
Printed in U.S.A.

Burroughs

B 1000 Systems

FORTRAN

REFERENCE MANUAL

(RELATIVE TO MARK 10.0 SYSTEM SOFTWARE RELEASE)

Copyright © 1982 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

Cover Revised
December 1982

1081882

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damag1~s. There are no warrantiies extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/ or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/ or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
TIO West Documentation, Burroughs Corporation, 1300 John Reed Court,
City of Industry, California 91745, U.S.A.

Burroughs m PUBLICATION
CHANGE

NOTICE

PCN No.: 1081882-001 Date: December 1982
Publication Title: B 1000 Systems FORTRAN Reference Manual (April 1978)

Other Affected Publications: N_o_n_e __________________________ ~

Supersedes: __ N...:.../A ____________ , ____________________ _

Description:

This PCN incorporates the MARK 10.0 System Software Release. Revisions to the text arc indicated
by a vertical black bar in the margin.

Replace these pages

Title
v thru vii
10-3
11 -1 thru 11-5
I 2-1 3 thru 1 2-1 7
1 3-3 thru 1 3-5
J-1
Index-3 thru lndex-9

Add these pages

iiA
1 l -6A thru 1 l -6C
K-1 thru K-3

Copyright © 1982, Burroughs Corporation, Detroit, Michigan 48232

Printed in U.S. America
1081882·001

ii A

LIST OF EFFECTIVE PAGES

Page Issue Page Issue

Title PCN-001 1 3-1 thru 1 3-2 Original
ii PCN-001 13-3 thru 13-6 PCN-001
iiA thru iiB PCN-001 14-1 thru 14-2 Original
iii thru iv Original A-1 thru A-10 Original
v thru viii PCN-001 B··l thru B-3 Original
ix thru x Original B-4 Blank
1-1 thru 1-2 Original C--1 thru C-7 Original
2-1 thru 2-8 Original C--8 Blank
3-1 thru 3-4 Original D-1 thru D-10 Original
4-1 thru 4-5 Original E--1 thru E-10 Original
4-6 Blank F-·1 Original
5-1 thru 5-7 Original F-·2 Blank
5-8 Blank G-1 Original
6-1 thru 6-4 Original G-2 Blank
7 -1 thru 7 -1 8 Original H-1 Original
8-1 thru 8-2 Original H-2 B:lank
9-1 thru 9-16 Original I-l thru I-2 Original
10-1 thru 10-2 Original J-1 PCN-001
10-3 thru 10-4 PCN-001 J-2 Blank
11-1 thru 11 -6 PCN-001 K-1 thru K-3 PCN-001
l 1-6A thru l l -6C PCN-001 K-4 Blank
11-60 Blank Index-I thru Index-2 Original
11-7 thru 1 1 -1 4 Original lndex-3 thru lndex-9 PCN-001
12-1 thru 1 2-1 2 Original Index-I 0 Blank
1 2-1 3 thru 1 2-1 8 PCN-001

iiB

Section

2

3

4

5

6

TABLE OF CONTENTS

INTRODUCTION

CHARACTER SET
B 1800/B 1700 FORTRAN Character Set

Digits
Letters
Special Characters

LITERALS
Numeric Literals

Integer Constants
Real Const an ts
Double Precision Constants .
Complex Constants . .
Hexadecimal Constants
Logical Constants

String Literals

VARIABLES
Variable Names
Array Elements

EXPRESSIONS AND STATEMENTS
Expressions

Operators
Arithmetic Expressions

Expression Types
Logical Expressions

Statements
Executable Statements
Non-Executable Statements
Statement Labels

SPECIFICATION STATEMENTS
Explicit Type Statements

Array Declarations . . .
Optional Size Specification

COMMON Statement . . .
Common Names
Use of Array Declarations
Storage Assignments

DIMENSION Statement . ..
EQUIVALENCE Statement
EXTERNAL Statement
IMPLICIT Statement .
INTRINSIC Statement

DATA STATEMENTS
Statement Use

Variable Lists . .
Initial Value Lists

Page

ix

1-1
1-1
l-1
1-1

2-1
2-1
2-2
2-3
2-4
2-5
2-6
2-6

3-1
3-2

4-1
4-1
4-1
4-1
4-3
4-4
4-4
4-4
4-5

5-1
5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-6
5-6
5-7

6-1
6-1
6-1

iii

TABLE OF CONTENTS {Cont)

Section Page

Variable List of IMPLIED DO in Data Statement 6-2
Initial Value List of IMPLIED DO in Data Statement 6-3

Hexadecimal Constants 6-3
Conversion During Assignment 6-3

7 FORMAT SPECIFICATIONS AND FORMAT SPECIFIERS
Format Specifications . 7-1

Format Specification A 7-2
Input Using Aw 7-2
Output Using Aw 7-3

Format Specification D 7-3
Input Using Dw.d 7-3
Output Using Dw .d . 7-3

Format Specification E 7-3
Input Using Ew.d 7-3
Output Using Ew.d . 7-4

Format Specification F 7-4
Input Using Fw .d 7-4
Output Using Fw.d . 7-5

Format Specification G 7-6
Input Using Gw.d 7-6
Output Using Gw .d . 7-6

Format Specification H (Strings) 7-7
Format Specification I 7-7

Input Using Iw 7-7
Output Using Iw . 7-8

Format Specification L 7-8
Input Using Lw 7-8
Output Using Lw 7-9

Format Specification T 7-9
Format Specification X 7-9
Format Specification Z 7-9

Input Using Zw 7-9
Output Using Zw 7-10

FORMAT Statement 7-10
Record Fields 7-11
Format Field Separators 7-11
Repeat Counts 7-11
Scale Factor Designator 7-11
Carriage Control 7-13

Format Specifications in Arrays 7-13
NAMELIST Statement and NAMELIST 1/0 7-14

NAMELIST Record Format 7-15
NAMELIST Record Restrictions 7-15
Value Assignments 7-16
Input Using NAMELIST . 7-16
Output Using NAMELIST 7-17

8 ASSIGNMENT STATEMENTS
Arithmetic Assignment Statement 8-1
Logical Assignment Statement 8-2
GO TO Assignment Statement 8-2

iv

Section

9

TABLE OF CONTENTS (Cont)

CONTROL STATEMENTS
CALL Statement

Array Handling
Subroutine Returns .

CALL EXIT Statement
CALL DUMP Statement
CALL SWITCH Statement
CALL OVERFL Statement
CALL DUCHK Statement
CALL GETCH Statement
CALL PUTCH Statement
CONTINUE Statement
DO Statement

Nesting
Parameter Alteration

GO TO Statement . .
Unconditional GO TO
Assigned GO TO .
Computed GO TO

IF Statement .
Arithmetic IF .
Logical IF

PAUSE Statement
RETURN Statement

Standard Return .
Nonstandard Return

STOP Statement . . .

10 FILE DECLARATION STATEMENT
External File Name

I I

1081882-001

Hardware Type
Attribute-List .

INPUT/OUTPUT STATEMENTS
READ Statement

File Referenced
Retord Number for Random Read
Formatted READ Statement .
Unformatted READ Statement
Free-Format READ Statement

WRITE Statement
File Referenced
Record Number for Random WRITE
Formatted WRITE Statement .
Unformatted WRITE Statement
Free-Format WRITE Statement ·

PRINT Statement
File Referenced
Record Access
Formatted PRINT Statement

Page

9-1
9-3
9-3
9-4
9-4
9-4
9-5
9-5
9-6
9-7
9-7
9-8
9-9

9-10
9-10
9-10
9-10
9-11
9-11
9-12
9-12
9-13
9-14
9-14
9-15
9-16

10-2
10-3
I 0-3

11-2
1 1-2
1 1-2
1 1-3
l 1-3
11-3
11-5
11-5
11-5
11-6
11-6

. 11-6

. l l-6A

. l l-6A

. l l-6A
. . l l-6B

v

I

TABLE OF CONTENTS {Cont)

Section

12

Free-Format PRINT Statement
PUNCH Statement
I/O Variable Lists
Action Specifiers

DA TA Action Specifier
END Action Specifier
ERR Action Specifier

REWIND Statement
BACKSPACE Statement
CLOSE Statement .
ENDFILE Statement
LOCK Statement
PURGE Statement .
CHANGE Statement
Multi-File Tape Handling
ZIP Statement

SUBPROGRAMS, INTRINSIC FUNCTIONS, AND INTRINSICS
Subroutine Subprogram .

SUBROUTINE Names
Dummy Argument Lists
Use of Subroutines . .

FUNCTION Subprograms and Statement Functions
Function Subprogram . .

FUNCTION Statement
FUNCTION Name . .
Dummy Argument Lists

Statement Function
Statement Function Declaration
Function Type
Dummy Argument List

Use of Functions
BLOCK DA TA Subprogram
Intrinsic Functions
Intrinsics

13 COMPILER OPTION CONTROL CARDS
Compiler Control Card Format
Options

14 PROGRAM STRUCTURE
Source Input Format
Program Units . .

END Statemem .
Main Program . .
Statement Ordering

Aooendix A B 1800/B 1700 FORTRAN LANGUAGE SYSTEM
System Requirements

Required Hardware

vi

Page

. l l-6B
. 1 l-6B
. 1 l-6B

1 1-7
11-8
11-8
11-8
11-9
11-9

. 11-10

. 11-10

. 1 1-10

. 11-11

. 11-11

. 11-12

. 11-13

12-1
12-1
12-1
12-2
12-2
12-2
12-2
12-3
12-3
12-3
12-4
12-4
12-4
12-4
12-5
12-6

. 12-1 3

13-1
13-1

14-1
14-1
14-1
14··2
14-2

A-1
A-I

Section

TABLE OF CONTENTS (Cont)

Required System Software
User/Compiler Interface .

Intermediate Code Files
Compiler Files

Input Files
Output Files

Compiler File Names and Defaults
MCP Control Cards . . .

Compilation Card Deck
?COMPILE Card . .
?FILE Card
?DAT A CARDS Card
Source Input Cards .
?END Card

Appendix B LANGUAGE COMPATIBILITY

Appendix C WARNING AND ERROR MESSAGES
Line Printer Run-Time Error Messages
Console Printer Run·Time Error Messages
Compilation or Binding Warning and Error Messages

Appendix D SAMPLE COMPILATION AND BIND LISTINGS

Appendix E STORAGE ALLOCATION
Simple Variables

Integer Variables . . .
Real Variables
Double Precision Variables
Logical Variables . . .
Complex Variables . .

Arrays
Equivalenced Data Items

Single Storage Locations
Multiple Storage Locations
Array Handling

Elements of Common Storage .

Appendix F DESCRIPTION OF UNFORMATTED 1/0 RECORDS

Appendix G OPTIMIZING PROGRAM EXECUTION

Appendix H OPTIMIZING PROGRAM COMPILATION

Appendix I FORTRAN/INTMAKER

Appendix J COMPILER SIZE LIMITS FOR FORTRAN PROGRAMS

Appendix K REMOTE FILE SCREEN FORMATTING AND FORMS MODE I/O

1081882-00 I

Page

A-1
A-1
A-2
A-2
A-2
A-4
A-5
A-5
A-6
A-6
A-8
A-9
A-9
A-9

C-1
C-2
C-3

E-2
E-2
E-2
E-3
E-3
E-4
E-4
E-6
E-6
E-7
E-7
E-8

vii

I

Figure

A-1

Table

1-1
4-1
4-2
4-3
4-4
6-1
7-1
7-2
7-3
8-1
10-1
12-1
12-2
12-3
A-1
A-2

viii

LIST OF ILLUSTRATIONS

FORTRAN Compilation System

LIST OF TABLES

Card Codes for the B 1800/B 1700 FORTRAN Characters
Operators Used in FORTRAN Expressions
Resultant Types of Arithmetic Operations
Resultant Types for Exponentiation
Logical Expression Constructs
DAT A Statement Type Conversions
Input Data Item Types
Input Variable Item Types
Output List Item Types
Type Conversions in Assignment Statements
Unit Number/Hardware Type Default Associations
B 1800/B 1700 FORTRAN Intrinsic Functions . .
B 1800/B 1700 FORTRAN Intrinsic Function Restrictions
List oflntrinsics
FORTRAN Compiler File Names and Defaults
ICM Name Conversions

Page

A-3

Page

1-2
4-2
4-2
4-3
4-3
6-4
7-1
7-2
7-2
8-1

10-1
12-7

. 12-11

. 12-13
A-4
A-8

INTRODUCTION

GUIDE TO EFFICIENT USE

The purpose of this document is to present information directly connected with the FORTRAN 1 program­
ming language as implemented on the B 1800/B 1700 data processing systems. Specifically, this document
describes both the equation-oriented programming language accepted by the B 1800/B 1700 FORTRAN
compiler and the various features of this compiler.

This manual is designed to provide the FORTRAN programmer with a source of reference information and
is not a primer in the language and should not be used as such. The chapters in this manual proceed from
basic language elements to general FORTRAN program structures, as follows:

• Sections 1 through 3 discuss characters, literals (i.e., constants and strings), and variables, the
primary units of which the language is constructed.

• Sections 4 through 9 discuss FORTRAN expressions and statements, the computation-directed
elements of the language.

• Sections 10 and 11 discuss the FILE declaration statement and I/O statements.

• Section 12 describes subprograms, intrinsic functions, and intrinsics.

• Sections 13 and 14 discuss compiler control cards and program structure.

In addition, a number of appendices are provided at the end of this manual which consist of a number of
reference aids for the programmer.

The programmer with questions concerning the portion of the B 1800/B 1700 system which processes
FORTRAN programs (i.e., the FORTRAN compiler) is directed to the portion of appendix A .of this docu­
ment which discU;sses the compiler feature in question.

B 1800/B 1700 FORTRAN LANGUAGE

B 1800/B 1700 FORTRAN is designed for compatibility with ANSI standard FORTRAN except for the
exceptions and extensions listed in appendix B.

LANGUAGE DESCRIPTION CONVENTIONS

Interspersed throughout the discussion of the FORTRAN language contained in this document are brief
indications of the gener.al formats of various of the language constructs. These portions of text follow
certain conventions to be explained here.

The method employed in this manual is to present the general format of the construct with the optional
portions of the construct represented by lower-case letters and defined following the specification of the
format. The remaining characters in the specification are required portions of the construct being defined.

l
FORTRAN is an acronym for FORmula TRANslation, and was originally developed for International
Business Machine equipment.

ix

The proper format tor an Example Item is:

EXAMPLE ITEM

EX(s)MP,LE

where s is a string of from one to three char­
acters, each of which is the character A.

This example consists of the presentation of the general format of a fictitious language construct called an
"Example Item". The portion of the construct over which the programmer has control is denoted by the
lowercase letters and is defined below the format specification. The balance of the characters in the example
format (i.e., all uppercase letters, the parentheses, and the comma) are required portions of the construct.
As defined, valid examples of this sample construct would be:

EX(A)MP,LE
EX(A A)MP,LE
EX(AAA)MP,L E

BASIC FORTRAN CONCEPTS

Blank characters are ignored in FORTRAN except in string literals.

Certain basic concepts concerning th1~ FORTRAN language are presented here as preliminary to the discus­
sion of the B 1800/B 1700 implementation of this language. These concepts are discussed in detail in the
following sections.

A problem-solving system written in the FORTRAN language is called a source program; a program which
constitutes a self-contained processing structure is called an executable source program. Every executable
FORTRAN program consists of one or more program units which combine to form the complete processing
structure. Among the program units are the required main program and as many subprogram program units
as necessary to complete the source program.

Each program unit is constructed of a series of items called statements. These statements specify the arith­
metic operations which are to be executed, control the order in which program statements are to be per­
formed, accomplish various program input and output functions (such as reading data records, printing the
results of computations, etc.), or describe program data items, or provide other program information with­
out directly producing any actions during program execution.

Each program statement is constructed of a string of appropriate characters which is contained on one or
more physical records (i.e., punched cards). The set of the physical records containing an executable source
program constitutes a source deck. This deck may be input as a file to a special computer program called a
compiler. The compiler first verifies that each source statement is syntactically correct and then converts
the source program into FORTRAN S-CODE. The S-CODE generated by the compiler can then be executed
on the B 1800/B 1700 using the FORTRAN INTERPRETER. The INTERPRETER causes the system hard­
ware to perform the operations specified by the S-CODE and thus the source program. For more detailed
informaticm regarding the function of S-CODE and its relation to the INTERPRETER and the hardware,
refer to the B 1700 System Software Operational Guide, form number 1068731.

The B 1800/B 1700 FORTRAN compiler operates under the control of a Master Control Program (MCP).
Similarly, the S-CODE generated by the compiler is executed under control of the MCP.

x

1. CHARACTER SET

Characters are the elements of which a language is constructed. The B 1800/B 1700 FORTRAN language
is based upon a prescribed character set which is described in the present section. Each type of character
within this FORTRAN character set is discussed here.

B 1800/B 1700 FORTRAN CHARACTER SET

For source program input, the B 1800/B 1700 FORTRAN character set may be described as consisting of
these types of characters:

a. Digits.

1. Decimal digits.

2. Hexadecimal digits.

b. Letters.

c. Special characters.

Digits

Two types of digits are employed in B 1800/B 1700 FORTRAN: decimal digits and hexadecimal digits.
Decimal digits are defined as consisting of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. These digits are gen­
erally used to define program values in terms of the decimal (radix 10) number system, and when the term
"digit" is used in this manual it will refer to a member of the set of decimal digits.

Hexadecimal digits are defined as consisting of the characters in the decimal digit set plus the characters A,
B, C, D, E, and F. These digits are generally used to define program values in terms of the hexadecimal
(radix 16) number system, where A is equivalent to 10 in the decimal system, B is equivalent to 11 in the
decimal system, etc.

These two digit types are used to represent numerical values in the B 1800/B 1700 FORTRAN language.

Letters

For the B 1800/B 1700 FORTRAN language, letters are defined as consisting of these 27 characters:

ABC DEF G HI J K LM N 0 P QR STU V W X Y Z $

The dollar sign ($)is included in the letter set (which is referred to as the set of alphabetic characters) since
it may be employed anywhere any other letter may be used.

Special Characters

Special characters for the B 1800/B 1700 consist of the following 13 special characters:

blank . , =: + - * I) (& ' "

The blank character has no meaning, except in string literals, and can be used throughout the program to
improve readability.

1-1

Table 1-1 shows the corresponding card codes for each special character.

1-2

Table 1-1. Card Codes for the B 1800/B 1700 FORTRAN Characters

Basic FORTRAN
Character

+

*
I
(

)

&

$

blank

Character
Name

Replacement
Operator

Plus

Minus

Asterisk

Slash

Left Parenthesis

Right Parenthesis

Comma

Decimal Point
(period)

Apostrophe

Quote Mark

Ampersand

Dollar Sign

Blank

EBCDIC
Card Rows Punched

8,6

12,8,6

11

11, 8, 4

1, 0

12,8,5

11, 8, 5

8,3,0

12,8,3

8,5

8, 7
12

11, 8, 3

none

2. LITERALS

The next level of language complexity for consideration consists of the literal (numeric constants and strings)
and identifier FORTRAN constructs. These items are formed from the basic FORTRAN characters accord­
ing to prescribed rules. Literals are discussed in this section; the various types of identifiers are discussed in
appropriate sections. For example, variables are discussed in the next section. Other identifier types include
the function name, subroutine name, and COMMON block name, each of which is discussed in the section
concerned with the language feature with which that type of identifier is associated.

Literals function as FORTRAN value data-items used in problem solving and related operations such as
input/output (I/0). The rules governing their use are discussed here.

Literals may be divided into numeric literals (constants) and string literals (strings) classifications.

NUMERIC LITERALS

A constant numeric data item may be expressed by a variety of literal representations, which are grouped
into the following categori~s:

a. Integer Constants.

b. Real (Floating-Point) Constants.

c. Double Precision Constants.

d. Complex Constants.

e. Hexadecimal Constants.

f. Logical Constants.

These six constant data constructs are discussed in the following paragraphs; their internal storage require­
ments are discussed in appendix E.

Integer Constants

An integer constant consists of a string of decimal digit characters which may be preceded by a sign character
(+or-). If the constant is non-zero and unsigned, it is interpreted as representing a positive value. A zero
has the same value whether signed or unsigned.

One to ten decimal digit characters are permitted and accuracy is ensured providing its value does not exceed
± 8589934591. If this limit is exceeded, a syntax error will be given.

The proper format of an integer constant is:

INTEGER CONSTANT

sn

where s is an optional sign character (+ or -)
and n is a string of decimal digit characters.

2-1

[LITERA~J

The following are examples of valid integer constants:

0
+O
-0
17711

999999999
03770
8589934591
-5708

The following are examples of invalid integer constants:

1.0

3,000

Decimal point not permitted;
interpreted as a real constant.

No commas or other punctuation permitted.

9999999999 Exceeds the largest integer value allowed.

Real Constants

A real constant consists of a string of decimal digit characters, a decimal point character(.) and an optional
sign character (+or-), or it may consist of a representation written in scientific notation. If the real constant
is written in scientific notation, it must consist of a string of dec:lmal digit characters, an optional decimal
point character, an optional sign character, and a trailing E followed by a one- or two-digit signed or unsigned
integer constant which is the exponent. In all cases, if the real constant is non-zero and unsigned, it is inter­
preted as representing a positive value. A zero has the same value whether signed or unsigned. Real floating­
point constants are stored in internal form in such a way that at least seven, and sometimes eight, digits of
significance are retained. Constants longer than eight digits will generate a warning and only the most signi­
ficant digits will be retained.

The range for a real non-zero constant is approximately 0.863616856E-77 (2**(-256)) < m.n
::; 0.57896041E+77 ((2**255)-(2**231)). If this limit is exceeded, a syntax error will be given. (For more
information, see appendix E.)

The proper format of a real constant is:

REAL CONSTANT

sm.n or smpnEx

wheres is an optional sign character (+or-),
m and n are strings of decimal digit characters
(with a combined total not exceeding eight
characters, either one (and only one) of which
may be omitted. Pis an optional decimal
point (.)which may be omitted only if n is
omitted, and x is a one- or two-digit signed or
unsigned integer constant.

In FORTRAN scientific notation, the E portion of the real constant denotes that the value being represented
is the number preceding the E multiplied by (ten raised to the power denoted by the integer constant follow­
ing the E). Thus, the real constant 2E2 represents the value of 200 (i.e., 2 multiplied by 10 raised to the
second power).

If scientific notation is used and the decimal point is omitted, the decimal location is assumed to immed­
iately precede the E.
2-2

LITERALS

The following are examples of valid real constants:

3.141592
0.
0.0

200El) 2E3
2.E3
2E+3
.075
6.02E23

(equivalent)

2.5E+07 (same as 25000000)
l .023342E+8
00000000000007.

-253.
-.075
2.9979E08

The following are examples of invalid real constants:

-1597
6.2E+78
6.2E-78
2.5E007
E22
2.7E.1.2
1E2E3
2,765,987.

Double Precision Constants

No decimal point or E portion; interpreted as an integer constant.
Exceeds maximum size limit.
Smaller than minimum size limit.
Three-digit integer in E portion.
Exponent part alone not permitted; interpreted as a variable name.
Exponent part must be an integer.
Only one E portion allowed per constant.
No commas or other punctuation, except decimal point, permitted.

A double precision constant must be written in scientific notation. It must consist of a string of decimal
digit characters, an optional decimal point character, an optional sign character, and a trailing D (instead of
an E) followed by a one- to two-digit signed or unsigned integer constant which is the exponent. In all cases,
if the double precision constant is non-zero and unsigned, it is interpreted as representing a positive value. A
zero has the same value whether signed or unsigned ..

Double precision floating point constants are stored in internal form in such a way that at least 18, and
sometimes 19, decimal digits of significance are retained. Constants longer than 19 digits will generate a
warning and only the most significant digits will be retained.

The range for a non-zero double-precision constant is approximately 0.86361685550944446250-77
~.n~0.57896044618658097660+77 or precisely 2**(-256) through (2**255)-(2**195). (For more
information, see appendix E.)

The following is the proper format of a double-precision constant:

DOUBLE PRECISION CONST ANT

smpnDx

wheres is an optional sign character(+ or-),
m and n are strings of decimal digit characters
(with a combined total not exceeding 19 char-
acters), either one (and only one) of which
may be omitted. Pis an optional decimal
point character which may be omitted only if
n is omitted and x is a one- to two-digit signed
or unsigned integer constant.

2-3

[LITERA~J
A double precision constant differs from a real constant only in the number of digits it may contain and the
use of a O to indicate the exponent. If the decimal point is omitted, the decimal location is assumed to im­
mediately precede the 0.

The following are examples of valid double precision constants:

3.141592653589793200 I (equivalent)
3.14159265358979320-0

.103 }
+10+03 (equivalent)
+ 1.0+3
l 234567890. l 2345678D+29
6.630-03
9.806650+0

The following are examples of invalid double precision constants:

3.14159
2.7 0 99
2.7 0-99
3.0 0007
1,234,567,890,123.
l.3E45
123456789.12345678901

No D portion; interpreted as a real constant.
Exceeds maximum size limit.
Smaller than minimum size limit.
Too many digits in exponent part.
Commas not permitted; no 0 portion.
No 0 in exponent part.
Exceeds maximum character limit; no 0 portion.

The internal machine representation of a double precision constant requires two consecutive storage locations.
Thus, such constants may not be used interchangeably with real or integer constants, but obey rules discussed
later in this manual.

Complex Constants

Complex values may be represented in FORTRAN t11rough the use of complex constant literals. A complex
constant consists of a real part and an imaginary part (in that order) separated by a comma and enclosed
within parentheses. Each of these parts may be either an integer or real constant and must obey the partic­
ular rules governing that literal type (such as size limits, etc.). The proper format of a complex constant is:

COMPLEX CONSTANT

(m,n)

where m and n are the real and imaginary
parts, respectively, each of which may be an
integer or real constant.

The complex constant (m,n) represents the quantity m + nl, where I is the square root of -1.

The following are examples of valid complex constants and theilr equivalent mathematical expressions:

2-4

(123,456)
(3.14159265,1597
(0,0.05)
(100", l 00.000)
(1E2,0)
(0,-1)

123 + 4561
3.14159265 + 15971
0 + 0.051 (or 0.051)
100 + lOOI
l 00 + OI (or 100)
0 + (-1) (or -1)

LITERALS

The following are examples of invalid complex constants:

(3,)
(12345678901234.D0,0)
(12.0,72E78)
(3,4,5)

Missing imaginary part.
Neither part may be a double precision constant.
Imaginary part exceeds size limit for real constants.
Excessive number of parts - more than two.

The internal machine representation of a complex constant requires two consecutive words of storage; the
real part of the literal is stored in the first of the two words, the imaginary part is stored in the following
word. (For more information, see appendix E.)

Hexadecimal Constants

Another alternate representation of program values consists of the hexadecimal constant literal which
corresponds to notation in a number system with a radix of 16.

A hexadecimal constant consists of the letter Z followed by either 9 or 18 hexadecimal digit characters. The
hexadecimal constant assigns a value to the entire word of the variable, including the type bits (see appendix
E).

The proper format for a hexadecimal constant is:

HEXADECIMAL CONSTANT

Zn

where n is a string of 9 or 18 hexadecimal
characters.

The hexadecimal notation employed on this machine conforms to the standard form whereby each hexa­
decimal digit corresponds to a unique pattern of four bits within a data word. A list of these 4-bit patterns
is given here with the corresponding hexadecimal ("hex") digits denoted:

Hex Bi.t Hex Bit
Digit Pattern Digit Pattern

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 c 1100
s 0101 D 1101
6 0110 E 1110
7 0111 F 1111

The following are examples of valid hexadecimal constants and their internal types:

Z501800000
zcooooooooooooooooo
ZOABCDEFAO
ZF ABZF AC4D5 67000000

real
double precision
integer
double precision

2-5

I LITERAL~

The following are examples of invalid hexadecimal constants:

FFF60

Z-1

ZOABCDEFGF

Z333.330033

Missing Z and an incorrect number of hex digits are given.

Negative hexadecimal constants not permitted and an incorrect
number of hex digits are ~ctven.

Contains the character G, which is not a hexadecimal digit character.

Contains a decimal point which is illegal for a hexadecimal constant.

Z 12345 67 89AllCDEFO12 Contains more than 18 hex characters.

Hexadecimal constants may only be used as data initialization values in a DATA statement to initialize
simple variables, array elements, or arrays to specific configurations.

Logical Constants

NOTE

Routines in a FORTRAN program that manipulate data
in a manner dependent upon the known bit configura­
tions of data types in memory are hardware dependent.
Such routines do not use FORTRAN language as a
machine-independent, problem-oriented language and
must be converted when going from one system to
another.

FORTRAN allows the use of logical operations through the medium of the logical expression. Thus, two
logical con~tant literals are provided to represent the logical values "true" and "false."

These two logical constants have the form:

LOGICAL CONSTANT

.TRUE. or .FALSE.

The use of these logical constants is restricted to certain types of expressions. See the section on logical
expressions in section 4. The internal machine representation of these two literals is such that the data
words corresponding to the constant .TRUE. and the integer constant 1 are identical and the data words
corresponding to the constant .FALSE. and the integer constant 0 are identical.

STRING LITERALS

Constant string data items may be represented in B 1800/B 1700 FORTRAN through the use of the string
literal. Any character valid to the B 1800/B 1700 processor may be used. This literal construct has two
configurations: the Hollerith string and the proper string (quoted string). These two configurations may
be used interchangeably and are distinguishable only by the differences in their formats.

2-6

The following is the general format of a Hollerith string:

HOLLERITH STRING

wHs

where w is a positive non-zero constant
denoting the width of the string in characters
and sis the string in question, being a string
of one to 2'.)5 characters in length and con­
taining any character valid to the processor.

The following is the general format of a proper string:

PROPER STRING

's' or "s"

where s is a string of one to 25 5 characters in
length and containing any character valid to
the processor.

[LITERALS

If an apostrophe is desired within a proper string and the form 's' is used, two adjacent apostrophes em­
bedded in the stiing are interpreted as a single apostrophe (e.g., 'DONT' 'T' represents the string of charac­
ters DON'T). Also, an apostrophe can be used as a valid character in a string delimited by quotation marks
(e.g., "DON'T" represents the string of characters DON'T).

If a quotation mark is desired within a proper string and the form "s" is used, two adjacent quotation marks
embedded in the string are interpreted as a single quotation mark (e.g., "DON'"'T" represents the string of
characters DON"T). Also, a quotation mark can be used as a valid character in a string delimited by apos­
trophes (e.g., 'DON"T' represents the string of characters DON"T).

In all cases, any blank characters within the character string will be considered part of the string (e.g., em­
bedded blanks are not ignored in this case). The following are examples of valid strings (b represents a blank
character):

2HbQ
OOlHb J (equivalent)
"b"
'bSIDURl bbS'
'bb' 'ABCDEFGHJKL' }
0014Hbb'ABCDEFGHJKL
(,b'
r."b" IS A BLANK'
6"b' IS A BLANK"

(equivalent)

The following are examples of invalid strings:

3HbbbAB

-HABCDEF

OHA

'POIU'b'YT'

"ABC"EFGH"

Character string may not be longer than integer preceding the H indicates.

String width specification may not be a negative integer.

String width specification may not be zero.

This construct will be interpreted as two separate strings, rather than as one
string containing an apostrophe, since the two inner apostrophes are not
immediately adjacent.

Two adjacent quotes are needed if quotation marks are used as delimiters.

String literals are used to initialize variables in DAT A statements, and as input/output (I/0) specifications
in a FORMAT statement. String literals may be passed as arguments in subroutines and function sub­
programs. In no case may a string literal exceed 25 5 characters in size, and only four characters of a string
literal can be contained in a data word. These restrictions are due to the fact that in the B 1800/B 1700 a
data word contains 36 bits and each character requires 8 bits.

2-8

3. VARIABLES

FORTRAN variables, like literals, are symbolic names which are constructed from the FORTRAN character
set according to appropriate rules and which represent unique values. Variables, however, represent values
which may be altered during program execution.

These constructs are used to identify one or more storage locations for purposes of data storage and re­
trieval. The contents of these storage locations are accessed by referencing the associated variable name.

This section. contains a discussion of variable name construction which extends to array names and array
elements.

The internal handling of variables is discussed in appendix E.

VAR~ABLE NAMES

A FORTRAN variable name is an identifier which consists of a string of one to six alphanumeric characters
(i.e., letter or digit characters), with the leading character being a letter (including $). Special characters may
not be used in variable names.

If the variable name is more than six characters long, a syntax error will be given. Embedded blanks are
acceptable and removed by the system.

Variables may be classified into five fundamental types:

a. Integer.

b. Real.

c. Double Precision.

d. Complex.

e. Logical.

There is no variable of data type hexadecimal. Hexadecimal constants may only be used as data initializa­
tion values in DAT A statements. The value represented by a variable of each of these types may be ex­
pressed by a constant literal of the same type. Thus, the value represented by an integer variable may be
expressed by an integer constant, the value represented by a real variable may be expressed by a real
constant, and so forth. The values represented by each variable type must, therefore, obey the magnitude
and significant-digit restrictions governing the corresponding type of constant literal.

Unless declared otherwise in an explicit type statement or an IMPLICIT statement the identifier will be
assigned a type according to its initial character. If this initial character is the letter I, J, K, L, M, or N,
then the variable, by default, will be of INTEGER type. If this initial character is any other letter (includ­
ing$), then the variable, by default, will be of REAL type. No such defaults exist for double precision or
logical variables; variables of these types must be declared as such by explicit type statements.

3-1

The following are examples of valid variable names with the type assigned to them when they are not affected
by explicit type statements in the program in which the identifiers appear:

AMK599

IF

$64000

END$Q

OFTEN

LOOP3

Type REAL.

Type INTEGER; note that this variable name is valid, since there are no
reserved words in B 1800/B 1700 FORTRAN.

Type REAL.

Type REAL.

Type REAL; interpreted as OFTEN (blank ignored).

Type INTEGER.

The following are examples of invalid variable names:

3LOOP

BE-GIN

$6,000

REALNUMBER

ARRAY ELEMENTS

Variable name may not begin with a digit character.

Characters other than letters, digits, or blanks are not allowed in a
variable name.

Comma character illegally embedded in variable name.

Too many characters: only six are permitted.

FORTRAN variables may be divided into simple variables, which are denoted by a variable name only, and
array elements, which are denoted by an array name followed by a subscript list enclosed in parentheses.
The latter variable form indicates membership in a data grouping called an array; this form is discussed here.

An array is an ordered data set corresponding to an n-·dimensional organization such that each member may
be referenced by an array element, with each of the n subscripts in the element denoting location in the
appropriate dimension. In B 1800/B 1700 FORTRAN a data array is limited to a maximum of 15 such
dimensions. A maximum of 131,071 elements in an array is permitted.

An array is referenced by a single identifier (the array name) which is defined identically to a variable name.
This identifier represents the data items contained in the array, all of which are identical in type. This type
is indicated by the array name following the same rules for type assignment governing variable names.

VARIABLES

Each member of an array is called an array element. The following is the proper format for an array element:

ARRAY ELEMENT

a (s)

where a is a variable name, formed in accord-
a.nee with rules governing such constructs,
and s is the subscript list which consists of
as many arithmetic expressions (subscripts)
as there are array dimensions separated by
commas.

A variable name is designated as an array name by means of an appropriate array declaration in a DIMEN­
SION, explicit type, or COMMON statement.

This declaration is used to declare the maximum number and size of dimensions allowable for the array and
must precede the first appearance of the array name in either an executable statement or DATA statement.
In a given program unit an identifier may be used as a simple variable name or an array name, but not both.
Whenever an array name appears in a program, this array name must be immediately followed by a sub­
script list, except when the array name appears in the following:

a. The dummy argument list of a subprogram.

b. The actual argument list of a subprogram reference.

c. The variable list of an 1/0 statement.

d. A COMMON, DATA, EQUIVALENCE, or explicit type statement.

Each member of an array is referenced by means of an array element with appropriate subscripts. Each
arithmetic expression in the subscript list of this construct must be of INTEGER type only. The expression
may contain any of the arithmetic operators, integer function references, or subscripted integer variables.

The minimum value any subscript may represent is l, and the maximum value is the maximum value speci­
fied for that subscript in the array declaration. For information concerning exceptions to this rule; see
appendix E.

An array element can never contain fewer subscripts than the array declaration except in an EQUIVALENCE
statement.

The· following are examples of valid array elements:

B(I)
AMK 599(6)
I5(1T(3))
ARRAY2 (1,l,1,1)
A(M*N)

Interpreted as AMK599(6).
The subscript is itself an array element.

3-3

The following are examples of invalid array elements:

l(I)

ARRAY3(0)

AR RAY3(-l)

3ARRAYS(6)

ARRAY(3.6)

A subscript must be a valid arithmetic expression; an array
name does not constitute such an expression.

The minimum subscript value is 1.

The value of the subscript of a singly-subscripted variable
may not be 0 or less.

An array name may not violate the rules governing variable
names.

Subscript must be INTEGER type only.

A detailed discussion of the internal handling of FORTRAN arrays is contained in appendix E.

3-4

4. EXPRESSIONS AND STATEMENTS

This section discusses the manner in which expressions are constructed and the general features of the state­
ments that form the basis of the FORTRAN language.

EXPRESSIONS

The purpose of expressions is to specify equation-oriented rules whereby a unique data value may be ob­
tained, possibly as a result of operations performed on other data values.

An expression is any valid constant, variable, function reference, or any combination of these items separated
by appropriate operators and parentheses. The expression represents the value obtained when the indicated
operations are performed on the indicated values.

Expressions may be divided into two basic types according to the type of literal which may represent the
value of the expression: arithmetic expressions and logical expressions.

Operators

The operators which may be employed by a FORTRAN expression are listed in table 4-1, with the relative
precedence assigned to each operator by the compiler. Eight is considered the highest precedence.

The presence of these operators in an expression indicates that an arithmetic or logical operation or a logical
comparison is to be performed. Operations of equal precedence are performed from left to right, except
exponentiation which is carried out from right to left. The unary+ operator is ignored. Parentheses may
be used ~v override operator precedence.

Arithmetic Expressions

An arithmetic expression is a rule for computing a value representable by any type of numeric literal except
a logical constant.

An arithmetic expression may contain only arithmetic operators and non-logical constants (excluding
hexadecimal constants), variables, function references, and grouping parentheses. Logical operands of any
sort are not permissible in arithmetic expressions. In general, mixed arithmetic operand types are per­
missible.

Immediately adjacent operators are not permissible and parentheses should be used to avoid adjacent
operators. For example: A **(-2).

Expression Types

The types of the operands in an arithmetic expression determine the type of the value obtained from the
evaluation of the expression. When a complex value is combined with any other type of value in an opera­
tion, the result is of COMPLEX type. If none of the operands in an arithmetic operation is complex and
at least one is double precision, the result is of DOUBLE PRECISION type. If none of the operands in an
arithmetic operation is COMPLEX or DOUBLE PRECISION and at least one of them is real, the result is
of REAL type. Only if both of the operands in an arithmetic operation are integer is the result of INTEGER
type.

4-1

I EXPRE~IONSAND STATEMEN~
Table 4-1. Operators Used in FORTRAN Expressions

Relative Function
Operator Type Precedelllce Represented

** Arithmetic 8 Exponentiation

unary - Arithmetic 7 Change of sign

I
I Arithmetic 6 Division

* Arithmetic 6 Multiplication

Arithmetic 5 Subtraction

+ Arithmetic 5 Addition

.NE. Relational 4 Not equal to

.GE. Relational 4 Greater than or
equal to

.GT. Relational 4 Greater than

.EQ. Relational 4 Equal to

.LE. Relational 4 Less than or
equal to

.LT. Relational 4 Less than

.NOT. Logical 3 Logical negation

.AND. Logical 2 Logical conjunction

.OR. Logical Logical disjunction

Tables 4-2 and 4-3 illustrate the resultant types of arithmetic operations depending upon the types of the
operands and the operator involved. "DOUBLE" indicates DOUBLE PRECISION type.

For the operators+,-,*, and/, the result of the operation is of the following type.

4-2

Type of
First

Operand

INTEGER

REAL

DOUBLE

COMPLEX

Table 4-2. Resultant Types of Arithmetic Operations

Type of Second Operand

Intege r Real Double
--

INTEG ER REAL DOUBLE

REAL REAL DOUBLE

DOUB I ,E DOUBLE DOUBLE

COMPL EX COMPLEX COMPLEX

Complex

COMPLEX

COMPLEX

COMPLEX

COMPLEX

..

..

EXPRESSIONS AND STATEMENTS

For exponentiation(**) the result of the operation is of the following type:

Table 4-3. Resultant Types for Exponentiation
....

Type of Exponent
Type of

Base Integer Real Double Complex

INTEGER INTEGER REAL DOUBLE ILLEGAL

REAL REAL REAL DOUBLE ILLEGAL

DOUBLE DOUBLE DOUBLE DOUBLE ILLEGAL

COMPLEX COMPLEX COMPLEX COMPLEX ILLEGAL

In the case of a division involving two integer operands, the result is an integer value. Thus, the expression
3/2 represents the value 1, and the expression 3.0/2 represents the value 1.5.

The following are examples of valid arithmetic expressions (all variables are non-logical):

6
1+6
SIN(3.14159*(-A)+2)
BID(M(l),N(2))
-B*A
-(-P)

Logical Expressions

Logical negation is expressed by the operator .NOT .. Given the value of a logical primary, the operator
.NOT. will change the value to its complement. For example, if A is .TRUE., then .NOT.A is .FALSE ..

The .AND. operator is used to express the logical product of two logical expressions. Given A.AND.B,
the operation will yield the value .TRUE. if and only if both A and Bare .TRUE .. If either or both A
and B are .FALSE., then A.AND.Bis .FALSE ..

The .OR. operator is used to find the logical sum of any two logical expressions. Given A.OR.B, the
operation will yield the value .TRUE. if either A or B or both are .TRUE .. Only if both A and B are
.FALSE. will A.OR.B be .FALSE ..

Table 4-4. Logical Expression Constructs

A H A.AND.B A.OR.B .NOT.A .NOT.B

T T T T F F

T F F T F T

F T F T T F

F F F F T T

4-3

[EXPRESSIONS AND STATEMEN~

Except when appearing adjacent to a relational operator (i.e., in a relational expression), elements of arith­
metic expressions (i.e., non-logical constants, variables, function references, and operators) may not appear
in a logical expression.

Parentheses may be used to override operator precedence.

Examples:

The following are examples of valid logical expressions (variables A, B, C, D and array Lare LOGICAL):

A
B2.GT.B3
A.OR.L(3)
A.AND.Q.LE.SIN(R)+3.7
C.AND .. NOT.D
I+ 1.EQ. FCN(l, 3, R, A)

The following are examples of invalid logical expressions:

A+B Illegal operator.
SIN(Q)
f+l.OR.R+6

The SIN built-in function returns a real value.
An arithmetic expression is not a logical primary.

STATEMENTS

Every executable FORTRAN program consists of a sequence of statements. These statements may be
classified into executable and nonexecutable statements.

Executable Statements

An executable statement is an instruction that causes action to be taken at that point in the program when
the program is executed.

The B 1800/B 1700 executable statements that are discussed in this document are as follows:

Assignment statement (including ASSIGN statement).
BACKSPACE statement.
CALL statement.
CALL CHANGE.
CALL EXIT.
CALL ZIP.
CLOSE statement.
CONTINUE statement.
DO statement.
ENDFILE statement.
GO TO statement.

Non-Executable Statements

IF statement.
LOCK statement.
PAUSE statement.
PURGE statement.
READ statement.
RETURN statement.
REWIND statement.
STOP statement.
WRITE statement.
ZIP statement.

A non-executable statement is an instruction which gives information to the compiler regarding storage
allocation, data initialization, I/O editing specifications, and program units.

4-4

EXPRESSIONS AND STATEMENTS

The B 1800/B 1700 FORTRAN nonexecutable statements that are discussed in this document are as in­
dicated:

BLOCK DATA statement.
COMMON statement.
DAT A statement.
DIMENSION statement.
END statement;
EQUIVALENCE statement.
Explicit type statement.
EXTERNAL statement.
FORMAT statement.
FUNCTION statement.
IMPLICIT statement.
INTRINSIC statement.
Statement function definition.
SUBROUTINE statement.

Statement Labels

A statement may be optionally labeled so that it may be referred to in a GO TO statement, an IF statement,
a READ or WRITE statemenf, a DO statement, or an actual argument list.

A statement label consists of a one- to five-digit unsigned integer constant. No statement label may appear
on more than one statement, in the same program unit. A statement label may appear anywhere in the
first through fifth character positions of the initial card image of a statement.

Statement labels on any nonexecutable statement except a FORMAT statement are flagged by a warning
message by the compiler and are ignored.

4-5

5. SPECIFICATION STATEMENTS

The nonexecutable specification statements are employed to supply compile-time information about pro­
gram variables pertaining to variable types and storage allocation. All specification statements must precede
the first executable statement in a program unit.

The available specification statements include the following:

Explicit type statements.
COMMON statement.
DIMENSION statement.
EQUIVALENCE statement.
EXTERNAL statement.
IMPLICIT statement.
INTRINSIC statement.

These statements are discussed in the following paragraphs in the order just listed.

EXPLICIT TYPE STATEMENTS

The explicit type statements allow the type of a program variable to be explicitly specified for a program
unit. Such type specifications override any default specifications (i.e., due to the initial character in the
symbolic name of the variable).

Program variables may be assigned the following types:

DOUBLE PRECISION or REAL* 8
INTEGER
LOGICAL
REAL

The proper form of a type statement is as follows:

EXPLICIT TYPE STATEMENT

m ...

where t is one of the type names just listed,
m is a variable, array name, dummy argu-
ment name, array declaration, or FUNC-
TION name, and the ellipsis (. ..) indicates
as many repetitions of m as desired, with
each repetition preceded by a comma.

A variable is assigned a default type according to the initial character of its name. If the first letter of the
variable name is I, J, K, L, M, or N, the variable will b.e of type INTEGER by default. All other variables
will be of the type REAL by default.

Type statements must precede the use of affected variables in executable statements.

5-1

Array Declarations

A type statement may also be used to declare the size and number of dimensions of a program array by
means of an array declaration in the list of data items. An array declaration has the form:

ARRAY DECLARATION

a (i)

where a is an array name and i is a list of di­
mensions which are unsigned integer con­
stants and/or dummy variables separated by
commas.

The array declaration must have integer constant dimensions if the declaration appears in a specification
statement in a main program.

The array declaration may contain dimensions which are dummy arguments or elements of common
storage, in addition to constant dimensions if the declaration appears in a specification statement in a
subprogram. Such dimensions are called adjustable dimensions, since the size of the dummy array may
be specified at the time the subroutine is invoked. The discussion of the CALL statement in section 9
explains array handling in subprograms.

The number of dimensions in an array declaration specifies the number of subscripts an element of that
array must have. The product of the dimensions of the array declaration in a main program determines
the number of internal storage locations assigned to the array. The number of these locations is equal
to the product for REAL, INTEGER, and LOGICAL arrays. Twice this number of locations are assigned
to DOUBLE PRECISION (or REAL*8) arrays. (See appendix E.)

Array declarations may also be specified in COMMON or DIMENSION statements.

Optional Size Specification

The optional length specifier may be used immediately following the type name and/ or any element within
the type statement. When the length specifier is used immediately following the type name, the list of
elements specified by the type name will be of that length unless. an individual element is specified other­
wise by its own length specifier. The length specifier for an individual element will override the length
specifier for the type name.

If the value of the length specifier is 8 and the type tis REAL, type DOUBLE PRECISION is assigned to
the elements indicated in the type statement. All other length specifiers cause syntax errors.

An example of an explicit type statement using the optional length specifier is: REAL* 8 SBC, TBC.

Examples of Type Statements:

5-2

REAL I, J, JTES.T, D
LOGICAL L 1, L2
DOUBLE PRECISION D
INTEGER A(20, 20, 4)
REAL*8 DOUBLE, DFCNI, $FCN

SPECIFICATION STATEMENTS

COMMON STATEMENT

The nonexecutable COMMON statement associates variables and arrays with blocks of storage which may be
shared among program units.

The proper form of the COMMON statement is:

COMMON STATEMENT

COMMON /n/v ...

where n is a COMMON name or blank, v is
a list of variables, array names, and/ or array
declarations, and the ellipsis (. ..) indicates as
many repetitions of the form /n/v as desired.

Common Names

A symbolic name is associated with each block of COMMON storage; this name is called a COMMON name
or block name. Any program unit may access the block of storage associated with this name via a COMMON
statement employing this name. COMMON storage associated with a COMMON name is called labeled
COMMON.

A COMMON name is constructed in the same manner as a variable name, except that no type is associated
with a COMMON name.

A COMMON block need not be named; COMMON storage associated with no name is called blank COMMON
and is assigned the internal identifier ".BLNK.". If the specification for blank COMMON is the first speci­
fication in a COMMON statement, the two slashes enclosing the COMMON name may be omitted. Thus,
these two statements are equivalent:

COMMON// A,B(10)
COMMON A,B(10)

COMMON block names are unique only within COMMON statements. Outside the COMMON statement, a
COMMON block name may be reused as another element within the program unit (i.e., simple variable
name, array name, etc.).

Use of Array Declarations

Array declarations may be used in COMMON statements to declare the dimensionality of arrays in the
same manner as type statements or DIMENSION statements. Array declarations are discussed in the
section on the explicit type statement in this section.

Storage Assignments

Variables and arrays are assigned contiguous locations in COMMON storage in the order in which they
appear in a COMMON statement. No dummy arguments may appear in a COMMON statement.

Entire program arrays but not individual array elements may be assigned storage locations in COMMON
storage. A maximum of 30 unique COMMON block names may be defined in a program unit. If the same
COMMON name appears more than once in a program unit, the common elements associated with one
appearance are considered as extensions to the list of the previous appearance.

5-3

I SPECIFICATION STATEMENTS J
A discussion of the manner in which locations are allocated to elements of COMMON storage is presented
in appendix E. Data initialization may be performed by means of a BLOCK DATA subprogram unit. The
BLOCK DATA program unit is discussed in section 12. A DOUBLE PRECISION variable in a COMMON
block must not cross a data segment boundary; each data segmentc contains up to 256 words.

Variables and array names may not be duplicated in COMMON statements. One variable may not be assigned
to more than one block of COMMON storage within a program unit.

Examples of COMMON Statements:

COMMON/BLOCKl/A,B(lO), C/ /G, HOLD/BLOCK2/Q(3)
COMMOND
COMMON TI/CMN/T2, T3

DIMENSION STATEMENT

The nonexecutable DIMENSION statement specifies the size and number of dimensions of a program array.

The following is the proper form of the DIMENSION statement:

DIMENSION STATEMENT

DIMENSION d

where d is a list of array declarations sep­
arated by commas.

Each array referenced in a program unit must have its array bounds specified exactly once in that program
unit. This specification may be accomplished by means of a DIMENSION, explicit-type, or COMMON state­
ment.

For an array which is not a dummy argument, an array declaration specifies exactly the amount of internal
storage to be allocated to the array and the number of subscripts an element of that array must have. See
the explicit type statement section in this section.

Only an array declaration appearing in a subprogram may have dimensions which are variables, and such
variables must be dummy arguments or elements of common storage. Array storage is discussed in appendix
E.

Examples of DIMENSION Statements:

DIMENSION A(10)
DIMENSION B(N,2), C(6)
DIMENSION Q(J)

EQUIVALENCE STATEMENT

The nonexecutable EQUIVALENCE statement causes two or more variables or arrays referenced in a pro­
gram unit to share the same memory locations.

5-4

SPECIFICATION STATEMENTS

The following is the proper form of the EQUIVALENCE statement:

EQUIVALENCE STATEMENT

EQUIVALENCE (k) ...

where k is a list of two or more simple vari­
ables, array elements, or array names sepa­
rated by commas, and the ellipsis (...) indi­
cates as many repetitions of the form (k) as
desired, with each repetition preceded by a
comma.

No dummy argument may appear in an EQUIVALENCE statement list.

The subscripts of array elements in the list must be integer constants and must correspond in number to the
number of dimensions declared for the array or be single-subscripted where the subscripted variable's linear
position in the array is equated to the single subscript. The EQUIVALENCE statement is the only statement
in the FORTRAN syntax where an element in a multi-dimensioned array may be referred to by means of a
single subscript. Thus, the following two sets of statements are equivalent:

DIMENSION X(5), R(5,5)
EQUIVALENCE (X(l), R(l,5))

DIMENSION X(5),R(5,5)
EQUIVALENCE (X(1),R(2 l))

Since arrays are stored in column-wise order, element R(l ,5) is the 21st element in the two-dimensioned
array named R.

Each data item grouping in the EQUIVALENCE statement is enclosed in parentheses. Each such grouping
is assigned storage locations to share. When arrays are involved, the indicated array element denotes the
EQUIV ALENCEd arrays are to overlap and be aligned in such a manner that the indicated elements share
a storage location(s). No group may contain different elements of the same array. Thus, EQUIVALENCE
(A(3),B,A(6)) is invalid.

The EQUIVALENCE statement may be used to associate additional elements with a COMMON block. This
may extend the block beyond its former terminal point, thus increasing the size of the COMMON block. An
EQUIVALENCE statement may not associate an array with a COMMON block in such a manner as to ex­
pand that block backwards to locations preceding the initial location of the block.

Two elements of COMMON storage cannot be made equivalent to one another, either directly or indirectly,
by an EQUIVALENCE statement.

Appropriate storage considerations are discussed in appendix E.

Examples of EQUIVALENCE Statements:

EQUIVALENCE (A, B, C), (A(3),R(9),G)
EQUIVALENCE (D,E)

5-5

[SPECIFl~ATION STATEMENTS]

EXTERNAL STATEMENT

The non-executable EXTERNAL statement is used to identify a subprogram name as representing am ex­
ternal procedure and to permit the subprogram name to be used as an actual parameter. lf a subprogram
name is used as an actual parameter, then it must appear in an EXTERNAL statement.

The subprograms specified in the EXTERNAL statement are searched for first in the user intermediate code
files, and if not found there then the FOR.INTRIN intrinsic file is searched.

The proper form of the EXTERNAL statement is:

EXTERNAL STATEMENT

EXTERNALs

where s is one or more subprogram names
separated by commas.

Any FORTRAN intrinsic function that cannot be redefined (see section 12) specified in an EXTERNAL
statement is expanded in the code file. Such names are assumed to denote subprograms supplied by the
user.

IMPLICIT STATEMENT

The nonexecutable IMPLICIT statement is an auxiliary statement which allows the default types
assigned to variables due to their initial characters to be altered.

The following is the proper form 'of the IMPLICIT statement:

IMPLICIT STATEMENT

IMPLICIT t(c) ...

where t is a type name, c is an initial char­
acter list, and the ellipsis (. ..) indicates as
many repetitions of the form t(c) as desired,
with a comma preceding each repetition.
-----------------------------------"

Only one IMPLICIT statement is allowed in a program unit, and any program unit may contain an
IMPLICIT statement. If used, the IMPLICIT statement must be the first statement following optional
file declaration statements of the main program or the second statement of a sub-program (except for
comment cards). The IMPLICIT statement applies only to symbolic names in the program unit in which
the statement appears, including function and dummy arguments.

The list of initial characters appearing in an IMPLICIT statement is constructed as follows:

5-6

Symbolic names whose initial character lies between or is the same as one of the indicated letters are
to be of:the specified type. Each element of the list may b1;! a letter or two letters separated by a
hyphen (i.e., the minus sign, "-~''). If the element is a letter., a name must begin with that letter to
be assigned the specified default type. If the element is a hyphenated letter pair, then this letter pair

SPECIFICATION STATEMENTS

indicates a range of initial characters with which the default type is associated. The second of the
letters in a hyphenated pair must follow the first in the alphabet. The "$"follows Zin the collating
sequence.

The following are valid implicit statements:

IMPLICIT REAL (1-N)
IMPLICIT REAL (A-$)
IMPLICIT DOUBLE PRECISION (D)
IMPLICIT LOGICAL (A-C,L), REAL*8(D-F), COMPLEX (X)

IMPLICIT ranges that overlap (e.g., REAL (A-K) INTEGER (1-M) generate a warning message. The latest
specification is used to determine the variable type ..

INTRINSIC STATEMENT

The non-executable INTRINSIC statement specifies a symbolic name representing an intrinsic function from
the intrinsic file is to be used as an actual argument. If an intrinsic name is used as an actual parameter, then
it must appear in an INTRINSIC statement.

The intrinsic functions specified in an INTRINSIC statement are searched for first in the intrinsic file, and if
not found there then the user intermediate code files are searched.

The proper form of the INTRINSIC statement is:

INTRINSIC s

where s is one or more intrinsic names sep­
arated by commas.

Any FORTRAN intrinsic function that cannot be redefined (see section 12) and is specified in an
INTRINSIC statement is not expanded in the code file. Such intrinsic names are assumed to denote sub­
programs supplied by the user.

5-7

6. DATA STATEMENTS

The non-executable DATA statement is provided to allow compile-time initialization of program variables.

All variables are initialized unless the $NO INITIAL compiler control card is used. A run-time error will
occur if an attempt is made to access the value contained in a variable not previously given a value by a
DATA statement, assignment statement, or input statement.

The proper form of the DAT A statement is:

DATA STATEMENT

DATAk/d/ ...

where k is a list of variables to be initialized,
d is an initial value list (see text), and the ellip-
sis (. ..) indicates as many repetitions of the
form k/ d/ as desired, with each repetition
preceded by a comma.

STATEMENT USE

A DATA statement may appear after all specification statements ar_d before the END statement in a pro­
gram unit. The DAT A statement has effect only at compilation time. Elements of a COMMON block may
appear in DATA statements only in a BLOCK DATA subprogram.

·Variable Lists

A variable list may contain variables, arrays, or array elements. Each element of the variable list should
occur only once.

The following is an example of a variable list:

K,M, A(3), B(2,4,l l)

Initial Value Lists

The list of values to which the elements of the variable list are to be initialized consists of a list of constants
and strings separated by commas.

The constants may optionally be preceded by a repeat count of the form n *, where n is an unsigned non­
zero integer constant. This repeat count indicates the number of times the immediately following constant
is to be interpreted.

Constant values are assigned to elements of the variable list in the order in which they occur. For example,
the DATA statement:

DATA A,B/2,3/, C,D/2*4/

initializes the variables A and B to the values 2 and 3, respectively, and initializes C and D to 4.

6-1

[DATA STATEMENTS

The initial value list may contain Hollerith or proper strings of up to 25 5 characters long. (A syntax error
message is given during compilation if a longer string is encountered.) A "primary" string is defined to be a
string consisting of four or fewer characters that initializes a single-precision variable, or a string consisting
of eight or fewer characters that initializes a double precision variable. Similarly, a "long" string is defined
to be a string consisting of more than four characters that initializes a single precision variable, or a string
of more than eight characters that initializes a double-precision variable.

A primary string is stored left-justified within the variable, with blank fill to the right if necessary. For ex­
ample, if Dis a DOUBLE PRECISION variable, the DATA statement:

DATA D/"bABCD" /

(where b represents a blank) initializes D to the value:

bABCDbbb

Any long string initializing a simple variable or array element is truncated to a primary string, with the
leftmost characters of the string retained. A repeat count is not allowed to precede a string value.

A long string initializing an array name is transferred to the array, beginning with the indicated element,
until either the end of the array or the end of the string is encountered. Character assignments are made to
the array elements in the order in which these elements are stored internally. (See appendix E.) If the
string terminates before the entire array is initialized, the last initialized array element will be filled on the
right with blanks, if necessary.

For example, this program excerpt:

REAL A(6)
DOUBLE PRECISION D(3)
DATA D,A/'ABCDEFGHIJKLMNOPQRSTUVWXYZ' , l,2,3,7HABCDEFG/

will cause these variables to be initialized to the indicated values:

D(1) contains 'ABCDEFGH'
D(2) contains 'IJKLMNOP'
D(3) contains 'QRSTUVWX'
A(l) contains 1
A(2) contains 2
A(3) contains 3
A(4) contains 'ABCD'
A(S) contains 'EFGb'

Variable List of IMPLIED DO in Data Statement

The list of variables to be initialized is constructed in the same manner as the IMPLIED DO of an 1/0
variable list (see section 11),except that:

6-2

a. No arithmetic expressions may appear in the variable list.

b. The initial parameter, terminal parameter, and incrementation parameter in an IMPLIED DO
must be unsigned integer constants.

c. An array element may be subscripted only by an unsigned integer literal or the integer control
variable of an IMPLIED DO.

DATA STATEMENTS

d, Only array elements may appear within an IMPLIED DO list, and all control variables must be
referenced.

Initial Value List of IMPLIED DO in Data Statement

The list of values to which the elements of the variable Hst are to be initialized consists of a list of constants
and strings separated by commas.

The constants optionally may be preceded by a repeat count of the form n *, where n is an unsigned non­
zero integer constant. This repeat count indicates the number of times the immediately following constant
is to be repeated. A repeat count is not allowed to precede a string variable.

All elements of the variable list must be matched to the constants, and all constants must be used. A warn­
ing is issued and the remaining array is blank or zero filled if an entire array is specified in the variable list
but there are not enough constants to completely initialize it. Long strings are truncated when assigned to
array elements using an implied DO in the DATA statement. The initialization value for each element of
an array must be specified separately when u~ing an implied DO in a DAT A statement.

Example of a DATA statement with an IMPLIED DO:

Data K,M,(A(I,2),B(I),I= 1,2)/ 1,2, 1, 1,2 *2/

At compile time:

K
M
A(l,2)
B(l)
A(2,2)
B(2)

is assigned 1.
is assigned 2.
is assigned 1.0.
is assigned 1.0.
is assigned 2.0.
is assigned 2.0.

HEXADECIMAL CONSTANTS

Hexadecimal constants may be used to initialize variables. The hexadecimal constant must be exactly nine
hexadecimal digits, if initializing an integer, logical, or real variable, and 18 hexadecimal digits if the varia­
ble is double precision. (See appendix E.)

Conversion During Assignment

Table 6-1 indicates the type of conversion to be performed on a constant appearing in an initial value list
when it is assigned as the initial value of a variable.

The following notation is used in this table:

ok
real
ext
i
conv. real
conv. DP

no conversion
round the first word of the double precision value
extend the single precision value to a double precision value
invalid combination resulting in syntax error
convert to real
convert to double precision

6-3

Table 6-1. DATA Statement Type Conversions

G•n._t_T_Y_P_e _____ Integ e~r

6-4

Integer

Real

Double
Precision

Logical

String

Single
Precision
Hexadecimal

Double
Precision
Hexadecimal

ok

ok

ok

Variable Type

Real Double Precision

conv. real conv. DP

ok ext

real ok

i i

ok ok

ok i

i ok

----.,

Logical

i

i

i

ok

ok

ok

i

7. FORMAT SPECIFICATIONS AND FORMAT SPECIFIERS

This section discusses the format specifications provided to indicate data conversion during input and out­
put and the method of associating these specifications with input and output statements using the FORMAT
statement.

FORMAT SPECIFICATIONS

The following format specifications are provided to allow conversion of data between the representation of
such data as characters in peripheral storage and the configuration of this data in internal storage.

Aw
Dw.d
Ew.d
Fw.d
Gw.d
·wHs, 's', "s"
lw
Lw
Tt
XorwX
Zw

In this list of specifications and in the following paragraphs, the items w, d, and t represent unsigned non­
zero integer literals denoting the width of the field in the external character string, the number of digits in
the fractional part of the external string, and a character position relative to the beginning of an external
record, respectively. The items represents a string of one to 255 characters.

Tables 7-1 and 7-2 summarize what type of data items may be read into what type of variable, using each of
the format specifiers.

Table T-3 summarizes the type of list item(s), i.e., (arithmetic expressions, variables) which may be written
under each format specifier.

An A indicates that the conversion is allowed; NA indicates the conversion is not allowed.

Table 7-1. Input Data Item Types

Data Item Type I F E G D A L z

Integer A A A A A A NA NA

Real NA A A A A A NA NA

Double NA A A A A A NA NA

Logical NA NA NA A NA A A NA

Alpha NA NA NA NA NA A NA NA

Hex NA NA NA NA NA A NA A

7-1

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

Table 7-2. lnpu t Variable Item Types

Variable Tvoe I\ E G D A L z

lnteger A A A A A A NA A

Real A A A A A A NA A

Double A A A A A A NA A

Logical NA NA NA A NA A A A

Table 7-3. Output List Item Types

List Item Type F E G D A L z

Integer A A A A A A NA A

Real A A A A A A NA A

Double A A A A A A NA A

Logical NA NA NA A NA A A A

0!1 input, the value of the data item may be changed if read into a variable of a type other than the type of
the data item. On output, the value of the data item contained in the variable may be changed if the format
specification does not correspond with the type of the variable being written.

On input, if an exponent is used, it may be of one of the following forms:

E [±
D [±

±

<integer constant)
<integer constant)
<integer constant)

If the exponent is preceded by an E or a D and is positive, the+ sign is optional.

Format Specification A

Input Using Aw

On input, the alphanumeric format specification Aw causes the character string of width w in the input
field to be assigned to the corresponding integer, real, double-precision or logical variable in the input list.

Format specification A is used to assign alphanumeric characters to a variable or array of any data type.
The alphanumeric characters to a variable or array of any data type. The alphanumeric input field is stored
in memory in character form and thus should not be used in any computation.

The number of characters that may be stored in a variable depends upon the variable type. A maximum of
four alphanumeric characters may be stored in an integer, real, or logical variable, and a maximum of eight
characters may be stored in a double precision variable.

If the field width w exceeds the maximum number of characters m that can be contained within the input
variable, the first w-m characters are skipped and the remaining :rightmost m characters are assigned to the
variable. If the field width w is less than the maximum number of characters that can be contained within
the input variable, the alphanumeric string is assigned left-justified, with trailing blanks, to the variable.

7-2

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

Examples:

Variable Type

INTEGER
REAL
DOUBLE PRECISION
REAL
INTEGER

Output Using Aw

Data Item

ABCDEFGH
ABCDEFG
ABCDEFGH
AB
54C2X

Specification Internal Value

A8 EFGH
A7 DEFG
A8 ABCDEFGH
A2 ABbb
AS 4C2X

On output, the alphanumeric format specification Aw causes the corresponding list item in the output list
to be written on the specified output file. If the field width w exceeds the maximum number of characters
that can be contained in the output list item, the alphanumeric string is placed right-justified in the output
field over a field of blanks. If the field width w is less than the number of characters in the output list item,
the leftmost characters in the variable are written.

Examples:

List Item Type

INTEGER
REAL
INTEGER
REAL
DOUBLE PRECISION
LOGICAL

Format Specification D

Input Using Dw .d

List Item Value

ABCD
ABCD
ABCD
ABCD
ABCDEFGH
ABCD

Specification Output Field

A6 bbABCD
A8 bbbbABCD
A3 ABC
A2 AB
A12 bbbbABCDEFGH
A4 ABCD

On input, the double precision format specification Dw .d causes the value of the data item in the input
field to be assigned to the corresponding integer, real, or double precision variable in the input list.

The double precision format specification Dw.d functions in the same manner as Ew.d, Fw.d, or Gw.d.

Output Using Dw.d

On output, the double precision format specification Dw.d causes the corresponding integer, real, or double
precision output list item to be written with an exponent on the specified output file.

The double precision format specification Dw.d is identical to Ew.d, with the following exceptions:

a. The Dw.d format specifier permits up to 18 significant digits to be output.

b. The exponent part of the output contains a D rather than an E.

Format Specification E

Input Using Ew.d

On input, the real format specification Ew .cl causes the value of the data item in the input field to be
assigned to the corresponding integer, real, or double-precision variable in the input list.

7-3

FORMAT SPECIFICATIONSl
AND FORMAT SPECIFIERS_!

The data item must be in the form of an integer, reaC or double-·precision constant and is considered. to be
right-justified within the input data field. Leading, embedded, and trailing blanks within the field are read
as zeros.

The magnitude of the value in the input field must not exceed the maximum magnitude for the correspond­
ing variable.

If a decimal point appears in the input field, the actual decimal location in the input value overrides the
decimal point placement specified by d.

If there is no decimal point in the input field, a decimal point is assumed d places from either the right side
of the input field or from the E, D, or signed integer constant denoting the exponent.

On input, the real format specifiers Ew.d, Fw.d, Gw.d and Dw.d function in the same manner.

Examples:

Variable Type

REAL
INTEGER
REAL
DOUBLE PRECISION
REAL

Output Using Ew.d

Data Item

bbbbbb25046
bbbbb25 .046
-bb25046E-·2
b250.46D-10
b-b25 .04678

Specification Internal Value

El 1.4 +2.5046
El 1.4 +25
El 1.4 -0.025046
Ell.O +O .000000025 046
Ell.4 -25.04678

On output, the real format specification Ew .d causes the corresponding integer, real, or double precision
output list item to be written with an exponent on the specified output file.

The real number is placed right-justified and rounded to d digits, together with a four-place exponent field,
in the output field over a field of blanks. Note that with the Ew .d format specification, d takes on a slightly
different interpretation, since no significant digits are written to the left of the decimal point in the output
field. The position for the minus sign required for negative numbers is included in the field width w. For
positive numbers, W =cl + 5 +(the number of leading blanks desired). For negative numbers, w =cl + 6 +
(the number of leading blanks desired).

Examples:

List Item Type

REAL
REAL
REAL
INTEGER
DOUBLE PRECISION

Format Specification F

Input Using Fw.d

List Item Value

+36.7929
-36.7929
-36.7929
2589
872568.394816897

Specification Output Field

E12.5 b0.36793E+02
El 1.5 -.36793E+02
El0.5 **********
E9.3 0.259E+03
El2.7 .8725684E+06

On input, the real format specification Fw .d causes the value of the data item in the input field to be
assigned to the corresponding integer, real, or double precision variable in the input list.

The data item must be in the form of an integer, real, or double-precision constant and is considered to be
right-justified within the input data field. Leading, embedded, and trailing blanks within the field are read
as zeros.
7-4

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

The magnitude of the value in the input field must not exceed the maximum magnitude permitted for the
corresponding variable.

If a decimal point appears in the input field, the actual decimal location in the input value overrides the
decimal point placement specified by d.

If t_here is no decimal point in the input field, a decimal point is assumed d places from either the right side
of the input field or from the E, D, or signed integer constant denoting the exponent.

On input, the real format specifiers Fw .d, Ew .d, Gw .d, and Dw .d function in the same manner.

Examples:

Variable Type

REAL
REAL
INTEGER
REAL
REAL
DOUBLE PRECISION
INTEGER

Output Using Fw.d

Data Item

3.672593
36725931
-367259.
-3672.E2
-3672+02
367259D-10
3.6272El

Specification Internal Value

F8.4 +3.672593
F8.4 +3672.593
F8.4 -367259
F8.4 -367200.
F8.4 -367200.
Fl0.4 +.00000000367259
F8.4 +36

On output, the real format specification Fw.d causes the corresponding integer, real, or double precision
output list item to be written without an exponent on the specified output file.

The real number is placed, right-justified and rounded to d decimal places,_in the output field over a field
of blanks.

The plus sign is omitted for positive numbers. On output, the field width w must include enough positions
to accommodated decimal places, a decimal point, and the integral part of the value. The position for the
minus sign required for negative numbers is included in the field width w.

If the magnitude of the number exceeds the specified field width w, the output field is filled with
asterisks (*).

Examples:

List Item Type List Item Value Specification Output Field

REAL +36.7929 F7.3 b36.793
REAL +36.7934 F9.3 bbb36.793
REAL -0.0316 F6.3 -0.032
INTEGER 2567 F7.2 2567.00
REAL 0.0 F6.4 0.0000
DOUBLE PRECISION 37624.816952 F8.3 ********
REAL +579.645 F6.2 579.65
REAL -579.645 F6.2 ******
REAL -0.895 F5.2 -0.90

7-5

FORMAT ~PECIFICATIONsl
AND FORMAT SPECIFIERSj

Format Specification G

Input Using Gw.d

The G-format descriptor is a multi-purpose format descriptor which may be used with input variables of
type integer, real, double precision, or logical. It is interpreted as an I, F, E, D, or L format descriptor,
depending upon the type of the variable in the input list.

If the input variable is of type integer or logical, the Gw.d format specification functions in the same manner
as the lw or Lw specification, respectively. The .d portion of the general form is not required and if speci­
fied, is ignored.

If the input variable is real or double precision, the .d portion of the general form must be included and
the Gw.d format specification functions in the same manner as Fw.d, Ew.d, and Dw.d.

Examples:

Variable Type

REAL
LOGICAL
INTEGER
REAL
DOUBLE PRECISION

Output Using Gw.d

Data Item

b529.4
bbT
bbb45
b-6.1E+04
bbS .3294D+02

Specification Internal Value

G6.l +529.4
G3 .TRUE.
GS +45
G9.l -61000.
Gl2.4 +532.94

On output, the general format specification Gw .d causes the corresponding output list item to be written
to the specified output file. The data item type is determined by the type of the output list item and may
be either integer, real, double precision, or logical.

The G format specification is a multi-purpose format specification which may be used with output list
items of type .integer, real, double precision, or logical. It is interpreted as an I, F, E, D, or L format speci­
fication, depending upon the magnitude and the type of the output list item.

If the output list item is of type integer or logical, the Gw .d format specification functions in the same
manner as the lw or Lw specification, respectively. The .d portion of the general form is not required and
if specified, is ignored.

If the output list item is of the type real, the Gw .d specification produces either an F or E format represen­
tation of its value according to the following criteria.

If N is the absolute value of the list item, then:

7-6

IF O. l

IF l

IF 10d-2
IF wd-l

Otherwise

<
I

N<l

N<lO

output is F(w-4).d, 4X

output is F(w-4).(d-l), 4X

N<10d-l output is F(w-4).1, 4X

N<l Od output is F(w-4).0, 4X

output is Ew.d

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

For example, if 5.7319 is the value represented internally and Gl0.3 is the format specified, the resulting
format would be F6.2, 4X, with the corresponding 573. l 9bbbb.

If the format specified for the value 5731.9wereG10.3, the resulting format would be El 0.3, with the
corresponding output bb.573E+04. Since 5731 is greater than 10. d-l (100), the specification would pro­
duce an E-format representation.

If the output list item is of type double precision, the Gw.d format specification functions in the same
manner as Dw .d.

On output of real or double precision, the field width w must include enough positions to accommodate an
exponent, a decimal point, and a sign position if the quantity is negative.

Examples:

List Item Type List Item Value

+10.
+100000.
-10

Specification

Gl2.5
Gl2.5
GS

Output Field

bblO.OOObbbb
b0.10000E+06
bb-10

REAL
REAL
INTEGER
LOGICAL
DOUBLE PRECISION
REAL

.TRUE.
+123467890123.
+1010101010.

G4
G20.12
Gl2.7

bbbT
bb0.123456789012D+ 13

Format Specification H (Strings)

The string (or Hollerith) format specification wHs, 's' or "s" allows character strings to be input without
employing program storage locations. The item s in this specification is a string of one to 25 5 characters.
An apostrophe or a quote mark within a proper string may be represented by two adjacent apostrophes or
quote marks, respectively. The same result can be achieved if a quote mark appears in a string delimited by
apostrophes or an apostrophe,appears in a string delimited by quote marks.

When employed as a format specification connected with a READ statement, the wHs, 's', or "s" specifica­
tion causes the character string to be replaced by the next w characters on the input record. The format
specification is thus modified at the time of the program execution; use of this specification for a subsequent
output action will result in the new string being output.

Example:

READ(5,15)1
15 FORMAT(2X, 'DUMMYbSTRING' ,13)

WRITE(6,15)1

Using the above code, if input starting in column 1 were bbMASTERbCOPYb303, the resulting output
would be bbMASTERbCOPYb303.

The string 'DUMMYbSTRING' would be replaced by the characters MASTERbCOPYb.

Format Specification I

Input Using lw

On input, the integer format specification Iw causes the value of the integer data item in the input field to
be assigned to the corresponding integer, real or double precision variable in the input list.

7-7

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

The integer data item must be in the form of an integer constant and is considered to be right-justified with­
in the input data field. Leading, embedded, and trailing blanks within the field are read as zeros.

The magnitude of the value in the input field must not exceed the maximum magnitude permitted for an
integer data item.

Examples:

Variable Type

INTEGER
REAL
DOUBLE PRECISION
INTEGER
INTEGER

Output Using lw

Data Item

567
bb-329
-26bbbb
bbb27
-bb234

Specification

13
16
17
15
16

Internal Value

+567
-329.
-260000.
+27
-234

On output, the integer format specification Iw causes the corresponding integer, real or double predsion
output list item to be written on the specified output file.

The integer number is placed right-justified in the output field over a field of blanks.

The plus sign is omitted for positivt:! numbers.

If a value of the integer quantity to be written requires more than w digits or if w cannot accommodate
both the sign position and the value in the case of a negative quantity, the output field is filled with
asterisks (*).

Examples:

List Item Type

REAL
INTEGER
DOUBLE PRECISION
REAL
INTEGER
INTEGER

Format Specification L

Input Using lw

List Item Value

+23.92
-79
+67486.942678
-67.486
0
-37216

Specification

14
14
15
I5
13
15

Output Field

bb24
b-79
67487
bb-67
bbO

On input, the logical format specification Lw causes the value of the logical data item in the input field to
be assigned to the corresponding variable of type logical in the input list. The input field width w must be
greater than or equal to 1. There may be leading blanks. The first character encountered in the field ex­
clusive ofleading blanks must be either Tor 1 for .TRUE. or For 0 for .FALSE .. Any characters follow­
ing the T, 1, F, or 0 are ignored.

Examples:

7-8

Data Item

T
bbF
bbbTRU

Specification

LI
L3
L6

Internal Value

.TRUE.

.FALSE.

.TRUE.

Output Using Lw

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

On output, the logical format specification Lw causes the corresponding logical list item in the output list
to be written on the specified output file.

The logiical value is placed right-justified in the output field over a field of blanks as a Tor F, for a .TRUE.
or .FALSE., respectively.

Examples:

List Item Value

.FALSE.

.FALSE.

.TRUE.

Format Specification T

Specification

L1
L3
L2

Output Field

F
bbF
bT

The use of Tt in a format list will cause the next item of data to be transferred to or from character position
t.

Examples:

WRITE (6,10)
10 FORMAT(T4, SHABCDE)

The execution of this WRITE statement will cause ABCDE to be written starting in column 4.

Format Specification X

On input or output, the editing specification wX or X will cause w characters to be skipped in the record.
The specification X will cause one character to be skipped.

Format Specification Z

Input Using Zw

On input, the hexadecimal format specification Zw causes the value represented by the hexadecimal digits
in the input field to be assigned to the corresponding integer, real, double precision, or logical variable in
the input list. Leading, embedded, and trailing blanks within the input field are interpreted as zeros.

The Z format specification may be used to assign hexadecimal digits to a variable or array of any data type.
The hexadecimal digits in the input field are transmitted right-justified to the corresponding input variable.
If the type bits (refer to appendix E) are included in the external input field, they must correspond to the
type bits in the internal representation of the variable, or an error message will be given.

If the width w of the input field is less than the length of the variable (in hexadecimal digits), leading zeros
are supplied. If the field width w is greater than the length of the input variable (in hexadecimal digits), the
leftmost digits are truncated and the remaining hexadecimal digits must contain the correct type bits.

7-9

FORMA; SPECIFICATIONS]
AND FORMAT SPECIFIERS

Examples:

Variable Type

INTEGER
REAL
DOUBLE PRECISION
LOGICAL

Output Using Zw

Data Item

OOOBC614E
4BEBCE508
C140000BC614E009EF
000000001

Specification

Z9
Z9
Z18
Z9

Internal Value

OOOBC614E
4BEBCE508
C140000BC614E009EF
000000001 (.TRUE.)

On output, the hexadecimal format specification Zw causes the hexadecimal value of the corresponding
integer, real, double precision, or logical output list item to be written on the specified output file.

The hexadecimal value is placed right-justified in the output field over a field of blanks. If the length of the
output list item (in hexadecimal digits) is less than the field width w, leading blanks are supplied. If the
length of the output list item (in hexadecimal digits) is greater than the field width w, the leftmost digits
are truncated. (Refer to "STORAGE ALLOCATION" in appendix E for additional information.)

Examples:

List Item Type

INTEGER
REAL
INTEGER
REAL
DOUBLE PRECISION
LOGICAL

FORMAT STATEMENT

List Item Value

OOOBC614E
4BEBCE508
OOOBC614E
4BEBCE508
C140000BC614E009EF
000000001 (.TRUE ..)

s1,ecification

ZlO
ZlO
Z6
Z6
Z18
ZlO

Output Field

bOOOBC614E
b4BEBCE508
BC614E
BCE508
C 140000BC614E009EF
bOOOOOOOOl

The nonexecutable FORMAT statement specifies what type of data conversion and editing is to be performed
during input and output between the characters in the records in program files and the data words in inter­
nal storage.

The proper form of the FORMAT statement is as follows:

FORMAT STATEMEKT

n FORMAT(s)

where n is a statement label ands is a specifi­
cation list which consists of appropriate for­
mat specifications modified as desired by
parentheses, repeat counts, and scale factor
designators, separated by commas and/or one
or more slashes.

The FORMAT statement is associated with a formatted READ or a formatted WRITE statement by means
of the statement label n.

7-10

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

Correspondence is established between I/O list elements and the elements of the format item list in the
standard FORTRAN fashion. Repetition of a portion of the format items is accomplished by enclosing that
format portion in parentheses and optionally preceding the left parenthesis by a repeat count indicating the
number of times the format portion is to be repeated before using the succeeding item.

If there is an I/O list on the I/O statement referendng the FORMAT statement, the specification list must
contain at least one specification besides wHs, 's', "s" Tt, wX, X, /,or parentheses.

Record Fields

A field in a formatted record contains a character string representation of the value of a single I/O list
element. The field width of a format specification specifies the number of characters in the field. A field
begins with the first character position of a record for the first I/O list element, or the first character after
the previous field. The Tt specification may be used to change the character pointer for subsequent editing.

In numeric input fields, all blank characters are interpreted as zeros. Plus signs are optional on input and
may be omitted. When input data is entered under a real format specification (i.e., D, E, F, or G), a deci­
mal point appearing in the input field overrides the decimal place count, d.

Format Field Separators

Two fields in a format item list are separated by a comma, a slash, or a series of slashes. A slash is used to
indicate the end of a record. On input, any remainiing characters in the current record are ignored when a
slash is encountered in the specification list and the next record is read. On output, a slash causes the cur­
rent record to be written, and any subsequent output is placed in the next output record(s). Multiple
slashes may be used to skip several records on input or generate several blank records on output. The final
right parenthesis of a format item list also causes the current record to be written.

Repeat Counts

Format specifications and format list portions enclosed in parentheses may optionally be immediately
preceded by an unsigned integer constant. This constant indicates the number of times that portion of the
specification list is to be interpreted. If no such repeat count is indicated, a repeat count of 1 is assumed.
A repeat count is not allowed to precede a string variable.

If the outer right parenthesis of the format specification list is encountered before the I/O list is exhausted,
control reverts to the repeat count of the repeat specification group terminated by the last preceding right
parenthesis. If no other right parenthesis exists in the specification list, then control reverts to the first left
parenthesis of the specification list.

The following are examples of the use of repeat counts. In each case, the repeat count is 3:

Scale Factor Designator

3Fl0.4
3(A6/).
3(3A6,3(/I 12)/)
2P3E20.5

A scale factor designator may optionally precede a D, E, F, or G format specification to modify the scaling
of a number on input or output.

7-11

------·--·------]·
[

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

A scale factor designator has the following form:

SCALE FACTOR DESIGNATOR

nP

where n is an integer constant which is the
scale factor, and may be preceded by an op­
tional +or - sign.

When FORMAT control is initiated, a scale of zero is automatically establis.hed and applies until a scale
factor is encountered in the FORMAT statement. Once a scale factor is encountered, it applies to all sub­
sequently encountered F, E, G and D conversions until a different scale factor or the end of the FORMAT
statement is encountered.

rhe effect of the scale factor on input and output for each of the format specifiers is discussed in the follow­
ing paragraphs.

The effect of the scale factor on F, E, G, and D input is as follows:

If there is an exponent in the external field, the scale factor has no effect.

If no exponent exists in the external field, the effect of the scale factor is as follows:

internal value = external string * 1 o-n

Examples:

External String

367.92930
0.0369

Specification

2PF9.5
-2PF6.4

Internal Value

+3.679293
+3.690000

The effect of the scale factor on F output is as follows:

The external string will equal the internal value * 10n

Examples:

Internal Value

+3.679293
+3.679293

Specification

2PF12.5
-2PF12.5

External String

bbb367.92930
bbbbb0.03679

The effect of the scale factor on E output is as follows:

7-12

When the scale factor, n, is greater than or equal to zero, then n significant digits will be placed
to the left of the decimal point and d-n+ 1 significant digits will be placed to the right of the
decimal point.

When the scale factor, n, is negative, -n leading zeros will be placed immedia~ly to the right of
the decimal point with d+n significant digits following the zeros.

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

In each case, the exponent is adjusted so the value of the output quantity remains unchanged.

Examples:

Internal Value

+3.679293
+3.679293

Specification

2PE12.5
-2PE12.5

The effect of the scale factor on D output is as follows:

External String

b36.7929E-01
bb.00368E+03

The effect of the scale factor on D output is the same as for E output, except that a D is used
instead of an E in the exponent.

·Carriage Control

When a line printer is used for output, the first character of each line of print controls the spacing of the
printer carriage. The control characters are as follows:

Character

Blank

Zero

Minus sign

Plus sign

n (any digit
2 through 9)

Action

One space before printing

Double space before printing

Triple space before printing

Skip to channel 1 of carriage control
tape before printing

No advance before printing

Advance to channel n before printing

The first character of the print line is used to control the action of the carriage andis not printed.

FORMAT SPECIFICATIONS IN ARRAYS

A formatted READ, WRITE, PRINT, or PUNCH statement may employ an array name as a format item.
This array name must contain an EBCDIC string of characters representing a parenthesized format specifi­
cation list. This specification list is defined identically as the specification list portion of a FORMAT state­
ment.

The specification list may be stored in the array using a DAT A statement, a READ statement, or an assign­
ment statement. ·Employing a READ statement allows the format specification list to be unspecified until
execution time.

7-13

FORMAT-;;ECI FICATIONSJ
AND FORMAT SPECIFIERS

Example:

The following program illustrates t}le use of format specifications contained in arrays.

? COMPILE FORMAT/ARRAY WCTH FORTRAN;
? DA CARDS

DIMENSION IFORM(2), DATA(6)
DA TA IFORM/'(X,F6.3)'/, DAT A/ 1.2,3.4,5 .6,7 .8,9 .2,4.5 /
DO 1 I-1,3
WRITE(6, IFORM) DATA([)
READ(S,2) IFORM

2 FORMAT(2A4)
DO 3 I=4,6

3 WRITE(6, IFORM) DA TA(I)
STOP
END

'? END
? DATA FILES
(X,F6.l)
? END

The program produces the following output:

1.200
3.400
5.600

7.8
9.2
4.5

NAMELIST STATEMENT AND NAMELIST 1/0

The NAMELIST statement associates a list of scalar and/or array variable names with a unique symbolic
name called a NAMELIST NAME. A NAMELIST NAME may only be used as a format specifier in a READ,
WRITE, PRINT, or PUNCH statement. When a NAMELIST NAME is used for input, any or all of the var­
iables associated with the NAMELIST NAME may be assigned values. A variable associated with a
NAMELIST NAME retains its current value if no value is assigned to it. When the NAMELIST NAME is
used for output, all of the associated variables are generated in NAMELIST FORMAT (format specified
later).

The syntax for associating a NAMELIST NAME with a set of variable names is:

7-14

NAMELIST ST A TEMENT

NAMELIST /n/p/n/p ...

where n is a unique NAMELIST NAME which
is constructed in the same manner as a variable
name; p is a list of scalar and array variable
names separated by commas.

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

A scalar or array variable name may be associated with more than one NAMELIST NAME. For example:

NAMELIST /NI /I,J ,K,/N2/I,L,K,J

associates I, J, and K with the NAMELIST NAME NI and I, L, K, and J with the NAMELIST NAME N2.

A total of 511 variable names may be specified in each subprogram in NAMELIST statements.

A NAMELIST NAME must be declared in a NAMELIST statement in the program unit in which it is used.
Neither a NAMELIST NAME nor a variable associated with the NAMELIST NAME may be a dummy argu­
ment of a subprogram (see section 12).

An 1/0 statement that contains a NAMELIST NAME may not also have an 1/0 list of variables. An 1/0
statement that contains a NAMELIST NAME may only write to a sequential file.

A NAMELIST NAME may be used as the name of a COMMON BLOCK.

NAMELIST Record Format

The format of the NAMELIST record must be as follows:

a. The first character must be a blank.

b. The second character must be an "&" character.

c. The NAMELIST NAME must immediately follow the "&" (no embedded blanks).

The NAMELIST NAME must be followed by at least one blank.

e. Following the blank, a list of VALUE ASSIGNMENTS separated by commas for any or all of
the variables associated with the NAMELIST NAME must occur. If this list continues onto
another record, the next record must have a blank as its first character.

f. The list of VALUE ASSIGNMENTS must be terminated by &END, and the remainder of the
record is ignored.

Example of NAMELIST input and/or output record:

&OTH A=l, 0, B=3, 5678&END

If there is a run-time NAMELIST error, the line printed by the intrinsic before the program stack dump is
the last record of the namelist input or output list in which the error occurred. This may not be the record
on which the error occurred. Also, there are two characters in the line that are not the characters that were
actually read. If the NAMELIST read missed the &END (perhaps it was mispunched or"&" occurred in
column 1), the read will continue to the next &END and give an error there. Since anything after the &END
is ignored, it is suggested that after each &END an identifying word or number be included.

NAME UST Record Restrictions

No embedded blanks may appear in the NAMELIST NAME or in the variable names or assignments.

7-15

[
FORMAT SPECIFICATIONS J
AND FORMAT SPECIFIERS

Value Assignments

AV ALUE ASSIGNMENT on a NAMELIST input record may be:

a. In any order, but only those that are associated with the NAMELIST NAME may appear.

b. A variable followed by an "=" sign and a literal value (no embedded blanks).

c. An array name or an array element followed by an "==" sign and one or more literal values separated
by commas, with or without repeat specifiers, a literal value may be either a constant, a quoted
string of length less than' or equal to four characters, or a Hollerith string of length less than or
equal to four characters.

Example:

&NAME I=l, J=l ,2,3,4,2*5,3*"ABCD"&END

where I is an integer scalar and J is an integer array dimensioned J(3,3).

d. If an assignment is made to an array name or an array element, the constants may be preceded
by a repeat specifier of the form n *, where n is an unsigned integer constant.

e. If an assignment is made to an array name, up to as many elements as are in the array may appear
in the list of value assignments. If assignment is made to an array element, up to as many constants
as there are succeeding elements in the array may appear in the list of value assignments.

Values are assigned to the t~lements of the array in the order in which they are stored internally,
beginning with the element indicated or if only the array name is specified, with the first element.

Input Using NAME LIST

When a READ statement referencing a NAMELIST NAME is executed, records are read until a NAMELIST
NAME is found. If the NAMELIST NAME is misspelled, the read action continues to the end of the file.

Only those variables associated with the NAMELIST NAME may be assigned values and the variable assign­
ments may appear in any order. After the &END has terminated the value assignments, the file is positioned
at the beginning of the next record.

On NAMELIST input, no more than 4 characters may be assigned, even to a double-precision variabk.

The following trailing blanks on NAMELIST input are treated as zeros, where b indicates a blank. Notice
that trailing blanks can cause overflow.

7-16

EOlb
lOb
lObH- - -
1 Ob. - - -
lObE

EOIO
100
1 OOH - - -
100.--­
IOOE - - -

The program in the following example uses the NAMELIST statement.

Example:

DIMENSION A(2,2), B(3)
NAMELIST /NTEST/A,B,C,D
DATA B(2)/6.0/
READ 2,C

2 FORMAT (F3.l)
READ NTEST
READ 2, B(3)
PRINT 3,A,B,C,D

3 FORMAT (12/2(1 X,A4/),F4. l /3(12/),F4. l / 1 X,A3)
STOP
END

DATA:
-9.6
2.0

&NTEST A=l, 2*'ABCD',
D = 'IJK'b&END
5.0

1, B=7,
(END OF NTEST RECORD)

FORMAT SPECIFICATIONS
AND FORMAT SPECIFIERS

When the READ NTEST statement is executed, the file is accessed repeatedly until the NTEST NAMELIST
data group is located. The values specified are assigned to the elements of arrays A and B and to D as if
these statements had been executed:

A(l,1)=1.0
A(2,l)='ABCD'
A(l ,2)='ABCD'
A(2,2)=1.0
B(1)=7.0
D='IJK'

Note that "(END OF NTEST RECORD)" is ignored. Another READ is performed on the file, and the
value 5 is read, converted to a real number, and assigned to B(3).

The output generated by the PRINT statement is:

1
ABCD
ABCD
1.0
7
6
5
9.6
IJK

Output Using NAME LIST

Values may be written with output statements using a NAMELIST NAME as a format specifier. When such
an output statement is executed, the value of every variable and array element associated with the
NAMELIST NAME is placed in a data group suitable for input by a READ statement using that NAMELIST

7-17

[
FORMAT SPECIFICATIONS]
AND FORMAT SPECIFIERS

NAME. No repeat specifiers are used. The values of the array elements are given in the order in which the
elements are stored internally.

Values are written according to the type of each data item. No facilities are available for writing strings
using NAMELIST.

7-18

8. ASSIGNMENT STATEMENTS

The executable assignment statements allow an arithmetic, logical, or label value to be assigned to a program
variable.

The two proper forms of the assignment statement are as follows:

ASSIGNMENT STATEMENT

I. v = e
2. ASSIGN n TO k

where v is either a non-logical variable or ar-
ray element name and e is an arithmetic ex-
pression; or v is a logical variable or array ele-
ment name and e is a logical expression; n is a
statement label, and k is a simple integer vari-
able.

ARITHMETIC ASSIGNMENT STATEMENT

An arithmetic assignment statement is represented by form I of the assignment statement, with v being a
non-logical variable and e being an arithmetic expression.

When such a statement is executed, the arithmetic expression is evaluated and the value obtained is placed
into the storage word or word pair allocated to the variable, v.

In general, the variable and the arithmetic expression need not be of the same type. If the types are
different, the expression is first evaluated and automatic conversion is subsequently performed on the value
obtained to the type of variable to be assigned the value. This automatic conversion proceeds according to
the rules indicated in table 8-1.

r-·

~-

Type ofv

INTEGER

REAL

DOUBLE
PRECISION

assign
fix
float
rnd
ext

Table 8-1. Type Conversions in Assignment Statements

Type of Expression

Double
Integer Real Precision

assign fix fix

float assign rnd

float, ext ext assign

Value is transferred without change.
Indicates a conversion to integer with truncation.
Indicates conversion from integer internal form to real internal form.
Indicates conversion from double precision to real with rounding.
Indicates conversion from real to double precision, with the second word set to
zero.

8-1

I ASSIGNMENT STATEMENT~

The internal storage formats of the various data types are discussed in appendix E.

Examples:

G(IROW+2,JCOL) = IROW-N
A=I+2+B/3.6
C=6.2+(1 /2.3)

LOGICAL ASSIGNMENT STATEMENT

A logical assignment statement is represented by form 1 of the assignment statement, with v being a logical
variable and e being a logical expression. When such a statement is executed, the logical expression is
evaluated, and the logical value obtained is placed into the storage word allocated to the variable, v.

Examples:

L(2,4)=L(l ,l).AND.L(l ,2)
L=G.GT.H.OR.B.EQ.C
L=.TRUE.

GO TO ASSIGNMENT STATEMENT

A GO TO assignment statement (or ASSIGN statement) is represented by form 2 of the assignment state­
ment. This statement assigns the label of an executable statement to a simple variable of integer type in
order that the variable may be used in an assigned GO TO statement. The ASSIGN statement is the only
statement that may give a variable the value of a label.

The following is an example of the use of the ASSIGN statement:

ASSIGN 999 TO LABEL
GO TO LABEL, (1,2,999)

When the assigned GO TO statement is executed, control will be transferred to the executable statement
bearing the label 999 in that program unit.

The referenced variable should not be used for purposes other than ASSIGN and assigned GO TO state­
ments, since unpredictable results could occur.

8-2

9. CONTROLSTATEMENTS

The executable control statements are used to alter the normal flow of program execution. These state­
ments may transfer control to another part of the program, terminate or suspend execution, or control
iterative processes. Control may be transferred to labeled executable statements only.

The control statements consist of the following:

CALL Statement.
CALL EXIT Statement.
CONTINUE Statement.
DO Statement.
GO TO Statement.
IF Statement.
PAUSE Statement.
RETURN Statement.
STOP Statement.

These statements are discussed in the following paragraphs in the order just listed.

CALL STATEMENT

The executable CALL statement causes the specified subroutine to be executed. The proper forms of the
CALL statement are:

CALL STATEMENT

CALLs
or

CALL s (a)

where s is the name of a SUBROUTINE sub-
program and a is a list of actual arguments
separated by commas.

The elements of the list of actual arguments must agree in number, order of appearance, and type with the
dummy arguments appearing in the SUBROUTINE statement appearing at the beginning of the called sub­
program. These actual arguments are evaluated in left-to-right order before the subroutine is entered.

Hexadecimal constants may not be used as actual arguments.

An actual argument in a subroutine reference may be one of the following items:

a. Any non-hexadecimal constant.

b. A simple variable.

c. An array element.

d. An array name.

9-1

I CONTROLSTATEMENTS

e. An expression.

f. An item of the form: &n, where n is a statement label.

Execution of a CALL statement results in an association of actual arguments with all appe~.rances of dummy
arguments in executable statements in the subroutine body, and in an association of actual arguments with
variable dimensions in the subroutine, if any.

If the actual argument is a simple variable, array element, or constant which is enclosed in parentheses or
preceded by an unary +or-, or any other expression, the value of that argument is passed into the cor­
responding dummy argument, and any changes in that dummy argument will remain local to the subprogram,
which referenced it. Therefore, any association the actual argument may have with a COMMON block is not
shared by the dummy argument. A simple variable, array name, or array element which is not specified
otherwise, is passed by name and any changes in the value of the corresponding dummy argument will also
be made in the actual argument. Therefore, if the actual argument is an element of a COMMON block, any
change incurred in the value of the corresponding variable within the subprogram will be simultaneously
recorded in the corresponding location in the COMMON block.

Examples:

CALLX (A)
CALLX ((A))
CALLX (A+B)
CALLX (-A)

Passed by name.

Passed by value.

Certain actual arguments may only be passed to a dummy argument that is used in a prescribed manner
within the subprogram. The correspondence in usage that must exist between actual and dummy argument
of the same type is listed as follows:

9-2

Actual Argument

Hollerith constant;
length < 4 characters.

Hollerith constant;
length > 4 characters.

Hollerith constant;
in parentheses.

Any arithmetic constant.

Simple variable.

Array element.

Array name.

An expression.

&n (where n is a statement
label).

Dummy Argument

Simple integer variable.

Integer array.

Double precision.

Simple variable.

Simple variable.

Simple variable or array name.

Array name.

Simple variable.

Asterisk(*).

CONTROL STATEMENTS

A simple variable in a dummy argument list may receive any constant or expression of the same type. If a
dummy argument is assigned a value in the subprogram, then the corresponding actual argument must be a
simple variable, an array element, or an array name.

Following these associations, control is transferred to the first executable statement following the appro­
priate SUBROUTINE statement, If an actual argument is an array element with an arithmetic expression
as a subscript, then the arithmetic expression is evaluated at the time of the execution of the CALL state­
ment, and the resulting array element is associated with the corresponding dummy argument in the sub­
routine.

Array Handling

If a dummy argument of a subroutine is an array name, the corresponding actual argument in the CALL
statement must be an array name or an array element. The following correspondence is established be­
tween the actual array and the dummy array in the subroutine at the time the CALL statement is executed.

If the actual argument is an array name, the entire array may be accessed in the subroutine. The dummy
array may be assigned as many subscripts as desired. The correspondence between the internal storage
locations assigned the actual array and the elements of the dummy array is established as described in
appendix E. The subscripts appearing in the declaration of the dummy array will only determine the
correspondence between actual and dummy array elements and the number of array elements which will
be referenced if the dummy array name alone appears in an I/O list in the subroutine.

For example, if the array A is declared by means of the statement:

REAL A(20)

and is· passed as an actual argument to the dummy argument B, which is declared in the subroutine by
means of the statement:

REAL B(S)

then an 20 elements of A may be referenced by means of B (i.e., B(18) is a valid array element), but the
statement:

WRITE(6, 1)B

will cause only the first five of these elements to be written.

If the actual argument is an array element, the array from that element on may be accessed in the sub­
routine. Considering the preceding example, if the array element A (11) had been passed to the subroutine
instead of A, then the last 10 elements of this array (i.e., A(l l) through A(20)) could be referenced by
means of the dummy array B. The WRITE statement displayed would then cause the first five of these
elements (i.e., A(l l) through A(l 5)) to be written.

Subroutine Returns

If the subroutine does not cause termination of the program, the subprogram may return control to the
next executable statement following the CALL statement or to the executable statement whose label
appears in the actual argument list preceded by an ampersand (&). See the discussion of the RETURN
statement in this section.

9-3

I CONTROLSTATEMENTS l
The following CALL statement examples illustrate the use of actual arguments.

CALL SUBA(A, B(2), 3HABC, 'TITLE', I+20)
CALL DATE (0)
CALL BRANCH (TV AR, & 100, &200)

CALL EXIT STATEMENT

The executable CALL EXIT statement is provided to allow the termination of an executing program.

The following is the proper format of the CALL EXIT statement:

CALL EXIT STATEMENT

CALL EXIT

Execution of the CALL EXIT statement
causes unconditional termination of the pro­
gram.

The execution of this statement within a program which does not contain a subprogram named EXIT
produces exactly the same result as the execution of a STOP statement.

This statement may appear at any point within any program unit where an executable statement may
appear.

CALL DUMP STATEMENT

The executable CALL DUMP statement is provided primarily as a program debugging aid.

The following is the proper format of the CALL DUMP statement:

CALL DUMP STATEMENT

CALL DUMP

Execution of the CALL DUMP statement
causes a dumpfile to be produced ..

The execution of the CALL DUMP statement causes a dumpfile to be produced. After the dumpfile has
been produced, execution continues to the statement following the CALL DUMP statement.

CALL SWITCH STATEMENT

The executable CALL SSWTCH (l,J) statement enables a program to determine the setting of the least
significant bit of program switches 1 through 8. The.program switches are set at run time by the MCP
SWITCH control instruction attribute. To set a sense switch, assign an odd number to it. If zero or an
even number is assigned to a program switch, the sense switch is not set.

9-4

CONTROL STATEMENTS

CALLSSWTCHSTATEMENT

CALL SSWTCH (I,J)

Execution of the CALL SSWTCH statement
interrogates sense switch I. J is assigned a 2 if
sense switch I is set. J is assigned a 1 if sense
switch I is not set.

The execution of the CALL SSWTCH (I,J) statement interrogates sense switch I, which must be an integer
between 1 and 8. If sense switch I is set, then J is assigned a value of 2; otherwise, J is assigned a value of 1.

CALLOVERFLSTATEMENT

The. CALL OVERFL statement enables programmatic recovery when an exponent overflow or an exponent
underflow has occurred. The proper form of the CALL OVERFL statement follows:

CALLOVERFLSTATEMENT

CALL OVERFL (I)

Execution of the CALL OVERFL statement
sets I to a 1 if an exponent overflow has oc­
curred since the last CALL OVERFL state­
ment. I is set to a 2 if neither an exponent
overflow nor an exponent underflow has oc­
curred since the last CALL OVERFL state­
ment. I is set to 3 if an exponent underflow
has occurred since the last CALL OVERFL
statement.

If execution of a CALL OVERFL occurs in the main program or in any subprogram, then any occurrence of
an exponent overflow results in the maximum value being returned (5. 7 896041E76 for REAL;
5.78960446186580976076 for DOUBLE-PRECISION). In addition, a CALL OVERFL will return a
zero result if any exponent underflow occurs.

CALLDUCHKSTATEMENT

The CALL DUCHK statement enables programmatic recovery when a divide by zero occurs. The proper
form of the CALL DUCHK statement follows:

CALLDUCHKSTATEMENT

CALL DUCHK (I)

Execution of the CALL DUCHK statement
causes I to be set to 1 if a divide by zero has
occurred since the last CALL DUCHK state-
ment; otherwise, I is set to 2.

9-5

If a CALL DUCHK statement occurs in the main program or in any subprogram, then any occurrence of a
divide by zero results in a zero being returned as the result of the arithmetic operation.

CALL GETCH STATEMENT

The CALL GETCH statement transfers any byte of an integer variable to the leftmost byte of another in­
teger variable. The proper form of the CALL GETCH statement follows:

CALL GETCH STATEMENT

CALL GETCH (Il, 12, 13)

Execution of the CALL GETCH state­
ment will transfer any byte from I1 to the
leftmost byte of I3. I2 specifies the byte po­
sition within I 1.

The CALL GETCH statement requires three integer variables as operands. The first is the variable from
which one of the four bytes is taken. The second variable is the byte position, which can be 1, 2, 3, or 4,
where a byte position of 1 designates the leftmost byte). The third parameter is the receiving variable. The
byte transferred is placed in the leftmost position of the receiving variable.

The CALL GETCH statement is used in the following example:

Example:

IARGl = ABCD
IARG3 = FGHI
DO 10 I= 1,4
CALL GETCH (IARGl, I, IARG3)

10 CONTINUE

Execution of the routine in this example results in the following:

9-6

IARGl

ABCD
ABCD
ABCD
ABCD

I

2
3
4

IARG3

AGHI
BGBI
CGHI
DGHI

CONTROL STATEMENTS

CALLPUTCHSTATEMENT

The CALL PUTCH statement transfers the leftmost byte of an integer variable to any byte of another integer
variable. The proper form of the CALL PUTCH statement follows:

CALL PUTCH STATEMENT

CALL PUTCH (II, 12, 13)

Execution of the CALL PUTCH statement
transfers the leftmost byte of I3 to any byte
of l 1. 12 specifies the byte position within l 1.

The CALL PUTCH statement requires three integer variables as operands. The first is the receiving variable.
The second is the byte position of the receiving variable into which the byte is to be placed, which can be
either 1, 2, 3, or 4, where a byte position of 1 designates the leftmost byte. The third parameter is the vari­
able from which the leftmost (first) byte is taken.

The CALL PUTCH statement is used in the following example:

Example:

lARGl = ABCD
lARG3 = FGHl
DO 10 l = 1,4
CALL PUTCH (IARG 1, l, lARG3)

10 CONTINUE

Execution of the routine in this example results in the following:

IARGl I IARG3

FBCD 1 FGHl
FFCD 2 FGHl
FFFD 3 FGHl
FFFF 4 FGHl

CONTINUE STATEMENT

The executable .CONTINUE statement is provided primarily as a program documentation aid, as the execu­
tion of this statement produces no action.

The following is the proper format of the CONTINUE statement:

CONTINUE STATEMENT

CONTINUE

Execution of the CONTINUE statement has
no effect.

9-7

[CONTROL STATEMENTS I

The CONTINUE statement is used primarily as a dummy executable statement allowing the programmer to
position a label at any desired point within a program. This facilitates transfers to that point and allows the
range of a DO loop to be clearly delimited.

Examples of the use of the CONTINUE statement are provided in the following sample portion of a
FORTRAN program.

DO 1 l=2, 10,2
A(I) = I/M
WRITE (6,10) A (I)
IF (A(I)) 3, 1, 1
CONTINUE
M=-M

3 CONTINUE

In this sample of source code, the CONTINUE statement labeled 1 is used as the final statement of a DO
loop, and the CONTINUE statement labeled 3 is used as a transfer point for an arithmetic IF statement.
The use of the CONTINUE allows the end of the DO loop to be readily located within a listing of the pro­
gram. The second CONTINUE statement allows transfer to an arbitrary point in the program, the location
of which may be changed merely by changing the location of the CONTINUE card.

DO STATEMENT

The executable DO statement is a control statement provided to alter the order of the execution of program
statements in such a manner that a series of statements will be repeatedly executed while the value of a
specified program variable is varied between specified limits. The number of iterations is dependent upon
this control variable.

The following are the proper forms of the DO statement:

9-8

DO ST A TEMENT

DO s v = m,n,i
or

DO s v = m,n

where s is a label on an executable state­
ment following the DO statement, v is the
integer or real control variable, and m, n,
and i are the initial parameter, terminal para­
meter. and incrementation parameter, re­
spectively, each of which is any arithmetic
expression .

....._ ______ _

CONTROL STATEMENTS

The DO statement causes repeated execution of the statements in its range. The range of a DO state­
ment is defined to be the first executable statement following the DO up to and including the statement
whose label is specified in the DO statement.

The initial parameter, terminal parameter, and incrementation parameter of a DO statement may be any
arithmetic expression. If the optional incrementation parameter is omitted, a value of 1 is assumed by
the compiler.

The range of a DO is executed with a new. value assigned to the control variable prior to each repetition.
The initial parameter is assigned prior to the first execution of the range. Prior to each subsequent re­
petition, the control variable is incremented by the incrementation parameter.

A test is made immediately after incrementing the control variable to determine whether or not the
terminal parameter has been exceeded. If not, the range of the DO is executed; if the terminal para­
meter has been exceeded, the DO is considered satisfied. In any case, the range of a DO is executed at
least once.

Any number of DO statements may be nested within the range of another DO statement, with the following
restrictions: If a DO statement occurs in the range of another DO, the range of the former must be com­
pletely contained within the range of the latter. Both may, however, specify the same statement as the
last statement in their ranges.

The control variable is available for use within its range, and may be modified as desired. The incrementa­
tion parameter and terminal parameter are reevaluated prior to their use and may also be modified by any
statement within the range. There is no restriction on transfers out of or into the range of a DO. If a
transfer is made into the range of a DO, the programmer is responsible for the appropriate assignment of
a value to the control variable. When a DO statement has been satisfied, the value of its control variable
is the value which failed the final test.

When several DO statements share the last statement of their ranges, the control variable of one DO state­
ment is not reassigned and tested until each DO statement in its range is satisfied. When the outermost DO
statement is satisfied, control continues with the next executable statement following its range.

The following is an example of a section of a program unit using a DO statement:

J== 10
DO 2 I= l,J.
A(I)=O·

2 B(l,1)=0

In this DO loop, A (1) through A (10) inclusive, and B (1, 1), B (2,2), ... , B (10, 10) will all be set to zero.

Nesting

DO loops may be placed inside DO loops. This procedure is called "nesting" DO loops. For example:

DO 10 I=I,23
DO 10 J=3,I-l

10 C(I,J+l)= I*J

The range of a nested DO loop must be entirely inside the range of the next outer DO loop.

9-9

I CONTROL STATEMENTS

Parameter Alteration

DO loop parameters may be changed during the execution of the DO loop. For example:

SUM=O
K=lOO
DO 24 INTGR=2,K,2
SUM=SUM + INTGR

24 K=K-2

In this example, the variable K is diminished in value by 2 each time that the DO loop is executed. This will
affect the indexing in such a manner as to cause termination of the DO loop when INTGR=SO, rather than
I 00 as was initially declared.

The control variable INTGR is incremented by 2 each time the DO loop is executed because of the presence
of the incrementation parameter 2.

GO TO STATEMENT

The executable GO TO statement can be used to transfer control from one point of an executing program
to another point in the same program unit.

The following are the proper forms of the GO TO statement:

Unconditional GO TO

GO TO STATEMENT

1. GO TO n
2. GO TO v ,(m)
3. GO TO (m),a

where n is a label appearing on an executable
statement appearing in the same program
unit, v is an integer variable, m is a list of
statement labels separated by commas, and a
is an integer arithmetic expression.

The simplest form of the GO TO statement is displayed by form 1, which represents the unconditiornal GO
TO statement.

Execution of this control statement causes the executable statement bearing the indicated label in the pro­
gram unit to be the next statement executed. For example, the statement GO TO 23 causes program flow
to continue at statement 23.

Assigned GO TO

Form 2 represents the assigned GO TO statement. The execution of this statement causes control to be
transferred to the statement whose label was last assigned to the variable v by an ASSIGN statement. (See
section 8.) The statement labels (m) must appear in the same program unit as the ASSIGN statement and
assigned GO TO statement. The value of v must not be changed by another ASSIGN statement, between
execution of the ASSIGN statement and execution of the assigned GO TO statement.

9-10

CONTROL STATEMENTS

ASSIGN 23 to K
GO TO K, (10, 23, 30, 45)

Failure to assign a statement label to the variable v which appears in the list with an ASSIGN statement will
cause program termination when the assigned GO TO is executed.

Computed GO TO

Form 3 represents the computed GO TO statement. The execution of this statement causes control to be
transferred to a statement whose label appears in the list portion of the statement or to the next executable
statement following the GO TO. How control is transferred depends on the value of the integer arithmetic
expression following the label list. It is evaluated and the result is used to select one of the labels in the list.

If the expression has the value n, when computed, control passes to the n-th label in the label list. If there
are fewer than n labels in the list or if n is less than or equal to zero, control passes on to the next statement.

An example of a computed GO TO statement is:

GO TO (1,25,3,6, 1, 17), I+ 1

At execution time, the value of I+ 1 is computed. If I+ 1 has the value n, then control will pass to the n-th
statement in the list. For example, if I+ 1 = 4 (i.e., I= 3), then control will pass to the statement labeled 6,
the fourth label in the list. If I+ 1 = 1 or 5 (I =O or 4) in this particular example, control will pass to state­
ment number 1, since both the first and fifth elements of the label list are 1. In this example, if I+ 1 is
less than 1 or greater than 6 (I less than 0 or greater than 5), control will pass to the next executable state­
ment after the computed GO TO.

Notice also that the statement:

GO TO (3), I

is not the same as:

GOT03

The latter case is unconditional, whereas in the former case, control will pass to statement number 3 only
if I = 1. If I has any other value, control will pass to the next statement, which may or may not be state­
ment number 3.

IF STATEMENT

The executable IF statement is a control statement provided to cause branching from one point in an
executing program to another point, depending upon an arithmetic or logical value.

9-11

I CONTROL STATEMENTS]

The following are the proper forms of the IF statement:

Arithmetic IF

IF STATEMENT

1. IF(a) n,z,p
2. IF(e) s

where a is an arithmetic expression, n, z, and
p ai:e labels appearing on executable state­
ments in the same program unit, e is a logical
expression, and s is any executable statement
except a DO statement or a form 2 IF state­
ment.

Form 1 of the IF statement represents an arithmetic IF statement. The arithmetic IF statement is a
three-way branch. The arithmetic expression inside the parentheses following the IF is evaluated, and
control is transferred to the statement identified by the first, second, or third label, depending on
whether the expression is negative, zero, or positive, respectively.

An example of an arithmetic IF is:

IF (I-J) 10, 20, 30

If I-J is negative, control will be transferred to statement number 1 O; if zero, to statement numbe~r 20;
and if positive, to statement number 30. Notice that this is actually a test of whether or not J is
greater than, equal to, or less than I.

Not all three statement numbers of an arithmetic IF need be different.

For example:

IF((A-2)*(B-3)) 10, 10, 3

In this example, control will pass to statement number 3 only if (A-2)*(B-3) is greater than zero. Other­
wise, control will pass to statement number 10.

Notice that if all three statement numbers in the arithmetic IF statement are identical, the result is the
same as an unconditional GO TO, provided that execution is not terminated during evaluation of the
expression.

The statement following an arithmetic IF generally will need a label. This is not a syntactical require­
ment, but since an arithmetic IF breaks the sequential flow of execution to a labeled statement, it will
never be possible to return to execute the statement following the IF unless that subsequent statement
has a label.

Logical IF

Form 2 of the IF statement represents a logical IF statement. The logical IF will conditionally execute
a statement following a logical expression. The logical expression following the IF and enclosed in
parentheses is evaluated. If this logical expression is .TRUE., then the statement following the logical
expression is executed. If it is .FALSE., then the statement is ignored. In either case, control then

9-12

[CoNTROLSTATEMEN~

passes normally on to the next statement, unless the statement following the logical expression was
executed and caused a branch to another point in the program.

The statement following the logical expression may be any executable statement except a DO statement
or arn:>ther logical IF.

The following are examples of logical IF statements:

a. IF (A.EQ.B.OR.C.EQ.D) G=G+ 1

If A equals B or C equals D (or both), then G will be incremented by 1. Otherwise, G will remain
unchanged. In any event, control will then pass on to the next statement.

b. IF (LI) GO TO 97

If LI (which must be declared to be a LOGICAL variable) is .TRUE., then control will pass to
statement number 97. If LI is .FALSE., then control will pass on to the next statement.

c. IF (A.LE.97) IF (B) 12, 12, 13

If A is less than or equal to 97, then the arithmetic IF will be executed and control will pass to
statement number 12 or 13, depending on the value of B. If A is greater than 97, control will
pass on to the next statement.

~AUSE STATEMENT

The executable PAUSE statement is provided to allow an executing program to be suspended indefinitely.

The proper format of the PAUSE statement is:

---~--------~~~

PAUSE STATEMENT

PAUSE
or

PAUSE p

where p is a one-· to eight-digit unsigned
integer constant or a proper string (quoted
string) containing up to eight characters.

The execution of the PAUSE statement causes the unconditional suspension of the program being executed
pending operator action. In addition to suspending the program, the execution of this statement causes the
optional integer or string following the PAUSE to be displayed at the operators console.

9-13

CONTROLSTATEMENTS l
The program may be resumed at the first executable statement following the PAUSE statement, by means of
a system input message from the operator's console, of the form:

mOK

where mis the mix number of the job. Alternately, the job may be discontinued at this point by means of
a system input message of the form:

mDS

where m is the mix number of the job. The following are valid examples of the PAUSE statement:

PAUSE
PAUSE 2
PAUSE 'JUMP'

RETURN STATEMENT

The executable RETURN statement is a control statement provided to specify the manner in which control
is returned to the calling program unit following the execution of a subprogram.

The proper forms of the RETURN statement are:

RETURN STATEMENT

1. RETURN
2. RETURN a

where a is an integer arithmetic expression.

A SUBROUTINE or FUNCTION subprogram may cause termination of program execution by the
execution of a STOP statement, or return of control to the calling program unit by execution of a RETURN
statement. The point in the calling program at which execution resumes is determined by the form of the
RETURN employed.

A RETURN in a main program is prohibited.

Standard Retu m

The execution of a RETURN statement of the first type causes a standard return to the calling program
unit. For a subroutine, this means the next executable statement following the CALL statement invoking
the subroutine will be the next statement executed. For a function, standard processing of the function
reference will be performed and the calling program unit will continue executing in the standard fashion.

If the END statement of the subprogram is encountered before a RETURN statement is executed, a
standard return will be performed. If no RETURN statement is found in a subroutine or function during
execution, a warning message will be generated.

9-14

CONTROL STATEMENTS

Nonstandard Return

Form 2 of the RETURN statement allows control to be returned to a specified labeled executable statement
in the calling program unit. A nonstandard return from a function is not allowed.

A nonstandard return is indicated in a subprogram by a RETURN followed by an arithmetic expression.
The value of this expression must be an integer. This final value, n, is used to select then-th asterisk(*) in
the dummy argument list of the SUBROUTINE. If n is greater than the number of* items in this list or
if n is less than or equal to zero, program execution is terminated.

The statement label corresponding to the selected asterisk and found in the actual argument list preceded
by an ampersand(&) will be used to identify the statement to which control is to be returned. The actual
argument list of the CALL statement must contain such a statement label in each position where the dummy
argument list of the SUBROUTINE statement contains an asterisk. (See section 12.)

An example of a nonstandard return is provided by the following excerpt:

CALL SUBA(Al ,&33,A2,&20,II)
15 Z=Al +II
20 Z=Z + A2
33 Z:::Z +Al

The called subroutine could be the following:

SUBROUTINE SUBA (A,*,B,*,J)
IF (A) 5,6,7

5 RETURN 1
6 J=J+B

RETURN A+2
7 RETURN

END

In this example, suppose that when the IF statement in the subroutine is reached, A is positive. Then there
will be a branch to statement number 7, which is a normal return. The subroutine will then return to the
calling program unit at the statement following the CALL, statement number 15.

Supposing that A is less than zero, then when the IF statement in the subroutine is reached, there will be a
branch to statement number 5. This is a nonstandard return to the first label in the actual argument list,
since RETURN 1 selects the first asterisk in the dummy argument list. Then the return in the calling pro­
gram unit will be to statement number 33.

If A is equal to zero, when the IF statement in subroutine SUBA is executed, there will be a branch to
statement number 6. Since A= 0, when the arithmetic expression is evaluated, it will read RETURN 2.
This will cause a return to statement number 20 in the calling program unit.

Had a RETURN 3 or RETURN 0 been attempted in SUBA, execution would have been terminated.

9-15

I CONTROL STATEMENTS J
A CALL statement that results in a nonstandard RETURN may be regarded most easily as a CALL followed
by a computed GO TO. For example, the statement:

CALL SUBA(Al ,&33,A2,&20,II)

may be treated as an effectively equivalent replacement for:

CALL SUBA(Al ,II,JUMP)
GO TO (33,20),JUMP

where JUMP is assigned a value of 1 or 2 (or some other value if return is to be standard) by the subroutine.

STOP STATEMENT

The executable STOP statement is provided to allow the termination of an executing program.

The following is the proper format of the STOP statement:

STOP STATEMENT

STOP
or

STOP s

where s is a one- to eight-digit unsigned
integer constant.

The execution of the STOP statement causes the unconditional termination of the execution of the program
being executed. This statement may appear at any point within any program unit except a BLOCK DAT A
subprogram.

The execution of a STOP statement or a CALL EXIT statement (for a program with no subroutine named
EXIT) is the generally accepted manner in which a program may reach error-free termination. The optional
integer following the STOP is displayed on the operator's console.

The following are valid examples of the STOP statement:

9-16

STOP
STOP 99

10. FILE DECLARATION STATEMENT

The FILE declaration statement associates a unit number with a data file. A data file is referenced in a
FORTRAN 1/0 statement with a unit number. By default, the B 1800/B 1700 FORTRAN compiler asso­
ciates the unit numbers 5, 6, and 7 with the card reader, line printer, and card punch files, respectively.
When other than these default associations are required, or additional files are desired, FILE declaration
statements must be used to inform the compiler of the attributes of the files.

Any attempt to access a non-default file without a FILE declaration statement results in a run-time error.

The FILE declaration statement is coded as follows:

Card Columns

1through6

7 through 72

73 through 80

Contents

FILEbb (where b =blank)

Unit number= external file name.

UNIT ==hardware-type, attribute list ...

Sequence number or blank.

The FILE declaration;statement is coded in free-form format, with the exception of card columns 1 through
6. Blanks appearing between specifications in columns 7 through 72 are ignored, and commas are used as
delimiters. If the FILE declaration statement cannot be contained in one card, continuation cards are per­
mitted as defined for the FORTRAN language.

Each FILE declaration statement may contain the description of only one data file. Each data file must
have a unique unit number associated with that file; no unit number may refer to more than one data file.
The unit number must always be included on a FILE declaration statement.

FILE declaration statements must precede the first executable statement of the main program and any inter­
vening cards must be blank or comment cards. The default file descriptions associated with unit numbers
5, 6, and 7 are shown in table 10-1.

Table 10-1. Unit Number/Hardware Type Default Associations

Internal/
Unit Hardware External No.of Blocking

Number Type File-Name Buffers Factor Record Length

5 Card FILES 80 Characters
Reader

6 Line FILE6 120 Characters
Printer

7 Card FILE7 80 Characters
Punch

Individual file attributes listed for each hard ware type in table 10-1 may be redefined in a FILE declaration
statemenit. Those attributes not specifically redefined retain the default condition for that hardware type.

10-1

[FILE DECLARATION STATEMENT I

Example:

FILE 3=CARDIN, UNIT=READER

In the above example, compilation of a program in which unit number 3 has been used to represent ithe card
reader requires the indicated FILE declaration statement to define unit 3 as the card reader to the compiler.

The internal file name is FILE3 and the external file name is CARDIN. All other attributes shown in
table 10-1 for the card reader are assigned by default.

A FILE declaration statement is not required if only unit numbers 5, 6, or 7 are used and the default hard­
ware type associations shown in table 10-1 are assumed.

Example:

N=S

READ(N,20)X,Y,Z
20 FORMAT (3F6.2)

END

In the above example, a simple integer variable is used as a unit number for the card reader. Since the variable
is programmatically assigned, the default unit number, i.e., 5, for the card reader, a FILE declaration state­
ment is not required.

Example:

FILE 4=INPUT, UNIT=READER

N=4

READ (N,20) X,Y,Z
FORMAT (3F6.2)

END

In the above example, a FILE declaration statement is required to inform the compiler that unit number 4
is used to represent the card reader. All other attributes shown :in table 10-1 for the card reader are assigned
by default.

EXTERNAL FILE NAME

A file-name uses the same naming convention as a program-name; that is, it consists of:

a. family-name

b. family-name/ file-identifier

c. dp-id/ family-name/ file-identifier

d. dp-id/family-name

where dp-id is a user disk pack identifier.

10-2

FILE DECLARATION STATEMENT

HARDWARE TYPE

The hardware-type of a data file is specified in a FILE declaration statement by means of the following key
words.

Key Word

PRINTER

READER

PUNCH

TAPE

TAPE9

TAPE7

DISK

DI SKF ILE

DISKPACK

SPO

PTR

PTP

REMOTE

Line Printer.

Card Reader.

Card Punch.

Device Type

7- or 9-track magnetic tape.

9-track magnetic tape.

7-track magnetic tape.

Head-per-track disk or disk pack.

Head-per-track disk.

Disk Pack.

Console Printer.

Paper Tape Reader.

Paper Tape Punch.

Remote Terminal.

The hardware-type must be specified if other than the default devices for unit numbers 5, 6, and 7 are used.

AttributE?-List

The key words which may be used in the attribute-list, together with their meaning, are shown below:

1081882-001

Key Word Meaning

UNLABELED (or UNLABELLED) Unlabeled file (not valid for disk).

BLOCKING= unsigned integer Number of logical records per block.

BUFFERS= unsigned integer Number of buffers.

RECORD= unsigned integer Record length, in characters. The maximum
record size in a FILE declaration statement is
2047 characters. The maximum file size is
also 2047 characters. After compilation, a
file can be modified to contain fewer char­
acters than originally declared; the file can­
not be modified to contain more characters
than originally declared.

LOCK Close with LOCK at EOJ if file still open.

NEW Create a new file even though an old one
exists. If first access is input, a no file
condition will result. Must be specified
to create a new file.

SA VE= unsigned integer Specifies save factor of the number of
days to retain file.

RANDOM Random access technique.

RECORDS.AREA= unsigned integer Number of records per area on disk with
default number of 100. This is rounded
up to the next multiple of blocking factor.

10-3

I FILE DECLARATION STATEMENT I

Key Word

AREAS= unsigned integer

Meaning

The unsigned integer is the number of
areas, with a default of 25.

A FILE declaration statement is required in the compilation deck whenever the source program utilizes disk
or tape files or input/output to the console printer, because no default unit number and hardware type asso­
ciation is recognized for these peripheral devices. The compiler, however, does associate certain default file
attributes with each of these hardware types.

The default file attributes associated with disk, tape, and the console printer are as follows:

Hardware Type

DISK

MAGNETIC TAPE

CONSOLE PRINTER

PAPER TAPE READER

PAPER TAPE PUNCH

Default Attributes

Buffers= 1.
Blocking= 1.
Record = 180 characters.
Records per area = 100.
Number of areas = 25.
Access mode = serial.

Buffers= 1.
Blocking = 1.
Record= 180 characters.

Buffers= 1.
Blocking = 1 .
Record = 70 characters.

Buffers= 1.
Blocking = 1.
Record= 80 characters.

Buffers= 1.
Blocking = 1.
Record = 80 characters.

Association of a unit number with tape or disk or the console printer (by means of a FILE declaration
statement) associates that unit number with the default attributes for the indicated device as shown above.
Individual attributes may, of course, be redefined on the FILE declaration statement. Those file attributes,
however, not specifically redefined retain the default condition.

Example:

FILE 9=DSKFIL, UNIT=DISK, RANDOM, RECORDS.AREA=lOOO

In the above example, unit number 9 is associated with a disk file having 1000 records per area and a random
access mode. All other attributes shown above for disk files are assigned by default.

10-4

11. INPUT/OUTPUT STATEMENTS

INPUT/OUTPUT statements are used to transfer data between external and internal storage. The I/O
statement constructs used in these transfers will be discussed in this section in the following order.

READ statements.
WRITE statements.
PRINT statements.
PUNCH statement.
I/O variable lists.
Action specifiers.
REWIND statement.
BACKSPACE statement.
CLOSE statement.
ENDFILE statement.
LOCK statement.
PURGE statement.
CHANGE statement.
Multi-file tape handling.

In explanations presented in the portions on input and output in this section, the symbols u, r, f, k, 1, m, I
I, and * have the following meanings unless otherwise specified.

Symbol

u

r

f

m

*

1081882-001

Meaning

Unit number or file specifier. The unit number is an integer constant or
simple integer variable whose value identifies the file being used for input
or output. Unless otherwise specified by a FILE declaration statement, it
is assumed at object time that the unit number designates the default
hardware type, in section 10. Unit numbers 5, 6, and 7 are assigned to
card reader, line printer, and card punch files, respectively, by default.

Random record number. It is an integer constant or integer expression
whose value represents a particular record within a random disk file.

Format specifier. It is the label of a FORMAT statement, the name of
an array containing format specifications, or a NAMELIST NAME.

Action specifier. It specifies a statement label to which a branch is
made if one of the following conditions are encountered during execution
of a READ or WRITE statement: (1) a parity error, (2) end-of-file, or
(3) data error.

Input/Output Variable list. It may be a blank or it may contain one or
more variables and/or implied DO loops, in any combination. An output
variable list may also contain an arithmetic expression.

Free-format indicator,

Free-format output specifier. I
11-1

I

I

I

INPUT /OUTPUT ST ATEMEN~

READ STATEMENT

The READ statement allows data. to be read from peripheral storage, converted, and assigned to internal
storage locations indicated by the 1/0 variable list (see definitilon in this section) or format portion of the
statement. The data may be converted during the transfer process as indicated by a formatted READ, or
read without conversion by using an unformatted READ. Provision may also be made to handle errors
incurred during the read.

The proper forms of the READ statement are:

File Referenced

READ STATEMENT

1. READ f,m
2. READ (u,f)m
3. READ (u=r,f)m
4. READ (u,f,l)m
5. READ (u=r,f, l)m
6. READ f
7. READ (u,f)
8. READ (u=r,f)
9. READ (u,f,l)

10. READ (u=r,f, 1)
11. READ (u)m
12. READ (u=r)m
13. READ (u,l)m
14. READ (u=r,1)m
15. READ (u)
16. READ (u=r)
17. READ (u,l)
18. READ (u=r,l)
19. READ/, m
20. READ (u /) m
21. READ (u , I , 1) m

where u and r are integer arithmetic expres­
sions representing a unit number and record
number, respectively; f is a format specifier:
1 is an action specifier list: m is an 1/0 vari­
able list; I is a free-format indicator.

The file is indicated by the unit number, u, except in forms 1, 6, and 19, where u is implicitly declared
to be unit number 5, the card reader.

Record Number for Random Read

A record number may follow the unit number as shown in READ statement forms 3, 5, 8, I 0, 12, 14, 16
and 18 if the file indicated by the unit number was declared RANDOM in the FiLE declaration s1tatement
(see section I 0). The record number must have a value between I and the number of records in the desig­
nated file inclusive. The equal sign separating the unit number and the record number may be replaced by
an apostrophe.

11-2

INPUT/OUTPUT STATEMENTS

The record number is used to position the file at the specified record before the read is performed. After
the READ statement is executed, the file is positioned at the record immediately after the record read.

If the READ statement has a record number, the file must have an accessing technique of RANDOM. Con­
versely, if the record number is not present, the file must be SEQUENTIAL.

Formatted READ Statement

A formatted READ statement is denoted by forms 1 through 10 of the READ statement. Such READ
statements are always associated with a format specifier. When a format is associated with a READ state­
ment, the data transferred is scanned and edited according to the designated format specifications. No 1/0
variable list may occur in a READ statement using a NAMELIST name.

The following are examples of valid formatted READ statements:

READ (5, 1) AB
READ (FILEN, 75) (A(I), 1=3, 10)
READ 12
READ (23, 12345, DATA=l 24) A,B,C
READ (23=12,AF)
READ5,ARRAY
READ (5, ARRAY)
READ (5, B, ERR=2)Y,Z(6),(A(J),J=l ,6)
READ (l=lR-1,NMLST)

Unformatted READ Statement

An unformatted READ statement is denoted by forms 11 through 18. No editing of transferred data is
associated with these forms of the READ statement. (See appendix F for description of unformatted
records).

Execution of an unformatted READ statement inputs one logical record from the file indicated by the unit
number. If an 1/0 variable list is specified as part of the statement, data is transferred to the specified loca­
tions. Transfer occurs as full storage units, and the record accessed should have been generated by un­
formatted WRITE statements. If no 1/0 variable list is specified on an unformatted READ, one record is
skipped in the file indicated by the unit number.

If the 1/0 variable list for an unformatted random READ specifies more data to be transferred than is
present in the record, a DATA error occurs. The 1/0 variable list for an unformatted sequential READ
may transfer more than one record.

Free-Format READ Statement

A free-format READ statement is denoted by forms 19 through 21. A free-format READ statement
reads values from the input file until the 1/0 variable list is exhausted.

Data values in the input file must be separated by a comma (,) character. Blank characters, including
embedded blank characters, are ignored.

1081882·-001 1 1-3

~UT/OUTP~T STATEMEN~

The end of a physical record terminates the current value; any subseque:at value is read from the follow­
ing physical record. Only certain format specifications are permitted for each variable type:

Variable Type

INTEGER
REAL
DOUBLE
COMPLEX
LOGICAL

Format Specifications

I format
I, E, F, and D format
I, E, F, and D format
I, E, F, and D format
L format

If a blank or null field is read, the value defaults to 0 or FALSE.

The following is an example of a free-format READ statement:

LOGICALO
READ (5, / , END=50) T, I, 0

The following data record can be read by the preceding example:

1234.56,227' l

11-4

ll\IPUT/OUTPUT STATEMENTS

WRITE STATEMENT

The WRITE statement allows data to be written to peripheral storage from the internal storage locations
indicated by the I/O variable list or format portion of the statement. The data may be converted during
the transfer process and positioned within records of a file as indicated by a formatted WRITE or written
without conversion by using an unformatted WRITE. Provision may also be made to handle errors incurred
during the write operation.

The proper forms of the WRITE statement are:

WRITE ST A TEMENT

1. WRITE (u,f)m
2. WRITE (u=r,f)m
3. WRITE (u,f, 1)m
4. WRITE (u=r,f, 1)m
5. WRITE (u,f)
6. WRITE (u=r,f)
7. WRITE (u,f, I)
8. WRITE (u=r,f. l)
9. WRITE (u)m

I 0. WRITE (u=r)m
11. WRITE (u, l.)m
12. WRIT~: (u=r,l)m

13. WRITE (u, /) m
14. WRITE (u , I I) m
15. WRITE (u , * /) m
16. WRITE (u , * I I) m

where u and r are integer arithmetic expres-
sions representing a unit number and record
number. respectively: f is a format specifier:
I is an action specifier list: m is an 1/0 vari-
able list; I is a free-format bdicator; * is a
free-format output specifier.

File Referenced

Execution of a WRITE statement writes data from internal storage to peripheral storage. The file is
indicated by the unit number, LL

Record Number for Random WRITE

A record number may follow the unit number as shown in WRITE statement forms 2. 4. 6. 8, I 0.
and 12. The record number must have a value between 1 and the number of records in the file indicated
by the unit number, inclusive. The equal sign separating the unit number and the record number may be
replaced by an apostrophe.

The record number positions the file at the specified record before the write is performed. Other'A'._ise.
the file position is unchanged prior to the write. After the WRITE statement is executed. the file is po­
sitioned at the record immediately following the record written.

1081882-001 11-5

I
I

~IT/OUTPUT STATEMENTS I

If the WRITE statement has a record numb.er, the file must have an accessing technique of RANDOM. Con­
versely, if the record number is not present, the file must be SEQUENTIAL.

Formatted WRITE Statement

A formatted WRITE statement is denoted by forms 1 through 8 of the WRITE statement. Such statements
are always associated with a format specifier. When a format is associated with a WRITE statement, the
data transferred is converted and positioned within the record(s) according to the designated format speci­
fier. No 1/0 variable list may occur in a WRITE statement using a NAMELIST name. The following are
examples of valid formatted WRITE statements:

Examples:

WRITE (6, 1)AB
WRITE (FILEN,75) (A(l),1=3,10)
WRITE (23, 12345,ERR= 12400) 6,A,4,B,3,C
WRITE (23= 12,AF)
WRITE (7 ,ARRAY)
WRITE (6,B,ERR=2)&,Z(6),(A(J),J=l ,6)
WRITE (l=(IR *2)+ l ,NMLST)

Unformatted WRITE Statement

An unformatted WRITE statement is denoted by forms 9 through I 2. No conversion of data is associated
with these forms of the WRITE statement.

Execution of an unformatted WRITE statement writes one or more logical records to the file indicated by
the unit number. The mandatory 1/0 variable list denotes the sequence of values to be contained in the
record. The contents of the indicated storage locations are placed unchanged in the generated record as
full storage units intended to be read by the unformatted READ statement (see appendix F, De~cription
of Unformatted Records).

The unformatted WRITE statement depends on the declared or default size of records within the affected
file. When an unformatted random WRITE statement attempts to transfer more storage units than may be
contained on one record, the program is terminated unless the statement contains a DATA or ERR action
specifier. An unformatted sequential WRITE may transfer more than one record.

Free-Format WRITE Statement

A free-format WRITE statement is denoted by forms 13 tluough 16. A free-format WRITE statement
writes values to the output file until the I/O variable list is exhausted.

Values are written to the output file using the most appropriate format. Trailing zero (0) and blank
characters are removed. If only one slash (/) character is present in the statement (forms 13 and 15),
the values are separated by a comma (,) character and a blank character. If two slash (/) characters
are present in the statement (forms 14 and 16), the values are separated by two blank characters.

11-6

NOTE

Since a comma (,) character is not used to separate values
when using forms 14 and 16, the output cannot be read
using free-format input.

INPUT/OUTPUT STATEMENTS

If the optional asterisk (*) character is present (forms 1 S and 16), the values are preceded by
<variable-name>=. If the value is an expression or an array element, <EXP> is substituted for the
name.

If a value (including the preceding blank character, the trailing comma (,) or blank character, and
<variable-name>= or< EXP>=:, if required) cannot fit on the remaining portion of a record, it is
written to the following record.

Literal strings of 255 characters or less can be written with a free-format WRITE statement if the string fits
within a single record.

The following program segment contains an example of a free-format WRITE statement:

DIMENSION ARRAY(lO)
LOGICAL D
A= 27.2
I= 19
D =.FALSE.
ARRA Y(7) = 1.23
WRITE (3,*//) A,I,D,ARRAY(7),(FLOAT(I)+A)

Execution of this program segment results in the following output:

A=27.2 I=l9 D=F < EXP >=1.23 <EXP>=46.2

PRINT STATEMENT

The PRINT statement receives data from the internal storage locations indicated by the I/O variable list or
format specifier of the PRINT statement, converts the data, and writes it to the line printer. No action
specifier is allowed with this statement, and the unit number is not explicitly specified.

The proper forms of the PRINT statement are:

PRINT STATEMENT

1. PRINT f,m
2. PRINT/ ,m
3. PRINT I I ,m
4. PRINT*/ ,m
5. PRINT* I I, m

where f is a format specifier; m is an I/O
variable list; / is a free-format indicator;
* is a free-format output specifier.

File Referenced

Execution of a PRINT statement writes data from internal storage to one or more records of the implied
unit number 6, a line printer file.

Record Access

The position of the data file is unchanged prior to the execution of the PRINT statement. After such a
statement is executed, the file is positioned at the record immediately after the record(s) written.

1081882·-001 11-6A

!::UT/OUTPUT STATEMENTS JI
L=-----------------·------
Formatted PRINT Statement

A formatted PRINT statement is denoted by form 1. A format item is associated with this statement,
specifying the manner in which the transferred data is edited. This item may be the label of a FORMAT
statement, the name of an array containing format specifications, or a NAMELIST name. When NAME­
LIST I/O is employed, the PRINT statement may not contain an I/O variable list.

Free-Format PR I NT Statement

A free-format PRINT statement is denoted by forms 2 through 5. The free-format PRINT statement
functions like the free-format WRITE statement, except that the unit number is not explicitly specified.

PUNCH STATEMENT

The PUNCH statement receives data from the internal storage locations indicated by the I/O variable list
or format specifier of the statement. No action specifier is allowed with this statement, and the unit
number is not explicitly specified and writes to the CARD PUNCH.

The proper forms of the PUNCH statement are:

PUNCH STATEMENT

1. PUNCH f ,m
2. PUNCH/,m
3. PUNCH I I , m
4. PUNCH*/ ,m
5. PUNCH * I I , m

where f is a format specifier; m is an I/O
variable list; I is a free-format indicator; * is
a free-format output specifier.

The operation of this statement is identical to the operation of the PRINT statl'mcnL except for the unit
number. Every PUNCH statement has the implied unit number 7, a l'ard punch file.

1/0 VARIABLE LISTS

An input variable list m in an input statement specifies the variables to which values are assigned on input.
An output variable list m specifies the variables whose values are transmitted on output. The input and
output variable lists are of the same form. An 1/0 variable list may be a simple 1/0 variable. list, a DO­
implied 1/0 variable list, or a combination of these, each separated by a comma character(,). A simple 1/0
variable list consists of a variable, an array element, an array name, or any combination of these elements.
The following are examples of valid simple 1/0 variable lists:

A,B(3)
XARRAY, ARRAY(2,4)
RESULT

11-6B

INPUT/OUTPUT STATEMENTS

A DO-implied 1/0 variable list is an 1/0 variable list immediately followed by a comma and a DO-implied
specification, all ofwhich are enclosed within a set of parentheses. A DO-implied specification is constructed
in the same manner as the DO-control portion of a DO statement. (See section 9.) Thus, the proper format
of a DO-implied 1/0 variable list is:

(m, v=p,q,i)

or

(rn, v=p,q)

where rn is an 1/0 variable list, v is the single-precision control variable, and p, q, and i are the single pre­
cision variables or constants which are the initial parameter, terminal parameter. and incrementation para-

1081882-001 11-6C

INPUT/OUTPUT STATEMENTS

meter, respectively. The control variable need not appear in the I/O variable list part of this construct. The
following are examples of valid DO-implied I/O variable lists:

(A(I),B,l,C(I,J),l= 1, 10,2)
(IPLOT,COUNT= 1,60)
(X,(Y(I,J),I= 1, 10),Z,J= 1,2)

An I/O variable list may consist of any combination of simple and DO-implied I/O variable lists separated
by commas. Such a list may contain grouping parentheses. The following are examples of valid I/O vari­
able list constructs:

XARRAY(3), XARRAY, (XARRAY(EL),EL==l,20)
(A(l), I= 1,20), (J(l), I= 1,5)
(((Z(I,J ,K), K=l, 10),J=l, 10),I= 1, 10), 7 ,G

Transfer of data to and from storage locations occurs in the order these locations are named in the I/O
variable lists, from left to right. Items named in a DO-implied I/O variable list are referenced repeatedly
until the implied DO is satisfied. The appearance in an I/O variable list of an array element specifies only
that array element, and the appearance of an array name specifies every element declared for the array in
that program unit. These array elements are transferred in the order in which they are stored in the in­
ternal array assigned to the program array. (See discussion of array storage in appendix E.)

An arithmetic expression may appear in the I/O variable list of a WRITE statement, in which case the value
of the expression is used to provide a value for output. If the expression invokes a function, that function
must not cause execution of an 1/0 statement which employs the same data file as the file employed by the
statement using the I/O variable list which contains the expression. Thus, if this I/O statement is executed:

then F must not be a function which contains an I/O statement employing unit number 4, since this is the
file employed by this WRITE statement.

ACTIOIN SPECI Fl ERS

An action specifier is defined as one of the following constructs:

ACTION SPECIFIERS

DATA= s
END= s
ERR= s

where s is an unsigned integer constant cor-
responding to the label on an executable
statement appearing in the same program unit
as the I/O statement.

11-7

[INPUT/OUT~UT STATEMENTS J
DAT A Action Specifier

If the DAT A action specifier appears in a READ or a WRITE statement, then control automatically passes
to statement son the following conditions:

a. For a read (formatted or unformatted random) when the I/O variable list requests more data
than the logical record contains.

b. For random files or sequential formatted files the logical record size is greater than the declared
record size. For sequential unformatted files, the I/O may request more data than the declared
record size.

c. When the input data for a formatted read does not meet the requirements of the format
specifier.

d. On a formatted write when the type of the variable does not match the format specifier.

e. When the random record key is less than l.

f. When the format specification (see section 7) exceeds the record size.

If any of the above conditions occur and the DAT A action specifier is not specified, program execution is
terminated.

END Action Specifier

[f the END action specifier appears in a READ or WRITE statement, then control will automatically pass
to statement s when an end-of-file condition occurs. Such end-of-file conditions occur when the following
actions are attempted by a READ or WRITE statement.

a. Attempting to read a card with an invalid character or question mark (?) in column 1.

b. Attempting to read beyond the last record written on a tape.

c. Attempting to read a record beyond the last record previously written on disk.

d. Reading the EOF mark.

e. Attempting to write beyond the end of the designated number of AREAS specified in the FILE
declaration statement of a disk file.

ERR Action Specifier

lf the ERR action specifier appears in a READ or WRITE statement, then control will automatically pass
to statements when a parity error occurs during the data transfer. The ERR action specifier will avoid
termination of the program at this point, and the next block may be processed if no parity errors occur
in it.

Examples:

The following are valid examples of action specifiers:

11-8

READ(3,END=99)A
WRITE(6= R,35 ,ERR=70,DATA=80)A
READ(ll,85,END=77 ,ERR=78)J ,X,U
WRITE(8'IREC,END=25) ((X(I,J), I= 1, 10),J= 1, 10)

INPUT/OUTPUT STATEMENTS

REWIND STATEMENT

The REWIND statement causes a pointer for the tape or disk file specified by the unit number to be reset to
the beginning of the file.

The general form is:

REWIND STATEMENT

REWIND u

where u is a unit number execution of the
REWIND statement causes the file referenced
by the indicated unit number, u, to be posi-
tioned to its first record. The next I/O state-
ment does not cause an implied open.

If the last reference to the file indicated by the unit number, u, is a WRITE statement, the file is closed and
an ending label is written (tape only) prior to positioning the file to its initial point.

The REWIND statement is undefined for other than single file tape or disk files.

Examples:

REWIND 5
REWIND IUNIT

BACKSPACE STATEMENT

The executable BACKSPACE statement is an auxiliary 1/0 statement which allows a data file to be reposi­
tioned before it is accessed by ah input or output statement. When a BACKSPACE statement is executed,
the file indicated by the unit number is positioned one record before its present position, unless the file is
presently positioned at its initial point, in which case no action is initiated.

The proper form of the BACKSPACE statement is:

BACKSPACE STATEMENT

BACKSPACE u

where u is a unit number.

A possible use of the BACKSPACE statement is to allow the last record accessed by an input or output
statement to be the next record accessed when such a statement is executed.

11-9

I INPUT/OUTPUT STATEMENTS J
CLOSE STATEMENT

The executable CLOSE statement is an auxiliary I/O statement which allows a data file to be released after
the program has performed the necessary operations on it. The proper form of the CLOSE statement is:

CLOSE STATEMENT

CLOSE u

where u is a unit number.

The execution of a CLOSE statement causes the file designated by the unit number to be returned to
system control. The program may access the file again with a READ or a WRITE statement.

ENDFILE STATEMENT

The executable ENDFILE statement is an auxiliary I/O statement which allows an ENDFILE record to be
written and the file to be closed. The ENDFILE record is written on the output file indicated by the unit
number at the point at which that file is currently positioned. The proper form of the ENDFILE statement
follows:

ENDFILE STATEMENT

ENDFILE u

where u is a unit number.

The ENDFILE statement is intended for use with multi-file tape. When an ENDFILE statement follows a
WRITE statement on the file, an ENDFILE record is written and the tape is positioned such that the next
record written will follow the ENDFCLE record. When an ENDFILE follows a READ of the last record of
a file, the tape is positioned to the next file on the tape. If the record was not the last record of the file,
the next READ will read the next record of the file. When an ENDFILE follows a REWIND or another
ENDFILE designating the same file, the ENDFILE is ignored. When a program employs multi-file tapes,
each file on the tape must have been closed with an ENDFILE before the next file may be written on the
tape. The tape is not rewound.

LOCK STATEMENT

The executable LOCK statement is an auxiliary I/O statement which allows a data file to be closed and
saved after the program has performed the necessary operations on it.

The proper form of the LOCK statement is:

LOCK ST A TEMENT

LOCKu

where u is a unit number.

1 1-10

INPUT/OUTPUT STATEMENTS

The execution of a LOCK statement removes the file indicated by the unit number from the control of the
program and saves it.

If the file indicated by the unit number is a tape file, the file is closed and the tape is rewound.

If the file indicated by the unit number is a disk file, the file is removed from program control and is placed
in the disk directory. A disk file generated by a FORTRAN program will not remain on disk unless that
file is closed with a LOCK statement or LOCK is specified in the FILE declaration statement and the file
is not explicitly closed. If the file indicated by the unit number is not a disk file, the file is made inaccessible
to the system until it is manually reset. This applies to devices (such as tape) accessed directly by the pro­
gram but not to devices (such as line printers and card readers) normally accessed with backup files.

The following are examples of valid LOCK statements:

LOCK TAPENO - 1
LOCK 22
LOCK l+J

PURGE STATEMENT

The executable PURGE statement is an auxiliary 1/0 statement which allows a data file to be closed, purged
from the system, and its space to be released for other use.

PURGE STATEMENT

PURGEu

where u is a unit number.

The following are examples of valid PURGE statements:

PURGElO
PURGE FILENO
PURGE 9 + KFILE

A purged tape file may be reused. Purging a card reader, card punch, line printer, or remote file simply
closes the file.

CHANGE STATEMENT

The CHANGE statement is used to change the file name of a file on a multi-file tape. The proper syntax
for the CHANGE statement is:

CHANGE STATEMENT

CALL CHANGE (unit,n)

where unit is an arithmetic expression desig-
nating a unit number, n may be either an in-
teger array name of at least eight integer
words or a string literal of thirty characters.

11-11

E --------]
UTPUT STATEMENTS

The format for the array contents or the literal must follow the following rules:

a. The first ten characters represent the pack-id (meaningless for tape, but still required). These
ten characters must be blank.

b. The second ten characters represent the family-name. This name must be the same for each
file going to the same tape.

c. The third ten characters represent the file-name.

Restrictions:

a. The slash character is not allowed.

b. If the array is dimensioned less than eight integer words, an INVALID SUBSCRIPT error will
occur during execution.

c. There is no syntax for changing the record or block s.ize.

MUL Tl-FILE TAPE HANDLING

The ENDFILE statement is used to close all but the final file on a multi-file tape. A CLOSE on the
final file causes the tape to be rewound after the ENDFILE record is written. The following statements
cause a close on the file: LOCK, REWIND, CLOSE, and ENDFILE. If a statement which causes a close
is executed, then any statement following it which causes a close will be ignored unless an I/O which
causes an implied open has occurred in the interim.

If an ENDFILE statement is followed by a REWIND statement, and both specify the same unit number
for tape, there is no error and the tape is not rewound. In this case a CLOSE statement can be executed
to write an ENDFILE record, CLOSE and rewind the tape.

The following sequence of events is used to create a multi-file tape;

a. WRITE each record of the first file.

b. Write an ENDFILE record.

c. CHANGE the file name.

d. WRITE each record of the current file.

e. Repeat evens b through d as desired.

f. CLOSE the file.

11-12

INPUT/OUTPUT STATEMENTS

The following sequence of events is used to read a multi-file tape:

a. CHANGE the file name to the name of the first file desired.

b. READ each record in the first file.

c. Read the ENDFILE record.

d. CHANGE the file to the next file desired.

e. READ each record in the current file.

f. Repeat events c through e as desired.

g. CLOSE the file.

In event d, the CHANGE statement may not specify a file name that occurs before the last file read.
In ord~r to read a previous file, use a CLOSE instead of an ENDFILE statement. The CHANGE state­
ment following a CLOSE statement may specify any file on the tape. The next READ operation reads
the first record of that file.

After reading the records from the file, the ENDFILE statement is used only after an END branch has
been taken. Otherwise, the tape will be in the wrong position for a subsequent READ operation.

Exceptions:

a. The ENDFILE statement can occur before the first record of a file has been read with no
effect.

b. The ENDFILE statement can occur after all records have been read but before the END
branch has been taken. The result is the same as if the END branch had been taken.

A READ of the file without changing the name to a following file will cause an 1/0 error as a result
of reading beyond the end of.the file. A WRITE without changing the file name will cause a new file of
the same name to be written.

If a CHANGE statement is executed followed by a READ, the READ will cause the rest of the tape to be
searched for the new file name and locked if the file is not found. A WRITE will cause a new file to be
written.

ZIP STATEMENT

The proper syntax for the ZIP statement is:

ZIP ST A TEMENT

CALL ZIP(s)

where s is a quoted string, a Hollerith literal
or an integer array name; it may be any valid
control string.

11-13

I INPUT/OUTPUTSTATEMENTS J

The first character of the control string may be a "?". If an array name is specified, it must be dimensioned
with 128 or fewer elements..

The maximum number of characters allowed in the ZIP statement is 512.

1 1-14

12. SUBPROGRAMS, INTRINSIC FUNCTIONS, AND INTRINSICS

Subprograms are program units which may be invoked in the main program as a separate executable proce­
dure, or which may be used for data initialization.

SUBROUTINE SUBPROGRAM

A subroutine is a sequence of statements initiated by a SUBROUTINE statement and terminated by an
END statement.

The nonexecutable SUBROUTINE statement indicates the beginning of a subroutine subprogram and may
specify the dummy arguments employed in that subprogram.

The proper forms of the SUBROUTINE statement are as follows:

SUBROUTINE Names

SUBROUTINE ST A TEMENT

SUBROUTINE s
or

SUBROUTINE s (d)

where sis a SUBROUTINE name, and d is a
list of dummy arguments separated by single
commas.

A SUBROUTINE name is constructed in the same manner as a variable name. No type is associated with
this name, and once a symbolic name is used as a SUBROUTINE name it may not be used for any other
purpose in that program.

Dummy Argument Lists

Each element of a dummy argument list may be a simple variable name, an array name, or an asterisk(*).
If a dummy argument is a simple variable name, the actual argument in the subroutine CALL must be a
variable name, an array element, or an expression. The actual argument must be of the same type as the
dummy argument.

If an array appears as a dummy argument, the corresponding actual argument may be an array or array
element. In the latter case, the actual argument may be thought of as an array whose first element is that
array element. Array handling between actual and dummy argument lists is discussed in the section on the
CALL statement in section 9. When a dummy argument is an array, it may have adjustable dimensions in
the declaration in the subprogram, but such dimensions may only be variables appearing in the dummy
argument list or as an element of a COMMON block. Thus, the following two statements reflect proper
usage of these constructs:

SUBROUTINE SUBS(A,N)
REAL A(N,6)

Care should be· taken that the dummy array is not dimensioned larger than the corresponding actual array,
since this may result in an invalid subscript condition when the dummy array is referenced.

12-1

SUBPROGRAMS, INTRINSIC J
F.UNCTIONS, AND INTRIN~IC~-

An asterisk in a dummy argument list reserves that position in the list for a statement label preceded by an
ampersand (&)in the actual argument list; this argument is used in connection with nonstandard RETURN
statements. (See section 9 .)

Any slashes appearing in the dummy argument list will be ignored. A simple variable, array or array element
will be referenced by name, rather than value, unless specified otherwise in the CALL statement by the use
of parentheses or a unary+ or-. (See section 9.)

Use of Subroutines

The executable statements in a subroutine body are executed when the subroutine is invoked by a CALL
statement. The subroutine may cause program termination by executing a STOP statement or may cause
control to subsequently return to the calling program unit by means of the RETURN statement.

The following are valid examples of SUBROUTINE statements:

SUBROUTINE SUBA
SUBROUTINE MULTMT(ARRAYl, ARRAY2, *)
SUBROUTINE MAX(A,B,C,D,E, * ,F)

Direct recursion is prohibited. Indirect recursion is allowed, but only parameters passed by value and
partially complete expressions will be unique upon rn-entering the subroutine.

FUNCTION SUBPROGRAMS AND STATEMENT FUNCTIONS

FORTRAN FUNCTIONS are procedures which return a single value to a calling program unit at the point
at which they are referenced. A function may consist of a program unit similar to a SUBROUTINE sub­
program, called a FUNCTION subprogram, or may be declared as a single expression using a statement func­
tion declaration appearing in the program unit in wh11,.,h it is referenced.

Function Subprogram

A function subprogram is a sequence of statements initiated by a FUNCTION statement and terminated by
an END statement.

FUNCTION Statement

The nonexecutable FUNCTION statement indicates the beginning of a function subprogram and specifies
the dummy arguments employed in that subprogram to obtain the function value.

The proper forms of the FUNCTION statement are as follows:

12-2

FUNCTION STATEMENT

FUNCTION f(d)
or

t FUNCTION f(d)

where f is a FUNCTION name, d is a list of
dummy arguments separated by single commas,
and t is a type as defined in section 5.

FUNCTION Name

SUBPROGRAMS, INTRINSIC
FUNCTIONS, AND INTRINSICS

A FUNCTION name is constructed in the same manner as a variable name. A type is associated with this
symbolic name which indicates the type of the value returned when the function is referenced. Default
types are assigned to FUNCTION names in the same manner as variable and array names. FUNCTION
names beginning with the letters A through H, and 0 through Zand $are typed REAL, by default and
FUNCTION names beginning with the letters I through N are typed INTEGER, by default.

The default type associated with a FUNCTION name may be altered using the item t in the FUNCTION
statement. For example, the function COMPO will be of type LOGICAL if it is initiated by a FUNCTION
statement of the form:

LOG~CAL FUNCTION COMPO (A)

When a function is of a non-default type, then the FUNCTION name must appear in an appropriate type
statement in every program unit in which that function is referenced. For example, a program unit referen­
cing the preceding function must contain a statement of the sort:

LOGICAL COMPO

Once a symbolic.name has b~en used as a FUNCTION name, it may not be used for any other purpose in
that program. Such a name may appear on the left side of an equal sign in an assignment statement only in
the body of the function subprogram. The value to be returned must be assigned to the FUNCTION name
in this manner before a RETURN is executed.

Dummy Argument Lists

The list of dummy arguments in a FUNCTION statement is defined in exactly the same manner as the same
portion of a SUBROUTINE statement, except nonstandard returns are not allowed. Every FUNCTION
statement must contain at least one dummy argument.

The following is an example of a valid FUNCTION subprogram:

FUNCTION MINV AL(A,K)
REAL MINVAL
LOGICAL NOMIN
DIMENSION A(K)
COMMON NOMIN
MINVAL = A(l)
DO 20 1=2,K
IF(A(I)-MINV AL) 10,20,20

10 MINV AL = A(I)
NOMIN = .TRUE.

20 CONTINUE
RETURN
END

''Statement Function

A statement function is a function which may be expressed as one statement. It has the same general form
as an assignment statement, except that the FUNCTION name and dummy argument list appear to the left
of the :replacement operator. This statement is called a statement function declaration.

12-3

[
SUBPROGRAMS, INTRINSIC J
FUNCTIONS, AND INTRIN~ICS _

Statement Function Declaration

A statement function declaration is a nonexecutable statement of the form:

STATEMENT FUNCTION DECLARATION

f(d)=e

where f is a FUNCTION name, dis a list of
dummy arguments separated by single commas,
and e is an expression.

A statement function is local to the program unit in which the statement function declaration appears. It
is referenced in that program unit exactly like any other function and may not be referenced by any other
program unit.

A statement function must precede the first executable statement in the program unit and follow any speci­
fication statements.

Function Type·

The type of the value returned when a statement function is referenced depends upon the type associated
with the FUNCTION name. A default type is associated with this name in the same manner as a variable
name. This default type may be changed by the appearance of the FUNCTION name in a type statement
in the same program unit.

For example, the following is a valid combination of statements:

REAL MAX
LOGICAL FNAME,FLAG,V ALID
FNAME(SUM,MAX) = SUM.GT.MAX

FLAG==V ALID.AND.FNAME(TOT AL,BUDGET)

END

Dummy Argument List

The list of dummy arguments in a statement function may contain only variable names.

Use of Functions

A function is executed when a function reference is encountered in an expression. The value obtained from
the function execution is returned to the point of the function reference ..

A function reference has the form: f(a), where f is the FUNCTION name and a is a list of actual arguments.

Execution of the function begins with the first executable statement following the FUNCTION statement.

12-4

SUBPROGRAMS, INTRINSIC
FUNCTIONS, AND INTRINSICS

The actual argument list of a FUNCTION subprogram may contain the same items as the actual argument
list of a CALL statement, except for labels. When a statement function is referenced, the actual argument
list may contain only expressions.

If a function reference occurs in the output list_ of a WRITE statement, the execution of that function may
not cause any WRITE statement to be executed.

Recursion is not permitted in FUNCTION subprograms or statement functions.

Array handling in FUNCTION subprograms is performed in the same manner as for subroutines. Slashes in
the dummy argument list will be ignored.

BLOCK DATA SUBPROGRAM

The BLOCK DATA subprogram is a nonexecutable program unit which has as its first statement a BLOCK
DATA statement. The BLOCK DATA subprogram may not contain any executable statements and is used
to initialize elements in labeled and unlabeled COMMON to predetermined values. Only one BLOCK DATA
subprogram is allowed per program.

The proper form of the BLOCK DATA statement is as follows:

BLOCK DATA STATEMENT

BLOCK DATA

Note that the BLOCK DATA subprogram is only a means whereby elements in COMMON may be initialized
at compile time. These elements, of course, may be reassigned a value at any time during the execution of
the program.

The BLOCK DATA subprogram is a nonexecutable program unit whose initial statement is a BLOCK DATA
statement. The statements following the BLOCK DAT A statement define the elements in COMMON to be
initialized and only the explicit type, DIMENSION, COMMON, EQUIV ALEN CE, and DATA declaration
statements may be used. An END statement must physically be the last statement in the subprogram.

The construction of BLOCK DAT A subprograms is subject to the following restrictions:

a. A BLOCK DATA subprogram must contain at least one COMMON statement.

b. All elements of a COMMON block up to and including the last element to be initialized must
appear in the COMMON statement list even though some of those elements are not to be initial­
ized.

c. All type, dimension, or equivalence information associated with the variables or arrays in a
COMMON block must be declared in the BLOCK DATA subprogram.

d. There can be only one BLOCK DATA subprogram in a program.

e. More than one COMMON block may be initialized by a BLOCK DATA subprogram.

12-5

SUBPROGRAMS, INTRINSIC -] FUNCTIO_NS, AND INTRINSICS

Example:

BLOCK DATA
LOGICAL LI, L2
DOUBLE PRECISION D(2)
COMMON/BLOC! /I,R,Ll /BLOC2/M,D,C,L2
DIMENSION R(3), M(2,2)
DATA D/2*1.92837465DO/
DATA I,R/456, 2*1.56, 5.1/, L2/ .TRUE./
END

in the above example, elements in the common blocks labeled BLOCl and BLOC2 are to be initialized;
therefore, all the elements in these blocks up to and including the last to be initialized are listed in a COMMON
statement. This is permissible, as more than one COMMON block may be initialized by a block data sub­
program. All type and dimension information associated with the COMMON blocks is declared by the ex­
plicit type and DIMENSION statements. As required, the initial and last statement of the subprogram are
respectively the BLOCK DA TA and END statements.

INTRINSIC FUNCTIONS

Intrinsic functions may be considered to be function subprograms which are known to the compiler and
need not be supplied in the program.

Table 12-1 denotes the intrinsic function names recognized by the B 1800/B 1700 FORTRAN compiler.
The type of the value returned by the intrinsic function reference is indicated as are the number and types
of actual arguments passed to the intrinsic function. A brief description and definition of the function
performed by each intrinsic function is also given. In such descriptions, Al and A2 represent the first and
second arguments passed to the intrinsic function, respectively. Multiple arguments must always be separated
by single commas; such arguments must agree in number and type with the specification.

Intrinsic function names whose types do not agree with the default types which would be assigned to their
names need not be named in type statements in the program units in which they are referenced. Intrinsic
functions differ from other functions in this respect.

Most intrinsic functions may be redefined by the user in a function subprogram. The function subprogram
may be called by any name, including the name of the function it is replacing. The user's function sub­
program will not be entered in the system's intrinsic function file (FOR.INTRIN file) and must be compiled
with the calling program unit each time its use is desired. Some intrinsic functions may not be redefined by
the user with the same name as the intrinsic function.

Table 12-1 contains a list of intrinsic functions including their definitions, argument types, and function
performed. Those that cannot be replaced are marked with a single asterisk (*).

12-6

SUBPROGRAMS, INTRINSIC
FUNCTIONS, AND INTRINSICS

Table 12-1. B 1800/P 1700 FORTRAN Intrinsic Functions

Intrinsic Intrinsic
Function Function Argument Number of

Name Type Type Arguments Function Performed Definition

ABS* Real Real Absolute value IAll

ACOS** Real Real Arc cosine ARCCOS (Al)

AIMAG* Real Complex Obtain imaginary part

AINT* Real Real Truncation Largest integer< IAl I

ALGAMA Real Real Log Gamma function LN Gamma (Al)

ALOG Real Real Natural logarithm LN (Al)

ALOGlO Real Real 1 Common logarithm LOG (Al)

AMAXO* Real Integer >2 Choosing largest value MAX(Al,A2, ...)

AMAXl* Real Real >2 Choosing largest value MAX(Al,A2, ...)

AMINO* Real Integer >2 Choosing smallest value MIN(Al ,A2, ...)

AMINI* Real Real >2 Choosing smallest value MIN(Al,A2, ...)

AMOD* Real Real 2 Remaindering Al(MOD A2)

AND* Real Real 2 36-Bit logical product AND(Al,A2)

ARCOS Real Real Arc cosine ARCCOS(Al)

AR SIN Real Real Arc sine ARCSIN(Al)

ASIN** Real Real 1 Arc sine ARCSIN(Al)

ATAN Real Real Arctangent ARCTAN(Al)

ATAN2 Real Real 2 Arctangent ARCTAN(Al/A2)

CABS* Real Complex Absolute value IAll

ccos Complex Complex Trigonometric cosine COS(Al)

CEXP Complex Complex Exponential e**Al

CLOG Complex Complex Natural logarithm LN(Al)

CMPLX* Complex Real 2 Create complex (Al,A2)

CONJG* .complex Complex Complex conjugate

cos Real Real 1 Trigonometric cosine COS(Al)

COSH Real Real Hyperbolic cosine COSH(Al)

COT AN Real Real Trigonometric cotangent COT(Al)

12-7

SUBPROGRAMS, INTRINSIC J
FUNCTIONS, AND INTRINSICS

Table 12-1. B 1800/B 1700 FORTRAN Intrinsic Functions (Cont)

Intrinsic Intrinsic
Function Function Argument Number of

Name Type Type Arguments Function Perlormed Definition

CSIN Complex Complex Trigonometric sine SIN (Al)

CSQRT Complex Complex Square root j Al

DABS* Double Double Absolute value !All

DARCOS Double Double Arc cosine ARCCOS (Al)

DARSIN Double Double Arc sine ARCSIN (Al)

DATAN Double Double Arctangent ARCTAN(Al)

DATAN2 Double Double 2 Arctangent ARCTAN(Al/A2)

DBLE* Double Real Express single precision
argument in double form

DCOS Double Double Trigonometric cosine COS(Al)

DCOSH Double Double Hyperbolic cosine COSH(Al)

DCOTAN Double Double Trigonometric cotangent COT(Al)

DDIM* Double Double 2 Posit:lve difference Al-MIN(Al ,A2)

DERF Double Double Error function Error Function(Al)

DERFC Double Double Error function 1-Error Function(Al)

DEXP Double Double Exponential e**(Al)

DEFLOAT* Double Integer Type of conversion Conversion from integer
to double precision

DGAMMA Double Double Function Gamma(Al)

DIM* Real Real 2 Positive difference AI-MIN(Al,A2)

DINT* Double Double Truncation Largest integer ::; IAI I

DLGAMA Double Double Log Gamma function LN Gamma(Al)

DLOG Double Double Natural logarithm LN(Al)

DLOGlO Double Double Common logarithm LOG(AI)

DMAXI* Double Double >2 Choosing largest value MAX(Al ,A2, ...)

DMINI * Double Double >2 Choosing smallest value MIN(Al ,A2, ...)

DMOD* Double Double 2 Remaindering Al(MOD A2)

DSIGN* Double Double 2 Transfer of sign (Sign of A2)* IAI I

12-8

SUBPROGRAMS, INTRINSIC
FUNCTIONS, AND INTRINSICS

Table 12-1. B 1800/B 1700 FORTRAN Intrinsic Functions (Cont)

Intrinsic Intrinsic
Function Function Argument Number of

Name Type Type Arguments Function Performed Definition

DSIN Double Double Trigonometric sine SIN{Al)

DSINH Double Double Hyperbolic sine SINH{Al)

DSQRT Double Double Square root JM
DTAN Double Double Trigonometric tangent TAN{Al)

DTANH Double Double Hyperbolic tangent TANH{Al)

ERF Real Real Error function Error Function(A 1)

ERFC Real Real Error function !-Error Function{ Al)

EXP Real Real Exponential e**Al

FLOAT* Real Integer Type of conversion Conversion from
integer to real

GAMMA Real Real Gamma function Gamma{ Al)

HFIX* Integer Real Type conversion Conversion from real
to integer

IA.BS* Integer Integer Absolute value IAll

IDIM* Integer Integer 2 Positive difference Al-MIN{Al ,A2)

ID INT* Integer Double Truncation Largest integer -::; IA! I

IFIX* Integer Real TyJ1e conversion Conversion from real
to integer

INT* Integer Real Truncation Largest integer< IA! I

!SIGN* Integer Integer 2 Transfer of sign (Sign of A2) * IA! I

LGAMMA** Real Real Log Gamma function LN Gamma{ Al)

LOG** Real Real Natural logarithm LN{Al)

LOGlO** Real Real Common logarithm LOG{Al)

MAX*,** Integer Integer ~2 Choosing largest value MAX{Al,A2, ...)

MAXO* Integer Integer >2 Choosing largest value MAX{Al ,A2, ...)

MAXI* Integer Real >2 Choosing largest value MAX{Al,A2, ...)

MIN*,** Integer Integer ~2 Choosing smallest value MIN{Al,A2, ...)

MINO* Integer Integer ~2 Choosing smallest value MIN{ Al ,A2, ...)

12-9

SUBPROGRAMS, INTRINS~C l
FUNCTIONS, AND INTRINSIC~

Table 12-1. B 1800/B 1700 FORTRAN Intrinsic Functions (Cont)

Intrinsic Intrinsic
Function Function Argument Number of

Name Type Type Arguments

MINI* Integer Real 2:: 2

MOD* Integer Integer 2

OR* Real Real 2

RANDOM Real Integer

REAL* Real Complex

SIGN* Real Real 2

SIN Real Real

SINH Real Real

SNGL* Real Double

SQRT Real Real

TAN Real Real

TANH Real Real

TIME*** Integer Integer

* These intrinsic functions cannot be redefined.

Function Performed

Choosing smallest value

Remaindering

36-bit logical sum

RancLi>m number generator.
Argument is updated by the
intrinsic function.

Obtain real part

Transfer of sign

Trigonometric sine

Hyperbolic sine

Obtain most significant
part of double precision
argument

Square root

Trigonometric tangent

Hyperbolic tangent

Time function

Definition

MIN(Al ,A2, ...)

Al(MOD A2)

OR(Al,A2)

(Sign of A2) * JAl I

SIN(Al)

SINH(Al)

TAN(Al)

TANH(Al)

MCP

** The intrinsic functions MAX, MIN, LOG, LOGlO, ASIN, ACOS, and LGAMMA are identical to the
intrinsic functions MAXO, MINO, ALOG, ALOGlO, ARSIN, ARCOS, and ALGAMMA, respectively.

12-10

The argument of the TIME function must be the integer value 1, 2, 3, or 4 where:

l =time in 1/10 second
2 = time as HHmm
·3 =Julian date YYDDD
4 ;;:: date as YYMMDD

SUBPROGRAMS, INTRINSIC
FUNCTIONS, AND INTRINSICS

Table 12-2 contains a list of argument restrictions for the intrinsic functions.

Table 12-2. B 1800/B 1700 FORTRAN Intrinsic Function Restrictions

Intrinsic
Function

ACOS (Al)

ALGAMA (Al)

ALOG (Al)

ALOGlO (Al)

ARCOS (Al)

ARSIN (Al)

ASIN (Al)

ATAN (Al)

ATAN2 (Al,A2)

CABS (Al)

ccos (Al)

CEXP ('.Al)

CLOG (Al)

cos (Al)

COSH (Al)

COT AN (Al)

CSIN (Al)

CSQRT (Al)

DARCOS (Al)

DARSIN (Al)

DAT AN (Al)

DATAN2 (Al,A2)

DCOS (Al)

DCOSH (Al)

Restrictions

-1. < = Al < = 1.

0 < Al < = 1000) Al NOT = 0
AINT (Al) NOT) FOR Al < 0
AMOD(AINT(Al),2) NOT = 0 FOR Al < 0

Al> 0

Al> 0

-1, < = Al < = 1.

=1. < = Al < = 1.

-1. < = Al < + 1.

No restriction

NOT Al = A2 = 0

No restriction

-176 <IMAGINARY PART < 176

-177 <REAL PART <176

NOT REAL=IMAGINARY=O, NOT REAL= 0

ABS(Al+l.5707963) < = 2**24

-177 <Al < 176

AMOD(ABS(Al).3.141593) > l .E-06
ABS(l :5707963-Al) < = 2**24

-176 <IMAGINARY PART< 176

ABS(REAL PART) < = 0

-1. <Al < = 1.

-1. < = Al < = 1.

No restriction

NOT Al == A2 = 0

ABS(Al +1.57079632679489662) < = 2**60

-177 <Al < 176

12-11

SUBPROGRAMS, INTRINSIC J
FUNCTIONS, AND INTRINSICS

Table 12-2. B 1800/B 1700 FORTRAN Intrinsic Function Restrictions (Cont)

12-12

Intrinsic
Function

DCOTAN

DERF

DE RFC

DEXP

DGAMMA

DINT

DLGAMA

DLOG

DLOGlO

DMOD

DSIN

DSINH

DSORT

DTAN

DTANH

ERF

ERFC

EXP

GAMMA

LGAMMA

LOG

LOG IO

SIN

SINH

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al,A2)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(Al)

(AI)

(Al)

Restrictions

DMOD(ABS(Al),3.14159265358979324D+OO) = 1.D-06
ABS(l.5707963267948966 - Al) < = 2**60

No restriction

No restriction

-177 <Al < 176

-17 <Al < = 58, Al NOT = 0
DINT(Al) NOT = Al FOR Al < 0

No restriction

-17 <Al < 1000, Al NOT = 0
DINT(Al) NOT = Al FOR Al < 0
DMOD(DINT(Al),2) NOT = 0 FOR Al < 0

Al> 0

Al> 0

Al NOT = 0

ABS(Al) < = 2**60

-177 <Al < 176

Al < = 0

ABS(Al) < = 2**60

No restriction

No restriction

No restriction

-177 <Al < 176

-17 < Al < 58, Al NOT = 0
AINT(Al) NOT = Al FOR Al < 0

-17 <Al < 1000, Al NOT = 0
AINT(Al) NOT = Al FOR Al < 0
AMOD(AINT(Al),2) NOT = 0 FOR Al < 0

Al> 0

Al< 0

ABS(Al) < 2**24

-177 <Al < 176

SUBPROGRAMS, INTRINSIC
FUNCTIONS, AND INTRINSICS

Table 12-2. B 1800/B 1700 FORTRAN Intrinsic Function Restrictions (Cont)

INTRINSICS

Intrinsic
Function

SORT (Al)

TAN (Al)

TANH (Al)

Restrictions

Al<= 0

ABS(Al) < = 2**24

No restriction

Table 12-3 contains a list of intrinsics, and includes a brief explanation of each intrinsic. Intrinsics are not
directly accessible by the FORTRAN program, but are bound in to perform 1/0, formatting, and other im­
plicit functions of the FORTRAN program.

Intrinsic

.ARFMT

.AUXIO

.CPWRD

.CPWRI

.CPWRR

.CXDIV

.CXMUL

.DERR

.DPWRD

.DPWRI

.DPWRR

.ERROR

.FIXEC

.FSLH

.FT

.FTMAK

.IERR

.IPWRD

.IPWRI

.IPWRR

.IRFR

.IRFW

.IRUR

.IRUW

.ISFR

.ISFW

.ISNR

1081882-001

Table 12-3. List of Intrinsics

Explanation of Responsibility

ARRAY FORMAT

AUXILIARY INPUT/OUTPUT STATEMENTS-POSITIONS AND CLOSES

COMPLEX RAISED TO DOUBLE-PRECISION POWER

COMPLEX RAISED TO AN INTEGER POWER

COMPLEX RAISED TO A REAL POWER

COMPLEX DIVIDE

COMPLEX MULTIPLY

DOUBLE-PRECISION DIVIDE BY ZERO, EXPONENT OVERFLOW AND UNDERFLOW

DOUBLE-PRECISION BASE RAISED TO A DOUBLE-PRECISION EXPONENT

DOUBLE-PRECISION BASE RAISED TO AN INTEGER EXPONENT

DOUBLE-PRECISION BASE RAISED TO A REAL EXPONENT

DUMPS MEMORY, PRINTS AN ERROR MESSAGE AND STOPS

SERVICE ROUTINE FOR 1/0 SYSTEM

PROCESSES A"/" FIELD SEPARATOR IN A FORMAT STATEMENT

PROCESSES A "T" FIELD DESCRIPTOR IN A FORMAT STATEMENT

CALLED AT BOJ FOR EACH FILE ASSOCIATED WITH THE PROGRAM

INTEGER DIVIDE BY ZERO

INTEGER BASE RAISED TO A DOUBLE-PRECISION EXPONENT

INTEGER BASE RAISED TO AN INTEGER EXPONENT

INTEGER BASE RAISED TO A REAL EXPONENT

INITIALIZES RANDOM FORMATTED READS

INITIALIZES RANDOM FORMATTED WRITES

INITIALIZES RANDOM UNFORMATTED READS

INITIALIZES RANDOM UNFORMATTED WRITES

INITIALIZES SERIAL FORMATTED READS

INITIALIZES SERIAL FORMATTED WRITES

INITIALIZES SERIAL NAMELIST READ

12-13

I

I

I

I

I

~;ROGRAMS, INTRINSIC~
~~-1-0NS, AND INTRINS'~

Intrinsic

.ISNW

.ISSR

.ISSW

.ISUR

.ISUW

.MTS PE

.NERR

.NLEWR

.NLNWR

.NNAME

.NNEXT

.NVAL

.NWRIT

.PAUSE

.RAAD

.RASU

.RCAA

.RCAF

.RCAN

.RCAS

.RCFMT

.RCSA

.RCSF

.RCSS

.PCSU

.RDAA

.RDAF

.RDAN

.RDAS

.RDAU

.RDSA

.RDSF

.RDSN

.RDSS

.ROSU

.READD

.READR

.RERR

.RIAA

.RIAF

12-14

Table 12-3. List of Intrinsics (Cont)

Explanatiion of Responsibility

INITIALIZES SERIAL NAMELIST WRITE
INITIALIZES SERIAL FREE-FORMAT READ
INITIALIZES SERIAL FREE-FORMAT WRITE
INITIALIZES SERIAL UNFORMATTED READS
INITIALIZES SERIAL UNFORMATTED WRITES
GETS THE NEXT FORMAT CONVERSION SPECIFIER
NAMELIST error routine
NAMELIST ERROR MESSAGE WRITE ROUTINE
NAMELIST NAME PLACED IN THE BUFFER
GETS NAME FROM NAMELIST - ALSO "&<name> "AND "&END"
NAMELIST - CHECKS END OF BUFFER AND READS NEXT RECORD

GETS A NAMELIST VALUE
WRITES NAMELISTS - CAUSES MCP COMMUNICATE
HANDLES "PAUSE" and "STOP" STATEMENTS

READS ANY UNFORMATTED ARRAY
READS ANY UNFORMATTED SCALAR
READ COMPLEX ARRAY WITH ARRAY FORMAT
READS FORMATTED COMPLEX ARRAY
READS COMPLEX NAMELIST ARRAY
READS COMPLEX FREE-FORMAT ARRAY
FORMAT CONVERSION FOR READ
READ COMPLEX SCALAR WITH ARRAY FORMAT
READS A COMPLEX FORMATTED SCALAR
READS COMPLEX FREE-FORMAT SCALAR
READS COMPLEX UNFORMATTED SCALAR
READ DOUBLE ARRAY WITH ARRAY FORMAT
READS DOUBLE-PRECISION FORMATTED ARRAY
READS DOUBLE-PRECISION WORD NAMELIST ARRAY
READS DOUBLE-PRECISION FREE-FORMAT ARRAY
READ DOUBLE ARRAY UNFORMATTED
READ DOUBLE SCALAR WITH ARRAY FORMAT
READS DOUBLE-PRECISION FORMATTED SCALAR
READS DOUBLE-PRECISION WORD NAMELIST SCALAR
READS DOUBLE-PRECISION FREE-FORMAT SCALAR
READ DOUBLE SCALAR UNFORMATTED
INPUT CONVERT DOUBLE
INPUT CONVERT SINGLE
REAL DIVIDE BY ZERO, EXPONENT OVERFLOW AND UNDERFLOW
READ INTEGER ARRAY WITH ARRAY FORMAT
READS AN INTEGER FORMATTED ARRAY

llntrinsic

.RIAN

.RIAS

.RISA

SUBPROGRAMS, INTRINSIC
FUNCTIONS, AND INTRINSICS

Table 12-3., List of Intrinsics (Cont)

Explanation of Responsibility

NAMELIST - READS INTEGER ARRAY

READS INTEGER FREE-FORMAT ARRAY

READ INTEGER SCALAR WITH ARRAY FORMAT

.RISF READS AN INTEGER FORMATTED SCALAR

.RISN NAMELIST - READS INTEGER SCALAR

.RISS

.RLAA

.RLAF

.RLAS

.RLSA

.RLSF

.RLSS

.RPWRD

.RPWRI

.RPWRR

.RPAA

.RRAF

.RRAN

.RRAS

.RRSA

.RRSF

.RRSN

.RRSS

.RSAU

.RSSU

.RZ

.SAD DR

.STERR

.STKDP

.TEN

.TEND

.TFR

.TFRL

.TEW

.TFWL

.TRAC

.TRACE

.TRAVC

.TRN

.TRAN

1081882-001

READS INTEGER FREE-FORMAT SCALAR

READ LOGICAL ARRAY WITH ARRAY FORMAT

READS A LOGICAL FORMATTED ARRAY

READS LOGICAL FREE-FORMAT ARRAY

READ LOGICAL SCALAR WITH ARRAY FORMAT

READS A LOGICAL FORMATTED SCALAR
READS LOGICAL FREE-FORMAT SCALAR

REAL BASE RAISED TO A DOUBLE-PRECISION EXPONENT

REAL BASE RAISED TO AN INTEGER EXPONENT

REAL BASE RAISED TO A REAL EXPONENT
READ REAL ARRAY WITH ARRAY FORMAT
READS A REAL FORMATTED ARRAY
READS REAL NAMELIST ARRAY
READS REAL FREE-FORMAT ARRAY

READ REAL SCALAR WITH ARRAY FORMAT
READS A REAL FORMATTED SCALAR
READS REAL NAMELIST SCALAR

READS REAL FREE-FORMAT SCALAR

READ SINGLE ARRAY UNFORMATTED

READ SINGLE SCALAR UNFORMATTED

READS A HEXADECIMAL DATA ITEM

RETURNS THE ADDRESS OF A SCALAR
RECORDS DATA, PARITY OR END OF FILE

PRINTS STACK RETURN CONTROL WORD (RCW) ADDRESSES

SINGLE-·PRECISION POWERS OF TEN

DOUBLE POWERS OF TEN (.TEN NOW SINGLE)
TERMINATES FORMATTED READS

TERMINATES FORMATTED READS WITH ACTION LABELS
TERMINATE FORMATTED WRITE

TERMINATE FORMATTED WRITE WITH LABEL

GENERATE AND PRINT FORTRAN LEVEL TRACE LINE
SETS AND RESETS NORMAL STATE FLAGS
SETS UP COMPLEX VALUE FOR TRACE
TERMINATES READ NAMELIST
SA VE IDENTIFIER NAME FOR TRACE

12-15

I

I

I

I

I

I

I

I

I

I

@- ~ BPROGRAMS, INTRINSIC
~CTIONS, AND INTRINSICS

Intrinsic

.TRNL
.TRVAD

.TRVAJ

.TRVAL

.TRVAR

.TUR

.TURL

.TUW

.TUWL

.TW

.TWL

.TWN

.TWNL

.UNTOK

.WAAU

.WASU

.WCAA

.WCAF

.WCAN

.WCAS

.WCFMT

.WCSA

.WCSF

.WCSN

.wcss

.wcsu

.WD

.WDAA

.WDAF

.WDAN

.WDAS

.WDAU

.WDSA

.WDSF

.WDSN

.WDSS

.WDSU

.WE

.WED

.WF

12-16

Table 12-3. List of Intrinsics (Cont)

Explanaltion of Responsibility

TERMINATES READ NAMELIST LABEL

SET UP DOUBLE-PRECISION VALUE FOR TRACE

SET UP INTEGER VALUE FOR TRACE

SA VE LOGICAL VALUE FOR TRACE

SET UP REAL VALUE FOR TRACE
TERMINATES UNFORMATTED READS

TERMINATES UNFORMATTED READS WITH ACTION LABELS

TERMINATE UNFORMATTED WRITE
TERMINATE UNFORMATTED WRITE WITH LABEL
TERMINATES A WRITE
TERMINATES A WRITE ACTION LABELS
TERMINATES WRITE NAMELIST
TERMINATES WRITE NAMELIST LABEL

RETURNS FALSE IF UNIT IS NOT ASSOCIATED WITH AN FPB

WRITES ANY UNFORMATTED ARRAY

WRITES ANY UNFORMATTED SCALAR

WRITE COMPLEX ARRAY WITH ARRAY FORMAT

WRITES COMPLEX FORMATTED ARRAY
WRITES COMPLEX NAMELIST ARRAY

WRITES COMPLEX FREE-FORMAT ARRAY

FORMAT CONVERSION FOR WRITE

WRITE COMPLEX SCALAR WITH ARRAY FORMAT

WRITES COMPLEX FORMATTED SCALAR

WRITES COMPLEX NAMELIST SCALAR

WRITES COMPLEX FREE-FORMAT SCALAR

... WRITES COMPLEX UNFORMATTED SCALARS
WRITES VALUE IN THE "D" FORMAT

WRITE DOUBLE ARRAY WITH ARRAY FORMAT

WRITES DOUBLE-PRECISION FORMATTED ARRAY
WRITES DOUBLE-PRECISION WORD NAMELIST ARRAY

WRITES DOUBLE-PRECISION FREE-FORMAT ARRAY
WRITE DOUBLE ARRAY UNFORMATTED
WRITE DOUBLE SCALAR WITH ARRAY FORMAT

WRITES DOUBLE-PRECISION FORMATTED SCALAR
WRITES DOUBLE-PRECISION NAMELIST SCALAR
WRITES DOUBLE-PRECISION FREE-FORMAT SCALAR

WRITE DOUBLE SCALAR UNFORMATTED
WRITES VALUE IN THE "E" FORMAT

WRITES DOUBLE-PRECISION VALUE IN "E" FORMAT

WRITES VALUE IN THE "F" FORMAT

Intrinsic

.WFD

.WHAS

.WHSS

.WI

.WJ[AA

.WIAF

.WIAN

.WIAS

SUBPROGRAMS, INTRINSIC
FUNCTIONS, AND INTRINSICS

Table 12-3. List of Intrinsics (Cont)

Explanation of Responsibility

WRITES DOUBLE-PRECISION VALUE IN "F" FORMAT

WRITES HOLLERITH FREE-FORMAT ARRAY

WRITES HOLLERITH FREE-FORMAT SCALAR

WRITES VALUE IN THE "I" FORMAT
WRITES INTEGER ARRAY WITH ARRAY FORMAT
WRITES INTEGER FORMATTED ARRAY

WRITES INTEGER NAMELIST ARRAY
WRITES INTEGER FREE-FORMAT ARRAY

.WISA WRITE INTEGER SCALAR WITH ARRAY FORMAT

.WISF WRITES INTEGER FORMATTED SCALAR

.WISN WRITES INTEGER NAMELIST SCALAR

WRITES INTEGER FREE-FORMAT SCALAR

WRITE LOGICAL ARRAY WITH ARRAY FORMAT

WRITES LOGICAL FORMATTED ARRAY

WRITES LOGICAL NAMELIST ARRAY
WRITES LOGICAL FREE-FORMAT ARRAY

WRITE LOGICAL SCALAR WITH ARRAY FORMAT

WRITES LOGICAL FORMATTED SCALAR

WRITES LOGICAL NAMELIST SCALAR

WRITES LOGICAL FREE-FORMAT SCALAR

WRITE REAL ARRAY WITH ARRAY FORMAT

WRITES REAL FORMATTED ARRAY

WRITES REAL NAMELIST ARRAY
WRITES REAL FREE-FORMAT ARRAY
WRITES FROM WORK AREA TO FILE
WRITE REAL SCALAR WITH ARRAY FORMAT

WRITES REAL FORMATTED SCALAR

WRITES REAL NAMELIST SCALAR
WRITES REAL FREE-FORMAT SCALAR

WRITE SINGLE ARRAY UNFORMATTED
WRITE SINGLE SCALAR UNFORMATTED

WRITE A VALUE IN "Z" FORMAT

INSERT CHARACTERS OF NUMBER INTO TRACE LINE

MESSAGE TO SHOW LOCATION OF RUN-TIME ERROR

EXIT FROM A SUBPROGRAM

LIST COMPILER ST A TISTICS

INSERT SIX CHARACTER NAME INTO TRACE LINE

GENERATE RUN-TIME PROFILES

.WISS

.WLAA

.WLAF

.WLAN

.WLAS

.WLSA

.WLSF

.WLSN

.WLSS

.WRAA

.WRAF

.WRAN

.WRAS

.WRITE

.WRSA

.WRSF

.WRSN

.WRSS

.WSAU

.WSSU

.wz

.XCHAR

.XERRM

.XEXIT

.XLIST

.XNAME

.XPROF

.XSTAT SAVE LINE NUMBER OF STATEMENT, UPDATE LAST N STATEMENTS

1081882-001 12-17

I

I

I

I

I

I

SUBPROGRAMS, INTRINSIC J
FUNCTIONS, AND INTRINSICS

12-18

Intrinsic

.XSUBP

.XV ALI

.XVALR

.XVALX
BLOCK.
CHANGE
DUMP
EXIT
ZIP

Table 12-3. List oflntrinsic:s (Cont)

Explanatiolll of Responsibility

SAVE SUBPROGRAM ENTRY INFORMATION - UPDATE SUBPROGRAM
PROFILE

INSERT CHARACTERS OF INTEGER INTO TRA~E LINE
OUTPUT REAL VALUE
OUTPUT V ALOE ACCORDING TO TYPE
BLOCK DATA FOR TRACEF
PROCESSES THE "CHANGE" STATEMENT- ISSUES MCP COMMUNICATE
DUMPS BASE TO LIMIT MEMORY FOR ANALYSIS
ROUND IN WHEN "CALL EXIT'', SAME FUNCTION AS "STOP"
PROCESSES THE "ZIP" ST A TEMENT - ISSUES MCP COMM UNI CA TE

13. COMPILER OPTION CONTROL CARDS

Compiler option control cards($ cards) may be optionally included in the compilation deck and, if used,
contain specifications to the compiler governing symbolic input and output.

A dollar sign($) must appear in columns I or 2, and options with blanks as delimiters may immediately
follow. If the dollar sign is placed in card column 2, the compiler option control card image is placed in
the updated symbolic file (NEWSOURCE) if such a file is generated. Option control cards cannot be con­
tinued, and may be placed at any point in the compilation deck with the exception of ERRORTRACE and
PROFILES.

COMPILER CONTROL CARD FORMAT

The format of the compiler control card is as follows:

Card Columns

1 or 2
through 72

73 through 80

Contents

$ or options is free-field
format with blanks as delimiters.

Sequence number or blank.

The FORTRAN option control card has the following characteristics:

a. A $ sign may appear in column 1 or 2. When placed in column 2, the option control card is
included in the new output source file if such a file is generated.

b. There must be at least one space between each item.

c. Options may be in any order.

d. Columns 73-80 are reserved for sequence numbering.

e. Any number of option control cards may appear within the source deck.

OPTIONS

The options that are available for the FORTRAN compiler are as follows:

BCD

BIND

CODE

Translates BCD source and card input into EBCDIC
to allow the FORTRAN compiler to read it.

Causes the intermediate code files to be bound into
an executable code file: This is a default option;
if binding is not desired then NO BIND should be
used. See appendix A for more information about
intermediate code files.

Lists the object code for each source statement
from the point of its insertion into the source deck.

13-1

I COMPIL;~ OPtlON CONTROL CARD~]

CONTROL

DOUBLE

DYNAMIC integer

ERROR TRACE

INITIAL

13-2

NO CONTROL prevents option control cards from
appearing on the compilation listing. The default
is CONTROL; option control cards are listed by
default.

Causes output source listing to be double spaced.

This option specifies the size in words to be assigned
for an object program's dynamic memory. If the
number of words specified is greater than the total
size of all data pages, the total data page size is used
instead. By default, the compiler assigns the dy­
namic memory in one of two ways: (l) ifthe
number of data pages is less than 10, it assigns a
size equal to the sum of the data pages, or (2) if
the data pages exceed 10, then the size of the 10
largest data pages is used.

Provides a FORTRAN level trace of subprogram
and statement usage prior to the detection of a
run-time error. The ERRORTRACE option must
be placed before the first executable statement
of the main program or any subprogram. Once
set, it may reset at any point by the NO
ERRORTRACE option.

Provides a default initialization for variables
which are not explicitly initialized. If a variable
is never used, the compile-time warning variable
NOT INITIALIZED occurs, but program execution
is not aborted. If an array element is assigned a
value in a DAT A statement, the rest of the array is
blanked (if strings were assigned) or zeroed (if
numbers were assigned).

INITIAL is the default option; if initialization is
not desired, NO INITIAL must be specified. A
data item is considered uninitialized if it does not
occur in one of the following cases:

a. As the left side of a replacement state­
ment.

b. As the object of an ASSIGN statement.

c. As an element in an input list.

cl. As a parameter in a CALL statement.

e. As a dummy parameterin a subprogram
declaration.

INITIAL (Cont)

INTERPPACK pack-id

INTRINPACK pack-id

LIBRARY multi file-id/ file-id

LIBRARYPACK pack-id

LIST

MAP

COMPILER OPTION CONTROL CARDS

f. As an element in a COMMON statement.

g. As an element in an EQUIVALENCE
statement.

h. As an element in a DAT A statement. If
an array element occurs in any of the
above cases, the entire array is considered
to be initialized.

Modifies the pack-id of the FORTRAN interpreter
for the object program. Default is system disk.

Modifies the pack-id of the FORTRAN intrinsic
file (FOR.INTRIN). Default is system disk.

Inserts source from another file into the compiled
program but not into NEWSOURCE.

Changes the name of the library pack.

Creates a single spaced output listing of the source
statements with error and/or warning messages.
This is a default option.

Prints symbolic reference information about
variables, subprograms, and labeled statements.
If MAP is set, uninitialized data items are noted
in the symbol table dump at the end of each
program unit. In all other cases, warning mes­
sages are printed for each uninitialized data item
at the end of the program unit.

The following information is generated by MAP:

a. A class of UNSPEC (unspecified) occurs
when a variable is declared but not
referenced.

b. Addresses of parameters are Return
Control Word (RCW) relative, and are
printed as "RCW+nn" or "RCW-nn",
where nn is a word displacement.

c. Variables in COMMON are called
"GLOBAL" in the notes portion of
the listing.

1081882-001 13-3

I COMPILER OPTION CONTROL CARDS I

MAP (Cont)

MERGE

NEW

NEWINTRINSIC

NO

I

13-4

d. System routines do not have their number
of arguments printed, and all intrinsics
are given a class of "SUBRTN" regardless
of their actual class. The correct number
of arguments is printed on the listing.

e. Dummy parameters in statement function
declarations do not appear in the listing.

f. In a function subprogram unit, the func­
tion name appears as a scalar.

g. Labels with a type of CONTROL are
those to which transfers of control might
be made, as opposed to FORMAT and
DO-END (a specialized ~ontrol label).

The MERGE option allows source input from disk
or tape (disk by default; file-identifier is SOURCE)
to be merged with source statements from a card
reader. The NEW option must be used with the
MERGE option to create a new output source file.
When the NEW option is not used, both the output
listing and the object code file reflect the merged state­
ments but a new source file is not created.

Creates a new source file having the file identifier
NEWSOURCE. The new output file includes any
changes made by the use of the MERGE option
and any compiler option statements that have the
dollar sign in column two.

This option allows testing of potential intrinsics
without placing them in the FORTRAN lntrinsic
File (FOR.INTRIN). If this option is specified, the
compiler first attempts to locate the intrinsic on
disk by name before searching the FOR.INTRIN
file. If a pack-id was specified on the option con­
trol card, the intrinsic must be located on the speci­
fied user pack rather than system disk.

When used in conjunction with the following
options, the NO option negates or puts them in
a reset condition. There must be a space between
NO and the option.

BIND
CODE
DOUBLE
ERROR TRACE
LIST
PROFILES
SEQERR
SAVEICM
SUPPRESS
TRAC EC
TRACEF

PAGE

PROFILES

RANGE nnnnnnnn [nnnnnnnn]

SAVEICM

SEQ

SEQ nnnnnnnn [nnnnnnnn]

SEQ ERR

SINGLE

STACKSIZE

1081882-001

1 ·COMPILER OPTION CONTROL CARDS

Causes the output listing to eject at that point and
start a new page.

An optimization aid indicating those areas of a
program that can be optimized to improve program
performance. At run time the following information
is provided by the PROFILES option:

a. Frequency of subprogram usage.

b. Time spent in each subprogram.

c. Use of individual statements within a
subprogram.

d. Use of each statement during program
execution.

The PROFILES option must be placed before the
first executable statement of the main or subpro­
gram. To reset the option use NO PROFILES at
any point within the program.

Resets the sequence parameters if SEQ is set. The
default increment is 100.

Causes the intermediate code files for each syntax­
free and error-free program part to be made a
permanent disk file at the end of the compilation.

Causes resequencing of the output listing and the
new source file, if applicable, starting with the
default number 00001000 and incrementing se­
quence numbers by 1000.

Causes resequencing of the output listing and the
new source file if applicable. SEQ is followed by
either an eight-digit number which is the starting
sequence number, or two eight-digit numbers with
the first number being the starting sequence num­
ber and the second the resequencing increment
value. The default resequence increment is 1000.

Causes a warning message to be printed in single
spaced format.

Causes the output listing to be printed in single
spaced format. This is a default option.

Specifies the size in words to be allocated for the
object program evaluation stack. Default size is
100; maximum size is 4096.

13-5

I COMPILER OPTION CONTROL CARDS

I SUPPRESS

TRACEF

I
TRUNCATE.NAMES

VOID

VOID nnnnnnnn

XREF

13-6

Suppresses warning messages in the output listing.
The default is NO SUPPRESS.

Causes a FORTRAN level trace to be printed for
each FORTRAN statement executed in the pro­
gram. This option may be inserted anywhere with­
in the program. Once set, it remains set until
reset by using NO TRACEF. Each TRACEF line
contains the name of the current subprogram, the
compiler-generated line number of the current state­
ment in the subprogram, and an identification of
the statement.

Allows variable names to be extended to more
than six characters without causing a syntax error.
The FORTRAN compiler truncates the variable
names to six characters. These truncated variable
names must remain unique in the program.

Causes the source input image corresponding to the
sequence number of the VOID card to be deleted
from the input disk file.

Causes a series of source images to be deleted
starting from the sequence number in the sequence
number field through and including the sequence
number of the VOID option.

Causes the compiler to produce a cross-reference
listing after the source program listing and before
the "CODE AND DAT A MAPPING" table.

This listing consists of two parts: the first is a list
of label numbers followed by a subprogram name
(in parentheses) and the sequence numbers where
the label appears in the subprogram. The second
part of the XREF listing contains a list of variable
names followed by a subprogram name (in paren­
theses) and the sequence numbers where the vari­
able appears in the subprogram. Each sequence
number in both parts is immediately followed by
one of the following keys:

Key

space

*

Description

Specification statement or explicit
label.

Identifier or label reference.

Left side of replacement or assignment
statement.

Variable passed by address.

14. PROGRAM STRUCTURE

Every executable FORTRAN program consists of a sequence of statements, with each statement physically
contained on one or more lines or card images.

SOURCE INPUT FORMAT

FORTRAN statements must be input to the compiler µpon cards or card images which have the following
format. (All blanks are ignored in source input except when they occur in Hollerith or proper strings.)

Source input cards are in general free form, with these exceptions:

a. Columns 1 through 5 of a card may contain a statement label. (See section 4.) This field is
recognized as a label on the first card only of an executable or FORMAT statement. On all
nonexecutable statements other than the FORMAT statement and on all continuation cards,
this field is syntaxed. A label without an associated statement is ignored. Blanks and pre­
ceding zeros are ignored.

b. Column 6 of the first card of a statement must be blank or contain a zero. A statement may be
continued on several cards by placing any non-blank and non-zero character in column 6 of
the continuation cards.

c. Columns 7 through 72 of a card contain the FORTRAN statement.

d. Columns 73 through 80 may contain sequence numbers. This field is checked for ascending
sequence numbering when $ MERGE or $ SEQERR is set; otherwise, the field is ignored.

If a card contains a "C" in column 1, the card is considered a comment card and is not interpreted. No
comment or blank cards may be inserted immediately preceding a continuation card.

A card containing a $ in column 1 or 2 is a compiler option control card as discussed in section 13.

Blank characters are significant only in column 6 of a statement card and in string literals. With these
exceptions, blanks may be used freely or omitted altogether without affecting the meaning of the FORTRAN
program.

PROGRAM UNITS

Every executable FORTRAN program consists of exactly one main program unit which may be preceded
and/or followed by as many subprograms as necessary.

Each program unit consists of a sequence of statements terminated by an END statement.

END Statement

The nonexecutable END statement is provided for use as the terminal statement of a program unit.

14-1

[PROGRAM STRUCTURE

The proper form of the END statement is as follows:

END ST A TEMENT

END

Every program unit must contain exactly one END statement.

If an END statement is encountered during execution of a subprogram, a RETURN is implied; if an END
statement is encountered in a main program, a STOP is implied.

Main Program

The main program is the first (and perhaps only) program unit of an executable program to be executed.

The main program may invoke SUBROUTINE and FUNCTION subprograms using the CALL statement and
function references, respectively. AH FILE declaration statements must appear in the main program.

Statement Ordering

The ordering of appearance of statements in the main program or subprogram body is determined by the
following rules:

a. FILE declaration statements must precede all other statements of the main program.

b. IMPLICIT statement occurs next.

c. Specification statements must appear before any executable statement and statement function
declaration statements.

d. FORMAT statements and comments may appear at any point in the program unit.

e. Statement function declarations must follow specification statements and precede any executable
statements.

Thus, the recommended order of appearance of FORTRAN statements in a program unit is as follows:

a. IMPLICIT statement.

b. DIMENSION, COMMON, INTRINSIC, EXTERNAL, or explicit type statements in any order.

c. EQUIVALENCE statements.

d. DAT A statements.

e. Statement function declarations.

f. Remainder of program unit.

g. END statement.

14-2

A. B 1800/B 1700 FORTRAN LANGUAGE SYSTEM

The purpose of this appendix is to provide an outline of the features of the B 1800/B 1700 FORTRAN
language system. This includes the following:

a. A summary of system requirements.

b. A digest of user-oriented compiler information.

c. A complete discussion on control cards and the structure of the FORTRAN compilation deck.

The FORTRAN compiler described here and the object programs generated by it are designed to operate
under control of the B 1800/B 1700 Master Control Program (MCP).

SYSTEM REQUIREMENTS

Required Hardware

Before the FORTRAN system may operate, the following minimum hardware devices must be provided:

a. B 1800/B 1700 processor.

b. Disk.

Required System Software

The FORTRAN system file requirements are as follows:

a. The compiler (which includes a binding phase).

b. The intrinsic file (which contains various subprograms supplied with the compiler).

c. The FORTRAN interpreter (which executes the object code).

The compiler, interpreter, and intrinsic files must all reside on the same disk, unless otherwise specified
in a compiler option control card. If on a user cartridge, they are referenced by prefacing their names with
the cartridge name.

USER/COMPILER INTERFACE

The purpose of the B 1800/B 1700 FORTRAN compiler is to accept application programs written in the
FORTRAN language and to produce from these programs object code which may be executed on the
B 1800/B 1700 system.

Concurrent to the production of this program object code, the user is provided with compile--time debugging
and diagnostic facilities and the ability to a limited extent to control the function performed by the compiler
(such as in the area of compiler file handling). The latter ability is available using the FORTRAN compiler
option control card($ card).

A-1

[

B 1800/8-1700 FORTRAN I
LANGUAGE SYSTEM

The debugging and diagnostic facilities provided by this compiler are compile-time additions to the compiler­
provided printer listing of input source statements. The following items are provided as diagnostic aids by
the compiler.

a. Syntax-error numbers and messages, which are placed on the printer listing generally following
the line of text bearing the incorrect statement.

b. Messages and numbers denoting warnings are optionally placed on the printer listing following the
line bearing the incorrect statement.

c. Various compiler information messages.

d. A complete listing of compiler-generated code, optionally placed on the printer listing.

e. The status of the executing FORTRAN compiler may be queried by entering <mix number> AX
ST on the SPO. One of the following responses will be displayed:

COMPILING ~f)UBPROGRAM) SEQ=N, ERRS==NN
BINDING (SUBPROGRAM) N OF M KNOWN SUBPROGRAMS

Error messages and error numbers that are generally sufficient to determine the cause of errors are provided.
A list of FORTRAN run-time error messages is provided in appendix C.

All user communication with the compiler and all compiler output is handled using compiler files. A dis­
cussion of the interface between the user and the FORTRAN compiler is therefore an examination of the
features of these compiler files. The system of compiler files is illustrated in figure A-1.

Intermediate Code Files

Depending on the option control cards used, intermediate code files and/or a single executable file is pro­
duced by the compiler. Each subprogram is compiled into a separate file in an intermediate non-executable
form. An executable file is produced by the binding part of the compiler using the ?COMPILE card speci­
fication or through the appropriate compiler control card ($ card) specification. For information on the
use of option control cards, see section 13.

Compiler Files

Compiler communication is handled through various input and output files. The compiler files described in
the following paragraphs are diagrammed in table A-1.

The compiler has the capability of merging, on the basis of sequence numbers, input from two files. When
inputs are being merged, indications of text insertions or replacements are made to appear on the output
listing. In addition to the output listing, the FORTRAN compiler can also generate an updated symbolic
output file. These files may be created in addition to the compiler-generated output code file. Compiler
input and output files are discussed in detail here.

Input Files

The primary compiler input file is a card file with the internal name CARDS; the secondary input file: is a
serial disk file with the internal name SOURCE. The presence of the primary file CARDS is required for
each compilation; the presence of the secondary file SOURCE is optional for each compilation. File
CARDS is coded with 80-character records and is unblocked. FILE SOURCE is coded with 80-character
records and uses input blocking. Both the CARDS file and the SOURCE file may be label-equated (using
the ?FILE control card) to change the file's external file name and hardware device. (See the discussion on
the ?FILE card in the B 1800/B 1700 System Software Operational Guide, Form No. 1068731.)

A-2

I
I
I

\.

INTERMEDIATE
CODE Fl LE(S)

(ICM)

INTRINSIC FILE
(FOR.INTRIN)

PRIMARY INPUT FILE
(CARDS)

OPTIONAL SECONDARY
INPUT FILE

(SOURCE)

.,..

COMPI LEA I NPLJT FI LES
(SOURCE LANGUAGE
INPUT AND COMPILER

CONTROL STATEMENTS)

G14001

~~

l ~~ ..

I
....
~~

.J

...... ...

_..
....

I FORTRAN .. COMPILER-r

BINDER

...... ...

...
r

OPTIONAL UPDATED
SYMBOLIC Fl LE
(NEW SOURCE)

I

OBJECT CODE FILE
(CODE)

OPTIONAL LINE
PRINTER LISTING

(LINE)

~ -
INTERMEDIATE

CODEFILE
(ICM)

~

COMPI LEA-GENERATED
OUTPUT Fl LES

Figure A-1. FORTRAN Compilation System

I

.......
OPTIONAL
PROGRAM
EXECUTION

B 1800/B 1700 FORTRAN I

LANGUAGE SYSTEM

Table A-1. FORTRAN Compiler File Names and Defaults

Ddault
Internal Purpose Hardware Record Block

Name Device Size Size Comments

CARDS Input Card CARD 80 characters Unblocked Required for each compilation.
File READER Primary compiler input file.

Default external file name is
CARDS. BUFFERS = 1.

SOURCE Input Disk DISK 80 characters Uses input Optional file; need not be
File blocking present for each compilation.

(default is 2 Secondary compiler input file,
records per selected as input by setting
block) MERGE compiler option. The

default external name is
SOURCE. BUFFERS = 1.

CODE Executable DISK 1440 bits 1440 bits Generated object code me.
Object Code Saved or discarded and assigned
File the program-name.

BUFFERS= 1.

NEWSOURCE Updated DISK 80 characters Two records Optional output file produced
Symbolic per block when $NEW compiler option
Output File is set. The default external

name is NEWSOURCE.
BUFFERS= 1.

LINE Line Printer LINE 120 characters Unblocked The external file name is
Listing PRINTER LINE. BUFFERS= 1.

FOR.INTRIN Intrinsics DISK 1440 bits 1440 bits The intrinsics and intrinsic
and functions file.
Intrinsic
Functions

ICM Intermediate DISK 1440 bits 1440 bits Intermediate code file
Code File produced by the compiler.

Output Files

Output files produced by this compiler include intermediate and object code files, an updated symbolic file,
and a line printer listing. The intermediate code file has the internal name ICM.

The object code file has the internal name CODE and is saved on disk after the compilation unless the
COMPILE system control card specifies otherwise. The external file name of the saved code file is identical
to the program-name appearing on the COMPILE card. (See the section on control cards in this appendix.)

The compiled program is logically segmented within the resultant code file by program unit. The code for
each program unit begins at a physical disk segment boundary and fills as many disk segments as required
within the limits of the system. The updated symbolic file is, by default, a disk file (NEWSOURCE) gen­
erated only if the compiler option $NEW is set. This file contains the compilation source input or a selected
portion of this input as specified by the compiler option NEW and may be used as the SOURCE file for a
succeeding compilation.

A-4

B180~B1700FORTRAN
LANGUAGE SYSTEM

The printer listing is an optional print file that is created unless the compiler option LIST is reset. (The
LIST option is set by default.) The file has the internal name LINE, and contains the following information:

a. Source and compiler control statements input to the compiler.

b. Code segmentation information.

c. Error messages and error count.

d. Number of input statements scanned.

e. Elapsed compilation time per subprogram and total bind time.

f. Estimated size of the program's data space when the program is executed.

g. Estimated space needed for the program files.

h. Total number of bytes of object code generated for each subprogram.

i. Number of disk segments required for the program code file.

j. Estimated memory required to run the object program.

k. The date the compiler was compiled.

Depending upon the specified setting of the LIST, CODE, and MAP compiler options, the printer listing
may contain more or less information than the basic items listed here.

Compiler File Names and Defaults

The FORTRAN input and output files are listed in table A-1, which provides information concern­
ing the configuration of each file. Table A-1 lists the internal name of the file (i.e., the name used when the
file is declared within the FORTRAN compiler), the purpose served by the file, the default hardware device
of the file, the default record size (RECORD.SIZE) and block size (RECORDS.BLOCK) of the file, and a
brief commentary on the file.

The attributes of any of these files may be changed through use of ?FILE control cards directed to the
compiler. (See the discussion on the ?FILE card in the B 1800/B 1 700 System Software Operational
Guide, Form No. 1068731.)

MCP CONTROL CARDS

When a FORTRAN source p'rogram is compiled the actions to be performed are specified through the use of
control cards. Control cards included in a compilation deck are of two general types: MCP control cards
(?cards) and compiler option control cards ($cards). The structure of the FORTRAN compilation deck is
explained in the text that follows.

A-5

B 1800/B 1700 FORTRAN
LANGUAGE SYSTEM

Compilation of a FORTRAN source program is achieved by presenting the compilation card deck to the
MCP. The entities comprising the structure of the FORTRAN compilation deck and the order of their
occurrence are as follows:

Compilation Card Deck

a. ?COMPILE Card.

b. ?FILE Control Card(s).

c. ?DATA CARDS.

d. Compiler Option Control($) Card(s) (optional).

e. File Declaration Statement(s) (optional).

f. _ Source input cards.

g. ?END (end-of-file) Card.

MCP control cards are made distinguishable from other cards by an invalid character in column 1 for 80-
column cards, or a question mark (?) for 96-column cards. An invalid character is represented by a ?' for
clarity in this manual. MCP control information is punched in a free-form format in columns 2 through 72.

?COMPILE Card

The ?COMPILE card instructs the MCP to compile the indicated program-name with FORTRAN using
one of the fol1owing options:

A-6

a. ?COMPILE program-name FORTRAN

This option causes the source program to be compiled, bound and executed (i.e., compile and go).
The resultant object program is not entered in the disk directory. The resultant intermediate code
files are removed from the disk directory upon binding unless the compiler control card
$SAVEICM is specified.

b. ?COMPILE program-name FORTRAN LIBRARY

This option causes the source program to be compiled and bound but not executed. The resultant
object program is entered in the disk directory. The resultant intermediate code files are removed
from the disk directory upon binding unless the compiler option control card $SA VEICM is speci­
fied. Execution is specified by the execution statement, ?EXECUTE (program-name), placed after
the ?END card. Further information on the ?EXECUTE card can be found in the B 1800/B 1700
System Software Operational Guide, Form No. I 068731.

c. ?COMPILE program-name FORTRAN SA VE

This option causes the source program to be compiled:, bound, and executed and the resultant ob­
ject program to be entered in the disk directory. The resultant intermediate code files are removed
from the disk directory upon binding unless the compiller control card $SAVEICM is specified.

d. ?COMPILE program-name FORTRAN SYNTAX

This option causes the source program to be compiled only for a syntax check.

B180~B1700FORTRAN
LANGUAGE SYSTEM

In the absence of the ?COMPILE card, the system operator may manually execute one of the compile options
through the console printer (SPO) by keying in the appropriate message.

For compile card options a, b, and c, the intermediate code files are created and left in the disk directory
after compilation until binding occurs. If the program is terminated before it is bound or the compiler option
NO BIND is specified, the intermediate code files will remain in the directory. (See Compiler Option Control
Cards in section 13.) If any errors result during compilation, the error-free intermediate code files will re­
main in the directory and no binding will occur. Therefore, the error-free intermediate code files remaining
in the directory will not have to be recompiled.

If the required intermediate code files are not on disk, or a subprogram is referenced, which was not com­
piled, a message "FILE NOT PRESENT" will be given during binding. Subprograms m<;i.y be compiled in­
dependently or with the main program which references them.

PROGRAM-NAME

The program-name may consist of one, two, or three identifiers of up to 10 characters each, separated by
slashes .. The four forms a program-name can take are as follows:

a. family-name (an identifier which is a single file name).

b. family-name/file-identifier (an identifier which may be a single file name or a file with subprogram
entries).

c. dp-id/family-name/file-identifier (the disk-pack-identifier is specified when a removable disk pack
is used).

d. dp-id/family-name/ (a single file name residing on a removable disk pack).

An executable code file will have the program-name specified on the compile statements. Intermediate
code files will have the program-name on the compile statement except the file-identifier will be replaced
by the following:

a. The subprogram name in a SUBROUTINE or FUNCTION statement or

b. Zero (0) followed by the file-identifier (if any) for an unbound main program or

c. BLOCK. for the BLOCK DATA subprogram.

The disk-pack-identifier must be included in the program-name if the intermediate code files are in other
than the system disk directory.

A-7

B 1800/B 1700 FORTRAN
LANGUAGE SYSTEM

The following table shows the four forms an intermediate code file program-name can take given the
family-name, file-identifier, and disk-pack identifier.

Type of
ICM MAIN

Unbound MAIN/O
Main
Program

SUBROU- MAIN/X
TINEX

BLOCK DATA MAIN/BLOCK.
Subprogram

MAIN is the family name.
SUB is the file-identifier.

Table A-2. ICM Name Conversions

PROGRAM-NAMES ON COMPILE STATEMENT:

MAIN/SUB FORTRAN/MAIN/SUB

MAIN/OSUB FORTRAN/MAIN/OSUB

MAIN/X FORTRAN/MAIN/X

MAIN/BLOCK. FORTRAN/MAIN/
BLOCK.

FORTRAN is the disk pack identifier.

?FILE Card

FORTRAN/MAIN/

FORTRAN/MAIN/O

FORTRAN/MAIN/X

FORTRAN/MAIN/
BLOCK.

--

The ?FILE control card may be optionally included in the compilation deck. The ?FILE control card may
be used to modify the original attributes of the FORTRAN system files.

If usecf, the ?FILE control card(s) must immediately follow the ?COMPILE card and precede ?DAT A CARDS.
The general form of the ?FILE control card is:

~FILE internal file name file-attribute I~

A list of file-attributes and their uses can be found in the B 1800/B 1700 System Software Operational
Guide, Form No. 1068731.

The FORTRAN compiler's internal file names for use with the ?FILE control card are as follows:

a. CARDS (Input: file from the card reader (default)).

b. LINE (Compilation output to the line pdnter).

c. SOURCE (Symbolic input file on disk (default)).

d. NEWSOURCE (Updated symbolic output file on disk (default)).

The file SOURCE is used on input only when the compiler option MERGE is set.

A-8

?DATA CARDS Card

A card of the form:

B180WB1700FORTRAN
LANGUAGE SYSTEM

I ?DATA CARDS L_ ____ _

is required to label the source deck.

Source Input Cards

These cards are the FORTRAN statements comprising the source program.

?END Ca1rd

The ?END Card designates the end-of-file for the compilation deck to the MCP.

The ?END Card is coded as follows:

?END

The ?END Card must be the last card in the compilation deck.

The examples that follow show seven ways a program called JOB containing two subprograms (SUBl and
SUB2) can be compiled and executed, using the MCP control cards ?COMPILE, ?DAT A, and ?END.

Example 1 - Compile-and-go only:

?COMPILE JOB FORTRAN
?DATA CARDS

C [:AIN PROGRAM JOB

END

[
~UBROUTINE SUBJ

END

[
~UNCTION SUB2

END

?END

A-9

B180~81700FORTRAN l
LANGUAGE SYSTEM

Example 2 - Compile, execute and save ICMs:

?COMPILE JOB FORTRAN
?DATA CARDS
$SAVEICM

C [.MAIN PROGRAM JOB

END

[
~UBROUTINE SUBJ

END

[
~UNCTION SUB2

END

?END

or ?COMPILE JOB FORTRAN SAVE
?DATA CARDS
$SAVEICM

[
~AIN PROGRAM JOB

END

[
~UBROUTINE SUBJ

END

[
~UNCTION SUB2

END

?END

Notice that when the SAVE option is used, the object program is also entered in the disk directory.

Example 3 - Compile and execute in three separate steps:

A-10

?COMPILE JOB FORTRAN LIBRARY
?DATA CARDS
$SAVEICM
$NO BIND

[
~UBROUTINE SUB!

END

?END

?COMPILE JOB FORTRAN LIBRARY
?DATA CARDS
$SAVEICM
$NO BIND

C [~AIN PROGRAM JOB

END

?END

?COMPILE JOB FORTRAN LIBRARY
?DATA CARDS
$SAVEICM

[
~UNCTION SUB2

END

?END
?EXECUTE JOB

or

(An ICM named JOB/SUB l is on disk.)

(An ICM named JOB/O is on disk.)

?COMPILE JOB FORTRAN SAVE
?DATA CARDS
$SAVEICM

[
~UNCTION SUB2

END

?END

B. LANGUAGE COMPATIBILITY

Source language programs written in ANSI FORTRAN are acceptable as input to the B 1800/B 1700
FORTRAN compiler, with the following exceptions:

a. The computed GO TO variable must be an integer expression.

b. Subprogram units may only be written in FORTRAN. This is because there is no machine
facility to change the interpreter during program execution.

c. BN and BZ format specifiers are not acceptable.

d. Character type statement characters may be stored in integer (4 characters) or double precision
(8 characters) variables.

e. SA VE statement is not acceptable. All local variables in a subprogram retain their previous
values from one invocation to the next invocation.

f. OPEN statement is not acceptable. All opens are implicit.

g. Internal file is not acceptable. Internal files provide a means of transferring and converting data
from internal storage to internal storage.

h. ENTRY statement is not acceptable.

The foHowing FORTRAN IV extensions to the proposed 1976 ANSI FORTRAN subset (See Sigplan
Notices, Vol. 11, No. 3, 1976 March), are included in B 1800/B 1700 FORTRAN.

a. Variables and constants.

1. A dollar sign may be used in variable names.

2. The variable length specifier REAL*8 translates into double precision. All other length
specifiers are syntaxed as errors.

3. Variables are initialized unless NO INITIAL is specified.

4. Character strings may be delineated using both quote marks and apostrophes.

5. Hexadecimal constants are allowed in DATA statements.

b. Arrays

1. Up through 15 dimensions may be specified for arrays.

2. Array subscripts may be any integer expressions, but more efficient code may be emitted
if the subscript can be reduced to a constant * variable ± constant.

3. Array names may be used in DAT A and EQUIVALENCE statements.

c. Additional Statements

1. CALL CHANGE statement.

B-1

B-2

LANGUAGE COMPATIBILITY]

2. NAMELIST statement.

3. PAUSE n where n may be an integer or a string of length <characters.

4. PUNCH statement.

d. Arithmetic expressions.

1. Mixing of integer with real or double precision variables in relations and arithmetic expressions
is allowed.

2. Exponentiation may include integer**real, real**integer, and double precision**integer.

e. DO loops.

1. Branching into or out of DO loops is permitted.

2. DO loop parameters may be changed during the execution of a DO loop.

3. The control variable at the end of a DO loop is defined as having the value of the final test.

4. Arithmetic expressions are allowed in the parameters of a DO loop.

f. END, EXIT, and STOP.

1. The intrinsic EXIT is provided and may be called to cause error-free termination of a program.
ln addition, the STOP statement will invoke the EXIT intrinsic.

g. Subprograms, arguments, and statement functions.

1. Indirect recursion is allowed.

2. Array elements may be referenced in the expression of a statement function.

3. An adjustable dimension array in a subprogram may have its dimensioned variables in
COMMON.

4. Slashes delimiting formal parameters are ignored.

5. Alternate return from a subprogram:

Dummy Argument

Actual Argument

B 1800/B 1700 FORTRAN

*
&. label

ANSI FORTRAN

*
* label

6. SAVEICM causes the intermediate code file of a subprogram to be retained after compilation
for future binding.

h. COMMON and BLOCK DATA.

1. A labeled COMMON block need not be the same size in all subprograms referencing it.

2. Variables in unlabeled COMMON may be initialized in BLOCK DATA.

LANGUAGE COMPATIBILITY

3. The COMMON blocks in the BLOCK DATA subprogram are allowed to be abbreviated by
specifying items up through the last item in a block to be initialized.

i. Files and I/O.

l. The NEW attribute must be specified in a FILE declaration statement to create the file.

2. FILE dt:claration statements must appear in the main program unit.

3. Random disk file accessing is allowed in I/O statements.

4. Record numbers may be specified in READ and WRITE statements using either an equal sign
or an apostrophe.

5. An expression is allowed in the list of a WRITE statement.

6. Error (ERR), end-of-file (END) and data error (DAT A) action specifiers are allowed in I/O
statements.

j. FORMAT specifications.

1. The characters 1 through 9 will be interpreted as valid printer channel numbers when they
appear as the first character in a line to be printed. All other non-standard carriage control
characters will result in single spacing.

2. FORMAT specifiers Z (hexadecimal) and T (tabulate) may be used.

3. The type of an item in an I/O variable list does not need to match the type of the FORMAT
specifier. The type in the FORMAT specifier must match the external data type.

B-3

C. WARNING AND ERROR MESSAGES

Error and warning diagnostics may occur during compilation, binding, or run-time. Warning messages only
supply information about situations which might be a source of problems for the user. They do not cause
premature termination of the compile, bind, and run-time procedures.

Error messages supply .information about user and system problems which keep a program from completely
going through the compile, bind, and run-time procedures. For a single run, errors during compilation
prevent binding, errors during binding prevent execution, and errors during run-time prevent normal ter­
mination.

Error messages occurring during compilation or binding, and a further explanation of run-time errors is
presented here.

There are two types of run-time error messages: those which appear on the line printer and those which
appear on the console printer (SPO).

LINE PRINTER RUN-TIME ERROR MESSAGES

When there is an error in an intrinsic or intrinsic function, the output to the line printer consists of an
error message a11d a stack dump"Of segments and displacements. For example, when the following program
is executed:

R=SQRT(-7.0)
STOP
END

000075
000415
000475

The line printer output is as follows:

ARGUMENT OUT OF RANGE
STACK DUMP SEGMENT

0006
0003
0001

DISPLACEMENT

00016845
00000306
00000385

This stack dump corresponds to the RETURN CONTROL WORD (RCW) addresses in the FORTRAN
dump, except the firs! address which is always the .ERROR intrinsic.

In compiling the above program, the ADDRESS FINAL of the CODE AND DAT A MAPPING section of
the compile listing will show that segment 6 corresponds to the .ERROR intrinsic, segment 3 corresponds
to the SQRT intrinsic and segment 1 corresponds to the main program. Code address segment l, displace­
ment 385, is between 75 and 415. Therefore, the statement '~R:;:SQRT(-7.0)" at displacement 75 caused
the error.

The following is a list of the run-time error: messages generated by the intrinsics:

f,'&END" EXPECTED
ARGUMENT OUT OF RANGE
ARRAY BOUND EXCEEDED
BLANK MUST FOLLOW NAMELIST NAME
COMMA EXPECTED
COMPLEX DIVISOR OF ZERO

C-1

I WARNING AND ERROR MESSAGES I

DATA ERROR
DECLARED RECORD LENGTH TOO LONG
DEVICE NOT DISK
END OF FILE
ERROR NUMBER - (AN INTRINSIC CALLED ERROR WITH INVALID PARAMS)
ERROR OCCURRED IN LINE n OF program ("$ERRORTRACE" PRINTS IF ERROR)
ERROR ON UNIT = n
EXPECT BOOLEAN
EXPONENT UNDERFLOW OR OVERFLOW
FUNCTION OUT OF RANGE
INCORRECT FORMAT
INCORRECT NUMBER
INCORRECT FUNCTION
INCORRECT TYPE
INVALID ASSIGNED GO TO
INVALID COMPLEX CONST ANT
INVALID CONSTANT
INVALID EXPONENT
INVALID HOLLERITH CONST ANT
INVALID LOGICAL CONSTANT
INVALID REPEAT
INVALID TERMINATOR
INVALID VARIABLE· NAME
MISSING EQUAL
NAME NOT ELEMENT IN NAME LIST
PARAMETER MISMATCHED
PARITY ERROR
RANDOM ACCESS TO SERIAL FILE
RECORD NOT UNFORMATTED
RECORD SIZE EXCEEDED
RECORD SIZE IN FPB MUST BE LESS THAN OR EQUAL TO MAX DECLARED IN

FILE STMT
REPEAT NOT ALLOWED ON SCALAR
RIGHT PAREN EXPECTED
SCALAR MAY NOT BE SUBSCRIPTED
SERIAL ACCESS TO RANDOM FILE
STRING GREATER THAN 4 CHARACTERS
SUBSCRIPT MUST BE POSITIVE INTEGER
TYPE MISMATCHED
UNDER/OVER FLOW
UNEXPECTED EOF
UNIT UNDEFINED
VALUE EXPECTED
ZIP ARRAY SIZE GREATER THAN 128 ELEMENTS

CONSOLE PRINTER RUN-TIME ERROR MESSAGES

When a run-time error message appears on the console printer, the user has the option of either discontinuing
the program (mix-index DS) or initiating a memory dump and then aborting the program (mix-index DP).
If the system option, TERM, is set, the program will automatically terminate and DS or DP need not be
specified. For more information, see the B 1800/B 1 700 System Software Operational Guide, Form No.
1068731.

C-2

WARNING AND ERROR MESSAGES

The format of the run-time errors which appear on the console printer is as follows:

program-name = mix-index - - error message
: NXT INSTR = SEG @nnn@ DISP @nnnnnn@ (nnnn) (nnnn) DS OR DP

Numbers enclosed in@ are in hexadecimal format. Numbers enclosed in parentheses are in decimal format.
Refer to the code segment number and displacement number appearing in the CODE AND DATA MAPPING
section of the compile listing.

The following is a list of the run-time error messages which may appear on the console printer. The contents
of these error messages is explanatory.

Error Message

STACK OVERFLOW
INVALID PARAMETER
INVALID SUBSCRIPT
DIVIDE BY ZERO
INVALID OPERATOR

UNINITIALIZED DATA
ITEM

EXPONENT OVERFLOW
EXPONENT UNDERFLOW
INTEGER OVERFLOW

- Refer to the $STACKSIZE option in section 13.

- This is a system error and if occurs, should be reported to the
Burroughs Systems Representative.

COMPILATION OR BINDING WARNING AND ERROR MESSAGES

The following is a list of warnings and errors that can occur during compilation or binding.

Warning Messages

000 MAXIMUM OF 8 CHARACTERS ALLOWED
004 SYSTEM INTRINSIC HAS BEEN REDEFINED
008 STATEMENTIGNORED
009 DOUBLE PRECISION VALUE GENERATED
011 SEQUENCE ERROR
012 TRUNCATED TO 10 CHARACTERS
013 SA VE FACTOR CHANGED TO 999
016 PARAMETER TYPE MISMATCH
017 DOV ARIABLE USED IN ENCLOSING DO
018 ILLEGAL STATEMENT AT END OF DO LOOP
019 LABEL REQUIRED TO EXECUTE THIS STATEMENT
021 ZERO SUPPLIED FOR IMAGINARY PART
022 OVERLAPPING IMPLICIT DECLARATIONS
023 IN LINE SYSTEM ROUTINE CHANGED TO EXTERNAL PROCEDURE
024 HEXADECIMAL LITERAL TRUNCATED
025 STRING LITERAL TRUNCATED
026 LITERAL STRING TRUNCATED TO 4 CHARACTERS
027 LITERAL STRING TRUNCATED TO 8 CHARACTERS
028 LABEL FIELD ON CONTINUATION CARD NOT BLANK
029 MISSING DELIMITER
OPTION NAME CHANGED TO MAP
STARTING SEQ NUMBER EXCEEDS 8 DIGITS
RESEQUENCE INCREMENT EXCEEDS 8 DIGITS

C-3

[WARNING AND ERROR MESSAGES I

C-4

W aming Messages

VOID LIMIT EXCEEDS 8 DIGITS
RANGE CARD REQUIRES STARTING SEQ NUMBER
CREATING A NEW SYMBOLIC INCOMPATIBLE WITH "$END" FUNCTION

NEW FILE TERMINATED HERE
LIBRARY CARD REQUIRES AT LEAST ONE NAME
UNEXPECTED SLASH
SLASH EXPECTED
SECOND IDENTIFIER EXPECTED
TOO MANY HMON REQUESTS
PREVIOUS TRACE REQUEST LOST
NUMBER EXPECTED
ERRORTRACEIGNORED
PROFILES IGNORED
UNRECOGNIZED PARAMETER
REDUNDANT COMMAS WILL BE IGNORED
IMPLIED DO INDEX IS NOT INTEGER
VARI.ABLE MAY HA VE BEEN INITIALIZED PREVIOUSLY
variable name EXHAUSTED WITH DANGLING CHARACTERS
SLASH EXPECTED
variable name BLANK FILLED
variable name ZERO FILLED
variable name IS NOT INITIAUZED
COMMON BLOCK common block name SIZE INCREASED FROM size TO size
OPTION NAME CHANGED TO MAP

Error Messages

001 COMPILER ERROR ONE
002 LABEL MUST BE NUMERIC GREATER THAN 0
003 RECURSIVE CALL NOT ALLOWED
004 DUPLICATE NAME
005 SUBSCRIPT EXPECTED
007 THIS TYPE OF STATEMENT NOT IMPLEMENTED
008 LEFT PARENTHESIS EXPECTED
009 INTEGER EXPECTED
011 TOO MANY CONTINUATION CARDS MAX=19
012 INVALID STRING
013 INVALID PUNCTUATION
015 END STATEMENT SHOULD NOT BE LABELED
019 INVALID CONTINUATION
021 MISSING COMMA
025 MISSING EQUAL SIGN
026 MISSING SLASH
028 VARIABLE EXPECTED
031 ILLEGAL RETURN IN MAINLINE
632 ONLY SUBROUTINE ALLOWS NONSTANDARD RETURN
033 MAX NUMBER OF PARAMETERS EXCEEDED (MAX IS 63)
035 INCORRECT EXPRESSION
036 PARENTHESIS DO NOT BALANCE
037 END OF STATEMENT EXPECTED
038 OPERATOR EXPECTED
039 CANNOT DETERMINE STATEMENT TYPE
044 SIMPLE VARI.ABLE CANNOT BE FOLLOWED BY

WARNING AND ERROR MESSAGES

Error Messages

046 SUBSCRIPT MUST BE INTEGER
047 INCORRECT FORMAT SPECIFIER
049 SYMBOL TABLE OVERFLOW
050 MAXIMUM LENGTH OF AN IDENTIFIER IS SIX CHARACTERS
053 STATEMENT HAS A DUPLICATE LABEL
055 PARAMETER OR SUBPROGRAM NAME MUST BE USED
056 LOGICAL IF CANNOT INCLUDE THIS STATEMENT TYPE
061 UNEXPECTED CHARACTER
062 INVALID HOLLERITH LENGTH
065 MISSING KEY WORD
066 EXPONENT UNDERFLOW OR OVERFLOW
067 FORMAT NESTING LEVEL EXCEEDED ... 10 MAX
070 MISSING FORTRAN END CARD
072 IDENTIFIER EXPECTED
075 ADJUSTABLE ARRAY MUST BE A PARAMETER
076 RIGHT PARENTHESIS EXPECTED
078 ITEM MAY NOT BE DIMENSIONED
079 ITEM PREVIOUSLY DIMENSIONED
080 STRING SIZE EXCEEDED
082 LABEL EXPECTED
083 ILl:,EGAL LENGTH SPECIFIER
085 DATA INITIAL TABLE OVERFLOW-BREAK STMT INTO MULTIPLE STMTS
087 ITEM WAS PREVIOUSLY TYPED
089 NUMBER OF SUBSCRIPTS SPECIFIED IS GREATER THAN 15
090 EQUIVALENCE TABLE OVERFLOW-BREAK EQUIV. STMT INTO MULTIPLE STMTS
091 STATEMENT NOT ALLOWED IN EXECUTABLE STATEMENTS
093 TYPE OF ACTUAL PARAMETER DOES NOT AGREE WITH PREVIOUS USE
095 INVALID PARAMETER
097 LABEL PREVIOUSLY USED AND WAS NOT OF FORMAT TYPE
098 LABEL PREVIOUSLY USED AS FORMAT TYPE
099 LABEL ON DO APPEARS ON A PRECEDING STATEMENT
100 COMMA,LEFT PARENTHESIS OR LABEL EXPECTED FOLLOWING GOTO
101 INTEGER VARIABLE EXPECTED
102 ILLEGAL NEST OF DO
103 DO IS NESTED TOO DEEPLY FOR THE COMPILER
104 DATA/FORMAT TABLE OVERFLOW
105 ABSOLUTE VALUE OF INTEGER IS GREATER THAN 8589934591
106 REPEAT/FIELD WIDTH/DECIMAL WIDTH SIZE EXCEEDED-MAX IS 255
110 UNRECOGNIZED FILE OPTION
111 UNRECOGNIZED HARDWARE TYPE
112 MAXIMUM FILE SPECIFIER=99
113 FILE NAME EXPECTED
114 DUPLICATE ACTION LABELS
115 INVALID LIST ITEM
116 1/0 LIST EXPECTED
117 ACTION LABEL EXPECTED
118 INVALID FORMAT SPECIFIER
119 LABEL TOO LONG
121 SIGN NOT ALLOWED
123 FIELD WIDTH/TABULATION MUST BE GREATER THAN 0
124 ILLEGAL FORTRAN CONSTANT
125 ILLEGAL PARAMETER IN CONTROL CARD
126 INVALID IMPLIED DO

C-5

C-6

Error Messages

127 COMPLEX NOT ALLOWED
129 LABEL ON STATEMENT IS A DUPLICATE
130 ILLEGAL MIXED TYPE
131 ILLEGAL SUBROUTINE REFERENCE
134 STATEMENT IS NOT ALLOWED IN BLOCK DATA SUBPROGRAM
135 WRONG NUMBER OF PARAMETERS
136 INTEGER,STRING OR END OF STMT EXPECTED
138 LABEL ON CONTINUATION LINE
140 INTEGER EXPRESSION EXPECTED
141 INVALID COMMON ELEMENT
142 MULTIPLE APPEARANCE IN COMMON
143 INVALID LENGTH FOR THIS TYPE
144 COMMA OR END OF STATEMENT EXPECTED
145 INCORRECT NUMBER OF SUBSCRIPTS
146 EQUIVALENCED TO MORE THAN ONE LOCATION
148 SLASH EXPECTED
150 NOT ALLOWED HERE
151 ILLEGAL FCN REF OR MISSING DIMENSION
153 INVALID SUBSCRIPT
154 ARITHMETIC IF REQUIRES 3 LABELS
155 EXCEEDED MAX RECORD SIZE (1000 CHARACTERS)
label IS A LABEL THAT HAS BEEN REFERENCED BUT NOT DECLARED
MISSING INTRINSIC intrinsic name
DATA DICTIONARY OVERFLOW
MISSING ICM FOR SUBPROGRAM subprogram name
UNEXPECTED END OF FILE
DEFINITION OF SUBPROGRAM subprogram name DISAGREES WITH PREVIOUS REFERENCE
WRONG NUMBER OF PARAMETERS FOR subprogram name PREY = number CURR = number
SYMBOLTABLEOVERFLOW
COMPILER ERROR CASE OP IN PROCESS.BIG.OPCODE.
NAME FORTRAN NOT ALLOWED ON COMPILE CARD
common block name COMMON BLOCK IS LARGER THAN PRIOR DECLARED SIZE
TOO MANY FILES - MAXIMUM ALLOWED 19
operator OPERAND operator IS AN ILLEGAL COMBINATION
OPERAND REQUIRED BETWEEN operator AND operator
OPERATOR REQUIRED BEFORE operand
OPERAND NOT ALLOWED BETWEEN operator AND operator
LOGICAL OPERAND REQUIRED BETWEEN operator AND operator
CANNOTCONVERT UNKNOWN TO UNKNOWN

UNKNOWN LOGICAL
UNKNOWN INTEGER
UNKNOWN REAL
UNKNOWN DOUBLE
UNKNOWN COMPLEX
LOGICAL DOUBLE
LOGICAL COMPLEX
lNTEGER UNKNOWN
REAL UNKNOWN
REAL LOGICAL
DOUBLE UNKNOWN
DOUBLE LOGICAL
COMPLEX UNKNOWN
COMPLEX LOGICAL

WARNING AND ERROR MESSAGES

Error Messages

PARAMETER NO. number MISMATCHED IN subprogram name PREY = type CURR = type
subprogram name IS NOT ICM FILE - - BINDING ABORTED
subprogram name HAS SPECIAL I/O OPERATOR AND MUST BE IN THE INTRINSIC FILE
INTRINSIC VERSION = version COMPILER VERSION = version ARE MISMATCHED
subprogram name CONTAINS ARRAY FORMAT I/O USING OUTDATED .SETAF INTRINSIC.

RECOMPILE subprogram name
CODE FILE SIZE (BLOCKS.AREA) MUST BE ENLARGED FOR THIS PROGRAM
VARIABLE DIMENSION MUST BE INTEGER
VARIABLE DIMENSION MUST BE DUMMY OR IN COMMON
ELEMENTS OF DIFFERENT COMMON BLOCKS EQUIVALENCED
ELEMENTS OF SAME COMMON BLOCK EQUIVALENCED
PARAMETER MAY NOT BE INITIALIZED
IMPROPERLY FORMED IMPLIED DO LOOP
DO LOOP INDEX USED IN TWO NESTED IMPLIED DO LOOPS
THE REFERENCE TO THE ARRAY array name DOES NOT USE THE DO LOOP INDEX

variable name
BAD DO
THE SUBSCRIPT POLYNOMIAL FOR THE ARRAY array name IS OUT OF RANGE
ONLY COMMON MAY BE INITIALIZED IN BLOCK DATA
COMMON MAY ONLY BE INITIALIZED IN BLOCK DATA
ARRAY NOT DIMENSIONED
INTEGER CONSTANT EXPECTED
INTEGER SCALAR EXPECTED
TOO MANY SUBSCRIPTS
TOO FEW SUBSCRIPTS
LEFT PARENTHESIS EXPECTED
THE REFERENCE TO array name DOES NOT USE ALL PENDING DO LOOP INDICES
UNSUBSCRIPTED ARRAY REFERENCE IN IMPLIED DO LOOP
SCALAR OR ARRAY REFERENCE REQUIRED
UNEXPECTED IMPLIED DO LOOP END
UNEXPECTED DATA LIST ELEMENT
REPEAT FACTOR OUT OF RANGE - MAX IS number
ILLEGAL COMPLEX CONSTANT
COMMA EXPECTED
RIGHT PARENTHESIS EXPECTED
TOO MANY CONSTANTS
TOO FEW CONSTANTS
COMMA OR RIGHT PARENTHESIS EXPECTED
SIMPLE VARIABLE ENCOUNTERED IN IMPLIED DO
CONSTANT EXPECTED
IMPLIED DO'S NESTED DEEPER THAN 15
ONLY DELIMITERS ALLOWED HERE
EQUIVALENCE MAY NOT EXTEND COMMON LEFT
variable name IS IN COMMON BLOCK AND MAY NOT BE INITIALIZED IN BLOCK DATA
variable name IS NOT IN COMMON AND MAY NOT BE INITIALIZED IN BLOCK DATA
ARITHMETIC OPERAND REQUIRED BETWEEN previous operator and current operator
ILLEGAL COMBINATION OF type and type OPERANDS
COMPLEX ILLEGAL FOR operator
OPERATOR EXPECTED
MISSING RIGHT PARENTHESIS
EXPRESSION TOO NESTED
SUBSCRIPT EXPECTED
ILLEGAL SUBROUTINE REFERENCE
NAMELIST NAME ILLEGAL IN EXPRESSION

C-7

D. SAMPLE COMPILATION AND BIND LISTINGS

The following is an explanation of items appearing on compilation and bind listings. The letters correspond
to the circled letters on the sample listings which appear on the following pages.

A. Compiler generated line number.

B. Compiler release version, date, and time.

C. Name of compiled program - (program name) appearing on ?COMPILE card.

D. Day, calendar date, and time of compilation.

E, User's source code.

F. User's sequence numbers.

G. Code displacement numbers.

H. Subprogram name.

I. The number of bytes of code compiled for the subprogram.

J. The elapsed compile time for the subprogram.

The following additional source listing information is provided when $MAP is included in the control cards:

K. MAP header.

L. Variable names declared or referenced.

M. Types of variable, subprogram, or label.

N. Class of variable or subroutine.

0. Dimension information for variable.

P. Common block name containing variable (blank if local).

Q. Relative address assigned to variable, block.

R. Pertinent information concerning variable.

S. Names of subprograms referenced.

T. Number of arguments passed to subroutine.

U. Labels found in subprogram.

V. Code/data displacement of labels found.

W. Common blocks declared.

D-1

SAMPLE COMPILATION AN-;;-i
BIND LISTINGS _J

The following letters and meanings apply to the CODE AND DAT A MAPPING (bind phase) of the listing:

D-2

AA. Name of subprograms bound.

BB. Number of dummy arguments required.

CC. Relative entry address.

DD. Actual entry address.

EE. Size of code or data segment in bits, bytes, and words.

FF. Class of subprogram of data segment.

GG. Date and time of intrinsic compilation.

HH. Name of source file containing intrinsics.

II. Name of data segment bound.

JJ. Actual s~gment number of data segments.

KK. Memory requirement statistics.

LL. Interpreter requested ..

MM. Total disk space required for the code file. If more than 700 disk sectors are required, a ? FILE
card with the following form must be used to increase the amount of disk space:

?CO program.name FORTRAN
?F 1 CODE BLOCKS.AREA= integer

NN. Elapsed bind time.

00. Elapsed time for complete compilation.

SAMPLE COMPILATION AND
BIND LISTINGS

,----(~~-- --------~---.,..----=-----
BURROUGHS Bl800/Bl700 FORTRAN COMPILER • HARK~7.0 RA 10/24/77 17:11' • 1 HONDAY 12~9177 06:40 AH'

,/CNEAL> ©c /EXAMPLEO, E ®
:SHAP ·~~~~~~~~~~ 000 100 OEXAHPLEO
':FILE 5=HORTGAGE/DAU•UNIT=READER 00001000 OEXAHPLEO

@0003
0004
0005
0006
0007
0008

0009
0010
0011
0012
0013
00 lit
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0027
0026
0029
0030
0031
0032
OOH
0034
0035
0037
0036
0039
0040
0041
0042
0043
0044
0045
0045
0045
0045
004&
0047
0048

:FILE 6=PAYHENT/SCHEDULE•UNIT=PRINTER 00001100 OEXAHPLEO

:c
:c
:c
:c
:c
:c
: c
:c
:c
: 1

10

20

30
40

50
:100

70

:60
:99999

COHHON/BLOCK/ IYR•AHOUNT.AE.JSH.JSY 00001200 000075 OEXAHPLEO
INTEGER PAGE·OUT•lN 00001300 000075 OEXAHPLEO
REAL ASC460>• AE• RT• WORK• WSAVE• FINT 00001400 000075 OEXAHPLEO
INTEGER A HONTH 00001500 000075 OEXAHPLEO
DIMENSION AHONC12) 00001600 000075 OEXAHPLEO
DATA HAXlIN•OllT.IN/50•6•5/ 00001650 000075 OEXAHPLEO

I YR
AMOUNT
AE
JSM
JSY

NUMBER OF YEARS
STARTING AMOUNT
INTEREST
MONTH TO START COMPUTING
YEAR TO START COMPUTING

: 00001700 OEXAHPLEO
00001600 OEXAHPLEO
00001900 OEXAHPLEO
00002000 OEXAHPLEO

: 00002100 OEXAHPLEO
00002200 OEXAHPLEO

: 00002300 OEXAHPLEO
00002400 © OEXAHPLEO
00002500 OEXAHPLEO

PAGE = I 00002600 000075 OEXAHPLEO
CALL INPUTCIN•l99999> 00002700 000329 OEXAHPLEO
WRITE C 6• 70) AHOUNT• AE• IYR• PAGE 00002600 000496 OEXAHPLEO
JSH = JSH • 1 : 00002900 001137 OEXAHPLEO
HONTH = 12•IYR 00003000 001214 OEXAHPLEO
RT = AE /1200.0 00003100 001291 OEXAHPLEO
WORK = 1.0/Cl.O + RT> 00003200 001394 OEXAHPLEO
WSAVE = WORK : 00003300 001545 OEXAHPLEO
TEQU = O.O : 00003400 001583 OEXAHPLEO
DO 10 I = 1• MONTH : 00003500 001652 OEXAHPLEO
ASC I> = C l.O ~ WSAVE)/RT 00003600 001664 OEXAHPLEO
WSAVE = WSAVE*WORK : 00003700 001662 OEXAHPLEO
WORK = AHOUNTIAS CHONTH> 00003600 002115 OEXAHPLEO
LINE = 0 1 00003900 002267 OEXAHPLEO
WSAVE = AHOUNT 00004000 002299 OEXAHPLEO
DO 50 I = l• HONTH : 00004100 002348 OEXAHPLEO
IF CLINE .LE. HAXLIN> GOTO 20 00004200 002380 - OEXAHPLEO
LINE = 0 00004300 002466 OEXAHPLEO
PAGE = PAGE + 00004400 002498 OEXAHPLEO
WRITECOUT. 70 > AHOUNT• AE• IYR• PAGE 00004500 002575 OEXAHPLEO
FINT = WSAVE•RT 00004600 003228 OEXAHPLEO
JHO = JSH + 1 00004700 003317 OEXAHPLEO
JYR = JSY +· < JHO I 12 > 1 00004800 003394 OEXAHPLEO
JHO = 1 + JHO - CJH0/12 * 12 00004900 003486 OEXAHPLEO
II = HONTH - I 00005000 003641 OEXAHPLEO
IF CH .NE. 0 >GOTO 30 00005100 003730 OEXAHPLEO
WSAVE = O.O : 00005200 003785 OEXAHPLEO
GO TO 40 : 00005300 003854 OEXAHPLEO
WSAVE = WORK•ASCII> 00005400 003881 OEXAHPLEO
EQU = WORK • FINT 00005500 004033 OEXAHPLEO
TEQU = TEQU + EOU 00005600 004122 OEXAHPLEO
WRITE C&,60)AHONTHCJMO>•JYR• WORK• SAVE• FINT. EQU, TEQU 00005700 004211 OEXAHPLEO
LINE = LINE + l 00005800 005311 OEXAMPLEO
60 TO 1 : 00005900 005532 OEXAMPLEO

OFORHAT C42H1AHORTIZATION SCHEDULE FOR A MORTGAGE OF S•f6·2•" AT•,: 00006000 005559 OEXAMPLEO
1F7.4··~ PER YEAR FOR •.12.• YEARS PAGE = "•I2•/18X•"HONTHLY•.4x. I 00006100 005559 OEXAHPLEO
2"UNPAID"•5X."INTEREST"•4X•"EQUITY"•5X•"T0TAL"/" MONTH ** YEAR ** P: 00006200 005559 OEXAMPLEO
3AYHENT ** BALANCE ** PAYMENT ** PAYHANT ** EQUITY"/) 00006300 005559 OEXAMPLEO

FORHAT C1X.A4.19,5Fll.2> 00006400 005559 OEXAMPLEO
STOP 00006500 005559 OEXAMPLEO

END 00006700 005618 OEXAMPLEO

SYMBOLIC REFERENCE INFORMATION

--------- -----------VARIABLES <LOCAL BASE SEG.= 2> ©
NOTE. DATA ADDRESSES IN THE REFERENCE TABLE FOR COMMON AND LOCAL

ITEMS Will APPEAR DIFFERENT THAN THOSE SHOWN IN A LISTING OF
CODE. TO CORRELATE THE CODE LIST ADDRESS FOR COMMON BLOCK
ITEMS THE COMPILE ASSIGNED SEGMENT ASSIGNED FOR THE BLOCK
MUST BE SUBTRACTED FROM THE CODE LIST SEGMENT NUMBER.
FOR LOCAL ITEMS THE COMPILE ASSIGNED LOCAL BASE S@.MENT
~ST BE ~TRACT~. a

@10ENT ~TYPE N CLASS 0 DIM/ El.EMG)coMMON ADDR CSEG· DISP>
IYR INTEGE SCALA /BLOCK I 0• 000
AHOUNT REAL SCALAR /BLOCK I Or 001
A[REAL SCALAR /BLOCK I Or 002
JSM INTEGER SCALAR /BLOCK I o. 003
JSY INTEGER SCALAR /BLOCK I 01 004
PAGE INTEGER SCALAR 11 237
OUT INTEGER SCALAR 11 246
IN INTEGER SCALAR 11 238
AS REAL ARRAY 1/480 o. 000
RT REAL SCALAR 11 240
WORK REAL SCALAR 1, 241
WSAVE REAL SCALAR 11 242
FINT REAL SCALAR lr 247
AHON REAL ARRAY 1/12 11 224
MAXLIN INTEGER SCALAR 11· 245
I INTEGER SCALAR l• 236
MONTH INTEGER SCALAR lr 239
TEQU REAL SCALAR l• 243
LINE INTEGER SCALAR lr 244

@
NOTES
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL•
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL

UNINITIALIZED

D-3

SAMPLE COMPILATION
BIND LISTINGS AN~

D-4

JMO INTEGER SCALAR
JYR INTEGER SCALAR
II INTEGER SCALAR
EQU REAL SCALAR
EOU REAL SCALAR
SAVE REAL SCALAR

SUBPRO~MS ®
I IDENT M TYPE CLASS

(!)AMONTH NTEGER FCN
.HHAK SUBRTN
INPUT SUBRTN
.ISFW SUBRTN
.WRSF SUBRTN
.wJsF SUBRTN
• TFW SUBRTN
.PAUSE SUBRTN

@LABELS ® 0
LABEL TYPE ADDRESS

1 CONTROL 291
99999 CONTROL 5559

70 FORMAT lOZZ
10 DO END 1882
50 DO END 5311
20 CONTROL 3228
30 CONTROL 3881
40 CONTROL 4033
80 FORMAT 1093

100 CONTROL 5532

®COMMON BLOCKS
IOENT ADDR<SEG.OJSP>
BLOCK l.O

0 (~
ARG !MOTES

SYSTUI OR USER ROUTINE
SYSTDI ROUTINE

2 SYSTEll OR USER ROUTINE
SYSTDI ROUTINE
SY STEii ROUTINE
SYSTEH ROUTINE
SYSTEll ROUTINE
SYSTEH ROUTINE

1. 248
1. 2"9
t. 250
1. Z5 l
1. Z5Z
l· Z'H

LOCAL
LOCAL
LOCAL
LOCAL
LOCAL• UNINITIALIZED
LOCAL• UNINITIALIZED

r----g'_) --
NO ERRORS AND NO WARNINGS JN 48 STATEMENTS.CODE EMITTED = 5618 BITS <703 BYTES>OEXAMPLEO
COMPILE TIME 1s,zo.7 (J)CONOS, FOR 59 CARDS Ar 171 CARDS/HI NUTE.

BURROUGHS Bl800/Bl700 FORTRAN COMPILER • HARK 7.0 RA 10/24/77 17:11 • MONDAY lZ/19/77

0001
oooz
0003
0004
0005
0005
0005
0005
0005
0006
0007
0008
0009

/(NEAL> /EXAMPLED

SUBROUTINE JNPUTCUNIT••>
INTEGER YEAR•UNIT
COMMON/BLOCK/ YEAR•AHOUNT,AE•JSH.JSY

90 fORMAT<l2
A .2F8.2
B •I Z
c • 14
0 • 56 x)

READ<UNIT•90•END=lOO>YEAR.AMOUNT•AEtJ5H•JSY
RETURN 0

: 100 RETURN 1
ENO

SYMBOLIC REFERENCE INFORHATION

VARIABLES <LOCAL BASE SEG.= Z>
NOTE. DATA ADDRESSES IN THE REFERENCE TABLE fOR COHMDN AND LOCAL

ITEMS Will APPEAR DIFFERENT THAN THOSE SHOWN IN A LISTING Of
CODE. TO CORRELATE THE CODE LI ST ADDRESS FOR COHHON BLOCK
ITEMS THE COMPILE ASSIGNED SEGMENT ASSIGNED FOR THE BLOCK
HUST BE SUBTRACTED FROH THE CODE LIST SEGHENT NUMBER.
fOR LOCAL ITEMS THE COHPJLE ASSIGNED LOCAL BASE SEGMENT
HUST BE SUBTRACTED.

IOENT
UNIT
YEAR
AMOUNT
AE

TYPE CLASS DIM/ ELEM COMMON

JSH
JSY

INTEGER SCALAR
INTEGER SCALAR
REAL SCALAR
REAL SCALAR
INTEGER SCALAR
INTEGER SCALAR

SUBPROGRAMS
IDENT TYPE
• ISFR
.RI Sf
.RRSF
.URL

LABELS
LABEL

90
100

TYPE
FORMAT
CONTROL

COMMON BLOCKS

CLASS
SUBRTN
SUBRTN
SUBR TN
SUBRTN

ADDRESS
512
919

IDENT AODR<SEG•DlSP>
BLOCK l •O

ARG NOTES

/BLOCK I
/BLOCK
/Bl OCK
/BLOCK
/BLOCK

SYSTEM ROUTINE
SYSHH ROUTINE
SYSTE:H RDUTJ NE
SYSTE:M ROUTINE

ADOR <SEG• DJSP>
RCW, -03

o. 000
0. 00 l
o. ooz
o. 003
o. 004

NOTES
OUMHY
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

NO ERRORS AND NO WARNINGS IN 9 STATEMENTS•COOE EMITTED= 1001 BITS (126 BYTES>JNPUT
COMPILE TIME IS &.l SECONDS FOR 13 CARDS AT 128 CARDS/MINUTE.

00006800
0000&900
00007000
00007100
00007200
00007300
00007400
00007500
00007600
00007700
00007800
00007900
00008000

08:40 AH

000075
000075
000075
000075
000075
000075
000075
000075
000075
000075
000957
000979
001001

OEXAMPLEO
OEXAMPLEO
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

SAMPLE COMPILATION AND
BIND LISTINGS

BURROUGHS B1600/Bl700 FORTRAN COMPILER • HARK 7.0 RA 10/24/77 17:11 •

0001
0002
0003
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0005
0006
000/

/(NEAL> /EXAMPLED

1
2
3
4
5
6
7
6

INTEGER FUNCTION A MONTH <
DIMENSION HONTHC12>
DATA MONTH/

A MONTH
RETURN
END

"JAN."
•"FEB."
,."MAR."
•"APR."
•"MAY "
•"JUNE"
•"JULY"
•"AUG."
•"SEPT"
•"OCT."
•"NOV."
•"DEC." I

HONTHCINDEX>

SYMBOLIC REFERENCE INFORMATION

VARIABLES <LOCAL BASE SEG.= 1>

INDEX

NOTE. DATA ADDRESSES IN THE REFERENCE TABLE FOR COMMON ANO LOCAL
ITEMS WILL APPEAR DIFFERENT THAN THOSE SHOWN IN A LISTING Of
CODE. TO CORRELATE THE CODE LIST ADDRESS FOR COMMON BLOCK
ITEMS THE COMPILE ASSIGNED SEGMENT ASSIGNED FOR THE BLOCK
HUST BE SUBTRACTED FROM THE CODE LIST SEGMENT NUMBER.
FOR LOCAL ITEMS THE COMPILE ASSIGNED LOCAL BASE SEGMENT
HUST BE SUBTRACTED.

IDENT TYPE CLASS DIM/ ELEM
AHONTH INTEGER SCALAR
INDEX INTEGER UNSPEC
~ONTH INTEGER ARRAY 1112

COMMON ADOR CSEG• OISP>
RCW. +Ol
Rew. -01

0. 000

NOTES
LOCAL
DUMMY
LOCAL

MONDAY 12119177

00008100
00008200
00008300
00008400
00008500
00008&00
00006700
00008800
00008900
00009000
00009100
00009200
00009300
00009400
00009500
00009&00
00009700
00009800
00009900

000075
000075
000075
000075
000075
000075
000075
000075
000075
000075
000075
000075
000075
000075
000075
000075
000075
000247
000226

NO ERRORS AND NO WARNINGS IN 7 STATEHENTS•CODE EMITTED = 226 BITS (29 BYTES>AHONTH
COMPILE TIME IS 5.1 SECONDS FOR 19 CARDS AT 224 CARDS/MINUTE.

NO ERRORS AND ND WARNINGS IN 64 STATEMENTS.CODE EMITTED = 6845 BITS (656 BYTES>ALL PROGRAM UNITS
COMPILE TIME IS 32.1 SECONDS FOR 91 CARDS AT 170 CARDS/MINUTE.

CODE ANO DATA HAPPING
PROGRAM COMPILED ON SYSTEM DISK• INTRINSICS FILE ON SYSTEM DISK
SUBPROGRAM DATA NUM. STARTING ADDRESSES LENGTH CLASS DATE-TIME COMPILED

ID ID ARG. COMPILE FINAL BITS BYTES WORDS

OEXAHPLEO

AMON TH

.fTMAK

INPUT

• I Sf W

.w RSf

.WISF

• nw

.PAUSE

.SAOOR

.JSFR

.RISF

.RRSF

• TfRL

.UN TOK

.E:RROR

.WCFMT

.STERR

• TEN

.Wf

/BLOCK I
LOCAL

LDC AL

/BLOCK
LOCAL

o. 75
o.o
1.0

0.75
o.o

0,75

0.75
o.o
1.0

0.75

0.15

0,75

o. 75

0,75

o. 75

0.75

0.75

0,75

0.75

0,75

0,75

0.75

r. 75

5,75

10.75

11. 75

12.75

13.75

14,75

15. 75

16.75

17.75

18· 75

20.75

5&16
160

21132

226
432

326 3

1001
180
252

11&6

4060

2006

563

1660

141

1210

3519

1868

937

1324

154 9 7

H06

171

2006

7612

70 3
23

2&42

29
54

411

126
23
32

146

510

251

71

208

18

152

415

234

118

166

1938

414

22

25 1

952

HAIN LINE 12/19/77 08 40 AH
5 COMMON

587 LOCAL DA TA

INTEGER fN 12/19/77 08 40 AH
12 LOCAL DATA

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 12/19/77 08 40 AH
5 COMMON
7 LOCAL DATA

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

INTEGER FN 10/25/77 02 42 PH

SUBROUTINE 10/25177 02 42 PH

SUBROUTINE 10/25177 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25177 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

REAL FN 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

OEXAHPLEO
OEXAHPLEO
AHO NTH
AH ON TH
AHO NTH
AHO NTH
AHO NTH
AHONTH
AHO NTH
AHONTH
AHO NTH
AHO NTH
AH ON TH
AHO NTH
AHO NTH
AHO NTH
AHO NTH
AHO NTH
AH ON TH

FAMILY
ID

(NE AL>

<NE AL>

FOR.INTRIN

<NEAL>

FDR •I NTRI N

FOR.JNTRIN

FOR.INTRIN

FOR ·I NTRI N

FO~.INTRIN

FOR.JNTRIN

FOR.INTRIN

FOR.INTRIN

FOR •I NTRI N

FOR .I NTRI N

FDR.INTRIN

FOR.INTRIN

FOR .I NTRI N

FOR.INTRIN

FOR ·I NTRI N

fOR.INTRIN

D-5

SAMPLE COMPILATION AND
BIND LISTINGS

.wo 0,75

.WE 0,75

.w1 o. 7 5

.wz 0,75

.WRITE 0 0•75

.F IXEC o. 75

.REA DR 0,75

.RCFHT 0.75

.RZ 0.75

.XERRH 0 0.75
LOCAL 2. 0

.SHOP 0,75

.FT 0.75

.FSLH 0.15

.TEND 0'75

DINT 0.75

FINAL FOR~ or COMMON BLOCKS
/.INTR/
/BLOCK I
/.XQATA/

MEMORY REQUIREMENTS ARE
STACK SifE <STATIC HEHOltY>
DYNAMIC AREA REQUIRED FOR ALL

DATA PAGES TO BE IN MEMORY ••••·<
DYNAMIC AREA ACTUALLY ASSIGNED •••
DYNAMIC MEMORY LINKS CHCP ADDED>

TOTAL BASE TO LIMIT ••••••••••••••
RUN STRUCTURE NUCLEUS ••••••••••••
DATA DICTIONARY ••••••••••••••••••
F.1.B. DICTIONARY ••••••••••••••••

TOTAL RUN STRUCTURE••••••••••••••
DICTIONARY CONTAINER •••••••••••••
MASTER CODE SEGMENT DICTIONARY •••
LARGEST CODE SEGMENT•••••••••••••
MEHORY LINKS •••••••••••••••••••••
FILE SPACE <IF ALL FILES OPEN> •••

21.75

22.75

23.75

z4.75

Z~·75

26.75

27,75

28•75

Z9• 75

10.75
1.0

3 ... 75

32· 75

33,75

34, 75

35,75

1. 0
8.o
9·0

WORDS
102

1563) (
1563

60

1525
62
25

9

1619
4

80
431

19
179

7585

64H

1410

1055

3862

5'10

6738

1562

1191

4323
1728

3192

883

2324

5801

1445

9216
180

16128
BYTES

459

613'1)(
6134

268

6661
275
110

t,0

72116
17

360
1938

112
602

TOTAL MEMORY REQUIREMENTS •••••••• 2330 10462
INT[RPRETER REQUESTED IS /FORTRAN /INTERP
CODE REQUIRES 0122 DISK SECTORS AT 180 BYTES/SECTOR
ELAPSED BIND TIME = 51 SECONDS.
ELAPSED TOTAL TIME = l MINUTE ANO 23 SECONDS.

949

805

184

132

483

74

843

446

149

5"1
216 48

399

111

291

726

181

1152 25&
23 5

2016 446
BITS
3672

49068)
49068

2143

54863
2198

880
320

58281
131

2880
154 97

652
6409

83850

BURROUGHS Bl800/B1700 FORTRAN COMPILER • HARK 7.0 RA 10124177 17:11 •

D-6

0003
0004
0005
0006
0007
0008

0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023

/CNEAL> /EXAHPLEO
: SHAP
:FILE
:FILE

:c
:c
:c
:c
:c
:c
:c
:c
:c
: l

10

5=MORTGAGEIDATA•UNIT=READER
6=PAYMENT/SCHEDULE•UNIT=PRINTER
COMMON/BLOCK/ IYR•AMOUNT•AE•JSM•JSY
INTEGER PAGE.OUT.IN
REAL 'SC480>. AE•
INTEGER A MONTH
DIMENSION AMONC12>
DATA MAXLI~~ouT.IN/50·6·51

IYR
AMOUNT
AE

NUMBER Of YEARS
STAR TI NG AMOUNT
INTEREST

RT. MORK• WSAYE• FINT

JSH
JSY

MONTH TO START COMPUTING
YEAR TO START COMPUTING

PAGE = I
CALL INPUTCIM•l99999l
WRITE C 6. 70> AMOUNT• AE• IYR• PAGE
JSH = JSM - 1
MONTH = 12•IYR
RT = AE 11200.0
WORK = 1.01<1.0 + RT>
WSAYE = WORK
TEQU = O.O
00 10 I = l• MONTH
ASCI> = c1.o - WSAYE)/RT
WSAYE = WSAYE•WORK
WORK = AMOUNT/AS <MONTH>
LINE = 0
WSAYE = AMOUMT

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

SUBROUTINE

REAL FN

SUBROUTINE

SUBROUTINE

SUBROUTINE
LOCAL DATA

SUBROUTINE

SUBROUTINE

SUBROUTINE

DOUBLE FN

DOUBLE FN

MONDAY

10125177 02

10/25177 oz

10125177 oz
10125177 oz

10125177 02

10125/77 02

10/25177 02

10125177 02

10125/77 02

10125177 02

10125/77 02

10125177 02

10125177 02

10/25177 02

10125177 02

12119/77

00000100
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001650
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00001000
00003100
00003200
00003300
00003400
00003500
00003600
00003700
00003800
00003900
00004000

42 PH FOR.INTRIN

42 PM FOR.INTRIN

42 PH FOR.INTRIN

42 PH FQR.INTRJN

42 PH FOR .I NTRJ N

42 PH FQR.INTRIN

42 PH FOR .J NTRI N

42 PH FOR .I NTRJN

42 PH FOR. I NTR IN

42 PH FQR.INTRIN

42 PM FOR.(NTRIN

42 PH FOR. I NTRI N

42 PM FOR.JNTRIN

42 PM FOR-INTRIN

42 PM FOR.JNTRIN

08:40 AH

000075
000075
000075
000075
000075
000075

000075
000329
0004 96
001137
001214
001291
001394
001545
001583
001652
001664
001882
002115
002267
002299

OEXAHPLEO
OEXAHPLEO
OEXAHPLEQ
OEXAHPLE 0
OEXAHPlEO
OEXAMPLEO
OEXAHPLEO
OEXAHPLEO
OEXAHPLEO
OEXAMPLEO
OEXAMPLEO
OEXAMPLEO
OEXAMPLEO
OEXAHPLEO
OEXAMPLEO
OEXAHPLEO
0£XAMPLEO
OEXAMPlEO
OE XAMPlE 0
OEXAHPlEO
OEXAHPLEO
OEXAMPL.EO
OEXAHPl.EO
OEXAMPl.EO
OEXAMPLEO
OE X AHPL.E 0
OEXAMPl.EO
OEXAMPl.EO
OEXAHPl.EO
OEXAMPLEO
OEXAMPl.EO
OEXAMPl.EO
OEXAMPl.EO

SAMPLE COMPILATION AND
BIND LISTINGS

DO 50 I = l• HONTH 0024
0025
0027
0028
0029
0030
0031
0032
0033
0034
0035
0037
0038
0039
0040
0041
0042
0043
0044
0045
0045
0045
0045
004&
0047
0048

IF CLINE .LE. HAXLIN> GOTO 20
LINE = 0
PAGE = PAGE + 1
WRITECOUT• 70 > AHOUNT• AE• IYR• PAGE

20 FINT = WSAVE•RT
JHO = JSH + 1
J YR = JS Y + C JH 0 I 12 >
JHO = 1 + JHO - CJH0/12) • 12
ll = ~ONTH - I
IF <II .NE. 0 > GOTO 30
WSAVE = O.O
GO TO 40

30 WSAVE = WORK•ASCII>
40 EQU = WORK - FlNT

TEQU = TEQU t EOU
WRITE Cli.80)AHONTHCJHO>.JYR. WORK• SAVE. FINT. EQU. TEQU

50 LINE = LINE + l
100 GO TO 1

70 OFORHAT C42H1AHORTIZATION SCHEDULE FOR A MORTGAGE OF S•F8.2•" AT"•
1F7.4•"% PER YEAR FOR "•12•" YEARS PAGE = "•I2,/18X,"HONTHLY"•4X•
2"UNPAID"o5X•"INTEREST"•4X•"EQUITY"•5X•"TOTAL"/" HONTH •• YEAR •• P
3AYHENT •• BALANCE •• PAYMENT ** PAYHANT ** EQUITY"/}

80 FORHAT ClX•A4•I9.5F11.2>
99999 STOP

ENO

SYMBOLIC REFERENCE INFORMATION

VARIABLES CLOCAL BASE SEG.= 2>
NOTE. DATA ADDRESSES IN THE REFERENCE TABLE FOR COMMON ANO LOCAL

ITEMS WILL APPEAR DIFFERENT THAN THOSE SHOWN IN A LISTING OF
CODE. TO CORRELATE THE CODE LIST ADDRESS FOR COMMON BLOCK
lTEHS THE COMPILE ASSIGNED SEGMENT ASSIGNED FOR THE BLOCK
HUST BE SUBTRACTED FROH THE CODE LIST SEGMENT NUMBER.
FOR LOCAL ITEMS THE COMPILE ASSIGNED LOCAL BASE SEGMENT
HUST BE SUBTRACTED.

IOENT TYPE CLASS OIH/ ELEM COHHON ADOR CSEG• DlSP> NOTES
lYR INTEGER SCALAR /BLOCK I o, 000 GLOBAL
AMOUNT REAL SCALAR /BLOCK I 0• 001 GLOBAL
AE REAL SCALAR /BLOCK I 0• 002 GLOBAL
JSH INTEGER SCALAR /BLOCK I o, 003 GLOBAL
JSY INTEGER SCALAR /BLOCK I 0• 004 GLOBAL
PAGE INTEGER SCALAR 1• 237 LOCAL
OUT INTEGER SCALAR l• 241i LOCAL
IN INTEGER SCALAR l• 238 LOCAL
AS REAL ARRAY 1/480 0• 000 LOCAL
RT REAL SCALAR 1, 240 LOCAL
WORK REAL SCALAR t. 241 LOCAL
WSAVE REAL SCALAR l• 242 LOCAL
FINT REAL SCALAR 1. 247 LOCAL
AHON REAL ARRAY 1/12 1. 224 LOCAL• UNINITIALIZED
MAXLIN INTEGER SCALAR l• 245 LOCAL
I INTEGER SCALAR 1, 231i LOCAL
MONTH INTEGER SCALAR 1, 239 LOCAL
TEQU REAL SCALAR lo 243 LOCAL
LINE INTEGER SCALAR lo 21,4 LOCAL
JHO INTEGER SCALAR lo 248 LOCAL
JYR INTEGER SCALAR l• 249 LOCAL
II INTEGER SCALAR lo 250 LOCAL
EQU REAL SCALAR 1, 251 LOCAL
EDU REAL SCALAR l• 252 LOCAL• UNINITIALIZED
SAVE REAL SCALAR t. 253 LOCAL• UNINITIALIZED

SUBPROGRAMS
IDE NT TYPE CLASS ARG NO TES
A MONTH INTEGER FCN SYSTEM OR USER ROUTINE
.f TH AK SUBRTN SYSTEM ROUT! NE
INPUT SUBRTN SYSTEM OR USER ROUTINE
.ISFW SUBRTN SYSTEM ROUTINE
.WRSF SUBRTN SYSTEM ROUT! NE
.wISF SUBRTN SYSTEM ROUTINE
• TFW SUBR TN SYSTEM ROUT! NE
.PAUSE SUBRTN SYSTEM ROUTINE

LABELS
LABEL TYPE ADDRESS

1 CONTROL 291
99999 CONTROL 5559

70 fORHAT 1022
10 DO END 16R2
50 DO END 5311
20 CONTROL 5226
30 CONTROL 3661
40 CONTROL 4033
80 fORHAT 1093

100 CONTROL 5532

COHHON BL'JCKS
lOENT AODRCSEG•DlSP>
BLOCK loO

00004100
00004200
00004300
00004400
00004500
00004600
00004700
00004800
00004900
00005000
00005100
00005200
00005300
00005400
00005500
00005600
00005700
00005800
00005900
0000&000
00006100
00006200
00006300
0000&400
00006500
0000&700

NO ERRORS AND NO WARNINGS IN 48 STATEMENTS•COOE EMITTED = 51il6 BITS C703 BYTES>OEXAHPLEO
COMPILE TIME IS 20.7 SECONDS fOR 59 CARDS AT 171 CARDS/MINUTE.

002348
002380
0024&6
002498
002575
003228
003317
003394
00348&
003641
003730
003785
003854
003881
004033
004122
004211
005311
005532
005559
005559
005559
005559
005559
005559
005618

OEXAHPLEO
OEXAHPLEO
OEXAHPLEO
OE XAHPLEO
OEXAHPLEO
OEXAHPLEO
OE XAHPLE 0
OEXAMPLEO
OEXAHPLE 0
OEXAHPLEO
OEXAHPLEO
OEXAHPLEO
OEXAHf'lEO
OEXAHPLEO
OEXAHPLEO
OEXAHPLEO
OEXAHPLEO
OEXAHPLEO
OEXAHPLEO
OEXAHPLEO
OEXAHPLEO
OE XAHPLE 0
OEXAHPLEO
OEXAHPLEO
OE XAHPLEO
OEXAHPLEO

D-7

SAMPLE COMPILATION AN~
BIND LISTINGS J

D-8

BURROUGHS Bl800/Bl700 FORTRAN COMPILER • HARK l.O RA 10/24/77 17:11 •
/(NEAL> /EXAMPLED

0001
0002 SUBROUTINE INPUTCUNIT.•>
0003 INTEGER YEAR1UNIT
0004 COMMON/BLOCK/ YEAR•AHOUNT.AE.JSM.JSY
0005 90 FORHATCI2
0005 A .2Fs.2
0005 B "12
0005 c ·14
0005 0 .56X)
0006 REAOCUNIT•90•ENO=lOO>YEAR·AHOUNT•AE·JSH•JSY
0007 RETURN 0
0006 :100 RETURN 1
0009 ENO

SYMBOLIC REFERENCE INFORMATION

VARIABLES <LOCAL BASE SEG.= 2)
NOTE. DATA AOORESSES IN THE REFERENCE TABLE FOR COMMON ANO LOCAL

ITEMS WILL APPEAR DIFFERENT THAN THOSE SHOWN IN A LISTING or
CODE. TO CORRELATE THE CODE LIST ADDRESS FOR COMMON BLOCK
ITEMS THE COMPILE ASSIGNED SEGMENT ASSIGNED FOR THE BLOCK
HUST BE SUBTRACTED FROM THE CODE LIST SEGMENT NUMBER.
FOR LOCAL ITEMS THE COMPILE ASSIGNED LOCAL BASE SEGMENT
MUST BE SUBTRACTED.

IOENT
UNIT

TYPE CLASS DIM/ ELEM COMMON
INTEGER SCALAR

YEAR INTEGER
AMOUNT REAL
AE REAL
JSM INTEGER
JSY INTEGER

SUBPROGRAMS
IOENT
• I SFR
.RISF
.RRSF
• TFRL

LABELS
LABEL

90
100

TYPE

TYPE
fORHAT
CONTROL

COMMON BLOCKS

SC AL AR
SCALAR
SC AL AR
SCALAR
SCALAR

CLASS
SUBRTN
SUBRTN
SUBR TN
SUBRTN

ADDRESS
512
979

IOENT AOORCSEG•OISP>
BLOCK l.O

/BLOCK I
/BLOCK
/BLOCK
/BLOCK
/BLOCK

ARG NO TES
SYSTEM ROUT! NE
SYSTEM ROUTINE
SYSTEM ROUTINE
SYSTEM ROUTINE

AOOR CSEG• OISP)
RCW. -03

o. 000
o. OCl
o. 002
o. oc 3
o. 004

NOTES
OUM HY
GLOBAL
GLOBAL
GLOB Al
GLOBAL
GLOBAL

MONDAY

NO ERRORS AND NO WARNINGS IN 9 STATEMENTS•CODE EMITTED= 1001 BITS <126 BYTES>JNPUT
COMPILE TIME IS 6.1 SECONDS FOR 13 CARDS AT 128 CAR[IS/MINUTE.

BURROUGHS Bl800/Bl700 FORTRAN COMPILER • HARK 7.0 RA 10/24177 17:11 ,

0001
00112
0003
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0005
0006
0007

/(NEAL> /EXAHPLEO

INTEGER FUNCTION A MONTH <
DIMENSION MONTH<12)
DATA HON TH/

1 "JAN."
2 •"FEB."
3 •"HAR."

B
c

A MONTH
RETURN
END

•"APR."
•"HAY "
,"JUNE"
•"JULY"
•"AUG."
•"SEPT"
•"OCT."
•"NOV."
•"OEC." I

MONTH< INDEX>

SYMBOLIC REFERENCE INFORMATION

VARIABLES <LOCAL BASE SEG.= 11

I NOE X

NOTE. DATA ADDRESSES IN THE REFERENCE TABLE FOR COMMON AND LOCAL
ITEMS WILL APPEAR DIFFERENT THAN THOSE SHOWN IN A LISTING Of
COOE. TO CORRELATE THE CODE LIST ADDRESS FOR COMMON BLOCK
ITEMS THE COMPILE ASSIGNED SEGMENT ASSIGNED FOR THE BLOCK
MUST BE SUBTRACTED FROM THE CODE LIST SEGMENT NUMBER.
FOR LOCAL ITEMS THE COMPILE ASSIGNED LOCAL BASE SEGMENT
KUST BE SUBTRACTED.

IOENT TYPE CLASS DIM/ ELEM
AHONTH INTEGER SCALAR
INDEX INTEGER UNSPEC
MONTH INTEGER ARRAY 1/12

COHHON ADOR <SEG• OISP>
RCW • •O 1
Rew. -01

0. 000

NOTES
LOCAL
DUH HY
LOCAL

HONDAY

12/19177 08:40 AM

00006800 000075 OEXAHPLIEO
00006900 000075 OEXAHPLEO
00007000 000075 INPUT
00007100 000075 INPUT
00007200 000075 INPUT
00007300 000075 INPUT
00007400 000075 INPUT
00007500 000075 INPUT
00007600 000075 INPUT
00007700 000075 INPUT
00007800 000957 INPUT
00007900 000979 INPUT
00008000 001001 INPUT

12/19/77 08:40 AH

00008100 000075 OEXAHPLEO
00008200 000075 OEXAHPLEO
00008300 000075 AMON TH
00008400 000075 A MONTH
00008500 000075 AHO NTH
00008600 000075 AHONTH
G-0008 7 00 000075 AMON TH
00008800 000075 AHONTH
00008900 000075 AH ON TH
00009000 000075 A MONTH
00009100 000075 AHO NTH
00009200 000075 AHO NTH
00009300 000075 AHO NTH
00009400 000075 Al'40 NTH
00009500 000075 AMONTH
00009600 000075 AMON TH
00009700 000075 AHO NTH
00009800 000247 AMON TH
00009900 000226 AH ON TH

SAMPLE COMPILATION AND
BIN[) LISTINGS

NO ERRORS AND NO WARNINGS IN 7 STATEHENTS•COOE EMITTED = 226 BITS <29 BYTES>AHONTH
COMPILE TIHE IS 5.1 SECONDS FOR 19 CARDS AT 224 CARDS/MINUTE.

NO ERRORS AND NO WARNINGS IN 64 STATEHENTS•CODE EMITTED = 6845 BITS (856 BYTES>ALL PROGRAM UNITS
COMPILE TIHE IS 32.l SECONDS FOR 91 CARDS AT 170 CARDS/MINUTE.

PROGRAM COMPILED
SUBPROGRAM DATA

r.;:.l-D IO
~ c.\

OEXAMPLEO '-::J

AtWNTH

.FT MAK

INPUT

.CSFW

.WRSF

.WISF

• TFW

.PAUSE

.SAOOR

.ISFR

.Ill SF

.HRSF

.'ffRL

.UN TOK

.ERROR

.WCFHT

.STERR

• TEN

.WF

.wo

.WE

.WI

.wz

.WRITE

.FIXEC

.RU.OR

.RCFHT

.1a

.XERRH

.STKDP

.FT

.FSL H

• TENO

DINT

/BLOCK
LDC AL

LDC AL

I BL DC K
LOCAL

LDC AL

ON SYSTEM
NUM.

@iRG.
B

0
I

•••CODE AND DATA HAPPING•••
DISK• INTRINSICS FILE ON SYSTEM DISK
STARTING ADDRESSES LENGTH
C;ILE F~AL BITS BYTES~WOROS'

CC DD
• s 5 rs~ 103

o,o SEE BELOW 180 23 5

:::5~:::5 o.o 5,0

0,75 3,75

0,75 JJ 4,75
o.o SEE BELOW
1.0 6,o

o. 75

0,75 12. 75

0,75

0,75 15.75

16·75

0,75 17. 75

o. 7~; 18.75

0,75 19,75

0,75 20.15

21. 75

0,75 22·75

o. 75 23. 75

0,75 24,75

25,75

26.75

0,75 27·75

0,75 28·75

0. 7~i 29,75

21132 2642 587

226
432

3283

1001
180
252

1166

4080

200&

563

1660

141

1210

3319

1668

937

1324

154 97

3306

171

2006

7612

75fl5

6434

1470

1055

3862

590

6738

3562

1191

29
54

411

126
23
32

146

510

25 1

71

208

18

152

415

234

118

166

1938

414

22

251

952

949

805

18 4

132

46 3

74

843

446

14 9

12

CLASS

@
HAIN LINE
COMMON
LOCAL DAU

DATE-TIME COMPILED

<§
12/19/77 08 40 AH

INTEGER FN 12/19/77 08 40 AH
LOCAL DATA

SUBROUTINE 10/25/77 02 42 PM

SUBROUTINE 12/19/77 08 40 AH
COMMON
LOCAL DATA

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

INTEGER FN 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PM

SUBROUTINE 10/25/77 02 42 PM

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25177 02 42 PH

SUBROUTINE 10/25/77 02 42 PM

SUBROUTINE 10/25/77 02 42 PM

REAL FN 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PM

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25177 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PM

REAL FN 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

0,75
2.0

30,75
7,0

4323
1728

541
216

SUBROUTINE 10/25177 02 42 PH
46 LOCAL DATA

0 •. 15 31,75 3192

0,75 32· 75 863

0,75 2324

34, 75 5601

35. 75 1445

399

111

291

726

181

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

SUBROUTINE 10/25/77 02 42 PH

DOUBLE FN 10/25/77 02 42 PH

DOUBLE FN 10/25/77 02 42 PH

FAMILY
ro

C NEAL>

C NEAL>

FOR. I NTRIN

C NEAL>

e
FOR .I NTRI N

FOR.INTRIN

FOR.INTRIN

FOR.INTRIN

FOR.INTRIN

FOR .I NTR IN

FOR. I NTR IN

FOR.INTRIN

FOR.INTRIN

FOR.INTRIN

FOR.INTRIN

FOR.INTRIN

FOR.INTRIN

FOR·INTRIN

FOR. I NTR IN

FOR.INTRIN

FOR.INTRIN

FOR.INTRIN

FOR •I NTRIN

FOR .1 N TR IN

FOR. I NTRI N

FOR. I NTRI N

FOR.INTRIN

FOR~INTRIN

FOR.INTRIN

FOR.INTRIN

FOR.INTRIN

FOR· I NTRI N

FOR.INTRIN

FOR• I NTR IN

FOR.INTRIN

D-9

SAMPLE COMPILATION AN;i
BIND LISTINGS J

FINAL FORH OF COHHON BLOCKS
I. IN TR I

(~/BLOCK I
/.XOATA/

HEHORY REQUIREMENTS ARE
STACK SIZE <STATIC MEMORY>
DYNAMIC AqEA REQUIRED FOR ALL

DATA PAGES TO BE IN HEHORY ••••• (
DYNAMIC AREA ACTUALLY ASSIGNED •••
DYNAMIC HEHORY LINKS <HCP ADDED> •

e
1.0
5,0
9,0

WORDS
102

13&3H
13&3

60

, 9216
180

16128
BYTES

459

6134)(
6134

268

~
1152 256'

23 5
2016 448

BITS
3672

490&8)
49068

2143

TOTAL BASE TO LIHI T •• •• ••. •• •••••
RUN STRUClURE NUCLEUS ••••••••••••
DATA DICTIONARY••••••••••••••••••
F.I.8. DICTIONARY ••••••••••••••••

1525
62
25

9

&861
27'5
110

40

54883.
2196

880
320 @

D-10

TOTAL RUN STRUCTURE ••••••••••••••
DICTIONARI CONTAINER •••••••••••••
MASTER CODE SEGMENT DICTIONARY •••
LARGEST CODE SEGMENT •••••••••••••
MEMORY LINKS •••••••••••••••••••••
FILE SPACl <IF ALL FILES OPEN> •••

1619
4

80
431

19
17 9

72116
17

360
1938

82
802

58281
131

2860
154 97

&52
6409

TOTAL MEMORY REQUIREMENTS•••••••• 2330 10482 83850
@....._INTERPRETER FIEQUESTEO IS /FORTRAN lINTERP

(.:':\CODE REQUIRES 0122 DISK SECTORS AT 160 OYTESISECTOR ~
x::;1ELAPSEO BIND TIME = 51 SECONDS.
~LAPSED TOTAL. TIME = 1 MINUTE AND 23 SECONDS.

E. STORAGE ALLOCATION

Each B 1800/B 1700 FORTRAN data item is allocated one or more units of storage, depending upon the
type of value(s) the item represents. The primary unit of storage involved is the 36-bit data word. The sum
of all data memory requirements cannot exceed 262, 144 data words.

The following FORTRAN features require special storage configurations:

a. Simple Variables.

b. Arrays.

c. EQUIV ALENCEd Data Items.

d. Elements of COMMON Storage.

The method of storage allocation corresponding to each of these features is discussed in this appendix.

The notation, [m:n], is used in this appendix to describe data word fields. The 36 accessible bits of a data
word are considered to be numbered, with the leftmost bit being bit 0 and the rightmost bit being bit 35.
In the notation used here, m denotes the number of the leftmost bit of the field being described, and n
denotes the number of bits in the field. For example, the word field shown here (bits 19 through 23) would
be described by [19: 5] .

0

1

2

3

4 8 12 24 28

5 9 13 25 29

6 10 14 26 30

7 11 15 27 31

NOTE

All variables are initialized unless $NO INITIAL is used
(see Compiler Option Control Cards in section 13).

32

33

34

35

Hexadecimal constants are used extensively in the present
appendix to indicate word contents. Such constants are
particularly suited to describing the value of a data word
as each digit in a hexadecimal constant indicates the
contents of a 4-bit field. Such fields can be visualized
as columns in the preceding picture of a data word.

E-1

[STORAGE ~LLOCATION

SIMPLE VARIABLES

Each simple variable requires one or two words of storage, depending upon the type of the variable. Each
of these simple variable types corresponds to a special internal storage configuration:

a. Integer Variables.

b. Real Variables.

c. Double Precision Variables.

d. Logical Variables.

The internal handling of variables of these four types is discussed here.

Integer Variables

An integer variable requires one word of storage. The data word corresponding to an integer variable is
partitioned as follows:

Field

[0:2]
[2: 1]
[3:33]

Contents

Type bits (00 indicates integer)
Sign bit (1 =negative, 0 = positive)
Integer field

Integer values are represented internally in signed-magnitude notation. The sign of the value is denoted by
bit 2 of the data word involved. This bit is 0 (zero) for zero and positive values and 1 for negative values.
The magnitude of the value is stored right-adjusted in bits 3 through 33 and is preceded by zeros.

For example, the internal representation of the integer 10 described using hexadecimal constant notation is:

ZOOOOOOOOA

The internal representation of -10 is:

Z20000000A

Integer values of up to 8589934591 in magnitude may be stored with accuracy. A larger value would
require more than 33 bits.

Real Variables

A real variable requires one word of storage. The data word corresponding to a real variable is partitioned
as follows:

E-2

Field

[0:2]
[2: 1]
[3:9]

[12:24]

Contents

Type bits (01 designates real type)
Mantissa sign bit (1 = negative, = 0 positive)
Exponent (in excess-256 notation)
Mantissa field

STORAGE ALLOCATION

Real (floating-point) values are represented internally in signed-magnitude mantissa and excess-25 6-exponent
notation. The sign of the value is denoted by the mantissa sign bit of the data word. This bit is 0 (zero) for
positive or zero values and 1 for negative values. The magnitude of the mantissa is stored left-normalized
within the data word, with the binary point assumed to the left of the mantissa field. The exponent expressed
in excess-25 6 notation represents the power of 2 (i.e.!, the "exponent value") by which the mantissa (in bi­
nary form) must be multiplied to determine its actual value. In excess 256 notation, an exponent equal to
25 6 represents an "exponent value' of 0 (zero).

The magnitude that can be stored in real form is 2**(-256) through (2**255)-2**231); (0.863616856E-77
through 0.57896041 E+77).

Double Precision Variables

A double precision variable is allocated two adjacent words of storage. The first word is identical to the
data word of a real variable, with the second word considered as a 36-bit extension to the right of the man­
tissa part of the first word. The two data words corresponding to a double precision variable are partitioned
as follows:

Field

[0:2]
[2: 1]
[3:9]

[12.:60]

Contents

Type bits (11 designates double precision type)
Mantissa sign bit (1 = negative, 0 = positive)
Exponent (in excess-256 notation)
Mantissa field

Double precision values are represented internally in signed-magnitude mantissa and excess-256-exponent
notation in the identical manner as described above for real variables. The magnitude of the mantissa is
stored left-normalized within the 60-bit mantissa field.

The maximum magnitude that can be stored in double precision form is the same as for a real variable.

Logical Variables

A logical variable requires one word of storage. The data word corresponding to a logical variable is parti­
tioned as follows:

Field

[0:2]
[2:33]
[35:1]

Contents

Type bits (00 designates integer)
Unused
Value bit

The leftmost 35 accessible bits of the data word containing the value of a logical variable are ignored, while
the value represented by that variable is contained in bit 35 of the data word. This logical value is represented
as follows::

When bit 35 is I, the value of the variable is .TRUE; and
when bit 35 is 0, the value of the variable is .FALSE ..

Usually, the internal representation of a logical value is identical to the representation of an integer 1 or an
integer 0. However, since only the state of bit 35 is taken into consideration, the remaining 35 bits may
assume any state.

E-3

[STORAGE ALLOCAT~

For example, a logical variable may be EQUIV ALENCEd to any odd-valued (i.e., 1, 3, 5, etc.) integer
variable and the value of the logical variable will be .TRUE .. When EQUIVALENCEd to any even-valued
(i.e., 0, 2, 4, etc.) integer variable, a logical variable will have the value .FALSE ..

Complex Variables

A complex variable is allocated two adjacent words of storage. The first of these two data words contains
the real part of the variable, while the remaining data word conta:lns the imaginaty part of the variable. Each
of these two data words is identical to the data word of a real varfable.

The two words corresponding to a complex variable are partitioned as follows:

Field Contents

First word (real part)

[0:2]
[2: 1]
[3:9]

[12:23]

Type bits (01 designates real type)
Mantissa sign bit (1 = negative, = 0 positive)
Exponent (in excess-25 6 notation)
Mantissa field

Second word (imaginary part)

[0:2]
[2: 1]
[3:9]

[12:24]

Type bits (01 designates real type)
Mantissa sign bit (1 = negative, = 0 positive)
Exponent (in excess-256 notation)
Mantissa field

The real and imaginary values are represented internally in signed-magnitude mantissa and excess-256-expon­
ent notation in the identical manner as described above for real variables.

The maximum magnitude that can be stored in each word is the same as for a real variable. (See REAL
VARIABLES, above).

ARRAYS

FORTRAN arrays are provided to allow the user to organize program storage locations into a structure
convenient to the user. Internally, an array is stored as a group of one or more contiguous data words. The
correspondence between the array elements and the group of internal storage words is discussed here ..

A FORTRAN array of any number of declared dimensions is represented internally by a one-dimensional
array (i.e., a vector) of storage locations. Each element of the array has storage requirements identical to
that of a simple variable of the same type as the array. Thus, each element of a REAL array requires one
word of storage, whereas each element of a DOUBLE PRECISION array requires two words of storage.
The partitioning of each storage word is identical to that of the storage word(s) corresponding to a simple
variable of the same type as the array element.

Each INTEGER, REAL, and LOGICAL array is allocated a series of internal data words exactly equal in
number to the elements of the array. DOUBLE PRECISION arrays are allocated twice as many internal
data words as array elements. For one-dimensional arrays, the internal data word or word pair correspond­
ing to each array element occurs in the same position in the internal array as the element occurs in the
array.

E-4

STORAGE ALLOCATION I
For example, if the array Al and A2 are declared using these statements:

DIMENSION Al (20)
DOUBLE PRECISION A2(20)

then the REAL array Al will be allocated 20 words of storage (one word per element), and the DOUBLE
PRECISION array A2 will be allocated 40 words of storage (two words per element). Therefore, the array
element Al (2) will be assigned the second word of the internal array corresponding to Al, and A2(2) will
be assigned the third and fourth words of the internal anay corresponding to A2.

Each complex array element requires two words of storage. Thus, complex arrays are allocated twice as
many internal data words as array elements.

For example, if arrays Al and A2 are declared using these statements:

DIMENSION Al(20)
COMPLEX A2(20)

then the real array Al is allocated 20 words of storage (one word per element), and the complex array A2
is allocated 40 words of storage (two words per element). In addition, the array element Al (2) is assigned
the second word of the internal anay corresponding to A 1, and A2(2) is assigned the third and fourth words
of the internal array corresponding to A2.

Arrays of more than one dimension are stored by columns into one continuous internal vector of storage
words. This storage process may be visualized as occurring in the manner displayed in the example provided
here.

A(l,l) A(l,2)

A(2,l) A(2,2)

A(3,l) A(3,2)
. '---
~ I -A(-2-,1-) _1 _I _A(-3~ A(l,2) I I A(2,2) 11 A(3,2) I

The word(s) corresponding to each element of the two-dimensional array in this example are located in the
internal array in the order shown .. Beginning with element A(l ,l), each successive element in the array may
be thought of as being taken in the order in which they occur, proceeding down each column of the matrix,
from left to right, and stored in the internal array. For three-dimensional arrays, this process is repeated for
each successive layer of the array (i.e., each value of the third subscript, beginning with 1).

This, for any n-dimensional array, the elements of this array conespond in a set order to successive storage
locations in the one-dimensional internal array associated with the array. The appropriate order is identical
to that obtained when one lists all of the array elements by varying the first subscript most rapidly, the
second subscript next most rapidly, and so forth. As an example, the elements of the five-dimensional array
A(2, 1,2,2, 1) are stored in this order:

A (1,1,1,l,l)
A (2,1,1,l,l)
A (1,1,2,l,l)
A (2,l,2,1,1)
A (1,1,1,2,1)
A (2,l,1,2,1)
A (1,1,2,2,1)
A (2,1,2,2,1)

E-5

l STORAGE ALLOCATION I
Element A(l, 1, 1, 1, 1) in this example corresponds to the first element of the internal array, element
A(2, 1, 1, 1, 1) corresponds to the second element of the internal array, and so forth.

An array A having n dimensions may be declared by means of an array declaration of the type:

A(D l ,D2,D3, ... , Dn)

The array A then contains elements of the form:

A{ll ,I2,13, ... , In)

The position of the storage unit (i.e.:, the word or word pair) assigned to this array element within the
corresponding internal array may be found by means of the following formula (called the array element
successor function):

I = Il + Dl *(12-1) + Dl *D2*(13-1) + ... + Dl *D2*D3* ... *Dn-1 *(ln-1)

where I is the location index between 1 and (D 1 *D2 *D3 * ... *Dn), inclusive. Thus, the linear index from
the first address of the internal array to the array element is one less than this value (times 2 for DOUBLE
PRECISION arrays).

An array having more than one dimension may be EQUIV ALENCEd to a one-dimensional array and the
elements of this latter array will correspond in order to the storage units assigned to the former array. This
order is also the order in which array elements are considered when an array name appears without a subscript
list within the variable list in an I/O statement or as the item to be initialized in a DATA statement.

An array is stored internally in consecutive storage locations as long as the storage requirement of the array
does not exceed 256 words. Arrays exceeding this size will be segmented for overlay purposes, but will
appear ·logically consecutive. Each array segment will contain a maximum of 25 6 data words and willl be
overlayed and recalled as necessary during the execution of the program.

EQUIVALENCED DATA ITEMS

The FORTRAN EQUIVALENCE specification statement allows the user to assign a number of program data
items to a single unit of internal storage. Thus, more than one symbolic name (i.e., variable name or array
element) may refer to one storage location.

The programming considerations involved with the use of the EQUIVALENCE statement are discussed here.

Single Storage Locations

The least complicated use of the EQUIVALENCE statement involves the assignment of data items requiring
a single word of storage to a mutual :storage location.

As an example, assume that the following statements are the first statements of an executable program:

INTEGER A, AR(2)
LOGICAL L,AL
EQUIVALENCE (A, AR(2), B2), (AL,L)

The EQUIVALENCE statement causes the INTEGER variable A, the INTEGER array element AR(2), and
the REAL variable B2 to all be assigned to one data word. The first element of AR is not affected by this
specification statement. A change in the value of any one of the three EQUIVALENCEd items produces a
simultaneous change in the value of the other two items. However, only variables of the same type will
contain equivalent changes and variables of different types will become undefined. In this example, if

E-6

STORAGE ALLOCATION

INTEGER variable A is assigned a value, INTEGER array element AR(2) will be assigned the same value and
REAL variable B2 will become undefined.

The EQUIVALENCE statement also causes the LOGICAL variables AL and L to be assigned to the same
data word. As the variable L changes value, AL also changes value. For example, the assignment statement:

L = .TRUE.

places the logical value .TRUE. into variable AL.

Multiple Storage Locations

EQUIVALENCE statements may also involve data items requiring more than one word of storage. As an
example, assume that the following statements are the first statements of a program.

DOUBLE PRECISION D
REAL A(2)
EQUIVALENCE (A, D, B)

The displayed EQUIVALENCE statement causes the REAL array A, the DOUBLE PRECISION variable
D, and the REAL variable B to be assigned to identical data words. As A and D both require two data
words, the first and second elements of A become equivalent to the first and second words, respectively, of
the storage unit assigned to D. The variable B, requiring only one data word, will be assigned to the same
location as A(1) and the first word of D.

Array Handling

The EQUIVALENCE statement may be used to assign a single group of contiguous storage locations to a
number of arrays. The present discussion illustrates the effect of the appearance within an EQUIVALENCE
list of each of these three types of possible array references:

a. An array name.

b. An array element with the same number of subscripts as contained in the declaration declaring
the array.

c. An array element with one subscript from an array of more than one dimension.

Assume that the following statements are the first statements of a program unit.

REAL A(4), B(IO, 10), C(IOO), D(SO), E(3, 3), F(SO)
DOUBLE PRECISION $DE(2)
EQUIV ALEN CE (A,$DE), (B(l, 1),C(l)), (D,F(26), E(2))

The first list in this EQUIVALENCE statement (i.e .. , (A,$DE)) causes the REAL array A and the DOUBLE
PRECISION array $DE to share four storage words. The first two elements of A (i.e., A(l) and A(2))
become equivalent to the two words of the first element of $DE (i.e., $DE(l)), and the last two elements
of A (i.e., A(3) and A(4)) become equivalent to the two words of the last element of $DE (i.e., $DE(2)).
The appearance of array names only in an EQUIVALENCE list causes equivalencing to begin with the
first element of each array. The second list in the sample EQUIVALENCE statement (i.e., (B(l ,1), C(l)))
causes the REAL arrays B and C to share 100 storage words. Each element in the 1 GO-element array C
(beginning with C(1)) is assigned to the same storage location as a unique element of B. The elements of the
two-dimensional array are stored internally in the manner described in the discussion of arrays in this appen­
dix. The internal storage locations assigned to C occur in the same order as the elements of that array.

E-7

I STORAGE ALLOCATION l
Hence, each C(I) is EQUIVALENCEd to the Ith internal element of B, and it follows that if the following
two WRITE statements occur in the same program unit, identical output will be produced:

WRITE (6, 10) (C(I), I=l,100)
WRITE (6,10) B

The final list in the sample EQUIVALENCE statement (i.e., (D,F(26), E(2))) indicates that the elements of
the arrays D, F, and E are to be EQUIVALENCEd in such a manner that D(l), F(26), and the second internal
element of the two-dimensional array E are to be assigned identical internal locations. Therefore, the last
25 elements of F (i.e., F(26) through F(50) become equivalent to the first 25 elements of D (i.e., D(l) through
0(25)). Since Eis stored internally in the manner described in the discussion of arrays in this section, equiv­
alencing is handled in the manner illustrated below. Each of the following lines denotes a single storage loca­
tion, and the array element(s) on a line is assigned to the corresponding location.

F (1)

through

F(25) E(l,l)
D(l) F(26) E(2,l)
D(2) F(27) E(3,l)
D(3) F(28) E(l,2)
D(4) F(29) E(2,2)
D(5) F(30) E(3,2)
D(6) F(31) E(l,3)
D(7) F(32) E(2,3)
D(8) F(33) E(3,3)
D(9) F(34)
through through

D(25) F(50)
D(26)

through

D(50)

Therefore, the following DATA statement would initialize the e:tements E(l,2), E(2,2), F(28), F(29), D(3),
and D(4)'with the value 6:

DATA E (1,2), E(2,2) / 2*6/

ELEMENTS OF COMMON STORAGE

The FORTRAN COMMON specification statement allows values to be communicated among program units
without employing entries in SUBROUTINE and FUNCTION statement argument lists while permitting
these data items to be referenced by the same or different symbolic names in each program unit. This state­
ment also allows data initialization using the BLOCK DATA program unit. (See section 12.)

The storage handling of elements in COMMON blocks referenced in subprograms is performed in a dlifferent
manner from dummy arguments in such subprograms. Each element of a COMMON block is allocated stor-
E-8

STORAGE ALLOCATION

age in COMMON storage once for an executable program. Each program unit may reference a COMMON
block (and hence each location in the block) by means of an appropriate COMMON statement. The contents
of the locations thus referenced may be changed in the same manner as the contents of any location local to
the program unit.

The size of each block of COMMON storage is either as large as the maximum specification indicated by a
COMMON statement referencing the block name in any program unit or as large as the maximum length to
which the block is extended by an EQUIVALENCE statement. These two concepts are discussed in the
following paragraphs.

Assume that the following statements are the initial statements of a program unit.

SUBROUTINE MSG
DOUBLE PRECISION D
LOGICAL FLAG(6)
COMMON WORDl, WORD2,D,FLAG,TEXT(20)
COUNT=l

The COMMON statement among the preceding statements will be assumed to provide the largest description
of the size of the unlabeled COMMON block of any COMMON statement appearing in the executable pro­
gram of which the program unit MSG is a part. The total size of this COMMON block is then 30 words.
These words are recognized in the MSG subprogram as the words assigned to the REAL variables WORDl
and WORD2, the word pair assigned to the DOUBLE PRECISION variable D {which cannot cross a data
segment boundary), the six words assigned to the LOGICAL array FLAG, and the 20 words assigned to the
REAL array TEXT. These data words are contained at relative locations within the COMMON block in the
order listed.

The unlabeled COMMON block just described could be referenced, for example, by a COMMON statement
within another program unit as indicated here:

SUBROUTINE DUMP
COMMON T(l 0)
WRITE (6,l)T
FORMAT(lX,lOEl0.3)
RETURN
END

where Tis a REAL array. The elements of this array therefore would be assigned the data worM contained
in the COMMON block, beginning with the initial word of the block and proceeding for 10 words. Thus,
WORDl and WORD2 are equivalent to the array elements T{l) and T(2), respectively; Dis equivalent to
elements T(3) through T(4); and FLAG(l) through FLAG(6) are equivalent to element T(S) through T(lO).
The data words allocated to the TEXT array in the MSG subprogram are not accessed in the DUMP sub­
program.

Additionally, the EQUIVALENCE statement may interact with the COMMON statement to expand the
length of a COMMON storage block beyond the maximum size specified for the block by the COMMON
statement. It is possible to EQUIVALENCE the beginning of an item representing more than one storage
location (such as an array) to an element of the COMMON block, resulting in the addition of storage loca­
tions at the end of the block. The following discussion will illustrate this point.

E-9

As an example, assume that the following statements form two units of an executable program:

FUNCTION SUM(N)
COMMON /GR1/IT(3,3)
DO 1 I==l,3
DO 1 J==l,3
SUM==SUM+IT(I,J)
SUM==SUM*N
RETURN
END
LOGICAL FUNCTION TEST(L)
LOGICAL X(6)
COMMON /GR 1 /K(9)
EQUIV ALEN CE (K(6),X)
DO 1 I==l,9
S==S+K(l)
TEST=S.EQ.L.AND.X(l).AND.X(6)

C ELSE TEST IS . FALSE.
RETURN
END

The COMMON block referenced by these two sample program units is labeled GR 1. The function SUM
accesses the first nine locations of this block through the two-dimensional INTEGER array IT. The func­
tion TEST accesses the first nine locations of the block using the INTEGER array K. In addition, the
following two locations of the GRl block are referenced as the LOGICAL array elements X(S) and X(6),
since the X array is EQUIV ALENCEd to the K array starting at the element K(6).

The elements of the K array occur in the same order as the contiguous storage locations assigned to the
array IT but allow these locations to be referenced using only one subscript. EQUIV ALENCEd portions
of the X and K arrays allow various elements of K to be handled as both INTEGER and LOGICAL type
items.

The COMMON block could not have been extended backwards by the EQUIVALENCE statement. The
following combination of statements is invalid:

E-10

LOGICAL X(6)
COMMON/GRl/K (9)
EQUIVALENCE (X(3),K)

F. DESCRIPTION OF UNFORMATTED 1/0 RECORDS

Each unformatted record is written as a 36-bit control word, followed by the values of the variables in the
1/0 variable list. Each item generates a 36-bit word (or 72-bit double-precision or complex word).

Thus, if three single-precision variables (A, B, C) were written unformatted, the record on disk would appear
as one 36-bit control word, followed by a 36-bit word with the machine representation of A, followed by
another 36-bit word with the machine representation of B, followed by a third 36-bit word with the machine
representation of C. The 36-bit control word of an unformatted record consists of the following:

Bit

2

3

4-36

Meaning

When ON, indicates that the unformatted record begins in this logical record.

When ON, indicates that the unformatted record ends in this logical record.

Not used.

Length field. This is the total number of bits of all of the 36-bit words contained
in the logical record, including the control word.

To calculate the length field:

a. Add 36 bits for each real variable, 36 bits for each integer variable,
72 bits for each double-precision variable, and 72 bits for each complex
variable to be written.

b. To the sum in item a above, add 36 bits for the control word.

In order to read an unformatted record, the 1/0 variable list of the read statement should agree in order and
type with the list of the write statement originally used to write the unformatted record.

The default logical record size for disk is 180 bytes (l segment), which is sufficient for the control word and
39 single-precision variables. If the list size on a sequential write exceeds the declared or default logical record
size, the filled logical record is written and a second logical record is built, containing a control word followed
by those items which did not fit into the first logical record. This process continues until the list is exhausted.
If the list size for a random write exceeds the logical record size, a data error results.

F-1

G. OPTIMIZING PROCRAM EXECUTION

Increasing dynamic memory space ($DYNAMIC words) in the FORTRAN object program may result in
faster program execution unless the program is I/O bound. Each FORTRAN subprogram has separate over­
layable data segment(s) for local and COMMON bllocks.

Each COMMON BLOCK starts a new segment. The user can determine data segmentation by placing items
in separate labeled COMMON BLOCKS. If the COMMON BLOCK contains more than 25 6 single-precision
words, another segment is created. All unlabeled COMMON BLOCKS are placed in one segment unless the
sum of their elements is greater than 25 6 single-precision words. In general, the larger the dynamic memory
size, the faster the program execution: This is not true if the dynamic memory competes with MCP over­
lays, the program's code segments, or other programs.

Local data for each subprogram is also placed in separate data segments. If local data in a subprogram ex­
ceeds 25 6 single-precision words, a new segment is created.

By default, the compiler sets DYNAMIC SPACES to 10. This allows memory links for 10 data segments.
If more than 10 data segments are required in dynamic memory at the same time, modify the object program
by entering the fallowing:

? MODIFY program-id DYNAMIC.SPACES == n

To avoid overlays, work with arrays in the order in which they are stored. Accessing array elements in an
order which requires a different segment for each element will increase overhead. (See Storage Allocation,
appendix E.)

G-1

H. OPTIMIZING PFlOGRAM COMPILATION

Compilation with B 1800/B 1700 FORTRAN consists of a compile phase followed by a bind phase. The
phase in which compiler files are: opened is as follows (file names shown are internal file names);

Compile Phase

CARDS

SOURCE

NEWSOURCE

ICM

LINE

Bind Phase

ICM

LINE

CODE

FOR.INTRIN

Remarks

OPENED ONLY IF "$MERGE" USED

OPENED ONLY IF "$NEW" USED

When compiling on B 1800/B 1 700 systems with sufficiently large memory configurations, FORTRAN
compilation times may be enhanced in the following ways:

a. Only one buffer is associated with each of the compiler's files. Since records are accessed in a
serial manner from the CARDS, SOURCE, NEWSOURCE, and LINE files, the compiler may be
modified so that additional buffers are associated with these files. This is accomplished by
entering the following control statements:

?MODIFY FORTRAN
?FILE CARDS BUFFERS == integer
?FILE SOURCE BUFFERS == integer
?FILE NEWSOURCE BUFFERS == integer
?FILE LINE BUFFERS == integer

b. Compiler files may be assigned to different disk drives, thus enhancing compilation time by
relieving disk arm contention. When a pack-id precedes the program-name on a compile card,
each intermediate code file, as well as the object code file, is written to the designated user pack.
When no pack-id precedes the program-name, those files are written to system disk. Likewise,
when a pack-id precedes the compiler name on the compile card, the FORTRAN compiler, the
FOR.INTRIN built-in :function and intrinsic file, and the FORTRAN interpreter are expected by
the MCP to reside on the specified disk.

c. The size of the compiler's dynamic memory size is a factor that affects compilation time.
Dynamic memory size may be increased from the default of 40000 bits by the following control
statement:

? MODIFY FORTRAN MEMORY == integer

Increasing dynamic memory size for the compiler results in increased compilation speed unless
there is not enough memory for code segments, MCP overlays, and other programs.

H-1

I. FORTRAN/INTMAKER

The FORTRAN Intrinsic Maker is a program that allows user modifications to the FORTRAN intrinsic
function and intrinsic file (FOR.INTRIN).

The program reads the old FOR.INTRIN file and/or user-selected ICM files and writes a new FOR.INTRIN
file with the requested modifications. The input and output file names, the ICM pack and/or family names,
the requested modifications, and the names of the intrinsic functions or intrinsics to be modified are included
in a parameter deck with the external name of CARDS. Each option card must contain a dollar sign($) in
column l, followed by the option name anq any parameters in free-form format to column 72. Each option
card may contain only one option, and each card naming an intrinsic function or intrinsic to be modified
must contain only the name of that intrinsic function or intrinsic.

The allowable options are as follows:

ICM.P ACK.FAMILY

INTRIN.IN

ADD

REMOVE

REPLACE

This option should be followed by the family or pack and
family names of the ICM files to be put into the file. If both
pack and family names are specified, they must be separated
by a slash (" /").

This option should be followed by the file name of the intrin­
sic function and intrinsic file to be modified in standard B 1800/
B 1700 naming format (default is "FOR.INTRIN").

This, option should be followed (on separate cards) by the names
of the intrinsic functions or intrinsics to be added to the existing
file.

This option should be followed (on separate cards) by the names
of the intrinsic functions or intrinsics to be removed from the
existing file.

This option should be followed (on separate cards) by the names
of the intrinsic functions or intrinsics to be replaced by ICM files
in the existing file.

It is strongly advised that only intrinsic functions be removed or replaced.

The following example shows control cards that can be used to create ICM files.

Example:

? CO INTRINSICS FORTRAN LI
? DA CARDS
$ NO BIND

REAL FUNCTION SIN (ARG)
[FORTRAN SOURCE]
END
REAL FUNCTION F (X,Y)
[FORTRAN SOURCE]
END

? END

I· I

There are two ICM files on disk named INTRINSICS/SIN and INTRINSICS/F. Assume that:

a. The intrinsic file to be modified is EXAMPLE/INTRIN and the output file will be named
USE R/EXAMPLE/INTRIN.

b. The INTRINSICS/SIN file is to replace the existing SIN intrinsic function.

c. The INTRINSICS/F file is to be added.

d. The CSQR T intrinsic function that is not used is to be removed.

The following example will accomplish these objectives:

Example:

? EX FORTRAN/INTMAKER
'? DA CARDS
$ ICM.P ACK.FAMILY INTRINSICS
$ INTRIN.IN EXAMPLE/INTRIN
$ INTRIN.OUT USER/EXAMPLE/INTRIN
$ REPLACE
SIN
$ADD
F
$ REMOVE
CSQRT
? END

The program, after making all requested modifications, prints the directory of the new file.

1-2

J. COMPILER SIZE LIMITS FOR FORTRAN PROGRAMS

Item

Executable code per subprogram

Number of subprograms

Number of data segments

Number of parameters in a CALL statement

Number of common blocks

Record Size

Variables and subprograms referenced per
subprogram

Maximum

262,144 bits

1,023

1,023

63

28-30

2 ,04 7 characters

16,384

Code files on the B 1000 system must be contained in one disk area. If the FORTRAN compiler
terminates because the file space was exceeded for the code file, the BLOCKS.PER.AREA file attribute
of the CODE file of the FORTRAN 77 compiler must be increased in the following way.

COMPILE < code-file-name >· FORTRAN LI
FILE CODE BLOCKS.PER.AREA = < integer > ;

The value of< integer> must be greater than the default value of 700.

1081882-001 J-1

K. REMOTE FILE SCREEN FOBMATTING AND FORMS MODE 1/0

The following is a description of the screen formatting and forms mode I/O capabilities for remote files.
The examples contained in this appendix assume the use of a TD830 series terminal. Screen formatting
on other terminals can differ according to the firmware used with the terminal.

Burroughs FORTRAN permits the declaration of a remote terminal as a hardware input/output device.
The following is an example of a FILE declaration statement used to declare a remote file.

FILE 8=RMT, UNIT=REMOTE, RECORD=l920

Only one remote file can be open at a time in a FORTRAN program. Each record of the remote file
contains the number of characters declared in the RECORD attribute of the FILE declaration statement.
In the preceding example, the entire screen is one record. Records are written with 80 characters per
line, excluding control characters. When the end of a line is reached, the output continues on the next
line.

Example:

WRITE (8,100) (l(J),J=l, 100)
100 FORMAT (1 OOA2)

In this exampfo, the first two bytes (after the four bits of type information) of each of the first 100
elements of array I are written to the remote terminal.

NOTE

The first four bits contain type information and are
stripped off before transmission· to the screen.

Screen formatting characters can be sent to the terminal by using hexadecimal data initialization.
Hexadecimal constants, which can only be assigned in a DATA statement, are assigned to a variable
without conversion or regard to type.

Examples:

DATA HOME, BLINK /ZOOCOOOOOO, Z018000000/
DATA BRIGHT, RS, LF /Z03FOOOOOO, ZOIEOOOOOO, Z025000000/

In these examples, the first hexadecimal digit of each variable is zero since the first four bits are
stripped off before transmission to the screen. The second and third hexadecimal digits contain a
screen formatting character.

1081882-001 K-1

REMOTE FILE SCREEN FORMATTING AND FORMS MODIE 1/0

The variables initialized in these examples contain screen formatting characters which prescribe the:
following actions:

Variable Action

HOME Home the cursor and clear the screen.

BLINK Initiate blink video data highlighting.

BRIGHT Initiate bright video data highlighting.

RS Terminate data highlighting.

LF Move the cursor down one line.

The following is an example of a WRITE statement using the variables initialized in the preceding
example:

WRITE (8,100) HOME, (LF, I=l,11), BLINK, BRIGHT, RS
100 FORMAT (12Al, 38X, 2Al, 'HELP', Al)

These statements prescribe the following actions: 1) send the cursor to the home position and clear
the screen, 2) move the cursor down eleven lines, 3) move the cursor to column 39, 4) print the
word HELP with blink and bright video data highlighting, and 5) terminate the data highlighting.

A variable can be initialized with more than one formatting character.

Example:

DATA BLBR /Z0183FOOOO/

In this example, the screen formatting characters contained in 1the BLINK and BRIGHT variables are
combined into the single variable BLBR. The following is an example of a WRITE statement using
variables initialized in the previous examples:

WRITE (8, 100) HOME, (l(J), J=l, 11), BLBR, RS
100 FORMAT (12Al, 38X, A2, 'HELP', Al)

The only change in the FORMAT statement from the previous example is that an A2 format specifica­
tion is used to write one variable instead of a 2Al format speciification to write two variables.

The following example transmits a forms mode formatting character to the remote terminal:

DATA FMODE /Z027E60300/
WRITE (8, 100) FM ODE

100 FORMAT (A3)

The following DAT A statement initializes two variables with the forms mode delimiting characters:

DATA US, RS /ZOlFOOOOOO, ZOIEOOOOOO/

K-2

REMOTE FILI: SCREEN FORMATTING AND FORMS MODE 1/0

This statement initializes the variable US with the left forms mode delimiter and initializes the variable
RS with the right forms mode delimiter. The right forms mode delimiter in the RS variable can also be
used to terminate data highlighting as shown in previous examples.

The following is a program using the variables initialized with forms mode delimiting characters:

WRITE (8, 100) US, RS, FMODE
100 FORMAT (37X, Al, 4X, Al, A3)

READ (3, 200) I
200 FORMAT (14)

STOP
END

This program performs the following functions: 1) produces a 4-character forms field in the middle
of the top line, 2) puts the screen in forms mode, and 3) reads a variable in integer format from the
forms field. The forms mode character in the variable FMODE must be the last character written.
READ operations in forms mode can only input information from the delimited forms fields. When
more than one forms field is transmitted from the beginning of the first forms field, all information in
all the forms fields is transmitted.

The following is a program that uses the capabilities of screen formatting and forms mode I/O for remote
files. The program writes to the screen and receives input in forms mode. The input is written back to
the terminal in the middle of the screen. Two forms fields are delimited and both accept input in A
format.

FILE 9=REMO, UNIT=REMOTE,RECORD=l920
IMPLICIT INTEGER(A-Z)
DATA HOME, REV, FMODE, US, RS, CR/ZOOCOOOOOO, ZOOEOOOOOO,

+ Z027E60300,Z01FOOOOOO,Z01EOOOOOO,ZOODOOOOOO/
DATA BLBR/Z0183FOOOO/
WRITE (9, 100) HOME, US, RS, US, RS,FMODE

100 FORMAT (Al, 20X,Al, 4X,Al, IOOX,Al, 4X,Al ,A3)
READ (9, 200) I,J

200 FORMAT(2A4)
WRITE (9, 300)HOME, (CR, K=l, 11), BLBR, REV, I, RS, BLBR, J

300 FORMAT(12Al,36X,A2,Al ,A4,Al ,A2,A4)
STOP
END

For more information on the use of forms characters, refer to the TD730/TD830 System Reference
Manual, form number 1093788.

1081882-001 K-3

Item

ABS Intrinsic
ACOS Intrinsic
Action Specifiers .
Actual Argument Lists

Correspondence with Dummy Argument List .
AINT Intrinsic
ALGAMA Intrinsic
ALOG Intrinsic .
ALOG 10 Intrinsic
AMAXO Intrinsic
AMINO Intrinsic .
AMINI Intrinsic
AM 0 D Intrinsic .
AND Intrinsic . .
ARCOS Intrinsic .
Arithmetic Assignment Statement
Arithmetic Expressions .
Arithmetic IF Statement .
Arithmetic Operators . .

Table of
Array Declarations . . .
Arrays - Storage Allocation

EQUIV ALENCEd
ARSIN Intrinsic . .
ASIN Intrinsic . . .
ASSIGN Statement .
Assignment Statements

Arithmetic
Type Conversion Table

ASSIGN ..
Logical

Assigned GO TO
AT AN Intrinsic
ATAN2 Intrinsic .
Aw Format Specification - Input
Aw Format Specification - Output

BACKSPACE Statement . .
BLOCK DATA Subprogram

Program Example of

CALL Statement . . .
CALL EXIT Statement
Card Format
Carriage Control . .
CHANGE Statement
Character Set

Digits
Letters
Special Characters

Card Codes Table of

INDEX

Page

12-7
12-7
11-7

9-2, 12-1
9-2

12-7
12-7
12-7
12-7
12-7
12-7
12-7
12-7
12-7
12-7
8-1
4-1

9-11
4-1
4-2
5-2
E-4
E-6

12-7
12-7

8-2, 9-10
8-1
8-1
8-1

8-2, 9-10
8-2

8-2,9-10
12-7
12-7
7-2
7-3

11-9
12-5
12-6

9-1
9-4

14-1
7-13

.11-11
1-1
1-1
1-1
1-1
1-2

lndex-1

Item

CLOSE Statement
COMMON Block .

Program Example of
COMMON Names
COMMON Statement .
COMMON - Storage Assignments
Compilation and Bind Listings - Sample
Compiler Control Card Options - List .
Compiler Information

INDEX {Cont}

Diagram of FORTRAN Compilation System
Computed GO TO .
Constants

Double Precision .
Hexadecimal
Integer
Logical
Real

CONTINUE Statement
Control Cards . .

?COMPILE Card
?DATA CARDS
?END Card ..
?FILE Control Card
File Declaration Cards .
Optional Compiler Control Cards

Control Statements .
CALL ...
CALL EXIT
CONTINUE.
DO Statement .
GOTO
IF
PAUSE
RETURN
STOP ..

COS Intrinsic
COSH Intrinsic
COTAN Intrinsic .

DABS Intrinsic
DARCOS Intrinsic
DARSIN Intrinsic
DATA Statement
DAT A Statement - Conversion Table
DATAN Intrinsic
DAT AN2 Intrinsic
DBLE Intrinsic
DCOS Intrinsic
DCOSH Intrinsic .
DCOT AN Intrinsic
DDIM Intrinsic

Index-2

Page

' 11-1 0
E-8

. E-10
5-3

5-3, E-8
5-3, E-8

D-1
A-6
A-1
A-3

9-11
2-1
2-3
2-5
2-l
2-6
2-2
9-7
A-5
A-6
A-9
A-9
A-8
A-8
A-6
9-1

9 .. 1, 12-5
9-4
9-7
9-8

9-10
9-11
9-13
9-14
9-16
12-7
12-7
12-7

12-8
12-8
12-8

6-1
6-4

12-8
12-8
12-8
12-8
12-8
12-8
12-8

Item

Default Unit Number/Hardware Type .
DERF Intrinsic
DERFC Intrinsic . .
DEXP Intrinsic
DEFLOAT Intrinsic
DEGAMMA Intrinsic
Digits

Decimal . . .
Hexadecimal

DIM In t:rinsic .
DIMENSION Statement
DINT Intrinsic
DLGAMA Intrinsic
D LOG Intrinsic .
D LOG 1 0 Intrinsic
DMAXl Intrinsic
DMINl Intrinsic
DMOD Intrinsic
DO-implied . .
DO Statement .

CONTINUE Statement
Nesting
Parameter Alteration .

Double Precision Constants .

INDEX (Cont)

Double Precision Variables - Storage Allocation
DSIGN Intrinsic
DSIN Intrinsic . .
DSINH Intrinsic .
DSQRT Intrinsic .
DT AN Intrinsic .
Dummy Argument Lists

Correspondence with Actual Argument Lists
In FUNCTION Subprograms . .
In Statement Functions

Dw.d Format Specification - Input .
Dw.d Format Specification - Output

END Action Specifier . . .
END Statement
ENDFILE Statement . . .
EQUIVALENCE Statement
EQUIV ALENCEd Data Items .

Array Handling of
ERF Intrinsic . . .
ERFC Intrinsic
ERR Action Specifier
Error Messages - Run-time
Ew.d Format Specification - Input
Ew.d Format Specification - Output
EXP Intrinsic
Explicit Type Statement

1081882-001

Page

A-4
12-8
12-8
12-8
12-8
12-8

1-1
1-1
1-1

12-8
5-4

12-8
12-8
12-8
12-8
12-8
12-8
12-8

.1 l-6C I
9-8
9-7
9-9

. 9-10
2-3
E-3

12-8
12-9
12-9
12-9
12-9

9-1, 12-1
9-2

12-2
12-2
7-3
7-4

11-8
14-1

. 11-10
. E-6, E-8, E-10, 5-4

E-6
E-7

12-9
12-9
11-8
C-1
7-3
7-4

12-9
5-1

lndex-3

I
I

I

Item

Expressions
Arithmetic

Resultant Types of
Logical Expression Constructs

EXTERNAL Statement . .

FILE Declaration Statement
FLOAT Intrinsic . . .
Format Field Separators
Format Specifiers
Format Specifications . .

Aw.
Dw.d
Ew.d
Fw.d
Gw.d
wHs, 's', "s"
Iw
Lw ..
Tt
XorwX
Zw ..
In Arrays .

FORMAT Statement
Formatted PRINT Statement .
Formatted READ Statement
Formatted WRITE Statement .
Forms Mode I/O
FORTRAN/INTMAKER
Free-Format PRINT Statement
Free-Format READ Statement
Free-Format WRITE Statement
FUNCTION Name . . .
FUNCTION Statement
FUNCTION Subprogram

Program Example of .
Uses of

Fw.d Format Specification ·· Input
Fw.d Format Specification - Output

GAMMA Intrinsic
GO TO Statement

Assigned GO TO
Computed GO TO
Unconditional GO TO .

Gw.d Format Specification - Input
Gw.d Format Specification - Output

Index-4

INDEX (C·!:>nt)

Page

4-1
4-1
4-2
4-3
5-6

10-1
12-9
7-11

7-1
7-1
7-2
7-3
7-3
7-4
7-6
7-7
7-7
7-8
7-9
7-9
7-9

7-13
7-10

. . . ll-6B
11-3
11-6
K-1

1-1
. l l-6B

11-3
11-6
12-3
12-2
12-2
12-3
12-4
7-4
7-5

12-9
9-10

8-2, 9-10
9-11
9-10

7-6
7-6

Item

H Format Specification
Hexadecimal Constants

Format Specification
Hexadecimal Digits . .
HFIX Intrinsic
Hollerith Strings . . .

Format Specifications .

IABS Intrinsic
IDIM Intrinsic .
IDINT Intrinsic
IF Statement .

Arithmetic IF
Logical IF .

IFIX Intrinsic .
IMPLICIT Statement
Implied DO
In DAT A Statement
Incrementation Parameter
Initial Parameter
INT Intrinsic
Integer Constants
INTEGER Typing - Defaults
Integer Variables - Storage Allocation .
Intermediate Code Files
INTMAKER
INTRINSIC Statement
Intrinsics

Table of
I/O Variable Lists

DO-implied I/O Variable List
I/O Statements

BACKSPACE
CHANGE
CLOSE
END FILE
LOCK.
PRINT
PUNCH
PURGE
READ.
REWIND.
WRITE
ZIP ...

ISIGN Intrinsic
Iw Format Specification - Input
Iw Format Specification - Output

I 081882-001

INDEX (Cont)

Page

7-7
6-3, 2-5

7-1
1-1

12-9
2-6
7-1

12-9
12-9
12-9
9-11

. 9-12
9-12
12-9
5-6

. . 1 l-6C
6-1

9-9, 11-6C
9-9, l l-6C

12-9
2-1
5-1
E-2
A-2

. . . . 1-1
5-7

. 12-13

. 12-7

. ll-6B

.l l-6C

. 11-1
. . 11-9

.11-11

. 11-10
.. 11-10

.11-10

. 11-6A

. 11-6B

. 11-11
11-2

. 11-9

. 11-5

. 11-13
12-9
7-7
7-8

lndex-5

I

I

I

I

I

Item

Language Compatibility
Length Specifier . . .
Letters - Character Set
LGAMMA Intrinsic .
Literals

Numeric
Complex .. .
Double Precision
Hexadecimal
Integer
Logical

Real
String . .

LOCK Statement
LOG Intrinsic . .
LOG 1 0 Intrinsic .
Logical Assignment Statement
Logical Constants
Logical Expression Constructs
Logical IF Statement
Logical Operands - Table . . .
Logical Variables - Storage Allocation .
Lw Format Specification - Input .
Lw Format Specification - Output

MAX Intrinsic .
MAXO Intrinsic
MAXI Intrinsic
MIN Intrinsic .
MINO Intrinsic
MIN I Intrinsic
MOD Intrinsic .

INDEX (Cont)

Multiple Storage Locations - EQUIVALENCEd

NAMELIST Statement
Nested Do Loop
Nonstandard RETURN Statement
Numeric Literals . .

Double Precision .
Hexadecimal
Integer
Logical
Real

Operators
Table of

Optional Size Specification
OR Intrinsic

lndex-6

Page

B-1
5-2
1-1

12-9
2-1
2-1
2-4
2-3
2-5
2-1
2-6

2-2
2-6

. 11-10
12-9
12-9
8-2
2-6
4-3

9-12
4-2
E-3
7-8
7-9

12-9
12-9
12-9
12-9
12-9

. 12-10

. 12-10
E-7

7-14
9-9

9-15
2-1
2-3
2-5
2-1
2-6
2-2

4-1
4-1
5-1

. 12-10

Item

Parameters
Alteration of .

PAUSE Statement
PRINT Statement
Program Naming Conventions .
Program Structure . .
Program Units
Proper Strings

Format Specification
PUNCH Statement .
PURGE Statement
READ Statement

Formatted .
Unformatted
Free-Format

Read Constants
REAL Typing - Defaults
Real Variables - Storage Allocation .
Record Fields - The FORMAT Statement
Remote File Screen Formatting
Repeat Counts -The FORMAT Statement
RETURN Statement
REWIND Statement

Sample Compilation Decks
Scale Factor Designator .
SIGN Intrinsic
SIN Intrinsic
Single Storage Locations - EQUIVALENCEd
SINH Intrinsic
SNGL Intrinsic
Source Input Format
Special Characters .

Card Codes Table of
Specification Statements .

COMMON ...
DIMENSION ..
EQUIVALENCE .
Explicit Type
EXTERNAL
IMPLICIT
INTRINSIC.

SQRT Intrinsic
Standard RETURN Statement
Statement Function
Statement Function Declaration .
Sta,tement Label . .

Uses of
Statement Ordering .

1081882-001

INDEX (Cont)

Page

. . 9-9, l 1-6C I
. 9-10
. 9-13
. 11-6A I

A-7
14-1
14-1
2-8
7-7

. l 1-6B I

.11-11
11-2
11-3
11-3
11-3 I
2-2
5-1
E-2

7-11
. • • • K-1 I

7-11
9-14
11-9

A-9, A-10
. 7-11
. 12-10
. 12-10

E-6
. . 12-10

. 12-10
14-1

1-1
1-2
5-1

5-3, E-8
5-4, E-5

5-4, E-6, E-7, E-~
5-1
5-6
5-6
5-7

. 12-10
9-14
12-3
12-4
4-5

9-1, 9-8, 9-15, 7-10
. 14-2

Index-7

Item

Statements
Executable List
Non-Executable List

STOP Statement .
Storage Allocation

Arrays
Complex ...
Double Precision
Integer
Logical
Real

Storage Allocation - Notation
Storage Assignments - COMMON Block
Storage Assignments - EQUIVALENCEd
String Literals

Hollerith .
Proper . .

Subprograms
BLOCK DATA
FUNCTION
SUBROUTINE

SUBROUTINE Subprogram
Actual Argument List .
CALL Statement . . .
Dummy Argument List
Names

System Requirements .

T Format Specification
TAN Intrinsic . . .
TANH Intrinsic . .

I Terminal Parameter .
TIME Intrinsic
Type Conversions in Assignment Statements
Type Conversions in the DAT A Statement

Unconditional GO TO
Unformatted READ Statement

I Unformatted WRITE Statement
User Compiler Interface . . .

Compiler File Table
Compiler Input and Output Files
Intermediate Code Files .

Variable Naming Conventions
Variables - Storage Allocation

Double Precision
Integer
Logical
Real

Index-8

INDEX (Cont)

Page

4-4
4-4
4-4

9-16
E-1
E-4
E-4
E-3
E-2
E-3
E-2
E-1
E-8
E-6
2-6
2-6
2-6

12-1
12-5
12-2
12-1
12-1

9-1 ' 1 2-1
9-1 ' 1 2-1
9-1, 12-1

12-1
A-1

7-9
. 12-10
. 12-10

9-9, 11-6C
. 12-10

8-1
6-4

9-10
11-3
11-6
A-1
A-4

. A-2, A-4
A-2

3-1
E-1
E-3
E-2
E-3
E-2

Item

WRITE Statement
Formatted .
Unformatted .
Free-Format

X Format Specification

ZIP Statement
Zw Format Specification - Input .
Zw Format Specification - Output

1081882-001

INDEX (Cont)

Page

11-5

I
11-6
11-6
11-6

7-9

. 11-13
7-9

7-10

Index-9

	0001
	0002
	0002a
	0002b
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-06a
	11-06b
	11-06c
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	14-01
	14-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	F-01
	G-01
	H-01
	I-01
	I-02
	J-01
	K-01
	K-02
	K-03
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09

