
l

Printed in U:S.A.

Burroughs m

B 1800/B 1700

. Generalized Message
Control System

(GEMCOS)

FORMATIING GUIDE

PRICED ITEM

January 1978 1106531

Printed in U.S.A.

Burroughs m

B 1800/B 1700

Generalized Message
Control System

{GEMCOS)

FORMATIING GUIDE

Copyright © 1978 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

January 1978 1106531

Burroughs believes that the application package described in this
manual is accurate and reliable, and much care has been taken in its
preparation. However, no responsibility, financial or otherwise, can be
accepted for any consequences arising out of the use of this material,
including loss of profit, indirect, special, or consequential damages.
There are no warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the application
package will be in full compliance with laws, rules and regulations of
the jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Any comments or suggestions regarding this publication should be forwarded to Documentation Department,
Business Management and Scientific Systems, Burroughs Corporation, Burroughs Place, Detroit, Michigan 48232.

Section

1

2

3

INDEX

Figure

2-1
2-2
2- 3
2-4
2-5
2-6
3-1

Table of Contents

Title

INTRODUCTION • • • • • • •

OVERVIEW or FORMATTING

BASIC GEMCOS FORMATTING •
General ••• • •
Oef ining field Types
Adding Data •
Manipulating Fields •

Ignoring Data and
Rearranging Data

Summary • • • • ••

ADVANCED GEHCOS FORMATTING

• • •

• • • • •
• • • • • •
• • • •

• • • • • • •
• • • • • • • •
Inserting Blanks
• • • • •
• • • • • •

• • • • • •

• •

• • .. • •

• • • •
• • • •

• •
• • •
• •

• • •
General • • • • • • • • • • • • •
Minimizing System Overhead •••••
Handling Variable-Length fields ••

• • . . . •
•

B and J fields • • • • • • • • • • • •
• • • Delimited A and I fields ••••

Translating Data • • • • • • • •
Repeating Multi-element Variables ••

• • • • •
• • •

•

List of Illustrations

Title

Use of Editing Strings ••••••
Operation of Pointers • • • • •
Use of X Item and Location Specifiers
Pointer Manipulation ••••••••
Output Formatting ••••••••••
Input Formatting • • • • • • • • •
V a r i ab l e Re pe at s • • • • •

• • • • • •
• • • • • •
in formats
• • • • • •
• • • • • •
• • • • • •

Page

v

2-1
2-1
2-1
2-2
2-3
2-4
2-5
2-1

3-1
3-1
3-1
3-1
3-1
3-2
3-3
3-4

one

Page

2-3
2-4
2-6
2-1
2-s
2-9
3-6

Hi

INTRODUCTION

Over the yearsr computers have developed a reputdtion for bcirg
inflexible, unyielding machines that do not process data unless it
hds teen entered in a very precise manner and only after very rigid
rule~ have oeen meticulously followed. Data control clerks and key­
punch operators had to De concerned with the length of each data
itemr taking care to insert leading zeroes and trailing spaces so
that the next data item could oe recognized by the system. These
peopler of courser were suojected to lengthy training and could be
considered specialists in their respective fields.

The advent of data communicationsr howeverr put more nonspecialists in
close proximity to the computer. It was not feasible to subject bank
tellers and department store clerks to the same type of training that
was provided to data control clerks. It became obvious that a man­
machine interface was required in order to ~akc data entry more
palatable to the average person.

Systems analysts dnd programmers rose to the taskr and "human
engineering" quickly became the buzzword of the day. Terminal oper­
ators were -treated to formatted displaysr free-form inputr and an
array of features desi~ned to make their jobs noth efficient and
pleasant. fhe proolem was solved, but not for long; new terminal
devices were designed, networks changed and expandedr and the data
being presented to the computer became more and more volatile. As a
resultr analysts and programmers were deluged with reQuests to con­
stantly modify the man-machine interface. The original problem had
to be reoeatedly solved.

lt soon became clear that if a man-m~chine interface were to be a
~iable entity, it must be free from any dependence upon terminal
devices. Additionally, it must be designed in such a way as to be
transparent to developers of application-oriented programs. If
possibler it mu~t also be capable of adapting to changing require­
ments without the nece~sity for reprogramming. It should allow a
user to take advantage of new terminals and features with little or
no impact upon his ooeration. It was with these requirements in
mind that the format function of GEMCOS was developed.

The purpose of this document is to highlight formatting cap~bilities
as implemented in the Generalized Message Control System~ Advancerl
Vers1on CStyle IO AlBOO MCA dnd 81700 MCA>. for detailed and complete
syntax and semantjcs of formatt1ng, refer to the B 1800/B 1700 Gener­
alized Message Control System CGEMCQS) User's Reference ~anualr form
1093499.

v

SECTION l

OVERVIEW OF FORMATTING

Formatting defines how fields within a message are to be manip­
ulated Cby GEMCOS> prior to their delivery to a program Cinput
messages> or a terminal Coutput messages>. A field of data is that
portion of a message Ca character or contiquous group of characters>
comprising a logical entity, e.q., social security number, clock
number, or gross pay. Fields in a record can be rearranged,
deleted, expanded, compressed Cvia the addition or deletion of
leading zeroes or trailing spaces), or translated Ce.g., DOZ could
become 12 or vice versa>. Fixed information can be inserted between
fields. Numeric fields can be checked to be sure they contain only
numbers. Certain esoteric hardware features, such as highlighting,
blinking, blanking, and reverse video, can be utilized• as well as
the more common ones, such as tab stops and forms feed.

Formatting with GEMCOS can be rather simple or quite complex, depending
upon the problem to oe solved. In its most complex form• however,
GEHCCS formatting remains transparent to the application programmer and
adaptive to the requirements of the terminal operator. A programmer
can define data fields to be processed with no knowledge of the device
or devices which will be sending and receiving that data. Once the
devices have been identified, the format of the data as it appears on
those devices can be dec•ded upon according to the preferences of the
people who use those devices. In most cases• the programmer need do
nothing to thP. application software.

A GE~COS message format provides the man-machine interface, manipula­
ting the data such that it is compatible with the requirements of the
terminal ann the program. A message for~at can be prepared for input
and output messaqesi in some casesr a format may be used on input and
output.

The person preparing the message formats must have the desired
record layouts available for each type of message. The first layout
should describe the message as it appears to the application program.
Subsequent laynuts should describe the message as it appears at
the terminal devices. The format writer must also be familiar with
terminal device characteristics, such as buffer size, screen size,
and control codes necessary to perform soecial functions. <Refer to
the B 1800/B 1700 Series GEMCOS User's Reference Manual for a
discussion of device classes.>

The format applied to a message depends on two things. first en the
transaction involved, since different transactions are compris0d of
different fields in different orders and secondly it depends on the
station involved since the same message sent to different stations may
require different control codes, buffer size, screen size etc. There­
fore GEMCOS provides a means of defining formats as well as allowing
the user to specify which formats are to be applied to which station/
transaction combinations.

G[MCCS formatt1ng accommodates a wide range of applications.
cases, however. the formatter need be familiar with only the
procedures described in section 2. More advanced formatting
are discussed in section 3.

1-2

In many
simple
techniques

SECTION 2

BASIC G£MCOS FORMATTING

~£N~BAl~
A GEMCOS message format is described as follows:

FORMAT <format name> (<format description>).

The <format name> is a unique name for the <format description>. The
first character must be a letter- but the remainder may be numhers or
letters in any combination. Spaces may not be used within the name.

The following four specifications- part of the <format description>­
are those most frequently utilized in GEMCOS formatting:

a. Defining field types.
b. Adding aata to a message.
c. lqnoring data or inserting blanks in a message.
d. Rearranqing data within a message.

All items specified within the parentheses delimiting the <format
description> are separated by commas.

D~E1~1N§_ElEkQ_l1Eh~~
It is necessary to define the type of each field in the record when
formatting an inout or output message. There are two primary kinds
of data fields in a format descr•ntion (although variations of each
exist>. Alphanumeric (alpha) fields may contain any combination of
characters; numeric <integer> fields may contain only numbers- or
integers. Alpha fields are identified by the letter A· and integer
fields are identified by the letter I. All integer fields are edited.
as subsequently described.

The length of the field immediately follows the letter designation.
Thus a 10-character alpha field would be described as AlQ, while a
15-digit integer field would be described as 115. A message consisting
of a SO-character alpha field followed by a 6-digit integer field would
be described:

FCRMAT Fl CA50r 16>.

Fields may be descrioed so as to divide a group of characters into
logical groups. For example. 12345678901203~ may be described as
Al5 or 115 or may be subdivided as 19, 16 or as A9. 16.

A shorthand notation may be employed when consecutive identical
fields are specified. This notation is called a repeat part. For
example, three consecutive 16 fields may he described as 316. When
the LEVEL OF consecutive groups of identical fields are to be repeated,
an aaditional parentheses is employed. For example, three consecutive
A3r 16 fields may be descrioed as 3CA3, 16).

Any integer field definition invokes editing. Editing of the ASO.
16 field works as follows: On input Cfrom terminal to system>• the
first 50 characters are move1 from the raw message to the formatted
message. The next six characters are then examined. If leading or
trailing blanks are present. the field is right-justified and leading
zeros are inserted. The field is then added to the formatted message.
If tne field is not entirely numeric, a flag is set to inform the
program that a field failed the edit test. On output, the first SO
characters are moved from the raw messaqe to the formatted message.
The next six characters are checked for numeric content. then moved
intact to the formatted message. If the data is incorrect• the control
station is notified, but the message is delivered to the station in
either event. If no editing is desired, the field may be defined as
A56 instead of ASO, 16.

AQUlhg_Q~IA~
Once fields within a record have been defined. the next step is to
format those fields ~o they can be easily read by the terminal oper­
ator. One method is the insertion of editing strings. Editing strings
are nothing more than simple strings inserted into the format descrip­
tion wherever they are to appear in the output message. Editing
strings are also useu to create blank screen formats for operator
input.

Editing strings are declared by using quotation marks. for example.
if a 10-character field were to oe identified as LAST NAME and made
accessible to the operator. the 1ollowing phrases could be used:

"LAST NAME [", AlO• "J "

Hexadecimal strings can be used to define characters for which no
graphics are available. Hex strings are identified by placing a
4 i~ front of the string. For example, the DCl character is expressed
as 4"11".

Refer to figure 2-1 for a more comprehensive example of editing
strings. When the GEMCOS output message format is applied to the
message from the rrogra~. the screen message shown results. The
same message format yields the blank screen shown in response to a
forms request from the terminal.

2-2

OUTPUT MESSAGE FORMAT

FORMAT FMTOUT (4"0C", % FORMS FEED
"LAST NAME [",A10,"] ",4"0D", % CARRIAGE RETURN
"FIRST NAME [",A6,"] ",4"0D",
"SSAN [",A9,"] ",4"0D",
"AMOUNT(", 16,"] ",4"12"). % PUT IN FORMS MODE

MESSAGE FROM PROGRAM

SM ITH_JOH N_123456789004960
'---~~---...-----..........-.-...._,,_....

A10 A6 A9 16

MESSAGE ON SCREEN

LAST NAME [SMITH
FIRST NAME [JOHN
SSAN [123456789]
AMOUNT (004960]

THE RESULT OF A FORMS REQUEST

LAST NAME[
FIRST NAME [
SSAN []
AMOUNT []

Figure 2-1. Use of Editing Strings

~A~1f~k~11N~_E1~LQ~~
Message fields may be manipulated so t~at data is ignored. blanks
are inserted, or data is rearranged. Formatting with GEMCOS to
manipulate fields in these ways is clearest once the user under­
stands how the GEMCOS formatter works.

The GEMCCS formatter has twc areas for each message. The first area
contains the message as it looks to the terminal; this is the external
message. The second area, or common area, contains the message as the
program sees it; this is the internal message.

Each area has associated with it a pointer. the external pointer and
the internal pointer. respectively. As a field is processed. both
pointers are advanced a~ the field is moved from one area to the other.
both pointers are initially set to i; and after processing a fieldr
both advance to the position immediately following the last character
moved. For example, if thQ first field is A5r five characters are
moved tram one drea to the other, and both pointers advance to position
6. Figure z-2 illustrates how pointers work.

MESSAGE AT TERMINAL MESSAGE IN COMMON AREA

EXTERNAL INTERNAL

FORMATTING~

_________. I
.___,_t -~

PT PC

PT IS A POINTER WHICH CAN PC IS A POINTER WHICH CAN BE
BE ADVANCED BY PROCESSING ADVANCED BY PROCESSING ANY
ANY OF THE FOLLOWING OF THE FOLLOWING ITEMS:
ITEMS:

A

F1qure 2-2.

A
I

Operation of Pointers

The subseaucnt discussions illustrate how to manipulate GEMCOS external
and internal pointers to jqnore data. jnsert blanks. and rearrange
data.

IGNORING OATA ANO INSERTING BLANKS.
It may sometimes be desirable to ignore certain data received from
a station or insert blanks into fields qoing to a station. These blank
are inserted by using an X item phraser which advances the external
pointer only.

for example• a message sent to a station contains both name and
social security number for the operator's convenience. After altering
some data. the operator transmits the message back to the program for
update. but the program requires only the social security number. The
name field can be edited out by means of an X item phrase:

FORMAT f2 CXlOr I9r 16).

When this form~t is applied to an input message which contains

SMITH _____ l23456789123456

the following is presented to the program:

123456789123456

The X item ohrase may be used to insert blanks into an output messaqe.
Consider the followinq format:

FOR~AT f3 CA6r X4r 13).

When this format is applied to an output message which contains:

WIOGET123

the following is displayed at the terminal:

WIDGET 123

REARRANGING DATA.
Data may be rearranged by manipulating the internal pointer. Unlike
the external pointer, which can only be advanced Cregardless of
message airection>r the internal pointer can be moved in either
direction. To adjust the setting of the internal pointerr a
location specifier <a> is used with an unsigned or signed integer.

When an unsigned integer is used. the internal pointer is adjusted
to the aosolute position indicated by the integer. When a signed inte­
ger is usedr the internal pointer is adjusted in the direction of the
sign relative to its present position by the nu~ber of positions
indicated by the integer.

for example• an input message of ABC123DEF456GHI789 is described as
A3, ;io, I3r @4r A3r @13, l3r aT, A3r a+s, 13. The following seQuence
of events occurs:

a. Initially, both pointers are set to 1.

b. The A3 causes ABC to be moved to the internal message
area~ and b~th pointers are set to 4.

c. @10 sets the internal pointer to 10.

d. 13 causes 1?3 to be moved to positions 10 thru 12.

e. d4 sets the internal pointer to 4.

f. A3 moves OEf to positions 4 thru 6.

2-5

9· Ql 13 sets the internal pointer to 13.

h. 13 moves 456 to positions 13 thru 15.

i • @7 sets the internal pointer to r.

j • A3 moves GHI to positions l thru 9.

I<. @+6 sets the i r.ternal pointer to 16.

l. 13 moves 789 to positions 16 thru 18.

The message deliverea to the program is ABCDEFGHl123456789.

Figure 2-3 shows the usage cf location specifi~rs with unsigned inte­
gers in combination with X items. figure 2-4 illustrates pointer
manipulation for strin9s, X items, and location specifiers.

INPUT MESSAGE FORMAT

FORMAT FMTIN (A10,X6,@21,A9,@11,16)

MESSAGE ON SCREEN

LAST NAME [SMITH
FIRST NAME [JOHN
SSAN [123456789]
AMOUNT [4960]

MESSAGE AS TRANSMITTED

SM ITH_JOHN_123456789_4960_

A10 X6 A9 16

MESSAGE AFTER FORMATTING

SM ITH_004960_123456789

2

Figure 2-3. Use of X Item and Location
Specifiers ir formats

~Y11M.AfU'.~

MESSAGE AT TERMINAL

EXTERNAL

MESSAGE IN COMMON AREA

INTERNAL

---FORMATTING"-.---------=---,, l'----T--------'
t t

PT PC

PT IS A POINTER WHICH
CAN BE ADVANCED BY
PROCESSING ANY OF THE
FOLLOWING ITEMS:

A
I
x

<STRING> (ON OUTPUT)

PC IS A POINTER WHICH CAN BE
ADVANCED BY PROCESSING
ANY OF THE FOLLOWING
ITEMS:

A

<STRING> (ON INPUT)

PC CAN BE POSITIONED BY
THE LOCATION SPECIFIER:

@

Figure 2-4. Pcinter Manipulation

Based upon what has
pare GEMCOS message
matting situations.
the GEMCOS advanced
summarizes what has

been written thus far. it is possible to pre­
formats which handle an extensive variety of for­

In many cases it may not be necessary to utilize
formatting o~tions in section 3. The following
been discussed:

a. A format is declared as follows:
FORMAf <format name> C<format description>>.

b. Alphanumeric fields are declared as:
A <length of field>.

c. ~umeric Cinteger> field~ are declared as:
I <length of field>.

d. Items within the parentheses are separated by commas .. as:
CA9,. 116,. Al>.

e. Consecutive identical fields er groups of fields can be
described with a repeat partr as:
3A50 or 3CA50• lo• A3>.

2-7

f. External data, in the form of strings, can be inserted
anywhere within a message, as:
Al5r "XYZ"r £5, 4"0C", A20.

g. Irput fields can be ignored by use of the X item phrase, as:
AS, X20r AS.

h. The oruer in which fields appear can be rearranged via
location specifiers, as:
Xl5r @30r XlO, @16, Al4, or X15' @30, AlO, ~-45, 15.

i. If no editing is requirec, numeric CI> fields can be
expressed as alphanumeric CA> fields.

Figures 2-s and 2-6 summarize the results of applying a GEMCOS mes­
sage format to an output message and an input message, respectively,
for one transaction.

MESSAGE FORMAT

FORMAT FMTOUT (4"0C", % FORMS FEED
"LAST NAME [",A10,") ",4"0D", % CARRIAGE RETURN
"FIRST NAME [",A6,"] ",4"0D",
"SSAN [" ,A9,"] ",4"0D",
"AMOUNT [",16,"] ",4"12"). % PUT IN FORMS MODE

MESSAGE FROM PROGRAM

SM ITH_JOH N 123456789004960

A10 A6 A9

MESSAGE ON SCREEN

LAST NAME [SMITH]
FIRST NAME [JOHN]
SSAN [123456789]
AMOUNT [004960]

16

THE RESULT OF A FORMS REQUEST

LAST NAME [
FIRST NAME [
SSAN [l
AMOUNT []

figure 2-s. Output Formatting

MESSAGE FORMAT

FORMAT FMTIN (A10,X6,@21,A'.J,@11,IS,'

MESSAGE Of'~ SCKH:!\,

LASl !\JAME [SMITH
Fl Rs··i !\IAME [JOHN

SSAN [123456789]
AMOUNT 4960 J

MESSAGE TRMJ~,MITft;O

SM !TH_ JOH N_1234r:..r.·18H . .4£HD
·-~-~'···.·-··.?··-·

A~O X6 A.1

MESSAGE AFTER FORM/. fTll\:t
"------~-·

SM ITH_ 004960 ... _.1 "·'A; :;.;['J

2

Figure 2-6. Input for l

SECTION 3

ADVANClO GEMCOS FORMATTlNG

~L~fEAl~
In some cases it may be convenient to utilize advanced GEMCOS for­
mdtting features to accompl1sh the following:

a. Minimizing syste~ overhead.
b. Handling variable-length fields.
c. Translating data.
d. Repeating multi-element variables.

Ml~l~lll~~-sr~I(tt_D~~Rtl.E!Q~
The format writer can minimize Disk 1/0 overhead by declaring certain
formdts as RESIOE~T. This step oermits the message format to reside
in memory rather than on disk. This mechanism is best employed ~ith
small• frequently used formats. The RESIDENT declaration is optional~
however, since format writers, who are familiar with an application~
are in the best position to decide where to store message formats.

rn declare a message format as rasjdent, the word RESIDENT js decl~r21
in brackets following the format name:

FCRMAT F4 CRESIOENTJ· <A7• X4• ~12• I&>.

HA~~11Ny_1ABlA~Lf:LENYlH_llfkQ~~
When input fields are variable in length, their message formats may
oe declared with delimiters to ensure that the program always receives
fixed-length fields without operator entry of leadinq zeroes or tra•t­
ing blanks. Two types of variable-Length fields may be accommodated by
GEMCOS format declarations:

a. Variable-length fields which may or may not be terminated
by a delimiter. These fields are identjfied as B or J
fiel~s.

b. Variable-length fields wh;ch are always terminated by a
delimiter. These fields ar~ delimited A and I fields.

A ANC J FIELDS.
When the presence of delimiters is optional CtaDbed fields for example>
alpha and integer items are declared as B and J items. respect1vely.
and the field lengths declared are the maximum lengths.

When the standard horizontal taD character C4"05"> is used as ~
delimiter. B and J items are declared as follows:

010. J9

When ci di f~1'rent delimiter is used,. the delimiter code and maximum
fietd Length are declared in parentheses follow~ng the S or the J.
The fiela len0th declared doe5 not include the delimiter code. For
e~ample,. if the delimiter character is C4"11"),. the following would
be O*!Clc.Jrod for the HlO f1cld:

BC4"11",. 10).

The shorthand repedl part may be used with q and J items as described
previousty ..

GEMCCS implements these item phrases as follows. In a 810 field,.
characters are moved until either 10 have been moved or until a
dcl,~iter chardcter j5 encountered. When a deljmjter character is
recoyniledr trdiling spaces are inserted to fill the field to 10
characters. In a J fieldr leading zeroes are inserted to fill a
H1'.ld tt·rminater! early by the delimiter character. If the field
is ccmpl!:taS.y f1lledio the delimiter code is not present and the
pujnter arlvJnces automatjcally to the next input field. On output
rr.e~:·;aCJC$~ '·3 <P\d J fields are treated as if they were A and I fields,
r·esp(~>;t i ,n~ly ..

rhe foltowinq message format descrjbes a record consisting of a
3-c~dracter f 1eld followed by a 4-digit fieldr a variable-length
tabbnd fje(d h~ving a maximum of six characters, two variable-Lenqth
tahbed numeric fields <each having a maximum of four digits), and a
4-character tield at the end of the message which is iqnored:

FORMAT F5 CA3r J4, B6r 2J4. X4).

The message is received from the station in the following format
<note that the tab code is not present with the first numeric field
~ccause the 4-digit field was completely filled}:

f T
XYll7~4XYla1234567aSNVF

b b

After th~ <1:';.plication of the format .. the followinq message is
rrc~;,~nted ~; the program~

12340567

DLLUHf[i) "·,\ND I FIELDS.
When d n l i m; t er;, are a I_ ways present • A and I are used w i th t he de l i m i t er
codes dnd ~aximum field lengths; for example:

~ (". ,, • 5)

I f"p"• 8>

These item phrases are implP.mented by GEMCOS as dP.scribed for B
and J fields. The only difference is that for these fields, the
delimiters are mand~tory,. even when a field is entirely filled.

3-2

The 5horthand repe~t part may also oe used with these delimiter
fields. For example• if three contiguous variable-length fjelds have a
~aximum of 10 characters each and are always delimited by an asterisk
<~>:

3(1(4"*"• 10))

The following e~ample illustrates how data in a variable-length
field in the input message may be ignored:

FORMAT F6 CA5, X<"W">• 16).

When applied to an input message of ABCDEPQRSTUVW123456, this mes­
sage format results in ABCDE123456 being delivered to the program.

lBh~~lAllN~_DA1A£
The translation of program-compatible fields to terminal operator­
compatible fields and vice versa is readily accommodated in G£MCOS.
Abbreviations such as SUN, MON, JAN at the terminal can appear to the
program as i, 2. 01, respectively. Translation is accomplished in two
steps. A function declaration is prepared and reterenc~d in input and
output message formats.

The function declaration identifies the terminal and program eQuiv­
alents. These equivalents are declared in the form of strings. which
must be no longer than six characters. An external string• which
declares how the field appears to the terminal• is specified first;
then the internal string. which declares how the field appears to
the program, is specified:

FUNCTION 5fX C"MALE":"l"• "FEMALE":"2">•

The function declaration is then referenced as follows in the input
and output formats: The letter T is declared to indicate translation,
followed by the name of the function, the item phrase describing the
external string• and an integer specifying the length of the internal
string:

TCSEX• A6• 1).

The following declarations, for example, would be used to translate
FEB 197~ to 2 1975:

FUNCTION F C"JAh":"l", "FEB":"2"• "HAR":"3").
FORMAT FlO Cl<f•A3,l>• Xl•" ",14>.

3-3

The preced1ng are examples of unedited translation specifications. An
unedited string of less than six characters in length is right­
justified within a 6-character word with leading nulls <4"00">. As
long as all jnternal strings are the same length and all external
strings are the same length. an unedited function specificat1on works
well. If strin~s vary in length• however. the use of unedited function
specifications can cause confusion. for exampler suppose a function is
declared as follows:

FUNCTION TEST C"FEMALE":"ll"•"MALE":"l">.

On outputr an internal string of l matches 11• because GEMCOS looks
only at the right-hand character. Similarly. on input. an external
strinq of MALE matches FEMALf.

To avoid this confusion. eaited translation specifications are intro­
duced. The example just given would be:

FUNCTION TEST CEXTERNAL:ALPHArINTERNAL:INTEGERl
C"fEMALE":"ll","MALE":"l">·

An edited integer string of Less than six characters is right-justified
with leading zeroes. An edited alpha string of less than sjx charac­
ters ;s left-justified with trailing blanks. Now when GEMCOS search~s

for lP it actually searches for 000001. When GEMCOS searches for
MALE• it searches for MALE

B£f£~IlN§_HUlil=f l£MINI-Y.ABl!~~~~~
Some output messages have a variable number of fields of repP.ated data.
as in tables with columns of v~lues. These messages can provide coun­
ters which specify the number of elements present in these fields. The
counters can be used in the repeat parts to declare a GEMCOS message
format.

If a counter field is used. the key word VARIABLE must be specified as
the first declaration in the format, followed by one of six variables
CVl thru Vb> which accepts the contents of the counter. A location
specifier may be used to indicate where in the raw message the counter
fielo resides. The length of the counter is then specified as an
1nteger following the key word FOR:

3-4

VARIABLE Vl fOR 1;
VARIABLE V3 @+16 FOR 5;

The variable in the internal message must De in EBCDIC numerals and
must not be greater than 25S in value. The use of the location speci­
fier 1n the variable declaration alters the position of the potnter
~ithin the internal message. and the format must position the pointer
to the data if necessary.

The repeat part in the output message format is then constructed by
using this VARIA3LE declaration. plus an expression consisting of
the assigned variable designation and a maximum repeat indicator:

FORMAT Fll CVARIABLE Vl FOR 2; Vl OR 6A6• 12>.

The numoer of times the GEMCOS formatter employs the repeat part
depends on which is less• the variable repeat part or the maximum
repeat part. In the following output message. for example• four
groups of Ab fieids are processed after the 04 is loaded into
varjable v1; the 67 is processed as a 2-digit ~nteger field:

04ABCOEF123456GHIJKL78901267.

Variable repeat parts may be nested if the situation requires. In
th1s way a variable number of groups having multi-element variables
may ~e declared in one mes~age format through proper use of paren­
theses Crefer to the B 1800/B 1700 GEMCOS User's Reference Manual for
syntax details>.

An optional update variable may be used while a multi-element variable
is oeing processed. In the following case• for example, V2 is the
variable repeat part and Vl is the update variable:

v1:v2 OR 6CA16,4"00")

Assume V2 has oeen initially set to 10. Since the maximum repeat part
is 6• only six fietds of the message are processed by the format Cleav­
ing four fields unprocessed). At the completion of the phrase, the
update variable• v1. contains the value 4. Vl could then be used in
subsequent phrases within the format. All variables used in a format
must be declar~o and given an initial value. The update variable may
be the same as the variable repeat part. Figure 3-1 is an example of
variable repedt specifiers used.

3-5

MESSAGE FORMAT

FORMAT F12 (VARIABLE V1 FOR 2;
4"0C","+ PART NO",X4,
"OUANTITY",4"00", X3
V1 :V1 OR 5(14.X9,12.4"0D")).

MESSAGE FROM PROGRAM

04123401567812901216345606
-...-._,,._.,,-~ ~~

FIELDS OF 14,12

MESSAGE ON SCREEN

+PART NO QUANTITY
1234 01
5678 12
9012 16
3456 06

figure 3-1. Variable Repeats

Printed in U.S.A .

.....
co

11 0 oo :::a ..., ~
s: m
)>

~~ z_
G) 0
G) 0
c
0 Ci)
rn ... • n

0
~

1106531

Printed in U.S.A.

I ~l"BINDER--.1 I
r---l'h'' BINDER___,

January 1978 1106531

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	xBack

