

Burroughs

B 1700 SYSTEMS

SYSTEM SOFTWARE DEVELOPMENT

Printed in U. S. America

LANGUAGE

(SOL)

REFERENCE MANUAL

(INF VERSION)

NOTICE

THE MATERIAL IN THIS DOCUMENT IS NOT TO BE REPRODUCED,
COPIED OR UTILIZED FOR FURTHER PUBLICATION. ADDITIONAL
COPIES SHOULD BE OBTAINED FROM BURROUGHS CORPORATION
UNDER THE TERMS OF THE APPROPRIATE PROGRAM PRODUCTS
LICENSE. ·

Burroughs Corporation
Detroit, Michigan 48232

$4.00

12-74 1081346

COPYRIGHT @1973, 1974 BURROUGHS CORPORATION
AA500233

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Technical
Information Organization, TIC-Central, Burroughs Corporation, Burroughs Place, Detroit,
Michigan 48232.

TABLE OF CONTENTS

TITLE

GENERAL ORIENTATION: THE METALANGUAGE
METASYMBOLS OF BNF
BASIC COMPONENTS OF THE SOL LANGUAGE
BASIC STRUCTURE OF THE SOL PROGRAM
FIG 1. PROCEDURE NESTING
FIG 2. SCOPE AND CALLING ABILITY
SEGMENT STATEMENT
DECLARATION STATEMENT

DATA TYPES
DECLARE STATEMENT

NON-STRUCTURED DECLARATIONS
STRUCTURED DECLARATIONS
DYNAMIC DECLARATIONS
PAGED ARRAY DECLARATIONS
FILE DECLA~ATIONS
SWITCH FILE DECLARATIONS

DEFINE STATEMENT
FORWARD DECLARATION
USE STATEMENT

PROCEDURE STATEMENT
INTRINSICS
ASSIGNMENT STATEMENTS AND EXPRESSIONS
FIG 3. OPERATOR PRECEDENCE TABLE

UNARY OPERATOR
ARITHMETIC OPERATORS
RELATIONAL OPERATORS
LOGICAL OPERATORS
REPLACE OPERATORS
CONCATENATION

PRIMARY ELEMENTS OF THE EXPRESSION
CONDITIONAL EXPRESSION
CASE EXPRESSION
BUMP
DECREMENT
ASSIGNOR
ADDRESS VARIABLES

INDEXING
ADDRESS GENERATING FUNCTIONS

SUBBIT AND SUB~TR
FETCH.COMMUNICATE.MSG.PTR
DESCRIPTORS
MAKE.DESCRIPTOR
NEXT-PREVIOUS.ITEM

ADDRESS GENERATORS
VALUE VARIABLES

VALUE GENERATING FUNCTIONS
SWAP
SUBBIT AND SUBSTR
DISPATCH
LOCATION

iii

@1973, 1974 Burroughs - DO NOT REPRODUCE

PAGE

1-1
1-2
2-1
3-1
3-4
3-5
4-1
5-1
5-1
6-1
6-2
6-5
6-8
6-9
6-10
6-22
7-1
8-1
8-4
9-1
9-6

10-1
10-4
10-5
10-5
10-6
10-7
10-8
10-10
11-1
11-1
11-2
11-2
11-3
11-4
12-1
12-1
12-4
12-4
12-5
12-6
12-7
12-8
12-9
13-1
13-2
13-3
13-4
13-4
13-5

TABLE OF CONTENTS (CONT)

TITLE

CONVERT
LENGTH
MEMORY SIZE
VALUE DESCRIPTOR
INTERROGATE INTERRUPT STATUS
DECIMAL CONVERSION
BINARY CONVERSION
TIME FUNCTION
DATE FUNCTION
NAME OF DAY
BASE REGISTER
LIM IT REG I STER
CONTROL STACK TOP
DATA ADDRESS
SEARCH.LINKED.LIST
SORT.STEP.DOWN
SORT.UNBLOCK
SORT.SEARCH
PARITY.ADDRESS
DYNAMIC MEMORY BASE
HASH CODE
NEXT TOKEN
DELIMITED TOKEN
EVALUATION STACK TOP
CONTROL STACK BITS
NAME STACK TOP
DISPLAY BASE
CONSOLE SWITCHES
SEARCH SERIAL LIST
SPO INPUT PRESENT
SEARCH.SOL.STACKS
EXECUTE

ADDRESS AND VALUE PARAMETE
1/0 CONTROL STATEMENTS

OPEN STATEMENT
CLOSE STATEMENT
READ STATEMENT
WRITE STATEMENT
SEEK STATEMENT
ACCEPT STATEMENT
DISPLAY STATEMENT
SPACE STATEMENT
SKIP STATEMENT

EXECUTABLE STATEMENTS
DO GROUPS
GROUP TERMINATION STATEMENT
IF STATEMENT
CASE STATEMENT
EXECUTE-PROCEDURE STATEMENT
EXECUTE-FUNCTION STATEMENT

DUMP
TRACE
SAVE
RESTORE
FETCH

iv

PAGE
13-6
13-8
13-8
13-8
13-9
13-9
13-9
13-10
13-11
13-11
13-12
13-12
13-12
13-12
13-13
13-14
13-14
13-15
13-16
13-16
13-16
13-17
13-17
13-18
13-18
13-18
13-19
13-19
13-19
13-20
13-20
13-21
14-1
15-1
15-2
15-4
15-6
15-8
15-11
15-12.
15-13
15-14
15-15
16-1
16-2
16-4
16-5
16-7
16-8
16-9
16-9
16-10
16-10
16-11
16-11

TABLE OF CONTENTS (CONT)

TITLE

HALT
REINSTATE
ACCESS-FPS
REVERSE STORE
READ CASSETTE
OVERLAY
ACCESS OVERLAY
ERROR COMMUNICATE
SORT
SORT.SWAP
INITIALIZE.VECTOR
THREAD.VECTOR
DISABLE.INTERRUPTS
ENABLE.INTERRUPTS
ACCESS FILE INFORMATION
HARDWARE MONITOR
SAVE STATE
DE BLANK
FREEZE PROGRAM
THAW PROGRAM
DUMP FOR ANALYSIS
COMPILE CARD INFO
COMMUNICATE

MODl~Y INSTRUCTION
NULL STATEMENT
FILE ATTRIBUTE STATEMENT CCHANGE STATEMENTl
STOP STATEMENT
ZIP STATEMENT
SEARCH STATEMENT
ACCESS FILE HEADER STATEMENT
SEND STATEMENT
RECEIVE STATEMENT
ARRAY PAGE TYPE STATEMENT
COROUTINE STATEMENT
WAIT STATEMENT

APPENDIX I: SYNTAX OF THE SOL LANGUAGE
APPENDIX II: RESERVED AND SPECIAL WORDS
APPENDIX III: SOL CONTROL CARD OPTIONS

CONTROL CARD OPTIONS FOR 85500
CONTROL CARD OPTIONS FOR 81700

APPENDIX IV: PROGRAMMING OPTIMIZATION
APPENDIX V: SYSTEM CONTROL CARDS

SYSTEM CONTROL CARDS FOR 85500
SYSTEM CONTROL CARDS FOR 81700

APPENDIX VI: CONDITIONAL COMPILATION
APPENDIX VII: SOL PROGRAMMING TECHNIQUES
APPENDIX VIII: THE SDL RECOMPILATION FACILITY
APPENDIX IX: SOL MONITORING FACILITY
APPENDIX X: BURROUGHS 81700 DATA COMMUNICATIONS SOL (DCSDL)
DCSDL EXTENSIONS
DCSDL DECLARATIONS
QUEUE DECLARATIONS
MESSAGE DECLARATION
MESSAGE LINKAGE MECHANISM
DCSDL FUNCTIONS

v

@1973,' 1974 Burroughs - DO NOT REPRODUCE

PAGE

16-12
16-12
16-13
16-13
16-i4
16-15
16-15
16-15
16-16
16-17
16-17
16-18
16-18
16-18
16-19
16-19
16-20
16-20
16-20
16-20
16-21
16-21
16-22
16-23
16-24
16-25
16-37
16-38
16-39
16-41
16-43
16-45
16-46
16-47
16-49
17-1
18-1
19-1
19-1
19-4
20-1
21-1
21-1
21-3
22-1
23-1
24-1
25-1
26-1
26-1
26-2
26-2
26-5
26-7
26-8

TABLE OF CONTENTS (CONT)

TITLE

ALLOCATE FUNCTION
DCSDL STATEMENTS

DC.WRITE STATEMENT
REMOVE STATEMENT
QUEUE.INFO STATEMENT
MESSAGE.INPO STATEMENT
DE.ALLOCATE STAT£MENT
INSERT STATEMENT
FLUSH STATEMENT
ENABLE.QUEUE STATEMENT
DISABLE.QUEUE STATEMENT
TRANSFER.MESSAGE STATEMENT .
MCS COMMUNICATE STATEMENT

APPENDIX XI: SOL CODING SUGGESTIONS

vi

PAGE

26-8
26-10
26-10
26-11
26-13
26-16
26-17
26-17
26-19
26-20
26-21
26-22
26-23
27-1

1-1

GENERAL ORIENTATION: THE METALANGUAGE

A LANGUAGE USED TO TALK ABOUT A LANGUAGE IS A METALANGUAGE, THE
NATURAL LAN.GUAGES ARE , IN FACT , METALANGUAGES; FOR EXAMPLE , THE
MEtALANGUAGE ENGLISH IS USED TO TALK ABOUT THE RELATIONSHIP
E=IR, I.E., VOLTAGE EQUALS THE PRODUCT OF CURRENT AND
RESISTANCE. BACKUS NAUR FORM CBNF>, A METALANGUAGE POPULARIZED
BY ITS USE TO DESCRIBE THE SYNTAX OF ALGOL 6'0 IS USED TO
DESCRIBE THE SYNTAX OF SDL. TO AVOID THE CONFUSION BETWEEN THE
SYMBOLS OF THE METALANGUAGE AND THOSE OF THE LANGUAGE BEING
DESCRIBED, BNF USES ONLY 4 METALINGUISTIC SYMBOLS. LITERAL
OCCURRENCES OF SYMBOLS, WITH NO BRACKETING CHARACTERS,
REPRESENT THEMSELVES AS TERMINAL SYMBOLS OF THE LANGUAGE.

A GRAMMAR FOR SDL IS WRITTEN AS A SET OF BNF STATEMENTS, EACH OF
WHICH HAS A LEFT PART, FOLLOWED BY THE METASYMBOL "::="
FOLLOWED BY A LIST OF RIGHT PARTS. THE LEFT PART IS A PHRASE
NAME, AND THE RIGHT PARTS, SEPARATED BY THE METASYMBOL "/" ARE
STRINGS CONTAINING TERMINAL SYMBOLS AND/OR PHRASE NAMES.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

1-2

METASYMBOLS OF BNF

METASYMBOL ENGLISH EQUIVALENT USE

: : = IS DEFINED AS

I OR

SEPARATES A PHRASE NAME FROM
ITS DEFINITION

SEPARATES ALTERNATE DEFINITIONS
OF A PHRASE

< I DENT IF I ER> "IDENTIFIER" THE BRACKETING CHARACTERS INDICATE
THAt THE INTERVENING CHARACTERS
AR~ TO BE TREATED AS A UNIT,
I.E .• AS A PHRASE NAME

NOTE: BNF ACTUALLY USES A VERTICAL BAR, RATHER THAN
THE SLASH AS INDICATED ABOVE AS A SEPARATOR.
HOWEVER, THE LINE PRINTER WHICH PRODUCES THIS
DOCUMENT HAS NO VERTICAL BAR IN ITS CHARACTER
SET. THEREFORE, A SLASH HAS BEEN USED
THROUGHOUT TO SEPARATE ALTERNATE SYNTACTICAL
DEFINITIONS. WHEN THE SLASH IS ACTUALLY PART
OF THE SOL SYNTAX, IT WILL BE WRITTEN AS
<SLASH>.

EACH BNF STATEMENT IS A REWRITING RULE, SUCH THAT WE MAY
SUBSTITUTE ANY RIGHT PART FOR ANY OCCURRENCE OF ITS ASSOCIATED
LEFT PART; AND WE HAVE A CHOICE OF RIGHT PARTS WHICH WE MAY
SUBSTITUTE. THE FOLLOWING EXAMPLE SPECIFIES THE USE OF THESE
RULES TO DETERMINE THOSE STRINGS WHICH ARE GRAMMATICALLY
CORRECT IDENTIFIERS IN SOL.

<LETTER> ::=

<DIGIT> : :=

<DOT>::=

A I B I C I D I E I F I G I H I I I J I K I L I M I
N I 0 I P I Q I R I S I T I U I V I W I X I Y I Z

0 I I 2 /. 3 I 4 I 5 I 6 I 7 I 8 I 9

<IDENTIFIER> : := <LETTER>
I <IDENTIFIER> <LETTER>
I <IDENTIFIER> <DIGIT>
I <IDENTIFIER> <DOT>

XYZ12.B4 IS A PROPER SOL <IDENTIFIER> SINCE IT CAN BE GENERATED
AS A TERMINATING SET OF SYMBOLS BY USING THE BNF RULES ..

<IDENTIFIER>
<IDENTIFIER> <DIGIT>
<IDENTIFIER> <LETTER> 4
<IDENTIFIER> <DOT> B4
<IDENTIFIER> <DIGIT> .B4
<IDENTIFIER> <DIGIT> 2.B4
<IDENTIFIER> <LETTER> 12.B4
<IDENTIFIER> <LETTER> Z12.B4
<LETTER> YZ12.B4
XYZ12.B4

1-3

NOTICE THAT THE BNF RULES DO NOT, IN ANY WAY, LIMIT THE NUMBER
OF LETTERS, DIGITS, AND DOTS WHICH COMPRISE THE <IDENTIFIER>.
IN SUCH CASES, FURTHER SEMANTIC RULES WILL BE SPECIFIED; E.G.,
AN SOL <IDENTIFIER> IS LIMITED TO A MAXIMUM OF 63 CHARACTERS.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

2-1

BASIC COMPONENTS OF THE SOL LANGUAGE

IN ORDER TO UNDERSTAND SOL GRAMMAR, THE USER SHOULD BE FAMILIAR
WITH THE MOST BASIC ELEMENTS OF THE SOL LANGUAGE BELOW.

<DIGIT> : :=

<LETTER> ::=

<SPECIAL CHARACTER> ::=

<AMPERSAND> : : =

<SLASH> : : =

<BLANK> : : =

0 I I 2 I I 8 I 9

A I B I C I D I I X I Y I Z

<AMPERSAND> I I < I i I I /4-/ ~
/$/:I >l"l.I~/=/+/ CI) I*
I - I <SLASH> I C I J I <BLANK>

&

I

NOTE: <BLANK>
CHARALTER

IS THE OCCURENCE OF ONE NON-VISIBLE

<IDENTIFIER> ::=

RESTRICTIONS:

II II

<LETTER> I <IDENTIFIER> <LETTER>
I <IDENTIFIER> <DIGIT>
I <IDENTIFIER> <DOT>

1. AN IDENTIFIER MUST BEGIN WITH A LETTER.

2. AN IDENTIFIER MAY NOT CONTAIN BLANKS.

3. AN IDENTIFIER MAY CONTAIN A MAXIMUM OF 63
CHARACTERS.

4. EXCEPT FOR SEGMENT AND GROUP IDENTIFIERS,
RESERVED WORDS MAY NOT BE USED AS IDENTIFIERS.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

5. "SPECIAL" WORDS MAY BE USED FOR SEGMENT AND
DO-GROUP <!DENT IF I ER>S WI THOL.J ,· LOS ING THE IR
SPECIAL SIGNIFICANCE IN SDL.

6. IN ALL OTHER CASES. II SPEC I AL II WORDS MAY BE
USED AS IDENTIFIERS, HOWEVER, THEY LOSE THEIR
SPECIAL SIGNIFICANCE THROUGHOUT THE ENTIRE
PROGRAM WHEN DECLARED AT LEXIC LEVEL 0. WHEN
DECLARED AT ANY GREATER LEXIC LEVEL, THEY ONLY
LOSE THEIR SPECIAL MEANING WITHIN THE
PROCEDURE IN WHICH THEY ARE DECLARED.

<DOT> : :=

(ALSO SEE "BASIC STRUCTURE OF THE SDL PROGRAM"
AND II APPEND Ix I I I ")

2-2

<COMMENT STRING> ::= <SLASH>* <COMMENT TEXT> *<SLASH>

RESTRICTIONS:

1. THE PAIR /* PRECEDING THE <COMMENT TEXT>
APPEAR AS ADJACENT SYMBOLS. SIMILARILY,
PAIR */ FOLLOWING THE <COMMENT TEXT> MUST
APPEAR AS ADJACENT SYMBOLS.

<COMMENT TEXT> : := <EMPTY>

<EMPTY> : : =

I <COMMENT TEXT CHARACTER>
I <COMMENT TEXT CHARACTER>

<COMMENT TEXT>

MUST
THE

ALSO

NOTE: <EMPTY> IS THE NULL SET OR THE OCCURENCE OF
NOTHING.

<COMMENT TEXT
CHARACTER> ::= <DIGIT>

I <LETTER>
I <SPECIAL CHARACTER>
/"/ct/#/%

<CARD TERMINATOR> : := X

RESTRICTIONS:

1. A X IS TREATED AS ANY OTHER STRING CHARACTER
IF IT IS CONTAINED WITHIN A <CHARACTER STRING>
OR IN <COMMENT TEXT>. HOWEVER, IN ALL OTHER
CASES, A X WILL CAUSE THE SCANNING OF THE
CURRENT SOURCE IMAGE TO TERMINATE, ANO CAUSE
SCANNING TO CONTINUE IN THE NEXT SOURCE IMAGE.

2-3

<NUMBER> : : = <DIGIT> I <NUMBER> <DIGIT>

· NOTE: RANGE OF SIGNED NUMBERS -C2 EXP 23) TO
C2 EXP 23>-1. RANGE OF UNSIGNED
NUMBERS 0 TO C2 EXP 24>-1.

<BINARY DIGIT> ::=

<BINARY DIGITS> ::=

<QUARTAL DIGIT> ::=

<QUARTAL DIGITS> ::=

<OCTAL DIGIT> ::=

<OCTAL DIGITS> ::=

<HEX DIGIT> ::=

<HEX DIGITS> ::=

<BIT GROUP>::=

<BIT STRING>·::=

<BITS>::=

RESTRICTIONS:

0 I 1 I <COMMENT STRING>

<BINARY OIGIT>
I <BINARY DIGITS> <BINARY DIGIT>

<BINARY DIGIT> I 2 I 3

<QUARTAL DIGIT>
I <QUARTAL DIGIT> <QUARTAL DIGITS>

<QUARTAL DIGIT> I 4 I 5 I 6 I 7

<OCTAL DIGIT>
I <OCTAL DIGITS> <OCTAL DIGIT>

<OCTAL DIGIT>
I 8 I 9 I A I B I C I D I E I F

<HEX DIGIT>
I <HEX DIGITS> <HEX DIGIT>

C4> <HEX DIGITS>
I C3> <OCTAL DIGITS>
I C2> <QUARTAL DIGITS>
I Cl> <BINARY DIGITS>

•<BITS>•

<BIT GROUP> I <HEX DIGITS>
I <BITS> <BIT GROUP>
I <EMPTY>

1. IF NO BIT MODE IS SPECIFIED CIE. THE INDICATOR·
DIGIT IN PARENTHESES IS OMITTED>. "HEX" IS
ASSUMED. THIS CAN ONLY BE ASSUMED IF THE BIT
STRING DOES NOT START WITH A MODE INDICATOR;
WHEN IHE MODE IS SWITCHED TO "HEX", AN
EXPLICIT "C4>" IS REQUIRED.

2. AS NOTED ABOVE, A <COMMENT STRING> MAY APPEAR
ANYWHERE WITHIN A <BIT STRING>, BUT NOT WITHIN
THE PARENTHESES BOUNDING THE INDICATOR DIGIT.
THE PRESENCE OF A <COMMENT STRING> WILL, IN NO
WAY, .. ·ALTER THE' VALUE OF THE <BIT STRING>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

2-4

CONTAINING IT.

EXAMPLE:
•C3>6330316260/* THIS */313230/* IS */63302560/* THE */
4321626360/* LAST */512523465124/* RECORD *I•

<STRING> ::= <CHARACTER STRING>
I <BIT STRING>

<CHARACTER STRING>::= "<STRING CHARACTER LIST>"

<STRING CHARACTER LIST> ::= <EMPTY>
I <STRING CHARACTER>

<STRING CHARACTER LIST>

<STRING CHARACTER> ::= <DIGIT> I <LETTER> I <SPECIAL CHARACTER>
I "" I@ I #I%

RESTRICTIONS:

1. IF A QUOTE SIGN IS DESIRED IN A CHARACTER
STRING, TH~N TWO ADJACENT QUOTE SIGNS MUST
APPEAR IN THE TEXT.

EXAMPLE:

NOTE:

<CONSTANT> : :=

DECLARE STRING CHARACTER C6l;
QUOTE CHARACTER Cll

STRING .. "AB" "CDE";
QUOTE .._,,,,,,,,;

AFTER EXECUTION, STRING W1LL CONTAIN: AB"CDE,
AND QUOTE WILL CONTAIN: II

A <CHARACTER STRING> MAY CONTAIN A MAXIMUM OF
256 CHARACTERS.

<NUMBER> I <STRING> I TODAYS.DATE
I SEQUENCE.NUMBER
I HEX.SEQUENCE.NUMBER

NOTE: "TODAYS.DATE" REPRESENTS THE DATE AND TIME OF
COMPILATION OF THE PROGRAM. IT IS THE SAME AS
THE DATE AND TIME APPEARING AT THE TOP OF THE
PROGRAM LISTING. IT IS A CHARACTER STRING WITH
THE FOLLOWING FORMAT --
"MM/DD/YY HH:MM"

NOTE: "SEQUENCE.NUMBER" REPRESENTS A <CHARACTER
STRING> OF 8 CHARACTERS WHICH IS THE SEQUENCE
NUMBER OF THE CURRENT SOURCE IMAGE BEING
CONPILED.

"HEX.SEQUENCE.NUMBER" REPRESENTS A BIT STRING

OF 8 CHEX> DIGITS WHICH IS THE SEQUENCE
OF THE CURRENT SOURCE IMAGE LINE
COMPILED. IF THIS SEQUENCE FIELD IS
THEN HEX.SEQUENCE.NUMBER = •00000000•;

NUMBER
BEING

BLANK,

IF THE CURRENT SOURCE IMAGE LINE SEQUENCE
NUMBER IS 12753000, THEN ON THIS LINE:

SEQUENCE.NUMBER= ''12753000"
HEX.SEQUENCE.NUMBER = •127530000

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

2-5

BASIC STRUCTURE OF THE SOL PROGRAM

<PROGRAM> : : =

<DECLARATION STATEMENT
LIST>::=

<DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
<EXECUTABLE STATEMENT LIST>
FINI

<EMPTY>
I <DECLARATION STATEMENT>

<DECLARATION STATEMENT LIST>

<DECLARATION STATEMENT> : := <DECLARE STATEMENT>;
I <DEFINE STATEMENT>;

<PROCEDURE STATEMENT
LIST>::=

I <FILE DECLARATION STATEMENT>;
I <SWITCH FILE DECLARATION

STATEMENT>;
I <FORWARD DECLARATION>
I <USE STATEMENT>;
I <SEGMENT STATEMENT>

<DECLARATION STATEMENT>

<EMPTY>
I <PROCEDURE STATEMENT>;

<PROCEDURE STATEMENT LIST>

<PROCEDURE STATEMENT> : := <PROCEDURE DEFINITION>

<EXECUTABLE STATEMENT
LIST> : : =

I <SEGMENT STATEMENT>
<PROCEDURE STATEMENT>

<EXECUTABLE STATEMENT>
I <EXECUTABLE STATEMENT>

<EXECUTABLE STATEMENT LIST>

<EXECUTABLE STATEMENT> ··= <DO GROUP>;
I <IF STATEMENT>
I <CASE STATEMENT>;
I <ASSIGNMENT STATEMENT>;
I <EXECUTE-PROCEDURE STATEMENT>;
I <EXECUTE-FUNCTION STATEMENT>;
I <GROUP TERMINATION STATEMENT>;
I <IIO CONTROL STATEMENT>
I <MODIFY INSTRUCTION>;
I <NULL STATEMENT>
I <STOP STATEMENT>;
I <FILE ATTRIBUTE STATEMENT>;
I <SEND STATEMENT>
I <RECEIVE STATEMENT>
I <ACCESS FILE HEADER STATEMENT>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

3-1

I <SEARCH STATEMENT>
I <ZIP STATEMENT>
I <ARRAY PAGE TYPE STATEMENT>
I <COROUTINE STATEMENT>
I <WAIT STATEMENT>;
I <SEGMENT STATEMENT>

<EXECUTABLE STATEMENT>

3-2

A PROGRAM, WRITTEN IN SOL, MUST FOLLOW THE SEQUENTIAL STRUCTURE
DESCRIBED IN THE ABOVE SYNTAX. THAT IS, THE EXECUTABLE SECTION
OF THE PROGRAM MAY NOT APPEAR UNTIL ALL PROCEDURES HAVE BEEN
DEFINED, AND PROCEDURES MAY NOT BE DEFINED BEFORE THE FORMATS
OF DATA ITEMS CVARIABLES, ARRAYS, ETC.> HAVE BEEN DECLARED.
"FINI" MUST PHYSICALLY OCCUR AS THE FINAL STATEMENT IN THE
PROGRAM.

THE PROCEDURE STATEMENT, CINCLUDING DECLARATION, PROCEDURE, AND
EXECUTABLE STATEMENTS>, IS THE BASIC STRUCTURE IN SOL. AN SOL
PROGRAM IS A COLLECTION OF PROCEDURES, EACH OF WHICH CAN BE
DESCRIBED FOR CONCEPTUAL PURPOSES AS A MICROCOSM OF THE
PROGRAM. ANY GIVEN PROCEDURE MAY CONTAIN A COLLECTION OF OTHER
PROCEDURES WITHIN ITSELF. THIS PROCESS IS KNOWN AS dNESTING".

THE "LEXICOGRAPHIC LEVEL" OF ANY STATEMENT IN THE PROGRAM IS
EQUAL TO THE NUMBER OF PROCEDURES IN WHICH IT IS NESTED. THE
PROGRAM ITSELF WILL ALWAYS BE LEXIC LEVEL 0, AND NO PROCEDURE
MAY HAVE A LEXIC LEVEL GREATER THAN 15. THE DIAGRAM IN FIGURE
1 ILLUSTRATES PROCEDURE NESTING AND LEXIC LEVELS.

IT IS IMPORTANT TO UNDERSTAND THE RELATIONSHIPS BETWEEN THESE
NESTED PROCEDURES. AS FIGURE 1. INDICATES, THE NAME OF ANY
GIVEN PROCEDURE IS CONTAINED IN THE PROCEDURE IN WHICH IT IS
NESTED AT THE NEXT LOWER LEXIC LEVEL. FOR EXAM~LE, PROCEDURE D
IS A LEXIC LEVEL 2 PROCEDURE, HOWEVER, ITS NAME, "0", IS PART
OF LEXIC LEVEL 1.

THE "SCOPE" OF ANY GIVEN PROCEDURE IS RECURSIVELY DEFINED AS:

1> THE PROCEDURE ITSELF,

2> ANY PROCEDURECSl NESTED WITHIN THE PROCEDURE,

3> ANY PROCEDURE CANO ITS NESTED PROCEDURES>
WHOSE NAME APPEARS AT THE SAME LEXIC LEVEL AND
WITHIN THE SAME PROCEDURE AS ITS OWN NAME, AND

4l THE PROCEDURE IN WHICH ITS OWN NAME IS
DEFINED.

3-3

IN FIGURE 1., ONE CAN SEE THAT THE SCOPE OF PROCEDURE 8
INCLUDES:

1) I TSELF t I . E . I PROCEDURE B

2l THE NESTED PROCEDURES WITHIN B CC AND D>,

3> THE OTHER PROCEDURES DEFINED AT LLO: E CANO
ITS NESTED PROCEDURES F AND G> AND PROCEDURE
H CANO ITS NESTED PROCEDURES J, K, L, M, N,
AND P.

4> THE PROCEDURE WHICH DEFINES B, IN THIS CASE,
THE PROGRAM A.

NOTE: ALL THE LEXIC LEVEL 0 PROCEDURES HAVE SCOPE TO
EACH OTHER. THIS OCCURS BECAUSE OF RULE 4
ABOVE, WHEREIN THE PROGRAM ITSELF IS THOUGHT
TO BE A "PROCEDURE".

IN THE SAME MANNER, THE SCOPE OF PROCEDURE J INCLUDES J, K, L,
M, N, P, AND H.

BY UNDERSTANDING THE RELATIONSHIPS BETWEEN THE VARIOUS
PROCEDURES, IT IS POSSIBLE TO DETERMINE WHICH PROCEDURES MAY BE
INVOKED BY ANY GIVEN PROCEDURE. SOL HAS BEEN DEFINED SO THAT
ANY PROCEDURE X MAY CALL OR INVOKE ANY PROCEDURE Y, IF THE
SCOPE OF Y ENCOMPASSES X.

IN FIGURE 1., PROCEDURE J MAY CALL PROCEDURES J,K,L,M,H,E, AND
B BECAUSE EACH OF THESE CONTAINS J IN ITS SCOPE.

NOTE: J CANNOT CALL THE PROGRAM A SINCE THE NAME OF
THE PROGRAM, IF THERE IS ONE, EXISTS OUTSIDE
THE PROGRAM AND IS, THEREFORE, NOT COMPILED;
HOWEVER, J MAY ACCESS THE DATA CONTAINED IN A
(I . E. ' A 1 • A2' A3 I AND A4) .

FIGURE 2 SHOWS THE RELATIONSHIP BETWEEN SCOPE AND CALLING
ABILITY FOR PROGRAM A.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

PROGRAM A
DECLARE Al, A2, A3, A4;
PROCEDURE B;

..--=~-c-=o-=---,--~-:-::----,,,....,.,...--~~~~~~~~~~~--,

DECLARE Bl, B2, B3;
PROCEDURE C;

~-'---~~~~~~~~~~~~

DECLARE Cl, C2, C3;
EXECUTABLE STATEMENTS;
END C;

PROCEDURE D;
~l~E~x=E~CU~T~A~B~L~E-=s=TA~T=E=M=E~N=T~S-;~~-,

END D;.
EXECUTABLE STATEMENTS;
END B;

PROCEDURE E;
~~-,,,~~~~~~~~~~~~~~~~~----..,

DECLARE El, E2;
PROCEDURE F;

~-'---~~~~~~~~~~~---,

DECLARE Fl, F2, F3;
EXECUTABLE STATEMENTS;
END F;

PROCEDURE G;
~--'-~~~~....,,...-,~~~~~~---,

DECLARE Gl, G2;
EXECUTABLE STATEMENTS;
END G;

EXECUTABLE STATEMENTS;
END E;

PROCEDURE H;
~:..__~~~~~~~~~~~~~~~~~~---,

DECLARE Hl, H2, H3, H4;
PROCEDURE J;

...---:=-=--=--==~==---:-:-~~~~~~~--,
PROCEDURE K;

PROCEDURE

LLO Lll LL2

PROCEDURE M· •
PROCEDURE

PROCEDURE

I

EXECUTABLE STATEMENTS;
FINI

* LL = LEXICOGRAPHIC LEVEL

L;

LL3*

N;

P;

FIG 1. PROCEDURE NESTING

3-4

CALLING PROCEDURES

A B C D E F G H J K L M N P

B * * * * * * * * * * * * * *

c * * *

D * * *

E * * * * * * * * * * * * * *

F * * *

PROCEDURE G * * *

H * * * * * * * * * * * * * *

SCOPE J * * * * * * *

K * * *

L * * *

M * * * * * * *

N * * *

p * * *

NOTE: TO FIND THE SCOPE OF A PROCEDURE, FIND THE
PROCEDURE IN THE COLUMN OF PROCEDURE NAMES.
tHE HORIZONTAL ROWS TO THE RIGHT INDICATE THE
PROCEDURES IN ITS SCOPE. THE PROCEDURES WHICH
MAY BE CALLED BY A GIVEN PROCEDURE ARE MARKED
IN THE VERTICAL COLUMNS BELOW THAT CALLING
PROCEDURE.

FIG 2. SCOPE AND CALLING ABILITY

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

3-5

<SEGMENT STATEMENT> ::=

<SEGMENT IDENTIFIER> ::=

<PAGE IDENTIFIER> ::=

4-1

SEGMENT STATEMENT

SEGMENT C<SEGMENT IDENTIFIER>>;
I SEGMENT.PAGE C<SEGMENT IDENTIFIER>

OF <PAGE IDENTIFIER>>;

<IDENTIFIER>

<IDENTIFIER>

AS THE BNF INDICATES, THE <SEGMENT STATEMENT> MAY OCCUR ANYWHERE
WITHIN AN SOL PROGRAM. ITS PURPOSE IS TO REDUCE THE CORE
REQUIREMENT OF THE PROGRAM BY ALLOWING SEGMENTS TO OVERLAY EACH
OTHER.

THERE IS A MAXIMUM OF 16 PAGES WITH 64 SEGMENTS PER PAGE. THE
SEGMENT NAMES REPRESENT A PAGE NUMBER-SEGMENT NUMBER PAIR.

IT IS ONLY NECESSARY TO SPECIFY SEGMENT.PAGE ONCE FOR EACH PAGE.
EVERY SUBSEQUENT SEGMENT WILL BE COMPILED TO THAT PAGE UNTIL
ANOTHER SEGMENT.PAGE IS ENCOUNTERED.

IF THERE ARE NO SEGMENT.PAGE SPECIFICATIONS, ALL SEGMENTS WILL
BE COMPILED TO PAGE ZERO, AND THERE MAY BE NO MORE THAN 64
SEGMENTS TOTAL. IF A PROGRAM IS TO BE SEGMENTED, THE FIRST
STATEMENT MUST BE A <SEGMENT STATEMENT>. OTHERWISE A WARNING
MESSAGE WILL APPEAR IN THE SOURCE LISTING.

THERE ARE TWO TYPES OF SEGMENTS: "PERMANENT" AND "TEMPORARY".
EVERY STATEMENT FOLLOWING A PERMANENT <SEGMENT STATEMENT> WILL
BE COMPILED TO THAT SEGMENT UNTIL ANOTHER <SEGMENT STATEMENT>
IS READ. NON-CONSECUTIVE STATEMENTS MAY BE COMPILED TO THE SAME
SEGMENT BY USING THE SAME <SEGMENT IDENTIFIER>. NOTE, HOWEVER,
THAT <DO GROUP>S CSEE "DO GROUPS"> AND PROCEDURES MUST END IN
THE SAME SEGMENT IN WHICH THEY BEGIN.

THE FOLLOWING EXAMPLE ILLUSTRATES THE USE OF THE "PERMANENT"
<SEGMENT STATEMENT>.

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

SEGMENT C XX> ;
D~CLARE Al, A2, A3, A4;
PROCEDURE B;

DECLARE Bl, B2, B3;
SEGMENT C YY l ;
PROCEDURE C;

END C;
PROCEDURE D:

END D;
SEGMENT C XX l :

END B;

FINI

4-2

ONLY PROCEDURES C AND D HAVE BEEN COMPILED TO THE SEGMENT "YY".
SEGMENT "XX" IS SEGMENT ZERO AND INCLUDES EVERYTHING ELSE.

A <SEGMENT STATEMENT> IS TREATED AS "TEMPORARY" ONLY WHEN IT
PRECEDES A "SUBORDINATE EXECUTABLE STATEMENT" WITHIN ANY OF THE
FOLLOWING STATEMENTS:

<ACCESS FILE HEADER STATEMENT>
<CASE STATEMENT>

<SEARCH DIRECTORY STATEMENT>
<SEND STATEMENT>

<IF STATEMENT>
<READ STATEMENT>
<RECEIVE,StATEMENT>

<SPACE STATEMENT>
<WRITE STATEMENT>
<OPEN STATEMENT>

IN THESE SPECIFIC CASES, THE SEGMENT CHANGE APPLIES ONLY TO THE
SUBORDINATE STATEMENT FOLLOWING IT. FOR EXAMPLE, THE SYNTAX FOR
THE <IF STATEMENT> COULD BE WRITTEN AS FOLLOWS:

<IF STATEMENT> ::= IF <EXPRESSION
THEN <SUBORDINATE EXECUTABLE STATEMENT>

I IF <EXPRESSION>
THEN <SUBORDINATE EXECUTABLE STATEMENT>
ELSE <SUBORDINATE EXECUTABLE STATEMENT>

4-3

THE SEGMENTATION OF A HYPOTHETICAL <IF STATEMENT> IS PRESENTED
BELOW TO ILLUSTRATE THE USE OF A "TEMPORARY" <SEGMENT
STATEMENT>.

SEGMENT CA>;
PROCEDURE X;

IF Y>Z THEN Y:=Z; ELSE
SEGMENT C 8 > ;
DO SOME.FUNCTION; *

*
*
*

END SOME.FUNCTION; *

Z := C+D
END X;

* COMPILED TO SEGMENT CB>

BECAUSE THE <DO GROUP>, "SOME.FUNCTION", IS A SUBORDINATE
<EXECUTABLE STATEMENT> IN THE <IF STATEMENT>, SEGMENT CB>
AUTOMATICALLY ENDS WHEN THE <DO GROUP> IS TERMINATED. ALL
STATEMENTS FOLLOWING ARE COMPILED TO SEGMENT CA>.

NOTICE THE DISTINCTION BETWEEN SEGMENT CA>, A "PERMANENT"
<SEGMENT STATEMENT>, AND SEGMENT CB>, A "TEMPORARY" ONE.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

5-1

DECLARATION STATEMENT

DATA TYPES

THREE MAIN TYPES OF DATA FIELDS MAY BE DECLARED IN SOL:
1) BIT
2) CHARACTER
3) FIXED

A BIT FIELD CONSISTS OF A NUMBER OF BITS SPECIFIED BY A NUMBER
IN PARENTHESES FOLLOWING THE RESERVED WORD "BIT". THE FIELD MAY
BE A MAXIMUM OF 65535 BITS.

A CHARACTER FIELD IS A NUMBER OF CHARACTERS, 8 BITS EACH,
SPECIFIED BY A NUMBER IN PARENTHESES FOLLOWING THE RESERVED
WORD "CHARACTER". THE FIELD MAY BE A MAXIMUM OF 8191
CHARACTERS.

A FIXED DATA FIELD IS A 24-BIT SIGNED NUMERIC FIELD WHERE THE
HIGH ORDER BIT IS INTERPRETED AS THE SIGN. NEGATIVE NUMBERS ARE
REPRESENTED IN 2-S COMPLEMENT FORM.

THE RANGE OF SIGNED NUMBERS Cl.E., FIXED DATA FIELDS) IS -C2 EXP
23J TO C2 EXP 23l-l. THE RANGE OF UNSIGNED NUMBERS CBIT DATA
FIELDSl IS 0 TO C2 EXP 24l-l. BIT FIELDS, AS NOTED ABOVE, ARE
NOT RESTRICTED TO 24 BITS. HOWEVER, FOR ARITHMETIC PURPOSES,
ONLY THE LOW-ORDER 24 BITS WILL BE CONSIDERED.

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

DECLARE STATEMENT

<DECLARE STATEMENT> ::=

<DECLARE ELEMENT> ::=

6-1

DECLARE <DECLARE ELEMENT>
I <DECLARE STATEMENT>, <DECLARE ELEMENT>

<DECLARED PART>
<TYPE PART>

I <STRUCTURE LEVEL NUMBER>
<STRUCTURE DECLARED PART>
<STRUCTURE TYPE PART>

I DYNAMIC <SIMPLE IDENTIFIER>
<DYNAMIC TYPE PART>

I PAGED <ELEMENTS-PER-PAGE PART>
<ARRAY IDENTIFIER> <ARRAY BOUND>
<TYPE PART>

THE <DECLARE STATEMENT> SPECIFIES THE ADDRESSES AND
CHARACTERISTICS OF CONTENTS OF CORE STORAGE AREAS.

ANY NUMBER OF <DECLARE ELEMENT>S MAY BE DECLARED IN ONE <DECLARE
STATEMENT>, AND MUST BE SEPARATED BY COMMAS. BEST CODE IS
GENERATED IF ALL ELEMENTS ARE DECLARED WITHIN ONE <DECLARE
STATEMENT>. CSEE APPENDIX VIll.

THE MAXIMUM NUMBER OF DATA ELEMENTS <INCLUDING FILLERS, DUMMYS,
AND IMPLICIT FILLERSl CONTAINED IN ONE STRUCTURE VARIES AS TO
THE COMPILIER BEING USED, <CURRENTLY 50 - SMALL VERSION, 75 -
LARGE VERSION). ANY ATTEMPT TO DECLARE MORE WILL CAUSE A TABLE
OVERFLOW ERROR TO BE DETECTED AT COMPILE TIME.

AN ARRAY MAY HAVE A MAXIMUM OF 65535 ELEMENTS, EACH BEING A
MAXIMUM OF 65535 BITS <8191 CHARACTERS).

THE FIVE TYPES OF <DECLARE ELEMENT>S ARE EACH DISCUSSED BELOW.

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

NON-STRUCTURED DECLARATIONS

<DECLARE ELEMENT> ::=

<DECLARED PART> ::=

<COMPLEX IDENTIFIER
LIST>::=

<DECLARED PART>
<TYPE PART>/ ...

.<COMPLEX IDENTIFIER>
/ <<COMPLEX IDENTIFIER LIST>l
/ <COMPLEX IDENTIFIER> REMAPS

<REMAP IDENTIFIER>

<COMPLEX IDENTIFIER>
/ <COMPLEX IDENTIFIER>,

<COMPLEX IDENTIFIER LIST>

<COMPLEX IDENTIFIER> : := <SIMPLE IDENTIFIER>

6-2

/ <ARRAY IDENTIFIER> <ARRAY BOUND>

<SIMPLE IDENTIFIER> ::=

<ARRAY IDENTIFIER> ::=

<ARRAY BOUND> ::=

<REMAP IDENTIFIER> : :=

<TYPE PART> ::=

<FIELD SIZE> ::=

<IDENTIFIER>

<IDENTIFIER>

C <NUMBER> l

BASE
/ <SIMPLE IDENTIFIER>
/ <ARRAY IDENTIFIER>

FIXED
/ CHARACTER <FIELD SIZE>
/ BIT <FIELD SIZE>

(<NUMBER> l

DATA MAY BE DECLARED AS SIMPLE, HAVING ONE OCCURRENCE, OR AS
SUBSCRIPTED, HAVING AS MANY OCCURRENCES AS SPECIFIED BY THE
<ARRAY BOUND> .

THE <TYPE PART> SPECIFIES THE TYPE OF DATA IN THE FIELD AND THE
FIELD SIZE.

AS THE SYNTAX INDICATES, DIFFERENT DATA FIELDS HAVING THE SAME
FORMAT MAY BE DECLARED COLLECTIVELY AS A <COMPLEX IDENTIFIER
LI ST>.

6-3

THE FOLLOWING EXAMPLES ILLUSTRATE THE VARIOUS OPTIONS AVAILABLE
IN THIS TYPE OF <DECLARATION STATEMENT>.

DECLARE A FIXED,

WHERE

1 .

2.

3.

4.

5.

6.

7.

B CHARACTER (10>,
C BIT (40>,
CD, E, F (5)) BIT (10),
G (20> FIXED,
H (5) CHARACTER (6);

A IS A 24 BI~ SIGNED NUMERIC FIELD.

B IS A 10 BYTE CHARACTER FIELD.

c IS A 40 BIT FIELD.

D AND E ARE 10-BIT FIELDS EACH.

F IS ALSO A 10-B IT FIELD AND OCCURS 5 TIMES.

G OCCURS 20 TIMES AND IS A 24-BIT SIGNED
NUMERIC FIELD.

H IS A 6-BYTE CHARACTER FIELD OCCURRING 5
TIMES.

DATA FIELDS MAY BE RE-FORMATTED BY THE USE OF THE REMAPPING
DEVICE:

<COMPLEX IDENTIFIER> REMAPS <REMAP IDENTIFIER> <TYPE PART>

REMAPPING IS SUBJECT TO THE SAME GENERAL RULES DISCUSSED ABOVE.
THE FOLLOWING EXAMPLE BEST ILLUSTRATES ITS USE.

A FIXED, B BIT C50>,
AA REMAPS A CHARACTER (3),
BBC2> REMAPS B FIXED;

NOTE THAT BB SPECIFIES 48-BITS COR 2 ELEMENTS, 24-BITS EACHl.
THE LAST TWO BITS WILL BE CONSIDERED AS AN IMPLIED FILLER BY
THE COMPILER. A FIELD MAY NOT BE REMAPPED LARGER THAN ITS
ORIGINAL SIZE.

THERE IS NO LIMIT ON THE NUMBER OF TIMES A FIELD MAY BE
REMAPPED. A FIELD WHICH HAS REMAPPED ANOTHER MAY ITSELF BE
REMAPPED. THE REMAP OPTION SPECIFIES THAT THE IDENTIFIER ON THE
LEFT SIDE OF THE RESERVED WORD "REMAPS" WILL HAVE THE SAME
STARTING ADDRESS AS THE IDENTIFIER ON THE RIGHT SIDE.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

6-4

FOR RULES CONCERNING THE REMAPPING OF DYNAMIC OR FORMAL
DECLARATIONS, SEE THOSE SECTIONS.

A DATA FIELD MAY BE REMAPPED TO BASE WHICH WILL GIVE THE FIELD
A RELATIVE ADDRESS OF ZERO. FOR EXAMPLE:

DECLARE X REMAPS BASE BITl7J;

THIS DEVICE IS USED AS A FREE STANDING DECLARATION SINCE IT DOES
NOT REMAP A PREVIOUSLY DECLARED DATA ITEM AND IS USED PRIMARILY
WITH DATA TO BE INDEXED !SEE ''ADDRESS VARIABLES").

6-5

STRUCTURED DECLARATIONS

<DECLARE ELEMENT> ::=

<STRUCTURE LEVEL
NUMBER> : : =

<STRUCTURE DECLARED
PART> : : =

<DECLARED PART> : :=

<DUMMY PART> ::=

<ARRAY BOUND PART> : :=

<ARRAY BOUND> : :=

<REMAP IDENTIFIER> ··=

... !<STRUCTURE LEVEL NUMBER>
<STRUCTURE DECLARED PART>
<STRUCTURE TYPE PART>/ ...

<NUMBER>

<DECLARED PART>
I FILLER
I <DUMMY PART> REMAPS <REMAP IDENTIFIER>

SEE "NON-STRUCTURED DECLARATIONS"

DUMMY <ARRAY BOUND PART>

<EMPTY>
I <ARRAY BOUND>

C <NUMBER>)

BASE
I <SIMPLE IDENTIFIER>
I <ARRAY IDENTIFIER>

<STRUCTURE TYPE PART> ::= <EMPTY>
I <TYPE PART>

<TYPE PART> : : = SEE "NON-STRUCTURED DECLARATIONS"

SOL ALLOWS THE STRUCTURING OF DATA WHERE A FIELD MAY BE
SUBDIVIDED INTO A NUMBER OF SUB-FIELDS, EACH OF WHICH HAS ITS
OWN IDENTIFIER. THE WHOLE STRUCTURE IS ORGANIZED IN A
HIERARCHICAL FORM, WHERE THE MOST GENERAL DECLARATION IS A
LEVEL 01 CORI>. NO DECLARATION MAY BE ON A LEVEL GREATER THAN
99. A SUBDIVIDED FIELD IS CALLED A GROUP ITEM, ANO A FIELD NOT
SUBDIVIDED IS KNOWN AS AN ELEMENTARY ITEM.

THE TYPE AND LENGTH OF DATA NEED NOT BE SPECIFIED ON THE GROUP
LEVEL. ALL ELEMENTARY ITEMS MUST INDICATE TYPE AND LENGTH, AND
THE COMPILER WILL ASSUME TYPE BIT AND ADD THE LENGTHS OF THE
COMPONENTS TO DETERMINE THE LENGTH OF THE GROUP ITEM. FOR
EXAMPLE:

@) 1973, 1974 Burroughs - DO NOT REP80DUCE

DECLARE 01 A,
02 C,

03 D BITC20>,
03 E BITC30>,

02 D CHARACTERC5>;

6-6

IN THIS EXAMPLE, BOTH A AND C ARE CONSIDERED GROUP ITEMS, WITH
A HAVING A TOTAL LENGTH OF 90 BITS AND C BEING 50 BITS LONG.

FILLERS MAY BE USED TO DESIGNATE CERTAIN ELEMENTARY ITEMS WHICH
THE PROGRAM DOES NOT REFERENCE. IF THE FILLER IS THE LAST ITEM
IN A STRUCTURE-, IT MAY BE OMITTED, AND THE COMPILER WILL
CONSIDER THE ITEM TO BE AN IMPLIED FILLER. A FILLER MAY NEVER
BE USED AS A GROUP ITEM.

IF THE 01 LEVEL GROUP ITEM IS AN ARRAY, IT IS MAPPED AS A
CONTIGUOUS AREA IN MEMORY. HOWEVER, SUBDIVISIONS OF THIS ARRAY
ARE NOT CONTIGUOUS. IN THE EXAMPLE STRUCTURE BELOW:

0 1 A (5 > BIT C 48 > ,
02 B FIXED, OR
02 C FIXED;

01 AC5>,
02 B FIXED,
02 C FIXED;

--' I I I I I
I AO 1 A 1 I A2 1 A3 I A4 I
I BO I co I B 1 I c 1 I B2 I C2 I B3 C3 I B4 I C4 I L __ J ___ J ___ J ___ J ___ J ___ J _______ J ___ J ___ J

2~lBI1Ts

IF A GROUP ITEM IS AN ARRAY, AN ARRAY SPECIFICATION MAY NOT
APPEAR IN ANY SUBORDINATE ITEM; THAT IS, ONLY ONE-DIMENSIONAL
ARRAYS ARE ALLOWED. DOWN-LEVEL CARRY OF ARRAY SPECl~ICATIONS IS
IMPLIED.

STRUCTURED DATA MAY BE REMAPPED IN THE SAME MANNER AS
NON-STRUCTURED DATA. IN ADDITION, STRVCTURED DATA MAY BE
REMAPPED WITH A DUMMY GROUP IDENTIFIER. THE PURPOSE OF THIS
CONSTRUCT IS TO ALLOW THE USER TO REMAP DATA ITEMS WITHOUT
HAVING TO DECLARE ANOTHER GROUP ITEM WHICH DESCRIBES THE SAME
AREA JN CORE. THUS IN THE FOLLOWING EXAMPLE:

01 A BIT(lOO>,
02 B BIT(20>,
02 C BIT (80) ;

"A" MIGHT BE REMAPPED AS

6-7

01 AA REMAPS A BIT(100) I

02 BB BIT (30) ,
01 DUMMY REMAPS A BIT(lOO>,

02 cc BIT(70);
OR 02 BB BIT(30>,

02 cc BIT(70);

BOTH A AND AA IN THE ABOVE EXAMPLE REFER TO THE SAME AREA IN
CORE. HENCE AA IS REDUNDANT. DURING RUNTIME, THE DESCRIPTOR FOR
AA WILL ALSO BE ON THE STACK.

IF "DUMMY" IS SUBSTITUTED FOR THE IDENTIFIER AA, NO DESCRIPTOR
WILL BE GENERATED, HOWEVER BB AND CC WILL BOTH POINT TO A IN
THE CORRECT FASHION.

THE USER SHOULD NOTE THE DISTINCTION BETWEEN "DUMMY" AND
"FILLER". "DUMMY" IS USED IN CONJUNCTION WITH "REMAPS" TO
ELIMINATE THE NECESSITY OF DECLARING A REDUNDANT GROUP ITEM.
"FILLER'' IS USED IF ONE DESIRES TO SKIP OVER AN AREA OF CORE.

THE FOLLOWING RESTRICTIONS APPLY TO THE USE OF "DUMMY REMAPS'':

1. "DUMMY" MAY ONLY BE USED WITH REMAP
DECLARATIONS.

2. ALL THE RESTRICTIONS APPLYING TO "REMAPS"
APPLY TO "DUMMY REMAPS".

3. II DUMMY II MUST NOT REMAP ANOTHER II DUMMY" .

4. "DUMMY" GROUP ITEMS MUST HAVE AT LEAST ONE
NON-FILLER COMPONENT.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

6-8

DYNAMIC DECLARATIONS

<DECLARE ELEMENT> ::= ... /DYNAMIC <SIMPLE IDENTIFIER>
<DYNAMIC TYPE PART>! ...

<DYNAMIC TYPE PART> ::= BIT <DYNAMIC FIELD SIZE>
I CHARACTER <DYNAMIC FIELD SIZE>

<DYNAMIC FIELD SIZE> ::=· (<EXPRESSION>l

THE DYNAMIC DECLARE STATEMENT ALLOWS THE USER TO DECLARE SIMPLE
DATA WITH A NON-STATIC FIELD LENGTH. FOR EXAMPLE:

PROCEDURE ABX;
DECLARE DYNAMIC X BIT(AJ;

WHERE "A" MAY BE OF
<EXPRESSION> APPEARING
DETERMINE THE NUMBER OF
ITEM.

RESTRICTIONS:

VARIABLE LENGTH. THE VALUE OF THE
IN THE <DYNAMIC FIELD SIZE> JS USED TO
BITS OR CHARACTERS IN THE DECLARED DATA

1. THE VARIABLES USED IN THE <DYNAMIC FIELD SIZE>
MUST HAVE BEEN PREVIOUSLY INITIALIZED.

2. DYNAMICS MAY NOT APPEAR ON LEXIC LEVEL O.

DYNAMIC VARIABLES MAY BE REMAPPED, HOWEVER A WARNING MESSAGE
WILL APPEAR IN THE SOURCE LISTING. IT IS THE PROGRAMMER-S
RESPONSIBILITY TO ENSURE THAT A DYNAMIC IS NOT REMAPPED LARGER
THAN ALLOWED.

6-9

PAGED ARRAY DECLARATIONS

<DECLARE ELEMENT> ::= ... !PAGED <ELEMENTS-PER-PAGE PART>
<ARRAY IDENTIFIER> <ARRAY BOUND>
<TYPE PART>

<ELEMENTS-PER-PAGE
PART> : :=

<ARRAY IDENTIFIER> ::=

<ARRAY BOUND> ::=

<TYPE PART> ::=

<FIELD SIZE> ::=

I
I

C <NUMBER> l

< IDE NT IF I ER>

C <NUMBER> l

FIXED
CHARACTER <FIELD SIZE>
BIT <FIELD SIZE>

C <NUMBER> l

THE PAGED ARRAY DECLARATION ALLOWS THE USER TO SEGMENT ARRAYS.
THE <ELE~ENTS-PER-PAGE PART> 'SPECIFIES THE NUMBER OF ARRAY
ELEMENTS CONTAINED IN EACH SEGMENT. FOR EXAMPLE:

PAGEDC64l AC4096l BITCll;

IS AN ARRAY OF 4096, 1-BIT ELEMENTS, SEGMENTED INTO 64,
64-ELEMENT SEGMENTS.

RESTRICTIONS:

1. PAGED ARRAYS MAY NOT BE INDEXED.

2. PAGED ARRAYS MAY NOT BE PART OF A STRUCTURE.

3. PAGED ARRAYS MAY NOT BE REMAPPED.

4. THE NUMBER OF ELEMENTS PER PAGE MUST BE A
POWER OF 2, AND MAY NOT EXCEED 65535.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

FILE DECLARATIONS

<FILE DECLARATION
STATEMENT> ::=

<FILE DECLARE
ELEMENT LIST> ::=

<FILE DECLARE ELEMENT> ::=

<FILE IDENTIFIER> : :=

6-10

FILE <FILE DECLARE ELEMENT LIST>

<FILE DECLARE ELEMENT>
I <FILE DECLARE ELEMENT>.

<FILE DECLARE ELEMENT LIST>

<FILE IDENTIFIER><FILE ATTRIBUTE PART>

<IDENTIFIER>

<FILE ATTRIBUTE PART> ::= <EMPTY>
I C<FILE ATTRIBUTE LIST>l

<FILE ATTRIBUTE LIST> ::= <FILE ATTRIBUTE>

<FILE ATTRIBUTE> ::=

I <FILE ATTRIBUTE>,
<FILE ATTRIBUTE LIST>

<LABEL PART>
I <DEVICE PART>
I .<MODE PART>
I <BUFFERS PART>
I '<VARIABLE RECORD PART>
I <LOCK PART>
I <SAVE FACTOR PART>
I <RECORD SPECIFICATION PART>
I <REEL NUMBER PART>
I <DISK FILE DESCRIPTION PART>
I <PACK-ID PART>
I <OPEN OPTION PART>
I <ALL.AREAS.AT.OPEN PART>
I <AREA.BY.CYLINDER PART>
I <EU.ASSIGNMENT PART>
I <MULTI.PACK PART>
I <USE. INPUT.BLOCKING PART>
I <SORTER STATION PART>
I <END.OF.PAGE PART>
I <REMOTE.KEY PART>
I <NUMBER.OF.STATIONS PART>
I <QUEUE.FAMILY.SIZE PART>
I <FILE TYPE PART>
I <WORK FILE PART>
I <LABEL TYPE PART>

ALL ATTRIBUTES A~: OPTIONAL, AS THE ABOVE SYNTAX INDICATES. DEFAULT
STATUS WILL AUTOM~TICALLY BE SET FOR OMITTED ATTRIBUTES AS FOLLOWS.

SYNTAX:

FORMAT:

DEFAULT:

<LABEL PART> ::=

<FILE IDENTIFICATION
PART> : :=

<MULTI-FILE
IDENTIFICATION> : :=

<FILE IDENTIFICATION> ::=

WHERE:

<FILE IDENTIFIER> IS

<MULTI-FILE IDENTIFICATION>
AND
<FILE IDENTIFICATION> ARE

LABEL= "NAME.1" I "NAME.2"
OR
LABEL = "NAME. 1"

EXAMPLE:

DECLARE INV.DATA.1 FILE

6-11

LABEL =
<FILE IDENTIFICATION PART>

<MULTI-FILE IDENTIFICATION>
I <MULTI-FILE IDENTIFICATION>

<SLASH>
<FTLE IDENTIFICATION>

~CHARACTER STRING>

<CHARACJER STRING>

A FILE OR PROGRAM IDENTIFIER
BY WHICH THE PROGRAM IDENTIFIES
THE FILE

NAME OR CONTENTS OF
IDENTIFICATION FIELD ON FILE
LABEL OR DISK DIRECTORY BY
WHICH THE SYSTEM IDENTIFIES
THE FILE

(LABEL = "RCD. TAPE II I II FI LE . 1 II) i

NOTE: THE SYSTEM WILL USE ONLY THE FIRST TEN
CHARACTERS OF THE "NAME".

IF LABEL<Sl IS <ARE> NOT SPECIFIED, THE INTERNAL FILE
NAME, I.E., <FILE IDENTIFIER>, IS MOVED TO <MULTI-FILE
IDENTIFICATION>, AND BLANKS ARE MOVED TO <FILE
IDENTIFICATION> IN THE FPB (FILE PARAMETER BLOCK>.

@ 1973, 1974 Bu r,roughs - DO NOT REPRODUCE

SYNTAX:

FORMAT:

<DEVICE PART> ::=

<DEVICE SPECIFIER> ::=

<ACCESS MODE> ::=

<DEVICE OPTION> ::=

<BACKUP OPTION> : :=

<BACKUP SPECIFIER> ::=

<SPECIAL FORMS OPTION> ::=

DEVICE = CARD
CARD.READER

6-12

DEVICE = <DEVICE SPECIFIER>

CARD I TAPE
I MULTI.FUNCTION.CARD
I TAPE.7
I TAPE.9
I TAPE.PE
I TAPE.NRZ
I DISK <ACCESS MODE>
I DISK.PACK <ACCESS MODE>
I DISK.FILE <ACCESS MODE>
I DISK.PACK.CENTURY <ACCESS MODE)
I DISK.PACK.CAELUS <ACCESS MODE>
I CARD.READER
I CARD.PUNCH <DEVICE OPTION>
I MFCU
I PRINTER·<DEVICE OPTION>
I PUNCH <DEVICE OPTION>
I PAPER.TAPE.PUNCH

<DEVICE OPTION>
I PUNCH.96 <DEVICE OPTION>
I READER.PUNCH <DEVICE OPTION>
I READER.PUNCH.PRINTER

<DEV I CE OPTION>
I PUNCH.PRiNTER <DEVICE OPTION>
I READER.96
I PAPER.TAPE.READER
I SORTER.READER
I READER.SORTER
I SPO
I CASSETTE
I REMOTE
I QUEUE

<EMPTY> I SERIAL I RANDOM

<EMPTY>
I <BACKUP OPTION>
I <SPECIAL FORMS OPTION>
I <SPECIAL FORMS OPTION>

.<BACKUP OPT ION>

<BACKUP SPECIFIER)
I OR <BACKUP SPECIFIER>

BACKUP I BACKUP TAPE
I BACKUP DISK.

FORMS

6-13

TAPE
MULTl.FUNCTION;CARD
TAPE.7
TAPE.9
TAPE.PE
TAPE.NRZ

** DISK
** DISK.PACK
** DISK.FILE
** DISK.PACK.CENTURY
** DISK.PACK.CAELUS
* CARD.PUNCH %MARKED HARDWARE ONLY
* PRINTER %MARKED HARDWARE ONLY
* PRINTER FORMS %MARKED HARDWARE ONLY
* PUNCH %MARKED HARDWARE ONLY
* PUNCH FORMS %MARKED HARDWARE ONLY
* PAPER.TAPE.PUNCH %MARKED HARDWARE ONLY
* PAPER.TAPE.PUNCH FORMS %MARKED HARDWARE ONLY
* PUNCH.96 %MARKED HARDWARE ONLY
* PUNCH.96 FORMS %MARKED HARDWARE ONLY
* READER.PUNCH %MARKED HARDWARE ONLY
* READER.PUNCH FORMS %MARKED HARDWARE ONLY
* READER.PUNCH.PRINTER %MARKED HARDWARE ONLY
* READER.PUNCH.PRINTER FORMS %MARKED HARDWARE ONLY
* PUNCH.PRINTER %MARKED HARDWARE ONLY
* PUNCH.PRINTER FORMS %MARKED HARDWARE ONLY

READER.96
PAPER.TAPE.READER
SPO
MFCU
SORTER.READER
READER.SORTER
CASSETTE
REMOTE
QUEUE

* MAY OR MAY NOT BE FOLLOWED BY ANY SINGLE OPTION BELOW:

BACKUP
BACKUP TAPE
BACKUP DISK
OR BACKUP
OR BACKUP TAPE
OR BACKUP DISK

** MAY OR MAY NOT BE FOLLOWED BY ANY SINGLE OPTION BELOW:

SERIAL
RANDOM

EXAMPLES: DEVICE = TAPE
DEVICE = PRINTER BACKUP
DEVICE = PRINTER FORMS BACKUP TAPE

@ 1973, 1974 Burroughs - PO NOT REPROD.UCE

DEFAULT:

SYNTAX:

FORMAT:

DEFAULT:

SYNTAX:

FORMAT:

DEFAULT:

SYNTAX:

FORMAT:

DEFAULT:

6-14

IN THE ABSENCE OF ANY SPECIFICATION, TAPE WILL BE
ASSUMED BY THE FPB.

(MODE PART> : := MODE = <MODE SPECIFIER>

<MODE SPECIFIER> : := <FI LE PARITY PART>
I <TRANSLATION PART>
I <FILE PARITY PART>

<TRANSLATION PART>

<FILE PARITY PART> : := ODD I EVEN

<TRANSLATION PART>::= EBCDIC I ASCII I BCL I BINARY

MODE = BCL OR
OR MODE = ASCII
MODE = EVEN OR
OR MODE = EVEN ASCII
MODE = EVEN BCL
OR

DEFAULT IS ODD OR EBCDIC, WHICHEVER IS APPLICABLE.

<BUFFERS PART> : := BUFFERS =
<NUMBER OF BUFFERS>

<NUMBER OF BUFFERS> : := <NUMBER>

BUFFERS = NUMBER

IF NOT SPECIFIED, BUFFERS WILL BE SE·T TO 1 IN THE FPB.

<VARIABLE RECORD PART> ::= VARIABLE

VARIABLE

NOT VARIABLE, I.E., FIXED-SIZE RECORDS.

SYNTAX:

FORMAT:

DEFAULT:

SYNTAX:

FORMAT:

DEFAULT:

SYNTAX:

FORMAT:

6-15

<LOCK PART> ::= LOCK

LOCK

LOCK IS NOT SET.

<SAVE FACTOR PART> : := SAVE = <SAVE FACTOR>

<SAVE FACTOR> ::= <NUMBER>

SAVE = NUMBER COF DAYS TO SAVE FILE>

IF NOT SPECIFIED, THE SAVE SPECIFIER WILL BE SET TO 30
IN THE FPB.

<RECORD SPECIFICATION
PART> : := RECORDS = <RECORD SIZE

SPECIFIER>

<RECORD SIZE SPECIFIER> ::= <PHYSICAL RECORD SIZE>

<PHYSICAL RECORD SIZE> ::=

<LOGICAL RECORD SIZE> : :=

<LOGICAL RECORDS PER
PHYSICAL RECORD> ::=

RECORDS = NUMBER
OR
RECORDS = NUMBER I NUMBER

I <LOGICAL RECORD SIZE>
<SLASH>
<LOGICAL RECORDS PER
PHYSICAL RECORD>

<NUMBER>

<NUMBER>

<NUMBER>

NOTE: <PHYSICAL RECORD SIZE> INDICATES THE NUMBER OF
CHARACTERS PER BLOCK; <LOGICAL RECORD SIZE>, THE
NUMBER OF CHARACTERS PER RECORD.

EXAMPLE:
RECORDS = 1200
OR
RECORDS = 120 I 10

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

DEFAULT:

SYNTAX:

FORMAT:

DEFAULT:

SYNTAX:

FORMAT:

DEFAULT:

6-16

IN THE ABSENCE OF RECORD SPECIFICATIONS, UNBLOCKED
RECORDS OF THE FOLLOWING LENGTHS WILL BE ASSUMED.

ANY CARD OR PUNCH CONFIGURATION
ANY PRINTER CONFIGURATION

80 BYTES
132 BYTES
180 BYTES
72 BYTES
80 BYTES

DISK
SPO
ALL OTHERS

<REEL NUMBER PART> ::= REEL = <REEL NUMBER>

<REEL NUMBER> : := <NUMBER>

REEL = NUMBER OF REEL

THE FPB ASSUMES #l IN THE ABSENCE OF ANY SPECIFICATION.

<DISK FILE DESCRIPTION
PART> : : =

<NUMBER OF AREAS> ::=

<PHYSICAL RECORDS
PER AREA> ::=

AREAS = <NUMBER OF AREAS>
<SLASH>
<PHYSICAL RECORDS PER AREA>

<NUMBER>

<NUMBER>

AREAS = # OF AREAS I #OF BLOCKS PER AREA

EXAMPLE: AREAS = 20 I 80

NOTE: <PHYSICAL RECORDS PER AREA> INDICATES THE NUMBER
OF BLOCKS PER AREA. THIS ATTRIBUTE IS APPLICABLE
FOR DISK FILES ONLY.

IF AREAS ARE NOT SPECIFIED, THE FPB WILL ASSUME 25 AREAS
WITH 100 BLOCKS PER AREA. IF THE RECORD SPECIFICATIONS
HAVE BEEN GIVEN, THE COMPILER WILL COMPUTE THE NUMBER OF
RECORDS PER AREA. HOWEVER, IF RECORD SPECIFICATIONS ARE
OMITTED, THE FPB WILL ASSUME 100 RECORDS PER AREA. IN
EITHER CASE THEN, WHETHER AREAS ARE SPECIFIED OR NOT,
THE COMPILER WILL HAVE COMPUTED THE NUMBER OF RECORDS
FOR INSERTION IN THE FPB.

SYNTAX:

FORMAT:

DEFAULT:

SYNTAX:

FORMAT:

<PACK.ID PART> ::=

<PACK
IDENTIFICATION> ::=

PACK.ID= "NAME"

6-17

PACK. ID =
<PACK IDENTIFICATION>

<CHARACTER STRING>

EXAMPLE: PACK.ID= "TRANS.BAL"

NOTE: THE SYSTEM WILL USE ONLY THE FIRST TEN CHARACTERS
OF THE "NAME II.

IF ABSENT, <PACK IDENTIFICATION> WILL BE SET TO BLANKS
IN THE FPS.

<OPEN OPTION>::=

<OPEN OPTION
ATTRIBUTE LIST>::=

<OPEN ATTRIBUTE> ::=
'

OPEN.OPTION=
<OPEN OPTION ATTRIBUTE LIST>

<OPEN ATTRIBUTE>
I <OPEN ATTRIBUTE> <SLASH>

<OPEN OPTION ATTRIBUTE LIST>

SEE "OPEN STATEMENT"

OPEN.OPTION= ATTRIBUTE I ATTRIBUTE ...

EXAMPLE: OPEN.OPTION = OUTPUT/NEW

NOTE: WHILE THE ATTRIBUTES ARE THE SAME, THE <OPEN
ATTRIBUTE>S IN THE <OPEN STATEMENT> ARE
SEPARATED BY COMMAS, AND THE <OPEN ATTRIBUTE>S
IN THE <OPEN OPTION> ABOVE ARE SEPARATED BY
SLASHES.

DEFAULT: IF ABSENT, THE <OPEN ATTRIBUTE>S WILL BE SET AS FOLLOWS:

IF <DEVICE> IS

CARD
PRINTER
PUNCH
DISK

<OPEN OPTION> IS

INPUT
OUTPUT
OUTPUT
INPUT

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

6-18

SYNTAX: <ALL.AREAS.AT.OPEN PART> ::= ALL.AREAS.AT.OPEN

FUNCTION: IF. THIS OPTION IS SET, DISK SPACE FOR EACH AREA WILL BE
ALLOCATED WHEN THE FILE IS OPENED. IF INSUFFICIENT SPACE
IS AVAILABLE, A SPO MESSAGE WILL INDICATE THAT THERE IS
NO USER DISK.

DEFAULT: AREAS ARE CREATED AS NEEDED.

SYNTAX: <AREA.BY.CYLINDER PART> : := AREA.BY.CYLINDER

FUNCTION: IF THIS OPTION IS SPECIFIED, EACH AREA WILL BE PLACED AT
THE BEGINNING OF A CYLINDER. IF THERE IS NO CMOREl SPACE
AT THE BEGINNING OF ANY CYLINDER, A SPO MESSAGE WILL
INDICATE THAT THERE IS NO USER DISK.

DEFAULT: AREAS ARE PLACED ANYWHERE ON DISK.

SYNTAX: <EU ASSIGNMENT PART> ::= EU.SPECIAL = <NUMBER>
I EU.INCREMENTED= <NUMBER>

FUNCTION: THE <NUMBER> SPECIFIES ANY INTEGER 0 THROUGH 15.
"EU.SPECIAL" IS APPLICABLE ONLY WITH HEAD PER TRACK
DISKS AND SYSTEMS DISK PACKS, AND SPECIFIES THE DRIVE ON
WHICH THE FILE IS TO GO. "EU.INCREMENTED" SPECIFIES THE
DISK DRIVE ON WHICH THE FIRST AREA OF A FILE IS TO GO.
EACH SUBSEQUENT AREA IS PLACED ON THE NEXT DRIVE. IF,
WITH EITHER OPTION, THE NECESSARY E.U. IS NOT AVAILABLE,
E.U. 0 WILL BE TAKEN.

DEFAULT: SPACE FOR FILES AND AREAS IS ALLOCATED ANYWHERE ON DISK.

SYNTAX: <MULTI PACK PART>::= MULTI .PACK

FUNCTION: IF THIS OPTION IS SPECIFIED, THE ENTIRE FILE MAY BE PUT
ONTO SEVERAL DISK PACKS.

DEFAULT: THE FILE WILL BE PLACED ON ONE DISK PACK.

SYNTAX: <USE.INPUT.BLOCKING
PART> : : =

6-19

USE.INPUT.BLOCKING

FUNCTION: THIS OPTION IS ONLY APPLICABLE WITH INPUT DISK FILES. IF
SPECIFIED, THE RECORD AND BLOCK SIZE SPECIFICATIONS WILL
BE TAKEN FROM THE . DI SK FI LE HEADER AND THE USER-S
SPECIFICATIONS WILL BE IGNORED.

DEFAULT: THE FILE ATTRIBUTES ARE AS STATED IN THE FILE
DECLARATION. THOSE OPTIONS OMITTED ARE SET TO THEIR
DEFAULT STATUSES.

SYNTAX: <SORTER STATION PART> ::= SR.STATION = <NUMBER>

FUNCTION: THE NUMBER INDICATES WHICH READ STATIONCS> !SCARE> TO BE
USED ON A SORTER-READER FILE. THE POSSIBLE STATIONS ARE
THE MAGNETIC INK CHARACTER READER AND THE OPTICAL
CHARACTER READER. THE READ STATIONS ARE INTERCHANGEABLE,
THUS THE SYSTEM DOCUMENTATION SHOULD BE CONSULTED FOR
SPECIFIC HARDWARE CONFIGURATIONS. THE VALUES ALLOWED ARE
AS FOLLOWS:

DEFAULT:

SYNTAX:

1= FIRST STATION
2= SECOND STATION
3= BOTH STATIONS

SR.STATION = 0

<END.OF.PAGE PART> : := END.OF.PAGE.ACTION

FUNCTION: THIS ATTRIBUTE WILL CAUSE THE <EOF PART> OF A <WRITE
STATEMENT> TO BE EXECUTED AT THE END OF A PAGE ON A
PRINTER FILE. REFER TO "WRITE STATEMENT" FOR DETAILS.

DEFAULT: NO AUTOMATIC PAGING ACTION

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

6-20

SYNTAX: <REMOTE.KEY PART>::= REMOTE.KEY

FUNCTION: THIS ATTRIBUTE IS USED ONLY WITH FILES OF TYPE "REMOTE".
WHEN PRESENT, IT INDICATES THAT A KEY MAY BE PRESENT ON
A REA0 OR WRITE TO THAT FILE. IF MISSING, THEN NO KEY
CAN BE UStD. THE FORMAT OF THE KEY IS GIVEN BELOW. EACH
FIELD OF THE KEY IS IN DECIMAL CHARACTERS. THE KEY IS A
TOTAL OF 10 CHARACTERS FORMATTED AS FOLLOWS:

ST A TI ON NUMBER
MESSAGE LENGTH CBYTE COUNT>
MESSAGE TYPE CMUST BE "000">

3 CHARACTERS
Lt CHARACTERS
3 CHARACTERS

DEFAULT: NO REMOTE KEY

SYNTAX: <NUMBER.OF.STATIONS PART>:= NUMBER.OF.STATIONS= <NUMBER>

FUNCTION: THIS ATTRIBUTE IS USED ONLY WITH FILES OF TYPE "REMOTE".
WHEN PRESENT, IT SPECIFIES THE MAXIMUM NUMBER OF
STATIONS THAT CAN BE ATTACHED TO THIS FILE.

DEFAULT: NUMBER.OF.STATIONS=!

SYNTAX: <QUEUE.FAMILY.SIZE PART>::= QUEUE.FAMILY.SIZE=<NUMBER>

FUNCTION: THIS ATTRIBUTE IS USED ONLY WITH FILES OF TYPE "QUEUE".
IT SPECIFIES THE NUMBER OF MEMBERS JN A QUEUE FAMILY.

DEFAULT: QUEUE.FAMILY.SJZE=l

SYNTAX: <FILE TYPE PART>::=

<FILE TYPE SPECIFIER>::=

FILE.TYPE=<FILE TYPE SPECIFIER>

DATA/INTERPRETER/CODE/INTRINSIC

FUNCTION: THIS ATTRIBUTE ALLOWS SOL PROGRAMS TO SPECIFY THE TYPE
OF THE FILES THEY ARE CREATING. IN PARTICULAR, THE
COMPILERS WILL USE THE TYPE "CODE" FOR THEIR CODEFILES.

DEFAULT: FILE TYPE PART=DATA

6-21

SYNTAX: <WORK FILE PART>::= WORK.FILE

FUNCTION: THIS ATTRIBUTE CAUSES THE JOB NUMBER TO BE INCLUDED AS
PART OF THE FILE IDENTIFIER.

DEFAULT: NOT A WORK FILE

SYNTAX: <LABEL TYPE PART>::= LABEL.TYPE=<LABEL TYPE SPECIFIER>
<LABEL TYPE SPECIFIER>::= UNLABELED

FUNCTION: THIS ATTRIBUTE ALLOWS THE LABEL TYPE TO BE SPECIFIED.
CURRENTLY, "UNLABELED'' IS THE ONLY TYPE.

DEFAULT: BURROUGHS STANDARD LABEL

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

SWITCH FILE DECLARATIONS

<SWITCH FILE
DECLARATION STATEMENT>::= SWITCH.FILE <SWITCH FILE

DECLARE ELEMENT LIST>

<SWITCH FILE
DECLARE ELEMENT LIST>::= <SWITCH FILE DECLARE ELEMENT>

6-22

I <SWITCH FILE DECLARE ELEMENT>,
<SWITCH FILE DECLARE ELEMENT LIST>

<SWITCH FILE
DECLARE ELEMENT> ::= <SWITCH FILE IDENTIFIER> C<FILE

IDENTIFIER LIST>l

<SWITCH FILE IDENTIFIER>::= <IDENTIFIER>

<FILE IDENTIFIER LIST>::= <FILE IDENTIFIER>
I <FILE IDENTIFIER>, <FILE IENTIFIER LIST>

A SWITCH FILE DECLARATION SPECIFIES THE ELEMENTS OF A "CASE",
THESE ELEMENTS BEING FILES. A SUBSCRIPTED <SWITCH FILE
IDENTIFIER> MAY BE USED ANYWHERE THAT A <FILE IDENTIFIER> MAY
BE USED. IF THERE ARE N FILES IN THE <FILE IDENTIFIER LIST>,
THEN THE SUBSCRIPT MUST RANGE FROM 0 TO N~t. THE VALUE OF THE
SUBSCRIPT SELECTS ONE OF THEN FILES IN THE LIST, DEPENDING
UPON ORDINAL POSITION CTHE FILES IN THE <FILE IDENTIFIER LIST>
ARE NUMBERED FROM LEFT TO RIGHT, BEGINING WITH O>. IF ALL FILES
IN THE <FILE IDENTIFIER LIST> ARE OF TYPE "REMOTE", THEN THE
SWITCH FILE IDENTIFIER IS OF TYPE "REMOTE".

THE FOLLOWING EXAMPLE COPIES CARD IMAGES FROM CARDS, TAPE, OR
DISK TO CARDS, PRINTER, TAPE, OR DISK:

FILE

FILE

CARDSCDEVICE=CARDl
,TAPEICDEVICE=TAPE,USE.INPUT.BLOCKING>
,DISKICDEVICE=DISK,USE.INPUT.BLOCKINGl

PUNCHCDEVICE=PUNCHl
,LINECDEVICE=PRINTER>
,TAPEOCDEVICE=TAPE,RECORDS=S0/4)
,DISKOCDEVICE=DISK,RECORDS=80/9l
•

SWITCH.FILE
INPUTCCARDS,TAPEI,OISKll

,OUTPUTCPUNCH,LINE,TAPEO,DISKOl

•
DECLARE

INPUT.TYPE BITC24)
,OUTPUT.TYPE BITC24)
,BUFFER CHARACTER<BO>
•

DISPLAY "***** INPUT TYPE";
ACCEPT INPUT.TYPE;
INPUT.TYPE-+-BINARY(SUBSTR(INPUT.TYPE,O,l)) MOD 3;
DISPLAY "*****OUTPUT TYPE";
ACCEPT OUTPUT.TYPE;
OUTPUT. TYPE,+-BINARY(SUBSTR(OUTPUT.TYPE,O, 1)) MOD 4;
OPEN INPUTCINPUT.TYPE> INPUT;
OPEN OUTPUTCOUTPUT.TYPE> OUTPUT/NEW;
DO FOREVER;

READ INPUTCINPUT.TYPE> <BUFFER>;
ON EOF UNDO;

WRITE OUTPUTCOUTPUT.TYPE> <BUFFER>;
END;
CLOSE OUTPUTCOUTPUT.TYPE> WITH LOCK;
STOP;
FINI

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

6-23

7-1

DEFINE STATEMENT

<DECLARATION STATEMENT> ::= ... !<DEFINE STATEMENT>;! ...

<DEFINE STATEMENT>::=

<DEFINE ELEMENT> ::=

<DEFINE IDENTIFIER> ::=

<FORMAL PARAMETER PART> : :=

<FORMAL PARAMETER LIST> : :=

<FORMAL PARAMETER> : :=

<DEFINE STRING> : :=

DEFINE <DEFINE ELEMENT>
I <DEFINE STATEMENT>,

<DEFINE ELEMENT>

<DEFINE IDENTIFIER>
, <FORMAL PARAMETER PART>

AS <DEFINE STRING>

< IDE NT IF I ER>

C<FORMAL PARAMETER LIST»
I C<FORMAL PARAMETER LIST> l
I <EMPTY>

<FORMAL PARAMETER>
I <FORMAL PARAMETER>,

<FORMAL PARAMETER LI ST>

<IDENTIFIER>

#(WELL-FORMED CONSTRUCT>#

<WELL~FORMED CONSTRUCT> ::= <EMPTY>

<BASIC COMPONENT> : :=

I <BASIC COMPONENT>
<WELL-FORMED CONSTRUCT>

<RESERVED WORD>
I < IDENT IF I ER>
I <SPECIAL CHARACTER>
I <COMMENT STRING>
I <CONSTANT>

%SEE APPENDIX

THE <DEFINF. STATEMENT> ASSIGNS THE TEXT ENCLOSED BETWEEN THE 11 # 11

SIGNS FOLLOWING THE RESERVED WORD "AS" TO THE <DEFINE
IDENTIFIER>. INVOCATION OF THE <DEFINE IDENTIFIER> CAUSES THE
TEXT TO REPLACE THE IDENTIFIER, THEREBY PROVIDING A FORM OF
SHORTHAND CODE.

AT DECLARATION TIME, THE COMPILER IS UNCONCERNED WITH THE
CONTENTS OF THE <DEFINE STRING>. HOWEVER, WHEN THE <DEFINE
IDENTIFIER> IS INVOKED, THE <WELL-FORMED CONSTRUCT> MUST
CONFORM TO THE SYNTACTICAL REQUIREMENTS OF THE STATEMENT
CONTAINING THE IDENTIFIER.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

7.,..2

THERE ARE TWO TYPES OF <DEFINE STATEMENT>S: SIMPLE AND
PARAMETRIC, WHERE THE PARAMETERS ARE ENCLOSED IN PARENTHESES
FOLLOWING THE <DEFINE IDENTIFIER>. BELOW ARE EXAMPLES OF BOTH
TYPES:

DEFINE A AS #IF X>lO THEN PROCX#,
CH AS #CHARACTER#,
BCY,Zl AS #IF Y<Z THEN Y:=Z #,
CCMl AS # X:=M; A #;

NOTICE THAT <DEFINE STATEMENT>S MAY BE FACTORED, WITH COMMAS
SEPARATING EACH ELEMENT.

THE <DEFINE IDENTIFIER> HAS SCOPE IN THE SAME MANNER AS ANY
OTHER.IDENTIFIER <EXCEPT FOR SEGMENT AND DO-GROUP IDENTIFIERS>.

RESTRICTIONS ON THE USE OF DEFINES:

1. RESERVED WORDS MAY NOT BE USED AS <DEFINE
IDENTIFIER>S, HOWEVER, AN IDENTIFIER MAY
DEFINE A RESERVED WORD.

2. "SPECIAL" WORDS MAY BE USED AS <DEFINE
IDENTIFIER>S, HOWEVER, THEIR SPECIAL
SIGNIFICANCE IS LOST WITHIN THE THE SCOPE OF
THAT <DEFINE STATEMENT>.

3. <DEFINE INVOCATION>S MAY APPEAR WITHIN A
<WELL-FORMED CONSTRUCT>, I.E., A <DEFINE
IDENTIFIER> MAY APPEAR WITHIN ANOTHER <DEFINE
ELEMENT>. <DEFINE IDENTIFIER>S MAY BE NESTED
NO MORE THAN 12 LEVELS DEEP.

4. THE IDENTIFIERS LISTED BELOW ARE NEVER LOOKED
UP IN THE LIST OF DEFINE NAMES.

DECLARE, DEFINE, PROCEDURE, AND FORMAL
IDENTIFIERS,

SEGMENT AND DO-GROUP IDENTIFIERS,

FILE, OPEN, AND CLOSE ATTRIBUTES,

<FILE ATTRIBUTE STATEMENT> ATTRIBUTE NAMES

II ON II CONDIT I ON NAMES (EOF • EXCEPT I ON'
FILE.MISSING, a.FULL, a.EMPTY, NO.INPUT.
FI LE. LOCKED> .

"ACCEPT"/"DISPLAY" SPECIFIERS: END.OF.TEXT AND
CRUNCHED.

IF ONE OF THESE IDENTIFIERS HAPPENS TO BE THE
SAME AS A <DEFINE IDENTIFIER>, NO SUBSTITUTION
OCCURS. THE <WELL-FORMED CONSTRUCT> OF THE
DEFINE WILL NOT REPLACE THE IDENTIFIER. NOTE,
HOWEVER, THAT DUPLICATE IDENTIFIERS MAY NOT
APPEAR WITHIN THE SAME LEXIC LEVEL; AN ERROR
MESSAGE RESULTS.

5. THERE MAY BE NO MORE THAN 8 <FORMAL
PARAMETER>S IN A <FORMAL PARAMETER LIST>.

6. REFER TO APPENDIX VI FOR RULES CONCERNING
CONDITIONAL INCLUSION CARDS WITHIN DEFINES.

7-3

THE FOLLOWING SYNTAX ILLUSTRATES THE FORMAT USED IN THE
INVOCATION OF A <DEFINE IDENTIFIER>:

<DEFINE INVOCATION> : :=

<SIMPLE DEFINE
IDENTIFIER> : :=

<PARAMETRIC
DEFINE IDENTIFIER> ::=

<DEFINE ACTUAL
PARAMETER LIST> : :=

<DEFINE ACTUAL
PARAMETER> : :=

<SIMPLE DEFINE IDENTIFIER>
I <PARAMETRIC DEFINE IDENTIFIER>

C<DEFINE ACTUAL PARAMETER LIST>>
I <PARAMETRIC DEFINE IDENTIFIER>

C<DEFINE ACTUAL PARAMETER LIST>l

<DEFINE IDENTIFIER>

<DEFINE IDENTIFIER>

<DEFINE ACTUAL PARAMETER>
I <DEFINE ACTUAL PARAMETER>,

<DEFINE ACTUAL PARAMETER LIST>

<WELL-FORMED CONSTRUCT>

A <DEFINE INVOCATION> MAY OCCUR ANYWHERE WITHIN AN SOL PROGRAM
EXCEPT IN THE CASES LISTED ABOVE IN RESTRICTION 4. AS INDICATED
BY THE ABOVE BNF, THE ACTUAL PARAMETERS OF A DEFINE ARE NOT
CONFINED TO CONSTANTS AND VARIABLES BUT MAY HAVE A WIDE RANGE
OF CONSTRUCTS. FOR EXAMPLE, THE <DEFINE STATEMENT> MENTIONED
ABOVE:

DEFINE CCM> AS# X:=M; A #;
MIGHT BE INVOKED AS FOLLOWS:

C C Z ; BUMP I C R , S J > ;

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

7-4

WHICH EXPANDS TO:
X:=Z; BUMP ICR,SJ; IF X>lO THEN PROCX;

THE FOLLOWING RESTRICTIONS APPLY TO THE USE OF THE <DEFINE
INVOCATION>:

1. NO UNPAIRED BRACKETING SYMBOLS, I.E., C> OR
CJ, MAY APPEAR.

2. WITHIN A <DEFINE ACTUAL PARAMETER LIST>,
COMMAS NOT ENCLOSED WITHIN PAI~ED BRACKETING
SYMBOLS ACT TO DELIMIT THE <DEFINE ACTUAL
PARAMETER>S. THEREFORE A <WELL-FORMED
CONSTRUCT> NOT ENCLOSED IN BRACKETING SYMBOLS
MAY. NOT CONTAIN COMMAS. FOR EXAMPLE:

DEFINE XCA,B> AS # ACB> #;
AND INVOKED AS:

Z:=XCM,Q,R,S>;

WOULD RESULT IN THE ERROR MESSAGE:

DEFINE INVOCATION HAS TOO MANY PARAMETERS

PROPER INVOCATION IS POSSIBLE BY REMOVING THE
PARENS FROM THE DEFINE AND PLACING THEM IN THE
INVOCATION:

DEFINE XCA,B> AS # A B #;
Z:=XCM,CQ,R,S));

3. COMMENTS ARE ALLOWED BUT WILL BE DELETED FROM
THE ACTUAL PARAMETER TEXT.

8-1

FORWARD DECLARATION

<DECLARATION STATEMENT> ··= ... !<FORWARD DECLARATION>! ...

<FORWARD DECLARATION> · ·= FORWARD <COMPOUND PROCEDURE HEAD>

<COMPOUND PROCEDURE
HEAD> : :=

<PROCEDURE HEAD> ::=

<BASIC PROCEDURE HEAD> · ·=

<PROCEDURE NAME> : :=

<PROCEDURE HEAD>
<FORMAL PARAMETER DECLARATION
STATEMENT LIST>

<BASIC PROCEDURE HEAD>
<PROCEDURE TYPE PART>;

<PROCEDURE NAME>
<FORMAL PARAMETER PART>

PROCEDURE <PROCEDURE IDENTIFIER>

<PROCEDURE IDENTIFIER> : := <TYPED PROCEDURE IDENTIFIER>

<TYPED PROCEDURE
IDE NT IF I ER> : : =

<NON-TYPED PROCEDURE
!DENT IF I ER> : : =

I <NON~TYPED PROCEDURE IDENTIFIER>

<!DENT IF IER>

<IDENTIFIER>

<FORMAL PARAMETER PART> : := <EMPTY>
I <<FORMAL PARAMETER LIST>>

<FORMAL PARAMETER LIST> ::= <FORMAL PARAMETER>

<FORMAL PARAMETER> ::=

I <FORMAL PARAMETER>,
<FORMAL PARAMETER LIST>

<IDENTIFIER>

<PROCEDURE TYPE PART> ::= <EMPTY>

<FORMAL TYPE PART> : :=

<TYPE PART> : :=

<TYPE VARYING PART> ::=

I <FORMAL TYPE PART>

<TYPE PART>
I <TYPE VARYING PART>

FIXED
I CHARACTER <FIELD SIZE>
I BIT <FIELD SIZE>

VARYING
I BIT VARYING
I CHARACTER VARYING

(S) 1973, 1974 Burroughs - DO NOT- REPRODUCE

8-2

<FORMAL PARAMETER DECLA-
RATION STATEMENT LIST> ::= <EMPTY>

I <FORMAL PARAMETEB, DECLARATION STATEMENT>;
<FORMA.L PARAMETER DECLARATION
STATtM~Nt'LIST> ..

<FORMAL PARAMETER
DECLARATION STATEMENT> ::= FORMAL <FORMAL ELEMENT>

<FORMAL ELEMENT> ::=

<FORMAL INDENTIFIER

I FORMAL.VALUE <FORMAL ELEMENT>
I <FORMAL PARAMETER DECLARATION STATEMENT>,

<FORMAL ELEMENT>

C<FORMAL IDENTIFIER LIST>>
<FORMAL TYPE PART>

I <FORMAL IDENTIFIER>
<FORMAL TYPE PART>

LJST> : := <FORMAL IDENTIFIER>
I <FORMAL IDENTIFIER LIST>,

<FORMAL IDENTIFIER>

<FORMAL IDENTIFIER> ::= <COMPLEX IDENTIFIER>
I <VARYING ARRAY SPECIFIER>

<COMPLEX IDENTIFIER> ::= <SIMPLE IDENTIFIER>

<VARYING ARRAY

I <ARRAY IDENTIFIER>
<ARRAY BOUND>

SPECIFIER> ::= <ARRAY IDENTIFIER>
<VARYING ARRAY BOUND>

<VARYING ARRAY BOUND> ::= (*)

BEFORE A PROCEDURE MAY BE CALLED, SOL SPECIFIES THAT IT MUST
HAVE BEEN PREVIOUSLY DECLARED. A CONTRADICTION ARISES WHEN ONE
PROCEDURE CALLS ANOTHER PROCEDURE WHICH IN TURN REFERENCES THE
FIRST. IN THIS CASE, WHICHEVER PROCEDURE APPEARS FIRST MUST
NECESSARILY CONTAIN AT LEAST ONE REFERENCE TO THE SECOND WHICH
HAS NOT YET BEEN DECLARED.

THE <FORWAR~ DECLARATION> ALLOWS THE PROGRAMMER TO USE RECURSIVE
REFERENCES BY PROVIDING A TEMPORARY PROCEDURE DECLARATION. THE
<FORWARD DECLARATION>, HOWEVER, DOES NOT ELIMINATE THE NEED FOR
THE NORMAL PROCEDURE DECLARATION WHICH MUST FOLLOW IN THE
PROGRAM AND MUST HAVE THE SAME SCOPE.

THE PARAMETERS MENTIONED IN THE <FORWARD DECLARATION> MUST BE
THE SAME FORMAL PARAMETERS CIN TYPE AND SIZE, BUT NOT IN NAME>

8-3

THAT THE PROCEDURE ITSELF WILL DECLARE.

PROCEDURES MAY BE EITHER TYPED OR NON-TYPED DEPENDING ON THEIR
USE. FORMAL DATA TYPES MAY EITHER BE STATIC OR VARYING, AGAIN
DEPENDING ON THE PROGRAM. THESE SPECIFICATIONS WILL BE
DISCUSSED IN THE SECTION ENTITLED "THE PROCEDURE STATEMENT".

THE FOLLOWING EXAMPLES ILLUSTRATE THE USE OF THE <FORWARD
DECLARATION>:

FORWARD PROCEDURE X CHARACTER VARYING;
FORWARD PROCEDURE JCK,L,M>;

FORMAL KC*> BIT VARYING,
FORMAL LC15> CHARACTER CB>,
FORMAL M FIXED;

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

USE STATEMENT

<USE STATEMENT> : :=

<SIMPLE IDENTIFIER
LIST> : :=

<SIMPLE IDENTIFIER> : :=

<DEFINE IDENTIFIER> : :=

USE <<SIMPLE IDENTIFIER LIST>l
OF <DEFINE IDENTIFIER>

<SIMPLE IDENTIFIER>
I <SIMPLE IDENTIFIER>,

<SIMPLE IDENTIFIER LIST>

<IDENTIFIER>

<IDENTIFIER>

8-4

THE PURPOSE OF THE <USE STATEMENT> IS TO ALLOW THE PROGRAMMER TO
DECLARE SPECIFIC ELEMENTS IN A DEFINED STRUCTURE WITHIN A
PROCEDURE. BY SPECIFYING ONLY THE DESIRED ELEMENTS, THE NAME
STACK SIZE IS KEPT TO A MINIMUM, AND PROGRAM MAINTENANCE IS
SIMPLIFIED. THE COMPILER WILL GENERATE THE STRUCTURE USING
FILLERS AND THE SPECIFIED ELEMENTS.

THE FOLLOWING RESTRICTIONS APPLY TO THE <USE STATEMENT>:

1. IT MUST APPEAR WITHIN A PROCEDURE CI.E., ON A
LEXIC LEVEL GREATER THAN Ol.

2. THE REFERENCED <DEFINE IDENTIFIER> MUST DEFINE
ONE STRUCTURED DECLARE STATEMENT.

3. THE STRUCTURE MAY NOT CONTAIN ARRAYS.

4. THE OUTERMOST LEVEL OF THE STRUCTURE COll MUST
BE A "DUMMY REMAPS".

EXAMPLE:

DEFINE X AS #
DECLARE 01 DUMMY

02 B
REMAPS A, % MIGHT ALSO REMAP BASE

BITC5>,
03 Bl
03 B2

02 c
02 D
02 E
02 F

PROCEDURE FIRST;

BITC2),
BITC3>,
CHARACTER C 1 0 > ,
BITCI>,
FIXED,
BITC24)#;

USE <C,D> OF X;

8-5

FROM THE ABOVE <USE STATEMENT> THE COMPILER WILL GENERATE THE
FOLLOWING STRUCTURE:

01 DUMMY REMAPS
02 FILLER

03 FILLER
03 FILLER

02 c
02 D
02 FILLER
02 FILLER

A,
BIT C5>,
BITC2>,
BITC3>,
CHARACTER C 10 > ,
BIT<l>,
FIXED,
BIT C24);

NOTE THAT FILLER WAS SUBSTITUTED FOR THE GROUP ITEM B. THIS
WOULD NORMALLY GENERATE A SYNTAX ERROR, AND IS ALLOWABLE ONLY
IN THE <USE STATEMENT>.

© 1973, 1974 Burroughs - DO NOT REPRODUCE

<PROCEDURE STATEMENT
LIST>::=

PROCEDURE STATEMENT

<EMPTY>
I <PROCEDURE STATEMENT>;

<PROCEDURE STATEMENT LIST>

<PROCEDURE STATEMENT> ::= <PROCEDURE DEFINITION>
I <SEGMENT STATEMENT>

<PROCEDURE STATEMENT>

<PROCEDURE DEFINITION> ::= <COMPOUND PROCEDURE HEAD>
<PROCEDURE BODY>

<SEGMENT STATEMENT>

<PROCEDURE BODY> ::=

SEE "THE SEGMENT STATEMENT"

<DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LlST>

9-1

<PROCEDURE EXECUTABLE STATEMENT LIST>
<PROCEDURE ENDING>

PROCEDURES ARE SELF-CONTAINED FUNCTIONAL UNITS WITHIN AN SOL
PROGRAM WHICH MAY BE ACCESSED ACCORDING TO SPECIFIC RULES
DISCUSSED UNDER "BASIC STRUCTURE OF THE SOL PROGRAM".
PROCEDURES MAY BE CREATED BY PRECEDING SELF-CONTAINED
STATEMENTS WITH A <COMPOUND PROCEDURE HEAD>, AND TERMINATING IT
WITH A <PROCEDURE ENDING>.

THE <PROCEDURE DEFINITION> IS COMPOSED OF THREE BASIC PARTS: THE
HEADING, BODY, AND ENDING. IDENTIFIERS DECLARED IN A PROCEDURE
MAY BE ACCESSED ONLY IN THE PROCEDURE IN WHICH THEY ARE
DECLARED, AND IN PROCEDURES NESTED WITHIN THE DECLARING
PROCEDURE.

PROCEDURES MAY BE EITHER "TYPED" OR "NON-TYPED". A "TYPED"
PROCEDURE RETURNS SOME VALUE OF THE TYPE SPECIFIED IN THE
PROCEDURE DECLARATION TO THE EXPRESSION WHERE THE PROCEDURE WAS
INVOKED. SEE "VALUE VARIABLES" FOR DETAILS. A "NON-TYPED"
PROCEDURE PERFORMS A FUNCTION, DOES NOT RETURN A VALUE~ AND IS
INVOKED IN AN <EXECUTE PROCEDURE STATEMENT>. SEE "EXECUTE
PROCEDURE STATEMENT".

THE SYNTAX FOR THE PROCEDURE HEADING IS:

<COMPOUND PROCEDURE
HEAD> : := <PROCEDURE HEAD>

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

<PROCEDURE HEAD> ::=

<FORMAL PARAMETER DECLARATION
STATEMENT LIST>

<BASIC PROCEDURE HEAD>
<PROCEDURE TYPE PART>;

<BASIC PROCEDURE HEAD> : := <PROCEDURE NAME>
<FORMAL PARAMETER PART>

9-2

<PROCEDURE NAME> ::= PROCEDURE <PROCEDURE IDENTIFIER>
I INTRINSIC <INTRINSIC IDENTIFIER>

<PROCEDURE IDENTiFIER> ::= <TYPED PROCEDURE IDENTIFIER>
I <NON-TYPED PROCEDURE IDENTIFIER>

<TYPED PROCEDURE
IDENTIFIER> : := <IDENTIFIER>

<NON-TYPED PROCEDURE
IDENTIFIER> : := <IDENTIFIER>

<INTRINSIC IDENTIFIER>:= <TYPED INTRINSIC IDENTIFIER>
I <NON-TYPED INTRINSIC IDENTIFIER>

<TYPED INTRINSIC
IDENTIFIER>::= <IDENTIFIER>

<NON-TYPED INTRINSIC
IDENTIFIER>::= <IDENTIFIER>

<FORMAL PARAMETER PART> ::= <EMPTY>
I C<FORMAL PARAMETER LIST>>

<FORMAL PARAMETER LIST> ::= <FORMAL PARAMETER>

<FORMAL PARAMETER> : :=

I <FORMAL PARAMETER>,
<FORMAL PARAMETER LIST>

<IDENTIFIER>

<PROCEDURE TYPE PART> ::= <EMPTY>

<FORMAL TYPE PART> : :=

<TYPE PART> : :=

<TYPE VARYING PART> : :=

<FORMAL PARAMETER DECLA-

I <FORMAL TYPE PART>

<TYPE PART>
I <TYPE VARYING PART>

FIXED
I CHARACTER <FIELD SIZE>
I BIT <FIELD SIZE>

VARYING
I BIT VARYING
I CHARACTER VARYING

9-3

RATION STATEMENT LIST> ::= <EMPTY>
I <FORMAL PARAMETER DECLARATION STATEMENT>;

<FORMAL PARAMETER DECLARATION
STATEMENT LIST>

<FORMAL PARAMETER
DECLARATION STATEMENT> ::= FORMAL <FORMAL ELEMENT>

I FORMAL.VALUE <FORMAL ELEMENT>
I <FORMAL PARAMETER DECLARATION STATEMENT>,

<FORMAL ELEMENT>

<FORMAL ELEMENT> ::= C<FORMAL IDENTIFIER LIST>l
<FORMAL TYPE PART>

I <FORMAL IDENTIFIER>
<FORMAL TYPE PART>

<FORMAL INDENTIFIER
LIST> : := <FORMAL IDENTIFIER>

I <FORMAL IDENTIFIER LIST>,
<FORMAL IDENTIFIER>

<FORMAL IDENTIFIER> ::= <COMPLEX IDENTIFIER>
I <VARYING ARRAY SPECIFIER>

<COMPLEX IDENTIFIER> ::= <SIMPLE IDENTIFIER>

<VARYING ARRAY

I <ARRAY IDENTIFIER>
<ARRAY BOUND>

SPECIFIER> : := <ARRAY IDENTIFIER>
<VARYING ARRAY BOUND>

<VARYING ARRAY BOUND> : := (*)

THE PROCEDURE HEADING, I.E., <COMPOUND PROCEDURE HEAD>, CONTA.INS
THE <PROCEDURE NAME>, FORMAL PARAMETERS CIF ANYl, AND THE
<PROCEDURE TYPE PART>, I.E., THE FIELD TYPE OF THE VALUE TO BE
RETURNED IF THE PROCEDURE IS "TYPED". FOR EXAM~LE:

PROCEDURE X CM,Nl FIXED;
FORMAL CM,Nl VARYING;

WHICH CORRESPONDS TO THE FOLLOWING SYNTAX:

PROCEDURE <TYPED PROCEDURE IDENTIFIER>
C<FORMAL PARAMETER>,<FORMAL PARAMETER>l
<PROCEDURE TYPE PART>;

FORMAL C<FORMAL IDENTIFIER>,<FORMAL IDENTIFIER>l
<FORMAL TYPE PART>;

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

9-4

IN THIS CASE, .THE VALUE RETURNED TO THE POINT OF INVOCATION
SHOULD BE FIXED. THERE IS, HOWEVER, NO CHECK FOR THIS AT
COMPILE TIME. IF THE CONTROL CARD OPTION "FORMALCHECK" IS
PRESENT, THE RETURNED VALUES WILL BE CHECKED AGAINST THE
PROCEDURE TYPE AT RUN TIME.

THE "NON-TYPED" PROCEDURE FOLLOWS THE SAME FORMAT EXCEPT THAT
THE <PROCEDURE TYPE PART> IS OM IT TED S INCE NO . VALUE IS
RETURNED. FOR INSTANCE:

PROCEDURE A CJ,K,L>;
FORMAL·J FIXED, CK,L> BIT VARYING;

WHICH SYNTACTICALLY IS THE SAME .AS:

PROCEDURE <NON-TYPED PROCEDURE IDENTIFIER>
<<FORMAL PARAMETER>,<FORMAL PARAMETER>,
<FORMAL PARAMETER>>;

FORMAL <FORMAL IDENTIFIER> <FORMAL TYPE PART>,
<<FORMAL IDENTIFIER>,<FORMAL IDENTIFIER>>
<FORMAL TYPE PART>;

THE FIELD TYPE OF FORMAL PARAMETERS CI.E., COMPONENTS OF THE
<FORMAL TYPE PART>> MAY BE STATIC CBIT, CHARACTER, OR FIXED> OR
VARIABLE <BIT VARYING, CHARACTER VARYING, OR VARYING>.

OFTEN HOWEVER, IT IS IMPOSSIBLE TO DETERMINE THE DATA TYPE AT
COMPILE TIME ESPECIALLY IF THE ACTUAL PARAMETERS ARE PASSED TO
THE PROCEDURE FROM DIFFERENT POINTS IN THE PROGRAM AND UNDER
DIFFERING CIRCUMSTANCES. SOL ALLOWS THE USER TO SPECIFY
VARIABLE DATA FIELDS IN THE FORMAL DECLARATION. THE ACTUAL
PARAMETERS PASSED TO THAT PROCEDURE WILL PROVIDE THE SPECIFICS.
THUS FORMALS MAY BE DECLARED AS "BIT VARYING", "CHARACTER
VARYING", OR "VARYING".

IN A VARIABLE BIT OR CHARACTER FIELD, THE TYPE OF DATA PASSED
MUST BE THAT WHICH IS SPECIFIED Cl .E., BIT OR CHARACTER>. THE
LENGTH, HOWEVER, REMAINS VARIABLE. FORMALS SPECIFIED AS
"VARYING" MAY ACCEPT ANY TYPE OF DATA OF ANY LENGTH.

THE DATA TYPES OF CORRESPONDING FORMAL AND ACTUAL PARAMETERS
WILL NOT BE CHECKED AT COMPILE TIME AND ONLY AT RUN TIME WHEN
"FORMALCHECK" HAS BEEN SPECIFIED AS A CONTROL CARD OPTION.

VARYING FORMALS MAY BE REMAPPED, BUT IT IS THE PROGRAMMER-S
RESPONSIBILITY TO ENSURE THAT THE REMAPPED FORMAL PARAMETER AND
ITS CORRESPONDING ACTUAL PARAMETER MATCH. A WARNING MESSAGE

9-5

WILL APPEAR IN THE SOURCE LISTING WHERE THE REMAPPING HAS
OCCURRED.

SOL ALSO ALLOWS FORMALLY DECLARED ARRAYS TO HAVE A VARIABLE
NUMBER OF ELEMENTS BY SUBSTITUTING "*" FOR THE NUMBER FOLLOWING
THE <ARRAY IDENTIFIER>. FOR INSTANCE:

PROCEDURE X CA,B>;
FORMAL A C*> FI~ED, B C*> VARYING;

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

9-6

INTRINSICS

THE WORD "INTRINSIC" MAY BE USED INTERCHANGEABLY WITH THE WORD
"PROCEDURE". IT IS, HOWEVER, INTENDED ONLY FOR USE BY THE SOL
GROUP IN ORDER TO PROVIDE SOL INTRINSICS.

THE USE OF "INTRINSIC" FORCES THE INTRINSIC TO HAVE AS ENTRY
POINT THE DISPLACEMENT 0 WITHIN A NEW SEGMENT.

THE BODY OF THE PROCEDURE FOLLOWS THE HEADING. INCLUDED ARE
DECLARATION OF LOCAL DATA CDISCUSSED UNDER "THE DECLARATION
STATEMENT"), NESTED PROCEDURES CALSO SEE "BASIC STRUCTURE OF
THE SOL PROGRAM"), EXECUTABLE STATEMENTS, AND AN ENDING. THE
SYNTAX FOR THE <PROCEDURE EXECUTABLE STATEMENT LIST> FOLLOWS:

<PROCEDURE BODY> ::=

<PROCEDURE EXECUTABLE
STATEMENT LIST> ::=

<PROCEDURE EXECUTABLE
STATEMENT> ::=

<DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
<PROCEDURE EXECUTABLE STATEMENT LIST>
<PROCEDURE ENDING>

<PROCEDURE EXECUTABLE STATEMENT>
I <PROCEDURE EXECUTABLE STATEMENT>

<PROCEDURE EXECUTABLE STATEMENT LIST>

<EXECUTABLE STATEMENT>
I <RETURN STATEMENT>
I <SEGMENT STATEMENT>

<PROCEDURE EXECUTABLE STATEMENT>

THE <EXECUTABLE STATEMENT>S WILL BE DISCUSSED IN THE SECTION
ENTITLED "EXECUTABLE STATEMENTS". AS INDICATED BY THE ABOVE
SYNTAX, EXECUTABLE STATEMENTS WITHIN A PROCEDURE MAY BE
SEGMENTED. HOWEVER, A PROCEDURE MUST END IN THE SAME SEGMENT IN
WHICH IT BEGINS. FOR OTHER SEGMENTATION RESTRICTIONS SEE "THE
SEGMENT STATEMENT".

THE SYNTAX FOR THE <RETURN STATEMENT> IS:

<RETURN STATEMENT> : := <TYPED PROCEDURE RETURN STATEMENT>

9-7

I <NON-TYPED PROCEDURE RETURN STATEMENT>

<TYPED PROCEDURE
RETURN STATEMENT> ::=

<NON-TYPED PROCEDURE
RETURN STATEMENT> ::=

RETURN <EXPRESSION>

RETURN
I RETURN.AND.ENABLE.INTERRUPTS

THE <RETURN STATEMENT> TAKES ONE OF TWO FORMS DEPENDING ON THE
TYPE OF THE PROCEDURE ENCOMPASSING IT. IF THE PROCEDURE IS
"TYPED", AN <EXPRESSION> MUST BE RETURNED TO THE POINT OF
INVOCATION. IN A "NON-TYPED" PROCEDURE, ONLY A SIMPLE ~ETURN IS
NEEDED. FOR EXPRESSION SPECIFICATIONS REFER TO THE SECTIONS
ENTITLED "EXPRESSIONS" AND "PRIMARIES".

TYPE CHECKING ON A <RETURN STATEMENT> IS DONE ONLY AT RUN TIME
WHEN "FORMALCHECK" APPEARS AS A CONTROL CARD OPTION.

WITHIN ANY GIVEN PROCEDURE CAT ANY LEX IC LEVEL), CERTAIN
STATEMENTS ARE NESTED WITHIN OTHER STATEMENTS AND ARE ACCESSED,
MUCH LIKE A PROCEDURE, BY AN ADDRESS GENERATED BY THE LARGER
STATEMENT. THE MOST GENERAL NESTING LEVEL IS ZERO, AND THE
NESTING LEVEL OF ANY STATEMENT APPEARS ON AN SOL LISTING UNDER
THE COLUMN "NL". THE MOST COMMON INSTANCE OF STATEMENTS
OCCURRING AT NESTING LEVEL 1 OR GREATER ARE:

1. THE CONDITIONALLY EXECUTED STATEMENTS
FOLLOWING "THEN" AND "ELSE" IN THE <IF
STATEMENT>.

2. STATEMENTS CONTAINED
STATEMENT>.

3. <DO-GROUP>S.

WITHIN A <CASE

IF THE COMPILER CANNOT FIND A <RETURN STATEMENT> ON NL 0, IT
WILL GENERATE ONE DIRECTLY PRECEDING THE <PROCEDURE ENDING>.
THIS IS MERELY A SAFETY MEASURE TO INSURE THAT A PROCEDURE CAN
ALWAYS BE PROPERLY EXITED.

A COMPILER-GENERATED RETURN WORKS ESSENTIALLY IN THE SAME MANNER
AS AN EXPLICIT RETURN. IN A NON-TYPED PROCEDURE, CONTROL IS
RETURNED TO THE POINT OF THE PROCEDURE-S INVOCATION. IN A TYPED
PROCEDURE, THE FOLLOWING VALUES ARE RETURNED.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

IF THE PROCEDURE IS TYPED:

BIT

CHARACTER
FIXED
BIT VARYING
CHARACTER VARYING
VARYING

THE COMPILER WILL RETURN:

BITS CONTAINING 0
OF LENGTH SPECIFIED
BLANKS OF LENGTH SPECIFIED
FIXED ZERO
8-BITS OF ZERO
ONE BLANK
FIXED ZERO

9-8

RETURN.AND.ENABLE.INTERRUPTS IS FOR MCP USE ONLY. IT WILL CAUSE
A NORMAL PROCEDURE EXIT TO TAKE PLACE, AND WILL ENABLE
INTERRUPTS AS WELL.

* * *

THE <PROCEDURE ENDING> IS THE FINAL STATEMENT OF A PROCEDURE,
AND THE SYNTAX IS:

<PROCEDURE ENDING> ::= END
I END <PROCEDURE IDENTIFIER>

THE IDENTIFIER FOLLOWING THE RESERVED WORD "END" IS OPTIONAL.
ITS SOLE PURPOSE IS TO SIMPLIFY THE DOCUMENTATION OF THE
PROGRAM. IF AN IDENTIFIER IS SUPPLIED BY THE USER, THE COMPILER
WILL PERFORM A SYNTAX CHECK TO GUARANTEE THAT THE <PROCEDURE
ENDING> IS APPROPRIATELY PLACED.

ASSIGNMENT STATEMENTS AND EXPRESSIONS

<ASSIGNMENT STATEMENT> ::= <ADDRESS VARIABLE>
<REPLACE>
<EXPRESSION>

<ADDRESS VARIABLE> ::=

<REPLACE> : : =

<EXPRESSION LIST> ::=

<EXPRESSION> ::=

<STRING EXPRESSION> : :=

<OR-ING OPERATOR> ::=

<LOGICAL FACTOR> ::=

<LOGICAL SECONDARY> ::=

<LOGICAL PRIMARY> ::=

<RELATION> : :=

<ARITHMETIC
EXPRESSION> ::=

SEE "ADDRESS VARIABLES"

4-/ :=

<EXPRESSION>
I <EXPRESSION>,

<EXPRESSION LIST>

<STRING EXPRESSION>
I <STRING EXPRESSION>

CAT <EXPRESSION>

<LOGICAL FACTOR>
I <LOGICAL FACTOR>

<OR-ING OPERATOR>
<STRING EXPRESSION>

OR I EXOR

<LOGICAL SECONDARY>
I <LOGICAL SECONDARY>

AND <LOGICAL FACTOR>

<LOGICAL PRIMARY>
I NOT <LOGICAL PRIMARY>

<ARITHMETIC EXPRESSION>
I <ARITHMETIC

<RELATION>
<ARITHMETIC

< I
LSS I
GEQ I

<TERM>
I <TERM>

~ I
LEQ
GTR

EXPRESSION>

EXPRESSION>

= I ;i! I
I EQL I

<ADDITIVE OPERATOR>
<ARITHMETIC EXPRESSION>

<ADDITIVE OPERATOR> ::= + I

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

~
NEQ

10-1

I > I
I

<TERM>::=

<MULTIPLICATIVE
OPERATOR> : :=

<SIGNED PRIMARY>::=

<UNARY OPERATOR> ::=

<SIGNED PRIMARY>
I <SIGNED PRIMARY>

<MULTIPLICATIVE OPERATOR>
<TERM>

* I MOD I <SLASH>

<PRIMARY>
I <UNARY OPERATOR>

<PRIMARY>

+ I -

10-2

THE ALGORITHM WHICH COMPILES AN SOL EXPRESSION MAY BE BEST
UNDERSTOOD IN TERMS Of POLISH POST-FIX NOTATiON. POLISH
NOTATION IS AN ARITHMETICAL OR LOGICAL SYSTEM USING ONLY
OPERANDS AND OPERATORS ARRANGED IN A SEQUENCE WHICH ELIMINATES
THE NECESSITY OF PR I MARY BOUNDARIES C I . E. , PARENTHESES> .

IN POLISH, OPERANDS ARE EMITTED IN THE SAME LEFT TO RIGHT ORDER
THAT THEY APPEAR IN THE EXPRESSION. OPERATORS ARE EMITTED
ACCORDING TO THE RULES OF OPERATOR PRECEDENCE DEFINED BY SOL.

NOTE THAT THE END RESULTS OF THE EVALUATION OF AN SOL EXPRESSION
AND ITS POLISH EQUIVALENT WILL ALWAYS BE THE SAME. HOWEVER, FOR
OPTIMUM USE OF THE EVALUATION STACK, THE COMPILER MAY NOT LOAD
THE OPERANDS IN THE EXACT ORDER INDICATED BY THE POLISH STRING.

THE PRECEDENCE OF ANY OPERATOR IS DETERMINED BY COMPARING IT
WITH THE ~IRST OPERATOR TO ITS LEFT. FIGURE 3 SHOWS THE
PRECEDENCE RELATIONSHIP BETWEEN ANY TWO OPERATORS WHICH MAY
APPEAR IN AN SOL EXPRESSION.

THE FOLLOWING ALGORITHM IS USED TO CONVERT AN SOL EXPRESSION
INTO A POLISH STRING, AND REPRESENTS THE! LOGIC BY WHICH THE
COMPILER TRANSLATES AN EXPRESSION. NOTE THAT THIS IS
FUNCTIONALLY WHAT THE COMPILER DOES, NOT WHAT IT ACTUALLY DOES.

1. GET TOKEN FROM EXPRESSION.

2. IF TOKEN = OPERAND, THEN PLACE IN POLISH
STRING AND GO TO 1.

3. IF TOKEN CIE., PRESENT OP> =RIGHT PAREN, THEN
IF [TOKEN TOP OF STACKJ CIE., PREVIOUS OP> =

LEFT PAREN, THEN POP STACK AND GO TO 1.

4. IF TOKEN= ET AND CTOP OF STACK] =BT, THEN
EXIT.

5. IF PRECEDENCE CTOP OF STACKl < PRECEDENCE
CTOKENl, THEN PUT TOKEN ON TOP OF STACK AND GO
TO 1.

6. IF PRECEDENCE CTOP OF STACKJ > PRECEDENCE
CTOKENl, THEN PUT CTOKEN TOP OF STACKJ IN
POLISH ANO GO TO 3.

10-3

THE FOLLOWING IS A LIST OF THE SOL OPERATORS FROM HIGHEST
PRECEDENCE TO LOWEST. THIS LIST OR THE TABLE IN FIGURE 3 MAY BE
USED WHEN EVALUATING AN EXPRESSION.

+, - CUNARYl
* I, MOD
+, - CBINARYl
<. ~. =, ¢, ~. >
NOT
AND
OR, EXOR
CAT

1. THE ASSIGNMENT OPERATOR HAS HIGHER PRECEDENCE
THAN ANY OPERATOR TO ITS LEFT AND LOWER
PRECEDENCE THAN ANY TO ITS RIGHT.

2. THE ORDER OF EVALUATION OF OPERATORS HAVING
EQUAL PRECEDENCE IS ALWAYS FROM LEFT TO RIGHT.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

NEG

*

+ -
p

R =
E
v NOT
I
0 AND
u
s OR

0 CAT
P.

:=

(

)

BT

FORMULA:

NOTE:

10-4

PRESENT OP.

NEG * + - = NOT AND OR CAT := () ET

> > > > < > > > < < > >

< > > > < > > > < < > >

< < > > < > > > < < > >

< < < > < > > > < < > >

< < < < > > > > < < > >

< < < < < > > > < < > >

< < < < < < > > < < > >

< < < < < < < > < < > >

< < < < < < < < < < > >

< < < < < < < < < < =

> > > > > > > > >

< < < < < < < < < < =

PRECEDENCE <PREVIOUS OP> <RELATION> PRECEDENCE <PRESENT OP>

NEG
*
=
:=
BT
ET

UNARY OPERATORS
MULTIPLICATIVE OPERATORS
RELATIONAL OPERATORS
REPLACE OPERATORS
INFERRED BEGINNING TERMINATOR
INFERRED ENDING TERMINATOR

FIG 3. OPERATOR PRECEDENCE TABLE

10-5

UNARY OPERATOR

+

THE UNARY OPERATOR ACTS UPON ONE OPERAND AND MAY NEVER APPEAR AS
AN INFIX OPERATOR BETWEEN TWO OPERANDS. IT MAY APPEAR TO THE
RIGHT OF ANY OTHER OPERA10R, INCLUDING ITSELF.

THE UNARY MINUS C-J GENERATES THE TWO-S COMPLEMENT OF THE
OPERAND ASSOCIATED WITH IT CI.E., -X = CNOT Xl+lJ. THE OPERAND
MAY BE ANY DATA TYPE. IF IT IS FIXED, THE UNARY MINUS HAS THE
EFFECT OF REVERSING THE SIGN, AND THE RESULT IS LABELED ON THE
EVALUATION STACK AS FIXED.

IF THE OPERAND IS EITHER A CHARACTER OR BIT STRING, ONLY THE
LOW-ORDER 24 BITS WILL BE EVALUATED. STRINGS LESS THAN 24 BITS
WILL BE PADDED WITH LEADING ZEROES TO 24 BITS. THE TWO-S
COMPLEMENT OF THE STRING IS GENERATED AND RETURNED TO THE STACK
AS TYPE BIT. NOTE, HOWEVER, THAT THE NEGATION OF ANY BIT OR
CHARACTER STRING CAN NEVER RESULT IN A VALUE LESS THAN ZERO.

THE SOL COMPILER GENERATES NO CODE FOR THE UNARY PLUS C+J WHICH
EXISTS SOLELY FOR THE CONVENIENCE OF THE PROGRAMMER.

ARITHMETIC OPERATORS

+ ADDITION
SUBTRACTION

* MULTIPLICATION
MOD DIVISION YIELDING INTEGER VALUE OF REMAINDER
I DIVISION YIELDING INTEGER VALUE OF QUOTIENT

THE ARITHMETIC OPERATORS PERFORM 24-BIT ARITHMETIC ON TWO
OPERANDS OF ANY OF THE THREE DATA TYPES. SIGN ANALYSIS WILL BE
DONE ONLY IF BOTH OPERANDS ARE FIXED. WITH ANY OTHER
COMBINATION OF DATA TYPES, THE MAGNITUDES OF THE OPERANDS ARE
EVALUATED.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

10-6

FOR BOTH BIT AND CHARACTER DATA, IF THE FIELD IS GREATER THAN 24
BITS, ONLY THE LOW-ORDER 24 BITS WILL BE EVALUATED. IF THE
FIELD IS LESS THAN 24 BITS, LEADING ZEROES WILL BE SUPPLIED
FROM THE LEFT.

A 24-BIT RESULT WILL BE RETURNED TO THE EVALUATION STACK. IF
BOTH . OPERANDS ARE FIXED,. THE RESULT WI LL BE FIXED. OTHERWISE,
THE RESULT WILL BE TYPE BIT.

SOL DIVISION RESULTS IN AN INTEGER VALUE. ANY REMAINDER IS
TRUNCATED THUS:

7 I 3 = 2
3 I 7 = 0

THE MOD OPERATION IS DIVISION RESULTING IN THE INTEGER VALUE OF
THE REMAINDER. IT IS EVALUATED BY THE FOLLOWING FORMULA WHERE
S I GN C Y) = - 1 , I F Y < 0 OR , + 1 I F Y ~ 0 :

Y MOD Z = Y-Z*CSIGNCYIZ> *ABSOLUTE VALUE CYIZ>>

FOR EXAMPLE:

7 MOD 3 = 7-3 * C+l * ABS 2> = +1
-7 MOD 3 = -7-3 * C-1 * ABSC-2>> = -1

3 MOD -7 = 3--7 * C-1 * ABS O> = +3
-3 MOD -7 = -3--7 * C+l * ABS O> = -3

RELATIONAL OPERATORS

= EQL
NEQ
GTR
LSS
GEQ
LEQ

EQUAL TO
NOT EQUAL TO
GREATER THAN
LESS THAN
GREATER THAN OR EQUAL TO
LESS THAN OR EQUAL TO

THE RELATIONAL OPERATORS DO A COMPARISON BETWEEN TWO OPERANDS OF
ANY DATA TYPE. A 1-BIT RESULT IS RETURNED -- •Cl>l• IF THE
CONDITION IS TRUE, •Cl>O• IF THE CONDITION IS FALSE.

10-7

IF BOTH OPERANDS ARE FIXED, THE OPERATOR DOES A TRUE SIGNED
COMPARE. IF BOTH OPERANDS ARE CHARACTER STRINGS, THE SHORTER
ONE IS PADDED ON THE RIGHT WITH BLANKS, AND A CHARACTER BY
CHARACTER MAGNITUDE COMPARE BY COLLATING SEQUENCE IS DONE.

FOR ALL OTHER OPERAND COMBINATIONS, LEADING ZEROES ARE SUPPLIED
TO THE SHORTER OF THE TWO. NO SIGN ANALYSIS IS DONE, AND
OPERANDS ARE TREATED AS POSITIVE MAGNITUDES.

LOGICAL OPERATORS

NOT
AND
OR
EXOR

THE LOGICAL OPERATORS PERFORM A BIT BY BIT ANALYSIS ON ALL THREE
DATA TYPES. "NOT'' IS CONSIDERED TO BE A UNARY OPERATOR, AND MAY
APPEAR TO THE RIGHT OF ANY OTHER OPERATOR (INCLUDING ITSELF>.

THE OTHER OPERATORS REQUIRE TWO OPERANDS. THE SHORTER OF THE TWO
IS PADDED ON THE LEFT WITH ZEROES TO DUPLICATE THE LENGTH OF
THE LARGER. THE FOLLOWING CHART ILLUSTRATES THE USE OF EACH
OPERATOR.

IF X = 0 0 1 1
IF Y = 0 1 0 1

NOT X = 1 1 0 0

NOT y = 1 0 1 0

x AND y = 0 0 0 1

x OR Y = 0 1 1 1

x EXOR Y = 0 1 1 0

IF X = 00101110 ANDY= 10101100 THEN

NOT X = 11010001

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

X ANDY= 00101100
XOR Y = 10101110
X EXOR Y = 10000010

REPLACE OPERATORS

<ASSIGNMENT STATEMENT> ::= <ADDRESS VARIABLE>
<REPLACE>
<EXPRESSION>

<REPLACE> ::=

<ASSIGNOR> ::=

<NON-DESTRUCTIVE
REPLACE> : : =

<REPLACE, DELETE
LEFT PART> : : =

<REPLACE, DELETE
RIGHT PART> ::=

4-/ :=

<ADDRESS VARIABLE>
<NON-DESTRUCTIVE RELACE>
<EXPRESSION>

<REPLACE, DELETE LEFT PART>
I <REPLACE, DELETE RIGHT PART>

4-/ :=

:.,,,.../ : :=

10-8

THERE ARE TWO BASIC TYPES OF REPLACE OPERATORS: THE DESTRUCTIVE
<REPLACE> ASSOCIATED WITH THE <ASSIGNMENT STATEMENT>, AND THE
<NON-DESTRUCTIVE REPLACE> WHICH OCCURS ONLY WITHIN AN
EXPRESSION.

THE DESTRUCTIVE <REPLACE> OPERATOR CAUSES THE EXPRESSION ON ITS
RIGHT TO "REPLACE" THE VARIABLE ON ITS LEFT. THE EVALUATION
STACK IS FLUSHED SINCE THIS REPLACE IS NECESSARILY THE LAST
OPERATION IN THE STATEMENT.

THE <NON-DESTRUCTIVE REPLACE> TAKES TWO FORMS: "DELETE LEFT" AND
"DELETE RIGHT", THE "DELETE LEFT" CAUSES THE EXPRESSION TO THE
RIGHT OF THE OPERATOR TO REPLACE THE VARIABLE ON ITS LEFT. THE
VARIABLE IS THEN DELETED FROM THE TOP OF THE EVALUATION STACK,
AND THE EXPRESSION IS LEFT ON THE TOP OF THE STACK.

10-9

THE "DELETE RIGHT.,_ CAUSES THE SAME REPLACEMENT. HOWEVER, THE
EXPRESSION TO THE RIGHT OF THE OPERATOR IS DELETED FROM THE
EVALUATION STACK, AND THE VARIABLE TO THE LEFT REMAINS ON THE
TOP OF THE STACK.

THE FOLLOWING EXAMPLE ILLUSTRATES THE USE OF THE <NON­
DESTRUCTIVE REPLACE>:

PROCEDURE GOOD BIT VARYING;
DECLARE X BITC48l;
RETURN X ::="RESULT";

END GOOD;
PROCEDURE BAD BIT VARYING;

DECLARE Y BITC48l;
RETURN Y := "RESULT";

END BAD;

PROCEDURE GOOD WILL EXECUTE PROPERLY SINCE X, DECLARED AS BIT,
IS ASSOCIATED WITH THE PROCEDURE TYPE--BIT VARYING. NOTICE,
HOWEVER, THAT IN PROCEDURE BAD, Y IS DELETED FROM THE STACK AND
THE CHARACTER STRING "RESULT" REMAINS. UNLESS THE CONTROL CARD
OPTION "FORMALCHECK" IS SET AT COMPILE TIME, THERE WILL BE NO
INDICATION THAT THE DATA TYPES (AS IN PROCEDURE BADl DO NOT
MATCH THE PROCEDURE TYPE. IF "FORMALCHECK" IS SPECIFIED, THE
FOLLOWING EXECUTE TIME ERROR MESSAGE WILL BE PRINTED:

"TYPE ERROR IN RETURNED VALUE"

IF BOTH OPERANDS ASSOCIATED WITH ANY REPLAC~ OPERATOR ARE
CHARACTER FIELDS, AND THE RECEIVING FIELD IS LONGER THAN THE
SENDING FIELD, TRAILING BLANKS WILL BE ADDED. IF THE RECEIVING
FIELD IS SHORTER, CHARACTERS WILL BE TRUNCATED FROM THE RIGHT.

WITH EVERY OTHER COMBINATION OF DATA TYPES, WHEN THE RECEIVING
FIELD IS NOT EQUAL IN LENGTH TO THE SENDING FIELD, LEADING
BINARY ZEROES WILL BE APPENDED TO THE LARGER RECEIVING FIELD,
OR. HIGH-ORDER BITS ARE TRUNCATED FROM THE LARGER SENDING FIELD.

ALSO SEE THE REVERSE STORE OPERATION IN THE SECTION ENTITLED
"EXECUTE-FUNCTION STATEMENT".

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

10-10

CONCATENATION

DATA ITEMS MAY BE LINKED TOGETHER <CONCATENATED> BY USING THE
"CAT" OPERATOR. ALTHOUGH THIS OPERATOR IS INTENDED TO
CONCATENATE BIT STRINGS OR CHARACTER STRINGS, IT MAY BE USED
WITH ANY COMBINATION OF DATA TYPES. THE RESULT OF ANY
CONCATENATION MAY NOT BE. GREATER THAN 8191 CHARACTERS OR 65535
BITS.

IF ALL THE OPERANDS ARE CHARACTER STRINGS, THE RESULT IS A
CHARACTER STRING. FOR ANY OTHER COMBINATION OF DATA TYPES, THE ~'

'v',

RESULT IS A BIT STRING. FOR EXAMPLE:

LET A.= "B"

THEN

B = •<1>101•
c = +10

B CAT 8 = •Cl>lOllOl•
A CAT A = "BB"
A CAT B = •<1>11000010101•
B CAT C = •<3>500000012•

1 CHARACTER
3 BITS
FIXED

BIT STRING, LENGTH 6
CHARACTER STRING, LENGTH·2

.BIT STRING, LENGTH 11
BIT STRING, LENGTH 27
<EXPRESSED IN OCTAL>

<PRIMARY> ::=

<VARIABLE> ::=

PRIMARY ELEMENTS OF THE EXPRESSION

<CONSTANT>
I <VARIABLE>
I C <EXPRESS I ON»
I <CONDITIONAL EXPRESSION>
I <CASE EXPRESSION>
I <BUMPOR>
I <DECREMENTOR>
I <ASSIGNOR>

<ADDRESS VARIABLE>
I <VALUE VARIABLE>

11-1

A PRIMARY IS THE MOST BASIC COMPONENT OF THE SOL EXPRESSION. TO
AVOID UNNECESSARY REPETITION, SEE "BASIC COMPONENTS OF THE SOL
LANGUAGE" FOR DISCUSSION OF CONSTANTS, AND SEE "ADDRESS
VARIABLES" AND "VALUE VARIABLES" FOR DISCUSSION OF VARIABLES.

CONDITIONAL EXPRESSION

<CONDITIONAL
EXPRESSION> ::= IF <EXPRESSION>

THEN <EXPRESSION>
ELSE <EXPRESSION>

THE EXPRESSION FOLLOWING THE RESERVED WORD "IF" IS EVALUATED. IF
THE LOW-ORDER BIT OF THE RESULT IS 1, THE EXPRESSION FOLLOWING
"THEN" IS EVALUATED. IF IT IS ZERO, THE EXPRESSION FOLLOWING
"ELSE" IS EVALUATED. UNLIKE THE <IF STATEMENT>, THE "ELSE" PART
OF THE EXPRESSION MUST BE PRESENT.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

CASE EXPRESSION

<CASE EXPRESSION> ::=

<EXPRESSION LIST> ::=

CASE <EXPRESSION>
OF <<EXPRESSION LIST>l

<EXPRESSION>
I <EXPRESSION>,

<EXPRESSION LIST>

11-2

IN THE <CASE EXPRESSION>, THE VALUE OF THE <EXPRESSION>
FOLLOWING THE RESERVED WORD "CASE" IS USED AS AN INDEX INTO THE
LIST OF EXPRESSIONS. THE EXPRESSION THUS SELECTED IS EVALUATED,
AND THE OTHER EXPRESSIONS IN iHE LIST IGNORED. THE RANGE OF THE
INDEX IS FROM ZERO TO N-1, WHERE N IS THE NUMBER OF
<EXPRESSION>S IN THE LIST. AN EXAMPLE OF AN <ASSIGNMENT
STATEMENT> CONTAINING A <CASE EXPRESSION> FOLLOWS:

A:=CASE I OF CA+B, A-B, A*B, A/B, A MOD BJ +
CASE J OF CO*F-6, 9, 34+B, CA+BJ MOD B, CJ

IF I=2 AND J=3, THE STATEMENT WILL BE EVALUATED AS FOLLOWS:

BUMP

<BUMPOR> : : =

<MOD IF" I ER> : : =

A:=CA*BJ + CA+BJ MOD B;

BUMP <ADDRESS VARIABLE>
<MODIFIER>

<EMPTY>
I BY <EXPRESSION>

BUMPOR LEAVES ON THE EVALUATION STACK, A DESCRIPTOR OF THE
VARIABLE WHICH HAS BEEN INCREMENTED BY THE VALUE OF THE
MODIFYING <EXPRESSION>. IF <MODIFIER> IS <EMPTY>, THEN THE
VARIABLE IS INCREMENTED BY 1. THE RESULTS OF THE FOLLOWING
EXPRESSIONS CWHERE A IS AN <ARRAY IDENTIFIER>> ARE EQUIVALENT:

BUMP ACX+Y> BY N
ACX+Yl : := ACX+Yl + N

11-3

THE ADVANTAGE OF USING <BUMPOR> IS THAT THE CODE FOR PUTTING THE
DESCRIPTOR ON THE STACK IS EXECUTED ONLY ONCE. THUS IT IS MORE
EFFICIENT.

LI KE AN_Y VAR I ABLE, C < BUMPOR > l WI LL CAUSE A VALUE TO BE LOADED TO
THE TOP OF THE STACK. HENCE:

PCBUMP X BY C-Dl;
PASSES X BY ADDRESS BUT,

PCCBUMP X BY C-Dll;
PASSES X BY VALUE.

<BUMPOR> OPERATES ON ALL THREE DATA TYPES. CHARACTER STRINGS ARE
TREATED AS IF THEY WERE BIT STRINGS. FOR FIELDS GREATER THAN 24
BITS, ONLY THE LOW-ORDER 24 BITS ARE EVALUATED. IF THE FIELD IS
LESS THAN 24 BI TS, IT IS PADDED WITH LEAD I NG ZEROES TO 24 BI TS.

DECREMENT

<DECREMENTOR> ··=

<MODIFIER> : :=

DECREMENT <ADDRESS VARIABLE>
<MODIFIER>

<EMPTY>
BY <EXPRESSION>

THE <DECREMENTOR> WORKS EXACTLY LIKE <BUMPOR> EXCEPT THAT THE
VARIABLE IS DECREASED BY THE VALUE OF THE <EXPRESSION>. SEE
ABOVE.

© 1973, 1974 Burroughs - DO NOT REPRODUCE

ASSIGNOR

<ASSIGNOR> .. -.. -

<NON-DESTRUCTIVE
REPLACE> : : =

<REPLACE, DELETE
LEFT PART> ::=

<REPLACE, DELETE
RIGHT PART> ::=

<ADDRESS VARIABLE>
<NON-DESTRUCTIVE REPLACE>
<EXPRESSION>

<REPLACE, DELETE LEFT PART>
I <REPLACE, DELETE RIGHT PART>

..._, :=

:-.-/ : :=

11-i+

WITH THE EXCEPTION OF THE <NON-DESTRUCTIVE REPLACE> OPERATOR,
THE <ASSIGNOR> PERFORMS THE SAME FUNCTION AS THE <ASSIGNMENT
STATEMENT>. ALL THE RULES WHICH APPLY TO THE <ASSIGNMENT
STATEMENT> ALSO APPLY TO THE <ASSIGNOR>. FOR DISCUSSION OF THE
<NON-DESTRUCTIVE REPLACE>, SEE THE SECTION ENTITLED "THE
REPLACE OPERATOR".

<ADDRESS VARIABLE> · ·=

ADDRESS VARIABLES

<SIMPLE VARIABLE>
I <SUBSCRIPTED VARIABLE>
I <INDEXED VARIABLE>

12-1

I <ADDRESS-GENERATING FUNCTION DESIGNATOR>

<SIMPLE VARIABLE> ::= <SIMPLE IDENTIFIER>

<SIMPLE IDENTIFIER> ::= <IDENTIFIER>

<SUBSCRIPTED VARIABLE> : := <ARRAY IDENTIFIER>(<EXPRESSION>l

<ARRAY IDENTIFIER> : := <IDENTIFIER>

AS NOTED ABOVE, <ADDRESS VARIABLE>S MAY TAKE THE FORM OF A
<SIMPLE IDENTIFIER>, OR AN <ARRAY IDENTIFIER> FOLLOWED BY AN
C<EXPRESSION>l DESIGNATING THE ARRAY ELEMENT IN QUESTION. IN
ADDITION, SIMPLE AND ARRAY IDENTIFIERS MAY BE INDEXED.

INDEXING

<INDEXED VARIABLE> : :=

<INDEX PART> : :=

<SIMPLE IDENTIFIER> <INDEX PART>
I <ARRAY IDENTIFIER> <INDEX PART>

C<EXPRESSION LIST>l

EACH OF THE EXPRESSIONS IN THE <INDEX PART> IS EVALUATED, AND
THE SUM OF THESE IS FORMED. THIS WILL BE CALLED THE INDEX.

THE INDEXING OPERATION OCCURS FUNCTIONALLY AS FOLLOWS:

1. THE SIMPLE OR ARRAY DESCRIPTOR IS LOADED TO
THE TOP OF THE EVALUATION STACK.

2. IF THE DESCRIPTOR IS AN ARRAY DESCRIPTOR, THEN
IT IS CONVERTED TO A SIMPLE DESCRIPTOR WHICH

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

3.

DESCRIBES THE FIRST <ZERO> ELEMENT OF THE
ARRAY.

THE ADDRESS FIELD OF THE DESCRIPTOR
MODIFIED BY ADDING TO IT THE INDEX.

IS

12-2

NOTE THAT SELF-RELATIVE DATA ITEMS Cl.E., DATA ITEMS WHOSE
LENGTH IS NOT GREATER THAN 24, WHICH ARE NOT IN A STRUCTURE,
AND WHICH DO NOT REMAP SOME OTHER DATA ITEM> MAY NOT BE
INDEXED.

THERE ARE TWO METHODS OF INDEXING:

1. THE DESCRIPTOR PROVIDES THE ADDRESS, AND THE
INDEX PROVIDES THE OFFSET FROM THIS ADDRESS.

2. THE DESCRIPTOR PROVIDES THE OFFSET, AND THE
·INDEX PROVIDES THE ADDRESS.

EXAMPLE:

N BITS : 5 BITS : 2 : 3 :
------------------------,---,,---,---------

c D E
8
A

FIELD D MAY BE ACCESSED USING EITHER METHOD Cl> OR METHOD C2l.
ASSUME N CONTAINS THE OFFSET TO 8.

METHOD Cl>:

DECLARE
01 A BITC5000>,

02 BB,

N 8 IT (24) I

X BITC2>;

03 cc BIT (5) I

03 DD BITC2),
03 EE BIT (3) I

I* THE NEXT STATEMENT WILL MOVE DD CWITH THE OFFSET
GIVEN BY N> INTO X *I

X,.._ DD C N l ;

METHOD C2>:

DECLARE
A BITC5000),
01 BB REMAPS BASE,

02 CC BIT C 5 > ,
02 DD BI T C 2 > ,
02 EE BITC3>,

N BITC24),
X BITC2>;

I* THE NEXT STATEMENT WILL MOVE DD
CWITH THE OFFSET GIVEN BY N> INTO X *I

X DDCN, DATA.ADDRESSCA>l;

NOTE THE FOLLOWING:

1. THE STRUCTURE ABOVE, COMPRISED OF BB, CC, DD,
AND EE, WHICH REMAPS BASE IS CALLED A
"TEMPLATE".

2. THIS TEMPLATE MAY BE APPLIED TO ANY DATA AREA
MERELY BY PROVIDING THE ADDRESS AS PART OF THE
INDEX. THIS IS NOT THE CASE WHEN METHODCl)
INDEXING IS USED.

3. THE EXAMPLE ABOVE IS CONTRIVED -- IN METHOD
C2), IF N CONTAINED THE ADDRESS OF B RATHER
THAN THE OFFSET TO B FROM THE BEGINNING OF A,
THEN THE STATEMENTS WHICH STORE D INTO X WOULD
BE IDENTICAL: X,.._DDCNl;

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

12-3

12-'+

ADDRESS GENERATING FUNCTIONS
------~---------------------

<ADDRESS-GENERATING
FUNCTION DESIGNATOR> . ·­.. -

SUBBIT ANO SUBSTR

<SUB-STRING ADDRESS
DESIGNATOR> ::=

<SUB-STRING FUNCTION
IDENTIFIER> ::=

<STRING ADDRESS> ::=

<ADDRESS GENERATOR> ::=

<OFFSET PART> ::=

<LENGTH PART> ::=

<SUB-STRING ADDRESS DESIGNATOR>
I <FETCH COMMUNICATE MESSAGE

POINTER DESIGNATOR>
I <DESCRIPTOR DESIGNATOR>
I <DESCRIPTOR-GENERATOR DESIGNATOR>
I <ADDRESS-MODIFIER DESIGNATOR>

<SUB-STRING FUNCTION IDENTIFIER>
C<STRING ADDRESS>,<OFFSET PART>>

I <SUB-STRING FUNCTION IDENTIFIER>
C<STRING ADDRESS>,<OFFSET PART>,
<LENGTH PART»

SUBBIT I SUBSTR

<ADDRESS GENERATOR>

SEE "ADDRESS GENERATOR"

<EXPRESSION>

<EXPRESSION>

SUBSTR YIELDS A SUB-STRING OF A CHARACTER STRING IDENTIFIED BY
THE <STRING ADDRESS>. THE BEGINNING CHARACTER OF THE SUB-STRING
IS SPECIFIED BY THE <OFFSET PART> <WHERE THE FIRST CHARACTER OF
THE STRING IS ZERO>. THE <LENGTH PART> SPECIFIES THE LENGTH OF
THE SUB-STRING. IF OMITTED, THE REST OF THE STRING FROM THE
"OFFSET" CHARACTER IS ASSUMED. FOR EXAMPLE:

IF x.-"CHARACTER"
c.-"COALITION"

THEN
SUBSTRCX,4).-SUBSTRCC,0,4>

YIELDS THE CHARACTER STRING:
"CHARCOAL II

12-5

LIKE ALL CHARACTER-TO-CHARACTER STORE OPERATIONS, IF THE
RECEIVING FIELD IS LARGER THAN THE SENDING FIELD, THE SENDING
FIELD IS PADDED WITH BLANKS ON THE RIGHT. IF THE SENDING FIELD
IS LONGER, CHARACTERS ARE TRUNCATED FROM THE RIGHT. NOTE THAT
THIS IS A FUNCTION OF THE STORE OPERATOR AND NOT SUBSTR.

SUBBIT YIELDS A SUB-STRING OF A BIT STRING IDENTIFIED BY THE
<STRING ADDRESS>. THE BEGINNING BIT OF THE SUB-STRING IS
SPECIFIED BY THE <OFFSET PART> CNOTE: THE FIRST BIT OF THE
STRING ISO>. THE LENGTH OF THE SUB-STRING IS SPECIFIED BY THE
<LENGTH PART> WHICH, IF OMITTED, WILL BE ASSUMED TO BE THE REST
OF THE STRING.

EXAMPLE:

IF A.-@<1>0010101101@
B--@<1>00001111010

THEN
SUBBITCA,2,3> CAT SUBBITCB,5>

RESULTS IN:
@(1)10111101@

AND
SUBBITCA,3> CAT SUBBITCB,0,6>

RESULTS IN:
•Cl>0101101000011•

FETCH.COMMUNICATE.MSG.PTR

<FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR> : := FETCH.COMMUNICATE.MSG.PTR

SEE THE 81700 MCP REFERENCE MANUAL FOR A DESCRIPTION OF THE RUN

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

12-6

STRUCTURE.

IF THE RS.M<:;P.BIT IS SET, THEN RS.COMMUNICATE.MSG.PTR IS
ACCESSED. OTHERWISE, RS.REJNSTATE.MSG.PTR JS ACCESSED. THE
ACCESSED FIELD JS ASSUMED TO BE A DESCRIPTOR AND JS PLACED ON
THE TOP OF THE EVALUATION STACK.

EXAMPLE:·

DESCRIPTOR C COM,M. MSG> FETCH. COMMUN I CA TE .. MSG. PTR;

COMM.MSG NOW DESCRIBES THE COMMUNICATE MESSAGE, ASSUMING THAT
THE MESSAGE WAS DESCRIBED BY A NON-SELF-RELATIVE DESCRIPTOR.

DESCRIPTORS

<DESCRIPTOR DESIGNATOR>::= . DESCRIPTOR C<SIMPLE IDENTIFIER>>
I DESCRIPTOR C<ARRAY IDENTIFIER>>

"DESCRIPTOR" PLACES ON THE EVALUATION STACK, A DESCRIPTOR WHICH
DESCRIBES THE DESCRIPTOR OF A <SIMPLE IDENTIFIER> OR AN <ARRAY
IDENTIFIER>. THE DESCRIPTOR FUNCTION MAY APPEAR AS THE OBJECT
OF A REPLACEMENT, THEREBY PROVIDING EASY ACCESS TO ANY PART OF
A DESCRIPTOR.

EXAMPLE:

1. SUBBITCDESCRIPTORCX>.~,2l._2;

2. DESCRIPTORCX>,...DESCRIPTORCYl;

EXAMPLE (2l FORCES BOTH X AND Y TO DESCRIBE
THE SAME DATA NAME. NOTE, HOWEVER, THAT IF X
AND Y ARE NOT EITHER BOTH SIMPLE ITEMS OR BOTH
ARRAYS, THE RESULT WILL BE INCORRECT.

MAKE.DESCRIPTOR

<DESCRIPTOR-GENERATOR
DESIGNATOR> : : =

12-7

MAKE.DESCRIPTORC<EXPRESSION>>

THE VALUE WHICH IS GENERATED BY THE <EXPRESSION> IS ASSUMED TO
BE A DESCRIPTOR. THIS DESCRIPTOR REPLACES ON THE EVALUATION
STACK, THE DESCRIPTOR REPRESENTING THAT <EXPRESSION>. IF THE
NAME-VALUE BIT OF THE EXPRESSION-S DESCRIPTOR ON THE EVALUATION
STACK IS SET, THEN THE VALUE OF THE <EXPRESSION> IS REMOVED
FROM THE VALUE STACK.

A <DESCRIPTOR GENERATOR DESIGNATOR> MAY APPEAR AS THE OBJECT OF
A REPLACEMENT, HOWEVER THE PROGRAMMER IS RESPONSIBLE TO SEE
THAT THE DESCRIPTOR BUILT GENERATES AN ADDRESS. THERE IS NO
SYNTAX CHECK FOR THIS.

THE FOLLOWING EXAMPLES ILLUSTRATE THE RELATIONSHIPS BETWEEN THE
DESCRIPTOR FUNCTIONS:

DESCRIPTORCX>=VALUE.DESCRIPTORCX>,
WHERE X IS NON-SELr-RELATIVE

MAKE.DESCRIPTOR CDESCRIPTORCX>> = X,
WHERE X IS NON-SELF-RELATIVE

MAKE.DESCRIPTOR CVALUE.DESCRIPTORCE>> = E,
WHERE E IS AN <ADDRESS GENERATOR>

VALUE.DESCRIPTOR CMAKE.DESCRIPTORCE>> = E,
WHERE THE VALUE OF E IS A VALID <ADDRESS GENERATOR>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

12-8

NEXT-PREVIOUS.ITEM
-----------------~

<ADDRESS-MODIFIER
DESIGNATOR> ::= <ADDRESS-MODIFIER FUNCTION IDENTIFIER>

C<SIMPLE IDENTIFIER>>

<ADDRESS-MODIFIER
FUNCTION IDENTIFIER> ::= NEXT. ITEM

I PREVIOUS.ITEM

THE NEXT.ITEM FUNCTION CAUSES THE LENGTH FIELD OF THE DESCRIPTOR
REPRESENTED BY THE <SIMPLE IDENTIFIER> TO BE ADDED TO THE
ADDRESS FIELD OF THAT DESCRIPTOR. THIS MODIFIED DESCRIPTOR IS
PUT BACK ONTO THE NAME STACK, AND ALSO MOVED TO THE TOP OF THE
EVALUATION STACK. MOVING THE MODIFIED DESCRIPTOR TO THE
EVALUATION STACK IS, IN EFFECT, A LOAD ADDRESS OF THE NEW ITEM
DESCRIBED BY THE <SIMPLE IDENTIFIER>. HENCE, "NEXT.ITEM" MAY BE
USED AS THE OBJECT OF A REPLACEMENT. FOR EXAMPLE, THE FOLLOWING
STATEMENTS:

DECLARE 01 CHAR.STRING CHARACTERClOOOJ,
02 NEXT.CHAR CHARACTERClJ;

NEXT. ITEM C NEXT. CHAR> - "D" ;

HAVE THE EFFECT OF STORING "D'' INTO THE SECOND CHARACTER OF
CHAR.STRING, WHICH IS:

SUBSTRCCHAR.STRING,1 ,1>

THE PREVIOUS.ITEM FUNCTION IS IDENTICAL TO NEXT.ITEM EXCEPT THAT
A SUBTRACTION COF LENGTH FROM ADDRESS> IS PERFORMED.

ADDRESS GENERATORS

<ADDRESS
GENERATOR LIST> ::=

<ADDRESS GENERATOR> ::=

<BUMPOR> : : =

<DECREMENTOR> ::=

<CONDITIONAL ADDRESS
GENERATOR> : : =

<CASE ADDRESS
GENERATOR> : : =

<ADDRESS-GENERATING
ASSIGNOR> : : =

<ADDRESS GENERATOR>
I <ADDRESS GENERATOR>,

<ADDRESS GENERATOR LIST>

<ADDRESS VARIABLE>
I .<BUMPOR>
I <DECREMENTOR>

12-9

I <CONDITIONAL ADDRESS GENERATOR>
I <CASE ADDRESS GENERATOR>
I <ADDRESS-GENERATING ASSIGNOR>

SEE "BUMPOR"

SEE "DECREMENTOR"

IF <EXPRESSION>
THEN <ADDRESS GENERATOR>
ELSE <ADDRESS GENERATOR>

CASE <EXPRESSION>
OF C<ADDRESS GENERATOR LIST>l

<ADDRESS VARIABLE>
<REPLACE, DELETE LEFT PART>
<ADDRESS GENERATOR>

I <ADDRESS VARIABLE>
<REPLACE, DELETE RIGHT PART>
<EXPRESSION>

THE <ADDRESS GENERATOR> INCLUDES ANY PRIMARY WHICH LEAVES AN
ADDRESS ON THE TOP OF THE EVALUATION STACK. SEE "PRIMARY
ELEMENTS OF THE EXPRESSION" FOR MORE EXPLICIT DETAIL.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

<VALUE VARIABLE> ::=

<FILE DESIGNATOR>::=

<TYPED PROCEDURE
DESIGNATOR> ::=

<TYPED PROCEDURE
IDENTIFIER> : :=

13-1

VALUE VARIABLES

<VALUE-GENERATING ~UNCTION DESIGNATOR>
I <TYPED PROCEDURE DESIGNATOR>
I <<ADDRESS VARIABLE>)
I <FILE DESIGNATOR>

<FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> <<EXPRESSION>>

<TYPED PROCEDURE IDENTIFIER>
<ACTUAL PARAMETER PART>

<IDENTIFIER>

<ACTUAL PARAMETER PART> : := <EMPTY>
I <<ACTUAL PARAMETER LIST>l

<ACTUAL PARAMETER LIST> : := <ACTUAL PARAMETER>

<ACTUAL PARAMETER> ::=

<ARRAY DESIGNATOR> ::=

<ARRAY IDENTIFIER> : :=

I <ACTUAL PARAMETER>,
<ACTUAL PARAMETER LIST>

<EXPRESSION>
I <ARRAY DESIGNATOR>

<ARRAY IDENTIFIER>

<IDENTIFIER>

NOTICE FROM THE ABOVE SYNTAX THAT ANY <ADDRESS VARIABLE>
ENCLOSED IN PARENS, SUCH AS CSUBBIT CA,I,Jll, WILL BE TREATED
AS A VALUE VARIABLE.

THE VALUE GENERATED BY A <FILE DESIGNATOR> IS THE FPB NUMBER OF
THE SPECIFIED FILE. A WARNING MESSAGE WILL BE ISSUED.

THE TYPED PROCEDURE CA PROCEDURE WHICH RETURNS A VALUEl IS
INVOKED WITHIN AN EXPRESSION ACCORDING TO THE ABOVE SYNTAX. THE
PROCEDURE IDENTIFIER, FOLLOWED BY ITS PARAMETERS CIF ANYl,
ENCLOSED WITHIN PARENS, IS TREATED AS AN OPERAND IN THE
EXPRESSION. FOR DETAILS ON PASSING PARAMETERS, SEE "ADDRESS AND

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

13-2

VALUE PARAMETERS". THE PROCEDURE IS EVALUATED AND THE RETURNED
VALUE REPLACES THE <TYPED PROCEDURE DESIGNATOR>. FOR EXAMPLE:

DECLARE Z FIXED;
PROCEDURE XCA,B> FIXED;

FORMAL CA,B> FIXED;

END X;
Z := XCBUMP M,R>+l;

VALUE GENERATING FUNCTIONS

<VALUE-GENERATING
FUNCTION DESIGNATOR> : := <SWAP DESIGNATOR>

I <SUB-STRING VALUE DESIGNATOR>
I <DISPATCH DESIGNATOR>
I <LOCATION DESIGNATOR>
I <CONVERT DESIGNATOR>
I <LENGTH DESIGNATOR>
I <MEMORY SIZE DESIGNATOR>
I <DESCRIPTOR-VALUE-GENERATOR DESIGNATOR>
I <INTERROGATE INTERRUPT STATUS DESIGNATOR>
I <DECIMAL CONVERSION DESIGNATOR>
I <BINARY CONVERSION DESIGNATOR>
I <TIME FUNCTION DESIGNATOR>
I <DATE FUNCTION DESIGNATOR>
I <NAME-OF-DAY FUNCTION DESIGNATOR>
I <BASE REGISTER DESIGNATOR>
I <LIMIT REGISTER DESIGNATOR>
I <CONTROL STACK TOP DESIGNATOR>
I <DATA ADDRESS DESIGNATOR>
I <SEARCH.LINKED.LIST DESIGNATOR>
I <SORT.STEP.DOWN DESIGNATOR>
I <SORT.UNBLOCK DESIGNATOR>
I <SORT.SEARCH DESIGNATOR>
I <PARITY.ADDRESS DESIGNATOR>
I <DYNAMIC MEMORY BASE DESIGNATOR>
I <HASH CODE DESIGNATOR>
I <NEXT TOKEN DESIGNATOR>
I <DELIMITED TOKEN DESIGNATOR>
I <EVALUATION STACK TOP DESIGNATOR>
I <CONTROL STACK BITS DESIGNATOR>
I <NAME STACK TOP DESIGNATOR>

SWAP

13-3

I <DISPLAY BASE DESIGNATOR>
I <CONSOLE SWITCHES DESIGNATOR>
I <SEARCH SERIAL LIST DISJGNtTOR>
I <SPO INPUT PRESENT DESIGNATOR>
I <SEARCH.SOL.STACKS DESIGNATOR>
I <EXECUTE DESIGNATOR>

<SWAP DESIGNATOR> : := SWAP (<ADDRESS GENER~TOR>,<EXPRESSION>>

THE LENGTH OF THE VALUE DESCRIBED BY THE <ADDRESS GENERATOR> IS
USED AS THE LENGTH, L, OF THE DATA TO BE "SWAPPED". HOWEVER, IF
THE LENGTH OF THE VALUE JS GREATER THAN 24 BITS, L WILL BE 24
·BITS, AND ONLY THE LOW-ORDER 24 BITS OF THE <ADDRESS GENERATOR>
WILL BE MODIFIED.

THE RIGHTMOST L BITS OF THE VALUE DESCRIBED BY THE <ADDRESS
GENERATOR> ARE ISOLATED, AND BECOME THE DESTINATION FIELD.

THE RIGHTMOST L BITS OF THE VALUE GENERATED BY THE <EXPRESSION>
ARE ISOLATED. LEADING ZEROES ARE SUPPLIED IF THE LENGTH OF THE
VALUE IS LESS THAN L BITS LONG. THIS FIELD JS KNOWN AS THE
SOURCE FIELD.

THE SOURCE FIELD IS STORED INTO THE DESTINATION FJELD, THE
ORIGINAL VALUE OF WHICH JS THE VALUE RETURNED. THE RETURNED
VALUE JS OF TYPE BIT AND OF LENGTH L.

EXAMPLE:

A_.0;
IF SWAP (A,1> THEN DO END;

ELSE DO END;

IN THE ABOVE EXAMPLE, THE "ELSE" P~RT OF THE STATEMENT IS
EVALUATED, SINCE A WAS ORIGINALLY SET TO 0 <J.E., FALSE>. AT
THE END OF THE EVALUATION, 1 HAS BEEN STORED INTO A, AND 0
RETURNED TO THE TOP OF THE EVALUATION STACK.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

SUBBIT ANO SUBSTR

<SUB-STRING VALUE
DESIGNATOR> : :=

<SUB-STRING FUNCTION
IDE NT IF I ER> : : =

<STRING VALUE> ::=

<OFFSET PART> ::=

<LENGTH PART> ::=

13-4

<SUB-STRING FUNCTION IDENTIFIER>
C<STRING VALUE>,<OFFSET PART>J

I <SUB-STRING FUNCTION IDENTIFIER>
C<STRING VALUE>,<OFFSET PART>,
<LENGTH PART))

SUBS IT I SUBS TR

<EXPRESSION>

<EXPRESSION>

<EXPRESS ION>

THE <SUB-STRING VALUE DESIGNATOR> AND THE <SUB-STRING ADDRESS
DESIGNATOR> ARE IDENTICAL EXCEPT THAT THE FORMER RETURNS A
VALUE IF ITS <STRING VALUE> IS NOT AN <ADDRESS GENERATOR>.
PLEASE SEE "SUBBIT AND SUBSTR" UNDER "ADDRESS VARIABLES" FOR
THE SPECIFICS OF THE FUNCTION.

THE FOLLOWING EXAMPLES ILLUSTRATE SOME OF THE USES OF THE
<SUB-STRING VALUE DESIGNATOR>:

x--suBSTR(A CAT B,5,10);
MAKE.DESCRIPTOR(@48@ CAT SUBBITCA OR 8, 0, 16l CAT Xl
IF SUBS TR (lt06o CAT "ABC" , 0 J = Y THEN ... ;

DISPATCH

<DISPATCH DESIGNATOR> : := DISPATCH(<PORT,CHANNEL,PRIORITY>,
<IIO DESPRIPTOR ADDRESS>>

<PORT,CHANNEL,PRIORITY> : := <EXPRESSION>

<IIO DESCRIPTOR
ADDRESS> : : = <EXPRESSION>

THE RIGHTMOST SEVEN BITS OF THE VALUE OF <PORT, CHANHr.~:L,

PRIORITY> CONTAIN THE FOLLOWING INFORMATION FROM LEFT TO RIGHT

3 BITS 3 BITS 1 SIT

13-5

: PORT : CHANNEL : PRIORITY :
-------------------------------~--------

THE RIGHTMOST 24 BITS OF THE VALUE OF THE <IIO DESCRIPTOR
ADDRESS> IS THE ABSOLUTE ADDRESS OF THE I/O DESCRIPTOR.

USING THESE TWO VALUES, AN I/O OPERATION IS INITIATED. A BIT
VALUE WITH THE FOLLOWING MEANINGS IS RETURNED:

0 = DISPATCH REGISTER LOCK BIT SET
1 = SUCCESSFUL DISPATCH
2 = SUCCESSFUL DISPATCH, BUT MISSING DEVICE

LOCATION

<LOCATION DESIGNATOR> ::= LOCATION C<PROCEDURE IDENTIFIER>>
I LOCATION C<SIMPLE IDENTIFIER>>
I LOCATION C<ARRAY IDENTIFIER>>

<PROCEDURE IDENTIFIER> ::= <IDENTIFIER>

<SIMPLE IDENTIFIER>::= <IDENTIFIER>

<ARRAY IDENTIFIER>:: <IDENTIFIER>

FOR PROCEDURES, THE <LOCATION DESIGNATOR> RETURNS A 33-BIT VALUE
CTYPED BIT> CONTAINING, FROM LEFT TO RIGHT:

ADDRESS TYPE, CONTAINING •C3)6o
SEGMENT NUMBER
PAGE NUMBER
DISPLACEMENT

3 BITS
6 BITS
4 BITS
20 BITS

THIS 33-BIT VALUE IS THE ADDRESS OF THE PROCEDURE IN QUESTION.

A FORWARD DECLARATION IS REQUIRED ONLY DURING RECOMPILATION OR
CREATE-MASTER FOR ANY PROCEDURE ON WHICH A LOCATION IS
PERFORMED. AN ERROR IS GIVEN IF THIS IS NOT DONE .

FOR SIMPLE AND ARRAY IDENTIFIERS, THE <LOCATION DESIGNATOR>
RETURNS A 16-BIT VALUE CTYPED BITl CONTAINING, FROM LEFT TO
RIGHT:

ADDRESS TYPE CONTAINING @C2l0@ 2 BITS

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

LEXIC LEVEL
OCCURRENCE NUMBER

CONVERT

4 BITS
10 BITS

<CONVERSION DESIGNATOR> ··= CONVERT C<EXPRESSION>,
<CONVERSION PART>>

<CONVERSION PART> ::=

<CONVERSION TYPE> : :=

<BIT GROUP SIZE> : :=

I CONV C<EXPRESSION>,
<CONVERSION PART>l

<CONVERSION TYPE>
I <CONVERSION TYPE>,

< B IT GROUP S I ZE >

BIT I CHARACTER I FIXED

1/2/3/4

13-6

THE <EXPRESSION>, WHICH MAY BE OF ANY DATA TYPE, Will BE
CONVERTED AS SPECIFIED BY THE <CONVERSION TYPE>. THE CONVERTED
<EXPRESSION> WILL BE RETURNED AS A VALUE.

THE <BIT GROUP SIZE> IS USED ONLY WITH BIT-TO-CHARACTER OR
CHARACTER-TO-BIT CONVERSIONS. IT SPECIFIES THE NUMBER OF BITS
COF THE BIT STRING> WHICH CORRESPOND TO A CHARACTER IN THE
CHARACTER STRING.

NOTE: BIT-TO-CHARACTER CONVERSION DOES
DECIMAL DIGITS. IF A BIT STRING
CONVERTED TO DECIMAL DIGITS, IT
STORED IN A FIXED VARIABLE, AND
VARIABLE CONVERTED.

NOT YIELD
IS TO BE
SHOULD BE
THE FIXED

13-7

THE FOLLOWING TABLE SHOWS THE POSSIBLE CONVERSION COMBINATIONS:

OUTPUT: BIT CHARACTER FIXED

INPUT:
CONVERT TO CHAR. RETURN 24 BITS

BIT NO CHANGE UNDER CONTROL OF PROVIDING LEADING
<BIT GROUP SIZE>; ZEROES OR LEFT
IF OM IT TED USE 4 TRUNCATION, AS

NECESSARY

CONVERT TO BITS
CHARACTER UNDER CONTROL OF NO CHANGE SEE NOTE

<BIT GROUP SIZE>;
JF OMITTED USE 4

DECIMAL CONVER-
CHANGE TYPE SION W/ LEADING

FIXED TO BIT ZEROS & SIGN NOT NO CHANGE
SUPPRESSED. (7
DIGITS + SIGN>.

NOTE: THE CHARACTER STRING MAY HAVE LEADING BLANKS,
SJGN COR NONE>, MORE BLANKS, AND DECIMAL
DIGITS. A PLUS SIGN IS IGNORED. THE DECIMAL
QIGITS CONLY THE LOW-ORDER 7> ARE CONVERTED TO
A BINARY NUMBER THAT IS RIGHT JUSTIFIED IN A
24-BIT FIELD. IF THE SIGN WAS MINUS, THEN THE
2-S COMPLEMENT OF THE 24-BIT FIELD IS
REfURNED.

EXAMPLES:

CONVERT
CONVERT
CONVERT
CONVERT
CONVERT
CONVERT

C" - 72581",FIXED>
C•C3>752•,CHARACTER,4>
COCl>llOllO,FIXED>
C " 1 32 " , B IT , 2 >
C " 1 32 " , B I T , 4 >

C"2 ",BIT>

RETURNS -72581
"lEA"
27
0(2)1320
0 (4) 1320
0(4)20•

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

13-8

LENGTH

<LENGTH DESIGNATOR> ::= LENGTH <<EXPRESSION>)

THE <LENGTH DESIGNATOR> RETURNS A 24-BIT, TYPE BIT FIELD
CONTAINING THE NUMBER OF UNITS IN THE <EXPRESSION>. IF THE
<EXPRESSION> IS TYPE CHARACTER, THEN EACH CHARACTER IS A UNIT.
OTHERWISE, EACH BIT IS A UNIT.

MEMORY SIZE

<MEMORY SIZE
DESIGNATOR> ::= S.MEM.SIZE I M.MEM.SIZE

THE REQUESTED MEMORY SIZE IS RETURNED AS A 24-BIT DATA ITEM OF
TYPE BIT.

VALUE DESCRIPTOR

<DESCRIPTOR~VALUE GENERATOR
DESIGNATOR> ::= VALUE.DESCRIPTOR <<ADDRESS GENERATOR>l

<ADDRESS GENERATOR> ::= SEE "ADDRESS GENERATORS"

THE <ADDRESS GENERATOR> IS REPRESENTED BY A DE~CRI"PTOR AT THE
TOP OF THE EVALUATION STACK. THIS DESCRIPTOR IS MOVED TO THE
VALUE STACK. IN ITS PLACE ON THE EVALUATION STACK IS LEFT A
DESCRIPTOR DESCRIBING THE ONE JUST MOVED TO THE VALUE STACK.

THE NAME-VALUE BIT IS SET IN THE DESCRIPTOR LEFT IN THE
EVALUATION STACK.

INTERROGATE INTERRUPT STATUS

<INTERROGATE INTERRUPT
STATUS DESIGNATOR> ::= INTERROGATE.INTERRUPT.STATUS

13-9

A 24-BIT DATA ITEM OF TYPE BIT IS RETURNED. THE VALUE REPRESENTS
THE INTERRUPT BITS OF THE M-MACHINE. THE APPLICABLE M-MACHINE
INTERRUPT BITS ARE RESET. NOTE THAT THE INCN BITS WILL NOT BE
RESET.

DECIMAL CONVERSION

<DECIMAL CONVERSION
DESIGNATOR> ::=

<DECIMAL STRING SIZE> : :=

DECIMAL C<EXPRESSION>,
<DECIMAL STRING SIZE>>

<EXPRESSION>

THE VALUE OF THE FIRST <EXPRESSION> FOLLOWING THE RESERVED WORD
"DECIMALtt IS CONVERTED TO A STRING OF DECIMAL CHARACTERS. IF
THE VALUE OF THE <EXPRESSION> GENERATES MORE THAN 24 BITS, THEN
ONLY THE LOW-ORDER 24 8 7S ARE USED.

THE NUMBER OF CHARACTERS RETURNED IS GIVEN BY THE VALUE OF THE
<DECIMAL STRING SIZE>. A MAXIMUM OF 8 DECIMAL CHARACTERS WILL
BE RETURNED, EVEN IF THE VALUE OF THE <DECIMAL STRING SIZE> IS
GREATER. IF THE <DECIMAL STRING SIZE> IS LESS THAN THE NUMBER
OF DECIMAL CHARACTERS, THEN CHARACTERS ARE TRUNCATED FROM THE
LEFT.

BINARY CONVERSION

<BINARY CONVERSION
DESIGNATOR> : := BINARY C<EXPRESSION>l

THE <BINARY CONVERSION DESIGNATOR> RETURNS A FIXED VALUE WHICH
IS THE BINARY REPRESENTATION OF THE <EXPRESSION>. THE
<EXPRESSION> IS ASSUMED TO BE A CHARACTER STRING CONTAINING
DECIMAL DIGITS. ONLY THE LOW-ORDER 8 CHARACTERS WILL BE
CONVERTED. ZONE BITS ARE IGNORED.

~ 1973, 1974 Burroughs - DO NOT REPRODUCE

13-10

IF THE CONVERSION RESULTS IN A BINARY VALUE GREATER THAN 24 BITS
~I.E., IF THE DECIMAL NUMBER IS GREATER THAN 16,777,215), THEN
THE LEFT-MOST BITS WILL BE TRUNCATED.

IF THE DECIMAL NUMBER IS GREATER THAN 8,388,607 CI.E., C2 EXP
23>-1>, THEN THE RETURNED VALUE WILL APPEAR TO BE NEGATIVE
CI.E., THE HIGH-ORDER BIT IS 1).

TIME FUNCTION

<TI ME FUNCTION
DESIGNATOR> : : =

<TIME FORMAT> ::=

<REPRESENTATION> ::=

.TIME
I TIME <<TIME FORMAr>,(REPRESENTATION>l

COUNTER I MILITARY I CIVILIAN

BIT I DIGIT I CHARACTER

THE <TIME FUNCTION DESIGNATOR> RETURNS A BIT OR CHARACTER STRING
WHICH IS THE TIME OF THE FUNCTION-S EXECUTION. THE <TIME
FORMAT> MAY HAVE THREE BASIC FORMATS:

COUNTER RETURNS THE TIME OF DAY IN TENTHS OF
SECONDS.

MILITARY RETURNS THE TIME OF DAY IN THE FOLLOWING
FORM HHMMSST <WHERE T=TENTHS OF
SECONDS>.

CIVILIAN RETURNS HHMMSSTAPCWHERE AP=AM OR PM>.

THE TIME OF DAY MAY BE REPRESENTED IN EITHER BITS, DIGITS, OR
CHARACTERS IN THE FOLLOWING FORMATS:

COUNTER
MIL IT ARY
CIVILIAN

NOTE:

BIT
20 BITS
5+6+6+4=21·
4+6+6+4+16=36

DIGIT
24 BITS
8+8+8+4=28
8+8+8+4+16=44

CHARACTER
48 BITS
16+16+16+8=56
16+16+16+8+16=72

"TIME" AND "TIME CCIVILIAN,CHARACTER>" ARE
EQUIVALENT.

DATE FUNCTION

<DATE FUNCTION
DESIGNATOR> ::=

13-11

DATE
I DATE (<DATE FORMAT>,<REPRESENTATION>>

<DATE FORMAT> ::= JULIAN I MONTH I DAY I YEAR

<REPRESENTATION> ::= BIT I DIGIT I CHARACTER

THE <DATE FUNCTION DESIGNATOR> RETURNS A BIT OR CHARACTER STRING
WHICH IS THE DATE OF THE EXECUTION OF THE FUNCTION.

"DATE" AND "DATE (MONTH,CHARACTER>" ARE EQUIVALENT.

THE FORMATS CIN BITS> OF THE RETURNED STRINGS ARE:

JULIAN CYYDDD>
MONTH CMMDDYY>
DAY CDDMMYY)
YEAR CYYMMDD>

BIT
7+9=16
4+5+7=16
5+4+7=16
7+4+5=16

DIGIT
8+12=20
8+8+8=24
8+8+8=24
8+8+8=24

EXAMPLE: DECLARED CHARACTERC5>;
DDATE CJULIAN,CHARACTER>;

NAME OF DAY

<NAME OF DAY FUNCTION
DESIGNATOR> : := NAME.OF.DAY

CHARACTER
16+24=40
16+16+16=48
16+16+16=48
16+16+16=48

A CHARACTER STRING, WHICH IS THE NAME OF THE DAY OF THE WEEK, IS
RETURNED AS A 9-CHARACTER STRING. THE NAME IS LEFT JUSTIFIED.

EXAMPLE: DECLARE DAY CHARACTERC9);
DAYNAME.OF.DAY

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

BASE REGISTER

<BASE REGISTER
DESIGNATOR> ::=

13-12

BASE.REGISTER

A 24-BIT VALUE OF TYPE BIT IS RETURNED. THE VALUE IS THE
ABSOLUTE ADDRESS OF THE BASE OF THE PROGRAM. IT SHOULD BE NOTED
THAT TWO SEPARATE EXECUTIONS OF "BASE.REGISTER" MAY NOT YIELD
THE SAME RESULTS, SINCE THE MCP MAY HAVE MOVED THE PROGRAM IN
MEMORY.

LIMIT REGISTER

<LIMIT REGISTER
DESIGNATOR> ::= LIMIT .REGISTER

THE <LIMIT REGISTER DESIGNATOR> RETURNS A 24-BIT VALUE CTYPE
BIT> WHICH IS THE BASE RELATIVE ADDRESS OF THE PROGRAM-S RUN
STRUCTURE. FOR FURTHER EXPLANATION, PLEASE REFER TO THE "Bl500
MCP MANUAL II •

CONTROL STACK TOP

<CONTROL STACK TOP
DESIGNATOR> : := CONTROL.STACK.TOP

A 24-BIT VALUE OF TYPE BIT IS RETURNED. THE VA~UE IS THE BASE
RELATIVE ADDRESS OF THE NEXT ENTRY TO BE PLACED ON THE CONTROL
STACK.

DATA ADDRESS

<DATA ADDRESS
DESIGNATOR> : :=

<ADDRESS GENERATOR> ::=

DATA.ADDRESS C<ADDRESS GENERATOR>l

SEE "ADDRESS GENERATORS"

THE <DATA ADDRESS DESIGNATOR> RETURNS A 24-BIT VALUE CTYPE BIT>

13-13

WHICH IS THE BASE RELATIVE ADDRESS GENERATED BY THE <ADDRESS
GENERA TOR> .

SEARCH.LINKED.LIST

<SEARCH.LINKED.LIST
DESIGNATOR> : :=

<RECORD ADDRESS> ::=

<ARGUMENT INDEX> ::=

<COMPARE VARIABLE> ::=

<RELATION> ::=

<LINK INDEX> : : =

SEARCH.LINKED.LIST
(<RECORD ADDRESS>~<ARGUMENT INDEX>,
<COMPARE VARIABLE>,<RELATION>,
<LINK INDEX»

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

< I ~ I = I ~ I ~ I > I
LSS I LEQ I EQL I NEQ I
GEQ I GTR

<EXPRESSION>

EACH OF THE FOUR EXPRESSIONS ABOVE GENERATES A 24-BIT VALUE
WHICH IS LOADED TO THE TOP OF THE EVALUATION STACK. THE
MEANINGS OF EACH EXPRESSION IS AS FOLLOWS:

1. THE <RECORD ADDRESS> IS THE BASE RELATIVE
ADDRESS OF THE FIRST STRUCTURE TO BE EXAMINED.

2. THE <ARGUMENT INDEX> IS THE RELATIVE OFFSET
AND SIZE IN THE STRUCTURE, OF THE 24 (QR LESS>
BIT FIELD BEING COMPARED WITH THE <COMPARE
VARI ABLE>.

3. THE <COMPARE VARIABLE> IS THE CONTROL AGAINST
WHICH THE SPECIFIED FIELD IN THE STRUCTURE IS
COMPARED.

4. THE <RELATION> SPECIFIES THE DESIRED RELATION
IN THE COMPARISON OF THE TWO VALUES.

5. THE <LINK INDEX> IS THE RELATIVE OFFSET AND
SIZE IN THE STRUCTURE, OF THE 24 (QR LESS> BIT
FIELD CONTAINING THE ADDRESS OF THE NEXT
STRUCTURE TO BE EXAMINED (IF COMPARISON WITH
THE CURRENT STRUCTURE FAILS>.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

13-14

THE LAST STRUCTURE IN THE LINKED LIST CONTAINS ALL 1 BITS IN THE
FIELD DESCRIBED BY THE <LINK INDEX>.

THE LINKED LIST IS SEARCHED UNTIL THE DESIRED COMPARISON
SUCCEEDS OR UNTIL THE COMPARISON FAILS WITH THE LAST STRUCTURE.

IF THE SEARCH SUCCEEDS, T-HE BASE-RELATIVE ADDRESS OF THE CURRENT
STRUCTURE IS LEFT ON THE EVALUATION STACK AS A 24-BIT VALUE. IF
THE SEARCH FAILS, oFFFFFF@ IS LEFT ON THE STACK.

SORT.STEP.DOWN

<SORT.STEP.DOWN
DESIGNATOR> ::=

<RECORD 1> ::=

<RECORD 2> : : =

<KEY TABLE ADDRESS> ::=

FOR USE BY SORT ONLY.

SORT.STEP.DOWN
C<RECORD 1>,<RECORD 2>,
<KEY TABLE ADDRESS>l

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

THE <SORT.STEP.DOWN DESIGNATOR> PROVIDES THE INFORMATION
NECESSARY TO COMPARE TWO RECORDS. <RECORD!> AND <RECORD 2> ARE,
RESPECTIVELY, THE FIRST AND SECOND RECORDS WHICH ARE TO BE
COMPARED. THE <KEY TABLE ADDRESS> SPECIFIES THE SORT KEY USED
IN THE COMPARISON.

SORT.UNBLOCK

<SORT.UNBLOCK
DESIGNATOR> : :=

<MINI FIB ADDRESS> : :=

<LENGTH> : :=

<SOURCE> : : =

SORT.UNBLOCK C<MINI FIB ADDRESS>,
<LENGTH>,<SOURCE>,<DESTINATION>J

<ADDRESS GENERATOR>

<EXPRESSION>

<EXPRESSION>

13-15

<DESTINATION> ::= <EXPRESSION>

FOR USE BY SORT ONLY.

THE <SORT.UNBLOCK DESIGNATOR> MOVES A RECORD TO OR FROM A
BUFFER, UPDATING THE BUFFER POINTER AND BLOCK COUNT. IT
NORMALLY RETURNS A ZERO. WHEN THE BLOCK COUNT GOES TO ZERO, IT
RESTORES THE ORIGINAL BUFFER POINTER AND BLOCK COUNT, AND
RETURNS A 1, SIGNALLING THE NEED FOR AN I/O.

A BIT ON THE MINI-FIB SIGNALS SORT.UNBLOCK TO CREATE SORT TAGS.
FOR THIS FUNCTION, IT USES THE SORT KEY TABLE AND SELECTS ONLY
THE KEY INFORMATION TO MOVE FROM THE BUFFER1 A VALUE IN THE
MINI-FIB REPRESENTS THE LENGTH OF THE RECEIVING FIELD.

SORT.SEARCH

<SORT.SEARCH
DESIGNATOR> ::=

<TABLE ADDRESS> : :=

<LIMIT> ::=

FOR USE BY SORT ONLY.

SORT.SEARCH
C<TABLE ADDRESS>,<LIMIT>l

<ADDRESS GENERATOR>

<EXPRESSION>

THE <SORT SEARCH DESIGNATOR> PROVIDES THE INFORMATION TO
EVALUATE A RECORD FOR SORTING PURPOSES. THE <TABLE ADDRESS>
CONTAINS THE ADDRESS, IN AN ARRAY OF RECORDS, OF THE FIRST
RECORD TO BE EXAMINED AND THE CONDITION UNDER WHICH RECORDS
WILL BE SELECTED.

THE <LIMIT> SPECIFIES THE LAST RECORD TO BE EXAMINED.

(9 1973, 1974 Burroughs - DO NOT REPRODUCE

PARITY.ADDRESS

<PARITY. ADDRESS
DESIGNATOR> : : =

FOR HCP USE ONLY.

13-16

PARITY.ADDRESS

THE <PARITY.ADDRESS DESIGNATOR> RETURNS A 24-BIT VALUE WHICH IS
THE ADDRESS OF THE FIRST PARITY ERROR ENCOUNTERED IN S-MEMORY.
IF NO PARITY ERROR IS FOUND, •FFFFFF@ IS RETURNED.

DYNAMIC MEMORY BASE

<DYNAMIC MEMORY
BASE DESIGNATOR> ::= DYNAMIC.MEMORY.BASE

THE <DYNAMIC MEMORY BASE DESIGNATOR> RETURNS A 24-BIT VALUE
WHICH IS THE BASE RELATIVE ADDRESS OF THE PROGRAM-S DYNAMIC
MEMORY. REFER TO THE SOL S-LANGUAGE DOCUMENTATION FOR
DISCUSSION OF THE USE OF DYNAMIC MEMORY.

HASH CODE

<HASH CODE DESIGNATOR>::= HASH.CODE <<TOKEN>>

<TOKEN>::= <EXPRESSION>

THE HASH.CODE WILL LEAVE ON THE EVALUATION STACK A DESCRIPTOR OF
TYPE BIT AND LENGTH 24. THE VALUE WILL BE A HASH CODE BASED ON
THE FIRST 15 COR LESS> CHARACTERS OF <TOKEN> AND ON THE LENGTH
OF <TOKEN>. TO BE EFFECTIVE, THE VALUE GENERATED BY HASH.CODE
MUST BE USED MODULO A PRIME NUMBER CWHICH IS USUALLY THE HASH
TABLE SI ZE > .

13-17

NEXT TOKEN

<NEXT TOKEN DESIGNATOR>::= NEXT.TOKEN C<FIRST CHARACTER>,
<SEPARATOR>, <NUMERIC-TO-ALPHA INDICATOR>,
<RESULT»

<FIRST CHARACTER>::= <IDENTIFIER>

<SEPARATOR>::= <CHARACTER STRING>

<NUMERIC-TO-ALPHA
INDICATOR>::= SET

I RESET

THE <FIRST CHARACTER> IS A SIMPLE IDENTIFIER WHICH DESCRIBES THE
FIRST CHARACTER TO BE EXAMINED. THIS WILL USUALLY BE THE FIRST
CHARACTER OF THE TOKEN. THE <SEPARATOR> IS THE TOKEN SEPARATOR:
"."FOR SOL, "-"FOR COBOL, ETC. IT MUST BE A SINGLE CHARACTER;
IF NONE IS NEEDED, USE "A". <NUMERIC- TO-ALPHA INDICATOR> IS
SET IF SYMBOLS SUCH AS 235AB ARE ALLOWED. IT IS RESET
OTHERWISE.

NEXT.TOKEN WILL LEAVE ON THE TOP OF THE EVALUATION STACK THE
DESCRIPTOR OF THE NEXT TOKEN. THIS TOKEN WILL BE AN IDENTIFIER,
A NUMBER, OR A SPECIAL CHARACTER. THE DESCRIPTOR OF <RESULT>
WILL ALSO BE REPLACED BY THIS DESCRIPTOR. THE ADDRESS FIELD OF
<FIRST CHARACTER> WILL BE CHANGED TO POINT TO THE CHARACTER
FOLLOWING THIS TOKEN. NEXT.TOKEN ASSUMES THAT <FIRST CHARACTER>
DESCRIBES A NON-BLANK CHARACTER.

DELIMITED TOKEN

<DELIMITED TOKEN
DESIGNATOR>::=

<FIRST CHARACTER>::=

<DELIMITERS>::=

<RESULT>: : =

DELIMITED.TOKEN C<FIRST CHARACTER>,
<DELIMITERS>, <RESULT>>

<IDENTIFIER>

<CHARACTER STRING>
.I <BIT STRING>

<IDENTIFIER>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

13-18

THE <FIRST CHARACTER> IS A SIMPLE IDENTIFIER WHICH DESCRIBES THE
FIRST CHARACTER TO BE EXAMINED. <DELIMITERS> WILL GENERATE 16
BITS OF INFORMATION, EACH OF THE 8-BIT BYTES BEING USED AS A
DELIMITER. FOR SOL, <DELIMITERS> WILL BE 111111 %11 ; FOR COBOL,
•7F03• CQUOTE FOLLOWED BY ETX>.

DELIMITED.TOKEN WILL LEAVE ON THE TOP OF THE EVALUATION STACK
THE DESCRIPTOR OF THE STRING OF CHARACTERS FROM (AND INCLUDING>
<FIRST CHARACTER> UP TO CBUT NOT INCLUDING> WHICHEVER DELIMITER
WAS FOUND. THE DESCRIPTOR OF <RESULT> WILL BE REPLACED BY THIS
DESCRIPTOR. THE ADDRESS FIELD OF <FIRST CHARACTER> WILL BE
CHANGED TO POINT TO THE DELIMITER WHICH STOPPED THE SCAN.

EVALUATION STACK TOP

<EVALUATION STACK
TOP DES I GNATOR>: : = EVALUATION.STACK.TOP

THIS FUNCTION LEAVES ON THE TOP OF THE EVALUATION STACK A
24-BIT, SELF-RELATIVE VALUE OF TYPE BIT WHICH IS THE
BASE-RELATIVE ADDRESS OF THE TOP OF THE EVALUATION STACK
(BEFORE EXECUTION OF THIS FUNCTION).

CONTROL STACK BITS

<CONTROL STACK
BITS DESIGNATOR>::= CONTROL.STACK.BITS

THIS FUNCTION LEAVES ON THE TOP OF THE EVALUATION STACK A
24-BIT, SELF-RELATIVE VALUE OF TYPE BIT WHICH IS THE NUMBER OF
BITS LEFT IN THE CONTROL STACK UNTIL OVERFLOW.

NAME STACK TOP

<NAME STACK
TOP DESIGNATOR>::= NAME.STACK.TOP

13-19

THIS FUNCTION LEAVES ON THE TOP OF THE EVALUATION STACK A
24-BIT, SELF-RELATIVE VALUE OF TYPE BIT WHICH IS THE
BASE-RELATIVE ADDRESS OF THE TOP OF THE NAME STACK.

DISPLAY BASE

<DISPLAY BASE
DESIGNATOR>::= DISPLAY.BASE

THIS FUNCTION LEAVES ON THE TOP OF THE EVALUATION STACK A
24-BIT, SELF-RELATIVE VALUE OF TYPE BIT WHICH IS THE
BASE-RELATIVE ADDRESS OF THE BASE OF THE DISPLAY.

CONSOLE SWITCHES

<CONSOLE SWITCHES
DESIGNATOR>::= CONSOLE.SWITCHES

NOTE: THIS FUNCTION HAS MEANING ONLY ON THE
COR LARGERl. IT LEAVES ON THE TOP OF
EVALUATION STACK A 24-BIT, SELF-RELATIVE
OF THE 24 CONSOLE SWITCHES.

SEARCH SERIAL LIST

B1726
THE

VALUE

<SEARCH SERIAL
LIST DESIGNATOR>::=

<SSL COMPARE VALUE>::=

<SSL COMPARE TYPE>::=

<SSL COMPARE FI ELD>::=

<SSL FIRST ITEM>: : =

<SSL TABLE LENGTH>::=

<SSL RESULT VARIABLE>::=

SEARCH.SERIAL.LI~T <<SSL COMPARE VALUE>,
<SSL COMPARE TYPE>, <SSL COMPARE FIELD>,
<SSL FIRST ITEM>, <SSL TABLE LENGTH>,
<SSL RESULT VARIABLE>l

<EXPRESSION>

<1~1=1~n.n

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

<ADDRESS GENERATOR>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

13-20

SEARCH.SERIAL.LIST SEARCHES A SERIAL LIST OF ITEMS BEGINNING
WITH THE ITEM DESCRIBED BY <SSL FIRST ITEM>. <SSL COMPARE
VALUE> IS COMPARED CAS SPECIFIED BY <SSL COMPARE TYPE>> AGAINST
THE FIELD OF THE ITEM DESCRIBED BY <SSL COMPARE FIELD> C<SSL
COMPARE FIELD> IS A TEMPLATE> UNTIL A MATCH HAS BEEN FOUND, OR
UNTIL <SSL TABLE LENGTH> NUMBER OF BITS HAS BEEN SEARCH~D.

IF THE SEARCH SUCCEEDS, THE BASE RELATIVE ADDRESS OF THE ITEM
CONTAINING THE "SUCCESSFUL'' <SSL COMPARE FIELD> IS STORED IN
<SSL RESULT VARIABLE> AND A @(lJl@ IS RETURNED.

IF THE SEARCH FAILS, THEN THE END ADDRESS OF THE TABLE IF STORED
IN <SSL RESULT VARIABLE> AND A @Cl JO@ IS RETURNED.

SPO INPUT PRESENT

<SPO INPUT
PRESENT DESIGNATOR>::= SPO.INPUT.PRESENT

A "SPECIAL", SPO.INPUT.PRESENT, HAS BEEN ADDED TO ALLOW THE
PRESENCE OF SPO INPUT TO BE TESTED BEFORE HAVING TO PERFORM AN
ACCEPT TO THE MCP.

SEARCH.SOL.STACKS

<SEARCH.SOL.STACKS
DESIGNATOR>::=

<STACK BASE>::=

<STACK TOP>::=

<COMPARE BASE>::=

<COMPARE TOP>::=

SEARCH.SOL.STACKS
C<STACK BASE>, <STACK TOP>,
<COMPARE BASE>, <COMPARE TOP>>

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

THE FOUR PARAMETERS ARE EXPECTED TO GENERATE VALUES WHICH ARE
BASE-RELATIVE ADDRESSES OF THE BASE AND TOP OF A STACK OF SOL

13-21

DESCRIPTORS AND OF AN ADDRESS RANGE, RESPECTIVELY. THE STACK
WILL BE SEARCHED FOR A NON-ARRAY, NON-SELF-RELATIVE SOL
DESCRIPTOR WHOSE ADDRESS IS WITHIN THE GIVEN RANGE. IF THE
SEARCH IS SUCCESSFUL •Clll• WILL BE RETURNED; OTHERWISE, •Cl>O•
WILL BE RETURNED.

EXECUTE

<EXECUTE DESIGNATOR>::= EXECUTE C<EXPRESSION LIST>>

<EXPRESSION LIST>::= <EXPRESSION>
I <EXPRESSION LIST>, <EXPRESSION>

THE VALUE OF THE LAST EXPRESSION IS EXPECTED TO BE AN OPCODE
WHICH WILL THEN BE EXECUTED BY THE INTERPRETER. EXECUTE MAY BE
USED AS A STATEMENT AS WELL AS A <VALUE GENERATING FUNCTION
DESIGNATOR>.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

14-1

ADDRESS AND VALUE PARAMETERS

ACTUAL PARAMETERS MAY BE PASSED TO A PROCEDURE EITHER BY NAME
CWHICH PASSES THE ADDRESS OF THE ACTUAL PARAMETER> OR BY VALUE
CWHICH PASSES A DUPLICATE COPY OF THE ACTUAL PARAMETER>.

IF AN <ACTUAL PARAMETER> CSEE "VALUE VARIABLES" AND ''EXECUTE
PROCEDURE STATEMENT"> IS PASSED BY ADDRESS, THEN ANY CHANGE TO
THE CORRESPONDING <FORMAL PARAMETER> IN THE PROCEDURE WILL
RESULT IN A CHANGE TO THE ORIGINAL VALUE OF THE <ACTUAL
PARAMETER>.

IF A PARAMETER IS PASSED BY VALUE, THEN ONLY THE DUPLICATE COPY
OF THE <ACTUAL PARAMETER> CAN BE CHANGED. THE ORIGINAL VALUE
REMAINS UNALTERED, AND THE DUPLICATE COPY IS ERASED WHEN THE
PROCEDURE IS EXITED.

AN <ACTUAL PARAMETER> MAY BE
IDENTIFIER>. SOL HAS SPECIFIED
BE PASSED BY ADDRESS. AN ARRAY
EITHER BY ADDRESS OR BY VALUE.

ANY EXPRESSION OR AN <ARRAY
THAT ARRAY IDENTIFIERS MAY ONLY
ELEMENT, HOWEVER, MAY BE PASSED

EXPRESSIONS MAY BE DIVIDED INTO TWO GROUPS:

1. THOSE WHICH MAY BE PASSED EITHER BY ADDRESS OR
BY VALUE, AND

2. THOSE WHICH MAY ONLY BE PASSED BY VALUE.

AN <ADDRESS GENERATOR> IS PASSED BY ADDRESS UNLESS IT IS
ENCLOSED WITHIN PARENTHESES, OR UNLESS THE FORMAL PARAMETER TO
WHICH IT CORRESPONDS HAS BEEN DECLARED AS "FORMAL.VALUE". IN
THESE TWO CASES <ADDRESS GENERATOR>S WILL BE LOADED BY VALUE.
ALL OTHER EXPRESSIONS ARE LOADED BY VALUE ONLY.

EXAMPLES OF PARAMETERS PASSED BY ADDRESS:

P CBUMP X, Al
PCB(BUMP M>, SUBBITCX,5Jl
P CNEXT. ITEM CBJ, A: C+D)

EXAMPLES OF PARAMETERS PASSED BY VALUE:

P (C BUMP X J , (A J , 3 J
PCCBCBUMP Mll, A+BJ
P (SWAP (A, 0 l , (SUBS TR (A, 5, 3 l l l

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

1/0 CONTROL STATEMENTS

<110 CONTROL STATEMENT> ::= <OPEN STATEMENT>;
I <CLOSE STATEMENT>;
I <READ STATEMENT>
I <WRITE STATEMENT>
I <SEEK STATEMENT>;
I <ACCEPT STATEMENT>:
I <DISPLAY STATEMENT>;
I <SPACE STATEMENT>
I <SKIP STATEMENT>;

15-1

EACH FILE IS NUMBERED SEQUENTIALLY, BEGINNING WITH ZERO. THIS
NUMBER IS THE <FILE NUMBER> AND WILL EVENTUALLY BE USED AS AN
INDEX INTO THE FIB DICTIONARY. THE FILE DECLARATION WILL BE
USED TO CONSTRUCT AN FPB IN THE CODE FILE.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

OPEN STATEMENT

<OPEN STATEMENT~::=

<OPEN PART>::=

<FILE DESIGNATOR>::=

15-2

<OPEN PART>
I <OPEN PART>; <FILE MISSING PART>
I <OPEN PART>; <FILE LOCKED PART>
I <OPEN PART>; <FILE MISSING PART>

<FILE LOCKED PART>

OPEN <FILE DESIGNATOR>
<OPEN ATTRIBUTE PART>

<FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> <<EXPRESSION>>

<OPEN ATTRIBUTE PART> ::= <EMPTY>
I <OPEN ATTRIBUTE LIST>
I WITH <OPEN ATTRIBUTE LIST>

<OPEN ATTRIBUTE LIST> ::= <OPEN ATTRIBUTE>

<ATTRIBUTE SEPARATOR>::=

<OPEN ATTRIBUTE> ::=

<INPUT-OUTPUT MODE> ::=

<LOCK MODE> : : =

<OPEN ACTION MODE> ::=

<CODE FILE MODE> ::=

<MFCU MODE>::=

<FILE MISSING PART>::=

<FILE LOCKED PART>::=

FORMAT OPTIONS:

1. OPEN DECLARED.FILE;

I <OPEN ATTRIBUTE> <ATTRIBUTE SEPARATOR>
<OPEN ATTRIBUTE LIST>

, I <SLASH> I <EMPTY>

<INPUT-OUTPUT MODE>
I <LOCK MODE>
I <OPEN ACTION MODE>
I <CODE FILE MODE>
I <MFCU MODE>

INPUT I OUTPUT I NEW

LOCK I LOCK.OUT

NO.REWIND I REVERSE

CODE.FILE

PUNCH I PRINT I
INTERPRET I STACKERS

ON FILE.MISSING <EXECUTABLE STATEMENT>

ON FILE.LOCKED <EXECUTABLE STATEMENT>

2.

3.

15-3

IF NO ATTRIBUTES ARE SPECIFIED, "INPUT" IS ASSUMED.

FOLLOWED BY:

INPUT
OPEN DECLARED.FILE OUTPUT

NEW *
INPUT, OUTPUT

OPEN DECLARED.FILE WITH OUTPUT, NEW
INPUT, OUTPUT, NEW

AND/OR

LOCK
LOCK.OUT
NO.REWIND
REVERSE
LOCK, NO.REWIND
LOCK, REVERSE
LOCK.OUT, NO.REWIND
LOCK.OUT, REVERSE

* "NEW" ALONE ASSUMES "OUTPUT, NEW".

NOTE: THE COMBINATION II INPUT I NEW" RESULTS IN A
SYNTAX ERROR.

NOTE: "CODE.FILE" IS TO BE USED ONLY BY COMPILERS.

IF THE <OPEN ATTRIBUTE>S HAVE BEEN EXPLICITLY OR IMPLICITLY
INCLUDED IN THE FILE DECLARATION, THEN THE FILE NEED NOT BE
EXPLICITLY OPENED HERE.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

CLOSE STATEMENT
------------·---

<CLOSE ~TATEMENT>::=

<FILE DESIGNATOR>::=

CLOSE <F"ILE DESIGNAtOR»
<CLOSE ATTRIBUTE PART>

<FILE IDENTIFIER>

15-4

I <SWITCH FILE IDENTIFIER> C<EXPRESSION>>

<CLOSE ATTRIBUTE PART> ::= <EMPTY>
I <CLOSE ATTRIBUTE LIST>
I WITH <CLOSE ATTRIBUTE LIST>

<CLOSE ATTRIBUTE LIST> ::= <CLOSE ATTRIBUTE>
I <CLOSE ATTRIBUTE> <ATTRIBUTE SEPARAT.OR>

<CLOSE ATTRIBUTE LIST>

<ATTRIBUTE SEPARATOR>::=

<CLOSE ATTRIBUTE> ::=

<CLOSE MODE> ::=

FORMAT OPTIONS:

1. CLOSE DECLARED.FILE;

, I <SLASH> I <EMPTY> .

<CLOSE MODE>
I CRUNCH I ROLLOUT I IF.NOT.CLOSED

REEL I RELg4SE I PURGE I REMOVE
I NO.REWIND I LOCK I CODE.FILE

THERE IS NO DEFAULT. IF "LOCK" IS SPECIFIED AS PART OF THE
FILE ATTRIBUTES, THE FILE IS LOCKED. OTHERWISE THE FILE IS
NOT LOCKED.

2. CLOSE DECLARED.FILE

3. CLOSE DECLARED.FILE

FOLLOWED BY
0 OR MORE OF:

--raLLOUT
UNCH
.NOT.CLOSED

ANO/OR ONE OF:

IF.NOT.CLOSED
REEL
RELEASE
PURGE
REMOVE
NO.REWIND
LOCK
CODE.FILE

* IF MORE THAN ONE OPTION IS SPECIFIED, ONLY THE
FINAL ONE IS USED BY THE COMPILER.

*

15-5

FILES NEED NOT BE EXPLICITLY CLOSED. HOWEVER, CLOSING A FILE
WHEN FINISHED WITH IT WILL FREE MEMORY SPACE FOR OTHER USES.

NOTE: "CODE.FILE" JS TO BE USED ONLY BY COMPILERS.
WHEN "CODE.FILE" IS USED, IT JS NOT NECESSARY
TO USE "LOCK" OR "CRUNCH".

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

READ STATEMENT

<READ STATEMENT> ::=

<READ PART> ::=

<READ SPECIFIER>::=

<READ PART>;
I <READ PART>;<EOF PART>
I <READ PART>;<PARITY PART>
I <READ PART>; <EXCEPTION PART>

<READ SPECIFIER>
I <DISK READ SPECIFIER>
I <REMOTE READ SPECIFIER>
I <QUEUE READ SPECIFIER>

READ <FILE DESIGNATOR> .
<<ADDRESS GENERATOR>>

15-6

% SEE "ADDRESS VARIABLES"

<FILE DESIGNATOR> ::=

<DISK READ SPECIFIER> ::=

<RECORD LOCK PART> ::=

<RECORD ADDRESS PART> ::=

<FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> <<EXPRESSION>>

READ <RECORD LOCK PART>
<FILE DESIGNATOR>
<RECORD ADDRESS PART>
<<ADDRESS GENERATOR>>

<EMPTY> I LOCK

<EMPTY>
C<RECORD ADDRESS>l

<RECORD ADDRESS> ::= <EXPRESSION>

<REMOTE READ SPECIFIER>::= READ <FILE DESIGNATOR>
<REMOTE KEY PART>
<<ADDRESS GENERATOR>>

<REMOTE KEY PART>::= <EMPTY>
I C<REMOTE KEY>l

<REMOTE KEY>::= <ADDRESS GENERATOR>

<QUEUE READ SPECIFIER>::= READ <FTLE DESIGNATOR>
<QUEUE FAMILY MEMBER PART>
<<ADDRESS GENERATOR>>

<QUEUE FAMILY
MEMBER PART>::= <EMPTY>

I C<QUEUE FAMILY MEMBER>l

<QUEUE FAMILY MEMBER>::= <EXPRESSION>

15-7

<EOF PART>::= ON EOF <EXECUTABLE STATEMENT>

<EXCEPTION PART>::= ON EXCEPTION <EXECUTABLE STATEMENT>

THE <READ STATEMENT> PROVIDES THE NECESSARY INFORMATION TO READ
A FILE: A FILE IDENTIFIER, RECORD ADDRESS, DATA INFORMATION,
AND INSTRUCTIONS TO BE EXECUTED IF AN END-OF-FILE OR A PARITY
ERROR IS DETECTED.

THE <READ STATEMENT> SEPARATES FILES INTO FOUR CATEGORIES: DISK
FILES, REMOTE FILES, QUEUE FILES, AND ALL OTHERS CCARD, TAPE,
PAPERTAPE, ETC.). THE USER HAS THE OPTION OF SPECIFYING ''LOCK"
FOR EXCLUSIVE USE OF THE DISK FILE RECORD. IF THE FILE
ATTRIBUTES INDICATE A RANDOM DISK FILE, THE USER MAY SPECIFY
<RECORD ADDRESS>. IN ALL OTHER CASES, HE NEED ONLY GIVE THE
<FILE IDENTIFIER> AND <ADDRESS GENERATOR>.

IF THE FILE IS OF TYPE "REMOTE", AND THE "REMOTE.KEY" ATTRIBUTE
IS SET THEN A <REMOTE KEY> MAY BE USED. CFOR THE FORMAT OF
THIS, SEE THE DISCUSSION UNDER "REMOTE.KEY" IN THE FILE
DECLARATION SECTION.) IF THE "REMOTE.KEY" ATTRIBUTE IS NOT SET,
THEN A <REMOTE KEY> MAY NOT BE USED. AFTER PERFORMING THE READ,
THE "REMOTE KEY" WILL HAVE BEEN STORED IN THE FIELD SPECIFIED
AS THE <REMOTE KEY>.

IF THE FILE IS OF TYPE "QUEUE" AND IS A MULTI-QUEUE FAMILY, THEN
A <QUEUE FAMILY MEMBER> MAY BE USED. THIS IS AN EXPRESSION
WHOSE VALUE WILL SPECIFY WHICH MEMBER OF THE FAMILY TO READ
FROM. IF THIS IS OMITTED, THEN THE OLDEST MESSAGE IN ALL OF THE
QUEUES WILL BE READ.

THE <EXECUTABLE STATEMENT>S OF THE <EOF PART> AND <EXCEPTION
PART> ARE CONSIDERED SUBORDINATE TO THE <READ STATEMENT>.
THEREFORE, SEGMENTATION OF THESE STATEMENTS IS TEMPORARY CSEE
"THE SEGMENT STATEMENT").

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

WRITE STATEMENT

<WRITE STATEMENT> . ·­.. -

15-8

<WRITE PART>;
I <WRITE PART>;<EOF PART>
I <WRITE PART>;<EXCEPTIO~ PART>
I <WRITE PART>;<EOF PART> <EXCEPTION PART>

<WRITE PART> .. -.. -

<WRITE SPECIFIER> : : =

<FILE DESIGNATO~> ::=

<WRITE SPECIFIER>
I <DISK WRITE SPECIFIER>
I <REMOTE WRITE SPECIFIER>
I <QUEUE WRITE SPECIFIER>

WRITE <FILE DESIGNATOR>
<CARRIAGE CONTROL PART>
C<EXPRESSION>>

I WRITE <FILE IDENTIFIER>
<CARRIAGE CONTROL PART>

<FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> <<EXPRESSION>>

<CARRIAGE CONTROL PART> ::= <EMPTY>

<CARRIAGE CONTROL
SPECIFIER> ::=

<SKIP-TO-CHANNEL> ::=

<CHANNEL NUMBER> ::=

I <CARRIAGE CONTROL SPECIFIER>

NO I SINGLE I DOUBLE I PAGE
I <SKIP-TO-CHANNEL> I NEXT

<CHANNEL NUMBER>

1 I 2 I 3 I ... I 11 I 12

<DISK WRITE SPECIFIER> ::= WRITE <R~CORD LOCK PART>
<F.LE DESIGNATOR>
<RECORD ADDRESS PART>
c <EXPRESS I ON»

<EOF PART> ::= ON EOF <EXECUTABLE STATEMENT>

<EXCEPTION PART> ::= ON EXCEPTION <EXECUTABLE STATEMENT>

<RECORD LOCK PART> ::= <EMPTY> I LOCK

<RECORD ADDRE=S PART> ::= <EMPTY>
I C<RECORD ADDRESS>l

<RECORD ADDRES3> ::= <EXPRESSION>

<REMOTE WRITE

SPECIFIER>::= WRITE <FILE DESIGNATOR>
<REMOTE KEY PART>
C <EXPRESS I ON>)

<REMOTE KEY PART>::= <EMPTY>
I C <REMOTE KEY> l

<REMOTE KEY>::= <ADDRESS GENERATOR>

<QUEUE WRITE
SPECIAL>::= WRITE <FILE DESIGNATOR>

<QUEUE FAMILY MEMBER PART>
<<ADDRESS GENERATOR>l

<FILE DESIGNATOR>::= <FILE IDENTIFIER>

15-9

<SWITCH FILE IDENTIFIER> C<EXPRESSION>l

<QUEUE FAMILY
MEMBER PART>::= <EMPTY>

I £<QUEUE FAMILY MEMBER>l

<QUEUE FAMILY MEMBER>::= <EXPRESSION>

THE <WRITE STATEMENT> PROVIDES THE NECESSARY INFORMATION TO
WRITE A FILE. THE <WRITE STATEMENT> TREATS DISK FILES
SEPARATELY FROM OTHER FILE TYPES BY ALLOWING THE USER THE
OPTION OF LOCKING DISK FILE RECORDS, AND SPECIFYING <RECORD
ADDRESS> ON HIS RANDOM DISK FILES. THE <CARRIAGE CONTROL PART>
IS INTENDED FOR USE WITH A PRINTER FILE.

IF THE FILE IS OF TYPE "REMOTE", AND THE "REMOTE.KEY" ATTRIBUTE
IS SET THEN A <REMOTE KEY> MAY BE USED. CFOR THE FORMAT OF
THIS, SEE THE DISCUSSION UNDER "REMOTE.KEY" IN THE FILE
DECLARATION SECTION.) IF THE "REMOTE.KEY" ATTRI~UTE IS NOT SET,
THEN A <REMOTE KEY> MAY NOT BE USED. THE <REMOTE KEY> WILL
SPECIFY THE TERMINAL TO WHICH THE WRITE IS TO BE PERFORMED.

IF THE FILE IS OF TYPE "QUEUE" AND IS A MULTI-QUEUE FAMILY, THEN
A <QUEUE FAMILY MEMBER> MAY BE USED. THIS IS AN EXPRESSION
WHOSE VALUE WILL SPECIFY WHICH MEMBER OF THE FAMILY TO WRITE
TO.

THE <EXECUTABLE STATEMENT>S OF THE <EOF PART> AND <EXCEPTION
PART> ARE CONSIDERED SUBORDINATE TO THE <WRlTE STATEMENT>.
THEREFORE, SEGMENTATION OF THESE STATEMENTS IS TEMPORARY CSEE
"THE SEGMENT STATEMENT">.

IF THE <END-OF-PAGE PART> IS SET IN THE FILE ATTRIBUTES, THEN

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

15-10

WHEN END-OF-PAGE IS DETECTED ON A PRINTER FILE, THE <EOF PART>
WILL BE EXECUTED. THIS FACILITATES, FOR EXAMPLE, PRINTING
TOTALS AND/OR HEADINGS WITHOUT K~EPING A LINE COUNTER.

EXAMPLE:

WRITE PRINTOUT SINGLE CPRINT.LINE>;
ON EOF DO;

WRITE PRINTOUT; % SKIP A LINE:
WRITE PRINTOUT PAGE CTOTALSl;
WRITE PRINTOUT DOUBLE CHEADERl;

END;

SEEK STATEMENT

<SEEK STATEMENT> ::=

<RECORD LOCK PART> ::=

<FILE DESIGNATOR>::=

<RECORD ADDRESS> : : =

SEEK <RECORD LOCK PART>
<FILE DESIGNATOR>
C<RECORD ADDRESS>l

<EMPTY> I LOCK

<FILE IDENTIFIER>

15-11

I <SWITCH FILE IDENTIFIER> C<EXPRESSION>>

<EXPRESSION>

THE <SEEK STATEMENT> CALLS UP A RECORD FROM A RANDOM DISK FILE
IN PREPARATION FOR A READ ON THAT RECORD. THIS STATEMENT SHOULD
ONLY BE USED WITH DISK FILES THAT ARE BEING READ USING A RANDOM
ACCESS TECHNIQUE.

A <SEEK STATEMENT> PERFORMED IMMEDIATELY PRIOR TO A <READ
STATEMENT> IS LESS EFFECTIVE THAN MERELY READING THE RECORD.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

ACCEPT STATEMENT

<ACCEPT STATEMENT> ::=

<END-OF-TEXT
SPECIFIER> ::=

ACCEPT <ADDRESS GENERATOR>
<END-OF-TEXT SPECIFIER>

<EMPTY>
I I END.OF.TEXT

15-12

THE <ACCEPT STATEMENT> CAUSES THE EXECUTION OF A PROGRAM TO HALT
UNTIL THE APPROPRIATE INFORMATION IS ENTERED VIA THE SPO BY THE
OPERATOR. THE MESSAGE KEYED IN WILL BE READ INTO THE AREA
SPECIFIED BY THE <ADDRESS GENERATOR> FOLLOWING THE RESERVED
WORD "ACCEPT".

IF ", END.OF.TEXT" IS SPECIFIED, THE SYSTEM WILL INCLUDE THE
"END OF MESSAGE" CHARACTER WITH THE MESSAGE. OTHERWISE, THE
"END OF MESSAGE" CHARACTER IS OMITTED, AND THE REST OF THE
SPECIFIED AREA IS FILLED WITH BLANKS.

SEE "ADDRESS VARIABLES" FOR THE SYNTAX OF THE <ADDRESS
GENERATOR>.

DISPLAY STATEMENT

<DISPLAY STATEMENT> · ·=

<CRUNCH SPECIFIER> ::=

DISPLAY <EXPRESSION>
<CRUNCH SPECIFIER>

<EMPTY>
I , CRUNCHED

15-13

THE <DISPLAY STATEMENT> PRINTS AN OUTPUT MESSAGE ON THE SPO. AS
NOTED, THE <CRUNCH SPECIFIER> IS OPTIONAL. IF '', CRUNCHEDtt IS
SPECIFIED, THE SYSTEM WILL DELETE TRAILING BLANKS ANO ALL
OCCURRENCES OF EMBEDDED BLANKS. ONE BLANK IS SUBSTITUTED FOR
EACH OCCURRENCE OF MULTIPLE EMBEDDED BLANKS.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

SPACE STATEMENT

<SPACE STATEMENT> ::=

<SPACE PART> ::=

<FILE DESIGNATOR> : :=

<SPACING SPECIFIER> : :=

<EOF PART> · ·=

<EXCEPTION PART>::=

15-14

<SPACE PART>;
I <SPACE PART>; <EOF PART>
I <SPACE PART>; <EXCEPTION PART>
I <SPACE PART>; <EOF PART> <EXCEPTION PART>

SPACE <FILE DESIGNATOR>
<SPACING SPECIFIER>

<FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> <<EXPRESSION>>

<EXPRESSION> I TO <EXPRESSION>

ON EOF <EXECUTABLE STATEMENT>

ON EXCEPTION <EXECUTABLE STATEMENT>

THE <SPACE STATEMENT> ALLOWS THE USER TO SKIP OVER CERTAIN
RECORDS IN A SEQUENTIAL FILE.

THE <SPACING SPECIFIER> MAY TAKE TWO FORMS. AN <EXPRESSION>
ALONE WILL INDICATE THE NUMBER OF RECORDS TO BE SPACED. IT MAY
BE A NEGATIVE NUMBER INDICATING REVERSE SPACING. "TO
<EXPRESSION>" WILL ALWAYS BE A POSITIVE NUMBER AND INDICATES
THE NUMBER OF THE RECORD TO SPACE TO.

THE <EXECUTABLE STATEMENT>S OF THE <EOF PART> AND <EXCEPTION
PART> ARE CONSIDERED SUBORDINATE TO THE <SPACE STATEMENT>.
THEREFORE, SEGMENTATION OF THESE STATEMENTS IS TEMPORARY CSEE
"THE SEGMENT STATEMENT").

15-15

SKIP STATEMENT

<SKIP STATEMENT> ::= SKIP <FILE IDENTIFIER> TO <CHANNEL NUMBER>

<FILE DESIGNATOR> ::= <FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> (<EXPRESSION>J

<SKIP STATEMENT> ::= SKIP <FILE DESIGNATOR> TO <CHANNEL NUMBER>

<CHANNEL NUMBER> ··= 1 I 2 I 3 I ... /11 I 12

THE <SKIP STATEMENT> CAUSES THE LINE PRINTER TO SKIP TO A
SPECIFIED CHANNEL NUMBER ON ITS CARRIAGE TAPE. THE CHANNEL
NUMBERS CONTROL THE VERTICAL SPACING OF DATA ON A PRINTED PAGE.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

<EXECUTABLE STATEMENT
LIST>::=

EXECUTABLE STATEMENTS

<EXECUTABLE STATEMENT>
I <EXECUTABLE STATEMENT>

<EXECUTABLE STATEMENT LIST>

<EXECUTABLE STATEMENT> : := <DO GROUP>;
I <GROUP TERMINATION STATEMENT>;
I <IF STATEMENT>
I <CASE STATEMENT>;
I .<ASSIGNMENT STATEMENT>;
I <EXECUTE-PROCEDURE STATEMENT>;
I <EXECUTE-FUNCTION STATEMENT>;
I <IIO CONTROL STATEMENT>
I <MODIFY INSTRUCTION>;
I <NULL STATEMENT>
I <FILE ATTRIBUTE STATEMENT>;
I <STOP STATEMENT>;
I <ZIP STATEMENT>;
I <SEARCH STATEMENT>
I <ACCESS FILE HEADER STATEMENT>
I <SEND STATEMENT>
I <RECEIVE STATEMENT>
I <ARRAY PAGE TYPE STATEMENT>
I <WAIT STATEMENT>;
I <SEGMENT STATEMENT>

<EXECUTABLE STATEMENT)

<ASSIGNMENT STATEMENT> ::= SEE "ASSIGNMENT STATEMENTS
AND EXPRESSIONS"

<IIO CONTROL STATEMENT> ::= SEE "I/O CONTROL STATEMENTS"

<SEGMENT STATEMENT> : := SEE "THE SEGMENT STATEMENT"

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-1

DO GROUPS

<DO GROUP> : : =

<GROUP HEAD> ::=

<GROUP NAME> ::=

<FOREVER PART> ::=

<GROUP IDENTIFIER> ::=

<GROUP BODY> ::=

<GROUP ENDING> : :=

<GROUP HEAD>
<GROUP BODY>

<GROUP NAME>
<FOREVER PART>;

DO
I DO <GROUP IDENTIFIER>

<EMPTY>
I FOREVER

< IDENTIFIER>

<EXECUTABLE STATEMENT LIST>
<GROUP ENDING>

END
I END <GROUP IDENTIFIER>

16-2

THE <DO GROUP> IS A COLLECTION OF <EXECUTABLE STATEMENT>S WHICH
FUNCTIONS AS A ROUTINE. IT IS EXECUTED ONCE UNLESS "FOREVER"
APPEARS AFTER THE <GROUP NAME>.

IF "FOREVER" IS PRESENT, THE <DO GROUP> WILL BE EXECUTED
ITERATIVELY UNTIL A SPECIFIC CONDITION IS MET. ONLY A <GROU~
TERMJNATION STATEMENT> CUNDO> OR A <TYPED PROCEDURE RETURN
STATEMENT> CRETURN> CAN GET THE PROGRAM OUT OF THIS LOOP. SEE
THE FOLLOWING EXAMPLE:

DO THIS FOREVER;
READ CARD CA); ON EOF UNDO;
IF 55 GTR BUMP X

THEN WRITE PRINTER CA>:
ELSE DO;

X._l;

END THIS;

WRITE PRINTER PAGE CA>;
END;

IF IT IS NECESSARY TO EXECUTE THE STATEMENTS IN A <DO GROUP>
FROM DIFFERENT POINTS IN THE PROGRAM, MORE EFFICIENT CODE IS
GENERATED BY MAKING THE BODY OF THE GROUP A PROCEDURE RATHER
THAN BY REPEATING THE <DO GROUP>.

RESTRICTIONS:

1. IF A <GROUP IDENTIFIER> IS INCLUDED IN THE
<GROUP NAME>, IT MUST ALSO APPEAR IN THE
<GROUP ENDING>.

2. IF THE <GROUP NAME> DOES NOT INCLUDE AN
IDENTIFIER, THE <GROUP ENDING> MUST NOT
CONTAIN ONE.

3. "FOREVER" IS NOT A RESERVED WORD AND MAY
APPEAR AS THE <GROUP IDENTIFIER>. "DO
FOREVER;" IS CONSIDERED TO BE THE <GROUP HEAD>
OF AN UN-NAMED, ITERATIVE <DO GROUP>. "DO
FOREVER FOREVER" IS A LEGAL HEADING FOR A
NAMED, ITERATIVE GROUP.

4. NESTED <DO GROUP>S MAY NOT HAVE DUPLICATE
IDENTIFIERS. IF THIS OCCURS, A WARNING MESSAGE
WILL APPEAR ON THE PROGRAM LISTING.

5. <DO GROUP>S MAY BE NESTED 32 LEVELS DEEP.
HOWEVER, A <GROUP TERMINATION STATEMENT> CAN
UNDO ONLY A MAXIMUM OF 16 LEVELS.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

16-3

GROUP TERMINATION STATEMENT
~--------------------------

<GROUP TERMINATION
STATEMENT> ::=

<GROUP IDENTIFIER> ::=

16-4

UNDO
I UNDO C*)
I UNDO <GROUP IDENTIFIER>

< IDENT IF I ER>

THE <GROUP TERMINATION STATEMENT> WILL CAUSE THE EXECUTION OF A
<DO GROUP> TO CEASE, AND WILL TRANSFER CONTROL TO THE NEXT
STATEMENT FOLLOWING THE <DO GROUP> WHICH HAS BEEN "UNDONE". THE
STATEMENT MAY TAKE ONE OF THREE FORMS:

1. "UNDO" WILL TRANSFER CONTROL OUT OF THE <DO
GROUP> WHICH CONTAINS THE STATEMENT.

2. IF <DO GROUP>S ARE NESTED, "UNDO C*>"
TRANSFERS CONTROL OUT OF THE OUTERMOST <DO
GROUP>.

3 .• II UNDO <GROUP IDENTIFIER> II TAKES CONTROL OUT OF
THE <DO GROUP> SPECIFIED'BY THE IDENTIFIER.

NOTE: UNDO C*> AND UNDO <IDENTIFIER> CAN UNDO A
MAXIMUK OF 16 LEVELS.

EXAMPLE:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

DO ONE;
DO TWO FOREVER;

IF <EXPRESSION> THEN
DO THREE;

CASE <EXPRESSION>;
UNDO; I* SAME AS UNDO THREE; *I
UNDO TWO;
UNDO C*l; /*SAME AS UNDO ONE; *I

END CASE;
END THREE;

END TWO;
END ONE;

EXECUTION OF LINE 6 TRANSFERS CONTROL TO LINE 11.
EXECUTION OF LINE 7 TRANSFERS CONTROL TO LINE 12.
EXECUTION OF LINE 8 TRANSFERS CONTROL TO THE NEXT

STATEMENT FOLLOWING LINE 12.

IF STATEMENT

<IF STATEMENT> ::=

<IF CLAUSE> : : =

<IF CLAUSE>
<EXECUTABLE STATEMENT>

I <IF CLAUSE>
<EXECUTABLE STATEMENT>
ELSE <EXECUTABLE STATEMENT>

IF <EXPRESSION> THEN

16-5

THE <EXPRESSION> IS EVALUATED. IF THE LOW-ORDER BIT OF THE
RESULT IS 1 CI.E., TRUE>, THE STATEMENT FOLLOWING "THEN" IS
EXECUTED. IF THE LOW-ORDER BIT IS 0 CI.E., FALSE>, THE
STATEMENT FOLLOWING "ELSE" CIF PRESENT> IS EXECUTED. IF THE
RESULT OF THE<EXPRESSION> IS FALSE, AND THE "ELSE" PART IS
OMITTED, CONTROL IS TRANSFERRED TO THE NEXT STATEMENT AFTER THE
<IF STATEMENT>.

<IF STATEMENT>S MAY BE NESTED. THE OUTERMOST <IF CLAUSE> AND THE
OUTERMOST "ELSE" ARE ON NESTING LEVEL 0. THE <EXECUTABLE
STATEMENT>S FOLLOWING "THEN" AND "ELSE" ARE ON NESTING LEVEL 1.
NESTING MAY BE NO DEEPER THAN 32 LEVELS.

WHEN USING NESTED <IF STATEMENT>S, THE USER MUST MAINTAIN
CORRESPONDENCE BETWEEN THE DELIMITERS "THEN" AND "ELSE" ON EACH
LEVEL. THE INNERMOST "ELSE" WILL ALWAYS BE ASSOCIATED WITH THE
INNERMOST "THEN". FROM THIS POINT CONTINUES AN OUTWARD
PROGRESSION CI.E., FROM HIGHEST NESTING LEVEL TO LOWEST> OF
"THEN-ELSE" ASSOCIATION.

THUS, IF AN <IF STATEMENT> ON NESTING LEVEL N IS TO HAVE AN
"ELSE" ASSOCIATED WITH IT, THEN EVERY <IF STATEMENT> ON A
NESTING LEVEL GREATER THAN N MUST ALSO HAVE "ELSES" ASSOCIATED
WITH THEM. IF THE USER WISHES TO EXECUTE NOTHING ON A FALSE
CONDITION, THEN "ELSE" FOLLOWED BY A <NULL STATEMENT> MAY BE
USED.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

EXAMPLE:
LET E-1, E-2, E-3, AND E-4 BE <EXPRESSION>S
LET S-2, S-3, AND S-4 BE <EXECUTABLE STATEMENT>S

IF E-1
THEN IF E-2

THEN IF E~3
THEN IF E-4

THEN S-4;
ELSE;

ELSE S-3;
ELSE 5-2;

16-6

CASE STATEMENT

<CASE STATEMENT> ::=

<CASE HEAD> : : =

<CASE BODY> : : =

<CASE ENDING> ::=

<CASE HEAD>
<CASE BODY>

CASE <EXPRESSION>;

<EXECUTABLE STATEMENT LIST>
<CASE ENDING>

END CASE

16-7

THE <EXPRESSION> SERVES AS AN INDEX INTO THE LIST OF <EXECUTABLE
STATEMENT>S. THE STATEMENT SELECTED IS EXECUTED, AND THE OTHERS
IGNORED. CONTROL IS THEN TRANSFERRED TO THE STATEMENT FOLLOWING
THE <CASE ENDING> UNLESS, OF COURSE, THE STATEMENT IS A
"RETURN" OR AN "UNDO".

IF THERE ARE N NUMBER OF STATEMENTS IN THE LIST, THEN THE RANGE
OF THE VALUE OF THE <EXPRESSION> MAY BE FROM 0 THROUGH N-1.

THE STATEMENTS IN THE LIST MAY BE ANY LEGAL <EXECUTABLE
STATEMENT> ALLOWED IN SOL. IF THE USER WISHES TO EXECUTE
NOTHING IN A GIVEN CASE, THE <NULL STATEMENT> IS AN APPROPRIATE
STATEMENT.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

EXECUTE-PROCEDURE STATEMENT

<EXECUTE-PROCEDURE
ST A TEMENT > : : =

<NON-TYPED PROCEDURE
DESIGNATOR> ::=

<NON-TYPED PROCEDURE
IDENTIFIER> ::=

16-8

<NON-TYPED PROCEDURE DESIGNATOR>

<NON-TYPED PROCEDURE IDENTIFIER>
<ACTUAL PARAMETER PART>

< IDENTIFIER>

<ACTUAL PARAMETER PART> ::= <EMPTY>
I C<ACTUAL PARAMETER LIST>>

<ACTUAL PARAMETER LIST> ::= <ACTUAL PARAMETER>

<ACTUAL PARAMETER> : :=

<ARRAY DESIGNATOR> ::=

I <ACTUAL PARAMETER>,
<ACTUAL PARAMETER LIST>

<EXPRESSION>
I <ARRAY DESIGNATOR>

<ARRAY IDENTIFIER>

A NON-TYPED PROCEDURE, I.E., A PROCEDURE WHICH PERFORMS A
FUNCTION AND DOES NOT RETURN A VALUE, IS INVOKED THROUGH AN
<EXECUTE-PROCEDURE STATEMENT>. THE NAME OF THE PROCEDURE IS
FOLLOWED BY ITS PARAMETERS ENCLOSED IN PARENS. REFER TO THE
SECTION "ADDRESS AND VALUE PARAMETERS" FOR INFORMATION
CONCERNING PASSING PARAMETERS.

FOR A DESCRIPTION OF THE INVOCATION OF TYPED PROCEDURES, SEE
"VALUE VARIABLES".

EXECUTE-FUNCTION STATEMENT

<EXECUTE-FUNCTION
STATEMENT> : :=

16-9

<FUNCTION DESIGNATOR>

<FUNCTION DESIGNATOR> ::= <DUMP DESIGNATOR>

DUMP

I <TRACE DESIGNATOR>
I <SAVE DESIGNATOR>
I <RESTORE DESIGNATOR>
I <FETCH DESIGNATOE>
I <HALT DESIGNATOR>
I <REINSTATE DESIGNATOR>
I <ACCESS-FPS DESIGNATOR>
I <REVERSE STORE DESIGNATOR>
I <READ CASSETTE DESIGNATOR>
I <OVERLAY DESIGNATOR>
I <ACCESS OVERLAY DESIGNATOR>
I <ERROR COMMUNICATE DESIGNATOR>
I <SORT DESIGNATOR>
I <SORT.SWAP DESIGNATOR>
I <INITIALIZE.VECTOR DESIGNATOR>
I <THREAD.VECTOR DESIGNATOR>
I <ENABLE.INTERRUPTS DESIGNATOR>
I <DISABLE.INTERRUPTS DESIGNATOR>
I <ACCESS FILE INFORMATION

DESIGNATOR>
I ~HARDWARE MONITOR DESIGNATOR>
I <SAVE STATE DESIGNATOR>
I <DEBLANK DESIGNATOR>
I <FREEZE-PROGRAM DESIGNATOR>
I <THAW-PROGRAM DESIGNATOR>
I <DUMP-FOR-ANALYSIS DESIGNATOR>
I <COMPILE-CARD-INFO DESIGNATOR>
I <COMMUNICATE DESIGNATOR>

<DUMP DESIGNATOR> ::= DUMP

THE SOL STACKS WILL BE DUMPED TO THE LINE PRINTER IN SOME
REASONABLE FORMAT. PROGRAM EXECUTION WILL CONTINUE AFTER THE
DUMP.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

16-10

TRACE

<TRACE DESIGNATOR> ::= TRACE I NOTRACE I TRACE <<EXPRESSION>>

THE "TRACE" WILL CAUSE THE SOL INSTRUCTIONS OF THE NORMAL STATE
PROGRAM TO BE TRACED ON THE LINE PRINTER. "NOTRACE" WILL TURN
OFF THE TRACE.

"TRACE C<EXPRESSrON>>" PROVIDES GREATER CONTROL OF THE TRACING
TO BE DONE. THE LOW-ORDER 10 BITS ARE USED IN THE FOLLOWING WAY
CNUMBERING OF THE 10 IS FROM LEFT TO RIGHT>:

BIT USE

0 TRACE ALL COMMANDS EXCEPT THOSE WHICH MODIFY
DATA OR CHANGE THE PROGRAM POINTER STACK.
NORMAL STATE ONLY.

TRACE COMMANDS WHICH MODIFY DATA ITEMS CE.G.,
CLR, SNDL, ETC.>. NORMAL STATE ONLY.

2 TRACE COMMANDS WHICH CHANGE THE PROGRAM
POINTER STACK CE.G., IFTH, CASE, EXIT, ETC,>.
NORMAL STATE ONLY.

3 NOT USED.

4-6 SAME AS 0-2, BUT FOR MCP. SEVERAL MCP ROUTINES
CGETSPACE, FORGETSPACEj AND OTHERS> WILL NOT
BE TRACED.

7-9 SAME AS 0-2, BUT-WILL TRACE THOSE MCP ROUTINES
NOT TRACED BY 4-6.

NOTE THAT "TRACEC•380•>" IS THE SAME AS "TRACE", WHILE "TRACECO>
IS THE SAME AS "NOTRACE".

SAVE

<SAVE DESIGNATOR> : := SAVE <<EXPRESSION LIST>l

EACH OF THE <EXPRESSION>S, FROM LEFT TO RIGHT, WILL BE
EVALUATED, AND THE VALUE OF EACH LEFT ON THE EVALUATION STACK
CANO VALUE STACK, IF NECESSARY>. SEE <RESTORE DESIGNATOR>.

RESTORE

<RESTORE DESIGNATOR> ::=

<ADDRESS GENERATOR
LIST> : : =

16-11

RESTORE <<ADDRESS GENERATOR LIST>>

SEE "ADDRESS GENERATORS"

THE <RESTORE DESIGNATOR> ASSIGNS THE CURRENT VALUE ON THE TOP OF
THE EVALUATION STACK TO EACH <ADDRESS GENERATOR>, FROM RIGHT TO
LEFT, IN THE LIST. THIS OPERATOR IS USED IN CONJUNCTION WITH
THE <SAVE DESIGNATOR>. SEE ABOVE.

EXAMPLE:

SAVE CA,B,C>;

RESTORE CA,B,C>;

NOTE THAT "RESTORE CA,B,C>" IS THE SAME AS:

RESTORE CC) ;
RESTORE CB>;
RESTORE CA>;

FETCH

<FETCH DESIGNATOR> ::=

<110 REFERENCE
ADDRESS> : : =

<PORT,CHANNEL,
PRIORITY ADDRESS> ::=

<ADDRESS GENERATOR> ::=

<RESULT DESCRIPTOR
ADDRESS> : : =

FETCH C<IIO REFERENCE ADDRESS>,
<PORT, CHANNEL, PRIORITY ADDRESS>,
<RESULT DESCRIPTOR ADDRESS>>

<EXPRESSION>

<ADDRESS GENERATOR>

SEE "ADDRESS GENERATORS"

<ADDRESS GENERATOR>

THE <FETCH DESIGNATOR> FETCHES THE RESULT OF AN 1/0 OPERATION.
IF THERE IS A HIGH PRIORITY INTERRUPT, THEN THAT INTERRUPT WILL
BE REPORTED. OTHERWISE, IF THE <110 REFERENCE ADDRESS> IS

@ 1973, 1974 Bur roughs - DO NOT REPRODUCE

16-12

NON-ZERO, THEN ONLY AN INTERRUPT ON AN 1/0 DESCRIPTOR WITH THE
REFERENCE ADDRESS THE SAME AS THE <IIO REFERENCE ADDRESS> WILL
BE REPORTED. IF NOT FOUND, THE FIRST INTERRUPT ENCOUNTERED (IF
ANY> WILL BE REPORTED. THE PORT (BIT 3l, CHANNEL (BIT 3>, AND
PRIORITY CBIT 1> OF THE INTERRUPT ARE STORED FROM LEFT TO RIGHT
IN THE LOW-ORDER 7 BITS OF <PORT, CHANNEL, PRIORITY ADDRESS>
THE 1/0 RESULT DESCRIPTOR REFERENCE ADDRESS IS STORED IN THE
LOW-ORDER 24 BITS OF THE <RESULT DESCRIPTOR ADDRESS>. IF THERE
WERE NO INTERRUPTS, THEN THESE TWO FIELDS WILL BE ZERO.

HALT

<HALT DESIGNATOR> : := HALT C<EXPRESSION>l

THE <HALT DESIGNATOR> CAUSES THE VALUE OF THE <EXPRESSION> TO BE
MOVED TO THE M-MACHINE T-REGISTER. IF THE VALUE IS LONGER THAN
24 BITS, ONLY THE LOW-ORDER 24 BITS ARE MOVED. IF THE VALUE IS
LESS THAN 24 BITS, THE VALUE IS RIGHT ~USTIFIED AND LEADING
ZEROES ARE ADDED.

AFTER THE VALUE IS MOVED, AN M-MACHINE HALT IS EXECUTED.

EXAMPLES:

DECLARE X BIT(24>;
HALT (X:,....HEX.SEQUENCE.NUMBER);

DECLARE X BITC24l;
HALT CSUBBIT CHEX.SEQUENCE.NUMBER, 0, 24>>;

REINSTATE

<REINSTATE DESIGNATOR> : := REINSTATE C<REINSTATED PROGRAM>l

<REINSTATED PROGRAM> : := <ADDRESS GENERATOR>

THE <REINSTATED PROGRAM> IS ASSUMED TO DESCRIBE THE FIELD
RS.COMMUNICATE.MSG.PTR OF RS.NUCLEUS OF THE PROGRAM TO BE
REINSTATED CSEE DESCRIPTION OF THE RUN STRUCTURE IN "B1710 MCP
REFERENCE MANUAL">.

THE REINSTATING PROGRAM-S M-MACHINE STATE IS STORED IN THE
APPROPRIATE PARTS OF ITS RS.NUCLEUS. THE ADDRESS OF THE

16-13

REINSTATING PROGRAM-S RS.NUCLEUS IS STORED IN THE REINSTATED
PROGRAM-S RS.COMMUNICATE.LR.

THE PROGRAM WHOSE RS.COMMUNICATE.MSG.PTR IS DESCRIBED BY
<REINSTATED PROGRAM> IS THEN REINSTATED.

ACCESS-FPS

<ACCESS-FPS
DESIGNATOR> ::= <ACCESS-FPS IDENTIFIER>

(<FILE SPECIFIER>,
<SOURCE OR DESTINATION FIELD>>

<ACCESS-FPS IDENTIFIER> ::= READ.FPS I WRITE.FPS

<FILE SPECIFIER> : :=

<FILE DESIGNATOR> : :=

<FILE NUMBER> ::=

<SOURCE OR DESTINATION
FIELD> : : =

<ADDRESS GENERATOR> : :=

<FILE DESIGNATOR>
I <FILE NUMBER>

<FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> (<EXPRESSION>>

<EXPRESSION>

<ADDRESS GENERATOR>

SEE "ADDRESS GENERATORS"

THE FILE PARAMETER BLOCK OF THE FILE INDICATED BY THE <FILE
SPECIFIER> IS READ INTO, OR WRITTEN FROM THE <SOURCE OR
DESTINATION FIELD>.

NOTE THAT THE <SOURCE OR DESTINATION FIELD> SHOULD BE 1440 BITS
IN LENGTH.

REVERSE STORE

<REVERSE STORE
DESIGNATOR> ::=

<ADDRESS GENERATOR
LIST>::=

REVERSE.STORE
(<ADDRESS GENERATOR LIST>,<EXPRESSION>>

SEE "ADDRESS GENERATORS"

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-14

THE REVERSE.STORE OPERATION HAS THE EFFECT OF EVALUATING
MULTIPLE STORE OPERATIONS FROM LEFT TO RIGHT INSTEAD OF FROM
RIGHT TO LEFT. SEE "THE REPLACE OPERATORS".

FOR EXAMPLE:

REVERSE.STORE <L,~,N,P,X+l>;
HAS THE SAME EFFECT AS:

L..._M;
M..._N;
N._P;
p._X+l;

WITH THE REVERSE.STORE, HOWEVER, THE DESCRIPTOR FOR EACH
<ADDRESS GENERATOR> IN THE LIST IS DETERMINED ONLY ONCE.

NOTE:
REVERSE.STORE (L,M,N,P,X+l>;

IS NOT THE SAME AS
L..._M..._N+-P.,.X+l;

READ CASSETTE

<READ CASSETTE
DESIGNATOR>::= READ.CASSETTE·<<DESTINATION SPECIFIER,

<HASH.TOTAL SPECIFIER>, <RESULT SPECIFIER:

<DESTINATION SPECIFIER>::= <ADDRESS GENERATOR>

<HASH.TOTAL SPECIFIER>::= HASH.TOTAL
I NO.HASH.TOTAL

<RESULT SPECIFIER>::= <ADDRESS GENERATOR>

THE <READ CASSETTE DESIGNATOR> CAUSES THE NUMBER OF BITS
SPECIFIED BY THE <DESTINATION SPECIFIER> TO BE READ FROM THE
CONSOLE CASSETTE TO THE ADDRESS SPECIFIED BY THAT <DESTINATION
SPECIFIER>. THIS NUMBER OF BITS MUST BE EQUAL TO THE RECORD
SIZE MINUS THE HASH-TOTAL SIZE <IF IT IS PRESENT> OF 16 BITS.
THE <HASH.TOTAL SPECIFIER> INDICATES WHEATHER OR NOT A
HASH-TOTAL IS EXPECTED AT THE END OF THE RECORD.

A VALUE OF 0 OR 1 WILL BE LEFT IN THE <RESULT SPECIFIER>
INDICATING THAT THE HASH-TOTAL WAS INCORRECT OR CORRECT,
RESPECTIVELY.

16-15

OVERLAY

<OVERLAY DESIGNATOR> ::= OVERLAY <<EXPRESSION>>

THE <EXPRESSION> WILL BE USED AS AN INDEX INTO THE INTERPRETER
DICTIONARY BY THE INTERPRETER SWAPPER. THE INTERPRETER
DICTIONARY ENTRY WILL SPECIFY THE ACTION TO BE TAKEN. SEE THE
"Bl710 MCP REFERENCE MANUAL".

ACCESS OVERLAY

<ACCESS OVERLAY
DESIGNATOR> ::=

<ACCESS OVERLAY
IDENTIFIER> ::=

<ACCESS OVERLAY IDENTIFIER>C<EXPRESSION>>

READ.OVERLAY I WRITE.OVERLAY

THE VALUE OF THE <EXPRESSION> IS ASSUMED TO BE A 76-BIT FIELD
WITH THE FOLLOWING FORMAT FROM HIGH-ORDER TO LOW-ORDER:

BITS CONTENTS

0-3
4-27
28-51
52-75

EU = 0 CNOT USED>
BASE RELATIVE BEGINNING ADDRESS
BASE RELATIVE ENDING ADDRESS
DISK ADDRESS CRELATIVE TO USER AREA>

THE AREA DESCRIBED BY THE BEGINNING AND ENDING ADDRESSES IS READ
TO, OR WRITTEN FROM THE USER DISK AT THE CRELATIVE> DISK
ADDRESS GIVEN.

ERROR COMMUNICATE

<ERROR COMMUNICATE
DESIGNATOR> ::= ERROR.COMMUNICATE. C<EXPRESSION>>

THE VALUE OF THE EXPRESSION SHOULD BE OF THE FOLLOWING FORM:

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-16

2 BITS 6 BITS 16 BITS 21+ BITS

0 N 0 0

-----------------------------~-------------

WHERE N IS THE ERROR NUMBER.

THE VALUE OF THE EXPRESSION WILL BE PUT ON THE EVALUATION STACK
AS A DESCRIPTOR; AND AN MCP COMMUNICATE WILL BE PERFORMED.

SORT

<SORT DESIGNATOR> ::=

<SORT INFORMATION TABLE
SPECIFIER> ::=

<ADDRESS GENERATOR> ::=

<SORT KEY TABLE
SPEC IF I ER> : : =

<ADDRESS GENERATOR>

SEE "A-9DRESS GENERATORS"

<ADDRESS GENERATOR>

<INPUT FILE DESIGNATOR::= <FILE DESIGNATOR>

<OUTPUT FILE
DESIGNATOR> : : =

<FILE DESIGNATOR>::=

<FILE DESIGNATOR>

<FILE IDENTIFIER>
I <SWITCH FI.LE IDENTIFIER> C <EXPRESS ION»

THE <SORT DESIGNATOR> IS A COMMUNICATE WHICH REQUESTS THE
TRANS~ER OF RECORDS FROM THE INPUT FILE TO THE OUTPUT FILE
ACCORDING TO THE SORT KEY TABLE. THE SORT INFORMATION TABLE
INCLUDES CODES FOR SORT TYPE, HARDWARE AVAILABLE, AND OTHER
OPTIONS.

FOR FORMATTING SPECIFICATIONS OF THE SORT INFORMATION TABLE,
REFER TO SORT DOCUMENTATION.

I\
\\

16-17

SORT.SWAP

<SORT.SWAP DESIGNATOR> ::= SORT.SWAP <<RECORD 1>,<RECORD 2>>

<RECORD 1> ::= <ADDRESS GENERATOR>

<RECORD 2> : : = <ADDRESS GENERATOR>

WHILE THE <SORT SWAP DESIGNATOR> IS INTENDED TO BE USED BY THE
SORT, ITS APPLICATION IS SUCH THAT IT MAY BE GENERALLY USEFUL.

THIS DESIGNATOR ALLOWS THE USER TO "SWAP" OR EXCHANGE TWO
RECORDS IN MEMORY WITHOUT ALLOCATING A THIRD AREA FOR STORING
ONE OF THE RECORDS.

SPECIFICALLY, THE RECORD POINTED TO BY <RECORD l> IS EXCHANGED
WITH THE RECORD POINTED TO BY <RECORD 2>.

NOTE: THE INTERPRETER BEING USED MUST CONTAIN THE
SORT.SWAP OPERATOR.

INITIALIZE.VECTOR

<INITIALIZE.VECTOR
DESIGNATOR> ::=

<TABLE ADDRESS> : :=

FOR USE BY SORT ONLY.

INITIALIZE.VECTOR C<TABLE ADDRESS>>

<ADDRESS GENERATOR>

THE <TABLE ADDRESS> POINTS TO THE TABLE CONTAINING THE VECTOR
ADDRESS, THE VECTOR LEVEL-1 ADDRESS, THE KEY TABLE ADDRESS, AND
THE VECTOR LIMIT ADDRESS.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

THREAD.VECTOR

<THREAD.VECTOR
DESIGNATOR> ::=

<TABLE ADDRESS> ::=

<INDEX> : :=

FOR USE BY SORT ONLY.

16-18

THREAD.VECTOR <<TABLE ADDRESS>,<INDEX>>

<ADDRESS GENERATOR>

<EXPRESSION>

THE <TABLE ADDRESS> POINTS TO THE ·TABLE CONTAINING THE
INFORMATION DESCRIBED UNDER "INITIALIZE.VECTOR". THE <INDEX>
PROVIDES THE OFFSET FROM THE BEGINNING OF THE VECTOR TO THE
NEXT RECORD TO BE USED FOR COMPARISON.

DISABLE.INTERRUPTS

<DISABLE.INTERRUPTS
DESIGNATOR> : :=

FOR MCP USE ONLY.

DISABLE.INTERRUPTS

THE <DISABLE INTERRUPTS DESIGNATOR> SUPPRESSES ALL INTERRUPTS
UNTIL AN <ENABLE INTERRUPTS DESIGNATOR> IS ENCOUNTERED.

NOTE THAT THIS CONSTRUCT CANNOT BE EXECUTED BY NORMAL STATE
PROGRAMS.

ENABLE.INTERRUPTS

<ENABLE.INTERRUPTS
·DES I GNATOR> : : =

FOR MCP USE ONLY.

ENABLE.INTERRUPTS

16-19

THE <ENABLE INTERRUPTS DESIGNATOR> CAUSES THE MCP TO RETURN TO
THE NORMAL INTERRUPT-PROCESSING MODE AFTER THE <DISABLE
INTERRUPTS DESIGNATOR> HAS CHANGED THAT MODE. SEE ABOVE

NOTE THAT THIS CONSTRUCT CANNOT BE EXECUTED BY A NORMAL STATE
PROGRAM.

ACCESS FILE INFORMATION

<ACCESS FILE INFORMATION
DESIGNATOR> : : =

(FILE DESIGNATOR> ::=

<RETURN TYPE> ::=

<DESTINATION> ::=

ACCESS.FILE.INFORMATION <<FILE DESIGNATOR>,
<RETURN TYPE>,<DESTINATION>>

<FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> <<EXPRESSION>>

BIT I CHARACTER

<ADDRESS GENERATOR>

THE <ACCESS FILE INFORMATION DESIGNATOR> RETURNS THE END-OF-FILE
POINTER AND THE DEVICE TYPE FROM THE FIB OF THE SPECIFIED FILE
TO THE SPECIFIED DESTINATION.

THE INFORMATION MAY BE RETURNED AS EITHER BIT OR CHARACTER. THE
FORMAT IS AS FOLLOWS:

01 DESTINATION.FIELD,
02 EOF.POINTER
02 DEVICE.TYPE

BITC2~>. % CHARACTERC8>
BITC6>; % CHARACTERC2>

TO ENSURE THAT THE FIB EXISTS, THIS COMMUNICATE SHOULD ONLY BE
USED ON OPEN FILES.

HARDWARE MONITOR

<HARDWARE MONITOR
DESIGNATOR> : : = HARDWARE.MONITOR C<EXPRESSION>>

THE MONITOR MICRO-OPCODE WILL BE EXECUTED USING THE LOW-ORDER 8
BITS OF THE <EXPRESSION> AS ITS OPERAND. ALSO SEE APPENDIX IV.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-20

SAVE STATE

<SAVE STATE DESIGNATOR> ::= SAVE.STATE

THE STATE OF THE INTERPRETER WILL BE STORED IN RS.M.MACHINE CSEE
"B1700 MCP REFERENCE MANUAL">. EXECUTION WILL THEN CONTINUE.

DEBLANK

<DEBLANK DESIGNATOR>::= DEBLANK <<FIRST CHARACTER>>

<FIRST CHARACTER>::= <IDENTIFIER>

THE <FIRST CHARACTER> IS A SIMPLE IDENTIFIER WHICH DESCRIBES THE
FIRST CHARACTER TO BE EXAMINED. DEBLANK REPEATLY INCREMENTS THE
ADDRESS FIELD OF THE DESCRIPTOR FOR <FIRST CHARACTER> UNTIL
<FIRST CHARACTER> DESCRlBES A NON-BLANK CHARACTER.

FREEZE PROGRAM

<FREEZE-PROGRAM
DES I GNATOR>: : = FREEZE.PROGRAM

EXECUTION OF THIS FUNCT10N WILL PREVENT THE PROGRAM FROM BEING
MOVED IN MEMORY OR FROM BEING ROLLED OUT OF MEMORY.

THAW PROGRAM

<THAW"-'.PROGRAM
DESIGNATOR>::= THAW.PR0GRAM

EXECUTION OF THIS FUNCTION WILL ALLOW THE PROGRAM TO BE ROLLED
OUT OF MEMORY. IT WILL NOT FORCE IT TO BE ROLLED OUT.

16-21

DUMP FOR ANALYSIS

<DUMP-FOR-
ANAL YS IS DESIGNATOR>::= DUMP.FOR.ANALYSIS

EXECUTION OF THIS FUNCTION WILL CAUSE A DUMPFILE TO BE CREATED
AND EXECUTION TO COUTINUE.

COMPILE CARD INFO

<COMPILE-CARD-
INFO DESIGNATOR>::= COMPILE.CARD.INFO

C<CCI DESTINATION FIELD>>

<CCI DESTINATION FIELD>::= <ADDRESS GENERATOR>

THIS FUNCTION IS INTENDED FOR USE BY THE COMPILERS ONLY. THE
INFORMATION ON THE "COMPILE" CARD IS RETURNED IN THE FOLLOWING
FORMAT:

OBJECT NAME
EXECUTE TYPE CDECIMAL>

"01" EXECUTE
02 COMPILE AND GO
03 COMPILE FOR SYNTAX
04 COMPILE TO LIBRARY
05 COMPILE AND SAVE
06 GO PART OF COMPILE AND GO
07 GO PART OF COMPILE AND SAVE

COMPILER PACK IDENTIFIER
COMPILER INTERPRETER NAME
COMPILER INTRINSIC NAME
COMPILER PRIORITY CDECIMAL>
COMPILER CHARGE NUMBER CDECIMAL>
COMPILER JOB NUMBER .CDECIMAL>
COMPILER~S FIRST NAME
OBJECT PROGRAM~S FIRST NAME
COMPILER MIX NUMBER CDECIMAL>
COMPILATION DATE

CONTENTS
JULIAN DAY CBINARY>

CHARACTER C30>
CHARACTER <2>

CHARACTER ClO>
CHARACTER C30>
CHARACTER ClO>
CHARACTER C2>
CHARACTER C6>
CHARACTER C6)
CHARACTER <10>
CHARACTER ClO>
CHARACTER <8>
BIT C 36>

BITS
0-8
9-15
16-35

LAST TWO DIG I TS OF YEAR CB I NARY -· BASE 1900 >
TIME CBINARY - TENTHS OF SECONDS>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-22

COMMUNICATE

<COMMUNICATE DESIGNATOR>::= COMMUNICATE <<EXPRESSION>>

THE <EXPRESSION> IS EXPECTED TO BE A VALID COMMUNICATE MESSAGE.
THIS IS INTENDED ONLY FOR EXPERIMENTAL TESTING OF COMMUNICATES.

MODIFY INSTRUCTION

<MODIFY INSTRUCTION> ::= <CLEAR STATEMENT>

I <BUMP STATEMENT>
I <DECREMENT STATEMENT>

<CLEAR STATEMENT> ::= CLEAR <ARRAY IDENTIFIER LIST>

ARRAY IDENTIFIER LIST> ::= <ARRAY IDENTIFIER>
I <ARRAY IDENTIFIER>,

<ARRAY IDENTIFIER LIST>

16-23

AS THE SYNTAX INDICATES, THE <CLEAR STATEMENT> MAY ONLY "CLEAR"
ARRAYS. IF THE ARRAY HAS BEEN DECLARED BIT OR FIXED, ZEROES ARE
MOVED TO EACH ELEM~NT. IF IT WAS DECLARED AS CHARACTER, BLANKS
ARE MOVED TO EACH ELEMENT. PAGED ARRAYS MAY NOT BE ''CLEARED".

<BUMP STATEMENT> ::= BUMP <ADDRESS VARIABLE><MODIFIER>

<ADDRESS VARIABLE> ::= SEE "ADDRESS VARIABLES"

<MODIFIER> ::= <EMPTY>
I BY <EXPRESSION>

<DECREMENT STATEMENT> ::= DECREMENT <ADDRESS VARIABLE><MODIFIER>

THE BUMP AND DECREMENT STATEMENTS PERFORM THE SAME FUNCTIONS AS
THEIR COUNTERPARTS IN THE <EXPRESSION> CBUMPOR AND
DECREMENTOR>. SEE THOSE SECTIONS FOR SPECIFIC USAGE. SINCE
THESE CONSTRUCTS EXIST AS STATEMENTS IN THEIR OWN RIGHTS, AND
NOT MERELY AS PARTS OF THE <EXPRESSION>, THEY ARE INCLUDED
HERE.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-24

NULL STATEMENT

<NULL STATEMENT> ::=

THE SEMI-COLON IS CONSIDERED TO BE A STATEMENT IN ITS OWN RIGHT.
IT MAY BE USED IN ANY CONSTRUCT WHERE THE SYNTAX REQUIRES THAT
AN <EXECUTABLE STATEMENT> BE PRESENT, BUT THE USER WISHES TO
EXECUTE NOTHING. IT IS MOST COMMONLY USED IN THE <IF STATEMENT>
AND THE <CASE STATEMENT>, BUT MAY ALSO BE FUNCTIONAL IN THE
READ, WRITE, AND SPACE STATEMENTS. REFER TO THE INDIVIDUAL
DESCRIPTIONS FOR MORE SPECIFIC DETAILS.

EXAMPLE:
CASE <EXPRESSION>;

IF <EXPRESSION> THEN;
ELSE <STATEMENT>;

I

DO;
<EXECUTABLE STATEMENT LIST>
END;

END CASE;

NOTICE THAT THE ABOVE <CASE STATEMENT> CONTAINS THREE
<EXECUTABLE STATEMENTS>: AN <IF STATEMENT>, A <NULL STATEMENT>,
AND A <DO GROUP>. IF THE VALUE OF THE <EXPRESSION> FOLLOWING
"CASE" IS 1, THEN NOTHING IS EXECUTED. IN ADDITION, THE ";"
FOLLOWING "THEN" IS A <NULL STATEMENT>.

16-25

FILE ATTRIBUTE STATEMENT CCHANGE STATEMENT>

<FILE ATTRIBUTE
STATEMENT> : :=

<FILE DESIGNATOR> ::=

<DYNAMIC FILE
ATTRIBUTE LIST> ::=

<DYNAMIC FILE
ATTRIBUTE> ::=

CHANGE <FILE DESIGNATOR>
TO C<DYNAMIC FILE ATTRIBUTE LIST>l

<FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> C<EXPRESSION>>

<DYNAMIC FILE ATTRIBUTE>
I <DYNAMIC FILE ATTRIBUTE>,

<DYNAMIC FILE ATTRIBUTE LIST>

<DYNAMIC MULTI-FILE IDENTIFICATION PART>
I <DYNAMIC FILE IbENTIFICATION PART>
I <DYNAMIC PACK.ID PART>
I <DYNAMIC DEVICE PART>
I <DYNAMIC TRANSLATION PART>
I <DYNAMIC FILE PARITY PART>
I <DYNAMIC VARIABLE RECORD PART>
I <DYNAMIC LOCK PART>
I <DYNAMIC BUFFERS PART>
I <DYNAMIC SAVE FACTOR PART>
I <DYNAMIC RECORD SIZE PART>
I <DYNAMIC RECORDS-PER-BLOCK PART>
I <DYNAMIC REEL NUMBER PART>
I <DYNAMIC NUMBER-OF-AREAS PART>
I <DYNAMIC BLOCKS-PER-AREA PART>
I <DYNAMIC ALL-AREAS-AT-OPEN PART>
I <DYNAMIC AREA-BY-CYLINDER PART>
I <DYNAMIC EU.SPECIAL PART>
I <DYNAMIC EU.INCREMENTED PART>
I <DYNAMIC USE.INPUT.BLOCKING

DESIGNATOR PART>
I <DYNAMIC SORTER-STATION PART>
I <DYNAMIC MULTI-PACK PART>
I <DYNAMIC END-OF-PAGE PART>
I <DYNAMIC OPEN-OPTION PART>
I <DYNAMIC REMOTE-KEY PART>
I <DYNAMIC NUMBER-OF-STATIONS PART)
I <DYNAMIC QUEUE-FAMILY-SIZE PART>
I <DYNAMIC FILE TYPE PART>
I <DYNAMIC WORK FILE PART>
I <DYNAMIC LABEL TYPE PART>

THE <FILE ATTRIBUTE STATEMENT> ALLOWS THE USER TO DYNAMICALLY
CHANGE THE ATTRIBUTES OF HIS FILE DURING THE EXECUTION OF HIS
PROGRAM. THIS STATEMENT MAY OCCUR AT ANY POINT IN THE PROGRAM,

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-26

BUT THE CHANGE WILL NOT BECOME EFFECTIVE UNTIL THE FILE IS
OPENED. THAT IS, IF THE FILE IN QUESTION IS OPEN WHEN THE <FILE
ATTRIBUTE STATEMENT> IS EXECUTED, THEN THE CHANGE WILL NOT
OCCUR UNTIL THE FILE IS CLOSED AND RE-OPENED.

EACH <DYNAMIC FILE ATTRIBUTE> SHOULD BE CONSISTENT WITH THE
FORMAT AND RESTRICTIONS OF ITS COUNTERPART LISTED IN THE "FILE
DECLARATIONS". EXCEPTIONS TO THIS ARE SPECIFICALLY STATED
BELOW.

IF A <DYNAMIC FILE ATTRIBUTE> IS OMITTED, THE ATTRIBUTE REMAINS
AS IT WAS PREVIOUSLY SET.

IT SHOULD BE NOTED THAT THE FOLLOWING PROCESS· IS MANDATORY WHEN
CHANGING THE ATTRIBUTES OF AN OPEN FILE WHICH IS TO BE
RE-OPENED:

1. CLOSE THE FILE WITH AN ATTRIBUTE WHICH CAUSES SPACE FOR THE
FIB TO BE RETURNED: I.E., "LOCK", "RELEASE", ETC. C IF
"CLOSE" IS USED WITHOUT ATTRIBUTES, THE FIB WILL NOT BE
REBUILT FROM THE FPB, AND THE ATTRIBUTE WILL REMAIN
UNCHANGED) .

2. CHANGE THE DESIRED ATTRIBUTES.

3. OPEN THE FILE.

<DYNAMIC MULTI-FILE
IDENTIFICATION PART> ::= MULTI . F I LE . ID -

16-27

<DYNAMIC MULTI-FILE IDENTI~ICATION>

<DYNAMIC MULTI-FILE
IDENTIFICATION> ::=

<DYNAMIC FILE
IDENTIFICATION PART> ::=

<DYNAMIC FILE
IDENTIFICATION> : :=

<EXPRESSION>

FILE.ID+-<DYNAMIC FILE IDENTIFICATION>

<EXPRESSION>

<DYNAMIC PACK.ID PART> ::= PACK.ID-

<DYNAMIC PACK
IDENTIFICATION> ··=

<DYNAMIC PACK IDENTIFICATION>

<EXPRESSION>

THE <EXPRESSION>S OF THESE FOUR ATTRIBUTES ARE EACH ASSUMED TO
BE CHARACTER STRINGS. IF THEY ARE BITS, HOWEVER, THEY WILL BE
CONVERTED TO CHARACTERS IN THE FOLLOWING MANNER:

1. THE BITS ARE LEFT JUSTIFIED.

2. TRAILING BLANKS ARE APPENDED. HOWEVER, IF THE
BITS ARE NOT A MULTIPLE OF 8, THEN THE STRING
WILL APPEAR TO BE INVALID CHARACTERS.

EXAMPLE:
CHANGE F TO CFILE.ID .. •FOE•l;

WILL RESULT IN THE <FILE IDENTIFICATION>
BEING EQUAL TO:

•FOE40404040404040404•

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-28

<DYNAMIC DEVICE PART> ::=

<DYNAMIC DEVICE
SPECIFIER> ::=

DEVICE .. <DYNAMIC DEVICE SPECIFIER>

<EXPRESSION>

THE LOW-ORDER 10 BITS OF THE <EXPRESSION> MUST BE CODED AS
FOLLOWS CWHERE THE VARIANT IS THE HIGH ORDER 4 BITS, AND THE
HARDWARE IS THE LOW-ORDER SIX>:

DEVICE HARDWARE

CARD 21
MULTI.FUNCTION.CARD 4
TAPE 27
TAPE. 9 28
TAPE. 7 25
TAPE .PE 26
TAPE.NRZ 24
DISK 17

DISK.PACK 16
DISK.FILE 12
DI SK . PACK . CENTURY 1 5
DISK.PACK.CAELUS 14
PRINTER 8

PRINTER FORMS 8
CARD.READER 21
CARD.PUNCH 2
CARD.PUNCH FORMS 2
PUNCH 2
PUNCH FORMS 2
PUNCH.96 1
PUNCH.96 FORMS 1
READER.PUNCH 3
READER.PUNCH FORMS 3
READER.PUNCH.PRINTER 5
READER.PUNCH.PRINTER FORMS 5
PUNCH.PRINTER 18
PUNCH.PRINTER FORMS 18
PAPER.TAPE.PUNCH 20
PAPER.TAPE.PUNCH FORMS 20
PAPER.TAPE.READER 6
READER.96 19

VARIANT

0 = SERIAL
1 = RANDOM
CSAME AS DISK>
CSAME AS DISKl
CSAME AS DISK>
CSAME AS DISKl
0 = BACKUP TAPE OR DISK
1 - BACKUP TAPE
2 = BACKUP DISK
3 = BACKUP TAPE OR DISK
4 = HARDWARE ONLY
5 = BACKUP TAPE,ONLY
6 = BACKUP DISK ONLY
7 = BACKUP TAPE OR DISK ONLY
8 + PRINTER VARIANT

CSAME AS PRINTERl
CSAME AS PRINTER FORMSl
CSAME AS PRINTERl
CSAME AS PRINTER FORMS>
CSAME AS PRINTER>
CSAME AS PRINTER FORMSl
<SAME AS PRINTERl
CSAME AS PRINTER FORMSl
CSAME AS PRINTERl
CSAME AS PRINTER FORMS>
CSAME AS PRINTERl
CSAME AS PRINTER FORMSJ
<SAME AS PRINTER>
CSAME AS PRINTER FORMS>

SORTER.READER
READER.SORTER
SPO
CASSETTE
REMOTE
QUEUE
MFCU

10
10
22
30
63
62
4

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-29

<DYNAMIC TRANSLATION
PART> : := TRANSLATION,

16-30

<DYNAMIC TRANSLATION SPECIFIER>

<DYNAMIC TRANSLATION
SPECIFIER> ::= . <EXPRESS I ON>

THE LOW-ORDER 3 BITS OF THE <EXPRESSION> DETERMINES THE
TRANSLATION AS FOLLOWS:

000 = EBCDIC
001 = ASCII
010 = BCL

<DYNAMIC SORTER STATION
PART> : : =

<DYNAMIC SORTER
STATION SPECIFIER> : :=

SR.STATION.-
<DYNAMIC SORTER STATION SPECIFIER>

<EXPRESSION>

THE LOW-ORDER 3 BITS OF THE <~XPRESSION> DETERMINES THE
TRANSLATION AS FOLLOWS:

001 = FIRST STATION
010 = SECOND STATION
111 =BOTH STATIONS

<DYNAMIC OPEN-
OPT I ON PART>: : = OPEN. OPT I ON..._

<DYNAMIC OPEN.OPTION SPECIFIER>

<DYNAMIC OPEN-
OPT ION SPECIFIER>::= <EXPRESSION>

THE LOW-ORDER 12 BITS OF THE EXPRESSION DETERMINE THE TYPE OF
OPEN AS FOLLOWS <BITS ARE NUMBERED FROM LEFT TO RIGHT WITHIN
THE 12) :

16-31

BIT FUNCTION CI F 1)
0 = INPUT
1 = OUTPUT
2 = NEW
3 = PUNCH
4 = PRINT
5 = NO.REWIND, INTERPRET
6 = REVERSE, STACKERS
7 = LOCK
8 = LOCK.OUT
1 1 = CODE.FILE

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

<DYNAMIC PARITY PART> ::=

<DYNAMIC PARITY
SPECIFIER> ::=

<DYNAMIC VARIABLE
RECORD PART> ::=

<DYNAMIC VARIABLE
RECORD SPECIFIER> ::=

<DYNAMIC LOCK PART> : :=

<DYNAMIC LOCK
SPEC IF I ER> : : =

<DYNAMIC ALL-AREAS­
AT-OPEN PART> ::=

<DYNAMIC ALL-AREAS­
AT-OPEN SPECIFIER> ::=

<DYNAMIC AREA-BY
CYLINDER PART> ::=

<DYNAMIC AREA-BY-
CYL I NDER SPECIFIER> : :=

<DYNAMIC USE.INPUT.
BLOCKING PART> ::=

<DYNAMIC USE.INPUT.
BLOCKING SPECIFIER> : :=

<DYNAMIC END-OF­
PAGE PART> : : =

<DYNAMIC END-OF­
PAGE SPECIFIER> ::=

<DYNAMIC MULTI­
PACK PART>::=

<DYNAMIC MULTI­
PACK SPECIFIER> : :=

16-32

PARITY <DYNAMIC PARITY SPECIFIER>

<EXPRESSION>

VARIABLE-
<DYNAMIC VARIABLE RECORD SPECIFIER>

<EXPRESSION>

LOCK <DYNAMIC LOCK SPECIFIER>

<EXPRESSION>

ALL. AREAS. AT . OPEN --
<DYNAMIC ALL-AREAS-AT-OPEN SPECIFIER>

<EXPRESSION

AREA. BY.CYLINDER
<DYNAMIC AREA-BY-CYLINDER SPECIFIER>

<EXPRESSION>

USE.INPUT.BLOCKING..._
<DYNAMIC USE.INPUT.BLOCKING SPECIFIER>

<EXPRESSION>

END. OF. PAGE. ACT I ON..._
<DYNAMIC END-OF-PAGE SPECIFIER>

<EXPRESSION>

MUL T I . PACK .-
<DYNAMIC MULTI-PACK SPECIFIER>

<EXPRESSION>

<DYNAMIC REMOTE­
KEY PART>: : =

<DYNAMIC REMOT£­
KEY SPECIFIER>::=

<DYNAMIC WORK
FILE PART>::=

<DYNAMIC WORK
FILE SPECIFIER>::=

16-33

REMOTE-KEY .,._
<DYNAMIC REMOTE-KEY SPECIFIER>

<EXPRESSION>

WORK . F I LE .,._
<DYNAMIC WORK FILE SPECIFIER>

<EXPRESSION>

ONLY THE LOW-ORDER BIT OF EACH OF THE ABOVE <EXPRESSION>S IS
USED TO DETERMINE THE VALUE OF THE ATTRIBUTE. THE CODE
DEFINITIONS ARE AS FOLLOWS:

PARITY 0 = ODD
1 = EVEN

VARIABLE 0 = FIXED
1 = VARIABLE

LOCK 0 = NOT LOCKED
1 = LOCKED

ALL.AREAS.AT.OPEN 0 = ALLOCATE AREAS AS NEEDED
1 = ALLOCATE ALL SPACE AT OPEN TIME

AREA.BY.CYLINDER 0 = PUT AREA ANYWHERE ON DISK
1 = ONE AREA PER CYLINDER AT BEGINNING

USE.INPUT.BLOCKING 0 = TAKE ATTRIBUTES FROM FILE DECLARATION
1 = TAKE ATTRIBUTES FROM DISK FILE HEADER

SEE FILE ATTRIBUTES
END.OF.PAGE.ACTION 0 = NO DETECTION OF END-OF-PAGE

1 = BRANCH TO <EOF PART> OF <WRITE
STATEMENT> AT END OF PAGE ON
PRINTER FILE

MULTI .PACK 1 = PLACE FILE ON MULTIPLE DISK PACKS
0 = PLACE FILE ON SINGLE DISK PACK

REMOTE KEY 1 = REMOTE KEY IS PRESENT ON ALL READS
AND WRITES TO THE FILE

0 = REMOTE KEY IS NOT PRESENT
WORK.FILE 1 = INSERT JOB NUMBER IN FILE IDENTIFIER

0 = LEAVE FILE IDENTIFIER ABOVE

© 1973, 1974 Burroughs - DO NOT REPRODUCE

<DYNAMIC EU.SPECIAL
PART> : : =

<DYNAMIC EU.SPECIAL
SPECIFIER> ::=

<DYNAMIC EU.DRIVE
SPECIFIER> : :=

<DYNAMIC EU.
INCREMENTED PART> ::=

<DYNAMIC EU.INCREMENTED
SPECIFIER> : :=

<DYNAMIC EU.
INCREMENT SPECIFIER> ::=

EU. SPEC I AL_
<DYNAMIC EU.SPECIAL SPECIFIER>

I EU.SPECIAL,.._
<DYNAMIC EU.SPECIAL SPECIFIER~
EU.DRIVE-
<DYNAMIC EU.DRIVE SPECIFIER>

<EXPRESSION>

<EXPRESSION>

EU. INCREMENTED -

16-34

<DYNAMIC EU.INCREMENTED SPECIFIER>
I EU. INCREMENTED._

<DYNAMIC EU.INCREMENTED SPECIFIER>,
EU. INCREMENT -
<DYNAMIC EU.INCREMENT SPECIFIER>

<EXPRESSION>

<EXPRESSION>

THE LOW-ORDER BIT OF THE EU.SPECIAL AND EU.INCREMENTED
SPECIFIERS SERVES TO INDICATE WHETHER OR NOT THE ATTRIBUTE IS
SET CO=OFF, l=ONJ. IF THE ATTRIBUTE IS OFF, THEN INCLUSION OF
THE EU.DRIVE AND EU.INCREMENT SPECIFIERS IS UNNECESSARY.

IF THESE ATTRIBUTES ARE SET ON, THEN THE DRIVE AND INCREMENT
PARTS SHOULD BE INCLUDED, AND SHOULD CONFORM TO THE
SPECIFICATIONS IN THE "FILE DECLARATIONS". IF OMITTED, THE
<DYNAMIC EU.DRIVE SPECIFIER> IS NOT CHANGED. IF THE <DYNAMIC
EU.INCREMENT SPECIFIER> HAS NEVER BEEN SET CI .E., IT IS. OJ,
THEN IT IS SET TO ONE; OTHERWISE, IT TOO REMAINS UNCHANGED ..

16-35

<DYNAMIC BUFFERS PART> ::= BUFFERS--<DYNAMIC NUMBER OF BUFFERS>

<DYNAMIC NUMBER
OF BUFFERS> : : =

<DYNAMIC SAVE
FACTOR PART> ::=

<DYNAMIC SAVE FACTOR> ::=

<DYNAMIC RECORD
SIZE PART> ::=

<DYANMIC RECORD SIZE> ::=

<DYNAMIC RECORDS­
PER-BLOCK PART> ::=

<DYNAMIC RECORDS­
PER-BLOCK > : : =

<DYNAMIC REEL
NUMBER PART> ::=

<DYNAMIC REEL NUMBER> ::=

<DYNAMIC NUMBER-OF­
AREAS PART> : : =

<DYNAMIC NUMBER­
OF-AREAS> : : =

<DYNAMIC BLOCKS-PER­
AREA PART>::=

<DYNAMIC BLOCKS-PER
AREA> : :=

<DYNAMIC QUEUE-FAMILY­
SIZE PART>::=

<DYNAMIC QUEUE­
FAMILY-SIZE>:: =

<DYNAMIC NUMBER-OF­
STAT IONS PART>::=

<EXPRESSION>

SAVE.-<DYNAMIC SAVE FACTOR>

<EXPRESSION>

RECORD.SIZE--<DYNAMIC RECORD SIZE>

<EXPRESSION>

RECORDS.PER.BLOCK._
<DYNAMIC RECORDS-PER-BLOCK>

<EXPRESSION>

REEL-<DYNAMIC REEL NUMBER>

<EXPRESSION>

NUMBER.OF.AREAS._
<DYNAMIC NUMBER-OF-AREAS>

<EXPRESSION>

BLOCKS. PER. AREA -
<DYNAMIC BLOCKS-PER-AREA>

<EXPRESSION>

QUEUE-FAMILY-SIZE-+­
<DYNAMIC QUEUE-FAMILY-SIZE>

<EXPRESSION>

NUMBER-OF-STATIONS4-
<DYNAMIC NUMBER-OF-STATIONS SPECIFIER>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

<DYNAMIC NUMBER-OF­
STAT IONS SPECIFIER>::=

<DYNAMIC FILE
TYPE PART>::=

<DYNAMIC FILE
TYPE SPECIFIER>::=

< EXPRE,SS I ON>
.. _,

FI LE. TYPE ..,._
<DYNAMIC FILE TYPE SPECIFIER>

<EXPRESSION>

THE VALUE OF THE EXPRESSION DETERMINES THE FILE TYPE:

<DYNAMIC LABEL
TYPE PART>::=

<DYNAMIC LABEL
TYPE SPECIFIER>::=

VALUE
0
7
8
9

TYPE
DATA
INTERPRETER
CODE
DATA

LABEL TYPE-
<DYNAMIC LABEL TYPE SPECIFIER>

<EXPRESSION>

THE VALUE OF THE EXPRESSION DETERMINES THE LABEL TYPE.

VALUE
0
1

TYPE
BURROUGHS STANDARD LABEL
UNLABELED

16-36

THE ABOVE <EXPRESSION>S RETURN A BIT STRING WHICH SHOULD BE
CONSISTENT WITH THE FORMATS AND RESTRICTIONS LISTED IN THE
"FILE DECLARATIONS".

16-37

STOP STATEMENT

<STOP STATEMENT> ::= STOP
I STOP <EXPRESSION>

THE <STOP STATEMENT> IS A COMMUNICATE TO THE HCP THAT THE
PROGRAM HAS FINISHED. IT SHOULD NOT BE CONFUSED WITH "FINI"
WHICH IS THE FINAL STATEMENT IN THE PROGRAM.

"STOP <EXPRESSION>" IS INTENDED FOR USE BY THE COMPILERS ONLY.
THE <EXPRESSION> COMMUNICATES THE NUMBER OF SYNTAX ERRORS TO
THE MCP.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-38

ZIP STATEMENT

<ZIP STATEMENT> ::= ZIP <EXPRESSION>

THE <ZIP STATEMENT> ALLOWS THE USER TO PASS CONTROL INSTRUCTIONS
TO THE MCP. THE <EXPRESSION> SHOULD GENERATE A CHARACTER STRING
WHOSE VALUE IS A VALID MCP CONTROL STATEMENT AS DEFINED IN THE
"81700 SOFTWARE OPERATIONAL GUIDE".

SEARCH STATEMENT

<SEARCH STATEMENT> :~=

<SEARCH PART>::=

<SEARCH OBJECT> ::=

<SEARCH RESULT> ::=

<SEARCH RESULT MODE> ::=

<FILE MISSING PART> ::=

<rILE LOCKED PART> ::=

16-39

<SEARCH PART>
I <SEARCH PART>; <FILE MISSING PART>
I <SEARCH PART>; <FILE LOCKED PART>
I <SEARCH PART>; <FILE MISSING PART>

<FILE LOCKED PART>

SEARCH.DIRECTORY <<SEARCH OBJECT>.
<SEARCH RESULT>.<SEARCH RESULT MODE>>

<ADDRESS GENERATOR>

<ADDRESS GENERATOR>

BIT I CHARACTER

ON FILE.MISSING <EXECUTABLE STATEMENT>

ON FILE.LOCKED <EXECUTABLE STATEMENT>

THE <SEARCH STATEMENT> ALLOWS THE USER TO EXTRACT CERTAIN
INFORMATION CONTAINED IN THE DISK FILE HEADER SPECIFIED BY THE
<SEARCH OBJECT>.

THE <SEARCH OBJECT> IS EXPECTED TO BE 30 CHARACTERS IN LENGTH.
WHERE THE FIRST 10 CHARACTERS ARE THE PACK IDENTIFICATION. THE
SECOND 10 CHARACTERS ARE THE MULTI-FILE IDENTIFICATION. AND THE
3RD 10 ARE THE FILE IDENTIFICATION. FILE NAMES LESS THAN 10
CHARACTERS MUST BE LEFT-JUSTIFIED IN THEIR RESPECTIVE FIELDS
WITH TRAILING BLANKS APPENDED. IF ONLY ONE FILE NAME EXISTS.
THAT NAME SHOULD BE LEFT-JUSTIFIED IN THE MULTI-FILE
IDENTIFICATION FIELD, AND THE FILE IDENTIFICATION SHOULD BE
BLANK.

THE <SEARCH RESULT> SPECIFIES THE RECEIVING FIELD AND SHOULD BE
360 BITS LONG IF BIT MODE IS SPECIFIED. OR 59 BYTES IF
CHARACTER MODE IS SPECIFIED.

THE INFORMATION IS RETURNED IN THE FOLLOWING FORMAT:

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

16-40

01 FILE.HEADER.FORMAT,
02 OPEN.TYPE BIT (24) t % CHARACTER (1)
02 NO.USERS BIT (24) t % CHARACTER (2)
02 RECORD.SIZE BIT (24) t % CHARACTER (4)
02 RECORDS.PER.BLOCK BIT (24) t % CHARACTER (4)
02 EOF .PO INTER BIT (24) ' % CHARACTER (8)
02 SEGMENTS.PER.AREA BIT (24) ' % CHARACTER (8)
02 USER.OPEN.OUTPUT BIT (24) ' % CHARACTER (1)
02 FILE.TYPE BIT (24) ' % CHARACTER (2)
02 PERMANENT.FLAG BIT <24) ' % CHARACTER (2)
02 BLOCKS.PER.AREA BIT (24) • % CHARACTER (6)
02 AREAS.R~QUESTED BIT (24) ' % CHARACTER (3)
02 AREA.COUNTER BIT (24) ' x CHARACTER (3)
02 SAVE.FACTOR BIT (24) ' x CHARACTER (3)
'02 CREATION.DATE BIT (24) ' x CHARACTER (6)
02 LAST.ACCESS.DATE BIT (24) ' x CHARACTER (6)

NOTE: THIS FORMAT MAY BE SUBJECT TO CHANGE.

THE <FILE MISSING PART> AND <FILE LOCKED PART> ALLOW THE USER TO
SPECIFY THE COURSE OF ACTION SHOULD EITHER OF THESE CONDITIONS
ARISE.

16-41

ACCESS FILE HEADER STATEMENT

<ACCESS FILE HEADER
STATEMENT> ::=

<ACCESS FILE HEADER
PART> ::=

<FILE NAME> ::=

<DESTINATION FIELD> ::=

<SOURCE FIELD> ::=

<FILE MISSING PART> : :=

<FILE LOCKED PART> : :=

<ACCESS FILE HEADER PART>;
I <ACCESS FILE HEADER PART>;

<FILE MISSING PART>
I <ACCESS FILE HEADER PART>;

<FILE LOCKED PART>
I <ACCESS FILE HEADER PART>;

<FILE MISSING PART>
<FILE LOCKED PART>

READ.FILE.HEADER
(<FILE NAME>, <DESTINATION FIELD>l

I WRITE.FILE.HEADER
(<FILE NAME>, <SOWRCE FIELD>l

<ADDRESS GENERATOR>

<ADDRESS GENERATOR>

<ADDRESS GENERATOR>

ON FILE.MISSING <EXECUTABLE STATEMENT>

ON FILE.LOCKED <EXECUTABLE STATEMENT>

THE <ACCESS FILE HEADER STATEMENT> IS INTENDED FOR USE IN
SYSTEMS PROGRAMS ONLY. IT ENABLES THE PROGRAMMER TO EITHER READ
OR WRITE A FILE HEADER.

THE <FILE NAME> IS EXPECTED TO BE A 30-CHARACTER FIELD WHERE THE
FIRST 10 CHARACTERS ARE THE PACK.ID, THE SECOND 10 CHARACTERS
ARE THE MULTI-FILE IDENTIFlCATION AND THE THIRD 10, THE FILE
IDENTIFICATION. FILE NAMES LESS THAN 10 CHARACTERS ARE
LEFT-JUSTIFIED IN THEIR RESPECTIVE FIELDS. IF ONLY ONE FILE
NAME EXISTS, IT IS LEFT-JUSTIFIED IN THE MULTI-FILE
IDENTIFICATION, AND THE FILE IDENTIFICATION SHOULD BE SET TO
BLANKS.

THE <SOURCE FIELD> OR <DESTINATION FIELD> SPECIFIES,
RESPECTIVELY, THE SENDING OR RECEIVING FIELD, AND IS EXPECTED
TO BE 576 TO 4320 BITS IN LENGTH DEPENDING UPON THE NUMBER OF
AREAS ALLOCATED. INFORMATION IS PASSED IN THE FILE HEADER
FORMAT. REFER TO THE "B1700 MCP MANUAL" FOR SPECIFICS.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

16-42

THE <FILE MISSING PART> AND <FILE LOCKED PART> ENABLE THE
PROGRAMMER TO SPECIFY THE COURSE OF ACTION SHOULD EITHER OF
THESE CONDITIONS AR .I SE ,

NOTE THAT EXTREME CAUTION IS ADVISED WHEN WRITING A FILE HEADER.

SEND STATEMENT

<SEND STATEMENT> : :=

<SEND PART> : : =

<MESSAGE SOURCE> ::=

<QUEUE> : :=

<QUEUE FULL PART> ::=

16-43

<SEND PART>;
I <SEND PART>; <QUEUE FULL PART>
I <SEND PART>; <INVALID REQUEST PART>
I <SEND PART>; (QUEUE FULL PART>

<INVALID REQUEST PART>

SEND <MESSAGE SOURCE> TO <QUEUE>

<ADDRESS GENERATOR>

<EXPRESSION>

ON Q.FULL <EXECUTABLE STATEMENT>

<INVALID REQUEST PART> ::= ON INVALID.REQUEST <EXECUTABLE STATEMENT>

THE <SEND STATEMENT> ALLOWS THE USER TO COMMUNICATE WITH OTHER
PROGRAMS BY PLACING A MESSAGE IN A SPECIFIED QUEUE WHICH MAY BE
ACCESSED BY THE OTHER PROGRAMS WITH THE <~ECEIVE STATEMENT>.

THE <MESSAGE SOURCE> SPECIFIES THE MESSAGE TO BE PLACED IN THE
QUEUE. IT IS ENTERED AT THE END OF THE QUEUE AND MAY BE A
MAXIMUM OF 65535 BITS IN LENGTH.

THE <QUEUE> SPECIFIES THE 20-CHARACTER NAME OF THE QUEUE, THE
NAME THAT MUST BE USED BY ALL PROGRAMS ACCESSING THAT QUEUE.
THE FORMAT OF THE QUEUE NAME IS THE SAME AS A FILE HEADER. THAT
IS, THE FIRST 10 CHARACTERS IS THE QUEUE FAMILY NAME, AND THE
SECOND 10 IS THE SUB-QUEUE NAME. NAMES LESS THAN 10 CHARACTERS
ARE LEFT JUSTIFIED IN IN THEIR RESPECTIVE FIELDS. IF ONLY ONE
NAME EXISTS, IT IS LEFT JUSTIFIED IN THE FAMILY QUEUE FIELD,
AND SUB-QUEUE IS SET TO BLANKS.

THE <QUEUE FULL PART> WILL BE EXECUTED IF THE MAXIMUM QUEUE SiiE
HAS BEEN REACHED. IF UNSPECIFIED, A QUEUE MAY CONTAIN 1023
MESSAGES. THE MAXIMUM NUMBER OF QUEUE MESSAGES MAY BE SET TO
ANY AMOUNT LESS THAN 1023 WITH THE <QUEUE SIZE DESIGNATOR>. THE
CURRENT POPULATION OF A QUEUE MAY BE OBTAINED WITH THE <QUEUE
POPULATION DES I GNATOR>. Fm< FURTHER DETAILS, SEE THE
APPROPRIATE SECTIONS.

THE <INVALID REQUEST PART> WILL BE EXECUTED IF THE <SEND PART>
CANNOT, FOR SOME REASON, BE RECOGNIZED BY THE MCP.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

NOTE: SINCE MESSAGES ARE SENT TO THE END OF THE
QUEUE AND RECEIVED FROM THE TOP, IT IS THE
PROGRAMMER-S RESPONSIBILITY TO ENSURE THAT
MESSAGES ARE RECEIVED IN THE CORRECT ORDER.

16-44

RECEIVE STATEMENT

<RECEIVE STATEMENT> ::=

<RECEIVE PART> ::=

<MESSAGE DESTINATION> : :=

<QUEUE> : : =

<QUEUE EMPTY PART> : : =

16-45

<RECEIVE PART>;
I <RECEIVE PART>; <QUEUE EMPTY PART>
I <RECEIVE PART>; <INVALID REQUEST PART>
I <RECEIVE PART>; <QUEUE EMPTY PART>

<INVALID REQUEST PART>

RECEIVE <MESSAGE DESTINATION>
FROM <QUEUE>

<ADDRESS GENERATOR>

<EXPRESSION>

ON Q.EMPTY <EXECUTABLE STATEMENT>

<INVALID REQUEST PART> ::= ON INVALID.REQUEST <EXECUTABLE STATEMENT>

THE <RECEIVE STATEMENT> ALLOWS THE USER TO ACCEPT MESSAGES FROM
OTHER PROGRAMS BY RECEIVING THE FIRST MESSAGE FROM THE
SPECIFIED QUEUE.

THE <MESSAGE DESTINATION> SPECIFIES THE FIELD RECEIVING THE
MESSAGE. <QUEUE> SPECIFIES THE QUEUE NAME AND SHOULD CONFORM TO
THE SPECIFICATIONS DESCRIBED UNDER "SEND STATEMENT". IF ONLY
ONE NAME IS SPECIFIED, IT WILL BE TAKEN AS THE FAMILY NAME AND
THE EARLIEST MESSAGE IN ANY QUEUE HAVING THAT FAMILY NAME WILL
BE SELECTED. OTHERWISE THE FIRST MESSAGE IN THE SPECIFIED QUEUE
WILL BE SELECTED.

THE <QUEUE EMPTY PART> IS EXECUTED WHEN THE DESIGNATED QUEUE HAS
NO MESSAGES. IF THE DESIGNATED QUEUE IS NON-EXISTENT, THE QUEUE
IS CREATED, AND <QUEUE EMPTY PART> IS EXECUTED.

THE <INVALID REQUEST PART> IS EXECUTED WHEN THE <RECEIVE PART>
CANNOT, FOR SOME REASON, BE RECOGNIZED OR EXECUTED BY THE MCP.

NOTE: IT IS THE PROGRAMMER-S RESPONSIBILITY TO
ENSURE THAT HE RECEIVES THE CORRECT MESSAGE.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

16-46

ARRAY PAGE TYPE STATEMENT

<ARRAY PAGE TYPE
STATEMENT> ::= <ARRAY PAGE TYPE DESIGNATOR>

C<PAGED ARRAY NAME>,<PAGE NUMSER>l

<ARRAY PAGE TYPE
DESIGNATOR> ::=

<PAGED ARRAY NAME> · ·=

<PAGE NUMBER> ::=

MAKE.READ.ONLY
I MAKE.READ.WRITE

<IDENTIFIER>

<EXPRESSION>

THE <ARRAY PAGE TYPE STATEMENT> ALLOWS THE USER TO MARK CERTAIN
PAGED ARRAY PAGES AS READ-ONLY. WHEN THIS IS DONE, A PAGE WILL
NOT BE WRITTEN OUT TO DISK EVERY TIME IT IS OVERLAYED.

MAKE.READ.WRITE ALLOWS THE USER TO CHANGE INFORMATION ON A PAGED
ARRAY, AND TO HAVE THAT ARRAY WRITTEN ON DISK WHEN IT IS
OVERLAYED. IT IS ONLY NECESSARY TO SPECIFY MAKE.READ.WRITE
AFTER A MAKE.READ.ONLY SPECIFICATION.

IT IS THE PROGRAMMER-S RESPONSIBILITY TO ENSURE THAT THE
INFORMATION IN A PAGE MARKED READ-ONLY IS NOT CHANGED. IN
ADDITION, THE USER IS RESPONSIBLE FOR GUARANTEEING CORRECT PAGE
NUMBER SPECIFICATIONS. THERE IS NO SYNTAX CHECK FOR EITHER.

EXAMPLE:

DECLARE PAGED <32> P Cl024l BITC30l, Tl BITC24l;
T1.-1:
DO FOREVER;

MAKE.READ.ONLY CP, BUMP Tll;
IF Tl = 15 THEN UNDO;

END;

MAKE.READ.WRITE CP, OJ;

COROUTINE STATEMENT

<COROUTINE STATEMENT>::=

<COROUTINE
ENTRY STATEMENT>::=

<COROUTINE
TABLE SPECIFIER>::=

<COROUTINE
EXIT STATEMENT>::=

<COROUTINE ENTRY STATEMENT>
I <COROUTINE EXIT STATEMENT>

ENTER.COROUTINE
C<COROUTINE TABLE SPECIFIER>>

<ADDRESS GENERATOR>

EXIT.COROUTINE
C<COROUTINE TABLE SPECIFIER>>

16-47

THE <COROUTINE TABLE SPECIFIER> ASSOCIATED WITH ENTER.COROUTINE
AND EXIT.COROUTINE IS ASSUMED TO DESCRIBE A TABLE WITH THE
FOLLOWING FORMAT:

DECLARE
01 TABLE

,02 NUMBER.OF.ENTRIES BITC4>
,02 ENTRY.ADDRESS BITC32l
,02 PPS.COPYC16> BITC32l

A. ENTER.COROUTINE: THE <COROUTINE TABLE SPECIFIER> IS ASSUMED
TO HAVE THE FORMAT DESCRIBED ABOVE. THE CURRENT CODE
ADDRESS. IS PUSHED ON TO THE PROGRAM POINTER STACK. THE
NUMBER OF ELEMENTS OF PPS.COPY THAT IS SPECIFIED BY
NUMBER.OF.ENTRIES IS PUSHED ONTO THE PROGRAM POINTER STACK.
THE ADDRESS OF THE NEXT INSTRUCTION IS TAKEN FROM
ENTRY.ADDRESS.

B. EXIT.COROUTINE: THE <COROUTINE TABLE SPECIFIER> IS ASSUMED
TO DESCRIBE A TABLE OF THE FORMAT GIVEN ABOVE. THE CURRENT
NESTING LEVEL IS STORED IN NUMBER.OF.ENTRIES. THE CURRENT
CODE ADDRESS IS STORED IN ENTRY.ADDRESS. THE NUMBER CAS
SPECIFIED BY NUMBER.OF.ENTRIES> OF ENTRIES ON THE TOP OF
THE PROGRAM POINTER STACK IS COPIED TO PPS.COPYCOl THROUGH
PPS.COPYCNUMBER.OF.ENTRIES-1>. IF NUMBER.OF.ENTRIES IS 0.
THEN NOTHING IS COPIED. AN "UNDO" IS PERFORMED, USING
NUMBER.OF.ENTRIES AS THE NUMBER OF ENTRIES ON TOP OF THE
PROGRAM POINTER STACK.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

16-48

NOTt: UPON FIRST EXECUTION OF ENTER.COROUTINE, THE TABLE MUST
ALREADY BE SET UP. THE EASIEST WAY TO ACCOMPLISH THIS IS TO
MAKE THE FIRST EXECUTABLE STATEMENT IN THE COROUTINE TO BE
ENTERED AN EXIT.COROUTINE STATEMENT. THE FIRST ENTRANCE TO THE
COROUTINE IS THEN ACCOMPLISHED BY A CALL STATEMENT.

NOTE: THIS IS NOT A GENERAL COROUTINE MECHANISM--I.E., IT IS NOT
SYMMETRIC. _THE ROUTINE EXECUTING THE ENTER.COROUTINE IS A
"MASTER" TO THE "SLAVE" ROUTINE WHICH CONTAINS THE
EXIT.COROUTINE-S.

NOTE: EXIT.COROUTINE CAN ONLY APPEAR WITHIN PROCEDURES WITH NO
PARAMETERS AND NO LOCAL DATA; I.E., THOSE PROCEDURES WHICH DO
NOT CHANGE THE CONTROL STACK.

WAIT STATEMENT

<WAIT STATEMENT>::=

16-49

WAIT C<NUMBER OF TENTHS OF SECONDS>>
I HAIT C<NUMBER OF TENTHS OF SECONDS>,

DC.IO.COMPLETE>
I WAIT <,DC.IO.COMPLETE>

THE WAIT STATEMENT CAUSES THE PROGRAM-S EXECUTION TO BE
SUSPENDED UNTIL SOME EVENT OCCURS. THE FIRST FORM WAITS FOR THE
SPECIFIED NUMBER OF TENTHS OF SECONDS TO PASS. THE SECOND FORM
WAITS FOR THE NUMBER OF TENTHS OF SECONDS TO PASS OR UNTIL AN
1/0 OPERATION COMPLETES ON A DATA-COMMUNICATIONS FILE,
WHICHEVER OCCURS FIRST. THE THIRD FORM WAITS UNTIL AN 1/0
OPERATION COMPLETES ON A DATA-COMMUNICATIONS FILE.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

17-1

APPENDIX I: SYNTAX OF THE SOL LANGUAGE

<PROGRAM> ::=

<DECLARATION STATEMENT
LIST> ::=

<DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
<EXECUTABLE STATEMENT LIST>
FINI

<EMPTY>
I <DECLARATION STATEMENT>

<DECLARATION STATEMENT LIST>

<DECLARATION STATEMENT> ::= <DECLARE STATEMENT>;

<SEGMENT STATEMENT> : :=

<SEGMENT IDENTIFIER> ::=

<PAGE IDENTIFIER> ::=

<DECLARE STATEMENT> ::=

<DECLARE ELEMENT> ::=

<DECLARED PART> ::=

<COMPLEX IDENTIFIER
LIST> : :=

I <FILE DECLARATION STATEMENT>;
I <SWITCH FILE DECLARATION

STATEMENT>;
I <DEFINE STATEMENT>;
I <FORWARD DECLARATION>
I <USE STATEMENT>;
I <SEGMENT STATEMENT>

<DECLARATION STATEMENT>

SEGMENT (<SEGMENT IDENTIFIER>>;
I SEGMENT.PAGE (<SEGMENT IDENTIFIER>

OF <PAGE IDENTIFIER>>;

<IDENTIFIER>

<IDENTIFIER>

DECLARE <DECLARE ELEMENT>
I <DECLARE STATEMENT>, <DECLARE ELEMENT>

<DECLARED PART>
<TYPE PART>

I <STRUCTURE LEVEL NUMBER>
<STRUCTURE DECLARED PART>
<STRUCTURE TYPE PART>

I DYNAMIC <SIMPLE IDENTIFIER>
<DYNAMIC TYPE PART>

I PAGED <ELEMENTS-PER-PAGE PART>
<ARRAY IDENTIFIER> <ARRAY BOUND>
<TYPE PART>

<COMPLEX IDENTIFIER>
I ((COMPLEX IDENTIFIER LIST>>
I <COMPLEX IDENTIFIER> REMAPS

<REMAP IDENTIFIER>

<COMPLEX IDENTIFIER>

~ 1973, 1974 Burroughs - DO NOT REPRODUCE

<COMPLEX IDENTIFIER> ::=

<SIMPLE IDENTIFIER> ::=

<ARRAY IDENTIFIER> ::=

<ARRAY BOUND> ::=

<REMAP IDENTIFIER> ::=

<TYPE PART> : : =

<FIELD SIZE> : :=

<STRUCTURE LEVEL
NUMBER> : : =

<STRUCTURE DECLARED
PART> : : =

<DUMMY PART> : :=

<ARRAY BOUND PART> ::=

I <COMPLEX IDENTIFIER>,
<COMPLEX IDENTIFIER LIST>

<SIMPLE IDENTIFIER>
I <ARRAY IDENTIFIER> <ARRAY

< IDENTIFIER>

< I DEN TI F I ER>

C <NUMBER>>

BASE
I <SIMPLE IDENTIFIER>
I <ARRAY IDENTIFIER>

FIXED
I CHARACTER <FIELD SIZE>
I BIT <FIELD SIZE>

C <NUMBER»

<NUMBER>

<DECLARED PART>
I FILLER

17-2

BOUND>

I <DUMMY PART> REMAPS <REMAP IDENTIFIER>

DUMMY <ARRAY BOUND PART>

<EMPTY>
I <ARRAY BOUND>

<STRUCTURE TYPE PART> ::= <EMPTY>

<DYNAMIC TYPE PART> ::=

<DYNAMIC FIELD SIZE> : :=

<ELEMENTS-PER-PAGE
PART> : : =

<FILE DECLARATION
STATEMENT> : :=

<FILE DECLARE
ELEMENT LIST> ::=

I <TYPE PART>

BIT <DYNAMIC FIELD SIZE>
I CHARACTER <DYNAMIC FIELD SIZE>

C <EXPRESS I ON>>

C <NUMBER> l

FILE <FILE DECLARE ELEMENT LIST>

<FILE DECLARE ELEMENT>
I <FILE DECLARE ELEMENT>,

<FILE DECLARE ELEMENT LIST>

17-3

<FILE DECLARE ELEMENT> ::= <FILE IDENTIFIER><FILE ATTRIBUTE PART>

<FILE IDENTIFIER> ::= < ID ENT IF I ER>

<FILE ATTRIBUTE PART> · ·= <EMPTY>
I C<FILE ATTRIBUTE LIST>>

<FILE ATTRIBUTE LIST> ::= <FILE ATTRIBUTE>

<FILE ATTRIBUTE> : :=

<LABEL PART> : :=

<FILE IDENTIFICATION
PART> : : =

<MULTI-FILE
IDENTIFICATION> · ·=

<FILE IDENTIFICATION> : :=

<DEVICE PART> : :=

<DEVICE SPECIFIER> : :=

I <FILE ATTRIBUTE>,
<FILE ATTRIBUTE LIST>

<LABEL PART>
I <DEVICE PART>
I <MODE PART>
I <BUFFERS PART>
I <VARIABLE RECORD PART>
I <LOCK PART>
I <SAVE FACTOR PART>
I <RECORD SPECIFICATION PART>
I <REEL NUMBER PART>
I <DISK FILE DESCRIPTION PART>
I <OPEN OPTION PART>
I <PACK-ID PART>
I <ALL.AREAS.AT.OPEN PART>
I <AREA.BY.CYLINDER PART>
I <EU.ASSIGNMENT PART>
I <MULTI.PACK PART>
I <USE INPUT BLOCKING PART>
I <SORTER STATION PART>
I <END.OF.PAGE PART>
I <REMOTE.KEY PART>
I <NUMBER.OF.STATIONS PART>
I <QUEUE.FAMILY.SIZE PART>
I <FILE TYPE PART>
I <WORK FILE PART>
I <LABEL TYPE PART>

LABEL = <FILE IDENTIFICATION PART>

<MULTI-FILE IDENTIFICATION>
I <MULTI-FILE IDENTIFICATION> <SLASH>

<FILE IDENTIFICATION>

<CHARACTER STRING>

<CHARACTER STRING> %DEFINED ABOVE

DEVICE = <DEVICE SPECIFIER>

CARD
I TAPE
I TAPE.PE

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

<ACCESS MODE> ::=

<DEVICE OPTION> ::=

<BACKUP OPTION> ::=

<BACKUP SPECIFIER> ::=

I TAPE.7
I TAPE.9
I TAPE.NRZ
I MULTI.FUNCTION.CARD
I DISK <ACCESS MODE>
I DISK.PACK <ACCESS MODE>
I DISK.FILE <ACCESS MODE>

17-4

I DISK.PACK.CENTURY <ACCESS MODE>
I DISK.PACK.CAELUS <ACCESS MODE>
I PRINTER <DEVICE OPTION>
I PUNCH <DEVICE OPTION>
I PAPER.TAPE.PUNCH <DEVICE OPTION>
I PAPER.TAPE.READER
I PUNCK.PRINTER <DEVICE OPTION>
I READER.PUNCH <DEVICE OPTION>
I READER.PUNCH.PRINTER

<DEVICE OPTION>
I READER.96
I PUNCH.96 <DEVICE OPTION>
I SPO
I CARD.READER
I CARD.PUNCH <DEVICE OPTION>
I MFCU
I SORTER.READER
I READER.SORTER
I CASSETTE
I REMOTE
I QUEUE

<EMPTY> I SERIAL I RANDOM

<EMPTY>
I <BACKUP OPTION>
I <SPECIAL FORMS OPTION>
I <SPECIAL FORMS OPTION> <BACKUP OPTION>

<BACKUP SPECIFIER>
I OR <BACKUP SPECIFIER>

BACKUP I BACKUP TAPE I BACKUP DISK

<SPECIAL FORMS OPTION> ::= FORMS

<MODE PART> : :=

<MODE SPECIFIER> ::=

<FILE PARITY PART> : :=

<TRANSLATION PART>::=

<BUFFERS PART> ::=

MODE = <MODE SPECIFIER)

<FILE PARITY PART>
I <TRANSLATION PART>
I <FILE PARITY PART> <TRANSLATION PART>

ODD I EVEN

EBCDIC I ASCII I BCL I BINARY

BUFFERS = <NUMBER OF BUFFERS>

17-5

<NUMBER OF BUFFERS> ::= <NUMBER>

<VARIABLE RECORD PART> ::= VARIABLE

<LOCK PART>::= LOCK

<SAVE FACTOR PART> ::= SAVE = <SAVE FACTOR>

<SAVE FACTOR> ::= <NUMBER>

<RECORD SPECIFICATION
PART> ::= RECORDS = <RECORD SIZE SPECIFIER>

<RECORD SIZE SPECIFIER> ::= <PHYSICAL RECORD SIZE>
I <LOGICAL RECORD SIZE> <SLASH>

<LOGICAL RECORDS PER PHYSICAL RECORD>

<PHYSICAL RECORD SIZE> ::= <NUMBER>

<LOGICAL RECORD SIZE> ::=

<LOGICAL RECORDS PER
PHYSICAL RECORD>::=

<REEL NUMBER PART> : :=

<REEL NUMBER> ::=

<DISK FILE DESCRIPTION
PART> ::=

<NUMBER OF AREAS> ::=

<PHYSICAL RECORDS
PER AREA> ::=

<PACK.ID PART> : :=

<PACK IDENTIFICATION> ::=

<NUMBER>

<NUMBER>

REEL = <REEL NUMBER>

<NUMBER>

AREAS = <NUMBER OF AREAS> <SLASH>
<PHYSICAL RECORDS PER AREA>

<NUMBER>

<NUMBER>

PACK.ID= <PACK IDENTIFICATION>

<CHARACTER STRING>

<OPEN OPTION> : := OPEN.OPTION
<OPEN OPTION ATTRIBUTE LIST>

<OPEN OPTION ATTRIBUTE
LIST> : := <OPEN ATTRIBUTE>

<ALL.AREAS.AT.

I <OPEN ATTRIBUTE> <SLASH>
I <OPEN ATTRIBUTE LIST>

OPEN PART> : := ALL.AREAS.AT.OPEN

<AREA.BY.CYLINDER PART> : :< AREA.BY.CYLINDER

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

<EU.ASSIGNMENT PART> ::= EU.SPECIAL= <NUMBER>

<USE.INPUT"'BLOCKING
PART> : : =

<SORTER STATION PART> ::=

<END.OF.PAGE PART> ::=

<REMOTE.KEY PART::=

<NUMBER.OF.STATIONS>::=

I EU.INCREMENTED= <NUMBER>

USE.INPUT.BLOCKING

SR.STATION = <NUMBER>

END.OF.PAGE.ACTION

REMOTE.KEY

NUMBER.OF.STATIONS= <NUMBER>

<MULTI PACK PART>::= MULTI.PACK

<QUEUE FAMILY.SIZE
PART>::= QUEUE.FAMILY.SIZE = <NUMBER>

17-6

<FILE TYPE PART>::= FILE.TYPE= <FILE TYPE SPECIFIER>

<FILE TYPE SPECIFIER>::= DATA
I INTERPRETER
I CODE
I INTRINSIC

<WORK FILE PART>::= WORK.FILE

<LABEL TYPE PART>::= LABEL.TYPE= <LABEL TYPE SPECIFIER>

<LABEL TYPE SPECIFIER>::= UNLABELED

<SWITCH FILE
DECLARATION STATEMENT>::= SWITCH.FILE <SWITCH FILE

DECLARE ELEMENT LIST>

<SWITCH FILE
DECLARE ELEMENT LIST>::= <SWITCH FILE DECLARE ELEMENT>

<SWITCH FILE
DECLARE ELEMENT> : :=

I <SWITCH FILE DECLARE ELEMENT>,
<SWITCH FILE DECLARE ELEMENT LIST>

<SWITCH FILE IDENTIFIER> C<FILE
IDENTIFIER LIST>>

<SWITCH FILE IDENTIFIER>::= <IDENTIFIER>

<FILE IDENTIFIER LIST>::= <FILE IDENTIFIER>
I <FILE IDENTIFIER>, <FILE IDENTIFIER LIST>

<DEFINE STATEMENT> : := DEFINE <DEFINE ELEMENT>
I <DEFINE STATEMENT>,

<DEFINE ELEMENT>

<DEFINE ELEMENT> ::=

<DEFINE IDENTIFIER> ::=

<DEFINE IDENTIFIER>
<FORMAL PARAMETER PART>
AS <DEFINE STRING>

<IDENTIFIER>

17-7

<FORMAL PARAMETER PART> ::= <<FORMAL PARAMETER LIST>>
I C<FORMAL PARAMETER LIST>J
I <EMPTY>

<FORMAL PARAMETER LIST> ::= <FORMAL PARAMETER>

<FORMAL PARAMETER> ::=

<DEFINE STRING> ::=

I <FORMAL PARAMETER>,
<FORMAL PARAMETER LIST>

< IDENT IF I ER>

#(WELL-FORMED CONSTRUCT)#

<WELL-FORMED CON~TRUCT> ::= <EMPTY>

<BASIC COMPONENT> ::=

<DEFINE INVOCATION> : :=

<SIMPLE DEFINE
IDENTIFIER> ::=

<PARAMETRIC
DEFINE IDENTIFIER>

<DEFINE ACTUAL
PARAMETER LIST> ::=

<DEFINE ACTUAL
PARAMETER> : : =

. ·­.. -

<FORWARD DECLARATION> ::=

<COMPOUND PROCEDURE
HEAD> : : =

I <BASIC COMPONENT>
<WELL-FORMED CONSTRUCT>

<RESERVED WORD>
I <IDENTIFIER>
I <SPECIAL CHARACTER>
I <COMMENT STRING>
I <CONSTANT>

%SEE APPENDIX

%DEFINED ABOVE

<SIMPLE DEFINE IDENTIFIER>
I <PARAMETRIC DEFINE IDENTIFIER>

C<DEFINE ACTUAL PARAMETER LIST>>
I <PARAMETRIC DEFINE IDENTIFIER>

C<DEFINE ACTUAL PARAMETER LIST>l

<IDENTIFIER>

< IDENT IF I ER>

<DEFINE ACTUAL PARAMETER>
I <DEFINE ACTUAL PARAMETER>,

<DEFINE ACTUAL PARAMETER LIST>

<WELL-FORMED CONSTRUCT>

FORWARD <COMPOUND PROCEDURE HEAD>

<PROCEDURE HEAD>
<FORMAL PARAMETER DECLARATION

@ 1973, 1974 Burrou9hs - DO NOT REPRODUCE

<PROCEDURE HEAD> ::=

STATEMENT LIST>

<BASIC PROCEDURE HEAD>
<PROCEDURE TYPE PART>;

<BASIC PROCEDURE HEAD> ::= <PROCEDURE NAME>
<FORMAL PARAMETER PART>

17-8

<PROCEDURE NAME> ::= PROCEDURE <PROCEDURE IDENTIFIER>

<PROCEDURE IDENTIFIER> ::= <TYPED PROCEDURE IDENTIFIER>
I <NON-TYPED PROCEDURE IDENTIFIER>

<TYPED PROCEDURE
IDENTIFIER> ::= <IDENTIFIER>

<NON-TYPED PROCEDURE
IDENTIFIER> ::= <IDENTIFIER>

<INTRINSIC IDENTIFIER>:= <TYPED INTRINSIC IDENTIFIER>
I <NON-TYPED INTRINSIC IDENTIFIER>

<TYPED INTR1NSIC
IDENTIFIER>::= <IDENTIFIER>

<NON-TYPED INTRINSIC
IDENTIFIER>::= <IDENTIFIER>

<PROCEDURE TYPE PART> ::= <EMPTY>

<FORMAL TYPE PART> : :=

<TYPE PART> : :=

<TYPE VARYING PART> : :=

<FORMAL PARAMETER DECLA-

I <FORMAL TYPE PART>

<TYPE PART>
I <TYPE VARYING PART>

FIXED
I -CHARACTER <FIELD SIZE>
I BIT <FIELD SIZE>

VARYING
I BIT VARYING
I CHARACTER VARYING

RATION STATEMENT LIST> ::= <EMPTY>

<FORMAL PARAMETER

I <FORMAL PARAMETER DECLARATION STATEMENT>;
<FORMAL PARAMETER DECLARATION
STATEMENT LIST>

DECLARATION STATEMENT> ::= FORMAL <FORMAL ELEMENT>
I FORMAL.VALUE <FORMAL ELEMENT>
I <FORMAL PARAMETER DECLARATION STATEMENT>,

<FORMAL ELEMENT>

<FORMAL ELEMENT> ::=

<FORMAL INDENTIFIER
LIST> : :=

<FORMAL IDENTIFIER> ::=

<COMPLEX IDENTIFIER> : :=

<VARYING ARRAY
SPECIFIER> ::=

17-9

<<FORMAL IDENTIFIER LIST>>
<FORMAL TYPE PART>

I <FORMAL IDENTIFIER>
<FORMAL TYPE PART>

<FORMAL IDENTIFIER>
I <FORMAL IDENTIFIER>,

<FORMAL IDENTIFIER LIST>

<COMPLEX IDENTIFIER>
I <VARYING ARRAY SPECIFIER>

<SIMPLE IDENTIFIER>
I <ARRAY IDENTIFIER>

<ARRAY BOUND>

<ARRAY IDENTIFIER>
<VARYING ARRAY BOUND>

%DEFINED ABOVE
%DEFINED ABOVE
%DEFINED ABOVE

<VARYING ARRAY BOUND> ::= C*>

<USE STATEMENT> : :=

<SIMPLE IDENTIFIER
LIST>::=

<SIMPLE IDENTIFIER> : :=

<DEFINE IDENTIFIER> : :=

<PROCEDURE STATEMENT
LIST>::=

USE <<SIMPLE IDENTIFIER LIST>>
OF <DEFINE IDENTIFIER>

<SIMPLE IDENTIFIER>
I <SIMPLE IDENTIFIER>,

<SIMPLE IDENTIFIER LIST>

<IDENTIFIER>

<IDENTIFIER>

<EMPTY>
I <PROCEDURE STATEMENT>;

<PROCEDURE STATEMENT LIST>

<PROCEDURE STATEMENT> ::= <PROCEDURE DEFINITION>
I <SEGMENT STATEMENT>

<PROCEDURE STATEMENT>

<PROCEDURE DEFINITION> : := <COMPOUND PROCEDURE HEAD> %DEFINED ABOVE
<PROCEDURE BODY>

<PROCEDURE BODY> : :=

<PROCEDURE EXECUTABLE
STATEMENT LIST> : :=

<DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
<PROCEDURE EXECUTABLE STATEMENT LIST>
<PROCEDURE ENDING>

<PROCEDURE EXECUTABLE STATEMENT>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

<PROCEDURE EXECUTABLE
STATEMENT> : : =

<RETURN STATEMENT> ::=

<TYPED PROCEDURE
RETURN STATEMENT> ::=

<NON-TYPED PROCEDURE
RETURN STATEMENT> : :=

<PROCEDURE ENDING> : :=

<EXECUTABLE STATEMENT
LIST>::=

<EXECUTABLE STATEMENT>

<DO GROUP> : : =

<GROUP HEAD> : :=

: :=

17-10

I <PROCEDURE EXECUTABLE STATEMENT>
<PROCEDURE EXECUTABLE STATEMENT LIST>

<EXECUTABLE STATEMENT>
I <RETURN STATEMENT>;
I <SEGMENT STATEMENT> %DEFINED ABOVE

<PROCEDURE EXECUTABLE STATEMENT>

<TYPED PROCEDURE RETURN STATEMENT>
I <NON-TYPED PROCEDURE RETURN STATEMENT>

RETURN <EXPRESSION>

RETURN
I RETURN.AN~.ENABLE.INTERRUPTS

END
I END <PROCEDURE IDENTIFIER>

<EXECUTABLE STATEMENT>
I <EXECUTABLE STATEMENT>

<EXECUTABLE STATEMENT LIST>

<DO GROUP>;
I <IF STATEMENT>
I <CASE STATEMENT>;
I <ASSIGNMENT STATEMENT>;
I <EXECUTE-PROCEDURE STATEMENT>;
I <EXECUTE-FUNCTION STATEMENT>;
I <GROUP TERMINATION STATEMENT>;
I <IIO CONTROL STATEMENT>
I <MODIFY INSTRUCTION>;
I <NULL STATEMENT>
I <STOP STATEMENT>;
I <FILE ATTRIBUTE STATEMENT>;
I <ZIP STATEMENT>
I <SEARCH STATEMENT>
I <ACCESS FILE HEADER STATEMENT>
I <SEND STATEMENT>
I <RECEIVE STATEMENT>
I <ARRAY PAGE TYPE STATEMENT>
I <COROUTINE STATEMENT>
I <WAIT STATEMENT>;
I <SEGMENT STATEMENT>

<EXECUTABLE STATEMENT>

<GROUP HEAD>
<GROUP BODY>

<GROUP NAME>

<GROUP NAME> ::=

<FOREVER PART> ::=

<GROUP IDENTIFIER> : :=

<GROUP BODY> : : =

<GROUP ENDING> ::=

<IF STATEMENT> ::=

< IF CLAUSE> : : =

<EXPRESSION LIST> : :=

<EXPRESSION> ::=

<STRING EXPRESSION> : :=

<OR-ING OPERATOR> : :=

<LOGICAL FACTOR> : :=

<LOGICAL SECONDARY> : :=

<LOGICAL PRIMARY> ::=

<RELATION> : : =

<FOREVER PART>;

DO
I DO <GROUP IDENTIFIER>

<EMPTY>
I FOREVER

<IDENTIFIER>

17-11

<EXECUTABLE STATEMENT LIST>XDEFINED ABOVE
<GROUP ENDING>

END
I END <GROUP IDENTIFIER>

<IF CLAUSE>
<EXECUTABLE STATEMENT>

I <IF CLAUSE>
<EXECUTABLE STATEMENT>
ELSE <EXECUTABLE STATEMENT>

IF <EXPRESSION> THEN

<EXPRESSION>
I <EXPRESSION>,

<EXPRESSION LIST>

<STRING EXPRESSION>
I <STRING EXPRESSION>

CAT <EXPRESSION>

<LOGICAL FACTOR>
I <LOGICAL FACTOR>

<OR-ING OPERATOR>
<STRING EXPRESSION>

OR I EXOR

<LOGICAL SECONDARY>
I <LOGICAL SECONDARY>

AND <LOGICAL FACTOR>

<LOGICAL PRIMARY>
I NOT <LOGICAL PRIMARY>

<ARITHMETIC EXPRESSION>
I <ARITHMETIC EXPRESSION>

<RELATION>
<ARITHMETIC EXPRESSION>

< I
LSS
GEQ

~ I =
I LEQ I
I GTR

I ~

EQL
I
I

~ I > I
NEQ I

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

<ARITHMETIC
EXPRESSION> : : = <TERM>

I <TERM>
<ADDITIVE OPERATOR>
<ARITHMETIC EXPRESSION>

17-12

<ADDITIVE OPERATOR> ::= + I

<TERM> : : =.

<MULTIPLICATIVE
OPERATOR> : : =

<SIGNED PRIMARY> ::=

<UNARY OPERATOR> : :=

<PR I MARY> : : =

<VARI ABLE> : : =

<ADDRESS VARIABLE> ::=

<SIMPLE VARIABLE> : :=

<SIMPLE IDENTIFIER> : :=

<SIGNED PRIMARY>
I <SIGNED PRIMARY>

<MULTIPLICATIVE OPERATOR>
<TERM>

* I MOD I <SLASH>

<PRIMARY>
I <UNARY OPERATOR>

<PRIMARY>

+ I -

<CONSTANT> %DEFINED ABOVE
I <VARIABLE>
I (<EXPRESSION>J %DEFINED ABOVE
I <CONDITIONAL EXPRESSION>
I <CASE EXPRESSION>
I <BUMPOR>
I <DECREMENTOR>
I <ASSIGNOR>

<ADDRESS VARIABLE>
I <VALUE VARIABLE>

<SIMPLE VARIABLE>
I <SUBSCRIPTED VARIABLE>
I <INDEXED VARIABLE>
I <ADDRESS-GENERATING FUNCTION DESIGNATOR>

<SIMPLE IDENTIFIER>

<IDENTIFIER>

<SUBSCRIPTED VARIABLE> : := <ARRAY IDENTIFIER>
(<EXPRESSION> l %DEFINED ABOVE

<ARRAY IDENTIFIER::=

<INDEXED VARIABLE> : :=

< IDENTIFIER>

<SIMPLE IDENTIFIER>
<INDEX PART>

I <ARRAY IDENTIFIER>
<INDEX PART>

%DEFINED ABOVE

17-13

<INDEX PART>::= C<EXPRESSION LIST>J %DEFINED ABOVE

<ADDRESS-GENERATING
FUNCTION DESIGNATOR> ::= <SUB-STRING ADDRESS DESIGNATOR>

<SUB-STRING ADDRESS
DESIGNATOR> · ·=

<SUB-STRING FUNCTION
IDENTIFIER> ::=

<OFFSET PART> ::=

<LENGTH PART> : :=

<STRING ADDRESS> ::=

<ADDRESS GENERATOR
LIST> : :=

<ADDRESS GENERATOR> ::=

<BUMPOR> : : =

<MODIFIER> : :=

<DECREMENTOR> : :=

<CONDITIONAL ADDRESS
GENERA TO~ : : =

<CASE ADDRESS

I <FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR>

I <DESCRIPTOR DESIGNATOR>
I <DESCRIPTOR-GENERATOR DESIGNATOR>
I <ADDRESS-MODIFIER DESIGNATOR>

<SUB-STRING FUNCTION IDENTIFIER>
C<STRING ADDRESS>,<OFFSET PART>>

I <SUB-STRING FUNCTION IDENTIFIER>
C<STRING ADDRESS>,<OFFSET PART>,
<LENGTH PART»

SUBS TR
I SUBBIT

<EXPRESSION>

<EXPRESSION>

<ADDRESS GENERATOR>

<ADDRESS GENERATOR>
I <ADDRESS GENERATOR>,

<ADDRESS GENERATOR LIST>

<ADDRESS VARIABLE> %DEFINED ABOVE
I <BUMPOR>
I <DECREMENTOR>
I <CONDITIONAL ADDRESS GENERATOR>
I <CASE ADDRESS GENERATOR>
I <ADDRESS-GENERATING ASSIGNOR>

BUMP <ADDRESS VARIABLE>
<MODIFIER>

<EMPTY>
I BY <EXPRESSION>

DECREMENT <ADDRESS VARIABLE>
<MODIFIER>

IF <EXPRESSION>
THEN <ADDRESS GENERATOR>
ELSE <ADDRESS GENERATOR>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

GENERATOR> : : =

<ADDRESS-GENERATING
ASSIGNOR> : : =

<ASSIGNOR> · · =

<NON-DESTRUCTIVE

CASE <EXPRESSION>
OF <<ADDRESS GENERATOR LIST>>

<App~§§_ VARIABLE>
<REPLACE, DELETE LEFT PART>
<ADDRESS GENERATOR>

/ <ADDRESS VARIABLE>
<REPLACE, DELETE RIGHT PART>
<EXPRESS ION>

<ADDRESS VARIABLE>
<NON-DESTRUCTIVE REPLACE>
<EXPRESSION>

REPLACE> ::= <REPLACE, DELETE LEFT PART>

17-14

/ <REPLACE, DELETE RIGHT PART>

<REPLACE, DELETE
LEFT PART> : := '4-/ :=

<REPLACE, DELETE
RIGHT PART> ::= :..,_/

<FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR> ::= FETCH.COMMUNICATE.MSG.PTR

<DESCRIPTOR DESIGNATOR> ::= DESCRIPTOR <<SIMPLE IDENTIFIER>>
I DESCRIPTOR <<ARRAY IDENTIFIER>>

<DESCRIPTOR-GENERATOR
DESIGNATOR> ::=

<ADDRESS-MODif IER
DESIGNATOR> : : =

<ADDRESS-MODIFIER

MAKE.DESCRIPTOR <<EXPRESSION>>

<ADDRESS-MODIFIER FUNCTION IDENTIFIER>
<<SIMPLE IDENTIFIER>>

FUNCTION IDENTIFIER> ::= NEXT.ITEM

<VALUE VARIABLE> ::=

<VALUE-GENERATING

I PREVIOUS.ITEM

<VALUE-GENERATING FUNCTION DESIGNATOR>
I <TYPED PROCEDURE DESIGNATOR>
I (<ADDRESS VARIABLE>>
I <FILE DESIGNAROR>

FUNCTION DESIGNATOR> ::= <SWAP DESIGNATOR>
I <SUB-STRING VALUE DESIGNATOR>
I <DISPATCH DESIGNATOR>
I <LOCATION DESIGNATOR>
I <CONVERT DESIGNATOR>
I <LENGTH DESIGNATOR>

<SWAP DESIGNATOR> : :=

<SUB-STRING VALUE
DESIGNATOR> ::=

<STRING VALUE> ::=

17-15

I <MEMORY SIZE DESIGNATOR>
I <DESCRIPTOR-VALUE-GENERATOR DESIGNATOR>
I <INTERROGATE INTERRUPT STATUS DESIGNATOR>
I <DECIMAL CONVERSION DESIGNATOR>
I <BINARY CONVERSION DESIGNATOR>
I <TIME FUNCTION DESIGNATOR>
I <DATE FUNCTION DESIGNATOR>
I <NAME-OF~DAY FUNCTION DESIGNATOR>
I <BASE REGISTER DESIGNATOR>
I <LIMIT REGISTER DESIGNATOR
I <CONTROL STACK TOP DESIGNATOR>
I <DATA ADDRESS DESIGNATOR>
I <SEARCH.LINKED.LIST DESIGNATOR>
I <SORT.STEP.DOWN DESIGNATOR>
I <SORT.UNBLOCK DESIGNATOR>
I <SORT.SEARCH DESIGNATOR>
I <PARITY.ADDRESS DESIGNATOR>
I <DYNAMIC MEMORY BASE DESIGNATOR>
I <HASH CODE DESIGNATOR>
I <NEXT TOKEN DESIGNATOR>
I <DELIMITED TOKEN DESIGNATOR>
I <EVALUATION STACK TOP DESIGNATOR>
I <CONTROL STACK BITS DESIGNATOR>
I <NAME STACK TOP DESIGNATOR>
I <DISPLAY BASE DESIGNATOR>
I <CONSOLE SWITCHES DESIGNATOR>
I <SEARCH SERIAL LIST DISIGNATOR>
I <SPO INPUT PRESENT DESIGNATOR>
I <SEARCH.SOL.STACKS DESIGNATOR>
I <EXECUTE DESIGNATOR>

SWAP C<ADDRESS GENERATOR>,<EXPRESSION>>

<SUBSTRING FUNCTION IDENTIFIER>
C<STRING VALUE>,<OFFSET PART>>

I <SUBSTRING FUNCTION IDENTIFIER>
C<STRING VALUE>,<OFFSET PART>
<LENGTH PART>>

<EXPRESSION>

<DISPATCH DESIGNATOR> ::= C<PORT,CHANNEL,PRIORITY>,
<110 DESCRIPTOR ADDRESS>>

<PORT,CHANNEL,PRIORITY ::= <EXPRESSION>

<110 DESCRIPTOR
ADDRESS> : :=

<LOCATION DESIGNATOR> ::=

<LOCATION PARAMETER
PART>::=

<EXPRESSION>

LOCATION C<LOCATION PARAMETER PART>>

<PROCEDURE IDENTIFIER>

(S} 1973, 1974 Burroughs ~ DO NOT REPRODUCE

I <SIMPLE IDENTIFIER>
I <ARRAY IDENTIFIER>

17-16

<CONVERT DESIGNATOR> ::= CONVERT C<EXPRESSION>,
<CONVERSION PART>l

<CONVERSION PART> ::=

<CONVERSION TYPE> ::=

<BIT GROUP SIZE> ::=

<LENGTH DESIGNATOR> ::=

<MEMORY SIZE
DESIGNATOR> : :=

<DESCRIPTOR-VALUE­
GENERATOR DESIGNATOR> ::=

<INTERROGATE INTERRUPT
STATUS DESIGNATOR> ::=

<DECIMAL CONVERSION
DESIGNATOR> ::=

<DECIMAL STRING SIZE> : :=

<BINARY CONVERSION
DES I GNATOR> : : =

<TIME FUNCTION
DES I GNATOR> : : =

<TIME FORMAT> ::=

<REPRESENTATION> : :=

<BASE REGISTER
DESIGNATOR> : : =

<LIMIT REGISTER
DESIGNATOR> : :=

<CONTROL STACK
TOP DESIGNATOR> ::=

<DATE FUNCTION

I CONV C<EXPRESSION>,
<CONVERSION PART>l

<CONVERSION TYPE>
I <CONVERSION TYPE>,

<BIT GROUP SIZE>

BIT I FIXED I CHARACTER

1 I 2 I 3 I 4

LENGTH C<EXPRESSION>l

S.MEM.SIZE
I M.MEM.SIZE

VALUE.DESCRIPTOR C<ADDRESS GENERATOR>>

INTERROGATE.INTERRUPT.STATUS

DECIMALC<EXPRESSION>,<DECIMAL STRING SIZE>>

<EXPRESSION>

BINARY C<EXPRESSION>>

TIME
I TIME C<TIME FORMAT>,<REPRESENTATION>>

COUNTER/MILITARY/CIVILIAN

BIT/DIGIT/CHARACTER

BASE.REGISTER

LIMIT .REGISTER

CONTROL.STACK.TOP

DESIGNATOR> : :=

<DATA FORMAT> ::=

<NAME-OF-DAY
FUNCTION DESIGNATOR> ::=

<DATA ADDRESS
DESIGNATOR> ::=

<SEARCH.LINKED.LIST
DESIGNATOR> : :=

<RECORD ADDRESS> ::=

<ARGUMENT INDEX> ::=

<COMPARE VARIABLE> : :=

<RELATION> ::=

<LINK INDEX> ::=

<SORT.STEP.DOWN
DESIGNATOR> : :=

<RECORD 1> ::=

. <RECORD 2> : : =

<KEY TABLE ADDRESS> : :=

<SORT.UNBLOCK
DESIGNATOR> : :=

<MINI FIB ADDRESS> ::=

<LENGTH> : :=

<SOURCE> : : =

<DESTINATION> ::=

<SORT.SEARCH
DESIGNATOR> : :=

17-17

DATE
I DATE C<DATE FORMAT>,<REPRESENTATION>l

JULIAN I MONTH I DAY I YEAR

NAME.OF.DAY

DATA.ADDRESSC<ADDRESS GENERATOR>l

SEARCH.LINKED.LIST
C<RECORD ADDRESS>,<ARGUMENT INDEX>,
<COMPARE VARIABLE>,<RELATION>,
<LI NK I NOE X > l

<EXPRESSION>

<EXPRESS ION>

<EXPRESS ION>

< I ~ I = I ~ I 2 I > I
LSS I LEQ I EQL I NEQ I
GEQ I GTR

<EXPRESSION>

SORT.STEP.DOWN
C<RECORD l>,<RECORD 2>,
<KEY TABLE ADDRESS>l

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

SORT.UNBLOCK C<MINI FIB ADDRESS>,
<LENGTH>l<SOURCE>,<DESTINATION>l

<ADDRESS GENERATOR>

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

SORT.SEARCH

© 1973, 1974 Burroughs - DO NOT REPRODUCE

<TABLE ADDRESS> : :=

<LIMIT>::=

<PARITY. ADDRESS
DESIGNATOR> ::=

<DYNAMIC MEMORY
BASE DESIGNATOR> ::=

<<TABLE ADDRESS>,<LIMIT>>

<ADDRESS GENERATOR>

<EXPRESSION>

PARITY.ADDRESS

DYNAMIC.MEMORY.BASE

<HASH CODE DESIGNATOR>::= HASH.CODE C<TOKEN>l

<TOKEN>::= <EXPRESSION>

17-18

<NEXT TOKEN DESIGNATOR>::= NEXT.TOKEN <<FIRST CHARACTER>,
<SEPARATOR>, NUMERIC-TO-ALPHA INDICATOR>,
<RESULT> l

<NUMERIC-TO-ALPHA
INDICATOR>::= SET

I RESET

<DELIMITED TOKEN
DES I GNA TOR> : : = DELIMITED. TOKEN C< FIRST CHARACTER> ,

<DELIMITERS>, <RESULT>l

<FIRST CHARACTER>::= <CHARACTER STRING>
I <BIT STRING>

<RESULT>::= <IDENTIFIER>

<EVALUATION STACK
TOP DESIGNATOR>::= EVALUATION.STACK.TOP

<CONTROL STACK
BITS DESIGNATOR>::= CONTROL.STACK.BITS

<NAME STACK
TOP DESIGNATOR>::= NAME.STACK.TOP

<DISPLAY BASE
DESIGNATOR>::= DISPLAY.BASE

<CONSOLE SWITCHES
DESIGNATOR>::= CONSOLE.SWITCHES

<SEARCH SERIAL
LIST DESIGNATOR>::= SEARCH.SERIAL.LIST <<SSL COMPARE VALUE>,

<SSL COMPARE TYPE>, <SSL COMPARE FIELD>,
<SSL FIRST ITEM>, <SSL TABLE LENGTH>,
<SSL RESULT VARIABLE>l

<SSL COMPARE VALUE>::=

<SSL COMPARE TYPE>::=

<SSL COMPARE FIELD>::=

<SSL FIRST ITEM>::=

<SSL TABLE LENGTH>::=

<SSL RESULT VARIABLE>::=

<SPO INPUT
PRESENT DESIGNATOR>::=

<SEARCH.SOL.STACKS
DESIGNATOR>::=

<STACK BASE>::=

<STACK TOP>::=

<COMPARE BASE>::=

<COMPARE TOP>::=

<EXECUTE DESIGNATOR>::=

<TYPED PROCEDURE
DESIGNATOR> ::=

<TYPED PROCEDURE
IDENT IF I ER> : : =

<EXPRESSION>

<l~/=/;4/"ll>

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

<ADDRESS GENERATOR>

SPO.INPUT.PRESENT

SEARCH.SOL.STACKS
C<STACK BASE>, <STACK TOP>,
<COMPARE BASE>, <COMPARE TOP>l

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

EXECUTE C<EXPRESSION LIST>>

<TYPED PROCEDURE IDENTIFIER>
<ACTUAL PARAMETER PART>

< IDENTIFIER>

<ACTUAL PARAMETER PART> ::= <EMPTY>
I <<ACTUAL PARAMETER LIST>>

<ACTUAL PARAMETER LIST> ::= <ACTUAL PARAMETER>

<ACTUAL PARAMETER> ::=

I <ACTUAL PARAMETER>,
<ACTUAL PARAMETER LIST>

<EXPRESSION>
I <ARRAY DESIGNATOR>

17-19

<ARRAY DESIGNATOR> ::= <ARRAY IDENTIFIER> %DEFINED ABOVE

<CONDITIONAL
EXPRESSION> ::= IF <EXPRESSION>

THEN <EXPRESSION>
ELSE <EXPRESSION>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

<CASE EXPRESSION> ::=

<CASE STATEMENT> ::=

<CASE HEAD>

<CASE BODY>

. ·­.. -
: :=

<CASE ENDING> : :=

CASE <EXPRESSION>
OF <<EXPRESSION LIST>>

<CASE HEAD>
<CASE BODY>

CASE <EXPRESSION>;

<EXECUTABLE STATEMENT LIST>
<CASE ENDING>

END CASE

17-20

<ASSIGNMENt STATEMENT> ::= <ADDRESS VARIABLE>
<REPLACE>
<EXPRESSION>

<REPLACE> : : =

<EXECUTE-PROCEDURE
STATEMENT> : :=

<NON-TYPED PROCEDURE
DESIGNATOR> ::=

<NON-TYPED PROCEDURE
IDENTIFIER> ::=

<EXECUTE-FUNCTION
STATEMENT> : :=

4-/ :=

<NON-TYPED PROCEDURE DESIGNATOR>

<NON-TYPED PROCEDURE IDENTIFIER>
<ACTUAL PARAMETER PART>

<IDENTIFIER>

<FUNCTION DESIGNATOR>

<FUNCTION DESIGNATOR> ::= <DUMP DESIGNATOR>
I <TRACE DESIGNATOR>
I <SAVE DESIGNATOR>
I <RESTORE DESIGNATOR>
I <FETCH DESIGNATOR>
I <HALT DESIGNATOR>
I <REINSTATE DESIGNATOR>
I <ACCESS-FPS DESIGNATOR>
I <REVERSE STORE DESIGNATOR>
I <READ CASSETTE DESIGNATOR>
I <ACCESS OVERLAY DESIGNATOR>
I <ERROR COMMUNICATE DESIGNATOR>
I <SORT DESIGNATOR>
I <OVERLAY DESIGNATOR>
I <HARDWARE MONITOR DESIGNATOR>
I <SAVE STATE DESIGNATOR>
I <SORT.SWAP DESIGNATOR>
I <INITIALIZE.VECTOR DESIGNATOR>
I <THREAD.VECTOR DESIGNATOR>
I <ENABLE . l NTERRUPTS DES I GNA TOR->
I <DISABLE.INTERRUPTS DESIGNATOR>
I <ACCESS FILE INFORMATION

DESIGNATOR>
I <DESLANK DESIGNATOR>
I <FREEZE-PROGRAM DESIGNATOR>
I <THAW-PROGRAM DESIGNATOR>
I <DUMP-FOR-ANALYSIS DESIGNATOR>
I <COMPILE-CARD-INFO DESIGNATOR>
I <COMMUNICATE DESIGNATOR>

<DUMP DESIGNATOR> ::= DUMP

<TRACE DESIGNATOR> ::= TRACE I NOTRACE
I TRACE C<EXPRESSION>>

<SAVE DESIGNATOR> ::= SAVE C<EXPRESSION LIST>>

17-21

<RESTORE DESIGNATOR> : := RESTORE C<ADDRESS GENERATOR LIST>>

<FETCH DESIGNATOR> ::= C<IIO REFERENCE ADDRESS>,
I <PORT,CHANNEL,PRIORITY ADDRESS>,

<RESULT DESCRIPTOR ADDRESS>>

<IIO REFERENCE ADDRESS> ::= <EXPRESSION>

<PORT,CHANNEL,
PRIORITY ADDRESS> : :=

<RESULT DESCRIPTOR
ADDRESS> ::=

<HALT DESIGNATOR> ::=

<ADDRSS GENERATOR>

<ADDRESS GENERATOR>

HALT C<EXPRESSION>>

<REINSTATE DESIGNATOR> : := REINSTATE C<REINSTATED PROGRAM>>

<REINSTATED PROGRAM> ::= <ADDRESS GENERATOR>

<ACCESS-FPS 'DESIGNATOR> ::= <ACCESS-FPS IDENTIFER>
C<FILE SPECIFIER>,
<SOURCE OR DESTINATION FIELD>>

<ACCESS FPB IDENTIFIER> ::= READ.FPS I WRITE.FPS

<FILE SPECIFIER> : :=

<FILE NUMBER> ::=

<SOURCE OR DESTINATION
FIELD> ::=

<REVERSE STORE
DESIGNATcm> ::=

<READ CASSETTE

<FILE DESIGNATOR>
I <FILE NUMBER>

<EXPRESSION>

<ADDRESS GENERATOR>

REVERSE.STORE C<ADDRESS GENERATOR LIST>,
<EXPRESSION>l

@) 1973, 1974 Burroughs - PO NOT REPRODUCE

17-22

DESIGNATOR>::= READ.CASSETTE (<DESTINATION SPECIFIER,
<HASH.TOTAL SPECIFIER>, <RESULT SPECIFIER

<DESTINATION SPECIFIER>::= <ADDRESS GENERATOR>

<HASH.TOTAL SPECIFIER>::= HASH.TOTAL
I NO.HASH.TOTAL

<RESULT SPECIFIER>::= <ADDRESS GENERATOR>

<ACCESS OVERLAY
DESIGNATOR> ::= <ACCESS OVERLAY IDENTIFIER>(<EXPRESSION>>

<ACCESS OVERLAY
IDENTIFIER> ::= READ.OVERLAY I WRITE.OVERLAY

<ERROR COMMUNICATE
DESIGNATOR> ::= ERROR.COMMUNICATE (<EXPRESSION>l

<SORT DESIGNATOR> ::= SORT (<SORT-INFORMATION-TABLE SPECIFIER>,
<SORT-KEY-TABLE SPECIFIER>,
<INPUT FILE DESIGNATOR>,
<OUTPUT FILE DESIGNATOR>l

<SORT-INFORMATION-TABLE
SPECIFIER> ::= <ADDRESS GENERATOR>

<SORT-KEY-TABLE
SPECIFIER> : := <ADDRESS GENERATOR>

<INPUT FILE DESIGNATOR>::= <FILE DESIGNATOR>

<OUTPUT FILE
DESIGNATOR> ::= <FILE DESIGNATOR>

<OVERLAY DESIGNATOR> ::=

<HARDWARE MONITOR
DESIGNATOR> ::=

OVERLAY ((EXPRESSION>l

HARDWARE.MONITOR (<EXPRESSION>>

<SAVE STATE DESIGNATOR> : := SAVE.STATE

<SORT.SWAP DESIGNATOR> ::= SORT.SWAP (<RECORD 1>,<RECORD 2>l

<RECORD 1> : :=

<RECORD 2> ::=

<INITIALIZE.VECTOR
DESIGNAjOR> : :=

<TABLE ADDRESS> : :=

<THREAD.VECTOR

<ADDRESS GENERATOR>

<ADDRESS GENERATOR>

INITIALIZE.VECTOR ((TABLE ADDRESS>>

<ADDRESS GENERATOR>

17-23

DESIGNATOR> : := THREAD.VECTOR (<TABLE ADDRESS>,<INDEX>>

<TABLE ADDRESS> ··=

<INDEX> : : =

<ENABLE.INTERRUPTS
DESIGNATOR> ::=

<DISABLE.INTERRUPTS
DESIGNATOR> ::=

<ACCESS FILE INFORMATION
DESIGNATOR> ::=

<FILE DESIGNATOR> · ·=

<RETURN TYPE> ··=

<DESTINATION> ::=

<ADDRESS GENERATOR>

<EXPRESSION>

ENABLE.INTERRUPTS

DISABLE.INTERRUPTS

ACCESS.FILE.INFORMATION (<FILE
DESIGNATOR>, <RETURN TY.PE>, <DESTINATION>>

<FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> ((EXPRESSION>>

BIT I CHARACTER

<ADDRESS GENERATOR>

<DEBLANK DESIGNATOR>::= DEBLANK (<FIRST CHARACTER>>

<FIRST CHARACTER>::= <IDENTIFIER>

<FREEZE-PROGRAM
DESIGNATOR>::= FREEZE.PROGRAM

<THAW-PROGRAM
DESIGNATOR>::= THAW.PROGRAM

<DUMP-FOR-
ANAL YS IS DESIGNATOR>::= DUMP.FOR.ANALYSIS

<COMPILE-CARD-
INFO DESIGNATOR>::= COMPILE.CARD.INFO

(<CCI DESTINATION FIELD>>

<CCI DESTINATION FIELD>::= <ADDRESS GENERATOR>

<COMMUNICATE DESIGNATOR>::= COMMUNICATE <<EXPRESSION>>

<GROUP TERMINATION
STATEMENT> ::= UNDO

I UNDO (*)
I UNDO <GROUP IDENTIFIER> %DEFINED ABOVE

<IIO CONTROL STATEMENT> : := <OPEN STATEMENT>;
I <CLOSE STATEMENT>;
I <READ STATEMtNT>
I <WRITE STATEMENT>
I <SEEK STATEMENT>;

@ 1973, 1974 Burroughs - PO NOT REPRODUCE

<OPEN STATEMENT>::=

<OPEN PART> ::=

<FILE DESIGNATOR>::=

I <ACCEPT STATEMENT>;
I <DISPLAY STATEMENT>;
I <SPACE STATEMENT>
I <SKIP STATEMENT>;

<OPEN PART>

17-24

I <OPEN PART>; <FILE MISSING PART>
I <OPEN PART>; <FILE LOCKED PART>
I <OPEN PART>; <FILE MISSING PART>

<FILE LOCKED PART>

OPEN <FILE DESIGNATOR>
<OPEN ATTRIBUTE PART>

<FILE IDEN1IFIER>
I <SWITCH FILE IDENTIFIER> C<EXPRESSION>>

<OPEN ATTRIBUTE PART> : := <EMPTY>
I <OPEN ATTRIBUTE LIST>
I WITH <OPEN ATTRIBUTE LIST>

<OPEN ATTRIBUTE LIST> ::= <OPEN ATTRIBUTE>
I <OPEN ATTRIBUTE> <ATTRIBUTE SEPARATOR>

<OPEN ATTRIBUTE LIST>

<ATTRIBUTE SEPARATOR>::= , I <SLASH> I <EMPTY>

<OPEN ATTRIBUTE> : := <INPUT-OUTPUT MODE>

<INPUT-OUTPUT MODE> ::=

<LOCK MODE> ::=

<OPEN ACTION MODE> ::=

<CODE FILE MODE> ::=

<MFCU MODE>::=

<CLOSE STATEMENT>::=

I <LOCK MOOE>
I <OPEN ACTION MODE>
I <CODE FILE MODE>
I <MFCU MODE>

INPUT I OUTPUT I NEW

LOCK I LOCK.OUT

NO.REWIND I REVERSE

CODE.FILE

PUNCH I PRINT I
INTERPRET I STACKERS

CLOSE <FILE DESIGNATOR> % DEFINED ABOVE
<CLOSE ATTRIBUTE PART>

<CLOSE ATTRIBUTE PART> ::= <EMPTY>
I <CLOSE ATTRIBUTE LIST>
I WITH <CLOSE ~TTRIBUTE LIST>

<CLOSE ATTRIBUTE LIST> ::= <CLOSE ATTRIBUTE>
I <CLOSE ATTRIBUTE> <ATTRIBUTE SEPARATOR>

17-25

<CLOSE ATTRIBUTE LIST>

<ATTRIBUTE SEPARATOR>::= , I <SLASH> I <EMPTY>

<CLOSE ATTRIBUTE> ::= <CLOSE MODE>
I CRUNCH I ROLLOUT I IF.NOT.CLOSED

<CLOSE MODE> : : =

<READ STATEMENT> ::=

<READ PART> ::=

<READ SPECIFIER> : :=

<DISK READ SPECIFIER> : :=

<RECORD LOCK PART> ::=

REEL I RELEASE I PURGE I REMOVE
I NO.REWIND I LOCK I CODE.FILE

<READ PART>;
I <READ PART>;<EOF PART>
I <READ PART>; <EXCEPTION PART>
I <READ PART>; <EOF PART> <EXCEPTION PART>

<READ SPECIFIER>
I <DISK READ SPECIFIER>
I <REMOTE READ SPECIFIER>
I <QUEUE READ SPECIFIER>

READ <FILE DESIGNATOR>
<<ADDRESS GENERATOR>>

READ <RECORD LOCK PART>
<FILE DESIGNATOR>
<RECORD ADDRESS PART>
<<ADDRESS GENERATOR>>

<EMPTY> I LOCK

<RECORD ADDRESS PART> ::= <EMPTY>
I C<RECORD ADDRESS>J

<RECORD ADDRESS> : := <EXPRESSION>

<REMOTE READ SPECIFIER>::= READ <FILE DESIGNATOR>
<REMOTE KEY PART>
<<ADDRESS GENERATOR>l

<REMOTE KEY PART>::= <EMPTY>
I C <REMOTE KEY> 1

<REMOTE KEY>::= <ADDRESS GENERATOR>

<QUEUE READ SPECIFIER> : := READ <FILE DESIGNATOR>
<QUEUE FAMILY MEMBER PART>
<<ADDRESS GENERATOR>l

<QUEUE FAMILY
MEMBER PART>::= <EMPTY>

I C<QUEUE FAMILY MEMBER>J

<QUEUE FAMILY MEMBER>::= <EXPRESSION>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

17-26

<EOF PART> ::= ON EOF <EXECUTABLE STATEMENT>

<EXCEPTION PART>::= ON EXCEPTION <EXECUTABLE STATEMENT>

<WRITE STATEMENT> ::=

<WRITE PART> ::=

<WRITE SPECIFIER> ::=

<WRITE PART>;
I <WRITE PART>;<EOF PART>
I <WRITE PART>;<EXCEPTION PART>
I <WRITE PART>;<EOF PART> <EXCEPTION PART>

<WRITE SPECIFIER>
I <DISK WRITE SPECIFIER>
I <REMOTE WRITE SPECIFIER>
I <QUEUE WRITE SPECIFIER>

WRITE <FILE DESIGNATOR>
<CARRIAGE CONTROL PART>
C <EXPRESS I ON>)

I WRITE <FILE DESIGNATOR>
<CARRIAGE CONTROL PART>

<CARRIAGE CONTROL PART> : := <EMPTY>

<CARRIAGE CONTROL
SPECIFIER> : :=

<SKIP-TO-CHANNEL> ::=

<CHANNEL NUMBER> ::=

I <CARRIAGE CONTROL SPECIFIER>

NO I SINGLE I DOUBLE I PAGE
I <SKIP-TO-CHANNEL> I NEXT

<CHANNEL NUMBER>

1 I 2 I 3 I ... I 11 I 12

<DISK WRITE SPECIFIER> : := WRITE <RECORD LOCK PART>
<FILE DESIGNATOR>
<RECORD ADDRESS PART>

<REMOTE WRITE
SPECIFIER>::=

<REMOTE KEY PART>::=

<REMOTE KEY>::=

<QUEUE WRITE
SPECIFIER>::=

<QUEUE FAMILY
MEMBER PART>::=

C <EXPRESS I ON>)

WRITE <FILE DESIGNATOR>
<REMOTE KEY PART>
C <EXPRESS I ON> l

<EMPTY>
I £<REMOTE KEY>l

<ADDRESS GENERATOR>

WRITE <FILE DESIGNATOR>
<QUEUE FAMILY MEMBER PART>
C<ADDRESS GENERATOR>>

<EMPTY>
I [<QUEUE FAMILY MEMBER>J

<QUEUE FAMILY MEMBER>::=

<EXCEPTION PART> ::=

<SEEK STATEMENT> ::=

<ACCEPT STATEMENT> ::=

<END-OF-TEXT
SPECIFIER> ::=

<DISPLAY STATEMENT> ::=

<CRUNCH SPECIFIER> : :=

<SPACE STATEMENT> ::=

<SPACE PART> : :=

<SPACING SPECIFIER> ::=

<SKIP STATEMENT> ::=

17-27

<EXPRESSION>

ON EXCEPTION <EXECUTABLE STATEMENT>

SEEK <RECORD LOCK PART>
<FILE DESIGNATOR>
C<RECORD ADDRESS>l

ACCEPT <ADDRESS GENERATOR>
<END-OF-TEXT SPECIFIER>

<EMPTY>
I , END.OF.TEXT

DISPLAY <EXPRESSION>
<CRUNCH SPECIFIER>

<EMPTY>
I , CRUNCHED

<SPACE PART>;
I <SPACE PART>; <EOF PART>
I <SPACE PART>; <EXCEPTION PART>
I <SPACE PART>; <EOF PART> <EXCEPTION PART>

SPACE <FILE DESIGNATOR>
<SPACING SPECIFIER>

<EXPRESSION> I TO <EXPRESSION>

SKIP <FILE DESIGNATOR> TO <CHANNEL NUMBER>

<MODIFY INSTRUCTION> ::= <CLEAR STATEMENT>
I <BUMP STATEMENT>
I <DECREMENT STATEMENT>

<CLEAR STATEMENT> ::= CLEAR <ARRAY IDENTIFIER LIST>

<ARRAY IDENTIFIER LIST> : := <ARRAY IDENTIFIER> %DEFINED ABOVE
I <ARRAY IDENTIFIER>,
I <ARRAY IDENTIFIER LIST>

<BUMP STATEMENT> : := BUMP <ADDRESS VARIABLE> <MODIFIER>

<DECREMENT STATEMENT> ::= DECREMENT <ADDRESS VARIABLE> <MODIFIER>

<NULL STATEMENT> : :=

<STOP STATEMENT> : := STOP I STOP <EXPRESSION>

<FILE ATTRIBUTE

(S} 1973, 1974 Burroughs - DO NOT REPRODUCE

STATEMENT> : :=

<DYNAMIC FILE
ATTRIBUTE LIST> ::=

<DYNAMIC FILE
ATTRIBUTE> ::=

<DYAMIC MULTI-FILE
IDENTIFICATION PART> ::=

<DYNAMIC MULTI-FILE
IDENTIFICATION> ::=

<DYNAMIC FILE
IDENTIFICATION PART> ::=

<DYNAMIC FILE
IDENTIFICATION> : :=

17-28

CHANGE <FILE DESIGNATOR>
TO C<DYNAMIC FILE ATTRIBUTE LIST>>

<DYNAMIC FILE ATTRIBUTE>
I <DYNAMIC FILE ATTRIBUTE>,

<DYNAMIC FILE ATTRIBUTE LIST>

<DYNAMIC MULTI-FILE IDENTIFICATION PART>
I <DYNAMIC FILE IDENTIFICATION PART>
I <DYNAMIC DEVICE PART>
I <DYNAMIC FILE PARITY PART>
I <DYNAMIC TRANSLATION PART>
I <DYNAMIC BUFFERS PART>
I <DYNAMIC VARIABLE RECORD PART>
I <DYNAMIC LOCK PART>
I <DYNAMIC BUFFERS PART>
I <DYNAMIC SAVE FACTOR PART>
I <DYNAMIC RECORD SIZE PART>
I <DYNAMIC RECORDS-PER-BLOCK PART>
I <DYNAMIC REEL NUMBER PART>
I <DYNAMIC NUMBER-OF-AREAS PART>
I <DYNAMIC BLOCKS-PER-AREA PART>
I <DYNAMIC PACK. ID PART>
I <DYNAMIC ALL-AREAS-AT-OPEN PART>
I <DYNAMIC AREA-BY-CYLINDER PART>
I <DYNAMIC EU.SPECIAL PART>
I <DYNAMIC EU.INCREMENTED PART>
I <DYNAMIC USE.INPUT.BLOCKING PART>
I <DYNAMIC SORTER-STATION PART>
I <DYNAMIC MULTI-PACK PART>
I <DYNAMIC END-OF-PAGE PART>
I <DYNAMIC OPEN-OPTION PART>
I <DYNAMIC REMOTE-KEY PART>
I <DYNAMIC NUMBER-OF-STATIONS PART>
I <DYNAMIC QUEUE-FAMILY-SIZE PART>
I <DYNAMIC FILE TYPE PART>
I <DYNAMIC WORK FILE PART>
I <DYNAMIC LABEL TYPE PART>

MUL T I . F I LE . ID ..._
<DYNAMIC MULTI-FILE IDENTIFICATION>

<EXPRESSION>

FILE. ID---<DYNAMIC FILE IDENTIFICATION>

<EXPRESSION>

<DYNAMIC DEVICE PART> ::=

<DYNAMIC DEVICE
SPECIFIER> ::=

<DYNAMIC FILE
PARITY PART> ::=

<DYNAMIC PARITY
SPECIFIER> ::=

<DYNAMIC TRANSLATION
PART> : :=

<DYNAMIC TRANSLATION
SPECIFIER> ::=

17-29

DEVICE._<DYNAMIC DEVICE SPECIFIER>

<EXPRESSION>

PARITY._<DYNAMIC PARITY SPECIFIER>

<EXPRESSION>

TRANSLATION -
<DYNAMIC TRANSLATION SPECIFIER>

<EXPRESSION>

<DYNAMIC BUFFERS PART> ::= BUFFERS+-<DYAMIC NUMBER OF BUFFERS>

<DYNAMIC NUMBER
OF BUFFERS> : : =

<DYNAMIC VARIABLE
RECORD PART> ::=

<DYNAMIC VARIABLE
RECORD SPECIFIER> : :=

<DYNAMIC LOCK PART> ::=

<DYNAMIC LOCK
SPECIFIER> : :=

<DYNAMIC SAVE
FACTOR PART> ::=

<DYNAMIC SAVE FACTOR> : :=

<DYNAMIC RECORD
SIZE PART> ::=

<DYANMIC RECORD SIZE> ::=

<DYNAMIC REEL
NUMBER PART> ::=

<DYNAMIC REEL NUMBER> : :=

<DYNAMIC RECORDS­
PER-BLOCK PART> : :=

<EXPRESSION>

VARIABLE+-<DYNAMIC VARIABLE RECORD
SPECIFIER>

<EXPRESSION>

LOCK+-<DYNAMIC LOCK SPECIFIER>

<EXPRESSION>

SAVE+-<DYNAMIC SAVE FACTOR>

<EXPRESSION>

RECORD.SIZE ... <DYNAMIC RECORD SIZE>

<EXPRESSION>

REEL-<DYNAMIC REEL NUMBER>

<EXPRESSION>

RECORDS. PER. BLOCK -
<DYNAMIC RECORDS-PER~BLOCK>

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

<DYNAMIC RECORDS­
PER-BLOCK> ::=

<DYNAMIC NUMBER-OF­
AREAS PART> ::=

<DYNAMIC NUMBER­
OF-AREAS> : :=

<DYNAMIC BLOCKS-PER­
AREA PART> : : =

<DYNAMIC BLOCKS-PER
AREA> : :=

<EXPRESSION>

NUMBER . OF . AREAS -
<DYNAMIC NUMBER-OF-AREAS>

<EXPRESSION>

BLOCKS . PER . AREA -
<DYNAMIC BLOCKS-PER-AREA>

<EXPRESSION>

17-30

<DYNAMIC PACK. ID PART> : : = PACK. ID .._

<DYNAMIC PACK
IDENTIFICATION> ::=

<DYNAMIC ALL-AREAS­
AT-OPEN PART> ::=

<DYNAMIC ALL-AREAS­
AT-OPEN SPECIFIER> : :=

<DYNAMIC AREA-BY
CYLINDER PART> ::=

<DYNAMIC AREA-BY­
CYLINDER SPECIFIER> ::=

<DYNAMIC EU.SPECIAL
PART> : :=

<DYNAMIC EU.SPECIAL
SPECIFIER> : :=

<DYNAMIC EU.DRIVE
PART> : · =

<DYNAMIC EU.DRIVE
SPECIFIER> ::=

<DYNAMIC PACK IDENTIFICATION>

<EXPRESSION>

ALL.AREAS.AT.OPEN..._
<DYNAMIC ALL-AREAS-AT~OPEN SPECIFIER>

<EXPRESSION

AREA.BY.CYLINDER -
<DYNAMIC AREA-BY-CYLINDER SPECIFIER>

<EXPRESSION>

EU.SPECIAL_
<DYNAMIC EU.SPECIAL SPECIFIER>

I EU.SPECIAL-
<DYNAMIC EU.SPECIAL SPECIFIER~
EU.DRIVE..._
<DYNAMIC EU.DRIVE PART>

<EXPRESSION>

EU.DRIVE <OYNAMIC EU.DRIVE SPECIFIER>

<EXPRESSION>

<DYNAMIC EU.
INCREMENTED PART> ::=

<DYNAMIC EU.INCREMENTED
SPECIFIER> : :=

<DYNAMIC EU.
INCREMENT SPECIFIER> ::=

<DYNAMIC USE.INPUT.
BLOCKING PART> ::=

<DYNAMIC USE.INPUT.
BLOCKING SPECIFIER> ::=

<DYNAMIC SORTER STATION
PART> : : =

<DYNAMIC SORTER
STATION SPECIFIER> ::=

<DYNAMIC MULTI­
PACK PART>::=

<DYNAMIC MULTI­
PACK SPECIFIER> ::=

<DYNAMIC END-OF­
PAGE PART> : : =

<DYNAMIC END-OF­
PAGE SPECIFIER> ::=

<DYNAMIC OPEN­
OPTION PART>::=

<DYNAMIC OPEN-
OPT ION SPECIFIER>::=

<DYNAMIC REMOTE­
KEY PART>::=

<DYNAMIC REMOTE-

17-31

EU . INCREMENTED
<DYNAMIC EU.INCREMENTED SPECIFIER>

I EU. INCREMENTED -
<DYNAMIC EU.INCREMENTED SPECIFIER>.
EU . INCREMENT -
<DYNAMIC EU.INCREMENT SPECIFIER>

<EXPRESSION>

<EXPRESSION>

USE. INPUT . BLOCK I NG -
<DYNAMIC USE.INPUT.BLOCKING SPECIFIER>

<EXPRESSION>

SR . ST AT I ON -
<DYNAMIC SORTER STATION SPECIFIER>

<EXPRESSION>

MULTI-PACK+-
<DYNAMIC MULTI-PACK SPECIFIER>

<EXPRESSION>

END.OF .PAGE.ACTION~
<DYNAMIC END-OF-PAGE SPECIFIER>

<EXPRESSION>

OPEN.OPTION -
<DYNAMIC OPEN.OPTION SPECIFIER>

<EXPRESSION>

REMOTE-KEY -
<DYNAMIC REMOTE-KEY SPECIFIER>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

KEY SPECIFIER>::=

<DYNAMIC NUMBER-OF­
STAT IONS PART>::=

<DYNAMIC NUMBER-OF­
STATIONS SPECIFIER>::=

<DYNAMIC QUEUE-FAMILY­
SIZE PART>::=

<DYNAMIC QUEUE­
FAMILY-SIZE>:: =

<DYNAMIC FILE
TYPE PART>::=

<DYNAMIC FILE
TYPE SPECIFIER>::=

<DYNAMIC WORK
FILE PART>::'=

<DYNAMIC WORK
FILE SPECIFIER>::=

<DYNAMIC LABEL
TYPE PART>::=

<DYNAMIC LABEL
TYPE SPECIFIER>::=

<ZIP STATEMENT> ::=

<SEARCH STATEMENT> ::=

<SEARCH PART> : :=

<SEARCH OBJECT> ::=

<SEARCH RESULT> ::=

<SEARCH RESULT MODE> ::=

17-32

<EXPRESSION>

NUMBER-OF-ST A TI ONS +-

<DYNAMIC NUMBER-OF~STATIONS SPECIFIER>

<EXPRESSION>

QUEUE-FAMILY-SIZE+­
<DYNAMIC QUEUE-FAMILY-SIZE>

<EXPRESSION>

FILE. TYPE+-
<DYNAMIC FILE TYPE SPECIFIER>

<EXPRESSION>

WORK.FILE.._
<DYNAMIC WORK FILE SPECIFIER>

<EXPRESSION>

LABEL TYPE+-
<DYNAMIC LABEL TYPE SPECIFIER>

<EXPRESSION>

ZIP <EXPRESSION>

(SEARCH PART>
I <SEARCH PART>; <FILE MISSING PART>
I <SEARCH PART>; <FILE LOCKED PART>
I <SEARCH PART>; <FILE MISSING PART>

<FILE LOCKED PART>

SEARCH.DIRECTORY (<SEARCH OBJECT>,
<SEARCH RESULT>,<SEARCH RESULT MODE>>

<ADDRESS GENERATOR>

<ADDRESS GENERATOR>

BIT I CHARACTER

<FILE MISSING PART> ::=

<FILE LOCKED PART> ::=

<ACCESS FILE HEADER
STATEMENT> : :=

<ACCESS FILE HEADER
PART> : : =

<FILE NAME> ::=

<DESTINATION FIELD> : :=

<SOURCE FIELD> ::=

<FILE MISSING PART> ::=

<FILE LOCKED PART> : :=

<SEND STATEMENT> ::=

<SEND PART> ::=

<MESSAGE SOURCE> ::=

<QUEUE> : : =

<QUEUE FULL PART> ::=

17-33

ON FILE.MISSING <EXECUTABLE STATEMENT>

ON FILE.LOCKED <EXECUTABLE STATEMENT>

<ACCESS FILE HEADER PART>;
I <ACCESS FILE HEADER PART>;

<FILE MISSING PART>
I <ACCESS FILE HEADER PART>:

<FILE LOCKED PART>
I <ACCESS FILE HEADER PART>;

<FILE MISSING PART>
<FILE LOCKED PART>

READ.FILE.HEADER
C<FILE NAME>, <DESTINATION FIELD>>

I WRITE.FILE.HEADER
C<FILE NAME>, <SOURCE FIELD>l

<ADDRESS GENERATOR>

<ADDRESS GENERATOR>

<ADDRESS GENERATOR>

ON FILE.MISSING <EXECUTABLE STATEMENT>

ON FILE.LOCKED <EXECUTABLE STATEMENT>

<SEND PART>;
I <SEND PART>; <QUEUE FULL PART>
I <SEND PART>: <INVALID REQUEST PART>
I <SEND PART>; <QUEUE FULL PART>

<INVALID REQUEST PART>

SEND <MESSAGE SOURCE> TO <QUEUE>

<ADDRESS GENERATOR>

<EXPRESSION>

ON a.FULL <EXECUTABLE STATEMENT>

<INVALID REQUEST PART> ::= ON INVALID.REQUEST <EXECUTABLE STATEMENT>

<RECEIVE STATEMENT> ::=

<RECEIVE PART> ::=

<RECEIVE PART>;
I <RECEIVE PART>; <QUEUE EMPTY PART>
I <RECEIVE PART>; <INVALID REQUEST PART>
I <RECEIVE PART>; <QUEUE EMPTY PART>

<INVALID REQUEST PART>

RECEIVE <MESSAGE DESTINATION>
FROM <QUEUE>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

17-3'+

<MESSAGE DESTINATION> ::= <ADDRESS GENERATOR>

<QUEUE> : := <EXPRESSION>

<QUEUE EMPTY PART> ::= ON a.EMPTY <EXECUTABLE STATEMENT>.

<INVALID REQUEST PART> ::= ON INVALID.REQUEST <EXECUTABLE STATEMENT>

<ARRAY PAGE TYPE
STATEMENT> ::= <ARRAY PAGE TYPE DESIGNATOR>

C<PAGED ARRAY NAME>,<PAGE NUMBER>l

<ARRAY PAGE TYPE
DESIGNATOR> ::= MAKE.READ.ONLY

I MAKE.READ.WRITE

<PAGED ARRAY.NAME> ::= <IDENTIFIER>

<PAGE NUMBER> ::= <EXPRESSION>

<COROUTINE STATEMENT>::= <COROUTINE ENTRY STATEMENT>
I <COROUTINE EXIT STATEMENT>

<COROUTINE
ENTRY STATEMENT>::= ENTER.COROUTINE

C<COROUTINE TABLE SPECIFIER>l
<COROUTINE
TABLE SPECIFIER>::= <ADDRESS GENERATOR>

<COROUTINE
EXIT STATEMENT>::= EXIT.COROUTINE

<WAIT STATEMENT>::=

C<COROUTINE TABLE SPECIFIER>l

WAIT C<NUMBER OF TENTHS OF SECONDS>>
I WAIT C<NUMBER OF TENTHS OF SECONDS>,

DC.IO.COMPLETEl
I WAIT C,DC.IO.COMPLETE>

18-1

APPENDIX II: RESERVED AND SPECIAL WORDS
--

THE FOLLOWING IS A LIST OF RESERVED WORDS IN SOL, COMPLETE AS OF
NOV. 1973. THESE WORDS MAY ONLY BE USED AS RESERVED WORDS.

ACCEPT
BASE
BY
CASE
CHANGE.STACK.SIZES
CLOSE
DECLARE
DISPLAY
DYNAMIC
ELSE
EQL
FILE
FIXED
FORWARD
GEQ
IF
LEQ
MESSAGE ***
NEG
OF
OR
PAGED
QUEUE ***
READ
REMAPS
SEARCH.DIRECTORY
SEGMENT.PAGE
SLEEP
SUBBIT
THEN
UNDO
VARYING
WAIT
ZIP

AND
BIT

CAT
CHARACTER

DECREMENT
DO

END
EXIT.COROUTINE
FILLER
FORMAL
FROM
GTR
INTRINSIC
LOCK
MOD
NOT
ON

PROCEDURE

READ.FILE.HEADER
RETURN
SEEK
SEND
SPACE
SUBS TR
TO
USE

WRITE

*** DESCRIBED IN APPENDIX X: DC SOL

AS
BUMP

CHANGE
CLEAR

DEFINE
DUMMY

ENTER.COROUTINE
EXOR
FINI
FORMAL.VALUE

LSS

OPEN

RECEIVED
RETURN.AND.ENABLE.INTERRUPTS
SEGMENT
SKIP
STOP

TRANSFER.MESSAGE ***

WRITE.FILE.HEADER

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

18-2

THE FOLLOWING IS A LIST OF SPECIAL WORDS IN SOL, COMPLETE AS OF
NOV. 1973. EACH SPECIAL WORD HAS A PARTICULAR MEANING, HOWEVER
IT MAY BE USED AS AN IDENTIFIER. IN THAT CASE, IT LOSES ITS
SPECIAL SIGNIFICANCE IN SOL.

ACCESS.FILE.INFORMATION
BASE.REGISTER
COMMUNICATE
CONTROL.STACK.BITS
CONSOLE.SWITCHES
CONVERT
DATA.ADDRESS
DC.INITIATE.10 * ***
DC. WRITE ***
DECIMAL
DESCRIPTOR
DISABLE.INTERRUPTS
DISPATCH
DUMP
DYNAMIC.MEMORY.BASE
ENABLE.INTERRUPTS
ERROR.COMMUNICATE
EXECUTE
FETCH
FLUSH ***
HALT
HASH.CODE
INITIALIZE.VECTOR
INTERROGATE.INTERRUPT.STATUS
LENGTH
LOCATION
MAKE.DESCRIPTOR
MAKE.READ.WRITE
MESSAGE.INFO***
NAME. OF . DAY
NEXT.ITEM
NOTRACE
OVERLAY
PARITY. ADDRESS
QUEUE. INFO ***
READ.CASSETTE
READ.OVERLAY
REMOVE ***
REVERSE.STORE
SAVE.STATE
SEARCH.SERIAL.LIST
SEARCH.SOL.STACKS
SORT
SORT.RETURN
SORT.STEP.DOWN
SORT.UNBLOCK

ALLOCATE ***
BINARY
COMPILE.CARD.INFO
CONTROL.STACK.TOP
CONV

DATE
DC.WAIT * ***
DEBLANK
DELIMITED.TOKEN
DE.ALLOCATE ***
DISABLE.QUEUE ***
DISPLAY.BASE
DUMP.FOR.ANALYSIS

ENABLE.QUEUE ***
EVALUATION.STACK.TOP

FETCH.COMMUNICATE.MSG.PTR
FREEZE.PROGRAM
HARDWARE.MONITOR ***

INSERT ***

LIMIT .REGISTER

MAKE.READ.ONLY
MCS.COMMUNICATE ***
M.MEM.SIZE
NAME.STACK.TOP
NEXT.TOKEN

PREVIOUS . ITEM

READ.FPS
REINSTATE
RESTORE

SEARCH.LINKED.LIST
S.MEM.SIZE

SORT.FILE.FIXUP
SORT.SEARCH
SORT.SWAP
SWAP

SPO.INPUT.PRESENT
THAW.PROGRAM
TIME
VALUE.DESCRIPTOR
WRITE.FPS

THREAD.VECTOR
TRACE

WRITE.OVERLAY

* TEMPORARY - TO BE REMOVED IN THE NEAR FUTURE

** SEE APPENDIX IV

*** DESCRIBED IN APPENDIX X: DC SOL

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

18-3

19-1

APPENDIX III: SOL CONTROL CARD OPTIONS
------·--------------------------------

EVERY SOL CONTROL CARD MUST HAVE A "$" IN COLUMN ONE. COLUMNS
73-80 MAY BE USED AS A SEQUENCE FIELD. NOTE THAT ONCE AN OPTION
HAS BEEN TURNED ON COFF>, IT WILL REMAIN ON COFF> UNTIL
EXPLICITLY TURNED OFF CON>.

CONTROL CARD OPTIONS FOR B5500

<CONTROL CARD> ::=

<CONTROL STATEMENT> · ·=

$ <CONTROL STATEMENT>

<CONTROL OPTION LIST>
I <VOID OPTION>

<CONTROL OPTION LIST> ::= <CONTROL OPTION>

<CONTROL OPTION> : :=

I <CONTROL OPTION>
<CONTROL OPTION LIST>

<CONTROL OPTION WORD>
I NO <CONTROL OPTION WORD>
I <DEBUG OPTION>
I <SEQUENCE OPTION>
I <PAGE OPTION>
I <UPDATE OPTION>
I <STACK SIZE LIST>
I <INTERPRETER OPTION>

<CONTROL OPTION WORD> ::= LIST I LISTALL I SINGLE I SGL

<DEBUG OPTION> ::=

<DEBUG PARAMETER> : :=

<NUMBER> : : =

<SEQUENCE OPTION> ::=

I DOUBLE I CODE I CONTROL I NEW
I CHECK I MAP I XMAP I DETAIL
I AMPERSAND I SIZE
I HEX I PROFILE I PPROFILE
I NODUPLICATES

DEBUG <DEBUG PARAMETER>

<EMPTY>
I <NUMBER>

<UNSIGNED INTEGER, 8 OR LESS DIGITS>

NO SEQ
I SEQ <SEQUENCE PARAMETERS>

<SEQUENCE PARAMETERS> ::= <BASE>
I <BASE> <INCREMENT>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

<BASE> : : =

<INCREMENT> .. -.. -
<PAGE OPTION> : :-=

<UPDATE OPTION> ::=

<STACK SIZE LIST> ::=
I

19-2

<NUMBER>

<NUMBER>

PAGE

UPDATE

<STACK SIZE DESIGNATOR>
<STACK SIZE DESIGNATOR>
<STACK SIZE LIST>

<STACK SIZE DESIGNATOR> ::= <STACK DESIGNATOR> <STACK SIZE>

<STACK DESIGNATOR> ::= VSSIZE I NSSIZE I ESSIZE
I CSSIZE I PPSSIZE I DYNAMICSIZE

<STACK SIZE> : := <NUMBER>

<VOID OPTION> ::= VOID <TERMINATING SEQUENCE FIELD>

<TERMINATING SEQUENCE
FIELD> : := <EMPTY>

I <EXACTLY 8 CHARACTERS>

<INTERPRETER OPTION> : := INTERPRETER <INTERPRETER NAME>

<INTERPRETER NAME> ::= <INTERPRETER MFID>

<INTERPRETER MFID> : :=

<INTERPRETER
IDENTIFIER> : : =

SEMANTICS:

I <INTERPRETER MFID> <SLASH>
<INTERPRETER IDENTIFIER>

I <SLASH> <INTERPRETER IDENTIFIER>

<IDENTIFIER>

<IDENTIFIER>

LIST LISTS SOL SOURCE INPUT WHICH HAS BEEN COMPILED.
"NO LIST" WILL TURN OFF 11 LISTALL" CIF ALSO
SPECIFIEDl AS WELL AS "LIST".

LISTALL LISTS ALL SOL SOURCE INPUT CWHETHER OR NOT
CONDITIONALLY EXCLUDEDl. "LISTALL" WILL TURN ON
II LI ST II • BUT I II NO LI ST ALL II w I LL NOT TURN OFF
"LIST".

SINGLE (SGLJ SINGLE SPACE LISTING WHEN PRINTING.

DOUBLE

CODE

CONTROL

NEW

MAP

XMAP

DETAIL

AMPERSAND

SIZE

HEX

PROFILE

PPROFILE

DEBUG

SEQ

CHECK

19-3

DOUBLE SPACE LISTING WHEN PRINTING.

PRINT GENERATED CODE.

PRINT CONTROL CARDS.

CREATE NEW SOURCE FILE.

PRINT CODE MAPPING INFORMATION.

CREATE EXTENDED CODE MAP FILE FOR POST
COMPILATION ANALYSIS AND PRINTING.

PRINT EXPANSION OF DEFINE INVOCATIONS.

PRINT THOSE AMPERSAND CARDS WHICH ARE EXAMINED.

PRINT SEGMENT SIZES BY NAME AT END OF COMPILE.

ADDRESSES PRINTED IN HEXADECIMAL WHEN "CODE" OR
"MAP" OPTIONS ARE USED.

SEE APPENDIX IV

SEE APPENDIX IV

COMPILER DEBUG USE ONLY.

RESEQUENCE OUTPUT FILE.

THE SOURCE INPUT WILL BE CHECKED FOR SEQUENCE
ERRORS.

NODUPLICATES NEWLY DECLARED IDENTIFIERS WILL NOT BE CHECKED
FOR UNIQUENESS. THE USER MUST GUARANTEE THAT
THERE ARE NO DUPLICATES BEFORE USING THIS OPTION.
THIS SHOULD BE USED FOR LONG PROGRAMS ONLY.

NO SEQ

PAGE

UPDATE

VSSIZE

NSSIZE

ESSIZE

CSSIZE

TURNS OFF THE "SEQ" OPTION.

PAGE EJECT, IF LISTING.

THE PRIMARY SOURCE IS~ TAPE OR DISK FILE WHICH
WILL HAVE THE CARDS FROM THE CARD READER MERGED
INTO IT.

VALUE STACK SIZE

NAME STACK SIZE

EVALUATION STACK SIZ£.

CONTROL STACK SIZE

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

19-4

PPSSIZE PROGRAM POINTER STACK SIZE

DYNAMICSIZE AMOUNT OF CORE USED FOR PAGED ARRAY PAGES

NO "NO" PRECEDING AN OPTION (WHICH ALLOWS ITJ WILL
TURN THAT OPTION OFF.

VOID THE "VOID" CARD WILL VOID IMAGES ON THE PRIMARY
INPUT FILE WHICH HAVE SEQUENCE FIELDS WHICH ARE
LESS THAN OR EQUAL TO THE <TERMINATING SEQUENCE
FIELD> APPEARING ON THE "VOID" CARD. IF THE
<TERMINATING SEQUENCE FIELD> IS MISSING, THEN THE
ONLY SOURCE IMAGE VOIDED IS THAT WITH THE SAME
SEQUENCE FIELD AS THE "VOID" CARD. NOTE THAT THE
"VOID" CARD MAY DELETE IMAGES IN THE SECONDARY
(CARD> FILE.

INTERPRETER CHANGE INTERPRETER ID AND/OR INTERPRETER MFID.

NOTES AND RESTRICTIONS:

1. UNLESS OTHERWISE SPECIFIED (THROUGH THE
"UPDATE" OPTION>, THE PRIMARY SOURCE OF INPUT
IS THE CARD READER. ONCE "UPDATE" HAS BEEN
SPECIFIED, IT IS NOT POSSIBLE TO AGAIN
INDICATE "CARDS ONLY".

2. IF NO CONTROL CARDS. ARE USED, THE DEFAULT
OPTIONS ARE LIST, DOUBLE, AND AMPERSAND; ALL
INPUT WILL BE FROM CARDS.

3. OPTIONS ARE TURNED OFF ONLY THROUGH THE
APPEARANCE OF "NO" FOLLOWED BY THE OPTION
WORD. NOTE THAT "NO" AND THE OPTION WORD ARE
SEPARATED BY AT LEAST ONE BLANK.

CONTROL CARD OPTIONS FOR Bl700

<CONTROL CARD> ::=

<CONTROL STATEMENT> ::=

$ <CONTROL STATEMENT>

<CONTROL OPTION LIST>
I <VOID OPTION>

<CONTROL OPTION LIST> ::= <CONTROL OPTION>

<CONTROL OPTION> : :=

I <CONTROL OPTION>
<CONTROL OPTION LIST>

<CONTROL OPTION WORD>

I NO <CONTROL OPTION WORD>
I <DEBUG OPTION>
I <SEQUENCE OPTION>
I <PAGE OPTION>
I <MERGE OPTION>
I <STACK SIZE LIST>
I <INTERPRETER OPTION>
I <INTRINSIC OPTION>
I <RECOMPILE OPTION>
I SIZE I FORMAL.CHECK

19-5

<CONTROL OPTION WORD> ::= LIST I LISTALL I SINGLE

<DEBUG OPTION> ::=

<NUMBER> : : =

<SEQUENCE OPTION> ::=

I SGL I DOUBLE I CODE
I CONTROL I NEW I SUPPRESS
I XMAP I CHECK I PROFILE I PPROFILE
I DETAIL I AMPERSAND I NO.DUPLICATES
I NO.SOURCE I MONITOR
I XREF I XREF.ONLY I EXPAND.DEF(NES

DEBUG <NUMBER>

<UNSIGNED INTEGER, 8 OR LESS DIGITS>

NO SEQ
I SEQ <SEQUENCE PARAMETERS>

<SEQUENCE PARAMETERS> ::= <BASE>

<BASE> ::=

< INCREMENT> : : =

<PAGE OPTION> ::=

<MERGE OPTION> ::=

<STACK SIZE LIST> ::=

<STACK SIZE
DESIGNATOR> ::=

<STACK DESIGNATOR> ::=

<STACK SIZE> ::=

<VOID OPTION> ::=

<TERMINATING SEQUENCE
FIELD> : : =

I <INCREMENT>
I <BASE> <INCREMENT>

<NUMBER>

+ <NUMBER>

PAGE

MERGE

<STACK SIZE DESIGNATOR>
I <STACK SIZE DESIGNATOR>

<STACK SIZE LIST>

<STACK DESIGNATOR> <STACK SIZE>

VSSIZE I NSSIZE I ESSIZE
I CSSIZE I PPSSIZE I DYNAMICSIZE

<NUMBER>

VOID <TERMINATING SEQUENCE FIELD>

<EMPTY>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

19-6

I <EXACTLY 8 CHARACTERS>

<INTERPRETER OPTION> ::= INTERPRETER <INTERPRETER NAME>

<INTERPRETER NAME> ::= <INTERPRETER MULTI-FILE IDENTIFICATION>

< I NTERPR.ETER MULTI-FI LE

I <INTERPRETER MULTI-FILE IDENTIFICATION>
<SLASH>
<INTERPRETER IDENTIFICATION>

IDENTIFICATION> ::= <IDENTIFIER>

<INTERPRETER
IDENTIFICATION> ::=

<INTRINSIC OPTION> ··=

<INTRINSIC FAMILY
NAME> : : =

<RECOMPILE OPTION>::=

<!DENT IF I ER>

INTRINSIC
<INTRINSIC FAMILY NAME>

< IDE NT IF I ER>

CREATE.MASTER
I RECOMPILE

SEMANTICS IN ALPHABETICAL ORDER:

AMPERSAND

CHECK

CODE

CONTROL

PRINTS THOSE AMPERSAND CARDS WHICH ARE EXAMINED.

THE SOURCE INPUT WILL BE CHECKED FOR SEQUENCE
ERRORS.

PRINTS GENERATED CODE.

PRINTS CONTROL CARDS.

CREATE.MASTER SEE APPENDIX VIII.

CSSIZE CONTROL STACK SIZE.

DEBUG COMPILER DEBUG USE ONLY.

DETAIL PRINTS EXPANSION OF DEFINE INVOCATIONS.

DOUBLE DOUBLE SPACE LISTING WHEN PRINTING.

DYNAMICSIZE AMOUNT OF MEMORY USED FOR PAGED ARRAY PAGES.

ESSIZE EVALUATION STACK SIZE.

FORMAL.CHECK PROCEDURE ACTUAL PARAMETERS AND VALUES RETURNED

19-7

FROM TYPED PROCEDURES WILL BE CHECKED
RESPECTIVELY AGAINST THEIR CORRESPONDING FORMAL
PARAMETERS AND PROCEDURE FORMAL TYPES.

EXPAND.DEFINESCAUSES DEFINE EXPANSIONS TO BE CROSS-REFERENCED
<USED IN CONJUNCTION WITH XREF OR XREF.ONLY>.

INTERPRETER CHANGES THE INTERPRETER ID OR MFID, OR BOTH.

INTRINSIC

LIST

LI STALL

MERGE

MONITOR

NEW

NO

CHANGES THE FAMILY NAMES OF INTRINSICS TO BE
USED.

LISTS THE SOURCE INPUT WHICH WAS COMPILED. "NO
LIST" WILL ALSO TURN OFF "LISTALL".

LISTS ALL SOL SOURCE INPUT <WHETHER OR NOT
CONDITIONALLY EXCLUDED>. "LISTALL" TURNS ON
"LIST", BUT "NO LISTALL" WILL NOT TURN OFF
"LIST".

THE PRIMARY SOURCE FILE IS ON TAPE OR DISK WHICH
WILL HAVE THE CARDS, FROM THE CARD READER, MERGED
WITH IT.

SEE APPENDIX IX: THE SOL MONITOR FACILITY

CREATES A NEW SOURCE FILE.

"NO" PRECEDING AN OPTION <WHICH ALLOWS IT> WILL
TURN THAT OPTION OFF.

NO.DUPLICATES NEWLY DECLARED IDENTIFIER WILL NOT BE CHECKED FOR
UNIQUENESS. THE PROGRAMMER MUST GUARANTEE THAT
THERE ARE NO DUPLICATES BEFORE USING THIS OPTION.
IT WILL REDUCE COMPILE TIME FOR LARGE PROGRAMS
ONLY.

NO SEQ

NO.SOURCE

NSSIZE

PAGE

PPSSIZE _.

RECOMPILE

SEG

TURNS OFF THE "SEQ" OPTION.

PROGRAM SOURCE IMAGES WILL NOT BE SAVED, THEREBY
SHORTENING THE COMPILER WORK FILE. NO SOURCE
lISTING WILL BE POSSIBLE WHEN THIS OPTION IS
SPECIFIED. THIS SHOULD BE USED WITH LONG PROGRAMS
ONLY.

NAME STACK SIZE.

PAGE EJECT IF LISTING.

PROGRAM POINTER STACK SIZE.

SEE APPENDIX VIII

RESEQUENCES OUTPUT FILE.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

19-8

SINGLE <SGL> SINGLE SPACES LISTING WdEN PRINTING.

SIZE PRINTS SEGMENT SIZES BY NAME AT END OF COMPILE.

SUPPRESS SUPPRESSES WARNING MESSAGES. TO SUPPRESS SEQUENCE
ERROR MESSAGES, TURN OFF "CHECK".

VOID THE VOID OPTION WILL VOID RECORDS IN THE PRIMARY
FILE WHICH HAVE SEQUENCE FIELDS LESS THAN OR
EQUAL TO THE <TERMINATING SEQUENCE FIELD>. IF THE
FIELD IS OMITTED, ONLY THE RECORD WITH THE
SEQUENCE NUMBER CORRESPONDING TO THE "VOID CARD"
SEQUENCE NUMBER WILL BE DELETED. THE VOID OPTION
WILL NOT DELETE IMAGES IN A SECONDARY <CARD>
SOURCE FILE.

VSSIZE VALUE STACK SIZE.

XMAP CREATES AN EXTENDED CODE MAP FILE FOR
COMPILATION ANALYSIS.

XREF PRODUCES A CROSS-REFERENCE LIST ING OF
PROGRAM.

XREF.ONLY PRODUCES A CROSS-REFERENCE LI ST ING AND
TERMINATES THE COMPILATION.

NOTE: ALL CONTROL CARDS MAY USE "&" IN COLUMN 1 IN
PLACE OF "$". THOSE CONTROL CARDS WITH"&" IN
COLUMN 1 WILL BE PERMANANTLY PLACED IN A NEW
SOURCE FILE WHENEVER ONE IS MADE. THEY MAY
ALSO BE CONDITIONALLY INCLUDED OR EXCLUDED
DURING COMPILATION.

POST

THE

THEN

20-1

APPENDIX IV: PROGRAMMING OPTIMIZATION

THE FOLLOWING CONTROL CARD OPTIONS CSEE APPENDIX
USEFUL TO THE PROGRAMMER WHO WISHES TO DETERMINE
CONSUMING PARTCS> OF HIS PROGRAM. THE PURPOSE OF
OPTIONS IS TO POINT OUT THE PARTS OF THE PROGRAM
MOST TIME CONSUMING AND/OR HEAVILY USED.

I I I> CAN BE
THE MOST TIME
THESE CONTROL
WHICH ARE THE

WHEN COMPILING ON THE B5500, IF ANY OF THESE CONTROLS ARE USED,
THE FOLLOWING CARD MUST APPEAR IN THE PROCEDURE SECTION OF THE
PROGRAM:

& LIBRARY SDLPROFILE I ARRAYPRINTER

IN ADDITION, THERE MUST BE A CLOSE ON THE PRINTER BEFORE "FINI"
OR ANY <STOP STATEMENT>.

PPROFILE

PROFILE

ESTABLISHES A DYNAMIC ARRAY, EACH ELEMENT OF
WHICH IS A COUNTER FOR ONE PROCEDURE. THE INDEX
NUMBER FOR EACH PROCEDURE APPEARS IN THE LISTING
FOLLOWING THE <PROCEDURE IDENTIFIER>. THE VALUE
OF THE COUNTER WILL REFLECT THE NUMBER OF
ENTRANCES TO THE PROCEDURE IN QUESTION. THOSE
WITH THE HIGHEST COUNTERS SHOULD BE INVESTIGATED
WITH THE "PROFILE" OPTION.

ESTABLISHES A DYNAMIC ARRAY, EACH ELEMENT OF
WHICH IS A COUNTER FOR ONE BRANCHING OPERATION
C<DO GROUP>, <IF STATEMENT>, OR <CASE STATE­
MENT>>. THE INDEX INTO THE ARRAY WILL APPEAR IN
THE LISTING FOLLOWING THE STATEMENT IN QUESTION.
THOSE BRANCHES WITH THE HIGHEST COUNTER VALUES
ARE THE BRANCHES MOST HEAVILY USED.

HARDWARE MONITOR

<HARDWARE MONITOR
.DESIGNATOR> ::= HARDWARE.MONITOR <<EXPRESSION>>

THE B1700 IS EQUIPPED WITH A HARDWARE MONITOR WHICH MAY BE
MANUALLY WIRED TO SUIT THE NEEDS OF THE PROGRAMMER. THE DEVICE
CAN BE USEFUL AS A TIMER OR A COUNTER TO MONITOR PROGRAM
EFFICIENCY.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

20-2

THE LOW-ORDER 8 BITS OF THE <EXPRESSION> IS USED AS THE
LOW-ORDER 8 BITS OF THEM-INSTRUCTION "MONITOR''. FOR WIRING
INSTRUCTIONS OF THE HARDWARE DEVICE SEE "COMPUTER PERFORMANCE
MONITOR II: SYSTEM SUMMARY MANUAL".

21-1

APPENDIX V: SYSTEM CONTROL CARDS

SYSTEM CONTROL CARDS FOR B5500

THERE ARE TWO BASIC FORMATS FOR THE SYSTEM CONTROL CARDS. THEY
ARE AS FOLLOWS:

A. THE PRIMARY SOURCE FILE IS ON CARDS.

*

*

*

? COMPILE <PROG ID>l<USER ID> WITH [SOL J [LIBRARYl <ACCT INFO>
MSDL SYNTAX j

? FILE NEWTAPE = <FILE MFID>l<FILE ID> [SERIAL]
TAPE

? DATA <USER ID>
$ NEW
<SOL PROGRAM>
FINI
? END

THESE CARDS MUST BE INCLUDED IF THE FILE IS TO
BE SAVED ON TAPE OR DISK.

B. THE PRIMARY SOURCE FILE IS ON TAPE OR DISK, AND THE
SECONDARY SOURCE FILE IS ON CARDS.

*

*

*

? COMPILE <PROG ID>l<USER ID>

? FILE TAPE = <PROG ID>l<USER

WITH [SOL J l L I BR ARY]
MSDL L SYNTAX

ID> [SERIAL]
TAPE

? FILE NEWTAPE = <FILE MFID>l<FILE ID> [SERIAL]
TAPE

? DATA <USER ID>
$ UPDATE
$ NEW
<PATCHES TO SOL PROGRAM>
<9-S CARD> CSEQUENCE FIELD IS 99999999l
? END

THESE CARDS MUST BE INCLUDED IF THE UPDATED
FILE IS TO BE SAVED ON TAPE OR DISK.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

<ACCT INFO>

21-2

THE " " SPECIFIES ANY INVALID CHARACTER.
SHOULD SPECIFY "SOL" IF THE PROGRAM IS TO
SYSTEM #2, OR "MSDL" IF MARKETING SYSTEM
A TEMPORARY DISTINCTION AND IS SUBJECT TO

THE "COMP ILE II CARD
BE RUN ON ENGINEERING
#2, NOTE THAT THIS IS
CHANGE.

IF OBJECT CODE IS TO BE GENERATED, THE ''LIBRARY" OPTION SHOULD
BE USED. THE "SYNTAX" OPTION WILL CHECK ONLY FOR SYNTAX ERRORS
AND GENERATE A SOURCE LISTING.

THE FORMAT FOR THE <ACCT INFO> IS AS FOLLOWS:

#<4-DIGIT COST CENTER> <1 SPACE> <5-DIGIT PROJECT NUMBER>

AN EXAMPLE "COMPILE CARD" IS:

? COMPILE MYPROGRAM/SMITH WITH SOL LIBRARY #1234 56789

TO DUMP THE OBJECT CODE TO CARDS, THE FOLLOWING CONTROL CARDS
SHOULD BE PLACED JUST BEFORE THE END-CARD:

? EX SOL/DUMPER <ACCT INFO>
? FILE CODEFILE = <PROG ID>l<USER ID> [SERIAL]

TAPE
? COMMON = 9

SOL FILE NAMES

CARD
TAPE
NEWT APE
LINE

CARD INPUT FILE
PRIMARY SOURCE FILE IF $ UPDATE IS USED
NEW SOURCE FILE IF $ NEW IS USED
PRINTER FILE

SYSTEM CONTROL CARDS FOR B1700

THERE ARE TWO BASIC DECK SETUP FORMATS. THEY ARE:

A. THE PRIMARY SOURCE FILE IS ON CARDS.

? <SYSTEM COMPILE CARD>
* ? <FILE EQUATE CARD FOR FILE "NEWSOURCE">

? DATA CARDS
* $ NEW

<SOL PROGRAM>
FINI
? END

* IF THE PRIMARY SOURCE FILE IS TO BE SAVED ON
TAPE OR DISK, THESE CARDS MUST BE INCLUDED.

B. THE PRIMARY SOURCE FILE IS ON TAPE OR DISK.

? <SYSTEM COMPILE CARD>
? <FILE EQUATE CARD FOR FILE "SOURCE">

* ? <FILE EQUATE CARD FOR FILE "NEWSOURCE">
? DATA CARDS
$ MERGE

* $ NEW
<PATCHES TO SOL PROGRAM>
<9-S CARD> <SEQUENCE FIELD CONTAINS 99999999>
? END

* IF THE MERGED FILE IS TO BE SAVED, THESE CARDS
MUST BE INCLUDED.

NOTE REFER TO THE Bl700 MCP DOCUMENTATION FOR THE
EXACT FORMAT OF THE "COMPILE" AND "FILE
EQUATE" CARDS.

SOL FILE NAMES

CARDS
SOURCE
NEWSOURCE
LINE

CARD INPUT FILE
PRIMARY SOURCE FILE IF "$ MERGE" IS USED
UPDATED SOURCE FILE IF"$ NEW" IS"USED
LINE PRINTER FILE

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

21-3

22-1

APPENDIX VI: CONDITIONAL COMPILATION

THE .. CONDITIONAL COMPILATION FACILITY ALLOWS THE USER TO
SELECTIVELY COMPILE BLOCKS OF CODE WITHOUT THE NECESSITY OF
PHYSICALLY ADDING OR REMOVING RECORDS.

<CONDITIONAL INCLUSION> RECORDS ARE ALWAYS WRITTEN TO A NEW FILE
<IF ONE IS CREATED>, WHETHER OR NOT THEY ARE COMPILED. IF
CONDITIONAL COMPILATION RECORDS ARE TO BE PRINTED WITH THE
SOURCE LISTING, THEN "LISTALL" MUST APPEAR ON THE $-CARD. IF
NOT SPECIFIED, ONLY THOSE CONDITIONAL COMPILATION RECORDS WHICH
WERE COMPILED ARE PRINTED.

THE BNF FOR THE CONDITIONAL COMPILATION IS AS FOLLOWS:

<CONDITIONAL INCLUSION> ::= <SET STATEMENT>

<SET STATEMENT> ::=

<SET SYMBOL LIST> ::=

<SET SYMBOL> ::=

<BOOLEAN SYMBOL> ::=

<RESET STATEMENT> ::=

<RESET SYMBOL LIST> ::=

<RESET SYMBOL> ::=

<PAGE STATEMENT> ::=

<LIBRARY STATEMENT> ::=

<FILE NAME>::=

I <RESET STATEMENT>
I <PAGE STATEMENT~
I <LIBRARY STATEMENT>
I <IF BLOCK>

SET <SET SYMBOL LIST>

<SET SYMBOL>
I <SET SYMBOL LIST>

<SET SYMBOL>

<BOOLEAN SYMBOL>

<LETTER>
I <BOOLEAN SYMBOL> <LETTER>
I <BOOLEAN SYMBOL> <DIGIT>

RESET <RESET SYMBOL LIST>

<RESET SYMBOL>
I <RESET SYMBOL LIST>

<RESET SYMBOL>

<BOOLEAN SYMBOL>

PAGE

LIBRARY <FILE NAME>

<MULTI-FILE IDENTIFIER>

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

22-2

I <MULTI-FILE IDENTIFIER> <SLASH>
<FILE IDENTIFIER>

I <PACK IDENTIFIER> <SLASH>
<MULTI-FILE IDENTIFIER> <SLASH>

I <PACK IDENTIFIER> <SLASH>
<MULTI-FILE IDENTIFIER> <SLASH>
<FILE IDENTIFIER>

<PACK IDENTIFIER>::= <IDENTIFIER>

<MULTI-FILE IDENTIFIER>::= <IDENTIFIER>

<FILE IDENTIFIER>::= <IDENTIFIER>

<SLASH>::= I

<IF BLOCK> . ·­.. -

<IF STATEMENT> ::=

<IF STATEMENT>
<INCLUSION BLOCK>
<END STATEMENT>

I <IF STATEMENT>
<TRUE PART>
<INCLUSION BLOCK>
<END STATEMENT>

IF <BOOLEAN EXPRESSION>

<BOOLEAN EXPRESSION> : := <BOOLEAN FACTOR>

<BOOLEAN FACTOR> ::=

<BOOLEAN SECONDARY> ::=

<BOOLEAN PRIMARY>

<INCLUSION BLOCK>

<SDL SOURCE
IMAGE BLOCK> ::=

. ·­.. -
: :=

<END STATEMENT> ::=

<TRUE PART> : : =

I <BOOLEAN EXPRESSION> OR
<BOOLEAN FACTOR>

<BOOLEAN SECONDARY>
I <BOOLEAN FACTOR> AND

~BOOLEAN SECONDARY>

<BOOLEAN PRIMARY>
I NOT <BOOLEAN PRIMARY>

<SET SYMBOL>
I <RESET SYMBOL>

<SOL SOURCE IMAGE BLOCK>
I <IF BLOCK>

<EMPTY>
I <1 OR MORE SOL SOURCE IMAGES>

END

<INCLUSION BLOCK> <ELSE STATEMENT>

<ELSE STATEMENT> : := ELSE

22-3

ALL RECORDS CONTAINING CONDITIONAL COMPILATION STATEMENTS MUST
HAVE AN AMPERSAND C&> IN COLUMN 1 CEXCEPT THE <SOL SOURCE IMAGE
BLOCK>>. IN ADDITION, A COMPLETE CONDITIONAL INCLUSION
STATEMENT MUST BE CONTAINED ON ONE AMPERSAND CARD. COLUMNS 2-72
ARE FREE-FIELD, AND COLUMNS 73-80 MAY CONTAIN SEQUENCE NUMBERS.

NOTE THAT <BOOLEAN EXPRESSION>S MAY CONTAIN THE LOGICAL
OPERATORS CFROM LOWEST PRECEDENCE TO HIGHEST) "OR", "AND", AND
"NOT".

THE <PAGE STATEMENT> WILL CAUSE A PAGE EJECT IF THE SOURCE FILE
IS BEING LISTED. THE <LIBRARY STATEMENT> WILL CAUSE THE IMAGES
FROM THE FILE SPECIFIED BY <FILE NAME> TO BE INCLUDED IN THE
SOURCE PROGRAM.

AS AN EXAMPLE, CONSIDER THE FOLLOWING SOL
ILLUSTRATING NESTED CONDITIONAL COMPILATION
SOURCE IMAGE BLOCK>S.

~TAB c IFREE-FIELDi COLS 2-72 I

& RESET D E
DECLARE CA,Bl FIXED;
& IF A AND E
A,.._B;
& ELSE

SOURCE STATEMENTS
STATEMENTS AND <SOL

SEQ: 73-80

0100
0200
0300
0400

A+-X CAT Y+Z; % WHOLE SOURCE IMAGE IS INCLUDED

0500
0600

0700
0800

[
& IF C
B+-A;
& END
& END E& IF B OR D
BUMP B;
& ELSE
BUMP A;
& END

0900
1000
1100
1200
1300
1400
1500
1600

THE COMPILATION OF THE FOLLOWING STATEMENTS WOULD RESULT.

DECLARE CA,Bl FIXED; 0300
A._X CAT Y+Z; % WHOLE SOURCE IMAGE IS INCLUDED 0700
B-+-A; 0900
BUMP B; 1300

NOTE THAT EVERY "IF" MUST BE PAIRED WITH EITHER AN "ELSE'' OR AN
"END". EVERY "ELSE" MUST HAVE AN "END" ASSOCIATED WITH IT.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

23-1

APPENDIX VII: SOL PROGRAMMING TECHNIQUES

THIS SECTION CONTAINS CODING SUGGESTIONS AND EXAMPLES WHICH
RESULT IN DECREASED SOURCE CODE AND/OR OBJECT CODE.

DECLARATIONS:

1. AS MANY NON-STRUCTURED DECLARATIONS AS POSSIBLE (UP TO A
MAXIMUM OF 32) SHOULD BE DECLARED IN ONE <DECLARE
STATEMENT>. EXAMPLE:

DECLARE A FIXED, (B,Cl BIT(24);

GENERATES MORE EFFICIENT CODE THAN:

DECLARE A FIXED;
DECLARE (B,Cl BIT(24l;

2. A <DEFINE ACTUAL PARAMETER> (SEE "DEFINE INVOCATION") MAY
BE A SERIES OF SOL STATEMENTS. FOR EXAMPLE:

DEFINE COMPARE(TS,Sl AS#
IF TOKEN.SYMBOL=TS

THEN DO;

MAY BE INVOKED AS:

S;
UNDO THIS.ONE;

ENO#;

DO THIS.ONE FOREVER;
COMPARE C"SINGLE", SINGLE.SPACE TRUE>;
COMPARE C"MERGE", IF LASTUSED ~ 0

THEN UNDO THIS.ONE;
LASTUSED._2;
OPEN SOURCE INPUT;
READ SOURCE CTAPEWORKll;

COMPARE C ... , ... l;

END THIS.ONE;

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

PROCEDURES:

1. PROCEDURES FROM HIGHEST EFFICIENCY TO LOWEST ARE:

STATEMENTS:

PARAMETERS

NO
NO
YES
YES

LOCAL DATA

NO
YES
NO
YES

23-2

1. WHEN THE VALUE RETURNED BY A TYPED PROCEDURE IS TO BE
IGNORED:

IF PCX-Y> THEN;

IS MORE EFFICIENT THAN:

TEMP._P C X-Y > ;

2. THE FOLLOWING STATEMENTS:

<NULL STATEMENT>
<RETURN STATEMENT>
<GROUP TERMINATION STATEMENT>, AND
PARAMETER-LESS PROCEDURE CALLS

SHOULD NEVER BE THE ONLY STATEMENT WITHIN A <DO GROUP>
WHICH FOLLOWS A "THEN" OR "ELSE" OR WHICH IS AN ELEMENT OF
A <CASE STATEMENT> COR ANY "SUBORDINATE EXECUATBLE
STATEMENT; SEE P. 4-2>. EXAMPLE:

IF A THEN RETURN;

IS MORE EFFICIENT THAN:

IF A THEN DO;
RETURN;

END;

3. USE "%" AT THE BEGINNING OF A COMMENT RATHER THAN "/* .. ·.•/"
AS DELIMITERS. THE "%" STOPS THE SCANNING OF THAT RECORD.
IF THE"/* .. . *I" FORM IS USED, SCANNING MUST CONTINUE TO

23-3

DETECT THE ENDING TERMINATOR. THUS COMPILE TIME IS
INCREASED.

4. THE EXPRESSION:

SUBSTRC"0123456789ABCDEF",N,ll

GENERATES MUCH LESS CODE THAN

CASE N OF ("0" I II l 11 I 11 2 11 I ••• II E II • II F II)

5. THE STATEMENT:

IS MORE EFFICIENT THAN

X..._IF A>O THEN 1 ELSE 0;

THE RESULTS ARE THE SAME.

6. BUMP A.-B; STORES B INTO A AND BUMPS B.
BUMP A:.-B; STORES B INTO A AND BUMPS A.

7. REVERSE.STORECIF <CONDITION> THEN A ELSE 8, Cl; SELECTIVELY
STORES C INTO A OR 8.

8. CONSIDER THE FOLLOWING:

IN A COMPILER, FOR EXAMPLE, ASSUME THAT ALL CALLS ON THE
ERROR ROUTINE FOLLOW A THEN/ELSE OR ARE IN A <CASE
STATEMENT>. EXAMPLE:

1. IF <CONDITION> THEN ERRORCE005l;
2. CASE N; ..

.
ERRORCE137>; ..

END CASE;

IT IS SOMETIMES DESIRABLE TO PUT THESE CALLS INTO A
SEPARATE SEGMENT, ESPECIALLY WHEN E005 AND El37 REPRESENT
CHARACTER STRINGS CI.E., "IN-LINE" ERROR MESSAGES>. FOR
EXAMPLE:

DEFINE ERRORCNl AS #SEGMENT CERROR.CALLS>;

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

23-4

ERROR.ROUTINE CN)#;

BECAUSE OF THE TEMPORARY NATURE OF SEGMENTING SUBORDINATE
EXECUTABLE STATEMENTS, ONLY THE CALLS WILL BE IN SEPARATE
SEGMENTS.

9. WHEN TWO OR MORE ELEMENTS OF A <CASE STATEMENT> OR AN <IF
STATEMENT> HAVE IDENTICAL CODE, MORE EFFICIENT CODE IS
GENERATED IF THE CODE IS PUT INTO A SEPARATE PROCEDURE
<WITH NO PARAMETERS OR DATA>. IN BOTH CASES, EXECUTION TIME
WILL BE IDENTICAL, BUT OBJECT CODE SAVINGS COULD BE
SUBSTANTIAL.

10. USE CONDITIONAL COMPILATION STATEMENTS TO REMOVE DEBUGGING
CODE, RATHER THAN PHYSICALLY REMOVING THE CODE. SEE
APPENDIX VI.

2'+-1

APPENDIX VIII: THE SOL RECOMP.ILATION FACILITY

RECOMPILATION OF SOL PROGRAMS IS A TWO PART PROCESS: CA>
COMPILATION OF THE FULL PROGRAM IN ORDER TO CREATE THE MASTER
INFORMATION FILES, AND CB> RECOMPILATION OF PARTS OF THE
PROGRAM USING THE MASTER INFORMATION FILES. THE "CREATE MASTER"
OPERATION TAKES PLACE ONCE, AND IS THEN FOLLOWED BY SUCCESSIVE
"RECOMPILE" OPERATIONS. NOTE THAT BOTH A "CREATE MASTER" AND A
"RECOMPILE" MAY BE PERFORMED AT THE SAME TIME. IN ADDITION, IT
IS POSSIBLE TO DO "REGULAR" COMPILATIONS WITHOUT INVOKING ANY
OF THE RECOMPILATION FACILITY.

A. THE°CREATE MASTER OPERATION

IN ORDER TO CREATE THE MASTER INFORMATION FILES, IT IS NECESSARY
TO INCLUDE AS THE FIRST CARD IN THE COMPILATION DECK THE
$-CARD:

$ CREATE.MASTER

THIS CAUSES THE COMPILER TO: CA> DUMP INFORMATION TO THE MASTER
INFORMATION FILES, CB> CREATE A NEW SOURCE FILE CABOUT WHICH,
INFORMATION IS SAVED>, AND CC> USE THESE TO CREATE A NEW CODE
FILE.

THE INFORMATION THAT IS SAVED IS: THE INPUT SOURCE IMAGES, THE
LEXIC LEVEL ONE PROCEDURE BOUNDARIES CBOTH SOURCE AND OBJECT>,
THE LEXIC LEVEL ZERO SYMBOL TABLES, A RECORD OF ALL CODE
ADDRESSES THAT HAVE BEEN EMITTED, THE OBJECT CODE FROM WHICH
CODE ADDRESSES HAV.E BEEN EXCISED, AND THE FPB~S AND
SCRATCHPADS. THIS IS SAVED IN THE FILES:

NEWSOURCE,
NEW. INFO.FILE,
NEW.BLOCK.ADDRESS.FILE,
NEW.SECONDARY.FILE, AND
NEW.FPS.FILE.

@) l973, 1974 Burroughs - DO NOT REPRODUCE

24-2

THERE ARE SEVERAL RESTRICTIONS THAT APPLY TO THE CREATE MASTER
OPERATION:

1. $CREATE.MASTER MUST BE THE FIRST CARD IN THE DECK.

2. $ NEW NEED NOT BE USED WITH $ CREATE.MASTER.

3. $ SEQ SHOULD BE USED IF THERE ARE INPUT SOURCE IMAGES WITH
EMPTY SEQUENCE FIELDS.

NOTE THAT Cl> IMPLIES THAT THE &-CARDS AT THE FRONT OF THE DECK
WILL BE INCLUDED ON THE NEW SOURCE FILE THAT IS CREATED. HENCE,
THESE CARDS SHOULD BE SEQUENCED.

B. THE RECOMPILE OPERATION

RECOMPILATION IS DONE ON A LEXIC LEVEL ONE PROCEDURE
I.E., THE OUTERMOST PROCEDURE CONTAINING A PATCH
PROCEDURE WHICH IS RECOMPILED. THE CODE PRODUCED
RECOMPILE PROCESS WILL BE MERGED INTO CANO, IN FACT,
SOME OF> THE INFORMATION CREATED DURING THE CREATE
PROCESS.

BASIS:
IS THE
BY THE
REPLACE

MASTER

RECOMPILATION IS INVOKED BY INCLUDING AS THE FIRST CARD OF THE
PATCH DECK:

$ RECOMPILE

THIS CAUSES THE COMPILER TO USE THE PATCHES AND THE MASTER
INFORMATION FILES TO LOCATE THE LEXIC LEVEL ONE PROCEDURES AND
TO GENERATE THE SAME INFORMATION FOR THESE AS WAS GENERATED FOR
THE ENTIRE PROGRAM IN THE CREATE MASTER OPERATION. THIS
INFORMATION IS THEN COMBINED, ON A PROCEDURE BY PROCEDURE
BASIS, WITH THE MASTER INFORMATION FILES TO PRODUCE A FINAL
FORM OF THE PROGRAM WHICH CAN BE TURNED INTO A CODE FILE.

THE INFORMATION THAT IS ACCESSED IS CONTAINED IN THE FILES:

SOURCE,
MASTER.INFO.FILE,

MASTER.BLOCK.ADDRESS.FILE,
MASTER.SECONDARY.FILE, AND
MASTER.FPS.FILE.

24-3

THERE ARE SEVERAL RESTRICTIONS THAT APPLY TO THE RECOMPILE
OPERATION:

1. $RECOMPILE MUST BE THE FIRST CARD IN THE DECK.

2. THE PATCH DECK MAY CONTAIN $-CARDS, &. SET CARDS, AND &
RESET CARDS, FOLLOWED BY PATCH CARDS.

3. NO LEXIC LEVEL ZERO CARDS MAY BE PATCHED: THIS INCLUDES
GLOBAL DATA, LEXIC LEVEL ONE PROCEDURE HEADS, AND THE MAIN
PROGRAM.

4. NEITHER $ SEQ NOR $ MERGE MAY APPEAR WITH $ RECOMPILE.

5. THE SOURCE FILE INPUT DURING RECOMPILATION MUST BE ON DISK
CIN ORDER THAT IT MAY BE ACCESSED RANDOMLY>.

C. THE CREATE MASTER AND RECOMPILE OPERATIONS PERFORMED TOGETHER

IT IS POSSIBLE TO CREATE NEW MASTER INFORMATION FILES WHILE
RECOMPILING. IT IS NECESSARY ONLY TO ADHERE TO THE SET OF
RESTRICTIONS LISTED IN BOTH A AND 8, ABOVE. IN PARTICULAR,

$ RECOMPILE CREATE.MASTER

MUST BE THE THE FIRST CARD IN THE DECK. IT SHOULD BE NOTED,
HOWEVER, THAT PERFORMING THESE OPERATIONS TOGETHER UPDATES SOME
OF THE INFORMATION IN THE FILE MASTER.INFO.FILE. HENCE, IT WILL
NOT BE POSSIBLE TO PERFORM ANOTHER RECOMPILE USING THIS
MASTER.INFO.FILE UNLESS THE FILE HAS BEEN COPIED. IN.THIS CASE,
THE COPIED VERSION IS THE ONE WHICH MUST BE USED FOR SUBSEQUENT
RECOMPILATIONS.

D. NOTES

1. DURING RECOMPILATION, THE ONLY INFORMATION WHICH MAY BE
LISTED IS THAT WHICH IS ACTUALLY BEING RECOMPILED.

(S) 1973, 1974 Burroughs - DO NOT REPRODUCE

24-4

2. THE ORIGINAL SOURCE FILE USED WITH $ CREATE.MASTER MAY 9E
ON MAG TAPE. THE NEW SOURCE FILE CREATED BY $ CREATE.MASTER
MAY BE ON MAG TAPE. HOWEVER, THIS NEW SOURCE FILE MUST THEN
BE COPIED TO DISK BEFORE PERFORMING THE RECOMPILE
OPERATION.

3. USE OF THE RECOMPILATION FACILITY REQUIRES A FAIR AMOUNT OF
DISK SPACE, PARTICULARLY WHEN BOTH RECOMPILATION AND CREATE
MASTER OPERATIONS ARE PERFORMED AT THE SAME TIME. IT IS
ADVANTAGEOUS TO KEEP SOURCE FILES ON MAG TAPE AS MUCH AS
POSSIBLE, COPY THEM TO DISK WHEN THEY ARE NEEDED, AND
REMOVE THEM AS SOON AS THEY ARE RELEASED.

4. THE MARK III.1 MCP REQUIRES THAT ALL INTERNAL FILE NAMES BE
LIMITED TO TEN CHARACTERS; THE MARK III.2 RESTRICTION IS 63
CHARACTERS, OF WHICH ONLY THE FIRST TEN ARE SIGNIFICANT.

5. THE SOURCE IMAGE FILE CREATED BY THE CREATE MASTER PROCESS
CONTAINS NO INFORMATION OTHER THAN SOURCE IMAGES. IT MAY
THEREFORE BE USED IN A REGULAR COMPILATION.

E. SAMPLE COMPILE DECKS

1. COMPILE, CREATE.MASTER:

? COMPILE SA SOL LIBRARY
? FILE SOURCE NAME SA0206/SOURCE TAPE;
? FILE NEWSOURCE NAME SA0410/SOURCE TAPE;
? FILE NEW.INFO.FILE NAME SA0410/INFO;
? FILE NEW.BLOCK.ADDRESS.FILE NAME SA0410/BLOCK.ADDRESS;
? FILE NEW.SECONDARY.FILE NAME SA0410/SECONDARY;
? FILE NEW.FPS.FILE NAME SA0410/FPB;
? DATA CARDS
$ CREATE.MASTER
$ MERGE LIST SINGLE SIZE SEQ
[PATCH CARDSJ
(99999999 CARDJ
? END

2. RECOMPILE <IT IS ASSUMED THAT THE TAPE LABELLED
SA0410/SOURCE HAS BEEN COPIED TO A DISK FILE OF THE SAME
NAME l:

? COMP I LE SA SOL LIBRARY
? FILE SOURCE NAME SA0410/SOURCE;
? FI LE MASTER. INFO.FI LE NAME SA0410/ INFO;
? FILE MASTER.BLOCK.ADDRESS.FILE NAME SA0410/BLOCK.ADDRESS;
? FILE MASTER.SECOND~RY.FILE NAME SA0410/SECONDARY~

? FILE MASTER.FPS.FILE NAME SA0410/FP8;
? DATA CARDS
$ RECOMPILE
$ LIST SINGLE SIZE
$ VSSIZE 10000 NSSIZE 100
CPATCH CARDSJ
C99999999 CARDJ
? END

3. RECOMPILE, CREATE.MASTER:

? COMPILE SA SOL LIBRARY
? FILE SOURCE NAME SA0410/SOURCE;
? FILE MASTER.INFO.FILE NAME SA0410/INFO;

24-5

? FILE MASTER.BLOCK.ADDRESS.FILE NAME SA0410/BLOCK.ADDRESS;
? FILE MASTER.SECONDARY.FILE NAME SA0410/SECONDARY;
? FILE MASTER.FPS.FILE NAME SA0410/FPB;
? FILE NEWSOURCE NAME SA0411/SOURCE TAPE;
? FILE NEW.INFO.FILE NAME SA0411/INFO;
? FILE NEW.BLOCK.ADDRESS.FILE NAME SA04ll/8LOCK.ADDRESS;
? FILE NEW.SECONDARY.FILE NAME SA0411/SECONDARY;
? FILE NEW.FPS.FILE NAME SA0411/FPB;
? DATA CARDS
$ RECOMPILE CREATE.MASTER
$ VSSIZE 10000 NSSIZE 100
$ LIST SINGLE SIZE
[PATCH CARDSJ
?END

(S> 1973, 1974 Burroughs - DO NOT REPRODUCE

25-1

APPENDIX IX: SOL MONITORING FACILITY

INTRODUCTION:

THE SOL MONITORING FACILITY PROVIDES A MEANS OF MONITORING
PROCEDURE INVOCATIONS AND EXITS. THE MONITOR OUTPUT INCLUDES
POINTS OF INVOCATION, PROCEDURE NAMES, PARAMETER VALUES,
RETURNED VALUES, ETC.

SOL PROGRAM SYNTAX AND SEMANTIC CHANGES

A. "MONITOR. INPUT .FILE" AND "MONITOR.OUTPUT .FILE" ARE ADDED AS
<FILE ATTRIBUTE> S TO THE <FILE DECLARATION STATEMENT>.
THEY HAVE THE FOLLOWING SEMANTICS:

1. BOTH CANNOT BE ATTRIBUTES OF THE SAME FILE.

2. EACH MAY APPEAR ONLY ONCE IN A COMPILATION.

3. "MONITOR.OUTPUT.FILE" MAY APPEAR ALONE.

B. "NO MONITOR" AND "MONITOR" ARE ADDED AS <CONTROL OPTION>S
TO SOL. THEY HAVE THE FOLLOWING SEMANTICS:

1. THE "MONITOR" <CONTROL OPTION> IS INITIALLY
OFF.

2. RECOGNIZING THE C"MONITOR"/"NO MONITOR">
<CONTROL OPTION> TURNS THAT OPTION CON/OFF>.

GENERAL DISCUSSION

THE MONITORING SYSTEM WILL MONITOR PROCEDURE INVOCATIONS AND
EXITS· ON THE FILE WITH <FILE ATTRIBUTE> "MONITOR.OUTPUT.FILE".
PROCEDURES WHICH ARE CANDIDATES TO BE MONITORED ARE THOSE WHOSE
<FORWARD DECLARATION>S OR <PROCEDURE STATEMENT>S WERE
RECOGNIZED WHILE THE "MONITOR" <CONTROL OPTION> WAS "ON".

THE SET OF PROCEDURES TO BE MONITORED FOR A GIVEN RUN IS

© 1973, 1974 Burroughs - DO NOT REPRODUCE

25-2

SELECTED VIA <RUN-TIME MONITOR STATEMENT>S WHICH ARE INPUT AT
THE BEGINNING OF THE PROGRAM VIA THE FILE WITH THE
"MONITOR.INPUT.FILE" ATTRIBUTE. IF NO FILE WITH THIS ATTRIBUTE
IS DECLARED THE SPO JS USED 8Y DEFAULT.

A. FILE HANDLING

THE FILE WITH <FILE ATTRIBUTE> "MONITOR.INPUT.FILE" WILL BE
OPENED, ACCESSED, AND CLOSED BEFORE THE USER CODE RECEIVES
CONTROL.

THE FILE WITH <FILE ATTRIBUTE> "MONITOR.OUTPUT.FILE" WILL BE
WRITTEN TO ONLY; NO EXPLICIT OPEN OR CLOSE WILL BE PERFORMED.
THIS MEANS THAT CA> ONCE MONITOR OUTPUT IS STARTED THE USER
SHOULD NOT PERFORM AN EXPLICIT OPEN ON THE FILE AND CB) IF MORE
MONITOR OUTPUT IS EXPECTED THE USER SHOULD NOT PERFORM AN
EXPLICIT CLOSE ON THE FILE.

RUN-TIME MONITOR STATEMENT

THE SYNTAX OF THE RUN-TIME MONITOR STATEMENT IS DESCRIBED BELOW.

<RUN-TIME
MONITOR STATEMENT>::=

<EXPRESSION> ::=

<TERM> : :=

<FACTOR>::=

<PRIME> ::=

<OR> : : =

<AND>

<NOT>

. ·­.. -

: :=

$ALL
I $NONE
I <EXPRESSION>

<TERM>
I <EXPRESSION> <OR> <TERM>

<FACTOR>
I <TERM> <AND> <FACTOR>

<PRIME>
I <NOT> <PRIME>

<RANGE>
I <LIST>
I C <EXPRESSION>>

OR
I +

AND
I *

NOT
I -

1
2
3

4
5

6
7

8
9

10
11
12

13
14

15
16

17
18

<RANGE> · · =

<LIST> · ·=

<8 DIGIT SEQUENCE NUMBER> - 19
<8 DIGIT SEQUENCE NUMBER> 20

< IDE NT IF I ER>
I <LIST> <IDENTIFIER>
I <LIST>, <IDENTIFIER>

21
22
23

25-3

THE SEMANTICS OF A <RUN-TIME MONITOR STATEMENT> ARE DESCRIBED AS
FOLLOWS. IF A PROCEDURE "P" SATISFIES THE CONDITIONS OF THE
MONITOR STATEMENT THEN IT SHOULD BE MONITORED. NOTE THAT ALL
PROCEDURES SATISFY Cll AND NO PROCEDURES SATISFY C2l. A
PROCEDURE SATISFIES AN <EXPRESSION> IF IT SATIFIES ANY <TERM>
OF THAT <EXPRESSION>. A PROCEDURE SATISFIES A <TERM> IF IT
SATISFIES ALL <FACTOR>S OF THAT <TERM>. A PROCEDURE SATISFIES
A <FAGTOR> IF IT SATISFIES THE <PRIME> COMPOSING IT C8l OR IT
DOES NOT SATISFY THAT PRIME C9l. A PROCEDURE SATISFIES A
<PRIME> IF IT SATISFIES A RANGE CONDITION ClOl, A LIST
CONDITION Clll, OR A SUB-EXPRESSION Cl2l. A RANGE CONDITION IS
TWO 8 DIGIT SEQUENCE NUMBERS, THE FIRST STRICTLY LESS THAN THE
SECOND. A PROCEDURE SATISFIES A RANGE CONDITION IF ITS
PROCEDURE STATEMENT IS CONTAINED IN THAT RANGE. A PROCEDURE
STATEMENT SATISFIES A LIST CONDITION IF ITS NAME IS CONTAINED
IN THE LIST.

THE MONITOR FILE

WHEN MONITORING A PROGRAM, THE MONITORING INTRINSICS REFERENCE
A RANDOM ACCESS FILE ASSOCIATED WITH THE COMPILATION OF THE
PROGRAM. THE NAME OF THE CODE FILE AND THE NAME OF ITS MONITOR
FILE ARE GIVEN BELOW:

CODE FILE·

A
A/B
A/B/C

MONITOR FILE

$$A
A/$$B
A/B/$$C

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

26-1

APPENDIX X: BURROUGHS 81700 DATA COMMUNICATIONS SOL COCSDL>
-------------------~---------------------------------------

INTRODUCTION

B 1700 DATA COMMUNICATIONS SOL CDCSDL> IS AN EXTENSION OF B 1700
SOL, AND ANY CONSTRUCT USABLE IN B 1700 SOL IS PERMITED IN
DCSDL.

DCSDL HAS BEEN PROVIDED SPECIFICALLY FOR THE IMPLEMENTATION OF
THE NETWORK CONTROLLER FOR DATA COMMUNICATIONS NETWORK. IT
SHOULD NOT BE USED FOR ANY OTHER PURPOSE. NOTE THAT THERE ARE
SOME FEATURES OF DCSDL WHICH EITHER HAVE NOT BEEN FULLY
IMPLEMENTED OR HAVE NOT BEEN IMPLEMENTED AT ALL. THESE FEATURES
WILL BE MARKED AS SUCH.

FOR SIMPLICITY, ONLY THOSE CONSTRUCTS OF DCSDL THAT ARE NEW AND
THAT HAVE NOT BEEN PREVIOUSLY DEFINED IN B1700 SOL WILL BE
DESCRIBED IN THIS APPENDIX. THE SYNTACTIC DESCRIPTIONS WILL BE
CONSISTENT WITH THOSE OF B1700 SOL, AND ANY METALINGUISTIC
VARIABLE NOT DEFINED IN THIS MANUAL HAS THE SAME DEFINITION AS
IN THE B1700 SOL INFORMATION MANUAL.

DCSDL EXTENSIONS

SYNTAX:

<DCSDL EXTENSION> ::= <DCSDL DECLARATION> I <DCSDL FUNCTION>/
<DCSDL STATEMENT>

SEMANTICS:

THE EXTENSIONS TO B1700 CONSIST OF TWO NEW DECLARATIONS, A
NUMBER OF STATEMENTS, AND SOME SPECIALIZED FUNCTIONS THAT DEAL
WITH THE NEW DECLARATIONS.

~ 1973, 1974 Burroughs - DO NOT REPRODUCE

26-2

NOTE: THE WORDS "TRUE" AND "FALSE" IN THIS APPENDIX ARE
SYNONOMOUS WITH •Cl>l• ANO •<l>O•, RESPECTIVELY.

OCSDL DECLARATIONS

SYNTAX:

<DCSOL DECLARATION> ::= <B1700 SOL DECLARATIONS> I
<QUEUE DECLARATION> I <MESSAGE DECLARATION>

SEMANTICS:

DCSDL DECLARATIONS MAY BE THE <B1700 SOL DECLARATIONS>, OR
THE <QUEUE DECLARATION>, OR THE <MESSAGE DECLARATION>.

QUEUE DECLARATIONS

SYNTAX:

<QUEUE DECLARATION> ::=QUEUE <QUEUE LIST>

<QUEUE LIST> ::=<COMPLEX QUEUE IDENTIFIER> I <QUEUE LIST>,
<COMPLEX QUEUE IDENTIFIER>

<COMPLEX QUEUE IDENTIFIER> ::=<QUEUE IDENTIFIER> I
<QUEUE ARRAY IDENTIFIER> <<ARRAY BOUND>>

<QUEUE IDENTIFIER> ::=<IDENTIFIER>

<QUEUE ARRAY IDENTIFIER> ::=<IDENTIFIER>

<ARRAY BOUND> ::=<INTEGER>

EXAMPLES:

26-3

QUEUE A, B, C ClO>;

QUEUE QUEUE.ARRAY C15>, PRIMARY C7>;

SEMANTICS:

1. A <QUEUE DECLARATION> DEFINES ONE OR MORE IDENTIFIERS AS
QUEUES OR QUEUE ARRAYS AND DEFINES THEIR BOUNDS OF
SUBSCRIPT. QUEUE ARRAYS MUST BE ONE DIMENSIONAL.

2. THE SUBSCRIPT BOUND FOR EACH QUEUE ARRAY IS GIVEN IN THE
<ARRAY BOUND> FOLLOWING THE QUEUE ARRAY IDENTIFIERCS> IN
THE <QUEUE ARRAY LIST>.

3. EXPRESSIONS MAY BE USED AS QUEUE ARRAY SUBSCRIPTS.

4. QUEUE ARRAYS MUST BE DECLARED IN THE OUTERMOST BLOCK.

5. A DCSDL QUEUE IS A LINKED LIST OF MESSAGES.

6. A QUEUE ARRAY IS AN INDEXABLE ARRAY WHOSE ELEMENTS ARE
QUEUES, NOT VALUES.

7. QUEUES AND QUEUE ARRAYS MAY NOT BE PASSED AS PARAMETERS TO
PROCEDURES.

PRAGMATICS:

A DATA DICTIONARY ENTRY IS RESERVED FOR EACH QUEUE OR QUEUE
ARRAY. IF THE QUEUE IS INACTIVE CA NULL QUEUE> THE ENTRY WILL
BE ZERO. IF THE QUEUE IS ACTIVE, THE ENTRY WILL BE A DICTIONARY
ENTRY WHICH POINTS TO A LOCATION IN THE DATACOM QUEUE STACK.
WHEN A QUEUE IS ACTIVE, ITS ENTRY IN THE QUEUE STACK CONTAINS
THE HEAD AND TAIL LINKS TO A LINKED LIST OF MESSAGES. WHEN THE
QUEUE IS EMPTY, THE TAIL LINK POINTS TO THE HEAD LINK; HOWEVER,
THE QUEUE IS STILL CONSIDERED ACTIVE.

QUEUES MAY BE REFERENCED BY THE USE OF THE NEW STATEMENTS AND
FUNCTIONS DESCRIBED IN THIS DOCUMENT. A QUEUE MAY NOT BE
ASSIGNED A VALUE OR USED AS AN INDEX.

A QUEUE MAY BE ACTIVATED WITH AN ENABLE STATEMENT AND
DE-ACTIVATED WITH THE DISABLE STATEMENT.

@) 1973, 19]4_Burroughs - DO NOT REPRODUCE

26-4

A QUEUE BECOMES NULL CAND ITS MESSAGES, IF ANY, REMOVED> ONLY
WHEN THERE ARE NO PROCESSES REFERRING TO IT.

MESSAGE DECLARATION

SYNTAX:

<MESSAGE DECLARATION> ::=MESSAGE <MESSAGE LIST>

<MESSAGE LIST> : := <COMPLEX MESSAGE IDENTIFIER> I <MESSAGE
LIST>, <COMPLEX MESSAGE IDENTIFIER>

<COMPLEX MESSAGE IDENTIFIER> ::=<MESSAGE IDENTIFIER>
I <MESSAGE ARRAY IDENTIFIER> C<ARRAY BOUND>l

<MESSAGE IDENTIFIER> : := <IDENTIFIER>

<MESSAGE ARRAY IDENTIFIER> : := <IDENTIFIER>

<ARRAY BOUND> ::=<INTEGER>

EXAMPLES:

MESSAGE A, B, C ;

MESSAGE FROM.A ClOl, X, 4, ALPHA.I C5l;

SEMANTICS:

26-5

1. A <MESSAGE DECLARATION> DEFINES ONE OR MORE IDENTIFIERS AS
MESSAGES OR MESSAGE ARRAYS AND DEFINES THEIR BOUNDS.

2. THE SUBSCRIPT BOUND FOR EACH MESSAGE ARRAY IS GIVEN IN THE
<ARRAY BOUND> FOLLOWING THE MESSAGE ARRAY IDENTIFIER IN THE
<MESSAGE ARRAY LIST>.

3. THE <ARRAY BOUND> GIVES UPPER BOUNDS OF ALL SUBSCRIPTS.

4. ESSENTIALLY, MESSAGES ARE SPECIAL WORK AREAS OUTSIDE THE
BASE LIMIT OF INDIVIDUAL PROCESSES.

CS) 1973, 1974 Burroughs - DO NOT REPRODUCE

26-6

5. MESSAGE ARRAYS MUST BE ONE DIMENSIONAL. THE NUMBER OF BYTES
IN THE MESSAGE IS SET BY THE ALLOCATE STATEMENT AND CAN BE
DETERMINED BY THE SIZE OPTION IN THE QUEUE.INFO FUNCTION.

6. MESSAGE ARRAYS MUST BE DECLARED IN THE OUTERMOST BLOCK.

7. MESSAGES CANNOT BE PASSED AS PARAMETERS TO PROCEDURES.

MESSAGES ARE ORGANIZED AND MAINTAINED BY A SET OF PROCEDURES
WITHIN THE MCP. THESE PROCEDURES MAINTAIN A LIST OF FREE SPACE
WITHIN THE SAVE-MEMORY POOL AND ALLOCATE THIS SPACE TO
PROCESSES THAT REQUEST IT, BY MAKING A DESCRIPTOR FOR AN AREA
AND PASSING THAT. THE INTRINSICS ALSO ACCEPT SPACE FROM
PROCESSES FINISHED WITH AN AREA AND ADD IT TO THE AVAILABLE
LIST. IF AT ANY TIME THE INTRINSICS SEEM TO BE RUNNING OUT OF
SPACE THEY GET A NEW SUBPOOL AND APPROPRIATELY SUBDIVIDE IT.

26-7

MESSAGE LINKAGE MECHANISM

DATA IN MESSAGES WILL BE ACCESSED ONLY THROUGH THE DATA
DICTIONARY. A NEW SOLS-OPERATOR CTRANSFER.MESSAGEJ IS DEFINED TO
PERMIT THIS ACCESS TECHNIQUE. THESE OPERATORS WILL PERFORM THE
FOLLOWING FUNCTIONS.

1. COMPUTE THE DATA DICTIONARY ENTRY NUMBER Cl.E.
INDEX>

2.. FIND OUT THE LOCATION OF THE DATA DICTIONARY
THROUGH THE FIELD RS.DATA.DIC IN THE RUN
STRUCTURE NUCLEUS

3. COMPUTE THE ABSOLUTE ADDRESS OF THE DATA
DICTIONARY ENTRY

4. DETERMINE THE ABSOLUTE LOCATION OF A MESSAGE
AND ITS LENGTH

5. SET THE BASE-LIMIT OVER-RIDE FLIP FLOP CDC2J
IF WRITE OPERATION ELSE CDCll

6. TRANSFER INFORMATION FROM THE MESSAGE TO A
LOCAL DATA AREA OR VICE VERSA. DESCRIPTORS ON
THE EVALUATION STACK WILL DESCRIBE THE DATA TO
BE TRANSFERRED. THE INTERPRETER WILL CHECK THE
VALIDITY OF ANY ADDRESSES OUTSIDE BASE-LIMIT.

THE INTERPRETER WILL NOT CHANGE MESSAGE DESCRIPTORS IN THE DATA
DICTIONARY. ONLY THE MCP WILL HAVE THIS PRIVILEGE. IF A MESSAGE
IS NOT ASSIGNED TO A DATA DICTIONARY ENTRY AND IF THE PROGRAM
TRIES TO READ OR WRITE TO IT AN INTERRUPT WILL BE CAUSED.

THIS MECHANISM IS SAFE. A USER PROGRAM CSDLJ WILL NOT HAVE THE
ABILITY TO WRITE INTO A MEMORY SPACE THAT HAS NOT BEEN
ALLOCATED TO IT BECAUSE ALL ADDRESSING IS INDIRECT THROUGH THE
DATA DICTIONARY.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

26-8

DCSDL FUNCTIONS

SYNTAX:

<DCSDL FUNCTION> ::= <81700 SOL FUNCTION> I <QUEUE FUNCTION>

<QUEUE FUNCTION> ::=<ALLOCATE FUNCTION>

SEMANTICS:

DCSDL FUNCTIONS MAY BE THE <81700 SOL FUNCTION>, OR THE <QUEUE
FUNCTION>.

ALLOCATE FUNCTION

SYNTAX:

<ALLOCATE FUNCTION> : :=ALLOCATE ((COMPLEX MESSAGE IDENTIFIER>,
<SIZE»

<SIZE> : := <ARITHMETIC EXPRESSION>

EXAMPLES:

RESULT ::=ALLOCATE CMESSAGEID, SIZEINBITSl;

RESULT ::=ALLOCATE (MESSAGEARRAYIDC3l, SIZEINBITSJ;

26-9

SEMANTICS:

1. THE <ALLOCATE FUNCTION> CAUSES AN AREA OF SAVE MEMORY,
<SIZE> BITS IN LENGTH, TO BE RESERVED FOR A MESSAGE.

2. WHEN THE <SUB MESSAGE ARRAY> COR <MESSAGE
IDENTIFIER>> FORM IS USED, REPEATED ALLOCATES ARE
FOR EACH ELEMENT OF THE SUB MESSAGE ARRAY COR
ARRAY>, RESERVING <SIZE> BITS FOR EACH ELEMENT.

ARRAY
NEEDED

MESSAGE

3. IF A MESSAGE AREA REFERENCED BY <COMPLEX MESSAGE
IDENTIFIER> HAS ALREADY BEEN ALLOCATED, THE OLD MESSAGE
AREA IS RETURNED TO THE SYSTEM BEFORE A NEW AREA IS
ALLOCATED. THIS FEATURE HAS NOT BEEN IMPLEMENTED.

4. IF <SIZE> IS EQUAL TO ZERO, THE MESSAGE AREA, IF ANY, IS
RETURNED TO THE SYSTEM, MAKING THE MESSAGE NULL. THIS
FEATURE HAS NOT BEEN FULLY IMPLEMENTED.

5. THE VALUE RETURNED IS THE 24 BIT ADDRESS OF THE MESSAGE.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

26-10

DCSDL STATEMENTS

SYNTAX:

<DCSDL STATEMENT> ::= <B1700 SOL STATEMENT> I <QUEUE STATEMENT>

<QUEUE STATEMENT> ::=<DC.WRITE STATEMENT> I <REMOVE STATEMENT>/
<QUEUE.INFO STATEMENT> I <MESSAGE.INFO STATEMENT> I
<DE.ALLOCATE STATEMENT> I <INSERT STATEMENT> I
<FLUSH STATEMENT> I <ENABLE.-OUEUE STATEMENT> I
<DISABLE.QUEUE STATEMENT> I <TRANSFER.MESSAGE STATEMENT> I
<MCS.COMMUNICATE STATEMENT> I

SEMANTICS:

THE <DCSDL STATEMENT> MAY BE A <B1700 SOL STATEMENT>, OR AN
<ALLOCATE STATEMENT>, OR A <QUEUE STATEMENT>.

DC.WRITE STATEMENT

SYNTAX:

<DC.WRITE STATEMENT> ::=DC.WRITE <<RESULT PART>, <MESSAGE
PART> <QUEUE PART PARAMETER>>

<RESULT PART> : := <ADDRESS GENERATOR>

<MESSAGE PART> ::=<MESSAGE IDENTIFIER> I <MESSAGE ARRAY>
IDENTIFIER> <<SUBSCRIPT>>

(QUEUE PART PARAMETER> : := , <QUEUE PART> I <EMPTY>

<QUEUE PART> ::=<QUEUE IDENTIFIER> I <QUEUE ARRAY IDENTIFIER>

26-11

C<SUBSCRIPT>>

<SUBSCRIPT> ::=<EXPRESSION>

EXAMPLES:

DC.WRITE CERRORNO, MESSAGEIDl;
DC.WRITE CERRORNO, MESSAGE.ARRAY.ID C3l, QUEUEIDl;

SEMANTICS:

1. THE <DC.WRITE STATEMENT> CAUSES THE <MESSAGE PART> TO BE
PASSED TO THE NETWORK CONTROLLER CNCl.

2. THE ACTION TAKEN BY THE NC DEPENDS ON THE TYPE AND VARIANT
FIELDS OF THE MESSAGE CAS SPECIFIED IN THE B1700 MCS
MANUALl.

3. THE <QUEUE PART PARAMETER> IS REQUIRED FOR CERTAIN NC
ACTIONS. CSEE THE B1700 MCS MANUAL).

4. THE VALUE RETURNED IS AN ERROR IDENTIFICATION NUMBER. A
ZERO INDICATES NO ERROR; OTHER ERROR VALUES ARE GIVEN IN
THE Bl700 MCS MANUAL.

REMOVE STATEMENT

SYNTAX:

<REMOVE STATEMENT> : := REMOVE C<ADDRESS GENERATOR>, <COMPLEX
MESSAGE IDENTIFIER>, <QUEUE DESIGNATOR> <WAIT PART>l

<WAIT PART> : := ,WAIT I <EMPTY>

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

EXAMPLES:

DECLARE
01 RESULT

,02 MESSAGE.LENGTH BITC16>
,02 QUEUE.SUBSCRIPT BITC12>
,02 MESSAGE.ADDRESS BITC24>

MESSAGE MC3>, MESG.X ;

QUEUE QClO>, A, B ;

REMOVE CRESULT, MC2>, A, WAIT>;

REMOVE CRESULT, MESG.X, QC3> >;

REMOVE CRESULT, MSG.X, Q, WAIT>;

26-12

THE LAST STATEMENT WILL SUSPEND THE PROCESS UNTIL A MESSAGE IS
INSERTED IN ANY ELEMENT OF "Q". IF ANOTHER PROCESS INSERTS A
MESSAGE OF 1000 BYTES IN QC7) THEN THE FIRST PROCESS WILL BE
RESUMED AND MESSAGE.LENGTH WILL CONTAIN 1000 AND QUEUE
SUBSCRIPT WILL CONTAIN 7. MESSAGE.ADDRESS CONTAINS THE ABSOLUTE
ADDRESS OF THE MESSAGE. A MESSAGE THAT BELONGS TO A PROGRAM
WILL NOT BE OVERLAYED BY THE MCP.

SEMANTICS:

1. THE <REMOVE STATEMENT> DELINKS A MESSAGE FROM THE QUEUE
SPECIFIED AND CAUSES IT TO BE REFERENCED BY THE <MESSAGE
PART>.

2. IF THE <WAIT PART> IS NOT EMPTY THEN THE PROGRAM IS
SUSPENDED UNTIL A MESSAGE IS INSERTED IN THE QUEUE OR QUEUE
ARRAY. THE FIRST 16 BITS OF THE RETURNED VALUE CONTAIN THE
SIZE OF THE MESSAGE AND THE NEXT 12 BITS CONTAIN A
SUBSCRIPT INTO THE QUEUE ARRAY CWHERE APPLICABLE>.

3. IF THE <WAIT PART> IS EMPTY THE <REMOVE STATEMENT> RETURNS
A VALUE OF ZERO IF THERE ARE NO MESSAGE IN THE QUEUE.
OTHERWISE, IT RETURNS, IN THE FIRST 16 BITS OF THE
RECEIVING FIELD, THE LENGTH IN BITS OF THE MESSAGE REMOVED.

26-13

4. IF <MESSAGE PART> ALREADY REFERENCES A MESSAGE, THEN THAT
MESSAGE AREA IS RETURNED TO THE SYSTEM BEFORE THE REMOVE.
THIS FEATURE IS CURRtNTLY NOT IMPLEMENTED.

5. IF THE <QUEUE PART> IS' NOT ACTIVE, THE PROGRAM IS
TERMINATED.

PRAGMATICS:

THE <REMOVE STATEMENT> TAKES THE MESSAGE THAT IS AT THE HEAD OF
THE QUEUE, DELINKS IT FROM THAT QUEUE AND INSERTS A DESCRIPTOR
POINTING TO THAT MESSAGE IN THE DATA DICTIONARY ENTRY
REFERENCED BY THE <MESSAGE PART>.

CARE MUST BE TAKEN, WHEN REMOVING A MESSAGE FROM A QUEUE, THAT
THE QUEUE IS ACTIVE. WHEN IN DOUBT, TEST USING QUEUE.INFO.
CREMOVING A MESSAGE FROM AN INACTIVE QUEUE PRODUCES A RUN TIME
ERROR AND TERMINATION BY "INACTIVEQUEUE">.

QUEUE.INFO STATEMENT

SYNTAX:

<QUEUE.INFO STATEMENT> ::=QUEUE.INFO <<QUEUE.INFO RESULT>,
<QUEUE PART> <INFO REQUEST>>

<QUEUE.INFO RESULT> ::=<ADDRESS GENERATOR>

<INFO REQUEST> ::=EMPTY/, NULL/, SIZE/, PROCESSES

<QUEUE PART> ::=<COMPLEX QUEUE IDENTIFIER> I <QUEUE ARRAY
IDENTIFIER>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

EXAMPLES:

SEMANTICS:

QUEUE.INFO CANSWER, QUEUEID, SIZE>

QUEUE.INFO CANSWER, QUEUEARRAY C13>, NULLl i

26-14

IF A <QUEUE ARRAY IDENTIFIER> IS USED CWITHOUT A SUBSCRIPT> THEN
INFORMATION ABOUT ALL ELEMENTS OF THE QUEUE ARRAY IS RETURNED
LEFT-JUSTIFIED IN <QUEUE.INFO RESULT>. OTHERWISE INFORMATION
ABOUT THE SPECIFIED QUEUE IS RETURNED LEFT-JUSTIFIED IN
<QUEUE.INFO RESULT>.

1. IF <INFO REQUEST> EQUALS "SIZE", THE NUMBER OF MESSAGES IN
THE QUEUE IS RETURNED AS BITC12l.

2. IF <INFO REQUEST> EQUALS "PROCESSES", THE NUMBER OF
PROCESSES ATTACHED TO THE QUEUE IS RETURNED AS BITC12>.

3. IF <INFO REQUEST> EQUALS "NULL", A BOOLEAN
RETURNED AS BIT C 1 > . "TRUE" IS RETURNED IF THE
ACTIVATED.

4. IF <INFO REQUEST> IS EQUAL TO "EMPTY" THEN
RETURNED IF THE QUEUE ELEMENT H,AS NO MESSAGES.

PRAGMATICS:

E.G.
DECLARE

AC20>
B REMAPS A

QUEUE Q • I C 20 l ~

BITC12>,
BIT C240 > ;

QUEUE. INFO CB, Q. I , SI ZE l ;

PERFORMS THE SAME FUNCTION AS

I 0;

DO FOREVER;

VALUE IS
QUEUE IS

"TRUE" IS

END;

QUEUE.INFO CA Cl), Q.I CI>, SIZE>.

IF <BUMP I> = 20 THEN UNDO;

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

26-15

26-16

MESSAGE.INFO STATEMENT

SYNTAX:

<MESSAGE.INFO FUNCTION::= MESSAGE.INFO <<MESSAGE.INFO RESULT>,
<MESSAGE PART»

<MESSAGE.INFO RESULT> ::=<ADDRESS GENERATOR>

<MESSAGE PART> ::=<COMPLEX MESSAGE IDENTIFIER> I
<MESSAGE ARRAY IDENTIFIER>

EXAMPLES:

DECLARE
01

,B

MESSAGE.FIELDC5>
,02 NULL.FIELD
,02 SIZE.FIELD
,02 ADDRESS.FIELD
REMAPS MESSAGE.FIELD

MESSAGE MSG ClOl ;

BITC41>
BITCl>
BITC 16>
BIT C24 >

BITC205>

MESSAGE.INFO <MESSAGE.FIELD Cll, MSG C5l l;

MESSAGE.INFO CB, MSG>;

SEMANTICS:

THE <MESSAGE.INFO FUNCTION> RETURNS 3 VALUES. NULL.FIELD = 0
IMPLIES THAT THE MESSAGE IS NOT ALLOCATED. IF NULL.FIELD = 1
THEN THE SIZE CIN BITS> OF THE MESSAGE AND THE ABSOLUTE ADDRESS
OF THE MESSAGE ARE RETURNED IN SIZE.FIELD AND ADDRESS.FJELD
RESPECTIVELY. THE NAMES OF THE FIELDS USED ABOVE ARE ARBITRARY.
THE FORMAT OF THE FIELDS MUST BE THE SAME AS INDICATED ABOVE.

IF <MESSAGE ARRAY IDENTIFIER> JS USED WITHOUT A SUBSCRIPT THEN
THE RULES DEFINED FOR QUEUE.INFO WILL BE FOLLOWED; I.E., AN
ARRAY OF RESULTS WILL BE RETURNED. THIS HAS NOT BEEN FULLY

IMPLEMENTED.

DE.ALLOCATE STATEMENT

SYNTAX:

<DE.ALLOCATE STATEMENT> : := DE.ALLOCATE C<COMPLEX MESSAGE
IDENT IF I ER>)

EXAMPLES:

DE.ALLOCATE CMSG C5l l;

DE.ALLOCATE CMESSAGE.IDl;

SEMANTICS:

26-17

THE BUFFER ASSOCIATED WITH THE <COMPLEX MESSAGE IDENTIFIER> IS
DE-ALLOCATED.

INSERT STATEMENT

SYNTAX:

<INSERT STATEMENT> : := INSERT C<SOURCE PART>, <QUEUE
PART> <PRIORITY>)

<SOURCE PART> ::=<COMPLEX MESSAGE IDENTIFIER>

<QUEUE PART> ::=<COMPLEX QUEUE IDENTIFIER>

<PRIORITY> : := , TOP I <EMPTY>

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

EXAMPLES:

SEMANTICS:

INSERT CMESSAGEID, QUEUEID>;

INSERT CMESSAGEID, QUEUEID, TOP>;

INSERT CMESSAGEARRAYIDCl>, QUEUEARRAYIDCl>J;

26-18

1. THE <INSERT STATEMENT> CAUSES THE MESSAGE REFERENCED BY
<SOURCE PART> TO BE LINKED INTO THE QUEUE REFERENCED BY
<QUEUE PART>.

2. IF <PRIORITY> EQUALS FALSE OR IS <EMPTY>, THE MESSAGE IS
LINKED INTO THE TAIL OF THE QUEUE, OTHERWISE IT JS LINKED
INTO THE HEAD OF THE QUEUE.

PRAGMATICS:

THE <INSERT STATEMENT> LINKS THE MESSAGE IDENTIFIED BY THE FIRST
PARAMETER INTO THE QUEUE REFERENCED BY THE SECOND PARAMETER. IF
<PRIORITY> IS NOT GIVEN, THE MESSAGE JS LINKED INTO THE END OF
THE QUEUE, OTHERWISE IT JS LINKED INTO THE BEGINNING OF THE
QUEUE. LINKING INTO THE END OF THE QUEUE WILL PRESERVE THE TIME
ORDER OF THE MESSAGES JN THAT QUEUE; LINKING IT INTO THE
BEGINNING INSURES THAT THAT MESSAGE WILL BE THE NEXT ONE
REMOVED FROM THAT QUEUE, UNLESS ANOTHER MESSAGE IS LINKED INTO
THE HEAD IN THE MEANTIME.

IF THE QUEUE REFERENCED IS INACTIVE CNULLJ, AN INVALID CONDITION
IS CREATED AND THE PROCESS WILL BE TERMINATED.

FLUSH STATEMENT

SYNTAX:

<FLUSH STATEMENT> ::=FLUSH C<QUEUE PART>>

<QUEUE PART> ::=<COMPLEX QUEUE IDENTIFIER> I <QUEUE ARRAY
IDENTIFIER>

EXAMPLES:

FLUSH CQUEUEID>;

FLUSH C-OUEUEARRAYIDC3>>;

SEMANTICS:

26-19

1. THE <FLUSH STATEMENT> CAUSES ALL THE MESSAGES IN A QUEUE TO
BE REMOVED FROM THE QUEUE.

2. IF THE <QUEUE PART> IS EMPTY, THE STATEMENT IS IGNORED.

3. IF THE QUEUE INDICATED BY <QUEUE PART> IS NOT ACTIVE, THE
PROCESS IS TERMINATED.

PRAGMATICS:

THE <FLUSH STATEMENT> CAUSES ALL MESSAGES IN THE QUEUE TO BE
DISCARDED. THE QUEUE REMAINS ACTIVE. MESSAGES WHICH HAVE BEEN
FLUSHED FROM THE QUEUE NO LONGER EXIST IN THE SYSTEM.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

ENABLE.QUEUE STATEMENT

SYNTAX:

<ENABLE.QUEUE STATEMENT> ::=ENABLE.QUEUE C<QUEUE
DESIGNATOR>, <QUEUE NAME>>

<QUEUE DESIGNATOR> ::=<QUEUE IDENTIFIER> I <QUEUE ARRAY
IDENTIFIER>

<QUEUE NAME> ::=<EXPRESSION>

EXAMPLES:

SEMANTICS:

DECLARE
QUEUE

NAME.Q CHARACTER ClO>;
A, QClO>;

ENABLE . QUEUE CA , "MY . QUEUE" > ;

NAME.Q := "HIS.QUEUE" CAT "l";

ENABLE.QUEUE CQ, NAME.Q>;

26-20

ENABLE.QUEUE INITIALIZES A QUEUE/QUEUE ARRAY. IT IS NOT POSSIBLE
TO INITIALIZE ONE ELEMENT OF A QUEUE ARRAY. <QUEUE NAME>
DEFINES THE PHYSICAL NAME OF THE QUEUE AND CANNOT BE LONGER
THAN 10 CHARACTERS.

QUEUES MUST BE INITIALIZED BEFORE THEY CAN BE USED IN <QUEUE
FUNCTION>S AND <QUEUE STATEMENT>S CEXCEPT THE <QUEUE.INFO
STATEMENT).) .

IF THE QUEUE BEING ENABLED EXISTS CI.E. HAS BEEN ENABLED BY
ANOTHER PROCESS> THEN THE CURRENT PROCESS JS ATTACHED TO IT
ONLY IF THE NUMBER OF ELEMENTS IN THE QUEUE IS LESS THAN OR

26-21

EQUAL TO THE ELEMENTS IN THE EX I.ST I NG QUEUE . OTHERWISE THE
PROGRAM JS TERMINATED.

DISABLE.QUEUE STATEMENT

SYNTAX:

<DISABLE.QUEUE STATEMENT> ::=DISABLE.QUEUE
<<QUEUE DESIGNATOR>>

<QUEUE DESIGNATOR> ::=<QUEUE IDENTIFIER I
<QUEUE ARRAY IDENTIFIER>

EXAMPLE

DISABLE.QUEUE CA>;

DISABLE.QUEUE CQ>;

DISABLE.QUEUE CQC3>>; IS ERRONEOUS.

SEMANTICS:

THE <DISABLE.QUEUE STATEMENT> DETACHES A PROCESS FROM A QUEUE.
IF THE NUMBER OF PROCESSES ASSOCIATED WITH A QUEUE IS ZERO THEN
THE QUEUE IS FLUSHED <IF REQUIRED> ANO DE-ACTIVATED.

IT IS NOT POSSIBLE TO DISABLE AN ELEMENT OF A QUEUE ARRAY.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

TRANSFER.MESSAGE STATEMENT

SYNTAX:

<TRANSFER.MESSAGE STATEMENT> ::=TRANSFER.MESSAGE
<SOURCE MESSAGE DESIGNATOR> TO <DESTINATION
MESSAGE DESIGNATOR>

<SOURCE MESSAGE DESIGNATOR>::= <EXPRESSION> I
<MESSAGE ADDRESS GENERATOR>

26-22

<MESSAGE ADDRESS GENERATOR> ::=<COMPLEX MESSAGE IDENTIFIER>!
<COMPLEX MESSAGE IDENTIFIER>, <ADDRESS GENERATOR>

<DESTINATION MESSAGE DESIGNATOR> ::=<ADDRESS GENERATOR> I
<MESSAGE ADDRESS GENERATOR>

EXAMPLES:

SEMANTICS:

DECLARE
01 WORK.AREA REMAPS BASE CHAR ClOOOl

,02 INBIT ClOOl
,02 MSG.TRAN.NUM CHARC3l

MESSAGE M, FROMC3>;

TRANSFER.MESSAGE "002" TO M,MSG.TRAN.NUM;

TRANSFER.MESSAGE FROMCl> TOM;

TRANSFER.MESSAGE TRANSFERS DATA FROM <SOURCE MESSAGE DESIGNATOR>
TO <DESTINATION MESSAGE DESIGNATOR>. SOURCE AND DESTINATION
MESSAGE DESIGNATORS CAN BE DESCRIPTORS TO DATA INSIDE THE BASE
- LIMIT OF PROCESS OR THEY CAN REFERENCE SPECIFIC FIELDS IN

26-23

MESSAGES. A SPECIFIC FIELD WITHIN A MESSAGE IS REFERENCED BY
SPECIFYING THE MESSAGE CWITH A <COMPLEX MESSAGE IDENTIFIER>>
AND A TEMPLATE CREMAPS BASE DATA ITEM> WHICH SPECIFIES THE PART
OF THE MESSAGE TO BE ACCESSED.

IF A MESSAGE IS TRANSFERRED TO ANOTHEFir MESSAGE THEN PHYSICAL
MOVEMENT OF MESSAGE DOES TAKE PLACE. THE <ADDRESS GENERATOR>
FIELDS DETERMINE THE TYPE OF MESSAGE TRANSFER, CI.E. LEFT
JUSTIFI!£D BLANK FILLED OR RIGHT JUSTIFIED ZERO FILLED>.

MCS COMMUNICATE STATEMENT

SYNTAX:

MCS COMMUNICATE ::= MCS.COMMUNICATE <<RESULT PART>,
<MESSAGE PART>, <QUEUE PART>>

<RESULT PART> ::=<ADDRESS GENERATOR>

<MESSAGE PART> ::=<EXPRESSION>

<QUEUE PART> ::=<EMPTY>/, <QUEUE FILE DESIGNATOR>

<QUEUE FILE DESIGNATOR> ::=<FILE DESIGNATOR I
<FILE DESIGNATOR> <KEY PART>

<FILE DESIGNATOR> ::=<FILE IDENTIFIER> I
<SWITCH FILE IDENTIFIER> <<EXPRESSION>>

<KEY PART> ::= C<ADDRESS GENERATOR>J f

SEMANTICS:

SEE THE B1700 MCS MANUAL FOR DETAILS.

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

26-21+

PRAGMATICS:

THE PURPOSE OF THE MCS.COMMUNICATE STATEMENT IS TO PROVI.DE
COMMUNICATION BETWEEN THE MCS (MESSAGE CON:t"ROL SYSTEM> ANO THE
NETWORK CONTROLLER.

27-1

APPENDIX XI: SOL CODING SUGGESTIONS

EACH PROGRAMMER HAS HIS OWN WAY OF DOING THINGS. WITHOUT
STIFLING CREATIVITY, HOWEVER, IT IS DESIRABLE TO MAINTAIN SOME
HOMOGENEITY IN CODING TECHNIQUES. THE ADVANTAGES ARE OBVIOUS:
MORE UNDERSTANDABLE PROGRAMS AND EASIER MAINTENANCE <ESPECIALLY
BY THOSE OTHER THAN THE PROGRAM-S AUTHOR l .

ACCORDINGLY, THE FOLLOWING CODING GUIDELINES ARE SUGGESTED:

1. USE THE "TOP DOWN" PROGRAMMING METHOD. THINK IN TERMS OF
FUNCTIONS AND AVOID A LOT OF INLINE. CODE. THIS METHOD OF
CODING IS MUCH EASIER TO FOLLOW BECAUSE IT KEEPS PROCEDURES
SHORTER. THE ARGUMENT FOR SHORT PROCEDURES PARALLELS THE
CASE AGAINST THE GO-TO: THE HUMAN SPAN OF ATTENTION IS
SMALL--IF IT MUST RANGE OVER MANY PAGES OF CODING, THE
READER MAY BECOME CONFUSED. YOU MIGHT GO SO FAR AS TO
CRITICIZE ANY PROCEDURE THAT CONTAINS GREATER THEN N C"N"
MIGHT BE AS LOW AS 3l LEVELS OF DO-ENDS OR IS LONGER THAN
1 PAGE. AFTER ALL, AREN-T WE PUSHING PROCEDURE-ORIENTED
LANGUAGES?

2. MINIMIZE THE USE OF GLOBALS AND KEEP THE SCOPE OF A
VARIABLE SMALL. OTHERWISE, YOU CAN RUN INTO SIDE EFFECTS
THAT ARE DIFFICULT TO DEBUG. GLOBALS ARE SIMILAR TO GO TO~S
IN THAT THEY DEMAND A BROAD ATTENTION SPAN.

3. USE DEFINES INSTEAD OF INLINE LITERALS WHERE POSSIBLE. THIS
MAKES CHANGES EASIER BECAUSE THEY ARE CONFINED TO THE
DEFINE. LITERALS ARE NOT CROSS-REFERENCED.

4. DON-T DEFINE YOUR OWN NAMES AS RESERVED WORDS.

DEFINE F AS #FOREVER#;
DO F;
END;

MAY BE CRYPTIC TO ANOTHER PROGRAMMER.

5. BEWARE OF OVERUSE OF THE DEFINE:

A. NESTING DEFINES TOO DEEPLY CAN CAUSE CONFUSION.

8. A DEFINE THAT CONTAINS A GREAT DEAL OF CODING MIGHT

© 1973, 1974 Burroughs - DO NOT REPRODUCE

27-2

BETTER BE A PROCEDURE.

C. CREATING YOUR OWN PRIVATE LANGUAGE BY USING DEFINES
CAN DESTROY EASE OF UNDERSTANDING.

6. DON-T USE CONSTRUCTS THAT OBSCURE THE PROGRAM-S
MEANING--ESPECIALLY BEWARE OF UNSAFE CONSTRUCTS SUCH AS
DESCRIPTOR, SAVE ANO RESTORE. AVOID TRI"CKY CODING
TECHNIQUES--CODE IN A STRAIGHT FORWARD MANNER. COMPLICATED
CODE MEANS COMPLICATED DEBUGGING AND MAINTENANCE.

7. SEPARATE PROCEDURES SO THEY ARE EASY TO LOOK AT--USE A FEW
BLANK LINES OR A LINE OF ASTERISKS.

8. CODE CONSISTENTLY AND INDENT CONSISTENTLY. FOR EXAMPLE:

IF CONDITION THEN
A+-B;

ELSE
B+-A;

IF CONDITION THEN
DO IT:

A+-B;
C._D;

ENG IT;
ELSE

DO WORK:
E._F;
G...-H;

END WORK;

IFS AND ELSES SHOULD BE IN THE SAME COLUMN. SO SHOULD DOS
AND ENDS.

27-3

START TYPE DECLARATIONS IN THE SAME COLUMN THROUGHOUT THE
PROGRAM.

DECLARE 01 A,
02 BCD BIT C 4 > ,
02 NEXT.GUY BITC16),
02 E BITCl>,
02 F,
03 GHIJK BITClOl;

IS HARDER TO READ THEN

DECLARE
01 A,

02 BCD
02 NEXT.GUY
02 E
02 F,

03 GHIJK

BITC4),
BITC16>,
BITCl>,

BITClO>;

ANOTHER SUGGESTION IS TO INDENT PROCEDURES AS THE LEXIC
LEVEL INCREASES.

9. A MOTHERHOOD AND APPLE PIE HINT: USE DESCRIPTIVE NAMES.
OON-T USE CRYPT I c ABBREVIATIONS OR II ALMOST CORRECT II

SPELLINGS: RECRD FOR RECORD, ETC.

10. NAME ALL DO GROUPS.

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

ACCEPT STATEMENT
ACCESS FILE HEADER STATEMENT
ACCESS FILt INFORMATION
ACCESS OVERLAY
ACCESS-FPS
ADDRESS AND VALUE PARAMETERS
ADDRESS GENERATING FUNCTIONS
ADDRESS GENERATORS
ADDRESS MODIFIER
ADDRESS VARIABLES
ALL.AREAS.AT.OPEN

ALLOCATE FUNCTION
AMPERSAND OPTION

INDEX

APPENDIX I: SYNTAX OF THE SOL LANGUAGE
APPENDIX II: RESERVED AND SPECIAL WORDS
APPENDIX III: SOL CONTROL CARD OPTIONS
APPENDIX IV: PROGRAMMING OPTIMIZATION
APPENDIX IX: SOL MONITORING FACILITY
APPENDIX V: SYSTEM CONTROL CARDS
APPENDIX VI: CONDITIONAL COMPILATION
APPENDIX VII: SOL PROGRAMMING TECHNIQUES
APPENDIX VIII: THE SOL RECOMPILATION FACILITY
APPENDIX X: BURROUGHS B1700 DATA COMMUNICATIONS SDL
APPENDIX XI: SOL CODING SUGGESTIONS
AREA.BY.CYLINDER

ARITHMETIC OPERATORS
ARRAY
ARRAY PAGE TYPE STATEMENT
ASSIGNMENT STATEMENT
ASSIGNMENT STATEMENTS AND EXPRESSIONS
ASSIGNOR
BASE REGISTER
BASIC COMPONENTS OF THE SOL LANGUAGE
BASIC STRUCTURE OF THE SOL PROGRAM
BINARY CONVERSION
BIT STRING
BUFFERS

BUMP
BUMP
CALLI NG AB I LI TY
CASE EXPRESSION
CASE STATEMENT
CHANGE STATEMENT (FILE ATTRIBUTE STATEMENT>
CHARACTER STRING
CHECK OPTION

CLEAR STATEMENT
CLOSE STATEMENT

one

© 1973, 1974 Burroughs - DO NOT REPRODUCE

PAGE

15-12
16-41
16-19
16-15
16-13
14-1
12-4
12-9
12-8
12-1
6-18

16-32
26-8
19-3
19-6
17-1
18-1
19-1
20-1
25-1
21-1
22-1
23-1
24-1
26-1
27-1
6-18

16-32
10-5
6-1

16-46
10-8
10-1
11-4
13-12
2-1
3-1

13-9
2-3
6-14

16-35
11-2
16-23
3-5

11-2
16-7
16-25
2-4

19-3
19-6
16-23
15-4

INDEX (CONT)

CODE OPTION
CODE OPTION
COMMUNICATE
COMPILE CARD INFO
CONCATENATION
CONDITIONAL COMPILATION
CONDITIONAL EXPRESSION
CONSOLE SWITCHES
CONTROL CARD OPTIONS FOR 81700
CONTROL CARD OPTIONS FOR 85500
CONTROL OPTION
CONTROL OPTION
CONTROL STACK BITS
CONTROL STACK TOP
CONVERT
COROUTINE STATEMENT
CREATE MASTER OPTION
CSSIZE OPTION

DATA ADDRESS
DATA TYPES
DATE FUNCTION
DC.WRITE STATEMENT
DCSDL DECLARATIONS
DCSDL EXTENSIONS
DCSDL FUNCTIONS
DCSDL STATEMENTS
DE.ALLOCATE STATEMENT
DEBLANK
DEBUG OPTION
DEBUG OPTION
DECIMAL CONVERSION
DECLARATION STATEMENT

DECLARE STATEMENT
DECREMENT.

DEFINE INVOCATION
DEFINE STATEMENT
DELIMITED TOKEN
DESCRIPTORS
DETAIL OPTION
DETAIL OPTION
DEVICE
DEVICE
DISABLE.INTERRUPTS
DISABLE.QUEUE STATEMENT
DISK ALLOCATION
DISK ALLOCATION
DISK DRIVE ASSIGNMENT
DISK FILE

DISPATCH
DISPLAY BASE
DISPLAY STATEMENT

two

PAGE

19-3
19-6
16-22
16-21
10-10
22-1
11-1
13-19
19-'+
19-1
19-3
19-6
13-18
13-12
13-6
16-'+7
24-1
19-3
19-6
13-12
5-1

13-11
26-10
26-2
26-1
26-8
20-·1 o
26-17
16-20
19-3
19-6
13-9
3-1
5-1
6-1

11-3
16-23
7-3
7-1

13-17
12-6
19-3
19-6
6-12

16-28
16-18
26-21
6-18
6-18
6-18
6-16.

rS-35
13-4
13-19
15-13

INDEX (CONT)

DO GROUPS
DOUBLE OPTION
DOUBLE OPTION
DUMP
DUMP FOR ANALYSIS
DYNAMIC DECLARATIONS
DYNAMIC FILE CHANGE
DYNAMIC MEMORY BASE
DYNAMICSIZE OPTION

ENABLE.INTERRUPTS
ENABLE.QUEUE STATEMENT
END.OF.PAGE.ACTION
END.OF.PAGE.ACTION
ERROR COMMUNICATE
ESSIZE OPTION

EU.ASSIGNMENT
EU.ASSIGNMENT
EVALUATION STACK TOP
EXECUTABLE STATEMENT
EXECUTABLE STATEMENTS
EXECUTE
EXECUTE-FUNCTION STATEMENT
EXECUTE-PROCEDURE STATEMENT
EXPAND.DEFINES
EXPRESSIONS
FETCH
FETCH.COMMUNICATE.MSG.PTR
FIG 1. PROCEDURE NESTING
FIG 2. SCOPE AND CALLING ABILITY
FIG 3. OPERATOR PRECEDENCE TABLE
FILE ATTRIBUTE STATEMENT CCHANGE STATEMENT>
FILE DECLARAT10NS
FLUSH STATEMENT
FORMAL CHECK
FORMAL CHECK
FORMALCHECK OPTION
FORWARD DECLARATION
FREEZE PROGRAM
GENERAL ORIENTATION: THE METALANGUAGE
GROUP TERMINATION STATEMENT
HALT
HARDWARE MONITOR
HARDWARE MONITOR
HASH CODE
HEX OPTION
HEX.SEQUENCE.NUMBER
I/O CONTROL STATEMENTS
IDENTIFIER
IDENTIFIER
IF STATEMENT
INDEXING
INITIALIZE.VECTOR
INSERT STATEMENT

three

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

PAGE

16-2
19-3
19-6
16-9
16-21
6-8

16-25
13-16
19-4
19-6
16-18
26-20

6-19
16-32
16-15
19-3
1.9-6
6-18

16-34
13-18
3-1

16-1
13-21
16-9
16-8
19-7
10-1
16-11
12-5
3-4
3-5

10-4
16-25
6-10

26-19
9-3
9-4

19-7
8-1

16-20
1-1

16-4
16-12
16-19
20-1
13-16
19-3
2-4

15-1
2-1
7-2

16-5
12-1
16-17
26-17

INDEX (CONT)

INTERPRETER OPTION
INTERPRETER OPTION
INTERROGATE INTERRUPT STATUS
INTRINSIC OPTION
INTRINSICS
LABEL

LENGTH
LEXICOGRAPHIC LEVEL
LIMIT REGISTER
LIST OPTION

LISTALL OPTION
LISTALL OPTION
LOCATION
LOCK

LOGIOAL OPERATORS
MAKE.OESCRIPTOR
MAP OPTION
MCS COMMUNICATE STATEMENT
MEMORY SIZE
MERGE OPTION
MESSAGE DECLARATION
MESSAGE LINKAGE MECHANISM
MESSAGE.INFO STATEMENT
METASYMBOLS OF BNF
MODE
MODE
MODIFY INSTRUCTION
MONITOR
MONITOR FI LE
MULTI PACK

NAME OF DAY
NAME STACK TOP
NESTING
NESTING LEVEL
NEW OPTION
NEW OPTION
NEXT TOKEN
NEXT-PREVIOUS.ITEM
NO OPTION
NO OPTION
NO SEQ
NO SEQ OPTION
NO.DUPLICATES OPTION
NO.SOURCE.OPTION
NODUPL I CA.TES
NON-STRUCTURED DECLARATIONS
NSSIZE OPTION
NSSIZE OPTION
NULL STATEMENT
NUMBER.OF.STATIONS
OPEN OPTION

four

PAGE
19-lf
19-7
13-9
19-7
9-6
6-11

16-27
13-8
3-2

13-12
19-2
19-7
19-2
19-7
13-5
6-15

16-32
10-7
12-7
19-3
26-23
13-8
19-7
26-5
26-7
26-16

1-2
6-11.f

16-30
16-23
19-7
25-3
6-18

16-32
13-11
13-18
3-2
9-7

19-3
19-7
13-17
12-8
19-lf
19-7
19-3
19-7
19-7
19-7
19-3
6-2

19-3
19-7
16-21.f
6-20
6-17

OPEN STATEMENT
OPERATOR PRECEDENCE TABLE
OVERLAY
PACK. ID
PACK. ID
PAGE OPTION
PAGE OPTION
PAGED ARRAY DECLARATIONS
PARITY SPECIFICATION
PARITY .ADDRESS
POLISH NOT AT ION
PPROFILE
PPSSIZE OPTION

PREVIOUS.ITEM

INDEX (CONT)

PRIMARY ELEMENTS OF THE EXPRESSION
PROCEDURE BODY
PROCEDURE ENDING
PROCEDURE HEADING
PROCEDURE NESTING
PROCEDURE STATEMENT
PROCEDURE STATEMENT
PROCEDURE, TYPED
PROFILE
PROGRAMMING OPTIMIZATION
PROGRAMMING TECHNIQUES
QUEUE DECLARATIONS
QUEUE.FAMILY.SIZE
QUEUE.INFO STATEMENT
READ CASSETTE
READ STATEMENT
RECEIVE STATEMENT
RECOMPILATION FACILITY
RECOMPILE OPTION
RECORD SIZE
RECORD SIZE
REEL NUMBER
REEL NUMBER
REINSTATE
RELATIONAL OPERATORS
REMAPPING
REMAPPING
REMOTE KEY
REMOVE STATEMENT
REPLACE OPERATORS
REPLACE, DESTRUCTIVE
REPLACE, NON-DESTRUCTIVE
RESERVED WORDS

RESTORE
RETURN STATEMENT
REVERSE STORE
RUN-TIME MONITOR
SAVE
SAVE

five

@) 1973, 1974 Burroughs - DO NOT REPRODUCE

PAGE

15-2
10-4
16-15
6-17

16-27
19-3
19-7
6-9

16-32
13-16
10-2
20-1
19-4
19-7
12-8
11-1
9-6
9-8
9-1
3-4
3-1
9-1

13-1
20-1
20-1
23-1
26-2
6-20

26-13
16-14
15-6
16-45
24-1
24-2

6-15
16-35
6-16

16-35
16-12
10-6
6-3
6-6
6-20

26-11
10-8
10-8
10-8
18-1
18-2
16-11
9-6

16-13
25-2

6-15
16-10

INDEX (CONT)

SAVE STATE
SCOPE
SCOPE OF PROCEDURES
SEARCH SERIAL LIST
SEARCH STATEMENT
SEARCH.LINKED.LIST
SEARCH.SOL.STACKS
SEEK STATEMENT
SEGMENT STATEMENT
SEND STATEMENT
SEQ OPTION
SEQ OPTION
SEQUENCE.NUMBER
SINGLE SPACE OPTION

SIZE OPTION
SIZE OPTION
SKIP STATEMENT
SORT
SORT.SEARCH
SORT.STEP.DOWN
SORT.SWAP
SORT.UNBLOCK
SORTER.STATION
SPACE STATEMENT
SPO INPUT PRESENT

·STOP STATEMENT
STRUCTURED DECLARATIONS
SUBBIT AND SUBSTR

SUPPRESS OPTION
SWAP
SWITCH FILE DECLARATIONS
SYNTAX OF THE SOL LANGUAGE
SYSTEM CONTROL CARDS FOR 81700
SYSTEM CONTROL CARDS FOR 85500
THAW PROGRAM
THREAD.VECTOR
TIME FUNCTION
TODAY~S.DATE
TRACE
TRANSFER.MESSAGE STATEMENT
UNARY OPERATOR
UPDATE OPTION
USE INPUT BLOCKING
USE INPUT BLOCKING
USE STATEMENT
VALUE DESCRIPTOR
VALUE GENERATING FUNCTIONS
VALUE VARIABLES
VARIABLE DATA FIELDS
VARIABLE RECORD

VOID OPTION

six

PAGE

16-35
16-20
3-5
3-2

13-19
16-39
13-13
13-20
15-11
4-1

16-43
19-3
19-8
2-4

19-2
19-8
19-3
19-8
15-15
16-16
13-15
13-14
16-17
13-14
16-30
15-14
13-20
16-37
6-5

12-4
13-4
19-9
13-3
6-22

17-1
21-3
21-1
16-20
16-18
13-10
2-4

16-10
26-22
10-5
19-3
6-19

16-32
8-4

13-8
13-2
13-1
9-4
6-14

16-32
19-4

VOID OPTION
VSSIZE OPTION
VSSIZE OPTION
WAIT STATEMENT
WORK FILE
WRITE STATEMENT
XMAP OPTION

XREF
XREF.ONLY
ZIP STATEMENT

INDEX (CONT)

seven

@ 1973, 1974 Burroughs - DO NOT REPRODUCE

PAGE

19-8
19-3
19-8
16-49
6-21

15-8
19-3
19-8
19-8
19-8
16-38

cu
c

-0
.l!!
0

-0
O'>
c
0
0
::>
u

cu
c

-0
cu
0

-0
O'>
c
0
0
::>
u

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: B 1700 SYSTEMS - SYSTEM
SOFTWARE DEVELOPMENT
LANGUAGE (SOL)
Reference Manual <BNF Version)

CHECK TYPE OF SUGGESTION:

0ADDITION 0DELETION 0REVISION

FORM:--1~0B~1~34~6L--_~
DATE: 12-74

0ERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME

--------------TITLE
COMPANY----------­
ADDRESS

DATE _____ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

--

attn: Systems Documentation

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
Burroughs Place
Detroit, Michigan 48232

Technical Information Organization, TIC-Central

--
FOLD UP FIRST FOLD UP

	000
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	05-01
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	14-01
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	16-42
	16-43
	16-44
	16-45
	16-46
	16-47
	16-48
	16-49
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	18-01
	18-02
	18-03
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	20-01
	20-02
	21-01
	21-02
	21-03
	22-01
	22-02
	22-03
	23-01
	23-02
	23-03
	23-04
	24-01
	24-02
	24-03
	24-04
	24-05
	25-01
	25-02
	25-03
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	26-09
	26-10
	26-11
	26-12
	26-13
	26-14
	26-15
	26-16
	26-17
	26-18
	26-19
	26-20
	26-21
	26-22
	26-23
	26-24
	27-01
	27-02
	27-03
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	replyA
	replyB
	xBack

