Burroughs @

B 1700 Systems
Data Management
System Il (DMS II)

REFERENCE MANUAL

RELATIVE TO MARK V.0 RELEASE

PRICED ITEM

aaaaaaaaaaaa

Burroughs @

B 1700 Systems
Data Management
System Il (DMS II)

REFERENCE MANUAL

\

RELATIVE TO MARK V.0 RELEASE

Copyright © 1975, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Publications Department,
Technical Information Organization, TIO-West, Burroughs Corporation, 9451 Telstar
Avenue, El Monte, California 9173 1.

SECTION

TITLE

PREFACE . . .

INTRODUCTION
B 1700 Data Management System II (DMSII) Components .
Data Base Administrator . .

SYNTAX SPECIFICATIONS AND CONVENTIONS .
Syntax Specifications . . e e
Syntax Conventions

DMSII STRUCTURE TYPES .
Introduction . .
Data Set Set Structures
Set and Subset Structures
Automatic Sets
Automatic Subsets .
Manual Subsets
Structure Types . . .
Data Set With No Sets .
Data Set With Ordered Set
Data Set With Embedded Data Set (No Sets) ...
Data Set With Embedded Data Set And Ordermg Set .
Data Set With No Ordering Set, Retrieval Set and Automatlc Subset
Data Set With Multiple Ordered Sets and One Retrieval Set . .
Two Data Sets, One Referring To A Manual Subset of the other
With No Key
Two Data Sets Each Referencmg A Subset Of The Other

DATA AND STRUCTURE DEFINITION LANGUAGE (DASDL)
Data Base Description . .. L. .
Data Base Syntax
Disjoint Data Set
VERIFY and REQUIRED ALL .
Semantics e
Record Description .
Data Item
Group Item . .
Embedded Data Set
Embedded Set .
Subset .
Disjoint Set .
Key Structure .
Condition
Physical Structures . . .
Disjoint Data Set Attnbutes
Data Set Maintenance Techniques
Index Sequential Attributes
Index Random Attributes
List Attributes .
File Attributes .

PAGE

|

CrYTEYY OTT T
[

|

L

NMNNNN[T)NNNNNN

[
O O U WWNNIN =

v
L

P
— —
B\

1 [I
s \O O ~J A\ T W NN

WL W W LW WWWWWWW
|

!

w W
L

|

U.)(TJU)
ot ot
W BN

3-16
3-17
3-20
3-22
3-23

iv

SECTION

4

Appendix A —

Appendix B —

TITLE

COBOL INTERFACE .
Introduction ..
COBOL Data Division .
General . .
DATA—-BASE SECTION
Data Set References
Invoked Data Set.
Multiply-Invoked Data Set .
COBOL Procedure Division .
General . .
Move And Move Correspondmg .
Exception Processing . . .
ON EXCEPTION Clause .
DMSTATUS Register .
Selection Expression
Key Condition
Selection Expression Forms
COBOL Statements .
CLOSE .
CREATE .
DELETE .
FIND .
FREE . .
INSERT .
MODIFY .
OPEN . . .
RECREATE
REMOVE
STORE

DMSII COMPILATION CUIDE .

DASDL Compilation Procedures .

DASDL Compilation Program Name

DASDL File Names

DASDL Compiler ($) Optlons

COBOL Compilation Procedures .

Disk File Structures . .
DMSII Operation and Console Prmter Messages .
DMSII Error Messages . o

Data Base Integrity . . .

Library Maintenance of DMSII F1les

Memory Dumps C e

DASDL PHYSICAL STRUCTURES

Disjoint Data Set Example .

Index Random Example .

Index Sequential Example . .

Unordered List—embedded Data Set Example
Unordered List — Subset Example .

Ordered List — Embedded Ordered Da.ta éet Example.

Ordered List — Subset With A Key Example

.
>
()
m

A-h-b-b-h-h-ll;-h-hf-llk-{;f?
[N IEN e lo o o U I Y

|

o1

HBN
P+
f—
— O

T
[\
w

wwwwcluwww

|
NN DW= -

SECTION
Appendix C —

Appendix D —

Appendix E —
Appendix F — -
Appendix G —

Appendix H —

FIGURE

TITLE
DASDL GLOSSARY
DASDL ERROR MESSAGES AND WARNINGS
Introduction
Warning Messages
Error Messages .
COBOL EXTENSIONS
QUALIFYING A DATA BASE DESCRIPTION .
B 1700 — B 6700/B 7700 DMSII COMPATIBILITY
DATA BASE EXAMPLE .

Introduction . . .
UNIV Data Base Identlflers

TITLE

Simplified DMSII Compilation Process

Simplified DMSII Object Program Execution .

Current—Record Pointer State
Set or Subset Current—Path Pointer State

Compile for Syntax .

Compile for Library . .
UNIV Data Base Example
UNIV Data Base Diagram
DASDL Program Example
COBOL Program Example

TITLE

DMSTATUS Categories and Description .

PAGE

7

[l
ok fd ok

|

LoL

l

|EE Q = rln viwhwiw
W - —

T
[\S]

PREFACE

The B 1700 Data Management System II (DMSII) consists of the following three components: A Data
And Structure Definition Language (DASDL) used to describe a data base, a COBOL interface providing
programmatic access to the data in the data base, and the data access routines contained within the Master

Control Program (MCP) that control data storage and retrieval. These three components form the nucleus
of the B 1700 Data Management System II.

The information contained in this manual reflects System Software Release Mark V.0.

LIST OF APPLICABLE B 1700 PUBLICATIONS

Publication Title Form Number
B 1700 System Software Operational Guide 1068731
B 1700 Systems COBOL Reference Manual 1057197

vi

VARIRN

INTRODUCTION

B 1700 DATA MANAGEMENT SYSTEM II (DMSII) COMPONENTS

An overview of the B 1700 DMSII, illustrating the operational flow of DASDL, the COBOL interface, and
the data access routines within the MCP, is shown in figures 1 and 2. The descriptions referenced in
figures 1 and 2 are described below.

Reference Description
A A DASDL source deck defining the logical and physical specifications of
the data base.
B The DASDL compiler.
C The DATABASE/LIBRARY created by the DASDL compilation provides

the COBOL compiler with compilation information.

D The DASDL dictionary file created by the DASDL compilation containing
all the structural characteristics of the data base.

E The data base files created by the DASDL compiler at the time the
INITTIALIZE statement is encountered.

The COBOL compiler.

G The created object-code file.

vii

/
DASDL
SOURCE DECK
DASDL
COMPILER
C
DASDL [/ DATABASE/ DATA BASE
DICTIONARY LIBRARY FILES
FILE FILE
NG ——
@
ya ‘ !
COBOL COBOL YA\ COBOL
F G . OBJECT
SOURCE DECK COMPILER N\l CODE FILE

Figure 1. Simplified DMSII Compilation Process

viii

DATA BASE
FILES

N

N~

COBOL
OBJECT
CODE FILE

|

COBOL PROGRAM RUN STRUCTURE
AND NEEDED CODE SEGMENTS

> e

~~ ~~

MASTER CONTROL PROGRAM
(CONTAINS THE DMSII ACCESS
ROUTINES)

4

Figure 2. Simplified DMSII Object Program Execution

ix

DATA BASE ADMINISTRATOR

DASDL is the programmatic tool used by a person(s), usually referred to as a Data Base Administrator
(DBA). It is one of the functions of the DBA to describe a data base to the B 1700 Data Management
System II. The overall design of the data base is the responsibility of the DBA and includes the following:

a. Understanding the requirements of all users of the data base.
b. Analyzing the various demands to be made on the system.
c. Producing a data description capable of fulfilling the needs of all users of the system.

The DBA must also determine which applications require maximum optimization in order to provide for
overall efficiency. Because DASDL allows the flexibility of many alternative solutions to a given problem,
the DBA is always in a position to monitor and optimize the uses of the data base. The DBA must be
aware of all factors and once the system is designed, must be committed to tailoring its structures.

Typically, the DBA produces a data base design by using the DASDL default options creating the data

base structures. The DBA can then allow users to test the various applications. As experience is gained and
the performance of the system is evaluated, the DBA can experiment with alternative solutions. The end
result, therefore, reflects the decisions of the DBA in determining what is needed to produce the optimum
usage of the data base for the entire organization rather than for any one application.

The types of decisions the DBA makes are based on evaluation of the critical resources. For example, at
the cost of increasing memory used at program execution and increasing secondary storage space, the DBA
may decide that some data should be stored in more than one location so all related information can be
retrieved with one access. The DBA may also decide that the sequencing requirements of one application
are used so rarely that an additional set to maintain that ordering is not worthwhile.

The DBA also evaluates the system requirements in terms of the structures and their physical parameters,
depending on the needs of the installation. Initially, most questions relating to the physical parameters of
the data base are less important than the logical structures required by the application programs. This
makes the task of the DBA twofold:

a. Selecting structures based on their capabilities for supporting the logical requirements of the
applications.

b. Optimizing the performance of the structures selected.

1. SYNTAX SPECIFICATIONS AND CONVENTIONS

SYNTAX SPECIFICATIONS

The principal means of displaying COBOL and DASDL statements is the syntax diagram. The syntax

diagram technique affords a concise method of syntax illustration involving default options, alternatives,

and iterations. The basic rule is that any path traced along the forward directions of the arrows produces
a syntactically valid expression. The following examples illustrate the syntax diagram techniques.

Example 1:

’ <——‘
J:-ROW “—THE TBOATEGENTLY}-»DOWN - T »STREAM/
YOUR

THE A= QOLD > > ~—= MILL —

Valid statements from this example include:

ROW THE BOAT DOWN-STREAM.

ROW, ROW, ROW YOUR BOAT GENTLY DOWN THE STREAM.

ROW, ROW, ROW, ROW THE BOAT DOWN THE OLD STREAM.

ROW YOUR BOAT DOWN THE MILL STREAM.

ROW THE BOAT DOWN THE OLD, MILL STREAM.
Example 2:
The following convention is used to control the number of iterations:

—
ACROSS THE ! ——MISSOURI
BIG —
= WIDE

MUDDY ——

1-1

The bridge (_/_) over the “1” can be crossed only one time in forming a valid expression. Thus, a
maximum of one comma and two adjectives can appear in a statement of this type. Valid expressions for
this example include: .

ACROSS THE MISSOURI.

ACROSS THE WIDE MISSOURI.

ACROSS THE BIG, MUDDY MISSOURI.
ACROSS THE MUDDY, WIDE MISSOURL.
ACROSS THE BIG, BIG MISSOURI.

Example 3:

An asterisk (*) associated with a bridged number indicates that the path must be crossed at least one time.
By changing exampleé 2 to the following:

ACROSS THE = BIG »MISSOURI

proper syntax is obtained by crossing the bridge at least one time. Valid expressions from this example
include:

ACROSS THE BIG, BIG MISSOURI.
ACROSS THE BIG, BIG, BIG MiSSOURI.
ACROSS THE BIG, WIDE, MUDDY MISSOURI.

SYNTAX CONVENTIONS

DASDL and COBOL constructs consist of letters, digits, special characters, and blanks. Letters, digits, and
hyphens are alphanumeric characters. All other non-blanks are delimiters. Alphanumeric characters can be
aggregated into such syntactic items as integers, keywords, and identifiers. Keywords are reserved in
DASDL and cannot be used in constructing identifiers. Rules and restrictions in construction of identifier
names are identical to those for COBOL identifiers, except that no identifier can contain more than 17
characters (for compatibility with B 6700/B 7700 series systems DMSII) and all identifiers within a data
base must be unique.

Keywords

All alphanumeric items appearing in capital letters are keywords and are used literally. Abbreviations are
not allowed. Example: POPULATION

Blanks
Blanks separate syntactic items and can appear freely anywhere except within certain text fields, where
they are significant characters. Blanks are optional on either side of a delimiter. Whenever one alpha-

numeric item, keyword, identifier, or integer, for example follows another with no intervening delimiter,
it must be separated by at least one blank.

1-2

End-Of-Statement
An end-of-statement is indicated by an arrow followed by a slash. Example:
Syntactic Variables
All alphanumeric items that are not keywords in the syntax diagrams are syntactic variables, and represent
information to be supplied by the user. A particular variable can represent a single character, a simple con-
struct such as an integer or text string, or a complex construct. Most variables are defined programmatically
where they are to be used.
BROKEN BRACKETS ()
Left and right broken brackets containing letters, digits, or letters and digits represent a metalinguistic
variable. When a metalinguistic variable appears in the text it is referring to its appearance in the syntax
specification being discussed.

identifier
An identifier is a string of characters used to represent some entity, such as an item name composed of
letters, digits, and hyphen. An identifier can vary in length from one through seventeen characters. The
characters must be adjacent and the first character of an identifier must be a letter.

integer
An integer is specified by a string of adjacent digits representing the decimal value of the integer.

delimiter
A delimiter may generally be any non-alphanumeric character. The hyphen is excluded.

literal
A literal is a data item whose value is identical to the characters contained within the item.

PERCENT SIGN (%) (DASDL Only)

The percent sign is used to designate DASDL documentation or comments, and its presence terminates the
scan of a card. The example below illustrates the usage of a percent sign for in-line coding.

00000100 :%THIS DASDL PROGRAM GIVES EXAMPLES
00000150 :%0F THE VARIOUS CONSTRUCTS USED IN
00000200 :%2DASDL TO DESCRIBE A DATA BASE.
00000300 :PARAMETERS(

00000400 : BUFFERS = 10);

13

2. DMSII STRUCTURE TYPES

INTRODUCTION

A data base is constructed by a DASDL compilation. The contents and format of the data base are usually
the responsibility of the Data Base Administrator (DBA). The DASDL compiler, using a description of the
data base (DASDL source statements), produces a data base dictionary file containing information about
each structure described within the data base.

Data base structures are either disjoint or embedded. A disjoint structure is free standing. A structure is
considered embedded when it is declared as an item within some other structure. A structure can be one of
three types: data set, set, or subset. :

DATA SET STRUCTURES

A data set is similar to a conventional file in that it contains the actual records of information. However,
it is different from a conventional file in that items within the record may themselves be structures, in
which case, these items are considered as embedded structures. A record of a data set which contains an
embedded structure is referred to as the owner record of the embedded structure. If the embedded
structure is a data set, a record of the embedded data set is considered a detail record of the master. The
DBA defines a data set, the items, and their attributes that form data set records, and also the physical
organization of these records. The application programmer must be aware of these record items and
attributes prior to accessing a data base. Knowledge of the physical organization of the data base is not
required in order to access the data base.

Set and Subset Structures

Sets and subsets are structures organizing the records of a data set into some logical sequence. A set pro-
vides access to all of the records of a data set. A subset provides access to a limited collection of records of
the data set. Since several sets or subsets can exist for the same data set, the same data can be accessed in
several different sequences. For example, given a data set containing employee records, one set could order
the data ascending order by the last name and another set could order the data in descending order by em-
ployee number. Those data items of a data record that are used to control the ordering of a set or subset
are known as the key of the set or subset.

There are two methods of accessing a data set through a set or subset. The first method, accessing of
records based on the value of key fields, is called the random access method. An example of the random
access syntax is:

FIND UNIV-COURSES VIA UNIV-C-SET AT CRS-NO = 1234

The second method, accessing of records sequentially based on the value of the key fields, is the serial
access method. An example of the serial access syntax is:

FIND UNIV-COURSES VIA NEXT UNIV-C-SET

Records may also be accessed based on the physical ordering of the records within the data set. The physical
ordering may or may not correspond to the order in which the records were created. An example of access
based on the physical ordering of a data set is:

FIND NEXT UNIV-COURSES
Automatic Sets

All sets are automatic in that as new records are stored, the system automaticaliy creates entries in the set
for those new records of the data set. Deleting records from a data set also automatically removes the entry
from the set. Sets can be either embedded or disjoint structures.

Automatic Subsets

Subsets can be manual or automatic. Automatic subsets specify a condition for membership in the subset;
the condition is checked each time a record is to be added to the data set. If the condition is met, the sys-
tem automatically creates an entry in the subset. Those data records that meet the condition can be
accessed by the automatic subset. Deleting a record from the data set removes the entry from the auto-
matic subset if the subset entry exists. During an update, the condition is checked and the subset entry can
be created or deleted. Automatic subsets can be disjoint structures only.

Manual Subsets

A manual subset requires the application program to insert the record in the manual subset after creating
and storing a record in a data set. This requirement establishes an entry in the manual subset for the
record in the data set. When deleting a record, it is necessary for the application program to remove the
entry from the manual subset prior to deleting the record from the data set. Manual subsets can be
embedded structures only.

2-2

TN

STRUCTURE TYPES
Some examples of the structure types that form a data base are illustrated in the following text.
Data Set With No Sets

A data set with no sets might be illustrated using a payroll application, in which every record in the data set
is accessed during the processing of the payroll program.

Coding Example:
PAYROLL DATA SET
(.
. (data set items)

), POPULATION = 1000:

Physical Structure:

Records of PAYROLL

DATA SET PAYROLL
Record Access:
a. New records are stored in the first available location.
b. The records can be accessed based on the physical ordering of the data set. For example:
FIND FIRST, FIND NEXT . . .

c. Records cannot be accessed based on data values.

2-3

Data Set With Ordered Set
A data set with an ordered set could be used for an employee file with the last name as the key. The entire

data set could be accessed through the set in alphabetical order by using the last name as the key, or any
individual record could be accessed by using the last name of the individual as the key.

Coding Example:

EMPLOYEE DATA SET
(LAST-NAME.. ..

)POPULATION = 1000;
L-NAME ORDERED SET OF EMPLOYEE (LAST-NAME);

Physical Structure:

//-J DOE Records of EMPLOYEE
| JONES
OWENS

= SMITH

1e1¢

INDEX TABLE
OF ORDERED
SET L-NAME

DATA SET EMPLOYEE

Record Access:
a. Records can be accessed based on the physical ordering of the data set. For example:
FIND NEXT EMPLOYEE
b. Records can be accessed based on the ordering sequence of the set. For example:
FIND EMPLOYEE VIA NEXT L-NAME
¢. Records can be accessed based on the data value of a key. For example:

FIND EMPLOYEE VIA L-NAME AT LAST-NAME = “JONES”

Data Set With Embedded Data Set (No Sets)

A data set with an embedded data set could be used for an employee file in which an embedded data set
was used to account for each of the employee’s dependents.

Coding Example:
EMPLOYEE DATA SET
(.
i)EPENDENT UNORDERED DATA SET
(.

).POPULATION

=10
),POPULATION = 1000;

Physical Structure:

Records of DEPENDENT

P

DATA SET EMPLOYEE

DATA SET DEPENDENT

Record Access:

a. Records of data set DEPENDENT can be accessed based on the physical ordering of the embed-
ded data set. For example:

FIND NEXT DEPENDENT

b. There must be a valid EMPLOYEE current record in order to access a DEPENDENT record.

Data Set With Embedded Data Set And Ordering Set

This data structure could be used with the employee file as the data set and the employee job history as the
embedded data set ordered by the job position.

Coding Example:
EMPLOYEE DATA SET
(.

JOB-HISTORY ORDERED DATA SET
(POSITION ALPHA (20)

). POPULATION = 10;
JOB-POSITION ACCESS TO JOB-HISTORY KEY (POSITION)
), POPULATION = 1000;

Pilysical Structure:

P

DATA SET EMPLOYEE

DATA SET JOB-HISTORY
Record Access:

a. Records of data set JOB-HISTORY can be accessed based on the ordering sequence of JOB-
POSITION. For example:

FIND JOB-HISTORY VIA NEXT JOB-POSITION

2—-6

b.

C.

Records can be accessed based on the data values of the key. For example:
FIND JOB-HISTORY VIA JOB-POSITION AT POSITION = SYSTEMS-ANALYST

There must be a valid EMPLOYEE current record to access any JOB-HISTORY record.

2-17

Data Set With No Ordering Set, Retrieval Set, and Automatic Subset

A data set with a retrieval set could be used with an employee file so that given a title and department the
record for the employee who holds that position could be accessed. An automatic subset provides access
to all the records of exempt employees.

Coding Example:

EMPLOYEE DATA SET
(TITLE . ..
DEPARTMENT . . .
EXEMPT-STATUS
NAME

), POPULATION = 1000;
POSITION RETRIEVAL SET OF EMPLOYEE KEY (TITLE,DEPARTMENT) DUPLICATES:;
EXEMPT SUBSET OF EMPLOYEE WHERE (EXEMPT-STATUS = 1) KEY IS (NAME) ;

Physical Structure:

RETRIEVAL SET
POSITION

DATA SET EMPLOYEE

AUTOMATIC
SUBSET EXEMPT

Record Access:
a. Records can be accessed based on the physical ordering of the data set. For example:
FIND NEXT EMPLOYEE
b. Records can be accessed based on the value of a retrieval key. For example:

FIND EMPLOYEE VIA POSITION AT TITLE = SECRETARY AND DEPARTMENT =
SYSTEMS-PROGRAMMING

2-8

Records that satisfy the automatic subset condition can be accessed based on the physical order-
ing of the automatic subset. For example:

FIND EMPLOYEE VIA NEXT EXEMPT

Records that satisfy the automatic subset condition can be accessed based on the value of the
subset key. For example:

FIND EMPLOYEE VIA EXEMPT AT NAME = JOE DOE"

2-9

Data Set With Multiple Ordered Sets and One Retrieval Set

This data set could be an employee file ordered by name and employee number and retrieved by title and
department.

Coding Example:

EMPLOYEE DATA SET
(FIRSTNAME . . .
LASTNAME . ..
EMPLOYEE-NO . ..
TITLE . ..
DEPARTMENT . . .

)s POPULATION 1000;

NAME ORDERED SET OF EMPLOYEE KEY (LASTNAME FIRSTNAME);
EMP-NO ORDERED SET OF EMPLOYEE KEY (EMPLOYEE-NO);
POSITION RETRIEVAL SET OF EMPLOYEE KEY (TITLE,DEPARTMENT);

Physical Structure:

o
\
. ‘ 1 BAKER 4250
E ol
SEI%%EM% /] JOHNSON 6184
< 1 MASON 3621
= SMITH 2542
.
ORDERED SET
EMPLOYEE NO.
E | ‘
¢ DATA SET EMPLOYEE
RETRIEVAL
SET POSITION

Record Access:
a. Records can be accessed based on the physical ordering of the data set. For example:
FIND NEXT EMPLOYEE
b. Records can be accessed based on any ordering sequence. For example:
FIND EMPLOYEE VIA NEXT EMPLOYEE-NO

The order however, is based on the values within the records, not the physical order of the
records.

c. Records can be accessed based on data values of the order key. For example:

FIND EMPLOYEE VIA NAME AT LASTNAME = “SMITH” AND
FIRSTNAME = “JOHN”

d. Records can be accessed based on data value of a retrieval key. For example:

FIND EMPLOYEE VIA POSITION AT TITLE = MANAGER
AND DEPARTMENT = FINANCE

Two Data Sets, One Referring To A Manual Subset of The Other With No Key

This data structure could represent the relationship between departments and employees, with each
department having a manual subset referencing all the employees of that department.

Coding Example:

DEPARTMENT DATA SET
(.

i)EPT-EMPLOYEES SUBSET OF EMPLOYEES

), POPULATION = 10;
EMPLOYEES DATA SET
(. ‘

), POPULATION = 1000;

2-12

Physical Structure:

hd hd

|
/74

DATA SET DEPARTMENT

DATA SET EMPLOYEES

SUBSET DEPT-EMPLOYEES
Record Access:

a. Records of data set EMPLOYEES can be accessed based on the physical ordering of a subset for
a data set: For example:

FIND EMPLOYEES VIA NEXT DEPT-EMPLOYEES

b. Records of data set EMPLOYEES can be accessed by the physical ordering of the data set. For
example:

FIND NEXT DEPARTMENT

Two Data Sets Each Referencing A Subset Of The Other

The preceding example could be expanded to order the employees within a department by their last name

Also there could be a manual subset within each record of data set EMPLOYEES referencing the depart-
ment in which the employee works.

Coding Example:

DEPARTMENT DATA SET
(.

DEPT-EMPLOYEES SUBSET OF EMPLOYEES KEY (LASTNAME)
), POPULATION = 10;

EMPLOYEES DATA SET
(LASTNAME . ..

iEMP-DEPT SUBSET OF DEPARTMENT
), POPULATION = 1000;

S1—¢

|

219

?21?

SUBSET
DEPT-
EMPLOYEES

NOTE: EACH EMPLOYEE WORKS

IN ONE DEPARTMENT ONLY.

PN
-—.
Y
DATA SET
DEPARTMENT
SUBSET
EMP-DEPT
o]
..—
-
.—
-
DATA SET EMPLOYEES

:2IM3ONNg [edIsAyy

Record Access:

a.

The records of data set EMPLOYEES can be accessed based on the physical ordering of a sub-
set of a data set. For example:

FIND EMPLOYEES VIA NEXT DEPT-EMPLOYEES

The records of data set DEPARTMENT can be accessed based on the data value of a ordered key
of the subset. For example:

FIND EMPLOYEES VIA DEPT-EMPLOYEES AT LASTNAME = “JONES”

Records of data set DEPARTMENT can be accessed based on the physical ordering of the data
set. For example:

FIND FIRST DEPARTMENT

A master data set must have a current record to access its subset.

3. DATA AND STRUCTURE DEFINITION LANGUAGE (DASDL)

DATA BASE DESCRIPTION

A data base is described to the system by means of a DASDL compilation. Data sets, sets, and subsets
constitute the data base. Appendix A contains specific information on the DASDL compilation procedure.
This section describes the components and the structuring of a data base.

Data Base Syntax

= (disjoint-data-set)

N

, J
L { parameters) — — (disjoint-set) —=

. (subset) S——

p -
)] [7
s (physical-description y— " initialize-statement) ——
Parameters:
= PARAMETERS ————— (BUFFERS = (integer)) ; -~/
Initialize Statement:
= INITIALIZE ; -~/

Semantics:

a. Data sets and sets on the outermost level of the description are disjoint data sets, and disjoint
sets. A data base must contain at least one disjoint data set.

b. A data set description provides for specification of the logical structure of a file.

c. Set and subset descriptions provide logical specifications of indexes or index tables (paths) that
are used in storage and retrieval of data contained in a data set.

d. The BUFFERS statement defines the optimum number of data buffers the system should try to

utilize. The system adjusts dynamically to handle peak volumes of DMSII operatlons By de-
fault, the system will utilize 10 buffers. The range can be from 3 to 100.

e. The INITIALIZE statement causes the DMSII files to be initialized by DASDL, and must be
performed before there can be any access to a data base. INITIALIZE must be the last statement
in the DASDL source deck.

f. Subset and set specifications cannot precede the specification of the data set that they reference.

DISJOINT DATA SET

A data set consists of a collection of records that constitute a data set. All records in a data set are struc-
tured alike, with only the values of the data items differing. Describing the data set is accomphshed by
describing the data items within the records of the data set.

The data structure in a data set definition are represented in a COBOL-like format. Disjoint data sets
appear on the outermost level of the description and are referred to as level 1. All data items contained in
a data set are assigned a level that is one greater than that of the data set itself. All items of a group item
are assigned a level that is one greater than that of the group item itself. DASDL represents data structures
by the use of parentheses, with each set of parentheses representing a level.

VERIFY and REQUIRED ALL

The VERIFY condition and the REQUIRED ALL statement provide the mechanism for specifying the
minimum criteria that a record must meet prior to its being stored in a data base. These specifications are
checked for each record to be stored. The REQUIRED ALL statement specifies that all applicable items
must be assigned a non-null value (where “null” is defined as all bits on). The VERIFY condition provides
the specifications for complex comparisons and operations in determining the validity of a data record.

Syntax

—{disjoint-data-set-identifier Y DATA SET L J L : J =
“ {comment . REQUIRED ALL —

b -

G (‘ = (group-item’ I) — ' ;-.7/
© p—{data-item’)

— —I;—_ﬂjl:: POPULATION = (integer)—»
> (embedded-data-set’y —= ,— LM VERIFY (condition)

b (embedded-set) ——
L (subset) -

3-2

SEMANTICS

d.

DASDL recognizes five item types as valid components of disjoint data set record descriptions:
1. Embedded data set.

2. Embedded set.

3. Subset.

4. Group item.

5. Data item.

This record description of a disjoint data set specifies the format of a record of a data set. These
records are stored in a physical file.

The record of a data set containing an embedded data set is referred to as being the “owner’ of
the records of the embedded data set.

The records of an embedded data set are referred to as members of its disjoint data set.

A disjoint set relates only to a disjoint data set. An embedded set and the embedded data set to
which it relates must be on the same level description.

Files for the data sets and tables built for sets, if there are keys, use the POPULATION statement
as a guide for area size for files and table size unless other specifications are given in the physical
description.

The quoted comment (‘““comment . . .”), having a limit of 172 characters, provides a facility for
inclusion of descriptive information in the data set. Continuation of quoted character strings
across card boundaries requires a quote at the beginning of subsequent cards.

The REQUIRED ALL statement, if present, is equivalent to the REQUIRED statement on all
items of the data set in that for each data item defined in the data set a value must be present for
the record to be stored.

The VERIFY condition specifies a certain condition to be satisfied by the items of a record in
order for it to be stored in a data set. If the condition is not met, the record will not be stored.

3-3

Example:

The following example contains the usage of a disjoint data set.

00005400 :MSF DATA SET(DISJOINT DATA SET

00005500 : SSNO NUMBER(9);

00005600 : NONAM NUMBER(1);

00005700 : LNAME ALPHA(30); DATA ITEMS

00005800 : MNAME ALPHA(30);

00005900 : FNAME ALPHA(30);

00006000 : CAMPUS-ADDRESS GROUP(GROUP ITEM

00006100 : DORM ALPHA(6);

00006200 : ROOM NUMBER(4); DATA ITEMS

00006300 : POROX NUMBER(4);

00006400 : PHONE NUMBER(7));

00006500 : ND NUMBER(2);

00006600 : DEGREE ALPHA(4) OCCURS 6 TIMES;

00006700 : TOTHRS NUMBER(3);

00006800 : TOTQP NUMBER(3);

00006900 : GRADE-POINT-AVG NUMBER(3,2);

00007000 : MJR NUMBER(3);

00007100 : AMIJR ALPHA(18);

00007200 : SSEX NUMBER(1);

00007300 : SAGE NUMBER(2);

00007400 : HOME-ADDRESS SUBSET OF ADR; MANUAL SUBSET
00007500 : QUARTER ORDERED DATA SET(

00007600 : QTR ALPHA(4);

00007700 : QTTRHRS NUMBER(2);

00007800 : QTRQP NUMBER(2);

00007900 : CORSES ORDERED DATA SET(

00008000 : TYPECOURSE NUMBER(1);

00008100 : YR NUMBER(2);

00008200 : Q NUMBER(2); EMBEDDED
00008300 : GCRS SUBSET OF UNIV-COURSES; DATA SET
00008400 : GGD ALPHA(2);

00008500 : TITLE-OF-PAPER ALPHA(30);

00008600 : PPRGD ALPHA(2));

00008700 : POPULATION = 4;

00008800 : CSET ACCESS TO CORSES KEY IS EMBEDDED
00008850 : (TYPECOURSE) DUPLICATES) SET
00009000 : POPULATION = 5000;

00009100 : QSEY ACCESS TO QUARTER KEY IS (QTR));

00009200 : MSFSET ORDERED SET OF MSF KEY IS (SSNO); DISJOINT SET

RECORD DESCRIPTION

The five item types comprising the record description of a disjoint data set are the embedded data set,
embedded set, subset, group item, and the data item. All items comprising the record description are
separated by semicolons.

Data Item

Each data item in the record is described by an identifier, an optional description, and its data type. A data
item can also have an occurrence (OCCURS) specification or a REQUIRED specification requiring the data
item to be assigned a non-null value prior to its storage in the data set.

Syntax

~————— (data-item-identifier e
L * {comment) > —

f——-——-ALPHA ({integer)) :7/

a.

aa

) ﬂ —J t OCCURS (integer) TIMES —
> NUMBER (-E—JJ+ Linteger)) REQUIRED -
S

Semantics

Comments enclosed within quotation marks are used for documentation and are stored in the
dictionary file, but comments following the percent sign (%) are not stored.

The ALPHA specification handles strings of alphabetic characters, special characters, or digits.
The size of the data item (the number of characters the data item can hold) is specified by an
integer, enclosed within parentheses.

The NUMBER specification handles signed and unsigned numeric fields, either decimal or
integer. The maximum size of a NUMBER statement is 23 unsigned digits or 22 signed digits
when not a KEY item; and 12 unsigned digits or 11 signed digits when NUMBER is a KEY item.

When two integers are used to specify the size of a NUMBER item, the integer to the left of the
comma specifies the total field width; the integer to the right of the comma is the number of
digits after an implied decimal point.

The OCCURS clause of DASDL is identical to the COBOL OCCURS clause. The item must be
subscripted when used. A maximum of three levels of subscripting is allowed. The number of
occurrences is limited to 1023.

The maximum record size is 8192 characters.

Required items must be present and be non-null to be stored. The REQUIRED ALL option for
a data set makes all items REQUIRED except those for which the REQUIRED statement is an
invalid option.

The REQUIRED statement cannot be specified for any items appearing within the scope of an
OCCURS clause. The REQUIRED ALL statement of a data set does not make an occurring
type item required.

i. COBOL requires that all ALPHA and GROUP items start on byte boundaries. In order to satisfy
this requirement, one-digit fillers are inserted, where necessary, with a warning message given.

Example:

The following example illustrates a record description.

00006500 ND_NUMBER(2) ;
00006600 DEGREE ALPHA(4) OCCURS 6 TIMES;
00006700 : TOTHRS NUMBER(3) ;
00005800 : TOTQP NUMBER(3) ;
00006900 : GRADE-POINT-AVG NUMBER(3,2) ;
00007000 : MIJR NUMBER(3) ;
00007100 : AMIJR ALPHA(18) ;
00007200 SSEX NUMBER(1) ;
00007300 : SAGE NUMBER(2) ;
Group Item

Group items are used to establish hierarchical relationships within one record in the same manner that
COBOL uses level numbers. Each group item in the record is described by an identifier followed by the
word GROUP, an optional OCCURS or REQUIRED clause, and a list of data items or group items in any
combination.

Syntax
—= (group-item-identifier) GROUP :%
= OCCURS (integer) TIMES —=
—» REQUIRED
5 - (= (group-item) \ -) -
L (data-item’)
Semantics

a. Group items are items that themselves contain items. Items within a group are declared at a
level that is one greater than the level of the group.

b. Items that belong to groups are restricted to data items and further group items. Data sets, sets,
and subsets are not allowed as items within a group.

c. The optional OCCURS clause can be nested to three levels. Each occurrence has a limit of 1023
times.

d. Group items can be REQUIRED if the group item does not appear within the scope of an
OCCURS clause. The effect of this is to make all items within the GROUP required (REQUIRED)
except those items for which the option is invalid.

Example:

The following example illustrates usage of both a group item and the OCCURS clause.

Level 1 GRPA GROUP OCCURS 3 TIMES (
DATA1 ALPHA (10) OCCURS 2 TIMES;
Level 2 DATA2 NUMBER (4) OCCURS 10 TIMES;

GRPB GROUP OCCURS 4 TIMES (
DATA3 ALPHA (5) OCCURS 3 TIMES;
Level 3 DATA4 NUMBER (5) OCCURS 3 TIMES;
GRPC GROUP OCCURS 5 TIMES (
DATAS ALPHA (10);

Level 4 DATA6 NUMBER (10))));

Embedded Data Set

An item within a data set can itself be a data set; and is referred to as an embedded data set. A data setis
used as an item in a data set when it is desired to establish a hierarchical relationship between different
types of records. The VERIFY condition and the REQUIRED ALL statements are the mechanism for
specifying the minimum criteria that a record must meet prior to its being stored in a data base. These
specifications are checked for each record to be stored. The REQUIRED ALL statement specifies that all
applicable items must be assigned a non-null value. The VERIFY condition provides the specifications for
complex comparisons in determining the validity of a data record.

Syntax
— (embedded-data-set-identifier y ——— ORDERED TD ATA SET ?
—— UNORDERED l——- “ {comment) ” —1
s L —]l— (L= (group-item)) -/
REQUIRED = (data-item) /T = POPULATION = (integer) =
ALL [(embedded-data-sefy—= L, Hne VERIFY (condition’y —=l
b= (embedded-set)
L (subset) ——————J
Semantics

a. It is mandatory that the outer level data sets have current records established before lower levels
of the structure can be accessed.

b. Either an ORDERED or UNORDERED statement must be specified for an embedded data set.

1. The ORDERED statement indicates that the data records are to be maintained in sequence.
There must be exactly one embedded set declaration for an ordered embedded data set.
This declaration specifies the sequence for this data set.

2. The UNORDERED statement indicates that the system assigns the sequence to the records.
No sets are then allowed.

When a POPULATION statement is specified for an embedded data set, it indicates the number
records per owner. That value is multiplied by the population of the disjoint data set for space
allocation. This calculation indicates that the POPULATION specification for the embedded data
set should be the average population, rather than the maximum.

d. The REQUIRED ALL statement, if present, is equivalent to specifying the REQUIRED statement
for each data item in the data set for which REQUIRED is valid. A value must be present for
each of these data items before the record can be stored.

e. The VERIFY condition specifies a certain condition to be satisfied by the items of a potential
record to be stored in a data set. If the condition is not satisfied, the record will not be stored.

Example:

00002600 : BOOKS UNORDERED DATA SET(UNORDERED EMBEDDED

00002700 : LC NUMBER(9); DATA SET

00002800 : TITLES ALPHA(60);

00002900 : AUTHR ALPHA (30));

00003000 : STUDENTS SUBSET OF MSF KEY IS

00003100 : (LNAME ,FNAME) DUPLICATES,

00003200 : POPULATION = 300)

00007900 : CORSES ORDERED DATA SET(ORDERED EMBEDDED

00008000 : TYPECOURSE NUMBER(1); DATA SET

00008100 : YR NUMBER(2);

00008200 : Q NUMBER(2); AND

00008300 : GCRS SUBSET OF UNIV-COURSES;

00008400 GGD ALPHA(2); EMBEDDED SET

00008500 : TITLE-OF-PAPER ALPHA(30);

00008600 : PPRGD ALPHA(2)),

00008700 : POPULATION = 4;

00008800 : CSET ACCESS TO CORSES KEY IS

(TYPECOURSE) DUPLICATES)

Embedded Set

Embedded sets are used to establish a path of access to embedded, ordered data sets. The embedded set,
based on the key value, provides either serial access to all the records of the data set, or random access to a
specific record also based on the key value. For embedded, unordered data sets, the only access to the data
is based on the physical ordering of the records.

Syntax

—— (embedded-set-identifiery ACCESS TO (embedded-data-set-identifier) {key-structure) —=rt

Semantics

a.

The embedded set provides the a‘bility to maintain a logical order for an embedded ordered data
set rather than the physical order associated with an embedded unordered data set.

One set only, must be declared for each embedded ordered data set. The ACCESS TO declaration
is required and must be specified only in this instance. This declaration indicates the establish-
ment of a path, but does not establish physical index tables. (The records are kept in order.)

c. The embedded set and the embedded data set to which it refers must be on the same level.

d. Dataitems of the key-structure cannot be modified after the record has been stored in the data
base. For further information on key-structures, see DISJOINT SET in this Section.

Example:
00007900 CORSES ORDERED DATA SET(
00008000 : TYPECOURSE NUMBER(1);
00008100 YR NUMBER(2);
00008200 Q NUMBER(2);
00008300 GCRS SUBSET OF UNIV-COURSES;
00008400 GGD ALPHA(2);
00008500 TITLE-OF-PAPER ALPHA(30);
00008600 PPRGU ALPHA(2)),
00008700 POPULATION = 4;
00008800 CSET ACCESS TO CORSES KEY IS
00008850 (TYPECOURSE) DUPLICATES)
Subset

A subset is a path to some of the records of a data set. A subset is not used for holding data values, but
rather it provides a method of accessing some of the records of a disjoint data set.

There are two types of subsets, manual and automatic. The manual subset is maintained by the user. It
establishes inter-record relationship by providing a method of accessing some of the records of a disjoint
data set from records of another data set. The automatic subset is maintained by the system and provides
access to records of the disjoint data set which satisfy the condition specified in a WHERE clause.

Syntax
— (subset-identifier) SUBSET OF (disjoint-data-set-identifier) =
§ =7

{—— WHERE (condition)

Semantics

" (key-structure) ——————=l

I___ __j — POPULATION = {integer) —

a. Any subset containing a WHERE clause is an automatic subset.

b. Manual subsets are usually used when the data related to the record is not unique for that record,
or when independent access to the related data is required.

¢: Manual subsets must be declared as embedded structures. The data set referenced must be a

disjoint data set.

d. Manual subsets can have a key-structure. If specified, the key-structure provides serial access
based on the key value or random access of a specific record (also based on the key value).

3-9

e. Neither the OCCURS clause nor the REQUIRED clause can appear in a subset.
~f. Automatic subsets can only be declared as disjoint structures.

g. Automatic subsets must have a key structure, which provides for serial access based on the key
value or random access of a specific record (also based on the key value).

h. For further information concerning key structure, see DISJOINT DATA SET in this section.
Example:

00000600 :UNIV-COURSES DATA SET “MAIN FILE” (

00002500 PROFESSOR SUBSET OF UNIV-PERSONNEL, POPULATION = 3;
00003900 ;UNIV-PERSONNEL DATA SET(-
00004900 COURSES SUBSET OF UNIV-COURSES, POPULATION = 8;

The manual subsets in the above example allow access to the professors who teach a particular course and
access to the courses taught by a particular professor. Each professor record could reference all of the
courses for it and each course record could reference all the professors for it without any redundancy of
data stored.

DISJOINT SET

The use of any set implies the existence of a key. For disjoint data sets, keys can be associated with either
an ordered or retrieval disjoint set.

Syntax

SET OF

RETRIEVA
SET OF

—=(disjoint-set-identifier) E ORDERED T {disjoint-data-set-identifier) = (key-structure) == ; —=/
L

Semantics

a. The use of an ORDERED set allows serial access based on the key or random access of a specific
record (also based on the key value). The items within the key structure of an ORDERED set
specify the control from left to right.

b. If only random access is desired and serial access on the key value if not necessary, a RETRIEVAL
set is used rather than an ORDERED set.

c. The DESCENDING clause of the key structure must not be used for items in the key structure
of a RETRIEVAL set.

d. If DUPLICATES is not specified in the key structure, the data items of the key structure must
not be modified after the record has been stored in the data base.

Example:
00005200 : SS-U-P ORDERED SET OF UNIV-PERSONNEL KEY IS (SSNUM);
00005300 : U-P-SET ORDERED SET OF UNIV-PERSONNEL KEY IS
00005350 : (LASTNAME FIRSTNAME) DUPLICATES;

Key Structure

The key structure allows the user to identify data items in a data record for which access by a data item
value is required.

Syntax

) w-uf

E(data-item-identiﬁer) J -) L _1 -/
<group-item-identiﬁer> tASCENDINGﬂ DUPLICATES

DESCENDING

(-

IS

Semantics
a. The key structure consists of a single data item or the concatenation of multiple items.

b. If a group item is used as an item in a key-structure, the COBOL syntax for the random access of
a record using that key requires that all the elementary data items of the group be used. The use
of a group item in DASDL allows documentation clarity.

c. Each data-item-identifier or group-item-identifier following a KEY specification must refer to a
data item or group item of the data set which the set or subset references.

3—-11

f.

To provide flexibility of serial access, each data item may be specified as ASCENDING or
DESCENDING. This does not affect random access, and is not allowed on retrieval sets. If
neither ASCENDING nor DESCENDING is specified, ASCENDING is assumed by default.

Duplicates are records with identical key values. The DUPLICATES option indicates that
multiple instances of a key with the same value are allowed. For example, a key NAME normally
would allow many John Smiths, but a key of SSUM would not allow any duplicates. A special
syntax is provided in COBOL to allow only the retrieval of duplicates.

If DUPLICATES is not declared, the key-structure is considered unique.

CONDITION

A condition expression has two uses:

a. Specifying criteria which must be satisfied by a record prior to storage in a data set (VERIFY
clause).
b. Specifying the condition for inclusion of a record as a member of an automatic subset (WHERE
clause). ’
- Syntax
- (—= (simple-condition) -) -/
—>NOT————} = (—¢(simple-condition) ——) —»]
- {complex-condition) ————
—» (—>(complex-condition) —=) —=I
{simple-condition)
—— (datasitem)) = (op) > {data-item) -/
= (literal)
{complex-condition)
OR =
- AND —=
' — { simple-condition) 7/

= NOT ——

{op)

T —

- -
= (
= EQL
= GTR
= LSS
= LEQ

— GEQ
> NEQ

X

Condition Semantics

a. Conditions are Boolean-type expressions formed by combining (in a logical and specific manner)
data names, literal constants, and relations.

b. The use of parentheses requires a matching left parenthsis and right parenthesis.
¢. In any simple-condition having the format
data-name-1 op data-name-2
the data items must be of similar type, for example, ALPHA, ALPHA or NUMBER, NUMBER.
In comparing alpha-numeric data items, the comparison is based on the longest field. The shorter
field is compared as if it were blank-filled to the right. In the example below, A will be equal to

B if the most significant four characters of A and B are the same and the last two characters of B
are blanks. For example:

A ALPHA (4); % ‘“ABCD”

B ALPHA (6); % “ABCDb®bH” el ; 7
NUMERIC-defined items are compared on the numeric value, independent of the length of the
items.

d. When data items are defined within the scope of an OCCURS clause, all necessary subscripts
must be specified.
———— (data-item-name) - (‘ = (integer)) >/
Example:

simple-condition ‘
STUAD SUBSET OF ADR WHERE (FACULTY-STUDENT EQL 1)

complex-condition
WHERE (SALARY LSS OR SALARY EQL 0)
SEXSET SUBSET OF MSF WHERE (SAGE 21 AND NOT SSEX)
VERIFY ((HOURSCRDT GTR 0 AND CLASS-SIZE LEQ 60) AND NOPROF NEQ 0) ;

PHYSICAL STRUCTURES

The data base structures can be directed to system disk or removable user disk. The data base structure
files differ from the standard B 1700 system files as follows:

a. DMSII is responsible for the allocation and maintenance of data space.
b. DMSII control information can be appended to the data in the records.
c. Multiple data base structures can be mapped into one file.
There are four types of DMSII physical structures:
a. Data Set.
b. Index Sequential.
c. Index Random.
d. List.
1. Ordered.
2. Unordered.

Logical structures are mapped into one of the above four types of physical structures, and are mapped
according to the list below.

Logical Structure Physical Structure
Disjoint Data Set Data Set
Ordered Set Index Sequential
Retrieval Set Index Random (Index Sequential Optional)
Embedded Data Set
Unordered Unordered List
Ordered Ordered List
Manual Subset
No Key Unordered List
With Key Ordered List
Automatic Subset Index Sequential

Unless overridden by explicit file attributes, file names are created by using the default-naming conventions
described in appendix A.

Syntax

* = (index-sequential-attributes) —; 7

- (index-random-attributes) —_—

= (list-attributes) -

L <data-set-attributes>

L (file-attributes) -
Semantics

a. Physical descriptions allow distinction between logical and physical structures in the data base
description.

b. Physical descriptions must be declared at the outer level only.
c. Physical descriptions must refer to sets, subsets, or data sets that have been defined previously.

d. By not using a physical description, default values are assigned for the physical properties of the
data base if no explicit specifications are made. If explicit assignment is made, the DASDL com-
piler will. not change the assigned value.

Disjoint Data Set Attributes

Each disjoint data set is allowed to have a default physical structure built by not listing any physical
structure attributes. Disjoint data sets can have one or more sets associated with them, but only one
structure can be responsible for the allocation and de-allocation of physical space for the data records.
The structure controlling space is called the PRIME structure; it is either the data set itself or any of the
sets of the data set. When a set is used as PRIME and that set with its data set are stored on a moveable
head storage device is one significant use of the PRIME structure. By making a set the PRIME structure,
it is generally true that with one movement of the read/write head, the system can obtain both the table
and the data when one file is used to hold both structures. Each file area is partitioned into a section for
the index tables, and a section for those data records whose index entries are in the index tables of the
same area. Under all circumstances, PRIME set accessing has been optimized to provide performance
benefits over non-PRIME accessing.

Syntax

9 e

—(disjoint-data-set-identifier)—= ()

PRIME
BLOCKSIZE—— = { integer}J
AREASIZE —
POPULATION =

ey) By

Semantics
a. There is only one PRIME structure per data set and its associated structures.
b The BLOCKSIZE, AREASIZE, and POPULATION statements are specified in number-of-records.

c. AREASIZE must be greater than 1 and greater than or equal to BLOCKSIZE.

3-15

DEFAULT VALUES

POPULATION 10000

BLOCKSIZE Iftherecord size is less than or
' equal to 720 bits, the size is
1440 bits divided by the record
size. If not less than or equal to
720 bits, BLOCKSIZE is equal

to 1.
\ AREASIZE Maximum (POPULATION/20) or 50.
PRIME FALSE,/if there are no sets.

The system makes the first ordered set of a data set by default PRIME. If there are no ordered sets, the
system selects the first retrieval set. If there are no sets, the data set itself is considered PRIME.

Data Set Maintenance Techniques

If the data set is specified or defaulted as PRIME, space is maintained by a Next Available counter and a
Highest Open counter for all areas of the physical file. If the Next Available counter equals the Highest
Open counter, the record is stored at the record address indicated by Next Available and Highest Open
counter. Both counters are then incremented by 1. If the Next Available counter is unequal to the Highest
Open counter, the address in which to store the data record is taken from the Next Available counter, which
is then set to the contents of the record at the address. (Available records are linked together.)

If the data set is not specified or defaulted as PRIME, there is a Next Available counter plus a Highest Open
counter for each area of the physical file; the area of the index file in which the key is inserted for the
PRIME set, determines which pair of counters to use.

Example:
PRIME Data Set
AREA 0 AREA 1
REC 0 REC 5
REC 1 REC 6
REC 2
REC 3
REC 4

Next Available counter = 7
' Highest Open counter = 7
If REC 2 is deleted, Next Available counter = 2
and Highest Open counter remains 7.

Non-PRIME Data Set

AREA 0 AREA 1
REC 0 REC 5
REC 1 REC 6
REC 2
REC 3

For AREA 0: Next Available counter = 4
Highest Open counter = 4

For AREA 1: Next Available counter = 7
Highest Open counter = 7

If REC 2 is deleted, then Next Available counter = 2
for AREA 0. Next Available counter and Highest
Open counter for AREA 1 remain the same.

Index Sequential Attributes

INDEX SEQUENTIAL is the structure used to map disjoint sets and automatic subsets. The algorithm used
maintains multiple levels of tables called coarse and fine tables. A coarse table is split when it becomes full,
resulting in multiple levels of coarse tables. DASDL provides the user with control of the tables using the
following two parameters: LOADFACTOR and SPLITFACTOR.

LOADFACTOR entries can be placed in an existing fine table before a new fine table is started. This
applies only when the new entries are added at the end of the existing entries.

It is advisable to leave additional space in tables so when records are inserted after the initial load, there is
space for the new entries without having to create new tables. The SPLITFACTOR determines how many
coarse table entries are moved when it becomes necessary to split a coarse table. The number of entries
specified by SPLITFACTOR are moved to a new coarse table; this new table is a new. level of coarse table,
with a new entry referencing it in the split coarse table.

The loading of this structure should be done in the sequence described by the key structure in order to
optimize the access of entries in the table.

Syntax

-

/T\-=PRIME —) —f
T\~ TABLESIZE —— == (integer)—=
/1= AREASIZE ——
1\~ LOADFACTOR -
| /1~ SPLITFACTOR -
L1\ TYPE = INDEX SEQUENTIAL —!

—-]—_-:<disjoint-data-set-identiﬁer> —1~(‘

{ automatic-subset-identifier)

Example:

00003700 : POPULATION = 1000;
00003800 UNIV-C-SET ORDERED SET OF UNIV-COURSES KEY IS (CRS-NO),

00011000 : UNIV-C-SET(

00011100 : "TABLESIZE = 12,
00011150 : AREASIZE = 10,
00011200 : TYPE = INDEX SEQUENTIAL
00011300 : LOADFACTOR = 9);
Semantics

a. The AREASIZE specifies the number of tables per area.

b. The TABLESIZE specifies the number of entries per fine table. Coarse table size is set to the
number of coarse table entries that can fit into the same amount of space.

¢. The LOADFACTOR specification is a percentage of entries per fine table and must be greater
than zero.

The SPLITFACTOR specification is a percentage of entries per coarse table and must be greater
than one.

d. The TYPE specification is optlonal unless the disjoint setddentifier refers to a retrieval set, then
it is required.

DEFAULT VALUES
PRIME TRUE (if this is the first, or only, ordered set).
AREASIZE (AREASIZE of data set) + 2.
TABLESIZE Thesquare root of POPULATION.
LOADFACTOR 66%of TABLESIZE (fine).
SPLITFACTOR 50%of TABLESIZE (coarse).

Example:

Coarse Tables Fine Tablés Data Set

|

11

.\

TITLT

NOTE

Coarse tables can only go the three levels; fine tables are limited to one level.
Coarse tables always contain the highest valued key of the next lower table.

Index Random Attributes

An index random structure is built by default for each disjoint retrieval set in a data base. The algorithm
takes the symbolic key in a hashed format, performs a remainder divide by the number of base tables
(MODULUS), then searches the resulting table. When any of the base tables becomes full, additional

entries for that table are placed in overflow tables. Enough space in the base tables should be allocated to
minimize table overflow.

Syntax
—s (disjoint-set-identifier) — (| e W PRIME -) -/
| —T\-> TABLESIZE ———= (integer)—=

|/ T\~ AREASIZE
/1> LOADFACTOR -
/1= MODULUS
L /T~ TYPE = INDEX RANDOM

Example:

STUSET RETRIEVAL SET OF STUDENT KEY (IDNO);

STUSET (MODULUS = 3, LOADFACTOR = 1);

Semantics

a. The MODULUS statement specifies the number of base tables. The MODULUS specification

must be less than or equal to the AREASIZE specification multiplied by the number of areas but
greater than 1.

b. The LOADFACTOR specification is a percentage that controls the distribution of overflow
entries into overflow tables. If the LOADFACTOR entry implies one entry, only one base table
overflows into any given overflow table. The LOADFACTOR entry must be greater than zero,
and less than or equal to TABLESIZE.

c. The TABLESIZE specification is the number of entries each table can hold.

d. The AREASIZE specification is the number of tables per area.

e. The TYPE specification is optional.

DEFAULT VALUES
PRIME True (if this is the first, or only, retrieval
set and there are no ordered sets).
MODULUS Thesquareroot of POPULATION multiplied by 1.1.
TABLESIZE MODULUS.
LOADFACTOR 66% of the MODULUS value.
AREASIZE Maximum(MODULUS/15) or 10 if PRIME

is true; otherwise, Maximum (MODULUS/5) or 10.
3-20

Example: -

BASE TABLE 1 —
S
)
&
o\
OVERFLOW POINTER
BASE TABLE 2 o«
./
oY
BASE TABLE 3 L
.\
OVERFLOW TABLE 1 o«
/
./

OVERFLOW TABLE 2

DATA SET

MODULUS =3
LOADFACTOR =1

List Attributes

An ORDERED LIST is built for each ordered embedded data set, and for each manual subset with a key.
An UNORDERED LIST is built for each unordered embedded data set and for each manual subset with-
out a key. Each record in a data set containing an embedded data set or a manual subset requires greater
storage space than the data record requires, since control information is appended. The storage required
for records of embedded data sets is also increased due to control information. Additional storage for the
embedded data set can be reduced by placing multiple data records in a table, since control information is
only stored once per table.

An ORDERED LIST is maintained by placing records in physical order. Serial access becomes more effi-
cient as the number of entries per table increases.

Syntax
(embedded-data-set-identifier) 1= (-1 = AREASIZE = (integer) -)—/
(manual-subset-identifier) 1\ TABLESIZE
1 BLOCKSIZE
1 TYPE = -[: ORDERED TLIST
~- UNORDERED
Example:
00002600 : BOOKS UNORDERED DATA SET(
00010500 : BOOKS(
00010600 : AREASIZE = 500,
00010650 : TYPE = UNORDERED LIST,
00010700 : BLOCKSIZE = 5);

Semantics
a. The TABLESIZE attribute is the number of records per table.
b. The BLOCKSIZE attribute is the number of tables per block.

c. The AREASIZE attribute is the number of tables per area. AREASIZE must be greater than or
equal to the BLOCKSIZE entry.

d. Each table may contain records from only one owner.

e. The TYPE entry is optional.

DEFAULT VALUES

TABLESIZE (Maximum(number of records plus the con-
trol information size that fits into one seg-
ment, or 1.)
BLOCKSIZE Maximum (number of tables that fit into one
disk segment or 1)
AREASIZE ((POPULATION * owner’s POPULATION)
/TABLESIZE) / AREAS
Example:
LIST STRUCTURE
a4 [«
Y=g
Lz §E
o S8
OWNER
RECORD 2
w2 w2 wnn
o) o) =
S S S
= e ')
< B X 2 x5 LIS
S oo o |2 T
Z A LIST RECORDS Z A~ LIST RECORDS Zy ~ RECORDS
[L
LIST | ¢{rF o FF| 9 | #
TABLES # #
FF = Null value.
= Number of LIST records containing information.

TABLESIZE = 4.

File Attributes

Storage files can be specified at DASDL compilation time either to alter the title of a file, assign pack
storage, alter areas, or group logical structures into a single physical file.

The structures that can be stored in a single physical file are listed below. However, no structure can be
in more than one structure list. Any one of the following items a. through f. can be stored in a single
physical file.

a. A disjoint data set.

b. An embedded data set. \

c. Adisjoint data set plus one of its sets.

d. Up to 16 index sequential sets or automatic subsets.
e. One index random set.

f. A manual subset.

Syntax
——=(identifier) STORAGE FOR = (disjoint-set-identifier) I =2
— { disjoint-data-set-identifier)
— (embedded-data-set-identifier) ——=
- (subset-identifier)
s - (Y\ /T\wPACK = (identifier) -) -/
l:kAREAS = (integer)
1 TITLE = ——(identifier) | (identifier)) —
L (identifier)
Example:

00010800 :BOOKFILE STORAGE FOR BOOKS(

00010850 : TITLE - UNIV/LIBRARY,
00010900 : AREAS = 10);
Semantics

a. If a PACK entry is specified, it must be a valid user pack identifier.

b. The number of areas assigned by the AREAS specification must be greater than zero, and less
than or equal to 105. AREAS is the maximum number of areas in the disk file.

DEFAULT VALUES
TITLE. The STORAGE identifier.
PACK NULL
AREAS 20.

4. COBOL INTERFACE

INTRODUCTION

There are two interfaces between the host language, COBOL, and the data base system: one during compila-
tion and one during execution. The compilation interface provides syntax allowing an application program,
through the use of the INVOKE statement, to use any or all portions of a data base. The invoke process
consists of utilizing DASDL-generated library files that supply the COBOL compiler a description of the
user-selected portions of the data base. The COBOL compiler then compiles an appropriate execution-time
interface with the data base.

The execution interface consists of a number of record areas, one for each data set invoked, and a number
of paths, one for each set or subset.

Associated with every record area is a current-record pointer. A record is considered to be the current
record of a data set if the appropriate current-record pointer refers to an existing record in the data base.
Usually, the record area contains a copy of that record, at least until the record area is changed by the
program.

The current-record pointer for a data set is changed by any operation that causes a new record to be placed
in the record area, or placed into the data base from the record area. The establishment of any record as
the current record for a record area, through use of a MODIFY or STORE operation, locks the record,
making that record unavailable to any other user. Changing the current record pointer automatically
unlocks any previously locked record and if required locks the new one.

Sets and subsets are represented as paths rather than as records. Their purpose is to locate the records of
the data set with which they are associated. The current-path pointer associated with every set and subset
(but not data set) refers to the last record accessed by way of that set or subset. This current-path pointer
retains its reference until explicitly changed, or until the record referenced by the current-path pointer

is deleted from the data base.

A current-record pointer can be in one of four states:
a. Undefined state — not valid for any purpose. For example, just after a data base OPEN.

b. Created state — indicates a CREATE operation has just been executed for a data set. If a STORE
is the next operation to be executed against the data set, a new record is stored. In all other
instances the created state is the same as the undefined state.

c. Defined state — refers to a valid record. For example, current record pointer is defined after a
successful FIND operation. A record can be locked only if it is in this state.

d. Deleted state — indicates there is no valid current record, but the current-record pointer main-
tains a position in the data set. For example, current-record pointers are in the deleted state
following a DELETE operation since the current record has been removed. A current-record
pointer in the deleted state can be used to access the next or prior record but not a current
record. .

Figure 4-1 illustrates the current-record pointer states.

OPEN

UNDEFINED
STATE

CREATED- DELETED-

SUCCESS- |, FUL FIND |
OR [MODIFY

DEFINED
STATE

Figure 4-1. Current-Record Pointer State

The functional operation of figure 4-1 is explained below:
a. When the data base is opened, the current record pointer is in the undefined state.
b. An unsuccessful FIND or MODIFY operation does not change the current-record-pointer state.

c¢. A RECREATE operation affects the current-record-pointer state the same as the CREATE
operation.

d. Whenever the current-record pointer of a data set changes, the current-record pointer for all
embedded data sets becomes undefined.

e. A FREE operation does not affect the state of the current record pointer.

f. A current record pointer can be set to the deleted state due to the actions of some other program
being multiprogrammed against the same data base. ‘

A set or subset current path pointer can be in one of three states:
a. Undefined.
b. Defined.
c. Deleted.

Figure 4-2 illustrates a set or subset current-path pointer processing state.

4-2

OPEN

UNDEFINED

SUCCESSFUL FIND, MODIFY, OR INSERT

DELETED
STATE

DEFINED
STATE

(

DELETE
REMOVE

Figure 4-2. Set Or Subset Current-Path Pointer State

The functional operation of figure 4-2 is explained below:
a. When a data base is opened, the set or subset current path pointers are in an undefined state.

b. An unsuccessful FIND or MODIFY operation, by way of a current-path pointer of a set or subset,
changes the set or subset current-path pointer.

c. The STORE, CREATE, RECREATE, and FREE operations do not affect a set or subset current-
path pointer. '

d. An INSERT operation always changes the current-path pointer of a subset to the defined state.

e. Whenever the current-record pointer of a data set changes, the current-path pointer for all of that
data set’s embedded sets and subsets become undefined.

f. A set or subset current-path pointer can be set to the deleted state as the result of another pro-
gram accessing the same data base.

COBOL DATA DIVISION

General

A DATA-BASE SECTION must be inserted within the DATA DIVISION of a COBOL program supplying
the COBOL compiler with a description of all or selected portions of a data base. The DATA-BASE
SECTION is placed between the FILE SECTION and the WORKING-STORAGE SECTION.

DATA-BASE SECTION

In the DATA-BASE SECTION all data sets intended for use are invoked. This signals the compiler to
include in the compilation the item names and all path names (sets and subsets), plus all embedded data
sets and subsets within the invoked data set. The compiler also establishes the necessary user record areas.

Syntax

= DATA-BASE SECTION. -

=DB » (data-base-name) ———m . ——= (data-set-references)

\
N

Example:

001031 DATA-BASE SECTION.
001032 DB UNIV.

Semantics

a. The level indicator, DB, is used to select a particular data base. Any particular data base can be
referenced only once per program, and only one data base can be open at any one time.

b. The data-base-name identifier can be used as a qualifier of data sets or set names. The data-base-
name is the family-name of the program-identifier used in the DASDL compilation (see
appendix A).
Data Set References

The referenced data base can be followed by any number of data set references.

Syntax

——1 = 01 — (internal-data-set-name) INVOKE (external-data-set-name) - -/

Example:

001033 01 MASTER INVOKE MSF.
001034 01 ADDRESS INVOKE ADR.

Semantics
a. The level number 01 is used to select particular data sets from a data base.

b. Each compilation copies the description of each invoked data set into the program from a library
file created by DASDL. The file-identifier of this library file for each data set has the following
format:

data-base-name | data-set-name

c. The internal-data-set-name allows synonym capability and can also be used to establish more than
one record area for a data set.

d. All references to the data set in the program are by the internal-data-set-name. The internal-data-
set-name can be a name assigned by the programmer, or the name of a data set defined in DASDL.
The internal-data-set-name must be different than the external-data-set-name if the data set is
invoked more than once within a program. The use of the internal-data-set-name provides a

unique name for each record area of the data set, and is required only if the data set is invoked
more than once.

e. Embedded data sets must not be programmatically invoked. They are automatically invoked
when the data set to which they belong is invoked.

f. All disjoint data sets, if used, must be invoked. This method also applies to any disjoint data sets
referenced by a subset if the subset is used.

INVOKED DATA SET

The COBOL compiler prints the names of all the paths and data items, and also shows the structure number
(DDL-NUMBER) assigned at the DASDL compilation. The source statements supplied by the DASDL com-
piler are distinguished from the COBOL source statements by an asterisk (*) appearing to the left of the
print line, as the coding example below indicates.

Example:

001034 01 ADDRESS INVOKE ADR.

*

* 01 ADR DATASET DDL-NUMBER 10 20: 0: 4 12/ 5/74

* ORDERING KEY SSAD DDL-NUMBER 19 20: 0: 4 12/ 5/74

* (SNO).

* 02 FACULTY-STUDENT PIC 9 COMP.

* 02 SNO PIC 9(9) COMP.
* 02 ADLN OCCURS 9 TIMES PIC X(54).

* 02 ZIPC PIC 9(5) COMP.
* 02 PHON PIC 9(10) COMP.
*

The structure number, along with an internally assigned invoke number, allows the system to update the
correct record areas. Even when the structure number is the same, the invoke number ensures that the
correct record area is altered. The level numbers generated by the COBOL compiler reflect the usage of
data items by level indicators. The listing also displays the time and date the files were created by the
DASDL compilation.

MULTIPLY-INVOKED DATA SET

Since one record area can only hold one record at a time, it may be necessary, for effectiveness, to have
more than one record area. In the following example, MSF is invoked twice, creating two separate record
areas for MSF so that two different records of MSF can be used at the same time. This example provides
multiple current records.

The following example also provides multiple current path pointers for the same set. Each current path
pointer is updated only when explicitly used. Either record area can be updated by any of the paths to
MASTER or FILEL.

DATA-BASE SECTION

DB UNIV.

01 MASTER INVOKE MSF.
01 FILE1 INVOKE MSF.

COBOL PROCEDURE DIVISION
General

The DATA-BASE SECTION allows the invocation of all or part of a data base. As a result of the invoked
description, the compiler generates the necessary interfaces, so that at data base open time, the proper data
set record areas are allocated.

Special extensions to COBOL are used to manipulate data sets. Data base retrieval and storage are accom-
plished at the record level, with one record being transferred into or out of the record area together with
selected data base operations.

Move And Move Corresponding

The record area for a data set contains two types of items: one type is control information, the other is the
data. The portion containing data items is similar to a WORKING-STORAGE 01 entry indicating that all
COBOL data manipulation statements can be utilized in the moving of data items. This includes the group
MOVE and the MOVE CORRESPONDING operations as the following example illustrates.

* 01 MSF DATASET DDL-NUMBER 6 20: 0: 4 12/ 5/74

* ORDERING KEY MSFSET DDL-NUMBER 18 20: 0: 4 12/ 5/74
* (SSNO).

* 02 SSNO PIC 9(9) COMP.
* 02 NONAM PIC 9 COMP.

* 02 LNAME PIC X(30).

* 02 QUARTER DATASET DDL-NUMBER 15 20: 0: 4 12/ 5/74
* ORDERING KEY QSET DDL-NUMBER 15 20: 0: 4 12/ 5/74
* (QTR). |

* 03 QTR PIC X(4).

* 03 QTTRHRS PIC 99 COMP.
L]

03 QTRQP PIC 99 COMP.
The functional description of the above example is explained in the following list.

a. = MSFSET, QUARTER, and QSET are control items and are not moved ina MOVE MSF TO . . .
or a MOVE . .. TO MSF operation.

b. QTR, QTTRHRS and QTROP are items of the record area for QUARTER and therefore are not
moved in a MOVE MSF TO . .. or a MOVE ... TO MSF operation.

¢. The MSF record area for a group MOVE operation can be considered as the following items:

01 MSF
02 SSNO
02 NONAM
02 LNAME

d. Items SSNO, NONAM, and LNAME are the only candidates for a MOVE CORRESPONDING
operation.

e. A group MOVE operation is always considered as an alphanumeric MOVE.
Exception Processing
The COBOL PROCEDURE DIVISION has been extended by adding DMSII statements, providing an inter-
face between a COBOL program and a data base. The system, when executing DMSII statements, can
encounter any one of several exception conditions that prevents the operation being performed as specified.
If an exception condition occurs, the program terminates unless the DMSII statement is followed by an ON
EXCEPTION clause. It is recommended, therefore, that the ON EXCEPTION clause be used following
DMSII statements.

To further qualify the nature of an exception, there exists for each COBOL program a special register:
DMSTATUS. DMSTATUS is set by the system at the completion of each DMSII statement.

ON EXCEPTION CLAUSE

The syntax chart notation indicates that an ON EXCEPTION clause may appear, by the presence of a
double slash (/ /). The ON EXCEPTION clause syntax that follows a double slash is shown below.

Syntax

/—— ON EXCEPTION ——= (statement-1)

-/
/

= ELSE —= (statement-2) —J

The following example illustrates the ON EXCEPTION programming technique:
Example:
STORE CORSES ON EXCEPTION PERFORM STATUS-BOOLEAN.
MODIFY MSFSET AT SSNO = C-SSNO ON EXCEPTION
IF DMSTATUS(NOTFOUND) DISPLAY C-SSNO “NOT IN MSF” ELSE
PERFORM STATUS-BOOLEAN.
Semantics
a. Each DMSII statement yields a true/false value which is true if the operation resulted in an
exception condition; the value is false if the operation completed with no exceptions encoun-
tered. If true, statement-1 of the ON EXCEPTION clauses will be executed; otherwise, state-
ment-2 will be executed if present.

b. Logically, DMSTATUS can be used to qualify' an ON EXCEPTION clause.

c. If the ON EXCEPTION clause is not specified, the occurrence of an exception terminates the
program.

4-7

DMSTATUS Register

The DMSTATUS register provides the capability to determine the nature of an exception should an

exception occur. DMSTATUS is set by the system at the completion of each DMSII statement, and is used
to qualify an ON EXCEPTION clause. To isolate the exception encountered, a number of attributes exist

for DMSTATUS. Each attribute yields a Boolean value to indicate whether that particular category of
exception has occurred. The DMSTATUS register, when used, has the following format.

DMSTATUS Syntax

—=DMSTATUS —— (¢ category-name)

The category-name and its descriptions are listed in table 4-1.
Table 4-1. DMSTATUS Categories and Description

Category Name Exception Condition Description

NOTFOUND This record does not satisfy a SELECTION
expression such as in MODIFY or FIND.

Key value in record does not match key of a
manual subset.

No current record exists (previously deleted).
Current-record pointer is undefined.

Either the master record is undefined or the
embedded structure is empty.

DUPLICATES Duplicates not allowed in set (STORE
operation).

Duplicates not allowed in a manual
subset (INSERT operation).

DEADLOCK A “deadly embrace” condition has occurred
while trying to lock records. Note that the sys-
tem has automatically performed a FREE
operation of all records for this program.

DATAERROR An attempt was made to store a record with a
null key or null required item.

An attempt was made to store a null record (all
bits = 1).
A DASDL verify condition not met.

NOTLOCKED A STORE statement not preceded by a CREATE,
RECREATE, MODIFY, or STORE.

Table 4-1. DMSTATUS Categories and Description (Cont)

Category Name

KEYCHANGED

SYSTEMERROR

IOERROR

LIMITERROR

OPENERROR

CLOSEERROR

NORECORD

INUSE

DMERROR

Exception Condition Description

An attempt was made to store a record when the
value of an item, used as a key in a set, was
illegally changed (duplicates not allowed, or
embedded set).

Only one data base can be open at a time.

An I/O error was encountered trying to read
from or write to the data base.

Data exceeds the size of physical structure.

Data base not initialized.
Already open.

Run-time description of data base does not
match compile-time description.

DBM option not set or CLEAR/START required.

Data base not at proper level.

Data base not open prior to first operation.
Data base not open.
Current-record pointer not valid for an INSERT

operation.

Current-record pointer not valid for a FIND
manual subset-identifier operation.

Current record of master not valid.

Attempt made to delete a record with non-null
embedded structure.

This attribute is set whenever any exception has
occurred. One of the preceding attributes is also
set.

Note that NOT DMSTATUS (DMERROR) is
true on a successful operation.

4-9

In the example below, no action is taken regardless of whether an exception occurs. The exception condi-
tion is reserved for later processing.

FIND MSFSET AT SSNO = C-SSNO ON EXCEPTION NEXT SENTENCE.
Selection Expression

The selection expression specifies the particular record of a data set that is desired, as well as the record area
to be loaded with the found record. All record selections are made through paths. Paths are the routes the
system uses to locate records; the physical order in which records exist in a data set constitutes a path. Any
ordering keys or retrieval keys are paths, and a subset is a path.

The verbs used with selection expressions are FIND or MODIFY. Both of these verbs cause the record spec-
ified by the selection expression to be located. However, if a record which satisfies the selection expression
is not found, an exception is returned. If a record is found, it is transferred into the record area. For a
MODIFY operation, the found record is locked so that a concurrent user cannot access the same record.
The current-record pointer is updated, and the current-path pointer for the paths is updated. Unused paths
are unaffected. If a path is used and the desired record is not found, that current-path pointer becomes
undefined, but the current-record pointer and record area retain the values held prior to the beginning of
the operation.

Syntax
: __J ; = (set-name) ‘ -
> (data-set-name) VIA —=FIRST —~ = (subset-name)
—»— LAST —
= NEXT —=
—»PRIOR —
§ ‘ - (data:set—name) 7/
LwAT {key-condition) — = FIRST —|
|~ LAST ——
—~ NEXT ——
L PRIOR —!
Example:

MODIFY MSFSET AT SSNO = C-SSNO
FIND MSF VIA MSFSET AT SSNO = C-SSNO
FIND MSF VIA FIRST MSFSET

FIND FIRST MSF

Semantics

a. A selection expression is used in FIND and MODIFY statements to identify a particular record in
a data set.

b. The optional phrase “data-set-name VIA” at the beginning of some forms of the selection
expression must be used when the path used is a manual subset.

c. “data-set-name VIA” identifies the record area and current-record pointer that is affected,
providing the desired record is found. By default, the data set is the data set containing the
set used.

d. Note that a subset-name is interchangeable with set-name in selection expressions.
KEY CONDITION

The key condition specifies values used to locate specific records in a data set spanned by a set or referenced
by a subset.

Syntax

AND =
—— = = { data-name))

| . -
= { key-name)]

= EQUAL —— L (literal)

Example:
FIND SAT A = 50 AND B = 50
Semantics
a. The key-name must be a data-name in the key as defined by the DASDL description.
b. Each key-name in the key must appear only once and to the left side of the equal sign.
c. The valid item types for literal or data-name are determined by the COBOL MOVE statement
rules. Therefore it must be legal to perform a MOVE operation on a literal or data-name to the

key-name in order for the key condition to be valid.

d. The key-name of a multi-item key must appear in the same order as specified in DASDL.

SELECTION EXPRESSION FORMS

For discussion purposes, the following syntax forms are considered separately. Whenever an ordering is
required but no explicit ordering exists, an implicit physical ordering is used. Whenever a current-record
pointer or current-path pointer is required but is not in the proper state, the operation terminates with an
exception.

Form 1:

—=(set-name)

a8

L (data-set-name) VIA—— {—=FIRST —= - (subset-name)
= PRIOR —=

In form 1, FIRST specifies that the first record in the specified path is to be selected. The path cannot be a
retrieval set. The path is maintained in the sequence specified. If a subset is used, the data-set-name VIA
clause must be used. The record returned is the first in the physical order of the subset if a key was not
specified for the subset. If a key was specified for the subset, FIND data-set-name VIA FIRST subset-name
locates the first record in the subset, depending on the specified ordering key.

NEXT is used to find the next record by the path specified. NEXT of a set or subset with a key returns the

record with the next higher (or lower, if descending) key value; NEXT of a subset without a key locates the
next physical record. ‘

LAST locates the last record in the specified path. PRIOR locates the preceding record. NEXT and PRIOR
are always relative to the current-path pointer. FIND PRIOR of a data set (form 2) can return a different
record than FIND PRIOR of a set (form 1). The current-path pointer is updated to reflect the record

located. NEXT and PRIOR can be used only if the current-path pointer is defined or deleted; otherwise an
exception condition is returned. ’

Example:

D DATA SET
(A NUMBER (3);
B NUMBER (10));
K ORDERED SET OF D KEY (A);

Since ascending sequence is the default ordering sequence tor keys, the path K in the example below refers
to members of D in sequence on A. A FIRST K therefore would transfer to the record area for D the re-
cord whose value of A was the lowest in the data set. The physical ordering of D might be different from
the logical ordering represented by K. If another ordering key, K1, was added with the specification K1
ORDERED SET OF KEY (A DESCENDING), the statement FIND FIRST K1 would return the member
of D with the highest value of A.

Example:

D DATA SET

(A NUMBER (5);

B ALPHA (4));

K ORDERED SET OF D KEY (A);
D1 DATA SET

X NUMBER (4);

Y SUBSET OF D;

Z SUBSET OF D KEY (B);

Z1 ALPHA (2));

If D and D1 are both invoked, the statement FIND D VIA FIRST Y can then be used, returning the
first physical record of D in the table of subset Y. If the statement FIND D VIA FIRST Z is used, the
record found is that record of D having the lowest value of B which was inserted into Z.

Form 2:

—» (data-set-name :/

In form 2, FIRST specifies that the record selected is the ““first” physically located record in the file in
which the data set is stored.

NEXT data-set-name locates the next physical record.
LAST locates the last physical record in the specified path.

PRIOR locates the preceding record.

The current-record pointer is updated to reflect the located record. NEXT and PRIOR are valid only if the
current-record pointer is in the defined or deleted state; otherwise an exception condition is returned.

Form 3:

a. —= (set-name) -/
L {data-set-name) VIA

b. = (data-set-name . ﬁ/

Form 3a of the selection expression recopies the record referenced by the current-path pointer into the
record area. The current-path pointer must be in the defined state; it remains unchanged. The current-
record pointer is updated.

Form 3b recopies the record referenced by the current-record pointer into the record area. The current-
record pointer must be in the defined state; it remains unchanged.

Form 4:

- <S€t-name>-j—>AT {key-condition’y——/

> {data-set-name) V1 A—j - NEXT — {subset-name)
I—= PRIOR —

Form 4 is used to select records of the data set based on some values in the key fields. NEXT is valid only
if the current-path pointer is in the defined or deleted states.

If the NEXT expression is used, the system selects the next record in the set that satisfies the key condition.
If there are no more records that satisfy the key condition, the “NOTFOUND” exception is given. Form 4
can be used only where the set-name has a key associated with it.

Example:

D DATA SET
(A ALPHA (2);
B NUMBER (10);
C NUMBER (4));
K ORDERED SET OF D KEY (A);
K1 RETRIEVAL SET OF D KEY (C);
K2 RETRIEVAL SET OF D KEY (C,B);

In the above example, records of D could be selected based on the value of A, using K, or based on the
value of C, using K1, or based on the values of C and B, using K2, as shown below:

FIND K AT A = “AA”

FIND K1 AT C = 100
FIND K2 ATC = AND B = 1001007890
FIND K1 AT C = BI1

4-13

COBOL Statements
The COBOL verbs used to manipulate data sets are as follows:

CREATE
DELETE
FIND

FREE
INSERT
MODIFY
RECREATE
REMOVE
STORE

In addition, syntax has been implemented for the verb OPEN, and additional semantics for the verb CLOSE.

Each of the above verbs is discussed in alphabetical order in the following paragraphs.

7

Syntax:

» CLOSE = {data-base-name)

CLOSE

Semantics:

a. CLOSE can be used to close a data base when further access is no longer required.

T/

b. CLOSE is optional, since the system closes any open data base when the program terminates.

c. Animplicit FREE is performed on all records locked by the program.

d. If the data base is not open, the operation terminates with an exception condition.

CREATE

Syntax:

CREATE

= { data-set-name) : ~/

Semantics:

a.

CREATE must be performed prior to the addition of a new record in a data set, (optionally
RECREATE may be used). A CREATE does not add the new record to the data base; that

is the function of a STORE. The main purpose of a CREATE is to initialize the entire current
record area of the data set to null (all bits = 1). This is used for validity checking of the record
at the time of the STORE operation.

An implicit FREE is performed on the prior current record of the data set.
The current-record pointer goes to the created state.

Normally, CREATE is eventually followed by a STORE, placing the new record into the data set.
However, if a subsequent STORE is not desired, the CREATE can be nullified by a subsequent
FIND, MODIFY, CREATE, or RECREATE.

A CREATE initializes only a record area. If the record contains embedded structures, the
master record must be stored before storing entries in the embedded structure. If only entries in
the embedded structure are added, changed, or deleted the master need not be stored a second
time.

DELETE

Syntax:

=~ DELETE - {data-set-name) -/

Semantics:
a. The DELETE operation eliminates a specified record from a data set.
b. The current record area is reloaded with the contents of the record.
c. If the record contains a non-empty embedded structure, the record is not deleted.
d. If the record can be deleted, it is removed from all sets and automatic subsets of which it is a
member. The record is then removed from the data set. The current-record pointer goes to the

deleted state. The data remains unaltered in the record area.

e. The user must remove the record from any manual subset that points at the data set record being
deleted (refer to the REMOVE statement).

FIND

Syntax:

» FIND = (selection-expression 77

Semantics:

a.

The FIND operation performs two functions:
1. Locates the record satisfying the selection-expression and

2. Transfers the data from the data base to the record area so it can be accessed by the
program.

If a record satisfying the selection-expression is not found, the operation terminates with an
exception condition. In this case, the record area and current-record pointer retain their original
values. However, if a set or subset had been involved, its current-path pointer becomes undefined.

If a record is found, it is transferred to the record area, and the current-record pointer is altered
to refer to the found record. Also, if a set or automatic subset had been involved, its current-
path pointer is altered to refer to the found record.

Prior to the FIND operation, an implicit FREE is performed to unlock the previous current
record.

FREE

Syntax:

=FREE = (data-set-name) : -/

Semantics
a. A FREE operation unlocks the current record.

b. A FREE can occur after any operation. If the current-record pointer is not in the defined state
or the current record is not locked, the FREE is ignored.

c. A FREE is optional in most situations, since the CREATE, RECREATE (and someﬁmes the
FIND or MODIFY operation) perform an implicit FREE prior to their other actions. In general,
an implicit FREE is performed prior to any operation that establishes a new current-record
pointer.

d. The current-record pointer and current-record area are not affected.

4-19

INSERT

Syntax:

INSERT ——— {data-set-name y —————INTOQ ——= (manual-subset-name -/
’ /

Semantics:

a. The INSERT operation is used to insert a record into a manual subset.

b. The data-set-name must be the declared source of records for a manual subset. For example, the
manual subset-name must be a manual subset of data-set-name, as the example below illustrates.

DASDL: S1 SUBSET OF D
COBOL: INSERT D INTO S1

c. The currentrecord pointer of data-set-name must be defined; if not, the operation is terminated
with an exception condition.

d. The data set in which the manual subset is embedded must have the current-record pointer in the
defined state, and that record must be locked; if not, the operation is terminated with an
exception condition.

e. If duplicates are not allowed for the manual subset, an exception condition occurs if a record

4-20

that has a key identical to that of the source record already exists in the manual subset.

Syntax:

MODIFY

= MODIFY = (selection-expression) /A

Semantics:

a.

The functions of a MODIFY operation are identical to FIND with one exception: if the record
is found, it is locked, prohibiting concurrent modification by another user.

A MODIFY operation should be used if there is a possibility that the data set record contents
will be changed. The MODIFY operation does not physically modify the record, but allows
modification to be performed subsequently without a concurrent update from another user.

If the found record is already locked by another user, a contention analysis is performed by the
system. Normally, the present user waits until the record is unlocked. However, if it is deter-
mined that waiting would result in a “deadly embrace,” all records locked by the present user
are unlocked; and the operation is terminated with an exception condition.

Since no other user may lock a record once it is locked, it is important to free the record when
it is no longer necessary to keep it locked. This is accomplished by a FREE operation or
implicitly by a subsequent MODIFY, FIND, CREATE, or RECREATE on the same data set. A
subsequent STORE leaves the record locked.

The locking action is maintained on a block level.

OPEN

Syntax:

UPDATE —¢ data-base-name) 77

= OPEN

Semantics:
a. The OPEN operation is used to open a data base for subsequent access.

b. An OPEN must be executed prior to the first access to the data base; otherwise, all data base
requests will terminate with an exception condition.

c. If the data base is already open, the operation is terminated with an exception condition.

d. The system attempts to open an existing data base. The data base dictionary is opened at this
time. If the data base dictionary is not present, the message:

NO FILE data-base-name [DICTIONARY
is displayed.
Each data file is opened on the first operation that uses the data in the file. Files that are not
needed are not opened. If the files are needed, and they are not present when they are needed,
the message:

NO FILE (file-identifier

is displayed.

4-22

RECREATE

Syntax:

= RECREATE > {data-set-name’) -/

Semantics:

RECREATE operation is identical to CREATE, with one exception: the record area for the data set is not
completely initialized. All data items remain unaltered; however, items such as manual subsets and
embedded data sets are set to null.

4-23

REMOVE

Syntax:

CURRENT ———— FROM

> REMOVE

(manual-subset-name) ————sy/

Semantics:
a. The REMOVE operation is used to remove a record from a manual subset.

b. The manual subset must have a defined current-path pointer; if not, the operation is terminated
with an exception condition.

c. The record referenced by the manul subset current-path pointer is removed from the subset but
not from the data set.

d. The data set in which the manual subset is embedded must have the current-record pointer in the

defined state and that record must be locked; if not, the operation is terminated with an excep-
tion condition.

4-24

Syntax:

STORE

» STORE = {data-set-name) —

Semantics:

a.

g.

The STORE operation is used to return a modified record to a data set, or to place a newly
created record into a data set.

The data to be stored is in the record area of the data set. Prior to the storing of a record, the
data is checked for validity (VERIFY, REQUIRED, non-null keys) as specified by DASDL. A
validity failure terminates the STORE operation with an exception condition.

If the current-record pointer is in the defined state and the current record is locked, the data
replaces the current record in the data set remains locked. If the current-record pointer is

in a defined state but unlocked, or in an undefined state or deleted state, the operation terminates
with an exception condition.

If the current-record pointer is in the created state, the data becomes a new record in the data set
and is locked. The current-record pointer is then in the defined state and refers to the new record.

Set current-path-pointer is not affected by a STORE operation.
All fields which are, or form, part of a key or are REQUIRED must contain a value other than a
null value before a STORE operation can be completed successfully. If any of these fields are

null, the operation terminates with an exception condition.

The following additional actions are performed depending on the prior operation.

STORE After CREATE or RECREATE

1. The condition is evaluated for each automatic subset (subset containing a WHERE condi-
tion). The subset is marked for insertion if the condition and validity checks are satisfied.

2. If a data record cannot be inserted into any set (but not automatic subsets) for some reason,
the operation is terminated with an exception condition. In this case, the record is not
inserted into the data set nor is it inserted into any set. If no reason does exist, the STORE
operation is successful and all necessary set and automatic subset insertions are made.

3. For each set that spans the data set, the record is tested for validity. After the STORE
operation, any data item not containing a value will be null (all bits = 1). Care should be
taken in the COBOL program if it is necessary to check the contents of such a field, because
the contents will be hexadecimal F’s.

STORE After MODIFY

1. In this operation, the record already exists in all sets.

2. Conditions must be re-evaluated if any items involved in the automatic subsets condition
have changed. The record is removed from the automatic subsets containing the record if a
condition is not satisfied. The record is inserted into automatic subsets not already contain-
ing the record if the condition is satisfied.

4-25

STORE
Continued

4-26

If a key used in the ordering of a set is modified, and the record must be moved in that set,
the record is deleted from the set and reinserted in the proper position. It is illegal to
modify a key if duplicates are not allowed, or if the set is an embedded set.

If the ordering of a manual subset is affected, the STORE operation will occur, but no reorder-
ing of that manual subset will be performed. It is the responsibility of the user to maintain
manual subsets. A subsequent reference to the record through that subset causes the operation
to be terminated with an exception condition (DMSTATUS (KEYCHANGED). ‘

Appendix A. DMSII COMPILATION GUIDE

DASDL COMPILATION PROCEDURES
The following procedures must be observed to create a data base:

a. Compilation of a DASDL source deck defines the logical and, optionally, the physical structure
of the data to be entered into the data base. The DASDL compilation types are as follows:

1. Compile for syntax: Causes a syntax check of the DASDL input. Neither a dictionary file
nor library files are generated:

2. Compile for library: Causes a data base dictionary file to be created and removes any exist-
ing dictionary file having the same name.

NOTE

The compile-and-go operation is not recommended for use, as it
implies the production of object code. Since there is no object
code produced, the MCP displays a warning message.

b. The data base dictionary created by a successful compilation is titled:
{data-base-identifiery /DICTIONARY

The data-base-identifier is the “family-name” of the program identifier used for the DASDL
compilation.

The data base dictionary file is a disk file containing a description of all the structural character-
istics of the data base. This description is used during execution by the MCP access routines to
control all access to the data base.

c. The INITIALIZE statement is required prior to the execution of any program accessing the data
base. Its function is to create initialized disk files for storing data records and index tables. This
function is not performed on a compile for syntax, or a compilation where there are syntax errors.
Once INITIALIZE has been executed, a permanent data base is created. No further changes can
be made without recreating the data base by a recompilation of the DASDL source deck.

d. The following examples provide illustrations of a DASDL compilation source deck.

A2

(<?> END

(DASDL SOURCE CARDS

({?) DATA CARDS

/{2 COMPILE UNIV WITH DASDL SYNTAX

Figure A-1. Compile for Syntax

({?) END

(DASDL SOURCE CARDS

({?) DATA CARDS

/{?) COMPILE UNIV WITH DASDL LIBRARY

Figure A-2. Compile for Library

DASDL COMPILATION PROGRAM NAME

A program name consists of either one, two, or three identifiers, with each identifier able to be a maximum
of 10 characters in length. The following example illustrates the four possible program name formats:

{ family-name

family-name) [{file-identifier)
K family-name)/
K family-name /<file-identiﬁ'er>

The family-name is synonymous with the data-base-name. For further information regarding program name
formulation, refer to the B 1700 System Software Operational Guide, Form No. 1068731.

<disk-pack-iden tifier
(disk-pack-identifier,

DASDL FILE NAMES
The following file names are produced by a successful DASDL compilation.
a. Dictionary file: {data-base-namey [DICTIONARY

b. COBOL library file: (data-base-name}/ <disj0int—data-set-name>

c. Datafiles: {data-base-name)/{data-set-namey (Data sets)
data-base-name) [subset-name) (Subsets)
data-base-name)/ set-name) (Disjoint sets)

If a set is stored in a file with a data set, the data-set naming convention takes precedence. If multiple sets
are stored together, the name of the first set has precedence. Embedded sets are stored with their data sets.

If the program name of a DASDL compilation has a disk-pack-id, all data files will have that disk-pack-id
appended to them. Both the dictionary file, at program execution, and the COBOL library file, at compila-
tion time, are expected to reside on system disk.

DASDL COMPILER ($) OPTIONS

The following compiler options can appear either at the beginning or within the source deck. The format of
the § option card is below.

$ [NO] option-1 [NO] option-2

“¥ B B A

Option

COBOL

DOUBLE
FILE
LIST

NO
SINGLE

SOURCE

SOURCEONLY

STRUCTURE

SUPPRESS

VERSIONCHECK

Description

Checks for COBOL reserved words, and must appear before any
source cards. ~

Causes listing to be double spaced.

Causes the pﬁnting of the file attributes.

Causes a printout of fhe listing. Automatically set by compiler.
Negates the option directly following the word NO.

Causes the listing to be single spaced.

Causes the generated COBOL library files to be printed. The
SOURCE option is usually placed prior to the source deck physical

description.

Regenerates the COBOL copy files by using an existing data base
dictionary. This option is the only input for this DASDL run.

Causes the printing of structure attributes. If STRUCTURE is placed
before the physical description, both the default and revised structure
attributes will be printed. If it is placed after the first physical
attribute, only the revised structure attributes will be printed.

Causes warning messages to be suppressed.

Automatically set by the compiler. When the option is in a reset con-
dition (§ NO VERSIONCHECK) the compiler provides the mechanism
to ignore the program dictionary checking performed at execution.
This action eliminates the requirement of program recompilation with
each new DASDL recompilation.

NOTE

$ VERSIONCHECK should be set for all non-testing executions.

Figure A-3 contains a DASDL program with the $ FILE and $ STRUCTURE options specified. The
$ STRUCTURE option causes each structure to be printed with all of its parameters. The $ FILE option
causes the file parameters to be printed following the structures with which it contains. Thus, UNIV-
PERSONNEL and SS-U-P are contained in file number 1, named UNIV/UNIV-PERSO.

A—4

00000100
00000150
00000200
00000300
00000400
00000600
00000700
00000R0O
00000900
00001000
000061100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002800
00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003700
00003750
00003800
00003900
00004000
00004160
00004200
00004300
00004400
000045060
00004600
00004700
00004800
00004600
00005000
00005100
00005200
00005300
00005350
00005400
00005500
00005600
00005700
00005800

$ UNIV DATA BASE
tSLIST SINGLE

188UPPRESS
18FILE STRUCTURE
1%XTHIS DASDL PROGRAM GIVES EXAMPLES
$%0F THE VARIOUS CONSTRUCTS USED IN
1 4DASDL TO DESCRIBE A DATA BASE
$PARAMFTERS (
' BUFFERS = {0)
SUNIV=COURSES DATA SET "MAIN FILE" (
3 CrRS=NAME GROUP (
DEPARTMENT ALPHA(2)3
LEVEL NUMBER(3)}
CRS=NO NUMBER(4)))
NOPPOF NUMBER(2))
DAYS=0F=WEEK GROUP (
MON NUMBERC(C1)?
TUES NUMBRER(1)
WEDS NUMBER(1)
THURS NUMBER(1))
FRI NUMBER(1)?!
SAT NUMBER(1))
BUILDING NUMBER(3))
ROOMNUMBER ALPHA(2))
COURSENAME ALPHA(24)3
FLAG=BITS ALPMA(12)}
HOURSCRDT NUMBERC(H)?
CLASS=SIZE NUMBER(2):
PROFESSOR SUBSET OF UNIVePERSONNEL,POPULATION = 33
BOOKS UNORDERED DATA SETC
LC NUMBER(9))
TITLES ALPHA(60)})
AUTHR ALLPHA(30))}
STUDENTS SUBSET OF MS8F KEY 1S
(LNAME,FNAME)DUPLICATES,
POPULATION = 300)
POPULATION = 1000 _
VERIFY((HOURSCRDT GTR 0 AND CLASS=SIZE LEG 60) AND NOPRQF NEQ 0)7¢
UNIVeClwSET ORDERED SEY OF UNIVeCOURSES KEY IS (CRS=N(D)}
UNIV=FERSONNEL DATA SET(
NAME GROUP(:
LASTNAME ALPHA(15))
FIRSTNAME ALPHAC(10)))
SEX NUMBER(1)s
AGE NUMBER(2):
SSNUM NUMBER(9)?
DPT ALPHAC(L)}
RANK ALPHA(1)9 ,
SALARY NUMBER(S87,2)3
COURSES SUBSET OF UNIVeCOURSES,POPULATION = 83
ADDRES SUBSET OF ADRY
SUFR SUBSET OF UNIV=PERSONNEL))
SS=llmP ORDERED SET OF UNIV-PERSONNEL KEY IS (SSNUM)}
U=P=SET ORDERED SET OF UNIVePERSONNEL KEY IS
(LASTNAME ,FIRSTNAME) DUPLICATES)
MS8F DATA SET(
SSNO NUMBER(9))
NONMAM NUMBER(1);
LNAME ALPHA(30)?
MNAME ALPHAL30)}

)

B S8 B9 4B B B W S SE WI IB IV ST NG UG S5 TS UG LO D UG VB ST Ve D A D N IR V0 65 N6 S 6 S5 LB S 6 S5 6 BS 43 AN PO AR PO SN 8 N

Figure A—3. UNIV Data Base Example (Sheet 1)

S SO SO S0 BB 45 B0 S5 VR S5 OB A BE W N HS DO N DO G0 S0 5 A S A6 U0 A6 IS v ve B8 N SR 20 VS GR S A0 6 O BE VO SU S8 0 SR JP N D I3 VU N6 I N6 GG 2O 2B B v GW we

00005900
00006000
00006100
00006200
00006300
00006400
00006500
00006600
00006700
00006800
00006900
00007000
00007100
00007200
00007300
00007400
00007500
00007600
00007700
00007800
00007900
00008000
00008033
00008066
00008100
00008200
00008300
00008400
00008500
00008600
00008700
00008800
00008850
00009000
00009100
00009200
00009300

00009400

00009500
00009600
00009700
00006800
00009850
00009900
00009910
00009920
00009930
00009940 3
00009950

00009960 1

00010%00

BE SB O6 SO VD G0 OO A0 VO VO LD VD A5 GV TH SO LB LC G OO S0 S OB YD SV IR SO IS SS NS SO G5 65 VD IO AU IR LB SN V6 B
>
=
p

FNAME ALPHAC(30))
CAMPUS=ADDRESS GROUP(
DORM ALPHAC(E&)}
ROOM NUMBER(4))
POBOX NUMBER(4)}
PHONE NUMBER(7)))
N NUMBER(2)3
DEGREE ALPHA(4) OCCURS & TIMES:
TATHRS NUMBER(3)}
YOTQP NUMBER(3))
GRADE=POINT=AVG NUMBER(Y,2)}
MJR NUMBER(3))
AMJR ALPHA(18))
SSEX NUMBER(1)?
SAGE NUMBER(2)}
HOME=ADDRESS SUBSET OF ADR)
NUARTER
QTR ALPHAC4))
QTTRHRS NUMBER(2)$
QTRQP NUMBER(2)}
CORSES ORDERED DATA SET(

ORDERED CATA SET(

TYPECOURSE NUMBER(!) REQUIRED?!

GRADE ALPHA(2) REQUIRED)

CRS SUBSET OF UNIV=COURSES)

YR NUMBER(2))

Q@ NUMBER(2))

GCRS SUBSET OF UNIV=COURSES}S

GGD ALPHA(R))

TITLE=OF=PAPER ALPHA(30))

PPRGD ALPHA(2)),

POPULATION ® 4}

CSET ACCESS TO CORSES KEY IS
(TYPECOURSE) DUPLICATES)

POPULATION = 5000¢
GSET ACCESS TO QUARTER KEY IS (QTR))?
MSFSET ORDERED SET OF MSF KEY 18 (SSNO)?
DATA SET(
FACULTY=STUDENT NUMBER(1)}
SNO. NUMBER(9) REQUIRED)
ADLN ALPHA(S4) OCCURS 9 TIMES)
ZIPC NUMBER(S) REQUIRED)
PHON NUMBER(10)))

18AD ORDERED SET OF ADR KEY I8 (ZIPC) DUPLICATES)
! 88AD ORDERED SET OF ADR KEY I8 (SNO)?
ISTUAD SUBSET OF ADR WHERE (FACULTY=STUDENT EQL 1) KEY I8 (ZIPC,SNO)

DUPLICATES?

IFACAD SUBSET OF ADR WHERE (FACULTY=STUDENT EQL 2) KEY 18 (ZIPC,SNO)

DUPLICATES?S

IADMAD SUBSET OF ADR WHERE(FACULTY=STUDENT EQL 3) KEY 18 (ZIPC,S$NO)

lﬁOQKS(

DUPLICATES?

UNIV=COURSES DATA SET 1
§TRUCTURE NUMBER {

PRIME ® 0

BLOCKSIZE = 2 RECORDS/BLOCK
AREASIZE s 292 RECORDS PER AREA
POPULATION 8 1000 RECORDS
DATASIZE » 424 BITS

RECORDSIZE & 616 BITS

Figure A—3. UNIV Data Base Example (Sheet 2)

4B S0 SO BB SP 6 PO SO TU AL VO LE TH GO VS VO O VO VO LD SO A GN TE SO A6 6 IV VL 4B NP DS VU Gw GE SO SO CU-GE I A0 NV IO NO S5 IS L8 & = Im s

BITS PER BLOCK = 1232

UNIVeC=8ET INDEX SEGUENTIAL SET 1
STRUCTURE NUMBER 7

PRIME = 14

TABLESIZE(CDARSE) n 70 ENTRIES
TABLESIZE(FINE) = 58 ENTRIES
AREASIZE = 7 TABLES PER AREA
LOADFACTOR m 6% PERCENT
SPLITFACTOR B S0 PERCENT
ENTRYSIZE(COARSE) = 40 BITS
ENTRYSIZE(FINE) = 48 BITS
BITS PER BLOCK(COARSE) = 281¢
BITS PER BLOCK(FINE) = 2800

PROFESSOR UNORDERED LIST 1
STRUCTURE NUMBER 2

AREASIZE = 50 RECORDS PER AREA
TABLESIZ2E = 42 ENTRIES
BLOCKSIZE = 8 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE & 1416 BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK = {1360

STUDENTS ORDERED LI18T 1

STRUCTURE NUMBER S

AREASIZE ® 7500 RECORDS PER AREA
TABLESIZE = 2 ENTRIES
BLOCKSIZE = 1 RECORDS/BLOCK
DATASIZE = 12 BITS

RECORDSIZE = 1096 BITS

ENTRYSIZE = 512 B17S

BITS PER BLOCK = 1128

BOOKS UNORDERED LIST 1@

STRUCTURE NUMBER 4

AREASIZE = 500 RECORDS PER AREA
TABLESIZE = 1 ENTRIES
BLOCKSIZE = { RECORDS/BLOCK
DATASIZE = 760 BITS

RECORDSIZE = 832 BITS

ENTRYSIZE a 760 BITS

BITS PER BLOCK = g8é6d

UNIV=PERSONNEL DATA SET 1
STRUCTURE NUMBER 3

PRIME = 0

BLOCKSIZE = 2 RECnNRDS/BLOCK
AREASIZE = 1192 RECORDS PER AREA
POPULATION = 10000 RECORDS
DATASIZE = 320 BITS

RECCRDSIZE = 512 BITS

BITS PER BLOCK = 1024

Figure A—3. UNIV Data Base Example (Sheet 3)

8S=U=P INDEX SEQUENTIAL SET 3
STRUCTURE NUMBER (2

PRIME = | ,
TABLESIZE(COARSE) = 143 ENTRIES
TABLESIZE(FINE) s 119 ENTRIES
AREASIZE = 12 TABLES PER AREA
LOADFACTOR = 66 PERCENT
SPLITFACTOR ® 49 PERCENT
ENTRYSIZ2E(COARSE) = 60 BITS
ENTRYSIZE(FINE) = 72 BITS
BITS PER BLOCK(COARSE) = 8596
B1TS PER BLOCK(FINE) 3 8584

UmP=SET INDEX SEQUENTIAL SET 1
‘STRUCTURE NUMBER 13

PRIME = 0 '
TABLESIZE(COARSE) = 109 ENTRIES
TABLESIZE(FINE) = 105 ENTRIES
AREASIZE = 13 TABLES PER AREA
LOADFACTOR ® 66 PERCENT
SPLITFACTOR = 49 PERCENT
ENTRYSIZE(COARSE) & 224 BITS
ENTRYSIZE(FINE) ® 2312 BITS
BITS PER BLOCK(COARSE) = 24432
BITS PER RLOCK(FINE) = 243764

COURSES UNORDERED LIST 3
STRUCTURE NUMBER 8

AREASIZE ® 125 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BI17S

RECORDSIZE a 1416 BITS

ENTRYSIZ2E = 32 BITS

BITS PER BLOCK = 5696

ADDRES UNORDERED LIST 3

STRUCTURE NUMBER 9

AREASIZE = 125 RECORDS PER AREA
TABLESIZE ® 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK = G496

SUPR UNORDERED LIST

STRUCTURE NUMBER 11

AREASIZE ® 125 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK & 5696

Figure A—3. UNIV Data Base Example (Sheet 4)

MSF DATA SET 1

STRUCTURE NUMBER 6

PRIME = 0

BLOCKSIZE = 1 RECORDS/BLOCK
AREASIZE & 1191 RECORDS PER AREA
POPULATION = 10000 RECORDS
DATASIZE = 1276 BITS

RECORDSIZE = 1404 BITS

BITS PER BLOCK = 1404

MSFSET INDEX SEQUENTIAL SET
STRUCTURE NUMBER 19

PRIME = |

TABLESIZE(COARSE) = 143 ENTRIES
TABLESIZE(CFINE) ® 119 ENTRIES
AREASIZE = 12 TABLES PER AREA
LOADFACTOR = 66 PERCENT
SPLITFACTOR = 49 PERCENT
ENTRYSIZE(CQARSE) = 60 BITS
ENTRYSIZE(FINE) = 72 BITS
BITS PER BLOCK(COARSE) = 8596
BITS PER BLOCK(FINE) = 8584

HOME=ADDRESS UNORDERED LIST 1
STRUCTURE NUMBER 14

AREASIZE = 128 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE = 32 8178

BI1TS PER BLOCK ® 5696

CRS UNORDERED LIST 3

STRUCTURE NUMBER 17 , ,
AREASIZE = 9632 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSTIZE = 146 BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK ® 5696

GCRS UNDRDERED LIST 1§

STRUCTURE NUMBER 18

AREASIZ2E = 9632 RECORDS PER AREA
TABLESIZE = 42 ENTRIES ‘
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE » 1416 BITS

ENTRYSIZ2E = 32 AITS

BITS PER BLOCK = S696

CORSES ORDERED LIBT 1
STRUCTURE NUMBER (&

Figure A—3. UNIV Data Base Example (Sheet 5)

AREASIZE ® 14339 RECORDS PER AREA
TABLESIZE = 3 ENTRIES
BLOCKSIZE = 1 RECORDS/BLOCK
DATASIZE = 312 B1TS

RECORDSIZE = 1392 BITS

ENTRYSIZE = 440 81TS

BITS PER BLOCK = 1424

OUARTER ORDERED L1I8T 1

STRUCTURE NUMBER 15

AREASIZE = 20850 RECORDS PER AREA
TABLESIZE = 12 ENTRIES
BLOCKSIZE = i RECORDS/BLOCK
DATASIZE & 48 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE » 112 BITS

BITS PER BLOCK = 1448

ADR DATA SET 3

STRUCTURE NUMBER 16

PRIME = 0 -

BLOCKSIZE = 1 RECORDS/BLOCK
AREASIZE ® 910 RECORDS PER AREA
POPULATION ® 10000 RECORDS
DATASIZE = 3988 B1TS

RECORDSIZE = 3988 BITS

BITS PER BLOCK = 3988

SAD INDEX SEQUENTIAL SET 1
STRUCTURE NUMBER 20

PRIME ® | |
TABLESIZE(COARSE) ® 129 ENTRIES
TABLESIZE(FINE) = 101 ENTRIES
AREASIZE = {1 TABLES PER AREA
LOADFACTOR & 66 PERCENT
SPLITFACTOR m 49 PERCENT
ENTRYSIZE (COARSE) = 44 BITS
ENTRYSIZE(FINE) = s6¢ BITS
BITS PER BLOCK(COARSE) = 5492
BITS PER BLOCK(FINE) ® Ss72

$8AD INDEX SEQUENTIAL SET
STRUCTURE NUMBER 2%
PRIME = 0 - _
TABLESIZECCOARSE) » 143 ENTRIES
TABLESIZE(PINE) 5 1319 ENTRIES
AREASTZE ® 9 TABLES PER AREA
OADFACTOR & 66 PERCENT
PLITFACTOR ®» 49 p:nczur
tu?kvszzzccutascx 60 BITS
ENTRYSIZELFINE) & 72 B1YS
BITS PER aLacchOAns:: . aseo
BITS PER BLOCK(FINE) #: 8584

?3 z - tﬁu:n;;AL SEY Y

Figure A—3. UNIV Data Base Example (Sheet 6)
A-10

00010600
00010650
00010700
00010800
poo10c850
00010900
00011000
00011100
00011150
00011200
00011300
00011400
00011450
00011500
00011600

PRIME s 0 .
TABLESIZE(COARSE) &8 125 ENTRIES
TABLESIZE(FINEY = 113 ENTRIES
AREASIZE @ 10 TABLES PER AREA
LOADFACTOR » 66 PERCENY
SPLITFACTOR = 49 PERCENT
ENTRYSIZE(COARSE) = 80 BIYS
ENTRYSIZE(FINE) » 88 B1YS

BITS PER BLOCK(COAPSE) = 10016
BITS PER BLOCK(FINE) = 09960

FACAD INDEX SEGUENTIAL SET 1
STRUCTURE NUMBER 23

PRIME ® ¢

TABLESIZE(COARSE) 8 125 ENTRIES
TABLESIZE(FINE) = 113 ENTRIES
AREASIZE & 10 TABLES PER AREA
LOADFACTOR ® 686 PERCENT
SPLITPACTOR = 49 PERCENT
ENTRYSIZE(COARSE) = 80 BITS
ENTRYSIZE(FINE) ® 88 BITS
BITS PER BLOCK(COARSE) » 10016
BITS PER BLOCK(FINE) & 6960

ADMAD INDEX SEQUENTIAL SET 1
STRUCTURE NUMBER 24

PRIME = 0

TABLESYZE(COARSE) = 125 ENTRIES
TABLESIZE(FINE) = 113 ENTRIES
AREASIZE = 10 TABLES PER AREA
LOADFACTOR ® 66 PERCENT
SPLITFACTOR ® 49 PERCENT
ENTRYSIZE(COARSE) ® 80 BITS
ENTRYSIZE(FINE) = 88 BIYS
BITS PER BLOCK(COARSE) = 10016
BITS PER BLOCK(FINE) 8 9960

1 AREASIZE = 300,

! TYPE = UNORDERED LIST,
! BLOCKSIZE = 5))
1BOOKFILE STORAGE FOR BOOKS(
! TITLE = UNIV/LIBRARY,

: AREAS = 10))
IUNIVeC=SET(

' TABLESIZ2E s 12,

] AREASIZE = 10,

H TYPE = INDEX SEQUENTIAL,
t LOADFACTOR = 9))
TUNIV=PERSONNEL (

' PRIME,

! POPULATION = 997))
tINITIALIZE)

UNIV=COURSES DATA SET 13

STRUCTURE NUMBER 1

PRIME a 0

BLOCKSIZE = 2 RECORDS/BLOCK
AREASIZE = 292 RECORDS PER AREA
POPULATION = 1000 RECGCRDS

Figure A—3. UNIV Data Base Example (Sheet 7)

W Nl e e e

DATASIZE ® 424 BITS
RECORDSIZE = 616 BITS
B178 PER BLOCK = 1232

UNIVeC=SET INDEX SEQUENTIAL SET
STRUCTURE NUMBER 7

PRIME =

TABLESIZE(COARSE) = 14 ENTRIES
TABLESIZE(FINE) = 12 ENTRIES
AREASIZE a 10 TABLES PER AREA
LOADFACTOR '® 8 PERCENT
SPLITFACTOR ® S50 PERCENT
ENTRYSIZE(COARSE) = 4o BITS
ENTRYSIZE(FINE) = 48 BITS
BITS PER BLOCK(COARSE) a 576
BITS PER BLOCK(FINE) = 592

FILE INFORMATION

FILE NUMBER 2

AREAS = 20

AREASIZE ® 156 SEGMENTS
PACK =

TITLE = UNIV /UNIVCOURS

PROFESSOR UNORDERED LIS8T
STRUCTURE NUMBER 2

AREASIZE = S0 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKS]ZE = 8 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = {4le BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK = 11360

FILE INFORMATION 1t

FILE NUMBER 3

AREAS & 20

AREASIZE = 50 SEGMENTS
PACK =

TITLE = UNIV /PROFESSOR

STUDENTS ORDERED LIST 1

STRUCTURE NUMBER 5

AREASIZ2E = 7500 RECORDS PER AREA
TABLESIZE = 2 ENTRIES
BLOCKSIZE = 1 RECORDS/BLOCK
DATASIZE = 32 BITS J
RECORDSIZE = 1096 BITS

ENTRYSIZE = 512 BITS

BITS PER BLOCK = 1128

FILE INFORMATION 1

FILE NUMBER 4

AREAS 3 20 _
AREASIZE & 7500 SEGMENTS

Figure A—3. UNIV Data Base Example (Sheet 8)

PACK =
TITLE = UNIV /STUDENTS

UNIVePERSONNEL DATA SET
STRUCTURE NUMBER 3

PRIME = 1

BLOCKSIZE = 2 RECORDS/BLoOCK
AREASIZE = 1192 RECORDS PER AREA
POPULATION = 997 RECORDS

DATASIZE = 320 BITS
RECORDSIZE = 512 BITS
BITS PER BLOCK = 1024

FILE INFORMATION
FILE NUMBER S

AREAS = 20

AREASIZE = 596 SEGMENTS
PACK =

TITLE = UNIV /UNIV=PERSO

COURSES UNORDERED LISY 1
STRUCTURE NUMBER 8

AREASIZE = 125 RECORDS PER AREA
TABLESIZE ® 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = 1416 BITS
ENTRYSIZE = 32 BITS

5ITS PER BLOCK = 5696

FILE INFORMATION 1
FILE NUMBFR ¢

AREAS = 20

AREASIZE = 125 SEGMENTS
PACK =

TITLE 3 UNIV /COURSES

ADDRES UNORDERED LIST 1

STRUCTURE NUMBER .9

AREASIZE = 125 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 B8ITS8

RECORDSIZE = 1416 BITS

ENTRYSIZE = 32 81TS

BITS PER BLOCK ® 5696

FILE INFORMATION 1
FILE NUMBER 7

AREAS = 20

AREASIZE = 125 SEGMENTS
PACK =

TITLE ‘@ UNIV /ADDRES

Figure A—3. UNIV Data Base Example (Sheet 9)

A-13

SUPR UNORDERED LIST 1

STRUCTURE NUMBER 11

AREASIZE = 125 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK a 5696

FILE INFORMATION 1
FILE NUMBER 8

AREAS 8 20

AREASIZE ® 125 SEGMENTS
PACK =

TITLE = UNIV /8UPR

M8F DATA SET 1

STRUCTURE NUMBER 6

PRIME = 0

BLOCKSIZE = { RECORDS/BLOCK
AREASIZE s 1194 RECORDS PER AREA
POPULATION = 10000 RECORDS
DATASIZE = 1276 B1ITS

RECORDSIZ2E = 1404 BITS

BITS PER BLOCK ® 1404

MSFSET INDEX SEQUENTIAL SET 1
STRUCTURE NUMSER 19

PRIME ® 1

TABLESIZE(COARSE) = 143 ENTRIES
TABLESIZE(FINE) 3 119 ENTRIES
AREASIZE ® 12 TABLES PER AREA
_LOADFACTOR ® 66 PERCENT
SPLITFACTOR 8 49 PERCENT
ENTRYSIZE(COARSE) a 60 BITS
ENTRYSIZE(FINE) = 72 BITS
BITS PER BLOCK(COARSE) s 8866
BITS PER BLOCK(FINE) »= 8584

FILE INFORMATION 1
FILE NUMBER 9

AREAS = 20

AREASIZE ®» 1263 SEGMENTS
PACK =

TITLE = UNTV /MSF

HWOME=ADDRESS UNORDERED LIST 1
STRUCTURE NUMBER {4 :
AREASIZE = 125 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKAIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS
RECORDSIZE = (416 BITS

ENTRYSIZE o 32 8178

BITS PER BLOCK » 8698

Figure A—3. UNIV Data Base Example (Sheet 10)
A-14

FILE INFORMATION ¢

FILE NUMBER 10

AREAS = 20

AREASIZE = 12% SEGMENTS
PACK =

TITLE = UNIV /HOME=ADDRE

CRS UNORDERED LI8T 1

STRUCTURE NUMBER 17

AREASIZE = 9632 RECORDS PER AREA
TABLESIZE ® 42 ENTRIES
BLOCKSIZE ® 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE s 32 BITS

BITS PER BLOCK = 5696

FILE INFORMATION 1

FILE NUMBER 11

AREAS = 20

AREASIZE ® 9632 SEGMENTS
PACK =

TITLE = UNIV /CRS

GCRS UNORDERED LIST ¢

STRUCTURE NUMBER {8

AREASIZE = 9932 RECORDS PER AREA
TABLESYZE = 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE ® 32 BITS

BITS PER BLOCK = 5696

FILE INFORMATION 3

FILE NUMBER 12

AREAS 3 20

AREASIZE =& 9632 SEGMENTS
PACK =

TITLE = UNIV /GCRS

CORSES ORDERED LIST 1

STRUCTURE NUMBER 16

AREASIZE = 143319 RECORDS PER AREA
TABLESIZE = 3 ENTRIES
BLOCKSIZE = { RECORDS/BLOCK
DATASIZE = 312 BITS

RECORDSIZE ® 1392 BITS

ENTRYSIZE = 440 BITS

BITS PER BLOCK = {424

FILE INFORMATION 1t
FILE NUMBER 13

Figure A—3. UNIV Data Base Example (Sheet 11)

AREAS = 20

AREASIZE ®» 14339 BEGMENTS
PACK ®

TITLE = UNIV /CORSES

QUARTER ORDERED LIST 1

STRUCTURE NUMBER 1S

AREASIZE = 20850 RECORDS PER AREA
TABLESIIE = 12 ENTRIES
BLOCKSIZE = { RECORDS/BLOCK
DATASI2E = 48 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE = 112 BITS

BITS PER BLOCK ® {448

FILE INFORMATION 1

FILE NUMBER {4

AREAS = 20

AREASIZE = 41700 SEGMENTS
PACK =

TITLE w UNIV /QUARTER

ADR DATA SET 1
STRUCTURE NUMBER 10

PRIME » 0

BLOCKSIZE = { RECORDS/BLOCK
AREASIZE = 910 RECORDS PER AREA
POPULATION = 10000 RECORDS
DATASIZE = 3988 BITS

RECORDSIZE = 3988 BITS

BITS PER BLOCK = 3988

SAD INDEX SEQUENTIAL SET 1
STRUCTURE NUMBER 20

PRIME =

TABLESIZE(COARSE) = 129 ENTRIES
TABLESIZE(FINE) & 101 ENTRIES
AREASIZE = 11 TABLES PER AREA
LOADFACTOR 3 66 PERCENT
SPLITFACTOR 8 49 PERCENT
ENTRYSIZE(COARSE) = 44 BITS
ENTRYSIZE(FINE) = 56 BITS
BITS PER BLOCK(COARSE) = 5692
BITS PER BLOCK(FINE) = 5672

FILE INFOPMATION 1

FILE NUMBER 15

AREAS = - 20

AREASIZE ® 2774 SEGMENTS
PACK =

TITLE = UNIV /ADR

$SAD INDEX SEQUENTIAL SET ¢
STRUCTURE NUMBER 21
ERIME = 0

Figure A—3. UNIV Data Base Example (Sheet 12)

TABLESIZE(CCARSE) @ 143 ENTRIES
TABLESIZE(FINE) = 119 ENTRIES
AREASIZE = 9 TABLES PER AREA
LOADFACTOR = 66 PERCENT
SPLITFACTOR = 49 PERCENT
ENTRYSIZE(COARSE) = 60 BITS
ENTRYSIZE(FINE) = 72 BITS

BITS PER BLOCK(COARSE) = 8596
BITS PER RLOCK(FINE) = 8584

FILE INFORMATION 13

FILE NUMBER {6

AREAS =2 20

AREASIZE = 54 SEGMENTS
PACK =

TITLE = UNTIV /88AD

STUAD INDEX SEGUENTIAL SET 1
STRUCTURE NUMBER 22

PRIME = 0

TABLESIZE(COARSE) = 125 ENTRIES
TABLESIZE(FINE) = 113 ENTRIES
ARFASIZE = 10 TABLES PER AREA
LOADFACTOR = 66 PERCENT
SPLITFACTOR = 49 PERCENT
ENTRYSIZE(COARSE) = 80 BITS
ENTRYSIZE(FINE) = 88 BITS
BITS PER BLOCK(COARSE) = 10016
BITS PER BLOCK(FINE) = 9960

FILE INFORMATION 1@

FILE NUMBER 16

AREAS = 20

AREASIZE = 124 QEGMENTS
PACK =

TITLE & UNIV /88AD

FACAD INDEX SEGUENTIAL SET 1
STRUCTURE NUMBER 23

PRIME = 0

TABLESIZE(COARSE) = 125 ENTRIES
TABLESIZE(FINE) = 113 ENTRIES
AREASIZE ® 10 TABLES PER AREA
LOADFACTOR = 66 PERCENTY
SPLITFACTOR = 49 PERCENT
ENTRYSIZE(COARSE) & 80 BITS
ENTRYSIZE(FINE) = 88 BITS
BITS PER BLOCK(COARSE) = 10016
BITS PER BLOCK(FINE) ® 9960

FILE INFORMATION 1
FILE NUMBER 16

AREAS ® 20

AREASIZE & 194 SEGMENTS
PACK ®

TITLE = UNIV /88AD

Figure A—3. UNIV Data Base Example (Sheet 13)

ADMAD- INDEX SEQUENTIAL SET 1
STRUCTURE NUMBER 24

PRIME & 0

TABLESYZE(COARSE) » 125 ENTRIES
TABLESIZE(FINE) = 113 ENTRIES
AREASIZE = 10 TABLES PER AREA
LOADFACTOR = 66 PERCENTY
SPLITFACTOR = 49 PERCENT
ENTRYSIZE(COARSE) = 80 BITS
ENTRYSIZE(FINE) = 88 B1ITS
BITS PER BLOCK(COARSE) = 10016
BITS PER BLOCK(FINE) ® 6960

FILE INFORMATION
FILE NUMBER 16

AREAS = 20

AREASIZE = 264 SEGMENTS
PACK =

TITLE 3 UNIV /88AD

BOOKS UNORDERED LIST 3

STRUCTURE NUMBER 4

AREASIZE = 500 RECORDS PER AREA
TABLESIZE « { ENTRIES
BLOCKSIZE = 5 RECORDS/BLOCK
DATASIZE = 760 BITS ~
RECORDSIZE = 832 RITS

ENTRYSIZE m 760 BITS

BITS PER BLOCK = 4184

FILE INFORMATION 1
FILE NUMBER {

AREAS = {0

AREASIZE = 300 SEGMENTS
PACK =

TITLE = UNIV /BOOKS

Figure A—3. UNIV Data Base Example (Sheet 14)
A-18

COBOL COMPILATION PROCEDURES

The COBOL compilation process requires a program written according to the normal COBOL syntactic
conventions, incorporating data set INVOKE statements and the appropriate DMSII statement extensions
to COBOL as defined in section 4. During each compilation, upon recognition of an INVOKE statement of
a data set, the compiler includes (by copy) into the source program the library file generated by DASDL.
The library file contains a complete description of the data set, its sets, automatic subsets, and all of its
embedded items, data sets, subsets, and sets. The library files must reside on system disk during compila-
tion. The compiler uses this information to establish the record areas necessary for communication between
this program and DMSII. The compilation also provides the information needed for verifying the syntactic
correctness of the DMSII statements used in the PROCEDURE DIVISION of the COBOL program.

The COBOL compiler always accesses the library files that have the appropriate identifiers at the time of
compilation. If multiple versions of the library files have been produced, it is important that the versions
that correspond to the data base versions are the library files loaded at compile time. The versions are
checked at execution; if the versions are incompatible, the execution of operations against the data base
are disallowed.

The object code produced by the compiler includes a communicate to the MCP for each of the DMSII
statements encountered. All DMSII statements are executed by the DMSII access routines within the MCP.
Local manipulation of data base items by COBOL statements are handled directly by object code produced
by the compiler. The object code produced by the COBOL compiler is ready for execution.

For additional information on COBOL syntax, semantics, options, or compiler operation, refer to the
B 1700 Systems COBOL Reference Manual, Form No. 1057197.

DISK FILE STRUCTURES

All disk files used for DMSII data storage are declared as unblocked, 180-byte records. If it is necessary or
desirable to print any portion of the data base, an explanation of the file structure is necessary.

Normal blocking conventions are used. In diagram 1, below, n equals records per block, m equals blocks
per area, and k equals tables per area.

Diagram 1:

n = RECORDS PER BLOCK
——

m = BLOCKS k = TABLES
PER AREA PER AREA

There are two uncommon disk file structure possibilities. The first of these is that the prime index resides
in the same file as the data set. Each area is divided into two parts; the first part contains the data set, and
the second contains tables as in diagram 2.

Diagram 2:

The second possibility is that multiple index sequential structures reside in the same disk file. All first-level
coarse tables are allocated at the front of the file. Additional coarse tables and all fine tables are allocated
as required. The results constitute a mixture of coarse and fine tables, as diagram 3 illustrates.

Diagram 3:
COARSE TABLE A FINE TABLE B
FINE TABLE B
COARSE TABLE B S NETABLED
FINE TABLE C
COARSE TABLE C
COARSE TABLE B
FINE TABLE A
FINE TABLE C
AVAILABLE SPACE
AREA 1 REA 2

DMSII OPERATION AND CONSOLE PRINTER MESSAGES

DMSII is part of the standard MCP. The only special requirement for execution of a DMSII program is that
the Data Base Management (DBM) option be set and a Clear/Start performed establishing the DBM environ-
ment. This option binds special segments into the Central Service Module (CSM) and is required for DMSII
operation. If the option is not present at the time the data base is opened, an appropriate message is dis-
played.

The data base dictionary must be resident on the system disk at execution. If not, a request for its loading
is displayed. Any attempt to open the data base prior to executing the DASDL INITIALIZE statement
produces an OPEN operation exception. This exception and most of the other exceptions are returned to
the user program for appropriate handling. However, if the user program does not have an On-Exception
branch on the DMSII statement producing the exception, the exception results in the termination of the
program with an appropriate message displayed.

When the data base disk files are required, DMSII searches the disk directories for the correct files. If the
files are not available, a request for the required files is displayed. It is extremely important that the cor-
rect version of the data files be loaded. When all processing against a data base has terminated, that is, all
programs have closed the data base or gone to EQJ, a message is displayed containing the identifying num-
ber of DMSII operations, the number of physical disk reads, the number of physical disk writes, the number
of exceptions, and the processor time spent within the DMSII routines.

In the format of DMSII console printer messages, job-specifier is simply used td identify the job for which
the message is intended.

A terminal-reference indicates that a termination message will be printed. Any time this is indicated, the
program must be discontinued; except when the MCP TERM option is set causing the program to terminate
automatically. The terminal-reference format is: '

(mix-index). S = {integery, D = (integer)
@...@, @...@) DS or DP

S indicates the segment number and D indicates the displacement number.
For further information refer to the B 1700 System Software Operational Guide, Form No. 1068731.
DMSII ERROR MESSAGES

DMERROR — DFH STILL IN CHAIN (system malfunction at close-time)

DMS END - - - (integer) OPERATIONS (integer) READS (integery WRITES and (integer)
EXCEPTIONS IN (time)

I0 ERROR — DMS WRITE ON STRUCTURE NUMBER (integer)
(job-specifiery — BAD FILE NUMBER (incorrect data base DICTIONARY)

{ job-specifiery — PROGRAM DATA BASE VERSION MISMATCH - -- RECOMPILATION OR
CORRECT DICTIONARY REQUIRED

(job-specifiery DMS FILE VERSION MISMATCH ON (data-file-name) -- VERSION ON DISK
IS data, time) -- VERSION REQUIRED IS {date, time)

{ job-specifier) (data-base-name> DATA BASE IS ACTIVE - - - <data—base-name> DATA BASE
MAY NOT BE OPENED

(job-specifier) {data-base-name) DATA BASE IS NOT INITIALIZED
(job-specifier) {data-base-name’y DATA BASE IS NOT AT V.0 LEVEL

A-21

{ job-specifier) {data-base-namey [DICTIONARY IN USE RECOVERY REQUIRED ON DATA
BASE {data-base-name

< job-specifier> — DBM OPTION NOT SET OR CLEAR START REQUIRED
(job-specifier) — FILE {data-file-namey IN USE

{ job-specifiery — INSUFFICIENT DISK SPACE FOR DATA MANAGEMENT
<job-specifier> — INVALID STRUCTyRE NUMBER (incorrect data base DICTIONARY)
< job-specz'fier> — NO FILE (data-base-name) /DICTIONARY

{job-specifier) — NO FILE {data-file-name)

<j0b-specz'fz’er> — NO PROVISION FOR DMS {DMSTATUS category) EXCEPTION —
{terminal-reference)

DATA BASE INTEGRITY

DMSII provides several integrity checks to assist the user in protection of a data base. Each COBOL pro-
gram accessing a data base is compiled with a specific data base description (referred to as a version)
associated with the data base. The version is checked by the system at each execution to ensure the data
base dictionary version is the same version as the program. If the versions do not agree, the program is not
allowed access to the data base. A version check is made for each structure at the first request to access
that structure.

NOTE

Version checking can be omitted by inserting at DASDL compilation time
the § NO VERSIONCHECK option card. This is usually done while testing
the data base, and then only if multiple DASDL executions do not change
the data base structure numbers or data sizes. Physical parameters, however,
can still be changed when verison checking has been suspended.

The version of a data base file corresponds to the last time the data base was updated. The version informa-
tion is maintained by DMSII both in the disk file header and the data base dictionary. The disk file header
version is updated at the first file update and at the close of an updated file. The data base dictionary ver-
sion is updated at the close of an updated file. The data base dictionary contains a flag that is set when an
update occurs, and is reset when all files having been updated are legitimately closed. This allows DMSII
the ability to prevent the use of a data base dictionary if a system failure or a Clear/Start occurs during the
updating of any files of the data base. When a system failure is recognized by DMSII, a message requesting
the recovery of the data base is displayed on the console printer. This is accomplished by reloading the last
version of all updated files, including the data base dictionary. Also, if the version contained in the disk file
header does not match the data base dictionary version of the file, the file is not opened and a message is
displayed on the console printer requesting the correct version of the file. The DMSII assumes, for checking
purposes, that the data base dictionary contains the correct versions. Therefore the data base dictionary file
is the central file of the data base and should be saved prior to any update attempt.

A-22

LIBRARY MAINTENANCE OF DMSII FILES

In order to protect against the loss of a data base, it is necessary to periodically save a copy c_>f the data base.
If system failure occurs during execution of a program that updates the data base or if the disk files are lost
or suspected of containing invalid information, the data base must be recovered.

All DMSII files are declared as unblocked, 180-byte records to facilitate the utilization of the standard
utilities on these files. SYSTEM/LOADDUMP can be used to save and restore copies of the data base when
needed.

Whenever updates to the data base are performed, the data base dictionary file can also be updated. Asa
consequence it is important to save the dictionary file when any data base files are saved. The dictionary
file is the central file in the data base.

At all times the data files must be the same update level as the dictionary file. If, however, a data file has
not been updated since it was last saved, it is not necessary to save it again. Care must be used in making
this decision as some of the control fields for lists reside in the owner data set.

MEMORY DUMPS

MCPII/ANALYZER has been expanded to list DMSII information whenever memory is dumped while a
data base is open. There are two sections of DMSII information in a system dump. The first is the global
information maintained by DMSII which includes the following:

a. Pointers to DMS tables and linked lists.

b. Statistics for data base activity.

c. Data base file-identifier.

d. All DMSII disk file headers in use.

e. All in-use structures.

f. Current records and paths for each structure.

g. Lock descriptor table (buffer descriptors).

h. All buffers in memory.
The second section is associated with user programs in the mix. Each program using the data base has a
description of a temporary storage area called the DMSII work area. This work area contains the DMSII

state information while it executes a data base operation for this program. The record areas associated with
each invoked data set are contained within the base and limit register of the program.

N

Appendix B. DASDL PHYSICAL STRUCTURES

The following DASDL physical structures are examples containing coding syntax, diagrams, and semantics.

DISJOINT DATA SET EXAMPLE
Coding Syntax:

STANDATASET DATA SET (
KEY-FIELD NUMBER (10);

DATA-FIELD ALPHA (18)
);
Diagram:
STANDATASET DATA SET
RECORD 1
RECORD 2)—BLOCK 1
RECORD 3
~~——— RECORD 4
l«—— RECORD 5)—BLOCK 2
=—— RECORD 6
Semantics:

a. Records are not ordered.

b. Blocks are not linked together.

c. Available space list maintained in records within the data set.

d. In this example, there are three records per block.

INDEX RANDOM EXAMPLE
Syntax:
D DATA SET (
KEY-FIELD NUMBER (10);
DATA-FIELD (18)

S RETRIEVAL SET OF D KEY (KEY-FIELD);

Diagram:
COUNT , DATA RECORDS |1
R ey presl——— 2
3
4
5

OFLO
POINTER [RESERVED]

RESERVED|

SET S DATA SET D
Semantics:
a. MODULUS represents the number of basic tables in the set S.

b. Each table entry contains a symbolic key and an address pointing to the corresponding record in
the data set D.

c. Empty entries always reside at the end of the table.

d. LOADFACTOR indicates the degree of sharing of overflow tables that is allowed. When
LOADFACTOR equals 50, it indicates that 50 percent of an overflow table is filled by any base
tables which overflow, before another overflow table is allocated.

e. COUNT is comprised of 16 bits, OFLO POINTER is comprised of 24 bits, and each ADDRESS is
comprised of 32 bits.

INDEX SEQUENTIAL EXAMPLE

Coding Syntax:

D DATA SET (

KEY-FIELD NUMBER (10);
DATA-FIELD ALPHA (18)

);

S ORDERED SET OF D KEY (KEY-FIELD);

Diagram:

COARSE
TABLE

FINE
TABLE

COARSE
TABLE

FINE
TABLE

FINE
TABLE

SET S
COUNT

DATA SET D

ADDRESS/KEY

DATA RECORD

RESERVED

|

RESERVED

RESERVED

RESERVED

LN

RESERVED

Semantics:

a.

g.

h.

Coarse table entries point to a lower level of coarse tables or to fine tables. Fine table entries
point to data records in the associated data set.

Entries within both tables are in sequence on key value.
Table entries consist of addresses and keys.

LOADFACTOR specifies the percentage of entries of a fine table which will be filled before
another fine table is allocated. For example, if the LOADFACTOR is 50 percent, half of the fine
table will be left empty on an initial load for new insertions into the table. Thus, splits may be
reduced or eliminated.

If a coarse table is full when an attempt is made to add another entry, the coarse table is split into
two coarse tables, based on the SPLITFACTOR. For example, given a SPLITFACTOR of 60 per-
cent, 60 percent of the entries of the original coarse table will be moved to the new coarse table,
leaving 40 percent in the original coarse table. The normal coarse table split separates duplicate
key entries. The split is adjusted so all duplicates remain in the same table. Overflow techniques
are not used.

COUNT is comprised of 16 bits, addresses for coarse tables are 24 bits, and addresses for fine
tables are 32 bits.

The key (KEY-FIELD) may be in modified form if it is in descending sequence or a signed number

AUDIT SERIAL is 32 bits in length and is required.

UNORDERED LIST-EMBEDDED DATA SET EXAMPLE

Coding Syntax:

D DATA SET (

KEY-FIELD NUMBER (10);
DATA-FIELD ALPHA (18);

E UNORDERED DATA SET (

);

)

DATA-E ALPHA (18)

Diagram:

DATA SET E
D DATA SET TABLE l=—— RECORD |
FIRST| LAST RECORD 2 » BLOCK
< RECORD 3
£ & k| RESERVED
X O Z
z % 3
O
TABLE
DATA -E ELEMENT 1
ELEMENT 2
ELEMENT 3
ELEMENT 4

Semantics:

a.

The above diagram, which shows an example of an embedded data set as an unordered list, is
composed of a collection of tables. Entries within the tables are not ordered.

Table entries consist of data records for DATA SET E.

Tables are linked together using NEXT and PRIOR fields.

All entries within a table belong to the same owner.

FIRST and LAST point at tables for an owner.

When a table becomes full a new table will be linked in.

FIRST, LAST, NEXT, PRIOR are comprised of 32 bits and COUNT is comprised of 8 bits.

In this example there are three records per block and four elements per table.

UNORDERED LIST —~ SUBSET EXAMPLE
Syntax:

D DATA SET (
KEY-FIELD NUMBER (10);
DATA-FIELD ALPHA (18);
S SUBSET OF D

)5

Diagram:
This diagram is the same as the preceding diagram except for the following change to TABLE

TABLE
RECORD ADDRESS

Semantics:

a. The semantics for a subset, as an unordered list, are the same as the semantics for an embedded
data set, as an unordered list, except for table entries, which consist of an address only.

ORDERED LIST - EMBEDDED ORDERED DATA SET EXAMPLE
Coding Syntax:

D DATA SET (
KEY-FIELD NUMBER (10);
DATA-FIELD ALPHA (18);
E ORDERED DATA SET (

KEY-E NUMBER (10);
DATA-E ALPHA (18);

)
SET-E ACCESS TO E KEY (KEY-E)
);

Diagram:

This diagram is the same as the preceding two diagrams except for the following change to TABLE:

TABLE
DATA -E KEY -E

Semantics:

a.

b.

d.

Entries within the table are ordered by key value.

Table entries contain DATA-E. There will be a separate key entry for KEY-E if: (a), the key
consists of multiple non-contiguous items; (b), any item is in descending sequence; (c), any item
is a signed number. Otherwise, the key item in the record is used.

Semantic items ¢, d, e, f, g, h, and i for an embedded data set as an unordered list also apply for
an embedded ordered data set as an ordered list.

Full tables can be split in order to maintain ordering.

ORDERED LIST - SUBSET WITH A KEY EXAMPLE

Coding Syntax:

D DATA SET (

Diagram:

KEY-FIELD NUMBER (10);
DATA-FIELD ALPHA (18);
S SUBSET OF D KEY (KEY-FIELD)

)’

This diagram is the same as the preceding three diagrams except for the following change to TABLE:

TABLE
KEY - FIELD RECORD ADDRESS

Semantics:

a.

b.

Entries within the table are ordered by key value.
Table entries contain KEY-FIELD and an address.

The key (KEY-FIELD) may be in modified form if any items of the key are in descending
sequence or a signed number.

For a subset with a key, semantic items ¢, d, e, f, g, h, and i for an embedded data set as an
unordered list also apply.

Full tables can be split in order to maintain ordering.

Appendix C. DASDL GLOSSARY

The following definitions are intended to give a working description of the terms used in the DASDL sec-

tion of this manual.
TERM
ACCESS
DATA SET

DEADLY EMBRACE

DISJOINT

EMBEDDED
(INNER LEVEL)

INDEX

MASTER, PARENT,

or OWNER

MEMBER

ORDERED

PATH

POPULATION

PROPERTIES

DEFINITION
A method to reach a desired record of a data set.
A collection of related records. Only data sets have records.

A programmatic condition where two or more programs are
simultaneously attempting to lock (prohibit access to) a data
record.

The condition of non-reliance of data sets on the highest level, that
is, a data set which is not an item within a data set. Data sets and
sets are the only structures that are disjoint. Disjoint sets can only
refer to disjoint data sets.

The condition of being dependent on a data set that is on a higher
level; that is, a data set which is an item within a data set. An
embedded data set can only be referenced by an embedded set on
the same level.

A table of pointers to a data set used to provide specified access
to a data set.

A data set record which has dependent data sets is referred to as
either the master, parent, or owner of the records of the dependent
data set. A “master” may itself be a record in an embedded data
set. An embedded data set cannot be accessed without accessing
the master.

An occurrence of a record of a data set is a member of that data
set.

Maintained in a sequence depending on the value of user-specified
fields based on a collating sequence.

An access to a data set record. One instance is a path. A set is an
index of paths.

The number of records in a data set. If it is an embedded data set,
population is the number of records in the embedded data set per
occurrence of its master.

The physical structure and parameters of a data set, set, or subset,
such as storage requirements or structure type.

TERM
RECORD
SCOPE
SET

SPAN

SPLITTING

SUBSET

UNORDERED

DEFINITION
A record contains all the information that pertains to an entity.
The range of influence of a data set, set, or subset.

An index of paths to a data set, with a pointer to each record of
that data set.

A set points to all records of a data set. A subset need not point
to all records of a data set. A subset may only point to some of the
records of a data set.

The method of inserting a new path into a set. The index table is
split into two tables rather than through the use of overflow
techniques.

A list of paths to records of a data set. The specified records of the
data set to be referenced must be programmatically inserted into
the subset.

Not maintained in a user-specified order.

Appendix D. DASDL ERROR MESSAGES AND WARNINGS

INTRODUCTION
The following are lists of error messages and warning messages that can appear on a DASDL output listing.

The bracketed word, (integer) ,is replaced by the structure number. The structure number is assigned
automatically by the compiler to each structure. This number is printed on the DASDL output listing if
$STRUCTURE is specified, and it always appears on the COBOL listing.

The bracketed word,<strz'ng> , is replaced by a reserved word.
NOTE

If the delimiters such as commas, parentheses, or semicolons are
misplaced or omitted, the error message can be misleading, and might
not indicate the actual error.

WARNING MESSAGES
ATTRIBUTE CHANGED AFTER BEING SET ONCE
FILLER ADDED TO PREVIOUS ITEM
POPULATION OVERFLOWED ON STRUCTURE NUMBER integer 1,000,000 USED INSTEAD

SEQUENCE ERROR

ERROR MESSAGES

ILLEGAL SPECIAL CHARACTER

UNEXPECTED TOKEN IN CONDITIONAL EXPRESSION
INVALID ORDERING KEY FIELD

OPERANDS ARE NOT OF THE SAME TYPE
VERSION MISMATCH, UPDATE NOT DONE
AREASIZE EXCEEDS 2 EXP 16 — 1

BLOCKSIZE EXCEEDS 2 EXP 7 — 1

TABLESIZE EXCEEDS 2 EXP 16 — 1

MAXIMUM SIZE FOR NUMERIC KEY EXCEEDED
DECLARED NUMBER SIZE TOO LARGE
POPULATION EXCEEDS 2 EXP 20 — 1

MORE THAN 16 INDEXES IN ONE FILE

TABLESIZE EXCEEDS 255

COBOL KEY WORD ENCOUNTERED
EOF DDL/DICT — READ

EOF DDL/DICT — WRITE

PARITY ERROR DDL/DICT — WRITE

DATA NAME DICTIONARY OVERFLOW
DUPLICATE FILE NAME-COMPILE ABORTED
DUPLICATE IDENTIFIER FOUND

ONLY ONE VERIFY CLAUSE PER DATA SET
DELIMITERS “)” , “;” OR KEY WORD DUPLICATES REQUIRED HERE
EQUATE SYMBOL EXPECTED NOT FOUND
ITEM TYPE KEY WORD EXPECTED

MISSING KEY NAME

NUMBER EXPECTED NOT FOUND
ATTRIBUTE KEY WORD REQUIRED HERE

SIZE OF IDENTIFIER EXCEEDS 17 CHARACTERS
INCORRECT ATTRIBUTE FOR THIS DECLARATION
NUMBER OF BUFFERS MUST BE GEQ 3 AND LEQ 100
ILLEGAL DECLARATION FOR SUBSET KEY NAME
THIS ITEM NOT ALLOWED IN GROUP ITEM

SUBSET MAY NOT REFERENCE EMBEDDED DATA SETS
NUMBER OF IODESCRIPTORS MUST BE GEQ 2 AND LEQ 20
THIS NAME IS ILLEGAL AS A KEY NAME

REQUIRED DATA ITEM MAY NOT BE SUBSCRIPTED
ILLEGAL $CARD OPTION ENCOUNTERED
SUBSCRIPTED DATA ITEM MAY NOT BE REQUIRED
UNEXPECTED KEY WORD

VERIFY NOT ALLOWED ON SUBSET

RESTART DATA SET MAY NOT BE EMBEDDED

STRUCTURE NUMBER (integery) MAY NOT BE IN A DATA SET FILE UNLESS IT IS MADE THE
PRIME INDEX

INDEX SEQUENTIAL TABLE SIZE EXCEEDS AREA SIZE FOR FILE
DATA ITEM NAMES AND GROUP ITEM NAMES ARE ILLEGAL HERE
NO OTHER STATEMENTS MAY FOLLOW INITIALIZE STATEMENT

LITERAL IS LARGER THAN OPERAND

DECLARATION FOR KEY NAME IN SUBSET DECLARATION NOT FOUND
DATA SET REFERENCED BY SUBSET NOT FOUND

MISSING ORDERING KEY

ACCESS PATH CANNOT BE CHANGED

MISSING COMMA

COMMENT NOT ALLOWED IN THIS CONTEXT

DATA SET NAME NEEDED HERE

IDENTIFIER EXPECTED NOT FOUND

IDENTIFIER NOT FOUND OR UNDEFINED

EMBEDDED DATA SETS AND SUBSETS NOT ALLOW IN RESTART DATA SET
TYPE ON EMBEDDED DATA SET MISSING ORDERED OR UNORDERED REQUIRED HERE
KEY TYPE MAY BE MISSING OR MISSPELLED

LISTS AND DATA SETS MAY NOT BE MIXED

MISSING LEFT PARENTHESIS

ORDERING KEY NAME NEEDED HERE

MISSING OPERATOR IN CONDITIONAL CLAUSE

KEY WORD ORDERED OR UNORDERED REQUIRED

RETRIEVAL KEY NAME NEEDED HERE

MISSING RIGHT PARENTHESIS

KEY WORD ALL REQUIRED HERE

KEY WORD DATA REQUIRED HERE OR KEY WORDS ORDERED OR RETRIEVAL REQUIRED

KEY WORD FOR REQUIRED HERE
MISSING KEY WORD KEY

KEY WORD OF REQUIRED HERE

KEY WORD ORDERED REQUIRED HERE
KEY WORD SET REQUIRED HERE

KEY WORD TIMES REQUIRED HERE

KEY WORD TO REQUIRED HERE

KEY WORD TRAIL REQUIRED HERE

KEY WORD UNORDERED REQUIRED HERE
RESERVED WORD WHERE REQUIRED HERE
MISSING SEMICOLON

SLASH REQUIRED BETWEEN FILE NAMES

AREASIZE FOR STRUCTURE NUMBER (integery EXCEEDS 65,535

SUBSCRIPTED DATA ITEMS MAY NOT BE USED AS KEYS
ILLEGAL TOKEN IN OPTION STATEMENT

ILLEGAL ITEM IN PARAMETER LIST

NUMBER TOO LARGE — MAX 8 CHARACTERS

VALUE IN OCCURS EXCEEDS 1023

ATTEMPTED TO ASSIGN NEW VALUE TO POPULATION
ONLY ONE DATA SET IS ALLOWED IN A FILE -

ONLY ONE KEY ALLOWED IN AN EMBEDDED SET

'ONLY ONE INDEX IS ALLOWED WITH A DATA SET

THIS INDEX MUST BE IN A FILE BY ITSELF

THIS LIST MUST BE IN A FILE BY ITSELF

ORDERED DATA SET MUST HAVE AN ACCESS PATH

ORDERING TYPE AND/OR ITEM NAME LIST MISSING

“ REQUIRED ON CONTINUATION CARD

AREASIZE MAY NOT BE LESS THAN BLOCKSIZE

AUDIT FILE AREASIZE MUST BE 2 OR MORE

A STRUCTURE IDENTIFIER MAY ONLY APPEAR IN ONE FILE STRUCTURE LIST
DESCRIPTION TOO LONG — MAX 172 CHAR

NUMBER OF AREAS EXCEEDS 105

BITS PER BLOCK EXCEEDS 65,535 IN STRUCTURE NUMBER (integer)
‘UNDEFINED IDENTIFIER

UNEXPECTED PARENTHESIS ENCOUNTERED

UNEXPECTED KEY WORD TOKEN SYMBOL ENCOUNTERED
UNEXPECTED SEMICOLON ENCOUNTERED

SET MUST APPEAR IMMEDIATELY AFTER DATA SET DESCRIPTION
UNORDERED EMBEDDED DATA SET MAY NOT HAVE AN ACCESS PATH

Appendix E. COBOL EXTENSIONS

The COBOL Procedure Division has been extended to provide an interface between a COBOL program and
a data base. A brief synopsis of these extensions is given in table E-1.

Table E-1. COBOL Extensions

Extension Definition

OPEN Used to open a data base for subsequent access and to
specify access mode. A data base can not be accessed until
it has been opened.

FIND Used to read a record from a data set.

MODIFY Same as FIND, except the record is locked against
concurrent modification by another user.

STORE Used to write a new record into a data set or to replace an
existing record in a data set with a modified copy of that
record.

DELETE Used to remove a record from a data set.

FREE Used to unlock a record.

CLOSE Used to close a data base when further access is no longer
required.

CREATE Used to initialize the record area of a data set.

RECREATE Used to initialize the data set, set, and subset items of the
record area of a data set. All data items remain unaltered.

INSERT Used to insert a record into a manual subset.

REMOVE Used to remove a record from a manual subset.

Appendix F. QUALIFYING A DATA BASE DESCRIPTION

Unique identifiers are required in COBOL programs. If a data set is invoked more than once, different
internal names must be used in order that items within the data set can be appropriately qualified.

A variable declaration with the same name as a data base item can be used only if the item is able to be
uniquely qualified.

In a selection expression, sets and subsets require qualification if they are not unique identifiers. Data base
items in a selection expression need not be qualified.

Example:
DASDL

D1 DATA SET (
A NUMBER (5);
B NUMBER (3));
S1 ORDERING SET OF D1 KEY (A);

COBOL

DB DBASE.
01 DI1INVOKE D1.
01 DA INVOKE D1.

WORKING-STORAGE SECTION.
77 A FIC 99. (Invalid because it can not be uniquely qualified.)
01 Q.

03 A PIC 99. (Valid because it can be qualified.)

PROCEDURE DIVISION.

MOVE A OF D1 TO L. (Valid.)

FIND S1 OF D1 AT A = L. (Valid.)

MOVE A TO L. (Insufficient qualification of A.)

FIND S1 AT A = L. (Insufficient qualification of S1.)

FIND S1 OF DA AT A OF DA = L. (Valid but A need not be qualified in a selection expression.)

Appendix G. B 1700 — B 6700/B 7700 DMSII COMPATIBILITY

The relationship of B 1700 DMSII to B 6700/B 7700 DMSII is as follows:
a. B 1700 DMSII is a logical subset of B 6700/B 7700 DMSII.

b. Any COBOL constructs used to access B 1700 DMSII are syntactically and semantically com-
patible with B 6700/B 7700 DMSII.

c. Any physical data bases developed on the B 1700 DMSII are not compatible with B 6700/B 7700
formats.

d. The ordered embedded data set, together with its access set of B 1700 DMSII, is not supported
by B 6700/B 7700 DMSII. However, the identical COBOL capability is provided by making an
ordered embedded data set an unordered embedded data set together with a set on B 6700/B 7700
DMSII. ’

e. The physical mapping algorithms on the two systems differ significantly and the physical mapping
parameters should be reviewed carefully prior to transfer from B 1700 DMSII to B 6700/B 7700
DMSII. For example, B 1700 DMSII SPLIT FACTOR, STORAGE, and PRIME generate warning
messages, and are then ignored on the B 6700/B 7700 series systems.

f. Ordered and retrieval set types are not meaningful on B 6700/B 7700 DMSII. They produce a
regular B 6700/B 7700 DMSII set.

g. DASDL Parameters differ significantly, and there is no direct correspondence between B 1700
DMSII and B 6700/B 7700 DMSII.

Data bases should be remapped and must be reloaded at the time of transfer to B 6700/B 7700 DMSII.
However, any DMSII statements in COBOL programs developed for B 1700 DMSII are valid on B 6700/
B 7700 DMSII.

Appendix H. DATA BASE EXAMPLE

INTRODUCTION

The development of this example follows the same process used in the development of any data base. The
first step is to become thoroughly acquainted with the problem, the input and data available, and the output
or information required. What other information might be desired? What are the processing requirements?
Are there any time critical or volume critical demands? What are the primary requests? What are the
entities and their relationships? Identify the major properties of each entity.

The data base example is concerned with the business administration department of a small university. The
major elements of this example are students (MSF), courses (UNIV-COURSES), and personnel (UNIV-
PERSONNEL). The major component of MSF is achievement by quarter (QUARTER). The achievement
consists of the courses (CORSES) taken in a given quarter (QUARTER). The students (STUDENTS)
attending, the books (BOOKS) required, and the professor (PROFESSOR) teaching are the major attributes
of university courses (UNIV-COURSES). University personnel (UNIV-PERSONNEL) are of interest due to
the courses (CORSES) taught. The supervisor (SUPR) is also of interest.

The next step is to draw a diagram of the data base similar to the one illustrated in Figure H-1. All major
entities are shown as boxes, MSF, UNIV-PERSONNEL, and UNIV-COURSES. It is then possible to deter-
mine for each major property of these items whether it is a new entity or a relationship between existing
entities. All new entities become boxes (QUARTER, CORSES, and BOOKS). CORSES is a particular
student achievement in a particular class in a particular quarter. Thus, it is an entity, not a relationship to
UNIV-COURSES.

These entities which have just been added to the data base are connected to their major entities by means
of a broken line. This indicates that they have meaning only when taken in context of a major entity. For
example, it is only meaningful to examine BOOKS in context of a particular UNIV-COURSES.

The output of DASDL code is the final step. Remaining, is the optimization of the data base. There are
two parts to this: one, optimizing the logical structures, and two, optimizing the physical mapping. The
addition of ADR is an example of logical optimization. This type of optimization may continue through
testing of the data base. However, these changes may require changes to any programs which have been
developed to interface to that part of the data base.

Modifications to the physical mapping should not begin until after the default mapping has'been reviewed.
Testing and performance measurement also indicates where optimization is required. However, a permanent
data base does not exist until all modifications have been made. COBOL programs do not require changes
for physical optimization, although recompilation can be required.

Figure H-2 contains a DASDL listing of the UNIV data base; Figure H-3 is a COBOL program intended to
access the UNIV data base. Also included is an explanation of the identifiers used in the UNIV data base
example.

STUAD (STUDENTS ONLY)

FACAD (FACULTY ONLY)

SSNUM
ADMAD (ADMINISTRATION ONLY) —
NAME
Y
SNO - P
ADR ADDRESS UNIV- §
PERSONNEL |_
wn 7
5 : 3
~ 172}
()] & 7]
5 4
A o 23
f‘q © g
= A
)
jami
SSNO
e tr—no——————————
MSF STUDENTS UNIV-
] COURSES CRS-NO
[sagsal
[=2 |
L 4E L
— -
2 |
(4
Q I
3
TR
QUARTER |—R BOOKS
L_..__]
I
|
TYPECOURSE
CORSES

Figure H-1. UNIV Data Base Diagram

All the relationships are represented by solid arrows connecting two entities. Thus, STUDENTS, PROFES-
SOR, COURSES, and SUPR are added to the data base. GCRS (a pointer to UNIV-COURSES) is also added
for access to common information about the UNIV-COURSES from a particular CORSES record.

The address of a student (MSF) or UNIV-PERSONNEL would usually be thought of as a group item with
the record of MSF or UNIV-PERSONNEL. However, by reviewing the volume of information and the

infrequent use of the information, the data base may be optimized. All addresses (ADR) are stored in a
separate data set, with pointers from MSF and UNIV-PERSONNEL to the appropriate ADR.

The last addition to the diagram is to indicate for each entity and relationship the keys which are of interest.
These keys allow access to the records in order of key value. The keys of interest are added to the diagram
by means of short arrows. The new additions are SNO of ADR, SSNUM and NAME of UNIV-PERSONNEL,
CRS-NO of UNIV-COURSES, SSNO of MSF, LNAME and FNAME of STUDENTS, QTR of QUARTER,
and TYPECOURSE of CORSES. Of special note is the requirement to access addresses by type of person.
This leads to the definition of three different access paths to ADR: one for students only, one for faculty,
and one for administration. These paths are referenced as STUAD, FACUD, and ADMAD of ADR.

When the data base diagram is completed, the next task is to translate it into DASDL. The mapping is as
follows:

a. All boxes (entities) are data sets; those that are connected by broken lines become embedded data
sets. Thus, CORSES is an embedded data set of QUARTER which in turn is an embedded data
set of MSF.

b. All arrows (relationships) between two entities become manual subsets. For example, PROFES-
SOR is a manual subset of UNIV-PERSONNEL.

c. All short arrows on disjoint data sets having conditions for inclusion become automatic subsets.
For example, STUAD is the address of only the students.

d. All other arrows on disjoint data sets are subdivided into those on which access of the records in
order of the key value is required, and those which have no ordering requirements. All of the
former map into ordered sets; the latter become retrieval sets. For example, MSFSET is an
ordered set providing access to MSF in SSNO sequence. An ordered set also allows access by key
value. Thus, for example, it is valid to retrieve a MSF record where SSNO = 123456789.

e. All arrows on embedded data sets are mapped as access sets. For example, TYPECOURSE is
mapped by CSET of CORSES.

f. All arrows on subsets add a key structure to that manual subset.

g. A further requirement.added to the DASDL input is that all courses must have a positive number
of credits assigned to them, have a class size less than or equal to 60, and have some professors
assigned to teach the class. This is expressed by the VERIFY clause. The requirement that
TYPECOURSE and GRADE be known for all students (MSF) CORSES is indicated by the
REQUIRED option. This is an indication of the validity-checking options available for usage in
the example. '

00000100
00000150
00000200
00000300
00000400
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00003600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
100002900
00003000
00003100
00003200
00003700
00003750
00003800
000603900
00004000
00004100
00004200
00004300
00004400
00004500
00604600
00004700
00004800
00004900
00005000
00005100
00005200
00005300
00005350
00005400
00005500
00005600
00005700
00005800

1 UNTV DATA BASE
t3LIST SINGLE

-1 98UPPRESS

tSFILE STRUCTURE
tXTHIS DASOL PROGRAM GIVES EXAMPLES

1X0F

THE VARIOUS CONSTRUCTS USED IN

$XDASDL -TO DESCRIBE A DATA BASE

tVERIFY ((ROURSCRDT GTR 0 AND CLASS=SIZE LEQ 60) AND NOPROF NEgQ O)I
UNIVeCwSET ORDERED SET OF UNIV=COURSES KgY I8 (CRS§=NO))

SPARAMETERS(
t BUFFERS = 10)
IUNIV=-COURSES DATA SET “MAIN FILE" ¢

CRS=NAME GROUP (
DEPARTMENT ALPHAC(2))
LEVEL NUMBER(3)9
CRS=NO NUMBER(4))?

NOPROF NUMBER(2))

DAYS=OF=WEEK GROUP (

MON NUMBER(1)
TUES NUMBER(
WEDS NUMBER(
THURS NUMBER

1))

i)

(1)
FRI NUMBER(1)

)

)

’
SAT NUMBER(1!
BUILDING NUMBER(3
ROOMNUMBER ALPHA(2)1
COURSENAME ALPHA(24))
FLAG=BITS ALPHAC(12)}
HOURSCRDT NUMBER(4))
CLASS=SIZE NUMBER(2))
PROFESSOR SURSET OF UNIV~PERSONNEL, POPULATION 2 3)
BOOKS UNORDERED DATA SET(
L.C NUMBER(9))
TITLES ALPHA(&0)1
AUTHR ALPHA(30)))
STUDENTS SUBSET OF MS8F KEY IS
(LNAME,FNAME)DUPLICATES,
POPULATION = 300)
POPULATION = 1000

!
)
)
1
14
N
'

tUNIV=PERSONNEL DATA SET(

NAME GROUP(
LASTNAME ALPHA({S)}
FIRSTNAME ALPMA(10)))
SEX NUMBER(1)J
AGE NUMBER(2))
SSNUM NUMBER(9) s
DET ALPHAC(4))
RANK ALPHA(1))
SALARY NUMBER(87,2))
COURSES SUBSEY OF UNIV=COURSES,PORPULATION = 8)
ADDRES SUBSET OF ADR}
SUPR SUBSET OF UNIV=PERSONNEL)}
SS=U=P ORDERED SET OF UNIV=PERSONNEL KEY IS (SSNuM))
UePwSET ORDERED SET OF UNIVePFRSONNEL KFY IS
(LASTNAME ,FIRSTNAMEY DUPLICATES)
DATA SET(
SSNO NUMBER(9))
NONAM NUMBER(1)}
LNAME ALPHA(30)}
MNAME ALPHA(30))

Figure H—2. DASDL Program Example (Sheet 1)

00008900
00006000
00006100

00006200

00006300
00006400
00006500
00006600
00006700
00006800
00006900
00007000
00007100
06007200
00007300
00007400
00007500
00007600
00007700
00007800
00007900
00008000
00008033
00008066
00008100
00008200
00008300
00008400
00008500
00008600
00008700
00008800
00008850
00009000
00009100
06009200
00009300
00009400
00009500
00009600
00009700
00005800

FNAME ALPHA(30)}
CAMPUS=ADDRESS GROUP(

DQRM ALPHAC(S))

ROOM NUMBER(4))

POBOX NUMBER(W))

PHONE NUMBER(7)))

ND NUMBER(2))

DEGREE ALPMAC4) OCCURS & TIMES)
TOTHRS NUMBER(3)}

TOTQP NUMBER(3)) ;
GRADE=POINT=AVG NUMBER(3,2))
MJR NUMBER(3))

AMIR ALPHAC(18))

8SEX NUMBER(1)}

SAGE NUMBER(2))

HOME=ADDRESS SUBSET OF ADR}
OUARTER = ORDERED DATA SET(

QTR ALPHACU))

GTTRHRS NUMBER(2))

ATRQP NUMBER(2))

CORSES ORDERED DATA SET(

TYPECOURSE NUMBER(1) REQUIRED)

GRADE ALPHA(2) REQUIRED)

CRS SUBSET OF UNIV=CGCURSESS

YR NUMBER(2))

Q@ NUMBER(2))

GCRS SUBSET OF UNIVeCOURSES)

GGD ALPHA(2)}

TITLE=OF=PAPER ALPHA(30))

PPRGD ALPHA(2))),

POPULATION = 4

CSET ACCESS TO CORSES KEY IS
(TYPECOURSE) DUPLICATES)-

POPULATION a 50009 :

GSET ACCESS TO QUARTER KEY I8 (OTR)))
MSFSET ORDERED SET OF MSF KEY 18 (88NO))
DATA SET(

FACULTY=STUDENT NUMBER(1)}

SNO NUMBER(9) REQUIREDS
ADLN ALPHA(S54) OCCURS 9 TIMES)
21PC NUMBER(S5) REQUIRED}

PHON NUMBER(10)))

00009850 §SAD ORDERED SET OF ADR KEY 18 (ZIPC) DUPLICATES)

00009900 3 SSAD ORDERED SET OF ADR KEY IS (8NO))

00009910 ISTUAD SUBSET OF ADR NHQRE (FACULTY=STUDENT EQL 1) KEY I8 (ZIPC,SNO)
00009920 DUPLICATES;
00009930 lFACAD SUBSET OF ADR WHERE (FACULTY=STUDENT EQL 2) kEY IS (ZIPC,SNO)
00009940 1 CUPLICATES?
00009980 3ADMAD SUBSET OF ADR WHERE(FACULTY=STUDENT EQL 3) KEY IS (¢ZIPC,SND)
00009960 13 DUPLICATES)
00010500 $BOOKS(

00010600 1 AREASIZE = 500,

00010650 1 TYPE = UNORDERED LIST,

00010700 1 BLOCKSIZE = 8))

00010800 $BOOKFILE 8TORAGE FOR BOOKS(

00010850 1 TITLE = UNIV/LIBRARY,

00010900 ¢ AREAS =® 10)}

00011000 BUNIV=CmSET(

00011100 1 TABLESIZE a 12,

00011150 ¢ AREASIZE = 10,

00011200

t TYPE & INDEX SEGUENTIAL,

Figure H—2. DASDL Program Example (Sheet 2)

DB B P IO G VR R WS TE 5 A S SC SO B ST D S5 O GO U5 GP ID NP AB OF SO 6D SO O6 S5 0 BB 4D SO NG OO SO VS YE BN S0 4O 4D GO GD OO CB SE OO SO TH OO GO SO S5 A0 40 SG 6.

00011300 1 LOADFACTOR = 9))
00011400 SUNIV=PERSONNEL (
00011450 1 PRIME,

p0011%00 1 POPULATION = 997))
. 00011600 SINITIALIZE)

UNIV=COURSES DATA SET 1t

STRUCTURE NUMBER {

PRIME = 0

BLOCKSIZE = 2 RECORDS/BLOCK
AREASIZE s 292 RECORDS PER AREA
POPULATION = 1000 RECORDS
DATASIZE = 424 BITS

RECORDSIZE = ' 416 BRITS

BITS PER BLOCK = 1232

UNIVeCwSET INDEX SEQUENTIAL SET 1t
STRUCTURE NUMBER 7

PRIME = |

TABLESYZE(COARSE) = 14 ENTRIES
TABLESIZE(FINE) = . {2 ENTRIES
AREASIZE = 10 TABLES PER. AREA
LOADFACTOR ® 8 PERCENT
SPLITFACTOR = S0 PERCENT
ENTRYSIZE(COARSE) = 40 BITS
ENTRYSTIZE(FINE) = 48 B1TS

BITS PER BLOCK(COARSE) » 876
BITS PER BLOCK(FINE) = 592

FILE INFORMATION 1t
FILE NUMBER 2

AREAS = 20 ,

AREASIZE = 156 SEGMENTS
PACK =

TITLE = UNIV /UNIV=COURS

PROFESSOR UNORDERED LI8T 1t
STRUCTURE NUMBER 2

AREASIZE = 50 RECORDS PER AREA
TABLESIZE » az ENTRIES -
BLOCKSIZE = 8 RECORDS/BLOCK
DATASIZE s 32 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE » 32 BITs

BITS PER BLOCK ® 11360

FILE INFORMATION
FILE NUMBER 3

AREAS & 20 .
AREASIZE = S0 SEGMENTS
PACK = e
TITLE & UNIV C/PROFESSOR

8TUDENTS ORDERED. LXSY +
STRUCTURE NUMBER

Figure H—2. DASDL Program Example (Sheet 3)

AREASIZE = 7500 RECORDS PER AREA
TABLESIZE = 2 ENTRIES
BLOCKSIZE = i RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = 1096 BITS

ENTRYSIZE = 512 BITS

BITS PER BLOCK = 1128

FILE INFORMATION 13

FILE NUMBER 4

AREAS = 20

AREASIZE = 7500 SEGMENTS
PACK =

TITLE = UNIV /STUDENTS

UNIV=PERSONNEL DATA SET 1
STRUCTURE NUMBER 3

PRIME = 1§

BLOCKSIZE = 2 RECORDS/BLOCK
AREASIZE = 1192 RECORDS PER AREA
POPULATION = 997 RECORDS

DATASIZIFE = 3120 B17S
RECORDSIFE 2 512 BITS
BITS PER BLOCK = 1024

FILE INFORMATION 13

FILE NUMBER 5

AREAS = 20

AREASIZE = 596 SEGMENTS
PACK =

TITLE = UNIV /UNIV=PERSO

COURSES UNORDERED LIST 1t
STRUCTURE NUMBER 8

AREASIZE ® 125 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKSIZE ® 4 RECORDS/BLOCK
DATASIZE = 12 BITS"

RECORDSIZE = 1416 BITS

ENTRYSIZE = 12 BITS

BITS PER BLOCK 3 5696

FILE INFORMATION 13

FILE NUMBER 6

AREAS = 20

AREASIZE ® 125 SEGMENTS
PACK = ‘
TITLE = UNIV /COURSES

ADDRES UNORDERED LIST 1

STRUCTURE NUMBER 9
AREASIZE s 125 RECORDS PER AREA
TABLESIZE s 42 ENTRIES
BLOCKSIZE @ 4 RECORDS/BLOCK
DATASIZE & 32 BITS

Figure H—2. DASDL Program Example (Sheet 4)

RECORDSIZE s 1416 BITS
ENTRYSIZE s 32 BITS
BITS PER BLOCK ® 5696

FILE INFORMATION 1

FILE NUMBER 7

AREAS = 20

AREASIZE ' - 125 SEGMENTS
PACK =

TITLE = UNIV /ADDRES

SUPR UNORDERED LIST 1

STRUCTURE NUMBER 11

AREASIZE s 125 RECORDS PER AREA
TABLESIZE = 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE = 1416 BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK ® 5696

FILE INFORMATION 3

FILE NUMBER 8

AREAS & 20

AREASIZE = 125 SEGMENTS
PACK =

TITLE = UNIV /8UPR

MSF DATA SET 1

STRUCTURE NUMBER &

PRIME 8 0

ALOCKSIZE = i RECORDS/BLOCK
AREASIZE = 1191 RECORDS PER AREA
POPULATION = 10000 RECORDS
DATASIZE = 1276 BITS

RECORDSIZE = {404 BITS

BITS PER BLOCK a 1404

MSFSET INDEX SEQUENTIAL SET 3
STRUCTURE NUMBER 19

PRIME 3 ‘

TABLESIZE(COARSE) = 143 ENTRIES
TABLESTIZE(FINE) = 119 ENTRIES
AREASIZE = 12 TABLES PER AREA
LOADFACTOR = 66 PERCENT
SPLITFACTOR = 49 PERCENT
ENTRYSIZE(COARSE) = 60 2178
ENTRYSIZE(FINE) = 72 BITS
BITS PER BLOCK(COARSE) = 85896
BITS PER RLOCK(FINE) = 8584

FILE INFORMATION 1

FILE NUMBER 9

AREAS = 20

AREASIZE 3 1263 SEGMENTS

Figure H—2. DASDL Program Example (Sheet 5)

—

PACK ® _
TITLE ® UNIV /Nsr

HOME=ADDRESS UNORDERED LIST 3
STRUCTURE NUMBER 14

AREASIZE = 125 RECORDS PER AREA
TABLESIZ2E = 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE » 32 8178

RECORDSIZE = 1416 BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK = S696

FILE INFORMATION 1

FILE NUMBER 10

AREAS 8 20

AREASIZE = 125 SEGMENTS
PACK =

TITLE = UNIV /HOME=ADDRE

CRS UNORDERED LIST 1t

STRUCTURE NUMBER 17

AREASIZE = 9632 RECORDS PER AREA
TABLESIZ2E s 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE » 32 AITS

RECORDSIZE = 1416 BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK = 85696

FILE INFORMATION ¢

FILE NUMBER 11

AREAS = 20

AREASIZE = 9672 SEGMENTS
PACK =

TITLE & UNIV /CRS

GCRS UNORDERED LIST 1@

STRUCTURE NUMBER 18

AREASIZE = 9632 RECORDS PER AREA
TABLESIZE ® 42 ENTRIES
BLOCKSIZE = 4 RECORDS/BLOCK
DATASIZE = 32 BITS

RECORDSIZE & 1416 BITS

ENTRYSIZE = 32 BITS

BITS PER BLOCK = 5696

FILE INFORMATION 1

FILE NUMBER 12

AREAS = 20

AREASIZE = 9632 SEGMENTS
PACK =

TITLE & UNIV /GCRS

Figure H—2. DASDL Program Example (Sheet 6)

CORSES ORDERED LIST ¢

STRUCTURE NUMBER 16

AREASIZE » 14339 RECORDS PER AREA
TABLESIZE ® 3 ENTRIES
BLOCKSIZE = { RECORDS/BLOCK
DATASIZE » 312 BITS
RECORDSIZE = 1392 BITS

ENTRYSIZE & 440 BITS

BITS PER BLOCK ®» 1424

FILE _INFORMATION 3

FILE NUMBER 13

AREAS = 20

AREASIZE ® 14339 SEGMENTS
PACK 'm

TITLE = UNIV JCORSES

QUARTER ORDERED L1IS8T 1

STRUCTURE NUMBER 1§

AREASIZE = 20850 RECORDS PER AREA
TABLESIZE = 12 ENTRIES
BLOCKSIZE = 1 RECORDS/BLOCK
DATASIZE = 48 BITS
RECORDSIZE = 1416 BITS

ENTRYSIZE = 112 BITS

BITS PER BLOCK = 1448

FILE INFORMATION 3

FILE NUMBER 14

AREAS = 20

AREASIZE = 41700 SEGMENTS
PACK =

TITLE = UNIV /QUARTER

ADR DATA SET 1

STRUCTURE NUMBER 10

PRIME ® 0

BLOCKSIZE = 1 RECORDS/BLOCK
AREASIZE & 910 RECORDS PER AREA
POPULATION = 10000 RECORDS
DATASIZE = 3988 BITS
RECORDSIZE s 3988 BITs

BITS PER BLOCK = 3988

SAD INDEX SEQUENTIAL SET g
STRUCTURE NUMBER 20

PRIME = ¢ ,
TABLESIZE(COARSE) = 129 ENTRIES
TABLESIZE(FINE) ® 101 ENTRIES
AREASIZE ‘s 11 TABLES PER AREA
LOADFACTOR ® 66 PERCENT
SPLITFACTOR & 49 PERCENT
ENTRYSIZECCOARSE) = 44 BITS
ENTRYSIZE(FINE) & - S¢ a:;s
BITS PER BLOCK(COARSE) u 5892
BITS PER BLOCK(FINE) = 8872

Figure H—2. DASDL Program Example (Sheet 7)

FILE NUMBER 1§

AREAS = 20 .
AREASIZE. ® 2774 8EGMENTS
PACK = _

TITLE = UNIV /ADR

88AD INDEX SEQUENTIAL SET 1
STRUCTURE NUMBER 21

PRIME 8 0

TABLESIZE(COARSE) ® 143 ENTRIES
YABLESIZE(FINE) = 119 ENTRIES
AREASIZE '® 9 TABLES PER AREA
LOADFACTOR '8 66 PERCENT
SPLITFACTOR ® 49 PERCENT .
ENTRYSIZEC(COARSE) = 60 BITS
ENTRYSIZE(FINE) » 72 BITS
BITS PER BLOCK(COARSE) = 8596
BITS PER BLOCKCFINE) = 8584

FILE INFORMATION 1

FILE NUMBER 16

AREAS = 20

AREASIZE m- - %y QEGMENTS
PACK = ,
TITLE = UNIV /88AD

STUAD INDEX SEQUENTIAL SET]
STRUCTURE NUMBER 22

PRIME = 0

TABLESIZE(COARSE) . 125 ENTRIES
TABLESIZE(FINE) = ‘113 ENTRIES
AREASIZE = 10 TABLES PER AREA
LOADFACTOR ‘= . 66 PERCENT
SPLITFACTOR = 49 PERCENT ,
ENTRYSIZE(CQARSE) » 80 Ba1TS
ENTRYSIZE(FINE) w . 88 BITS
BITS PER BLOCK(COARSE) = 10046
BI1TS PER BLOCKTFINE) m 9960

FILE INFORMATION 1

FILE NUMBER 16

AREAS w20

AREASIZE ® 124 SEGMENTS
PACK = ‘

TITLE ‘@ UNIV /88AD

FACAD INDEX SEGUENTIAL SET 13
STRUCTURE NUMBER 23

PRIME = 0

TABLESIZE(COARSE) -m {25 ENTRIES
TABLESI2E(FINE) " {3 ENTRIES
AREASIZE ® 10 TABLES PER-AREA.
LOADFACTOR 8. 66 PERCENT

Figure H—2. DASDL Program Example (Sheet 8)

SPLITFACTOR ‘n 49 PERCENY
ENTRYSIZE(COARSE) = 80 817TS
ENTRYSIZE(FINEY & . 88 BITS.
BITS PER BLOCK(COARSE) = 10016
BITS PER BLOCK(FINE) & 9940

FILE INFORMATION 1

FILE NUMBER 16

AREAS & 20

AREASIZE ® 194 SEGMENTS
PACK ®

TITLE = UNIV /88AD

ADMAD INDEX SEQUENTIAL SET 1
STRUCTURE NUMBER 24

PRIME = 0 -
TABLESIZE(COARSE) ® 125 ENTRIES
TABLESIZE(FINE) » 113 ENTRIES
AREASIZE ® 10 TABLES PER AREA
LOADFACTOR '8 66 PERCENT
SPLITFACTOR ® 49 PERCENT
ENTRYSIZE(COARSE) = 80 BITS
ENTRYSIZE(FINE) & 88 BITS
BITS PER BLOCK(COARSE) = 10016
BITS PER BLOCK(FINE) = 9960

FILE INFORMATION 1

FILE NUMBER 16

AREAS ®» 20

AREASIZE » 264 SEGMENTS
PACK & ; .
TITLE = UNIV /88AD

BOOKS UNORDERED LIST 1

STRUCTURE NUMBER 4

AREASIZE ® 500 RECORDS PER AREA
TABLESIZE ®» 1 ENTRIES
BLOCKSIZE = 5 RECORDS/BLOCK
DATASIZE = 760 BITS
RECORDSIZE ‘= 832 BITS

ENTRYSIZE = 760 BITS

BITS PER BLOCK ¥ - 4184

FILE INFORMATION 13
FILE NUMBER S
AREAS 3 {0 v
AREASIZE = 300 SEGMENTS
PACK =

TITLE = UNIV /BOOKS

Figure H-2. DASDL Program Example (Sheet 9)

¢I—H

001001

L2 BE BE SN 3F 3 IE JE I 3 25 3B Nk I I N NN N

001002
001003
003004
001008
001006
001007
061008
004009
001010
001011
001012
001013
001014
001018
001016
001017
001018
001049
001020
00402y
001022
001023
001024
001025
001026
001027
001028
001029
001030
001031
001032
001033

TOENTTIFICATION DIVISION,.

PROGRAM=ID, DMSCOBOLSAMPLE,

"ENVIRONMENT DIVISION,
INPUT=O0UTPUT SECTION,

FILE=CONTROL,
SELECT CARD ASSIGN TO READER,

DAYA DIVISION,
FILE SECTION,

FD
01

FD
01

CARD,

CARD=REC,

03 C=TYPE PIC
03 C=88NO PIC
03 C=GRD=PT=AVS PIC
03 C=SEX PIC
03 CeAGE PIC
03 C=QTR PIC
03 C=TYPECQURSE PIC
03 C=GRADE PIC
03 C=TITLE=PAPER PIC
0% C=NAME PIC
MONITOR=DMS,
MONITOR=REC,

03 MONITOR=EXCEPTIOD

03 MONITOR=STATUS=B

03 MONITOR=STATUS

05 MONITOR=VERS

03 MONITOReSET

03 MONITOR=STRUCTURE
03 FILLER

DATA=BASE SECTION,
DB UNIv,

01 MASTER INVOKE MSF,

01 MSF DATASET DDL=NUMBER

02
02
02
62
02
02

62
02
02
02
02

(S8NDY,
SSNO
NONAM
LNAME
MNAME
FNAME
CAMPUS=ADDRESS,

03 DORM

03 ROOM

03 POBOX

03 PHONE

ND -

DEGREE OCCURS 6 TIMES
TOTHRS
TOYQP
GRADE=POINT=AVG

9

SELECT MONITOR=DMS ASSIGN TO PRINTER,

99,

999v99,

X,
99,

X(4),

9.
XX,

X(30),
X(24)..

PIC

PIC
PIC
PIC
PIC
PIC
P1C

6 11143146
ORDERING KEY MSFSET DDL=NUMBER

X(4),
X(20),
222988,
Xe20),
X€17),
9¢3),
X(64),

4/ 1/75%
19 11143846 4/ 1/75
PIC 9(9) comMP,
PIC 9 CoMP,

PIC X(30),

PIC X(30),

PIC X(30),

PIC X(&),
PIC 9(4) COMP,
PIC 9(4) COMP,
PIC 9(7) CoMmP,
PIC 99 COMP,
PIC X(4),
PIC 906 COMP,
PIC 999 COMP,
PIC 9v99 COMP,

Figure H-3. COBOL Program Example (Sheet 1)

fooo1)
fooo2l
{6003

[0004)

(0008}

[0006)

[0007)
{ooo08]

[00081]

too10d
[0011)

tooi2)

000,0000086
000,0000066
000,0000068
000,0000086
000,0000096
000,0000098
006,0000102
000,0000330
000,0000812
000,0000116
000,0000176

000,0000224
000,0000224
000,0000232
000,0000272
000,0000284
000,0000324
000,000035%8
000,0000364

000,0000492

000,0000492
000,0000501
000,0000502
000,0000562
000,0000622
000,0000682
000,0000682
000,0000694
000,0000698
060,0000702
000,0000710
000,0000712
000,0000760
000,0000763
£00,0000766

vI-H

EF R IR I R R E IR I I N N I N

001034

I EEE RS EEEREEE R R S

001035
001036
001037
001038
001044
001045

001046 -

001047

02 MJR
02 AMJR
02 SSEX
02 SAGE
02 HOME=ADDRESS SUBSET DDL=NUM
DOL=NUMBER 10 11143146 4/ 1
02 QUARTER DATASET DDL=NUMBER
ORDERING KEY QSET DDL=NUMBER
(GTR),
03 QTR
03 QTTRHRS
03 QTRGP
03 CORSES DATASET DDL=NUMBER
ORDERING KEY CSET DDL=NUMBE
(TYPECOURSE),
04 TYPECOURSE
04 GRADE
04 CRS SUBSET DDL=NUMBER
UNTV=COURSES DDL=NUMBER
04 YR
04 Q
04 GCRS SUBSET DDL=NUMBER
UNTV=COURSES DDL=NUMBER
04 GGD
04 TITLE=OF=PAPER
04 PPRGD
01 ADDRESS INVOKE ADR,

RPIC 999 CoMP,
PIC X(18),
PIC 9 cOMP,
PIC 90 COMP,
BER 14 11243346 4/ 1/75 TO- ADR
/15 .
15 184346 47 1/75
18 11143846 4/ 1/75

PIC X(4).
PIC 99 COMP,
PIC 99 COMP,
16 11143246 4/ 1/7S
R 16 11343246 4/ 1/78

PIC 9 COMP,
PIC XX,
17 $124320e 4/ 1/785 TO
1 11143246 4/ 1775 ,
PIC 99 COMP,
PIC 99 COMP,
18 11343246 4/ 1/75 TO
1 11843846 47 12785 ,
PIC XX,
PIC X(30),
PIC XX.

01 ADR DATASET DDL=NUMBER

10 11843146 4/ 1/75

ORDERING KEY SAD DDL=NUMBER
(Z1PC)
ORDERING KEY 8SAD DDL=NUMBER

20 11:43146 4/ 1/75
21 11143146 4/ 1/7

)

(SNO)
ORDERING KEY STUAD DDL=NUMBER
(ZIPC, SNO)
ORDERING KEY FACAD DDL=NUMBER
(ZIPC, 8NO)
ORDERING KEY ADMAD DDL=NUMBER
(ZIPC, SNO).
02 FACULTY=STUDENT
02 SNO
02 ADLN OCCURS 9 TIMES
02 ZIPC
02 PHON
WORKING=STORAGE SECTION,
77 TOOMANYEXCEPTIONS PIC
77 TRUE PIC

PROCEDURE DIVISION,

BEGIN=SECTION SECTION,

BEGIN,
OPEN OUTPUT MONITOR=DMS,
MOVE SPACES TO MONITOR=REC.

Figure H—3. COBOL Program Example (Sheet 2)

2@ 11143146 4/ 1/75
23 1443346 4/ 1,75
24 11843348 4/ 1/78

PIC 9 COMP,

PIC 9(9) COMP,
PI1C X(54),

PIC 9(5) COMP,
PIC 9(10) COMP,

9(2) COMP,
6 COMP VALUE "%,

0013}

tco14l

[00185]

loote)

(00173

¢c00,0000769
oocs,0000772
00n,0000808
0C0,0000809

e00,0000812

600,6000812
©00,0000820
000,0000822
060,0000824

000,0000824
000,0000826

000,0000830
600,0000832

60o,0000834
000.,0000838
0600,0000898

p00,0000902

000,0000902
00¢,0000903
000,0000912
000,0001884
000,0001889

000,0001900
000,0001902

000,0000000
000,0000000
000,0000000
000,0000084

001048
002066
002067
002068
002069
002070
002071
002072
002073
002074
002075
002076
002077
002078
002079
002080
002081
002082
002083
002084
002085
002086
002087
002088
002089
002090
002094
002092
002093
002094
00209%
002096
002097
002098
002099
002100
003104
003102
003103
003104
003308

OPEN UPDATE UNIV ON EXCEPTION PERFORM STATUS=ROOLEAN,

BUILD=MS8F,

QPEN INPUT CARD,

READ=CARD=[0GP,

READ CARD AT END GO EOJ.
KRITE MONITORmREC FROM CARD=REC,

IF C~TYPE = | GO 100=CREATE=MSF,

1F C=TYPE = 2 GO 200~CREATE=QUARTER,
IF C»TYPE 8 3 60 300=CREATE=CORSES,
IF C=TYPE =8 4 GO 400=DELETE=ADR,

IF C=TYPE # 5§ GO SOO=CHANGE=MSFm=NAME,
IF C=TYPE a 6 GO 600~CHANGE~GRADE,

DISPLAY C=TYPE "INVALID CARDTYPE" STGP RLUN,

100=CREATE=MSF,

IF C»SSNO LESS THAN | OR GREATER THAN 10

MOVE "C=SSNO COLS 2=10 MUST BE BETWEEN 0 AND {i" TO
MONITOR=REC

WRITE MONITOR=REC GO REAN=CARD=LOOP,

CREATE MASTER ON EXCEPTION PERFORM STATUS~BOOLEAN,
MOVE C=SSNQ TO SSNO,

MOVE C=GRD=PT=AVG TO GRADE=POINT=AVG,

IF C=8EX = "M" COMPUTE S8EX = TRUE,

MOVE C=AGE TO SAGE,

MOVE C=~NAME TO LNAME,

STORE MASTER ON EXCEPTION PERFORM STATUS=BOCLEAN
GO0 EOJ,

GO TO READ=CARD=LOOP,

200«=CREATE=QUARTER,

MODIFY MSFSET AT 8SNO = Cw~88NO ON EXCEPTION

IF DMSTATUS(NOTFOUND) DISPLAY C~8SNO "NOT IN MSF" ELSE
PERFORM STATUS=BOOLEAN,

CREATE QUARTER ON EXCEPTION PERFORM STATUS=BONLEAN,
MOVE C=QTR TO QTR,

STORE QUARTER,

GO TO READ=CARD=LOOP,

300~CREATE=CCRSES,

MODIFY MSFSET AT 8SNO = C=SSNO ON EXCEPTION

IF DMSTATUS(NOTFOUND) DISPLAY C=SSNO " NOT IN MSF" ELSE
PERFQORM STATUS=BOOLEAN,

MODIFY GSET AT GTR ® C=QTR,

WNARNING,..(254) SEQUENCE ERROR

003108
003110
0031141
003112
003113
003114
003115
003116

CREATE CORSES,

MOVE C=TYPECOURSE T0 TYPECOURSE,

MOVE C=GRADE TO 66D,

8TORE CORSES ON EXCEPTION PERFORM STATUS=BROOLEAN,
GO TO READ=CARD=LOOP,

400«DELETE=ADR,

MOVE "MODIFY MSFSET " TO MONITOR=VERB
MODIFY MSFSET AT 8SNO = C«83NO ON EXCEPTION
PERFORM STATU8=BOOLEAN S8TOP RUN..

WARNING,,,(254) SEQUENCE ERROR

T
"

MODIFY ADDRESS VIA FIRST HOME=ADDRESS ON EXCERTION

Figure H-3. COBOL Program Example (Sheet 3)

000,0000098
000,0000454
000, 0000454
000,0600538
000,0000538
000,0000788
neE, 0000982
000,0004018
000,0001054
000,0004090
000,0061090
000,0001126
o0e,0001162
0006,0001168
000,0001560
000,0001560
000,00061596
000,0001636
00G,0001636
000,0002160
c06,0002446
000,0002460
060,0002474
000,0002600
000,0002662
000,0002676
¢00,0002936
000,0002980
000,0002998
c0Ge 0002958
000,0003344
600,0003700
000,0003726
0co,0004012
000,0004026
000,0004230
00C,00CH248
00G,0004248
000,0004894
000,0004958
000,0004984

000,0005274
000,0005478
000,0005540
000,0005602
000,0005888
000,0005906
000,0005906
000,000590¢
000,0006410

600,0006476

T
=

003117
003118
003119

IF DMSTATUS(NOTFOUND) GO TO READ=CARD=LO0P ELSE
PERFORM STATUS=BOOLEAN ELSE PERFQRM REMQVE=ADDRESS,

MOVE "DELETE ADR

6o

TO READ=CARD=LOOP,

WARNING,,,(254) SEQUENCE ERROR

REMOVE=ADDRESS,
REMOVE CURRENT FROM HOME=ADDRESS ON EXCERTION
PERFORM STATUS=BOOLEAN,

S00=CHANGE=MSF=NAME,

003120
003121
003122
003123
003124
003128
003126
003127
003128
003129
003130
0031314
003132
003133
003134
003135
003136
003137
003138
003139
003140
003141
003142
003143
003144
003145
003146
003147
003148
003149
003450
003151
003152
003183
003154
003155
003156
003157
003158
003159
003160
004161
004162
004163

MODIFY MSFSET AT SSNO = C=SSNO,

" 70 MONITOR=VERB
DELETE ADDRESS ON EXCEPTION PERFORM STATUS=BOOLEAN STOP RUN.

MOVE LNAME TO MONITOR=REC, WRITE MONITOR=REC,

MOVE ®NAME IN MSF WAS CHANGED TO" TG MONITOR~REC.

WRITE MONITOR=REC,
MOVE C=NAME TO LNAME,
STORE MASTER,

MOVE LNAME TO MONITOR=~REC, WRITE MONITOR=REC.

60

TO READ=CARD=LOOP,

600=CHANGE=GRADE,

MOVE "MODIFY MSFSET

" T0 MONITOR=VERB.

MODIFY MSFSEY AT SSNO = C=SSNO On EXCEPTION
PERFORM STATUS=BOOLEAN,
MOVE C=GRD=PT=AVG TO GRADE=POINT=AVG,

MOVE "STORE MSF

GO

TC READ=CARD=LOOP,

STATUS=BOOLEAN,
ADD 1 TO TOOMANYEXCEPTIONS.

IF TOOMANYEXCEPTIONS GREATER THAN 10
DISPLAY TOOMANYEXCERTIONS "IS TOO MANY EXCEPTIONS"™ 'STGP RUN,

MOVE ALL "=" TQ MONITOR=EXCEPTION,

IF
TO
IF
T0
IF
TO0
IF
TO
IF
T0
IF
TN
IF
70
IF
TO
IF
70
IF
TO
IF
TO0

DMSTATUS (NOTFOUND)
MONITOR=STATUS=B,
DMSTATUS (DUPLICATES)
MONITOR=STATUS=8,
DMSTATUS (DEADLOCK)
MONITOR=STATUS=B,
DMSTATUS (DATAERROR)
MONITOR=STATUS=8,
DMSTATUS (NOTLGCKED)
MONTITOR=STATUS=8,
DMSTATUS (KEYCHANGED)

MONIYCR=STATUS=B,

DMSTATUS (SYSTEMERROR)
MONITOReSTATUS=B,
PDMSTATUS (I0ERROR)
MONITOR=STATUS=8,
DMSTATUS (LIMITERROR)
MONITOR=STATUS=8B,
DMSTATUS (OPENERROR)
MONITOR=STATULS»B,
DMSTATUS (CLOSEERROR)
MONITOR=STATUS=B,

Figure H—3. COBOL Program Example (Sheet 4)

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

THEN

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MAVE
MOVE
MOVE

MOVE

" TO MONITOR=VERR,
STORE MASTER ON EXCEPTION PERFORM STATUS~BOOLEAN,

“NOT FOUND
"DUPLICATES
"DEADLOCK
"DATA ERROR
"NOT LOCKED

"KEY CHANGED

"SYSTEM FRRNR

"10 ERROR
" IMIT ERROR
"OPEN ERROR

"CLOSE ERROR

"

"

n

"

000,0006784
000,0006848
000,0006918
000,0006918
000,06007402

000,0007420
000,0007420
000,0007728
000,000775¢4
000,0007771
000,000806%¢
000,0008231
000,0008461
000,0008617
000,0008631%
000,0008835
000,0009008
000,0009023
0G0,0009023
000,0009181
000,0009527
000,0009553
60C,0009567
000,0009725
G00,0010041
0eG,0010036
000, 06010026¢
000,06010043
neo,0010043
000,0010493
Crp, 0010617
GO0.,0031068]
000,0010807
GOCP00L08TY
non,0010997
aoc,0c110061
000,0011187
000,0011251
60C,0011377
000,001144]
000.0011567
060,0011631
0C0,0011757
0ne,0011821
noO,GN11947
arG,G0101)
GOO, 0012137
con, 001220
006,0012327
I0N,0012391
006,0012817
000,001258¢

LI—H

004164
004165
004166
004167
004168
004169
004170
004171¢
004172
004173
996999

cC 0D 0 E

BYTE LENGTH

(I EE N NENEENNENN]

000 00001752
00001752

D A T A

BYTE LENGTH

000 00001211

P A T H
INVOKED
I EE RN NEN]
000 FALSE
001 TRUE
002 FALSE
003 FALSE
004 TRUE
008 FALSE
006 FALSE
007 FALSE
008 TRUE
009 FALSE
010 FALSE
011 FALSE
012 FALSE
013 FALSE
014 FALSE

$ =M A C

LENBR9, SEGBs0, DISPBati, COPXBs5, COPB=z24, D,E.F=354, BLISPER1Y

IF DMSTATUS (NORECORD) THEN MOVE

TO MONITCR=STATUS=R,
IF DMSTATUS (INUSE
TO MONITOR=STATUS=S,
WRITE MONITOR=REC,
MOVE SPACES TO MONITQR=REC,

EQJ.

IF TCOMANYEXCEPTICNS = 0 DISPLAY

CLNSE UNIV OM EXCEPTION STOP RUN,

STOP RUN,
END=OF=JOB,

DI C

c N

R VY

CODEFILE RELATIVE DISK ADR

e afets RNt RRORRNRTITY

000011
TOTAL CODE
b1 C 1 0 N R ¥
CODEFILE RELATIVE DISK ADRR
28 tet RO RRROOORRRPROEROTEDY
000003
D 1 C I 0 N R Y
STRUCTUREX HHgMM18S MM/DDZYY
l!l‘ll‘l'.. [N N NN [EENNEENN]
0000 00300100 00700700
0006 11243146 04/01/78%
0019 11143146 047017758
notd 11043346 0d/01/75%
0010 11343846 p4/01/7S
0015 11043146 04/04/78
0016 11143346 0u/01/78
0047 11143146 04/01/78
0001 11343346 04/01/7%
0n18 11843846 04/01/78
0020 11143146 04/01/78
0oel 11143446 p4s701/78
0022 11843146 04/01/78%
0023 11143346 04/01/75
004 11143146 04701778
H I N E P A A M E T E

BASE RELATIVE ADDRESBSESS

DATA=SEGMENT=OBE16, COP~TABLE®U4O, STACK=28681 (BIT LENGTH=1000)

Figure H-3. COBOL Program Example (Sheet 5)

"N RECORD

) THEN MOVE "IN iJSE

8 (

"

"NO DM EXCFPTION",

0M0,0012707
nop,C0127T1Y
GER,0012E897
AG0,0012961
Ger,cn13087
86N.6013243
00C,0013257
000,0013274
eNe,0013604
GCC,CC139T4
00, 0018014

E: P R 0 6 R A M P A R A M E T E R B L 0 € K
o0 FIRST=EXECUTABLE=INSTRUCTIONRO,O
INTERPRETER=NAME=COBOL /INTERP
STATIC=CORE=9688 BITS

DYNAMIC=CORE=0 BITS

DATA DICTIONARY STARTS AT CODEFILE SEGMENT 2,
CODE DICTIONARY STARTS AT CODEFILE SEGMENT 10, 1| ENTRY

FILE PARAMETER BLOCKS START AT CODEFILE SEGMENT 21, 2 ENTRIES
PATH DICTIONARY STARTS AT CODEFILE SEGMENT 23, 15 ENTRIES

1 ENTRY

LAST ERROR AT SEQUENCE NUMBER « 3 WARNINGS 3 SEQUENCE ERRORS,
wawws COMPILATION COMPLETE
ELAPSED TIME t 01 MINUTE, 46 SECONDS
PROGRAM REQUIRES 23 DISK SEGMENTS OF 180 BYTES EACH,
MEMORY REQUIREMENTS
0001752 RYTES = | ARGEST CODE SEGMENT
0001211 BYTES = BASE=TO=LIMIT AREA
0000335 BYTES = DICTIONARIES AND RUN STRUCTURE
0000505 RYTES = FILE BUFFERS & FILE INFO AREAS = INCLUDES 129 BYTES (+72 TO S40 IF DISK) FOR EACH FILE
000378% AYTES = ESTIMATED MEMORY REQUIRED TO RUN IF ALL FILES QFEN
221 SYMBOLIC RECORDS COMPILED AT 125,040 RECORDS PER MINUTE,

001001 IDENTIFICATION DIVISION,

001002 PROGRAM=ID, DMSCOBOLSAMPLE,

001003 ENVIRONMENT CIVISION,

001004 INPUT=0ULTPUT SECTION,

001005 FILE=CONTROL,

001006 SELECY CARD ASSIGN TO READER,

001007 SELECT MCNITOR=DMS ASSIGN TO PRINTER,

001008 DATA DIVISION,

001009 FILE SECTICN,

001010 FD CARD,

001041 01 CARD=REC, 0N0.00000646

001012 03 C~-TYPE PIC 9. [0A01) 20G,0000068

001013 03 Ce88ND PIC 9(9), [0002) 000,0000068

001014 03 C=GRO=PT=AVG PIC 999V99, [0003] CND,0000086

001015 03 C+SEX PIC X, 000,0000096

001016 03 Ce=AGE PIC ¢9, 0G0.0N0009R

001017 03 C=QTR PIC X(4), [6004] 200,0000102

001018 03 CoTYPECOURSE PIC 9, 200,0000110

001019 03 C=GRADE PIC XX, 000,0009112

001020 03 C=TITLE=PAPRER pIC X(30), N00.0000116

001021 03 CeNAME PIC X(24), [0008]) 000,0000176

001022 FD MONITOR~DMS,

001023 01 MONITOR=REC, [a006) nfhp,c000220

001024 03 MNANITOR=EXCEFTION PIC Xx(4), u0G, 00002286

001028 03 MNNITOR=STATUS=B PIC X(20), [6007) ¢9%0,0000232

[RL 03 MONITQOR®STATUS RPIC 2722988, 000,0000272

001027 03 MOMNITOR=VERR PIC X(20), [o0CB) 000,0000284

001028 03 MANITOR=SET PIC X(17), 000,3000324
Figure H—3. COBOL Program Example (Sheet 6)

P

61—-H

R B Ik I 2B 2 JE b I8 BN 2B 2% R b 2 R N B B JE IR B 3 N Nk b BF b JF BE 2 I b 25 2k B NE BN NBE IR IR B BE b 3 N |

*

001029
001030
001031
001032
001033

001034

03 MONITOR=STRUCTURE PIC 9¢3),
03 FILLER PIC X(&4),
DATA=RBASE SECTION,
bl:] UnTvy,
01 MASTER INVOKE MSF,
01 MSF DATASET DDL=NUMBER & 11343146 4/ 1/

ORDERING KEY MSFSET DDL-NUMBER
(SSNGY .,

02 SS8NO

02 NONAM

02 LMAME

02 MNAME

02 FNAME

02 CAMPUS=ADDRESS,
03 DORM
03 ROOM
03 PORDX
03 PHONE

g2 ND

02 DEGREE QCCURS 6 TIMES

02 TOTHRS

02 TOTGP

02 GRADE=POINT=AVG

02 MJR

02 AMJR

02 8SEX

02 SAGE

02 HOME=ADDRESS SUBSET DDL=NUMBER
4/ 1/75

DOL=NUMBER 10 §1143148
02 GUARTER DATASET DDL=NUMBER
URDERING KEY QSET DDL=NUMBER
~ (OTR),

03 QTR

03 QTTRHRS

03 QTRGP

19 11143146

75

4/ (/78

PIC 9(9) COoMme,

PIC 9 Co
PIC X(30
PIC X(30
FIC x(30

PIC X(

LA
)
).
e

6).

PIC 9(u) COMP,

PIC 9(4) COMP,

PIC 9(7) CoMP,
PIC 99 COMP,

PIC X(4),

PIC 999 COMP,
PIC 999 COvp,
PIC 9v99 COMP,
PIC 999 Co~xP,

PIC X(18
°IC 9 CO

3,
MP,

PIC 99 COMP,

15 11143146
1S 11343146

PIC X(

14 119434946

4/ 1/75 10

47 1775
4/ 1718

4),

PIC 99 COMP,
PIC 99 Comp,

03 CORSES DATASET ODL=NUMBER 16 11143146 4/ (/75
ORDERING KEY CSET DDL=NUMBER 16 11143146 4/ 1/7%
(TYPECOURSE), _
04 TYPECOURSE PIC 9 COvP,
04 GRADE PIC XX,
04 CRS SUBSET DDL=NUMBER 17 11143246 4/ 1/75 TO
UNIV=COURSES DDL=NUMBER 1 11243346 4/ 1775 .
04 YR PIC 99 COMP,
04 @ PIC 99 COMP,
04 GCRS SUBSET DDL=NUMBER 18 11143146 4/ 1/7% YO
UNIVeCOURSES DDL=NUMBER 1 11843048 4/ 1775,
04 GGD. PIC XX,
04 TITLE=OF=PAPER PIC X(30),
04 PPRGD PIC XX,

01 ADDRESS INVOKE ADR,

Figure H-3. COBOL Program Example (Sheet 7)

ADR

fooo9l

fooiol
[oeit]

toot2l

{0013

[ootdl

(0ois)

900.0000358
000,0000364

000,0000492

0000000462
000,0000501
000,0000502
000,0000562
000,0000822
000,0000682
000,0000682
000,0000694
000,0000698
000,0000702
000,0000710
000,0000712
000,0000760
0000000763
000,0000766
060,0060769
000,0000772
000,0000808
000,0000809

000.0000812

000,0000812
000,0000820
000,0000822
000,0000824

000,0000824
000,0000826

000,0000830
000,0000832

000,0000834
000,0000838
000,0000898

0¢—H

IS EEE R NI I I

001035
001036
001037
001038
001044
001048
001046
001047
001048
002066
002067
002068
002069
002070
002071

002072
002073

002074
00207%
602076
002077
002078
02079
002080
0020814
602082
002083
002084
002085
002086
002087
002088
0020R9
002090
002092

01 ADR DATASET DDL=NUMBER 10 °11843:46 4/ 1/75

ORDERING KEY 8SAD DDLe=NUMBER 20 11243246 4/ {/78
(Z1PC)

ORDERING KEY SSAD DDL=NUMBER 21 11143146 4/ /75
(SNQ)

ORDERING KEY S8TUAD DDL=NUMBER 22 11:43346 4/ (/78
(ZIPC, 8NO)

ORDERING KEY FACAD DDL=NUMBER 23 11343146 4/ /75
(ZIPC, 8NO)

ORDERING KEY ADMAD DDL=NUMBER 24 11843346 4/ §/75
(ZIPC, 8&NO),

. 02 FACULTY=STUDENT PIC 9 COMP,
02 SND PIC 9(9) CoMP,
02 ADLN OCCURS 9 TIMES PIC X(S4),
e Z1PC RIC 9(S) COMP,
02 PHON PIC 9(10) COmMP,

WORKING=STQRAGE SECTION,
77 TOOMANYEXCEPTIONS PIC 9(2) COMP,
77 TRUE PIC 9 COMP VALUE "i",
PROCEDURE DIVISION,
BEGIN=SECTION SECTION,
BEGIN,
OPEN OUTPUT MONITOR=DMS,
MOVE SPACES TO MONITOR=REC,

CPEN UPDATE UNIV ON EXCEPTION PERFORM STATUS=BOOLEAN,

BUILD=MSF,
OPEN INPUT CARD,
READ=CARD=LQOP,
READ CARD AT END GO EOJ,
KRITE MONITOReREC FROM CARD=REC,

IF C»TYPE = § GO 100«CREATE=MSF,

IF C=TYPE & 2 GO 200=CREATE=QUARTER,
IF C=TYPE = ¥ GO 300«CREATE~CORSES,
1F C-TYPE 2 U4 GO LOO=DELETE=ADR,

IF C=TYPE B § GO S00=CHANGE=MSF=NAME
1F C=TYFE b GO 600=CHANGE=GRADE,

DISPLAY C= TYPE WINVALID CARDYYFE" STOP RUN,
100=CREATE=MSF,

IF C=$SNQ LESS THAN 1 OR GREATER THAN 10

MOVE "C=88SNO COLS 2=10 MUST BE BRETWEEN 0 AND 11" To

MONITOR=REC

WRITE MCNITOR=REC GO READ=CARD~LOOP,

CREATE WASTER ON EXCEPTION PERFORM STATUS=R0DLEAN,

MCVE C=88ND TC SSNO,.

MOVE C=GRDwPT=AYG TO GRADE=POINT=AVG,

IF C=SEX = "m" COMPUTE S8EX = THUE,

MOVE C=#GE TO SAGE,

MOVE CeNBME TO LNAME,

STCRE MASTER ON EXCEPTION PERFORM STATUS=BUOLEAMN

GC T0 READ=CARD=LOOP,

Figure H-3. COBOL Program Example (Sheet 8)

[ootel

(0017)

000,0000902

000,0000%902

- 000,0000903

000,0000912
000,0001884
000,0001889

0000001500
000,000§902

000,0000000
000,0000000
000,0000000
000,0000084
0023,0000098
00050000454
000,0000454
000,0000538
000,0000538
200,0000788
200,0000982
Ngo,0001018
000,0001084
nee.0001090
G00.G00109¢
000,0001126
000,0001162
Q00,0003 198
000,0001560
000,0001560
w00,00015%6
000,0001636
N00,0001636
009,0002160
003,0002448
000,0002460
200,0002474
200,0002600
D00,0002662
0000002676
200,0002936

IC—H

002003
002094
002098
002096
002097
002008

002099

goaio00
003101}
003102
003103
003104
003105

2N0=CREATE=QUARTER,
MODTFY MSFSET AT SSNO = C=SSNO ON EXCERTION
IF DMSTATUSINOTFOUND) DISPLAY C=SSNO "NOT IN MSF" ELSE
PERFORM STATUSSBOOLEAN,
CREATE GUARTER ON EXCEPTION PERFORM STATUS=BOOLEAN,
MGVE C*GTR TO QTR,
STCRE GUARTER,
GO TO READ=CARD=LQOP,
300=CREATE~CORSES,
MODIFY MSFSET AT 8SNO = C=SSNQ ON EXCERTION
IF DMSTATUS(NQTFOUND) DISPLAY C-Ssnp M NOT IN MSFM" ELSF
PERFORM STATUS=BOOLEAN,
MODIFY GSET AT QTR = C-QTR

WARNING,,.(254) SEQUENCE ERROR

003108
003110
003141

003112

003113
003114
003115
003116

CREATE CORSES,
MOVE C=TYFECOURSE TO TYPECOURSE,
MOVE C=GRADE TO GGD,
STORE CORSES ON EXCEPTION PERFORM 8TATUS=BOOLEAN,
GO TO READ=CARD=LOOP,
400=DELETF=ADR,
MOVE “MODIFY MSFSET " TO MONITOR=VERB
MODIFY MEFSET AT 88NO ® (=SSN0 ON EXCEPTION
PERFORM STATUS=BOOLEAN STOP RUN,

WARNING,,, (254) SEQUENCE EFROR

003117
003118
003119

MODIFY ADDRESS VIA FIRST HOME=ADDRESS ON EXCEPTION

IF DMSTATUSINOTFOUND) GO TO READ=CARD=LOOP FELSE

PERFORM STATUS=BOOLEAN ELSE PERFORM REMOVE=ADDRESS,

MOVE "DE_LETE ADR " TO MONITOR=VERB

DELETE ADDRESS ON EXCEPTION PERFORM STATUS=RQOLEAN STOP RUN,
GO TO READ=CARD=_OOP,

WARNING,,,(254) SEGUENCE ERROR

003120
003121
003122
003123
003124
003428
003126
003127
003128
003129
003430
003131
003132
003133
003134
003138
003136
003137

003138

REMOVE=ADDRESS,
REMOVE CUPRENT raom HOME=ADDRESS ON EXCEPTION
PERFORM STATUS=BOOLEAN,

S00=CHANGE=MSF=NAME,
MODIFY MSFSEY AT SSNO s» (C=88NO,
MOVE | NAME T0O MONITOR=REC, WRITE MONITOR<REC,
MOVE "NAME IN MSF WAS CHANGED TO" TO MONITOR=REC,
WRITE MONITOR~REC,
MOVE C=NAME TO LNAME,
STORE MASTER,
MOVE LNAME TO MONITOR=REC, WRITE MONITOR=REC,
GO TO READ=CARD=LOOP,

600=CHANGE=GRADE,
MOVE “MODIFY MSFSET " TO MONITOR=VERR,
MODIFY MSFSET AT 8SNO .® C=SSNO ON EXCEPTION
PERFORM STATUS=BOOLEAN,
MOVE C=GRDePTwAYG TO GRADE=ROINT=AVG,
MOVE "STORE M8F " Y0 MONITOR=VERB,
STORE MASTER ON EXCEPTION PERFORM STATUS=BODLEAN,
GO Y0 READ=CARD=LCOP,

STATUS=BOOLEAN,
ADD ¢ TO TOOMANYEXCEPTICNS.

Figure H-3. COBOL Program Example (Sheet 9)

000,000298¢0
000,0002980
000,00603326
N00,0003682
000,0003708
000,0003994
000,0008008
000,0004212
000,G004230
000,000423¢0
000,0004576
006,0004940
N00, 0004966

000,0005256
000,0005460
000,00055¢22
000,0005584
000,0005870
000,0005888
200,0005888
000,0005888
000,0006392

000,0006458
000,0006766
000,0006830
000,0006900
000,0006900

000,0007384

000,0007402
000,0007402
000,0007710
000,0007736
000,0007753
000,0008043
000,0008213
0000008443
000,0008599
000,0008613
000,0008817
000.0008987
000,0009008
000,0009005
000,0009163
000,0009509
000,0009535%
000,0009549
000,0009707
000,0009993
000,0010011}
000,00100L1

CC—H

000 00001211

T A
BYTE LENGTH

000003

Figure H-3. COBOL Program Example (Sheet 10)

CODEFILE RELATIVE DISK ADR

IENNENNENEENENERENNENRNNNNENNENENJIN;]

L]

"

"

"

003139 IF TOCMANYEXCEPTIONS GREATER THAN 40
003140 DISPLAY TOOMANYEXCEPTIONS "18 TOO MANY EXCEPTIONS" STOP RUN,
003141 MOVE ALL "a% TO MONITOR=EXCEPTION,
003142 IF DMSBTATUS (NOTFOUND) THEN MOVE "NOT FOUND
003143 70 MONITOR=8TATUS=B, v
003144 IF DMETATUS (DUPLICATES) THEN MOVE "DUPLICATES
003145 TO MONITOR=STATUS=B,)
003146 IF DMSTATUS (DEADLOCK) THEN MDVE "DEADLOCK
003147 TO MONITCR=8TATUS=B,
003148 IF DMSTATUS (DATAERROR) THEN MQOVE "DATA ERROR
003149 YO MONITOR=STATUS=8, ,
003150 IF. DMSTATUS (NOTLOCKED) THEN MOVE "NOT LOCKED
003151 TO MONITOR=8TATUS=B,
003152 IF- DMSTATUS (KEYCHANGED) THEN MOVE "KEY CHANGED
003153 TO MONITCR=8TATUS»B,
003154 IF DMSTATUS (SYSTEMERROR) THEN MOVE "SYSTEM ERROR
003188 TO MONITOReSTATUS=B,
003156 IF DMSTATUS (IOERROR) THEN MOVE "10 ERROR
0031587 TO MONITOR=8TATUS=B,
003158 IF DMSTATUS (LIMITERROR) THEN MOVE N IMIT ERROR
003159 TO MONITOR=STATUS=B,
003160 IF DMSTATUS (OPENERROR) THEN MOVE "OPEN ERROR
oou1et TO MONITOR=STATUS=8,
004162 IF DMSTATUS (CLOSEERROR) THEN MOVE "CLOSE ERROR
004163 T0 MONITCR=STATUS=B,
004164 IF DMSTATUS (NORECORD) THEN MOVE "NQ RECORD
004168 TO MONITOR=STATLS=8,
004166 IF DMSTATUS (INUSE) THEN MOVE "IN USE
004167 T0 MONITOR=STATLS=B,
004168 WRITE MONITOR=REC,
004169 MOVE SPACES TO MONITOR=REC,
004170 EOJ,)
00417} IF TOOMANYEXCEPTIONS = 0 DISPLAY "NO DM EXCEPTIONY,
004172 CLOSE UNIV ON EXCEPTION STOP RUN,
004173 STOP RUN,
9900969 END=OF=J0OB,
c. 0 D E p I ¢ 1T 1 O N R Y

BYTE LENGTH CODEFILE RELATIVF NISK ADR

S0 808 R8s 09 0200800000008 0R0RRRIASLEES
000 00001750 000081

00001750 TOTAL CODE
D A p 1 c T 1 0 N A R

000,001002%
000,001002$
000,0010475
000,0010599
000,0010663
000,0010789

000,0010853
000,0010979
000,0011043
000,0011169
000,0011233
000,0011359
000,0011423
000,0011549
000,0011613
000,0011739
000,0011803
000,0011929
000,0011993
000,0012119
000,0012183
000,0012309
n00,0012373
000,0012499
000,0012563
000,0012689
000,0012753
000,0012879
000,0012943
000,0013069
000,0013225
000,0013239
000,0013256

009,0013586
000,0013956
000,0013996

€C—H

P A T H D I € T 1 0 N A R ¥
INVOKED STRUCTURE# HWHIMMISS MM/DD/YY

[N NN NN w AP O OGO NSO [N NN N] IFE R RN EX]
000 FALSFE 0000 00100300 00/00/00
00! TRUE 0006 11043846 04701775
002 FALSE 0019 11143806 04701775
003 FALSE 0016 11143346 04701775
004 TRUE 0010 11143246 04/01/75
005 FALSE 0015 119643246 04/01/75
006 FALSE 0016 11163286 04701775
007 FALSE 0617 11163246 04701775
008 TRUE 0001 11943846 04/01/75
009 FALSE 0018 11143546 04/01/75
010 FALSE 0020 11143046 04701775
011 FALSE 0021 11143386 04/01/75
012 FALSFE aoe2 11143286 04701775
013 FALSE 0023 111433086 04701775
014 FALSE no2d 11143346 QUL/01/7S
S =M A C H I N E P A R A % E T E R 8 (s C R A T C K P & D)

LENBm9, SEGR=0, DISPR=i1l, COPXBmS, COPB=z2d4, D.E.Fz354, RDISPR=zI4
BASE RELATIVE ADDRESSESS
DATA=SEGMENT=0=616, COF=TABLE=40, STACK=8681 (BIT LENGTHS1000)

P R 0 6 R & » P AR A M E T E R B L 0 € K

FIRSTmEXECUTABLE=INSTRUCTION=0,0

INTERPRETER=NAME=CORDL /INTERP

STATIC=CORE=9688 BITS

DYNAMIC=CORE=Q RITS

DATA DICTIOWARY STARTS AT CODEFILE SEGMENT 2, 1 ENTRY

CODE DICTIONARY STARTS AT CODEFILE SEGMENT 10, 1| ENTRY

FILE PARAMETER BLOCKS START AT CCDEFILE SEGMENT 21, 2 ENTRIES
PATH DICTIONARY STARTS AT CODEFILE SEGMENT 23, 15 ENTRIES

LAST ERROR AT SgQUENCF NUMBER « 3 WARNINGS 3 SEQUENCE ERRORS,
whwxw COMPILATION COMPLETE
ELAPSED TIME t 01 MINUTE, S8 SECONDS
PROGRAM REQUIRES 23 DISK SEGMENTS OF {80 BYTES EACH,
MEMORY REQUIREMENTS
0001750 BYTES = LARGESY CODE SEGMENT
0001211 BYTES = BASE~TO~LIMIT AREA
0000315 RYTES = OICTIONARIES AND RUN STRUCTURE
0000505 BRYTES = FILE SUFFERS & FILE INFO AREAS = INCLUDES 129 BRYTES (+72 TO S40 IF DISK) FOR EACH FILE
0003781 RYTES = ESTIMATED MEMOPY REQUIRED 70 RUN IF ALL FILES QPEN
220 SYMBOLIC RECORDS COMPILED AT 111,840 RECORDS PER MINUTE,

Figure H-3. COBOL Program Example (Sheet 11)

'UNIV DATA BASE IDENTIFIERS

ADDRES
ADLN

ADMAD

ADR
AGE
AMIR
AUTHR

BOOKS

Points to the ADR data set which contains the address of a
PROFESSOR.

A record (ALPHA data item) in ADR data set which may contain
up to nine lines of addresses.

A subset pointing to the records in ADR that are administrators,
and are arranged by zip code, social security number sequence.

A common address file containing address records of students,
professors, and administrators.

A NUMERIC data item which contains the age of university
personnel.

An ALPHA data item which contains the name of the subject a
student is taking as a major.

An ALPHA data item that contains the name of an author of a book
which is used in a course.

An embedded data set. Since the quantity of books used in a
course may vary, an embedded set is defined to avoid specifying
one occurrence of a field that occurs several times. An embedded
UNORDERED data set is useful when the number of records per

~ parent record is small. In this case, the parent record is a record in

BUILDING

CAMPUS-ADDRESS

UNIV-COURSES. Most courses never use more than two or three
books. An exception to this would be an English literature course.

A NUMERIC data item which identifies the building on campus
where a specific course is taught.

A GROUP data item containing both ALPHA and NUMERIC

- information of a student’s address.

CLASS-SIZE

CORSES

COURSENAME

COURSES

CRS-NAME

CRS-NO

H-24

A NUMERIC data item with a field length of two digits which
specifies the number of students currently enrolled in a course.

An embedded data set within QUARTER data set. Refer to
QUARTER. Contains records of courses completed during any
given quarter by a student.

The name of a course.

COURSES points to UNIV-COURSES data set, and indicates the
courses that are taught by a professor. A professor normally
teaches a maximum of eight different courses.

A GROUP level item which identifies a record of the UNIV-
COURSES data set.

The symbolic key used to retrieve a record in the UNIV-COURSES
data set. CRS-NO contains the number that has been arbitrarily
assigned to a course.

CSET

DAYS-OF-WEEK

DEGREE

DEPARTMENT

DORM

DPT

FACAD

FACULTY-STUDENT

FIRSTNAME

FLAG-BITS

FNAME

FRI

GCRS

GGD
GRADE-POINT-AVG
HOME-ADDRESS
HOURSCRDT

LASTNAME

Enables the retrieval of a record from the CORSES data set.

A string of digits indicating the days of the week a course is being
taught. Each digit in the string has a unique name that can be
referenced as a single-digit number.

An ALPHA data item indicating the number of degrees (maximum
limit is 6) a student may have previously earned. Refer to the
NUMERIC data item ND.

An ALPHA data item indicating the department within the university

in the UNIV-COURSES data set.
An ALPHA data item which is part of a student’s campus address.

A data item within the UNIV-PERSONNEL data set. This data
item defines the department of which university personnel are a
part (Science, Mathematics, or Foreign Language).

A subset pointing to the records in ADR that are professors,
and are arranged by zip code, social security number sequence.

Denotes the type of address record in the ADR data set as follows:

1. Indicatesa studen’;.
2. Indicates a professor.

3. Indicates an administrative person.
An ALPHA data item in the UNIV-PERSONNEL data set which
contains the first name of a professor. This data item can have a
maximum length of 10 characters.
A string of digits that is currently undefined within the data base.
In the future, the university may want to establish some FLAG
FIELDS and, at that time, this space could be used.

An ALPHA data item containing the first name of a student, and
which is specified to be not greater than 30 characters in length.

Indicates the course is offered on Friday.

Points to a record in the UNIV-COURSES data set.
Grade received for an Undergraduate course.
Self-explanatory.

Points to a record in the ADR data set. See ADR.

The number of hours of credit that can be earned by successfully
completing this course.

The last name of a professor, and is an ALPHA data item which is
in the UNIV-PERSONNEL data set.

LC ' 3 ~ Library of Congress number for a book used in a course.

LEVEL A numeric item indicating the level of a course, e.g., Graduate,
Undergraduate, Advanced, or Elementary.

LNAME Last name of a student.

MON Indicates the course is offered on Monday.

MSF A master file of students.

MSFSET Retrieve a record from the MSF data set, using symbolic key of
SSNO (Social Security Number). See SSNO.

NAME This is a GROUP item. It is the name of a person working for the
university. It is also a key of retrieval. See U-P-SET.

ND Number of degrees previously earned by a student. See DEGREE.

NONAM Number of middle names for a student. (Only the first one is

: carried in the data base.)

NOPROF The number of different professors that teach a given course.

PHON Phone number at HOME-ADDRESS.

PHONE Phone number at student’s CAMPUS-ADDRESS.

POBOX Post office box (mail box) of student’s CAMPUS-ADDRESS.

PPRGD The grade the student earned on a paper written for a graduate
course.

PROFESSOR This points to the professor who teaches this course. There will
typically be a maximum of three professors teaching this course.

Q Quality points which are assigned to graduate course. Quality
points may be different depending on the student.

QSET Retrieve a record from QUARTER data set.

QTR Identifies the quarter. For example, SU72 would be summer of
1972.

QTRQP The total quality points earned by formula=grade X HOURSCRDT.
Grade must be converted to numeric value first.

QTTRHRS The total credit hours successfully completed by student during a
particular quarter.

QUARTER An embedded data set embedded within MSF. Contains a record
for each quarter that a student has attended the university.

RANK Associate professor, full professor, or department head.

ROOM Part of student’s CAMPUS-ADDRESS.

H-26

ROOM NUMBER

SAGE
SALARY
SAT

SEX
SNO

SSAD

SSEX
SSNO
SSNUM

SS-U-P

STUAD

SUPR

THURS

TITLES
TITLE-OF-PAPER
TOTHRS

TOTQP

TUES
TYPECOURSE
UNIV-COURSES

UNIV-C-SET

UNIV-PERSONNEL

U-P-SET

This gives the location of where a course is taught (e.g., which
room in a building). See BUILDING.

Student’s age.

Normal remuneration.

Indicates course is offered on Saturday.

Male or female.

Social Security of student administration or faculty number.

Retrieve a record in ADR data set using symbolic key of SNO.
See SNO.

Male or female student. 1 if male student; O if female.
Social Security Number of a student.
Social Security Number. See also SS-U-P.

Retrieve a record from UNIV-PERSONNEL using symbolic key of
SSNUM (Social Security Number). See SSNUM.

A subset pointing to the records in ADR that are students, and are
arranged by zip code, social security number sequence.

Points to supervisor (who is also a professor) of this professor.
Indicates course is offered on Thursday.

The title of a book used in a course.

Descriptive title of paper written by a student for a graduate course.
The total credit hours student has attended.

The total quality points earned by a student.

Indicates course is offered on Tuesday.

Symbolic key of CORSES data set. See CSET.

The courses offered by this university.

Retrieve a record from UNIV-COURSES using CRS-NO as
symbolic key. .

Data set containing a record for each person working for the
university.

Retrieve a record from UNIV-PERSONNEL using symbolic key
of NAME. See NAME.

H-27

WEDS
YR

Z1PC

Indicates the course is offered on Wednesday.

The year a particular graduate course was taken.

Zip code for ADR.

cut along dotted line

cut along dotted line

BURROUGHS CORPORATION

DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: _B 1700 SYSTEMS DATA

_MANAGEMENT SYSTEM Il

(DMS 1) Reference Manual

CHECK TYPE OF SUGGESTION:
[JADDITION

[]DELETION

[JREVISION

FORM:
DATE:

1089794

January, 1976

[JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM:

NAME
TITLE
COMPANY
ADDRESS

DATE

STAPLE

FOLD DOWN SECOND FOLD DOWN

- - - ., = - AR . 5 R - G S S G . G W G WS N D G D D e G . - e W . W D G S P S LD G R GRS S GO R S G5 . G e W - - o

No

Postage
Will Be Paid

by
Addressee

' Postage Stamp
Necessary

R If Mailed in the
United States

BUSINESS REPLY MAIL
First Class Permit No. 1009; El Monte, CA. 91731

Burroughs Corporation
P. O. Box 142
El Monte, CA. 91734

attn: Publications Department
Technical Information Organization, TIO — West

> > > - > > - - — - ———— - - - - —— - - — - — - - - — - - -~ - - - . - - - —— - T - - - - - -

FOLD UP FIRST FOLD UP

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	E-01
	F-01
	G-01
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	H-27
	H-28
	replyA
	replyB
	xBack

