
I

. l
(

Printed in U.S.A .

. Burroughs m

PR ICED ITEM

August 1980 1090909

Printed in U.S.A.

Burroughs~

Computer Management System
(CMS)

Data Communications
Subsystem

REFERENCE MAN UAL

Copyright© 1978, 1979, 1980 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

August 1980 1090909

"The names used in this publication are not of individuals living or
otherwise. Any similarity or likeness of the names used in this publi
cation with the names of any individuals, living or otherwise, is purely
coincidental and not intentional."

Burroughs believes thllt the software described in this manual is
accurate and reliable, artd much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compHance with laws, rules, and regulations of the
jtirisdictiorts with respll'1t to which it is used.

The information contllined herein is subject to change. Revisions may
be issued from time t(:l time to advise of changes and/or additions.

This edition includes the information released under the following:

PCN 1090909-001 (February 22, 1979)

Any comments or suggestions regarding this publication should be forwarded to Systems Documentation, Technical
Information Organization, TIO-East, Burroughs Corporation, P.O. Box CB7, Malvern, Pennsylvania 19355.

TABLE OF CONTENTS

Section Title Page Section Title Page

GENERAL INFORMATION 1-1 2 RELEASE MESSAGE.SPACE 2-6
General 1-1 ROUTE.INPUT 2-6
Documentation Conventions 1-1 ROUTE.OUTPUT 2-7
System Limitations 1-1 SET .INPUT .LIMIT 2-7
Message Control System Interface 1-1 SET .OUTPUT .LIMIT 2-7
Operator Interface 1-2 SET.QUEUE.LIMIT 2-7
DC Errors 1-2 STATION .COUNT 2-8
Buffer Limiting 14 STATION .DESCRIPTION 2-8
TASK-=;::. MCS 14 STATION NUMBER 2-8
STATION-> MCS 14 STATION.STATUS 2-8
TASK-> STATION 14 SUBNET .COUNT 2-8
STATION--> SUBNET QUEUE 1-5 SUBNET .DESCRIPTION 2-8
MCS -;> SUBNET QUEUE 1-5 SUBNET.STATIONS 2-8
MCS-> STATION 1-5 SUBNET .STATUS 2-9
Queue References 1-5 SUBNET.NuMBER 2-9
Message Declaratkms 1-5 TASK.NAME 2-9
Message Space Handling 1-5 TASK.NUMBER 2-9
Rules of Data Transfer 1-6 TASK.STATUS 2-9
Network Error Handling 1-6 TERMINAL.COUNT 2-9

2 MCS FUNCTIONS 2-1 TERMINAL.DESCRIPTION 2-9
ALLOW.INPUT 2-1 WRITE.HEADER 2-10
ALLOW.OUTPUT 2-1 WRITE.TEXT 2-10
CLEAR 2-1 3 INTERROGATE LAYOUTS 3-1
CONTINUE.STATION 2-1 DCP .DESCRIPTION 3-1
CONTINUE.TASK 2-2 DCP.PROGRAM.TERMINALS 3-1
COPY.TEXT 2-2 DCP.PROGRAM.NAMES 3-1
DCP.DESCRIPTION 2-2 LINE.DESCRIPTION 3-1
DCP.PROCESSORS 2-2 LINE.STATIONS 3-1
DCP.PROGRAM.COUNT 2-2 LINE.STATUS 3-2
DCP.PROGRAM.NAMES 2-2 MODEM.DESCRIPTION 3-2
DCP.PROGRAM.TERMINALS 2-2 REDEFINE.LINE 3-2
DCP.RELOAD 2-3 REDEFINE.STATION 3-2
DEQUEUE 2-3 STATION .DESCRIPTION 3-2
DISALLOW .INPUT 2-3 STATION.STATUS 3-3
DISALLOW.OUTPUT 2-3 SUBNET.DESCRIPTION 3-3
EXCHANGE.REFERENCE 2-3 SUBNET.STATIONS 3-3
FETCH MESSAGE 2-3 SUBNET .STATUS 3-3
GET .MESSAGE.SPACE 24 TASK.STATUS 3-3
LINE.COUNT 24 TERMINAL.DESCRIPTION 34
LINE.DESCRIPTION 24 4 NDLTABLES 4-1
LINE.NUMBER 24 General 4-1
LINE.STATIONS 24 Line Table Layout 4-1
LINE.STATUS 24 Line Descriptor 4-1
MODEM.COUNT 24 2 Bytes 4-1
MODEM.DESCRIPTION 24 Line Tally (1) 4-1
NULL 24 1 Byte /Binary 4-1
QUEUE 2-5 Line Tally (0) 4-1
QUEUE.DEPTH 2-5 1 Byte/Binary 4-1
READ.HEADER 2-5 Max Entries 4-1
READ.TEXT 2-5 1 Byte/Binary 4-1
RECALL 2-6 Maxstations 4-1
REDEFINE.LINE 2-6 1 Byte/Binary 4-1
REDEFINE.STATION 2-6 Auxiliary Line Tally (1) 4-1

iii

TABLE OF CONTENTS (CONT}

Section Title Page Section Title Page

4 1 Byte/Binary 4-1 4 1 Byte/Binary 44

Auxiliary Line Tally (O) 4-2 Unprocessed Input Count 44
1 Byte/Binary 4-2 1 Byte/Binary 44

Line Address 4-2 Original Retry 44
2 Bytes/Binary 4-2 1 Byte/Binary 44

Logical Line Number 4-2 Retry 4-5

1 Byte/Binary 4-2 1 Byte/Binary 4-5

Modem 4-2 Tallies 4-5

1 Byte/Binary 4-2 Three 1-Byte Fields/Binary 4-5
Type 4-2 Toggles 4-5
2 Bytes 4-2 1 Byte 4-5

Aux Line Descriptor 4-2 Options 4-5
2 Bytes 4-2 1 Byte 4-5

Station Tallies 4-2 Events 4-5
1 Byte Each/ Binary 4-2 Bytes 4-5

Station Descriptors 4-2 Initiate Receive Delay 4-5
1 Byte Each 4-2 2 Bytes/Binary Two's

Station Table Pointers 4-2 Complement 4-5
2 Bytes Each/Binary 4-2 Active Transmit Delay 4-5

Station Table Layout 4-3 2 Bytes/Binary Two's
Logical Line Number 4-3 Complement 4-5

1 Byte/Binary 4-3 Station Queue Head 4-6

Relative Station Number 4-3 2 Bytes/Binary 4-6

1 Byt~/Binary 4-3 Station Queue Tail 4-6

End Character 4-3 2 Bytes/Binary 4-6
1 Byte/ ASCII 4-3 Queue Limit 4-6

Line Delete Character 4-3 1 Byte/Binary 4-6

1 Byte/ ASCII 4-3 Queue Count 4-6

Backspace Character 4-3 1 Byte/Binary 4-6

1 Byte/ ASCII 4-3 Attached Status 4-6

WRU Character 4-3 2 Bytes 4-6

1 Byte/ ASCII 4-3 Wait Status 4-6

Control Character 4-3 2 Bytes 4-6

1 Byte/ ASCII 4-3 Subnet Queue Address 4-6

Station Frequency 4-3 2 Bytes/Binary 4-6

1 Byte/Binary 4-3 Line Priority Code 4-6

Transmit Address 4-3 1 Byte/Binary 4-6

3 Bytes/ ASCII 4-3 Type 4-6
Run Mode Bits 44 2 Bytes 4-6

1 Byte 44 Speed 4-7
Receive Address 44 2 Bytes 4-7

3 Bytes/ ASCII 44 Modem 4-7
Receive Transmission Number 44 1 Byte/Binary 4-7

2 Bytes 44 Tally (3) Through Tally (18) 4-7
Transmit Transmission Number 44 16 Fields, 1 Byte/Binary 4-7
2 Bytes 44 Output Save Queue Count 4-7

Output Save Queue Head 44 1 Byte/Binary 4-7
2 Bytes/Binary 44 Input Save Queue Count 4-7

Output Save Queue Tail 44 1 Byte/Binary 4-7
2 Bytes/Binary 44 Input Save Queue Head 4-7

Logical Station Number 44 2 Bytes/Binary 4-7
2 Bytes/Binary 44 Input Save Queue Tail 4-7

Unprocessed Input Limit 44 2 Bytes/Bina•y 4-7

iv

TABLE OF CONTENTS (CONT)

Section Title Page Section Title Page

4 Terminal 4-7 4 2 Bytes 4-10
1 Byte/Binary 4-7 Speed 4-10

Modem Table Layout 4.7 2 Bytes 4-10
Type 4-8 Stop Bits 4-11
2 Bytes 4-8 2 Bytes 4-11

Speed 4-8 File Table Layout 4-11
2 Bytes 4-8 Index To LFN-X's LSN-LIST 4-11

Noise Delay 4-8 2 Bytes/Binary 4-11
2 Bytes/Binary -Two's LFN-X Number of Stations 4-11

Complement 4-8 2 Bytes/Binary 4-11
Transmit Delay 4-8 LFN-X's LSN-LIST 4-11
2 Bytes/Binary - Two's Each Entry is 2 Bytes/Binary 4-11

Complement 4-8 Extended Station Table Layout 4-11
Terminal Table Layout 4-8 MCS Data Bits 4-11
Run Mode Bits 4-8 2 Bytes 4-11
2 Bytes 4-8 Width 4-12

TR-Count 4-9 1 Byte/Binary 4-12
1 Byte 4-9 Page 4-12

SY Queue Limit 4.9 1 Byte/Binary 4-12
1 Byte/Binary 4-9 Digit Count 4-12

T-ADCount 4-9 4 Bits/Binary 4-12
4 Bits/Binary 4-9 Phone Number 4-12

R-ADCount 4.9 15 Four-Bit Binary Coded
4 Bits/Binary 4-9 Decimal Digits 4-12

Sync Character 4-9 Extended Terminal Table Layout 4-12
1 Byte 4-9 MCS Data Bits 4-12

Parity Mask 4.9 2 Bytes 4-12
1 Byte 4.9 Width 4-12

Standard Timeout 4-9 1 Byte/Binary 4-12
2 Bytes/Binary Two's Page 4-12

Complement 4-9 1 Byte/Binary 4-12
Auxiliary Line Control Pointer 4-9 Carriage Character 4-12
2 Bytes/Binary 4-9 1 Byte/ASCII 4-12

Turnaround Delay 4-9 Linefeed Character 4-12
2 Bytes/Binary Two's 1 Byte/ ASCII 4-12

Complement 4.9 Home Character 4-12
Line Control Pointer 4.9 1 Byte/ASCII 4-12
2 Bytes/Binary 4-9 Clear Character 4-12

Receive Request Pointer 4.9 1 Byte/ASCII 4-12
2 Bytes/Binary 4-9 s MESSAGE HEADER 5-1

Transmit Request Pointer 4-10 Introduction 5-1
2 Bytes/Binary 4-10 Message Header Layout 5-1

Translation Table Pointer 4-10 Message Header 5-1
2 Bytes/Binary 4-10 Message Link 5-1

Maximum Input Size 4-10 Buffer Link 5-1
2 Bytes/Binary One's Processor 5-1

Complement 4-10 1 Byte/Binary 5-1
Adapter Info 4-10 Line 5-1

1 Byte 4-10 1 Byte/Binary 5-1
Number of Buffers 4-10 Result 5-1

1 Byte/Binary One's 1 Byte/Binary 5-1
Complement 4-10 Type 5-2
Type 4-10 1 Byte/Binary 5-2

v

TABLE OF CONTENTS {CONT)

Section Title Page Section Title Page

5 Task 5-2 6 NDL PROGRAM FILE 6-1
1 Byte/Binary 5-2 General 6-1

MCS Flag 5-2 NDL Program Parameter Block 6-1
1 Byte 5-2 NDL Program Segment Table 6-1

Station 5-2 NDL Program Segment
2 Bytes/Binary 5-2 Descriptions 6-1

Options 5-2 Control Sets - Format A 6-1
1 Byte 5-2 Control Displacements - Format A 6-1

Events 5-2 Request Sets - Format A 6-1
3 Bytes 5-2 Request Displacements - Format A 6-2

Subnet Queue 5-3 Control Sets - Format B 6-2
1 Byte/Binary 5-3 Control Displacements - Format B 6-2

Text Length 5-3 Request Sets - Format B 6-2
2 Bytes/Binary 5-3 Request Displacements - Format B 6-2

Message Length 5-3 NDL Data Segment Table 6-2
2 Bytes/Binary 5-3 Preset Data 6-3

Skip Control 5-3 Bytes 2 and 3 - DC Buffer Size 6-3
1 Byte/Binary 5-3 Bytes 4 and 5 - Minimum Buffer

Retry 5-3 Count 6-3
1 Byte/Binary 5-3 Bytes 6 and 7 - Station Count 6-3

Transmission Number 5-3 Byte 8 - File Count 6-3
3 Bytes/ ASCII 5-3 Byte 9 - Line Count 6-3

Tallies 5-3 Byte 10 - Modem Count 6-3
3 Bytes 5-3 Byte 11 - Terminal Count 6-3

Toggles 54 Bytes 12-13 - Additional Buffer
1 Byte 54 Count 6-3

Date 54 Bytes 4243 - Reserved for NDL
3 Bytes 54 Postprocessor 6-3

Time 54 Byte 44 - DCP Count 6-3
3 Bytes 54 Byte 45 - Highest DCP Number 6-3

MCS Data 54 Byte 46 - Station Table Maximum
2 Bytes/Binary 54 Length 6-3

Valid Message Header Fields 54 Byte 4 7 - Reserved 6-3
Data Communications Message Byte 48 - N - DCP Data List 6-3
Types 54 Line Tables 64

Directive Type Messages 54 Line Table Displacement List 64
INPUT /OUTPUT 54 Station Tables 64
PRIORITY-OUTPUT 54 Station Table Displacement List 64
ENABLE-INPUT /DISABLE- Modem Tables 64

INPUT 54 Terminal Tables 64
MAKE-STA Tl ON-READY 5-7 File Table 64
MAKE-STATION-NOT-READY 5-7 Extended Station Tables 6-5
MAKE-LINE-READY 5-7 Extended Terminal Tables 6-5
CALL-RECEIVED 5-7 Station Name Table 6-5
MAKE-LINE-NOT-READY 5-8 File Name Table 6-5
DIALOUT 5-8 Translation Tables 6-5
IMMEDIATE-LINE-NOT-READY Translation Table Displacement

(SWITCHED DISCONNECT) 5-8 List 6-5
LINE-ABORT 5-8 Line Priority Chart 6-5
RECOVER/DEALLOCATE 5-9 Line Speed Table 6-5

End Recall from Queue 5-9 DCP Terminals Format A 6-5
End Recall from Station 5-9 Program File List 6-5
Maintenance 5-9 Program Terminals List 6-6

vi

TABLE OF CONTENTS (CONT)

Section Title Page Section Title Page

6 Source Statement Occurrence 6-6 9 DC.DISABLE.INPUT 9-1
DCP Terminals Format B 6-8 DC.DISABLE.OUTPUT 9-1

DCP Data Directory 6-8 DC.RECEIVE 9-2
DCP Data 6-8 DC.SEND 9-2

Program Terminal Lists 6-8 Input Related Functions 9-2 f7·-·--------c·ol36'.C5A:fA: _____ I DC.NODATA 9-2
L___ . COMMUNICATIONS 7-11 DC.INPUT.STATUS 9-2 ~ ~----" ',_., __ ,, ---'-~-- --· ·"'""~-·~-~-,.,.,, --.c "" _,".'"''~--,,,,.,_~..,,.- • .._--.~,,,._.-,,,,"~-~~- •=····

General ··--1~r
DC.ORIGIN 9-3

COBOL Communication DC .TEXTLENGTH 9-3
Descriptions 7-1 DC.DATE 9-3

Input CD 7-1 DC.TIME 9-3
Symbolic Queue 7-1 DC.ENDKEY 9-3
Symbolic Sub-Queue 7-1 Output Related Functions 9-3
Message Date 7-1 DC .OUTPUT .ST A TUS 9-3
Message Time 7-1 DC.ERROR.KEY 9-3
Format of Input CD Area 7-1 10 B 80-DEPENDENT FEATURES 10-1
Symbolic Source 7-2 General 10-1
Text Length 7-2 Explanations 10-1
End Key 7-2 11 B 800-DEPENDENT FEATURES 11-1
Status Key 7-2 General 11-1
Message Count 7-2 B 800 Scratch Pad Memory 11-1
Queue Number 7-2 Bytes 0 and 1, M-PTR-L and
Station Number 7-2 M-PTR-M 11-1
Output CD 7-2 Byte 2, LINE-NO 11-1
Format of Output CD Area 7-2 Byte 3, ID 11-1
Destination Count 74 Byte 4, DS-DESC 11-1
Text Length 74 Byte 5 , LINE-Q-HEAD 11-2
Status Key 74 Byte 6, FRWD-LNK 11-2
Error Key 74 Byte 7, BKWD-LNK 11-2
Symbolic Destination 74 Byte 8 and 9, TIMEOUT-Land
Station Number 74 TIMEOUT-M 11-2
COBOL Data Comm Statements 74 Bytes 10 and 11, TIMER-Land
Accept 74 TIMER-M 11-2
Enable Input 74 Byte 12 and 13, TRANSLATE-L
Disable Input 7-5 and TRANSLATE-M 11-2
Enable Output 7-5 Bytes 14 and 15, CRC-L/BCC
Disable Output 7-5 and CRC-M 11-3
Receive 7-6 Byte 16, CHIP FREQ 11-3
Send 7-6 Byte 17, DDP-DESC 11-3
Skip Control (CPA Bytes 3, 4) 7-7 Byte 18, PARITY MASK 11-3
Variant [From Identifier-I] 7-7 Byte 19, SYNC CHARACTER 114

8 RECONFIGURATION 8-1 Bytes 20 and 21, TIMER 2-L
General 8-1 and TIMER2-M 11-4
REDEFINE.LINE 8-1 Bytes 22 and 23, CONTINUE-L
REDEFINE.STATION 8-1 and CONTINUE-M 114
Network 8-3 Bytes 24 - 27, WORKl,
Errors 84 WORK2, WORK3, WORK4 114

9 MPLII USER DATA Byte 28, BIU-CHAR4 114
COMMUNICATIONS 9-1 Byte 29, BIU-CHAR-5 114
General 9-1 Byte 30, BIU-CHAR-6 114
DC.ACCEPT 9-1 Byte 31, BIU-CHAR-7 114
DC .ENABLE.INPUT 9-1 Byte 0 and 1, S-PTR-L and
DC .ENABLE.OUTPUT 9-1 S-PTR-M 114

vii

TABLE OF CONTENTS (CONT}

Section Title Page Section Title Page

11 Bytes 2 and 3, COMMUNICATE-L 12 Warmstart 12-6
and COMMUNICATE-M 114 NDL Compilation 12-6

Byte 4 and 5, STATION-TAB-L NPC Execution 12-6
and Sl;ATION-TAB-M 114 CP 9500 Data Comm

Bytes 6 and 7, LINE-TAB-L Initiation 12-6
and LINE-TAB-M 114 DCL Job Management

Bytes 8 and 9, MESSAGE-HDR-L Interface 12-6
and MESSAGE-HDR-M 114 MCS Load 12-6

Bytes 10 and 11, TERM-TAB-L Non-MCS Data Comm
and TERM-TAB-M 11-5 Program Loads 12-6

Bytes 12 and 13, TEXT-SIZE-L DCL Data Access Interface 12-6
and TEXT-SIZE-M 11-5 DCL Monitor Interface 12-6

Bytes 14 and 15, BUFFER-SIZE- DCL Process 12-6
Land BUFFER-SIZE-M 11-5 Data Comm Load Input 12-7

Bytes 16and 17,CUR-BUF-L NDLSYS File 12-7
and CUR-BUF-M 11-5 DCP Firmware Files 12-7

Bytes 18 and 19, CUR-ADDR-L Data Comm Load Output 12-7
and Cl.JR-ADDR-M 11-5 DCPMemory 12-7

Byte 20, BUF-CHAR 11-5 Buffer Memory 12-8
Byte 21, IN-CHAR 11-5 SYSRECON File 12-9
Byte 22, ACTIVE STATION 11-5 Data Comm Load - Flow of
Byte 23, LINE-CHAR 11-5 Control 12-9
Bytes 24 - 27, SPM-TEMP-1, LOAD-ACTION 12-10

SPM-TEMP-2, SPM-TEMP-3, OPEN-NDLSYS 12-10
SPM-TEMP4 11-5 BUILD-NDL-TABLE 12-10

Bytes 28, 29, and 30, BIU-CHAR- BUILD-DCP-TABLES 12-10
0, BIU-CHAR-1, and BIU- CREATE-MCS-TABLES 12-10
CHAR-2 11-5 VALIDATE-Mes 12-10

Byte 31, BIU-CHAR3 11-5 FORMAT-BUFF-MEM 12-10
12 CP 9500 IMPLEMENTATION 12-1 SEND-DCP-FILES 12-10

Introduction 12-1 OPEN-DCP-FILE 12-10
System Overview 12-1 LOAD-DCP-FILE 12-10

Data Comm Loader (DCL) 12-1 SEND-LINE-TABLE 12-11
Data Comm Activity (DCA) 12-1 SEND-STATION-TAB 12-11
Data Comm Processors (DCPs) 12-2 SET-UP-MCS-TAB 12-11
Data Comm Buffer Memory 12-2 SET-UP-SYSRECON-FILE 12-11
DCS Tables 12-2 SET-UP-MRA 12-11
DCS Queues 12-2 START-DCP 12-11

Implementing CP 9500 Data DEALLOCATE-LB 12-11
Comm 12-2 Data Comm Execution 12-11

Preparation 12-2 Data Comm Interfaces 12-1,3
Initialization 12-2 Processor Interface 12-13
Execution 12-3 Data Access 12-13

System Configuration 12-3 Monitor 12-13
Hardware 12-3 Data Comm Activity 12-13
Firmware 12-3 User Jobs 12-14
Software 124 Subnet Info 12-14
CP 9500 Unique Features 124 MCS Table 12-14
CP 9500 Preparation 124 LSN, LLN Conversion 12-14

SYSCONFIG 124 DCP Conversion 12-14
Data Comm Buffer Memory NDLData 12-14

Size 124 MCSName 12-14
DCP/TP Assignment 124 MREF Area 12-15

viii

TABLE OF CONTENTS (CONT)
Section Title Page Section Title Page

12 DCA Initiation l?-15 12 Translation Table Space
Action Level Interfaces Within Allocation 12-27

DCA 12-15 Terminal and Modem Tables 12-28
MCP Task State - Suspend, NDL S-Op Handling 12-28

Reinstate 12-15 Register Conventions 12-28
DCA Accesses to DCP Tables 12-16 RCV /XMIT Character
Disallow Input, Disallow Handling (Interrupt Handling) 12-29

Output 12-16 TRANSMIT 12-29
Route Output 12-16 RECEIVE 12-30
Station Routing 12-16 Subroutines Supporting S-Ops,
Queue Count/Limit Managers, Host Control 12-30

Maintenance 12-17 Buffer Management 12-30
DCA/DCP Communication 12-18 Subsystem Queues 12-30

Message Communication 12-18 Queue Linking Mechanism 12-30
NDL Table Accessing 12-19 Queue Pointers in Buffer

Data Comm Processors (DCPS) 12-19 Memory 12-33
Host Control 12-19 Request Queues 12-33

Execution In an Idle.i;l System 12-19 Result Queue 12-33
DCP Queue Accessing 12-21 Available Buffer Pool (ABP) 12-33
Request Function 12-21 Data Comm Buffer Format 12-34

Request Queue Delinking 12-22 MCS Queues 12-35
LLN Decoding and L Set-Up 12-22 Subnet Queues 12-35
Type Decode 12-22 Reconfiguration 12-35
DCP Result Queue 12-22 Data Comm Reload 12-35
PI 12-22 A DATA COMMUNICATIONS
Line and Station Relative INITIATION AND

Functions 12-22 TERMINATION A-1
Discarding Message Space 12-22 General A-1
Message Header Transfers Data Communications

fromDCP 12-23 Initiation/Termination A-1
Handling Message Buffers 12-23 Initiation A-1
GETSPACE 12-23 Termination A-1

Character Fetching 12-24 B DATA COMMUNICATIONS
Character Storing 12-24 COMMUNICATES B-1

LNE.BUFFER.SIZE (Two Introduction B-1
Bytes) 12-24 Verb-Adverb CPA Values B-1

LNE.BUFFER.COUNT (Four CPA Layouts B-2
Bytes) 12-24 MCS CPA Layouts B-2

LNE.THIS.BUFFER.SIZE ALLOW .INPUT B-2
(Two Bytes) 12-24 ALLOW .OUTPUT B-2

LNE.FLAGS.2 (SPACE. CLEAR B-2
AVAIL) 12-24 CONTINUE.STATION B-2

LNE.TEXT.SIZE (Two CONTINUE.TASK B-3

Bytes 12-24 COPY.TEXT B-3

LNE.CURRENT .BUFFER DCP.DESCRIPTION B-3
(Four Bytes) 12-24 DCP .PROCESSORS B-3

Transferring Space Ownership DCP .PROGRAM.COUNT B-3

toDCA 12-25 DCP .PROGRAM.NAMES B-3

Line Management 12-25 DCP .PROGRAM.TERMINALS B-3
Single-Line Manager Schemes 12-26 DCP.RELOAD B-3

DCP Table Maintenance 12-26 DEQUEUE B-3

Station Table 12-26 DISALLOW .INPUT B-3

Line Table 12-26 DISALLOW.OUTPUT B4

ix

TABLE OF CONTENTS (CONT)

Section Title Page Section Title Page

EXCHANGE.MESSAGE B4
c SAMPLE CMS DATA

B COMMUNICATION PROGRAMS C-1
FETCH.MESSAGE AND The Model MCS C-1

DEQUEUE B4 Functional Description C-1
GET.MESSAGE.SPACE B4 Detailed Description C-1
LINE.COUNT B4 Identifiers C-1
LINE.DESCRIPTION B4
LINE.NUMBER B4 Director C-1
LINE.ST A TIONS B4 Initialize Routine C-1
LINE.STATUS B4 Take Message from MCS Queue C-2
MODEM.COUNT B4 Log the Message C-2
MODEM.DESCRIPTION B4 Process Non-Zero Results C-2
QUEUE B-5 Perform Action Routines C-3
QUEUE.DEPTH B-5 Return Message Space C-5
QUEUE.NUMBER B-5 Stop C-5
READ.HEADER B-5
READ.TEXT B-5 Sample Data Comm Tasks C-20
RECALL B-5 Functional Description C-20
REDEFINE.LINE B-5 MPLII C-20
REDEFINE.STATION B-5 COBOL C-20
RELEASE MESSAGE.SPACE B-5 Detailed Description C-21
ROUTE.INPUT B-5 Program Logic C-21
ROUTE.OUTPUT B-6 GET.QUEUENAME C-21
SET .INPUT .LIMIT B-6 Turnaround C-21
SET .OUTPUT .LIMIT B-6 GET MESSAGE C-21
SET .QUEUE.LIMIT B-6 XMIT C-21
STATION.COUNT B-6 LOG.IN.CD C-22
STATION .DESCRIPTION B-6 LOG.OUT.CD C-22
STATION NUMBER B-6
STATION.STATUS B-6 ANALYZE.ERRORS (See
SUBNET .COUNT B-6 MPLII 26800 - 27500, COBOL
SUBNET.DESCRIPTION B-6 25400 - 21600.) C-22
SUBNET.STATIONS B-7
SUBNET STATUS B-7 Sample NDL Program C-37
TASK.NAME B-7 The Implementation C-38
TASK.NUMBER B-7 The Host Line C-38
TASK.STATUS B-7 Line Section C-38
TERMINAL.COUNT B-7 Station Section C-38
TERMINAL.DESCRIPTION B-7 Terminal Section C-39
WRITE.HEADER B-7 Control and Request C40
WRITE.TEXT B-7
ACCEPT B-8 The Terminal Line C40
ENABLE INPUT B-8 Line Section C40
DISABLE INPUT B-8 Station Section (8600.xxxx) C40
ENABLE OUTPUT B-8 Terminal Section (8010.xxxx) C41
DISABLE OUTPUT B-8 Modem Section (000.xxxx) C41
RECEIVE B-8 Control and Request C41
SEND B-8 DCP Section C41

x

Figure

5-1
5-2

7-1
11-1

11-2
12-1
12-2

12-3
12-4
12-5
12-6
12-7
12-8

Table

6-1

LIST OF ILLUSTRATIONS

Title

Messages Initiated by the MCS
Messages Found in the MCS
Queue
Status Key Conditions
Data Comm Processor Scratch
Pad Memory Dump
Scratch Pad Memory Layout
CP 9500 Firmware
CP 9500 Preparation and
Initialization
DC Buffer Page Linkage
SYSRECON File Contents
Message/Communicate Flows
CP 9500 Data Comm Subsystem
DCA Absolute Data
MCS Tables

Title

Asynchronous Line Priority
Chart

Page Figure

5-5 12-9
12-10

5-6 12-11
7-3 12-12

12-13
11-2 12-14
11-3 12-15
12-3 12-16

12-17
12-5 12-18
12-8 12-19
12-9 12-20

12-12
12-13 12-21
12-14 12-22
12-15

LIST OF TABLES

Page Table

6-2
6-6

Title

Pending States
DCP Logical Flow (Multi-Line)
DCP Table and Queue Access
Line Linkage
DCPMemory
Station Table
General Interrupt Handling
Queue Linking
Top Queueing
Queue Delinking
Queue Locking
Queue Pointers in Reserved
Buffer Memory
Formats of Data Comm Buffers
Data Comm Buffer/Message
Link Mechanism

Title

Synchronous Line Priority
Chart

Page

12-17
12-20
12-21
12-25
12-26
12-27
12-29
12-31
12-31
12-32
12-32

12-33
12-34

12-35

Page

6-7

xi

SECTION 1

GENERAL
INFORMATION

GENERAL

This reference manual covers the total data com
munications network on the Burroughs Computer
Management Systems (CMS). The syntax and se
mantics of each of the languages (NDL, MPL, and
COBOL) are not extensively documented here;
rather this manual helps explain and define the inter
faces between the three languages and the data com
munications subsystem. The specific syntax and se
mantics may be found in the following reference
manuals:

CMS COBOL Reference Manual, form 2007266
CMS MPL Reference Manual, form 2007563
CMS NDL Reference Manual, form 1090925

DOCUMENTATION CONVENTIONS

Throughout this document, bit 15 is defined as the
most significant bit (2 to the 15th power) a11d bit 0
as the least significant bit (2 to the 0th power).

Items in the document marked RESERVED are
considered "don't cares" to the user but, m fact, are
unmolested by the DC subsystem. -

Items marked as IMPLEMENTATION DEPEND
ENT are also considered don't cares to the user but

1 may be manipulated by some implementation
groups.

For bit flags which denote availability or presence
of some condition;

Set = Available/Present
Reset = Unavailable/Absent

For those bit flags having dual meaning, the first
meaning is the reset condition; the second meaning
is the set condition. For example,

BIT X = ASCII/EBCDIC = 0/1

All use of the term "task number" within this
document refers to the external mix number of the
task.

SYSTEM LIMITATIONS

The number of stations, lines, queues, and related
items is limited due to the NDLSYS file layout. Cur
rent limitations within the data comm subsystem are:

1. The number of different terminals must be less
than 128.

2. The number of different modems must be less
than 256.

3. The number of lines must be less than 256.
4. The number of subnet queues must be less than

256.
5. The number of stations depends on the type of

station as follows:

a. If all stations are non-BDLC and do not use
extended tallies, the number of stations must
be less than l, 130.

b. If all stations are BDLC or use extended tal
lies, there must be less than 820 stations.

MESSAGE CONTROL SYSTEM
INTERFACE

The message control system (MCS) is the central
portion of the data communications system and, as
such, has total control over the operations per
formed by the system. It has sole responsibility for
allowing or denying accesses by user programs to
portions of the data comm network; message switch
ing, either on a global basis (automatic message rout
ing) or on a message-by-message basis (context
switching); error handling; and reconfiguration of the
data comm network. In addition, the MCS may per
form such functions as auditing and log-in/out valida
tion, depending on the requirements of the system.

In order to perform data comm functions on a sys
tem, it is necessary that one, and only one, MCSbe
present in the system. The MCS runs as a normal
task (with a few minor exception&) under the stand
ard operating system, and is written in a high-level
language. This language is MPLU, augmented by
certain constructs required to perform MCS-specific
tasks. These language constructs are described in
Section 2.

1-1

OPERATOR INTERFACE
The MCS may receive input from, or send output

to, the system operator's console using the normal
ACCEPT and DISPLAY constructs. Unsolicited SPO
input messages are preceded with the characters DC.
The system control language recognizes these char
acters as defining a message intended for the MCS,
and alerts the data communications subsystem. The
message text, after being stripped of the DC charac
ters, is transferred into a data communications sub
system message space, which is ultimately placed on
the MCS queue.

The interpretation of the message text is defined
by the particular MCS.

Il.!ere. .. -~r.e. 1\V.C?.£i:t.~e..~ .. Ji:i: .\V.hi£h .. a,, •. Q.G_i!!Pl11 .. 1!1.e.~s~ge..
flli!Y_Qe...Ie.f!l_~d _!?_y _ _t.he. .. J>J'.~!e..1!1.:. They are:

1. There is no MCS in the mix.
2. Ih~It'<. iL .. nQ~-~.Y.~i!.l!l>.!e. __ Q~--1!1.~.S~!!:ge._~l-!£~ ~

whiclL!Q __ !rn!!~fer __ ihe .l!!~§.~g~_!e.:il!:.. ·

The system informs the operator of the appropri
ate condition by displaying either DC INVALID or
DC NOSPACE on the system operator'S-consofo.

DC ERRORS
Within the MCS communicate descriptions which

appear elsewhere in this document, the phrase "an
error is monitored" is used to indicate a communi
cate failure. The ultimate effect of such a failure is
determined by the <error option> available to most
communicates, where:

<error option> ::= <empty> I, ERROR

If a communicate is unsuccessful and the <error
option> = empty and event number and a corre
sponding error message are printed and the MCS
must be discontinued. The vehicles used for discon
tinuing an MCS are the DS or DP SPO input mes
sages:

DS <mix> <program name>
DP <mix> <program name>

If a communicate is unsuccessful and the <error
option> = ERROR, the most significant eight bits of
the communicate result field (fetch value) are set
equal to @20@ and the remaining 16 bits are set
equal to the appropriate event number. Fetch value
is then made available for the programmer to interro
gate.

The . event numbers assigned for use by the . DC
subsYsterg~~i.11:~~!~:f~r!l~'Q[_t_h~~~g~J~;~Tfils
range has been further divided into the following cat
egories:

1-2

200-254
272-274
282-284
303-304

255-269

270-271 }
279-281

285-299

300-302}
305-320

Implementation Independent
Errors

Implementation Dependent
Errors B 80

Implementation Dependent
Errors B 800/CP 9400

Implementation Dependent
Errors B 1800

Implementation Dependent
Errors CP 9500

The following is a list of the currently defined
event numbers and the corresponding messages.

Event Mesgge
Number

200 DC ERROR BAD MESSAGE TYPE
The type field in the message header contains a
value > 12. ERROR is returned after:
QUEUE

201 DC ERROR BAD STATION NO
A reference has been made to LSN > STATION
COUNT-I. ERROR is returned after:
ALLOW.OUTPUT
CLEAR
CONTINUE.STATION
DISALLOW.OUTPUT
QUEUE
REDEFINE.STATION
ROUTE.OUTPUT
SET.INPUT.LIMIT
STATION.DESCRIPTION
STATION.STATUS

202 DC ERROR BAD QUEUE REF
A reference has been made to an invalid queue.
Certain communicates are restricted to certain
queues, therefore, the queue referenced may exist
but be invalid in this context. ERROR is returned
after:
CLEAR
DEQUEUE
QUEUE
QUEUE DEPTH
RECALL
ROUTE.INPUT
ROUTE.OUTPUT
SET.QUEUE.LIMIT

203 DC ERROR BAD SUBNET NO
A reference has been made to an <SUBN>
SUBNET COUNT-I. ERROR is returned after:
ALLOW.INPUT
DISALLOW .INPUT
SUBNET.DESCRIPTION
SUBNET.STATIONS

204 DC ERROR TEXT SIZE TOO BIG
The text length field is the message header was
set > message length field. ERROR is returned
after:
WRITE.HEADER

205 DC ERROR NULL MREF
An attempt has been made to perform a function
on a null message reference, in other words, one

206

207

208

209

210

211

212

213

214

which does not ref1.._ence a message space.
ERROR is returned after:
COPY.TEXT
QUEUE
READ.HEADER
READ.TEXT
WRITE.HEADER
WRITE.TEXT

DC ERROR BYTE INDEX TOO BIG
The starting byte index of a text transfer is
illegal. For the source message the index must be
less than text length. For the destination message,
the index must be less than message length.
ERROR is returned after:
COPY.TEXT
READ.TEXT
WRITE.TEXT

DC ERROR BAD TASK NO
The task number referenced is not currently in
the mix or is outside the range of the mix table.
ERROR is returned after:
ALLOW.INPUT
ALLOW.OUTPUT
CONTINUE.TASK
DISALLOW .INPUT
DISALLOW.OUTPUT
SET.OUTPUT.LIMIT
TASK.NAME

DC ERROR BAD LINE NO
The LLN referenced is greater than
LINE.COUNT-I. ERROR is returned after:
QUEUE
LINE.DESCRIPTION
LINE.STATIONS
LINE.STATUS
REDEFINE.LINE
REDEFINE.STATION

DC ERROR BAD MODEM NO
A reference has been made to an LMN greater
than MODEM.COUNT-I. ERROR is returned
after:
MODEM.DESCRIPTION
REDEFINE.LINE
REDEFINE.STATION

DC ERROR BAD TERMINAL NO
A reference has been made to L TN greater than
TERMINAL.COUNT-I. ERROR is returned after:
TERMINAL.DESCRIPTION
REDEFINE.STATION

DC ERROR NO SPACE
No message space available to execute the
communicate. ERROR is returned after:
CLEAR
RECALL

DC ERROR STATION NOT ATTACHED
An attempt was made to make an unattached
station ready. ERROR is returned after:
QUEUE

DC ERROR COMM NOT IMPLEMENTED
The last communicate issued is not unimplemented
on this CMS system.

DC ERROR LIMIT NOT ALLOWED
A queue limit of 0 has been specified. ERROR is
returned after:
SET.INPUT.LIMIT
SET.OUTPUT.LIMIT
SET.QUEUE.LIMIT

Event numbers 220-228 occur during configuration.

Even M-ae
Number

220 DC ERROR STATION ALREADY ATTACHED
The LLN of an attached station has been set to a
value other than @FF@. ERROR is returned
after:
REDEFINE.STATION

221 DC ERROR ATTRIBUTE MISMATCH
The new attributes of the station or line are
inconsistent with the existing network definition.
ERROR is returned after:
REDEFINE.STATION
REDEFINE.LINE

222 DC ERROR DIRECT CONNECT LINE
An attempt was made to assign a modem to a
direct-connect line. ERROR is returned after:
REDEFINE.LINE

223 DC ERROR FULL DUPLEX MISMATCH
Attribute mismatch of full duplex terminal.
ERROR is returned after:
REDEFINE.LINE
REDEFINE.STATION

224 DC ERROR INCOMPLETE VARIABLE
The length of the parameter area, to be used for
reconfiguration, is insufficient. ERROR is returned
after:
REDEFINE.LINE
REDEFINE.STATION

225 DC ERROR IMPROPER LINE CONDITION
The line being redefined is not in the required
state of not-ready and, for a switched line, not
switched busy or not connected. ERROR is
returned after:
REDEFINE.LINE

226 DC ERROR MESSAGES QUEUED
Messages are queued for output to the station
referenced by REDEFINE.STATION. Messages
are queued for output to a station on the line
referenced by REDEFINE.LINE. ERROR is
returned after:
REDEFINE.STATION
REDEFINE.LINE

227 DC ERROR NO VACANCY ON LINE
The MAXSTATIONS statement in the line section
of NDL defines the maximum number of stations
which may be attached to a particular line. An
attempt has been made to attach a station to a
line which already has MAXSTATIONS.

228 DC ERROR SPEED MISMATCH
The speed specified for a station, when either
redefining the station or attaching the station to a
line, does not match the speeds of the other
stations on that line.

229 DC ERROR QUEUE FULL
The MCS has attempted to queue a message
which would cause the queue count field of the
station table or subnet table to overflow.

230 DC ERROR NDL DCP MISMATCH

The data comm loader has detected an
inconsistancy between the NDL code file and the
DCP code file. Possibly the DCP code file was not

generated from this NDL code file.

1-3

231-248

249

250

251

252

253

254

272

273

274

282

283

284

303

304

14

RESERVED FOR EXPANSION

DC LOAD/EOJ BAD NDL PRIORITY CLASS

The NDLSYS file does not have the correct value

in the priority class field of the PPB@ 3180@.

DC LOAD/EOJ FAILURE DISK ERROR

The NDLSYS or DCP file cannot be read because

of a disk I/O failure.

DC LOAD/EOJ FAILURE NDL DATA ERROR

The NDLSYS file either has a line with address

invalid for the B 800 or specifies an amount of

required memory which is insufficient for the

tables and buffers declared.

DC LOAD/EOJ FAILURE INSUFFICIENT MEMORY
The memory space required field of the preset

data in the NDLSYS file specifies more space

than the MCP can provide.

DC LOAD/EOJ FAILURE CANNOT CLOSE NDL

FILE
Performing the close communicate on the NDLSYS

file has failed.

DC LOAD/EOJ FAILURE CANNOT OPEN NDL

FILE
Performing the open communicate on the NDLSYS

file has failed. For example:

1. The file is not on disk

2. The file has the wrong file type.

DC ERROR PROCESSOR NUMBER INVALID

A Load/Reload specifies an invalid DCP.

DC ERROR PROCESSOR BUSY

A reload specifies a DCP which is busy.

DC ERROR PROGRAM FILE NAME INVALID

The DCP file name specified in a reload is not

defined in the NDLSYS file.

DC LOAD/EOJ FAILURE CANNOT CLOSE DCP

FILE
Performing close communicate on the DCP file has

failed.
DC LOAD/EOJ FAILURE CANNOT OPEN DCP

FILE
Open communicate on DCP file has failed for one of

the following reasons:

1. The file is not on disk.

2. Bad file type.
3. The file is larger than the DCP memory.
DC LOAD/EOJ FAILURE DC* NOT ON SYSTEM

The specified DCP has not been warmstarted.

DC DCP* NOT LOADED
This message will be displayed subsequent to

detection of a DCP related load error, to

indicate the DCP is in error.

DC NO,DCPs LOADED

This message is displayed if no DCPs have been

loaded. This condition is fatal to the data comm

load.

BUFFER LIMITING

In order to prevent a task, or group of tasks, from
monopolizing the use of message spaces, the ability
of a task to allocate a message space is limited by
the capacity of the servicing task to process and de
allocate the message space. This is accomplished by
placing changeable limits on the depth of station and
subnet queues, and also by giving the MCS the abil
ity to delay or suspend input from ai particular task
or station.

Messages may pass through the system by six es
sentially different routines:

TASK~ MCS

These are output messages from user tasks with
the MCS participating. The DC subsystem maintains
an output count and an output limit for each task
whose output is directed to the MCS. If a task at
tempts to issue an output message and its output
count is greater than, or equal to, its output limit,
message space is not allocated and the task is sus
pended. The count is incremented with each output
attempt and is decremented when the MCS issues a
CONTINUE.TASK communicate. The limit is
initially set by the DC subsystem, but can be altered
by the MCS by means of the SET.OUTPUT.LIMIT
communicate.

STATION ~ MCS

These are input messages from DC stations with
the MCS participating. The DC subsystem maintains
an unprocessed input count and an unprocessed in
put limit for each station whose input is directed to
the MCS. If a station attempts to input a message
and its input count is greater than, or equal to, its
input limit, message space is not allocated and the
input is refused. The count is incremented when the
message space is added to the MCS queue, and de
cremented when the MCS issues a CONTINUE.ST
ATION communicate. The limit is initially set to two
by the NDL compiler, but can be altered by the
MCS by means of the SET.INPUT.LIMIT commu
nicate.

TASK ~ STATION

These are output messages from user tasks with
out MCS participation. The DC subsystem maintains
a queue count and a queue limit for each station
queue. If a task attempts to issue an output message
to a station whose queue count is greater than, or
equal to, the queue limit, message space is not allo
cated and the task is suspended. The count is incre
mented when an item is added to the queue and de
cremented when an item is removed. The limit is

initialized to two by the NDL compiler, but can be
altered by the MCS by means of the SET.QUEUE.
LIMIT communicate.

STATION ~ SUBNET QUEUE

These are input messages from a DC station with
out MCS participation. The DC subsystem maintains
a queue count and a queue limit for each subnet
queue. If a station attempts to input a message and
the subnet queue's count is greater than or equal to
its queue limit, message space is not allocated and
the input is refused. The count is incremented when
an item is added to the subnet queue and decre
mented when an item is removed. The limit is initial
ized to two by the DC subsystem, but can be altered
by the MCS by means of the SET.QUEUE.LIMIT
commmunicate.

MCS ~ SUBNET QUEUE

The MCS may add an item to any subnet queue.
The queue count is automatically incremented each
time an item is added. The only time that the MCS
is denied is when the queue is full. That is, the addi
tion of the item causes an overflow of the queue
count field.

MCS ~ STATION

The MCS may add an item to the queue of any
station which is attached to a line. The station queue
count is automatically incremented each time an
item is added. It should be noted that all items in
tended for a station must be queued to the NDL
queue rather than to a particular station queue. This
is done to provide a common interface to the entire
NDL process. The only time that the MCS is denied
is when the queue is full. That is, the addition of the
item causes an overflow of the queue count field.

QUEUE REFERENCES
<queue reference> : : = <expression>

The 16-bit value of <queue reference> has the
following format in order to identify the MCS, NDL,
subnet, and station queues:

14 BITS 12 BITS I
QUEUE TYPE QUEUE NUMBER

The queue type has these values:

0 (0000)
1 (0001)
2 (0010)
3 (0011)

= MCS QUEUE
= NDL QUEUE
= SUBNET QUEUE
= STATION QUEUE

If the queue type indicates the MCS or the NDL
queue, then queue number must be zero.

If the queue type indicates a station queue, then
queue number should contain the appropriate logical
station number.

If the queue type indicates a subnet queue, then
queue number should contain the appropriate logical
subnet number.

MESSAGE DECLARATIONS

Message declarations declare one or more
variables of type message reference which, when
set, hold references to data comm message spaces.

There exists in the machine an area called the
message reference table, which holds references to
message spaces which are accessible by the MCS.
The size of each entry in the message reference table
is four bytes. One unique value must be reserved to
designate a null or unset reference.

MESSAGE SPACE HANDLING

The MCS programmer must use extreme caution
in handling DC message spaces. Carelessness could
seriously affect DC throughput and, in the extreme,
could cause thrashing.

The DC subsystem operates out of a predeter
mined amount of system memory. However, any
time it senses that all DC message spaces are in use,
it attempts to claim more system memory for its
own. This implies two things:

1. DC input is suspended until message space be
comes available, and

2. The amount of virtual memory available for
overlayable data segments is decreased.

Repeated occurrences of this situation will eventu
ally diminish the overlay area to the extent that
thrashing is unavoidable.

To prevent such problems, follow these guidelines:

1. Do not hold message spaces in message refer
ences or subnet queues unless absolutely necessary.

2. Transfer data out of DC message spaces as
soon as possible.

3. Use the RELEASE.MESSAGE SPACE com
municate instead of waiting for space to be released
automatically.

4. Do not use a message space that is capable of
holding more text than is necessary (some message
types don't require any text space at all).

1-5

5. Try to keep the MCS queue empty - it may
contain releasable message space and/or important
information concerning the status of a station or a
line.

6. Do not issue an unrestricted number of output
messages - the status of a station or a line may
change before the messages are transmitted.

7. Set reasonable limits on the depth of station
and subnet queues.

8. Monitor the NOSPACE bit of input message
headers.

9. Do not set the message header MCS-flag unless
you are interested in the results of both successful
and unsuccessful output attempts.

RULES OF DATA TRANSFER

Any time the DCSS performs a data move, the fol-
lowing rules apply:

1. Characters are moved in a left to right fashion.
2. The data is left-justified in the destination area.
3. If the size of the source area is larger than the

size of the destination area, the data is right trun
cated.

4. If the size of the destination area is larger than
the size of the source area, the excess destination
characters are not space filled.

5. For some communicates, the programmer may
specify the length of the move (byte length). How
ever,

1-6

a. If the move is from a DC buffer to a user
data segment, the actual length of the move
is the smallest of:

Byte length.
Message Header Text.Length.
Number of bytes available from the be
ginning of the data area to the end of the
data segment.

b. If the move is from a user data segment to
a DC buffer, the actual length of the move
is the smallest of:

Byte length.
Message Header Message.Length.
Number of bytes available from the be
ginning of the data area to the end of the
segment.

c. If the move is from one DC buffer to an
other, the actual length of the move is the
smallest of:

Byte length.
(Source) Message Header Text.Length.
(Destination) Message Header Message
.Length.

6. In any case, no indication of the actual number
of characters moved is returned to the MCS pro
grammer.

7. The COBOL programmer, on the other hand,
may interrogate the CD area TEXT.LENGTH field
after a receive operation to find out how many text
characters have been moved into his data area.

8. The MPL application programmer may use
DC.TEXTLENGTH to determine how many text
characters have been moved into his data area.

Network Error Handling

The transmission and reception of data comm
messages is performed at the NDL level. NDL is also
responsible for first level error handling, for exam
ple, retransmission of a message. The NDL usually
retries a message a finite number of times. If, within
this finite number of retries, successful transmission/
reception is not achieved, the error is reported to a
higher level - the MCS. In order to utilize the DC
subsystem effectively, the MCS programmer must be
aware of the events which occur during the reporting
process.

When an error of the above type occurs, a mes
sage is placed on the MCS input queue by the DC
subsystem. The message header result and event
fields indicate the cause of the error and should al
ways be examined by the MCS programmer. The
message header type field is dependent on the state
of the NDL process at the time the error was detect
ed. Input messages result from errors detected in
NDL line control or receive request; output mes
sages from transmit request. In the case of input
messages, the associated text, if any, represents a
partically received messsage and may usually be dis
carded. In the case of output messages, the associ
ated text must be saved in order to preserve the cor
rect output sequence.

SECTION 2

MCS FUNCTIONS

This section deals with the MCS constructs in
MPL and their use. For more detailed explanations,
refer to the CMS MPLII Reference Manual, form
2007563.

ALLOW.INPUT
ALLOW.INPUT (<queue number>, <task num
ber> <error option>);

This is a procedure which causes the task refer
enced by <task number> to become "attached" to
the subnet queue specified by <queue number>.
That is, the task is allowed to reference the subnet
queue for input.

If the task had been waiting for a response to an
attachment request regarding <queue number>, the
appropriate "attached" indicator is set, and the task
is made ready to run.

If the task has not been waiting for a response to
an attachment request regarding <queue number>,
this is a NO-OP.

If the <queue number> specifies an undefined
subnet queue, an error is monitored.

If the task number is 0 or greater than 9, an error
is monitored.

ALLOW.OUTPUT
ALLOW.OUTPUT (<station number>, <task num
ber> <error option>);

This is a procedure which causes the task refer
enced by <task number> to become "attached" to
the station specified by <station number>. That is,
the task is allowed to reference the station for out
put.

If the task had been waiting for a response to an
attachment request regarding <station number>, the
appropriate "attached" indicator is set, and the task
is made ready to run.

If the task had not been waiting for a response to
an attachment request regarding <station number>,
this is a NO-OP.

If the <station number> specifies an undefined
station, an error is monitored.

If the <task number> is 0 or greater than 9, an
error is monitored.

CLEAR
CLEAR (<queue reference> <error option>);

This ia a procedure which performs an automatic
RELEASE.MESSAGE.SPACE on any messages on
the station or subnet queue specified by <queue ref
erence>.

The system may require a message space to per
form this procedure. If no message space is avail
able, the procedure is not executed, the most
significant eight bits of fetch value are set equal to
@40@, and the remaining 16 bits are set equal to the
event number corresponding to nospace.

If the <queue reference> designates the MCS
queue or the NDL queue, an error is monitored (bad
queue reference).

If the <queue reference> designates an undefined
station or subnet queue, an error is monitored (bad
station number or bad subnet number).

If the <queue reference> designates a station
queue for which the corresponding station is not at
tached to a line, an error is monitored (station not
attached).

CONTINUE.STATION

CONTINUE.STATION (<station number> <error
option>);

This is a procedure which allows the system to
continue accepting input from a station whose input
is routed to the MCS by decrementing the station's
"unprocessed input count."

No action is taken if the station's unprocessed in
put count is 0.

Issue one CONTINUE.STATION for each such
message processed by the MCS. Otherwise, input at
tempts from the station are unsuccessful and ''nos
pace" conditions are reported.

If the <station number> specifies an undefined
station, an error is monitored.

2-1

CONTINUE.TASK
CONTINUE.TASK (<task number> <error op
tion>);

This a procedure which allows a task to continue
issuing "send" messages to a station with output
routed to the MCS, by decrementing the task's out
put count.

No action is taken if either the task's unprocessed
output count is 0 or the referenced task is not a data
comm task.

One CONTINUE.TASK should be issued for each
send message processed by the MCS. Otherwise, the
task may be suspended until one is issued or until
the route indication is changed.

If the task has been suspended for issuing too
many send messages, and the task's output count is
now less than the output limit, the task is made
ready to run.

If the task number is invalid, (that is, out of range
or not currently executing) an error is monitored
(bad task number).

COPY.TEXT
COPY.TEXT (<message variable>,<starting byte>,
<message variable>,<starting byte>, <byte
length> <error option>);

This is a procedure which causes the text of the
message space referenced by the first specified
<message variable>, starting at the first specified
<starting byte> for a length of <byte length> to be
placed in the text area of the message space refer
enced by the second specified <message variable>,
starting at the second specified <starting byte>.

If either <message variable> is null, an error is
monitored.

If the source <starting byte> is greater than the
source TEXT.LENGTH, or if the destination <start
ing byte> is greater than or equal to the destination
MESSAGE.LENGTH, an error is monitored.

The normal rules of data transfer apply.

The contents of the TEXT.LENGTH field of the
message-headers are not automatically updated as a
result of this communicate.

DCP.DESCRIPTION
OCP.OESCRIPTION (<processor number>,
<variable> <error option>;

This is a procedure which fills the <variable>
with a list of the program file names and the number

2-2

of terminals associated with each of the program file
names declared for this processor number in the
NOL program. Each entry in the list is a two-byte
number (0-65535) followed by a 12-character (space
filled) name. The format of the information is de
scribed in the interrogate layouts section.

An error is monitored when the <processor num
ber> is invalid or unused by this NOL program.

The <variable> must be of type character.

The normal rules of data transfer apply.

DCP.PROCESSORS
OCP.PROCESSORS

This function returns the highest defined logical
OCP number plus 1. The OCP number is incre
mented by I to make it 1 rather than 0 relative.

DCP.PROGRAM.COUNT
OCP.PROGRAM.COUNT (<processor
number>) A Function

This is a function which returns the number of
program file names declared for this <processor
number> in the NOL program. This number is zero
if the <processor number> is not used in this NOL
program. If the <processor number> is invalid
(greater than 1), a value of @FFFF@ is returned.

This function is used in relation to the DCP.OE
SCRIPTION procedure.

DCP.PROGRAM.NAMES
OCP.PROGRAM.NAMES (<variable>);

This procedure fills the <data variable> with a list
of the program file names of the program loaded into
each processor. The order of the names is according
to the processor number. If a processor is not used
by this NOL program, its position in the list is
space-filled. Each position is 12 characters long and
space-filled to complete any name which is less than
12 characters.

The <variable> must be of type character.

The normal rules of data transfer apply.

DCP.PROGRAM. TERMINALS
OCP.PROGRAM.TERMINALS (<processor num
ber>, <variable>,<program name>,<error op
tion>);

This is a procedure which fills the <variable>
with a list of the terminals declared for this <proces
sor number> and <program name> in the NDL

program. Each entry in the list is a two-byte logical
terminal number (0-65535).

The number of items in this list reflects the num
ber of terminals returned with this <program name>
by the DCP.DESCRIPfION interrogate for this
<processor number>.

If the <processor number> is invalid, an error is
monitored. Likewise, if the <program name> is in
correct, an error is monitored.

The normal rules of data transfer apply.

DCP.RELOAD
DCP.RELOAD (<processor number>,<program na
me><error option>);

This procedure causes the data communications
processor identified by <processor number> to be
loaded with the program file identified by <program
name>.

If the <processor number> is invalid (greater th3:n
1) or is not used by this NDL program, an en:or. 1s
monitored. Likewise, if the <program name> 1s In

correct, an error is monitored.

The <program name> must be of type character.

The <processor number> being reloaded must be
in an idle state, or else an error is monitored.

DEQUEUE
DEQUEUE (<message variable>,<queue refer
ence> <error option>);

This is a built-in procedure which causes the top
message on the subnet queue specified by <queue
reference> to be unlinked and a reference to it to be
filled into the <message variable>. If the message
variable is not initially null, the message space orig
inally referenced is "released" before the new mes
sage is acquired. If the queue is empty, the message
reference is left as null. Any <queue reference>
other than a valid subnet queue causes an error.

DISALLOW.INPUT
DISALLOW.INPUT (<queue number>,<task num
ber> <error option>);

This is a procedure which causes the task refer
enced by <task number> to become unattached
from the subnet queue specified by <queue num
ber>. That is, the task is not allowed to reference
the subnet queue for input. If the task had been sus
pended because it was necessary for the DC commu-

nicate handler to issue an Attach Queue message to
the MCS regarding the specified <queue number>,
the task is made ready to run.

Unless the <queue number> specifies a valid
subnet queue, an error is monitored.

If the <task number> is 0 or greater than 9, an
error is monitored.

DISALLOW.OUTPUT
DISALLOW.OUTPUT (<station number>,<task
number> <error option>);

This is a procedure which causes the task refer
enced by <task number> to become unattached
from the station specified by <station number>.
That is, the task is not allowed to reference the sta
tion for output. If the task had been suspended be
cause it was necessary for the DC communicate han
dler to issue an attach station message to the MCS
regarding this station, the task is made ready to run.

If the <station number> specifies an undefined
station, an error is monitored.

If the <task number> is 0 or greater than 9, an
error is monitored.

EXCHANGE.REFERENCE
EXCHANGE.REFERENCE (<message variable>,
<message variable>);

EXCHANGE.REFERENCE causes the contents
of the first specified <message variable> to be ex
changed with the contents of the second specified
<message variable>.

FETCH.MESSAGE
FETCH.MESSAGE (<message variable> <wait op
tion>);
<wait option>::= <empty>, NOWAIT

This is a procedure which causes the top message
on the MCS queue to be unlinked and a reference to
it to be filled into the <message variable>. If the
message reference was not initially null, the message
space originally referenced is released (returned to
the free pool and its contents lost) before the new
message is acquired.

If wait option = <empty>, and the MCS queue is
empty, the MCS is suspended until the MCS queue
becomes active.

If wait option= NOWAIT, and the MCS queue is
empty, the <message variable> is left as null and
control is immediately returned to the MCS.

2-3

GET.MESSAGE.SPACE
GET.MESSAGE.SPACE (<message variable>,
<byte length>);

This is a procedure which acquires a message
space capable of holding <byte length> text charac
ters and fills the <message variable> with a refer
ence to it.

If the <message variable> is not initially null, the
referenced space is released.

If an insufficient amount of message space is avail
able, the message variable is left as null.

LINE.COUNT
LINE.COUNT A Function

This is a function which returns the number of
data communication lines defined in the NDL pro
gram.

LINE.DESCRIPTION
LINE.DESCRIPTION (<line number>, <variable>
<error option>);

This is a procedure which causes the definition of
the line referenced by <line number> to be placed
in the <variable>. The foqnat of the information is
described in the interrogate layouts section of this
document.

If the <line number> designates an undefined
line, an error is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

LINE.NUMBER
LINE.NUMBER (<line address>) A Function

<line address> : : = <expression>

This is a function which, given a physical line ad
dress in <line address>, returns the corresponding
logical line number. If the <line address> is not de
fined in the NDL program, a value of @FFFF@ is
returned.

LINE.STATIONS
LINE.STATIONS (<line number>,<variable> <er
ror option>);

This is a procedure which places in the
<variable> the logical station numbers of the sta
tions attached to the line referenced by <line num
ber>. The format of the information is described in
the Interrogate Layouts section of this document.

24,

NOTE
No more than 100 stations may be at
tached to a line at any given time.

If the <line number> designates an undefined
line, an error is monitored.

The normal rules of data transfer apply.

LINE.STATUS
LINE STATUS (<line number>, <variable> <er
ror option>);

This is a procedure which causes the current sta
tus of the line referenced by <line number> to be
placed in the <variable>. The information format is
described in the Interrogate Layouts section of this
document.

If the <line number> designates an undefined
line, an error is monitored.

The normal rules of data transfer apply.

MODEM.COUNT
MODEM.COUNT A Function

This function returns the number of modems de
fined in the NDL program.

The NDL compiler always generates two dummy
modem tables for direct connect and BDI lines.
Modem 0 is assigned to any direct connect line.
Modem 1 is assigned to any BDI line. Therefore, the
value returned by MODEM.COUNT is always equal
to : (Number of explicitly defined modems) + 2.

MODEM.DESCRIPTION
MODEM.DESCRIPTION (<modem number>,
<variable> <error option>);

<modem number>::= <expression>

This procedure causes the definition of the modem
referenced by <modem number> to be placed in the
<variable>. The format of the information is de
scribed in the interrogate layouts section of this doc
ument.

If the <modem number> designates an undefined
modem, an error is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

NULL
NULL (<message variable>) A Function

This is a functional S-OP which returns a true
value if the <message variable> is null, and a false
value otherwise. A <message variable> is null if it
does not reference a valid message space.

QUEUE
QUEUE (<message variable>,<queue reference>
<error option>);

This procedure causes the message referenced by
the <message variable> to be added to the tail of
the queue specified by <queue reference>. The
<message variable> is then set to null.

If the <message variable> was already null, an er
ror is monitored (NULL MREF).

If the <queue reference> designates any of the
following:

1. A station queue.
2. An undefined subnet queue.
3. The MCS queue with non zero queue number.
4. The NDL queue with non zero queue number.

an error is monitored (BAD QUEUE REF).

If the <queue reference> designates a queue for
which the queue count is equal to 255, an error is
monitored (QUEUE FULL).

If the <queue reference> designates the NDL
queue and the appropriate DCP is in a hardware er
ror state, the message is returned to the MCS queue
with result field equal to the DC HARDWARE er
ror. However, if the MCS queue count equals 255,
the message is queued. Instead, an error is
monitored (QUEUE FULL).

If the <queue reference> designates the NDL
queue, the message header must satisfy the following
conditions:

1. MESSAGE.TYPE field must be less than 12
(else, BAD, MSG, TYPE).

2. For the following messages the MESSAGE
.LINE field must contain a valid logical line num
ber (else, BAD LINE NUMBER):

MAKE LINE READY/NOT READY
DIALOUT
IMMEDIATE LINE NOT READY

Also, the line must have at least one station attached
(else, BAD MSG TYPE).

3. For the following messages the MESSAGE.ST
ATION field muust contain a valid logical station
number (else, BAD STATION NUMBER).

OUTPUT
PRIORITY OUTPUT

ENABLE/DISABLE INPUT
MAKE STATION READY/NOT READY

Also, the designated station must be attached to a
line (else, STATION NOT ATTACHED).

4. If the MESSAGE.TYPE = DIALOUT, the test
length must be non zero (else, BAD MSG TYPE).

If the <queue reference> designates a subnet
queue and the logical station number field of the
message header is invalid, an error is monitored
(BAD STATION NUMBER).

QUEUE.DEPTH
QUEUE.DEPTH (<queue reference>) A Function

This is a function which returns a value indicating
the number of messages on the queue specified by
<queue reference>.

If the <queue reference> designates the NDL
queue, an undefined station, or an undefined subnet
queue, a value of @FFFF@ is returned.

If the <queue reference> designates the MCS
queue, then queue number must be zero or a value
of @FFFF@ is returned.

READ.HEADER
READ.HEADER (<message variable> <variable>
<error option>);

This procedure causes the header information of
the message space referenced by the <message
variable> to be placed in the <variable>.

If the <message variable> is null, an error is
monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

READ.TEXT
READ.TEXT (<message variable>, <starting
byte>, <byte length>, <variable> <error op
tion>);

This is a procedure which causes the text con
tained in the message space referenced by <message
variable> starting at byte <starting byte> for a
length of <byte length> to be placed into the
<variable>.

If the <starting byte> is greater than the TEXT
.LENGTH given in the message header, an error is
monitored.

If the <message variable> is null, an error is
monitored.

. 2-5

The <variable> must be of type character.

The normal rules of data transfer apply.

RECALL
RECALL (<queue reference> <error option>);

This is a procedure which causes all messages on
the referenced station queue or subnet queue to be
delinked and placed on the MCS queue, followed by
an end-recall message.

If no message space is available to formulate the
end-recall message, the procedure is not executed,
the most significant eight bits of fetch value are set
equal to @40@, and the remaining 16 bits are set
equal to the event number corresponding to "nos
pace."

Messages recalled from a station's (type bits) out
put save queue are marked with a result field = "re
called from output save queue."

Messages recalled from a station queue are
marked with a result byte = "recalled from station"
and the end-recall message is of type "end recall
from station.''

Messages recalled from a subnet queue are
marked with a result byte = "recalled from subnet
queue" and the end-recall message is of type "end
recall from queue''.

If the <queue reference> designates any of the
following, an error is monitored:

1. The MCS queue.
2. The NDL queue.
3. An undefined station queue.
4. An undefined subnet queue.
5. A station queue for which the corresponding

station is not attached to a line.

REDEFINE.LINE
REDEFINE.STATION (<line number>,<variable>
<error option>);

This is a procedure which allows the programmer
to change certain characteristics of the line refer
enced by <line number>. The format of the infor
mation supplied in the variable is described in the
Interrogate Layouts section. The variable must be of
type character.

If the <line number> designates an undefined
line, an error is monitored.

If the system cannot perform the redefinition be
cause of some inconsistency in the data, an error is
monitored.

2-6

REDEFINE.STATION
REDEFINE.STATION (<station number>,<va
riable> <error option>);

This is a procedure which allows the programmer
to change certain characteristics of the station refer
enced by <station number>. The format of the in
formation supplied in the variable is described in the
Interrogate Layouts section of this document. The
variable must be of type character.

If the <station number> designates an undefined
station, an error is monitored.

If the system cannot perform the redefinition be
cause of some inconsistency in the data, an error is
monitored.

RELEASE.MESSAGE.SPACE
RELEASE.MESSAGE.SPACE (<message
variable>);

This is a procedure which causes the message
space referenced by the <message variable> to be
returned to the available pool, and the <message
variable> to be marked null. If initially it was null,
this is a NO-OP.

ROUTE.INPUT
ROUTE.INPUT (<station number>,<queue refer
ence> <reroute> <error option>);

<reroute ::= <empty> I, REROUTE

This is a procedure which causes all subsequent
input messages from the station referenced by <sta
tion number> to be placed onto the queue specified
by <queue reference>.

If the previous and new routing specify the same
queue, then no action is taken.

If the previous routing was to the MCS queue and
the new routing is to a subnet queue, then any and
all "non special" input messages from the station
are delinked from the MCS queue and placed on the
subnet queue. A non special input message has a
message header result field of zero.

For each message moved from the MCS queue to
the subnet queue, the station's unprocessed input
count is decremented and the subnet queue count is
incremented for the destination subnet queue. No
checks are made to prevent the subnet queue count
from exceeding the subnet queue limit.

If the previous routing was to a subnet queue, the
new routing is to a different subnet queue, and the
reroute option was specified, then any and all input
messages from the station are delinked from the first
queue and placed on the second queue.

For each message removed from a subnet queue,
the subnet queue count is decremented. For each
message placed on the MCS queue, that station's un
processed input count is incremented, and for mes
sages placed on another subnet queue, that subnet
queue's count is incremented. No checks are made
to prevent the subnet queue or unprocessed input
counts from exceeding the limits.

The input order of the messages is always main
tained.

If the <queue reference> specifies the NDL
queue, any station queue or an undefined subnet
queue, an error is monitored.

If the <queue reference> specifies the MCS
queue but queue number is not zero, an error is
monitored.

If the <station number> specifies an undefined
station, or one which is not attached to a line, an er
ror is monitored.

Checks are made to prevent the destination queue
from exceeding 255 entries in the process of execu
ting this communicate. The rerouting is performed
until the destination queue is full; then, rerouting is
discontinued and an error result (QUEUE FULL) is
returned to the MCS. Routing paths are not modified
until the last message is successfully rerouted.

ROUTE.OUTPUT
ROUTE.OUTPUT (<station number>,<queue ref
erence> <error option>);

This is a procedure which causes all subsequent
output intended for the station referenced by <sta
tion number> to be placed onto the queue specified
by <queue reference>. If the station's output is to
be routed to the NDL queue and had been routed to
the MCS queue, the MCS queue is scanned and all
messages of type "send" for the station are delinked
from the MCS queue and linked to the NDL queue
after their message types have been changed to
"output". The order of the messages is maintained,
and the appropriate queue depths are updated.

For each message rerouted from MCS queue to
the NDL queue, the apppropriate task output count
is decremented and, ultimately, the station queue
count must be incremented. Any SEND messages
that contain an invalid task number are not rerouted.

Checks are made to prevent the destination queue
from exceeding 255 entries in the process of execu
ting this communicate. The rerouting is performed
until the destination queue is full; then, rerouting is
discontinued and an error result (QUEUE FULL) is
returned to the MCS. Routing paths are not modified
until the last message is successfully rerouted.

In the case when routing is changed from the
NDL queue to the MCS queue, no messages are
rerouted.

If the <queue reference> specifies any station
queue or any subnet queue, an error is monitored.

If the <station number> specifies an undefined
station, or one which is not attached to a line, an er
ror is monitored.

SET.INPUT.LIMIT
SET. INPUT. LIMIT (<station number>, <limit>
<error option>); limit < 128

This is a procedure which causes the system's buf
fer limiting mechanism to restrict the number of in
put messages accepted from a station, whose input
is routed to the MCS, to be less than the <limit>.
That is, the station's unprocessed input limit is set
equal to <limit>.

Limiting value is updated regardless of whether
station input is currently directed to the MCS.

If <limit> is greater than 127, the limiting value
is set to 127.

If the <station number> designates an undefined
station, an error is monitored.

SET.OUTPUT.LIMIT
SET.OUTPUT.LIMIT (<task number>,<limit>
<error option>); limit < 128

This is a procedure which causes the system's buf
fer limiting mechanism to restrict the number of out
put messages issued by a user task to any station
whose output is routed to the MCS to be less than
the <limit>. That is, the task's output limit is set
equal to <limit>.

If the task number is invalid, an error is
monitored. If the <limit> is greater than 127, the
limiting value is set to 127.

If the specified task is not executing, the results of
this communicate are undefined.

If the specified task has been suspended for is
suing too many SEND messages and the new limit
is now greater than the output count, the task is
made ready to run.

SET.QUEUE.LIMIT
SET.QUEUE.LIMIT (<queue reference>,<limit>
<error option>); limit < 128

2-7

This is a procedure which causes the system's buf
fer limiting mechanism to restrict the number of
items placed on the queue to less than the <limit>.
That is, the appropriate queue limit is set equal to
<limit>.

If the <queue reference> designates the MCS
queue or the NDL queue and the queue number is
zero, SET.QUEUE.LIMIT becomes a NO-OP.

If the <queue reference> designates the MCS
queue or the NDL queue and queue number is non
zero, an error is monitored.

If the <queue reference> designates an undefined
station or an undefined subnet queue, an error is
monitored.

If <limit> is greater than 127, the limiting value
is set to 127.

If a new limit is set for a station queue, and there
are tasks suspended on output (MCS non-participat
ing) to that station, and if the new limit is greater
than the old, those tasks are made ready to run.

STATION.COUNT
STATION.COUNT A Function

This is a function which returns the number of sta
tions defined in the NDL program.

STATION.DESCRIPTION
STATION.DESCRIPTION (<station number>,<va
riable> <error option>);

This procedure causes the definition of the station
referenced by <station number> to be placed in the
<variable>. The format of the information is de
scribed in the Interrogate Layouts section of this
document.

If the <station number> designates an undefined
station, an error is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

STATION.NUMBER
STATION.NUMBER (<station name>)
<station name> ::= <expression> A Function

This is a function which, given a character string
in <station name>, returns the corresponding logical
station number.

If the given character string is not a station name
known to the system, a value of @FFFF@ is re
turned.

2-8

If the given character string is less than 12 charac
ters in length, spaces are automatically added to pro
duce a 12 character <station name>.

If the given character string is more than 12 char
acters in length, only the first 12 characters are used
as the <station name>.

The <expression> must be of type character.

STATION.STATUS
STATION.STATUS (<station number>,<variable>
<error option>);

This is a procedure which causes the current sta
tus of the station referenced by <station number>
to be placed in the <variable>. The format of the
information is described in the interrogate layouts
section of this document.

If the <station number> designates an undefined
station, an error is monitored.

If the <station number> references an unattached
station, the bit representing ST A TION READY has
no meaning.

The normal rules of data transfer apply.

SUBNET.COUNT
SUBNET.COUNT A Function

This is a function which returns the number of
files (subnet queues) defined in the NDL program.

SUBNET.DESCRIPTION
SUBNET .DESCRIPTION (<queue number>, <var
iable> <error option>);

This is a procedure which causes the definition of
the subnet queue referenced by <queue number> to
be placed in the <variable>. The format of the in
formation is described in the Interrogate Layouts
section of this document.

If the <queue number> designates an undefined
subnet queue, an error is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

SUBNET.STATIONS
SUBNET.STATIONS (<queue number>,<va
riable> <error option>);

This is a procedure which places in the
<variable> the logical station numbers of the sta
tions defined to be associated with the subnet queue

referenced by <queue number>. The format of the
information is described in the Interrogate Layouts
section of this document.

NOTE
No more than 100 stations may be as
sociated with a particular subnet queue
at any given time.

If the <queue number> designates an undefined
subnet queue, an error is monitored.

The normal rules of data transfer apply.

SUBNET.STATUS
SUBNET.STATUS (<queue number>, <variable>,
<error option>);

This procedure causes the current status of the
subnet referenced by <queue number> to be placed
in the <variable>. If the <queue number> desig
nates an undefined subnet queue, an error is
monitored (BAD SUBNET NUMBER).

SUBNET.NUMBER
SUBNET.NUMBER (<subnet name>)
<subnet name> ::= <expression> A Function

This is a function which, given a character string
in <subnet name>, returns the corresponding subnet
queue number.

If the given character string is not a subnet queue
name known to the system, a value of@FFFF@ is
returned.

If the given character string is less than 12 charac
ters in length, spaces are automatically added to pro
duce a 12 character <subnet name>.

If the given character string is more than 12 char
acters in length, only the first 12 characters are used
as the <subnet name>.

The <expression> must be of type character.

TASK.NAME
TASK.NAME (<task number>,<variable> <error
option>);

This is a procedure which, given a <task num
ber>, places in the <variable> the corresponding
symbolic task name.

If the <task number> is 0 or greater than 9, an
error is monitored.

If the <task number> is within range, but there is
no such task in the mix, the <variable> is space
filled.

The normal rules of data transfer apply.

The <variable> must be of type character.

TASK.NUMBER
TASK.NUMBER (<task name>)

<task name> : : = <expression> A Function

This function returns the lowest task number
found in the mix table that corresponds to the given
<task name>.

If the given character string is not a task name
known to the system, a value of @FFFF@ is re
turned.

If the given character string is less than 12 charac
ters in length, spaces are automatically added to pro
duce a 12 character <task name>.

If the given character string is more than 12 char
acters in length, only the first 12 characters are used
as the <task name>.

The <expression> must be of type character.

TASK.STATUS
TASK.STATUS (<task number>, <variable>, <er
ror option>);

This procedure causes the status of the task refer
enced by <task number> to be placed in the
<variable>.

If the <task number> is invalid, an error is
monitored <BAD TASK NUMBER>.

If the <task number> is valid but is not currently
executing, byte 0 of the variable is set to @FF@.

TERMINAL.COUNT
TERMINAL.COUNT A Function

This is a function which returns the number of ter
minals defined in the NDL program.

TERMINAL.DESCRIPTION
TERMINAL.DESCRIPTION (<terminal number>,
<variable> <error option>);

This procedure causes the definition of the termi
nal referenced by <terminal number> to be placed
in the <variable>. The format of the information is
described in the interrogate layouts section of this
document.

If the <terminal number> designates an undefined
terminal, an error is monitored.

2-9

The <variable> must be of type character.

The normal rules of data transfer apply.

WRITE.HEADER
WRITE.HEADER (<message variable>, <variable>
<error option>);

This procedure causes the data contained in the
<variable> to be placed in the header of the mes
sage space referenced by <message variable>. Al
though the "message.length" field is accessible by
the' programmer, any attempt to change the contents
of the field is ignored.

If the <message variable> is null, an error is
monitored.

If an attempt is made to set TEXT.LENGTH to
a value greater than MESSAGE.LENGTH, an error
is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

2-10

WRITE.TEXT
WRITE.TEXT (<message variable>,<starting
byte>, <byte length>, <variable> <error op
tion>);

This procedure causes the text contained in the
<variable> to be placed in the message space refer
enced by <message variable>, starting at <starting
byte> for a length of <byte length>.

If the <message variable> is null, an error is
monitored.

If the <starting byte> is greater than the "mes
sage length" given in the message header, an error
is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

The contents of the TEXT.LENGTH field of the
message header are not automatically updated as a
result of this communicate.

SECTION 3
INTERROGATE LAYOUTS

This section deals with data communications inter
rogates that are performed by certain MCS commu
nicates. This section is referenced by Section 2 and
references Section 4. Each line in the layout
diagrams represents two characters unless otherwise
specified.

DCP .DESCRIPTION

NAME NAME

NAME NAME
NAME·· NAME

NAME NAME

NAME NAME

NAME NAME

NUMBER OF TERMINALS

NAME NAME

NAME NAME

NAME NAME

NAME NAME

NAME NAME

NAME NAME

NUMBER OF TERMINALS

NAME: 12 bytes
Program file name.

NUMBER OF TERMINALS: 2 bytes
The number (0-127) of terminals declared to be
associated with this program file name.

DCP .PROGRAM. TERMINALS

LOGICAL TERMINAL NUMBER
LOGICAL TERMINAL NUMBER

LOGICAL TERMINAL NUMBER

LOGICAL TERMINAL NUMBER: 2 bytes
The logical terminal number(s) (0-126) associ
ated with a program file name.

DCP .PROGRAM. NAMES

NAMEO NAMEO
NAMEO NAMEO
NAMEO NAMEO
NAMEO NAMEO
NAMEO NAMEO
NAMEO NAMEO

• • . •
• •

NAMEN NAMEN
NAMEN NAMEN
NAMEN NAMEN
NAMEN NAMEN
NAMEN NAMEN
NAMEN NAME N

NAME : 12 bytes
DCP program file name. One 12-byte name for

each data comm processor from zero to N.

LINE.DESCRIPTION

LINE ADDRESS

TYPE

MAX ENTRIES IMAX STATIONS
MODEM

For an explanation of the items see Line Table
Layout.

LINE.STATIONS

This is a list of the logical station numbers at
tached to this line. Each logical station number is
two bytes long. The number of items returned is de
pendent upon the maxstations value of the LINE-

3-1

.DESCRIPTION interrogate. However, maxstations
never exceeds 100.

LOGICAL STATION NUMBER

LOGICAL STATION NUMBER
LOGICAL STATION NUMBER

LOGICAL STATION NUMBER

LINE.STATUS

STATUS

STATUS: 2 Bytes 16 Bits
15 LINE QUEUED
14 RESERVED
13 STANDBY
12 LINE READY
11 RATE SELECT
10 LINE CONNECTED
9 SWITCHED BUSY
8 LINE BUSY
7 AUXILIARY LINE QUEUED
6 RESERVED
5 RESERVED
4 RESERVED
3 RESERVED
2 RESERVED
1 RESERVED
0 AUXILIARY LINE BUSY

MODEM.DESCRIPTION

TYPE

SPEED

NOISE DELAY

TRANSMIT DELAY

For an explanation of the items, see Modem Table
Layout.

Noise delay and transmit delay are in normal bi
nary form (not one's or two's complement).

REDEFINE.LINE

TYPE

MODEM

For an explanation of the items, see Line Table
Layout.

3-2

REDEFINE.STATION

LOGICAL LINE NO RUN MODE BITS

END CHARACTER DELETE CHARACTER

BACKSPACE CHAR WRU CHARACTER

CONTROLCHARACfER STATION FREQUENCY

TRANSMIT ADDR 1 TRANSMIT ADDR 2

TRANSMIT ADDR 3 RECEIVE ADDR 1

RECEIVE ADDR 2 RECEIVE ADDR 3

TYPE

SPEED

MODEM TERMINAL

RETRY

For an explanation of the items, see Station
Table Layout.

STATION.DESCRIPTION

NAME NAME

!llAME NAME

NAME N_AME_

NAME NAME

NAME NAME

NAME NAME

LOGICAL LINE NO .IruN MODE BITS

END CHARACTER LINE DEI,.ETE CHARACTER

BACKSPACE CHARACTER WRU CHARACTER

CONTROL CHARACTER STATION. FREQUENCY

TRANSMIT ADDRESS I TRANSMIT ADDRESS 2

TRANSMIT ADDRESS~ RECEIVE ADDRESS 1

RECEIVE ADDRESS 2 RECEIVE ADDRESS 3

TYPE

SPEED

MODEM TERMINAL

MCS DATA BITS

WIDTH PAGE

DIGIT COUNT PHONE NUMBER

Pl:IONE NUMBER.

PHONE NUMBER

PHONE NUMBER

_ORIGINAL RETRY

For an explanation of the items, see Station
Table Layout and Extended Station Table Layout.

STATION.STATUS

STATUS

UNPROCESSED
INPUT LIMIT

STATION
QUEUE LIMIT

7 STATION QUEUED
6 RESERVED
5 RESERVED
4 RESERVED
3 RESERVED
2 STATION ATTACHED
1 ENABLED INPUT
0 STATION READY

INPUT
QUEUE NUMBER

UNPROCESSED
INPUT COUNT

STATION
QUEUE COUNT

INPUT QUEUE NUMBER -1 BYTE

This contains the subnet number to which input
from the station is to be routed; @FF@ if routing is
to MCS input queue. (If STATION ATTACHED is
false, STATION READY has no meaning.)

SUBNET.DESCRIPTION

NAME NAME
NAME NAME

NAME NAME

NAME NAME
NAME NAME

NAME NAME

NUMBER OF STATIONS j

NAME: 12 bytes

Symbolic subnet (file) queue name, left-justified
with space filler.

NUMBER OF STATIONS: 2 bytes/binary the
number of stations declared to be associated with
this subnet queue.

SUBNET.STATIONS
LOGICAL STATION NUMBER
LOGICAL STATION NUMBER

LOGICAL STATION NUMBER

LOGICAL STATION NUMBER

This is a list of the logical station numbers associ
ated with this subnet queue. Each logical station
number is two bytes long. The number of items re
turned depends on the "number of stations" field re
turned by the SUBNET.DESCRIPTION interrogate.
The number of stations never exceeds 100.

SUBNET.STATUS

SUBNET QUEUE
LIMIT

SUBNET QUEUE
COUNT

SUBNET QUEUE LIMIT - 1 BYTE

This is the current maximum number of messages
which may be queued on this subnet.

SUBNET QUEUE COUNT - 1 BYTE

This is the number of unprocessed messages on
this subnet queue.

TASK. STATUS

STATUS QUEUE REFERENCE

QUEUE REFERENCE LIMIT

COUNT

STATUS: 5 BYTES - 40 BITS

1. Byte O = @FF@ if the specified task is not in
the mix or is not a user data comm job.

2. Otherwise, byte 0:
= @00@ if task is not waiting.
= @01@ if task is waited on QUEUE LIMIT.
= @02@ if task is waited on RECEIVE.
= @03@ if task is waited on ATTACH.
= @04@ if task is waiting for space.

3. Bytes l, 2:
= QUEUE REFERENCE if waited for LIMIT,
RECEIVE, or ATTACH.
= @FFFF@ if waiting for space.

4. Byte 3 = TASK OUTPUT LIMIT.
5. Byte 4 = TASK OUTPUT COUNT.

3-3

34

TERMINAL.DESCRIPTION

RUN MODE BITS

TR COUNT T-ADCOUNT R-:oADCOUNT
OR

SY QUEUE LIMIT

SYNC CHARACTER PARITY MASK

STANDARD TTMEOlIT

TURNAROUND DELAY

AUXILIARY LINE CONTROL POINTER

LINE CONTROL POINTER

RECEIVE REQUEST POINfER

TRANSMIT REQUEST POINTER

TRANSLATION TABLE POINTER

MAXIMUM INPUT SIZE

ADAPTER INFO NUMBER OF BUFFERS

TYPE

SPEED

STOP BITS

MCS DA TA BITS

WIDTH PAGE

CARRIAGE CHARACTER LINEFEED CHARACTER J
HOME CHARACTER CLEAR CHARACTER

For an explanation of the items, see Terminal Ta
ble Layout and Extended Terminal Table Layout.

Standard timeout, turnaround delay, and
maximum input size are in normal binary form (not
one's or two's complement).

SECTION 4
NOL TABLES

GENERAL
This section deals with the tables that are used by

the network definition language to control the
various portions of the data communications subsys
tem. Some of these tables are also used to obtain in
formation for the interrogate layouts described in
Section 3. Each line of an NOL table diagram repre
sents two characters unless otherwise specified.

LINE TABLE LAYOUT
LINE DESCRIPTOR ~

LINE TALLY(!) LINE TALLY (0)

MAX ENTRIES ~ MAX STATIONS ;£
AUX LINE TALLY (I) AUX LINE TALLY (0)

LINE ADDRESS A ;:: A LOGICAL LINE NO _ffe MODEM

TYPE A
AUX LINE DESCRIPTOR

STATION TALLY (0) . STATIONDESCRIPTOR(~
STATION TABLE POINTER (0) /:::3

~ I
STATION TALLY (N-1) STATION DESCRIPTOR (N-1)

STATION TABLE POINTER (N-1)

LINE DESCRIPTOR
2 Bytes

This field consists of the 16 one-bit flags listed be
low. Bits 14, 10, 7, 6, 5, 4, and 3 are set according
to information S!!Pplied if!Jhe NOL program. Tl!~
!llaining bits are initialized to zero by the NOL com
piler.

15 LINE QUEUED
14 DIALOUT CAPABLE -
13 STANDBY
12 LINE READY
11 RATE SELECT
10 LINE CONNECTED -
9 SWITCHED BUSY
8 LINE BUSY
7 LINE PULSE/ACU DIALOUT -
6 SWITCHED-
5 FULL DUPLEX -
4 DISCONNECT ON LOSS OF CARRIER -
3 ASYNCHRONOUS -

2 RESERVED
1 LINE TOG (1)
0 LINE TOG (0)

LINE TALLY (1)

1 Byte/Binary

Contains the NOL byte variable known as LINE
TALLY (1). It is initialized to zero by the NOL
compiler.

LINE TALLY (O)

1 Byte/Binary

Contains the NOL byte variable known as LINE
TALLY (0). It is initialized to zero by the NOL
compiler.

MAX ENTRIES

1 Byte/Binary

Contains the value specified in the NOL program
for MAXSTATIONS. It equals the ma.Ximum num
ber Qf stations that may be attached to this line at
the same time. MAX ENTRIES can never exceed
100.

MAXSTATIONS

1 Byte/Binary

Contains the run time value MAXSTATIONS. It
equals the number of stations currently attached to
this line. It is initialized by the compiler according
to information supplied in the NOL program. ~
MAX ENTRIES. MAXSTATIONS can never exceed
100.

AUXILIARY LINE TALLY (1)

1 Byte/Binary
Contains the NOL byte variable known as AUX

4-1

LINE TALLY (1). It is initialized to zero by the
NDL compiler.

AUXILIARY LINE TALLY (O)

1 Byte/Binary

Contains the NDL byte variable known as AUX
LINE TALLY (0). It is initialized to zero by the
NDL compiler.

LINE ADDRESS

2 Bytes/Binary

Contains the line's physical address. This field is
initialized by the NDL compiler.

LOGICAL LINE NUMBER

1 Byte/Binary

.Contains the logical number that has been a~
signed to this line !'>X the NDL .co~Eil~ ..

MODEM

1 Byte/Binary

Contains the logical number of the modem that is
attached to this line.

TYPE

2 Bytes

Contains the 16 one-bit flags listed below. The
flags are initialized by the compiler according to in
formation supplied in the NDL program.

15 SPECIAL
14 BITS
13 BDI
12 TELEX
11 STANDBY TRUE
10 STANDBY OPTION
9 LOW/HIGH RATE
8 RATE SELECT
7 MODEM
6 DISCONNECT ON LOSS OF CARRIER
5 LINE PULSE/ACU DIALOUT
4 DIALOUT
3 DIALIN
2 ASCII/EBCDIC SYNC CHARACTER
1 ASYNCHRONOUS
0 FULL DUPLEX

4-2

AUX LINE DESCRIPTOR

2 Bytes

Contains the 16 one-bit flags listed below. This
field is initialized to zero by !h_e NQL compil~r.

15 AUX LINE QUEUED
14 AUX LINE TOG (0)
13 AUX LINE TOG (1)
12 RESERVED
11 RESERVED
10 RESERVED
9 RESERVED
8 AUX LINE BUSY
7 RESERVED
6 RESERVED
5 RESERVED
4 RESERVED
3 RESERVED
2 RESERVED
I RESERVED
0 RESERVED

STATION TALLIES

1 Byte Each/Binary

For each of the line's stations, one byte is alto~
cated to contain the NDL byte variable, STATION
TALLY. These bytes are initialized to zero by the
NDL compiler.

STATION DESCRIPTORS

1 Byte Each
For each of the line's stations, one bxte is allQ

cated to contain the _eight one-bit.fl~.listed below.
The NDL compiler ~ets bits 7 through 4 to zero, bits
3, 2 and 1 according to information supplied in the
NDL program, and bit 0 to binary 1.

7 STATION QUEUED
6 RESERVED
5 RESERVED
4 RESERVED
3 MYUSE OUTPUT-
2 MYUSE INPUT -
I ENABLED INPUT -
0 STATION READY 1

STATION TABLE POINil;M
2 Bytes Each/Binary

For each of the line's stations, two bytes are allo
cated to contain a pointer to the appropriate station
table.

On dis~, this field contains a logical station num
ber supplied by the NDL compiler.

In memory, it contains the absolute address of a
station table. This value is inserted by the DC loader
at DC initialize time.

STATION TABLE LAYOUT

LOGICAL UNE NO RELATIVE STATION NO

END CHARACTER LINE DELETE CHARACTER

BACKSPACE CHARACTER WRU CHARACTER

CONTROL CHARACTER STATION FREQUENCY

TRANSMIT ADDRESS-2 TRANSMIT ADDRESS-I

RUN MODE BITS TRANSMIT ADDRESS-3

RECEIVE ADDRESS-2 RECEIVE ADDRESS-I

RECEIVED RECEIVE ADDRESS-3

RECEIVE TRANSMISSION NO./OUTPUT SAVE QUEUE HEAD

TRANSMIT TRANSMISSION NO./OUTPUT SAVE QUEUE TAIL

LOGICAL STATION NO

UNPROCESSED INPUT LIMIT UNPROCESSED INPUT COUNT

ORIGINAL RETRY RETRY

TALLY(!) TALLY(O)

TALLY(2) TOGGLES (7-.0)

OPTIONS EVENTS

EVENTS

INITIATE RECEIVE DELAY

ACTIVE TRANSMIT DELAY

STATION QUEUE HEAD

STATION QUEUE TAIL

QUEUE LIMIT QUEUE COUNT

ATTACHED STATUS

WAIT STATUS

SUBNET QUEUE ADDRESS

RESERVED LINE PRIORITY CODE

TYPE

SPEED

MODEM TERMINAL

TALLY (4, TALLY (3)

TALLY(6) TALLY (5)

TALLY(8) TALLY(7)

TALLY(IO) TALLY(9)

TALLY (12) TALLY(!!)

TALLY(l4) TALLY (13)

TALLY(l6) TALLY(IS)

TALLY(l8) TALLY(!?)

OUTPUT SA VE QUEUE COUNT INPUT SA VE QUEUE COUNT

INPUT SAVE QUEUE HEAD

INPUT SA VE QUEUE TAIL

J~_OGtC~~'=~J~.IN_e ... ~ U M~.ER
1 Byte/Binary

k.Q..l11filn~-1l1~.Jruili:.~Lnµm_\?.£.Lfi.§§Jgn.S(Q,,.lQ.Jhi§ §!!!-
1iQ.n' ;ili!J~~J:!y_JfilL~ .. R.L._~QIDJ?ikr.~Jf the station is not
initially attached to a line, this field should contain
all ones.

Jle_LATIY~.-.STAJIQl\l __ NU.MJlER
1 Byte/Binary

C.Q!!1£ll!l§ •• !h~.~§t.at\!u1:~_rd1J.1iY~.I?Q.filll9.!LWi!h.in._th~ ..
!i§t9L§ti;i,!!Q.fl..§_ll th~Jin1t.Ji!hl~""'Jt is initialized by the
NDL compiler.

EN_D __ CttARAC.IEB
1 Byte/ASCII

Contains the ASCII value of the end character
specified in the NDL program.

LINE DELETE CHARACTER
~-·--~-~'-'~-~-~--·~"·-~-~--~~.-~~··=~-···"~-~---"""~~-"-"'""~""""'"'""""""'•"""'"''''"''"'"

1 Byte/ASCII
Contains the ASCII value of the line delete char

acter specified in the NDL program.

-~-~~li~.e.~C.~---C.~ARACIE~

1 Byte/ASCII
Contains the ASCII value of the backspace char

acter specified in the NDL program.

WRY.~CHAB.ACTE~

1 Byte/ASCII

Contains the ASCII value of the WRU character
specified in the NDL program.

CO~TRQ!-_ Ctt~R~CI~J'.~

1 Byte/ASCII

Contains the ASCII value of the control character
specified in the NDL program.

$T ~IlQ_N .. FB~OU.EN.~Y
1 Byte/Binary

Contains the value specified in the NDL program
for frequency.

TRANSMIT ADDRESS
,.;;.,.,.~,_,,,,.,,<c=-'-""~'"''~"''"""'"''~--···~~· _ _,,.,.....,..._,,,,.__"""_

3 Bytes/ASCII
Contains the transmit address characters as

4-3

specified in the NDL program. A maximum of three
characters may be used. Zeroes appear for any char
acter that is not specified.

RUN MODE BITS

1 Byte

Contains the eight one-bit flags listed below. Flags
0 through 3 are initialized to zero by the NDL com
piler while flags 4 through 7 are set according to, va!:
ues specified in the NDL progrn,m. These bits repre
sent the state of the station at the start of the run.

7 MYUSE OUTPUT -
6 MYUSE INPUT
5 SECOND STOP BIT -
4 ENABLE INPUT -
3 IMPLEMENTATION DEPENDENT*
2 RESERVED
l RESERVED
0 RESERVED

*Used by B 800 as the route output indicator (0 = route to MCS).

RECEIVE ADDRESS

3 Bytes/ASCII

Contains the receive address characters as
specified in the NDL program. A maximum of three
characters may be used. Zeros appear for any char
acter that is not specified.

RECEIVE TRANSMISSION
NUMBER

2 Bytes

Contains the receive transmission number in four
bit binary coded decimal form. A maximum of three
digits may be used. The entire field is initialized to
zero by the NDL compiler.

NOTE
For input messages, this field is moved
to the message header at NDL termin
ate time.

TRANSMIT TRANSMISSION
NUMBER

2 Bytes

Contains the transmit transmission number in four
bit binary coded decimal form. A maximum of three
digits may be used. The entire field is initialized to
zero by the NDL compiler.

44

OUTPUT SAVE QUEUE HEAD

2 Bytes/Binary

For stations of type bits, contains the absolute ad
dress of the next output or priority output message
still unacknowledged by the remote station. This
field is initialized to zero by the NDL compiler.

Output and priority output messages are queued to
this save queue by the NDL construct, "terminate
save", executed in the transmit request set.

OUTPUT SAVE QUEUE TAIL

2 Bytes/Binary

For stations of type bits, contains the absolute ad
dress of the most recent message still unacknow
ledged by the remote station. This field is initialized
to zero.

LOGICAL STATION NUMBER

2 Bytes/Binary

,Contains th_e logical number assigned to this sta
tion by the NDL coil!E!l~·

UNPROCESSED INPUT LIMIT

1 Byte/Binary

Contains the maximum value that unprocessed in
put count is allowed to have. 11 is initialized to two
by the NDL compiler.

UNPROCESSED INPUT COUNT

1 Byte/Binary

Contains the number of input messages from this
station, routed to the MCS, that have been accepted
by the DC-firmware, but have not yet been pro
cessed by the MCS. The field is initialized to zero
by the NDL compiler.

ORIGINAL RETRY
1 Byte/Binary

Contains tbe retry valu~ specified in the NDL pro
gram for this station. The maximum valueJhe...JL~
may assign to otjginal re(try is 2-5~,. The value 255 is
reserved for system use.

RETRY

1 Byte/Binary

Contains the om time retry count for input mes
sages to this station. It is initialized to the retiy Y.al
U~Jl§~~ry.

NOTE
This field is moved to the message
header at NOL terminate time. The
retry value for output messages, how
ever, is maintained in the message
header, not the station table.

TALLIES

Three 1-Byte Fields/Binary

Each field contains one of the NOL station tally
byte variables. All three bytes are initialized to zero
by the NOL compiler.

TOGGLES

1 Byte

Contains the eight NOL bit variables listed below.
The NOL compiler initializes this byte to zero.

7 TOGGLE (7)
6 TOGGLE (6)
5 TOGGLE (5)
4 TOGGLE (4)
3 TOGGLE (3)
2 TOGGLE (2)
1 TOGGLE (1)
0 TOGGLE (0)

OPTIONS

1 Byte

Contains the NOL options flags for input mes
sages to this station. The flags are moved to· the
message header at NOL terminate time. The NOL
compiler initializes this field to zero.

NOTE
The options flags for output messages
are maintained in the message header.

7 LINEFEED

6 CARRIAGE
5 PAPERMOTION
4 PAGE
3 SKIP
2 TRANSPARENT
1 BLOCK
0 SPACE

_E~ENTS

Bytes

Contains the NOL events flags for input messages
to this station. The flags are moved to the message
header at NOL terminate time. The NOL compiler
initializes all three bytes to zero.

NOTE
The events flags for output messages
are maintained in the message header.

23 NAK RECEIVED
22 NAK ON SELECT
21 NO SPACE
20 TERMINATE ERROR
19 DISCONNECT
18 TERMINATE NO LABEL
17 ADAPTER FAULT
16 MODEM NOT READY
15 CONTROL CHARACTER RECEIVED
14 WRU CHARACTER RECEIVED
13 TRANSMISSION NUMBER ERROR
12 MESSAGE LENGTH EXCEEDED
11 EVENT 1
10 FORMAT ERROR
9 BCC ERROR
8 ADDRESS ERROR
7 SYNCHRONOUS TRANSMISSION UNDERFLOW
6 BREAK ON TRANSIT
5 LOSS OF CARRIER
4 CHARACTER PARITY ERROR/INVALID FRAME
3 BREAK ON RECEIVE/IDLE
2 BYTE OVERFLOW-SERVICED TOO LATE
1 STOP BIT ERROR/ABORT
0 TIMEOUT

INITIATE RECEIVE DELAY

2 Bytes/Binary Two's
Complement

Contains the nruse delay value specified in the
NOL program for this station'~ mod~m.

ACTIVE TRANSMIT DELAY

2 Bytes/Binary Two's
Complement

Contains the greatest of the following values:

Terminal turnaround delay
Station modem noise delay
Line modem transmit delay

It is initialized by the NOL compiler.

4-5

STATION QUEUE HEAD

2 Bytes/Binary

Contains the absolute address of the next
input or output message to be processed by this sta
tion. It is initialized to zero by the NDL compiler.
The use of this field is implementation dependent.

STATION QUEUE TAIL

2 Bytes/Binary

Contains the absolute address of the final
message that is currently waiting to be processed by
this station. It is initialized to zero by the NDL com
piler. The use of this field is implementation depend
ent.

QUEUE LIMIT

1 Byte/Binary

Contains the maximum value that queue count is
allowed to have. It is initialized to two by the NDL
compiler. The use of this field is implementation de
pendent.

QUEUE COUNT

1 Byte/Binary

Contains the number of message spaces of type
output that are currently linked to the station queue.
It is initialized to zero by the NDL compiler. The
use of this field is implementation dependent.

ATTACHED STATUS

2 Bytes

Contains run time information as to whether or
not this station is attached to a particular task. If it
is, the bit corresponding to the task's ID is set by
the DC firmware. The field is initialized to zero by
the NDL compiler.

15 TASK ID 15
14 TASK ID 14
13 TASK ID 13
12 TASK ID 12
11 TASK ID 11
10 TASK ID 10
9 TASK ID 9
8 TASK ID 8
7 TASK ID 7
6 TASK ID 6
5 TASK ID 5
4 TASK ID 4
3 TASK ID 3
2 TASK ID 2

4-6

1 TASK ID 1
0 TASK ID 0

The use of this field is implementation dependent.

WAIT STATUS

2 Bytes

Contains run time information as to whether or
not a particular task is waiting until queue count be
comes less than queue limit.

If a task is being waited, the bit corresponding to
that task's ID is set by the DC firmware. The field
is initialized to zero by the NDL compiler.

15 TASK ID 15
14 TASK ID 14
13 TASK ID 13
12 TASK ID 12
11 TASK ID 11
10 TASK ID 10
9 TASK ID 9
8 TASK ID 8
7 TASK ID 7
6 TASK ID 6
5 TASK ID 5
4 TASK ID 4
3 TASK ID 3
2 TASK ID 2
1 TASK ID 1
0 TASK ID 0

The use of this field is implementation dependent.

SUBNET QUEUE ADDRESS
2 Bytes/Binary

Contains a pointer to the subnet queue to which
this station's input is routed. If input is routed to the
MCS, this field contains all ones.

This field is initialized to all ones by the NDL
compiler and is updated by the DC communicate
handler. The use of this field is implementation de
pendent.

LINE PRIORITY CODE

1 Byte/Binary

Contains an eight-bit code indicating the speed of
this station's line. It is initialized by the NDL com
piler according to the line priority chart.

TYPE

2 Bytes

Contains the 16 one-bit flags listed below which
are set according to information supplied in the NDL
program.
15 SPECIAL
14 BITS
13 BDI

12 TELEX
11 RESERVED
10 RESERVED
9 RESERVED
8 RESERVED
7 MODEM
6 RESERVED
5 RESERVED
4 RESERVED
3 TALLIES
2 ASCII/EBCDIC SYNC CHARACTER
1 ASYNCHRONOUS
0 FULL DUPLEX

SPEED

2 Bytes

Indicates the frequency to be used with this sta
tion. The valid speeds are listed as follows by bit po
sition. Note that the bits take on different meanings
for synchronous and asynchronous speeds.

The appropriate bits are set by the NDL compiler.

Asynchronous

15-Reserved
14-38,400 BPS
13-19,200 BPS
12-9,600 BPS
11-4,800 BPS
10-2,400 BPS
9-1,800 BPS
8-1,200
4-600 BPS
6-300 BPS
5-200 BPS
4-150 BPS
3-110 BPS
2-100 BPS
1-75 BPS
0-50 BPS

BPS=Bits per second.

MODEM

1 Byte/Binary

Synchronous

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
9,600 BPS
7,200 BPS
4,800 BPS
3,600 BPS
2,400 BPS
2,000 BPS
1,200 BPS
600 BPS

Contains the logical number assigned to this sta
tion's modem by the NDL compiler.

TALLY (3) THROUGH TALLY (18)

16 Fields, 1 Byte/Binary

Each field contains one of the 16 extra byte
variables required by a station of type bits. The
extra tallies are assigned via the NDL TALLIES

statement. These tallies cannot be stored in the mes
sage header. All bytes are initialized to zero by the
NDL compiler.

OUTPUT SAVE QUEUE COUNT

1 Byte/Binary

Used only by stations of type bits. Contains the
number of messages currently in the output save
queue. It is initialized to zero by the NDL compiler.

INPUT SAVE QUEUE COUNT

1 Byte Binary

Used only by stations of type bits. Contains the
number of messages currently in the input save
queue. It is initialized to zero by the NDL compiler.

INPUT SAVE QUEUE HEAD

2 Bytes/Binary

For stations of type bits, contains the absolute ad
dress of the next input message from the station to
be acknowledged. This field is initialized to zero by
the NDL compiler. Input messages are queued to
the input save queue by the NDL instruction TER
MINATE SAVE when executed in the receive re
quest set.

INPUT SAVE QUEUE TAIL

2 Bytes/Bin a ry

For station of type bits, contains the absolute ad
dress of the latest message still unacknowledged to
the remote station. This field is initialized to zero
by the NDL compiler.

TERMINAL

1 Byte/Binary

Contains the logical number assigned to this sta
tion's terminal by the NDL:. compiler.

MODEM TABLE LAYOUT

TYPE
SPEED

NOISE DELAY
TRANSMIT DELAY

4-7

TYPE

2 Bytes

Contains the 16 one-bit flags listed below. The
flags are initialized by the compiler according to in
formation supplied in the NDL program.

15 SPECIAL
14 RESERVED
13 RESERVED
12 RESERVED
ll RESERVED
10 STANDBY OPTION
9 RESERVED
8 RATE SELECT
7 MODEM
6 DISCONNECT ON LOSS OF CARRIER
5 ANSWERTONE NEEDED
4 DIALOUT
3 DIALIN
2 RESERVED
l ASYNCHRONOUS
0 FULL DUPLEX

SPEED

2 Bytes

Indicates the frequency to be used with this mod
em. The valid speeds are listed below by bit posi
tion. Note that the bits take on different meanings
for synchronous and asynchronous speeds.

The appropriate bits are set by the NDL compiler.

Asynchronous

15 Reserved
14 38,400 BPS
13 19,200 BPS
12 9,600 BPS
11 4,800 BPS
IO 2,400 BPS
9 1,800 BPS
8 1,200 BPS
7 600 BPS
6 300 BPS
5 200 BPS
4 150 BPS
3 llO BPS
2 100 BPS
l 75 BPS
0 50 BPS

NOISE DELAY

Synchronous

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
9,600 BPS
7,200 BPS
4,800 BPS
3,600 BPS
2,400 BPS
2,000 BPS
1,200 BPS
600 BPS

2 Bytes/Binary - Two's
Complement

Contains the noise delay as specified for this mod
em in the NDL program.

4-8

TRANSMIT DELAY

2 Bytes/Binary - Two's
Complement

Contains the transmit delay as specified for this
modem in the NDL program.

TERMINAL TABLE LAYOUT

TR COUNT

OR
T-AD COUNT R-AD COUNT

RUN MODE BITS
2 Bytes

Contains the 16 one-bit flags listed below. Flags 7,
5, and 2 are initialized to zero by the NDL com
piler. The remaining flags are set according to infor
mation supplied in the NDL program.

15 VERTICAL
14 HORIZONTAL
13 NO TRANSLATE
12 BCC ONES
ll FULL DUPLEX
IO TRANSPARENT
9 CASESHIFT
8 BCC/CRC
7 RESERVED
6 BITS
5 RESERVED
4 MOD8/MOD128
3 ODD/EVEN PARITY
2 SUMMED PARITY
l CRC-1/(ECMA)
0 SYNC/ ASYNC

TR-COUNT
1 Byte/Binary

Contains the number of digits to be used in the re
ceive and transmit transmission numbers. It is initial
ized by the NDL compiler.

SV QUEUE LIMIT

1 Byte/Binary
For terminals of type bits, contains the number of

messages allowed to be queued to the output save
queue. It is initialized to the value specified in the
NDL SA VE statement.

T-AD COUNT
4 Bits/Binary

Contains the number of characters to be used in
the transmit address. It is initialized by the NDL
compiler.

R-AD COUNT

4 Bits/Binary

Contains the number of characters to be used in
the receive address. It is initialized by the NDL
compiler.

SYNC CHARACTER
1 Byte

For terminals not of type bits. Contains the sync
character in either ASCII or EBCDIC form as de
fined in the NDL. For1bits1 terminals, contains the
flag sequence value of Hex 7E.

PARITY MASK

1 Byte

Contains a mask character that has a binary 1 in
each bit position that contains data (excluding parity)
in a normal data character. The remaining bit posi
tions contain a binary 0. The field is initialized by
the NDL compiler.

STANDARD TIMEOUT

2 Bytes/Binary Two's
Complement

Contains the timeout value specified in the NDL
program.

AUXILIARY LINE CONTROL
POINTER

2 Bytes/Binary

On disk, this field contains the logical number of
the control set specified for this terminal's AUX line
control.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate
control set.

If no AUX line control is specified for this termi
nal, the field contains all ones.

TURNAROUND DELAY

2 Bytes/Binary Two's
Complement

Contains the turnaround time value specified in
the NDL program.

LINE CONTROL POINTER

2 Bytes/Binary

On disk, this field contains the logical number of
the control set specified for this terminal's line con
trol.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate
control set.

RECEIVE REQUEST POINTER

2 Bytes/Binary
On disk, this field contains the logical number of

the request set specified for this terminal's receive
request.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate re
quest set.

If no receive request is specified for this terminal,
the field contains all ones.

4-9

TRANSMIT REQUEST POINTER

2 Bytes/Binary

On disk, this field contains the logical number of
the request set specified for this terminal's receive
request.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate re
quest set.

If no transmit request is specified for this terminal,
the field contains all ones.

TRANSLATION TABLE POINTER

2 Bytes/Binary

On disk, this field contains the logical number of
the translation table specified for this terminal.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate ta
ble.

If no translation table is specified for this terminal,
the field contains all ones.

MAXIMUM INPUT SIZE

2 Bytes/Binary One's
Complement

Contains the size in bytes of the largest message
that can be inputted from this terminal as specified
in the NDL program.

ADAPTER INFO

1 Byte

Contains information used by the DC firmware to
condition the hardware. The field is initialized by the
NDL compiler from information supplied in the
NDL program.

7 RECEIVE PARITY
6 EVEN PARITY
5 ASYNCHRONOUS

4-10

4 CHARACTER SIZE
3 CHARACTER SIZE
2 TRANSMIT PARITY
l RESERVED
0 BINARY l

NOTE
Character size is a two-bit code indicat
ing the number of bits (including parity)
to be used in a normal data character.
It is specified as follows:

11 FIVE-BIT CHARACTER
IO SIX-BIT CHARACTER
01 SEVEN-BIT CHARACTER
00 EIGHT-BIT CHARACTER

NUMBER OF BUFFERS

1 Byte/Binary One's Complement
Contains the number of DC buffers needed to hold

a message (header plus text) for this terminal. It is
computed by the NDL compiler as follows:

I. Let Y equal this terminal's maximum input size
2. Let Z equal 2* (DC-buffer-size-I)
3. Let N equal the integer value (Y + 37)/Z
4. Then "number of buffers" equals the one's complement of

N.

TYPE

2 Bytes
Contains the 16 one-bit flags listed below. Flags

15, 14, 13, 12, 8, 7, 3, 2, and 1 are set by the com
piler according to information supplied in the NDL
program. The remaining flags are initialized to zero.

15 SPECIAL
14 BITS
13 BDI
12 TELEX
ll RESERVED
10 RESERVED
9 RESERVED
8 DIRECT
7 MODEM
6 RESERVED
5 RESERVED
4 RESERVED
3 TALLIES
2 ASCII/EBCDIC SYNC CHARACTER
l ASYNCHRONOUS
0 FULL DUPLEX

SPEED
2 Bytes

Indicates the frequency to be used with this termi-

~al. The valid speeds are listed below by bit posi
tion. Note that the bits take on different meanings
for synchronous and asynchronous speeds.

For synchronous terminals, only one bit indicating
the maximum speed may be set.

F?r ~sy~chronous terminals, multiple bits may be
set md1catmg that several speeds are possible.

The appropriate bits are set by the NDL compiler.

Asynchronous
15 RESERVED
14 38,400 BPS
13 19,200 BPS
12 9,600 BPS
11 4,800 BPS
IO 2,400 BPS
9 1,800 BPS
8 1,200 BPS
7 600 BPS
6 300 BPS
5 200 BPS
4 150 BPS
3 110 BPS
2 100 BPS
l 75 BPS
0 50 BPS

STOP BITS
2 Bytes

Synchronous
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
9,600 BPS
7,200 BPS
4,800 BPS
3,600 BPS
2,400 BPS
2,000 BPS
1,200 BPS
600 BPS

For asynchronous terminals, it is possible to
specify several speeds. For each speed, it is possible
to select either one or two stop bits. This field indi
cates the number of stop bits associated with each
speed according to the speed's bit position as de
fined above. If the bit is reset, one stop bit is used.
If the bit is set, two stop bits are used. This field is
initialized by the NDL compiler.

FILE TABLE LAYOUT

INDEX TO. LFN-O's LSN-LIST
LFN-0 NUMBER OF STATIONS

LFN-O's LSN-LIST

INDEX TO LFN-(N-U's LSN-LIST
LFN::{N-U NUMBER OF STATIONS

ILFN-(N-l)'s LSN-LIST

INDEX TO LFN-X'S LSN-LIST

2 Bytes/Binary

Contains the index (byte offset divided by 2) from
the base of the file table of the list of logical station
numbers of the stations which are associated with
logical-file-number X.

LFN-X NUMBER OF STATIONS

2 BYTES/BINARY

Contains the number of stations which are associ
ated with logical-file-number X.

LFN-X'S LSN-LIST

Each Entry Is 2 Bytes/Binary

Contains the list of the logical station numbers of
the stations which are associated with logical-file
number X.

EXTENDED STATION TABLE
LAYOUT

MCS DATA BITS

WIDTH i PAGE
DIGIT COUNT 1 PHONE NUMBER

PHONE NUMBER
PHONE NUMBER

PHONE NUMBER

MCS DATA BITS

2 Bytes

I

Contains information specified in the NDL pro
gram for this station which may be of interest to the
MCS.

15 SPO
14 LOGIN
13 WRAPAROUND
12 RESERVED
11 RESERVED
IO RESERVED
9 RESERVED
8 RESERVED
7 RESERVED
6 RESERVED
5 RESERVED

4-11

4 RESERVED
3 RESERVED
2 RESERVED
l RESERVED
0 RESERVED

WIDTH

1 Byte/Binary

Contains the station width as specified m the
NDL program.

PAGE

1 Byte/Binary

Contains the station page size as specified in the
NDL program.

DIGIT COUNT

4 Bits/Binary

Contains the number of digits in a given phone
number. Digit count may range from 0 to 15 and is
initialized by the NDL compiler.

PHONE NUMBER

15 Four-Bit Binary Coded Decimal
Digits

Contains the station's phone number as specified
in the NDL program.

EXTENDED TERMINAL TABLE
LAYOUT

MCS DATA BITS

WIDTH

CARRIAGE CHARACTER

HOME CHARACTER

MCS DATA BITS

2 Bytes

PAGE

LINEFEED CHARACTER

CLEAR CHARACTER

Contains information specified in the NDL pro
gram for this station which may be of interest to the
MCS.

4-12.

15 RESERVED
14 RESERVED
13 WRAPAROUND
12 SCREEN
11 BLOCKED
10 TRANSPARENT CAPABLE
9 RESERVED
8 RESERVED
7 RESERVED
6 RESERVED
5 RESERVED
4 RESERVED
3 RESERVED
2 RESERVED
l RESERVED
0 RESERVED

WIDTH

1 Byte/Binary

Contains the value specified in the NDL program
as the terminal's width.

PAGE

1 BYTE/BINARY

Contains the value specified in the NDL program
as the terminal's page size.

CARRIAGE CHARACTER

1 Byte/ASCII

Contains the ASCII value of the carriage character
specified in the NDL program.

LINEFEED CHARACTER

1 Byte/ASCII

Contains the ASCII value of the linefeed character
specified in the NDL program.

HOME CHARACTER

1 Byte/ASCII

Contains the ASCII value of the home character
specified in the NDL program.

CLEAR CHARACTER
1 Byte/ASCII

Contains the ASCII value of the clear character
specified in the NDL Program.

SECTION 5
MESSAGE HEADER

INTRODUCTION

This section covers the format and use of the mes
sage header. The message header is a means of com
municating status and events between the MCS and
the NDL program.

The layout of the message header below shows
two characters per line. The header that the MCS
sees (the one sent by the MCS and the one received
by the MCS) is only 35 bytes in length. The first five
bytes are never used or seen by the MCS.

MESSAGE HEADER LAYOUT

MESSAGE LINK *
BUFFER LINK *

PROCESSOR LINE

RESULT TYPE

TASK MCS FLAG

STATION

OPTIONS EVENTS

EVENTS

RESERVED SUBNET QUEUE

TEXT LENGTH

MESSAGE LENGTH

SKIPCONTROL RETRY

RESER'!ED TRANSMISSION NUMBER

TRANSMISSION NUMBER

TALLY (1) TALLY (0)

TALLY (2) TOGGLES (7-0)

DATE(YEAR) DATE (MONTH)

DATE(DAY) TIME (HOURS)

TIME (MINUTES) TIME SECONDS

MCSDATA

* The size of this field is implementation-dependent.

MESSAGE HEADER
The message header is always the first 40 bytes of

the first buffer associated with each message. All
messages contain all of the message header fields de
scribed. However, not all fields are meaningful for
all messages. Furthermore, not all fields are read/
write accessible by the user, any such field is
marked as being either NOT ACCESSIBLE BY
USER or READ ONLY BY THE USER. All other
fields are read/write.

Message Link

Not accessible to the user.

Contains the absolute address of the next message.
in this queue, or zero if this is the last message in
the queue.

Buffer Link
Not accessible to the user.
Contains the absolute address of the next buffer

used for this message, or zero if this is the only buf
fer used for this message.

Processor
1 Byte/Binary

Not accessible to the user.
Contains the data communications processor num

ber associated with this message.

Line
1 Byte/Binary

Contains the logical line number associated with
this message.
Result
1 Byte/Binary

Contains an index value indicating any special
conditions associated with this message. The defined
values for result are:

0 - complete and successful
1 - line not ready
2 - station not ready
3 - control or WRU flag set
4 - recalled from station
5 - recalled from subnet queue

5-1

6 - station not attached
7 - unable to initiate
8 - invalid network request
9 - DC hardware error
10 - DIALIN received
11 - recalled from output save queue

Type
1 Byte/Binary

Contains a value indicating the message type as
follows:
0 - Maintenance
1 - Input
2 - Output
3 - Priority output
4 - Enable input
5 - Disable input
6 - Make station ready
7 - Make station not-ready
8 - Make line ready
9 - Make line not-ready
10 - Dialout
11 - Immediate line not-ready
12 - Recover*
13 - Deallocate*
14 - Dialin
15 - SPO input
16 - End recall from queue
17 - End recall from station
18 - Attach queue
19 - Attach station
20 - Enable queue
21 - Enable station
22 - Disable queue
23 - Disable station
24 - send
25 - Task detach
26 - Line Marker *
27 - Deallocate Space *

*Implementation dependent

Task
1 Byte/Binary

Contains the number of the task in which the mes
sage originated, valid values for user tasks range
from 1 through 9.

MCS Flag
1 Byte

Indicates by the setting of the least significant bit
that the MCS is to be notified of the results of this
output message:

1. Only if errors occur (bit = 0).
2. Whether or not errors occur (bit = 1).

5-2

Station

2 Bytes/Binary

Contains the logical station number associated
with this message.

Options

1 Byte

Contains the eight, one-bit flags listed here, which
are available for use by the NDL program and the
DC firmware.

7 - LINEFEED
Output a linefeed character

6 - CARRIAGE
Output a carriage return character

5 - PAPERMOTION
Move paper before printing

4 - PAGE
Advance page

3 - SKIP
Skip to channel

2 - TRANSPARENT
Message contains transparent text characters

1 - BLOCK
One block (but not the last) of a multi-block
message

0 - SPACE
Advance line(s)

These flags are intended to be used in forms con
trol; however, their actual meaning, if any, is deter
mined by the NDL programmer.

Events

3 Bytes

Contains 24 one-bit flags listed below, which are
set by the data communications subsystem to indi
cate conditions which occurred on the line while
processing this message.

23 - NAK RECEIVED
22 - NAK ON SELECT
21 - NO SPACE
20 - TERMINATE ERROR
19 - DISCONNECT
18 - TERMINATE NO LABEL
17 - ADAPTER FAULT
16 - MODEM NOT READY
15 - CONTROL CHARACTER RECEIVED
14 - WRU CHARACTER RECEIVED
13 - TRANSMISSION NUMBER ERROR
12 - MESSAGE LENGTH EXCEEDED

11 - EVENT 1
10 - FORMAT ERROR
9 - BCC ERROR
8 - ADDRESS ERROR
7 - SYNCHRONOUS TRANSMISSION UNDERFLOW
6 - BREAK ON TRANSMIT
5 - LOSS OF CARRIER
4 - CHARACTER PARITY ERROR/INVALID FRAME
3 - BREAK ON RECEIVE/IDLE
2 - BYTE OVERFLOW-SERVICED TOO LATE
1 - STOP BIT ERROR/ABORT
0 - TIMEOUT

If one or more of the following flags is set, the line
associated with this message is implicitly made not
ready and the appropriate value placed into the re
sult field:

DISCONNECT
ADAPfER FAULT
MODEM NOT READY

If one or both of the following flags has been set,
the station associated with this message has been im
plicitly made not-ready and the appropriate value
has been placed into the result field:

TERMINATE ERROR
TERMINATE NO LABEL

Events during DIALOUT

Contains eight, one-bit flags, listed below, which
are set by the data communications subsystem to in
dicate conditions occurring on the line while pro
cessing a dialout message.

23 - RESERVED
22 - RESERVED
21 - INVALID OR NO ANSWERTONE AFTER
PULSE DIALING (NON-ACU MODEM)
20 - PREMATURE CONNECTION (U.K.
ONLY)
19 ·- ACR BUT NO DSS AFTER ACU-DIALOUT
18 - FIRST PND WAS SENSED. BUT SUBSE
QUENT PNDS WERE NOT
17 - ACR WITHOUT FIRST PND OR RING AF

TER DTR/CRQ IS RAISED
16 - PWI WAS RESET OR DLO WAS SET, AT
START OF ACU-DIALOUT

Subnet Queue

1 Byte/Binary

Contains the subnet queue number associated with
this message.

Text Length

2 Bytes/Binary

Contains the number of text characters present in
this message.

Message Length

2 Bytes/Binary

Read only by the user and contains the total num
ber of bytes of space available for text in this mes
sage. Its value is always greater than, or equal to,
the value of text length.

Skip Control

1 Byte/Binary

This contains a value to be used in connection
with the options field. (For example, it may contain
the number of lines that are to be skipped.)

Like options, the actual meaning of skip control is
determined by the NDL programmer.

Retry

1 Byte/Binary

Contains the NDL retry count associated with this
message. The maximum value the user may assign to
retry is 254. The value 255 is reserved for system
use.

Transmission Number

3 Bytes/ASCII

Contains three ASCII characters indicating the
transmission number (000 through 999) received with
this input message.

Tallies

3 Bytes

Three separate eight-bit binary fields, with use and
meaning determined by the NDL programmer in
cooperation with the user.

5-3

Toggles
1 Byte

Eight one-bit flags, with use and meaning deter
mined by the NDL programmer in cooperation with
the user.

Date
3 Bytes

Contains the data relevant for this message. It is
given as six binary coded decimal digits in the form
YYMMDD (Year, month, day).

For input messages, this field is filled by the DC
firmware when the message is received.

For output messages, it is the user's responsibility
to fill this field if it is so desired.

Time
3 Bytes

Contains the time of day relevant for this message.
It is given as six binary coded decimal digits in the
form HHMMSS (hours, minutes, seconds).

For input messages, this field is filled by the DC
firmware when the message is received.

For output messages, it is the user's responsibility
to fill this field if it is so desired.

MCS Data
2 Bytes/Binary

This field is provided for the use and convenience
of the MCS only. It is initialized to zeroes on incom
ing messages by the DC firmware and is unaltered at
all other times.

VALID MESSAGE HEADER FIELDS

Message header field information is given in fig
ures 5-1 and 5-2.

DATA COMMUNICATIONS
MESSAGE TYPES

Directive Type Messages

INPUT/OUTPUT

These messages are queued to the bottom of the

5-4

station queue which belongs to the station refer
enced in the message header. Input messages are
only queued to half-duplex stations defined as
MYUSE-INPUT. Output messages are only queued
to stations defined as MYUSE-OUTPUT. A rejected
input/output message is returned to the MCS with
result equal to "unable to initiate".

If a message is queued, the station is marked
queued. If the station is ready and the line is ready,
the line is marked queued. (See also Priority-Output,
Enable-Input, Disable-Input, and Make-Station
Ready.)

If the station is ready and the line is ready, con
nected, and not busy (primary), line-control is initi
ated.

PRIORITY-OUTPUT

This message is treated just like a standard output
message, except that it is queued to the top of the
station queue.

Priority-output messages are used in error han
dling. If an unrecovered or unrecoverable error oc
curs while the line is engaged in a write request for
some station, the error is reported in the header of
the output (or priority-output) message when it is re
turned to the MCS. The line or station is also made
not-ready, whichever is appropriate. In order to
reinitiate the output in its proper sequence before
other output in the station queue, the MCS may re
submit the message in error as PRIORITY-OUTPUT
before making ready the line or station.

ENABLE-INPUT/DISABLE-INPUT

The messages are queued to the bottom of the sta
tion queue which belongs to the station referenced in
the message header. ENABLE-INPUT messages are
only queued to stations defined as MYUSE-INPUT.
Otherwise, they are returned to the MCS with result
equal to Unable To Initiate.

If a message is queued, the station is marked
queued. If the station is ready and the line is ready,
the line is also marked queued. If the station is
ready and the line is also ready, connected, and not
busy (primary), line control is initiated. ·

Like input and output messages, ENABLE-IN·
PUT/DISABLE-INPUT is processed by the initiate
request statement in line control. At that time, the
station is enabled/disabled and tlte message is re
turned to the MCS with result equal to Complete
and Successful.

Messages Initiated by the MCS

>-
MESSAGE >- 0

0 ~ TYPE <(

>- w >- a:
a: 0 0 <(I-

<(I- 0 w 0 >- w z a: a: z 0

~ I-
w

w z z 0 z
u I- 0 0 a: z :::J
z :::::> j:: j:: w

0 ~ w w w ~ <(~ ~ ~ z ~
z z

I- ~ a: u
~ :::J :::J w ~ w rJ) rJ) :::::> w

~ I- a:J co g 0 6 z I-
~ co w w w w w

FIELD ~
:::::> 0 <(<(~ ~ ~ ~ :E u ~ Q.. :::::> g:: z rJ)

~ ~ ~
<(<(

~
w :E ~ 0 w i5 :E i5 a: 0

·-

LINE * * * *
RESULT

TYPE * * * * * * * * * * *
TASK

MCS FLAG * *
STATION * * * * * * *
OPTIONS x x
EVENTS

SUBNET Q

TEXT LENGTH * *I *

MSG LENGTH s s s s s s s s s s s
SKIPCONTROL x x
RETRY x x x
TRANS NO x x x
TALLIES x x x
TOGGLES x x x
DATE u u
TIME u u
MCS DATA u u u u u u u u u

LEGEND: * = Must be supplied by the user.

X = May be supplied by the user (if required by NOL).

U = May be supplied by the user (if he wishes).

S = Supplied by the DC subsystem.

Blank = Don't care.

z
w 0
:::::> j::
w
~ :::::> w

0 rJ) :::::>
w

::lJ :::::>J
I- (S (S 0 :::::>
Q.. w w J:

z z a: a: u

~ :::J 0 0 0 <(Q.. z z
i5 rJ) w w <(

t---+·

Figure 5-1. Messages Initiated by the MCS

z z z
0 w 0 w 0

~
:::::> :::::>

~ ~
w J: w a u

:::::>
~ 0
w

~ w J: w wJ 0

~
....JJ co co co co 0 ~
<(<(;Ji <(z rJ) z z rJ) w ~ w w i5 i5 rJ)

5-5

5-6

Messages Found in the MCS Queue

>-
MESSAGE >- 0

0 <(
TYPE <(UJ

>- UJ >- a:
a: 0 0 <(I-

<(I- 0 UJ
UJ 0 >- UJ z :::> a: a: z 0 UJ

~ I-
UJ :::>

UJ z z 0 z 0
u I- 0 0 a: z :J :::>

~ ~
UJJ z 0 z UJ I-J

<(~
UJ UJ

~
<(I- <(z z :::> z ~ UJ ::J ::J I- a: u a.. u

UJ I- UJJ
CJ) CJ) :::> i5

UJ g UJ
I- :::> a:J > z z a: z I- a.. co co UJ UJ UJ UJ g UJ 0J
<(:::> I- 0 <(<(~ ~ ~ ~ ~ u ~

::J 0 0 FIELD a.. :::> a: z CJ) <(<(<(<(<(UJ ~ a.. z
~ z 0 a.. UJ 0 ~ ~ ~ ~ i5 ~ a: 0 0 CJ) UJ

LINE * * * * * *

RESULT * * * * * * * * * * * * *

TYPE * * * * * * * * * * * * * * *

TASK *

MCS FLAG * * *

STATION * * * * * * *

OPTIONS * x x x
EVENTS * * * *

SUBNET Q *

TEXT LENGTH * * * * *
MSG LENGTH s s s s s s s s s s s s s s
SKIPCONTROL x x x
RETRY x x x
TRANS NO x x x
TALLIES x x x
TOGGLES x x x
DATE * u u
TIME * u u
MCS DATA u u u u u u u u u

LEGEND: * = Contains valid information.

X = May contain valid information (if it was supplied by NOL).
U = May contain valid information (if it was supplied by the user).
S = Supplied by the DC subsystem.
Blank = Don't care.

z
0

~ z
UJ 0

CJ) :::>

~ UJJ :::>J
<(0 CJ)
u
UJ I I
a: u u

~ ~ 0
z
UJ

* * *

* *

* *

*

s s s

Figure 5-2. Messages Found in the MCS Queue

z z
UJ 0 UJ 0
:::>

~
:::>

~ I
UJ UJ

:::> u :::>
~ 0 0 en

UJ UJ UJ
UJ UJJJ 0JJ co co co co 0 ~
<(<(<(<(z CJ) z z CJ) CJ)

UJ ~ UJ UJ i5 i5 CJ)

* * * * * *

* * * * * *

* * *

x

* *

* * * * *

s s s s s s
x
*

The EN ABLE flag for each station, maintained by
the Enable/Disable messages, controls the NDL en
able-input feature. While the ENABLE flag is on,

. read request logic can be entered by an Initiate-En
able-Input statement in line-control or by a Termin
ate-Enable-Input statement in a write request.

MAKE-STATION-READY

The station referenced in the message is made
ready, and the message is returned to the MCS with
result equal to Complete and Successful.

If the referenced station is actively associated with
a read/write request, the line/primary may have the
STATION-NOT-READY-PENDING flag set from a
previous Make-Station-Not-Ready message for that
same station. If so, the PENDING flag is reset and
the Make-Station-Not-Ready message is thereby
countermanded, never to be returned to the MCS.
Note, however, that the message space of the pend
ing message has already been returned to the avail
able buffer pool. (See Make-Station-Not-Ready.)

If the line is ready, the line is marked queued. If
the line is ready, connected, and not busy (primary),
line-control is initiated.

MAKE-STATION-NOT-READY
The station referenced in the message header may

or may not be made not-ready immediately, depend
ing on whether the station is actively associated with
a read/write request. That is, the station remains
ready if:

1. It is currently referenced by the line/primary
station variable,
2. The line is busy, and
3. The line/primary is executing S-code in a re
quest set.

If the station is active, the line/primary STATION
NOT-READY-PENDINQ flag is set. The message is
passed to the available buffer pool with type equal
to Discard. Later, when pending states are resolved,
(when line busy is reset or during the execution of
certain Terminate S-OPs), message space is allocated
with a header filled with line number, station num
ber, and type equal to MAKE-STATION-NOT
READY. Logic then proceeds as follows.

If the station is immediately made not-ready or if
the STATION-NOT-READY-PENDING state is be
ing resolved, the Make-Station-Not-Ready message
is returned to the MCS with result equal to STA
TION-NOT-READY. The station is marked not
ready, (primary) and line control is initiated:

1. I the line/primary station is executing S-code in
a request set, and

2. If line busy is reset .

Any message space held by the line/primary is
then queued to the top of the station queue of
the line/primary station. If the auxiliary side of a
full-duplex line is executing S-code in a request set
for that station, AUX space is returned to the avail
able buffer pool and AUX line-control is initiated.

MAKE-LINE-READY

If the line is switched-busy, the message is re
turned to the MCS with result equal to UNABLE
TO INITIATE. Otherwise, the message is returned
to the MCS with result equal to COMPLETE AND
SUCCESSFUL.

If the line is already ready and not-busy, the line
is not affected. If the line is ready and busy, the
line's NOT-READY-PENDING flag is reset, thereby
countermanding a previous Make-Line-Not-Ready
message for that line. (The countermanded MAKE
LINE-READY may or may not be returned to the
MCS, depending on system implementation.)

If the line is connected and not-ready, the line is
made ready and (primary) line-control is initiated.

If not connected and not-ready, DIALIN logic is
initiated as follows.

The line is made ready. While the line is awaiting
an incoming call, it is kept not-switched-busy to al
low interruption by a Dialout, Make-Line-Not
Ready, or Immediate-Line-Not-Ready message.

The line table resident variables, LINE TOG [0]
and LINE TOG [l], are reset when a line (which
was previously not ready) is made ready.

CALL-RECEIVED

As soon as DATASET READY (DSR, CC) is true
and an incoming call is detected, the line is marked
switched-busy. On successful completion of the call,
the line is marked connected and not switched-busy.
Message space is sent to the MCS with a header
filled with line-number, type equal to DIALIN, and
result equal to Complete and Successful.

On an unsuccessful DIALIN (when a LOSS OF
CARRIER EQUAL TO DISCONNECT line fails to
detect carrier); message space is allocated with a
header filled with line-number and type equal to
DIALIN. Disconnect logic is then invoked (see
LINE-ABORT).

5.7

MAKE-LINE-NOT-READY

If the line is switched-busy, the Make-Line-Not
Ready message is returned to the MCS with result
equal to UNABLE TO INITIATE.

If the line is ready and busy, the line's NOT
READY-PENDING flag is set, and the message is
returned to the available buffer pool with type equal
to DISCARD. Later, when pending states are re
solved (see also Make-Station-Not-Ready), message
space is allocated with a header filled with line-num
ber and type equal to MAKE-LINE-NOT-READY.
Logic then proceeds.

If the line is immediately made not-ready or if the
LINE-NOT-READY-PENDING state is being re
solved, the Make-Line-Not-Ready message is re
turned to the MCS with result equal to Line-Not
Ready.

If the line/primary was executing S-code in a re
quest set and therefore has message space, that mes
sage space is queued to the top of the station-queue
of the line/primary's station. Message space held by
the auxiliary side of a full-duplex line is returned to
the available buffer pool with type equal to DIS
CARD. The auxiliary is then idled. The line is then
made not-ready.

DIALOUT

For DIALOUT, the line must be:

1. Dialout capable,
2. Not busy,
3. Not switch-busy,
4. Not connected.

If these criteria are not met, the message is re
turned with result equal to Unable To Initiate.

The line is made ready (if not already), and made
switched-busy for the duration of the DIALOUT.
DATASET READY (DSR,CC) is checked to see if
the line has physically accepted an incoming call due
to a previous Make-Line-Ready message. If the line
is DATASET-READY, the dialout message is re
turned with result equal to DIALIN-RECEIVED.
Logic then proceeds to CALL-RECEIVED. (See
Make-Line-Ready.)

If an incoming call is not detected, the line goes
off-hook and appropriate dialout logic is selected,
depending on whether the line has an automatic call
ing unit (ACU) or a modem with dialout capability.
The phone number to be dialed is contained in the

5-8

text of the message. The number of digits to dial is
indicated by the first four-bit, binary digit of the
text. If the operator is dialing to a BPO Telex sta
tion, the last digit of the phone number must be a
c.

If the call is successfully completed and answered,
the dialout message is returned to the MCS with re
sult equal to Complete and Successful. The line is
marked connected and (primary) line-control is initi
ated.

Unsuccessful Dialout

If the call was either not completed or not correct
ly answered, disconnect logic is invoked (see Line
Abort).

Call Collision with BPO Telex

The dialout message is returned with result equal
to DIALIN-RECEIVED. Logic then proceeds to
CALL-RECEIVED. (Refer to Make-Line-Ready.)

IMMEDIATE-LINE-NOT-READY
(SWITCHED DISCONNECT)

If the line is switched-busy, the IMMEDIATE
LINE-NOT-READY message is returned to the
MCS with result equal to Unable to Initiate.

If the line/primary was interrupted while executing
S-code in a request set and therefore has message
space, the space is queued to the top of the station
queue. For the auxiliary side of a full-duplex pair,
the space is returned to the available buffer pool and
the auxiliary is idled.

LINE-ABORT

If the line/primary was executing S-code in a re
quest set and therefore has message space, that mes
sage space is queued to the top of the station-queue.
Message space held by the auxiliary side of a full
duplex line is returned to the available buffer pool
with type equal to DISCARD. The auxiliary is idled.

If the line is switched, the line is physically dis
connected. The line is made ready and switched
bu s y until DATASET-NOT-READY has been
achieved.

Whether the line is switched or leased, it now be
comes not-ready. The IMMEDIATE-LINE-NOT
READY (or DIALIN, or DIALOUT) message is re
turned to the MCS with result equal to Line-Not
Ready.

RECOVER/DEALLOCATE

For the station referenced in the message header,
the head/tail pointers of the station queue are copied
into the message-header and then are cleared in the
station table. Station-queue is reset. The recover/
deallocate message is returned to the data communi
cations controller, which discards each formerly
queued message (for deallocate) or forwards each
message to the MCS (for recover). Recover/deallo
cate misses any space not on the station queue.
Should the station be executing S-OPS of a request
set when the recover/deallocate is received, the
space used by the request set is missed. To coun
teract this situation, the station should first be made
not-ready.

Messages types RECOVER and DEALLOCATE
are not seen by the user but are used within the data
communications subsystem as a result of the RE
CALL/CLEAR communicate.

The text of the message contains data entered by
the operator and directed to the MCS.

End Recall From Queue
Having recalled all input (from the subnet queue),

a message of type END RECALL FROM QUEUE is
placed on the MCS queue with result equal to COMPLETE
AND SUCCESSFUL.

End Recall From Station
Having recalled all output (from the station queue),

a message type END RECALL FROM STATION is
placed on the MCS queue with result equal to COMPLETE
AND SUCCESSFUL.

Maintenance
When a data communication hardware error oc

curs, the CMS subsystem generates a maintenance
message and forwards it to the MCS.

5.9

SECTION 6
NDL PROGRAM FILE

GENERAL

This section outlines and describes the NDL ob
ject code file used by the system. This is only a de
scription of the NDL object file. For a description of
the NDL source, refer to the CMS NDL Reference
Manual, form 1090925.

This section of the document describes the disk
format of the NDL program file. Descriptions and
initial values of individual fields are given where ap
propriate.

NOL PROGRAM PARAMETER
BLOCK

Bytes

Byte 0
Bytes 1-12
Bytes 13-24
Bytes 25-31
Bytes 32-43
Bytes 44-55
Bytes 56-61
Bytes 62-63
Byte 64

Bytes 65-67
Bytes 68-69

Bytes 70-71
Bytes 72-73
Bytes 74-75
Bytes 76-77
Bytes 78-79
Bytes 80-81
Bytes 82-83
Bytes 84-85
Bytes 86-87

Bytes 88-89

Bytes 90-91

Bytes 92-179

Use

(Implementation Level number) - Binary 00
(Program Name) - NDLSYS
(S-Language Name) - NOL S-LANG
(Interpreter Pack-Id) - 0000000
(Interpreter Name) - NDL.INTERP
(Compiler Name) - NOL COMPILER
(Compiler Date) - YYMMDD
(Priority Class) - Binary 3180
(Data Segment For Initiating Message) -
Binary FF
(S-Program Start Address) - Binary 000000
(Program Segment Table Length) - Binary
0030
(PST Location) - Binary 0002
(Data Segment Table Length) - Binary 0066
(DST Location) - Binary 0003
(TCB Present Area Length) - Binary 0000
(TCB Preset Area Address) - Binary 0000
(Stack Length) - Binary 0000
(CCB Preset Area Length) Binary 0000
(CCB Preset Area Address) - Binary 0000
(TCB Preset Extension Length) - Binary
0000
(Internal File Name Block Length) - Binary
0000
(Internal File Name Block Address)- Binary
0000
(TCB Preset Area Values) - All binary
zeros

NOL PROGRAM SEGMENT TABLE
This segment contains descriptors pointing to the

various program segments. Each descriptor is six
bytes long and is structured as follows:

Bytes 0 and 1 Binary 0 (Indicating an ordinary,
overlayable, read-only code segment)

Bytes 2 and 3 Relative disk address of the program
segment

Bytes 4 and 5 Length in bytes of the program segment

The descriptors are arranged within the segment as
follows:

Descriptor 0
Descriptor l
Descriptor 2
Descriptor 3
Descriptor 4
Descriptor 5
Descriptor 6
Descriptor 7

Control Sets, Format A
Control Displacements, Format A
Request Sets, Format A
Request Displacements, Format A
Control Sets, Format B
Control Displacements, Format B
Request Sets, Format B
Request Displacements, Format B

NOL PROGRAM SEGMENT
DESCRIPTIONS

Control Sets - Format A
This segment has all of the S-code resulting from

control sets referenced in the NDL program. The
control sets are arranged within the segment by
logical-control-set number.

Logical-control-sets numbers are assigned in the
order in which the control sets are referenced in the
NDL program. Note that each pair of S-code data
bytes is followed by a pair of bytes having the bi
nary value 8000 if the data is a relative address, and
the value 0000 otherwise. The 8000/0000 byte pair
occupies disk space but not memory space.

Relative addresses are relative to the base of the
(control sets-format A) segment, and are specified in
terms of byte displacement divided by 4.

Control Displacements - Format A
Bytes 0 and 1 contain the number of control sets

referenced in the NDL program.

Bytes 2 and 3 contain the relative address of
logical-control-set 0.

Bytes 4 and 5 contain the relative address of
logical-control-set 1; and so on.

Request Sets - Format A

The segment contains all of the S-code resulting

6-1

from request sets referenced in the NDL program.
The request sets are arranged within the segment by
logical-request-set number.

Logical-request-set numbers are assigned in the
order in which the request sets are referenced in the
NDL program.

Note that each pair of S-code data bytes is fol
lowed by a pair of bytes having the binary value
8000 if the data is a relative address, and the value
0000 otherwise. The 8000/0000 byte pair occupies
disk space but not memory space.

Relative addresses are relative to the base of the
(request sets-format A) segment, and are specified in
terms of byte displacement divided by 4.

Request Displacements - Format
A

Bytes 0 and 1 contain the number of request sets
referenced in the NDL program.

Bytes 2 and 3 contain the relative address of
logical-request-set 0.

Bytes 4 and 5 contain the relative address of
logical-request-set 1, and so on.

Control Sets - Format B

This segment contains all of the S-code resulting
from control sets referenced in the NDL program.
The control sets are arranged within the segment by
logical-control-set number.

Logical-control-set numbers are assigned in the or
der in which the control sets are referenced in the
NDL program.

Relative addresses are specified in terms of byte
displacement from the base of the (control sets -
format B) segment.

Control Displacements - Format B

Bytes 0 and 1 contain the number of control sets
referenced in the NDL program.

Then bytes 2 and 3 contain the relative address of
logical-control-set 0; bytes 4 and 5 contain the
relative address of logical-control-set 1; and so on.

Request Sets - Format B
The segment contains all of the S-code resulting

6-2

from request sets referenced in the NDL program.
The request sets are arranged within the segment by
logical-request-set number.

Logical-request-set numbers are assigned in the
order in which the request sets are referenced in the
NDL program.

Relative address is specified in terms of byte dis
placement from the base of the (request sets - format
B) segment.

Request Displacements - Format
B

Bytes 0 and 1 contain the number of request sets
referenced in the NDL program.

Then bytes 2 and 3 contain the relative address of
logical-request-set O; bytes 4 and 5 contain the
relative address of logical-request-set 1, and so on.

NOL DATA SEGMENT TABLE

This segment contains descriptors pointing to the
various data segments. Each descriptor is six bytes
long and is structured as follows:

Bytes 0 and 1 - Binary 0 (indicating an ordinary,
overlayable, read-only data segment)

Bytes 2 and 3 - Relative disk address of the data
segment

Bytes 4 and 5 - Length in bytes of the data seg
ment.

The descriptors are arranged within the segment
as follows:

Descriptor

Descriptor 0
Descriptor 1
Descriptor 2
Descriptor 3
Descriptor 4
Descriptor 5
Descriptor 6
Descriptor 7
Descriptor 8
Descriptor 9
Descriptor 10
Descriptor 11
Descriptor 12
Descriptor 13
Descriptor 14
Descriptor 15
Descriptor 16
Descriptor 17
Descriptor 18

Meaning

Preset Data
Line Tables
Line Table Displacement List
Station Tables
Station Table Displacement List
Modem Tables
Terminal Tables
File Tables
Extended Station Tables
Extended Terminal Tables
Station Name Table
File Name Table
Translation Tables
Translation Table Displacement List
Line Priority Chart
Line Speed Table
DCP-terminals Format A
Source Statement Occurrence
DCP-Terminals Format B

PRESET DATA
Bytes 0 and 1 - memory space required - contains

the amount of space (in bytes) required for run time
DC memory structures. It is computed as follows:

MEMORY = SL + SUM(E) + 29SJ + 40SK + 15T + 5F +
R/4 + C/4 + X/2 + B*N
Where:
L = Number of lines defined in the NDL program
SUM(E) = Sum, over all lines, of 2 times the Max entries value
defined for each line
SJ = Number of stations defined in the NDL program which are
not of type bits or type tallies
SK = Number of stations defined as type bits or type tallies in
the NDL program
T = Number of terminals defined in the NDL program
F = Number of files defined in the NDL program
R = Length in bytes of the (request sets - format A) program seg
ment
C = Length in bytes of the (control sets - format A) program seg
ment
X = Length in bytes of the data segment containing translate ta
bles.
B = DC Buffer size - defined below
N = Mimimum buffer count - defined below

Bytes 2 and 3 - DC Buffer Size

If a buffer value has been specified in the DCP
section of the NDL program, then DC buffer size
equals the integer value (buffer + 1)/2. Otherwise,
the integer value (X + 41)/2 is used, where X equals
the smallest maximum input size specified in the
program.

Bytes 4 and 5 - Minimum Buffer
Count

If a buffer value has been specified in the DCP
section of the NDL program, then minimum buffer
count equals this value. Otherwise, the following al
gorithm is used:

Let N(X) = Number of buffers needed to hold a
message for terminal (X).

Let S = Sum, over all attached stations, of each
station's terminal's N(X) value.

Let L = Number of defined lines.
Then minimum buffer count = (2 * S) + L.

If necessary, the compiler forces this value to be
equal to, or greater than, 4.

Bytes 6 and 7 - Station Count

Contains the number of stations defined in the
NDL program.

Byte 8 - File Count

Contains the number of files defined in the NDL
program.

Byte 9 - Line Count

Contains the number of lines defined in the NDL
program.

Byte 10 - Modem Count

Contains the number of modems defined in the
NDL program.

Byte 11 - Terminal Count

Contains the number of terminals defined in the
NDL program.

Bytes 12-13 - Additional Buffer
Count

Contains the number of additional buffers allowed
to the data comm subsystem, over and above the
minimum buffer count.

Bytes 42-43 - Reserved for NDL
Postprocessor

Byte 44 - DCP Count

Contains the number of data comm processors de
fined in the NDL program.

Byte 45 - Highest DCP Number

Byte 46 - Station Table
Maximum Length

Byte 47 - Reserved

Byte 48 - N - DCP Data List

This bit contains N 18-byte entries; one entry for
each DCP, from DCP 0 to the highest DCP number
declared. Entries for undefined DCPs within this
range are initialized to spaces.

Each entry consists of the following fields:

1. DCP MEMORY REQUIREMENT
Two bytes/binary
Memory = (SUM(5) * (STL + 4)) + (SLl*L)

6-3

Where:
SUM(S) = Sum of the max entries for each
line on this DCP.
STL = Station table length (maximum).
SLI = Size of a line table with 0 stations.
L = Number of lines defined, in NDL, for
this DCP.

2. DCP MEMORY SIZE
Two bytes/binary
Contains the memory size of this DCP as de
fined in the DCP(N) memory statement. If no
DCP memory statement is specified, the NDL
compiler supplies the value 6,144. If other than
6,144 is specified, this field is set to all ones.

3. DCP NUMBER OF LINES
One byte/binary
Contains the number of lines on this DCP.

4. DCP NUMBER OF FULL-DUPLEX LINES
One byte/binary
Contains the number of full-duplex lines on the
DCP.

5. DCP LOAD FILE NAME
12 bytes/characters
Contains the program file name to be loaded
into the DCP at data comm load time. If no
DCP TERMINAL statement is specified, either
NDLDCP or BDLDCP is supplied by the NDL
compiler: if memory equals 6144, NDLDCP; if
memory is greater than 6144, BDLDCP.

LINE TABLES

This segment contains the line tables generated by
the compiler on a one-to-one basis with the lines de
fined in the NDL program. The tables are arranged
within the segment by logical line number.

Logical line numbers are assigned in the order in
which the lines are defined in the NDL program.

Line Table Displacement List

Bytes 0 and 1 contain the number of lines defined
in the NDL program.

Bytes 2 and 3 contain a pointer to logical-line-table
O; bytes 4 and 5 contain a pointer to logical-line-table
1; and so on.

Pointers are relative to the line table segment base
and are specified in terms of byte displacement di
vided by 2.

64

STATION TABLES

This segment contains the station tables generated
by the compiler on a one-to-one basis with the sta
tions defined in the NDL program. The tables are ar
ranged within the segment by logical station number.

Logical station numbers are assigned according to
the alphabetical order of the programmer specified
station names.

Station Table Displacement List

BYTES 0-1 contain the number of stations de
clared in NDL.

BYTES 2-3 contain a pointer to logical-station-ta
ble 0. Each succeeding two-byte field contains a
pointer to the next logical station table ..

Pointers are relative to the station table segment
base and are specified in terms of byte displacement
divided by 2.

MODEM TABLES

This segment contains the modem tables generated
by the compiler on a one-to-one basis with the mo
dems defined in the NDL program. The tables are
arranged within the segment by logical modem num
ber.

NOTE
Two dummy modem tables for direct
connect are automatically generated by
the compiler to aid in the reconfigura
tion process.

Logical modem numbers are assigned in the order
in which the modems are defined in the NDL pro
gram.

TERMINAL TABLES

This segment contains the terminal tables generat
ed by the compiler on a one-to-one basis with the
terminals defined in the NDL program. The tables
are arranged within the segment by logical terminal
number.

Logical terminal numbers are assigned in the order
in which the terminals are defined in the NDL pro
gram.

FILE TABLE

This segment contains a table generated by the

compiler comprised of information on the files de
fined in the NOL program.

Logical file numbers are assigned according to the
alphabetical order of the programmer- specified file
names.

EXTENDED STATION TABLES

This segment contains the extended station tables
which are generated and arranged exactly like the
station tables.

EXTENDED TERMINAL TABLES

This segment contains the extended terminal ta
bles which are generated and arranged exactly like
the terminal tables.

STATION NAME TABLE

This segment contains a table of the programmer
specified station names. The names are arranged al
phabetically within the table, and each entry 'is 12
bytes long, space filled on the right, if necessary.

FILE NAME TABLE
This segment contains a table of the programmer

specified file names. The names are arranged alpha
betically within the table, and each entry is 12 bytes
long, space filled on the right, if necessary.

TRANSLATION TABLES
This segment contains the translation tables refer

enced and/or defined in the NOL program. The ta~
bles are arranged within the segment by logical
translation-table number.

Logical-translation tables are referenced in the
NOL program.

TRANSLATION TABLE
DISPLACEMENT LIST

Bytes 0 and 1 contain the number of translation ta
bles referenced in the NOL program.

Bytes 2 and 3 contain a pointer to logical-transla
tion-table O; bytes 4 and 5 contain a pointer to
logical-translation-table 1; and so on.

Pointers are relative to the translation table seg
ment base, and are specified in terms of byte dis
placement divided by 2.

LINE PRIORITY CHART
This segment contains the table of constants given

in tables 6-1 and 6-2. Each entry in the table is one
byte long. The left digit contains a line speed code,
and the right digit contains a line priority code.

It is intended that this chart be used at
reconfiguration time to assign proper priority to the
line being redefined.

LINE SPEED TABLE
This segment contains a table of logical line num

bers arranged by line speed, the higher speed lines
appearing first. Each entry is one byte long.

DCP TERMINALS FORMAT A
This segment contains the program file names and

associated terminal lists for each of two OCPs (OCP
O and OCP 1). CMS systems with more than two
OCPs reference the segment for OCP Terminals For
mat B.

Byte 0 - The number of program files defined for
OCP 0.

Byte 1 - The number of program files defined for
OCP 1.

If either field is zero, there are no program file
lists and no program terminals lists for that
particular OCP.

Bytes 2-N - OCP 0 program file list
OCP 1 program file list
OCP 0 program terminals lists
OCP 1 program terminals lists

PROGRAM FILE LIST

NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME

NUMBER OF TERMINALS
TERMINALS LIST POINTER

NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME

NUMBER OF TERMINALS
TERMINAI.,_S_ LIST POINTER

I

6-5

Table 6-1. Asynchronous Line Priority Chart

ASYNCHRONOUS BITS PER CHARACTER

SPEED INCLUDING STOPBITS
50 l l/10

9/8
7/-

75 l l/10
9/8
7/-

100 ll/10
9/8
7/-

110 ll/10
9/8
7/-

150 11/10
9/8
7/-

200 l l/10
9/8
7/-

300 l l/10
9/8
7/-

600 ll/10
9/8
7/-

1200 ll/10
9/8
7/-

1800 l l/10
9/8
7/-

2400 11/10
9/8
7/-

4800 ll/10
9/8
7/-

9600 ll/10
9/8
7/-

19200 l l/10
9/8
7/-

38400 ll/10
9/8

NAME: 12 bytes
DCP program file name.

NUMBER OF TERMINALS: two bytes
The number of terminals declared to be associ
ated with the program file.

TERMINALS LIST POINTER: two bytes
Self-relative index to list of the terminals associ
ated with the program file.

PROGRAM TERMINALS LIST
LOGICAL TERMINAL NUMBER: two bytes

This list contains the logical numbers for the ter
minals which were declared in NDL for the pro
gram file which points to this list. There are as
many of these lists for a DCP as there are pro
gram files declared for that DCP.

6-6

MILLISECONDS PER TABLE VALUE
CHARACTER

00/00
-160.00 00/20
140.00/- 20/00
146.67/133.33 10/10
120.00/106.67 10/10
93.33/- ll/00
110.00/100.00 20/20
90.00/80.00 21121
70.00/- 22/00
100.00/90.91 30/31
81.82/72.73 31/32
63.64/- 32/00
73 .33/66.67 42/42
60.00/53.33 43/43
46.47/- 43/00
55.00150.00 53/53
45.00/40.00 54154
35.00/- 54/00
36.67/33.33 64/64
30.00/26.67 65165
23.33/- 65100
18.33/16.67 75175
15.00/13.33 76/76
l l.67/- 76/00
9.17/8.33 86/86
7.50/6.67 87/87
5.83/ 87/00
6.ll/5.56 97/97
5.00/ 4.44 98/98
3.89/ - 99100
4.58/ 4.17 A8/A8
3.75/ 3.33 A9/A9
2.92/ - AA/00
2.29/ 2.08 BA/BA
l.87/ l.67 BB/BB
l.46/ - BB/00
l.15/ l.04 CC/CC
.94/ .83 CD/CD
.73/ - CD/00
.571 .52 DE/DE
.47/ .42 DE/DE
.36/ - DE/00
.29/ .26 EF/EF
.23/ .21 EF/EF

EF/00

LOGICAL TERMINAL

LOGICAL TERMINAL

LOGICAL TERMINAL

SOURCE STATEMENT
OCCURRENCE

NUMBER

NUMBER

NUMBER

This segment within the NDLSYS file is generated
by the NDL compiler to inform the post-processor
program (non-interpretive program file generator) of

Table 6-2. Synchronous Line Priority Chart

SYNCHRONOUS BITS PER CHARACTER
SPEED

600 -8
716
51-

1200 -8
716
51-

2000 -8
716
51-

2400 -8
716
51-

3600 -8
716
51-

4800 -8
716
51-

7200 -8
716
51-

9600 -8
716
51-

the occurrence of certain source statements within
the NDL program.

!POINTER TO lST REQUEST SET INFORMATION I
1 CONTROL SET INFORMATION 1

CONTROL SET INFORMATION J

CONTROL SET INFORMATION

RE_Q_UEST SET INFORMATION

RE~UEST SET INFORMATION

REQUEST SET INFORMATION

CONTROL/REQUEST set information: two bytes

Each two-byte entry is considered as a set of 16
(1-bit) flags, each indicating the presence/absence of
a particular S-Op within the control/request set.

I
i

I

MILLISECONDS PER TABLE VALUE
CHARACTER

-13.34 00/06
11.66/10.00 06/06
8.34/- 06/00
-6.67 00/07
5.83/5.00 07/08
4.17/- 08/00
-4.00 00/08
3.50/3.00 09/09
2.50/- OAJOO
-3.33 00/09
2.92/2.50 OAJOA
2.08/- OAJOO
-2.22 00/0A
1.94/1.67 OB/OB
1.39/- OB/00
-1.67 00/0B
1.46/1.25 OB/OC
1.04/- OC/00
-I.II 00/0C
.97/.83 OC/OD
.69/- OD/00
.83 00/0D
.73/.63 OD/OD
.52/- OE/00

The flags represent the occurrence of the following
S-Ops. the flags are numbered right to left, flag 15
being the left-most bit position.

15 - LINE BUSY = TRUE/FALSE
14 - LINE BUSY = TOGGLE
13 - AUX LINE BUSY = TRUE/FALSE
12 - AUX LINE BUSY = TOGGLE
11 - BINARY = TRUE/FALSE
10 - TERMINATE BLOCK
9 - SYNCS = TRUE/FALSE
8 - CRC = TRUE/FALSE
7 - SHIFT = UP/DOWN/MIDDLE
6 - STATION = LIT/VARIABLE
5 - USE OF LCHAR
4 - RECEIVE WAIT
3 - RECEIVE TEXT
2 - BACKSPACE
1 - UNUSED
0 - UNUSED

There are as many information items as there are
control and request sets in the NDL program. The
items are in the order of the logical numbers as
signed to the control sets and request sets by the
NDL compiler.

6-7

DCP TERMINALS FORMAT B

This request contains information concerning DCP
program files and their associated terminals.

BYTE 0 - DCP COUNT
Contains the number of DCPs defined in NDL.

Byte 1-N - DCP data directory
DCP data
Program terminal lists

DCP Data Directory

Contains T two-byte entries where T is the total
number of DCPs from DCP 0 to the highest DCP
numbers declared. Each two-byte entry is a segment
base relative pointer to the appropriate DCP data
structure. If a DCP is not required by the NDL file,
the directory entry is set to all ones.

DCP Data

One for each DCP specified. This consists of a
one-byte program file count followed by a series of
15-byte entries as follows.

6-8

TERMINAL
LIST POINTER

NAME : 12 Bytes

TERMINAL LIST

Contains the DCP program file name.
NUMBER OF TERMINALS: One byte

Contains the number of terminals declared to be
associated with the program file.

TERMINAL LIST POINTER: Two bytes
Contains a segment base relative pointer to the
terminal list associated with this program file.

Note
There is one of the previous entries for
each DCP program file associated with
this DCP.

PROGRAM TERMINAL LISTS

Following DCP data are the various terminal lists
associated with the individual DCP program file.
Each list is an array of two-byte logical terminal
numbers.

SECTION 7

COBOL DATA
COMMUNICATIONS

GENERAL

This section deals with the COBOL constructs for
data communications and their use. For more de
tailed information on the syntax and semantics of
these communicates, refer to the CMS COBOL Ref
erence Manual, form 2007266.

COBOL COMMUNICATION
DESCRIPTIONS

A communication description (CD) serves to spec
ify the interface area between the system, the MCS
and a COBOL program.

Two types of communication descriptions are re
quired, one for input and one for output.

Input CD

The input communication description defines an
interface area where information relating to input
messages is passed between the data comm subsys
tem, the MCS, and a COBOL program.

SYMBOLIC QUEUE

This field is used to pass the symbolic name of a
queue to the data communications subsystem and
the MCS. If a queue name which has not been de
fined to the system is used, it is regarded as an error
and an error coaeTs retumeCITn:tlie jiafiiS'Kex_ field.
The.~y_l!l,bolic queue .!!1:Y.~t ~J~f!:iust!!!~d with space.
lfilttr~.

SYMBOLIC SUB-QUEUE -t, 2., 3

The system doesnoTsuppori.sub~queues-· and an -
error code is returned in the status key if the field
contains any c,~~11.cte~_~ther_Qlan ~~~-· -··~----~-

MESSAGE DATE
The message date field has the format YYMMDD

(year, month, day). Its contents represent the date
on w~ich the ~stell!..!~£()8!lize~.Jh!!.t!!tJ!._@~Sl:!S~ is
CO.!!!P_~te:__ _ . --

MESSAGE TIME
The message time field has the format

FORMAT OF INPUT CD AREA

01
02
02
02
02
02
02
02
02
02

DESCRIPTION

DATA-NAME
DATA-NAME PIC X(12)
DATA-NAME PIC X(36) '
DATA-NAME PIC 9(6)
DATA-NAME PIC 9(8)
DATA-NAME PIC X(12)
DATA-NAME PIC 9(4)
DATA-NAME PIC X(l)
DATA-NAME PIC X(2)
DATA-NAME PIC 9(6)

COMMENT POSmON

SYMBOLIC QUEUE 1-12
SYMBOLIC SUB-QUEUE 13-48
MESSAGE DATE 49-54
MESSAGE TIME 55-62
SYMBOLIC SOURCE 63-74
TEXT LENGTH 75-78
END KEY 79
STATUS KEY 80-81
MESSAGE COUNT 82-87 ~- <:-1 o\'

I ~;T~5:~~~i~~---------- ---- ~~~--,

7-1

HHMMSSTT (hours, min11tes, seconcis, ~undredths
.ofa_=§ec"Q."l)Jff-·1fa-c-oilfon.ts-1-epreserii' the Hiiie at:
~l_iic:!! ... !!!e,. ~Y~!e,I!l ... E~c:ognii;~_!!!lit. _th~.~~fii~~1)li,g~-}~·
complete. The hundredths of a second part of the
fiel(fis.always 00. If the program is being executed
on a system without a clock, 1h~JiI11~.i~.l:ll.':YliY.8-Pr.e,s~
ented as 24000000.

The time and date fields are only updated by the
system during the successful execution of a receive
statement and !e,!1~c:t!li~time, _lillcl.dii!e,_t_11e i11c:ollJ.ing
l!l~~s,a,g~ __ \:YiJ,_8-_ (lffe,p_teq_ l:>Y . .!ll~ _syste,111 ... _and not th~
time it was executed. -------· -·""-~--_,~,~-~~~--~-~-~-~.~-~·-~,,--~""""''

SYMBOLIC SOURCE

TEXT LENGTH

The system places in the text length field the num
ber of character positions filled as a result of the ex
ecution of the receive statement.

END KEY

Th~_£Ql1te,_11t_s_()f J.l!:~-~l!cl ~e,y __ :f!e,W. are, ~~!. cillri!lg
the execution of a receive statement according to the toffowiiig .. ruies: -· · - · - ··· · ·

1. If an ~ncl~()f:group has been detected, end key = 3. ' ...

2. If an £1ld~of-message has been detected, end
key = 2.

3. If less .. than a message is transferred, . end key
~ jL_(i_l_ie, f11:~ssage was trunc.aiecf). -

STATUS KEY

'[he _c_on!e,E.t~_()L !h~~t(l!!l~~ey_fie,lci.lir~ _s~! .. cil!ri!lS
!lit!. e,~ef.ll!!()!l ()f_f_t!ge,iy_e, acc~pt 1.1_1e,s8-(lg~ C:_C>llll!, ~11-
a~!e,_j1_1p_ut, and ~isli,ble, inpl!t state,Il}e11_ts. The status
key values are listed in figure 7-1.

MESSAGE COUNT

The contents of the message count field indicate
the number of messages that exist in a nueue:-file
fiei<l1sonTy .. up<laie<.r as.part' of'the exec~ffon .. of an
Accept statement with the count phrase.

QUEUE NUMBER

The field queue number is provided to allow the
system to minimize the overhead of name-to-number
translation. Wherever symbolic queue or symbolic
sub-queue are changed by the program, this field is
changed to @FFFF@. This field is not_accessibleto
the user. _--:.-:::::.:-- =.o:c.c.c~;"··C"' c'cc•"'""''"·"'·· . .:'i.':C::;;::~ ••• ,,. ••.

STATION NUMBER

The field station number is provided to allow the
system to minimize the overhead of name-to-number
translation. Wherever symbolic source is changed by
the program, this field is changed to @FFFF@. This
field is not accessible to the user. - -

=~-;,::;::;;:;;;:-:.-.·.::...":::.:.-:.::::::.-:::::::.:-::::,:..==;.:.:.::.;....,.,..-'"';::'~~-:.--~~~.::::~c:2.:;;.'::C:.~::_:;;;';;:::-:-'""":.::/.~:~~-f-',""

OUTPUT CD

The output communication description (CD) de
fines an interface area where information relating to
output messages is passed between the COBOL pro
gram, the MCS, and the data communications sub
system.

FORMAT OF OUTPUT CD AREA

DESCRIPfION COMMENT POSITION

01 DATA-NAME
02 DATA-NAME PIC 9(4) DESTINATION COUNT 1-4
02 DATA-NAME PIC 9(4) TEXT LENGTH 5-8

02 DATA-NAME PIC X(2) STATUS KEY 9-10
02 DATA-NAME PIC X(l) ERROR KEY 11

02 DATA-NAME PIC X(l2) SYMBOLIC DESTINATION 12-23<>t··- -t
STATION NUMBER 24-25 " ... :

7-2

E
E N
N A
A B
B L
L E

R E
E A 0
c c I u
E s c N T
I E E p p
v N p u u
E D T T T

x x x x x

x x

x x x

x x

x
..

x x x x x

D
I
s
A
B
L
E

I
N
p
u
T

x

x

x

STATUS KEY CONDITIONS

D
I
s
A
B
L
E

0
u
T
p
u
T

x

x

x

x

s
T
~
T
u
s

K
E
y

00

20

20

30

50

91

NO ERROR DETECTED.
ACTION COMPLETED.

DESTINATION UNKNOWN OR ACCESS DENIED
BY MCS. NO ACTION TAKEN FOR UNKNOWN
DESTINATION. ERROR KEY INDICATES UNKNOWN.

QUEUE UNKNOWN OR ACCESS DENIED BY MCS.
NO ACTION TAKEN.

CONTENT OF DESTINATION COUNT INVALID.
NO ACTION TAKEN.

CHARACTER COUNT GREATER THAN LENGTH OF
SENDING FIELD. NO ACTION TAKEN .

MCS/DC SUBSYSTEM NOT AVAILABLE.

Figure 7-1. Status Key Conditions

7-3

DESTINATION COUNT

The destination count field indicates the number of
~_E!~_~[~~·.~~-~.tfij~!!~~jj~ b.~·-~~~~.ffoi!i. ·th~· Aes!i.~~- .
!iQ..I!.Jl!!?l~· (Field error key and symbolic destination
comprise the destination table).

I.lit:. SJF.SJ_e_IIl J~~!JJ:l~ts .Qn}y gn~. _cf,estination to be
specified and ifthe destination count has any value
oilieithan l, an 'error condition is indicated in . the
-sfatiis key1ie1~ and execution oTilie .. sfatemeniis ter-
miiiafocf: ' '

TEXT LENGTH

Tlie .. J~.Y§J~rrLiot~rnrelll.th.~Lte."-t Jength. Jiel<:J.J~ .. § J.be
num!J~LQL£h.i:iri:t£1er§_ to. be ... s.enL when.. executing.a ...

.. S.eJ!cL.§tl:!te1nenJ.

STATUS KEV

The contents of the status key field are set during
the execution of _S~nc!,_ ~lll!Ql~_Ql!!l'l!t, and Qis@le
O!!tI!l:ll· The Status Key values are listed in figure 7-
1.

ERROR KEV

The error key field, when equal to), . i11disates, tli<!t
the . .§YmP..9)i~~c:les..tina!J.QJt.i.S..M!!~!!.Q~I1 .Q.L!1QJ .~£.C:e ~si
ble~.!?Y.Jhi§J?.IQSI.l:lm: The status key field is set to a
value indicating the appropriate condition. _QtheI:
wise, the_err2!_ kex field}_~ ~~t __ t.Q_ ().:

SYMBOLIC DESTINATION

s ~%~ri~1!1~fg~-d~ftiiii~i~de~tl~ai16iis~~a~io*a~hW6 .-Y -·--···-·--·----····-··· .. ···--............ -··· ·-··· -·
exec_!lJ.mgSenc:l, E;,p._ah!e.Qutp},lt, and Ri.s.fll:>Je Qutpl1t
statements.

STATION NUMBER

The station number field allows the system to min
imize the overhead of name=fo-~niimherTraiisfiition.
wherever sY:ffihoHc. de-stliiailori .. is cllariged.hy the
COBOL program, the station number field is
changed to @FFFF@. is not accessible to
.th.e_JI..§.er,

COBOL DATA COMM
STATEMENTS

To ensure some degree of system integrity, all
COBOL data comm statements cause a check to be

7-4

performed as to whether this user is currently "at
tached" to a designated symbolic queue (input) and/
or a designated symbolic destination (output).

In the event the COBOL program is not currently
attached to the appropriate queue or destination, an
attach message is formulated and placed on the MCS
queue. The format of these messages is:

For ACCEPT, DISABLE INPUT, ENABLE IN
PUT AND RECEIVE:

TYPE
TASK
TEXT LENGTH
SUBNET QUEUE
TEXT

"ATTACH QUEUE"
TASK NUMBER
12
SUBNET QUEUE NUMBER
SYMBOLIC QUEUE NAME

For DISABLE OUTPUT, ENABLE OUTPUT,
AND SEND:

TYPE
TASK
STATION
TEXT LENGTH
TEXT

"ATTACH STATION"
TASK NUMBER
LOGICAL STATION NUMBER
12
SYMBOLIC DESTINATION
(STATION NAME)

The COBOL program is waited until the MCS per
forms an Allow or Disallow communicate.

ACCEPT

ACCEPT <cd-name> MESSAGE COUNT;

Accept causes the depth (number of entries) of the
subnet queue identified by symbolic queue to be in
serted into MESSAGE.COUNT.

Before this can be done, Accept must check that
the symbolic queue is known, that the symbolic sub
queue is space-filled, and that the task is attached to
the symbolic queue. If the task is not attached, Ac
cept attempts to rectify the situation by issuing an
Attach Queue message to the MCS and waiting for
the reply. Any failure causes the STATUS.KEY to
be set to 20.

Successful execution (and therefore a meaningful
MESSAGE.COUNT) is indicated by a STATUS
.KEY of 00 .

ENABLE INPUT
ENABLE INPUT <cd-name> WITH KEY <identifi
er/literal>;

Enable Input invokes a function defined by the

MCS, by sending an Enable Queue message to the
MCS.

Before this can be done, Enable Input must check
that the symbolic queue is known, that the symbolic
sub-queue is space-filled, and that the task is at
tached to the symbolic queue. If the task is not at
tached, enable input attempts to rectify the situation
by issuing an Attach Queue message to the MCS and
waiting for the reply. Any failure causes the STA
TUS.KEY to be set to 20.

If these tests succeed and the task is attached, sta
tus key is set to 00 and an Enable Queue message
sent to the MCS. The semantics of Enable Input are
defined by the MCS; in particular, key validation is
performed by the MCS and thus there is no
mechanism which allows for the rejection of the key.
MESSAGE TO MCS:

ENABLE INPUT

TYPE
TASK
Subnet Queue
Text Length
Text

"Enable Queue"
Task Number
Subnet Queue Number
13-22
12 Characters of Queue Name,
Followed by Information Defined by
"Key".

DISABLE INPUT
DISABLE INPUT <cd-name> WITH KEY <identifi
er/literal>;

Disable Input invokes a function defined by the
MCS, by sending a Disable Queue message to the
MCS.

Before this can be done, disable input must check
that the symbolic queue is known, that the symbolic
sub-queue is space filled, and that the task is at
tached to the symbolic queue. If the task is not at
tached, disable input attempts to rectify the situation
by issuing an Attach Queue message to the MCS and
waiting for the reply. Any failure causes the STA
TUS.KEY to be set to 20.

If these tests succeed and the task is attached, sta
tus key is set to 00 and a Disable Queue message is
sent to the MCS. The semantics of Disable Input are
defined by the MCS; in particular, key validation is
performed by the MCS and thus there is no
mechanism which allows for the rejection of the key.
MESSAGE TO MCS:
DISABLE INPUT

TYPE
Task
Subnet Queue

"Disable Queue"
Task Number
Subnet Queue Number

Text Length
Text

13-22
12 Characters of Queue Name,
Followed by Information Defined by
"Key".

ENABLE OUTPUT
ENABLE OUTPUT <cd-name> WITH KEY <identi
fier/literal>;

Enable Output invokes a function defined by the
MCS, sending an Enable Station message to the
MCS.

Before this can be done, several checks must be
made:

If the destination count is not equal to 1, then
STATUS.KEY is set to 30.

If the symbolic destination is not known to the
system, then STATUS.KEY is set to 20 and
ERROR.KEY is set to 1.

If the task is not attached to the symbolic destina
tion, then Enable Output attempts to rectify this
situation by issuing an Attach Station message
to the MCS and waiting for the reply. If attach
ment is denied, then STATUS.KEY is set to 20
and ERROR.KEY is set to 1.

If these tests succeed and the task is attached, sta
tus key is set to 00, error key to 0, and an Enable
Station message is sent to the MCS. The semantics
of Enable Output are defined by the MCS; in partic
ular, key validation is performed by the MCS and
thus there is no mechanism which allows for the re
jection of the key.
MESSAGE TO MCS:

ENABLE OUTPUT

Type
Task
Station
Text Length
Text

"Enable Station"
Task Number
Logical Station Number
13-22
12 Characters of Station Name,
Followed by Information Defined by
"Key".

DISABLE OUTPUT
DISABLE OUTPUT <cd-name> WITH KEY <iden
tifier/literal>;

Disable Output invokes a function defined by the
MCS, by sending a Disable Station message to the
MCS.

Before this can be done, several checks must be
made:

7-5

If the destination count is not equal to 1, then
STATUS.KEY is set to 30.

If the symbolic destination is not known to the
system, then STATUS.KEY is set to 20 and
ERROR.KEY is set to 1.

If the task is not attached to the symbolic destina
tion, then disable output attempts to rectify this
situation by issuing an Attach Station message
to the MCS and waiting for the reply. If attach
ment is denied, then STATUS.KEY is set to 20
and ERROR.KEY is set to 1.

If these tests succeed and the task is attached, sta
tus key is set to 00, error key to 0, and a Disable
Station message is sent to the MCS. The semantics
of Disable Output are defined by the MCS; in partic
ular, key validation is performed by the MCS and
thus there is no mechanism which allows for the re
jection of the key.
MESSAGE TO MCS:

DISABLE OUTPUT

Type
Task
Station
Text Length
Text

RECEIVE

"Disable Station"
Task Number
Logical Station Number
13-22
12 Characters of Station Name,
Followed by Information Defined by
"Key".

RECEIVE <cd-name> MESSAGE INTO
<identifier>{; NO DATA <statement> I

Receive attempts to read a message from the
queue specified by s~li£.. . .9.!!~!!~.. If successful,
the message text is moy~Q.JQ_~h.~data ar~l!_andJ.QfQ!:
matjQn~!?_out the_!!leS§.!!g~.JL1;t~~~!!!l:>~ci .. i1lJ!!.e.i11pp.!
C12.M~.q.

Before this can be done, receive must check that
the symbolic queue is known, that the symbolic sub
queue is space-filled, and that the task is attached to
the symbolic queue. If the task is not attached, re
ceive attempts to rectify the situation by issuing an
Attach Queue message to the MCS and waiting for
the reply. Any failure causes the STATUS.KEY to
be set to 20.

If the symbolic .. ~ue . is e111J?!Y.,__@d..Jh~..li9
DAT A_ phrase i.L~iU.~_J.h~.ILJ:~9~i.Ye sets __ !b~
f~tch valu~!~L.@J~QQQQQ@. ~'L~~it8-)~ al_lo'Y. e~~};!:
tlon of the N 0 I>.~ T A. .. ~!~!~ll1~111:.

If the symbolic queue is eml'!}'_, and the NO
DATA phrase is absent, then the task is suspended
YntiL.a .. .m~m1~~LC?!L'tii~_]i!ieJ!~:···· ····-----·· ----
7-6

The message text is moved to the data area left
justified, without space fill, and the text length -field
is set to reflect the size of the message. The message
data and message time are updated with the quanti
ties implied by their names. Symbolic source is up
dated to the name of the stafiOilWliere tlle-·message
originated. If the message exceeds the lengtli-orille
~~~2 •.• !.~~=fu.~~~~8~.Ji. truncated and the end key 
set to 0. If the message is detected as being the last 
of a group, end key is set to 3, otherwise it is a 2. 

Status key is set to 00 to indicate successful 
execution. 

SEND 

(WITH EM!\ 
SEND c:dname !FROM identifier-1}) --~ ~ 
- - f"'!:fHEGl) 

[ 
( ) \ J identifier·2 \ 
' HEFORE \ ADVANCING ' integer 

l AFTER \ j ~mnemonic name l 
-- ·/ PAGE I 

j LINES\ } 
\ LINE ( · J 

Send attempts to dispatch a message ultimately __ !.O 
the station named by symbolic ~atio1L!!tihe _Q!l.t
put CD area. The message is actually sent either to 
the MCS or to the appropriate station depending on 
the history of routing directives (ROUTE.OUTPUT 
communicates) issued by the MCS. 

Before this can be done, several checks must be 
made: 

1. If the destination count is not equal to 1, then 
STATUS.KEY is set to 30. 

2. If the symbolic destination is not known to the 
system, then STATUS.KEY is set to 20 and 
ERROR.KEY is set to 1. 

3. If the task is not attached to the symbolic desti
nation, then send attempts to rectify this 
situation by issuing an Attach Station message 
to the MCS and waiting for the reply. If attach
ment is denied, then STATUS.KEY is set to 20 
and ERROR.KEY is set to 1. 

4. If the TEXT.LENGTH exceeds the size of the 
data area given by identifier- I, t~en the mes
sage is nQ_t sent ~n.-~.!~!!I§.'.:K:~Y_is set to 50. 

If insufficent buffer space is available for the 
SEND, the task is suspended until space becomes 
available. 

The amount of space required for the SEND mes
sage includes the CMS message header. All valid 
header fields for this message type are initialized. 
The RETRY field is set equal to the value of 
ORIGINAL RETRY, found in the station table of 
the destination station. 



If output is to be directed to the MCS and the 
task's output count is greater than, or equal to, its 
output limit, the task is suspended until the MCS is
sues a CONTINUE.TASK communicate or until the 
route indication is changed. Messages directed to the 
MCS are marked with TYPE = SEND. 

The phrase WITH EMI/EGI indicates that the 
contents of identifier-1 are to be associated with an 
end of message indicator (EMI) or an end-of-group 
indicator (EGI). WITH EMI implies that this mes
sage is one of a group of messages and that the final 
message of the group is sent using the phrase WITH 
EGL I!i£Jf!!P!i£li~lQ'lj~JllliLliws!ngle .. lll~Sslig~. (fl.()t 
on('._QLli _ __gr()~) .. .§.ll.<?.~!~ .. li!~liY~ .. 1:>~ ... -~~":t . H~it1g .. the 
phrase WITH EGL Note that this phrase is eventu
aliy mappecrliiio.ih·e block bit of the message header 
options field. 

The advancing phrase is encoded in the message 
header options and SKIP.CONTROL fields. The ul
timate effect of this action is defined by the MCS 
and the associated line procedures. 

SKIP CONTROL (CPA BYTES 3, 4) 

Encodings of the skip control fields are: 

BYTE 3 
Bit 7 = 1 
Bit 6 = 1 
Bit 5 = 0 = Print Before Papermotion 

1 = Print After Papermotion 
Bit 4 = 0 = Do Not Advance To New Page 

1 = Advance To New Page 
Bit 3 = 0 = Do Not Skip To Channel 

I == Skip to Channel 
Bit 2 == 0 
Bit I == 0 
Bit 0 == 0 == Do Not Advance Line(s) 

I == Advance Line(s) 

If either bit 3 or bit 0 of byte 3 is set, byte 4 con
tains the line count or channel number as appropri
ate. 

VARIANT [FROM IDENTIFIER-1] 

The system is notified of the absence of the 
FROM <identifier-1> phrase by the data area size 
(CPA bytes 12-13) being zero. 

STATUS.KEY is set to 00 to indicate successful 
completion. 

7-7 



SECTION 8 
RECONFIGURATION 

GENERAL 

On CMS systems, reconfiguration means to alter 
the NOL descriptions of some characteristics of the 
data comm lines and station. Two MPLII data comm 
communicates in the MCS program, REDEFINE
. LINE and REDEFINE.STATION, are used to per
form these alterations. Thus, in CMS systems, it is 
possible for an MCS program to modify the data 
comm network which it controls. The reconfigura
tion changes are made to the temporary NOL tables 
used during execution of an MCS program. This 
means that the reconfiguration is temporary; that is, 
the next time the same NOL program is used, the 
network is in the original configuration. 

REDEFINE.LINE 

TYPE 

MODEM I 

For an explanation of the items, see Line Table 
Layout. 

The REDEFINE.LINE communicate alters the 
description of a line. The line's logical number and 
a data area containing the desired changes are the 
parameters of the communicate. 

The data variable contains the values to be in
serted into the alterable fields of the line table. If the 
data variable is not at least three bytes long, an error 
is monitored. 

The characteristics of a line which may be altered 
are: 

•Modem 
• Transmission Method (type bit 1) 
• Form of Sync Character (type bit 2) 
• Dialin Capability (type bit 3) 
• Dialout Capability (type bit 4) 
• Dialout Device (type bit 5) 
• Action on Loss of Carrier (type bit 6) 
• Rateselect Capability (type bit 8) 
• Rate (type bit 9) 

• Standby Capability (type bit 10) 
• Use of Standby Speeds (type bit 11) 

Success in redefining these fields does not depend 
on their current values, but on the definitions of re
lated parts of the network. These conditions are de
scribed in the Network part of this section . 

Another factor is that the system cannot be ac
tively using the line to be redefined. That is, there 
can be no messages for that line or any station on 
it in the NDL request queue and the line must be 
not-ready. Switched lines must also be not-switched
busy and not-connected. If either of these require
ments is not met, an error is monitored. 

Note that the m~e of modems characteristics (type 
bit 7) may not be altered. Its value in the type word 
to be inserted must be the same as its current value. 
Also, the current value for the use of modems char
acteristic must be modems (as opposed to no mo
dems or direct-connect). If either of these conditions 
is not met, an error is monitored. 

If the line can be legally redefined to have the giv
en values, the line table alterable fields and (for any 
station on the line) some station table fields are 
reinitialized. The fields in the line table which are 
reinitialized are: 

• Line Descriptor, including resetting line toggles 
0 and 1 

• Line Tally (0) 
• Line Tally (1) 
• Aux Line Tally (0) 
• Aux Line Tally (1) 
• Aux Line Descriptor 

If there are stations on the line, the following 
fields are reinitialized in those station tables: 

• Active Transmit Delay 
• Run Mode (second stop bit) 
• Line Priority Code 

REDEFINE.STATION 

For an explanation of the items, see Station Table 
Layout. 

8-1 



LOGICAL LINE NO I RLN ~10DE BITS 

END CH A RA CTE J(-----1 LINE DELETE CHARACTER 

BACKSPACE CHARACTER WRl' CHARACTER 

C01'TRO.L CHARACTER STATION FREQUENCY 

TRANSMIT .~DDR. I TRANSMIT .~DDR. : 
TRANS~1!T ADDR : I RECEIVE ADDR. : 

~RECEIVE ADDR. : I RECEIVE ADDR. 3 
TYPE 

I SPEED 

I \10DB1 TER~1l1'AL 

ORIGINAL RETRY 

The REDEFINE.STATION communicate alters 
the description of one station. The parameters of the 
communicate include the station's logical number 
and a data area containing the desired changes. 

The data variable contains the values to be in
serted into the alterable fields of the station table. If 
the data variable is not at least 21 bytes long, an er
ror is monitored. 

The characteristics of a station which may be al
tered are: 

• Logical Line Number 
• Myuse Output Capability (run mode bit 7) 
• Myuse Input Capability (run mode bit 6) 
• Use of Second Stop Bit (run mode bit 5) 
• Allowing of Input (run mode bit 4) 
• End Character 
• Line Delete Character 
• Backspace Character 
• WRU Character 
• Control Character 
• Station Frequency 
• Transmit Address Characters 
• Receive Address Characters 
• Form of Duplex (type bit 0) 
• Use of Modems (type bit 7) 
• Use of Telex (type bit 12) 
• BDI Mode (type bit 13) 
• Speed 
•Modem 
• Terminal 
• Original Retry 

'The actions taken in performing the REDEFINE
.STATION communicate depend on the value of the 
logical line number currently in the station table and 
the value of the logical line number to be inserted 
into the table. One action is to remove a station 
from a line. In this case, no changes are made to the 
station table except for the logical line number. This 
action is taken when the line number in the table is 
a valid logical line number and the line number to be 
inserted is @FF@. 

Another action is to add a station to a line and up-

8-2 

date all the alterable fields of the station table. This 
is done "':'hen the line number in the table is @FF@ 
and the hne number to be inserted is a valid logical 
line number. 

The last action is to change all the alterable fields 
of the station table for a station which is on a line. 
In this case, the line number in the table and the line 
number to be inserted are the same valid logical line 
number. If both are valid logical line numbers but 
they are different, an error is monitored. In the case 
that both the line number in the station table and the 
line number to be inserted are @FF@, no action is 
taken. 

For all other alterable fields, success in redefining 
them does not depend on their current definition but 
on the definition of related parts of the network. 
These conditions are described in the Network sec
tion . 
. A~other factor in the success of redefining a sta

tion. is that the .sys~em cannot be actively using that 
station or the lme mvolved in the redefinition. This 
means that there can be no messages for that line or 
~ny station on it in the NDL request queue and the 
hne must be not ready. For this type bits stations, 
?oth .save queues must be empty. Also, if the station 
!s bemg removed from the line, the station cannot be 
!n th~ Queued condition. Additionally, if the station 
is bemg added to a line, there must be room for it· 
which means that in the line table the current valu~ 
of the Max Stations field is less than the current 
value of the Max Entries field. If any of these re
quirements is not met, an error is monitored. 

If the REDEFINE.STATION action requested is 
legal, the station table and line table are updated and 
reinitialized according to the particular action. When 
removing the station from the line, the only alterable 
field which is changed is the logical line number. 
Also, in the station table, the attached status field is 
reinitialized. In the line table, the Max Stations field 
is decremented and the station's entry in the line 
vector is removed. 

For the actions of adding the station to the line or 
changing the station on the line, all the alterable 
fields are changed. Also, these Line Table fields are 
reinitialized: 

• Line Desc (full duplex) 
• Station Tally of This Station 
• Station Description of This Station 

In the station table, these fields are reinitialized: 

• Line Priority Code 
• Receive Transmission Number 



• Transmit Transmission Number 
• Tally (0) 
• Tally (1) 
• Tally (2) 
• Tally (3) through Tally (18) 
• Toggles 
• Options 
• Events 
• Initiate Receive Delay 
• Active Transmit Delay 

The output routing of the station is also reinitia
lized. 

Some additional reinitialization and updating are 
done for the add action. In the line table, the Max 
Stations field is incremented and an entry is added 
to the station vector. These fields are reinitialized in 
the station table: 

• Relative Station Number 
• Unprocessed Input Limit 
• Unprocessed Input Count 
• Queue Limit 
• Subnet Queue Address 

NETWORK 

The conditions which a redefinition must meet 
concerning related network parts are ones which re
sult in a network description that is legal under the 
requirements of CMS NDL. With only one excep
tion, these conditions exclusively involve the de
scriptions of the parts of the one line affected by the 
specific redefinition. Those descriptions are: the line 
description, the description of the line modem, the 
descriptions of any stations on the line, the descrip
tions of those stations' modems, and the descriptions 
of their terminals. Some network conditions are met 
automatically because many parts of the network 
cannot be redefined. The conditions for which the 
redefinition must be validated are: 

• All of the descriptions must specify the same 
transmission method - Asynchronous or Syn
chronous 

• All of the modem descriptions and the line de
scription must specify the same action on Loss 
of Carrier, Rate select Capability, and Standby 
Capability 

• If the line description specifies Dialin, the lines 
modem description must specify Dialin 

• If the line description specifies Dialout, either 
the line description specifies ACU or the Line 
Modem Description specifies Dialout, but not 
both 

• If the line description does not specify Dialout, 
it must not specify ACU 

• If the line description specifies Telex, it must 
not specify the Standby Option 

• If the line description specifies Telex, and if the 
station and terminal descriptions specify Telex, 
then the line description must not specify the 
Rateselect Option 

• For each station, the station description and its 
terminal description must specify the same use 
of Telex 

• All of the terminal descriptions must specify the 
same use of Telex 

• If the station and terminal descriptions specify 
Telex, the line description must specify Telex 

• If the line description specifies BDI, then all of 
the station and terminal descriptions must 
specify BDI 

• If a line description specifies Bits, then it must 
also specify use of Modems and Synchronous 
transmission 

• All corresponding terminal, station, and line de
scriptions must specify the same use of BDI 

• All corresponding terminal, station, and line de
scriptions must specify the same use of Bits 

• All modem and station descriptions and line de
scriptions must specify the same use of Modems 

• All of the station and terminal descriptions and 
the line description must specify the same form 
of Sync Characters - ASCII or EBCDIC 

• All corresponding terminal, station, and line de
scriptions must specify the same Duplex 
Capability 

• If the station and terminal descriptions specify 
Full Duplex, all of the modem descriptions and 
the line description must specify Full Duplex 

• If the line description specifies BDI, the line de
scription and all of the modem descriptions must 
specify the same Duplex Capability as is 
specified by the station and terminal descrip
tions 

• If the line description specifies Direct-Connect 
and if the line description does not specify BDI, 
then, for each terminal, the terminal description 
must specify Direct-Connect 

• If line description specifies Modems, then, for 
each terminal, the terminal description must 
specify Modem 

• If a terminal description specifies Tallies, then 
each associated station description must specify 
Tallies 

• For each station, the station description must 
specify exactly as many non-null Transmit Ad
dress Characters as the terminal description 
specifies in the Transmit Address Count and the 
Receive Address Count 

• For each station, if its terminal description spec
ifies no Receive Request Set, the station de
scription must not specify Myuse Input 

• For each station, if its terminal description spec-

8-3 



ifies no Transmit Request Set the station de
scription must not specify My~se Output 

• For each station, if the station description does 
not specify Myuse Input, it must not specify En
able Input 

• If the line description specifies Synchronous, 
then, for each station, the station description 
must not specify Second Stop Bit 

• If the line description specifies Asynchronous, 
then, for _each station, the station description 
must specify the same number of Stop Bits as 
its terminal description specifies for line Speed 

• If the line description specifies Asynchronous, 
all station descriptions must specify the same 
number of Stop Bits 

• If the line description specifies Synchronous, 
then, for each station, the station description 
must specify one speed within the Synchronous 
range 

• If the line description specifies Synchronous, all 
of the modem descriptions must specify the 
same Speed or Speeds 

• If the line description specifies Synchronous, 
then, for each station, the station description 
must ~pecify a Speed greater than, or equal to, 
the highest Speed specified in the modem de
scriptions 

• If the line description specifies Synchronous, 
then, for each terminal, the terminal description 
must ~pecify a Speed greater than, or equal to, 
the highest Speed specified in the modem de
scriptions 

• If the line description specifies Asynchronous, 
and if the line description specifies both the Ra
teselect and Standby Options, then, for each 
station, the station description must specify 
three Speeds within the Asynchronous range 

• If the line description specifies Asynchronous, 
and if the line description specifies the Ratese
lect Option but not the Standby Option, then, 
for each station, the station description must 
specify two Speeds within the Asynchronous 
range 

• If the line description specifies Asynchronous, 
and if the line description does not specify the 
Rateselect or Standby Options, then, for each 
station, the station description must specify one 
Speed within Asynchronous range 

• If the line description specifies Asynchronous, 
then each corresponding station and terminal de
scrip_tion must specify the sameSpeed or Speeds 

• If the line description specifies Asynchronous, 
then all of the station descriptions must specify 
the same Speed or Speeds 

• If the line description specifies Telex, for each 
terminal description that does not specify Telex 
but specifies Horizontal Parity; CRC, BCC, 

84 

Ones, or Summed Parity must not be specified 
• If the line description specifies Telex, then, for 

each terminal, if the terminal description does 
11:ot specify Tel.ex, then if the terminal d~scrip
tlon has Horizontal Parity (Terminal Run 
Mode), then the terminal description must not 
specify CRC, BCC, Ones, and Summed Parity 

• All of the terminal descriptions must specify the 
same use of Vertical Parity (Terminal Run 
Mode), Use of Translation (Terminal Run 
Mode), _Use of Case Shift (Terminal Run Mode), 
Transmit Address Count, Receive Address 
C?unt, Sync Character, Parity Mask, Auxiliary 
Lme Control Set, Line Control Set, Adapter 
Info, and Translation Table 

• If the line description specifies Asynchronous, 
then, at each Speed specified by the station de
scri~tions, all of the terminal descriptions must 
specify the same number of Stop Bits 

• If a line description specifies Bits, then all corre
sponding terminal descriptions must specify the 
same modulus 

• If a station description specifies Bits then the 
transmit and receive address for th~t station 
must be different 

The one unusual condition is that not all of the 
terminals described in the NDL program are neces
sarily allowed to communicate with a particular DCP 
program file. The possible terminals are those named 
for a DCP' s current program file in that DCP' s ter
minal description. The particular DCP is specified 
by the line address in the description of the line in
volved in the redefinition. 

If the redefinition fails to meet these conditions, 
an error is monitored. 

ERRORS 

Below are the events which are reported by un-
successful REDEFINE LINE communicates: 

@OODO@ 208 DC ERROR BAD LINE NO 
@OODl@ 209 DC ERROR BAD MODEM NO 
@OODD@ 221 DC ERROR ATTRIBUTE MISMATCH 
@OODE@ 222 DC ERROR DIRECT CONNECT LINE 
@OODF@ 223 DC ERROR FULL DUPLEX MISMATCH 
@OOEO@ 224 DC ERROR INCOMPLETE VARIABLE 
@OOEl@ 225 DC ERROR IMPROPER LINE CONDITION 
@OOE2@ 226 DC ERROR MESSAGES QUEUED 
@OOE4@ 228 DC ERROR SPEED MISMATCH 

These are the events which are reported by unsuc-
cessful REDEFINE STATION communicates: 

@OOC9@ 201 DC ERROR BAD STATION NO 
@OODO@ 208 DC ERROR BAD LINE NO 
@OODl@ 209 DC ERROR BAD MODEM NO 



@OOD2@ 210 DC ERROR BAD TERMINAL NO 
@OODC@ 220 DC ERROR STATION ALREADY 

ATTACHED 
'@OODD@ 221 DC ERROR ATTRIBUTE MISMATCH 
@OODF@ 223 DC ERROR FULL DUPLEX MISMATCH 

@OOEO@ 224 DC ERROR INCOMPLETE VARIABLE 
@OOEl@ 225 DC ERROR IMPROPER LINE CONDITION 
@OOE2@ 226 DC ERROR MESSAGES QUEUED 
@OOE3@ 227 DC ERROR NO VACANCY ON LINE 
@OOE4@ 228 DC ERROR SPEED MISMATCH 

8-5 



SECTION 9 
MPLll USER DATA 

COMMUNICATIONS 

GENERAL 

A user data comm interface, similar to COBOL in 
nature, is provided within the MPLII language 
through a set of built-in procedures and functions. 
This interface provides an identical COBOL inter
face to the data comm subsystem. 

DC.ACCEPT 
DC.ACCEPT (<queue name>, <result>); 

This built-in procedure is used to set the value of 
<result> to the fixed value of the count of messages 
on the subnet queue specified by <queue name>. 

The status key within the input CD can be tested 
to determine the validity of the value of <result>. 
The <queue name> must be of type characters. 

Refer to ACCEPT in the COBOL Data Comm 
Statements section. 

DC.ENABLE.INPUT 
DC.ENABLE.INPUT (<queue name>, <password>); 

This built-in procedure invokes an MCS-defined 
function by sending an ENABLE QUEUE message 
to the MCS. 

The <queue name> and <password> must be of 
type character. 

The success or failure of the operation can be 
checked by interrogating the status key of the input 
CD area. Only the first 10 characters of <pas
sword> are significant. Refer to ENABLE INPUT 
in the COBOL Data Comm Statements section. 

DC.ENABLE.OUTPUT 
DC.ENABLE.OUTPUT (<station name>, <pas
sword>); 

This built-in procedure invokes an MCS-defined 

function by sending an ENABLE STATION mes
sage to the M CS. 

The <station name> and <password> must be of 
type character. 

The success or failure of the operation can be 
checked by interrogating the status key of the output 
CD area. Only the first 10 characters of <pas
sword> are significant. Refer to ENABLE OUT
PUT in the COBOL Data Comm Statements section. 

DC.DISABLE.INPUT 
DC.DISABLE.INPUT (<queue name>, <pas
sword>); 

This built-in procedure invokes an MCS-defined 
function by sending a DISABLE QUEUE message 
to the MCS. 

The <queue name> and <password> must be of 
type character. 

The success or failure of the operation can be 
checked by interrogating the status key of the input 
CD area. 

Only the first 10 characters of <password> are 
significant. 

Refer to DISABLE INPUT in the COBOL Data 
Comm Statements section. 

DC.DISABLE.OUTPUT 
DC.DISABLE.OUTPUT (<station name>, <pas
sword>); 

This built-in procedure invokes an MCS-defined 
function by sending a DISABLE STATION message 
to the MCS. 

The <station name> and <password> must be of 
type character. 

9-1 



The success or failure of the operation can be 
checked by interrogating the status key of the output 
CD area. 

Only the first 10 characters of <password> are 
significant. Refer to DISABLE OUTPUT in the 
COBOL Data Comm Statements section. 

DC.RECEIVE 
DC.RECEIVE (<queue name>,<destination>, 
<char count><wait option>); 

<char count> : : = <expression> 
<wait option> ::= <empty> I, NOWAIT 

This built-in procedure is used to remove the top 
message from the queue specified by <queue name> 
and copy its text to the data field specified by <des
tination>. The number of characters moved is the 
smaller of the fixed value given by <char count> 
and text length of the message. 

If the specified queue is empty, the program is 
waited until a message is placed on the queue, un
less the NOW AIT option is specified, in which case, 
control passes to the next statement. 

The input CD area contains information about the 
message and can be interrogated by use of the pro
vided built-in functions. 

The <queue name> and <destination> must be 
of type character. Refer to RECEIVE in the 
COBOL data comm statements section. 

DC.SEND 
DC.SEND (<station name>,<source>,<char count> 
<eom option> <before/after option> <line control> 
<NOWAIT option> ); 
<eom option> : : =, EMI I <empty> 
<before/after option> ::=, BEFORE I <empty> 
<line control> ::=,PAGE I, LINE I, LINE (<ex
pression>) I <empty> 
<NOWAIT option> ::=, NOWAIT I <empty> 

This built-in procedure is used to send a message 
to the station specified by <station name>. 

The text of the message is obtained from the data 
field specified by <source>. The number of charac
ters moved is given by the fixed value of <char 
count>. 

The message is assumed to be the last of a logical 
group of messages unless the EMI (end-of-message 
indicator) is specified. 

If <line control> is specified, the station should 
have carriage control capabilities. PAGE specifies an 
advance to top of the next page. LINE ( <expres-

9-2 

sion>) causes N lines to be skipped; where N is the 
fixed value of <expression>. 

If the before option is specified, the carriage con
trol information is actioned before the message text 
is printed. 

The output CD area contains information about 
the message and can be interrogated by use of the 
built-in functions. 

If the <NOW AIT option> is specified, and the 
send will exceed a currently active queue limit, con
trol is returned to the program with a fetch value of 
@100001@. 

If <NOW AIT option> is specified and the subsys
tem lacks sufficient buffer space to accommodate the 
send, control is returned to the program with a fetch 
value of @100000@. 

The <source> and <station name> must be of 
type character. Refer to SEND in the COBOL Data 
Comm Statements section. 

INPUT RELATED FUNCTIONS 

The input CD is implicity defined by the MPL 
interpreter. 

DC.NODATA 
This built-in function returns a true value if the 

FETCH VALUE of the preceeding communicate 
was equal to @000000@. It may be used after either 
a DC.RECEIVE or a DC.SEND. After a DC.R
ECEIVE with the NOWAIT option specified, DC.N
ODATA returns a true value if the specified queue 
was empty; otherwise, it returns a false value. 

After a DC.SEND with the NOW AIT option spec
ified a true value, this indicates that the message 
was not sent. A false value indicates the SEND was 
successful. 

The value returned by DC.NODATA is meaning
less if the last communicate was not either a DC.R
ECEIVE or a DC.SEND with the NOWAIT option 
specified. 

DC.INPUT.STATUS 
This built-in function returns a fixed value indicat

ing whether or not there were any abnormal condi
tions associated with the last input-related data 
comm communicate (DC.ACCEPT, DC.ENABLE.
INPUT, DC.DISABLE.INPUT, or DC.RECEIVE). 

The values are: 
0 No errors; action completed. 

20 Queue unknown or access denied 
by MCS; no action taken. 

91 MCS/data comm subsystem not 
available; no action taken. 



DC.ORIGIN 

This built-in function returns a descriptor of type 
character, size 12 bytes. Its value is the symbolic 
source field (station name) of the input CD. 

DC.TEXTLENGTH 

This built-in function returns a fixed value which 
is the binary equivalent of the text length field of the 
input CD. 

DC.DATE 

This built-in function returns a descriptor of type 
character, size six bytes. Its value is the message 
date field of the input CD. 

DC.TIME 

This built-in function returns a descriptor of type 
character, size eight bytes. Its value is the message 
time field of the input CD. 

DC.ENDKEV 

This built-in function is used to interrogate the end 
key field of the input CD. 

The fixed value returned is meaningful only if the 
last data comm communicate was a DC.RECEIVE. 

The values are: 

0 The specified text length is less 
than the number of text 
characters in the message. 

2 This message is not the last of a 
logical group of messages. 

3 This message is the last of a 
logical group of messages. 

OUTPUT RELATED FUNCTIONS 

The output CD is implicitly defined by the MPL 
interpreter. 

DC.OUTPUT.STATUS 

This built-in function returns a fixed value indicat
ing whether or not there were any abnormal condi
tions associated with the last output-related data 
comm communicate (DC.ENABLE.OUTPUT, 
DC.DISABLE.OUTPUT, DC.SEND). 

The values are: 

0 
20 

50 

91 

No errors; action completed 
Destination unknown or access 
denied by MCS. No action taken. 
Character count greater than 
length of sending field. No action 
taken. 
MCS/data comm subsystem not 
available. 

DC.ERROR.KEV 

This built-in function returns the fixed value of the 
error key field of the output CD. 

9-3 



SECTION 10 
B 80-DEPENDENT 

FEATURES 

GENERAL 

This section contains a description of those fea
tures of the CMS data communications subsystem 
which are unique to the B 80 series. 

B 80 implementation-dependent error messages 
are: 

255 DC INVALID 
256 DC ERROR LOAD FAILURE BAD COMPILATION 
257 DC ERROR LOAD FAILURE BAD COMPILATION 
258 DC ERROR LOAD FAILURE NOT ENOUGH 

MESSAGE SPACE 
259 DC ERROR LOAD FAILURE CANNOT EXECUTE 

NOL PROGRAM 
260 DC ERROR LOAD FAILURE MISSING OR 

INVALID CONTROLLER 
261 DC ERROR LOAD FAILURE BAD COMPILATION 

EXPLANATIONS 
255 DC INVALID 

The operator has entered a DC message when no 
MCS is running. This event does not set fetchvalue 
or fetchmessage. 

256 DC ERROR LOAD FAILURE BAD COMPILATION 
This event is returned and data comm load aborted 
if: 
(SUBNET.COUNT* 16)+1 is greater than 2000. 
That is, if there is insufficient space for the number 
of subnet queues defined. 

257 DC ERROR LOAD FAILURE BAD COMPILATION 
This event is returned and the data comm load 
aborted if: 
(STATION.COUNT * 12) is greater than 2000. That 
is, if there is insufficient space for the number of 
stations defined. 

258 

259 

260 

261 

DC ERROR LOAD FAILURE NOT ENOUGH 
MESSAGE SPACE 
This event is returned and the data comm load 
aborted if there is insufficient space declared in the 
NOL preset data for the system queue header and at 
least one message. Insufficient message space is 
declared to be: 
<(STATION.COUNT+SUBNET.COUNT+2)Xl2+176 

DC ERROR LOAD FAILURE CANNOT EXECUTE 
NOL PROGRAM 
This occurs if the load of the NOL interpreter was 
not caused by an MCS load. 

DC ERROR LOAD FAILURE MISSING OR 
INVALID CONTROLLER 
This occurs if the system detects that a line 
channeVsubchannel does not contain a valid data 
comm controller, of if the transmission method of the 
controller is incompatible with that declared for the 
line in NOL (for example, an async controller for a 
line declared as sync in NOL). The load of data 
comm is aborted. 

DC ERROR LOAD FAILURE BAD COMPILATION 
Insufficient space has been allocated to the NOL 
interpreter by the MCP. Load of data comm is 
aborted. 

The following error messages are outside the range 
of B SO-dependent errors. They refer to restrictions 
which will be lifted in the future. 

369 DC ERROR LOAD FAILURE - FULL DUPLEX 
LINE NOT IMPLEMENTED 
This event is returned and the load of the data 
comm aborted if the NDLSYS contains a full duplex 
line. 

379 DC ERROR LOAD FAIL URE - TELEX LINE NOT 
IMPLEMENTED 
This event is returned and the load of data comm 
aborted if the NDLSYS contains a Telex line. 

10-1 



SECTION 11 

B 800-DEPENDENT 
FEATURES 

GENERAL 

This section contains a description of the features 
of the CMS data communications subsystem which 
are unique to the B 800 series. 

B 80 implementation-dependent error messages 
are: 

270 DC ERROR 7PM PARITY DC* XXXX 
271 DC ERROR SPM PARITY DC* YYYY 
279 DC LOAD/EOJ FAILURE DC* SPM PARITY 

ERROR XXXX 
280 DC LOAD/EOJ FAILURE DC* 7PM PARITY 

ERROR YYYY 
281 DC LOAD/EOJ FAILURE DC* NO RESPONSE 

(DC* indicates processor in error) 
(XXXX = four-digit 7PM address) 
(YYYY = four-digit line address) 
(7PM indicates DCP micromemory) 
(SPM indicates scratchpad memory) 

279 DC LOAD/EOJ FAILURE DC* SPM PARITY 
ERROR XXXX 

280 DC LOAD/EOJ FAILURE DC* 7PM PARITY 
ERROR YYYY 

281 DC LOAD/EOJ FAILURE DC* NO RESPONSE 
(DC* indicates processor in error) 
(XXXX = four-digit 7PM address) 
(YYYY = four-digit line address) 
(7PM indicates DCP micromemory) 
(SPM indicates scratchpad memory) 

Detailed explanations of the messages follow. 
TEXT 

270 DC ERROR 7PM PARITY DC* XXXX 
The DCP has failed because of a microprogram 
memory parity error. 

271 DC ERROR SPM PARITY DC* YYYY 
The DCP has failed because of a scratchpad memory 
parity error. 

279 DC LOAD/EOJ FAILURE DC* SPM PARITY 
ERROR 
Load of DCP has failed because of scratchpad 
memory parity error. 

280 DC LOAD/EOJ FAILURE DC* 7PM PARITY 
ERROR 
Load of the specified DCP has failed because of a 
DCP microprogram memory parity error. 

281 DC LOAD/EOJ FAILURE DC* NO RESPONSE 
The DCP specified in a load or reload has failed to 
complete handshake after load process. 

B 800 SCRATCH PAD MEMORY 

A formatted SYSDUMP shows an analysis of the 
data comm memory space if an MCS was running at 
the time of the clear/start. 

The last part of this analysis is a breakout of the 
scratch pad memory for each line (figure 11-1). 

Pages 0 and 1 of the scratch pad memory dump 
are valid for half-duplex memory. Pages 0, 1, 2, and 
3 are valid for full-duplex memory. 

Columns headed by "D---" are the columns con
taining the actual data described in the figure. The 
columns headed by "S---" contain the status word 
for the read of the previous data word. This status 
word should be 0000 (good status). Any non-zero 
status word indicates an error in the DCP. 

The following description describes the content of 
page 0 of scratch pad memory. Page 2 uses the same 
mnemonics, but is for the full-duplex auxiliary line. 
These descriptions deal with the individual bytes 
shown in figure 11-2. 

Bytes 0 and 1, M-PTR-L and 
M-PTR-M 

This field contains the absolute DCP microaddress 
used by the manager to store the nonerror return ad
dress. 

Byte 2, LINE-NO 

This field contains the physical address of the 
communication line associated with this set of SPM. 

Byte 3, ID 

This field contains the DCP number associated 
with this DCP. 

Byte 4, DS-DESC 

This field contains the current copy of the data set 
descriptor used by hardware. DC-DESC is only 

11-1 



pi;ocESSOR NUMBER: ZERO 
PF!JC[SSOR PORI: OC 
ll NE t.UMl:if R: co 
PAGE t. UMBC R: C/1 

ADOR o----s--- o----s--- o----s-- - o- -- -s -- - o----s--- o----s--- o----s--- o----s---
ocoo ODTA cooo oooc ooco 0004 0000 0202 0 Ol 0 .fC 16 C 000 HBC cooo rrrr cooo 0071 ooco 
OC10 [110 coco OB9f coc 0 0291 0000 oooc coco OC41 cooo 003E ooco ECO& OOC 0 4COCJ ooco 
OC20 0(00 coco 006( 00(0 0808 cooo OB Af (0( 0 Cf:OJ cooo 000( 0000 Ff 07 COC 0 H•B1 coco 
OCJO Cl:03 coco C&16 COC Q 0~00 cooo 6'l01 coco Ct:OJ cooo 0806 ooco 1500 COCO CBDC 00( 0 

PAGE t.UMBl R: 2/j 

AOOR o----s--- o----s--- o----s--- o--- -s -- - o- -- -s --- o- -- -s-- - o----s-- - o- -- -s-- -
ocoo ucoo cooo 000( cuco HOO cooo OOH r-uco ocoo 0000 000( 00(0 ocoo ooco OGOC ooco 
0( 10 ocoo cooo 000( coto 09&3 cooo 0000 (0( 0 OCOO COOO 000( coco 0(00 ooco 0(0( 00( 0 
DC 20 ocoo ( 000 006( ooco ocoo cooo oe AE coc 0 ocoo cooo oooc ooco oc 00 coco oooc ooco 
•• 

ll NE t.UHBl R: C1 
PA GE hUHBlR: c ,, 

AOOR o--- -s--- o----s--- o----s--- o--- -s-- - o----s--- o----s--- o- ---s-- - o----s---
ocoo a21 coco 0001 iJ LIC 0 0005 0000 OOH OOlO ocoo cooo 0002 0000 rrrr coco ococ ooco 
OC10 6100 coco 01161 GOl 0 DC 16 C DOD OC01 OOlO .f( 7f 0000 noe ooco £( 00 c oc 0 002( ooco 
0020 ocoo cooo OO&C coco llC 12 uooo 088- coco CCB cooo 000( ooc 0 f6 7f coco 000( ooco 
OClO ocoo coco oooc CO( 0 ocoo (000 0001 c-uco CCH coao 006( oaco 0~00 coco OGOF ooco 

PAGE t.UMdlR: 213 

AOOR o----s--- o- -- -s -- - o----s--- o- -- -s-- - o----s--- o----s--- o----s--- o----s---
ocoo ocoo coao 0001 coco ff 00 cooo OOff COlO ocoo cooo 00(1( ooco 0(00 coco ococ 00(0 
0(10 ocoo cooo ococ coco 09fi3 cooo ocor l:Q(Q ocoo cooo 000( ooc 0 QC 00 COC 0 OCOC 00(0 
oczo OlOC coco OOoC COCO oc ()0 c f)Q 0 OlllH coc 0 ocoo cooo 000( ooco 0(00 coco ococ ooco ... 

Figure 11-1. Data Comm Processor Scratch Pad Memory Dump 

maintained in page 0, not in page 2. Bits and their 
purposes are: 

Bit Purpose 

7 SECOND STOP BIT 
6 STANDBY RATE 
5 RATE 
4 NEW SYNCHRONOUS 
3 DATA MODE 
2 DATA TERMINAL READY 
1 ORIGINATE 
0 REQUEST TO SEND 

Byte 5, LINE-Q-HEAD 

This byte contains the LINE-NO of the highest pri
ority line currently in the line queue. If there are no 
lines in the line queue, this field contains l's. 

Byte 6, FRWD-LNK 

This field contains the LINE-NO of the next lower 
priority line currently in the line queue. If it contains 
l's, then the present line is the lowest priority in the 
queue. If FRWD-LNK of page 0 contains hex 80, it 
points to the auxiliary co-line. Relevent information 
is contained in pages 2 and 3. (FRWKD-LNK in 
page 2 always contains LINE-NO of the next lower 
priority line, or l's). 

11-2 

Byte 7, BKWD-LNK 

This field contains the LINE-NO of the next high
est priority line currently in the line queue. If this is 
the highest priority line, the field contains l's. 

Byte 8 and 9, TIMEOUT-L and 
TIMEOUT-M 

This field contains the timeout value associated 
with the currently executing NDL receive instruc
tion. 

Bytes 10 and 11, TIMER-L and 
TIMER-M 

This field contains a work l:U"ea used by the man
ager timer routine. 

Byte 12 and 13, TRANSLATE-L 
and TRANSLATE-M 

This field contains the absolute D-word address of 
the translation table associated with the active sta
tion on this line or co-line. 



'"' f'AKI 111 

I •• .. U•L I e I 1-f'U•L I 

·------------------------· ·------------------------· I lt-PTll•ll I 1 s-rr1-11 1 

·------------------------· ·------------------------· I LI II( 110 I Z I COllllUlllCATl•L I 

·------------------------· ·------------------------· I ID I J I COllllUlllC&TC•ll I 

·------------------------· ·------------------------· I H•DUC I • I STATIDll•TAl•L I 

·------------------------· ·------------------------· I LHC•D•HCAD I 5 I STATIOll•f&l•ll I 

·------------------------· ·------------------------· I rRllD•Llll I • I LlllC•T&l•L I 

·------------------------· ·------------------------· I llllO•Ull I 1 I LlllC•Til•ll I 

·------------------------· ·------------------------· I TJllCDUT•L I I I llCSS&;[•HDli•L I · ---· --· -----------------· ·------------------------· I 1' llCDUT•ll I t I llC6S&U·MOR•ll I 

·------------------------· ·------------------------· I TlllU ·L I 10 I T[llll•T&l•L I 

·-------------·----------· ·------------------------· I JlllU•11 I 11 I 1c111-Ta8•11 I 

·------------------------· ·------------------------· I flU1$L.lT(•L I IZ I TCIT•SIZC•L I 

·------------------------· ·------------------------· I TIAll5LATC•ll I lJ I TCXT•SJZC•ll I 

·------------------------· ·------------------------· I CIC•L/ICC I l• 1 1urrc11-s1zc-L 1 

·------------------------· ·------------------------· 1 c•c-11 1 15 I IUFFCll-S uc-11 I 

·------------------------· ·------------------------· 1 ciu..-,u1 1 u 1 cu11-1ur-1. 1 

·------------------------· ·------------------------· I DOf'•D[SC I 11 1 cu11-1ur-11 1 

·------------------------· ·------------------------· I PAlll H•ll&SI I ll 1 cu11-aoo11-L 1 

·------------------------· ·------------------------· I SHC•CllAI I If 1 cu11-aoo1-11 1 1----------------------· ·------------------------· I TUC12-L I ZD I IU,•CH&I I 

·------------------------· ·------------------------· I TllSl2·11 I Z l I lll•CH&I I 

·------------------------· ·------------------------· I COllTlllUC•l I ZZ I &CllVC•STHIOll I 

·------------------------· ·------------------------· I "COllTlllU["ll I Zl I LlllC•CM&I I 

·------------------------· ·--------------------·---· I WOllKl I 24 1 sr11-TC11r·1 1 I ---------·-·----------1 ·------------------------· I •OHZ I ZS 1 sr11- rc11r-z 1 

·------------------------· ·------------------------· I •OlllJ I Z6 I Sl'll•TEllP•S I 

·-----------------------· ·------------------------· I •011~4 I Z7 1 sr11-1c11r·• 1 
·------------------------· ·------------------------· I llU•CHUt•4 I ll I II U•CHAll•O I 

·-----------------------· ·------------------------· I llU•CHAll•5 I l9 I llU•CMU•I I 

·------------------------· ·------------------------· I llU•CHAR·• I JO I I IU•CMU•Z I 1----------------------· ·------------------------· I II U•CH Mt-7 J1 I llU•CHU•S I 

Figure 11-2. Scratch Pad Memory Layout 

Bytes 14 and 15, CRC-L/BCC and 
CRC-M 

This field contains a work area used in calculating 
the BCC or CRC on this line or co-line. 

Byte 16, CHIP FREQ 

This field indicates the line's priority. It is main
tained only in page 0, not in page 2. 

Byte 17, DDP-DESC 

This field contains the current copy of the DDP 
descriptor used by hardware. DDP-DESC is main
tained only in page 0, not in page 2. 

Byte 18, PARITY MASK 

This field contains a mask used in stripping the 
parity bit from incoming characters. 

11-3 



Byte 19, SYNC CHARACTER 

This field contains the sync character associated 
with the line or co-line. 

Bytes 20 and 21, TIMER2-L and 
TIMER2-M 

This field contains a work area used by the man
ager gross-timer routine. It is only used in page 0, 
not in page 2. 

Bytes 22 and 23, CONTINUE-L 
and CONTINUE-M 

This field contains an absolute D-word address 
used in connection with an NDL continue or receive 
(continue) instruction. 

Bytes 24 - 27, WORK1, WORK2, 
WORK3, WORK4 

These field are used as work areas by the S-OP 
microstrings. 

Byte 28, BIU-CHAR-4 

This field contains a set of flags used by DCP in-
ternal routines. Bits and flags are: 

Bit Flag 

7 AUX-ACTIVE 
6 WAIT-FLAG 
5 AUX-FLAG 
4 IRF 
3 XMT-MODE 
2 RCV-MODE 
1 TIMER-ACTIVE 
0 BUFFER-FLAG 

Byte 29, BIU-CHAR-5 

This field contains a set of flags used by DCP in
ternal routines. Bits and flags are: 

Bit Flag 

7 VERTICAL 
6 HORIZONTAL 
5 NO-TRANSLATE 

4 BITS 
3 FULL DUPLEX 
2 TRANSPARENT 
1 CASE-SHIFT 
0 BCC/CRC-FLAG 

Byte 30, BIU-CHAR-6 

This field contains a set of flags used by DCP in
ternal routines. Bits and flags are: 

114 

Bit 

7 
6 
5 
4 
3 
2 
1 
0 

INPUT-FLAG 
LN-CONTROL-FLAG 
RESERVE 
MOD-128 
SYNCS 
HORIZONTAL-ODD 
CRC-1 
SYNC/ASYNC 

Flag 

Byte 31, BIU-CHAR-7 

Bit Flag 

7 NO RESPONSE 
6 SPACE-AVAIL 
5 TIMER2-ACTIVE 
4 STA-NRY-PENDING 
3 LN-NRY-PENDING 
2 GEN-PURPOSE-C 
1 GEN-PURPOSE-B 
0 GEN-PURPOSE-A 

The following describes the contents of page 1 of 
scratch pad memory. Page 3 uses the same mne
monics but is for the full-duplex auxiliary line. 

Byte 0 and 1, S-PTR-L and 
S-PTR-M 

This field contains the absolute D-word address of 
the NDL S-OP in execution on this line or co-line. 

Bytes 2 and 3, COMMUNICATE-L 
and COMMUNICATE-M 

This field contains the absolute D-word address of 
the DC-LIT-REGISTERS. 

Byte 4 and 5, STATION-TAB-L 
and STATION-TAB-M 

This field contains the absolute D-word address of 
the station table associated with the active station on 
this line or co-line. 

Bytes 6 and 7, LINE-TAB-L and 
LINE-TAB-M 

This field contains the absolute D-word address of 
the line table associated with this line or co-line. 

Bytes 8 and 9, MESSAGE-HDR-L 
and MESSAGE-HDR-M 

This field contains the absolute D-word address of 
the first buffer of the message space currently being 
processed. 



Bytes 10 and 11, TERM-TAB-L 
and TERM-TAB-M 

This field has the absolute D-word address of the 
terminal table associated with the active station on 
this line or co-line. 

Bytes 12 and 13, TEXT-SIZE-L 
and TEXT-SIZE-M 

This field contains a working value used by the 
buffer storage routines. 

Bytes 14 and 15, BUFFER-SIZE-L 
and BUFFER-SIZE-M 

This field contains a working value used by the 
buffer storage routines. 

Bytes 16 and 17, CUR-BUF-L and 
CUR-BUF-M 

This field has the absolute D-word address of the 
DC buffer currently in use. 

Bytes 18 and 19, CUR-ADDR-L 
and CUR-ADDR-M 

This field contains the absolute D-word of the last 
used buffer data location. 

Byte 20, BUF-CHAR 

This field contains a work area used by the buffer 
storage routine. 

Byte 21, IN-CHAR 

This field is equivalent to the NDL character reg
ister. 

Byte 22, ACTIVE STATION 

This field contains the line relative station number 
of the station currently active on this line or co-line. 

Byte 23, LINE-CHAR 

This field contains a copy of the last character ex
actly as it appeared on the line (LCHAR). 

Bytes 24 - 27, SPM-TEMP-1, 
SPM-TEMP-2, SPM-TEMP-3, SPM
TEMP-4 

Each field is used as a work area by routines com
mon to both the S-OP and host-control sections of 
DCPP firmware. 

Bytes 28, 29, and 30, BIU-CHAR-
0, BIU-CHAR-1, and BIU-CHAR-2 

Each field is used as a work area, mostly by the 
host control routines. 

Byte 31, BIU-CHAR3 
This field contains a set of flags used by DCP in

ternal routines. Bits and flags are: 
Bit 

7 
6 
5 
4 
3 
2 
1 
0 

Flq 
RESERVED 
VERTICAL-EVEN 
RESERVED 
RESERVED 
RESERVED 
RESERVED 
SHIFfl 
SHIFfO 

11-5 



SECTION 12 

CP 9500 
IMPLEMENTATION 

INTRODUCTION 

This section describes the implementation of CMS 
Data Communications on the CP 9500. This imple
mentation conforms to all specifications described in 
Sections 1 through 10. This section describes the 
method by which they are implemented, and those 
features unique to the CP 9500. 

The following information is intended as instruc
tions for those involved in design and implementa
tion of networks containing CP 9500 and for the 
interest of those wishing to develop an in-depth 
knowledge of CP 9500 Data Communications. Al
though much of the information contained within this 
section has no direct application for the programmer, 
a basic understanding will promote efficient system 
design and utilization of the CP 9500 in the data 
communication environment. 

The content of this section assumes a prior knowl
edge of CMS data communications; therefore, before 
continuing, the reader should be fully acquainted 
with the information contained in Sections 1 through 
10. Information relating to CMS will not, in general, 
be repeated in this section. The only exception to 
this is when restatement of information is considered 
useful for the purpose of clarification. 

This section is organized in two major parts. The 
first part deals with the steps required to prepare the 
CP 9500 for data communications execution. The 
second part deals with interface between the various 
components during execution. 

SYSTEM OVERVIEW 

The CP 9500 is a multi-processor system with each 
processor being dedicated to a specific function. One 
such function is data communication. The Data 
Communications Processor (DCP) is dedicated to 
this function. Either single or multiple DCPs are sup
ported by the Master Control Program. In the case 
of multiple DCPs, each DCP is assigned control of 
a subset of the total data communications network. 

Another function, to which a processor is 
dedicated, is that of executing applications pro
grams. This processor is known as the Task Proces
sor (TP). Data communications programs, written in 
either MPLII or COBOL, run on the TP. 

TPs and DCPs execute asynchronously, the over
all co odination being performed by the MCP. The 
CP 9500 has one processor, dedicated to the execu
tion of the MCP, known as the OS processor. The 
following are the major components of the CP 9500 
Data Communications Subsystem (DCS): 

1. Data Comm Loader. 
2. Data Comm Activity. 
3. DCP Firmware. 
4. Data Comm Buffer Memory. 
5. DCS Tables. 
6. DCS Queues. 

Data Comm Loader (DCL) 

The DCL is the function of MCP which is respon
sible for: 

1. Loading DCP firmware into the DCP's lo
cal memory. 
2. Creating tables within the OS processors 
memory for use by the DCA. 
3. Loading the required NDL tables into the 
DCP's local memory. 
4. Formatting the preassigned memory space, 
known as data comm buffer memory, for use 
by the DCA and DCP firmware. 

Data Comm Activity (DCA) 

The CP 9500's MCP is comprised of interdepen
dent modules, known as activities. The DCA is the 
activity responsible for providing the interface be
tween: 

1. The data comm user programs and their 
supporting MCS. 
2. All data comm programs (including MCS) 
and the DCPs. 

Within these interfaces the DCA must: 

1. Validate CMS communicates. 
2. Initiate DCP functions. 
3. Handle results of DCP execution. 
4. Perform housekeeping functions such as ta
ble maintenance. 

12-1 



Data Comm Processors (DCPs) 

Each DCP executes under control of the firmware 
file generated by the NDL post compiler (NPC). All 
DCPs execute asynchronously to one another. 

The DCP orovides the interface between the DCA 
and that subset of network devices which it con
trols. The DCP must control the physical interface 
with each data communications line during the trans
mission and reception of messages. These messages 
are transmitted and received, character by character, 
according to the NDL defined protocol. 

Data Comm Buffer Memory 

This memory is allocated for the use of the DCS. 
It consists of the buffers used to hold data comm 
messages. Once generated, a message remains in 
buffer's memory until successfully transferred to its 
destination. During the transfer, the message may be 
linked to a number of different queues. Pointers re
quired to administer these queues, which may be ac
cessed by both DCA and DCP, must remain memory 
resident. These pointers reside in buffer memory. 

DCS Tables 

The DCS tables are divided into two categories. 
Those created by the DCL and only used by the 
DCA. When resident in memory, they are located in 
the OS processor's memory. 

The NDL tables, created by the NDL compiler, 
define the characteristics of the data communications 
network. Of the NDL tables, only line and station 
tables reside in memory. These are loaded, by the 
DCL, into the DCP's local memory. Information 
contained within all other NDL tables is accessed di
rectly from disk, as required. 

DCS Queues 

DCS queues are the major method of communica
tion between the various modules of the DCS. En
tries in all queues reside in buffer memory. Gener
ally, each queue has pointers to the first and last en
tries in the queue. Pointers to queues manipulated 
by the DCP only reside in DCP memory, those ma
nipulated by the DCA reside in OS memory, and 
those manipulated by both DCP and DCA reside in 
buffer memory. 

12-2 

IMPLEMENTING CP 9500 DATA 
COMM 

Using the CMS Data Comm Subsystem on a 
CP 9500 system involves three stages: 

1. Preparation. 
2. Initialization. 
3. Execution. 

The following paragraphs describe these stages 
briefly. (Each stage is described in detail later in this 
section.) 

Preparation 

In the preparation stage, the user defines the phys
ical resources needed by data comm, and starts up 
the CP 9500 system so that these resources are avail
able. During the preparation stage, the following pro
grams must be executed: 

1. The CP 9500 configurer utility defines the 
physical resources that data comm needs (that 
is, the amount of buffer memory, number of 
DCPs). 
2. The CP 9500 Network Definition Language 
(NDL) Post Compiler (NPC) generates the mi
crocode files to be loaded into the DCPs. 
3. The CP 9500 Warmstart Utility loads the 
CP 9500 system's firmware into its processors 
and starts execution. Warmstart also reserves 
the physical resources specified by the confi
gurer utility in the SYSCONFIG file. 
4. The data comm subsystem is not loaded 
until a Message Control System (MCS) pro
gram has been initiated. (NOTE: The actual 
loading of the MCS does not take place until 
after the data comm load module finishes.) 

Initialization 

Initiating a Message Control System (MCS) pro
gram causes the Master Control Program (MCP) to 
call upon the DCL module of its DCA to per
forms the following functions: 

1. Load each DCP microcode file to its 
physical DCP. 
2. Initialize data comm tables in reserved 
data comm memory. 
3. Return control to the MCP; if the DCL 
succeeded in loading data comm, the MCS 
that was initiated is now actually loaded. 

MCP activities assist DCL in initializing data comm. 



Execution 

When initialization is complete, the MCS controls 
the data comm subsystem by initiating the transfer 
of messages through the data comm interfaces pro
vided by the MCP. 

The DCA module is a major component in the 
control of message transfer. DCA is a resident MCP 
activity that controls the data comm portion of mem
ory and provides the interface between the DCP(s) 
and either a message control system or non-MCS 
data comm programs. 

DCP's provide the interface between the terminal 
device and DCA. Each DCP is controlled by 
resident microcode whose function it is to accept 
and deliver messages within the network using non
interpretive line control and request procedures. 

SYSTEM CONFIGURATION 

In order to implement CMS data comm on the 
CP 9500, the following components are required: 

I. Hardware. 
2. Firmware 
3. Software. 

--------1 

I 

Hardware 

Hardware consists of: 

I. OS Processor. 
2. Data Storage and Maintenance Processor 
(DS&M). 
3. One DCP. 
4. One TP. 

In addition to the previous hardware, the DCP 
must contain at least one Data Comm Interface 
(DCI) adapter. The DS&M must control at least one 
disk device. All other peripherals are optional and 
depend on application requirements. 

Firmware 

The firmware that controls a CP 9500 system con
sists of the following components (see figure 12-1): 

I. The Master Control Program (MCP) re
sides in the OS processor. Its responsibilities 
are: 

a. Controlling of all peripherals, except 
data comm and disk devices. 
b. Interfacing with the DSCP, which con
trols disk devices. 

COBOL 
1NTEAP 

TAf't 

OPERATING SYSTEM PROCESSOR L __ --------__ TASK PROCES~ 

BSMD 

I 

I 

I 

L_ DATA COMM PROCESSOR 
--- ------- -----

Figure 12-1. CP 9500 Firmware 
12-3 



c. Assigning user jobs for execution by 
interpreter control programs. 
d. Serving as the hub of all communications 
between processors. The OS processor can 
communicate with all other processors on 
the system, while it is the only processor 
with which any one of the others can com
municate. 

2. Each task processor is controlled by a copy 
of the interpreter control program. Each ICP 
operates independently of other ICPs on the sys
tem, and can only communicate with the MCP. 
All 1/0 required by user jobs is performed by com
municates issued between the ICP and the MCP. 
3. Each ICP supports either the COBOL or 
the MPLII interpreter, or both. At least one 
ICP must support MPLII. 
4. Each active DCP is controlled by a DCP 
firmware file generated by the CP 9500 NDL 
post compiler. 
5. Physical control of disk devices is managed 
by the Data Storage Control Program (DSCP), 
which resides in the Data Storage and Mainte
nance (DS&M) Processor. 

Software 

Certain programs and files must exist before 
CP 9500 data comm may be initiated. An MCS pro
gram is required together with an NDLSYS defining 
the communications network. The NDLSYS is used 
at load time to locate the firmware file for each 
DCP. Data comm application programs are optional 
and dependent on system design. 

CP 9500 Unique Features 

This implementation supports the multiple MCS 
facility. Currently this facility is not available in 
CMS. Therefore, although many OS tables are de
signed around this facility, the interface within 
CMSNDL is not yet present and the facility may not 
be used. 

CP 9500 Preparation 

In order to prepare for the data comm execution, 
the following processes must be undertaken: 

124 

1. Create/modify SYSCONFIG entering de
sired data comm parameters. This requires ex
ecution of· the configurer utility. (See CMS 
SOG, form 2007258.) 
2. Warmstart the CP 9500. 
3. Compile the NDL source file describing 
the desired data comm network. 

4. Execute NPC to produce the DCP firm
ware files. 
5. Execute the MCS program. 

NOTE 
The above is not necessarily in the ex
act order in which the steps must be 
performed. However, step 1 must pre
ceed 2, 3 must preceed 4, and all must 
preceed 5. 

The following paragraphs describe each step in de
tail. (Refer to figure 12-2 for system states during the 
various stages of preparation.) 

SVSCONFIG 

This file is required by WARMSTART and con
tains certain fields pertaining to CP 9500 data comm. 
These fields may be modified using the configurer 
utility. For complete instructions on configurer 
execution, refer to the CMS Software Operations 
Guide. The following describes the SYSCONFIG 
fields relevant to data communications. 

Data Comm Buffer Memory Size 

Warmstart reserves an area of memory known as 
OS buffer memory. This field specifies the amount 
of area to be reserved for data comm use. This 
amount must be sufficient in size to accommodate 
the buffers declared in NDL. The formula for com
puting this requirement is discussed later in the sec
tion. 

DCP/TP Assignment 

In NDL, the programmer refers to DCPs via the 
logical DCP number (0-n). SYSCONFIG allows as
signment of physical processor (processor bus ad
dress) to logical DCP number. The assignment of 
DCPs is related to TP assignment. The following 
possibilities exist: 

1. The user assigns only TPs. Any processor 
not assigned remains unassigned and cannot 
be used in this situation. The user may not re
quire DCPs and may assign them as TPs. 
2. The user prefers to leave the assignment of 
processors to DEFAULT. In this case, all 
processors with DCis are assigned as DCPs; 
all others as TPs. DCP logical-to-physical re
lationship is produced by allocating the as
cending order of the logical DCP number to 
the descending order of the bus address. For 
example: DCP bus address 7 becomes logical 
DCP 0, and DCP bus address 6 becomes 
logical DCP 1. 



BEFORE WARMSTART 

AFTER WARMSTART 

AFTER NOL 
COMPILATION 
AND NPC 
EXECUTION 

DISK 

SYSCONFIG 

DISK 

DISK 

DCPO 

DCP 1 

DCP2 

NDLSYS 

MCS 

AFTER DATA COMM 
INITIALIZATION {MCS LOAD) __ D_is_K_ .... 

•NOT NECESSARILY IN 
MCP PROCESSOR. BUFFER 
MEMORY IS A LOGICAL 
ENTITY. 

ED2277 

SYSRECON 

NDLSYS 

OS PROCESSOR 

MCP 

RESERVED 
DATA COMM 

BUFFER 
MEMORY 

MCP 

RESERVED 
DATA COMM 

BUFFER 
MEMORY 

DATA COMM 
LOAD 

MCP 

SYSTEM DC 
TABLES 

RESERVED DC 
BUFFER • 

MEMORY 

DATA COMM 
ACTIVITY 

TP 

MPLll 
ICP 

MPLll 
ICP 

MPLll 
ICP 

MCS 

Figure 12-2. CP 9500 Preparation and Initialization· 

TP 

DCP 

RESERVED 
FOR 

DATA COMM 

DCP 

RESERVED 
FOR 

DATA COMM 

DCP 

DCPO 
MICROCCDE 

LINE& 
STATION 
TABLES 

12-5 



Warm start 

Warmstart uses the parameters in SYSCONFIG to 
reserve data comm resources. If SYSCONFIG is 
changed, the CP 9500 must be warmstarted in order 
to invoke these changes. Once invoked, all 
parameters remain in effect until the next warmstart. 

If an error is encountered during warmstart (which 
prevents the SYSCONFIG parameters from being 
used) the DEF AULT processor assignment as de
scribed is actioned. Such errors include the fol
lowing: 

1. The processor at bus address N does not 
have a DCI or does not exist. 
2. No TP was assigned. 

After warmstart, all assigned DCPs are reserved 
exclusively for data comm use; that is, they cannot 
be dynamically loaded with ICP firmware. 

NDL Compilation 

The major requirement for this phase is related to 
the fact that NDL on the CP 9500 is non-interpre
tive. Therefore, a DCP firmware file must be define.d 
for each required DCP. The definition o~ each. file !s 
used by NPC in generating that file. This subJe~~ is 
covered in detail in the CMS Network Defimt10n 
Language Reference Manual. 

N PC Execution 

This process generates the required DCP firi:iwa~e 
files to be loaded at data initiation. This subject ts 
covered in detail in the CMS Network Definition 
Language Reference Manual. (Form 1090925) 

CP 9500 DATA COMM INITIATION 

The MCP module responsible for data initiation is 
the DCL. As stated previously, MCP is divided into 
modules known as activities. There is a considera
ble degr'ee of interaction between these activities. 
DCL interfaces with the following activities: 

I. Job Management (JM). 
2. Data Access (DA). 
J; Monitor (MN). 

The following paragraphs describe how and when 
this interaction takes place. 

12-6 

DCL Job Management Interface 

MCS Load 

Job management is responsible for loading all 
CMS programs, including data comm programs. 
Data comm is initiated upon execution of an MCS. 
Job management recognizes that the requested pro
gram is an MCS. After having determined that the 
MCS can be accommodated, JM invokes DCL with 
wait. The MCS name, task-id, and Message Refer
ence Area (MRA) size are passed as parameters to 
DCL. 

After DCL performs its functions, it returns con
trol to JM which continues the MCS load. 

Non-MCS Data Comm Program Loads 

DCL is required only when initiating the DCS. 
When loading non-MCS data comm programs, J~ 
invokes an action of the DCA (DC-JOB-LOG). This 
action is invoked after the program has been loaded 
but before it begins execution. The purpose of this 
action is to record the fact that this task-id is now 
valid. The task-id is passed as a parameter to DC
LOG-JOB. 

Job management is responsible for invoking the 
DC-EOJ when either an MCS or non-MCS data 
comm program terminates. 

DCL Data Access Interface 

DCL uses data access for all disk-to-memory or 
memory-to-disk transfers required during the load 
process. Also data access is called to allocate the re
quired portion of buffer memory for data comm use. 

DCL Monitor Interface 

Monitor is used by DCL to obtain information on 
the processor assignments made at. warmst~. 
Monitor provides DCL with the phys1cal-to-l?gical 
DCP relationships and also the local memory size of 
each DCP. 

DCL PROCESS 

At the most general level, DCL performs the fol-
lowing functions. 

1. Loads the DCP firmware files and NDL ta
bles into their assigned DCP memories. 
2. Creates tables in OS processor memory for 
use by the DCA. 



3. Initializes pointers in buffer memory for 
use by DCA and DCP. 
4. Formats the remainder of DC buffer mem
ory into buffers according to NOL specified 
parameters. 

DCL then starts each DCP via a CLEAR command 
followed by an UNFREEZE. (These commands re
late to the processor interface control hardware.) 

DCL invokes monitor to mark each DCP as being 
in one of the following states: 

1. Loading. 
2. Running. 
3. Available. 

DCL determines whether the buffer space pro
vided by DA buffer allocation is sufficient for the 
data comm subsystem to function. DCL declares a 
successful load if sufficient memory space is avail
able for both the reserved data comm pointer area, 
and the minimum number of buffers requested by 
the NOL programmer. If the space is insufficient, 
DCL aborts the load and issues an error message to 
the operator indicating the failure. 

Data Comm Load Input 

DCL requires the following input files: 

1. NDLSYS. 
2. DCP Firmware File(s). 

Succeeding paragraphs describe these files. 

NDLSYS File 

NDLSYS contains all tables and microcode file 
names needed to load and operate the data comm 
subsystem. Once opened by DCL, NDLSYS r~
mains open until the MCS goes to EOJ. U ntd 
closed, none other than the current NDLSYS file 
may be used. DCL stores this file's FIB in the DCA 
buffer memory tables. 

DCL uses the NDLSYS file to: 

1. Determine whether the MCS is allowed 
with the particular NDLSYS. 
2. Construct a copy of the NDLSYS file's 
Data Segment Table (DST) in DCA memory. 
(NOTE: Data segments in NDLS.YS are n~m
bered beginning at 1 ; DCA routines consider 
the first segment to be segment 0. The DCA's 
copy of the DST is adjusted to compensate.) 
3. Reference the list of DCP firmware files 
named in NDLSYS to be loaded into the 
physical DCPs according to assignments re
ported by monitor. 
4. Load the line and station tables into the 
DCP's memories. 

DCP Firmware Files 

NPC generates one microcode file for each DCP 
specified by the NOL programmer in the DCP termi
nal statement. DCP microcode files consist of sec
tions of code which DCL loads into the low order of 
DCP memory, and tables and other data variables 
which are loaded into the high order area. NPC em
beds a date stamp, random number, code length, and 
data size pointers in the first sector of each code 
file. DCL uses the date stamp and random number 
to match each file with the NDLSYS file used to 
create it. 

The DCP firmware files are placed in DCP mem
ory directly from disk via DA. Tables destined for 
the DCP are loaded from MCP memory to DCP 
memory. 

The following describes DCP firmware file attri
butes: 

FILETYPE: 
RECORD: 
BLOCK: 

@17@ 
180 BYTES 
180 BYTES 

FILE NAME: 

SINGLE AREA: 

As per .DCP Terminal 
Statement in NDLSYS. 
TRUE 

FILE SIZE: Maximum address of. the · 
generated. microcode. 

Data Comm Load Output 

DCL produces the following output: 

1. Initialized DCP memories. 
2. DCA tables. 
3. Buffer memory space for pointers. 
4. SYSRECON file. 

DCP Memory 

The following depicts the DCP layout: 

@:)000@ 

RESERVED MEMORY 

@0160@ 

MICROCODE 

TABLES 
@FFFO@ 

12-7 



Data Comm Activity Tables 

DCL initializes the following tables in MCP mem
ory for DCA's use: 

ABSOLUTE 1 I~ ~~~~~-DC~--D-A-TA~~--1 

VIRTUAL FILE INFORMATION BLOCK 

DCP INFORMATION BLOCK 

MCS INFORMATION BLOCK 

MCS NAME BLOCK 

LINE INFORMATION BLOCK 

STATION INFORMATION BLOCK 

SUBNET INFORMATION BLOCK 

TASK INFORMATION BLOCK 

MESSAGE REFERENCE AREA 

Buffer Memory 
Buffer memory space is contiguous within a page. 

If more than one page has been specified, the pages 
are linked together. A pointer to the first page of the 
data comm buffer area is stored in ABSOLUTE-· 
DATA area DC-DATA (in the DC-BUFF-MEM
ADDR field) of DCA memory. The first two bytes 
of the buffer area contain the length of this memory 
page. The next four consecutive bytes contain the 

MEMORY 
PAGE DC-BUFF-MEM-ADDR 

l 
1 ®0000@ @0000@ 

J 

-"" -- I __.. 

DC BUFFERS 

-"" -.., 
_., 

@FFFF@ @FFFF@ 

ED2278 

link address to the next page (if one exists). The link 
address of the last PaRe of buffer memory contains 
a "l" in each bit. (See figure 12-3 ,) 

The data comm pointer area can range from a 
minimum of 31 bytes to a maximum of 
approximately 2,7QO bytes. This variability is de
pendent on the number of subnet queues used by a 
given system. The breakdown of the DC-POINTER
AREA use is as follows: 

Minimum Maximum 

ABP 12 bytes => 12 Bytes 12 Bytes 

RESULT-Q 10 Bytes => 10 Bytes 10 Bytes 

REQUEST-Q 9 Bytes Times=> 9 Bytes 81 Bytes 
Highest Physical 
DCP = 

SUBNET-Q = 10 Bytes Times => 0 Bytes 2550 Bytes 

TOTAL 31 Bytes 2653 Bytes 

The size of data comm buffers is defined in NDL. 
However, the CP 9500 uses four-byte rather than 
two-byte buffer links. In order for the text capacity 
of the data comm buffers to equal that of other CMS 
systems, DCL creates buffers four bytes larger than 
specified in NDL. The buffer size variable in abso
lute memory reflects this modified size. Depending 
on the amount of textual data to be contained within 
a message, multiple buffers may be used to accom
modate a message. 

I 

MEMORY 
PAGE 

DC BUFFERS 

@0000@ 

_., .. 

--
@FFFF@ 

MEMORY 
PAGE 

I @FFFFFFFF@ 

DC BUFFERS 

Figure 12-3. DC Buffer P&1e Linkaae 

12-8 



SYSRECON File 

DCL copies all station and line tables from the 
NDLSYS file into the SYSRECON file. During 
execution, the data comm subsystem references 
SYSRECON for the network configuration. If the 
configuration should change, SYSRECON is altered. 

Figure 12-4 depicts SYSRECON file contents. 

RANDOM NUMBER 2 BYTES 

NDLSYS DATE 6 6 BYTES 

TEMP/PERM FLAG 1 BYTES 

LINE SEG PTR 2 BYTES 

LINE SEG LENGTH 2 BYTES 

LINE DISPLACEMENT PTR 2 BYTES 

LINE DISPLACEMENT LENGTH 2 BYTES 

ST A TION SEG PTR 2 BYTES 

STATION SEG LENGTH 2 BYTES 

STATION DISPLACEMENT PTR 2 BYTES 

STATION DISPLACEMENT LENGTH 2 BYTES 

RESERVED 155 BYTES 

LINE SEGMENT 

LINE DISPLACEMENT SEG 

STATION SEGMENT 

STATION DISPLACEMENT SEG 

Figure 12-4. SYSRECON File Contents 

At initial load time, DCL builds a disk file contain
ing all NDL defined lines and stations, effectively 
making a copy of the line table and station table seg
ments from the NDLSYS file. This SYSRECON file 
is initially OPENed, then CLOSED, then OPENed 
again. This is to guarantee that in the event of a need 
to recover from a system failure, the file has been en
tered into the disk directory. 

The RANDOM NUMBER from NDLSYS is 
placed at the beginning of this file. A byte to indi
cate whether this file is to be saved when the MCS 
goes to EOJ is also included. This byte is set when 
this SYSRECON file is to be saved. At MCS EOJ 
time, the file is either PURGED or CLOSED with 
LOCK, depending on this indicator. This implemen
tation allows the system to recover up to the last 
system table configuration. It may be necessary to 
do this when: 

1. The MCS has made a change to the system 
which it wants to save. (Example: without 
having to recompile NDL.) In this case, sub
sequent LOAD should reflect this change. 

2. When a DCP table memory parity error oc
curs and the MCS wishes to recover by re
loading tables. 
3. When the system has been halted because 
of a hardware failure and it is necessary to 
RESTART. 

At initial load time, if a SYSRECON file already 
exists on the system drive, and if it matches the 
NDLSYS file, the DCL loads from the NDLSYS or 
SYSRECON file depending on the RECOVERY in
dicator. If RECOVERY is not required, a new SYS
RECON file is created. If, however, the existing 
SYSRECON file does not match the NDLSYS file, 
DCL purges the existing file, loads the NDLSYS 
file, and creates a new SYSRECON file. If no SYS
RECON file exists at initial load time, DCL simply 
loads the NDLSYS file, and creates a new SYRE
CON file. 

Data Comm Load - Flow of 
Control 

DCL flow of control proceeds as follows: 

1. Open NDLSYS, read data, and build NDL 
table. 
2. Create DCP and DCP-conversion tables, 
and determine which DCPs are on the system. 
3. Create MCS-ID, MCS name, and MCS ta
bles in the DCA. 
4. Allocate buffer memory space for queue 
pointers, and initialize the Available Buffer 
Poll (ABP). 
5. Build the LLN-conversiono table in DCA 
memory, read the line tables from disk, trans
fer the line table to the DCP, and build the 
line data area. 
6. Build the LSN-conversion and LSN-infor
mation tables in DCA memory, read the sta
tion tables from disk, and transfer the station 
tables to the DCP. 
7. Build the subnet information table and the 
user jobs table in the DCA. 
8. Remove the old SYSRECON file (if one 
exists), open a new SYSRECON file, fill in 
the file directory, transfer line and station ta
bles from NDLSYS to SYSRECON, close the 
file lock, and open again. 
9. Build the MRA link block and place a 
pointer in the MCS table. 
10. Start the DCP by issuing a CLEAR and 
UNFREEZE for each DCP and inform the 
monitor. 

The following paragraphs describe the individual 
DCL procedures. 

12-9 



LOAD-ACTION 

Store parameters passed from JM. Check MCS
LOADED (declared in MIDL) to see if this is the 
first MCS on the system. If not, call VALIDATE
MCS and SET-UP-MRA. If it is the first MCS, call 
TEST-FOR-RESTART. If this is a restart, execute 
RESTART-PROC (permanent) reconfiguration. If 
not, execute OPEN-NDLSYS, BUILD-NDL-TA
BLE, BUILD-DCP-TABLES, CREATE-MCS-TA
BLES, VALIDATE-Mes, FORMAT-BUFF-MEM, 
SEND-DCP-FILES, SET-UP-MRA, and ST ART
DCP. If the load should fail, call DEALLOCATE
LB, and set up the FCM with the appropriate event 
number. 

OPEN-NDLSVS 

Allocate a 19-byte workblock and fill it with 
"NDLSYS------." Set pack ID to 000000 and invoke 
OPEN-SYSFILE with WAIT. When control returns, 
store FIBID. Allocate and freeze a 182-byte buffer 
workblock. Read-in the program parameter block. 
Check the priority class and store the data segment 
table length and address, and the date of 
compilation. 

BUILD-NOL-TABLE 

Read NDL data segment table from disk. Store 
line, line displacement, station, station displace~ent, 
preset, MCS line, MCS file, and MCS name pomters 
used by DCL. Allocate the NDL data linked block 
and store the disk address/length of the modem, ter
minal file extended station, extended terminal, sta
tion n'ame: file name, and DCP terminal format B ta
bles. Read the NDL preset area from disk. Put 
modem and terminal counts, station table size, and 
NDL complete date into the NDL data linked block. 
Multiply the buffersize by two and st<?re_ the re.sult 
in an absolute variable. Put DCP hmtt, station, 
subnet, and line counts into ABSOLUTE-DATA 
variables. Store the minimum buffer count locally to 
DCL. 

BUILD-DCP-TABLES 

Create/initialize the DCP conversion and DCP 
linked blocks to binary ones, and initialize file name 
to blanks. Invoke monitor to determine the numbers 
of all processors that are physically potential DCPs. 
Determine whether NDL has a load file for each 
DCP. If so, fill the DCP table with the file name and 
physical DCP number. Put the relative DCP number 
in the DCP conversion table. 
CREATE-MCS-TABLES 

Initialize the MCS-ID table in ABSOLUTE-DATA 
to binary ones. Get a linked block for the MCS
NAME table and read it in from disk. Get a linked 
block for the MCS-T ABLE and initialize it. 

12-10 

VALIDATE-Mes 

Check the MCS-COUNT in MCS-NAME table; if 
it is @FF@, then any MCS name is valid, but only 
one MCS is allowed. Enter the job name, passed 
from JM, in the MCS-NAME table. Assume that 
there are always MCS-COUNT (non-zero) names in 
the table. If the MCS-COUNT is not binary ones, 
compare the MCS-NAME passed from job manage
ment with each entry in the MCS-NAME table. For 
each match, check the entry in the MCS-ID table to 
see if this relative MCS number is already being 
used. If not, this MCS is valid; enter the relative 
MCS number into the MCS-ID table. 

FORMAT-BUFF-MEM 

Calculate the minimum amount of space needed 
by data comm in unattached memory. Compare the 
minimum requirement with the amount available 
(specified by SYSCONFIG). If the availabl~ memory 
is equal to or greater than the amount reqmred, con
tinue the load; otherwise, return an ERROR result 
indicating that the DC-LOAD has been aborted. In 
buffer memory, create DCP-COUNT request 
queues, SUBNET-COUNT subnet queues, and a re
sult queue. Fill in pointers in DC-POINTER-AREA 
memory. Use the remaining space for the available 
buffer poll. Fill in the first f~mr bytes of ea~h ~uffer 
link; the rest of the buffer ts undefined. Ftll m the 
HEAD, TAIL, and COUNT pointers in DC-POINT
ER-AREA of memory. 

SEND-DCP-FILES 

Test each DCP to see if it is valid. Call OPEN
DCP-FILE and store NPC-DATA-SIZE. Calculate 
the amount of DCP memory needed. If there is 
enough physical memory, and if the compiled ran
dom numbers of the NDL and DCP files match, call 
LOAD-DCP-FILE. When finished, check to see if 
the DCP has been loaded. If not, generate a message 
to Operator Interface (OI); call monitor to mark the 
DCP "DEAD"; delete its entry in the DCP tables. 

OPEN-DCP-FILE 

Allocate a 19-byte workblock. Invoke OPEN-SYS
FILE and store the FIBID. Read/store the first sec
tor of the DCP file (the file pointers). 

LOAD-DCP-FILE 

Using DA, load the code into DCP memory, the.n 
close the file. Place the MCP processor number, this 
processor's number, a READ and a ~WL word, 
pointers to the request, result, and available buffer 
poll queues, and the starting address of the table into 
DCP memory. 



SEND-LINE-TABLE 
Allocate a linked block for the LLN conversion 

table of size (LINE COUNT * bytes per LLN en
try). Freeze buffer workblock and read into it the 
line displacement list from the NDLSYS file. Get a 
workblock, freeze it, and read in the NDL segment 
containing the logical line states. Allocate a 720-byte 
workblock, freeze it, and read the first four sectors 
of line tables. For each line table, calculate its 
length, check that its logical processor number is 
valid, and that its physical line number is in range. 
If valid, update the port number within the line table 
(adjustment for PI in port #0), calculate the physical 
processor number, and place it into the LLN con
version block. Place the line table into DCP mem
ory. Put the line table's address in the LLN conver
sion table. Put the line data field in DCP memory, 
and adjust its internal addresses. Insert the MCS log-

. ical line station into the line data field, and place the 
data field's address into the DCP code. If the line is 
full-duplex, place a second line data field into DCP 
memory. If the DCP is invalid and if unloaded into 
the processor field of the LLN conversion table, en
ter @FFFE@. When a partial line table remains at 
the end of a workblock, move the partial table to the 
beginning followed by enough new sectors to fill the 
workblock. Continue processing line tables until fin
ished. Then, free the line table workblock and thaw 
the buffer block. Send a dummy line table to each 
DCP for port #0. Prefix the dummy line table with 
a line data field and set the pointers. 

SEND-STATION-TAB 
Allocate linked blocks to hold the LSN conversion 

and the LSN information tables. Freeze the buffer 
block and read in the first sector of the station dis
placement list. Allocate and freeze a 254-byte 
workblock. Read the first sector of station tables 
into the workblock. For each station table, initialize 
its entry in the LSN information and the LSN con
version tables, and determine if the station can be 
loaded. If the station can be loaded, calculate the ta
ble size. Transfer MCS information from the station 
table to the LSN conversion table. Send the station 
table to DCP memory. Change the queue pointers to 
binary ones, take the two's complement of active 
transmit and initiate receive delays, and fill-in its ad
dress in the line table and the LSN conversion table. 
If the station cannot be loaded, enter @FFFF@ (if 
unattached) or @FFFE@ (if unloaded) into this sta
tion's LSN conversion processor field. Enter the sta
tion's SYSRECON disk address into the station ta
ble address field in the LSN conversion table. If the 
bottom of the displacement list is reached, read in a 
new sector. If a partial station is left at the end of 
the workblock, move the partial station to the be
ginning of the workblock and read in a new sector 
of station tables after it. Continue processing until all 
stations are handled, at which time both the station 
workblock and buffer block are free. 

SET-UP-MCS-TAB 

Allocate and zero-out the linked block for the user 
job table. Read the MCS file information from the 
NDLSYS file, create the subnet table, and insert the 
MCS data. 

SET-UP-SYSRECON-FILE 

Get a workblock to hold the SYSRECON file di
rectory. Calculate the length desired for the SYSRE
CON file, and open a file that size. For each seg
ment, enter the segment address and length in the di
rectory, then transfer the segment from NDLSYS. 
When complete, write the directory to disk and 
close, then re-open the file, storing the FIBID into 
the NDL table . 

SET-UP-MRA 

Create MRA linked block of size specified at DC
LOAD invoke time; zero it out. The MRA size pa
rameter is not tested to see if it is too large. The 
MCS table is updated with the MRA block-ID and 
the MCS taskOID. 

START-DCP 

Scan the DCP table for successfully loaded DCPs. 
Clear, unfreeze, and mark as "RUNNING" each 
successfully loaded DCP. 

DEALLOCATE-LB 

If the load fails, determine which MCP linked 
blocks have been allocated, and free them. 

DATA COMM EXECUTION 
When DCL process is completed, the CP 9500 is 

ready to begin executing data comm functions. Their 
functions are requested by data comm applications 
(MCS and non-MCS) and performed by the DCA 
and DCP firmware. Figure 12-5 shows the message 
flow as controlled by the DCA. Figure 12-6 shows 
the distribution of data comm functions and loca
tions of tables and queues. 

The following constitute the major processes in
volved in data comm execution: 

1. Data Comm Interfaces (MCP Activities). 
2. Data Comm Activity. 
3. Data Comm Processors. 
4. Buffer Management. 

12-11 



12-12 

I 

COBOL 
PROGRAM 

"SEND" 

I -----~ REQUEST 

I QUEUE 

DCPX 

DCPX 

STATION 
QUEUES 

"OUTPUT" "INPUT" 

ED2280 

"RECEIVE" 

NOL QUEUE 

FILE QUEUES 1r--, 
I ~:E~~ I 
I SUBNET II QUEUE 

I SUBNET I 

I 

QUEUE 

SUBNET 
QUEUE 

I ""n I 
~=u~J 

"OUTPUT" 

REQUEST 
QUEUE 

DCPY 

DCP Y 

STATION 
QUEUES 

I 
I 

:J 

-iNPUT" "OUTPUT" 

TERMINAL 

MCS 
PROGRAM 

"QUEUE" 

Figure 12-5. Message/Communicate Flows 

"FETCH" 

MCS 
QUEUE 

"INPUT" 

RESULT 
QUEUE 



MPLll (MCS) 
COBOL 
ETC .. 

MEMORY 

FIRMWARE 
DC LOCAL DAT A 
MCS QUEUE(S) 
MESSAGE REFERENCE AREA 
DATA COMM SYSTEM TABLES 

O.S. PROCESSOR 

ED2281 

PROCESSOR 
INTERFACE 

DATA COMM 
ACTIVITY 

DCCH (MCS) 
DCCH (NON-MCS) 
MSG. PROCESSING 
DC LOAD 
DC EOJ 

••••••• 

1/0 DEVICES 

MEMORY 

FIRMWARE 
NOL TABLES 

LINE PROTOCOL 
SYSTEM INTERFACE 
ADAPTOR CONTROL 

LINE INFORMATION VECTOR 

LOCAL DATA 

LINE INFORMATION VECTOR 

LOCAL DATA TRANSLATION TABLES 

DCP 

LINE 
MANAGEMENT 

SOFT 
INTERRUPT 
HANDLER 

.DATA COMM 
SYSTEM REGISTERS 

1. AVAILABLE BUFFER POOL 
2. SUBNET Q'S COUNTER i LIMITS 
3. RESULT QUEUE POINTERS 
4. REQUEST QUEUE POINTERS 

DATA COMM 
BUFFERS 

1/0 BUFFERS 

Figure 12-6. CP 9500 Data Comm Subsystem 

Data Comm Interfaces Monitor 

The DCA interfaces with the following MCP activ
ities: 

1. Processor Interface. 
2. Data Access. 
3. Monitor. 

Processor Interface 
Processor Interface (Pl) uses a mailbox technique 

to deliver requests/results from one processor to an
other. PI code exists on all types of processors. 

The PI code for DCP is generated by NPC. PI is 
not the major method by which the DCP communi
cates with the OS processor; therefore, DCP PI code 
is much simplier than that of other processors. 

Data Access 
Data access is used, by DCA, for file access, that 

is, NDLSYS and SYSRECON. 

If the firmware executing within the DCP detects 
an error, it performs a register dump to the save 
state area in DCP reserved memory, then freezes the 
processor. The monitor activity periodically tests the 
error status of each DCP. When a DCP is frozen, 
the monitor performs a dump of DCP memory and 
reports the DCP error to the operator. 

Data Comm Activity 

The following paragraphs describe the MCP's data 
comm activity. DCA controls all message flow 
within the CP 9500. All CMS communicates de
scribed in Sections 1 through 9 are validated and 
performed by the actions of the DCA. 

The DCA requires access to all NDL tables (both 
in memory and on disk) and all queues. The DCA ta
bles provide this access. A very small area of abso
lute data (always memory resident) exists for the 

12-13 



Field 
Name 

Reload header count 

MCS loaded 

DCP!imit 

Buffer size 

Station count 

User DC log 

Subnet count 

Line count 

MCS ID table 

Buffer memory address 

Buffer queue address 

EOJ action ID 

Length 
Bytes 

1 

2 

2 

2 

4 

32 
4 

4 

Description 

Count of line marks returned by DCP 

Number of MCS programs loaded 

Highest numbered k•gic-al DCP 

NDL buffer +4 

NDL total stations 

Each bit on represents a task-ID (0-31) currently executing 

NDL total lines 

NDL total lines 

Converts task-id to relative MCS number 

Pointer to the first page of buffer memory 

The start of the queue pointer in buffer memory 
The action to be invoked when a data comm program terminates 

Figure 12-7. DCA Absolute Data 

DCA (see figure 12-7). The majority of DCA data ex
ists in the form of linked blocks. Each linked block 
is a data segment and subject to MCP virtual mem
ory handling. An action of the DCA wanting to ac
cess a linked block must call an activity management 
routine in order to locate the linked block. The fol
lowing describes each linked block used by the 
DCA. 

User Jobs 

This linked block contains an entry for each task 
runnable on the system. This table is 32 entries in 
length. The USER-DC-LOG in absolute memory 
identifies which of these tasks are currently active. 

Subnet Info 

There is one entry for each subnet declared in the 
NDLSYS file. If no subnets are declared, this linked 
block is not created. The length of this table is 
stored in the SUBNET-COUNT field in the ABSO
LUTE-DATA area. 

MCS Table 

This table contains an entry for each MCS runna
ble in the system. It is indexed by relative MCS 
number and contains information regarding that 
MCS. The length of this table varies and depends on 
the number of MCSs declared in NDL. 

LSN, LLN Conversion 

The LSN conversion table contains the station ta
ble addresses. The LLN conversion table contains 

12-14 

the line table addresses. Each address is a four-byte 
field consisting of the following: 

PROCESSOR 
ADDRESS 

2 BYTE 
2 BYTE 

When the table resides in memory, the address is 
an absolute address of the table's location. Unat
tached stations and lines and those stations associ
ated with an unloaded DCP, however, reside on disk 
rather than in memory. For these, the processor and 
address fields have different meanings. The address 
field is a word offset of the table location in the 
SYSRECON disk file. For stations, the address field 
is an offset into the station segment; for lines, the 
address field is an offset into the line segment. The 
processor field is set to @FFFF@ to indicate an 
unattached station, and is set to @FFFE@ to indi
cate an unloaded line or station. 

DCP Conversion 

This table contains an entry for each possible 
DCP. It is indexed by the physical processor number 
and is used to convert to logical DCP number. 

NOL Data 

This linked block contains information stored from 
the NDLSYS file at load time. This area is 47 bytes 
in length. 

MCS Name 

This table is copied at load time from the 
NDLSYS file. It contains the count and names of all 
the MCSs able to run with this NDLSYS file. The 
table is also present for a single MCS system, in 
which case it is 20 bvtes of @FF@. 



MREF Area 

One MREF area linked block is created at each 
MCS load time, and deallocated with that MCS's 
EOJ. The size of this area is passed to DCL by job 
management from the Program Parameter Block 
(PPB). 

The message reference area for each MCS is set 
to all binary ones at MCS load time. When a mes
sage pointer is released from the message reference 
area, the PROC/PAGE fields of the address are set 
to @FFFF@. Thus, a null message reference is one 
in which at least the first byte is @FF@. Figure 12-
8 shows the relationship between the various MCS 
linked blocks and absolute data. 

DCA Initiation 

When an ICP issues a request for a communicate 
to be performed, PI-SEND is INTERRUPTed with 
a mailbox containing the Communicate Parameter 
Area (CPA) for the requested communicate. PI-

SEND interrupts PI-RECEIVE on the MCP. PI-RE
CEIVE fills its communicate area with the contents 
of the mailbox passed, and invokes the action passed 
to it by PI-SEND. For a DCA action, this ID is a 
NULL-ID. When INVOKE sees the null ACTION
ID, it decodes the communicate's verb and com
pletes the invocation of the verb action specified. 
This procedure minimizes the action time devoted to 
a possible invalid verb type in the MCP. 

Action Level Interfaces Within 
DCA 

MCP Task State - Suspend, Reinstate 

Frequently, DCA actions must wait until some ex
ternal event occurs (RECEIVE a message), or until 
a system resource deficiency has been resolved 
(MESSAGE SPACE AVAILABLE, 
COUNT/LIMIT, and so on). To ensure that no two 
DCA actions either trv to resolve or check for reso-

ABSOLUTE OS MEMORY VIRTUAL BUFFER MEMORY 

TASK NO. 

MCS 
MCSIO RELATIVE TABLE l MCS INPUT QUEUE 
....-- MCSNO . ..... ~ J T 11. 

I 
MCS 

I I l 
QUEUE 
INFO + 

J 
MRA ~ FETCH 1 

MESSAGE 
't. 

I I [ ] 
._,.... -

MREFS 

~ 

I t---
..__ 

I 
I · 1 MCS NAME 

_ .. -.. 

I 
.. -

ED2283 

Figure 12-8. MCS Tables 

12-15 



lution of a waited condition, DCA enqueues actions 
to one of the following queues, each of which re
flects a pending state: 

OC-WTG-INPUT-Q => For actions concerned with the presence of a message on the MCS queue 

OC-WTG-COUNT-Q => For actions concerned with the number of messages a task may send a station 

DC-WTG-SPACE-Q => For actions concerned with the presence of message space within the DCA 

OC-WTG-RCV-Q => For actions concerned with the presence of a message on a Subnet Queue 

DC-WTG-OUTPUT-Q => For actions concerned with the number of messages a task may send to the MCS 

DC-LOAD-EOJ-Q => To ensure that the LOAD and EOJ do not run simultaneously 

DC-SYSRECON-Q => To prevent any LINE ACCESS while system reconfiguration is in progress 

If the condition in question requires the DCA ac
tion to wait, the DCA action sets a task suspension 
flag for the task that initiated the action. The action 
then yields the processor, anticipating another DCA 
action that will resolve the condition for which it is 
WAITed. 

When an ICP directs DCA to restore a system re
source, or receives notification that the required ex
ternal event has occurred, the DCA action: 

1. Enqueues itself to the queue corresponding 
to the condition it must resolve, and 
2. Checks for any task W AITed on that con
dition. 

If a task has been waited, the DCA action then: 

1. Changes the state of the flag(s), indicating 
resolution of the condition causing the wait. 
2. Determines the particular action suspended 
while executing the previously waited task. 
3. Reinstates that action. 

Figure 12-9 shows the pending states within the 
DCA and the associated actions. 

DCA Accesses to DCP Tables 

DCA uses the LSN conversion table to determine 
station table addresses and an LLN conversion table 
to determine line table bases. 

CP 9500 data comm maintains the station AT
T ACH and WAIT status in two 32-bit fields in the 

12-16 

DCA tables (versus the station table as defined for 
B 776). The output routing indicator (run mode bits 
in B 776) is maintained as a byte field in the DCA 
tables. 

Disallow Input, Disallow Output 

If a task is suspended waiting input from a subnet 
queue and the MCS issues a DISALLOW INPUT 
for that task and subnet queue, the task is reinstated 
when the DISALLOW is done. 

If a task is suspended waiting for an output count 
to decrement when a DISALLOW OUTPUT com
municate is issued, the task is reinstated when the 
DISALLOW is done. 

Route Output 

If output routing is changed while a SEND com
municate is suspended waiting for message space, 
the message is sent to the previous routing after 
space is obtained. 

Station Routing 

If routing for a station is changed from a subnet 
to the MCS (ROUTE INPUT, DETACH STA, RE
LEASE STA), a task waiting input from that subnet 
is not reinstated even if this was tfo~ last station 
routed to the subnet. The MCS must either detach 
the task from the subnet (DISALLOW INPUT) or 
route another station's input to that subnet (ROUTE 
INPUT). 



State Set By Suspends Reset By 

WAITING OUTPUT SEND TASK CONTINUE.TASK 

SET.OUTPUT.LIMIT 

WAITING SPACE SEND TASK RELEASE BUFFS 

COMMON-HOR CLEAR 

ENABLES/ FETCH.MSG 

DISABLE GET .MSG.SPACE 

ATTACH-Q DISALLOW .OUTPUT 

WAITING ATTACH ATTACH-Q TASK ALLOW /DISALLOW 

ATTACH-STA INPUT /OUTPUT 

WAITING INPUT FETCH-MSG TASK-ID Q-TO-MCS 

FROMMCS QUEUE 

TABLE ROUTE.INPUT 

ROUTE.OUTPUT 

RESULT FUNCTION 

WAITING COUNT SEND TASK SET.QUEUE.LIMIT 

RESULT FUNCTION 

DISALLOW.OUTPUT 

WAITING INPUT RECEIVE TASK Q-TO-SUBNET 

QUEUE 

ROUTE.INPUT 

DISALLOW.INPUT 

Figure 12-9. Pending States 

Reinstates 

TASK-ID 

FROM CPA 

ALL 

TASKS 

WAITING 

(TASK-ID) 

TASK-ID 

TASK-ID 

FROMMCS 

TABLE 

ALL TASKS 

WAITING 

TASK-ID 

ALL 

TASKS 

WAITING 

TASK#" 

Queue Count/Limit Maintenance Subnet Queue 
Limit Set: 

Count/Limit 

Unprocessed Input Count/Input 

Limit Set: 

Count Incremented: 

Count Decremented: 

Location: 

Checked: 

Initialized to 2 by the 
NDL compiler SET 
INPUT LIMIT 
communicate. 

By the RESULT 
function when an input 
message is queued to an 
MCS queue and by 
ROUTE.INPUT when 
rerouting messages from 
subnet to a new 
subnet/MCS queue. 

CONTINUE STATION 
communicate and by 
ROUTE.INPUT when 
rerouting input messages 
from MCS to a subnet 
queue. 

Station table. 

By DCP during 
execution of GETSPACE 
function. 

Count Incremented: 

Count Decremented: 

Location: 

Checked: 

Initialized to 2 by the 
NDL compiler SET 
QUEUE LIMIT 
communicate. 

When the result function 
queues to a subnet 
queue. 
When an MCS reroutes 
messages to a subnet 
queue. 
When an MCS queues a 
message to the subnet 
queue. 

Take from subnet queue 
(RECEIVE, DEQUEUE). 
When an MCS reroutes 
from a subnet queue. 

Buffer memory. 

By DCP during 
execution of GETSPACE 
function. 

12-17 



Station Queue 
Limit Set: 

Count/Limit 

Count Incremented: 

Count Decremented: 

Location: 

Checked: 

Initialized by 2 by the 
NDL compiler SET 
QUEUE LIMIT 
communicate. 

When an output message 
is queued to NDL by 
either an MCS or data 
comm user job. 

RESULT function 
processes an output 
message. 

Station table. 

Task sent to a station. 

Task Output Count/Limit 
Limit Set: Initialized to 2 by the 

NDL compiler SET 
OUTPUT LIMIT 
communicate. 

Count Incremented: 

Count Decremented: 

Location: 

Checked: 

DC user job SEND to 
MCS. 

CONTINUE TASK 
Communicate 
When an output message 
is rerouted from the 
MCS Queue to a station 
queue via the 
ROUTE.OUTPUT 
communicate. 

User Jobs Table (DCA) 

Task sent to MCS. 

DCA/DCP Communication 

There are two main areas of communication when 
the DCP interfaces with the DCA: 

1. Message Communication. 
2. NDL Table Access. 

Message Communication 

Queues provide the message interface between the 
DCA and the DCP. These queues are the request 
queue for messages to the DCP, and the result queue 
for messages to the DCA. These queues are briefly 
described and are thoroughly discussed under "Buf
fer Management.'' 

12-18 

Request Queue 

Request queue messages are located in buffer 
memory. There is a request queue for each DCP. To 
link message addresses to a particular DCP's request 
queue, DCA proceeds as follows: 

1. Lock the queue. 
2. Bottom-link the message to any existing 
messages. 
3. Change the top and bottom queue pointers 
if no previous messages were present. 
4. Unlock the request queue. 

The lock word and the head and tail of the request 
queue reside in remote memory. 

The messages passed to the DCP are those defined 
for the CMS data comm subsystem with the addition 
of a DCA/DCP marker type (type 26) message. 

When the DCA transfers a message to a DCP re
quest queue, certain fields are initialized for use by 
the DCP. The message type determines the message 
header fields to be initialized. For station type func
tions: 

1. Output. 
2. Priority output. 
3. Enable input. 
4. Disable input. 
5. Make station ready/not ready. 

The following fields are initialized: 

1. LLN - Used by DCP to find the base of 
the line information area. 
2. LSN Most Byte - Initialized to the RSN 
from the station table. The DCP does not 
have access to the LSN conversion table (in 
OS memory); therefore, the RSN provides an 
easier method to access the station table (in 
DCP memory). Once the station table has 
been located, the DCP replaces the LSN field. 
3. RESULT - Set to zero. 
4. RESERVED - Set to the relative MCS 
number of the issuing MCS. 

For the line oriented functions: 
1. Make line ready/not ready. 
2. Dialout. 
3. LLN. 
4. RESULT. 
5. RESERVED. 

are initialized in the manner described above. 



Result Queue 

There is a single result queue for all DCPs. 

Result queue messages are located in buffer mem
ory. To place the addresses of messages sent to the 
DCA into the result queue, the DCP proceeds as fol
lows: 

1. Lock the queue. 
2. Insert this DCP's ID in the result queue's 
processor-ID field. 
3. Bottom-link the messages to any existing 
messages. 
4. Change the pointer at the top of queue if 
no messages were present. 
5. Unlock the link. 
6. Notify DCA that a message is on the result 
queue by issuing an interrupt (using processor 
interface). 

The lock word, the head and tail, and the proces
sor-ID of the queue are located in buffer memory. 

All message headers placed in the result queue 
contain an LLN and an LSN in the appropriate 
fields. 

Available Buffer Pool Queue 

The available buffer pool queue maintains avail
able buffer space. Both the DCP and DCA use and 
return space from this queue as needed. The ABP 
queue is located in buffer memory together with its 
lock word, head, tail, and buffer count. 

NOL Table Accessing 

DCL places all line and station table addresses in 
DCA memory, and updates them during reconfigura
tion. The DCP maintains these tables. When a CMS 
interrogate requests DCA to retrieve table informa
tion from a DCP, DCA reads the data item directly 
from DCP memory. 

DATA COMM PROCESSORS 
(DCPS) 

When loaded by DCL, each DCP is responsible 
for: 

1. Host Control. 
2. Message/Buffer Handling. 
3. Line Management. 
4. DCP Table Maintenance. 
5. NOL S-Op Handling. 
6. RCV /XMIT Character Handling. 
7. Subroutines supporting S-Ops, Manager, 
and Host Control. 

The logical flow of a DCP, on the most general 
level, consists of a line manager which constantly ro
tates control from one line to the next (see figure 12-
10). 

As the figures show, a round-robin and a top
down scheme are used for line switching. The 
co ordination of these two schemes are described in 
detail under "Line Management". 

Line rotation begins when DCL starts-up the DCP 
and continues until either the DCP fails or the MCS 
goes to EOJ. 

Control changes from one line to the next only af
ter the currently executing line discipline has per
formed all actions required and/or allowed by its 
NOL specifications. 

During the rotation cycle, line manager treats host 
control as a line. Host control handles all communi
cates from DCA via the request queue. In a DCP 
handling <n> lines, host control is given control af
ter line <n>. When host control has finished, con
trol is passed to line 1. 

Host Control 

Each time host control is entered, a test is per
formed to determine if host control can run; that is, 
host control can function only every <n> times that 
it receives control. If host control can run, it per
forms the following functions in the order given: 

1. A single message is dequeued from the re
quest queue, if the queue is not empty. 

a. If this is an output, priority output, or 
enable/disable input message, it is placed on 
the appropriate station queue. 
b. Any other message types (for example, 
make line ready) are actioned immediately 
by the DCP. 

2. Messages on the pseudo-result queue in 
DCP memory, if any have accumulated, are 
enqueued to the result queue proper. If the re
sult queue was previously empty, an interrupt 
is sent to the result function in DCA by Pl. 

NOTE 
Each time host control executes, only 
one of the above functions is per
formed. 

Execution In An Idled System 

In an environment where no lines are active 
(ready) the only active process is host control. A 
more detailed description of the functions of host 
control is provided in the paragraphs that follow. 

12-19 



12-20 

REQUEST QUEUE 
PROCESS 

(JOB +DCP) 

RESULT QUEUE 
PROCESS 

(DCP+JOB) 

PROCESSOR 
INTERFACE 

(A) ROUND-ROBIN LINE SWITCH 

MANAGER 
ENTRY 

HOST 
INTERFACE 

s-op 
HANDLER 

LINE 
MANAGER 

LINE n 

INTERRUPT 
HANDLER 

LINE 2 

(B) TOP·DOWN LINE SWITCH 

TOP PRIORITY 

NEXT PRIORITY 

DECREASING 
PRIORITY 

LOWEST PRIORITY 

HOST CONTROL 

ED2285 

NOTES: 
1. IF MORE THAN ONE LINE HAS TOP 

PRIORITY, THOSE LINES ARE TREATED 
AS A ROUND-ROBIN. 

2. IN ORDER TO GET TO THE LOWER 
PRIORITY LINES, ALL THE HIGHER 
PRIORITY LINES MUST HAVE 
RELINQUISHED CONTROL TO THE 
ROUND-ROBIN LINE SWITCH. 

Figure 12-10. DCP Loeical Flow (Multi-Line) 



DCP Queue Accessing 

Figure 12-11 shows the pointers used by the. DCP 
to access the various system queues. These pomters 
are either direct or indirect. Indirect pointers are 
initialized by ·the DCL. Direct pointers are used for 
queues solely maintained by t~e ~C~. They . are 
initialized by the DCP the first t111?-e it lmks. a~ item 
into the queue. The only exc~ptton. t<;> .t~1s. ts the 
subnet queue. This indirect pomter t~ tmttahze? ~Y 
the route input function when a particular station s 
input is routed directly into a subnet queue. Th~ 
DCP never accesses items within a subnet queue; it 
merely uses the subnet table to examine queue count 
and limit fields. 

BUFFER MEMORY 

I QUEUES __ _ --rQUEUE --, 

I POINTERS I 

Request Function 

The request function is responsible for the fol-
lowing: 

1. Delinking messages from the request 
queue. 
2. Decoding LLN and setting up L (multi-line 
only). 
3. Decoding type and jumping to line relative 
function. 
4. Resolving DCP result queue. 
5. Executing PI. 

DCP MEMORY 

I 
I 
I 
I 

------,~ I I ~.....i.l----1L--__ AB_P __ __, 

~~~~~~.....,~ I ~14,__41---------t'--~--R-Es_u_L_T_Q_u_E_u_E ____ ~ 
'------------..... ~ I ~~1--~1---------t'--___ R_E_a_u_Es_T_Q_u_E_u_E ____ _.

L--..--___.~ I I DCP RESULT QUEUE

I I I I
PHYSICAL

LINE

I LINE VECTOR t

I
I
I
I I

LLN l LINE INFO BASE t---

I
I
I

[

I

L

ED2286

I I STATION TABLE

1... 1
STATION QUEUE r- l

1... -[J- SUBNET QUEUE r-
--- --- ---- ----J

LINE INFO ~___
CMS LINE TABLE

Figure 12-11. DCP Table and Queue Access

12-21

Request Queue Delinking

In the single-line case, the request function exam
ines the line relative FUNCTION-IN-PROGRESS
bit. If set, the request function cannot remove any
messages from the request queue and thus goes to
LABEL.RESOLVE.RES.Q. In the multi-line sys
tem, the request function retrieves the LLN from
the message header and sets up L to point to the
data comm line's line information area. The request
function then examines the FUNCTION-IN-PROG
RESS bit and if reset, delinks the message from the
request queue. Otherwise, this function unlocks the
request queue and goes to
LABEL.RESOLVE.RES.Q. Before returning to the
DCP local memory, the request function reads
various fields in the message header and saves them
in machine registers for use in later operations.

LLN Decoding and L Set-Up

The request function uses the LLN from the mes
sage header to index into the line information base
address table (multi-line only). The address of the in
dicated line's line information area base address is
placed into L.

Type Decode

The request function uses the message header type
to index into a branch table to find the address of
the code to perform the required function for this
type. The types are as follows:

Input
Output
Priority Output
Enable Input
Disable Input
Make Station Ready
Make Station Not Ready
Make Line Ready
Make Line Not Ready
Dialout
Make Line Not Ready Immediate
Recover
Deallocate
Reconfigure/Reload Marker

If any type other than those indicated is placed on
the result queue, the request function branches to
the reconfigure/reload marker code to respond.

DCP Result Queue

The RESOLVE RESULT QUEUE routine is
executed whenever there is no action required on
the request queue. The DCP result queue eliminates
the possibility of being locked out of the DCP/DCA
result queue. Any NPC function that calls LINK.R-

12-22

ESULT.QUEUE causes its message to be linked to
a pseudo result queue, whose pointers are located in
reserved memory. The request function examines
the DCP result queue for entries and if it is non
empty, the request function attempts to link these
messages to the DCP/DCA result queue. If the
DCP/DCA result queue is locked, the request func
tion gives control to the DCP PI code. The pseudo
result queue requires additional overhead but does
not impact system throughput.

Pl

The major function of PI within the DCP is to
cause the DCA result function to be invoked when
the system result queue becomes non null, that is,
when the DCP adds a message to a previously empty
queue. The DCP performs this function by creating
and sending a mail box to the OS processor. PI's
other function with the DCP is to receive ownership
of this mail box when MCP returns it.

Line and Station Relative Functions

The following are line relative functions. When en
countered by the host control, they are actioned im
mediately.

Make line ready/not ready/immediate not ready
Dial out
Recover
Deallocate

Make station ready/not ready are considered to be
line relative because it would be impossible to action
them as station relative functions. A station relative
function can only be actioned for a "ready" station.

Output
Priority output
Enable/disable input

are station relative and are queued to the relevant
station queue by host control. Output and priority
output are actioned by the NDL transmit request,
enable/disable input by line managemfmt.

Discarding Message Space

The DCP discards message space by setting the
message header type of the message space to 27 and
linking the message to the result queue. The DCA
result function decodes the message header type and
returns the space to the available buffer pool. By
this method the result function may cause those
tions waiting on space to be re instated.

Message Header Transfers from DCP

For input messages or function results, the DCP
places the LSN or LLN into the correct portion of
the header. Function headers taken from the request
queue are similarly adjusted (replacing LLN or
LSN) by the DCP request queue handler before
functions are placed into a station queue. Therefore,
when a recall is performed, the DCA result function
need not read the station table for the LSN of each
message in the station queue.

The transmission numbers in the header are
decimal numbers found in the first three digits of the
transmission number field. This field is initialized by
the DCP and converted to ASCII by the result func
tion for those headers in which the numbers have
been stored.

When the DCP performs a recall, it places the sta
tion queue head pointer into the
OPTIONS/EVENTS field of the recall header. The
DCA result function places the station queue mes
sages in the MCS queue after the recall result has
been serviced from the result queue. Each header
from the station queue is given a result field of "RE
CALLED" and if the message is an output message,
the station queue count is decremented for that mes
sage. If a recalled output message is from a DCP
that is now dead, the station queue count is not de
cremented. If, at a later time, the DCP recovers,
there may be a problem with inconsistent counts.
The DCP cannot clear the station queue count when
a recall is performed because there is no READ
W/LOCK for the count field; the DCA normally
maintains that count.

The DCP queue pointers are four-byte fields (sta
tion queue, hold queue). The queue pointers access
ed by the DCA are four-byte fields (MCS queue,
subnet queue, request queue, result queue, ABP).
The DCA code provides for four-byte buffer links.

Handling Message Buffers

The buffer space for all messages is located in buf
fer memory(s). This section describes how message
space is obtained, characters are fetched and stored,
and control is given to the DCCH.

GETSPACE

The GETSPACE S-Op may be used explicitly
(GETSPACE) or implicitly (RECEIVE TEXT,
INITIALIZE TEXT, STORE). Each GETSPACE,
whether implicit or explicit, obtains space in the re-

mote memory for the DCP's use. The following pro
cedure is used:

1. Either a TERMINATE S-Op or a GETS
PACE S-Op obtains the necessary number of
buffers, as follows:

a. If the space is obtained in order to store
text, the subroutine to perform the GETS
P ACE S-Op is entered with two
parameters:

1) The number of buffers required by the
terminal type that executes the statement
is passed in a register.
2) The number of bytes (MAXINPUT)
required by the terminal type (1' s comple
ment) is passed in
LNE.MSG.HDR.MSG.LEN.

b. If a TERMINATE obtains space to re
port a condition, only one buffer is re
quired.

2. If the Available Buffer Pool (ABP) is
locked (that is, in use by DCCH or another
DCP) upon entry, the state of the line is saved
and the line is paused. When the line regains
control, it again attempts to lock the ABP.
3. The ABP is locked by accessing the ABP
Read-With-Lock (RWL) word. (All available
space is in the ABP.) The DCP's processor-ID
is inserted into the ABP as an aid to recovery
in case the particular DCP fails. After locking
the ABP, the DCP checks whether there are
enough buffers in the ABP to perform the
GETSPACE. If not, the ABP is unlocked and
the GETSPACE is aborted via the appropriate
action.

NOTE
Three buffers are reserved in the ABP
to be used for single-buffer GETS
PACEs and are not accessible by the
normal S-Op-type GETSPACEs.

a. If there is not enough space when a ter
minate GETSPACE occurs, the ABP is un
locked; the line is paused; and when the
line regains control, it tries again to obtain
the space.
b. If the ABP has enough space, the DCP
updates the count of available buffers, de
links the quantity that it needs, and then
unlocks the ABP.

4. Once space has been obtained, the fol
lowing fields in the message header are initial
ized:

a. Address (processor #/line #) with the
values from the address in the line table.
b. Logical Station Number (LSN) with the
LSN of the active station.

12-23

c. Each of the following is initialized to
zero:

Tally 0
Tally 1
Tally 2
Toggles
MCS Data

d. RESULT/TYPE is initialized to
@0001@.
e. TASK/MCS flag is initialized to zero.

5. All DCP variables that are required to per
form text storing are also initialized (see sec
tion on "Character Storing" for a list of these
variables.)

Character Fetching

Individual characters are fetched from output-type
message buffers. The fetch can result from an ex
plicit FETCH statement, or implicitly through a
TRANSMIT TEXT statement. Either way, the fetch
is performed by a common subroutine; this subrou
tine is responsible for returning the next sequential
character in the buffer, both in the BO register and
in the CHAR register (which is a field maintained by
the NDL virtual machine).

First, the routine makes sure that text is still avail
able in the buffer (if there is none, a value of @FF@
is returned in the B 1 register; otherwise, @00@ is
returned in Bl).

The routine also checks whether or not the point
ers to the buffers need to be updated to move into
the next buffer.

Character Storing

Characters are stored individually into input-type
message buffers. The store can be a result of an ex
plicit STORE instruction, or implicitly through a RE
CEIVE TEXT statement. In either case, a subrou
tine performs the actual store. This routine is en
tered with the character to be stored in the BO regis
ter or in the CHAR register. If the amount of avail
able text space is exhausted, the subroutine is re
sponsible for returning an indicator to the caller.

A successful store is indicated by returning 0 in
the Bl register, while a value of @FF@ in Bl indi
cates an unsuccessful store.

Variables associated with storing of textual char
acters are listed below with a description of their use
as it applies. These variables are located in the line
info area.

12-24

LNE.BUFFER.SIZE (Two bytes)

This contains the 2's complement of the buffer
size. It is incremented each time a character is
stored/fetched. If an overflow is encountered while
incrementing, the current buffer is full. The variable
takes on special meanings in the following cases:

1. If NO-SPACE-AVAILABLE, the LNE
.BUFFER.SIZE has a value of @FFFF@.
2. On the first and last buffers of the mes
sage, the buffer-size is the 2's complement of
the actual space available in that buffer for
text (possibly less than the declared buffer
size).

LNE.BUFFER.COUNT (Four bytes)

This contains the absolute address in the message
buffer of where the next character is to be
stored/fetched. It is only valid if LNE.BUFFE
R.SIZE is not equal to @FFFF@. The variable is
incremented with each character stored/fetched.

LNE.THIS.BUFFER.SIZE (Two
bytes)

This contains the true (that is, uncomplemented)
value of the amount of text space available in this
buffer. It is only valid if LNE.BUFFER.SIZE is not
@FFFF@. It normally contains the same value as
BUFFER.SIZE defined in the NDLSYS with the ex
ception of: 1) the first buffer, at which point it con
tains the value of BUFFER.SIZE minus MESSAGE
.HEADER.SIZE; and 2) the last buffer, at which
point it contains the amount of textual character
space available to equal MAX-INPUT(LNE.TE
XT.SIZE FALSE).

LNE.FLAGS.2 (SPACE.AVAIL)

A flag indicating whether or not space is available.

LNE.TEXT.SIZE (Two bytes)

Contains the l's complement of the amount of
characters that can be accumulated (MAX.INPUT).
As characters are stored, the value is incremented
until overflow occurs, indicating END.OF.BUFFER.
The value is only incremented when buffer bound
aries are crossed (for example, LNE.BUFFER.SIZE
overflows and space is available).

LNE.CURRENT.BUFFER (Four
bytes)

Contains the base address of the current buffer.

LINE 1 HIGHEST

LINE 1 FORWARD BACKWARD

LINE2

LINEN

HOST
CONTROL "-----J

ED2287

Transferring Space Ownership to DCA

Message space ownership is always transferred by
the DCP to the DCA. Regardless of the final destina
tion of the space, it is placed onto the result queue
and passed to the DCA. The DCA is then responsi
ble for further routing of the space or returning it to
the available buffer pool.

Line Management
Line switching is accomplished by one of two

techniques: 1) a top down line change; and 2) a
round robin line change. Linked lists, which connect
ready lines, control both schemes. When a line is
made ready, host control links the line into the
round robin queue. After determining where it
should fall in the top down queue, host control links
the line into that queue as well.

The top down scheme is used when the line is re
linguishing control but must regain control in time to
service the next interrupt (for example, transmitting
or receiving). Control is passed to the line refer
enced by the PRIORITY .POINTER field. The fol
lowing factors affect a line's placement in the top
down queue:

1. Priority - When a line is made ready, it is
inserted in the top down queue according to
the priority code in the station table for
relative station 0.
2. Speed - Higher-speed lines have a higher
priority and are at the top of the line queue.

NOTE
Each line in the top down queue has a
pointer to the highest-priority line ex
cept when several lines all have the
same priority and no ready line has a
higher priority. In this case, a round
robin scheme is used (at the highest
priority only). (See figure 12-12.)

LINES 1 AND 2 EQUAL HIGHEST

FORWARD BACKWARD PRIORITY

Figure 12-12. Line Linkage

The round robin scheme is used when the line is
relinguishing control at a time when it is not
particularly busy (for example, pause or delay state
ments). Control is passed to the line referenced by
the NEXT.POINTER field. The round robin line
queue consists of forward and backward pointers.

The primary and auxiliary sides of a full-duplex
line maintain their own line information area; there
fore, each side is one entry in the line queue.

Host control is linked to the bottom of the round
robin queue. Therefore, when no line is busy (using
top down switching), host control is entered after the
last line and before the first line. Because host con
trol requires fewer variables than a data comm line,
its variables are placed in a special area of reserved
memory. Variables are positioned so line manager
can treat host control like any other line.

At DCP initialization time, the host control func
tion is linked to itself. As lines are made ready, the
lines are linked into both queues. When a line goes
not ready, it is delinked from both queues.

As a full-duplex line is made ready, the primary is
linked into both queues, but the auxiliary remains in
active until the primary executes a FORK instruc
tion. A subsequent IDLE by the auxiliary causes it
to be delinked.

12-25

Single-Line Manager Schemes
In a single-line manager, control passes back and

forth between host control and the one ready line on
that DCP. Interrupt handling routines return control
directly to host control.

NOTE
The presence of one full-duplex line in
a DCP causes NPC to generate a multi
line manager for that DCP.

DCP Table Maintenance
Figure 12-13 shows DCP memory following DCL

execution. Tables are loaded starting at the high end
of memory. Enough space is reserved above each
line table/line information to accommodate MAX
ST A TION station tables. Station vectors within the
CMS line table are initialized at data comm load
time and point to the area reserved for the station ta
ble. Because of reconfiguration, relative station num
bers may alter as stations and are attached/detached
to/from a line. As station tables are accessed indi
rectly via the station vector, the station table should
not be moved during reconfiguration. Only the sta
tion vectors are moved.

0000
RESERVED AREA

DCPCODE

UNUSED

STATION TABLES FOR LINEN

LINEINFOAREA FOR LINEN

CMS LINE TABLE FOR LINEN

STATION TABLES FOR LINE 1

LINE INFO AREA FOR LINE 1

CMS LINE TABLE FOR LINE 1

STATION TABLES FOR LINE 0

LINE INFO AREA FOR LINEO

CMS LINE TABLE FOR LINEO
FFFO

UNUSED
FFFF

ED2288
Figure 12-13. DCP Memory

12-26

The top 15 bytes of memory are never used. By
convention, the DCA always accesses remote mem
ory with the interface control enabled. Access to ad
dress @FFF8@ through @FFFF@ have a special
meaning in this mode; @FFFO@ is chosen as a con
venient upper limit for DCP memory.

Station Table

The station table in DCP memory is similar to the
CMS-defined station table. The size of the station ta
ble is the same for all stations on a system. Conse
quently, any station that makes use of the extended
tallies causes all station tables in that system to have
space allocated for the extended tallies. DCL loads
all station tables at MCS start-time.

The station table is usually referenced by using the
K-register. This register contains the base address of
the active station for the currently executing line.

When the active station changes, it is validated.
Then, the routine that changes the station number
updates the K-register to point to the new station ta
ble. If an INVALID STATION occurs (STATION is
greater than or equal to MAX.STATIONS), the
pointers are set to a dummy station table in reserved
memory. Figure 12-14 shows the layout of the sta
tion table as loaded into DCP memory.

line Table

The DCP requires more line-relative data than is
available in the CMS-defined line table. Therefore, a
line information area prefixes the CMS-defined line
table. Each CMS-defined line table consists of 16
bytes plus four bytes for each possible station that
can be attached to the line. The maximum number
of attached stations cannot be greater than MA
X. ENTRIES.

The line table and associated line information area
are always referenced using the L-register. The L
register points to the base of the line information
area of the currently executing line. The line table
for that line is appended to the end of the line infor
mation area. The L-register is replaced with the ad
dress of the base of the line area information area
when the manager switches lines. The address of the
line area is located in the previous line's line infor
mation area.

The sequence to change the L-register to point to
the next line appears as:

Ml .___ L + NEXT.LINE.POINTER %previ-
ous line
L .___ I1 %new line

0

2

4

8

8

10

12

14

18

18

20

22

24

28

28

30

32

34

•
•
40

42

44

•
•
IO

52

54

•
58

IO

82

84

•
72

78

82

84

•
•
IO

LLN RSN

END CHARACTER LINE DELETE CHARACTER

BACKSPACE CHARACTER WRU CHARACTER

CONTROL CHARACTER STATION FREQUENCY

XMTADDRESS-2 XMT ADDRESS-1

RUN MODE BITS XMTADDRESS-3

RCV ADDRESS-2 RCV ADDRESS-1

RESERVED RCV ADDRESS-3

RCVTRANSMISSION NO. SAVE QHEADPAGE

XMTTRANSMISSION NO. SAVE QHEADADDRESS

LSN

UNPROCESSED INPUT LIMIT UNPROCESSED INPUT COUNT

ORIGINAL RETRY RETRY

TALLY(1) TALLY(O)

TALLY(2) TOGGLES(7-0)

OPTIONS EVENTS(BYTE1)

EVENTS (BYTES 2·3)

INmATERCVDELAY

ACTIVE XMT DELAY

OUTPUTSAVE QTAILPAGE

OUTPUTSAVE QTAILADDRESS

STATIONQLIMIT STATIONQCOUNT

RESERVED' RESERVED

SUBNET QUEUE PAGE

SUBNET QUEUE ADDRESS

MCSID LINE PRIORITY CODE

TYPE

SPEED

MODEM TERMINAL

STA QHEADPAGE

STA QHEADADDRESS

STA QTAILPAGE

STA QTAILADDRESS

TALLY (4,3,6,5,8,7)

TALLY(10,8, 12, 11, 14, 13)

TALLY(16,15, 18,17)

OUTPUTSAVEQCOUNT INPUTSAVEQCOUNT

INPUTSAVE_Q HEAD PAGE

INPUT SAVE...Q HEAD ADDRESS

INPUTSAVE-OTAIL PAGE

INPUTSAVE..OTAILADDRESS

Figure 12-14. Station Table

The NPC sets a bit on a file basis which indicates
the possibility of full-duplex on this file; that is,
FD.POSSIBLE:= G.TERB
(*FULL.DUPLEX. TYPE) and G.LINEB
(*LINE.FOX). This means that there is at least one
full-duplex line on the DCP and at least one full-du
plex terminal on the file to activate full-duplex logic.

Each full-duplex line requires the existence of line
information areas for each half of the line but only
one line table. To accommodate this requirement,
the line information areas and line tables for the full
duplex operation are aligned as follows:

1. The line table is appended to the primary's
line information area; that is, as in the half
duplex case.
2. The line information area for the auxiliary
exists in memory, but cannot be conveniently
located to make a direct line table access.
3. Each line information area contains two
fields:

a. LNE.PRI.PTR - Points to the base of the
primary's line information area in full-du
plex. Points to the base of its own line in
formation area in half-duplex.
b. LNE.CO.LINE.PTR = Points to the
base of the co-line's line information area in
full-duplex. Contains a value of null
(@FFFF@) in half-duplex.

When L is not guaranteed to be addressing a pri
mary or a half-duplex line, any access to the line ta
ble must be indirect. The indirect access is accom
plished by using the 'LNE.PRI.PTR plus <desired
offset> as an index into memory.

If FD.POSSIBLE = FALSE, all lines are half-du
plex. A macro generation of the code required to ac
cess the full-duplex line table is invoked by calling:

INDIRECT.ACCESS (L.DISP, LIT.NM)

Translation Table Space Allocation

The space allocated for translation tables is a max
imum of 512 bytes per table. If two or more terminal
types require the same translation table, only one
copy of the table is required. The memory allocation
calculation is shown below.

NT *512 = maximum size (in bytes) for
translation tables.

Where NT equals the number of terminals requiring
different translation tables.

12-27

To fill translate table space, NPC:

1. Splits the tables, retrieved from NDLSYS,
into a RCV table and an XMT table for each
unique terminal type requiring translation.
2. Creates two separate tables from the CMS
translate table.

The above translation table arrangement enables
increased speed when translating characters, and
simplifies loading the translation table into the line
adaptors which have translation capability.

Since NPC places the translate tables into the
code file, it knows the absolute address of the place
ment. Consequently, any references to translate ta
bles are direct.

Terminal and Modem Tables

NPC generates in-line code for the DCP from in
formation located in the terminal and modem tables.
This eliminates the need to maintain these DCP ta
bles.

NOL S-Op Handling

The following conventions are observed when han
dling NDL S-Ops:

12-28

1. Each S-Op in the control and request sets
has been converted to microcode by the NDL
Post Compiler (NPC).
2. Each S-instruction's microcode is treated
as an independent unit. When S-instruction
microcode is entered, the values contained in
a specific register (other than J, K, L) are un
known. The S-instruction code may pass and
receive values to or from subroutines. Subse
quently, however, the S-instruction has no ac
cess to information that had been in the ma
chine registers.
3. The K and L-registers are loaded with their
respective values at line switch time (MULTI
.LINE). Thus, all execution on that line can
make use of the values in K and L-register.
Whenever the active station is altered, the K
register is altered to contain the new station
table address. When host control is activated
(MULTI.LINE), the L-register points to the
base of its work area. This work area is
similar to a line table. Because the single-line
mode would require restoration of K before
returning to the line, the K-register is not
used by host control.

Register Conventions

The NDL process uses certain conventions to in
dex into the tables located in DCP memory and to
execute the S-Ops. Succeeding paragraphs describe
these mechanisms.

L

K

J

Ml

M2

Bl

BO

MXA

MXB

MAX

WR,B32

The L-register (two bytes) contains
the address of the line table
information area of the line
currently being actioned.

The K-register (two bytes) contains
the address of the station table for
the current active station of the
line being actioned.

The J-register contains a value of
zero.

The Ml register is used to point
to the area of memory being
referenced. It is not maintained
either from routine to routine or
from S-Op to S-Op. Consequently,
the executing routine must set-up
this register.

The M2 register is used to point
to the area of memory being
referenced. It is maintained neither
from routine to routine nor from
S-Op to S-Op. Consequently, the
executing routine must set-up this
register.

The Bl register tests bits; namely,
the following:

1. System flags (space available, line
control, output, and so on.)
2. System status.
3. Toggles.

This register is also a work
register when needed.

The BO register is a work register;
for example, some byte-variable S
Ops load the byte variable in
question into BO.

This register is used for paging to
remote memory modules.

This register is used for paging to
remote memory modules.

The routine that alters this register
must always restore its contents to
the value of the local DCP
memory page.

These are general-purpose work
registers (each is two bytes long).

RCV/XMIT Character Handling (Interrupt
Handling)

All interrupts from lines are "soft" interrupts. The
presence of an interrupt is not detected unless the
NOL discipline allows its processing during the cur
rent control pass.

This discussion will cover the relationships be
tween S-Ops and the XMIT/RCV interrupt handlers
in very general terms. Note that all character han
dling managers are "tuned" per terminal. (Refer to
figure 12-15 for general interrupt handling.)

TRANSMIT

In the NOL program a TRANSMIT S-Op is en
countered. (It is assumed that for this discussion the
adapter has been previously set-up for the transmit
by an initiate transmit.) Assume that a TRANSMIT
CHAR S-Op has been encountered:

S-Op Code
1. Some preliminary set-up.
2. If auxiliary of a full duplex line, abort.
3. Call pre-manager transmit.
4. If break, then go to break addr.

PRE-MANAGER

L
I
N
E

D
I
s
c
I
p
L
I
N
E

ED2290

Pre-Manager Code
1. Store character to be transmitted in
LNE.IN.CHAR.
2. Translate, if pertinent.
3. Generate vertical parity, if pertinent.
4. Generate horizontal parity.
5. Store translated character with parity to L
CHAR.
6. Store MANAGER.XMIT in LNE.FUN
CTION.
7. Give up control to top down manager.

(The OCP is now free to execute code on behalf of
other lines.)

MANAGER.XMIT Code
1. Check transmit exception (read primary
status from adapter).
2. Handle any exceptions:

a. OSR/ = abort.
b. CTS/ = abort.
c. Break = wait for end, return to S-Op.

4. If XMIT.REQ (that is, adapter is ready for
character), then:

a. Write L-CHAR to adapter.
b. Return to S-Op.
c. ELSE, give up control to round robin
manager.

MANAGER INTERRUPT-HANDLERS

PRIORITY
LINE-SWITCH

DELAY

MANAGER I
LINE-SWITCH I 1,

(ROUND·ROBIN) I

I I
I

Figure 12-15. General Interrupt Handling

l 12-29
I !

RECEIVE

In the NDL program a RECEIVE CHAR is en
countered (assume that the adapter has been prop
erly initialized via initiate receive).

5-0p Code
1. If primary of a full duplex line, generate
timeout error and go to timeout branch of er
ror switch.
2. Set-up timeout value
3. Call pre-manager receive.
4. If receive error, take appropriate branch of
error switch.
5. If a search character is received, take ap
propriate branch.

Pre-Manager Code
1. Arm timer, if specified by the receive S
Op.
2. Store MANAGER.RECV.CHAR in LNE
.FUNCTION.
3. Give up control to top down manager.

(The DCP is now free to execute code on behalf of
the lines.)

Manager Code
4. If RCV .EXCEPTION (contained in pri
mary status on adapter) then:

a. Set-up interface for error switch.
b. Return to S-Op.

5. If RCV.REQUEST (that is, there is a char
acter ready on adapter), then:

a. Read character.
b. Store character in L-CHAR.
c. Sum horizontal parity.
d. Strip vertical parity, if pertinent.
e. Translate character.
f. Store translated character in IN-HAR.
g. Return to S-Op.

6. ELSE (that is, no character is ready on
adapter):

a. If timeout has expired:
1) Set-up interface for error switch.
2) Return to S-Op.

b. If timer is still running:
1) Give up control to round robin man
ager.

Subroutines Supporting S-Ops,
Managers, Host Control

The NDL Post Compiler (NPC) generates subrou
tines on an as-needed basis. That is, if a subroutine
is not needed in a code file, it is not present. Sub
routines are used when the code is common to all
terminals on the system, and is used frequently.
Subroutines are called via the NBDS "hard call"

12-30

micro instructions and exited via the "hard return."
If a subroutine must yield before its function is com
plete, the subroutine is responsible for saving the re
turn pointer and doing a "soft return" on exit.

BUFFER MANAGEMENT

Subsystem Queues

Host communication between the DCA, the
DCP(s), and whatever MCS and user programs are
present takes place through queues. The queueing
process passes information and parameters between
two or more logically separated routines in the DCA.
Queueing causes the logical passing of data, buffers,
and so on, without physically moving the data.

Each queue contains two addresses, and is stored
in a reserved area of memory known and accessed
by the modules associated with it. Each address in
dicates the physical location of a message. The first
address in the queue is the "head"; it points to the
next message to be removed from the queue for pro
cessing. The second address is the "tail;" it indi
cates the location of the last message associated with
the queue.

The link mechanism connects the first and last
(head and tail) messages with those between them.

Queue Linking Mechanism

Each data buffer begins with a single link address,
which indicates the location of the message's next
buffer. In the last buffer of a message, the link is
null.

Following the buffer link, the first buffer of each
message contains a message link. This indicates the
first buffer of the next message.

The head address allows access to the first mes
sage; the first message's first buffer contains a link
permitting access to the second, and so on.

Generally, a CP 9500 Data Comm Subsystem
queue is used in the same order as it was built, (that
is, on a FIFO basis). The following algorithms are
used to maintain CP 9500 DCS queues:

1. Queue Linking (figure 12-16). When a mes
sage is added to the bottom of a queue, the
queue's tail address is retrieved. It is replaced
by the address of the new message. The old
tail is used to update the message link address
in the message which was previously the last;
this message's previously null link address is
set to point to the new end message.

BB-
Q U EU E

PREVIOUS TAIL

-------+

ED2292

MESSAGE LINK J_

MESSAGE

MESSAGE LINK

MESSAGE

(NULL)

MESSAGE

MESSAGE BEING
LINKED TO QUEUE.

--i--

.....

'

./

'\

./

PREVIOUSLY NULL LINK
FILLED IN .

Figure 12-16. Queue Linking

2. Top Queueing (figure 12-17). In certain
cases, such as when a high-priority communi
cation contains data affecting communications
queued earlier, top queueing is used. The old
head address is retrieved, and replaced by the

MESSAGE BEING
TOP-QUEUED.

PREVIOUS HEAD

address of the new message. The old head ad
dress is then used to link the new beginning
message to the former head message, which is
now second.

MESSAGE LINK .! __

MESSAGE ADDRESS PREVIOUSLY
IN HEAD POINTER IS
USED TO .ESTABLISH
MESSAGE LINK.

BB---
- - - __. ...--------.·---

MESSAGE LINK

'
0 U EU E l

-----··
MESSAGE

.... ./
(NULL)

MESSAGE

ED2293

Figure 12-17. Top Queueing

12-31

12-32

PREVIOUS

---------- -+ ------
HEAD (NULL) -t"'-\

L --- I ADDRESS IN MESSAGE

QUEUE
MESSAGE

~_,,,

I LINK IS USED TO SET
HEAD POINTER.

I MESSAGE LINK IS I DISSOLVED.

I

MESSAGE LINK -; ~

MESSAGE

.... .,I-
(NULL)

MESSAGE

ED2294 Fiaure 12-18. Queue Delinking

3. Queue Delinking (figure 12-18). The head
address indicates the next message to be re
moved from the queue for processing, so it is
retrieved. The message link address in the
message being removed is used to replace the
head address. The head has been shifted to in
dicate the message following the one re
moved.

4. Queue Lockout (figure 12-19). Queues in a
multiprocessor environment must have their
integrity protected. The request, result, and
ABP queues each use a Read With Lock
(RWL) Word.

NOTE
Any action or processor accessing the
RWL words must have all interrupts
disabled; it is then considered
"muted."

The RWL word is subjected to the
RWL hardware instruction; this reads
tlte value, then replaces it with binary
ones (@FF@) in the same clock cycle.
If the value ready is @FF@, another
action is using the queue, access is not
allowed. If the value read is @00@, the
queue can be accessed by this action
only. (Any other action finds a value of
@00@ to the RWL word just before
terminating.)

8
8
8
8
8
8

ED2295

R.W.L.- @oo@

HEAD

TAIL

QUEUE

(A) QUEUE NOT IN USE. CAN
BE ACCESSED BY ANY ACTION.

R.W.L.- @FF@

HEAD

TAIL

QUEUE

(B) ONE ACTION ACCESSES READ
WITH LOCK WORD. READING
RWL VIA READ-WITH-LOCK
INSTRUCTION SETS IT TO
@FF@. NO OTHER ACTION
CAN ACCESS THE QUEUE
UNTIL THIS ONE UNLOCKS
ITS RWL WORD.

Fiaure 12-19. Queue Locking

Queue Pointers in Buffer Memory

The request, result, ABP, and subnet queues are
stored in a contiguous area of reserved memory,
(DC-DATA-AREA). These queues are described in
the following paragraphs. Each description refers to
figure 12-20 which indicates the format and size of
the DC-POINTER-AREA. A description of MCS
queues is also provided, but no MCS queue resides
in the DC-POINTER-AREA.

Request Queues

Each DCP present on the CP 9500 has a request
queue associated with it. The request queue contains
messages from the DCA for that particular DCP.

Space for eight request queues is reserved in the
contiguous queue storage area (DC-POlNTER
AREA) in reserved memory. This corresponds to the
maximum number of DCPs allowed on the CP 9500.
Each of the request queues contains a RWL word,
(one byte), a four-byte head address, and a four-byte
tail address. Each request queue occupies nine
bytes.

Result Queue

There is one result queue in the data comm sub
system. It is used by the DCPs to send messages to
the DCA. Since a DCP must lock the result queue
to link a message into it, the PROC-ID byte is set
to identify which processor is using the queue. This
aids in recovery if the DCP fails before releasing the
result queue.

The DCA does not concern itself with setting the
PROC-ID byte. The DCA resides in the operating
system processor. Recovery from an MCP failure is
assumed impossible.

The result queue occupies ten bytes: one for the
RWL word, one for the PROC-ID, four for the head
address, and four for the tail.

Available Buffer Pool (ABP)

The ABP controls the use of message space by the
DCPs. When a DCP gets space for a message, it de
links the space from the ABP. Message space is
deallocated (relinked to the ABP) only by the DCA.

Note that the ABP also has a RWL word, and a
PROC-ID byte. Any action of processor accessing
the RWL word must be muted (all interrupts dis
abled). The PROC-ID byte identifies the processor
using the ABP; the ABP is still locked if the DCP
fails.

0

READ·WITH·LOCK

PROCESSOR-ID
2

COUNT (NO. OF BUF-
FERS AVAILABLE)

4

HEAD ADDRESS

8
TAIL ADDRESS

12

READ-WITH-LOCK
13

PROCESSOR-ID
14

HEAD ADDRESS

18

TAIL ADDRESS

22

READ-WITH-LOCK

HEAD ADDRESS

TAIL ADDRESS

94
LIMIT

COUNT

HEAD ADDRESS

TAIL ADDRESS

(n)

AVAILABLE BUFFER POOL(ABP)
TOTALLENGTH:12BYTES
OCCURRENCES: 1

RESULT QUEUE
TOTALLENGTH:10BYTES
OCCURRENCES: 1

REQUEST QUEUE
TOTAL LENGTH: I BYTES
OCCURRENCES: I

(72 BYTES USED BY ALL REQUEST
QUEUES)

SUBNET QUEUE
TOTALLENGTH:10BYTES
OCCURRENCES: SUBNET COUNT
(NUMBER OF STATIONS)

((10 X SUBNET COUNT) BYTES USED
BY ALL SUBNET QUEUES)

BYTES (n) • TOTAL LENGTH OF DC POINTER AREA • (94 + (10 X SUBNET

COUNT)) BYTES
ED2291

Figure 12-20. Queue Pointers in Reserved
Buffer Memory

12-33

A DCP does not unlock the ABP until it has all
of the space needed for a given message. Space is
only available as buffers; all buffers are the same
size. This BUFFER-SIZE is generated by NDL,
which records it in the NDLSYS file as a count of
two-byte words. The Data Comm Loader (DCL)
converts the NDLSYS file's BUFFER-SIZE as fol
lows:

1. DCL doubles the word-count given by the
NDLSYS file to obtain a byte-count.

2. Since four bytes are used for each message
link or buffer link in the CP 9500, while two
bytes are used in the NDLSYS file, BUF
FER-SIZE is incremented by four.

The converted BUFFER-SIZE, which includes
both buffer and message links, is then recorded in
DCA absolute memory.

FIRST BUFFER OF EACH MESSAGE:

0
BUFFER LINK ADDRESS

4
MESSAGE LINK ADDRESS

8

HEADER
INFORMATION

Data Comm Buffer Format
When a data comm buffer is empty (linked into

the ABP), the only use for its link word is to main
tain the ABP's integrity. Once the buffer is in a mes
sage (delinked from the ABP), there are two kinds
of links within the message format.

The first is a link to the next buffer of the
particular message. If a given buffer is last in a mes
sage, this link is null (@FFFF@).

In the first buffer of each message, the buffer link
is followed by a message link. This indicates the first
buffer of the next message. (See figure 12-22.) If this
is the last message, the link is null (@FFFF@).

Each message's initial buffer has 36 bytes of
header information following the message link.

Text occupies the remainder of each buffer after
the link and/or header information is installed. (See
figure 12-21.)

EACH BUFFER AFTER THE FIRST:

r----------'"" 0
BUFFER LINK ADDRESS

TEXT

,~.....___ ·____.J BUFFER
SIZE

BYTES

NOTES:

12-34

44

TEXT

,..

l._____L,, ..
BYTES

ED2296

SIZE

1. BUFFER LINK ADDRESS IS ADDRESS OF
THE NEXT BUFFER IN THE GIVEN
MESSAGE. NULL IN LAST BUFFER
OF ANY MESSAGE.

2. MESSAGE LINK ADDRESS IS ADDRESS
OF THE FIRST BUFFER IN THE NEXT
MESSAGE. NULL ONLY IN THE
LAST MESSAGE.

Figure 12-21. Formats of Data Comm Buffers

MCS Queues
All messages sent to a given MCS program are

placed on its MCS queue. This queue is maintained
by the MCS to which it belongs. It does not reside
in the DC-POINTER-AREA. In a multi-MCS envi
ronment, each MCS program has its own CMS
queue.

Subnet Queues
. Subnet queues are data comm files providing

chronologically ordered messages from data comm
stations (terminals) for processing by user data
comm tasks.

All linking of messages to any subnet queue(s)
must be performed by DCA. However, there are two
ways this can occur. An MCS program, deriving its
input solely from its own MCS queue, may issue a
message to the DCA, directing the DCA to place a
specific message on a subnet queue. Also, the DCA
may route messages directly from the result queue to
some subnet queue(s), bypassing the MCS pro
gram(s).

Reconfiguration
To redefine a station or line, that line must be in

a "not ready" state. To make this determination,
DCA creates a header (type 26) and links it to the

-

appropriate DCP's request queue. In processing the
header (type 26) the DCP returns a result of 0 if the
line is in the required state; otherwise a result of 7
is returned (unable to initiate).

Station tables only remain in DCP memory while
attached to a line. Whenever a station is redefined,
the changes must be made to the memory copy and
the copy in SYSRECON.

Data Comm Reload

To reload a DCP, that DCP must be in an "idle"
state (all lines not ready). To make this determin
ation, a header (type 26) is created by the DCA for
each line defined on the DCP being reloaded and
placed in the appropriate DCP request queue. When
the DCP services this header, it returns a result con
taining an indication of whether that line on the DCP
is in a "not ready" state. If all the lines on that DCP
are not ready, RELOAD is permitted. A message re
sult of 7 (unable to initiate) indicates the line is
ready. A result of 0 (complete and successful) indi
cates the line is not ready.

Processor Interface (Pl) code is embedded within
each DCP codefile. At RELOAD time a number of
locations must be saved and re initialized after the
code overlay. Included in these locations are many
of the PI variables.

... - @FFFF@
-

MESSAGE1, MESSAGE1,
BUFFER 1 BUFFER2

~ @FFFF@ .,..
__,,,

@FFFF@

(
+-

MESSAGE2, MESSAGE2, MESSAGE2,
BUFFER1 BUFFER2 BUFFER3

- - ~ @FFFF@

~
~

MESSAGE3,
MESSAGE3, BUFFER2

BUFFER1

-- _,
@FFFF@

MESSAGE4, MESSAGE4,
BUFFER1 BUFFER2

ED2297 Figure 12-22. Data Comm Buffer/Message Link Mechanism

12-35

APPENDIX A
DATA

COMMUNICATIONS
INITIATION AND
TERMINATION

GENERAL

This appendix describes the initiation and orderly
termination of the data communications subsystem
and what is involved in these operations.

DATA COMMUNICATIONS
INITIATION/TERMINATION

Initiation

When the SCL handler recognizes a request to
load/execute a program that involves data comm, the
following occurs:

1. If the program is an MCS and there currently
is no MCS within the system, JlliLllata CQfil!!!.
system is loaded and initialized from the pro
grnml!l!LNQ.Lfil'..S., prior to the execution of
the regue~t~d progr~DlJM~~). In the,event that
an MCS currently exists within the system, the
load/execute of the requested program is
aborted and the error message, LOAD FAIL
URE MCS ALREADY PRESENT, is displayed
on the SPO.

2. If the program is not an MCS, and an MCS ex
ists within the system, a normal load/execute of
the program is performed.

Termination

When the system recognizes that a task is termin-

ating or is to be terminated and that this task in
volves data comm, the following occurs:

1. If the program is an MCS, control is given to
the data comm subsystem which checks tasks
waited by the data comm system, and for those
tasks, sets the status key in the CD area equal
to 91, causing control to be returned to the
task. The data comm system is removed and
the indicator(s) utilized by the master communi
cate handler and the SCL handler, to indicate
the presence of the data comm system is set/re
set. The MCP can then remove the MCS.

a. · User tasks can continue or go to end-of-job
(EOJ) at their discretion.

b. Any future requests for access to the data
comm system are refused. A value of 91 is
set in the Status Key field of the CD area
and control is immediately returned to the
task. As before, the task can continue or go
to end-of-job.

2. If the program is not an MCS, and the data
comm system is present, control is given to the
data comm system which will:
Detach the task from subnet queues
Detach the task from stations
Send a message of type TASK DETACH to the MCS
Return to the operating system for normal EOJ/DS.

If the data comm system is not present, the nor
mal EOJ/DS is performed.

A-1

APPENDIX B

DATA
COMMUNICATIONS

COMMUNICATES

INTRODUCTION

This appendix describes the subset of CMS com
municates relevant to data communications. This
subset is known collectively as the Class D commu
nicates.

A communicate is the process by which an S-pro
gram requests the MCP to perform a function on its
behalf. Generally, these functions may be requested
by multiple S-programs and manipulate data not di
rectly accessible by the S-program. Having these
functions within the MCP eliminates the need for du
plication of code and also insures that the integrity
of the data is maintained. The interface to the MCP
is provided by the S-programs interpreter via the
communicate S-Op. The format of this S-Op may
vary for different languages, but because the MCP
interface is common to all languages, the interpreter
must present the parameters for the communicate in
a fixed format. The data area used to pass
parameters to the MCP is known as the communi
cate parameter area (CPA). The general format of
the CPA is as follows:

1. Verb. Defines the type of action to be per
formed.

2. Adverb. Qualifies the verb and defines the spe
cific actions.

3. Object. Describes the entity on which the ac
tion is to be performed.

The class D communicates consist of verb values
@30@ through @3F@. Because of the large number
of data communications functions required, the verb
of a class D communicate is used to specify a gener
al type of function; the adverb defines the actual
function.

This appendix is arranged in two parts. The first
defines all the class D verbs and the meaning of each
adverb value within a given verb. The second de
fines the CPA layout of each verb/adverb pair.

Sections 7 and 9 describe COBOL and MPLII
user data communications functions. Within this ap
pendix one set of CPA layouts exist for user data
comm; this being equally applicable to both COBOL
and MPLII. As stated previously, the interface to a
communicate is common; it is the joint responsibility
of the language compiler and interpreter to provide
the correct interface.

The following are the class D verb values.
Verb De1eription

@30@
@31@
@32@
@33@
@34@

MCS control communicates.
MCS interrogates.
MCS redefinition.
User data comm.
MCS DCP oriented
communicates.

Verb-Adverb CPA Values
Verb = 30

Communicate

QUEUE
QUEUE.DEPTH
SET.INPUT.LIMIT
SET .QUEUE.LIMIT
EXCHANGE.REFERENCE
FETCH.MESSAGE
GET.MESSAGE.SPACE
RELEASE.MESSAGE.SPACE
READ.HEADER
WRITE.HEADER
READ.TEXT
WRITE.TEXT
COPY.TEXT
CONTINUE.STATION
CONTINUE.TASK
ROUTE.INPUT
ROUTE.OUTPUT
ALLOW.INPUT
DISALLOW.INPUT
ALLOW .OUTPUT
DISALLOW .OUTPUT
SET.OUTPUT.LIMIT

Adverb

00
01
02
03
04
05
06
07
08
09
OA
OB
oc
OD
OE
OF
10
11
12
13
14
15

B-1

Verb = 31

Communicate

LINE.COUNT
STATION.COUNT
MODEM.COUNT
TERMINAL.COUNT
SUBNET.COUNT
LINE.NUMBER
STATION.NUMBER
QUEUE.NUMBER
LINE.DESCRIPTION
STATION .DESCRIPTION
MODEM.DESCRIPTION
TERMINAL.DESCRIPTION
SUBNET .DESCRIPTION
LINE.STATIONS
SUBNET .STATIONS
LINE.STATUS
STATION.STATUS
TASK.NAME
TASK.NUMBER
RECALL
CLEAR
SUBNET.STATUS
TASK.STATUS

Verb = 32

Communicate

REDEFINE.LINE
REDEFINE.STATION

Verb = 33

Communicate

ENABLE.INPUT
DISABLE.INPUT
ENABLE.OUTPUT
DISABLE.OUTPUT
RECEIVE
SEND
ACCEPT

Verb = 34

Communicate

DCP.RELOAD
DCP.PROGRAM.NAMES
DCP.PROGRAM.COUNT
DCP.DESCRIPTION
DCP.PROGRAM.TERMINALS
DCP.PROCESSORS

CPA Layouts

Adverb

()()

01
02
03
04
05
06
07
08
09
OA
OB
oc
OD
OE
OF
10
11
12
13
14
15
16

Adverb

()()

01

Adverb

00
01
02
03
04
05
06

Adverb

00
01
02
03
04
05

The following CPA layouts are divided in two cat
egories:

B-2

1. Communicates which may only be invoked
by an MCS program.
2. Communicates which may only be invoked
by a user data comm program.

Within each category the CPA layouts are arranged
in alphabetical order of function name.

MCS CPA Layouts

All functions set the most significant eight bits of
FETCHV ALUE equal to @00@ and the remaining
sixteen bits to the "functional result." The "func
tional result" is defined as follows:

1. @0000@ = complete and successful.
2. All other values = CMS event number de
fining the error encountered.

ALLOW.INPUT
ALLOW .INPUT (<queue number>, <task num
ber> <error option>);

Byte Vlllue Meaning

0 30 Verb
1 11 Adverb = ALLOW.INPUT
2 * Filter
3 * Queue Number
4 * Task Number

ALLOW.OUTPUT
ALLOW.OUTPUT (<station number>, <task num
ber> <error option>);

Byte Value

0 30
1 13
2-3 *
4 *

CLEAR

Meaning

Verb
Adverb= ALLOW.OUTPUT
Station Number
Task Number

CLEAR (<queue reference> <error option>);
Byte Value Meaning

0
1
2-3

31
14
*

Verb
Adverb = CLEAR
Queue Reference

CONTINUE.STATION
CONTINUE.STATION (<station number> <error
option>);

Byte Value Meaning

0 30 Verb
1 OD Adverb =

CONTINUE.STATION
2-3 * Station Number

CONTINUE.TASK
CONTINUE.TASK (<task number> <error op-
tion>);

Byte

0
OE
2

Value Meaning

30 Verb
OE Adverb = CONTINUE.TASK
* Task Number

COPY.TEXT
COPY.TEXT (<message variable>, <starting
byte>, <byte length> <message variable>, <start
ing byte> <error option>);

Byte Value Meaning

0 30 Verb
1 oc Adverb = COPY.TEXT
2-3 * Index to Message Reference
4-5 * Starting Byte Within Text

Area
6-7 * Index to Message Reference
8-9 * Starting Byte Within Text

Area
10-11 * Length = NUMBER OF

BYTES

DCP.DESCRIPTION
DCP.DESCRIPTION (<DCP number>, <variable>
<error option>);

Byte Value Meaning

0 34 Verb
1 03 Adverb =

DCP .DESCRIPTION
2 * DCP Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

DCP.PROCESSORS
DCP.PROCESSORS

0
1

Byte Value Meaning

34 Verb
05 Adverb =

DCP.PROCESSORS

DCP.PROGRAM.COUNT
DCP.PROGRAM.COUNT (<DCP number>)

Byte Value Meaning

0 34 Verb
1 02 Adverb =

DCP.PROGRAM.COUNT
2 * DCP Number

DCP. PROGRAM. NAM ES
DCP.PROGRAM.NAMES (<variable>);

Byte Value Meaning

0 34 Verb
1 01 Adverb =

DCP.PROGRAM.NAMES
2 * Filler
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

DCP.PROGRAM.TERMINALS
DCP .PROGRAM.TERMINALS (<DCP number>,
<variable>, <program name> <error option>);

Byte Value Meaning

0 34 Verb
1 04 Adverb =

DCP.PROGRAM.TERMINALS
2 * DCP Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable
8 * Filler
9 * Segment Number of Program

Name
10-11 * Offset of Program Name
12-13 * Size of Program Name

DCP.RELOAD
DCP.RELOAD (<DCP number>, <program name>
<error option>);

Byte Value Meaning

0 34 Verb
1 00 Adverb = DCP.RELOAD
2 * DCP Number
3 * Segment Number of Program

Name
4-5 * Offset of Program Name
6-7 * Size of Program Name

DEQUEUE
See FETCH.MESSAGE.

DISALLOW.INPUT
DISALLOW.INPUT (<queue number>, <task
number> <error option>);

Byte Value Meaning

0 30 Verb
1 12 Adverb =

DISALLOW.INPUT
2 * Filler
3 * Queue Number
4 * Task Number

B-3

DISALLOW.OUTPUT
DISALLOW.OUTPUT (<station number>, <task
number> <error option>);

Byte Value Meaning

0 30 Verb
1 14 Adverb =

DISALLOW.OUTPUT
2-3 * Station Number
4 * Task Number

EXCHANGE.MESSAGE
EXCHANGE.REFERENCE (<message variable>,
<message variable>);

Byte Value Meaning

0 30 Verb
1 04 Adverb =

EXCHANGE.REFERENCE
2-3 * Index to Message Reference
4-5 * Index to Message Reference

FETCH.MESSAGE AND DEQUEUE
FETCH.MESSAGE (<message variable>, <queue
reference> <wait option>);

0
1

Byte

2-3
4-5
6

30
05

*
*
*

Value Meaning

Verb
Adverb =
FETCH.MESSAGE/
DQUEUE
Index to Message Reference
Queue Reference
Wait Option
00 =WAIT
01 = DON'T WAIT

GET.MESSAGE.SPACE
GET.MESSAGE.SPACE (<message variable>,
<byte length>);

Byte Value

0 30
1 06

2-3 *
4-5 *

LINE.COUNT
LINE.COUNT

Meaning

Verb
Adverb =
GET.MESSAGE.SPACE
Index to Message Reference
Length = NUMBER OF
BYTES

Byte Value Meaning

0 31 Verb
1 00 Adverb = LINE.COUNT

B4.

LINE.DESCRIPTION
LINE.DESCRIPTION (<line number>, <variable>
<error option>);

Byte Value Meaning

0 31 Verb
1 08 Adverb =

LINE.DESCRIPTION
.

2 * Line Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

LINE.NUMBER
LINE.NUMBER (<line address>)

Byte

0
1
2-3

31
05
*

Value Meaning

Verb
Adverb = LINE.NUMBER
Line Address

LINE.STATIONS
LINE.STATIONS (<line number>, <variable>
<error option>);

Byte Value Meaning

0 31 Verb
1 OD Adverb = LINE.STATIONS
2 * Logical Line Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

LINE.STATUS
LINE.STATUS (<line number>, <variable> <er
ror option>);

Byte Value Meaning

0 31 Verb
1 OF Adverb = LINE.STATUS
2 * Logical Line Number
3 * Segment Number of Variable
4-S * Offset of Variable
6-7 * Size of Variable

MODEM.COUNT
MODEM.COUNT

Byte Value Meaning

0 31 Verb
1 02 Adverb = MODEM.COUNT

MODEM.DESCRIPTION
MODEM.DESCRIPTION (<modem number>,
<variable> <error option>);

Byte Value

0 31

Meaning

Verb

Byte Value Meaning

1 OA Adverb =
MODEM.DESCRIPTION

2 * Modem Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

QUEUE
QUEUE (<message variable>, <queue reference>
<error option>);

Byte Value Meaning

0 30 Verb
1 00 Adverb = QUEUE
2-3 * Index to Message Reference
4-5 * Queue Reference

QUEUE.DEPTH
QUEUE.DEPTH (<queue reference>)

Byte

0
1
2-3

Value

30
01
*

Meaning

Verb
Adverb = QUEUE.DEPTH
Queue Reference

QUEUE.NUMBER
QUEUE.NUMBER (<queue name>)

Byte Value Meaning

0 31 Verb
1 07 Adverb = QUEUE.NUMBER
2 * Filler
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

READ.HEADER
READ.HEADER (<message variable>, <variable>
<error option>);

Byte Value Meaning

0 30 Verb
1 08 Adverb= READ.HEADER
2-3 * Index to Message Reference
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable

READ.TEXT
READ. TEXT (<message variable>, <starting
byte> <byte length>, <variable> <error option>);

0
1

Byte Value Meaning

30 Verb
OA Adverb = READ.TEXT

Byte Value Meaning

2-3 * Index to Message Reference
4-5 * Starting Byte Within Text

Area
6-7 * Length = NUMBER OF

BYTES
8 * Filler
9 * Segment Number of Variable
10-11 * Offset of Variable

RECALL
RECALL (<queue reference> <error option>);

Byte

0
1
2-3

31
13
*

Value Meaning

Verb
Adverb = RECALL
Queue Reference

REDEFINE.LINE
REDEFINE.LINE (<line number>, <variable>
<error option>);

Byte Value Meaning

0 32 Verb
1 00 Adverb = REDEFINE.LINE
2 * Logical Line Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

REDEFINE.STATION
REDEFINE.STATIONS (<station number>,
<variable> <error option>);

Byte Value meaning

0 32 Verb
1 01 Adverb =

REDEFINE.ST A TION
2-3 * Logical Station Number
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable

RELEASE.MESSAGE.SPACE
RELEASE.MESSAGE.SPACE (<message
variable>);

Byte Value Meaning

0 30 Verb
1 07 Adverb =

RELEASE.MESSAGE.SPACE
2-3 * Index to Message Reference

ROUTE.INPUT
ROUTE.INPUT (<station number>, <queue refer
ence> <reroute> <error option>);

B-5

Byte Value

0 Verb
1
2-3
4-5
6

30
OF
*

Adverb = ROUTE.INPUT
Station Number

*
*

Queue Reference
Reroute Option
00 =REROUTE
01 = DON'T REROUTE

ROUTE.OUTPUT
ROUTE.OUTPUT (<station number>, <queue ref
erence> <error option>);

Byte Meanin&
1
2-3
4-5

Value
10 Adverb = ROUTE.OUTPUT
* Station Number
* Queue Reference

SET.INPUT.LIMIT
SET.INPUT.LIMIT (<station number>, <limit>
<error option>);

Byte Value Meaning

0 Verb
1
2-3
4

30
02
*

Adverb = SET.INPUT.LIMIT
Station Number

* Limit

SET.OUTPUT.LIMIT
SET.OUTPUT.LIMIT (<task number>, <limit>
<error option>);

Byte Value Meaning

0 30 Verb
1 15 Adverb =

SET.OUTPUT.LIMIT
2 * Filler
3 * Task Number
4 * Limit

SET.QUEUE.LIMIT
SET.QUEUE.LIMIT (<queue reference>, <limit>
<error option>);

Byte Value Meaning

0 30 Verb
1 03 Adverb =

SET.QUEUE.LIMIT
2-3 * Queue Reference
4 * Limit

STATION.COUNT
STATION.COUNT

0
1

B-6

Byte Value Meaning

31 Verb
01 Adverb = STATION.COUNT

STATION.DESCRIPTION
STATION.DESCRIPTION (<station number>,
<variable> <eror option>);

Byte Value Meaning

0 31 Verb
1 09 Adverb =

ST A TION .DESCRIPTION
2-3 * Station Number
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable

STATION.NUMBER
STATION.NUMBER (<station name>)

Byte Value Meaning

0 31 Verb
1 06 Adverb =

STATION.NUMBER
2 * Filler
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

STATION.STATUS
STATION.STATUS (<station number>,
<variable> <error option>);

Byte Value Meaning

0 31 Verb
1 10 Adverb = STATION.STATUS
2-3 * Logical Station Number
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable

SUBNET.COUNT
SUBNET.COUNT

0
1

Byte Value Meaning

31 Verb
04 Adverb = SUBNET .COUNT

SUBNET.DESCRIPTION
SUBNET .DESCRIPTION (<queue number>, <var
iable> <error option>);

Byte Value Meaning

0 31 Verb
1 oc Adverb =

SUBNET .DESCRIPTION
2 * Queue Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

SUBNET.STATIONS
SUBNET.STATIONS (<queue number>,
<variable> <error option>);

Byte Value Melllling

0 31 Verb
1 OE Adverb =

SUBNET.STATIONS
2 * Queue Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

SUBNET.STATUS
SUBNET.STATUS (<queue number>, <variable>
<error option>);

Byte Value

0 31
1 15
2 *
3 *
4-5 *
6-7 *

TASK.NAME

Meaning
Verb
Adverb = SUBNET.STATUS
Queue Number
Segment Number of Variable
Offset of Variable
Size of Variable

TASK.NAME (<task number>, <variable> <error
option>);

Byte Value Meaning

0 31 Verb
1 11 Adverb = TASK.NAME
2 * Task Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

TASK.NUMBER
TASK.NUMBER (<task name>)

Byte Value Melllling

0 31 Verb
1 12 Adverb = TASK.NUMBER
2 * Filler
3 * Segment Number of Variable
4-5 * Offset of V Ariable
6-7 * Size of Variable

TASK.STATUS
TASK.STATUS (<task number>, <variable> <er
ror option>);

Byte Value Melllling

0 31 Verb
1 16 Adverb = TASK.STATUS
2 * Task Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

TERMINAL.COUNT
TERMINAL.COUNT

0
1

Byte

31
03

Value Meaning

Verb
Adverb =
TERMINAL.COUNT

TERMINAL.DESCRIPTION
TERMINAL.DESCRIPTION (<terminal number>,
<variable> <error option>);

Byte Value Melllling

0 31 Verb
1 OB Adverb =

TERMINAL.DESCRIPTION
2 * Terminal Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

WRITE.HEADER
WRITE.HEADER (<message variable>,
<variable> <error option>);

Byte Value Melllling

0 30 Verb
1 09 Adverb = WRITE.HEADER
2-3 * Index to Message Reference
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable

WRITE.TEXT
WRITE.TEXT (<message variable>, <starting byte>,
<byte length >,<variable>< error option >);

Byte Value Meaning

0 30 Verb
1 OB Adverb = WRITE.TEXT
2-3 * Index to Message Reference
4-5 * Starting Byte within Text

Area
6-7 * Length = NUMBER OF

BYTES
8 * Filler
9 * Segment
10-11 * Offset of Variable

B-7

ACCEPT
Byte

0
1
2
3

4-5

Value

33
06

*
*

*

Meaning

Verb
Adverb = ACCEPT
Filler
Segment Number of Input CD
Area
Offset of Input CD Area

ENABLE INPUT
Byte Value Meaning

0 33 Verb
1 00 Adverb = ENABLE INPUT
2 * Filler
3 * Segment Number of Input CD

Area
4-5 * Offset of Input CD Area
6 * Filler
7 * Segment Number of KEY
8-9 * Offset of KEY
10-11 * Size of KEY

DISABLE INPUT
Byte Value Meaning

0 33 Verb
1 01 Adverb = DISABLE INPUT
2 * Filler
3 * Segment Number of Input CD

Area
4-5 * Offset of Input CD Area
6 * Filler
7 * Segment Number of KEY
8-9 * Offset of KEY
10-11 * Size of KEY

ENABLE OUTPUT
Byte Value Meaning

0 33 Verb
1 02 Adverb = ENABLE

OUTPUT
2 * Filler
3 * Segment Number of Output

CD Area
4-5 * Offset of Output CD Area
6 * Filler
7 * Segment Number of KEY
8-9 * Offset of KEY
10-11 * Size of KEY

DISABLE OUTPUT
Byte

0

B-8

Value

33

Meaning

Verb

Byte Value Meaning

1 03 Adverb = DISABLE
OUTPUT

2 * Filler
3 * Segment Number of Output

CD Area
4-5 * Offset of Output CD Area
6 * Filler
7 * Segment Number of KEY
8-9 * Offset of KEY
10-11 * Size of KEY

RECEIVE

0
1

3

Byte

4-5
6
7

8-9
10-11

SEND

0
1
2

Byte

3-4
5

6-7
8
9

10-11
12-12

Value Meaning

33 Verb
04 Adverb = RECEIVE
* Adverb 2 = WAIT IF NO

MESSAGE = 00;
= DO NOT WAIT IF NO
MESSAGE= 01

* Segment Number of Input CD
Area

* Offset of Input CD Area
* Filler
* Segment Number of Data

Area
* Offset of Data Area
* Size of Data Area

33
05
*

*
*

*
*
*

*
*

Value Meaning

Verb
Adverb = SEND
Adverb 2:

1BIT 7 (MSB) = 0 = w AIT
1 = NOWAIT

BITS 6-1 = 0
BIT 0 (LSB) = 0 = EGI

1 = EMI
Skip Control
Segment Number of Output
CD Area
Offset of Output CD Area
Filler
Segment Number of Data
Area
Offset of Data Area
Size of Data Area

NOTE
* WAIT is used only by MPLil.

APPENDIX C

SAMPLE CMS

DATA COMMUNICATION PROGRAMS
The following describes a model data comm sys

tem consisting of an MCS, functionally equivalent
COBOL, MPLII, and RPG programs, and an NDL
program. Each program is illustrated by means of a
functional description followed by the program list
ing. This system is not intended to be used in a pro
duction environment; it is merely an example of the
possible use of DC subsystem facilities.

By including these sample programs, the interface
between the various levels of the DC subsystem is
illustrated.

THE MODEL MCS

Functional Description

The model MCS is a slightly expanded version of
the MCS published as an example in the MPLII Ref
erence Manual. It has the following characteristics:

1. When started, the MCS participates for
both input and output for all stations defined
in the network.

2. Each line is made ready.

3. On receiving an input message, the MCS
returns it to the sending station if no control
character was used, or interprets the message
as a command if a control character was used.

4. DC commands may be input from the sys
tem console.

5. If a user DC task attempts input from a
subnet or output to a station, the MCS allows
such input/output after having performed the
appropriate ROUTE.INPUT or ROUTE.OU
TPUT operations. (That is, the MCS becomes
non-participating for those stations with which

. the user task communicates.)

6. ENABLE.INPUT,. ENABLE.OUTPUT,
DISABLE.INPUT, and DISABLE.OUTPUT
messages have no effect on the MCS.

7. More than one DC task is supported.
8. Any one task may use one subnet at a
time; that subnet must not have more than ten
stations in it. (Note: This is not a system re
striction but one peculiar to this MCS.)

9. When a task goes to end-of-job, the MCS
again participates for the stations with which
the task was communicating.

Detailed Description

Identifiers

User-defined names are defined as they are en
countered during the discussion of the functions of
the MCS. However, there are a number of univers
ally-used identifiers which are described here (see
seq. 1600-16400).

Note the use of defines for various message types
(seq. 1800 -2200); also BEGIN is defined as [DO;[,
CH as [CHARACTER], TRUE as [[@FFFF@], and
FALSE as [@0000@]. Defining identifiers for queue
references is also useful (seq. 2400 -2700). MSG is a
message reference and MSG .HDR is a data structure
into which message headers are placed (seq. 3500 -
5500). TEXT is used to contain message text of com
mand messages.

Director

The main driver of the MCS is near the end of the
program starting at seq. 68800. The algorithm used
is:

1. Initialize.
2. Take the next message from the MCS
queue.
3. Log the message.
4. If the message does not have "complete
and successful" in the result field, then
analyze the result and go to step 6.
5. Perform action routines as determined by
message type. ·
6. Return message space to DC buffer if still
in use. (That is, if pointed to by MSG.)
7. Stop if commanded by the operator.
8. Go to step 2.

Each step in this simple logic flow will be described
in more detail.

Initialize Routine

Name: INITIALIZE. Seq: 66000-68700.

This routine performs the following:

1. Displays program version number.
2. Space-fills print buffer (used for logging).
3. Routes input and output messages to the

MCS queue for all stations.

C-1

4. Sets the MCS queue limit to five messages.
5. Makes all lines ready.

NOTE
1. MAX.STAS and MAX.LINES con
tain the highest valid logical station
number and logical line number respec
tively. These are found (seq. 6700 -
6800) using built-in functions.

2. The LINE.PENDING flag is used to
prevent multiple "make line ready"
messages being queued to the network
controller, thus saving message space.

3. The basic technique of creating a
message is demonstrated at seq. 67900
-68300.

Take Message from MCS Queue

This is done at seq. 69900 -70000.

The FETCH.MESSAGE built-in procedure points
MSG to the next message in the MCS queue, and
delinks that message from the MCS queue.

The READ.HEADER built-in procedure copies
the message header pointed to by MSG into
MSG.HDR.

NOTE
FETCH.MESSAGE has a NOWAIT
option which allows the MCS to contin
ue executing, even if no messages were
in the MCS queue. (To check this,
compare MSG with the null value using
the NULL built-in function.) This fea
ture must be used with acumen as, if
used carelessly, the MCS can get into
a processor-bound loop. This means,
on the B 80, that user tasks do not get
any processor time because the MCS
has a higher priority. However, if used
in conjunction with conditional 1/0, for
example, it can increase the efficiency
of the MCS. The motto here is: BE
CAREFUL.

Log the Message

This is done at seq. 70100 -70300.

It is always useful to write debug-code into a pro
gram from the start.

Here, compile-time and run-time options set or re
set the debug code. If the user dollar - option DE-

C-2

BUG (seq.300) is set, the debug code is compiled
into the program. When the MCS has been de-
bugged, this code can be excluded from the final
version merely by resetting this option for the final
compile.

The procedure LOGGIT (seq. 64600 - 65600)
prints logical station number, message type, and up
to the first 1200 characters of message text for all
messages taken from the MCS queue. This can be
done only if the flag PRINT.EM is true. (PRINT.EM
is set or reset from the SPO by SD and ED com
mands.)

Process Non-Zero Results

This is done by calling DO.RESULT (seq. 47200
- 49300) at line 70600.

A non-zero result implies that there is a special
circumstance associated with this message.

The procedure DO.RESULT is not complete in
that is handles only three of the ten defined results.
A production MCS should be coded to handle all
possible results. The three handled are:

1. Line not ready.
2. Station not ready.
3. Control character or WRU character re
ceived.

The first two of these asks the operator to ready
the line or station as required. If a controVWRU is
received, the message is handled by the DO.I
NPUT.MSG routine which is described later.

NOTE
The control/WRU received result indi
cates that the associated message is an
input message consisting of either the
WRU character or the station's control
character followed by the message text.
(The actual case can be determined
from the events field in the message
header.) The MCS programmer and the
NDL programmer must agree on the
following:

1. Will control characters be recognized?
2. Will they be passed to the MCS as part of
the text?

In a "real" MCS, this procedure would be more
comprehensive. It would perform more error han
dling (analyzing the events field and perhaps logging
the specific error on disk or the SPO).

Perform Action Routines

The code for this is at seq. 70600 - 74900.

A switch is made depending on the value of the
message type field (MSG.TYPE), and a different ac
tion is taken depending on the type of message. The
only message types which are handled here are:

1 Input (from remote device)
6 Station has been made ready
0 Line has been made ready
15 DC input from SPO
18 Request (from MCP) to attach a task to a
subnet
19 Request (from MCP) to attach a task to a
station
25 Task has gone to end-of-job

It is obvious that a "real" MCS would handle the
majority, if not all, of the possible message types.

Each action routine is now described in turn.

Input Message (1)

An input message is handled by DO.INPUT.MSG
(seq. 37100-38900) which is called at seq. 70800. (It
may also be called from DO.RESULT at seq. 4890.)

DO.INPUT.MSG performs the following:

1. Decrements the unprocessed input message
count for the station which sent the message
(CONTINUE.ST A TION).
2. If the control character received flag is not
set, it sends the message back to the station;
otherwise,
3. Sets SPO.MSG to false (indicating that the
message was not from the SPO); sets TEL
L.SPO to false (indicating that any reply to
this command is to be returned to the sending
station). Depending on the command, TEL
L. SPO may be reset to true in the DO.DC.
INPUT procedure; calls DO.DC.INPUT (seq.
49700 - 57500) to handle this message as a
command text.

NOTE
1. For every input message which ap
pears on the MCS input queue, the
MCS must issue a
CONTINUE.STATION command to
acknowledge receipt of the message. If
this is not done, the network controller
is prevented from obtaining DC mes
sage space for a station when the num
ber of unacknowledged messages
(which have been placed on the MCS

queue from that station) exceed its in
put limit. The input limit for a station
is set using the SET.INPUT.LIMIT
statement, the default being two.

2. The most efficient way of re-routing
a message is to change the required
fields in the message header and put it
on the network controller queue (or
subnet queue if sending it to a task).
(See seq. 37800 - 38100.)

3. By setting the retry field in the mes
sage header to @FF@, the MCS is in
dicating that the retry count is to be
handled completely by the network
controller. Any other value would set
the retry count for the corresponding
station to MSG.RETRY. This facility is
B 80 implementation dependent. How
ever, if required it may be emulated on
other CMS systems by inclusion of the
following code between (PTO). Seq
40001500 - 40001600 of REQUEST
UPOLLED and seq 70000500 -
70000600 of REQUEST SELECTIT.
(See sample NDL program.)

IF RETRY = 255 THEN INITIALIZE
RETRY.

Make Station Ready (6)

A message of this type appears in the MCS queue
(with result = 0) as a confirmation that a station has
been made ready. This means that the MCS must
have previously queued a make station ready mes
sage to the network con.troller.

This action routine is coded at seq. 71300 - 71900.
The actions taken are:

1. Set ST A.PENDING flag for this station to
0, indicating action complete.

2. Inform the operator (at the SPO) that the
station is ready.

Make Line Ready (8)

A message of this type appears in the MCS queue
(with result = 0) as a confirmation that a line has
been made ready. This means that the MCS must
have previously queued a make line ready message
to the network controller.

C-3

This action routine is coded at seq. 72100 - 72700.
The actions taken are: ·

1. Set LINE.PENDING flag for this line to 0,
indicating action complete.
2. Inform the operator that the line is ready.

Operator Input (15)

A message of this type appears in the MCS queue
as a result of the operator inputting a DC message
at the SPO.

The action routine (DO.DC.INPUT) is called at
seq. 73700 after setting TELL.SPO and SPO.MSG to
true. (This is necessary to distinguish type 15 mes
sages from type 1 messages when control-flag =
true.)

Procedure DO.DC.INPUT (seq. 49700 - 57500) an
alyzes messages as command strings and performs
actions accordingly. The available commands are:

END
RS <n>
RL <n>
TO <n> <text>
TO SPO <text>
SS <n> <text>
SS SPO <text>
SS
ED
QM <n> <text>

ZIP <text>
WRU
WM

:terminates the MCS
:readies station <n>
:readies line <n>
:sends <text> to station <n>
:sends <text> to SPO
:see TO
:see TO
:start debug print
:end debug print
:queue a message with
<text> on subnet queue <n>
:pass <text> to SCL/loader
:return version message
:see WRU

DO.DC.INPUT calls two routines (LOOP.UP and
SCAN) to handle the logical analysis of the com
mand string. As the functions are not directly related
to data comm, they will not be described in detail,
but a brief description is given for completeness.

LOOK.UP (seq. 27500 - 30000) performs a linear
search through the VERB.TABLE (see seq. 8700 -
9700 and 77900 - 79000) looking for a match between
the current token and the name of the verbs in
VERB.TABLE.

SCAN (seq. 16900 - 27100) uses SOURCE as input
and TOKEN as output (seq. 10100 - 13800). After a
call on SCAN, TOKEN contains the next identifier,
and the number of special character from SOURCE.
T.SIZE contains the binary equivalent of TOKEN if
it is a number. WHICH.VERB identifies the verb.

C4

The logic of DO.DC.INPUT proceeds as follows:

1. Copy up to 255 characters of the message
text into SOURCE.
2. Set-up variables for SCAN.
3. If the message came from a remote station,
skip over the first token as it is the special
control character. (This assumes that the con
trol character for any station is not a space
character and is non alpha-numeric, and that
the network controller passes the control
character to the MCS as part of the message
text. This need not be the case, but it is used
here as a convention.)
4. Search for the verb.
5. Take action appropriate to the verb found.

The logic for each verb is fairly straightforward.
The major points are noted below:

END The quit flag is set, and this is used
to stop the main loop (seq. 52000
and 75100).

RS

RL

TD/SS

The READY.STATION procedure
(seq. 32900 -35100) sets
ST A.PENDING flag to 1. (This
prevents multiple make station ready
messages existing for a station at any
one time.) It then constructs a make
station ready message and queues it
to the network controller queue. Note
that GET.MESSAGE.SPACE is used
to get a new message header with no
associated message text. This means
that the next space occupied by the
RS message is returned to the DC
message pool. Although trivial in this
case, the technique can save space
when used in a read MCS. This
procedure has no effect if
STA.PENDING is 1 on entry.

Uses READY.LINE (seq 35500 -
36700) and is very similar to RS.

The main point of interest in this
command is the use of procedure
TELL (seq. 30400 -35500). This
procedure sends the message TALE
(in its entirety if the second
parameter is either missing or not of
type fixed, or the frrst TALE.SIZE
characters otherwise) to either the
SPO or a· remote station. The logic
proceeds as follows: 1) calculate how
many characters are to be sent; 2) if
the message is for the SPO then
display it; otherwise: 3) compare the
number of characters to be sent + 1
(for a form feed character) with the

size of the text area of the message
pointed to by MSG. If the current
text area is too small, the current
message is released and gerted with
the required text size; and 4)
construct the message (placing a form
feed character at the beginning) and
queue it to the network controller
queue.

SD Opens the printer file and writes
heading (seq. 39300 -40700). A real
system would use conditional I/O.
(Make sure files have enough
buffers.)

ED Closes printer file. Same comment as
for SD.

QM Constructs an input message with
text as for command and places this
message on a subnet queue.

ZIP Passes message to SCL/loader. The
error option in ZIP should be used
as an invalid SCL string following
ZIP, causing the MCS to be aborted
(DS/DP) by the MCP.

WRU/WM Uses TELL to send version message
(seq. 1200).

If LOOK.UP cannot find the verb, or a verb
which is restricted to SPO, use is entered from a re
mote device and the last entry in the "case" is per
formed.

Attach Task to Subnet Queue (18)

A message of this type is placed on the MCS
queue as part of the processing of the first input data
communication request from a task which refers to
this subnet queue. The message is processed by
DO.ATTACH.SUBN (seq. 57900 -61700), and the
logic performed is:

1. Determine the number of stations on the
subnet and their logical station numbers (seq.
58600 -59400).

2. Store these in the table TASK.STATIONS
(see comments at seq. 14600 - 15400) unless
the table slot for this task is already in use,
in which case access to the requested subnet
is denied.

3. Route the input for each station in the
subnet to the task. (Note that the MCS must
explicitly route each station in the subnet fam
ily.)
4. Allow the task to access the subnet queue.

Attach Task to Station (19)

A message of this type is placed on the MCS
queue by the MCP as part of the processing of the
first output data communications request from a task
which refers to this station. The message is pro
cessed by DO.ATTACH.STA (seq. 63900 - 64200)
which routes output from the task to the network
controller queue and allows the task to communicate
with the station.

Detach Task (25)

A message of this type is placed on the MCS
queue by the MCP when a data comm task goes to
end-of-job. The action taken is a design feature of
the MCS. In this case, DO.TASK.DETACH (seq.
62100 - 63500) is called to re-route input messages
for the stations which were attached to the task back
to the MCS queue. If this re-routing was not per
formed, then any input messages from these stations
would pile-up on the subnet queue until the unpro
cessed input count exceeded the queue limit of the
subnet queue. (Note that the task no longer exists
and it is unnecessary to re-route output messages.)

Return Message Space

This is performed at 75000. It is done so that mes
sage space is returned to the pool of available DC
message space as soon as possible. If, for instance,
a message appears in the MCS queue which is ig
nored, (for example: enable-input) associated mes
sage space would become free.

Stop

If the quit flag is set to 1 (seq. 52000), the MCS
prints "MCS HALTED" and goes to end-of-job
(seq. 75100 - 75400).

NOTE
DO NOT USE THIS MCS IN A PRO
DUCTION ENVIRONMENT

MODEL.MCS does not perform any serious error
handling. Should an error occur it is aborted
(DS/DP) by the MCP. This is not desirable in any
data comm system.

It is hoped that the above narrative is of help to
potential MCS authors.

C-5

1
2
3
ft

5
6
7
8
9

10
11.
12
13
g.
15
16
17
18
19
20
2l
2E
';YA',
:?ft
25 -
26
'2?
28
~.>

30
31
32
33
3lr
35
36
-:fl
38
~
40
4t
42
43
4i1·
4.5
'16 , ..,
•1·/

40
'1-9
50
51
51?
53
54.
$

C-6

$CONTROL 300 DATA 2000
$RESET CHECKS
$SET DEBUGN
$LIST
$NOWARNING
$MCS 4

SAMPLE MCS PROGRAM

00000100
00000200
00000300
00000400
00000500
00000600

~{7.7.r.:c1.r.nr.r.r.r.r.r.r.n7.7.7.7.7.7.7.7.7.7.i:7.nr.r.;::1.:1.r.r.xr.7.nxr.n:c1.;::m~:.r.:ct.7.i:i~7.xr.r.r.:t.r.:t.r.1.7.ooooobos
. 7. %00000610
f. PROPRIETARY PROGRAM MATERIAL 7.00000615
%
% THIS MATERIAL IS PROPRIETARY TO BUP.HO!JGHS CORPORATION AND IS
% NOT TO BE REPRODUCED, USED OR DISCLOSED EXCEPT IN ACCORDANCE WITH
7. PROGRAM LICENCE OR UPON WRITTEN AUTi-IORIZATION OF THE PATEUT
7. DIVISION OF BURROUGHS CORPORATION, DETROIT, MICHIGAN 48232.
%
7. COPYRIGHT <C> 1979 BURROUGHS CORPORATION

7.
7.
7.
7.

PROCEDURE OLDWEIRDHAROLD;

THIS SAMPLE MCS SHOULD BE READ IN CON.JUNCTION WITH
THE NOTES PROVIDED. (FILEID: DCMCSNOTES.)

:wooc•0620
7.000C0625
/.OOOC0630
:'C•OC00635
7.000C•064-0
:woooo64S
1:00000.sso
:,00000655

00000700
00000800
00000900
00000910
00000920

i.7.7.7.7.%%7.7.7.7.7.7. T H I S
%
%
%

I S A S A M P L E o N L Y 7.7.7.i.i::i.:,7.7.7.:cm::~:~ooo00930
000('0940

...
I.

AND !S NOT SUITABLE FOR USE IN A PRODUCTION ENVIRONMENT.

DEFINE VERSION
£"MODEL MCS MARK 3.0.2"£;

DEFINE
MESSAGE TYPES

INPUT £1£,
OUTPUT £2£,
ENABLE. INPUT £4£,
MAKE.ST~.RDY £6£1

MAKE.LINE.RDY £8£,
QUEUES

MCSQ £@0000@£,
NCQ £@1000@£,
SUBQ £@2000@£,

STAQ £@3000@£,
MISCELLAtlEOUS

CH £CHARACTER£,
BEGIN £DO;£,
TRUE £@FFFF@£,
FALSE £@0000@£,

HAX.£RRS £7£;

DECLARE
MSG MESSAGE.REFERENCE,
1 MSG.HDR

2 MSG.LINE
CHC35) 1

CH(1 >,

OOC.00950
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500
00003600
00003700
00003900

Sl1 2 MSG.RESULT CH< 1> 1 00003900
57 2 MSG.TYPE CHCD, 00004000
SB 2 MSG.TSK CH(l), 0000lt100
5f;' 2 DUMMY CH(1), OOC10t1200
!:Al 2 MSG.STA FIXED, 000 1Yt300
61 2 DUMMY CH< 1) T 0000ft400
!2 2 MSG.EVENTS CHC3), 00004500
63 3 DUMMY CHCD 1 OOOOl1600
Ch 3 MSG.CC.REC'JD BITC1) 1 00004700
65 3 DUMMY BIT<7), 00004800
66 3 DUMMY CHC 1>, 00004900
67 2 MSG.SUBQ FIXED, 00005000
6El 2 MSG.LNTH FIXED, 00005100
69 2 MSG.MAX.LNTH FIXED, 00005200
70 2 DUMMY CHC1) 1 00005300
71 2 MSG.RETRY CH< 1l 1 0000!5400
72 2 DUMMY CHC16) 1 00005500
7:.~ TEXT CHC255) 1 00005600
74- QUIT FIXED, 00005700
7S LSN FIXED, 00005800
76 LLN FIXED, 00005900
7l MAX.SUBQS FIXED, 00006000
78 Mr1X.STAS FIXED, 00006100
79 MAX.LINES FIXED; 00006200
80 % 00006300
81 % 00006400
82 % 00006500
83 MAX.SUBQS:=SUBNET.CIJUNT-1; 00006600
Slt MAX. STAS: =ST f:T ION. COUNT i 00006700
ffi Mt1X. LINES: =LI NE. COUNT; 00006800
86 x 00006900
87 % 00007000
00 x 00007100
89 DECLARE 00007200
90 1 STA.TABLECMAX.STAS> CHC1> 1 00007300
91 2 STA.PENDING BIH1> 1 00007400
92 2 DUMMY BITC7) 1 00007500
93 % 00007600
94 1 LINE.TABLECMAX.LINES). CHC1>, 00007700
95 2 LINE. PENDING BITC1>, 00007800
96 2 DUMMY BIT<7>; 00007900
97 MAX.STAS:-1; 00008000
98 MAX.LINES:-1; 00008100
99 % 00008200

100 % 00009300
101 ., COMMAND HANDLING STUFF. 000084-00 ;.

102 % 00008500
.103 % 00008600
104 DEFHlE V.TAB.SIZE £077£; 7. 7 *NO. OF VERBS 00008700
105 SEGMENT VERB.SEGCV.TAB.SIZE>; 00008800
106 REMAP 'JERB.SEG: 00008900
107 1 VERB.TABL~ C'J.TAB.SIZE> CH(7) 1 ooc109000
108 2 VERB CHC4-) 1 7.NAME OF COMMAUD 0000Ci'100
109 2 VERB.NO FIXED, f.l·IHICH.VERE - ALLOWS SYNONYMS 00009200
110 2 VERB.SPO.ONLY CHC1>; HRUE IF VERB RESTRICTED TO SPO USE 00009300

C-7

111 DECLARE 00009't00
112 WHICH.VERB FIXED, I.INDEX TO RECOGNISE CURRENT VERB 00009500
113 SPO.MSG FIXED, i.TRUE IF CURRENT MESSAGE FROM SPO 00009600
114 TELL.SPO FIXED; I.TRUE IF REPLY IS TO SPO 00009700
115 % 0000?800
116 % SCANNER STUFF 00009900
117 % 00010000
11.B SEGMENT TIPE.SEG(12S>; 00010100
11.9 REMAP TIPE.SEG: TIPE(128l CH'1>; 00010200
1c~O DECLARE 00010300
1~~1 ALL.DONE FIXED, i:TRUE IF NO MORE TO SCAN IN THIS REC. 000104-00
1C.12 SOURCE CH(2SS>, i.TEXT CURRENTLY BEING SCANNED 00010500
123 M.SIZE FIXED, i.SIZE OF SOURCE 00010600
l.N PTR FIXED, i!OFFSET IN SOURCE OF NEXT CHAR. 00010700
125 CHAR CHC U, i.CHARACTER WHAT SCANNER IS LOOKING AT 00010800
11:~6 C. TIPE FIXED, I.CODE INDICATING TYPE OF "CHAR" ~ 00010900
127 .7. 0 = ALPHA 00011000
120 7. 1 = NUMERIC 00011100
1P9 i. 5 = SPECIAL CHARACTER 00011200
130 7. 6 = SPACE 00011300
131 % 9 = NON-GRAPHIC CHARACTER 0001HOO
132 TOKEN CH(O); I.POINTS TO CURRENT SYMBOL 00011500
133 SEGMENT TOKE~.SEGCC62>; 00011600
134 REMAP TOKEN.SE&: 00011700
135 T.TYPE FIXED, ~(TOKEN TYPE 00011800
136 T.SIZE FIXED, X TOKEN STRING LENGTH 00011900
B7 T.VALUE FIXED, i. TOKEN VALUE IF T.TYPE IS NUMBER 00012000
138 T.STRING CHC255), i. TOKEN STRING 00012100
139 T • DUMMY CIH 1 >; i. 00012200
l'i·O DEFINE 00012300
1li-1 IDENTIFIER£0£1 00012400
1t,.2 NUMBER £1£, 00012500
:i.li-3 STRING £2£, 00012600
14·4 SPECIAL.CHAR£3£, 00012700
14-5 TERMINATR £4£, 00012800
14-6 BLANK £5£, 00012900
1'1-7 RETH £6£.1 00013000
11,.a END.CHAR £@FF@.£, 00013100
g.9 IDENTIFIER.TOKEN £CT.TYPE=IDENTIFIER>£, 00013200
150 NUMBER.TOKEN £.CT. TYPE=NUMBER>£, 00013300
151 STRING. TOKEN £CT.TYPE=STRING)£1 00013'~00

1~')2 SPECIAL.CHAR.TOKEN £(T.TYPE=SPECIAL.CHAR>£, 00013500
153 TERMINATOR.TOKEN £CT.TYPE=TERMINATR)£1 00013600
154 SPACE.TOKEN £CT.TYPE=BLANK)£, 00013700
155 RETURN.TOKEN £CT. TYPE=RETtH£; 00013900
156 7. 00013900
157 ., OTHER DECLARATIONS FOR USE OF THE GENERAL POPULACE 00014000 4

158 i. 00014100
159 DECLARE 00014200
160 1 TASK.STATIONS CIH199) I 00014300
161 2 TSK.STN FIXED; 00014400
162 i. 00014500
U13 7. TASK.STATIONS IS USED TO HOLD LSN OF EACH STATION WHICH 00014600
164 7. IS CAPABLE OF INPUTING TO A TASK. THERE IS A SLOT IN THIS 00014700
165 % TABLE FOR UP TO 9 TASKS. EACH SLOT CONSISTS OF A NUMBER 00014900

C-8

166 i.
167 7.
168 i.
1b9 i.
170 i.
1?1 i.
1?2 7.
1?3
174
11'5
176
177
1?8
179
180
1B1

<FIXED VALUE> INDICATING THE NUMBER OF STATIONS FOR THIS TASK
FOLLOWED BY A LIST OF LSN-S FOR THIS TASK. SINCE EACH SLOT
IS 11 NUMBERS LONG THERE IS A RESTRICTION OF 10 STATIONS
PER TASK. FURTHERMORE A H\SK CAN ONLY COMMUNICATE WITH 1 SUBNET AT
ANY GIVEN TIME. THIS TABLE IS USED IN DO.ATTACH.SUEN AND
TASK.DETACH.

DECLARE
1 P.BUF CH(132l,

2 P .STN CHCS>,
2 DUMMY CHC1),
2 P. TY P CH< 5 l 1

2 DUMMY Cf!(1) 1

2 P.TXT CHC120l,
PRINT.EM FIXED; ;;;(7.i:7. TRUE IF MESSAGES ARE TO BE PRINTED
FILE P WORK.AREA P.BUF;

1B2 $PAGE
1B3 FORWARD PROCEDURE DO.DC.INPUT;
184 i.
185
106 7.
1B7 PROCEDURE SCAN;
me i.
189 i. I EXTRACT THE NEXT TOKEN FROM THE PARAMETER STRING
190 % AND PLACE IT IN T.STRING. THE TYPE, LENGTH, AND <FOR NUMBERS>
191 i. THE BINARY EQUIVALENT ARE ALSO NOTED.
192 7.
193 DEFINE COPY £ BEGIN 7.BIG ON CORE - LOW ON TIME OVERHEAD
194 IF ALL.DONE THEN %END OF INPUT
19S BEGIN
196 T.TYPE:=TERMINATR;T.SIZE:=1;T.STRING:=END.CHAR;
17'7 END; ELSE BEGIN
198 SUSSTRIT.STRING,T.SIZE1 1l:=SUBSTRISOURCE,PTR,1l; %COPY
199 PTR:+1; T .SIZE:+t;
200 ALL.DONE:=<PTR>=M.SIZE>;
201 END;END£.;
202 DEFINE
ffi3 NEXT£
204 IF ALL. DONE THEN utrno EXTRACT i
205 CHAR:=SUBSTRCSOURCE,PTR1 1);
206 C.TIPE:=TIPEICHARl£1

'2!.)7 ALPHA £(C.TIPE=Ol£ 1

208 NUMERIC£ <C.TIPE=1)£1

209 DOHICHAR=".")£1

210 CONJUNCTION£(!CHAR="-")>£;
21.1 HF CHECKS THEN
212 DISPLAYl"START GET.TOKEN">;
21.3 DISPLAY«IF CONTROL.MODE THEN "TRUE" ELSE "FALSE"));
214 t·END
215 DO EXTRACT; i:TO PROVIDE COMMON RETURN POH!T
21.b DO SKIP.BLANKS FOREVER; i~SKIP LEADING SPACES
217 IF PTR>=M.SIZE OR ALL.DONE THEN
218 BEGIN ALL.DONE:=TRUE;COPY;UNDO EXTRACT;END;
219 NEXT;.
2'20 IF CHAR /= II II THEN UNDO .SKIP.BLANKS;

00014900
00015000
00015100
00015200
00015300
00015400
00015500
00015600
0001S700
00015800
00015900
00016000
00016100
00016200
00016300
00016400
00016490
00016500
00016600

00016800
00016900
00017000
00017100
00017200
00017300
00017400
00017500
00017600
00017700
00017800
00017900
00018000
00018100
00018200
00018300
000184-00
00018500
00018600
00018700
00018800
00013900
00019000
00019100
00019200
00019300
00019400
00019500
00019600
00019700
00019800
00019900
00020000
00020100
00020200

C-9

221 PTR:+1; 00020300
222 END SKIP.BLANKS; 000204-00
223 T.SIZE:=[T.TYPE:=OJ; 00020500
a~4 T.STRING:=" "; 00020600
225 7. 00020700
226 7. HAVING DONE All THAT BORING STUFF WE CAN NOW GO GET A TOKEN 00020800
227 7. 00020900
a~B IF ALPHA THEN 7.WE HAVE AN IDENTIFIER 00021000
229 BEGIN 00021100
230 T. TYPE:=ID'ENTIFIER; 00021200
231 DO FOREVER; 00021300
232 IF ALPHA THEN 7.THIS IS TRUE MOST TIMES 00021400
233 BEGIN COPY;NEXT;END;ELSE 00021500
234 7. IF NOT <NUMERIC OR CONJUNCTION> 00021600
235 7. THEN 00021700
236 UNDO EXTRACT; 00021800
237 7. ELSE 00021900
238 7. BEGIN 00022000
239 7. COPY; 00022100
2c,.o 7. NEXT; 00022200
24-1 i. END; 00022300
:24·2 END; 00022400
2l1·3 END; 00022500
2l1·4 7. 00022600
2l1·S IF NUMERIC THEN 7.WE HAVE A NUMBER 00022700
~1!,.6 BEGHI 00022800
2.t~1 T.TYPE:=NIJMBER; 00022900
:;;_l(,.g T ,1.'ALUE:=O; 00023000
:24-9 DO FOREVER; /.LOOK FOR THE REST 00023100
zso IF NOT NUMERIC THEN I.THATS ALL 00023200
:251 UNDO EXTRACT; 00023300
2S2 COPY; 00023400
;2)3 T. VALUE: =T. VALUEi1·10-"0"+CHAR; i.BINARY CONVERT. 00023500
254 NEXT; 00023600
l:~)5 END; 00023700
:?-256 END; 00023800
'c"!;;7 i. 00023900
258 IF·CH~R="u"" THEN i'.t!E HAVE A STRING 0002~·000

2'.59 BEGrn /.TO HANDLE THE STRING DRIVEN TH!N00024100
260 T.TYPE:=STRHlG; 00024200
:2t)1 PTR :+1 i 7.SKIP O'JER " 00024300
262 DO FOREVER; 0002411·00
263 NEXT; 00024500
264 IF CHAR:::"""" THEN i'.~JE MIGHT BE FINISHED 00024600
265 BEGIN 00024700
266 !F[PTR:+1J>=M.SIZE THEN UNDO EXTRACT; 00024300
267 NEXT; 00024-900
268 IF CHAR /= 11111111 THENi.WE ARE UNSTRUNG 00025000
269 UHDO EXTRACT; 00025100
270 END; 00025200
271 7. IF 00025300
-:J"7?
-1~ 7. CHAR=" II OR 00025400
273 7. CHAR="/" OR 00025500
274 /. CHt1R= 11 =11 THEN NASTY .STRING:=TRUE; 00025600
275 COPY; 00025700

C-10

Zlb END;
277 END;

?.79 7. LET US ASSUME THAT HE HAVE ti SPECIAL CHARACTER.
280 i. COPY CAN LOOK OUT FOR END OF LINE.

T.TYPE:=SPECIAL.CHAR;
COPY;
EHD EXTRACT;
SETNAME!TOKEN,SUBSTRCT.STRING,O,T.SIZE>>;

283
2B4
285
286
2B7
2BB

HF CHECKS THEN
DISPLAYC"END OF GET.TOKEN"l;DISPLAYCTOKENI;

$END
209 END SCAN;
C90 i!

295 z
'296 i.
297 7.
~117'8 7.
299 7.
300 ~

PROCEDURE LOOK.UP;

I SEARCH THROUGH THE VERB.TABLE FOR A MATCH WITH THE NEXT
TOKEN IN SOURCE. WHICH.VERB WILL CONTAIN A VALUE TO INDICATE
THE VERB FOUND. IF A VERB IS NOT FOUND OR A VALID
VERB IS ENTERED FROM A REMOTE DEVICE BUT IS RESTRICTED TO
USE FROM THE SPO THEN WHICH.VERB WILL HAVE THE VALUE @FFFF@.

0002S800
00025900
00026000
00026100
00026200
00026300
00026400
00026500
00026600
00026700
00026800
00026900
00027000
00027100
00027200

00027400
00027500
00027600
00027700
00027800
00027900
00028000
00028100
000213200
00028300 301

302
303
304
305
306
307

DECLARE I FIXED;
WHICH.VERB:=GFFFF@; 7.TO INDICATE INVALID - ~AY BE CHANGED 00028400

i:LATER IF WE GET A l..lALID VERB 00028500
00028600

·;r\O
~{,u

309
310
311
312
31.3
3H
315
31.6
31.7
31.B
319 7.

SCA Ni %TOKEN SHOULD NOW BE A VERB
DO LOOK FOREVER;

IF 1 >= V.TAB.SIZE THEN UNDO LOOK; 7.DID NOT GET A MATCH
IF VERBCIJ=TOKEN THEN %FOUND A MATCH
BEGIN

IF NOT SPO.MSG AND VERB.SPO.ONL'f(l)
THEN; /.LEFT AS HNALID
ELSE WHICH.VERB:=VERB.NO<I>;
UNDO LOOK; %STOP LOOKING IN EITHER CASE

END;
ELSE
1:+7;

END LOOKi
END LOOK.UP.:

00028700
00028800
00028900
00029000
00029100
00029200
00029300
00029400
00029500
00029600
00029700
00029800
00029900
00030000
00030100

3'~ O i~f~i~~~:~i~~;~ ~·~i~ Xi~ i:i~ ;~ ~' i~ i. x:'i~ i~l.XI. ~' i! i~ ~~~' i~ i~ I.Xi~:~~~:'~~ 7~ :~~·~ ~,~ i~ /~ :·~i:i~ i~Z/~i~ ~' ~~i~i~ ;~I. I. Z ~~/. 7. Z X Z i~ i~ ~~ i~i~ 7~ 0 0 0302 0 0
3'~1 I. 00030300
322 PROCEnURE TELL< TALE, H1LE. SIZE> i
3P3 7.
324 :~ I WRITE THE MESSAGE POINTED AT BY TALE TO SPO OR
?',(!5 7. REMOTE DEVICE. IF CALLED WITH 1 PARAMETER THEN WRITE ALL OF Tt1LE
3P6 :~ OTHERWISE WRITE FIRST rnLE.SIZE CH?\RACTERS.
327 /~

329
330

DECL{1RE HOW. MM!Y Fl XED i
DECLARE FF CHC1>;
FF:="@OC@";

/.WILL CONTAIN NO. OF CHARS TO WRITE
I.WILL CONTAIN FORM FEED CHARACTER
I. JUST LIKE THAT

00030400
00030500
0<)030600
00030700
00030800
00030900
00031000
00031100
00031200

C-11

331
332
333
334
335
33b
'S!,7
338
339
34.0
3'1·1
3'1·2
3'1·3
3"~4
3l1·5
3l1·6
3li-7
3'1·8
3l1·9
350
~1
352
353
3:~4
3~SS

35b
3'37
358
~.)9

360

361
362
363
3M
365
366
3l.i7
368
3ti9
3"10
3"/1
372
373
374
375
376
377
378
"319
3BO
381
382
383
384
385 %

C-12

HOIJ.MfiNY :=IF TYPECHILE.SIZD=2 THEN Tf.lLE.SIZE ELSE SIZE<TALE>;
IF TELL.SPO THEN

DISPLAYISUBSTRCTALE,O,HOW.MANY>>;

BEGIN
i.i=i. WE FIRST SEE IF THE CURRENT MSG HAS BIG ENOUGH
i.i:i. TEXT AREA TO TAKE THE TEXT l·lE ~)ISH TO SEND.
i.i.I. IF NOT THROW IT AtJAY AND GET MORE SPACE.
IF MSG.HAX.LNTH < HOW.MANY + 1 THEN
BEGIN

RCLEASE.MEGSAGE.SPACECMSG>;
GET .MESSAGE.SPACE <MSG, HOtJ.Mt\NY+1);

END;
MSG. RETRY: =@FF@; i.LET NC HANDLE IT.
MSG.TYPE:=OUTPUT;
WRITE. TEXT<MSG,O, 11 FF>; i.INSERT FF
WRITE. TEXTCMSG, 1 ,HO\J. MANY, TALE>;
MSG.LNTH:=HOIJ.MNY+1; i.GOT TO SAY EXPLICITLY
WRITE.HEADER <MSG, MSG.HDR> i
QUEUE<MSG,NCQ>; 7.AFTE!l ALL THAT SURGERY WE WRITE IT

EtlD;
END TELL;

PROCEDURE REr~DY .STATIONCLSN) i
IF STA.PENDINGCLSN> THEN; 7.WAIT FOR GOOD RESULT
ELSE
DO;

STA.PENDINGCLSN> :=1; no SAY WE""VE BEEN HERE

GET.MESSAGE.SPACECMSG,O>;
READ.HEADERCrlSG 1 MSG.HDR>;
MSG. TYPE:=MAKE.STA.RDY;
MSG.STA:=LSN;
WRITE.H£{1DER <MSG,MSG.HDR>;
QUEUECMSG,NCQ>;

END;
END READY.STATION;

PROCEDURE READY .UNECLLNl;
IF LINE.PENl1ING THEN; 7.\.tAIT FOR GOOD RESULT
ELSE
DO;

LINE.PENDING(LLN>:=1; XTO SAY WE'.VE BEEH HERE ALREADY
GET.MESSAGE.SPACECHSG,O>;
READ. HEil DER {MSG, MSG. HDR);
MSG. TYPE:=MME.LWE.RDY;
MSG.LINE:=LLN;
WRITE.HEADERCMSG,MSG.HDR>;
QUEUECMSG,:!CQ>;

END;
END READY.LINE;

00031300
00031400
00031500
00031600
00031700
00031800
00031900
00032000
00032100
00032200
00032300
00032400
00032600
00032700
00032800
00032900
00033000
00033100
00033200
00033300
00033400
00033500
00033600

00033800
00033900
00034000
00034100
00034200
00034-300
C•0034400
00034500
00034600
00034700
00034800
00034900
00035000
00035100
00035200

00035400
00035500
00035600
00035700
00035800
00035900
00036000
00036100
00036200
00036300
00036400
00036500
00036600
00036700
00036800

386 %i~i:i.~i.!i!i.i!X7.i.i.Zk%i.i.i.i.kl.i:i.i~ki~i.~~i.i:z1.:!:%!i~i~i~i.i.i~~i~~~:~zi.:%Z~~i~i!:{i~~{i.~{f.i:i~~t.:!:,i:i:i~i:00036900
3B7 % 00037000
3B8 PROCEDURE DO.INPUT.MSG; ~0037100
3:19 4 00037200
390 4 TAKE MSG FROM REMOTE DEVICE. RETURN OR ANALYSE COMMAND IF CC RECV. 00037300
391 4 00037400
392 CONTINUE.STATIONCMSG.STA>; 7.ALLOWS STATION TO KEEP SENDING IN M3G00037500
393 IF NOT MSG.CC.RECVD THEN 00037600
394 BEGIN 00037700
395 MSG.TYPE:=OUTPUT; 00037800
'!86 MSG.RETRY:=@FF@; 00037900
":!/:'7 WR!TE.HEADER<MSG,MSG.HDR); 00038000
JCJS QUEUECMSG,NCQ> i 00038100
399 END; 00038200
400 ELSE 00038300
401 BEGIN 00038400
402 TELL.SPO:=FALSE; 7.ASSUME REPLY TO STN - MAY BE CHANGED 00038500
lt03 SPO.MSG:=FALSE; 00038600
404 DO.DC.INPUT; 00038700
lt05 END; 00038800
lt06 END DO.INPUT.MSG; 00038900
407 % 00039000
408 7.X%~X&XX%%'%X7.Xi.:!X~i.%%i:Xi.%i:i.:'i.~7.~{:'i~'Xi.i!7.i.i.i!i.i.~~i:~XXi.%i.Xi.7.i~i.i.i.i~i;%ki.i.X:Xi.%i~00039100
409 4 00039200
410 PROCEDURE START.LOGGING; 00039300
411 % 00039400
4-H 7. OPEN PRINTER FILE AND SET LOGGING FLAG. 000395(10
4l.3 7. 00039600
414 IF PRINT .EM THEN 00039700
415 TELU"CANNOT SD: ALREADY LOGGING.">; 00039800
416 ELSE BEGIN 00039700
417 PRINT .EM:=TRUE; OOOt10000
418 OPENCP>; 00040100
4-19 P.STN:=" LSN"; 00040200
4eo P.TYP:="TYPE": OON,O!lOO

421 SUBSTRCP.BUF,60>:="TEXT"; 00040400
4-22 WRITECP); 00040500
'1-23 END; 00040600
1,.24 END START.LOGGING; 00040700
tK~5 4 00040800
4-26 i~ii.i~i~i~:(i.%X%%i.i~:,Xi~%X%7.X:{t.7.::~%i;Xi.Xi!i.X1.XXkX:~:<Ii.i.X&Xi!:,i.%%7.i~:<i~i;~~:!7.%7.i.i.i.X%:C(%i.00040900
4!27 7. 00041000
t,.C!B PROCEDURE STOP.LOGGING; 00041100
4~9 7. 00041200
1,.30 7. CLOSE PRINT FILE AND RESET LOGGING FLAG. 00041300
4.31 7. 00041400
11'32 IF NOT PRINT.EM THEN 00041500
1,.33 TELL< "CANNOT ED: NOT LOGGING. II)j 00041600
434 ELSE BEGIN 00041700
4.35 PRINT.EM:=FALSE; 00041800
436 CLOSECP)j 00041900
l;37 END; 00042000
439 END STOP.LOGGING; 000421'00
439 7. 00042200
440 i.7.i.7.i.i.i.7.7.7.7.7.47.i.i.7.i.7.i.i.i.i.7.7.7.i.7.%i.7.i.i.i.7.7.7.7.7.7.i.i.7.i.i.i.i.i.i.i.7.i.7.i.i.i.i.i.i.7.i.i.i.i.i.i.i.i.7.i.i.i.00042300

C-13

4'1·1
tA-2
4'1·3
4.1 •. 4
1..i, s
41,.6
4'1·7
411-B
l-iJ1-9
1;.so
1-i-51
452
lt53
454
'1~~s
~)6

·~t)7

4~;9

4fi9
4-60
ttf.>1
4-62
·~63
4f,4
't6S
4/.16
4-l.;7
·~·68
4-69
470
ff-71
1.,.72
/Ti'3
t;? 4
475
4-?b
4-77
478
1.,79
4HO

4H1
f.182
t.,m
t.1B4
485
486
4-87
4HB
·~-B9
11-90
ft-~'1

lt92
li-93
4-94

C-14

FUNCTION VALID.STA;
i.
i. IF THE VALUE OF THE CURRENT TOKEN IS BIGGER THAN THE
i. NUMBER OF SH1TIONS WE HAVE THEN RETURN FALSE <AFTER
i. DISPLAYING A WARNING> OTHERWISE RETURN TRUE.
i.

i.

.,
1.

i.

IF T.VALUE > MAX.STAS THEN
BEGIN

TELL.SPQ:=SPO.MSGi i.RETURN TO SENDER
TELU "REQUEST DENIED: INVALID STATION NUMBER");
RETURN FIX<FALSEl;

END;
ELSE RETURN FIX CT RUE);
END VALID.STA;

FUNCTION VALID.LINE;

7. I DO FOR LINES WHAT VALID.STA DOES FOR STATIONS.
7.

i.

i.

i.
i.
i.

i.

.,
1.

IF T.VALUE > MAX.LINES THEN
BEGIN

TELL.SPO:=SPO.MSG; i.RETURN TO SENDER
TELL< "REQUEST DENIED: INVALID LINE HUMBER") i
RETURN FIX<FALSEl;

END;
ELSE RETURN FIX(TRUEl;
END VALID. LINE_;

FUNCTION VALID.SIJBQ;

CHECK FOR VALID SUBt-IET HUMeERS

IF T. WiLUE > MAX. SUBQS THEN
BEGIN

TELL.SPO:~srO.MSG;

TELU "REQUEST DENIED: INVALID SUBNET ~ruMBER">;

RETURN FIX<FALSEI;
END_;
ELSE RETURN FIX CTRIJEI;
END VALID.SUBQ;

PROCEDURE DO.RESULT;

:.: HON-ZERO RESULTS ARE HANDLED HERE
7.

CASE MSG.RESULT;

00042400
00042500
00042600
00042700
00042800
0004-2900
00043000
00043100
00043200
00043300
00043400
00043500
00043600
00043700
00043800
00043900

00044100
00044200
00044300
00044400
00044500
00044600
00044700
000l;4800
000~4900

00045000
0004-5100
00045200
00045300
0004-5400

0004-5600
00045700
00045800
00045900
0004,6000
0004-6100
00046200
0004-6300
00046400
oooi,6soo
OOOt,6600
OM~t6700

OOOl16800
00046900

00047100
0004-7200
00047300
00047400
00047500
00047600
00047700

495
496
4.97
498
4.99
500
501
502
503
504
505
506
':!tl1
508
509
510
511 %

DO; 7.LINE NOT RDY
TEXT: ="RL II i
CONVERT<O,SUBSTR<TEXT,2 1 1) 1 MS6.LINE>;
DISPLAY<SUBSTRCTEXT101 S>>;

END;
DO; 7.STA NOT RDY

TEXT:="RS11 ;

CONVERT< O,SUBSTRCTEXT ,2, 1 >,MSG.STA>;
DISPLAYCSUBSTR<TEXT,o,s>>;

END;
DO; XCNTL OR WRU

DO.INPUT.MSG;
END;
111111

END CASE;
END DO.RESULT;

00047800
0004790•
00048000
0"048100
00048200
00048300
00048400
OOOttBSOO
00048600
00048700
00048800
000't8900
00049000
00049100
00049200
00049300
00049400

51. 2 7.7. 7. i. i. i. 7. i. 7. i.i.7. i.i.i. i. 1. i.Xi.i.i.7. i.i.i. i.i.:t. i. i.i.i. i.i. 7.7.i.i.i. i.% 7.i.i.i. i. i.:,i.i.i.i.7.i. i.i.i.i. i.i:i. :~ 7. i~ 7. i. i.i.i.7.7. 0 0 0 4 9 SO 0
513 7. 00049600
·514 PROCEDURE DO.DC.INPUT; 00049700
515 7.
516 7.
517 7.
518
519
sc:io
521
51:2
~3
524
SC!S
51:6
527

7.
%
%
7.
%

~9

529 %
530 i.
531 7.
532
533 i.
534 i.
535 7.
536
537
538
539
~Ji.O

~% 1
5l1·2
5'1·3
54.4
5l~s
Sl1·0
5!1-7
sii-8
S(i.9

THIS PROCEDURE.HANDLES COMMANDS FROM THE SPO AND FROM REMOTE
DEVICES. LOOK.UP GETS THE VERB, SCAN GETS THE PARAMETERS
AND TELL SENDS THE REPLY <IF ANY>.

FIRST GET THE TEXT AND SET UP INIT. CONDITIONS FOR SCAN.

READ.TEXTCMSG,o,2ss,souRCE>;
M.SIZE := IF MSG.LNTH <= 255 THEN MSG.LNTH ELSE 255;
PTR:=o;
ALL.DONE:=FALSE;
IF NOT SPO.MSG THEN SCAN;

GET THE VERB

LOOK.UP;

HAtmLE EACH VERB AS NECESSARY

CASE WHICH.VERB;
QUIT:=1;
BEGIN

SCAN;

7.SKIP OVER CONTROL CHAR
%ASSUMES THAT NC SENDS IT TO US.

% END
7. RS

IF NUMOER. TOKEN AND W1LID.STA THEN
READY.STATIONCT.VALUE>;

END;
BEGIN 7. RL

SC(iN;
IF NUMBER. TOKEN AND W1LID.LINE THEN
READY. LINE <T. VALUE>;

END;
BEGIN

SCAN;
% TO OR SS

00049800
00049900
00050000
00050100
00050200
00050300
00050400
00050500
00050600
00050700
00050800
00050900
00051000
00051100
00051200
00051300
00051400
00051500
00051600
00051700
00051800
00051900
00052000
00052100
00052200
00052300
00052400
00052500
00052600
00052700
00052800
00052900
00053000
00053100
00053200

C-15

C-16

:~so
!X')i

552
553
5:)4
5;55

. 556
~~7

558
5S9
560
561
562
5l>3
561>
565
566
Sf.)7
!568
569
570
5i'1
572
573
574
575
'Slb
577
578
579
580
581
502
583
584
5B5
5Elb
597
508
5()9
590
591
5;>2
593 %

END;

IF TOKEN = "SPO" THEN T£Ll.SPO:=TRUE;
ELSE
BEGIN

TELL.SPO:=FALSE;
IF NUM8ER.TOKEN THEtl
BEGIN

END;
ELSE
BEGIN

END;

IF VALID.STA THEN
MSG.STA:=T .VALUE;
E~SE UNDO(ll)i

TELL.SPO:=SPO.MSG; =<RETURN TO SENDER
TELL< "REQUEST DEtlIED: NEEDS VALID DEST. 11);

UNDO(ll)i

END;
TCLLCSUBSTRCSOURCE,PTRl 1 CM.SIZE-PTR>>;

START .LOGGING; % SD
STOP.LOGGING; % ED

BEGIN % QM
SCAN;
IF NUMBER.TOKEN AND VALID.SUBQ THEN
BEGIN

END;

MSG.TYPE:=INPUT;
MSG.LNTH:=M.SIZE-PTR;
WRITE.TEXTIMSG,O,MSG.LNTH,SUBSTR<SOURCE,PTR));
WRITE. HEADER <MSG, MSG. HDR) i
QUEUE<MSG,<SUBQ+T.VALUE>>;

ELSE TELL<"REQUEST DENIED: NEEDS VALID SUBQ">;
END;
BEGIN % ZIP

END;

ZIPC2,SUSSTRISOURCE,PTR,CM.SIZE-PTR>>>;
TELL< II MESSAGE z Ip PED. II) i

BEGIN % WRU OR WM
TELL<VERSION>;

END;
TELL< "CANNOT RECOGNISE COMMAND">; %ALL OTHER CASES

END CASE;
END DO.DC.INPUT;

00053300
00053400
00053500
00053600
00053700
0<)053800
00053900
00054000
00054f00
00054200
OC.054300
00054400
00054500
00054-600
0005~700
00054800
00054900
OC•055000
00055100
OC•OS5200
00055300
00055400
00055500
00055600
00055700
00055800
00055900
00056000
00056100
00056200
00056300
00056400
00056500
00056600
00056700
00056800
00056900
00057000
00057100
00057200
00057300
00057400
00057500
00057600

5V4 i.i.i.ni.i.:1.7.7.i!i.i.i.i.i.i.i.!i.i.i~i.!i.i~i.i.i.i.i.i.i.i.~<i.i~i.i~i.i.7.7.i.i.i.%X%%%%i.i.=m~i.i.i.i.i.%%i.Xi.i.~:i.7.7.X'.'<00057700
~'»'5 % 00057800
•:.vb PROCEDURE DO.ATTACH.SUSN; 00057900
'{Jl7 % 00050000
598 % I MAKE MCS NON-PARTICIPATING FOR EACH STATION IN 00058100
599 % THE SUBNET THAT THE TASK \clAtHS TO RECEIVE FROM. 00058200
1.00 x 00059300

DECLARE
1 SUB.DESC

2 SUB.NAME
c SUB.SIZE

CH(14) 1

CHC12) 1

FIXED,

00058400
00058500
00059600
00058700

605
t:l>b
607
608
t:J.)9
610
611
612
613
61.4
.!)1.5
61.6
61.7
61.B
61.9
620
621
&~2
623
6N
625
626
027
628
829
630
631
632
633
634
635 %
036
£37 %
639
639 i::
6t1·0 i::
6tr1 i::
lM i::
6lr-3
y..4
64.5
lJi.b
6l1·7
6'1·8
l:A-9
650
651
65~

653 %

I FIXED;
SUBNET • DES CR I PTI ON CMSG. SU BQ, SUB. DESC) ;
SUB.SIZE:+SUB.SIZE;
DECLARE
1 SUB.STAS CH(SUB.SIZE), /.STATIONS ON THIS SUBNET

2 SUB.STN FIXED;
SUBNET.STATIONSOiSG.SUBQ,SUB.STAS>;
IF TSK.STN< <MSG. TSK-1)1122i/=O THEN ?ALREADY ATTACHED TO A Q
BEGIN

END;
ELSE
BEGIN

END;

DISPLAY<"CANNOT ATH1CH: TASK ALREADY HAS SUBQ">;
DISALLOW.INPUi(MSG.SUBQ,MSG.TSK>;

TSK.STN<CMSG. TSK-1)ll22) :=SUB.SIZE; XNO. OF STNSll2
I:=O;
DO ROUTER FOREVER;

IF I >= SUB.SIZE THEN UNDO ROUTER;
IF I >= 20 THEN
SEGUI

END;

DISPLA'f("Ct,NNOT ROUTE MORE THAN 10 STNS PER Q">;
UNDO ROUTER;

ROUTE.INPUTCSUB.STN<I>,CSUCQ+MSG.SUBQ>>;
TSK.STN(CMSG.TSK-1)*22+1+2):=SUB.STNCI>;
!:+2;

Et!D ROUTER;
ALLOW.INPUTCMSG.SUBQ,MSG.TSK>;

END DO.ATTACH.SUBN;

PROCEDURE DO.TASK.DETACH;

I MAKE MCS PARTICIPATE FOR THOSE STATIONS IN SUBQ OF
THE TASK WHICH HAS JUST GONE TO EOJ.

DECLARECI,J>FIXED;
J:=TSK.STNCCMSG.TSK-1>*22>;
I:=O;
DO FOREVER;

END;

IF I>=J OR 1>=20 THEN UNDO;
ROUTE.INPUTCTSK.STNCCMSG.TSK-1>*22+1+2),MCSQ>;
1:+2;

TSK.STNC rnsG. TSK-1)lice) :=o;
END DO. TASl~.DETACH;

0005BSOO
OOOSS900
00059000
00059100
00059200
00059300
00059400
00059500
00059600
00059700
00059800
00059900
00060000
00060100
Oll060200
00060300
00060400
00060500
00060600
00060700
00060800
00060900
00061000
00061100
00061200
00061300
00061400
00061500
00061600
C•0061700
00061800

00062000
00062100
00062200
00062300
000624-00
00062500
00062600
00062700
00062800
00062900
00063000
00063100
00063200
00063300
00063400
00063500
00063600

65 4 %7.i. 7. 7.7.7. i.7.7.7. 7.7.7.7. i. 7.7.7.7. 7.%%7.7.i. 7. 7. 7. 7. 7.7. 7.7.% 7.7.i. 7. 7. 7.7. i. 7.i. i. i::i.i.7.i. ~{7. i. i: i~ f.7.7.7.7.7.7.i. 7. i.i~ i.: i: i~ ;~ i. 0 0 0 6 37 0 0
65S 7. 00063900
lJ:ib PROCEDURE DO.ATTACH.STA; 00063900
$7 ROUTE.OUTPUT<MSG.STA,HCQ>; 00064000
658 ALLOW.OUTPUTCMSG.STA,MGG.TSK>; 00064100
659 END DO.ATTACH.STA; 00064200

C-17

MO

661
{J62
61.i3
61.i4
665
666
1::,(:,7
669
l:ii9
670
671
'-7~ a. ~
673
{)74
675
676
677
679
679
680
681
682
6El3
684
685
$b
tl37
6El8
6El9
6$'0
691
692
693
694
695
696
697
699
699
700
701
702
703
704
705
706
707
70S
709
710
711
7l.2
71.3
7l.4

C-18

i.
$IF DESUGN THEN

PROCEDURE LOGGIT;
i. DEBUG CODE GOES HERE

P.BUF:=""i
IF NOT PRINT .EM THEN RETURN; 7.NO LOGGING
CONUERT<O,P.STN,MSG.STA>;
CONVERT<O,P.TYP,MSG.TYPE>;
READ.TEXT<MSG,0,120,P.TXT>;
WRITE C P >;

END LOGGIT;
$END
i.

PROCEDURE INITIALIZE;

:'I.
i. MAKE MCS PARTICIPATING.
i. READY ALL THE LINES.
i. SET THE MCS Q LIMIT TO 5.
7. PUT SPACES IN THE PRINT BUFFER CFOR LOGGING>;
:'I.

DISPLAYCVERSION>;
P.BUF:=""i
LSN:=O;
DO FOREVER;

ROUTE.INPUTCLSNrMCSQ>;
ROUTE.OUTPUTCLSN,MCSQ>;
IF [LSN:+1J > MAX.STAS THEN UNDO;

END;
SET.QUEUE.LIMITCCMCSQ>,S>;
LLN:=O;
DO FOREVER;

LINE.PENDINGCLLN):=1;
GET .tiESSAGE.SPACECMSG,O>;
READ.HEADERCMSG,MSG.HDR);
MSG.TYPE:=MAKE.LINE.RDY;
MSG. L HIE: =LLN;
WR!TE.HEADERCMSG,MSG.HDR>;
QUEUE<MSG,NCQ>;
IF (LLN:+1J>MAX.LINES THEN UHDO;

END;
END INITIALIZE;

$PAGE

00064300

00064500
00064600
00064700
00064800
00064900
00065000
00065100
00065200
00065300
00065400
00065500
00065600
00065700

00065900
00066000
00066100
00066200
00066300
00066400
00066500
00066600
00066700
00066800
00066900
00067000
00067100
00067200
00067300
00067400
00067500
00067600
00067700
00067800
00067810
00067900
00068000
00068100
00068200
00068300
00068400
00068500
00068600
00068700
00068710

i~i~~!i.i.~':<i.i.i.~·!i~i~i~~(:~7.i:~~i~/~i:%i.i.~i!i:i:%:%%~%:i!i!i:i!i!7.i!%7.%%i.i!ki.i.i!4i.i.7.7.~{%%i!i~i.i~i.i.7.l.7.X00068BOO

4 ~'00068900
.,
'· SSS TTTTT A RRR TTTTT H H EEEE RRR EEEE 400069000
7. s T A A R R T H H E R R E %00069100
7. SS T AAA RRR T HBHH EEE RRR EEE 7.00069200 ., s T A A R R T H H E R R E :~00069300 " 4 SSS T A A R R T H H EEEE R R EEEE 0 7.00069400
i. %00069500

71.S %i!:~i.i.i.%Xi~%%J~i~i:i:t!%7.i!i.7.%%::!i~i.i:i!7.%%i.7.X:(i!Xi~/~i~i:i:~i:7.7.%%%:<i.X7.i.IX7.~%XX%%X%:'%i!i.%1.00069600
7U INITIALIZE; 00069700
71.7 DO MAIN.LOOP FOREVER; 00069800
7l.8 FETCH.MESSAGE<MSG>; 00069900
71.9 READ.HEADER<MSG,11SG.HDRl; 00070000
7c~O UF DEBUGN THEN 00070100
721 LOGGIT; 00070200
7c~2 $END 00070300
7c~3 IF MSG.RESULT /= 0 THEN DO.RESULT; 00070400
7'~4 El.SE 00070500
7'~5 CASE MSG.TYPE; 00070600
'?26 ; 7. 0 00070700
727 DO.INPUT.MSG; 7. 1 00070800
728 :< 2 00070900
729 7. 3 00071000
7..~0 ; ;: 4 00071100
731 ; 7. 5 00071200
7..~2 DO; 7. 6 00071300
733 LSN:=MSG.STA; 00071400
7..~4 STA. PENDING<LSl·O :=O; 00071500
7.:~5 TEXT:="SR"; 00071600
736 CONVERT(O,SUBSTR(TEXT, 21 il ,LSNl; 00071700
'T!.7 DISPLAY<SUBSTRCTEXT1 0,Sll; 00071800
738 DID; 00071900
739 . 7. 7 00072000 I

7t,.o DO; 7. 8 00072100
71,.1 LU!: =MSG. LU!E; 00072200
7'1·2 LINE.PENDINGCLLN>:=O; 00072300
74-3 TEXT:="LR"; 00072400
74.4 CONVERT<O,SUBSTR<TEXT,21 1) 1 LLNl; 00072500
7t,.5 DISPLAY(SUBSTR<TEXT,01 5ll; 00072600
74·6 END; 00072700
i'4·7 i 7. 9 00072800
7'1·8 7. 10 00072900
7t,.9 7. 11 00073000
750 i ;: 12 00073100
i'S1 !'(13 00073200
752 i 7. 14 00073300
753 DO; 00073400
754 TELL.SPO:=TRUE; 7.ASSUME REPLY TO SPO - MAY BE CHANGED 00073500
755 SPO.MSG:=TRUE; 00073600
756 DO.DC.INPUT; i. 15 00073700
757 END; 00073800
759 7. 16 00073900
759 ; % 17 00074000
760 DO.ATTACH.SUBtU x 18 00074100
761 DO.ATTACH.STA; % 19 0007lt200
762 i. 20 00074300
763 i. 21 00074400
764 ; % 22 00074500
765 7. 23 0007ft600
766 ; 7. 24 00074700
767 DO.TASK.DETACH; % 25 00074800
768 END CASE; 00074900
769 RELEASE.MESSAGE.SPACECMSGl; 00075000

C-19

770 IF QUIT THEN UNDO; :SET BY OPERATOR 00075100
771 END MAIN.LOOP;
7.1" ~ DISPLAYC"MCS HALTED">;
7i'3 STOP;
774 END OLDLJEIRDHAROLD;
775 FINI;
776 $PAGE
777 FILE.DEFAULTCP>:=TYPE2;
778 NO.BUFFERSCP):=6;
7.19 NO.LABEUP> :=1;
7tl0 FILL TIPE.SEG WITH
781 9*19*19*19*19*,9*,9*19*19*19*1
7B2 9*19•19*19*19•,9•19•19*19•,9*1
7B3 9*,9*,9*,9*,9*,9*,9*,9*,9*,9*,
7B4 9*19*1
785 6*1
7Bb 5*1S*1S*15*15*1S*1S*1S*1S*15*1
7El7 51,Sll15ll 1 51,5*1
7B8 11 1 1ll11*1l*11*11*r1*11*11*11*1
789 5*,5*15*,5*1S*1S*1S*1
71C)0 0* 1 0* 10* 1 0*10* 1 0* 1 0ll 1 0ll 1 0ll10*1
Jii.'1 Oll10ll10ll 1 0*10*1 0* 1 0*1 0*10*10*1
r.>2 Oll 1 0ll10ll10ll10ll10* 1

793 5* 1 5*15*,S*,5*15*1
794 Oll 10*10*10*10ll 10*10*10*10*10*1
r.>s Oll 1 0ll 1 01,0* 1 0ll 1 0~,0* 1 0* 1 0*10*1
796 0* 1 01,0*10*10*10*1
797 S*,S*,5*15* 1 5*i
798
77'9 FILL VERB.SEG WITH
800 "END @OOOOFF@", .,

" 801 "RS @0001FF@", 7.
802 "RL @OOOcFF@", .,

" 803 "TO @000300@", 7.
804 "SS 0000300@", 7.
805 "SD @000400@", i.
806 "ED @000500@", i.
807 "QM @000600@", i.
009 "ZIP @000700Q", 7.
009 "WRU @000800@", 7.
81.0 "LIM @000800@"; i.

SAMPLE DATA COMM TASKS
Three sample data comm tasks are included in this

appendix. These tasks are functionally equivalent,
each being coded in a different language: COBOL,
MPLII, and RPG. Because of the nature of RPG, it
is not practical to describe the tasks in terms of line
numbers; much of the task is transparent to the user.

Functional Description

Upon initiation, the DC task opens a printer file
(used for logging messages) and obtains the name of
the subnet queue from which it obtains messages.
C-20

00075200
00075300
00075400
00075500
00075600
00075610
00075700
00075800
00075900
00076000
00076100
00076200
00076300
0007641)0
00076500
00076600
00076700
00076800
00076900
00077000
00077100
00077200
00077300
00077400
00077500
00077600
00077700
00077800
00077900

STOP MCS 00078000
READY STATION 00078100
READY LINE 00078200
SEND A MESSAGE 00078300
SAME AS TO 00078400
START DEBUG PRINT 00078500
END DEBUG PRINT 00078600
QUEUE MESSAGE 00078700

ZIP MESSAGE TO MCP 00078800
WHO ARE YOU 00070900
WHAT MCS - SAME AS WRU 00079000

MPLll

The symbolic queue name is accepted from the
SPO.

COBOL

The symbolic queue name is taken from the initiat
ing message if present; otherwise, it is accepted from
the SPO. The DC task then:

1. Receives a message.
2. Logs the contents of the input CD.
3. Prints the message text.

4. Echoes "good" messages to the originating
station.
5. Logs the output CD if a message was
echoed.
6. Reports any errors on the SPO.
7. Returns to step 1.

Detailed Description

Program Logic

The logic of the program proceeds as follows: (see
MPLII 29400 - 30200, COBOL 23800 - 28200.)

1. Open the printer file.
2. Find the symbolic queue name to be used
for DC input.
3. Tum messages around until end-of-job.
4. Close the printer file.
5. Stop.

GET.QUEUE.NAME

(See MPLII 10500 - 11200, COBOL 10900 -
11600.)

This routine results in the symbolic queue name to
be used to be placed in SYMBOLIC.QUEUE. In the
COBOL version, there is code to check if the
INITIAL CD has been filled form the EX or ZIP of
the task. If the SYMBOLIC-QUEUE field is blank,
then the task waits on an ACCEPT. In the MPLII
version, there are no provisions for handling an initi
ating· message. (fhere is, of source, no reason why
this could not be done.)

Turnaround

(See MPLII 27600 - 28800, COBOL 26200 -
27100.)

The logic proceeds as follows:

1. Take the next message from the (input)
queue.
2. If the message is good, send it to the ori
ginating station.
3. Print the contents of the input CD and the
message received.
4. If the input message is good (implying that
it has been sent back), print the contents of
the output CD.
5. Report any errors found in this transaction.

NOTE
If steps 2 and 3 are interchanged, the
program takes longer to tum a message
around. Coded as it is, the program
causes the message to be sent to the re
mote device in parallel with the printing

of the input CD and message. The rea
son for this is that the printing
operation requires many communicates,
each causing the program to be short
waited if the printer buffers are full.
The SEND, however, is only a single
communicate and the program regains
control before the physical data comm
transfer is complete (allowing the print
communicates to be issued).

Program readability has been improved
by the use of DEFINES in MPLII (seq.
8400 - 1010) and condition names in
COBOL (seq. 8800 - 9100 and 9800 -
10300). However, a large amount of S
code is generated for DC constructs in
MPLII and the result is that the DE
FINES used in this example cause the
program to be much larger than if
FUNCTION(s) and PROCEDURE(s)
had been used to encode DC con
structs.

GET.MESSAGE

(See MPLII 11300-12600, COBOL 11700-13300.)

The logic proceeds as follows:

1. Space fill the area used to contain the next
message.
2. Set-up the required fields in the input CD.
3. Take the next message from the subnet
queue.
4. Set the EOJ flag to true if the first three
characters of the message are END.

XMIT

(See MPLII 17800 - 19000, COBOL 16000 -
17000).

The logic proceeds as follows:

1. Set-up the output CD.
2. Send the message.
3. Set a flag (OUTPUT.STATUS.VALID) to
true.

NOTE
This flag is reset in
DISP.ERRORS.OUT after displaying
the output status. The flag is used to
prevent the same output status being
analyzed twice (as would otherwise oc
cur after an error which would have
prevented the echoing of a message).

C-21

LOO.IN.CD LOG.OUT.CD

(See MPLII 13600 - 17700, COBOL 14100 -
16800.)

(See MPLII 19100 - 20300, COBOL 18000 -
19000.)

The logic proceeds as follows: This procedure copies the contents of the output
CD to the print buffer and then writes this buffer.

C-22

1. Space fill the print buffer.

2. Place the contents of the input CD into the
print buff er.

ANALYZE.ERRORS (See MPLll 26800 -
27500, COBOL 25400 - 21IOO.)

3. Write the print buffer. This procedure displays errors messages on the
SPO and waits for an operator reply. If no errors
were encountered during this transaction, this proce
dure is a no-op.

4. If the message is good, print the message
text.

NOTE
In the MPLII program, the sub-queue
fields in the print buffer are set to
spaces and printed in order to preserve
the same print format as the COBOL
program.

The actual work is done by DISP.ERRO:R.S.IN
(MPLII 20400-22700, COBOL 19100-21600) and DIS
P. ERRORS. OUT (MPLII 22800-26700, COBOL
21700-25300). If the operator replies with an END in
the next turnaround cycle, the program goes to end
of job.

1
2
3
It

5
6
'7
8
9

10
11.
12
13
llt

15
16
1?
rn
19
20
21
22
';17
-~1

2'1·
?S
26
27
';l!:l _..,
C'

SAMPLE COBOL PROGRAM

000100$ LINE-CODE OPTCODE
000105**************************************~***************************
000110* *
000115* PROPRIETARY PROGRAM MATERIAL *
000120* *
000125* THIS MATERIAL IS PROPRIETARY TO BURROUGHS CORPORATION *
000130* AND IS NOT TO BE REPRODUCED, USED OR DISCLOSED EXCEPT IN *
000135* ACCORDAHCE WITH PROGRt1M LICENCE OR UPON WRITTEN AUTHORIZATION *
000140* OF THE PATENT DIVISION OF BURROUGHS CORPORATION, DETROIT, *
000145* MICHIGAN 48232.
000150!1
000155*
000160*

COPYRIGHT <C> 1979 BURROUGHS CORPORATION

*
*
*
*

000165**
000200 IDENTIFICATION DIVISION.
000300 ENVIRONMENT DIVISION.
000400 INPUT-OUTPUT SECTION.
000500 FILE-CONTROL.
000600 SELECT LOG ASSIGN TO PRIHTER.
000700 DATA DIVISION.
000800 FILE SECTION.
000900 FD LOG.
001000 01 PRINT-LINE PIC XC120>.
001100it-· -THE ABOVE LINE IS ONLY FOR SPACE FILLING~---·

001200 01 ,_LP,,_-_I_N_. -------~-~--·
001300 02 LP-SYMBOLIC-QUEUE PIC X<12).
001400 02 FILLER PIC X.
001500 02 LP-SUB-Q-1 PIC X<12).
001600 02 FILLER PIC X.

30 001700 02 LP··SU3-Q-2. PIC X <12).
31. 001800 02 FILLER PIC X.
32 001900 02 LP-SUB-Q-3 PIC X<12).
'3:!: 002000 02 FILLER PIC X.
3'i- 002100 , 02 LP-MESSf1GE-DATE PIC 99/99/99.
~-; 002200 i 02 FILLER PIC X.
36 002300 l 02 LP-MESSAGE-TIME PIC 99/99/99/99.
'J:l 002400 I 02 FILLER PIC x.
3B 002500 I 02 LP-SYMBOLIC-SOURCE PIC X<12).
~' 002600 j 02 FILLER PIC X.
40 002700 : 02 LP-TEXT-LENGTH- IN P IC ZZZZ9.
41 002800 i 02 FILLER PIC X.
4·C' 002900 l 02 LP-END-KEY PIC 9.
4.~) 003000 i 02 FILLER PIC X.
'"'"''· 003100 i 02 LP-STATUS-KEY-IN PIC 99.
4~) 003200 ; 02 FILLER PIC X.
4<.) 003300 .• 02 ~.~::J~~~f,1~~--::gO_l:!~!_l_~I~.1~~~£Z?~ ,.J
'-1-7 003400* ---THE ABOVE RECORD ALLOWS LOGGING THE INPUT CD;-----~·-·-····-·---·-···--·-··--""-·---~·-····

4B 003500 01 BUFFER-LINE PIC X<80).
lt9 003600lf----- THIS LINE IS TO DISPLAY RECEIVED TEXT,,
50 003700 01 LP-OUT.

~; ~~~~~~ I~~ ~i~~-~~f~i~u~'.·pyr·z-zzz9·~------·--·· ····1
53 004000 I 02 LP-TEXT-LENGTH-OUT PIC ZZZZ9. I
~')(,. 004100 !02 FILLER PIC x. I
~) 00'r200]02 LP-STATUS-KEY-OUT PIC 99.
56 004300 l 02 FILLER PIC X.
Si' 004400 !02 LP-ERROR-KEY-OUT PIC 9.
58 004500 ! 02 FILLER PIC X.
SC) 00111500 \ 02 LP-SYMSOLIC-DESTINtiTION PIC .X(12). ;
ti.> 004700J! ___ '·rHE .. A.B(f(1f 'ifEc6f\5"'"ALlb'ws LOGGfilG T~IE o!JTPUT CD.-- -· ---~--------------·-······-·······-·--·-·

61. OC14800 HORKHlG-STORAGE SECTION.
I.;;~ 004900 01 ~·'""····'~"'-' .,.,.,
6!i 005000 02 DC-SLOT PIC X(80) OCCURS 24 TIMES.
6!1· 005100!!-----

1
Dc BUFFER FORMATTED AS TD SCREEN.

65 005200 02 DC-BUF-REDEF REDEFINES DC-SLOT.
66 005300 ! 03 DC-MESSAGE PIC XXX.
67 0!)5400* ------ TO ALLO\:J r'iCCESS TO THE "END" MESSAGE.-----------·--·············-········-·········· ·
ci8 005500 1

_____ .QJl_CCR~-~-T_P_IL:~_0?1?_)_~-- _
69 005600 01 COMM-ERROR.
70 oos7oo 102 ffp"E:·fiEL'D.?rc·xT15)-:·----·-M··· ··1
71. 005800 !02 ERROR-FIELD PIC 99.
72 005900 i.QU_9MMf~T -::fI~11LllL~Ji5.J __ ~,,
73 006000 77 PRINT-l!lNES ?IC 99 'JALUE 0.
74 006100 77 SPARE-CHARACTERS PIC 99 VALUE 0.
7~S 006200 77 LINE-POINTI;R PIC 99 VALUE 0.
76 006300 77 DID-FLAG PIC X VALUE "R".
77 006400 88 EOJ W1LUE 11 811 •

7B 006500 77 OUT-STATIJS-IJALID PIC X VAL !IE "F".
79 006600 88 OUTPUT-STATUS-WiLID \IALUE "T".
80 006700 COMM!Jt!ICATION SECTION.
81 006800 CD INPUT-CD FOR INITIAL INPUT.
SC~ 006900it
83 007000* NOTE "INITIAL" CLAUSE.
8'1· 007100* IF AN INITIATING MESSAGE IS INCLUDED IN THE "EX" OR "ZIP"

C-23

i?S
86
87
tll
f39
90
91
92
9·1
~1

9t,.
~
9!.;
9'?
9El
... ~>

100
101
102
103
104
105
106
107
108
109
110
:l.11
11.2
11.3
11.4
us
11.6
ll.7
11.B
11.9
120
1c~1
p? .. ~
123
124
125
lC)b
127
lc~B

1i:~9

130
131
132
133
134
135
136
137
138
139

C-24

007200*
007300lf
0074003!

OF THIS TASK, THEN THIS CD AREA WILL BE OVERWRITTEN WITH THE
FIRST 87 CHtiRACTERS OF THE TEXT. THE PROGP.t;M DOES *NOT* SPACE
FILL THE SUD-QUEUE FIELDS. MCP WILL RETURN STATUS 20 <ACCESS
DENIED) IF SUB-QUEUE FIELDS ARE NON-SPl1CE. 007500*

007600*-------------------·
007700 01 IN-CD.
007800 02 SYMBOLIC-QUEUE PIC X<12). ~ APPROPRIATE NDL "FILE" NAME.... --------
007900 02 SUB-Q-1 PIC X(12> VALUE II "

008000 02 SIJB-Q-2 PIC x 112) VALUE II II

008100 02 SUB-Q-3 PIC XC12l VALUE " "
008200 02 MESSAGE-DATE PIC 9(6).
008300 02 MESSAGE-TIME PIC 9(8).
008400 02 SYMBOLIC-SOURCE PIC XC12).
008500 02 TEXT-LENGTH-IN PIC 9(4) •
008600 02 END-KEY PIC 9.
008700 02 STATUS-KEY-IN PIC 99.
009800 88 GOOD-INPUT-STATUS VALUE 00.
008900 88 UNKNOWN-INPUT VALUE 20.
009000 88 MCS-MISSING VP.LUE 91. /
009100 88 KNOHN-INPUT-ERRORS vtiLUES 20 91. .
009200 02 MESSAGE-COUNT PIC 9C6l.
009300 CD OUTPUT-CD FOR OUTPUT.
009400 01 OUT-CD.
009500 02 DESTINATION-COUIH PIC 9(lt> VALUE 1.
009000 02 TEXT-LENGTH-OUT PIC 9(4).
009700 02 STATUS-KEY-OUT PIC 99.
009800 "88''GoffD-=ouTPUT--STAilJS-~i;.\Cu[oo.- ____ , __ ~ '

009900 88 UNKHOt.JN-OUTPUT VALUE 20. ',
010000 88 I:AD-DESTINATION-COutH VALUE 30. '-,
010100 88 BAD-TEXT-LENGTH VALUE so. I
010200 88 DCSS-MISSING VALUE 91.
010300 88 KNOWN-OUTPUT-ERRORS VALUES 20 30 50 91.
010400 02 ERROR-KEY PIC 9.
010500 02 SYMBOLIC-DESTINATION PIC XC12>.
010600 PROCEDURE DIVISION.
010700 MAIN.

010800 GO TO START-OF-PROGRAM. i. MPL-LIKE PROGRAM LAYOUr=--------·--
010900 GET-QUEUE-NAME •

011000*]
0111C<Ol! GETS SUBHETQIJE!JE NAME FROM OPERATOR <IF NOT IN nrrJ.~~§~A_GE>. ..
011200* THIS NAME MUST BE DEFINED IN THE NDL PROGRl:M FILE.
011300* --~·~~--- ---·-··-
011'1-00 IF SYMBOLIC-QUEUE IS EQUAL TO SPACES i. = NO INIT MESSAGE===-.:::=~===
011500 THEN DISPLAY "TYPE INPUT-QUEUE NAME. •• "
011600 ACCEPT SYMBOLIC-QUEUE.
011700 GET-MESSAGE.

~ii~~~: SPACE rILL DAT. A-COMM BUFFER, TAKE NEXT MESSAGE FROM SU;~~~-~----"··-----~--~-]
012000* SET EOJ FLAG IF END RECEIVED.
012100 - -~---·,-·-·······_..,.... .. ,,,, ..
012200 MOVE SPACES TO
012300 SYMBOLIC-SOURCE
012400 END-KEY
012500 STATUS-KEY-IN.
012600 MOUE 0 TO

1t~o 012700 MESSAGE-DATE
1f1-1 012800 MESSAGE-TIME
1t,.2 012900 TEXT-LENGTH-IN
g.3 013(100 MESSAGE-COUIH •
14-4 013100 MOVE SPACES TO t1C-BIJFFER.
1£~5 013:?00 RECEIVE INPUT-CD MESSAGE INTO DC-BUFFER.
14·6 013300 IF DC-MESSAGE = "END" MOVE "S" TO END-FLAG.
10 013400 WRITE-LINES.
14·8 013500l!. ..
1li 9 013600l! WRITE INFORMATION FROM LP.ST MESSAGE RECEIVED TO PRINTER. I 150 013700*-··
151 013800 MOVE SPACES TO PRINT-LINE.
1'-' ,), 013900 WRITE BUFFER-LINE FROM DC-SLOT<LINE-POINTER> AFTER 1.
153 014000 ADD 1 TO LINE-POINTER.
1~:;4 014100 LOG-IN-CD.
155 014200*

f

156 014300!': WRITE CONTENTS OF CURREHR INPUT CD TO PRINTER. I
1r::7 014400*- i ,,. ·~·-1
158 014500 MOVE SPACES TO PRINT-LINE.
159 014600 MOVE SYMBOLIC-QUEUE TO LP-SYMBOLIC-QUEUE.
160 014700 MmJE SUB-Q-1 TO LP-SUe--Q-1.
161 014800 MOVE SUB-Q-2 TO LP-SUB-Q-2.
162 014900 MOVE SUB-Q-3 TO LP-SUB-Q-3.
163 015000 MOVE MESSAGE-DATE TO LP-MESSAGE-DATE.
164 015100 MOVE MESSAGE-TIME TO LP-MESSAGE-TIME.
165 015200 MOVE SYMBOLIC-SOURCE TO LP-SYMBOLIC-SOURCE.
166 015300 MOVE TEXT-LENGTH-IN TO LP-TEXT-LENGTH-IN.
167 015400 M01,1E END-KEY TO LP-END-KEY.
U1S 015500 MOVE SHITUS-KEY-IN TO LP-STATUS-KEY-IN.
169 015600 ACCE?T INPUT-CD MESSAGE COUNT.
170 015700 MO\JE MESSAGE-COUNT TO LP-MESSAGE-COUNT.
171 015800 WRITE LP-IN AFTER 2.
172 015900 IF NOT GOOD-INPUT-STATUS
173 016000 GO TO LOG- IN··CD-END. :::: g 'T'"

174 016100 DIVIDE 80 IIHO TEXT-LENGTH-IN GIVING PRINT-LINES
175 016200 REMt.rnDER srARE-C!-h~RACTEr\S.
176 016300 MOVE 1 TO LINE-POINTER.
1..,.,

i I 016400 PERFORM WRITE-LINES UNTIL LINE-POINTER > PRINT-LINES.
1?B 016500 IF SPARE-CHARACTERS IS NOT = 0
179 016600 PERFORM WRITE-LINES.
1El0 016700 LOG-IN-CD-END.
181 016800 EXIT.
1B2 016MO XMIT.
1El3 017000!1!
l84 017100!': SEND CURRENT MESSAGE BACK TO ORIGINATOR.
ms 017200* MARK OUTPUT STATUS t1S NOT HAVING BEEN ANALYSED.
1El6 017300!1- ----·~ -·~·""'··---~-- '''""

187 017400 MOVE TEXT-LENGTH-IN TO TEXT-LENGTH-OUT.
:I.BB 017500 MOVE SYMBOLIC-SOURCE TO SYMBOLIC-DESTINATION.
1El9 017600 HOVE SPACES TO STATUS-KEY-OUT
H·>O 017700 ERROR-KEY.
191 017800 SEND OUTPUT-CD FROM DC-BUFFER WITH EMI,
1'i-'2 017900 MOVE 11 T11 TO OUT-STATUS-VALID.
1'i-'3 018000 LOG-OUT-CV.
194 018100*

C-25

C-26

195 01!3200lf
196 018300*
H·'7 018't00
198 018500
199 018600
200 013700
201 018800
202 C•18900
203 019000

WRITE iHE·CONTENTS OF THE CURRENT OUTPUT CD TO PRINTER.

M!JVE S PtiCES TO PR HIT-LINE.
MO\.'E DESTINATION-CllUf-!T TO LP-DEST-COUNT.
MOVE TEXT-LENGTH-OUT TO LP-TEXT-LENGTB-OUT.
MOVE STATUS-KEY-OUT TO LP-STATUS-KEY-OUT.
MO',JE ERROR-KEY TO LP-ERROR-KEY-OUT.
MOVE SYMDOLIC-DESTINATION TO LP-SYMBOLIC-DEST!NiiTION.
WRITE LP-OUT AFTER 1.

204 019100 DISP·rRRORS- IN.
205
206 019300* REPORT TO OPERATOR ON ERRORS FROM Lt1ST INPUT FROM DATA-COMM.
207 019400ll ---------~-----------···---·--------· ... · .. -·~·~--
ms 019500
209 019600
21.0 019700
21.1 019800
212 019900
21.3 020000
21.4 020100
21.5 020200
21.6 020300
217 Ot-~0400

21.S 020500
219 020600

MOVE "RECEIVE ERROR II TO TYPE-FIELD.
MOVE STi".TIJS-l:EY-IN TO ERROR-FIELD.
IF UNKHOIJN- INPUT

MOVE 11 (QUEUE UNKNOWN OR ACCESS DENIED>"
TO COMMENT-FIELD.

IF MCS-MISSIN!i
MOVE II <MCS/DCSS NOT PRESENT>"
TO COMMENT-FIELD.

IF NOT KNOWN-INPUT-ERRORS
MOVE II (UNKNOWN ERROR> It

TO COMMENT-FIELD.
DISPLAY COMM-ERROR.

2PO
2'~1

2£-!2
223
224
225

020700 IF UNK~OWN-INPUT
020800 MOVE SPACES TO SYMBOLIC-QUEUE
020900 PERFORM GET -QUEUE-NAME.
021000 IF HCS-M!SSING
021100 DISPLiW "INITIATE A SUITABLE MCS THEN 1111 1~X 1111 THIS TASK"
021200 ACCEPT DC-MESSAGE.

';Y,l' -t.O 021300 IF NOT KNOWN-INPUT-ERRORS
3:!7
3:~8

229
?.30
231

021400 DISPLAY "PROGRAM ERROR - 1111 DP 1111 THIS TASK"
021500 ACCEPT DC-HESSAGE
021600 STOP RUN.
021700 DISP-ERRORS-OIJT.

232 021900* REPORT TO OPERATOR ON ERRORS FROM LAST OUTPUT TO DATA-COMM.
?.:-';3 022000ll-- ·-----·-----·-·-·-·--·-···-··---·--·····
234 022100 MOVE "TRANSMIT ERR.OR." TO TYPE-FIELD.
235 022200 MOVE STATUS-KEY-OUT TO ERROR-FIELD.
236 022300 IF IJNKNOl~N-OUTPIJT
237 022400 MOVE 11 <STATION Ul~!:t!OIJN OR ACCESS DENIED>"
238 022500

E _ __g39 022600
2!d 022800
2t1·c 022900
2£1·3 023000
?.Vt 023100
2£1·5 023200
2l1·6 023300
C.¥.t7 023400
21·8 023500
2-'1·9 023600
:ci:;o 023700

TO COMMENT-FIELD.
IF BAD-·DESTINATI.Q!l-CQ..IJ.iTI,_ ___ . f-4 ov t ti ('BAJ) v ('\ T If'-) ,A, T I µ t. 0 u /VT)

TO COMMENT-FIELD.
IF BAD-TEXT-LENGTH

MOVE II <REQUIRED TEXT-LENGTH > DC-BUFFER SIZE> II
TO COMMENT-FIELD.

IF DCSS-M!SSING
MO'JE 11 (MCS/DCSS NOT PRESENT) n

TO COMMENT-FIELD.
IF NOT KNOWN-OUTPUT-ERRORS

MOVE II (UNKNOWN-ERROR>"
TO COMMENT-FIELD.

251 023900
a~2 023900
2!53 024000
254 024100
255 024200
~ib 024300
a~7 024400
~;e 024500
a~9 024600
260 024700
2(.,1 024800
2ti2 024900
263 025000

DISPLAY COMM-ERROR.
IF UNKNOWN-OUTPUT

DISPLAY "CORRECT, THEN 1111 AX 1111 THIS TASK"
ACCEPT DC-MESSAGE.

IF BAD-DESTINATION-COUNT OR NOT KNOWN-OUTPUT-ERRORS
DISPLAY "PROGRAM ERROR - ""DP"" THIS TASK"
ACCEPT DC-MESSAGE
STOP RIJN.

IF BAD-TEXT-LENGTH
DISPLAY "STATION IS NOT TD830 - SELECT ANOTHER QUEUE"
MOVE SPr1CES TO SYMBOLIC-QUEUE
PERFORM GET ··QUEUE-NAME.

IF DCSS-MISSING
2M 025100 DISPLAY "INITIATE A SUITABLE MCS THEN 1111 AX 1111 THIS TASK"
265 025200 ACCEPT DC-MESSAGE.
2U, 025300 MOVE "F" TO OUT-STATUS-VALID.
267 025400 ANALYSE-ERRORS.
:?6 e 02s500*~·-· --------·---- -·~·-··-- -··-·----~-~-- --~------~--------·--
269
270
271
:272
2i'3
274
2i'S
:2?6
277
270
279
mo
2B1
282
283
al4
2ElS
286

a
REPRT ERRORS IF ANY. 025600lf

025700*------------------
025800 IF NOT GOOD-IllPUT-STATUS
025900 PERFORM DISP-CRRORS-IN.
026000 IF NOT GOOD-OUTPUT-STATUS AND OUTPUT-STATUS-VALID
026100 PERFORM DISP~ERRORS-OUT.
026200 TURNAROUND.

~~~~~~=-TAKE NEXT MESSAGE AND SEND IT BACK FROM lJHE;!CE -~-~~;~--------------~-----.] 
026500* IF ERROR FREE. 
026600lf-------------· ---- ·-----~-----------~- ·-
026700 PERFORM GET-MESSAGE. 
026800 IF GOOD-INPUT-STATUS PERFORM XMIT. ~ XMIT *BEFORE* LOG ALLO\JS---
026900 PERFORM LOG-IH-CD THRU LOG-IN-CD-END. ! PRINTER AND OUTPUT-DC======'"-
027000 IF GOOD-INPUT-STATUS PERFORM LOG-OUT-CD. I. TO INTERLEAVE---·-------- -----·-~----------

027100 PERFORM ANALYSE-ERRORS. 
027200 START-OF-PROGRAM. 
027300***** 

2£)7 027400***** 
208 027500******* START OF PROGRAM ***************************************** 
2E!9 027600***** 
290 027700lfUH 
291 027900 OPEN OUTPUT LOG. 
292 027900 PtRFORM GET-QUEUE-NAME. 
~J~ 028000 PERFORM TURNt1ROUt!D UNTIL EOJ. 
294 020100 CLOSE LOG RELEASE. 
2';>5 028200 STOP RUN. 



1 
c 
3 
I 
•1· 

5 
L 
u 

7 
8 
9 

10 
11. 
12 
13 
14. 
1'"~ _, 
16 
17 
rn 
1~> 

20 
21 
a~ 

23 
2'1· 
~ 
26 
27 
2El 
C9 
30 
31. 
32 
:!:) 

3l1· 
35 
°J/.) 
'3"l 
3El 
'71:\ 
..... y 

40 
4.:1. 
4-2 
ft~~ 
41,. 
45 
46 
47 
48 
4.9 
50 
Sl. 
S2 
53 
54 
55 

C-28 

SAMPLE RPG PROGRAM 

00001F******************************lllllltlllllllllll~llllMllllllllllll 

00002F* * 
00003F* PROPRIETARY PROGRAM MATERIAL 
00004Ft * 
OOOOSF• THIS MATERH\L IS PROPRIETARY TO BURROUGHS CORPORATION * 
00006F• AND IS t!OT TO BE REPRODUCED, USCD OR DISCLOSED EXCEPT IN * 
00007Ft t1CCORDAHCE WITH PROGRAl1 LICENCE OR UPON WRITTEN AUTHORIZATION * 
00008Ft OF THE PATENT DIVISION OF BURROUGHS CORPORATION, DETROIT, * 
00009Ft MICHIGAN 48232. * 
00010Ft * 
00011F• COPYRIGHT (C) 1979 BURROUGHS CORPORATION 1 

00012F* * 
00013F••**************************************************************** 
0001SFKEY IP. 80 80 KEYSORD 
00020F* 
00030Fll 
00040F* 
OOOSOFt 
00060Ft 
00070Ft 
00080F* 
00090Ft 

FILEO IS THE SYMBOLIC QUEUE NAME • THIS NAME MUST BE DEFINED IN THE 
FILE SECT ION OF THE NDLSYS FILE TO BE USED. 
THIS FILE IS FURTHER DE~SRIBED ON THE T-SPEC. 
THE FILE IS DEFINED AS COMBINED DEM1;ND. THIS MEANS THAT A MESSAGE 
CAN BE RECEIVED AND TRANSMITTED IN THE SAME CYCLE. 

00100Ft 
00110FFILEO CD 
00120FOUTPUT 0 
00130T* 

132 132 
132 132 

DliTACOM 
PRINTER 

00140T• 
001SOT* 
00160Tt 
00170T* 
00180T• 
00190T* 
00200T* 
oc1210T* 
00220T* 
00230Tll 
00240T* 
002SOT* 
00260T* 
00270T* 
00280Tll 
00290T* 
00300T* 
00310Tll 
00320TFILEO 
00330I* 
003401* 
00350Il! 
00360I* 
00370I* 
003801* 
00390IFILEO 
004001 
00410C* 
00420C* 

THE DATA COMMUNICATION SPECIFICATION CT-SPEC> FURTHER DESCRIBES THE 
FILE DEFINED ON THE F-SPEC. 
THE ENTRY OF T !ti COLUMN 16 DEFINES THAT THE FILE CAN TRANSMIT AND 
RECEI'JE <NOTE - AN ENTRY OF R WOULD MEAN THE SAME WHEN THE FILE IS 
COMBINED>. 
THE ENTRY OF S rn COLUMN 40 DEFINES THAT THE FIELD NAME IN COLUMNS 
41-47 WILL CQHTAIN THE STATION NAME. THE STATION NAME IS THE 
SYMBOLIC SOURCE, AND THE STATION NAME MUST BE DEFINED IN THE STATION 
SECTION GF THE NDLSYS FILE TO BE USED. 
THE ENTRY OF 01 IN COLUMNS 53-54 IS THE ERROR U!DICATOR. THIS 
INDICATOR WILL BE SET ON WHEN ANY OF THE ERRORS LISTED ON THE 
0-SPECS HAS OCCURED. 
HIE ENTRY OF S IN COLUMNS 63 DEFINES THAT THE FIELD NAME IN COLUMNS 
64-70 WILL CONTAIN THE MESSAGE LENGTH OF ANY MESSAGES RECEIVED OR 
TRANSMITTED. 

T SSTAT 01 SMESS 

THE COMBINED DATA COMMUNICATIONS FILE MUST BE FURTHER DESCRUED ON 
AN I-SPEC. 

NS OS 
1 SO ALL 



!SC) 00430Cll 
57 004-ftOClf 
5B ON50C* 
5'i-' 00460C* 
60 00470C11 
/)1. 00480C 
t::·'C~ 00490C 
/2~ OOSOOCll 
t.A 00510C* 
ts OOS20C* 
(st) 00530C·~ 
{,? OOS40C* 
<~H 00550C* 
69 OOS60C* 
-r-. \,' 00570C* 
"71. 00580Cll 
li:! 00590C* 
73 00600C* 
7t,. 00610C* 
7'" '~) 00620Cll 
76 00630Cll 
"Ti' 00640C* 
/'Cl 00650C 
/'~> 00660C 
80 00670C 
81. 00680Cll 
~~ 00690Cll 
c.:i·1 00700Cll ._,._, 

8l1· 00710C* 
85 00720C* 
86 00730C 
87 00740C 
(£ 007SOC* 
BC;> 00760C* 
90 00770Cll 
</l. 00780Cll 
9C: 00790C* 
93 00800C* 
9c,. 00810C* 
o/.S 00820Cll 
96 00830Cll 
9i' 00840CJI: 
9H 008SOC* 
~JS> 00860C* 

100 00870C* 
101 00880C* 
102 00890C* 
103 00900Cll 
1()4 00910Cll 
105 00920C 
1.06 00930C 
107 00940Cll 
108 009500ll 
109 009600* 
110 009700ll 

01 

N01 
N01 

N01 
NC11 

THE FIELD NAMES STAT AND MESS r\UST 8E DEFINED IN THE C-SPECS. 
STAT MUST BE DEFINED AS ALPHANUMERIC AND MESS MUST SE DEFINED AS 
NUMERIC. 

MO\.IE ·· 
Z-ADDO 

·"STAT 8 
MESS 70 

THE OPCODE 'READ' IS USED TO RECEI\.IE MESSAGES FROM AN INPUT OR 
COBINED DEMAND DATA COMMUNICATIONS FILE. 
THE INDICATOR NORMALLY SPECIFIED IN COLUMNS 58-59 OF THE C-SPEC IS 
IGNORED WHEN THE FILE NAME SPECIFIED IN COLUMNS 33-42 IS A DATA 
COMMUNICATIONS FILE. 
AFTER THE RECEIVE STAT WILL CONTAIN THE NAME OF THE STATION 
WHICH TRANSMITTED THE MESSAGE. 
AFTER THE RECEIVE MESS WILL CONTAIN THE MESSAGE LENGTH OF THE 
MESSAGE. 
IF THE RECEIVE FtiILED THEN THE ERR.On H!DICATOR 01 WILL BE SET ON. 
THE INDICATOR 06 IS USED TO INDICATE A RECEIVE ERROR. 

SET OF 
READ FILEO 
SETON 

0106 

06 

WHEN THE MESSAGE CONTAINS 'om·· T THEN THE PROGRt1M GOES TO END or JOB 

COMP ALL 
MOVE MESS MES 

LR 
70 

THE MESSAGE LENGTH OF THE MESSAGE TO BE TRM1SMITTED BACK MUST BE 
MOVED INTO MESS, OTHERWISE THE MESSAGE LENGTH OF THE RECEIVED 
MESSAGE WILL BE USED. 

NOTE - 80 Crh~RACTERS ARE EXPECTED TO BE RECEIVED (THE FIELD "ALL' IS 
80 BYTES LONG). IF THE OPERATOR TRANSMITS 80 CHARACTERS THE FIRST 
TIME AND THEN 70 CHARACTERS THE SECOHD TIME THEN THE SECOND MESSAGE 
~!ILL CONTAIN THE LAST 10 CHARACTEP:s OF THE FIRST MESSAGE. THE BUFFER 
CANNOT BE CLEf\RED, THEREFORE AN EP-ROR MESSt1GE SHOULD BE DISPLAYED IF 
THE MESSAGE TRANSMITTED IS LESS THAN 80 CHARACTERS LONG. THE 
OPERAiOR SHOULD BE DIRECTED TO RE-TRtiNSMIT 80 CHARACTERS. 
THE ALTERNATIVE IS TO TAKE ACCOUNT OF THE MESSAGE LENGTH 
PROGRAMMAT!U:LLY AND PROCESS THE MESS{iGE ACCORDINGLY. 

COUNT 
Z-ADD132 
ADD 1 

MESS 
COUNT 50 

THE COMBINED DATA COMMUNICATIOHS FILE MUST BE FURTHER DESCRIBED ON 
AM 0-SPEC. 

C-29 



11.1 
11.2 
113 
11.4 
11.5 
116 
:U.7 
11.8 
11. 9 
120 
121 
11:~2 

:tl:!3 
1!:~4 

11:~5 

E:b .,,._,., 
J..i..t 

E~S 

J.C:9 
130 
1.31 
1:~2 

133 
134 
., ·.re: 
J..,.1.; 

136 
137 
138 
:l.39 
V10 
Vi-1 
llt2 
1t,.3 
14.l 
l.li-5 
:!Ab 
ili-7 
ili·B 
:ll1·9 
1:;0 
1~;1 

1~)2 

1"·""T 
~""' 

154 
1~;5 

fi6 
1S7 
158 
1~'i9 
160 
Ui1 
162 
163 
164 
165 

C-30 

009800* 
009900* 
010000* 
010100* 
010200:ll 
010300F'ILEO 
010400ll 
010500* 
010600:ll 
010700ll 
010800!! 
010900 
011000 
011100 
011200 
011300 
0114-00 
011500 
011600 
011700 
011BOO 
011900 
012000 
012100 
012200!! 
012300* 
012400l! 
012500* 
012600ll 
012700!! 
012800* 
012900* 
013000"1 
013100!! 
013200!! 
013300* 
013400!1 
0135000UTP!JT 
013600 
013700 
013800 
013900 
014-000 
014-100 
014-200:.t 
014300:11 

IF THE ERROR INDICATOR IS SET OFF THEil THE RECEIVED MESSAGE IS 
ECHOED BACK TO THE STATION THAT TRANSMITTED THE MESSAGE. 

D N01 05 

@OC@ IS 'CLEAR AND HOME' - THE SCREEN IS CLEARED OF THE LAST MESSAGE 

D N01 

1 @OC@ 
All 81 

8'i ' MESSAGE ' 
COUNT 95 

STAT 
05 

119 ' RECEIVED FROM STATION 
127 

24 ' WITH MESSAGE LENGTH OF ' 
MES 31 

55 ·· AND SENT TO ST A TION ' 
ST:tT 63 

87 " WITH MESS1%E LENGTH OF " 
HESS 94 

IF THE ERP.QR INDICATOR IS SET ON THEN M·l Er\ROR LIST IS PRINTED. 
THESE E?.RORS CMlNOT BE DETECTCD BY THE MCS. 
THE RPG ?ROGRi'il'\ WILL ONLY SET ON Ml EflRCfl WDICATQR i~ilD THEREFORE 
CANNOT DETERMINE WHICH OF THE POSSI3LE ERRORS H~VE ACTUALLY 
OCCURED. ALL THE POSSIBLE ERRORS ARE THEREFORE LISTED AND THE 
OPERATOR IS DIRECTED TO UNESTIGATE FIJRTllER. 

RECEIVE ERROR. 

D 11 Ob 
24 '*** Er.RCR *** EITHER -' 
48 'FILE ON F-SPEC DOES NOT ' 
72 ··CORP.ES PG ND TO FILE SECTI ·· 
96 "ON OF NDLSYS, OR THERE I·· 

120 "S NO MCS EXECUTING --- I·· 
130 "N!JESTIGATE' 

014it00lf TRANSMIT ERROR. 
014500* 
014600* 
0147000UTPUT 
014-800 
014900 
015000 
015100 
015200 

D 11 01 
24 "*** ERROR *** EITHER - " 
48 ' STrlTION NAME ON T-SPEC " 
72 'DOES NOT CORRESPOND TO S' 
96 "TATION SCCTION OF NDLSYs·· 

120 ', OR MESS1%E LENGTH EXCE ·· 



1l>6 015300 123 'EDS' 
167 015400 D 11 01 
168 015500 24 'RECORD LENGTH ON F-SPEC1 ' 

:1.69 015600 48 ' OR THERE IS NO MCS EXEC' 
170 015700 69 'UTING --- INVESTIGATE .. 
171 015800* 
172 015900* 
173 016000* IF THE ERROR INDICATOR IS SET OFF THEN THE RECEI'JED MESSAGE IS 
174 016100* PRHITED ml THE LINE PRINTER. 
175 016200* 
176 016300:! 
177 016400 D 2 H01 05 
178 016500 ALL BO 
11'9 016600 90 'MESSt1GE ' 
mo 016700 co urn 95 
1El1 016900 119 ·· RECEIVED FROM SHtT!ON ' 
1n:i 
··~ 

016900 STAT 127 
1El3 017000 ]) 1 N01 05 
Ul4 017100 24 ' WITH MESSAGE LENGTH OF ' 
ms 017200 MES 31 
186 017300 55 ' AtlD SENT TO STliTION ' 
1()7 017400 STAT 63 
rne 017500 87 ' WITH MESSAGE LENGTH OF ' 
189 017600 MESS 94 

C-31 



1 
2 
3 
,;. 
'~ ...) 

I 
l::J 

7 
8 
9 

10 
H 
12 
13 
ifi. 
15 
16 
17 
18 
1~> 

20 
21. 
:22 
23 
·-;l[ 
-t 

cs 
26 
?.., 
-1 

2B 
29 
'!/) 

31 
32 
33 
34 
~ 
36 
-:s1 
38 
~> 

40 
41 
42 
·1·3 
II 
'f"'t· 

45 
ltf.> 

4-7 
4H 
4-'l' 
50 
51. 
5C 
53 
Sl1· 

&) 

C-32 

$CONTROL 200 DATA 1500 
$FORMAT 
$NOLI ST 
$Dt\TACOM 

., 
I. ., 
1. PROPRIETARY PROGRAM MATERIAL ., 
1. 

7. THIS MATERIAL IS PROPRIETARY TO BURROUGHS CORPORATION AND IS 
% NOT TO BE REPRODUCED, USED OR DISCLOSED EXCEPT IN ACCORDANCE WITH 
Z PROGRAM LICENCE OR UPON WRITTEN AUTHORIZATION OF THE PATENT 
Z DIVISION OF BURROUGHS CORPORATION, DETROIT, MICHIGAN 48232. 

COPYRIGHT CC> 1979 BURROUGHS CORPORATION 

PROCEDURE OUTER; 
]EFINE CH £CHARACTER£; 
DECLARE PRINT.LINE CHC120l; 
FILE LOG WORK.AREA PRINT.LINE; 

:r. 
:< PRINT BUFFER STUFF. 
x 

REMAP PRINT.LINE: 
01 LP.IN, 

02 LP.SYMBOLIC.QUEUE CH(12) 1 

02 DUMMY CH< 1> 1 

02 LP.SUB.Q.1 CIH12), 
02 DUMMY CH< 1), 

02 LP.SUB.Q.2 CHC12), 
02 DUMMY CHCU 1 

02 LP.SUB.Q.3 CHC12) 1 

02 DUMMY CH< U, 
02 LP.MESSAGE.DATE CHC8), 
02 DUMMY CH<1), 
02 LP.MESSAGE.TIME CH( 11 l, 
02 DUMMY CHC1), 
02 LP.SYMBOLIC.SOURCE CH< 12), 
02 DUMMY CH(1l, 
02 LP.TEXT.LENGTH.IN CIHS> 1 

02 DUMMY CHO>, 
02 LP.END.KEY CH<1), 
02 DUMMY CH ( U, 
02 LP.STATUS.KEY.IN CHU?>, 
02 DUMMY CH<1 >, 
02 'LP.MESSAGE.COUNT CHC7l; 

REMAP PRINT.LINE: 
BUFFER.LINE CH(80); 
REMAP PRINT.LINE: 
01 LP.OUT CH<80) I 

02 LP.DEST.COUNT CH(S), 
02 DUMMY CHC 1>, 
02 LP.TEXT.LENGTH.OUT CHCSl, 
02 DUMMY CHC1 l, 
02 LP.STATUS.KEY.OUT CHCcl, 

00001000 
OOC\01100 
00001200 
00001300 

/.00001310 
/.00001315 
1.00001320 
7.00001325 
:{00001330 

i.'.000013l,0 
/.00001345 
;;oc·oo 1350 
;woc·o 1355 

00001400 
00001500 
0000161)0 
00001700 
00001800 
00001900 
00002C•OO 
00002100 
00002200 
00002300 
00002t~oo 

OOOC2SCO 
00002600 
00002700 
00002800 
(10002900 
00003000 
00003100 
00003200 
00003300 
00003400 
00003500 
00003600 
00003700 
00003800 
00003900 
00004000 
00004100 
00004200 
00004300 
00004400 
00004500 
00001t600 
00001~700 

00004800 
00004900 
00005000 
00005100 
00005200 



56 02 DUMMY CH(l>, 00005300 
57 02 LP.ERROR.KEY.OUT CIH 1), 00005400 
5El 02 DUMMY CH(1) 1 00005500 
sc;.> 02 LP.SYMBOLIC.DESTINATION CIH12>; 00005600 
(;l) % 000057•')0 
61 % DATA-COMM BUFFER STUFF 00005800 
&:~ % 00005900 
f;!, SEGMENT DC.BIJFFER(1920)i 001)06000 
64- REMAP DC.BUFFER: 00006100 as DC.SLOT CHrnO>; 00006200 
6/.1 REMAP DC.EUFFER: 00006300 
61' DC.MESSAGE CHC3>, 00006400 
68 DC.REST C1917> CHC 1l i 00006500 
69 % 00006600 
70 % OTHER GLOBAL GOODIES 00006700 
71 % 000%800 
72 DECLARE 00006900 
73 01 COMM.ERRO~, 00007000 
7t,. 02 TYPE.FIELD CHC15) 1 C•0007100 
7S 02 ERROR.FIELD CHC2>, 00007200 
76 02 COMMENT.FIELD CHC45) 1 OOC•07300 
7l PRINT.LINES FIXED, 000074·00 

. 7El . LINE.POINTER F:'XED, 00007500 
79 SYMBOLIC.QUEUE CHC12> 1 00007600 
00 END.FLAG CHU>; 00007700 
Bl. DEFINE EOJ £CEND.FLAG="S">£; 00007000 
82 END.FLAG:="R"; 00007?00 
e:.~ DECLARE coooeooo 
~ OUT.STATUS.VALID CHU>; 00008100 
85 DEFINE OUTPUT.STATUS.VALID £COUT.STATUs.VALID= 11T11 >£; 00003200 
eL> OUT.STATUS.VALID:="F"; 00000300 
87 % 00008400 
00 % DEFINES FOR ERROR HANDLING .... DO NOT DO THIS IN REAL LIFE. 00008500 
8".' 1. AS IT GENERATES A LOT OF S-CODE •• · •• USED HERE AS ILLUSTRATION ONLY. 00000600 
90 % 00000700 
91 DEFINE 00008000 
9'~ GOOD.INPUT.STATUS £CDC.INPUT.ST~TUS=O>£, 00008900 
93 UNKHO\.IN.INPUT £CDC.INPUT.STATUS=20>£, 00009000 
94 MCS~MISSING £CDC. INPUT .STATUS=91>£1 00009100 
95 KNOWN.INPUT.ERRORS £CUNl(NOIJN.INPUT OR MCS.MISSING>£, 00009200 
96 GOOD.OUTPUT.STATUS £(DC.OUTPUT.STATUS=O>£, 00009300 
'Yl UNKNOWN.OUTPUT £CDC .OUTPUT .STATUS=20)£1 00009400 
9B BAD.D~STINATION.COUNT £CDC.OUTPUT.STATUS=30>£, 00009500 
99 BAD.TEXT.LENGTH £CDC.OUTPUT.STATUS=50>£, 00009600 

100 DCSS.MISSIHG £<DC.0Ul'PUT .STATUS=91>£1 00009700 
101 KNOWN.OUTPUT.ERRORS £<UNKNOWN.OUTPUT OR 000098-00 
10~ BAD.DESTINATION.COUNT OR 00009900 
103 BAD.TEXT.LENGTH OR 00010000 
104 DCSS.MISSING>£; 00010100 
105 % 00010200 
106 % 00010300 
107 x 00010400 
108 PROCEDURE GET.QUEUE.NAME; 00010500 
109 1. 00010b00 
110 x GETS SUBNET QUEUE NAME FROM OPERATOR. THIS NAME MUST BE 00010700 

C-33 



111 i. DEFINED IN THE NDL PROGRAM FILE SECTION, 00010800 
112 i. 00010900 
113 DISPLAY("TYPE INPUT QUEUE NAME ••• ">; 00011000 
11. 4 ACCEPT(SYMBOLIC.QUEUE>; 00011100 
11.S END GET.QUEUE.NAME; 00011200 
116 PROCEDURE GET.MESSAGE; 00011300 
11.7 % 00011400 
11.8 

., SPACE-FILL DATA-COMM BUFFER, TAKE NEXT MESSAGE FROM SUBNET Q, 00011500 " 119 z SET EOJ FLAG IF END RECEP,'ED. 00011600 
1.PO i. 00011701) 
1c~1 DECLARE I FIXED; 00011800 
1(~2 DO MOVC.SPACES.TO.DC.BUFFER FOREVER; 00011900 
1P3 DC.SLOT<I*BOl:::""; 0001'2000 
1c~4 IF CI:+1J >= 24 THEN UNDO; 00012100 
:lP5 END MOVE.SPACES. TO.DC.BUFFER; 00012200 
W6 DC.RECEIVE<SYMBOLIC.QUEUE,DC.SLOT,1920); 00012300 
1c~7 IF DC.MESSAGE = "END" THEN END.FLAG:="S"; 00012~00 

:!.c!B END GET.MESSAGE; 00012600 
1c~9 PROCEDURE WRITE.LINES; 00012700 
t?iO :< 00012800 
:!.31 'I WRITE INFORMATION FROM LAST MESSAGE RECEIVED TO PRINTER 00012900 ,, 
132 z 00013000 
j .,.~ 
.~ij PRINT .LINE:=""; 00013100 

134 BUFFER.LINE:=DC.SLOTCLINE.POINTER>; 00013200 
13S WRITE(LOG,BEFORE,LINEl; 00013300 
136 LINE.POINTER:+eo; 00013400 
137 END WRITE.LINES; Ci0013500 
138 PROCEDURE LOG.IN.CD; "0013600 
139 7. 00013700 
lli·O 7. l~RITE CONTENTS OF CUPS,Et!T INPUT CD TO PRINTER 00013800 
lli-1 7. 00013900 
1l1·2 DECLARE 00014000 
1/;3 TEMP CH(8), 00014100 
1fi-~ F.TEMP FIXED; 00014200 
111.s PRINT .LINE::-:'"'; 00014300 
1l1·b LP.SYMBOLIC.QUEUE:=SYMBOLIC.QUEUE; 00014-400 
Fi-7 DO MOVE.DATE; 00014500 
g.e TEMP!=DC.DATE; 00014600 
1l1·9 IF TE:iP = "" THEN LP.MESSfiGE.DATE:="00/00/00"; 00014610 
150 ELSF. 00014620 
151 DO; 00014630 
152 SUBSTRCLP.MESSAGE.DATE,0,2):=SUBSTR<TEMP,0,2>; 00014700 
153 SUBSTR(LP.MESSAGE.DATE,21 1):="/"; 00014800 
154 SUBSTRCLP.MESSAGE.DATE,3,2>:=SUBSTRCTEMP,2,2l; 00014900 
1""C' ,j.J SUBSTR(LP.MESSAGE.DATE1 51 1):="/"; 00015000 
1~)6 SUBSTR<LP.MESSAGE.DATE,6,2>:=SUB$TR<TEMP,4,2>; 00015100 
157 END; 00015110 
1r:·o ,)v END MOVE.DATE; 00015200 
159 DO MOVE.iIME; 00015300 
160 TEMP:=DC. TIME; 00015400 
161 IF TEMP = "" THEN LP.MESSAGE.TIHE:="00/00/00/00/"; 00015410 
162 ELSE 00015420 
163 DO; 00015430 
164 SUBSTR(LP.MESSAGE.TIME 101 2):=SUCSTR<TEMP,0,2>; 00015500 
165 SIJCSTR <LP. M~SS{;GE. TIME, 21 1): =" /"; 00015600 

C-34 



166 
167 
168 
l.69 
17() 
171 
1i'2 
1i'3 
174 
1i'5 
1i'6 
177 
178 
179 
180 
181 
1El2 
rn3 
tn4 
1El5 
1Bb 
1()7 

188 
189 i. 
1~>0 i. 
H>1 7. 
192 i. 
193 
1S.'4 
Hi5 
196 
197 
1~~8 

199 
200 
201 
202 i. 
203 i. 
204 7. 
~5 7. 
ZOb 
207 
COB 
2{'1Q 

21.0 
21.1 
21.2 
21.3 
2H 
21.5 i. 
21.b 7. 
217 i. 
21.8 
21.9 
:220 

SUBSTR<LP.MESSAGE.TIME,3,2):=SUBSTR(TEMP,21 2>; 
SUBSTR(LP.HESSAGE.TIME,51 1>:="/"; 
SUBSTR(LP.MESSAGE.TIME,61 2):=SUBSTR<TEHP 1 4,2>; 
SUBSTR(LP.MESSAGE.TIME,8,1):="/"; 
SU9STRCLP.MESSAGE.TIME,9,2):~suBSTRITEMP,6,2); 
£ND; 

END MOVE. TIME; 
LP.SYMBOLIC.SOURCE:=DC.ORIGIN; 
CONVERT<1 1 LP.TEXT.LENGTH.IN,DC.TEXTLENGTH>; 
CONVERT<l,LP.END.KEY,DC.ENDKEY>; 
CONVERT(O,LP.STATUS.KEY.IN,DC.INPUT.STATUS>; 
DC.ACCEPT<SYMBOLIC.QUEUE,F.TEMP>; 
CONVERTC1,LP.MESSAGE.COUNT,F.TEMPI; 
wnITE(LOG,BEFORE,LINE(2))J 
IF NOT GOOD.INPUT.STATUS THEN RETURN; 
LINE.POINTER:=O; 
F.TEMP:=DC.TEXTLENGTH; 
DO FOREVER; 

END; 

IF LINE.POINTER >= F.TEMP THEN UNDO; 
WRITE .LINES; 

END LOG.IN.CD; 
PROCEDURE XMIT; 

SEND CURRENT MESSAGE BACK TO ORIGWATOR, 
MARK OUTPUT STATUS AS NOT HAVING BEEN ANALYSED. 

DECLARE 
SYMBOLIC.DESTINATION CHC12) 1 

TEXT .LENGTH.OUT FIXED; 
SYMBOLIC.DESTINATIQN:=DC.ORIGIN; 
TEXT.LENGTH.OUT:=DC.TEXTLENGTH; 
DC.SEND!SYMBOLIC.DESTINATION,DC.SLOT,TEXT.LENGTH.OUT,EMI>; 
OUT.STATUS.VALID:="T"; 
END XMIT; 
PROCEDURE LOG.OUT.CD; 

WRITE THE CONTENTS OF THE CURRENT OUTPUT CD TO PRINTER 
SYMBOLIC SIJB.QS AND DEST. COUHT SET BY COMPILER 

PRINT.LINE:=""; 
LP.DEST.COUNT:=" 1"; 
CONUERT<l,LP.TEXT.LENGTH.OUT,DC.TEXTLENGTH>; 
CONVERT<O,LP.STATUS.KEY.OUT,DC.OUTPUT.STATUS>; 
CONVERT(l,LP.ERROR.KE'f.OUT,DC.ERRORKEY>; 
LP.S'fMBOLIC.DEST!NATION:=DC.ORIGIN; 
WRITE <LOG, BEFORE.rLINEl; 
END LOG.OUT.CD; 
PROCEDURE DISP.ERRORS.IN; 

REPORT TO OPERATOR ON ERRORS FROM LAST INPUT FROM DATA-COMM 

TYPE.FIELD:="RECEIVE ERROR"; 
CON'JERT CO, ERROR.FIEU, DC. INPUT .STATUS> i 
IF UNKNOWN. INPUT THEN 

00015700 
00015800 
00015900 
00016000 
00016100 
00016110 
00016200 
00016300 
00016400 
00016500 
00016600 
00016700 
00016800 
00016900 
OM17000 

000!7100 
00017200 
00017300 
00017t,OO 
00017500 
00017600 
00017700 
00017l300 
0\)017900 
000180C•O 
000181.00 
00018200 
00018300 
000121;.oo 
00018500 
00018600 
00018700 
001::18800 
000!8900 
00019000 
00019100 
000i9200 
00019300 
00019400 
00019500 
00019600 
00019700 
00019800 
000199C•O 
00020000 
000?.0lOO 
00020200 
00020300 
00020400 
00020500 
00020600 
00020700 
0002CCOO 
00020900 
00021000 

C-35 



~1 COMMENT.FIELD:=" <QUEUE UNKNO~JN OR ACCESS DENIED>"; 00021100 
222 IF MCS.MISSING THEN 00021200 
223 COMMENT .FIELD:=" CMCS/DCSS NOT PRESENT>"; 00021300 
224 IF NOT KNOWN.I~PUT.ERRORS THEN 00021400 
225 COMMENT .FIELD:=" <UNKNOWN ERROR>"; 00021500 
226 DISPLAYCCOMM.ERROR>; 00021600 
'2'27 IF UNKHOWN.INPUT THEN 00021700 
2'~8 DO; 00021800 
229 SYMBOLIC.QUEUE:=""; 00021900 
230 GET.QUEUE.NAME; 00022000 
231 END; 00022100 
232 IF MCS.MISSit!G THEN 00022200 
233 DO; 00022300 
234 DISPLAY<"INITIATE A SUITABLE MCS THEN ""AX'"' THIS TASK">; 00022400 
235 ACCEPT CDC.MESSAGE>; 00022500 
236 END; 00022600 
237 END DISP.ERRORS.IN; 00022700 
238 PROCEDURE DISP.ERRORS.OUT; 00022800 
239 7. 00022900 
C'l~o 7. REPORT TO OPERATOR ON ERRORS FROM LAST OUTPUT TO DATA-COMM (10023000 
2'1·1 7. 00023100 
24-2 TYPE.FIE~D:-PTRANSMIT ERROR"; 00023200 
243 CONVERTCO,ERROR.FIELD,DC.OUTPUT.STATUS>; 00023300 
2l1·4 IF UNKNOWN.OUTPUT THEN 00023400 
24.5 COMMEtlT .FIELD:=" <STATION m!KNOWN OR ACCESS DENIED>" i 00023500 
2l1·6 IF BAD.DESTINATION.COUNT THEN 00023600 
2f1·7 COMMENT .FIELD:=" <HNALI DESTINATION COUNT>"; 00023700 
2!1·8 IF SAD.TEXT.LEUGTH THEN 00023800 
2'1·9 COMMENT.FIELD:=" <REQUIRED TEXT LENGTH> DC.BUFFER SIZE>"; 00023900 
z;.;o IF DCSS.MISSING THEN 00024000 
251 COMMENT .FIELD:=" CMCS/DCSS NOT PRESENT>"; 00024100 
252 IF NOT KNOWN.OUTPUT.ERRORS THEN 00024200 
253 COMMENT .FIELD:=" <UNKNOWN ERROR>"; 00024300 
254 DISPLAYCCOliM.Eil.ROR>; 00024400 
:255 IF UNKNOWN.OUTPUT HIEN 00024500 
256 DO; 00024600 
'c..)7 DISPLAY<"CORRECT. THEN ""AX"" THIS TASK">; 00024700 
258 END; 00024800 
<:.159 IF BAD.DESTINATION.COUNT THEN 00024900 
260 DO; 00025000 
261 DISPLAY("PROGRAM ERROR - 1111 DP1111 THIS TASK">; 00025100 
262 ACCEPT<DC.MESSAGE>; 00025200 
263 STOP; 00025300 
264 END; 00025400 
265 IF BAD.TEXT.LENGTH THEH 00025500 
266 DO; 00025600 
267 DISPLAYC"STATION IS NOT TD830 - SELECT ANOTHER QUEUE">; 00025700 
268 SYMBOLIC.QUEUE:=""; 00025800 
269 GET.QUEUE.NAME; 00025900 
270 END; 00026000 
271 IF DCSS.MISSING THEN 00026100 
272 DO; 00026200 
273 DISPLAYC"INITIATE A SUITABLE MCS THEN ""AX"" THIS TASK">; 00026300 
274 ACCEPT CDC.MESSAGE>; 00026400 
275 END; 00026500 

C-36 



Zlb 
Z17 
278 
Z19 7. 
ffiO 7. 
al1 7. 
282 

OUT.STATUS.UALID:="F"; 
END DISP.ERRORS.OUT; 
PROCEDURE ANt1L YSE. ERRORS; 

REPORT ERRORS IF ANY 

IF NOT GOOD.INPUT.STATUS THEN DISP.ERRORS.rn; 
IF NOT GOOD.OUTPUT .STATUS MlD OUTPUT .STATUS.VALID THEN 

DISP.ERRORS.OUT; 
END ANALYSE.ERRORS; 
PROCEDURE TURNAROUND; 

00026600 
00026700 
00026800 
00026900 
00027000 
00027100 
00027200 
00027300 
00027400 
00027500 
00027600 

al4 
2D5 
alb 
(.tl7 % 
COB i. 
289 7. 
290 
291 
292 
293 
294 
295 
296 
297 
21?8 
'3'9 
300 

00027700 
TAKE NEXT MESSAGE AND SEHD IT BACK FROM WHEHCE IT CAME IF ERROR FREE00027800 

GET.MESSAGE; 
IF GOOD. INPUT. STATUS THEN XMIT; 
LOG.IN.CD; 

00027900 

IF GOOD.INPUT.STATUS THEN LOG.OUT.CD; 
ANALYSE.ERRORS; 

000?8000 
00028010 
00028100 
00028200 
00028700 
00028800 
00028900 
00029000 
00029100 
00029200 
00(•29300 

301 
302 
303 
304 
305 
3Cib 
?t>7 
308 
309 
33.0 
3:1.1 
312 
313 

END TURNAROUND; 
7.%% 

i.i.7.i.i~ ST ART. OF , PROGRAM 
i.i.i:: 
7.i.i. 

OPEN<LOG>; 
GET .QUEUE.NAME; 
DO FOREVER; 

IF EOJ THEU UNDO; 
TURNAROUND; 

END; 
CLOSE<LOG>; 
STOP; 
END OUTER; 
FINI; 
FILE.DEFAULT(LQG):=TYPE2; 
RECORD<LOG):=120; 
BUFFER(L0G):=120; 

SAMPLE NOL PROGRAM 

The sample NDL program provides control of two 
lines, both using Burroughs asynchronous poWselect 
line discipline. One line provides "host poWselect" 
(that is, the channel polls and selects remote termi
nals to solicit input and route output), and the other 
line provides "terminal poWselect" (that is, the 
channel is polled and selected by a remote host to 
control message transfer). 

The poWselect line discipline is a multipoint proce
dure. The central host system solicits input from 

00029400 
C10029500 
00029600 
00029800 
00029900 
00030000 
00030100 
00030200 
00030300 
00030400 
00030500 
00030600 
00030700 

(polls). Each remote station in tum uses the fol
lowing poll message: 

BOT ADl AD2 POL ENQ 

where BOT, POL, and ENQ are predefined line con
trol characters, and ADl and AD2 are address char
acters identifying one of the remote stations. The re
mote station replies with BOT if no message is avail
able (whereupon the polling system proceeds to the 
next station on that line), or sends the message using 
the following format: 

SOH ADl AD2 STX <text> ETX BCC 

C-37 



where SOH, STX, and ETX are line control charac
ters, and BCC is a block check character computed 
from the <text> portion of the message. (The host 
system calculates its own BCC when receiving the 
message for comparison with the transmitted BCC to 
validate the message transfer.) If the message is re
ceived correctly, the polling system sends ACK, and 
the remote station completes the transaction with 
EOT. If the message is received incorrectly, the pol
ling system sends NAK, whereupon a subsequent 
poll is needed to retry the message. 

The host system directs output to (selects) a re
mote station using the following select message; 

EOT ADl AD2 SEL ENQ 

where EOT, SEL, and ENQ are line control charac
ters and AD 1 and AD2 are address characters identi
fying one of the remote stations. The remote station 
replies ACK or NAK, depending on its ability to re
ceive the message at that time. If the remote station 
sends ACK, the central system sends the message in 
the format described for a response to a poll. The re
mote station then sends ACK or NAK as determined 
by the BCC computation. The transaction is then 
complete, and is retried by a subsequent select if the 
message was NAK'ed. If the remote station was un
able to receive the message (that is, it sent NAK to 
the select message), then a subsequent select is 
needed to retry the message. 

An alternative method of selecting may be used if 
the central system is confident that the remote sta
tion is capable of receiving a message. This method 
is known as fast select, and omits the initial ACK or 
NAK response to the select message. The formatted 
text message follows immediately after the fast se
lect message as follows: 

EOT ADl AD2 FSL SOH ADl AD2 STX 
<text> ETX BCC 

where FSL is the fast select control character. In all 
other respects, the transaction is identical to a nor
mal select. 

NOTE 
To improve readability in the following 
description, a dot(.) has been included 
in references to sequence numbers. For 
example, seq. 7001.0300 refers to se
quence number 70010300. 

The Implementation 

The sample NOL program provides host 
poll/select on physical channel 5 and terminal poll/ 
select on physical channel 6. (The B 80 was a one
digit channel number for line address; see CMS 

C-38 

NOL Manual.) The line descriptions are at seq. 
8700.xxxx and 8800.xxxx. The host poll/select line is 
described first, starting from the line description, 
and then the differences required for the terminal 
poll/select line are noted. The host poll/select line is 
identified to the system as logic:al line number zero 
(LLNO) since it is the first line declared in the pro
gram. 

The Host Line 

The following describes the NOL code for the 
host poll/select line. 

Line Section 

The line address is defined at sequence 8700.0100. 

The stations on the line are defined at seq. 45900. 
All stations on the line must be defined as terminals 
using the same control sets, and have the same com
munication hardware (sync. or async.). All stations 
on a line must communicate at the same speed. 

Station Section 

Seq. 8200.xxxx - 8500.xxxxx describe the stations 
defined for LLNO. Each station description is iden
tical (except for the address characters); therefore, 
only STATIONO (seq. 8200.xxxx) is described. The 
use of a DEFAULT station reduces the source file 
size (see the NOL Reference Manual). 

STATIONO is identified to the system as logical 
station number 0 (LSNO) since it has the lowest 
identifier in alphabetic order of station identifiers. 

Seq. 8200.0100 defines the @ character (HEX 40) 
as the control character for the station. The control 
character is detected by an input request RECEIVE 
statement specifying CONTROL (seq. 6000.2900). If 
the character is detected by the RECEIVE, the mes
sage is routed to the MCS unconditionally. 

ENABLEINPUT is set true for this station; other
wise, the station is not polled. ENABLEINPUT is 
set false for an output-only station, unless the MCS 
is designed to explicitly set terminals ENABLEIN
PUT as part of a network startup procedure. 

The FREQUENCY statement presets a read-only 
value which the NOL programmer may use to con
trol the frequency at which a station is polled. The 
control set POLL (seq. 3000.xxxx) uses this value to 
control the relative polling rate of each station. 

The LOGIN statement resets bit 14 of the MCS 
data field in the message header. If LOGIN is set to 
true, then bit 14 of the MCS data field is set. The 
use of this flag is entirely at the discretion of the 



MCS programmer (for example, to enable the MCS 
to enter a log-in routine for the terminal operator). 

The mandatory statement MYUSE specifies the 
communication requirements of the station. If 
MYUSE is not output or INPUT,OUTPUT, then the 
system returns an error result to the MCS (UN
ABLE TO INITIATE) for output messages. Setting 
ENABLEINPUT to true causes a syntax error if 
MYUSE is OUTPUT only. This station is declared 
INPUT,OUTPUT to permit both polling and select
ing of the station. 

The RETRY statement specifies an initial value of 
10, to which the run-time variable retry is set (by 
data comm load, terminate normal, terminate block, 
terminate error, and initialize retry). Note that, in an 
output request, the run-time value is set to the retry 
value in the message header of the output message, 
unless the message header specifies 255 (hex FF). In 
this case, the RETRY statement value is used. (This 
is B 80 implementation only.) The maintenance of 
retry counts and the declaring of errors is the re
sponsibility of the NDL programmer through the 
control and request set logic. The value of RETRY 
must be determined empirically, since the configura
tion, line speed, and type of connection affect the in
tegrity of messages. A value of zero should be 
avoided. 

The WIDTH and WRAPAROUND statements de
fine values which may be interrogated by the MCS, 
and have no effect on the NDL program. 

The TERMINAL statement associates the station 
with a terminal (physical device) description. In this 
case, the description is of a TD 830 display terminal 
(seq. 8100.xxxx). Corresponding characteristics de
fined in the STATION and TERMINAL sections 
must be compatible. 

The actual address characters which identify the 
station in message transfers (lA for this station) are 
defined in the ADDRESS statement. The number of 
characters must correspond to the associated termi
nal address statement. 

The TYPE statement (seq. 8200.1200) selects pa
rameters from a list provided in the TERMINAL 
TYPE statement (seq. 8100.1500). The statement is 
not required if the terminal TYPE statement defines 
only one set of parameters. 

Terminal Section 

Seq. 8100.xxxx describes the one terminal which 
has been associated with all the stations on LLNO. 
It is possible that the network contains physical de
vices having slightly different characteristics, in 
which case, suitable terminal descriptions can be 

added to the NDL program. These terminal descrip
tions can then be associated with the selected sta
tions via the station TERMINAL statement. Since 
all stations on a line must be identical in certain 
characteristics (notably SPEED, TYPE, and CON
TROL), a DEFAULT terminal defining the common 
characteristics can be used. Each terminal descrip
tion then refers to the default terminal for its major 
characteristics, leaving only the variants to be de
scribed individually. 

The ADDRESS statement specifies the number of 
characters which constitute the terminal address. 

The SPEED statement declares a range of speeds 
from which the station SPEED statement must select 
one value. 

The TURNAROUND statement assigns a 12 milli
second transmit delay to the procedures used for sta
tions of this type, since the line is direct-connect and 
no modem values are available. 

The TIMEOUT statement assigns a one second 
timeout value which is used when no explicit value 
is applied to CONTROL and REQUEST RECEIVE 
statements. The one second timeout is used, for ex
ample, at seq. 6000.2600 and 6000.3200. 

The CONTROL statement associates the line con
trol procedure POLL with stations of this type. 

The REQUEST statement associates the receive 
and transmit requests POLLIT and SELECTIT with 
stations of this type. 

The MAXINPUT statement (seq. 37500) defines 
the amount of buffer space required by GETSPACE 
and RECEIVE TEXT statements in input requests 
for stations of this type. A ·message with a text 
length greater than 1920 characters is rejected by the 
request POLLIT (see seq. 6000.3100; ENDOF
BUFFER error action causes excess characters to 
be discarded). 

The BLOCKED statement informs the DCSS that 
this device is not capable of sending or receiving 
blocked messages. 

END, BACKSPACE, LINEDELETE, and WRU 
define the format control characters for this device. 
These characters must be specified if referenced in 
the associated CONTROL or REQUEST sets. No 
action is taken on receipt of these characters unless 
the CONTROL or REQUEST set references the 
identifier. For example, seq. 6000.3100 compares for 
the literal character ETX (a pre-defined constant). If 
the possibility exists that different terminals using 

C-39 



the request POLLIT have alternative end-of-text 
characters, then the statement should be recoded: 

RECEIVE TEXT [ 1, END, ENDOF
BUFFER : 7] 

(where [ and ] are left and right square brackets re
spectively) which achieve the same result using the 
END character defined for each terminal. 

The TYPE statement defines the connection re
quirements for this terminal. 

The BYTE statement declares the character size 
and parity requirements for this terminal. All sta
tions on a line must have the same character size. 

SCREEN, HOME, CLEAR, CARRIAGE, LINE
FEED, and WRAPAROUND define values which 
may be interrogated by the MCS, and have no effect 
on the NDL program. 

Control and Request 

The line control POLL, receive request POLLIT, 
and transmit request SELECTIT are assigned to the 
stations on the line through the associated terminal 
TD 830. Line execution starts at seq. 3000.4200. 
Line control initiates the output request (SELEC
TIT) at seq. 3000.6100. The INITIATE is not per
formed (behaves as a no-op) unless a message is 
queued for the current station (that is, the station in
dicated by the current value of the NDL variable 
ST A TION). At the completion of the output request, 
line control restarts at sequence 3000.4200. 

If no message for output is queued, line control 
tests (via FREQUENCY) whether the current sta
tion is due for polling (seq 3000.6800 - 3001.0100). 
The input requests POLLIT is initiated at seq. 
3000.9800. Line control restarts at seq. 3000.4200 af
ter completion of the input request; otherwise, a 
branch to seq. 3000.4700 is taken. 

Seq. 3001.0600 initializes the station index to 
MAXSTATIONS when all stations on the line have 
been serviced, allowing the control set to handle dif
ferent line configurations. Note that the system does 
not initialize ST A TION to any particular value; 
therefore, considering this, line control must be 
coded. Also, the occurrence of PAUSE and DELAY 
statements give processor time to interrupts from 
other lines. 

Execution of the input request starts at seq. 
6000.1100. The transmission of the poll message can 
be seen at seq. 6000.1200 - 6000.1300. The request 
identifies the receipt of a text message by detection 
of SOH at seq. 600.2000. An explicity GETSPACE 
is included to allow the use for an error recovery 
C-:40 

procedure. Seq. 6000.2800 ensures that the buffer 
pointer is set to the beginning of the buffer. Seq 
6000.2900 provides for detection of the stations con
trol character. Note that this character is not implic
itly stored in the text buffer. This is performed by 
seq. 6000.3000. A successfully received message is 
passed to the MCP via the TERMINATE NORMAL 
statement at 6000.3900. Note that this initializes the 
run-time value of RETRY; whereas, the explicit 
INITIALIZE RETRY is requir1ed on detection of 
EOT prior to the TERMINATE NOINPUT (seq. 
6000.4300). Seq. 6000.4900 - 6000.5100 maintain the 
retry count, and declare an enror when the retry 
count is exhausted. Seq. 6000.4500 - 6000.4600 
"flush" the line when errors are encountered (the 
exit from this infinite loop is via the TIMEOUT 
coded in error switch 1). Seq. 6000.4700 provides for 
the detection of continuous carrier, to prevent infi
nite flushing of the line. 

Execution of the output request set starts at seq. 
7000.0600. The select message se:quence can be seen 
at seq. 7000.0700 - 7000.1200. Seq. 7000.2300 resets 
the buffer pointer to the start of the text buffer. 
Note that this is an entirely different buffer from the 
buffer in the receive request described earlier. A 
TERMINATE ENABLEINPUT at this point (initiat
ing the receive request) causes all text buffer refer
ences to apply to the input buffer. Successful termi
nation of the request (7000.3300) causes the output 
buffer space to be returned to the data comm buffer 
pool. The select sequence is discontinued in favor of 
the input request (7000.6500) if a NAK is received to 
the select, implying that the terminal is transmit 
ready and therefore unable to receive. 

The Terminal Line 

The coding for the line supporting terminal 
poll/select has the following differences from the pre
viously described line code. 

Line Section 

The physical line address is channel 6. 

The station on the line uses different CONTROL 
and REQUEST sets (declared via the associated ter
minal). 

This line is modem connected via a modem (data
set) whose physical characteristics are defined in the 
MODEM TA713 description (se:q. 8000.xxxx). 

Station Section (8600.xxiKx) 

RETRY -The retry value is greater (100) since the 
host normally has responsibility for discontinuing the 
transaction. 



TERMINAL -The station is associated with a ter
minal using the terminal polVselect control and re
quest sets. 

signed to the station on the line through the associ
ated terminal TD830X4. 

TYPE.MODEM -The station is connected to the 
line using a modem whose physical characteristics 
are defined in the MODEM TA713 declaration (seq. 
8000.xxxx). 

Line control execution starts at seq. 2000.2000 

Terminal Section (8010.xxxx) 

The line uses terminal poll/select control and re
quest sets. Note that USELECTED is the receive 
request, and UPOLLED is the transmit request. 

This is a modem connected terminal. 

Modem Section (000.xxxx) 

The transmit delay, receive delay, type, and speed 
of the modem used (in this case) at both ends of the 
line are defined. 

Control and Request 

The line control UPOLL, receive request USE
LECTED, and transmit request UPOLLED are as-

Line control validates the control message until 
the sequence is recognized as a poll, a select, or a 
fast select (2000.2300 - 2000.4600) whereupon the re
ceive (2001.0400) or or transmit (2000.8500) request 
is initiated as appropriate. Note that the no-message
available EOT is transmitted by line control as a re
sult of INITIATE REQUEST (seq. 200.9300) be
having as a no-op when the station is not queued. 
TOG[O] is used as a fast select indicator to skip the 
portions of code not required when using that proto
col. 

The input and output requests have no significant 
differences from the previously described request 
sets, except that the inverse side of the procedure is 
handled. 

DCP Section 

The values for BUFFER and BUFFERCOUNT 
are selected to give a total buffer allocation of 15 
Kb. 

1 b:~Z%?4X~ k~~f~Z~~X%~~4~%~~i! :~ ~~ f.%~%Z!ll~ ~;,;.~ :'{%% :~ :'l:kt.!Z~ ~/.%% ~ ~ ;.~ ;~7~ % ~ Z ;(~ ~X Z % i~ ~~ ~{i~ C 000010 0 
2 % 
3 % 
4 % 
5 % 
6 % 
7 ::: 
a % 
9 % 

PROPRIETARY PROGRAM M1H£RIAL 

THIS MT£RIAL IS P!\Of'RIETAAY TO BURROUGHS CORPOfMTIOH AND IS 
nor TO BE REPRGDUCED, USED DR DISCLOSED EXCEPT rn {iCCGRN1NCE WITH 
PROGRAM LICENCE OR UPON HRITTEN AUTHORIZATION OF THE PATEiH 
DIVISIOH OF GURROUGHS CORPORATION, DETROIT, MICHIGAU 48232. 

COPYRIGHT (C) 1979 BURROUGHS CURPORATIOa 

Z00('00300 
i::O~C'-ONOO 

i:00000500 
~(00000600 

%00000800 
::::00000900 
%00001000 
Z00001100 

10 % 
11 % 
12 r.:tz;,:r.;,:;,:;,:;,:xr.r.r.r.%1.r.r.iG~r.t.z%1.1.r.r.i:t%;.:x;,:zxzz;,:;,:xzz~~1:x%i::Z::m::nk:::;;i~;:r.:~zz;,:z4r.47'1.i!::,'Jooo1200 

13 $SET LIST CODE t!TCH C'f.•010000 
14 CONSTANT· 00010100 
15 
16 
17 
18 
19 
ro 
CJ. 
?.C 
a 
B!t 
25 
26 

EDT = 4"04 11 , 000i0200 
SOH = 4"01" 1 OC·010300 
STX = 4110211 1 00010400 
ACK = 41106", 00010500 
NAK = 411 1511 , 0001060~ 
ETX = 4"03n 1 % END OF TEXT 000i0700 
ENQ = 41105 11 1 % ENQUIRE 00010900 
BS = 41109 11 , % BACKSPACE 00010900 
LF = 4"0A 11 , % LIN£ FEEi> 00011000 
CR = 4110Dt1, 4 CAJUUAG£ RETURN oooawo 
DC4 = 41114•, 1. DEVICE CONTROL 4 0001120(} 
DEL = '1"7F111 % DELETE 00011300 

C-41 



C42 

'Zl 
23 
'i!J 
30 
31 % 
~ 7. 
33 % 
Yr % 
~~ % 

% 

FF = 4"0C", 
POL = 4"10"1 

SEL = 4"71"1 

FSL = 4"7311 • 

% 
% 
% 

fORttS F£El> 
POLL CHARACTER 
SELECT CHARACTER 

NOTE THAT THESE REQUESTS DO NOT CONFOR!i EXACTLY 
TO f.IW{ BURROUGHS SHtNMRD AND ftL THOUGH THESE REQUESTS 
WILL FUUCTION CORRECTLY THEY SHOULD NOT BE REGARDED 
AS THE OtlLY OR EVEN TllE "BEST" POSSHlLE SETS. 

36 
~ 
38 
'3'T 
-'1-0 

CONTROL UPCLL: 
% 
% 
% 

41 % 
~ % 
43 % 
44 % 
45 % 
46 % 
47 % 
~e 
49 
&> 
51 
!:'i? 
S'5 
54 % 
to % 
56 % 
57 % 
$ 
!Jr 
l.IJ 
61 
02 7. 
6.3 % 
lit % 
65 
bS % 
67 % 
$ 7. 
69 
·70 
71 % 
7C 7. 
73 7. 
74 % 
.?.5 ~ 

76 
71 
78 % 
79 % 
00 % 
81 % 

************************************************ 
I llM A POLLED TERMHIAL •••••• 

******************~************************************ 

TOG[OJ = INDICATOR FOR SELECT, FASTSELECT. 
TOG[1J = USED HI USELECTED FOR NOSPACE CONI>ITION. 

************************************************ 

ERROR[OJ = TIMEOUT:!,% STANDARD ERROR MACRO 
STOPBIT:3, 
llUFOVFL:3, 
BR~K:3, 
PARITY:4, 
LOSSOFCARRIER:1. 

************************************************ 

1: TOG[OJ = FALSE. 
TOG[lJ = FALSE. 

2: INITIATE RECEIVE. 
RECEIVE <NULL)[OJ. 

IF CHAR = EOT 

THEN BEGrn 

WAIT FOR smiETHING TO 
%APPEAR ON THE LINE 

%If NOT,ITS HOT FOR US 
%AND WE FALL it:ROUGH TO ERROR 
%HANDLING AT LABEL 3 

RECEIVE (25 tlILLI) ADDRESS mrnmmn, ADI.lEilR:3J. 
7.~mTE TiiAT M~ ADDERR 
%MERELY l'l£iif!S THAT THE 
~POLL OR SELECT ~AS NOT 
%FOn:us 

RECEIVE <25 MILLI> (POL:20, SEL:301 FSLit-O, 
ERROUCOJJ. 

%HERE IJE USE ~lDLS llRA~CHING 
%ABILITY TO GO OFF TO THE 
i.APPROPRIATE ROUTHIE IF 
%A POL SEL CR fSL IS RECEIVED 

0001HOO 
00011500 
00011600 
00011i00 
{)() woooo 
001C<0100 
001 OCtl!OO 
00100300 
00100400 
00100500 
20000000 
20000100 
20000200 
20000300 
20000400 
20000500 
20000600 
200007-00 
cOOOOSOO 
20000900 
20001000 
20001100 
20001200 
20001300 
20001400 
20001500 
2000161)() 
2000170() 
20001800 
2000190() 
20002000 
200021-00 
20002200 
20002300 
20002400 
20002500 
20002600 
20002700 
20002800 
20002700 
20003000 
20003100 
200032{1() 
20003300 
20003-lOu 
20003500 
20003600 
20003700 
20003900 
20003900 
20004000 
20004100 
2000420& 
20004300 
20004400 



E'2 % 
m 
9't % 
ffi % 
as % 
87 % 
SS % 
&1 % 
c;l) % 
91 % 
ere %. 
93 % 
crvt % 
95 % 
96 
97 
98 % 
99 % 

100 % 
101 % 
102 % 
103 
1CX % 
10S % 
106 % 
107 
108 % 
109 % 
110 % 
111 
112 
113 % 
iH % 
11S % 
116 % 
117 % 
us 
119 % 
120 % 
121 % 
122 
123 % 
l2t % 
j.25 % 
:126 % 
j.27 % 
128 % 
129 
:130 
131 % 
m x 
133 % 
1~ 

13S 
136 

EMD. 

tJE Dmrr Wi\NT THIS MESSAGE 
SO LOOP ROUND UHTIL LitlE .·· 
GOES iDLE. 

~E ARE PROBABLY HERE l!ECAUSE THE CHi\R ldAS HOT AH 
EOT. 

3: RECEIVE <2S MILLI) [ERROR(OJJ. 

2000't500 
20004600 
20004700 
20004800 
20004900 
20005000 
20005100 
20005200 
20005300 
20005400 
20005500 
20005600 
200057-00 
20()05800 
20005900 

GO TO 3. %TIMEOUT GETS US OUT OF LOOP 20006000 
%TO LAB£L 1. PARITY <IE JUNK ON 20006100 
%LIND TO LABEL 4 W006200 

NOW WE LOOP WAITINS FOR·"KltRKu 

4: IF CHAR NEQ 411FF11 THEtl GO TO 3. 

ALL QUIET LETS 60 AUi> LISTEN AG!\IN 

s: GO TO 1. 
*****************UH*lffflfH*liiHf HliilfltHfffHflf 

FAST SELECT ••••••••••• 
******************·****************************** 

10: TOG[OJ = TRUE. %FLAG FOR USELECTED 
11: INITIATE ENABLEINPUT. %EHTER USELECTIT 

60 TO 3. 

WE ONLY GET HERE IF HE DIDNT ENTER USELECTED 
THIS WILL ONLY Httf'PEN IF THE STATION IS NOT READY 
IN THIS Ci'ISE THE "STATIOH'' IS OUR HOST. 

POLLED ••••••••••••• 
fffflfli!****lflfilfllfwlf********ilf~fff*ll************** 

20: RECEIVE <25 MIL.LI> t ENQ:cl,ERROR[OlJ. 

20006300 
20006.\00 
20006500 
20006600 
20006700 
20006800 
20006900 
20007000 
20007100 
20007?00 
20007300 
20007400 
20007500 
EOOOi&OO 
20007700 
20007800 
20007900 
20008000 
20008100 
20009200 
20000300 
20009400 
20003500 
20008600 

AMYTHIHG OTHER THAN AN ENQ IS AN ERROR SO WE WILL IGNORE2C009700 
THIS f'OL ALTHOUGH IT WAS FOR US. NOTE THAT THE POL/SEL 20009800 
DISCIPLI~£ DOES NOT ALLO~ US TO TELL THE HOST THAT 20008900 
WE SAW HIS POL BUT DIDNT LIKE THE FORMAT. 20009000 

GO TO 3. 
21: INITIATE REQUEST. 

IUITIATE TRhNSMIT. 
TRANSMIT EOl. 
Fit!ISH TRANSMIT. 

% WE WILL ENTER UPOLLED 
%IF U£ HAiJ£ A MESSAGE QUEUED 
%AND THE "STATIOH" IS READY 

%NOTHING TO SEND 
%SO XMIT EOT 

20009100 
20009200 
20009300 
20009400 
20009500 
20009600 
20009700 
20009800 
20009900 

C-43 



C44 

137 
139 % 
139 % 
1't0 7. 
141 
142 

GO TO 1 .. 
************************************************ 

SELECT·········~•••••••• 
************************************************ 

30: RECEIVE <25 KILLI> [EtlQ:11,ERRORCOJJ. 
GO TO 3. 

1lt3 CONTROL POLL: 

20010000 
20010100 
20010200 
20010300 
2001-0400 
20010500 
30000000 
3000010G 
30000200 
30000300 

14~ % 
14S % I POLL THE TERKINALS •••••• 
146 % 
147 % 
148 % 
149 7. 
150 % 
151 % 
152 % 
153 % 
1$ % 
15S % 
156 % 
157 % 
158 
159 
160 
161 
~ 
163 
i.~ 

16S 
166 
'JO 
16S 
169 
170 
171 
17~ 
173 

% 
% 
% 
% 
% 
% 
% 
% 
% 
l 
% 
% 
% 
% 
% 
% 

17S % 
176 % 
177 % 
178 l 
179 % 
100 % 
1BS 
186 
187 %'. 
188 % 
189 % 
190 (): 
191 % 
192 % 
193 7. 
194 
195 % 
196 % 

VARIABLES USED:
LINE <QUEUED> 
LINECUtLLYi::OJ> 

LINE<TALLYUJ> 
STATION<FREQUENCY> 
STATIOlHTALLY> 

SET IF WE DID ANYTHING 
tlO OF TIMES WE HAVE ENTERED LINE 
CONTROL SINCE WE LAST CHANGED 
LINE<TALLYUJ>. 
CURRENT 1~CCEPTABLE FREQUO:CY. 
READ OMLY VALUE 
CUIUtEtlT FREQUENCY 

30000400 
3000-0500 
. 30000601> 
30000700 
30000800 
30000900 
30001000 
3000110G 
30001200 
30-001300 

All OF THESE ARE USED IN THE CODE TO TAKE NOTE OF AND ACT 30001400 
UPON THE VARIOUS VALUES DECLARED BY THE USER IN THE STATION 30001500 
FREQUENCY STATEMENTS. 30001600 
THE MAIN AIM IS TO AllOW THE USER TO SPECIFY HuW OFTEN STATions 300-01700 
~~~E TO BE POLLED RELATIVE TO EACH OTHER. NOTE THAT SPECIFYING 300-01800 
A FREQUENCY DOES NOT DO ANYTHING OTHER THAN PLACE A VALUE 30001900
rn THE STATION TABLE WHICH IS AVAILllBLE TO THE REQUEST/CONTROL 3000!?000
SET PROGRAMMER AS STATIONCFREQUENCY>. 30002100
A SIMPLE CONTROL SET WITHOUT FREQUENCY HA!U>LING FOLLOWS; 30002200
THE COMMENTS W Tll£ ACTUAL COtlTROL SET APPLY EQUALLY TO 30002300
THIS SIHPLER SET. 30002;00

O: IF STATION >O THEN
BEGIN

PAUSE.-

EHD.

STATION = STATION - 1.
INITIATE REQUEST.
INITIATE ENABLEINPUT.
GO TO O.

STATION = MAXSTATIONS.
IDLE.

30002500
300-02600
30002700
30002800
30002900
30003000
30003~0
30003300
300-03~00
30003500
30003600
30003700

LINE<TALLYtOH = LINE<TfillYCOJJ + 1. i. SUMP EHTRY COl!t!TER 30004200
Llrlf:(QU£1JEIH = TRUE. i.llE DO WANT TO CHtiNGE fREQUEHCY 3000~300

IF STATICN > 0 THEH

i.AT THE END Of" nus CYCLE 30004400
%THROUGH THE STATIONS 30004500

%COME BACK HERE IF WE DO
%tlDTIHNG FOR THE cmmrnr
ZSTATI<m

% ARE WE AT THE END OF CYCLE
i.NOTE THAT DUE TO THE LOGIC
x or THE LOOP TO LABEL 1 THIS

30004600
30004700
30004800
30004900
30005000
30005100
30005200
30005300

197 % i;:WILL m!LY BE THE CASE WHEtl THE 3COOS~OO
198 % %LAST STATION WE Htl1!DLED WAS 30COSSOO
199 % %STATION ZERO. 30005600
"C.QI) BEGIN 30005700
a>1 1: 30005800
ro2 PAUSE. 7.GIVE S01iEONE ELSE A CHANCE 30005900
a>3 STATION = STATION - 1. %SET UP NEXT STATION 30006000
2X INITIATE REQUEST a %WILL ENTER SELECTIT If' 31)00-6100
ros % %STATION IS QUEUED M·m READY 2000620-0
m' % 3000630()
'i.-07 % HO OUTPUT FOR THIS TERMINAL. "3000i5li00
ais % 31)006501)
a>? 4 WE HOU DETERliIHE IF THIS TER?!HUtL CAH BE USED FOR INPUT 30006600
210 % AHi> IF SO ~lHETHER WE V.1i1H TO POLL Hili. 3000670()
211 4 30006800
a~ IF STATION<ENAELED> THEH 30006900
2"13 BEGIN 3000?000
a~ % 3C•Ov710~
as % IS HE AT THE RI6HT FREQUENCY YET? 30007200
a' % 30007300
a7 % 30007400
as % NOTE THAT THE LOWER TH£ FREQUEHCY THE HORE OFTEN 30007500
L>J.9 % WE WILL POLL THE STATION. 30007600
aio % 3C'007700
2e1 IF STATIONCTALLY> GT LIHE<TALLYt1J> THEN 30007800
.2e~ BEGUI 3-0007900
223 PAUSE. 3Co-OOBOOO
2~ STATIONCTALLY> s STATIOtHTALLY> - LINECTALLYC1J). 30008100
a.is % ~HAYBE HEXT THIE 30008200
226 LitlE<QUEUEI>> = TRUE.%WE HAI> A CAtlDIMTE UHO DIDNT 30008300
2e7 % %HAVE A LGW EHOUGH FREQUEtlCY 3000S~OO

228 % %SD ~iE HAD BETTER iiAKE SURE 30009500
229 % %T!IAT WE DONT COUUT urn DOlim 30009600
ao % 7.TOO QUICKLY llND urSET TH£ 30008700
231 % %RELATIVE FRECUEllCIES BY 30003900
~ % %COUHTIN6 DOWN lH SIG STEPS 30008900
233 % % 30009\)00
~ EH» 30007101)
ros ELSE 30009200
a& BEGIH 30009300
a? PAUSE. 30009·\00
238 STATIONCTALLY> = STATIONCFREQUENCY>.%60 BACK TO 30009500
2'3t % %REAL FREQUENCY TO GIVE OTHER 3000%00
i."tO % %STATIONS SOME KIHD OF CHMICE 30009700

~1 INITIATE ENASLEINPUT. AENTER POLLIT IF SlliTION 30009900
~ % %IS READY VALID EHACLEINf'UT 30009900
~3 oo. 30010000
24~ oo. 300101-00
~s GO TO O. %DIDNT DO ANYTHING FOR THIS 30010200
~ % %STATION - TRY THE NEXT 30010300
~7 END. 300HHO~

248 PAUSE. %GIVE ANOTHER LINE A CHANCE 30010500

~' ST"TION = l'!AXSTATimfs. %ElID OF CYCLE 30010£00
250 IF LINECQUEUED> TH£H %WE CHANGE TALLY 1 30010700
251 BEGIN 30010800

C45

~ LitlE(QUEUED> = FALSE. % RESET OUR FLAG 30010900
(53 % i::NOTE ntAT THE OHLY CYCLE THAT 30011000
25+ % %WILL NOT SET L!HE<QUEUED> 30011100
GSS % %IS ONE IN WHICH HOBODY HAD 30011200
ai6 % %AU OUTPUT QUEUED AND THERE 30011300
'Z:i7 % %~ERE NO STATIONS READY FOR 3001HOO
ms % %INPUT.IE HOBODY WHO FAILED 30011500
259 % ~BECAUSE OF A TOO HIGH FREQUENCY30011600
260 % % If" ~IE DID POLL M!YONE WE 30011700
261 % %REENTERED LIHE CONTROL AT 30011800
as~ % %THE TOP WHERE WE SET 30011900
.as3 % %LUlE QUEUED 3001~000

as~ If LINECTALLYCOJ> = 0 THEN %WE HAVENT LEF'T THE CONTROL 30{)12100
ass % %SINCE WE LAST CHAUGED T1\LLY 1 30012200
~ % %SO WE ttl\KE SURE TIMT WE DOHT 30012.300
as? % %OFFEND OUR HIGH PRIORITY 3001NOO
268 % %IE LOW FREQUENCY USERS BY 30012500
as9 % % IGNORING THEM. TO DO THIS 30012600
270 % % ~JE HM£ THE t1Ut1Lif'YH/5 VALUE 3001.2700
271 % XOfi'E AND COUNT STATIONS·DG~N 30012800
vc % %SLOWLY UHICH MEANS nm THE 3001291)1)
273 % %FIRST STATIONCS> GET LOTS OF 30013000
27~ % %EXTRA POLLS. 30013100
27S BEGIN 30013200
'Z"I& LU!E<TALLYUJ> r: 1. 30013300
'217 LIHE<CUSY> = FALSE. %ALLOW SYSTEM TO REENTER US 30013400
278 % %FOR THIS LINE IF ANYTHrnG 30013500
279 % %HAPPENS 30013600
a30 DELAY<1 SEC>. %GO TO SL£EP 30013700
mt LWECSUSY> = TRUE. %NOBODY l!llNTEI> US SO ON WE GO 30013800
ru2 END 30013900
283 ELSE 30014000
re; BEGIN 30014100
ms LINECTALLYI1Jl = LWECT~LLYCOll. %Rf\ISE OR LO~ER FREQ 30014coo
re6 LINECTALLY(OJ> = O. %1>EPENDING ON HOW LONG srncE 30.0143\10
m7 % %WE lf1ST DID <IE HO~ LOUG WE 30014400
ms % %HAVE GEEH POLLING WITHOUT 30014500
m9 % %SELECTING ANYONE). 30014600
290 END. 30014700
291 GO TO 1. 30014800
en END. 30014900
293 IDLE. 30015000
294 % 300151<>0
29S % WE ONLY IDLE THE LINE If LIHE<QUEUEI>> IS FALSE 30015200
296 % THIS WILL ONLY BE THE CASE IF THERE ARE HO OUiPUT MESSAGES 30015300
297 % QUEUED FOR MY OF THE SHITIONS ON THIS LINE MW HONE OF 30015400
298

., THE STflTIOt~S ARE ENABLED INPUT AND OR READY. 30015500 lo.

299 % 1H THIS CA.SE THE ONLY ~y ANYTHING WILL CHANGE IS WHEN THE HCS 30015/iOO
:?A>O % J>OES SOMETHING OR A MESSAGE IS QUEUED FOR ONE OF THE STATIONS. 30015700

301 % rn EITlitR C{1SE N!)L. HffERP WILL START us UP AGAIN so m: MAY AS 30015800
302

.,
tit\~K Tl-!E LINE IRE SINCE ~E ARE DOING NDTHHlG EXCEPT l:IASTE 30015900 lo.

303 % PROCESSOR RESOURCES. 30016000
:.!ii~ % 30016100
305 x NOTE THAT THE f'REGUEnCY HANDLIUG CODE WILL RUN INEffICIENTLY 30016~00

".!1:16 .,
" IF ·rnrnE l1RE NO ACTIVE STATIONS WITH LOW FREQUENCIES. 30016300

C46

';!1)7 % THIS WILL LEAD TO LOW POLLING RATES AS THE"" CODE WILL 30016400
309 % GO·ROUUND THE CYCLE <LO'~EST DECL~RED FREQUEHCY> TIMES 3001cSSOO
309 % EEFOftE ACTUALLY ENTERrnG THE INPUT REQUEST .. THIS HOT ONLY 30016000 ·.
310 % AFFECTS TllIS LINE GUT ALSO ANY OTHER OH nus DCP SIHCE TH£ 30016700
311 % DCP IS INVOLVED IN TIME CONSUMING USELESS PROCESSING. 30016800
312 % THE ['tff!ULT FREQUfJlCY IS ZERO <ALWAYS POLU SO THIS NIU 30016900
313 % OHLY SE A PROBLEM IF SOl1EON£ HAKES A HESS OF' THE ST{1TION 30017000
3H % DECLARATIONS. 30017100
31.S % 30017200
316 REQUEST UPOLLED: 40000000
317 % lr0000100
318 % ***********~*********•************************** 40000200
31' % I WtiS POLLED••.. 40000300
320 % **************************************'**************** 40000400
321 % 4-0000500
322 ERRO!l[OJ = Tn!ECUT:~O, 40000600
323 STOPBIT:fO, 40000700
~ flUFOVFL:fO, 40000900
325 PARITY:~o, 40000900
32b 8REAK:20, 40001090
327 LOSSOFCARRIER:20. 40001100
32S % 1~0001200
329 % ****~*************************•***************** 40001300
330 % 40001400
331 % 40001500
332 1: INITIATE TRAtlStlIT. 40001600
333 TRAHSHIT SOH. 40001700
334 IHITIALIZE DCC •. 40001800
335 TMNSllIT ADDRESS. 40001900
~ TRAflSiiIT TRAN .. 40002000
337 TRANSMIT STX. 40002100
338 INITI«LIZE TEXT. 40002200
339 TRANSMIT TEXT. 40002300
YtO TRANSMIT ETX .. 40002400
341 TRAl~SMIT acc. 40002500
342 FIMISH TRANSMIT. 40002600
343 INITIAT£ RECEIVE. 4000270~
~ RECEI\1£ <1 SEC> CACK:l<),NltK:121ERROR[()Jl. 40002800
345 60 TO 20. 40002900
346 % 40003000
347 10: INCREMEHT TRAN. 40003100
348 INITIATE TRANSMIT. 40003200
349 TRANSHIT EOT. 40003300
350 FINISH TRANSMIT. 40003400.
351 TERMINATE NORHltl.. 40003500
352 % 40003600
353 12t NAKFLAG = TRUE .. 400037~0
:.?.)~ 20: IF RETRY = O THEN TERMINATE ERROR. 400038 0
JSS RETRY = RETRY - 1. 40003900
356 TERHWATE NOINPUT. 40004-000
357 REQUEST USELECTED: 50000000
358 % 50000100
35\' % ffffHIUlifHlfHlf*H!lllHH!IHHHHHIHHHIHHHIHIH 50000~00
360 % I l41~S SELECTED•....•••• SOOOOJOO

C47

361 z *********~**************~~~***~*********~~************* 50000·~00

36? i. TQG[OJ = 0 =SELECT. 50000500
363 % 1 =FAST SELECT. 50000600
36.\- % TOGUJ = 1 = NO SPACE, S!l TERMH!ATE imINPUT. 50000700
36S % 50000800
366 % HH*HHX*l'IUHHHl! HH !I ilHlHifHUl!fHlfHlfHfffHltlU!i 50\100900
367 % 50001000
369 % 50001100
369 ERRORCOJ = TIMEOUT:221 50001200
370 STOPEIT:191 50001300
371 BUFOVfl :19, 50001400
3"n PARITY:21, 50001500
373 LOSSGFC«RRIER:22. 5Ni0!600
37.\- 7. 50~01700

3'"/S % ******************************~**************'********* 5000180~

376 % 50001900
"$17 % 50002000
378 GETSMCECc3J. sooo2100
379 IF TOGCOJ THEN GO TO 10. %FSL SO TEXT HSG FOLLm$ NOW 50002200
38() % SOON?300
381 UlITIATE TIW!SHIT. 50002400
222 TMNSNIT ACK. 50002500
383 FHUSH T!WlSUIT. 50002600
~ % 50002700
3BS INITIATE RECEIVE. 50002800
386 10: RECEIVE <1 SEC) SOH [ERnonroJ,FDRMATERR:19l. 50002900
-:?HI INITIALIZE acc. 7.START ace ~CCUtiULATION 50~031)00

:ES RECEIVE ADDi1ESS [ERRORLOJ, ADDEltR: f9J. 50003100
339 RECEIVE TfWl £ERROR£<>l, TRANERR:NULLJ. 50003~00

390 RECEIVE STX CERRORtOJ, FORH1HERR:19J. 50003300
391 INITIALIZE TEXT. %SET POWTER TO FRDrlT or TEXT 50003~1)0

~ CONTROtf LAG;f ALSE. 50003500
393 RECEIVHO,£TX:1a,cmmmLJ. %LOOK FOR COUTROL CHAR 50003600
39~ STORECEfWOtEUFfER:19J. 50003700
395 RECEIVE TEXT CERRORCOJ,ENDOFBUFFER:N,ETXJ. 50003SOO
396 18: RECEIVE BCC CERRORCOJ, BCCERR:19l. 5000390~

:ft7 % 50004000
39S HICREMENT TR.~.N. 50004100
";§19 INITIATE TR~l~SHIT. 50004200
400 TRAt~SttIT ACK. 5000"300
401 FINISH TRA?iSMIT. 50~04400

40c TERHIAATE NORflAL. 50004500
403 % 500().1.600
40~ % 50004700
405 19: RECEIVE {25 MILLI> COl. 50004800
~ GO TO 19. 50004900
407 21: IF CHAR NEQ 4"ff" THEtl 60 TO 19. SC•005000
40S 22: INITIATE TRANSMIT. 50005100
409 TRltNSIUT NAK. 50005200
4-10 FINISH" TRANSMIT. 50005300
411 Nl\KFLAG = TRUE. %SAY TH1U WE NAK'EI> IT 50005400
412 IF TOUClJ THEN TERHIHATE t!OINPUT .%RETRY GETSPACE FOREVER. 50005500
413 IF RETRY = 0 THEN TERMU!tiTE ERROR.%ST1~NDAAI> ERROR HANDLER 50005600
4H RETRY = RETRY - 1. 50005700
41S TERMIHATE tmrnPUT. 5{)005800

C-48

416 % SC•OOS900
417 23: TOG[1l = TRUE. %GETSPttCE FAILURE SOOObOOO
418 GO TO 19. 50006100
419 24: RECEIVE CHAR[O,ETX:1BJ. %OVERFLOW - JUST DROP REMAINING 50006200
420 GO TO 24. %CW:RS BUT KEEP' ON GOING 50006300
~1 REQUEST POLLIT: 60000000
~22 ERROR UJ = TH!EOUT:S, 60000100
'4<!3 STOPBIT:J, 60000200
~ 8UFOVFL:3, 601)00300
es PARITY:4-1 600004-00
426 LOSSOFCARnIER:S. 60000500
1;c_7 ERROR [2J = TIMEOUT:2, , 60000600
~s STOPRIT:c, 60000700
~ BUfOVf'L:2, 6000081)0
~30 PARITY:2, 60000900
4.11. LOSSOFCARRIER:2. 60001000
432 TOUCOJ = FALSE.· 60001100
~53 IUITIATE TRANSMIT. 6000120~
~ TRA!!SHIT EOT. 60001300
435 TRAflS?fIT ADDRESS. 60001400
436 TRANSMIT f'OL. 60001500
ltJ7 TRANSMIT Et~Q. 60001600
438 FINISH TRANSMIT. 60001700
439 INITIATE RECEIVE. 60001800
440 RECEIVE <1 SEC> CtJ. 60001900
441 IF CHAR = SOH THEH 6000~000
442 BEGIN 60002100
443 CONTROi.FLAG = FALSE. 6oooc200
44~ IHITIALIZE ecc. 600N~300
445 RECEIVE <1 SEC> ADDRESS C1,/1DDERR:3J. %RIGHT STATION? 60002/tOIJ
446 GETSPACE-I:6l. %OK - GH SOME SPACE 60002500
447 RECEIVE TRAN U, TRANERR:tnJLLl. 600-02600
448 RECEIVE STXC11FORMATERR:3J. 60002700
449 IHITIALIZE TEXT. 60002SOO
450 RECEIVEC1,ETX:1,CONTROLl. 600029&0
451 STDHECEnl>OfBUFFER:3J. 60003000
4~ RECEIVE TEXTC1,ETX,ENDOFBUFFER:7l. 60003100
453 t: RECEIVE BCC[1,BCCERR:3J. 60003201)
454 INITIATE TRANSMIT. 60003300
'455 TRANSMIT ACK. 60003400
~ FINISH TRANSMIT. 60003500
457 UUTIATE RECEIVE. 60003600
~ RECEIVE (1 SEC> EDT [2,FORMATERR:NULLJ. 60003700
459 2: It:CREMEffT TRAN. 60003900
460 TERMINATE NORffAL. 60003900
461 END. 60004(>00
~ IF CHAR = EOT THEN 60004100
463 BEGIN INITIALIZE .RETRY. 60004200
464 ·TERM.mATE HOINPUT. 60004300
465 END. b000¥t00
466 3: RECEIVE <2S MILLI> C11. 60004500
467 60 TO 3. 6000460~
468 4: IF CHAR NEQ 4"FF'" THEN .60 TO 3. 60004700
46, s: IF TOG~OJ THEN TERMINATE HOINPUT. 60004800
470 IF RETRY = 0 THEN TERflINATE ERROR .. 600~900

C-49

4'"11 RETRY = RETRY - 1. 60005000
47C TERMINATE NOitlPUT. 60005100
473 6: STATION<TALlY> = O. !NO SPACE SO HAI{[SURE THAT WE: 60005200
4-7;. TOG[OJ = TRUE. %POLL HI!i NEXT CYCLE t'IHD J>ONT 60005300
47S 60 TO 3. %DECREMENT HIS RETRY COUNT 60005400
476 7: RECEIVE CHARC1,ETX:1J. 60005500
477 60 TO 7. 60005600
478 % 60005700
479 % NOTICE THAT WE: N£VER NAK {I liESSi-tGE AS WE DON'T WANT urn TO 6000SSOO
480 % REXttIT HIS MESSAGE IWiEDIATELY - PERHAPS SOii£ OTHER STATIONS 60005900
~1 % HAVE i!ORK TO DD WD WE DON'T llANT TO H~.NG THEM UP WHILE 60006000
4B2 % ~E SO~T TH!S TROUBLEMAKER OUT. 60006100
4D3 REQUEST SELECTIT: 70000000
~~ ERROR (1] = Trnrnur:~, 70000100
ltBS STOPBIT:2, 70000200
486 6UFOVFL:2, 70000300
487 PARITY:3, 70000400
488 LOSSOFCARRIER:4. 70000500
4B9 1: TOG[Ol = FALSE. 70000600
490 INITI~TE TRANSMIT. 70000700
491 TRANSMIT EOT. 70000800
492 TRMlSHIT ADiiRESS. 70000900
493 TRANSMIT SEL. 70001000
41.x, Tilttr1SMIT EUQ. 70001100
4l?S FHIISH TRANStHT. 70001200
l/Jb INITIATE RECEIVE. 70001300
497 RECEIVE C 1 SEC> [1J. 70001400
499 IF CHAR = ACK THEN 70001500
499 BEGIN 70001600
500 HUT!ATE TRliN5liIT. 70001700
501 TRt'ttlSiUT SOH. 7000Hl00
502 INITIALIZE BCC. 70001900
503 TRAf/SHIT ADDRESS. 70002000
!:X)4 TRAUSMIT TRAU. 70002100
505 TRANSMIT STX. 70002200
506 IiUTitilIZ£ iEXT. 70002300
'Sj? TRMlSMIT TEXT. 70002400
508 11MNSMIT ETX. 70002500
509 TRt\NS!UT acc. 70002600
510 FINISH TRAflSHIT. 70002700
511 INITIATE RECEIVE. 70002800
512 RECEIVE<! SEC> cir. 70002900
513 IF CHAR = ACK THEN 70003000
5H DEGIH 70003100
515 rnt::REM£NT TRAN. 70003200
516 TERMIN1HE ~IORHAL. 70003300
517 EtID. 70003·)00
51B If CHAR = NAK THEN 70003500
s:r9 BEGIN 70003600
~ H~KFLAG = TRUE. 70003700
521 If RETRY = 0 THEN TERMINATE ERROR. 70003900
SE2 RETRY = RETRY-1. 70003900
523 GO TO 1. HE ASK HIM TO RE xmT HIS MESSAGE 7-0oo.r.ooo
52;. % %WE MY 60 ROUND THIS LOOP <RETRY> THlES70004100
525 % % SO NAYEE THIS SHOULD llE REPLftCED 70004200

C-50

526 % %WITH A TERliitlATE NOrnPUT TO ALLOW 70004300
~7 x %US TO TALK TO OTHER STATIONS WHILE 70004400
5'28 % %WE SORT THIS GUY OUT. 70004500
529 END. 70004600
530 GO TO 2. 70004700
531 END. 7000~800
5...~ IF CHAR = HAk THEN 70004900
57:13 BEGIN 7000500~
53~ NAKOtlSELECT = TRUE. 70005100
535 INITIALIZE RETRY. %1JE WILL •!EVER MARK HHI [10WN Ir WE 70005200
536 % %GET NAK ON SEL.THIS HIGHT NOT EE A 70005300
s.:17 % ZGOOD PLAH. IF NOT rnrn REMOVE THIS 7000541)0
538 % XHHTUtLIZE RETRY ANO HE WILL GET 70005500
539 % XTHE STANMRD RETRY LOGIC. 70005600
540 TOGCOJ = TRUE. 70005700
S!t-1 GO TO 4. 70005800
54~ END. 70C·OS900·
543 2: RECEIVE (25 KILLI> [1]. 7%06000
5'14 GO TO 2. 7000·!1100
545 3: IF CHAR NEQ 4"ff" THEN GO TO 2. 70006200
~6 4: IF RETRY = 0 THEN TERliHIATE ERROR. 70006300
547 RETRY = RETRY - 1. 7001)61;00
548 IF TOG[QJ rnrn TERHrnAT£ EUMLEINPUT. %HE tHi!{'ED us - f'RQSASLY 70006500
54-9 ~ %HE IS W XHIT SO UE WILL &O 70006600
55() % %AND POLL HHI RIGHT NOW 70006700
551 TERMINATE ~ornPUT. 70006800
!':02 HODEll TA713: 30000()0i)
5S3 TRM1S!iITDELAY = 256 MILLI. %THIS VALUE IS TH£ TRANSMIT ri£LAY 80000100
554 NO!Sf!DELAY = 5-0 MILLI. 80000200
555 TYPE = /!SYNC. BOOC<0300
550 SPEED = 1200. 80000400
557 TERMINAL TD830X4: 801000011
5SS ADDRESS = 2. S010010v
559 SPEED = 1200. %Sr::rn CONTRULLED SOLELY 3Y ADC 80100200
560 TURNAROUND = 12 MILLI. S01t•0300
561 TIMEOUT = 1 SEC. ~RQST l!AITS THIS iittE BEFORE FURTHER ACTION 80100400
~ CODE = ASC67. 60100500
563 PARITY = VERTICAL:EVEN,HORIZONTAL:EVEN. 8010060{)
56~ CO~TROl = UPOLL. 130100700
5.SS REQUEST = USELECT£D:RECEI'J£,U?OLLE!}:Tfl.ftNSHIT. 801-00SOO
566 MAXH1?UT :: 1920. 8010090~
5!:i7 BLOCKED = FALSE~ 80101000
568 EtID = ETX. 80101100
5.S9 Br>CKSPACE = SS. 80101200
570 LrnE!IELETE: = DEL .. 90101300
571 WRU = EHQ. 80101400
572 TYPE = ASYNC<HODEtl>. 90101500
S73 BYTE = 7, PARITY. 30101600
S74 SCREEN = TRUE. 90101700
S7S HOnE = DC~. 80101800
S7b CLEAR = FF. 80101900
S77 CARRIAGE = CR. 80102000
578 LINEHID = LF. 80102100
579 WIDTH = 32. 80102200
580 WRAPAROUND :: .TRUE. 80102300

C-51

C-52

5131
~
$3·
$4

585
5136
5t37
5BS
589
5W
~1
592
5'J3
594
595
S?6
S?7
511'8
599
IJJO
601
602
!:1)3
60ft
UJS
606
6/J7
008
l.IJ9
610
611
612
613
6H
615
61/i
617
.618
619
6eO
621
622
623
62~
l25
82/,
&27
628
129
631.)
631
632
633
~
63S

TERMUIAL TDS30: 81000000
ADDRESS = 2. fl1000100
SPEED = 1200. % SPEED COUTROLLED SOLELY BY ADC. 81000200
TURNA-ROUND = 12 MIU.I. % THIS VftLliE IS THE TRANSMIT DELAY. 61000300
TIMEOUT = 1 SEC. %RQST WAITS THIS TiliE BEFORE FURTHER ACTION.81000400
CODE = ASC67. a1ooosoo
PARITY = VERTICAL:EVEN,HORIZONTAL:EVEN. 81000600
CONTROL = POLL. 81000700
REQUEST = POLLIT:RECEIVE,SELECTIT:TRANSMii. 91000800
MAXIN?UT = 1920. 81000900
BLOCKED = FALSE. 81001000
END = ETX. fl1001100
BACKSPACE = BS. 81001~00
LINED£LETE = DEL. 81001300
WRU = ENQ. 010014-00
TYPE = ASY~1CU>IRECT>. 91001500
BYTE = 71 PARITY. 81001600
SCREEN = TRUE. 91001700
HOME : DC~. 81001300
CLEAR = Fr.. 81001900
CARRI1~GE = CR.
LINEFEED = LF.
UIIHH = SO.
WRAPllROllND = TRUE.

STATION STATIONO:
CONTROL = 4n4011 •

ENABLEINPUT = TRUE.
FR.EQUEUCY = 0.
LOGIN = FALSE.
.MYUSE = rnPUT, OUTPUT.
RETRY = 10.
WIDTH = SO.
WRAPAROUND = TRUE.
TERMINAL = TDS30.
ADDRESS = 111'tn. % CHf1NGE TO YOUR STATION'S ADDRESS.
SPEED = -1200.
TYPE = ASYHC<DIRECT).

STATIO~ STATION1:
CONTROL = 4114011 •

ENABLEINPUT = TRUE.
FREQUENCY = O.
LOGIN = FALSE.
KYUSE. = IUPUT,OUTPUT.
RETRY = 10.
WIDTH = SO.
WRAPAROUND = TRUE.
TERHWAL = TDS30.
ADDRESS = "1911 • % CHANGE TO YOUR STATION'S ADDRESS.
SPEED = 1200.
TYPE = Asvm:<DIRECT>.

STATION STATIOt,2:
CONTROL = 4•4011 •

ENABLEINPUT = TRUE.
FREQUEl1CY = 0.
LOGIN = FALSE.

131002000
31002100
91002200
81002300
S2COOOOO
82000100
82000200
92000300
82000400
92000500
82000600
82000700
82000800
82000900
82001000
02001100
82001200
03001>000
83000100
83000200
83000300
83000400
83000500
83000600
83000700
03000800
83000900
83001000
83001100
83001~00
84000000
84000100
84000200
84000300
B4ooo;.oo

636
637
638
639
640
641

MYUSE = UlPUT,OUTPUT. 84000500
RETRY = 10. 84-000600
WIDTH = 80. 840007C10
WMPftROUHD = TRUE. S~·OOOGOO
TERMINAL = TD830. S~-000900
ADDRESS = ·"1C". % CHMGE TO YOUR STATION'S ADDRESS. SHMOOO

64~ SPEED = 1200. 84001100
6lt3 TYPE = ASYHC<DIRECT>~ 04001200
~ STATION STATIONJ: 95000000
64S CONTROL = 4114011 .. 85000100
646 EHASl.EINPUT = TRUE. 85000200
l:h7
648
649
650
liSt
~
653
~
655
656
657
658
659
l:bO
6!11
MK
663
66~
66S

""' (:1,7

669
669
670
671
672
673
671t
675
67&
&Tl
678
679
mo
691
68t>
683
694
~
686
./:B7
lB8
83f
6TO

FREQUE:h'CY = O. 85000300
LOGIN = F~LSE. 85000400
ffYUSE = INPUT,OUTPUT. 85000500
RETRY = 10. 85000600
WiliTH = eo. 95000700.
WRAPAROUND = TRUE. SSOOOSOO
TERMINAL = TD830. 05000900
ADDRESS = "11>". % CHANGE TO YOUR STATIOtt'S ADDRESS. 85001000
SPEED = 1200. 85001100
TYPE = ASYNCCDIRECT>. SS001200

STATION STATION.\: 86000000
CONTROL = 4"4011 • 86000100
EHABLEHIPUT = TRUE. 86000200
FREQUENCY = O. 96C00300
LOGIN = FALSE. 96000400
MYUSE = HlPUT,OUTPUT. 86000500
RETRY = 100. 86000600
WIDTH = 32. 86000700
~RAPAROUND =·TRUE. 86000800
TERMINAL·= TDS30X4. 86000~·00
liDDRESS = "1A". %CHANGE TO ADDRESS BY WHICH YOU'LL EE POLLED 86001000
SPEED = 1200. 86001100
TYPE = ASYNC rno~EfU. 86001200
MODEM = TA713. 86001300

LINE LIHEO! 87000000 .
ADDRESS = S. % CHANGE TO YOUR PHYSICAL LINE ADDRESS. 87000100
MAXSTATIONS = 4. 87000200
STftTIOM = srnnouo, STATION1, STATION2, STATIOH3. 87000300
TYPE = DIRECT. 8700-0400

LINE LIHE1: 88000000
ADDRESS = 6. %CHANGE TO YOUR PHYSICAL LINE ADDRESS 88000100
t!AXSTATICNS.= 1. 88000~0
STATION = STATIO~~. 83000300
TYPE = MODEM. 88000400
MODEn = 111113. aaooosoo

DCP ·DCPBao: 89000000
BUFFER = 120. 89000100
BUF"FERCOUHT = 1~8. %TO SAVE SPACE S0H£ OVERLAP 89000~00

MEMORY = 49152.
LIMIT = 128.

nLE FILEO:

% OF BUFFERS IS.ALLOWED FOR .. IT IS 89000300
% EXPECTED TP.AT NOT ALL STATIONS WILL HAVES9000400
% ALL BUFFERS LOADED AT THE SAME TIME. 89000500

89000600
89000700
90000000

C-53

l:Dt FAHILY =- STATimlo, STATIOfU, STATION~, STATIOH3, STATIOH4.
692 FILE FILE1:
i/13 FAMILY = STATIONO.
l:Dlt FILE FILE~:
ms FAMILY = STATION!.
iR& FILE FILE3:
llJ7 FAflitY = STATION!.
IRS f'IL£ FILE~:
1119 FAflILY = .STATIOH3.
700 FILE FILES:
701 FAMILY = STATIOH4.

C-54

90000100
90000~00
t0000300
9000~00
90000Sot
90000•00
90000700
90000900
90000900
90001000
90001100

Documentation Evaluation Form

Title: __ c_M_S_D_a_t_a_C_o_m_m_u_n_ic_a_ti_o_ns_S_u_b_sv.:....s_te_m ______ _ Form No: ____ 1_0_90_9_0_9 __________ _

Reference Manual Date: _______ J_u~ly~,_19_8_0 ________ __

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

D Addition

Comments:

From:

Name

Title

Company

Address

D Deletion D Revision

Phone Number --------------

Remove form and mail to:

Documentation Dept, TIO • East
Burroughs Corporation

BoxCB7
Malvern, PA 19355

0 Error

i..._ 2" BINDER _.,

Printed in U.S.A.

~ 111,'' B INDER~

I ~ 1" BIN D ER --1 I

:::0
rn .,.,
rn
:::0
rn z
0
rn
s:
)>
z
c
)>
r

1090909

Printed in U.S.A.

August 1980

I , -
I

~ -..

1090909

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	10-01
	11-01
	11-02
	11-03
	11-04
	11-05
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	replyA
	xBack

