valid on a terminal specified as type bits. (Refer to TYPE state
ment in Section 6.)

6-10

Section 6
Terminal Section

Example
TRANSPARENT

TURNAROUND

TRUE.

TRANSPARENT
TURNAROUND

TYPE

This statement specifies the time between the communications subsystem's "turning the line around"
and the terminal's being able to receive characters. The TURNAROUND statement is required.

The format for the TURNAROUND statement is:

TURNAROUND integer [
MICRO l
MILLI
SEC
MIN

The time specified should be the time from the communications subsystem's initiating transmit to the
time the terminal is capable of receiving characters. It is an integer value of the number of microseconds,
milliseconds, seconds, or minutes that represent the proper turnaround time.

Examples
TURNAROUND
TURNAROUND

250 MILLI.
0.

Note
If a TURNAROUND of 0 is specified, the time unit descriptor need not be pres
ent.

TYPE
This statement provides for the description of the type of connection for this terminal. Several may be

specified indicating several possibilities for each station.

The format for the TYPE statement is:

ASYNC (elm~f~: J
TELEX

TYPE= SYNC (MODEM)
(,BITS I
{,DUPLEX l
l WRAPAROUND

empty

...)
{ .DUPLEX}

empty

MODEM, DIRECT, BDI, and TELEX qualify the ASYNC type. Several may be specified indicating
that there are several possibilities for each relevant station. If MODEM, DIRECT, or BDI are not specified,
all are inferred as possibilities. In these cases, the relevant station declarations must contain a station TYPE
statement in order to select one of the possible ASYNC types.

The WRAPAROUND option specifies that a full-duplex line adapter is capable of an internal wrap
around; that is, all output is wrapped back as input on the auxiliary side· of the line. Systems whose adapters
do not have this capability will ignore the option and attempt to run the terminal.

If the terminal is declared as SYNC, the MODEM option must be present for these types. The terminal
TYPE statement is required.

The terminal DUPLEX option must be consistent with the read and write requests and line control(s)
declared for the terminal.

6-11

TYPE
WRAPAROUND
WIDTH

TELEX excludes DIRECT and BDI, but implies MODEM.

Section 6
Terminal Section

BDI and MODEM may be specified with DUPLEX, but DIRECT connect is disallowed.

A BDI non-duplex terminal cannot be used on a BDI DUPLEX line.

If a terminal is non-telex and the line specifies TELEX, DUPLEX is not allowed in the terminal specifi
cation. If a terminal specifies TELEX, the station and line must specify TELEX.

If a TELEX is specified:
1. The byte statement equals 5 with no parity.
2. Parity must specify null.
3. Speed is equal to 50, and only one speed is specified.

Examples

The BITS option indicates that the terminal is capable of using bit-oriented line disciplines (i.e., BDLC,
SDLC, HDLC). The BITS option may be used with SYNC type terminals only.

If BITS is declared, then:
1. The terminal must be SYNC and MODEM.
2. The ADDRESS statement (refer to ADDRESS in Section 6) must be "l, 1" or " 1,0 ".
3. BYTE must be 8. (Refer to BYTE statement in Section 6.)
4. CODE can only be EBCDIC or ASC67. (Refer to CODE statement in Section 6.)
5. PARITY must be HORIZONTAL : CRC (ECMA). (Refer to PARITY statement in Section 6.)
6. SAVE and MOD statements are required. (Refer to these statements in Section 6.)

Examples
TYPE
TYPE
TYPE
TYPE
TYPE

WRAPAROUND

ASYNC (DIRECT).
SYNC (MODEM), DUPLEX.
ASYNC (MODEM, BDI), DUPLEX
SYNC (MODEM), DUPLEX, BITS.
SYNC (MODEM), BITS.

This statement specifies whether automatic WRAPAROUND occurs for messages that exceed the value
specified in the LINEWIDTH statement.

The format for the WRAPAROUND statement is:

WRAPAROUND= { TRUE }
FALSE

If true, WRAPAROUND occurs; that is, if the device receives a message that exceeds the line width,
it automatically places the excess on successive lines.

Example
WRAPAROUND

WIDTH

TRUE.

Note
This data is available only to the MCS.

This statement defines the length of a physical line of output from the terminal. This length must be
less than or equal to the length defined in the MAXINPUT statement.

6-12

Section 6
Terminal Section

The format for the WIDTH statement is:

WIDTH = integer.

WIDTH
WRU

A line of output may be less than the number of characters specified by the WIDTH statement. If
WIDTH is not defined, a default value of 255 is used.

Example
WIDTH= 72.

Note
This data is available only to the MCS.

WRU

If referenced in a RECEIVE statement, this statement defines the character that is to be recognized
as the WRU (WHO ARE YOU) character for the associated terminal.

The format for the WRU statement is:
WRU = unitary-string.

The unitary-string may be an ASCII or hexadecimal value, or a constant that was declared in the Con
stant section.

Examples
WRU ENQ.
WRU = 4 "05".

Note
This character must be specified if it is referenced in the terminal's request or con
trol procedures.

6-13

SECTION 7

STATION SECTION
GENERAL

Section 7
Station Section

This section specifies the logical characteristics of the remote stations to the data communications net
work. The type of terminal, the station's address, and the modification of standard terminal type information
(such as end-of-message character, and line width) are some of the station information that is specified in the
Station section.

STATION DEFINITION DESCRIPTION

For each station on the data communications network, a station definition must exist. Stations with like
characteristics may use the station DEFAULT statement to reduce source code.

The general format for a station definition is:

STATION
{ DEFAULT}

empty
station
identifier: I station-attribute-st.atement-1 . . . I

station-attribute-statement 2 .. .
station-attribute-statement 3 .. .

If DEFAULT is specified, the compiler recognizes that the specified station-attribute-statements are to
be associated with the specified station-identifier. When the station-attribute-statement DEFAULT is specified,
the compiler uses the station-identifier of the DEFAULT statement to decide with which station the DE
FAULT definition is to be associated. A STATION DEFAULT cannot be designated in a Line, or File sec
tion.

Examples
STATION DEFAULT DCTC5:

TERMINAL = TC51A.
ADDRESS = "IA".

The DEFAULT statement further explains the use of the station format. All statements end with a peri-
od.

7-1

ADDRESS
CONTROL
DEFAULT

ADDRESS

Section 7
Station Section

This statement specifies the address of a station for operations such as polling and selecting.

The format for the ADDRESS statement is:

ADDRESS = {
address - string }

(receive - address-string, transmit-address-string
(* , transmit-address-string)
(receive-address-string, *)

If the ADDRESS statement is not used in a station definition, the mode of the associated station must
be contention. The length of the address specified must be equal to the length defined in the terminal AD
~RESS statement for the respective terminal type.

If the terminal specified a non-zero address length, the station must specify an address.

The "*" indicates that no address is required. If only one address is specified, both the receive and
transmit address are the same.

The address-string may be either an ASCII or hexadecimal string.

Examples
ADDRESS = "lA". % CHARACTER STRING
ADDRESS = "J". % CHARACTER STRING
ADDRESS =\4"F1Cl". % HEX STRING
ADDRESS = 4 "Dl". % HEX STRING
ADDRESS = ·("lJ", "J12")
ADDRESS = (4"F1Dl '', 4'!D1F1F2")
ADDRESS = (4"01", *).

Note
If the specified terminal has a non-zero address length specified in the Terminal
section, the Station section must specify an address.

CONTROL

This statement defines a character which is referenced in a RECEIVE statement and is used as the first
nonblank character in a message text. This character must be specified if CONTROL or CONTROLFLAG
is referenced in the control or request procedures.

The format for the CONTROL CHARACTER statement is:
CONTROL = unitary-string

The character in the unitary-string may be expressed as either an ASCII or hexadecimal value.

Examples
CONTROL = "$".
CONTROL = 4"5B". %HEX

DEFAULT

This statement specifies the name of a set of station-attribute-statements to be used for a station. For
stations with like characteristics, it is advantageous to group these common characteristics under a DEFAULT

7-2

Section 7
Station Section

DEFAULT
ENABLEINPUT

FREQUENCY
INITIALIZE

definition and list any remaining statements under each individual station definition. The NOL compiler then
refers to the default list to complete the station specification.

The format for the DEFAULT statement is:

DEFAULT = station-default-identifier.

The station-default-identifier must have been described previously in a station DEFAULT definition. If
the DEFAULT statement is used, it must be the first statement in the definition.

Example

STATION DClOORJE:

ENABLEINPUT

DEFAULT = DClOORJES.
MODEM = M201B.

If set true, this statement implies that input from a station on an attached line will be accepted and/or
solicited (polled devices) upon completion of communications subsystem initialization without a specific re
quest from an MCS.

The format for the EN ABLEINPUT statement is:
ENABLEINPUT = { TRUE }

FALSE

Example

ENABLEINPUT = FALSE.

Note
If ENABLEINPUT = TRUE, the station's MYUSE statement must specify input.

FREQUENCY

This statement specifies the approximate intervals in arbitrary units at which the station being described
is to be polled.

The format for the FREQUENCY statement is:
FREQUENCY = integer.

The maximum number that may be specified is 255. This value can be interrogated in the Line Control
section and the Request section; it is a read-only value.

Example

FREQUENCY 75.

INITIALIZE

This statement provides the ability to preset user tallies (0, 1, and 2) and toggles (7 through 0) to values
that apply at data comm initialization time. Tallies and toggles not initialized are set to zero or false, respec
tively.

INITIALIZE {
TOG[n]
TALLY[n]
TALLY[n] [bit-n]
TOGS 1 {

TRUE

} . .
FALSE
unitary-string
integer

7-3

INITIALIZE
LOGIN
MODEM
MYUSE

Section 7
Station Section

TOG[n] and TALLY [n] [bit-n] must be assigned TRUE or FALSE. TALLY[n] and TOGS must be
assigned a unitary-string or integer. The values apply at initialization only, since they are not protected (read
only) fields within the station table.

Examples
INITIALIZE TOGS = 255.
INITIALIZE TALLY[l] = 1, TALLY[2] = 4"7F'',

TALLYfOl f41 = TRUE, TOG[2] = TRUE.

LOGIN

This statement specifies whether or not a station must log onto the system before communication can
be continued. The station is logged in when the NDL receives a message header for the station with MCS
data bit 14 set.

The format for the LOGIN statement is:

Example
LOGIN

MODEM

LOGIN

TRUE.

{ TRUE}
FALSE

This statement defines the modem or data set to be used with this stat~on. The modem-identifier must
refer to a description previously defined in the Modem section.

The format for the MODEM statement is:
MODEM = modem-identifier.

The modem on a station must be compatible with the modem on the line to which the station is con
nected. The selected modem must match the station in type and, if they are asynchronous, must have a speed
greater than or equal to that of the station. If synchronous, they must be less than or equal to the station
speed.

Example
MODEM= TA734.

All modems on a line must have the same speed.

MYUSE

This statement specifies whether a station is to be used for input only, output only, or both. The
MYUSE statement is required.

MYUSE = {
INPUT } OUTPUT
INPUT, OUTPUT
OUTPUT, INPUT

A terminal REQUEST statement must be defined within the terminal description associated with this
station for handling the capabilities specified in the MYUSE statement. Thus, if a station is to receive and
transmit to the system, the terminal named in the station TERMINAL statement for that station must contain
transmit and receive request identifiers.

7-4

Section 7
Station Section

Examples
MYUSE
MYUSE

PAGE

INPUT.
INPUT, OUTPUT.

MYUSE
PAGE

PHONE
RETRY

This statement defines the number of logical lines per logical page. The value specified must be less
than or equal to the number of lines specified for the terminal PAGE statement unless the number is zero,
indicating that paging can be arbitrary.

The format for the PAGE statement is:
PAGE = integer.

If a PAGE statement is not included in the station description, the station's terminal specifications for
paging are assumed.

Example
PAGE-= 33.

Note

This data is available only to the MCS.

PHONE

This statement lists the telephone number associated with the station being described. The telephone
number may not exceed 14 digits.

PHONE = integer.

Embedded hyphens are not allowed and should be deleted. The presence of the PHONE statement im
plies that the communications subsystem can dial the station, and that a modem has been specified as DIA
LOUT.

Example
PHONE

RETRY

"2152698575".

Note

This data is available to the MCS only.

This statement defines the number of retries that are to be accomplished for this station on a data com
munications error. For example, a transmission of message text to a station may be retransmitted up to the
retry count specified. If the error continues, the communications subsystem notifies the system.

The format for the RETRY statement is:
RETRY = integer

The maximum value that may be expressed by the integer is 255.

Example
RETRY= 15.

7-5

SPEED
SPO

SPEED

Section 7
Station Section

This statement is used to associate one of the speeds that is described in the terminal SPEED statement.

SPEED integer , ... 1 Q) l
em~ (

The integer must express the speed desired and the STOPBITS option must correspond to the terminal
SPEED statement. This option is used for asynchronous terminals only. The SPEED statement is required.

Example
SPEED = 9600(1).

If a station is connected on an asynchronous line and a modem is on that line:
1. If neither the RATESELECT nor STANDBY options are specified in the modem's TYPE statement, only

one speed may be specified.
2. If RATESELECT is specified, two speeds must be given with the higher value corresponding to the high

value of the RATESELECT. The other speed is the low speed.
3. If both RATESELECT and STANDBY are specified, three speeds must be given. The highest one is

the normal speed (i.e., STANDBY = FALSE). The other two speeds are the high and low speeds, and
correspond to the RATESELECT setting when STANDBY is TRUE.

4. The station speeds must be less than or equal to the corresponding station's modem speeds and the line's
modem speeds.

5. All stations must have the same number of stopbits.
6. A terminal must specify at least two speeds if it is on an asynchronous line having the RATESELECT

options.
7. A terminal must specify at least three speeds if it is on an asynchronous line having both RATESELECT

and ST AND BY options.

If a station is on a synchronous line:
1. A synchronous station may specify only one speed.
2. The speed of the station must be greater than or equal to the fastest speed specified on that station's

modem and line's modem.
3. A synchronous station's SPEED statement cannot specify stopbits.
4. The speed of a synchronous terminal must be greater than or equal to the fastest speed specified by that

line's modem.
5. The speed of a terminal on a synchronous line must be greater than or equal to the fastest speed specified

by that line's modem.

All stations on a line must specify the same speed(s).

SPO

If TRUE, this statement specifies that the station can be treated as a system SPO (console printer).
This implies all system messages may be directed to the station and the station may input messages to the
system as if it were a central system console printer.

The format for the SPO statement is:

. Example
SPO

7-6

TRUE.

{ TRUE }
FALSE

Section 7
Station Section

TALLIES

TALLIES
TERMINAL

TYPE

This statement specifies whether or not the additional station tallies (3-18) are available to the station.

The format for the TALLIES statement is:

TALLIES { TRUE l,
FALSE J

If TALLIES is TRUE, there are 16 more tallies available for the station. The default value is FALSE.

The station's TALLIES statement must agree with the station's terminal TALLIES statement. (Refer
to TALLIES statement in Section 6.)

Example
TALLIES
TALLIES

TERMINAL

TRUE.
FALSE. % DOCUMENTATION ONLY

This statement specifies the name of the terminal description that defines the physical characteristics
of the station being described. The TERMINAL statement is required.

The format for the TERMINAL statement is:

TERMINAL = terminal-identifier.

More than one station description may refer to the same terminal description.

Example
TERMINAL = TC500.

TYPE

This statement provides the selection of specific parameters that were specified in the terminal TYPE
statement. If only one set of parameters was specified in the terminal TYPE statement, no further definition
is required.

The format for the station TYPE statement is:

SYNC {(MODEM)}
empty

{,BITS }
empty

TYPE

{ CTEIB~ 1 (DIRECT)
ASYNC (MODEM)

(BDI)
empty

If specified, the station TYPE must agree with the terminal TYPE. The BITS option may only be
specified with SYNC and MODEM. If BITS is specified, it indicates that the station is capable of communi
cating in a bit-oriented line discipline environment.

7-7

TYPE
WIDTH
WRAPAROUND

Examples
TYPE = ASYNC.
TYPE = ASYNC (DIRECT).
TYPE = SYNC (MODEM), BITS

Note
If DIRECT, MODEM, BDI, or TELEX is not specified for TYPE = ASYNC, only
one ASYNC type may be specified in the terminal TYPE statement.

WIDTH

Section 7
Station Section

This statement specifies the maximum number ·of characters in a logical line of output. The value de
fined must be less than or equal to the number of characters specified in the WIDTH statement of the associ-
ated terminal description. ·

The format for the WIDTH statement is:

WIDTH = integer.

If no station WIDTH statement is included in the station description, the information specified for the
terminal TYPE associated with the station is used as a default width size.

Example
WIDTH= 72.

Note

This data is available only to the MCS.
WRAPAROUND

If TRUE, this statement indicates that the station's terminal prevents the truncation of output messages
whose length is greater than that specified by the WIDTH statement.

The format for the WRAPAROUND statement is:

WRAPAROUND = { TRUE }
FALSE

If no station WARPAROUND is specified, the terminal WRAPAROUND specification is used.

Example
WRAPAROUND= TRUE.

Note

This data is available only to the MCS.

7-8

SECTION 8

LINE SECTION
GENERAL

Section 8
Line Section

This section provides the logical and physical characteristics of the lines to the communications subsys
tem. For each line on the data communications system, this section provides the initial state of the lines and
their physical relationship to the stations in the network. A line definition is needed for all lines on the system.

LINE DEFINITION DESCRIPTION

For each line on data communications network, a line definition must exist. Lines with like characteris
tics may use the line DEFAULT statement to reduce source code. The line TYPE must be explicitly stated.

The general format for a line definition is:

LINE { DEFAULT}
empty line-identifier:

line-attribute-statement-I.
line-attribute-statement-2.

line-attribute-statement-n.

If DEFAULT is specified, the compiler recognizes that the line-attribute-statements specified are to be
associated with the specified line-identifier. When the line-attribute-statement DEFAULT is specified, the com
piler uses the line-identifier of the DEFAULT statement to decide which line DEFAULT definition is to be
associated with that line. A DEFAULT line definition is not considered to be attached to the system.

Example
LINE DEFAULT LEASEDLINE:

MODEM = TA783.

The line DEFAULT statement further explains this format. All statements end with a period.

8-1

ADDRESS
DEFAULT

ADDRESS

Section 8
Line Section

This statement is used to specify the physical address of the described line. This statement is required.

The format for the ADDRESS statement is:

ADDRESS addrl addr2

addrl {integer }
empty

addr2 {:integer}
empty

The ADDRESS statement is different for each of the CMS systems.

B 80 Systems
1. <addrl> is the channel number (0-7).
2. <addr2> is the sub-channel number (0-2) or empty.

B 700/B 800 Systems
1. <addrl> is the PMLC number (0-1)
2. <addr2> is the line number (0-15).

B 1800 Systems
1. <addrl> is the logical DCP number (0-4).
2. <addr2> is the adapter number (0-6).

CP9550 Systems
1. <addrl> is the logical DCP number (0-7).
2. <addr2> is the line number (1-7).

Example
ADDRESS 0:2.

DEFAULT

This statement is used to specify the name of a set of line-attribute-statements to be associated with
a line. For lines with like characteristics, it is advantageous to group these characteristics under a DEFAULT
definition and list any additional statements under each individual line definition. The NDL compiler then re
fers to the default list to complete the. line specification.

The format for the DEFAULT statement is:

DEFAULT = line-default-identifier.

The line-default-identifier must have been described previously in a line DEFAULT definition. If the
DEFAULT statement is used, it must be the first statement in the line definition.

8-2

Section 8
Line Section

Example

LINE TCOl:
DEFAULT = LEASEDLINE.
STATION = TC51A.

MAXSTATIONS

DEFAULT
MAXSTATIONS

MODEM
RATESELECT

This statement specifies the maximum number of stations that may be attached to a line. The MAXSTA
TIONS statement may be specified for any line that has stations or has the capability of having stations.

The format for the MAXST A TIO NS statement is:

MAXSTATIONS = integer.

The maximum number of stations per line is the smaller of 99 of the number of stations specified in
the Station section. If the MAXSTATIONS statements are not specified, it is assumed that the maximum num
ber of stations equals the number of stations that are explicitly specified as being on the line. If no stations
are assigned to the line, MAXSTATIONS must be greater than 0.

Example
MAXST A TIO NS 86.

MODEM

This statement defines the modem that is to be associated with this line. The modem-identifier must
refer to a description previously defined in the Modem section.

The format for the MODEM statement is:

MODEM = modem-identifier

The line MODEM must be compatible with the modems on each station on the line.

Example
MODEM

RATESELECT

SUPERMODEM.

Some modems have the ability to operate at two different speeds. If the modem used on the line has
this ability, this statement specifies the position at which the modem is to be set initially.

RATESELECT =

This statement must occur if line MODEM specifies RATESELECT.

8-3

STANDBY
STATION
TYPE

STANDBY

Section 8
Line Section

This statement specifies whether, at system initialization, the modem is operating at its normal speed
(STANDBY or FALSE) or one of its standby speeds.

STANDBY = { TRUE }
FALSE

If this .statement is not specified, ST AND BY is false.

STATION

This statement identifies the stations associated with that line. The station-identifiers used in the Station
section are acceptable entries in this statement.

The format for the STATION statement is:

STATION = station-identifier-1, ••• station-identifier-n.

Example

TYPE

STATION = TC51A, TC51B, TC5AA, TC7BB.

The number of stations specified may not exceed MAXSTATIONS.

This statement specifies the state of the associated line, whether it is a DIALIN or DIALOUT line.

The format for the TYPE statement is:

empty
DIRECT

TYPE= DIAL IN
DIALOUT
DUPLEX
BITS

MODEM

filll.
TELEX

DIRECT

type.

BDI

This indicates that there is no data set interface and that the connection is a two-wire direct connect

This indicates a balanced differential interface line. This is a type of three-wire direct-connect; therefore,
no modem should be specified.

MODEM

If not further qualified, this option implies that the line is a leased line.

TELEX

type.

8-4

A line which may be dialed from a remote station or a group of remote stations is a DIALIN line.

A line that has telex units attached to it. All stations on the line must have TELEX specified as their

Section 8
Line Section

If TELEX is specified:
1. STANDBY is not allowed.

TYPE

2. If terminal or station specifications used on that line allows TELEX, then RATESELECT is not allowed.
3. The 'terminal and station type specifications must be asynchronous.

If no TYPE is specified, the default is an unqualified MODEM or DIRECT, depending upon the pres-
ence of a MODEM statement. ·

DIALIN

A line which may be dialed from a remote station or a group of remote stations is a DIALIN line.

DIALOUT

A line that is attached to an automatic calling unit (ACU) and is capable of dialing out to a data set
is called DIALOUT. The DIALOUT line and its associated ACU may be used by the system to call up any
compatible remote station which can be dialed.

DUPLEX

A line that transmits and receives on two different physical wires without requiring line turnaround
times is called a DUPLEX line.

BITS

A line that is capable of communicating in a bit-oriented line discipline environment is called BITS (i.e.,
BDLC line discipline).

Examples
TYPE = DIRECT.
TYPE = MODEM, DIALIN.
TYPE = MODEM.
TYPE = MODEM, DIALOUT (ACU).
TYPE = MODEM, DIALOUT (MODEM), DUPLEX.
TYPE = MODEM, DUPLEX, BITS.

8-5

SECTION 9

DCP SECTION
GENERAL

Section 9
DCP Section

This section provides the NDL programmer with the capability to describe the main memory buffer con
figuration which best suits the environment. If the DCP section is omitted, default values are calculated from
other network parameters.

DCP Definition Description

The format for the DCP definition is:

DCP identifier:

LIMIT
BUFFER COUNT
BUFFERSIZE

{ CO DEFILE
empty

integer.*
integer. *
integer. *

= identifier.

MEMORY = integer.
TERMINAL [phrase] = identifier.
DCP [<.identifier)] MEMORY = integer.

*These statements are not required, but if any one is specified, then all three are required.

There may only be one DCP section in the NDL program.

9-1

BUFFERCOUNT
BUFFER
CODEFLE
DCP MEMORY

BUFFERCOUNT

Section 9
DCPSection

This statement allows the NDL programmer to specify the minimum buffer count for the system. This
statement is required.

BUFFERCOUNT = integer

The integer specified must be greater than 3. Caution should be used when specifying large buffer counts
and large buffer sizes that excessive amount of memory are not being used.

Example
BUFFERCOUNT IO.

BUFFER

This statement allows the NDL programmer to specify the size of the data communications buffer in
bytes. This statement is required.

BUFFER = integer.

The integer specified must be greater than 41. Caution should be used when specifying large buffer
counts and buffer sizes that excessive amounts of memory are not being used.

Example
BUFFER 256.

CODEFLE

This statement allows the NDL programmer to specify a name for the NDL object code file; this state
ment is optional. If it is not specified, the default code file name is NDLSYS.

The format for the CODEFILE statement is:

CODEFILE = "identifier".

The identifier is less than or equal to 12 characters.

Example
CO DEFILE "COD776".

DCP MEMORY

This statement specifies the amount of memory on a particular DCP on a system.

The format of the DCP MEMORY statement is:

OCP [identifier] MEMORY = integer

In the DCP MEMORY statement, the identifier tells which DCP is being referenced. Identifiers can have
a value from 0 to 7.

Integer specifies the amount of memory on a particular DCP. It must have one of the following values:
6144, 8192, 32768, 49152, or 65536. The default is 65535.

Example
DCP [2] MEMORY 8192.

9-2

Section 9
DCPSection

MEMORY

MEMORY
LIMIT

TERMINAL

This statement allows the NDL programmer to specify the amount of main memory in the system in
bytes. This statement is documentational only.

The format for the MEMORY statement is:

Example
MEMORY

LIMIT

MEMORY

98304.

integer.

This statement allows the NDL programmer to specify the maximum number of buffers that will be allo
cated by the system. This statement is required.

LIMIT = integer.

The integer must be equal to or greater than the value for BUFFERCOUNT. The difference between
LIMIT and BUFFERCOUNT determines the size of the reserve buffer pool.

If there is no DCP section, the total buffer space will not exceed 14,000 bytes.

Example
LIMIT 20.

TERMINAL

This statement is used by the NDL programmer to provide information for the post processor program
(refer to Section 12) which creates the non-interpretive NDL.

TERMINAL ["identifier" (0 to 7)

terminal-id,
(ALL)

LOAD c-)
empty

The identifier within quotes (") is the name that the post processor program assigns to the non-interpre
tive DCP code file. The "identifier" must be 12 or fewer characters. The number following the identifier
specifies to which DCP the non-interpretive code file is to be loaded. LOAD specifies that the program-id spec
ified in this statement is the code file loaded to the specified DCP at MCS execution time. If LOAD is not
specified, NDLDCP is loaded at MCS execution time and used with all defined terminals, if the corresponding
DCP memory size is 6144. Otherwise, the LOAD file is BDLDCP with all terminals.

The terminal-ids are the identifiers specified in the Terminal section of NDL. These identifiers are used
by the post processor to identify which request sets are to be put into the non-interpretive NDL. If ALL is
specified, all the Terminal section's request sets are included in the non-interpretive NDL. A maximum of
five TERMINAL statements may be specified per DCP.

The "identifier" may be NDLDCP, in which case, the post processor program ignores the information
in this statement, but the REDEFINE.STATION statement uses it to determine whether or not the terminal

9-3

TERMINAL

may be used.

Examples

9-4

TERMINAL ["ABC" (3) : LOAD] = TD 800, TD 700,
TERMINAL ["BRDBAUD" (1) : LOAD] = ALL.
TERMINAL ["NDLTESTl" (0)] = TD 800, TD 700, TC500.

Section 9
DCPSection

SECTION 10

FILE SECTION
GENERAL

Section JO
File Section

This section of a network definition associates stations that are part of the network with the data comm
file of an object job(s). The stations referenced in the File section must be defined in the Station section of
the network definition.

File Definition Description

The general format for a FILE definition is:

FILE file-identifier: family-statement

The file-identifier assigned by the NDL programming is associated with the family description following
it.

Example
FILE BANKONE:

FAMILY = STATION!.

10-1

FAMILY

FAMILY

Section 10
File Section

This statement defines the station identifiers, or other files that are to be considered members of that
family and associated with that file-identifier.

The format for the FAMILY statement is:

FAMILY f
station-identifier

file-identifier

If the file-identifier option is used as part of the family description, it must have been previously defined
in the File Section.

The station-identifier option is used to specify all the stations associated with that file-identifier. All sta
tions must have been previously defined in the Station section.

Examples

10-2

FILE BANKONE: FAMILY= TC51A; TC7BA, TU7RR.
FILE BANKTWO: FAMILY = TC701, TC702, TC703.
FILE ALLBANKS: FAMILY= BANKONE, BANKTWO, TC3CA.

Note
All file identifiers must be unique in the first 12 characters.

Section 11
Operation of CMS NDL Compiler

SECTION 11

OPERATION OF CMS NOL COMPILER
GENERAL

This section describes the on-board CMS NDL compiler and sets forth requirements for its use. It is
intended for use on Burroughs CMS Data Communications Subsystems. The compiler is capable of accepting
input from 80-column cards, magnetic tape, tape cassette, system operator's console, or disk. The input to
the compiler is in 80-column records with characters 1 through 72 being statements in free form and characters
73 through 80 being a sequence number. Output listings are available on a 132-column line printer or on the
system operator's console. The resulting object file is placed on disk.

HARDWARE

The minimum system configuration required for use with this compiler is as follows:
1. Processor - Any CMS processor.
2. Main Memory - 24 K bytes (plus operating system requirements).
~ D!§.!L.:_}QQQ_~l!J.J:!l:!§~ .
4. System Operator's Console - CQ!!!P!!t!Le)(,t!.".l1t!<:>I! !!!!1§!.!>e._)l}!!i~!e.~L..OI! ... tl1e.. sys!ell1 gperator's console, ..

Optional devices which can be used with this compiler are as follows:
1. Line Printer.
2. Magnetic Tape.
3. Tape Cassette.
4. Card Reader (80 or %-column).

SOFTWARE

-~EX .. CMS software release.

COMPILER OPERATION

The CMS NDL compiler is an on-board compiler designed to run on any CMS system. Some of the
optional capabilities may not be available or may apply to certain CMS systems.

Execute

Compiler execution must be initiated from the system operator's console using the following format:

[EX] CMSNDLl f ~~;~b= l] . . .

Note
Brackets indicate optional information. The syntax is explained below.

YalYe Clause

The value clause gives the user the ability to specify $-Options in the EXECUTE statement instead of
in a card deck, making it possible for two non-card sources to be used as the master and patch files. Only
one value clause is allowed in an EXECUTE statement. The format is:

VA 0 [=] ABCDEF

Each bit in the integer ABCDEF represents a compiler option as follows:

11-1

Section 11
Operation of CMS NDL Compiler

Digit Bit Description

A 8 Patch symbolic input is on disk
4 Patch symbolic input is on disk (same as 8)
2 Patch symbolic input is on tape
1 Patch symbolic input is on cards (default)

B 8 DISK
4 DISK (same as 8)
2 TAPE
1 CARD (master symbolic input is on cards)

c 8 NEWD
4 NEWD (same as 8)
2 NEWT

NEWC

D 8 MTCH
4 BLNK
2 LGEN

LIBR

E 8 CODE
4 LIST
2 LSTl

SUPR

F 8 RESERVED
4 RESERVED
2 NPRT

TBLS

Definitions of these options are given later in this section.

File Equate Clause

The file equate clause gives the user the ability to specify different names for input and output files
and to clarify to which type of device a $-Option refers (such as 80 or 96-column card reader). There may
be up to eight file equate clauses in an EXECUTE statement and the device types must agree with the $
Options specified. The format is:

FILE internal-id

internal-id

11-2

l device clause 1
id clause
device clause id clause
id clause device clause

MSTRFL
PTCHFL
NEW FL

~----------~~NDLSYS·-'-=---------~

PRNTFL

'NEWLIB
OLD LIB

device clause

device

id-clause

DEV
DEVICE

CARD
CR96
CONS
TAPE
CASS
DISK
LP

ID [=]

Section 11
Operation of CMS NDL Compiler

[=] device

I file-id I
pack-id/file-id

The following is a list of all compiler user files along with their associated $-Options, where applicable.

Name

MSTRFL
PTCHFL
NEWFL
NDLSYS
PRNTFL
NEWLIB
CLDLIB

Description

Master Symbolic Input
Patch Symbolic Input
New Symbolic File
NDL Object File
Source Listing
New NDL Library
Old NDL Library

$-Option

DISK, TAPE,CARD
(See Note)
NEWC. NEWD. NEWT

LIST ,LSTl ,TBLS
LGEN
LIBR

NQte __ ,
IWb~P..1?!11~JLinP.M1.i1!_JrnI!LS1,l.t:Q~.,_JJt~.~'f1?~<:1~ciJiJ~-~i_cL.!~.- C::A.RP:J

Each file equate may have a device specification, an id-specification, or both. The_ d_evice clause deter-
mine~wh_i~h. ___ cieyice _tbe Jilej_s Qll, _Th<? i!!~sll!l!~-~-~J?~c,ill~~ Jb~ X!!~ l!l!d~J?~£~!!!11!!~-' jfJt is,~~ili~r-_th~ii.t.!i~- ~~fauii .
lll!!ll~.

File equate information may also be entered through a card patch file. The file equate card(s) must pre
cede all other cards in the deck and have a '' #'' in column 1.

File equate cards are not included in the generation of new source files.

Syntax

-~p~<;i!i£<t!i~f! gf -~h~--~XN!A~ __ gpti21:1.J?f.~Y~l1!~.--.aJl .. £{)cie __ (lll_dJ(lb_l(!_ gener.l!t!Q.11,Jbere_by __ reduciJ!g .. c,ompile_r
times durin~ p~ogram development.

11-3

Section 11
Operation of CMS NDL Compiler

Continuation

The EXECUTE statement is limited to 72 characters; if greater than 72 characters, a hyphen may be
entered in place of the 72nd character. The compiler will then accept further information via the "AX" facility.

Console Input

Patch input may be entered through the system operator's console by file equating the PTCHFL to the
console. When operating in this mode, the compiler first accepts all leading $-Options. When the first card
without a "$" in column 1 is encountered, the compiler prints a message indicating the leading options have
been completed. From this point on, the first eight columns must contain a sequence number, with the actual
text in columns 9 through 80. The compiler reverses the fields, creating a normal card image.

Source Merge Process

When two separate source files are to be combined for input, one file is designated as the master and
the other as the patch. If there is only one source input file, it is considered the patch.

The merge pattern is controlled by sequence numbers in columns 73 through 80 (1 through 8 for SPO
input). Patch images are inserted into the source file at those locations determined by the patch sequence num
ber. If a patch and master source image have the same sequence number, the patch takes precedence. Any
source images without sequence numbers immediately follows the previous source image with a sequence num
ber. Blank sequence numbers are disallowed for console input.

Sequence numbers in both the patch and master files must be in ascending order. Any source image
occurring out of order results in a sequence error warning.

Dollar ($) option cards may only appear in a patch file.

Library Generation and Usage

NDL libraries containing precompiled NDL control and request sets can be generated and used by the
compiler. This eliminates the need for syntaxing and compiling (which are often used) and reduces compile
time.

To create a library, the LGEN $-Option must be specified and the NDL program may contain only Con
stant, Control, and Request sections. The generated library is a single disk file called NEWLIB.

To reference library procedures, the LIBR $-Option must be specified. The compiler expects an NDL
library (OLDLIB) to be resident on disk. To invoke any single procedure, the following syntax is used:

CONTROL LIBRARY <library control procedure name>:

REQUEST LIBRARY <library request procedure name>:

The procedure names are those that were used when creating the library. If any statement other than
a new section header follows a library procedure call, a syntax error occurs.

Whenever the LIBR $-Option is specified, all constants defined when creating the library are included
in the referencing program. Therefore, care must be taken not to declare new constants with the same names.

COMPLER OPTIONS
Option Format

All option cards are identified by a dollar sign ($) in column 1. Options are specified in columns 2
through 72 and may be separated by commas (,).

11-4

Section 11
Operation of CMS NDL Compiler

Option Control

Individual options may be set or reset according to the following rules:
1. The occurrence of the word SET causes options following it to be set.
2. The occurrence of the word RESET causes all options following it to be reset.
3. If SET or RESET is not specified, all options are reset and the options specified on the card are set.
4. When SET and RESET are used, they must be the first word following the "$". Only one may occur

per card.
5. All options specified prior to the first non-option card (leading options) have a SET condition implied.
6. Certain options can only occur as leading options and cannot be reset. These are:

Dou.AR OPTIONS

LIST

CARD

DISK
TAPE

Generates a full double space listing.

LST1

Generates a full single space listing.

VOID NNNNNNNN

NEWC

NEWD
NEWT

LGEN

LIBR
TBLS

Removes all source images from the point of insertion up to and including the source image with se
quence number NNNNNNNN.

RSEO NNNNNNNN +MMMMMMMM

Causes all card images to be given new sequence numbers starting at NNNNNNNN and incrementing
by MMMMMMMM for each successive card. Option cards are not included. Default values are 0000100 and
+00001000.

CODE

Causes the code generated for control and request procedures to be output in the listing.

MTCH

Matches each BEGIN with its corresponding END on the listing.

SUPR

Suppresses warning messages from the listing.

NPRT

Suppresses the listing of the summary at the end of the compilation.

SPEC

Negates LIST and LSTl if any errors are detected.

LNXX

Specifies that XX lines are to be printed per page. XX must be greater than 4.

11-5

Section 11
Operation of CMS NDL Compiler

CARD

Indicates that master input is from cards.

DISK or DISC

The master symbolic input file resides on disk.

TAPE

The master symbolic input file resides on tape.

NEWC

Requests that a new card deck be punched.

NEWD

Requests that a new symbolic disk file be created.

NEWT

Requests that a new symbolic tape file be created.

LGEN

Causes a new NDL library to be generated.

LIBR

Specifies that the program references an old NDL library.

TBLS

Requests that the generated NDL tables be printed.

If no options are specified, patch input is from cards and no listing is printed.

COMMENTS

The percent sign (%) is used to terminate a card image. All information to the right of a "%" is treated
as comments.

TOP OF PAGE

The top-of-form can be generated by specifying "@PAGE" in columns 1 through 5. The rest of the
card is ignored.

11-6

SECTION 12

Section 12
Non-Interpretive NDL

B 800 POST PROCESSOR PROGRAM
GENBW.

The capability of enhanced character throughput on the DCP is provided through the implementation
of a post processor program (PPP). Enhanced throughput is achieved by emitting microcode from the post
processor, thus eliminating the need to fetch S-OPS. The post processor is tuned for the specific configura
tion(s) defined by the NOL programmer. The PPP uses the NDLSYS file (output of the NOL compiler) as
input in the generation of microcode.

When executed, the PPP interrogates the NDLSYS file for information directing the PPP to generate
a microcode file for DCP. This information is supplied in the DCP terminal statement through NOL. From
this and other information within the NDLSYS, the PPP program generates a code file identified by the name
supplied in the DCP terminal statement. The data comm loader recognizes this identifier at MCS start-up time
and loads the proper microcode file into the DCP.

POST PROCESSOR ACTION

The data segment in the NDLSYS containing the information generated by the DCP terminal statement
is used as follows:

1. A search is conducted for the file names which are not NDLDCP. If there are no such files, the program
terminates.

2. Upon encountering a non-NDLDCP file, the PPP accesses the terminal list for that file and the DCP num
ber of the DCP on which the firmware is executed.

3. The terminal list is scanned to determine whether the particular file is multiline or single line. The deci
sion is made as follows:

a. If all terminal names are assigned through stations to lines, and
b. Those assignments are all to one line, then single-line is assumed.

Effectively, if a terminal(s) does exist on one and only one line per DCP, the file is marked as a single
line case (i.e., a higher throughput rate is provided though the single-line case permits only one active line
at any one time). Other lines can be used providing a valid terminal is assigned. Using different lines, nonsi
multaneously, can be accomplished by making the line that was previously used not ready, reconfiguring the
particular terminal type(s) to another line, and making it ready.

Execution of Post Processor Program

The post processor requires no inputs other than the NDLSYS file, and can be initiated by the EX
PPP command.

At the completion of the PPP, a microcode file exists for each file identifier named within the NDLSYS.

Data Comm Loader

The data comm loader is responsible for loading the generated firmware file to the DCP(s). At MCS
start-up time, the loader interrogates the NDLSYS file for the file name of the firmware that is to be loaded.
The firmware file specified through the DCP terminal LOAD statement is the initial file loaded to the DCP.

Microcode Listing

During the code generation of the PPP, a disk file of microsource images is created. After code
generation of a particular file is completed, the disk file is listed to the line printer. The listing contains infor
mation for each instruction generated. Any unused microspace is deleted from the listing. The following infor-
mation is displayed: ·

1. S-instruction mnemonic, if pertinent. If the microcode being generated is a direct result of a particular
S-instruction, that S-instruction is printed.

12-1

Section 12
Non-Interpretive NDL

2. Hexadecimal S-level address.
3. Hexadecimal contents of the S-instruction.
4. Any microcode label. If the instruction being printed is a reference label, that label is printed.
5. Symbolic representation of the microinstruction.
6. Hexadecimal address of the microinstruction.
7. Hexadecimal value of the microinstruction.

12-2

SECTION 13

NOL POST COMPILER
INTRODUCTION

Section 13
NDL Post Compiler

This section describes the operating procedures and functions of the CP 9550 NDL Post Compiler (NPC)
for those readers involved in the implementation of data communications on theCP9500 series. The information
in this section is divided into two parts. The first part provides an overview of NPC with respect to operating
instructions, error messages, and requirements for execution. In order to understand this, the reader should
be familiar with CP 9550 operations and the NDL compilation process.

The second part gives a detailed description of NPC program flow. The reader should have knowledge
of the CMS NDL code file structure, CMS data communications, and CMS NDL source language. Knowledge
of the CMS NDL S-machine and CP 9550 microcode is useful, but not essential.

Related Publications

CMS Data Communications Reference Manual, form 1090909.

OVERVIEW

CMS NDL source is compiled to produce a program file; the structure of which is common for all CMS
systems. This program file consists of tables containing: 1) data, which defines the characteristics of the com
munications network; and 2) code, which performs line and station-oriented functions. The code contained
within the program file is designed to be interpreted. That is, each operation defines an action to be taken
by an interpreter. The manner in which this code is treated is dependent on the individual CMS implementa
tion. It may either be left in the form produced by the NDL compiler or, in order to eliminate the need for
operation fetching and decoding, it may be translated into the microcode of the individual CMS machine. The
latter approach is taken on the CP 9550 series. That is, after an NDL program file is produced, this is translat
ed into a form consistent with the CP 9550 implementation. The program which performs this translation is
NPC, an MPL program, which may be run on any CMS machine.

OPERATING PROCEDURES

Before executing NPC, the NDL program file must be produced via an NDL compilation (see figure
13-1).

The DCP TERMINAL statement (Section 9) directs the operation of NPC. The following paragraphs
describe the use of the DCP TERMINAL statement with respect to the CP9500 implementation.

The DCP TERMINAL statement specifies:
1. The valid terminal(s) for the DCP files produced.
2. The name of each DCP file.

Because the firmware file is tuned for a particular configuration, any terminal types not named are inva
lid for that file.

The DCP ·TERMINAL statement syntax serves a dual role:
1. Identifies the DCP and its associated terminal types for each NPC-generated file.
2. Specifies loading an NPC-generated file at MCS start-up time.

The format of the DCP TERMINAL statement is as follows:

(DCP TERMINAL STMT) : : =TERMINAL[< PROGRAM NAME) (DCP # >
(LOAD OPTION)] = <TERMINAL NAME LIST>

13-1

Section 13
NDL Post Compiler

ED2601

13-2

PREPARATION OF INPUT

CMS
NOL

SOURCE
FILE

CMS
NOL COMPILER

NYDLSYS

MUST INCLUDE
DCP TERMINAL
STATEMENTS

CP9550 NOL POST COMPILER
(NPC)

M.CODE.FILE

MICROCODE

MICROCODE
LISTING

EXECUTION

OUTPUT

Figure 13-1. NDL Post Compiler Flow

Where:
<program name> ::= <string>
<DCP #> ::= o I 1 I 2 I 3 I 4 I 5 I 6 I 7
<load option> ::= : LOAD I <empty>
<terminal name list> ::= <terminal list> I ALL
<terminal list> : : = <terminal id> I <terminal list> , <terminal id>

Section 13
NDL Post Compiler

In addition to the NDL source restrictions (Section 9), NPC imposes the following restrictions:
1. At least one of the five allowable DCP TERMINAL statements for each DCP must contain a LOAD

clause.
2. The <terminal name list> may specify a maximum of 16 terminal types.
3. Because line address 0 is reserved for processor interface use, the maximum number of lines per DCP

is seven; that is, the valid line addresses are 1 through 7.
4. One DCP is allowed per CP 9550 system.

Examples
TERMINAL [BISYNC (0)] = BSCTERM.

This statement causes a microprogram named BISYNC to be generated for DCP 0. The program is tuned to
use the terminal BSCTERM.

TERMINAL [TD8 (0)] = TD820, TD800.
TERMINAL [HOST (0): LOAD] = B 4700.

These statements cause two microprograms to be generated. Both are generated for use on DCP 0. The pro
grams are named TD8 and HOST. Program TD8 is capable of running with terminals TD820 and TD800. Pro
gram HOST is capable of running with terminal B 4700. AT MCS start-time, the program HOST is loaded
to DCP 0.

EXECUTING NPC

NPC allows the user to select run-time options in the initiating message. The following is the syntax
for the initiating message:

<NPC execute string> : : = EX NPC900 ~initiating message>
<initiating message> : : = <initiating message item> I

<initiating message> <initiating message item> I <null>
 : : = <blank>
<initiating message item> : : = DBG I

NO.LIST I

DBG

FILE <pack-id> /<file.id>
WORK <pack.id> I
STATUS

The following paragraphs describe the <initiating message item> option list.

As the name implies, this is the DEBUG option used for compiler debugging. It causes pertinent DCP
run-time information to be dumped to printer. The default for this option is the suppression of the debug list
ing.

NO.LIST

This option provides for the suppression of the microcode listing for each of the code files generated.
The default for this option is the production of microcode listings.

FILE

This is the file equate statement. It allows the user to specify the PACKID/FILEID of the input file.
The <pack.id> and <file.id> must conform to CMS definitions.

13-3

Section 13
NDL Post Compiler

WORK

This option forces NPC work files to specified non-system disks. The default for this option is that the
work files reside on system disk.

STATUS

This option causes the NPC to send display messages to the SAO at various times during execution.
This option informs the operator that the program is not looping or otherwise hung. It is particularly useful
when compiling large files with numerous terminal types. The default for this option suppresses all status mes
sages.

NOTE
If the FILE option is used, all generated microcode is on the specified <pack.id>.

Any deviation from the defined syntax causes the termination of NPC.

Examples
1. EX NPC900 FILE NDLCODE.

a. NPC looks for a file called NDLCODE on system disk.
b. A listing is produced.
c. All generated DCP files are on system disk.

2. EX NPC900 NO.LIST FILE USER/NDLCODE.
a. NPC looks for a file called NDLCODE on pack user.
b. No listing is produced.
c. AU generated DCP files are on pack USER.

ERROR MESSAGES

NPC emits error messages when any one of the following conditions occur:
Firmware file exceeds memory size. Generation of the current DCP file has terminated because

NPC has detected that it requires more memory than is
available in the DCP (64 KB).

Invalid NDL S.OP is encountered.

Unable to resolve S-level branch
address.

Invalid line number detected.

Unresolved microaddress (NPC bug).
Subroutine nesting error (NPC bug).
File contains more than 16 terminal
types.

Definitions

An Op-code located in the NDL program is not implemented
on the CP 9550, or the NDL program file has been corrupted.

The NDL program file has been corrupted, or a bug exists in
either NPC or the NDL compiler.

The NDL source line section specifies air address outside the
range of 1-7.

Before proceeding, the reader should be familiar with the following terms and their definitions.

NDLSYS

The generic term used to describe the program file generated by the NDL compiler.

S-CODE

Secondary code produced by the NDL compiler. Consists of S-Ops and operands.

S-OP

Operation code defining an action to be performed on the associated operands by the interpreter.

13-4

S-LABELJS-ADDRESS

A location within the S-code.

LABEL RESOLUTION

Section 13
NDL Post Compiler

The process by which the reference to S-labels of unknown microaddress are supplied with the correct
microaddress once that address has been determined.

MANAGER SCHEME

By using this method, the generated microprogram shares the processor between lines belonging to that
processor.

HOST CONTROL

The interface between the operating systems and the DCP. By using this method, the operating system
transfers requests (which require DCP action) to the DCP.

POST COMPILER/NPC MEMORY

The data areas (local to NPC) are used during code generation to hold table information read from the
NDLSYS file.

NPC Functions

NPC uses the NDLSYS file (as produced by the NDL compiler) to perform the following tasks:
1. Translate NDL S-code into microcode using information contained in the NOL tables.
2. Generate a set of microcode corresponding to the terminal line control/request sets for each unique NDL

terminal type.
3. Optimize microcode based on characteristics of NDL terminal types.
4. Build a microcode file for each DCP TERMINAL statement specified in NDLSYS.

Figure 13-2 illustrates NPC program flow.

In addition to the NDL-related functions described previously, the microcode file generated by NPC
must also perform the following general functions:

1. Buffer management.
2. Message/buffer linking.
3. Table indexing in DCP memory.
4. Translation table space allocation and filling.
5. Processor register use.

Program Structure

NPC contains three logical divisions:
1. Environment establishment.
2. Microcode generation.
3. Microcode listing generation.

Succeeding· paragraphs briefly describe each phase of NPC execution.

Environment Establishment

The establishment process organizes the initial data required for subsequent post processing. It performs
the four following major functions:

1. Retrieves information from the NDLSYS file, that is, output file names from the DCP TERMINAL state
ment and the terminal list for each file specified.

2. Places the retrieved data in post-processing memory.
3. Allocates data memory.

13-5

Section 13
NDL Post Compiler

13-6

KNOWN
$-LABELS

UNKNOWN
$-LABELS

ED2602

PREPARATION OF INPUT

M.CODE.FILE

MICROCODE

CMS
NOL

SOURCE
FILE

CMS
NOL COMPILER

NDLSYS

MUST INCLUDE
DCP TERMINAL
STATEMENTS

CP 9550 NOL POST COMPILER
(NPC)

Figure 13-2. NDL Post Compiler Flow

PBM

EXECUTION

PRINTER
KEY
FILE

PRINTER
FILE

OUTPUT

4. Opens and readies those disk files used during the microcode generation process.

Microcode Generation

Section 13
NDL Post Compiler

The establishment process and the microcode generation process are integrally related to each other.
After output files, workfiles, and tables are established, the microcode generation process analyzes object code
in NDLSYS and generates microcode.

Following is a list of major microcode generation functions:
1. S-instruction processing.
2. S-label generation.
3. Label resolution.
4. Line discipline generation.
5. Subroutine generation.
6. Microcode and data storage.
7. Manager schemes.
8. Code Optimization.

Microcode Listing Generation

The microcode generation process creates a disk file of microsource images. When code generation is
complete, NPC automatically lists the file's contents on the line printer. This listing contains information for
each instruction generated, as follows:

1. The S-instruction mnemonic, if pertinent. If the microcode being generated is a direct result of a
particular S-instruction, that S-instruction is printed.

2. Hexadecimal S-level address.
3. Hexadecimal contents of the S-instruction.
4. Any microcode label. If the microinstruction being printed is a referenced label, that label is printed.
5. Symbolic representation of the microinstructions.
6. Literals or addresses referenced.
7. Comment field (if supplied).
8. Hexadecimal address of the microinstruction.
9. Hexadecimal value of the microinstruction.

File Structure

NPC uses disk files as described in succeeding paragraphs.

Generated Microcode File (M.CODE.FILE)

This is the output file containing the generated microcode. Its internal attributes are as follows:

INTERNAL FILE.NAME:

MFID:
NO.BUFFERS:
RECORD:
CLOSEMODE:
FILE TYPE:
ACCESSMODE:
SINGLE.AREA:

M.CODE.FILE

0000000
2
180 bytes
Lock
@17@
Random
True

The NDL programmer specifies the NDL file's external name, via the DCP TERMINAL statement.
Each record of the file contains 180 bytes with each byte corresponding to an address in the DCP.

Known S-label Address File (SLBL.K)

This is an intermediate workftle containing all known S-label addresses. Its internal attributes are as
follows:

13-7

Section 13
NDL Post Compiler

INTERNAL FILE.NAME:

MFID:
NO. BUFFERS:
RECORD:
BUFFER:
CLOSEMODE:
FILETYPE:
ACCESSMODE:
FILE SIZE:
FID:

SLBL.K
0000000
2
180 bytes
180 bytes
Release
@00@
Random
@000200@
SLBL,K

An S-label signifies a new S-level instruction. The SLBL.K file contains two elements for each S-level
detected, as follows:

1. An S-level address.
2. The microaddress where the first microcode was generated for the S-instruction.

This file contains the S-labels for all request and line control procedures required for the program being
generated. It is also used for:

1. Label resolution.
2. As a reference for microcode listing.

During resolution, this file supplies the microaddress of each referenced S-label. The resolution process
searches the file for the S-label in question. When found, the microinstruction is inserted into the instruction
that referenced the S-label.

When listing microcode, NPC refers to this file to determine where each S-instruction is to be printed.
The print location is determined by sequentially accessing this file. NPC lists the microcode until detecting
an address that has an S-instruction associated with it. NPC prints the S-instruction and continues listing mi
crocode. This sequence continues throughout the listing process.

Unknown $-Label Address File (SLBL.UN)

This is an intermediate workfile containing references to unknown S-labels. Its internal attributes are
as follows:
INTERNAL FILE.NAME:
MFID:
NO.BUFFERS:
RECORD:
BUFFER:
CLOSEMODE:
FILE TYPE:
ACCESSMODE:
FILESIZE:
FID:

SLBL.Un
0000000
2
180 bytes
180 bytes
Release
@00@
Random
@000200@
SLBL.UN

This file contains two elements for each S-label reference to another S-label. The elements consist of:
1. The microaddress where the reference was made.
2. The S-label to which the reference was made.

The file is used during label resolution, and contains all labels that need to be resolved. It is maintained
on a request set basis. After processing each request set, the labels are resolved and references to the file
are re-initialized for the next request set.

Each logical record contains 45 references of four bytes each: two bytes for each S-level reference, and
two bytes for the microaddress at the occurrence of the S-label reference.

NDL Object Code File (NDLSYS)

This file is input to the NPC compiler. It contains object code generated by the NDL compiler. Its inter
nal attributes are:

13-8

INTERNAL FILE.NAME:

MFID:
PIO:
RECORD:
BUFFER:
FILE TYPE:

NDLSYS

0000000
NDLSYS
180 bytes
180 bytes
@10@

NPC accesses NDLSYS during the following three phases of execution:
1. The establishment process, to create tables required for generation.
2. Generation, to access S-instructions.
3. Listing, to include the S-instructions in the listing.

Printer Backup File (PBM)

Section 13
NDL Post Compiler

The PBM file is an output file that stores information to be listed after code generation is complete.
The internal attributes are:

INTERNAL FILE.NAME:
PMF ID:
NO.BUFFERS:
CLOSEMODE:
FILE TYPE:
RECORD:
BUFFER:
FILESIZE:
FID:

PBM
0000000
2
Release
@00@
180 bytes
360 bytes
@001000@
PBM

Each file record is divided into nine 20-byte areas. Each generated microinstruction can place informa
tion into this file. The information may consist of the following:

1. An instruction label implying that the instruction is to be referenced by a GOTO or CALL instruction.
2. A location label implying that the instruction could pass control, for example, GOTO or CALL instruc

tion.
3. A character string that gives a meaningful explanation to a literal associated with the instruction. The

instruction usually has a literal value and is of the type TX = LIT. The LIT character string, when listed,
could be documentational, for example, TX = LINE TABLE LENGTH.

4. A comment field that may contain any series of remarks to help document the intent of the instruction
or series of instructions.

The file is created sequentially; that is, instructions are placed in the file in the order of generation.
To access the file, a list of pointers indicates which information pertains to which instructions.

Printer Backup Key File (PBM.KEY)

PBM.KEY is an intermediate workftle that contains a list of pointers and indicators required to create
the microcode listing. The internal attributes are:
INTERNAL FILE.NAME:
MFID:
RECORD:
BUFFER:
CLOSEMODE:
FILE TYPE:
FILESIZE:
PIO:

PBM.KEY
0000000
180
360
Release
@00@
@000800@
PBM.KEY

Each logical record contains 180 bytes divided into 60 three-byte elements. The elements are arranged
by microaddress in ascending order. As the listing is created, the instructions are decoded (by reading M.COD
E.FILE) and mnemonics are created in printable form. During this process, the PBM.KEY file is accessed
to determine whether any additional information exists for the microinstruction.

13-9

Section 13
NDL Post Compiler

The following explains the items found in each element:

1 ELEMENT (3 BYTES)
2 INDICATORS (4 BITS)

3 MNEMONIC (1 BIT)
3 MNEMONIC (1 BIT)

3 GO LABEL OR LIT LABEL
(1 BIT)

3 COMMAND (1 BIT)
2 RECORD.NO (2BYTES)

2 RECORD.NO (2 BYTES)

3 DATA FIELD (1 BIT)

This instruction has a label. The label name is in the PBM file.

This instruction has a mnemonic associated with it. (Regardless
of this flag's setting, there is nothing in the PBM.)
This instruction either passes control (CALL or GOTO) or has
literal values. In either case, the PBM file contains a 20-
character string that is printed on the listing.
This instruction has a comment for documentation purposes.
Gives the byte index to the PBM file record where the indicated
information starts.
Gives the PBM file logical record number where the indicated
information starts.
The instruction does not have a mnemonic; the generated item is
data to be accessed by another instruction.

NOTE
A field indicator of zero indicates that this is a null entry and that there is no infor
mation in the PBM file for this microaddress.

PROGRAM FLOW

NPC flows from the initial establishment process, through microcode generation, and finally to the mi
crocode listing phase. Each phase is described in the following paragraphs.

Establishment Process

Accessing the NDLSYS File

The establishment process sets-up the data for other phases of operation. It retrieves the information
from the NDLSYS file and places it into post compiler memory. The disk files used during code generation
are opened and made ready for use. The EST AB LISH procedure carries out the following tasks:

1. Retrieves and saves the addresses of the control and request sets and all tables required to generate ob
ject code.

2. Generates the following global tables in NCP memory for later use by the code optimization process:
line, terminal, and station tables.

As NPC retrieves NDL tables, it builds global tables in NPC memory. The structure of global tables
is similar to that of NDL tables. Global tables contain two types of entries:

1. Common entries: information that may be constant to the system.
2. Flagged entries: information that is not constant to the system.

As NPC retrieves each NDL table value, it compares the retrieved value against any existing values
in the global table being built. If the value is consistent with existing values, NPC proceeds to retrieve the
next value. If the value is different from an existing value, NPC flags that entry as "not-common" by placing
the value @FF@ in the global table. For example, a global station table never contains the TRANSMIT or
RECEIVE ADDRESS values because these are unique to the station. However, the global station table may
contain the INITIATE RECEIVE value if the comparison process determines that it is a system-wide common
value. If not common, the entry is flagged.

13-10

NOTES
1. Later, during code generation, NPC generates microcode for using the unflagged
values. For flagged (uncommon) values, NPC generates microcode for both retriev
ing and using the value.

2. Also during code generation, flags in the global tables are handled on an ORed
in basis. If, for example, any one table has CASE SHIFT ON, the global table

Section 13
NDL Post Compiler

has CASE SHIFT ON. If CASE SHIFT is not in the global table, NPC emits no
code relating to case shift.

NPC retrieves and organizes data in post compiler memory by performing the following steps:
1. Open the NDLSYS file.
2. Read the Program Parameter Block (PPB) into memory. The PPB is the first record of the NDLSYS file.

It contains, among other items, pointers to the Program Segment Table (PST) and the Data Segment Ta
ble (DST).

NOTE
All references to memory in this section indicate post compiler memory.

Following is a diagram of the PPB:

Field Name Location Length Type Contents

Implementation Level No. 0 Binary @70@

Program Name 1-12 12 ASCII "NOLSYS"

S-Language Name 13-24 12 ASCII "NDL S-LANG"

Interpreter Pack-Id 25-31 7 ASCII "0000000"

Interpreter Name 32-43 12 ASCII "NDL INTERP"

Computer Name 44-55 12 ASCII "NDL COMPILER"

Compilation Date 56-61 6 ASCII YYMM DD

Priority Class 62-63 2 Binary @3180@

Data Segment for Initiating 64 Binary @FF@

Message

S-Program Start Address 65-67 3 Binary @000000@

Program Segment Table Length 68-69 2 Binary @0030@

Program Segment Table Location 70-71 2 Binary @0002@

Data Segment Table Length 72-73 2 Binary @0072@

Data Segment Table Location 74-75 2 Binary @0003@

TCB Preset Area Length 76-77 2 Binary @0000@

TCB Preset Area Address 78-79 2 Binary @0000@

Stack Length 80-81 2 Binary @0000@

CCB Preset Area Length 82-83 2 Binary @0000@

CCB Preset Area Address 84-85 2 Binary @0000@

Tab Extension Length 86-87 2 Binary @0000@

Internal File Name Block Length 88-89 2 Binary @0000@

Internal File Name Block Address 90-91 2 Binary @0000@

Tab Preset Area Values 92-179 88 Binary All Zeroes

3. The PST segment is retrieved with the PST pointer located in the PPB. The PST segment contains point
ers to each of the program parts (control sets and request sets). It is a series of descriptors (pointers)
to actual code or displacement lists. The following is a diagram of the PST:

Descriptor 0 - Control sets - Format A.
Descriptor 1 - Control displacements - Format A.
Descriptor 2 - Request sets - Format A.
Descriptor 3 - Request displacements - Format A.
Descriptor 4 - Control sets - Format B.
Descriptor 5 - Control displacements - Format B.
Descriptor 6 - Request sets - Format B.
Descriptor 7 - Request displacements - Format B.

NPC uses the descriptors for Format A.

13-11

Section 13
NDL Post Compiler

4. Using descriptor 1, NPC retrieves and saves (in NPC memory) the line control displacement list for later
processing of line controls. This list of displacements gives the relative address within the code segment
(pointed to by descriptor 0) where each logically-numbered control set begins. This segment also specifies
the number of line controls within the program. This value is stored in the NPC variable PRESET .NLC.

5. Using descriptor 3, NPC retrieves and saves (in NPC memory) the request set displacement list for alter
processing of request sets. The list of displacements gives the relative address within the code segment
(pointed to by descriptor 2) where each logically-numbered request set begins. This segment also specifies
the number of request sets within the program. This value is stored in the NPC variable PRESET.NREQ.

6. Using the pointer from the PPB, the post compiler retrieves the Data Segment Table (DST). This table
has descriptors for each of the data areas of the program. The following is a diagram of the DST.

Descriptor 0 - Preset Data
Descriptor 1 - Line Tables
Descriptor 2 - Line Table Displacement List
Descriptor 3 - Station Tables
Descriptor 4 - Station Table Displacement List
Descriptor 5 - Modem Tables
Descriptor 6 - Terminal Tables
Descriptor 7 - File Tables
Descriptor 8 - Extended Station Tables
Descriptor 9 - Extended Terminal Tables
Descriptor 10 - Station Name Table
Descriptor 11 - File Name Table
Descriptor 12 - Translation Tables
Descriptor 13 - Translation Table Displacement List
Descriptor 14 - Line Priority Chart
Descriptor 15 - Line Speed Table
Descriptor 16 - DCP Terminals Format A
Descriptor 17 - Source Statement Occurrence
Descriptor 18 - DCP Terminals Format B

The pertinent descriptors are saved in NPC memory for alter access of the data areas.

7. NPC then retrieves the segment containing source statement occurrences. Descriptor 17 of the data seg
ment table points to this segment. For each request set/line control there are two bytes of information
specifying the occurrence of certain NDL source statements. A list of each statement represented in this

----------- ------area1s--grve_ri ___ oe1ow~--A-Dlf--W1flilri.--the appropriate two-byte area indicates each statement's occurrence
within a request/control set. The statements that can be indicated are:

LINE.BUSY = FALSE
LINE.BUSY = TOGGLE
AUX LINE BUSY - FALSE
AUX LINE BUSY = TOGGLE
BINARY = TRUE/FALSE
TERMINATE BLOCK
SYNCS = TRUE/FALSE
CRC = TRUE/FALSE
SHIFT = UP/DOWN/MIDDLE
STATION = LIT/VARIABLE
IF LINE.CHARI/LINE.CHAR LIT/VARIABLE// - VARIABLE
RECEIVE (CONTINUE)
RECEIVE TEXT
BACKSPACE

LINE.CHAR

NPC dynamically declares the SINST array (source statement occurrence data) by using the PRESET.NLC
and PRESET .NREQ variables retrieved from the displacement lists for the line control and request sets. The
array contains two bytes of information for each line control/request. NPC references this information
throughout execution to perform optimization (based on the occurrence of the statements). NPC places data
in the SINST array as follows:

13-12

Section 13
NDL Post Compiler

a. The line control occurrence lists are placed consecutively into the array by logical number starting at
element zero.

b. The occurrence lists for all the request sets are then placed consecutively by logical number following
the line control occurrences.

As the placement occurs, an array is also created which contains the OR of all the occurrences for each
line control/request. This array, G.SINST, is two bytes in length and represents the possibility of any
particular occurrence throughout all line control and requests.

8. Using descriptor 0 of the data segment table, NPC retrieves the preset data segment. This segment con
tains, among other items, counts for each of the tables existing on the system, for example, the number
of line tables. These counts are saved in post compiler memory as described below:

a. The number of terminals on the system is placed into the variable NO.LOGICAL.TERM. This variable
is used frequently in the program for controlling loops on terminal types. This number is also used
to declare the TERMINAL dynamic array to contain all terminal tables as declared in the NDL pro
gram. If the number of terminals is greater than a predetermined limit, the TERMINAL dynamic array
is assigned to a data segment other than segment 0.

b. The number of lines on the system is used to declare both a dynamic array to contain all of the dis
placement lists for the line tables and the LINE dynamic array. The LINE array is large enough to
contain all of the line tables for the system.

c. No table contains all of the stations on the system. Only the global station table is applicable.
9. Using descriptor 2 of the data segment table, NPC retrieves the line table displacement list.
10. Using the line table displacement list and descriptor 1 of the data segment table, NPC retrieves the line

tables and places them consecutively by logical line number into the variable array, LINE.
11. Using descriptor 3 and the station table displacement list of the data segment table, NPC retrieves a

portion of each station table and builds the global station table for the system. Because the individual
station tables are of no use to the NPC at compile time, they are not kept in NPC memory.

12. Using descriptor 5 of the data segment table, NPC retrieves the terminal tables and places them into
the variable TERMINAL. The tables are placed consecutively by logical terminal number.

13. Using descriptor 18 of the data segment table, NPC retrieves the DCP terminals segment. This segment
tells the NPC which files are to be created and which terminals are on each file. Initially, NPC obtains
a count of the number of files that exist. With this value, NPC declares an array which contains the
file names for the files to be generated. The file count is also used to declare arrays containing the disp
lacements for the lists of terminals for each file.

14. The file name, the number of terminals (PRESET.DCP.NTER), and the terminal displacement list are
then retrieved for each file to be generated and placed into their respective arrays.

15. Using the terminal displacement list, NPC retrieves the list of terminals (logical terminal numbers) for
each file and places them into the array DCP. TER.LIST.

16. NPC then sorts the list of terminals for each file by ascending logical terminal numbers.

The data required to generate all files identified by the NDL program has been properly placed into
NPC memory. Later, some of the data, particularly the line and terminal tables, are re-arranged for the
particular files.

GENERATING MICROCODE

This section details the following subjects:
1. Interrelated file establishment activities.
2. Translation of S-instructions into microcode.
3. Resolution of references to labels during code generation.
4. Generation .of line disciplines and subroutines.
5. Types of storing.

In the process of generating the NDL named files, all S-level instructions are translated into microcode.
The manager interrupt routines represent only the characteristics of the particular devices used. NPC performs
the generation in the following manner:

1. Initialize FILE.CNT to zero. FILE.CNT is a variable used to index into the array of file names and to
limit the number of files generated.

13-13

Section 13
NDL Post Compiler

2. If FILE.CNT is equal to the total number of files named by the NDL program, discontinue program gen
eration.

3. Locate the file name: DCP.FILE.NAME (FILE.CNT * 12).
4. If the file name is equal to NDLDCP or BDLDCP, increment the FILE.CNT and return to step 2.

(NDLDCP and BDLDCP are reserved words and are not considered valid filenames for program
generation.)

5. Open the code file, M.CODE.FILE, with the FID of this filename.
6. Save the filename for the microprogram listing.
7. Initialize variables (addresses, indexes, etc.) used during code generation.

a. Write a random number into the NDLSYS file preset area to be used for identification at load time.
b. Close NDLSYS.
c. Change MYUSE to input only.
d. Open NDLSYS.

8. Ascertain how many terminal types exist for this file and place the count into the variable TERMINAL
.TYPES, that is, TERMINAL.TYPES : = PRESET.DCP.NTER (FILE.CNT);.

9. Mark the LOGICAL.TERM.NO (first field of each element in the array TERMINAL) of all terminals
with @FF@. This flag indicates that the particular terminal does not exist on this file.

10. For each terminal belonging to this file, place the file logical terminal number into the array LOGICAL
. TERM.NO in each terminal table. This indicates that the terminal is valid for this file.

11. Using only the valid terminals for this file, reference the source statement occurrence data, SINST, and
create the G.SINST table. G.SINST reflects the occurrence of source statements for all line
control/request sets referenced in this file. Creating G.SINST is accomplished by simply ORing together
all the pertinent fields.

12. Using only the valid terminals for this file, reference the terminal tables (TERMINAL) and create a glo
bal table (G.TER). G.TER reflects all the terminal characteristics for this file. Creating G.TER is accom
plished by the following process:

a. Move the first TERMINAL data into G.TER.
b. If only one terminal exists, the process is complete.
c. Reference the next TERMINAL data.

1) For bit-addressable fields, OR-in the field to the G.TER field.
2) For other fields, (BYTE, FIXED, BIT(4)), compare the current TERMINAL data with G.TER data.

If unequal, place @FF@ into the G.TER field. @FF@ flags the data as inconsistent among the ter
minals on this file; therefore, no optimization can be made.

d. Repeat step c until all terminals are completed. The resultant G.TER reflects:
1) The occurrence of a particular option on the file for bit-addressable fields.
2) The fact that certain values are constant or variant among all terminals for non-bit addressable fields.

13. Using all the valid lines for this DCP, reference the line tables (LINE), and create the global table
(G.LINE). G.LINE reflects all line characteristics for this DCP. G.LINE creation is similar to that of
G. TER. The post compiler determines if the line is multi-line or single-line by noting whether more than
one line is defined for the DCP for which code is being generated. Higher throughput is obtained in
a single-line environment.

14. Determine whether full-duplex is possible on this file by ANDing the full-duplex bits of G.LINE and
G.TER. Also, generate G.FD.TER and G.FD.LINE if FD.POSSIBLE. (A file containing a full-duplex
possibility is automatically a MULTI.LINE.FILE.)

15. Assign the data memory as follows:
a. Allocate space and place data for the reserved memory area.
b. Allocate space and place data for the terminal's translate tables. This is accomplished by:

13-14

1) Using descriptor 12 of the data segment table, retrieve the translate table displacement list from the
NDLSYS file.

2) Using descriptor 11 of the data segment table with the appropriate displacement from the translate
displacement list, retrieve the translate table for a particular terminal if it performs translation. The
translate table is placed in the variable XLATE.TABLE in post compiler memory. The retrieval can
cause up to four disk reads to occur.

3) Once the table is located in post compiler memory, allocate microcode memory space for the receive
side of the translation table. Place the receive side (every other character) into the code file. Allocate
space for the transmit side of the translation table. Place the transmit side into the code file.

Section 13
NDL Post Compiler

The absolute addresses of the translation tables are stored into arrays for later use by the interrupt logic.
The array TERMINAL.XLATE.RCV contains all the addresses for the receive translation tables. The array
TERMINAL.XLATE.XMIT contains all the addresses for the transmit translation tables.

Because the interrupt logic is tuned to handle specific terminals, it can reference the tables directly. Generat
ing an instruction to address the base of the RECEIVE translate table appears as follows:

Ml. (TERMINAL.XLATE.RCV (TERM.COUNT * 2));
Ml is a procedure call to generate a microinstruction.
TERMINAL.XLATE.RCV is the array name of the area containing the absolute addresses of the trans

late tables.
TERM.COUNT is an index for the particular terminal type for which code is currently being generated.

The resultant microcode is as follows:
Ml~ LIT

LIT is the absolute address of the base of the receive translate table.

The post compiler guarantees that duplicate translate tables are not loaded into memory. When loading
a translate table, a check is made to ensure that this particular translate table has not already been loaded.
If it has, the array items containing the address of the table are copied into the current array items.

16. Set up IGNORE.FLAGS array for this file. If it is determined that a terminal can be completely re
duced, mark the LOGICAL.TERM.NO for that terminal in the TERMINAL array with @FF@.

17. Generate all subroutines for the manager, interrupt handlers, and the host control function. Subroutines
are generated only for terminals that are valid and not reduced.

18. Generate the inline (non-subroutine) code for the manager, interrupt handlers, and host control function.
The interrupt routines are terminal-dependent and generate one routine for each valid and not-reduced
terminal type on this file.

19. Initialize TERM.TYPE.NO to zero. TERM.TYPE.NO is a variable used to index into the terminals and
to control the number of terminals on a file.

20. If TERM.TYPE.NO is equal to the number of terminals on this file (TERMINAL.TYPES), skip to step
50.

21. Retrieve the logical terminal number from the array of terminals for this file (DC.TER.LIST). Replace
the variable LOGICAL.TERM.TYPE.NO with the logical terminal number.

22. If the auxiliary line control is reduced, go to step 25.
23. Get the displacement of this terminal's auxiliary line control (if it is a full duplex device). The displace

ment list is retrieved from disk during the establishment process.
24. Make a pass through this terminal's auxiliary line control and generate all the subroutines it uses. The

pass through the S-code is made by using the displacement to retrieve the instruction. This process
fetches each S-level instruction, but generates only the microcode for the subroutines invoked.

25. If the line control is reduced, go to step 28.
26. Get the displacement on disk of this terminal's line control (if it is a full-duplex device).
27. Make a pass through this terminal's line control and generate all the subroutines it may use.
28. If the input request is reduced, go to step 31.
29. Get the displacement on disk of this terminal's input request set (if one exists).
30. Make a pass through the input request set and generate all the subroutines it requires.
31. If the output request is reduced, go to step 34.
32. Get the displacement on disk of this terminal's output request set (if one exists).
33. Make a pass through the output request set and generate all the subroutines it requires.
34. If the auxiliary line control is reduced, go to step 35; otherwise, go to step 36.
35. Fill the auxiliary line control branch table entry for this terminal number. This number is indicated by

the IGNORE.FLAGS array entry for this terminal's auxiliary line control. Go to step 38.
36. Retrieve again the displacement on disk of this terminal's auxiliary line control.
37. Make a pass through this terminal's auxiliary line control and generate all microcode that replaces the

S-level instructions.
38. If the line control is reduced, go to step 39; otherwise, go to step 40.
39. Fill the line control branch table entry for this terminal with the address of the line control of the termi

nal number indicated by this terminal's line control entry in IGNORE.FLAG array. Go to step 42.
40. Retrieve again the displacement on disk of this terminal's line control.
41. Make a pass through this terminal's line control and generate the microcode that replaces the S-level

instructions.

13-15

Section 13
NDL Post Compiler

42. If the input request is reduced, go to step 43; otherwise, go to step 44.
43. Fill the input request branch table entry for this terminal with the address of the output request of the

terminal number indicated by this terminal's output request entry in IGNORE.FLAGS array. Go to step
46.

44. Retrieve the displacement on disk of this terminal's input request set.
45. Pass through the input request set and generate the microcode that replaces the S-level instructions.
46. If the output request is reduced, go to step 47; otherwise, go to step 48.
47. Fill the output request branch table entry for this terminal with the address of the input request of the

terminal number indicated by this terminal's input request entry in the IGNORE.FLAGS array. Go to
step 50.

48. Retrieve the displacement on disk of this terminal's output request set.
49. Pass through the output request set and generate the microcode that replaces the S-level instructions.

Resolve any unresolved S-labels.
50. Increment the variable to count the number of terminals (TERM.TYPE.NO) and go to step 19.
51. Resolve all references to the beginning of the line controls and request sets. These references are of

the type generated in subroutines like INITIATE.REQUEST, where a request set may be entered.
52. Print the listing of the generated microcode.
53. Close the generated microcode file.
54. Increment the variable FILE.CNT to count the number of files.
55. Go to step 2 to generate code for any other files.

S-lnstruction Processing

As the line control/request sets are processed, the individual S-instructions are translated into micro
code. The types of translation can be broken into three general categories:

1. Those S-instructions that call subroutines that are invariant to the terminal type for that file.
Example: INITIATE REQUEST. This S-instruction generates a CALL instruction to the common subrou

tine that performs all initiate requests. The subroutine handles all possible terminal types exist
ing within the particular file. Subroutines may be tuned in some instances but the optimization
is of a general nature; for example, the routine may check data variables such as TERMINATE
BLOCK, which indicates whether or not that instruction was ever used. If never used, NPC
does not generate microcode to perform that subroutine.

2. Those S-instructions that call subroutines that are tuned for the terminal type.
Example: INITIATE TRANSMIT. This S-instruction calls a subroutine that is tuned for the terminal

referencing the request set. The post compiler also determines which label within the subroutine
is pertinent. Consequently, an INITIATE TRANSMIT subroutine exists for each terminal type
within the file.

3. Those S-instructions that do not access subroutines and are self-contained within the request/control mi
crocode.

Example: TOG[l] = TRUE. Most S-instructions that access variables use a routine to load or store the
data variable from or to its location.

A format is associated with each S-instruction. Some instructions have a fixed length, while others are
variable in size. The length of the variable instructions is determined by particular fields within the instruction.
The right byte of the first word indicates the instruction Op-code. The error branch switches occur at the end
of each request set. They are in groups of six branches. Each group can be referenced by the receive instruc
tions, with the branches corresponding to the six error flags obtainable during a RECEIVE.

S-lnstruction Processing Examples

The four S-instruction processing examples presented in this section are as follows:
Example 1: ADD.VALUE.VALUE
Example 2: ASSIGN.TOGGLE.TO.TOGGLE
Example 3: PAUSE
Example 4: INITIALIZE.TRANSMISSION.NO

Each example is a general case of translation from S-level to microcode. These and subsequent exam
ples illustrate post compiler decisions and the resultant generated microcode. The microcode presented is the
actual mnemonics for the code placed in the codefile for each example.

13-16

NOTE

Section 13
NDL Post Compiler

In these examples, the generated microcode is contained within brackets so the
reader can distinguish the microcode from the MPLII code.

Example I

ADD.VALUE.VALUE

-
X(l) OPCODE

X(2) X(3)

X(l) + X(2) --) X(3)

This S.OP adds the contents of the byte variables X(l) plus X(2) and places the result in byte variable

X(3). The following is the general flow of the S.OP code emission:

PROCEDURE ADD.VALUE.VALUE;
1 IF Xl = X2 = X3 THEN% All operands specify the same byte variable (B.V.).

DO EMIT;
[Ml...,_B.V ADDRESS]
[B04-Nl]

% Set up memory address of B.V.
% Read memory into BO without

[WRL+-BO]
[BO.-BO + WRL]
[11 ._BO]

% changing memory address register
% copy value into WRL.
%X(3)-+-X(l) + X(2)
% Memory address register still
% points to B.V. so write BO to

END EMIT; % memory.
1 IF Xl = X2 THEN DO; % X3 2 * Xl

2 IF Xl AND X3 IN SAME TABLE THEN DO;
3 IF Xl AND X3 CONSECUTIVE BYTES THEN

DO EMIT;
[Ml -+-B.V. ADDRESS (OF Xl)]
[B0.._11] % Read B.V. from memory and increment

% inemory address register. Ml now
% points at X3.

[WRL.._BO] % Copy B.V. to WRL
[BO+-BO + WRL] % B0-+--2 * B.V. (Xl + X2)
[114--BO] % Store result in X3

END EMIT;
3 1 F X3 AND Xl CONSECUTIVE BYTES THEN

DO EMIT;
[Ml~B.V. ADDRESS (Xl)]
[B04-Nl]
[Ml..-Ml -1] % Decrement memory address register

% to point at B.V. address (X3)
[WRL.._.BO]
[BO ,. BO+ WRL] % Xl + X2
[11 ,. BO]

END EMIT;
END2;

13-17

Section 13
NDL Post Compiler

DO EMIT; % Xl, X3 No relation
[Ml B.V. ADDRESS (Xl)]
[BO 4 11]
[WRL 4 BO]
[BO 4 BO + WRL] % Xl + X2
[Ml ~ B.V. ADDRESS (X3)]
[11 -4 BO]

END EMIT;
END l;
1 IFXl =X3THEN

DO;

END l;
1 IF X2 = X3 THEN

DO;

END l;
DO ALL.BYTE.VAR.DIFFERENT;

END ALL.BYTE.VAR.DIFFERENT;

END ADD.VALUE.VALUE;

% Similar to above

This procedure attempts to find where each of the parameters for the S-instruction are located and to

arrange the microcode based on these locations. Generally, all byte-variables are processed in this manner.

Example 2

ASSIGN.TOGGLE.TO.TOGGLE

TOG-1-A OPCODE

TOG-1-C TOG-1-B

TOG-2-A

TOG-2-C TOG-2-B

13-18

Section 13
NDL Post Compiler

This S.OP replaces the value of toggle 2 (denoted by TOG-2-A, TOG-2-B, and TOG-2-C) with the value

of toggle 1 (denoted by TOG-1-A, TOG-1-B, and TOG-1-C).

Toggle addressing comprises labels A, B, and C, where:

A = Bit mask.

B = Table pointer.

C = Pointer to the byte within the table.

Therefore, if TOG-1 = TALLY [0] [4], then:

TOG-1-A =@(1)00010000@

TOG-1-B = STATION TABLE.

TOG-1-C = TALL Y[O].

The following is the general flow of the code generated for this instruction:

PROCEDURE ASSIGN.TOGGLE.TO.TOGGLE;
[Ml (-- ADDRESS OF SENDER]

[Bl <-- Nl] % BYTE CONTAINING TOG TO Bl
IF TOG-1-B = TOG-2-B AND

TOG-1-C = TOG-2-C
THEN
[BO<-- Nl]
ELSE

[Ml { -- ADDRESS OF RECEIVER;]
[BO (-- Nl;]

[Bl <-- Bl OR (TOG-1-A FALSED)]
[IF KS GO TO SET.TOGGLE;]

[RESET .TOGGLE]
[BO < -- BO AND (TOG-2-A F ALSED);]
[GO TO WRITE.TOGGLE;]

[SET.TOGGLE:]
[BO (-- BO OR (TOG-2-A)]

[WRITE.TOGGLE:]
[11 < -- BO;]

END ASSIGN.TOGGLE.TO.TOGGLE;

Example3

PAUSE

% Decoded by using
%TOG-l-C, TOG-1-B

% Notice whether or not
% toggle is being replaced
% by another in the same
%byte

% Is sender TRUE or FALSE

loPCODE

The PAUSE instruction causes control to be relinquished by the executing line to allow servicing on

other lines. Code generation for PAUSE is as follows:

13-19

Section 13
NDL Post Compiler

PROCEDURE PAUSE;
IF MULTI-LINES:

THEN % Relinquish control
1CALL PRE-MANAGER.PAUSE]

ELSE % Single-line-case
IF A LINE.BUSY= FALSE COULD HA VE BEEN EXECUTED
OR
IF A LINE.BUSY = TOGGLE COULD HA VE BEEN EXECUTED

THEN
[CALL HOST-CONTROL] % Check for any host interrupts

END PAUSE;

This procedure determines whether or not the configuration is multiple lines. If it is, an instruction is

generated to enter the manager and perform a PAUSE on this line. If the configuration is single-line, PAUSE

has no meaning unless LINE-BUSY had been reset. If LINE-BUSY has not been accessed, no code is gener

ated. If LINE-BUSY had been reset, a call is generated to look for host interrupts.

This example shows the microcode that could be generated. Notice that the decoding of the toggles is

done by the post compiler so that an instruction (Ml ~ ADDRESS OF SENDER) could be generated to di

rectly reference the particular toggle. Notice also that the post compiler checks whether the toggles are both

in the same byte, and if so, does not generate instruction(s) to reference the receiver's address.

Example4

INITIALIZE.TRANSMISSION.NO.

[__ ~I _oP_C_O_DE~

The microprogram instruction places zeros into the transmission number as follows:

1. In the receive transmission, if in an input request.

2. In the transmit transmission number, if in an output request.

The following illustrates the general flow in generating microcode for this instruction:

PROCEDURE INITIALIZE.TRANSMISSION.NO;
% Emit code to address the STN.TABLE

[Ml < -- K]
IF INPUT.REQUEST.SET

THEN % Address the RC-TRI!
[Ml < -- Ml + STN.RCV.TR.NO.]

ELSE % Address the XMT-TR#
[Ml < -- Ml + STN.XMT. TR.NO.]

% EMIT.CODE TO ZERO THE VARIABLE
[11 (-- O]
[11 (-- O]

END INITIALIZE.TRANSMISSION.NO;

13-20

Section 13
NDL Post Compiler

This example displays the possible testing of some states at post compiler time. The procedure that gen
erates the code for INITIALIZE.TRANSMISSION.NO notices that the microcode resides in either the input
or output request set.

Llibel Reeolutlon

Three types of labels exist during the creation of a microcode file:

1. S-labels: labels resulting from S-instructions.
2. M-labels: labels associated with routines within the microcode.
3. Labels associated with entry to a request/control set.

Each label type is described in succeeding paragraphs.

8-l•bel Genenltion

S-instruction labels (S-labels) are always resolved at the completion of a line controVrequest set. The
address (microlevel and S-level) of each S-instruction encountered (considered to be known-labels that can be
referenced) are saved. They are placed in sequential order (by S-label) in a disk file.

Each reference (unknown-label) to an S-label by an S-instruction also has its microaddress (and the S
address it is referencing) saved. At the end of each request or control, unknown S-labels are resolved by in
dexing into the known labels with the unknown S-labels and retrieving its microaddress for insertion into the
unknown S-label's microaddress.

The following is an example of processing S-labels.

NDL Statements:
GETSPACE [3]

3: TERMINATE ERROR.

As each new S-instruction is encountered, its micro and S-label addresses are saved. The microaddress
(occurrence) of the GETSPACE instruction and the TERMINATE ERROR are saved with the instruction, and
the TERMINATE ERROR is saved with the S-level address of each. The S-level address and the microlevel
occurrence are maintained in a disk file. The occurrence is any known label that may or may not be referenced
by some other NDL instruction. The microcode for the NDL instruction is generated, including the GOTO
that invokes the logic specified by the NDL programmer, via a NO SPACE condition (LABEL [3]). The label
for the NO SPACE branch is not known and is saved for later resolution. The saved information is the address
of the GOTO (microaddress) and the label address (S-level).

As other instructions are processed, the known labels are saved. When the controVrequest set is com
pletely processed, the labels that were not previously resolved are then resolved.

M-i.bel Reeolutlon

NPC resolves microinstruction labels in two ways:

1. By generating the . called label when it is first referenced.
2. By saving the microcode reference for later resolution.

To resolve a label at its first reference, NPC uses the function name of the subroutine containing the
label. This name then becomes the attribute in a CALUGOTO statement. The label is generated and the ad
dress is returned before the CALL or GOTO is generated. Any later references to the same label cause the

13-21

Section 13
NDL Post Compiler

function to return the address of the label. For example, a statement to generate a CALL to a subroutine
GETSPACE appears as:

MCALL(GETSPACE(GETSPACE.TERMINATE));

The following defines each element of the previous statement.

MCALL

The procedure that generates the actual microcode CALL instruction.

GETSPACE

The function that generates the microcode subroutine to perform a run-time GETSPACE.

GETSPACE.TERMINATE

The define that names the label within the GETSPACE routine to which execution is to be transferred.

The value of GETSPACE.TERMINATE is passed to the function GETSPACE which generates the mi
crocode subroutine and returns the address of the label requested (GETSPACE.TERMINATE). The address
is then passed to the procedure MCALL to generate the instruction with the correct address of GETSPACE
. TERMINATE.

When the second form of label resolution is being used, the reference is saved for later resolution. This
mechanism is used for references to labels within the same subroutine or labels in the interrupt routines and
host control.

NPC supplies an array label identifier of the referenced label and a function call to the CALL or GOTO
procedure. This call saves the reference. The M.LABEL function, for example, determines whether or not
the label is already known. If not known, the reference is saved for later resolution. If known, the function
merely returns the microaddress of the label.

The statement to call the manager to perform a receive appears as:

MCALL (M.LABEL(LABEL.PRE.MANAGER.RECV + TERMINAL.NO));

The following defines each element of the previous statement.

MCALL

The procedure that generates the actual microcode CALL instruction.

M.LABEL

The function that detects whether or not the label has a corresponding address. If no corresponding
address, a value of zero is returned to generate a CALL; the reference is saved until it is resolved. If the
corresponding address is known, the value is returned to emit the CALL instruction with the proper address.

(LABEL.PRE.MANAGER + TERMINAL.NO)

This is the label referenced for the particular terminal type which is passed to M.LABEL.

Control/Request Label Resolution

Labels associated with entry points to request or control sections are resolved upon completing the gen
eration of the entire file. To place an instruction which would enter a request or control section, the following
type of statement is used: ·

MGOTO (CONTROL.REQUEST .ADDR(PROTOCOL. TYPE, TERMINAL. TYPE))

13-22

The following defines each element of the previous statement.

MGOTO

A procedure that generates the microinstruction GOTO.

CONTROL.REQUEST.ADDR

The function that saves the reference and returns a value of zero.

PROTOCOL.TYPE

Section 13
NDL Post Compiler

This is the section of that terminal's discipline being referenced. Legal attributes are:
INPUT.REQUEST
OUTPUT.REQUEST
LINE.CONTROL
AUX.LINE.CONTROL

TERMINAL.TYPE

This is the terminal's number of the request or control set being referenced. Note that this is the DCP
relative terminal number (DRTN). In an S-OP, DRTN is stored in the variable TERMINAL.TYPE.NUMBER.

At the beginning of the generation of each request or control, the micro-address is saved with its termi
nal type number. At the end of processing this file, all references made through this mechanism are resolved.
This is done by placing the address of the entry to the particular part of the discipline into the GOTO that
was generated.

The previous structure is used in an S-OP to resolve request or control addresses.

For subroutines a different method is employed. Since the subroutines are general, all possible terminals
are handled, Furthermore, the DRTN (DCP relative terminal number) is not stored in any run-time tables, but
the logical terminal number is kept in the line table. The problem, therefore, is to relate the logical terminal
number to the DRTN before invoking CONTROL.REQ.ADDR. The following scheme is used:

1. An index table is planted in the code file that relates all logical terminals in NDLSYS to a DRTN. (If
a particular terminal is invalid on this DCP, it is given a DRTN of the last legal DRTN + 1.)

2. Branch tables containing the addresses for all valid DRTNs are planted on a per-procedure basis, for ex
ample, LINE CONTROL, AUX LINE CONTROL, XMIT REQ, RCV REQ. In case an invalid terminal
should somehow execute, the last legal DRTN + 1 on entry is always the address of TERMINATE
ABORT.

3. If a particular procedure does not exist for a terminal, the branch table contains the address of an
NDL.ERROR routine. This procedure stops execution on the DCP and sets the ERROR byte to two.

Line Discipline

S-instructions are translated directly into microcode. Each S-instruction encountered has a direct corres
pondence with a portion of microcode. S-level instructions may also cause numerous subroutines to be generat
ed. Generally, the largest portion (and most variant in size) of code generated results from translation of the
S-instructions.

Subroutines

A subroutine is a portion of code that is used repeatedly during the execution of the code file. Subrou
tines are generated as a result of their first reference so the codefile contains only those subroutines needed
by some portion of the code. A subroutine must be general enough to handle any terminal in the codefile,
and is tuned on a file-basis rather than a terminal-basis.

13-23

Section 13
NDL Post Compiler

The NCP maintains all microsubroutines as MPL functions that return the microaddress of that
particular subroutine. These addresses are kept in a LABEL.ADDRESS array. When a subroutine is invoked,
a test is made on the pertinent entry in the LABEL.ADDRESS array. If the address is zero, the subroutine
must be generated. If the address is non-zero, the subroutine has previously been generated. In either case,
the microaddress of the subroutine is returned to the invoking statement.

Subroutine Generation

Subroutine generation is accomplished by a two-pass system which proceeds as follows.

NPC makes two passes of all non-subroutine code (S-OPs, manager, and host control). The first pass
causes all subroutines to be generated. The second pass emits all non-subroutine code. Because the subrou
tines are generated in the first pass, the subroutine addresses are already resolved by the time their first call
is generated.

Because a subroutine may require other subroutines, each subroutine makes two individual MPL passes.
The subroutines' first pass generates no code, but merely travels the same paths to be generated by the second
pass.

The first pass finds all required nested subroutines. Each nested subroutine, in tum, enters its two-pass
generation cycle. At some point, a subroutine having no further subroutines completes both passes. This con
trol is returned to the invoking subroutine for completion of its passes. Subroutines are emitted in reverse
of their nesting order and each subroutine's address is resolved before its code is generated.

Subroutines that reference one another cannot be generated in the previous manner because they cause
an infinite loop. NPC forces referenced subroutines to the code file before generating any other code. This
ensures that referenced subroutines are resolved before any other code is generated.

Example

A typical example of subroutine generation is:

MCALL.JPLUS (TERMINATE.NORMAL(TERM.NORM.LINE.BUSY));

This MPL source statement could be encountered in the procedure that processes the S-instruction
TERMINATE NORMAL. Within the first pass of the S-OP procedure, it is determined that a call be made
to the TERMINATE.NORMAL subroutine and at the label TERM.NORM.LINE.BUSY. The function that
generates the terminate normal subroutine appears as follows:

FUNCTION TERMINAL.NORMAL(ENTRY.LABEL);
IF LABEL.ADDR(LABEL.TERM.NORM.LINE.BUSY) = 0 THEN:
MAKE 2 SUBROUTINE PASSES

1. NON GENERATING
2. GENERATING

END SUBROUTINE GENERATION
CASE ENTRY.LABEL;
RETURN LABEL.ADDR (LABEL.TERM.NORM.LINE.BUSY)
RETURN LABEL.ADDR (LABEL.TERM.NORM.GETSPACE)

END CASE;

13-24

Section 13
NDL Post Compiler

The data item LABEL.ADDR is an array that contains all the addresses of the subroutine labels. The
identifier LABEL. TERM.NORM.LINE.BUSY is an identifier for a define that names the array location of
this subroutine's address. In effect, comparing for zero indicates whether or not the subroutine has been gener
ated. If it is zero, the function proceeds by beginning its non code-generating (first) pass. Once the first pass
is complete, code generation for this subroutine begins.

The current micro is assigned to the LABEL.ADDR array in the place reserved for the subroutine label.
Thus, the subroutine is flagged as emitted. Individual microinstructions are then emitted. As each microinstruc
tion is generated, the current address pointer (MICRO.INDEX) is incremented to the next location. If the func
tion is later invoked, the compare on the array element indicates that the subroutine has been generated.

The address of any label occurring within the subroutine is saved into the array LABEL.ADDR and
might appear as:

LABEL.ADDR(LABEL.TERM.NORM.GETSPACE) := MICRO.INDEX;

Upon completion of the function, the proper address is returned by determining which label was refer
enced by ENTRY.LABEL (tbe__formal parameter).

Example

The value is returned to the statement that caused the function but was not used during the first S
OP pass. The second S-OP pass finds the subroutine already generated. Once again, the subroutine's function
returns the address. This time that address is used as the address required by the microinstruction call J +
<address>.

Microcode Space Overflow Detection

Because the amount of space required by the firmware programs varies, each program generated must
not exceed allowable DCP space.

To monitor the amount of memory firmware programs require, each instruction emitted causes NPC
to check for an overflow condition .. Overflow is detected by comparing the current store address (MICRO.I
NDEX) with the maximum amount of memory (MEMORY.SIZE = 65K) available on a DCP.

When the codefile is completely generated, NPC calculates the size of the area needed to store data
(line information, station tables, and so on). NPC then adds this area to the codefile size and checks the DCP
to see if there is sufficient space to load the file. If not, an error is monitored.

Types of Storing

There are two types of storing: microcode and data.

Microcode Storing

Instructions are stored in post compiler memory in a disk buffer. When this disk buffer is full or another
disk area is required, the instructions are written to the M.CODE.FILE disk file where they are stored one
byte at a time. The following is a list of actions that occur as each byte is being stored:

1. Ensure that there is enough space (DCP memory) to perform a store.
2. Place byte in the appropriate disk buffer, causing the following to occur:

a. Check whether the disk buffer in memory is the buffer needed to store this instruction.
b. If it is the desired buffer, store the instruction and proceed to step 3.
c. If not the desired buffer, perform the following:

1) Write buffer in memory to disk.
2) Set an indicator to specify that there are instructions in that buffer.
3) Check indicator for the required buffer.
4) If indicator is set, bring buffer into memory from disk file.
5) If indicator is not set, initialize buffer area in memory to zeros.

3. Decode the instruction so that pertinent information is placed in the printer backup file.

13-25

Section 13
NDL Post Compiler

4. Increment the instruction counter that specifies the current address where code is being generated.

To store an individual microinstruction, the following sequence takes place:

1. A procedure is invoked through a series of defines. This procedure supplies the particular Op code for
an instruction. There is one define for each instruction. For example, AD.(LIT) is defined as
#EMIT.LIT! (@38@,LIT)#. This define generates an instruction of the form: AD~ LIT;. This passes
the appropriate parameters (@38@,LIT) to the invoked procedure (EMIT.LIT!).

2. The procedure places a call to the MICRO-SPACE function with the number of bytes to be stored. Two
bytes are stored for AD ~LIT. MICRO-SPACE ensures the availability of at least the number of bytes
specified as follows:

a. If there is sufficient space, a TRUE value is returned and the parameters for the instruction are placed
into global variables OPl, OP2, and OP3. If the instruction contained three bytes, this procedure byte
reverses the second and third bytes as required by the processor.

b. If there is insufficient space, a FALSE value is returned indicating that the store should not be per
formed. The ABORT-FILE flag is set so that after this series of microcode is generated, code file gen
eration is terminated.

3. The MICRO-STORE procedure then performs the actual store. MICRO-STORE calculates the displace
ment into the disk buffers. In the calculation process, the program may determine that the proper disk
record is not in memory. The program then performs a write of the record in memory and a read of
the desired record. Once the displacement has been calculated, a byte of the instruction is placed into
the disk buffer area. If more bytes exist for the instruction, the displacement is again calculated for each
byte.

4. After all bytes have been properly stored, a call is placed to the PBM.DECODE procedure. This proce
dure saves information about the instruction for listing purposes. The information could consist of a com
ment, a label to which the instruction might transfer execution, an associated label that other instructions
might reference, and/or a literal value an instruction could use.

5. The program increments (by the number of bytes stored) the variable representing the current generation
location in memory.

Data Storing

Data is stored in primarily the same fashion as instructions. The major difference between data and in
struction storing is the appearance of the defines to which parameters are supplied. There are two defines for
storing data items:

1. PLANT.D stores one byte of data at the current address, MICRO-INDEX.
2. PLANT.ADDR stores two bytes of data byte-reversed. This is used for storing addresses only.

MANAGER SCHEMES

Two types of managers can be generated from the post compiler. One is used for multiple lines (multi
lines), and the other is used for a single-line configuration. The interrupt routines for each go through identical
types of optimization for the particular terminal types. The methods of invoking the interrupt routines at micro
code run-time differ as follows:

1. The multi-line version has a common routine that invokes the particular function the current line is per
forming.

2. The single-line version invokes the interrupt routines directly from the request/control logic.

Succeeding paragraphs describe both cases with an in-depth discussion of multi-line and a comparative
analysis of the single-line case. Pre-managers are generally used to set-up entry points to the various manager
types before yielding processor control to other lines on the system.

Multi-Line Manager

The multi-line manager consists of five basic functions: manager entry, manager line change, priority
entry, priority line change, and manager exit.

13-26

Section 13
NDL Post Compiler

The multi-line manager uses a "top down" queue of all active lines on the DCP. When a line is made
ready, it is inserted in the top down line queue using the priority code found in the station table for relative
station 0. Higher speed lines have a higher priority code and are at the top of the queue. Each line in the
queue has a pointer to the highest priority line. The only exception to this is if there are several lines having
the same priority and that priority is the highest on the DCP. In this case, these lines behave in a "round
robin" fashion.

Manager entry is entered from the various pre-manager routines, except the XMIT/RECV CHAR/TEXT
pre-managers, which go to priority entry. Manager entry stores the return address of the calling routine that
invoked the appropriate pre-manager. The return pointer is popped off the hardware stack and placed into
LNE.RETURN.POINTER in the line information area. The manager is always entered with only one address
in the stack; that is, normally the address from which it was called in the line discipline. If the discipline has
invoked a subroutine that calls the manager, that subroutine saves the address of the return point in the disci
pline in the variable LNE.SA VE.PTR. When control returns to the subroutine, the subroutine restores the
line discipline's return address and returns control to that address.

Manager line change is entered either from a manager entry or from interrupt handlers (managers) that
are waiting for an interrupt. The function of manager line change is to pass control of the processor from the
current active line to either the next line in the "top down" queue or to host control. Host control is treated
as another line in the system. When passing control to the next line, the L-register is set-up to contain the
base address of the next line's line information area (LNE.NEXT.POINTER). This is used to set-up the next
line's PORT.NUM in the address register. Manager line change then does a GOTO to the next line's current
function type.

The priority entry and priority line change routines are used by character handling routines. Whenever
a XMIT or RCV character has been processed by a line, that line goes to the priority manager code which
switches to the highest priority line. This switch causes top down handling of XMIT/RECV characters. When
a line is waiting for an interrupt, it goes to the next lower priority line using the normal manager line change
routine.

Manager exit is entered when the current function type requires a return to the procedure that invoked
the manager. Manager exit sets up the K-register to point to the current active station pointer, and then per
forms the return.

Succeeding paragraphs describe the various types of manager/pre-manager routines used in conjunction
with the multi-line manager.

Idle

The pre-manager idle routine sets-up the response for an idle of a particular line. This is a direct result
of the NDL IDLE S-OP.

The idle routine enters into the line's function variable, LNE.FUNCTION, the address where control
is passed when this line is next-selected. The manager type for idling a line is that of manager line change.

When the line is selected, control passes to the specified address and effectively bypasses that line.
Manager line change selects a new line. Therefore, the line is ignored until a request that changes its state
is honored.

Pause

Pause allows other lines to be serviced in a multi-line environment. This can be the direct result of a
PAUSE statement in NDL or via implicit pauses within the firmware. Implicit pauses may be caused by:

1. GETSPACE.
2. Termination of a request set through one of the terminate instructions.
3. INITIATE REQUEST.
4. INITIATE ENABLE INPUT.

13-27

Section 13
NDL Post Compiler

The function of the pre-manager pause is to write the manager exit address to memory (the LNE.FUN
CTION variable). Control is then passed to the next line in the line queue. This allows one pass of all the
lines to be made and then returns immediately to the paused line. This line exits the point that invoked the
PAUSE.

Delay

Delay is a means to pause the line for a specified time. The delay can be a direct result of the NDL
DELAY statement or through implicit delays within the firmware such as:

1. INITIATE RECEIVE.
2. INITIATE TRANSMIT.
3. BREAK INSTRUCTION.
4. FINISH TRANSMIT.

The pre-manager delay writes MANAGER.DELAY.ADDRESS to memory. Control is passed to the
next line. When the delayed line is reselected, control passes to the MANAGER.DELAY.ROUTINE. It
checks the adapter timer flag. If the timeout is reached, the routine returns to the request set at the point
where the delay was invoked. There is a pre-manager and a manager for each of the two timers in the adaptor.

Receive

NPC generates a pre-manager receive routine for each terminal type in the system. This routine sets
up the timer and writes the address of the receive interrupt handler to line function variable, LNE.FUN
CTION. There is also a receive interrupt routine tuned for each particular terminal type.

During the generation of the interrupt handler, characteristics of the terminal are considered.

Transmit

NPC generates a separate pre-manager transmit routine for each terminal type in the system. A single
transmit interrupt routine is emitted for all terminals. PRE.MANAGER.XMT is responsible for:

1. Writing the address of the interrupt handler (LNE.FUNCTION) to memory.
2. Preparing the character for transmission, that is, vertical parity, translation, and so on, if necessary.

Full-Duplex Managers

When one half of a full-duplex line causes an action on its co-line (for example, FORK), a full-duplex
manager completes that action. The causing half schedules the appropriate full-duplex manager for its co-line
to accomplish this task.

Single-Line Manager

The single-line manager routine differs from the multi-line version in several ways:

1. No line change routine exists.
2. The interrupt routines do not return to a common place if their task cannot be carried out. Since this

is the only active task within the system, the specific interrupt handler loops until the condition is satis
fied, or until an error condition is detected.

3. Interrupt routines call host control while they are waiting for an interrupt.

CODE OPTIMIZATION

To enhance throughput, NPC tunes the microcode in the DCP to the existing configuration. Succeeding
paragraphs are examples of how NPC performs this optimization.

Terminal Types

NPC optimizes the configuration using the terminal names that a particular file handles as specified in
NDLSYS.

13-28

Section 13
NDL Post Compiler

The interrupt routines, which play a critical role in throughput, are generated to handle only those char
acteristics that exist within the named file. In particular, NPC optimizes the transmit and receive interrupt
handlers by creating a separate handler for each terminal type. Factors used for optimization are:

TRANSLATION
SYNCHRONOUS or ASYNCHRONOUS
CASE SHIFT
VERTICAL PARITY
SUMMED PARITY
PARITY MASK
HORIZONTAL PARITY
BCC or CRC HORIZONTAL PARITY ACCUMULATION
CRC-0 or CRC-1
CHARACTER SIZE
TRANSPARENCY
VERTICAL ODD/EVEN PARITY
SYNC CHARACTER
SYNC TRUE/FALSE
CRC TRUE/FALSE

Terml1111I Code Reduction

When two or more terminals possess similar characteristics, a common copy of the terminal dependent
routines are generated.

NPC first compares the following characteristics for each terminal type:

PARITY (Vertical or Horizontal)
TRANSLATION
BCC INITIALIZATION (Zeros or Ones)
FULL DUPLEX
TRANSPARENT
CASE SHIFT
BCC/CRC
SUMMED PARITY
CRC-1 (CRC Polynominal)
SYNCHRONOUS/ASYNCHRONOUS
NUMBER OF TRANSMISSION CHARACTERS
NUMBER OF TRANSMIT ADDRESS CHARACTERS
NUMBER OF RECEIVE ADDRESS CHARACTERS
SYNC CHARACTER
PARITY MASK (NUMBER OF BITS NOT INCLUDING PARITY)
BITS
BDI
TELEX
ASCII/EBCDIC SYNCH CHARACTERS
SPECIAL TYPE
MAX INPUT VALUE

If two or more terminals satisfy the previous requirements, the addresses of all line control and request
sets are compared. For each terminal type having a line control or request set equal to a generated terminal
type, NPC place~ the terminal number in the IGNORE.FLAGS array entry for the generated terminal at the
respective line control or request set offset.

If all line control or request sets for this terminal have been generated, the LOGICAL.TERM.NO field
of the terminal array is set to @FF@. This indicates to the manager and to the terminal-dependent code not
to emit code for this terminal. When generation of line control and request sets takes place, the address of
the generated line control and request sets indicated by the IGNORE.FLAGS array are placed in the branch
tables entry for the terminal.

13-29

Section 13
NDL Post Compiler

The new result is a reduction in the amount of terminal dependent microcode in a particular file for
line control, request sets, terminal-dependent manager and pre-manager, and the adapter. This increases the
likelihood that a large codefile will fit into DCP memory. It does not, however, affect throughput.

DCP-Related Optimization

During codefile generation, the NCP utilizes certain DCP advantages such as those related to terminal
information. Also, NPC uses the DCP adapter and DCP registers to assist in generating code. Use of these
components is described in succeeding paragraphs.

Adapter

The adapter generates the vertical parity for each character during transmission except under the fol
lowing conditions:

1. When the terminal has both vertical and summed horizontal parity.
2. When TRANSPARENT = TRUE/FALSE in the control/request set.

If these conditions exist, firmware generates the parity.

Registers

Throughout processing, NPC takes advantage of the variables in each DCP register, notably during pro
cessing of byte-variables. If the next sequential instruction to be processed requires the stored variables, NPC
generates the necessary code.

In processing the S-instruction for:

TALLY[l] = TALLY[l] +l

the generated microcode is as follows:

Ml~ K
Ml ~ Ml + tally offset
BO~ Nl
BO~ BO+ 1
11 ~BO

% station table base

% tally 1 to BO
% increment
% store

The same byte variable is referenced in the replacement; consequently, the tally is loaded such that
Ml points to its location after the load. When added, the literal value is stored directly without computing
the address.

NOL Compiler-Related Optimization

As previously stated, NPC uses NDLSYS terminal information to optimize code. Additionally, NPC
uses the NDL compiler-supplied information about the following S-level instructions to optimize certain areas:

13-30

ASSIGN LINE BUSY
LINE BUSY FALSE
ASSIGN AUX LINE BUSY
AUX LINE BUSY FALSE
TRANSPARENT= TRUE/FALSE
TERMINATE BLOCK
SYNC = TRUE /FALSE
CRC = TRUE/FALSE
SHIFT = UP/DOWN/MIDDLE
STATION = LIT/VARIABLE
LINE CHAR REFERENCED
RECEIVE WAITS.OP OCCURS
RECEIVE TEXTS.OP OCCURS
BACKSPACE IS REFERENCED

This information is used during generation to optimize in certain areas.

Une Busy Information

Section 13
NDL Post Compiler

During generation, NPC checks line-busy information for indications that the LINE BUSY flag has ei
ther been set FALSE or was falsed by replacement with another flag.

If the flag has never been set FALSE, NPC eliminates code in routines (such as INITIATE REQUEST,
INITIATE ENABLE INPUT, and all TERMINATE statements) that implicitly or explicitly set this flag
TRUE.

If the system is a single-line system, the PAUSE statement also checks the LINE BUSY information.

If the flag has never been set FALSE, the PAUSE is ignored for the single-line case. Effectively, the
PAUSE has no meaning in a single-line system unless the request set is intended to be terminated through
a host control request.

TRANSPARENT = TRUE/FALSE

The TRANSPARENT flag is used during generation of the manager. Normally, the manager needs to
check the TRANSPARENT flag on each receive and transmit to determine its path. NPC uses this information
to determine whether or not to test the flag. It is also used in conjunction with other flags to determine wheth
er or not the adapter can perform vertical parity on transmission.

TERMINATE BLOCK

The routine that performs an INITIATE REQUEST must respond to a previous TERMINATE BLOCK.
If the TERMINATE BLOCK never occurs, the logic for the response is omitted.

SYNC = TRUE/FALSE

The NDL programmer is capable of permitting the synchronous characters on a synchronous line to
be returned to the MCS. During each receive of a synchronous character, the flag must be checked to deter
mine whether or not the SYNC character is discarded. If the instruction has never been used, the code for
this checking and saving of the synchronous character is not generated.

CRC = TRUE/FALSE

CRC is similar to the SYNCHRONOUS flag.

SHIFT = UP/DOWN/MIDDLE

SHIFT is similar to the SYNCHRONOUS flag.

STATION = LIS/VARIABLE

The information pertaining to STATION indicates whether or not the station byte variable has ever been
changed. If changed, the microcode must validate the active station during certain operations. The INITIATE
REQUEST/INITIATE ENABLE INPUT must either determine that the current station is legal or discontinue
the operation. If the station variable is not replaced, then the routines to determine validity are omitted.

Following is an example of the other general information NPC retrieves from the NDLSYS file.

If only one control/request set exists in a code file, the INITIATE/TERMINATE logic uses GOTOs
to transfer execution. If more than one set exists, a switch table is used to get to the proper control/request
via the logical terminal number.

DEBUG OPTION

For debugging purposes, NPC contains a run-time option (DEBUG) to display information about pro
gram execution. Throughout the shell of the post compiler, there are procedure calls for DUMP.BUFFER with

13-31

Section 13
NDL Post Compiler

parameters to display certain pieces of data. The parameters consist of: 1) a character string that is displayed
with the data; 2) a data identifier; and 3) the number of bytes to be displayed.

Following are standards for displaying certain types of data:

1. Any time a disk record is retrieved, the buffer is displayed along with a character string that indi
cates the type of data displayed. Record retrieval includes: S-instructions, table data (line, station,
translation, etc.), and label references.
2. Each translated S-instruction is displayed.
3. Each generated microinstruction is displayed.

Additionally, several other kinds of data are displayed. Consequently, the DEBUG option generates a
listing that shows the flow of execution and displays the microcode in the order generated.

Printer File Listing

Figure 13-3 is a sample PBM file listing. Following the figure is a description of each field.

NPC extracts the following printer file information from M.CODE.FILE:

I. The label field (GET.STO.DELAY in figure 13-3.)
2. The field that specifies the label where a CALL or GOTO must pass control (GET.STO.DELAY
in the CALL statement shown in figure 13-1).
3. The actual microcode (hexadecimal value) retrieved from the code file created.

NPC then generates (from the extracted information) the remaining listing requirements, that is, micro
code mnemonics and microaddresses. The information pertaining to the S-instructions (S-code and S-address)
is retrieved from the NDLSYS file.

13-32

1-l 2 3 4 Ji 6 7 8 9
MOOP 0000 ooqA

ATOf;F 0001 01oq
0002 1C08

INPUToREOUESToOO t' 1 <-- K i~TAT 10•~ T APL E BA~E 19[lf CZ
~I 1 <-- M 1 • STNoTOGGLE 19CO 0111000

BO <-- Nl 19C3 78
80 < -- llO ll I 0 GGL E f"lASK F ALSIO iAl'PLY TOGGLE ttASK 19C'I 15Fl

I 1 < -- BO ir<ESTORE THE 8YTE 19C6 89

1 r xtt r 0003 0 02 0
ll l <-- 01 & ZERO ilNJTIALIZE Bl 19C1 OF GU

CALL J • GEloSTOoOELAY,011 19C9 11c qo 11

XTU T oooq oq5c
0005 R008q

M1 < -- L • LNEoFLAGS,q 19CC 13'1300

uo <-- Nl 19CF 78
llO <-- uo 4 RESETolGNORE.~REAK 1900 10.H

I l < -- Ull HD.l 69

IJO <-- EOT 1903 3AO'l
GALL J • PREoNANAGERoXMTolloO 191J'j 1E 02 06

IF 7S GOTO J • Sol ABEL 00 8~ 1908 108U 1 C

XTRAO 0006 0050
0 0 0 7 R008q

Mt <-- L . LNE .FLAGS,q 1901! 13q3 ilJ

fl 0 <-- NI 1901_ 78
HO < -- 80 & RES ET , I GN OR fo BREAK 190f 15lF

I I < -- BO 19E1 81-

Ml < -- K ~ ~ 1 N TABLE !JASE 19l2 l2
111 <-- 111 + STNo!<ECVoAOol 1% 3 OAOuoa

uo <-- 11 19E6 6'1

CALL J . PHE .,1Ati AGER oXtll 08 oO 19[7 H 02 06

IF 7" ,, GOIO J • Sol ABEL 00 84 19EA 1D8ll!C

Ml < -- K 19E 0 C2

M1 <-- Ml . STNol<ECVoAD,2 19E E. OA O(; 0 0

110 <-- 11 19F I 6q

C ~LL J • PRFoHANA~ERoXHToBoO l.9F2 1E 02 06

IF 7~ GOTO J • Sol ABEL 008'1 1 Qf '> lDIJUtC

XH IT 0008 7 05 c
0009 R0084

Ml <-- L • LNEoFLAGSo4 19F8 13 'IJ OJ

BO <-- Nl lYFS 7tl

80 < -- 80 & RESET ol CNOfl(oBREAK 19FC 15EF

I 1 <-- BO 19F E 89

Ba <-- LCP) 19F F JA70

GALL J . PREoMANAi;EfloXMloBoO 1AO1 1E 0 2 06

IF 75 GOTO J • Sel.AdEL 0084 1AO 'I 108YIC

X T LIT OOOA 055C
OOOR R008 •1

Ml <-- L + LNEoFLACSo'l 1A07 131,J 0 !.)

fl 0 <-- NI 1AOA 7B

HO < -- RU & RF.SU o I GNORE,8RE4K lAOB 1~Lf

I 1 < -- I! 0 1AOIJ .ic

uu < -- ENO lAOE 3,.0~

c fd .. L J . PR[oMANAGlRoXMT08oO 1A10 !l0<06

If JS CO!O J . Sol_A8El 00 ~'I 1A13 l[)E 01 C

F N Xl1 T oo oc 0 00 c

Section 13
NDL Post Compiler

Field

2

3

4

5

6

7

8

9

13-34

Meaning

This field contains the mnemonic for an NDL source statement. IFTOG represents the "IF TOG[O] THEN" sequence.

This field contains a hexadecimal value for the S-level address of the NDL instruction.

This field is the actual hexadecimal value of the S-instruction. It is six bytes in length. An "R" in the left margin of this

field indicates that the fifth and sixth bytes are the relative S-address of the false branch for the IF Statement.

This field contains a label if one is associated with this instruction.

This field represents the mnemonic for the microinstruction .

Literals or addresses referenced.

This field contains any comment that might clarify the actions taking place. Comments are preceded by a percent(%)
sign.

This field contains the hexadecimal address of the microinstruction.

This field contains the hexadecimal value of the instruction. The length of these instructions varies as does the increment

of the microaddress. The first byte of the instruction is always the Op code.. This field may also include strings of data

values that were stored during code generation.

NOTE
Two-byte addresses and literals appear byte-reversed because this is how they are
stored in DCP memory.

APPENDIX A

NOL RESERVED WORD LIST

A D GEQ

GETSPACE

ABORT DATASET GLOBAL

ACU DCP GO

ADDERR DEFAULT GT

ADDRESS. DEFAULTCHAR GRT

ALL DELAY

ALLCASE DELIVER H
ANSWER TONE DIALIN

ASC67 DIALOUT HIGH

ASYNC DIRECT HOME

AUX DISABLE HORIZONTAL

AUXILIARY DISCONNECT

DOWN

B DUPLEX I

BACKSPACE E IDLE

IF
BAUDOT

UR
BCC EBCDIC

BCCERR ECMA
INCREMENT

BCL ELSE INITIALIZE

BDI ENABLE INITIATE

BEGIN ENABLED
INPUT

BINARY ENABLEINPUT
INVALID

BITS END
IR

BLOCK ENDOFBUFFER

BLOCKED EQ
L

BREAK EQL
LC HAR

BUFFER ERROR
LE

BUFFERCOUNT EVEN
LEQ

BUFOVFL EVENTl
LIBRARY

BUSY
LIMIT

BYTE F
LINE

FALSE
LINEDELETE c
LINEFEED

FAMILY
LOGIN

CARRIAGE FETCH
LOSSOFCARRIER

CHAR FILE

CHARACTER FINISH
LOW

CLEAR FLAG FILL
LOWER

CODE FORK
LS

CODEFILE FORMATERR
LSS

CONSTANT FRAMEADDR

CONTINUE FREQUEN~Y M
CONTROL

CONTROLFLAG G MAXINPUT
CRC MAXSTATIONS
CR CE RR GE MEMORY

Appendix A
NDL Reserved Word List

MICRO

MIDDLE

MILLI

MIN

MOD

MODEM

MYUSE

N

NAKFLAG

NAKONSELECT

NE

NEQ

NOINPUT

NOISEDELAY

NORMAL

NOSPACE

NOT

NULL

0

ODD

OUTPUT

p

PAGE

PAPERMOTION

PARITY

PAUSE

PHONE

PRIORITYSA VE

Q

QUEUED

R

RATESELECT

READY

RECEIVE

REQUEST

RESTORE

RETRY

RETURN

A-1

Appendix A
NDL Reserved Word List

s TRAN

TRANERR
SAVE TRANSLATE
SCREEN TRANSLATION
SEC TRANSMISSION
SHIFT TRANSMIT
SKIP TRANSMITDELA Y
SKIPCONTROL TRANSPARENT
SPACE TRUE
SPEED TURNAROUND
SPO TYPE
STANDBY

STATION u
STOPBIT

STORE UNDER FLO

SUM UP

SYNC UPPER

SYNCS
v

T VALID

VERTICAL
TALLIES

TALLY w
TELEX

TERMINAL WAIT
TERMINATE WIDTH
TEXT WRAPAROUND
THEN WRU
TIMEOUT WRUFLAG
TIMER

TO x
TOG

TOGS XMTADD

A-2

APPENDIX B

Appendix B
Network Semantic Considerations

NETWORK SEMANTIC CONSIDERATIONS
Although an NOL program is highly modularized, there are many areas where the interaction of several

different definitions is important. The following is a list of conditions which affect these areas. They are organ
ized according to section to section interfaces.

TERMINAL - CONTAOUAEQUEST

TERMINATE ENABLEINPUT

This instruction cannot appear in receive requests.

TRANSMIT TEXT

This instruction cannot appear in receive requests.

RECEIVE TEXT

This instruction cannot appear in transmit requests.

GETSPACE

This instruction cannot appear in transmit requests.

STORE

STORE CHARACTER or STORE STRING cannot appear in transmit requests.

TEXT CONTROL CHARACTERS

The following characters must be defined for any terminal which uses a control or request set which
references them:

END
BACKSPACE
LINEDELETE
WRU

WRUFLAG

The WRU character must be defined for any terminal which uses a request set which references WRUF
LAG.

STATION - CONTAOUAEOUEST

CONTROL

The control character must be defined for any station which uses a control or request set which refer
ences CONTROL.

CONTROL FLAG

The control character must be defined for any station which uses a request set which references CON
TROL FLAG.

STATION - MODEM

TYPE

A station and its modem must specify the same type (async/sync).

B-1

Appendix B
Network Semantic Considerations

SPEED

The speed of a sync station must be equal to the speed of its modem. For async stations, the speed
must be less than or equal to that of the modem.

STATION · TERMINAL

TYPE

A station and its terminal must specify the same type (async/sync).

TYPE OPTION
If a station specifies a TYPE option, its terminal must have the capability. If the station gives NO TYPE

option, the terminal must specify only one option and the station uses that value. If the WRAPAROUND op
tion is specified, the terminal must not be full-duplex.

SPEED

If a station specifies a SPEED, it must be less than or equal to the terminal speed for asynchronous
operation and equal to the terminal speed for synchronous. If no station speed is given, the terminal must
specify only one speed and the station uses that value.

STOP BITS

If a station SPEED statement specifies the number of stopbits, the corresponding terminal speed must
have the same number of stopbits. If the station does not specify the number of stopbits, the terminal value
is used.

MYUSE

A terminal definition must contain a request for each 1/0 capability specified in the station MYUSE
statement.

ADDRESS

A station address must agree in size with the terminal address specification.

WIDTH

The station width must be less than or equal to the terminal width. If no station width is specified,
it defaults to the terminal value. If no terminal width is given, a default value of 255 is used.

PAGE

The station page size must be less than or equal to the terminal PAGE size. If no station page size
is given, it defaults to the terminal value.

WRAPAROUND

If a station does not have a WRAPAROUND statement, the terminal value is used.

LINE· MODEM

A line modem must have the same TYPE (async/sync) as stations on the line.

SPEED

On sync lines, the line modem speed must be equal to the speed of all stations on that line. For async
lines, the station's speed must be less than or equal to that of the modem.

DIALIN

The line modem on a dialin line must have dialin capability.

B-2

Appendix B
Network Semantic Considerations

DIALOUT

The line modem on a dialout line must have dialout capability.

DUPLEX

All modems on a duplex line, including station modems, must have duplex capability.

LINE - TERMINAL

DUPLEX

A ,duplex terminal may only be used on a duplex line.

CONSISTENCY ALONG LINE

The following characteristics must be identical for all terminals on a line:
BYTE SIZE (including parity bit)
CONTROL SET
VERTICAL PARITY CHECK
VERTICAL PARITY TYPE (odd/even)

LINE • STATION

CONNECT TYPE

The stations on a line must have the same connect type (DIRECT/TELEX/BDI/MODEM) as the line.

CONSISTENCY ALONG LINE

The following characteristics must be identical for all stations on a line:
TYPE (async/sync)
TYPE OPTION
SPEED
NUMBER OF STOPBITS
EXISTENCE OF STATION ADDRESSES

B-3

APPENDIX C
SAMPLE NOL PROGRAM

CONSTANT SECTION

Appendix C
Sample NDL Program

CONSTANT
NULL
SOH ;:

STX
ETX
EOT
ENQ
NAK
FSL

4"00".
4"01 ".
4"02".
4"03".
4"04".
4"05".
4"15".
4"73".

LINE CONTROL SECTION

%START OF HEADER
%START OF TEXT
%END OF TEXT
%END OF TRANSMISSION
%ENQUIRE
%NEGATIVE ACKNOWLEDGE

LINE (TALLY [O]) - Reflects the number of times that line control was entered during the last station cycle (i.e.
STATION running between MAXSTATIONS-1 and 0). Line control is entered at the top when a
request set is terminated. Possible values for LINE (TALLY [O]) range between 0 and
MAXSTATIONS-1.

LINE(TALLY[l])- Reflects the value ofLINE(TALLY[O]) at the end of the last cycle, unless LINE(TALLY[O]) = 0.
In this case, LINE(TALLY[l]) = 1.
LINE(TALLY[l]) is used in conjunction with polling frequency.

CONTROL POLL:
% *

%
%
%
%

0:

1:

LINE(TALLY[O]) = LINE(TALLY[O]) + 1.
LINE(QUEUED) = TRUE.

IF STATION >O THEN
BEGIN

PAUSE.
STATION = STATION-1.
INITIATE REQUEST.

IF STATION IS NOT VALID, READY, OR QUEUED THE NEXT
INSTRUCTION WILL BE EXECUTED. IF THE ABOVE CONDITIONS
ARE TRUE, THEN THE REQUEST WILL BE ACTIONED AND LINE
CONTROL WILL BE RE-ENTERED AT THE TOP.

IF STATION(ENABLED) THEN
BEGIN

IF STATION(TALLY) GT LINE(TALLY[l]) THEN
BEGIN

PAUSE.
STATION(TALLY) = STATION(TALLY)-

LINE (TALLY[l]).
%THE LARGER THE VALUE OF LINE(TALLY[l])
%THE QUICKER THE VALUE OF STATION(TALLY)
% WILL BE DECREMENTED. THIS WILL A VOID
% UNDESIRABLE DELAYS, IN POLLING, AFTER
%PERIODS OF HIGH STATION ACTIVITY.

LINE(QUEUED) = TRUE.
END

ELSE

C-1

Appendix C
Sample NDL Program

END.

GO TOO.
END.

BEGIN
PAUSE.
STATION(TALLY) = STATION(FREQUENCY).
INITIATE ENABLEINPUT.

END.

PAUSE.
STATION= MAXSTATIONS.
IF LINE (QUEUED) THEN % LINE (QUEUED) WILL BE FALSE ONLY IF NO

% STATION ON THE LINE IS ENABLED.
% IF THIS IS THE CASE, THERE IS NO POINT
% IN ATTEMPTING TO POLL A STATION. THEREFORE,
% LINE CONTROL ENTERS THE IDLE STATE
% TO BE REINITIATED BY WHEN AN OUTPUT
% FUNCTION IS QUEUED.

BEGIN

END.

LINE (QUEUED) = FALSE.
IF LINE(TALLY[O]) == 0 THEN %THERE HAS BEEN NO STATION ACTIVITY

BEGIN

END
ELSE

LINE(T ALLY [1]) = 1.
LINE (BUSY) = FALSE.
DELAY(l SEC). % IF AN OUTPUT FUNCTION IS QUEUED

% DURING THIS DELAY LINE CONTROL
% WILL BE ENTERED AT THE TOP.

LINE(BUSY) = TRUE.

BEGIN
PAUSE.

END.
GOTO 1.

LINE(TALLY[l]) == LINE(TALLY[O]).
LINE(TALLY[O]) = 0.

IDLE.
-

REQUEST POLLIT:
%

%

%

ERROR[l] TIMEOUT:$,
STOPBIT:3,
BUFOVFL:3,
PARITY:4,
LOSSOFCARRIER: 5.

ERROR[2] = TIMEOUT:2,
STOPBIT:2,
BUFOVFL:2,
PARITY:2,
LOSSOFCARRIER:2.

% *
%

C-i

%

%

%

%

1:

TOG[O) = FALSE.
INITIATE TRANSMIT.
TRANSMIT EOT[BREAK:7).
TRANSMIT ADDRESS[BREAK:7).
TRANSMlT POL[BREAK:7).
TRANSMIT ENQ[BREAK:7).
FINISH TRANSMIT.

INITIATE RECEIVE.
RECEIVE(1 SEC) [1] .
IF CHAR= SOH

THEN BEGIN
CONTROLFLAG = FALSE.
INITIALIZE BCC.
RECEIVE(! SEC) ADDRESS [1,ADDRESS:3).
GETSPACE[6).
RECEIVE TRAN[l, TRANERR:NULL].
RECEIVE STX[l, FORMATERR:3).
INITIALIZE TEXT.
RECEIVE [l ,ETX: I ,CONTROL] .
STORE[ENDOFBUFFER:3).
RECEIVE TEXT[l,ETX,ENDOFBUFFER:3).
RECEIVE BCC[l,BCCERR:3).

INITIATE TRANSMIT.
TRANSMIT ACK.
FINISH TRANSMIT.

INITIATE RECEIVE.
RECEIVE(! SEC) EOT [2, FORMATERR:NULL].

2: INCREMENT TRAN.
TERMINATE NORMAL.

END.
IF CHAR= EOT THEN TERMINATE NOINPUT.

3: RECEIVE(25 MILLI) [1).
GOT03.

4: IF CHAR NEQ 4"F" THEN GO TO 3.

5: IF TOG[O) THEN TERMINATE NOINPUT.
IF RETRY = 0 THEN TERMINATE ERROR.
RETRY = RETRY - 1.
TERMINATE NOINPUT.

6: STATION(TALLY) = 0.
TOG[O) = TRUE.
GOTO 3.

7: FINISH TRANSMIT.
INITIATE RECEIVE.
GOTO 3.

REQUEST SELECTIT:
%
%

AppendixC
Sample NDL Program

C-3

Appendix C
Sample NDL Program

%

ERROR[l] = TIMEOUT:4,
STOPBIT:2,
BUFOVFL:2,
J>ARITY:3,
LOSSOFCARRIER:4.

% *
%

%

%

C-4

TOG[O] = FALSE.
INITIATE TRANSMIT.
TRANSMIT EOT[BREAK.:5].
TRANSMIT ADDRESS [BREAK: 5].
TRANSMIT SEL[BREAK:5].
TRANSMIT ENQ[BREAK:5].
FINISH TRANSMIT.

INITIATE RECEIVE.
RECEIVE(! SEC) [1] .
IF CHAR= ACK

THEN BEGIN
INITIATE TRANSMIT.
TRANSMIT SOH[BREAK:5].
INITIALIZE BCC.
TRANSMIT ADDRESS[BREAK:5].
TRANSMIT TRAN[BREAK:S].
TRANSMIT STX[BREAKS].
INITIALIZE TEXT.
TRANSMIT TEXT[BREA KS].
TRANSMIT ETX[BREAK:S].
TRANSMIT BCC [BREAKNULL].
FINISH TRANSMI'I

INITIATE RECEIVE.
RECEIVE(! SEC) [1].
IF CHAR= ACK.

THEN BEGIN
INCREMENT TRAN.
TERMINATE NORMAL.

END.
IF CHAR NEQ NA K THEN GO TO 2.
NA K FLAG = TRUE.

GOT04.
END.

IFCHAR= NAK
THEN BEGIN

NAKONSELECT = TRUE.
TOG[O] = TRUE.
GO T04.

END.
2: RECEIVE(25 MILLI) [1].

GOTO 2.
3: IF CHAR NEQ 4 "FF" THEN GO TO 2 ~

4: ff RETRY= 0 THEN TERMINATE ERROR.
RETRY= RETRY - 1 •
IF TOG[O] THEN TERMINATE ENABLEINPUT,
TERMINATE NOINPUT,

%*
%

5: FINISH TRANSMIT.
INITIATE RECEIVE.
GOT02.

MODEM M202D:
TRANSMITDELAY = 200 MILLI.
NOISEDELAY = 0.
TYPE = ASYNC.
SPEED = 1200.

MODEM M202C:
TRANSMITDELA Y = 17 5 MILLI.
NOISEDELAY = 120 MILLI.
TYPE = ASYNC. DIALIN.
SPEED = 1200.

MODEM SUPER:
TRANSMITDELA Y = 36 MILLI.
NOISEDELAY = 0.
TYPE ASYNC.
SPEED = 9600.

MODEM SECTION

Appendix C
Sample NDL Program

%VALUES FOR LEASED
% LINES

%VALUES FOR SWITCHED
% LINES

C-5

Appendix C
Sample NDL Program

TERMINAL DEF AULT SGTEST:
ADDRESS= 2.
SPEED = 1200, 1800, 2400.
TURNAROUND = 0.
TIMEOUT = 1 SEC.
CODE = ASC67.

TERMINAL SECTION

PARITY - VERTICAL:EVEN, HORIZONTAL:EVEN.
CONTROL= POLL.
REQUEST = POLLIT:RECEIVE, SELECTIT:TRANSMIT.
MAXINPUT = 255.
BLOCKED = FALSE.
END= ETX.
BACKSPACE = BS.
LINEDELETE = DEL.
WRU= ENQ.
TYPE = ASYNC(MODEM).
BYTE = 7, PARITY.

TERMINAL TCSOO:
DEFAULT= SGTEST.
TRANSMISSION = 3.
SPEED = 1200.

TERMINAL TC3500MA:
DEFAULT= SGTEST.
TRANSMISSION = 3.
SPEED = 9600.

STATION DEFAULT DEFAULTSTATION:
CONTROL= 4"40.
ENABLEINPUT = TRUE.
FREQUENCY = 0.
LOGIN = TRUE.
MYUSE = INPUT, OUTPUT.
RETRY= 10.
WIDTH= 72.
WRAPAROUND = TRUE.

STATION STATION4:
DEFAULT= DEFAULTSTATION.
MODEM = M202D.
SPEED = 1200.
ADDRESS= "Al".
TERMINAL = TCSOO.
TYPE = ASYNC(MODEM).

STATION STATIONS:
DEFAULT = DEFAULTSTATION.
MODEM = SUPER.
SPEED = 9600.
ADDRESS = "Al".
TERMINAL = TC3500MA.
TYPE = ASYNC(MODEM).

STATION STATION6:
DEFAULT= DEFAULTSTATION.

C-6

STATION SECTION

Appendix C
Sample NDL Program

SPEED = 1200.
ADDRESS = "Al".
TERMINAL = TCSOO.
TYPE = ASYNC(MODEM).
MODEM = M202C.

UNE LINE4:
ADDRESS = 0:3.
MAXSTATIONS = 2.
TYPE = MODEM.
MODEM M202D.
STATION = STATION4.

LINE LINES:
ADDRESS = 0:4.
MAXSTATIONS = 1.
TYPE = MODEM.
MODEM SUPER.
STATION = STATIONS.

LINE LINE6:
ADDRESS = O:S.
MAXSTATIONS = 2.
TYPE = MODEM, DIALIN.
MODEM M202C ..
STATION = STATION6.

DCPO:
MEMORY = 48000.
BUFFER = 2S6.
BUFFER COUNT 10.

FILE FILEl:
FAMILY

FILE FILE2:
FAMILY

STATION4, STATIONS.

FILEl, STATION6.

LINE SECTION

DCPSECTION

Fl LE SECTION

C-7

Documentation Evaluation Form

Title: __ ..,.C,..M..,S._.N""e""t"""w'""'o,..rk......,D ... e,....fi,..m · ti.,,· o..,n._.J awn._.gu,,.,a"'.fig.,.e_,(...,,.N...,D.._I..,.),__ ______ _ Form No: --~10~2~0~2~2~s ________ _

Reference Manual Date: June 1980

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

D Addition D Deletion D Revision D Error

Comments:

From:

Name --
Title

Company -------------------------~-------------------------------
Address

Phone Number ---------------

Remove form and mail to:

Documentation Dept, TIO - East
Burroughs Corporation

Box CB7
Malvern, PA 19355

Date-----------

_r..... ____ 2" BINDER ----.... -..i

Printed in U.S.A.

~ 1%'' BINDER~
I r- 1" BINDER _, I

z
CD .. • on
.. 0
=-=-a

::::0 ~-a
rn CD 5.
'Tl CD
rn -· ..
::::0 = 91111 rn -· iiiilll z :::!'.ca
() o a
rn = ~
3: - "')>a-=
z = Cir' cca a
)> c::
'an

ca :I:
CD "'_....

1090925
Printed in U.S.A.

June 1980

t
-;

•

1090925

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-01
	12-02
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	A-01
	A-02
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	replyA
	xBack

