Burroughs @

B 1700 Systems
User Programming
Language (UPL)

REFERENCE MANUAL

PRICED ITEM

"D —— *..__,__../

Burroughs @ |

— _
B 1700 Systems

User Programming
Language (UPL)

REFERENCE MANUAL

PRICED ITEM

COPYRIGHT © 1973 BURROUGHS CORPORATION
‘ AA494075

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Any comments or suggestions regarding this publication should be forwarded to Publications Department, Technical
Information Organization, TIO-West, Burroughs Corporation, 9451 Telstar Avenue, El Monte, California 91731.

Section

NI

Table of Contents

Title

INTRODUCTION &« o o o o o o

LANGUAGE CHARACTERISTICS .
General o« o o o o o o

UPL
UPL

Properties + o« o o
Program Format o o
Procedure format .

Metalanaunage « « o o o

Key Words « o o o o
Lower Case Worus .
Braces e o o o o @
Rrackets e o o o o
Consecutive Periods
Period « o« o o o
Type (Length) « «

Basic Symbols « o o « o
keserved Words o s e e
Language Statement Type
FUNCTioNS « o o o o o o

BASIC CONCEPTS & o o & o
Genef‘al . . . 3 e o . .
Data Concepts o o« o o o

Fixed Data Type «

Bit Data Type « o« o -

Character Data Type
Data Tyoe Convarsio
Arrays e o ¢ e o @
Data Storage Alloca
Duplicate Data=Name

Assignment o« « « o o o
Replacement « « o o o
Single=~Pass Compiler .
Procedures e » e & o o

Procedure Tnvocatio

n .

Parameters to Procedurs

Actual Parameters .
Formal Parameters .
Pass=by=Value « + .
Pass=by=Name “« o e

Procedure Types + o« o

Reqular Procedurs .
Function Procedurse

Lexicographic Level « .
SCODE o o o o e e o o .

EXPRESSIONS « ¢ o o o o o
General « . o o o o« o o @

Page

xididi

s b s b b pb b e A b a peb b e b 2
]

[I DU R AR NN NN RN B |]]
U U 0N NN N NN DY e e s s

| IR RN DN R DU BN R B |
O D2 NN NN UI U UL =8 W Wil gD — = s e

NN N NN TN NN NN NN PN N NN N NN
[}

w w
[I |
—

iii

Section

3 (cont)

iv

Table of Contents (cont)

Title

Format Of An EXpression « o o o o o o
Data=Names ® & o & e e & s e © & o @

Simplp Data"NE‘.me . ¢ e o . . ¢«
Af‘r‘ay Data=Name o o o o o o o o o
Substrings of Data=Names « « o o

Variable « o & s+ e & s+ e e « s e

Literal o« o o e o e o o o o o o @
Data=Name Values e o e & o s
Value Function Procedure Call . .
Evaluation of 3n Expression « « .
Substrings * s » s s o s s s e @

Operator Precedence in Expressions .
Expression Types o e o o o o o o o

Arithmetic EXpressions « « o o o
Fixed Arithmetic Expressions o .
Non=Fixed Arithmetic Expressions

Relational or Conditional Expressions

Logical EXpressions o« « o« o o o o
Function EXpressions « o o o o o

STATEMENTS e o o o s o 8 e s s s e o e o
General « ¢ o o o o o o o o o 2 o o o
Declaration Statements s o o 4 o o o
Control Stataments o o o ¢ o o o o o

Procedure Call Statement o s e e
Do Statement e 6 e 8 s e e+ e e
Do Forever Statement e o o o e
If Statement o o « o o o s o o @
Case Statement e e o s s e s o @

Assignment Statement e o o o o o o

DECLARATION STATEMENTS & ¢ o o o o o o o
Genaral o o« o o o o » s o o o o o o o
Declare Statement « o o o o o o o o o

Syntax e e & & o e o e s s e o
Description « « o « o o ¢ o o o &
Examples L] L) L d L] L] . L] L] L] L] . L]

Define Statement L . . . L] . L] . L] L]

Syntax e ®» e e o e ® o o ° e *
Description o« « o o o o o o o o o«
Examples ® o 8 & e ® e & o e o o

Formal Statement e« o o o o e o s o o

Syntax . L] L] . L] o L] L] L] L] . L] L]
Description o« o o« o o o o o o o o
Examples e o o & s o s e e o e @

Forward Procedure Statement « ¢ « o o

Syntax e o 8 e & e e s e & o o
Description L] . L] . . L] L]
Examples « o o o o ¢ o o o o o o

.

Page

] T 8§ 8 1 1 8
XN AUV &R 0wWN 0N e

W W W W W W W W W W W W WwW W W WwWw
]

]
|2 e e

PP PEPEPEPREPEPEREPE
]]
W W N T

| I N R B R |
NS N - e

[W; IO IV IS, G, WU, UL IV, IV,) BUG, BRI, BEC IR BRGNS RV |
]

e s b b e e e = O O O U W

DU oy O

Section

5 (cont)

Table of Contents (cont)

Title

Procedure Statement « « o « o o

Syntax e o & e o & e o s e

Description « o o o o o o o
Examoles e o e o o ¢ o o o
Segment Statement o« o o ¢ o o o
Syntax e o o s o e o s o »
Description o« « o« o o o o @
Examples o o o o o o o s o
Segment.Page Statement o s e o
Syntax e o & s & o s e o o
Description « o o o o o o o
Examples o o o o o o o o o
Use Declaration Statement « « o
Syntax e s e e e s e e e &
Description « « o« o o o o

ExampleS . e o o . * o o ..

EXECUTABLE STATEMENTS ¢ & « o o o o
General o o o o ¢ o o o e« o o .
Array Page Type Statement « « &

Syntax e e o o s e 6 o o @

Description o o« o« o o o o o

Assignment Statement e o e s
Syntax e & o o e e e e o @
Description « o« o« o o o o
Examples e e s e e o o e

Bump Statement e o o e o o e o
Syntax e o o e o o s e s e
DescriptionN o« s o o o o o =
EXalees . . e o e« o o o .

Case Statement e o o o o o »
Syntax e o o e e o s o o @
DescCription « « o o o o o
Examples « o« « o o o

Change Statement e s s o e o »
Syntax e o o e o o »
Description « « & .
Dynamic Attributes e o o e
MULTI.FILE'ID . * L] L] L] L] L]

Examples « o o o

FILE.ID L] . . L] .]

Example o« o o o o

LABEL.TYPE . . L] L] . L] . L]
DEVICE L] . L] L] L] L] * . . .
PARITY L] . L] L] . . L] L] . L]
TRANSLATION o o o o o o o o
BUFFERS o o o o o o o o ¢ o
LOCK L] L] L] . L L] . L] L] L] L]
OPTIONAL o o o o o o o o o
VARIABLE L] . L d L] L] . . L] .

e e o ® o o

.

Page

5=17
S=17
5=19
5=21
5=23
5=23
5=23
5=23
5=25
5=25
5=25
5=25
5=27
S=27
5=27
5=27

]
e e e e e b e b T 0w W) N) D e

U B W W W = s b

[o e\ NNe e e e Mo NEe Nls Nle NS¢ N N Mo Nl e N© e Nle e SN0
]]
4]

[]
—
W U

6-15
6=15
6=16
6=16
6=16
6=16
6=18
6=18
6=19
6=19
6=19
6=19

Section

v i

6 (cont)

Table of Contents (cont)

Tit

SAVE &« o o 4 o
RECORDSIZE « o
RECORDS.PER.BLOCK
REEL o & o o o
NUMBER.OF.AREAS
BLOCKS.PER.AREA .
PACKeID & o « o
SINGLE.PACK o« « o
ALL.AREAS.ATLOPEN
AREABY.CYLINDER
EULSPECIAL « o &
EU+INCREMENTED
USE.INPUT.BLOCKIN
SRSTATION » o« &
END.OF.PAGE ACTID
Examples « + o &
Clear Statement . o« .
Syntax o o o o o
Description « «+
Conditional Inclusion
Syntax ¢ e & e
Description . « .
Examples ¢ o e e
Conditional Page Stat
Syntax e s e 8
Description « .+ .
Conditional Symbol St
Syntax e o o o &
Description « « .
Examples « o« o« &
Decrement Statement .
Syntax e o e e
Description « « .
Examples « o o &

Do Statement e s+ e o
Syntax e o e e
Description « « .
Examples o« « o« o
Statement o« o
Syntax « o o o
Description « .« .
If Statement o o o o
Syntax « & s & e
Description « « .
Examples o« o« o &
Library Statement . .
Syntax « o o o @
Description « « o
Null Statement o o s
Syntax « o e o o
Description « .+ .

Finj

le

G

N

L
*

Statement

L) .
. .
. .
L] L]
L] L]
L] L)
L] .
L] .
. .
. .
. .
L] *
] .
3 3
. .
. .
. .
L] L]
. .

L[] L] . L]
* . L] L]
L] . . L]
ement .
¢« o o o
L] L] L] L]
atement
L] . * L]
. L] L] .
. L] * .
L] L] * L]
L] L] * .
L] L] L) .
L] . . L]
« o o »
L] * L] .
e s o @
. o L] L]
. * . L]
L] . . L]
L] L L] L]
L] . L] L]
L] L] . L]
L] L] L] L]
L] . . L]
e o o o
L] . L3 .
L] L] L] L]
L] * * L]
e o o o
L[] L]] L]

e o o o

Page

5=19
6=19
6=20
6=20
6=20
6=29H
6=29
6=21
=21
6=21
6=21
6=21
6=272
6=22
6=22
6=27
6=23
6=23
6=23
6=24
6=24
6=24
6=24
6=76
6=26
6=26
6=27
6=27
6=27
6=27
6=28
6=28
6=78
6=28
6=29
6=29
6=29
6=30
6=37
6=32
6=32
6-33
6=33
6=33
6=34
6=36
6=26
6=36
6=37
6=237
6=37

Table of Contents (cont)
Section Title

6 (cont) Examples o o o o o o o o o o
Procedure Call Statement « o« « &
Syntax . e o o o s 6 o o o o
Description « o« o« o o o o o o
Examples « o ¢ o o o o o o o
Return Statement « ¢ o ¢ ¢ o o
Syntax e o o e o o s o o s
Description « o« o o o o o o
Examples ® o o & & & o e e
Reverse.Store.Statement « « ¢ o
Syntax e o o e o o e o & o o
DesScription « o o o o ¢ o o o
Examples e o s e e & e o e o
Stop Statement e e o e ¢ o o o o
Syntax e o o o o o & s e & o
Description « « o« o o o o o
Undo Statement o« o o o o ¢ o o
Syntax . L) . ° 3 .
Description « o o« o o o o o o
Examples o« o« o o .

Zip Statement « o« o+ o .
Syntax e o o e o o o o

Description « « o .

Examples « o« o .

7 INPUT/OUTPUT STATEMENTS « o o o o o o
General « ¢ o o o o o o o s o o o
Accept Statement e o o o o o o o

Syntax e & & e o & e e s o o
Description « o o o o o o o @
Examples " e e e e e o e o o
AccesssFile.Information Statement
Syntax e o o e e e o e e s o
DescCription o« « o o o s o o o
Close Statement . e« o e e o o o @
Syntax e o o o o
Description « « « &
Examples « o o o
Display Statement . .
Syntax e o o e ¢ o o o o o »
Description « « « o o« o o o o
Examples o« o o « o o o o o o
File Statement =« o« o o o o &
Syntax e e o o e e o o o
Description o+ « o o« o o
File Statement « « «
Label Option « o o o o &
. Examples e o e e e @
Label.Type DptiOh e o o o

Device Option « o o o o o

L] * L] - L] .

Page

6=37
6=38
6=38
6=38
6=38
6=40
6=40
6=40
6=40
6=42
6=42
6=42
6=42
6=43
6=43
6=43
6=44
6=44
6=44
6=44
6=46
6=46
6=46
6=46

NNSNSNNSNNNNNNNNNNSNSNNNNNNNNN
O I T N T O R N I T
VCOXDXP®NNORAOU R E P WWWNNNN - =

vii

Section

7 (cont)

viii

Title

Access Mode Ontion

Forms UOption .
Backup fNption .,

Examples .
Mode 0Option . .
Puffer Nption .
Lock COption . .
Dptional fiption
variable (ption
Save Uption . .
Records Option

EFxamples .
Defsult Options
Reel 0iption . .
Areas Dotion .
Pack.ID Option

Open fiption
AlliAreas.at.0Open
Areasby.Cylinder Opticn

Single.Pack Option

Fl.%Special Option

FUsIncremented

Table of Contents (cont)

Optio

UsesInput.3locking Opti
SR«Station Option

Endeof.PagesAction

Open Statement
Syntax « o
Description
Examples .

Read Statement
Syntax . e
Description
Examples .

.

Receive Statement

Syntax . .
Description

Search.Directory Statement

Syntax o o
Description
Seek Statement
Syntax «
Description
Examples .
Send Statement
Syntax «
Descriptior
Skip Statement
Syntax o o
Description
Examples .
Space Statement

.

Option .
Opti

. L] *
[] . .
L] . .
L] . .
L) . [
. L] L]

L] . L]
. . .
. . .
L . .
.] (]

n

FPage

7=10
7=10
7=19
7=10
7=11
7=11
7=11
7=11
7=11
7=11
7=11
7=11
7=12
7=12
7=12
7=12
7=12
7=13
7=13
7=13
7=13
7=13
7=13
7=14
7=14
7=15
7=15
7=15
7=16
7=17
7=17
7=17
7=18
7=19
7=19
7=19
7=20
7=29
7=20
7=22
7=22
7=22
7=22
7=23
7=23
7=23
7=24
7=24
7=24
7=24
7=25

Section

7 (cont)

Table of

Syntax . o
Description
Examples .
Write Statement
Syntax o
Description
Examples .

FUNCTIONS o o o« o

General « o« o« o

Contents (cont)

Title
* L] . . L] . L .
[] L] L] - L] L] * L]
L] L] L] . . L] L] L]
. L] - L] L] * * []
L2 . * . . * L] L2
L] [2 L] * e L] L] .
* - L] L] L] * L] *
L] . L] L] L] . * L]

. . . L] . . * *

Base.Register Function =« « + .

Syntax o e
Description
Binary Function
Syntax o« o
Description
Examples .
Case Function .
Syntax o o
Description
Examples
Cat Function .
Syntax o o
Description
Examples

Convert Function

Syntax o s
Description
Examples .
Date Function .
Syntax « .
Description

Decimal Function

Syntax . e
Description
Examples

. . L] . L] . . .
- L] . . L] . . L]
. . L] . . L] L L]
L] L] . . L] L] * L
. L] L]
. ° . . . [} L] .
. . - L] L] . L .
L] L] L] L] . * o .
L] 3 . 3
L] - . * L L * L]
] 3 L] L]
. . L] L L] L] L L]
. . L] . . L] . .
. [} . * L] . . .

L} L]
. . L] L] L * . L]
. L] . .
. [] L]
* . . . L4 . L L]
L] L] L] L] L . . .
. . L] . L] . . .

. L] .
. . . L] . . . L]
. .] 3 . . . L]
. e 3

Hex.Sequence.Number Function .

S‘yntax « o
Description
Example o« o
If Function « o
Syntax o« e
Description
Examples .
Length Function
Syntax o o
Description
Examples .

Limit.Register Function « o« o« =

Syntax o o

. L] . . L] [° .

Page

7=25
7=25
7=25
7=27
7=27
7=27
7=28

1 1 1 1
A8 o 8 WwWwWwld NN e —

LI D R B |
Jodi

]
. a S e b e e N N UT

[Je <lte B <lNe - JNe <JRe e e - Je < Je - Je - Je e -Bie B¢ . INe - e -Je < Je - JN0 R0 Ne -JEe L JN6 JYU ¢ SIS o
]
WwwwhNonNn o

@ o
t 11
SN
i

8=14
8=15
8=15
8=15
8=15
8=16
8=16
8=16
8=16
8=17
8=17

ix

Secticn

8 (cont)

10

HOW

uPL

Table of Contents (cont)

Title

Description « « o« o
Memory Size Function .+ .
Syntiax e o o o o o
Description « « o o o
Mod FUNCTion o« o o o o @
Syntax “« o o s e e
Description « « « &
Example « o« o o o o o
Name.of.Day Function . .
Syntax e e e s s o @
Description « o« o o &
Search.Linked.List Functi
SYNEAX o o o o o o o
Description o« « « o o
Sequence.Number Function
Syntax « e s o s s
Description « « « o« o
Examole o« o o o o o o
Subbit Function « « o« o+
Syntax s e s e s s
Description « o« o o
Examples o« o o o o o
Substr Function « « « o &
Syntax « o o e e o @
Description « o o o &
Examoles ¢ o e o e o
Swap Function « o o o o
Syntax « o o s o o
Description « « o o o
Examples ¢« o o o a @
Time FUNCEION « o o o o &
Syntax e o e s o o
Description « « « o+ =
Todays.Date Function . .
Syntax e o o o s o &
Description « « o« o«

TO WRITE A UPL PROGRAM .
General « ¢« o o o o o o @
Writing Rules « o o« o o &
Examples e o e + s o
Form of a UPL Program « .
Procedure Calling « « « &
Concept of Scope . .
Relationships « o o &
Coding Examples « « o« o«

COMPILER CONTROL « « o &

Compile Deck e e+ o o o u-

Fage

8=17
B=18
8=18
8=18
8=19
8=19
8=19
8=19
8=290
8=29
8=290
8=21
8=21
3=21
8=22
B8=22
8=22
8=22
8=23
3=23
8=23
8=24
8=25
8=25
8=25
8=26
8=27
8=27
8=27
8=27
8=28
8=28
8=28
8=29
8=29
8=29

e JRVe JEVe Ve Ji Vo Ve B Yo BiNo BV, |
[I T DA R N R B |
o N = i e e

—
o O
[}
——

Table of Contents (cont)

Section Title Page
10 (cont) Compiler Control Card Options o « « o o o o o = 10=-2
APPENDIX A CLASS I RESERVED WORDS o o o o o o o o o o o o o o A=1
APPENDIX B CLASS II RESERVED WORDS ¢ o e o ¢ o o o o o o s o o B=1
APPENDIX € CLASS III RESERVED WORDS s ¢ o o o o o o s s e o @ c=1
INDEX . L] [] L] * L] * L] L] * . L] L[] * L] L] L) . .v. L] * . . L] * One
List of Illustrations
Figure Title Page

8=-1 Data Type Conversion Chart =« o o o o o o o o o o o 8=9
9=1 Typical UPL Program Schematic Diagram « o« « « o o 9=3
9=2 Procedure Compile Time Relationships =« o o o o o o 9=5
9=3 Nesting EXxampleSe « o o o o o o o o o o o o o o o o 9=6
9=14 Programming FLOW Chart « o o o o o o s o o o o o 9=7
9=5 Programming Example l ¢ o o o o o o ¢ o o s o o o @ 9=8
9=6 Pr‘ogramming Example 2 e o o ¢ o o 8 & o s e o s+ e o 9=1
List of Tables
Table Title Page
3-1 Logical Operator Usage L] * o L] * L] * L] L] * L[] L] * L] 3-8

Xi

INTRODUCTION

The User Programming Language (UPL) has been developed specifically
for writing the system software for the B 1700 Series. UPL is a
high=levels» problem=oriented language that allows sophisticated
computer programs to be written with relative ease.

This reference manual has been designed and written for experienced
programmers. It can be used to learn the languages» however, if the
programmer is familiar with bit=manipulation concepts and language=
independent principles of programming.

UPL is a compiler=level language that increases programmer produc=
tivity and solves complex problems. The resultant system software
reflects this increased productivity.

xiii

SECTION 1

LANGUAGE CHARACTERISTICS

GENERAL .
The type of problems to be solved by UPL has required a series of

functions and constructs that differ significantly from most other
problem=oriented languages. A few of these differences are as follows:

a. Powerful bit and character=string functions.

b. Binary=only arithmetic functions.

ce No JUMP or GO TO instruction.

de Re=entrant programse.

e. Recursive procedures (subroutines).

fe Scope of data=names contained within procedures.

g. Dynamic storage allocation for data=names at execution time.
he Single=pass compilation.

AlLL programs that are written in UPL source language must be processed
by another programs the UPL Compiler. The compiler transforms the
source statements into a virtual machine form called S=code. The
S=code is then executed interpretatively by a set of micro=instruction
routines (firmware).

UBL.BROBERIIES.

A UPL Program has a distinct pattern or format that specifies the
relative locations of the two statement types» declarative and execut=
able. Declarations provide the information that is needed to allocate
storage or link together various elements of a programe. Executable
statements specify the functions or transformations to be performed
upon the contents of storagee.

Statements are composed of symbols thats, in turns, are composed of
letterss digitss and special characters. Symbol strings are called
operandss operatorss or control functions. The UPL syntax is concerned
with the correct creation of symbol strings and the relative placement
of the strings to form declarative or executable statements.

UEL_EBUGBAM.EQRUYAL.

UPL Programs are segmented into logical subdivisions called procedures.
Each procedure begins with a head statement and terminates with an end
statement. Procedures have a definite relationship to other procedures
within a programs, either side=by=side (parallel) or subordinate
{nested). This ordering inherently defines the scope of each procedure
and the range over which a procedure can call or be called.

PROCEDURE FORMAT. » :

ALL procedures have a rigid internal structure. The procedure
structure is as follows: first» data=name declarations; seconds, all
nested procedures; and last» all executable statements. The structure
of nested procedures must be exactly the same.

METALANGUAGE.

A metalanguage is a language that is used to describe other languages.
Symbols in the metalanguage are called metalinguistic symbols. Meta=

1-1

linguistic symbols are used in forming metalinguistic formulas. The
formulas define the rules of allowable sequences of characters and sym-
bols in the language being describeds Thus, a set of metalinguistic
formulas defines the syntax of a language.

The following set of metalinguistic symbols is used throughout this
manual to describe the UPL syntax.

KEY WORDS.

All underlineds upper case words are key words within a statement and
ace_ceguiced when the functions they are part of are utilized. Their
omission causes error conditions at compilation time. Examples of key
words are as follows:

Literal l .
IE data=name IHEN statement; [ELSE statement’;]
expressions

The key words are IFs THEN» and ELSE. (Refer to paragraph on brackets
for exception.)

LOWER CASE WORDS.,

ALl lower case words represent generic terms that must be supplied in
the specified format position by the programmer. Literal, data=names
expressions and statement are generic terms in the preceding example.

BRACES.

When words or phrases are enclosed in braces ({ })» a choice of one of
the entries pgyst be made. With reference to the preceding examplesr one
of the items (literals, data~names or expression) pyst be included in
the statement.

BRACKETS.

Words and phrases enclosed in brackets ([1) represent optional por=
tions of a statement. In terms of the preceding example» the (ELSE
statement;) gagp be included in the statement as an option; otherwise,
it is omitted.

CONSECUTIVE PERIODS.

The presence of an ellipsis (. « o) within any format indicates that the
syntax immediately preceding the notation can be successively repeated,
depending upon the requirements of problem solving.

PERICD.
The periods or dots, is used only to concatenate parts of data=-namess
for example>

WORK.SPACE.ONE.
TYPE (LENGTH).

The type (length) phrase always represents the following syntactical
notation:

EIXED
CHABACIER (length)
BII (length)

Any mark or symbol in a metalinguistic formula that is not one of the
metalinguistic symbols denotes itself. The juxtaposition of symbols in
the formula denotes juxtaposition of the elements in the language being
described.

Metalinguistic formulas give an accurate and detailed description of
the legal sequences of symbols within a language. They do not, how=-
ever, assign meaning or indicate the events performed by the statements
in the target lLanguage. Such a description is called the semantics of
a language. Therefore» for each syntactical description of an SDL con~
struct within this manual, a semantics portion also appears.

BASIC.3YMBOLI.

The UPL character set is composed of the following:

as The upper case letters A through Z are used to form
names and stringse.

be The digits 0 through 9 are used to form numbers in
: literals and in stringse.

ce The arithmetic operators + (addition)s = (subtraction),
* (multiplication)s and /7 (division) provide mathematical
capabilitiese.

de The relational operators > or GTR (greater than), < or LSS
(less than), = or EQL (Cequal to)s» # or NEQ (not equal to),
> or GEQ (greater than or equal to6)s and < or LEQ (less

than or equal to) provide comparison capabilities.

e« The logical operators are AND» OR» EXOR (exclusive OR)» and
NOT (negation).

fo. The functional operators CAT (cohcatenation), MOD (results
in the remainder of a divide)s and := or =« (replacement)
provide additional functions that are required.

gs . The following punctuation defines the function of each
symbol that is used in UPL.

syobol Defioiticn ' Use
. Period or dot Concatenation within data names
’ Comma Separator for items
3 Semicolon Delimiter for statements
(Left parenthesis Enclose parameter Llists

sxobol

14

?

[*

*/

Pefipitieon

Right parenthesis

Quotation mark
Pound sign

Space or blank

Arrow
Colons, arrow

At sign

Colons equal
Colons, colons equal

Percent sign
Slashs, asterisk
Asterisks slash

Question mark

Invalid punch

Dol lar sign

Ampersand

Useg

Enclose parameter lists

Left and right character
delimiter

Left and right define text
string delimiter

Data=name delimiter

Assignment or replacement
(delete left) operator symbol

Replacement (delete right)
operator symbol

String delimiter

Assignment or replacement
(delete left) operator symbol

Replacement (delete right)
operator symbol

Remainder of card is a comment
Beginning of comment

End of comment

In column 1 of a 96=column
cards» indicates an MCP control
card

In column 1 of an 80=column
cards indicates an MCP control

card

In column 1s indicates a
compiler control card

In column t» denotes condi=
tional source code inclusion
control card

BESERYEDQ.-40QBQS.

UPL contains a set of character stringss called reserved words,
with pre-assigned meanings. Three classes of reserved words are
defined.

Class I reserved words have pre—~assigned meanings throughout the pro=
ggams, for example, DECLARE» PROCEDURE» DO» END. Incorrect usage of a
class I reserved word results in a syntax error.

Class Il reserved words can be re-assigned meanings. They then lose
their original meanings for the duration or scope of their new assign=
ments for examples CONVs, DECIMAL» LENGTH. Re=assignment of a class II
reserved word results in a warning message» but no syntax error.

Class III reserved words have pre=assigned meanings only within some
input/output statements, for examples DISK, LOCK, PRINTER, TAPE.
Incorrect usage of a class III reserved word within a specific UPL
statement results in a syntax error. The wordss» when used in input/
output statementss, must appear as shown in the syntax and cannot be
DEFINEd. The usage of a class III reserved word in any other portion
of the program is considered as a separate and distinct usage and does
not result in a syntax error.

A helpful List of all classes of reserved words is given in appendixes
As B» and C.

LANGUAGE_QTATEMENI.IYBES.

There are seven types of statements in UPL. Their names» formss, and a
brief description of their functions are as follows:

Naoe EoCm Euonctien
Assignment Data=name :t= expressions Performs calculations and
assigns a value to a data-
name
Declaration DECLARE data=name Reserves space fors and
attributes; assigns attributes to»

data=names
DECLARE data=name
REMAPS data—=name
attribute list;

Conditional IF expression THEN state= Controls the executicn of
ment; ELSE statement; individual statements or
groups of statements

Control DO FOREVER name3 Iterates» groupss Oor trans=
statement; fers control to sets of
statement; statements

Naome

Procedure

Simple

Compiler
information

EUNCIIQNS.

Eocp Eupction

statement:;
END name;

CASE expression;
statement;
statement;

statement;

END CASE;

RETURN};

UNDO

A procedure is a set of Defines a subset of the

statements. program to be used as a
subroutine

BUMP data=name; Performs some simple

DECREMENT data=name}’ function on a data=name

DEFINE ‘Assists the programmer in
preparing and comgiling a

FORWARD PROCEDURE program

SEGMENT

There are several functions in UPL} they have been incorporated into
UPL to facilitate ease of use and speed of execution. Examples of a

few functions

Name
SUBSTR
SUBBIT
LENGTH
CONV
MoD

CAT

and a brief description of them are as follows:

Evostigo
Addresses substring within a character field
Addresses substring with a’bit field
Obtains the length of a substring
Converts between data types
Obtains the remainder of a divide operation

Concatenates substrings

Naoe Eupgtico
BINARY Converts from printable decimal to binary

DECIMAL Converts from binary to printable decimal

The use of each function is described in section 8.

SECTION 2

BASIC CONCEPTS

GLNERALS

UPL has a number of basic concepts that a programmer must understand in
order to fully utilize the language. These concepts are explained in
the following paragraphs.

DAIA.CONCERIS.

A data=name is the symbolic name associated with a memory space. The
data=name is DECLAREd with a set of attributes describing the space and
how it is to be manipulated.s An occurrence of a data~name references
the contents of the memory space with its associated attributes.

There are three declarable classifications of data in UPL.

FIXED DATA TYPE.

The type FIXED data format is a signed 24=bit field. It is the primary
computational form in the language. The most significant bit is the
signe A 0 denotes a positive number; a ! denotes a negative number.
The remaining 23 bits are the value in binary. If the number is neqa-
tiver the value is in the complement notation of 2. The maximum and
minimum values are 2, raised to the 23rd power =1 (8,388,607 in
decimal) and =2, raised to the 23rd power (=-8,388,608). All calcula=
tions are in binarys» and any overflow beyond the largest expressible
value is ignored.

BIT DATA TYPE.

The type BIT data format assumes a string of binary digits that can be
manipulated or interpreted in any manner the programmer chooses. Bit=-
strings may be declared from 1 to 65,535 bits in length. Bit=literals
are also available in 1=» 2= 3=, and 4=bit groups. Type BIT data can
be used in arithmetic operations and is always considered a 24=bit
positive number; that iss» the maximum and minimum values are 2 raised
to the 24th power =1 (16,777,215 in decimal) and 0 (zero). If the data
item is greater than 24 bitss the high order positions are converted to
0's during arithmetic operations. Comparison operations are performed
on the whole bit=string in a right=to=left manner with leading 0's
padded on the shorter strings that is», 110 compares less than 1000.

The data=name that is declared a bit=string manipulates the whole
string. Substrings of the data=name can be manipulated with the SUBBIT
function.

CHARACTER DATA TYPE.

The type CHARACTER data format is an 8=bit=string grouping defined as
standard EBCDIC. ALl input/output (I1/0) peripheral devicess, excluding
data=communication devices» send and/or receive in the CHARACTER for=~
mat. Arithmetic operations can be performed with CHARACTER data’s how=
ever» the binary value of the CHARACTER bit=string is its binary
arithmetic values That is» a 0 character from a peripheral device has
a binary value of 240 (11110000). Alsos only the least significant
(right=most) 24 bits of a CHARACTER data=name are used in arithmetic
operations.

ALl high=order bits are converted to 0's (zeros). Comparisons are
of two classes:

a. Character=-to=characters which is compared left=to=right
with EBCDIC spaces (hexadecimal 40) padded to the right
of the shorter string.

b. Character to any other data format, which is compared
right=to=left with binary 0's padded to the left of the
shorter string.

Substrings of character=strings may be addressed with the SUBSTR
functione.

DATA TYPE CONVERSION.
Several conversion functions in UPL can transform from one data
type to another. They are CONV», BINARY» and DECIMAL.

The same memory space can be declared as being of different data types
each with unique data=names:by the use of the REMAPS option and/or the
structured options in the DECLARE statement.

ARRAYS.

An array is a repetitive set of data=elements. The data=name becomes
the name of the whole arrays and individual elements in the array are
addressed by subscripting the data=name. Arrays are single dimen=
sional’s that is» they allow only one value in the subscript. The array

declaration (*) can be used with all three data=types.

DATA STORAGE ALLOCATION.

Data storage allocation is divided into two distinct periods of time.
The first is the compiler=time encounter of a DECLARE statement in
which the compiler generates the code that performs the run=time allo=
cations. The second occurs at object run=time when the actual storage
allocations are performed upon entrance into a procedure and then only
for those data=names DECLAREd in that procedure. When the procedure is
RETURNed froms, that is» exitedr, the physical memory locations again
become available for allocation to any data=name that may be DECLAREd
in the next procedure to be entered. That is» storage allocations and
de=allocations are performed during entrance to or exit from each pro=
cedure at object run~time. The same physical memory space cans, there=
fores be used many times during the execution of a program (dynamic
storage utilization).

DUPLICATE DATA-NAMES.

It is possible to have duplicate data=names in UPL that are not a
compile=time error. This is true whenever the duplicate data=names
are DECLAREd in different procedures. The occurrence of duplicate
data=names within one procedure is an error and results in a compiler
error message.

Duplicate data=names do not interfere because they exist only within
the scope of their procedures. The case occurss however» when the
procedure that contains the duplicate data=name is nested within the

2=2

procedure that contains the first occurrence of the data=name. The
tanguage resolves this conflict by referencing the most recent occur=
rence of the data=name over the scope of the nested procedure. When
this procedure returns controls, the original data=name is again
available.

ASSIGHMENI.

The assignment operation moves the contents of one data=names, called
the source fields» into the memory space of another data-names called
the destination field. Alignments truncation», or padding is performed
during the assignment operation and is controlled by the type and
length attributes of the data=names involved.

The type attribute divides alignment control into two cases. The first
case is character=to=character» which aligns the data=names on their
left=most or high=order characters. The assignment iss then, performed
in a left=to=right order until one of the fields is exhausted. If the
destination field is shorter» the operation ends. If the source field
is shorter» the destination field is padded» on its rights, with space
characters (hexadecimal 40).

The second case includes every other possible combination of data
types. The fields are aligned on their right=most or low=order bits»
and the assignment proceeds from right=to=left until one of the fields
is exhausted. If the destination field is shorters the operation ends.
If the source field is shorters the destination field is padded with
binary 0's.

BEELACEMENIS

The replacement operator is similar to the assignment operator because
both transfer data into a data=name and perform alignments truncation»
and padding during the transfer.

Differences between assignment and replacement operators involve use of
a machine register and completion or incompletion of the source lan=
guage statement. The assignment operator clears the register as it
moves the contents into memory ands, thuss ends a statement. The
replacement operators howevers, does not clear the register as it moves
its contents into memory. The value or address remaining in the regis-
ter pys: be used in further operations until the assignment operation
is executed or until the register contents are no longer needed. This
case occurs with an expression evaluation and is used as a conditional
indicator as in the IF or CASE statements. For example:

X 3= A + (B 3= C);

The := symbol between data=names B and C is a replacement operator
because a value or address of a value must be available to be added to
data=name A. The t= symbol between data=names X and A» howevers, is an
assignment operator because nothing remains after the operation to be
combined with another term; that is» the source lLanguage statement is
completed. '

Exactly what remains behind or» more formallys not deleted after a
replacement operation is under control of the programmer. That is», the
‘programmer can choose to leave behind either side of the replacement
‘operations which is then combined with the next term in the expression.

There ares therefore» two forms of the replacement operator: the
delete left forms t= » and the delete right forms 2:= ., Normal usage
is the delete left form. Usage of the delete right part is often con-
venient in parameter passing=-to procedures. For example, if the pro-
cedure SQF requires a parameter of six characters and the programmer
would Llike to use the procedure with a 4=character data=names X4, the
programmer can declare or use an existing 6=character data=name, X6»
and do a replace» delete right part (::=) in the procedure call. For
examples

SQF (X6 ::= X4);

SINGLEZEASS . COMEBILERS

The UPL Compiler is designed to pass the source language only once.
This design has several ramifications in the program structure of the
source lLanguage.

A rigid sequence of statement types is reaquired in order to guarantee
that the proper information is available to the compiler at the proper
time. All DECLARE statementss, for examples must appear within each
procedure before any executable statements occur in that procedure.
Alsos each procedure must begin and ends» in the view of the compilers
before any executable statement in some other procedure can reference
it. Proceduress therefores have a range or scope over which they can
be referenced and are active. This scope is dependent on when a pro=-
cedure occurss in the view of the compiler; in what procedure nest it
occurss and how deep it is in the nest.

A special statement, the FORWARD statements, is available to resolve the
problem of forward referencing a procedure that has not yet been seen
by the compilere.

Procedures cannot overlaps; howevers they can be .nested. Procedures
also can be side=by=side (parallel), not nested» within an outer pro=-
cedures each of which can itself contain more nested or side=by=side
procedures.

EBOCEQUBES.

A procedure is the basic structural element in UPL. It contains local
data and the executable code for manipulating that data. It can also
communicate values and/or addressess that is» parameterss, to and from
other procedures. A procedures in additioens can manipulate any data in
the other procedures that are within scope (global).

A procedure is divided into the following five parts: the head
declaration, the data declarationss, the nested procedure declarations,
the executable statementss, and the END statements, in that order.

For example:

HEAD DECLARATIONS

DATA NAME

DECLARATIONS
PROCEDURE
DECLARATIONS
IN SAME
FORMAT

EXECUTABLE

STATEMENTS

END STATEMENT

Procedures are analogous to subroutines in other languages. They
execute repetitively the same set of statements by manipulating a
different set of parameters on each invocation.

The outer=most level of code» that iss the level not imbedded in any
procedures conforms to the format of procedures except that it has no
head declaration and cannot», therefore» be invoked by a procedure.
This outer=mosts procedure=like structure is referred to as the global
tevel or lexicographical (lexic) level 0 (zero). Each subsequent
procedure has a lexic level=number greater than 0.

PROCEDURE INVOCATION,. _

A procedure is invoked or called by use of the procedure=name in an
executable statement. If the procedure has parameterss they must
appear following the procedure=name and be surrounded by parentheses.
The parameters associated with each call of a procedure are the actual
parameterss» and those within the procedure are the formal parameters.

PARAMETERS TO PROCEDURES.
A parameters=to-procedures transfer is considered a special case of
storage allocation at procedure invocation time.

The procedure head declaration contains a data=name for every parameter
that is passed. This data=name. is called the formal parameter -name and
is used within the procedure to reference the passed informaticn. A
FORMAL declaration statement must follow the procedure head declaration
and specify the type and attributes of the parameters.

At compile=times» code is generated to allocate memory space for these
parameters. At run=times» the memory. space is allocated and the actual
parameter is loaded. Run=time comparisons of the actual parameter
types and lengths against the formal types and lengths are performed
only if the $ FORMAL.CHECK compiler option is specifieds A mismatch
causes program termination. A VARYING option in the FORMAL statement
is available. It results ‘in the use of the type and length of the
actual parameter as the type and length of the corresponding formal
parameter on each invocation of the procedure.:

ACTUAL PARAMETERS. -
Actual parameters are the data=names or the values contained in the
data~names that are passed to procedures. They are matched in a left-

2=5

to=right order with the formal parameters in the procedure head
declaration. They also must agree in number with the number of formal
parameters.

FORMAL PARAMETERS.

Formal parameters are the symbolic data=names that are used in a
procedure to reference and manipulate the actual parameters that are
passed.

PASS=BY=VALUE.

The value of a data=name can be passed to a procedure. When the
procedure is invokedr» a copy of the value is loaded into the local
memory space associated with the corresponding formal=name.

A parameter always passes~by=value as the result of an arithmetic
operation upon the parameter or by surrounding the parameter with
another set of parentheses» for examples

SQRF (A + B» A * Bs (A));
The procedure SQRF has three actual parameters that all pass=by=value.

Array elements can be passed=by~value or by=name. The whole array can
only be passed=by=name. The formal parameter declaration within the
procedure can use the FORMAL.VALUE option; the parameter then always
passes=by=value.

A pass=by=value has no lexic level restrictions. An inner procedure
can invoke an outer procedure that is in scope and pass to it the value
of a data=name that is out of the scope of the outer procedure.

PASS=BY=NAME.
The memory=space address of a data=name used as an actual parameter
ctan be passed to a procedures. Local space is not allocated within the

procedure; insteads, the formal parameter is loaded with the address as
passede The procedure cans, then, manipulate the original value as ref=
erenced by the data=name. The procedure can alter this original value.
This occurs only if the formal parameter is the object of a replacement
or assignment operation during the execution of the procedure.

The pass=by=name occurs whenever the actual parameter is not involved
in an arithmetic operation or surrounded by an extra set of
parentheses» for examples

SQRF (As» B» C + 2)3

The actual parameters A and B are passed=by=name and the C + 2 is
passed=by=value.

Notice that a pass~by=name has no lexic level restrictions. A
procedure can pass the name of a data-name at a lower lexic level
(higher number) to an outer procedure at a higher lexic level (lower
number). The outer procedure eventually executes a RETURN to the

2=6

inner procedure; howevers it had access to the memory space of a non=-
existent data=name and could have altered its value. Notice that data-
name space continues to exist for every procedure invoked until that
procedure executes a RETURN statement. This is true regardless of the
lexic level or levels of any procedures invoked while a procedure
existse Only those data=names that are within scope» however, may be
referenced. For examples a duplicate data=name at a lower lexic level
inhibits the outer data=name during the time its procedure is active.

EROCEQUBE.IXEES.

Two types of procedures exist in UPL: one that performs a set of
statements and then returns controls called a regular procedures and
another that performs a set of statements and returns a value when it
returns controls called a function procedure.

REGULAR PROCEDURE.
A regular procedure call is a complete executable statement. That is»
its name and parameter list are followed by a semicolon.,

For example»
SQROOT (ABS);

is a regular procedure call.

A regulér procedure may appear as a statement in the IF statement.
IF ABS NEQ ZERO THEN SQROOT (ABS);

After the regular procedure executes a RETURN statements, control passes
to the next sequential statement following the call.,

A regular procedure can communicate data by referencing global
data=names.

FUNCTION PROCEDURE.

A function procedure call is considered a value and is used within
expressions. It can be the source of a replacement operator (on the
right of the replacement sign); or it can be operated upon by any of
the arithmetic or lLogical functionss, that is» added to or compared to.

When a function procedure RETURNs a values it is used in place of the
function call within the expression. The function procedure head
statement contains a type=length attributes and the RETURN statement
contains an expression. The value of the expression must have this
type~length attribute and is then passed back into the invoking
expression.,

For example:

PRICE := COST.SQFT * SQRT (LGTH» WDTH);

A value is RETURNed from the>SQRT (LGTH>WDTH) function call and
multiplied by data-name-CDST}SQFTm

And:

IF SUBSTR(MSG.IN»0»,3) EQL "YES™ THEN +..
ELSE ...

ee weo

The procedure MSG.IN accepts an input message from the SP0 and returns
a character=string that is tested for the first three characters equal
to the word YES. ‘

A number of functions exist in UPL that may be used as if the

programmer has written function procedures for them. These
functions are described in section 8.

LEXICQGRABHIC_LEYEL.

A lexicographic level is the compile-time relationship of each proce-
dure to the outer level of the programe. This outer level is referred
to as lexicographic level 0 (zero). All other procedures are nested
within it and are assigned a lexicographic level=number representing
their depth of nesting from level 0. Thuss in the following examples
rLEVEL 0

~ONEA

[THOA

~ONEB
~TWOB

THREEB

procedures ONEA and ONEB are at lexicographic level 15 TWOA and TWOB
are at level 27 and procedure THREEB is at level 3.

The maximum lexicographic level is 15. That iss» nested procedures can
not exceed 15 levels in depth. There is no limits howevers, to the
number of procedures that can occur on any level or in any procedure.

The naming of a procedure should not be confused with the procedure
itselfs. The name of a procedure exists at some lexic lLevel and denotes
that a procedure is beginning with the next source language statement.
This next source statement exists within the named procedure and is one

2=8

lexic lLevel Llower than the name of the procedure. That iss the name of
a procedure exists one lexic level above the procedure that it names.
This separation of the name and the procedure being named has
significance in the concept of scope.

aC0EE.

Scope is the range within a program over which a data=name or
procedure=name can be referenced. The scope of a name is a direct
result of the lexicographic level of procedures and the storage
allocation techniques employed.

Before a procedure is invoked» the names declared within the procedure
do not exist yet and cannot be referenced. After the procedure is
invoked» the names within the procedure can be referenced. The format
of procedures ensures that only those statements contained within this
procedure or in global procedures are within scope. That is» execut-
able statements within a procedure can reference the names declared in
this procedure or in any outer procedure. For example:

PROGRAM

(LEXIC LEVEL 0)

PROCECURE.X

(L LEVEL 1)

PROCEDURE.Y

(LL 2)

STATEMENTS IN Y

STATEMENTS IN X

STATEMENTS IN LEXIC LEVEL O

The statements in lexic level 0 may reference PROCEDURE.X but not
PROCEDURE.Y because PRUCEDURE.X has not been invoked ands therefores
the name of PROCEDURE.Y does not exist yet. iy

The statements in PROCEDURE.X cans howevers, reference PROCEDURE.Y
because the name of PROCEDURE.Y becomes available when PROCEDURE.X
is invoked. : ’

The statements in PROCEDURE.X also can reference any names of data or
procedures that are declared . on lexic level 0. This implies that
PROCEDURE.X can invoke itself, which is true; all procedures in UPL are
recursives Any difficulties ‘encountered with duplicate names whether
they be from recursive procedure invocations or just duplicate names
within a nested procedure are resolved by the allocation of new space
for the most recent occurrence of the duplicate name. Notice that the
name of the whole programs the name of the lexic level 0 procedures is
outside of Llexic level 0 and cannot be referenced from within the pro=
gram. That is» the program cannot be called recursively because its
name is not within scope.

Statements in PROCEDURE.Y can reference names within PROCEDURE.Y and
PROCEDURE.X and on lexic level 0. That iss in this programs the state=
ments in PROCEDURE.Y can reference any data=name and any procedure=
name. Notice that the name PROCEDURE.Y exists when PROCEDURE.X is
entereds That is» the name of a procedure is made available in its
outer procedure.

Several procedures can have the same lexic level number by occurring at
the same depth from lexic level 0. The relationships that can exist
between such procedures dépends upon the relaticnship of the nests in
which they appear.

Procedures that have a common procedure one lexic level up can invoke
each other. Procedures that do not have this attribute can not invoke
each other., This condition is called not being within scope. For
examples

PROGRAM

(LEXIC LEVEL 0)
PRO. A
(LL=1)
PRO.B
(LL=2)
CALL PRO.A
CALL PRO.C
PRO.C
(LL=1)
PRO.D
(LL=2)
CALL PRO.D
CALL PRO.B
CALL PRO.A

The procedures PRD.A and PRO.C are both on lexic level 1 (LL=1) and
have a common procedure (lexic level 0 is considered a procedure in
the above example) that is one lexic level higher. They can boths
therefores contain executable statements that invoke the other. The
single=pass characteristic of UPL» howevers requires a FORWARD state=
ment before this is allowed.

Procedures PR0O.B and PRO.D also have a common lexic level number; how=
evers, they are not nested in a common, immediately preceding procedure
and cannots» therefores» reference each other.

A guestion now arises: What happens if PRO.B invokes PRO.A and then
PRO.A invokes PRO.C? Can PRO.C now reference PRO.B or any of its data-
names? It is» after alls, still active because it has not yet executed
a RETURN statement.

The answer is noe. At pQ tipme can any statement in PRO.C reference
PRO.B or any data=name in PRO.B., The programmers, however, never Lloses
control because this run=time nest of invocations is eventually
unwound. Each procedure pgysgt eventually execute a RETURN statement and
pass control back to its invoking procedures thus unwinding the nest.

The scope of a data-name is similar to the scope of a procedure=name.
A data=name can be referenced by any executable statement within the
procedure in which it is declared. It also can be referenced by any
active procedure nested within its declaring procedure. It can pot
be referenced by any procedure with a lower lexic level number. 1Its
value or name cans howevers, be passed as a parameter to such
procedures. (Refer to page 2=6.)

For example:

PROGRAM

DECLARE C(AA, ABC) FIXED;

PROCEDURE PRO.AS

DECLARE BB FIXED;

PROCEDURE PRO.B:

DECLARE CC FIXED;

ABC := AA + BB + CC;

ABC := AA + BB;

PROCEDURE PRO.C

DECLARE DD FIXED;

ABC := AA + DD;

ABC := AA;

The data=names ABC and AA can be seen by (are within the scope of) all
procedures. The data-name BB can be seen only by procedures PRO.A and
PRO.Be That is» PRO.C and the outer level 0 code cannot reference
data=-names BB or CC.

SECTION 3

EXPRESSIONS

GENERAL.

Expressions are the operational portions of statements. If a statement
is analogous to a sentences then expressions are the words and phrases
within a sentence. All operational functionss, that is» comparisons,
arithmetics» etc.» take place within expressions except the assignment
and the regultar procedure=call functions.

The format of an expression is similar to the format of an algebraic
expression. Infix notation. is useds» and parentheses can be useds to
group the order of evaluation. Each variable also can contain a prefix
unary operator. :

An expression is defined to be recursive and can, therefore» contain
as many variables and operators as are required to produce the desired
result,

Expressions are evaluated by performing the indicated operations in a
left=to=right order. The sequence in which the operations are per=
formed is determined by rules of precedence. (An operator precedence
chart is given on page 3=5.) When operators have the same precedence>
the sequence of operation is determined by the order of their appear=
ance» from left=to~right. Parentheses can be used to modify the normal
hierarchical sequence of execution. An expression within the parenthe=
ses is evaluated» and this value is then used in subsequent operationse.

EOBMAI.QE.AN.EXEBESSIQN.

The expression syntax is as follows:

[UNARY } fdata-name l [UPERATOR [UNARY] fdata-namel~ } o
0

OPERATOR 1 variable 5 PERATOR 1variable 5

The elements of the syntax are defined as follows:
simple data=name
array data=name

SUBBITl

(data=names» expressions

substring
SUBSTRS expression)

data=name .
BUMP data=-name BY expression

DECREMENT data=name BY expression
IF expression THEN data=name ELSE data=name

CASE expression OF (data=name list)

~ literal
(data=name)

value function procedure call (parameter
expression Llist)

evaluation of an expression

BUMP data=name BY expression

DECREMENT data=name BY expression

IF expression THEN expression ELSE expression
CASE expression 0OF (expression list)

variable < SUBBIT (data=name» expression » expression)
SUBSTR (data=names expression » expression)
CONV

LENGTH

BINARY

DECIMAL

TIME

DATE

\. NAME.OF.DAY

RaIazhAMES.

A data=name is a memory address with a type and lLength attribute. It
is considered to have a value when used in an expression unless it
appears to the left of a replacement or assignment operators in which
case it is the receiver of a value. A data=name differs from a vari-
able ktecause of this last characteristic. That is» a variable is
always a value and can never be the receiver of other values. It can
only be operationally combined with other values to produce a new
value. ‘

SIMPLE DATA=NAME.
A simple data~name is the data=name as given in a DECLARE statemente.

ARRAY DATA-NAME.

An array data=-name must be subscripted. The subscript that is enclosed
in parentheses can be an arbitrary complex expression. For example:

3=2

Expression copmenis

XCI) X is the array data=name» and the binary value of
the simple data=name I is the array element being
accessed. The first array element is number 0.

X (BUMP I BY 2) Every other element of the array X is to be accessed.

SUBSTRINGS OF DATA=NAMES.

Two substring functions are available: the SUBBIT, to reference a
string of bits within a data=name» and the SUBSTR,» to reference a
string of characters. Both functions require the data=names the dis=

placement starting Locationss, and the length of the substring. For
example: '

Exoression Comments

SUBSTR (X» 2» 1) The third character in the data=name X is
referenceds.

SUBBIT (A» 7) It references the eighth bit through the end
of data=name A. The default option on the
length is through the end of the data=name.

The arguments of the substring function can be expressions ands
therefores contain substring functions. For example:

Exprcession Comments

SUBBIT (SUBSTR (X» 2» 1)» 0, 2) This references the first two
(left=-most) bits of the third
character in data=name X.

The BUMP» CASE» DECREMENTs and IF expressions are discussed in detail
in section 6.

YARIABLE.
A variable is a value within an expression. It can be explicits, such
as a literals or implicits such as the sum of two data=names.

LITERAL.

A literal is a constant whose value is used in the expression as it
appears. Three types of literals correspond to the three possible
data=-typese.

a. The first is the fixed or constant literal. Fixed
literals are signed number values. For example:?

43
=17

b. The second is the character or character=string literal.
Character literals must be enclosed by quote (") symbols.
They are 8=bit groups (EBCDIC). 1If a quote sign is desired
in the character literals two adjacent quote marks are
required. The maximum number of characters is 256. For
example:

"YES®

" ”

"QUOTE(”'V)"

cte The third type is the bit or bit=string literal. Bit
literals are available in groupings of 1 (binary), 2
(quartal)» 3 (octal), or 4 (hexadecimal). The bit literal
is enclosed by ® signs and contains a grouping indicator
enclosed in parentheses. For example:

8(1) 110110118 binary

8(2) 01201122¢@ quartal
8(3) 01235778 octal

8(4) 0148ACFe@ hexadecimal

If the grouping indicator is omitted» 4 (hexadecimal) is
assumede The grouping can be changed within the literal.
For examples

8(1) 101 (2) 210 (3) 765 (4) Fe
is a 22=bit Lliteral.

DATA=-NAME VALUES.

Any data=name that is enclosed in an extra set of parentheses has only
its value used in the expression. This is often useful when passing
parameters to procedurese.

VALUE FUNCTION PROCEDURE CALL.

A function procedure call is the use of the function=name in an
expression. It passes control to any function procedure written
by the programmer or to one of the intrinsic functions. It always
results in a value.

3=4

EVALUATION OF AN EXPRESSION.

The evaluation of an expression is the combining of any two or more
operands Wwith an operator, for examples A + B. The evaluation always
results in a value.

SUBSTRINGS.

The bit substring functijon SUBBIT is used to isolate a set of bits fronm
a data=name. The character substring function performs the same opera=
tions but considers its data as type CHARACTER. When a substring
function is used as a variables it returns a value.

The BINARY» CONVERT, DATE» DECIMAL» LENGTH, NAME.OF.DAY» and TIME are
described in section 8.

OPERAIQB.ERBECERENCE.IN.EXEBRES2IQNS.

Operator precedence in expressions is as follows:

Qoecator Eupgtioon Iyoe
% HE replace delete
- left part
highest replacement
3 $e= replace delete
: - right part
+ plus
unary

- minus
+ addition
- subtraction
* multiplication arithmetic
/ division
MOD remainder
= EQL equal
#z NEQ not equal
> GTR greater than
> GEQ -greater than or

equal to relational
< LSS less than
< LE@Q less than or

equal to
NOT not
AND and
OR or logical
EXOR exclusive=or

lowest <
? % - right part

concatenation miscellaneous

replace delete
left part

replacement
replace delete

The replacement operator is lower than any operator to its right, but
higher than any operator to its left. Alsos the replacement operator
is distinct from the assignment operator in that the replacement m
be within an expression while the assignment defines a statement.

EXEBESSIQN.IYBES.
Expressions can be divided into several types wWwith corresponding
properties. They a
order and are collectively referred to as gxpressigp in the syntax

Lls howevers can be combined or imbedded in any

ARITHMETIC EXPRESSIONS.
The arithmetic operations are as follows:

a.
b.
Ce
d.
e.

Addition (
Subtractio
Multiplica
Division (
Remainder

+).

n (=J.

tion (*).

/)

of division (MOUD).

The arithmetic operations are always performed on the lLow=order or
right=most 24=bits of data=namess and the calculations are in bina
regardless of the data=name declared type. Intermediate results a
in UPL machine registerss leaving the original contents of al
data=names unaltered. An assignment or replacement operator is
required to move the results of a calculation into a data=namee.

held

ust

ry
re
L

Data=names can have preceding (post=fix) unary operators to the right
of the arithmetic operators that are between (in=fix) the data=nanm

FIXED ARITHMETIC EXPRESSIONS.
Arithmetic operations in which both operands are of type FIXED alw
produce a type FIXED result. The maximum numbers are +2 raised to

23rd power

Values
Negative values are expressed in the complement notation of 2.

in excess of

these Limits have their high=order bit ignored

NON=FIXED ARITHMETIC EXPRESSICNS.
ALl arithmetic operations in which one or both of the operands are
of type FIXED are handled in a 24-=bit mode.

The operands are considered ‘as 24=bit unsigned positive numbers.
maximum value is 2
expression containing non=FIXED data results in a value greater th
2 raised to the 23rd power =1, and it is then assigned or replaced

3=6

raised to the 24th power (16,7775216). If an

€S

ays
the

=1 (+8,3885,607) and =2 raised to the 23rd power (=8,388,608).,

net

The

an
into

*

a FIXED data=names the result is a negative FIXED value. Use of the
unary minus sign (=) with a non=FIXED data=name converts all 24=bits to
2's complement notation. This value is not a negative number, but it
can add to other data=-names to produce the equivalent of subtraction.

RELATIONAL OR CONDITIONAL EXPRESSIONS.

A relational expression determines the truth cor falsity of a relation-
ship between data=names. The result of a relation test can be used to
control an IF statement or as an expression in further operations.

For example:

IF A EQL B THEN STMT.TRUE;
ELSE STMT.FALSE;

The relationship of equality is used to choose between the two
statements in the IF statement.

The relational test results in a single bit indicators called the
conditional=bit. Truth of the test sets this conditional=bit equal to
a1 (one)s, and falsity sets it equal to a 0 (zero).

Other operations utilizing the conditional=bit are allowed. For
exampler» X ¢= A EQL B> assigns X a value of binary 1 if A equals

B or a value of 0 if A is unequal to B. The statement X = (A LSS B) +
(A GTR B)? results in X = 0 only if A equals B. ‘

Relational comparisons are divided into three types:

a. A character=to=character comparison is left=aligned and bit=-
by=bits Therefore» B is greater than A because B is
hexadecimal C2 and A is hexadecimal Ci1. Shorter fields are
padded with space characters (hexadecimal 40).

b. A fixed=to=fixed comparison is left=aligned and a true
algebraic compare. That is» a =1 (negative one) is less than

a 0 (zerod.

c. All other combinations of data=types are right-aligned and
bit-by-bito ’

Any combination of operators can be included within a relational
expression. FfFor examples

IF (CA NEQ@ B) OR (CA * B) NEQ ZERC) + 1)
THEN +o47
ELSE oo’

The relational operators are as follows:

syobol Moemopicg Meaping

= EQL “equal to

NE@ not equal to

> GTR greater than

< LSS less than

2 GEQ greater than or equal to
< LEQ less than or equal to

LOGICAL EXPRESSIONS.

The logical operators perform a right=adjusted bit=by=bit combination
of their operands. All data types are operated upcnh in the same manner
for their full tength. The shorter of the two is padded on its left
with binary 0's. Notice that character=to=character logical opera=-
tions are performed in the same manner as all other combinations of
data types.

Table 3=1 illustrates the use of cach logical operatore.
Table 3-1

Logical Operator Usage

Variables Bit Configuration
IF X = 0 0 1 1
IF Y = 0 1 0 1
NOT X = 1 1 0 0
NOT Y = 1 0 1 0
X AND Y = 0 0 0 1
X OR Y = 0 1 1 1
X EXOR Y = 0 1 1 0

"Not" is considered a unary operator and may appear adjacent to any
other operator including itself.

FUNCTION EXPRESSIONS.
A function expression is a call upon a user=written function procedure
or upon one of the UPL=supplied functions as described in section 8.

3-8

. In either cases the function returns a term to be combined with other
terms to produce a result. The terms can be values or addresses.

Values can be operated upon directly as if they were literals to pro-
duce a results while addresses point to memory space that can then be
the source or destination of a value. That iss address=generating
functions differ from value functions because they can be the object of
an assignment or replacement operator.

For example:
A := LENGTH (x) 3

The LENGTH function returns a value equal to the number of units of X»
and this value is assigned to the data=name. The LENGTH function can
never appear to the left of an assignment or replacement operator.

The SUBBIT and SUBSTR functionss» howevers are address=generating
functions and can appear on either side of an assignment or replace~
ment operator. That is» SUBSTR(CARD»0,8); = SUBSTR(CARD»72,8); moves
the right=most eight characters of the data=name CARD to the left=most
eight character positions.,

NOTE
Data=name CARD is assumed to
be an 80=character card image.

The VALUE=generating functions in UPL are as follows:

SUBBIT BINARY
SUBSTR TIME
CONVERT DAY

LENGTH NAME OF DAY
DECIMAL BUMP

CASE DECREMENT

IFeee THEN.«ELSE
The ADDRESS=generating functions in UPL are as follows:

SUBBIT

SUBSTR

IFees THEN address generator ELSE address generator
CASEe++s0F (address=generating list)

The IFeoeTHEN e oeELSEees and CASE««.0F functions must contain address=
generating functions gply if they appear to the lLeft of an assignment or
replacement operator.

3=9

SECTION 4

STATEMENTS

GLNEBALS

Statements are the UPL equivalent of grammatical sentences. They con-
tain a complete sequence of operations (one complete idea) that is log-
ically separate from other similar sequences. While an expression
evaluation results in a numerical values statement evaluation specifies
functions or assignments for the values. Ffor examples the expression
A+B results in a numerical value; but the statement X := A + B} (read

X is replaced by A + B) assigns the value of the expression to data-
name X

Statements are always terminated by a semicolon.

Statemrents fall into three general classifications: declaration.
controls and assignment.

QECLABAIION.SIAIEMENIS,
Declaration statements relate memory space to data=names and their
attributes. They are described in detail in section S.

CONIBCL.SIATEMENIS,

Control statements determine the sequence in which statements are to be
executed. They pass control to proceduress bind groups of statements
together, or conditionally specify which one of several statements is
to be executed next.

PROCEDURE CALL STATEMENT.

The major control statement in UPL is the procedure=calling or invoking
statement. It consists of a procedure=name followed by any parameters
enclosed in parentheses and terminated by a semicolon. For example>
the procedure ABSs which requires one parameters would be invcked by
ABS (VALUE); .

There are three considerations governing the use of procedure=calling
statements. Firstr, a called procedure must be within the scope of the
calling procedure.

In lexic level termss, a called procedure must be:
a. One lower lexic level nested within the calling procedure»

be Not more than one lower lexic level within a currently invoked
procedure that itself is on an equal or higher lexic levels or

Ce A currently invoked procedure on an equal or higher Llexic
level.

Second» a called procedure glways returns control back to its calling
procedure. There is no GO TO statement in UPL. The programmer must»
therefore» structure the program logic to use this return=control
action. The immediately succeeding executable statement in the calling
procedure is executed when control is returned.

Thirds the called procedure must be of the proper class. There are two
classes of procedures in UPL. Ones which gges D@L pass back a value
when it returns controls, is referred to as a regular procedure; the
others which ggegg pass back a values» is referred to as a function
procedure. The function=procedure call is considered an expression,
not a statement. It is described in section 3.

DO STATEMENT.

Statements may be bound or grouped together by the DO0s» IFeeeTHENeoo
ELSE» or CASE» statements. The DO statement binds all following state-
ments to its matched END statement as if they were one statement. For

example:

DO SETA;

X = X415

A.PARM = ZERO:;

ROUTINE (X» A<PARM); (This is a procedure call
END SETA; with two parameters.)

Once a DO group is started it is completed. The individual statements
within the group cans howevers be any executable statements including
imbedded DD statements.,

DO FOREVER STATEMENT.

The DO FOREVER statement performs iterations of the statements within
the group until an UNDO statement is executed or control is returned
from the procedure in which the D0 FOREVER is imbedded. For example:

DO PRTN FOREVER:;

X $= X+1;

RCUTINE (X» AJPARM); {(procedure call)

IF X EQL 5 THEN UNDGO?; (test Limit)

IF X EQL 10 THEN RETURNS; (return from the current procedure)
END PRTN;

IF STATEMENT.

The conditional=expression within the IF statements when evaluated,»
designates which of two statements is to be executed. The DO group
statement is often used with the IF statement in order to execute a
set of statements conditionally. For example:

IF A+B GTR X THEN DO}’
A = A=1;
IF A EQL O THEN UNDO:3
RTNXYZ3
END;
ELSE DO’

o O >
e e 4
[vs)
‘oo

e L H o1

M > x
=z
1D oo os o0

After the chosen statement executess control passes beyond the end of
the IF statement.

CASE STATEMENT.

The CASE statement is an expanded form of the IF statement. The
evaluation of a conditional expression chooses one statement from among
all the following statements up to the END CASE statement for execution.
After that one statement is executedr, control passes to the first
statement beyond the END CASE statement.

CASE» DO» IF» and PROCEDURE invocations or assignment statements may be
imbedded in any of the above statements in any order and to any depth.

ASSIGNMENI.STAIEMENI.

The gggignuoepnt.statempent is the primary data=movement statement in UPL.
Truncation and padding are performed across the assignment operator and
are dependent upon the type and length attributes of the data=names as

given in the declaration statements.

SECTION S

DECLARATION STATEMENTS

GENERALS

Declaration statements specify memory allocation and data attributes or
link together portions of a program. They can also be compiler direc-
tory informations as in the DEFINE or FORWARD PROCEDURE statement.

This section describes each declaration statement in alphabetical
order. The format of each statement is as follows:

ae Purposee.

be Syntaxe.

c. Description.
de Examplese.

5=1

DECLARE

DECLABE.SIATIEMENI.
The DECLARE statement reserves memory space for data=-names and assigns
types lLengths and hierarchical attributes.

SYNTAX.
The syntactical structure of the DECLARF statement is as follows:

Normal Format

QECLABE C[RAGED) (page=size) data=name=1 [(array=size)] [BEMAE&

{EI&ED
data-name-?] CHARACIER (length) z
BII (length)

List Format

DECLABE (data=name=1 [{array=size])l

[[; data=name=?2 [Larray*size)]] ...])

CHABACIER (length) ¢ i

{ EIXED
BII (length)

Structured Format

S data-name-l[Larray-sizez]l
QECLABE tevel=number EILLEB j
| DUy

EIXED
[BEMABS data=name=2] ¢ CHABACIER Llength) » %
3II (lenath)

Dynamic Format

| CHABACIER (data=name-2) l
QECLABE QYNAMIC data=name=-1 <

:
| 81T (data=name=3) f

DECLARE
cont

DESCRIPTION.
DECLARE statements must appear at the beginning of the program or at
the beginning of a procedure.

The word DECLARE need not be repeated when commas separate repetitive
declarations. Repetitive declarations within one statement can mix
format types.

The most efficient code is generated if all data=names are declared in
one statement.

Data=name 1 is the name to be assigned memory space and attributes.
The data=name must begin with a letter; may contain letters, digits,
or dots; must not exceed 63 characterss and may not contain imbedded
blanks.

The PAGED option applies to arrays only. It allows the programmer to
specify the number of array elements to be contained in one page that
is in one segment. The page size must be a power of 2. The maximum
number of bits in a page (page size times bit length) is 655535. The
maximum number of characters in a page is 8191. PAGED arrays cannot
be part of a structure and cannot be remapped.

Page accessing is performed automatically during program execution.

Array=size specifies the number of elements in an array. Parentheses
are required. Arrays are not dimensional and begin at subscript 0
(zero). Array elements are referenced 0 through N=1 for an N element
array. The maximum array size is 65,535 elements. Maximum element
sizes are 65»535 bits or 8191 characters.

REMAPS re=assigns the memory space of data=name 2 to data=name 1. The
type (length) attributes apply to data=-name 1» but cannot exceed the
length in bits of data=name 2. Any data-names that have been declared
can be remappeds, including those that remap other data=names.

The type (length) attributes are as follows:

"as FIXED is a sign and a 23=bit binary integer.
bs CHARACTER is an 8=bit unit.
ce BIT is a 1=bit unit.

Detailed specifications regarding data types can be found in section 2.
The (length) specifies how many of the CHARACTER or BIT units to
assign. The maximum lengths are as follows: CHARACTERS 8191 and

BITS 655535,

The Llist format allows repetitive data=names all of the same type
(length). They can be of different array=size.

The structured format creates a hierarchy of data=names. The level~-

numbers assign positions in the structure. The 1 or 01 level must be
the first level in any structure. All higher numbers define Llower

5=3

DECLARE
cont

levels and reDECLARE the memory space of their higher levels. ALl
elements within a structure must contain level numbers. A maximum of
99 levels is allowed for one structure.

Any data=name that is further substructured is called a group data-name.
A data=name with no substructure is called an elementary data=name.
Elementary data=names must contain a type (length) specification. The
group data=names need not contain type (length) specifications. They
are assigned the type BIT by the cofipilers and their lLength is the sum
in bits of all the elementary data=names below them in the structure.

The word FILLER can be used to avcid naming portions of structures that
are not referenced. If the lower portion of any level in a structure
does not allocate all of its higher level» the compiler supplies a
FILLER. FILLER g¢appgel be used for group data-names.

The word DUMMY is used only with the REMAPS option. It is used to
avoid the naming of data=name 1. A DUMMY cannot remap another DUMMY.,
and it must have at least one non=FILLER data=name.

The maximum number of data elements within one structures including
FILLERs» DUMMYs, and implicit FILLERs» is 64.

Arrays are mapped as continuous areas of memory. If the array is part
of a structures its substructure re~allocates each of the array ele=
ments. That iss» the substructure array is not mapped into contiguous
areas of memory. Each subelement is implicitly an array and must be
addressed with subscripts. Structured arrays ggppef contain arrays as
subelements.,

The dynamic format allows simple data=names to be DECLARED with their
field lengths for calculation upon each occurrence of the declaration
at execution time. The dynamic format can be used only at lexic level
1 or greater. That is», it must be contained within some procedure.
Data=name 1 must be either of type BIT or CHARACTER and is assigned a
length in units of the binary value of data=name 2 or data=name 3.
Data=name 2 or data=name 2 must be DECLAREd, ke initialized,» and be
within scope before the procedure that contains the dynamic declaration
is invoked. Data=name 2 or data=name 3 can also be format declarations
within the procedure in which they appear in a dynamic decltaration.
Dynamic declarations cannot contain arrays or structure data=names.

Dynamic declarations can be remappeds but it is the programmer's
responsibility to ensure that the remapped declaration does not exceed
the length of the dynamic data=name. Unpredictable data results if
references are made beyond a dynamic data=name via the REMAPS
referencing technigue.

MOTE
There is no syntax check made for the
initialization of data=name 2 or
data=name 3.

DECLARE
cont

The scope of declarations is the same as the scope of the procedure

in which they are DECLAREd. That is», they are addressable in their
declaring procedure and in any nested procedures. They are not
addressable in any global procedures. This addressability is a result
of the execution=times memory=space allocations of declarations.

The execution allocation of memory space is entirely dependent upon the
execution sequence of procedures. When a procedure is entereds, memory
space is allocated for every data declaration in the procedure. When a
procedure is exiteds that is» a RETURN statement is executeds the
declaration memory space becomes available for re-assignment. Data-
names declared within a procedure ares therefore» available to the pro-
cedure and all of its nested procedures. They are unavailable to any
of its global procedures, that is» procedures in which it is nested.

Duplicate data=names can occur in different procedures at compile=time.
If the scope of the names overlapss the compiler references the name at
the Lower lexic level (within the nested procedure) within the over=
lapped area. A duplicate data=name within one procedure is a syntax
error.

Recursive invocation of a procedure results in a new memory=space
allocation for every data=name declared in the proceduree.

All data that is used as global data for the gptirce_program_musi be
completely DECLAREd before any other statement types. That iss they
must appear in the source program pgfore all nested procedures and
pefore any executable statement.

Class I reserved words cannot be used as data=names.

Class II reserved words can be used as data=names; buts, if used», they
lose their significance for the scope of the declaration. A warning
message appears on the print-out.

Class III reserved words can be used anywhere without confusion except
within the specific statement and position that requires them; for
examples PUNCH can be declared a data=name. PUNCH in the FILE state-
ment DEVICE portion refers to the I/0 device and not the data=name.
Class III reserved words may not be defined when used as reserved
wordse.

EXAMPLES.
Examples of the DECLARE statement are as follows:

Exapples Comoentis

DECLARE TAGA FIXEDs TAGA is a signed 23=bit binary
value. The sign is the most=
significant (left-most) bit.

DECLARE TAGB CHARACTER (1) TAGB is of type CHARACTER and
1=unit longe The type

DECLARE
cont

Exapoles

DECLARE TAGC BIT (17);

DECLARE TAGA FIXED.
TAGB CHARACTER (1)»
TAGC BIT (17)3;

DECLARE NAMES (12) CHARACTER {25);

DECLARE
01 CARD CHARACTER (80)»
02 INPUT CHARACTER (72);

DECLARE
01 TABLE«A CHARACTER (15)»
02 ITEM.1 CHARACTER (6)»
02 ITEM.2 CHARACTER (4)»
03 SUB.ITEM.2 FIXED>»
/* There is an implicit FILLER of
8 bits here */

02 ITEM.3 BIT (1),
02 ITEM.4 FIXED
02 ITEM.S5 BIT (7)
/* DECLARES may be continued with
appropriate commas */
01 TABLE.B BIT (200);

DECLARE CARDS CHARACTER (80)»
COLUMNS (80) REMAPS CARDS
CHARACTER (1)»
01 NUM.FIELDS (40) REMAPS
CARDS CHARACTER (2)»
02 FIRST.NUM CHARACTER
(1),
02 SECOND.NUM CHARACTER
(1)

Comoenis

CHARACTER 1is in 8=bit EBCDIC
formate.

TAGC is of type BIT and is 17
bits in lengthe.

Same as preceding examples
except it is a single state=
ment with the items separated
by commas.

NAMES is an array of 12 items
each with 25 characters per
item.

A FILLER of eight characters

"is automatically assigned by

the UPL Compiler to round off
the 02 level to its required
tength of 80 characters.

A table of five items that con=
sumes 15 bytes is DECLAREd.
Each item is explicitly named
in the structures and its type
and length are given. Also
DECLAREd is a second table of
200 bits.

The SUB.ITEM.2 further sub=
divides ITEM.2 and uses the
first (left=most) three char=
acters (24 bits)e The /*eeax/
is a comment.

An 80=column card is DECLAREd
and then remapped as an array
of 80 elementss, each element
of one character. The card is
again remapped as a #40=element
arrays each of two characters.
Each 2=character array element
is further subdivided into
separate elements that can be
referenced. Notice that
FIRST.NUM and SECOND.NUM must
be subscripted when they are
used and that 39 is the maxi-

Exapples

DECLARE (ITEM.1s» ITEM.2, ITEM.3)

FIXEDS

DECLARE
01 NEW.LABEL>
02 NL.1 CHARACTER (25)»
02 NL.2 (3) CHARACTER (25)>»
03 FILLER CHARACTER (5)»

03 FIRST CHARACTER (10)-»
03 SECOND CHARACTER
(10)»
02 NL.3 FIXED?;

DECLARE
01 A»
02 A1 (20) BIT (20),»
02 A2 (18) BIT (20)»
03 Bt BIT (15)»
03 B2 BIT (5)»
02 A3 (2) BIT (5);
DECLARE
01 TAGA (5) BIT (48)»

02 TAGB FIXED,
02 TAGC FIXED:

DECLARE
cont

Copments

mum value of the subscript.

A Llist of data=names is
DECLAREds all of type FIXED.

A group item NEWJ.LABEL is
DECLAREd» and the compiler
assigns it type BIT. It is
equal to the sum of the bits
of the 02 level below. ((25 +
3 * 25) « 8 + 24 = 824 bits)

NL.2 is an array of three ele~-
ments each 25 characters in
length. FILLER is used to
omit the naming of an area
that is never referenced sepa=
rately. FILLER can be used as
often as required without
causing a duplicate=name syn-
tax error. FIRST and SECOND
are 3=element subarrays of the
NL.2 array. They are refer-
enced with subscripts 0, 1»
and 2» for the firsts second»
and third elements. Each ele-
ment is 10 characters. NL.3
is a FIXED signed binary
number.

The data=names Al, A2, Bl» B2»
and A3 must atl be sub=
scripteds when useds because
of the explicitly declared
array=sizes specified for Al,
A2, and A3.

The length sum of data=names
Bl + B2 must be equal tos» or
less thans that specified for
data=name A2.

TAGA is mapped in a contig=
uous memory area to contain

the data developed for TAGB

and TAGC. TAGB and TAGC are
implicit S=unit arrayss, but are
pgt maoped contiguouslys. They
are mapped alternatingly as
follows: TAGBCO)» TAGCCO)>»

5=7

DECLARE
cont

Examoles

DECLARE PAGED (64) BIG.D.N,
BIT (1)}

Copments

TAGB(l)’ TAGC(I)’. . . .
TAGBC4)» TAGCC(C4).

BIG.DeNe is an array of 5000
elements, each of one bit.
The array is segmented into
64 parts. FEach part is
brought into memory, that is»
pageds Whenever it is
addressed. NoO special state=
ments are required to do the
paging.

DEFINE

QEEINE.STAIEMENTS

The DEFINE statement provides the capability of inserting multiple
copies of specified UPL source text from only one image of the source
text into a program during compilation.

SYNTAX.
The syntactical structure of the DEFINE statement is as follows:

DEEINE definition=name [(parameter=1 [, parameter=2l...)]

AS ¢ text [parameter-l [text parameter=2] ...] : 23

&

DESCRIPTION.

The data specified between the # sianss called the texts is paired

with the definition=name. When the definition=name appears in any sub=-
sequent location in the programs» the compiler replaces the definition-
name with the text. The text must conform to the syntactical
reguirements of the statements into which it is placed.

The DEFINE statement pyst appear within the declaration section of the
program or of a procedure. The scope of a DEFINE statement is the same
as the scope of any data=-names in that declaration section. That is»
the scope exists in its declaring procedure and all directly nested
procedures. Multiple DEFINEs can appear within one DEFINE statement
and must be separated by commas. DEFINE statements can be nested to a
depth of 12 levels. That is» the text can contain previously declared
definition=names. The compiler expands all nested DEFINE statements
into their appropriate text strings.

The text can contain any UPL symbol including semicolonss but it cannot
contain the # or % signs. The # sign is the text delimiter, and the ¥
sign indicates that the remainder of the card is a comment. The com=
ments signs /*...%/» can appear within a DEFINE statements but it is

not copied at invocation time. A maximum of 1024 characters can appear
in a DEFINE string, excluding comments and superfluous blanks. Alsos» no
unpaired bracketing symbols (() or [1) may appear within a define.

All data=names that are coded within the text must be DECLAREd prior to
an invocation of the definition=names but need not be DECLAREd prior to
the DEFINE statement.

Re-usages that is» duplication, of a definition=name on a lower lexic
tevel for any of the following names inhibits the substitution of the
text for the scope of the duplicate name. The names are as follows:

ae DECLARE namese.

b. PROCEDURE names.

Coe FORMAL names.

de. SEGMENT names.

€. DO group names.

fe. FILE» OPENs» WRITE, and CLOSE attributes.

5=9

DEFINE
cont

A duplicate name within scope and on the same lexic level is a syntax
error.

Duplicate definition=namess which can be encountered between lexico=
graphical levelss are resolved at compile=time by using the most cur-
rent name (on the highest level). When a lexicographical level is
exited (exit from.a procedurie)s» the names on the higher lexicographical
tevel are lost and can be re-used. Reserved words of class I cannot be
used as definition=names. A definition=name cans howevers define a
reserved word. Reserved words of class II can be used as definition=
namess but their special significance is lost within the scope of the
DEFINE statement.

The actual parameters associated with an occurrence of a definition~
name are not restricted to simple data=names. They can contain complex
constructss but must be delimited by O-level commass, that is», commas
not enclosed within paired parentheses or bracese.

The actual oarameters replace the format parameters in the DEFINE
statement in a left=to=right order» and their number must be equal.
The maximum number of parameters is limited to eight per definition=
name.

Conditional compile cards (cards with an & sign in column 1) may appear
as part of a DEFINE string. A $DETAIL compiler option card prints the
expansion of DEFINEs on the compiler print=out.

EXAMPLES.
Examples of the DEFINE statement are as follows:

Exapoles Comments

DEFINE REPEAT AS #ABC (TAGA, X) #; The source code contained
between the # signs of the
DEFINE statement is copied
into the UPL Program when=
ever the word REPEAT is
useds

IF X EQL 9 THEN REPEAT; This statement is equiva=
tent to IF X EQL 9 THEN ABC
(TAGA, X)3:

DEFINE CH AS # CHARACTER #» The source code generated
FX AS # FIXED # would be:
THEN DECLARE X CH (5)»
Y FX» Z CH(2); DECLARE X CHARACTER (5),
Y FIXED»
Z CHARACTER (2);
DEFINE TRIAL (A»B»C) AS This statement gererates
IF (A) EQL ZERQ THEN A := Bj; the following: IF (TAGA)
ELSE C #; EQL ZERO THEN TAGA := ABS

DEFINE T
F

DEFINE X
ABC

AS
AS

AS
AS

Exaoples

#te(1lie,
te(1)oe;

DEFINE MAX AS # & IF S1

A :=

X3

& ELSE A = Y3
& END #;

DEFINE A AS #IF X GTR 10 THEN

PROCX#»

C{M) AS #X :=
BUMP I (R

€z

DEFINE MAX.SIZE AS & IF DATACOMM

64
& ELSE

32
& END

M3 A
+ 8)

DEFINE
cont

Copmentis
(BX)5 ELSE CX := SQRF (BX);

The T and F become Boolean
bit strings of 1 or 0»
resoectively.

This statement causes an
error diagnostic at
compile=time when the com=
piler attempts to expand
either X or ABC into TEXT.

This whole statement is
avaitable to the compiler,
but only A t= X or A =Y
is compileds, depending on
the condition of the
conditional symbol S1. IF
the statement & SET S1 has
been encountereds A = X;
is used. IF S1 has not
been set or is resets, that
is» & RESET S1» then A := Y
is used.

This statement expands to
X ¢= Z3 BUMP I (R+S); IF X
GTR 10 THEN PROCX3:

I1f a conditional compile
card of & SET DATACOMM
appearss the DEFINE
MAXSIZE would result in
64. I1f the &SET does not
occur or if a &RESET
DATACOMM occurss, MAX.SIZE
is defined as 32.

FORMAL

EOBMAL.SIAIEMENI. '
The FORMAL statement is used to assign data attributes to the

parameter=name in the procedure head statement and the FORWARD
PROCEDURE statement.

SYNTAX.
The syntactical structure of the FORMAL statement is as follows:

Normal Format

EQRYAL data-name=1 i}
{array=size)
EOBMALLYALUE
YARYING
EIXEQ
VARYIUNG
CHABACIER
(length) H
YABYING
gLl
(length)

List Format

EQRMAL (data=name=1 [;,Zarray-sizezg] L data°name-2]
EQBMALYALVE
- YARYING
) 2 EIXED
. VABYING
(array=size)), I--- 2 CHARBACIER
- (lenath)
VARYING
817
(length))

fesr

DESCRIPTION. :
ALl of the data=names in the procedure head statement and FORWARD

PROCEDURE statement pysi be declared in the FURMAL statement. Only the

data=~names in the procedure head statement or a FORWARD PROCEDURE
statement may appear in a FORMAL statement.,

5=12

FORMAL
cont

The data=names in the procedure head or FORWARD PROCEDURE statements
should agree in type and length attributes with the actual data=names
that are passed at object=time. Run=time checking is performed only if
the compiler option $FORMAL CHECK is requested. No checking cccurs
during compilation. I1f checking is requested and a mismatch cccurs,
the program is terminated.

The names given in a FORWARD PROCEDURE statements howevers, need not
agree with their corresponding names in the procedure head statement.
The type and length attributes of the data=names in the FORWARD
PROCEDURE statement and the procedure head statement must agree.

Object=time adjustment of type and length attributes between the actual
parameters passed and the specified formal parameter data=name is
performed with the VARYING option or array=size with the * (asterisk)
option. Memory allocation is dependent on the actual parameters passed
during each invocation of the procedure.

The words FORMAL or FORMAL.VALUE can be omitted between repetitive
declarations when the declarations are separated by commas.

The type (length) attribute specification in the list format applies to
all the data=names in the immediately preceding list.

The FORMAL statement must appear immediately after the procedure head
statement or the FORWARD PROCEDURE statement. That is» the FORMAL
statement must appear before any local data declarations within a
proceduree.

Level numbers are not allowed in a FORMAL declaration.

Data=names that appear in a FORMAL statement can be remapped by local
data declarations. If they contain the VARYING or #* optionss a warning
message appears on the print-out. It is the programmer'®s responsi-
bility to ensure proper remapping.

The FORMAL.VALUE option causes the actual parameter always to be
passed=by=value.

EXAMPLES.
Examples of the FORMAL statement are as follows:

Examole Coppeot
PROCEDURE ABC (X» Y» Z)3 Procedure ABC has three
FORMAL X FIXED» Y CHARACTER parameters that must be declared
VARYING, Z (*) BIT FORMALlLy. X is a simple FIXED
VARYING data=name. Y is of type

CHARACTER. The length is cal=
culated on each call of the pro=
cedure. Z is an array of a vary=
ing number of elements of type

5=13

FORMAL
cont

Exapole

Comoment

BIT where each element is also
calculated on each call of the
procedure.

FORWARD PROCEDURE

EOBUABR.ERBACEQUBE.SIAIEMENI.
The FORWARD PROCEDURE statement declares a procedure=name as being

valid prior to the encountering by the compiler of the named procedure.

SYNTAX.
The syntactical structure of the FORWARD PROCEDURE statement is as
follows:

EQBWABD.EBQCEQUBE procedure=name

[gparameter-l [parameter=21 ...1]

Wa N |
VABYING
EIXED
wagxing L\
((CHABACIER | (length) :
VARYING
. BII {length) Jg

LS.

DESCRIPTION. :

The FORWARD PROCEDURE statement is the same ass and must conform to»s
the rules of the procedure head statement. It is», however» a declara=
tion statement and» as suchs must appear within a DECLARE section of a
procedure or of the programe.

The FORWARD PROCEDURE statement is a compiler control=statement, and
its presence does not eliminate the syntactical requirement of a pro=
cedure head statement. It resolves all forward address references for
a call to a procedure when the procedure has pgt vyet been seen by the
compilers This is necessary because UPL is a 1=pass compiler.

The FORWARD PROCEDURE statement must contain its named procedure within
scope. That is» the FORWARD PROCEDURE statement must be global to the
referenced procedure. The type (length) clause is used only with func=
tion procedures. It specifies the type and length of the value that is
returned when the function procedure passes back control. Use of the
VARYING option inhibits the checking of length or type and length of
the returned value.

When a FORWARD PROCEDURE statement contains a parameters» a FORMAL dec=-
laration statement must immediately follow with the same data=names as
those in the FORWARD PROCEDURE statement. The types and lengths of the
parameters that are used in the FCRMAL statement must correspond with
the types and lengths that are declared FORMALLly in the procedure. The
data="names» howevers, need not be the same.

FORWARD PROCEDURE
cont

EXAMPLES.
Examples of the FORWARD PROCEDURE statement are as follows:

Exaoples Comments

FORWARD PROCEDURE Xs Procedure X is being FORWARD
declared. It may be referenced
after this statement and before
the procedure is actually
encountered by the compiler.

FORWARD PROCEDURE ABS (H» I, J) Procedure ABS has three param=
BIT VARYINGS eters that are also declared
FORMAL (Hs I) FIXED, J» CHARACTER FORMALLl Y. The procedure is a
(4); function procedure that returns

a VARYING length bit=string.

EBROCEQUBE.SIAIEMENI,

PROCEDURE

The PROCEDURE statement is used to delineate a group of statements and
their data declarations. Alsos it provides a method whereby the group
can be executed from many places although the procedure appears only

once.

SYNTAX.
The syntactical structure of the PROCEDURE statement

is as follows:

PROCEDURE
cont

BROCEQUBE name=1 [(parameter=1

(2 parameter=2 «.¢.1 2]

r—

 EIXEQ
VABYING
CHARACIER

(length)

e

YABYING
{length)

YARYING

BII

.

[EoByaL +..z]
[DECLABE «--i]

[E0BHABD BBOCEQUBE -«-:]

point.)

ENR name=1;

EBOCEQURE name=n ...:

(Include executable

statements of procedure=n.)

B [EBOCEQUBE name=2 ...]
[coguaL «..z)
[oEcLese «--:]
[ognagn ...z
.ol
cosd
cei
END name=n;
point.)
END name-2;

o

(Include executable statements for PROCEDURE 2 at this

(Include executable statement for PROCEDURE 1 at this

PROCEDURE
cont

DESCRIPTION.
There are two classes of procedures that differ principally in manner
of invocation and in what they pass back to their invoking statements.

a. Regular procedures execute a set of code and RETURN control
back to the statement that fgollgowsg their calling statement.

b. Function procedures execute a set of code and RETURN control
and a value jptg their calling statement. The RETURNed
value is» thens, used instead of the function designator in the
calling statement. The statement evaluation is then
continued.

Procedures can be created by surrounding a body of self=contained
statements with a procedure head statement and an END statement. The
body is divided into two parts: firsts the declaration portion in
which atl local data-names and all nested procedures are DECLAREd;
seconds the executable portion containing all of the executable
statements of the procedure.

The procedure head statement consists of the following:

a. A name that is used to cause an invocation of the
procedure.

b A set of data=names that must agree in number with
the parameters actually passed.

ce A type (length) specification if the procedure is to
RETURN a value. (Only a function procedure RETURNs a value.)

d. A FORMAL data declaration to specify the type (length)
and array size of all parameters named in the procedure
head statement. These specifications shoulds therefores
also agree with those of the actual parameters that are
being passed.

At execution time» when a PROCEDURE statement is invokeds the declara=-
tion portion performs several functions. Formal declarations assign
attributes for all parameters specified in the procedure head state-
ment. Memory space assignment is made for all parameters passed=by=
value, and the current value is loaded. Parameters passed=by=-name use
the original memory spaces but are referenced with the name in the
FORMAL statement. Declared data=names are assigned memory space and
attribute characteristics. JInitial values are not loaded and must be
supplied by the programmer with executable statements. The possibility
exists that the procedure being invoked contains a data=name that is
the same as one that is contained in an already invoked procedure. For
example» procedure SQU can contain data=name X» and procedure ABS that
is being called can also contain data=name X. The duplicate names
problem is resolved across procedure bounds by making the most current
occurrence of the duplicate data=name availables» that is» data=name X
in procedure ABS. Data=name X in procedure SQU becomes available again
when procedure ABS executes a RETURN» that is» is exited. If no such

5=19

PROCEDURE
cont

duplicate data=name problem occurss all the data=names of each outer
procedures, within any nest of procedures, are available to all nested
procedures. For examples, if procedure SQU contains data=name N» and
procedure ABRS ‘does not contain-z similar data=names» and if procedure
ARS is nested within S¢Us» then any occurrence of data=name N in either
procedure refers to the same memory space.

The FORWARD PROCEDURE statement resolves the forward reference problem
for the UPL single-oass comoiler,

Nestedfbrocedures are part of the declaration portion of a procedures
but must appoear after all other types of declarations. They must be
completely defined before other nested procedures on the same lexic

level and before any executable statements in an outer procedure. That
is» procedures must not overlap.

NOTE
A new lexic level is created by nesting
a procedure. The limit is 15 lexic levels.

Executable statements are the operations that are performed when a
PROCEDURE statement is invoked. Any executable UPL statement may be
codeds» including procedure=calls and function procedure designators.

The scope of the procedure~name defines the range over which a
PROCEDURE can be invoked; therefores, a PROCEDURE can call itself
(recursion). The Llimit for recursion is proagram available memory

fcr aata declarations. PBReyond the Llimits, the MCP aborts the program
and dgenerates an error message. frocedure object code is maintained
outside the base and limit registers of the program and is re-entrant.

An END statement must contain the name of the PROCEDURE that it endsS.
A syntax check is performea to guarantee that the END statement is
placed properly.

Procedures can contain code segmentss but the procedure itself must
begin and end within the same segment.

The END statement of the procedures, if executedr» is ecuivalent to a
RETUEN statement. If the procedure is a function procedures that is»
a value is to be passed back into the invoking expressions the follow=
ing table shows what types and values are passed if the END statement
return is executed.

Ecoceduce-lxpezlongth Yalus:olengtd
BIT (length) Zero bits of the specified length
CHARACTER (ltength) jBlanks (hexadecimal 40) of the specified
‘length
FIXED Fixed 0 (zero)

Brocedure.lypezbLepath
BIT VARYING
CHARACTER VARYING

VARYING

EXAMPLES.

PRCCEDURE
cont

YaluezLepgth

Eight bits of 0 (zero)
One blank (hexadecimal 40)

Fixed 0 (zero)

Examples of the PROCEDURE statement are as follows:

Exapople

PROCEDURE SQUARE (N);
FORMAL N FIXED:
RETURN3;

END SQUARE3

PROCEDURE CUBE (A» B» CJ)3 .

FORMAL CA» B» C) FIXED;

PROCEDURE SQUARE (N);
FORMAL N FIXED:

IF A THEN RETURN;

.

END SQUARE?

IF B THEN RETURN:;
ELSE DO SQUARE (C);
RETURN?;
END;
END CUBE?

PROCEDURE ABSVAL (X) FIXED?
FORMAL X FIXED;
RETURN CIF X LSS O THEN = X
ELSE + X)3;
END ABSVAL?

Copment

Procedure=name SQUARE is called
from some point in a program.

A value for data=name (N) is
passed by the calling
statemente.

Two proceduress one nested
within the others, are declared.
The procedure SQUARE can be
invoked only from within the
procedure CUBE.

A function procedure returns
the absolute value of the
actual parameter passed. The
IF expression within the RETURN
statement passes back the posi-

5=21

PROCEDURE
cont

Exapole

PROCEDURE MSG CHARACTER (20);
DECLARE DATA CHARACTER (20)3
RETURN (ACCEPT DATA);

END MSG;

Comment

tive value of the parameter.

A function procedure accepts a
message from the conscle printer
and passes it back to its
invoking statement. Ffor
examples

IF SUBSTR(MSG, 0, 3) EQL
"YES™
THEN. oo
ELSEeoes?

SEGMENT

SEGMENT _STAIEMENI.
The SEGMENT statement divides program object code into overlayable

sections in order to reduce the run=time memory requirements
of the programe.

SYNTAX.
The syntactical structure of the SEGMENT statement is as follows:

SEGMENI (segment-name) ;

DESCRIPTION.
If no SEGMENT statements appears the whole program is one
resident segment. All segments are overlayable.

Segment names must begin with a letter and cannot contain more than 63
characters. If a program is to be SEGMENTeds, the first statement with-
in the program should be a SEGMENT statement. If the first SEGMENT
statement appears within the body of the programs everything up to apd
inpcludipg this segment is the first segment. A warning message

appears in the print=out.

Segments may themselves be grouped into pages (refer to SEGMENT.PAGE
statements page 5=25).

When unique segment=names are specifieds they imply that unique program
segments are to be created at compile=time from the point of insertion.
Non=unique names imply that a continuation of an already existing seg-
ment is to be continued and is to be gathered by the compilere.

Procedures and DO groups can extend into more than one sSegments, but
pust.begip_apnd.epd within the same segment. In generals for efficient
programmings procedure and DO groups should be completely contained
within the range of a single segment=name.

Certain statements in UPL contain subordinate statements. A SEGMENT
statement that immediately precedes a subordinate statement applies
only to the subordinate statement. The IFeeeTHEN.. .ELSE» CASE» READ>»
WRITE» and SPACE statements contain subordinate statements.

At run=times no UPL statements are required to access a non=resident ,
program segment. Such action is entirely the responsibility of the MCP.

NOTE
Array data=names can also be memory
partitioneds Refer to the PAGED
option in the DECLARE statemente.

EXAMPLES.
Examples describing the use of the SEGMENT statement are as follows:

SEGMENT
cont

Exaoele
SEGMENT (ONE);

ees (statements)

éééMENT (TW0)
::: (statements)
;ééMENT (THREE)
::: (statements)
éééMENT (TWO)
::: (statements)
éééMENT (FOUR)
::: (statements)
éEéMENT (TWO);
::: (statements)
gééMENT (FOUR)/
::: (statements)

SEGMENT (N);

CommeDi

First segment.

Second segment.

Third segment.

This segment is gathered with
the second segment.

Fourth segment.

This segment is gathered with the
second segments

This segment is gathered with the
fourth segment.

In the above exampler program control is not affected by the gathering

technique.

The advantages of using such a technique allow for

optimum use of memory allotmént at run=time.

IF TEST EQL OK THAN ABX :=
ELSE SEGMENT (ERROR);
D07 MARK.ERR;
RETURN;
END3;

4;

The statement following ELSE is in a
separate segment and is called in
when the data-name TEST does not
equal data=name 0OK. MARK.ERR is

a procedure call and should also

be in the segment ERROR.

SEGMENT JPAGE

SEGMENI +BAGE_SIAIEMENI.
The SEGMENT.PAGE statement allows program code dictionaries and the

corresponding code segments to be pageds thus reducing dictionary
memory requirements for programs with many segments.

SYNTAX.
The syntactical structure of the SEGMENT.PAGE statement is as follows:

SEGMENILBAGE segment-name (f page=name) ;}

DESCRIPTIOCN.

The segment=name specifies the name of a code segment to the compiler.
Non=unique names within a page are gathered. Segment-names must be
unique regardless of which pages contain them.

The SEGMENT statement can also occur in the source language» and the
effect depends upon the uniqueness of the segment=name.

Unique segment=names that follow a SEGMENT.PAGE statement are contained
in that page.

Two classes of non=unique segment=names are possible. One is the re-=
occurrence of a segment=name in the current page. The segments are
gathered within the page. The second is the re=occurrence of a
segment=name not in the current page. The current page is altered and
the segment is gathered properly. A following unique segment=name is
included with the new current page. A warning message also appears on
the print=out when the page is implicitly altered.

Sixty=four unique names are allowed in one page.

The page=name specifies the name of the segment=dictionary. Non=unique
names are a continuation of the existing dictionary. Sixteen unique
page=names are allowed. :

EXAMPLES. ;
Examples describing the use of the SEGMENT.PAGE statement are as

follows:

- Exaoele Comment

SEGMENT.PAGE (AA of ONE); A paged segment dictionary is created
. with one entry called ONE.

SEGMENT (BB); Page ONE contains segments AA and BB

. . while page TWO contains segments CC and

. DD. The re=occurrence of the SEGMENT
. (BB) statement changes the current page
. back to page ONE. The SEGMENT.PAGE (DD

5=25

SEGMENT.PAGE
cont

Exapole

SEGMENT.PAGE (CC of TW0)3

SEGMENT (DD);

*
.

SEGMENT (BB);

SEGMENT.PAGE (DD OF TWO)?

Comment

OF TW0) is therefore required to

the

DD segmente.

continue

‘USE

USE.QECLABAIION.SIAIEMENI.

The USE statement declares specific data=names in a defined
structure within a procedure.

SYNTAX.
The syntactical structure of the USE statement is as follows:

USE (data=name=1[[» data=-name=2l...1) QFE data=name=3;

DESCRIPTION.,

The USE statement allows the programmer to declare only those data-
names desired within a structured list of data=names. The compiler
generates FILLER wherever necessary to complete the structure. This
results in more rapid procedure entrance and less memory utiliz=
ation than if the whole structure were declared upon each entrance
to the procedure.

The USE statement must appear within a procedure. That is» it may not
be used on lexic level 0.

The structure being referenced must have as its 01 level a DUMMY
REMAPS declarer, must not contain arrayss and must be contained within a
DEFINE statement.,

The DEFINE statement may contain only the one structure.

EXAMPLES.
Examples describing the use of the USE statement are as follows:

Examole Copment

DECLARE PPB BIT (1440); The space to be
remappede.

DEFINE PPB. DEC AS # The DEFINE for
the USE statement.

DECLARE 01 DUMMY REMAPS PP3-» The required
DUMMY 01 level.

02 PROG.NAME CHARACTER (10)» Remaps and the
layout of memory
spare.

02 PROG.DATA.DICT BIT (112)»

02 PROG.SEC.DICT BIT.(C112)>»

02 PROG.SORT.SPAD BIT (28) #;

USE
cont

Exaoole

PROCEDURE GET.DICT;

USE (PROG.DATA.DICT,
PROG.SEC»,DICT)

OF PPB.DECS

Copoent

The PROCEDURE in
which the USE
statement appears.,

Only two memory
spaces are allo-
cated as address=-
able. The rest
of the data=name
PPB is considered
FILLER.

SECTION 6

EXECUTABLE STATEMENTS

GENEEBAL S
Executable statements perform the data transformations and the

decision=making functions of a UPL Program.

Executable statements are given in alphabetical order. The format of
each statement is described in the following order:

Qe Purpose.

be Syntaxe.

c. Description.
de Example.

ARRAY PAGE TYPE

ABRBAY.BAGE.IYBE_SIATEMEN]I.
The array page type statement specifies whether a page need be written
to disk when it is no longer needed in memory.

SYNTAX.

The array page type statement syntax is as follows:
MAKE.BEARLONLY (paged=array=name> page=number ()
MAKE2BEAQRaHWBIIE expression

DESCRIPTION.

ALl paged arrays are originaltly read/write. A page can be made read-
only after it has been initialized. It is then not written to disk
each time» and it is no longer required in memory. It can be made
read/write again with the MAKE.READ.WRITE statement.

Paged=array=name must be an array that has been declared PAGED.

Page=number=expression must nesult in a valid number from 0 to N=-1 for
an N page array. It is the programmer®'s responsibility to calculate
the number of each page being specified in the array page type
statemente.

ASSIGNMENT

ASSIGNMENI.SIAIEMENI.

The assignment statement is used to assign the value of an expression
to a specified data=name.

SYNTAX.
The syntactical structure of the assignment statement is as follows:

literal

data=name=2

A

data=name=1

..
i

expression=1

Function Designator

literal

data=name=3
operator ¢ o o
expression=2

foo

Function Designator _

DESCRIPTION.
The characters := (colons, equal) and =« (left arrow) are called the
assignment symbols and are read "is replaced by."

The value of the total expression to the right of the assignment symbol
is assigned to data=name 1.

A data=name must have been previously declared before it can be used.
Fach data=name may be of different type (length) across the assignment
symbol with justification and alignment as follows:

Reclacation.lypes Comments

FIXED to FIXED No change occurs.
CHARACTER to CHARACTER Data is left=justified with least~

significant truncation or space
(hexadecimal 40) fill.

All others Data is right=justified with most~-
significant truncation or zero fill.

The optional operator clause implies one of the following entriess
which are in order of precedence:

ASSIGNMENT
cont

“Qeecatoc

t= or - }
1= or ! -

(Y3

LSS or <
LEQ or £
EQL or =
GTR or >
GEQ or 2
NEQ or #
NOT

AND

EXOR

OR

CAT

e

“ W
]

o]

(o] -3
-

.9 *
*

N— o~

- locpents
Replace and éelete left part.
Replace and éelete cight part.
Must be higher than any operator to its
right and lower than any operator to its
left. ?
Unary plus.
Unary minus.é
Multiplications
Division. |
Addition.
Subtraction.:
Less than.
Less than or:equal to.
Equal to.
Greater thani
Greater thangor equal to.
Not equal to;
Explicit NDTélogic.
Explicit AND logics
Explicit EXciusﬁve OR logic.
Explicit OR 1ogic0
Concatenate@
Provides the remainder of division.
Replace delete left part.
Replace delefe right part.
Must be higher than any operator to its

right and lower than any operator to its .
left. i

ASSIGNMENT
cont

A data=name or an address=generating function (refer to SUBSTRs, page
8=25) puyst appear to the left of replacement operators within an
expression in the assignment statement. A data-name» however, may be
the otject of another replacement operator in the expressions such as

A := B + X = C3 or A(CI) =1 := Bjs. Any assigned data=name is altered
only from its points of assignment in a left=to=right order. Any pre=
vious reference to the data=name to the left within the overall state=
ment retains its prior values» and any other reference to the right uses
the newly assigned value. = '

The replacement operator (::= or :<) is similar in function to the
usual assignment symbol, t= or «. The two differences are: first,
that the replacement operator pysi be used within an expressions and»
seconds that the address of the data=name to be used with the next term
during expression evaluation is the data=name to the left of the
operator.

The unary operators (+» =» NOT) may be used to the right of any other
operatore.

A semicolon terminates the assignment statement.

EXAMPLES.
Examples describing the use of the assignment statement are as follows:

Exaoples Comments

TAGB> Data=name TAGA is replaced by
the value contained in data-
name TAGB.

TAGA

e(4)Ccle; TAGA is replaced by a hexa=
decimal bit string. The bit
string is an EBCDIC A.

TAGA

A+ B =C*E/ F + Data=name TAGA is replaced by
(4 « (A = B) /7 (B = C)); the derived value of the given
expression at object run=time.

TAGA

e

TAGB $= TAGC := 03 The entire set of data=names
is set to 0 (zero) at object run-=
time.

TAGA

.o

In the following example DECLARE Al FIXED» Bl CHARACTER (2)» C1 BIT
(4):

Exameles Cooments
Al := Bl = Cl1 = 03 All data=names are set to 0.

6=5

ASSIGNMENT

Commenis

All data=names now contain a value of
binary 7 (00...0111).

The "7" entry denotes an 8=bit (byte)
representation of the value of a
numeric 73 therefores Bl contains F740,
or 63,296 in binary.

NOTE

There is no intrinsic conversion
between data typese. The CONV function
must be used if conversion is desired.

cont
Exameles
Step 2.
Al := Bl = C1 = 73
Step 3.
Al := Bl = "7w;
Step 4.
Al = 255;
Bl = “AA";
Step 5.
B1T = Al;
Step 6.
C1 := Bl
Step 7.
B1 := C1;
Step 8. ;
Bl := C1 CAT C1 CAT C1
CAT C1:; '
In the

Al now contains the binary value
C0...11111111» and B1 contairs the
hexadecimal equivalent of the
characters AA (C1 C1)» binary
1100000111000001.

Bl now contains the hexadeciral value
of O0FF» binary 00...00011111111.,

C1 now contains the hexadecimal value
cof F» binary 1111.

B1 now contains the hexadecimal value
cf 000F» binary 0000000000001111.

Bl now contains the hexadecimal value
cf FFFF» binary 1111111111111111.

following example DECLARE AA (10) FIXED, BB FIXED:

NOTE

AA (10) is a 10-element array.

Step

Step

Step
Step

Step

Step

Step

Step

Step

“Step

Examoles
1.
BB := 53
2.
AA (BB) := BB := 33
3.
BB := 53
4,
AA (BB) := 3;
Se
BB := 3;
6o
Al := BB LSS CC;
7
Al := (BB LSS CC) +
(BB GTR CC);
8
DECLARE (A1, BB» CC» DD) FIXED?
BB := 53
CC = 63
DD = 7
9.
Al := BB := CC + DD’
10
Al := (BB := CC) + DD;

ASSTIGNMENT
cont

Coompents

Set BB equal to 5 (00...101).

Save the address of AA (BB) or

AA(5). Set BB = 3. Then use
the address AA(5) and set it
equal to 3»

The above two statements are

equivalent to steps 3, 4»

and S.

Set data=name BB equal to 5»
thens

Set data=-name AA(S) equal to
3> thens

Set data=name BB equal to 3.

If the condition where BB is
less than CC is TRUE» then Al
is assigned 13 if the condi=-
tion is FALSE» then Al is
assioned 0.

If the content of data=name BB
egyals the content of data-
name CC» then Al is assigned
05 otherwises» Al is assigned
1.

These three could have been
written as follows:

DD ¢= 1 + CC := 1 + BB := 5;

A1l and BB are both equal to
13,

Al equals 13 and BB equals 6.

6=7

ASSIGNMENT
cont

The following two examples use the delete left replacement operator.

Examoles

DECLARE (AA»CC) CHARACTER (2)»

BIT (4);
AA = BB = CC 3= "6";

>
.
1}
>
>
+
ve]
se}
.o
1]
[e)
Ne

BB

Coomments

CHARACTER data=name CC is
replaced by the value of the
CHARACTER literal 6. Data=-
name CC contains hexadecimal
F640; and the CHARACTER data-
name CC is deleted (left
part)s and data=name BB is
replaced by the value of the
CHARACTER Literal 6. Data-
name BB contains hexadecimal
6« The RIT data=name BB is
deleted (teft part)s, and the
CHARACTER data=name AA is
assigned the value of the
literal 6. Data=name AA
contains hexadecimal F640.

Data=name BB is replaced by
the literal 6. Data=name BB
is deleteds» and the literal 6
is added to data=name AA. The
sum is then assigned to data=-
name X,

The following four examples use the delete right part replacement

operator.

Exapples
AA = BB ::= CC 2tz "6";

Comments

The CHARACTER data=name CC is
replaced by the value of the
CHARACTER Lliteral 6. Data-
name CC contains hexadecimal
Fé640. The CHARACTER Literal
is deleted (right part), and
BIT data=name BB is replaced
by the value of CHARACTER
data=name CC. Data-name BB
contains hexadecimal 0. The
replacement is type CHARACTER
to BIT. Data=name CC 1is
deleted (right part), and
CHARACTER data=name AA is
assigned the value of data-

Exapples
X t= AA + BB ::= 63

PROCEDURE SQRF (X) FIXED3
FORMAL X BIT (4);
AA := SQRF (BB 3= CC)

ASSIGNMENT
cont

Commentis

name BB. Data=name AA
contains hexadecimal 0000.

Data=name BB is replaced by
the Lliteral 6. The Lliteral 6
is deleted» and data=name BB
is added to data=name AA. The
sum is assigned to data=name
X‘

The delete=right=part is used
in the procedure call to force
the type and length of the
parameter to agree with the
type and length in the FORMAL
statement of the PROCEDURE.

This is a syntax error because
(AA + BB) is not a data~name
or an address~generating
expression. It is a value-=
generating expression.

The following eight examples describe the event order in assignment

statementse.

Exaooles

DECLARE (A» B» C) FIXED;
A t= B = C = 0

Commenis

A> B» and C are all equal to
0+ The order of events is

as follows: C is replaced by
0» C is deleteds B is replaced
by 0» B is deleted, A is
assigned 0» and the statement
is completed.

A equals 2» B equals 1» and C
equals 0. The order of events
is: C is replaced by 0, C

is deleteds 1 is added to O»s
and B is replaced by the sum.
Thens B is deleted» 1 is added
to the sums A is assigned the
results and the statement 1is
completede.

The undertined parts are syn=

6=9

ASSIGNMENT
cont

B>
1
floo
oo
(11}
]
o
')
i}

Exanples

.
"
e
..
"

‘oe

e
1]
..
.o

oo
e
[R1}
..
(1]
.o

Commentis

tax errors. A literal may not
be the object of a replacement
operator.

The order of events is as
follows: C is replaced by

0 C is deletedr» B is replaced
by 0» 0 is deleted (this is a
replace delete right part
operator), A is assigned the
resultt. As» B» and C allt equal
(1

Syntax error. The assignment
operator must be a delete=
left=part.

The cocrder of events is as
follows: C is replaced hy

0» 0 is deleteds B is replaced
by C» B is deleteds 1 is added
to C» and the sum is assigned
to A. A now equals 1» and B
equals C» which equals 0.

The order of events is as
follows: C is replaced by

0» C is deleteds 1 is added to
0» B is replaced by this sum»
the sum is deleteds 1 is added
to B» and this sum is assigned
to A. A= 2, B =1 C = 0.

Syntax error. A literal may
not be the object of a
replacement operator.

BUMEB.SIAIEMENI.

BUMP

The BUMP statement is used to increment the contents of a data=name by

a value.

SYNTAX.
The syntactical structure of the BUMP

statement is as follows:

data=name=1 BY

uMe

data=name=2

expression

e

DESCRIPTION.

Data=name 1 is incremented by the binary value of data=name 2 or the

expressions and the sum is assigned t

NOTE

The sum is calculated on the low=order 24
bits of data=name 1» and any bits to the

0 data=name 1.

left are zero filled by the assignment

operation.
If the BY option is omitted, a value
The BUMP may also appear within an ex

EXAMPLES.

of binary 1 is assumed.

pression.

Examples describing the use of the BUMP statement are as follows:

Exaooles Compents
BUMP X3 Add 1 to X.
BUMP X BY 4; Add 4 to X.
BUMP X BY Z; Add the value of Z to X.
A := BUMP X BY Z; Add the value of Z to X and assign the
zzt:f to X« Then assign the value of X

IF (BUMP X BY Z) EQL ZERO

Add the value of Z to X»

assign the

THENeoos
ELSEeee’

BUMP A BY B := C3

value to X» and then perform the
comparison.

Assign the value of C to B and then
add the value of C to A. Notice that
C is added to A because of the
replacement delete left part operator.

Replace B by the value of C» delete B»
add C to A, and assign the value to A

6=11

BUMP

cont
Exaroles CommeDis
and to X.
PROC.B (BUMP X); Data=name X is bumped by 1 and then
passed by name to procedure PRCOC.B.
PROC.B ((BUMP X)); ' The same as above except the pass is by

value because of the extra set of
parentheses.

CASE

CASE_STATEMENI.
The CASE statement selectively executes onty one statement within the
CASE group of statements.

SYNTAX.
The syntactical structure of the CASE statement is as follows:

data=~name

CASE 2 | :

conditional=expression

statement
[statement z
[statement]g

*

[state;ent]z

* o0

EuD casts

DESCRIPTION.

At execution time the data=name or conditional expression is valued as
a binary. This value is used as a selector to choose from among the
statements in the CASE groups, such as a value of 2 selects the third
statement. The statements in the group are numbered from 0 to

N=1 for N statements. A negative value or a vatue greater than the
number of statements in the CASE group causes an execution=time error.

ALl valid UPL statementss including nested CASE statementss, DO=group
statements, and IFeeeTHEN.«.ELSE statementss are allowed and are
counted as single statements.

After the selected statement has completed executions, program control
passes to the statement immediately following the END CASE statement.

Null statements (refer to page 6=37) may be used to satisfy statement
positions where no=operation condition is desired.

If a CASE statement is imbedded in a DO=-groups then the execution of an
UNDO statement terminates the DO=group and control passes to the end
of the DO=group.

If a CASE statement is imbedded in a procedures the execution of a
RETURN statement (refer to page 6=40) passes control back to the state-
ment that invoked the procedure.

CASE
cont

HOTE

There exists an expression form of the
CASE statement that has a different

syntax

and produces a different result

(refer to page 8=4).

EXAMPLES.

Examples describinag the use of the CASE statement are as follows:

Examoles

CASE X3
PROA
PROB
PROC
END CASE;

CASE (A *+ B) MOD 23
DO
IF X
X :
END
CASE X7
PROK
PROL

THEN UNDO
X + 53

END CASE;
END CASE?;

Compents

The value of X determines which procedure is
calleds X may vary in value from ¢ through
2 If it is greater than the number of
statements in the CASE statements then a
run=time interrupt occurse.

The value of the expression is used to
choose the statement to execute. A DO
statement or a CASE statement is considered
as one statement.

CHANGE

CHANGE.STAIEMENT.
The CHANGE statement is used to dynamically alter the attributes of a
file during program execution.

SYNTAX.
The syntactical structure of the CHANGE statement is as follows:

CHANGE internal=file=name IQ (dynamic file attribute

{[g dynamic file attribute 1 «¢+ 1) ¢

DESCRIPTION.

The CHANGE statement alters the attributes associated with a file. Any
attritutes declared in a FILE statement can be changed. The changes
become effective when the file is OPENed. 1If the file is OPEN when the
CHANGE statement is executeds it must be CLOSEd and re=0OPENed to effect
the changes.

Attributes not changed remain as originally declared.

NOTE
Refer to the FILE statement (page 7=7) for
the default attributes associated with each
device type.

DYNAMIC ATTRIBUTES. ,
The syntax for each of the dynamic attributes is as follows:

MULTI.FILE.ID

MULIILEILEsID 2= expression

The expression is concatenated with a 10=character string of EBCDIC
blanks with the expression on the left. The left=-most 80 bits (10
characters) then become the MULTI.FILE.ID.

If the expression is a bit=stringr» it will be left justified and right
padded with spaces.

Exapmeles.
Examples describing the use of the MULTILFILE.ID attribute are as
follows:

Exaopeles Comments

MULTI.FILE.ID := "MASTER" The MULTI.FILE.ID is changed to
"MASTER e

MULTI.FILE.ID := @(4)FFF® The MULTILFILE.ID is changed to the hexa=-
decimal string €(4)FFF404040404040404048,

6=15

CHANGE

cont
Lxapeles Copments
"Notice that this name could not be
entered from the console printer (SP0):
and this file cannots therefores», be
accessed by any SPO command.
FILE.ID

EILEsID := expression

The expression is handled the same as the MULTI.FILE.ID expression.

Exaoples '
An example describing the use of the FILE.ID attribute is as follows:

Exagale : Comment
FILE.ID := "PAYROLL" The FILE.ID is now "PAYROLL v,

LABEL.TYPE

BUBBOUGHS
LABEL.IYBE := < ANSI
UNLABELED

DEVICE

DEVYICE := expressioﬁ

Where the expression must result in a bit=string of 10 bits» the hard=
ware type (refer to the table below) is the Low=order (right=-most) six
bits and the variant is the high=crder (left=most) four bits.

The devicesr hardware types ahd variants are as follows:

Qevice
Invalid

96=Column Punch

80=Column Punch

96=Column Reader/Punch
96=Column MFCU

96~Column Reader/Punch/Printer
Paper Tape Punch

Paper Tape Reader

Printer

Invalid

Read=Sorter

Any Head per Track Disk (1A»1C»2B)
Head per Track Disk (1A,1C)

Head per Track Disk (2B)

Only Disk Cartridge

Hardware
-=l¥BE..
0
1

2

10

12
13

14

c

CHANGE

ont

Yaciants

Same as Printer

Same as Printer

Same

Same

Same

Same

Backup

Backup

Backup

Backup

tape
tape
disk

tape

or disk

or disk

Hardware cnly

Backup tape only

Backup disk only

Backup tape or disk

only

Forms (Forms may be
requested along
with any of the
aboves

as

as

as

as

any

any

any

any

0=7.)

disk
disk
disk

disk

CHANGE
cont

Only Disk Pack

Disk Pack or Cartridge
Any Disk

96=Column Punch/Printer
96=Column Reader
Invalid

80=Column Reader
Console Printer (SP0)
Invalid

9=Track Tape (NRZ)
7=Track Tape (NRZ)
9=Track Tape (PE)
7=Track Tape Cluster
9=Track Tape Cluster
9-Track Tape

7=Track Tape

Any Magnetic Tape

PARITY.

PARITY := expressiom

The low=order bit of expression is
1 is EVEN. ~

TRANSLATION.

15 Same as any disk

16 Same as any disk

Serial
Random

17 0
1

18
19
20
21
22
23
24
25
26
27
28
29
30

31

interpreted as follows:

IBANSLAIIQN := expression

0

is 0DD»

CHANGE
cont

The low=order three bits of expression are interpreted as follows:
000 is EBCDIC» 00t is ASCII» and €10 is BCL.

BUFFERS

BUEEERS := expression

The low=order 24 bits of expression are interpreted as a positive
number representing the number of buffers.

LOCK

LOQCK := expression

The low=order bit of expression is interpreted as follows: O is NOT
LOCKed» and 1 is LOCKed.

OPTIONAL

OQPIICUNAL := expression

The lLow=order bit of expression is interpreted as follows: 0 indicates

that a file must be present, and 1 indicates that a file is optional.

VARTIABLE

VARIABLE := expression

The low=order bit of expression is interpreted as follows: 0 is fixed
tengths and 1 is variable length.

SAVE

SAYE := expression

The low=order 24 bits of expression are interpreted as a positive
number representing the number of days this file is to be saved.

RECORD.SIZE

BECOBDRLSIZE := expression

CHANGE
cont

The low=order 24 bits of expression are interpreted as a positive
number representing the number of characters in a record.

RECORDS.PER.BLGCK

BECOBQSLBEBLBLOCK := expression

The low=order 24 bits of expression are interpreted as a positive
number representing the number of records in a physical block.

REEL

BEEL := expression

The lLow=order 24 bits of expression are interpreted as a positive
number representing the number of reels of tape for this file.

NUMBER.OF.AREAS

NUMBEBAQELABEAS := expression

The low=order 24 bits of expressicn are interpreted as a positive
number representing the maximum number of disk areas that can be opened
for this file.

BLOCKS.PER.AREA

BLOCKS2BEBaAREA := expression

The low=order 24 bits of expression are interpreted as a positive
number representing the number of blocks of records in a disk area for
this file.

PACK.ID

PACKLID := expressioh

The expression is interpreted as the 10=character PACK.ID. It is
handled the same as MULTI.FILE.ID.

SINGLE«PACK

SINGLE.BACK := expression

CHANGE
cont

The lLow=order bit of expression is interpreted as follows: O is NO»
and 1 is YES. The YES requires the file to be contained on one

removable disk device.

ALL.AREAS.AT.OPEN

ALLLABEAS:AIL0QBEN := expression

The low=order bit of expression is interpreted as
1 is YES. The YES reqgquires all areas of the file
file=open time.

AREA.BY.CYLINDER

ABEALBY.CYLINDEB := expression

The low=order bit of expression is interpreted as
1 is YES. The YES requires each area of the file
cylinder boundary.

EU.SPECIAL

EULSBECIAL := expression

f

follows: 0 is NO»
to be allocated at

follows: O is NO»
to begin on a

The low=order 24 bits of expression are interpreted as a positive

number representing the Llectronic UYnit (EU) of a head=per=track disk

or the system drive number of a removable disk upon which the first

disk area of this file is located.

EU.INCREMENTED

EULINCBEMENIEDQ := expression

The lLow=order 24 bits of expression are interpreted as a positive
number representing the increment to be added to the current EU or
drive number for the location of the next disk area associated with

this file. When the drive requested exceeds the number of reads=per-=
track EU's or the number of system drivess the next area

the EU.SPECIAL drivee.

is opened on

and

and

CHANGE
cont

USE«INPUT.BLOCKING.

USEaIUBVUILBLOCKIUG

Specifies the record and block size are to be taken from the disk file
header record. '

SReSTATIONS

SB2SIAIION = expression

Specifies which read station(s) is (are) to be used cn a sorter reader
file- :

END.OF«PAGE ACTION.

END.OE.EAGE.ACIION

Specifies the ON FAF statement is to be executed at the end of a page
(channel 12) on the printer.

EXAMPLES.
Examples describing the use of the CHANGE statement with its various
attributes are as follows:

Lxaoples Compents

CHANGE ING.FILE TO (IN.FILE is changed to DISK,
DEVICE := @(2)00101¢€, SERIAL, test/DISK» with four
MULTI.FILE.ID 3= "TEST"» BUFFERS, to be LOCKed» a record
FILE.ID = "DISK",! size of one disk segments, one
RUFFERS = 4, full track per block with eight
LOCK = (1)@, areass two blocks per areas each
RECLCRD.SIZE := 180> new area at the beginning of a
RECORDS.PER.BLOCK 2= 32 cylinders starting on drive 0 for
NUMBER.CF.AREAS = &, the first area with each ,
BLOCKS.PER.AREA = 2, additional area on a new drivee.
AREA.BY.CYLINDER = 1.
SINGLELPACK = 15
EULSPECIAL := 0>
EULINCREMENTED

= 1»

)’

CLEAR

CLEAB.SIAIEMENI.

The CLEAR statement sets a data=name to a standard UPL=defined value.

SYNTAX.
The syntactical structure of the CLEAR statement is as follows:

CLEAR data=name -[[data=name=2] 2 o=] H

DESCRIPTION. |
Data=names that are to be CLEARed must be arrays. The entire array is
CLEARed. Paged arrayss» howevers, cannot be CLEARed.

Multiple data=names can be specified and gust be separated by commas.
A data=name DECLAREd as beiﬁg type CHARACTER is CLEARed to spaces
(hexadecimal 40)s. All other types are CLEARed to binary 0's.

Paged arrays may not be CLEARed.

A semicolon must terminate the CLEAR statement.

CONDITIONAL INCLUSION

CONDITICNAL.INCLUSION.SIAIEMENT.
The ccnditional inclusion statement conditionally includes UPL source
code during compilation. :

SYNTAX.

The syntactical structure of the conditional inclusion statement is as
follows:

N0

8§ IE [NQI) symbol=name [»[%
B

% [NDOT] symbol=name=2] ee s]

UPL=source statements

[§ ELSE UPL=source statements])

§ END

DESCRIPTICN.

The truth or falsity of the logical combination of the symbol=names
determines the UPL=source statements that are included for compilation.
If the result is trues, the immediately following UPL statements are com=
pileds If the result is false and the & ELSE portion existss, the UPL
statements following the & ELSE are compileds The & END statement
terminates the conditional inclusion statement.

The conditional inclusion statement is an UPL source language statement
and cans, therefore, be nested. Nested conditional inclusions cannot
overlaps that is» each is matched with the most recent unmatched & IF
statement. ‘

EXAMPLES.

Examples describing the use of the conditional inclusion statement are
as follows:

Examoles Comments

& SET SW1 SW2 SW3 The following statements are
compiled into the program:

& RESET SW4 SWS DECLARE (A»BsCsDsE»FsGsH) FIXED;
C = D3

DECLARE (A»B»CsDsEsF»GsrH) FIXEDS E := F;
F ¢= Gs

& IF SHKS G 2= H;

A = B;

& IF SW1

6=24

ELSE

IF SW4

Examples

CONDITIONAL INCLUSION
cont

Copments

CONDITIONAL PAGE

CONRIIIONAL.BAGE_SIAIEMENI.
The ccnditional page statement skips to the top of the next page on the
cempiler print=out.

SYNTAX.

The syntactical structure of the conditional page statement is as
follows:

§ BAGE

DESCRIPTION. ‘
The conditional page statement is used with other conditional
statements to control the compiler print=-out.

The & (ampersand) must be in column 1. No semicolon is required at the
end of the conditional page statement.

CONDITIONAL SYMBOL

CONDITIONAL.SYMBOL.SIAIEMENTI.
The conditional symbol statement defines and sets or resets symbols
used in the conditional compiler statement.

SYNTAX.
The syntactical structure of the ccnditional symbol statement is as
follows:

\ sex

& 1 BESEL

symbol=name=1 [[symbol-name-Zl ...]

DESCRIPTION.

The conditional symbol statement can appear anywhere in the UPL source
language. The first occurrence of a symbol=name creates the symbol=
name and allows any following conditional compiler statements to test
its status (set or reset).

Symbol=names can be duplicates of data=names without causing syntax
errors.

The scope of a symbol=name is from the first conditional symbol state=-
ment in which it occurs to the end of the input source code. That is»
it can be referenced by any following statement without regard to
lexic level boundaries.

The conditional symbol statement must contain an & (ampersand) in
column 1 and be wholly contained in one card.e Columns 72 through 80
of the card are for the sequence number. '

NOTE
The semicolon is not part of the
conditional symbol statement.

EXAMPLES.
Examples describing the use of the conditional symbol statement are as
follows: .

Examoles Copments
& SET A Set symbol=name A.

& SET A B C Set symbol=names A, B,band C.
& RESET B Reset symbol=name B.

DECREMENT

QECREMENI_SIAIEMENIS ,
The DECREMENT statement is used to decrease the contents of a data=name
by a value. '

SYNTAX.
The syntactical structure of the DECREMENT statement is as follows:

data=name=2

QECREMENI data=name=1 | BY

oo

expression

DESCRIPTION.

Data=name 1 is DECREMENTed by the binary value of data=name 2 or the
expressione. If the BY option is omittedr a vatue of binary 1 is
assumed. The contents of data=name 1 are opermanently altered by the
DECREMENT statement. If data=name 1 is larger than 24 bitss, 0's are
padded on the left.

The DECREMENT statement may also appear within an expression.

EXAMPLES.
Examples describing the use of the DECREMENT statement are as follows:

Examoles Comments
DECREMENT A Subtract 1 from A.
DECREMENT A BY 75 Subtract 7 from A,
DECREMENT A BY B3: Subtract the value of B from A,
X ¢= DECREMENT A BY B Subtract the value of B from A
and assign the value of A to X.

IF (DECREMENT A BY R) EQL X Subtract the value of B from A

THEN .o o7 and then compare A to X.

ELSEses’
PROC.B (DECREMENT X BY A) The data~name is DECREMENTed by the

value of A and passed to the proce=
dure PROC.B by name. An extra set of
parentheses results ir a pass by
value.

DO

QU.SIAIEYENI.

The DU statement provides the capability to group a set of related
statements together for programmatic control purposes.

SYNTAX.
The syntactical structure of the DO statement is as follows:

R0 C(aroup-=name] [EQBEVER]
Statement
statementi

statement }

.
.

statement %

END Caroup=namel

DESCRIPTION,

The group=name options, if useds must be a uniacue name on its lexic
level and must be the same in the D0 statement and in its matched END
statement.

A set of DO statement oroups may be nesteds but may not overlap. Every
END statement is paired with the preceding unmatched DN statement»
starting at the innermost set. An EXND statement is required for each
DC statement grouping.

NOTE
For purposes of claritys» DO and END
statements may be thouoht of as being
a set of parentheses that surround a
group of statementss thereby binding
them as one statement for control
purposes.

A DO statement through its END statement is ccnsidered as being a
single statement., DC statement groups may be imbedded in CASE state-
ment aroupss IF statements, or another D0 statement group. A maximum
of 32 CASE» DUs or If statements may bhe imbedded in any one nest. The
UNDD statement» howevers terminates up to a maximum of 16 nested QO
statements.

DC» IFs and CASE statements define a code nesting level that is
displaced under the column marked ML on the listing. Each nest must be
wholly contained within its outer nest. That is» code nesting levels
may not overlap.

0GC
cont

The FOREVER clause implies that an unlimited iteration of the DO state=
ment group occurs until an UNDO or a RETURN statement is executed. The
execution of a RETURN statement causes control to be passed back from
the PROCEDURE in which the D0 statement is imbedded. The DO FOREVER
option has a Limit of 4096 bits of object code. If the FCREVER option
is not useds no iteration of the [0 statement group OCCUrS.

EXAMPLES.
Examples describing the use of the DO statement are as follows:

Exaoeles Comments
DO’ The format of a DO statement reguires
BUMP SUM; the DO and a corresponding END.

DECREMENT DIFF;

END;
IF X EQL © One of the two DO statements within
THEN D03 the IF statement is executeds and
BUMP X3 then control is passed beyord the
. IF statement. The second DC state-
. ment is named OTHER», and its END
. statement must also contain the same
BUMP SUM; name.
END;
ELSE DO QOTHER;
DECREMENT X3
BUMP SUM;
END OTHER?:
DO THIS.ONE FOREVER?; The DO statement named THIS.ONE
IF SUM LEQ ZERO jterates until SUM is greater than
THEN DO3 0. When that condition is reached:»
SUM = SUM + 1; the UNDO statement following the ELSE
END3 terminates the DO statement.
ELSE UNDO3
END THIS.ONE;
PROCEDURE ABC:; This procedure contains several DO
DO ANY FOREVER?; statementse. The RETURN statement in
IF X GEQ O the last IF statement also terminates
THEN DO the DO ANY statement by passing con=-
DECREMENT X7 trol out of PROCEDURE ABC.
BUMP SUM;
END;

IF SUM GEQ 0
THEN UNDO?

END ABC:

Exaooles

ELSE RETURN;

END ANY3

Comments

Do
cont

FINI

EINI_SIAIEMENT.

The FINI statement signifies the end of source images to be compiled.

SYNTAX.
The syntactical structure of the FINI statement is as follows:

EINIE

DESCRIPTION. ,
The FINI statement is required and must be the last statement in the
source program.

IF

»

IE.STAIEMENI.

The IF statement is used to conditionally execute one or two statements
in a program.

SYNTAX.
The syntactical structure of the IF statement is as follows:

IE conditional=expression TIHEN statement=1 [ELSE statement=2]

DESCRIPTION.
The conditional=expression is evaluated, and the least=significant=bit
of the result is interpreted as the controller bit.

If the ELSE clause is pgot specifieds the controller bit is used to con=
ditionally pass ccntrol to statement=1. If the controller bit contains
the value 0of 1, then statement=1 is executed. If the controller bit is
valued at 0» statement=1 is pgt executed and control passes to the
statement immediately following the IF statement itself.

If the ELSE clause is specifieds the controller bit is used to choose
between statement=1 and statement=2. If the controller bit contains a
value of 1» then statement=] is executed and statement=2 is not exe=
cuted. If it contains the value of 0 (zero)» statement=1 is pot
executed and statement=2 jig executed.

DOs» IFs and CASE statements can be imbedded within an IF statement.

Fach of these imbedded statements is called a nesting levels, with a
maximum of 32 levels allowed. The nesting=level number is given on the
source code print=out under the NL column.

When using such nested IF statementss correspondence between the THEN
and the ELSE statements must be maintained. That iss the innermost
(highest NL number) ELSE is associated with the innermost THEN, and
corresponding pairs continue outward (toward NL zero). The matching
ELSE statement is required within nested IF statements. Null
statements cans howevers be used whenever a no=operation is desired.

Conditional=-expression evaluation is performed from left=to=right in
normal order unless parentheses are specifieds The result of each
operation is applied to the next operand until all operands are
combined. The right=most bit of this result is the controller bit.

If all the operands are of type FIXED» all comparisons are signed
FIXEDs If any operand is not of type FIXED, then from that pcint on
within the conditional=expression» comparisons are unsigned BIT.

If all the operands are of type CHARACTERs comparisons are from left-
to=right. If any operand is non=CHARACTER thens» from that point on
within the conditional=expressicns, comparisons are type BIT.

IF
cont

-

The controller bit may itself be used as computational value (refer
the last examples, page 6=35). A semicolon is not required with the
statement because the subordinate statements end with them.

MOTE
There also exists an expression form of
the IF.-.THEN.Q.ELSE..- statement that
has a different syntax and produces a
different result from the IF statement.

EXAMPLES.
Examples describing the use of the IF statement are as follows:

to
IF

Exapoles
IF X THEN A := B + C

Copments

If the data=name X contains a value
whose least=significant (right=most)
bit is a 1» the statement following

the THEN is performed. Otherwises

control passes to the next
sequential source statement.

NOTE
Execution time to choose the ELSE
statement when coded is less than the
time to choose the THEN statement.

IF X EQL 0 THEN
DO A := B + C;

If X is equal to 0» the statement
that follows the THEN is performed;

BUMP X3 otherwiser» control passes to the

END next sequential statement. Notice
that the statement that follows the

THEN is a DO statements which may

itself contain several statements.

IF X = 0 THEN A := B + C; If X equals 0» the statement that
ELSE A = X + Y follows the THEN is performed. If X
XYZ := A does not equal 0» the statement that

-IF SUBBIT (STRING» X)
THEN CALL P1;
ELSE CALL P2’

follows the ELSE is performed.

After cne of the statements is exe=
cuted» control is passed to the
statement that follows the IF state=-
ments that is» the XYZ = A;
statemente.

This is a conditicnal test of a bit
string for the least significant bit
in the string that is returned by
the SUBBIT function. The rules
explained in the preceding example
applys except that procedure P1 or
P2 is then called.

Exapples

IF (A + B) = C THEN DO3
SUM = SUM + 13}
CALL P1;
END;
ELSE CASE C = A;
SUM = SUM + 1;
CALL P2;
END CASE?}
IF A THEN
IF B THEN
IF C THEN CALL.C1;
ELSE CALL.C2;
ELSE CALL.B2;
ELSE CALL.A2;

This
expressione.

IF
cent

CopmeDnts

is a conditional test of an

Subsequent processes

depend on the outcome of the evalua-
tion of the expression (A + B) = C.
D0 and CASE statement groups are
allowed within IF statements.

Nested IF statements are allowed to

any level.

event tree.

The associated THEN/ELSE

pairs are defined as shown in the
IF A
//TRUE FALSE

///TRUE

IF

IF B

CALL.A2

TRUE

NOTE

FALSE
CALL.B2
FALSE

CALL.C2

A better programming technique
is to use DO and END statements
around simple IF statements.

IF A OR B OR C THEN
POSITIVE;
ELSE NEGATIVE;

IF (A GTR B) + (A LSS B)
THEN X 3= 13
ELSE X := 07

If A or B or C ends with the least=
significant (right=most) bit a 1»

the procedure POSITIVE
and C all have a 0 (zero)

If As» B»

is called.

in their lLeast significant positions

procedure NEGATIVE

is performed.

FEach of the two conditional expres=

sions
bit,
for false.

added togethers

is evaluated and returns a
1 for true or 0 (zero)

The two bits are then
and the low=order

bit of the result becomes the con=

troller bit.
equals Bs» X

otherwise»

In this exampler if A
is set to 0 (zero);

is set to 1.

LIBRARY

LIBBABY.STAIEMENI.
The LIBRARY statement copies. source language statements from the
library into the program being compiled.

SYNTAX.

The syntactical structure of the LIBRARY statement is as follows:

§ LIBRARY
|

j file=name (

family=file=nare/file=-name 5

DESCRIPTION.,
The source language images contained in the named file are copied into
the program at the location of the LIBRARY statement.

The &8 (ampersand) must be in. column 1.

No semicolon

is required at the end of the LIBRARY statement.

The library file to be copied must be created in advance. The utility

that creates the

a.
be
C.
de
e

V]

LIV BN

EX
FILE
DATA

library files is invoked as follows:

UPL/LIBRARY
DISK = family=file=-name/file=name DISK SERIAL

Any UPL=-source lLanguage statements

END

NULL

NULL.STALEMENL.

The null statement performs a no=-operation function during object
run=time.

SYNTAX .
The syntactical structure of the null statement is as follows:

-e
Peo

DESCRIPTION. .
Two adjacent semicolons are used to delimit a null statement.

The null statement is considered a complete statements and it can be
used whenever the syntax requires a complete statement. Its most com=
mon usage is in the CASE and IF statements to fulfill the syntax
requirementss but not to perform operations. It also can be used in
READs WRITE», and SPACE statementse.

The null statement can be used to control events within a compound IF
statement; howevers this control is more readily accomplished if DO/END
statements are used within the compound IF statement sequence.

EXAMPLES.
Examples describing the use of the null statement are as follows:

Examels Copmenis
CASE decode; The data=name decode is used to select one of the
PRO.AS six statements within the CASE statement body. If
PRO.B?; the value of decode is a 2 or a 3» no operation is
; performed.
;
PRO.C
PRO.D>
END CASE:;

PRCCEDURE CALL

EROCEQUBE _CALL_STAIEMENI.

The procedure call statement passes control to a regular (non=function)
procedure. After the procedure has been completeds, program control
returns to the statement that follows the calling statement.

SYNTAX.

The syntactical structure of the procedure call statement is as
follows:

procedure=name [{ parameter [[;parameter]...] 2] Z

DESCRIPTION.

A procedure call statement must always be a separate statement. That
iss the procedure call statement gyst pever appear adjacent to a
replacement operator or within an expression.

The procedure being called must reside within range and cannot be a
function procedure (refer to section 8).

Optional parameters must be separated by commas and can be comprised of
data=namess» Literalss and fubction procedure designatorss, in any order.
Evaluation of the parameter list is performed from left=to=right and
from the innermost set of parentheses. 0Only a single name or value is
passed for each parameter. The parameters passed at object run=time
are matched from lLeft=to=right with the parameter=names that are con=
tained in the procedure head statement of the invoked procedure. The
number of parameters that are passed pyst equal the number of names in
the procedure head statement, The actual type (or length) passed and
the corresponding FORMAL type (lerngth) for each parameter pgygsi agree

if the $FORMAL.CHECK compiler option has been used.

Parameters comprised of single data=names» array elements» or SUBSTRs
that are not enclosed within an extra set of parentheses are passed=by~
name. That iss the addresss» rather than a values of the data=name is
passed.

Passed=by=value are parameters comprised of literalss single data=names
that are enclosed in an extra set of parentheses» the value returned
from function proceduress or the result of any expression evaluation.

A value is not returned from a called procedure. If such a requirement
existss the result must be communicated through the use of global data-
names or by passing the parameter by name and specifying the corre=
sponding formal parameter in the procedure to the left of a replacement
operator within an executable statement.

EXAMPLES.
Examples describing the use of the procedure call statement are as
follows: '

Exaoeles
PROX

IF X THEN PROX;
ELSE PROY:

IF ABC THEN AREA (L, W)
ELSE VOLM (L» W» H);

AREA (C(L)» W * H);

PROCEDURE CALL
cont

Conoents
PROCEDURE PROX is being invokede

One of the.two procedures is called
depending on data=name X.

One of two procedures is calledes ALl of
the parameters are being passed=by=name.

Both of the parameters are being passed-
by=value.

6=39

RETURN

BETUBN.SIAIEMENT.

The RETURN statement transfers prcgram control out of a procedure and
back into» or immediately followirgs, the invoking statement depending
on the type of procedure being executede.

SYNTAX.
The syntactical structure of the RETURN statement is as follows:

Regular Format

BEIUBNE

Function Format

BEIUBN fexpression)

DESCRIPTION.

The RETURN from a regular procedure passes control out of the procedure
and back to the statement that follows the calling statement.

The RETURN from a function procedure also returns control and gluways
returns a value to be used in place of the function designator within
the invoking statement. The evaluation of the invoking statement then
continues.

An expression gyst appear in the functicn procedure RETURN statement.
The type (length) of the expressicn in the function procedure RETURN
statement must agree Wwith the type (length) option as contained in the
procedure head statement if the $FORMAL.CHECK compiler option has been
specified.

The function format used for a regular procedure results in a compiler
error message.

The execution of a procedure EN[D statement is the equivalent of a
regular procedure RETURN statement or a function procedure RETURN
statement containing a value of 0's.

EXAMPLES.
Examples describing the RETURN statement are as follows:

Cxaoples Comments
PROCEDURE ABC; The regular procedure ABC has
. several conditional RETURN state-
. ments. It also has an unccndi=
. tional RETURN if none of the
IF X THEN RETURN; others is executed.

Exaoples

IF Y THEN RETURN;

RETURN
END ABC;

PROCEDURE XYZ FIXEDS

DECLARE (X»

Z FIXED:;

IF X THEN

Y) BIT (16)>»

RETURN (Z ::= X))’

RETURN (14);

END XYZ;

PROCEDURE EXP (A,

VARYING?

FORMAL CA»

DECLARE X

B) CHARACTER

B)Y FIXED;
FIXED;

DO CAL FOREVER3

ELSE

END;
END CAL:;
END EXP;

IF EQL 0 THEN
RETURN ("B IS"
"ZERQO");

DO’

B :t= B + B3
DECREMENT A;
IF A EQL ZERO THEN
RETURN ("B IS"™ CAT
CONV (B, CHARACTER));

CAT

RETURN
cont

Compents

The functional procedure has one
conditional RETURN that calcu=
lates a value and passes it as a
FIXED number. Notice that X and
Y need not be of type FIXED. A
second RETURN statement passes
the value of 14.

The function procedure EXP calcu=-
lates B to the A power. It
RETURNs a VARYING length charac=
ter string.

REVERSE.STORE

BEYEBSELSIOBE.SIAIEMENI.

The REVERSE.STORE statement is used to assign each data=name value in
a List of data=names to the preceding data=name in the list. Also, it
assigns an expression value to the last data=name.

SYNTAX.
The syntactical structure of the REVERSE.STORE statement is as follows:

BEVEBSELSIOBE (data=name=1; data=name=2 [[, data=name=3] ...];
expression)i

DESCRIPTION.

The value of data=name 2 is assigned to data=name 1» then the value
of data=name 3 is assigned to data=name 2s, and so ons, until the value
of the expression is assigned to data=name=n. :

NOTE
Because each address in the data=name=-
list is calculated only once for the
whole statements no equivalent construct
in UPL is as efficient.

EXAMPLES.
Examples describing the use ¢of the REVERSE.STORE statement are as
follows:

Examoles Copuments

REVERSE.STORE (AsBsCsX+4); The effect is the same as from the
following statements:

B3j
Cs

A
B
C X+453

Notice that REVERSE.STORE (A»BsCsX+4);
is pot the same as A = B = C = X+4;

REVERSE.STORE (CASE N OF This statement assigns the value EX+2 to
(AsB>»CCI)»D) EX#+2); gpg of the data=names. The one chosen
degends on the value of n.

sSToP

SIOR.SIAIEMENI.

The STOP statement terminates a program in an orderly or normal manner.

SYNTAX. .
The syntactical structure of the STOP statement is as follows:

SIQR:

DESCRIPTION.
A STOP statement can appear anywhere that an executable statement can
appears

Any number of STOP statements can be coded within the programs, but only
one is executed.

The UPL Compiler supplies a STOP statement as the last statement in the
program if a STOP statement has not been specified.

When the STOP statement is executed all files are CLOSEd.

UNDO

UNDQ_STAIEMENI.
The UNDD statement provides ithe capability to transfer control out of
DO statement groups. ‘

SYNTAXQ !
The syntactical structure of the UNDO statement is as follows:

DO=group=name
UNQao g (o) i

DESCRIPTION.,

An UNDD statement is used only in conjunction with a DO statement. It
passes program control to the statement that immediately follows the
appropriate END statement for the specific DO statement group.

A simple UNDO statement (no options) passes control out of the current
DO statement. The DO=group=name option passes control out of the named.
group. The asterisk passes control out of all nested DO statement
groups within the procedure. A maximum of 16 DO=groups can be exited
with one UNDO statement.

A DO statement group is subordinant to a procedure; therefores control
never passes out of a procedure with an UNDO statement. A RETURN
statements» howevers passes control from the procedure and terminates
any DO=group in which it appearse.

EXAMPLES.
Examples describing the use of the UNDO statement are as follows:

Exaopoles Cemments
DO
IF A EQUAL B THEN UNDO; A simple condition that ends
. : the DO statement.
END>
DO REPEAT FOREVER3 Data=name SUM is tested for
IF SUM GEQ 0 limits of + or = 5, then a mes=
THEN DO sage is printed. If the value
SUM = SUM =13 is beyond the limits, all DO
IF SUM GEQ 6 statements are ended.
THEN UNDOC*);
END

ELSE IF SUM LSS 0}
THEN SUM := SUM + 13

Examoles Comments

ELSE DO
DECREMENT SUM;
IF SUM LSS = 5
THEN UNDOQC*);
END;
END REPEAT;
WRITE P.FILE ("SUM IS BETWEEN
=5 AND +5");

UNDO
cont

ZIP

JIB.STAIEMENI.
The ZIP statement passes control information to the MCP as if it had
been entered on the console printer (SP0).

SYNTAX.
The syntactical structure of the 7ZIP statement is as follows:

control=information

¢IE.:

13

oo

control=card information

DESCRIPTION.

Any control information that can be entered via the console printer or
the card reader can be used in a ZIP statement. The information passed
must be surrounded by quotes.

EXAMPLES.
Examples describing the use of the ZIP statement are as follows:

Exauoelss Cgopents
ZIP SO OPEN" Sets the OPEN option in the M(CP.
ZIP "EX CAL" 3 Begins the execution of program
CAL

ZIP "COMPILE PRINT UPL SYNTAX"™ 3 Program PRINT is to be compiled
for SYNTAX only.

ZIP "SV LPA" ; The MCP is requested to save the
line printer.,

SECTION 7

INPUT/0UTPUT STATEMENTS

GENERAL.

The input/output statements control the peripheral devices and READ or
WRITE data external to the processor and its memory.

Input/output statements are listed alphabetically. The format of each
statement is described in the following order:

ae Purpose.

be Syntaxe

c. Description.
de Examples.

ACCEPT

ACCEEI.STAIEMENIS)
The ACCEPT statement is used to input information from the console
printer.

SYNTAX.
The syntactical structure of the ACCEPT statement is as follows:

ACCEBI data=name [» END.QELIEXI] &

DESCRIPTION.

Data=name is the program area intc which the information is moved. The
information from the console printer is considered of type CHARACTER>»
and the assignment operator is used to move the data into the data-
name. Therefores truncations, paddings, and left or right adjustment is
in accordance with the rules of the assignment statement.

A maximum of 69 characters is allowed per ACCEPT statement.

The END.OF.TEXT option specifies that the END=OF=TEXT character
(hexadecimal 03) is to be included with the message.

EXAMPLES.
Examples describing the use of the ACCEPT statement are as follows:

Exaomoles Compents
PROCEDURE A+MSG CHARACTER VARYING; Procedure A.MSG READs messages
DECLARE MSG CHARACTER (58); from the console printer and
RETURN CACCEPT MSG): passes them back to their invok-
END A.MSG’ _ ing statement. For example»

MESSAGE := A.MSGs is a procedure
call that can be used to input
console printer message from
anywhere in a program.

ACCESS.FILE.INFORMATION

ACCESS-EJLE<INEOBMATIQN.STATEMENI.
The ACCESS.FILE.INFORMATION function returns two commonly reguired

items from FILE PARAMETER BLGCK (FPB).

SYNTAX.
The ACCESS.FILE.INFORMATION syntax is as follows:

gll
CHARACIER

ACCESSLEILELINEQRMALIQN (internal=file-name

¢ address=generating=expression) ¢

DESCRIPTION.
The FPB is interrogated and the end=-of=file (EOF) pointer and
the device type are returned.

1f the file is unopen ands therefores the file information block (FIB)
does not exist yets the MCP iagnores this communication.

The formating of returned data is as follows:

liep Bit Chacacter
End=of=file pointer 24 8
Device type 6 2

The device types are described in the CHANGE statement. The data
returned is assigned to the location as specified by the address=
generating expressions

CLOSE

CLOSE.SIAIEMENI.

The CLOSE statement releases control of a file from the program.

SYNTAX. .
The syntactical structure of the CLOSE statement is as follows:

BEEL
BELEASE

CLQSE internal=file=name [HIIH (cguncy 21 EURGE
BEMQXE
NO.BEWIND
LOcK

(1E.NOILCLOSERDY] &

DESCRIPTION.
The internal=file=name must be the same as the file=name declared in
the FILE statement.

The file must be in the OPEN state before it can be CLOSEd unless the
IF.NOT.CLOSE option is used.

Files need not be explicitly CLOSEd. Memory space is immediately
returned to the system whenever a file is CLOSEds howevers and the
space can then be used for other purposes. Files that are closed at
program termination are equivalent to CLOSE RELEASE.,

The word WITH is optionals and its use has no effect.

CRUNCH applies to disk files that have only one disk area. The disk
area allocated to the file is cut back to the actual size of the file.
The word should be used only with files that can never be larger than
when they are CLOSEd CRUNCH. ’

REEL specifies that the current reel of tape is to be CLOSEd», but the
file is still open.

NO.REWIND inhibits the rewinding of a reel of tape.
RELEASE returns the memory file space to the system and does not enter
file=names into the disk directory unless specified by the LOCK option

in the FILE statement.

PURGE removes the file=name from the disk directory and returns the
disk space to the disk=available table.

REMOVE removes a duplicate file-name from the disk directory if it is
present and re=enters the name as referencing the new file.

CLOSE
cont

LOCK enters the file=name into the disk directory.

 IF.NOT.CLOSEd avoids an MCP termination of a program that attempts to
CLOSE a file that is not OPEN.

The default is the same as RELEASE.

Files that are open at an abnormal program termination are CLOSEd
with RELEASE.

I1f more than one options excluding CRUNCH or IF.NOT.CLOSED, is
requesteds, only the last is used.

EXAMPLES.
Examples describing the use of the CLOSE statement are as follows:

Exapoples Copoents
CLOSE HOLD WITH CRUNCH» The file HOLD is to be cut back to its
RELEASE actual disk usage areas, and its name is to

be put into the disk directory.

NOTE
A file=name must be in the disk directory
before another program can access it.

CLOSE MASTER:; The file MASTER is used as inputs and its
name is already in the disk directory.
The file is no lLlonger available to this

programe
CLOSE OLD.MASTER WITH The file OLD.MASTER is created by this
REMOVE; programs and any other (duplicate) file by

the same name is removed from the disk
directory when this file=name is entered.

DISPLAY

QISBLAY.SIAIEMENI.
The DISPLAY statement causes a message to be nrinted cn the console
printer,

SYNTAX.
The syntactical structure of the DISPLAY statement is as follows:

RlseLaX exoression [2 CEULCHED 1 i

DESCRIPTION,
The expressicn must be a data=names» literal, or character=string or
must result in a printable messaqge.

The CKUMNCHED option removes all trailinc blanks and substitutes one
blank for each occurrence of multiple imbedded blanks.

EXAMPLES.
An example describing the use of the DISPLAY statement is as follows:

Exacple Copoments
PROCEDURE SEND.MSG (MSG)s Frocedure SEND.MSG prints a message on
FORMAL MSG CHARACTER the console printer and returns control
VARYING; to its calling procedure. For example>
DISPLAY “"PLEASE"™ SEND.MSG ("LOAD FORMS"™) is a display
CAT MSGs» CRUNCH: message using tha SEND.MSG procedure.
RETURNS The console printer outputs the message:

END SEND.MSG;

PLEASE LOAD FORMS

FILE

EILE.SIAIEMENT.

The FILE statement assigns an internal file~name to a physical inobut/
output device and a lList of attributes.

SYNTAX.
The syntactical structure of the FILE statement is as follows:

FILE internal=file=name { attribute=1 ([, attribute=21 ...)}

"family=file-name?
LABEL.= "family=file=name®/"file~namel
BUBBOYGHSR
LABEL:IIRE.z AN3l
UNLABELER
5IAEE’
DEVICE_.=z hardware=type [access=model CEQBMSI|UQBI BACKEUE
lozss |
EBCRIC
g
MORE-= | 43CI1
EYEU
gL

BUEEEBS.z inrteger
LocK

QRIIONAL S
VARLABLE

Sa¥L.s integer

characters=per=record

BECUBRa.:

characters=per=record/records=per=block

BEEL.z numher=of=tape-reels

ABREAS.z number=of=-disk=areas{number-cf=records=-per=-area

BACKsID.= I literal I

FILE
cont

QBEN attribute=-t [£ attribute=2] ...

ALLsABEASALLOBEN
ABEALBYaCYLINDERB
SINGLE.BACK

EULSBECIAL.Z integer
EVUINCBEMENIED.: integer
USEsINBUILBLOCKING
SB.SIAILON.z integer
END.QEaBAGELACIIQN

DESCRIPTION.
The FILE statement options are described and illustrated in the
paragraphs that follow.

FILE STATEMENT. The FILE statement is a declaration statement and must
appear within the DECLARE portion of a program or a procedure. The
file=name is the data=name by which the source program references the
file. The option list must be surrounded by parentheses; all attrib=
utes are optional. A default status is set for omitted options» but
varies by devicee.

LABEL OPTION. The LABEL option specifies the external file=name. It
is the name the MCP uses to access information on an input/output
device. The LABEL has two namess a family=file-name and a file=name>»
each enclosed in quotes and separated by a virgule. The family=file=
name allows access to a multifile group» and the file=name allows
access to a single file in the group ("PAYROLL®"/"W2.SUMMARY"). Each
name must be surrounded by quotation marks. The MCP uses only the
first 10 characters of each name.

The file=name can be omitted.s In such a case» the file is assumed to
have no file=name. It is accessed by its family=file=name only.

The default for the LABEL option is setting a family=file=-name the same
as the internal=file=name and the file=name set equal to blanks.

Exappless
Examples describing the use of the LABEL option are as follows:

LABEL.TYPE OPTION.

label. The default option

peripheral on which
are as follows:

Examoles

FILE TALRECS (LABEL=
"MASTER™)

FILE ERR (LABEL="MSG"/
"ERROR")

FILE
cont

Comments

The internal data~name TA.RECS is declared.
and the external file label MASTER is
assigned.

The data=name ERR is declared. An I/0 file
named ERROR of the multifile aroup MSG is
being referenced.

The LABEL.TYPE option specifies the type of tape
is BURROUGHS.

DEVICE OPTION. The DEVICE option specifies the type of input/output

RQeyice
PUNCH

MULTILFUNCTICN.CARD

PAPER.TAPE.PUNCH
PAPER.TAPE.READER
PRINTER

SORTER.READER
DISK.FILE

DISK.FILE.1
DISK.FILE.?2

DISK.PACK
DISK.CARTRIDGE
DISK.PACK.OR.CARTRIDGE
DISK

CARD

SPO

the file resides. The input/output DEVICE types

Comment

80=column card

Any input/output functions
on the 96=column card unit

132=column

Any head=per=track disk

1A and 1¢C head'per-track disk
2B head=-per=track disk

Disk pack only

Disk cartridge only

Any removable disk

Any disk

80=column card

Console printer

FILE
cont

RQevice Compent

TAPE.9.NRZ
TAPE.7.UPRIGHT
TAPE.9.PE
TAPE.7.CLUSTER

TAPE.9.CLUSTER

TAPE Any tape
TAPE.7 Any 7=track tape
TAPE.9 Any 9=track tape

The default option is TAPE.

ACCESS MODE OPTICN. The ACCESS MGDE specifies the ordering of disk
record accesses. The optionsi are SERIAL or RANDOM. The default is .
SERIAL.

FCRMS OPTIOUN. The FORMS option allows the operator to adjust the
alignment of an output devices, The FORMS option is applicable to
PRINTER» PUNCH» or PAPER.TAPE.PUNCF only.

The default is FORMS omitted.

BACKUP OPTION. The BACKUP option specifies that an alternate output
device can receive the information in the format of the primary device.
The OR portion of the option specifies that the alternate device is to
be used only if the primary device is unavailable.

The BACKUP option without the OR portion specifies the information must
go to the alternate device.

The BACKUP option primary devices are PRINTER» PUNCH» PAPER.TAPE.PUNCH»
and TAPE. The BACKUP alternate cdevices are TAPE and DISK.

The default is hardware only as specified in the DEVICE option.

Exaoplese
Fxamples describing the use of the DEVICE option and its parallel

opticns are as follows:

FILE

cont
Exaooles Comuentis

FILE OUT.MASTER The FILE GUT.MASTER is printed if the
(DEVICE=PRINTER 0OR BACKUP printer is available. If the printer is
DISK); unavailables it goes to the DISK.
FILE W2.SUMMARY (LABEL= Two files are declared, one with a label
"PAYROLL"/"W2"s DEVICE= from the disk pack and a printer file
DISK.PACK)» FILE W2. with special forms. The printer file
REPORT (DEVICE=PRINTER goes to disk if the printer is busy.

FORMS DR BACKUP DISK):

MODE CPTION. The MODE option specifies the parity and the code type of
an input/output file. The options are 0DD or EVEN parity and EBCDIC»
ASCIIs or BCL code. The default is 0ODD EBCDIC.

BUFFER OPTION. The BUFFER option specifies the number of input/output
buffers to be allocated for the file. The default option is one
buffer.

LOCK OPTION. The LOCK option requests the MCP to enter the file=name
into the disk directory unless the file is clecsed with purge.
Programs that are terminated abnormally by the MCP and have open disk
files are entered into the directory. The default is ND LOCK,

OPTIONAL OPTION. The OPTIONAL option allows a program to execute with=
out a file if the operator has responded to the NO FILE message with an
OF console input message.

ALl reads or writes of an optional file that have an OF message execute
the statement following the ON EOF (end of file).

VARIABLE OPTICN. The VARIABLE option allows different length input/
output records per READ/WRITE. The default option is fixed=size
recordse. .

SAVE OPTION. The SAVE option specifieé the number of days a file 1s to
be saveds that iss not to be destroyed. The default option is 30 days.

RECORDS OPTION. The RECORDS opticn specifies the number of characters
in an unblocked record (physical size)» or the number of characters per
record (logical record size)» and the number of records in the block
(physical records per block)e.

Exaoolese.
Examples describing the use of the RECORDS option are as follows:

FILE

cont

Exapoles Copments
FILE CARDSIN The FILE CARDSIN contains 80=character
(RECCRDS = 80); unblocked records.
FILE TAPEOQUT The FILE TAPEQUT contains 10 records per
(RECORDS = 120/10)5 block and 120 characters per record.

DEFAULT OPTIONS. The default options depend on the input/output DEVICE
and have the following unblocked values:

Revice Upblogked.Yalue
CARD or PUNCH 80 characters
PRINTER : 132 characters
DISK 180 characters
CONSOLE PRINTER (SPO) 72 characters
ALl others 80 characters

A character is the same as a byte.

REEL OPTION. The REEL number specifies the number of reels of tape on
a files The default option is 1.

AREAS OPTION. The AREAS option specifies the number of disk areas and
the number of blocks (physicdl records) per area. The two values are
separated by a virgule. Fach physical record on the disk contains the
number of characters as specified in the number of characters per
block of the RECORDS option. The default option is 40 areas with 100
physical records per area.

PACK.ID OPTION. The PACK.ID specifies the name of the removable disk
associated with this file. O0Only the first 10 left=most characters of
the literal are used.

The default is 10 spacess which implies the system disk.

OPEN OPTION. The OPEN option specifies the OPEN attributes to be
associated with the file. AS a results, an automatic CPEN is

performed with the first input/output statement. If an OPEN statement
is executed for the file, the attributes in the statement take prece=
dence. The attributes are the same as in the OPEN statement, but here

7=12

FILE
cont

must te separated by virgules.,

Certain devices are defaulted OPEN as follows:

Revice Attribute
PRINTER OUTPUT/NEW
CARD READER INPUT
CARD PUNCH OUTPUT/NEW
DISK INPUT

ALL.AREAS.AT.0OPEN OPTICN. The ALL.AREAS.AT.OPEN option specifies that
all requested disk space for a file opened NEW be allocated when the
file is OPENed. The normal MCP procedure is to allocate each addi-=
tional area as the file requires the space.

AREA.BY.CYLINDER OPTION. The AREA.BY.CYLINDER option specifies that
each disk area begins on a cylinder boundary.

Default is disk space as required.

SINGLE.PACK OPTION. The SINGLE.PACK option specifies that the file
resides completely on only one removable disk device.

Default is disk space as required.

FU.SPECIAL OPTION. The EU.SPECIAL option specifies which head=per-
track electronic unit (EU) or systems DISK pack drive the file must be
associated with. The possible range is 0 to 15.

Default is determined by the location of the first systems unit.

EU.INCREMENTED OPTION. The EU.INCREMENTED option is used with the
FU.SPECIAL and specifies the EU or drive number that is incremented for
each additional disk area allocateds. The increment range is 0 to 15.

ALl areas of a file must be contained on systems disks. The increment
number will wrap around when there are no more system units.

Default is 0 (zero).

USE.INPUT.BLOCKING OPTION. This option applies only to disk files. It
specifies the record and block sizes are to be taken from the disk file
header. That is» the record and block size attributes of the actual
disk file are used.

The default is either the user specified attributes in the file state=
ment or the default option of 180 character records unblocked.

FILE
cont

SR.STATION OPTICN. The number indicates which read station(s) is Care)
to be used on a scrter=reader file. The nossible stations are the
magnetic ink character reader and the optical character reader. The
read stations are interchangeables and the systems documentation should
be consulted for specific hardwares configurations. Possible values
are:

1 = first station
2 = second station
3 = both stations

The default is SR.STATION = 0.

END.OF.PAGE.ACTION OPTICN. The END.OF.PAGE.ACTICON causes the ON EOF
statement to be executed at the end of a page on the printer.

The end of a page is detected as a channel 12 punch on the printer
carriage control loop. The default option is the skip to channel 1 on
the printer carriage control loop if channels 12 and 1 are punched;

no action occurs if channel 12 is unpunched.

OPEN

QREN.SIAIEMENI.

The UPEN statement establishes programmatic control of a data=file hy
requesting the MCP to make the data-file available to a program.

SYNTAX.
The syntactical structure of the GPEN statement is as follows:

QBPEN internal=-file=name [wIIH]attribute-l [[; attribute-?]...]z

The possible attributes are as follows:

a. INPUT
be QUTPUT
Ce NEW
de LOCK

e« LOCK.OUT
f. NOREWIND
g. REVERSE

DESCRIPTICN.

The internal=file=name must be declared in a FILE statement. Use of
the word WITH is for readability onily. Multiple attributes must he
separated by commas and have the following meanings or effects:

Aticioute ‘ dYgavinglfifect

INPUT A file exists and is to be read.

QUTPUT A file exists and is to be written.

NEW A file is to be created.

LOCK This file cannot be written by any other program.

LOCK.OUT This file cannot be accessed by any other proaram.
NOTE

LOCK and LOCK.OUT are true onty for
the duration of the lockina program.

REVERSE A tape is to be accessed in a backward direction.

Any files specified both INPUT and OUTPUT must be disk files.

No distincticn is made between INPUT,QUTPUT or OUTPUT,INPUT declara-
tions. Both imply a file exists and can be written to or read from.

OPEN
cont

QUTPUT» NEW creates a new file or a new version of an existing file.
The CLOSE REMOVE option removes the old duplicate of an existing file.

If no attributes are specifieds except for the card reader and the card
punch that are defaulted OUTPUT, the default option is INPUT.

The FILE statement for a file being OPENed must be within scope.

Attributes that have been altered via the CHANGE statement are affected
only during OPEN.

Attribute wordss when used in an CPEN statement, cannot be DEFINEd,

The OPEN statement should be the first input/output statement executed
for a file. That is» an OPEN statement should precede all READ» WRITE,
and CLOSE statements that can be issued against a given file=name. The
DPEN statement can be omitted only if the OPEN attributes are explic=
itly given in the FILE statement. A CLCSE statement for a given file
must te executed before that file can be re=0PENed.

Because buffer=storage and file attributes are allocated when a file is
OPENeds memory storage=area utilization can be significantly cptimized
by delaying the issuance of an OPEN statement until a file is actually
needed. Also» when a file is no longer required by a programs, the
immediate execution of a file CLOSE statement optimizes memory storage=
area utilization.

EXAMPLES.
Examples describing the use of the OPEN statement are as follows:

Lxamoles Comments
OPEN MASTER WITH INPUT; The MASTER file is to be made available as
inpute.
OPEN WORK WITH QUTPUT» The WORK file is a new file on disk to be
INPUT» NEW; used as output and as input.

L
BEAR.STAIEMENI.

The READ statement obtains an input record from a peripheral device as
specified in the appropriate FILE statement.

SYNTAX. ‘
The syntactical structure of the READ statement is as follows:

BEAD CLOCK] internal=file=name
[Lrecord address expressionl] (data=name);

{QN EQE executable statement}]l

[QN PABIIY executable statement}]

DESCRIPTION. .
The specified internal=file=name pgyst be declared in a FILE statement
and gysi be OPENed before a READ statement can be executed.

The LOCK option applies only to disk files and reserves a disk record
for exclusive use by a program unit until a non-LQOCK READ or WRITE
statement is executed for the file.

The record=address=expression is applicable to random disk files only.
Brackets ([1]) are requireds Random disk records are addressed by
record=number disolacement from the beginning of a file. The first
record has a record=address of a 0 (zero)s» the second a 1 (one)s etce>s
to n=1 for the nth record. The record=address=expression returns a
binary value that is used to randomly access the record in the file.

The data=name is the receiving field for the information being READ.
The internal=file=name is considered of type CHARACTER.

The replacement operator is used to move the information from the
buffer to the data=name area. Truncations pbaddings, and lLeft or right
adjustment of the data is performed during the transfer.

The ECF and PARITY parts are considered subordinate to the READ state-
ment and ares therefore» candidates for the special class of SEGMENT
statements.

The reserved word ON is required before the EOF and PARITY options.
The EOF part specifies a single statement to be executed upon encoun=
tering the End=Qf=-file. If an EOF is detected and no EOF option is
specifieds the program is terminated.

The PARITY part specifies a single statement that is executed if a

parity error occurs on the input/output device during the READ. If no
PARITY part is specifieds the normal MCP equivalent routines are exe=

7=17

READ
cont

L J
cuted. The MCP can discontinue (0DS) the program after trying n times

to correct the situation.

The ECOF and PARITY words are class II] reserved words and cans there=
fores be used as identifiers. If they are used as class III reserved
words within the READ statements» null statements must be used to obtain
the proper syntax. Reserved words» when used in the READ statement,
may not be defined.

EXAMPLES.
Examples describing the use of the READ statement are as follows:

Exapples Coopentis
READ CARD.FILECWORK); The CARD.FILE file is being READ into data-
ON EOF STOP; name WORK. When the End=Qf=FEile is
enccuntered the program terminates normally.
READ DISK.FILE The DISK.FILE file is being accessed in a
[RANDOM.KEY]1 (RECORD):; ‘random manner under control of data=name
ON EOF PROLEND: RANDOM.KEY. The data READ is moved into

data=name RECCRD. At EOF or an invalid
ikey; crocedure PRO.END is invoked.

RECEIVE

BECEIVE_STATEMENI. v
The RECEIVE statement is used to input a message to a data
communications handler or another active programe.

SYNTAX.
The RECEIVE statement syntax is as follows:

BECEIYE address generates expression EBQM program=name
[QN_Q;EMEIX executable statement;]

[QN_INVALID:BEQUESI executable statement;]

DESCRIPTION.,
The address=generating expression must contain the message.

The program name is the name of the SENDing program.

The ON Q.EMPTY statement is executed if there are no messages from the
specified program.

The ON INVALID.REQUEST statement is executed if the MCP cannot
recognize the requeste.

The MCP maintains quéues in memorys if space existss or on the disk.

7=19

SEARCH.DIRECTORY

SEABCHLQIBECIOBY.SIAIEMENIS
The SEARCH.DIRECTORY statement returns informations, in the format
specified» from the file header record on diske.

SYNTAX.
The SEARCH.DIRECTORY statement syntax is as follows:

PACK.TD CAI multifile=ID CAI file=1ID
SEABCHLDIRECIOBY ¢

expression

RII
¢ address generating expression { - }) 3
CHABACIER

[ON_EILE2MISSING executable statement; |

[ON.EILE2LOCKER executable statement;]

DESCRIPTION.

The disk directory is searched for the named file and, if found, infor-
mation is extracted from the file header record in the format

specified and assigned to the address=generation expression location.

PACK.I1D» multifile~ID» and file~=ID must each be 10 characters long. If
only multifile~ID is useds» the PACK.ID and file=ID must be spaces.

Expression must result in a 30-character string, if used.

If the file is not present on disks the statement following ON FILE.
MISSING is executed.

If the file is open but with LOCK specifieds the ON FILE.LOCKED
executable statement is executed.

All values returned are in number of bits.

The format specifications of returned data are as follows:

Item:-Name git Chacacter
OPEN.TYPE 4 1
NO.USERS 8 2
RECORD.SIZE 24 4

ltep:zNane Bit Chacacter
RECORDS.PER.BLOCK 24 4
EOF .POINTER 24 8
SEGMENTS.PER.AREA 24 3
ACCESS.DATE 16 6

The SEARCH.DIRECTORY statement is recommended
FILE.HEADER statement because the data returned

MCP file header record layout.

Exapeples
SEARCH.DIRECTORY ("BBB TEST FILEX ",
DATAXXs BIT);
SEARCH.DIRECTORY (" UPL "

> SAVEINFOs, CHARACTER);

SEARCH.DIRECTORY
cont

in Lieu of the ACCESS.

is not dependent on the

Compuenis

A file named TEST/FILEX
on a named user pack of
BBB is being referenced.

The file UPL on the
systems pack is being
referenced.

SEEK

SEEK.SIAIEMENI.

The SEEK statement reads a random disk record into a buffer.

SYNTAX.
The syntactical structure of the SEEK statement is as follows:

SEEE [LQCK] internal=file=name

[[record-address=-expressionl] ¢

DESCRIPTION.

The SFEK statement replaces the automatic record=read of sequential
files. It reads the record into the buffer from where the record is
moved to the program space hy the READ command.

The LOCK option reserves a record for exclusive use by a program until
a non=LOCK READ or WRITE is executed for the file.

The internal=file=name must be declared in a FILE statement.

The record=address=expression returns a binary value that is used as
the ordinal position of the record in the file. The first record is
numbered 0 (zero)s, the secondr 1 (one)» etc.» through the nth records,
which is numbered n=1. Brackets ([]) around the record=address-
expression are requirede.

The SEEK statement obtains the next record while the current one is
being processed. Therefores it often closely follows a READ statement.

EXAMPLES.
Examples describing the use of the SEEK statement are as follows:

Exavples Coumenis
SEEK D.FILE [NTH.RECI; The record specified by the NTH.REC key of
the D.FILE file is found and loaded into a
buffer.
SEEK D.FILE [51; The sixth record of the D.FILE file is to
‘be found and lLoaded into a main memory
buffer.

SEND

SEND_SIAIEMEN].

The SEND statement is used to output a message to a data communications
handler or another active program.

SYNTAX.
The SEND statement syntax is as follows:

SENQ address generates expression IQ proaram=name ;2
[ON.9sEULL executable statement;]

’[QN;INYALID;BEQQE&I executable statements;]

DESCRIPTION.
The address=generating expression must contair the message.

The contents of the message are stored in a queue for the named
program. Maximum message size is 65,535 bitss» and maximum number of
messages is 1023,

Control returns to the SENDing proarams and the MCP will queue messages
until the named program issues a receive.

The MCP maintains queues in memory, if space existss» or upon the disk.

The ON Q.FULL statement is executed if the gueue has its maximum number
of messages.)

The ON INVALID.REQUEST statement is expected if the MCP for any reason
cannot recoanize the request.

SKIP

SEIB.STAIEMENT.

The SKIP statement is used to control the carriage on the printer.

SYNTAX.
The syntactical structure of the SKIP statement is as follows:

SKIE internal=file=name JQ <channel number

DESCRIPTION. :

The SKIP statement causes the line printer to skip to the specified
channel number on its carriage tape. The channel numbers are from 1
to 12.

EXAMPLES.
Examples describing the use of the SKIP statement are as follows:

Examoles Copments

SKIP P.FILE TO 15 The P,FILE file must be an output file on the
‘ printer. The printer SKIPs to channel 1
(usually the top of a new page)d.

SKIP PRNT TO 125 The printer SKIPs to channel 12 (usually at or
near the erd of a page)l.

SPACE

SEACE.SIAIEMENI.

The SPACE statement allows the user to skip over records in a
sequential file.

SYNTAX. .
The syntactical structure of the SPACE statement is as follows:

SBACE internal=file=name [T0) expression §
[QN EQE executable statement}]

[O0N PABIIY executable statementi]

DESCRIPTION.
The internal=file=name must be declared in a FILE statement, and the
file must be OPENed.

The expression returns a binary value that indicates the number of
records to be skippede If the value is negativer, reverse or backward
spacing is indicated.

The TO option specifies that spacing is in a forward or positive
directione.

The ON EOF option specifies a statement that is to be executed if the
EOF record is encountered while spacinge.

If a parity error is detecteds, the ON PARITY option specifies a
statement that is to be executed.

If the ON PARITY option is unspecifieds the MCP enters its normal
routines for parity errorse. If the parity error is not corrected on
successive retries» the program is discontinued (DS).

ON EOF and ON PARITY are class III reserved words that can be used as
data=names. If they are used as data=names in the SPACE statement,
null statements are required for proper syntaxe. When used as reserved
words in the space statement they cannot be DEFINEd.

The ON EOF and the ON PARITY options are statements subordinate to the
SPACE statement and can be segmented separately (refer to the SEGMENT
statement», page 5=23).

EXAMPLES.
An example describing the use of the SPACE statement is as follows:

SPACE

cont
Examole Comoents
SPACE TAPE.FILE TO Xs fhe TAPE.FILE file is spaced the number
ON EOF STOP: of tape records specified by the binary

value of data=name X. If the End=Qf-Eile
is encountereds the program is STOPped.

WRITE

URIIE.SIAIEMENI.

The WRITE statement transfers data from a specified output memory area
toc an assigned peripheral.

SYNTAX.
The syntactical structure of the WRITE statement is as follows:
NQ
sLYGLE
QOUBLE
BAGE
NEXI
WRIIE C[LQCE] internal=file=name 1
2
12
. -
character-strinql
[Lrecord=address=expression]]| ¢ Q.32
data=name 5
[QN EQE executable statement}]
CC[ON EXCEBIIQN executable statementi)

DESCRIPTION.

A file must be OPENed before a WRITE can be executed. The LOCK option
reserves a disk record for exclusive use of a program until a non=LOCK
READ or WRITE is executed for the file.

The internal=file=name must be declared in a FILE statement.

The first option is used for printer control. The NOU» SINGLE» and
DOUBLE options specify lines of paper movement. The PAGE option spaces
paper to the top (channel 1) of the next page. The NEXT option spaces
paper to the next channel punch. The numbers 1» 2» ... 12 space paper
to the specified channel punch.

The record=address=expression returns a binary value that is used as
the number of the record being written to on a random disk file. The
records are numbered in sequence from 0 to n=1 for an n record

file on disk. Brackets ([1) around the record=address=part are
required.

The data=name or character=string option is the program area from
which the record is written.

WRITE
cont

The ON EOF executable statement is executed at the end of available
space on diske.

Execution of the ON EXCEPTION executable statement is dependent upon
the peripheral device (refer to the MCP manual).

The EOF and the EXCEPTION options are subordinate to the WRITE
statement and can be segmented (refer to the SEGMENT statement).

EOF and EXCEPTICON are class III reserved words that can be used as
data=names. If they are used as data=names within a WRITE statement.
null statements may be required for proper syntax. When they are used
as reserved words in the WRITE statement» they may not be DEFINEd.

If the END.OF.PAGE.ACTICN file attribute has been specified ir the FILE
statement and an end of page (channel 12 punckh on the printer carriage
control tape) is detecteds then the ON EOF statement is executede. This
facilitatess» for examplesr printing totals or headings without the
necessity of a line counter.

EXAMPLES.
Examples describing the use of the WRITE statement are as follows:

Examples Coppentis

WRITE P.FILE (REC); The REC record is written to the P.FILE
files The Llength of the output is coded in
the FILE statement.

WRITE D.FILE [NTH.REC] A disk file named D.FILE is written in a
(WORK); random mode with NTH.REC as the KEY. The
ON EOF PROLEND; data=name WORK is outputted. At the End=-

Qf=file procedure PRO.END is called.

SECTION 8

FUNCTIONS

GLUERALS

UPL=supplied functions are a set of procedures that are incorporated
directly into the language to facilitate ease of use and speed of
execution.

The usage of supplied functions is similar to invocation of a function
procedure written by a programmer. Such functions always return or
reference a values therefore, functions supplied by UPL are
expressions.

UPL functions can be divided into three groups.

The first group is exactly Llike a user function procedure. The appear-
ance of its name in an expression is replaceds at run=timesr by a value.
The following are examples of the first group:

a. CONVERT.
b. BINARY.

ce LENGTH.

de. CAT.

The second group is more akin to an input/output statement because it
requests information from the operating system (MCP). The following
are examples of the second group:

e TIME.
be DATE.
Ce NAME.OF.DAY.

The third group is similar to a function procedure except that it
returns an address rather than a value. It mays, therefore» appear to
the teft of an assignment or replacement operation. The third group is
in actuality an address=generating expressions but it is included here
for convenience. The following are examples of the third group:

a. SUBBIT.
be SUBSTR.

BASE.REGISTER

BASC.BEGISIER.EUNCIION. :
The BASE.REGISTER function returns the absolute main memory address of
the beginning of the data space of the program.

SYNTAX. ,
The BASE.REGISTER function syntax is as follows:

BASE.BEGISIER

DESCRIPTION. ;

The BASE.REGISTER function returns a 24=-bit value that is the current
absolute main memory address of the beginning of the data space of the
programe.

In a multiprogramming environment two separate executions of BASE.=
REGISTER may not yield the same results because the MCP may have moved
the data of the program to a new location in memory.

BINARY

BINABY.EUNCIION,
The BINARY function converts a character=string to a sign and a 23-=bit
value of type FIXED.

SYNTAX.
The syntactical structure of the BINARY function is as follows:

BINARY (fexpression)

DESCRIPTION.

The expression must result in a character=string of eight or fewer
decimal digits. Truncation occurs on the left for any strings greater
than eight characters.

The character=-string is assumed to contain decimal characters. Only
the low=order (right=most) four bits of each character are used during
the BINARY function; that iss the zone bits are ignored.

The character=string is converted to a FIXED number. Decimal values in
excess of 8,388,608, but less than 16,7775215 (or any multiple of this
range)s, cause the FIXED value to appear negative. Binary lengths in
excess of 24 bits are truncated on the left. The DECIMAL function is
the opposite of the BINARY function.

EXAMPLES.
Examples describing the use of the BINARY function are as follows:

Exaoeles Compeonts
A := BINARY (XYZ); Data=name XYZ is assumed to contain a char-
acter string of eight or fewer numeric chare-=

acters. The character=string is converted to
a binary value and is assigned to A.

B := BINARY ("255"); B now contains 11111111.

8=3

CASE

CASE.EUNCIION.

The CASE function is used to conditionally evaluate one expression from
among a list of expressions.:

SYNTAX. :
The syntactical structure of the CASE function is as follows:

CASE expression=1 (QE (expression=2 [{2 expression=31 ...] p)

DESCRIPTION.

The value of expression=1 is used as the ordinal position of the
expression in the List to be executed. The first expression in the
list is 0 (zero). The value of the executed expression is the value of
the CASE function. A range check is performeds and an out~of=bounds
value for expression=1 causes terminaticn of the program. Notice that
the CASE expression differs from a CASE statement because the CASE
expression returns a value.

EXAMPLES.
Examples describing the use of the CASE function are as follows:

Exaoeples comoents

X 3=CASE A OF (B» C» D» E)3 The value assigned to X is dependent
upon the value of A. For example>s
if A= 0 then X = B, or
if A= 1 then X t= C» or
if A= 2 then X t= Ds or
if A= 3 then X = E.
Z t= A+ CASE N OF (X» Y» Evaluation is Z t= 5 + (3 + (=4) % 2),

X + Yo X = Y) %23 {
FCR A = 5, N = 2 X = 3»
and Y = =4 :
Z is replaced by the value 3.

8=4

CAT

CAT_EUNCTIIONS
The CAT function programmatically concatenates two strings of data and
forms a new string. i

SYNTAX. : '
The syntactical structure of the CAT function is as follows:

literal=1 literal=2

Cal

data=name=1 data=name=2

DESCRIPTICN.

Data items can be linked together (concatenated) by using the CAT func=
‘tion. Although this function is intended to concatenate bit=strings or
character=stringss it can be used with any combination of data~types.
The Limit of data=items that can be concatenated is 8000 characters or
8000 bits.

The CAT function can specify, within the above Limit, several operands
connected by the required number of CAT functions.

If the operands are defined as being character», the result of a CAT
function operation is a string of characters. For any other
combination of operand data=typess the result is a string of bits.

EXAMPLES.
Assume the follcocwing declaration and initializations:

Declare A character (1)» B bit (3), € fixeds X bit (6)»
Y character (2)» Z bit (11), XX bit (27).

Exaooles Copmpgnts

A = "B" Data=name A comprises a character=string
containing the letter B.

B = @(1)101e Data=name B comprises a bit=string that
contains the binary value of 5. The length of
the data=string is three bits.

C = +10 Data=name C comprises a FIXED=string that con=

tains the positive (+) decimal value of 10.
The contents of data=names As» B» and C are known; therefores
X t= B CAT B A binary value of 453 that is, (11011016 is
created. The Llength of the data=stringc is six
bits. The result of the concatenation is
assigned to data=name X.

Y ¢= A CAT A A character=string, comprised of two bytess that

8=5

CAT
cont

Examples Comoents

has the value of "BB" is created. The value is
assigned to data=name Y.

Z := A CAT B3 A binary value of 15577 that is»
8(1)11000010101® is created. The Length of the
data=string is 11 bits. The result of the
concatenation is assigned to data-name Z.

XX 3= B CAT C; A binary string equivalent to the UPL octal
notation 8(3)500000012f is created. The result
of the concatenation is assigned to data=name
XX o

X ¢t= A CAT B = 43 The CAT function is lower in precedence than the
¢t= function. Data=name B is therefore set to
a value of 4 before B is concatanated with data-
name A. The result of the CAT is then assigned
to data=name X.

The second example describing the usage of the
CONVERT function is also an example of the
CAT function (refer to page 8=10).

CONVERT

CONYEBI.EUNCIIONS ‘
The CCNVERT function facilitates the conversion of one data type to
another.

SYNTAX.
The syntactical structure of the CONVERT function is as follows:

literal

cony
CONVERI

({ data=name ¢ data=type (g logical=groupl)

expression

DESCRIPTION.
The entry of a data=names» Lliterals, or expression denotes the data=item
that is converted to the specified data type or logical group.

The data=type clause is required. It defines the gutput conversion
data=type. The data-type is defined as follows:

e FIXED.
te CHARACTER.
Ce BIT.

The logical=group clause is required only when converting from type
BIT to type CHARACTER or from type CHARACTER to type BIT. It
specifies the number of bits (of the bit string) that correspond to a
character in the character strings The bit=groups specified are as
follows:

LeogicalzGroup ' ConmeDnts
1 Bit=grouping is in binary representation.
2 Bit=grouping is in quartal representation.
3 Bit=grouping is in octal representationr.
4 Bit=grouping is in hexadecimal representation.

If no bit=grouping is indicateds 4 (hexadecimal) is assumed. ALl
truncation or padding between strings of unequal lengths is performed
according to the rules as outlined in the assignment statement.

The conversion of data from type BIT to type CHARACTER expands the
specified logical bit=grouping into a character (byte) format by pre=
fixing 0's (zeros) to the most significant positionss and it should pgt
be construed as being an EBCDIC conversion of the data. Therefore», the

8=7

CONVERT
cont

conversion dges._pgt return printable decimal numbers. The result
merely represents eight bits of data for further manipulation as may
be programmatically desired.

To convert from type BIT to printable characterss first convert type
BIT to type FIXED and then type FIXED to type CHARACTER.

The conversion of data from type FIXED to type CHARACTER results in a
sign and seven printable (EBCDIC) decimal numbers; leading printable
0's (zeros) are not suporesseds ,

The conversion from type CHARACTER to type FIXED is performed in the
following manner:

a. The type CHARACTER data=mame is scanned from left to right
until a sign or non=space character is encountered.

be If a sign is encountereds it is noted and removed.

c. After encountering a sign or non=space characters only the
right=most seven characters of the data=name are converted.

de The low=order four bits ¢f each character are considered a
binary value times a power of 10 for each position from
the righte The high=order four bits are ignored. Decimal
values in excess of. 8,288,607 positive or 8,388,608
negative have the 2 raised to the 24th power bit ignored.

If the sign as previously noted is negatives, the FIXED number is
expressed in the complement form of 2.

The various forms of data conversion are briefly described in the
following charte.

CONVERT
cont

OUTPUT
BIT CHARACTER FIXED
B8 NO CHANGE. CONVERTS TO CHARACTER RETURNS 24 BITS LEFT
| STRING UNDER CONTROL ZERO FILLED OR
T OF THE LOGICAL BIT TRUNCATED AS
GROUPING. THE RESULT NECESSARY.
IS RIGHT JUSTIFIED,
LEADING ZERO FILLED.
c
H
A CONVERTS BYTE DATA TO | NO CHANGE. SEE SECOND SET OF
R A BIT STRING UNDER EXAMPLES THAT
A CONTROL OF THE FOLLOW.
c LOGICAL BIT GROUPING
T USING VALID CHARACTER
E ONLY. SEE FIRST SET OF
R EXAMPLES THAT FOLLOW.
F
| CHANGES TO TYPE BIT. CONVERTS TO SEVEN NO CHANGE.
X DATA REMAINS AS IS, DECIMAL CHARACTERS
E WITH SIGN AND LEADING
D ZEROS.

Figure 8=-1,

Data Type Conversion Chart

CONVERT
cont

EXAMPLES.
Assume that data=name CX contains a character whose binary value is

00000111, and data=name B is declared type BIT (4).

{

Exaoples Compents
B := CONV (CX,CHARACTERyaf} The contents of data=name B
contain the hexadecimal value
7 (0111).
B := CONV (CX»CHARACTER»3):> The contents of data=name B

contain the octal value of 6
(0110). Only the right=most
three bits of data=name CX are
assigned to B.

Assume data=name CARD contains the characters + 4095, and FX is of
type FIXED.

Exaueles _ Commentis

FX t= CONV (CARD, FIXED); . The contents of FX contain
' : hexadecimal QO0O07FF.

DECLARE N FIXED» B BIT (8);

N = +53; | Data=name N contains the value
1 +00.0.101 at object run=time.

B := @BCe; . i Data=name B contains the hexa-
: decimal value BC (binary value
1011 1100) at object run=time.

QUTPUT := "ENTRY NO." This statement produces a data-
CAT CONV (N»CHARACTER) string object run=time in the
"is" form of: "ENTRY NO. +
CAT CONV (B»CHARACTER> 0000005 IS 2330."
2)7

In the preceding example, the literal value "ENTRY NO.", the result of
converting data=name N» the literal value "IS"s and the result of con-
verting data=name B are made into a continuous string of data by the
insertion of concatenation (CAT) function designators. The result of
converting the FIXED value contained in data=name N to a printable
character is +0000005 with no suppression of 0's (zeros) or arithmetic
signe The result of converting the bit value contained in data=name B,
when using the character=to=quartal syntax as specifiedr» is as follows:

8~10

ae
be
Ce

10
2
F2

11
3
F3

11
3
F3

00
0
Fo

(binary).
(quartal).
(hexadecimal

character).

CONVERT
cont

DATE

QAIE.EUNCIIQN, ,
The DATE function returns a string that contains the current month»,
day, years, or Julian date.

SYNTAX.
The syntactical structure of the DATE function is as follows:
JULIAN o
i BII
MOQUNIY
RAIE | € 2 EIXED 2
RaX :
CJaBACIER
IEAB

DESCRIPTION.
DATE without the option is the same as DATE (MONTH», CHARACTER).

The format of each option and the lengths of the strings are as
follows:

Qotign Eorcmat : Bit E;‘g;;h Chacactecs
JULTAN YY/DDD L 7/9 2/3 2/3
MONTH MM/DD/YY | 4/5/7 2/2/2 2/2/72
DAY DD/MM/YY ‘ 5/4/7 2/2/2 2/2/72
YEAR YY/MM/DD | 7/4/5 2/2/2 2/2/2

Notation used in the preceding table is as follows:

a. YY equals the year» DD or DDD equals the day» MM equals
the month. i

b Digits are equal toéfour bits» that is» two decimal digits
per byte. f

Ce Characters are equal to eight bits.

DECIMAL

QECIMAL.EUNCIION.

The DECIMAL function converts the right=most 24 bits of an expression
from a binary value to a character=~string.

SYNTAX.
The syntactical structure of the DECIMAL function is as follows:

QECIMAL &eXDression?l z expression=2)

DESCRIPTION. :

The right=most 24 bits or less of expression=1 are converted from a
binary value to a decimal character=string equal to the number of char=-
acters in length requested in expression=2. No more than eight charac=
ters are produced. If the decimal character=string is greater than the
length requested in an expression=2, truncation occurs on the left.

If the character=string is less than expression=2» hexadecimal (00)
zeros are padded on the lLeft.

EXAMPLES.
Examples describing the use of the DECIMAL function are as follows:

Exapeles comments
X $= DECIMAL (A» 4); Data=name A is converted from a 24=bit
binary value to a 4=character numeric
stringe. ‘
z = DECIMAL (@FF@e, 3); 7 now contains the character=string 255.

HEX«SEQUENCE.NUMBER

HEX«SEQUENCELNUMBER_EUNCIION.
The HEX<SEQUENCELNUMBER function allows the hexadecimal equivalent of
the sequence number of the source language statement to be referenced
at run=time. ‘

SYNTAX. ,
The syntactical structure of the HEX.SEQUENCE.NUMBER function is as
follows: ’

HEX2SEQUENCELNUMBER

DESCRIPTION.
The HEX.SEQUENCE.NUMBER results in a bit=string of eight hexadecimal
digits that represents the source~language line number being compiled.

EXAMPLE., :
An example of the use of the HEX.SEQUENCE.NUMBER function is as
follows:

Examole ' Compents
X ¢= HEX.SEQUENCEJLNUMBER The value assigned to the data=name X
12753000 at run=time is €(4)127530008,

IF

JELEUNCIION.

The IF function is used to conditionally evaluate one expression from
a set of two.

SYNTAX.,
The syntactical structure of the IF function is as follows:

IE expression=1 TIHEN expression=2 ELSE expression=3

DESCRIPTICN.

If the value of expression=1 is TRUE, that is» the least=significant-
bit is a 1» the value of the expression that follows the THEN becomes
the value of the IF function. If the -value of expression=1 is FALSE,
the value of the IF function is the value of expression=3. Notice that
the IF function differs from an IF statement because it is an expres=
sion rather than a statement. It results in a value that must be used
in a larger expression.

EXAMPLES.
An example describing the use of the IF function is as follows:

Exaoole : : Compments

X ¢= IF B MOD 2 Data=name X is assigned the word 0DD if B is
THEN "ODD" an odd number. If B is an even number, data-
ELSE "EVEN"; name X is assigned the word EVEN.

LENGTH

LENGIH.EUNCIIQUN.
The LENGTH function returns the expression length in a 24<=bit type BIT
value format.

SYNTAX.
The syntactical structure of the LENGTH function is as followst

LENGIH LeXpressionf

DESCRIPTION.

If the expression returns a charauter string, the LENGTH is the number
of characters; otherwises the LENGTH is the number of bits.

EXAMPLES. i
Examples describing the use of the LENGTH function are as follows:

Exaooles Comments

X t= LENGTH (ABC); The length of the data named by
: ABC is assigned to X.

X = LENGTH C("WARM"); X contains a binary value of 4.

LIMIT.REGISTER

LIMIISBEGISIEB.EUNCIIONS '
The LIMIT.REGISTER function returns the main memory Llimit address of
the data space of a program.

SYNTAX.
The LIMIT.REGISTER function syntax is as follows:

LIMIT.BEGISIEB

DESCRIPTION.
The LIMIT.REGISTER function returns a 24=bit value that is the absolute
main memory address of the data space of a program.

In a multiprogramming environment two successive executions of the
LIMIT.REGISTER function may not yield the same results because the MCP
may have moved the data of the program to a new location in memorye.

MEMORY SIZE

MEMOBY.SIZE_EUNCIION.

The MEMORY SIZE function returns the size of the requested available
memory.

SYNTAX.

The MEMORY SIZE function syntax format is:

§M&MEM1§IZE%
SeMEMLSIZE

DESCRIPTION.
The requested memory size is returned as a 24=~bit binary value
indicating the number of bits in the memory.

S«MEMJ.SIZE is the size of all installed main memory including any
being utilized as control memory.

MeMEM.SIZE is the size of high=speed control memory installed in the
processing unit.

8=18

MOD

MOQ_EUNCIION.

The MOD function results in the remainder of a divide.

SYNTAX.
The syntactical format of the MOD function is as follows:

¥oo

DESCRIPTION. ,

The MOD function returns a value that is the remainder of a divide.
If both the divisor and the dividend are type FIXED» the MOD returns
a FIXED value.

If either or both are not type FIXED» then the MOD returns a positive
24=bit value.

EXAMPLE.
An example describing the MOD function is as follows:

Exaoole Compents

X Y MOD 52 The value assigned to X is in the range 0 to 51.

NAME.OF DAY

NAMELQEDRAY.EUNCIION. (
The NAME.OF.DAY function is a class I reserved word that returns a
character=string for the name of the day.

SYNTAX.
The syntactical structure of the NAME.OF.DAY function is as follows:

NAME2QESQAY

DESCRIPTION.
The returned character=string is nine characters long» left=justified
with trailing blanks. ’

SEARCH.LINKEDLLIST

SEABCHLINKEQLISILEUNCIIQN,
The SEARCH.LINKED.LIST searches a predefined structure for a true
condition.

SYNTAX.
The syntactical structure of the SEARCH.LINK.LIST function is as
follows: '

SEABCHSLINKERSLISI (expression=1 , expression=2 s expression=3 .

relationat . expression=4)

DESCRIPTION.

The predefined structure is searched for a true condition or until the
end of the structure. If a true condition is found, the base relative
address of the substructure is returned. If the search fails, OFFFFFF®
is returned. :

Expression=1 is the base relative address of the first substructure to
be examined.

Expression=2 is the relative offset (in bits) in the substructure of
the 24=bit field being compared with expression=3,

Expression=3 is the 24=bit data being compared with a field in the
substructure.

The relational is one of the relational operatorss that is»

GTR

EQL = >
NE@ # LEQ £
LSS < GEQ 2

Expression=4 is the relative offset in the substructure of the 24=bit
field containing the base relative address of the next substructure to
be examined if the comparison fails.

NOTE
The SEARCH.LINKED.LIST
function is used by the MCP
to allocate memory spacee.

SEQUENCE.NUMBER

SEQUENCE.NUMBER_EUNCIIQN. ;
The SEQUENCE.NUMBER function allows the character equivalent of the
source language line number being compiled to be used in the programs.

SYNTAX.
The syntactical structure of the SEQUENCE.NUMBER function is as
follows: :

SEQUENCE.NUMBER

DESCRIPTION. ‘

The SEQUENCE.NUMBER function results in a character=string of eight
EBCDIC characters that represent the sequence number of the current
source language statement being compiled.

EXAMPLE.
An example describing the use of the SEQUENCE.NUMBER function is as
follows:

Exaoele Copment
Z = SEQUENCE.NUMBER The character string "01234500" is assigned
01234500 to data=name Z.

SUBBIT

SUBBII.EUNCIIONS,
The SUBBIT function provides the capability to address one or more
data=bits within a data=name.

SYNTAX.
The syntactical structure of the SUBBIT function is as follows:

_ Sliteral-l 1 lLiteral=2
SUBBII (data=-name=1, data=name=2 2 < data=name=3)
}expression-l ‘expression=2

DESCRIPTION.
Data=name 1 is considered a data=name of type BIT regardless of its
previous declaration.

Data=name 2» literal=1», or expression=1 at object run=time is evaluated
as a positive number that is used as the ordinal position of the first

bit to be accessed within the specified bit=string. The most signifi=

cant bit (left=most) within a bit=string is bit 0.

Data=name 3, literal=2, or expression=2 is evaluated as a positive num=
ber that is used as the number of bits to be accessed within the bit=
string.

The omitting of data=name 3» literal=2, or expression=2 results in the
accessing of a string from the bit specified by the value of data=-name
2 through the Llast bit in the string.

A range=-check is performed on data=name 2 and data-name 3» and an out=
of=-bounds value causes an interrupt of the program. That iss data-
name 2 pyst point into the strings and data=name 3 must not specify
more bits than exist between the first bit being accessed and the end
of the stringe.

A resultant value of 0 (zero) for data=name 3 is valid and results in
no accessing of the data.

If a SUBBIT function appears to the left of a replacement operator, it
ijs treated as a data=name. Truncation, fill, and data alignment are
performed by the operator with type BIT being the destination field~-
type. If data=name 2 or data-name 3 is declared as being of type
CHARACTER» it is evaluated as being a binary number. That iss» if a
value of 1 is givens it is equal to the internal EBCDIC value of
11110001» which converts to a decimal representation of 241, which
results in the accessing first of the 241st bit within the string.

The SUBBIT function may be passed to a procedures, by name or by value»
according to the following conventions:

a. Statement SUBBIT (data=name 1, data=name 2» data=name 3)
is defined as being a pass=by=name.,

SUBBIT
cont

b. Statement (SUBBRIT (data=name 1, data=name 2, data=name 3))
is defined as being:a pass=hy=value because of the extra
set of parentheses that surrounds the entire statement.

EXAMPLES.
An example describing the use of the SUBBIT function is as follows:

Exaoples Commenis

DECLARE SBIT FIXED;
SBIT := @8(1)0010098;

A = SUBBIT (SBIT», 23, 1); Statement replaces data=name A with
a Do

A = SUBBIT (SBIT» 215 1) Statement replaces data=name A with
a 1.

DECLARE SBIT BIT (11),
AX2 BIT (9):
SRIT = #(1) 110111100185
AX2 3= B8(1) 100010100€;
SUBBIT (AX2s 3) :=
SUBBIT (SBIT, 3, 2); Thans, AX2 contains 100110000.

DECLARE 0BJ.CODE BIT (16)>»
SO0C.CODE FIXED;
SUBRIT (0BJ.CODE»8,8) = | The right=most eight bits of the type
SC0C.CODE FIXED variable SOC.CODE are assigned
to the right=most eight positions of
BBJ.CODE.

8=24

SUBSTR

SUBSIR.EUNCTIION,
The SUBSTR function provides the capability of addressing character
substrings within a data=name.

SYNTAX.
The syntactical structure of the SUBSTR function is as follows:

literal=t literal=2 l
SUBSIR (data=name=1, data=name=2 2 data=name=3 2
expression=1 expression=2

DESCRIPTION.
Data=name 1 is considered of type CHARACTER regardless of the type in
its declare statement.

Data=name 2» literal=1,» or expression=1 at object time is evaluated as
a positive number that is used as the ordinal position of the first
character to be accessed within the character=string. The most signif-
icant (left=most) character within a character=string is character 0.

Data=name 3» literal=2s or expression=2 is evaluated as a positive num-=
ber that is used as the number of characters to be accessed within the
character=string.

The omitting of data=name 3, literal=2, or expression=2 results in the
accessing of the string from the character specified by the value of
data=name 2 throygh the last character in the stringe.

A range check is performed on data=name 2 and data=name 3» and an out-
of=bounds value causes an interrupt of the programe. That iss» data-
name 2 gysi point into the strings and data=name 3 pust._.pgof specify
more characters than exist between the first character and the end of
the stringe.

A resultant value of 0 (zero) for data=name 3 is valid and results in
no accessing of data.

If a SUBSTR function appears to the left of a replacement operators it
is treated as a data=name. Truncations fills and data alignment are
performed by the operator with type CHARACTER being the destination
field-type. That is» if the source field is pgt of type CHARACTER, the
alignment is to the right and is controlled by the data=name 2 position
and the number of characters specified by data=name 3. 1f» however:
the source field is of type CHARACTER» the alignment is left=justified
to the position as specified by data=name 2 and is controlled by the
contents of data=name 3 to determine the number of positions in length.

If data=name 2 or data=name 3 is declared as being data of type
CHARACTER» it is evaluated as being a binary number. That is» if a
character 1 is givens, it is equal to the internal EBCDIC value of
11110001» which converts to a decimal value of 241, which results in
the accessing first of the 241st character in the string or a string

8=25

SUBSTR
cont

length of 241 characters.

The SUBSTR function may be passed to a procedures by name or by value»
according to the following conventions:

Ge Statement SUBSTR (data=namne 1, data=name 2» data=name 3)
is defined as being ‘a pass=by=name.

be Statement (SUBSTR (data=name 1» data=name 2, data-name 3))
is defined as being a pass=by=value because of the extra set
of parentheses that surrounds the entire statement.

EXAMPLES. ;

In the following exampless assume a data=name of ALPHA that contains a
character=string consisting of all 26 letters of the alphabet in
sequence from A through 7. :

Lxameles commenis
X t= SUSSTRCALFA, 0, 133 Data=name X contains an A.
X t= SUBSTRCALFA, 24); ‘ Data=name X contains the letters
‘ YZ.e
N $= 07 Assume N is type FIXED.

be 0DD FCOREVERS

SUBSTR(PRINT», N» 1) := Data=name PRINT contains every other
SUBSTRCALFA, 2 * N» 1)} letter in the strings for example»
N = N + 1; A C E e e e W Yn
IF (2 « N) GTR 25 THEN
UNDO
END ODD;

ABC = "0OPPOSITE":; This statement replaces data=name ABC
CH = "VAULT"; ; with APPOSITE» and CH remains as
SUBSTR (ABC» 0» 1) = SUBSTR VAULT.

(CH» 1, 1) :

SWAP

SHAB_EUNCIIONS

The SWAP function is used to synchronize asynchronous processes.

SYNTAX.
The SWAP function format is as follows:

SHAR (data=nameg expression)

DESCRIPTION.
The value of the expression is exchanged with the contents of the data-
name in one main memory cycle, and the former contents of the data=name

are returned by the SWAP function.

The lLlength of the data to be SWAPped is either the length of the data-
name or the right=most 24 bits of the data=names whichever is less. The
length of the expression is padded or truncated to the length of the
operation in accordance with the rules of the assignment operator.

EXAMPLES.
Examples describing the SWAP function are as follows:

Examoles Compments
IF SWAP (A»1) : If A contains a 0 (zeroc)s, the
THEN CALL ASSIGN.SPACE; ELSE portion is executed and A

ELSE CALL< LOOK.FOR.MORE«SPACE:} then contains a 1. If A
contains a 1» the THEN portion
is executed and A then contains

al.
I: = 33 ACI): = SWAP(I, I+1); An equivalent set of statements
is as follows:
I: = 33
ACId: =35
I: = 3 + 17
DECLARE STNG CHARACTER (16)»s
B CHARACTER (3)»
A FIXEDS; Data=name B now contains the
STNG: = "THE VALUE IS 000"} characters 000 while STNG con=~
A: = 1233 tains 123. Notice that the
B: = SWAP(STNGs,CONYV ’ right=most 24 bits of the second
(A>CHARACTER)) expression are used regardless

of the data=type.

8=27

TIME

TIME_EUNCTIIONS.
The TIME function returns a string that represents the current time of
day.

SYNTAX.
The syntactical structure of the TIME function is as follows:
SCQUNIEB l BlI
IIME { MILIIABY 2 RIGII 2
1 CIMILIANS CHABACIEE

DESCRIPTION.
The TIME function without the option is the same as TIME (CIVILIAN.,
CHARACTER). The format of each option and string length is as follows:

Length
Qetion Eocrmat Bits Rigits Chacactecrs
COUNTER TTTT 20 6 6
MILITARY HHMMSST 4/6/6/4 2/72/2/1 2/72/2/1
CIVILIAN HHMMSSTAP 4/76/6/4/16 2/2/2/1/4 2/2/2/1/2

Notation used in the preceding table is as follows:

a. HH equals hours.

b. MM equals minutes.

c. SS equals seconds.

de T equals 10th of a second

e. AP equals AM (ante meridiem) or PM (post meridiem).

A digit is a 4=bit decimal number.

NOTE
Time durations of less
than one 10th of a second
may show zero elapsed time.

TODAYS.DATE

ICQAYS.DAIE_EUNCIION,

TODAYS.DATE function is a class I reserved word that returns a
character=string that represents the time and date the program is
ccmpiled.

SYNTAX., :
The syntactical structure of the TODAYS.DATE function is as follows:

I002YS.04I1E

DESCRIPTION.

The date and time are the date and time the program is compiled. The
format of the l4=character string that is returned from the TODAYS.DATE
function is MM/DD/YY HH:iMM, '

SECTION 9

HOW TO WRITE A UPL PROGRAM

GENEBALS.

The writing of a computer proaram presupposes an understanding of the
problem to be solved and -a selection of the programming language most
‘suitable to efficiently solving that problem. Assuming that these
conditions are satisfieds the following considerations should be kept
in mind as a guide in writina a UPL source languaage program.

WUBRITING.BULES S

The UPL Compiler accepts a card image input file where columns 1
through 72 may be used for statementss, declarationss or comments and
where columns 73 through 80 are the card segquence=numbers and/or
identification field.

The cecding can be specified in a completely free focrm; that iss» any
number of statements, declarationss» or comments can appear on a single
card or over as many cards as desired. Column 72 is considered
adjacent to column 1 of the next card. Extra spaces can be used freely
throughout the UPL code to improve the readability of the text. A per-
cent sign (%) denotes that the rest of a card is composed of comments.
It can be used to delimit the scan procedures thus increasing compile
speed.

EXAMPLES.
For examples the IF statement can be written as:

Exaoele Commgnt

IF X EQL Y THEN
‘ ELSE

Fach Lline on the page renresents a
separate carde.

([T}

X
X

- O
es ‘ee

EOBM.OE.A_UBL.EBOGRAY.

Programs are divided into lLogical units called PROCEDUREs» each having
a head statement at its beginning and being terminated with an END
statement. PROCEDUREs have an internal structure as described in the
procedure statement. A PROCEDURE has a definite ordered relationship
to all other PROCEDUREs within a program from either a side=by=side
(parallel=-PROCEDURE) or subordinate (nested=PROCEDURE) position in that
program. The ordering inherently defines the scope or range of a data-
name and the PROCEDURE(s) that may be invcked from a gqiven PROCEDURE.

In the description that followss, the main procram (lexicographical
level 0) is considered a PROCEDURE except that it has no head or END
statements and therefore cannot be recursively invoked.

Data=names and nested PROCEDUREs that are used within a PROCEDURE must
be declared and completed before any executable statements in that
PROCEDURE.

The outer=most PROCEDURE is considered to be the program. The
PROCEDURE(s) contained within the program are considered nested at
least one level down; that is» they are on lexicographical level 01 or
greaters» with the maximum depth of 15 sublevels.

Figure 9=1 shows the structure of a typicals, though arbitrary, UPL
programe. FEach bracket represents a PROCEDURE and is labeled as being
PROCEDURE=n (Psubn) through END=n (Esubn). The declarations and
executable statements are indicated as being Dsubn and Xsubn» where n
denotes the PROCEDURE to which the statement belongs. -Although the
number and nesting of PROCEDUREs will vary among programss the
relationship of the parts», declarationss nested=PROCEDUREss and their
executable statements pust_aepgac.in.the.ocder_shown. That is» all
DECLAREs for a given PROCEDURE must appear in that PROCEDURE tefgre
declaration of any nested PROCEDURE and before execution of any state-
ments. When one or more nested PROCEDUREs are declared», however, they
must be completed in their entirety (including the executable state=
ments) pefore the first executable statement of the parent PROCEDURE
can be specified.

Five PROCEDUREs» three of which are on lexicoagraphical level 1 (Psubl,
Psub2s and Psub3) and two on lexicographical level 2 (Psub4 ard Psub5)
are shown in figure 9=1. The outer=PROCEDURE is called the program and
has no PROCEDURE head or END statements. The FINI card is used to
signify the end of compitation.,

Examples

= D subO

DsubD
=Psubl
Dsubl
Dsubl
Xsubi
Xsubl
w Esubl

=Psub?2
Dsub?2
Dsub?2

Xsub?2
Xsub?2

—Fsub?2
~Psub3
Dsub3
Dsub3
Psubd
Dsubyg
Dsuby4

Xsub4

Xsubg
Esubd
PsubsS

Dsub5

Xsub5S
Esubb
Xsub3
Xsub3

= Fsub3

Xsub0 memesse~
XsubO

XsuboO semsee=-
- INI

compents

Declare global data=names (lexic level Q).

Begin PROCEDURE 1 (lexic level 1).
Local data declarations of PROCEDURE 1.

Executable statements of PROCEDURE 1.
END of PROCEDURE 1.

PROCEDURE 2 (lexic level 2).
Local data.

Executable statements of PROCEDURE 2.

END of PROCEDURE 2.

Local data=names of PROCEDURE 3 that also are
global to PROCEDURES 4 and 5 (lexic level 1).
Local data=names of PROCEDURE 4 (lexic level
2).

Executable statements of PROCEDURE 4.
END of PROCEDURE 4.

Local data=names of PROCEDURE 5 (lexic Llevel
2).

Executable statements. of PROCEDURE 5.
END of PROCEDURE 5.

END OF PROCEDURE 3.
First executable statement in program.

Last executable statement in prograr.

Figure 9=-1. Typical UPL Program

Schematic Diagram

Execution of an object UPL Program starts at the first executable
statement in the outermost PROCEDURE (statement Xsub0) and is the
statement that immediately follows glli_.pested_PRUCEDUBEs. Execution of
statements then continues successively from statement to statement
within the outermost PROCEDURE or until a STOP statement is encountered.

Since the source code lLine format in UPL is very flexibles it is
suggested that statement levels be indented on new cards to improve the
documentation references and the general understanding of a prcocgram.
Thuss each new PROCEDURE may be indented to a new margins, and its
corresponding END may be placed on that same margin. Also» since
statements can contain other statements (such as DO» IF» and CASE)»
each lower statement lLlevel may be indented. When a higher level is
resumeds, its statements should be placed at the proper level margin.

It should be noted that this is gpnly a suggestion and that indenting

of statements will in no way affect operation of a UPL Programe.

Studying the examples and the detailed deécriptions of UPL
statements and declarations in this manual should aid in understanding
how a UPL Program is written.

EBOCEQUBE.CALLING.
Any PROCEDURE can call (invoke) any other PROCEDURE that is currently

invoked (any direct ancestor) or any PROCEDURE that is nested one level
down within a currently invoked PROCEDURE (any first=generation
descendant).

For definitional purposess» the program is considered to be the outer=
most PROCEDURE and is always in a currently invoked status.

CONCEPT OF SCOPE.

The rule follows directly from the concept of scope. Each PROCEDURE
passes all of its declared names as globals to all its descendants.
This includes the names of all PRCCEDUREs nested one level downe.
Notice the difference between the name of a PROCEDURE on the current
lexic level and the PROCEDURE being named that is on the next lLower
lexic level.

RELATIONSHIPS.
Let figure 9=2 depict the compile~time relationships of the specified
PROCEDURESs.

LEXIC=LEVEL=0

Fiqure 9=2. Procedure Comoile
Time Relationships

Then the SCOPE or range of each PROCEDURE is as follows:

~a. PROCEDURE BN can invoke any of the following: PNs PAAB, PAA,
PAs PAB» PBs» or PC.
b. PROCEDURE PB can invoke any of the following: PA» PB» and PC.
c. The parent PROCEDURE can invoke PAs» PB» and PC.
de. PROCEDURE PAB can invoke PAB, PABAs PA» PAAs PB» and PC.

As another examples let A» B» C» D» Ls» M, and K be the names of a set
of PROCEDUREs imbedded in some program. If the compile=time relation-=
ship of the PROCEDUREs is:

A (B (K)s C (LsM)s» D)

then the SCOPE of a PROCEDURE=invokina statement in each PROCEDURE is:

a. A can call As» B» C» or D.

be B can call Bs» K» A» C» or D.

ce K can call X» B» A» C» or D.

de € can call C» Ls Ms» A» or B.

e« L can call Ls» C» Ms» A» B, or D.
fo. ¥ can call M» C» Ls As» B» or D.
g D can call Ds» A» B» or C.

In the previous example, the schematic could be represented as shown in
figure 9=3.

(A) —A

& © @ B
sQC K
OICHRO '_‘“—C
L
I

o

Figure 9=3., Nesting Examples

CORING_EXAMBLES. .

A flow chart of a program that reads a card, extracts 11 fields of seven
columns eachs» converts each field to a FIXED number, and then prints

a copy of each FIXED number is shown in figure 9=4., Two methods that
can be used to code this problem follow the flow charts, with the first
method (figure 9=5) being a straignt=forward approach that follows the
flow chart logic closely. The second method (figure 9=6) uses recursive
PROCEDURE techniques and more readily exemplifies a typical UPL Program.

‘_.

HOUSEKEEPING

[

CONVERT
A BIT
TO
A CHARACTER

" heao

SET UP INPUT
CARD
N
EXTRACT Cngng
NEXT SEVEN FIXED
COLUMNS DATA

O

I

PRINT
A LINE

Figure 9=4.

INCREMENT
THROUGH
FIXED FIELD
BY BITS

INCREMENT
TO NEXT
FIELD

HIGH

Programming Flow Chart

LOW

8=6

(2 40 T 3188YS)

1 #jdwex] bulwwedboudd

*Cub 9JdNnbB1L 4

BURROUGHS B1700 UPL COMPILERs MARK IIl.1 (12/20/72 10:21) TUESDAY,
LL NL SEQUENCE :SOURCE IMAGE
0 0 :$ CONTROL
t$ SINGLE

[—]
[~

:DECLARE CD CHARACTER (R0)s CHAR CHARACTER (24)s F (11) FIXED 3
:DECLARE (NoMs COL) FIXEDS

SFILE IN (DEVICE = CARD) 3 &

$FILE OUT (DEVICE = PRINTER)3} %

OPEN IN INPUT}

"OPEN OUT OUTPUTS

N =M :=COL :=03

READ IN (CD):

DO PR1 FOREVER:
IF COL GTR 70 THEN UNDO PR13
FN) = CONV(SUBSTR(CD+COL+7)» FIXED)S
COL 3= COL + 72

o o0 oo o0

QQOOOOOOOOOOéOQOOOQOOQC?OOOOOOO
COOO It et NNNN e el QO et ot et e e D DO ODO OO

#osns COMPILATION COMPLETE

2/ 6/73,

H BUMP N3

: END PR13

$ Ni= 03

¢ DO PRZ FOREVERS

H M:=03

: D0 PR3 FOREVER?

: SUBSTR{CHARsMe1) :x= CONV(SUBBIT(F(N)eMs1)s CHARACTERs1)3
H BUMP M3

: IF M GTR 23 THEN UNDO PR3%
H END PR33

H WRITE OUT (CHAR)S

H BUMP N3

: IF N GTR 10 THEN UNDO PR23

: END PRZ2:

¢ CLOSE TN

¢ CLOSE ouT:

: STOP:

s FINIS

6:16:51 PM

! PROCFDURE

%0 #0 20 04 08 00 00 se e 0 e

00 00 00 00 00 00 00 40 00 00 00 90 00 0 BE 00 05 0 o0

SEGMENT

(2 40 2 19894ySs)

] 9)1dwex3 Bujwweabodd

*Cafg 94N6L4 -

COMPILE STATISTICS:

NUMBER OF ERRORS DETECTED: 0

NUMBER OF CARDS SCANNED: 30
NUMBER OF TOKENS SCANNED: 197
LL ZERO NAME STACK ENTRIES: 8

PROGRAM STATISTICS

RUN

CORE REOUIRED TO RUN: 4864 BITS
NUMBER OF SEGMENTS: 2

SIZE OF LARGEST SEGMENT: 1725 BITS
TOTAL SEGMENT SIZE: 1725 BITS
DISK SIZE: 8 SEGMENTS

STATISTICS:

NAME STACK SIZE: 12 ENTRIES

CONTROL STACK SIZE: 15 ENTRIES

PROGRAM POINTER STACK SIZE: 25 ENTRIES
EVALUATION STACK SIZE: 20 ENTRIES
VALUE STACK SIZE: 1168 BITS

PROGRAM STATIC CORE: 4736 BITS
PROGRAM DYNAMIC CORE: 0 BITS

COMPILE TIMES:

ELAPSED TIME: 0:01:55.2
PROCESSOR TIME: (NOT AVAILABLE)

07T=6

199y3)

(¢ 40 1
Z @jduwex3 burLwweJdboudd

‘9.6 9J4nNnb61 4

LL

o0

000

CHA

ENDN N OO e

[

OO O

o0 o

NL

oo

cooo

QOO OOOC

1
ACTER

0

0

[— -]

(-]

[N~

@URROUGHS B1700 UPL COMPILERs MARK IIl.1 (12/20/72 10:21)
SEQUENCE :SOURCE IMAGE

t$ CONTROL

¢$ SINGLE DETAIL

TUESDAY,

2/ 6/73,

tDEFINE CH AS # CHARACTER ¥, CALL AS ##3 % CALL IS A NULL SYMROL

tDECLARE WORK(11) FIXEDs PoNUMB CH (24)s CD CH (80)3

FILE IN (DEVICE = CARD), OUT (DEVICE = PRINTER)3
PROCEDURE P1 (Xx)3
FORMAL (X) FIXEDS

s e» oo oo

WORK (X/7=1) := CONV(SUBSTR(CDyX=797)¢ FIXED)}
RETURNS
END P13
PROCEDURE P2 (Y)3
FORMAL (Y) FIXED3
PROCEDURE P3 (2)3%
FORMAL (Z) FIXEDS3

H SUBSTR(P.NUMBsZs1l) = CONV(SUBBIT(WORK(Y)sZe1)sCHel)$
H END P33
H IF Y NEQ 0 THEN CALL P2(Y=1)% SRECURSE P2

: CALL P3(0)3

: WRITE OUT (P.NUMB)3
: END P23

¢ OPEN IN INPUTS

SOPEN OUT OUTPUTS

: CALL P1(T)s

: CALL P2(10)3

¢ STOP:
s FINIS

#asse COMPILATION COMPLETE

IF X LSS 76 THEN CALL Pl{(X+7)% % A RECURIVE CALL

IF Z LSS 23 THEN CALL P3(Z+1)3%A RECURSIVE CALL ON P3

6:09:36 PM

.
B

e oo se %0 se se s oo

e oo ..

o se s0 o0 oo (13

PROCEDURE

Pl
Pl

Pl
Pl

P2
P2
P3
P3

P3

P2

r2
P2

SEGMENT

TT=6

(2 30 2 183ySs)

2 81dwex3 Bbulwwedbodd

*9-6 94nb14

COMPILE STATISTICS:

NUMBER OF ERRORS DETECTED: 0

NUMBER OF CARDS SCANNEDN: 26
NUMBER OF TOKENS SCANNED: 211

LL ZERO NAME STACK ENTRIES:)

PROGRAM STATISTICS

RUN

CORE REQUIRED TO RUN: 4696 BITS
NUMBER OF SEGMENTS: 2

SIZE OF LARGEST SEGMENT: 1409 BITS
TOTAL SEGMENT SIZE: 1409 BITS
DISK SIZE: 7 SEGMENTS

STATISTICS:

NAME STACK SIZE: 10 ENTRIES

CONTROL STACK SIZE: 1S ENTRIES
PROGRAM POINTER STACK SIZE: 25 ENTRIES
EVALUATION STACK SIZE: 20 ENTRIES
VALUE STACK SIZE: 1096 BITS

PROGRAM STATIC CORE: 4568 BITS
PROGRAM DYNAMIC CORE: 0 BITS

COMPILE TIMEFS:

ELAPSED TIME: 0:02:06.8
PROCESSOR TIME: {(NOT AVAILABLE)

CCMMENTS ON PRUGRAMMING EXAMPLE 2.

The statement "IF X LSS 76 THEN CALL P1(X+7)3" will generate 10 calls
to PROCEDURE Ple. With each icalls, an address will point to the next
statement that is to be executed when the called PROCEDURE executes a
RETURN statement. FEach invocation of Psubl also will generate new
space for the new parameter being passed. Run=time statement
executions for examples then will be equivalent to the following
sequence of statements:

CALL P1 (7))
CALL P1 (1433
CALL P1 (2133
CALL P1 (28)3
CALL P1 (35);
CALL P1 (42);
CALL P1 (49);
CALL P1 (56);
CALL P1 (63);
CALL P1 (70);
CALL P1 (77)5
WORK (77/7 = 1
WORK (70/7 = 1
. (63/7 = 1

CONVC(SUBSTR (CD» 77 7> 7)s 3);
CONV(=mmm== (==, 70 = 75 7)s 3);

[. L] (3 .

Nt Nt o

WORK (7/7 = 11) 3= CONV(======e=ceee, 7 = 7, ===) ===);
Procedures P2 and P3 use similar lLlogic counting down by 1 from 10 in P2
for a total of 11 iterations and from 23 to 0 in P3 for 24 iterations.
Recursive calls will not generate new code because all procedures in
UPL are re=entrant.

SECTION 10

UPL COMPILER CONTROL

COMEBILE.DRECK.

To ccmpile a UPL Program from cardé; the following control cards are
required:

ZCOMPILE pg=namelwithlUPL LICBRARY]

[?FILE STATEMENT CARDS) FILE cards can be used to relabel the
" compiler files. (Refer to FILE
statement in the Software (Qperational

Manuals)

2DATA CARDS

CENEW]

UPLL SOCURCE CARDS

FINI

TEND

The UPL Compiler files are:

Eile : Comment
CARDS Card source input file,
SOURCE Primary ‘source file if $MERGE is used.
NEWSOURCE Updated .source output fite if S$NEW is usede.
LINE Line printer file.

The $NEW compiler control will create a source file on disk that may
have other source images merged during compilations.

Exagole .
To compile using a source file on disk and merge additional source

imagess» use the following control cards:
ZCOMPILE PG=NAME [WITH] UPL LICBRARY]
[?FILE STATEMENT FOR SOURCE]
[?FILE STATEMENT FdR NEWSOURCE]
?2DATA CARDS

EMERGE

[3NEW]
UPL SOURCE IMAGES TO BE MERGED (PATCHED)

L]

UPL SOURCE IMAGE WITH SEQUENCE FIELD EQUAL 99999999
FINI
PEND

COMBILER.CONIROL_CARD.OQRIIQUNS.

ALl compiler control cards must have a ¥ (dollar sign) in column 1.
Control options may appear anywhere from columns 2 through 71 and must
be separated by a space. Columns 72 through 80 are for sequence num=
bers.)

The word "NO"™ may appear before most options. It turns off or reverses
the effect of the option.

The following is an alphabetical listing of the options and their
actions.

Qotions Actigns

AMPERSAND Prints those ampersand cards that
are examined.

CHECK Checks the source input. file for
sequence errors.

CODE Prints the UPL=object code gener-
ated for each source statement.

CONTROL Turns on the printing for all
following control cards. To see
the control option printed
requires two control cards.

CSSIZE INTEGER Overrides the compiler estimate of
the control stack size. Integer
is in number of entries.

DETAIL Prints the expansion of all define
invocations.

DCURLE Double spaces the listing.
DYNAMICSIZE INTEGER Overrides the compiler estimate of

the memory allocated for paged
arrayse. INTEGER is the number of

10-2

Qotigns

ESSIZE INTEGER

FORMAL.CHECK

INTERPRETER INTERPRETER MULTI=
FILE-NAME/INTERPRETER/FILE NAME

INTRINSIC INTRINSIC=FAMILY-NAME

LIST

LISTALL

MERGE

NEW

NO

Actigps

bits allocated.

Overrides the compiler estimate
for the size of the evaluation
stacke INTEGER is the number of
entries.

The actual parameters passed to
each procedure will be checked:

at execution times against the
types and length specifications of
their corresponding formal decla=-
rations. Also, the values
returned from function procedures
Wwill be checked against the type
and length in the procedure head
statement. Lack of correspondence
is a run=-time error.

Changes the default interpreter
ID from UPL/INTERPl. When the
program {being compiled) is
executeds, it Wwill require a new
interpreter as specified.

Changes the family name of the
intrinsics to be used when the
program (being compiled) is exec=
utede The default intrirsic
family name is UPL.INTRIN.

Prints the source input that was
compileds A NO list also will
turn off the LISTALL options.

Prints all source input whether or
not conditionally excluded. The
LISTALL turns on LIST, but

NO LISTALL does not turn off LIST.

The primary source file is on tape
or disk and will have cards

merged from the card reader.
Creates a new primary source file.
Turns off or reverses the effect

of any option that immediately
follows ite.

10=3

Qptions
NSSIZE INTEGER

PAGE

PPSIZE INTEGER

SEQ
(BEGINNING=NUMBER INCREMENT)

SINGLE

SIZE

SUPPRESS

VOID SEQUENCE NUMBER

VSSIZE INTEGER

XMAP

10=4

Actignps

Overrides the compiler estimate of
the name stack size. INTEGER is
in number of names.

Causes a skip to the top of a new
page listing.

Overrides the compiler estimate of
program pointer stack size.
INTEGER is the number of entries
in the stack.

Resequences the new primary output
file.

Single spaces the listing.

Prints code segment names and
sizes at the end of the compile.

Suppresses warning messages. To
suppress sequence error messagess
use NO CHECK.

Voids or removes records in the
primary source file. Begins at
the sequence number of the VOID
card and goes through the sequence
number following the word VGID.
The VOID card may not be preceded
by a NO» must be the only compiler
option on the cards and must con=-
tain sequence numbers in columns
72 through 80.

Overrides the compiler estimate
for the value stack size. INTEGER
is in bits.

Creates an extended UPL=~object
code MAP file showing the relative
displacement of object code per
source card sequence number per
code segment.

ACCEPT
BASE

BY

CASE
CHARACTER
DECLARE
DISPLAY
DYNAMIC
ELSE
EXOR
FILE
FIXED
FORWARD
GEQ

IF

LEQ

MOD

NEQ

ofF
PAGED
READ
SEEK
SKIP
SUBBIT
THEN
UNDO
VARYING
WRITE

APPENDIX A

CLASS T RESERVED WORDS

_AND
BIT

CAT

CLEAR
DECREMENT
DO

END

FILLER
FORMAL
FROM

GTR
INTRINSIC
LSS

NOT
OPEN
PROCEDURE
RECEIVE
SEGMENT
SPACE
SUBSTR

TO

USE

AS
BUMP

CHANGE
CLOSE
DEFINE
DUMMY
EQL

FINI
FORMAL.VALUE

OR
REMAPS
SEND
STOP

TODAYS.DATE

A=1

BASE.REGISTER

CONV

DATE

LENGTH
MAKE.READ.ONLY
NAME.OF.DAY
REVERSE.STORE
SEARCH.LIMKED.LIST
SWAP

TIME

APPENDIX B

CLASS II RESERVED WORDS

BINARY

CONVERT
DECIMAL
LIMIT.REGISTER
MeMEMJSTZE

S.MEM.STZE

APPENDIX C

CLASS III RESERVED WORDS

ASCII

BACKUP

CRUNCH

DEVICE
DISK.FILE
DISK.FILE.?2
DISK.PACK.CAELUS
EBCDIC
END.OF.TEXT
FORMS

LABEL

LOCK.OUT

NEW

0DD

QUTPUT
PAPER.TAPE .PUNCH
PARITY

PUNCH

RANDGM

REEL

REMOVE

SERTIAL

SPO

TAPE.7
TAPE.7.UPRIGHT
TAPE«.9.CLUSTER
TAPE.9.PE
VARIABLE

AREAS

CARD

CRUNCHED

DISK

DISK.FILE.1
DISK.PACK
DISK.PACK.CENTURY
EOF

EVEN

INPUT

LOCK
MULTI.FUNCTION.CARD
NOREWIND

ON

PAPER.TAPE .READER
PRINTER

PURGE

RECORDS
RELEASE
SECURITY.ID
SORTER.READER
TAPE
TAPE.7.CLUSTER
TAPE.9
TAPE.9.NRZ
UNTT

WITH

INDEX

Accept statement»

description ofs 7=2

examples of, 7=2

syntax ofs, 7=2
Access.file.information statement»

description ofs, 7=3

syntax ofs, 7=3
Access mode option of file statement, 7=10
Actual parameterss, 2=5
All.areas.at.open attribute of change statement, 6=21
ALL.areas.at.open option of file statement, 7=-13
Area.by.cylinder attribute of change statement, 6-=21
Area.by.cylinder option of file statements, 7=13
Areas option of file statement, 7=12
Arithmetic expressionss, 3=6
Array data=names 3=2
Array page type statement.

description ofs, 6=2

syntax of, 6=2
Array in data conceptss 2=2
Assignments, 2=3
Assignment statement»

description ofs, 4-=3s 6=3

examples of, 6=5

syntax ofs» 6=3

Backup option of file statement, 7-10
Base.register function,

description of, 8=2

syntax of, 8=2
Basic conceptss

assignments 2=3

data conceptss, 2=1

general information on, 2~1

lexicographic levels, 2=8

" procedure typess 2=7

proceduress 2=4

replacement, 2=3

scopes 2=9

single=pass compiler, 2=4
Basic symbolss 1=3
Bit data types 2=1
Binary functions

description of» 8=3

examples of, 8=3

syntax ofs, 8=3
Blockseper.area attribute of change statement, 6=20
Braces in metalanguages, 1-2 '
Brackets in metalanguages, 1=2
Buffers attribute of change statement, 6=19
Buffer option of file statement, 7=11
Bump statements.

description of, 6-=11

one

INDEX (cont)

examples ofs 6-11
syntax of, 6=11

Case control statements, 4-=3
Case function,
description of, 8=4
examples ofs 8=4
syntax of, 8=4
Case statement,
description ofs 6=13
examples of, 6=14
syntax ofs, 6=13
Cat functions
description ofs, 8+5
examples of, 8=5
syntax ofs, 8=5
Change statements
description ofs 6-15
dynamic attributes ofs, 6=-15
examples ofs 6=22
syntax of, 6=15
Character data type in data conceptss, 2-1
Class I reserved words, A=-1
Class II reserved wordss B=1
Class IIl reserved wordss C=-1
Clear statements
description ofs 6=23
syntax ofs 6=23
Close statements
description of» 7=4
examples ofs, 7=5
syntax ofs, 7=4
Conditional inclusion statement:
description of, 6=24
examples of» 624
syntax ofs, 6=24
Conditional or relational expressionss 3=7
Conditional page statements
description ofs 6=26
syntax ofs, 6=26
Conditional symbol statement,
description ofs, 6=27
examples ofs, 6=27
syntax of, 6=27
Consecutive periods in metalanguage, 1=2
Control statementss, 4-1
caser» 4-3
dos 4=2
do forever, 4=2
if, 4=2
procedure call, 4-1
Convert functions
description of, 8=7
examples ofs 8=10

two

INDEX (cont)

syntax ofs 8=7

Data conceptss, 2=1
arrayss 2=2
bit data types» 2=1
character data types, 2=-1
data storage allocations, 2=2
data type conversions 2=2
duplicate data=namess, 2=2
fixed data types 2-1
Data=name values variable, 3=4
Data namess
array data=name, 3=2
simple data~names, 3=2
Data storage allocations 2=2
Data type conversions, 2=2» 8=9
Date function.
description of, 8-12
syntax ofs 8=12
Decimal functions
description of, 8=13
examples ofs, 8=13
syntax ofs, 8=13
Declaration statements, 4=1, 5-1
declare statements, 5=2
define statement, 5-=9
formal statements 5=12
forward procedure statement, 5-15
general information ons, 5=1
procedure statement, 5=17
segment statement, 5=23
segment.page statements 5=25,
use declaration statements, 5-27
Declare statement»
description of, 5=3
examples of, 5=5
syntax ofs 5=2
Decrement statement,
description of, 6-28
examples ofs 6=28
syntax ofs 6=28
Default options of file statement, 7=12
Define statement,:
description of, 5=9
examples of, 5-10
syntax ofs, 5=9
Device attribute of change statements, 6=16
Device option of file statements, 7=9
Display statement,
description ofs, 7=6
examples ofs, 7=6
syntax ofs, 7=6
DO control statement, 4=2
DC forever control statement, 4=2

three

INCEX (cont)

DO statement>

description ofs 6=29

examples of, 6=30

syntax ofs, 6=29
Duplicate data=namess 2=2
Dynamic attributes of change statement,

all.areas.at.open, 6=21

area.by.cylinder, 6=21

blockse.per.area, 6=20

bufferss 6=19

device, 6=16

end.of.page actions, 6=22

EUsincrementeds, 6=21

EU.specials, 6=21

file.IDs» 6=16

label.types 6=16

locks 6=19

multi.file.ID» 6=15

number of areass 6=20

optionals 6=19

pack.IDs» 6=20

paritys 6=18

record.sizes 6=19

records.per.blocks, 6=20

reels, 6=20

saves 6=19

single.packs, 6=21

SRestations 6=22

translation, 6-18

uses.input.blocking, 6=22

variables 6=19
End.of.page action attribute of change statements 6=22
End.ofepage action option of file statement, 7=14
FEUsincremented attribute of change statements 6-21
EU.incremented option of file statement, 7=13
EU.special attribute of change statement, 6=21
EU.special option of file statement, 7=13
Evaluation of an expression variables 3-=5
Executable statements»

array page types 6=2

assignments, 6=3

bumps, 6=11

caser 6=-13

changes 6=15

clear, 6=23

conditional inclusions, 6-24

conditional pages 6=26

conditional symbol, 6=27

decrement, 6=28

DO0s 6=29

FINI, 6=32

general information on, 6=1

IF», 6=33

library, 6=36

four

INDEX (cont)

null, 6=37
procedure calls 6=38
returns 6=40
reverse.stores 6=42
stops 6=43
undos 6=44
Zips 6=46
Expression typess» 3=6
arithmetic, 3=6
fixed arithmetics 3-6
functions, 3-8
logicals 3-8
non=fixed arithmetics 3=6
relational or conditionals 3-7
Expressionss
data names ins, 3=2
format of, 3-1
operator precedence ins 3-5
types ofs» 3=6
variables ins» 3-3

FileosID attribute of change statements, 6=16
File statements 7=7
description of, 7=8
examples ofs 7=8, 7=10» 7=11
syntax ofs 7=7
FINI statement»
description ofs, 6=32
syntax ofs 6=32
Fixed arithmetic expressionss 3=6
Fixed data types» 2=1
Formal parameterss 2=6
Formal statement»
description ofs 5=12
examples ofs 5=13
syntax ofs 5=12
Format of expressions, 3-1
Forms option of file statement, 7=10
Forward procedure statement»
description ofs 5-=15
‘examples ofs 5=16
syntax ofs 5=15
Function expressionss 3=8
Function procedures 2=7
Functions»
base.registers, 8=2
binarys, 8-3
cases 8=4
cats, 8=5
converts, 8=7
dates 8=12
decimal, 8=13
general information on, 8=1
hexs.sequence.numbers, 8=14

five

INDEX (cont)

if, 8=15

language characteristics ofs, 1=6
length, 8=16
limite.registers, 8=17
memory sizesr 8=18

mod» 8=19

name.of.day» 8=20
searche.linked.list, 8=21
sequence.number, 8=22
subbit, 8=23

substr, 8=25

sWwaps 8=27

time» 8=28

todays.dates, 8=29

Hexe.sequence.number function,
description ofs, 38=14
example of» 8=14
syntax of, 8=14

If control statements, 4=2
If functions
description of» 8=15
examples ofs 8=15
syntax ofs, 8-15
IF statement»
description of, 6=33
examples ofs 6=34
syntax of, 6=33
Input/output statementss, 7-1
accepts 7=2
access.file.informations 7=3
closes 7-=4
displays 7=6
filer 7=7
general information on, 7=1
opens 7=15
read, 7=17
receives 7-19
search.directorys 7=-20
seeks 7=22
sends 7=23
skips 7=24
spacesr 7=25
write, 7=27
Invocation of proceduress 2=5

Key words in metalanguages 1=2

Label.type attribute of change statement, 6=16
Label.type option of file statements, 7=9
Language characteristics»

basic symbols, 1=3

functionss, 1=6

six

INDEX (cont)

general information on, 1-1
language statement typess, 1-=5
metalanguages 1=1
reserved wordss, 1-5
UPL procedure formats, 1-1
UPL program format, 1-=1
UPL properties, 1-1
Language statement typess 1-=5
Length function,
description of, 8-16
examples of, 8=16
syntax of, 8=16
Lexicographic levels» 2=8
Library statement,
description of, 6=36
syntax ofs, 6=36
Limit.register functions
description ofs 8-=17
syntax of», 8=17
Literal variables, 3-4
Lock attribute of change statement, 6-19
Lock option of file statement, 7=11
Logical expressionss 3-8
Logical operator usages 3-8
Lower=case words in metalanguages, 1=2

Memory size function,
description of, 8-18
syntax of,» B8=18
Metalanguage, 1-1
braces in, 1=2
brackets ins, 1=2
consecutive periods ins, 1=2
key words ins 1=2
Lower=case words ins 1=2
period ins, 1-=2
type (length) ins, 1=2
Mod functions
description of, 8=19
example of», 8=19
syntax of, 8=19
Mode option of file statement, 7=11
Multi.file.ID attribute of change statement, 6-=15

Name.of.day functions
description of, 8=20
syntax of, 8=20
Non=fixed arithmetic expressionss, 3=6
Null statement.
description ofs 6=37
examples of, 6=37
syntax ofs 6=37
Number.of.areas attribute of change statements, 6=20

seven

INDEX (cont)

Open option of file statement, 7=-12
Open statement,

description ofs, 7=15

examples ofs, 7=16

syntax of, 7=15
Operator precedence in expressions, 3=5
Optional attribute of change statements, 6=19
Optional option of file statement, 7=11

Pack.ID attribute of change statement, 6=20
Pack.ID option of file statements, 7=12
Parameters.

actuals, 2=5

formals 2=6
Parameters to proceduress 2=5
Parity attribute of change statements, 6=18
Pass=by=name procedure» 2-6
Pass=by=value procedures 2=6
Period in metalanguages 1=2
Procedure=call statement, 4=1, 6-=38

description of, 6=38

examples of» 6=38

syntax of, 6-38
Procedure invocations, 2-=5
Procedure statement, 5-17

description ofs 5-19

examples ofs, 5=21

syntax of, 5=17
Procedure typess

function procedures 2=7

regular procedure», 2=7
Procedures, 2=4

actual parameters», 2=5

formal parameterss, 2=6

parameters to proceduress, 2=5

pass=by=names 2=6

pass=by=values 2=6

procedure invocations, 2=5

Read statement,

description of, 7=17

examples of, 7-18

syntax of, 7=17
Receive statement,

description of, 7=19

syntax of, 7=19
Record.size attribute of change statement, 6=19
Records option of file statement, 7-=11
Records.per.block attribute of change statements, 6=20
Reel attribute of change statement, 6=20
Reel option of file statement, 7=12
Regular procedure, 2=7
Relational or conditional expressions 3=7
Replacement, 2=3

eight

INDEX (cont)

Reserved wordss» 1=5

Return statements
description ofs 6=40
examples of, 6=40
syntax of, 6=40

Reverse.store statement,
description ofs, 6=42
examples ofs, 6=42
syntax of, 6=42

Save attribute of change statement, 6=19
Save option of file statements, 7-11
Scopes 2-9 +
Search.directory statement,
description ofs 7-=20
syntax ofs, 7=20
Search.linkedslist function,
description of, 8=21
syntax of, 8=21
Seek statement.,
description of, 7=22
examples of, 7-22
syntax of, 7=22
Segment.page statement.»
description ofs, 5=25
examples ofs 5=25
syntax ofs, 5=25
Segment statement»
description of» 5=23
examples of, 5=23
syntax ofs, 5=23
Send statement»
description of, 7=23
syntax of, 7=23
Sequences.number function,
description ofs 8=22
example of, 8=22
syntax of, 8=22
Simple data=names» 3=2
Single.pack attribute of change statement, 6=21
Single.pack option of file statement, 7=13
Single=pass compilers, 2=4
Skip statement,
description of, 7=24
examples of, 7=24
syntax of, 7=24
Space statement,
description of, 7=25
examples of, 7=25
syntax ofs, 7=25
SR.station option of file statement, 7=14
Statements»
assignment statements, 4=3
control statements, 4=1

nine

INDEX (cont)

declaration statementss 4-=1
general information on, 4=1
Stop statement»
description ofs, 6=43
syntax ofs, 6=43
Subbit function,
description ofs, 8=23
examples ofs, 8=24
syntax of, 8=23
Substr function»,
description of», 8=25
examples ofs 8=26
syntax of, 8=25
Substrings of data=namess 3-=3
Substrings variables 3-5
Symbolss basics 1=3
Swap functions
description of, §=27
examples of, 8=27
syntax ofs 8=27

Time functions
description ofs, 8=28
syntax of, 8=28
Today's.date function:
description ofs» 8=29
syntax of, 8=29
Translation attribute of change statement, 6=18
Type (length) in metalanguage, 1=2

Undo statement,
description ofs, 6=44
examples of» 6=44
syntax of, 6=44
UPL procedure format, 1-1
UPL program format, 1-1
UPL propertiess, 1-1
Use declaration statements
description ofs 5=27
examples ofs 5=27
syntax of, 5=27
Use.inpute.blocking attribute of change statement, 6=22
Use.inputeblocking option of file statements 7=13

Value function procedure call variables 3=4
Variable attribute of change statements, 6=19
Variable option of file statement, 7=11
Variabless 3=3

data~name valuess 3-=4

evaluation of an expressions 3=5

literals 3-4

substringss 3=5

value function procedure calls, 3=4

ten

Write statements
description ofs 7=27
examples of, 7=-28
syntax of, 7=27

Zip statements
description ofs 6=46
examples of, 6=46
syntax ofs 6=46

INDEX (cont)

eleven

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	10-01
	10-02
	10-03
	10-04
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11

