

Printed in U. S. America

Burroughs

B 1700 SYSTEMS

MICRO IMPLEMENTATION

LANGUAGE
{MIL)

REFERENCE MANUAL

NOTICE

THE MATERIAL IN THIS DOCUMENT IS NOT TO BE REPRODUCED,
COPIED OR UTILIZED FOR FURTHER PUBLICATION. ADDITIONAL
COPIES SHOULD BE OBTAINED FROM BURROUGHS CORPORATION
UNDER THE TERMS OF THE APPROPRIATE PROGRAM PRODUCTS
LICENSE.

Burroughs Corporation
Detroit, Michigan 48232

$4.00

12-73 1072568

COPYRIGHT© 1973 BURROUGHS CORPORATION

The information contained herein is subject to change
without notice. Revisions may be issued to advise of

such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Technical
Information Organization, TIC-Central, Burroughs Corporation, Burroughs Place, Detroit,
Michigan 4823 2.

SECTION

1

2

3

TABLE OF CONTENTS

TITLE

INTRODUCTION ...

MICRO PROGRAMMING CONCEPTS.

General . . .

Micro Instructions.

Defined Field Concepts ...

PAGE

xi

1-1

1-1

1-1

1-2

Interpretation of the Virtual Language. 1-2

MICRO IMPLEMENTATION LANGUAGE

Assembly Coding Form ..

Condit ions. •

Labels. . .

Literals. .

Strings .

REGISTERS ..

General .

Alphabetical Listing of Registers .

Active Registers ..

X-Y Registers .

Field (F) Register

Local (L) Register ..

Transform (T) Register.

. , .

Micro Instruction (M) Register.

Base (BR) and Limit (LR) Registers.

Address (A) Register.

A Stack

2-1

2-1

2-1

2-3

2-4
2-5

3-1

3-1

3-1

3-5
3-6

3-6

3-6

3-6

3-7

3-7

3-7

3-7
Top of Control Memory (TOPM) Register . 3-8

Memory Base Register (MBR). 3-8

Control (c) Register. 3-8

©1973 Burroughs - DO NOT REPRODUCE iii

SECTION

3 (cont)

iv

TABLE OF CONTENTS (cont)

TITLE

Combinatorial Logic
Function Box . . .

Result Registers

or

XORY Result Register ..

XANY Result Register .
XEOY Result Register

CMPX Result Register .
CMPY Result Register .
MSKX Result Register .
MSKY Result Register

SUM Result Register ..

.

.
. .

.
.

.

Difference Result Register .

Scratchpad . .

.

. . .

.

. . .

Scratchpad Words - 24 Bits Each ..

Double Scratchpad Words - 48 Bi ts Each.

Constant Registers

Maximum Main Memory Register .

Maximum Control Memory Register.

Null Register.

Input/Output Registers .

Console Cassette Tape Input
(u) Register

Command Register .

Data Register. . •.

Condition Registers ..

Binary Conditions (BICN) Register.

Least Significant Unit of Y ..

Carry Control Register

Carry Difference Register ..

Carry Level (CYL) Register .

PAGE

3-9

3-9
3-9
3-9
3-10

3-10

3-10

3-10

3-10

3-10

3-11

3-11

3-11

3-12

3-12

3-12

3-12

3-12

3-12

3-12

3-13

3-13

3-13

3-14

3-14

3-14

3-14

3-14

SECTION

3 (cont)

4

TABLE OF CONTENTS (cont)

TITLE

XY Conditions (XYCN) Register . .
Most Significant Unit of X.

XY States (XYST) Register
Least Significant Unit of X .

Any-Interrupt . .

Console Interrupt . .

Main Memory Read Parity Error
Interrupt

Main Memory Address Out of
Bounds Override . .

Read Address Out of Bounds
Interrupt

Write/Swap Address Out of Bounds
Interrupt

. . .

. . .

PAGE

3-14

3-14

3-15

3-15

3-15

3-16

3-16

3-16

3-16

3-17
Field Length Conditions(FLCN)Register. 3-17

Interrupt Conditions (INCN) Register. . 3-17

No Device . .

Hi-Priority .

Interrupt

Lockout . .

Register Designations and Areas of
Application .. , . . • • • • •

Micro Instruction Controls ...

S-Memory Controls .

Interrupt Controls.

Parallel Width Controls

Organization of Fields and
Subfields

MICRO OPERATORS .

Notations and Conventions Used
in the Syntax

©1973 Burroughs - DO NOT REPRODUCE v

3-17

3-17

3-17

3-17

3-17
3-18

3-18

3-18

3-18

3-18

4-1

4-1

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE

4 (cont) Key Words 4-1
Lower Case Words. 4-1
Braces. 4-1
Brackets. 4-1

Concurrent Execution of Micro Operators 4-2
ADJUST. 4-3
ADD SCRATCHPAD. 4-4
AND 4-5
BIAS. 4-7
CALL. 4-9
CARRY 4-10
CASSETTE. 4-11
CLEAR 4-12
COMPLEMENT. 4-13
COUNT 4-15
DEC 4-16
DEFINE. 4-17
DEFINE-VALUE. 4-18
DISPATCH. 4-19
EOR 4-21
EXIT. 4-22
EXTRACT 4-23
GO TO 4-25
HALT. 4-26
IF. 4-27
INC 4-33
JUMP. 4-34
LIT 4-35
LOAD. 4-36
LOAD-MSMA 4-37
LOAD-SMEM 4-39
MACROS. 4-40
MICRO 4-42
MOVE 4-43

vi

- TABLE OF CONTENTS (cont)

SECTION TITLE

4 (cont) NOP . • .

NORMALIZE .

OR. . . .

OVERLAY • •

READ. • . •

RESET

ROTATE OR SHIFT r)"\
.1. •

PAGE

4-46
4-47
4-48
4-49
4-50
4-51
4-52

ROTATE OR SHIFT X, Y and XY 4-54
SEGMENT • 4- 55

SET 4-56

5

SKIP ..

STORE .

SUBTRACT SCRATCHPAD

SWAP .•.

TABLE .

WRITE .

WRITE-STRING.

XCH . • . .

PROGRAMMING TECHNIQUES.

Virtual Language Definitions.

Writing Rules ..•

APPENDIX A MIL COMPILER OPERATION

Compiler Control Card • . .

The Module Option $ Card. .

APPENDIX B B 1710 HARDWARE TABLES

APPENDIX C

B 1710 Register Addressing

Condition Registers .

B 1720 HARDWARE TABLES.

B 1720 Register Addressing

Condition Registers

@ 1973 Burroughs - DO NOT REPRODUCE

4-58
4-60
4-61
4-62
4-63

4-64
4-65
4-66

5-1
5-1
5-1

A-1

A-1

A-3

B-1

B-1

B-1

C-1

C-1

C-1

vii

SECTION

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

viii

TABLE OF CONTENTS (cont)

TITLE

MICRO INSTRUCTIONS

I/O RESULT DESCRIPTORS

MIL ERROR AND WARNING MESSAGES.

PAGE

D-1

E-1

F-1

MIL Error Messages F-1

MIL Warning Messages F-2

B 1700 HARDWARE INSTRUCTION FORMATS G-1

BIAS . .

BIT TEST RELATIVE BRANCH FALSE .

BIT TEST RELATIVE BRANCH TRUE.

BRANCH RELATIVE.

CALL •

CASSETTE CONTROL .

CLEAR REGISTERS.

COUNT FA/FL. . . .

DISPATCH . . .

EXTRACT FROM REGISTER T ..

HALT .

LOAD F FROM DOUBLEPAD WORD

MANIPULATE 4-BIT

MOVE 8-BIT LITERAL

MOVE 24-BIT LITERAL. .

NO OPERATION .

NORMALIZE X.

OVERLAY CONTROL MEMORY

READ/WRITE MEMORY.

REGISTER MOVE

SCRATCHPAD MOVE ..

SCRATCHPAD RELATE.

SET CYF.

SHIFT/ROTATE REGISTER T LEFT .

G-1

G-2

G-3

G-4

G-5

G-6

G-7

G-8

G-9

G-11

G-12

G-13

G-14

G-15

G-16

G-17

G-18

G-19

G-20

G-21

G-22

G-23

G-24

G-25

SECTION

APPENDIX G
{cont)

TABLE OF CONTENTS (cont)

TITLE

SHIFT/ROTATE REGISTERS X
AND Y LEFT/RIGHT ...

SHIFT/ROTATE REGISTER X
OR Y LEFT/RIGHT

SKIP WHEN . _.

STORE F INTO DOUBLEPAD WORD . .

SWAP DOUBLEPAD WORD WITH REGISTER F . .

SWAP MEMORY

APPENDIX H MICRO PROCESSOR TIMING TABLES .

APPENDIX I

B 1710 Micro Instruction Timing .

B 1720 Micro Instruction Timing .

RESERVED WORDS AND SYMBOLS ..

APPENDIX J GLOSSARY.

INDEX

FIGURE

B-1

TABLE

4-1
4-2
B-1

B-2

C-1

C-2

H-1

H-2

LIST OF ILLUSTRATIONS

TITLE

B 1710 Processor.

LIST OF TABLES

AND Truth Table .

EOR Truth Table .

TITLE

B 1710 Register Addressing ..

Condition Registers

B 1720 Register Addressing ..

Condition Registers

B 1710 Micro Instruction Timing •.

B 1720 Micro Instruction Timing •..

©1973 Burroughs - DO NOT REPRODUCE

PAGE

G-26

G-27

G-28

G-29

G-30

G-31

H-1

H-1

H-3

I-1

J-1

one

PAGE

B-3

PAGE

4-5
4-21
B-1

B-1

C-1

C-1

H-1

H-3

ix

INTRODUCTION

The Burroughs Micro Implementation Language (MIL) is a symbolic

coding technique that makes available all the capabilities of the

B 1700 Processor. MIL assumes interpretive or indirect processing

of information contained in main memory.

The machine language output from the MIL compiler is ready for exe­

cution directly upon the hardware. The user, however, must be pre­

pared to programmatically control the total environment including

bootstrap loading, interrupt servicing, and potential machine

malfunctioning (i.e., parity error detection).

To use the MIL compiler properly and efficiently, the programmer

must have an extensive knowledge of the available registers and

their capabilities. This manual describes the registers, the

syntax, and the semantics of the MIL language and may be used to

write programs without prior knowledge of the system. A description

of the Input/Output subsystem and the I/O descriptors as well as

more detailed information about the registers will, however, be

found in the B 1700 Systems Reference Manual (form 1057155).

© 1973 Burroughs - DO NOT REPRODUCE xi

SECTION 1

MICRO PROGRAMMING CONCEPTS

GENERAL.

Micro programming has been defined as "a means for programming a

computer hardware architecture".(*!) The micro programmer is con-

cerned with machine registers which were formerly the domain of the

hardware systems designer. Strings of micro instructions manipulate

those internal registers to present an outward appearance of system

hardware which is more functional for problem programming. In most

machines now in the market place, read only memories (ROM's)

contain the micro programs which convert the unique internal envi­

ronment of several different processors into a standard assembly

language. Once created, the micro programs are unalterable and

contain many compromises in their attempt to do everything within

limited space and a single problem.

The Burroughs B 1700 system makes use of the latest technology to

implement a writable control memory and has several micro programs,

each optimized for the functions it will perform. The virtual system

architectures chosen have been those of the standard (COBOL and

FORTRAN), problem-oriented, compiler languages. Other micro

programmers may choose architectures and create languages optimized

for other purposes.

MICRO INSTRUCTIONS.

A micro instruction is the smallest programmable operation within the

system. Each micro instruction is fetched from control memory and

decoded in the (micro) register to be directly executed by the

hardware.

1 The definition is by Professor M. V. Wilkes, Cambridge University.
Computer·Inaugural Conference 1951, pp 16-21.

©1973 Burroughs - DO NOT REPRODUCE 1-1

DEFINED FIELD CONCEPTS.

A defined field concept allows the addressing of data in main memory

to the individual bit and to be from one to 65,535 bits in length.

There are no visible boundaries or "best" container size for any

information contained in main memory. Virtual machine instruction

strings (formerly called machine object code) and their data may

thus be densely packed into meaningful fields, saving considerable

memory space. The programming problem of packing and unpacking

data fields across hardware container boundaries is completely

resolved, saving much programming effort and processor time. The

micro program fetches groups of bits in meaningful field sizes

from anywhere in main memory as needed.

Special hardware, called a Field Isolation unit, has been imple­

mented to achieve bit addressability and variable length fields and

to automatically increment addresses, allowing for rapid iteration.

INTERPRETATION OF THE VIRTUAL LANGUAGE.

The traditional approach to supporting a higher-level language is to

translate the source statements as written by the programmer into

another language either directly recognized by the hardware, e.g.,

machine object code, or easily translatable into the machine object

code, e.g., an assembly language. An alternate technique is the

interpretive execution for each source statement with a logically

equivalent routine in some lower-level language. A micro programed

system offers the opportunity to combine the best of both methods.

The source statements in the higher-level language are transferred

into a virtual system code by a compilation process. This system

code, also called S-code or S-language, very closely resembles the

original source language. Micro instruction routines then inter-

pretively execute each virtual language statement. The results are:

(1) a faster compilation, (2) a system architecture, as expressed in

the set of micro routines, which is optimized to the source language,

1-2

(3) a reduction in the processor time required to perform the logical

equivalent of each source statement, and (4) a reduction in the

memory space required to encode each source language operation.

A set of micro programed routines is called an interpreter and effec­

tively creates a virtual system architecture for the source language

being executed. That is, when the COBOL interpreter is executing,

the system is effectively a COBOL machine. When the FORTRAN inter­

preter is executing, the system is a FORTRAN machine, and so on for

any other S-language defined.

© 1973 Burroughs - DO NOT REPRODUCE 1-3

SECTION 2

MICRO IMPLEMENTATION LANGUAGE

ASSEMBLY CODING FORM.

The source program cards have the following format:

Card Columns

1-5

1-72

6-72

73-80

CONDITIONS.

Usage

Reserved for label declarations which, if used, must

begin somewhere within this field.

An asterisk (*) anywhere within this field indicates

that everything to the right is a comment.

Instructions may appear anywhere within this field.

At least one blank must be used between words except

in those cases where a special character, e.g., a

parenthesis or a relational operator, is required, in

which case blanks are optional.

Example:

EXTRACT 7 BITS FROM T(ll) TO Y

SKIP WHEN X = Y

This field is reserved for sequence numbers.

NOTE

Only one MIL source language

instruction is allowed per card.

Whenever the phrase "condition-I" appears in an instruction syntax,

it is to be replaced by any condition whose truth or falsity can be

determined by testing one or more bits in one of the condition

©1973 Burroughs. - DO NOT REPRODUCE 2-1

registers. Therefore, any of the following may be used in the IF

and SKIP statements:

NOTE

The "/" is to be read as the word "OR."

X =/</>/'5;_/~///EQL/LSS/GRT/LEQ/GEQ/NEQ Y

X =/f/EQL/NEQ 0

Y =/</>/</~/f/EQL/LSS/GRT/LEQ/GEQ/NEQ X

Y =/f /EQL/NEQ 0

ANY-INTERRUPT

FL =/</>/~/~/f/EQL/LSS/GTR/LEQ/GEQ/NEQ/SFL

FL =/f/EQL/NEQ 0 (zero)

CYL (CARRY OUT LEVEL)

CYD (BORROW OUT LEVEL)

LSUY (LEAST SIGNIFICANT UNIT OF Y)

MSBX (MOST SIGNIFICANT BIT OF X)

LSUX (LEAST SIGNIFICANT UNIT OF X)

LOCKOITT

INTERRUPT

HI-PRIORITY

NO-DEVICE

Any combination of conditions that is contained in one condition

register can be tested using AND/OR logic if all bits can be tested

for TRUE (ON) or FALSE (OFF). For example, the following are all

valid conditions:

CYL AND LSUY

CYL OR CYD

Examples:

If CYL and LSU TRUE then go to END

If CYL or CYD FALSE then go to BEGIN

2-2

LABELS

Labels are declared as the first item on a card and must begin some­

where in columns 1 through 5. Any number of labels may be declared

for the same address, but one card is required for each label

declaration.

Acceptable label characters are alpha A through z, numberic 0 through

9, and the special character dash (-). A dash is not acceptable as

the first character of a label.

Any part of a label beyond the twenty-fifth character is considered

documentation only. A label may appear on a separate card immedi­

ately preceding the source statement that it references.

There are two types of labels which are acceptable to the compiler,

unique labels and point labels. Unique labels are not reusable and

therefore must be made unique within the 25 characters. Point

labels are reusable labels which are usually, but not necessarily,

used for short distance branching. Point labels are declared with a

first character of "·"and are referenced either+ or - from the

location of the present instruction.

The following is an example of point label usage:

.ABC READ TO X INC FA

SKIP WHEN X

GO TO -ABC

GO TO +ABC

.ABC MOVE SUM TO L

The -ABC refers to the READ instruction and the +ABC refers to

the MOVE instruction.

© 1973 Burroughs - DO NOT REPRODUCE 2-3

I LITERALS I

Whenever the phrase "literal" appears in the text of this manual, it

is to be replaced by a decimal integer or a hexadecimal number whose

first character is an identifying H, a binary number whose first

character is an identifying B, or a STRING.

Characters which are valid for use as a literal are dependent upon

the type of literal.

Decimal

Hexadecimal

Binary

Character-string

Bit-string

Valid Characters

Numeric 0 thru 9

Numeric 0 thru 9 and ALPHA A, B, C, D, E
and F, representing 10, 11, 12, lJ, 14
and 15 respectively

Numeric 0 and 1

Any valid EBCDIC character

@ (1) 11001100 @

Literals used in the MIL syntax have a maximum range of decimal 0

thru 1677721~ which is equal to hexadecimal HO thru HFFFFFF. A

binary literal may not contain more than 25 characters; therefore,

BO thru Blllllllllllllllllllllllll is the maximum range of a binary

literal. Literals may also be character-strings if the characters

are surrounded by quote symbols.

Leading zeros are not required for literals unless an actual value

of zero is required; then, either O, HO, or BO must be used.

A character may not be embedded between the identifying H or B

of a hexadecimal or binary literal and the number string that fol-

lows. Special characters, such as commas, may not be embedded in

any decimal, hexadecimal or binary literal. It is possible, however,

to encode any EBCDIC character within a character string.

2-4

Wherever a literal appears in this manual, a string of appropriate

type and length may be substituted.

Character strings must be surrounded by quote symbols (") and repre­

sent EBCDIC characters. Imbedded percent signs (%) and quote

symbols (") are not allowed. The percent sign, like the asterisk,

designates the rest of the card as a comment.

Bit strings must be surrounded by "AT" symbols (@) and must contain

a bit grouping length indicator. 'T'"h. _._ is indicator must immediately

follow the first @ sign and be enclosed in parentheses. The pos­

sible bit groupings are 1, 2, 3, and 4. If the length indicator is

omitted, 4 is assumed.

Start-Stop Length of
~ Symbol Each Unit Example

Character " 8 bits "THIS IS ONE"
Hex @ 4 bits @E3C8DlE2@
Octal T) 3 bits @(3)423765@
Quart al @ 2) 2 bits @(2)123132113@
Binary @ 1) 1 bit @(1)10011100110@

© 1973 Burroughs - DO NOT REPRODUCE 2-5

GENERAL.

SECTION 3

REGISTERS

This section contains a brief description of the registers within the

processor. The registers are divided into logical groups as follows:

Active

Result

Scratchpad

Constant

Input/Output

Condition

A Register Address table and Condition Address table may be found for

each of the processors along with processor flow diagrams and micro

instruction decoding charts in the appendices.

This section is intended only as an overview.of the registers within

the processor. It is assumed that the reader is familiar with the

contents of the B 1700 Systems Reference Manual(form 1057155).

An alphabetic listing of all registers follows.

ALPHABETICAL LISTING OF REGISTERS.

Name

A

BICN

BR

c

CA

Length
in Bits

20

4

24

24

4

Note

Control memory micro instruction
address

Boolean Conditions

Base register or low address S-memory
protection

Control; not addressable as a unit

Subfield of C

©1973 Burroughs - DO NOT REPRODUCE 3-1

Length
Name in Bits

CB 4

cc 4

CD 4

CMND 24

CMPX 24

Control
Memory 16-bit words

CP 8

CPL 5

CPU 2

CYD 1

CYF 1

CYL 1

DATA 24

DIFF 24

F 48

FA 24

FB 24

FL 16

FT 4

FLC 4

FLD 4

3-2

Note

Subfield of c

Subfield of C•
'

interrupts and flags

Subfield of C•
'

interrupts and flags

I/O command register on B 1710/B 1720
series

Result: Complement of X; masked by
CPL

Location of micro instructions

Control parallel subfield of C

Control parallel length; subfield of CP

Control parallel unit; subfield of CP
destination only

Carry Difference or Carry of Borrow

Carry flip-flop; subfield of CP

Carry latch or carry of sum

I/O Data register on B 1710/B 1720
series

Result of X-(Y + CYF); masked by CPL

Field in S-memory; FA and FB concatenated

Field address in S-memory

S-memory Field unit (FU), Field type
(FT), and Field length (FL)

Field length in S-memory

Subfield of FB

Subfield of FL

Subfield of FL

Name

FLE

FLF

FLCN

FU

INCN

L

LA

LB

LC

LD

LE

LF

LR

M

MBR

MAXS

MSKX

MSKY

MSM

Length
in Bits

4

4

4

4

4

24

4

4

4

4

4

4

24

16

24

24

24

24

16

Note

Subfield of FL

Subfield of FL

Boolean Field length conditions

S-memory unit size; subfield of FB

Boolean dispatch interrupt conditions
B 1730 series

Local register also used in Dispatch
and Overlay

Subfield of L

Subfield of L

Subfield of L

Subfield of L

Subfield of L

Subfield of L

Limit register or high address S-memory
protection

Current micro instruction register

Main memory micro instruction Base
register; not on B 1710 and B 1720
series

A constant; size in bits of available
S-memory

Result; mask of X; length by CPL

Result; mask of Y; length by CPL

Only in TAPE mode - Control Memory
addressed by the A register. B 1720
and B 1730

© 1973 Burroughs - DO NOT REPRODUCE

3-3

Name

Main
Memory

Null

SFL

so

Sl

Sl5A-Sl5B

S-memory

SU

SUM

T

TAS

TA

TB

TC

TD

TE

TF

TOPM

J-4

Length
in Bits

24

20

48

48

4

24

24

24

4

4

4

4

4

4

4

Note

. S-memory

Always zero

Subfield of S zero B corresponding to
FL in FE

Scratchpad double word

Scratchpad double word

Scratchpad double word

Scratchpad double word

Scratchpad double word

Subfields of Sl5

Main memory

Subfield of SOB corresponding to FL in
FE

Result (X + Y + CYF) length by CPL

Transform - will rotate, shift or
extract bits

Top of A register-stack

Subfield of T

Subfield of T

Subfield of T

Subfield of T

Subfield of T

Subfield of T

Top of control memory not on B 1710
series

Name

u

x

XANY

XORY

XY

XYCN

XYST

y

Length
in Bits Note

16 Cassette input only

24 Input to function box (Result

24 Result; x and Y; length by CPL

24 Result; x or Y; length by CPL

48 X and Y concatenated

'· Boolean XY conditions .,.

-4 Boolean XY states

24 Input to function box (Result

NOTE

The_most-significant (left-most) bit in

any register is identified in the MIL

syntax as bit 0 (zero), the next most­

significant as bit 1, etc. This is

particularly advantageous in a bit­

addres sable machine since, for software

purposes, it is often desirable to think

of a register as being an extension of

main memory. It should be noted that

this convention is at variance with the

hardware bit numbering convention where,

generally, all bits are numbered right to

left, 0 through 23. This difference has

particular significance when any bit data

is to be ORed into the M register at run

time.

ACTIVE REGISTERS.

The following is a description of the active registers.

©1973 Burroughs - DO NOT REPRODUCE

registers)

registers)

3-5

X-Y REGISTERS.

The X and Y registers (both of which are 24 bits wide) are used as

inputs into the 24-bit function box. All functions are performed

under control of the C (Control) register, which regulates the length

of the operation, class of arithmetics, and least-significant carry

input. The X and Y registers are capable of being shifted or rotated

and may receive or transmit data to or from main memory.

FIELD (F) REGISTER.

The F register is divided into FA and FE, each sub-register being 24

bits wide. The FA (Field Address) portion is used to address main

memory. FE is divided into FU (Field Unit), four bits indicating

arithmetic unit size; FT (Field Type), a general-purpose 4-bit field;

and FL (Field Length), consisting of 16 bits used to indicate the

length of fields in main memory. FL is subdivided into FLC, FLD, FLE

and FLF, each four bits in length.

LOCAL (L) REGISTER.

The L register is 24 bits wide and is subdivided into LA, LB, LC, LD,

LE and LF, each four bits in length. L and its subdivisions are gen­

erally used to temporarily hold the contents of other processor regis­

ters. It is also used as a source and destination for main memory

access and has implicit use in the DISPATCH and OVERLAY micro

instructions.

TRANSFORM (T) REGISTER.

The T register is a 24-bit transformation register used extensively

for interpretation of virtual-language operators. It is subdivided

into TA, TB, TC, TD, TE and TF, each four bits in length. T has

strong shift and extract logics associated with it and is the princi­

pal formatting register of the processor. This register also has the

capability of receiving or transmitting data from and to main memory.

J-6

MICRO INSTRUCTION (M) REGISTER.

The M register is a 16-bit register which holds the micro operator for

decoding and subsequent execution by the hardware.

BASE (BR) AND LIMIT (LR) REGISTERS.

The BR and LR registers are each 24 bits wide and are used to hold the

main memory base and limit addresses for the currently active main

memory process. The hardware(*2) uses these registers to determine if

addresses in the Field Address (FA) register are within the base/limit

boundaries.

ADDRESS (A) REGISTER.

The A register is the micro program address register. It is an 18-bit

register which contains the bit address of the next micro instruction.

Values in the A-register are always mod 16; i.e., the low-order four

bits are always zero. It is capable of addressing 16,384 micro

instructions located in either control memory or main memory or both.

The A register is automatically incremented to the next micro instruc-

tion before the current micro instruction is executed. It is also

capable of having any value from 0 to 4095 added to or subtracted from

it to facilitate micro code branching.

A STACK.

NOTE

The displacement values in micro instruc­

tions will be multiplied by 16 before

being added to the A register. Wraparound

may occur and is permitted.

The A stack is a 32-element-deep, 24-bit-wide, push-down memory, i.e.,

a last-in-first-out (LIFO) storage structure. The A stack is used to

nest micro routine linkages and allows highly shared routines, thus

2 This. is not available on the B 1710 series.

© 1973 Burroughs - DO NOT REPRODUCE 3-7

reducing control memory requirements. Although the A stack was

intended for micro code addresses, it has been made 24 bits wide to

allow for any operand storage.

NOTE

The B 1710 A stack has only 16 storage

elements.

TOP OF CONTROL MEMORY (TOPM) REGISTER. (*3)
The TOPM register is four bits wide and is used to determine which

memory {control or main) contains the next micro instruction. If the

A register is equal to or greater than (512 X TOPM), the next micro

instruction will be fetched from main memory rather than control

memory. The TOPM register is addressable as a source or as a

destination.

MEMORY BASE REGISTER (MBR). (*3)
The MBR register is used with the A register to obtain the main memory

address of the next micro· instruction. The A register is added to the

24 bits of MBR to yield a 24-bit main memory address. The MBR regis­

ter is addressable as both a source and as a destination.

CONTROL (c) REGISTER.

The C register is a 24-bit control register for the micro processor.

It contains the 24-bit function box controls and carry input plus some

of the processor interrupts and flags. It is subdivided into CA, CB,

CC, CD, each of four bits, and CP, of eight bits. CA and CB may be

used as general-purpose registers. CC and CD represent processor

interrupts and flags. CP contains function box controls: CYF (o bit

of CP), CPU (1 and 2 bits of CP), and CPL (3,4,5,6, and 7 bits of CP).

CYF (Carry Flip Flop) notifies the function box that a previous unit

carry must be added to its summary results. CPU (Control Parallel

3 This is not available on the B 1710 series.

3-8

Unit) notifies the function box of the type of unit contained in X

and Y: 00 =binary, 01 = 4-bit decimal, and 11 = 8 bit decimal. CPL

(Control Parallel Length) specifies the width, in bits, of the

function box and READ/WRITE micro instructions.

COMBINATORIAL LOGIC OR FUNCTION BOX.

The combinatorial logic, often called the function box, produces the

Result registers for the processor. Inputs are the X register, the Y

register and the Carry flip-flop (CYF). The inputs are combined under

control of the Control Parallel Unit (CPU) register and the Control

Parallel Length (CPL) register. The Result registers are available

to the immediately following micro instruction after a change to one

of the input registers.

RESULT REGISTERS.

The Result registers are outputs from the 24-bit function box. Their

contents are produced immediately and automatically from the inputs to

the function box (x, Y and CYF) and cannot be changed except by chang­

ing inputs or by changing CPU (Control Parallel Unit) or CPL (Control

Parallel Length). If the value of CPL is less than 24, then the 24

minus CPL most-significant bits of all result registers will be zero.

These registers are source registers only and therefore cannot be used

as the destination register in a MOVE or in any other instruction.,

XORY RESULT REGISTER.

This register ORs the contents of the X register inclusively with the

contents of the Y register. This is a bit by bit operation, with

corresponding pairs of bits treated independently.

XANY RESULT REGISTER.

This register ANDs the X register with the Y register. This is the

logical product of the X register and the Y register. Corresponding

pairs of bits are treated independently.

© 1973 Burroughs - DO NOT REPRODUCE 3-9

XEOY RESULT REGISTER.

This register ORs the contents of the X register exclusively with the

contents of the Y register.

CMPX RESULT REGISTER.

This register is the l's complement of the X register.

CMPY RESULT REGISTER.

This register is the l's complement of the Y register.

MSKX RESULT REGISTER.

MASKED X is the low-order bits of the X register. The value of the

CPL determines the number of bits placed in MSKX. All other high­

order bits are zero. IF CPL is equal to 24, then MSKX is identical

to the X register.

MSKY RESULT REGISTER.

MASKED Y is the low-order bits of the Y register. The value of CPL

determines the number of bits placed in MSKY. All other high-order

bits are zero. If CPL is equal to 24, MSKY is identical to the Y

register.

SUM RESULT REGISTER.

SUM is the decimal or binary value (determined by CPU) of the X regis­

ter plus the Y register plus the CYF register. Corresponding pairs of

bits

four

size

The

are grouped by CPU control; and groupings may be binary,

bit or eight bit. If the sum of (X+Y+CYF) is larger

specified by CPL, then the CYL {carry latch) will

zone bits

3-10

are ORed together for 8-bit decimal.

NOTE

The 8-bit decimal SUM is not available

on the B 1710 series.

be

than

TRUE

decimal

the

(ONE).

DIFFERENCE RESULT REGISTER.

This register stores the amount resulting from the subtraction of the

sum of the contents of the Y and CYF registers from the contents of

the X register. The contents of the CPU register determine whether

the subtraction is decimal or binary. Corresponding pairs of bits

are grouped by CPU. If the difference is negative, X-(Y+CYF) <}, then

DIFF result will be in 2's complement form or lO's complement form

depending upon the mode, either binary or decimal respectively; and

CYD (Carry Difference} will be TRUE {ONE). The zone bits are ORed

together for 8-bit decimal.

SCRATCHPAD.

NOTES

1. The 8-bit decimal difference is not

available on the B 1710 series.

2. The CYD register is not conditioned

by CPL; it is always based on a 24-

bi t comparison. The programmer,

therefore, must know what is in the

high-order positions of the X reg­

ister and the Y register if CPL is

less than 24.

The processor makes use of the scratchpad for temporary storage of

active registers. The scratchpad may be addressed as sixteen, 48-bit

double words or thirty-two, 24-bit words.

SCRATCHPAD WORDS - 24 BITS EACH.

SOA

SOB

SlA

SlB

S2A

S4A

S4B

S5A

S5B

S6A

SSA

S8B

S9A

S9B

SlOA

Sl2A

Sl2B

SlJA

SlJB

Sl4A

©1973 Burroughs - DO NOT REPRODUCE J-11

S2B S6B SlOB Sl4B

SJA S7A SllA Sl5A

SJB S7B SllB Sl5B

DOUBLE SCRATCHPAD WORDS - 48 BITS EACH.

(S# = S#A and S#B CONCATENATE, WHERE # = 0 THROUGH 15)

so s4 SS Sl2

Sl S5 S9 SlJ

S2 s6 SlO Sl4

SJ S7 Sll s15

CONSTANT REGISTERS.

The following is a description of the constant registers.

MAXIMUM MAIN MEMORY REGISTER.

The MAXS register is set by the field engineer and contains the value

of the maximum installed number of main memory bits. It is address­

able as a source only. Main memory addresses begin at zero.

MAXIMUM CONTROL MEMORY REGISTER.

The MAXM register is set by a field engineer and contains the value of

the maximum installed number of control memory words, each word com­

prising 16 bits. It is addressable as a source only. On the B 1710,

it will always contain zero.

NULL REGISTER.

The Null register is a source-only, 24-bit, addressable field of zeros.

INPUT/OUTPUT REGISTERS.

The following is a description of the input/output registers.

CONSOLE CASSETTE TAPE INPUT (U) REGISTER.

The U register accumulates the data read from the tape cassette on the

console control panel. It is addressable as a source in the RUN mode

with the MOVE REGISTER micro instruction and in the TAPE mode with the

3-12

MOVE 24-BIT LITERAL micro instruction. (Refer to the LOAD-MSMA micro

instruction.) It is not addressable as a destination.

COMMAND REGISTER • (*4)

The CMND register is used to transfer commands to the I/O controllers.

It is 24 bits wide and is addressable as a destination only.

DATA REGISTER.(*4)

The Data register is used to transfer data to and from the I/O con­

trollers and their peripherals. It is 24 bits wide and is addressable

as a source or as a destination.

NOTE

The Data register may require attention

whenever the Interrupt Condition register

is SET.

CONDITION REGISTERS.

There are five condition registers:

Binary Conditions (BICN)

Field Length Conditions (FLCN)

Interrupt Conditions (INCN)

X AND/OR Y Register(s) Conditions (XYCN)

X AND/OR Y Register{s) States Conditions (XYST)

Each condition register consists of four bits. The bits are identified

from left to right and are assigned the position numbers 0 thru J, with

0 being the most-significant bit.

All condition registers are source registers only. They may be moved

to another register or tested, using the IF and SKIP instructions, for

their current contents. They may not be the destination register of

any instruction.

4 This is active on the B 1710/B 1720 series only.

© 1973 Burroughs - DO NOT REPRODUCE J-13

Bit BICN XYCN XYST FLCN INCN

0 LSUY MSBX LSUX FL:SFL NO-DEVICE

1 CYF X:Y ANY-INTERRUPT FL>SFL HI-PRIORITY

2 CYD X<Y xf o FL<SFL INTERRUPT

J CYL X>Y xf o FLf O LOCKOUT

BINARY CONDITIONS (BICN) REGISTER.

LSUY is TRUE if the least-significant unit ·of the Y register is: (1)

1 and the Control Parallel Unit (CPU) register specifies binary (CPU

= 0) or (2) 9 and the Control Parallel Unit (CPU) register specifies

other than binary (CPU Io).

The CYF register is the carry in the Control Parallel register. The

CYF register may be manipulated as part of the CP register and by the

CARRY instruction.

The Carry Difference (CYD) register is TRUE if X-(CYF + Y) <o. This

condition is not affected by CPL, i.e., a 24-bit compare is always

made.

The Carry Level (CYL) register is TRUE if (X+Y+CYF), limited by the

Control Parallel Length (CPL) register, overflows.

XY CONDITIONS (XYCN) REGISTER.

MSBX is TRUE if the most-significant bit of the X register, as deter­

mined by the Control Parallel Length (CPL) register, is a 1.

J-14

NOTE

The comparisons of the X register to the

Y register are not affected by CPL; they

are always 24-bit compares.

XY STATES (XYST) REGISTER.

LSUX is TRUE if the least-significant unit of the X register is: (1)

1 and the Control Parallel Unit (CPU) register specifies binary (CPU

= o) or (2) 9 and the Control Parallel Unit (CPU) register specifies

other than binary (CPU~ 0). The comparisons of the X register or the

Y register to zero are not affected by CPL; all 24 bits of the X regis­

ter and/or the Y register are used in the comparisons.

ANY-INTERRUPT.

This bit is TRUE if any of the following conditions in registers CC,

CD, or INCN (B 1730 only) are TRUE:

Event Register (Bit Position)

Missing device

Port interrupt

Timer interrupt

I/O service request interrupt

Console interrupt

Main memory READ parity error
interrupt

Memory WRITE/SWAP address out of
bounds interrupt

INCN(O)

INCN(2)

CC(l)

cc(2)

CC(J)

CD(O)

CD(J)

The CC and CD registers are both 4-bit source and destination registers

within the C register. The bits in each are numbered 0 through J, with

bit 0 being the most significant. They have been assigned the follow­

ing uses and meanings:

CC(O) State light

CC(l) Timer interrupt

cc(2) I/O service request interrupt

CC(J) Console interrupt

©1973 Burroughs - DO NOT REPRODUCE 3-15

CD(O) Main memory parity error

CD(l) Main memory WRITE/SWAP error override

CD(2) Main memory READ error

CD(J) Main memory WRITE/SWAP error

All bits in the CC and CD portions of the C register, once SET,

remain SET even though the conditions that caused them to be SET may

no longer exist. Therefore, if it is desired to clear any of these

bits to ZERO; this must be done explicitly. CD(l), CD(2), and CD(J)

of the C register are always ZERO in the B but still may be addressed

and tested.

CONSOLE INTERRUPT - (cc(J)).

This bit is SET when the INTERRUPT toggle switch on the console

control panel is turned ON. It remains SET as long as the switch is

ON.

MAIN MEMORY READ PARITY ERROR INTERRUPT - (CD(O)).

This bit is SET when a main memory parity error is detected during

a READ or a READ portion of a SWAP operation or when an attempt is

made to access non-existent main memory.

MAIN MEMORY ADDRESS OUT OF BOUNDS OVERRIDE - (In CD(l)). (*5)

This bit is tested if the Field Address (FA) register setting is

less than the Base register (BR) setting or greater than the Limit

register {LR) setting; then WRITE or SWAP operations will be inhibited

unless this bit is SET (ONE). The state of this bit does not affect

the setting of CD{2) or CD(J).

READ ADDRESS OUT OF BOUNDS INTERRUPT - (In CD(2)(*5)). (*5)

This bit is SET when a READ operation is attempted and the Field

Address (FA) register setting is either less than the Base register

5 This is not available on the B 1710 series.

3-16

(BR) setting or great_er than the Limit register (LR) setting. The

READ operation is not inhibited.

WRITE/SWAP ADDRESS OUT OF BOUNDS INTERRUPT - (CD(J)). (*6)

This bit is SET when a WRITE or SWAP operation is attempted and

the Field Address (FA) register setting is either less than the Base

register {BR) setting or greater than the Limit register {LR) setting.

FIELD LENGTH CONDITIONS (FLCN) REGISTER.

All conditions are based upon comparisons between the 16 bits of the

FL register and either zero or the corresponding low-order 16 bits

{SFL) of the first word in the scratchpad {SOB).

INTERRUPT CONDITIONS (INCN) REGISTER. (*6)

NO-DEVICE is TRUE if an interrupt message is present in the Dispatch

buffer for a port or channel which does not have a device attached

t"O it. This condition is normally cleared by the processor with a

DISPATCH READ AND CLEAR instruction.

HI-PRIORITY is TRUE if there is a high-priority message present in the

Dispatch buffer.

INTERRUPT is TRUE if there is a message present in the Dispatch

buffer for the processor. This condition is normally cleared by

a DISPATCH instruction.

LOCKOUT is TRUE if the interrupt system is locked {marked as

"in use").

REGISTER DESIGNATIONS AND AREAS OF APPLICATION.

The following is a list, arranged by areas of application, of registers

and their associated designations.

6 This is not available on the B 1710 series.

©1973 Burroughs - DO NOT REPRODUCE 3-17

MICRO INSTRUCTION CONTROLS.

A

M

TAS

TOPM(*7)

MBR(*7)

(Micro Instruction Address)

(Current Micro Instruction)

(Top of Address Stack)

(Top of M Memory)

(Micro Instruction Base register)

S-MEMORY CONTROLS.

BR

LR

FA, FL

CP

(Base register)

(Limit register)

(Field Address, Field Length)

(Control Parallel)

INTERRUPT CONTROLS.

cc
CD

INCN(*7)

PARALLEL WIDTH CONTROLS.

c
CP

CPL

CPU

ORGANIZATION OF FIELDS AND SUBFIELDS.

Field Subfields

c CA CB CC CD CP

CP CYF CPU CPL

7 This is not available on the B 1710/B 1720 series.

3-18

Field

F

FB

FL

L

T

Subfields

FA FB

FU FT FL

FLC FLD FLE FLF

LA LB LC LD LE LF

TA TB TC TD TE TF

NOTE

C does not exist as a composite, only as

subfields.

©1973 Burroughs - DO NOT REPRODUCE 3-19

SECTION 4

MICRO OPERATORS

NOTATIONS AND CONVENTIONS USED IN THE SYNTAX.

The following details the notations and conventions used in the syntax.

KEY WORDS.

All capital words in the syntax of a micro instruction are required.

They must appear in the positions as given.

misplacement will result in a syntax error.

Example:

An omission or

BIAS BY [AND register-2] [TEST]
{

UNIT }

register-1

The key words are BIAS, BY, UNIT, AND, and TEST.

LOWER CASE WORDS.

Lower case words represent generic terms which must be supplied in

that format position by the programmer. In the example above, the

words "register-1" and "register-2" are generic; and register names

must be supplied.

BRACES.

When words or phrases are enclosed in braces {}, a choice of one

of the enclosed words or phrases must be made. In the example above,

a choice between the word "UNIT" or "register-1" must be made.

BRACKETS.

When a word or phrase is enclosed in brackets [], the word or

phrase is an optional feature of the instruction. The programmer

may include the feature by coding according to the syntax enclosed

in the brackets or he may omit the feature completely.

© 1973 Burroughs - DO NOT REPRODUCE 4-1

CONCURRENT EXECUTION OF MICRO OPERATORS. (*§_)

Concurrent or overlapping execution of micro operators can be

achieved if a READ, WRITE, or SWAP instruction is followed by any of

the following instructions:

BIAS
COUNT
GO TO
JUMP
LOAD
NOP
READ
STORE
SWAP
WRITE
XCH

N0TE
Consecutive READ, WRITE, or SWAP operations

will save at least one clock cycle per

operation.

8 This is not available on the B 1710 series.

4-2

ADJUST

FORMAT 1:

!ADJUST LOCATION TO literal

FORMAT 2:

ADJUST LOCATION TO LOCATION {PLUS}
+

literal

DESCRIPTION.

This pseudo-operator is used to adjust the location of the compiler

counter. The value of the location counter specifies the location

(control memory address) into which the next generated micro

instruction is to be placed.

FORMAT 1.

This option sets the location counter to the value of the literal.

Code is not generated for the omitted control memory addresses.

FORMAT 2.

This option causes the location counter to be incremented by the

literal and NOP commands to be generated for the omitted control

memory addresses.

©1973 Burroughs - DO NOT REPRODUCE 4-J

ADD

SCRATCHPAD

FORMAT.

ADD

DESCRIPTION.

SOA
SlA

Sl4A
SlSA

TO FA

This instruction adds the left half of any scratchpad word (SnA)

to the Field Address (FA) register. The result is placed in FA, and

the contents of the scratchpad remain unchanged.

4-4

FORMAT.

AND register-I WITH

DESCRIPTION.

{literal }
register-2

This instruction is used to logically AND the contents of register-I

with the bit configuration of literal or the contents of register-2

and place the result in register-I.

Register-I may be any 4-bit register (in column 0 or 1 of the Regis­

ter Addressing table) except a condition register or the CPU register.

(Refer to the appendix.)

Register 2 may be any 4-bit register (in column 0 or 1 of the Regis­

ter Addressing table) except the CPU register. The contents of this

register will not be changed.

Literal has a range from 0 to 15.

I
Register-I

0

0

1

1

AND

AND

AND

AND

AND

Table 4-1

AND Truth Table

Literal
Register-2 Yields

0 Yields

1 Yields

0 I Yields

1 Yields

©1973 Burroughs - DO NOT REPRODUCE

Register-I

0

0

0

1

4-5

~
~
Example:

TA

T 0000

--

T 0000

4-6

TB TC

1010 1111

0011 --

0010 1111

AND TB WITH 3

TD TE TF

0011 0001 0010 before (OAF312)

-- -- -- literal (3)

0011 0001 0010 after (02F312)

FORMAT.

BIAS BY {UNIT }
register-I

[AND register-2] [TEST]

DESCRIPTION.

This instruction sets the Control Parallel Length (CPL) register and

the Cont-rol Parallel Unit (CPU) register to values calculated from

the given operands.

If only register-I is used, it must be either register For register

s.

NOTE

All references to register S refer to

the SFL or SFU registers in the second

half of the first scratchpad word, i.e.,

the SFL part of the SOB register.

If register-I and register-2 are used, they may not be the F regis­

ter and the Control Parallel (CP) register; i.e., one of them must

be the F register.

Only the F, S, or CP registers may be used. Identical instructions

are produced if the positions of any two registers are interchanged

within the instruction.

The Control Parallel Unit (CPU) register will be set to 1, J, or 0

depending on whether the Field Unit (FU) register is set to 4, 8, or

some other value less than 16. This is done for all variations of

BIAS except BIAS BYS, which sets the CPU register from SFU rather

than from the FU register.

BIAS BY ... sets the Control Parallel Length (CPL) register equal

to 24 or to the value in the specified register if it is less than

24. BIAS BY UNIT sets the CPL register equal to the FU register

(4 for 4-bit decimal, 8 for 8-bit decimal, or any other value less

than 16 for binary).

©1973 Burroughs - DO NOT REPRODUCE 4-7

If the TEST option is used, the above actions are performed and the

next micro instruction is skipped if CPL has not been set to zero.

The test option may be used with all variations of BIAS.

Example:

BIAS BY F

BIAS BY F AND CP

BIAS BY UNIT

4-8

This instruction sets the Control Parallel

Length (CPL) register to 24 or to the value

in the Field Length (FL) register if it is

less than 24. It also sets the Control

Parallel Unit (CPU) register equal to the

unit in the FU register.

This instruction sets the CPL register to

24, to the value in the FL register, or to

the value in the CPL register, whichever is

the smallest. It also sets the CPU register

to the unit in the FU register.

This instruction sets the CPL register equal

to the length of the unit of the type spec­

ified by the FU register. It also sets the

CPU register equal to one unit of the type

specified in the FU register, i.e., 4-bit

decimal, 8-bit decimal, or binary.

NOTE

The B 1710 does not permit

the 8-bit decimal setting.

FORMAT.

I CALL label I
DESCRIPTION.

This instruction stores the address of the next micro instruction

in the A stack, then branches to the label specified. The location

specified by the label may be a maximum of 4095 micro instructions

away from the call instruction.

©1973 Burroughs - DO NOT REPRODUCE 4-9

EJ
FORMAT.

CARRY

DESCRIPTION.

This instruction sets the Carry (CYF) register to either O

or 1.

CARRY 0 or CARRY 1 sets the CYF register to 0 or 1 respectively.

CARRY SUM sets the CYF register to the value of the CYL register.

CARRY DIFFERENCE sets the CYF register to the value of the Carry

Difference (CYD) register, i.e., to 0 if the X register is greater

than the Y register or if the X register equals the Y register and

the CYF register equals 0 or to 1 if the X register is less than the

Y register or if the X register equals the Y register and the CYF

register equals 1.

The CYD register, unlike the CYL register is not conditioned by the

CPL register. That is, all 24 bits of the X and the Y registers are

compared when setting the CYD register. The programmer should,

therefore, know what is in the high-order position of the X and Y

registers when using the CYD register if the CPL register is set to

less than 24.

4-10

FORMAT.

I CASSETTE

DESCRIPTION.

{START
STOP [WHEN x NEQ Y] } I

This instruction is used to cause the system cassette tape to start

or stop a READ operation at the next inter-record gap. The stop may

be unconditional or dependent on the inequality of the X and Y

registers.

The information read from the cassette is loaded into the U register

and remains there for a maximum of two clock cycles before the U

register is cleared.

NOTE

The data on the cassette tape is duplicated

every eight bits to insure its validity. The

cassette will discriminate against parity

incorrect data and, if necessary, use the

duplicate eight bits. If both copies are in

error the load will be aborted. If the STEP­

RUN-TAPE switch is in the TAPE position (refer

to LOAD-MSMA) and the START button is pushed,

the successive 2-byte increments will be moved

from the U register. If the instruction being

executed is a 24-bit literal MOVE TO MSMA, then

the next 16 bits (2 bytes) that appear in the

U register are loaded into control memory at

the address indicated by the A register, after

which the A register is incremented by 1.

©1973 Burroughs - DO NOT REPRODUCE 4-11

FORMAT.

CLEAR register-1 [register-2 ..• register-n]

DESCRIPTION.

This instruction sets the specified registers to zero.

Any register in column 0, 1, or 2 of the Register Addressing table

except condition registers and the register of any 24-bit scratch­

pad words may be cleared. One clock cycle is used to clear each

register or scratchpad woTd.

A MOVE NULL TO REGISTER-N will be generated for each register

specified on the B 1710 series.

4-12

COMPLEMENT

F0Rl'1AT.

COMPLEMENT register (literal-I)

[AND register (literal-2) [AND register (literal-n)]J

DESCRIPTION.

This instruction is used to complement (switch the state of) the bit

in the register specified by literal-I. By using the options, more

than one bit in any one register may be complemented with the same

instruction if all bits are in the same 4-bit register.

The register may be any 4-bit (column 0 or 1 in the Register Addres­

sing table) register except a condition register and the CPU regis­

ter. It may be the FL, FB, L or the T register. All bits must then

be in the same 4-bit subfield.

All the literals have a range from 0 to 3 for a 4-bit register, from

0 to 15 for the FL register, and from 0 to 23 for the FB, L, and T

registers.

NOTE

Parentheses are required around each literal.

Example:
COMPLEMENT LD(O) AND L(l3)

LA LB LC LD LE LF

L 0001 0010 0011 1000 0101 0110 before (123856)

L 0001 0010 0011 0100 0101 0110 after (123456)

0 3 4 7 8 11 15 lb 17 18 2--:J t "{
LD(O) L(l3)

It should be noted that most registers may be addressed in either of

two ways.

© 1973 Burroughs - DO NOT REPRODUCE 4-13

COMPLEMENT
cont

LA

0

0 •.•

t
L(O)

or

LA(O)

3

3

4-14

4

LB LC

0 3 0

7 8

L Register

LD LE LF

3 0 3 0 3 0 3

11 12 .••. 15 16 19 20 23

or or

L(l2) LD(l)

FORMAT.

COUNT

DESCRIPTION.

[AND {DOWN}
UP

This instruction increments or decrements the designated registers

by the.value of literal or the contents of the Control Parallel

Length register (CPL). If the value of literal is O, the value

contained in the CPL register is used.

COUNT FA UP AND FL UP is an invalid instruction.

If the FA register is counted down, it may pass through O (i.e.

if FA=O and is counted down by 1, it will be set to hex FFFF). If

the FL register is counted down, it will not become less than O.

If either the FA or the FL register overflows, wraparound to or

through O will occur; e.g., if either is equal to the maximum

value it can contain and is counted up by 1, it becomes equal to 0.

Literal is 5 bits long and has a maximum decimal value of 24.

Example:

COUNT FA UP AND FL DOWN BY 10

FA 0000 1001 1010 0111 1111 1011 before (09A7FB)

-- -- -- -- -- 1010 literal + A

FA 0000 1001 1010 1000 0000 0101 after (09A805)

FL 0000 0000 0000 1000 before (0008)

-- -- -- 1010 literal - A

FL 0000 0000 0000 0000 after (oooo)

FA is counted up by decimal 10 (hexadecimal A), while FL is counted

down by 8 to its minimum value.

© 1973 Burroughs - DO NOT REPRODUCE 4-15

FORMAT.

DEC register-I BY {literal }
re ister-2 [TEST]

DESCRIPTION.

This instruction is used to decrement register-I by the literal or

the contents of register-2'and replace the contents of register-I

with the result.

Register-I may be any 4-bit register (in column 0 or 1 of the Regis­

ter Addressing table) except the CPU register. The contents of

register-2 will not be changed by this instruction.

The literal has a decimal range from 0 to 15.

If the TEST option is used and register-I underflows (is decremented

beyond O, the smallest value it can contain) as a result of this

instruction, the next micro instruction will be skipped (not exe­

cuted). If no underflow occurs with the TEST option or if the TEST

option is not used, the next micro instruction will be executed.

4-16

NOTE

All 4-bit registers count modulo 16; e.g.,

if a register contains a value of 0 and is

decremented by 2, it underflows to a value

of 14.

DEFINE

FORMAT.

I DEFINE identifier = string #

DESCRIPTION.

This declaration is used to assign a name (identifier) to a string

of characters. Any later reference to the identifier is replaced by

the string.

The identifier may be made up of alpha (A thru Z) or numeric (o thru

9) characters in any combination, except that no reserved word

(WRITE, MOVE, etc.) in the MIL syntax may be used as an identifier.

The special character, dash (-), is acceptable; however, it may not

be used as the first character. A length restriction of 25 charac­

ters is imposed; i.e., everything after that is considered to be

documentation only.

String may be a scratchpad name (24- or 48-bit), a register name,

a literal, a part of one instruction, an entire instruction, part

of which may have been previously DEFINED, or it may be empty

(blank). It must be terminated by a pound sign (#) and may neither

begin with a pound sign nor contain any embedded pound signs.

The entire DEFINE declaration must be contained on one card, and all

DEFINEs must be declared prior to any executable instructions.

Nested DEFINEs are allowed up to 13 levels.

Examples~

DEFINE SOURCE-POINTER = SJ#

DEFINE OP-REG = L#

DEFINE TEST-OP = H800000#

DEFINE HINT = CC(J)#

DEFINE IGNORE-HALT = RESET HINT#

* LOAD F FROM SOURCE-POINTER

* CLEAR OP-REG

* MOVE TEST-OP TO OP-REG

* RESET HINT

* IGNORE-HALT

©1973 Burroughs - DO NOT REPRODUCE 4-17

DEFINE-VALUE

FORMAT.

DEFINE[-VALUE] identifier= literal-1 [{~} literal-2]

DESCRIPTION.

This instruction is used to assign the value of the arithmetic

result of the literals to the identifier. Any occurrence of the

identifier in the program will be replaced by its assigned value.

The DEFINE-VALUE instruction will create up to a 24-bit literal.

Values less than zero will be in 2's complement notation and be

24 bits long.

Previously defined identifiers may be used as literals.

The literal may be a hex value, a binary value, or a character used

as two hex values. Any literal without a prefixed type indicator

(H, B, or ") is considered a decimal literal.

Examples Comments

DEFINE-VALUE AA = H50 Value is hex 000050

DEFINE B = AA + 1 Value is hex 000051

DEFINE c = AA 3 Value is hex 00004D

DEFINE-VALUE FOJ = BOOlO +4 Value is hex 000006

DEFINE LOX = FOJ AA Value is hex FFFFB6

4-18

FORMAT.

{

LOCK
DISPATCH WRITE

READ

DESCRIPTION.

DISPATCH (*9)

} [SKIP WHEN UNLOCKED]
lAND CLEAR]

The DISPATCH instruction is used to send a message from the processor

to a device on an I/O port. An example of a message sent to a port

is the address of an I/O descriptor.

Before sending a message to a port, the processor should first

attempt to gain control of the interrupt system with a DISPATCH LOCK.

This is necessary because the interrupt system is shared by all

ports.

The DISPATCH LOCK option will lock (mark as being in use) the inter­

rupt system. If the interrupt system had been previously locked, the

next micro instruction will be skipped, otherwise the next micro

instruction will be executed.

The DISPATCH LOCK SKIP WHEN UNLOCKED option will lock the interrupt

system or skip the next micro instruction if the interrupt system

was not already locked.

The DISPATCH WRITE option is used to send a 24-bit message to a

port. Before a DISPATCH WRITE is executed, the L register must

contain the 24-bit message; and the seven least-significant bits of

the T register must contain the destination port (bits 17-19) and

channel numbers (bits 20-21). The contents of the L register are

then stored in the Dispatch buffer (main-memory locations 0 through

23), and the port and channel numbers are transferred to a hardware

register (Dispatch register) in the port interchange.

9 The DISPATCH command requires I/O subsystem hardware which is
available only on the B 1730 systems.

© 1973 Burroughs - DO NOT A EPRODUCE 4-19

DISPATCH
cont

The DISPATCH READ option is used to transfer both a 24-bit message

from the Dispatch buffer to the L register and the source port and

channel numbers to the seven least-significant bits of the T

register.

NOTE

T(23), when found set after a DISPATCH

READ and when the source port is an I/O

multiplexor, indicates that a main memory

parity error was encountered during the

fetch of an I/O descriptor address or an

I/O descriptor, or during a RESULT SWAP

operation. In this case, the message

transferred to the L register will be the

address +24 of the parity error.

The DISPATCH READ AND CLEAR option does everything a DISPATCH

READ will do and additionally clears the Interrupt Condition

(INCN) register. That is, it will RESET all INCN bits to ZERO.

The contents of the L and T registers are unchanged after a

DISPATCH WRITE operation. Only the least-significant seven bits of

the T register are involved in any dispatch operation.

If the SKIP WHEN UNLOCKED option is used with any variant other than

a DISPATCH LOCK, the next micro instruction is skipped.

4-20

FORMAT.

EOR register-I WITH

DESCRIPTION.

{literal }
register-2

This i·nstruction is used to logically EXCLUSIVE OR the bits in

register-I with the value of literal or the contents of register-2

and place the result in register-I.

Register-1 may be any 4~bit register in column 0 or 1 of the Register

Address chart except the CPU register. The contents of register-2

will not be changed.

Literal has a decimal range from 0 to 15.

register-I

0

0

1

1

Example:

TA TB TC

T 0000 0101 1111

-- 0011 --
T 0000 0110 1111

Table 4-2

EOR Truth Table

literal -
{register-2}

EOR 0 yields

EOR 1 yields

EOR I 0 yields

EOR 1 yields

EOR TB WITH J
TD TE TF

0011 0001 0010

-- -- --

0011 0001 0010

register-I

0

1

1

0

before (05FJ12)

EOR (OJOOOO)

after (06FJ12)

©1973 Burroughs - DO NOT REPRODUCE 4-21

FORMAT.

DESCRIPTION.

This instruction allows the return of proper program control to the

calling routine by causing the compiler to generate a MOVE TAS TO A

operation.

The top of the A stack (TAS) will be moved to the Address (A) register,

which is used by the hardware logic as the address of the next micro

instruction to be fetched. The stack is decremented automatically by

the hardware after the move.

A MOVE TAS TO A may be used instead of EXIT with the same result.

4-22

EXTRACT

FORMAT.

EXTRACT literal BITS FROM T (literal-2) [TO register]

DESCRIPTION.

This instruction isolates the specified bits from the T register and

moves them to a receiving register.

Any number of bits from 0 to 24 may be moved. These may be taken from

any bit position of the T register. Literal-I, the number of bits to

be extracted, may be from 0 to 24. If zero, the CPL indicates the

number of bits extracted. Literal-2 indicates the left-most bit to be

moved and may be from 0 to 23.

The selected bits are right-justified in the receiving field. Left

zeros are inserted if the number of bits moved is less than the length

of the receiving register.

The designated register may be the T, X, Y, or L register. The T

register remains unchanged unless it is specified as the destination

register.

If a register is not specified, the T register is assumed.

Spaces before and after the parentheses are optional; however,

parentheses are required.

EXTRACT 0 BITS FROM T(23) TO register may be specified and the

programmer must OR into the M register the number of bits to be

extracted. The extracted bits are the right-most within the T

register.

© 1973 Burroughs - DO NOT REPRODUCE 4-23

EXTRACT
cont

Example:
EXTRACT 4 BITS FROM T(20) TO L

TA TB TC TD TE TF

T 0000 0001 0011 1000 1110 0100 before (01J8E4)

T(20)

LA LB LC LD LE LF

L 1001 1110 0011 1001 1111 1100 before (1E39FC)

L 0000 0000 0000 0000 0000 0100 after (000004}

Register T remains unchanged while the four extracted bits from the

T register are placed in the L register. The bits are right­

justified, and leading zeros are added.

4-24

NOTE

Caution must be exercised when ORing into the M

register before an extract. The machine hard­

ware instruction requires the right-bit pointer

for the extraction field, not the left. The

hardware also indexes the T register from 1 to

24, left to right, not 0 to 23. The assembler

performs this conversion.

FORMAT.

GO TO label

DESCRIPTION.

Label must be associated with a run time address that has a

displacement from the GO TO instruction of less than 4096

micro instructions.

©1973 Burroughs - DO NOT REPRODUCE

GO TO

4-25

FORMAT.

HALT

DESCRIPTION.

This instruction causes the processor to come to an orderly halt. The

settings of the console switches determine the register displayed.

Pressing the START pushbutton on the system console will cause the

processor to again begin executing micro instructions. If the

STEP/RUN switch is in the S~EP position, only one micro instruction

is executed.

4-26

FORMAT 1.

IF

FORMAT 2.

IF

{
register (literal)}
condition

{register {literal)}
condition

BEGIN

{
TRUE
FALSE} THEN

THEN

any instructions (one per card)

END [ELSE

BEGIN
any instructions (one per card)

END]

FORMAT J.

{
TRUE

IF module-option FALSE} THEN INCLUDE

BEGIN
any instructions (one per card)

END [ELSE

BEGIN
any instructions (one per card)

END]

© 1973 Burroughs - DO NOT REPRODUCE

{CALL }
GO TO label

4-27

IF

DESCRIPTION.

FORMAT 1.

This format is used to test a bit (or bits) for a TRUE (ONE) or

FALSE (ZERO), then to either CALL or GO TO a label if the test con­

dition is met. By using logic, more than one bit can be tested at

the same time; but only if all bits are in the same 4-bit register.

The register may be any 4-bit register (column 0 or 1 in the Register

Addressing table) except the CPU register; or it may be FL, FB, L or

T.

The literal points to the bit position which is to be tested and has

a range from 0 to 3 for a 4-bit register, from 0 to 15 for FL, and

from 0 to 23 for FB, Land T. Parentheses are required around the

literal.

The condition may be any condition which is available from condition

registers. (Refer to CONDITIONS in section 2.)

If neither TRUE nor FALSE (ON nor OFF) is specified, TRUE is assumed.

Example:

IF TD(2) TRUE THEN GO TO LABL7

Register TD

0101

1101

0111

0011

Branch

NO

NO

YES

YES

In cases three and ~our, the branch to LABL7 would be taken since

bit position two of TD is ON. Note that TD(2) could have been

referred to as T(l4).

FORMAT 2.

This format is the same as format 1 except that BEGIN/END pairs

replace the CALL and GO TO options.

4-28

IF
cont

If the test condition is met, all statements between the first

BEGIN/END pair are performed; and a branch is taken around any

second (optional) BEGIN/END pair. If the test condition is not met,

a branch around the first BEGIN/END pair is taken.

The first BEGIN statement must immediately follow the IF statement,

except that comment or blank cards may be used between them. The

second BEGIN/END pair is optional; however, if used, the first BEGIN

card must be paired with an END ELSE card. Again, no cards other

than comment or blank cards may be used between the END ELSE and

following BEGIN cards. There are no restrictions on how many types

of statements may be used between any BEGIN/END pair.

FORMAT J.

This format should be used for conditional inclusion of code,

depending on the setting of a user-defined, module-option toggle.

This module-option toggle is declared and SET or RESET via a module

option $ card. (Refer to the appendix.)

More than one module-option toggle can be tested with the same IF

statement by using AND/OR logic. If NOT is used in front of any

module-option toggle, that module-option toggle is checked for the

RESET state. If both TRUE and FALSE are omitted, TRUE is assumed.

The BEGIN/END pairs are explained in format 2.

In the following examples the statements on the left will generate

codes equivalent to those generated by the statements on the right.

Statement

IF X = Y THEN GO TO +A

IF TB(l) OR TB(J) THEN EXIT

IF LF(2) THEN

MOVE X TO Y

SET TA(l)

Equivalent

IF X EQL Y GO TO +A

SKIP WHEN TB ANY BOlOl FALSE

EXIT

IF LF(2) FALSE THEN GO TO +C

MOVE X TO Y

.C OR TA WITH BOlOO

© 1973 Burroughs - DO NOT REPRODUCE 4-29

~
~

Statement

IF FU(l) FALSE THEN

COMPLEMENT T(lO)

ELSE

RESET FL(5)

SET L(6) AND L(7)

IF FLF(J) FALSE THEN

BEGIN

RESET FB(l) AND FB(J)

CLEAR Sl4A

END

XCH Sl4 F Sl4

IF LA(O) THEN

BEGIN

MOVE TAS TO T

END ELSE

MOVE FA TO T

MOVE TE TO LF

IF TD(J) THEN

MOVE L TO X

ELSE

BEGIN

MOVE T TO X

MOVE SUM TO

END

MOVE SUM TO FA

x

Equivalent

IF FU(l) GO TO +D

EOR TC WITH BOOlO
TO TO +E

.D AND FLD WITH BlOll

.E OR LB WITH BOOll

.A

IF FLF(J) GO TO +A

AND FU WITH Bl010

MOVE NULL TO Sl4A

IF LA(O) FALSE GO TO +B

MOVE TAS TO T

GO TO +C

.B MOVE FA TO T

.C MOVE TE TO LF

IF TD(J) FALSE GO TO +D

MOVE L TO X

TO TO +E

.D MOVE T TO X

MOVE SUM TO X

.E MOVE SUM TO FA

IF LA = 14 THEN SKIP WHEN LA ~ BlllO

BEGIN GO TO +A

MOVE 512 TO X MOVE 512 TO X

END .A EOR FU WITH Bl010

COMPLEMENT FU(O) AND FU(2)

4-30

Following are examples of conditional inclusion of code:

$ SET DEBUG, RESET TRACE

$ SET TRACE, RESET Bl700

IF
cont

After processing these $ cards, the module options will be set TRUE

or FALSE as follows:

DEBUG = TRUE

TRACE = TRUE

Bl700 = FALSE

IF DEBUG THEN INCLUDE

CALL DEBUG-ROUTINE

IF TRACE THEN INCLUDE

BEGIN

CALL SAVE-REGISTERS

CALL TRACE-ROUTINE

END

IF DEBUG AND NOT B 1700 INCLUDE

BEGIN

MOVE T TO X

END ELSE

BEGIN

END

MOVE L TO X

MOVE T TO SOA

IF NOT TRACE OR B 1700 INCLUDE

BEGIN

MOVE L TO X

MOVE T TO SlA

END ELSE

BEGIN

END

CALL TRACE-ROUTINE

MOVE T TO X

CALL DEBUG ROUTINE

CALL SAVE-REGISTERS

CALL TRACE-ROUTINE

MOVE T TO X

CALL TRACE-ROUTINE

MOVE T TO X

© 1973 Burroughs - DO NOT REPRODUCE 4-Jl

~
~
Any of the preceding examples may be nested within any of the above

BEGIN/END pairs up to a maximum of 31 levels. That is, at any given

time during a compilation there may be at most 31 begins that have

not been paired with their respective ends.

4-32

NOTES

1. A conditional inclusion-block may not

be used to include or exclude a BEGIN

statement card when the associated END

statement card is not part of the block.

2. Logical operators are valid on the regis­

ters immediately following the IF, with

the following restrictions:

a) All registers logically related must

be within the same 4-bit group, e.g. '

IF T(O) and T(3) are valid while

IF T(2) and T(4) are not.

b) Only two register elements may be

logically related, e.g., IF T(2) or

T(O) is valid while IF T(2) and

T(l) and T(O) are not

c) NOT logic may be applied anywhere,

e.g., IF NOT(L(3) or NOT L(O)).

FORMAT.

{
literal

INC register-1 } register-2 [TEST]

DESCRIPTION.

This instruction is used to increment register-1 by the value of

literal or the contents of register-2 and to place the result in

register-1.

Register-1 may be any 4-bit register in column 0 or 1 of the Register

Addressing table except a condition register and the CPU register.

Register-1 may be any 4-bit register in column 0 or 1 of the Register

Addressing table except the CPU register. The contents of register-2

are not changed.

Literal has a decimal range from 0 to 15.

If the TEST option is used and register-1 overflows (is incremented

beyond 15, the largest value it can contain), the next micro instruc­

tion will be skipped (not executed). If overflow does not occur with

the TEST option, or if the TEST option is not used, the next micro

instruction will be executed.

NOTE

All 4-bit registers count modulo 16; e.g.,

if a register contains a value of 15 and

is incremented by 2, it overflows to a

value of 1.

© 1973 Burroughs - DO NOT REPRODUCE 4-33

FORMAT.

DESCRIPTION.

FORWARD }
TO label
BACKWARD

This instruction transfers control to the designated location. The

address of label is limited to a maximum relative displacement of

plus or minus 4095 micro instructions.

The FORWARD or BACKWARD options are used to cause the compiler to

generate a JUMP instruction with a displacement of zero and a direc­

tion sign of plus or minus. This is to facilitate ORing the actual

displacement into the M register prior to the execution of a JUMP

instruction.

4-34

FORMAT.

{MOVE}
LIT

DESCRIPTION.

literal TO {register
scratchpad-word}

This instruction is used to move a literal to any register except a

condition register or the M register; it may also be used to move a

literal to any 24-bit scratchpad word.

The literal may be a decimal integer from 0 to 16777215, a hexa­

decimal number from HO to HFFFFF, or a binary number from BO to

Blllllllllllillllllllllll. It may also be a character string

up to three characters in length. Leading zeros are not required

unless the actual value of the literal is zero. The value of the

literal should not be greater than the maximum value that the

destination register can contain; if less, left zero fill occurs.

Literal moves to a 24-bit scratchpad word will generate MOVE literal

TO TAS followed by MOVE TAS TO scratchpad-word.

Examples:

MOVE 12 TO L

LA LB LC LD LE LF

L 0011 0000 1001 1010 0001 0011 before (309Al3)

-- -- -- -- -- -- LIT (c)

L 0000 0000 0000 0000 0000 1100 after (oooooc)

© 1973 Burroughs - DO NOT REPRODUCE 4-35

LOAD(*lO)

FORMAT.

LOAD F FROM double-scratchpad-word

DESCRIPTION.

This instruction moves a pair of scratchpad words (48 bits total)

to the Field (F) register.

Addresses for double-scratchpad-words are:

so

Sl

S2

SJ

s4
S5

s6

S7

S8

S9
SlO

Sll

Sl2

SlJ

Sl4

Sl5

10 The compiler will generate two MOVE instructions for B 1710
systems.

4-36

FORMAT.

LOAD-MSMA { START}
STOP

DESCRIPTION.

This pseudo-instruction is used to cause the compiler to either start

or stop prefacing all emitted micro code with the first 16 bits of a

MOVE 24 BIT LITERAL TO MSMA instruction.

The above action is required when a micro program is to be loaded

into control memory from a cassette tape while the system is in the

TAPE mode. The action of the hardware while in this mode is as

follows:

.READLOOP

READ 16 BITS FROM THE CASSETTE TO THE U REGISTER

MOVE U TO M

IF M = FIRST HALF OF 24-BIT LITERAL MOVE, THEN READ 16 BITS

FROM THE CASSETTE TO U

EXECUTE THE MICRO OPERATOR IN M

(IF M=H9D00=MOVE 24-BIT LITERAL TO THE CONTROL MEMORY

WORD ADDRESSED BY THE A REGISTER; THEN U, WHICH NOW

CONTAINS THE ACTUAL MICRO INSTRUCTIO~, IS MOVED TO

CONTROL MEMORY ADDRESSED BY THE A REGISTER AND A IS

INCREMENTED BY 1)

IF M=CASSETTE STOP THEN

STOP CASSETTE AND HALT PROCESSOR

ELSE

JUMP TO -READLOOP

© 1973 Burroughs - DO NOT REPRODUCE 4-37

LOAD-MSMA
cont

No statement between a LOAD-MSMA START and its corresponding LOAD­

MSMA STOP may be a reference to any label which has not been declared

prior to the LOAD-MSMA STOP.

As an example, the following source code could be used to enable a

micro program to be loaded from a cassette into control memory,

beginning at control memory address zero:

MOVE 0 TO A

SEGMENT ANYNAME AT 0

LOAD-MSMA START

(MAIN MICRO-PROGRAM)

LOAD-MSMA STOP

MOVE 0 TO A

CASSETTE STOP

4-38

FORMAT.

LOAD-SMEM

DESCRIPTION.

{ START}
STOP

This pseudo-instruction is used to cause the compiler to either start

or stop appending each micro instruction with the following two

micro instructions:

MOVE 24 BIT LITERAL TO X

WRITE 16 BITS FROM X INC FA

The above two micro instructions are required when a micro program is

to be loaded into main memory from a cassette tape while the system

is in the TAPE mode.

Example:

MOVE 4096 TO FA

LOAD-SMEM START

MICRO PROGRAM

LOAD-SMEM STOP

CASSETTE STOP

*START ADDRESS

NOTE

The FA must start at a mod 32 value.

© 1973 Burroughs - DO NOT REPRODUCE 4-39

FORMAT.

MACRO macro-identifier (FP-1, FP-2, •.. , FP-N) =
statement-1

statement-2

statement-n#

DESCRIPTION.

This declaration is used to assign a name {macro-identifier) to a

series of statements and to declare any formal parameters which may

be used in the macro definition. Any later reference to macro­

identifier is replaced by the actual parameters in the reference.

A macro-identifier may be made up of alpha {A through z) or numeric

{o through 9) characters in any combination; however, no reserved

word {WRITE, MOVE, etc.) in the MIL syntax may be used as a macro­

identifier. The special character, dash {-}, is acceptable but may

not be used as the first character. Anything after the twenty-fifth

character in the macro-identifier is considered to be documentation

only.

Formal parameters {FP-N) are optional; and, if used, they must be

enclosed in parentheses. Each has the format macro-identifier-n,

where n is originally 1 and is incremented by 1 for each formal

parameter. If more than one formal parameter is used in the

declaration, they must be separated by commas.

4-40

MACROS
cont

The actual parameters used in the reference to a macro must be

single identifiers. They must not contain embedded blanks or

special characters.

The one exception is that an actual parameter could be a DEFINE

identifier and therefore could contain an embedded dash; however,

the DEFINE identifier itself would then have to define a valid,

actual parameter. For example, X, J, H801F, and TO are valid,

actual parameters; but 3 TO X and (are not. Actual parameters

may not be omitted; and, as with formal parameters, they must be

enclosed in parentheses and separated by commas.

The macro declaration must be contained on one line and must be

terminated with an equal sign (=).

The macro definition must then follow with one statement per l±ne,

and the last statement must be terminated by a pound sign (#). For

this reason, a MACRO must not itself contain a pound sign. A MACRO

may reference another MACRO or a DEFINE which has been previously

declared but must not be.recu~sive.

All MACROS must be declared prior to any executable instruct ions.

Example:

The declaration

MARCO WRITEM (WRITEMl , WRITEM2 , WRITEMJ) =

XCH WRITEMl F WRITEMl

WRITE 24 BITS FROM WRITEM2 WRITEMJ FA AND DEC FL

XCH WRITEMl F WRITEMl#

when referenced as

WRITEM(SO,X,INC)

results in the reference being replaced by the following in-line

code:

XCH SO F SO

WRITE 24 BITS FROM X INC FA AND DEC FL

XCH SO F SO

© 1973 Burroughs - DO NOT REPRODUCE 4-41

I MICRO I
FORMAT.

MICRO

DESCRIPTION.

{
string
literal}

This instruction is used to place a 16-bit constant in line. It is

the responsibility of the programmer to provide any protection that

may be needed to prevent a MICRO from executing.

The literal has a decimal range from 0 to 65535 (hexadecimal HO

thru HFFFF) •

4-42

FOR.i."\fAT 1.

MOVE {
register-1 }
scratchpad-word-1

TO {
register-2 }
scratchpad-word-2

FORMAT 2.

MOVE ADDRESS (label) TO register

FORMAT J.

MOVE segment-count TO register

FORMAT 4.

{MOVE}
LIT

FORMAT 1.

literal TO {
register }
scratchpad-word

Register-1, the source register, may be any register except the CPU

register or control memory (MSMA). If it is the M register, either

the MOVE micro itself is moved to register-2 or scratchpad-word-2

is cleared to zeros.

Register-2, the destination register, may be any register except a

condition register or a result register. If it is the M register,

the source register or scratchpad-word is bit ORed into the next

micro instruction to be executed.

© 1973 Burroughs - DO NOT REPRODUCE 4-43

Both scratchpad-word-1 and scratchpad-word-2 m·ay be any 24-bi t

scratchpad words. Note that a MOVE scratchpad-word-1 TO scratch­

pad-word-2 will generate a MOVE scratchpad-word-1 TO TAS followed by

a MOVE TAS TO scratchpad-word-2.

The source field is unchanged by any move unless MOVE TASTO ... is

used where the stack is automatically decremented after the move.

FORMAT 2.

This format is used to move the compiler-generated control memory

address of the specified label to the specified register. The regis­

ter may be any column-2 register on the Register Addressing table

except the M register. Parentheses are required around the label,

which may be either a unique label, a point label, or.the name of a

segment. (Refer to the pseudo operator SEGMENT.) If it is a point

label, it must be referenced either+ or -, e.g., MOVE ADDRESS {+PL)

TO TAS.

FORMAT 3.

If the SEGMENT pseudo-instruction is used in the program, this format

can be used to move, at run time, an 8-bit literal count of the

number of times the SEGMENT statement appears in the program previous

to the occurrence of this instruction.

The register may be any column-2 register on the Register Addressing

table except the M register.

FORMAT 4.

Refer to the LIT instruction for an explanation of this format. Up

to eight bits may be moved to CP.

All moves of unequal lengths will justify right with left zero fill

or truncation.

4-44

Example:

x

S7B

S7B

0011 1001

0011 0011

0011 1001

MOVE X TO S7B

1111 1110 1101

0011 1110 0000

1111 1110 1101

0000

0101

0000

in Hex

before

MOVE
cont

(39FEDO)

(333E05)

after (39FEDO)

The contents of register X have been moved to the scratchpad-word

S7B; X remains unchanged.

© 1973 Burroughs - DO NOT REPRODUCE

NOP

FORMAT.

NOP

DESCRIPTION.

This is the NO OPERATION instruction. It will do nothing except

use one clock cycle and take up one word of control memory.

4-46

NORMALIZE

FORMAT.

DESCRIPTION.

This instruction shifts the contents of the X register left while

counting the FL register down until either the most-significant

bit of the X register (determined by the CPL register) equals 1

or until the FL register equals O.

© 1973 Burroughs - DO NOT REPRODUCE 4-47

FORMAT.

OR register-1 WITH

DESCRIPTION.

{
literal }
register-2

This instruction is used to logically OR register-1 with the value

of the literal or the contents of register-2 and place the result

in register-1.

Register-1 may be any 4-bit register in column 0 or 1 of the Register

Addressing table except a condition register or the CPU register.

Register-2 may be any 4-bit register in column 0 or 1 of the Register

Addressing table except the CPU register. The contents of this

register are not changed by this instruction.

The literal has a decimal range of 0 through 15.

register-1 OR {literal }
register-2

yields register-1

0 OR 0 yields 0

1 OR 0 yields 1

0 OR 1 yields 1

1 OR 1 yields 1

Example: OR TB WITH 3

TA TB TC TD TE_ TF

T 0000 0101 1111 0011 0001 0010 before (05FJ12)

-- 0011 -- -- -- -- literal

T 0000 0111 1111 0011 0001 0010 after (07F312)

4-48

OVERLAY(*ll)

FORMAT.

DESCRIPTION.

This instruction overlays control memory from main memory. Previous

to initiating an overlay the L register must contain the first control

memory overlay address, the FA register must contain the beginning

main memory address, and the FL register must contain the length in

bits to be overlaid. Overlay will continue until the FL register

equals 0 or the A register is out of bounds. If A goes out of bounds,

the FA register and the FL register contain the address of the

next micro instruction in main memory and the length in bits of

llnfetched data respectively.

MOVE A TO TAS

MOVE L TO A

READ 16 BITS TO L INC FA AND DEC FL

MOVE L TO CONTROL MEMORY ADDRESSED BY A

INC A

TEST FL=O OR A OUT OF BOUNDS

NO LOOP TO READ EVENT

YES END INSTRUCTION

1 Not available on the B 1710 systems.

© 1973 Burroughs - DO NOT REPRODUCE 4-49

FORMAT.

. X INC FA DEC FL lTl READ literal BITS [REVERSE] TO r [{DEC} {FL}] [AND {INC} {FA}]

DESCRIPTION.

This instruction initiates a main memory read cycle to the specified

register (T,X,Y,L). The Field Address (FA) register must have been

previously set to the appropriate main memory address.

The literal contains the number (of bits) to read and the number to

INC or DEC. It is optional and, if used, must be an integer from 0

to 24. If the literal is omitted or if it equals zero, the contents

of the CPL register indicate the number of bits to be read.

If the number of bits to be read is zero, the destination register

will be set to all zeros; otherwise, the selected bits are right-

justified in the destination register. Left zeros are inserted if

the number of bits read is less than the length of the destination

register.

If the REVERSE option is used, the contents of the FA register

point at the last bit + 1 of the field to be read from memory.

The destination register still receives the contents of this

field as though it had been read in a forward direction.

For example, READ 24 BITS TO T, with FA = zero, and READ 24 BITS

REVERSE TO T, with FA = 24, will both result in the T register

being set to the same value; i.e., T(O) corresponds to address

zero, and T(23) corresponds to address 23.

Incrementing or decrementing occurs following a READ and is optional.

For details refer to the COUNT verb.

4-50

RESET

FORMAT.

RESET register {literal-I)

[[AND register {literal-2)] AND register {literal-n)]

DESCRIPTION.

This instruction is used to RESET {set to ZERO) the bit in the

register which is specified by literal-I. More than one bit in any

one register can be RESET with the same instruction if all bits are

in the same 4-bit register.

The register may be any 4-bit register in column 0 to 1 of the

Register Address chart except a condition register or the CPU

register; it may be the FL, the FB, the L or the T register.

If more than one bit is to be RESET in the FL, the FB, the L

or the T registers, all bits must be in the same 4-bit subfield.

All literals have a range from 0 to J for a 4-bit register, from 0

to 15 for the FL register and from 0 to 23 for the FB, the L and

the T registers. Parentheses are required around all literals.

Example:

1111

mT"I
.1.D

1010 T

T 1__011~ 1010

l
T(O) TA(J)

RESET T(O) AND TA(J)
TC TD TE TF

1100 1110 1001 1001 before (FACE99)

1100 1110 1001 1001 after (6ACE99)

© 1973 Burroughs - DO NOT REPRODUCE 4-51

ROTATE OR SHIFT T

FORMAT 1.

{
SHIFT
ROTATE}

FORMAT 2.

T LEFT BY {
literal BITS}
CPL [TO register]

ROTATE T RIGHT BY literal BITS [TO register]

FORMAT J.

x
SHIFT.T RIGHT BY literal BITS [TO {i}J

L

DESCRIPTION.

This instruction is used to rotate or shift the contents of the T

register and place the result either in the T register or in some

other register. If the result is not placed in the T register, T

remains unchanged.

FORMAT 1.

The literal has a decimal range from 0 to 23. When the literal

equals zero or when CPL is used, a shift or rotation by the value

of the CPL register will occur. If CPL is greater than 24, 24 is

used.

If the TO register option is .used, the rotated or shifted result will

be placed in the register and the T register will remain unchanged;

otherwise, the result is placed in the T register. The register may

be any column O, 1 or 2 register in the Register Addressing table

4-52

ROTATE OR SHIFT T
cont

except a condition register. If it is the M register, the result

of the ROTATE or SHIFT operation is BIT-ORed into the M register

and modifies the next micro instruction.

FORMAT 2.

Because the hardware can only rotate the T register to the left, the

compiler converts this format to the proper left rotate to accomplish

the same result as the rotate right. The TO register option is the

same as in format 1 above.

FORMAT 3.
Because the hardware can only shift the T register left, the compiler

will generate an EXTRACT to accomplish the same result. Therefore,

the T register may be shifted right only to the X, the Y, the T or

the L register. If the TO .• ~ option is not used, the result is

placed in the T register; otherwise,· the T register is unchanged.

The literal has a decimal range from 0 to 23.

NOTE

It is recommended that the EXTRACT instruc­

tion itself be used, rather than this

format.

©1973 Burroughs - DO NOT REPRODUCE 4-53

ROTATE OR SHIFT
X, Y AND XY

FORMAT.

{
SHIFT
ROTATE}

DESCRIPTION.

{
LEFT
RIGHT} BY UNIT

{literal BITS}

This instruction rotates or shifts the X, the Y, or the XY register

(X concatenate Y) a specified number of bits to the right or left.

Zero fill will occur with the SHIFT instruction.

When UNIT is used, the operand is rotated or shifted by 1, 4, or 8

bits according to the value of the CPU register (type of units con­

tained in the X register and the Y register as determined by the CPU

register, either binary, 4-bit, or 8-bit decimal). For the XY reg­

ister, the literal value may be decimal 0 through 47. For the X

register and the Y register, the literal value may be 0 through 23.

The 8-bit decimal is not applicable on the B 1710.

4-54

NOTE

The literal has a maximum value of 1

on the B 1710 systems with the concatenated

XY register.

FORMAT.

SEGMENT {NEWSEGMENT}
label-1

DESCRIPTION.

{
literal

AT ADDRESS(label-2)}

This pseudo operator is used when a segment of micro code is to be

physically placed at the end of a mainline interpreter or emulator

at compile .+- • 1.11me; however, at run time it is overlaid into the

mainline routine in control memory at the location specified by

the literal or ADDRESS(label-2).

Label-1, if used, must be a unique label; i.e., it must not be a

point label. The address associated with label-1 is the physical

location of the first micro instruction following the SEGMENT

statement.

The NEWSEGMENT option may be used in lieu of label-1 if it is not

necessary to name the segment, e.g., a test routine which is to

be executed from the cassette.

The literal or ADDRESS(label-2) must specify an address which is

less than the address associated with label-1. Label-2, if used,

must have been declared previous to the occurrence of the segment

statement and must be enclosed in parentheses.

All micro code appearing after a SEGMENT statement is assumed to

be in that segment until another SEGMENT statement is found.

There is no limit to the number of SEGMENT statements that may

appear in one program.

Labels outside a segment may be referenced from within the segment,

and vice versa, with the correct run time linkage addresses being

generated.

©1973 Burroughs - DO NOT REPRODUCE 4-55

FORMAT 1.

SET register TO literal

FORMAT 2.

SET register (literal-1)

[AND register (literal-2) [AND register (literal-n)]J

DESCRIPTION.

FORMAT 1.

This statement is used to SET the register to the value of literal-1.

The register may be any 4-bit register in column_ 0 or 1 of the

Register Addressing table except a condition register.

Literal-1 has a decimal range from 0 to 15, except when the register

is the CPU register, in which case literal-1 has a range from 0 to J.

FORMAT 2.

This instruction is used to SET the bit specified by literal-1 (bit

equal to ONE) into the register. More than one bit in any one regis­

ter can be SET with the same instruction if all the bits are in the

same 4-bit register.

The register may be any 4-bit register in column 0 or 1 of the Regis­

ter Addressing table except a condition register or the CPU register.

It may also be the FL, the FB, the L or the T registers; and, if so,

all the bits must be in the same 4-bit subfield.

4-56

All literals have a decimal range from 0 to 3 for a 4-bit register

or subfield, from 0 to 15 for the FL register, and from 0 to 23 for

the FB, the L, and the T registers. Parentheses are required

around all literals.

Example of format 1:

SET TA TO 3
TA TB TC TD TE TF

T 1111 0100 0101 0110 0111 1000 before_ {F4 5678)

T 0011 0100 0101 0110 0111 1000 after (345678)

Example of format 2:

SET TC(2) AND T(ll)
TA TB TC TD TE TF

T 0001 0010 0000 0100 0101 0110 before (120456)

1001 0010 0011 0100 0101 0110 after (123456)
I -'"

T

I
TC(2) T(ll)

©1973 Burroughs - DO NOT REPRODUCE 4-57

FORMAT 1.

{

ALL} [CLEAR J
SKIP WHEN r~gister ANY

EQL

FORMAT 2.

SKIP WHEN condition [FALSE]

DESCRIPTION.

literal [FALSE]

This statement causes one micro instruction to be skipped if the

designated condition is satisfied.

FORMAT 1.

The literal contains a 4-bit mask. It may be comprised of decimal,

binary, or hexadecimal entries.

ALL is considered to be TRUE only if all the bits in the register

corresponding to one bits in the mask are TRUE. That is, only the

designated bit positions are tested to see if they contain ones.

ANY is TRUE if at least one bit in the register corresponding to a

one bit in the mask is TRUE. EQL is TRUE if all the register bits

equal the corresponding bits in the mask. That is, the register

must be exactly like the mask.

The CLEAR option is used only with ALL and causes the masked bits

of the register to be set to zeros after testing the ALL condition.

All bits are not cleared, only the bits tested. If ALL CLEAR is

used, the clearing action always occurs whether the SKIP is taken

or not. If ALL is used with a mask of 0000, the result is always

FALSE.

4-58

SKIP
cont

The FALSE option causes a skip when the whole condition is FALSE.

FORMAT 2.

The condition may be any condition available from the condition

registers.

The register may be declared as being:

FU TA LA CA BICN

FT TB LB CB FLCN

FLC TC LC cc INCN

FLD TD LD CD XYCN

FLE TE LE XYST

FOF TF LF

PROGRAMMING NOTE

The use of the IF •.. THEN •.• ELSE instruction

is recommended rather than the SKIP instruc­

tion. The SKIP is limited to one, 4-bit

grouping mask in one register and may only

skip one micro instruction. The IF state­

ment will generate a SKIP WHEN hardware

micro instruction whenever possible and is

also capable of skipping blocks of micro

instructions or testing any combination of

bits in many registers.

©1973 Burroughs - DO NOT REPRODUCE 4-59

STORE(*l2)

FORMAT.

STORE F INTO double-scratchpad-word

DESCRIPTION.

This instruction MOVEs the F register (48 bits) into a double­

scratchpad-word. The F register is unchanged.

Double-scratchpad-words are:

so

Sl

82

SJ

s4

85

s6

87

SB

89

810

Sll

812

813

814

815

12 The compiler generates two MOVE instructions on the B 1710
systems.

4-60

FORMAT.

SUBTRACT

DESCRIPTION.

SOA

Sl5A

FROM FA

SUBTRACT
SCRATCHPAD

This instruction is used to subtract the left half scratchpad-word

from the Field Address (FA) register. The result is placed in the

FA register, and the contents of the scratchpad-word remain

unchanged.

©1973 Burroughs - DO NOT REPRODUCE 4-61

SWAP(*lJ)

FORMAT.

SWAP literal BITS [REVERSE] WITH register

DESCRIPTION.

This instruction swaps the specified number of bits between main

memory and the register. The register may be the T, the X, the Y, or

the L registers.

The Field Address (FA) register must have been previously set to the

proper main memory address.

The literal must be an integer from 0 to 24. It determines the number

of bits to swap between main memory and the register. If the value of

the literal is zero, the contents of the CPL register are used. If

the CPL register is also zero, the register is cleared to all zeros.

If less than 24 bits are swapped, the leading bits of the register

is zero. For an explanation of the Reverse option, refer to

the READ and WRITE instructions.

NOTE

Incrementing or decrementing of the FA or

the FL registers is not allowed with the

SWAP instruction.

13 Not available on the B 1710 series.

4-62

FORMAT.

TABLE label

BEGIN

character-string

character-string

END

DESCRIPTION.

TABLE is used to create in-line character-strings. Only one

character-string is allowed per line, and only character-strings

are allowed between the BEGIN and the END statements.

The BEGIN/END pair must surround all strings in the TABLE. The

characters are grouped two per address, i.e., 16 bits.

The label must be unique and its use references the first two

characters in the table.

Example.

TABLE

BEGIN

END

REF

AB

ABC

D

45

The code generated

will be:

ClC2

ClC2

CJC4

F4F5

MOVE ADDRESS (REF) TO Y The address of the table REF will

be loaded into the Y register.

©1973 Burroughs - DO NOT REPRODUCE 4-63

WRITE

FORMAT.

WRITE literal BITS (REVERSE) FROM{~} [{~~g}{~~}) (AND {~~g} {~~})

DESCRIPTION.

This instruction initiates a main memory write cycle from the spec­

ified register (the T, the X, the Y, or the L registers). The

Field Address (FA) register must have been previously set

to the appropriate main memory address.

The literal, the number (of bits) to write and the number (value)

to INC or DEC, is optional and must be an integer from 0 to 24.

If the literal is omitted or equals zero, the Control Parallel

Length (CPL) indicates the number of bits to write and the number

to INC or DEC. If the CPL register also equals zero, no operation

(NOP) takes place. WRITE CPL BITS is not permitted.

If less than 24 bits are written, the data in the register is

truncated from the left. The contents of the register are

unchanged by this instruction.

If the REVERSE option is used, the FA register points to the last

bit +l of the main memory field involved. The contents of the

source register are placed in main memory as though they had been

written in a forward direction. For example, WRITE 24 bits from

T, with the FA register = zero, and WRITE 24 bits REVERSE from T,

with the FA register = 24~ will both result in the memory field

being set to the same value; i.e., T(O) here corresponds to main

memory address zero, and T(23) corresponds to main memory address 23.

Incrementing or decrementing occurs following the READ and is

optional.

4-64

WRITE-STRING

FORMAT.

. L INC FA INC FA {T} WRITE-STRING string [REVERSE) FROM ~ [{DEC}{FL})[AND {DEC}{FL}J

DESCRIPTION.

This instruction generates the necessary in-line literals for a

string with moves to the indicated register and the WRITE commands

to write the string into main memory beginning at the address in

the FA register.

The length of the string is limited to the remainder of the source

card image. It may be any of the following data types.

Start-Stop Length of

~ Symbol Each Unit Example

Character " 8 bits "APC128JKL"

Hex @ 4 bits @124ADF@

Octal @(3) 3 bits @(3)123567@

Quart al @(2) 2 bits @(2)123321@

Unary @(l) 1 bit @(1)11001101@

© 1973 Burroughs - DO NOT REPRODUCE 4-65

FORMAT.

XCH double-scratchpad-word-1 F double-scratchpad-word-2

DESCRIPTION.

This instruction moves the F register to double-scratchpad-word-2;

then double-scratchpad-word-1 is moved to the F register. The two

words may be the same.

Double-scratchpad-words are as follows:

4-66

so

Sl

S2

SJ

s4

SS
s6

S7

SS

S9
SlO

Sll

Sl2

SlJ

Sl4

Sl5

SECTION 5

PROGRAMMING TECHNIQUES

VIRTUAL-LANGUAGE DEFINITIONS.

A set of virtual-instructions for the virtual machine must first be

defined as each being a unique string of bits. This definition may

be chosen from any relevant criteria. For example, COBOL verbs may

be encoded according to their frequency of usage, the higher frequency

verbs being encoded in three bits with one escape code that specifies

the next eight bits as an extended code string. Another approach

might be to accept directly the source language as in a time-sharing,

"line-at-a-time," interactive mode. After the S-instructions and

their operand fields have been defined, any standard location or

technique should be selected. For example, the base values of S­

instructions and S-data items might be in S4A and SSA of the scratch­

pad; or all routines are to be referenced with CALL and end with an

EXIT instruction to facilitate subrouting. The micro programmer is

now ready to begin creating the micro routines needed to perform each

of the events in the S-language.

WRITING RULES.

The compiler accepts card images consisting of one symbolic micro

instruction per card. Columns 1 through 5 contain the beginning of a

label, and columns 6 through 72 contain the micro instructions. Both

point labels and unique labels are allowed, with a limit of 25 char­

acters and no imbedded blanks. A blank is the separator between the

label and the beginning of the micro instructions. An asterisk (*)
anywhere in columns 1 through 72 denotes the beginning of a comment.

Columns 73 through 80 are used for sequence numbers.

Source code maintenance as well as other compiler options may be

specified by the use of the $ option cards. The default $ options

are $ CARD and $ LIST. An example of a card deck is:

© 1973 Burroughs - DO NOT REPRODUCE 5-1

Col 1

? COMPILE PROG-NAME WITH MIL TO LIBRARY

? DATA CARD

$ (OPTIONAL $ CARDS)

SOURCE PROGRAM CARDS

? END

Updating a source file requires FILE EQUATE cards for the compiler

files SOURCE and NEWTAPE.

In the following examples, S-language statements are explained first;

and there is assumed to exist some basic driver routine which is in

control at the beginning and the end of each S-instruction. This

control routine performs the hardware functions of maintaining an

Instruction register and fetching the next S-instruction.

Each example is written as if it were CALLed and returns control with

the EXIT micro instruction.

Example 1:

Assume:

5-2

a) The 3 bits 010 imply an S-instruction of ADD 6 decimal

digits, Indirect address-1, Indirect address-2 and store

the answer in Indirect address-2.

b) Indirect addresses are displacements from the beginning of

a table, and the actual base value of the table is the

current setting of the Base register.

c) The lengths of the Indirect addresses are 9 bits.

d) All data is in 4-bit decimal form and is 6 decimal digits

(24 bits) long.

e) Overflow is to be ignored.

The instruction might appear as follows:

010 0000110010000101100 in Main Memory.

This bit string represents an S-instruction compiled from a source

language statement such as the following:

ADD SUM TO ROLLTOTAL.

That portion of an interpreter which would perform the addition might

appear as follows:

NEXTSOP READ 3 BITS TO X INC FA

MOVE X TO M

JUMP FORWARD

GO TO ROUTINE-FETCH

GO TO ROUTINE-STORE

GO TO ROUTINE-ADD

ROUTINE-ADD

MOVE BR TO SlA

READ 9 BITS TO T INC

READ 9 BITS TO L INC

MOVE L TO FA

ADD SlA TO FA

READ 24 BITS TO x
MOVE T TO FA

ADD SlA TO FA

READ 24 BITS TO y

FA

FA

* GET OP-CODE

* PREPARE TO DECODE

* GO TO DECODER

* ADD ROUTINE

* LABEL FIRST LINE

* SET BASE FOR ADD

* READ FIRST INDEX

* READ SECOND INDEX

* LOAD INDEX

* ADD ACTUAL BASE TO INDEX

* GET DATA-2

* LOAD INDEX

* ADD ACTUAL BASE TO INDEX

* GET DATA-1

© 1973 Burroughs - DO NOT REPRODUCE 5-3

5-4

MOVE BOOlllOOO TO CP

MOVE SUM TO T

WRITE 24 BITS FROM T

MOVE 24 TO CP

GO TO NEXTSOP

* CLEARS CARRY

* SETS CPU AND CPL CORRECTLY

* GET SUM READY TO WRITE

* WRITE SUM

* MUST RESTORE CPU IN GENERAL

* GO TO NEXT X-INSTRUCTION

@
co
c,J

CD
c ...
0 c

ca :::r
en

c
0
z
0
-I
J:J
m
""O
J:J
0
c
c:
n
m

\JI
I

\JI

Example 2:

Sample Source Language Statement

MOVE INVERTING FIELD l TO FIELD 2

The S-Language might be

OP-CODE

BIT STRING 0001 =
0100 =

1000 =

DATA TYPE ADDRESS-l LENGTH-l ADDRESS-2

BINARY LEFT-MOST UNIT IN BITS RIGHT-MOST

4-BIT DECIMAL (BCD) ABSOLUTE ADDRESS UNIT ADDRESS

IN BITS IN

8-BIT DECIMAL (EBCDIC)

2.

NOTES

The size of each element in the S-langu.age

is 24 bits or less.

The left-most-address-1 points to the beginning

of field-1 and the data will be accessed with

READ FORWARD commands. The right-most-address-

2 points to the end of field-2 and the data

will be accessed with READ REVERSE commands.

BITS

LENGTH-2

IN BITS

Assume the following events have been performed in a manner similar

to that used in example 1.

a. The OP-CODE has been properly decoded and the correct

routine has been entered.

b. The address and length of Field 1 are in the F register.

c. The address and length of Field 2 are in scratchpad-word

The following code then performs the INVERTED-MOVE oper~tion and

properly pads if the receiving field (field 2) is longer than the

sending field (field 1).

INMOV BIAS BY UNIT

READ 4 BITS REVERSE TO L

TOP IF FL = 0 THEN GO TO PAD

* SET CPU AND CPL

* GET TYPE INDICATOR

* TEST LIMIT FIELDl

IF SFL = 0 THEN GO TO ENDOP * END OF FIELD2 STOP

READ TO X INC FA AND DEC FL * GET A UNIT OF DATA

so.

SCH SO F SO * EXCHANGE SO AND F REGISTERS

WRITE REVERSE FROM X DEC FA AND DEC FL

XCH SO F SO

GO TO TOP

PAD LOAD F FROM SO

MOVE 0 TO X

IF LF(4) THEN

MOVE H40 TO x
.A WRITE FROM X DEC FA

IF FL f 0 GO TO -A

GO TO END OP

DEC FL

* PUT A UNIT OF DATA

* EXCHANGE FOR GET

* GET ADDRESS INTO F REGISTER

* SET ZERO FOR PAD

* TEST FOR EBCDIC

* ADD PAD SPACES

* WRITE A SPACE

* TEST LIMIT

* END OF OPERATION

The resultant data movement in memory would be:

5-6

An Alpha Data String

FIELDl FIELD2

BEFORE A B c D E I 4 5 6 7 8

AFTER A B c D E I E D c B A

OR

With Bit Strings

FIELD! FIELD2

BEFORE 1 1 0 0 0 1 1 1 1 1

AFTER 1 1 o o o I 0 0 o. 1 1

Notice that the same micro instruction sequence will work in either

case.

Example J:

Given: A list of data items.

Problem: Sort the data items into ascending sequence in place.

{Do a bubble sort.)

Assume: a. The S-operator has the following general format.

S-OP

A 4 =
BIT STRING 8 =

any

Type indicator

4-bit decimal

8-bit alpha (EBCDIC)

other value from 0 to 15

Left most
address in
bits

A

BIT-STRING

© 1973 Burroughs - DO NOT REPRODUCE:

Length of
list in
bits

A

BIT-STRING

5-7

b. The S-Op has been decoded (see example 1) and the

necessary routine has been entered.

c. Scratchpad-word SS contains the most-significant

(left-most) address in SSA and the TYPE and length

in SSB.

Then the following routine will perform the bubble sort.

BSORT CLEAR L

CYCLE LOAD F FROM SS

IF FL = 0 THEN GO TO ENDOP

BIAS BY UNIT

* CLEAR SWITCH

* FETCH BEGINNING ADDRESS

* DEGENERATE CASE TEST

* SET CPL TO UNIT FOR READ/WRITE

.A COUNT FA UP AND FL DOWN BY COP * PLACE BETWEEN ITEMS

IF FL = 0 GO TO ENDOP

READ REVERSE TO X

READ TO Y

IF X=Y THEN GO TO -A

WRITE REVERSE FROM Y

WRITE FROM X

MOVE HF TO LF

GO TO -A

ENDOP IF LF (o) TRUE GO TO EXITR

CLEAR L

GO TO CYCLE

EXITR EXIT

S-8

* LAST ITEM TEST

* GET ITEM ON LEFT

* GET ITEM ON RIGHT

* LEAVE ALONE

* REPLACE RIGHT TO LEFT

* REPLACE LEFT TO RIGHT

* MARK NOT ALL SORTED SWITCH

* GO GET NEXT

* EXIT ROUTINE

* RESET SWITCH

* TRY WHOLE LIST AGAIN

APPENDIX A

MIL COMPILER OPERATION

COMPILER CONTROL CARD.

The purpose of the compiler control card is to allow the programmer

to specify options to the compiler I/O files.

SYNTAX.

1 [NO] option-1 [No] option-2

SEMANTICS.

The $ must appear in column 1 of the control card.

There must be at least one space between each item on the control

card. The options may be in any order. Columns 73 through 80 of the

$-card are used for sequence numbers. Any number of $-cards may be

used and may appear anywhere in the source deck. The options

specified will become active from that point on.

If the optional word NO appears before any option, that option is

turned OFF. Once an option is ON or OFF, it remains in that state

until altered by another control card.

The compiler is preset with the following options: LIST, SINGLE,

CONTROL CARD OPTIONS.

LIST(*l4) List all compiled source input.

SINGLE(*l4) Single space all printed output.

DOUBLE Double space all printed output.

CONTROL List control cards.

NEW Produce a new source file NEWSOURCE.

CHECK(*l4) Check for sequence errors.

SUPPRESS Suppress all warning messages except sequence error

messages.

14 Default is ON; all others are OFF.

© 1973 Burroughs - DO NOT REPRODUCE A-1

A-2

B

MERGE

PAGE

SEQ

PUNCH

VOID

Generate micro instructions for the B.

The source of input is the file SOURCE which will

have the file CARD merged into it.

Page eject if listing.

Causes updated source output and/or listing to be

sequenced. If the item following SEQ ~s an integer,

this integer is used as the resequence starting

value; otherwise, 1000 is used. If the i tern fol-

lowing the above integer is another integer, the

first character of' which is a plus sign(+), this

second integer is used as the resequence increment

value; otherwise, 1000 is used.

Causes object code to be punched on cards. The cards

have the following format, with all fields, except

the program identifier, in hexadecimal format (o

through 9 and A through F):

CARD COLUMNS

1 through 6,

8 and 9

11 through 70

7 2 through 80

24-bit control memory address.

8-bit count of the number of bits

of data.

up to 240 bits of data, left­

justif'ied.

program identifier from PROGID

statement, right-justified and for

documentation only.

The VOID card will void those images from the second­

ary input file SOURCE which have sequence fields less

than or equal to the terminating sequence field. If'

the terminating sequence field is missing, the only

image voided is the first one with the same sequence

field as the VOID card.

THE MODULE OPTION $ CARD.

The module option $ card is used to SET or RESET user-defined toggles

to be used in conjunction with the IF statement for the conditional

inclusion of source statements. It may be used anywhere within the

source deck, and each module option $ card affects only those user

toggles which are referenced on that card. Before any toggle can be

referenced by an IF statement, it must be declared (SET or RESET) on

a module option $ card.

Example:

$ SET SYSTEM!

$ RESET SYSTEM2, RESET SYSTEMJ, RESET SYSTEM4

$SET SWl, RESET SW2, RESET SWJ, SET sw4, SET sw5

To compile a MIL source deck from the card reader and not save a

copy of the source code on the disk, the following are applied:

? Compile prog-name WITH MIL TO LIBRARY

? DATA CARD

(any MODULE OPTIONS, i.e. $ SET)

(SOURCE PROGRAM IN MIL)

? END

To compile a MIL program and save a copy of the source code on

the disk, the following are applied:

? COMPILE prog-name WITH MIL TO LIBRARY

? MIL FILE NEWSOURCE = user-new-source-file-name

? DATA CARD

(MODULE OPTIONS if used)

© 1973 Burroughs - DO NOT REPRODUCE A-3

A-4

$ NEW

(SOURCE PROGRAM IN MIL)

? END

To compile a MIL program from a disk file and merge cards into

the program, the disk file not being altered, that is, the cards

not permanently altering the disk file, the following are

applied:

? COMPILE prog-name WITH MIL TO LIBRARY

? MIL FILE SOURCE = user-old-source-file-name

? DATA CARD

(MODULE OPTIONS if used)

$ MERGE

(SOURCE PROGRAM IN MIL)

? END

To compile a MIL program from a source image disk file and merge

cards into the program, the cards permanently altering the disk

file, the following are applied:

? COMPILE prog-name WITH MIL TO LIBRARY

? MIL FILE SOURCE = user-old-source-file name

? MIL FILE NEWSOURCE = user-new-source-file-name

? DATA CARD

(MODULE OPTIONS if used)

$ NEW MERGE

(SOURCE PROGRAM IN MIL)

? END

© 1973 Burroughs - DO NOT REPRODUCE A-5

APPENDIX B

B 1710 HARDWARE TABLES

Table B-1

B 1710 Register Addressing

Column Number

0 1 2 3
0 TA FU x SUM
1 TB FT y CMPX
2 TC FLC T CMPY
J TD FLD L XANY

4 TE FLE A XEOY
5 TF FLF M MSKX
6 CA BICN BR MSKY

Row 7 CB FLCN LR XORY
Number

8 LA UNASSIGNED FA DIFF
:9 LB RESERVED FB MAXS

10 LC RESERVED FL MAXM
11 LD RESERVED TAS u

l2 LE XYCN CP RESERVED
13 LF XYST RESERVED CMND
14 cc RESERVED CONSOLE READ DATA
15 CD CPU CONSOLE WRITE NULL

Table B-2

Condition Registers

BICN LSUY CYF CYD CYL

XYCN MSBX X=Y X<Y X>Y

XYST LSUX INT YfO xfo

FLCN FL=SFL FL>SFL FL<SFL FLf O

cc STATE TIMER I/O CONSOLE
LIGHT INTERRUPT SERVICE REQ INTERRUPT

CD MEMORY READ RESERVED RESERVED RESERVED
DATA PARITY
ERROR INTERRUPT

BIT 0 1 2 3

© 1973 Burroughs - DO NOT REPRODUCE B-1

ADDRESS MATRIX NOTES.

a. BICN, FLCN, XYST, and XYCN may not be addressed as

destination registers.

b. MAXM, cc(o), and CD(l,2, and J) are addressable but will

always contain a value of 0.

B-2

c. CPU is a destination register only.

d. NULL always contains a value of O. Any register or

scratchpad-word to which it is moved will be cleared to O.

l
FB -

~ i~ l y

FUNCTION BOX c~ -
2J 0 2J

BR

x

T

L

FA LR

(8) A STACK
STACK J POINTER . .

A STACK (1 5) A S

A STACK 0

A STACK 7)
OB . MASK~ .

SHIFT/HOT
.

GENERATOR 2J 15B ()

OA

@
.....
co
w 1 2' 1 ~A 0
IJJ

[LBUF j
1: t "' t_ .

J I
E5 31 ROTATOR 0 M 0 H1.~ u () J

J1 MIR 0 ML.ij I ~

[l G'JECODER
CASSETTE

s MEMO HY
MEMORY EC{UENCEH

ELECTHONlCS 8K-uliK BYTES

c
0
c

CQ
:::r
Ill

c
0 ----,
z
0 MAH (A) I
-4 ___ _J

:l'J
m
""O
:l'J
0
c
c:
('") +/-m

I I

&
CONSOLE

CONTROL

I_

J PARITY

ADDRESS
___ E __ x_P_A_N_D_E_R __ J

Figure B-1. B 1710 Processor

APPENDIX C

B 1720 HARDWARE TABLES

Table C-1

B 1720 Register Addressing

Column Number

0 1 2 3
0 TA FU x SUM
1 TB FT y CMPX
2 TC FLC T CMPY
') TD FLD L XANY .J

4 TE FLE A XEOY
5 TF FLF M MSKX
6 CA BICN BR MSKY
7 CB FLCN LR XORY

Row
Number 8 LA TOPM FA DIFF

9 LB RESERVED FB MAXS
10 LC RESERVED FL MAXM
11 LD RESERVED TAS u

12 LE A. .. YCN CP MER
13 LF XYST MSMA DATA
14 cc INCN CONSOLE READ MCND
15 CD CPU CONSOLE WRITE NULL

Table C-2

Condition Registers

BINC LUSY CYF CYD CYL

XYCN MSBX X=Y X<Y X>Y
r

XYST LSUX INT Y-/;O x;io

FLCN FL=SFL FL>SFL FL<SFL FL,tO

INCN RESERVED RESERVED RESERVED RESERVED

cc STATE TIMER I/O CONSOLE
LIGHT INTERRUPT INTERRUPT INTERRUPT

CD MEMORY MEMORY MEMORY MEMORY
READ DATA WRITE/SWAP READ ADDR WRITE/SWAP
PARITY ERROR ADDR OUT OF OUT OF BOUNDS ADDR OUT OF
INTERRUPT BOUNDS OVER- INTERRUPT BOUNDS INTERRUPT

RIDE

BIT 0 1 2 3

©1973 Burroughs - DO NOT REPRODUCE C-1

ADDRESS MATRIX NOTES.

C-2

a. BICN, FLCN, XYST, and XYCN are addressable as source

registers only.

b. The TOPM, MER, and the A registers are used to determine the

memory (control or main) and location of the next micro

instruction.

c. MSMA is control memory and may be addressed only from the

maintenance console and during tape mode.

d. CPU is a destination register only.

e. NULL always contains a value of O. Any register or

scratchpad-word to which it is moved will be cleared to O.

APPENDIX D

MICRO INSTRUCTIONS

Of' CODE

l l I I 10 I l MICAOMNEMONICS (HEXADECIMAL) 15 14 13 12 11 q 8 7 l 6 5 l 4 J 1 2 l 1 l 0

SOURCE REG. DESTINATION DESTINATION

REGISTER MOVE 1 n n n 0 0 0 1 "°URCE REG. ROW COL. REG. COL. REG.ROW

SCRATCHPAD SOURCE/DESTINATION SOURCE/DEST =-~)l.~lXl SCRATCHPAD WORD

MOVE 2nnn 0 0 1 0 REG. ROW REG.COL. IL6 REG B ADDRESS

FOUR-BIT l'lEG. MANIPULATE FOUR·BIT MANIPULATE

MANIPULATE 3 n n n 0 0 1 1 AFFECTED REGISTER ROW COL. VARIANTS LITERAL

BIT TEST REL SOURCE REG. IFOUR·BITI REG. TEST BIT ~ RELATIVE BRANCH

BR ON FALSE 4 n n n 0 1 0 0 ROW COL. NUMBER DISPLACEMENT VALUE

BIT TEST REL SOURCE REG. IFOUR-BITI REG. TEST BIT 0 RELATIVE BRANCH

BA ON TRUE 5nnn 0 1 0 1 ROW COL. NUMBER DISPLACEMENT VALUE

SOURCE REG. (FOUR-BITI REG. SKIP TEST

SK!P WHE!I! s·n" n 0 1 , c ROW COL. VARIANTS FOUR-BIT TEST MASK

READ/WRITE ~ COUNT FA/FL DATA REG.~
MEMORY 7 n n n 0 1 1 1 VARIANTS (XYTLI 'REV MEMORY FIELD LENGTH

MOVE EIGHT-BIT DESTINATION NEG. ROW

LITERAL 8 n n n 1 0 0 0 COL 2 ASSUMED EIGHT-BIT LITERAL

MOVE 24-BIT DESTINATION REG. ROW

LITERAL 9nnn 1 0 0 1 COL 2 ASSUMED FIRST EIGHT BITS OF LITERAL

SHIFT/ROTATE OEST REG. ~ SHIFT/ROTATE

T REGISTER Annn 1 0 1 0 DESTINATION REG. ROW COL. COUNT 11-241 T

EXTRACT FROM RIGHT BIT POINTER 11-241 I DEST. REG. WIDTH OF EXTRACTION

T REGISTER Bnnn 1 0 1 1 FOR EXTRACTION FIELD OP. CODE IXYTLI FIELD (1-241

BRANCH REL
FORWARD Cnnn 1 1 0 0 RELATIVE DISPLACEMENT MAGNITUDE

BRANCH REL
REVERSE Dnnn 1 1 0 1 RELATIVE DISPLACEMENT MAGNITUDE

CALL REL.
FORWARD Ennn 1 1 1 0 RELATIVE CALLED ADDRESS MAGNITUDE

CALL REL.
REVERSE Fnnn 1 1 1 1 RELATIVE CALLED ADDRESS MAGNITUDE

9WAP DEST. GEN.

~
MEMORY FIELD

MEMORY 02nn 0 0 0 0 0 0 1 0 PURPOSE LENGTH
REG. l2rtIIJ.. IEV.

CLEAR • L T y· x
FA l FL l FU

CP

REGISTERS 03nn 0 0 0 0 0 0 1 1 REG. REG. REG. REG. REG. REG. REG. REG.

SHIFT/ROTATE ~ ~ l;< SHIFT/ROTATE

XOR Y 04nn 0 0 0 0 0 1 0 0 COUNT 11-241 .
SHIFT/ROTATE ~ ~ SHIFT/ROTATE

.
XANOY 05nn 0 0 0 0 0 1 0 1

RES.
COUNT 11-241 .

COUNT COUNT UTERAL
FA ANO FL 08nn 0 0 0 0 0 1 1 0 VARIANTS MAGNITUDE

S::XCHANGE DESTINATION 48-BIT SOURCE 48-BIT
DOUBLEPAO WORD 07nn 0 0 0 0 0 1 1 1 SCRATC .. AD ADDA. SCRATCHPAO ADDA.

-
SCRATCHPAD ~ A(LEFTI SCRATCHPAD

RELATE FA 08nn 0 0 0 0 1 0 0 0 RESERVED WORD ADDRESS

MONITOR 09nn 0 0 0 0 1 0 0 1 LITERAL OCCURRENCE IDENTIFIER

CASSETTE CASSETTE MANIP-
CONTROL 002n 0 0 0 0 0 0 0 0 0 0 1 0 ULATE VARIANTS RES.

BIAS G;:~ BIAS 003n 0 0 0 0 0 0 0 0 0 0 1 1 VARIANTS

STORE FINTO • DESTINATION SCRATCHPAD
DOUBLEPAD WORD 004n 0 0 0 0 0 0 0 0 0 1 0 0 WORD 148 BITSI

LOAD F FROM • SOURCESCRATCHPAD
DOUBLEPAD WORD 005n 0 0 0 0 0 0 0 0 0 1 0 1 WORD (48 BITSI

SET CYF I CYF I CYF CYF
CYF 008n 0 0 0 0 0 0 0 0 0 1 0 1 c!~o c!~L TO 1 TOO

HALT 0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

OVERLAY •
M-STRING 0002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

NORMALIZE
x 0003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

NO
OPERATION 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

*NOT AVAILABLE ON 8 1710 SYSTEMS
ONE BIT VARIANTS s ~

© 1973 Burroughs - DO NOT REPRODUCE D-1

FOUR-BIT MANIPULATE SKIP WHEN (6nnn) SKIP READ/WRITE MEMORY

(3nnn) VARIANTS TEST VARIANTS (7nnn) VARIANTS

~ CONDITIONS BITS 4-6 CONDITIONS BITS 6-7 CONDITIONS --- ---
000 SET 000 ANY. SKIP 00 X REG.
001 AND 001 ALL. SKIP 01 Y REG.
010 OR 010 EOU. SKIP 10 T REG.
011 EOR 011 ALL CLR. SKIP 11 L REG.
100 INC 100 NOT ANY. SKIP

BITS 8-10 CONDITIONS
101 INC/TEST 101 NOT ALL. SKIP
110 DEC 110 NOT EOU. SKIP 000 NOP

111 DEC/TEST 111 NOT ALL. CLR. SKIP 001 FAt
010 Fd
011 FA t Flf

EXTRACT FROM T REGISTER SWAP MEMORY 100 FA. FL+
101 FA+

(8nnn) VARIANTS (02nn) VARIANTS 110 FL+

BITS 5-6 CONDITIONS BITS 6-7 CONDITIONS 111 FA+ FL+ ---
00 X REG. 00 X REG.
01 Y REG. 01 Y REG.

10 T REG. 10 T REG. CASSETTE CONTROL

11 L REG. 11 L REG. (002n) VARIANTS

BITS 3-1 CONDITIONS

000 START TAPE
001 STOP ON GAP
010 STOP ON X=l=Y

COUNT FA AND FL DISPATCH (001 n) 011-111 RESERVED

(06nn) VARIANTS VARIANTS

BITS 5-7 CONDITIONS BITS 1-3 CONDITIONS

000 NOP 000 DISPATCH LOCK BIAS (003n) VARIANTS

001 FA+ 001 DISPATCH WRITE BITS 3-1 CONDITIONS
010 Fd 010 DISPATCH READ

000
011 FAt Fq 011 DISPATCH RD & CLR

FU

100 FA+ FL t 100 RESERVED
001 24 OR FL

101 FA+ 101 RESERVED
010 24 OR SFL

110 Fd 110 RESERVED
011 24 OR FL OR SFL

111 FA+ FL+ 111 RESERVED
100 NOP
101 24 OR CPL OR FL
110 NOP
111 24 OR CPL OR FL OR SFL

REGISTER COLUMN
CC REGISTER

0 l 1 l 2 3 l J
0 = CONSOLE I NTR. 0 TA FU x SUM
1 = 1/0 SERVICE REO. 1 TB FT y CMPX
2 =CLOCK INTR (100 MS) R

2 TC FLC T CMPY
3 =STATE FLAG E 3 TD FLD L XANY

G
CD REGISTER I 4 TE FLE A(MAR) XEOY

s 5 TF FLF M MSKX
0 = WRT/SWAP OUT OF BOS*

6 CA BICN BR MSKY T 1 = READ OUT OF BOS* 7 CB FLCN LR XORY
2 = OUT OF BOS OVERRIDE* E

3 = MEM. RD. PARITY ERR. R 8 LA TOPM* FA DIFF
9 LB RES. FB MAXS

INCN REGISTER* R 10 LC RES. FL MAXM
0 11 LO RES. TAS u

0 = PORT DISP. LOCKOUT w
1 = PORT DISP. INTR. 12 LE XYCN CP MBR*

2 = PORT PRIORITY INTR. 13 LF XYST MSMA* DATA

3 = MISSING CONTROLLER ON PORT 14 cc INCN* READ CMND

OR CHANNEL 15 CD CPU WRIT NULL

* NOT AVAi LABLE ON B 1710 SYSTEMS

D-2

@
CD
w
DJ
c
0 c

CCI
::r
Ill

I
c
0
z
0
-4
JJ
m .,,
JJ
0
c
c
n
m

t::i:j
I
f-J

~ 3
!-"' .

CARD VALIDITY
READER CHECK

t----·---

CARD PUNCH
PUNCH CHECK

!---------

PAPER TAPE
TAPE PARITY

READER ERROR
·--·---···-

LINE PRINT
PRINTER CHECK

'--·--·-·~ ------

CONSOLE KEYBOARD
PRINTER E. CANCEL

READER UN ENCODED
SORTER DOCUMENT

TAPE

MAGNETIC PARITY
TAPE ERROR.

BUSY

I----·

INV. CH .
MFCU COL. 1

f-·

READ DISK PARITY
CARTRIDGE

ERROR

SINGLE PARITY
LINE ERROR

READ
DISK PARITY
PACK

ERROR

•TEST DESCRIPTOR ONLY

4
MEMORY
ACCESS
ERROR

MEMORY
ACCESS
ERROR

MEMORY
ACCESS
ERROR

MEMORY
ACCESS
ERROR

MEMORY
ACCESS
ERROR

MEMORY
ACCESS
ERROR

MEMORY
ACCESS
ERROR

MEMORY
ACCESS
ERROR

MEMORY
ACCESS
ERROR

5 6 7 8 9
READ

CHECK

MEMORY
PARITY
ERROR

END BEGINNING SHORT OF OF
REC. RD. TAPE TAPE

7 9 = CHAFI. SET*
MEMORY END
PARITY OF 000 = 64 011 = 96

ERROR PAGE 001 = 48 100 = 192
010 = 16

ATTP. TO
INPUT

EXECUTE
END ADDR. REQUEST

CANNOT
AMOUNT ON-US TRANSIT

DOUBLE
READ FIELD FIELD FIELD

DOCUMENTS ERROR ERROR ERROR

MEMORY END BEGINNING END \IVRITIE PARITY OF OF LOCKOUT OF
ERROR TAPE TAPE FILE

MEMORY
READ PUNCH PRI. HOP. SEC. HOP. PARITY

CHECK CHECK EMPTY EfVlPTY ERROR

MEMOlfv TRACK OVERRUN DENSITY
WRITE PARITY

ERROR LOCKOUT 100 = 203T/2200 110 = 406/2200

rv;EMORY
BREAK

END. CTL.
CHAINING PARITY TIME-OUT CODE NOT

ERROR DET.
RECEIVED TERM

--t--
MEMORY TRANS. P.E. OVERRUN TRK/DENS. •

WRITE PARITY
LOCKOUT 001 = 20SUR/203T 010 = 20SUR/406T ERROR

COMMON RESULT DESCRIPTOR BITS:
0 = 1/0 COMPLETE
1 = EXCEPTION CONDITION
2 =NOT READY

10 11

UNIT
REWINDING

10-11 PRT. SPD.*

00 = 400/860
01 = 300 11 = 1100
10 = 600

I

TOO LATE
TO READ Jl'1M

TIME-OUT
UNIT (3 FT.

REWINDING BLANK
TAPE)

SEEK

LOSS OF CARRIER
CLR. TO SD. LOSS

ADDRESS
SEEK PARITY
T.O. ERROR

12 13 14 15

NO. PRT. POS.
PAPER • MOTOR •

IN ON 00 = 132
MOTION TEST 01 = 120

11 = 80

EMPTY
BATCH FLOW HOPPER,

MISSORT TICKET STOPPED FULL
STACKER

CRC ERROR TRACK IN ERROR

TRACK/DENSITY • 000-111
000 = 7T. 200 101 = 9T. 800 10-7)
001 = 7T. 556 111 = 9T. 1600
011 = 7T. 800

SEEK•
SEEKING STATUS

OFF RINGING
HOOK OR ENO.

SEEK• CTL. NO.
0/1

SEEKING
STATUS

DATA COMMUNICATIONS CTL. ID. BITS 17-23
1000000 =ADAPTER NOT PRESENT
10nnnnn =LEASED OR DIRECT CONNECT
11nnnnn=SWITCHED LINE

nnnnn = 00010-STANDARD LINE ADAPTER
01000 - TELETYPE ADAPTER
00100 - A.C.U. ADAPTER

16 17 CONTROLLER *
ID. (17-23)

CTL. 1 0101010
CTL. 2 0010100

CTL. 0000100

CTL. 10001110
CTL. 20001100

H
'-....

CTL. 0010110 0

::cJ
ttj

CTL. 0010110 (/) > q ""d
LI ""d

CTL. 0010100 ~ ttj
z

t:I t:I
MTC1-0110010
MTC2-0110000 LONG SHORT

REC. REC. MTC3-0110100
MTC4-0110110
MTC5-0111000

ttj H
(/) :><!
0
::cJ ttj
H
""d

CTL. 0001000 ~
0
::cJ
(/)

CTL. 0011100

SEE BELOW

CTL. 0011110

APPENDIX F

MIL ERROR AND WARNING MESSAGES

MIL ERROR MESSAGES.

UNRECOGNIZABLE OR INVALID IDENTIFIER

INSTRUCTION IS INCOMPLETE

MISSING IDENTIFIER IN DEFINE

MISSING = SIGN

MISSING IDENTIFIER IN MACRO

MACRO TOO LONG

INVALID MACRO PARAMETER

MISSING LEFT PARENTHESIS

MISSING RIGHT PARENTHESIS

INVALID MACRO SYNTAX

MISSING COMMA

TOO MANY PARAMETERS IN PARAMETRIC MACRO

REGULAR LABEL HAS BEEN PREVIOUSLY DEFINED

INVALID BEGINNING STATEMENT IDENTIFIER

PREVIOUSLY DEFINED OR RESERVED WORD

MISSING PARAMETER IN PARAMETRIC MACRO

UNRECOGNIZABLE REGISTER NAME

UNRECOGNIZABLE SINGLE PAD NAME

UNRECOGNIZABLE DOUBLE PAD NAME

MISSING OR IMPROPER NOISE WORD

INVALID LITERAL

INVALID SOURCE REGISTER

INVALID SINK REGISTER

LITERAL TOO LARGE

BRANCH ADDRESS OUT OF RANGE

NO SUCH LABEL EXISTS

INVALID LABEL IDENTIFIER

INVALID RELATIONAL

INVALID CONDITION

TABLE FULL ---- VERY FATAL

© 1973 Burroughs - DO NOT REPRODUCE F-1

DEFINES NESTED TOO DEEP

INVALID OR MISSING BIAS VARIANT

DEFINE STARTS WITH OTHER THAN ALPHA

INVALID BIAS VARIANT COMBINATION

DIRECTION MISSING FROM COUNT STATEMENT

INVALID COUNT COMBINATION

SHIFT OR ROTATE DIRECTION MISSING

INVALID SHIFT OR ROTATE DIRECTION

SHIFT OR ROTATE AMOUNT TOO LARGE

TRAILING CODE ON· END OF INSTRUCTION

MISSING BEGIN

MISSING END

CANNOT HAVE (ANDS) AND (ORS) IN ONE STMT

CANNOT MIX CONDITION TYPES

CANNOT TEST ON DIFFERENT 4-BIT REGISTERS

(NOT) IS NOT ALLOWED FOR THIS CONDITION

INVALID MULTIPLE CONDITION COMBINATION

(ELSE) IS NOT VALID IN THIS CONTEXT

LABEL ADDRESS IS UNKNOWN

INVALID INSTRUCTION SYNTAX

MISSING ADJUST DIRECTION

INVALID INSTRUCTION SYNTAX

MISSING ADJUST DIRECTION

INVALID SEGMENT NAME

CANNOT ACCESS DIFFERENT 4-BIT REGISTERS

M-REG IS ZERO BEFORE AND AFTER EXEC OF THIS INST

M-REG IS INVALID SINK FOR THIS INSTRUCTION

M-REG IS NOT ZERO FOR THIS MOVE

THERE IS NO ASSOCIATED LOAD-MSMA START

THERE EXIST UNRESOLVED ADDRESSES

TOO MANY ENDS

BADERRCODE

MIL WARNING MESSAGES.

THE FODLOWING CARD IS OUT OF SEQUENCE

F-2

THE FOLLOWING TEST MAY BE IN ERROR DUE TO BIT ND"MBERING CONVENTIONS

THE ABOVE CODE MAY BE INEFFICIENT DUE TO (SKIP WHEN) GENERATION

BAD MESSAGE CODE

© 1973 Burroughs - DO NOT REPRODUCE F-3

BIAS

APPENDIX G

B 1700 HARDWARE INSTRUCTION FORMATS

FORMAT.

OP BIAS CPL F 0 FLAG

CODE VARIANTS (v) 0 - NO TEST

0000 0000 0011 0 ... 7 1 - TEST CPL RESULT

15 4 3 1 0

This instruction sets CPU to the value 1, 3, or 0 respectively

depending on whether the value of FU is 4, 8, or any other value, 0

through 15, except for V = 2. For V = 2, the value of the CPU is

determined by SFU in lieu of FU. SFU is the first 4 bits of the

scratchpad-word SOB. (on the B 1710, FU= 8 will set CPU= 0.)

The value of CPL is also set to the smallest of the values denoted in

the following table.

V VALUES

0 FU
1 ·24 or FL
2 24 or SFL
3 24 or FL or SFL
4 NO-OPERATION
5 24 AND CPL AND FL
6 NO-OPERATION
7 24 AND CPL AND SFL AND FL (not defined on the B 1710)

If the test flag equals 1 and the final value of CPL is not O, the

next micro instruction is skipped.

© 1973 Burroughs - DO NOT REPRODUCE G-1

BIT TEST RELATIVE
BRANCH FALSE

FORMAT.

OP REGISTER REGISTER REGISTER DISPLACEMENT DISPLACEMENT

CODE ROW # COLUMN # BIT # SIGN VALUE

0100 0 ... 15 0 ... 1 o 3 0-POSITIVE 0 ... 15

1-NEGATIVE

15 12 11 8 7 6 5 4 3 0

This instruction tests the designated bit within the specified regis­

ter and branches (relative to the ~ instruction) by the amount and

direction of the signed displacement value if the bit is O. If it

is 1, a displacement value of 0 is assumed; and control passes to

the next in-line M-instruction. A displacement value indicates

the number of 16-bit words from the next in-line instruction. A

negative sign indicates lower addresses in control memory (backward

displacement). The maximum displacement is 15 micro instructions.

G-2

OP REGISTER REGISTER

CODE ROW # COLUMN #
0101 0 .•. 15 0 ... 1

15 11 7

REGISTER

BIT #
0 ... 3

6 5

BIT TEST RELATIVE
BRANCH TRUE

DISPLACEMENT DISPLACEMENT

SIGN VALUE

0-POSITIVE 0 ... 15

I-NEGATIVE

4 3 0

This instruction tests the designated bit within the specified reg­

ister and branches (relative to the next instruction) by the amount

and direction of the displacement value if the bit is 1. If the

bit is O, a displacement value of 0 is asumed; and control

passes to the next in-line M instruction. A displacement value

indicates the number of 16-bit words from the next in-line instruc­

tion. A negative sign indicates lower addresses in control memory

(backward displacement). The maximum displacement is 15 micro

instructions.

©1973 Bur~oughs - DO NOT REPRODUCE G-3

BRANCH RELATIVE

FORMAT.

OP SIGN DISPLACEMENT VALUE

110 0=+ o ... 4095

l=-

15 13 12 11 0

This instruction fetches the next micro instruction from the loca­

tion obtained by adding the signed displacement value to the address

of the next in-line micro instruction.

The displacement value is the number of micro instructions.

G-4

FORMAT.

OP SIGN DISPLACEMENT VALUE

CODE 0=+ o ... 4095

111 l=-

15 13 12 11 0

This instruction pushes the address of the next in-line micro

instruction (already contained in A register) into the A stack and

then fetches the next micro instructions from the locations starting

at the number of micro instructions as given in the signed

displacement value.

NOTE

EXIT, the opposite of CALL, is accomplished

by employing the Move register instruction

with the TAS as the source register and A

as the destination register.

© 1973 Burroughs - DO NOT REPRODUCE G-5

CASSETTE CONTROL

FORMAT.

OP CASSETTE MANIPULATE RESERVED

CODE VARIANTS (v) FLAG

0000 0000 0010 0 ... 7 BIT

0 ... 1

15 4 3 1 0

This instruction performs the indicated operation on the tape

cassette.

v = 0 Start tape

1 Stop tape

2 Stop tape if x f. y

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved

All tape stop variants cause the tape to halt in the next available

gap.

G-6

CLEAR REGISTERS

FORMAT.

OP

CODE

0000 0011

15 8 7

REGISTER FLAGS

S-BITS

LTYXFFFC

ALU P

0

This instruction clears all the specified registers to 0 if their

respective flag bit is a 1. It is not available on the B 1710.

©1973 Burroughs - DO NOT REPRODUCE G-7

COUNT FA/FL

FORMAT.

OP COUNT LITERAL

CODE VARIANTS (v)

0000 0110 0 ... 7 0 ... 31

15 8 7 5 4 0

This instruction increments (decrements) binarily the designated

register(s) by the value of the literal contained in the instruction

or by the value of CPL if the value of the literal is O.

Neither overflow nor underflow of FA is detected. The value of FA

may go through its maximum value or its minimum value and wrap around.

Overflow of FL is also not detected. The value of FL may go through

its maximum value and wrap around. Underflow of FL is detected and

will not wrap around; the value of 0 is left in FL.

Count variants are as follows:

v = 000 No Count

001 Count FA Up

010 Count FL Up

011 Count FA Up and FL Down

100 Count FA Down and FL Up

101 Count FA Down

110 Count FL Down

111 Count FA Down and FL Down

G-8

DISPATCH (*15)

FORMAT.

OP DISPATCH SKIP FLAG

CODE VARIANTS 0-SKIP IF ALREADY LOCKED .
0000 0000 0001 000-LOCKOUT 1-SKIP IF NOT ALREADY LOCKED

001-WRITE

010-READ & CLEAR

15 4 3 1 0

The DISPATCH operation is used to initiate I/O operations and to

receive interrupt information from other ports.

Since the interrupt system is shared by all ports, the normal pro­

cedure for the processor in initiating a message, such as an I/O

INITIATE, is to gain control of the interrupt system by attempting

a LOCKOUT.

If the LOCKOUT is successful, the processor can proceed to generate

the INITIATE I/O DISPATCH message and then perform the WRITE DISPATCH

operation.

The skip variant allows skipping of the next 16-bit instruction based

upon the success or failure of the LOCKOUT attempt.

The WRITE DISPATCH operation stores the contents of the L register

in main memory location O to 23. L contains the absolute address of

the beginning I/O descriptor. It also transfers the contents of the

least-significant seven bits of the T register (designating the des­

tination port # and destination channel (#) to the Port Interface

Dispatch register).

15 The DISPATCH command requires a hardware I/O subsystem which is
available on the B 1730 only.

©1973 Burroughs - DO NOT REPRODUCE G-9

DISPATCH
cont

The READ & CLEAR DISPATCH operation performs the reverse of the

WRITE DISPATCH as well as clearing the INCN flip-flops in the

interrupt system.

G-10

EXTRACT FROM
REGISTER T

FORMAT.

OP ROTATE DESTINATION EXTRACT

CODE BIT COUNT REGISTER BIT COUNT

1011 0 ... 24 00 - x 0 ••• 24

01 - y

10 - T

11 - L

15 12 11 7 6 5 4 0

This instruction rotates the T register contents left by the ROTATE

count, extracts the bits specified and moves the result to the

destination register. If the extract bit count is less than 24, the

data is right-justified with left (most-significant) zero bits

supplied.

The contents of the T-register are unchanged unless it is also the

destination register.

A rotate value of 24 is equal to 0 and is equivalent to a NO

operation.

NOTE

The micro programming assembler uses the

left-most bit to be extracted and calculates

the rotate bit count to be used by the hard­

ware circuits. The assembler addresses the

bits within the T-register left-to-right as

0 through 23, while hardware addresses right

to left as 0 through 23.

©1973 Burroughs - DO NOT REPRODUCE G-11

FORMAT.

OP

CODE

0000 0000 0000 0001

15 0

This instruction stops the execution of the micro instructions.

G-12

NOTE

Whatever register to which the

register select switches point

will be displayed.

FORMAT.

OP

CODE

SCRATCHPAD

WORD ADDRESS

0000 0000 0101 0 ... 15

15 4 3 0

LOAD F FROM
DOUBLEPAD WORD

This instruction moves the contents of the A and B portions of the

designated scratchpad-word to the FA and FB registers respectively.

The instruction is not available on the B 1710.

©1973 Burroughs - DO NOT REPRODUCE G-13

MANIPULATE 4-BIT

FORMAT.

OP REGISTER REGISTER MANIPULATE LITERAL

CODE ROW # COLUMN # VARIANTS (v)

0011 0 ... 15 0 ... 1 0 ... 7 0 ... 15

15 12 11 8 7 6 4 3 0

This instruction performs the operation specified by the variants on

the designated register.

V = 0 The register is set to the value of the literal.

1 The register is set to the logical AND of the register and

literal.

2 The register is set to the logical OR of the register and

literal.

3 The register is set to the logical EXCLUSIVE-OR of the regis­

ter and literal.

4 The register is set to the binary sum modulo 16 of the regis­

ter and literal.

5 The register is set to the binary difference modulo 16 of the

register and literal.

6 The register is set to the binary sum modulo 16 of the regis­

ter and literal, and the next micro instruction is skipped if

a carry is produced.

7 The register is set to the binary difference modulo 16 of the

register and literal, and the next micro instruction is

skipped if a borrow is produced.

Exceptions:

G-14

BICN, XYCN, XYST, INCN, and CPU are excluded as source/

destination registers.

MOVE 8-BIT LITERAL

FORMAT.

OP DESTINATION LITERAL

CODE REGISTER

1000 ROW # 0 ... 255

0 ... 15

15 12 11 8 7 0

This instruct·ion moves the 8-bit literal given in the instruction

to the destination register. If the move is between registers of

unequal lengths, the data is right-justified with left (most­

significant) zero bits supplied.

Only registers X, Y, T, L, A, BR, LR, FA, FB, FL, TAS and CP can be

specified. The register select number is assumed to be 2. (Refer

to Table B-1.)

© 1973 Burroughs - DO NOT REPRODUCE G-15

MOVE 24-BIT LITERAL

FORMAT.

OP DESTINATION 24-BIT LITERAL

CODE REGISTER O ... MAX

1001 ROW #
0 ... 15

15 12 11 8 7 0

This instruction moves the 24-bit literal given in the double-length

micro instruction to the destination register. If the move is

between registers of unequal lengths, the literal is truncated from

the left.

Only registers X, Y, T, L, A, BR, LR, FA, FB, FL, TAS and CP can be

specified. The register select number is assumed to be 2.

The MSM register (not available on the B 1710) may be a destination

only in the TAPE mode.

G-16

FORMAT.

OP

CODE

0000 0000 0000 0000

15 0

NO OPERATION

This instruction initiates a skip to the next sequential instruction.

© 1973 Burroughs - DO NOT REPRODUCE G-17

NORMALIZE X

FORMAT.

OP

CODE

0000 0000 0000 0011

15 0

This instruction shifts the register left while counting FL down

until FL = 0 or until the bit in X referenced by CPL is 1. Zeros

are shifted into the right-most end of X.

CPL = 1 references the right-most bit of X while

CPL = 24 references the left-most bit of X.

G-18

NOTE

If CPL = O, the operation

will continue until FL = O.

FORMAT.

OP

CODE

0000 0000 0000 0010

15 0

This instruction overlays control memory.

OVERLAY
CONTROL MEMORY

The starting main memory address is in the FA register; and the

length of the data to be overlaid, in bits, is in the FL register.

The starting control memory address is in the L register.

Execution of the instruction proceeds as follows:

a. The contents of the A register are moved to the TAS regis­
ter.

b. The contents of the L register are moved to the A register.

c. The first 16 bits of data are read from main memory and
stored in the control memory via register L. Register FL
is decremented by 16 bits, FA is incremented by 16 bits,
and A is incremented by 1 word.

d. Step c is repeated until FL=O or 1:1.>MAXM, at which point
the process terminates with a move of TAS to A.

e. The operation then continues with the next micro instruction.

This instruction is not available on the B 1710.

© 1973 Burroughs - DO NOT REPRODUCE G-19

READ/WRITE MEMORY

FORMAT.

OP DIRECTION COUNT REGISTER # FIELD MEMORY

CODE 0 TO REGISTER VARIANTS 00 = y DIRECTION FIELD

0111 1 TO MEMORY 0 ... 7 01 = y 0 - POSITIVE LENGTH

10 = T 1 - NEGATIVE 0 ... 26

15 12 11 10 8 7 6 5 4 0

This instruction moves the contents of the register (memory) to the

memory (register). If the value of the memory field length is less

than 24, the data from memory is right-justified with left (most­

significant) zero bi ts supplied while the data from· the register is

truncated from the left.

The contents of the source is unchanged.

Register FA contains the bit address of the memory field while the

memory field direction sign and memory field length are given in the

instruction.

If the value of the memory field length as given in the instruction

is O, the value in CPL is used.

Refer to the COUNT 'FA/FL instruction for a description of the count

variants.

Positive field direction indicates ascending memory addresses.

Writes of 26 bits will actually write 24 bits and invert the parity

bits of the four bytes accessed. Writes of 25 bits will actually

write 24 bits and correct any improper parity.

G-20

NOTE

A wrong parity detected during a read

cycle will not be corrected during a

write cycle unless specified. Lengths

of 25 and 26 are for TEST/MAINTENANCE

routines and length greater than 26 are

reserved.

REGISTER MOVE

FORMAT.

OP SOURCE SOURCE DESTINATION DESTINATION

CODE REGISTER REGISTER REGISTER REGISTER

0001 ROW # COLUMN # ROW # COLUMN #
0 - 15 0 ... 3 0 ... 2 0 ... 15

15 12 11 8 7 6 5 4 3 0

This instruction moves the contents of the source register to the

destination register. If the move is between registers of unequal

lengths, the data is right-justified with left (most-significant)

zero bits suppli€d or the data is truncated from the left, whichever

is appropriate.

The contents of the source register are unchanged unless it is also

the destination register.

Exceptions:

a. Control memory (MSM) and CPU are excluded as source regis­
ters.

b. When the M register is used as a destination, the operation
results in an INCLUSIVE OR function, which modifies the
next micro instruction. It does not modify the instruction
stored in control memory.

c. BICN, FLCN, XYCN, XYST, INCN, and control memory (MSM) are
excluded as destination registers as are those designated
as result registers. (Refer to column 3 of table C-1.)

d. U is excluded as a source register in the STEP and TAPE
modes.

e. U is included as a source register in moves to the Data,
Command, MBR, and MSMA registers in the RUN mode.

©1973 Burroughs - DO NOT REPRODUCE G-21

SCRATCHPAD MOVE

FORMAT.

OP REGISTER REGISTER DIRECTION SCRATCHPAD SCRATCHPAD

CODE ROW # COLUMN # 0-TO WORD WORD

0010 0 ... 15 0 ... 3
SCRATCHPAD

0-LEFT WORD ADDRESS

1-FROM 1-RIGHT 0 ... 15
SCRATCHPAD WORD

15 12 11 8 7 6 5 4 3 0

This instruction moves the contents of the register (scratchpad) to

the scratchpad (register). If the move is between fields of unequal

lengths, the data is right-justified with left (most-significant)

zero bits supplied or the data is truncated from the left, whichever

is appropriate.

The contents of the source register are unchanged.

Exceptions:

G-22

a. Control memory (MSM), U, and CPU are excluded as source
registers.

b. Wh~n the M register is used as a destination, the operation
results in an INCLUSIVE OR with the next micro instruction.
It does not modify the instruction stored in control memory.

c. BICN, FLCN, XYCN, XYST, INCN, and control memory (MSM) are
excluded as destination registers as are those designated
in column 3 of table C-1.

FORMAT.

OP RESERVED SIGN

CODE 0 = +

0000 1000 000 1 = -
15 8 7 5 4

OF LEFT

OF A

0

3

SCRATCHPAD
RELATE

HALF ADDRESS

SCRATCHPAD WORD

- 15

0

This instruction replaces the contents of the FA register with the

SUM of FA and the left half of a scratchpad-word.

©1973 Burroughs - DO NOT REPRODUCE G-23

SET CYF

FORMAT.

This

OP

CODE

0000 0000 0110

SET

VARIANTS (V)

0 ••• 15

15 4 3 0

instruction sets the carry flip-flop as specified by the

variants.

v = 1 SET

2 SET

4 SET

8 SET

G-24

CYF TO 0

CYF TO 1

CYF TO CYL (carry total from sums)

CYF TO CYD (carry borrow from difference)

NOTES

1. CYL is generated under the control of the

length in CPL.

2. CYF is an input to the arithmetic logic along

with the X and Y registers. CYF is the left­

most bit of the CP portion of the C register.

SHIFT/ROTATE
REGISTER T LEFT

FORt'1AT.

OP DESTINATION DESTINATION SHIFT/ROTATE SHIFT/ROTATE

CODE REGISTER REGISTER 0 - SHIFT BIT, COUNT

1010 ROW # COLUMN # 1 - ROTATE 0 ... 24

15 12 11 8 7 6 5 4 0

This instruction shifts (rotates) register T left by the number of

bits specified and then moves the 24-bit result to the destination

register. If the move is between registers of unequal lengths, the

data is right-justified, with data truncated from the left.

The contents of the T register are unchanged unless it is also the

destination register.

Zero fill on the right and truncation on the left occurs with the

shift operation. ROTATE is an end-around shift with no truncation

or fill.

If the value of the SHIFT/ROTATE COUNT as given in the instruction

is zero, the value given in CPL is used.

Exceptions:

a. When the M register is used as a destination register, the
operation results in an inclusive OR with the next micro
instruction. It does not modify the instruction stored in
control memory.

b. BICN, FLCN, XYCN, XYST, INCN, and control memory (MSM) are
excluded as destination registers, as are the result
registers. (Refer to column 3 of table C-1.)

©1973 Burroughs - DO NOT REPRODUCE G-25

SHIFT/ROTATE
REGISTERS X AND Y LEFT/RIGHT

FORMAT.

OP SHIFT/ROTATE

CODE VARIANT

0000 0101 0-SHIFT

1-ROTATE

15 8 7

SHIFT/ROTATE SHIFT/ROTATE

DIRECTION BIT

VARIANT COUNT

0-LEFT 0 ... 48

1-RIGHT

6 5 0

This instruction shifts (rotates) register (X-Y) left (right) by the

number of bits specified. The register X is the left-most (most­

significant} half of the concatenated 48-bit XY register. Only a

count of one may be specified on the B 1710 for the concatenated XY

register.

Zero fill on the right and truncation on the left occurs with the

left shift. Zero fill on the left and truncation on the right occurs

with the right shift.

If the value of the SHIFT/ROTATE COUNT as given in the instruction

is zero, the operand is shifted/rotated by the amount determined by

CPU as follows:

CPU SHIFT/ROTATE COUNT

00 1 bit

01 4 bits

10 Undefined

11 8 bits (not available on the B 1710)

G-26

NOTE

The shift by CPU option is

not available on the B 1710.

SHIFT/ROTATE
REGISTER X OR Y LEFT/RIGHT

FORMAT.

OP SHIFT/ROTATE SHIFT/ROTATE X/Y SHIFT/ROTATE

CODE VARIANT DIRECTION VARIANT BIT

0000 0100 0-SHIFT 0-LEFT 0-X REG COUNT

1-ROTATE 1-RIGHT 1-Y REG 0 ... 24

15 8 7 6 5 4 0

This instruction shifts (rotates) register X or Y left or right by

the number of bits specified.

Zero fill on the right and truncation on the left occurs with the

left shift. Zero fill on the left and truncation on the right occurs

with the right shift.

If the value of the SHIFT/ROTATE COUNT as given in the instruction

is zero, the operand is shifted (rotated) by the amount determined

by CPU as follows:

CPU SHIFT/ROTATE COUNT

00 1 bit

01 4 bits

10 Undefined

11 8 bits (not available on the B 1710)

NOTE

The shift by the CPU option is

not available on the B 1710.

© 1973 Burro!Jghs - DO NOT REPRODUCE G-27

FORMAT.

OP REGISTER REGISTER SKIP TEST MASK

CODE ROW # COLUMN # VARIANTS (v) 0 ... 15

0110 0 ... 15 0 ... 1 0 ... 7

15 12 11 8 7 6 4 3 0

This instruction tests only the bits in the register that are

referenced by the 1 bits in the mask and ignores all others. It

then performs the actions specified below. Exception: If V = 2

or V = 6, it compares all bits for an equal condition.

V = 0 If any of the referenced bits are l's, the next M instruction

is skipped.

1 If all the referenced bits are l's, the next M instruction is

skipped.

3 This is the same as V = 1, but the referenced bits are also

cleared to 0 without affecting the non-referenced bits.

4 If any of the referenced bits are l's, the next M instruction

is not skipped.

5 If all the referenced bits are l's, the next instruction is

not skipped.

6 If the register is equal to the mask, the next instruction

is not skipped.

7 This is the same as V = 5, but the referenced bits are also

cleared to 0 without affecting the non-referenced bits.

Exceptions:

NOTES

1. If the mask equals 0000 the ANY result

is FALSE. The skip is made for V = 0

and is not made for V = 4.
2. If the mask equals 0000, the ALL result

is TRUE. The skip is made for V = 5 and

V = 7 and is not made for V = 1 and V = J.

BICN, FLCN, XYCN, XYST and INCN are excluded as operand
registers when V = 4 or when V = 7.

G-28

FORMAT.

OP

CODE

0000 0000 0100

15 4 3

SCRATCHPAD

WORD ADDRESS

0 .•. 15

0

STORE F INTO
DOUBLEPAD WORD

This instruction moves the contents of the FA and FB registers to

the designated scratchpad-word. FA is transferred to the A half of

the scratchpad-word, and FB (which contains FL; FT; and FU) is

transferred to the B scratchpad-word.

This is not available on the B 1710.

© 1973 Burroughs - DO NOT REPRODUCE G-29

SWAP DOUBLEPAD WORD
WITH REGISTER F

FORMAT.

OP DESTINATION

CODE 48-BIT

0000 0111 SCRATCHPAD

WORD

0 ... 15

15 8 7

SOURCE 48-BIT

SCRATCHPAD

WORD

0 ... 15

4 3 0

This instruction moves the contents of the 48-bit register to a hard­

ware holding register. It also moves the contents of the source

scratchpad-word to the F register and moves the contents of the

hardware holding register to the destination register.

G-30

SWAP MEMORY

FORMAT.

OP REGISTER # FIELD MEMORY

CODE 00 = x DIRECTION FIELD

0000 0010 01 = y 0 - POSITIVE LENGTH

10 = T 1 - NEGATIVE 0 ..• 24

11 = L

15 8 7 6 5 4 0

This instructiori swaps data from main memory with the data in the

specified register. If the value of the memory field is less than

24, the data from memory is right-justified with left (most­

significant) zero bits supplied. The data from the register is

truncated from the left before entering memory.

Register FA contains the absolute binary address of the main memory

field while the field direction si.gn and field length is given in the

instruction.

If the value of the memory field length as given in the instruction

is O, the value given in CPL is used.

This is not available on the B 1710.

©1973 Burroughs - DO NOT REPRODUCE G-31

APPENDIX H

MICRO PROCESSOR TIMING TABLES

Table H-1

B 1710 Micro Instruction Timing

MICRO INSTRUCTIONS

BIAS

BIT TEST RELATIVE BRANCH FALSE

BIT TEST RELATIVE BRANCH TRUE

BRANCH RELATIVE

CALL

CASSETTE CONTROL

COUNT FA AND/OR FL REGISTERS

EXTRACT FROM T REGISTER

FOUR BIT MANIPULATE

HALT

MOVE EIGHT-BIT LITERAL

MOVE TWENTY-FOUR-BIT LITERAL

MOVE REGISTER TO REGISTER

NO OPERATION

l~~~~~z~~~~~~~~~E~~ .. ~~'"
.t(J!;J-UJ V.t(W !(..LT.I;, lVlA..Ll'l MJ!;MVrtl

SCRATCHPAD MOVE

NUMBER OF
CLOCKS

2

2

2

4

5
2

4

3

2

2

2

6

2

2

6

8

2

SCRATCHPAD RELATE 4

SET CYF REGISTER 2

SHIFT OR ROTATE T REGISTER LEFT 3

SHIFT OR ROTATE X OR Y REGISTER LEFT OR RIGHT 3

SHIFT X AND Y REGISTERS LEFT OR RIGHT

SKIP WHEN

SWAP F REGISTER WITH DOUBLE SCRATCHPAD WORD

© 1973 Burroughs - DO NOT REPRODUCE

6

2

10

NOTES

1

2

3

2

4

H-1

H-2

NOTES

The basic clock of the B 1710 is mega hertz

1. This includes the fetch of the called micro

instruction.

2. For BCD result register moves, there are three

clocks.

3. There are six clocks per bit plus one additional

clock.

4. Only a value of one bit is allowed in the B 1710.

Table H-2

B 1720 Micro Instruction Timing

MICRO INSTRUCTIONS

BIAS

BIT TEST RELATIVE BRANCH FALSE

BIT TEST RELATIVE BRANCH TRUE

BRANCH RELATIVE

NUMBER OF
CLOCKS

1

1

1

1

CALL 2

CASSETTE CONTROL 1

CLEAR REGISTERS 1

COUNT FA AND/OR FL REGISTERS 1

EXTRACT FROM T REGISTER 1

FOUR-BIT MANIPULATE 1

HALT 1

LOAD F REGISTER FROM DOUBLE SCRATCHPAD WORD 1

MOVE EIGHT-BIT LITERAL 1

MOVE TWENTY-FOUR-BIT LITERAL 2

MOVE REGISTER TO REGISTER 1

NO OPERATION 1

NORMALIZE X REGISTER

OVERLAY CONTROL MEMORY

READ OR WRITE MAIN MEMORY

SCRATCHPAD MOVE

SCRATCHPAD RELATE

SET CYF REGISTER

SHIFT OR ROTATE T REGISTER LEFT

SHIFT OR ROTATE X OR Y REGISTER LEFT OR RIGHT

SHIFT X AND Y REGISTERS LEFT OR RIGHT

1

5

5/4
1

1

1

1

1

1

SKIP WHEN 1

STORE F REGISTER INTO DOUBLE SCRATCHPAD WORD 1

SWAP F REGISTER WITH DOUBLE SCRATCHPAD WORD 2

SWAP REGISTER WITH MAIN MEMORY 4

© 1973 Burroughs - DO NOT REPRODUCE

NOTES

1

2

3

4

2

2

5

H-3

H-4

NOTES

The basic clock of the B 1720 is 6 mega hertz.

1. If the relative address is not within control

memory (therefore in main memory), there are

two clocks.

2. There is one clock per bit.

J. There are fiv.e clocks per 16 bits (one micro

instruction) plus five clocks .

. 4. READ is five· clocks until the processor receives

the data. WRITE is four clocks until the proces-

sor is released. Some instructions may be per-

formed during the processor READ or WRITE command

times if they immediately follow the READ or WRITE

commands. This is called "concurrency." Con-

secutive READ or WRITE commands operate at MAIN

MEMORY READ cycle speed (four clocks) or WRITE

cycle speed (six clocks) respectively.

5. The data is presented to the processor and is

released in one MAIN MEMORY READ cycle. Con-

current execution of certain micro instruction is

performed if they immediately follow the SWAP com­

mand. The WRITE portion of the SWAP command is

begun and performed in parallel to the READ portion,

and main memory is not available for the duration

of a WRITE cycle. For consecutive main memory

commands, refer to note 4.

APPENDIX I

RESERVED WORDS AND SYMBOLS

= COUNT JUMP PORT SSA T

I CP L READ SSE TA

CPL LA REVERSE s9 TAS

CPU LABEL RIGHT S9A TB

CYD LB ROTATE S9B TC

CYF LC s SlO TD
(CYL TT\ so SlOA TE \ .L.ILJ

) DATA LE SOA SlOB TEST

* DEC LEFT SOB Sll TF

A DIFF LF Sl SllA TO

ALL DOWN LIT SlA SllB TOPM

ALL CLEAR EOR LOAD SlB s12 TRUE

AND EQL LR S2 Sl2A UNIT

ANY EXIT LSBX S2A Sl2B UP

DIFFERENCE LSBY S2B SlJ WHEN

BIAS EXTRACT M SJ SlJA WITH

BICN F MAXM SJA SlJB WRITE

BITS FA MAXS SJB Sl4 x
BR FALSE s4 Sl4A XANY

BY FE S4A Sl4B XCH

c FL S4B SIS XEOY

CA FLC SS SlSA XORY

CALL FLD MOVE SSA SlSB XY

CARRY FLF MSBX SSE SET XYCN

CB FT MSKX S6 SFL XYST

cc FU MSKY S6A SFU y

CD GO MSMA S6B SHIFT u
CLEAR IF NORMALIZE s7 SKIP

CMND INC NULL S7A STORE

CMPX INCN OR S7B SUM

CMPY INTO OVERLAY SS SWAP

©1973 Burroughs - DO NOT REPRODUCE I-1

I-2

NOTE

There are no reserved words as far as labels

are concerned; however, no word used in the

MIL syntax may be used as a define or macro

identifier or as a module-option toggle.

Control memory

Emulator

Firmware

APPENDIX J

GLOSSARY

the high speed memory portion

of main memory which contains the

firmware.

a virtual machine.

a set of interpreters.

Horizontal micro programming Each micro instruction is composed

of bits which directly gate hard­

ware. An extensive knowledge of

the hardware gates and their trim­

ming is required by the programmer.

A high degree of parallelism is

usually achieved similar to the

conventional trimming and control

circuits of a wired central

Host machine

Interpreter

Micro instruction

Micro programming

processor.

the micro programed computer

with a writable control memory.

a set of micro program routines

which describe a computer or

system architecture.

a bit string directly executable

by the host machine hardware.

"a means for programming a computer

hardware architecture." (By

WILKES, M.V. The Best Way to

Design an Automatic Calculating

Machine. Manchester University,

Computer Inaugural Conference

1951)

©1973 Burroughs - DO NOT REPRODUCE J-1

S-language

S-machine

S-memory

Vertical micro programming

Virtual machine

J-2

an object code of the virtual

machine.

a virtual machine.

that portion of the main memory in

use by the virtual machine and

containing the S-language, the

data, and any other information

required by the interpreter to

operate the virtual machine.

Sets of registers are conceived

and manipulated by sequences of

micro instructions. Micro

programs more closely resemble

typical programming techniques.

The usual form is interpretive

with the virtual machine holding

operators and operands. The micro

instructions fetch and execute

operators which produce the trans­

formations upon the operands.

the effective computer architecture

as seen by the user.

Active Registers, 3-5
Address, 3-7
Base, 3-7
Control, 3-8
Field, 3-6
Limit, 3-7
Local, 3-6
Memory Base, 3-8
Micro Instruction, 3-7
Top of Control Memory, 3-8
Transform, 3-6
X-Y, 3-6

INDEX

Address Matrix Notes for B 1710, B-2
Address Matrix Notes for B 1720, C-2
Address Register, 3-7
ADD SCRATCHPAD, 4-4
ADJUST, 4-3
Alphabetical Listing of Registers, 3-1
AND, 4-5
Any-Interrupt, 3-15
Assembly Coding Form, 2-1
A Stack, 3-7

B 1710 Condition Registers, B-1
B 1710 Hardware Tables, B-1
B 1710 Micro Instruction Timing,
B 1710 Processor, B-3
B 1710 Register Addressing, B-1
B 1720 Condition Registers, C-1
B 1720 Hardware Tables, C-1
B 1720 Micro Instruction Timing,

B i/~v Register Addressing, C-1
Base Register, 3-7
BIAS, 4-7, G-1

H-1

H-3

Binary Conditions Register, 3-14
BIT TEST RELATIVE BRANCH FALSE, G-2
BIT TEST RELATIVE BRANCH TRUE, G-3
Braces Used in Syntax, 4-1
Brackets Used in Syntax, 4-1
BRANCH RELATIVE, G-4

CALL, 4-9, G-5
CARRY, 4-10
CASSETTE, 4-11
CASSETTE CONTROL, G-6
CLEAR, 4-12

one
©1973 Burroughs - DO NOT REPRODUCE

INDEX (cont)

CLEAR REGISTERS, G-7
CMPX Result Register, 3-10
CMPY Result Register, 3-10
Combinatorial Logic, 3-9
Command Register, 3-13
Compiler Control Card, A-1
Compiler Operations, A-1
COMPLEMENT, 4-13
Concurrent Execution of Micro Operators, 4-2
Condition Registers, 3-13

B 1710 Condition, B-1
B 1720 Condition, C-1
Binary Conditions, 3-14
Field Length Conditions, 3-17
Inturrupt Conditions, 3-17
XY Conditions, 1-14
XY St a t e s., '3 - l 5

Conditions, 2-l
Console Cassette Tape Input Register, 3-12
Console Interrupt, 3-16
Constant Registers, 3-12

Maximum Control Memory, 3-12
Maximum Main Memory, 3-12

Control Register, 3-8
Conventions Used in Syntax, 4-1
COUNT, 4-15
COUNT FA/FL, G-8

Data Register, 3-13
DEC, 4-16
DEFINE, 4-17
Defined Field Concepts, 1-2
DEFINE-VALUE, 4-18
Difference Result Register, 3-11
DISPATCH, 4-19, G-9

EOR, 4-21
Error Message, F-1
EXIT, 4-22
EXTRACT, 4-23
EXTRACT FROM REGISTER T, G-11

Field and' Subfield Organization, 3-18
Field Length Conditions Register, 3-17
Field Registers, 3-6
Function Box, 3-9

Glossary, J-1
GO TO, 4-25

two

INDEX (cont)

HALT, 4-26, G-12
Hardware Instruction Formats, G-1

BIAS, G-1
BIT TEST RELATIVE BRANCH FALSE, G-2
BIT TEST RELATIVE BRANCH TRUE, G-3
BRANCH RELATIVE, G-4
CALL, G-5
CASSETTE CONTROL, G-6
CLEAR REGISTERS, G-7
COUNT FA/FL, G-8
DISPATCH, G-9
EXTRACT FROM REGISTER T, G-11
TT AT m r"'l ""I "

IlR.L.1 ' U--..L.:;'.:

LOAD F FROM DOUBLEPAD WORD, G-13
MANIPULATE 4-BIT, G-14
MOVE 8-BIT LITERAL, G-15
MOVE 24-BIT LITERAL, G-16
NO OPERATION, G-17
NORMALIZE X, G-18
OVERLAY CONTROL MEMORY, G-19
READ/WRITE MEMORY, G-20
REGISTER MOVE, G-21
SCRATCHPAD MOVE, G-22
SCRATCHPAD RELATE, G-23
SET CYF, G-24
SHIFT/ROTATE REGISTER T LEFT, G 25
SHIFT/ROTATE REGISTERS X ANDY LEFT/RIGHT, G-26
SHIFT/ROTATE REGISTER X ORY LEFT/RIGHT, G-27
SKIP WHEN, G-28
STORE F INTO DOUBLEPAD WORD, G-29
SWAP DOUBLEPAD WORD WITH REGISTER F, G-30
SWAP MEMORY, G-31

Hardware Tables for B 1710 7 B~l

Hardware Tables for B 1720, C-1

IF, 4-27
INC, 4-33
Input/Output Registers, 3-12

Command, 3-13
Console Cassette Tape Input, 3-12
Data, 3-13

Input/Output Result Descriptors, E-1
Instruction Formats for B 1700 Hardware, G-1
Interpretation of the Virtual Language, 1-2
Interrupt Conditions Register, 3-17
Interrupts,

Any, 3-15
Console, 3-16

three
©1973 Burroughs - DO NOT REPRODUCE

INDEX (cont)

Main Memory Read Parity Error, 3-16
READ Address Out of Bounds, 3-16
WRITE/SWAP Address Out of Bounds, 3-17

Introduction, xi

JUMP, 4-34

Key Words Used in Syntax, 4-1

Limit Register, 3-7
LIT, 4-35
Literals, 2-4
LOAD, 4-36
LOAD F FROM DOUBLEPAD WORD, G-13
LOAD MSMA, 4-37
LOAD SMEM, 4-39
Local Registers, 3-6
Lower Case Words Used in Syntax, 4-1

MACROS, 4-40
Main Memory Address Out of Bounds Override, 3-16
Main Memory Read Parity Error Interrupt, 3-16
MANIPULATE 4-BIT, G-14
Maximum Control Memory Register, 3-12
Maximum Main Memory Register, 3-12
Memory Base Register, 3-8
MICRO, 4-42
Micro Implementation Language, 2-1

Assembly Coding Form, 2-1
Conditions, 2-1
LABELS, 2-3
LITERALS, 2-4
STRINGS, 2-5

Micro Implementation Language Compiler Operation, A-1
Micro Implementation Language Error and Warning Messages, F-1
Micro Instruction Register, 3-7
Micro Instructions, 1-1, D-1
Micro Instruction Timing for B 1710, H-1
Micro Instruction Timing for B 1720, H-3
Micro Operators, 4-1

ADJUST, 4-3
ADD SCRATCHPAD, 4-4
AND, 4-5
BIAS, 4-7
CALL, 4-9
CARRY, 4-10

four

INDEX (cont)

CASSETTE, 4-11
CLEAR, 4-12
COMPLEMENT, 4-13
COUNT, 4-15
DEC, 4-16
DEFINE, 4-17
DEFINE-VALUE, 4-18
DISPATCH, 4-19
EOR, 4-21
EXIT, 4-22
EXTRACT, 4-23
GO TO, 4-25
HALT, 4-26
IF, 4-27
INC, 4-33
JUMP, 4-34
LIT, 4-35
LOAD, 4-36
LOAD-MSMA, 4-37
LOAD-SMEM, 4-39
MACROS, 4-40
MICRO, 4-42
MOVE, 4-43
NOP, 4-46
NORMALIZE, 4-47
OR, 4-48
OVERLAY, 4-49
READ, 4-50
RESET, 4-51
ROTATE OR SHIFT T, 4-52
ROTATE OR SHIF~ X, Y AND XY, 4-54
SEGMENT, 4-55
SET, 4-56
SKIP, 4-58
STORE, 4-60
SUBTRACT SCRATCHPAD, 4-61
SWAP, 4-62
TABLE, 4-63
WRITE, 4:_64
WRITE-STRING, 4-65
XCH, 4-66

Micro Processor Timing Tables, H-1
Micro Programming Concepts, 1-1

Defined Field Concepts, 1-2
General, 1-1
Interpretation of the Virtual Language, 1-2
Micro Instructions, 1-1

five
©1973 Burroughs - DO NOT REPRODUCE

INDEX (cont)

Module Option $ Card, A-3
MOVE, 4-43
MOVE 8-BIT LITERAL, G-15
MOVE 24-BIT LITERAL, G-16
MSKX Result Register, 3-10
MSKY Result Register, 3-10

NO OPERATION, G-17
NOP, 4-46
NORMALIZE, 4-47
NORMALIZE X, G-18
Notations and Conventions Used in Syntax, 4-1

Braces, 4-1
Brackets, 4-1
Key Words, 4-1
Lower Case Words, 4-1

Null Register,· 3-12

OR, 4-48
Organization of Fields and Subfields, 3-18
OVERLAY, 4-49
OVERLAY CONTROL MEMORY, G-19
Override,

Main Memory Address Out of Bounds, 3-16

Programming Techniques, 5-1
Virtual-Language Definitions, 5-1
Writing Rules, 5-1

READ, 4-50
READ Address Out of Bounds Interrupt, 3-16
READ/WRITE MEMORY, G-20
Register Addressing for B 1710, B-1
Register Addressing for B 1720, C-1
Register Designations and Applications, 3-17

Interrupt Controls, 3-18
Micro Instruction Controls, 3-18
Parallel Width Controls, 3-18
S-Memory Controls, 3-18

REGISTER MOVE, G-21
Registers, 3-1

Active, 3-5
Address, 3-7
Alphabetical Listing of, 3-1
Base, 3-7
Binary Conditions, 3-14

six

INDEX (cont)

CMPX Result, 3-10
CMPY Result, 3-10
Command, 3-13
Condition, 3-13
Console Cassette Tape Input, 3-12
Constant, 3-12
Control, 3-8
Data, 3-13
Difference Result, 3-11
Field, 3-6
Field Length Conditions, 3-17
General, 3-1
Input/Output, 3-12
Interrupt Conditions, 3-17
Limit, 3-7
Local, 3-6
Maximum Control Memory, 3-12
Maximum Main Memory, 3-12
Memory Base, 3-8
Micro Instruction, 3-7
MSKX Result, 3-10
MSKY Result, 3-10
Null, 3-12
Result, 3-9
SUM Result, 3-10
Top of Control Memory, 3-8
Transform, 3-6
XANY Result, 3-9
XEOY Result, 3-10
XORY Result, 3-9
X-Y, 3-6
XY Conditions, 3-14
XY States, 3~15

Reserved Words and Symbols, I-1
RESET, 4-51
Result Descriptors for Input/Output, E-1
Result Registers, 3-9

CMPX, 3-10
CMPY, 3-10
Difference, 3-11
MSKX, 3-10
MSKY, 3-10
SUM, 3-10
XANY, 3-9
XEOY, 3-10
XORY, 3-9

seven
©1973 Burroughs - DO NOT REPRODUCE

INDEX (cont)

ROTATE OR SHIFT T, 4-52
ROTATE OR SHIFT X, Y AND XY, 4-54

Scratchpad, 3-11
SCRATCHPAD MOVE, G-22
SCRATCHPAD RELATE, G-23
SEGMENT, 4-55
SET, 4-56
SET CYF, G-24
SHIFT/ROTATE REGISTER T LEFT, G-25
SHIFT/ROTATE REGISTERS X ANDY LEFT/RIGHT, G-26
SHIFT/ROTATE REGISTER XOR Y LEFT/RIGHT, G-27
SKIP, 4-58
SKIP WHEN, G-28
STORE, 4-60
STORE F INTO DOUBLEPAD WORD, G-29
Strings, 2-5
Subfield and Field Organization, 3-18
SUBTRACT SCRATCHPAD, 4-61
SUM Result Register, 3-10
SWAP, 4-62
SWAP DOUBLEPAD WORD WITH REGISTER F, G-30
SWAP MEMORY, G-31
Syntax Notations and Conventions, 4-1

Braces, 4-1
Brackets, 4-1
Key Words, 4-1
Lower Case Words, 4-1

TABLE, 4-63
Timing Tables for Micro Processor, H-1
Top of Control Memory Register, 3-8
Transform Registers, 3-6

Virtual-Language Definitions, 5-1

Warning Messages, F-2
WRITE, 4-64
WRITE-STRING, 4-65
WRITE/SWAP Address Out of Bounds Interrupt, 3-17
Writing Rules, 5-1

XANY Result Register, 3-9
XCH, 4-66
XEOY Result Register, 3-10
XORY Result Register, 3-9
XY Conditions Register, 3-14
X-Y Registers, 3-6
XY States Register, 3-15

eight

, .
t

,,
I

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: B 1700 SYSTEMS MICRO
IMPLEMENTATION LANGUAGE (MIL)
Reference Manual

CHECK TYPE OF SUGGESTION:

0ADDITION 0DELETION 0REVISION

FORM: 1072568

DATE: 12-73

0ERROR

' 11--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME
TITLE
COMPANY~~~~~~~~~~~

ADDRESS

DATE _____ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

---~----------------------------

attn: Systems Documentation

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
Burroughs Place
Detroit, Michigan 48232

Technical Information Organization, TIC-Central

FOLD UP FIRST FOLD UP

1072568 12·73 Pritited in U S Arr1erica

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	D-03
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	G-31
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	J-01
	J-02
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	replyA
	replyB
	xBack

