
THE HISTORY OF PARALLEL PROCESSING
AT BURROUGHS

Richard Stokes and Robert Cantarella
Federal and Special Systems Group

Burroughs Corporation
Paoli, PA 19301

Introduction

Parallel processing in the context of the
Burroughs experience has been synonomous with
the development of the "supercomputer". While it
is accurate to claim that, throughout the
Burroughs standard product line, the application
of parallel processing design is in ample evidence,
the main stream of the work on supercomputers is
centered in the Federal and Special Systems
Group, Paoli, Pa. For almost two decades, the
challenge of the parallel machine has been actively
pursued without interruption. In that time a series
of major systems have been developed, starting
with ILLIAC IV, then PEPE, followed by BSP; and
this paper describes the historical events in the
development of these systems. A new parallel
design currently under study for NASA called the
Flow Model Processor (FMP) is not discussed here.

These machines as a group represent some of
the most ambitious undertakings in the industry
(Table 1). With the exception of the FMP, all have
been completed in a fully working sense, and all
substantially met their original design objectives.

As a group they are certainly a tribute to the
designers whose skills harnessed enormous quan
tities of logic and memory circuits in concerted
processing functions. Their contribution to com
puter science has been made, but perhaps not fully
realized. The design rationale of these machines as
a machine class (SIMD) provides the only
demonstrable performance response for that class
of large scientific applications that have vec
torizable programs.

This 19-year history is intended as a synopsis
of the plans, events and results of three major
engineering experiences at the Burroughs Great
Valley Laboratories. Unfortunately history, like
art, is seen through the mind of the beholder and
where serious omissions or errors occur they are
certainly not intentional. The lessons learned and
the experience derived from these endeavors are
continuing to serve our engineering staff in the
development of the FMP.

0190-3918/81/0000/0025$00.75 © 1981 IEEE

25

Table 1. Comparison of Parallel Processor Capabilities

~ ~ _!!g_

Data Wo-rd Size 32 bits 64 bits 48 bits

Instruction 32 bits 32 bits 24-48 bits
Word Size

Backing Store In host Paged to PE N-Mos RAM

Memory Cycle 100 ns 250 ns 160 ns

Number of Up to 28~ 64 16
Processing Elements

Processing Element 32-bit floating 66-bit floating 48-bit floating
point accumu- point accumu- point memory
lator oriented lator oriented oriented.

Microprogrammed Yes Yes Yes

Processing Element Linear array 4 nearest Cross Bar
Connections neighbors

Parallel Operation Yes Yes Yes
Within Arithmetic Unit

Associative Yes Pseudo No
Addressing

High Order Language PFOR GLYPNIR FORTRAN

Processing Speed
300 ns~ 500 ns~ 2 Add 160

Multiply 1.9 us 700 ns ' 320

1. Time for one PE; all PEs may operate in parallel
2. Two operatiOns may complete in this time
3. May be computed as N2 times 0.85 s, where each operand is assumed to

consist of N bits.

ILLIAC IV

The ILLIAC IV computer was a product of the
mid-sixties, its original goals reflecting the prevail
ing optimism in the country and particularly in the
young computer industry. It was the era of the
"main frame houses" that continued to
demonstrate Groche's Law with regular ease.

. ·~'

Illiac IV Installed at NASA Ames Research Center,
Mountain View, California

The seeds of the ILLIAC IV program evolved
from a project called Solomon developed at the
Westinghouse Corporation in Baltimore,
Maryland. The circumstance that marked the of
ficial beginning of the ILLIAC IV program was the
move by Dr. Daniel Slotnick, a Solomon principal,
from Westinghouse to the University of Illinois
and the subsequent designation of that institution
as the prime contractor by the Advanced Research
Projects Agency of the Department of Defense.

The program plan was to have the University
develop the system software and subcontract the
hardware development on the basis of a com
petitive proposal. Study definition contracts
awarded to Burroughs, Control Data Corporation
and RCA resulted in three proposals in which
Burroughs was awarded the hardware develop
ment contract in 1967.

The central objective of the system was 109

operations per second. This, of course, placed con
siderable emphasis on hardware component
speeds and parallel architectural design [1]. The
proposed system contained 4 independent
quadrants of 64 Processing Elements (PE) each, for
a total of 256 PE's. Each PE contained an
arithmetic element and a data memory and was in
terconnected to other PE's which were a distance
of ± 8 and ± 1 in designated value. Thus in a 8 x 8
array, a nearest neighbor connection pattern was
realized.

Each quadrant was driven by a Control Unit
decoding a single instruction stream and broad
casting the microstep for array instruction execu
tion. The Control Unit has a program memory and
a separate station for executing CV instructions
concurrently with array instruction. ILLIAC IV
was a classical SIMD design.

The Hardware

The key components of the system design
were: plainer thin film memories and multichip
ECL logic circuit packages. Later events were to
show that both choices were not realizable in the
final system.

Thin film memories had been in development
in Burroughs and elsewhere for several years prior
to the start of ILLIAC IV. Thin film was con
sidered the performance successor technology to
magnetic cores and Burroughs ·was actively en
gaged in the process of moving this technology
from the laboratory into production. ·Two factors
conspired to preclude this expectation before pro
duction was realized: the tenacity of magnetic

26

ILLIAC IV Backplane

cores and the pace of semiconductor memories.
When this situation became apparent, thin films
were discontinued, as a product and, in turn, for
ILLIAC IV.

Upon the demise of thin film memory at
Burroughs, a contract was awarded to Fairchild
Semiconductor for the PE memory system using a
64-bit bipolar component. This contract was one of
the more successful projects of ILLIAC IV, calling
for the design and production of 70 memory units,
each with a capacity of 4K words. Considering the
tight schedule and the new technology, many
things that might have gone wrong ·did not: the
memories were delivered on schedule and to
specification.

The total capacity of 250K words, limited by
cabinet volume, was a performance disadvantage
for the growing application programs that were
run on the system.

As part of the Burroughs proposal, Texas
Instrument Corporation, acting as a subcontractor
to Burroughs, agreed to provide the Processing
Elements (PE) of the system, fully assembled and
tested. A PE was a 64-bit floating point. arithmetic
[2]. The design was based upon a multichip package
in which four (up chips) were mounted on a common
substrate and interconnected by wire bonding. The
circuit packages, 24-pin ceramic, were to be con
nected on a multilayer printed circuit board, one
per PE.

The published reason for the termination of
the multichip development by the contractor was
low production yield. The design process contained
the fundamental weakness of the mliltichip ap
proach by postponing testing to a complexity level
not justified by the value added and not repairable.

The fall-back position was the use of the more

conventional 14-pin DIP packaged ECL on smaller,
2-signal-layer, printed circuit boards, connected by
a wired backplane. The logic circuits used were the
TI2500 circuit family, implying that the fault of the
initial design was the package scheme.

The foregoing component problems were the
major ones and contributed to schedule delays and
cost increases for redesign. In time, the program
scope had to be reduced from four to one quadrant
(256 PE's to 64 PE's) where the 109 operations per
second would not be possible.

The Software

The system software development was the
responsibility of the University of Illinois, which
undertook the development of a new Algol-like
compiler called TRANQUIL [3]. In addition, an
assembly language development called GLYPNIR
[4] commenced at about the same time.

TRANQUIL was, of course, a major undertak
ing dealing with a parallel structure unlike any
previous experience in compiler design. It con
tained language extensions to allow the users to
identify parallel (vector) constructs and to manage
the conditional states of the PE array. A
preliminary version of TRANQUIL was completed
and compared against the available GLYPNIR for
object code performance.

The results were disappointing but not
necessarily unreasonable for the early stage of the
compiler. TRANQUIL, however, was discontinued
and GLYPNIR became the principal language for
programming ILLIAC IV. Later, after the system
was installed at NASA Ames, another language
emerged called CFDL (Computational Fluid
Dynamic Language). CFDL was based on Fortran ·
and supported the principal applications for that
agency.

The Completion

The ILLIAC IV system was shipped to NASA
Ames in April 1972 and was accepted by the
customer that December. The selection of the
NASA site in lieu of the original one at the Univer
sity of Illinois was due in part to the campus unrest
of that era and the possible target the system
presented. The system has been operational now
for almost a decade and is considered an effective
and productive resource in the mission of that
agency.

To the people who designed and built the
ILLIAC IV, it was Cf:'.rtainly a triumph of skill and

27

ILLIAC IV Control Unit

determination. The size and complexity of the
system (250 thousand, dual, in-line components) is a
challenge by today's standard. ILLIAC IV also
made its contribution to the science:

a) It demonstrated that a SIMD architec
ture could be used effectively on some
important applications.

b) It showed that a system of that size and
complexity could be used productively
and reliably.

c) It made the user community "vector con
scious" and motivated the work toward
vectorizing compilers and the inclusion
of vector operations in later product
designs.

A major drawback to a wider use of ILLIAC
IV was the evolution in user environment. Modern
compilers and operating systems removed the user
from the hardware details of programming. The
programming pioneering days were coming to a
close.

PEPE (Parallel Element Processing Ensemble)

The history of PEPE development discloses a
number of different corporations that contributed
in varying measure to the final delivered product.
PEPE as an architectural concept began in the
mid-sixties at Bell Laboratories, New Jersey,
under the auspices of the Army Ballistic Missile
Defense Agency (ABMDA). An early prototype
was assembled there at the time AT&T decided to
divest itself of military development contracts. As
a result, the System Development Corporation

took charge of PEPE and, in turn, engaged
Honeywell in support of the hardware design.

In March, 1973 Burroughs was awarded a con
tract by SDC to build a revised and enhanced ver
sion of PEPE for ABMDA, Huntsville, Alabama.
The system Burroughs was contracted to build was
specified in detail, focusing primarily on the prob
lem of radar data processing for missile defense
systems.

The execution of the contract by Burroughs is
considered an industry paragon and Burroughs
was singled out for an outstanding performance
award by the U.S. Army for this achievement. The
completed PEPE system was shipped from Bur
roughs Great Valley Laboratories, Paoli, Pa. to
Huntsville in May 1970 and accepted by the
customer by November of that year. The only
significant change from the original contract was
the reduction of the number of processing
elements from 36 to 11 due to a program funding
reduction.

The Design

The PEPE design is considered special pur
pose because it is driven by the single application
of radar target correlation and tracking. This ap
plication naturally lends itself to parallel process
ing since the processing functions are identical for
multiple target returns and predictions. The
PEPE is really three distinct linear arrays, each of
which performs the parallel functions of correla
tion, tracking, and radar control, respectively. A
Processing Element . is a single orthogonal slice of
these hardware elements, including a common
memory and incorporating each of the three
functions.

Another important aspect of the PEPE ap
plication is that there is no requirement for inter
PE communication. This permits the PE's to
associate in a loosely coupled "ensemble," with a
significant reliability advantage as a result. Multi
ple failures in PE would degrade but not fail the
system. The system was packaged with 36 PEs in a
cabinet and a maximum of 288 PEs was permitted.

The logic component family used in PEPE was
the Motorola lOK ECL Family. MECL lOK was a
mix of MSI and SSI completely packaged in
ceramic DIPs. The memory was a lK bipolar RAM
produced by Fairchild Inc. The novel design .of the
printed circuit boards featured a combination of
printed wiring and wrapped post wiring that
avoided the problems of multilayer boards. This
design, called the composite board, was used suc
cessfully on the BSP.

28

The Epilog

The PEPE system was interfaced with a CDC
7600 host system in the Huntsville complex and
used to develop application programs. Later the
system was shipped to McDonnell-Douglas,
Huntington Beach, California for its intensive
benchmark testing. These activities are Classified
and the results cannot be published here. It can be
reported, however, that the hardware performed
exceedingly well and the system was returned to
Huntsville.

The PEPE contribution might have been more
formidable if the world political climate had war
ranted it so it may be assumed that it fulfilled a
vital need. From an engineering viewpoint, it was
simply a job well done.

PEPE Cabinet, Front View

BSP (Burroughs Scientific Processor)

The Burroughs Scientific Processor (BSP) was
the result of an effort to develop a standard prod
uct supercomputer that would serve the scientific
user community with massive computational re
quirements. This application requires machines
with special architectures that can perform at
levels beyond those achievable by circuit speed
alone.

Fortunately, the programs often exhibit an in
ternal structure in which the same operator can be
applied to arrays or vectors of data. This had led to
the development of several SIMD supercomputers
of either an arithmetic pipelined or parallel pro
cessor design (e.g. ASC, STAR, and ILLIAC IV [1]).
Both techniques had resulted in vector computers

PEPE Backplane

whose effective computational rates on suitable ap
plications were one to two orders of magnitude
greater than that of serial processors constructed
of equivalent speed circuitry.

The generality of these machines was limited
by restraints on the application programs. Due to
pipeline start-up time, very long vectors of data
were often required. A small scalar content could
seriously degrade performance levels. Finally,
they were difficult to program, often requiring
assembly language coding and memory residency
analysis in order that the speed of the machine be
fully realized.

For . these and other reasons, the only
machines that had achieved commercial success by
the early 1970's were the CDC 6600 and 7600
series which achieved their performance levels
primarily by the use of very high speed circuitry
and multiple function arithmetic processors.

Given the recently completed ILLIAC IV pro
gram and ongoing PEPE program, Burroughs had
developed expertise in parallel processing which
could be applied to developing a commercial super
computer. ·This, coupled with the Corporation's
desire to field a FORTRAN processor to comple
ment the product line and provide a test bed for a

29

new generation of high speed current-mode logic
(BCML), provided the impetus for the
development.

Although the BSP was not commercially suc
cessful, prototype and production models of the
BSP were built, made operational, and in fact, met
most of their design goals. The state of the com
puting art was advanced in several areas.

Design Goals

The beginnings of the program can be traced
to a feasibility study on repackaging ILLIAC IV
which was conducted in 1972. A survey of the user
community clearly showed that a more refined,
easier to use machine was required. This led to the
development of the set of design goals listed
below.

Standard Product. The BSP was to be a stan
dard product. This implied that it was to conform
to the corporate standards "for manufacturability,
testibility, reliability, maintainability, high level
language programmability, ease of use and cost. It
would be developed and manufactured by a stan
dard M&E (Manufacturing and Engineering) plant.
Corporate standard hardware technology was to
be employed, providing a volume basis for material
costs and manufacturing tooling.

Attached Processor. The BSP was to be at
tached to a large scale commercial computer
system such as the B 7700. This provided the
capability to extend the FORTRAN performance
of these machines and provided the user with ac
cess to the sophisticated system software
developed for commercial large systems.

Technology Driver. The Corporation was cur
rently engaged in the development of a high speed
current mode logic family and its associated liquid
cooled packaging technology, intended for use in
Burroughs commercial plants. The BSP was to be a
driver for this program. Thus it would provide
schedule pressure on the components plants in ad
vance of commercial requirements and be a test
bed to shake down the technology.

Programmability. The BSP was to be effi
ciently programmable exclusively in a high order
language. In practice, this meant that FORTRAN
was the obvious choice. Any extensions were to be
application oriented and machine independent. A
vectorizer was to be provided as a means of effi
ciently executing existing codes.

Ease of Use. The machine was to be easy to
use. This was motivated by users' desire to
minimize the ·cost of developing and maintaining

application codes.
Performance. The BSP was to be capable of

sustaining 20 to 40 MOPS on typical application
codes in weather forecasting, nuclear reactor
design, structural analysis, and other similar
fields. This was to be measured on such standard
benchmarks as the Livermore Loops.

In order to achieve these goals, several key
technical problems had to be solved.

Scalar Problem. Some means had to be found
to minimize the impact of scalar processing. This
had been a bottleneck in then-current designs.

Pipeline Start-up and Short Vector Perform
ance. A method had to be found for ameliorating
the effect of pipe-start-up time so that high
performance could be achieved on relatively short
vectors.

Memory Conflicts and Residency. A memory
structure had to be devised that would minimize
the effect of memory conflicts which occurred
when elements of operand vectors resided in the
same memory bank. This structure could not re
quire the user programmer to exhaustively study
the application and specify special residency
requirements.

Automatic Bit Vector Control. Bit vector con
trol for data_ dependent branching and sparse vec
tor operations had to be built into the machine and
made easy to use.

Generalized Parallel Processing. The parallel
processor had to be generalized so that it could be
effectively employed in more applications.
Research in parallel processing had resulted in
many parallel algorithms for speeding up opera
tions previously thought to be serial (e.g. linear
recurrences [8]).

Balanced 1/0 Structure. High performance
secondary store was required and had to be ac
cessible without excessive operating system
overhead.

Self-checking and Fault Tolerance. Extensive
self-checking and fault tolerant mechanisms were
to be built into the machine so that high reliability
and trustworthiness could be achieved. This was to
be done without seriously degrading the perform
ance of the system.

Architectural Design

The solution of these problems was under
taken during the preparation of the PDA (Product
Development Authorization - an internal pro
posal). This effort was completed in June, 1974.

30

The first issue to be decided was whether a
pipelined or parallel processing approach would be
taken. The latter was chosen because of the ease of
implementing many of the sophisticated
algorithms which had been discovered and the ex
pertise which had developed during the ILLIAC
IV program. Finally, the iterative nature of
parallel processors made them more suitable for
VLSI implementation in the future.

Once this had been decided, the memory con
flict problem was then attacked. Although many
skewing techniques were known for minimizing
conflicts, none had the generality and uniformity
that was desired. The result of this effort was a
scheme (9] which offered conflict-free access to any
linear vector whose skip distance was not a multi
ple of the prime number of memory banks. Even
more importantly, the memory mapping was ap
plication independent.

The use of microprogramming was explored
as a method of simplifying the programming of the
machine and as a means of directly executing many
common FORTRAN constructs such as nested DO
loops with embedded assignment statements. This
resulted in the development of the template con
cept, which allowed the overlapping of vector
operations within the temporal pipeline of the
parallel processor and solved the pipeline start-up
problem. (Parallel processors do exhibit another

BSP Cabinet

start-up phenomenon in that full speed is not
achieved until the vectors are at least as long as
the width of the array.)

The scalar problem was attacked with an eye
to minimizing the number of scalar operations and
overlapping their execution with that of the
parallel processor rather than relying solely upon
raw circuit speed. Scalar operations were reduced
by the application of parallel algorithms,
automating memory indexing and parallel pro
cessor control operations in hardware, and off
loading I/0 operations to a smart controller.

The remaining problems were solved in an ex
hilerating rush of discovery that culminated in a
design which is remarkably similar to the final
design documented in C. Jensen's paper [6]. The
one major difference is that there were 67 slower
dynamic memory banks which fetched vectors of
length 64. The 16 arithmetic processors then ex
ecuted the operation in 4 steps. Thus, the machine
reached full speed at vectors of length 64. This
allowed the use of low cost main memory.

BSP Demonstrating Class 6 Qualification

Detailed Design

In the detailed design phase of the program
(June, 1974 to August, 1976) the implementation of
the concepts developed during the proposal was
pursued. It had not been clear that the alignment
network and automatic indexing hardware could
be built out of a reasonable number of IC's or that
there would not ·be a combinatorial explosion of
microcode. These problems were overcome and the
design had successfully incorporated the features
of the architecture.

The applications group had found that length
of vectors in many codes were shorter than 64. It

31

would be desirable to improve the short vector
performance of the machine. The advent of low
cost high speed static NMOS memories such as the
2147 made it possible to do this. The number of
memory modules was reduced to 17 and the
memory cycle time speeded up by a factor of 4.
This allowed the parallel processor to come up to
speed at vector lengths of 16 while providing the
additional benefit of simplifying the design.

This had the result of throwing the design into
imbalance. The scalar processor had to prepare
descriptors four times as fast as before. The scalar
unit had to be speeded up in order to fully take ad
vantage of the faster parallel processor.

The Turning Point

A related sequence of events occurring in
1977 had a large effect on the program. It had been
observed that the scalar unit was, itself, functional
ly complete and could be offered as a lower cost At
tached FORTRAN Processor (AFP). This product
appeared to be relatively free and was adopted.
However, it resulted in two releases, two sets of
software, the development of a DISK version of
the I/0 system, and an interface to the B 6800. This
represented a significant additional workload on
the project.

The BCML development was very late and did
not meet the original performance goals. A pro
posal to implement the first machine in the proven
hardware of the PEPE system was rejected
because the objective of driving the technology
was deemed essential.

It was becoming clear that the performance of
the scalar unit would not support application pro
grams that did not contain a sufficiently high con
tent of vector operations. The design of the scalar
unit was straightforward, to minimize the overall
development risks to the program. The perfor
mance on the Livermore Logics benchmarks (a
scalar-vector mix) reinforced our strategy, but a·
broader product approach would require a
performance enhancement of the unit. At this
point, with limited time and resources, it was felt
the problem could be addressed in a subsequent
product upgrade after the production start of the
present design.

Making It Work

The machine was debugged during 1977 to
1980. There were many problems to overcome. In
itially, late deliveries of circuits delayed the pro-

gram. When sufficient quantities were available,
the hardware was built and put into system test.

The hardware technology was completely
new, from the circuits to all three levels of packag
ing. In addition, the emerging CCD technology was
to be employed for a second level store. Given the
number of new items, it perhaps is not surprising
that some design problems surfaced.

The first design of the sockets exhibited loose
contacts, the proms speeds drifted, and there was
a damaging latent fault in the zinc pillow blocks.
These blocks were screwed in to hold the PWB
assembly together and were under high pressure.
They exhibited a cold flow phenomenon which
caused the screws to slowly pull out. The
assemblies were literally pulling themselves apart.
A third of the machine had to be reworked in the
midst of debugging. The CCD devices exhibited a
high soft failure rate and were difficult to
manufacture.

These problems were overcome and the pro
duction hardware was fully qualified, very reliable,
and exceptionally stable. There were practically
no electrical intermittents reported. The CCD
memory was replaced by a dynamic RAM system.
While this process of shaking down the hardware
technology fulfilled one of the main objectives of
the program, it delayed getting the machine into
the marketplace at a critical time when CRAY was
making deliveries for almost 2 years.

The software set was new and fully featured.
The maturization of this amount of software took a
long time and prevented us from routinely running
customer benchmarks. This was aggravated by the
temporary loss of all 7700's for customer
shipments, which resulted in no system manager
to debug the deliverable software (the alternate,
but different, 6800 software was used instead).
Nonetheless, by 1979, limited benchmarks could be
run to measure the performance characteristics of
the system.

Performance Measurement and Marketing. In
the codes that were tested, the design lived up to
its promise as an excellent vector processor. The
livermore loops ran at over 20 MOPS. In general,
most comparisons showed that the machine was
equivalent in performance to the CRAY I for many
vectorizable codes. This was true even though the
short vector performance of the parallel processor
was only being partially realized and the hardware
components were considerably slOwer.

32

Although the large main memory and fast
secondary store was an advantage in large prob
lems, users preferrecl the CRAY due to the
guaranteed performance levels that could be
achieved on existing non-vectorized and scalar
codes.

Conclusion. The cancellation of the BCML and
. CCD programs, the attendant cost increases, the
loss of an appropriate marketing window, and the
lack of a dominant scalar speed led to the cancella
tion of the product. The design proved that it was
possible to configure a parallel processor which
was competitive in vector applications and con
siderably more general than those that had been
designed in the past. This drive for generality is
expected to continue into the next generation of
MIMD architectures.

References

(1) Barnes, G. et al. "ILLIAC IV Arithmetic Ele
ment," IEEE Transactions on Computers
(August 1968), Vol. C 17, No. 8, pp. 746-757.

(2) Davis, R. L. "ILLIAC IV Arithmetic Element,"
IEEE Transactions on Computers (September
1969), Vol. C-18, pp. 800-816.

(3) Abel, N, et al. "TRANQUIL - A Language for
an Array Processing Computer," Proceedings
AFIPS Joint Computer Con-
ference , Vol. 34, pp. 57-73~

(4) Lawrie, D. "GLYPNIR - A Programming
Language for ILLIAC IV," Communications of
ACM (March 1975), Vol. 18, No. 3, pp. 157-164.

(5) Stokes, R. A. "Burroughs Scientific
Processor," Proceedings of the Symposium on
High Speed Computation , University
of Illinois.

(6) Jensen, C. "Taking 'Another Approach to
Supercomputing," Datamation (February
1978), pp. 159-172.

(7) Kuck, D. J. "A Survey of Parallel Machine
Organization and Programming," ACM Com
puting Surveys (March 1977), Vol. 9, No. l, p. 29.

(8) Chen, S. C. and Kuck, D. "Time and Parallel
Processor Bounds for Linear Recurrence
Systems," IEEE Transactions on Computers
(July 1975), Vol. C 14, No. 7, pp. 701-717.

(9) Lawrie, D. "Access and Alignment of Data in
an Array Processor," IEE Transactions on
Computers (December 1975), Vol. C 24, No. 12,
pp. 1145-1155.

i·

