
Burroughs m

RELATIVE TO B 1700 SYSTEMS SOFTWARE RELEASE - MARK V.O

PRICED ITEM

Printed in U.S.A. January, 1976 1068731

Printed in U.S.A.

Burroughs m

B 1700
Systems

SYSTEM SOFTWARE

OPERATIONAL GU IDE

RELATIVE TO B 1700 SYSTEMS SOFTWARE RELEASE - MARK V.O

Copyright ©1972, 1973, 1974, 1975, 1976 Burroughs Corporation
AA370509 AA401135 AA551824 AA629484

PRICED ITEM

January, 1976 1068731

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/ or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Publications Department,
Technical Information Organization, TIO-West, Burroughs Corporation, 9451 Telstar
Avenue, El Monte, California 91731.

SECTION

2

TABLE OF CONTENTS

TITLE PAGE

INTRODUCTI01\f . xii

INTRODUCTION TO SYSTEM . 1-1
System Initialization . 1-1
U11it Mnemonics . 1-1
System Description ·. 1-1
Hardware Requirements . 1-2
Central Service Module . 1-2
Interpreters . 1-3

MASTER CONTROL PROGRAM
General .. .
MCP Disk Structures .. .
Disk Directory . ~

Disk-Pack-Identifier
Main Directory File Name
Sub-Directory File Name
Main Directory Contents
Sub-Directory Contents
Directory Reference .. .

Multiple Pack Files ! ••••••••••••••••••••••••••••••••••

Introduction .. .
Abbreviations
Restrictions .
Base Packs .. .
Continuation Packs
General Information .. .

Halts .. .
M CP Options .. .

BOJ
CHRG .. .
CLOS
DATE
DBM ;
DUMP
EOJ ·
LAB .. .
LIB .. .
LOG .. .
MEM .. .
OPEN
PBD
PBT
PWS (MCPI only)
RMOV
SCHM
TERM
TIME .. .

iii

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-7
2-8
2-8
2-8

SECTION

2 (Cont)

TABLE OF CONTENTS (Cont)

TITLE PAGE

TRMI)... 2-8
ZIP... 2-8

MCP-Operator Interface
Control Instructions
Sources of Control Instructions

Punched Cards
Co11sole Printer .. .
Zip .. .

Generic Terms
Library Maintenance Instructions

CHANGE

{
ADD
LOAD

{~~bAD··········
REMOVE ... · .. .

Program Control Instructions
COMPILE .. .
DYNAMIC
EXECUTE
MODIFY

Program Control Instruction Attributes
AFTER .. .
AFTER.NUMBER .. .
THEN .. .
CONI>ITIONAL .. .
UNCONDITIONAL
CHARGE
DYNAMIC.SPACES
FILE .. .

File Attributes
File Attribute Abbreviations

FREEZE
HOLD
INTERPRETER .. .
INTRINSIC.NAME
INTRINSIC.DIRECTORY
MEMORY .. .
PRIORITY .. .
SCHEDULE.PRIORITY
SWITCH .. .
UNFREEZE
VIRTUAL.DISK

File Parameter Instructions
DATA
END

System Control Instructions
AX Input Message (Response to ACCEPT)
BB Input Message (Backup Blocks per Area)

iv

2-8
2-8

2-10
2-10
2-10
2-10
2-11
2-12
2-12
2-13

2-14

2-15
2-16
2-16
2-17
2-18
2-19
2-20
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-27
2-31
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-44
2-45

2-47
2-47
2-48

SECTION

2 (Cont) BD
BF
CD
CE
CL
CM
CN
CP
CQ
cs
CT
DF
DM
DP

TABLE OF CONTENTS (Cont)

Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message
Input Message

TITLE

(Backup Designate)
(Display Backup Files)
(List Card Decks in Pseudo Readers)
(Change to Entry System Software)
(Clear Unit)
(Change System Software)
(Change to Non-Trace System Software)
(Compute)
(Clear Queue)
(Change to Standard System Software)
(Change to Trace System Software)
(Date of File)
(Dump Memory and Continue)
(Dump Memory and Discontinue)

{
DR
DT Input Message (Change MCP Date)

DS
ED
EM
ET
FM
FN
FR
FS
FT
GO
HS
HW
IL
KA

{KKPC

Input Message (Discontinue Program)
Input Message (Eliminate Pseudo Deck)
Input Message (ELOG Message)
Input Message (ELOG Transfer)
Input Message (Response to Special Forms)
Input Message (Display Internal File Number)
Input Message (Final Reel of Unlabeled Tape File)
Input Message (Force from Schedule)
Input Message (Change File Type)
Input Message (Resume Stopped Program)
Input Message (Hold in Waiting Schedule)
Input Message (Hold in Waiting Schedule until Job EOJ)
Input Message (Ignore Label)
Input Message (Analyze Disk Directory)

Input Message (Print Disk Segments)

LC Input Message (Load Cassette)
LD Input Message (Pseudo Load)

fi:~ Input Message (Transfer and Print Log)

PAGE

2-49
2-50
2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62

2-63

2-64
2-65
2-66
2-67
2-68
2-69
2-70
2-71
2-72
2-73
2-74
2-75
2-76
2-77

2-78

2-79
2-80

2-81

LT Input Message (List File Types) . 2-82
MP Input Message (Multi-Pack File Tables). 2-83
MR Input Message (Close Output File_ with Purge). 2-84
MX Input Message (Display MIX) . 2-85
OF Input Message (Optional File Response) . 2-86
OK Input Message (Continue Processing) . 2-87
OL Input Message (Display Peripheral Status) 2-88
OU Input Message (Specify Output Device) . 2-89
PB Input Message (Print/Punch Backup) . 2-90
PD Input Message (Print Directory) . 2-93
PG Input Message (Purge)........ 2-95
PM Input Message (Print Memory Dump) . 2-96
PO Input Message (Power Off) . 2-97
PR Input Message (Change Priority) . 2-98

v

SECTION

2 (Cont)

3

PS
PW
QC
QF
QP

{
RB
RF
RD
RL
RM
RN
RO
RP
RS
RT
RY
SD
SL
SN
so
SP
SQ
ST
sv
SW
TD
TI
TL
TO
TR
TS
UL
WD
WM
ws
WT
WW
WY

{
xc
XD

TABLE OF CONTENTS (Cont)

TITLE

Input Message (PROD Schedule)
Input Message (Set Program Working Set - MCP I)
Input Message (Quit Controller)
Input Message (Query File)
Input Message (Query Program)

Input Message (Remove Backup Files)

Input Message (Remove Pseudo Card Files)
Input Message (Relabel User Pack)
Input Message (Remove Duplicate Disk File)
Input Message (Assign Pseudo Readers)
Input Message (Reset Option)
Input Message (Ready and Purge)
Input Message (Remove Jobs from Schedule)
Input Message (Remove Multi-Pack File Table)
Input Message (Ready Peripheral)
Input Message (Assign Additional System Drives)
Input Message (Set LOG)
Input Message (Assign a Tape Serial Number)
Input Message (Set Option)
Input Message (Change Schedule Priority)
Input Message (Squash Disk)
Input Message (Suspend Processing)
Input Message (Save Peripheral Units)
Input Message (Set Switch)
Input Message (Time and Date)
Input Message (Time Interrogation)
Input Message (Transfer LOG)
Input Message (Display Options)
Input Message (Time Change)
Input Message (Test Switches)
Input Message (Assign Unlabeled File)
Input Message (Display MCP Date)
Input Message (Display Current MCP and Interpreter)
Input Message (Display Schedule)
Input Message (Display MCP Time)
Input Message (List Contents of NAME TABLE)
Input Message (Program Status Interrogation)

Input Message

PAGE

2-99
2-100
2-101
2-102
2-103

2-104

2-105
2-106
2-107
2-108
2-109
2-110
2-111
2-112
2-113
2-114
2-115
2-116
2-117
2-118
2-119
2-120
2-121
2-122
2-123
2-124
2-125
2-126
2-127
2-128
2-129
2-130
2-131
2-132
2-133
2-134
2-135

2-136

MCP Output Messages . 2-137
General . 2-13 7
Syntax 2-137
MCP Messages 2-137

SYSTEM SOFTWARE .. .
Disk Cartridge Initializer .. .

General
Operating Instructions

vi

3-1
3-1
3-1
3-1

SECTION

3 (Cont)

TABLE OF CONTENTS (Cont)

TITLE

Disk Pack Initializer .. .
General . ~
Operating Instructions .. .
Information Card .. .
Marginal-Sector Card
Dollar-Sign Card .
Examples Using Input Specification Cards

COLDSTART
General .. .
Procedure

Clear/Start and Memory Dump Procedure
General .. .
Clear/Start Procedure
Name Table
Operating Environments
Selecting Environments
Temporary Environment Changes
Memory Dump Procedure
Firmware Detected Errors

Disk File Copy
General
DISK/COPY Operating Instructions
Specification Cards

DMPALL .. .
General .. .
Printing .. .
Reproducing .. .
Operating Instructions

Console Printer .. .
Cards .. .

Print Specifications
Reproducing Specifications
Library Tape Directory

FILE/LOADER .. .
General .. .
Dollar Card
Dollar Dollar Card ($$)
Asterisk Card .

PAGE

3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-5
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-9
3-9

3-10
3-10
3-12
3-12
3-12
3-12
3-14
3-14
3-14
3-14
3-14
3-14
3-15
3-15
3-16
3-19
3-20
3-20
3-20
3-20
3-20

Error Messages . 3-21
FILE/PUNCHER.. 3-23

General . 3-23
Error Messages. 3-23

SORT . 3-24
General . 3-24
Sort Intrinsics . 3-24
SORT Execution Card Deck . 3-24
FILE Statement. 3-25

Input-Part 3-25
File-Identifier. 3-26
Device-Id . 3-26

vii

TABLE OF CONTENTS (Cont)

SECTION TITLE

3 (Cont) Parity-Specifier
Records-per-Area .. .
Record-Size .. .
Blocking-Factor
Default .. .
Purge
Mu.lti
Va:riable

Output-Part .. .
Device-Id .. .
Default .. .

KEY Statement
Key-l.,ocation
Key-Length .. .
ASCENDING or A
DESC~ENDING or D .. .
ALPHA or UA .. .
NUMERIC or UN .. .
SA .. .
SN .. .

SORT Option Statements
BIAS
(integer) RECORDS
MEMORY .. .
INPLACE .. .
TAGSORT
TAGSEARCH .. .
<integer) TAPESORT
RESTART
NOPRINT
SYN'"f.AX .. .
SEQUENCE .. .
TIMING
ZIP
COLLATE

General
Functional Description

Comments
SORT Reserved Words and Characters
COLLATE TABLE GENERATOR
General.
Execution Deck
Specification Statements

General .. ;
$ IDNT .. .
$ NUMR
$ALFA
$ SEQN

COBOL Cross Reference Utility Program (COBOL/XREF)
General.

viii

PAGE

3-26
3-26
3-26
3-26
3-26
3-27
3-27
3-27
3-27
3-28
3-28
3-28
3-29
3-29
3-29
3-29
3-29
3-29
3-29
3-29
3-29
3-30
3-30
3-30
3-30
3-31
3-31
3-31
3-31
3-32
3-32
3-32
3-32
3-32
3-33
3-33
3-33
3-33
3-34
3-34
3-34
3-34
3-35
3-35
3-35
3-35
3-36
3-36
3-37
3-37

TABLE OF CONTENTS (Cont)

SECTION TITLE

3 (Cont) Operating Instructions
Option Cards .. .
Internal File Names

LOG/CONVERSION .. .
General
Execution
NEW.LOGJ#<n) File Format
COBOL Record Format
RPG Record Format .. .

DISK/DUMP .. .
General
Operating Instructions
Error Messages

4 PROGRAM PRODUCTS
Compiler
Report Program Generator

General .. .
Compilation Card Deck
Dollar Card Specifications
RPG Extensions .. .
Compiler-Directing Options
Internal File Names

COBOL Compiler
General .. .
Compilation Card Deck
Dollar Option Card

Options .. .
Source Data Cards .. .
Internal File Names

FORTRAN Compiler .. .
General .. .
Compilation Card Deck
Dollar Option Card

Options .. .
Internal File Names

BASIC Compiler
General .. .
Compilation Card Deck
Dollar Option Card .. .

Options
Source Input Cards
Intrinsic Files .. .
Sample Compilation Deck
Internal File Names

UPL Compiler
General .. .
Compilation Card Deck
Compiler Options .. .
Internal File Names

ix

PAGE

3-37
3-37
3-38
3-40
3-40
3-40
3-40
3-43
3-44
3-47
3-47
3-47
3-47

4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-3
4-5
4-6
4-6
4-6
4-6
4-7
4-9

4-10
4-11
4-11
4-11
4-11
4-12
4-14
4-15
4-15
4-15
4-16
4-16
4-16
4-17
4-17
4-18
4-19
4-19
4-19
4-20
4-22

TABLE OF CONTENTS (Cont)

SECTION TITLE

4 (Cont) NDL Compiler
General .. .
Compilation Card Deck
Compiler Options
Internal File Names :

MIL Compiler
General .. .
Compilation Card Deck
Compiler Options .. .
Module Option Dollar Card ,.
Internal File Names
Object Code Deck Format
Compiler Restrictions

SDL Compiler
General .. .
Compilation Card Deck
Compiler Options
Internal File Names
SDL Recompilation

Creating Master Information Files
Create Master Restrictions
Recompiling
Recompilation Restrictions
Create Master and Recompile Operation Performed Together
General Information
SD L Compilation Deck Examples

Remote Job Entry System (RJE)
Introduction
The Remote Job Entry System
Operating Instructions .
Remote Deck Control Cards
RJE System Control Messages
Remote Control Message Entry
Local Control Messages

.AUDIT or .IOLO~G

.RI~ or .READ

.Cl..1 or .CLOS .. .

.CLCP

.C:LLP

.ST or .STOP .. .

.WT or .WAIT

.EST ··················

.LOG .. .

.QS .. .
Console Printer Messages

RJE/10 and RJE/MCS Common Console Printer Messages
RJE/MCS Unique Console Printer Message
RJE/DCH and RJE/NDLDCH Common Console Printer Messages
RJE/DCH Unique Console Printer Messages
RJE/NDLDCH Unique Console Printer Messages

x

PAGE

4-23
4-23
4-23
4-24
4-26
4-27
4-27
4-27
4-27
4-29
4-29
4-30
4-30
4-31
4-31
4-31
4-31
4-34
4-34
4-34
4-35
4-35
4-35
4-36
4-36
4-36
4-38
4-38
4-38
4-39
4-39
4-40
4-40
4-40
4-40
4-41
4-41
4-41
4-41
4-41
4-42
4-42
4-42
4-43
4-43
4-43
4-43
4-44
4-44
4-45

FIG.URE

3-1
3-2
3-3
3-4
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11

TABLE

4-1
4-2
4-3

LIST OF ILLUSTRATIONS

TITLE

DISK/COPY Control Deck .. .
SORT Execution Card Deck
SORT/COLLATE Execution Card Deck
COBOL/XREF Execution Deck
RPG Compilation Deck .. .
COBOL Compilation Deck
FORTRAN Compilation Deck
BASIC Compilation Deck
UPL Compilation Process
UPL Compilation Card Deck
NDL Generation Process
NDL Compilation Card Deck
MIL Compilation Card Deck
SDL Compilation Card Deck
Remote Job Entry System

LIST OF TABLES

TITLE

Clear/Start Record Format .. .
Program Parameter Block Record Format
File Parameter Block Record Format

xi

PAGE

3-12
3-25
3-35
3-37

4-1
4-6

4-11
4-15
4-19
4-19
4-23
4-23
4-27
4-31
4-38

PAGE

3-40
3-41
3-42

INTRODUCTION

lhe productivity of a computer facility is largely dependent on an operator's experience and knowledge
of the system. When the programs produced for the installation have been refined and are ready for use,
the results obtained are largely due to the expertise of the operator. Therefore, some concept of the

: MCP and a knowledge of the peripherals used with the B 1700 Systems are important in order to
utilize the equipment effectively.

This manual is divided into sections to ease the operating personnel's task in referencing material to effi­
ciently operate the B 1700 system.

The purpose of the B 1700 Systems System Software Operational Guide is to provide a general
description of all Burroughs B 1700 System Software without going into such detail as is required for
a programming language or a reference manual. Formal documents pertaining to the system software
described herein are referenced where applicable. Included in this manual are those operating instruc­
tions required to perform any major function of the described system software.

An explanation of the notational conventions used throughout this manual is as follows:

a. Key Words. All underlined upper case words are key words and are required when the functions
of which they are a part are utilized. L- ------------------;~;~~------------···-------- ---1

b. Optional Words. All upper case words not underlined are optional words, included for readability
only, and may be included or excluded as desired.

[---------·------~------_;O_R ____ --··- ---_--·-·--··-------=
c. Lower Case Words. All lower case words represent generic terms which must be supplied in the

position described.

r----1-- file-identifier

d. Braces. Words or phrases enclosed in braces ({})indicate a choice of entries of which one must
be made.

[-----·-------·--·
-------------- ---

~EXECUTE)
)EX (-·~

e. Brackets. Words or phrases enclosed in brackets ([]) represent optional portions of a statement
which may be omitted.

L_____ -====~=1------------------~

xii

f. Consecutive Periods (Ellipsis). The presence of ellipsis (...) within any format indicates that the
control syntax immediately preceding the ellipsis notation may be successively repeated, depend­
ing upon the requirements of the operation.

[control-attributes] ... ~]
g. Question Mark. The appearance of a question mark(?) indicates that any invalid EBCDIC

character or the question mark itself is acceptable. This convention is used pnmarily by the
Master Control Program to indicate a control card instruction.

[?] LOAD

h. At Sign: Any data contained between "at signs" @identifies that information to be hexadecimal
information.

i. Integer:

@OCF3@

The presence of the word integer within any format signifies that the data to be
expressed may be decimal, octal, hexadecimal, or binary.

decimal - any valid decimal character or characters.

hexadecimal - any valid hexadecimal character or characters enclosed within @
signs.

octal

binary

- any valid octal character or characters enclosed within@ signs and
preceded by the MODE indicator (3). The MODE indicator must
be enclosed by parentheses.

@(3)036@

- any valid binary character or characters enclosed within@ signs
and preceded by the MODE indicator (1). The MODE indicator
must be enclosed by parentheses.

@(l) 1101001@ _]
j. Master Control Program: The Master Control Program is abbreviated throughout this manual as

MCP. Its functions are explained in a separate section of this manual.

xiii

SYSTEM INITIALIZATION

SECTION l
INTRODUCTION TO SYSTEM

The MCP was designed as an integral part of the system and is intended to serve a wide range of installations
and users. Therefore, provisions have been incorporated in the system to adapt the operation of the MCP
to the particular requirements of a variety of installations. This has been accomplished by incorporating
different environments within the MCP which may be specified at the time of system initialization. Some
of the environment options can be changed or set after the system has been initialized by using a console
printer input message.

In order to place the MCP in control of the system, the MCP must be loaded onto the system disk with the
system's environment defined and the disk directory established. Then the SDL interpreter must be loaded
to interpret the MCP S-language. When this procedure has been completed, the SDL interpreter starts
interpreting and executing the instructions of the MCP.

Three separate procedures are performed during initialization thereby making the system operable:
(1) Initializing Disks (System and Removable); (2) Performing a COLDSTART, and (3) Performing a
Clear/Start.

UNIT MNEMONICS

Mnemonic names are assigned to the peripherals attached to the system by the MCP. The mnemonics are:

CDx Card Reader/Punch
CPx Card Punch
CRx Card Reader
CSx Magnetic Tape Cassette
DCx Disk Cartridge
DKx Head-per-Track Disk
DPx Disk Pack
LPx Line Printer
MTx Magnetic Tape
PPx Paper Tape Punch
PRx Paper Tape Reader
SPO Console Printer
SRx MICR Reader-Sorter

NOTE

The "x" is replaced by a capital letter, A - Z, for multiple
units of a specified type.

SYSTEM DESCRIPTION

The following functions are controlled by the MCP:

a. Loading

b. Interrupt handling

c. I/O control

d. Selection and initiation of programs

e. I/O error handling

1-1

f. System log maintenance

g. Storage allocation-memory and disk

h. Overlay functions-data and code

i. Multiprogramming

Both the MCP I and MCP II will service the following standard peripheral equipment:

a. Console Printer

b. 96-column Card Devices

c. 80-column Card Devices

d. Line Printers

e. Disk Cartridges

f. Magnetic Tape Cassette

In addition, MCP II will accommodate the following peripherals:

a. Disk Pack.

b. Single Line Control and Multi-Line Control for Data Comm.

c. Head-per-Track Disk.

d. Magnetic Tape.

e. MICR Reader-Sorter.

f. Paper Tape Devices.

HARDWARE REQUIREMENTS

The following list of equipment must be present for MCP operations. However, the listed equipment is
not dedicated to the MCP and may be utilized by any user program.

Hardware Type

Console Printer Operator communication

Disk Auxiliary storage

Card Reader Control input

CENTRAL SERVICE MODULE

The Central Service Module (CSM) is a microcoded routine which performs the following functions in an
equivalent hard-wired machine:

a. Interrupt Detection and Handling.

b. Passes control to/from the MCP, usually on an interrupt.

1-2

c. Controls all 1/0 activity, such as:

I. 1/0 Initialization

2. Data Transfers

3. 1/0 Termination

d. Manages Interpreter Activity.

INTERPRETERS

Interpreters are microcoded routines, or "firmware," that perform the operations specified by the
programmer. Each language has its own interpreter.

1-3

GENERAL

SECTION 2
MASTER CONTROL PROGRAM

The Master Control Program (MCP) is a modular operating system which assumes complex and
repetitive functions to make programming and operations efficient and productive. The MCP provides
the coordination and processing control that is so important to system throughput by allowing maxi­
mum use of all system components. Operator intervention is greatly reduced through complete
resource management. Since all program functions are performed under this centralized control,
changes in scheduling, system configuration, and program size can be readily accommodated resulting in
greater system throughput.

The B 1700 System Software Operational Guide will make reference to both MCP I and MCP II, distin­
guishing between the functions of each where applicable. The basic difference between MCP I and MCP II
is that MCP I is designed for minimum system configurations and does not have multiprogramming
capabilities whereas MCP II is designed for larger system configurations with multiprogramming capabilities.

A detailed description of the MCP is presented in the B 1700 Master Control Program Reference Manual ..

MCP DISK STRUCTURES

A significant aspect of the MCP design is the disk handling technique. Because this handling is the respon­
sibility of the MCP, programs are less complicated and easier to write.

Areas handled by the MCP include:

a. Directory Maintenance

Users need only to specify LOAD, DUMP, ADD, UNLOAD, CHANGE, or REMOVE directives
by file-name. All other actions pertaining to disk table maintenance are automatic.

b. Disk Allocation

Programs need only specify the amount of disk space they require. The MCP will handle the
actual allocation of a physical area containing only the amount requested.

c. File Assignment

As for all files within the system, disk file assignment is made according to the programmatically
specified file name and type.

d. Record Addressing

Programs need only specify the accessing method, and in the case of random files the specific
record desired. The actual disk location is the sole responsibility of the MCP. This means the
programmer need not be concerned. with the physical locations of the files.

e. Paging

Paging is the technique by which the programmer may divide a disk data file into portions which
may occupy non-contiguous areas of disk, rather than one huge area. Areas need not even be
allocated until actually needed, thus decreasing the need for disk space until required by the size
of the file.

DISK DIRECTORY

The Disk Directory is a disk-resident table that contains the name and type of file, together with a pointer
to the disk file header or sub-directory for all files on which the MCP received a permanent disk directory
entry request.

2-1

D isk-Pack-1 dentifier

The disk-pack-id is the name that is assigned to a user disk pack or cartridge at initi~lization time.

Example:

AAA/program-name/

AAA is the disk-pack-id

Main Directory File Name

If there were a set of programs that were all common to solving one problem, they could all have the same
first "family" name. The disk pack-id is not used to access a system disk.

PA YROLL/program-name-1
PA YROLL/program-name-2
PA YROLL/program-name-3
PA YROLL/program-name-4

In this example, PAYROLL is the main directory file name or the family name, while program-name-I
through program-name-4 are the sub-directory file names.

Sub-Directory File Name

The main directory links to a sub-directory when the sub-directory file-id is used. This sub-directory will
contain an address on disk of a File Header for each of the sub-directory file entries. The sub-directory is
an extension of the main directory.

Main Directory Contents

The main directory entry contains:

1. Family Name

2. Address of the disk file header or sub-directory.

3. Type of File:

1 =LOG
2 =Directory (entry points to sub-directory)
3 =Control Deck
4 = Backup Print
5 = Backup Punch
6 =Dump File
7 = Interpreter
8 =Code File
9 =Data File

Sub-Directory Contents

If the file has a family name and a secondary file name, the address in the main directory does not point to
the disk file header but to a sub-directory. This sub-directory has the same format as the main directory,
except that it uses only one segment of disk for each eleven file names. If there are more than eleven names
in the sub··directory the MCP increases the size by one segment for each eleven additional names.

2-2

The sub-directory entry is identical to the main directory entry with the exception that the address always
point to a Disk File Header.

Directory Reference

When a file is referenced on a removable disk, it must be preceded with the disk-pack-lid. The removable
disk directories and system disk directories are the same format.

MULTIPLE PACK Fl LES

Introduction

A multiple pack file is a file that can be contained on one or more removable disk packs {cartridges). The
file attribute MULTI.PACK of the FILE statement may be used to declare a file to be a multiple pack file.

Abbreviations

MPF - Multiple Pack Files
BP - Base Pack
CP - Continuation Pack

Restrictions

There are some restrictions imposed on multiple pack files that limit their selection for usage. They are as
follows:

a. The maximum number of packs that can be assigned to a multiple pack file is 16, consisting of
one base pack and 15 continuation packs.

b. There must be a minimum of two (2) disk drives present on the system (one system pack and one
removable pack).

c. Only removable disk packs can be used for multiple pack files. A system pack cannot be used for
a multiple pack file.

d. All packs containing a multiple pack file must have unique serial numbers. The disk pack-id is
not the primary identifier for continuation packs.

NOTE:

It is suggested that all packs be initialized with unique serial numbers.

Base Packs

A multiple pack file can have only one base pack. The base pack must be on-line for any open or close
operation performed on the file. It can be required at other times depending on the action requested by
the program; if so, a message is printed on the console printer requesting the operator to mount the base
pack if it is not on-line. A base pack can contain both single and multiple pack files; however, it cannot
contain continuation files.

The header on the base pack retains all information concerning the file including the address of every area
assigned to that file. For each area resident on a continuation pack, the base pack contains the serial num­
ber of the continuation pack. This allows the MCP using the base pack to control all processing, and thereby
avoid updating each continuation pack as the file is processed.

Continuation Packs

When data overflows or "continues" to additional disk packs, the term Continuation Pack (CP) is used.
There can be up to a maximum of 15 continuation packs for one multiple pack file, but a continuation

2-3

pack can be associated with only one base pack. A continuation pack can only contain continuation files, a
and all continuation files contained on a continuation pack must be assigned to the same base pack. A CP
cannot contain single pack files, and cannot itself be a base pack.

When space is needed for a multiple pack file, the MCP searches for another continuation pack that is asso­
ciated with the same base pack. If a continuation pack is not present on the system, the MCP then searches
for a scratch pack (one that has just been initialized or purged and is of the same type, restricted or unrestric­
ted, as the base pack). If such a pack is found, the scratch pack is automatically assigned to the multiple
pack file.

General Information

DISK/COPY cannot be used to copy multiple pack files. Multiple pack files can be sorted (INPLACE
sort only).

To obtain the maximum disk space available for a multiple pack file, assign 105 as the number of areas
required and increase the BLOCKS.AREA.

Random files are allowed for multiple pack files.

A system pack cannot be used as a base or continuation pack.

The CHANGE (CH) message is not allowed on a multiple pack file; however, a REMOVE (RE) message is
permissible.

An interrogation is performed by the MCP prior to opening a multiple pack file to predict whether a dupli­
cate file situation exists. If so, the operator has the option of either removing the existing file at that time
or waiting until file close time to remove the duplicate file, and using the OK console message.

J

ADS console message performs a normal close on a multiple pack file.

A base pack does not necessarily have to have any of its data residing on it. As soon as the file is opened
and the tables built, the base pack can be removed or be off-line.

A scratch pack is one that has either been just initialized or purged. A pack which has had all files removed
is not a scratch pack.

HALTS

When certain conditions of the MCP have been violated, all processing may stop and a HEX value will be
displayed in the "L" register. Recovering from a HALT state may usually be accomplished by performing
a Clear/Start. The following list will explain the HALT codes and their meanings.

Halt Code

1

2

3

4

5

6

7

8

9

Description of Halt

Evaluation/Program Pointer Stack overflow.

Control Stack overflow.

Name/Value Stack overflow.

Remaps size error.

Invalid parameter passed to a procedure.

Invalid substring.

Invalid subscript.

Invalid data type value returned from a procedure.

Invalid case.

2-4

Halt Code

A

B

c

D

IO

11

12

MCP OPTIONS

Description of Halt

Divide by zero.

Invalid index.

Memory parity. The "T" register will contain the
address of the parity error. If the "T" register equals
@FFFFFF@, the error was caused by an attempt to read
outside the physical bounds of memory.

Invalid operator.

Console HALT. (INTERRUPT switch) To continue
processing turn INTERRUPT switch off and press
START.

This is a controlled HALT. The "T" register will contain
a description of the halt as follows:

TREG

TA~ @C@

DESCRIPTION

Result Descriptor with Exception
Bits Set.

ALL OTHERS First Six Characters of MCP
Source Sequence Number (Submit
Memory Dump and Trouble
Report).

Attempt to write outside of the MCP base or limit register.

The MCP will perform certain functions based on the settings of various options. The system operator can
use the SO input message to set an option, or the RO message to reset an option, except in the case of the
LOG option which is independently set with the SL message.

At COLDSTARTall of the MCP options with the exception of DATE, TIME, DUMP, BOJ, and EOJ are
reset and must be set if desired as part of the MCP's operations.

The DATE and TIME options are set automatically at COLD START time. The date and time must be
entered after Clear/Start before the MCP will allow programs to execute. However, these options may be
reset, thereby making it unnecessary to enter the date and time after each Clear/Start. After a Clear/Start,
the MCP options remain in the same state, set or reset, as they were before the Clear/Start was performed.

2-5

The following is a list of the available MCP options:

BOJ
CHRG
CLOS
DATE
DBM

DUMP
EOJ
LAB
LIB
LOG

MEM
OPEN
PBD
PBT
PWS

The MCP options are defined in the following paragraphs.

BOJ

RMOV
SCHM
TERM
TIME
TRMD

ZIP

The BOJ option specifies that a Beginning-of-Job message be displayed each time the MCP initiates an
executable object program.

CHRG

The CHRG option requires that all program executions be accompanied by a charge number which will be
entered in the log.

CLOS

The CLOS option specifies that a "file-id CLOSED ... " message be displayed each time an object program
closes a file.

DATE

The DATE option is set at COLDSTART and specifies that the "**DR PLEASE" message be displayed at
Clear/Start. When the"** DR PLEASE" message is displayed, the system operator must enter the date
with the DR input message before program execution may begin.

DBM

The DBM (Data Base Management) option pulls into memory an overlay disk segment containing a search
operator to be bound into the CSM for disk search at Clear/Start time. The DBM option must be set to
cause the presence of the overlay and must be used for Data Base Management, or when a RPG program
uses the Index Sequential filing technique. A Clear/Start is required by the MCP after the option is set or
reset.

DUMP

The DUMP option must be set in order to dump memory. If the DUMP option is reset, SYSTEM/
DUMPFILE will be removed from disk and the space made available to the system. Any attempt to dump
system memory (not DM or DP) will be ignored if the DUMP option is reset.

EOJ

The EOJ option specifies that an End-of-Job message be displayed each time an object program reaches
normal End-of-Job.

LAB

The LAB option causes the MCP to display a tape label-name when a BOT (Beginning-of-Tape) is sensed.
The character set for a Train Printer will also be displayed.

2-6

UB

The LIB option causes the MCP to display library maintenance actions performed on disk files. The
messag~ displayed on the console printer can be one of the following:

LOG

file-identifier
file-identifier
file-identifier
file-identifier

REMOVED
CHANGED TO file-identifier
LOADED
DUMPED

The LOG option will request the MCP to keep a log of all program executions on disk. See the LG, SL,
and TL input messages for actions pertaining to the LOG.

MEM

When reset, the MEM option will inhibit any messages from being displayed by the MCP regarding
insufficient memory conditions.

OPEN

The OPEN option specifies that a "file-identifier OPENED ... "message be displayed each time an object
program opens a file.

PBD

The PBD option specifies that output files assigned to a printer or card punch will be diverted to a disk
backup file if the required output device is not available when the object program tries to open that file.

PBT

The PBT option specifies that output files assigned to a printer or card punch will be diverted to a tape
backup file if the required output device is not available when the object program tries to open that file.

PWS (MCPI only)

NOTE

If both the PBD and the PBT options an~ set, backup will
go to tape if a unit is available; if not, the backup will go
to disk.

The PWS (Program Working Set) option allows the MCP to minimize the amount of memory it has to swap
when going from the user program to the MCP and back again. The PWS option will only benefit a system
with 32 Kor greater. The working set of a program is defined to be those code segments needed in memory
to run the program efficiently.

RMOV

The RMOV option if set will automatically remove the old file in "DUPLICATE FILE ON DISK"
situations as though an RM message had been typed in by the system operator.

2-7

SCHM

The SCHM option causes the MCP to display a message when a program is placed in the schedule. The
message has the following format:

job-number program-name NEEDS integer KB, SCHED PR= schedule-priority,
IN FOR hh:mm:ss.t, number-of-levels DEEP IN ACTIVE SCHEDULE

TERM

The TERM option specifies that the MCP automatically discontinue processing (DS) of a program when an
error condition is encountered. If an error condition occurs and it is necessary to obtain a memory dump
of the program, the TERM option should be reset, or the TRMD option should be set.

TIME

The TIME option is set at COLDSTART and specifies that the "**TR PLEASE" message be displayed at
Clear/Start. When the "**TR PLEASE" message is displayed, the system operator must enter the time
with the TR input message before program execution may begin.

TRMD

The TRMD option specifies that the MCP automatically dump memory and discontinue processing (DP) a
program when an error condition is encountered. If both TERM and TRMD are set, the TRMD option
takes precedence.

ZIP

The ZIP option when set will display on the console printer all programmatic ZIP statements made to
the MCP.

MCP-OPERATOR INTERFACE

Control Instructions

The Master Control Program is directed to perform particular actions by the system operator through the
use of control instructions. These control instructions apply to both the MCP I and the MCP II.

Control instructions may be supplied to the Master Control Program by punched cards, the console printer,
or programmatically through the usage of ZIP statements in an executing program.

There are five major types of control instructions:

a. Library Maintenance Instructions

b. Program Control Instructions

c. Program Control Instruction Attributes

d. File Parameter Instructions

e. System Control Instructions

2-8

The following rules apply to all control instructions supplied to the MCP:

a. If the special character percent(%) appears in a control instruction, all information following
the% is ignored for control purposes. This allows comments to be present on control cards.

b. The appearance of the "less than"(<) sign in a control message causes the MCP to backspace its
pointer one position for each< sign while scanning the control instruction. This allows correc­
tion of mistakes without requiring that the entire message be re-entered. Even though this
technique is intended mainly for messages entered from the console printer, it works with con­
trol instructions entered on punched cards as well. This use of the "less than" sign does not
work with control instructions entered through ZIP statements. The "less than" sign may not
be used for any other purpose.

c. Any program-name or file-identifier which contains the special characters listed below must be
enclosed in quotes.

=
I

"
@

%

semicolon
comma
equal size
slash
blank or space
quote mark
at sign
percent sign

Any special characters not contained in the above list do not require quote marks to enclose the
identifier. The < sign may not appear in an identifier.

Examples:

"FILE%001"
"%3 "/"%ABC="
"/XYZ"
SDL.INTRIN/ #000000001

The slash in the second example above separates the family-name from the file-name and is not
enclosed in quotes.

In the third example, the slash is part of the family-name and is, therefore, enclosed in quote
marks.

In the last example the pound sign (#) is not listed as a special character, so the identifier need
not be enclosed with quote marks.

d. All control instructions are described on the following pages under headings which might indicate
that each of them must consist of a separate card. This is not necessarily so; if the text of one
control instruction is delimited by a space then this is considered the "logical end" of that
control instruction.

2-9

Sources of Control Instructions

PUNCHED CARDS

If punched cards are used to communicate a control instruction to the MCP, the following rules apply:

a. Column 1 of the first control card must contain an invalid character (80-column cards) or a
question mark (96-column cards). An invalid character or question mark cannot appear in any
other column. The next 71 columns of the card can contain control instructions in free-field
format. Control information is limited to the first 72 columns of the control card.

b. Control instructions can be contained on more than one card; however, control words cannot be
split and continued to another card. The invalid character in column one is optional on continu­
ation cards.

CONSOLE PRINTER

Control instructions may be communicated to the MCP from the console printer by the following procedure:

a. Press the INPUT REQUEST button on the console printer.

b. Wait for the READY indicator to light.

c. Enter the control instruction from the console printer. If more than one line is required, proceed
to step d; otherwise, proceed to step e.

d. If more than one line is required for the message:

1. Press the LINE FEED button.

2. Press the CARRIAGE RETURN button.

3. Press the END OF MESSAGE button.

<1 --4. Return to step b.

e. Press the END OF MESSAGE button.

If there are errors that cannot be corrected by using th "less than" ign, press the ERROR button on the
console printer. The entire message (including all lines o · e-line messages) are discarded by the MCP;
an exclamation point(!) is typed to aid in identification, and the READY indicator relights. The message
can then be re-entered.

Messages entered from the console printer are subject to the following rules:

ZIP

a. 1be "less than" sign will not correct any message entered prior to the current line. Errors in
previous lines of multiple-line input messages cannot be corrected by using the "less than" sign.

b. A blank is implied at the end of each line when multiple-line messages are entered; therefore,
words may not be split between lines on the console printer.

Control instructions can be communicated to the MCP by the use of a ZIP statement in an executing pro­
gram. The ZIP statement in the program must reference a defined data area where the control statement is
located. Refer to the appropriate language reference manual for specific syntax regarding the ZIP statement.

2-10

Generic Terms

A number of generic terms are used within this manual to describe the syntax of input and output messages.
These terms are defined as follows:

a. identifier: A word consisting of from one to ten alphabetic, numeric, or special characters in
any combination.

b. disk-pack-id (dp-id): An identifier which is the name of a disk pack or cartridge.

c. family-name: An identifier which is a file name, or the name given to identify a main file with
sub-directory entries.

d. program-name: A file-identifier which is the name of a program.

e. compiler-name: A file-identifier which is the name of a compiler.

f. interpreter-name: A file-identifier which is the name of an interpreter.

g. unit-mnemonic: A name which consists of from one to six characters, used to identify a
peripheral device.

unit-mnemonic

CDx
CPx
CRx
CSx
DCx
DKx
CPx
LPx
MTx
PPx
PRx
SPO
SRx

Device

Card Reader /Punch
Card Punch
Card Reader
Magnetic Tape Cassette
Disk Cartridge
Head-per-Track Disk
Disk Pack
Line Printer
Magnetic Tape
Paper Tape Punch
Paper Tape Reader
Console Printer
MICR Reader-Sorter

The "x" notation represents an alpha character which-distinguishes multiple units of the same
type. For example two Line Printers would have mnemonic names of LPA and LPB.

h. system disk: A disk pack or cartridge that is initialized as a system type pack. A system pack is
under the control of the MCP and one or more must be present on the system for the MCP to
function. Head-per-track disk is always considered system disk.

i. removable disk: A disk pack or cartridge that can be removed from the system during operations.
The MCP does not need removable disk packs in order to function.

j. file-identifier: All disk-file-identifiers used on the system must be unique, therefore, there can
be no duplication of file names. Throughout this manual "file-identifier" will incorporate all
the combinations allowed for a file-identifier, such as the following:

file-identifier
family-name/file-identifier
dp--id/family-name/file-identifier
dp-id/file-identifier/

2-11

LIBRARY MAINTENANCE INSTRUCTIONS

CHANGE

The CHANGE statement changes the file-identifier of a disk file, causing the file to be referenced by the new
file identifier.

The format of a CHANGE statement is:

!-:! CHANGE l file·identifier-1 TO file-identifier-2 [, file-identifier-3 TO file-identifier-4) ... ;
~CH ~ - -

The control word CHANGE may be abbreviated as CH.

Any CHANGE statements affecting more than one file must have the file-identifiers separated by commas.

The CHANGE statement will cause the MCP to change the file-identifier of specified disk files from one
name to another. If the file referenced in the CHANGE statement resides on a removable disk, the disk­
pack-id must precede the file-identifier in order for the MCP to locate the proper file to change.

? CHANGE ALPHA/BETAONE/ TO ALPHA/BETATWO/

If the CHANGE statement is entered and the MCP cannot locate the file or if the file is in use, the
following message is displayed on the console printer:

file-identifier NOT CHANGED ... (reason) ...

The CHANGE statement is not allowed on a Multi-Pack File.

The CHANGE statement may consist of additional cards where two or more "changes" may be made. For
example:

? CHANGE
? A/B C/D,
? x y 'z Q,
? ABC DEF;

Termination will occur when a semicolon(;) is detected.

2-12

ADD, LOAD

~
~

The ADD statement will cause a file or files on a LIBRARY tape to be placed on disk only if the file is not
already on disk.

The LOAD statement will cause a file or files on a LIBRARY tape to be placed on disk. If the file is already
on disk, the old file will be removed.

The format of the ADD and LOAD statement is:

[?]

ADD

AD

LOAD

LO

[TO disk-pack-identifier]

FROM library-tape-identifier

-1-- -

{ ~:~~;:::~= i[' { ~:::::::~=} ...]
=/file-id } =/file-id

!---·-

The control words ADD and LOAD may be abbreviated as AD and LO, respectively.

The=/= option causes every file on the tape to be added or loaded.

The family-name/= option causes every file with the specified family-name to be added or loaded.

The =/file-id option causes every file with the specified file-id to be added or loaded.

Examples:

?LOAD FROM SYSTEM COBOL,
?RPG, BASIC;

?ADD TO USERPACK FROM LIBTAPE
PAYROLL/=
ACCPAY/=,
MASTER/FILE,
=/REGISTER;
?LOAD FROM LIBRARY=/=;

2-13

DUMP
UNLOAD

DUMP, UNLOAD

The DUMP statement causes one or more disk files to be placed on a LIBRARY tape .. The file is not
removed from disk by the dump.

The UNLOAD statement causes one or more disk files to be placed on a LIBRARY tape. The disk file is
removed after the successful completion of the UNLOAD.

The format of the DUMP and UNLOAD statement is:

[?]

DUMP

DU

UNLOAD

UN

[FRO~ disk-pack-identifier]

f {file-identifier l =/=[, { file-'.dentifier l .. ·] l family-name/= J famtly-name/= J
TO library-tape-identifier

The control words DUMP and UNLOAD may be abbreviated as DU and UN, respectively.

The=/= option indicates that all files on the specified disk are to be dumped or unloaded.

A maximum of 2248 files can be handled with one DUMP or UNLOAD statement.

Examples:

?DUMP TO SYSTEM
X/Y,
Z/Q,
AAA,COBOL/=,
RPG/REORG,
SDL.INTRIN/=

?UNLOAD FROM USER TO BACKUP=/=;

2-14

I REMOVE I

REMOVE

The REMOVE statement deletes specified files from the disk directory making the file space available to
the MCP.

The format of the REMOVE statement is:

.------·----------------- ------------·-----------

[?] ~ REMOVE}

t RE l file-identifier l
family-name/=

dp-id/family-name/=

[, ...]
~ ' -

'----------------------------------·------------·---- ~-------

The control statement REMOVE may be abbreviated as RE.

The "/="form will delete the main directory entry and in turn delete all the files in its sub-directory.

The REMOVE statement may delete any number of files. However, any statement affecting more than
one file must have the file-identifiers separated by commas . ..
If the file-identifier referenced in the REMOVE statement resides on a removable disk pack, the disk-pack­
id must precede the file-identifier in order for the MCP to locate the correct file. When the disk-pack-id
is not included, the MCP assumes that the file resides on a system pack.

Once a file has been removed, there is no means of recovering it.

The REMOVE statement may be continued to additional cards with the last "remove" terminated by a
semicolon.

Example:

? REMOVE A/B
,X,Y,
Z;

2-15

I COMPILE I

PROGRAM CONTROL INSTRUCTIONS

COMPILE

The COMPILE statement designates the compiler to be used, and the type of compilation to be performed.

The format of the COMPILE statement is:

TO I LIBRARY l
LI

[?] { COMPILE } {FOR} I SYNTAX l co program-name WITH compiler-name SY

FO l SAVE l [control-attributes] ... SA

The COMPILE statement may be abbreviated as CO.

The compiler control statement must be the first statement in a set of control statements. The COMPILE
statement has four options:

1. COMPILE

2. COMPILE TO LIBRARY

3. COMPILE SA VE

4. COMPILE FOR SYNTAX

The COMPILE is a "compile and go" operation. Providing the compilation is error-free, the MCP
schedules the object program for execution. The program will not be entered into the disk directory, and
must be recompiled to be used again. The ~'compile and go" is the default option of the COMPILE
statement.

The COMPILE TO LIBRARY will leave the program object file on disk and will enter the program-name
into the disk directory after an error-free compilation. The program is not scheduled for execution.

The COMPILE and SAVE combines the execute and library options. The MCP will enter the program­
name into the disk directory and will leave the object program file on disk, as well as schedule the program
for execution after an error-free compilation. The program remains in the disk directory.

The COMPILE FOR SYNTAX provides a diagnostic listing as the only output. This option does not enter
the program-name into the disk directory or leave the program object file on disk. Some uses are as a
debugging tool, first time compilation, or a new source listing.

2-16

DYNAMIC

DYNAMIC

The DYNAMIC statement will modify the working copy of a program that is already in the mix or
scheduled for execution.

The format of the DYNAMIC statement is:

[?] job-number [control-attributes] ...

'----------------·--------

The DYNAMIC control word may be abbreviated as DY.

Any change that can be made by using the MODIFY statement is valid for the DYNAMIC statement;
however, only the working copy of the program will be altered.

2-17

I EXECUT~

EXECUTE

The EXECUTE statement instructs the MCP to call a program from the library for subsequent
execution.

The format of the EXECUTE statement is:

[
[?]

prog-ra_m_-_n-am_e_[-co_n_t_r_ol_-_a_t-tr_i_b-ut--e-s_]_._·_· ____ ~

The EXECUTE control word may be abbreviated as EX.

The EXECUTE control statement must be the first statement in a set of control statements pertaining to
the execution of a program. '

If the program referenced in the EXECUTE statement resides on a removable disk cartridge or disk pack,
the disk-pack-id must be part of the program-name in order for the MCP to locate the correct file.

Example:

? EXECUTE TEST
? DAT A file-identifier

(data cards)
? END

This example shows that a j)rogram named TEST is to be called out of the library on disk and
executed. One of the files in the program TEST assigned as a card file is identified by the DATA control
card. If the program does not require a card file, only the EXECUTE control statement is necessary and
can be entered through the card reader with the "? EXECUTE TEST" or the console printer with the
"EX TEST" command.

2-18

MODIFY

The MODIFY statement is used to permanently change attributes within a program.

The format of a MODIFY statement is:

[?] program-name [control-attributes] ...

The MODIFY control statement may be abbreviated as MO.

The MODIFY statement has the same syntax as the EXECUTE statement, but does not execute the
program.

Example:

? MODIFY A/B PRIORITY 6

The above example will permanently change the priority of program A/B to six.

The MODIFY statement can be used to change the following attributes:

CHARGE
DYNAMIC.SPACES
FILE
FREEZE
INTERPRETER
INTRINSIC.NAME
INTRINSIC.DIRECTORY
MEMORY
OVERRIDE
PRIORITY
SCHEDULE.PRIORITY
SWITCH
UNFREEZE
UNOVERRIDE
VIRTUAL.DISK

Mnv 1'1

MAX .. M

2-19

7

~ODIFY J

--1

GmR J

PROGRAM CONTROL INSTRUCTION ATTRIBUTES

AFTER

The AFTER attribute is used to conditionally schedule a program after the termination of another
program (by program-name).

The format of the AFTER statement is:

-----------------------------·------ --------.

[?] {
AFTER)
AF j program-name

The AFTER control word may be abbreviated as AF.

Example:

EXECUTE ALPHA AFTER BETA or
EX ALPHA AF BETA

When BET A reaches EOJ, ALPHA will be placed in the ACTIVE SCHEDULE for execution as soon as
memory resources are available.

If BETA was not either executing or scheduled when ALPHA was scheduled, ALPHA will remain in the
WAITING SCHEDULE until BETA is executed and reaches EOJ, or until FS-ed by the system operator.

2-20

AFTER.NUMBER

AFTER.NUMBER

The AFTER.NUMBER attribute is used to conditionally schedule a program after the termination of
another program (by job-number) that is already in the mix or scheduled for execution.

The format of the AFTER.NUMBER statement is:

C
_________________________________ , ___ , __ _

[?]
{-

AANFTER.NUMBER} job-number

The AFTER.NUMBER control word may be abbreviated as AN.

Example:

EXECUTE ALPHA AFTER.NUMBER 7 or
EXALPHAAN7

NOTE

A job-number is assigned by the MCP to every job scheduled for execution on the
system. Each job-number is unique and is incremented sequentially from the last
COLDSTART.

2-21

THEN

The THEN attribute is used to conditionally schedule execution of a program in relation to another
program.

The format of the THEN statement is:

[[?] {~:EN}

The THEN control word may be abbreviated as TH.

Example:

? EXECUTE ALPHA PRIORITY 14 MEMORY 20000 THEN COMPILE BETA COBOL SYNTAX

Program BETA will be executed (compiled) as soon as program ALPHA has terminated.

2-22

I CONDITIONAL I

CONDITIONAL

The CONDITIONAL attribute is used in conjunction with the AFTER, AFTER.NUMBER, and THEN
attributes and inhibits the program from being fired-up unless its predecessor successfully reaches EOJ.
The CONDITIONAL attribute is a default statement.

The format of the CONDITIONAL statement is:

r-- ____ ,_

[?] { ~NDITIONAL}

The CONDITIONAL control statement may be abbreviated as CA.

Examples:

? EXECUTE A/B AFTER C/D CONDITIONAL
? EX A/B C/D CA

2-23

UNCONDITIONAL]

UNCONDITIONAL

The UNCONDITIONAL attribute is used in conjunction with the AFTER, AFTER.NUMBER, and THEN
attributes and forces the program to be fired-up regardless of its predecessor's outcome.

The format of the UNCONDITIONAL statement is:

[?] {~CONDITIONAL }

The UNCONDITIONAL control statement may be abbreviated as UC.

Examples:

? EXECUTE A/B AFTER C/D UNCONDITIONAL
'? EX A/B AF C/D UC

'? EXECUTE A/B THEN EXECUTE C/D UNCONDITIONAL
EX A/B TH EX C/D UC

2-24

*****~********
* ATTRIBUTES *

ATTRIBLT£S

The ATTRIBUTES attribute makes it .possible to query the compiler
attributes of a program.

The format of the ATTRIBUTES statement is:

**
*
*
*
*
*

{
ATTRIBUTES)

C?l
AT

*

*
*
*
*

**

The control word ATTRIBUTES may b~ abbrevJated as AT.

The ATTRIBUTES statement may only appear after a QF or Qp. statement.

Cotpiler attributes is an 80 bit field in the PROGRAM PARAMETER BLOCK
<PPB>. This field is used by the compiler to indicate that the compiled
prcgram requires special features in its interpreter. This may be a
special f~ature which is not in the normal inter~reter as in the
COBOL ~ICR interpreter. This feature might also be a new S-OP which
has been added since the last S-MACHINE LEVEL change Csee LEVEL] as in
the SOL EXTENDED ARITHMETIC ops. Gerierally, edch bit indicates a
special feature. ,

At BOJ time the ~CP will insure th3t the interpreter has alt the
ATTRI8LTES required by the object program. If the object program
and ·interpr~ter are not compat3ble, the MCP will display a message
containing a bi~ string of the missing ATTRIBUTES • .
The compat~bility check may be skipped by using the CVERRIOE
control attrinute.

•

CHARGE

CHARGE

The CHARGE attribute is used to insert a charge number into the log record for a program.

The format of a CHARGE statement is:

[?] [OBJ] { :ARGE} [=] integer

The CHARGE control word may be abbreviated as CG.

The integer cannot exceed six digits. If less than six digits are used, leading zeros will be assumed. This
number will be carried in the MCP log file for subsequent analyzation.

If the MCP's CHRG option is set, the CHARGE statement must be used before a program will be scheduled.

2-25

DYNAMIC.SPACES I

DYNAMIC.SPACES

The DYNAMIC.SPACES statement allows the operator to specify the maximum number of overlays that
will ever be present in a program's dynamic memory.

The format of the DYNAMIC.SP ACES statement is:

[?] [OBJ] { ;NAMIC.SPACES } [=] integer

The DYNAMIC.SPACES control word may be abbreviated as DS.

The purpose of DYNAMIC.SPACES is to allow dynamic memory space for the Memory Links that will be
associated with the overlayable data within a program.

The MCP at run time will assign a value of 10 if the DYNAMIC.SPACES is zero. This attribute is normally
used only when the exact memory requirement for a program's data overlays is specified.

For example:

? EXECUTE A/B MEMORY= 20000

The MCP will assign the program A/B 20000 bits of dynamic memory plus the following:

(2 *AVAIL.LINK) + (DYNAMIC.SPACES* IN.USE.LINK)

or

(2 * 175 BITS) + (DYNAMIC.SPACES* 163 BITS)

2-26

* FILE *

The Fil£ statement may be used to .Query or change various attributes.

The format of the FILE statement is:

***********~**

*
*
*
*
*

[?] {
FILE} I

C~BJl internal-file-id file attrib_ute [[,] ••• 1;
f I I

*
*
* ..
*

•*

The control word FILE may be abbreviated FI.

The FILE statement must have each elem~nt~within the statement separated
by at least one space, and mo~t be terminated with a semicolon or END OF
MESSAGE. If more than one card is required for a FILE statement, each
of the continuation cards must ·have a Question mark in column 1.

The fILE statement must follow a COMPILE• EXECUTE, MODIFY, DYNAMIC• Qf,
or QP statement. If the FILE statement follows a MODIFY state~ent, the
HCF will modify the information in the program•s FILE PARAMETER BLOCK
(f PB>. If the FILE statement fellows a COMPILE, EXECUTE or DYNAMIC
statement, the MCP will modify the infcrmation in a working copy of
the prcgram•s FPB so that the change will oe in effect for only that
run. If the FILE statement follows a QF or QP statement, the MCP will
display the current setting of the FILE attributes listed.

The .internal-ti le-id used in the FILE statement must refer to the namB
useo in the proqram that opens the file. For example, if the external
file-ic is to be changed for this run only~ the FILE statement would be
as fol lows:

? EXECUTE program-name
? FILE internal-file-id NAME file-id;

-

, ..

FILE ATTRIBUTE

ADV ADVERB C=l number

ALL ALLOCATE.AT.OPEN

ARE AREAS l=l integer

ASC ASCII

ATP AUTOPRINT

BAC BACKUP

BOK B~CKUP.DISK

BTP BACKUP.TAPE

BCL

BIN BINARY

B.A BLOCKS.AREA [':] integer

BUF 8 l..ffERS [:] integer

* FILE *
* Continued *

•*************
FUNCTION

The i~plied open adverb. Number is a
12 bit value with the fcl~owing meaning:

0 = INPUT
1 = OUTPUT
2 = NEW
3 = WITH.PUNCH
4 = wITH.PRINT
5 = REWIND or WITH.INTERPRET
6 = REVERSE or WITH.STACKERS
7 -= OPEN.LOCK
8 = OPEN.LOCKOUT
9: Repprt on file missing

10 = ~ep~rt on file locked
11 = reserved

All of the areas requested by this file
wi.ll be allocated at the time the file is
opened.

The number of areas ass·igned to the file.

The recording mode of the file is ASCII.

Allow the file to go to auto backup.
Not implemented yet.

The output of the file will be allowed to
go to backup. This sets BACKUP.DISK and
BACKUP.TAPE by implication.

Allows the file to go to disk backup.

Allows the file to go to tape backup.

The recording mode of the file is BCL.

The recording mode of the file is 8I~ARY.

The number of blocks <physical records> to
an area.

The number of buffers assigned to the file.
The integer must be a positive numb er from
1 to 15. -

FILE ATTRIBUTE
.... • -.. -----..... -.. -

CPY _ COPY

FUNCTION

* f ILE *
* Continued *

The entire FILE PARAMETER BLOCK except the
internal-file-id will be copied to the
receiving file's FPB. The internal-file-id
wilt not be changed.

*•***
*

fl.

*
*
*
*
*
*
*

*

{

JOB.NUMBER
JN

COPY internal-tile-id CFROMl {
PROGRAM.NAME
PN~

job-number } :
<working copy> *

program-name 1 :
Coriginal copy> *

*
*•***

CYL CYLINDER.BOUNDARY

DEF DEFAULT

O.R DELAYED.RA~DOM

DRl DRIVE C=l integer

EBC EECOIC

ECP

EU C=l integer

EV.N EVEN

Each area of a disk file will start at the
beginning of a CYLINDER when the file is
'directed to a disk pack or a disk
ca r tr i d g· e • rro t j mp l e men t e c ye t •

Override the disk allocation declared and
use the file header block and record size.
(Input disk and labeled 81700 tape files
only>.

The file is to be accessed as
DELAY£0.RANCOM.

The file will be d;rected to the DRIVE or
EU specified DY the integer. The drive
must be a system disk. The integer must
be a positive number from Oto 15.

The recording mode of the file is EBCDIC.

??? -Same as DRIVE.

The file will use EVEN parity.

-

FILE ATTRIBUTE

f'TP FILE.TYPE

************fr
* FILE *
* Continued *

FUNCTION

An output disk file will be assigned the
sp~cified type when it is closed and has
been entered in the disk directory.

* *
* DATA *
* CODE *
* FILE.TYPE {=] INTERPRETER *
* FTP INTRP *
* INTRINSIC *
* PS R; CE·CK *
* *
*A***

FMS FGRMS

HAR HARDWARE

HOR HEADER

INC INCREMENT.DRIVE
INCREMENT.EU

IMF I~PLIEO.OP£N

ISL !~PUT.SELECTIVITY

INP 1 NPUT

The program will be suspendeo and the MCP
will display a message for the .operator
to load special forms in the device
(printer or punch) before the file is
opened. '

A printer or punch f.ile will be allowed
to go to the hardware device assigned.

first 50 characters of messages read will
be header information. If a file is opened
with HEADERS the program oecomes an MCS.

Each area of a disk file will start on the
next system disk drive (pack/cartridge>
or EU Chead-per-track>. When the last
system drive has been used it will start
over from drive zero again.
Not implemented yet. -----
.IMPLIED.OPEN denial set. CAlso known as
fPB.COBOL>.

Reads from remote files wilt return only
messages from the station specified in the
key portion of the read.
Not implemented yet. ----
I~plied open is INPUT. -

. \

FILE ATH 9UTE

INV !~VALID.CHARACTERS

C=l integer

* f ILE *
* Continued *
*****'********

fUf\CTION

The i~teger may contain the value of Qp 1,
2- or 3~ and determines the ~ourse of
action for invalid character output to a
train printer.

O = Report all lines that contain invalid
characters. The following console
message will be displayed far each
occurrence:

fILE file-name IS PRINTING
INVALID CHARACTERS ON LPx. . ,, ..

= Report alt lines that contain invalid
characters and stop the program at that
point.

2 = Report once that the file is printing
invalid characters. The following
console message ~ill be displayed:

FILE file-name IS PRINTING
INVALID CHARACTERS ON LPx.
CONE TIME WARNING>

3 = Do not notify operator of invalid
character output.

LAS LABLE.TYPE C=l integer The integer value and associated label
types are as follows:

LOC LCCK

MAX MAXIMUM.BLOCK.SIZE
[:] integer

MCPDATA number

MUL MULTI.PACK

NA~ NAME C=l f ite-id

NEW

0 = ANSI
1 = Unlabeled
2 = Burr~ughs

The file will be LOCKED, if still ooen-
at program termination CDS or normal EOJ>.

fixed block size to be used for variable
length records.

Used to pass the address of a list of
files to be dumped to SYSTEM/LOAD.DUMP.

The file will be considered a multi-pack
file < MPF >.

The external file-id or disk-pack-id.
If only the disk pack-id is to be
changed the PACK.ID attribute may be used~

Implied open is NEW.

FILE ATTRIBUTE

NC
NGT

fi le-:-attribute

NST NUMBER.STATIONS

oco

OPT OPTIONAL

PIC PACK.ID C=l disk-pack-id

FUNCTION -----.--._

* FILE *
* Continued *

W h e n t h i s o p t i o n i s u s e d i. t w i l l n e g a t e
the file-attribut~ following the word
NO or NOT. For example, a file assigned
to go strictly to backuo dould be changed
to go to the printer by entering a
NO BACKUP file statement. The following
is list of file-attributes that the NO
or NOT statement can negate.

AUTOPRINT
ALLOCATE.AT.OPEN
BACKUP ,
BACKUP.DISK
BACKUP.TAPE
CYLINDER.BOUNDARY
DEFAULT
EDP
FORMS
HARDWARE
HEADER
INCREMENT.DRIVE
INCREM£NT.EU
IMPLIED.OPEN
INPUT
INPUT.SELECTIVITY
LOCK
MULTI.PACK
NEW
OPEN.LOCK
OPE~. LOCKOUT
OPTIONAL
OUTPUT
QUEUE.OLD
REVERSE
REWIND
TRANSLATE
USER.BACKUP.NAME
VARIABLE
WITH.INTERPRET
WITH.PRINT
WITH.PUNCH
hi TH. ST ACKERS
WORK.FILE -

Maximum number of stations with which this
file is to co~municate.

The file will use ODD parity.

Select OPTIONAL file CCOBOL only>.

FILE AlTRl8UTES

PSE PSEUDO

PTN

Pl G

OLK

OLG

PHOTEC{ION } DEFAULT
C=l PUBLIC

PRIVATE
. GUARD

PROTEC{. IO J 1.0
C=l INPUT

OUTPUT

OPEN.LOCK

OFEN.LOCKOUT

Qf S Q.fAMILY.SIZE
I=-l integer

QMX Q.MAX.MESSAGES
C=l integer

QUEUE.OLD

RAN RANDOM

RST READER.SORTER.STATIONS
C=l integer

R.B RECORDS.BLOCK
C=l integer

REE REEL C=J integer

REPITIONS C=l integer

REV REVERSE

REW REWIND

SAV SAVE [=] integer

SER SERIAL

SNC SERIAL.NUMBER

* FILE *
* Continued *

FUNCTION .-----.---
Makes a file pseudo type •.

lf a NEW file is created~ it will have the
protection specified. DEFAULT for programs
running with a usercode i• PRIVATE, without
a usercode is PUBLIC. Se~ also the ~H
input command

If a NEW file is created. it will have the
input/output protection specified. Default
is I.O. See also the MH input message.

Implied open is OPEN.LOCK.

Implies open is OPEN.LOCKOUT.

The nu~ber of families <sub-queues) in this
queue.

The ma~imum depth to which the queue is
allowed to grow before suspending the ~ (5!
w r i tf er.

??'? ...
The file is to be accessed randomly.

Maximum number allowed is 3.
Currently ignored Dy MCP.

The number of logical records per block
for fixed record-Length file.

The value of the integer will determine
the number of the first reel.

The number of copies printed if file is
sent to backup.

Implied open is REVERSE.

l~plied open is REWIND. Tape will not be
be rewound before being· opened ••

A save factor representing the number of
days a tape or diskfile may be saved.

file is to be accessed seQuentially.

The volume serial number of the tape to oe
used. Not implemented yet.

FILE ATTRlBUTE

TRt-. TRANSLATE

TN t' TRANSLATE.NAME
C=l file-id

UNI UNIT.NAME
[:] unit-mnemonic

u.~ USER.BACKUP.~AME

VAR VARIABLE

WIN WITH.INTERPRET

WPR WITH.PRINT

WPC WITH. PUNCH

WST WITH.STACKERS

WFL WORK.FILE

* FILE *
* Continued *

FUNCTION

S~ft translation is to be performed
on each record as it is being transfe~red
to or from the user's buffer.

Associates a translate table file with
a file to be translated.

The file will be directed to the device
specified by unit-mnem9nic if opened
output.

The external~file-id is to be used as the
file-id even" if the file goes to backup.

The file will be processed using variable
length records.

Implied open is WITH.INTERPRET. Punched
cards will be interpreted.

Implied open is WITH.PRINT. Punched cards
will be printed from buffer #2.

Implied open is WITH.PUNCH. Cards will be
punched from buffer #1.

Implied open is WITH.STACKERS. Cards will
be stacker selected.

Assign the file as a work file used
internally.

•

FILE

The FILE statement may be used to specify various attribute changes for both input and/or output files.

The format of the FILE statement is:

[?] [OBJ]
{

FILE i
(internal-file-identifier file-attribute-I [file-attribute-2] ... ;

FI J -

The control word FILE may be abbreviated as FI.

The FILE statement must have each element within the statement separated by at least one space, and must
be terminated with a semicolon or END OF MESSAGE. ff more than one card is required for a FILE state­
ment, each of the continuation cards must have a question mark in column I.

The FILE statement must immediately follow the COMPILE, EXECUTE, DYNAMIC, or MODIFY state­
ment. The MCP modifies the information in a working copy of the program's FILE PARAMETER
BLOCK (FPB).

The file-identifier used in the FILE statement must refer to the internal-file-name used in the program that
opens the file. For example, if the external file-identifier is to be changed for this run only, the FILE state­
ment would be as follows:

? EXECUTE program-name
? FILE internal-file-identifier NAME file-identifier;

FILE ATTRIBUTES

Following is a list of the file-attributes that may be modified at execution time with the use of a FILE
statement.

FILE ATTRIBUTE

ALLOCATE.AT.OPEN

AREAS[=] integer

ASCII

BACKUP

BACKUP.DISK

BACKUP.TAPE

FUNCTION

All of the areas requested by this file will be allocated at the
time the file is opened.

The number of areas assigned to the file at compile time will
be altered to the value of the integer.

The recording mode of the file will be changed to ASCII.

The output of the file will be allowed to go to backup. This
sets BACKUP.DISK and BACKUP. TAPE by implication.

If the file is allowed to go to BACKUP, the output of the file
will be allowed to go to disk backup.

If the file is allowed to go to BACK UP, the output of the file
will be allowed to go to tape backup.

2-27

FILE
continued

FILE ATTRIBUTE

BCL

BINARY

BLOCKS.AREA[=] integer

BUFFERS[=] integer

COPY

FUNCTION

The recording mode of the file will be changed to BCL.

The recording mode of the file will be changed to BINARY
(80-column card and paper tape only).

Assign integer blocks (physical records) to an area.

The number of buffers assigned to the file will be altered to the
value of the integer. The integer must be a positive number
from 1to15.

The entire File Parameter Block except the internal file identi­
fier of one file will be copied to the receiving file's File Para­
meter Block. The internal file-identifier will not be changed.

SYNTAX

j J~ '

COPY internal-file-identifier FROM t JOB.NUMBER }

job-number
(working copy)

CYLINDER.BOUNDARY

DEFAULT

DRIVE [=] integer

EBCDIC

EU[=] integer

EVEN

DATA ---
CODE

\ PN)

t PROGRAM.NAME J
program-name
(original copy)

Each area of a disk file will start at the beginning of a
CYLINDER when the file is directed to a disk pack or disk
cartridge.

Override the disk allocation declared and use the file header
block and record sizes. (Input disk and labeled B 1700 tape
files only.)

The file will be directed to the drive or EU specified by the
integer. The drive must be a system disk. The integer must
be a positive number from 0 to 15.

The recording mode of the file will be changed to EBCDIC.

Same as DRIVE.

The file will be changed to even parity.

FILE.TYPE[=] INTERPRETER An output disk file will be assigned the specified type when it
INTERP is closed and has been entered in the disk directory.

INTRINSIC

2-28

FILE ATTRIBUTE

FORMS

HARDWARE

INCREMENT.DRIVE

INCREMENT.EU

INVALID.CHARACTERS
[=]integer

LABEL. TYPE [=] integer

LOCK

FUNCTION
FILE

continued

The program will be suspended and the MCP will display a
message for the operator to load special forms in the device
{printer or punch) before the file is opened.

A printer or punch file will be allowed to go to the hardware
device assigned.

Each area of a disk file will start on the next system disk drive
(pack/cartridge) or EU (head-per-track). When the last system
drive has been used it will start over from drive ZERO again.

Same as INCREMENT.DRIVE.

The integer may contain a value of 0, l, 2, or 3, and determines
the course of action for invalid characters output to a train
printer.

O = Report all lines that contain invalid characters. The
following console message will be printed for each
occurrence:

FILE file-name IS PRINTING
INVALID CHARACTERS ON LPx.

= Report all lines that contain invalid characters and stop
the program at that point.

2 = Report once that the file is printing invalid characters.
The following console message will be printed.

FILE file-name IS PRINTING
INVALID CHARACTERS ON LPx.
(one-time warning)

3 = Do not notify operator of invalid character output.

The integer values and associated label types are as follows:

Integer Value

0
1
2

Label Type

ANSI
Unlabeled
Burroughs

The file will be LOCKED, if still open, at program termination
(DS or normal EOJ).

MAXIMUM.BLOCK.SIZE[=] integer Fixed block size to be used for variable length records.

MULTI.PACK

NAME[=] file-identifier

The file will be considered a multi-pack file. (MPF)

The external file-identifier or disk pack-id will be changed to the
value of file-identifier. If only the disk pack-id is to be changed
the PACK.ID attribute may be used.

2-29

FILE
continued

FILE ATTRIBUTE

. { file-attribute
{

NO)

NOTj

ODD

OPTIONAL

PACK. ID [=] disk-pack-id

PSEUDO

RANDOM

RECORDS.BLOCK[=] integer

RECORD.SIZE[=] integer

REEL[=] integer

SERIAL

SAVE[=] integer

UNIT.NAME[=] unit-mnemonic

VARIABLE

WORK.FILE

FUNCTION

When this option is used it will negate the file-attribute follow­
ing the word NO or NOT. For example, a file assigned to go
strictly to backup could be changed to go to the printer by
entering a NO BACKUP file statement. The following is a list
of file-atttibutes that the NO or NOT statement can negate.

a. ALLOCATE.AT.OPEN
b. BACKUP
c. BACKUP.DISK
d. BACKUP.TAPE
e. CYLINDER.BOUNDARY
f. DEFAULT
g. FORMS
h. HARDWARE
i. INCREMENT.DRIVE
j. INCREMENT.EU
k. LOCK
1. MULTI.PACK
m. OPTIONAL
n. VARIABLE
o. WORK.FILE

The file will be changed to ODD parity.

Select optional file (COBOL only).

Alter the pack-id.

Makes file a pseudo type.

The file will be changed to a RANDOM access file.

The number of logical records per block for a fixed record­
length file.

The number of bytes assigned for the logical record will be
changed to the value of the integer.

The value of the integer will determine the number of the first
reel.

The file is to be processed sequentially.

A save factor representing the number of days a tape or disk
file may be saved.

The file will be directed to the device specified by
unit-mnemonic.

The file will be processed using variable length records.

Assigns this file as a work file used internally.

2-30

FILE
continued

The following list of device attributes may be used to change the input or output device originally assigned
to a file.

CASSETTE
CARD.PUNCH
CARD.READER
DISK
DISK.CARTRIDGE
DISK.FILE
DISK.PACK
MFCU
PAPER.TAPE.PUNCH
PAPER.TAPE.READER
PRINTER
PUNCH.PRINTER
PUNCH.96

FILE ATTRIBUTE ABBREVIATIONS

QUEUE
READER.PUNCH
READER.PUNCH.PRINTER
READER.SORTER
READER.96
REMOTE
TAPE
TAPE.PE
TAPE.7
TAPE.9

The following abbreviations may be used to identify the FILE statement attributes.

ADVERB
ALLOCATE.AT.OPEN
AREAS
ASCII
BACKUP
BACKUP.DISK
BACKUP.TAPE
BCL
BINARY
BLOCKS.AREA
BUFFERS
CARD.PUNCH
CARD.READER
CASSETTE
COPY
CYLINDER.BOUNDARY
DATA.RECORDER.80
DEFAULT
DISK
DISK.CARTRIDGE
DISK.FILE
DISK.PACK
DRIVE
EBCDIC
EU
EVEN
FORMS
HARDWARE
INCREMENT.DRIVE
INCREMENT.EU
INV AUD.CHARACTERS
LABEL.TYPE
LOCK
MFCU
MAXIMUM.BLOCK.SIZE

ADV
ALL
ARE
ASC
BAC
BDK
BTP
BCL
BIN
B.A
BUF
CPC
CRD
CAS
CPY
CYL
DRC
DEF
DSK
DCG
DFL
DPC
DRI
EBC
EU
EVN
PMS
HAR
INC
INC
INV
LAB
LOC
MFC
MAX

2-31

FILE
continued

MULTI.PACK
NAME
NO
NOT
ODD
OPTIONAL
PACK.ID
PAPER.TAPE.PUNCH
PAPER. TAPE.READER
PRINTER
QUEUE
RANDOM
READER.PUNCH
READER.PUNCH.PRINTER
READER.SORTER
READER.96
RECORD.SIZE
RECORDS.BLOCK
REEL
REMOTE
SAVE
SERIAL
TAPE
TAPE.PE
TAPE.7
TAPE.9
UNIT.NAME
VARIABLE
WORK.FILE

MUL
NAM
NO
NOT
ODD
OPT
PID
PTP
PTR
PRT
QUE
RAN
RPC
RPP
RSR
R96
RSZ
R.B
REE
REM
SAV
SER
TAP
TPE
TP7
TP9
UNI
VAR
WFL

2-32

I FREEZE I

FREEZE

The FREEZE control attribute will prohibit rolling a program out to disk at any time during its execution,
thereby remaining in the same memory location regardless of the situation until End-of-Job.

The format of the FREEZE statement is:

.-------·-------------------------------------- --·--·---

{

FREEZE}
[?] [OBJ] FR

The FREEZE control word may be abbreviated as FR.

2-33

HOLD

The HOLD control attribute allows the system operator to place a program into the waiting schedule
prohibiting its execution until it is forced (FS'ed) into the active schedule.

The format of the HOLD statement is:

[?] { =~LD}

The HOLD control word may be abbreviated as HO.

The HOLD attribute may not be used with the MODIFY or DYNAMIC control statements.

2-34

INTERPRETER

INTERPRETER

The INTERPRETER attribute allows selection of a different interpreter for use by a program.

The format of the INTERPRETER statement is:

[?] [OBJ]
J ~~TERPRETER l
(INTERP)

[=]

The INTERPRETER control word may be abbreviated as IN or INTERP.

Examples:

file-identifier ------=~]

? EXECUTE ALPHA/BETA INTERPRETER COBOL/INTERPOOl

? EX X/Y IN CCC/SDL/INTERP3

2-35

[!NT"RINSIC.NAME I
INTRINSIC.NAME

The INTRINSIC.NAME attribute makes it possible to change the family-name of all intrinsics requested
by a program.

The format of the INTRINSIC.NAME statement is:

----------·---------

{
:RINSIC.NAME } [?] [OBJ] [=] intrinsic-identifier

The INTRINSIC.NAME control word may be abbreviated as IT.

The file-id portion of the intrinsics may not be changed.

Example:

? EXECUTE ALPHA/BET A INTRINSIC.NAME ZZZ.INTRIN

or

? EX ALPHA/BETA IT ZZZ.INTRIN

2-36

* LEVEL *

L£VEL

The LEVEL attribute makes it possible to Query the compiler level of a
program.

The format of the LEVEL statement is: -
**
*
*
*
*
*

l?l { ~:VEL }

*
*
*
*
*

~*

The control word LEVEL may be abbreviated~as LE.

The LEVEL statement may appear only after a Qf or QP statement.

The co"piler LEVEL is an indication of what S-OPs generated by the
compiler mean. If the meaning of an s-OP is changed or an S-OP is
rerovac from the interpreter, the LEVEL is increased by 1 and the
the user is reauired tc recompile his programs. The compiler LEVEL
is not affected by the addition of a new S-OP as it is usually added
as a new feature in the compiler ATTRIBUTES.

At BOJ the MCP will insure that the program and its interpreter are the
sare LEVEL. This check may be· bypassed with the OVERRIDE control
attrioLte.

•

I INTRINSIC.DIRECTORY]

INTRINSIC.DIRECTORY

The INTRINSIC.DIRECTORY attribute makes it possible to reference intrinsic files from a selected
removable disk pack.

The format of the INTRINSIC.DIRECTORY statement is:

{

INTRINSIC.DIRECTORY}
[?] [OBJ] [=] disk-pack-id

ID

The INTRINSIC.DIRECTORY control word may be abbreviated as ID.

Example:

? EX ALPHA/BETA INTRINSIC.DIRECTORY UTILPACKA

2-37

liiEMOR±J

MEMORY

The MEMORY attribute makes it possible to override the dynamic memory size assigned by the compiler
for a given program at execution time.

The format of a MEMORY statement is:

---··-----

L __ [?] [OBJ] {:MORY} [=] integer

·---------

The MEMORY control word may be abbreviated as ME.

The integer expresses the dynamic memory size@
. ...

The program will be terminated if there is not enough dynamic memory assigned to execute.

When the MEMORY statement is used following a compile statement, the memory will be reserved for the
compiler, not the program being compiled.

? COMPILE program-name COBOL SYNTAX MEMORY = 50000

or

? COMPILE program-name COBOL SYNTAX

? MEMORY = 50000

Both of the above examples will assign 50,000 bits of dynamic memory for the compiler. The following
example will assign 50,000 bits of dynamic memory for the execution of a program.

? EXECUTE program-name MEMORY = 50000

2-38

* MEMORY.STATIC *

MEMORY.STATIC

The ME~ORY.STATIC attribute makes it possible to query or override the
STATIC.MEMORY size assigned by the compiler.

The format of the STATIC.MEMORY statement is: -
•*
*
*
*
*
*

[?]
{

MEMORY.STATIC}
COBJl C=l

MS
integer

*
*
*
*

**

The control word ~EMORY.STATIC may be abbreviated as MS.

The integer expresses the static memory size in bits.

* OVERRIDE *

OVERRICE

The OVERRIDE attribute makes it possible to bypass the compatibility
check normally made between a program and its interpreter.

The format of the OVERRIDE statement is:

•*
*
*
*
*
*

C?l COBJl { ::ERRIDE }

*
*
*
*
*

•*

The control word OVERRIDE may be abbrevia~ed as ov.

At BOJ time the MCP will perform a.compatibility check of a program and
its interpr€ter unless OVERRIDE is specified. The compatibility check
consists of the following:

Interpreter HARDWARE TYPE is "U" <Universal> or matches the type
of the processor it is running on.

Interpreter's MCP LEVEL matches the MCP's level.

Interpreter's GISMO LEVEL matches GISMO's level.

Jnterpreter•s COMPILER LEVEL mat~hes the programs LEVEL.

Interpreter's ARCHITECTURE <language> matches the program's
INTERPRETE~ FIRST NAME.

Interpreter has at least every ATTRIBUTE required by the program.

OVERRICE will not bypass the MCP's name generation process.

OVERRICE may be reset with UNCVERRIDE thus causing the compatibility
check to be performed.

-

* PAD *

PAO
The PAC attribute makes. it possible to query or alter the program's
initial scratch pad settings.

The format of the PAD statement is:

*
*
*
*
*

C?l COBJJ { PAD} {A } PA integer
8

: number

*
* ..
*
*

*•**********~**

The control word PAD may be abbreviated a~ PA.
I ,.

The ;nteger must be a positive number from 0 to 15 and specifies which
scratch pad is to be accessed. The following letter specifies which
he1isphere is to be accessed.

The number must be at most 24 bits in length.

* PROTECT *

PRCTECT

The PRGTECT attribute protects the job from certain input messages.

The ·format of the PROTECT statement is:

***********~**

*
*
*
*
*

C?l {.
PRCTECT}

[OBJ l
PT

*

*
*
*
*

•*

The PRCTECT control word may be abbreviated as PT.

The following input messages are disatlow~d if the PROTECT flag is set:
os. op, GT, sr, SW.

These ~essages may be entered from the remcte console which spawned the
job is the PROTECT flag is set.

If the job goes to OS or op, the PROTECT flag is reset to allow the DS
or DP.

See al~o the LP input message.

I PRIORITY I

PRIORITY

The PRIORITY attribute specifies the operational priority assigned to a given program.

The format of a PRIORITY statement is:

{
Pp~RIORITY} J [?] [OBJ] [=] integer

o--------~--------

The PRIORITY control word may be abbreviated as PR.

The system operator has the ability to assign program priorities to maximize output and scheduling.
Priorities range from zero to fifteen (0-15), where zero is the lowest and fifteen is the highest.

When a PRIORITY of nine or greater is specified, the following action occurs in a multiprogramming mode:

a. If necessary, jobs which are running and which have a lower priority will be "rolled-out"
from memory to disk to create space for the high-priority job. This action is called "crashout."

b. A high-priority job entered in the schedule will not automatically suspend any other high­
priority job running in memory. However, the system operator may stop (ST) them.

c.. Upon termination of the high-priority job, the suspended programs will be automatically
reinstated to memory.

2-39

SCHEDULE.PRIORITY

SCHEDULE.PRIORITY

The SCHEDULE.PRIORITY attribute assigns priorities of programs in the schedule.

The format of the SCHEDULE.PRIORITY statement is:

[{ S-

SCCHEDULE.PRIORITY} [?] [OBJ]

·-·--·--·----·-

[=] integer J
The SCHEDULE.PRIORITY control word may be abbreviated as SC.

The priorities of the schedule are separate from the mix priorities in that SCHEDULE.PRIORITY will only
alter or assign priorities pertaining to the schedule, not the mix.

The priority integer must be equal to or less than fourteen.

Jobs in the ACTIVE SCHEDULE having the same assigned priority are further discriminated by the actual
time the jobs have been in the schedule.

Example:

? EXECUTE A/B SCHEDULE.PRIORITY= 12

Once the program has been placed in the schedule, the SP
console message must be used to change the scheduled priority.

2-40

SWITCH

The SWITCH control attribute allows the system operator to set programmatic switches.

The format of the SWITCH statement is:

~~~[-?]~[O--B-J-]~{-~_:_IT_C_H_}~~~-{i-nt-:g_e_r~-[-=_]}~~va-lu-e~~~--~J 
The SWITCH control word may be abbreviated as SW. 

The integer must be a decimal digit from zero to nine (0-9) that references the switch to be set. To deter­
mine what switches are available, the specific language manual for the program for which the switches are 
being set must be referenced. If the "=" option is used, all ten switches are implied ( 40 bits of information). 

The value is the value that the switch or switches are assigned. 

Examples: 

? SWITCH 0 = 5 SWITCH = 3 

? SW 0=5 SW 1=3 

? SW= @0123456789@ 

To modify or query the switches after the program has gone to BOJ, use the SW and TS commands, 
respectively. 2-/l"l_ 

2-41 



'r I.ME 

The TI-~£ attribute specifies the maximum run time. 

The-format of the TIME statement is: 

******** 
* TIME * 
******** 

******************************************************************** 
* 
* 
* 
* 
* 

(?] [OBJ] 
{

TTIIME. }. [:] integer 

* 
* 
* 
* 
* 

******************************************************************** 

The TIME control word may be abbreviated as.TI • 
. 

The integer value ·is the maximu~processor time in minutes after which 
the job will be DS-ed. 

2-41.1 



********* 
* TRACE • 
********* 

.TRACE 

The TRACE attribute makes it possible to set the initial TRACE option 
for a program prio~ to BOJ. 

The format of the TRACE statement is: 

******************************************************************* 
* 
* 
* • 
* 

{?] COBJl {
TRACE} 
TC integer 

* 
* 
* 
* 
* 

******************************************************************* 

The cor.trol word TRACE may be abbreviated .. as re. 

The integer must be a positive number from 0 to 15. 

See also the GT and NT input messages. 

2-41.2 



~REEZE I 
UNFREEZE 

The UNFREEZE attribute allows the system operator to remove the FREEZE condition from a program, 
thus permitting the rolling-out to disk of a program that is in an interrupted state. 

The format of the UNFREEZE statement is: 

[?] [OBJ] {:FREEZE} l 
The UNFREEZE control word may be abbreviated as UF. 

2-42 



************** 
* UNOVERRIOE * 
************** 

UNGVERRIOE 

The UNtVERRIDE attribute makes it possible to reset the action of the 
OVERRICE statement. 

The format of the UNOVERRICE statement is: 

******************************************************************* 
* 
* 
* 
* 
* 

(?] CDBJJ {::OVERRIDE} 
* 
* 
* 
* 
* 

******************************************************************* 

The control word U~OVERRIDE amy be abbrevjafes as UV. 

UNOVERRIDE makes to possible to execute a program with compatibility 
checking wh~ch has been modified with OVERRIDE. 



VIRTUAL.DISK 

VIRTUAL.DISK 

The VIRTUAL.DISK attribute gives the operator the ability to change the number of disk segments 
assigned by a compiler for saving data overlays during execution. 

The format of the VIRTUAL.DISK statement is: 

{~RTUAL.DISK} [?] [OBJ] [=] integer 

~----------------------------------·--·----------

The VIRTUAL.DISK control word may be abbreviated as VI. 

Integer must be eight digits or less. 

If the integer is zero and the program requires disk space for data overlays, the MCP will assign a default 
size of 1000 segments. 

2-43 



FILE PARAMETER INSTRUCTIONS 

DATA 

The DATA control instruction informs the MCP of the name of a punched card data file. 

The format of the DATA control instruction is: 

[ file-identifier 

The control word DAT A may be abbreviated as DA. 

The DAT A control statement must be the last control instruction prior to the actual data. 

2-44 

J 



END 

The END statement indicates to the MCP that the card data input has reached the End-of-File (EOF). 

The format of the END statement is: 

? END 

------ ---- -------- --] 
-----------------------------------""""-""" -- -- ----· 

The END control statement cannot be abbreviated. 

When the END statement is used it must be the last card in that file. It signals the MCP to close the file, 
and makes the card reader available to the system. 

The END control card is not required at the end of a data deck if the program recognizes the last card in 
the file and closes that file without trying to read another record. However, if the program does try to 
read another record from that file and the card reader is empty, the MCP will hold the card reader waiting 
for more data or a "? END" statement to be read. 

If a data card with an invalid punch in column 1 is read within a data deck, the MCP stops the card reader 
and notifies the operator that the card just read has an invalid punch in column ( 1 ). This allows the 
operator to correct the card and permit the program to continue reading cards. 

2-45 



****** 
* AB * 
** ** ** 

-AB INPLT MESSAGE <Auto Backup> 

The AB input message is used to specify the number of auto backups to be 
used and to assign a printer to a~to oackup. 

The format of the AB message is: 

**•***************************************************************** 
* 
* 
* 
* 
* 

[

integer 
[?]. AB 

C- l L Px 

* 
* 
* 
* 
* 

**-***************************************************************** 

The integer must be a positive number from 0 to 7. If the integer is 
greater than zero~·AUTO BACKUP will be ac~ivated and the designated 
nu~ber of SYSTEH/BACKUPs kill be executed. SYSTEM/BACKUPS will remain 
in-the mix as tong as there are backup files to be printed and will 
terminate when there are no mor·e backup files to be printed. When a 
backup file is closed which is to be autoprinted and there are no 
SYSTEM/BACKUPS AUTOPRINTING but the AS integer is greater than zeror 
the necessary number of SYSTEM/SACKUPs will be initiated. If the 
integer is zero, the current SYSTEM/BACKUPs AUTOPRINTING will terminate 
when finished printing the current file. 

AB LPx reserves for AUTO BACKUP the specified printer. This ·printer 
will orly be used by a SYSTEM/BACKUP initiated by AUTO BACKUP. AB 
-LPx will remove the printer from oeing reserved for AUTO BACKUP and 
will return it to the system for use by any program requesting a 
printer. · 

It is the operat~rs resporsibility to match the number of printers 
reserved for AUTO BACKUP with the numoer of SYSTEM/BACKUPs specified 
by AB integer. 

Both the integer and printer reservations will be preserved through 
Cl E AR/ S TAR T S • 

All backup disk files kith the multi.file.id of ~aACKUP.PRT" which are 
sent t o the pack de s i gnat e d by 8 D a ft er A a ; n t e g er i s. spec f i e d w i l l 
be printed by AUTO BACKUP. To avoid AUTO BACKUP specify a 
USER.BACKUP.NAME with a multi-file-id other than "BACKUP.PRY". 

The 80 input message will not be honored while AUTO BACKUP is active. 

This message is not allowed from remote operators. 

2-46.1 



SYSTEM CONTROL INSTRUCTIONS 

AX INPUT MESSAGE (Response to ACCEPT) 

The AX message is a response to an ACCEPT message requested by an object program through the MCP. 

The format of the AX message is: 

r-- mix-index AX ... input message ... 
L_. ___ _ 

All responses are assumed to be alphanumeric format. The input message starts in the first position after the 
AX on the input line, and continues until the END OF MESSAGE button is pressed. 

If the End-of-Message is depressed immediately after the AX, the MCP fills the area in the requesting pro­
gram with blanks. 

Example: 

2 AX CHECK VOID IF OVER 500 DOLLARS 

Input messages shorter than the receiving field in the program will be padded with trailing blanks. Longer 
messages will be truncated on the right. 

The AX message has an unsolicited console feature in that the operator may enter as many AX message 
responses as needed for a given program prior to the actual ACCEPT. The AX messages must be entered 
in the order they will be used, since the queue is structured on a first-in, first-out basis. 

The queue is automatically cleared at program EOJ or an abort. 

2-47 



BB INPUT MESSAGE: (Backup Blocks per Area) 

The BB input message allows the operator to specify the number of blocks to assign each area of a 
printer or punch backup disk file. 

The format of the BB message is: [------. -----

BB [integer] 

The value of the backup blocks per area is set to 200 by COLDSTART, and if the integer entered in the BB 
message is less than 5, a value of 200 is assigned by default. 

If an integer is not entered with the BB message, the MCP displays the current setting of the backup blocks 
per area. 

BB 

BB 350 

2-48 



BD INPUT MESSAGE (Backup Designate) 

The BD input message allows the operator to designate a specific disk pack or disk cartridge for backup 
files. 

The format of the BD message is: 

BD [disk-pack-identifier] 

When the BD message is entered without the disk-pack-identifier the MCP will cause the current setting of 
the default backup disk to be displayed. 

If" " (the quotes are required) is entered for the disk-pack-identifier, the default backup disk is changed to 
the SYSTEM disk. 

Examples: 

BD 

BD USERPACK 

BD " " 

2-49 



BF INPUT MESSAGE (Display Backup Files) 

The BF input message lists disk backup files on the console printer. 

The format of the BF message is: 

BF [pack-identifier/] 

-1-- -
integer 

PRT/= 

PRN/= 
PCH/= 

The PRT/= option will list all printer backup files on disk. The PCH/= option will list all punch backup 
files on disk. 

The=/= option will list both the printer and punch backup files that are stored on disk. 

PRN and PRT are both to be assumed to mean printer backup files. That is, PRN and PRT are equivalent. 

The unit-mnemonic requests displaying the backup files on the designated removable disk drive. If it is 
omitted, the MCP will display the backup files resident on system disk. 

2-50 



CD INPUT MESSAGE (List Card Decks in Pseudo Readers) 

The CD input message allows the system operator to obtain a list of the pseudo card files and their file 
numbers that have been previously placed on disk by SYSTEM/LDCONTRL. 

The CD message format is: 

The MCP displays the number of each pseudo deck and the first fifty (50) characters of the first card in 
the deck. 

If a deck is in use, its name and the program using it are displayed. 

2-51 



CE INPUT MESSAGE (Change to Entry System Software) 

The CE input message allows the operator to specify that during the next Clear/Start MCP I system 
software and firmware will be loaded on the system. 

The format of the CE message is: 

[ CE 

2-52 



CL INPUT MESSAGE (Clear Unit) 

The CL input message allows the operator to clear a unit on the system because of an apparent system 
software loop or hardware malfunction. Any program using the unit that has been cleared using the 
CL message will be discontinued (DS-ed). 

The format of the CL message is: 

The CL message cannot be used with disk devices (DCx, DKx, DPx). 

Example: 

CLLPA 

2-53 



CM INPUT MESSAGE (Change System Software) 

The CM input message allows the operator to identify programs to the system for subsequent usage. 
The purpose of the CM message is to identify a file that contains the program to be used for a desig­
nated function. 

The format of the CM message is: 

{ 
program-identifier} system-software-mnemonic 
PURGE 

The resultant action of the CM message does not take affect until the next Clear/Start. 

The PURGE option removes the file from the designated NAME TABLE entry. 

Refer to the Clear/Start procedure for a list of the system software mnemonics that are used in the 
NAME TABLE. 

CM MX MCP/XYZ 

The CM message at the next Clear/Start makes the program MCP/XYZ the experimental MCP. 

2-·54 



CN INPUT MESSAGE (Change to Non-Trace System Software) 

The CN input messa~e allows the system operator to change the operating environment to non-trace 
system software after the next Clear/Start. 

The format of the CN message is: 

CN 

CAUTION 

The CN input message is strictly for system software 
development and debugging. It should not be used 
in the standard operating environment. 

2-55 



CP INPUT MESSAGE (Compute) 

The CP input message allows the operator to perform simple arithmetic functions on the console printer, 
as well as decimal/hexadecimal conversion. 

The format of the CP message is: 

The valid operators recognized by the CP message are as follows: 

+ addition 

subtraction 

* multiplication 

I division 

M MOD (remainder divide) 

The equal sign(=) terminates the expression and must be the last entry when entered from a card reader. 

The CP message will evaluate an arithmetic expression strictly on a left-to-right basis. Therefore, quantities 
contained in parentheses or brackets are invalid. Spaces are not used as delimiters and are ignored. 
Operands and intermediate results are considered positive integers, and overflow beyond 16777215 will be 
truncated. 

The response is displayed in both decimal and hexadecimal formats. 

request: CP@ 3A@ * 4 + @F@ 

response: CP: @OOOOF7@=247 

CP@F@ 

CP: @OOOOOF@= 15 

2-·56 



CQ INPUT MESSAGE (Clear Queue) 

The CQ input message causes all messages stored in the Console Printer QUEUE to be cleared. 

The CQ message format is: 

~------------] - CQ 

2-57 



CS INPUT MESSAGE (Change to Standard System Software) 

The CS input message allows the system operator to insure that during the next Clear/Start MCP II system 
software and firmware will be loaded on the system .. 

The format of the CS message is: 

~-- -------------------- --·--~--

[-~--~:--------=---------___ c_s _ 
-·----·-----1 

2-58 



CT INPUT MESSAGE (Change to Trace System Software) 

The CT input message allows the system operator to change the operating environment to trace system 
software after the next Clear/Start. 

The format of the CT message is: 

[ ____ CT----·------ -~] 
CAUTION 

The CT input message is strictly for system software 
development and debugging. It should not be used 
in the standard operating environment. 

2-59 

cu 



DF INPUT MESSAGE (Date of File) 

The DF input message allows the operator to display on the console printer the compilation date and time 
for code and interpreter files, and the creation date for all other types of files. · 

The format of the D F message is: 

{
file-identifier } 
family-name/= 

2-60 



DM INPUT MESSAGE (Dump Memory and Continue) 

The DM input message allows the system operator to dump the contents of a program's memory space to 
disk for subsequent analysis by DUMP/ ANALYZER. 

The format of the DM message is: 

mix-index DM 

Processing automatically continues when the dump is finished. 

------ l 

I 
--- J 

The DM message will create a file called DUMPFILE/integer. The integer will be incremented by one each 
time a DM is performed in order to make each DUMPFILE unique. 

The DUMPFILE may be printed by the DUMP/ANALYZER program. Refer to the "PM" message. 

Example: 

2DM 

2-61 



DP INPUT MESSAGE (Dump Memory and Discontinue) 

The DP input message allows the system operator to initiate a memory dump during a program's execution, 
md then abort that program. 

The DP message format is: 

mix-index DP J 
The input of the DP message signals the MCP to halt program execution, dump memory out to disk, and 
abort the program as though a DM message had been entered immediately followed by a DS message. 

1 DP 

2-62 



{
DR 
DT INPUT MESSAGE (Change MCP Date) 

r;l 
~ 

The DR, DT input message allows the system operator to change the current date maintained by the MCP. 

The DR, DT message format is: 

{ DDTR} mm/dd/yy 

The MCP will accept only valid dates. The month entry must be between one and twelve, the day must be 
between one and thirty-one, and the year must be valid numeric digits. 

2-63 



DS INPUT MESSAGE (Discontinue Program) 

The DS input message permits the system operator to discontinue the execution of a program. 

The format of the DS message is: 

[-----·-------·------------mix-i~d~ex~ D; _______ ·--------] 

The DS message may be entered at any time after the BOJ and prior to EOJ. 

The DS message signals the MCP to stop the program's execution and return the memory the program 
occupied to the system. Any files not previously entered into the disk directory are lost and the disk 
area occupied is returned to the disk available table. All other files are closed. 

2-64 



ED INPUT MESSAGE (Eliminate Pseudo Deck) 

The ED input message allows the system operator to eliminate a deck from a pseudo reader. This is equiva­
lent to flushing the reader and then performing an RY message. 

The format of the ED message is: 

The deck will be eliminated from the pseudo reader and from the disk directory by the ED message. 

2-65 



EM INPUT MESSAGE (ELOG Message) 

The EM input message allows the operator to place a message into the ELOG. 

The format of the EM message is: 

[ 
EM input-message 

·---------

The input-message starts in the first position after the EM on the input line and continues until the END OF 
MESSAGE is pressed. 

2-66 



ET INPUT MESSAGE (BLOG Transfer) 

The ET input message transfers the information in the file SYSTEM/BLOG to the file BLOG/# integer. 
The program SYSTEM/ELOGOUT is then executed label equating BLOG/ #integer and prints the file. 

The format of the ET message is: 

---- ---------] 

-- ---------

ET 

f F 

2-67 



FM INPUT MESSAGE (Response to Special Forms) 

The FM input message is a response to the "SPECIAL FORMS REQUIRED" message. 

The format of the FM message is: 

~~~--~~~--~~-----~~~-~~-m~~ix~--i-n_d~e~x~---F--M~-u-n1-·t_-m_n_e_m~o-n-ic~~ 
The unit-mnemonic designates which unit is to be assigned to the file.

The message

program-name = mix-index SPECIAL FORMS REQUIRED FOR file-id

is displayed on the console printer requiring that a FM message be submitted by the system operator before
the file can be opened. ·

Example: ---

3 FM LPA

2-68

FN INPUT MESSAGE (Display Internal File Name)

The FN input message allows the system operator to display the internal file names of an object program.

The format of the FN input message is:

r--- FN
L__ ___ _

program-name external-file-identifier

The MCP lists on the console printer all the internal-file-names of the object program which have the
specified external-file-identifier in the following format:

FN = internal-file-identifier-I

FN = internal-file-identifier-2

FN =

2-69

I
______ _J

(Final Reel of Unlabeled Tape File)

The FR input message gives the operator the ability to notify the MCP that the last reel of an unlabeled
tape file has completed processing, and there are no more input reels to be read.

The format of the FR message is:

[mix-index FR

---------------------------------- ----------------

The FR message is a response to the message:

mix-index NO FILE

This message is the result of an unlabeled tape file re.aching the End-of-Reel; the FR message notifies the
program that the file has reached EOF.

The FR message is also allowed with labeled tape files in order to signal EOF without reading all of the
reels of the file.

J

The FR message must be used with paper tape input files to signal EOF after all reels have been processed.

2-70

PS INPUT MESSAGE (Force from Schedule)

The PS input message is used to force jobs from the WAITING SCHEDULE into the ACTIVE SCHEDULE.

The format for the PS message:

PS

The equal sign option will force all jobs into the ACTIVE SCHEDULE.

See the HS message for placing a job in the WAITING SCHEDULE.

NOTE

The WAITING SCHEDULE is a schedule of jobs that are waiting to be placed in
the ACTIVE SCHEDULE. For example, an EXECUTE with the attribute THEN
or AFTER.NUMBER would place the program in the WAITING SCHEDULE.

The ACTIVE SCHEDULE are those jobs that have satisfied all the requirements
for execution and are only waiting for memory space to run.

In order for a program to be in the mix, it must have gone to BOJ.

2-71

FT INPUT MESSAGE (Change File Type)

The FT input message allows the operator to change the type of a disk file in the disk directory and file
header.

The format of the FT message is:

~ Ff file-identifier file-type L_, ______ _____,
By using the FT message the file type is the only change made to the file; the format of the file remains
the same.

A CONTROL type file is a pseudo file or control deck.

A CODE file is the only type of file that an EXECUTE, MODIFY, COMPILE, or DYNAMIC statement
may be valid as an operation.

The LT message will list the file types.

2-72

·GT INPLT MESSAGE CGo Trace>

The GT input message allows the system operator to reQuest that a
progra~s intcrpfete~ trace each opcode specified.

The format of t~e GT message is:

* GT *

••***
*
*
*

mix-index GT integer
*
*
*

The integer can be:

0 = no trace
1 = trace branch opcodes
2 = trace store opcodes
4 = trace all other opcodes

or any sum of the above.

See also the TRACE attribute.

GO INPUT MESSAGE (Resume Stopped Program)

The GO input message is used by the system operator to request resumption of a program that has been
stopped (ST message).

The format for the GO message is:

mix-index GO

A program retains its assigned mix-index number when STOPped and rolled-out to disk. The MCP uses
this mix-index number in the GO message to identify the program for resumption.

2-73

HS INPUT MESSAGE (Hold in Waiting Schedule)

The HS input message will allow the system operator to place a HOLD on a specific job(s), thereby
temporarily removing them from the ACTIVE SCHEDULE.

The format of the HS message is:

The equal sign(=) option will place all jobs in the ACTIVE SCHEDULE into the WAITING SCHEDULE.

A job-number is assigned when a program is scheduled by the MCP.

A job that has been placed in the WAITING SCHEDULE by a HS message will remain in the WAITING
SCHEDULE until FS-ed.

2-74

HW INPUT MESSAGE (Hold in Waiting Schedule until Job EOJ)

The HW input message allows the system operator to designate that certain jobs are to be placed in the
WAITING SCHEDULE, awaiting the EOJ of another job (by job-number).

The format of the HW message is:

HW
{ job-n~mber-1 }

job-number-2

The equal sign (=) option will place all jobs in the ACTIVE SCHEDULE into the WAITING SCHEDULE,
and mark them as waiting for the completion of job-number-2.

A job that has been placed in the WAITING SCHEDULE by a HW message will remain in the WAITING
SCHEDULE until job-number-2 reaches EOJ or until FS-ed by the operator.

2-75

~]

IL INPUT MESSAGE (Ignore Label)

The IL input message allows the system operator to ignore the label on the file mounted on the designated
unit.

The format of the IL message is:

[____ _
. . d IL { unit-mnemonic } :=J nux-m ex

- # integer
-------------·---·------ ----------------------------- - ---------·------------------------.. --------

The mix-index must be used to identify the progr.am. In a multiprogramming environment there may be
more than one "NO FILE" condition at a time.

The IL message may be used in response to the following messages:

NO FILE ...

DUPLICATE INPUT FILE ...

file-identifier NOT IN DISK DIRECTORY

It is assumed that the system operator knows that the file on the unit selected is the file needed regardless
of the original file-identifier's location. If the unit-mnemonic specifies a disk drive, the directory on that
drive will be searched for the required file-identifier. The# integer option is used to designate a pseudo­
reader (by number) as the input device.

NOTE

A RESTRICTED disk cannot be assigned to a program with
the IL message. The program must have tlie correct dp-id
prior to the opening of the file.

2-76

KA INPUT MESSAGE (Analyze Disk Directory)

The KA input message allows the system operator to analyze the contents of a disk directory, including
file area assignments.

The KA message has three formats:

--

Format 1:

KA

Format 2:

KA

Format 3:

KA

{

disk-pack-id/=/= i\

-1-- -

{

disk-pack-id/DSKAVL/ {

DSKAVL J

~ [disk-pack-id/] family-name/= {

(file-identifier j
....._ ___ -----------

Inclusion of the disk-pack-id causes the MCP to list the requested information for the specified user disk
pack or disk cartridge; otherwise, system disk is assumed.

Format 1 results in a listing of available areas followed by a description of all files contained on the specified
disk.

Format 2 lists only the available areas for the designated disk.

Format 3 lists only the description of the specified file or files.

Examples:

KA=/=

KA USER/=/=

KA DSKAVL

KA USER/DSKA VL/

KA COBOL

KA RPG/=

KA USER/PAYROLL/=

2-77

{~~ INPUT MESSAGE (Print Disk Segments)

The KC or KP message provides a means for the system operator to print selected disk files or segments of
a disk on the line printer.

The fom1at of the KC or KP message is:

l, } { file-identifier

~ { D I~K integer-,_i }
umt-mnemomc

[integer-3] integer-2

The printout created by the KP message is in HEXADECIMAL format.

The printout created by the KC message is in CHARACTER format.

The file-identifier option will print a file by that name. The DISK option is used for the Head-per-Track
disk. Integer-I is required with head-per-track disk and designates the electronics unit.

Integer-2 is used to specify the disk address from which printing is to begin.

Integer-3 is used to specify the number of segments to print beginning either from the first segment of a
file or the address specified by integer-2. If omittec~ number of segments printed is one.

Examples:

KP A/B 10 Print 10 segments of file A/B

KP A/B , Print 1 segment of file A/B

KP CCC/XI Print 1 segment of file A on pack CCC

KP DPA@ SC@ lS Print lS segments from HEX LOC. SC

KP DISK 1 200 10 Print 10 segments on EU 1 from DECIMAL LOC 200

2-78

LC INPUT MESSAGE (Load Cassette)

The LC message is used to load system programs (compilers, interpreters, object code, system software)
from a cassette in the console cassette reader to disk with appropriate additions in the disk directory.

The format of the LC message is:

LC [disk-pack-identifier]
{

family-name/file-identifier}
family-name/=

=/=

L------·-------------------------------- ------------

The LC message cannot be used to load a freestanding program that does not execute under the control
of the MCP.

The LC message calls the program SYSTEM/LOAD.CAS which loads the files.

2-79

LD INPUT MESSAGE (Pseudo Load)

The LD input message is used by the system operator to initiate the building of pseudo card deck(s) on disk
to be processed by pseudo readers.

The LD message format is:

[_ LD J
-----------· --· -····------------------------------·- ------ -------------------·----- -------

After receiving a LD message, the program, SYSTEM/LDCONTRL, looks for a"? DATA CTLDCK" control
statement that initiates the read.

The card deck's "file-id" is assigned by a"? DATA file-id" control statement preceding the data deck to be
read. Each data deck that is loaded will be numbered consecutively along with its file-id which is used in
opening the pseudo card files.

Terminating the LD function requires a"? END CTLDCK" control statement immediately following the
last data deck that is to be read.

The following example demonstrates how two compile decks and one data deck can be loaded as
pseudo card files to be used by pseudo readers.

? DATACTLDCK

? COMPILE program-name COBOL SYNTAX

CONTROL DECK ? DATA CARDS

DECK A
data deck

? END

? COMPILE program-name FORTRAN

? DATA CARDS

DECK
data deck

B

? END

? DAT A file-id

DECK data deck
c

? END

? ENDCTL ------------------··--

2-80

.lJ INPLT MESSAGE <Larry J Thomas>.

The LJ input message is used to set the 81700 Micro Emulator key.

The format of the LJ mess~ge is:

* LJ *

*
*
*

C?l LJ rnumberl
*

*
*

The number can be

1 : SYSTEM/INIT to load 81700 Emulator
2 = Emulate

.4 = Emulator to do own I/O
8 = load first 3KB of emulator into control memory

If number is ornitted the current setting will be displayed.

This message is not allowed from remote operators.

2-ao.1

* LP *

LP ·MESSAGE <Lock Protect)

The LP input message is used to set or reset to PROTECT flag.

The format of the LP message is:

•*
*
*
fr

*
*

mix-index LP
{-

.. }

*
*
*
*
*

•*

The + cption sets the PROTECT flag thus prev8nting the following input
messages:

os, op, GT, ST, SW
fror being entered except at the remote console which spawned the job.
If the job goes to a OS or DP the PROTECT flag will be reset.

The • cption resets the PROTECT flag, thus allowing the above input
messages to be entered.

See also the.PROTECT attribute.

{
LG
LN INPUT MESSAGE (Transfer and Print Log)

The LG, LN input message allows the system operator to transfer and print the log. The log files are
numbered sequentially starting with LOG/#00000001. The program SYSTEM/LOGOUT is executed
performing the necessary file equate to print the log. The program SYSTEM/LOGOUT must be in the
disk directory in order for the MCP to accept the message.

The format of the LG, LN message is:

2-81

* LT •

LT ·INPUT MESSAGE (Load Train table>

The LT input message is used to load the translate table for a train
prin'ter.

The format of the LT message is~

**
•
* •
•
*

[

trai. n number]
C?l LT unit-mnemonic

tra1n name

*
*
*
•
•

**

Printe~s with automatic identification wi\l have the translate table
loaded automatically ~Y the MCP at CLEAR/START time or if the printer
is RY-ed. The MCP assumes that the proper translate table is loaded
on printers without automatic identification until told otherwise.

The train name or train number may be omitted for Printer Control-2.

The translate tables are a data file on disk created by
SYSTEM/BUILDTRAIN.

This message is not allowed from remote operators.

2-81.2

@:]

[

2-82

* MH *

.MH INPUT MESSAGE CModify Header>

The MH ini:ut ir.essage is used to ch.anqe a fHe•s protection.

The format. of the MH message is:

*~***

* *
*

[PTN
PUBLIC] ~10 1.0] *

* MH file-name PRIVATE INPUT!' CUSR #] *
* GUARD OUTPUT *
* *
*•***

PTN <PROTECTION> specifies the access rights of the file. If PUBLIC
is specified, no ~serccde/password is required to access the file.
If PRI~ATE is specified. a usercode and password matching the file name
or a privjleged usercode/password is required to access the file.
GUARD is not implemented yet. The default for programs running with a
usercoce is PRIVATE~ for programs without a usercode is PUBLIC. See
alsc the file attribute PROTECTION.

PIO <PROTECTION.IO> limits the type of access to a PUBLIC file. A CODE
file which is I~PUT is assumed to be only executable. not readable. See
also the file attribute PROTECT.IO.

USR is a debug feature allowing the possibly erroneous user count of a
file to be changed to the given number.

2-a2.1

* LS *

LS.COM~AND Clog Spo)

The LS.command causes all control messages to be inserted in the control
queue.

The format of the LS command is:

•*
*
*
*

LS
*
*
*

•*************•***

All control messages <both input and output> will be placed in the
control queue specified by the QU command •. A QU command is required
in the control string prior to the LS com~and. Control messages placed
in the control aueue will not be displayed on the local console except
for error messages which require operator intervention or if the RMSG
option is set.

A job ~hich has· been spawned with LS may not spawn another job with LS.

This command is allowed only from ZIPs.

MP INPUT MESSAGE (List Multi-Pack File Tables)

The MP input message gives the operator the ability to interrogate the MCP's multi-pack file table which
contains all multi-pack files that have been entered in the table since the last Clear/Start or RT message.

The format of the MP message is:

C, __ MP_,_

2-83

]

MR INPUT MESSAGE (Close Output File with Purge)

The MR input message gives the system operator the ability in a duplicate file situation to save the old file
by purging the newly created file.

The format of the MR message is:

[mix-index MR
---~-_]

2-.84

MX INPUT MESSAGE (Display MIX)

The MX input message allows a system operator to request that the MCP display on the console printer all
the programs currently in the MIX.

The format of the MX message is:

C. __ Mx __ --~]
The MX response lists the priority numbers, program-names and the MIX numbers of all programs currently
running.

Example:

MX

program-name = 1 PR:04

program-name = 2 PR:OS

END MX

2-85

* NC *

NC INPLlT MESSAGE

The NC input message allows the system oper~tor to control how the table
of failing memory chips is maintained.

The format of t~e NC message is:

•*
*
*
*

C?l NC Cintegerl
*
*
*

~*

If the integer is omitted~ the current size of the table and the size
the table will have follow;ng the next CLEAR/START will be reported.

The -integer has the following meaning:

O = Will report current size of table and set the size following

1-255

the next CLEAR/START to the default size Cone location per
16K bytes>.

= Will use the number specified as the number of locations
to be used following the next CLEAR/START.

> 255 = Will use 2~ lotitions following the next CLEAR/START.
- v

On mac~ines without error correcting memories~ NC has no effect.

This message is not allowed from remote operators.

2-as.1

* NT *

NT.INPUT MESSAGE CNo Trace)

The NT input message allows the system operator to reQuest a program's
interpreter to stop tracing and close the trace file.

The format of the NT message is:

**
*

*
*

mix-index NT
*

*
*

•*

The NT message is different from the GT 0 message in that the GT O
message will not close the trace file. The .system operator may reQuest
a trace again after the NT message has closed the trace file with a GT
message which will open the trace file.

2-as.2

OF INPUT MESSAGE (Optional File Response)

The OF input message is used in response to the NO FILE message. It informs the MCP that the specified
file is optional and can be bypassed.

The format of the OF message is:

C. __ _ mix-indeJc-_o_F------------·----~
The OF message indicates that the file being requested is to be bypassed for this execution. Usage is
restricted for input files that have been declared or label-equated (FILE control word) as OPTIONAL.

2-·86

OK INPUT MESSAGE (Continue Processing)

The OK message is used by the system operator to direct the MCP to attempt to continue processing a
program marked as WAITING.

The format of the OK message is:

~ mix-index OK

L___ _____ . _J
The OK message should only be given after the necessary action has bt~n taken to correct the problem that
caused the program to be placed in WAITING status.

Examples:

job-specifier DUPLICATE INPUT FILES .. .

job-specifier DUPLICATE FILE ON DISK .. .

job-specifier NO DISK ...

job-specifier NO MEMORY ...

job-specifier FILE file-identifier NOT PRESENT

If the corrective action is not taken before the OK message is entered, the original output message is
repeated.

2-87

OL INPUT MESSAGE (Display Peripheral Status)

The OL input message allows the system operator to interrogate the status of the system's peripheral units.

The format of the OL message is:

OL unit-mnemonic
{

PSR i

unit-type-code

The unit-mnemonic option displays the status of a specific unit.

The unit-type-code option displays the status of all peripherals of the same type.

Any invalid type unit used in the OL message will cause the MCP to display the following message.

NULL unit-type-code TABLE

The PSR option is used to interrogate the status of the pseudo readers on the system.

Examples:

CDA NOT READY

MTC UNLABELED

DPA LABELED "USER" #123456

MTA LABELED "MASTER" [123456]

2··88

OU INPUT MESSAGE (Specify Output Device)

The OU input message is a response to direct an output file to a specified output device.

The format of the OU message is:

mix-index OU unit-mnemonic

Example:

4 OU DPC

The OU is normally used in response to the "PUNCH RQD ... or "PRINTER RQD ... " message to direct
the file to backup.

2-89

PB INPUT MESSAGE (Print/Punch Backup)

The PB input message allows the system operator to initiate a copy of SYSTEM/BACKUP, that prints or
punches a disk or tape backup file.

The PB message has two formats:

Format 1:

PB !='= l =c::_

. PRT/=
[unit-mnemonic] PRN/=

PCH/=

Format 2:

PB [unit-mnemonic] integer [option-I [option-2] ...]

------------·---·-----------------------------------

If specified, the unit-mnemonic must be a tape (MT) or disk (DC, DK, or DP) device, and indicates to the
MCP the location of the requested backup file or files. If the unit-mnemonic is omitted, the default disk will
be assumed (refer to the BD message).

Format 1 is used to print or punch a number of backup files with one program. When the=/= option is
used, all backup files existing on the designated disk or tape at the time the message is entered are printed
or punched. If both printer and punch backup files exist on the disk, two copies of SYSTEM/BACKUP are
executed; one copy handles printer files, and the second copy handles punch files. The PR T /= and PCH/=
options cause the printing or punching of all printer of punch files, respectively, that exist on the designated
unit. PRN/= is an acceptable equivalent of the PRT/= option.

NOTE

When Format 1 is used:, no options can be included.

Format 2 causes the printing or punching of one printer or punch backup file, as specified by the integer.
When this format is used, options can be included to control the output and action taken by SYSTEM/
BACKUP. A detailed description of these options follow:

COPIES [=] integer

DOUBLE

KEY

Function

Causes SYSTEM/BACKUP to produce integer copies of the speci­
fied backup file. One copy is the default if this option is not
specified.

Causes SYSTEM/BACKUP to double-space the entire printer
listing, overriding any carriage control specified in the backup file.

Allows specification of a range of records to be printed or punched.
A detailed description of the syntax is given below. All records in
the file will be printed or punched if this option is omitted.

2-90

Option

unit-mnemonic

Function

PB
continued

If this option is included, it must specify a printer (LP) or card
punch (CD or CP), and must be the first option specified following
the backup file number. It will cause SYSTEM/BACKUP to direct
its output to the designated unit, if that unit is available.

RECORD in teger-1 [integer-2] Allows specification of a range of records to be printed or punched.
Output will begin with the physical record specified by integer-I
(the first record in the backup file is record number 1) and
continue until the physical record specified by integer-2. If
integer-2 is omitted, end-of-file is assumed as the terminator. All
records in the file are printed or punched if this option is omitted.

SAVE

SINGLE

Causes SYSTEM/BACKUP to leave the backup file on disk when
the file is closed. The file will be removed from disk if this option
is omitted. Tape backup files are always closed with release, so
specification of SA VE is unnecessary.

Causes SYSTEM/BACKUP to single-space the entire printer listing,
overriding any carriage control specified in the backup file.

The complete syntax for the KEY option follows:

__ _] KEY {compiler-name } {RANGE string-I string-2}
integer-I integer-2 EQUAL string-3

·------------------------- --- -----

Use of the KEY option allows specification of a range of records to be printed or punched according to
information within the records themselves (e.g. a sequence number). The portion of each record to be
compared may be specified, as well as the information that will start and stop the output.

Integer- I specifies the column number of the subfield to be used for the compare argument, and integer-2
specifies the length. Integer-2 must be greater than 0 and less than 10.

The compiler-name option causes automatic generation of the proper column number and length pair that
corresponds to the sequence number field of the output listing produced by the specified compiler. The
permissible compiler-names that can be used are: BASIC, COBOL, FORTRAN, MIL, NDL, RPG, SDL,
and UPL.

The RANGE and EQUAL parameters specify the argument to which the subfield in each record is to be
compared, and the action to be taken when a "true" comparison is detected. The strings can be either an
integer or an alphanumeric literal enclosed within quote marks. When the comparison arguments are of
different lengths, an integer string is left-truncated or left zero-filled to the same length as the subfield; an
alphanumeric literal is right-truncated or right space-filled to the same length as the subfield.

If EQUAL is specified, printing or punching will begin when an exact comparison is made between the
subfield and string-3, and will continue until end-of-file is reached.

2-91

[f RANGE is specified, printing or punching will begin when an exact comparison is made .between the
subfield and string-I. The printing and punching continues until an exact comparison is made between the
subfield and string-2, or until end-of-file is reached, whichever occurs first.

If string-I is equal to string-2, the entire backup file will be searched. Every record in which the designated
subfield matches string-I is printed or punched.

Since the specified comparisons require an exact match between the string and the subfield, no sequential
ordering of the backup file is necessary.

NOTE

lf both the RECORD option and the KEY option are specified in
the same statement, the comparisons specified by the KEY option
will be made only within the range of records specified by the
RECORD option.

PB 125

PB 17 LPA SAVE

PB DCC 4 RECORD 5

PB MTA =/=

PB 3 KEY COBOL RANGE 123 567

PB 2 KEY 7 6 EQUAL "ABC"

PB 53 RECORD 1. 100 DOUBLE SAVE

2-92

PD INPUT MESSAGE (Print Directory)

The PD input message allows a system operator to request a list of all files on a disk directory or to
interrogate a disk directory for a specific file(s).

The PD message has two formats:

..--····

Format 1

PD

Format 2

PD

{

dp-id/=/= l
-1-- -

file-identifier

family-name/=

dp-id/family-name/=

(removable pack)

(system pack)

The format 1 message will give a complete listing of all files in a disk directory.

The format 2 message will give a partial listing of the files in a disk directory.

The family-name/= format will list all files with the specified family-name.

--- ---------·

If the file-identifier is not present in the disk directory the MCP will respond with the message:

file-identifier NOT IN DIRECTORY

Examples:

Does a file named COBOLZ reside on the system pack?

request: PD COBOLZ

response: PD= COBOLZ (affirmative response)

What files reside on the system pack?

request: PD=/=

response: PD file-identifier- I

PD = file-identifier-2

PD =

2-93

PD
continued

Does a family-name PAYROLL with a file-identifier QUARTERLY reside on a removable pack called
MASTER?

request: PD MASTER/PAYROLL/QUARTERLY

response: PD = MASTER/PAYROLL/QUARTERLY

Do the files ALPHA, BET A, CHARLIE, reside on the system pack?

request: PD ALPHA, BET A, CHARLIE

response: PD = ALPHA

PD =BETA

CHARLIE NOT IN DIRECTORY

2-94

PG INPUT MESSAGE (Purge)

The PG message permits the system operator to purge a removable disk cartridge, disk pack, or magnetic
tape.

The format of the PG message is:

PG unit-mnemonic [serial-number]

A disk cartridge/pack that is purged will be marked as UNRESTRICTED with its disk pack-id remaining
unchanged.

The serial-number is required when purging a disk, and must be a six-digit number matching the serial
number of the pack being purged.

Magnetic tape must have a write ring in place in order to be PURGED.

The serial-number is not used when purging a tape, and the serial number in the tape label will not be
changed. To assign or change a tape serial number, use the SN message.

Examples:

PG DPA 000456

PGMTC, MTD

2-95

PM INPUT MESSAGE (Print Memory Dump)

The PM input message allows a system operator to print the entire contents of memory or single program
dump file.

The format of the PM message is;

!----·----------------·-·· -- --·---·-· .. ---·---------·--·-----·------------··--------------·-----·----·-----1

L I;'M [integer [SAVE] J ___ _J

A PM by itself will cause the execution of the MCPI/ ANALYZER or MCPII/ ANALYZER program which
will analyze and print the contents of SYSTEM/DUMPFILE. (System Memory)

The "integer" option will cause the execution of the DUMP/ ANALYZER program which will analyze and
print the contents of DUMPFILE/integer. (Program Memory)

The programs DUMP/ANALYZER and either MCPJ/ANALYZER (MCPI) or MCPII/ANALYZER (MCPII)
must be located on systems disk to perform a PM message.

The SAVE option will cause the DUMP/ANALYZER to leave the specified DUMPFILE on disk at EOJ;
without this option, the DUMPFILE will be removed from disk.

2-96

PO INPUT MESSAGE (Power Off)

The PO input message informs the MCP that a removable disk pack or cartridge is to be removed from the
system.

The format of the PO message is:

PO unit-mnemonic

A system pack may not be powered off.

A PO message entered for a unit that is currently being used will cause the MCP to display the following
message:

unit-mnemonic HAS integer USERS

A PO message entered for a unit that is not currently in use will cause the message:

unit mnemonic MAY NOW BE POWERED DOWN

to be displayed.

The PO message may be used on a multi-pack file base pack if there are no single-pack files in use at the
time of the request.

2-97

J

PR INPUT MESSAGE (Change Priority)

The PR input message allows the system operator to change to priority of a program that is currently in the
MIX.

The format of the PR message is:

C_ mix-index PR [=] integer

See the PRIORITY Control Instruction Attribute for a further explanation of priority.

2-98

PS INPUT MESSAGE (PROD Schedule)

The PS input message gives the system operator the ability to request that the MCP attempt to execute
the "top" entry in the ACTIVE SCHEDULE.

The format of the PS message is:

C. __ Ps __

---------]

----- ------... -

The normal function of the MCP checks the ACTIVE SCHEDULE at each EOJ or when a program is
scheduled. The PS message will cause the MCP to check the ACTIVE SCHEDULE when the message is
entered.

2-99

PW INPUT MESSAGE (Set Program Working Set - MCP I)

The PW input message is used to set the field PROG.WORKING.SET in the program's Program Parameter
Block to the size in bytes of the memory space needed to hold the program's working set.

The format of the PW message is:

PW program-identifier ~ blank= l
([=] size-in-bytes }

When the blank= entry is input, the current value of the Program Working Set will be used. When the
size-in-bytes is specified, the Program Working Set will be set to the value indicated.

NOTE

If the Program Working Set is made too large for available memory, the MCP will
ignore the value assigned. If set too small, the program will run inefficiently.

The PW message responds by returning the following message.

PW program-identifier= size-in-bytes

Therefore the Program Working Set may be interrogated for size by entering this message:

PW A/B =

PW A/B = 5000

PW A/B = 4500

PW A/B = 4500

PW program-identifier =

(Test Size)

(Response)

(Set Size)

(Response)

2-100

QC INPUT MESSAGE (Quit Controller)

The QC input message allows the system operator to bring the NDL-generated Network Controller to
End-of-Job.

The format of the QC message is:

QC

There can be only one NDL-generated Network Controller executing on the system. If any additional
Network Controllers are attempted to be executed the following message will be output:

NETWORK CONTROLLER ALREADY RUNNING

After entering the QC message and all activity in the NDL system has stopped, the Network Controller
issues STOP codes to all attached stations and then goes to End-of-Job.

If a station for any reason is unable to receive its output messages, the Network Controller waits
indefinitely.

With a MCS in the system, the QC message is invalid and its function should be performed within the MCS.

2-101

QF INPUT MESSAGE (Query File)

The QF input message allows the system operator to interrogate a program on disk for the status of its
control attributes.

The format of the QF message is:

[
Qf program-identifier control-attribute-identifier [...] ________ _____,

Examples:

QF A/B CG

QF A/B FILE LINE BACKUP

.2-102

QP INPUT MESSAGE (Query Program)

The QP input message allows the system operator to interrogate a program while running on the system for
the status of its control attributes.

The format of the QF message is:

QP job-number control-attribute-identifier [...]

Examples:

QP 14 PRIORITY

QP 1 S CHARGE FREEZE

S/4- B /j
!

2-103

QUEUE MESSAGE <Control QUEUE>

* QUEUE *

The QUEUE command allo~s the user to designate a previously opened
queue tile as a control Q~eue.

The format of the QUEUE command is:

•*•*
* /, *

11

*
*
*

*

{
QUEUE }

QU
namel C/ name2l

i *
*
*
*

•*

The QUEUE control word may be abbreviated#as QU.

Th• control quaue provides a mechanism whereby the MCP can communicate
to a controlling job on behalf of a spawned job, or in response to other
control card com~ands which the controlling job may wish to receive.

This command is allowed only from ZIPs.

2-101.1

fRBl
~

{RB INPUT MESSAGE
RF

(Remove Backup Files)

The RB or RF input message gives the system operator the ability to remove backup files on disk.

The format of the RB,.RF message is:

{ ~~ } [disk-pack-identifier/]

The integer will remove the backup file specified by the integer.

{ -;- l integer
PRT/=
PRN/=
PCH/=

The PRT /= and PCH/= options will remove either all print backup files or all punch backup files
respectively. PRN is equivalent to PRT.

The=/= option will remove ~backup files from disk.

The unit-mnemonic option specifies that the backup files to be removed are on the designated removable
disk.

2-104

RD INPUT MESSAGE (Remove Pseudo Card Files)

The RD input message allows the system operator to remove pseudo card files from disk.

The format of the RD message is:

RD { ~~~ger l

2-105

RL INPUT MESSAGE (Relabel User Pack)

The RL input message gives the operator the ability to change the disk-pack-id and/or the type of user
pack.

The format of the RL message is:

RL unit-mnemonic disk-pack-id { : }

2-106

RM INPUT MESSAGE (Remove Duplicate Disk File)

The RM input message allows the system operator to remove a disk file from the disk directory in
response to a DUPLICATE FILE ON DISK message.

The format of the RM message is:

mix-index RM -~]
The DUPLICATE FILE message is a result of a program trying to close a disk output file with the same
name as a file already in the directory. This causes the program to go into a wait state. The RM message
will remove the old file, close the new file, enter it in the directory, and continue processing.

Example:

1 RM

2-107

RN INPUT MESSAGE (Assign Pseudo Readers)

The RN message is used by the system operator to assign a specific number of pseudo card readers.

The format of the RN message is:

[-----·------------ -· --·::---~n~ege~-----·------------------.. ----- -- --]

The RN message can be entered either before or after the creation of pseudo files.

It is the responsibility of the operator to determine the optimum number of pseudo readers in relation to
the number of pseudo files to be processed.

By entering RN 0 (zero) all pseudo card readers will be closed as soon as they are finished processing the
file that they are presently reading.

The pseudo card readers may also be closed by performing a Clear /Start.

2-·108

RO INPUT MESSAG!:: (Reset Option)

The RO message allows the system operator to reset the options used to direct or control some of the MCP
functions.

The format of the RO message is:

r--- RO option-name-I [,option-name-2] ...

L_ ____ . -----~ l
The MCP replies with a verification that the option has been reset after each RO input message.

The LOG and CHRG options cannot be reset. The MCP message LOG LOCKED or CHRG LOCKED will be
displayed when an attempt has been made to reset these options.

The TO message may be entered to determine which options are set at any given time. The option indicator
equals one when set and zero when reset. A complete list of the MCP options and their status will be
displayed.

Examples:

RO LIB

LIB=O

RO DATE,TIME

DATE=O
TIME=O

2-109

RP INPUT MESSAGE (Ready and Purge)

'The RP message entered by the system operator will set a tape unit in READY status and PURGE the
tape.

The format of the RP message is:

[
---------·----.---------·

:RP unit-mnemonic-1

---------------------------~

[,unit-mnemonic-2] ...

The RP message can be used for tape only.

RP MTA

RP MTC,MTD

2-110

RS INPUT MESSAGE (Remove Jobs from Schedule)

The RS input message will allow the system operator to remove a job from the schedule prior to its being
entered in the MIX for execution.

The format of the RS message is:

~ RS {job-ni;mber-1

L_, ____ _
[,job-number-2] ... }

The RS message can remove one or more jobs from the schedule.

The schedule number is the number assigned to the job by the MCP when it is entered into the schedule.

The job-number will be displayed by the MCP when the job is entered into the schedule if the SCHM
option is set. The WS message will display the jobs in the schedule together with their job-numbers.

The "==" option will remove all jobs from the schedule.

If the requested program(s) are not in the schedule, the MCP will notify the operator that an invalid
request has been entered.

Example:

RS 33 ,

#33 RS-ED
#34 RS-ED
#35 RS-ED

34 '

36 NULL SCHEDULE

35 ' 36

Gob 36 not in schedule)

2-111

RT INPUT MESSAGE (Remove Multi-Pack File Table)

The RT input message allows the operator to remove an entry from the multi-pack file table.

The format of the RT message is:

[RT file-identifier

Exa~ples:

RT USER/A/B

RT BASEPACK/MASTER/

2-112

RY INPUT MESSAGE (Ready Peripheral)

The RY input message allows the system operator to ready a peripheral unit and make it available to the
MCP.

The format of the RY message is:

RY unit-mnemonic-I [, unit-mnemonic-21 ...

Any number of units may be made ready with one RY message.

When a removable disk cartridge or disk pack is placed on a system, the MCP must be notified of its
presence with the RY message.

If the designated unit is not in use and is in the remote status, the RY message causes all exception flags
maintained by the MCP for the specified unit to be reset. After the unit has been made ready, the MCP
attempts to read a file label (input devices only).

Examples:

RY DPB
RY MTC
RY LPA,LPB

2-113

SD INPUT MESSAGE (Assign Additional System Drives)

The SD input message gives the system operator the ability to assign additional system drives for the MCP.

The format of the SD message :is:

[SD unit-mnemonic serial-number

The SD message, after verification of the serial-number, will PURGE the pack, and add it to the system
packs already on the system.

At COLDSTART, there is only one system drive, so additional drives may be added by the SD message.
Once a system drive has been added to the system, it cannot be removed without performing a
COLDSTART.

The following message is displayed when the new system drive is linked to the system.

unit-mnemonic IS NOW A SYSTEM PACK-CLEAR START REQUIRED

2-114

SL INPUT MESSAGE (Set LOG)

The SL input message gives the operator the ability to set the LOG option, and allocate the area required.

The format of the SL message is:

~ SL integer-I [integer-2]

L_·----·----------·-------·--·------·
The integer-I entry is the size of each area to be assigned to the LOG and cannot be less than 100 or
greater than 1000 disk segments.

J
The integer-2 entry is optional and is the maximum number of areas desired. It must be between 2 and
105, inclusive. Default is 25.

The MCP responds with the following message when an SL message has been entered:

LOG NOW SET-CLEAR START REQUIRED

If there is insufficient disk space for the first area of the log, the following message will be displayed:

NO SPACE TO BUILD LOG

If integer-I is zero the LOG option will be reset and the log will be transferred (as though a TL message had
been entered). A new SYSTEM/LOG is not created.

Examples:

SL 1000
SL 250 5
SL 0

2-115

SN INPUT MESSAGE (Assign a Tape Serial Number)

The SN input message is used to initialize (and purge) a magnetic tape, assigning a volume serial number to
the tape label.

The format of the SN message is:

[___ _
SN unit-mnemonic serial-number

The SN message initializes a magnetic tape by putting a scratch ANSI label on the tape. Any tape that does
not contain a valid ANSI label cannot be purged (PG message). This includes both unlabeled tapes and
those that have the Burroughs standard label.

The serial-number is normally numeric, but any alphabetic or numeric string up to six digits in length is
allowed. This serial number is placed in the label, and remains in all labels on the tape (even when purged).
The serial number can be explicitly changed by another SN message.

SN MTA 123456

2-116

SO INPUT MESSAGE (Set Option)

The SO input message allows the system operator to set the options used to direct or control some of the
MCP functions.

The format of the SO message is:

SO option-name-I [,option-name-2]

The MCP replies with a verification that the option has been set after each SO input message.

The LOG option cannot be set with an SO message. The MCP message "LOG LOCKED" will be displayed
when an attempt has been made to set LOG with an SO message.

The TO input message may be entered to determine which options are set at any given time. The option
indicator equals one when set and zero when reset. A complete list of the MCP options and their status
will be displayed.

2-117

SP INPUT MESSAGE (Change Schedule Priority)

The SP input message provides a means for the system operator to change the schedule priority of a pro­
gram currently in the schedule.

The format of the SP message is:

[SP job-number integer

The Schedule Priority is separate from the priority of the job when it is in the mix.

The job-number will identify the program in the schedule that is to be affected by the SP message.

The integer in the SP message specifies the new priority that will be assigned to the program. Priorities
may range from zero through 14~ where zero is the lowest priority and 14 is the highest priority.

To change the priority of a program in the schedule with a job-number of 33 to a priority of 7, the follow­
ing SP message would be used.

SP 33 7

This program would be selected from the schedule ahead of the other programs with a lower priority.

The following message would be displayed in response to the above input message:

program-name 33 PR = 07

2:-118

SQ INPUT MESSAGE (Squash Disk)

The SQ input message permits the system operator to initiate or terminate a "disk squash." When
"squashing" a disk, the MCP attempts to move areas of data to numerically-lower disk addresses in order to
alleviate disk checkerboarding.

The format of the SQ message is:

SQ unit-mnemonic [integer- I])STOP
[

(SIZE J]
{TILL integer-2

The unit-mnemonic specified must be a disk device (DC, DK, or DP). If head-per-track disk (DKx) is
designated, integer-I must be used to indicate the electronics unit (EU); integer-I is not used with other
types of disk.

A disk squash cannot be initiated if there are any jobs in the mix or in either schedule (WAITING or
ACTIVE). Once the disk squash is initiated, only additional SQ input messages can be entered on the
console printer. All card readers are inaccessible during the disk squash.

Both system and user disks can be squashed. With multiple system disks, only one drive or EU can be
squashed at a time. The MCP automatically produces a KA listing of the specified disk both before and
after the disk squash; therefore, a line printer must be available.

If the TILL option is specified, the MCP will terminate the disk squash as soon as integer-2 contiguous
sectors have been made available. Otherwise, the squash will continue until normal termination or until
explicitly stopped by the operator with the STOP option. The MCP displays the largest area currently
available whenever interrogated by the SIZE option.

When the disk squash is terminated, the MCP displays the size of the largest available area as well as the
total number of sectors available on the designated disk.

Examples:

SQ DPA

SQ DKB 1

SQ DCC TILL 5000

SQ DPB SIZE

SQ DCA STOP

2-119

ST INPUT MESSAGE (Suspend Processing)

The ST input message provides a means for the system operator to temporarily suspend the processing of a
program in the MIX.

The format of the ST messgae is:

[mix-index ST

The mix-index identifies the program to be suspended.

The MCP will not suspend the program until all 1/0 operations in progress for that program have been
completed.

J
When the MCP suspends a program, it is rolled-out to disk and the memory it was using is returned to the
MCP for reallocation.

A suspended program will retain the mix-index and peripherals assigned to it; the MCP will use this to
identify the program when referenced by another keyboard input message.

To restart a program after it has been suspended, the GO message must be used. If for some reason all of the
conditions necessary for the program to run are not met when the GO message is issued, the MCP will not
restart the program.

3 ST

2-120

SV INPUT MESSAGE (Save Peripheral Units)

The SV message allows the system operator to make a peripheral unit inaccessible to the MCP until a Clear
Start operation occurs, or an RY input message is used to ready the unit.

The format of the SV message is:

~ SV unit-mnemonic [,unit-mnemonic) ...

L__ __ _
Any number of peripheral units may be saved with one SV input message.

When the SV message is entered and the unit is not in use, the specified unit is marked SAVED and ''unit­
mnemonic SAVED" is displayed by the MCP.

If the unit is in use, the MCP will respond with "unit-mnemonic TO BE SAVED" and will save the unit as
soon as it is no longer being used.

Example:

SV LPA

2-121

SW INPUT MESSAGE (Set Switch)

TI1e SW input message allows the system operator to set programmatic switches.

TI1e format of the SW message is:

[mix-index SW ·-[=]} _val-ue -~
Programmatic switches may also be set at schedule time by using the SWITCH control statement
attribute. Refer to Section 2, SWITCH control attribute. 2 - 4)

The number must be a decimal digit from zero to nine (0-9) that references the switch to be set. To
determine what switches are available, the specific language manual for the program for which the switches
are being set must be referenced. If the "=" option is used, all ten switches are implied (40 bits of
information).

The value is the value that the switch or switches will be assigned.

5 SWl = @F@

2 SW8 = 6

3 SW = @0123456789@

2-122

* SZ *

.SZ COMANO <Session>

The SZ command is used to apply a session numoer to a control string.

The format of the SZ command is:

•,~********************

•
*

*
SZ integer

•
*
*

··~***

The SZ command distinguishes commands originating from remote operators
from those of ·the local operator. The session number <integer> is
carried with all zipped control strings. The sessi4)n number is used
to relate a set of independent jobs into a logical group which may
corr.espond to a physical remote site.

This command is allowed only from ZIPs.

2-122.1

TD INPUT MESSAGE (Time and Date)

The TD input message allows the system operator to request that the MCP type the current values of the
time and date.

The format of the TD message is:

TD

The MCP displays the date and time in the following format:

DATE = mm/dd/yy TIME = hh:mm:ss.t

Where:

hh - hours
mm - minutes

ss - seconds
t - tenths of seconds

2-123

_]

~]

TI INPUT MESSAGE (Time Interrogation)

The TI input message allows the system operator to interrogate the MCP as to the amount of processor time
the program has used up to the time the interrogation was made.

The format of the TI message is:

[
·----·-----·----·-··

mix-index TI

The mix-index identifies the program for which the interrogation was requested.

The time is given in hours, minutes, seconds, and tenths of seconds.

4TI

COBOL: A/B = 4 CPU TIME = 00:03: 15.7

2-124

TL INPUT MESSAGE (Transfer LOG)

The TL input message allows the system operator to· transfer the information in the SYSTEM/LOG to
LOG/ #integer. To print the LOG refer to the LG input message.

The format of the TL message is:

~---TL ___]

2-125

~]

TO INPUT ~ESSAGE_ (Display Options)

The TO input message allows the system operator to interrogate the status of the MCP options.

The format of the TO message is:

The TO message entered by itself will display all of the options and their settings.

A value of zero (0) indicates a reset (off) condition; a value of one (1) indicates a set (on) condition:

or:

TO LOG, TIME

LOG= 1

TIME= 0

TO

BOJ = 0 DATE= 1 ... (lists all options)

2-126

TR INPUT MESSAGE (Time Change)

The TR message allows the system operator to change the current value of the time maintained by the MCP.

The format of the TR message is:

~ TR integer J
L__ ______ --------····--------------
The time specified by the integer is designated according to a 24-hour clock, and must be four digits in
length.

This message is not accepted by the MCP if the value of the integer is greater than 2400 hours.

Example:

Set the time in the MCP to 7:19 P.M.

TR 1919

2-127

TS INPUT MESSAGE (Test Switches)

The TS input message allows the system operator to test the programmatic switches set by the SW
console message or the SWITCH control statement attribute.

The format of the TS message is:

[mix-index TS

The output of the TS message is in hexadecimal format.

4 TS

PAYROLL/103 = 4 SWITCHES= @0123456789@

2-128

UL INPUT MESSAGE (Assign Unlabeled File)

The UL message allows the system operator to designate the unit on which a particular unlabeled input file
is located in response to a "FILE NOT PRESENT" message from the MCP ..

The format of the UL message is:

mix-index UL unit-mnemonic [integer]

-- -- --- l

------- - -----

The UL message is used only if the unit designated is to be acted on as an unlabeled file. The MCP assumes
the file on the designated unit is the file requested by the program that caused the "FILE NOT PRESENT"
message.

The mix-index must be used to identify the program to which the file is to be assigned.

If integer is used, the MCP spaces forward "integer" blocks prior to reading the first data block into the
object program. Tape marks are read as blocks. This is done at the time the file OPEN is performed.

Example:

A program with a mix-index of 1 calling for an unlabeled input tape file could be assigned a tape on
a unit with the unit-mnemonic of MTA with the following UL message:

1 ULMTA

If the first three blocks on the tape are not desired, they can be skipped with the following UL
message:

1ULMTA3

2-129

* USER *

US£R I~PUT MESSAGE

The USER command provides a way of invoking the file security mechanism
and associated nam;~g convention.

The format of t~e USER in~ut message is:

**
*
*
*
*
*

C?l {~:ER} usercode {/password]

* •
*
*
*

•*

The control word USER may be abbreviated as us.

The USER command causes the HCP to verify the usercode and password
against the system usercode/password file <created by SYSTEM/MAKEUSER>.
The usercode is applied to any subsequent file name references or any
files opened during a job executed with a USER command.

2-129.1

WD INPUT MESSAGE (Display MCP Date)

The WD input message permits the system operator to request the current date used by the MCP.

The format of the WD message is:

L ____ ._ WD J

2-130

WM INPUT MESSAGE (Display Current MCP and Interpreter)

The WM input message allows the system operator to inquire which MCP and Interpreter are currently being
used since there can be more than one MCP and Interpreter residing on the system pack.

The format of the WM message is:

c-- WM

The reply to the WM message is in the following format:

MCP = mcp-name INTERP =interpreter-name GISMO = gismo-name INIT =initializer-name

GISMO ALSO CONTAINS:

segment-name-I

segment-name-2

segment-name-n

2-131

WS INPUT MESSAGE (Display Schedule)

The WS input message allows the system operator to interrogate what program or programs are currently in
the schedule and their status.

The format of the WS message is:

The job-number is assigned by the MCP as the program is entered into the schedule.

The MCP response to the WS message gives the program-name, schedule number, memory required in KB's,
program priority, and the length of time the program has been in the schedule.

ws 4

ALPHA = 4 NEEDS 8 KB PR = 4 IN FOR 00:08:37.4

2-132

WT INPUT MESSAGE (Display MCP Time)

The WT input message permits the system operator to request the current time used by the MCP. The
reply is in the twenty-four hour clock format.

The format of the WT message is:

·----]
-----------------------------·----------- ---··----·-

WT

2-133

WW INPUT MESSAGE (List Contents of NAME TABLE)

The WW input message gives the operator the ability to list the different types of system software/
firmware in the NAME TABLE.

The format of the WW message is:

WW Lys:m-software-mnemonic}

See the Clear/Start procedure for an explanation of the system software-mnemonics used in the
NAME TABLE.

2-134

WY INPUT MESSAGE (Program Status Interrogation)

The WY message allows the system operator to check the current status of one program or all the
programs in the MIX.

The format of the WY message is:

[mix-index] WY
-------]

-------- ----- -----------

The mix-index identifies the program in the MIX that is to be checked and its status displayed on the
console printer. If the mix-index is omitted the MCP will display the status of every program in the
MIX.

If the program is waiting for some type of operator action, the alternatives available to the operator will
be identified. '

Examples:

1 WY

PAYROLL/PAYlOS=l IL UL DS--NO FILE "PAYROLL/MASTER"

WY

COBOL; LISTER=l EXECUTING

DMPALL=2 AX DS--WAITING FOR KEYBOARD INPUT

USER/ ACCPAY /=3 WAITING FOR I/O COMPLETE ON "CARDS" (CRA)

2-135

~
~

{ ~~} INPUT MESSAGE

The XC and XD input messages allow the removal of contiguous disk segments from the MCP tables of
available disk space temporarily (XC) or permanently (XD).

The format of XC, XD message is:

[{ XXCD} unit-mnemonic [integer-I]

-·

inte/ger-2
I

integer-3

The unit-mnemonic specified must be a disk device (DC, DK, or DP). If head-per-track disk (DKx) is
specified, integer-1 must be used to indicate the electronic unit (EU). Integer-1 is not used when other
types of disk are specified.

Integer-2 specifies the beginning segment address, and can be expressed in any format. If the operation
is being performed on a disk cartridge (DCx), and the beginning segment address is not the address the
first segment in a track, the MCP will automatically adjust it backward to the beginning of the track.

Integer-3 specifies the number of segments to be removed from use by the MCP. If the operation is
being performed on a disk cartridge (DCx), the number of segments removed will always be a multiple
of entire tracks. The MCP will make the necessary adjustments, both in starting address and number
of segments.

The disk space to be removed must be available in order to be removed; therefore, if any portion of the
space is occupied by files or headers, for example, the MCP will reject the request with the message:

REQUESTED SEGMENTS NOT REMOVED-NOT AVAILABLE

The requested disk space is permanently removed from use by the XD message. To return the removed
segments a disk initialization (for disk packs or cartridges) or COLbSTART (for head-per-track disk) is
required.

The XC message temporarily removes the disk space from use. The disk space is returned at the next
CLEAR/START or, for user packs or cartridges, when the disk is powered down (PO message).

Examples:

XC DKA 0 200 1000

DISK SPACE REMOVED FROM @EEOOOOOC8@ THRU @EE00004AF@

XC DCC @46@ 30

DISK SPACE REMOVED FROM @EA2000040@ THRU @EA200007F@

2-136

* ZQ *

ZQ .COHt'AND <Zip Queu-e>

The ZQ ·command is used to designate a previously opened queue file as
a control Q~eue used exclusivel~ for schedule messages and data card
messages.

The format of the ZQ command is:

··~***

*
*

*
ZQ namel [/name2l

•
*
*

********•***

The ZQ command is similar to the QUEUE command with the exception that
the Queue specified is used exclusively for schedule messages and data
card messages. Where the control queue may contain many messages
concerning joos. MCP responce tc input messages, etc., the zip queue
will ccntain only schedule records of jobs zip executed by. the
controlling program. and the data card label message if a DATA control
card was encountered in the zippea string.

This effectively allows the controlling program to be immediately
aware of the face that a job has been scheduled ~ithout having to scan
through the general control queue for pertinent m~ssages. In general.
the cor.trol queue is designed for general communication, while the zip
queLe is specifically to be used for job spawning control.

This ccmmand is allowed only .from ZIPs.

2-136.1

MCP OUTPUT MESSAGES

General

The MCP communicates information to the system operator by the console printer. Messages can either
be originated by the MCP for information and possible operator action, or they can originate from an
executing program. In either case, the MCP has complete control over all messages.

All output console messages are indented one space by the MCP, in order for the operator to easily
distinguish them from input messages. Messages originating from within a program (i.e., DISPLAY
messages) are preceded by a percent sign (%) in order to more easily distinguish them from messages
originated by the MCP concerning the program.

Syntax

The paragraphs below outline the syntax used in defining the MCP messages in this section.

Classification: MCP messages are listed in alphabetical order using the first word of the actual
message as the key. The job-specifier portion and any "optional" type entries are not
considered part of the key.

Job-Specifier: Job-Specifier is simply used to identify the job for which that message is intended.
The format of the job-specifier is:

[compiler-name:] - program-name= mix-index ...

The compiler-name portion is only printed when the executing program is a compilation.

Terminal-reference: The phrase "terminal-reference" following any message indicates that a
termination message will be printed. Any time this message is printed, the program must
be DS-ED or DP-ED, except when the TERM option is set causing the program to be
terminated automatically.

or

The format of the terminal-reference message is:

P = nn, S = nn, D = nn (@-@, @-@, @-@) DS or DP

S = nn, D = nn (@-@, @-@) DS or DP

NOTE

There are situations usually occurring when memory is approaching
saturation that the program-identifiers will be omitted from console
messages and referenced only by their mix-index number. This is done
to conserve memory. For example, the following message:

3 NO MEMORY

might be used instead of
A/B/C = 3 NO MEMORY

MCP Messages

job-specifier-ABORTED

job-specifier-ACCEPT

job-specifier-ACCESS PPB TARGET OUT OF RANGE terminal-reference

2-137

ATTEMPTED TO WRITE OUT OF BOUNDS

unit-mnemonic ASSIGNED TO SYSTEM USE

unit-mnemonic AVAILABLE AS OUTPUT

BACKUP FILE nnnnnn NOT REMOVED-NOT ON DISK

BACKUP TAPE NOT FOUND-"RY" unit-mnemonic

BATCH COUNT COMMUNICATE ISSUED WHILE SORTER FLOWING terminal-reference

job-specifier-BEGINNING DATA OVERLAY ADDRESS= nnnn, WHILE BR= nnnn
terminal-reference

job-specifier- EOJ. =job-number PR= nn [integer SYNTAX ERRORS] TIME = hh:mm:ss.
{

BOJ. }

DS-ED.
job-specifier-CANNOT ACCEPT "[IL'UL'OF'FR'FM'OU'OK'RM'MR] "MESSAGE

CANNOT ACCEPT DATA STATEMENT FROM THE SPO

unit-mnemonic CANNOT BE OPENED OUTPUT FOR file-identifier

CANNOT CHANGE PACK-ID OR FAMILY NAMES WITH EQUALS ... id's ...

CANNOT FIND UNIT REQUESTED FOR FN

CANNOT READ LABEL ON unit-mnemonic

CANNOT READ THE LABEL ON unit-mnemonic

CANNOT REMOVE PACK.ID OR FAMILY NAMES WITH = -S file-identifier

CANNOT SAVE THIS DEVICE unit-mnemonic

file-identifier CHANGED TO new-file-identifier

CHAR OR BIT STRING IS INCOMPLETE input message

CLEAR/STARTBl 700 MCPII MARK nnn.nn mm/dd/yy hh:mm

***CLEAR/START REQUIRED

CLEAR/START REQUIRED-SYSTEM/PRINTCHAIN MISSING

COMPILE program-name CTRL RCD ERR:

job-specifier-CONTROL STACK OVERFLOW terminal-reference

job-specifier-"CONVERT" ERROR terminal-reference

COULD NOT CHANGE THE MCP

job-specifier-CPU TIME= hh:mm:ss.t

CURRENT MCP IS identifier USING interpreter-id

job-specifier-DATA OVERLAY RELATIVE DISK ADDRESS= nnnn, WHILE SIZE OF
AREA = nnnn terminal-reference

2-138

DECK nnnn = 50 CHAR

DECK nnnn IN USE BY program-name

**DECK NUMBER nnnn NOT ON DISK

DEFAULT CHARGE NO.= nnnnnn

DISK ERROR ON OVL y {READ } FROM { DISK ADDRESS@nnnn@ }
WRITE MEMORY ADDRESS@nnnn@

job-specifier-DISK FILE DECLARED SIZE EXCEEDED ON file-identifier terminal-reference

job-specifier-unit-mnemonic DISK PARITY @nnnn@

job-specifier-nnnnDISK SEGMENTS REQUIRED FOR AREA OF file-identifier

job-specifier-DIVIDE BY ZERO terminal-reference

**DR PLEASE

job-specifier-DUPLICATE INPUT FILES file-identifier

ENDBF

ENDMX

END PD

job-specifier-ENDING DATA OVERLAY ADDRESS= nnnn, WHILE BR= nnnn
terminal-reference

"=" NOT PERMITTED IN FILE NAME FOLLOWING "FN"

unit-mnemonic ERROR/pack-id IS [RESTRICTED or INTERCHANGE] PACK

unit-mnemonic ERROR unit-id

job-specifier-EVALUATION OR PROGRAM PTR STACK OVERFLOW terminal-reference

EXECUTE program-name CTRL RCD ERR: ...

job-specifier-EXPONENT OVERFLOW terminal-reference

job-specifier-EXPONENT UNDERFLOW terminal-reference

job-specifier-EXPRESSION OUT OF RANGE tenninal-reference

!INPUT l
job-specifier OUTPUT FILE file-identifier CLOSED

INPUT/OUTPUT

2-139

RELEASE
PURGE
REMOVE
CRUNCH
NO REWIND
CODE
LOCK
CONDITIONAL
ROLLO UT
TERMINATE

job-specifier-FILE internal-file-identifier LABELED ... REEL nnnnnn NOT PRESENT

job-specifier-FILE internal-file-identifier NEEDS nnnn BITS TO OPEN, WHICH I COULDN'T
FIND-"OK" WILL TRY AGAIN, ELSE "DS"

file name "file-identifier" REQUESTED BY "FN" NOT FOUND

FN = "internal-file-identifier"

FREE UP SOME DISK AND CLEAR/START

GOOD MORNING, TODAY IS name-of-day, hh:mm:ss.t {~:} JLN DT = yy/ddd

unit-mnemonic HAS nnnn USERS

unit-mnemonic HAS BEEN PURGED

job-specifier-unit-mnemonic HOPPER EMPTY

INVALID BIT CHARACTER- .. .

INVALID BIT SPECIFIER- .. .

INVALID CHAR COL nn

INVALID CHARACTER ...

INVALID CHANGE-PACK-IDS DO NOT AGREE

job-specifier-INVALID CASE terminal-reference

job-specifier-INVALID COMMUNICATE IN USE ROUTINE terminal-reference

unit-mnemonic INVALID CONTROL CARD

INVALID DECK NUMBER ...

INVALID ED MESSAGE DECK NUMBER

job-specifier-INVALID index terminal-reference

INVALID JOB NUMBER

INVALID MC-CHARGE OPTION ALREADY SET

INVALID MIX NUMBER

INVALID MNEMONIC ...

job-specifier-INVALID LINK terminal-reference

job-specifier-INVALID OPERATOR terminal-reference

INVALID PACK.ID OR TAPE MNEMONIC FOR PB ...

job-specifier-INVALID P ARAM TO VALUE DESC terminal-reference

2-140

job-specifier-INVALID PARAMETER terminal-reference

INVALID PG

job-specifier-INVALID RETURN terminal-reference

INVALID SD-SERIAL NUMBER REQUIRED

INVALID SERIAL NUMBER

INVALID SL-LOG ALREADY SET

job-specifier-INVALID SUBSCRIPT terminal-reference .

job-specifier-INVALID SUBSTRING terminal-reference

INVALID SYNTAX for{~~~~~} COMMA IS REQUIRED FOR MORE THAN ONE { g~~ii}

unit-mnemonic INVALID TYPE CODE ...

INVALID unit-mnemonic

INVALID UNIT MNEMONIC FOR FN, MUST BEGIN WITH ALPHA

"IL" REQUIRES A PARAMETER

file-identifier IN USE

job-specifier-INSUFFICIENT MEMORY TO OPEN file-identifier

job-specifier IS EXECUTING

pack-id IS ALREADY A SYSTEM DRIVE

pack-id IS A NONREMOV ABLE SYSTEM PACK OR IS ALREADY OFF LINE

pack-id IS AN INTERCHANGE PACK

unit-mnemonic IS NOT A USER PACK

pack-id IS NOT INITIALIZED

job-specifier IS NOT STOPPED

pack-id IS {
RESTRICTED }

PACK
INTERCHANGE

job-specifier IS SUSPENDED

job-specifier-INTEGER OVERFLOW terminal-info

INTRINSIC "intrinsic-name" REQUESTED BY program-name =job-number IS NOT IN
DIRECTORY - FS or RS.

INV OPTION option-name

unit-mnemonic LABELED REEL nnnnnn

2-141

unit-mnemonic LABELED [S,R,U, or I] SERIAL.NO= nnnnnn

unit-mnemonic
{

LABELED ... }
UNLABELED

IN USE BY job-specifier ...

file-identifier LOAD TERMINATED-DISK ESTIMATE ERROR

file-identifier LOADED

unit-mnemonic LOCK OUT

job-specifier LOCKED DISK FILE file-identifier

option-name LOCKED

unit-mnemonic LOCKED

LOG NOW SET-CLEAR/START REQUIRED

LOG OPTION NOT SET

LOG TRANSFER COMPLETE

pack-id MAY NOW BE POWERED DOWN

unit-mnemonic MEMORY ACCESS ERROR WAIT TILL UNIT IS RESET AND TRY AGAIN

job-specifier-unit-mnemonic MEMORY PARITY

MISSING PARENTHESIS ...

unit-mnemonic MISSING PACK-ID

MCP RAN OUT OF WORK SPACE WHILE LOOKING FOR interpreter-id WANTED BY
program-name =job-number

MODIFY program-name CTRL RCD ERR: ...

NO SEGMENT DICTIONARY SPACE for program-name =job-number

job-specifier-NO SPACE AVAILABLE FOR [CODE or DATA] [PAGE nnnn] SEGMENT
nnnn

NO SPACE AVAILABLE FOR interpreter-name SOUGHT BY program-name =job-number

NO SPACE FOR program-name =job-number

NO SPACE IN INTERPRETER DICTIONARY FOR interpreter-name SOUGHT BY
program-name =job-number

**NO SYSTEM DISK FOR PSR DIRECTORY

**NO USER MEMORY FOR CD

2-142

file-identifier NOT A BACKUP FILE-REQUEST IGNORED

pack-id NOW A SYSTEM DRIVE-CLEAR/START REQUIRED

unit-mnemonic NOT AVAILABLE

NOT A DISK PACK-CANNOT RL

NOT A QUOTE-MARK ...

file-identifier NOT CHANGED-

NOT ENOUGH MEMORY FOR CM

" <FILE-NAME) /=,, NOT ALLOWED
BLACK OR ZERO FIRST NAME
file-identifier ALREADY ON DISK
NOTONDISK
IN USE
RESTRICTED FILE

job-specifier-NAME OR VALUE STACK OVERFLOW terminal-reference

job-specifier-NEEDS AN AX REPLY

program-name job-number NEEDS nnnnnnKB PR= nn hh:mm:ss.s

job-specifier-NO DISK AVAILABLE FOR DUMP

NO DISK SPACE TO BUILD LOG

job-specifier-NO MEMORY AVAILABLE FOR DUMP

NO MEMORY FOR KA

**NO MEMORY FOR PSEUDO READER

**NO MEMORY FOR PSR DATA DIRECTORY (PSR = Pseudo Reader)

NO OVL Y DISK A VL FOR program-name =job-number AMT RQD: nnnn
SEGMENTS-RS-ED

NO PRINTER AVAILABLE

NO PRINTER AVAILABLE FOR KP

NO PROGRAMS RUNNING

job-specifier-NO PROVISION FOR 1/0 ERROR ON file-identifier terminal-reference

job-specifier-NO PROVISION FOR END OF FILE ON file-identifier terminal-reference

NO PSEUDO DECKS ON DISKS

job-specifier-NO ROOM TO OPEN FILE file-identifier

file-identifier NOT IN DIRECTORY

2-143

file-identifier NOT IN DISK DIRECTORY

"=" NOT PERMITTED IN PROGRAM NAME FOLLOWING "FN"

file-identifier NOT LOADED-IN USE BY SYSTEM

{
LOCKED } file-identifier NOT
REMOVED

INVALID PACK-ID pack-id

file-identifier NOT ON DISK

pack-id NOT ON LINE

unit-mnemonic NOT READY

NULL SCHEDULE

NULL ... TABLE

NUMBER OF PSEUDO READERS CHANGED TO nnnnnn

unit-mnemonic OFF LINE

OUT OF MEMORY SPACE

job-specifier-OUTPUT UNIT NOT AVAILABLE FOR BACKUP

{
PARITY ERROR} job-specifier--unit-mnemonic - NO RECOVERY
ACCESS ERROR

PM CANNOT FIND DUMPFILE/integer FOR DUMP/ANALYZER

job-specifier-POCKET LIGHT COMMUNICATE REQUESTED WHILE SORTER
FLOWING terminal-reference

job-specifier-PRIORITY CHANGED TO new-priority-number

job-specifier-unit-mnemonic PRINT CHECK

PRINTER NOT READY

job-specifier-PROGRAM ABORTED terminal-reference

job-specifier-PROGRAM IS NOT WAITING SPO INPUT-AX IGNORED

PSEUDO/nnnnnn NOT ON DISK

PSEUDO/nnnnnn NOT REMOVED-INUSE

job-specifier-unit-mnemonic PUNCH CHECK

2-144

unit-mnemonic .. = !
PURGED LABEL

file-identifier [REEL

UNLABELED

unit-mnemonic READ CHECK

nnnnnn]l

job-specifier-READ OUT OF BOUNDS terminal-reference

unit-mnemonic RELABELED pack-id {~}

job-specifier-REQUESTED A { CODE } SEGMENT OF LENGTH ZERO terminal-reference
DATA

job-specifier-REQUESTED A CORE SPACE NOT EQUAL TO THE SIZE I JUST COMPUTED
AS HIS REQUIREMENT -RS-ED MY SIZE = nnnn HIS SIZE = nnnn

job-specifier-READ REQUESTED ON OUTPUT FILE file-identifier terminal-reference

program-name REQUESTED BY "FN" NOT IN DIRECTORY

program-name REQUESTED J ~:~;E l
lsEEK

ON CLOSED FILE

{~g} REQUIRES THREE OR FOUR CHARACTERS

device-mnemonic REQUIRED FOR REEL nnnnnn file-identifier

message REQUIRES MIX NO.

job-number RS-ED

unit-mnemonic REWINDING

unit-mnemonic {
SAVED }
TO BE SAVED

SD REQUIRES NULL MIX

SCHEDULED: program-name =Job-number PR= nn hh:mm:ss.s

job-specifier-SEEK REQUESTED ON SERIAL FILE file-identifier terminal-reference

nnnn SEGS REQ FOR SYSTEM DUMP FILE

SERIAL NUMBER REQUIRED

SP ACE REQUIRED BEFORE " or @ ..•

2-145

job-specifier-STACK OVERFLOW terminal-reference

job-specifier-SUPERFLUOUS EXIT tenninal-reference

SYSTEM/LOGOUT NOT IN DIRECTORY

job-specifier-TANK OVERFLOW terminal-reference

3 DISK SEGMENTS NEEDED FOR SYSTEM/PRINTCHAIN

THERE ARE NO ENTRIES IN LOG ... NO TRANSFERS OCCURRED

THERE ARE NO RELEVANT BACKUP FILES-PB IGNORED

***THERE IS NO BACKUP PRINT OR PUNCH FILE WITH NUMBER nnnnnn [ON PACK-ID]

job-specifier-unit-mnemonic TIMEOUT @nnnnnn@

TOKEN TOO LONG-REQUEST IGNORED

job-specifier-TOO LONG IN USE ROUTINE

TOO MANY"=" IN NAME ... TRY AGAIN

TOO MANY "/"-SIN NAME ... TRY AGAIN

job-specifier-TRIED TO INITIALIZE A GLOBAL BLOCK LARGER THAN ENTIRE
STATIC SPACE REQUESTED STATIC= nnnn GLOBAL= nnnn -RS-ED

job-specifier-TRIED TO
{

SENDTO . }
RECEIVE FROM "program-name" WHICH IS NOT RUNNING

**TR PLEASE

job-specifier-UNDEFINED RUN TIME ERROR terminal-reference

job-specifier-UNEXPECTED POCKET SELECT terminal-reference

job-specifier-UNINITIALIZED DA TA ITEM terminal-reference

unit-mnemonic UNIT PURGED

job-specifier-unit-mnemonic
~NOT READY)

JAM (l MISSORT)

UNIT-MNEMONIC MUST START WITH ALPHA

unit-mnemonic UNLABELED

pack-id WRITE-LOCKOUT

job-specifier-WRITE REQUESTED ON INPUT FILE file-identifier terminal-reference

job-specifier ZIPPED AN INVALID CONTROL CARD

2··146

DISK CARTRIDGE INITIALIZER

General

SECTION 3
SYSTEM SOFTWARE

A disk cartridge must be initialized before it can be used on the system. The purpose of disk initialization
is threefold. One, it assigns addresses to all segments on the disk. Two, it checks to see what segments, if
any, are unusable (cannot be read from or written to). Any segment found to have errors will cause the
entire track in which it resides to be removed from the MASTER AVAILABLE TABLE. If any flaws
occur in track ZERO or ONE the entire pack is considered faulty and cannot be used on the system. Three,
skeleton table entries, the disk directory, and available tables, for example, are built and the label is written
in segment zero. Operation of the DISK CARTRIDGE INITIALIZER is interactive through the console
printer.

Operating Instructions

The DISK CARTRIDGE INITIALIZER program does not operate under the control of the MCP and must
be loaded and executed through the cassette reader on the control panel, as follows:

a. Place the DISK CARTRIDGE INITIALIZER cassette in the cassette reader in the control panel.
The BOT light should be lit at this time.

b. Place the console printer on-line.

c. Set the system MODE switch to the TAPE position and press the CLEAR, then START buttons.
This loads the bootstrap loader from the cassette tape and halts the processor. The L register
must be equal to @AAAAAA@ at this time.

d. Set the system MODE switch to the RUN position and press START (DO NOT PRESS CLEAR).
This will load and execute the initializer.

Upon execution of the DISK CARTRIDGE INITIALIZER, the following message is displayed on the con­
sole printer:

DISK CARTRIDGE INITIALIZER - MARK (level-number)

The following succession of messages is then displayed, each requiring a response:

WHICH CARTRIDGE - DC (X) OR LEAVE BLANK TO TERMINATE

VERIFICATION ONLY? - (YES OR NO)

ENTER 6 DIGIT SERIAL NUMBER

ENTER PACK.ID

ENTER CARTRIDGE TYPE - /U, S, ORR)

ENTER JULIAN DATE - (YYDDD)

ENTER OWNERS NAME

3-1

When initialization and/or verification is complete, the following messages an~ displayed:

ID= (PACK.ID) SER#= <integer) (integer) BAD SECTORS

INITIALIZATION COMPLETE DC <x)

WHICH CARTRIDGE? - DC (X) OR LEAVE BLANK TO TERMINATE

At this time, an additional disk cartridge can be initialized or verified, or the program can be terminated
with a null entry.

DISK PACK INITIALIZER

General

The DISK PACK INITIALIZER program initializes disk packs. All disk packs must be initialized by the
DISK PACK INITIALIZER program before they can be used by the system software. Addresses and char­
acter patterns are written into each disk sector. A maximum of five bad sectors per cylinder can be relocated
into the spare sectors provided. Bad sectors in excess of five per cylinder are removed from the Available
Table for that pack. (Due to system requirements, six or more bad sectors within the first 64 sectors
constitute a bad pack and cannot be used.)

Operating Instructions

The DISK PACK INITIALIZER does not operate under the control of the MCP, and must be loaded and
executed through the cassette reader on the system console in the following manner:

a. Place the DISK PACK INITIALIZER cassette in the cassette reader on the control panel. The
BOT light must be lit at this time.

b. Place the console printer on-line.

c. Set the system MODE switch to the TAPE position and press the CLEAR button. Then press the
START button. This loads the bootstrap Joader from the cassette tape and halts the processor.
The L register must be equal to @AAAAAA@ at this time.

d. Set the system MODE switch to the RUN position and pres~ START (Do not press CLEAR). The
cassette tape will then load.

After the cassette tape has been read, the following message is displayed on the console printer:

B 1700 DISK PACK INITIALIZER - MARK (level-number)

When initialization of the pack begins, the following message is displayed:

INITIALIZATION BEGINS - DP (X)

After the initialization phase1 or if verify only was specified, the following message is displayed:

VERIFICATION BEGINS - DP (X)

After a successful initialization and/or verification of the pack, the following message is displayed:

ID = (PACK.ID) SER# = (NNN) BAD SECTORS

INITIALIZATION COMPLETE - DP (X)

3-2

Information is supplied to the DISK PACK INITIALIZER from the card reader. There must be one infor­
mation card for each disk pack to be initialized. The card deck may optionally contain Marginal-Sector
card(s) and Dollar-Sign card(s) for each pack to be initialized. A detailed description of each specification
card follows.

Information Card

The Information Card supplies identification parameters to the DISK PACK INITIALIZER and has the
following fixed format:

Card Columns Description

Disk drive mnemonic letter (A ... P)

2 "V" =Verify; Blank= Initialize and Verify

3-8 Disk cartridge serial number

10-19 Label

21 Type of Cartridge:

S =System

U = Unrestricted

R = Restricted

23 Julian date (YYDDD)

29-42 Owners identification

Marginal-Sector Card

The Marginal-Sector card is used to specify the addresses of up to 60 sectors to be unconditionally relocated
by the DISK PACK INITIALIZER program. Addresses must be in decimal (leading zeroes are optional),
and multiple addresses can appear on as many cards as required. If used, Marginal-Sector cards must
immediately follow the Information card. Refer to Example 2 below for an example of the use of
Marginal-Sector cards.

Dollar-Sign Card

The Dollar-Sign card allows optional specification of the initialization pattern and the number of verification
passes. The format follows:

$ (initialization pattern) (verification passes)

The dollar sign must appear in column one of the card.

The initialization pattern must be represented in four hexadecimal digits (@0000@-@FFFF@). If omitted,
the pattern defaults to @6363@. The verification passes entry (1-10) is optional, and specifies the number
of verification passes. The default is one pass.

3-3

Examples Using Input Specification Cards

The following examples show typical uses of the input specification cards:

Example 1:

Normal initialization and/or verification with no options specified.

D 123456 ABC U 75123 JOHN SMITH

? END

Example 1 would result in initializing DPD with a pattern of@6363@ and verify one pass.

Example 2:

Normal initialization and/or verification with Marginal-Sector cards.

B 123456 ABC

98335 18877

479665

?END

U 75123 JOHN SMITH

Example 2 would result in initializing DPB with a pattern of@6363@, verify one pass, and relocate
addresses 98335, 18877, and 479665.

Example 3:

Initialization and/or verification controlled by Dollar-Sign cards.

D 123456 ABC U 7 5123 JOHN SMITH

$ FFFF

?END

Example 3 would result in initializing DPD with a pattern of @FFFF@ and verify one pass.

Example 4:

Initialization and/or verification controlled by Dollar-Sign cards with Marginal-Sector cards.

D 123456 ABC

98385

$ FFFF 3

$ 6363 4

?END

U 7 5123 JOHN SMITH

Example 4 would result in relocating address 98385, initializing the disk with a pattern of
@FFFF@, verifying three passes, initializing the disk with a pattern of@6363@, and verifying four
passes.

3-4

COLDSTART

General

The COLDSTART routine is used to load basic system software and firmware to disk. The routine is
furnished on a cassette tape and is loaded via the control panel cassette reader.

The following actions are performed by COLDSTART:

a. Constructs and initializes the disk directory and available tables on the system disk.

b. Loads the MCP from magnetic tape to system disk.

c. Loads the SDL Interpreters for both the 1710 and 1 720 series of computers from magnetic tape
to the system disk.

d. Loads the CSM firmware for both the 1710 and 1720 series of computers from magnetic tape
to system disk.

e. Loads the System Initializer from magnetic tape to system disk.

f. Loads SYSTEM/LOAD.DUMP, FILE/LOADER, and SYSTEM/MEM.DUMP from magnetic
tape to system disk.

g. Makes appropriate entries in the NAME TABLE for all system software and firmware loaded.

h. Constructs the COLDSTART VARIABLES on system disk.

i. Displays a message on the console printer instructing the operator to perform a Clear/Start.

Procedure

When a COLDSTART is performed on a system disk that was previously
in operation, all the files entered in the disk directory are lost and must
be reconstructed. This is due to the disk directory being initialized and
cleared by the COLDSTART.

The COLDSTART procedure is as follows:

a. Mount a "system" pack on drive 0 (if not a head-per-track system).

b. Set MODE switch to TAPE.

c. Place the COLDSTART cassette in the cassette reader. Cassette is automatically rewound.

d. Press CLEAR, then START.

e. Cassette reads a few feet and the system halts. The "L" register contains @AAAAAA@ at this
time.

f. Set MODE switch to RUN, press START.

g. Cassette will continue to read. If the system HALTS with@ 4 @in the L register, the cassette has
a hash total error and must be reloaded. When the cassette has finished loading, the ST ATE light
will come on, and COLDSTART will begin execution.

3-5

During COLDSTART execution one message is displayed requiring action by the system operator. This
message and its response is as follows:

WHERE IS THE MCP-MT (X) Respond with the tape unit with
the MTx input message.

The system disk created by COLDSTART is a single system pack configuration, and does not contain a
LOG. Once the system is running under MCP control, the number of system drives may be increased
using the SD message, and the LOG option set with the SL message.

CLEAR/START and MEMORY DUMP PROCEDURE

General

A Clear/Start is used by the system operator to restore the system to an operable state. A Clear/Start
must be performed under any of the following conditions:

a. System Power-up.

b. an unscheduled halt.

c. an uninterruptible system software loop.

d. the system software/firmware is changed (via CM message).

A Clear /Start performs the following functions:

a. Terminates all programs being executed.

b. Empties the schedule.

c. Writes correct parity and zeros throughout memory.

d. Loads the MCP, SDL Interpreter, System Initializer and the Central Service Module (CSM)
specified by the NAME TABLE entries selected.

e. Returns control to the MCP.

If the processor is running at the time a Clear/Start is to be perfo1111ed, the INTERRUPT switch on the
console should be used to bring the system to an orderly halt.

Clear/Start Procedure

a. Halt processor with the INTERRUPT switch.

b. Place Clear/Start cassette in cassette reader.

c. Press CLEAR.

d. Set MODE switch to TAPE position.

e. Press START (When tape stops, check the L register for all A's. At this point enter any
temporary changes to be made in the Tor X registers.)

f. Set MODE switch to RUN position.

g. Press START.

The same Clear/Start program is usable on any system and with either the MCP I or the MCP II.

3-6

Name Table

The NAME TABLE is built during COLDSTART and resides on disk. It identifies firmware and system
software that can be used in the operational environment of the system.

The operator may select from NAME TABLE different environments for operation. However, not all
systems will be able to use many of these programs since they are strictly for experimental system software
development and system software debugging.

The main advantage of the NAME TABLE method of selecting an operating environment is the ability to
at all times recover to the standard mode of operation.

A typical COLDSTART procedure will load and identify for the system the following:

a. A standard MCP

b. A SDL Interpreter for both the B 1710 and B 1720 series of computers

c. A CSM for both the B I 710 and B I 720 series of computers

d. A System Initializer

e. SYSTEM/LOAD.DUMP

f. FILE/LOADER

g. SYSTEM/MEM.DUMP

This is enough system software and firmware to begin operations on whatever hardware is available. A sys­
tem pack may be moved from one system to another and started by merely performing a Clear/Start.

Operating Environments

The CM message is used to identify the function of various programs to the system for subsequent usage.
See the CM input message for the syntax to be used.

The following list describes the function code or the system software mnemonic and its meaning.

NAMETABLE
En try Number

0

2

3

4

6

7

System
Software

Mnemonic
(Function Code)

N

NE

NX

GI

G2

GE

GIT

Meaning

Standard System Initializer

Entry System Initializer

Experimental System Initializer

1710 Central Service Module

I 720 Central Service Module

Entry Central Service Module

1710 Trace Central Service Module

3-7

System
Software

NAME TABLE Mnemonic
Entry Number (Function Code) Meaning

8 G2T 1 720 Trace Central Service Module

10 GET Entry Trace Central Service Module

11 GX Experimental Central Service Module

12 11 1710 MCP Interpreter

13 I2 1720 MCP Interpreter

14 IE Entry MCP Interpreter

15 llT 1710 MCP Trace Interpreter

16 I2T 1 720 MCP Trace Interpreter

17 IET Entry MCP Trace Interpreter

18 IX Experimental MCP Interpreter

19 M Standard MCP II

20 ME Entry MCP (MCP I)

21 MT Trace MCP

22 MET Entry Trace MCP

23 MX Experimental MCP

24 SD Stand-Alone Memory Dump

25 SDE Stand-Alone Entry Memory Dump

26 SDD Stand-Alone Disk Dump

27 SDL Stand-Alone SDL Program

28 SIO Stand-Alone I/O Debug

29 SL Loader for Stand-Alone SDL Program

30 ~ Stand-Alone MIL Program

The purpose of the CM input message is to identify a file on System Disk to be used for a designated
function.

CM MX MCP/XYZ

The above example makes the file MCP/XYZ the experimental MCP and will be the program executed
when an experimental MCP is called for.

3-8

Selecting Environments

With the appropriate files loaded and CM-ed, there are four general environments which can be selected as
a basis for operation:

a. Standard MCP (MCP II)

b. Standard MCP with Trace

c. Entry MCP (MCP I)

d. Entry MCP with Trace

The operator may select one of these by making two choices:

a. STANDARD vs. ENTRY

b. TRACE vs. NON-TRACE

The following input messages are used to make the above choices.

Input message

CE

cs

CT

CN

Description

Use Entry MCP/firmware

Use Standard MCP /firmware

Make Trace Available.

Non-Trace

A Clear/Start is required to effect any change. The choices become the new basis for operation. They
remain in effect until they are changed explicitly, but they can be switched on a temporary basis during
the Clear/Start procedure.

Temporary Environment Changes

Operations following a Clear /Start can be tailored to the needs of system programmers by setting the
following values in the T register.

Bits on the control panel are numbered from LEFT to RIGHT.

Bits

0

1

2

3

4

5

6

Description

Dump Memory

Run a stand-alone program
(see, below, bits 8-11)

Switch MCPs, I vs. II

Switch TRACE vs. NON-TRACE

Run with experimental MCP

Run with experimental System Initializer

Run with experimental Interpreter

3-9

Bits

7

8-11

12-23

Description

Run with experimental CSM

When bit 1 is set, the following programs will be run.

Value

0
1
2
3

Must be left zeros

Identification

sx
SDD
SIO
SDL, using SL to load with interpreter

Another option that can be made during Clear/Start is the designation of the system disk. To override the
usual Clear/Start selection, load the following values in the X register.

Value

16-19 Port

20-23 Channel

Memory Dump Procedure

The memory dump as well as other temporary changes may be accomplished during the Clear/Start
procedure. Between steps (e) and (f) in the Clear/Start Procedure simply set the proper bits in the appro­
priate register and continue with the normal Clear/Start procedure.

The memory dump requires that bit 0 of the T Register be turned on at this time.

Firmware Detected Errors

Errors detected during Clear/Start will cause a halt with an error message in the L register identifying
the error and the program that found it.

L Register Value
Bits 0-15

@0000@
@OOOF@
@OOFO@
@OFOO@

L Register Value
Bits 16-23

@01@
@02@
@03@
@04@
@OS@
@06@
@07@
@08@

Program Identification

Central Service Module
SYSTEM/INIT
CLEAR/START
MEM/DUMP

Error Description

No device on the designated 1/0 channel.
1/0 device on channel is not disk. (See T register.)
Disk is not idle. (See T register for status.)
Time-out while waiting for service request.
Bad reference address. (X = good, Y = bad.)
Bad status count after service request. (See T register.)
Bad result status from 1/0 control. (See T register.)
Seek time-out (timed by system software).

3-10

L Register Value
Bits 16-23

@09@
@OA@
@OB@
@OC@
@OD@
@OE@
@OF@
@IO@
@ 11@
@ 12@
@13@
@14@
@15@
@16@
@ 17@
@ 18@
@19@
@IA@
@lB@
@lC@

Error Description

Memory parity error in I/O descriptor.
Memory parity error in I/O data.
Time-out waiting for I/O operation to complete.
Exception condition after 15 retries. (See T register.)
Exception on test I/O operation.
Designated port and channel is not disk.
No disk on system.
Designated port is invalid.
Designated channel is invalid.
Not enough memory for this program.
Memory parity after CSM overlay.
Parity error somewhere in memory.
NAME TABLE entry (number in T register) is zero or blank.
Memory dumpfile port not equal to 7.
Memory dumpfile address equal zero.
Disk address in INITIALIZER IPB equal zero.
MCP type field in HINTS is zero.
Invalid stand-alone program specified.
Stand-alone SDL file not available.
No console printer on system.

3-11

DISK FILE COPY ~ I
General

The DISK/COPY program will copy one or more disk files from one disk to another or to another location
ooilie~me&~ ·

Cards are used as input for the DISK/COPY routine. Any number of files may be copied during one

execution of DISK/COPY. (UM l~o.~ ,,.;.h_ ~ 7 t-J.Xtt...JJ.:1
DISK/COPY Operating lnstru<:tions

The following figure represents.the DISK/COPY control deck.

Figure 3-1. DISK/COPY Control Deck

Specification Cards

There may be multiple specification cards processed with a single execution of DISK/COPY, but each
specification card is limited to one file.

Specification cards are free-form. Each card must contain two disk file-identifiers with the first file­
identifier being the file to be copied, and the second file-identifier being the new copy of the file.

The format for the file-identifiers is the same as used for MCP control cards. See the REMOVE control
instruction for further syntax explanation.

If the file-identifier is to be retained when copying to another disk, the new file-identifier may specify only
the name of the pack-id followed by a slash.

Examples:

a. To copy file AAA on a systems disk to another location on the systems disk with the name BBB:

AAA BBB

3-12

b. To copy a file AAA on a systems disk to another disk named NEWDISK and retain the
file-identifier:

AAA NEWDISK/AAA/

c. Since the file-identifier is not changed in example (b), the same result would be obtained by
using the following specification card.

AAA NEWDISK/

3-13

DMPALL

General

The program DMP ALL has two separate functions: (1) printing the contents of files, and (2) reproducing
data from one hardware device to another. Execution may be from either the console printer or card
reader.

Printing

Printing files consist of the following:

a. Data may be card, magnetic tape, paper tape, or disk.

b. Any file can be read up to a 1000 bytes per logical record.

c. Contents can be printed in byte, digit, or combined form.

d. Printing may begin with a specified record number and terminate after a specified number of
records are printed.

Reproducing

Reproducing files may be executed as follows:

a. A file may be reproduced from any card, magnetic tape, paper tape, or disk.

b. File-identifiers, record lengths, and blocking factors may be changed during the reproduction.

c. Reproducing may begin with a specified record number and terminate after a specified number
of records.

Operating Instructions

CONSO!:-~ PRINTER

DMPALL executed from the console printer responds with the following three messages:

DMPALL = mix-index BOJ.

DMPALL= = mix-index ENTER SPECS.

DMPALL = mix-index ACCEPT.

The operator replys to the ACCEPT message by entering an AX message containing the specifications
needed to perform the DMP ALL operation.

The directory of a LIBRARY tape created by the program SYSTEM/LOAD.DUMP can be either punched
or printed using the following procedure:

mix-index AX PD [PUNCH] tape-identifier

When PUNCH is specified, the tape directory will be output to cards for use with the program SYSTEM/
LOAD.DUMP. With PUNCH omitted, the default print option will list the directory.

3-14

CARDS

The DMPALL execute control deck has the following format:

? EXECUTE DMPALL FILE SPEC NAME specification-file-identifier;

? DATA specification-file-identifier

(specification cards)

? END

A semicolon must terminate the specification string, after which comments may be entered. There may
be more than one card in a specification card file.

All specification entries are free form in the first 72 columns of the card, and may be separated by either
a space or a comma, or a combination thereof. The card file containing the specifications (one per card)
is loaded to disk, and each specification is executed in turn from there.

Print Specifications LIS7 ~ _p~.11\~..,. ~
The specification string for printing a file is as follows:

LISTI

LSTI

LIST2

LST2

file-identifier record-length blocking-factor

[Output-format] [Hardware-type] [SKIP integer]

[{=UDE} integer] [{~BLE}] [{~RCH} start-position search-argument]

If LIST2 or LST2 is specified, the printer listing will double-spaced; otherwise, the printer listing will be
single-spaced.

The file-identifier entry must immediately follow the LIST entry, and is required for all files. The format of
the file-identifier entry is the same as used MCP control instructions; therefore may consist of from one to
three separate identifiers separated by slashes. A file-identifier that is entirely numeric or which contains
special characters must be surrounded by quotes.

The record-length in bytes must be the first numeric entry following the file-identifier. If omitted, a record­
length of eighty is assumed. For disk files the record-length used will be that of the file when created.

The blocking-factor must be the second numeric entry following the file-identifier. If omitted, a blocking
factor of one is assumed. For a disk file when both the record length and blocking factor entry are
omitted, the blocking factor with which the file was created will be used.

The output-format entry may be specified as:

a. Alpha: A or ALF A.

b. Numeric: N, NUM, H, or HEX.

c. Alphanumeric: When entry is omitted.
3-15

The hardware-type entry may be one of the following:

a. Card files: CRD or CARD

b. Magnetic tape files: MTP or TAPE

c. Paper tape files: PPT or PAPER

d. Disk files: DSK, DISK, or the entry may be omitted.

e. 96-col. card files: C96 or CARD96

The SKIP integer entry may be entered to begin printing with a specified record as denoted by the integer.

The INCLUDE or INC1=_integer entry may be used to specify how many records should be included in the
printout.

The VARIABLE or VARY entry may be used to specify tape or disk files having variable length records.

The SEARCH or SEA entry may be used to specify that printing should begin with the first record
containing the value of the specified search-argument at the specified start-position (byte-number) in the
record. The first byte in the record is relative position 1.

The printed output is headed with the file-identifier, record length, blocking factor, the current date, and
the time. In addition a printout of a disk file will have the value of the End-of-File pointer in the heading.
A running record count is printed in the left hand margin.

Reproducing Specifications

The reproduction string consists of the following specifications:

{

PERFORM}
PFM
COPY

~ou tine-type J in put-file-identifier [Input-record-length ~nput-blocking-factor] J

[
j VARIABLE ll Output-file-identifier [output-record-length
lVARY j

[Output-blocks-per-area [Output-areas]] J]

[l VARIABLE t] SKIP integer [l INCLUDE l integer]
VARY } INCL

search-argument j

[Output-blocking-factor

r1 ~RCH l start-position

L

PERFORM, PFM, or COPY informs DMPALL that media conversion is desired.

The Routine-type entry may be either in the long-hand or short-hand form.

3-16

The long hand form utilizes the names of two of the following media:

a. Card files: CARD

b. Magnetic tape files: TAPE

c. Paper tape files: PAPER
~ 70.')E l)lC€ > ,, _

.. -
d. Disk files: DISK or the entry may be omitted.

e. 96-col. card: CARD96. for ~() ~ e,,.;J.._ '/I l_s

f. Binary 80-col. card reproduction: BINBIN

The short hand form uses a combined abbreviation format.

OUTPUT DEVICES

From To Card Mag. Tape Paper Tape Disk
96-col.
CARD

Card CRDCRD CRDMTP CRDPPT CRDDSK CRDC96
i

Mag. Tape MTPCRD MTPMTP MTPPPT MTPDSK MTPC96

Paper Tape PPTCRD PPTMTP PPTPPT PPTDSK PPTC96

Disk DSKCRD DSKMTP DSKPPT DSKDSK DSKC96

96-col. card C96CRD C96MTP C96PPT C96DSK C96C96
-·~

Example:

To go from card to magnetic tape the short-hand form Routine-type would be CRDMTP. The long­
hand form would be CARD TO TAPE with the TO being optional.

The format of input-file-identifier is the same as used in MCP control instructions.

The input-record-length must be the first numeric entry following the input-file-identifier in bytes. If
omitted, a record length of eighty is assumed for allfiles except disk files which will use the record length of
the file when created.

The input-blocking-factor must be the second numeric entry following the input-file-identifier. If omitted,
a blocking factor of one is assumed. For a disk file where both the record length and blocking factor
entries are omitted, the blocking-factor with which the file was created will be used.

The VARIABLE or VARY entry may be used after the input-file-identifier entries to indicate that the
input file will have variable length records, but not variable length output.

The format of the output-file-identifier is the same as for the input-file-identifier.

The first numeric entry following the output-file-identifier must be the output-record-length in bytes. If
omitted, a record length of eighty is assumed unless the input file and the output file are both disk files.
Then the default output-record-length will be assumed to be the same as the input-record-length.

3-17

The output-blocking-factor must be the second numeric entry following the output-file-identifier. If
omitted, a blocking-factor of one is assumed unless the input file and the output file are both disk files and
the output-record-length entry was omitted. Then the default output-blocking-factor will be assumed to be
the sarp.e as the input-blocking-factor.

The number of blocks.per.area must be the third numeric entry following the output-file-identifier. This
entry is only applicable to disk files. If omitted, 100 blocks.per.area is assumed unless both the input file
and the output file are disk files and the record-length:, blocking-factor entries were omitted for both the
input file and the output file. Then the number of blocks.per.area for the input file will be used for the
output file as well.

The Output-areas is the number of areas set for the output file. Default is 25.

The VARIABLE or VARY entry may be used after the output identifier to indicate variable length input
records with variable length records being produced.

The §KIP integer entry may be used to skip to a specified record prior to creating the output file.

The INCLUDE or INCL integer entry may be used to specify how many records should be included in the
output file.

The SEARCH or SEA entry may be used to specify that copying should begin with the first record contain­
ing the value of the specified ~earch-argument at the specified start-position in the record. The first relative
location in the record is one.

a. Keyboard Console Input

EXECUTE DMPALL

DMP ALL = mix-index BOJ.

DMPALL = mix-index ENTER SPECS.

DMP ALL = mix-index ACCEPT.

A response of

LISTPACKA/PAYROLL/ A SKIP 50

causes a disk file located on jhe removable disk P ACKA to be printed in alpha format beginning with the
fiftieth record.

A response of

1 AX COPY CRDDSK CARD SOURCE 80 2

causes a card file with the file-identifier of CARD to be written to a disk file 80 character records blocked
2, with a file-identifier of SOURCE. ' '

3-18

A response of

lAX COPY PROGRAM/B CCC/PROGRAM/B

causes a disk file PROGRAM/B located on a system disk to be copied to the removable disk CCC with the
file-identifier PROGRAM/B. The new copy on disk CCC will be an exact copy. Therefore, record length,
blocking, number of areas, and area size will be the same as the original file.

b. Card Input

? EXECUTE DMP ALL FILE SPEC NAME SPECCARDS will allow the operator to enter any num­
ber of specifications via a card reader. DMP ALL will look for a card file with the file-identifier
SPECCARDS. The specifications will be loaded to disk, and then executed one-at-a-time from
there.

? EXECUTE DMPALL FILE SPEC NAME SPECCARDS;
? DATA SPECCARDS

COPY CRDDSK XXX 80 1 DSKFIL 80 1
LIST DSKFIL A

? DATAXXX
(card data deck)

? END

The specifications will cause the card file XXX to be loaded to disk, then listed in alpha format.

Library Tape Directory

To print or punch the directory of a library tape, the following specification can be used:

PD [PUNCH] file-identifier

If PUNCH is specified, the directory will be punched into cards, with one file-name to a card.

3-19

J

FILE/LOADER

General

The purpose of FILE/LOADER is to load card decks to disk punched by the program FILE/PUNCHER.

The FILE/LOADER card deck consists of the standard EXECUTE control card, a dollar card, an asterisk
card, the data cards, and the END card.

Dollar Card

The dollar card is output by FILE/PUNCHER and identifies the file to be loaded. The dollar card can also
be modified by the operator to change the name of the file-identifier.

The format of the FILE/LOADER dollar card is:

[-----------·--- --------$ r __ n_e--id_e_n_t_if-ie_r _______________ __,

The "$"must be in column one and the file-identifier being free-form from column 2 through 80.

Dollar Dollar Card ($$)

Files produced by the MIL compiler (Micro Implementation Language) must be loaded using the$$ card to
distinquish them from card files output by FILE/PUNCHER. The asterisk(*) card must not be used when
using the $ $ card.

Below is the card format produced by the MIL compiler which takes six cards to fill a disk segment.

Column - -

1-6
7

8-9
10

11-70
71-72
73-80

Description

Load address (Relative)
Blank
Number of bits on card
Blank
Data in hexadecimal format (30 Bytes)
Blank
Card sequence number

lbe format of the FILE/LOADER dollar dollar card is:

--------------------------~

[$$ file-identifier

Asterisk Card

The asterisk card is used to input the values for the file which is being loaded to disk. This card is produced
by FILE/PUNCHER and should not be changed prior to input. When the asterisk card is missing, the card
file is assumed to be a code file. The asterisk card must not be used when the first card of the file is a dollar
dollar($$) card.

3-20

The format of the FILE/LOADER asterisk card is:

RESPONSE:

Error Messages

Column

1
3

5-10
12-17
19-20
22-24
26-31

Description

"*" Asterisk Sign
File Type

1 LOG
3 Control Deck
4 Backup Punch
5 Backup Print
6 Dump
7 Interpreter
8 Code
9 Data

EOF pointer l
Record Size in bits
Records.per.Block
Areas
Segments.per.Area

Right Justified,
Leading Zeros
Optional

(1) If a code file is being loaded, the asterisk card is optional
and default values are assumed.

(2) If a code or interpreter file is designated on the asterisk
card, only the EOF pointer is used. All other fields are
ignored. If the EOF pointer field is blank, 100 segments
for the interpreter or 500 segments for the code will be
used as default values.

(3) All code and interpreter files will be closed with CRUNCH
which frees the area not being used for the file.

Example:

? EXECUTE FILE/LOADER DATA CARDS
$ file-identifier
* ... (Optional)

data deck
r~ file-identifier]

~ data deck
. END

File-identifier LOADED (Displayed after each load)

MISSING "$" IN COLUMN ONE

The first card of the input deck does not have"$" in column one.

3-21

MISSING file-identifier

The first card of the input deck has a"$" in column one, but is otherwise blank.

SEQUENCE ERROR FOLLOWING nnnnnnn--file-identifier NOT LOADED

'Ille card following the card number specified is out of sequence.

RECORD.SIZE SPECIFIED nnnn-file-identifier NOT LOADED

AREAS SPECIFIED = 0 - fil~-identifier NOT LOADED

RECORDS.BLOCK SPECIFIED = 0 - file-identifier NOT LOADED

SEGMENTS.AREA SPECIFIED = 0 - file-identifier NOT LOADED

EOF.POINTER SPECIFIED = 0 - file-identifier NOT LOADED

INVALID FILE TYPE SPECIFIED-file-identifier NOT LOADED

BLOCK SIZE 56 - file-identifier NOT LOADED

EMPTY DECK-file-identifier NOT LOADED

There are no cards following the specification card(s).

"*"CARD INV AUD-file-identifier NOT LOADED

An asterisk card following a dollar dollar card is invalid.

3-22

FILE/PUNCHER

General

The purpose of FILE/PUNCHER is to output disk files to cards in a hexadecimal format that is acceptable
as input to FILE/LOADER. The dollar card and the asterisk card used by FILE/LOADER are also output
when FILE/PUNCHER is executed.

The file-identifier is supplied to the program by an AX input message. For example:

EXECUTE FILE/PUNCHER

FILE/PUNCHER=mix-index ENTER FILE IDENTIFIER
FILE/PUNCHER=mix-index ACCEPT

mix-index AX file-identifier (free-form)

After punching the output file, the program will repeat the above messages and wait for another file-identi­
fier to be entered. By responding with a blank file-identifier, the program will go to EOJ.

Below is the card format produced by FILE/PUNCHER which takes five cards to fill a disk segment.

Error Messages

Column

1-72
73-80

file-identifier NOT ON DISK

Description

Data in hexadecimal format (36 bytes)
Card sequence number

The file-identifier requested for output cannot be located by the MCP.

3-23

SORT

General

SORT is a system program that provides a means to invoke one of four sort intrinsics used for sorting or
merging files of records. Specification cards describe the input and output files, the keys by which the
file(s) are to be sorted or merged, the sort intrinsic to be used, and the various sort options desired.

All SORT program reserved words and characters appear in uppercase type throughout the SORT sub­
section of this publication. A list of the SORT reserved words and characters appears at the end of
this subsection.

Sort Intrinsics

A parameter table is generated by the SORT program and used by one of the four sort intrinsics:

a. SORT/QSORT

b. SORT/VSORT

c. SORT/MERGE

d. SORT/TAPESORT

The sort intrinsic does the actual sorting or merging of the file(s) in ascending or descending sequence,
according to assigned keys, in an optionally user-specified, virtual collating sequence.

The SORT/QSORT intrinsic uses an inplace disk-sorting technique and can be specified when there is a
minimum amount of disk space available. The SORT/QSORT intrinsic is invoked when the optional
INPLACE specification statement is included in the SORT program specification card deck.

The SORT/VSORT intrinsic is a balanced-merge, vector sort with workfiles on disk, and is the default
sort intrinsic.

The SORT /MERGE intrinsic merges from two to eight separate files according to common sets of
ordered keys. This intrinsic is implicitly specified when a FILE statement containing more than one
input-part is included in the SORT specification card deck.

The SORT/TAPESORT intrinsic is an unbalanced-merge, vector sort that uses from three to eight
magnetic tape files as workfiles. This intrinsic can be specified by including the optional (integer)
TAPESORT statement in the SORT program specification card deck.

SORT Execution Card Deck

Figure 3-2 contains an example of a SORT execution card deck.

The SORT program specification cards contain required and optional statements that are parameters to
the sort, and are in free-form format, and are described in the following pages.

3-24

Burroughs Corporation INTER-OFFICE CORRESPONDENCE

Computer Systems Grou_Q ILOCATION

Santa Barbara

CORPORATE UNIT OEP I. 1 !J ., '; ·~

NAME DA 11.

Software Activity and T.I.O. March 18, 1976
t===r======================================-==---~- -

lDEPT. II< LOCATION FROM

Frank Oliva Software Qualifica ti_~-~----
SUBJECT: .c.c.

SORT/COLLATE - ADDITIONAL FEATURE FOR 5.1

A new option has been added to SORT/COLLATE, generating an eight-bit BCL
translation file. This file has the same format as the other translation
files; i.e., the file consists of three records, a header, a translation
table: EBCDIC to eight-bit BCL, and a translation table: eight-bit BCL to
EBCDIC. "$BCL8" generates the file. See my October 2, 1975 memo on SORT/
COLLATE or the new TRANSLATE TABLE GENERATOR product spec.

Frank Oliva
Software Qualification

jg

•• - ... 1

PRINTED IN <J.5. AMF~ltA
3011135 (FORM 41)(REV. 4·67)

Burroughs Corporation
'. : : ~; . ..:.. ~·. i ·~ . ~ ~

I N TE R - 0 FF ICE C 0 R FrE'S POND ENC~

.------------------~----~-----------~-----~---~------COHPOHATE. UNIT DEP J.

Santa Barbara Computer Systems Group
TO : ,_N_A_M_E ___ ..:;__

! COC AT•ON

Software Qualification~
DAlL

Software Ac ti vi t_y_ January l!L..._!_976 .::::·=::; !

~F--R_
0

_M __ D_i_c_k __ v_a_i_l ____ ~.--~--~-----~l_
0

E
1

~_·1._
6

L
0

c;_~_;_~w_a __ r_e __ Qualification ~I
SUBJECT. c.c.

INCLUDE/DELETE FUNCTION FOR 6.0
K. Meyers
J. Alajoki

SORTGEN will have syntax for specification of the INCLUDE AND/OR DELETE
keys which will invoke the function. A total of 10 keys will be allowed.
Each key may compare up to three characters. AND and OR logic will be pro­
vided for continuing from one key to the next. Each key may compare a field
in the record to either a constant contained in the key or to another field
in the record. The syntax is:

frNCLUD~ [IN]
tELETEJ

" ~ENGTHJ

~U~PHA*~) ~R*I • • • • • (Displ. 1

1
@

*Default
ITEM 1

Byte 1-8192
Digit 1-16384

ITEM 2

2

1-3
Default = 1

NUMERIC AN~
UN

The di~placement values become 0-8191 for byte and 0-16383 for digit when
stored in the keys. The quotes delimit character literals which may con­
tain any three characters except the quote and the question mark. The
signs denote hex literals and may contain only 1-6 hex digits. Character
literals are left justified with blank fill and truncation on the right.
Hex literals are right justified with zero fill and truncation on the left.
All literals are right justified in the KEY.DATA field. SORTGEN will set
up the key table from the above information. If IN is specified, then
SORTGEN will perform the function; otherwise, the proper Sort Intrinsic
will be called.

The reserved words, INCLUDE and DELETE, may be used only once, but each
may be followed by several keys.

L/ cf

I-' '< I N T r, [) I N U • 5 • A IA E f~ I <~ A FO l~M 41 I H L V, 4 ·· !'!'"' !

G. A. Hammond, Manager
January 19, 1976
Page 2

The key table fonnat is:

01 DELETE.KEYS (10)
02 KEY.TYPE
02 LOGIC.TYPE
02 DATA.TYPE
02 LENGTH.TYPE
02 COMPARE.TYPE

BIT (48)
BIT(l)
BIT(l)
BIT(l)
BIT(l)
BIT(4)

0 = INC 1 DEL
0 = OR 1 = AND
0 = DATA 1 = FIELD DESC.
0 = DIGIT 1 = BYTE

io GTR = 1 LSS = 2 NEQ = 3 EQL = 4 GEQ = 5 LEQ = 6
02 KEY.LENGTH BIT(2)
02 KEY.DISPL.l BIT(l4)
02 KEY.DATA BIT(24)

03 FILLER BIT(lO)
03 KEY.DISPL.2 BIT(14)

An S-op will be written to handle the comparing of the keys and records.
It will have two operands and return a bit one • one if the record is to
be deleted. The SDL syntax is:

Dick Vail

< EXP .> < EXP >

IF SORT.DELETE(RECORD[ADR], DELETE.KEYS) THEN

DELETE RECORD

Software Qualification

jg

? END --------OPTION CARDS /--K-EY--1
/ OUT

~------.........
FILEIN ---------. ?DATA CARDS --------

Figure 3-2. SORT Execution Card Deck

FILE Statement

The FILE statement is comprised of the reserved word FILE followed by at least one input-part (a descrip­
tion of the input file(s)) and only one (a description of the output file) output-part. The FILE statement is
required in any set of SORT specifications, and has the following format:

~ FILE input-part [input-part] . . . output-part -1 L_ _______ _J

INPUT-PART

The input-part of the FILE statement describes an input file to be merged or sorted, and has the following
format:

IN file-identifier

{
(records-per-area)

DISK

PACK (records-per-area)

CARD

J_ CARDS

record-size [blocking-factor]}

DEFAULT

record-size [blocking-factor]

[PURGE] [MULTI] [{~:;~~:~;-block-size) }]l._ [IN ...] ...

3-25

File-Identifier

File-identifiers are the standard B 1700 file format with the exception that any element (disk-pack-id,
multi-file-id, or file-id) containing one or more non-alphanumeric chara('.ters, except the period, must be
enclosed in quotation marks.

PACK 1 /WORK.FILE/"#00000002"

File-identifiers can contain any valid character except the question mark or quote mark.

Device-Id

The device-id denotes the hardware type of the device associated with the input file. The allowable
designations are as follows:

Device-Id Hardware Type

DISK Any disk

PACK Disk pack only

CARD Card reader

CARDS Card reader

PAPER Paper tape reader

TAPE Any tape

TAPE (parity-specifier) 7-track tape

Parity-Specifier

Seven track tape is implicitly specified by the inclusion of a parity-specifier enclosed in parentheses
following the tape device-id. ODD or 0 specifies odd parity, binary mode; EVEN or E specifies even parity
with BCL translation.

Records-Per-Area

When the input file is located on disk, and the DEFAULT option is not used, the number of records-per-area
must be specified and enclosed in parentheses.

Record-Size

The record-size is the actual size in bytes (characters) of the records to be sorted, and is a required entry
except where the DEF AULT option is specified.

Blocking-Factor

The blocking-factor is optional and specifies the number of logical records in a block. When the blocking­
factor is omitted, the default blocking-factor of one (1) applies.

Default

If the input file is on disk, the user may specify DEFAULT, which causes the SORT program to obtain the
input file specifications (records-per-area, record-size, and blocking-factor) from the disk file header.

3-26

Purge

If this option is specified, one of the following will occur when the sort intrinsic has finished reading the
input file.

a. If the input file is a disk file, it will be removed from the disk directory.

b. If the input file is a magnetic tape file, the tape will be purged.

Multi

The MDL TI option allows a user to sort a multi-pack disk file. If MDL TI is specified on the input-part of
the FILE statement, it must also be specified in the output-part.

Variable

The VARIABLE or V option allows the user to sort a file of variable length records. When Vis specified,
a maximum-block-size must be included. The default, when VARIABLE is specified, is equal to record-size.
The workfile record size is fixed, and is equal to the size of the largest record specified in the input-part of
the FILE statement.

Variable length records cannot be sorted with the INPLACE sorting technique.

OUTPUT-PART

The output-part of the FILE statement describes the sorted or merged file created by the sort intrinsic, and
has the following format:

OUT file-identifier

DISK
{

(records-per-area)

PACK (records-per-area)

CARD

CARDS

PAPER

TAPE

record-size [blocking-factor]}

DEFAULT

record-size [blocking-factor]

[MULTI] [t V (maximum-block-size)}]
tVARIABLE l

The elements of the output-part have the same relative function to the output file as the elements of the
input-part have to the input file, with the exceptions described in the Device-Id and Default paragraphs
below:

3-27

Device-Id

The device-id denotes the hardware type of the device associated with the output file. The allowable
designations are as follows:

Device-Id Hardware Type

DISK Any disk

PACK Disk pack only

CARD Card punch

CARDS Card punch

PAPER Paper tape punch

PRINTER Line printer

TAPE 9-track tape

TAPE (parity-specifier) 7-track tape

Default

The DEFAULT option can be specified for the output file only if DEFAULT is also specified for the input
file. This option causes the records-per-area, record-size, and blocking-factor of the output file to be
identical to those found in the input file disk header. DEFAULT cannot be specified when the SORT/
MERGE intrinsic is invoked.

KEY Statement

The KEY statement defines the field(s) within a record by which the record is to be sorted or merged. The
KEY statement is required in any set of SORT program specifications, and has the following format:

KEY

KEYS
(key-location key-length

FIELD

FIELDS

[(...)] ...

ASCENDING

A

DESCENDING

D

ALPHA

UA

NUMERIC

UN

SA
SN

l

Multiple key descriptions are allows and must be enclosed in parentheses. The first key is the major key,
and any additional keys are minor keys of successive, decreasing significance. Each minor key specified is
subordinate to its predecessor.

The maximum number of keys permitted is 30 unsigned keys, or l 5 signed keys, or any combination of
signed and unsigned keys not exceeding 30, where each unsigned key counts as one and each signed key
counts as two.

3-28

KEY-LOCATION

The key-location specifies the relative position of the most significant byte or digit (alphanumeric or
numeric) of the field including the sign, if any, from the beginning of the record.

The first byte or digit of a record is considered as relative position one. The position is referred to in the
number of units applicable to the data type for that key, thereby permitting different data types to appear
within the same record.

Additional information and descriptions of key-location and position will be found in the following
subsections titled ALPHA or UA and NUMERIC or UN.

KEY-LENGTH

The key-length specifies the number of significant bytes or digits in the key, including the sign where
applicable. The length of a key cannot exceed 511 bytes or 1023 digits.

ASCENDING OR A

ASCENDING or A is the default condition, but can be specified if desired. The file is arranged with the
record having the smallest major key appearing first in the output file, followed by records with
successively equal or larger keys.

DESCENDING OR D

Specifying DESCENDING or D results in the file being arranged with the record having the largest major
key appearing first in the output file, followed by records with successively equal or smaller keys.

ALPHA OR UA

ALPHA or UA (unsigned alphanumeric) indicates that the data is alphanumeric, and the key-location of the
field is counted in 8-bit units from the beginning of the record. Alphanumeric is the default when no data
type is specified.

NUMERIC OR UN

NUMERIC or UN (unsigned numeric) indicates that the data is 4-bit numeric, and the relative position of
the field is counted in 4-bit units.

SA

SA (signed alphanumeric) indicates that the data is alphanumeric and that some, or all of the keys can
contain a minus sign. For alphanumeric data, a minus sign is represented by a hexadecimal Din the most
significant four bits of the first byte of the key.

SN

SN (signed numeric) indicates that the data is 4-bit numeric and that some or all of the keys can contain a
minus sign. The minus sign is represented as a hexadecimal Din the first digit of the key.

SORT Option Statements

The SORT program option statements have the following functions:

a. Specifying information about the input file, such as the number of records in the file or the bias
(explained below) of the file.

b. Controlling the configuration or operation of the sort by using such options as MEMORY,
INPLACE, TAGSORT, and RESTART.

3-29

c. Causing optional operations to be performed before, during, or after the sort execution.
NOPRINT, SYNTAX, SEQUENCE, TIMING, ZIP, and COLLATE are examples of this type of
function.

Each of the SORT program option statements is discussed in detail in the following paragraphs.

BIAS

The BIAS statement is used to indicate to the sort program the degree of ordering of the input file in
relation to the specified key(s). The estimate is used to optimize sort execution.

The word BIAS must be followed by a number within the range of zero (0) to ninety-nine (99), where
fifty (50) indicates completely random order and is the default if BIAS is not specified. Zero (0) indicates
that the file is in reverse order from the sequence desired. A ninety-seven (97) indicates that the file is
almost in the desired sequence.

Example:

BIAS 60%

The percent sign (%) is optional.

The bias of a file can be determined by specifying the SEQUENCE statement.

The BIAS option is not applicable for the INPLACE sort (SORT/QSORT).

(integer) RECORDS

This option can be used to optimize sort operation by supplying an estimate of the total number of records
in the input file(s). If this option is omitted, the default is 20,000 records.

Example:

12500 RECORDS

MEMORY

The MEMORY or ME option can be used to allocate more memory to the sort than the 8000 bytes assigned
by default.

Increasing the memory available to the sort is the most significant means of increasing sort efficiency, up to
an optimum sort memory size. The optimum sort memory size is dependent of many factors, hut is
usually 25 percent less than system memory size. The maximum sort memory size that can be specified is
125,000 bytes; 18,500 bytes for INPLACE sort.

Example: ---

MEMORY 24000

INPLACE

This option can be advantageous when only a minimum amount of disk space is available for sorting. The
INPLACE sort requires work file space equal to the input file space, unless the input and output file
identifiers are the same. In that case, no work file space is required, but the input file is overlaid by the
output file during the sorting process.

3-30

TAGSORT

The TAGSORT option provides a means of sorting a file and creating an output file containing indices that
point to the relative locations of records within the original file. The input file remains intact.

Input files can originate from any allowable hardware device type, but must reside on disk when using the
file of indices to access the actual records.

The output file, referred to as the tagfile, must be defined as four characters per record, because it will
consist of eight numeric-digit decimal numbers as indices that point to the records in the input file.

TAGSORT is not an allowable option when the SORT/QSORT, SORT/TAPESORT, or SORT/MERGE
intrinsics are invoked.

Access to the input file is provided by using the tagfile as follows:

a. With COBOL the specified access method is RANDOM and the tagfile record is used as the
ACTUAL KEY.

b. With RPG the specified access method is INDEXED and the relative record number is used as
delivered in the tagfile to directly (DIRECT) access the original file.

TAGSEARCH

Specifying TAGSEARCH causes a TAGSORT to be performed, and a resultant sorted file of indices is used
to build an output record file that is sorted. Beyond an undetermined number of records, TAGSEARCH
can greatly increase overall sorting speed when compared with the other sorting methods available.

(integer) TAPESORT

The SORT/TAPESORT intrinsic is invoked when (integer)TAPESORT is specified. The number of
workfiles on magnetic tape can range from three to eight and is specified by (integer).

The workfiles are opened on whatever tape units are available. If tape output is requested, the first tape
unit accessed as a workfile is of the same hardware type as specified for the output file. The sort algorithm
causes this tape unit to be exhausted of data records on the merge pass that precedes the final merge pass,
thereby making that tape unit available to receive the sorted output file.

All writing of workfile tapes is done in a forward direction, and all reading of workfile tapes is done in
reverse direction; therefore, multiple tape reels are not allowed for any individual workfile. The user must
use workfile tape reels of sufficient size to hold the original input file. For multiple reel input files, each
tape reel can be sorted separately, and the resultant output files can then be merged using the SORT/
MERGE intrinsic.

The following example specifies that five workfiles are to be used for TAPESORT:

5 TAPESORT

RESTART

If a TAPESORT is terminated abnormally, it can be restarted by inserting a RESTART(job-number)
statement into the SORT specification card deck, and then re-executing SORT. The sort intrinsic
repositions the workfiles and restarts the program at a point following the last completed pass.

3-31

The job-number specified must be the job-number assigned to the sort intrinsic at the time of the failure.
The job-number is also included in the labels of the workfile tapes.

RESTART 1259

NOPRINT

The NOPRINT option can be used to inhibit the printing of the SORT specifications on the line printer,
and must be the first entry in the SORT specification deck
The TIMING option is not affected by the use of the NOPRINT option.

SYNTAX

The SYNTAX option is used when the SORT specification cards are to be checked for errors only. The
sort intrinsic is not executed, even when no errors are detected in the specification cards.

SEQUENCE

The SEQUENCE option checks the sequence of the input file according to the specified key(s). The
number of records in the file and the bias are printed on the sort specification listing.

If the NOPRINT option is used, the number of records and the number of sequence errors are displayed on
the console printer. The bias may be calculated as follows:

BIAS= ((Number of sequence errors/ Number of records) X 100) - 1

The sort intrinsic is not invoked when SEQUENCE is specified.
~

TIMING

The TIMING option can be specified when the SORT/VSORT intrinsic is used, and provides the following
information:

a. Distribute, Merge, and Final Merge Vector Size (VECTOR) in records.

b. Workfile blocking factor (BLOCK).

c. Workfile records-per-area (DISKRP A).

The above information is useful for debugging purposes.

The TIMING option is not affected by the use of the NOPRINT option.

ZIP

The ZIP statement contains the reserved word ZIP followed by a zip-string that is enclosed in parentheses.
The zip-string is passed to the MCP upon successful completion of the sort. The zip-string cannot contain
embedded right parentheses or question marks, and is limited in length to 100 characters.

ZIP (EX A/B AFTER SORT FILE DISK NAME C/D)

The SORT specifications can contain only one ZIP statement.

3-32

COLLATE

General

The COLLATE option invokes the optional, virtual collating-sequence capability according to a user­
specified collate file. The collate file can be used to specify a new or unique collating sequence, or to
retain the standard collating sequence with the exception of certain characters being interchanged or made
equal in rank. This option permits the alteration of the sequence in which records are sorted or merged by
any of the sort intrinsics. Alteration of the collating sequence may be desired for foreign alphabets or when
converting from one processing system to another.

The format of the COLLATE statement consists of the reserved word COLLATE followed by a file-name
enclosed in parentheses. The file-name is subject to the constraints described under the heading File­
Identifier of the FILE statement subsection.

Example:

COLLATE (P ACK2/TRANS.FILE/"#003 ")

The COLLATE option affects only those sort keys that are declared unsigned alpha (UA). All other sort
keys are sorted in the hardware collating sequence of@OO@ through @FF@, which is also the default
collating sequence if no collate file is specified.

Functional Description

When the COLLATE option is specified, the MCP interface verifies that the collate file is on disk before
processing. If it is not present, the user is directed to load the file by a console printer message. The MCP
verifies the header information prior to opening the collate file to insure that the file consists of two
256-byte records in a single-area file; if not, a message is displayed and the SORT program is discontinued.

The sort or merge intrinsic brings the first record of the collate file into memory and, as the key(s) are
extracted from each record, the keys which are declared unsigned alpha are processed through a translation
operation before being passed to the sort or merge intrinsic comparison logic.

During the final merge phase of the sort intrinsics, the second record of the collate file is used to restore
records to their original values.

For information pertaining to the creation of collate files, refer to the subsection titled COLLA TE FILE
GENERATOR.

Comments

Comments may be interspersed between SORT statements, but must not contain level I SORT reserved
words.

3-33

SORT Reserved Words And Characters

A list of level 1 SORT reserved words follows. The reserved words in this list cannot be used in comments.

ME TAGSEARCH
MEMORY TAGSORT

BIAS TAPESORT
NO PRINT TIMING

FIELD TRANS
FIELDS PARTITION
FILE PASSPARAM WAIT

GENERATE RECORDS ZIP _,.,,
RESTART

ID ENT
IN PLACE SEQUENCE

SYNTAX
KEY
KEYS

The words and characters in the following list are reserved only within the scope of one or more of the
level 1 reserved words in the preceding list.

(
) E PRINTER

'
EVEN PURGE

%
I ID ENT SA

IN SN
A
ALPHA MULTI TAPE
ASCENDING

NUMERIC UA
CARD UN
CARDS 0

ODD v
D OUT VARIABLE
DEFAULT
DESCENDING PACK
DISK PAPER

COLLATE FILE GENERATOR

General

The SORT/COLLATE program accepts input in the form of language statements described in this
subsection, and generates a collate file on disk with a specified file-name. The collate file is then used by
the sort intrinsic during the execution of a sort or merge that includes the COLLATE option. The collate
file consists of two 256-byte records on disk. The first record of the file is used to collate during input to
the distribute phase of the sort. The second record is used during output from the final merge pass.

Execution Deck

Figure 3-3 illustrates a SORT/COLLATE execution card deck consisting of specification cards and control
cards.

3-34

_L! END

L
L

L 4 L SPEC. CARDS
3

L?DA CARDS
2

1 EXECUTE
1 SORT/COLLATE

'""""'"'" ___ .,. __ , ..

Figure 3-3. SORT/COLLATE Execution Card Deck

The specification cards contain statements that describe the collating sequence desired by the user, and are
in free-form format in columns l through 71. The statements are checked for syntax errors, and if none
are found a collate table file is produced. A detailed description of the specification statements and their
functions follow.

Specification Statements

GENERAL

There are four specification statements used to specify a collate file. The four statements are $ IDNT,
$ NUMR, $ ALF A, and $ SEQN, and have the following format.

[$ IDNT file-name]

$ IDNT

{
$ NUMR hex-1 hex-2 [hex-3 hex-4]}
$ ALFA ch-1 ch-2 [ch-3 ch-4] [{-. ·}] ...
$ SEQN {

hex-5 [hex-6] }
hex-7 - hex-8 [hex-9 - hex-10] [{. ·}]

The $ IDNT statement is optional and provides the user with a means to name the collate file being created
by the SORT/COLLATE program. The file-name must be in accordance with standard B 1700 conventions
for naming files. If the $ IDNT statement is not included, a default multi-file-id of "COLLATE" is assigned
to the file produced, and the file is placed on system disk.

$NUMR

The $ NUMR statement is used to specify a number of deviations from the standard collating sequence of
@00@ through @FF@. This statement uses pairs of hexadecimal characters to indicate a replacement of
standard collating position. In the syntax format shown above, the character represented by hex-1 would
collate as hex-2, and hex-4 would replace hex-3 in the collating sequence. As many pairs of characters as
necessary can be represented to achieve the desired collating sequence. The $ NUMR statement is particu­
larly useful when dealing with characters that cannot be represented graphically.

Example:

$ NUMR 0040 OE3E

3-35

In the above example, @00@ would collate as @40@ and @OE@ would collate as @3E@.

The$ NUMR statement can be used alone or in conjunction with the$ ALFA statement.

$ALFA

The $ ALF A statement is similar in function to the $ NUMR statement, with the exception that the
representations are in the form of graphic characters. This method is more convenient for those characters
that can be represented graphically.

Example:
' -.

$ALFA AB ([

In the example, A will collate as Band left parenthesis will collate as left bracket.

When using either or both the $ NUMR and $ ALF A options, any characters not specifically mentioned
retain their standard position in the collating sequence. For this reason, characters can either explicitly or
implicitly be made to collate alike. When that is the case, the only way to restore the transmuted charac­
ters is to see that either TAGSORT or TAGSEARCH is specified in the sort specifications. Refer to the
subsection titled SORT for additional information.

If a character appears more than once on the left side of a pair of characters in a $ NUMR or $ ALF A
statement, the last appearance takes precedence in establishing its position in the collating sequence.

$ SEQN

The $ SEQN statement is a means of specifying a new collating sequence where a string of 2-digit hexadeci­
mal character representations are used to describe each of the 2S6 character positions of the collate file.
Each hexadecimal entry corresponds to a table position, beginning with @00@ and continuing through
@FF@. Thus, the first character represented collates as @00@, the second as @01@, and so forth. If any
portion of this hexadecimal string is in an ascending or descending contiguous form, the string can be
represented as the first and last elements of the contiguous portion, separated by a hyphen. In this manner,
the string of 2-digit hexadecimal characters 00 01 02 03 04 OS 06 07 08 09 could be represented as 00-09,
and the string 09 08 07 06 OS 04 03 02 01 could be represented as 09-01.

The$ SEQN statement cannot be used in conjunction with either the$ NUMR or$ ALFA statements.

3-36

COBOL CROSS REFERENCE UTILITY PROGRAM (COBOL/XREF)

General

The COBOL Cross Reference Utility Program accepts as input a syntactically correct COBOL source
program, and depending on the option selected, outputs a cross reference listing, or a program source
listing only, or both a cross reference and a program source listing.

Operating Instructions

The source program may reside on disk, magnetic tape, or punched cards. The figure below is an exanw-w ___ .. ~
of a COBOL/XREF execution card deck.

(OPTION CARD)

? DATA CARDS

? EXECUTE COBOL/XREF

Figure 3-4. COBOL/XREF Execution Deck

Option Cards

The option entry specifies the location of the source medium and the output desired. Below is the format of
the COBOL/XREF option card.

~col. 1 ~-col. 7

[option] [C] J
The option entry must begin in column I.

The letter C denotes that the COBOL COPY verb is used within the source program. C, when used, must be
in column 7. Requested library files must reside in the disk directory. The library sequence numbers within
a source program are indicated by a L to the left of the sequence number.

The options and their descriptions are as follows:

CARD The input source program is punched cards. Produces a cross reference listing.

CARD is the default input. If the option entry is omitted the input is assumed to
be cards.

3-37

CD LIST

DISK

DKLIST

LISTCD

LISTDK

LISTTP

TAPE

TPLIST

The input source program is punched cards. Produces both a source program listing
and a cross reference.

The input source program having a file identifier COBOLW /SOURCE resides on disk.
Produces a cross reference listing.

The input source program having a file identifier of COBOLW /SOURCE resides on disk.
Produces both a program source listing and a cross reference.

The input source program is punched cards. Produces a source program listing only.

The input source program is on disk. Produces a source program listing only.

The input source program having a file identifier of SOLT is on magnetic tape. Produces
a source program listing only.

The input source program having a file identifier of SOLT is on magnetic tape. Produces
a cross reference listing.

The input source program having a file identifier of SOLT is on magnetic tape. Produces
both a source program and cross reference listing.

Internal Fi le Names

Interna
Iden ti

1 File
fie rs

CAR DS

TAP ES

DIS KS

CBX PRT

-
External File

Identifiers

CARDS

SOLT

COBOLW/SOURCE*

XREFER

*Refer to the COBOL Compiler Option NEW for the creation of this file.

Examples: ----

Card: ? EXECUTE COBOL/XREF

? DATACARDS

CARD C

(source deck)

? END

3-38

-

Description

Input Source Cards

Input Source Tape

Input Source Disk

Printer Output

Disk: ? EXECUTE COBOL/XREF

? DATACARDS

BISK

? END

NOTE

If more than one cross reference file could exist, the FILE
statement must be used to make each file identifier unique.

? EXECUTE COBOL/XREF

? DATACARDS

TAPE

? END

Certain options of the COBOL/XREF·program are controlled by programmatic switches entered by the
system operator. Refer to the SW control instruction attribute and the SW INPUT MESSAGE keyboard
input message for details. The options and the programmatic switches and values required to control the
options follow:

Switch

SWl

SWl

SW2

SW2

SW3

SW3

sws

sws

sws

sws

sws

sws

sws

SW6

SW6

Value

0

0

0

1

0

2

3

4

5

6

0

Option

Do not cross reference literals.

Cross reference Ii terals.

Vertical spacing for line printer is to be 6 lines per inch, 56 lines per page.

Vertical spacing for line printer is to be 8 lines per inch, 76 lines per page.

No copy files required.

Copy files required.

CARD.

TAPE.

DISK.

TPLIST.

DKLIST.

LISTTP.

LISTDK.

Double space.

Single space.

3-39

LOG/CONVERSION

General

The LOG/CONVERSION program extracts information from the file LOG/#(n) and creates a new file in
COBOL/RPG readable format. The new file is named NEW.LOG/#(n), where n is an eight-digit number
corresponding to the eight-digit number of the LOG/#(n) file.

Execution

Before the LOG/CONVERSION program can be executed, the SYSTEM/LOG file must be transferred to
the LOG/#(n) file with either the LG or TL system Control Instruction. The number (n) of the LOG/#(n)
file to be converted is entered with an ACCEPT message.

NEW.LOG/#(n) File Format

The NEW.LOG/#(n) file created by the LOG/CONVERSION program can contain the following three
types of records:

a. Clear /Start record -- one for each Clear /Start performed on the system since the last LOG
transfer.

b. Program Parameter Block (PPB) record - one for each program scheduled or executed.

c. File Parameter Block (FPB) record - one for each file declared in each program. The FPB
record(s) follow the PPB record to which they are associated.

Each record type is 180 bytes.

The NEW.LOG/#(integer) file is unblocked.

Additional information concerning the format of the Clear/Start record, Program Parameter Block record,
and File Parameter Block record is provided in Tables 4-1, 4-2, and 4-3.

Table 4-1. Clear/Start Record Format

FIELD DATA
FIELD NAME SIZE TYPE FORMAT OR VALUE

Record Type 2 N 1 =Clear/Start Record
Filler 10 A

MCP Family Name 10 A

MCP File Name 10 A

Filler 10 A
Interpreter Family Name 10 A
Interpreter File Name 10 A

MCP Version Date 6 A MMDDYY

Main Memory Size 10 N Size in bits

Clear/Start Year 4 N

Clear/Start Julian Day 4 N

Clear/Start Time 4 N Counter value

Filler 208 N

3-40

The DATA TYPE column in the tables contains a letter indicating whether the data is alphanumeric or
numeric. The letter A represents alphanumeric data or eight-bit characters. The letter N represents signed
numeric, 4-bit digits. For signed numeric fields, the FIELD SIZE indicator includes the sign as part of the
field length.

Table 4-2. Program Parameter Block Record Format

FIELD DATA
FIELD NAME SIZE TYPE FORMAT OR VALUE

Record Type 2· N 2 = PPB Record
Job Number 8 N
Program Pack-ID 10 A
Program Family Name 10 A
Program File Name 10 A
Interpreter Pack-ID 10 A
Interpreter Family Name 10 A
Interpreter File Name 10 A
Execute Priority 4 N
Static Memory 10 N Size in bits
Dynamic Memory 10 N Size in bits

Total Memory 10 N Size in bits
Largest Code Segment 10 N Size in bits
Number of Files Declared 4 N
Charge Number 10 N
Schedule Priority 4 N
Virtual Disk 10 N Size in segments
Execute Type 2 N 1 =Execute

2 =Compile and Go
3 =Compile for Syntax
4 = Compile to Library
S = Com pile and Save
6 = Ex of Compile & Go
7 = Ex of Compile & Save

EOJ Type 2 N 0 = Normal EOJ
1 = DS-ed
2 = Program Error
3 = Aborted (Clear/Start)

Year Compiled 4 N
Julian Day Compiled 4 N
Time Compiled 8 N System counter value

Mix Number 4 N

Schedule Year 4 N

Schedule Julian Day 4 N

Schedule Time 8 N System counter value

BOJ Year 4 N
BOJ Julian Day 4 N

BOJ Time 8 N System counter value

3-41

Table 4-2. Program Parameter Block Record Format (Cont)

FIELD DATA
FIELD NAME SIZE TYPE FORMAT OR VALUE

EOJ Year 4 N

EOJ Julian Day 4 N

EOJ Time 8 N System counter value

Processor Time 10 N System counter value

Object Pack-id 10 A (Compilations only)

Object Family Name 10 A (Compilations only)

Object File Name 10 A (Compilations only)

Filler 16 N
-

Table 4-3. File Parameter Block Record Format

FIELD DATA
FIELD NAME SIZE TYPE FORMAT OR VALUE

Record Type 2 N 3 = PPB Record

Job Number 8 N

File Number 4 N

Internal File Name 10 A
Pack-id 10 A
Family Name 10 A
File Name 10 A
Hard ware Type 4 N 000 = Invalid device

001 = 96-Col. punch
002 = 80-Col. punch
003 = 96-Col. reader/punch
004 = 96-Col. MFCU
005 = 96-Col. reader/punch/printer
006 =·Paper tape reader
007 = Paper tape reader
008 = Printer
009 = Invalid device
010 = MICR reader/sorter
011 = Head-per-track disk
012 = Head-per-track disk
013 = Disk cartridge (DCC-2)
014 = Disk cartridge (DCC-1)
01 S =Disk pack
016 = Disk pack or cartridge
017 =Disk
018 = 96-Col. punch/printer
019 = 96-Col. reader
020 = Paper tape punch
021 = 80-Col. reader
022 =Console printer (SPO)
023 = Invalid device
024 = 9-Track mag. tape (NRZ)
02 5 = 7-Track mag. tape (NRZ)

3-42

Table 4-3. File Parameter Block Record Format (Cont)

FIELD DATA
FIELD NAME SIZE TYPE FORMAT OR VALUE

026 = 9-Track mag. tape (PE)
027 = Any 9-track mag. tape
028 = Invalid device
029 = Invalid device
030 =Cassette

Number of Buffers 10 N

Record Size 10 N Size in bits

Records Per Block 10 N

Maximum Block Size 10 N Size in bits (variable length records o nly)

Save Factor 10 N

Access Type 2 N 0 =Serial
I =Random (disk files only)

Number of Areas 6 N (Disk files only)

Blocks Per Area IO N (Disk files only)

Last time opened IO N System counter value

First time opened 10 N System counter value

Record Count IO N

Block Count 10 N

Number of Opens and Closes 8 N

Cumulative Time Open 10 N System counter value

Number of Errors IO N

Filler 126 N

COBOL Record Format

The following are COBOL declarations that show the format of the Clear/Start, PPB, and PPB records in the
NEW.LOG/# (integer) file when utilizing the output of the LOG/CONVERSION program.

Format of Clear /Start Record:

01 CLEAR-START-RECORD.
02 CS-REC-TYPE
02 CS-MCP-NAME
02 CS-INTERP-NAME
02 CS-VERSION-DATE
02 CS-S-MEM-SIZE
02 CS-YEAR
02 CS-JDAY
02 CS-TIME

Format of PPB Record:

01 PPB-RECORD.
02 PPB-REC-TYPE
02 PPB-JOB-NUM
02PR-NAME
02 PR-INTERP-NAME

PC S9 CMP.
PC X(30).
PC X(30).
PC X(6).
PC S9(9) CMP.
PC S9(3) CMP.
PC S9(3) CMP.
PC 89(7) CMP.

PC S9 CMP.
PC 89(7) CMP.
PC X(30).
PC X(30).

3-43

02 PR-PRIORITY
02 PR-STATIC-CORE
02 PR-DYNAMIC-CORE
02 PR-TOTAL-CORE
02 PR-BIGGEST-SEG
02 PR-FILES
02 PR-CHARGE-NUMBER
02 PR-SCHED-PRIORITY
02 PR-VIRTUAL-DISK
02 PR-EXECUTE-TYPE
02 PR-EOJ-TYPE
02 PR-YEAR-COMPILED
02 PR-JDAY-COMPILED
02 PR-TIME-COMPILED
02 PR-MY-MIX
02 PR-SCHED-YEAR
02 PR-SCHED-JDAY
02 PR-SCHED-TIME
02 PR-BOJ-YEAR
02 PR-BOJ-JDAY
02 PR-BOJ-TIME
02 PR-EOJ-YEAR
02 PR-EOJ-JDAY
02 PR-EOJ-TIME
02 PR-PROCESS-TIME
02 PR-OBJECT-NAME

Format of FPB Record:

01 FPB-RECORD.
02 FPB-REC-TYPE
02 FPB-JOB-NUM
02 FILE-NUM
02 FP-FILE-NAME
02 FP-NAMES
02 FP-HDWR
02 FP-BUFFERS
02 FP-RECORD-SIZE
02 FP-RECORDS-PER-BLOCK
02 PP-MAX-BLOCK-SIZE
02 PP-SAVE
02 PP-ACCESS
02 PP-AREAS
02 FP-BLOCKS-AREA
02 FP-OPEN
02 FP-1 ST-OPEN
02 PP-RECORD-COUNT
02 PP-BLOCK-COUNT
02 PP-NO-OPENS-AND-CLOSES
02 FP-CUMULA TIVE
02 FP-ERRORS

RPG Record Format

PC S9(3) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(3) CMP.
PC S9(9) CMP.
PC S9(3) CMP.
PC S9(9) CMP.
PC S9 CMP.
:PC S9 CMP.
PC S9(3) CMP.
PC S9(3) CMP.
PC S9(7) CMP.
PC S9(3) CMP.
PC S9(3) CMP.
PC S9(3) CMP.
PC S9(7) CMP.
PC S9(3) CMP.
PC S9(3) CMP.
PC S9(7) CMP.
PC S9(3) CMP.
PC S9(3) CMP.
PC S9(7) CMP.
PC S9(9) CMP.
PC X(30).

PC S9 CMP.
PC S9(7) CMP.
PC S9(3) CMP.
PC X(lO).
PC X(30).
PC S9(3) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9 CMP.
PC S9(5) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(9) CMP.
PC S9(7) CMP.
PC S9(9) CMP.
PC S9(9) CMP.

The following are RPG declarations that show the format of the Clear/Start, PPB, and PPB records in the
NEW.LOG/#(integer) file when utilizing the output of the LOG/CONVERSION program.

3-44

Format of Clear/Start Record:

LOGFILE NS 01 I DI
p I IORCTYPI

2 31 MCP
32 61 INTERP
62 67 VERSON

p 68 720MEMSIZ
p 73 740CSYR
p 75 760CSDA
p 77 800CSTI

Format of PPB Record:

NS 02 1 D2
p 1 10RCTYP2
p 2 SOJOBNUM

6 35 PRNAME
36 65 INTPNA

p 66 670PRIOR
p 68 720STCORE
p 73 770DYCORE
p 78 820TOCORE
p 83 870BIGSEG
p 88 890FILES
p 90 940CHARGE
p 95 960SCHDPR
p 97 lOlOVIRDSK
p 102 1020EXTYPE
P 103 1030EOJTYP
P 104 2050YRCOMP
P 106 1070DACOMP
P 108 11 lOTICOMP
P 112 1130MIX
P 114 1 lSOSCHYR
P 116 1170SCHDA
P 118 1210SCHTI
P 122 l 230BOJYR
P 124 l 250BOJDA
P 126 1290BOJTI
P 130 1310EOJYR
P 132 1330EOJDA
P 134 1370EOJTI
P 138 1420PROCTI

143 172 OBJNAM

Format of FPB Record:

NS 03 1 D3
p 1 10RCTYP3
p 2 SOJBNUM
p 6 70FILNUM

8 17 INTNAM
18 47 EXTNAM

p 48 490HDWR
p so 540BUFFS
p 55 590RECSIZ
p 60 640RECBLK
p 65 690MAXBLK

3-45

P 70 740SAVE
P 7 5 7 SOACCESS
P 7 6 7 BO AREAS
P 79 830BLKARE
P 84 8800PEN
P 89 930FRSTOP
P 94 980RECCNT
P 99 1030BLKCNT
P 104 1070NOOPCL
P 108 1120CUMUL
P 113 1170ERR

:3-46

DISK/DUMP

General

DISK/DUMP provides the capability of copying data from disk packs to disk packs, disk cartridges to disk
packs, and disk cartridges to disk cartridges (except 200 TPI to 100 TPI cartridges). The label is first
checked for validity, and then the data is copied on a sector-for-sector basis. For drive zero system disks
and user disks, termination of the dump occurs beyond the end of valid data, thereby reducing run time in
many cases. All input and output specifications are entered from the console printer. When the number of
input errors exceeds 10, the user can specify the number of retries desired on an "as-occurs" basis. If more
than 10 output errors occur on a given area, DISK/DUMP is terminated.

Operating Instructions

DISK/DUMP does not operate under MCP control, and must be loaded from the cassette reader of the
system console. Execute DISK/DUMP in the following manner:

a. Place the DISK/DUMP cassette in the cassette reader. The BOT light must be lit at this time.

b. Place the console printer on-line.

c. Set the system MODE switch to the TAPE position, press CLEAR, then START. This procedure
loads the bootstrap loader from the cassette tape and halts the processor. The L register must be
equal to @AAAAAA@ at this time.

d. Set the MODE switch to the RUN position, press START. (Do not press the CLEAR button.)
This loads the DISK/DUMP program.

When the cassette tape has been read, DISK/DUMP begins operation with the following message displayed
on the console printer:

DISK DUMP MARK (level-number)

ENTER INPUT DRIVE - (DC? or DP?)

After a correct response, the following message is displayed:

ENTER OUTPUT DRIVE - (DC? or DP?)

After a correct response, the data on the disk is copied and compared. Upon completion, without errors,
the following message is displayed:

DUMP COMPLETE FROM (input drive mnemonic) TO (output drive mnemonic)

ENTER INPUT DRIVE - (DC? or DP?) OR BLANK TO TERMINATE

If the END OF MESSAGE is pressed at this time, DISK/DUMP terminates and the following message is
displayed:

END DISK DUMP

The following error messages can occur during execution.

Error Messages

a. DISK ERROR - RESULT IN "T" (Observe T register to determine type of error. Press START
for retry).

3-47

b. DISK NOT READY (input or output drive mnemonic) CORRECT AND HIT START

c. PARITY ERR N (input drive mnemonic) ENTER DESIRED NUMBER OF RETRIES OR
BLANK TO RESTART

d. TIMEOUT ON (input drive mnemonic) ENTER DESIRED NUMBER OF RETRIES OR BLANK
TO RESTART

e. INVALID RESPONSE - TRY AGAIN

f. I/O ERROR (input or output drive mnemonic) (disk address) RESULT= (result)

g. 4nteger) RETRIES ON PARJTY

h. (integer) RETRIES ON TIMEOUT

i. TEMP TABLE FILLED (input drive mnemonic) (Clear/Start this pack and try again).

j. COMPARE ERROR (disk address) HIT START TO RETRY

k. INPUT SIZE LARGER THAN OUTPUT

l. NO CART OR PACKS ON SYSTEM

3-48

COMPILERS

SECTION 4
PROGRAM PRODUCTS

Compilers generate executable code from a programmer's source statements. Each compiler has various
options and operational techniques which affect its output. The following pages discuss each compiler and
its individual operating procedures.

The COMPILE card, DATA card, and the Label equate (FILE) cards are standard for all compilers and
are not discussed in detail for each compiler concerned. See the Control Instruction section for their
particular usage and syntax.

REPORT PROGRAM GENERATOR

General

The Report Program Generator (RPG) enables the user to obtain comprehensive reports from existing
files with a minimum time involved in source coding. An object program produced from RPG source
coding is in the RPG S-Language format.

Compilation Card Deck

A program written in Burroughs RPG, called a source program, is accepted as input by the RPG compiler.
The compiler has two major functions: (1) verify all syntax rules outlined in the RPG Program Manual,
and (2) convert the source program language into RPG S-Language which is then ready for execution.

The program generated by the RPG compiler is executed under control of the MCP using the RPG
interpreter.

Following is an example of an RPG compilation deck.

? COMPILE

f INPUT

L LINE COUNTER

E EXTENSION

F FILE DESCRIPTION
H CONTROL CARD

Figure 4-1. RPG Compilation Deck

4-1

?END

$DOLLAR CARD

Dollar Card Specifications

Dollar Card Specifications allow the RPG Compiler to accommodate various extensions to other
manufacturers RPG and RPG II languages, which cannot be handled on the other specification forms.
Dollar Cards also allow certain compiler-control options to be set or reset during compilation.

Dollar cards may appear anywhere within the source deck, as required. Only one option can be entered on
a card and must be in the following format:

Columns

1-5

6

7

8

9-14

15-24

25-74

75-80

RPG Extensions

Description

Page and Line Sequence Number

This field may be left blank or contain the form type to align with the
associated form that the $ option was inserted in.

A$ sign must appear in this field.

This field is used to specify that the option entered in the KEY WORD
field is set ON or OFF. (Blank= ON, N =OFF).

KEY WORD: This field is used to name the option that is to be used.
The option must be left-justified.

VALUE: This field is used to specify a value to be associated with the
option. All values in alphanumeric form must be left-justified, numeric
form must be right-justified.

COMMENTS: This field is available for comments and documentary
remarks.

Program Name

The following options may appear only within the file description specifications, and must immediately
precede the specification line describing the file to which they apply.

NOTE ---

None of the following operations may be "reset".

PACKID Specifies the pack name of a disk file. Similar to$ FAMILY and$ FILEID, default of
blank dp-id name and the MCP wiH assume systems pack. This entry should be included
to ensure correct handling of files by the MCP.

FAMILY Specifies the external family namt: (MFID) associated with the file. The VALUE
field contains the name which is one to ten characters, left-justified.

FILEID Specifies the external file identification (FID) associated with the file. The VALUE
field contains the name which is one to ten characters, left-justified.

AREAS Specifies the maximum number o(areas to be allocated for the file (disk files only).
The VALUE field contains an integral value, 1 to 105, right-justified, leading zeros
optional. The default value assigned is 40, unless specified otherwise.

4-2

RPERA Specifies the maximum number of logical records that will be written in each disk
area. The VALUE field contains an integral value, right-justified, leading zeros optional.
The default value assigned is 500 unless specified otherwise.

OPEN Ex:nlicit open allows for all files to be opened at Beginning-of-Job. Default is an
implicit open when the files are actually called for.

CLOSE Explicit close allows all input serial files to remain opened until End-of-Job. Default
is the implicit close of files at End-of-File.

AAOPEN Is a file option used to set a bit in the MCP file parameter block and allocate
all disk space areas at the beginning of the program.

ONEPAK Specifies that this particular file must be contained on one disk.

CYL Allocates file areas starting on an integral cylinder boundary.

DRIVE Allocates a physical drive to that particular file. VALUE field must be 0-15. Option
may not be reset and is not related to P ACKID.

REFORM Input and update disk files are assumed to have the block and record length
declared on the file header unless the$ REFORM option is used. However, on input or
update chained indexed file specifications "data keys in core" option, it may be
desirable to also use $ REFORM to indicate to the compiler that it may juggle the
blocking factor to optimize the speed of chaining. Under this condition, the blocking­
record-length specified on the File Description Specifications must be the same as when
the file was outputted. This combination will produce the fastest chaining possible.

REORG Specifies a specialized method of sorting indexed files will be invoked at End-of-Job.
The REORG feature only sorts the additions and then merges them, in place, into the
master file. This method of sorting should decrease the sort time and the temporary
disk area required. The VALUE field contains the external file identifier of the indexed
file including disk pack-id.

NONEPACK
File may be multipack.

Compiler-Directing Options

LIST

LOGIC

MAP

NAMES

Specifies that the compiler produce a single spaced output listing of the source
statements with the error or warning messages. This option is set "on" by default.
Resetting to "off' will not inhibit the errors or warning messages from printing.

Specifies that the compiler produce a single-spaced listing of each source specification
line followed immediately by an intermediate code used to generate RPG-S code.
The listing is produced after the NAMES listing (if the NAMES option is set), and
does not include addresses or bit configurations, but only the opcodes and logical
operands of the program.

Specifies that the compiler produce a single-spaced listing detailing the program's
memory utilization. The MAP listing is produced after the LOGIC listing (if the
LOGIC option is set).

Specifies that the compiler is to produce a single-spaced listing of all assigned indicators
file names, and field names. The attributes associated with each file and field are also
listed. The NAMES listing is produced immediately after the normal source input
listing.

4-3

RSIGN Indicates to the compiler, the location of the sign in numeric data items. When set,
all signs are assumed to be right-justified; when reset, all signs are assumed to be
left-justified. This option may be set and reset at different points in the Input and
Output-Fonnat Specifications, allowing different fields to have different sign positions.
If the option is used, it will override the sign position specified in tli.e Control Card
Specifications.

SEG Orders the compiler to begin placing code in an overlayable segment identified by the
integer in the VALUE field (right-justified, between 0 and 7 inclusive). Segmentation
is an automatic function of the RPG compiler and optimized for its best uage.
When the SEG option is used, automatic segmentation is not suppressed.

SUPR Specifies that the Compiler is to suppress all warning messages from the source pro­
gram listing. (Error messages still print.)

XMAP Specifies that the compiler print a single-spaced listing of all the code generated,
complete with actual bit configurations and addresses. Combined with the listing
produced by the LOGIC option, complete information about the generated code of
the program is available. The XMAP listing is produced after the MAP listing if the
MAP option is set.

STACK Due to infrequent stack overflow conditions during program execution, the user may
now change the stack size of the resultant program. This should only be used when a
ST ACK overflow condition has occurred. The default stack size is 313 bits which will
allow 8 entries in the stack. To increase the stack size add 39 bits, for each additional
stack entry, to the default size of 313.

BAZBON This specifies that if an indicator is assigned to a field to test for ZERO or BLANK in
the Input or Calculation Specifications and the same field is used in the Output
Specifications with a BLANK AFTER designation, that indicator will be turned ON
after the field is blanked during the output operations. Should a N (not) be specified
in column 8 the indicator will be turned OFF, overriding the original RPG I or
RPG II specifications.

ZBINIT This specifies that all ZERO BLANK indicators are initialized ON at Beginning-of-Job
or if a N (not) is specified in column 8 they will be initialized OFF regardless of the
specifications for RPG II or RPG I.

XREF The XREF option must be placed at the beginning of the RPG source program, prior
to the first File Specification and prior to H card if present. This option allows the
RPGXRF file to be created during compilation for use as input to the RPG/XREF
program. At the completion of the compilation it is necessary to manually execute
the RPG/XREF program in order to obtain the cross reference listing.

PARMAP Produces a single-spaced listing of the compiler-generated paragraph names, source
statement numbers, and actual segment displacements of the emitted code. This
listing may be used to relate to the LOGIC listing.

4-4

Internal File Names

The RPG Compiler's internal file-identifiers and external file-identifiers for use in file statement are as
follows:

--·--·"--·--

Internal External Description

LINE RPG/LIST Source output listing to the line printer.

SOURCE RPG/CARD Input file from the card reader.

TABCRD RPG/VECTOR Input file for TABLES from the card reader.

RPG Internal File Names

4-5

COBOL COMPILER

General

The COBOL compiler is designed in accordance with the COBOL standard as specified by the American
National Standards Institute (ANSI). The COBOL compiler can function with any system that runs under
the control of the MCP.

The COBOL compiler in conjunction with the MCP allows for various types of actions during compilation
which are explained in the following paragraphs.

Compilation Card Deck

Control of the COBOL source language input is derived from presenting the compilation card deck to the
MCP. See figure 4-2.

7 DATA CARDS

FILE STATE-ELE CARD r6~-li:i

Figure 4-2. COBOL Compilation Deck

Dollar Option Card

$DOLLAR
OPTION
CARD(S)

The third card, excluding file statement cards, is the COBOL$ Option card. This card is .used to notify
the compiler which options are desired during a compilation. Without the$ Option Card,$ CARD LIST
CHECK SINGLE CONTROL will be assumed.

The $ Option card has the following characteristics:

a. A $ sign must appear in column 7.

b. There must be at least one space separating options on a card.

c. There may be more than one option per card.

d. The options may be in any order.

e. Any number of$ cards may be used and may appear anywhere in the source deck. The option
will be set or reset from that point on.

4-6

f. Columns 1 - 6 are used for sequence numbers

The format of the $ Option card is as follows:

1 [NO] option-I · · · [NO] option-n

OPTIONS.

The options available for the COBOL compiler are listed below:

CARD Input is from the source language cards or paper tape. This option is for documentation
only.

LIST Creates a single-spaced output listing of the source language input, with error and/or
warning messages, where required.

LISTP Lists the source images during the first compilation pass, and prints the error messages
as they occur.

SINGLE Causes the output listing to be printed in a single-spaced format.

DOUBLE Causes the output listing to be printed in a double-spaced format.

CODE List object code following each line of source code from the point of insertion.

MERGE Primary input is from a source other than a card reader and may be merged with a
patch deck in the card reader. It is assumed to be from a disk file, with a file-ID of
COBOLW /SOURCE, by default.

If it is desired to change the input file-ID or change the input device from disk to tape, a
LABEL EQUATION CARD must be used. The NEW option may be used with the
MERGE option to create a new output source file plus changes.

NEW Creates a NEW output source file with changes, if any, entered through the use of the
MERGE option, but does not include compiler option cards which must be merged in
from the card reader when compiling from disk or tape.

CHECK

The output file will be created on disk by default with the file-ID of COBOLW/SOURCR

If it is desired to change the output file-ID or change the output device from disk to tape,
a LABEL EQUATION CARD must be used.

This option will cause the compiler to check for sequence errors and print a warning
message for each sequence error. The CHECK option is set on by default at the beginning
of each compile, but may be terminated with the NO CHECK option.

SUPPRESS Suppresses all warning messages except sequence error messages. The sequence
error message can be suppressed with the NO CHECK option.

SPEC If syntax ERRORS occur, this option negates the control and LIST option and causes
only the syntax errors and associated source code to be printed. Otherwise the CONTROL
and LIST options remain in effect.

4-7

'"Non-numeric literal"
Is inserted in columns 73-80 of all following card images when creating a new source
file and/or listing. This option can be turned off or changed by a subsequent control
card with the area between the quote marks containing blank characters.

SEQ Starts resequencing, the output listing and the new source file if applicable, from the
last sequence number read in and increments the sequence number by ten or by last
increment presented in a previous $-option card. When resequencing starts at the
beginning of the program source statements the sequence will start with 000010.

SEQ nnnnnn
Starts reweauencing the output listing and new source file if applicable from the
sequence number specified by nnnnnn and increments the sequence numbers by ten.

SEQ +nnnnnn
Starts resequencing the output listing and new source file if applicable from the
last sequence number read in and increments by the number specified by +nnnnnn.
When resequencing starts at the beginning of the program source ·statements, the
sequence will start with 000010.

SEQ nnnnnn +nnnnnn

NO SEQ

Starts resequencing the output listing and new source file if applicable from the
sequence number specified by nnnnnn and increments by the value of +nnnnnn.

Terminates the SEQ option and resumes using the sequence number in the source state­
ment as it is read in.

CONTROL Prints the $-option control cards on the output listing. The UST option must be on.

NO When the NO option precedes one of the options, with the exception of MERGE
which cannot be terminated, it will terminate the function of that option.

REF

ANSI

During debugging additional monitoring can be done to see the effect upon variables
specified in the MONITOR declaration and referenced in a statement that does not
change its value.

When used, will inhibit the EXTENSION of AT END ... ELSE, and during compilation
will flag them as syntax errors.

ST ACK [integer]

NOCOP

ls used to increase the program stack by "integer" bits. The default size, when at
least one PERFORM statement is used, is 1000 bits.

When used will generate COP entries in the code instead of a COP table causing more
memory to be utilized but faster program execution.

The NEW option does not have to be included when operating with a tape or disk source input, thus allow­
ing temporary source language alterations without creating a new source output file.

The MERGE option without the NEW option allows a disk or tape input file to be referenced and to have
external source images included from the card reader on the output listing and in the object program. A
new output file will not be created.

Columns 1 - 6 of the Compiler Option Control card may be left blank when compiling from cards. A
sequence number is required when compiling from tape or disk when the insertion of the$ option is
requested within the source input.

4-8

Source Data Cards

The Source Data cards follow the $ Option control cards. These cards have two functions: (1) to update
and create a newer version of a program, and (2) cause temporary changes to the tape or disk source
program.

The following two paragraphs outline the Source Data Cards that are available to use with the COBOL
Compiler:

a. VOID Patch Card. Punch the beginning· sequence number in card columns 1-6 followed by a
$sign in column 7 with the word VOID starting in column 8, and terminate with the optional
ending sequence number. This will delete the source statements beginning with the 6-digit
sequence number through the ending 6-digit sequence number. For example:

nnnnnn $VOID [nnnnnn]

If the ending sequence number is omitted, only the source statement associated with the beginning
sequence number will be deleted. For example:

nnnnnn $VOID

b. CHANGE or Addition Patch Card. Punch the 6-digit sequence number in card columns 1-6 of the
card that is to be changed or added, followed by the data to be input in their applicable columns.
These cards must be arranged in the sequential order of the source program in order to be
MERGED correctly into the program.

The COBOL Compiler has the capability of merging inputs from punched cards or paper tape, either of
which may be merged with magnetic tape or disk.

The output listing will indicate any inserts and/or replacements when in the MERGE mode.

The following are examples of a COBOL compile deck.

Example 1:

? COMPILE ALPHA WITH COBOL FOR SYNTAX

? DATACARDS

$ CARD LIST DOUBLE

. . . source program deck .

? END

Example 2:

? COMPILE ALPHA WITH COBOL SA VE

? DATACARDS

$ CARD NO CHECK DOUBLE

. . .source program deck.

? END

4-9

Internal File Names

The COBOL compiler's internal file-identifiers and external file-identifiers for use in Label Equation are
as follows:

.-----·----· -----,------------.--·
Internal File-name

CARDS

SOURCE

NEWSOURCE

LINE

External File-ID

CARDS

COBOLW /SOURCE

COBOLW /SOURCE

LINE

Description

Input file from the card reader. If$ MERGE is
used, this file will be merged with the input file
on disk or tape. The default input is from the card
reader.

Input file from disk or tape when the MERGE option
is used. The default input is from disk.

Output file to disk or tape for a NEW source file when
the NEW option is used. The default output is to disk.

Source output listing to the line printer.

COBOL Internal File Names

4--10

FORTRAN COMPILER

General

FORTRAN (FORmula TRANslation) was designed for writing programs concerned with scientific and
engineering applications in mathematical-type statements. The FORTRAN compiler translates these state­
ments into object code which can be executed by the B 1700.

B 1700 FORTRAN is designed to be compatible with FORTRAN IV, Level H, and to contain ANSI
Standard FORTRAN as a subset.

Compilation Card Deck

Control of the FORTRAN source program is derived by presenting to the MCP the FORTRAN compilation
card deck. See figure 4-3.

Figure 4-3. FORTRAN Compilation Deck

Dollar Option Card

$DOLLAR
OPTION
CARD(S)

The third card, excluding Label equation cards, and the standard COMPILE and DATA cards, is the
FORTRAN compiler$ Option control card. This card is used to notify the compiler as to which options
are required during the compilation. By omitting the $ Option card, the options "CARD LIST SINGLE"
are assumed.

The format for the FORTRAN$ Option control card is:

$ [NO] option-I · · · [NO] option-n J
4-11

The FORTRAN$ Option control card has the following characteristics:

a. A$ sign may appear in column 1 or 2. When placed in column 2, the$ option card will be
included in the new output source file if such a file is generated.

b. There must be at least one space between each item.

c. Options may be in any order.

d. Columns 73-80 are reserved for sequence numbering.

e. Any number of option cards may appear within the source deck.

OPTIONS

The options that are available for the FORTRAN compiler are as follows:

BIND Causes the intermediate code files to be bound into an executable code file.
This is a default option; if BINDING is not desired then NO BIND should be
used.

CARD Input is from source language cards. This is a default option.

CODE Lists the object code for each source code line from the point of its insertion
into the source deck.

DOUBLE Causes output source listing to be double spaced.

DYNAMIC [integer] This specifies the size in words to be assigned for an object program's dynamic
memory. The compiler by default will assign the dynamic memory either of
two ways: (1) if the data pages are less than 10, it assigns a size equal to the
sum of the data pages, or (2) if the data pages exceed 10, then the size of the
10 largest data pages are used.

ERRORTRACE Provides a FORTRAN level trace of subprogram and statement usage prior to
the detection of a run-time error. The ERRORTRACE option must be placed
before the first executable statement of the main program or any subprogram.
Once set it may reset at any point by the NO ERROR TRACE option.

LIST Creates a single spaced output listing of the source statements with error and/or
warning messages. This is a default option.

MERGE The MERGE option allows source input from disk or tape (disk by default,
file-identifier SOURCE) to be merged with source statements from a card
reader. The NEW option must be used with the MERGE option to create a new
output source file. When the NEW option is not used, both the output listing
and the object code file will reflect the merged statements but a new output
source file will not be created.

NEW Creates a new source output file having a file-identifier of NEWSOURCE. The
new output file will include any changes made by the use of the MERGE
option and any compiler option statements that have the dollar sign in
column two.

4-12

NO

PAGE

PROFILES

When used in conjunction with the following options, it will negate or put them
in a reset condition. There must be a space between NO and the option.

BIND
CODE
DOUBLE
LIST
SEQ ERR
SAVEICM
ERRORTRACE
PROFILES
TRACEF

Causes the output listing to eject at that point and start a new page.

Is an optimization aid that indicates to the user those areas of a program that
can be optimized to improve program performance; At run time the following
data will be output by using the PROFILES option:

a. Frequency of subprogram usage.

b. Time spent in each subprogram.

c. Use of individual statements within a subprogram.

d. Use of each statement during program execution.

The PROFILES option must be placed before the first executable statement of
the main or subprogram. To reset the option use the $ NO PROFILES at any
point within the program.

SAVEICM Causes the intermediate code files for each syntax-error-free program part to
be made a permanent disk file at the end of the compilation.

SEQ Causes resequencing of the output listing and the new source file, if applicable,
starting with the default number 00001000 and incrementing sequence num­
bers by 1000.

SEQ nnnnnnnn [nnnnnnnn]

Causes resequencing of the output listing and the new source file if applicable.
SEQ is followed by either an eight digit number which is the starting sequence
number, or two eight digit numbers with the first number being the starting
sequence number and the second the resequencing increment value. The
default resequence increment is 1000.

SEQERR Causes a warning message to be printed for statements out of sequence.

SINGLE Causes the output listing to be printed in single spaced format. This is a
default option.

ST ACKSIZE [integer]

TRACEF

Specifies the size in words to be allocated for the object program Evaluation
stack. Default size is 100; maximum size is 4096.

Causes a FORTRAN level trace to be printed for each FORTRAN statement
executed in the program. This option may be inserted anywhere within the
program. Once set, it remains set until reset by using NO TRACEF.

4-13

VOID

VOIDnnnnnnnn

Internal File Names

Causes the source input image corresponding to the sequence number of the
VOID card to be deleted from the input disk file.

Causes a series of source images to be deleted starting from the sequence num­
ber in the sequence number field (73-80) through and including the sequence
number of the VOID option.

The FORTRAN Compiler's internal file-identifiers and external file-identifiers for use in Label Equation
are as follows:

Internal File-name External File-ID
(file-number) (Label) Description

CARDS CARDS Input file from the card reader.

LINE LINE Source output listing to the line printer.
-

SOURCE NEWSOURCE When$ NEW is used the output file will go to disk or tape.
The default output is to disk (80 character records,
blocked 2).

-

SOURCE SOURCE Input file is from disk or tape when $ MERGE is used.
The default input is from disk and assumed to be 80 char-
acter records, blocked 2.

FORTRAN Internal File Names

4-14

BASIC COMPILER

General

BASIC is a problem-oriented language designed for a wide range of applications and may be easily applied to
business, commercial, engineering and scientific processing tasks. The BASIC language is designed for
use by individuals who have little previous knowledge of computers, as well as individuals with considerable
programming experience. A distinct advantage of BASIC is that its rules of form and grammar are quite
easily learned.

B 1700 BASIC includes the capabilities of the original Dartmouth College BASIC plus extensions provided
for compatibility with the General Electric MARK II® BASIC language.

The BASIC compiler, in conjunction with the Master Control Program, enables source programs to be
compiled through the use of a card reader or a card device. Compilation of the BASIC source language
input is achieved by presenting the compilation card deck to the MCP. Control cards included in the
compilation deck are of two general types: (1) MCP control cards, and (2) compiler $ Option control
cards. The structure of the BASIC compilation deck is discussed in the text that follows:

Compilation Card Deck

The entities comprising the structure of the BASIC compilation deck and the order of their occurrence
are shown in figure 4-4 below.

SOURCE DECK ----------DAT A CARD

FILE STATEMENT
-------(OPTL)

COMPILE CARD

Figure 4-4. BASIC Compilation Deck

4-15

$DOLLAR
OPTION
CARD(S)

Dollar Option Card

The third card, excluding the optional Label Equation cards and the standard COMPILE and DA TA cards,
is the BASIC $Option card. This card is used to notify the compiler which options are desired during a
compilation. By omitting the$ Option card, the options "CARD LIST SINGLE" are assumed.

The $Option cards for the BASIC compiler have the following characteristics:

a. All option cards are in a free-form format.

b. A line-number,which is required to be sequential within the program, cannot be greater than five
digits and must precede the $ sign.

c. The $sign may appear anytime after the line-number anJ before the first option.

d. All options listed on the card may appear in any order.

e. There must be at least one space between each option.

f. $ cards may be used anywhere within the source deck to either set or reset an option.

The format of the $Option card is:

[line-number $ [NO] option-I · · · [NO] option-n

OPTIONS

The following options are available for the BASIC compiler.

CARD Symbolic input is from source language cards. At the present time, this option is for
documentation purposes only.

LIST Creates a compilation output listing of the source language input, with error and/or
warning messages, where required. LIST is a default option.

SINGLE Causes the compilation output listing to be printed in a single-spaced format. SINGLE
is a default option.

DOUBLE Causes the compilation output listing to be printed in a double-spaced format.

CODE Lists the object code generated for a source statement from the point of insertion into
the source deck.

NO Each of the above options may be preceded with NO. This enables the options to be
set for selected program parts and then reset as desired. When an option is preceded
by NO, there must be at least one space between the word NO and the option to be
terminated.

Source Input Cards

The source program cards have the following characteristics:

a.. Each card is taken as a different line and can contain only one statement. If the 96-column
cards are used, the source statement must be contained in the first 80 columns.

4-16

b. There can be no continuation cards.

c. Each card between the? DATA card and the? END card must contain a line-number.

d. A line-number starts in column 1 and can be a length of 5 digits.

e. The first non-numeric character will terminate the line-number when less than 5 digits.

f. The line-number is used both as a statement label and sequence number.

g. Each statement is sequence checked by the BASIC compiler as it is read in.
' '

h. Spaces or blanks have no significance withirt a source statement except for information con-
tained in string constants. Spaces can be used to make a program more readable.

Intrinsic Files

The BASIC intrinsic files (identified by the name BAS.INTRIN/ nnnnnnnn) must be present on disk when
a compiled BASIC program is executed; however, they are not needed when compiling the BASIC pro­
gram. The intrinsic files contain input/output routines and intrinsic functions provided by the BASIC
language. If the intrinsic files reside on a user pack the INTRINSIC.DIRECTORY control instruction must
be used to identify the user pack, otherwise, the intrinsics are assumed to reside on the system pack.

Example:

? EXECUTE program-name

? INTRINSIC.DIRECTORY dp-identifier

? END

Sample Compilation Deck

In the following example, a BASIC program is to be compiled to LIBRARY and the object program,
EXAMPLE/PROGRAM, is to be entered in the disk directory of a removable disk cartridge labeled BAS.
In addition, the BASIC compiler resides on the removable disk, BAS. A $card is enclosed to cause the
compilation output listing to be printed in a double-spaced format. The options CARD and LIST being
default options are not required, but are included on the $card for documentation purposes only.

? COMPILE BAS/EXAMPLE/PROGRAM BAS/BASIC/LIBRARY

? DATACARDS

10 $CARD LIST DOUBLE

20 INPUT X, Y, Z

30 PRINT "X="; X, "Y="; Y, "Z="; Z

40 END

? END

4-17

In the next example the compiled program EXAMPLE/PROGRAM is ready for execution. The compiled
program as well as the BASIC intrinsic files and the BASIC interpreter reside on the removable disk pack
labeled BAS. The card file labeled INPUT is required during execution of this program.

? EXECUTE BAS/EXAMPLE/PROGRAM

? INTRINSIC.DIRECTORY= BAS

? INTERPRETER = BAS/BASIC/INTERP2

? END

? DATA INPUT

12,32,56

? END

Internal File Names

The BASIC Compiler's internal file-identifiers and external file-identifiers for use in Label Equation are as
follows:

- -------·--------.

I nternal File-name External File-ID Description

CARDS CARDS Input file from the card reader.

LINE LINES Source output listing to the line printer.

-

BASIC Internal File Names

4-18

UPL COMPILER

General

The User Programming Language (UPL) is a problem oriented language developed for writing B 1700 system
software. The UPL Compiler is a single pass compilation that transforms the programmer's source state­
ments into object code. Figure 4-5 illustrates the generation of an UPL object program.

UPL SOURCE
COMPILATION
CARD DECK

Compilation Card Deck

UPL
COMPILER

UPL
PROGRAM
SOURCE
LISTING

Figure 4-5. UPL Compilation Process

Figure 4-6 contains an example of a UPL Compilation deck.

? COMPILE

~====~
FILE
STATEMENTS
(OPTIONAL)

? DATA CARDS

UPL
SOURCE
STATEMENTS

Figure 4-6. UPL Compilation Card Deck

4-19

UPL
OBJECT
CARD

$DOLLAR
OPTION
CARDS

Compiler Options

The UPL Compiler has certain options available through a Dollar card($) that gives the operator the ability
to override some of the standard compiler functions, alter stack sizes, suppress error and/or warning mes­
sages, and merge and create a new source file from an existing file. Dollar options are either in a set or
reset condition. The UPL Compiler is preset with the following options: AMPERSAND, CHECK, LIST,
and SINGLE.

The UPL Compiler option card has the following format:

[_! [NO] option-I · · · [NO] option-n

The UPL Compiler Dollar option card has the following characteristics:

a. Column one must contain a$ sign.

b. There must be at least one space between options on the same card.

c. Options may be set or reset in any order.

cl. Columns 73-80 are reserved for sequential numbering.

e. There is no limit as to the number of options being set or reset during the compilation.

f. The option NO when appearing before any other option resets or negates that option.

The UPL Compiler options and their description are as follows:

AMPERSAND

CHECK

CODE

CONTROL

CREATE.MASTER

CSSIZE integer

DEBUG

DETAIL

DOUBLE

Prints those ampersand cards that are examined.

Checks the source input file for sequence errors.

Print the SDL object code generated for each source statement.

Prints all compiler option cards from that point. If the option control
word CONTROL is required to be printed, the $ CONTROL (space)
CONTROL format must be used.

This option must be the first card in the compilation deck and causes the
compiler to perform the following functions:

a. Dump information to the master information files.

b. Create a new source file.

c. Create a new code file.

Assigns the number of entries in the Control stack represented by
integer and overrides the compiler estimate.

Compiler debug only.

Causes the compiler to list the expansion of all define invocations.

Double space listing.

4-20

DYNAMICSIZE integer

ESSIZE integer

FORMAL.CHECK

INTERPRETER
file-identifier

INTRINSIC
file-identifier
(family-name only)

LIST

LIST ALL

MERGE

NEW

NO

NSSIZE integer

PAGE

PPSIZE integer

SEQ beginning­
sequence-num her
increment

SINGLE

SIZE

SUPPRESS

Assigns the value of the integer as the estimated memory size allocated
for paged arrays. Integer is expressed in bits.

Assigns the number of entries in the EVALUATION stack by integer and
overrides the compiler estimate.

The checking of the actual parameters passed to each procedure during
execution against the TYPE and LENGTH specifications of their corre­
sponding formal declarations. Also, the values returned from function
procedures will be checked against the TYPE and LENGTH in the pro­
cedure head statement. Lack of correspondence is a run time error.

Causes the program when executed to use the assigned Interpreter rather
than the compiler default interpreter.

Causes the program when executed to use those intrinsics with the
assigned family-name rather than the compiler assigned family-name.

Prints the source input that was compiled. The NO option when invoked
with LIST will reset the LISTALL option also.

Prints all source input regardless if conditionally excluded. The LISTALL
option sets the LIST option, but NO LISTALL does not reset LIST.

Indicates to the compiler that the source file is on tape or disk and
there are cards to be merged during the current compilation.

Creates a new primary source file.

The presence of the NO option immediately before any other option
causes that option to be reset from that point on during the
compilation.

Assigns the number of entries expressed by integer to the Name
stack thereby overriding the compiler's estimated size.

Ejects page.

Assigns the number of entries expressed by integer to the Program
Pointer stack thereby overriding the compiler's estimated size.

Causes the output file to be resequenced beginning with the number
used with SEQ.

Single space listing.

Outputs at the end of the listing, the code segment names and
their sizes.

Causes all warning messages to be suppressed. To suppress sequence
error messages invoke the NO CHECK option.

4-21

VOID sequence
number

VSSIZE integer

XMAP

XREF
XREF.ONLY

Internal File Names '

Causes all records in the primary source file (as in the case of the
MERGE) to be removed from the sequence number of the VOID
card itself through the sequence number entered with the VOID
option.

The VOID option has the following restrictions:

a. Must be the only compiler option on the card.

b. Cannot be preceded by the NO option.

c. Must contain a sequence number in columns 73-80.

Assigns the number of entri~s expressed by integer to the size of the
VALUE stack thereby overriding the compiler estimated size.

Causes an extended SDL object code MAP file to be created showing
the relative displacement of object code per source card sequence
number, per Code Segment.

The XREF options may be used in one of the two following modes:

a. A $XREF card at the beginning of the source deck will
cause the compiler to build and XREF file, then ZIP
SDL/XREF to sort and print the file at the end of the
pre-pass. The compilation will continue.

b. A $XREF.ONLY card at the beginning of the source deck will
cause the compilation to be terminated at the end of the pre­
pass after the SDL/XREF program has been ZIPPED.

The UPL Compilers internal and external file identifiers are as follows:

Internal External Description
-

CARDS CARDS Card source input file.

SOURCE SOURCE Primary source input file if MERGE option
used.

NEWSOURCE NEWSOURCE Updated source output file if NEW option used.

LINE LINE Line printer file.

4-22

NOL COMPILER

General

The Network Definition Language (NDL) is a high level language for data communication and provides
a means of generating a B 1700 Network Controller. The B 1700 NDL Compiler translates the input
source code and outputs a NDL program listing, a Network Controller code file, and the Network
Information File (NIF). Figure 4-7 below illustrates the NDL generation process.

Compilation Card Deck

NOL
COMPILER

:.
NOL : : :
LISTING

Figure 4-7. NDL Generation Process

NOL
FILES

Figure 4-8 contains an example of a NDL compilation card deck used to compile a NDL program.

7 COMPILE

7 DATA CARDS

~=======:;-,
FILE
STATEMENTS
(OPTIONAL)

Figure 4-8. NDL Compilation Card Deck

4-23

?END

$DOLLAR
OPTION
CARDS

Compiler Options

There are various options available that when invoked affect the compilation process. The options cover
areas such as list format, error and warning message handling, maintenance, changing stack sizes, and
merging source code.

An option is either in a set or reset condition. The NDL compiler is preset with the following options:
LIST, CHECK, and DOUBLE. All other options must be invoked using the dollar option card at compile
time. The NDL dollar option card has the following format:

The dollar symbol($) must be in column one with one or more spaces separating each option specified.
With the one exception LIBRARY, there may be multiple options per card.

The available options and an explanation of their functions appear alphabetically as follows:

Option

CHECK

CODE

CONTROL

CSSIZE integer

DOUBLE

DYNAMICSIZE integer

ESSIZE integer

FORGETERRORS

LIBRARY

LIST

Description

This option causes the compiler to print warning messages
for sequence errors in the source language input. A
sequence error will occur when the sequence number of
the last card is greater than or equal to the current
sequence number.

The generated SDL code (S-operators) will be listed on
the line-printer.

The dollar($) option cards will be output on the object
program listing.

This option is used to alter the Control stack size to
integer en tries.

Double space listing.

Sets the Network Controller's dynamic memory size to
integer bits.

The Network Controller's Evaluation stack size may
be set to integer entries.

Directs the compiler to generate the object Network
Controller despite syntax errors.

The NDL source code specified by standard identifier
is retrieved from the NDL source/standards and inserted
in the user's program following the$ LIBRARY card.

The LIBRARY option may not be included on a card
containing other options.

When the LIBRARY option is used to access standard
REQUEST and CONTROL routines, the standard
REQUESTS must precede the standard CONTROLS.

The source code will be listed.

4-24

LST

MERGE

NEW

NIF

NSSIZE integer

NO

PPSSIZE integer

SEQ

SGL

SINGLE

SUPPRESS

VSSIZE integer

VOID

The source code will be listed.

This option is used to merge the primary input with the
secondary input.

A new source file will be created for use later as secondary
input when this option is specified.

This option allows the creation of a new Network
Controller in about half the time required for a total
compilation. The old requests and line control code
must remain unchanged.

The Network Controller's Name stack size may be set
to integer entries.

Options may be reset by specifying $ NO followed by the
name of the option to be reset. This allows options to be
set and reset at the user's discretion. NO does not affect
the VOID or LIBRARY options.

Sets the Network Controller Program Pointer
stack size to integer entries.

The source may be sequenced by supplying a beginning
sequence number and an increment. The numbering will
begin at SEQ BASE and will be incremented by SEQ
INCRMT. A plus sign(+) is used to separate SEQ BASE
and SEQ INCRMT which are both integers.

$ SEQ SEQBASE + SEQ INCRMT ~
If only $ SEQ is specified thereby omitting SEQ BASE
and SEQ INCRMT, the numbering will start with
00000000 and increment by I 00.

Single space listing.

Single space listing.

Prohibits the syntax warnings to be printed on the object
program listing.

The Network Controller Value stack size may be set to
integer bits.

When VOID is used in conjunction with $ MERGE, it elimi­
nates certain unwanted secondary source records from the new
new source file being created.

By specifying$ VOID, the secondary source record with the
current sequence number is skipped by the compiler.

$VOID may also be followed by an eight character integer
which instructs the compiler to skip all secondary source
records beginning at the current sequence number and con­
tinuing until a secondary source record is read that has a
sequence number higher than the eight character integer
specified.

4-25

Internal File Names

The NDL's internal and external file identifiers are as follows:

-

Internal External Description

CARDS CARDS Input file from card reader.

LINE LINE Source output listing to line printer.

SOURCE SOURCE Input file from disk or tape when the
MERGE option is invoked.

NEWSOURCE NEWSOURCE Output file to disk or tape when the new
option is invoked. Default is to disk.

NIF NDL/NIF Network Information File

ADDRESS NDL/ADDRESS Network Controller Address File

MACRO NDL/MACRO Skeletal Network Controllers

LIBRARY NDL/LIBRARY Library

'--· -

4-26

MIL COMPILER

General

The Micro Implementation Language (MIL) is a symbolic coding technique that makes available all the
capabilities of the B 1700 processor. A MIL program contains a set of micro instructions that are
directly executable upon the B 1700 hardware. MIL assumes interpretive or indirect processing of
information contained in main memory.

Compilation Card Deck

Figure 4-9 contains an example of a MIL compilation deck.

FILE
STATEMENTS

------------- (OPTIONAL)

? COMPILE

SOURCE DATA
--------------CARDS

? DATA CARDS

$DOLLAR
OPTION
CARDS

Figure 4-9. MIL Compilation Card Deck

Compiler Options

?END

$DOLLAR
MODULE
OPTION CARD

The $ Option Card is used to notify the MIL Compiler as to which options are required by the programmer
during compilation.

The $ Option card for the MIL Compiler has the following format:

1 [NO] option-I ... [NO] option-n J
,_______ _____ _

The MIL $ Option Card has the following characteristics:

a. Column one must be a$ sign.

b. There must be at least one space between options.

c. Options may be in any order.

4-27

d. Columns 73-80 are reserved for sequence numbering.

e. Any number of$ Option Cards may appear anywhere within the source deck.

f. The optional word NO appearing before any option RESETS that option.

The MIL Compiler is preset with the following options: LIST, ALLCODE, SINGLE, AMPERSAND,
and CHECK. --

ALLCODE

AMPERSAND

CHECK

DEBUG

DECK

DOLLAR

DOUBLE

EXPAND

FORCE

HEADINGS

LINES.PER.PAGE

LIST

LIST ALL

MERGE

NEW

NO

PAGE

PAGE.NUMBERS

PARAMETER.BLOCK

SEQ

SINGLE

SUBSET

Lists all codes generated by each MIL statement.

Prints all ampersand(&) cards.

Checks for sequence errors.

Debugs compiler only.

Punches an object deck.

Prints all dollar($) cards.

Double spaces listing.

Prints all statements within a macro invocation.

Outputs all files regardless of syntax errors.

Prints headings and titles on top of each page; does not
affect line count..

Specifies the number of lines to be put on the page of a listing.

Lists all MIL source input that is compiled.

Lists all MIL source input regardless whether conditionally
excluded.

Merges the secondary source of input with the file SOURCE. When
a duplicate sequence number exists the record from the card file will
be used.

Creates a new source file.

Resets option.

Ejects page of listing at that point.

Numbers the pages of the listing and maintains a count.

Used in conjunction with DECK and causes a parameter block to be
punched with the deck. Used primarily with interpreters that are
to be run with the MCP.

Resequences and outputs NEWSOURCE file and listing.

Single spaces program listing.

Generates code for the B 1710 series processors.

4-28

SUPPRESS

VOID

XREF

XREF .LABELS

XREF.NAMES

Module Option Dollar Card

Suppresses all warning messages except sequence error messages.

Voids those images from the secondary input file SOURCE which
have sequence fields less than or equal to the terminating
sequence field. If the terminating sequence field is missing, then the
only image voided is the first one with the same sequence field as
the VOID card.

Produces a listing of all user specified names and labels with each
identifier associated with its sequence number for each declaration
and invocation.

Produces a cross reference of labels only.

Produces a cross reference of user specified names only.

The module option dollar card ($) is used to set or reset user defined toggles used in conjunction with
IF statements in the conditional inclusion of source statements. It may be used anywhere within the
source deck, and each module option dollar card affects only those user defined toggles which are
referenced on that card. A user defined toggle can only be referenced by an IF statement when declared
(set or reset) on a module option dollar card.

Example:

$ SET SYSTEM!, RESET SW2, SET SW4, SET SWS

Internal File Names

The MIL Compiler's internal and external file identifiers are as follows:

Internal External Description

CARDS CARDS Input file from the card reader.

LINE LINE Source output listing to the printer.

SOURCE SOURCE Input file from disk or tape when the MERGE
option is invoked.

NEWSOURCE NEWSOURCE Output file to disk or tape when the NEW
option is invoked. Default is to disk.

4-29

Object Code Deck Format

The DECK option causes the object code to be output to punched cards. The cards have the following
format with all fields except the program identifier in hexadecimal format.

Card Columns Description

1-6 24-bit control memory address.

8-9 8-bit count of the number of bits of data on this card.

11-70 Contains up to 240 bits of data, left justified.

72-80 Program identifier, used for documentation only.

Compiler Restrictions

a. The only source of input is the card reader, unless otherwise specified by the MERGE option.
Once the MERGE option has been invoked, card only input is not possible.

b. When dollar cards($) are not included in the compilation deck, the default options will prevail.

c. Options may be reset only by using the NO option. A space must separate NO and the
option being reset.

d. Comments may appear on dollar cards only if preceded by either an asterisk(*) or a percent(%)
sign.

e. Dollars cards are not included as part of the NEWSOURCE file when the option NEW is specified.

4-30

SOL COMPILER

General

The Software Development Language (SDL) was developed specifically for writing the system software
for B 1700 systems. SDL is a high-level, procedure oriented language. All programs written in SDL
source language must be processed by the SDL Compiler. The SDL Compiler transforms the source
statements into S-Code to be interpreted by a set of micro-instructions called firmware.

Compilation Card Deck

Figure 4-10 contains an example of a SDL compilation card deck.

7 COMPILE

Compiler Options

FILE
STATEMENTS
(OPTIONAL)

SOURCE
DECK

Figure 4-10. SDL Compilation Card Deck

?END

$DOLLAR
OPTION
CARDS

The SDL Compiler has certain options that are available to the operator or programmer that may be
implemented at the time of compilation. These options are input by card along with the source deck
and have the following format:

1 [NO] option-I ... [NO] option-n

The SDL Dollar($) Options have the following characteristics:

a. Column one must contain a$ sign.

b. There must be at least one space between options.

c. Options may be in any order.

d. Columns 73-80 are reserved for sequence numbering.

4-31

J

e. Any number of options may appear anywhere within the source deck.

f. The option NO appearing before any other option resets or negates that option.

The following is a list of the SDL Compiler options and their definitions.

AMPERSAND

CHECK

CODE

CONTROL

CREATE.MASTER

CSSIZE integer

DEBUG

DETAIL

DOUBLE

DYNAMICSIZE integer

ESSIZE integer

FORMAL.CHECK

INTERPRETER
file-identifier

INTRINSIC
file-identifier
(family-name only)

Prints those ampersand cards that are examined.

Checks the source input file for sequence errors.

Prints the SDL object code generated for each source
statement.

Prints all Compiler Dollar Option cards from that point.
If the option word CONTROL is to be printed, $ CONTROL
(space) CONTROL format must be used.

When used, this option must be the first card in the compilation
deck and causes the compiler to perform the following
functions:

a. Dump information to the master information files.

b. Create a new source file.

c. Create a new code file.

Assigns the number of entries in the Control stack
represented by integer and overrides the compiler estimate.

Debugs compiler only.

Causes the compiler to list the expansion of all define
invocations.

Double spaces listing.

Assigns the value of the integer as the estimated memory size
allocated for paged arrays. Integer is expressed in bits.

Assigns the number of entries in the Evaluation stack
by integer and overrides the compiler estimate.

Causes the checking of the actual parameters passed to each
procedure during execution against the TYPE and LENGTH
specifications of their corresponding formal declarations.
Also, the values returned from function procedures will be
checked against the type and length in the procedure head
statement. Lack of correspondence is a run time error.

Causes the program when executed to use the assigned
interpreter rather than the compiler default interpreter.

Causes the program when executed to use those Intrinsics
with the assigned family-name rather than the compiler
assigned family-name.

4-32

LIST

LIST ALL

MERGE

NEW

NO

NSSIZE integer

PAGE

PPSIZE integer

SEQ beginning-sequence­
number increment

SINGLE

SIZE

SUPPRESS

VOID sequence number

VSSIZE integer

XMAP

Prints the source input that was compiled. The NO option
when invoked with LIST will reset the LIST ALL option also.

Prints all source input regardless if conditionally excluded.
The LISTALL option sets the LIST option on, but NO
LIST ALL does not reset LIST.

Indicates to the compiler that the source file is on tape or
disk and there are cards to be merged for the current
compilation.

Creates a new primary source file.

The presence of NO immediately before any other option
negates that option.

Assigns the number of entries expressed by integer to the
Name stack thereby overriding the compiler estimated size.

Ejects page.

Assigns the number of entries expressed by integer to the
Program Pointer stack thereby overriding the compiler
estimated size.

Causes the output file to be resequenced beginning with the
number used with SEQ.

Single spaces listing.

Outputs at the end of the listing the code segment names
and their sizes.

Causes all warning messages to be suppressed. To suppress
sequence error message invoke the NO CHECK option.

Causes all records in the primary source file (as in the case of
the MERGE) to be removed from the sequence number of the
the VOID card itself through the sequence number entered
with the VOID option.

The VOID option has the following restrictions:

a. Must be the only compiler option on the card.
b. Cannot be preceded by the NO option.
c. Must contain a sequence number in columns 73-80.

Assigns the number of entries expressed by integer to the size
of the Value stack thereby overriding the compiler
estimated size.

Causes an extended SDL object code MAP file to be created
showing the relative displacement of object code per source
card sequence number, per Code Segment.

4-33

Internal File Names

The SDL Compiler's internal and external file identifiers are as follows:

Internal External Description
-

CARDS CARDS Card source input file.

SOURCE SOURCE Primary input source file if MERGE option
used.

NEW SOURCE NEW SOURCE Updated source output file if NEW option
used.

LINE LINE Line printer file.
.....

... , __ ._,

SOL Recompilation

The recompilation of an SDL program creates a Master Information File.

The create master must take place once and then may be followed by successive recompilations. Both the
create master and the recompilation may be performed at the same time. In addition it is possible to
perform successive regular compilations without invoking the recompilation facility.

CREATING MASTER INFORMATION FILES

In order to create Master Information Files, the first card of the con}Pilation source file must be a
$CREATE.MASTER option card. This option causes the SDL Compiler to perform the following
functions:

a. Save information needed for the recompilation into master files.

b. Create a new source file about which the information is to be used.

c. Use the Master Information Files and the new source file to create a new output code file.

The following files contain the information to be saved and used in the recompilation process.

NEW SOURCE

NEW.INFO.FILE

NEW.BLOCK.ADDRESS.FILE

NEW.SECONDARY.FILE

NEW.PPB.FILE

4-34

The following information is contained in the master information files: the input source images, Lexie
Level one procedure boundaries for both the source file and object file, Lexie Level zero symbol tables, a
record of all code addresses that have been emitted, the object code from which code addresses that have
been emitted, the object code from which code addresses that have been emitted, the object code from which
code addresses have been excised, the File Parameter Blocks, and SCRATCHPADS. (Refer to B l 700Master
Control Reference Manual, dated June, 1974, and B 1700 System Reference Manual, dated December, 1973.)

CREATE MASTER RESTRICTIONS

The create master operation has the following restrictions:

a. $ CREATE.MASTER must be the first card of the compilation source card file.

This is to include any ampersand cards; they sould be
sequenced.

b. $ NEW is not needed for this operation.

c. $ SEQ should be used if any input source images do not contain sequence numbers.

RECOMPILING

Recompilation is performed on a Lexie Level one procedural basis. That is, the outermost procedure
containing a recompilation source card is the procedure which is recompiled. The code that is produced by
the recompilation will be merged into, and in some cases replace some of the information created during
the create master process.

The recompilation is invoked by including as the first card of the recompilation source deck a
$ RECOMPILE.

The $RECOMPILE causes the compiler to use the recompilation source deck (usually referred to as
"patches") and the master information files to locate the Lexie Level one procedures and generate the same
information for them as was generated for the entire program in the create master operation. This infor­
mation is then combined, procedure by procedure, with the Master Information Files to_ produce the final
form of the program that is turned into a new code file.

RECOMPILATION RESTRICTIONS

The recompilation process has the following restrictions:

a. The $RECOMPILE must be the first card of the recompilation source deck (patch deck).

b. The recompilation source deck may contain dollar cards, and ampersand (SET and RESET)
cards, followed by the patch cards.

c. Lexie Level zero code cannot be patched. This includes all global data, Lexie Level one procedure
headings, and the main program.

d. Neither $ SEQ or $ MERGE options may be invoked while using $ RECOMPILE process.

e. The source file that is input during the recompilation must be on disk in order that it may be
accessed randomly.

4-35

CREATE MASTER AND RECOMPILE OPERATION PERFORMED TOGETHER

Both the create master and the recompilation process may be performed at the same time. Simply adhere
to the rules for each separate operation and use $ RECOMPILE CREATE.MASTER as the first card of the
source deck. It should be noted, however, that this procedure updates some of the information in the file
MASTER.INFO.FILE. Therefore, the file must be saved because if any subsequent recompilations are
desired, they must be performed against the saved master file.

GENERAL INFORMATION

1. The only information which may be listed during a recompilation is that which is being
recompiled.

2. Both the source file used with $ CREATE.MASTER and the file created by $ CREATE.MASTER
may be on tape, but the new source file must be placed on disk prior to any recompilations.

"3. Because of the disk space required for recompilation, it is advantageous to keep source files on
tape until needed.

4. The source image file created by the create master process contains no information other than the
source images. Therefore it may be used in a regular compilation.

SDL COMPILATION DECK EXAMPLES

Compile and Create Master

? COMPILE SA SDL LIBRARY
? FILE SOURCE NAME SA0206/SOURCE TAPE;
? FILE NEWSOURCE NAME SA0410/SOURCE TAPE;
? FILE NEW.INFO.FILE NAME SA0410/INFO;
? FILE NEW.BLOCK.ADDRESS.FILE NAME SA0410/BLOCK.ADDRESS;
? FILE NEW.SECONDARY.FILE NAME SA0410/SECONDARY;
? FILE NEW.PPB.FILE NAME SA0410/FPB;
? DATA CARDS
$ CREATE.MASTER
$ MERGE LIST SINGLE SIZE SEQ
[PATCH CARDS]
[99999999 CARD]
? END

Recompile

? COMPILE SA SDL LIBRARY
? FILE SOURCE NAME SA0410/SOURCE;
? FILE MASTER.INFO~FILE NAME SA0410/INFO;
? FILE MASTER.BLOCK.ADDRESS.FILE NAME SA0410/BLOCK.ADDRESS;
? FILE MASTER.SECONDARY.FILE NAME SA0410/SECONDARY;
? FILE MASTER.PPB.FILE NAME SA0410/FPB;
? DATACARDS
$ RECOMPILE
$ LIST SINGLE SIZE
$ VSSIZE 10000 NSSIZE 100
[PATCH CARDS]
[99999999 CARD]
? END

4-36

Recompile and Create Master

? COMPILE SA SDL LIBRARY
? FILE SOURCE NAME SA0410/SOURCE;
? FILE MASTER.INFO.FILE NAME SA0410/INFO;
? FILE MASTER.BLOCK.ADDRESS.FILE NAME SA0410/BLOCK.ADDRESS;
? FILE MASTER.SECONDARY.FILE NAME SA0410/SECONDARY;
? FILE MASTER.PPB.FILE NAME SA0410/FPB;
? FILE NEWSOURCE NAME SA0411/SOURCE TAPE;
? FILE NEW.INFO.FILE NAME SA 0411/INFO;
? FILE NEW.BLOCK.ADDRESS.FILE NAME SA04 l 1 /BLOCK.ADDRESS;
? FILE NEW.SECONDARY.FILE NAME SA0411/SECONDARY;
? FILE NEW.PPB.FILE NAME SA0411/FPB;
? DATACARDS
$ RECOMPILE CREATE.MASTER
$ VSSIZE 10000 NSSIZE 100
$ UST SING LE SIZE
[PATCH CARDS]
[99999999 CARD]
? END

4-37

REMOTE JOB ENTRY SYSTEM (RJE)

Introduction

The B 1700 Remote Job Entry system uses data communication techniques to allow a B 1700 user to enter
a program at the B 1700 system for execution by a central computer. Either a B 1714 or B 1720 series
Burroughs computer may be used as an input device, and will appear as a remote terminal to the central
computer. The central computer may be any Burroughs B 2700/B 3700/B 4700/ or B 6700 system.
Following execution of the program by the central system, all output information for the console printer,
line printer, or card punch is transmitted to the remote B 1700 system.

The Remote Job Entry System

A typical RJE system is illustrated in figure 4-11.

INPUT/OUTPUT
PROGRAM

DATA COMM
HANDLER
PROGRAM

LINE
PRINTER

M
c
p

Figure 4-11. Remote Job Entry System

CENTRAL

COMPUTER

SYSTEM

All central computer systems can accommodate more than one remote system, with the maximum number
permissible being dependent on the central system's restrictions.

The Remote Job Entry system software resides on the systems disk and consists of four programs:
RJE/DCH, RJE/NDLDCH, RJE/10, and RJE/MCS.

1he RJE/DCH and RJE/NDLDCH programs are data communications handlers that perform all transmitting
and receiving of data between the central computer and the remote B 1700 system. Unless specifically
named, the RJE/DCH and RJE/NDLDCH programs will be referred to as data communications handlers in
this subsection.

4-38

The RJE/IO and RJE/MCS programs perform all input/output operations between the data communications
handler and the card punch, card reader, line printer, and console printer. These two programs also direct
all messages received from the central computer to the appropriate output device of the remote system.
Unless specifically named, the RJE/IO and RJE/MCS programs will be referred to as input/output programs
in this subsection.

Operating Instructions
\-

The B 1700 Remote Job Entry system software is initiated by executing the input/output program. The
input/output program then zip executes the data communications handler program, which displays the date
and time of execution on the console printer. The data communications handler then requests the port,
channel, and adapter numbers by displaying "ACCEPT" on the console printer. The operator must then
supply the proper numbers with the AX message in the following format:

(mix-index)AXnnnnnn

~ f I r adapter number
channel number

port number

'----------mix-index of Data Comm handler

Example:

1AX070400

When the Data Comm handler accepts this message, it establishes communication with the centrnl system.
When switched lines are used, the B 1700 operator must dial the central system manually. One of the two
following messages are displayed on the console printer to indicate that communication has been established
between the remote and central systems.

ON LINE Indicates that the remote system detected the central system first

HOST ESTABLISHING Indicates that the central system detected the remote system first

Remote Deck Control Cards

A special feature has been implemented in the MCP to distinguish those control cards for the remote
(B 1700) system from the control cards for the central system since each require an invalid character to
define a control card. This feature uses the control words STREAM and TERMINATE to allow programs
to read control cards in RJE mode.

Example:

? STREAM RJE/CARDS

remote deck(s)

? TERMINATE RJE/CARDS

All card images in the remote deck(s) will be transmitted to the central system. If the last card in the
remote deck(s) is not the TERMINATE card, the CARD READER NOT READY message is output and
waits for more card input.

4-39

RJE System Control Messages

Input messages for the remote jobs being processed by the central computer may be input by the B 1700
console printer using the following format:

mix-index AX (message)

The mix-index of the AX message refers to the mix index number of the input/output program. The
content of the message sent by the AX message is dependent on the central systems demands. In general,
these messages include all central system input messages that allow the operator to check the status of, and
exert control over, all programs and data files entered via the remote system.

Remote Control Message Entry

Local control messages or those being entered through the B 1700 and intended for B 1700 RJE system
software are designated by the use of a period(.) immediately preceding the content of the message.

Example:

mix-index AX (.message)

Blanks (spaces) are allowed anywhere within the text of the message, but the first character must be a
period(.).

There are ten local control messages. Any other messages entered using the period as the first character will
result in the following message being displayed:

ERROR: INVALID OPERATOR IN . INSTRUCTION, RE-ENTER

Local Control Messages

Following are the ten valid local messages .

. AUDIT or .IOLOG

The .AUDIT or .IOLOG commands can be used to instruct the Data Comm handler to either stop or start
auditing Data Comm input/output activity. The first entry of .AUDIT or .IOLOG initiates auditing. The
next entry of .AUDIT or .IOLOG stops auditing. Each subsequent entry of .AUDIT or .IOLOG switches
the auditing process to the opposite state. The mix-index used with .IOLOG refers to the mix-index number
of the NDL Data Comm handler (RJE/NDLDCH). The mix-index used with .AUDIT refers to the mix-index
number of the SDL Data Comm handler (RJE/DCH).

The format of .AUDIT and .IOLOG are as follows:

[. __ <mix-index_>_A_x_io_L_o_G ____________ ~

4-40

.RE or .READ

This command directs the input/output program to open a card file named RJE/CARDS and begin reading
the remote deck that is to be transmitted to the central system. RJE/CARDS is closed after the entire
remote deck has been read.

(mix-index)AX.READ

.CL or .CLOS

The .CL or .CLOS commands may be used to close all output files that were opened by the input/output
program. The output of the central system is a continuous stream of data, and if it is directed to a backup
disk or tape, it is sometimes desirable to divide the data into a set of logical backup files. These commands
are useful for that function.

'--~----~~~~--~---------<-m_i_x--in_d_e_x_)AX--_.c_L_o_s----------------~~~~
.CLCP

The .CLCP command will close the card punch file.

'----------------------~-----(-m-ix_-_in_d_ex_)_A_x_._c_L_C_P~----------~~~~~· ~
.CLLP

The .CLLP command will close the line printer.

~--------~--~-------------~-m_i_x--in_d_e_x-)A--X_.C_L_L_P--------~--~~~~~-J
.ST or .STOP

The .ST or .STOP command terminates the current RJE session. A message is sent from the input/output
program to the Data Comm handler RJE/DCH instructing it to cease all activity and to terminate itself. All
queued messages are lost.

(mix-index)AX.STOP J
4-41

.WT or .WAIT

The .WT or .WAIT command instructs the Data Comm handler program to cease all line activity and wait to
answer a call from the central system. The Data Comm handler issues a test command for a ringing phone.
When control returns to the Data Comm handler indicating the phone is ringing, the Data Comm handler
answers the phone and indicates so by the following message displayed on the console printer:

PHONE RINGING

A bell will ring at the remote system when the PHONE RINGING message is displayed. At that point, the
Data Comm handler attempts to re-establish the line connection with the central system.

The .WT or .WAIT command is used in conjunction with the RJE/DCH program only.

~~~~~~~-~~~~·(m-ix_--in_d_ex __ >_A_x_._w_A_I_T~~~~~~~~~~~~~___. 
.EST 

The .EST command causes the Data Comm handler program to attempt to re-establish the line connection 
with the central system. The message ONLINE is displayed when the line connection is re-established. 

The .EST command may be used in conjunction with the retry function of RJE. The error message 
RETRIES-UP is displayed by the Data Comm handler program when the current buffer being sent to the 
central system is not being received. 

[ (mix-index)AX.EST I 
, _______ _J 

.LOG 

The .LOG command is used to display on the console printer a summary of the line exceptions that have 
occurred during transmission. The operator can obtain an indication of the quality of the line connection 
and the rate of error activity on the line from the message or messages displayed. Each .LOG command 
entry resets the counters to zero. 

C ___ _ (m~ix--1-·n_d_e_x_)_AX~·-L_O_G~~~~~--~~--~~~ 
The format of the summary messages follows: 

nnnnnnnn NAKS SENT BECAUSE OF PARITY ERRORS 

nnnn:nnnn IMPLIED NAKS SENT BECAUSE OF NO BUFFERS 

nnnnnnnn TIMEOUTS IN READ OPERATIONS 

nnnnnnnn TIMEOUTS IN WRITE OPERATIONS 

4-42 



nnnnnnnn OTHER EXCEPTIONS IN READ OPERATIONS 

nnnnnnnn OTHER EXCEPTIONS IN WRITE OPERATIONS 

The .QS command instructs the Data Comm handler and the input/output program to maintain only the 
specified number of buffers in their queue files. The integer can be from 1 to 9999 and specifies the 
maximum number of messages that can be in the queue. 

(mix-index)AX.QS=in teger 

Console Printer Messages 

The following five groups of messages contain all of the messages that can be displayed on the console 
printer during a RJE session. Some of these messages require operator intervention and some are used only 
to notify the operator of certain conditions. Some of the messages are common to several system software 
programs, and the other messages are used only with RJE/MCS or RJE/DCH. 

RJE/10 AND RJE/MCS COMMON CONSOLE PRINTER MESSAGES 

ERROR: "QS" OPERAND INVALID 

The integer exceeds four characters. 

ERRORS: INVALID CHARACTER DETECTED, RECORD SKIPPED 

An exception condition occurred on a card reader. The card image will also be displayed. 

ERROR: INVALID OPERATOR IN"." INSTRUCTION, RE-ENTER 

An invalid local command was entered. 

ERROR: NO"=" IN ".QS" INSTRUCTION 

The "="character is required in the ".QS" command. 

INPUT FILE EOF 

The end of file was detected by the input device. 

REQUEST IGNORED, CARD FILE STILL OPEN 

Only one input file can be open at any one time. Wait for console printer message "INPUT FILE 
EOF" before entering ".RE" or ".READ". 

RJE/MCS UNIQUE CONSOLE PRINTER MESSAGE 

LOG FEATURE NOT IMPLEMENTED IN RJE/NDL 

Used with the RJE/NDLDCH Data Comm handler, and indicates that the log function is not 
implemented. 

4-43 



RJE/DCH AND RJE/NDLDCH COMMON CONSOLE PRINTER MESSAGES 

HOST ESTABLISHING 

Indicates that the central system detected the remote system first. 

LOSS OF DATA.SET.READY 

Indicates that the data set went "down" during the last 1/0 sequence. If this occurs and switched 
lines are in use, the Data Comm handler will disconnect (if a connection had been established). 
The user must dial the central computer system again to establish the connection. 

ONLINE 

This message indicates that the remote system detected the central computer system first. 

RJE/DCH UNIQUE CONSOLE PRINTER MESSAGES 

"DLE-EOT" RECEIVED 

Signifies that the central computer is going off-line. If leased lines are in use, the Data Comm 
handler goes into the establishment phase until the central computer comes on-line again. If 
switched lines are in use, the Data Comm handler will wait for data set ready to occur and go 
into the establishment phase again. 

"WAIT" IGNORED ADAPTER NOT SWITCHED 

The . WAIT command was issued on a leased line. 

ERROR: CONTROL NOT PRESENT 

I/O complete was not received within 14 seconds on the specified 1/0 control. When this occurs, 
both RJE/DCH and RJE/10 goes to end of job. 

ERROR: INVALID ADAPTER TYPE 

The ID address from the specified adapter is not valid. RJE/DCH and RJE/10 goes to end of job 
when this occurs. 

ESTABLISHMENT RETRYS UP 

After 50 attempts by the remote system to establish communications with the central computer, 
this message is displayed. RJE/DCH then continues to try to make a connection with the central 
computer. 

FILE "DC/AUDIT.FILE" LOCKED 

Indicates that the audit file is already in use by another Data Comm handler. Modify the audit 
file to a different label and re-enter the .AUDIT command. 

INVALID RESPONSE 

The entry for the port, channel, or adapter was not numeric. 

LOSS OF CLEAR TO SEND 

The clear to send signal supplied by the data set was "lost" during an 1/0 operation. This is a 
recoverable error condition. The data set should be checked. 

4-44 



MEMORY PARITY ERROR 

A memory parity error occurred while attempting to send a message to the central computer. 
This is a recoverable error. 

PHONE RINGING 

The central computer is dialing the B 1700 remote system to attempt to re-establish 
communication. 

RJE/NDLDCH UNIQUE CONSOLE PRINTER MESSAGE 

RETRIES-UP 

Indicates that the current buffer being sent to the central computer system is not being 
acknowledged, due to the central computer not acknowledging the message, or because of 
transmission line problems that cause exception conditions whenever the message is transmitted 
after the retry limit has been reached. The RJE/NDLDCH program initiates the display of the 
RETRIES-UP message, and then requeues the current buffer. If a buffer is queued for another 
station, RJE/NDLDCH attempts to transmit that buffer; otherwise, RJE/NDLDCH continues, 
trying to transmit the same buffer. Should an ".EST" message be received at this time, then the 
message being retransmitted is discarded before the link is re-established. 

4-45 



Q.) 
c 

'"'O 
2 -0 
'"'O 

C> 
c 
0 
0 -::::> 
0 

Q.) 
c 

'"'O 
CL> --0 

'"'O 
C> 
c 
0 
0 -::> 
0 

BURROUGHS CORPORATION 
DATA PROCESSING PUBLICATIONS 

REMARKS FORM 

TITLE: B 1700 SV$TEMS 
SYSTEM SOFTWARE 
Operational Guide 

CHECK TYPE OF SUGGESTION: 

0ADDIT~ON 0DELETION 0REVISION 

FORM: 1068731 

DA TE: _l!l'!uary, 197_~ ~-

0ERROR 

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION: 

FROM: NAME 
TITLE 
COMPANY------------­
ADDRESS 

DATE __ _ 



STAPLE 

FOLD DOWN SECOND FOLD DOWN 

-------------------------------------~----------------------------------------------~----·-

attn: Publications Department 

BUSINESS REPLY MAIL 
First Class Permit No. 1009; El Monte, CA. 91731 

Burroughs Corporation 
P. 0. Box ·142 
El Monte, CA. 91734 

Technical Information Organization, TIO - West 

FOLD UP FIRST FOLD UP 



Printed in U.S. A. Januairy. 1976 1068731 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-024a
	2-025
	2-026
	2-026a
	2-026b
	2-026c
	2-026d
	2-026e
	2-026f
	2-026g
	2-026h
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-036a
	2-037
	2-038
	2-038a
	2-038b
	2-038c
	2-038d
	2-039
	2-040
	2-041
	2-041a
	2-041b
	2-042
	2-042a
	2-043
	2-044
	2-045
	2-046a
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-072a
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-080a
	2-080b
	2-081
	2-081b
	2-082
	2-082a
	2-082b
	2-083
	2-084
	2-085
	2-085a
	2-085b
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-103a
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-122a
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-129a
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-136a
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-24a
	3-24b
	3-24c
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	replyA
	replyB
	xBack

