
· --&FAL•TJt .. ?3 .. 114

AEROSPACE MULTIPROCESSOR
FINAL REPORT

Robert L. Davis
Sandra Zucker, et al

Burroughs Corporation
Defense, Space and Special Systems Group

Advanced Development Organization
Paoli, PelUlSylvania 19301

TECHNICAL REPORT AFAL-TR-73-114

June 1973

Distribution limited to u. s. Gover~1~t a;tencies only; test
and evaluation results reported March 1973. Other requests
for this document must be referred to Air Force Avionics
Laboratory (MM), Wright-Patterson Al.r Force B•se, Ohio 4!>4JJ,

Air Force Avionics La.boratory
Air Force Systems C1e>mmand

Wright-Patterson Air Force E.ase. Ohio 45433

NOTICE

When Government drawings, speclfioations, or other data are used for any purpose

·other than in connection with a definitely related Government procurement operation.

the United States Government thereby incurs no responsibility nor any obligation

whatsoever; and the fact that the government may baw formulated., furnished. or in

any way su1>plled the said drawings, specifications, or other data, Js not to be regarded

by implication or otherwise aa in any manner licensing tbe bolder or any other per3on

or corporauma. or conveying any rights orpermiaslonto maDJ.lfaoture, use, or sell any

patented invention that may In 8A'1 way be related thereto.

r ictrulOll tcr

i ·~l;S Whllt SacllM
i & C lttt S<Ctlol

I Ulli!!!'C'~UCED D
'. JUSilnCATIOI

\ .. .
IY

GlS!llBllTIGl/AYAIWtltTY CODES

~oi$l-- fot(~~ariir:wt
I I

' \

Copies of this report should not be returned unless .return is required by security

considerations. contractual obligations, or notice on a specific docwnent.

AEROSPACE MULTIPROCESSOR

FINAL REPORT

Hobert L. Davis
Sandra Zucker. et al

Distribution lir:dtcd to l'. >. l;U\l·1n!'ILt1l .i.:l-rh ic-:~ unl\: I est
and C'val11ation rt:~llll~ r-rpurtl•rl ~brl..h llJ-\, llth(,r r·,_qt1l·::ot~

fo1· this ciOt'll''lCnl n:u~t be t"(ft r1t..d lo .-\i 1· F,1r\:. :\-.·],;ni~ .~

l.;tb0ralo1·y (AA~1), \,.-~-i~:hl-l'.1Ltt..;:,011 :\ir r·nr\-l n.1 c .. ,1J1i\1 ·+1-+)1..

FOREWORD

This ~inal Engineering Report was prepared by the
Burroughs Corporation, Defense, Space and Special Sy~te~s
Group, Advanced Development Organization, Paoli, Pennsylvania.
The work was accomplished under USAF Project 6090 entitled
"Avionics Data Handling Technology", Task 01 entitled
"Avionics Information Processing" and Contract No. F33615-
70-C-1773 entitled "Aerospace Multiprocessor." The work
was adminisb'red under the direct ion of Mr. D. Brewe1:,
Air Force Avio:lics Laboratory, AFJ\L/AAM, Wright-Patterson
AFB, Ohio.

This report covers work conducted from June 1970 to
~arch 1973 and was submitted by the authors March 1973.

The authors, Mr. Robert Davis and Mrs. Sandra Zucker,
are grateful for the help and contributions of rr.any of their
associates in the Advanced Development Organization for the
documentation, wiring, machining, ~oard layout and fabrica
tion, and artwork generation necessary to build tte ~ulti
proces3or and for the help of their associates in Adva~ced
Development and Technical Publications in the writing,
drafting, typing, and proofreading necessary to produce
this report. The a.uthcrs are especially grateful to Messrs.
Peter Molloy and Gilbert Reid for their help in the fabrica
tion and debugging of the Multiprocessor; Messrs. Melvin
Brooks and Carl Campbell for th~ir help in writing and de
bugging the control and dcrrcnstraticn programs; Messrs. Ulbe
Fater and Richard Eradley for the design of the Switch Inter
lock; and Mr. John T. Ly~ch, Director cf Advanced Devel0prnent
and Messrs. Dewey Brewer and kal~h Barrera of the Avionics
Laboratory (AFAL/A~M) for their patience and support thro~gh
out this prograrr..

This technical report has been reviewed and is apprOVE'd
for publication.

System Aviocics Division

ABSTRACT

The aerospace multiprocessor described is based upon a modular, building block
approach. An exchange concept that is expandable with the number of processors,
memory modules, and device ports, was developed whose path width is a function
of the amount of serialization desired in the transmission of data and address
through the exchange. The processors (called Interpreters) are microprograrnmable
utilizing a 2-level microprogram memory structure and were designed for imple
mentation with large scale integrated circuits, The modularity exhibited in the
Interpreters is in the size of the microprogram memories and in the word length
of the Interpreters from 8 bits through 64 bits in 8-bit increments.

The specific implementation of the exchange for the aerospace multiprocess~r is
for five processors, eight men1cry modu.les, ... nd eight device ports with eight
wires each carrying four serial bits of data through the excha1igt!. The processors
each have word lengths of 32 bits with a 512 word X 15 bit firs·-level micro
program memory and a 256 word X 54 bit second-level microprog1·am memory.

A simplified control program based upon concepts for a modular executive structure,
and some user type p::-ograms were written for demonstration of the aerospace
multiprocessor.

iii

Section

I

II

III

IV

v

-~-- ,· ,.~ -.. - •·· ~·- ~ .. •-•.•. ._, __

TABLE OF CONTENTS

INTRODUCTION.

INTERPRETER HARDWARE BUILDING BLOCKS

Logic Unit (LU).
Control Unit (CU) •

M<!mory Coutrol Unit (lVICU)
Nanomemory (N Memory)
Microprogram Memory (MPM)
Microprogram Memory Considerations
Loader (LDR)

MULTI PROCESSING HARDWARE DESCRIPTION

Multipr-ocessor Interconnection
The Switch Interlock •
PowP,r Distribution.
Clock and Power Control
Global and Interrupt Condition Bits
Real Time Clock and the Horns
Interpreter Number

AEROSPACE MULTIPROCESSOR
PACK.A.GING DESCRIPTION

M~chanical Design
L ircuit Configurations

INTERPRETER OPERATION

v

- ·--.:....._ ~ • • -----·- ·- .!'; ·-- - •• .c.. _--. -. ,.._ -

l

7

g

11
13
13
15
17
21

23

23
27
35
36
43
45
45

47

47
51

61

Section

VI

VII

VIII

TABLE OF CONTENTS (Cont'd)

SWITCH INTERLOCK (SW!) OPERATION

Overall Switch Interlock Control and Timing ,
Device Operations •
Memory Operations
Interface to SWI.
Device Interface Operation Examples

INTERPRETER MICROPROGRAMMING.

TRANSLANG for Microprogrammi:ig.
Literal Assignment Instruction
N Instruction
Condition
External Operations
Logical Operations •
Input Selects •
Destination Operations
Successor
Program Structure
Microprogramming Examples •

MULTIPROCESSING CONTROL PROGRAM A"lD
DEMONSTRATION PROGRAMS

Control Program

System Loading
Task Execution and Monitoring •
S to M Loader •

Demonstration Programs.

Memory Dump •
Program to "S" Loader
Plot
Mortgage
Sort
Matrix Multiply and Print ,

Confidence Routines

vi

69

69
72
78
83
85

89

92
94
95
96

100
103
106
107
110
111
115

121

121

122
125
127

131

134
134
134
135
135
138

139

Appendices

I

II

lI1

IV

v

VI

VII

References

Form DD 1473

TABLE OF CONTENTS (Cont'd)

Historical Review of Microprogramming

Finu Summary Report - Bipolru· LSI •

Adder Operations .

TRANSLANG Syntax

TRANSLANG Reserved Words and Terminal
Characters •

TRA.'l"SLANG Error Messages

Glossary

vii

Page

145

151

183

187

191

199

203

Figure

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
:H
22
23
24
25
26
27
28
29
30
31

32
33
34
35

LlST OF ILLUSTRATIONS

Basic Aerospace Multip1·ocessor
LSI Multi-Interpreter System Bloci<. Diagram
Interpreter Block Diagram
Logic Unit Block Diagram
Interpreter FW1ctional Units
Instruction Memory Hierarchy
One Memory vs. Two Memory Implementation
Sample Program. Statistics
Memory Cost vs. Memoiy Speed
Two Memory Cost Savings vs, Cost Factor
Implementation of Loading Fu.rictions Block Diagram
Functional Multiprocessor Interconnection Sche:ne
Physical Multiproces' or In tee-connection Scheme
Centralized Multiproc~ssor System
Distributed Multiproce&si.ng Interpreter System
Implementation of the Switch Interlock
Memory/Device Controls {MDC) Block Diagram
Device Controls (DC} Block Diagram
Memory Control No. 0, Block Diagram
Memory Control Ho. 1, Block Diagram
Outµul Swilc.:h 1\eL>•urk .!'io. 0, I...ugic Diagrun-.
Outpl.!t Switch Network No. 1, Logic Diagr:lm
Input Switch Network, Logic Diagram
Power Distribution S} stem
Implementation of l\'IulUp:&:ocessor Clocks
Conflic~ Resolution Logic for Global Condition Bit GCl
Implementation of Interrupt Controls
Aerospace Multiprocessor Configuration
Submodule Rousing
Interpreter Module Packaging
Aerospace Multiprocessor Installation at Wright-Patterson

Air Force Hase
Multiprocesso•· Interconnection Scheme
Microprogram Memory, Nanomernor:-· Submu(lule Packaging
Loader, Switch lnt€rlock Submodule Packaging
Alternative Packaging Approach Utili:z:ing lG-pi.n Flat Packs

viii

Page

2
3
8
8

12
14
16
17
19
20
22
24
26
28
28
28
30
32
33
31
37
38
39
40
41
42
·H
48
49
50

52
53
54
55
58

Figure

36

37
38
39
40
41
42

43

44

45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64

LIST OF ILLUS'.rRATIONS (Cont'd)

Alternative Pac!caging Appr.:.ach Utilizing 60-pin
Flat Packs

Timjng AnalysiS, Type I Instructions
Instruction Timing
Timirtg Example
Microprogre.m Instruction Sequencing
Switch Interlock. Block Diagram
Timing Diagram for Device Lock to Dc\•ic l' Previously

Locked to Requesting l.nterpretc1· •:ir for Device
Unlock to Device Prt•\ioualy l Ille :ked from Any
Interpreter

Timing Diagram for Device l.ock t<J 1.. ·docked I.)(> nee
Unlock to Device Locked ta r.equt.>sting Interp1·eter

Timing Diagram for Device R,·=1d _,r Write from De~ice
Locked to Rcquestinl! Interpreter

riming Diagram for :\temory Read or i.\"ritc
SWI/Interfacc Timing Signals
Memory/ Device Interface with S'Nl. Block Diagram
Microinstruction Types
Detailed Nanobit Assignments
Binary Mi;.ltiply
Ge."leration of Fibonacci Series
Microtranslator Outn·1t
S to M Loader
Control Program Flow Diagram
Multiprocessor System Flow Diagram
Memory Map
Load Microprogram l\lemory from Main Memory

Fi.ow Diagram
Task Control Flow Dia•!ram
Example of Memor·:· I.•:.mp Output
Example of Plot Ro•Jt:,~e OUtput
Example of Mortgage Table Output
Example of Sort Romine Output
Examples of Matrix Print Routine Output
Traditional Digital Computing System Block Diagram

59
62
64
66
68
70

74

80
82
84
GO

1!4
116
117
118
119
124
126
128

129
130
133
136
137
141
143
14G

S"F.CTION I

I1\TRODUCTIOt'

TI1is final report describes the results of work performed by the Advanced Develop
ment ()rganization of Burroughs Defense, Space and Special Systems Group fv1· the
Air Force Avionics Laboratory, Wright-Patterson Air Force Base under contract
F33615-70-C-1773. The purpose of this program was to fabricate an aeru,;;p<1.ce
multiprocessor utilizing large ,;cale integrated circuits with techniques developed
under contract F33615-69-C'-l200 by Burroughs for the :\vionics Laboratory.

The aerospace multiprocessor is made up of five identical microprogrammable.
LSI processors called lnterpretei-s ~onnected to devices anu memory modules by
an exchange called a Switch Interlock. Since the intent :>f the contract was to
produce only those parts of a multiproci>ssing system (proC'essors and exchange
as shown in Figure 1) not readily av~ilable in "miniaturized" form, the sy:ster:'.
is completed with commercially :oivailable memory modules, power ;;upplie:;, :1nJ
devices as shown in Figure 2. In this fig-tire, the items deli\e1-ed 3rt'' >;hown with111
the dotted line. The Switch Interlock module comprises the "network" ;,hown by thl~

connected lines on the bottom half of Figure 2. 111e systen~ char;tcte ristics for the
aerospa-:e multiprocessor are listt>d in Table I.

The remaind~r of this report con:::ist;:> of ;;even section;; and se\·cn appendice::::.
Section II describes the LSI, microprogrammal.lle proces5or (cc;.llrd an Interpreted,
consisting of three types of logic parts utilizing discretior.ary-wired LSI arrays,
two types of microprogram memories and a loader for lo;.iding these t\'."o mcmoric:-;,
Also included is a discussion of the rationale for ,;plitting the micr·oprogram
memory into two parts, based on work done by :\Ir. Ernl'St Tl'imbui·.

1

Fi~~ ll/'I' I. J,:a.-;i,· Aer·osp.lcl! . •s c;CJr .. ' \ltlltip1·11c(...

"" Dhl 3

~~}··
~ __:_··_

I
I
I
I
I
I
I
I_

I

~
t
L ...

orv .1

r- - -
I
I
I
I
I
I
I
I
I

Dh • D(V D

I
I
I t'l•~ =r-1

.. 11.~ tnf'L ..

r.

•
-----------.

'•

l
1
I
I
I
I
I
I
I ,

'9-"" I ,..u1

- -1

-·
..: ,. ,_'M.•lfltr

~JlllC •11 .. •.&11j'1 I I'•• 1..-,,r \ .. ltllf• I DIVl,.At Of' ri1'1iirrr,1T

Figure 2, LSI l\lulti-Interpreter System Blo<k Diagram

···~
••a 111011 tljr

-- -

- _ .J

Table I. Aerospace Multiprocessor, System Characteristics Summary

5 Interpreters

32-bit word length

2. 5 mHz clock rate

Discretionary Routed TTL, LSI

512 words (expandable to 1024 words) by 15 bits, read/write MPM

256 words by 54 bits, read/write Nanomemory

Volume:

Typ. Power:

3 Memory Modules

Datacraft DC-38

5. 75 in. X 5.1 in. X 6 in. without connectors.
5. '{5 in. X 5. 1 in. X 10 in. with connectors

42 watts for LSI arrays I
4 watts for loader at +5 volts de

44 watts for MPM and Nanomemory

3-wire, 3D, coincident current core

Read/write, random access

BK words (expandable to 16K words) by 32 bits rer module

350 ns access /900 ns cycle

Volume:

Typ. Power:

1 Switch Interlock

19 in. X 19 in. X 5 l / 4 in.

6A at 117 Vac

5 Interpreter ports

Serial data interface of B wires of 4 serial bits each

8 serial interfaces for memory modules (32 bits wide)

8 serial interfaces for device ports (32 bits wide)

Volume:

Typ. Power:

5. 75 in. X 5. 1 in. X 22 in. with connectors

72 watts at +5 volts de

4

Section III includes a general discussion of multiprocessor int•;;rco:mection and a
C.cscription of the hardware specifically needed for multiprocessing. This ha;:-d
ware includes the exchange for interconnecting processors to memories and device<>,
clock and power control, a "real·time" clock, a time-out counter, and the hard
ware necessary for one Interpreter to lock other Interpreters out of selected tables
in memory. Also included in this section is a description of the eystem power
distribution.

Section TV describes the packaging of the multiprocessor for its lilboratory environ
ment and brieny discusses the LSI partitioning and possible future implementations.

Section V is a detailed discugsion of the Interpreter operation as a single processor,
centering primarily on the fetching. execution, and sequencing of microprogram
instructions and the condition testing involved in the microprogram instruction's
successor determination.

Section VI is a detailed discussion of the Switch Interlock operation. The conflict
resolution problem in accessing memories and "l::icking" to devices is discussed
along with the handshaking between the Interpreters and the Switch Interlock in
performing memory and device operations. Detailed timing diagrams are given
for all Switch Interiock operations.

Section VII describes the microprogramming of the Interpreter and gives the syntax
and semantics and examples for all Interpreter operations.

Section V IH is divided into two parts. The first part describes the simplified control
program u:oed to contr0l the multiprocessu r with its associated task tables in
memory and also describes the method fOt' loading either tasks or the control
program into the Interpreter's microprogram memories from "S" memory. The
second part of this section describes the six programs written to be executed as
user tasks in the demonstration of the multiprocessor. This gection is concluded
with a short discussion of the confidence routines that were used during debugging
of the Interpreters and which could be modified to l"Jn under the operating system
for on-line confidence checks of the Interpreters.

Appendix I is a historical review of microprogramming written by Dr. Earl H.eigel.
Appendix II is a copy of the final report from Texas !nstrurnents, Inc. on the
discretionary-wired LSI used in the Interpreters. Appendices III~VI are details
for the use of TRANSLANG, an assembler for Interpreter microprograms.
Appendix VII is a glossary.

5

SECTION II

INTEHPRETER HARDWARE BUILDING BLOCKS

The Interpreter is composed of four logic package types: the Logic Uni~ IT .r;/,
the Control Unit (CU), the Memory Control Unit (MCU), and the Loader (LDR).
The microprograms which provide the control functions are contained in two
memories: the Microprogram Memory (MPM) and the Nano program Memory
(Nano or NM). These units and their interconnections are shown in Figure:~.

The unique split memory scheme for microprogram memories allows a signifi
cant reduction in the number of bits for the microinstruction storage. It should
be noted, however, that a single microprogr:~rn memory scheme (1\:IPM and
Nano combined) could also have been used, potentially increasing the clock rate
of the system. In addition, the cycle rates of the memories could be altered,
to gain speed or reduce cost, without any redesign of the logic packages. In fact,
a variety of memory organizations (single memory and different split memory
configurations) and memory speeds have been implemented in other Interpreter
based systems, thus providing a range of cost/speed trade-offs.

The LU performs the required shifting, arithmetic, and logic functions as well
as providing a set of scratch pad registers and data interfaces to and from the
Switch Interlock (SWO. Of primary importance is the modularity of the LU,
providing expansion of the word length in 8-bits increments from 8 bits through
64 bits using the same functional unit. The word length of the Interpreters
used in the aerospace multiprocessor is 32-bits.

The CU contains a condition register, logic for testing the conditions, a shift
amount register for controlling shift operations in the LU, and part of the control
register used for storage of some of the control signals to be sent to the LU.

7

r---,.---CARDREADER
.---------------------i LOADER -----SWITCHES

MPM NANOMEMORY

MCU cu

L_
0
LU

1
LU • • • n

LU

MAIN MEMORY/PERIPHERAL

ADDRESS~S

MAIN MEMORY /PERIPHERAL DATA

nS. 7 IN GENERAL

n = 3 FOR AEROSPACE
MULTIPROCESSOR

Figure 3. Interpreter Block Diagram

Al
REGISTER

AZ
REGISTER

A3
REGISTER

TO CU, MCU

FROM MCU
(CTR, AMPCR, LIT)

ADDER

BARREL
SWITCH

MIR

TO SWITCH INTERLOCK (SWI),

MPM, ANO NANOMEMORY

Figure 4. Logic Unit Block Diagram

8

FROM

SW ITCH INTERLOCK
(SWI)

6
REGISTER

The MCU provides addressing logic to the Switch Interlock for data accesses,
controls for- the selection of micro inst ructions, literal storage, and counter
operation. This unit is also expandable when larger addressing capability is
required. The Loader (LD R) enables the MPM and Nanomemory to be loaded from
either switch-es, a card reajer, or prograrnmatically from the LU.

LOGIC UNIT (LU)

A functional block diagram of the LU is shown in Figure 4. The deoign of the
LU is predicated upon implementation with one LSI silicon slice per eight bit .. ;.
The present 8-bit LU is implemented with two LSI slices.

Registers Al, A2, and A3 are funct'onally identical. Each temporadly stores
data and serves as a primary input to the adder. Sdection gates permit the
contents of any A register to be usec1 as one of the inputs to the aduer. Any of
the A registers can be loaded with the output of the barrel switch.

The B register is the input buffer (from the Switch Interlock). It serves as the
l;econd input to the adder and can also collect certain side effocts CH' arithmetic
operations. The B register may be loaded with any ot' the following (one per
instruction):

1. The barrel sv .. itch output

2. The adder output

3. The data from the Switch tnterlol'k

4. The MIR output

5. The carry complemenls (f1·om thl:'. adder) of-±- or B-liit groups
with seh•cted zeros (for use in decimal arithmetic or character
prncessing)

6. The barrel switch output ORed with the adder output

'I. The barrel switch output ORed with the data from the
Switch Interlock

8. The MIR output ORed with 1, 2, 5, or 6 above.

The output of the B register has true/complement selection gates which are
controlled in three separate sections: the most significant bit, the least signifi
c:ant bit, and all the remaining central bits. Each of these parts is controlled
independently and may be either all zeros, all ones, the true contents or the
complement (ones complement) of the contents of the respective bits of the
B register. The operation of these selection gates affects only the output of the B
register. The contents remain unchanged.

9

The MIR primarily buffers information being written to main system memary or to
a peripheral device. It is loaded from the bar;-el switch output and its output may
be sent to the Switch Interlock, to the B regiRter, or to the data input of the MPM
or Nanomemory for programmatic loading,

The adder in the LU is a modified version of a str<J.ightforward carry look-ahead
adder such as that discussed by MacSorley1 and others. Therefore, the details
of its operation will not be included.

Inpuls to the adder are from selection g<J.tes which allow various combin::.tions of
the A, B, and Z inputs. The A input is from the A register output selection gates
and then input from the R register true/complement ;,election gates. The Z
input is an external input to the LU and can be:

1. The 8-bit output of u-.;..: counter ol the MCU into the most
significant 8 bits with all other bits being zerns.

2. The 8-bit output of the literal register of the MCU into the
least significant 8 bits with all other bits being zeros.

3. The 12-bit output or the alternat~~ mict•oprog-1·am count
register (AMPCR) right jm;tified into the middle 16 bits and
the (wired) Interpreter number right justified in the t·e
maining four bits of the midule lG bits. All other bits are
zeros.

4. All zeros.

Using various combinations of inputs t" tile selection gate;;, any two of the three
inputs can be added together, OP can h~· adder! together with an additional "one"
added to the least significant bit. Aho, all bi1icti·y Boolean operations between
the A and Hand between the Band '/. adder inputs ·.i.nd must of the binacy Boolean
operations between the/\ and Z adder inpuls can lw done.

The barrel switch is a matrix 1Jf gates that shift:,; u parallel input clata word any
number of places to the left or right, either end-off or· end-around, in onP
clock time.

The output of the barrel switch is sent to:

1. The A registers (Al, A2, A3)

2. T]1~ B register

10

3. Memory Information Register (MIR)

4. Least significant 16 bits to MCU (registers BRl, BR2, MAR,
AMPCR, LIT, CTR)

5. Least significant 5 bits to shift amcunt register (SAR) in the CU.

CONTROL UNIT (CU)

One CU is required for each Interpreter. 'fhe design of the Cl: is predicated
upon implementation with one LSI silicon sliee, but is presently constructed
with two LSI slices. Major sections of this unit (F'igure 5) are: ti1e shtft c.~ount
register (SAR}, the condition register, part of the control register (CH), the
MPIVI content decoding, and part of the clock control.

The functions of the SAR and its associated logic are;

1. To load shift amounts into the SAR to be used in the shifting
operations. Left end~off shifts re'1uire- a shift amount equal
to the "word length compler.ient" of the number of positions to
be shifted. ("Word length complement" is define" 'lS tl~e a~nount
that will restore the bits of a word to their origirial position after an
end-around shift of N followed by an end-around of the "comple
ment" of N. For the ::>2-bit word length in the aerosp'lce multi
processor, tilis is the 2's complement.)

2. To generate the required controls for the barrel switch shift
operation indicated by tl~e controls from the Nanomemory.

3, To generate the "word length complement" of the SAR contents
and load this value back into the SAH,

The condition register section of the Cll pe rforrns four major functions:

1. Stores 12 resettable condition bits i;i the condition 1·egisters.
The 12 bils of the condition register arc: used as error
indicator·s, interrupts, status indicators, and lockout
indicators.

2. Selects 1 of 16 condition bits (12 from the register and
4 generated during theorJJresent clock time in the Logic Unit)
for use in performing conditional operations.

3. Decodes bits from the Nanomen1oi'Y fo1· l'to:oetli11g, ::;dli11g,
or r€questint th.: setting of certain bits in the condition
registl;!r.

4. Resolves prinrity between Interpreters in the setting Jf
global condition (GC) bits.

11

MrCRO
P,_OGRAM
MEMORV

MPM

('6BIT-Wl)ROS)

MCUb
!E"c" i 12
l

I

LI- INCREMENT
by I) 1 or2

_ __j

----+

Tfi l.U { z INPUT)

11-16

1/~ Select
trr>mCLI

'

f .!·-·-···· ·- ..,.--------/
Addms lor S ITll!ITllA'V
and Dt¥1vr.;

Figure 5.

TO LU I z 1MPUT)

I
I I

I ' I I
I l __
L ___ _

LUOPE,-1.
an::lt:Xr .
Optf.CCtf'IClmon

::,°:1 ~ .• ct.
1t1 LU

te r Functional Units Interpre

The control register is a register that stores 38 of the 54 control signals from
the Nanotnemory that are used in the LU, CU, and MCU for controUing the
execution pcase of a microinstruction. Twelve of the 38 outputs from the Nano
memory are stored in. the CU. Four of the other 38 Nanomemot>y outputs are
controls to the Switch Interlock and are stored there. The other 22 of the 38
Nanorneniory outputs are stored in a part of the control register physically
located in the Nanomemory.

The MPM content decoding determines (based upon the first four bits of the MPM)
whether the MPM output is to be used as a Type I instruction (Nanomemory
address) or as a Type II instruction (literal). Several decoding options are
available. The particular option chosen is described in the Interpreter Micro
programming section of this report.

MEMORY CONTROL UNIT (MCU)

One MCU is required for an Interpreter in the aerospace multiprocessor. but a
second MCU could have been added to provide additional memory addressing
capability. The design of the MCU is predicated upon implementation with one
LSI silicon sli~e. but is presently constructed with two L8~ slices. This unit has
three major sections (Figure 5):

1. The microprogram address section codains tile microprogram
count register (MPCR), the alternate microprogram count
register (AMPCRl. the i'lcrementer the microprogram address
control register, and ao;sociated control logic. The output
of the incrementer addresses the MPM for the sequencing
of the microin::;lrudions. The AMPCR contents are also used
as one of the Z inputs to the adder in the LU.

2. The memory J device address sectic.n c.:ontair,; the memoi·y
address register (MAR), base registers one and two (BHl, RR2),
the base register output selection gates, and the associated
control logic.

3. The Z r<;egister section contains registers which are two of the
Z inputs to the LU adder: a loadable counter (CTR), the literal
register (LIT), selection gates for the input to the memory
address register and the loadable counter and their i:l!; sociated
control logic.

NANOMEMORY (N MEMORY)

The Interpreter is controlled by the output of the 54-bit wide Nanomemory which
may be implemented with a read/wrtte memory, a read-only memory, wired
logic, or a combination of the three. The prt::sent implementation is a 256-word
by 54-bit 1·!'-!ad/writc semiconductor random access memory using the Fairchild
'J~410, a 256-word by 1-bit package.

13

0/1.TA I PROGRAM
MEMORY

51 I CAD 012 I
IA1Cl'10PROGRAM

MEMORY
NANO

MEMORY

•m1
mZ --1----------~ nt 0100101101011oir)OO:o1' 1 •.

n2 10110111oco1011101ooc10 ...
~-'"'"'......,C"--"7?-"-- n3 100•000010111100011010111.

n4 0001101110
n5 I 0 I 10, ..
n6 1011000 ..
n7 ooo 100 ..
n8 \QQQI I 11)1

S2~DOILL m3
m4~~~~-,

53 STA OIZ

54 l I :~
551 J
SG I I
57 i I

m3

mt
m2
m3

n9 10000011..
nto I IO!:!~~' 0:;001 -
nt1 000 100 tO I.

i..----7<':;:"?"-"" ____ ~:~ ~~g :ggg~~~:: ~~?~; :010110 ..

nt4 00001100000111oooooq)1110.
nt5 :0111010001011010110 01101

...

LOGIC F'UNCT!ONS

Figure 6, Instruction Memory Hierarchy

14

Each of the 54 bits represents a unique enable line for the gates and fiip-llops
within the LU. the CU, am the MCU. Each Nanomemory word represents a
microinstruction that is executed by the simultaneous presentation of a specific
enable pattern for the 54 outputs, represented by corresponding ones and zeros
in its word. The definition of these bits is pr.esented in the microprogramming
section.

A unique feature of the Interpreter- Based System with its separate Nanomemory
and Microprogram Memory (Figure 5) is that the explk.it enable lines for each
microinstruction need be stored in the Nanomemory only once (regardless of the
number of times that a specific microinstruction is needed in a program). To
accomplish this saving in memory. the Microprogram Memory (MPM) contains
the address in the Nanomemory where the explicit ones and zr-;ros are storec
that are needed to execute that instruction· type rather than ~~E' full micro
instruction. Thus, several microprogram sequences which use t.be same micro
instruction (e.g., transfer A to B) need only store in the Microprogram Memory
the address of the Nanomemory word containing that microinstruction. Figure 6
illustrates this feature.

MICROPROGRAM MEMORY (MPM)

Each Interpreter requires a source of microprogram instrucL;ons to define the
operation of the Interl';:-eter.

Two possible solutions for providing this source of microprogram instructions
are listed below:

1. A semiconductor MPM. This memory can be a read-only
memory (Fi.OM) if the Interpreter is to be dedicated to the
functioa defined by the ROM. A read-write memory can be
used for experimental purposes or when the function of the
Interpreter might be changed, such as reconfiguration in a
multiple Interpreter system. In this instance, the system
could afford to wait while the MPM was reloaded from
a remote microprogram store acc1::~~.o:er! via the Switch
Interlock.

2. A buffer into :1 slower-speed, wider-word memory.

In presently deliverable large scale integration form of the Interpreter, the MPM
is also implemented with Fairchild 256-wo, .1 by 1-bit bipolar, nondestructive
readout semiconductor memory packages. bc'.h the MPM and the Nanomemory
can be loaded from an external loader. sw:i.tc f1as or programmatically from its own
MIR. The basic ivlPM is expandable in ol:_;.;';a ,,~ 256 \':Ords, and can be expanded
up to 1024 words in the present Interpre sr3.

15

10

- 14 <n

N 41 TOUL
NUflllt[lt IJ, llTS

(lltOOOI

52

II

•

r
A"' WORDS

MICAO· F'ROGAAM
MEMORY

!~~--~---"-l-al----~--~
l,.,..,E---- "c"11rs ----;;>"''

(a)

TOTAL NUMBER OF BI TS
Vs

NUMBER OF BITS per ADDRESS

11 40

c (ens per ADDRESS)

l c)

...

f MICRO·
"A1o1 "WOllDS PROGltAM l. fll[::y

..-1 "e"e1rs 141!

eo

TO~AI. 41
NUMlfll
or SIU
Oi:tOOOI

112

II

"•,"•M" L I
"------~,
""'<EIO--- "c" BITS ---,;ii>""

(b)

TOTAL NUMBER OF BITS
Vs

NUMBER OF MICRO-ADDRESSES

I

' ,
+'-" .. '

I

AN • 1024

•' Nlbl\B'IO~------
~ -----

.. 1111t••il

~1"11e••' ,
I

2H "' 10i4 1280

'M (NUMllCR or MICRO - AOORUIES l

(d)

_____. AN • 121

l"IH tG41

l<'igure 7. One ri.:emory vs. Two \lemor,v Implementation

Microprogram Mem.or_y Considerations

The potential advantage of dividing what is considered to be the !Vlicrop.rogram
memory into two parts is more graphically illustrated by comparing the total
memory requirements of the two approaches shown in Figure 7.

The total number of bits {N(aJ} in Pigure 7 (a) is given by N1 = A...M x: C. The total
number of bi.ts (N » in Fig-8':te 7 (b) is given by (A (CB) + AN x er. A plot of the
total number of blfs vs. Band C and a plot of the to~al number of bits V'S. AM and B
for both approaches are shown in Figures 7 (c) and (d).

From these figures, it is obvious that as A , approaches AM' one memory is the
proper approach. ·rwo factors affect the rlfationship between AM and AN. One
is that literal Va}Ul;:"S (type ![instructions) used for shift <lffiOUnts•, jurnp aadresses
and 8-bit literals. that appear in the :M1croprogram memory, make no reference
to the Nanomemory. Second. repetitive use of the same nanoinstruction causes
an increase in AM without adding words to the Nanomemory. Some carnple pro
gram statistics .ire shown in Figure 8. This figure shows. for four sample pro
grams. the total number of microprogram and nanomemory words. the total num
ber of bits for both the one and two memory approaches and the percentage and
actual value of the number of bits saved using the two instead of the one memory
approach, In addition. this table showri the comparison among the nurnber of
literals (type II instructions), the number of Nanomemory references (type I instruc
tions), and the number of Nano memory locations in the four sample programs.

It should be remembered that the two memory approach \\ould requfre memor-ies
with approximately twice as fast an access time (and hence are more expensive per
bit) because both memories must be accessed sequentially within one clock time.

Memory cost per bit vs. memory cycle time is shown in Figure <), \Vhere !he verti
cal bars indicate the range on the~e prices whict:. were gathered during January, 1972.
Although the absolute prices have decreased, the relative pricing should still be
valid. Several cost factors(('. F. 's) are shown for memory speeds having a 2:1
ratio. The cost factors are sin.ply the ratio of the pr:ce of the fastt:r memory to that
for the slower memory. The higher cost factor encountered when crossing technology
boundaries should be noted.

The solid lines in Figure 10 show the actual cost savings of the two memory approach
for the four sample programs taking into account the difference in memory prices
for the two approaches.

Also it is important to realize that many applications require a writable)licroprogram
memory. This means that the entire memory in the one mC'mor)· approach must be
read-write, while with the two memory approach, llie Xauu1nt:ulvr.v Cuuld i.i~ 1'i:<J.d-orJ.y
with the :\licroprogram memory being read-write. (!n fact the ~anomemory could
even be partly read-only and partly read-write.) This is shown b,y the dashed lines

17

PROGRAM STATISTICS TOTAL BITS -.
~1: _!_

AM T Ro•. TASI< A11 N(ol N(~J NM
TOTAL TYPE I 1%1 TYPE II C%1

0-825 EMUL~TION 3337 2224 (67%1 111 3 (33%1 964 2.31 187K 108K 541<

8 - 300 EMULATION 3265 I 996 (61°/o) 1269 139%1 624 3.20 t83K 87K 521<

OISK CONTROLLER !288 910 (71%) 37', (29%1 244 3.73 72K 34K 211<
'

LANGlAGE DESIGN SYSTEM 659 394 !60%1 265 (40%1 244 1.61 371< 25K 1 1 K

R <J•. = AVERAGE REPETITIVE COMMAND FACTOR = TYPE I/ A11

6N 1 =BIT SAVING DUE TO NON-REPETITIVE STORAGE= I xC-(A11•C•IxB)

6Nu • BIT SAVING DUE TO SHORTENED TYPE II WORD LENGTH • Ii • [C-8)

Figure B, Sample Program Statistics

2 lllEMORY TECHNIQUE
BIT BREAK DOWN

J'O.

BIT SAVINGS
NN

N1e1- N1111 ~N1

541< 79K (42%1 351<

351< 961< {52%1 4!1K

t4K 381< (52%1 2!11<

141< 121< (32%1 21<

ANu

441<

511<

i SIC

101<

.....
co

COST
(~ &IT)

12

IQ

1,0

t,Q

4,0

2,0

I
I

MEMORY COST vs MEMORY SPEED

65K < N < 256 K

C.F. = l.25!35-70ns) BIPOLAR

C. F. = 1.4 (200- 400ns1
[CROSS TECHNOLOGY]

BIPOLAR - MOS j ', ', _ - \, J
- ' C.F.: 1.4 (500-iOCOns)

- - - - - \ - \ [CROSS TECHNOLOGY]
\ MOS- CORE

l':~:,:::::(300=-60=0ns~I '~\~',~,It-----------~
• 1.25 (400-aoona l ~1 _____ 3_o_c_o_R_E ________ f~~l<

X BIPOLAR ROM 45ns
ROF = 6.2

100 200 500 400 900 tiOQ

MEMORY CYCLE TIME (ns

Figure !l. Memory Cost vs. Memory Speed

C.F. = t.16 (600-1200ns)

11>0 100 900

75%

TWO
MEMORY
COST
SAVINGS
AS PERCENT
OF ONE
MEMORY
COST

50%

N [cosr,. l 0 1----
COST(al

(x 100 I

25°/o

RANGE OF ACTUAL
COST FACTORS

B500 IB.4 ~
OISK 87.41 '
DB2~ 11.3 ''
L.D.S. H.f)(.' ~ ~ .._

' ... '' ',',',' ...
' '' ' ' ' ' ' ''~,',

DECODER: ROM
MPM' R/W

DECODER= R/W
MPM: R/W

iWF =6

' '' ' ' '' '
~,:a 52 ~' '~ ... ', ... ',

' '' ' ' '' '
D 12S 42 ' , '· : '._ '

' ' ' ' ' ' ' ,' '
L.0$

1.0

' '' ' ' ' '' ' ' '' ' ' " ' ' ' ' ', ',',',
' ' ' '

'

2.1

2.0

' ' '

... ...
... '
' '

' ' ... ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ... ', '',',
' '' ' ' ' ' ' ' ' ' ' 2.71 '

2.97 3.09
3.0

COST FACTOR [LlS=2 J

Figure 10. Two I\ilemory Cost Savin:15 vs. Cost Factor

5.11!

in Figure 10 for the four sample programs using a "read only facto~ (ROF)" of 6.
This ROF is an estimate of the ratio o.f the price of read-write memory to that for
read-only memory.

In both cases,· the values for a cost factor of 1. 0 are the cost savings if memory cost
were constant with respect to memory speed, The abscissa gives the cost factors
required for the two approaches to be equal in cost.

LOADER (LDR)

One LDR is required for each Interpreter. The LDH provides clock controls for the
Interpreter and the means for loading the Int-arpreter's MPM and Nanomemory from
one of three sources:

1. Switches on the MPM/Nanomemory light panels,

2. A card reader assigned to loading.

3. The least significant 16 bits of the MIR of the same Interpreter.

It is possible to load several Interpreters concurrently from their panel switches or
from their MIR's. Concurrent loading intc.. more than one Interpreter from the card
reader assigned to loading is not permitted.

Figure 11 is a diagram of the loading functio11s in the LSI multiprocessor.

Loading from the MIR is nnder microprogram control and provides the capability for
programmatic overlay of the MPM an<:I Nanomemory from any S memory module or
any device attached to the Switch Interlock, A more detailed description of pro
grammatic overlay from S memory is given in Sections VII and VIII.

21

INTERPRETER

MIR

~

From
Switches

' ~

SELECTION

(16)

LDR

(15) '

.... :\~PM

'
Incrementer

-

i.-

f
Inhibit! Force

Step

{16)

' .-.
1-16

t

LU. CU, MCU

From
Card Reader

Interface
~

1

CONTROLS

T- - - _,
Write Enables

(16) (8) (14)
~

T T T
NANO MEMORY

117-32 I 33-40 J 41-54

• j i'

Figure 11. Implementation of Loading Functions Block Diagram

MAR

SECTION Ill

MULTIPHOCESSJNG HARDWARE DESCRIPTION

MULTIPROCESSOR INTF:RCONNECTION

A major goal in multiprocessor system design is to increase efficiency by the
sharing of available resources in some optimal manner. The primary resource,
main memory, may be more effectively shared when split into several memory
"modules". A technique for reducing delays in acces1;1ing dat~• in main memory
is allowing concurrent access to different memory modules. With this concurrent
access capability present, an attempt is made to assign tasks and data to memory
modules so as to reduce conflicts between processors attempting to access the
same memory modul~. Nevertheless, since some conflicts are unavoidable, a
second technique (reduction of conOict resolution time) is required, These two
techniques al"e largely a function of the multiprocessor interconnection scheme
which has been discussed by Curtin2 and others. 3•4

Figure 12 shows three basic functional interconnection schemes. These are
described in i-nore detail by Curtin,z

The disadvan•ages of the s:ngle bus approach (Figure 12) for many processors are:

1. 'he obvious bottleneck in information transfer between
procE"ssors and memory modules due to both bus con
tention and memory contention

2, the catastrophic failure mode due to a single component
failure in the bus.

A Holution to the first problem has been to increase the frequency of operation of
the b;,is.2.~

23

PROC • • • (PROC MEM • ••
[~EM J

I l I
Ca) Single Bus Interconnection

PROC .. , . PROC MEM • • • MEM

• • •
(b) Multiple Bus Interconnection

PROC • • • PROC MEM • • • MEM

(c) Dedicated Bui Interconnection

Figure 12. Functional Multiprocessor Interconnection Scheme

24

The multiple bus approach is merely an extension of the single bus approach where
all processors contctid for use of any available (non-busy) bus. The advantages
are redundancy and allowing an appropriate number of buses (less than the number
of processors) to handle the traHic between processors and memory modules.

The third approach utilizes a dedicated bus structure (one per processor).
Although this approach required more buses, it requires neither the logic nor,
more importantly, the tirne for resolving priority between processors requesting
the use of a bus. Proponents of this approach contend that the time penalty for
resolving conflicts for access to a memory module is enough of a price to pay
without having to wait for the availability of a bus.

In a Hughes report,4 the authors distinguish the physical differences between two
multiprocessor interconnection schemes. The two approaches (one called multi
pod and the other called matrix ow itch) are shown in Figure 13.

The Hughes report characterizes the two connection approaches as follows:

"In the multiport approach, the acct~ss control logic for each module
is contained within that module, and intercabling is required between
each processor and memory pair. Thus, the total number of inter
connecting cables is the product of the number of processors and the
number of memories. Each module must be designed to accommodate
the maximum computer configuration,

"In the matrix switch approach, the same interconnection cap;;i.bility
is achieved by placing the acN:ss control logic for each module in a
separate module. The addition of this module to the system is
compensated (for) b)' redul'.'ing ~hP intercahle!'l rf'quired to the sum
of the processors and memories rather than the product and by not
penalizing the other modules with maximum switching logic.

"There generally is no speed differential between multiport. ;,ind
matrix arrangements. The major difference lies in the ability to
grow in wiring complexity. Multiprocessors with multiport arrange
ments are generally wired, at production time, to the maximum
purchased configuration. Future subsystem expansion generally
requires depot level rewiring. This problem generally does not
exist with the matrix arrangement. The maximum capacity is wired
in but the switching logic complement reflects the purchased system.
Subsystem expansion entails purchase of added processor/memory
modules (and necessary cabinetry if required) plus the required
switch matrix logic cards. "

Apparent from the arguments in this report is the desire to reduce the number of
wires intercounedi11g lhe processors and memory modules. A way to reduce the
wiring (in addition to the use of the matrix switch) is by using serial transmission
of partial words at a frequency several times that of the processors. This tech
nique has been used by Meng~ and Curtin.2 The tradeoff here is between the cost

25

MEM

PROC

(a) Multiport

MATRIX
SWITCH

(b) Matrix Switi.:h

MEM

l'ROC

Figure 13, Physical Multiprocessor IntercolU'lection Scheme

26

of the transmitting and receiving shift registers and the extra logic necessary for
timing and control of the serial transmission versus the cost of wiring and logic
for the extra interconnection nodes for a fully parallel transmission path.

Another factor adversely affecting efficiency in a multiprocessing system is a
variation in the amount of computation versus I/O processing that must be done.
In previous multiprocessing systems I/O functions and data processing functions
have been performed in physically different hardware modules with devices being
attached only to the I/0 controllers (Figure 14). {This technique is typical of
Burroughs D825, B 5500, or B 6700). In a multi-interpreter system, however,
processing and I/0 contrcl functions are all performed by identical Interpreters
whose writable microprogram memory can be reloaded to chaage their function.
This technique allows a configuration {Figure 15) in which the devices are attached
to the same exchange as the memodes and processors.

THE SWITCH INTERLOCK

The Multi-Interpreter interconnection scheme for forming a multiprocessor is
called a "Switch Interlock": a dedicated bus, matrix switch with an optional
amount of serial transmission.

The Switch Interlock is a set of hardware building blocks that cormects Inter
preters to devices and memory modules. Connection between Interpreters aud
devices is by reservation with the Interpreter having exclusive use of the (locked)
device until specifically released, Conne~tion with a memory module is for the
duration of a single data word exchange, but is maintained until some other
module is requested or some other Interpreter requests that module.

Consistent with the building block philosophy of Interpreter-based systems, the
Switch Interlock is partitioned to permit modular expansion for incremental
numbers of Interpreters, memory modules or device ports and modular selection
of the amount of parallelism in the transfer of address and data through the Switch
Interlock from fully parallel to fully serial. Functionally, the Switch Interlock
consists of: parallel-serial conversion registers for each Interpreter, input and
output selection gates. parallel-serial conversion registers for each memory
module and each device, and associated control logic. Figure 16 outlines the
implementation of the Switch Interlock and shows the fanctional logic units that
are repeated for each Interpreter, memory module, and device. The bit expand
ability of the Switch Interlock is shown by dashed lines between the input/output
switches and the shift registers associated with the memory module, devices,
and Interpreters.

The Switch Interlock in the LSI Multiprocessor handles five Interpreters, eight
memories and eight device ports (more than one device could be attached to eac:h
port). The transmission paths through the Switch Interlock break the 32pbit data
word into 8 wires carrying 4 serial bits each, transmitted with a "high speed"
clock havir::.g a frequency five times that of an Interpreter clock.

27

M

M

~ ~ ... ~ M • w w M

c
• P[RIPHERAL SU9Sl'ST£M !Cid, Tope, Priftfff)

C • DISPLAY SUBSYSTEM
• SfNSOR SUBSYSTEM I Rodor, Na•i9atlonl

• • COMMUNICATION SUBSYSTEM

• •

• • •

Figure 14. Centralized Multiprocessor System

M • • • M

• • •

• • •

SWITCH INTERLOCK
• • •

0 0

Figure 15. Distributed Multipt·ocessing faterpreter System

28

• • • 0

r---- -,
I "$"MEMORY I

'
()A

I DEVICE

I I
I MEt.tOR'I' OR DEVICE I REGISTER
I t
L_ --- - _J

• • •

•••
r------ - _.,.... -- -,
I I

8 REGISTER I I
I .. I

INTERPRETER I I MEMORY

I MIR/MAR I

I RE&ISTERS I
I ------ _.__ ___

_.J

•••

• •• • • •
SHIFT REGISTER SHIFT REGISTER

I

I l.! .i..1---,
I]OUTPUT !;WITC>I
I ll ____ J

I I
--~,--...,.,~~~~~~--~~~~~~ I I

.__ - - - - - - - - - - - - - .J I
L.. ------- --~-.J

.. ..

-- -,
INPUT SWITCH j
fT ---
1 I

I I

I

I I L:- - --- - - --- - -- -- - --- ---- _ J I

L---------------------------~

Figure 16. Implementation of the Switch Interlock

29

w
0

FROM DC

LOCK
OR

UNLOCK
COMPLETE

FROM MC FRO'~ ISN's
Ir ·- l I · 1

LOCK
Sl~IUS

OK

MEMORY
MOGUL.£

OBTAINED

MEMORY
RUUR~l

CLOCK

\

l_

DEV
RtT'JRN
!'.LOCK

CLOCK

IN/OUT.
COUNTER

HIGK SPEED
CLOCK

IN

CARRYOUT

ANY
MEM/DEV

OP

OPER STARTED
LOGiC

------------+-----1-·---<f-1---

SAi
1/2 SYNCH

START

..A---''--~TOP
RDCl l HIGH SPEE
SYNC~ CLOCK t;ONl RD~

MEM/OEV
OPERATION REGISTER 8 DECODING

SYSTEM
CLOCK -- ---·-·---4~---..._ _____ _
FROM
INTERPRSTF ~

J OEV OPERA1\0N I I'' '''_R_E_A_o_..~_..;.,_/_M_EM_w_R1_r:-£-M_o_P-ER-A-r10-,N---' J

Clf AR
Put St

!•)

Ml M OSN
M-. ~)

Of. V :JSN

TO SAi

!
l ______ . _ __,___

T(R!l(~IGri Sf'fFtl r.IGH H:GH CONTROLS
~LOCK SPEED SPEED TO

OV' CLOCK CLOC~ MC AND DC
- ... i 10 TO

M£M 0£V
OSN OSN

Figure 1 7. Memory/ Device Controls (MDC) Block Dia.gram

PULSE
GENERATION

LOM
INTERPRETER

OUTPUT
S~\FT

REGISTERS

The six basic modules for the Switch Interlock of the LSI Multiprocessor are
described below.

MemorzLDevice Controls (MDC)

The MDC controls the high-speed clock used for the serial transmission of
data (Figure 17) and is an interface between the Interpreter and the controls
described below {MC and DC). There is one MDC per Interpreter. Physically,
the MDC's for two Interpreters are contained in one finned 5-inch by 5·inch by
1 /2-inch plate.

Device Controls (DC)

The DC resolves conflicts between Interpreters trying to lock to a device and
checks the 'iock status of any Interpreter attempting a device operation (Figure 18).
Physically, the DC is contained on two identical finr.ed plates, each plate
capabl~ of handling up to three Interpreters and up to eight devices. System
expa.'1Sion using this module could be in number of Interpreters or in number of
devices.

Memory Controls (MC)

The MC resolves conflicts between Interpreters requesting the use of the same
memory module (Figures 19 and 20). Physically. the MC is contained on two
finned plates. One plate contains the MC for three Interpreters and eight memory
modules and the other plate contains the MC for the other two Interpreters and
eight memory modules. plus the "memory-busy" flir~flops. The global condition
bit priority resolution and the interrupt Interpreter logic is also physically located on
this second plate although it is functionally independen~. System expansion using
the MC could be in number of Interpreters or in number of memory modules.

Output Switch Network (OSN)

The OSN sends data, address, clock, and control from Interpreters to addressed
d~vices or memory modules (i, e., the OSN is a "demultiplexer''). Physic3.lly.
the OSN is made of two different types of filllled plates handling either three or
four wires for up to five Inter-preters and eight devices or memory modules.
One type of plate handles four data-type paths for five Interpreters and ei.;(ht
devices or memories. The other type of plate handles two data-type paths
and one clock-type path for five Interpreters and eight devices or memories.
Logic diagrams of these types .)f OSN' s are shown in Figures 21 and 22.
Each column of logic is for one Interpreter with the inputs trom the inter
preter coming in the top. Each row represents one serial transmission path
and the outputs to eight devices or memories coming frotn the side and bottom
of the dra·.ving, System expansion using these modules could be in numb-.::r of

31

rHGHER
PRIORITY

IN

l

SYST
CLO

EM
CK

j • I

ADDRESS
ENABLE

LOCl< a UtjLQCK
REQUESTS FROM

l l l-

PRIORITY RESOLUTION

ANO

LOCK/JNLOCV. ENABLE

1
~
~
~

ADDRESS ~ r-- DECODE i----1
f-~

fil
t--
f--

•OR of all lock bill !or eocn device

•

HIGHER
PRIORiTY

OIJT

1
i-.

i....

.....

.....

•
l

LOCK Dol
QITS

MASTER
UNLOCK

. .
o D1

t 3J Do

I .
(l) •Dr

LOGK
INHIBIT

. . .

"OEV OPER"
FROM

-

I

3 ADDR.
BITS FROM

Figure 18, Device Controls (DC) Block Diagram

.....

"oev LOCKED
TO INT."-TO

-

LOG~ CHECK
FOR DEVICE
OPERATION

... • . 1 OPEN
COLLECTOR
TO OTHER

oc'1 •

-·- Ht,l•t.I
TO~lllM

••OM -.

~~ L _J __ ~ : I .flllOt'l'Tll"')IOl.lll.'"'I "fGllfl:ft I I

[
- __ ·---, l "llE,..ltl• r----f COltlfllQlS ~1

cow"""'' 1· _j -·--,J '-· 1 ·- .. TJ '1 -~ .. ------4

I --:--- ~-r~·- --- · -· -1 l ; Jl_Jl
L .:~::. J

_±-·-- -~--1=-----
[-=1~" ---- j ~--- .

{
_ _i_· • • -- - -- - L

~: .. !__ . _,, -~ ·- -

••111us¥ 1- t
. -·r

'.
;-.~L ______ _

........ ~; r

: - --l ·--·.

JlllHllPl'lfrtllll

llil!llOllttlS

..,.
'"""

'""" '

••.-.:a,. ·'• a.oc•

f-- ~ I

112-_,r:..l ~. 1.-----, =:Kdfflll COMfltOLC:

~ ~·~·~~-41·---- I

; i ff f 1 rn ~-

......... o. ·--

i ! L=:_j 1
1 1.'.

'L , J

• ---t----·----t-----~ I
--'------1 I ~--*--; I I
~cr:o-:_r r··--- ·-i , .. ~ i I ;--,=~J-1 , tl I

°" ' ! I... I ()Ill 11 I ' .. . ·. -.. ·.-.. · .. r--- _ .:"..".'..'.'.~""."..''.~t----i----_'._ ____ _J t-- ~"~+--1 "'...__
~- ______ _j L. __ lL .. f·-------~ i I l

.. -- I___ · · t ,
. t -- - -;---------- - - __ _t_ _y.!!:-}=::.

I '~•0•1t'¥ fU,OlUTlOll: • OIJftO

I -~
---~~~ ~-- - ~---------

Figure 19, Memory Control No, O, Block Diagram

OPH
aJLL.ECTOR:

TD -..

IL """" ... OE<XIOE

j · j
"!QllN/Olfll

l'lllC:MIA
"'IOfUTY•N
Fw:JMMCCr

MOD.ADCIFi
FOOM

MIEM. COHN.
ENABLE

TO QSN,'fUI

l INTERPRfTU ..

I MEMORIES

MEM.fllEQ.
fffOM

CLOCK ~

~!
L~f~rJl

''COMfAAE"'
TO

T-

l
\

MOO ADOfl.

'"°" '•
WM.CONN.

lfllh\Bt.E

' '---~~~~__.___~~

MEM. fllEQ.
"""•

I , I I
"'"'"",;•u<• ~ II ! ~oox~'" I r,..OtJSY J___J, -==

' ~ICMEllll"U.OAITYj ~ ·---til ___ -_ ... _·""'_ ... _'°_ .. _TY_i __ l'--+--'------, ,----"---,
1
• > I I • • • I

T-------1- ·----t-----1---+-- I

J I __ j ____ __..__ ___ --+-_ __.___,__

I TOtSNJOIN •-

I ro.--r1----
(• I

l -~j
ME*MIV ltJIV N•OlllFTV RllOU.mtlN

l'~--

Figure 20. Memory Control No. 1, Block Diagram

Interpreters or in number of devices or memories. The number of replications
of this plate would also change if the amount of serialization of the data path
were changed.

Input Switch Network (!SN)

The ISN returns data from addressed devices or memory modules to the Inter
preters (i.e., the ISN is a "multiplexer"). One finned plate handles five wires
for five Interpreters and up to eight devices or memory modules. A logic dia
gram for the ISN is shown in Figure 23. As with the OSN, each column of logic
is for one Interpreter with the outputs to the Interpreter coming from the top.
Each row also represents one serial transmission path with the inputs from eight
devices or memories coming in the side of the drawing. System expansion using
this module could be in number of Interpreters or in number of devices or mem.•
ories. The number of replications of this plate would also change if the amount
of serialization of the data path were changed.

Shift Register (SR)

These units are parallel-to-serial shift registers or serial-to-parallel shift
registers that use a high frequency clock for serial transmission of groups of
four data and address bits through the ISN 1s and OSN's. They are physically
located with the Interpreters, device interfaces, and memory module interfaces.

POWER DISTRIBUTION

Figur-e 24 shows the details of the power distribution system in the aerospace
multiprocessor. Even though all a-c connections are shown schematically attached
to one line, a load center is mounted inside the cabinet and two phases of a three
phase four wire 120/208 volt 60 H:i!: input are each connected through the load cen
ter to four strips of electrical outlets mounted inside the cabinet.

As shown, each lntenpreter has its own power supply with a connection to the
Switch Inte:dock for supplying +5 volts to the MDC for that Interpreter. All +5 volt
distribution is by heavy gauge wire twisted with its return. All sensing and
connections of return to chassis are done at the point of load. The system power
supply provides power to the device and memory interfaces, the real time clock,
power control and clock distribution, the light panel, and the Switch Interlock.
The sensing for the system power supply is on the Switch Interlock.

As can be seen,· the multiIJlicity of reference-to-reference connections via the cold
side of the twisted pairs made proper "treeing6 " of the references before connection
to earth impractical. Therefore freely tying reference to chassis was allowed.

35

In retrospect, the only changes suggested would be providing a better reference
to-reference connection between each Interpreter and the Switch Interlock, and
removing the reference to chassis connections on the +12 volt, -12 volt, and
+20 volt supplies after insuring a suitable reference to chassis connection at
the loads.

The only grounding problem encountered was on the loader board in the Inter
preters. This problem was eliminated by installing a wire ground grid on the
board and by providing extra ground pins from the board to the backplane. Of
interest is that no decoupling capacitors exist in the system.. Space for decoupling
capacitors has been provided and should be added if noise problems are encountered;
however no such problems have arisen during the fairly extensive testing before
and after delivery.

CLOCK AND POWER CONTROL

From the description of the Switch Interlock. it is clear that two clocks having
different frequencies are needed in the aerospace multiprocessor. During the
design of the aerospace multiprocessor the relationship between the maximurn
shift rate through the Switch Interlock and the maximum speed of the Interpreters
was determined to be at least 4: 1. Since four bit:s are transmitted serially on
each path through the Switch Interlock and shifting is to be finished within one
Interpreter clock time, a ratio of 5: 1 was selected, However. from the
implementation as shown in Figure 25, this ratio could be easily changed by
c;1anging the value preset into the counter, The logic appearing in this figure is
all controlled by a central system power supply, which in a failsafe system must
be made redundant,

As shown in the figure, the widtti of the high-speed clock to the MDC's in the
Switch Interlock is controlled by the width of the master clock coming in from
the pulse generator, and the width of the Interpreters' clock is controllable by
varying the resistor value on the single shot. The fiip-fiop control has been
added to the clock for each Interpreter to insure against performing any spurious
memor.y or device operations while power is either being applied or being shut off

36

OSN 0

OSN 01 OSN 00110

O~~~~·~::==========+========::;:==========li==========t===========t========;:::::::::::::::=t=:::::::::::::::::::::::c•,~ GA~O !OAOIJl'ICl C41l-.,l'"-.C. ett.•:t1 Yet

, , ' I I ! I ' I: I I I I I I ! L I :::::::·
• J• J· I•

7414'5W

ii ·~

~

,. I' I" 1•
7••·~·

•I •5
TT

_L_ill.i ~··

il ~\'.:M!r.."C>O~C/4
~••fOUCDM

r!
r•ic~w • ~--: ca woo-II•

·r .. - I • CS : •U.tOOO-Zli

i- C:5 _ HTI-Ol.llliOllill

UJ%000-~;J

1400'• I~
·-·-.. · 11 1 11111~ ' lllllllllIT1 ' Ii lllllll!i I 1. 1111111111 I I ' I ~~~~E'

l •• '¥111 • - I
~ I :'

illffiE:==:=!J

U•IIL..ll:l>M ., ,. ·I~·---
U4 l100-I/"

111• llD·:i·Z/6

uati:.,;,OM

,,. [!~-:~;/''

rtoet'•

.. ~~ ~~:·.~ ~ 11111111 ' , I ii I ii 11 • ===n:::U Ii l 111 • I 11111111 , 0
"· .. ""°""'

"'';"""" 0 11 11 I I I I 1 • 11:111 '. 111 + I: 111 1 i 1111 , 11111 11111 ,

nU:fJ tlFf rt+l tt=== == =::.J =-:::::' Lg

,,.. ... , '" ... _l_j_T_ll_T _j_ .l I I . T
- · Lt I · T I

J2MO .. O TT1 T T . ff I T l
I! ,I i '1 i l ff ·TT~ ' . T 1~:::::~~· I ! I • ' I, ' I ! I • • , • I ! ! ' ' , J I I " '_1 - •

11 • '!':•w r-1111 I ~ ·~;•• }.1 l I 1·I!I1' ·~;~ • 11 ! ~ 7~:•~tl ·0.;t- mzzoo-,,.

j I J-lt!·[ffi I I ~1-[1- 'I; 1 if ~fTF- i , I ~J -rr1- ~ onmo-210

~ JW 11 , i 11 l 1 1 I ii f ~1 ~/c3~ '"""'"
I j i '1 ~"\._ 'I• n1.l2Do-sn

'J ?•DO'•

_ ___J . I I I I I ffil i
GflOl.J'-10 ., .. ,,.:u ::-_ I -~ ffl T -OU,IMI GROO .. iJ

'o'c,cU•,lfll:t,..,.----- lf" [~ - -·· iT
UMEiBR2 UI ! , tt
tlMf8A1 •u ii 1 tf+- f-t----

- '· Ii I
""'""' "' +- _ ··- Jt i · T !T r----o

I
11

l II I 1 TT I .1'·-~·IOUll0-0/4
_ _ _ _ _ __ . 1 • _ _ _ _ ~ _ j_ ~I! ~•Mm•OM • • . • .! •..• , 1 1 1 1 ••• J. 1 rr • ·L"K
1414~W}. ! 1 11 74145W } I ! I / , I , 14145W u 14145W J . CZ

;. AZ • I \ ;. 82 • J / I i A2 • 1 '°l 82 ., o;.u UC.O·iJ~
--rrr_ .. TIT , : J TIT.TITil 1 Ii ! I ! -u. :rrrrr I t I , u iu ~

~-

I
.,,

' $ ~ 0 s
3 ~ *

& ~ 8
I ;!; ;!; :;

: i

Figure 21. Dutput Switch Network No. 0, Logic Diagram

37

~
~ ~ !

: It

IU
i ~.
l ll ii
•.!..!.i
0 0

~ =
!
0

"=1
~

OSN !

OSN I! OSN 00/tO

••ou•D"'·"'<>- ' _ I ""°""" I w, :u· I I _ =l~ _ .-...u:-

I
I (jllOJID l1T-,1p ..,....._ ________________ .,

DCJWJ<Ul-C" n• ~ • < ...
'

on 0/ .. CLJMU<ON~ --<h-

GIOUllDllll•Pll~-------------

I -I
I , I r I

_ ___, I rtttttt-- --- I

~: 1442'#
ii <;.4

~J I
I

J:

~JI

; Ill~

~lft'I

IOMOtao

~Pi°'*° ::r
~ ...
'1"'69ftl Cll

u11r..o

'--"'-+--<> ...
HllOUTO ,_-0

'--"''+---
lll.ADJI:.

~ ..
~!;

DUM! CLll-0:1.1': CH ::::I::
' .. _ • . .i

~I I! 11 !I II ~ ti! I l II II. r 11I11I11. • .., • ..,_, ...

D11M•-C.l.fl-CLKIM ~ ...
'

QltOl.llllC 111·111'11 o---------------++--++--H--H--l>-+11-l+t-H-t-i

AZ

"'"' cc•-m ::; ~ ,<J 0
n

.

r.==::--M++++++++--+--.-~-++t+++t+++--+--,
T l

• I• t:.J:.

~ . -

-Wff Ill i f T II~

-~· .. C3 CUI~

I i~ '"".'. .
It=~:

1.~·
~·· llMOU~

/ll:U::IM

GllOUlll) =-....

--~==-

°'"1"11Z (JILLI!. ~:~

fil1lj ~o.·
-~· I - ...

...... - -- .. ll~t~ ...
. iii 111 ~J~/[f llill~ ,.~PP-111: -

~

:: ::: ,. ::
;J:!

• N --0 a.

~ a ~
-"'!~~ ~~!

i
~ ~ 5

Figure 22. Output Switch Network No. 1, Logic Diagram

38

j_

!aMN"IDS ,._,.[) v<:JL~Gf..c:. T"HA.T
lllQT[i~'f.oj~'t'lu~o.r-;.~" lt-4(OlH!llt PACK

~ -~~\,u

::;

' [~

~
9'!'

. '
" '

-
--= -

t--t=: -

_ _i i i i i ZI
H .. , .. ,, i I i ..

·~ 9

ii i! • t

11• i:.n ...

-ISNOI-

-ISNOO-

Figure 23. Input Switch Network No. 1, Logic Uiagram

39

r---- --i ,-- --
' I I I
I I
I I
I I
I l
I I
l I
I I
I I
I I
I I

I I
I I
I I
I I
I I
I I
I I
I I

I
I
I
I
I

I
:

_....,.,
~"'
SDUDSTATE f,,, ""
""""'COl<IRQ.
eot.!il:D

llll!N IN~ , TT--,
JULTIM(: ! :
POW£lt CONTflOl I l I :

U.OCK OfST l ~ ! I
_- ~~~~~=~::~::~LJ !

CQ..D SID£ Of'SIGHAL 'nrlS'TtD NIA

0 SIDI.$ OF IOXES (CllASSISJ

(ii •lrlDG•tHS AM: TW15TED
lOGETMCft '11)1111 £AClt LOAD to
ITS JIQW(tll! SJPft..Y

___ _.~JO I•'
l
I
I
I r---_J

I

SWITCH INT(RUJ.CK

------- ----------- ---1

* •10¥11-ttw'Mft

1,,1$.t:O F'Olll lt29

AMO MfUSlD

'"OW I 12!

!
:
'

Figure 24. Power Distribution System

40

Vee

CTDN D C B A CLR

MASTER
CLOCK

.--------1CARRY CTUPi-----•

Vee

SINGLE I
(SHOT

0

* THIS SECTION
DUPLICATED FOR
ALL OTHER
INTERPRETERS

I
I
I
I
I*

LOAD (COUNTER)

CLEAR
I#O
PUSH

BUTTON

l#O POWEP
ON/OFF
SWITCH

r-------i

Vee

R CLK 0

Q

(SOLID
STATE

RELAY)

~

TO REMOTE
PROGRAMMING
TERMINALS Of

l#O POWER SUPPLY

I#O I#O
SYSTEM POWER
CLOCK ON

j
HIGH SPEED
CLOCK FOR

l#O'a MOC

- _ _J

Figure 25. Implementation of Multiprocessor Clocks

41

TO SECTIONS
FOR OTHER

' INTERPRETERS

TO SECTIONS
FOR OTHER
INl"ERPRETERS

I #1 POWER a.
l #2 POWER at.I

I # 3 POWER Ot4

1#4 POWER ON

I #0 POWER ON

I#O GCI

1# 1 GCI 1#0 SET
GCI INHIBIT

I#~ GCI

I #3 GCI

l #4 GCI
1#1 SET

I #0 SET GCI GCI INHIBIT

REQUEST

1#2 SET

I #t SET GCI
GCI INHSIT

REQUEST

1#3 SET
GCI INHIBIT

l #2 SET GCI
REQUEST

I #4 SET
GC! INHIBIT

1#3 SETGCI
REQUEST

Figure 26. Conflict Resolution Logic for Global Condition Bit GC 1

42

to an Interpreter. This is done by a front panel switch setting the flip-flop (which
will shut clocks Off) and turning the solid state relay on, which will then short
across the resistor on the remote programming terminals of the Interpreter's
power supply, turning the power supply off. When the front panel switch is set to
turn power ba,ck on, the solid state relay will turn off, opening up the output of
the relay and turning power back on to the Interpreter. However. if clocks were
applied at this time, they would start during the powering up ol the Interpreter and
would continue even though no valid information existed in the Interpreter's Micro
program and Nano memories.

To avoid this problem, clocks are not restarted until the Clear pushbutton is
pressed on the front panel, which is done in conjunction with pressing the Load
pushbutton for loading the Microprogram and Nano memories from the loader
card reader. Since during loading, a pseudo Type II instruction is forced by the
loader, t' J clocks will be present to initiate any memory or device operations
until loading is completed and the microprogram just loaded begins execution.

GLOBAL AND INTERRUPT CONDITION BITS

The two global condition bits in each Interpreter- are used by programmatic conven
tion for locking out other Interpreters during a read-modif.1-write to .oystem tables
resident in S memory. This is done independently for each of ttr two condition
bits by not allowing an Inte1•preter to set its ccndihon bit if any Interpreter's
condition bit is already set or if a higher wired priority Interpreter is requesting
to set its conditicn bit at the same time. Th1s was initially to be done by chaining
the priority through the Interpreters so that l'IO e'Cternal logic would be required.
However, if an Interpreter's power were turned oft, the chain would be broken and
the same global condition bit in two Interpreters could have been set. To avoid this
problem the globa~ conditio11 bit and the requests to s~t the global condition bits are
brought frc.m eac!J Interpreter to a centralized location. ('l'he Switch Interlock was
chosen, although this logic is totally independent of the Switch Interlock operation,)
In this centralized location, the power-on signa~s sho\' 1 previously in this ee:!ticn
are used to allow only sigm .. ls from powl:!red·on Inter eters to participate in the
conflict resolution. This conflict resolution logic is , .vered by the system power
supply and in turn sends enables bac~• to the lnterprett: cs f'1r setting the global
condition bits. This conflict resolution logic is shown for one of the Jlobal conditi:m
bits (GC I) in Figure 26 . The same logic is rPpeated for the othc r global cond~tion
bit (GC2>.

The Interrupt Interpreters condition bit, although having no priority logic associ
ated with it, has the similar problem of having a signal from an Interpreter th"l.t
is either p0wered down or whose power is undergoing a transition, setting the
Interrupt condition bit in other Interpreters in an uncontrolled manner. To avoid
this. the In~errupt signal and its control coming from each Interpreter a:-e gated
against the power-on signal for that Interpreter. These signals a::-e then all ORed
together and sent back to all Interpreters. This logic (shown il1 Fig-c1re 27) is
also located in the Switch Interlock and is powered by the system power supply.

43

l # t POWER ON

t #2 POWER ON

I # .S POWER ON

I #4 POWER ON

1#0 POWER ON

l#O[INTERRUPT
INTERRUPT CONTROL ~--+--+---1--1---r-

l #t [INTERRUPT
INTERRUPT CONTROL --f---+-----l---f--

l# 2[INTERRUPT
INTERRUPT CONTROL --+---+------t--

I# 3 [INTERRUPT
INTERRUPT CONTROL --+------t--

l # 4 [INTERRUPT
INTERRUPT CONTROL ---------r--

Figure 27. Implementation of Interrupt Controls

44

fNTERRUPT
TO 1#0

INTERRUi"T
TO I# 1

Im'ERRUPT
TO I# 2

INTERRUPT
TO I# 3

INTERRUPT
TO l #4

REAL TIME CLOCK AND THE HORNS

One device (device number zero) has been permanently assigned to a device called
a "real time" clock, which is used programmatically to determine the failure of
a task runninrt on an Interpreter. This use is explained more fully in the Multi
processing Control Program and Demonstration Programs section of this report.
This device is merely a 32-bit counter that is counted up at a rate of once each
256 Interpreter clocks. It is powered by the system power supply and runs
continuously. This device is read just as any other device attached to the Switch
Interlock and must be locked to in order to iJe read. Since programmatically this
counter is used as an interval timer, a potential problem exists if the interval
to be timed were started just prior to this device overflowing (once every 240
Interpreter clocks). This can be avoided by forcing the programs to test the value
of the counter to insure it will not be reset during the interval of interest.

Also physically located with the real time clock are five, 4-bit counters, one
associated with each Interpreter. These counters, called horns, if not reset,
will overflow after every 220 Interpreter clocks (approximately P.very 1 second
for a 1 MHz Interpreter clock rate). These counters detect an Interpreter
waiting for a response from a memory or device that has failed. An overtlow
from one of these counters will force a one clock time STEP and will set a
condition bit in its associated Interpreter which then can be tested by the
Interpreter. To avoid continual setting of this bit, each counter is reset every
time its associated Interpreter does any memory or device operation. These
operations should occur often in any program except perhaps during internal
Interpreter diagnostics. These diagnostics should not require 220 Interpreter
clocks to run but if they did the horn for the Interpreter may be manually
turned off.

INTERPRETER NUMBER

Each Interpreter is logically identical to all other Interpreters. A multiprocessing
control program, however, must have a means of distinguishing between Inter
preters. This is accomplished by wiring the most significant four bits of the next
to the most significant 8-bit byte of the Z -input to the adder, to the connector to
which the loader cable is attached. Gro:.ind and +5 volts are also wired to this
connector. Within the other side of the connector, which is part of the loader
cable, g~ound and +5 volts are jumpered to the 4 bits of Z input to appropriately
indicate the Interpreter number, right justified within the 4-bit field.

45

SECTION IV

AEROSPACE MULTIPROCESSOR PACKAGING DESCRIPTION

MECHANICAL DESIGN

The aerospace multiprocessor is housed in a cabinet consisting of two bays 21
inches wide by 25 l /2 inches deep by 68 inches high (Figure 28). The Inter
preters, and Switch Interlock modules are built up of mechanically similar
submodular sections. The S memory module and power supplies are commerically
available rack mounted units.

Each of the modules is made up of several finned aluminum castings (Figure 29
with massive heat sinks for mounting of the printed wiring boards and direct heat
sinking cf the LSI packages. Modificatif)n of the finned aluminum casting allows
direct heat sinking of conventional dual in-line packa~es for the MPM and
Nanomemories. The 5-inch by 5-inch by 1 /2-inch thick submodule houses two LSI
chips, as many as 98, 16-lead flat packs or as many as 45, 16-pin dual-in-line
packages, depending on its function in the system.

Each of the Interpreter modules (Figure ~ and the Switch Interlock module is
packaged complete with its own backplane and I/O connectors to simulate remote
physical distribution of the modules.

To maintain a close physical arrangement with simulated module distribution,
all of the Interpreters are mounted on a common mechanical structure which allows
the multiprocessor to be mounted as a single unit on a shelf extending at right
angles to the frqnt of the two electronics cabinets. as shown in Figure 1. The
multiprocessor is mounted on a swivel to allow direct access to the wire wrapped
backplane during debugging and testing procedures.

47

©
®

®
©
®
®

~ ~------- 4211

I

.-~-~
I

" SYSTEM MEMORY © CD
INDICATOR AND \.---------- ------------
LIGHT CARDS

LIGHT PANEL

SWITCHES © ©
- - - - ~ ~ - - - - - - - -- - ~- -- - - -

FANS

POWER SUPPLIES

., 1rnm ~ ~~lL·: i:~.': L~: ·=== -·-··-·· .-. -.. -.
- ... '··-

.. ··®············· l=f-r~o.~ 4 c ~,-.. 1:/J C"-@f
v ~ '""fl, , 5 -L 7 ~1:'1{1P1 'I ~

I c 110J s,, " 11 ~"'"'jtift1'f[JJJ -@I r c" cc 1:·?.. c• ~ ~ 11\\l\IWfl\\ I

h ~~'n r~-~-J:,,~- ·;~ 1\ /!
~cc EfJ7 .c._ ~~ l'I "JI /J

j-..:••c: cl -

~[::~I : ,,[[[@~},~~I
~~·'h:J J ~<[[[« 1£1 ~ :/ L -- ®c- c -- c c c t:) c

...._
·-

I·-
1--,__

-

'--'
....__

Figure 28, Aerospace Multiprocessor Configuration

48

I
I
I
I

I
I
!

+
25.5 11

I

J_

.:~~ ~ ~T.,p I - .005

__ i: .n5- r- ".no•.om ------ -..i
~.ooi --------~I__, J_

T

Plln. Raid1·~•· ·
l :n-· OL•
tin. s .. ~ or
c ... ~ t-er

r 11 -~ --,--
..------~--~~-=--=--=-=~ L:::=r----------:-_-----::_,-~-=-r____..-_-...__.-......._ __r_ ,,, 11.

4~" x _!)!!
4 fi.acu

-------- 4.440 ______ ___, ___ _

lol------ 1.,-600 Ty, ----------+-----Joi

.060 Typ I ,01/S
~ Pl•1:<1

i; ·,
___ '·mo~:~~ ________ 2f_·-·.,..

1
---..,

---------4.400 ± .003---- -----·--~

, I

i I
I I

I

I
g

0

~

~

j__

'. 0;. .. ,
000
'-"';;;: 0

_J__

r
o: ... ·!~"' x . ;.so i}itp:~

i~;g c . ..;jn~ I ~o Cli«,

Figure 29. Submodule Housing

J
--,

LSI
PACKAGE

DUAL-IN- LINE
MEMORY COMPONENTS

Figure 30, Inter-preter Module Packaging

50

5.75 11

6"

Figure 31 is a photograph of the system as installed at Wright-Patterson Air Force
Base.

Figure 32 is a plan view of the Interpreters, Switch Interlock and connectors for
interconnection among the modules.

CIRCUIT CONFIGURATIONS

The LSI multiprocessor system is implemented with the three types of submodules.
The Microprogram and Nano memories in the Interpreter both use Fairchild 93410
ceramic dual-in-line packages, each containing 256 words x 1 bit of memory,
interconnected with a four-layer printed circuit board mounted on the opposite side
from the packages as shown in Figure 33. Since the selection of this package,
Fairchild has introduced the 93415, a 1024 word X 1 bit memory package with
approximately the same power dissipation as the 93410. This more dense memory
package is recommended for future Interpreter systems.

The Loader submodule in the Interpreters and all submodules in the Switch Interlock
use standard 54/7400 series flat packs which are mounted on either two or four
layer printed circuit boards which are then mounted on the two sides of the
aluminum plate submodule as shown in Figure 34. The packing density of the
flat packs is typically between 25-30 per board, since most of these submodules
are pin limited and would have required six to eight layer boards to achieve the
maximum packing density of 49 flat packs per board.

The remainder of the Interpreter logic is implemented with Texas Instruments
discretionary wired. transistor-transistor logic (TTL) using their "N" and "S"
arrays as follows:

8-bit Logic Unit (two Type "N" slices)

Memory Control Unit (two Type "N" slices)

Control Unit (two Type 11 811 slices)

This type of submodule is shown extended above the Interpreter in Figure 30.

A summary of the general characteristics of the individual arrays ia given in
Table II. Appendix II is the final report from Texas Instruments Incorporated on
the LSI arrays.

Texas Instruments informed Burroughs in December 1971 that they were discon
tinuing fabrication of LSI Discretionary Routed Arrays (DRA) after the conclusion
of their present commitments. However, several alternative packaging approaches
exist which ~ould package th€ L-lterprctcr logic as densely as in the LSI/DRA
approach of Texas Instruments.

51

•

Figure 31. Aerospace Multiprocessor Installation at Wright-Patterson
Air Force Base

IA/BJ

.\ - ,:jJ.11nal.1
~ - Gr{llind11

C(INNECTOR.S
-~

PIN PlN

GROUNOO---i
SlGNALS-1

12~/ ll)

{':}3,124

I-
I-

l-

I-
j-

I- 'a

I-
I-
I-

I-

160, 15)

TO/FROM
WADER
ILICRt

-1

-I
-'
-i ..,
-I
-I
...J

-I ..,
[TERM. STHIP

~
--~'

~WITCHES

4 LJGHTS

{!13/241

-... ,,-"'
8W)1'(llE:-l

Ir LJGHTS

I-

I-
I-
I-
I-
I-
I-
t-
I-

I-

I I I I I
' ' ' I

I :
I I I

I I
I I i i J

0 1 _101~:0 1 ~
olol"''lloic
\;j \;j ~I ~I~ ~
Z /!;.!i' lz 1 ZI ;;t)Z

I lo1 01 i

~~ii
~

-1

-I
~

-I
1, -I

-i

-I
-I

-I

Tf.R M. STRIP =wJ

I
I

I
I
I
I

01~ 0

R,8 a::
R I

i14f'38}1

f1JJi2f

'-·-..,--'

SWlTCHES
& L!UHT5

" ;i:

R

i60/1ir

1111

t--l
I-

1,
-i

t- -
I- -i

I- _,
I- -

ll~/3~:

(Q3/2U

'----v·-..J

6WJTC:JiES
& UOHTS

I-
I-
I-

I-
I-
I-
I-
I-
I-
I-

190/15)

llH

r,

Figure 32. Multiprocessor Interconnection Scheme

-I
-I ..,
..,
-I

-
-
'
' -i

180/!5)

l- NAN~~
NAN02

I- cu'
t- 'ot.u'
I- J1~u1
!- a Lu'
I-

1,
,..,.;i

I-

w:O:~ I-
I- MPM~ I-

MP Ml

I TERM. STIUI']

r---•.•"
'---v--'
S\'l.1'fCHES
& L!G.tl'I"S

1

Figure 33. Microprogram Memory, Nanomemory Submodule Packaging

Figure 34. Loader, Switch Interlock Submodule Packaging

U1
en

Table II. Multiprocessor LSI Array Details

Numi.r of Cells

Tl
LSI/ORA Typical lnll'!t Output E1eclu1lvt 3-lnp.

N11tn1 Number Function POWll' Pins Pins OR NANO

LU #1 30t3 8 R11 .. Adder, 8SW1 Controls 3.14 61 26 18 93
LU #2 3014 BSW1, BSW2, A·R11 .• MIR 4.10 47 34 16 113
cu #1 3016 SAR, Clock Control•, Adder Decode 2.82 36 35 9 83
cu #2 3016 Condition R11., MPM Cont1nt Decode 2.71 40 15 10 ee
MCU #1 3017 BR'•. MAR, CTR, MPAD Controk 3.62 42 36 11 71
MCU #2 3018 MPCR, APMICR, LIT, INCR. 3.97 55 34 8 86

N-slice Tobi Anlllble 80 232
IAIGOmmendld Uagel .. (18) 1701

t ToCll Av1lllblt " H
(Atc0mmendld Useagel CtOI (801

•ExchnilHI OR • 3 ••; 3·inp NANO • 1 pte; 7-inp. NANO• 1 ••; And·Nor-lnvert • 7 gatas; Flip-Flop• 8
.. A-mended Design with up to 30% of uch single circuit tvll9. This clue to !Imitation on routine

mpmility, not to circuit yield.

7-inp.
NANO

H
17
0

17
4

16

&fl
(17)

30
(191

Number
of Tiit

Equhllllnt Patllmr
ANI FF 011111• ~INCi

30 8 420 338
26 32 662 207
21 22 389 452
25 14 374 ?86
23 38 497 -31 38 682 531

82 100
(25t (30)

46 58
(20 (28)

Three of the approaches are as follows: -

1. A flat pack version of the multiprocessor can be produced with the
same volume, weight and power requirements as the LSI version.

TQe logic provided by two LSI chips can be duplicated with a maxi
mum of 98, 16-pin fiat packs as shown in Figure 35. With the use
of multilayer boards, the 98 fiat packs can be interconnected
on the same 5-inch by 5-inch 1/2-inch thick heat sink as used for
two LSI chips.

2. By utilizing 60-pin hybrid fiat packs as produced by TI, it is
possible to package two 8-bit Logic Units on a single heat sink as
shown in Figure 36. The Control Unit and Memory Control Unit
can be packaged together on a single heat sjnk to provide a reduc
tion of 1/2 the original volume. This technique would use Shottky
low-power TTL.

3. A third approach which would give the same volumetric density
as the present LSI model would be to utilize Hughes LSI which
is produced by a proprietary pad-relocation process. The Hughes
chips could be produced as one for one replacement of the LSI
arrays used in the present processor or as a replacement for
the logic on two LSI arrays that are presently mounted on one
of the submodular housings.

57

01
co

Figure 35. Alte~·native Packaging Approach Utilizing 16-pin
Flat Packs

Figure 36. Alterr.ative Packaging Approach Utilizing 60-pin
Flat Packs

~ ..

SECTION V

INTERPRETER OPERATION

During each clock period, a micr.linstr1.1ction is read from the MPM. The first
four bits of this microiostructiou indiccle which of two types of instruction it is.
If it is a Type ! ir.struction. thE> remaining bits of the MPM word specify a Nano
memory addr.iss to be accessed. The Nanomemory i.s then initiated and it..s output,
a set of 54 bits, provides foe CG'1trol functions as inclica ted in the listing bo:!low.

Nano-Bit1•

1-4
5
6
7

s-10
11-16
17-26

27
28-31
32-33
34-36
37-40

41
42

43-48

4!:i-SJ
51-54

Select a condition.
Selects true or complement of condition.
SnE:cifies conditional or unconditional LU operation.
Specifies conditional or unconditional external

operation (memory or device)
Specifies set/reset of condition.
Successor controls (wait, skip, step, etc"),
Selects A, B, and Z adcler inputs
Byte carry control.
Sdects Boolean and basic arithmetic operations.
Selects shift operation.
Enables input to A registBrs.
Selects input(s) to B register.
Enables input to MIR.
Enables input to AMPCR.
E;1ables and selects input to address registers and

counter (MAR, BRL BR2, CTR).
Selects input to SAR.
Selects external operations (read, write, lock, etc.),
MPM load, or Nanomem0ry load.

61

CLOCK Iii
Dynamic
Conditions CLOCK (i+ll

Instruction
j

!from Instruction

FETCH PHASE j·1 l EXEC PHASE

COND

succ
DET

M-NL ~~!~

C.R. ----~-IS ~ADDER-1'+f!ISW -OEST

Dynamic

CLOCK (i.,.2)

Con:litians
(AOV,ABT,MST, LSTI

Instruction
J+1

M • MPM ACCESS TIME
N • NANO ACCESS TIME

FETCH PHASE --f ~:
I ANO

M lsucc
- N DET t----tl"t

CONO TEST AND SUCC DET. • CONDITION TEST ANO SUCCESSOR DETERMINATION
BSW • BARREL SWITCH
DEST • BARREL SWITCH OUTPUT DESTINATIONS;l.E., REGISTERS IB, CTR, ETC.) AND THEIR INPUT LOGIC
C.R. • ~NTROL REGISTER AND ASSOCIATED LOGIC

AIS • ADDER INPUT SELECTION FROM COMMAND REGISTER

Figure 37. Timing Analysis, Type I Instructions

EXEC PHASE

i)yl1amic
Ceftcfitions
ho Instruction

j+21

CLOCK (i-+·3)

If the microinstruction is Type II, the remaining bits of the MP M word are stored
into one or two registers: namely, the SAR, LIT, SAR and LIT, or the AMPCR.
The determination of which registers are to b~ loaded is specified by the first bits
of the MPM word. The Nanomemory is not accessed during a Type II opel:"ation.

Each Type I micrl)instruction has two parts (or phases). The first fetches the
instruction from the MPM and Nanomemory and the second executes the fetched
instruction. Figure 37 illustrates these two basic phases of each Type 1
microinstruction.

The fetch phase involves: MPM accessing, Nanomemory accessing, condition
testing, selection of cor..trols for the next instruction (successor) address com
putation, and, in parallel, loading the control register for the execution of the
microinstruction. A fetch phase occurs for every Type I microinstruction and
requires one clock time. Since it always overlaps the execution phase of a
prior Type I microinstruction (Figure 371, the performance of each micro
instruction raauires effectively one clock interval.

The execution phase also requires one clock time and always overlaps the fetch
phase of the next Type I instruction. The control signals for ~he execution phase
are from the output of the control register and have two parts: signals specifying
the logic unit operation (adder input selection, adder function, barrel switch
shifting, etc.) and signals specifying the destination register(s) loading (i.e.
clock enables). Both sets of these controls apply continuously from tt.e start
to the end of the phase; however, the destination registers art: not changed
until the OC'currence of the clock pulse which signals the end of the execution
phase and which simulta'leously reloads the control register for the execution
of a new logic unit operation. The completion of the execut:0n phase (i.e. the
destinatinn register(s) loading), may be delayed or suspended for one or more
clock times.

Susp0nded execution phase is the name given to an execution phase clock time
whose logic unit operation has been and continues to be performed but whose
destination regi:;ter loading is postponed for one or more clock periods. This
is accomplished by inhibiting clocks to both the control register 2.nd the destina
tion registers. The register loading part C\f an execution phase depends on the
subseq11eht microinstructions which follow the Type I instruction.

This si..:.spended execution phase can occur for three primary r-easoi•s. The first
and most frequent occurrence is when the next instruction from the MPM is a
Type II instruction. This Type II instrucl.ion is executed during the same clock
time it is fetched and the <::xecution of 'he Type I instruction in progress is held
in this suspended execution phai>e until the next dock interval, This allows the
fetch phase of the next microinstruction {if it is :l Type H to ha:.•e 3.n execution
µbase to overlap. This provides conditio11 bits (gener-ated dynamically during the
execution ph~se ;:if a microinstruction) that can be tested during the fetch ptase of
the next Typ~ I rr.icroinstruction.

63

A. Type I followed by Type I for which a logic operation is required:

1. Type I
2. Type I

F E
F

B. Type I followed by Type II, followed by Type I for which a logic
operation is required.

1. Type I F
2. Type II
3. Type I

SE
II

E

F

C. Type I followed by Type I for which no logic operation is required,
followed by Type I for which a logic operation is required.

1. Type I F
2. Type I
3. Type I

F Fetch }
E Execution Type I
SE Suspended Execution

II Type II

Figure 38. Instruction Timing

64

SE
F

E

F

This instruction overlap is more graphically illustrated in Figure 38 where the
horizontal scale is 11time". Example A of Figure 38 shows the case of sequential
Type I instructions. Example B of Figure 38 shows the case of a Type I micro
instruction followed by a Type II, which causes the execution phase of the pre
ceding microinstruction (a Type I) to be suspended so that the execution will
overlap the fetch phase of the third instruction (also a Type I). In case the third
instruction had also been a Type II, the execution phase of the first micro
instruction (the Type I) would have again been suspended. It is important to
realize that since the execution phase of a Type I microinstruction is delayed by
a Type II, the SAR, LIT, or AMPCR registers could be loaded with a value that
would change the result of t.'1.e operation during ~he completion of the execution
of the Type I microinstruction.

The second reason for the occurrence of a suspended execution phase is due to
the existence of conditional logic unit operations. A Type I rr.icroinstruction
which does not contain a conditional logic operation always has a fetch phase
and an execution phase. However, a Type I microinstruction which does con
tain a conditional logic operation falls into either of two categories: if the
condition is met, both the fetch phase and- execution phase will be performed;
if the condition is not met, only the fetch phase will be done. However, even
when the execution phase of a conditional Type I microinstruction is ignored,
the fetch phase of the next Type I microinstruction must have an execution phase
to overlap in order to have values for dynamic conditions. This is accomplished
by forcing the prior Type I instruction into a suspended execution phase, which
inhibits clocks from the destination registers and control register, which causes
the execution phase of the current microinstruction to be disregarded. This is
shown in example C of Figure 38. Example C shows a suspended execution phase
occurring when the condition tested in the second microinstruction is not met,
resulting in discarding the execution phase of that second instruction. More
detailed examples explaining the above concepts appear in Figure 39, where CR
refers to the command register, the vertical lines indicate the occurrence of a
clock, and an X appears over clocks which are inhibited from occurring.

The other reason for a suspended execution phase is for use during th:! loading
of the MPM and Nanomemory.

Since microprogram timing is important in the execution of microprograms
on the Interpreter, the following summary of timing concepts must be kept in
mind by the programmer in the creation of microprograms:

1. A fetch phase of a microinstruction is always executed in
parallel with an execution (or suspended execution) phase of
another microinstruction.

65

l. All Type I unconditional instructions

a. A1 + B _.Al F
ctl-CR E ~1

b. A2 + B _. A2

c. A3 + B _.A3

d. AlC-+Al;

2. All Type I instructions
where both AOV and ABT test true

a. Al+ B -+Al

b. If AOV then A2 + B-+ A2

c. If ABT then A3 + B -+ A3

d. Al C-+Al;

3. All Type I instructions where
AOV tests false; ABT tests true

F

F

F c .. CR

l
F d-1 CR E

ABT Test c "'CR Ahl
F E ..,...

d CR
F E

a. Al+ B -+Al F
a "'CR

l,('CR ...,,., o

SE t E Ail

b. If AOV then AZ + B-+ A2

c. If ABT then A3 + B _.A3

d. Al c-Al;

AOV Teat
F

4. Type I and Type II instructions
Resulting A2 contains least 4 bits
left jt~stified 2 is

3+.L
a • 2 - SAR; 3 _., LIT Type II

I
b. A2 and LIT C A2 F

c. 4 - SAR; 15 - LIT

d. Al C-+Al;

Figure 39. Timing Example

66

ABT Teat C"I CR A'"
F 'i I"

F d"" CR E

''"'" V'" ·-J. •
~E t_ E J

I''~'" .m ' +· '

2. A suspended execution phase occurs primarily due to a successor
that is either a Type II or a Type I microinstruction which contains
a conditional logic unit operation that has not been satisfied.

3. A.suspended execution phase of a Type I microinstruction which
consists of both a fetch phase and an execution phase) does not
become completed until the occurrence of another Type l micro
instruction which also consists of both µhases.

4. Any microinstruction which either causes a suspended execution
phase to be initiated or prolongs an existing suspended execution
phase is actually executed in time between the fetch phase and the
execution phase of the affected Type I microinstruction although
h may programmatically follow it.

The sequencing of microinstructions is also important in understanding the
Interpreter operation.

The seouencing of Type I microprogram instructions is controlled by the
following procedure: The MPM addresses the nanomemorywhich provides
information to the condition testing logic indicating which condition is to be
tested. The condition testing logic provides a True/False signal to the successor
selection logic which selects between the three True and three False successor
bits (also from the Nanomemory). The three selected bits (True /False) provide
eight possible successor command combinations listed below and algo shown
in Figure 40. A Type II microinstruction (which does not access the Nanomemor-y)
has an implicit STEP successor.

Wait

Step

Skip

Jump

Retn

Call

Save

Exec

Repeat the current instruction

Step to the next instruction

Skip the next instruction

Jump to another area of MPM (as specified by AMPCR)

Return from a Mlcro subroutine

Call a Micro subroutine. saving the return address

Save the address of the head of a loop

Execute one instruction out of sequence

The particular chosen successor command then provides controls used in the
selection (MPCR/ AMPCR) and incrementing logic which generates the next MPM
address. Except for the EXEC command, the MPCR is loaded with this MPM
address.

67

MPM
Addrt1$5

MPCR

MPM
(15)

--~f Nano ~~dren ~
L SAR,LIT,A~PCR J

Type I or II

From Ft'PM

---From
Barrel
Switch

SELECT AND
INCREMENT 0/1/2

NANO (54)

False ,; ~

t

True
successor

Successor

SUCCESSOR
.---- SELECTION

Command

WAIT

STEP

SKIP

JUMP

RETN

CALL

SAVE

EXEC

CONDITION
TESTING

True/False

Other
Controls

SUCCESSOR COMMANDS

Selection Increment Comment

MPCR 0

MPCR

MPCR 2

AMPCR 1

AMPCR 2

AMPCR 1 MPCR-+AMPCR

MPCR 1 MPCR-.AMPCR

AMPCR , Inhibit: MPM
addr-+ MPCR

Figure 40, Microprogram Instruction Sequencing

SECTION VI

SWITCH INTERLOCK OPERATION

OVERALL SWITCH INTER.LOCK CONTROL AND TThlING

Figure 41 is a block diagram of the Switch Interlock (SWI), connecting five Inter
preters to eight devices and eight memory modules. The transmission paths
through the SWI break the 32-bit data word into 8 wires carrying 4 serial bits each.

Only Interpreters can issue control signals to access memories or devices. A
memory module or device cannot initiate a path through the Switch Interlock, but
it may, however, p>·ovide a signal to the Interpreter to an urrused condition bit
via a display register*. a device connected to the SWI. Thus, transfer between
devices and memories must be via and under the control of an Interpreter.
Connection with a device-like port is by "reservation" for exclusive use by an
Interpreter and is maintained until released by that Interpreter or in the case of
that Interpreter failing. (A memory could be attached to a device-like port if
locking of an Interpreter to a memory is di:!sired.} Connection with a memory-like
port is for the duration of a single data word exchange. (Note also that a device
could be attached to a memory-like port. To simplify the description however,
these two types of ports will be referred to just as device ports and memory ports
in the following discussion).

* ~o display register is being delivered with the aerospace multiprocessor, but
is an easily designed device that could take a variety of forms. Basica!.ly,
setting any bit in the display register would set the condition bit in the Inter
preter. When this bit is tested true, the di:::;play register would be read, returning
either the entire register, a masked portion of the register, or possibly the
address of the device with the highest priority interrupt, depending upon the design
of the display register device.

69

-.;)

0

OIYICt IS I

Do

DIYIC~fll

07

Do

O[Vltl Ill
07

Do

07

DC
ll l

...

...
AOOfllfSS

OSN
TO

ot·11cu

DATA
OSN

TO
DEVICES

DATA
ISN

FROM
DEVICES

MDC

NOTE : Tht wldlhl of lht ISN/OSN ·~ <ire dependenl upon
Ille numl>er ot bill hl1111 lra111m111ed 1trlc:>llJ.

••• MDC

14

• • •

•••

MC
(2)

...

AOORESS
OSN
TO

MEMORIES

DATA
OSN
TO

MEMORIES

DATA
!SN

FROM
MEMORIES

!I lll'TERPRETERS
U lllE:MOflY il(ODULES

8 DEVICES

Figure 41. Switch Interlock, Block Diagram

• • •

• • •

• • •

ADDRESSES
ANO

ENABLES

lllllllOllY

lllo

1117
MIMOWY

lllo

1117
llllllOllY

lllo

..,

Controls are routed from the Interpreters through the MDC to the MC and the DC
which. in turn, check availability, resolve conflicts. and perform the other functions
that are characteristic of the Switch Interlock. Data and addresses do not pass
through the MDC. but are wired directly to the OSN' s.

Events are initiated by the Intexp reter for access to memories or devices. The
Interpreter awaits return. signals from the MDC. Upon receipt of these signals,
it proceeds with its program. Lacking such posi!ive return signals, it will either
wait, or retry continuously, depending upon the Interpreter program {and not on
the Switch Interlock). A timeout waiting for a response will be performed by a
counter {called the "HORN"} that will force a STEP in the microprogram after a
preset length of time and will set a condition bit to indicate a failed memory
module or device due to the lack of a response. This counter is reset every time
any memory or device operation is done.

Among the significant signals which are meaningful responses to an Interpreter
and testable as conditions are the following:

Switch Interlock has
Accepted Information (SAO

Read Complete (RDC)
or Request of Device
Complete (RDC)

Horn Overflow (HOV)

The MAR and MIR of the Interpreter
may be reloaded and a memory or
device has been connected.

Data is available to be gated into the
B register of the Interpreter or the
device written to has accepted its
information.

No memory or device operations have
have been performed for the last 220
Interpreter clock times.

The rationale for this "handshaking" approach is consistent with the overall
Interpreter-based system design which permits the maximum latitude in the
selection of memory and device speeds. Thus the microprogrammer has the
ability (as well as the responsibility) to provide the timing constraints for any
system configuration.

For each Interpreter, the Switch Interlock provides three buffer shift registers.

1. Address data for S memory and devices from the specified
MARl or !VIAR2. (XDA).

2. Output date>. from the MIR. (XDO).

3. Input data for assembly and subsequt:nl 8..::e:.;,ptane:e into the
B register. (XDl). Data in this register may be repeatedly read
non-destructively until the next device or memory operation is
initiated (the last read may be concurrent with the next operation),
provided no intervening instruction uses a B register input
selection involving the MIR.

71

DEVICE OPERATIONS

The philosophy of device operations is based upon an Interpreter using a device
for a "long" period of time without interruption. This is accomplished by "locking"
an Interpreter to a device. (The reader is reminded that a memory could be
attached to a ''device-like" port.)

The device operations include lock (DL), read (DR), write (DW). and unlock (DU).
Each device operation uses as a device identification the value of the most signi
ficant three bits of BRl or BR2 as indicated in the operation suffix, e.g., DLl.
This identification is not stored by the Switch Interlock; consequently it must be
maintained until the device operation is completed, or until some other device or
memory action is desired. Any change to the device identification while a device
operation is in progress breaks the selected path to or from the Interpreter. Un
less the normal completion occurs concurrently. the prior device operation is
terminated. The value in MAR and in the least significant 6 bits of BRl or BR2
pass through the Switch Interlock to the device as required. A signal indicating
read or write is placed in the most significant bit of the XDA shift register in
place of one of the module address bits which are not needed by the memory
module or device.

The ground-rules for device operations are listed below:

1. An Interpreter must be locked to a device in order to read from
or write to that device.

2. An Interpreter may be locked to several devices at the same
time.

3. A device can only be locked to one Interpreter at a time.

4. When an Interpreter is finished using a device, it should be
unlocked so other Interpreters c2n use it. Devices locked to
to ti failed Intei·p.ceter are unlocked by turning power off to
the faileci Interpreter.

A block diagram of the DC is given in Figure 18 in the Multiprocessor Hardware
Section of this report. One primary purpose of the DC is to resolve conflicts
in device lock (DL) and device unlock (DU) requests that may occur.

The second purpose of the DC is to check to make sure a device is locked to an
Interpreter that is requesting to read from, write to, or unlock from that device.
This is accomplished by the ''Lock Check for Device Operation" in the right
of Figure 18.

72

If an Interpreter issue& a re?.d or write command in an attempt to control a device,
and it has not previously locked the device, it will not be given access to the dP.
vice regardless of its (the Interpreter's) priority status. However, as stated
above, if it had previously locked the device, it has explicit priority to that
same device.

Devici= Lock and Unlock

Timing diagrams for DL and DU operations are shown in Figures 42 and 43. In both
cas£1R, controls from the Interpreter (Nanobhs 51-54) are strobed into the mem/dev
operation register of the MDC if either the Type I microinstruction is unconditional
or the sfllected condition is t.rue, independent of whether the next instruction is
Type I or Type II. A Dev~ce Operation signal and either a Lock Request or an
Unlock Requf'st ar.:: derived from the outp'lt of this register and are sent from the
MDC to lhe DC, concurrent with a a-bit address being sent to the DC from the
selected base :register output of t:1e Interpreter.

For the c..:ase of f'ither a DL to a device previously locked to t.he requesting Intet·
preter or ::i. DU to a device previously unlocked from ~ Interpreter (shown in
Figure 4:.l), an appropriate statuii sign~ is returned from the DC to the MDC, and
con;'lict riesoli..tion for actually performing the DL er DU is of no consequence.
In these two cases, the flip-flop in the MDC for synchronizing the SA I signal is
set with the next clock. T:1e actual S.'\. J flip-flop in the Interpreter will then be set
with the second clock and will test tru~ during the f,1tch phase of the third
insfru<'.'tion following the DL or DU.

However, for the cases ' • !l DL to an unlocked device or a DU to a dev ~ce locked
~o the requesting Interprete1• (shown i.r1 Figure43), conflict resolution is necessary.
The DL requ~st from the highest priority requesting Interpreter i'i honored over
a co-occurring requ~st for the same device from any lowe~· priority Interpreter.
Cone:.•.1rrent J)L Ot' nu i·eq1.;ests for different devices may cause the lower priority
requE:-&t to incur a un~ clock delay in achieving the IJL or DU 1:1nd in retu:-n ot SAI,
for ea~h higher priority "e1uest. Colll3equemly DL or DU requt?st<:> frorn lzite rpreters
other thdn the highPRt prinr~ty may be arbitra ·~ly delayed. The earliest con.firming
~Al rci:iponse occurs :~ inst. 11ct!c.. "~ ,1'ter issue of the DL or UU. If SAI is true,
+hen th<! UL or DU v•as success:'~Ll. 11 SAi is l<iL:1e, then it rneunb that the DL
or DU is not ,v<et successful. The design ji<stificatir:Jn for this p<...tential arbitrary
deiav is that DL or DU are infrequent events for whkh a~~bitrf\t'Y de)ay is of
little consequ~nce.

I Jevice Head "-t. l \Vrite

f\. timi.n~ di1gram fer DH or f>W is shown in Figure 4·1. As fcir DL ana l)U, contl'uls
f1·um 1 '.e lntn1·µreter (~d.nubits 51-54) are strobed into the mcm/dev operation
ret.; ,slel' of the iVllJC lf either ti1e Ty pt: ~ 1nk;·oinstruction is un~onditlonal 01· the
~rJedPd condition Ls true, i.ndependent of whether ~'ie next instruction is Type I
ur T_vpr- II < 'pnt rc0!s der~ved from the output of this register will next loud ti''
,,,,,put shlft 1·egu.tcr>i of tnn. lntei·preter anct wili send a I>evice Operation signal

lNT to
MOC

MDC to
DC

[NT to

DC

DC co
MDC

MDC co
INT

Within
INT

{ct:KlJ
N•~blts

I

{ ~ l-ock Req. /U~ lock

I

~0:>
I

~3-llit Addnrns

I

Req.

Lm:ked/Un Jo~keu

Prograrmner
musr; not
change
va Ju~ of

~. sel~ct(!tl !
~ ba~e rei;i';is-'.

ter or . I
~ f:)("fOP unti 11
~ the io.dica-,
~-------ted clock. I

~----~--------~
I

~
(Sta.}•s R!>t un.ti 1 tested)

NOTE: Levels on diagl:"am indic11te validity
or nonvalidity Gnd not necessarilv
logic lev•l. ·

INT to
MDC

MDC to
DC

l~T to

DC

UC to
~me

MllC to
I c;t

Wi Lh in
l~T

~:trl E:

Figure 42. Timir.g Diagram for Device Lock to Device Previom;ly
Locked to Hequesting Interpreter or for Device Unlock to

Device Previously Unlocked from Any Interpreter

{ ~-------u-
t;~n~bit• ~

I

u--

J~-K~~-

L __ ;~_.D"~-:~t Addr"" -----------~:~}
P1·ogr:1r.1uer must

not i.:h.1.rt~L' V<l llle
of ·St' lt.•cted b;lf.l'

rt'~blt•r (·r EXTOP
until lnttit".lt-.'d r:loi.:k.

~

-------------. - ---·------- -______ .J >Al i11 t:-a,
(~ltay~ !ht 1111t i I

J,l'v1.. \.-. 011 di;H!l".Ull indl~·atl'

valJditv 111 n0nvalldit>

l r1 lt•rva l 11 I in l \'~'.I ,1 l
1111111lw r ut l ! •'l' \c

pt'l"llltl~. F.X~S\8 lf
l1li~h1.'r rr111r(l\' l11L1 1 q 1 n 1 lt'l ()•)

rt"q;ll''lt \II~'. l1H·k. tour lu:l111,:li;

1r111~1 i\>i~· dl"'vlt'l', lnLPr~·al '"'"O

tr n•.1-riigh·.•r 1>rilnltv rl'ql11·'1-L~.

.11111 n11t ncet·~!--iat· i I y
l11~i I lt'\'l' 1,

Figure 4:i, Timing IHagram for Device Lock to Unlocked llel'ice.:
l'nlock to Device Lucked t() Hequesting Interpreter

74

-1
::.>

1:,; r l11

'W

OC to

()";.;.'IS:\'

DC tlJ

~l_D·=

~to

i::r

!·!DC to
1)5\

l\T to

os;;

~me to

r:.T

,"". l t '1 i r.
I\ [

,It

~. -·i.~c

t.)

IS\

r~
l ~;.rnobi ts 7

,..--
___J Dev -Op

__:__J 3-B it Address

· I]-Bit Addresse<i 'llufferEQ ____J

i.ocked

II Load Output'
(____ J I Shi. ft Regis ~c·rs

------u >-1 Length
device

I

of interva 1 .is
dept~ndent

LJ
I

Pr 01~ r amrne r
nus t not change
vall.C o[selected
base register o~
EX TOP until
the indicated
clock.

~
l H .. 5. CLK to _fLJlJlJLSL ___ _ILJU'Jl.Jl

Oufµut snrI"t-:=\.:.:~i.ster;, :. : , --------------------

r ~ tn DevL_e ' I
I~ ': - - - l

'li1_=.5_.~~LJLfl_Jl ___ _Jl_JLfL

r· _____ , ~ SSAI SRDC
I

S,>l (Stavs set unti ! itestcd) ~~~~--~~~~~--~~~~__,1r-;;;
(Stays SPt until testrd)

r---------.,..----~ Initi.:itc !tvkc
I r--. read nr w~ It..:-

_____ Co-u-r.-t-4_c_lu_c_k-,-~-·ll-, -i-i.~-,-- !

arc synchronized 1

(Rcturn_l_i._,_·. CL1' nLJl to the H.S. ciock1 ---~------ ~ I Their relation-i / ship to the Inter!-

- .. -·- ~1 jB·it 2 [eit 1 jsTtJQ preter clock de-
. -------------- ----- -miry- -(~cctu~n Oat~)- pends upon

rr access" time
th ru device ,

\!ITT: !.e'.tl:- or.. d:1i1:'r.,:·, ir:~: l'.'.tlE. v. :idity
er r:onv.3Lid~t" a!"td r1<:·. t!"":l·• s,Jrll·.:
Io" i ,. if'-'< I_

r'igu:-e 44. c1'iming Diagram for Device Read or Wdte from Device
Locked to Requesting Interpreter

from the MDC to the DC. concurrent with a 3-bit address being sent from the
selected base register of the Interpreter to check the lock status of that device.
After it is confirmed that the device is locked, the DC returns a signal to the
MDC which will cause a clear pulse to be sent to the device interface logic
through the device OSN and will initiate the setting of SAI and the transmission
of high speed ·clocks to the output shift register of the Interpreter and through the
OSN1s to the device interface.

For both a DR and DW, the device interface counts four clocks coming into it and
then stops accepting high speed clocks. In the case of a read, the device interface
usually waits for some kind of Data Available signal* from the device (such as
"column strobe" from a card reader) which it will use to load its output shift
registers and to allow four high speed clocks which are still arriving from the
OSN to clock these output shift registers and to be returned to the MDC and the
Interpreter with the serial data. The MDC will count four return clocks and
will set a flip-flop in the MDC for synchronizing RDC. This signal is sent from
the MDt to that Interpreter, for setting RDC, which then will test true during
the following clock time. The value in the selected base register must not be
changed during a device read, as shown in the timing diagram.

In the case of a write, the response is very dependent upon the particular device
being interfaced. For the card reader, the next four high speed clocks are turned
around ar,d sent back to the Interpreter (status was chosen to be sent back as
a "bonus"). In the case of the printer, a signal saying the last character was
accepted by the printer is used by the device interface to allow return clocks.
The four return clocks are counted by the MDC and are used as a means of saying
that the device accepted the data sent out by setting -RDC as- for a bR. As in the
case of a device read, the value in the selected base register must not be changed
during a device write.

Device Use Sequence

The sequence of device <.·perations necessary for an Interpreter to use a device
is as follows:

1. A test of IF SAl should be included in sorne instruction to reset
it. This usually can be in the instruction with the unconditional
dL:vice operation.

::!. D~vice Lock Request: The most significant three bits of the
indica.t.3d base register are used as the device identification.
Tha third following clock time will be the earliest SAI could
have become true. SAi is then te:.>ted.

*oevices such as the r":a1 time clock (described in the Multiprocessor Hardware
section) how:iver, do r.o, require a signal such as Data Available for synchronization
-:ince the)' are alrPaJy synchrc.nized to the Interpreter clock,

76

2. 1 If tr.ue, then the device lock was successful.

2. 2 If false. then the devfoe lock was unsuccessful. The
request remains in progress while other instructions
not changing the device identification or issuing other
memory or device operations may be executed. Tl.e DL
rt>quest is terminated by the first of the following actions:

(a) The Interpreter initiates anothe!' memory or device
operation.

(b) The Interpreter changes the device identification in
the selected base register.

(c) The device becomes available and sets SAI. All co
occurri.a,g actions are valid. Should (a) and (c) co-occur
or (b) and (c) co-occur. SAI refers to the DL for the
following two instruction times and should be tested.
In the instructions thereafter, SAI refers to the new
memory or device operation. Should termination by
(b) occur without co-occurrence of (c), the nen device
identification applies to the DL still in progress, and
the path for SA! return is diverted to the newly identi
fied device (if there is one so identiiied) without
reissue of another DL.

3. Once the desired device is locked to the Interpreter; a ·sequence of
one or more data exchanges may be initiated using a device write
or device read.

4. Device Write: The data in the indicated base register is usP.-1
to specify the device, and the data in the MIR provides the
information to be written to the device. The second instruction
after the device write, SAI may be tested. If true, the Inter
preter is locked to the device, the data in the MIR has been ac
cepted by the XDO register, and so the MIR may subsequently be
changed. If false, the Interpreter was not locked to the requesting
device.

The device provides four high-speed return clocks to genera.te an
RDC when it has completed the requested write. Similar to DL.
the request continues until the first of the corresponding 3 actions.

(a) · The Interpreter initiates another memory or device
operation.

(b) The Interpreter changes the device ii.lentification.

77

(c) The DW is completed and sets RDC. All co-occurring actions
are valid. Should (a) and {c) co-occur or (b) and (c) co
occur, SAi refers to the DW for the following instruction
time and should be tested. In the next folloVfing instruction
SAI t'1en refers to the QP.W memory or device operation.
Should (b) not co-occur with (c), then the DW in progress
is diverted to apply to the new device identification withaut
reissue of another DL.

5. Device Read: The data in the specified base register is used to
specify the device. The secoud instruction after the device read,
SAI may be tested. JI true. the Interpreter is locked to the
device; otherwise not.

The device provides four high speed t"eturn clocks with the
returning data to generate an RDC after t.'le device read. Thus,
the same instruction that finds RDC true may include BEX.
RDC should be reset by testing prior to use for device read
(usually as part of the prior instruction using BEX).

6. Device Unlock: When use of the device is completed, the lock
should be terminated by issuing a device unlock. An SAI is
returned if the issuing Interpreter was locked to the device.
An attempt to unlock a device that is not locked to the Inter
preter will not return SAI. SAI is available for test at earliest
the third instruction after the device unlock.

MEMORY OPERATIONS

Memory modules normally cannot be locked and are assumed to require minimum
acceas time and a short "hold" time by any single Interpreter. (The reader is
reminded that a device could be attached to a "memory-like" port.) Conflicts
in access to the same module are resolved in favor of the highest priority
requesting Interpreter. Once access is granted, it continues until that memory
operation is complete. When one access is complete, the highest priority
request is honored from those Interpreters then in contention.

The memory operations include read (MR) and write (MW), !!:ach memory operc..
tion uses as a memory address the value in MARl and MAR2 (BRl or BR2 con
catenated with MAR). The most significant 3 bits of the address specifies a
memory mociule with the rest indicating locations within the module.

The MC. shown in Figures 19 and 20 of the Multiprocessor Hardware section nf
this report, provides for resolution of conflicts (thi:3 is fixed or wired priority)
among contending Interpreters. Once conflicts have been reRolved and ace· :'o
has been granted to a memory module by an interpreter, the MC "remembers" this
connection throughout the memory operc..tion, allowing the selected base register
to be changed as opposed to rf,quiring the selectec! base register valur. tc. be
nwintained as for device operations. This register also allows for fut.ur"

78

modification to the MC to allow "remembering" the connection until that Inter
preter uses a different memory module. This would allow ahnost a one clock
time faster access to the memory modlli.e if the next request is also to the
remembered memory module. since no priority resolution need take place.
More specifically, when a memory module would be requested by an Interpreter,
the module name would be compared with the regli;ter which would contain the
num.ber of the last module which that Interpreter accessed. If it would match,
the priority logic would then be bypassed. thus saving time. If it would not,
it would mean that the memory either had been previously used by another
Interpreter, or would presenily be in contention for by other Interpretet"S, or would
presently be in use by another Interpreter. In this case the requesting In~~rpreter
would route its request through the priority logic (a few gate levels of delc.y).
'When access would be granted, the memozy module address would then be cl0cked
il..to the register in the part of the MC for the requesting Interpreter by the next
Interpreter clock and foe register for any other Interpreter containing that address
would be reset to all zeros.

If locking of a memory module is requi:--ed for purposes of block transfers or
simila.,. reasons, a memory is designated as a device and is placed under the
control of the DC in which Jocking is permitted.

Memory Read and Write

A timing diagram for MR and MW is shown in Figure 45. As for device operations,
controls from the Interpreter (Nanobits 51-54) are strobed into the mem./dev
operation !'egister of the MDC if either the Type I microinstruction is unconditional
or the 3elected condition is true, independent of whether the next instruction is
Type I or Type II. Controls derived from the output of this register will next
load the outpt.•t shift registers of the Interpreter and will send a Memory Request
signal from th.;! MDC to the MC, concurroent with a three bit address being sent
from the selected base register of the lnterpreter. This initiates the priority logic
in the ~VJC. When th~ MC "'.:::;.:> g,-;:rntec:l access by that lnterpreter to the memory
module it was requesting, a sign&.l is returned from the MC to the MDC that will
cause a clear pulse to be sent to the memory interface logic through the memory
OSN and wi.:.l initiate the setting of SAI and the transmission of high speed clocks
to tht! output shift registers of the Interpreter and through the OSN's to the memory
interface.

In the ca!-'e of a memory write, the counter in the MDC will count four output high
speed clo~ks and will then stop them,

In the case of a memory read, output high speed clocks are not counted. Instead,
these higi1 speed cloek5 <1.n; <::fJntlnually sent to the memory module int.:rface.
This interface will count four clock.s coming into it and will then initiate a
rr.ernory read. Upon return of a data available signal from the memory, the
rrn?mury interface wUl loaa its output shift registers and then allow four of
•h~ ~1 i.gL speed clocks that are still coming through the OSN to clock these output
shif~ registers and tu bf' returned to the .iVIDC and the Interp~eter with the ehifted

79

00
0

Ml.It: lo

~:

!~T '" l'IC.:

!IC '" OSN/l~N

MC to
!10C

Within
MC

MDC to
INT

MDC to

OSN

IN'f to
OSN

HOC to

INT

Within

INT

At
HEM
Incerface

MEI'!
int.2rf.a<.·e
Tu

15~

--------u LJ J i_rru-

l :N.111ub1!" Progr<11T111L'~ niu~t not st.1rt anorher MEM OP.I
same module until memory b-u:':>y ls rt•sct.. •

1 ________ 1~
I I

~~c:.----

1 I (Progr.1:rrrncr must not .cHange valu.:._~:_ s_e](•cted ~aSL' rer,istt>:r until thi~ clol:'.k)I

I ~J~r-;;-s:-Bulfercd)- d' ~ __:____j ;-int M Length f intcrlw'.:.r.l dependent
1
1

upon rner.)o
1

ry acce.ss time ..

'n Access Granc.ed

'--------------~ ------------------------~-

Memory Hu:~y Reset by Cycle Cof p t(!te

\ load Output

{

~h..:._r_:~<:gisters

I 11.S. CU< ta Output S.R. _____ .ILJULJU~.---
i

J_
1 I :

1oataJ ,- - - - ----------~--~-----~
Addq __ - Dit "J (LS6) !Bit 2 IBit I I Bit 0 I

,-----'-----L----'---'--,~

!LS .• CLK to MEM rhrerfacie

------ - - --__'.___j' SSA! L 1_ - - - 1 S!GNALS Wl11!U THIS -- - -~-------
Jl())(WILL REMAIN AT I

_______ <_s_,_"_Y_s_ •• _,_._'"_'_i_l_<_•_•tc_d_) _ _,,--S"'i - : ~~~E~~R MEMORY --- -· ~ Ulltil
------- --- Initiatel I tested.)

lj LMcmory

j_:
------'·'---------------!(- Rc~d or I 1 Synchronh.l•d response (data ~vail-

1 Count 4 clocks while Wr..:_tc _J / ablo) from MEM to MEM intufac•

---- _________ '_h_i_,._'_'"_g_·_i_n_lla_<_• ______ _,r~- ----~for loading outpuc. shlft r(!gb,.

I I

_ jRcturn

I l
--~-----~----1_J__ _____ ~~-.-3~fiJ.i,.--2~r::JliL-· -1~LiiiJ--,o.~l~~~-

1 I (LSH) (Rdurn Llata)

}

Theoe signal•
are synchronized
to the D.S. Clock.
Th<ir relationship
to the Jnt•rpreter
Clock depends upon
"access" time thru
memory.

I
I
I

I L l --- ___ _J
Fron:. ~M

ti.) MC

_i ______ ~L_c_yc_· t_r·_c_om_p_1_c_·t_~ ___________ -'I ___ _

~cJ!E: Levels on dia~ram indic.He v11liciity
or r.J.ll\.·aHdity ::i.nd not ':\ecessarily
lo~i Level.

___ _:.\ __________ c_y_c_l_e_C<>_m_~;..l'.'~~ __fl (Resets MEM bosy)

Figure 45. Timing Diagram for Memory Read or Write

out data. The MDC will count four of these memory return Clocks and will then
stop the high speed output clocks and set RDC indicating that the data has been
shifted into the Interpreter input shift registers and is ready to be strobed into
the B register.

Memory Use Sequence

The sequence of operations necessary to access S memory is simple in single
Interpreter systems where no conflict in access can exist. In such cases once
the address setup is complete {as is the MIR for write). the memory read (or
write) can be initiated. After a suitable time the data from memory can be
accessed via BEX or BBE. In the presence of conflict potential, the following
control sequence should be used. This sequence is recommended for systems
without a Switch Interlock as well.

1. Men1ory read

1. 1 A test of RDC should be included in some prior instruction in
order to reset RDC. By convention this should be the previous
memory read (or device read or write). A test of SA! also
should be included in some prior instruction in order to reset
SAI if address register changes arc required after issuing the
memory read before the RDC is returned, or if confirmation of
access to the switch interlock is desired.

1. 2 The address should be in the selected base register and MAR.

1. 3 The memory read can then be initiated the instruction after
the o.ddress has the desi:red value.

1. 4 An SAI is returned when the Switch Interlock has accepted the
address and the memory is connected to the requesting Inter
preter through the Switch Interlock.

1. 5 A group of intervening instructions can be issued, depending
on the relative speeds of the Interpreter clock and the S me:nory.
Once SAI is set and tested, these instructions may change the
address registers.

1, 6 An RDC (read complete) signal is returned when data is avail
able for entry into the Interpreter.

1. 7 If no intervening device or memory reads occur and no inter
vening instruction used a R register input selection involving
the MIR, BEX may be repeated, ei:1.<:h Hme receiving the data
in XDI non-destructively.

81

Clear v. (Times Measured at 2\7 Level)
I I

80ns.---, .._ I ' ~230ns •i
! I I I

!..-70ns.1
I I
----.1

ie--- :nons. ---.j

High Speed
Clock

!Jat:.;. Address

Hl't urn II igh
Speed Clock

I
60ns_.,.

Bit 3 (LSB) Bit 2

(a) Timing of Signals irom S\'d to Inte rfa('e

-230ns,
I I

-.J !-- 40ns. 1
I I

I

_____ _,,! I I

I 1 I

Earliest
.\ llo11 al>lP

HC'tU rn

u~1 a

I lit :l
(LSB)

I 1 -..i r-- 30ns.
-..: !.e-lOns. I I

t;[~ BH ' i !l~ lli< I t'.\·I

(bl Timine of :-;ignab to :-;11·1 from Intt>dacl'

Figure 4G. SWI/Interface Timing Signals

82

For :\lern

~rite ---... ----~
l I

('. :
\ I
\.-..J

For :\-Jem Read or
De\· Read or \\'dte

Complement of
:\HR . BR \IA H

Con~plPnwnt

of
B- Hcgistc r
[)~1! a

2. Memory Write

2. 1 A test of SAI should be included in some prior instruction
in order to reset SAL

2. 2 The data to be written should be in MIR.

2. 3 The address should be in the selected base register
and MAR.

2. 4 The memory w~~ite can then be initiatE'd the instruction
after both the address and data have the desired values.

2. 5 Return of SAI indicates that the memory is connected and
therefore the addre~s and data have been accepted in the
XDA and XDO buffer registers respectively, and thus the
address registers and MIR may be subsequently changed.

INTERFACE TO SWI

The int<::rface to each memory or device port is function.ally identical. For the
aerospace multiprocessor, the interface from the. SWI to the memory or device
interface consists of a clear line, a high speed clock line, 8 data !ines of 4 serial
bits each and 4 address lines of 4 serial bits each. (The most significant bit of the
BR is replaced by a read/write signal in the serial address sent to the memory
or device port. l The interface from the memory or device interface to the SWI
consists of a return high speed clock line and B data lines of 4 serial bits each.

The relat1ve timing of these signals at the interface is shown in Figure 46. The
timing in this figure was measured using one Interpreter and memory module
only at the !.ndicated frequency and should not be interpreted as r·esulting from any
worst case timing analysis. In Figure 46a, the 330 nanosecond delay from clear
to the high speed clock becomes smaller as the frequency of the high speed clock
is increased. The widths of the clear and the 60 nanosecond delay from high speed
clock to data are indep .. mdent of the frequency or width of the high speed clock.
In Figure 45b, the relationship between data and clock should be ~ndependent of
the frequency or width of the high speed clock.

A block diagram of a generalized memory or device interface is shown in Figure
47. The bottom half of the figure shows the accumulation of the serial input data
from the SW!, and the top half of the figure shows the transmissic..n of the sel'ial
output data to the SWI along with the return clock.

83

Clear

Serial Dat•
to SWl

Return
H.~. C\k.
toSWI

Data from Mem Ol" Device ,---

DEVlCE DEPE:SDENT LOGIC

OUTPUT DAT!\
SHIFT REGL<;TER

,__,,,___ c lk.

Lo'id

Preset
Value

Ot:TPUT
CQUNTEH

Clk.

"Data Availfl from
Mem or De·:ice

DA"."A
AVAILABLE

SY:'\cllRO'.\I7ER

from swc·--+--------.1----------------------'
H.S. Clk...._.--------;--------------..,----------'
fro1n SWI

Serial .-\cidr.

i.C\..ld

1--.----1Clk

Pr('SPt

V;.,..Joe-

l'.\1-'FT
COU'>TER

~--------~

from S\\'I -------·--;---

~~rial Dat;;i
lrorn ~WI

Clk.

Input

!:SPT.:T JJYf-\
SHIFT REGISTER

IJE \'!CE m:PE:SDE:ST LOC!C

To '\lpm or liP\'ke

l Clk.
D; Pl"T Mll1RES::i
H!IFT R Er.!STF.:R

JlE\'!CF. IJEPE:SIJE:\T Lif.lC

lo ,\lem or l)e\·1ce

hr.;u1·p -17. \lcmury Ue1·ice Interface with SW[, Hlock Diagram

84

DEVICE INTERFACE OPERATION EXAMPLES

Line Printer

The printer is device No. 1 (i.e. the moBt significant three bits of the selected base
register are 001). It is assumed that the appropriate locking to the printer will
have been pe~forxned prior lo initiating printer operations.

Line Printer Operation

The values of the bits of the MAR. accompanying a DW or DR to the printer are
interpreted as follows:

MAR 7 (LSB)

MAR6

MAR5

MAR 0-4

unused

! == 0 for forms controls in six LSB's of MIR
l "' 1 for character in six LSB' s of MIR

{ :: 0 when transferring characters
1 when printing or using iorms controls

unused

The following sequence will print a full 132 character line followed b,;: a single
space.

Printer/ Interpreter Synchronization

To synchronize the Interpreter with the printer clock. a DR with controls bits 010
in the least significant three bits of thP. ;.JIAR is issued. This operation has no
effect upon the printer, but causes the DDP to return an RDC on the trailing edge
of the next printer clock.

Printer Buffer Loading

133 characters must be transferred into the print buffer. The last 132 of these
will print from right to left on the line. The first character is totally ignored.
Character transfer is initiated by a DW with control bits 010 in the least signi
ficant three bits of the MAR. The 6 least significant bits of the MIR which are
present at the end of the Fetch Phase of the instrt.dion containing tht! DW are
transferred into the printer buffer as a BCL character. After the character has
been accepted by the printer an RDC is returned. In the same clock in which
this RDC is received, a DW containing the next charac~er must be initiated as
described below under "Timing Considerations". The first DW in the sequence
of 133 should wait for the RDC which is received from the synchronizing DR.

Print Initiation

'Shen the RDC from the 133rd character transfer is received, a DW with control
liit:-; !00 in the MAR and all zeros in the MiR is issued. This control will cause
t!le printer tu print the buffer.

85

Single Space Initiation

When the RDC from the print is received, a DW with control bits 100 in the MAR,
a one in the least significant bit of the MIR and zeros in all other MIR bits is issued,
This will cause a single space. Other spacing can be done instead by placing
other values in the sh: least significant bits of the MIR. The format of the MIR for
for-ms control is as follows.

MIR. 31 (LSH) PSSL ONE for single space
30 PDSL ONE for double space
29

FClL I Format controls for variable spacing
28 FC21 (110000 for bottom of form)
27 FC4L (000100 for top of form)
26 FCBL
25 unused
24 unused

Delay for Printing/Spacing

A delay of approximately 150 milliseconds must elapse prior to filling the buffer
for the next line. With this del~ y a continuous printing speed of 400 lines per
minute can be maintained.

Status Information

\\'hen RDC is returned from either a DW or DR. a BEX instruction will bring status
information into the B register as follows:

B 31 (LSB) PRRL Ready, ZERO when ready
:rn PAML Paper Motion, ZERO when paper in

motion or print cycle in progress
29 PCYL Cycle, ZERO when print cycle in progress
23 EOPL End of Page, ZERO when end of page sensed
27 PPEL Parity Error, ZEF..O for transmission parity

and/ or print counter sync error
26 PFCP Final Character Pulse, ZERO after last

character of line
25 unused
24 unused

If the program does not test for the not ready condition and the stop hutton is
pushP.d, the program will continue to send and receive information from the
DDP although no actual printing will occur and data will be l0st. To control
printing, the ready le1el r.eed on]y be tested cncc each li.ne prior to fi.lling the
print buffer, since the not ready condition (STOP light on) ca!lnot occur after
· .• lo;:ici buffer instruction until the li:le has been printeC::.

86

Timing Considerations

Loading of th·~ printer buffer involves the trausfer of a BCL character from an
Interpreter io the printer every 10 microseconds. Because the data transferred
should be present on the printer input lines for at least 9 microseconds prior
to its acceptance by the printer (for reliable settling), only 1 microsecond should
elapse between the termination of transfer of one character and the initiation of
transfer of the next. If less than 9 microseconds are allLJwcd for settling, some
hit positions with value 0 will be read incorrectly as 1, thus causing random
incorrect characters to be printed.

The transfer of data from u._. printer input lines into the printer buffer occurs
every 10 microseconds on the trailing edge of the printer clock pulse. This
clock pulse also causes the status bit to be sent to the SWI frorr. the printer DDP.
After the last of these data bits has been received by the SWI, the return of an
RDC to the Interpreter is initiated. Because of resynchronfaation delays in the
SWI, this RDC will not be d<>tected by the Interpreter until 2 1 /2 clocks later
on the average. The !nterpreter mu:;t then issue a new DW containing the next
character to be loaded. This chara<.!ter will begin transferring into the DDP at
the end of the clock in which the DW i:-; initiated. The transfer will take
4 high-speed docks to complete, at which time the new ch:.iracter will be pre
sent on the printer input lines, and will begin settling. The entire process
described he1·e shuuhl Ul~cur within l microsecond in order that 9 microseconds
will be available for settling.

Card 1-teader

The card reader is device No. 2 (i.e .. the most significant three bits of the
selected base register are OJ 0.) To be u,,;ed the carll rc~·.del" must he locked
to an Interpreter ~nd the base regbter mu::;t select the card reader. upon
successful completion of IJL, an SA! is returned to the Interpreter.

To start up a card reader it must be sent proppr bits in a D\\' or<:. UH
instruction. The values of the !VIAR acccmpanying the D\V .ire lll\t'rpreted
as follows:

Least significant bit: 0 l)on't r-durn data to S\VI
ltetu rn data to :-\\\'I

The LSB is normally a 1, the 0 value allows skipping cards or testing card
reader mechanic:il functions without data or RUC returns to the S\\<[.

Next to LSH:

Third from LSH:

0 Return character bits as data
Return status bits as data

0 Head ail BCL
1 Read as Hollerith

87
fl:'

This Hollerith reading function is not wired on the present card reader DDP for
the 6 high rows (11, 12, 0, 1, 2, 3); only th~ ,ole patt~rn for the 6 low rows
(4, 5, 6, 7, 8, 9) are returned.

Fourth from LSB: 0 Don't operate card reader
1 Operate card reader

Tne 0 value allows checking of DDP functions without the noise of the card reader.

These control bits apply to the DW which they accompany and to all following Dfl.'s
for this card reader until changed by another device write, Upon completion of
a OW, data is returned to the Inter·pn!ter via the SWI and an rtDC occurs to mark
the end of the data reply for the write. \Vhen status is selected aii:i data, the status
returned with the OW (and subsequent DH.'s, if any) is valid, however the character
returned with the DW is likely to be meaningless. 'I'he status bits returned are
these:

LSB: CRL:
CCL:
CltEL:
CRCL:
EOF:

Not used:
Not used:

MS B: Not used:

Ready, ONE for ready
Present, ONE: :'or duratinn '"'! e;.·.~h rar<i
r.:rror, ONE for reader detected error
Start, ONE for STAHT button Not operated
End of File, ONE for Hopper :\ot Empty or for EOF
button Not operated {ZERO for Empty Hopper
and EOF' Button opera.let!.)
Zero
Zero
Zero

Immediately upon receipt of a [)\V containing bits set to uperutc it, the card
reader begins to read cards at its maximum rate. Since the l>DP for the card
reader has but a l column buffer, it is necessary for t:1c pr0grain in the Inter
preter to send a DI{ instruction for each column. The synchronization of DR's
and column reads in the DDP is as follows: Ca,;e I. 111e DR ar-rives at the DDP
befo1·e the column r-ead is ready: TI1e I >H waits at the Dl>P until the column
t•ead is ready; then transmits data and return clocks to the Interpreter. If during
this wait another SWl operation is invoked which returns as RDC before the
column read is ready, the DH. in the card reader DDP is lost and a new device
read n-iust be sent to the card reader to capture the data of this culmnn. Upon
sending the data of this column, the state of the DIJP is set to show no column
read ready. Case 2: 'Die DR arrives at the l>DP after the column read is ready.
The DH immediately returns data and return clocks to the Interprete 1· and sets
the state of the DDP to show no column read reduy. Ii during the actions of this
DR, ;;.nother S'VI operation is invoked which returns an HDC before the DR is
complete, the DR in the ca!'d reader DDP is lost, the card column is lost and
the control sequence of tht! DDP is c<mfused.

88

SECTION vrr

INTEHPHETER MlCHOPHOGH.AMMING

Microprogramming is that procedure the designer uses to specify the action,
function, and state of each of the interpreter logic elements during ev~'ry clock
time. (A historical bGckground of microprogramming is given .in appendix I).

In this sense, microprogramming replaces the function or hardwGre sequential
logic used to cause the machine to execute an instruction i·equiri.ng more than one
clock time. Thus, microprogramming is essentially similar to sequential logic
design, However, no logic (hardw:ire) is added in the sequential logic design, but
rather the existing registers, data paths, and control gates are used in a specific
order to bring about the desired lo~ical result.

The pattern of ones and zeros in the Microprogram Memory (l\IPl\l) and nanomemory
(together with the data} determines the operation of the Interpreter. The rnicropro
gr:immer is concerned with the generation of these p:i.tterns to provide the desired
control functions. However, instead of actu~lly writing these patterns, the micropro
grammer is assisted by a microtr:inslator (or asscrnbler) th::i.t allows him to write
microinstructions Uh1emonically. The rr::.icrotranslator then :;cans these instructions
and produces the pattern of ones and zeroE to oe placed into the '.\lPl\l and l'liano
memories.

Figure 48 indicates how one can learn to microprogram the r:1achine and the sim
plicity of the microprogram structure. The high degree of pat·allelism in the lnter
preter is also evident from the powerful statements that can be expressed. For
example, the following actions may be expressed and performed in one instruction:

test a condition (for either True or False)

set i reset a condition

initiate an external operation (e.g., memory read)

89

'° 0

/

Nanobits

Type I ·- Use of nllltO memory 154 bits)

1-7
(7)

B-10
(31

A

51-54
(4)

•; If Condition then Condition Adjust; External

GC1/2
LC1/2/3
SAi
EX1/2
MST
LST
ABT
AOV
cov
INT
AOC

Set LC1/2/3
&rt GC1/2
Set INT
Reset GC

Main
M.~y:

Reld.'i'lrite

Deviot:
Rhdtwrrte
lock/Unlock

Load MPM
lo1d Nano

B

17-41
125)

LU

A Select
B Select
z Select
Adder Function
Shift Stltct
Destination Id

42·50 11-13 14-16
191 (31 (3)

MCU/CU; TrueSucc llsefalseSucc

Cantrel fOf': wait wait
step S18p

AMPCR SIY9 ""' 8R1/2 lkip lkip
MAR jump jump
CTR exec exec
SAR call call

retn retn

*Groups A and B mav be 11Cecuted either conditiontlly as shown or uncondition11fy by being placed before condition test.

~ Lo«ls any of 3 specified registen (no neno memory IOOlts, mp.-->
Four variations

k ... SAR
k ... LIT
k ... AMPCR
k1 -+ SAR; k2-+ UT

Figure 48, Microinstruction Types

perform an add operation

JOhift the result of the add

store the results in a number of r~gisters

increment a counter

complement the shift amount

choose the successor microinstruction

It is also possible to perform these operation.s either condltionally nr uncondi
tionally as suggested in Figure 48. The group A and group B portions (either,
neither, or both) of the microinstruction may be placecl before the condition test
portion of the instruction. This will result in that portion (A and/or Bl Leing
performed unconditionally.

The following four microinstruction examples illustrate both the par-allelism and
the conditional/unconditional properties of the microinstructions.

(1) If NOT LST then Set LC!, M,H; Al+ B + 1 C-A2, MIR, CSAR, INC;
Step else jump

(2) Set LCl, MRl; If NOT LST then .'\l + B + 1 C-A2, \'1IR, CSAR. !:\C;
Step else Jump

(3) A 1 + B + 1 C-A2, MIR, CSAR, lN C; If NOT LST then Set LC 1, :\:1Rl;
Step else Jump

(4) Set LCI, MRl; A2 + I3 + 1 C-A2, Mil1, CSAR, INC; If NOT LST then
Step else Jump

In (1) the LST bit is tested and if not true, the local condition l (LC l) is set.
memory read is initiated (MR!), the function Al + B + 1 is pc!'formed in the
adder, the adder output is shifted circular and the result stot't'd in both the
A2 and MIR registers, the content of the shift amount regi;;tcr is complemented
(CSAR), the counter is incremented ON<_:), and the true successor (STEPl is
selected. If the LST bit is true, none of these operations are performed and the
false successor (.TUMP) is executed.

In (2) the LCl is set and the memory read is initiated (MRl) unconditiom.lly
(i.e., without considering the LST bit). The remaining functions are conditic,nally
performed as in (1).

In (3), the functions Al+ B + 1 C -A2, MIR, CSAR, INC are performed uncon
ditionally but set LCl and MRl are performed conditionally.

In (4) the functions Set LCl, MRl, Al + B + 1 C - A2, MIR, CSAR, INC are
all performed unconditionally and only the successors Step and Jump depend upon
the I.ST test.

91

TRANSLANG FOR MICROPRO<lRAMM ING

The TRANSlator LANGuage (TRANSLANG) progr-am is an assembler for Interpreter
microprograms. The complete syntax oi 'lr~.". l\'ST ,ANG is given in Appendix IV. It
employs a vocabulary of reserved words an:! symbols used to develop a micropro
gram and its corresponding table of :;anoinstructions. Reserved words and syrr:bols
are grouped as defined in this report to form microinstructions and programs. The
reserved words are summarized in. Appendix V,

Two versions of TRANSLANG exist for the aerospace multiprocessor. One version
is written in Burroughs Compatible ALGOL which can run on both Burroughs B 5500
and 3 6700 syE"tems. This TRANSLANG is described in this section and in more
detail in Burronghs Microprogramming Manual for Interpreter Based Systems,
TR70-8. The second version is written in FORTRAN for the CDC 6600, and is de
scribed in A FORTRAN Micropro ram Translator, an Air Force Institute of Tech
nology thesis GGC EE/72-2. T:1e TRANSLANG syntax and semantics for the
FORTRAN version arP the same as that described here and in TR70-8 with tile
exceptions listed ir: an appendix to the thesis.

Each TRANSL..t\NG line corresponds to one microinstruction which is the set of In
terpreter functions performed in parallPl at each machine clock. The construct;.;
include iterative mechanisms, 1/0, Boolean, logical and computational operations,
control transfers and assignment functions, in ordet' to provide control points for
transfer operations. each instruction may be labeled with a symbolic microaddress.

The INSERT function has been included to allow for the use of a macro library of

previously debugged microprogram:;,

Conventions in Language Description

Backus-Naur form (BNF) is used as the metalanguage to define the syntax of
TRANSLANG. The following HNF symbols are used:

1, () Left and right broken brackets are used to bracket the
names of syntactic categories.

2. ::" Colon colon equal rneans "is defined as" and sepat·ates
the name of the syntactic r.ategory from its definition.

3.

4. {}

Bar separates alternative definitions of a syntactic
c:itegcry.

Left and right braces enclose an English language
description of a syntactic unit.

92

Any character or symbol in a metalanguage formula which is not a metalanguage
symbol and is not enclosed within matching b.races or broken brackets. denotes
itself.

Basic Elements

(Letter} ::=

(Digit) ::=

(Hex Digit) ::=

(Symbol) ::=

(Single Space) : : =

(Space) ::=

(Assignment Op) ::=

(Character) : : =

(Comment Character) ::"'

(Empty) ::=

Semantics

Al alclnlEIFlclHI rlJIKILiMINlo
PIQIRISITIUIV!WIXIYIZ
Olll2l3!4l5l617l8l9

<Digit) I A I BI c ID I EI F

. I; I+ l - ! : l =I% l 1 P 1~,

{ One horizontal blank position}

(Single Space) I (Space) (Single Space)

=: I =

(Letter) I (Digit)! <Single Space)! (Symbol)

(Character) ! . i # : & ! $!(I] I \ i I

{The null string of characters}

TRANSLANG uses a character set of 56 characters including (single space) , 8 of
which are only used in comments. All letters are upper case.

Spaces - No space may appear between the letters of a reserved word or within an
<Assignment Op) ; otherwise, they will bE" interpreted as two or more elements.
Spaces are used as a delimiter to separate reserved words, labels, or integers.
Spaces may appear between any two basic components without affecting their
meaning, where basic components indicate reserved words, symbols. or labels.

Parentheses - The parentheses are treated as spaces. They are used for tht> con
venience of the microprcgrammer to make code more readable. (E.g. instruction
elements which are irrelevant to the current instruction but are used only to allow
shared use of a· ru:.noinstruction by several microinstructions.)
Parentheses~~ imply precedence.

93

LITERAL ASSIG!'.l'MENT INSTRUCTION

(Literal Assignment) ::= (Literal) (Assignment Op) AMPCR i
(Literal) (Assignment Op) SAR I
(Literal) \Assignment Op) SAR;
(Literal) (Assignment Op) LIT I
(Literal) (Assignment Op) LIT;
(Literal) (Assignment Op) SAR I
(Literal) (Assignment Op) LIT

(Literal) ::= (Integer) l COMP(Integer) ! (Label) I (Label) -1
(Integer) ::= {Digit) I (Digit) (Integer)
(Label) ::= (Letter) I (Label) {Letter'} f(Label) (Digit)

I •

Semantics

A (Literal Assignment) becomes a type II microinstruction for an Interpreter.
This microinstruction contains the literal value(s) and specifies the receiving
register(s).

Width, bits

AMPCR Alternate Micro Program Count Register 12

SAR Shift Amount Register 5

LIT Literal Register 8

The registers may be individually loaded or both the SAR and the LIT may be load
ed in the same microinstruction.

An (Integer) is non-negative and ir. the range of u-.e intended receiving register':3).
COMP (Integer), if the receiYing register is LIT or AMPCH, takes the one's ccm
plement of the (Integer) , then takes the number of bits indicated by the width of the
receiving register. COI\IP (Integer), for SAR, creates the appropriate word leri.gth
complement. (This is two's complement for the 32-bit wide LSI Interpreter). 111e
encoded value is used in the SAR field. The sucessor of a\ Literal Assignment) is
implicitly STEP.

Labels used in a program may be chosen freely except for the reserved words of
TRANSLANG. The reserved words are given in Appendix \·. A label must start
with a letter which can be followed by any combination of letters or digits. ~o

spaces or symbols may appear in a label. ,\ label can be a:::; little as one letter and
as long as 15 letters and digits. The same label may not be used to locate more
th9.n one instruction in the same progr::tm. Sec> the f'.'JSERT function subsequently
described for allowable nesting of labels \i..·hen subprograms are in5erted. The
normal use of a label with a(Literal Assign.111ent) is as (Label) -1 since control
transfers occur to the indicated location -d -(or +2 if a return is used).

94

Examples

5=: SAR
COMP 8 =:SAR; 13=: LIT
COMP.O =:LIT
START=: AMPCR
LOOP-I=: AMPCR

N INSTRUCTION

% converted for proper logic unit width
% in onP microinstruction
% same as 255=:LIT
% JUMF ~o START +l; RETN to START+ 2
% JUMP to LOOP; RETN to L<X>P + 1

(N Instruction) :~= (Unconditional Part> ;conditional Part)

(Unconditional Part) ::= (Component List)

(Component List) ::= (Component) I (Component List) ; (Component) I
(Empty)

(Component) ::= (Ext Op) I (Logic Op) l (Successor)

(Conditional Part) ::" (If Clause) (Cond Comp List) (Else Clause) J (If Clause) l
(When Clause) (Cond Comp List) ! (Empty)

(Cond Comp List) ::= THEN(Cornponent List)

Semantics

An (N Instruction) becomes a Type I microinstruction containing an address of a
nano instruction. If an identical nano instruction already exists, the microaddress
will point to the single copy of the nano instruction. If the nano instruction is new,
the address will be to the next unused nano address. The operations indicated
in the <N Instruction> are entered into this nano location.

Restrictions

1. At most one (Ext Op) - either unconditional or conditional.

2. At most one (Logic Op) - either uncon~itional or conditior.al.

3. At most either one unconditional successor. or one conditional
successor in the (Cond Comp List) and one in an (Else Clause) .

The (Unconditional Part) is always executed. In the (Conditionai Part) if the
condition resulting frum Lht (U Clau::;e) or (When Clause) is true then the com
ponents in the (Cond Comp List) are executed, otherwise only the (Else Clause)
is executed.

95

Examples (to be subsequently explained)

Unconditional Part, Component List:

SET GCl

MR2

RESET GC, DR2

A2 AND BOOl "'! Al

Al + B IC R "': A2, BEX, LMAR

JUMP

DLl; O=: A2; SKIP

Conditional Part:

IF AOV THEN Al + l =: Al ELSE SKIP

IF NOT ABT THEN SET LC2; SKIP ELSE SAVE

WHEN RDC THEN l\·IR2; BEX, INC

N Instruction:

WHEN RDC THEN BEX

SET LCl; IF SA! THEN B ADL LIT= A3, HBE

CONDITION

(If Clause) ··=

(Condition) ::=

(Not) : :=

{Cond) ::=

{When Clause) ..

I Else Clause) : : =

/('ond Adjust Bit) ::=

IF (Conditiun)

(Not) (Cond)

NOT I (Empty)

LST I MST I AOV I ABT I cov I SAI I RDC I EXl I
EX2 i HOV I (Cond Adjust Bit)

WHEN (Condition)

ELSE (Sucessor)I {Empty)

INT I LCl I LC2 I LC3 I GCl I GC2

Semantics

Each (N Instruction) performs a test on the Boolean value of one (Cond) or its
complement. The Boolean value of the result is (Condition). If this value is
true, the (Cond Comp List) is executed and the sucessor from this list is used
to determine the next microinstruction. Otherwise the successor in the (Else Clause)
is used to determine the next microinstruction address. See the subsequent dis
cussion of successor.

A (When Clause} is a synonym for an(If Clause) with the same(Condition) and an
(Else Clause) of ELSE WAIT. An empty(Else Clause) is equiv:llent to ELSE STEP.

In the absence of an (If Clause} or (When Clause) , an implied (If Clause) of IF NOT
GCI is inserted. This changes no condition bit. If does cause unconditional
initiation of a (Logic Op) and hence completion of the prior {Logic Op).

With the exception of the two global condition bits, testing a condition bit causes the
bit to be reset. However, all condition bits are set dominant. Therefore in case a
condition bit is being tested at the same time it is being set, the condition bit will
not be reset. The least and rr ost significant bits out of the adder. the adder over
flow, and the adder bit transmit are levels and not condition bits. The con<litiuns
that may be tested (Table Ill) are the following:

SAI Switch Interlock Accepts Information

Following memory or device operation, indicatef' that
connection to the addressed memory or device is completed
through the switch interlock and that the MAR and :\llR may
be changed.

RDC Read Complete, or Requested Device Complete::;

Following memory read or device read, indicates that data
will be available for entry to B in the next clock. Following
device write, indicates completion of write.

C OV Counter Overflow

Following or concurrent ..,,ith increment counter IXC, indicates
counter is overflowing or has alr~ady overflowed from all ones
(255) to all zeros.

LC! Local Condition 1

Tests and resets local Boolean condition bit LCl.

Local Conditions 2 and 3
Same as LCl

97

Table UL Set and Reset of Conditions

BIT SET

AOV Dynamic Adder- State - (Ovei-fiow}

ABT Dynamic Adder- State - {Adder bit transmit}

LST Dynamic Addei· State - (Least S~gnificant Bit
of Adde1· Output)

MST Dynamic :\dder State - (Most Significant Hit
of Adder Output)

COY Oved1ow when Counter· is lncrer>:ented

GCl SET GCl providing no other· lnterpr·eter has
GC1 set, 01· no higher priority lntei·preter
is ''ot;curi·ently doing SET (}Cl

GC2

!XT

LCl

I LC2

LC3

SET (',.('2 simiiar to Gel

Set INT executed in any lnterp1·eter

SET LC1

SET l.C2

SET LC3

HDC By n1emoi·y at completion ofmemorv or·
device r·ead

SAI By switch interlock when data
1·ece1ved from \'!AH and :\J,H

EXl By r·equests from de\'ices

E2'\2 I By request:: from devices

I i- 2\" I Horn overf'ow

#Recomputed each clock tirne

98

'

I
I

I
I
' I

I
I

R.J:;SET

~

Reset by load mg
counter or by
test mg

f{ESET cc

!U-:SET GC

l{eset bY
testing

H.eset b\· test mg

He set Ll\· ~e;;t ing

I\ eset bv tes~ ing

~~ e set 11\" testing

l\eset l.Jy test 111.-.

He set b\· testmf'.

He:set b,· ~e:;t ing

He set by te,:;t mg

I
r
l
I
I

GCl
GC2

INT

EXl
EX2

HOV

} Global Conditions 1 and 2
Tests but does not reset global condition bit GCl. See the
description of the set and reset operation for further ex-
planation of global condition bits.

Inter- Interpreter Interrupt

Te1:ots and resets the local copy of the inter-Interpreter
interrupt.

Exte.:-nal Conditions 1 and 2
Test and reset interrupts (usually the OR of interrupts
from several devices) from external devices (local copy).
These are presently wired to switches in the aerospace
multiprocessor.

Horn Overflow

!ndicates that no (Ext Op) has (JCcurred during a peri0d of
220 Interpreter clocks, (approximately 1 second for a i MHz
Interpreter clock). This h used for detection of a failed
memory module or devices and will force a STEP in the
mic?"oprogram at the same time this condition bit is set.

The following four logic unit conditions are dyn::tmic and indicate the rasult outp•1t
from the adder using the execution phase commands from a:e previous instruction
which had logic unit operation, and using the current values of the adde~ inputs.
These conditions are sustainec until execution of :.mnther instruction involving the
logic unit, and may be tested by that instruction. A type II instruction loading the
LIT or AMPCR may change the value of an adder input selected in the (Z Select)
and hence change the value of any of these cor1ditions.

AOV Adder Overflow

State of the carry out of the most significan~ tit of i.he adder.

LST Least Significant

MST

ABT

State of the least significant bit of the adder output.

Most significant

State of the moot significant bit of th~ ..hlder 0utput.

_l\dder bit transmit

This condition is true (on'!!) if and only if the acfrier output
is all ones or all zeros depending on the specific operator
performed. (::iee Appendix III). -

99

Examples

IF NOT LCl

WHEN SAI

ELSE CALL

EXTERNAL OPP.RATIONS

(Ext Op) ::= (Mern Dev Op) I (Set Op) I
(Mern Dev Op) , (Set Op) I
(Set Op) , (Mem DEv Op) I {Empty)

(Mem Dev Op) ::"'MRI MR2 I MWl I MW:.! I DLl I DL2 I DRl I DR2 I
DWl I DW2 I DUl I DUZ : LDM I LDN

{Set Op) · .,,. SET (Cond Adjust Bit) I RESET <..TC

Semantics

'The external oper<..tions are (N Instr:.iction) functions which, if explicity present,
affect the operations external to the Interpreter logic. An (Ext Op) may be
specified as either condition:al or unconditional as it appears in at most one of the
(Unconditional Pari:) or {Conditional Part) .

The memory or device operations< IVlem Dev Op) are used to transfer data between
the Interpreter and S memory or a peripheral device. Address source registers
for those operations are the com!:iination of either HRl or BR2 with !\IA R, indicated
respectively by MAHl or MAR2. The MAR holds the less significant part l-if the
address. The memory or device operations are described in detail in Section VI.
The explicit memory 01· device operations follow.

Ml11 Memory Read 1
Read data from S memory address specified in MARl

MR2 Memory Read 2
Read data from S memory address specified in l\IAR2

l\rIWl Memory Write 1
Write data from M !R to S memory address speciJied in l\lARl

MW2 Memory Wri•e 2
Write data from MIR to S memory address specified in MAR2

100

LDM

LON

DLl

DL2

URl

Load a microitlstruction from the least significant 16
bits of the MIR into a word in microprogram memory
{MPM) as specified by AMPCR.

Load least significant 16 bits of MIR into the nanoworrt as
specified by the nanoaddress contained in the microprogram
word being specified by AMPCR. The s.~·llable of the nanoword
loaded is specified by the two bits next to the least significant
bit in the MAR.

Device Lock 1 RequeDt
[{eserve the device or memory module named in MARl for
use by this Interpreter.

Device Lock 2 Request
Heserve the device or memory moclule named in MAR2 for
use by this Interpreter.

Device Read 1
Head data from device named in MA Rl

DR2 Device Read 2
Read data from device named in MAR2

DWl Device Write 1
Write data from MIR to the device named in MARI

DW2 Device Write 2
Write data from Mm to the device named in MAft2

DUI Device Unlock 1
Release the locked device named in MARl

DU2 Device Unlock 2
Release the locked device named in MA R2

The set and reset operations are used to set and reset ct•ndition bits. The inter
Interpreter interrupt INT, is used for communication amo~,g (to signal) all
Interpreters of the aerospace multiprocessor. The global conditions, GC'l and
GC2, are used as Boolean semaphores to guarantee mutual exclusion for critical
sections of microprograms and to prevent simultaneous access to shared data.
The local condition bits are Boolean variables local to each Interpreter. The INT
and lac al condition bits are reset (within the local Interpreter only) by testing.
The explicit test and reset opet•J.tions follow. If no (Set Op) is present, none is done,

101

SET INT

SET LCl

SET LC2

SET LC3

SET GCl

SET GC2

Interrupt Interpreters

Causes the interrupt bit to be set in all Interpreters.
Each Interpreter resets its own bit by testing it. Setting
occurs after testing should both occur in the same
nano-instruction.

Set the firiolt local condition bit

Causes the setting of the LCl bit in the condition register.
Setting occurs after testing should both occur in the same
nano-instruction. Both set and test of LC1 occur during the
fetch phase of a microinstruction.

Set the second local condition bit

Same as for LCl replacing LCl by LC2.

Set third local condition bit

Same as for LCl replacing LCl by LC3.

Set first global condition bit request

Requests that the GCI bit in the requesting Interpreter be
set if a GCl bit is not already set in another Interpreter or
is not requesting to be set simultaneously by a higher
priority Interpreter. For all 1nterpreters in a multiprocess
ing system at most one will have GCl set. GCl is set at
the end of the phase after the fetch phase if no conflict
occurs. A request lasts for one clock.

Set second global condition bic request

Same as for GCl replacing GCl by GC2.

RESET GC Resets the global condition bits

Causes GCl and GC2 to be reset in the issuing Interpreter.

Examples

MR2

SE'T' LCl

DR2. RESET GC

102

LOGICAL OPERATIONS

(Logic Op) ::= (Adder Op) (Inhibit Carry)(Shift Op)(Destination List)

(Adder Op) ::o: 0 I I I (Monadic) I (Dyadic) I (Triadic) I {Empty)

(Monadic) ::= (Not) (A Select) I (Not) (B Select) I
(Not) {Z Select)

(Not) ::= NOT I (Empty)

(Dyadic) ::= (A Select} (Binary Op) (B Select) I
(B Select) (Binary Op} (z Select) I
(A Select) (AZ Op) (Z Select)

<Binary Op) .. - (AZ Op) I OR I NIM I IMP I NOR

(AZ Op) ::= ANDI XOR! EQVI NRI !RIMI NANtADD l +I AOL I CAD

(Triadic) ··= (Try Op) (A Select) • (B Select) , (Z Select)

(Try Op) ··-= TRYl I TRY2 I TRY3 I TRY4 I TRY5

(Shift Op) ::= RI L I C \ (Empty)

(Inhibit Carry) ::=IC I (Empty)

Semantics

The logical operations include those operations which occur within and affect the
logic unit of the Interpreter. This group of operations may be specified as un•
conditional if placed before the (If Clause) of a conditional instruction and con
ditional if placed after the (If Clause) .

The logic operations include the selection of adder inputs, tlie adder operation,
t11e barrel switch operation, the destination specifications for the adder and BSW
.... utputs and the controls for the literal, counter, and SAR registers.

Each instruction except the (Literal Assignment) contains an 1dder operation.
If this is missing, the adder operation is assumed to be A + B (where A and B
are zero). These adder operations may use input from one, two, or three
different registers as specified in the <A Select) (B Select) (Z Select) parts of
the instruction.

103

Monadic operators are those operators requiring one register input to the adder.
The value of the selected register or the complement of the value may become the
adder input depending on the (Not) function.

The dyadic op~rators are those adder operators that may occur between two
registers. These include arithmetic as well as logical operators. The arithmetic
operators may occur with sources selected from any two of the three inputs -
A, B, and Z.

ADD I+

ADL

CAD

Add the two inputs to the adder.

Add the two inputs to the adder + 1

Add the two inputs to the adder in groups
of 8 bils. Inhibit carries between 8 b:it
bytes.

All logical operators except four may occur between selections from any two
registers (A + B, B + Z, or A + Z). The four exceptions that may not occur
between an A and Z bde;::t are OR, NfM, IMP and NOR.

OR Or X Ol1 Y produces X v y

NIM Not Imply X NIM Y produces XY

IMP Imply X IMP Y produces X v y

NOR Nor X NOR Y produces X v Y

All other logical operations may occur between any two of the three registers
selected.

AND And X AND Y produces XY

XOR. Exclusive Or X XOR Y produces XY v XY

EQV Equivalence X EQV Y produces XY v XY

NRI Not Reverse X NRI Y produces X Y
Imply

RIM Reverse Imply X RIM Y produces X v y

NAN Not And X NAN Y produces X Y or X v y

X means (ones) c·.::implement of X
precedence is complement done before AND done before OR

104

The triadic operators are those operators requiring three inputs to the adder
(i.e .• A, B. and Z). These are available in the· InterpretP.r and may be used
with the following notation:

TRYl· A, B, Z produces A B Z v A B Z

TRY2 A, B, Z produces A Z v B Z

TRY3 A, B, Z produces A v B v Z

TRY4 A, B, Z produces AZ v B Z

TRY5 A, B, Z produces AZ V BZ v A B Z

There are three shift operations, one of which may be selected each time an adder
operator is used. These operations are R. L, or C.

R Right end off shift by amount in SAR

L Left end off shift by the two's complement of amount in SAR

C Circular shift right end around by amount in SAR

The carry bits may be inhibited, for all operations, between 8-bit bytes. IC
inhibits carries.

Examples

NOT LIT=: A2

Al ADL BR=: B

A2 +LIT": SAR

DEC CTR

TRYl A2, 8110, CTR

0 =:A3

1 =:CTR

A2 + CTR IC R = A2, BEX, CTR, CSAR

105

INPUT SELECTS

(A Select)

(B Select)

(M) ::=

(C) ::=

(L) ::=

(Gating)

(Z Select)

Semantics

::=

=~ =

.. -

Al I A2 I A3 I 0 I <Empty)

B I B (M) (C) (L) I (Empty)

(Gating)

(Gating)

(Gating)

0 I 1 ! TI F

CTR I LIT I AMPCR I 0 I (Empty)

There are three A registers which may be used for data storage within an Inter -
preter. Any one of the A registers may be selected ai:; input to the adder in an
instruction. The B register is the primary interface for external inputs from
main memory or devices. It also serves as input to the adder. The B register
can be partitio11ed into three parts when it is selected as input to the adder. The
partitions are as follows:

M Most significant bit of B Qeft most bit)

C Central bits of R (all out the end bits)

L Least significant bit of B (right most bit)

When selecting the B register as input to the adder. each of the three parts may be
independently specified as being either 0, 1, T, or F. A zero gating will cause that
part to be all zeros. A one gating will cause that part to be all ones. A T gating
will produce the true value of B for that part. An F gating will produce the com
plement value of B for that part. The 13 register and its gating is specified with
out embedded spaces. If no gating is specified when selecting B, then it is
assumed that the true value of Bis desired (i.e., BTTT).

There are three registers which make up the (Z Select) input to the adder. These
are the counter (CTR), the literal (LIT) and the AMPCR. The counter register
when used as input to the adder, is left justified with zero fill. The literal register,
when used as input to the adder is right justified with zero fill. The AMPCR comes
into the least significant 12 bits of the center 16 bits of the adder. The most
significant 4 bits uf the center 16 bits of the adder contain the binary value of the
rnterpreter number right justified in the 4-bit field. The rest of the adder is zero
filled.

106

Examples

Al + B + 1 IC R

A2 XQR CTR

BOTT AND LIT

DESTINATION OPERATORS

(Destination List) ::= (Asgn) (Dest) I
\Destination List> <Asgn/ (Dest) I (Asgn)

(Asgn) ··=
(Dest) ··=

(Input B) ::=

(Input Ctr) ::=

(Input Ma~ ::=
\

(Input Sar} : :=

Semantics

, I=: I =

Al I A2] A3 I MIR I BRl I BR2 I AMPCRI
(Input B) I (Input Ctr) I (Input Mar) I (Input Sar)

B I BEX I BAD I Bc4 I nca I BMI I BBE I BBA I BBI i
BAI I BnAI I B4I ! B8I

CTR! LCTR I INC

MAR I MARl I MAR2 I LMAR

SAR I CSAR

The destination operators explicitly specify registers in which changes are to
occur at the end of a logic unit operation.

Restrictions:

L At most one choice from each of (Input B), (Input Ctr), (Input l\lar)
and (Input Sar) is permitted.

2. If (Input Ctr) is LCTR then (Input Mar) may not be MAR, MARl or
MAR2.

3. If (Input Mar) is LMAR then (Input Ctr) may not be CTR.

The principal data source is the barrel switch output. It is the only source for
loading Al, A2, A3, MIR, BRl and BR2. It provides one sour·ce for loading B,

107

CTR. MAR, SAR and AMPCR. These reserved woi·ds are also the register
names. The bits used in these transfers are indicated below:

Destination
R.egister

Al
A2
A3
B
MIR
BRl
BR2
MAR
CTR
SAR
AMPCR

Barrel Switch Ou~put
Source Bits

All
All
All
All
All
2nd least significant byte
2nd least significant byte
least significant byte
least significant byte (ones complement)
lNist significa!lt 5 bits
least significant 12 bits

The B. MAR. CTR, SAR and AMPCR registers may have other ir.puts as well.

B Register - (B)

*

**

B

BEX

BAD

EMI

l3C4

BC8

BBE

The barrel switch output is placed into B.

Data from the external source is placed into B.

The adder output is placed in the B register (short path
to Bl.

The MIR content is placed in the B register independent
of any concurrent change to the MIR.*

The duplicated complement of the 4-bit carries with z~ro
fill is placed in the B register.**

The duplicated complement of the 8-bit carries with zero
fill is placed in the B register.''*

The barrel switch output ORed with tre data from the
external sourc · is placed in the B register.

When the MIR is one of the inputs to the B register, the input shift register from
the Switch Interlock into the external input to B will be cleared to all zeros.

Form of 8C4.._ B4I, BC8, and B8I ar:lder outputs for each 8-bit group:
T11e carries out of bits 2, 3, 4, C, 7 and 8 are irrelevant.

Bit 1 2 3 4 5 6 7 8
Carries
Out u - - -v-

H4I, BC4 0 0 u u 0 0 v v
B8I, BC8 0 0 u u 0 0 0 0

108

BBA

BB!

BAI

BBAI

B4I

B8I

The barrel switch output ORed with the adder output is placed
in the B register.

The barrel switch output ORed with the MIR content is placed
in the B register independent of any concurrent change to the
MIR.*

The adder ORed with the MIR is placed in the B register.*

The BSW ORed with the adder ORed with MIR is plact<d in
* the B register.

The duplicated complement of the 4-bit carry ORed with
MIR content is placed in the B register.*

The duplicated complement of the 8-bit carries with zero
fill ORed with MIR content is placed in the B register.*

Memory Address Register - (MAR)

LMAR

Counter - {CTR)

LCTR

INC

The literal register content is placed in MAR.

The one's complement of the literal register content is
placed in ~TR.

Increment Counter by 1.

Shift Amount Register - (SAR)

CSA R Complement (two's complement) prior content of SAR.

The Alternate Micro Program Count Register (AMPCR) may, during the same
clock, receive input from the MPCR if the microprogram address control register
content was CALL or SAVE. The MPCR source takes precedence over the Al\IPCR
specification as a (Dest) .

~am pl es

=: B

=:CTR

=:Al, BEX, MIR, LCTR, CSAR % mixed use of, "', and=:

*When the MIR js one of the inputs to the B register, the ir.pt!t shift register from
the Switch Interlock into the external input to B will be cleared to all zeros.

109

SUCCESSOR

(Successor) ::"'WAIT /STEP/ SKIP/ SAVE/ CALL/ EXEC/ JUMP/ RETN

Semantics

Each (N instruction) specifies 2 successors explicitly or impliciily, indicating
the control to be used for the next microinstruction selection. A {Successor) in the
(Unconditional Part) results in the 2 successors being identical. Otherwise one
or two successors may appear in the (Conditional Part). Th·,~ eight choices for
each successor are described below and in Table IV.

WAIT

STEP

SKIP

SAVE

CALL

EXEC

JUMP

RETN

Repeat the instruction in the microprograr.-. count register (MPCR).

Step to the next instruction in sequence from MPCR.

Skip to the second next instruction in sequence from MPCR.

Step and save current MPCR address in AMPCH.

Transfer control to AMPCR + 1 address, save current 1vIPCR
in AMPCR.

Execute instruction in AMPCH + 1, proc.:eed as specified in the
executed instruction.

Transfer control to AMPCR + 1 address.

Transfer control to AMPCR + 2 address.

Any successor not explicitly stated is STEP by default. All successors except
EXEC place the resulting microprogram addre,1s in MPCR.

Each (Literal Assignment) instruction has an implicit successGr of STEP.

The AMPCR normally contains the address of an alternative instruction (usually
label-1). The AMPCR load of the current content of the MPCR from a CALL or
SAVE takes precedence over a (Literal Assignment) inlo AMPCR in th€' dynamically
next microinstruction. It also takes precedence over an ~~r·licit (Dest) of AMPCR
from the (Logic Op) in progress.

110

Table IV~ Microprogram Memory Addressing

Successor Successor Next Content Next Content
Command M-instruction

Address

WAIT MPCR

STEP MPCR+l

SKlP MPCR+2

SAVE MPCR+l

CALL AMPCR+l

EXEC AMPCR+l

JUMP AMPCH.+l

RETN AMPCR+2

*Not changed by successor specification

Examples

WAIT

JUMP

PROGRAM STRUCTURE

of MPCR
will be

MPCR

MPCR+l

MPCR+2

MPCR+l

AMPCR+l

MPCR

AMPCR+l

AMPCR+2

(Program) ::= (Program Name Line) (Body) (End Line>

of AMPCR
will be

*

*
>!<

MPCR

MPCR

>::

'· * ·.

>!<

(Program Name Line)::= PROGRAM \Program Name) (Start Address\

(Program Name) ::= (Label)

(Start Address) ::= ADR(Hex Address} I (Empty)

(Hex Address) ::= (Hex Number)

(Hex Number) ::= {Hex Digit) I (Hex Number) (Hex Digit)

-

(Body) ::= (Statement) I (Corr1ment) I (Body/ (Statement) I (Body) \Comment)

(Statement) ··• (Lauel Part) (Line) (% Comn1ent)

(Comment) ::= COMMENT (Comment Words};

(Labei Part) :: ~(Laud) : i <Ewply)

(Line) ::=(Label Constant) I (Start Address) I {Insert) I (Instruction)

(Label Constant) ::=(Label) *(Integer)

111

(Insert) ::= INSERT (Label) (Start Address)

{'ro Comment) ::"" % (Comment Words) l (Empty)
(Comment Words) ::= (Comment Character) I

· (Comment Words) (Comment Character)

(Instruction) ::= (Label Part) (Literal Assignment)
(Label Part) (N Instruction)

{End Line) ::= END

Semantics

A file containing a source program must have a (Label) or 6 or less alphanumeric
characters. Each record on this file contains 72 dat"" characters (plus eight for
sequence numbers, which is optional for the mic~otran::;lator). One(Statement) of
source program is written per reco1·d.

The firat record is the (Program Name Line) . It contains the program intr mal
name and possible a starting address for a microprogram. The program internal
name should be the same as the file name. Only the file name has any external
significance. An empty (Start Address} means start with zero for the first
microinstruction of the program. A non-empty start add:-ess becomes a hexidecimal
absolute microprogram address. TI1e body of a program contnins one or m.ore
statements. Following the body is the (End Line) containing END. Each successive
statement containing an (Instruction) normally becomes the next microaddress.
Addresses strictly increase through a program. [fa (Start Address) is greater
than the next address in the program sequence, microinstrucUons composed of all
zeros are used to fill in the locations between the addresses in the output file. A
(Start Address) less than the next address in the program sequence causes an error.

A label is defined for use in two ways. A (Label Constant} permits a(Label\ tu be
declared to be an (Integer) . Subsequent use of that label is replac~d ty the Integer.
Use of a< Label Constant) prior to declaration is an error. A label is also defim~d
upon occurrence in a (Label Part) in which case it serves as a symbo~ic reference
to a particular line.

An (Insert) is used to allow a user access to his files outside the program file.
\\'hen the (Insert) is r-ecognized, the mic rotranslator extracts from the users files
the source program whose (File Name) is given and insert::> it at the (Start Address)
in the (Insert) if present, otherwise in sequence. A (Sta1·t Address) occurring
within the body of the inserted program will act as though it were in the main pro
gr:im file. A (Start Address) in the (Program :Same Line) of the ins~rted program
is ignored. The inserted program takes the multifile ID name from the program
being translated. For example:

I~c·~J.\DfJ 1 .l\.FORCE may be inser-ted into 3. p:-cg~a?!'! named DEC\·".;\L)-' .. i\FORCE. The!'e
may be seven levels of nesting. A label may be redefined in an inserted sub
[Jrogram. An inserted program may reference a label in the program which requested

112

it provided the la.bel has not (yet) been defined locally. The most local current
definition of a label is used. If labels are not defined during a subprogram the
translator assumes they are at a more global level. Labels referenced but never
defined result in a warning list of undeclared labels. Caution: Forward jumps
within a subprogram to a label that already exists globauywiU use the global label
value. Upon completion of an (Insert) of a subprogram, labels defined in that
inserted subprogram disappea.-. A subsequent backward jump or use of a label
constant will use the global value, even though the same label was defined in the
subprogram.

Each instruction results in a microprogram word. Any instruction may be
labeled as a symbolic reference for control transfer. Althoug:t transfer to a
(Literal Assignment} is permitted it should be used with caution.

Comments - In order· to indude explanatory material at various points in a program,
two conventions exist as defined.

1. COMMENT {any seqt1.ence of comment characters except ";"};

The comment statement acts the same as a '';" and may appear
any~M>re a";" may occur if within a iine uf program. As multi
line documentation the ";" terminator indicates that the micro
translator should resume proce3sing code. Always follow a
comment statement with a";".

2. % {any sequence of comment characters until end of line}

All con~ment characters after the % in a line of program are
ignored by the microtranslator.

Comments are for documentation purposes only. They appear only in the source
file, are sigdficant only in listings and de not affect the machine language
generated.

Example

PROGRAM READIT

Devict· *3

SANDY: Device" LlT; COMP 13 SAR% LIT 3 and SAR= 19

LIT L = BRl

DLl; Al + 13001 "' Al

INSERT TESTLK

113

... ...
""'

I I , i. ~ '• In I: I.' ·•
' ":·---, ~"· ~ ·~ _,,, ... t'· ~+:- .. ':. ·-;;,' j ·. - ---· --i

~: j~;:!_·=~ ·1;,._ L ~-- ... ::i:l ·_:_~-~--j
" . .L'[· "t r-------""''JL.---·1 .. , • . l.

~~,I~ ';~r.:_~~-i. --.~-- -~-~~~·,1::.l;I~~ -~
"11"111.1•1!•\•.,, .• ,,1.1 .. 1 ,.:•r.,·I
• 1·,., 1 .. ~ 'll•"'''·•'l"h ~. 1 .,,•J It•· .. I• r I ,, , l•·r w' I' •

· ' :· '~ I '~' , "'~ \ • ,. •. "' , .. !·: ',: I' \', •• • ,• 1· ,, , • , ,
i,,,..,,:..•.,•;•.r.

f'•r.-nlho·:11P>1 "~:r·"Hll<l 1.:.•a<! •. 1l .· 1 ,.1,1•-.
prr.._ L'''" • 1~ <,•f.•1,lf

. ,
rl !1
'J J I~

0'
I
I

" ' I! I I
IJ .,

I 'I I

I,,

' '

H:•• n,j.~ ••1r1r.lUI• ;, L" •• r·.inrr: •·c·:•·:
1-• ~ i .onol r"'qu•r"" l,11 •, • 1• !"I• .r
~. :- : ~' ', .. lr \If' y ,1,, ..

1·.1
I.·'

\ :·w, 1 ~"'' .,· ,.,. • ~ ,• ··~:·•·• r ,,• • ~

f:J Jo I'< ••:l'l"•-!o ',,I.•

.... ' :~· ... :

U•-··· .. ,
~ " ' • 1· 1 •, , • , ~ · .I I

"·

111, ,1. 1)1' l•'•'•l•d'
.,,,.,. :1·1·11,.il.

.1•·.' :1 . .,1·

!.I I•'
~~ I 1 •

l!l.•!,!<,I
•!: ".i

·1.. i
~ j : I '

•I: I.·:

·.:1
:'-1

·.t ".

' . ' ' ~ .. '

~. ."1

•, ~ ;. '

.:'.'\ .'

\•H•:
I} \ .·q~J_, . . ~ : ;,/,

~ .:' ~ :: , .
t;•I•!

~···
~?.

.. - :,_;
' ~.·'

'; ;,, ' ~r,,Li•l•lri I Lr

•Li "'· • .. ~ <:'lo'p1o·~ ir"

: '
I•
.· ..
'·
l';. .,,

1, r 1 •r .r.~·••,r. ,. •1•;,",•[.\V, ;•.,.,.. 4:!p-;: •'•<>:i.'. ,,.,. ,\fflt'~r,r. :;!,

.. :..:._.!.:..

J:.·,·:·
i.-••!'
i''•"'\I•

·,.

:...:.~
.:•:• l·

I • '' ~
.·.~ H, ~ , \•

\ ' ' I I" ' \1 ~ ~:
.,.~·. \'11•

.,, \\)!·:

•:'I I ·<:' ~ .. r ':- • ' '.\~: rl
~· I , 1,' ' '•r.• • \' \ : ~

.:••' • r ... t: 1 • •

Figure 4!l, Detailed Nanobit Assignments

0 Udl'l:K ln.r11t :'"'111'11 !lSW

'(1;1 (:bliq'll'

.\~J"CH.

EZ1_ 045: ~ M .. m (>!•'o' .\drtll'"'9"' triput

:rlr> Cti..ngl"
L'lotAR J"rorn LIT
'.'.1'\H 1-'rom DSW
KR2 }'rr-m ASY.'
M'\t:! rrom f!SW
RRI }'rum U.'\W
M!\tll F:i-om l::!SW

~~-~ CD•.m~•r 'nPUt

Ii 0 ~Q Ch•nJtl'
l.lTR Pr»mL1'r 1

l."t H •·rrun esw'
1~

(JTit•• t'Ol'!'tfll.-mHll

r-----,
I 4r. ~o : Si\ K Input

?-.a\: . .,.rLi:"
LSAM c .. mpl"'m"n~
~"!{ t·r,1ni l~W

~~ ~..! s:~ ~ 'J~rn rw ... OJl·Mi.10P

"" <.: 11~.~f(C"
l.il:d 1 .. ia• l'P~1•
~1111 ~~fl'\ nr:~•' :uRl)
J.111.! '\t.-n• Hl'A1 (8Rill
I.II~ L.,1)·~ :-,;11r1or-1.,rnc11:•1•
l.IWl \!"'"' w .. ~,,. 'IHll
MW: :\I• !'Tl Yid'I'~ lt'IJl;:'l
l>t.1 (>•'V, !AC'' 1neu

) ' LH.l U··~. i .. ,.,.i.: Otlr:'!I
Lill ., .. ,. ltl"&d UtR!I
oH: ;:i. H,.,ul lllH21
il 1 ·~ U .. Y, 1·n1l1rll U:mJ~
t••! ,,,..,., Unl1oc:k IRl\21
ilWi i: Wri1 .. mkll
l>\\: 1!1'"· IL'l"il .. lblk~I

•;:~- ·, i.-~ ~· ;t•r··,(:,· ,.,,. ~·· toLI• ,.! :WIH

COMMENT The routine TESTLK tests to see if device is
locked to Interpreter.

SANDY - 1 = AMPCR

J.UMP;

END;

MICROPROCRAMMING EXAMPLES

The Intel:l>reter microprogramming reference card (Figure 49) speciflcs the use
of each of the MPl\1 and Nano bits and defines the meaning of the mnemonics found
in the microprogram examples.

Three simple examples demonstrating the microprogramming of the Interpeter
are shown: in Figure 50 - Binary Multiply, Figure 51 - Fibonacci Series
Generation and Figure 53 - "S" Memory to Micromemory and Nanomemory
Loader (S to M Loader). The comments serve to explain the function of each
microinstruction step. Figure 52 shows the microtranslator outJJUt (1 and 0
patterns for MPM and Nano) for the Binary Multiply example. The S to M Loader
is described in more detail in the next section.

115

Assumptions

(1) Sign-magnitude number representation

(2) Multiplier in A3; multiplicand in 8

(3) Double length product required with ri»ulting
most ~ignificent purt, with sign, in B and least
significant part in A3

1. Al XOR e- ;ifLC 1

2. Borr- A2; if MST then Set LC1

Comment: Step 1 resets LC1. Steps 1 and conditional part of 2
check signs; if different, LC1 is set.

3. Booo-s. LCTR

Comment: Steps 2 and 3 transfer multiplicand IO sign) to A2
andclarB.

4. "N"-LIT; 1-SAR

Comment: Steps 3 and 4 load the counter with the number
(N "' magnitude length) to be used in terminating the multiply
loop and load the !hift amount register with 1.

5. A3 R-AJ; Save

Comment: Begins test at least i:Jit of multiplier and sets up loop.

6. LOOP: If not LST then BOTTc-e skip else step

1. A2 + e0nc-e

8. A3 OR ByooR-A3, INC; if not COV then jump else step

Comment: 6 through 8 - inner loop of multiply (average 2.5
clocks/bit).

9. If not LC1 then Borr - B; skip else step

10. B1TT-B

Comment: If LCl = 0, the signs were the same, hence force sign bit
of result in B to be a 0.

11. END

Figure 50. Binary Multiply

116

Aslump1ions:

A 1 contains starting addrm for storing of •iel

A2 llDfttains 1he numblr-tint 1he '-llh
of the -- to b9 COlllpUt9d

1. A1 -MAR1

Comment: Load startint 8ddrea of •ies into address "'9lllar

2. 8ooo - B, MIR

3. Boo1 - A3; MW1

Cammmtt: Load initial .-.nant of •ill (0) into A3 ..t MIR end wri18 it
into sta1'ting lddnlls. Load second ...-..t of •iel (1J Into B.

4. A2, CTR;SAVE

Comnwnt: Load counter with length of series; the counter will b9 lncratnflntad
for aech gimeration of an element of the •iel; COV will signify
completion. The SA VE llts up the loop.

5. LOOP: If SAi thmt A1 + 1 -A1, MAR1. INC, Stap ... Wait

Comment: Set up the next ~ and int:111ft*'t c:ount8r

6. A3 +a-MIR

Comment: Generate new element in •itl and place in MIR

7. B --A3; BMI, MW1; If NOT COV then Jump el• Step
Comment: Write new element into next eddrea

Transfer i - 1 element tD A3
Transfer i element to B
Test coun'bll" overflow for oompletion (go to LOOP. if not done)

8. END

Figure 51. Generation of Fibonacci Series

117

000 PROGRAM BIMUL T;
100 A3 XOR 8 = : ; IF LC1;
200 BOTT'"': A2; IF MST THEN SET LCl;
300 Booo = : a. LCTR;
400 N = : LIT; 1 • : SAR;
500 A3 R = : A3;SAVE;
600 LOOP: IF NOT LST THEN BoTT C =: B; SKIP ELSE STEP;
700 A2 + BOTT C "' : B;
800 A3 OR BTOO R = : A3, INC; IF NOT COV THEN JUMP ELSE STEP;
900 IF NOT LC1 THEN BOTT"' : B; SKIP ELSE STEP;

1000 BlTT: : B;
1100 END

0 NANO ADDRESS"' 0 0000 00000000000

J 5 13 16 n 18 19 . 21 23 29 30
1 NANO ADDRESS• 1 0000 00000000001

2 5 7 8 9 10 13 16 21 23 30 35
2 NANO ADDRESS• 2 0000 00000000010

13 16 30 39 48
3 SAR"' 1 LIT""O 01 0000100000000

4 NANO ADDRESS= 3 0000 00000000011
12 15 17 18 30 33 36

5 NANO ADDRESS .. 4 0000 00000000100
2 4 6 12 13 16 2.1 23 30 32 33 39

6 NANO ADDRESSa 5 0000 00000000101
13 16 17 21 23 30 ~2 33 39

7 NANO ADDRESS- 6 0000 00000000110
11 16 17 18 19 28 30 31 33 36 47

8 NANO ADDRESS= 7 0000 00000000111
3 6 12 13 16 21 23 30 39

9 l\;ANO ADDRESS= 8 0000 00000001000
13 16 19 20 21 23 30 39

Figure 52. Microtranslator Output

118

PROGRA~ STOMLO
OffSET • ZO 'I OFFSET BETWEEN PRIME AND ALTERNATE COPY

'I L<'.>AD MP"I fRUH 11 su - AVIONICS SYSTEM ------------------
~ AJ: 4-!5: LAST AHPCR; 16-31: MEM ADOR; 3z: HALF WO
I A2: l-!6: START AORI Z3-32: PRES AMPCW VALUE
'I LOAD A~ ANO Al FROM OVERLA(TABLE <LIT VALUE)
'I BR2:couE AREA SRl! PWA Of TASK

STOM: B L= A3'1'1
COMP l=SAR t
'I --~- Al NOW LOAOED ---
Al L :: iz, 'I
17 =: SAR I OVER-l=LIT 'I
A2 AOO LIT = A21AMPCR I

SMLOOP: AJ R =: 8R2, MAR, 8
1 =: SARI 3 :: LIT 'I
MR2;LCTRI IF ROC 'I
IF ROC THEN Blll =:, BEXI
BMFAIL -1 =: AMPCR 'I

CLEAR A2 12 LST (AMPCR)

LOAD AMPCR
3 :: CTR fOR NANO
READ NEXT MEH HALF-wD

SKIP ELSE WAIT l.

If ABT THEN AJ :: ELSE JUMP ~ TEST FOR HALF WORD
If NOT LST THEN d R =: B ELSE SKIP ~
16 =: SAR Ii
B =: HIRtLCTR 'I
LDMI EXEC % LOAD MICRO
B R :: B 'I
ll =: SAR, 31 =: LIT 'I
B ANO LIT •: B 'JI
Bfff "': 'll
LDNANO -1 :: AMPCR 'I.

TEST FOR FOLLOWING NA~O

If NOT ~BT THEN ~ lQV LIT = B ELSE JUMP i
l6=LIT 9. '
STEP ;,, TEST FOR 11 DONE 11

B ii
0 =: A"PCR 'I JUMP TO "l" 1F OONE
IF NOT ABT T~EN AJ + 8001 =: Al ELSE JUMP ~
SMLOOP -1 =1 AMPCR ~
A2 + 6001 =: A21 AMPCRI JUMP ~

LDNANO: A2 :: AMPCR ~
Al + 8001 =: AJ 'I
Al R :: 8, BR21 MAk 'l
1 =: SAR 'l
'4P2& If RDC l.
IF ROC THEN Blll ::, BEXt SKIP ELSE WAIT ~

6MFAIL -1 s: AMPCR ~
If ABT THEN AJ :: ELSE JUMP i
If NOT LST T~EN d R :: B (LSE SKIP '
16 =: SAR i
CTR R =: MAR f,
COMf' 9 :: SAR 'li
8 :: MIR• INC \
LONI EXEC 'li LOAU NANO
LONANO -1 :: AMPCR 'l
IF NOT COV THEN JUMP i
SMLOOP - l •: AMPCR i
A3 ADO 800l=AJ I '
A2 ADO B10l = A2tAMPCRIJUMP~

BMFAIL: A2 k~Bt 'I SHIFT Off MAR PART
l6=SARIOfFSET=L!T ~ AND HALF WORD COUNT
STOM-l:AMPCR 'l
B ADO LIT BS JUMP\
OVER:

Figut·e 53. S to M Loader

119

AS'4-0
ASM-0
ASM-2
ASM-3
ASM-4
ASM-5
ASM-6
AS'4-7A
ASM-8
ASM-9
ASM-10
ASM-ll
ASM-12
ASM-13
ASM-14
ASM-15
ASM-16
ASM-17
ASM-18
AS,..-19
ASM-20
ASM-21
ASM-22
ASM-23
ASM-24
ASM-25
ASM-2e
ASM-28
ASM-29
ASM-30
ASM-31
ASM-32
ASM-33
ASM-34
ASM-35
ASM-36
ASM-37
ASM-38
ASM-39
ASM-40
ASM-41
ASM-42
ASM-43
ASM-44
ASM-45
ASM-<t6
ASM-47
ASM-48
ASM-49•
ASM-49A
ASM-50
ASM-51
ASM-52
ASM-53

SECTION VIII

MULTIPROCESSING CONTROL PROGRAM
AND DEMONSTRATION PROGRAMS

CONTROL PROGRAM

The control program for Multi-Interpreter-Systems is a simple yet comprehensive
operating system which is characterized by the following capabilities:

1. Multiprocessing

2. Error recovery

In previous multiprocessing systems, I/0 functions and data processing functions
have been performed in physically different hardware modules, I/O modules for
the former and processor modules for the latter. In the Multi-Interpreter System,
however, 1/0 control and processing functions are all performed by identical
Interpreters, and any Interpreter can perform any function siinply by a reloading
of its microprogram memory. Thus input/output operations become tasks which
are indistinguishable to the control program from data processing tasks except
that they may require the possession of an I/O device before they can begin to
run. Whenever an Interpreter is available it looks through the scheduling cards
and runs a task. which may be an I/0 task, a processing task, or a task which
combines both processing and I/O functions.

The control program includes an automatic error detection and recovery capability.
All data is stored redundantly to ensure no loss of data should a failure occur.
The control program maintains this redundancy, and does so in such a way that
each task may be restarted should a failure occur while it is running.

121

The plans for the development of a full scale operating system for the Aerospace
Multiprocessor are described in U.S. A. F. Avionics Laboratory Technical Report
AFAL-TR-72-144 (April, 1972), Aerospace Multiprocessor Executive by Sandra
Zucker. A building block technique was developed for this software architecture in
order to accommodate the requirements for changing computer activities as well
as changing hardware modules. The system software was divided into functional
modules that could be linked into a system after each module had been independently
validated. Descriptions of the executive modules defining scheduling. resource
allocation, error recovery and detection, reconfiguration, and file handling are
included in the report.

The control program delivered with the aerospace multiprocessor is a quick,
efficient, and easy to debug, method of demonstrating the multiprocessor. It is
not a fully automatic operating system with complex functions such as the one
described in the report referenced above.

System Loading

Initially, the tasks in the system are allocated fixed program areas in S memory
which are loaded from cards by the Program to "S" loader. (A description of
the program to •:s" loader is given later in this section.) All input to
the system is loaded redundantly for error recovery purposes. The programs
include a method for detection and recovery from memory and Interp..-eter failures.

The location in S memory of the microcode for each of the demonstration tasks
written for the aerospace multiprocessor and the location of the alternate copy of
the microcode for these tasks is shown below.

Location of Alternate Location in
Program Microcode Microcode System Table

Plot 0300 3300 (00)02

Program to S load OECll) 3EOO (00)03

Mortgage 2000 5100 (00)04

Sort 0600 3600 (00)05

Matr-ix multiply 2500 5500 (00)08

Matrix print 2800 5800 (OO)OA

l\'iemor-y dump 1000 4000 (OO)OC

Control program OHOO 3HOO

122

A system task table is developed in segment 00 (segment is 256 words) which
contains an entry for each task available to the system. This entry contains the
time by which a running task must be completed before the system decides there
is an error. An alternate copy of the system table is developed in segment 30
for error rec9very purposes. This alternate copy is updated as the primary copy
of the system table is changed.

After the tasks are loaded into S memory, each Interpreter's microprogram and
nanomemories are then loaded with the control program microcode (See Figure 54,
a block diagram of the control program}. The control program in an Interpreter
initially tries to lock to the card reader. If it does not succeed, some other
Interpreter is using the card reader, and it waits until it can lock. Once lncked
to the card reader, the control program reads the cards which initiate a task
and places their contents (eight 4-bit hexidecimal characters} into selected words
c" S memory as defined by the card format. Each input card contains the hexi
decimal characters to be placed in S memory and some contain the address where
these characters are to be stored. A card that does not include an address ("-O"
card) assumes that its hexidecimal input will be stored in the next consecutive
address in S memory following the previous input card.

Card Format: L}.'XX
oxxx

AAAA XXXX HHHH
0000 XXXX HHHH

HHHH
HHHH

The 11 L" card indicates that AAAA contains the hexidecimal address in S memory
where the hexidecimal characters HHHH HHHH will be stored. The X characters
indicate letters and numbers that are ignored. These may contain anything but an ''N".

The "O" card indicates that HHHH HHHH will be stored in the next address in S
memory following the previously stored word.

One input card is a control card, specified by an address of 0001, which gives
the ~ask number (which is the location in the system table of the task control word)
of the selected task as well as the starting address in S memory for the micro
code for that task.

The format for the control cards for the demonstration programs written for the
aerospace multiprocessor are given below, where T indicates the task number
(location of the task entry in the system table) and SS indicates the segment number
for the location of the microcode in S memory for that task.

123

BLOCK DIAGRAM
CONTROL PROGRAM

READ DA TA AND
PARAMETER CARD;
IF TASK NUMBER EVEN,
RELEASE CARD READER

GET TIME

LOCK SYSTEM
TABLE

TASK
SELECTED
RUNNING

YES

NO TIME+ RUN
TIME -

TASK TIME

TIMF >TASK~
TlME /~------'

NO

UNLOCK
SYSTEM
TABLE

UNLOCK
SYSTEM
TABLE

LOAD TASK
MICROCODE

RUN
TASK

Figure 54. Control Program Flow Diagram

124

Program Looo· 0001 xxxx TOOO ssoo ---
Plot LOOO 0001 xxxx 2000 0300

Program to S LOOO 0001 xx.xx 3000 OEOO

Mortgage LOOO 0001 x:xxx 4000 2000

Sort LOOO 0001 xxxx 5000 0600

Matrix multipl.} LOOO 0001 xxxx 8000 2500

Matrix print LOOO 0001 xxxx AOOO 2800

Memory dUillp LOOO 0001 xxxx cooo 1000

All other input cards are parameter cards for the task and are loaded into a
portion of the work area for that task.

An "N" card is the last card that indicates the end of the selection of a single task.
The "N" card must contain a single N.

Upon detection of an "N" card the control program stops reading cards and uses
location 01 of the system table to get the task number of the selected task. An
even task number will cause the card reader to be unlocked, freeing it so that
other Interpreters may use it. An odd numbered task requires the card reader
in order to read its own data (e.g., sort cards for the sort task), after which the
card reader will be unlocked. This contention between Interpreters for use of the
card reader and running of tasks is shown in block diagram for the multiprocessor
system in Figure 55.

Task Execution and Monitorin~

The task number is used to select the task control word from the task table. The
task table is locked befo1·e a task control word may be examined or changed, by
using the global condition bit in the hardware. A task control word of zero defines
a task avail~,ble for running. A non zero task control word implies that another
Interpreter is performing the task, or that the task is hung up on another Interpreter.

To check for a task or Interpreter failure, the real time clock is read to obtain
the current time. The current time is checked against the !ime in the task control
word which is the upper bound time for the running of the task. if the time in the
task control word is less than the time on the real time clock, the task is con
sidered hung and the Interpreter will treat this task as a task available for running.

125

STARTUP

•-
"PROGRAM TO S LOADER"
INTO AN INTERPRETER
USE TO LOAD MICROPROGRAMS
INTO "S" (MAIN} MEMORY

LOAD CONTROJ, PROGRAM
INTO ALL INTERPRETERS
(lST ONE READY WILL LOCK
TO THE CARD READER)

•
INTERPRETER LOCKED TO CARD READER
READS PARAMETER AND DATA CARDS
IN DUPLICATE INTO ''S'' (MAIN) MEMORY.
REST TRY TO GET CARD READER.

j

AT N CARD,INTERPRETER PER
FORMS TASK INDICATED IN PARA
METER CARD. RELEASES CARD
READER WHEN FINISHED WITH IT.

1 SYSTEM

NEXT INTERPRETER RUNNING CONTROL
PROGRAM LOCKS TO CARD READER

SINGLE
INT ERP. -

AT COMPLETION OF
TASK;CONTROL PROGRAM
IS LOADED INTO
INTERPRETER

Figure 55. Multiprocessor S:,.rstem Flow Diagram

126

When a task is still running. and the tiln(on the real time clock is less than the
time in the task control word, the global condition bit is reset. Then a new reading
is ma 1e of the real time clock value. The task control word is again tested after
locking the table. This process continues until either the time for running the
task elapses qr the task is completed by the Interpreter running it.

Wben a task is available for running, a. maximum. run time value is added to the
time read from the real time clock and the sum is placed into the task control word.
The global condition bit is reset (unlocking the table) and the microprogram for the
task is read from S memory into the Interpreter's microprogram memory. The
task is then executed. A task which uses the card reader (an odd numbered task)
must release the card reader as soon as it. has completed getting its data.

When a task ha~ been successfully completed by an Interpreter. it resets its task
control word to zero ar.d loads the control program from S memory to micro
program memory. To determine the next task, the control program again reads
the cards from the card reader.

All information is stored redundantl:v in S memory. (See memory map in Figure 56.J
Wnen a memory failure is detected by an Interpreter, whi~h will affect the running of a
task. the Interpreter will reload its own microprogram memory with the alternate S
memory program. This program is identical t'lthe prL-ne microprogram except that it
uses the alternate work al·ea and data sp;;.ce as input instead of the prime areas.

Tue detection of a memory failure during the loading of the prime area of a task
or the control microprogram will ~ause the loading of the alternate area cf the
required program instead. All cards read using tne control program will be stored
redundantly in S Memory.

S to M L.oad er

All tasks as well as the control program contain a subroutine: (S to M loader)
whicli can load microprogram code from S (main) memci·y to n.icroprogram
memory and to nanomemor-y. This subroutine (see Figure 57) is bypassed when
a •ask is initiated. When the task is completed or an t:rro r is detected, an address
is placed in the B register and control is transferred to the S to l\l loader which loads
code into that part of microprogram memory and nanomemory that is not occupied
by the S to M loader. \I/hen it detects the end code (O~E in the most significant
bit of the microinstruction and ZERO in rest of it) it stops reading and jump:> to
the start of the task just read.

When a task ends, it puts the address of the control program into the B register
so that the next task may be selected and executed. lf a task has :i.n error, H puts
the address of its own alternate copy into the 8 register ~or restart Lf a task is
too large to completely fit into microprogram memory and nanomem0r.\-, ;:,;.t the
con,pletion of the first or intermediate part oi the .ask. the addres,; of the next
part of the task is put into the B register. The task then passes control to the
S to :\1 loader s~broutine for loading the next task or next part of the same task
to he executed. This procedure is shown in Figure 5~. The microcode f;Jr the
S to :.01 loader is shown in Figure 53 of Sectior. VII of this report.

127

N

°"

Segment 0
No. 1

2
3
4
5
6
7
8
9
A
B
c
D
E
F

10
11
12
13
14
15
16
17
18
19
lA
lB
lC
1D
1E
lF

I

I

Module (Module = B. 192 words; Segment = 256 words)

0 \Segments 00-lF) l (Segments 20-3F} 2 (Segments 40-5F)
·---,---

S_y_stem Table Mortgag_e W,..._~k Area Dump Memory Microcode
Plc.~ Work Area Mortgage 1~, icrocode (Alternate)
Sort Work Area Data Cards
Plot Microcode

Matrix Work Area

I
Input for Sort

Matrix Multiply (Alternate)
Sort Part 1 Microcode Microccde

~ Sort Part 2 Microcode Matrix Print
Microcode

Control Program Microcode Matrix Print Work Area
Matrix A Data
Matrix B Data

Program to S Loader Matrix C Data '

Microcode
Dump Memor:r Microcode Alternate S_.Y..stem Table Alternate Mor!.g_~e Work Area

AHernate Plot Work Area Mortgage Microcode
Data Cards Alternate Sort Work Area (Alternate l
Input for Sort Plot Micro-::ode

(Alternate) Alternate Matrix Work Area
Matrix Multiply

Sort Part 1 Microcode Microcode
(Alternate) (Alternate)

Sort Part 2 Microcode Matrix Print
(Alternate) Microcode

~Alternate , ____
Control Program Alternate Matrix Print Work Area

Microcode Alternate Matrix A
(Alte mate) Alternate Matrix B

Progr·am to ~~ Loaner Alt&rnate Matrix C
Microcode (Alternate)

Figure 5(i • Memory Map

START ADDRESS +
3000- START

ADDRESS

START ADDRESS -
<\DD RESS

,-~~~-;VAILABLE ADDRESS IN
~ - MICROADDRESS

.---~.-r~-------

Errml READ ADDRESS - GET L
-~EXT_MEMORY_'!ALr'WO~~-------------------~

~;.l\DOK
l,N_'C_R_E~ENT AD_D_R--ESS -1
L_ '_B_Y_~Ayw~_RD __ ~

II LO~ H;~F WORD l~TO
. MICROADDRESS

RST 5 FffiST 2
OF HALF NO BITS Of' !{ALF NO

~~a·::·,,)'---------i wo~; ;o r--------<~

-Fl::! YES

~~~ l---~;6~ 
LOAD~D 

1. -~-c ___ RDCODE 
~i~~~E~~~ J --L __ :- NANO 

--=- J ~=-
1,RE~ -~DDRES8 ~--------
LEXT HALF wo~_f --- -i--
~~:ENT-~~f)RESS I 
~l.:i-OORD 

1cr.; ~ N'-'O I 
~RT 

~
-

P.A LF WORD - NANO -
TABLE (NANO PART) 

CTR - 1-• 
CTR 

NO 

CTR< 0 __ __/ 

Figure 57. Load Microprogram Memory from Main Memory 
Flow Diagram 

129 



EXECUTE 
SPECIFIC TASK 

COMPLETE 
O. K. '? 

NO 

NO 

YES 

LOAD ALTERNATE 
COPY OF PROGRAM 

LOAD CONTROL 
PROGRAM AND 

EXECUTE 

LOAD NEXT PART 
OF PROGRAM 

Figure 58, Task Control Flow Diagram 

1.30 



DEMONSTRATION PROGRAMS 

All the demonstration programs are microprogrammed and are loaded from S 
memory into microprogram and nanomemory in order to be executed. They are 
like a single la!'ge instruction on a conventional machine. Therefore no inter
pretation of S memory instructions is necessary in this demonstration. 

The demonstration programs were written to be indicative of a specific type of 
application as indicated below. 

Problem 

Plot 

Mortgage 

Sort 

Matrix 

Dump 

Program to 
"S" loader 

Type Application 

Graphic Display 
Table Lookup 

Table Building 
Simple Arithmetic 

Data Manipulation 
Data Processing 

Arithmeti.c Operations 
(Many Multiplies) 

Debugging Aid 

Loading S Memory 

All the demonstration tasks which use C:ata and parameters contain a work area 
segment. Th~s work area allows fer the storing of parameters. temporary work 
space, buffers and pointers to data or program areas used by the task. Thus, 
the work area for the matrix routine contains pointers to the three matrix areas 
as well as the paramE:ters i, j, and k. Changing any of these parameters or 
pointers will change what is executed by the task. The locai:ions of the parameters 
within the work area for all demonstration programs are shown in Table V. 

Memory Dump 

The Memory Dump routine prints all the contents of S memory without changing 
or disturbing any of the memory locations. Each 32-bit word in S memory is 
printed in a format of eight 4-bit hexidecimal characters. The words are grouped 
into an address followed by eight words of memory and then printed as a line. 
If a line is identical to the previous eight words printed then it is omitted. The 
memory dump is a debugging ::i.id used to detect changes in memory. An example 
of the output from a memory dump appears in Figure 59. 

131 



Table V. Demonstration program parameters 

f Location of Parameter Description I 
Program Parameter and Example Parameter Card Format 

Plot 0114 Starting angle o0 LOOO 0114 0000 0000 0000 
0115 Ending angle 360° 0000 0000 0000 0000· 0168 
0116 Delta (degrees between 0000 0000 0000 0000 0001 

pts) 1° 

Mortgage 2014 Princi.pal $22, 500. 00 LOOO 2014 0000 0225 0000 
2015 Rate 8.50% 0000 0000 0000 0000 0850 
2016 Payment $ 250.00 0000 0000 0000 0002 5000 

Sort 020A Read card deck YeH °' 0 LOOO 020A 0000 0000 0000 
No = 1 

020C Segment loc. of cards LOOO 020C 0000 0000 0012 
in mem 12 

0214 Number of char in key 20 LOOO 0214 0000 0000 0014 
0215 Starting character o.i 

key 10 0000 0000 0000 0000 OOOA 
0217 Direction of sort 

descending :: 0 LOOO 0217 f1000 0000 0000 
ascending :: 1 LOOO 0217 0000 0000 0001 

-
Matrix mulUply 240C Location matrix A 2C LOOO 240C cooo 0000 002C 

2400 Location matrix R 2D 0000 0000 0000 0000 0020 
MatriJI: print 240E Location matrix C 2E 0000 0000 0000 0000 002E 
(24 changed to 2 Bl 

2416 ,J (index) 8 LOOO 2416 0000 0000 0008 
2417 r (index) 10 0000 0000 0000 0000 OOOA 
2418 K (index) 12 0000 0000 0000 0000 oooc 

·-



'nn' nnnnnMn rnon1nnn nnnnnnnn llnnnn·nll nnnnnnM nnnnnnnn nnononnn llOQOllllOn 
~n.n'4 onnnonnn nnnnnonn nnonnrnn nonnnnno <;R~.~OllCQ nnoononn nnononr1n 11nnonon' 
nn1n 11nnnnnon nnnn'lnnn ~nnononn nnnnnnoo nnnnnnn• nnn11nnnn onnnonl!o nnnn11nnn 

n '"" 
Moooo1r r•OlM04 Mnonnnn ncn nnoo'I n~q1nonn ;>01)11700\ OP.Of!lO?I ?} non i" 

nln• on'.l~onq;> n::>nn1ron 2171104? no1ronJo nn<i?n •nn nrnn?.J71 1n11~n•1" ?171lOP.4 
nl\O n•11'4014 OO?O?OO'I on~4nnno Ol'Oflnn?I ai;io<inoni. n11nnn.nn11 OO??~rOI! JF'04071)~ 

nll• nnon;>IA<; 11n;>11;rnF ~1<l:>nonn nro~nn?4 ;urnqno4 ?noonoo11 on?.',4RC9 ?AO<;) 01)~ 
n 1;>n nnOOF700 o•;>?nn?I\ t'\~0 .. 0)'10 nnnnnf.on nn,?7'1Rnq .. ornnnn onnn~nc;r Oll?A4Ai:'I 
n1?1> ?•O'\o:>on nnnn::>M14 ~o:><i?~\<l nc:;114n non nr.nnnnn 111ri.ono4 noont1nn11 (10~R71r<l 

0130 nnciiooon "nnni;<;M nn::>roooc:a ?A040<"00 1<nnnnn?n nn24FA04 1.-nonoon on?f:noo9 
n lJA OO<l1000ll "nnn1,o;n 1 nn;>F"?r:nQ ?Ml40 .. ll0 A00000'.10 nr,JRF'A04 JF"nnoonn nn31111ro 
0140 ?0040'"110 nnnnA4111 nn1;>:>r1<1 rooo;;1 n11n 0'1(\Rlll\11 nfll)O;>o O'i 0?1100000 nn,411fi A 
014• 11'0400011 ono ""' ,.., no1o;;1,rol' .. &04l7110 n11onnA"'i ioooor131. O!ln'lF ~04 ?0001101)~ 

;11r;o :>J?.<101137 on1~onr,4 noo11nnnn ;>orJi<;nCf> on10110;>4 l\OQ?4000 nnononJq RAQqf)()q? 
r!1<;A ooooor.oll 1,n;>1 ()01• AAO<l2604 1 nnnniinA OIH)7?1 A'I nnP6COI' 011C1;:inonn Arnn lo•<\ 
111"'0 001r<1111::> ?•04n•nn '!)On<;ll'll no1n11,0P 011041\nllO 0 ?) AllO'.lF" Of:?.O?A!O O?OflOCf\11 
O'H1A nn1rnnoo rnni;;qnon P.04011040 onn<1r:n04 ooonnnon on4fnnnq rnO'i<IOIHI 000114;>4<; 
11170 1\114~000'1 rnA?nnnn 11r400041 n•o<ir~n4 q;>nonl\nA 111;4-'fAllnf; l'l'IOlOOn O'iOO'iOn1 
017A OM7;>1i!r; l)Ol,<;i<,FlO<" 1100400"1\ noonon4i> A40J?405 A~OO;>OO OA1370AC no4??11(;~ 
n1•n ,. ~040000 0'\00 I nor fln4P.ll~OQ n•~n,no n:>nnf\114"' ?~7rM1;>r ll04Q'lRO<l 000400fln 
111AA OOIR0044 9(') A 1f'"04 f!nnnnnno ?IA<;na45 004~?71'! :;'~fl4)0M on110004i: IHl09AOO<; 
111911 4>1111004A '5lOQM4n AROQ?.a04 P?onnino M41"'iRr.Cl j:;o4nonn nnon?nA<; on1o~11~I <l 
01QR 00041 OM ri11on nno;;n ?'l;J4~00<; eoononoo nns1nnoq ROOc:;LIO-Oll OOOOF100 oH!s;;>440::' 
nun P.OO<;A401l O;>onnnc;1 4R!QF"A04 1 ~nnnn40 onc;4no1~ ~aor;q4nn nn4nnor;o;; MOQF",,07 
niaR '!40111)040 on'i~RR''I nc;n7q;>no nonnon"i7 nn:>4Rno« 84000~011 oos;•3Al)Q ~l)n4noryn 

111<>0 OA00<;4?l OO"iQ~AQq cooc;ql)~o nnn•o•n7 ?!A<;nn<;.• ~roFnn<i? nnonAnon 70F"nonc;" 
'11A"I aooq;:iaoo;; A:>o11nnnn nnn11n~cr ?F"f.'"'?~04 11;>11non4n noo;;noonq ?AO'i<!FOO nll4nonoi;"" 
n1cn onoq?ooo;; "?onnn .. n ;-j1f AOnc.F' nn;;~;"n5 AOnn,.non ;>~F"~OP.51' JOA'inn6n 11no·~:>At)4 

n1C'~ 01101)11<!011 0R4'10R4• ?1<1«nn1.1 i<.rn~o,n4 1111n~n,.on ?0?.11101\?. AA(\Qq01)4 A;>OOllM• 

01nn nn,.,);>FflQ cii;o~~nnn onnnnn-.4 nnnci~•n4 ?nnnonn•• ?Ol'~FO nn ~M7?111" llA<;r?11i:-.i 
ninH 0065007"' ?oO<;•nnn AnnnonM, 1Pll'l?,05 P.nnn•~nn i;n.v.nn,; 7 QAf)QROD<; o::>nonn1 ~ 
n~F'n '14000040 ?]ASOR4<; :>on lOOl\.Q ?F('.r;>,04 nnnnnnnn n ni<,<144 or. 0<;040?Dll ~nnnnn~~ 

..... n11'A 000'1Art04 an11nnn40 An,,R11nnq uncan11n OM\Mtn,r.r nnn9A104 ?onnonon IOA<;?\71 
VJ 
w 111FO 0•1ron1.ri nnno•noo;; 4?nnoRnn i:;11c;nnoF •RnG1c;n~ nnnnnnoA OM1!'1'-Ctlll MOSR?{!n 

01F"A 00400070 ?<tOCl?AO<; ann11nn4n nM7?iAS CIA4<;:>n,-7 nn7J?RrJ'I :>Anc;•?on ooonnn1~ 

n4nn 41'?1;>604 Mnnonon ;>n.;non71 40J<lono4 "Ononnnn nn7"?Rl<t c;c:;!l11nnnn ononno7<i; 
ni.nR ?4trc;o;ni. nnnnnnno ~n7~7'1?1 nnn4nnon nnonnn77 1n:>10on4 OMf\OO(ln 9Ann:>\7o 
n.:. In no1Pnn?4 nnn4nonn nnn~on7Q llnOQ!'"~i;iA n::>nn n11nn 740 .. 0F\4 l 01176140'1 !'i040Mn 
:141R nnonl'no11 nn7R"'"?1 n oi.n.-on Mnnnnoo M7rnn4'l ;>~04A(00 OA400070 n11~i.?An<; 
ni.;>o Rl'11nn11n11 nnn '"II~ AOO<;O?nn 004~<;41•4 on7~'lROQ ?•n4nnno nnnonnAO 41>i:QOi!n4 
04?!> cinonnnnn nnin 11nD Al)Cl)O?nn Mnnr1no M"?nnoci r-<;l)~~on11 noonn~Ai 1r.;>ino;n1, 
11410 1nnnnnnn llllR4111111Q nn'l?O;>no 0011n1ni:;• i"]OQOAA? nn,.<;7!'"41' ?A(l<;O?nll 11nonno11~ 

041R OllO<ln<;04 nnnnnnnn llOR774M> 1'1~o"n'no nonnnnA~ nn?4 I o;;o1, 1 nonnnnn OM9;>Jr<> 
11440 :>A<i?n;>nn nnon no•" nno<in<;n4 nFononnn nnRi:t7rni:J ;>on<;o;>no noonnnl!C 1A1Rll<;n~ 

044P O?OOOMO nnAnnn:>4 nc;n~1nnn nnonnpAP nORl'nnn<i rOO'\A?Oll 00004204 OOllf'AM'I 
114'i0 l\404000i1 or4onoqn APllQ?4114 Rnnnn~n~ Oll'l)A('!A JF"04<17{l0 ll?OO;?JI><; ••A45F"Oon 
fl45R onq::>Ai.01 ?on<;o?nn o;>nnn"'"" C".OOllOonC 1n3a11nci1 :>r:1q1 'i90 nnn11F1n11n ~0040f)OQ 

n4~0 :>A'l;>nnnn 11nnnnn<l« nnnqrn114 n?nnnnnn 11nqf,nnnci l'<Q1A;?Oll llOf)04?'iA OP•~'nP.cin 
fl4,.,. o•ql?lA'i o~4'iFnon ll~'l?OA<;~ r11nnnont 7n1A:>07:> nn<111r?1 !'iOJOf'OO nont1n119• 
11470 nn?4?A~1 Ol"nnnn110 OA?l>llO<l'l n11n<1nno4 ll~f\OflflM i:.nncM?I no<MarnP "1104071)0 
047A nno11nnqR flllOQt,00'\ r.nn1141>4n nncirr1'n'1 ;>A04?111\0 nnnnoncm nn;?440fl4 A?llOlllHin 

"""" o•nnonq.- nn<;:>nnn4 11no11onnn nnq.r .... ~4'., ll004nnnn no11n1110 I n11All1A411 nMJAniin 
fl41lA 111on,,~01 fll!A 1 .<;Af\O 1l'04nnnn nnnn.1.,":> Q~OQ'llr"n4 n nnnno24 fl<U1,.,Atll ono4nnnn 
114qn nononnA4 <!AOQon04 nonnnnnn nnAc,~;·nr M04Mnn n11nn1nn3 OnAF.A;inq noni.nnnn 
114'lo no?r.01>q• 0AlOOOA7 c;o21onn4 '1nnflnr1n:l OllAA~ROO nnr>t.nonn 01~<':trt?n lll'l<lAOO.iio 
f\4All 000<1,0ll<; 1<nnno1>nn 1nnlnnAA <1•n<ir,on4 1M11nnn1r 11neciu1n 411040000 nrnooM•i 
1146R n•on1cio;; nnAr1irnr ;>AQ<;4011~ OAnn4nOJ flflAOflnOQ R004R;>nn IHI00700A OAOFOllAF 
01."0 i<,("fJCIOllQ:> onooRnno llOAl'QAOq Roo<;::>nnn no1rnnRn q~OIH\004 R?On'loon OAOfOA~r 
n4CIR f\111'11 Al'f)R annc:;~ooo no1rOARO (IPOFnoll' nRR l n111>n nnR?ACOq 1c;oi.onon onnMur 
114Cll nnR1Rl>)O oon4nnno 11n Jro11ci4 ftf'.?04104 40onnrnn nnr>c;cicnq Ollll40?0n 111>nn1 no~ 
n4f''.R OAOnnnRA uoi>inn4 110nnon1r (IAOllO•R7 aA1nnnn4 nnnoooryo Ol)Rlll)OO<I /I004f1Cnn 
ni.11n oo?COR'IA 1on4nor>q llOOQJt;QA n?no•nno 'IOF'lAflOOQ :>61140000 AOOOOORR 6r,nrn1oi. 

Figure 5fl, Example of Memory Dump Output 



Program to "s" Loader 

The Program to "S" loader reads cards from the card reader in a format generated 
by the Translator and places them into S memory. An L card precedes the pro
gram cards for each microprogram to be loaded to indicate where in S memory 
each of the microprograms will be loaded, and an R card is used to indicate the 
end of the Program to "S" Loading function. 

L Card LOOO 
ROOO 

AAAA 
0000 

where AAAA "' starting address in S memory for the microprogram 

Each microinstruction is stored into 16 bits of memory. If a microinstruction 
points to a nanoinstruction which is used for the first time, it will be stored 
following the micro in the next 64 bits of memory. All the micra's and nano's 
are packed in S memory into 32-bit words. Nanes that are used repeatedly 
need be stored in S memory only once. 

Microinstruction format 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 * - - - - - - - - - - - - - -
1 1 SAR - SAR 
0 1 SAR - SAR LIT 

0 0 1 - - - I AMPCR 
0 0 0 1 - - - - LIT 
0 0 0 0 0 - - - NANO ADDRESS 
0 0 0 0 1 - - - NANO ADDRESS 

All instructions except a type 1 instruction ignore bit 5. Type 1 instructions use 
bit 5 to determine whether a nano m11st be loaded (bit 5 = O) in the nano table or 
if it has been used already by a previously defined microinstruction (bit 5 = 1 ). 
A - indicates the bit can be either a 1 or 0 since it is ignored by the loader. 

Plot 

The plot routine plots the sine curve using (*) and cosine curve using (It) on the 
printer. The y axis is horizontal (since the size is fixed) and the x axis is vertical. 
Each line is printed with the angle in degrees defining the line on the left and the 
symbol of the sine and cosine plots (* and ~ ) in its proper position along they 
a.xis. The user can specify the starting angle {in degrees), the ending angle, and 
a delta (increment in degree§ between points to be plotted). 

This is a pseudo-instruction which is used to indicate the end of a program. 

134 



Starting angle 
Ending angle 
Delta 

LOOO 
LOOO 
LOOO 

0114 
0115 
0116 

0000 
0000 
0000 

0000 
0000 
0000 

AAAA "' angle in hexidecimal 
(0020 = 45°} 

AAAA 
AAAA 
ODDO 

DDD = increment in angle for each print line in 
hexidecimal (OOOF = 15°) 

An example of the plot output appears in Figure 60 . 

Mortgage 

The mortgage program produces a mortgage table which gives a list of the monthly 
payments of a mortgage and the results of each payment. This includes the pay 
period number, the amount of interest paid this payment. the amount of this 
payment used for amortization, the remaining principal, the accumulated interest, 
and the number of years of payment. The user must supply the principal, the 
monthly payments and yearly rate as input. These parameters are entered into 
the task work area via the control program. 

Prir:cipal 
Hate 
Payment 

LOOO 
LOOO 
LOOO 

2014 
2015 
2016 

0000 
0000 
0000 

pppp pppp 

0000 RRRR 
ONtMM MMMM 

PPPPPPPP • principal in 4-bit decimal digits 
(02250000 = '$22, 500. 00) 

RRRR = yearly ,rate in 4-bit decimal digits 
(0850 = 8. 50%) 

MMMMMMM = monthly payments in 4-bit decimal 
digits (0025000 = $250. 00) 

An example of the mortgage output appears in Figure 61 . 

Sort 

The Sort routine reads a deck of cares and sorts them according to the starting 
character and length of a key defined by the user in the work area. The sort may 
be either an ascending or descending sort depending on a parameter. The same 
deck of cards may he sorted using different keys and in different directions with-

135 



STNF A•ln rnc;r111e: PltlT •:::S HIF"I 111 .. rn~ r111n 

" A• l"': lf"QOU _, 
lO 1 '"' <:;TS:P~ "" .n?. + x T~I nFr.PFf'~ 

• !'IJ"f'H;>l'"f' ' ~ • (J ·" ,A ,1 ~" • c; ·" .3 ... • 1 n •! ;z ,3 ;~ . .s . ;.-; !? ·~ ... :«? •. ho .. ..... -..... ~ .. ..,. .............. 
-------------------------------------------------------------------------------------------------------------------------------" • • 

R .. II 
1 r\ • Ill 
~ .. • • 
~:> • • 
i.n • Ill 
4A II • :;,, • .. 
"'" 

,. • 
7? Iii • 
All • 
AA Ill • 
q,, • • 

1n4 ... • 
11? .. 
1 ?II NI • 
'?~ .. .. 
111> II • 
144 fl • 
p;;o .. • 
uo Ii • 
ifiA ~ • 
171, • • ..... JA4 • • w 14? • • O:l 
:snn • • 
?11'1 • • ,. , ,, Iii • 
?::04 .. • 
?3? • • 
;>41) Ill 

?4A • 
:><;ir, • 
:>;r,4 fl 

n;o • • 
:>"Ill • 
:>JU~ • 
""'"' • • 
104 • " '.tl? • • 
1?n • • 
l?.11 • • ,,,, • <;I ,,.,. • • 
]<;;:> • • 
11'1n • Iii 

Figure 60, Example ·Jf Plot Houtine Output 



PDf ... C'fP&I ii: ' 

'"'DJlll) 
I c 
? c 
J .. 

" <; c 
.. c 
7 « 
A C 
Q c 

l n c 
!l .. 
l? .. 
j3 « 
lt. c 
J<; c 
If. c: 
17 " 
ii< " jq c 
70 .. 
;>} .. 

:>:> .. 
71 c 
?4 .. 
;?<; .. .... .. 
27 ~ 

?~ ~ 

2<> c 
10 .. 
Ji c: 
17 c 
11 c 
14 c 
1<; 

1" ' 
J7 .,.. " 
1Q .. 
t.0 c: .. , 
47 .. 
4]: c; 

"" ... .. 
... c 
47 c 
411 c 
4Q .. 
.;n 
c; 1 ... 
<;;> .. , .. 
<;4 .. 

'"' c 
""' « oq C 

<;q .. 

<;Q .. 
1-n « 
61 .. 
i-:> .. 
.. , c 
64 c .... .. 
!'\"- c 
67 
6A « 
.. Q 

70 .. 
71 .. 
1? .. 
71 c 
7<. .. 
7<; 
n c 
n 
7• c 
7'1 .. 

•n 
., 1: 

., c 

;u;.non.oo 
Tl>.llr'll'<;T 

145~00 
143.r,7 
142.3? 
14~;'!7 
13''.fol 
13• .~5 
1J,r..R'l 
13'5.<;0 
134, ! 1 
13?. 71 
131. 11 
llQ.5119 
J;>A;47 
1?7 .~4 
1?<.,n 
1?4.16 
I ?l .10 
1 ?.l. 24 
l!Q.17 
llA.?9 
11 ... 00 
ll"i, 30 
ll ). 7Q 
Jt;>,?R 
1 t fl. 7c; 
1oc.?;? 
107 ... 11 
10", 13 
1n4~c;7 
101.00 
101,4:> 

q.q.R:4 
QP,. ?4 
96.64 
'l'i.O? 
q.1.40 
Qj. 1 .. 
9n.12 
AA,47 
A6.AI 
A~.14 

P1.4'i 
l'J. 7fo 
Att.~f.. 

7A. l'i 
7 ..... , 
74~90 
71.11'> 
11.41 ,-,q. ,,l;j 
.. T.811 
~iEt. tn 
64, in 
6?.c;o 
~n.1,q 

<;•.117 
'H. 01 
<;<;,IQ 
<;3,)) 
<;J.47 
4.Q,.c;,Q 

41. 71 
4<;, Al 
41.Qn 
41,'>R 

"'"· 0'5 ,.;10 
1~.15 
34;1A 
12.21 
30;:>;> 
?•.?? 
?6. ?I 
;>4, 11' 
n.1<; 
?.n.1n 
\A, ~4 
I <;,97 
11.RQ 
11.•o 

'1,.:',t} 

7,'i7 
c::;.44 

i. Jn 
1.14 

IAl"UlT'GAt;E 
llAll" 7 .oo 
4,.0<H!7ATJ(\l>.I 

.. 730 .oo 
" 731,33 
.. ?J?,6'1 

?J4,1)3 
~35,JR 

736.75 
c :>1A. I;> 
c ;>39,50 
c ;>41),A9 
c ?4?,?9 
c ;>43,69 
.. 24'5,ll 
" 746,';J 

.... 7,96 
c ~ .. Q.40 

"' 2'i0,A4 
c ;u;;o, 30 
c. ~C::J. 7,, 

;:><;<;,;>] 
" 256,71 

?5A,;>O 
~c;Q.70 

" .... 1.?l 
4: 7(.,2'. 7? 

~64,?<; 
?6<;,7R 

7 .. 7. '" 
?6A,.,7 
;>7n,43 

~ ?7?',.nn 
" ?71,<;R 
" ;>7'i. II\ 
"' ~71.. 7~ 

;>7R,~6 

11; ?7Q.QR 
:?~1.~0 

?R3,?4 
C ;>1!4.AR 

?!16,'il 
,)ijl!, }9 
i?ll'l,'16 

" ;>Q) ,o;o; 
c; 291.?4 

:-~4.q4 

?Qll\.l'ICi 
t:. ;u~R • 3:7 

inn.Jn 
C 30J,R4 

)OJ,<;Q 
,n5.1"i 
307. i? 
'lOJ:l:.,90 
110,1n 

~ "\ii".c;() 
c )}4, 31 

" i11,.n 
117,'I"/ 

c 1!Q,~\ 

1?) ,f,7 
1?1."i1 

" 12''i.4 I 
1~7.2Q 

c J?'l.19 
c ·n1.10 
c 1)1.0;> 

JJ4,Q'i 
JJor,,qo 
JJA,R5 
14.l"l,.11111;11 

" 14:>, 7Q 
344.711 
141,,7R 

C 14P. 7Q 
c 15n.J:t? 

3c;;io.iq5 
"154.Qf) 
)'i,,,'16 
1<;'1,01 

" 1'- I, 11 
) .. 3.?0 
1t.~.1: 

c. 1f)7.4l 
36Q,<;j<, 
171. 70 
l Q7,.(t7 

PA't'W~NTC: ~t 

P<>Tl>.l<':JoAL 
~ ?4,77Q,1)0 
c 24.~)i::i.~7 

« ?4,1ns,<1<1 
~ <''+~n7l ,'16 
4' ?.l~R:3(1;.CiR 
~ 21.c;?9.A~ 

< ;:t1:.i~l ... 71 
~ 21.122.~1 
c ;>?.~•IH ,:l? 
« ;>?.~3'l,!l1 
j; ,,,,,'15.]4 
.. ??.i50,?:l 

t!l.QOJ.70 
?l • .-;~t;.74 

(. ?I .1.'l:&. ·v..: 
" ;-1 .io;'i.'in 
" ;;0.001.?11 
c ;>n,,,4<J,44 
" ;>0,194,?1 
'Iii: ?0.1'17.i;;n 
« JO,, ll/9" '\n 
~ t4.A19.fl0 
' IQ. ,c;A. 'IQ 

c p~.riQ&;.tt.7 

JA,A11,47 
~ )lll.E;ifl'i.5.il'ii.4 
" 1~.,Q~.1? 
'f. 1 :l\.('l;:i-(J.lt'j 
~ 1?.7c;Q.n? 
t 11.t..111 .. ,.,2 
c 17 o:>\J,44 
"° }h.Ql"'.?A 
c. 1"-•1-."-l.E;? 
' \'-,1flJ,1'\ 
c 1~.inJ.J~ 
C. l'i.Q?} .Cj,R 

e; )c;;~c;:"A,"4 
c. 1c:;.,.-c;.3.4,c, 
c }4,Qf'.~.lli 

~ }4,A 7"1• 74.. 
1;. 14, ~P:Q:.~A 
e; 14,ncn."l; 
e; 1 'l,1:10:...nq 
C; 1 'hc;.fl9.1~ 

J 'l, .,1 ;io.c:n 
~ J?,QJlo,)1 
c: ''·~14.f'l1 
c t'.1'.1!?.IQ 
~ l?,l'lf'l~.~l'I 

11. -,n3.;;>c; 
) 1. "lQ~.11 
Jl,oA7.:>1 
1" ·?7,,..~, 

c. 1 ll ,u"-4.0"\ 
1n,t4Q,7,. 

« Q,a31.c;.Q 
< q,c:;tS.l'i? 
t Q.'iQ".i.'H 
« AtR7", J.C. 
"' q .c-c;0.4'11 

"~~?.ti. ?n 
c 7.QQ7.Q1 
~ 7,c;;-,R. 7? 
~ 7.,11.~? 

'"'•qOl..ie,O 
" fl.,~;;9,i'iis; 

f.. ~-.?.. 7"i 
5.Gll(J1.Q:" 

C; c; ~ c::IS:i J. (till 
«. C\.?11\,:!IQ 

4f. ,pfiC).1t;t 
~ 4.i;:;.).1\.71 
f,: 4,,,:..Q,Q4 
1;. 1,e:1C1.t? 

l 111.!'o"i. ?1 
« 1.; 11. '11 

~ • .,r;!t,41 
I'> ,.,1QS, 1.~ 
c. ~.ft ~ta. ':'7 

1•"'71, nT 
'·'n~ • .,.6 

Q l~., 1 
c;:f,.~.77 

"- 1q7,07 
.oo 

"17'>."0 
ACCll"l It & TF'n T>JYFop; T 

' '"";on « ?flA,~7 

« 4~n.~<1 
1i C\71 ,q,.-,. 
ll 7~ •• ~.<\ 
« t;""oQ•A '; 

~ ~A~~?1 
~ ),J;??.;>] 

« 1.?~~.12 
~ 1~1Rq.n, 

' 1·520.~4 
~ t.,-..i:;n.?:l 
' l • 77A.7fl 
c l .qo.;:;;. 74 

"' ;a.f'l'\l ~ )4 
' ~-1~~~~n 
~ ~.?JA.70 

.. ;>.3<1<>,44 
,. ~.<;1 <l.?I 
c. ?.f..J7.~0 

• ~.754.10 

~ 2.P&q.~o 

~ ~.QA1.3Q 

c 1.09~~~7 
10?0"',to? 

~ 1.31~.~4 
• 1.4~1:1? 
~ '·~?.Q,4~ 
.. "'-~'34:();:." 
c "l.717,n? 
.. ~.AJ~.4~ 
« "'hQJA~?~ 

4,n1~.c;;> 

4o 1J1, lf, 
4.??J\* !P 
4c,J:?\~l::\A 

~ 4.411.,4 
• 4.~~1.4~ 

~ 4,~Ql.Q~ 

« 4,~7A,74 

~ 4.1n1.A~ 

• 4.~41~11 
4 4,q?.q.nq 
c c;,ooq, 1-=; 
c ~.n~7.~n 

• ~.lh4.11 
c c:;.,?'"4Cf~().,. 

c co.~t;t.IQ 

c. ~.1.q,1~ie,,n 
c.;,,4c;1. :>:-i 
~.c:;?-l, 11 

c. ~-~Q~,~, 

ic:,~e;1.c;1 

• c:;., ll4.('l"l 

« ~.774.7? 

C ~.Rl1.~Q 

c;j,i;i.QO.h/ 

ir:::::,qi4c;.F11 
... c:;,.qQq, 14 
c: .... l'}~t'I. ~1 

1..1 nn.~fl 
~.11.1.111 

~ 1-..lQ).7;> 

c: '-• ::>J7 ~"'.) 
~ ~.~7Q.~n 

.. i'..1}Q.~c; 

"·"l~ 1: 7t=.. 
fil.1~"\.Q~ 

1...4-;ioA.,Oq 

« -...4~11 • .::.0 
c ,,,,4Q~.~1 

' ~.~1~.7J 
c ~.~~4~a4 

........ q, 1? 
'u"'Ql ,?7 

c: ;r..,.. ;r..1t.17 
C. '-a4'..?Q,"'1 
~ ~.~~~.JA 

• ~.~~Q.~7 

• ~.~11.n? 

~ ~.o~~.;~ 

c "'•"'~Q;.1, 
-. • .s..Q1. 77 

c: f.•f.Q:7. n7 

c. "'"#..QJ:!.,?1 

Figure 51. Example of Mortgage Table Output 

137 

YFAD 
l 
l 
l 

' 1 
I 
1 
l 
I 
I 
I 
I 
;> 
;> 

" ;> 
;> 

;> 
;> 

?' 
:> 
;> 
;> 

;> 

l 
1 

" ,. 
... ,.. 

" 
" .. .. .. 
~ 

~ .. .. 
7 
7 
7 

7 

7 

1 
7 

7 
7 

7 
7 

7 



out reading the deck in each time. The results d each sort will be printed giving 
the original position of the card in the deck . 

. , 
Read new set of cards LOOO 020A 0000 0000 0000 

Use uld set of cards LOOO 020A 0000 0000 0001 

·~ POinter to sort cards LOOO 020C 0000 0000 OOYY 

Number of characters in key LOOO 0214 0000 or-oo OOKK 

Starting character in key LOOO 0215 0000 0000 ooss 

Direction of sort descending LOOO 0217 0000 0000 0000 

Direction of sort ascending LOOO 0217 0000 0000 0001 

yy segment number for storage of cards to be sorted 

KK number of characters in sort key in hexidecimal (up to 64} 

SS location of starting key in card character of sort 

The last card of a deck of cards to be sorted must contain an illegal character (?). 
An example of the card input to the sort and the several outputs of the sort, using 
different keys and different sort directions, appear in Figure 62. 

Matrix Multiply and Print 

The Matrix Multiply program allows for the construction of a matrix which is the 
product of two given matrices. Each matrix element i> an integer (positive or 
negative). The dimensions of the matrices may vary and will be defined by 
parameters stored in the work area. Pointers to the input matrices and to the 
storage area for the output matrix will also be stored in the work area. 

The Matrix Multiply program has been written so that more than one Interpreter 
may work on the same matrix at the same time, each performing its own unique 
set of row calculations. Each of these pr.:>cesses must have its own work area 
indicating a starting row position and an entry for the number of processors that 
are performing the multiply. 

The matrix print routine must start when the matrix multiply has been completed. 
This routine will print the input matrices and the resultant matrix on the printer. 

The user of the matrix multiply and matrix print procedures must specify param
elt:r::; uf both uf these routines. These parameters determine the dimensions and 
locations of the matrices to be multiplied: 

A .. X B.k = C. k 
lJ J l 

138 



Pointer to matrix A LOOO wwoc 0000 0000 
B LOOO WWOD 0000 0000 
c LOOO WWOE 0000 0000 

i LOOO WW17 0000 0000 
3 LOOO WW16 0000 0000 
k LOOO WW18 0000 0000 

WW "' segment number for work area storage of matrix 
multiply {24) and matrix print (2B) in hexidecimal 

OOYY 
OOYY 
OOYY 
OODD 
OODD 
OODD 

YY = segment number for location of matrices in hexidecimal 

DD = dimension of matrices in hexidecimal 

Maximum size of matrix is 256 (size of segment), 

Therefore the maximum dimension size is limited by the following formulas: 

ix j < 256 
j x k < 256 
ix k < 256 

Since no more then 16 numbers can fit across the page for the matrix print, 
the number of elements in a row should be no more than 16. 

iandj5_16 

Two examples of the matrix print output appear in Figure 63. 

CONFIDENCE ROUTINES 

Four confidence routines, AEROI/KDK, AER02/KDK, AER03/KDK, and 
AER04/KDK test internal Interpreter functions. These routines must be loaded 
directly into the microprogram memory and are not run under the control pro
grain. The following assumptions are made in the confidence routines: 

A RIM B works 

No errors in MPM or Nanomemory that do not appear in instruction 1 
which is a dummy instruction used to set as many nano bits as possible. 

A+o and O+B Work. 

AEROl /KDK exercises the source-destination functions of the Interpreter, the 
successor controls, and the condition tests LST, MST, ABT, and AOV. The tests 
are designed to test from the simple to more complex. The detection of an err-or 
in the initial tests will cause a wait-wait at the nearest point to the error. Upon 
completion of testing of the successor controls all errors will exit to a standard
error routine. 

139 



AER02/KDK exercises the SAR. CTR, and shifting functions. This test may also be 
considered as a test of the barrel switch. This test assumes that the first test 
(AEROl /KDK) runs successfully. 

AER03/KDK exercises the adder and carry logic of the Interpreter. This section 
of the code is divided into two parts. Part 1 exercises both A+B and A+B+l logic. 
Part 2 exercises the logic type instructions (NOR, NRI, NAN, XOR, NIM, IMP, 
EQV, AND, RIM, OR, A+o, O+B). 

A subsection of Part 2 exercises four instructions (OAD, AAD, A- B and A- B-1) that 
exist in the instruction set on other versions of the Interpreter., .This section of code 
exercises no new functions on the LSI Interpreters. . 'i' ' \ 

Corresponding to each section (or subsection) there is a subroutine which performs 
the final comparison of results. The error indication and reporting for each section 
is done by calling a standard error routine from the corresponding subroutine. 

AER04/KDK exercises those remaining areas cf the Interpreter not tested in the 
previous tests. This test exercises: LCl, LC2, LC3, INT, GCl, GC2, AOV. IC. 
CSAR, and B Register inputs: BAD, BBA, RBI, BC4, BC8. 

rf)"" 9.l~VFY<; 

AfY co·~" 
rO••o <;!JPVf .. v.<; 
AC•< COWi! 
rl)P,,flL T nf. <; 

•C" C0"4"' 
,~ .. c;vsTP""' 
,c•·· co1•1o1 
AtloS F JCC 
r"".., SURVEYS 
Al COMt-1 
•C" COMM 
rn"" 51J'<Vf Y'> 
uJ T lllfMO 
rQrAo 5UPVEY<; 
•RF lRAN'i 
•FTnS 5JCC 
Arlo'i FJCC 
oRh•CETON 
TEFe:- COMPUTER 
ACM COMM 
ACM COMM 
ACM C0"4t-1 
nS <:Y"IP 

AC" co"'"' 
rO"o SURVEYS 
rOMo SURVEYS 
ACM CQloll.4 
rO"o REVIEWS 
aCM COMM 
nAT,"4ATION 
TFFc- l"HNATL 
,FJo5 F.JCC 
-.r:u (:"nMJ.4 

~ C" CCl"" 

·-·:l(1h•1l1~.:q' \~ ~ 

~1.0.; .. .,. ..... : 1·, .... , ..... ]:.:;. j 

~:'( :t< { 1',r 1j,. y J ~-t 

l,dt..l~'7:·\I i .. o.J 

H•lL T ,.; c 
l "ll·,•'> ' T 
t-rAVO::"·'H '-' _t t· 

H/\.~J-;.. aiOt-, £ ,\ 1 

OF '<~l l 'H> ,, j 

OF>·r"J I "'G iJ .J 
l)f-""'1'''1 s J ... 
'1t' "''-''>I~ I'•: '>•'1..1,.,,,,• 
en~ i-: •. ,~1-.. :t-_Lr'Hf(I'\ 

ll~ hJl·Jl"' J .., 
'10FFvll•, l, J 

KJL<-!U"'"':• ).•!\>-••'> 
i!LEl"'"'JO L 
l AMP~i.)l\I r{ ')J 

l AMi><;n•. ,.. ,, 
.t.rlATIO J:llii'"'"t u i-1 
[JI JK 5 T"' A • , 
DlJrlST..iA f ~ 

C,rlA'"'A"' i.; '' 

POULI: I":'" A I T t " 
k ANO!: LL:" •JEH>i>- >' 
t<O')lN S 
l-IOS!ill w F 
SUTt'.tkLAlllfl l F: 
T~ I MKlf ·, .JI'/ 
._A I Tt ., "' 
C(J..1'111 TIJ F J 
(._>f'FC.--1 ,, !> 

C"< I TCi-1LOlol t. J 
nftj"il "'Jf" .. 1-1 ) 

°'Jl'I~ <, PA V 

/•I: !1 l 
1-\"4: f;;.., 
... -;:[!.., 

7u: 0"' 
/l: i)t-, 
/,I: 11 I 

f"'.I -\ : ~I '/ 

.... ....,: 11 l 

h:'l:U~ 

7•): (\" 
h"';OS 
7l :u2 
ll: ().., 

,... ~: ')" 
... ": lJ., 
..,,- : U4 

'/I); U'> 
r,-.:09 
71: 03 
;,-i:ll 
n-.: ll'i 
6-i:05 
t,,;:os 
f>'-1:10 
0!'1: (15 
1>'i:OJ 
6-1:03 
n>!: Oil 
hi!: 0') 

10:01 
i,.;: 0'> 
70106 
63:0'1 
h~!O~ 

h>!: 0 I 

Ctl•'·"'••H·'" <;y<;rr ... Sl•'LILll T 10'' 
H "'flll•L Mtc .. fl,_lY <;'1A"l'J(, l'I "Ill_ TIC<; 
',ll'<VFY Al-•AI, YT IC:lll Tl"> '-,n•l'-JIJ W1»rl-., 

·'Lll1CA TI O•'J CO"PUTFL> f.ii'">Cl• l-IC'r '> 
r:.11·_A'1l_•)C .... JN r:n~·PHTfo=H ~YSlrM~ 

.-x~i.:::. 1 t1--·-JCt"- 'ttlT1-1 '--t.1>--~~c:I ..... L.; l.U·H•·1~<~.;. 

/'.l/flft';fl\.!f:, l)(.:A1H nr .. -•!II Tlf.:i~fl..1~·,t; '.'-l'to.,,T~·.: 

~--'t"-Vi·•TI\1...._t f1F c;y,f~'-' •lt-A•)Lf_lf_~ 

T,1f<AScilNG:JT<:: CllU'>t::S u.'10 "-<~VH,T!O'I 

v11--ru:..L Mt-11.i(•""Y 
t-t)<;{T 10',~ 1-'d"'~" (tW,.,IHffir. l'•).,.,11~ fr::of~,<., 

f'(ll J(Y l~ ... f~~1' -i[HF'JLil Fri i.,i.; f'::>'J 

'-.YSTt ,• li•_.),11Lf1C~<; 

fPTilto".: l~f.F\1l<.... l'' TI~·~ .., .. 1A.~l'i1, ':-Y';--fl--'·'' 
Cl•';>IJTf.JC, At;iJ .:O>-IJ.;._(y 
o .. ,, L~·v~L "Tl•'-'d•,• SY<;H·'' 
Ccit-:T l'·--1lJUM T !.,...__ ,; .... ~...Jl".:r.. l.lCHE:.11 1 1Ll-·JC~ 

liY"1'1"1C µ..;,pH_CTjnt! Si"t'(fil..;F-. 
1->,JlJHCT!P"' 
lt,.>fJMJ{{t"t' J.Jt_wF-fl'"'1'IUi'1CF i1 .... •1~ "'"if 1• 1 i..·,i.t.l .. F-

"t1lUTll)I', I"< (llN cui..:>lt"'T ....... j,, CU«iT><JL 
Sl'<llCTllr<t_ THf. Mtll Tl"'"'O(,..,ol.""1!'\ll> Sf'JTt"' 
1-'.JllTl:.CT!ON INF<W·~ATIQ•J l-''10Cf';S!Nl> 
t.1ACrl!Nf [ill()fPFNDF"IT SriFT•A"~ 
IJY~iAMIC STrWAfi~· AU_OC~ TI<.l"< <;YSTF,.!<, 
l'L~CT;JONlC (O"PIJTF><S:~[<;Tl)•<ICAL Slih>Vi Y 
SUl-'F~VlSO~Y AN~ "ON!Tnh SYSTt'IS 
F UTIJl'l>~S "4A'1KF:T IN ((llADUTtR T !Mt 
Tflo<t SH4RJ11jt:. ><J~l J11(;'<1\l"HY 
M()f1Jlf: P>lOliRl\"4"4(1\J1; SYSTEM:STAGf ? 
t>L/l AS TOOL Ffl;;> _,YSTF'•' Pi<()f."'A"'"i•r(, 
1'11-'lf"'rr-.TtiTION rrF O"fouT!"J[j C::Y':>Tl'"'S 
Gf NE~·U I 7f fl Mlll TI µ'iO'ik'~"'1"'! !Nb SYS Tf M5 

(a) Card Input Sequence 

Figure G2. Example of Sort Routine Output 

140 



(f'U'Of PlJSlTlO~ 

I ,:(l 

? 12 
J n .. JI 
<; j;' ,, 3'.' 
7 "-e. J" 
Q " 10 !O 

11 11 
12 14 
ll ll 
14 2<' 
l c; <3 
16 H 

17 7 
l'! I'\ 
19 ,, 
za 6 
21 l" 
<'2 J>l 
23 19 
24 l 
25 ) 

21!> " 27 ..... 
211 ,..,, 
29 17 
)fl C1 
31 <:t> 
3;> ~~ 

33 2<; 
34 )0 
3S J'> 

COUNT POSI"i!ON 
]5 J5 
34 jf) 

33 "-"' 
32 t" 
31 ,.6 
3() c.7 
29 17 
:?A ,,., 
27 "" ?r. 
;>c; .; 

24 I 
23 I'-
n I~ 

21 16 
?O .., 
IQ .. 
18 l '> 
17 7 
l i; 
15 (!j 

14 tt 
13 "'- l 
12 I'-
11 11 
]I) 10 

9 ., 
so ) .. 
7 2 ,, J] 

5 Jo.> .. 31 
3 J3 
? 12 
I ~~ 

lff" CO"'Pllf";; .. , .. C(JtJjM 

COWP Su..>V£ 1'> 
•}AfA"'i:t;fJliN 

!HF J!.H,ATL 
~F 1-'S JrC 
.:.cw CO..o-tM 
AC-.a (!) ..... 

U{D<; ~ JCC 
C:,1>\P ~lJH'vt:_'f'-t 

A.(., co ..... 
•IT "11:'. '-1;!) 

4,(.t.1 (l)~1.t 

A(•"i {_:\~l'-tt-~ 

J>(IA (ti'<.• 
ACM co~,.~ 

l~!i"! '>Y>.Tt."5 
CO,.l? Su>< vf. r<; 
co~'lELL 1 ... .:., 
A(l'I co ..... 
'. ·E TKANS 
Af IP5 FJCC 
PIH .. CE hJN 
';011.•P 51.J....,\tt: YCJ 
CQMP S•~\it:_r<; 

AC" Co~:.a 

OS <; Y'll' 
4(M COMV 
AF I"S :.Jee 
((1!11? ',lJwV~ Y'\. 
CO"'P SIJ"'Vt, f<; 
4(" (l)UtA 

CO>:P wtvlt .. '> 
A(M co~-1 .. , .... (ftJ.4• .. 

4("' (fl'"'; .... 

4e•' (!) .. •• 

COMf' ~t'VIUI<; 

4C .. (0'-4-..i 

C1.lM.;l: ~t.,....:v>- l'' 
CO"'f' 'ov•<t f'> 
Of I'-''> '>JC( 
... c,.. \•/"-: ... 
"~ 

c;, •p.-1..-

Ar'~ { -')M .. t 

((1'•,.:; ~\1 .... ~r.l~ 

(f)tJ:~ ~\.t .... ilt '( s 
...,~ l •·Cf T,);.., 
1H !P':'i. ... _i(( 

!Mf Thib ":::. 
A(" LO~•· 

(Uw"JtlL Jnt:S 
(UMP '>u,.,wt. rs 
r~ ... '>Y',H>''> 
ACM en ... ~ 
AC,. co ..... 
.. r:~ LO .. ., 
•. c: .... co ..... 
... "T Mf~l) 

A(,. co ..... 
COMP' '>V"¥~Y<; 

AFlPS f JCC 
AC" C0l4•4 
A('4 (OJ.tu 

AF!P5 F JCC 
I ffl' l,_,T .. 4TL 
<).4 TA"A TI ON 
co~P '>oJ"1Wt:Y5 
A(w CO._,,_, 
l~tE CfJ,.t~UT~ lJ 

~~~l~i~1.~(l~l1l)~(TJlEX~I~lI 

P-"'iirt .J:nJr;N~i.J" M ,.,G:ll Qo-rJ:.,l?l'lr~ Pt.::..FtJW,,,.AtfC~ !'11..ilJM ~rn;.1.t.•1.:-

"f"""Hl~:.,..,A.,Pf 7l:Oi' i>'JLlCY ~'"IV•« SCM•!JVU''l FOP TSS
(f"IH"A'l:fLPiilCK 71:"'> SV5TH1 flfAIJLOCKS
CO~M.Qiff'I r .! f.<J:GS .JL/l A'S Tfllll F"OQ \"f~Ti:'.- POr,f;;;.AMa.tl~"'
CR•YC" "I A 70;0'> l.,Pt_t_••f'rTATIO"' 'lF uPF"ATl"'G <;Y<;TE"'S
CwJ TC• .. Lf)t1 ti .J
,-,AL•:v ~:nFr+r...(<=:

l}f ~'" tf,,(, D J
i·1r:11i..1,.Jt~.1r;, c .J
I lt-JoJ:>; f N(~ µ J

(,f..,'<h ..J h

11f v·~ 1 ~ J "
U!JK<,T~A f •
1J!Jo(<,j.;4 !:: "
hH4~•A;·t r.J 'I

HJ\"1t_rJ~A~ A. N

>-'4Vt."10t.Q J w
M(}ff_.!:C.fl.. L J
,_.Ill] .., c
1.>0•1':. ~- l
><IL -.11.>N:[O"A"O<;
LA~,_l)~·i H •

L4~t"'S0t-, "i tf
Ult(1)t)!Jr,Jll.L ~ H

M('t< f""V"'fV J ._.
»HL!.<-" '< w
PrH)I f t---:i..A.ITf- 'ii "'li ... IJ>-~. L:K.J!->-1>.JFl.;
...:LC: !t-;l<'JCr\ L
""-''JC:.!'J· ;..J F'
W!')',}"'1 5
..;.\ITrO· iJLA~I) i;:

fRfa_.~L~ (, -Jk
.. a I fl" ~-- Y

,...!!.._":;. c.. M V

"'•: ni..
,I i..ii:c: ot.,

...,,"': o~
~i-1:: t)4

1(1~11.;,

t-M: O"l
,.,, : flh

i:.. :!;.1-J

.... : 0'>
'"":tlS
'"'': 07
"": v7
,, .. : o-.
71;06
70: Q l
hi': 0"
,,.~:w;,

n:u3
]()~•)~I

--.·.": o~
70:Q!;
;...·~: l fl
.,&J: fl~
70:0'>
'"''"':u1
1'..'-J: (I_!

.. ~' ll'>
t>~ :O'>
70:!1l
f.,.i:l11

lb) Sort by Author (ascending)

AAAAAAAXAAlAA~~XAIXX~~~~XX~A

t:~":f...,nL l 7F 11 1.,a111. TJP~nr:.o.1c.·.iir 1 r•-.1. <;vt;;Tt ~c.
Viro'"T'JAL -...ir:-~ ... t-,t-"T c;; ... ~'-'J .. ,r, f"-1 Jl'l'fl!_fIC~

•!1-/f(}.-.1G SF T Uf\l)Fl PH"(}(,WA~'. ,-i(MAV (Oi?
T;r..,w4~np .. u;; l T~ C~l!C..r._-.;. A"-•'1 ~1.1~·Vf'NTJOr--.
Vf.,,lftAL ~~;.f(ia.>Y

Pf)~{ T [r;~ µ,f\.pi....., (.Q'1PufJf!.1r, CO...,~U"'i1CATtJ'5

FilflJwt. t ... r-•iP~ l~ '\ (,,.;.. S--tAN:p,r) c;1~TF._..i;

~ 1 JLHT lU 1 J!>..· ('"' C•>J-"7"f~·'T t:.iv!)G C1V.1T~OL
'.,~~1.JCTIJL.Ji:. 11--tl ""'JllIP O(·"ll"~"PJ<; SYSfl:MJ
~"'OTr_C rto"' I ··4f'UWtJ1iA r I0"-.1 Pi..1ocE.:;'1 "c,
"'-'•VH•fl'l"- OF ,,v~1·~ .. flEAilLnC~
A"W'J[<Jfr.G ~H:Al:liJCI'; MLJLilTt.~"'i.ll\;f,. SYSTr:w
(.n:4~t1Tt-_1..i; Al~l• '1"'1L.\1Vlt.C'f
DFA1~LUL'"" lt;1 c.n ,.,.uTt.:J "l.Y~TF•.iS

I:. ""'f"' It ~1C~ Y" 11..., f..: p:"iS fr-tL': L"'"'1\1'JACt..
o~~ '~tV~L ,,n~Afi~ Y~T~~

r:.Y"fA l(; '-'""nlf'.CT!f)'f o:;;TPJJC:llfl:F'-,

pj.,joolt c r I l)n
cn~PuTt >.,I <.y-JTF 1. 1:..l'-~Jt 1 __ Afl0fJ
t.; 1JJ.JVf-=Y .e.~-1AL tt'"ICAI_ f ["'f 'Cj,'"1JJJ!'~::~ '-~1V ..)'-·1_c:.

ALLOC4TJOt• C•l•-Hj.til'f..., O(Sf'l1J~CF$

·-41\t;~INt- i·'l'!.t-~i:-~ ... ni.,...~r '\.,c1r·rttA'-'f
ny~Avtc ;rn~AGt Al.LO(A!Io~j ~Y~T~Y~

C•J'\11 I ~~etJ, ... l Ir-At $t1tl""' 1 •1r,, ~CM~ i)'JL I '·il•
t.;.•1.>i:...ivlo;:..f1•;Y ;:.,t~r· V-f'l ... •JT()w "rr;7;....,.i:_
;.l-::.(fW'·'-'fC (r!"-4 V1 JTF..,,:wt'-TOJJC.4.L ~ _li.i'"-Y

FilTH~,...~ Y£-J..t.;.._t J~ co·-4~,,rr r1-.,.,,_
f l~E 5,...~;.; I'-;:; ~ l ;<ill l•Jf,t.1A>-1J.-tY
..cq-JLI:". ..-J•:r .. ._,:i.• .. o ... p.~r. 'l,,'f~Tr,..•:-.,ra·-:.,.. ~

(q,•.::.i{ft ~ f--tt ·, A"'~n rinw

"'lll'I'.~') Y. "ti "''"'1::01 (.)1t1;..J11ffO' T...,i-"! 4"-'n '''l•
,.A[f~ \or""" 1('1~-~1 :..•.)..<:!Lt=" P...,.1,\.:....1.•.1•. ~i'"f~ ·..:,.y<:;"f~-,,..:-;,T~i,F ?

T.J I llill~lt (j. J~ ~~:C'S r {:....ii~ ::,-,A..,. I tot, ""! '"'l tnc,....-4.,...-.y
c:,ur-· .. ~LA~n 1 '-M:11,... ,. 1~1..-t.:;. ~ .. ~: .. r I"'4 cn·.1'-= 1.1TH.J T!·-tF
.... n.;.;.11.z ~ ,..li!··i:s ""L~.r1-.f···-.1j· (•J""· 1r-.:·..;'-.:r<-!~P• ... 1:.AL "-'·t-'Jr'i'
,...,Yil·"'l ""f ~9;u,j 'rJl""':J'tl ·;.!-Y lf.·.-. "'l'',dT·~• ... 'c.'f"';T~v;,
-l'Lt" it..s 11(~ L H':v"-;. () ... ~I(,·.11 ''-• T[..... .:;~a...-1"-'~ -..1"" .. ·!). Lt~,
t-"At,,l\j.LL:roJt...,1·,r.... ')"I; iS •pti,!·t{l. .,ti,..JQ.·-· 4t.L:"\('.'e.t~ , ..;'(<;T:.._,

1--lh)Lt i.-:,ll} Tf. Iii ,,,~:JU "',.•.:,f~-1}""11""" l·.;,t ~·r··~·a-_1'.;l °'1~ • -:....;t-
, ... (t-.L':'•:~ :-4"" rr•;:J.. ;... .L·~•_.!. 1 ! .:~. · .1-...t·· yp_. ~i--., 1 •. _.,~·- ':J

... (I(I,, .. ~ I

' c.C• 1r_.•l~•!\Ll ""

l .h.hJ .:.t·~. ,.,. iro

L °''"'pl._,,t1". H •

"'TL""Uwl'-·!t" 1)•A""'d""
! WI J• .. <; f- 1
r1f'IL l ..,, f
r1,lF,: ""'t.~.: L J

HAIJtNt)f.J .J •
t"IAWi•·"'MIAN A N

G~6"i&.M Q "'

fl I J< <; T ~A f w
PIJ•S1"1~ F '"
L)f., .. 15 J tl
n~~"ll <; J .,_.
l)l'~t'f}Nl., µ J
LJfN'll'IG P J
n~ 'J•Jl "lG o .J
1)4.Li='"Y l-':!Jt~"-1.,..]C. J
Cw!TC"L!)~ A J
C.Jft l.M rt a\

('11w><A Tll > J
con w11.N:FL1> .. 1c"
~~~~~r~t~:~HA~µv 

A1-tAit: .J:r,•_lk\tF~ 1o1 

1'Q: r); 

'l 'n.1 
h-:..:(IC,. 

,..,;~o-. 

1n: .J l 
7) : t•':-: 
<,'<:I)~ 

1-,,~: 07 
f.<i:H 
'-":OS 

"'i;: \)~ 
t-q: 0'::1 

"": O':> 
70;0Q 
,._,.i.: OY 
h~ ~ r,L~ 

t-~: OS 
h1:0Q 
70: DI> .. ,,, "" 
71: 01' 
7l: <'2 
h'l: 11 

(c) Sort t>_v Author Cdesce1.arng) 

"">·1-\..',.t r.-~t.,-iC~L Ti··•.:.::; .... -! 
Ct,..··"',.i,Tt•· ,~ .... T;.~· ::,!.,.,,:LAfl 1 _i·· 

i:JU1 tT"':: (' l J:1', 

>ir·..,.ti'•it. ~.:...1TtCTf.~l"-· .... r.:-·~(T• 1 ;....•--. 

,, .... c: ttlf~l -..,i·" ...... t.l·r ..:...:.....,t"- .. 
~ .. ..i ...... t .. ~,c;..· .. 1r'"" t•r .. ,i;;:ll>o\L'- •_o.·.:1 .. tliJi\ ..... 

1'r A·)t_t1(,. f'r (•H:...)~·lf'.:,; c;.y.,T=v'-. 

c0~~uT~~~ AN~ ~~i~ACY 

A i/'J l1l!~1G f'lf- ~!1L0Ct<: '-'ttl l [ T !.Sl't I~\; <yi:., f ~--1 

~~l:_\lt'\ITl0,-"11 1lf ~'t~lt.M ·l[Alt_~C""' 

>'~OTl:CTl<•'i i'.F '"'"'fl'"' "~O·~i'~.:,Y·<1' 
~TH1:(TtJ~t T1-1t 1•11t l !"~0r • ..,a•.,·~•Jl\•1 .. <:.l"$Tf!U 
~1)LlJT(Orv I·, ._::11~"' f11..,1pi;ur ..J..;;q.-.. (fP"'T"'C1l. 
fiJTU"'E T..,F-"1L1S p·.,, l(~E 5t-1~WI1\ri·J SlSif..,.S 
P:l-C-,.JT10''\l ~A._..p ... CO ... P!IT]~('> ('·"4"u'°"'1CAl~c;, 
I/ JQTl.JAl -..F- "'10~"'f 

T ..... a-<.a.s~I~r .. :11''- (AllSLS 6.t:') ~ .. ·1-'f'r"'lll()"'· 
.. ,1....il(1~ . .-· .. .:.FT .... .,.· .. 1t:L 0.Jf_\f.,1.JA..., ""'"' '"l~vtno-1 

V?"i.lfv.4L '4~M•''""'"' S ... A~t~r. l~ ~111LTfCc: 
h~:"'-E.i.ib.Lllr-·i~ l411LT{P-lf)r .. 1;"~"'-'t~~~~ S'/ST,.'t.t>; 

I .11i-lLt,,.fl'.,iTbTIV". ilf n.,F~.6.Tl11.r • .;.vc;Tf.w 
"L/l A~ F10l ~r:;.;t ,.,.,Tj;lo111 Ukr"J;-~~.\U~[l'.:t• 

5Y~Tt~ 0E4nLOC~5 
""'~L1cv :;•·'1\'t-'- ~c .... '-·\111L~to1 ~o...i TC 

Ui-lf! .. ·1?1~-..(~ of .... f 0i.iWi\'-.(t" ~lk?•J!<.i ~Ti"'uJc.~~ ... 

Figure 62. Example of Sor~ Routine Output 

141 



.::,lui'<T 

I 
2 
3 
4 

5 
6 
7 
ll 
q 

10 
11 
12 
13 
14 
15 
16 
17 
lR 
19 
20 
21 
2i' 
?.3 
24 
2"> 
?fl 
27 
2q 
29 
30 
31 
3? 
31 
34 
35 

POS Il IO"' 
12 

;> 
34 
l l 
d 
n 
23 

il 
6 
4 

I."> 
2~ 

JO 
JS 
:!3 

9 
l J:i 
l7 ,, ... 
13 
l 0 
l ') 

l 
1 

n ,,., 
s 

J] 
7 

i:'O 
J? 
lh 
14 
?4 
I 'i 

~xx~x~x~xx~x•xw~i~xx-x~~~xxx 

ACM COMM 4fl<'NSTE!N:SHA;;PE 
ACM COMM DALtY W:OENN!S J 
ACM COM" 
ACM COl'1"1 
ACM CiJl'M 
ACM COMM 
~CM CO"IM 

AO• CO"" 
AC" COMM 
llC" COM•• 
AC"' CO.,M 
ACM COM" 
AC"' CO.,.., 
AC"'I (QM"'f 

Af!P'.'. FJCC 
AFlPS FJCC 
AF !"S •JCC 
AF!P<, '.:>JCC 
Cll"" "'f.v H ~<; 
COMP <;q<JVf Y<; 
CIJt-1>' '-.U•'VE ye; 
CCW<P <;U.OVFY"' 
Cr)"'P <:;U;.>Vf y<; 
<:n"-~P SU•.(Vf yr; 
(f)"'!U ~tl~V~ ;'c... 
e_nt-11J ~1.1~ ... v~ r' 
Cli""Fl.L T4>·~. 
n I\ l !d-' AT l P~ 

f)l'N'J I •Ir, P J 
DENNIS J ti 
D!Jt<;STf<A E Ill 
I)[ Jll'-,T>.>A r. W 
(Ji...>AH/l.M R ~ 

HA>iE.l<'MJ\"I A N 

!~0'15 f_ T 
N!FL 5n1 N P 
WANllfLL: t\IJ~_HNf""1 
SllfHf>'LANO l f 

"'"' IH. " M 
itl(L~FS M v 
C>' I TC'•LOW A J 
U<"l'1INii P J 
LA"IPSON 'i W 
'"'Lf 1r.,,<>oc>1 L 
Ti.1 l~ .. Lr- t; ,JR 

C•lF~ .,,\N: fl l''i I ('.K 
P<"'l'·• l r•r, P J 
Hl1F~ L11\"J l. J 
r-10.(•Jtil H11\.l.L M H 

••<'.~ [i"'M V J µ 
..,()<;I=·• ~ F 
~n'--.ll\J ..... 

•1f1I T R C 

TH .... ,-y~,li--1,,h, Ml\Vl_l>JI)~~ .J w 
TFF"'' CtJ;.w11r•1-1 A:-<A ff .J:flltHNfR H 
p:i:~ lNTr-·1l'lfl ('1 .... ~f.CH ,l ~ 

Jj..Jf p.i,UJ' ...._Tl MJJ._.1~~; ~ llwA~f_lC: 

.... , l T "-'~ 1-!d 

•)S "Y"t' 
p,; ['!Cf T<J•i 

! I~ J,y,~ [ ~ .J ~ 

""OU 1->:..,~IH "' 
l t\"P'".f)l-1 L{ •i.I 

7:. :02 
nR:OS 
f)A :OS 
f.s:os 
h<;: 0<1 
"1R:05 
"1fl:05 
"": U7 
70:01 
70: 01:< 
hf': O'i 
f.~:(16 

70:07 

"": 01 
t:d: o~ 
M>:O'I 
n9:0<i 
·10: 05 
h~:O':> 

71 :on 
7 0: 0'-' 
"9: 0" 
70: 0'} 
A'-1:~1-, 
,,q: 0 ·i 
hCi;r:.i 
7l: 'lh 
.,ci:11<., 
,,..~q !~ 7 
;,q: i I 
70: (lh 

1-..::: 04 
l,'l: Oh 

h'l: 10 
71 : I) ·1 

(d) Sort b,v .Iournal (ascending) 

SORT 

POLICY [)>lfVEN SCH~:fJl•LfR FO'I TSS 
VEHTUAL MFMORY SHARTNG IN MULTICS 
wO~K!NG SfT Mf)f)fL PROGRAM BtHAVIOR 
POSITION PAPER COMPUTING COMMUNICATNS 
SOL UT I ON I "I CO~i Cl'FIRf••T »POG CONTROL 
STrlUCTU'IE THf.: MUL TIPPOGf.IAµM!lllr; SYSTEM 
P><OTf.CT!OM JMF0'1MllTION l>ROCE«StNG 
iJRf. VF•IT I or.,, Of S Y5H~M OF AOLCICI( 
EAPF~lt:r.,,Cl' WITH f~T,-111SIBLf LANGUAGE 
Al.LOCATION COMPIJTF~ l.>FSOUPCF:S 
nvNAMIC STORAGF ALL0<'.ATJON SYSTEMS 
FIHtJr;i:s Mj\Pl<'.fT IN r.nMPllTt:R l !Ml' 
MOf<!lE PRO(,WAMM!Nr; S'f"TF"l:STAGf 2 
CO"PIJTf PS THf N ANf) NOW 
Ci•f\lfUl\LJ/f.ll Mlll_TIP'lOGPA~"l!~·JC, SfSH.MS 
THPASHll\Jb: !TS CAIJSES A"JIJ P»EVF:NT!ON 
flYNA•l{C Pl/l)ff(.T!O•I STPllCTIJPE<; 
(0!\jf!NIJllM lJMF 51-l~kl'~f, SCHEDULING 
Tl~~ ~f<Ak(NG ~IRl.IOGRAPMY 

SYSTtM OEAllLOr~s 
VI Rl UAL t-:~ M0f.'Y 
CO"PI ITl:"S AND PP I VACY 
cn•wuHw <;YSTfM <,JIA,Jl.AT!o~· 

'i'J>IVFCY ANf·LYTl<'.Al TJMF S>iP!NG MODEL<; 
S•J>'F•:v[r,n;;y A•Jf> •Ar)•llTOP SY<;TEw; 
fl_f(fi-'or"IC (fJMPIJl>µ5:t-tJSTCW!CAL SlJ<>VfY 
nrADLOCk [N cn~PUTEP SYSTEMS 
I'll fl A:, TflOL f':();, <;~'iTH< Pl./1)f;PAMM(N(', 
AVlll11IN1, r)FAfll.Or.>< Mill Tl TllS'<!~(, <;Y5Tl'M 
GPTI.., ll l Nb Pf..>F('IP'1A'<C" J)RU.., 'iTl'JQAGE 
!11.>l_f.'if'ITA fl'l•i OF OPfJJAT!l;G SY<;Tf'IS 
0 .. f Lr VFL <;TO~Ar,f 'iYSTF"l 
1'"1J1<1.-<f Ti<;•Jfl<; ["I rt••> 'i>-1<\PJ'Jf, •,YSTF'•S 
"4(o-J! ~if !•fl>L l'f•10F,iT ~flfT,,Al>l-

"'ill H ( T 1 <1'1 

Figure fi2. Examples of Sort ifou.tint> Cut(Jut (cont'd) 

MATl1Tll A "ATl:ll ll R Pl:IOOllCT 
,.ATl1[ X A 

... -1? -11 -1 - I<; -~ 
-15 6 11 -R -1n -6 

11 4 -11 <; -4 -4 
-i -11 ? in ? 13 

1 -11 14 _, 
-11 I 

MATR!li R 
11 n ;>;> -?J 14 I II -Q 

\II -11 -l 0 -17 J _,., ;> 
7 -?1 -1 21 ;:oo I"' -?:> 

-1 
_., q l<l 11 -R h - I<; 

-14 -11', l1 -24 -211 I <; -};> 

-1c:i R I'; -1 ?3 -lR -n v 
PROOUrT. 

47 ... s ... -211 ?1 -7:> )Q ?n 451 
ll ;> ~187 -'!11 ... 1 (I u . 1114 -130 ;>Q 
211 1q4 1116 -1<;7 -1 -6? 11? 7" 

-o:;11n 101 193 1111 111? -?24 _,.,, _7c; 
<;<; u, -16<; l'.64 ... 65 2qc; _,.,,., -1 c;r, 

Figure 63, Examples of Matri.x Print Routine Output 

142 



MlTDH ~ •u.ron Q PPOl'ltJC'.T 
MATPTlC 6 

-R -l ? Q 10 l l? l r:; _,, -7 r:; 11 0 q 14 
-1'.1 ,., A -1 -4 -11 1 II , c; -<; 1?. .:.A q q F' 10 

11 -1 R _,, 1) 7 -Q -<:; 1 -7 :;> :;> .:.,., .: 14 _,, 4 
A " q 14 A -'i n lll 14 Q -5 14 .::11 I .:11 .:1? 
I -<; A -1? }:;> -11 4 0 l -1 -4 _,., _,, ? A .:.1~ 

14 -Q -7 .:.1;> Jn 3 7 -f.. -14 ? 1 n n 10 3 Q I~ _,, ;:> -? -11 0 
_, :;> ?. -tn 14 -1 .:.c; -1 .:.12 11 

_, 
.:; l Cl -1?. 7 -?. 4 _,, 11 -A _,, 7 I , -<! p _,., 11 
-11 11 -10 -14 A 6 I\ 10 7 ,., -14 " -A 4 ;_? -4 

7 ..:.11 -<; n ? -? ? 11 -'i 
_,, _q R .:.1 n Q )1 I ,., n -i " 1 -1 _,., 1 R 1 p .:.,4 l? I 

_,., .:1 n 
-Ill !::> in -1? 11\ -11 -11 -7 -14 -11 -14 c; _q 11 I 7 

-? -I? -11 I? _,., -n 14 _, ? 11 ,., ? l? .:.14 ..:.:i 73 ,, II -10 7 -7 11 11'1 r:; 111 n 11 A -<J ;> -R 
-14 -1n 3 q -11'1 ? 11 

_., 
-1 -t:? _,, .c; 7 -4 .:.11 I i 

lll -7 _,, 
0 4 _,., _., r; _., 

II -7 I 
_,, c; q A 

M6TDl:it R 

" 0 -Q -A p -11 -"' 4 -4 n c; -A -A 14 -s -? 
c; II r:; -10 A -4 _,, 7 II 4 -A ? .: )4 l1 j? .:j? 
c; -Ill -11 _c; Q A In " 1 ~ 11 ? -3 -A _,, 

ti 
-11 ,., -1 -I -A !'.! 1 11 -11'1 I, q 10 q Ii q 1 
-? r:; .:.p -7 !] -<; 7 _r; ll n -? 1 -? l I) ii 

? Ill _, -C: -?. I .:.11 _.., 
-11 -I 1 q .:.1 J;> l? r; 

-:-11 -7 10 7 -<; _, -<; J? 14 -4 -?. 7 -4 -I .:.c; .: 7 

-11 -R 2 14 -A 1 ll _, c; ? I -:< In -2 14 .:.14 -3 ...... 
-? -c -A P' -7 r; -? -R q -11 -1 .:.in _q -"! 11 .:.in ol:> 

,_ 7 -4 -? -7 A q -1 1n -? 14 .:.14 1 -4 Jll .:., fl 
0 -1 -P' c; 13 <; -ie:: 7 10 11 7 

"' I? -? )4 11 
? 4 -4 1 -4 -14 Q -1 .:.14 -c; -? -<; 1? -1 14 i.i 
'I 14 -I I -~ q -I Q -<; -~ f, -11 R _.., 7 I! 
1 "."JI') J;> ? " 

_q 1 <; -;> 11 11 J'\ l? -1 .:. i 0 4 
0 -I? 11 1? -4 n 11 -14 I? .q 1" c; .:.10 _,. 10 .::14 
4 -17 I? 11 -10 -l -4 _q -11 -? <; -I -q 14 ..:.14 1 

PROf11irT 

-;>41 _,,., 11<; 4'i1 -'i?l 14! ?4? -1?4 _.., -'i4A ?J'\,C, l'l -7Q n 6) 11? 
.:.n -1-?.'1 4'l4 c;q;> -1?.0 )JQ ?OR JO? f.<;<; _·,90 341 I "ll q .:.i.1ci .:q7 .:.ioo 
J'lf, ?I" ..:.,,'l] -?'>'> ?1"1 -?";>-;> -H'i -417 -Ml -R q -1?1 .:.144 114 151> 10'1 

-?I,<; 47 -l:ol'l7 -1•n ?3'i J<; 1 'i7 47<; -l ]4'i - 3'i" 11 Rf, ~t'l l)f, JI, 
-;>4 ,;,170 

_,,q 
-4f-i lF,Q • . r..7 170 -I'll 701 -'i7 -<;7 _3q .:., 'll'i ,;..;OR .:.13q .:.:;ioq 

130 .:.3c; r..1 1.l l ,,,,,, -1,0 ... -IQ -l"R -:>?? Q1 ;>RO -]<;ll ]4'l ?F- .:.11 
"" i i 17 .:.111 ?l? -4? "" Jl,O -]<; -]4Q )11 -?? -11? 7R -4]] f.? .;,A? .;,JOA 

-"9 •4"7? 3lr.. 140 c;c; -lOA ;>1Q 1n1 -100 174 41 ?34 :ino -~?O -~40 4?1 
-11 44 ]QQ -1A -"1 -1:74 -71 -?:I" 1"" -1(11 -7P Q .:.1F1Q ?0? -7?. .:1<1 ... 

-?QO -1<;q '.H<l 41'i -?41 -Til 1?Q -101 -in -11 Q ?)? ;J?f, 11'.J 41 -CiO? .:. \':;i. 
-11 J1Q -441 -I<;" ?1,4 l'l4 -?71 1'i7 ?f. 1 ?JA -1 -114 ::>?? 'iO 239 'i2 ,.,,, -?Q<; 4?1 -?II~ 10? _,.,44 ,<,]4 -441 _.,, -n c; l -?I, -"" -4?1 .:.4Q1 i 111 

-1?7 nn -II? ?4" -3'1Q 41',i -11A <;nil -11 -l l c; -?111 ..:.?01 4?1 -inn l'H ?(I 
-1 <rn 1711 -J'i;> ?0? -1!1? ?14 -11Q ?3" -14" -?Iii -??11 -41 -IA 134 l;q;> .:. i All _,,,, l ?'l 1?1 ?R? -7411 1Q7 -1 l'l 11n -1'10 -4111 17? 41 ?64 -l 7f> -1?f, ?.?fl 

;:>o. -J<;q 
? '" 

14q c; -l'H ] 11 -1n -141 1411 -4<1 11 .:.1 "n 1oc; .:,4~7 .:. i "'" 

Fig UN? 63. Examples of Matrix Print Routine Output (cont'd) 



APPENDIX I 

HISTORICAL REVIEW OF MICROPROGRAMMlNG 

Digital computing systems have traditionally been described as being composed 
of the five basic units: input, output, memory, arithmetic /logic, and control 
(Figure 64L Machine instructions and data are communicated among these units 
as indicated by the heavy lines in the figure are generally well known and 
understood, The control signals (as indicated by light lines in the figure), are 
generally less well known and understood except by the system designer. These 
control signals generated in the controi. unit determine the information now and 
timing of the system. 

M tcroprogramming is a term associated with the ordet·ly anc! systematic approach 
to t.lle design of the control unit, The functions of the control unit include: 

1. Fetching the next machine instruction to be executed from 
memory 

2. Decoding the machine instruction and providing ea1,;h microstep 
control 

3. Controlling the gating of data paths to perform the specified 
operation 

4, Changing the machine state to allow fetching of the next 
instruction. 

The conventional control unit is designed using flip-flops (e.g., registers and 
counters) and gating in a relatively irregular ad hoc manner, By contrast the 
control unit of a microprogrammable computer is implemented using well 
structured memory elements, thus providing a means for well organi?:ed and 
nexible control. 

145 



Microprogramming is therefore a technique for implementing the control function 
of a digital computing system as sequences of control signals that a.re organized 
on a word basis and stored in a memory unit. 

It should be noted that if this memory is alterable, then microprogramming 
allows the modification of the system architecture as observed at the machine 
language level. Thus, the same hardware may be made to appear as a variety of 
system structures; thereby achieving optimum processing capability for each 
task to be performed. The ability to alter the microprogram memory is called 
dynamic microprogramming as compared to static microprogramming which 
uses read only memories, 

As can be seen in the following brief histodcal review, the concept of micro
prowamming was not widely accepted except academically during the 1950's. 
The primary reason for this was its high cost of implementation, especially the 
cost cf control memories. l•'rom the mid-l 960's to the present there has been 
a definite trend toward microprogramrnable processors and more recently to 
dynamic microprogramming. This effort has been inspired by rapid advances 
in technology, especially control memories. 

CONTROL 

~ 

ARITHMETIC 
a 

LOGIC 

~ ~ 

~ ~ ' t l 

INPUT 
... MEMORY ~ OUTPUT ..,... r--"'P" 

e HEAVY LINES INDICATE INSTRUCTION 81 DATA PATHS 

e LIGHT LINES INDICATE CONTROL PATHS 

Figure 64. Traditional Digital Computing System Block Diagram 

146 



BRIEF HISTORICAL REVIEW OF MICROPROGRAMMING 

1951 

1956/7 

1958-1960 

1961-1964 

Feb. 1964 

1964 

1965 

1 
Wilkes objective was "to provide a systematic 
approach and an orderly approach ,to designing 
the control section of any computing system. " 
He likened the execution of the individual steps 
within a machipe instruction to the execution of 
the individual instructions in a program; hence 
the term microprogramming. This view is 
hardware design oriented. 

Lin-:oln Lab (see Van der PoeI2 > with different 
emphasis used the term microprogramming to 
describe a system in which the individual bits 
in an instruction directly control certain gates 
in the processor. The objective here was to 
provide the programmer with a larger instruc -
tion repertoire. This view is software design 
oriented. 

Glantz 3 and Mercer 4 pointed out that through 
microprogram modifications the processor 
inst ruction set may be varied. 

Blankenbaker 5, Dinneen 6, and Kampe 7 described 
simple computers based on Wilkes model. 

Great international interest was shown from 
U.S., U. K., Italy, Japan, Russia, Australia 
and France. 

I . 8-12 f" . l d n Datamation ive artlc es appeare on 
microprogramming with emphasis on how it 
might extend the computing capacity of small 
machines. 

13 
IBM System 360 (Stevens ) demonstrated that 
through microprogramming, computers of dif
ferent power with compatible instruction sets 
could be provided h.1sed read only storage). 

Melbourne and Pugmire 14 described micropro
gramming support for compiling and inter
preting higher level programming languages, 

147 



1965 

1965-1966 

1967 

1967 

1967 

1968 

1970 

1971 

July 1971 

July 1972 

McGee and Petersen 15 pointed out the advantage 
of using an elementary microprogrammed com
puter as a peripheral controller; i. e. , as an 
interface between computers and peripheral 
devices, 

16 17 . 
Green , and Tucker described emulation of 
one machine on another through microprogram· 
ming. 

0 l 18 . th "r· " " . p er coined e term irmware iOt' micro-
programs designed to support software and 
suggests the increased usage of microprogram
ming and describes its advantages. 

H k . 19 . . 
awrysz iewycz discussed microprogram 

support through special instructions for problem 
oriented languages. 

Ro 20 "b · d h' I se descrl ed a m1croprogramme grap 1ca 
interface computer. 

Lawson 21 discussed program language oriented 
instruction streams. 

Wilk 22 R . 23 . f th es and osm prmrided surveys o e 
microprogramming advances, 

There were also announcements of many new 
microprogrammed 7ff.1Puters (e.g., Standard 
Computer - Rakoczi ). 

Husson25 provided the first textbook on micro· 
programming. 

Tucker and Flynn26 pointed out advanta~ec of 
adapting the machine to the task through 
mic ropt·ogramming. 

The IEEE Transacti.,ns on Computers offered 
a special issue on microprogramming. 

27 . 28 . 
Clapp and Jones, et. al. p:r-ov1de annotated 
microprogramming bibliographies. 

148 



1. Wilkes, M. V. "The Best Way to design an Automatic Calculation Machine" 
Manchester Unhrersity Computer Inaugural Conference Proceeding (1951), 
p. 16. 

2. Van Der Poel, W. L. "Micro-Programming and Trickology" John Wiley 
and Sons, Inc. (1962), Digital Information Processors. 

3. Glantz, H. T. "A Note on Microprogramming" Journal ACM 3, Vol. No. 2, 
(1956), p. 77. 

4. Mercer, R. J. "Micro-Programming" Journal ACM 4, Vol. No. 2 (1957). 
p. 157. 

5. Blankenbaker, J. V. "Logically Microprogrammed Computers" IRE Pi'"of. 
Group on Elec, Com. (December 1358), Vol. EC-7, No. 2, pp. 103-109. 

6. Dineen, G. P., Lebow, I. L., et al. "The Logical Deli gn of CG24" Proc. 
E.J.C.C. (December 1958), pp. 91-94. 

7. Kampe, T. W. "The Design of a General-Purpose Microprogram-Controlled 
Computer with Elementary Structure" IRE Trans. (June 1960), Vol. EC-9, 
No. 2, p~. 208-213. 

8. Beck, L. , Keeler, F. "The C-8401 Data Processor" (February 1864). 
Datamation. pp. 33-35. 

9. Boutwell, Jr., 0. "The PB 440 Computer" (February 1964), Datamation, 
pp. 30-32. 

10. Amdahl, L. D. "Microprogramming and Stored Logic" (February 1964), 
Datamation, pp. 24-26. 

11. Hill, R.H. "Stored Logic Programming and Applications" (February 1964), 
Datamation, pp. 36-39. 

12. McGee, W. C. 11 Th<! TRW-133 Computer" (February 1964), Datamation, 
pp. 27-29. 

13. Stevens, W. Y. "The Structure of SYS1EM/360 Part II - System 
Implementation" IBM Syst-ems Journal, Vol. 3, No. 2 (1964) pp. 136-143, 

14. Melbourne, A. J., Pugmire, J.M., et al. "A Small Computer for the 
Direct Processing of Fortran Statements" Computer J ourn. (England) 
(April 1965), Vol, B, No. 1, pp. 24-27. 

149 



15. McGee, W. C. and Peterson, H. E. "Microprogram Control for the 
Experimental Sciences" Proc. AFIPS (1965), FJCC Vol. 27, pp. 77-91. 

16. Green, J. "Microprogramming Emulators and Programming Languages" 
Comm •. of ACM (March 1966), Vol. 9, No_ 3, pp. 230-232. 

1 7. Tucker, S. G. "Emulation of Large Systems" Communications of the 
ACM (December 1965), Vol. 8, No. 12, pp. 753-761. 

18. Opler, A. "Fourth-Generation Software, the Realignment" Datamation 
(January. 1967), Vol. 13, No. 1, pp. 22-24. 

19. Hawryszkiewycz, I. T. "Microprogrammed Control in Problem-Oriented 
Languages" IEEE Transactions on Electronic Computers (October 1967), 
Vol. EC~16, No. 5, pp. 652-658. 

20. Rose, G.A. "Intergraphic, a Microprogrammed Graphical-Interface 
Compater" IEEE Transactions (December 1967), Vol. EC-16, No. 6, 
pp. 776-784. 

21, Lawson, H. W. "Programming Language-Oriented Instruction Streams" 
IEEE Transactions (1968), C-17, p. 476. 

22. Wilkes. M. V. "The Growth of Interest in Microprogramming - A 
Literature Survey" Comp. Surveys, Vol. 1, No. 3 (Septereber 1969}, 
pp. 139-145. 

2::J. Rosin, R. F. "Contemporary Concepts of Microprogramming and Emulatfon'' 
Comp. Surveys, Vol. 1, No. 4 (December 1969), pp. 197-212. 

24. Rakoc·zi, L. L. "The Computer-Within-a-Computer: A Fourth Generation 
Concept" Computer Group News, Vol. 2, No. 8, (March 1969), pp. 14-20. 

25. Husson, S. "Microprogramming: Principles and Practices" Prentice 
Hall, Englewood Cliffs, N. J. (1970). 

26. Tucker, A. B. anti Flynn, M. J. ''Dymuuic Microprogramming: Processor 
Organization and Programming" CACM (April 1971), Vol. 14, No. 4, 
pp. 240-250. 

27. Clapp, J. A. ''Annotated Microprograming Bibliography" SIGMICHO 
Newsietter, Vol. 3, Issue 2, (July 1972), pp. 3-38. 

28. Jones, L. H., Carvin, K. et al. "An Annotated Bibliography on Micro
programming" SIGMICRO Newsletter, Vol. 3, Issue 2, (July, 1972), 
pp. 39-55. 

150 



APPENDIX ll 

FINAL SUMMARY REPORT 

BIPOLAR LSI 

FOR 

BURROUGHS INTERPRETER 

MAY 197Z 

CONTRACT NO. 82329 

PREPARED BY 

TEXAS INSTRUMENTS INCORPORATED 

P. O. B"OX 1443 

HOUSTON, TEXAS 77001 

FOR 

BURROUGHS CORPORATION 

DEFENSE: SPACE&: SPECIAL SYSTEMS GROUP 

PAOLI, PfNNSYLVANIA 19301 

151 



TABLE OF CONTENTS -----------------

SECTION PAGE 

I LARGE SCALE INTEGRATION 1 

II LOGIC DRAWINGS 5 

w GENERAL CIRCUIT CHARACTERISTICS 6 

J.V LOGIC SLICES 7 

A) TYPE "N11 7 

1. DATA 

z. FIRST LEVEL MET AL MASK 8 

B) TYP.E 115'' 9 

1. DATA 

2. FIRST LEV EL MET AL MASK 10 

v LOGIC CELL DATA 11 

A) NAND GATE 11 

B) EXCLUSIVE OR GATE 12 

C) AND - NOR - INVERT GATE 13 

D) J - K MASTER-SLAVE FLIP-FLOP 14 

VI LOGIC CELL PHOTOGRAPHS 16 

A) DUAL 3-INPUT NAND GATE 16 

B) 7-INPUT NANO GATE 16 

C) EXCLUSIVE OR GATE 17 

D) AND - NOR - INVERT GATE 17 

E) J - K MASTER~SLAVE FLIP-FLOP 18 

VII PACKAGE DATA 19 

cont'd .•. 

152 



TABLE OF C"ONTENTS -----------------
(cont'd) 

SECTION PAGE 

Vlll ARRAY SUMMARY DATA 20 

A) DRA-3013 20 

B) DRA-3014 21 

C) DRA-3015 22 

D) DRA-3016 23 

E) DRA-3017 24 

F) DRA-3018 25 

XI RETURNED MATERIAL REPORT 26 

x RELIABILITY 28 

153 



LARGE SCALE INTEGRATION 

Via Discretionary Routed Arrays 

rii\.-v .. _ 
---

Figure 1. Multilevel process 

from wafer to array test, 

all computerized. 

Texas instruments is using monolithic discre

tionary routing technology to produce Large Scale 
Integrated (LSI) arrays. Large bipolar wafers are 
produced containing an intermix of the gates and 
flip·flops required to perform logic functions. 

More than 16,000 separate components are 
diffused into a single 1 1/2-inch·diameter -iilicon 

slice. These components are then connected with 

first level metallization into a minimum of 1410 

equivalent gates. {See Figure 1.) The slice is then 

probed to determine the individual characteristics 

of each device on the slice. 

Customer logic requirements are fed into 

computer-controlled equipment, which has been 

developed to generate unique interconnection 

masks for each wafer at low cost. 

Custom interconnections are then produced 

using probe test data and a computer to develop 

the discretionary routing masks. Using these auto
mated techniques, custom arrays can be developed 

to fit most logic specifications. Multilevel metal 

interconnect technology now makes possible the 
production of very complex arrays in a short time. 

154 



CUSTOM LSI ARRAYS 

Custom LSI Arrays •e produced by discretionarily interconnecting various circuits or cell types 

on the face of an LSI wafer. similar to the interconnection of individual integrated circuits on a PC 

board. These are TTL logic c:ireuit types and are similar to Tl standard series SN5400 integrated cir

cuits. The same general logic rules (loading. fan-in, fan-out, logic states, speeds, etc.) that apply to 

seriesSN5400, apply to the LSI circuits. Therefore, to design a system with LSI, or to reimplement 

an existing one, is a relatively easy. straightforward Pl'ac:etl. 

LSI INTERFACE 

There are threo basic interface methods that can be achieved with the LSI technology: 

1) The first method is to implement a functional bipolar logic requirement with the 

standard wafers currently in assignment inventt:wv. shown on page • These types 

are currently in production and stocked, waiting for assignment 10 a logic require

ment. The addition of multilevel metaUization converts these slices into functional 

arrays. 

Panitioning the arrays for the number of circuits and types available on the wafer 

and limiting the number of input-outputs. not to exceed 126, is all that is required. 

Presently, the time from logic diagram input to ct>mpleted array is in the range of 

30 to 90 days, depending on comple>eity. 

2) The second interface method is implemented ~Y creating a custom wafer using stan· 

dard circuits from our circuits library. This often reduces the total number of arrays 

needed in a system, thus reducing the system cost. The hi~est single cost in the 

design of IC's is the set of diffusion masks used to create the individual circuits. 

This high cost has already been absorbed in the design of standard circuits. Step

ping and repeating these standard circuits around on a wafer to form a custom dis

tribution or quantity of given circuit types is a relatively low·cost operation. Thus, 

a custom wafer containing a uniQue distribution of circuits fur a specific application 

provides the interface. 

Tl is continuously expanding the present circuits library with new, more complex 

circuits. Most of these will be similar, if not identical, to the circuits presently 

available as standard Series 5400. Thus, implementing LSI arrays remains simple. 

155 



3) The third interiac:e method with LSI is a toral custom appt"oach. A few thousand 

arrays of a single type may justify the expense of a custom circuit as well as that of 

a unique wafer. General-purpose logic arrays will provide 200- to 800-gate complex

ity while customized circuits and wafers can provide arrays of 50().. to over 2000-91te 
complexity on a single monolithic substrate. 

ARRAY TESTING 

The final phase of creating an LSI array is the testing of interconnections and the verification 

that the array will perform in accordance with the logic diagram. Because testing an input logic 

array with all possible combinations of inputs that can occur is impractical, Tl has develcped a 

"riingle-fault modeling" approach. Testing for a single type of fault at each node within the logic 

network is both practical and effective. This approach assume5 that a set of inputs can be defined 

that not only will exercise each circuit output but also will test for the output being stuck-at-one 

or stuck-at-zero. 

The number of tests required for ci 200- to 400-gate array is in the thousands. But this is a 

reasonable number to generate and test with computer programs and computer-controlled test equip

ment. The equipment is capable of applying 5,000 tests per second to a 156-pin LSI package. 

This approach to tests does not require knowledge of the functional capability of a logic array. 

Therefore, a logic diagram can be provided, the multilevel interconnection accomplished, and the 

completed array tested without the operator knowing what the array does functionally. This gives 

the customer confidence th;;t his circuit innovations are protected. In addition, it assures that this 

inforl'TU'tion is treated on a proprietary basi'"-

ARRAY PACKAGE 

A general-purpose package has bee~ developed for housing whole wafers of monolithic semi

conductor components. The package serves as a suitable container, protects the wafer from handling 

and environments, provides for adequate heat transfer, and is capable of mounting and interconnec

tion into customers' equipment. A 2 1/8·inch square, alumina-ceramic substrate with thick-film 

metallization leads is the package developed through extensive research. It provides 39 leads on 

50-mil centers on all 4 sides of the package so that conventional solder or retlow solder techniques 

can be used. 

156 



Normally the wafer is mounted with a special high-temperature epoxy adhesive, providing 

typically a 3° C/W gradient between the LSI wafer a~d the ceramic header. The wafer is connected 

to the gold-plated lead frame with gold wires, using conventional thermocompression techniques. 

This results in a high-reliability all gold system. The Slandard package has an epoxy-sealed ceramic 

lid, but a hermetically sealed package with Kovar-type lid can be provided. 

157 



LOCIC DRAWINGS 

l. LOGIC UNIT 1 
REV. B - 12-14-70 
SK-0982-0109 
DRA-3013 

2. LOGIC UNIT 2 
REV. F - 3-4-71 
SK-0982-0110 
DRA-3014 

3. CONTROL UNIT 1 
REV. D - 4-16-71 
SK-0982-0113 
DRA-3015 

4. CONTROL UNIT 2 
REV. B - 4-26-71 
SK-0982-0114 
DRA-3016 

S. MEMORY CONTROL UNIT 1 
REV. D - 4-16-71 
SK-0982-0111 
DRA-3017 

6. MEMORY CONTROL UNIT 2 
REV. C - 4-27-71 
SK-0982-0112 
DRA-3018 

AA - 5/8/72 

158 



BIPOLAR LSI 

GENERAL Cl RCUIT CHARACTERISTICS 

absolute maximum ratings over operating case temperature range (unless otherwise noted) 

Supply Voltage V CC Short Duration (30 seconds) (see note 1) 

Input Voltage v1 (see notes 1and21 
Operating Case Temperature Range . 

Storage Temperature Range. . . . 

NOTES: 1. Voltagn are with respect to network gnwnd -minel. 
2. lnpyt 1ignals must t.. aero or ~OSitive whl\ r-t to n•-ork ground termln116. 

recommended operating conditions 

MIN 

Supply Voltage V CC . . . . . -. 4.5 

TYP 

5 

7V 
5.5V 

. -55°C to 125°C 

. -65°C to 150"C 

MAX UNIT 

s.s v 

electrical characteristics over operating temperature range (unless otherwise noted) 

PARAMETER TEST CONDITIONS MIN TYP• MAX UNIT 

VIH Hiyh level input voltage Vcc•4.5V 2 v 

VIL Low level input volt11111 Vcc•4.sv 0.8 v 

VoH High level output voltllge Vee ·4.sv. I load • 400 i-A 2.4 3.5 v 

VOL Low le11el output voltBge vec •4.5 v. 1,ink '"8 rnA 0.22 0.4 v 

High level input cii•rent Vee~ 5.5 v. V1H•24V, 40 jjA 

l1H 
one normal!zed load vce c 5.!: v, V1H•5.5V 1 mA 

LO\"i le11e1 input current 
l1L Vee· 5.5v. VIL •0.4 V -1.6 mA 

on!! normalized load 

SllOrt-circuit oiitput ciirrent 
1os .. vee - o.5 y -18 -57 mA 

(output in logic one statel 

• AH typ:~el values •r• •t V CC• S V. TA • 25°C 

Not more th•n o"• output should b• shorted It• tim•. 

fan-out 

All LSI gates and flip-flops are rated for a normalized fan-out of 10. This fan-out should not 

include more than 5 e)(ternai ioutside of package) 0 state loads. 

159 



D
D-

CIRCUIT TYPE 

~I< FLIP·FLOP 

ANO.NOR·INVERT GATE 

EXCLUSIVE OR GATE 

~INPUT GATE 

7-INrUT GATE 

~OGIC SLICE - TYPE ''N" 

TOTAL NO. 

100 

82 

60 

232 

56 

RECOMMENDED• 
MAXIMUM USE 

30 

25 

18 

70 

17 

• RECOMMENDED DESIGN WITH UP TO 30% OF EACH SINGLE.CIRCUIT TVPE. 

160 



.-::1 l,.:.11 Ill;':! I;,•.:•;";! 1:: :.1 •• 

I~·~.· ! .. I~. ~1: ~:~: 111~·~1;..:._.1 ~::; f~: ,:.!LJ1~·~1i :"Al! !11•.!1: !I ~f~l 
..... i: ·: _ = :.·:: ·: ·: ~ -.· : ·: • • : r-: Li; r : ..-: · .. · ..... 
• • : ~ I • • I! ~ •• 1'1. • : ; I : • : : : ': I. '!! !I I!:~ . 1:... • -.~ .• 11: :, : : • • .~ . ~I : • . . • ,:, . • • : . : : . : 1:.. :: • • : •• .,,; . ; Ii ;, 
: ;:. 1~. :_: :.· . ·-. ; !r:i _:11: :1 :: :~ ! ! 1~ -!I ! ·. · .. . . . •: : .. : . :- ~: : ~ '! ~i • • : ·:I! :u~ . : ;1 

- :: ;· ::::: :: : f..·== •.• · .:· ::-:: rn::: ·. 

. ~ ::.:! 1: :_!I:._ .... 
- !: I•!• ·.:' ':. j; •••.·. • •I'• 0' ; I~. •I : ; :. ! ·~ ~· i= r: =: ., ~~ ~';-= ~.·= 

• : • • : • ; • II : : • : :1 • : • I • -:: 

: ~ ;:,_ f !I ; ..:..: ! !II~ .. : !C: I! 11f •I - : : : 111i : 
~ .... : .. . ; .. : . : - : ·_ : : ." : : : ; : ~ .... : : : ! : 

I • : 

~ . .. "• 

. . . . .. - .. ... 

-JI~. !1\:.-l: ~ . . . .. 

--i : ·: .- l : ! ~ 1:. ~ f • ! .1 : · •' : : T : : = · ~,, : :r, .. ~I! ! : : ~; · r-
~,_~1i: ~...c~ 1 '.=l'i.· '_:1 l !1~.:: Jllf: -'. '. .'. '. :1~.: · : -J1H1~ ~}! :I! !II~ 11 -~I~ i1;-= . .· .. : ~.. : . . . 
--i ... !I::... ::.;I! ::I!•':: : : :1r

_; i i L- = ~11r ~ = . . ~ ~,: '. _:I! !I• f:j : i!lr ~I _ 11 

: ~~.T!t~~.~.r:1:~~~.!!"""!it:-!P."r"!'f:'"~~!"'"!1r:-:;~;:.~~~~-1'"!1?.-rl~l~:~ .. '-11!"r!l1 ....... 

1i ; 1t . ~· ; • . . ; ; It ~l -i -.: I~ ~I! ~ ; Ii l 1~ !II! ; 

--11~. h1 
= = =w 
.. ·-

161 



0-_ 
0-

CIRCUIT TYPE 

.J.K FLIP-FLOP 

AND-NOR-INVERT GATE 

EXCLUSIVE OA GATE 

3-INPUT GATE 

7-INPUT GATE 

TOTAL NO. 

58 
46 
18 
96 
30 

162 

RECOMMENDED 
MAXIMUM USE 

26 
21 
10 
60 
19 



~ ~; = «: ·'~· 
.....,_ 

=~~; --:f'J.! i ~,:: 
=''· ~ , .•. 

~ ~\-i;;" ...... , .. ~i1!.: ~r.,; .... ~~ "'.yt ' ' 
"'!t.~-

.1: -
~ ::~: ~ :t~: ~ : ~: . ~'llJ: ...... 

..·I~,. ... , ..... 
r~·· -... :- .~·{. 

~ 
...... 

~ ;:?;; .,.. 
~-'k. ~ ~d~ ~~ , . .. $)! 

-~·. .-.. .. ... -.. 
~ ~ ~; = i ~·i: .-.. Jj·· ..-.. 

~ 
~~ ; 1.:: i ~~r ~..:: 

~ ;if; ~ ,••. :~ ~ ~~; 
-c+s-...... _ 

~"';: ~~~ . "'..yt .... -q;· ";.,. ... - ·!-.~""' "\'•r ~ .. ,. 
- lf- ~ : 

,. 
: ~ fL: ~ ~ ~: : ~ 

' 
~ :::: :~ :~i~ 

.. <- ... 

'·' ,. .·t :i.= ... , ... 
~ '°e _'f·i; ... 

~-i: ~~ 
<;· 

{{; ~; ~ ---~i ~ ~ ... ~- "\ .. ~ ~; •· r ~: "\·1,- "'l'I~ 

~ ~ ~~= ~ 
. ~ .. -.. 

~ : ; ~: ~ : ~.;: s~ 
~ f -

I : 1:; =r\:. ,., .... ·•:.!.! , •. •'. ..._ 
'e ::f{f i;>:· 

~ ~i; ~ ~11~ 
.... 

;:i/ ~~'l; ~ -l- ~ ~- < ., 
"\""r' "",,. . ,. ' 

~·;: =I'< it ~- ~.~ 

I ~·f 5i 
.rw- .... ..=-.. =.'t'rt, 

I ~f -"""-
-9;,: 3'11" :tj,t I t: .... ~ 

*"" ~ ii? ~- ~- ~ ~: (f ~ --- -.... - -.w 

~ =f;): ~? ·""• .. . ... ., .. .,. .. ,. .. 
.... ~~_... ~ "¥- -'t9(" "l'-" 
.,- .. 

~ ~ 
;·\:·. 

~ ~ ~ i;l';: ! ~ I ~ ·:-_: .. - ::;. : : : ~ ~ : .. -.. -~-
~ 

~·~ .. .·1 .... _., :.:; 

•i,- ~ ~ _'il'i: ~; 
I(' "· C" 'r·r.: ~ ~'""-i~ ~ '"ffe.' ~ :..l[; ' ' -.nr ~- . r 

~ i- : ~ ;;::; ;;..:: ; ~:: ~ : ;: l ~ :-.;: '- :;t;: 
·.:·~.- "'!.-'" : .. ~ :~. ~= ' ., .. -

~~,~~ -•- . .: - j o:.: 
'·i: <i= ~E 

.·.": 

'F-r: ... ll!'i: J:;; &' ~:i; -~- ·:i.- ~'~~; ~. ; 51.f: ·•· E ~- 3i,l. ~ ~- ~· ·1,.. ~- ~: "\'•<'"" . 
' -.,,.,.,_ ;'='•j. .-.. ~.,: .-. i! =<.. 

~t 
-=1'-

I =- r;~ --- ~M -...:: :Ji<,_ ..,,, :I):!: ... ~ -!.'$~ ~"' .,~ -"-~ 
~ ~:!£ 

;a: -...,- ~ --- ~ -~- ~ ]i =~=: ~ ::.~: 
~~~ .. \··~- ~ 

·111•"!11.• , .. ·'!:··•,,ii. "ii'a11i!"' °:ta'it:. ... ~a~· --'.1:.->-· -;.i.-.-~· .. ,., .. ~- .,,&'.:· "'f.1"">-;· -,..,. ·: >:-. ,- .
~

_,- .. ;"P; ~~ ·:I ~ .:-.;: .. ·~: ~ ,,.~ ~ 7·--.~ ~ .. .·•·- -·~.::.

~:1~ ~ -&- .i:-·i; ~}~;; _..-E " ~.'(-'~·
..

•. - ~ r.:
~

_:- r.
, -:· ~ ~- "'\·""' ::..;..:: .. · · ... =ii:;

~ : ~; : ~ :~ .. ~ i .. :'tr,.:
·'. .. •-.!

Ji; , ·' <:'.'
~~'(.. ~ -~'= .•;·. ...

).; :.~i·.;
,..

:~'i',; ~,'i,; =i.~ ;i,~ .. .:-r: ~: "\"-••,.. ~= :«.: -- -····.- ...:...-_ *":: '~
..,,,_

:fl,t ~ :rd: ~.: .. 1'= ;"
~ :M: ~ ~ ~;· ~: -1;-•,1· ~- _,· ... ·ft.··:-. -·=· - .. ., _
-: .. ,~- L:;,"11::.. 'ft1flc._ ·.~, - ... l. .. '·l,I"' ·····':· -·-···,. . ·"·~· .. "\··,.-

~ ::~ =1': ~~ :

'. . '
.....

.. ~i: ~~;
~· ,·, t;· .. _ ... _

~ ~ ~j·~~
.·s:

::L': ~-1-~ ~~= "··•:.
:;".: """"- ~~ ~= : .l. ~ ..
~ ~'i.; ~ :~~.;

jt
~-'i.; '"tra"'fl."' -~~ .. "!< -

NANO GA'fE

LOGIC

SCHEMATIC

-----CJ OUTPUT

1kn

L----•---OGNO

COMPONENT VALUES SHOWlll ARE NOMINAL.

CHARACTERISTICS (Vee= 5 v. TA"' 25°C. N ::z: 10)

PARAMETER MIN TYP MAX UNIT

AV PROPAGATION DELAY 9 19 ns

POWER DISSIPATION 10 mW
FAN·IN (NORMALIZEDt , -
FAN-OUT tNORMALIZEDl 10 -

NOTE: FOR MORE GATE INFORMATION SEE SN5400 DATA SHEET.

164

A------..
•--+--Go-I

EXCLUSIVE OR -GATE

LOGIC

SCHEMATIC

•k1' ••u

r
-----1 m

....

& • c

INPUTS

AB c
a o 0
1 0 0
0 1 0 , 1 0
0 0 ,
1 0 1
0 1 1
1 1 1

OUTPUTS

F1 F2 , 0
0 1
0 1
0 1
1 0
0 ,
0 1
0 0

CHARACTERISTICS (Vee"" 5 V, TA= 25°C, N = 10)

PARAMETER MIN TYP MAX UNIT

AV PROPAGATION DELAY
F1 II 19 ,...
F2 18 31 ...

POWER DISSIPATION 26 mW

FAN-IN CNOP.r.iALoZEDI
A•B 2 -
c , -

FAN-OUT INORMALIZEDI 10 -

165

2

.. ~(5.....---1
•o---...

AND-NOR-INVERT GATE

LOGIC

SCHEMATIC

111.i.!

1JIDU

.,
ounvr

4 au

CHARACTERISTICS (Vee= 5 V, TA= 2s·c. N = 10)

PARAMETER MIN TYP MAX UNIT

AV PROPAGATION DELAY

F1 10 20 ns

F2 19 39 ..
POWER DISSIPATION 40 mW

FAN-IN (NORMALIZED) 1 -
FAN-OUT (NORMALIZED) 10 -

i......

166

J.K MASTER.SLAVE FLIP·FLOP

LOGIC

TRUTH TABLE

1n t,. + '
J ~ a
0 0 °" 0 1 0

1 0 1

1 1 ~

POSITIVE LOGIC: NOTES: 1. J • J1 • JZ •.II

LOW INPUT TO PRESET SETS Q TO LOGICAL 1
LOW INPUT TO CLEAR SETS Q TO LOGICAL 0
PRESET AND CLEAR ARE INDEPENDENT Of CLOCK

DESCRIPTION

THESE ~K FLIP-FLOPS ARE BASED ON THE MASTEMLAVE
PRINCIPLE AND EACH HAS~ GATE INPUTS FOR ENTRY
INTO THE MASTER SECTION WHICH ARE CONTROLLED BY
THE CLOCI(PULSE. THE CLOCK PULSE ALSO REGULATES
THE STATE OF THE COUPLING TRANSISTORS WHICH CON
NECT THE MASTER ANO SLAVE SECTION£. THE SEQUENCE
OF OPERATION IS AS FOLLOWS:

1. ISOLATE SLAVE FROM MASTER
2. ENTER INFORMATION FROM ANQ GATE INPUTS

TO MASTER
3. DISABLE AND GATE INPUTS
4. TRANSFEii'iNFOR..,ATION FROM MASTER TO SLAVE.

167

:Z. K • Kl • U • K3
3. In • BIT TIME BEFORE CLOCK PULSE.
4.. In + 1 •BIT TIME AFTER CLOCK PULSE.

HIGH 2r--\.3

Low...d t
CLOCK WAVEFORM

J.K MASTER-SLAVE FLIP-FLOP (CONTINUED)

SCHEMATIC

lHll

lllOTU: CIOllPCllllll1' VALUES ltQllll Alll -IHAL.

• kn

nn

CHARACTERISTICS (Vee= 5 v. TA .. 25°C. N ... 10)

PARAMETER MIN TYP' MAX

MAX CLOCK FREQUENCY 15 20

POWER DISSIPATION <ID

FAN-IN INOAMALIZEDI

.lliK 1

PRESET. CLEAR 6 CLOCK 2

FMU>UT 10

UNIT

MH&

MW

-
-
-

NOTE: FOR MORE FLIP·FLOP INFORMATION REFER TO S"'5472 DATA SHEET.

168

DUAL 3-INPUT NAND GATE

7-INPUT NANO GATE

1 (j <)

EXCLUSIVE OR GATE

AXD - ::~R - II\'VF:HT GATE

J j:)

J - K MASTER-SLAVE FLIP-FLOP

1 -;-1

111

111
119

136
137
138

TOP VIEW

79

LEADS .. RE GOLD PLATED F-16
ALLOY ON 50 MIL CENTERS

PACKAGE DATA

PIN LAYOUT

1 z • 14

PACKAGE DIAGRAM

2.125

J
_j l- .190

DIMENSIONS NOMINAL
(IN INCHES)

TE JCA5 111$1 RUMENTS RESERVES HiE RIGHT TO MAKE
r_,11i.ti".JES !<T 1\NV TIME IN ORDER TO IMPROVE DESIGN
p;t, l(; '.:.UPi"_V "HE BEST PRODUCT POSSIBLE.

172

BOTTOM VIEW

WEIGHT - 22 GAAMS

DRA-3013 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No. Complexity Complexity Used Available Used

FF 8 6 48 40 88 45

ANI 30 7 210 Z65 480 55

EXOR 18 3 54 64 90 71

3G 93 1 93 257 372 69

7G 15 l ..12. 82 ill 68

TOTALS: 164 420 708 1150 61

POWER DISSIPATION - 3.14 WATTS

TOTAL PINS - 801, including 93 1/0 PINS

INPUT CONN.ECTOR PINS ~ 67

OUTPUT CONNECTOR PINS - 26

AA - 5/8/72

DRA-3014 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No. Complexity Complexity Used Available Used

FF 32 6 19Z 1Z8 352. 36

AN! 26 7 182 247 416 59

EXOR 16 3 48 64 80 80

3G 113 1 113 344 452 76

7G _l1 1 17 ill 136 75

TOTALS: l04 55Z 886 1436 61

POWER DIS.SIPATION - 4. 10 WATTS

TOT AL PINS - 96 7, including 81 I/ 0 PINS

INPUT CONNECTOR PINS • 47

OUTPUT C01'.'NECTOR PINS - 34

AA- 5/8/72

174

ORA- 301 5 * SUMMARY

Cate Total Cate Pins Pins Percent
Function Total No. Complexity Complexi~ Y!.!:.4 Available Used

FF zz 6 132 109 2.42 45

ANI Zl 7 147 128 336 38

EXOR 9 3 27 30 45 66

3G 83 1 _g 224 332 67 -
TOTALS: 135 389 491 955 51

POWER DISSIPATION - Z. 82 WATTS

TOTAL PINS - 559, including 71 I/0 PINS

INPUT CONNECTOR PINS - 36

OUTPUT CONNECTOR PINS - 35

*NOTE - 2-LEVEL MET AL SYSTEM

AA - 5/8/72.

175

DRA-3016* SUMMARY

Gate Total Gate Pins Pins Percent
lunction Total No. Complexity Complexity ~ Av<lilable Used

FF 14 6 84 6a 154 40

AN! 25 7 175 157 400 39

EXOR 10 3 30 37 50 74

3G 68 1 68 145 zn 53

7G _u 1 17 85 ...11!. g ·-

TOTALS: 134 374 486 1012. 48

POWER DISSIPATION - Z. 71 WATTS

TOTAL PINS - 541, including 55 I/0 PINS

INPUT CONNECTOR PINS - 40

OUTPUT CONNECTOR PINS - 15

*NOTE - Z-LEVEL METAL SYSTEM

A.A • 5/8/7Z

176

DRA-301 7 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No. Complexity Complexity ~ Available Used

FF 38 6 zzs 179 418 42

ANI 23 7 161 l4Z 368 38

EXOR 11 3 33 44 55 80

3G 71 1 71 199 Z84 70

7G 4 1 4 ~ ...ll. 68 - -
TOTALS: 147 497 586 1157 50

POWER DISSIPATION - 3. SZ WATTS

TOTAL PINS - 652., including 77 I/O PINS

INPUT CONNECTOR PINS - 42.

OUTPUT CONNECTOR PINS - 35

AA - S/8/7Z

177

Function

FF

AN!

EXOR

3G

7G

TOTALS:

DRA-3018 SUMMARY

Gate Total Gate
Total No. Complexity Complexity

36 6 Zl6

31 7 Zl7

9 3 27

a6 1 86

16 l 16

178• 562

POWER DISSIPATION - 3. 97 WATTS
I ,

Pins

~

168

338

38

216

87

847

TOTAL PINS - 925, including 89 1/0 PINS

INPUT CONNECTOR PINS - SS

OUTPUT CONNECTOR PINS - 34

~4. - 5/8/72

178

Pins Percent
Available Used

396 42

496 68

45 84

344 6Z

128 67

1409 60

RETURNED MATERIAL REPORT ----------------------

I. DRA-3013:

A) SERIAL NO. 34533

I. BAD VIAS
z. NOT REPAIRED

B) SERIAL NO. 34540

1. FIRST TO SECOND METAL SHORT
z. REPAIRED AND RETURNED

C) SERIAL NO. 3 502.Z

I. UNKNOWN SHORTS
z. SHORTS BAKED OUT AND NOT RETURNED

D) SERIAL NO. 31306

1. FIRST TO SECOND MET AL SHORT
2.. REPAIRED AND RETURNED

II. DRA-3014:

A) SERIAL NO. 3502.l

1. FIRST T 0 SECOND MET AL SHORT
Z. REPAIRED AND RETURNED

B) SERIAL NO. 34007

1. BAD VIAS
2. NOT REPAIRED

C) SERIAL NO. 35208

1. BAD THIRD METAL AND/OR OXIDE STEPS
Z. NOT REPAIRED

D) SERIAL NO. 35808

1. NO DEFECTS FOUND
Z. POSSIBLE ARRAY TOP. C. BOARD CONNECTION
3. POSSIBLE A. C. SPEED PROBLEM
4. NOT RETURNED

179 cont'd ...

RETURNED MATERIAL REPORT ------------------------
Page Two

DRA-3014 - cont'd

E) SERIAL NO. 34904

l. SECOND TO THIRD METAL SHORT
2. REPAIRED AND RETURNED

ill. DRA-3015:

A) SERIAL NO. 33307

l • UNKNOWN SHORTS
z. SHORTS BAKED OUT AND RETURNED

IV. DRA-3016:

A} SERIAL NO. 33311

1 • FIR.ST TO SECOND MET AL SHORT
Z. REP AIRED AND RETURNED

A) SERIAL NO. 34011

1. SECOND TO THIRD METAL SHORT
Z. REPAIRLD AND RETURNED

180

THE MOST RECENT RELIABILITY STUDY WAS PERFORMED BY

TEXAS INSTRUMENTS INCORPORATED UNDER CONTRACT TO

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. GEORGE

C. MARSHALL SPACE FLIGHT CENTER. MARSHALL SPACE FLIGHT

CENTER. ALABAMA 35812.

RESULTS OF THIS STUDY ARE CONTAINED IN REPORT NUMBER

03-71-Z7 (FINAL REPORT - PHASE II) "DEVELOPMENT OF QUALITY

ST ANOARDS FOR BIPOLAR LSI DEVICES", APRIL 1971. CONTRACT

NUMBER IS NAS8-Zl319. CONTROL NUMBER DCN 1-8-60-00ISZ(IF)

AND Sl(lF) AND S2{1F).

181

APPENDIX Ill

. ADDER OPERATIONS

The following tables summarize the adder arithmetic and logical ope:-ations that
may be specified using TRANSLANG. The execution phase controls and the value
determination for the ABT dynamic condition are indicated.

Notes:

1. A Register Selection: A Al I A2 I A3
AO All ZEROS

2. B Register Selection: B Any B Register Select option
B ONES complement (by TR..\NSLANG)

of the specified B Register Select
option

0 All ZERO..;;
1 All ONES

3. Z Register Selection: z CTR I LIT I AMPCR
0 All ZEROS

4. Inhibit 8 Bit Carry: 0 l\llow carry into by1:es
1 Inhibit carry into bytes

~. Adder Operation As specified in Microprogramming
Section

183

ARITHMETIC OPERATIONS

REGIST'ER SELECT
ABT IS

ADDER RESULT
Al B2 z3 IC8 4 ADDOP5

TRUE IF
OPERATION FORM RESULT IS ALL

A ADDB A B 0 0 2 ONES

A ADDZ R+S A 0 7 0 1 ONES

BADDZ 0 B z 0 9 ONES

A ADLB A TJ 0 0 3 ZEROS

A ADLZ R+S+l A 0 z 0 0 ZEROS

BADLZ 0 B z 0 8 ZEROS

A CAD B R+S A B 0 1 2 ONES

A CAD Z
~'ITH-

A 0 z 1 1 ONES
OUT

BCADZ CARRY 0 B z 1 9 ONES

0 0 0 0 0 2 NEVER

1 0 0 0 0 3 NEV.ER

MONADIC LOGICAL OPERATIO~S

REGISTER SELECT ABT IS
ADDER RESULT

Al B2 z3 TRUE IF
OPERATION FORM ADDOP5 RESULT IS ALL

A A 0 0 2 ONES

B R 0 B 0 2 ONES

z 0 0 z 1 ONES

XOT A A 0 0 15 ZEROS

~OTB R 0 B 0 10 ZEROS

.'\OT Z 0 0 z i2 ZEROS

184

DYADIC LOGICAL OPERATIONS

ADDER RESULT REGISTER SELECT
ABT IS TRUE

OPERATION FORM Al B2 z3 ADOOP5 IF RESULT iS ALL

l\ AND B A B 0 7 ONES

AANDZ RAS A 1 z 13 ZEROS

BANDZ 0 'B z 4 ONES

A NIM B A B '.J 7 ONES

A NIMZ RAS INVALID

B NIMZ 0 B z 13 ZEROS

A NRI B A B 0 10 ZEROS

A J\"'RI Z R/\S A 0 z 5 ONES

B i'<"RI Z 0 B z 4 ONES

A NOR B A B 0 10 ZEROS

A NOR Z R/\S INVA L!D

BNOR Z 0 B z 13 ZEROS

A XOR B A B 0 6 ONES

A XOR Z (R/\S)v(R/\S) A 0 z 4 ONES

BXOR Z 0 B z 14 ZEROS

A EQV B A 8 0 6 OKES

A EQV Z (R AS)v(R/\S) A 0 z 14 ZEROS

B EQ\' Z 0 B z 14 ZEROS

A ~AN B A B 0 15 ZEROS

A ~ANZ RvS A 1 z 5 ONES

B :\ANZ 0 8 z 12 :ll~ROS

A IMP B A B 0 15 ZEROS

.t\ DlP Z RVS INVALID

I{ l:'>.!P Z 0 I3 z 5 O:>!ES

185

DYADIC LOGICAL OPERATIONS (Cont'd)

REGISTER SELECT
ADDER RESULT

Al B2 z3 ADOOP5
ABT IS TRUE

OPERATION FORM IF RESULT IS ALL

AORB A B 0 11 ONES

A OR Z RVS INVALID

BORZ 0 B z 5 ONES

A RIM B A B 0 11 ONES

A RIM Z RVS A 0 z 12 ZEROS

BRIM Z 0 B z 12 ZEROS

TRIADIC WGICAL OPERATIONS

ADDER ABT IS TRUE
OPERATION ADDOP5 RESULT IF RESULT IS ALL

TRYl A,B,Z 4 B (A XOR Z) ONES

TRY2 A, B, Z 5 (A I\ z) v (B I\ z) ONES

TRY3 A,B,Z 12 AvBvZ ZEHOS

TRY4 A.B,Z 13 (A"Zlv(Bi1.Zl ZEROS

TRY5 A,B,Z 14 (A v B) J:;QV Z ZEH.OS

186

APPENO(X IV

TRANSL.ANG SYNTAX

<Program> ::=<Program Name Line><Body><End Line>

Reference
Page

11 I

<Program Name Line>::= PROGRAM <Program Name>-:Start Address· 111

<Program Name> ::=<.Labeb 111

<Label> ::=<Letter· I <Label><.Letter> I <,Label><Digit::· !)4

<Letter> : : = A I BI CID IE IF I G l H \ l I JI KIL IM IN I 0 IP\ Q \RISI TIU I\'\ \\I\ D3
XJYIZ

<Dig it> : : = 0 11 121 3 [4 I 5 I 6 ! 7 \ 8 ! 9 !) 3

<Start Address> ::= ADR --:Hex Address' I 'Empty· 111

<Hex Address> : := <.Hex Number- 111

<Hex Number' ::"...:Hex Digit'· I <Hex Number'·diex Digit 111

<Hex Digih ::'<Digit..., I A I BI CID IE IF 93

<Emptr- ::= {Tne null string of characters} 93

< t ,dy> ::= <Comment> I<: Statement> I d3ody:-- <..Statement~ I 111
<Body><Tommeat'

<Com'Tlent> ::=COMMENT <Comment Words>; 111

<Statement> ::=<Label Part> <Line> <% Comment> 111

187

<Label Part> : : = <Label> : I <Empty>

<Line> : := <Labei Constant> I <Start Address> I <Insert> j <Instruction>

<Label Constant> : := <Label> * <Integer>

<Insert> ;:= INSERT <Label> <Start Address>

<%Comment> ::= % <Comment Words> I <Empty>

<Comment Words> ::•<Comment Character> I
<Comment Words> <Comment Character>

<Comment Character> : := <Character> I· I Ill&. I$ I (I] I\ I I

<Character> ::= <Letter> I <Digit> I <Single Space> I <Symbol>

<Single Space> : := {One horizontal blank position}

<Symbol> : := • [; I + I - I : I = I % I { I) I,;,

<Instruction.'- ::=<Label Part> <Literal Assignment>
<Label ParLo- <N Instruction>

<Literal Assignment> ::= <cLiteral' <Assignment Op:· AMPCR I
< Literab <Assigrunent Op> SAR I
<-Literal><Assignment Op> SAR;
<Literal:><Assignment Op> LIT I
<Literal><Assignment Op> LI1 ;
<Literal~ <Assignment Ope. SAR I
<Literal><Assignment Op'· LIT

<Literal~, ::= <.Integer> I COMP dnteger> I d,abeL· I <LabeL· -1

<Integer> ::=<Digit> I <Digit> <.Integer>

<Assignment Op> ::= =: I •
<N Instruction:> ::=..;Unconditional Part' <Conditional Part>

<:Unconditional Part: ::"' <.Component List"-

Reference
Page
111

111

111

112

112

112

93

93

93

93

112

94

94

03

95

95

<:Component List> ::=<Component> I -:Component List> ; <Component> I 95
<Empty>

<Compcnent: ::"<Ext Op> I <Logic Op> I <Successor>

<Ext Op> : : " < Mem Dev Op> I <Set Op> I <- Mem Dev Op> , <Set Op> I
<Set Op;;- , <Mem Dev Op:> I <Empty>

HIB

100

Reference
Page

(Mem Dev Op) ::= MRll MR21MW1 IMW2iDL1 {DL2 lnt.nl DU2 jmul DR21
- DWll DW21 LDMI LDN 100

<Set Op:> ::::: SET <Cond Adjust Hit> I RESET GC 100

<Cond Adjust Bib ::= INT I LCl I LC2 I LC3 I GCl I GC2 96

<Logic Op> : := <Adder Op> <Inhibit Carry> <Shift Op> <Destination List> 103

<Adder Op> ::= 0 I l I <Monadic> I <Dyadic_,. I ..::Triadic:::- l <Empty> 103

<Monadic> ::=<Not> <A Select> I <Nob .-::.B Select> I <Not> <.Z Select> 103

<~ot> ::= NOT I <:..Empty> 96

<A Select> ::= 0 I Al I A2 I A3 I <Empty> 106

<:1:3 Select> ::= 0 I 1 I BIB <M> <:C> <L> <Empty>

<.M> ::= <Gating>

<C> ::" <Gating>

<.L> ::= <Gating>

<Ga ting> : : = 0 I T ! F I 1

<Z Select> ::= CTR I LIT I AMPCR I <Empty'

<.Dyadic> ::=<Not> <A Select' ...:Binary Op> ·-:Not> <H Select" I
<Not> < B Select> <:Binar-y Op> <Not::--- <Z Select' I
<Not' <.A Select> <:.Az Op> <Not> ..:..Z Select>

<Binary Op> ::= NOR I OH. '. NIM I IMP I <.Az Op>·

<Az Op> ::= AND!XrnlEQVI Nl--U I RIM I NAN IADDI +-I ADLI CAU

<Triadic> ::= <Try Op:---<A Select" , <B Select" , ...::Z Selecb

<Try Op> ::= TRYl I TRY2 I TRY3 i TR\'4 I TRY5

<Inhibit Carries> : := IC I --:Empty>

<Shift Op> ::" R ! LI CI <.Empty:>

189

106

106

106

106

106

l 06

103

103

103

103

103

103

103

<Destination List> ::= <Asgn> <Dest> I
<Destination Lisi> <Asgn> <Dest> I <:Asgn>

<Asgn> ::= , I =: I =

<Dest> ::::o Al I A2 I A3 I MIR I mu I BR2 I AMPCR I <Input B> I
<[nput Ctr> I <Input Mar> I <Input Sar>

<Input R> ::= BI BEX I BAD I BC4 l BC8 I BMI I BBE l EBA I BBI I BAr I
B BA I I B4 I I BS I

Reference
Page

107

107

107

107

<Input Ctr> ::=CTR\ '~CTR\ INC 107

<.Input Mar> ::= MARI MARl I MAR2 I LMAR 107

<Input Sar> ::= SAR I (~AR 107

<Successor>::= WAITISTEP\SKrP\SAVEjCALLIEXECjJUMP\RETN 110

..;, Conditional Part· : : = <.If Clause> <Cond Comp List·· c: Else Clause:- l
<If Clause>l<When Clause:- <Cond Comp List> I
<Empty> 95

<If Clause' ::" IF <Condition>

<Condition::: ::~<.Not:, Cond~

<Cond> ::= LSTI MST IAOV !ABT! cov I SAI \ HLJC l EXl i EX2 I Eio\· I
-;Cond Adjust Bit>

<Cond Comp List> ::= THEN -:::Component List>

<Else Clause > : := ELSE <Successor" I 'Empty~

<When Clause> ::= WHEN <Condition:·

<End Line> ::=END

190

!)fj

96

9G

85

112

APPENDIX V

TRANSLANG RESERVED WORDS AND TERMINAL CHARACTERS

RESERVED WORDS

The following words are reserved in TRANSLANG and may not be used as labels.

A

AO

Al

A2

A3

ABT

ADD

ADL

ADR

AMPCR

AND

Zero (0) as A Select. Use <Empty>.

Zero (0) as A Select. Use <Empty>.

Al Register A Select or destination operator.

A2 Register A Select or destination operator.

A3 Register A Select or destination operator.

Adder Bit Transmit dynamic condition from
phase 3 of prior microinstruction doing Adder
Op.

Addition logic operator: X ADD Y = X+Y

Add+ 1 logic operator: X AOL Y = X + Y + 1

Starting address for microsequence.

Alternate Microprogram Count Register
Z Select into middle bytes of adder or des
tination operator from barrd switch 12 LS
bits.

And logical operator: X ANDY " XY

191

Reference Page

106

106

106

106

106

98, 99

104

104

111

94, 106

104

AOV

B

B41

B8I

BAD

BAI

BEA

BEA!

EBE

BBI

BC4

BCR

BEX

BMI

BRl

BR2

BSW

c

CAD

Adder overflow, dynamic condition of previous
microinstruction using adder. true if addition
r\'.lsults in overflow.

B Register Input Select same as BTTT; or to
B from barrel switch; destination operator.

To B from addfl.!r "not 4 bit carry" OR MIR;
destination operator

To B from adder "not 8 bit carry" OR MIR;
destination operator.

To B from adder; destination operator.

To B from adder OR MIR; destination
operator.

To B from adder OR barrel switch; destination
operator.

To B from adder OR BSW OR MIR; destination
operator.

To B from exte1·nal bus OR barrel switch;
destination operator.

To B from prior MIR contents OR barrel
switch; destination operator.

To B from adder "not 4 bit carry" replicated
and shifted; destination operator.

To B from adder "not 8 bit carry" replicated
and shifted; destination operator.

To B from external bus; destination operator.

To B from prior MIR contents; destination
operator.

To Base Register 1 from barrel switch 2nd LS
byte; destination operator.

To Base Register 2 from barrel switch 2nd LS
byte; destination operator.

To B from barrel switch; destination operator

Circular shift right the entire adder output.
Operation takes place in barrel switch.

Character add by carry inhibit between 8 bit
characters (bytes). (Can use IC.) X CAD Y
X + Y IC

192

Reference Pa ~e

98, 99

106, 108

109

109

108

109

109

109

108

109

108

108

108

108

107

107

107

105

104

CALL

COMMENT

COMP

cov
CSAR

CTR

DLl

DL2

DRl

DR2

DUl

DTT2

DWl

DW2

ELSE

END

EQV

EXEC

EXl

EX2

GC

Call a procedure: Use AMPCR + 1 as address,
and new MPCR; old MPCR to AMPCR. Successor.

Allows for the inclusion of documentation on a
a listing.

Complement as appropriate for literal part of
literal assignment.

Counter O\"erflow condition bit, reset dominant.

Complement SAR. destination operator.

To counter from ones complement of barrel
switch LS byte, deHination operator. Input
Select: into MS byte.

Device lock using BRl/MAR for device ident.

Device lock using BR2/ MAR for device ident.

Device read using BRl/MAR for device ident.

Device read using BR2/:MAR for device ident.

Device unlock using BRl/MAR for device ident.

Device unlock using BR2j1vlAR for device ident.

Device write using BRl/MAR for devi-::e ident.

Device write using BR2/ MAR for device ident.

Sequential operator prefix to false successor.

Bracket word to end a program.

Equivalence logical operator: X EQV Y =
XYvXY
Executes out of sequence: Use AIVIPCR + 1 as
ad~ress. Successor.

External condition bit 1 externally set, reset
by t<'St.

External cc.ndition 'oit 2 externally set, reset
by test.

False gating oi B as part of Y Select.

Global conditions used with RESET to reset
both GCl and GC2, Synonym is GC2 or
GCl with RESET.

193

Reference Page

110

111, 113

94

98

109

106

101

101

101

101

101

101

101

101

96, 97

11:::

104

110

98, 99

98, 99

106

98

GCl

GC2

IC

IF

IMP

INC

INSERT

INT

JUMP

L

LCl

LC2

:t.C3

LCTR

LDM

LDN

LIT

Global condition bit 1: may be set by SET GC 1
if presently reset in all Interpreters. Tested
without resetting.

Global condition bit 2: may be set by SET GC 1
if presently reset in all Interpreters. Tested
without resetting.

Inhibit carry between bytes.

Starts the conditional part of an instruction.

Imply logical operator: X IMP Y =Xv Y

Increment counter destination operator; set
COV when overflowing from all ones to all
zeros ..

Take a copy of the selected program from the
library file and insert it in the program.

Used as SET INT. interrupts all Interpreters.
Interrupt Interpreters condition bit: set by any
Interpreter; own is reset by testing.

Jump to address in AMPCR + 1 and put that
address in MPCR. Successor.

Left shift end off the entire adder output, right
fill with zeros. Operation takes place in
barrel switch.

Local condition bit 1: may be set, or tested
which resets.

Local condition bit 2: may be set, or tested
which resets.

Local condition bit 3: may be set, or tested
which resets

Ones complement of the literal regisll'1· 1..0n -
tents will be placed in the counter. Destination
operator.

Load microprogram memory.

Load nanomemory.

Literal register: may be loaded by a literal
assignment. !\1~y be source for Z LS b.~rte,
the MAR and/or CTR.

194

Reference Page

98

98

103

96

104

109

94, 112

10 l

110

105

97

97

97

109

101

10 l

94, 106

LMAR

LST

MAR

MARl

MAR2

MIR

MRl

MR2

MST

M\Vl

MW2

NAN

NIM

NOR

NOT

NRI

OR

PROGRAM

R

Literal register contents will be placed in
MAR. Destination operator.

Least significant bit of adder output, dynamic
condition from phase 3 of previous rntcro
ins truction doing adder op.

Memory address register destination operator:
from barrel switch LS byte.

Memory address 1 destination operator: same
as BRl, MAR.

Memory address 2 destination operator: same
as BR2. MAR

Memory information register destination opera-

Reference Page

109

98

109

100

100

tor from barrel switch. 107, 108

Read from memory address BRliMAR rnem
dev op. 100

Read from memory address BR2 /MAR rnem
dev op. 100

Most significant bit of adder output, dynamic
condition from phase 3 of previous microinstruction
doing adder op. 98

Write the content of MIR to memory address
BRl/MAR mem dev op. 100

Write the content of MIR to memory address
BR2/ MAR mem dev op. 100

Not And logical operator: X NAN Y " X v Y 104

No: Imply logical operator: X NIM Y = XY 104

Nor l·:~ical operator: X NOR Y "X Y 104

ComplPment monadic or condition operator
Not X == X 96, 103

Not Reverse !mply logical operator:
X NRI Y = X v Y 104

OR logical operator: X OR Y = X v Y 104

Bracket word beginning a program. 111

Righl shift end off the cntfrc adder output, left
fill with zeros. Operation takes place in
barrel switch. 105

195

RESET

RETN

HIM

SAI

SAR

SAVE

SET

SKIP

STEP

T

THEN

TRYl

TRY2

TRY3

TRY4

TRY5

WAIT

WHEN

XOR

Reference Page

Read complete bit: set when external data is
ready for input to B, reset by testing.

Reset the Global condition bits. RESET GC.

Return: use AMPCR + 2 as address and as
new content for MPCR. Successor.

Reverse Imply logical operator: X RIM Y .~ X v Y

Switch Interlock accepts information bit. Set
when switch interlock accepts information.
reset by testing.

Shift Amount Register destination operator
from LS bits of barrel switch or from literal
assignment.

Save the MPCH. in AMPCR: use MPCR -t- 1 as micro
address and as next MPCR. Successor.

Set the conditional bit s~cified: €ither LC L
LC2, LC3, INT, GCl or GC2.

Skip the next instruction; i.lSe MPCR + 2 as
microa.dd1·ess and as next l\lPCR. Succe:;sor.

Step to next instruction: use Y.PCR + 1 as rnicrc·
address and as next MPCR. Successor.

True gating for B register.

Starts the true alte rnati vc- of conditional
instruction.

Triadic Operator: TH.Yl A, B, z = BAZ \, 8::\ z
Triadic Operator: TRY2 :\, B. z =AZv B z
Triadic Operate r: TRY3 A. B. z =Av B \. z
Triadic Operato1·: TRY-! A, B, Z, =AZvBZ
Triadic Operator: TRY5 A, B, z. =ZAv2B

,. A BZ

Wait for condition microaddress is l\IPCR; l\lPCR
and AMPCR unchanged. Suc~essor.

Starts a conditional instruction, has an implicit
ELSE WAIT.

Exclusive Or logical oper·ator: X XOR Y ,,
xYvX·y

196

97

102

110

104

97

94

110

I02

110

94, 110

106

95

103, 105

103, 105

103, 105

103, 105

103, 105

110

96

104

TERMINAL CHARACTERS

=:

+

*

"' ·o

Assignment operator for destination operators.

Delimiter. Use is mandatory after a comment statement
and between components in a statement.

Terminator of label part of instruction or insert.

Assignment operator for literal assignments or
destination list.

Add operator.

Part of assignment in literal assignment statement.

Label constant separator for defines.

Prefix delimiter for redundant part of instru<'tion.

Suffix delimiter for r-edundant part of instructi~n.

Line terminator and in-line comment prefiy.

Assignment operator for literal assignment or destina
tion list.

197

Reference Page

107

94. 11:i

111

107

103

94

112

93

93

i 13

107

: ; .-... ~
it~ wl'imne -.... _ 1LDLNOT nua» ;-;·.-'.
'1ii'•·r~~--.....:.,..,P'?~tw7 ~ ~~-~~-~-

APPENDIX VI

TRANSLANG ERROR MESSAGES

The first section of the Microtranslator parses the input file. a line at a time, and
produces a listing of the file, N-instructions, and error messages. The error
messages indicate that errors were made in the syntax or semantics of an instruc
tion. They will be printed out in the following format giving the error number and
the line nuni.ber of the instruction as follows:

'~EHROR NUMBEH NNN lN LINE LLL*

where 1'1'NN i::> the errot- number and LLL is the sequence number of the instruction
in the input file.

Error Number

l

2

3

4

5

6

Definition

Label too large (more than 15 characters)

CTR and MAR Conflict (one receives BSW output; the other
literal)

Duplicate MAR (~ MAR destinations)

Duplicate B destination

Missing comma

Missing semicolon

199

Error Number

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

Definition

Incorr~ct dest.ination designator

Symbol und"lfined

Duplicate logical operator

Logic operator error

Colon equal comma or colon missing or misplaced

Duplicate Z select

Duplicate A select

Duplicate B select

B Gating error

Duplicate counter operations

More than one set operation

Reset error

Memory device error

Duplicate shift operation

Duplicate test condi.tion

Duplicate successors

Successor error

Successor after ELSE error

Duplicate label

Literal used not in a literal assignment instruction
(misspelled reserved word)

Condition error

Misplaced THEN

Mis placed ELSE

M ispla(!ed integer

Integer too large

Too many quoted characters

Wrong register for receiving a literal

Undefined input mistaken for label. or misspelled
reserved word

ArlrlrPss wantPrl for insert progr:lrn less than rurrent
address. or misspelled reserved word

Reset not followed by pr0per identifier

200

Error Number

37

38

39

40

41

61

62

63

Definition

Set not followed by proper identifier

Undeclared label

Wrong type: minus sign used in a type
one instruction

stack operation removed, AMPCR goes
directly to adder.

NOT error - "NOT" misused

Named insert program not on library

No END on file

Address error - present address >insert
address

If a nanotable name is requested which has never been saved before, NO SUCH
NANOT ABLE is printed and a new name requested.

If a new nanotablc is given a name already in use, DUPLICATE NANOTABLE
NAME ERROR is printed and a new name is requested.

If labels have been used in a program without being declared, the following print
out occurs upon conclusion of the listings.

LAST ADR LABELS NOT FOUND

2
3B

4

s·rR
Sl'::RROR
Y10

The address is the hexidecimal microprogram address of the last instruction
using the label in a program.

201

APPENDIX VII

GLOSSARY

A Registers (Al, A2, Al): Each of lhc three A register'"
functionally i<lcntiral. The I\ register< arc used for
temporary data storage within the Logk Unit ul ttle
Interpreter and serve as a prim:ay input to the adder.

Adder: Thl· add<·r in the Logic lJnit of the lntcrprN<r. i> a

modified version of a straightforward carry lookahead
adder. It is also used for executing logil· operations.

Alternate Microprogram Count Register (AMl't'RI The
AMPCR i< a 12-hit register in the Memory C:nntrnl llnit
of the Interpreter. which contains the jump or return
address for program jumps and subroutir;" returns
within a microprogram.

B Register: The B register is the p11mar1· input mtcrfa1·c
betwe.on the Logk Unit of the I ntcrprctcr and the
Data/Program Memory or Devices (via the Swilch Inter
lock). It also ser11cs as the secondary input to the
adder.

Barrel Switch: The barrel switch i> a matri' of gates in the
Logic Unit of the Interpreter, used to shift a parallel
data word any number of places to the right or left m
a single dock time.

Base Register I znd 2 (BR I, BR2): The Base Registers are
two 8 bit registers in the Memory Control lJnit of the
Interpreter, which usually contains the base address of
a 256-word block of Data/Program Memory.

Building Block: The prim~ry f:.rnc·!ion:i! units of !!1~ lnt~r
prclcr Based System: Interpreter. Data/Program
Memory and lhe Switch Interlock.

Condition Rcgist<r (l'ONO): The C'ONO is a 12-bit «!"istcr
in the ('ontrol Uni1 of the Interpreter and " U\Cd to
store variou:i. t:ondition hih for use during program

C\CCUtion.

Central Processor Unir (CPU): The primary arithmetic
and .:ontro! unit in a convention .. I computer system.

Condition Select: The ,·ondition select is a matri\ ol gat<'
in the Con11ol t:nit or the Interpreter that compares
the results of a rnmputation or l~ical operalicn in the
l.ngic: llnit with a presclcded re·mlt. The result of th<'
compauwn may be uM"c:! to dctcrmin~ the sequen1..·c of

c'ci;u11on of mkroprogram imtructions.

l'ontrol Register (CR): The (R h a 3S·bit rcgi<tel or the
Interpreter which is used to 'tore control sign.ii< from
th~ Nanomt!tnl)fY that arc not used in phase on~ nf J

dod< cydc.

203

('ontrol Unit (CUI; The CL. one of the the major func
tional unit' of 111'' Interpreter. ts med reor .:ondttt<>n
testing and the storage and distribution of cnabk
'ilg_nal~ rt!-1..·civcd from thl' N am ..)mcmor> .

Cnunter ({'TRI· The CTR is ;111 8-bit counter in the l
rci;1dcr St:dion of thf Memory Control l~nit of thi.;

lntcrprcter. med for loop rnntrol and other counllng
furn.·t1ons.

Oa111/Prof!ram Memory. The Data/Propani Mefllory. alsn
called S \lemory. provid<'S <toragc for data and pm·
gram (either minoprogram or ,·onvcntional program in

main mcmor)· moduks ,,f a ,-onvcnli· rnal con1putcr
'\ystcni.

Device: As uied i'! the context of lntlmprctcr-Bued Sys
tem, Devices include all the con-nli'Jnal computer
system peripheral equipments such .as disk files. m:ig
netic tape units. high speed line pricters, card readers.

•tc. and various scnwrs usually found in special d>ta

p•ocessing opplicatio"". The functioll of Devices is to
provide the unique 111pu1/output medi11m for e;o~h

system application.

Device Controller: A functional unit cr. .. signe<l to intcrf~cc
and control a specific peripheral dew.ice (such as a di<k
me. magnetic lapc nnit. line pn...ter, etc.) lo the
Input/Output module of a con....,tional computer
system.

Dwlce Dep<>ndent Port (PDP): The OOP pennits any

device to be interf•ced with • Port Sel""t Unit (PSU)

by providing the spcc11ic dcvi•'e etec~kal intcrfac~ such
u logic level conversion, line driverr·recciver capability,
and timing and synchronization wbcn required (as in
the cue of disl< file•, magnetic tape afti!s, etc.)

Dual-ln·line (Oil.): Dc~-ribcs the pin ~onn~ction :urange·
ment of one type of standard intcgr.Mcd ciicuil package.

End-Around Shirt: A right shift operaliion 1n wbicll the bit

or bits which would be shifted 0111\ or the register arc

reinserted in the mC>rc <ignifican t c!11t.

End-Off Shift: A <hifl operJlion in e1tt..:r the HI or li8ht
direction, in .. ·hich the bit or bib <hifwl out or the
regi>ter ate lost. Vacated bit positions may be auto

ma lically filled with zeros.

Finn,.11rc: In the lntorpreter-Ba"'d Syo;z.~-m. firm1'Jre i< the

combination of stored logic in the 'M •nd N memories

or the lnkrpreter.

lncremtnler (INCR): The !NCR " m tllc Memory Control
Unit of the Interprct~r and 1n..:rt.'ml.!'nl!rl by zero. one:. or
two, the address of the ne\t mo.:t.>1nstruction to be

executed by the Interpreter.

lnput}Output Module (1/0): The 1/0 j' the mtcrfa<e and
.;ontrol unit b.-twecn the Cl'U -J peripheral input/
output devices in a conventiori:i! 1.Tftnputa system

lnt•rp"'ter: The lnl<rprcl<r it the b:. ·" building blo.:k of
the lnterpreter-Ba;cd Syslem. Fur-.:!1onally. it 1s chauc·

terized by th~ combinalion of ntm."ropro~ram in'>llUl"

lions ;tored in iB ~I ml.!"mOt)· .inJ h:ird'' art! lo~1l·

enabled by a multiplicity of cnabk \lfn.11< •hncJ m ii>

N mcmor~·

lntcrpreirer·B:::i,L·il Sy,km: A L'Ot11put· ·t (lr~1n11.ilhH\ ;md
tmrl~m-:nt..ttinn ..:nnct.>pl tii.it t'Hl\": ..:.~ ... 1n configurJ~h.llh

of l'ia,ii.: bu1IJin~ blc)\.·}...,, !h.: 1htl'kt-;hput ... ml nL'\lhihly

for a. varidy of d.Jta pr01..'l'"Jng relf\..oin·nu:r:h.

large Scale Integration (LSI): The implcmcnl'llion of more

than I CO bipolar logkal gales in a singl~ intcgt•1tc<l •ir
cult chip.

Le~•t Significant Bit {lSB): For a number or •aluc •e·
presented in binary nutation. lht1',.J'it po!t.ition,-hkh

represo:nts Ilic lca~t >ignifkant portion of the number.

Uterill Register (LIT): An 8-bit register in the Z r<gi•ter
section of the Memory Control Unit ;)[th< Interpreter.
which is usetl for temporary storage of literal; ftom
microinsrructio~1s.

Logic Unit (lU): 1"hc lU, one or the five majot funclionJI

units of the ln1crprc1cr, perforn•·· '" .,f the anthmelic,
Boolean logic, and ')hifhng op~ratirini of the lnt('rprcur.

Medium Sc~I< lnrcgnlion (MSI): The irnplcmcnl•tion of 20
to 100 bipolar logical gates in a <inglc integrated drcuit
chip.

Memory Adtlrc" Re11i•tcr (MARJ: The \!AR " an 8-b1t
register in the M.!mory Control U!lit of rhe lnr~rprcter,

which wntai111 the lc'1>t ~n1ficant 8 bits of a memMy
or device addre.s.

Memory Cor11n~ Unit «~ICU): The ~ICU, one of the fiv<

major fun-:lion.;I unit' of the lnt<rrrctcr. -:onlrols the
scqucm:c of e\.ccution of m11.:roin;.trud1on"S. th.:: ad
drruing of D.itaJPrngram Memory . .i.nd thL~ ~k1.._t1on of
Devices.

204

Memory lnfoun;lion Rci:ister (\llRI: Th.: \llR is J rog:;tcr
in the logi~ Umt of lh~ lntcrprdcr \\hich .S"!f'Vt!S J~ the

output inll.:rfai..:c regi'.!it'.'r b~tw.;t:n th.: lnt-:rprdn iJnJ th~

S" itch Interlock.

Microin~uucrh1n:- A :!ti1lg.li: tnstrui:t1or1 :>lor~d in M u~cmor~

or the lnterpl\!Ur. ~llUl:'nccs of Y.hh.:h ('hara-.:krtZI! th!!'

lntupre-tcr for ., gh·tn microprogr;i1T1. A rnh.:torn-;tru-.··
t1on nuy ... ·nnt01in an N mcmor>- addrt"~~ or J h!cr.11.

Mict<>proi;ian1 .\dJrc,..\onlrol Regis!er (~IPADCSTU: Tho
MP.\lJ CNll.1 a rcgi't~r an t;11,: \h·mury Control Umt 0f

the lnkr~1rcl:t, onntrol\ the loJ.1111; of the "PCR. th<'

AMPC'R ... rnd 1.:tinuoh th~ •.ill1e of th\! 1n.:r.:m~nt.

Microprogram AJJrc~; Se<llon 011'..\0): The ~IP..\D ;, J

collcd1•·1n of ri.·~ilkl'\ Jnd ...:c1nlh,IS Ill thi.: ~kmtiry C0n
uot Unit 0(th'f' lntcrprLl~L \\hifh JdJr..: ... ~s th..: ~I

mcmor)· for 1h.: ~qu~nc1n:; of lllKTl1in'::ltru....tmn>..

~tt..:ruprn~r.u1~ Conni RL·;;i..,rc-r (\ll'C'lU: Th.: \lPCR, }l)~.'r._:,I
in th"'· \h°llH.lry C'nntfll1 I '::It 1._1f t!n: l;;,ti.;r:ir.;~ .. :r. ;, .1

12-tut h':'i...t:r lh 1r li,ll.llh 1.:ll'1~ :trh. lh...: .ald:-c<.,, in \I

me: mory. of th!.'. lh • .'tVlll\lru.:t.\''l. ~um.·nt1r b1.·ir:~

C)..~CUl('d by th..: lnt...·tpr\.'tt:r.

Miaoprotir&m Memory {M Memory): Th.: M memory. one: of

the five major l"unc.-tional units of the Interpreter, stores
miLTOinstructions w'1ich characterize the Interpreter for
a given application, and may be implemented as a read/
Write semiconductor memory.

Mkroprogram Memory Buffer (MPB): The MPB buffen
blocks of inicroinsuuctions read from a microprogram
source in order to maintain the clock period of the
lnterp.--eter.

Most Significant Bil (MSB): For 11 number or value repre

sented in binary notation, that bit po:iition which
represents the most sqmi.ficant portionofthenumbcr, or
the sign of the number.

Mulliproces.'"11": A net11.-ork of computers capabk or simul·
tancou~ly executing two or more progiams or sc·
q!!c, .. .:cs or instructions by mean~ of multipro~amming,

parallel pron:~•ing. or both.

Nanoinstructlon: A .mgl~ instruction ~tor~d in N memory

of the lnterprl.'kr. the rnntcnts of which •nn~titutc 56
unique si!!nals for controlling Ille hard¥oare l\>gk of lhe
lnt.,rprct~r.

Nanomemory (N MemOl)'I: The N m1:mory. one ••f the five

major functional unit' of the Interpreter. ston" 56
specific enable signal• for lhc hardware lo11ic within the

Logic l 1nit. Control l'nit. and Memory Control Unit.

Random-AcceS&-Memory (RAM): A memory in "'hich the

time to access data i' independent nf its location in the
111ernory, or of the dau mmt recl'nll)• "'"'''''Cd in the
memory. By convi.:nt1on. a rcad/wrik memory.

Port Select Unit (l'SU) The PSU pro,·ide• control and the

electrical intcrfact: between J 'ingk Interpreter anJ

Devices and Data/Program McmM)'. The PSLI i§ used in
lieu of the Swit,·h lntcrlod in 'Y'tem configurations

that require only one I ntcrprctcr.

205

Randorn-Acc,·ss-MPmory (Rt\M}: A memory in which lhe

time to ~cccss da1a is independent 11f its)0<;ation in the
memory, or of the dala most reunlly accessed in the
mcntory.

Read-Only Memory CROM): A memory that stores data
not alterable by program instruction.

Remote/Card: A program subrouti11\' e~ecuted on a Bur

rough' B 5500 which permits a user to create card
images of TRANSLANG in•tru<:tions on a disk file.
ll>ing • remote terminal of the B SSOO.

Shirt A.mount Regider (SAR) Tfic SAR i• a 6-bil regi•ter
in the Control Unit of the lntcrpr~ter and is used lo
store the number of positions a word or literal is to be

shifted by the barrel switch.

Small Scale Integration (SSI) The implementation of 5 lo
20 lotzical gates in a single integrated circuit c:tip_

Switch Interlock (SWI): The SWI provides the inter~onnec

tion between Interpreters, Data/Pr~nm Memory. and

Dcvilc> of an lnterprctcr-llascd S)·~tcm. It~ funclion is
Ill p.!rmit any o~ of a mul1iplkity of lnlcrpr.:tcn tu
aet'ess all modulu of an airay of Data/Progran1

Ml'rnory and/or all Devices.

Transinor-Transistor-Lopc <TTL): A family of transistor

cin:uit~ used to implement .Jigilal lo~ic network,. and
di.uacterized by ii. high ~pt'ed. large capacitance dfr,.~
capal>ility and c'~cllent noise immunity.

TRANSLANG: A compul•·r proi:ram dc,ignt:d to ..:onv:rt

1-"n!:!lish langua!!C ~talcmrnh Jcfining th<' octit•n of the

Interpreter for ca.:h machine clod• .:yd\'. into binar~·

rattcrn!'> for th\? Mand N n1cmonC1i.

l Register Section: :\ •1.lllc..:uon or fC!;ll~ter~ anJ "'ll'\'tion
)lall'' 111 the !t.ktnur)' Cnnlml Pnil of the lnlcrprd~r.
wh1d1 mdudc lhe CTR. LIT. anJ lnpul Sclc,·uon gates

u-.:J to rontrol thr e'<crntton scqucntc of micro·
lRSlfU('l ion~-

REFERENCES

1. O. L. MacSorley, "High Speed Arithmetic in Binary Computers" Proceedings
of the IRE (January 1963) pp. 67-91.

2. W. A. Curtin, "Multiple Computer Systems" Advances in Computers,
Vol. 4 (1963) Ed: F. L. Alt and M. Rubinoff. New York Academic Press,
1963.

3. R. C. Larkin, "A Minicomputer Multiprocessing System" Proceedings of
Computer Designers Conference; Anaheim, California (January 1971)
pp. 231-235.

4. Hughes Aircraft Co .. "Seek Flex Preliminary Design Study, Volume 1:
System Design and Rationale" Ground System Group Report FR71-16-430
(July 23, 1971).

5. .T. D. Meng, "A Serial Input/Output Scheme for Small Computers" Computer
Design Vol. 9, No. '.) (March 1970) pp. 71-75,

6. R. G. Buus, "Electrical lnterference" Physical Design of Electronic Systems
Vol. I, pp. 416-434, Prentice Hall, 1970.

206

UNCLASSIFIED
iy t1-

DOCUMINT CONTROL DAT A • R & D
rs.eurlty cl-•111~.u,_ ol fftJe, bo4y ol •6atract...., ,....,..~_,.,.lion.,.,., k .,.,_,, - - o••.,•ll • ._, I• claHllfedJ_

I. 011".0INA1"1NG AC1"1Vl1"V (Cwp..,.to -th«) •UtPO,.,. ••cu ... ,. .. CLAaSlf'ICATION

Advanced Development Organization UNCLASSIFIED
Burroughs Corporation ;lb, c .. ou ..

D .JI!. '"t"'._... -3Dace and ~"'"'"ial eo. ;s· , .. Groun
S. lltlt"O"T TITLI:

AEROSPACE MULTIPROCE~R FINAL REPORT

•• DltSCllllPTIVll NOTl:!I (7) ... ol roport -.d lltcfo.Mrlff de,.a)

· Final .Report CoveI"s Period June 1970 through May la 1973
I· AU THOllllSI (l'l"'t -· •ldlilo lftltW, loet -)

Robert L. Davia
Sandra Zucker

O· .. ICPONT DATI: 7 .. TOTAL NQ. Of' "AGICS 176. NO. O; "ltf'S

June 1973 208
... CONTRACT o• GRANT NO. oa. O"IOINATO"'S "lt"ONT NU ... lt,.ISl

F33615-70-C-1773
.. "'"0.lltCT NO. 6090 64161

-· Task 01 llf>. OT'4 lllll """0"T NOlll (Alf, ollfler , -r Ila HlllfWtl
"''•~)

d.
AFAL-TR-73-114

10. OIST"l•UTION STATltMltNT Distribution limited to U. S. Government agencies only; test and
evaluation results reported March 1973. Other requests for this document must be
&'J!lbrred4$~11Jir Force Avionics Laboratory (AAM), Wright- Patterson Air Force Base,
11. SV .. •LIC .. ltNTA .. V NOTES 1:1..A .. ONIOrtlNO Mll •• ATA1fV ACTll/ILY ()

Submitted by the author to Air Force ir Force v1onics aboratory AFSC
Avionics Laboratory in March 1973 Info. Mgt. Branch, Sys. Avionics Div.

Wright-Patterson AFB, Ohio
•I. A•ST .. ACT

The aerospace multiprocessor described is based upon a modular, building block
approach, An exchange concept that is expandable with the number of processors,
memory modules, and device ports, was developed whose path width is a function of
the amount of serialization desired in the transmission of data and address through
the exchange. The processors (called Interpreters) are rnicroprogrammable
utilizing a 2-Ievel microprogram memory st:-ucture and were designed for imple-
mentation with large scale integrated circuits. 'The modularity exhibited in the
Interpreters is in the size of the microprogram memories and in the word length of
the Interpreters from 8 bits through 64 bits in 8-bit increments.

The specific i.m.plementation of the exchange for the aero" pace multiprocessor is
for five processors. eight memory modules, and eight device ports with eight wires
each carryL1g four serial bits of data through the exchange. The processors each
have word lengths of 32 bits with a 512 word X 15 bits first-level microprogram
memory and a 256 vmrd X 54 bit second-level microprogram memory.

A simplified control program based upon concepts for a modular executive
structure, and some user type programs were writtt;n for demonstration of tl'E
aerospace multiprocessor.

DD . ..:' .. 1473 UNCLASSIFIED

, l..lNlt 9 I.INK C ••Y woao•
11101..S WT 11101.• WT •OLlt WT

Aerospace Multiprocessor
Interpreter
Microprogramming
Multiprocessor
Switching Interlock

I

UNCLASSIFIED

