Burroughs @

B 1000 Systems
COBOL74

REFERENCE MANUAL

RELEVANT TO MARK 9.0 RELEASE

PRICED ITEM

rinted in U.S.A,

Burroughs @

B 1000 Systems

COBOL74

REFERENCE MANUAL

PRICED ITEM

RELEVANT TO MARK 9.0 RELEASE

Burroughs Corporation, Detroit, Michigan 48232

Printed in U.SLA,

June 1981 1108883

“The names used in this publication are not of individuals living or
otherwise. Any similarity or likeness of the names used in this publi-
cation with the names of any individuals, living or otherwise, is purely
coincidental and not intentional.”

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility. financial
or otherwise, -is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this document should be addressed directly
to Burroughs Corporation, P.O. Box 4040, El Monte, California 91734,
Attn: Publications Department, TIO—West.

PUBLICATION
Burroughs 0 CHANGE
NOTICE

PCN No.: _1108883-001 Date: _September 1982

Publication Title: -B 1000 Systems COBOL74 Reference Manua] (June 1981)

Other Affected Publications: None

Supersedes: N/A -

Description:

This PCN is relative to the Systems Software Release 10.0 and includes improvements to the
manual as well as 10.0 enhancements.

Replace these pages Add these pages

iii 8-1 thru 8-11 5-10A
vii thru xv 9-5 thru 9-23 5-12A
Xix thru xxi 10-9 7-80A
2-21 11-3 7-90A

9 thru 5-19 11-7 7-126A thru 7-126C
2-7 ! A-1 7-130A
6-35 A-5 8-2A
6-39 A9 966§A

-65 thru 6-67 B-3 10-
f?_gf " B-11 thru B-13 1194
7-41 thru 7-51 B-17 thru B-21 B-12A

B-25 B-20A

7-71 thru 7-73
7-79 thru 7-81 D-1 B-26A

- - D-15 F-1 thru F-5
7-89 thru 791
793 D-19 G-1 thru G-5

7-107 thru 7-111 E-7
7-125 thru 7-129 Index 1 thru 17

Copyright © 1982, Burroughs Corporation, Detroit, Michigan 48232

1108883-001

Printed in U.S. America iii

Page

Title

i

iii thru iv

v thru vi

vii thru xvi
XVii

XVviil

xix thru xxi
XXii

2-1 thru 2-20
2-21 thru 2-22
2-23

2-24

3-1 thru 3-5
3-6

4-1 thru 4-3
4-4

5-1 thru 5-8
5-9 thru 5-10
5-10A thru 5-10B
5-11 thru 5-12
5-12A

5-12B

5-13 thru 5-20
6-1 thru 6-6
6-7 thru 6-8
6-9 thru 6-34
6-35 thru 6-36
6-37 thru 6-38
6-39 thru 6-40
6-41 thru 6-64
6-65 thru 6-67
6-68

7-1 thru 7-30
7-31 thru 7-32
7-33 thru 7-40
7-41 thru 7-52
7-53 thru 7-70
7-71 thru 7-74
7-75 thru 7-78

iv

B 1000 Systems COBOL74 Reference Manual

LIST OF EFFECTIVE PAGES

Issue

Original
Original
PCN-001
Original
PCN-001
Original
Blank
PCN-001
Blank
Original
PCN-001
Original
Blank
Original
Blank
Original
Blank
Original
PCN-001
PCN-001
PCN-001
PCN-001
Blank
PCN-001
Original
PCN-001
Original
PCN-001
Original
PCN-001
Original
PCN-001
Blank
Original
PCN-001
Original
PCN-001
Original
PCN-001
Original

Page

7-79 thru 7-80
7-80A

7-80B

7-81 thru 7-82
7-83 thru 7-88
7-89 thru 7-90
7-90A

7-90B

7-91 thru 7-94
7-95 thru 7-106
7-107 thru 7-112
7-113 thru 7-124
7-125 thru 7-126

7-126A thru 7-126C

7-126D

7-127 thru 7-130
7-130A

7-130B

8-1 thru 8-2
8-2A thru 8-2B
8-3 thru 8-11
8-12

9-1 thru 9-4
9-5 thru 9-6
9-6A

9-6B

9-7 thru 9-23
9-24

10-1 thru 10-8
10-8A thru 10-8B
10-9 thru 10-10
10-11

10-12

11-1 thru 11-2
11-2A

11-2B

11-3 thru t1-4
11-5thru 11-6
11-7

11-8

Issue

PCN-001
PCN-001
Blank
PCN-001
Original
PCN-001
PCN-001
Blank
PCN-001
Original
PCN-001
Original
PCN-001
PCN-001
Blank
PCN-001
PCN-001
Blank
PCN-001
PCN-001
PCN-001
Blank
Original
PCN-001
PCN-001
Blank
PCN-001
Blank
Original
PCN-Q01
PCN-001
Original
Blank
Original
PCN-001
Blank
PCN-001
Original
PCN-001
Blank

Page

A-1 thru A-2
A-3 thru A-4
A-5 thru A-6
A-7 thru A-8
A9

A-10

B-1 thru B-2
B-3 thru B4
B-5 thru B-10
B-11 thru B-12
B-12A

B-12B

B-13 thru B-14
B-15 thru B-16
B-17 thru B-20
B-20A

B-20B

B-21 thru B-22
B-23 thru B-24
B-25 thru B-26
B-26A

B-26B

C-1 thruC-12
D-1 thru D-2
D-3 thru D-14
D-15 thru D-16
D-17 thru D-18
D-19 thru D-20
D-21

D-22

E-1 thru E-6
E-7 thru E-8
E-9 thru E-71
E-72

F-1 thru F-5
F-6

G-1 thru G-5
G-6 :

1 thru 17

18

Issue

PCN-001
Original
PCN-001
Original
PCN-001
Blank
Original
PCN-001
Original
PCN-001
PCN-001
Blank
PCN-001
Original
PCN-001
PCN-001
Blank
PCN-001
Original
PCN-001
PCN-001
Blank
Original
PCN-001
Original
PCN-001
Original
PCN-001
Original
Blank
Original
PCN-001
Original
Blank
PCN-001
Blank
PCN-001
Blank
PCN-001
Blank

Section

1108883

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS

Title
FOREWORD .
Burroughs Extensions To ANSI 74 COBOL .
Acknowledgement
INTRODUCTION

COBOL74 Advantages
COBOL.74 Concepts
Organization . .
PROGRAM ORGANIZATION
COBOL74 Source Program Divisions .
Required Headers . . .
LANGUAGE CONCEPTS .
General .
Language Descrlpuon Notatlon
Key Words
Optional Words
Generic Terms .
Braces
Brackets
Level-Numbers
Ellipsis . .
Format Punctuatlon . .
Special Characters in Formats
Character Set .
Characters Used for Words
Punctuation Characters
Editing. Characters
Characters Used in Arlthmetlc Expressmns
Characters Used in Relation Conditions .
Language Structure .
Separators
Character-Strings
Definition of Words
Types of Words
Nouns .
File-Name .
Record-Name
Data-Name
Condition-Name
Mnemonic-Name
Index-Name
Paragraph-Name
Section-Name
Other Categories
Verbs . . .
Reserved Words
Key Words
Connectives
Optional Words

Page

Xvii
Xxvii
Xvii
Xix
XiX
Xix

) oo o R
DO DD N et bt ot bk ok ot et N et b

NNNI\)N!})NNNN'—"—"—‘

2-2

Section

2 (Cont)

vi

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Title Page

Figurative Constant e 2-8
Special Registerso 2-10
Special-Character Words 2-10
Literals . . . e e e e s e e e e 2-10
Numeric theral e e e e e e e e s e e e 2-10
Nonnumeric Literal L 2-10
Hexadecimal Literals o 00 2-11
Logical Record and File Concepts 2-13
Physical Aspects of a File ... 2-13
Conceptual Characteristics of a File 2-13
Record Concepts L oo e 2-13
Concept of Levels L L oo e 2-13
Level-Numbers . . e e e e e e e e e 2-14
Concept of Classes of Data e e 2-14
Algebraic Signs . . . s s e 2-15
Standard Alignment Rules e e 2-15
Uniqueness of Reference o000 2-16
Identifier L o 2-16
Condition-Nameo 2-17
Qualification L L e e e e e 2-18
Subscripting L L L Lo e 2-20
Indexing . e e e e e 221
Explicit and ImpllClt Specmcatlons 2-22
Explicit and Implicit PROCEDURE DIVISION References 2-22

Explicit and Implicit Transfers of Control 2-22

Explicit and Implicit Attributes 2-23
CODING FORM . 3-1
General . 3-1
Field Definitions ' 3-1

Sequence Area (Record Posmom] 6) 3-1

Indicator Area (Record Position 7) . 3-1

Area A (Positions 8 through 11y . 3-3

Area B (Positions 12 through 72) 3-3

Right Margin (Position 72) 3-3

Identification (Positions 73 through 80) 34
Blank Lines . . . 34
Punctuation 34
Sample Coding 34
IDENTIFICATION DIVISION 4-1
General . . 4-1
IDENTIFICAT ION DIVISION Structure 4-1

PROGRAM-ID Paragraph 4-1

DATE-COMPILED Paragraph . . . 4-2
Coding the IDENTIFICATION DIVISION 4-2
ENVIRONMENT DIVISION . 5-1
General . . . 5-1
ENVIRONMENT DlVISION Orgamzatmn 5-1

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

5 (Cont) ENVIRONMENT DIVISION Structure .
CONFIGURATION SECTION . . .
SOURCE-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph
SPECIAL-NAMES Paragraph .
INPUT-OUTPUT SECTION
FILE Concepts
Sequential 1-O .
Relative 1-O .
Indexed I-O
Queue Files .
Queue File Family .
Remote Files
Port Files
Sort-Merge . .o
Relationship with Sequentlal IO .
Organization e
Access Mode
Sequential Files
Relative File .
Indexed Files
Current Record Pointer
[-O Status
Status Key | .
Successful Completion
At End
Invalid Key
Permanent Error
Burroughs-Defined Condmon
Status Key 2
Short Block
Data Error . .
Q-Empty or No Data .
Q-Full or No Buffer
Timeout .
Break on Output
Unexpected [-O Error
Valid Combinations of Status Keys I and 2
INVALID KEY e e
AT END . . .
LINAGE- COUNTER .
FILE-CONTROL Paragraph
File Control Entry .
I-O-CONTROL Paragraph . .
Coding the ENVIRONMENT DIVISION
6 DATA DIVISION e
General . . .
DATA DlVlSlON Orgamzatlon

1108883-001

Page

5-1

vii

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title Page

6 (Cont) DATA DIVISION Structure « .« « « « o v v vt e . 62
FILE SECTION 63

Record Description 63

File Description Structure . . . e . |
Sort-Merge File Description Structme Y s .

Coding the FILE SECTION o v v v v v v v . 6-G
BLOCK CONTAINS o e e e 6-§
CODE-SET« o o s e e e e e 6-9
DATA RECORDS 610
LABEL RECORDS v v v v i i v v v oo 61
LINAGE . . . Y S I
LINAGE- COUNTER Y 5
RECORD CONTAINS i v v v v 6186
VALUE OF e S v
DATA DESCRIPTION STRUCTURE O < &
BLANK WHEN ZERO v oo 621
DATA-NAME or FILLER 62
JUSTIFIED « .« o v v . 623
LEVEL-NUMBER 624
OCCURS i o i i h e s d d st d s s d s e 626
PICTURE v v v i i i i i it v i v o . 629
REDEFINES 638
RENAMES o i i e
SIGN . . . T - 24
SYNCHRONIZED D o
USAGE s e e . b4s
VALUE e . S Y
Condition-Name Rules ... O o £
Data Description Entries Other Than Condmon-Names e o &)

WORKING-STORAGE SECTION 649
WORKING-STORAGE Structure « . « v+« « . . . 649
Noncontiguous WORKING-STORAGE 649
WORKING-STORAGE Records 650
Initial Values L. L ..o .. 650
Condition-Names . . . Y . (4]

Coding the WORKING-STORAGE SECTION e e e e e e e e 650

LINKAGE SECTION . . . Y o]
LINKAGE SECTION Structure Y . . ¥ 3
Noncontiguous LINKAGE Storage Y . o, % |
Linkage Records Y X % |
Initial Values . . . Y o X]

Coding the LINKAGE SECTION Y X X

COMMUNICATION SECTION v v v v ... 658
Communication Description Structure 658

7 PROCEDURE DIVISION o o v v v v v v v o 7-1

General . . . e e e e e e e e e e e 7-1

Rules of Procedure Formatmn e e e e e e e e e e e 7-1

Section

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Title

7 (Cont) Execution of the PROCEDURE DIVISION
PROCEDURE DIVISION Structure
PROCEDURE DIVISION Header
PROCEDURE DIVISION Body .
Statements and Sentences
Conditional Statements
Conditional Sentences .
Compiler-Directing Statements
Compiler-Directing Sentences

Imperative Statements .

Imperative Sentences
Control Relationship Between Procedures
Paragraphs

Se

Sections
gmentation

Program Segments
Fixed Portion .
Independent Segments .

Segmentation Classification .

Segmentation Control
Structure of Program Segments

Segment-Numbers

SEGMENT-LIMIT

Restrictions on Program Flow

The ALTER Statement . .
The PROCEDURE DIVISION Header
DECLARATIVES

USE Declarative .- . . .
USE FOR DEBUGGING Declaratrve

Arithmetic Expressions
Arithmetic Operators

Formation and Evaluation Rules .
Intermediate Data Item

Conditional Expressions

1108883-001

Simple Conditions
Relation Condition .
Comparison of Numeric Operands
Comparison of Nonnumeric Operands .

Comparisons Involving Index-Names and/or Index Data Items

Class Condition
Condition-Name Condmon (Condmonal Vdrlable)
Switch-Status Condition
Sign Condition .
Complex Conditions
Negated Simple Condmons . .
Combined and Negated Combined Condmons
Abbreviated Combined Relation Conditions

7-10
7-12
7-12
7-13
7-14
7-14
7-14
7-15
7-15
7-15
7-17
7-18
7-18
7-18
7-19
7-19
7-20
7-20
7-21
7-21
7-22
7-22
7-23
7-23
7-25

ix

Section

7 (Cont)

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Title

Condition Evaluation Rules .

Common Phrases

ROUNDED Phrase .
SIZE ERROR Phrase . . .
CORRESPONDING Phrase .

General Rules For Statement Formats

Arithmetic Statements .
Overlapping Operands .

Multiple Results in Arithmetic Statements .

Incompatible Data
Numeric Functions .
OFFSET Function

Categories of Verbs .

Specific Verb Formats

ACCEPT . . .
ACCEPT MESSAGE COUNT
ADD

ALTER

CALL

CANCEL .
CLOSE
COMPUTRE
COPY

DELETE .
DISABLE
DISPLAY
DIVIDE .
ENABLE .
EXIT .
EXIT PR()GRAM
GO TO

IF
INSPECT .
MERGE

MOVE . .
Valid Move Combmatlons
MULTIPLY .
OPEN
PERFORM
READ
RECEIVE
RELEAS)E
RETURN .
REWRITE
SEARCH

SEEK

SEND

SET .

7-37
740
7-41
7-44
7-45
7-50
7-51
7-54
7-55
7-56
7-57
7-59
7-60
7-61
7-62
7-63
7-64
7-71
7-74
7176
7-78
7-79
7-83
7-90
7-94
7-95
7-96
7-97
7-99

. 7-103

7-104

. 7-106

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title Page

7(Cont) SORT1108
STARTo e s T2

STOP s 114

STRING10
SUBTRACT17118
UNSTRING o s 121

USE« . . .o e e s 1125

WAIT o o o e s e e e e e e e e s 74126

WRITE . . . e e e e e e e oo ... T-126B

Mass and Non- Mass Storage Flles N A 0.4

Non-Mass Storage Files .. 7-128

Mass Storage Files 17129

Sequential Files: 0000007129

Indexed Files: 130A

Relative Files:7-130A

8 FILE ATTRIBUTES 0 oo .. 8-1

General . . . e e e e e e e e s s e 8-1

File Attribute Idenuﬁer e e e e e e e e e e e e e 8-1

CHANGE s e s e e e e e e 8-3

VALUE OF e e e e e e e 8-4

File Attribute-Name Descnptlons e e e e e e e e e 8-5

9 DATA BASE MANAGEMENT« .« .. 9-1
General . . e e 9
DATA-BASE SECTION e e e e 9

Data Base Structure L L e 9-2
Operations on Data Items e e e e e e e e e 9

Operations on Structures e e e e e e 9-3

Qualification L L oL oo e 9-3

Selection Expressions e i i e o o ... 94

Set Selection Expression 95

Key Condition . . . e,

Simple Key Condmon e)

Complex Key Condition 96

Generalized Selection Expression 96

Exception Type . . . OO ¢ M
BEGIN-TRANSACTION P« 3% 1)
CLOSE s a9
CREATE o e e 9 12
DELETE . . . e N K
END- TRANSACTION O« 3 I
FIND 95
FREE 916
INSERT s s 90T
LOCK Lo s s s s 948
OPEN 999
RECREATE92
REMOVE L9210

1108883-001 Xi

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

9 (Cont) STORE
10 DEBUG

General .

Language Concepts .
DEBUG-ITEM .
A Compile-Time Switch
An Object-Time Switch
Debugging Lines

ENVIRONMENT DlVISION .
WITH DEBUGGING MODE .

PROCEDURE DIVISION
USE FOR DEBUGGING

Debugging and Diagnostic Facilities
Compiler Limits . . .
I COBOL74 COMPILER CONTROL
General
Input .
Library Flles
Output .
New Source Language Flles
Output Listings
Generated Code
Compilation Source File .
? COMPILE Record
Label Equation Records
Source Program .
Increasing Program Code Flle S:zes

Compiler Control Images .
Boolean Expressions and User Def ned Optlons
CCI Options . ..

Normal Boolean Opnons . .
Miscellaneous Compiler Control Optlons

Reserved Words
B
COBOL74 Syntax Summary . .
General Format For IDENTIFICATION DIVISION
General Format For ENVIRONMENT DIVISION
General Format For DATA DIVISION .
General Format For Data Description Entry .
General Format For PROCEDURE DIVISION .
General Format For Verbs
General Format For Data Base Manayement DA’I‘A DlVISION .

General Format For Data Base Management PROCEDURE DIVISION .

General Format For Data Base Management Verbs .
C COBOL74 GRAPHICS

xii

rage

9-22
10-1
10-1
10-1
10-1
10-1
10-1

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title Page

D GLOSSARY o s s s e e e e D-1
Introduction L L L Lo e e e e e D-1
Definitions . . e e D-1

E COBOL74 S- LANGUAGE e e e e s s e E-1
General e e e e e e e e e e E-1
S-Language Programs e e e e e s e s e E-1
Container Size o o E-3
S-Instruction Formato oo E-3

S-Operators oo e e e e e E-3
COP and OPND e e E-3
Short COP . . . e e e e e e E4
Long COP with No Segment Number e e e e e e e e e E4
Long COP with Segment Number E4
COBOL74 In-Line Descriptors « « .« « « o E-5
Implementation Strategy o 0o 0 e E-5

MULTIPLE-ENTRY-FLAG E6
SHARED-DATA-FLAG E-6
LITERAL-FLAG Es6
Data Length E-6
Segment Number E-6
Displacement . . e E-6
DEPENDING- FLAG e e e e e e e e e s e e E-6
Depending Attributeso E-6
SUBSCRIPT-FLAG o 0 0 e E-7
Subscripting E1
Indexing . . e e s E-7
In-line COP Entry Format e s e e E-8
Instruction Set L L L L Lo e e e E-9
Arithmetic L L L e e e e E-9
Data Movement L. E-9
Branching . . . e e e s E-9
Conditional Branchlng O -3 { ¢
Miscellaneous . . . T 28 N0
Character String Hdndlmg . <28 (4]
Interprogram Communication +« « v .+« E-10
Optimized Operation Codes « . « « v . o EIN
CPAo s s s B
CPN e s s B
CPZoy B
INC s s B
INCIo E
MVA sy oo B2
MVN . . . s sy E2
MVZ T =15
Arithmetic Operands and Instrucuons O -
ADD THREE ADDRESS+ E-l4
SUBTRACT THREE ADDRESS EI5
ADD TWOADDRESS+ E16

1108883-001 xiii

Section

B 1000 Systems COBOL.74 Reference Manual

TABLE OF CONTENTS (Cont)

Title

E (Cont) SUBTRACT TWO ADDRESS

Xiv

MULTIPLY .

DIVIDE

DIVIDE SPECIAL

INCREMENT BY ONE .

DECREMENT BY ONE .
Data Movement Operands and Instructlons

MOVE ALPHANUMERIC .

MOVE SPACES .

MOVE NUMERIC

MOVE ZEROS

CONCATENATE .
Edit Instructions and Edit Mlcro-Operalors

EDIT . . .

EDIT WITH EXPLICIT MASK

EDIT MICRO-OPERATORS

MOVE DIGIT

MOVE CHARACTER .

MOVE SUPPRESS .

FILL SUPPRESS . . .

SKIP REVERSE DESTINA FION

INSERT UNCONDITIONALLY

INSERT ON MINUS

INSERT SUPPRESS

INSERT FLOAT . .

END FLOAT MODE

END NON-ZERO

END OF MASK

START ZERO SUPPRESS C

COMPLEMENT CHECK PROTECT .
Branching Operands and Instructions .

BRANCH UNCONDITIONALLY

BRANCH ON OVERFLOW

SET OVERFLOW TOGGLE

PERFORM ENTER

PERFORM EXIT

ENTER

EXIT

GO TO DEPEND[NG . .
ALTERED GO TO PARAGRAPH .
ALTER

Conditional Brar .. ’_)perands and Instruwons

COMPARE ALLPHANUMERIC
COMPARE NUMERIC '
COMPARE FOR ZEROS .
COMPARE FOR SPACES .
COMPARE FOR CLASS

Page

E-17
E-18
E-19
E-20
E-21
E-22
E-23
E-24
E-25
E-26
E-27
E-28
E-29
E-30
E-31
E-32
E-33
E-33
E-33
E-33
E-33
E-34
E-34
E-34
E-35
E-35
E-35
E-35
E-35
E-35
E-36
E-37
E-38
E-39
E-40
E41
E-42
E-43
E-44
E-45
E-46
E-47
E-48
E-49
E-50
E-51
E-52

B 1000 Systems COBOL74 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

E (Cont) COMPARE REPEAT

COMPARE COLLATE

Miscellaneous Instruction
COMMUNICATE ..
LOAD COMMUNICATE REPLY
CONVERT .
MAKE PRESENT
FILE STATUS

Character String S-Ops.
DESCRIPTOR SETUP
INSPECT SETUP
INSPECT .
STRING . . .
DELIMITER SETUP
UNSTRING . .

Inter-Program Commumcatlon
IPC Dictionary .

F PROGRAMMING EXAMPLES
Example of Queue and Remote Files .
G COBOL68 REMOTE FILES AND COBOL74 QUEUE FILES

COBOL68 Remote Files and COBOL74 Queue Files On the B 1000

COBOL68 Remote Files and COBOL74 Quecue Files Under Control of AN MCS .

Supervisory Message Control System (SMCS)
Generalized Message Control System (GEMCOS)

1108883-001

Page

E-53
E-54
E-55
E-55
E-56
E-57
E-58
E-59
E-60
E-60
E-61
E-63
E-65

E-69

Xv

B 1000 Systems COBOL74 Reference Manual

LIST OF ILLUSTRATIONS

Figure Title Page
3-1 COBOL Coding Form . . e 3-2
3.2 Example of Continuation of Words dnd therdls e e 3-5
4-1 Coding the IDENTIFICATION DIVISION 4-3
S-1 Coding the ENVIRONMENT DIVISION 523
6-1 Coding the FILE SECTION .. 6-7
6-2 Linage Page Relationship .. 613
6-3 Level Numbers . . P« P
6-4 PICTURE Character Precedence (hart N a1}
6-5 Coding the WORKING-STORAGE SECTION 6-51
6-6 Coding the LINKAGE SECTION .. 6-54
7-1 Valid MOVE Statement Combinations 7-77
7-2 PERFORM VARYING with One Condition 7787
7-3 PERFORM VARYING with Two Conditions 7-88
7-4 SEARCH with Two WHEN Phrases . e s T-102
11-1 Compilation Control File e 11-2
E-1 COBOL74 Program Layout C e e E-2
E-2 Memory Layout . . . T =7 A |
G-1 COBOLG68 Data Commumcatlons e e e e e e e s, G-1
G-2 COBOL74 Data Communicationso, G-3

LIST OF TABLES

Table Title Page
2-1 Classes of Data 215
5-1 Status Key Combinations - - - - - - - . -« . . - 515
6-1 Editing for Each ltem Category . 6-33
6-2 Editing of Sign Control Symbols . . . e e oo 634
6-3 Editing Application of the PICTURE (Iause e e 637
6-4 Communication Status Key Condition . . . e 665
7-1 Combination of Symbols in Arithmetic Expresslons Coe T416
7-2 Combinations of Conditions. Logical Operators. and Parentheses . Y 2
7-3 Relationship of Categories of Files and Formats of the CLOSE btalement 7-46
74 A Valid MOVE Statement .. 1796
7-5 Permissible Statements .. .1780A
7-6 SET Statement Combinations S K¢
9-1 Exception Category Names and leues C e e e e 9.7
C-1 B 1000 Codes in EBCDIC Sequence C2
C-2 B 1000 Codes in ASCII-7 Sequence . . . Lo C-7
C-3 Description of Control and Special (hdmuus T o B |
E-1 Special Registers E=2
E-2 Container Sizes E3

xvi

B 1000 Systems COBOL74 Reference Manual

FOREWORD

BURROUGHS EXTENSIONS TO ANSI 74 COBOL

Programming applications are written in the COBOL74 language as specified in this B 1000 Systems COBOL74
Reference Manual. The source language herein described is the USA Standard COBOL, X3.23-1974, which
implements the lowest defined level of the Report Writer Module, and also the highest defined level of these
Modules: Nucleus, Table Handling, Sequential I-O, Relative 1-O, Indexed I-O, Sort-Merge, Segmentanon Ll-
brary, Debug, Inter-Program Communication, and Communication

ACKNOWLEDGEMENT

COBOL74 is an industry language and is not the property of any company or group of companies. or of any
organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming Language
Committee as to the accuracy and functioning of the programming system and language. Moreover, no respon-
sibility is assumed by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein,

FLOW-MATIC (trademark of Sperry Rand Corporation). Programming for the UNIVAC ® I and II. Data
Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator
Form Number F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Min-
neapolis-Honeywell,

have specifically authorized the use of this material in whole or in part. in the COBOL74 specifications. Such

authorization extends to the reproduction and use of COBOL74 specifications in programming manuals or
similar publications.

1108883 xvii

B 1000 Systems COBOL74 Reference Manual

INTRODUCTION

This manual provides a complete description of COBOL74 (COmmon Business Oriented Language) as imple-
mented for use on the Burroughs B 1000 System. This concept of COBOL74 is designed along the guidelines
of the American National Standards Institute (ANSI) 1974. This edition contains changes throughout.

COBOL74 ADVANTAGES

The long list of COBOL74 advantages is derived chiefly from its intrinsic quality of permitting the programmer
to state the problem solution in English prose, and thus provide automatic program and system documentation.
When users adopt in-house standardization of clements within files plus well-chosen data-names before at-

tempting to program a system. maximum documentational advantages of the language described herein are ob-
tained.

To a computer user. Burroughs COBOL74 offers the following major advantages:

Expeditious means of program implementation.

Accelerated programmer training and simplified retraining requirements.

Reduced conversion costs when changing from a computer of one manufacturer to that of another.

Significant casc of program modification.

Standardized documentation.

Documentation which facilitates nontechnical management participation in data processing activities.

Efficient object program code.

Segmentation capability which sets the maximum allowable program size well in excess of any practi-

cal requirement.

9. Because of the incorporation of debugging language statements. a high degree of sophistication in
program design is achicved.

10. A comprehensive source program diagnostic capability.

OC\XO“J‘l‘-T—\u)l\)‘—-

COBOL74 CONCEPTS

A program written in COBOL74. called a source program, is accepted as input by the COBOL74 compiler.

The compiler verifies that cach source statement is syntactically correct. and then converts them into
COBOL74 S-code.

The executable program can then be executed on the B 1000 System using the COBOL74 interpreter. The in-

terpreter causes the system hardware to perform the operations specified by the S-code and thus the source
program.

The B 1000 COBOL74 compiler operates under the control of the Master Control Program (MCP). Similarly.
the S-code gencrated by the compiler is executed under control of the MCP.

A COBOL program that was compiled with the ANSI 68 COBOL compiler must be recompiled with the
COBOL74 compiler in order to run with the COBOL74 interpreter.

1108883-001 Xix

ORGANIZATION

B 1000 Systems COBCL74 Reference Menual

This manual consists of 11 sections and 6 appendices:

XX

Section

~N2

6

9

Contents

PROGRAM ORGANIZATION

Introduces the four divisions of a COBOL source program
and describes the major functions of each.

LANGUAGE CONCEPTS

The rules for creating a COBOL74 source program are
defined in this section.

CODING FORM

The standard format of the COBOL74 coding form and the
rules for spacing are described in this section.

IDENTIFICATION DIVISION

The structure of the IDENTIFICATION DIVISION and the
rules for coding are given.

ENVIRONMENT DIVISION

The structure of the ENVIRONMENT DIVISION and the
rules for coding are given.

DATA DIVISION
The four sections of the DATA DIVISION are described.
PROCEDURE DIVISION

The rules for coding and structuring the PROCEDURE
DIVISION are given.

FILE ATTRIBUTES

The file attribute names and the rules for changing attributes
are given.

DATA BASE MANAGEMENT

This section contains the verbs and constructs of COBOL74
that are available for interfacing with DMSII.

DEBUG
Contains an explanation of the debug facilities available.

COBOL74 COMPILER CONTROL Compiler options which
are available in the COEOL74 compiler are explained.

B 1000 Systems COBOL74 Reference Manual

Appendix Contents
A RESERVED WORDS
B COBOL74 SYNTAX SUMMARY
C GRAPHICS
D GLOSSARY
E S-LANGUAGE
F PROGRAMMING EXAMPLES
G COBOL68 REMOTE FILES AND COBOL74 QUEUE FILES

RELATED DOCUMENTS

The following documents are referenced in this document:
B 1000 Systems System Software Operation Guide, Volume 1, form number 1108982.
B 1000 Systems System Software Operation Guide, Volume 2, form number 1108966.

B 1000 Systems Data Management System II (DMSII) Reference Manual, form number 1127222.

B 1000 System Burroughs Network Architecture (BNA) Installation and Operations Reference Manual, form

number 1127578.

B 1000 Systems Network Definition Language (NDL) Reference Manual, form number 1073715.

B 1000 Systems Supervisory Message Control System (SMCS) Reference Manual, form number 1108891.

1108883-001

B 1000 Systems COBOL74 Reference Manual

SECTION 1
PROGRAM ORGANIZATION

COBOL74 SOURCE PROGRAM DIVISIONS

Every COBOL74 source program must contain these four divisions in the following order:

IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In addition to required information. the program-
mer may include such optional pieces of information as the date compiled and programmer’s name for
documentation purposes. This division is completely machine-independent and does not produce object code.

The ENVIRONMENT DIVISION specifies the equipment being used. It contains computer descriptions and
some information about the files the program will use.

The DATA DIVISION contains not only file and record descriptions describing the data files that the object
program manipulates or creates, but also the individual logical records which comprise these files. The charac-
teristics or properties of the data are described in relation to a standard data format rather than an equipment-
oriented format. Therefore. this division is to a large extent, computer-independent. While compatibility among
computers cannot be absolutely assured. careful planning in the data layout will permit the same data descrip-
tions. with minor modification, to apply to more than one computer.

The PROCEDURE DIVISION specifies user-supplied steps for computer execution. These steps are expressed
in terms of meaningful English words. statements, sentences, and paragraphs. This division of a COBOL74
program is often referred to as the “‘program.”” In reality, it is only part of the total program. and alone is
insufficient to describe the entire program. This is true because repeated references must be made (either ex-
plicitly or implicitly) to information appearing in the other divisions. This division, more than any other, allows
the user to express thoughts in meaningful English. Concepts of verbs to denote actions, and sentences to
describe procedures are basic. as is the use of conditional statements to provide alternative paths of action.

1108883 1-1

B 1000 Systems COBOL74 Reference Manual
Program Qrganization

REQUIRED HEADERS

The standard for COBOL74 requires that a program consist of certain divisions, sections, and fixed paragraph
names known as headers.

The following elements are the minimum required for a COBOL74 program:

IDENTIFICATION DIVISION.
PROGRAM=1D. MINIMUM,

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
SOURCE-COMPUTER. B=-1000,.
OBJECT-COMPUTER. B-1000.

DATA DIVISION,

PROCEDURE DIVISION,

STARTP.

STOP RUN.

B 1000 Systems COBOL74 Reference Manual

SECTION 2
LANGUAGE CONCEPTS

GENERAL

As stated in Section 1, COBOL74 is a language based on English and is composed of words, statements, sen-
tences, and paragraphs. The following paragraphs define the rules to be followed in the creation of this lan-
guage. The use of the different constructs formed from the created words is covered in subsequent sections
of this document.

LANGUAGE DESCRIPTION NOTATION

A nearly universal form of notation exists for COBOL reference manuals. This manual uses that notation as
described in the paragraphs that follow.

The apostrophe (’) is used to delimit characters with specific meanings. Other than its use in this manual as
a delimiter, it has no specific use in the COBOL language.

KEY WORDS

All underlined upper-case words are key words and.are required when utilizing related functions. Omissions
of key words will cause error conditions at compilation time. An example of key words follows:

IE dataname IS [NOT] {igygggnc}

The key words are IF, NOT, NUMERIC, and ALPHABETIC.

OPTIONAL WORDS

All upper-case words not underlined are optional words included for readability only and may be included or
excluded in the source program. In the preceding example, the optional word is IS.

GENERIC TERMS

All lower-case words represent generic terms which are used to represent COBOL words, literals, PICTURE
character-strings, comment-entries, or a complete syntactical entry that must be supplied in that format posi-
tion by the programmer. Where generic terms are repeated in a general format, a number or letter appendage
to the term serves to identify that term for explanation or discussion. Identifier-1 and identifier-2 are generic
terms in the following example:

MOVE identifier-1 TO identifier-2

BRACES

The following symbols are braces: { }. When words or phrases are enclosed in braces, a choice of one of
the entries must be made. In the previous example in the subsection titled Key Words, either NUMERIC or
ALPHABETIC must be included in the statement.

1108883 2-1

B 1000 Systems COBOIL.74 Reference Manual
Language (Concepts

BRACKETS

The following symbols are brackets: []. Words and phrases enclosed in brackets represent optional portions
of a statement. A programmer wishing to include the optional feature may do so by including the entry shown
between brackets. Otherwise, the optional portion may be omitted. ([NOT] in the example titled Key Words,
is optional.)

LEVEL-NUMBERS

When specific level-numbers appear in data description entry formats, those specific level-numbers are re-
quired when such entries are used in a COBOL74 program. In this document, the form 01, 02, ... , 09 is used
to indicate level-numbers 1 through 9.

ELLIPSIS

The presence of the ellipsis (three consecutive pericds (...)) within any format indicates the position at which
repetition may occur at the programmer’s option. The portion of the format that may be repeated is defined
in the following paragraph.

The ellipsis applies to the words between the determined pair of delimiters. Given the ellipsis in a clause or
statement format, scanning right to left, determine the right bracket or right brace immediately to the left of
the ...; continue scanning right to left and determine the logically matching left bracket. or left brace.

FORMAT PUNCTUATION

The separators comma and semicolon are used to improve the readability of the program. Suggested uses are
shown in General Format subsections through this manual, however, use of these separators is optional. In
the source program, the comma, semicolon. and space separators are interchangeable. If desired, a semicolon
or comma may be used between statements in the PROCEDURE DIVISION.

Paragraphs within the IDENTIFICATION and PROCEDURE DIVISIONS and entries within the ENVIRON-
MENT and DATA DIVISIONS must be terminated by the separator period. When a single period is shown

in a format, it must appear in the same position whenever the source program calls for the use of that
particular statement.

SPECIAL CHARACTERS IN FORMATS

The characters *+°, ’-’, '>", "<’ =", when appearing in formats. although not underlined, are required when
such formats are used.

2-2

B 1000 Systems COBOL74 Reference Manual
Language Concepts

CHARACTER SET

The COBOL74 character set for the B 1000 System consists of the following 52 characters:

0 through9
A through Z
blank or space
+ plus sign
- minus sign or hyphen
asterisk
slash

equal sign

~ %

$ currency sign

peripd or decimal point
semicolon

quotation mark

left parenthesis

right parenthesis
greater than symbol
less than symbol

“at” sign

comima

CHARACTERS USED FOR WORDS

The character set for words consists of the following 37 characters:

0 through 9
A through Z
- (hyphen)

PUNCTUATION CHARACTERS

The following characters may be used for program punctuation:

@ “‘at” sign

« quotation mark
(left parenthesis
) right parenthesis

space or blank
period
comma (see following note)

semicolon

1108883

NOTE

For enhanced readability of the source program, commas may be used between
statements, at the programmer’s discretion. Use of commas implies that any suc-
ceeding statement is to be included as an element of the prior statement.

B 1000 Systems COBOL74 Reference Manual
L.anguage Concepts

EDITING CHARACTERS

The COBOL74 compiler accepts the following characters in editing:

$ currency sign 4- plus

* asterisk (check protect) -- minus

, comma CR credit

[slash DB debit

B space or blank insert 7. Zero suppress
0 zero insert period

CHARACTERS USED IN ARITHMETIC EXPRESSIONS

The COBOL74 compiler accepts the following characters in arithmetic expressions:

/ division

+ addition

- subtraction

%% exponentiation

(left parenthesis

* multiplication) right parenthesis

CHARACTERS USED IN RELATION CONDITIONS

The COBOL74 compiler accepts the following characters in relation conditions:

AVARVAN

equal sign
less than symbol

greater than symbol

LANGUAGE STRUCTURE

The individual characters of the language are concatenated to form character-strings and separators. A separa-
tor may be concatenated with another separator or with a character-string. A character-string may only be
concatenated with a separator. The concatenation of character-strings and separators forms the text of a source

program.

SEPARATORS

A separator is a string of one or more punctuation characters. The rules for formation of separators are;

1. The punctuation character space is a separator. Anywhere a space is used as a separator, more than

one space may be used.

2. The punctuation characters comma. semicolon, and period are separators.

24

B 1000 Systems COBOL74 Reference Manual
Language Concepts

. The punctuation character quotation mark is a separator. An opening quotation mark must be immedi-

ately preceded by one of the separators space, comma. semicolon, or left parenthesis; a closing quota-

tion mark must be immediately followed by one of the separators space. comma, semicolon, period.
or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric literals except when the
literal is continued.

. The punctuation characters right and left parentheses are separators. Parentheses may appear only in

balanced pairs of left and right parentheses delimiting subscripts, indices. arithmetic expressions, or
conditions.

. Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be immediately preceded

by a space; a closing pseudo-text delimiter must be immediately followed by one of the separators
space, comma, semicolon, or period.

Pseudo-text delimiters (==) may appear only in balanced pairs delimiting pseudo-text.

. The punctuation character @ is a separator. An opening @ character must be preceded immediately

by one of the separators space. comma. semicolon, or left parenthesis; a closing @ character must

be immediately followed by one of the separators space, comma, semicolon, period. or right parenthe-
sis.

At signs (@) may appear only in balanced pairs delimiting hexadecimal literals.

. The separator space may optionally immediately follow any separator except the opening quotation

mark. In this case. a following space is considered as part of the nonnumeric literal and not as a se-
parator.

Any punctuation character which appears as part of the specification of a PICTURE character-string
or numeric literal is not considered as a punctuation character, but rather as a symbol used in the
specification of that PICTURE character-string or numeric literal. PICTURE character-strings are de-
limited only by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the characters which comprise
the contents of nonnumeric literals, comment-entries, or comment lines.

CHARACTER-STRINGS

A character-string is a character or sequence of contiguous characters which forms a COBOL74 word. literal,
PICTURE character-string, or comment-entry. A character-string is delimited by separators.

DEFINITION OF WORDS

A COBOL74 word is created from a combination of not more than 30 characters. selected from the following:

0 through 9
A through Z
- (hyphen)

1108883

B 1000 Systems COEOL.74 Reference Manual
[Language Concepts

A word is ended by a space, period, comma, or semicolon. A word may not begin or end with a hyphen.
(A literal constitutes an exception to these rules, as explained in a paragraph entitled Literals in this section.)

A user-defined word is a COBOL74 word that must be supplied by the user to satisfy the format of a clause

or statement.

TYPES OF WORDS

COBOL74 contains the following word types: nouns (user-defined words), verbs, and reserved words.

NOUNS

Nouns are divided into special categories:

File-name
Record-name
Data-name
Condition-name
Mnemonic-name
Index-name

Paragraph-name

Family-name
Cd-name
Text-name
Library-name
Program-name
Alphabet-name

Section-name

The length of a noun must not exceed 30 characters. For purposes of readability, a noun may contain one
or more hyphens. However, the hyphen must neither begin nor end the noun (this does not apply to literals}.

All nouns within a given category must be unique, either because no other noun in the same source program
has identical spelling or punctuation. or because uniqueness can be insured by qualification. With the exception

of paragraph-name. section-name. text-name. library-narme. and family-name. all user-defined words must con-
tain at least one alphabetic character.

File-Name

A file-name is a noun containing at least one alphabetic character assigned to designate a set of data items.
The contents of a file are divided into logical records made up of any consecutive set of data items.

Record-Name

A record-name is a noun containing at least one alphabetic character assigned to identify a logical record. A
record can be subdivided into several data items, each distinguishable by a data-name.

Data-Name

A data-name is a noun assigned to identify elements within a record or work area and is used in COBOL74
to refer to an element of data. or to a defined data area containing data elements. Each data-name must contain
at least one alphabetical character.

2-6

B 1000 Systems COBOL74 Reference Manual
Language Concepts

Condition-Name

A condition-name is the name assigned to a specific value, set of values, or range of values within the com-
plete set of values that a data item may assume. The data item is a conditional variable. The condition-name
must contain at least one alphabetic character and must be unique, or be able to be referenced uniquely
through qualification. A conditional variable may be used as a qualifier for any of its condition-names. If refer-
ences to a conditional variable require indexing, subscripting, or qualification, then references to any of its
condition-names also require the same combination of indexing, subscripting, or qualification. A condition-
name is used in conditions as an abbreviation for the relation condition; its value is TRUE if the associated
conditional variable is equal to one of the set values to which that condition-name is assigned.

Condition-names may be defined 'in the DATA DIVISION, or in a SPECIAL-NAMES paragraph within the
ENVIRONMENT DIVISION where a condition-name must be assigned to the ON STATUS or OFF STAT-
US, or both, of defined switches.

Mnemonic-Name

The use of mnemonic-names provides a means of relating certain hardware equipment names to problem-ori-
ented names the programmer may wish to use. These associations are established in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION.

Index-Name
An index-name is a word with at least one alphabetic character that names an index associated with a specific

table (refer to Indexing in this section). An index is a register. the contents of which represent the character
position of the first character of an element of a table with respect to the beginning of the table.

Paragraph-Name

A paragraph-name is a word which names a paragraph in the PROCEDURE DIVISION. Paragraph-names are
equivalent only if composed of the same sequence of the same number of digits and/or characters.

Section-Name

A section-name is a word which names a section in the PROCEDURE DIVISION. Section-names are
equivalent only if composed of the same sequence of the same number of digits and/or characters.

Other Categories
See the glossary in Appendix D for definitions of all other types of user-defined words.

VERBS

A verb in COBOL74 is a single word that denotes action, such as ADD, WRITE, or MOVE. All allowable
verbs in COBOL74, with the exception of the word IF, are English verbs. The usage of the COBOL74 verbs
takes place primarily within the PROCEDURE DIVISION.

1108883 2.7

B 1000 Systems COBOL74 Reference Manual
Language Concepts

RESERVED WORDS

A reserved word is a COBOL74 word that is one of a specified list of words which may be used in COBOL74

source programs, but must not appear in the programs as user-defined words. Refer to Appendix A, Reserved
Words.

These rules apply to the entire COBOL74 source program; no exceptions exist for specific divisions, sections,
or statements.

There are six types of reserved words:

Key words
Connectives

Optional words
Figurative constants
Special registers
Special-character words

Key Words

A key word is a word whose presence is required in a source program. Within each format, such words are
upper-case and underlined.

Key words are of three types:

1. Verbs such as ADD and READ.
2. Required words which appear in statement and entry formats.
3. Words which have a specific functional meaniag such as NEGATIVE and SECTION.

Connectives

Connectives are used to indicate the presence of a qualifier or to form compound conditional statements. The
connectives OF and IN are used for qualification. The connectives AND, AND NOT, OR, or NOT are used

as logical connectives in conditional statements. The comma is used as a series connective to separate two .
or more operands.

Optional Words

Optional words are included in the COBOL74 language to improve the readability of the statement formats.
These optional words may be included or omitted. For example, IF A IS GREATER THAN B... is equivalent
to IF A GREATER B...$; the inclusion or omission of the words IS and THEN does not influence the logic
of the statement.

Figurative Constant

A figurative constant is a reserved word used to reference specific constant values and must never be enclosed
in quotation marks except when the word, rather than the value, is desired. The figurative constant names
and meanings are:

ZERO Represents the value 0, or one or more of the character '0’, depending on the
ZEROS context.
ZEROES

SPACE
SPACES

HIGH-VALUE

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL<literal>

B 1000 Systems COBOL74 Reference Manual
Language Concepts

Represents one or more spaces (blanks).

Represents one or more occurrences of the character that has the highest
ordinal position in the program collating sequence, except in the alphabet-name
clause of the SPECIAL-NAMES paragraph, where it represents the highest
ordinal position in the native collating sequence.

Represents one or more occurrences of the character that has the lowest
ordinal position in the program collating sequence, except in the alphabet-name
clause of the SPECIAL-NAMES paragraph, where it represents the lowest
ordinal position in the native collating sequence.

Represents one or more occurrences of the character ***’. The word QUOTE
or QUOTES cannot be used in place of a quotation mark in a source program
to bound a nonnumeric literal. Thus, QUOTE ABD QUOTE is incorrect as a
way of stating the nonnumeric literal *“‘ABD’’. If, however, the full ““‘ABD” is
desired in a DISPLAY statement, it can be achieved by writing QUOTE
*““ABD’" QUOTE, in which case the object program will display ‘‘ABD.

When followed by a hexadecimal literal, a nonnumeric literal, or a figurative
constant, the word ALL represents a series of that literal. For example, if the
COBOL74 statement is MOVE ALL literal TO ERROR-CODE, then the
resultant ERROR-CODE would take on the following values:

ALL literal Size of ERROR-CODE ERROR-CODE
ALL ““ABC” 7 characters ABCABCA
ALL *2” or ALL 2 5 characters 22222
ALL QUOTE 3 characters e
ALL SPACES 8 characters (eight spaces)

NOTE

The use of ALL with figurative constants, as illustrated in the last two instances,
is redundant. MOVE ALL SPACES and MOVE SPACES yields the same result.

When a figurative constant represents a string of one or more characters, the length of the string is determined
by the compiler from context, according to the following rules:

1. When a figurative constant is associated with another data item, the string of characters specified by
the figurative constant is repeated character by character on the right until the size of the resultant
string is equal to the size in characters of the associated data item. This is done prior to and independ-
ent of the application of any JUSTIFIED clause that may be associated with the data item.

2. When a figurative constant is not associated with another data item, as when the figurative constant
appears in a DISPLAY, STRING, STOP, or UNSTRING statement, the length of the string is one

character.

A figurative constant may be used wherever a literal appears in a format, except that whenever the literal
is restricted to numeric characters only, the only figurative constant permitted is ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in the source program, the ac-
tual character associated with each figurative constant depends upon the program collating sequence specified.
Refer to OBJECT-COMPUTER and SPECIAL-NAMES in Section 5 for additional information.

1108883.

ki

B 1000 Systems COBOIL.74 Reference Manual
Language Toncepts

Special Registers

Certain reserved words are used to name and reference special registers. Special registers are certain compiler
generated storage areas whose primary use is to store information produced in conjunction with the use of
specific COBOL74 features. These special registers include the following: LINAGE-COUNTER, LINE-
COUNTER, PAGE-COUNTER, and DEBUG-ITEM.

Special-Character Words

The arithmetic operators and relation characters are reserved words. Refer to the glossary in Appendix D for
additional information.

LITERALS

A literal is an item of data whose value is implied by an ordered set of characters of which the literal is com-
posed, or by specification of a reserved word which references a figurative constant. There are three classes
of a literal: numeric, nonnumeric, and hexadecimal.

Numeric Literal

A numeric literal is a character-string whose characters are selected from the digits 0 through 9, the plus sign
(+). the minus sign (--). and/or the decimal point. Numeric literals may be from 1 to 18 digits in length. The
rules for the formation of numeric literals are as follows:

1. A numeric literal must contain at least one digit.

2. A numeric literal must not contain more thar one sign character. If a sign is used, it must appear
as the leftmost character of the literal. If the literal is unsigned, the literal is positive.

3. A numeric literal must not contain more than one decimal point. The decimal point is treated as an
assumed decimal point, and may appear anywhere within the literal except as the rightmost character.
If the literal contains no decimal point, the literal is an integer. An integer is a numeric literal which
contains no decimal point.

If a literal conforms to the rules of the formation of numeric literals, but is enclosed in quotation
marks, it is a nonnumeric literal and is treated as such by the compiler.

4. The value of a numeric literal is the algebraic quantity represented by the characters in the numeric
literal. Every numeric literal belongs to category numeric. Refer to the PICTURE clause in Section
6 for additional information. The size of a nureric literal in standard data format characters is equal
to the number of digits specified by the user. The following are examples of numeric literals:

51679
.003
+2.629
—~.8479
6287.92

Nonnumeric Literal

A nonnumeric literal may be composed of any allowablz character. The beginning and ending of a nonnumeric
literal are both denoted by a quotation mark. Any character enclosed within quotation marks is part of the
nonnumeric literal. Subsequently, all spaces enclosed within the quotaticn marks are considered part of the
literal. Two consecutive quotation marks within a nonnumeric literal cause a single quotation mark to be in-
serted into the literal string. Four consecutive quotation marks result in a single ‘' literal.

2-10

B 1000 Systems COBOL74 Reference Manual
Language Concepts

All other punctuation characters are part of the value of the nonnumeric literal rather than separators; all non-
numeric literals belong to category alphanumeric. Refer to the PICTURE clause in Section 6.

A nonnumeric literal cannot exceed 160 characters. Examples of nonnumeric literals are:

Literal on Source Program Level Literal Stored by Compiler
“THE TOTAL PRICE"” THE TOTAL PRICE
+¢-2080.479” -2080.479
e LIMITATIONS “LIMITATIONS”
htA"Q;sB\# AgsB

NOTE

Literals that are used for arithmetic computation must be expressed as numeric lit-
erals and must not be enclosed in quotation marks as nonnumeric literals. For ex-
ample, **4.4”* and 4.4 are not equivalent. The compiler stores the nonnumeric liter-
al as 4.4, whereas the numeric literal would be stored as 0044 if the PICTURE
were 999V9 DISPLAY. with the assumed decimal point located between the two
fours.

Hexadecimal Literals

A hexadecimal literal is a character-string consisting of characters selected from the hexadecimal digits "0’
through °9” and A’ through "F’. The beginning and ending of a hexadecimal literal are each denoted by an
@ sign. For example, a binary 12 would be expressed @C(.

The category of a hexadecimal literal (4-bit numeric or 8-bit alphanumeric) is determined by the category of
the data item with which it is associated in a COBOL74 statement. A hexadecimal literal is handled as a 4-bit
numeric when the category of the associated data item is numeric whether USAGE is COMPUTATIONAL
or DISPLAY.

A hexadecimal literal is handled as if it were numeric if:

1. In the VALUE clause, the category of the associated data item is numeric.

2. In the MOVE statement, the category of the receiving data item is numeric or numeric edited.

3. In the conditional expression of an IF, PERFORM, or SEARCH statement, the category of the other
relational operand is numeric.

A hexadecimal literal is handled as 8-bit alphanumeric when the category of the associated data item is nonnu-
meric. Each character is represented by two hexadecimal digits. This requires an even number of digits in
the hexadecimal literal. A hexadecimal literal is handled as if it were alphanumeric if:

1. In the VALUE clause, the category of the associated data item is not numeric.

2. In the MOVE statement, the category of the receiving data item is alphanumeric, alphabetic, or alpha-
numeric edited.

3. In the conditional expression of an IF, PERFORM, or SEARCH statement, the category of the other
relational operand is not numeric.

4. Tt appears in an INSPECT, STRING, UNSTRING, DISPLAY, STOP, DISABLE, or ENABLE state-
ment.

5. It appears in the ALL figurative constant.

A hexadecimal literal may also appear in a COPY statement, in which case the hexadecimal literal does not
have a type associated with it.

1108883 2-11

B 1000 Systems COBOIL.74 Reference Manual
(S

Language ‘Concepts

The following restrictions apply to hexadecimal literals:

2-12

l.

LW

A hexadecimal literal is not allowed as an arithmetic operand in an ADD, SUBTRACT, MULTIPLY,
or DIVIDE statement, nor in an arithmetic expression in a COMPUTE statement or conditional ex-
pression.

A hexadecimal literal is not allowed as a subscript or index.

. A hexadecimal literal is not allowed as a prcgram name in a CALL or CANCEL statement.

An identifier assigned a hexadecimal literal will not, in most cases, compare as either numeric or al-
phabetic in a class condition test.

When a hexadecimal literal is handled as if its category were computational, then the length of the
literal must be from 1 to 18 digits. When a hexadecimal literal is handled as if it were nonnumeric,
the length of the literal must be from 2 to 320 digits.

B 1000 Systems COBOL74 Reference Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

LOGICAL RECORD AND FILE CONCEPTS

The purpose of defining file information is to distinguish between the physical aspects of the file and the con-
ceptual characteristics of the data contained within the file.

PHYSICAL ASPECTS OF A FILE

The physical aspects of a file describe the data as it appears on the input or output media and include such
features as:

1. The grouping of logical records within the physical limitations of the file medium.
2. The means by which the file can be identified. ‘

CONCEPTUAL CHARACTERISTICS OF A FILE

The conceptual characteristics of a file are the explicit definition of each logical entity within the file itself.
In a COBOL74 program. the input or output statements refer to one logical record.

[t is important to distinguish between a physical record and a logical record. A COBOL74 logical record is
a group of related information, uniquely identifiable, and treated as a unit.

A physical record is a physical unit of information whose size and recording mode are adapted to a particular
computer for the storage of data on an input or output device. The size of a physical record is hardware de-
pendent and has no direct relationship to the size of the file of information contained on a device.

A logical record may be contained within a single physical unit; several logical records may be contained
within a single physical unit; or. in the case of mass storage files, a logical record may require more than
one physical unit. There are several source language methods available for describing the relationship of logical
records and physical units. When a permissible relationship has been established, control of the accessibility
of logical records as related to the physical unit must be provided by the interaction of the object program
on the hardware and/or software system. In this manual, references to records indicate records. unless the
phrase ’physical record’ is specifically used.

The concept of a logical record is not restricted to file data but is carried over into the definition of working
storage. Working storage may be grouped into logical records and defined by a series of record description
entries.

RECORD CONCEPTS

The record description consists of a set of data description entries which describe the characteristics of a par-
ticular record. Each data description entry consists of a level-number followed by a data-name, if required,
followed by a series of independent clauses, as required.

CONCEPT OF LEVELS

A level concept is inherent in the structure of a logical record. This concept arises from the need to specify
subdivisions of a record for the purpose of data reference. Once a subdivision has been specified. it may be
further subdivided to permit more detailed data referral.

1108883 2-13

B 1000 Systems COBOI.74 Reference Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

The most basic subdivisions of a record, those not further subdivided, are called elementary items; consequen-
tly, a record is said to consist of a sequence of elementary items, or the record itself may be an elementary
item.

In order to refer to a set of elementary items, the elementary items are combined into groups. Each group
consists of a named sequence of one or more elementary items. Groups, in turn, may be combined into groups
of two or more groups. An elementary item may belong to more than one group.

LEVEL-NUMBERS

A system of level-numbers shows the organization of elementary items and group items. Since records are
the most inclusive data items, level-numbers for records start at 01. Less inclusive data items are assigned
higher (not necessarily successive) level-numbers not greater in value than 49. There are special level-numbers
66, 77, and 88, which are exceptions to this rule. Separate entries are written in the source program for each
level-number used.

A group includes all group and elementary items following it until a level-number less than or equal to the
level-number of that group is encountered. All items which are immediately subordinate to a given group item
must be described using identical level-numbers greater than the level-number used to describe that group item.

Three types of entries exist for which there is no true concept of level. These are:

. Entries that specify elementary items or groups introduced by a RENAMES clause.
2. Entries that specify noncontiguous working storage and linkage data items.
3. Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of regrouping data items have been
assigned the special level-number 66.

Entries that specify noncontiguous data items, which are not subdivisions of other items, and are not subdi-
vided. have been assigned the special level-number 77.

Entries that specify condition-names. to be associated with particular values of a conditional variable, have
been assigned the special level-number 88,

CONCEPT OF CLASSES OF DATA

The five categories of data items (refer to the PICTURE clause in Section 6) are grouped into three classes:
alphabetic, numeric, and alphanumeric. For alphabetic and numeric. the classes and categories are
synonymous. The alphanumeric class includes the categories of alphanumeric edited, numeric edited. and al-
phanumeric (without editing). Every elementary item, except for an index data item, belongs to one of the
classes and also to one of the categories. The class of a group item is treated at object time as alphanumeric
regardless of the class of elementary items subordinate to that group item. Table 2-1 shows the relationship
of the class and categories of data items.

2-14

B 1000 Systems COBOL74 Reference Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

Table 2-1. Classes of Data

Level of Item Class Category
Alphabetic Alphabetic
Numeric Numeric

Elementary Numeric Edited

Alphanumeric Alphanumeric Edited
Alphanumeric

Alphabetic

Numeric
Nonelementary Alphanumeric Numeric Edited
(Group) Alphanumeric Edited

Alphanumeric

ALGEBRAIC SIGNS

Algebraic signs fall into two categories: operational signs, which are associated with signed numeric data items
and signed numeric literals to indicate algebraic properties; and editing signs, which appear on edited reports
to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the location of the operational sign. The clause
is optional; if it is not used, operational signs are represented as defined under symbol 'S’ of the PICTURE
clause. Refer to the PICTURE clause, General Rule 8, the ’S’ symbol in Section 6.

Editing signs are inserted into a data item through the use of the sign control symbols of the PICTURE clause.

STANDARD ALIGNMENT RULES

The standard rules for positioning data within an elementary item depend on the category of the receiving item.
These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving character positions with zero
fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated as if it had
an assumed decimal point immediately following the rightmost character and is aligned as in step
la above.

2. If the receiving data item is a numeric edited data item, the data moved to the edited data item is
aligned by decimal point with zero fill or truncation at either end as required within the receiving char-
acter positions of the data item, except where editing requirements cause replacement of the leading
Zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric edited
or alphabetic, the sending data is moved to the receiving character positions and aligned at the left-
most character position in the data item with space fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modified as described
in the JUSTIFIED clause description in Section 6.

1108883 2-15

B 1000 Systems COBCL74 Reference Manual
Language Concepts

UNIQUENESS OF REFERENCE

Uniqueness of reference for identifiers and condition-names, if not unique in the program, can be accomplished
through the use of qualification, subscripting, or indexing.

IDENTIFIER

An identifier is a term used to reflect that a data-name, if not unique in a program, must be followed by a
syntactically correct combination of qualifiers, subscripts, or indices necessary to ensure uniqueness.

General Formats:

Format 1:

—

I } data-name-2] [_(_subscript-]

data-name-1 [{ OF

[, subscript-2 [, subscript-3]

Format 2:

data-name-1 OF]
IN data-rame-2

{index-name-l [{-‘l literal-ZW }
literal-1 L (- ‘

-~

LI |

findex—name-2 3 ‘4l literal-4" %

’ lliteral-3 { l - ’ i

{ index-name-3 [{ - } literal-6]
-

literal-5

Restrictions on qualification, subscripting, and indexing are:

1. A data-name must not be subscripted or indexed when that data-name is being used as an index, sub-
script, or qualifier.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM statements. Data items de-
scribed by the USAGE IS INDEX clause permit storage of the values associated with index-names
as data. Refer to the USAGE cause in Section 6. Such data items are called index data items.

4. Literal-1, literal-3, literal-5, ... in the previous format example, must be positive numeric integers. Lit-
eral-2, literal-4, literal-6, ... must be unsigned numeric integers.

B 1000 Systems COBOL74 Reference Manual
Language Concepts

CONDITION-NAME

Each condition-name must be unique, or made unique through qualification and/or indexing, or subscripting.
If qualification is used to make a condition-name unique, the associated conditional variable may be used as
the first qualifier. If qualification is used, the hierarchy of names associated with the conditional variable, or
the conditional variable itself, must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then references to any of its condition-
names also require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification, subscripting, and indexing of condition-names
is exactly that of ’identifier’ except that data-name-1 is replaced by ’condition-name-1’.

In the general formats, *condition-name’ refers to a condition-name qualified, indexed or subscripted, as neces-
sary.

1108883 2-17

B 1000 Systems COBOL74 Reference Manual
Language Concepts

QUALIFICATION

QUALIFICATION

Every user-specified name that defines an element in a COBOL74 source program must be unique, either be-
cause no other name has the identical spelling and hyphenation, or because the name exists within a hierarchy
of names such that references to the name can be made unique by mentioning one or more of the higher levels
of the hierarchy. The higher levels are called qualifiers and the process that specifies uniqueness is called quali-
fication. Enough qualification must be mentioned to make the name unique; however, it may not be necessary
to mention all levels of the hierarchy. Within the DATA DIVISION, all data-names used for qualification must
be associated with a level indicator or a level-number. Therefore, two identical data-names must not appear
as entries subordinate to a group item unless they are capable of being made unique through qualification.
In the PROCEDURE DIVISION. two identical paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator are the most significant, followed by
those names associated with level-number 01, and finally the names associated with level-number.02, ... , 49.
A section-name is the highest and only qualifier available for a paragraph-name. The most significant name
in the hierarchy must be unique and cannot be qualified. Subscripted or indexed data-names and conditional
variables, as well as procedure-names and data-namsas, may be made unique by qualification. The name of
a conditional variable can be used as a qualifier for any of its condition-names. Regardless of the available

Qualification is performed by following a data-name. a condition-name, a paragraph-name, or a text-name by
one or more phrases composed of a qualifier preceded by IN or OF. IN and OF are logically equivalent.
General Format:

Format 1:

data-name-2]

Z[2
~——

{ data-name-1 } [{
condition-name

Format 2:

o
-
—~——

section-name]

ZIC

paragraph-name [

Format 3:

text-name

—

'——/\.\

Izl
——

library-name]

2-18

B 1000 Systems COBOL74 Reference Manual
Language Concepts

QUALIFICATION

General Rules:

1. Each qualifier must be of a successively higher level and within the same hierarchy as the name it
qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one data item in a source program. the
data-name or condition-name must be qualified each time it is referenced in the PROCEDURE. ENVI-
RONMENT, and DATA DIVISIONS (except in the REDEFINES clause where qualification is unnec-
essary and must not be used.)

4. A paragraph-name must not be duplicated within a section. When a paragraph-name is qualified by

a section-name, the word SECTION must not appear. A paragraph-name need not be qualified when

referred to from within the same section.

A data-name cannot be subscripted when used as a qualifier.

6. A name can be qualified even though it does not need qualification; if there is more than one combina-
tion of qualifiers that ensures uniqueness. then any such set can be used. The complete set of qualifi-
ers for a data-name must not be the same as any partial set of qualifiers for another data-name. Quali-
fied data-names may have any number of qualifiers up to and including 49.

7. If more than one COBOL74 library is available to the compiler during compilation. text-name must
be qualified each time it is referenced.

N

Examples: In the following file descriptions all items are unique except the data-name TECH. In order to refer
to either TECH item, qualification must be used. Otherwise. if reference is made to TECH only. the compiler
would not know which of the two is desired. Therefore. in order to move the contents of one TECH into
the other TECH. the PROCEDURE DIVISION must be coded with one of the following sentences:

MOVE TECH IN CITY-NO TO TECH OF STATE=-NO.
MOVE TECH OF CITY-NO TO TECH IN STATE-NO.
MOVE TECH IN AREA-NO TO TECH OF RADIUS-NO.

MOVE TECH OF AREA-NO TO TECH IN RADIUS-NO.

01 AREA-NO . ., . 0l RADIUS-NO . .

03 CITY-NO . . . 03 STATE-NO . . .
05 TECH . . . 05 TECH
05 BRANCH . . . 05 DIST-BR . .
03 DISTRICT . . . 03 REGION . . .

1108883 2-19

B 1000 Systems COBOL74 Reference Manual
Language Concepts

SUBSCRIPTING

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual element within a list or table of like
elements that have not been assigned individual data-names (refer to the OCCURS clause in Section 6).

The subscript can be represented either by a numeric literal that is an integer or by a data-name. The data-
name must be a numeric elementary item that represents an integer. When the subscript is represented by
a data-name, the data-name may be qualified but not subscripted.

The subscript may be signed and, if signed, must be positive. The lowest possible subscript value is 1. This
value points to the first element of the table. The next sequential elements of the table are pointed to by sub-
scripts whose values are 2. 3, and so forth. The highest permissible subscript value, in any particular case,
is the maximum number of occurrences of the item as specified in the OCCURS clause.

At the time of execution of a statement which refers to a subscripted table element, each subscript specified
is validated. That is, its value must not be less than one or more than the maximum number of occurrences
as specified by the corresponding OCCURS clause (as modified by the DEPENDING ON clause, if any). If
the subscript value is not within this range. an abnormal termination of the program occurs.

The subscript or set of subscripts that identifies the table element is delimited by the balanced pair of separa-
tors, left parenthesis and right parenthesis, following the table element data-name. The table element data-name
appended with a subscript is called a subscripted data-name or an identifier.

When more than one subscript is required, they are written in the order of successively less inclusive dimen-
sions of the data organization.

General Format:

1)

data-name l
% (subscript-1 [, subscript-2 [, subscript-3]
condition-name’ -

Example:
In the following file description. to reference the first department, DEPT (1) is written. If data-name X contains

the number of the department desired, DEPT (X) is written. If the data item GROUP contains the specific
group desired. then POSITION (X. GROUP) would reference the exact employee.

0l EMPLOYEE-JOBS.

05 DEPT OCCUURS 50 TIMES.
10 DEPT-NAME PIC X(10).

10 ALL-JOBS OCCURS 20 TIMES.
15 POSITION PIC X(15).

2-20

B 1000 Systems COBOL74 Reference Manual
Language Concepts

INDEXING

INDEXING

References can be made to individual elements within a table of like elements by specifying indexing for that
reference. An index is assigned to that level of the table by using the INDEXED BY phrase in the definition
of a table. A name given in the INDEXED BY phrase is known as an index-name and is used to refer to
the assigned index. The value of an index corresponds to the occurrence number of an element in the associ-
ated table. An index-name can be given a value by the execution of a SET statement. a SEARCH ALL state-
ment. or a Format 4 PERFORM statement.

An index-name has the same internal representation as an index data item. Refer to General Rule 9. the US-
AGE clause. in Section 6. If a value to be stored in an index-name or in an index data name exceeds the
largest value that can be held in that index-name or index data name. the value is truncated according to the
rules for the occurrence of a size error condition in an arithmetic statement without a SIZE ERROR phrase.

An index-name assigned to one table may not be used to index another table.

Direct indexing is specified by using an index-name in the form of a subscript. Relative indexing is specified
when the index-name is followed by the operator + or —. followed by an unsigned integer numeric literal. all
of which is delimited by the matching pair of separators. left parenthesis and right parenthesis. following the
table element data-name. The occurrence number resulting from relative indexing is determined by increment-
ing (where the operator + is used) or decrementing (when the operator — is used). by the value of the literal.
the occurrence number represented by the value of the index. When more than one index-name is required.
they are written in the order of successively less inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table element. the value of each direct
or relative index must not be less than a value which corresponds to the beginning of the first occurrence
of the table element. Also. the index must not be greater than a value which corresponds to the beginning
of the last occurrence of the table element as specified by the corresponding OCCURS clause. If the index
value is not within this range. the execution of the program is terminated. The index value need not precisely
address the beginning of a table element in order to pass the range check. This may occur when an index-
name is set to the value of an index data item which has been set to the value of another index-name. as
such assignments are made without conversion.

Subscripting is permitted where indexing is permitted.

General Format:

T
’ data-name l (

index-name-1 [‘ +l literal-2]
l condition-name ’

l-

literal-1

1
+

ﬁ
i
1

literal-3

index-name-3

y

literal-5

| |
\ |
, { index-name-2 literal- 4 }
| J]

} literal- 6

r 1
e
1 +
e
SN

1108883-001 2-21

B 1000 Systems COBOL74 Reference Manual
Language Concepts

EXPLICIT & IMPLICIT

EXPLICIT AND IMPLICIT SPECIFICATIONS

There are three types of explicit and implicit specifications that occur in COBOL74 source programs:

I. Explicit and implicit PROCEDURE DIVISION references.
2. Explicit and implicit transfers of control.
3. Explicit and implicit attributes.

EXPLICIT AND IMPLICIT PROCEDURE DIVISION REFERENCES

A COBOL74 source program can reference data items either explicitly or implicitly in PROCEDURE DIVI-
SION statements. An explicit reference occurs when the name of the referenced item is written in a PROCE-
DURE DIVISION statement or when the name of the referenced item is copied into the PROCEDURE DIVI-
SION by the processing of a COPY statement. An implicit reference occurs when the item is referenced by
a PROCEDURE DIVISION statement without the name of the referenced item being written in the source
statement. An implicit reference also occurs, during the execution of a PERFORM statement, when the index
or data item referenced by the index-name or identifier specified in the VARYING, AFTER, or UNTIL phrase
is initialized. modified, or evaluated by the control mechanism associated with that PERFORM statement.
Such an implicit reference occurs if the data item contributes to the execution of the statement.

EXPLICIT AND IMPLICIT TRANSFERS OF CONTROL

The mechanism that controls program flow transfers control from statement to statement in the sequence in
which the statements were written in the source program, unless an explicit transfer of control overrides this
sequence or there is no next executable statement to which control can be passed. The transfer of control
from statement to statement occurs without the writing of an explicit PROCEDURE DIVISION statement,
and therefore. is an implicit transfer of control.

COBOL74 provides both explicit and implicit means of altering the implicit control transfer mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit transfer of control also
occurs when the normal flow is altered without the execution of a procedure branching statement. COBOL74
provides the following types of implicit contro! flow alterations which override the statement-to-statement
transfers of control:

[. If a paragraph is being executed under control of another COBOL74 statement (for example, PER-
FORM, USE, SORT, and MERGE) and the paragraph is the last paragraph in the range of the control-
ling statement, then an implied transfer of control occurs from the last statement in the paragraph to
the control mechanism of the last executed controlling statement. Further, if a paragraph is being
executed under the control of a PERFORM statement which causes iterative execution and that
paragraph is the first paragraph in the range of that PERFORM statement, an implicit transfer of con-
trol occurs between the control mecharnism associated with that PERFORM statement and the first
statement in that paragraph for each iterative execution of the paragraph.
When a SORT or MERGE statement is executed. an implicit transfer of control occurs to any associ-
ated input or output procedures.
3. When any COBOL74 statement is executed which results in the execution of a declarative section,
an implicit transfer of control to the declarative section occurs. Another implicit transfer of control
occurs after execution of the declarative section. as described in step 1 above.

()

2-22

B 1000 Systems COBOL74 Reference Manual
Language Concepts

EXPLICIT & IMPLICIT

An explicit transfer of control consists of an alteration of the implicit control transfer mechanism by the execu-
tion of a procedure branching or conditional statement. An explicit transfer of control can be caused only by
the execution of a procedure branching or conditional statement. The execution of the procedure branching
statement ALTER does not constitute an explicit transfer of control, but affects the explicit transfer of control
that occurs when the associated GO TO statement is executed. The procedure branching statement EXIT PRO-
GRAM causes an explicit transfer of control when the statement is executed in a called program.

In this manual, the term 'next executable statement’ is used to refer to the next COBOL74 statement to which
control is transferred according to the rules above and the rules associated with each language element in the
PROCEDURE DIVISION.
There is no next executable statement following:
1. The last statement in a declarative section when the paragraph in which it appears is not being
executed under the control of some other COBOL74 statement.

2. The last statement in a program when the paragraph in which it appears is not being executed under
the control of some other COBOL74 statement.

EXPLICIT AND IMPLICIT ATTRIBUTES

Attributes may be implicitly or explicitly specified. Any attribute which has been explicitly specified is called
an explicit attribute. If an attribute has not been specified explicitly, then the attribute assumes the default
specification. Such an attribute is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case, a data item’s usage is DISPLAY.

1108883 2-23

B 1000 Systems COBOL74 Reference Manual

SECTION 3
CODING FORM

GENERAL

The format of the COBOL74 coding form (Figure 3-1) has been defined by CODASYL and ANSI, and by
common usage. The B 1000 COBOL74 Compiler accepts this standard format. Should program interchange be
a major consideration, the user is directed to the ANSI standard.

The rules for spacing given in the following description of the reference format take precedence over all other
rules for spacing.

FIELD DEFINITIONS

The same coding form is used for all four divisions of a COBOL74 program. These divisions must appear in
proper order: IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. The following paragraphs
describe the various fields of this coding form.

SEQUENCE AREA (Record Positions 1-6)

A sequence number, consisting of six digits in the sequence area, may be used to label a source program line.

INDICATOR AREA (Record Position 7)
Column 7 has the following functions:

1. A $ symbol in column 7 indicates that the record is used to specify options for compiler operation.
Refer to Section 11 for additional information.

2. If column 7 contains an asterisk (*), the remainder of the record is considered to be a comment and,
is not ‘‘compiled’’ to produce object code.

3. If column 7 contains a slash (/), the listing is advanced to channel 1 before printing, and the record
is considered to be a comment record.

4. The presence of a hyphen (-) indicates that the last word or literal on the previous record is not com-
plete and is continued on this record beginning in Area B (positions 12 through 72).

Words and numeric literals may be split at any point by placing a hyphen in column 7 of the following

record. Any rightmost blank spaces on a record are ignored as are the leftmost blank spaces on the
continuation record. -

Nonnumeric literals are split in a slightly different fashion than words and numeric literals. On the
initial record starting from the quotation mark, all information through position 72 is taken as part

of the literal, and on the next record a quotation mark must be used to indicate the start of the second
part of the literal.

If there is no hyphen in column 7 of a coding line, it is assumed that the last character in the preced-
ing line is followed by a space.

S. The letter D in column 7 specifiés a debugging line. Any debugging line that consists solely of spaces
from positions 8 through 72 is considered the same as a blank line.

1108883 3-1

Burroughs COBOL CODING FORM

PROGRAM REQUESTED BY PAGE OF
PROGHAMMER DATE IDENT :Ji lLiLi:O
PAGE | LINE A 8 z
NO. NO.
1 314 6 1112 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
1] o1, O S T T T A T Y O IS N O O T U O T T T N T T A T A O Y Y
L1 joz2| T Y T O Y O {1 [| NN N S T 1 I Y T o O |
1103: NN S T T T T T T A Y I I R O N U 1 T T T 1 A O I SO O A
L1 j04] I T T T I A B O [| I T T I T O T A T A I I O A O O | N T T I O I |
||05ﬁI I O T T L A I BT 1 T Y T T T O Y O I A T O O B | L v g b bbbl
1 1]06 {1 ittt N (YT (T T G Y A Y O O Y O NN N
[11 07: Y 0 N T S N Y 1 N T T I | Py b v et e e et vt by e ey fer by oy ey ety
11 |os8 | I VR O T T Y O Y O O IR T S T T T O O O O B [A T O T T T T O I A S O
11 09#! | S U I O O I T O [L1t O O O I | Lt Lt | O T 1S O I I S A I I |
L1 ol 1 O T T Y O I A A TN T T G A O I O A O O T Y T T A I | S T O O O
l!”; 1 N N O N U OO A Y O O O Y I T T O O O B A 111 | I B A A A i O T T T
14 jr2 bod I N T T Y O I O 1 I O O O A I [i I S T U T S W S O N O
||‘3$ [| N N T | T T T O W O O O A A B b rebr e by bl
L1114 | 11 I O T N T W O O Lt (| I T S T O O O O [[E| O G TS T O S O O
1115: 11 I T O T A T O O I N T T T O O O O I L1t T IR
11 [16 I I I O I I IO I O I I B O A | 1008 1 I A 1 T T A A T O A W O I |
L1 ‘7: I T O O I I I I O O | L1t NS N T O W T T T N S N T Y A O B
ll15! 111 141 L I I T T A T I O S I J I L1l L1} 114 L1 11}
||'9: L4 | N T T T Y O | | I T T T T T A O I Y A A O O I O A N N O O
1.1 |20, N N T T T A T Y ¢ Y Y IS T S Y U Y U A I T N T T O A B G I W N N |
14 l 14 I T T T Y O O T A {1 T T T T T T T T T T T A A O A A 1111
[4: | T O T O O T I B T T) I I I [11 I T O O [
11 | L1 I T O I AT Lt bbb e b v bee et vty by bbb et P p vt
JE | ; T I 1 T Y O O T T T T A Y | L1t I T O Y I O (I 11 O S I | S Y Y B A
[| 11 T N I I N T Y I | NN NN NN I L1t J1g] 1 T O A O I |
4 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 I72
G12326

Figure 3-1. COBOL Coding Form

wio,[Supo)
[ENUBIN 0UDI9J0Y $/TOH0D SWaISAS 0001 €

B 1000 Systems COBOL74 Reference Manual
Coding Form

A debugging line is considered to have all the characteristics of a comment line, if the WITH DE-
BUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph. Therefore, the
contents of a debugging line must be such that a syntactically correct program is formed with or with-
out the debugging lines being considered as comment lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER paragraph.
Successive debugging lines are allowed. Continuation of debugging lines is permitted, except that each

continuation line must contain the letter D in position 7, and character-strings may not be broken
across two lines.

AREA A (Positions 8-11)

DIVISION, SECTION, and PARAGRAPH headers must begin in Area A. A division header consists of the
division name (IDENTIFICATION, ENVIRONMENT, DATA, or PROCEDURE), followed by a space. then
the word DIVISION followed by a period.

In the ENVIRONMENT and DATA DIVISIONS, a section header consists of the section-name, followed by
a space, and then the word SECTION followed by a period.

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the reserved
word SECTION, followed by a segment-number (optional), followed by a period.

A paragraph header consists of the paragraph-name followed by a period. The first sentence of the paragraph
may appear on the same line as the paragraph header.

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and paragraph headers are fixed

and only the headers shown in this manual are permitted. Within the PROCEDURE DIVISION, the section
and paragraph headers are defined by the user.

Within the DATA DIVISION, the level indicators (FD, CD, SD) and the level numbers 01 and 77 must each
begin in Area A, followed by the associated name and appropriate descriptive information.

The key words DECLARATIVES and END DECLARATIVES that precede and follow the declaratives por-

tion of the PROCEDURE DIVISION, must appear on separate lines. Each must begin in Area A and must
be followed by a period and a space.

AREA B (Positions 12-72)

All entries which are not DIVISION, SECTION, or PARAGRAPH headers; level numbers 01 and 77, or level
indicators (FD, SD, CD). must start in Area B.

When level-numbers are to be indented, each new level-number may begin any number of spaces to the right
of Area A. The extent of indentation to the right is determined only by the width of the physical medium.

RIGHT MARGIN (Position 72)

The text of the program must appear between positions 8 and 72, inclusive. A word or statement may end
in position 72.

1108883 3-3

B 1000 Systems COBOL74 Reference Manual
Coding Form

IDENTIFICATION (Positions 73-80)

The identification field may contain any information desired by the user. The field is ignored but is reproduced
on the output listing by the compiler. This field is normally used for the program name.

BLANK LINES

A blank line is one that contains no entries in the Indicator Area, Area A, and Area B. A blank line may
appear anywhere in the source program except immediately preceding a continuation line.

PUNCTUATION

The following rules of punctuation apply to COBOL74 source programs for the B 1000 system.

1. A sentence must be terminated by a period followed by a space. A period must not appear within
a sentence unless it is within a nonnumeric literal or is a decimal point in a numeric literal or PIC-
TURE string.

2. Two or more names in a series must be separatzd by a space or by a comma. If used, commas must
appear only where allowed.)

3. Semicolons (;) are used only for readability and are never required.

4. A space must never be embedded in a name; hyphens are to be used instead. A hyphen must not
start or terminate a name. For example:

PAY-DAY (correct)
-PAYDAY (wrong)

SAMPLE CODING

An extract sample from a source program. showing the continuation of both words and nonnumeric literals,
is illustrated in Figure 3-2.

34

€888011

Burroughs COBOL CODING FORM

PROGRAM !i! ! E _.\s REQUESTED BY PAGE & OF lo
PROGRAMMER :\Jéh-ﬁ Q- ’?:ﬁ- Aramme DATE IENT Elomr\'rilﬂ'lj‘i_
PAGE | LINE A 8 8] z
NO. NO.
1 3|4 6 8 1112 16 20 24 28 32 36 40 44 48 52 56 LSO 64 68 |72
L mL ¥:11uE-Cdm\‘®oL-uSrF\4m_Rmumﬁ¥m £ ASSX Nﬁ_m_&gﬂgmn Lt larig
cadoz) byl ik EASEr v brva b b b g e e el
lL°34|[ey ECT MASIERIIMPIAT] ASSIXEN T DUSK || o | R L1l
11 josa] Lo | RS L | .Y PSR IR0 N IO T T T U T A O A A O [
||05:L b e e v b e ede v e v b b prea b s baran b
vdos gy b b bbbl eee e b b e b b b b g rre by
IL°7: Lol i | v d e dev e brre v e b e b b bl
L1 |os | e b ea b gt e e baac bean e b vaar b beaa b b
109: WIR(TNG- STORAGE [SECT vy b v v v b by v feer b far ey
L1 {0l 14 A VM- L TERINGSIeL | 11 Ll oS Num=l 11 co el e
II”’i el v b MERE I v fev e b e) VIAGKE 1 i3 L i
L2 taa a4l @ Ly b Ly I B b e b be e bbb
LL‘3:L vt b beva brr s b b e Lo Mo b b poea b b b
Pt 114§ D T T O T T O | T O T I O T I O I Pl (1% be (PRI T T N I A I I |
P 15: 11 05 1 INENENAM-LIT | o R G | LWe e s Al €
REALE, L1 MARACTE MAILXYD B] e T e b i b b e b e
lL”i cer e b P b e b v brve by ve b by by b s b brva by b
e g bbb e e peee bbb e fevr per o pear ey ey v b iae
1119: Lol ra bvra ey by b e v e b beae bbb bty
1120 e L vy e bt bbb per b e el v e vl
- Lo oo baa v bevan Jare P b e frea b b b b b b s
i 4: BT T T Y O O | | T O 1 1 T T T T T Y I G O O | 1 O O I | S I O | I N 1 A O
L1 L AT I N VI U 1 NV O T O U A A A O A O A O O O
11 : B N 1 N T Y T T T T A O O O I O O B [1 T A A S A |
| L bt eg bl T O | AP bbby e bbb bt v bbbl
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 [72
612327

Figure 3-2. Example of Continuation of Words and Literals

w0 Suipo)
[enuepy 90UdIyRY L TOHOD SWAISAS 0001 d

B 1000 Systems COBOL74 Reference Manual

SECTION 4
IDENTIFICATION DIVISION

GENERAL

The first division of the COBOL74 source program is the IDENTIFICATION DIVISION whose function is
to identify the source program and the resultant output of compilation. In addition, the date the program was

written, the date the source program was compiled, and other pertinent information can be included in the
IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION STRUCTURE

The structure of this division follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]
[INSTALLATION. [comment-entry] ...]
[DATE-WRITTEN. [comment-entry] ...]
[DATE-COMPILED. [comment-entry | ...]
[SECURITY. ([comment-entry] ...]

The following rules must be observed in the formation of the IDENTIFICATION DIVISION:

1. The IDENTIFICATION DIVISION must begin with the reserved words IDENTIFICATION DIVI-
SION followed by a period and a space.

2. All paragraph-names must begin in positions 8 through 11 (Area A) of the coding form.

3. The comment-entry can consist of any combination of the characters from the B 1000 character set.
The continuation of the comment-entry by the use of the hyphen in the indicator area is not permitted;
however, the comment-entry may be contained on one or more lines. A period must be present to
denote the end of the comment entry.

PROGRAM-ID PARAGRAPH

The PROGRAM-ID paragraph gives the name by which a program is identified.

PROGRAM-ID. program-name.]

The following rules must be observed to form PROGRAM-ID paragraphs.

1. The program-name must conform to the rules for formation of a user-defined word.

2. The PROGRAM-ID paragraph contains the name of the program and must be present in every pro-
gram.

3. The program-name identifies the source program and all listings pertaining to a particular program.

1108883 41

B 1000 Systems COBOL74 Reference Manual
Identification Division

IDENTIFICATION DIVISION

DATE-COMPILED PARAGRAPH

The DATE-COMPILED paragraph provides the compilation date in the IDENTIFICATION DIVISION source
program listing.

DATE-COMPILED. [comment-entry] ...

The paragraph-name DATE-COMPILED causes the current date to be inserted during program compilation.
If a DATE-COMPILED paragraph is present, it is replaced during compilation with a paragraph of the form:

DATE-COMPILED. current date.

Current date is composed of the elements year, month, day of month, hour, and minute and represents the
date and time at which the compilation of the source program started.

Year is presented as four digits, starting in the position on the printed line corresponding to column 25 of
a source line.

Month is presented as the name of the month in English. starting in the position on the printed line correspond-
ing to column 30 of a source line.

Day of month is presented as two digits, starting in the position on the printed line two places to the right
of the last character of the month entry.

Time is presented as four digits, with a colon between the second and third digits, and represents the time
on a 24-hour clock. Time is presented in the position on the printed line five places to the right of the second
digit of day of month.

Any leading zeros in the numeric fields are presented as the character ’0’ (zero).
If a compilation commences at 11:03 p.m., February 3, 2001, the current date would be presented as:

2001 FEBRUARY 03 23:03

CODING THE IDENTIFICATION DIVISION

Figure 4-1 provides an example of how the IDENTIFICATION DIVISION may be coded in the source pro-
gram. Continued lines must begin in Area B and must not include a hyphen in the indicator area.

€888011

Burroughs COBOL CODING FORM

PROGRAM 16&(\;\-\2'\Q\'\-{i ‘Bi\)'\S'sQ/(_ REQUESTED BY PAGE i OF 8
PROGRAMMER y\l DATE IDENT. : R
PAGE LINE | |A B 2
_NO. NO.
1 3|a 6718 112 16 20 24 28 32 36 40 44 48 52 60 64 68 172
o for | IDEMTTHICA L\’mm-llLlJl W I R el e v g
Lijoz1 | P - L. "NENEN NN N NN N U SR N ced el i
403; . [L bee s e b bt b by NN
11 jos) Nj. CIAROGRMTTENG 1 11] 100 |10 NENEEE NN NN
n105: Lol e ey bty 1B ;1C|.|;|||| I N I R Ll b
11|06 ‘h&m&m‘ N.lﬁuun_lg.L_Qﬁj,J_nL dov vt v bt pa e e e by
|J°71! 5&1&;&;{@@111\491-1 et b b e b b e pene b fean b L g
p 1 jos |l | | 111 11 (| [| i 1 11 | 111 11 [11 1 11 1 11
1) 09; NEREIENE NS NN PN T O U U I N I O O I O A I O O by el el
WEALN Lol SN T O U O A A O T O A A O A I pe b vl r e
111': ptr b 11 L1y 11} [N N N et

g 12| HEEENN] 1 11 [IO O O U A I I O O el b r ey
II‘3: | Y O T A T I I | N T N SO T I O T N A T Y I N I (| 111 1 11 1 T T T I I | L1t
11 {14 [T T O O O T T T U S O T O N B A B | | JI | 111 1 1 S T T O T I O I I A |
(I} '547 | | | | S I A 1 i1 1 11 111 | I | 1 1 | Lt t i1 11 £ 11 |3 | |
i1 [16) NN NN el bl v bbbt by et b
”an pr b e ity v e b e fe v e b g NN NN
1 18 4 EEEEEE NN IR NN NN EREEEE NN RN NN
L1 19: Leod e el 0T T T O Y O N L A RSN EENE NN
1|20, Lt ey i fa bt e b r v e pre et ey by 111 Pl
aaf | L e by g vt b e b rn bre e b fra NN NN [
1] : I T O A I I A A | I (B} L ey Pl [1 1 O O 1 0 0 O I |
L1 | L1 14 [cr bbby b pr b e bbbl 11 NN
L1 : O Y T I O O Y T 1 N T T T N T T O O O O O O Y N O T O O O I A
Lt | [N A T L1t} IS NN RN NN

4 8 12 16 20 24 28 32 36 40 44 18 £2 60 64 68 22
G12328

Figure 4-1. Coding the IDENTIFICATION DIVISION

NOISIAIQ NOILYDI4ILNAQI

d uoneOyRUIP]
[EnUE 30USIARY HLTOH0D SWIISAS 0001 €

H

UOISIAL

B 1000 Systems COBOL74 Reference Manual

SECTION 5
ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second division of a COBOL74 source program. Its function is to
specify the computer being used for the program compilation, specify the computer to be used for object pro-
gram execution, associate files with the computer hardware devices, and provide the compiler with pertinent
information about disk storage files defined within the program. Furthermore, this division is also used to spec-

ify input-output areas to be utilized for each file declared in a program.

ENVIRONMENT DIVISION ORGANIZATION

The ENVIRONMENT DIVISION consists of two sections. The CONFIGURATION SECTION contains the
overall specifications of the computer. The INPUT-OUTPUT SECTION deals with files to be used in the ob-

ject program.

ENVIRONMENT DIVISION STRUCTURE

The structure of this division follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. source-computer-entry
OBJECT-COMPUTER. object-computer-entry
[SPECIAL-NAMES. special-names-entry |
[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry }
[I-O-CONTROL. input-output-control-entry 1 |

The following rules must be observed in the formulation of the ENVIRONMENT DIVISION.

1. The ENVIRONMENT DIVISION must begin with the reserved words ENVIRONMENT DIVISION

followed by a period and a space.
2. All entries must begin in Area A (columns 8 through 11) of the coding form.

1108883

B 1000 Systems COBOL74 Reference Manual
Environment Division

CONFIGURATION SECTION

CONFIGURATION SECTION

The CONFIGURATION SECTION contains information concerning the system to be used for program com-
pilation (SOURCE-COMPUTER), the system to be used for program execution (OBJECT-COMPUTER), and
the SPECIAL-NAMES paragraph. The SPECIAL-NAMES paragraph relates hardware names used by the

B 1000 COBOL74 Compiler to the mnemonic-names in the source program, and alphabet-names to character
sets and/or collating sequences.

5-2

B 1000 Systems COBOL74 Reference Manual
Environment Division

SOURCE-COMPUTER

SOURCE-COMPUTER PARAGRAPH

The SOURCE-COMPUTER paragraph identifies the computer upon which the program is to be compiled.

General Format:

SOURCE-COMPUTER. computer-name.

Syntax Rule:
1. The computer-name is any COBOL74 word and is handled as a comment entry which describes the
computer upon which the source program is to be compiled. This computer name is for documentation

only.

General Rule:

1. The computer-name is treated as a comment and ignored.

1108883 5-3

B 1000 Systems COBOL74 Reference Manual
Environment Division

OBJECT-COMPUTER

OBJECT-COMPUTER PARAGRAPH
The OBJECT-COMPUTER paragraph identifies the computer on which the program is to be executed.

General Format:

WORDS
OBJECT-COMPUTER. computer-name , MEMORY SIZE integer CHARACTERS}
MODULES

[, PROGRAM COLLATING SEQUENCE IS alphabet-name |

[, SEGMENT-LIMIT IS segment-number].

Syntax Rules:

1. Computer-name is a system name.
2. Segment-number must be an integer whose value is within the range of 1 through 49.

General Rules:

1. The computer-name is any COBOL74 word and is handled as a comment entry which describes the
computer upon which the object program is to be executed. This computer name is for documenta-
tion only.

2. If the PROGRAM COLLATING SEQUENCE clause is specified, the collating sequence associated
with alphabet-name is used to determine the truth value of any nonnumeric comparisons:

a. Explicitly specified in relation conditions. Refer to Relation Condition in Section 7 for additional
information.

b. Explicitly specified in condition-name conditions. Refer to Condition-Name Condition (Condition-
al Variable) in Section 7 for additional information.

3. If the PROGRAM COLLATING SEQUENCE clause is not specified. the EBCDIC collating sequence
is used.

4. If the PROGRAM COLLATING SEQUENCE clause is specified, the program collating sequence is
the collating sequence associated with the alphabet-name specified in that clause.

5. The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric merge or sort
keys unless the COLLATING SEQUENCE phrase of the respective MERGE or SORT statement is
specified. Refer to the MERGE and SORT statement in Section 7.

6. The PROGRAM COLLATING SEQUENCE ‘lause applies only to the program in which it is

8. The SEGMENT-LIMIT clause specifies the limit of the fixed segment for sections numbered from 0
to 49. Refer to Segmentation in Section 7 for further discussion.

9. The MEMORY SIZE clause is used to increase the amount of dynamic memory.

10. WORDS and MODULES are equivalent to CHARACTERS.

B 1000 Systems COBOL74 Reference Manual

Environment Division

SPECIAL-NAMES PARAGRAPH

SPECIAL-NAMES

The SPECIAL-NAMES paragraph provides a means of relating names to user-specified mnemonic-names and

of relating alphabet-names to character sets and/or collating sequences.

General Format:

SPECIAL-NAMES .

IS mnemonic-name

[. ON sTATUS IS condition-name-1
[.OFF STATUS IS condition-name-2 1]]

IS mnemonic-name

[,ON STATUS IS condition-name-1]]

ON STATUS IS condition-name-1

[, OFF STATUS IS condition-name-2 |
OFF STATUS IS condition-name-2

[. ON STATUS IS condition-name-1 |

.

. alphabet-name 1S

(STANDARD-I

[. CURRENCY SIGN IS literal-9]
[. DECIMAL-POINT IS COMMA]

< [OFF STATUS IS condition-name-2 >

]

NATIVE

ASCI

EBCDIC
§ THROUGH { literal-2

< literal-1 | VTHRU f
ALSO literal-3 | . ALSO literal-4 | ..
{ THROUGH }
literal-5 THRU literal-6
L ALSO literal-7 [, ALSO literal-8 | . ..
N

]

1108883

B 1000 Systems COBOIL.74 Reference Manual
Environment Division

SPECIAL-NAMES

Syntax

Rules:

1. The literals specified in the literal phrase of the alphabet-name clause:

a.

b.

If numeric, must be unsigned integers and must have a value within the range of 1 through the
maximum number of characters in the EBCDIC character set.

If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one character
in length.

2. If the literal phrase of the alphabet-name clause is specified, a given character must not be specified
more than once in an alphabet-name clause.
3. The words THRU and THROUGH are equivalent.

General Rules:

I. If switch-name is not specified, the associated mnemonic-name may be used in the ACCEPT, DIS-
PLAY, SEND, and WRITE statements.

.,

5. The alphabet-name clause provides a means for relating a name to a specified character code set and/
or collating sequence. When alphabet-name is referenced in the PROGRAM COLLATING SE-
QUENCE clause (refer to OBJECT-COMPUTER Paragraph in this Section) or the COLLATING SI=-
QUENCE phrase of a SORT or MERGE statement (refer to MERGE and SORT in Section 7), the
alphabet-name clause specifies a collating sequence. When alphabet-name is referenced in a CODE-

SET clause in a file description entry (refer to the File Description Structure in Section 6), the alpha-
bet-name clause specifies a character code ser.

a.

ASCII is a synonym for STANDARD-I1. If the STANDARD-1 or ASCII phrase is specified, the

character code set and collating sequence identified is that defined in the American National Stan-
dard Code for Information Interchange. X'.4-1968.

. If the NATIVE phrase is specified, the native character code set and native collating sequence

will be identified with the alphabet-name. The native character code set is EBCDIC and is the
character code set associated with DISPLAY usage.

. The correspondence between characters of the ASCII character code set and characters of the

EBCDIC character code set is determined by standard translation tables for EBCDIC to ASCII
and ASCII to EBCDIC translation. Refer to Appendix C.

. If the literal phrase is specified. the alphabet-name may not be referenced in a CODE-SET clause.

Refer to the CODE-SET clause in Section 6. The collating sequence identified is that defined ac-
cording to the following rules:

B 1000 Systems COBOL74 Reference Manual
Environment Division

SPECIAL-NAMES

Rule 1: The value of each literal specifies:

1) The ordinal number of a character within the native character set, if the literal is numeric. This
value must not exceed the value which represents the number of characters in the native char-
acter set.

2) The actual character within the native character set, if the literal is nonnumeric. If the value
of the nonnumeric literal contains multiple characters, each character in the literal, starting with
the leftmost character, is assigned successive ascending positions in the collating sequence be-
ing specified.

Rule 2: The order in which the literals appear in the alphabet-name clause specifies, in ascending
sequence, the ordinal number of the character within the collating sequence being specified.

Rule 3: Any characters within the native collating sequence, which are not explicitly specified in
the literal phrase, assume a position, in the collating sequence being specified, greater than any
of the explicitly specified characters. The relative order within the set of these unspecified charac-
ters is unchanged from the native collating sequence.

Rule 4: If the THROUGH phrase is specified, the set of contiguous characters in the native char-
acter set beginning with the character specified by the value of literal-1, and ending with the char-
acter specified by the value of literal-2, is assigned a successive ascending position in the collating
sequence being specified. In addition, the set of contiguous characters specified by a given
THROUGH phrase may specify characters of the native character set in either ascending or de-
scending sequence.

Rule 5: If the ALSO phrase is specified, the characters of the native character set specified by
the value of literal-1, literal-3, literal4, ..., are assigned to the same position in the collating se-
quence being specified.

6. The character that has the highest ordinal position in the program collating sequence specified is asso-
ciated with the figurative constant HIGH-VALUE. If more than one character has the highest position
in the program collating sequence, the last character specified is associated with the figurative constant
HIGH-VALUE.

7. The character that has the lowest ordinal position in the program collating sequence specified is asso-
ciated with the figurative constant LOW-VALUE. If more than one character has the lowest position
in the program collating sequence, the first character specified is associated with the figurative con-
stant LOW-VALUE.

8. The literal which appears in the CURRENCY SIGN IS literal clause is used in the PICTURE clause
to represent the currency symbol. The literal is limited to a single character and must not be one of
the following characters:

a. Digits 0 through 9.
b. Alphabetic characters:

A D R X
B L S Z
C P A" space

1108883 5-7

B 1000 Systems COBOL74 Reference Manual
Environment Division

SPECIAL-NAMES

¢. Special characters:

=

3

If the CURRENCY SIGN IS clause is not present, the default value dollar sign ($) is used in the
PICTURE clause.

9. The clause DECIMAL-POINT IS COMMA means that the functions of the comma and period are
exchanged in the character-string of the PICTURE clause and in numeric literals.

5-8

B 1000 Systems COBOL74 Reference Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section contains information concerning files to be used by the object program. the
manner of recording used or to be used. and the presence of any multiple-file tape or disk.

FILE CONCEPTS

In the following paragraphs, concepts of File Types, Organization, Access Mode, Current Record Pointer, 1-O
Status, INVALID KEY, AT END, and LINAGE-COUNTER are discussed pertaining to Sequential. Indexed.
Relative. and Sort-Merge files.

SEQUENTIAL I-O

Sequential I-O provides a capability to access records of a file in established sequence. The sequence is estab-
lished as a result of writing the records to the file. It also provides for the sharing of memory areas among
files.

Sequential I-O provides full facilities for the FILE-CONTROL, I-O-CONTROL, and FD entries as specified
in the formats of this manual. Within the PROCEDURE DIVISION, Sequential I-O provides full capabilities
for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements . Additional features available in-
clude: OPTIONAL files, the RESERVE clause, SAME RECORD AREA, REVERSED, and EXTEND op-
tions.

RELATIVE I-O

Relative 1-O provides the capability to access records of a mass storage file in either a random or sequential
manner. Each record in a relative file is uniquely identified by an integer value greater than zero which
specifies the record’s logical ordinal position in the file.

Relative I-O has full facilities for the FILE-CONTROL, I-O-CONTROL, and FD entries as specitied in the
formats of this manual. Within the PROCEDURE DIVISION, the Relative I-O provides full capabilities for
the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements. Additional fea-
tures available include: the RESERVE clause, DYNAMIC accessing, SAME RECORD AREA, READ NEXT,
and the START statement.

INDEXED 1-O

Indexed I-O provides a capability to access records of a mass storage file in either a random or sequential
manner. Each record in an indexed file is uniquely identified by the value of one or more keys within that
record.

Indexed I-O provides full facilities for the FILE-CONTROL, I-O-CONTROL, and FD entries as specified in
the formats for this module. Within the PROCEDURE DIVISION, the Indexed I-O provides full capabilities
for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements as specified
in the formats for this module. Additional features include: the RESERVE clause, DYNAMIC accessing, AL-
TERNATE KEYS., SAME RECORD AREA, READ NEXT, and the START statement.

1108883-001 59

B 1000 Systems COBCL74 Reference Manual
Environment Division

5-10

B 1000 Systems COBOL74 Reference Manual
Environment Division

5-10A
1108883-001

B 1000 Systems COBOL74 Reference Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

SORT-MERGE

The Sort-Merge module provides the capability to order one or more files of records, or to combine two or
more identically ordered files of records, according to a set of user-specified keys contained within each rec-
ord. Optionally, a user may apply some special processing to each of the individual records by input or output
procedures. This special processing may be applied before and/or after the records are ordered by the SORT
or after the records have been combined by the MERGE.

Sort-Merge provides the facility for sorting one or more files, or combining two or more files, one or more
times within a given execution of a COBOL74 prcgram.

Relationship with Sequential [-O

The files specified in the USING phrase of the SORT and MERGE statements must be described implicitly
or explicitly in the FILE-CONTROL paragraph as having sequential organization.

The file specified in the GIVING phrase of the SORT and MERGE statements must be described implicitly
or explicitly in the FILE-CONTROL paragraph as having sequential organization.

No input-output statement may be executed for the file named in the Sort-Merge file description.

ORGANIZATION

Sequential Files are organized such that each record in the file except the first has a unique predecessor rec-
ord. and each record except the last has a unique successor record. These predecessor-successor relationships
are established by the order of WRITE statements when the file is created. Once established, the predecessor-
successor relationships do not change except in the case where records are added to the end of the file.

Relative File organization is permitted only on mass storage devices. A Relative File consists of records which
are identified by relative record numbers. The file may be thought of as composed of a serial string of areas,
each capable of holding a logical record. Each of these areas is denominated by a relative record number.
Records are stored and retrieved based on this number. For example, the tenth record is the one addressed
by relative record number 10 and is in the tenth record area, whether or not records have been written in
the first through the ninth record areas.

A file whose organization is Indexed is a mass storage file in which data records may be accessed by the
value of a key. A record description may include one or more key data items, each associated with an index.
Each index provides a logical path to the data records according to the contents of a data item within each
record which is the record key for that index.

The data item named in the RECORD KEY clause of the file control entry for an Indexed File is the prime
record key for that file. For purposes of inserting. updating. and deleting records in a file, each record is identi-
fied solely by the value of its prime record key. This value must, therefore, be unique and must not be changed
when updating the record.

A data item named in the ALTERNATE RECORD KEY clause of the file control entry for an Indexed File,

is an alternate record key for that file. The value of an alternate record key may be nonunique if the DUPLI-
CATES phrase is specified. These keys provide alternate access paths for retrieval of records from the file.

5-108

B 1000 Systems COBOL74 Reference Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

ACCESS MODE

The ACCESS MODE clause specifies the manner in which records are accessed in a file. Sequential. Relative,
and Indexed File access methods are discussed in the following paragraphs.

Sequential Files

In the sequential access mode. the sequence in which records are accessed is by the ascending order of ordinal
location within the file.

In the random access mode. the sequence in which records are accessed is specified by the contents of the

ACTUAL KEY data item at the time the READ or WRITE statement is executed. The value of the ACTUAL
KEY data item supplies the ordinal record number of the record accessed.

Relative File

In the sequential access mode, the sequence in which records are accessed is the ascending order of the
relative record numbers of all records which currently exist within the file.

In the random access mode, the sequence in which records are accessed is controlled by the programmer.
The desired record is accessed by placing its relative record number in a relative key data item.

In the dynamic access mode. the programmer may change at will from sequential access to random access
using appropriate forms of input-output statements.

Indexed Files

In the sequential access mode. the sequence in which records are accessed is the ascending order of the record
key values. The order of retrieval of records within a set of records having duplicate record key values is
the order in which the records were written into the set.

In the random access mode, the sequence in which records are accessed is controlled by the programmer.
The desired record is accessed by placing the value of the record key in a record key data item.

In the dynamic access mode. the programmer may change at will from sequential access to random access
using appropriate forms of input-output statements.

CURRENT RECORD POINTER

For all file types, the current record pointer is a conceptual entity used in selection of the next record to be
accessed within a given file. The setting of the current record pointer is affected only by the OPEN. START,
and READ statements. The WRITE statement for a sequentially organized file may also affect the setting of
the current record pointer.

1108883001 5-11

B 1000 Systems COBOL74 Reference Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

I-O STATUS

If the FILE STATUS clause is specified in a file control entry. a value is placed into the specified two-charac-
ter data item during the execution of an OPEN, CLOSE, READ, WRITE. REWRITE. DELETE, or START
statement and before any applicable USE procedurs is executed, to indicate to the COBOL74 program the
status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item is known as status key | and is set to a value
which indicates one of the following conditions upon completion of the input-output operation.

Value Condition

Successful Completion

At End

Invalid Kay

Permanent Error
Burroughs-Defined Condition
Burroughs-Defined Condition

O 00 W N =—O

The above conditions are defined in following text.

SUCCESSFUL COMPLETION

The input-output statement was successfully execured.

AT END

The sequential READ statement was unsuccessfully exzcuted as a result of:

1. An attempt to read other than a queue or port file record when no next logical record exists in the file.
2. The first READ statement being executed for a file described with the OPTIONAL clause, when that

INVALID KEY

The input-output statement was unsuccessfully executed as a result of one of the following:

1. For a Format 2 READ statement, on other than a queue or port file, the contents of the ACTUAL
KEY data item were less than 1 or greater than the original number of the last record ever written to
the file.

2. For a Format 2 WRITE statement, on other than a queue or port file, the contents of the ACTUAL
KEY data item were less than 1 or greater than the last record allowed to be written because of the
specification of a maximum file size.

5-12

B 1000 Systems COBOL74 Reference Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

PERMANENT ERROR

The input-output statement was unsuccessfully executed as the result of a boundary violation for a sequential
file or as the result of an input-output error, such as data check parity error, or transmission error.

1108883-001 5-12A

B 1000 Systems COBOL74 Reference Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

BURROUGHS-DEFINED CONDITION

The input-output statement encountered conditions other than those already defined and may have been unsuc-
cessfully executed, depending on the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as status key 2 and is used to
further describe the results of the input-output operation. This character contains a value as follows:

1. If no further information is available concerning the input-output operation, then status key 2 contains
a value of 0.

2. When status key 1 contains a value of 0 indicating a successful completion, status key 2 may contain
a value of 2 indicating a duplicate key. This condition indicates:

a. For a READ statement. the key value for the current key of reference is equal to the value of
that same key in the next record within the current key of reference.

b. For a WRITE or REWRITE statement, the record just written created a duplicate key value for
at least one alternate record key for which duplicates are allowed.

3. When status key | contains a value of 2 indicating an INVALID KEY condition, status key 2 is used
to designate the case of that condition as follows:

a. A value of I in status key 2 indicates a sequence error for a sequentially accessed indexed file.
The ascending sequence requirements of successive record key values have been violated (refer
to WRITE in Section 7), or the prime record key value has been changed by the COBOL74 pro-
gram between the successful execution of a READ statement and the execution of the next RE-
WRITE statement for that file.

b. A value of 2 in status key 2 indicates a duplicate key value. An attempt was made to write or
rewrite a record that would create a duplicate key in an indexed file.

c. A value of 3 in status key 2 indicates no record found. An attempt is made to access a record,
identified by a key, but that record does not exist in the file.

d. A value of 4 in status key 2 indicates a boundary violation. An attempt was made to write beyond
the externally defined boundaries of an indexed file. The compiler specifies the manner in which
these boundaries are defined.

4. When status key 1 contains a value of 3 indicating a permanent error condition, status key 2 may
contain a value of 4 indicating a boundary violation. This condition indicates that an attempt was made
to write beyond the externally defined boundaries of a sequential file. The compiler specifies the man-
ner in which these boundaries are defined.

1108883-001 ‘ 5-13

B 1000 Systems COBOQOL74 Reference Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

6. When status key 1 contains a value of 9 indicating a Burroughs-defined condition, the value of status
key 2 indicates the condition as follows:

Status Key 2
Value Condition

Short Block

Data Error

Q-Empty or No Data
Q-Full or No Buffer
Timeout

Break on Output
Unexpected 1-O Error

O 1N BN =

SHORT BLOCK

Because of the limitation of the physical recording medium. the system is unable to determine whether the
logical record returned had been written to the file. Determination of the validity of the data record is the
responsibility of the programmer.

DATA ERROR

When logical records are declared variable in length and the logical record length is supplied by the program-
mer (by means of the RECORD CONTAINS clause), a data error occurs on a READ. WRITE. or REWI'{ITE
statement if the logical record length supplied is less than the minimum record size or greater than the
maximum record size declared for the file. This condition initiates no input-output operation nor does it cause
data to be transferred to or from the record area.

TIMEOUT
A time limit has elapsed prior to the transfer of data to or from the hardware device.
BREAK ON OUTPUT

For an output or input-output file. this condition occurs if the physical hardware device is equipped with a
break such that an operator can halt the transfer of data in process.

UNEXPECTED I-O ERROR

An error may have occurred in the input-output operation but its nature cannot be determined.

5-14

B 1000 Systems COBOL74 Reference Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status key 2 are shown in Table 5-1. The.
letter I (Indexed), P (Port), R (Relative), S (Sequential), or Q (Queue) at an intersection indicates a valid permissi--
ble combination.

Duplicate Key or (*Data Error)
Sequence Error or (*Short Block)
No Information
IR
0] 2 3

nNnac—-Ar-un

< mx

1108883-001

Table 5-1. Status Key Combinations

STATUS KEY 2

Boundary Violation

No Record Found

~——T imeout

Break on Output

i——-l—o Error

9

I -
O -
~

Successful| |
Completion| R I

At
End

n o -

—

Invalid
Key | R R

Permanent]
Error

Burroughs
-Defined

The (*) distinguishes which error occurred when there are
two with the same value.

5-15

B 1000 Systems COBOL74 Reference Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

INVALID KEY

The INVALID KEY condition can occur as a result of the execution of a START, READ, WRITE, RE-
WRITE, or DELETE statement. For details of the causes of the condition, refer to the START, READ,
WRITE, REWRITE, and DELETE statements in Section 7.

When the INVALID KEY condition is recognized, these actions are taken in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an INVALID
KEY condition. Refer to [-O Status in this section for additional information.

2. If the INVALID KEY phrase is specified in the statement causing the condition, control is transferred
to the INVALID KEY imperative statement. Any USE procedure specified for this file is not
executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified for this file, either
explicitly or implicitly, that procedure is executed.

When the INVALID KEY condition occurs, executicn of the input-output statement which recognized the con-
dition is unsuccessful and the file is not affected.

AT END

The AT END condition can occur as a result of the execution of a READ statement. For details of the causes
of the condition refer to the READ statement in Section 7.

LINAGE-COUNTER

For Sequential Files only, the reserved word LINAGE-COUNTER is a name for a special register generated
by the presence of a LINAGE clause in a file description entry. The implicit description is that of an unsigned
integer whose size is equal to the size of integer-1 or the data item referenced by data-name-1 in the LINAGE
clause. Refer to the LINAGE clause in Section 6 for the rules governing the LINAGE-COUNTER.

B 1000 Systems COBOL74 Reference Manual
Environment Division

FILE-CONTROL

FILE-CONTROL PARAGRAPH

The FILE-CONTROL paragraph names each file and allows specification of other file-related ‘information.

General Format:

FILE-CONTROL. {file-control-entry } -

FILE CONTROL ENTRY

The file control entry names a file and may specify other file-related information. If using the sort-merge fea-

tures. the file control entry names a sort or merge file and specifies the association of the file to a storage
medium.

1108883001 5-17

B 1000 Systems COBOL74 Reference Manual
Environment Division

FILE-CONTROL

General Format:

INPUT-OUTPUT SLECTION.
FILE-CONTROL.

SELECT |OPTIONAL] file-name

ASSIGN TO

AREA
. RESERVE integer-3

AREAS

!

[[:ORGANIZATION 1S SEQUENTIAL |

[: ACCESS MODE 1S
s

r: ORGANIZATION IS RELATIVE

(RANDOM '
ACCESS MODE IS

. RELATIVE KLY IS data-name-3 \.
l I ynamic s

: ORGANIZATION IS INDEXED

[SEQUENTIAL | . RLLATIVE KEY 1S dutu-namc-.‘l)

{ SEQUENTIAL |
CLSS MODE IS | RANDOM
| DYNAMIC |

. RECORD KEY IS data-name-4

L[: ALTERNATE RECORD KEY IS dati-name-5 [WITH DUPLICATES| |

{ . FILE STATUS IS data-name-1].

5-18

B 1000 Systems COBOL74 Reference Manual
Environment Division

FILE-CONTROL

Syntax Rules:

1. The SELECT clause must be specified first in the file control entry. The clauses which follow the
SELECT clause may appear in any order.

2. Each file described in the DATA DIVISION must be named only once with a file-name in the FILE-
CONTROL paragraph. Each file specified in the file control entry must have a file description entry
in the DATA DIVISION. For an Indexed File. the first cight letters of the file-name must be unique.

3. If the ACCESS MODE clause is not specified. the ACCESS MODE [S SEQUENTIAL clause with-
out the ACTUAL KEY phrase is implied.

4. Data-name-1 must be defined in the DATA DIVISION as a two-character data item of the category
alphanumeric and must not be defined in the FILE SECTION or the COMMUNICATION SEC-

ON.

9. Data-name-I. data-name-3. data-name-4. and data-name-5 may be qualified.

10. If no ORGANIZATION IS clause is specified. the ORGANIZATION IS SEQUENTIAL clause is
implied.

1t. The OPTIONAL phrase may only be specified for sequential input files. Its specification is required
for input files that are not necessarily present each time the object program is executed.

12. The ACTUAL KEY phrase may be specified only for mass storage files, port files, and queue files. l

én ribes

14. If a relative file is to be referenced by a START statement. the RELATIVE KEY phrase must be
specified for that file.

15. Data-name-3 must not be defined in a record description entry associated with that file-name.

16. The data item referenced by data-name-3 must be defined as an unsigned integer.

17. The data items referenced by data-name-4 and data-name-5 must each be defined as a data item of
the category alphanumeric within a record description entry associated with that file-name.

18. Neither data-name-4 nor data-name-5 can describe an item whose size is variable. Refer to the OC-
CURS clause in Section 6 for more information.

19. Data-name-5 cannot reference an item whose leftmost character position corresponds to the leftmost
character position of an item referenced by data-name-4 or by any other data-name-5S associated with

this file.
n l

1. The ASSIGN clause specifies the association of the file referenced by file-name to a storage medium.
. .) SK

General Rules:

1108883-001 5-19

B 1000 Systems COBOL74 Reference Manual
Environment Division

FILE-CONTROL

5-20

nal

. The RESERVE clause allows the user to spzcify the number of input-output areas allocated. If the

RESERVE clause is specified. the number of input-output areas allocated is equal to the value of
integer-3. If the RESERVE clause is not specified. one input-output area is allocated.

. The ORGANIZATION clause specifies the logical structure of a file. The file organization is estab-

lished at the time a file is created and ¢

When the access mode of a Relative File is sequential. records in the file are accessed in the order
of ascending relative record numbers of existing records in the file.

. When the access mode of an Indexed File is sequential. records in the file are accessed in the order

of ascending record key values within a given key of reference.

When the FILE STATUS clause is specified. a value is moved by the operating system into the data
item specified by data-name-1 after the execution of every statement that references that file either
explicitly or implicitly. This value indicates the status of execution of the statement. Refer to I-O
Status in this section for additional information.

. If the access mode of a Relative File is random. the value of the RELATIVE KEY data item indi-

cates the record to be accessed.

. If the access mode of an Indexed File is rancom. the value of the RECORD KEY data item indicates

the record to be accessed.

. When the access mode is dynamic. records in the file may be accessed sequentially and/or randomly.

Refer to General Rules S and 8. or 6 and 9 under the FILE-CONTROL statement.

. All records stored in a Relative File are uniquely identified by relative record numbers. The relative

record number of a given record specifies the record’s logical ordinal position in the file. The first
logical record has a relative record number of 1. and subsequent logical records have relative record
numbers of 2. 3. 4. and so forth.

. In a Relative File. the data item specified by data-name-3 is used to communicate a relative record

number between the program and the MCP.

. The RECORD KEY clause specifies the prime record key for the file. The values must be unique

among records of the file. The prime record key provides an access path to records in an Indexed
File.

. An ALTERNATE RECORD KEY clause specifies an alternate record key for the file and provides

an alternate access path to records in an Indexed File.

. In an Indexed File. the data descriptions of data-name-4 and data-name-5 as well as the relative loca-

tions within a record must be the same as that used when the file was created. The number of alter-
nate keys for the file must also be the same as that used when the file was created.

. The DUPLICATES phrase specifies that the value of the associated alternate record key may be du-

plicated within any of the records in the file If the DUPLICATES phrase is not specified. the value
of the associated alternate record key must not be duplicated among any of the records in the file.

. DISK specifies that mass storage is the storage medium of the file. A more precise specification of

the medium may be made in the VALUE OF clause in the File Description entry or by means exter-
the langu

B 1000 Systems COBOL74 Reference Manual
Environment Division

I-O-CONTROL

I-O-CONTROL PARAGRAPH

The I-O-CONTROL paragraph specifies the memory area which is to be shared by different files, and the loca-
tion of files on a multiple file reel.

General Format:

I-O-CONTROL.

RECORD
i SAME SORT AREA FOR file-name-3 {, file-name-4 }
SORT-MERGE

Syntax Rules:

—

. The I-O-CONTROL paragraph is optional.

2. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

3. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one of the file-
names must represent a sort or merge file. Files that do not represent sort or merge files may also
be named in the clause.

4. The four formats of the SAME clause (SAME AREA, SAME RECORD AREA, SAME SORT AREA,

SAME SORT-MERGE AREA) are considered separately in the following description.

More than one SAME clause may be included in a program; however, the following restrictions apply:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME RECORD AREA clause,
all of the file-names in that SAME AREA clause must appear in the SAME RECORD AREA
clause. However, additional file-names not appearing in that SAME AREA clause may also appear
in that SAME RECORD AREA clause. The rule that only one of the files mentioned in a SAME
AREA clause can be open at any given time takes precedence over the rule that all files mentioned
in a SAME RECORD AREA clause can be open at any given time.

d. A file-name that represents a sort or merge file must not appear in more than one SAME SORT
AREA or SAME SORT-MERGE AREA clause.

e. If a file-name that does not represent a sort or merge file appears in a SAME AREA clause and
one or more SAME SORT AREA or SAME SORT-MERGE AREA clauses, all of the files named

in that SAME AREA clause must be named in that SAME SORT AREA or SAME SORT-MERGE
AREA clause(s).

5. The files referenced in the SAME AREA, SAME RECORD AREA, SAME SORT AREA, or SAME
SORT-MERGE AREA clause need not all have the same organization or access type.

1108883 5-21

B 1000 Systems COBOL74 Reference Manual
Environment Division

I1-O-CONTROL

General Rules:

1. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one of the file-

names must represent a sort or merge file. Files that do not represent sort or merge files may also
be named in the clause. This clause specifies that storage is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a memory area which
is made available for use in sorting or merging each sort or merge file named. Thus, any memory
area allocated for the sorting or merging cf a sort or merge file is available for reuse in sorting
or merging any of the other sort or merge files.

b. In addition, storage areas assigned to files that do not represent sort or merge files may be allo-
cated as needed for sorting or merging the sort or merge files named in the SAME SORT AREA
or SAME SORT-MERGE AREA clause. The extent of such allocation is specified by the MCP.

c. Files other than sort or merge files do not share the same storage area with each other. If the
user wishes these files to share the same storage area with each other, a SAME AREA or SAME
RECORD AREA clause naming these files must also be included in the program.

d. During the execution of a SORT or MERGE statement that refers to a sort or merge file named
in this clause, any files named in this clause that are not sort-merge files must not be open.

2. The SAME AREA clause specifies that two or more files that do not represent sort or merge files

are to use the same memory area during processing. The area being shared includes all storage area
assigned to the files specified. It is not valid to have more than one of the files open at the same
time. Refer to syntax rule 4c under the I-O-CONTROL paragraph.

. The SAME RECORD AREA clause specifies that two or more files are to use the same memory area

for processing of the current logical record. All of the files may be open at the same time. A logical
record in the SAME RECORD AREA is considered as a logical record of each opened output file
whose file-name appears in this SAME RECORD AREA clause and of the most recently read input
file whose file-name appears in this SAME RECORD AREA clause. This is equivalent to an implicit
redefinition of the area; records are aligned on the leftmost character position.

CODING THE ENVIRONMENT DIVISION

Figure 5-1 provides an example of how the ENVIRONMENT DIVISION may be coded in the source program.

5-22

€888011

£C-$

Burroughs COBOL CODING FORM

proGRAM (C ANIYNIMEATN - TIUBSIAHN. Copssnalx REQUESTED BY pace (L OF TO
PROGRAMMER Y\gﬁ%ﬁ A DATE IDENT. j VR ﬁl@lkgo
PAGE | LINE A 8 z
NO. NO.

1 3{4 6 8 11{12 16 20 24 28 32 36 40 44 48 52 60 64 68 |72
1 01: ENVERGSOMNENT) NS AN 0 L i fea o sl o Ll
Lo foz] | Konv oAl SECEI@N - [e f Pl et
L 03; S OIANCE - COMRMN S| | &Aool 3y [g [b | B BEREREN
L1 foa) | ORSESS - GPMONER | | H-Ah ool 1 SEIGNCAT NI S5 S]] IR NEEN

05: SREABRAN-NAMGS | | [DCCEMAN-ROEAT S| oMW ||) |1 Ll Ly
1 1 {06 | |||¢|9N1?JS|1$?¢||1|_11||nllnxllulll Lt [A
L 07: L SMN A SIVARAS) IS SR ENN-N-@W g b by 1] NN
podoes | Sl SEAYRAS TS| SWISRAMY-[4-@m) (L bt boer v el
ILog:L Ll e SRAR S SIS SR @Y | L] NENNEEN!
AL L1 RG-S NS INSERTS g i b Lo s o L1 Ll
11114: certe et e e b v v beve v b b bavr fa RN BB ENEE!
1y]2 TR =~ OISR SKERRBRN - g Ll braa e b oo b g L1t f11tg

1l ‘34: MR- COMINEY | SKAGTT YRRy AW SIARG ASSTIEN 3 AR N
AL 1 PEAYSS HINSN ASSEGN N SSYXG [e oo Ll by
1 15: I ! NYOARBOA S5 ANSINC g g g i L1 L1l L1
1y j16 L b1 INSRREISS) oDk DITANMIIG | 10|11 L) Ll L]t RN RN
L 17: Ll NANNSINEL NS IS M -NSTY L) NN ENE L] R NN
v e b SEVESY OONRLTUARIG ASISTIEN IS WSSy Lo e b
LL‘9: VoM COMNNNGEN - e b b e b b b fa br bl

plzo g [SANY RGO AGEN SaN AM\-‘NPX-\)QL;I"ME&-I‘H‘?%'H L] g1 Lol
L | o v bver b v b by b e b bran fer g Ll Ll L1t
1 4 ; N T O T T T T A Y O O 111 1 S O T A I T [| t 1l Py
L el v e v b b b b e b bt i Ll v b
b A: B 00 U T Y Y T N T T T Y O T O O A L1 [L1} | [111
] I T O Y e I I O | I I O NN Ll pld 11 1 | [1]

4 8 12 16 20 24 28 32 36 40 44 48 52 60 64 68 H?
G12329

Figure 5-1. Coding the ENVIRONMENT DIVISION

TOHLNOD-OI

UOISIAI(] JUSWUOIIAUY
[PNUB 20UAIPRY HLTOFOD SWASAS 0001 €

B 1000 Systems COBOL74 Reference Manual

SECTION 6
DATA DIVISION

GENERAL

The DATA DIVISION describes the data that the object program is to accept as input, to manipulate, to cre-
ate, or to produce as output. Data to be processed belongs to these three categories:

1. That which is contained in files and enters or leaves the internal memory of the computer from a spec-
ified area or areas.

2. That which is developed internally and placed into intermediate or working storage, or placed into
specific format for output reporting purposes.
3. Constants which are defined by the user.

DATA DIVISION ORGANIZATION

The DATA DIVISION, which is one of the required divisions in a program, is subdivided into sections. These
are FILE, WORKING-STORAGE, LINKAGE, and COMMUNICATION SECTIONS.

The FILE SECTION defines the structure of data files. Each file is defined by a file description entry and
one or more record descriptions. Record descriptions are written immediately following the file description en-
try.

The WORKING-STORAGE SECTION describes records and noncontiguous data items which are not part of

external data files but are developed and processed internally. It also describes data items whose values are
preassigned in the source program.

The LINKAGE SECTION appears in the called program and describes data items that are to be referred to

by the calling program and the called program. The structure is the same as the WORKING-STORAGE SEC-
TION.

The COMMUNICATION SECTION describes the data items in the source program that serve as the interface
between the Data Communication Subsystem and the program.

1108883 6-1

B 1000 Systems COBOL74 Reference Manual
Data Division

DATA DIVISION STRUCTURE

DATA DIVISION STRUCTURE

The following structure shows the general format of the sections of the DATA DIVISION, and defines the
order of presentation in the source program.

DATA DIVISION.

FILE SECTION.

[file-description-entry [record-description-entry] ...
sort-merge-file-description-entry (record-description-entry) . . .

WORKING-STORAGE SECTION.

[77-level-description-entry
i record-description-entry

LINKAGE SECTION.

[77-level—description-entry]

record-description-entry Ct |

-

COMMUNICATION SECTION.

[_ communication-description-entry [record-description-entry] ...]

B 1000. Systems COBOL.74 Reference Manual
Data Division

FILE DESCRIPTION

FILE SECTION

In a COBOL74 program, the file description entry (FD) represents the highest level of organization in the
FILE SECTION. The FILE SECTION header is followed by a file description entry consisting of a level indi-
cator (FD), a file-name, and a series of independent clauses. The FD clauses specify the size of the logical
and physical records, the presence or absence of label records, the value of label items, the names of the
data records which comprise the file, and the number of lines to be written on a logical printer page. The
entry is terminated by a period.

The Sort-Merge file description (SD) gives information about the size and the name of the data records associ-
ated with the file to be sorted or merged. There are no label procedures which the user can control, and the
rules for blocking and internal storage are peculiar to the SORT and MERGE statements.

RECORD DESCRIPTION

A record description consists of a set of data description entries which describe the characteristics of a
particular record. Each data description entry consists of a level-number followed by a data-name (if required),
followed by a series of independent clauses as required.

Examples:

01 DATA-|TEM-ONE PICTURE X(10).
03 LINE-COUNT PICTURE 999 VALUE ZEROES.

A record description has a hierarchical structure and, therefore, the clauses used with an entry may vary consi-
derably, depending upon whether or not it is followed by subordinate entries. The structure of a record de-
scription is defined in Concepts of Levels, Section 2, while the elements allowed in a record description are
shown in the data description structure.

1108883 6-3

B 1000 Systems COBOL74 Reference Manua
Data Division :

FILE DESCRIPTION

FILE DESCRIPTION STRUCTURE

The file description entry furnishes information concerning the physical structure, identification, and record
names pertaining to a given file.

General Format:

[@ file-name

_ RECORDS
; BLOCK CONTAINS [integer-l TO| integer-2
CHARACTERS

[; RECORD CONTAINS [integer-3 TO] integer4 CHARACTERS]

RECORD IS ,STA@'ARDl
; LABEL

RECORDS ARE| lomiTTED |

\

‘ data-name-1
; VALUE OF attribute-name-1 1S 1 %

literal-1
data-name-2
, attribute-name-2 IS
literal-2
[‘ RECORD IS }
. DATA > data-name-3 [, data-name-4] ...
! | RECORDS ARE |
f data-name-5 }) ‘ data-name-6
. LINAGE IS > LINES |, WITH FOOTING AT
l integer-5] l integer-6

data-name-7 ‘ data-name-8l
, LINES AT TOP , LINES AT BOTTOM

integer-7 1 integer-8 g
[. CODE-SET IS alphabet-name J.

{record-description-entry b]

Syntax Rules:

1. The level indicator FD identifies the beginning of a file description and must precede the file-name.

2. The clauses which follow the name of the file are optional in many cases, and order of appearance
is immaterial.

3. One or more record description entries must follow the file description entry.

64

B 1000 Systems COBOL74 Reference Manual
Data Division

SORT-MERGE FILE DESCRIPTION

SORT-MERGE FILE DESCRIPTION STRUCTURE

The Sort-Merge file description entry furnishes information concerning the physical structure, identification,
and record names of the file to be sorted or merged.

General Format:

SD file-name

([; RECORD CONTAINS [integer-! TO] integer2 ~CHARACTERS]

RECORD IS

; DATA data-name-1 [, data-name-2]
RECORDS ARE

{ record-description-entry } -]

Syntax Rules:

1. The level indicator SD identifies the beginning of the Sort-Merge file description entry and must pre-
cede the file-name.

2. The clauses which follow the name of the file are optional and their order of appearance is immaterial.

3. One or more record description entries must follow the Sort-Merge file description entry; however,
no input-output statements may be executed for this file.

1108883 6-5

B 1000 Systems COBOIL.74 Reference Manual
Data Division

FILE SECTION

CODING THE FILE SECTION

Figure 6-1 illustrates the coding of the FILE SECTION and shows a File Description and a Sort-Merge File
Description.

6-6

100-€88801 1

L9

Burroughs COBOL CODING FORM

rrocRAM FIE. ST E—W\Q\i REQUESTED BY S 3
prOGRAMMER CN\NLISTINE DATE IDENT. :%T&LKISIQK?
wlw | T :
1 3{4 617|8 1012 16 20 24 28 32 36 40 44 48 52 56 60 64 68 '72
HOITIL Sa VI T4, 7Y I NNl SRR RNl SN EE Nl FET ERN S Rl AR NN R R R e N t
L1]oz] CQLMI‘E&'BNI’FI‘;I\&I v e v e bere e brr e b b b b
103; L1 BASEN CONTARINS B KeCBEDS! 1 oo e bere v dvaia iy n
11 o4 L1 NECORD COMIVARNS S0 CMNAKACRERS | | 104|111 bt
L1 05: L NAADE @] IERRME 35 1 M'N-SNQK«/BNWSN N OSNWNBAME o [1] |
L 1o pev vt v b b ber e b n e b b by fr e b prea b !
1107: oA, | e - <y | L s e e e b Lo b paa b l
L1 fos | L1105 EMRENANE | O KRG s L e b e b 1
L1 09; L1, (0S| EMR-IOMBER 5 |y | [OS& BICR ey [b e
L1 frol L1 0B 1 EMREP&ERR] [i e [9S& Ko b b b o b
11“: L1 OS1 | &M - DRI S e L RSO v b b b o
IREAEN cre e e b e b rn b beaac e b e e prrn b e !
||13: SlVlnrNXrﬁplqr-\l‘—\'T;\gnll ca b e e b dar e e e e |
L1 e L RECHERD (CoaA B0, CMANSNGENENS o v s e beaa o s |
l|‘5|[|I|\||| | S | I | | I | | 111 111 [L1t J | 111] 1 L1 || |
R EEE YRS a4 NS N SN NN NS SN R RN RN T NNl ENEE SR RS RN
1117_|r L) O5 | BrEMR-MOWBSRL | |) | |||m:)|(b§‘|1| cir bl et e t
L ey L1 1 PSS ORRR-CODNS |y for e S PO [L v frra e b
1|19} L OBy AR L e o R (WD e e e b e b
1 1 120, S Y T Y Y T O N T T N T T T T T O O]
14 I P41 | 111 141 1 11 1 11 111 1 11 || 111 111 S | 1 I 1 11 111 1
11 J: I T I} [1t L1 L1 T I I I | 111 T L 14}t | L1t []
1 | b v e e bvvr v beer prr e e bree b b b b bra bena o
[: I VS T T A I 1 A I I I I I I T A Y 11) IO N Y 0 10 O T N T T Y I | 1
11 | b e e b P bver b b feee barve b e b b v b 1
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 ‘72
G12330

Figure 6-1.

Coding the FILE SECTION

NOILD3S 3114

UOISIAI(] ®IR(]
[eNUBIN OUIJRY HLTOHOD SWISAS 0001 4

B 1000 Systems COBOL74 Reference Manual
Data Division

BLOCK CONTAINS

BLOCK CONTAINS

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format:

RECORDS
BLOCK CONTAINS [integer-] TO] integer-2
CHARACTERS

Syntax Rules:

l.

When the word RECORDS is not specified, the value of integer-2 must not be less than the largest
record specified for the file.

General Rules:

[

A

. This clause is required when the physical record contains more than one logical record. If this clause

is not specified, the physical record is presumed to contain one logical record that is as large as the
largest record specified for this file.

. When the word RECORDS is specified. the physical record size is considered to be integer-2 times

the largest record specified for this file.

. When the word CHARACTERS is specified, the physical record size is considered to be integer-2

characters. If integer-2 is not a multiple of the largest record specified for this file, the physical record
size is adjusted so that it is a multiple of the largest record specified, but must not exceed the value
of integer-2.

. Integer-2 represents the exact number of records or characters in the physical record uniess the size

is adjusted as stated in General Rule 3.

. If logical records of differing sizes are grouped into one physical record. the amount of data transfer-

red from the record area to the physical record depends on the size of the record named in the
WRITE or REWRITE statement. In this case, the logical records are aligned on maximum record-
size boundaries. If the size of the record named is not equal to the maximum record size specified
for the file, the data is transferred to the physical record according to the rules specified for the
MOVE statement without the CORRESPONDING phrase. with the sending area considered to be a
group item.

B 1000 Systems COBOL74 Reference Manual
Data Division

CODE-SET

CODE-SET

The CODE-SET clause specifies the character code set used to represent data on the external media.

General Format:

CODE-SET IS alphabet-name

Syntax Rules:

1. When the CODE-SET clause is specified for a file, all data in that file must be described as USAGE
IS DISPLAY and any signed numeric data must be described with the SIGN IS SEPARATE clause.

2. The aiphabet-name clause referenced by the CODE-SET clause must not specify the literal phrase.
and must be declared in the SPECIAL-NAMES Paragraph.

General Rules:

1. If the CODE-SET clause is specified, alphabet-name specifies the character code convention used to
represent data on the external media. It also specifies the algorithm for converting the character codes
on the external media from/to the native character codes. This code conversion occurs during the
execution of an input or output operation. Refer to the SPECIAL-NAMES paragraph in Section 5.

2. If the CODE-SET clause is not specified, the native character code set, EBCDIC, is assumed for data
on the external media.

3. For the creation of the translate table to be used by the COBOL74 compiler, refer to the CREATE/
TABLE utility. For example, when ASCII is the character code set, the COBOL74 compiler requires
a file called TRANSLATE/ASCII to perform the translation. The file, TRANSLATE/ASCII. is created
by using the CREATE/TABLE utility.

Example:
The following example shows how the character code set desired is declared in the SPECIAL-NAMES

paragraph and then used in the CODE-SET clause.

SPECIAL-NAMES.
ODT IS SPO
SW1 ON STATUS IS SWITCH-1-0N
MY-REC-MODE 1S ASCII,

FD IN-FILE
BLOCK CONTAINS 5 RECORDS
CODE-SET IS MY-REC-MODE.

01 DATA-ITEM-ONE PIC X(80).

1108883 6-9

B 1000 Systems COBOL74 Reference Manual
Data Division

DATA RECORDS

DATA RECORDS

The DATA RECORDS clause serves only as documentation for the names of data records with their associ-
ated file.

General Format:

RECORD IS l

DATA { data-name-1 [, data-name-2]

RECORDS ARE §

Syntax Rules:

1. Data-name-1 and data-name-2 are the names of data records and must have 01 level-number record
descriptions, with these same names, associated with them.

General Rules:

1. The presence of more than one data-name indicates that the file contains more than one type of data
record. These records may be of different sizes, different formats, and so forth. The order in which
they are listed is not significant.

2. Conceptually, all data records within a file share: the same area. This is in no way altered by the pres-
ence of more than one type of data record within the file.

6-10

B 1000'Systems COBOL74 Reference Manual
Data Division

LABEL RECORDS

LABEL RECORDS

The LABEL RECORDS clause specifies whether labels are present.

General Format:

RECORD IS } { STANDARD }

LABEL {
OMITTED

RECORDS ARE

Syntax Rules:

1. When this clause is not specified, the STANDARD option is assumed.

General Rules:

1. OMITTED specifies that no explicit labels exist for the file or the device to which the file is assigned.
For Indexed and Relative Files, OMITTED is documentation only.

2. In a Sequential File, STANDARD specifies that labels exist for the file or the device to which the
file is assigned and the labels conform to the label specifications.

3. The LABEL RECORDS clause is ignored for mass storage files. All mass storage files are labeled.

1108883 6-11

B 1000 Systems COBOL74 Reference Manual
Data Division

LINAGE

LINAGE

The LINAGE clause provides a means for specifying the depth of a logical page in terms of number of lines.
It also provides for specifying the size of the top and bottom margins on the logical page, and the line number,
within the page body, at which the footing area begins.

General Format:

data-name-1 } data-name-2 }
I__!NAGE IS integer-1 LINES [, WITH FOOTING AT integer-2

{ { data-name-3 } {data—name-4 }
| , LINES AT TOP integer-3 , LINES AT BOTTOM \integer-4

The relationship of the page components is shown in Figure 6-2.

B 1000 Systems COBOL74 Reference Manual

Data Division

LOGICAL PAGE

TOP MARGIN
(Integer-3)

PAGE BODY
T {Integer-1)

FOOTING
(Integer-2)

G12331
Figure 6-2. Linage Page Relationship
Syntax Rules:
1. Data names must be elementary unsigned numeric items.
2. The value of integer-1 must be greater than zero.

3. The value of integer-2 must not be greater than integer-1.
4, Integer-3 and integer-4 may be equal to zero.

1108883

BOTTOM MARGIN
(Integer-4)

LINAGE

6-13

B 1000 Systems COBOL.74 Reference Manual
Data Division

LINAGE

General Rules:

6-14

1.

The LINAGE clause provides a means for specifying the size of a logical page in terms of the number
of lines.

Example:

Logical page = LINAGE LINES + LINES AT TOP + LINES AT BOTTOM
If LINES AT TOP or LINES AT BOTTOM are not specified, the values for these functions are 0.
If the FOOTING phrase is not specified, the assumed value is equal to integer-1 (or data-name-1).

There is not necessarily any relationship between the size of the logical page and the size of a physical
page.

. The value of integer-1 (data-name-1) specifies the number of lines that can be written and/or spaced

on the logical page. That part of the logical page in which these lines can be written and/or spaced
is called the page body.

. The value of integer-3 (data-name-3) specifies the number of lines that comprise the top margin on

the logical page.

. The value of integer-4 (data-name-4) specifies the number of lines that comprise the bottom margin

on the logical page.

. The value of integer-2 (data-name-2) specifies the line number within the page body at which the foot-

ing area begins, where 0 < integer-2 < integer-1.

. The values of integer-1, integer-2, and integer-4, if specified, are used at the time the file is opened

with the OUTPUT phrase, to specify the number of lines that comprise each of the indicated sections
of a logical page.

The value of integer-2, if specified, is used at that time to define the footing area.

These values are used for all logical pages written for the file during a given execution of the program.

. The values of the data items referenced by data-name-1, data-name-3, and data-name-4, if specified,

are used as follows:

a. The values of the data items, at the time an OPEN statement with the OUTPUT phrase is executed
for the file, are used to specify the number of lines that are to comprise each of the indicated sec-
tions of the FIRST logical page.

b. The values of the data items, at the time a WRITE statement with the ADVANCING PAGE
phrase is executed or page overflow condition occurs, are used to specify the number of lines that
are to comprise each of the indicated sections for the next logical page.

. The value of data-name-2, if specified at the time an OPEN statement with the OUTPUT phrase is

executed for the file, is used to define the fcoting area for the first logical page.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a page overflow
condition occurs, data-name-2 is used to define the footing area for the next logical page.

B 1000 Systems COBOL74 Reference Manual
Data Division

LINAGE

LINAGE-COUNTER

A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The value in the LINAGE-COUN-
TER at any given time represents the line number at which the logical device is positioned within the current
page body. The rules governing the LINAGE-COUNTER are as follows:

I. A separate LINAGE-COUNTER is supplied for each file described in the FILE SECTION whose file
description entry contains a LINAGE clause.
2. LINAGE-COUNTER may be referenced but not modified by PROCEDURE DIVISION statements.

Since more than one LINAGE-COUNTER may exist in a program, the user must qualify LINAGE-
COUNTER by file name when necessary.

3. LINAGE-COUNTER is automatically modified, according to the following rules, during the execution
of a WRITE statement:

a. When the ADVANCING PAGE phrase of the WRITE statement is specified, the LINAGE-COUN-
TER is automatically reset to 1.

b. When the ADVANCING identifier-2 or the integer phrase of the WRITE statement is specified.
the LINAGE-COUNTER is incremented by integer or the value of identifier-2.

c. When the ADVANCING phrase of the WRITE statement is not specified, the LINAGE-COUN-
TER is incremented by the value of 1.

d. The value of LINAGE-COUNTER is automatically reset to 1 when the device is repositioned to
the first line that can be written on for each of the succeeding logical pages.

4. The value of LINAGE-COUNTER is automatically set to 1 at the time an OPEN statement is
executed for the associated file.

Example:

The following example shows the LINAGE clause used to define a logical printer page (standard 11-inch form).
Vertical height is made up of a top margin, a page body, and a bottom margin. All actual printing is done
in the page body, including a commonly required footing area of five lines near the bottom of the page body.

Now equate:

page body to integer-1
footing to integer-2

top margin to integer-3
bottom margin to integer-4

the statement would be
LINAGE IS 50 LINES,
WITH FOOTING AT 45,

LINES AT TOP 6,
LINES AT BOTTOM 10.

1108883 6-15

B 1000 Systems COBOL74 Reference Manual
Data Division

RECORD CONTAINS

RECORD CONTAINS

The RECORD CONTAINS clause specifies the size ol the data records.

General Format:

RECORD CONTAINS | integer-1 ’_12] integer-2 CHARACTERS

General Rules:

1. The size of each data record is completely defiried within the record description entry; therefore, this
clause is never required. When present, however, the following items apply:

a. Integer-2 may not be used unless all the data records in the file have the same size. In this case,
integer-2 represents the exact number of characters in the data record. If integer-1 and integer-
2 are both shown, they refer to the minimum number of characters in the smallest size data record
and the maximum number of characters in the largest size data record, respectively.

b. The size is specified in terms of the number of character positions required to store the logical
record, regardless of the types of characters used to represent the items within the logical record.
The size of a record is determined by the sum of the number of characters in all fixed length
elementary items plus the sum of the maximum number of characters in any variable length itern
subordinate to the record.

2. For an Indexed File integer-2 cannot be less than four.

6-16

B 1000 Systems COBOL74 Reference Manual
Data Division

1108883 6-17

B 1000 Systems COBOL.74 Reference Manual
Data Division

VALUE OF

DATA-NAME-I is.defined as an alphanumeric data itzm in the DATA DIVISION. The programmer builds
the literal string in the data item (DATA-NAME-1) prior to the OPEN of the file. This option cannot be used
for Indexed Files.

01 DATA-NAME-] PIC X(35).

The following are examples of statements which may be used in the PROCEDURE DIVISION to create the
literal string.

MOVE "'MYFILE' TO DATA-NAME-1.
MOVE "'FAMILY/MYFILE" TCO DATA-NAME-I.
MOVE. "FAMILY/MYFILE ON MYPACK' TO DATA-NAME-1.

STRING '"'FAMILY'", "'/'' U'MYFILE", DELIMITED BY SIZE
INTO DATA-NAME-I.

STRING ''MYFILE', ' ON ', ""MYPACK' DELIMITED BY SIZE
INTO DATA-NAME-1.

Use of the STRING statement satisfies the requirement that there is no spaces either side of the slash (/) when
creating the title of the file.

6-18

B 1000 Systems COBOL74 Reference Manual
Data Division

DATA DESCRIPTION

DATA DESCRIPTION STRUCTURE

A data description entry specifies the characteristics of a particular item of data.
General Format:

Format 1:

data-name-1
level