
• u IS\': B 2000 /B 3000 I
B 4000/V Series
BPL Compiler
Programming
Reference anual
Copyright© 1987 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation.

Relative to Release
Level 7.2

Priced Item

August 1987
Distribution Code SD
Printed in U S America
5024789

The names, places, and/or events used in this publication are
not intended to correspond to any individual, group, or associ
ation existing, living, or otherwise. Any similarity or likeness
of the names, places, and/or events with the names of any indi
vidual living or otherwise, or that of any group or association
is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED
BY THE DOCUMENT. Any product and related material dis
closed herein are only furnished pursuant and subject to the
terms and conditions of a duly executed Program Product Li
cense or Agreement to purchase or lease equipment. The only
warranties made by Unisys, if any, with respect to the products
described in this document are set forth in such License or
Agreement. Unisys cannot accept any financial or other re
sponsibility that may be the result of your use of the informa
tion in this document or software material, including direct,
indirect, special or consequential damages.

You should be very careful to ensure that the use of this informa
tion and/or software material complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without no
tice. Revisions may be issued to advise of such changes and/or
additions.

Comments or suggestions regarding this document should be submitted on a Field Com
munication Form (FCF) with the CLASS specified as 2 (S.W.:System Software), and the
Type specified as 1 (F.T.R.), and the product specified as the 7-digit form number of the
manual (for example, 5024789).

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

TABLE OF CONTENTS

Section Title Page

ABOUT THIS DOCUMENT xvn
PURPOSE xvn
SCOPE .. . xvn
AUDIENCE .. . xvn
PREREQUISITES xvn
HOW TO USE THIS DOCUMENT xvn
ORGANIZATION xvm
RESULTS .. . XlX
RELATED DOCUMENTS XlX

OVERVIEW .. . 1-1

2 LANGUAGE CHARACTERISTICS 2-1
GENERAL . : 2-1

Notations 2-1
Optional Words .. . 2-1
Key Words .. . 2-1
Lower Case Words 2-1
Braces 2-1
Brackets .. . 2-2
Consecutive Periods 2-2

Period 2-2
BASIC SYMBOLS 2-2
RESERVED WORDS , 2-4
LANGUAGE STATEMENTS ". 2-5
IDENTIFIERS .. . 2-5

Scope of Identifiers 2-6
Duplicate Identifiers .. . 2-6
Special Identifiers .. . 2-6

ARRAYS .. . 2-7
SUBSCRIPTING .. . 2-7
LITERALS ... : : 2-10

Numeric Literal 2-10
Non-Numeric Literal 2-10
Undigit Numeric Literals 2-10

CONTROLLER FIELDS 2-11
FORMAT OF BPL PROGRAMS 2-13

Block Format 2-13
Program Entry Point 2-14
Program Size Considerations 2-14

3 ST A TEMENTS .. . 3-1
GENERAL 3-1
DECLARATION STATEMENTS 3-1
EXECUTABLE ST A TEMENTS 3-1

PROCEDURE CALL Statement 3-1
DO UNTIL Statement 3-2
WHILE DO Statement 3-3
IF Statement .. . 3-3
CASE Statement 3-4

5024789 v

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

TABLE OF CONTENTS

Section Title Page

ASSIGNMENT Statements . 3-4
COMPILER DIRECTING STATEMENTS . 3-4

4 DECLARATION STATEMENTS . 4-1
GENERAL . 4-1
ADDRESS . 4-2
BIT . 4-4
CDATE . 4-5
COMMON . 4-6
CONTROL . 4-7
DATA DECLARATION . 4-9
DEFINE . 4-16
DYNAMIC . 4-19
FILE . 4-21
LABEL . 4-31
PICTURE . 4-32
PROCEDURE . 4-33
SUBROUTINE . 4-37
UNSEGMENTED . 4-38

5 EXECUTABLE STATEMENTS/CONTROL AND ASSIGNMENT 5-1
GENERAL . 5-1
ACCEPT . 5-2
ACCUMULATOR CONSTRUCTS . 5-3
ARM . 5-5
ASSIGNMENT . 5-7
BREAKOUT . 5-2 l
CASE . 5-22
CLOSE . 5-25
COMMENT . 5-29
COMPARE . 5-30
COPY . 5-31
DISARM . 5-32
DISPLAY . 5-33
DO . 5-34
DOZE .. · 5-38
DUMP . 5-39
EDIT . 5-40
ENTER . 5-41
EXIT . 5-42
EXITBLOCK . 5-43
EXITCASE . 5-44
EXITCOND . 5-45
EXITLOOP . 5-46
EXITROUTINE . 5-47
FILL . 5-48
GO . 5-49
IF . 5-50
LOCK . 5-54
OPEN . 5-55

Vl

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

TABLE OF CONTENTS

Section Title Page

OVERLAY . 5-57
Procedure Call . 5-58
READ . 5-59
SCAN . 5-61
SEARCH . 5-63
SEARCH LINK/DELINK . 5-65
SEEK . 5-68
SORT . 5-70

SORT RETURN . 5-72
SPACE . 5-73
SPOMESSAGE . 5-7 4
STOP . 5-75
STOQUE . 5-76
STORE . 5-79

Subroutine Call . 5-80
TOPLOOP . 5-81
TRACE . 5-82
TRANSLATE . 5-83
UNLOCK . 5-89
WAIT . 5-90
WHILE . 5-92
WRITE . 5-93
ZIP . 5-95

6 COMPILER DIRECTING STATEMENTS '. 6-1
GENERAL . 6-1
Conditional Compiling . 6-2
@LIBR . 6-4
@PAGE . 6-5
@ICM Declaration . 6-6
IFF Conditional <;om piling . 6-7

7 DATA COMMUNICATIONS 7-l
GENERAL . 7-l
ACCEPT . 7-2
CANCEL . 7-3
CONDCANCEL . 7-4
DISPLAY . 7-5
ENABLE . 7-6
FILL . 7-7
INTERROGATE . 7-9
READ . 7-13
READY . 7-14
TRANSTBL . 7- l 5
WAIT -. 7-16
WRITE . 7-17
WRITEREAD . 7-18
WRITEREADTRANS . 7- l 9
WRITETRANSREAD . 7-20

5024789 Vll

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

TABLE OF CONTENTS

Section Title

8 PORT FILES
GENERAL
CLOSE .. .
GET .. .
IF .. .
OPEN ,
PORT
READ
SET
WAIT
WRITE .. .
PORT FILE ATTRIBUTES
FUNCTION OUTPUT PARAMETERS

9 READER SORTER - PRE-4A CONTROL CONSTRUCTS
GENERAL
READER SORTER FILE HANDLING
SPECIFIC STATEMENT FORMATS
ACTION 0 (Pocket Select)
ACTION 4 (Pocket Light)
ACTION 6 (Batch Count)
ACTION 8 (Delay)
OPEN
READ

10 READER SORTER - DLP/4A CONTROL CONSTRUCTS
GENERAL
READER SORTER FILE HANDLING
SPECIFIC STATEMENT FORMATS
ACTION 10 (Pocket Select)
ACTION 11 (Pocket Light Generate)
ACTION 12 (Status Inquiry)
ACTION 13 (Charateristics Inquiry)
ACTION 14 (Microfilm Advance)
ACTION 15 (Start Flow)
CLOSE ... ·
OPEN
READ
BUFFER

USER FILE ST A TEMENT

11 OPERATING INSTRUCTIONS
GENERAL
Compiler Operational References
File Equate Information
Input .. ·. · · · · ·
CANDE Editor Format Files ...

A BPL RESERVED AND KEY WORDS

vm

Page

8-1
8-1
8-2
8-3
8-4
8-5
8-6
8-8
8-9

8-11
8-13
8-14
8-17

9-1
9-1
9-1
9-1
9-2
9-3
9-4
9-5
9-6
9-7

10-1
10-1
10-1
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9

10-10
l 0-11
10-11

11-1
11-1
11-6
11-7
11-7
11-8

A-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

TABLE OF CONTENTS

Section Title Page

B HOW TO WRITE A BPL PROGRAM B-1
GENERAL B-1
WRITING RULES B-1
FORM OF A BPL PROGRAM B-1
PROCEDURE CALLING B...:5
Relationships B-5
TABLE CREATION B-7

c WARNING AND ERROR MESSAGES C-1
GENERAL C-1
WARNINGS .. . C-3
ERRORS C-6

D INDEPENDENTLY COMPILED MODULES (ICM) D-1
TYPE I ICMs D-2

Parameters D-2
COMMON Blocks D-6
LINKAGE Construct D-8
FORTRAN ICM Considerations D-12

TYPE II AND TYPE III ICMs D-13
BPL Language Constructs for Type II and Type III ICMs D-14
MODULE NAME DECLARATION D-15
PROGRAM ENTRY POINT DECLARATION D-16
ENTRY DECLARATION D-17
EXTERNAL DECLARATION '. D-18
Programming Considerations for Type II and Type III ICM D-20
Example D-21
THE BPLBND PROGRAM BINDER D-27
Functional Description D-27
BPLBND Input Statements D-27
BPLBND INPUT SELECTION STATEMENTS: D-30
REQUIRED Statement , D-30
OPTIONAL Statement D-31
BPLBND OPTION STATEMENTS D-32
FAT AL Statement D-32
NOEXTEND Statement D-33
BPLBND PRINT ST A TEMENT D-34
PRINT ALL Statement .. . D-35
PRINT ANALYSIS Statement D-36
PRINTCODE Statement D-37
PRINTSEGANAL YSIS Statement D-38
PROGRAMLIMIT Statement D-39
PROGRAMSIZE Statement D-40
STACKSIZE Statement D-41
BPLBND SEGMENTATION STATEMENTS D-42
SEGMENT Statement .. . D-42
OVERLAY Statement .. . D-44
BPLBND TERMINATOR STATEMENT D-46
END STATEMENT .. . D-46
Input-Output Facilities of BPLBND D-47

5024789 lX

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Section

E

F

G

INDEX

x

TABLE OF CONTENTS

Title Page

Debugging and Diagnostic Facilities of BPLBND D-48
CODE AND DATA INFORMATION, ADDRESSES AND
REFERENCES . D-48
PARAMETER CHECKING . D-48
ERROR HANDLING . D-48
Operational Considerations for BPLBND . D-55
BPLBND Examples . D-56
Example 2: . D-59

COMMON BPL PROGRAMMING ERRORS

EBCDIC, USASCII, AND BCL REFERENCE TABLE
GENERAL

BPL68

E-1

F-1
F-1

G-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Figure

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
5-1
5-2
5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5024789

LIST OF ILLUSTRATIONS

~e ~~

Format of ADDRESS . 4-2
Format of BIT . 4-4
Format of CDA TE . 4-5
Format of COMMON . 4-6
Format of CONTROL . ·. 4-7
Format of Data Declaration, Option 1 . 4-9
Data Declaration, Option 2 . 4-11
Data Declaration, Option 3 . 4-12
Data Declaration, Option 4 . 4-12
Format of DEFINE . 4-16
Format of DYNAMIC . 4-19
Declaration of DYNAMIC . 4-20
Determining the Size of Memory . 4-20
Format of LABEL Declaration . 4-31
Format of PICTURE Declaration . 4-32
Format of PROCEDURE Declaration . 4-33
Format of SUBROUTINE Declaration . 4-37
Format of UNSEGMENTED . 4-38
Format of ACCEPT Statement . 5-2
Format of ARM Statement . 5-5
Format of the Assignment Statement, Option 1
(MOVE) . 5-7
Format of the Assignment Statement, Option 2
(EXCHANGE) . 5-9
Format of the Assignment Statement, Option 3
(MOVE DATA, CONTROL OP B4700 only) . 5-9
Format of the Assignment Statement, Option 4
(COMPUTE) . 5-10
Format of the Assignment Statement, Option 5
(LOGICAL OPERATORS or BOOLEAN OPERATORS) 5-12
Format of the Assignment Statement, Option 6
(SPECIAL BRANCH COMMUNICATES) . 5-13
Format of the Assignment Statement, Option 7
(SEGDICT) . 5-13
Format of the Assignment Statement, Option 8
(SEGMENT) . 5-14
Format of the Assignment Statement, Option 9a
(INTERROGATE FILE on disk) . 5-14
Format of the Assignment Option 9b
(INTERROGATE FILE on Diskpack) . 5-14
Format of the Assignment Statement, Option 1 Oa
(PROGRAM PARAMETER BRANCH COMMUNICATES, ANY MCP) . 5-15
Format of the Assignment Statement, Option 1 Ob
(PROGRAM PARAMETER BRANCH COMMUNICATES, PRE-MCP/VS
2.0) . 5-15

XI

Xll

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Figure

5-I5

5-I6
5-I7
5-I8
5-I9
5-20
5-2I
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-3I
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-4I
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-5 I
5-52
5-53
5-54
5-55
5-56
5-57
5-58
5-59
5-60
5-6I

LIST OF ILLUSTRATIONS

Title

Format of the Assignment Statement, Option I Oc
(PROGRAM PARAMETER BRANCHCOMMUNICATES, MCP/VS 2.0
AND LATER) ,
The CASE Statement, Format I
The CASE Statement, Format 2
Format of the CLOSE Statement
Format of the COMMENT Statement
Format of the COMPARE, Option I
Format of the COMPARE, Option 2
Format of the COPY Statement
Format of the DISARM Statement
Format of DISPLAY, Option I
Format of DISPLAY, Option 2
Format I for DO .. .
Format 2 for DO .. .
Format of the DOZE Statement
Format of the DUMP Statement
Format of the EDIT Statement
Format of the ENTER Statement
Format of the EXIT Statement
Format of the EXITBLOCK Statement
Format of the EXITCASE Statement
Format of the EXITCOND Statement
Format of the EXITLOOP Statement :
Format of the EXITROUTINE Statement
Format of the FILL Statement
Format of the GO Statement
Format 1 for the IF Statement
Test of Condition-I with IF, Option I
Test for Condition-1 with IF, Option 2
Test for Condition-I with IF, Option 3
Format 2 for the IF Statement
Format of LOCK Statement
Format of OPEN Statement
Format of OVERLAY Statement
Format for a Procedure Call
Format of READ Statement
Format of SCAN Statement
Format of the SEARCH Statement
Format of the SEARCH LINK DELINK Statement
Format of the SEEK Statement
Format of the SORT Statement
Format of the SORT RETURN Statement
Format of the SPACE Statement
Format of the SPOMESSAGE Statement
Format ofthe STOP Statement
Format for STOQUE Statements
Format of the STORE Statement
Format of a Subroutine Call

Page

5-I5
5-22
5-22
5-25
5-29
5-30
5-30
5-3 I
5-32
5-33
5-33
5-34
5-34
5-38
5-39
5-40
5-4I
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50

. 5-50
5-5 I
5-52
5-53
5-54
5-55
5-57
5-58
5-59
5-6 I
5-63
5-65
5-68
5-70
5-72
5-73
5-74
5-75
5-76
5-79
5-80

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Figure

5-62
5-63
5-64
5-65
5-66
5-67
5-68
5-69
5-70
5-71
6-1

6-2
6-3
6-4
6-5
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9

7-10
7-11
7-12
7-13
7-14
7-15
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
9-1
9-2
9-3
9-4
9-5
9-6
10-1
10-2
10-3
10-4

5024789

LIST OF ILLUSTRATIONS

t~ ~~

Format of the TOPLOOP Statement . 5-81
Format of the TRACE Statement . 5-82
Format of the TRANSLATE Statement ·. 5-83
Translate Tables in Memory . 5-84
B Address (Identifier-1) Modification . 5-84
B Address (Identifier-2) Modification . 5-85
Format of the UNLOCK Statement . 5-89
Format of the WAIT Statement . 5-90
Format of the WRITE Statement . 5-93
Format of the ZIP Statement . 5-95
Format of the Conditional Compile, Double
Dollar-Sign Record . 6-2
Format of the @LIBR Statement . 6-4
Format of the @PAGE Statement . 6-5
Format of the ICM Declaration . 6-6
Format of the IFF Statement . 6-7
Format of DATACOMM ACCEPT . 7-2
Format of DATACOMM CANCEL . 7-3
Format of DATACOMM CONDCANCEL . 7-4
Format of DATACOMM DISPLAY . 7-5
Format of ENABLE . 7-6
Format of FILL . 7-7
Format of DATACOMM INTERROGATE . 7-9
Format of READ . 7-13
Format of READY . 7-14
Format of TRANSTBL . 7-15
Format of WAIT . 7-16
Format of WRITE . 7-17
Format of WRITEREAD . 7-18
Format of WRITEREADTRANS . 7-19
Format of WRITETRANSREAD . 7-20
Format of the CLOSE Statement . 8-2
Format of the GET Statement . 8-3
Format of IF Interrogating Identifier-1 . 8-4
Format of the OPEN Statement . 8-5
Format of the PORT Declaration . 8-6
Format of the READ Statement . 8-8
Format of the SET Statement . 8-9
Format of the WAIT Statement . 8-11
Format of the WRITE Statement . 8-13
Format of ACTION 0 . 9-2
Format of ACTION 4 . 9-3
Format of ACTION 6 . 9-4
Format of ACTION 8 . 9-5
Format of OPEN . 9-6
Format of READ . 9-7
Format of ACTION 10 . 10-2
Format of ACTION 11 . 10-3
Format of ACTION 12 . 10-4
Format of ACTION 13 . 10-5

Xlll

XlV

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Figure

10-5
10-6
10-7
10-8
10-9
B-1
B-2
D-1
D-2
D-3
D-4
D-5
D-6
D-7
D-8
D-9

D-10
D-11
D-12
D-13
D-14
D-15
D-16
D-17
D-18
D-19
D-20
D-21
D-22
D-23
D-24
D-25
D-26

D-26

D-26

D-26

D-26

D-26

D-26

D-26

LIST OF ILLUSTRATIONS

Title

Format of ACTION 14
Format of ACTION 15
Format of CLOSE
Format of OPEN .. .
Format of READ .. .
Compile Time Relationships of Procedures
The Scope of a Procedure
Format of the LINKAGE Declaration
First Source Record of an ICM2/3
Format of the PROG-ENTRY Declaration
Format of ENTRY
Format of the EXTERNAL Declaration
Type II ICM Example, First Module
Type II ICM Example, Second Module
Type II ICM Example, Third Module
Format of the REQUIRED Statement
Format of the OPTIONAL Statement
Format of the FATAL Statement
Format of the NO EXTEND Statement
General Format of PRINT Options
Format of PRINT ALL .. .
Format of PRINT ANALYSIS
Format of PRINTCODE
Format of PRINTSEGANAL YSIS
Format of PROGRAMLIMIT
Format of PROGRAMSIZE
Format of STACKSIZE
SEGMENT with Data Blocks
Definition of the OVERLAY Statement
Mapping of Overlayed Regions
Format of the END Statement
BPLBND Example, Control Statement Listing
BPLBND Example, Program Information
Listing (Sheet 1 of 8)
BPLBND Example, Program Information
Listing (Sheet 2 of 8)
BPLBND Example, Program Information
Listing (Sheet 3 of 8)
BPLBND Example, Program Information
Listing (Sheet 4 of 8)
BPLBND Example, Program Information
Listing (Sheet 5 of 8)
BPLBND Example, Program Information
Listing (Sheet 6 of 8)
BPLBND Example, Program Information
Listing (Sheet 7 of 8)
BPLBND Example, Program Information
Listing (Sheet 8 of 8)

Page

10-6
10-7
10-8
10-9

10-10
B-5
B-6
D-8

D-15
D-16
D-17
D-18
D-23
D-25
D-26
D-30
D-31
D-32
D-33
D-34
D-35
D-36
D-37
D-38
D-39
D-40
D-41
D~42

D-44
D-45
D-46
D-60

D-60

D-61

D-62

D-63

D-64

D-65

D-66

D-67

Table

2-1
2-2
2-3
2-4
2-5
2-6
4-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9

5-10
5-11
5-12
5-13
5-14
7-1
7-2
8-1
8-2
9-1
10-1
11-1
11-2
B-1
D-1
D-2

5024789

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

LIST OF TABLES

Tltle

Characters That Define Conditions
Punctuation in BPL .. .
BPL Statements
Special Identifiers .. .
Examples of literals ... ·
Controller Field Reserved Words
Declaration Statements
CONTROL Options .. .
Declaration Types and Sizes
Definitions
Allowable Hardware-Name Entries
Allowable Recording Modes
The Functions of TRANSLATE Values
Integer Settings in the 1/0 DESCRIPTOR
Allowable Routine Types
LABEL-use Routines
Assignment Overrides .. .
Assignment Overrides in Arithmetic Operations
Names of Special Brand Communicate Instructions
Special Names for Use with Any Current MCP
Communicates .. .
Special Names for Option lOc
Relational Operators
Permitted Logical Operators
Calling Procedures .
READ Constructs .. .
Shared Disk SEEK Constructs .
Keyboard Commands in SPOMESSAGE
Storage Queue Parameter Block .
Translate Table Address
Result Descriptor Digits
The Status of Result Descriptor Digits
Port Attributes .. .
Subfile Attributes .. .
Routine Types and Their Functions
Routine Types and Their Functions
Bits in the Value Statement
Internal and External 1/0 File Names
A Typical BPL Program
BPLBND Input and Files
Declaring the Five Segments

Page

2-3
2-4
2-5
2-6

2-10
2-11

4-1
4-7

4-11
4-17
4-23
4-25
4-27
4-27
4-28
4-29

5-8
5-11
5-13
5-16
5-16
5-17
5-51
5-52
5-58
5-60
5-69
5-74
5-77
5-86
7-10
7-11
8-15
8-16

9-1
10-1
11-5
11-7
B-2

D-47
D-58

xv

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

ABOUT THIS DOCUMENT

PURPOSE
This document is intended to describe the various features of the BPL programming language, and to
provide reference material for programm{(rS who make use of this language.

SCOPE
This document-describes the BPL language. Specifically, this document describes both the programming
language accepted by the BPL compiler and various options and control statements used with this com
piler. This document is not intended as a teaching device but as a reference guide only.

AUDIENCE
The primary audience of this document includes experienced programmers who create programs using
BPL or who need to understand programs previously written in BPL. A possible secondary audience can
include programmers attempting to learn BPL, but the document is NOT structured for such an audi
ence.

PREREQUISITES
This document is designed for the use of experienced programmers. Programmers using this document
should be familiar with the general concepts and language-independent principles of programming.

HOW TO USE THIS DOCUMENT
To use this document for general understanding of BPL:

Read Sections 1 and 2

To find information about a particular BPL construct:

Locate the desired contruct in Section 3, 4, 5 and 6

To find information about the relationship between BPL and data communication:

Read Section 7 and 8

To find information about the special reader sorter constructs of BPL:

Read Section 9 and 10

To find specific information about the programming in BPL:

Read Section 11 and Appendices B and E

Other reference material is included throughout the document. Read Organization later in this section
to find the location of other reference material.

5024789 XVll

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
About This Document

ORGANIZATION

This document is divided into eleven sections. Seven appendices have also been provided. Brief descrip
tions of the sections and appendices are provided in the following paragraphs.

SECTION 1: BASIC OVERVIEW

This section contains a brief description of the concepts of BPL. In this short overview, the programmer
can become familiar with concepts and terminology that are basic to the language.

SECTION 2: LANGUAGE CHARACTERISTICS This section presents detailed and specific informa
tion about the language characteristics of BPL. In general, the material present in this section varies from
notations to the formatting of BPL programs.

SECTION 3: STATEMENTS

This section provides a general description of the three main classifications of statements: declaration,
executable and compiler directing.

SECTION 4: DECLARATION STATEMENTS

This section examines declaration statements in detail. The beginning of this section lists these state
ments in alphabetical order.

SECTION 5: EXECUTABLE STATEMENTS - CONTROL AND ASSIGNMENT

This section examines executable statements in detail. These statements perform the data transforma
tion and decision-making functions of a BPL program, and are described in alphabetical sequence in this
section.

SECTION 6: COMPILER DIRECTING STATEMENTS

This section shows you how to use constructs for compiler directing statements. Examples and syntax
statements are included for each type of statement such as: forms control, library routine functions, the
building of Independently Compiled Module (ICM) and conditonal compiling.

SECTION 7: DATA COMMUNICATIONS

This section describes the BPL constructs required to activate the data communications equipment as
defined by the FILE statement. Specific formats as well as detailed descriptions are presented for each
construct.

SECTION 8: PORT FILES

This section contains detailed information as well as program examples and syntax statements concern
ing port files, which are a useful means of interprogram communication.

SECTION 9: READER SORTER - PRE-4A CONTROL CONSTRUCTS

This section describes the BPL constructs required to activate the READER SORTER equipment as de
fined by the FILE statement SORTER clause. Specific statement formats as well as detailed descriptions
are presented for each construct.

SECTION 10: READER SORTER - DLP/4A CONTROL CONSTRUCTS

This section describes the BPL constructs required to activate the READER SORTER equipment con
nected to the system through a DLP (V Series and B 900-series systems) or through a 4A 1/0 Control.

SECTION 11: OPERATING INSTRUCTIONS

This section describes the procedures used to compile a BPL program.

xvm

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
About This Document

APPENDIX A: BPL RESERVED AND KEY WORDS

This appendix contains a list of BPL reserved words in two categories: Class I (RESERVED) and Class
II (KEY).

APPENDIX B: HOW TO WRITE A BPL PROGRAM

This appendix provides the necessary tools in writing a BPL program. It is assumed that the user has a
general understanding of programming techniques.

APPENDIX C: WARNING AND ERROR MESSAGES

This appendix contains a list of warning and error numbers with their respective descriptions.

APPENDIX D: INDEPENDENTLY COMPILED MODULES (ICM)

This appendix describes how the BPL compiler can generate Independently Compiled Modules (ICMs).
Descriptions are given of three types ofICMs: ICM ls, ICM2s and ICM3s. Also included is a detailed de
scription of the BLPBND program binder and its activation with the ICM2s. For examples of ICM3s,
see the B 2000/B 3000/B 4000/V Series BINDER Programming Reference Manual.

APPENDIX E: COMMON BPL PROGRAMMING ERRORS

This appendix describes some errors commonly made in writing BPL programs.

APPENDIX F: EBCDIC, USASCII, AND BCL REFERENCE TABLE

This appendix contains tables of the EBCDIC, USASCII and BCL character sets.

APPENDIX G: BPL68

This appendix provides a list of DEFINES which are specified in the BPL68 library file.

RESULTS
After using this doucument, the programmer should be more familiar with the notations and constructs
of the BPL language.

The programmer should be able to find the answers to specific questions about the BPL language, and
to interpret syntax in existing BPL programs.

RELATED DOCUMENTS
B 2000/B 3000/B 4000/V Series MCPIX System Software Operation Guide, Volumes 1 and 2, for
MCPIX running on either B 2000/B 3000/B 4000 and V Series Systems.

V Series MCP/VS System Software Operation Guide, Volumes 1 and 2, for MCP/VS 1.0.

V Series MCP IVS System Software Operation Guide, Volumes 1through4, for MCP/VS 2.0 or greater.

B 2000/B 3000/B 4000/V Series MCP Programmers' Guide

BNA Architectural Description Reference Manual, Volume 1

B 2000/B 3000/B 4000/V Series BINDER Programming Reference Manual

5024789 XlX

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

SECTION 1

OVERVIEW

BPL is an ALGOL-like language which has been designed to make all hardware capabilities available at
the machine language level, and to offer full flexibility in the specification of instructions and data. Con
structs are provided for all MCP-program interfaces giving the BPL compiler most of the capabilities of
an assembler, plus the advantages of a high-level language.

BPL employs a vocabulary ofreserved words and symbols. The use of these reserved words and symbols
to create a program is defined by the language description in this manual.

A BPL program has a distinct format which specifies the relative location of two major program catego
ries: declarations and executable statements.

Declarations are provided in the language for giving the compiler information about the constituents of
a program, such as array sizes, types of values that variables may assume, or the existence of procedures.
Executable statements specify the functions or transformations to be performed upon the contents of
storage.

The results produced by evaluation of arithmetic expressions can be assigned as the values of variables
by means of assignment statements. These assignments are the principle active elements of the language.
In addition, to provide control of the computational processes and external communication for a pro
gram, certain additional statements are defined to provide iterative mechanisms, conditional and un
conditional program control transfers; and input/output operations. In order to provide control points
for transfer operations, statements may be labeled.

Statements are composed of symbols which, in turn, are composed ofletters, digits, and special charac
ters. Symbol strings are then called operands, operators, or control functions. The BPL syntax is con
cerned with the legal creation of symbol strings and the relative placement of the strings to form executa
ble or declarative statements.

A series of statements enclosed by the reserved words BEGIN and END is called a compound statement.
If a declaration of identifiers appears immediately after the word BEGIN and prior to the related state
ments, the statement group is called a block. Both compound statements and blocks provide a method
for grouping related statements, and they therefore can be the constituents of still more compound state
ments and blocks. A program is a grouping of such statements.

A program written in BPL, called a source program, is accepted as input by the BPL compiler. The com
piler verifies that all rules outlined in this manual are satisfied, and translates the source program lan
guage into an object program language capable of communicating with the Master Control Program and
directing the computer to operate on the desired data. Should source corrections become necessary, ap
propriate changes can be made and the program recompiled.

5024789 1-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

GENERAL

SECTION 2

LANGUAGE CHARACTERISTICS

Detailed and specific information about the characteristics of BPL is included on the following pages.

Notations
The notation convention that follows enables the reader to interpret the BPL syntax presented in this
manual.

Optional Words

Optional words are included in BPL to improve the readability of the statement formats. All upper case
words not underlined may be included or excluded from the source program. If they are included, they
must be spelled correctly. For example, GO TO A ... is equivalent to GO A Therefore, the inclusion
or omission of the word TO does not influence the logic of the statement.

Key Words
All underlined, upper case words are key words within a statement and are required when the functions
of which they are a part are utilized. Their omission will cause syntax error conditions at compilation
time.

For example:

IF {identifier} THEN statement [ELSE statement]

The key words are IF, THEN, and ELSE.

All underlined special characters shown in the syntax are key symbols and must be indicated in the posi
tion shown. For example, in a syntactical item such as INTEGER (DYNAMIC) the parentheses are
required.

Lower Case Words
All lower case words represent generic terms which must be supplied in that format position by the pro
grammer. "Identifier", "expression", and "statement" are generic terms in the preceding example.

Braces

When words or phrases are enclosed in braces { } , a choice of one of the entries must be made. With
reference to the preceding gexample, one of the items (identifier or expression) must be included in the
statement.

5024789 2-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

Brackets
Words and phrases enclosed in the brackets [] represent optional portions of a statement. If the pro
grammer wishes to include the optional features, he may do so by including the entry as shown between
the brackets; otherwise, it may be omitted. In terms of the preceding example, the ELSE statement may
be included in the statement as an option.

Consecutive Periods
The presence of an ellipsis (...)within any format indicates that the syntax immediately preceding the no
tation may be successively repeated, depending upon the requirements of problem solving.

Period

The period, or dot, is used to override previously defined attributes of identifiers.

For example:

WORK.+2.2.UN

provides an override of any previously defined length or data type of the variable WORK.

BASIC SYMBOLS
The BPL character set is composed of:

2-2

• The upper and lower case letters A through Z.

• The digits 0 through 9.

• The break character - (underscore).

• The arithmetic operators + (addition), - (subtraction),* (multiplication) and I (division) to pro
vide mathematical capabilities.

• The logical operators AND, OR, EOR, and NOT (negation).

NOTE
The logical operators may not always generate the same operation. See the
ASSIGNMENT construct and the IF construct.

• The assignment symbol := (or replacement).

• The BPL Compiler accepts the following characters in conditional relations:

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

Table 2-1. Characters That Define Conditions

Notation

= (or EQL)
A= (or NEQ)
< (or LSS)
<= (or LEQ)
>(or GTR)
>=(or GEQ)

Meaning

equal
not equal
less than
less than or equal
greater than
greater than or equal

C represents a
logical "not"
character)

The not sign(), when used alone, is equivalent to a logical NOT.

The not sign () will not print correctly if printing on a BCL printer.

The double special characters must be written as shown above. For example, =<would be an ille
gal representation of less than or equal (<=).

5024789 2-3

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

• The following table defines the function of each punctuation symbol used in BPL:

Symbol

(
)
"

<
@
[

%

?

$

&

Table 2-2. Punctuation in BPL

Definition

Period or dot
Comma
Colon
Semicolon
Left parenthesis
Right parenthesis
Quotation mark

Pound Sign

Space or blank
Left arrow
At sign
Left bracket

Right bracket

Percent sign
Colon-equal
Question mark

Dollar sign

Ampersand

Use

Attribute overrides
Item separator
Label delimiter
Statement delimiter
Enclose parameter lists
Enclose parameter lists
Left and right character
delimiter
Right text string
delimiter
Data-name delimiter
Assignment or replacement
Enclosing undigit literals
Enclosing subscripts or
denote address constants
Enclose subscripts or denote
address constants
Enclose literals
Assignment or replacement
In column 1 indicates an
MCP Control record
In Column 1 indicates a
compiler control record
Remainder of card is a
comment

RESERVED WORDS
There is within BPL a set of character strings, called RESERVED WORDS, with preassigned meanings.
Two classes of Reserved Words are defined.

Class I words have preassigned meanings throughout an entire program. Some examples are: EXIT,
PROCEDURE, DO, END. Incorrect usage of a Class I reserved word will always result in a syntax error.

Class II reserved words have preassigned meanings only within certain BPL statements. Examples are
LINK, ST ACK, PARITY, ENABLE. Incorrect usage of a Class II word within a specific BPL statement
results in a syntax error. The usage of a class II Reserved word in any other portion of the program is con
sidered as a separate and distinct usage and will not result in a syntax error.

A full list of all classes of reserved words is provided in Appendix A.

2-4

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

LANGUAGE STATEMENTS

There are seven types of statements in BPL. Their names and a brief description of their functions are:

Type

Declaration

Executable

Control

Procedure

Conditional

Assignment

Compiler Directing

IDENTIFIERS

Table 2-3. BPL Statements

Function

Reserves space for, and assigns
attributes to identifiers.

Performs data transformations and
decision-making functions.

Iterates, groups, or transfers
control to sets of statements.

Defines a subset of the program to
be used as a subroutine.

Controls the execution of
individual statements or groups of
statements.

Performs calculations and/or
assigns a value to an identifier
(data-name).

Assists the programmer in preparing,
formatting and compiling a program.

Identifiers are used to name labels, variables, array's, procedures, files, and so forth. An identifier is creat
ed from a combination of not more than 30 characters, selected from the following:

A through Z,
a through z,
0 through 9,
The special character "underscore"

NOTE
Labels over 30 characters long will be truncated and warning 0205 will be
generated.

An identifier must start with a letter, which can be followed by any combination ofletters, digits, or both.
The latter restriction also applies to labels, since integer labels are specifically disallowed. An identifier
is terminated by a space, comma or semicolon. An identifier may not contain a special character (except
underscore) or a space, and may not be a reserved word. An "underscore" may not begin an identifier.

5024789 2-5

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

Scope of Identifiers

Each block automatically introduces a new level of nomenclature; therefore, any named declaration oc
curring within the block is said to be local to the block in question. Such a declaration means:

s The entity represented by the identifier inside the block has no existence outside the block.

" Any entity represented by the same identifier outside the block is inaccessible inside the block.

An identifier occurring within an inner block and not declared within that block will be nonlocal (or glo
bal) to it; that is, the identifier will represent the same entity inside the block and in the level or levels
immediately outside it, up to and including the level in which the identifier was declared.

Since a statement within a block may itself be a block, the concepts oflocal and nonlocal to a block must
be understood. An identifier which is nonlocal to block A may or may not be nonlocal to block Bin which
block A is one statement.

A label must be declared in the head of the innermost block in which the associated labelled statement
appears. If any statement in a block is labelled, the declaration of this label must appear within the block.

Duplicate Identifiers
There exists the possibility of having duplicate identifiers in BPL which do not cause a compile time
error. This is true whenever the duplicate identifiers are declared in different blocks. Duplicate identifi
ers within one block are an error and will result in a syntax error.

Duplicate identifiers do not interfere only because they exist within the scope of their blocks. The case
may occur, however, when the block wich contains the duplicate name is nested within the block that
contains the first occurrence of the name. The compiler resolves this conflict by referencing the most re
cent occurrence of the name over the scope of the nested block. When this block returns control to the
outer block, the original name is again available.

Special Identifiers
Four special identifiers are provided to facilitate memory management and indexing. Their names (re
served words) and attributes are as follows:

Table 2-4. Special Identifiers

Name Location Size Type

BASE 0 1 UN
IXl 8 Signed 7 SN
IX2 16 Signed 7 SN
IX3 24 Signed 7 SN

2-6

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

These identifiers may be used on either side of an assignment statement. When using the index registers,
caution should be shown regarding two areas.

• When using the index registers as unsigned numeric fields (UN), you must place a controller size
of .8 to get the entire 8 digit field (normal size is 7), and a controller .UN to override its signed
numeric properties.

• The values contained in the index registers may be changed by certain types of statements.

IX 1 Case statements, Search statement,
and Subscripting

IX2 Certain IO statements (FILE has IX2 ON), and
SEARCH DELINK.

IX3 Procedure/Subroutine calls and EXITs.

It is the programmer's responsibility to store and restore any significant index values.

ARRAYS

An array is a repetitive set of data-elements. The identifier used with the array definition becomes the
name of the entire array and individual elements in the array are addressed by subscripting. Arrays are
single dimensional, that is, they allow only one value in the subscript. The ARRAY declaration may be
used with all data-types except BIT. ·

SUBSCRIPTING

Within an array, the particular element is referenced by using subscripts. A subscript follows the identifi
er representing the array in a BPL statement, and must be contained in brackets. A space may separate
the identifier and the subscript. A subscript may be either a numeric literal or an identifier. An identifier
used as a subscript may not itself be subscripted.

At the point an identifier is used for subscripting purposes, its value must be greater than or equal to zero,
but not greater than the value shown in the referenced ARRAY clause. The generated object code will
not check the validity of values used for subscripting, and undefined results will occur should the pro
gram reference a subscripted identifier containing a negative value, or a value above the defined sub
script range as reflected in the ARRAY clause pertaining to that item. The first entry of an ARRAY is
always referenced with a subscript value of zero.

5024789 2-7

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

For example:

EXAMPLEl:
BEGIN

END;

INTEGER A(6);
INTEGER ARRAY B [9] (6)
INTEGER C (1) ;

C:=5;
A:=B[C];

IX1:=30;
A: =B (IXl]

In the above example A is a six digit field, B is an arra'ly ¢~1t:tt1in.ing 10 six digit entrys. C is a one digit
field used as a subscript. The statements A:=B[C] and A!•BtIXl] are equivalent in the above example,
with the exception that A:=B[C] will generate an extra instruction to compute the value of C.

The following rules apply to subscripting:

2-8

• The first data name subscript variable will utilize IX 1 regardless of other uses ofIX 1 in other sub
script entries in the same statement.

For example:

EXAMPLE 2:
BEGIN

END;

INTEGER ARRAY A [9] (6);
INTEGER B (l);
INTEGER ARRAY C [5] (6);
INTEGER D (5):=5;

B:=4;
A [B] := C[IXl] +D;

Both A and C above will be subscripted by IX 1. The above example is equivalent to:

A [4] : =C [4] + 5;

The first data-name subscript variable will not utilize IX 1 if IX 1 has been used previously in the
statement as other than a subscript variable.

For example:

EXAMPLE 3:
BEGIN

INTEGER A (10) ;
INTEGER ARRAY B [5] (10)
INTEGER ARRAY C [5] (4);
INTEGER I (l);
A. IXl : =B [I] +C [IXl] ;

END;

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

BPL will use indirect addressing, not IX 1 to compute the address of B. Indirect address usage will
cause an extra instruction to be generated.

The normal multiply will be generated using a temporary storage area. This is followed by an INC
of the address of B into the temporary area which is then used as an indirect address in the addi
tion of B to C.

• Subscripts may be signed, however, negative subscripting will cause undefined results.

• Checking for subscript values that exceed table size is the responsibility of the user.

• A negative value in an index regester, when that register is used as a subscript variable, will cause
undefined results.

• Use of IXl, IX2, or IX3 as a subscript data name assumes the user has set the corresponding
index register to the desired value. It should be noted that when a subscript variable uses an index
register with controller overrides, it is considered a data name. Particular use of IX 1 with control
ler overrides may cause undesirable results.

For example:

EXAMPLE4:
BEGIN

INTEGER A (6);
INTEGER B (4) ;
INTEGER ARRAY C [5] (6);
IXl:=B;
A: =C [IXl .-+4. 4. UN]

END;

The designation C[IXl.+4.4.UN] is, in this case, effectively the same as C [B].

• A subscript variable is required when referencing an array name, wherever it is used. For exam
ple, if the "ADDRESS OF" an array name is needed, it is written:

A := [arrayname [O]] ;

when used within an address constant only a literal subscript is valid.

• If both data names in a subscripted statement have controller overrides the statement should ap
pear as follows:

A.4.+3.UN [B.3.UN] := ...

5024789 2-9

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

LITERALS

A literal is an item of data which contains a value identical to the characters being described" There are
three classes of a literal: numeric, non-numeric, and undigiL

Numeric literal

A numeric literal is defined as an item composed of characters chosen from the digits 0 through 9, the
plus sign (+) or minus sign (-), and the decimal point.

e There must be at least one digit in a numeric literaL

$ The sign of a numeric literal must appear as the left-most character. If no sign is present, the liter
al is defined as a positive value"

" The decimal point may appear anywhere within the literal except for the right-most or left-most
character of a numeric literaL A decimal point within a numeric literal identifies the literal as a
REAL number. Absence of a decimal point denotes an integer.

• A numeric literal used for arithmetic manipulations cannot exceed 99 signed digits"

Non-Numeric literal
A non-numeric literal may be composed of any allowable character. The beginning and ending of a non
numeric literal is denoted by a quotation mark Any character enclosed within quotation marks is part
of the non-numeric literaL Subsequently, all spaces enclosed within the quotation marks are considered
part of the literaL Two consecutive quotation marks within a non-numeric literal cause a single quote to
be inserted into the literal string" Four consecutive quotation marks will result in a single " literaL

A rion-numeric literal cannot itself exceed 99 characters"

Undigit Numeric Literals

Hexadecimal values l 0 through 15 are represented as A through F, and must be bound by@ signs when
used" For example, hexadecimal 11 would be literalized by @B@" A hexadecimal literal cannot exceed
99 digits" Hexadecimal values 10 through 15, when enclosed in percent signs(%), will represent numeric
literals in byte format" For example, %F2% would cause a one-byte literal to be generated"

2-10

123
L49
@12@
@4F@
II ABC"
fl AB'wC"
%C1C2C3%
%4F%
fl 4F"
II fl fl fl

Table 2-5. Examples of literals

& numeric literal (integer)
& real number
& same as 12
& two digit literal of 4F
& alpha literal
& an alpha literal of AB"C
& same as /1 ABC"
& 1-byte alpha literal of 2 4-bit values of 4F
& 2 alpha literals - alpha 4, alpha F (F4C6)
& a single alpha literal of a quotation mark

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

CONTROLLER FIELDS

Controller fields are used to override the natural attributes of the associated data name. Each controller
field is free form and order is not important. Each controller field must be preceded by a period(.). The
following is a list of valid controller field reserved words:

Table 2-6. Controller Field Reserved Words

UN Unsigned numeric (4-bit)
UA Unsigned alpha (8-bit)
SN Signed numeric (4-bit)
IA Indirect address (4-bit)
NM 8 bit numeric
NO No hardware controller desired.Used with

address constants and is also used to
override the generation of extended
addressing

IX I Index register 1
IX2 Index register 2
IX3 Index register 3

NOTE
Indirect addressing and indexing may be used on most fields in statements
that produce BCTs. Indirection must be only one address deep for correct
compilation.

The following is a list of valid controller field overides:

Unsigned numeric literal

This number is considered an override field length and must be no greater than 6 digits long.

The override length will be in digits if the data item, after any attribute overrides, is of a 4-bit
type. This would include, for example, an item declared INTEGER and not overridden to a UA
or NM status, or any item with a controller override listed above as 4-bit.

The override length will be in bytes if the data item, after any attribute overrides, is of an 8-bit
type. This would include, for example, an item declared ALPHA or NUMERIC, or any item with
a controller override listed as 8-bit.

Signed numeric literal

Increment/decrement offset to the associated data name. This number may be up to 6 digits long.
Multiple increment or decrement controllers are allowed on a single operand. The resultant offset
on the operand is the sum of all increment or decrement operations.

Example: A.+4.-2.+1 is the same as A.+3.

5024789 2-l l

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

Signed identifier

Plus or minus prior to an identifier takes the length of the identifier as a plus or minus offset to
the associated data name.

Identifier

An identifier in a controller override can be either the name of an indirect field length area or the
name of a data field whose length is used as a length override.

Indirect field length area:

If the identifier names a field located at address 38 or below, and the identifier is not preceded
by a + sign, the contents of the field will be used as an indirect field length. That is, the value in
that field will be taken as the length of the data name whose attribute is being overriden. If the
field contains zero, a length of 100 will be used. (This is the only mechanism for obtaining varia
ble field lengths.)

Length of field as length override:

If the identifier names a field whose address is above address 38, the length of that field is used
as the length of the data name whose attribute is being overridden. (See EXAMPLES, notes 5 and
6.)

Index register

2-12

The address of the data name is offset (incremented/decremented) by the value in the specified
index register. The following limitations apply:

• The offset is always in digits regardless of other overrides.

• The sign of the value in the index register determines whether the offset is an increment
or a decrement. A + or - sign may not precede the index register name.

• Only one index register at a time can be used in a data name's override.

• The index register can only be used as an address offset, not as a length override. REAL
DOUBLE or FIXED operands can only have the indexing overrides specified.

Notes:

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

EXAMPLES:
BEGIN

END;

INTEGER INFL (2) = 38;
ALPHA ABC (6):= "ABCDEF";
INTEGER DEF (10):~1234567890;
INTEGER G (6):= [ABC.NO];& note 1

G:= ABC.UN.+10.3:& note 2
G:= ABC.INFL.UA.IXl;& note 3
G:= ABC.INFL;& note 4
G:= ABC.G.UN;& note 5
G:= ABC.G.+G.UN;& note 6

l. G would contain the address of ABC with NO address controller. The NO controller override
specifies that an address controller value of zero is desired regardless of the definition of ABC.

2. G would contain 3 digits; 2 from the end of ABC and l from the beginning of DEF. G contains
OOOC61.

3. If INFL contains 02 and IXl contains 2 then G would contain 000023.

4. If INFL contains l then G contains 00000 l.

5. G would contain ClC2C3 the digit equivalent of the first 3 bytes of ABC.

6. G would contain information at six digits past the information in note 5.

FORMAT OF BPL PROGRAMS
BPL programs are segmented into logical subdivisions called blocks. Each block begins with a BEGIN
statement and terminates with an END statement. Blocks have a definite relationship to other blocks
within a program, either side by side (disjoint) or subordinate (nested).

A block is disjoint from any other block if neither is a statement within the other; and a block is nested
if it is wholly contained within another.

Block Format
A block is the basic structural element in BPL. Blocks have a rigid internal structure: first, all label and
identifier declarations and procedures; second, all executable statements, which may or may not include
nested blocks. The structure of all nested blocks must be exactly the same.

5024789 2-13

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

A block becomes a segment when a BEGIN is followed by a declaration.

For example:

BEGIN
A:=B;

END;

is considered a block, but has no effect on the physical program structure.

BEGIN
INTEGER A (6);

END;

This block causes a new segment and its resulting overlay mechanism to be generated at this location.
Segmentation can be overridden; see the UNSEGMENTED declaration.

Program Entry Point

Execution of a BPL program starts at the first executable statement in the outermost block; that is, the
statement which follows all nested procedures. (See also Appendix B, How to Write a BPL Program, and
Appendix D, Type II ICMs, under Program Entry Point.)

Program Size Considerations

The first executable instruction in an overlayable segment cannot begin above address 300000.

A procedure entry and exit can occur at an address above 300000. In place of a simple EXIT, the compil
er generates a branch to a routine in low memory. This routine moves the 6-digit return address from
the stack into an extended address field, and then exits to that extended address. This avoids the prob
lems (such as unintended indirect addressing or indexing) which V.'Ould otherwise occur when the high
order digit of the address is 3 or greater.

2-14

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

GENERAL

SECTION 3

STATEMENTS

Statements are the BPL equivalent of natural language sentences. They contain a complete sequence of
operations (one complete idea) which are logically separate from other similar sequences. Where an ex
pression evaluation results in a numerical value, statement evaluation specifies functions or assignments
for the values. For example, the expression A + B results in a numerical value, while the statement X
:=A + B; (read X is replaced by A + B) assigns the value of the expression to the data-name X.

Statements are always terminated by a separator(;, ELSE, END, DO, UNTIL).

Statements fall into three main classifications: declaration, executable, and compiler directing.

DECLARATION STATEMENTS
DECLARATION statements relate memory space and data attributes to data-names and procedure lo
cations.

EXECUTABLE STATEMENTS
EXECUTABLE statements are further broken down into control and assignment statements.

CONTROL statements determine the sequence in which statements are to be executed. They pass con
trol to procedures, bind groups of statements together or conditionally specify which one of several state
ments is to be executed next.

PROCEDURE CALL Statement

The major control statement in BPL is the PROCEDURE CALLing statement. It consists of a
procedure-name, followed by any parameters enclosed in parentheses and terminated by a semi-colon.
For example, a procedure ABS requiring one parameter would be invoked by the statement:

ABS (YALU);

There are two considerations governing the use of procedure calling statements. First the called proce
dure must be within the scope of the calling procedure.

Second the called procedure will always return control to its calling procedure. To return control, the pro
grammer should generally structure the program logic to "fall through" the last END statement in the
procedure, although alternate means are available and will be described later. The immediately following
executable statement in the calling procedure is executed when control is returned.

5024789 3-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Statements

DO UNTIL Statement
Statements may be bound or grouped together by the DO, IF ... THEN ... ELSE, or CASE statements.
The DO statement binds all following statements up to an UNTIL statement as if they were one
statement.

For example:

EXAMPLE6:
BEGIN

INTEGER X (5) ;
INTEGER A(4);
PROCEDURE ROUTINE (Y,B);

INTEGER Y (5) ;
INTEGER B (4) ;

DO
BEGIN

X:=X+l;
A: =l;

BEGIN
X:=Y*B;

END;

ROUTINE (X,A);
END UNTIL X>5;

END;

A DO group is always executed at least once. The individual statements within the group may be any exe
cutable statements including imbedded DO statements.

3-2

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Statements

WHILE DO Statement

The WHILE condition DO statement performs iterations of the statements within the group until the
WHILE condition is met.

For example:

·EXAMPLE?:
BEGIN

INTEGER X(5);
INTEGER A(4);
PROCEDURE ROUTINE (Y,B);

INTEGER Y (5);
INTEGER B (4);

BEGIN

PRTN;
END;

X:=Y*B;
END;

PROCEDURE PRTN;
BEGIN

END;

X:=X+l;
ROUTINE (X,A);
WHILE X<4 DO PRTN;

IF Statement

The conditional-expression within the IF statement, when evaluated, designates which of two statements
is to be executed.

For example:

EXAMPLES:
BEGIN

END;

SIGNED INTEGER A (l);
SIGNED INTEGER B (l);
SIGNED INTEGER X (1):=5;
BEGIN

IF A GTR X THEN DO
BEGIN

END

A:=A-1;
B:=B+l;

UNTIL A LSS X
ELSE DO

BEGIN
A:=A-1;
B:·=B-1;

END UNTIL A GTR X;

After the chosen statement executes, control passes beyond the end of the IF statement.

5024789 3-3

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Statements

CASE Statement

The CASE statement is an expanded form of the IF statement. The conditional expression evaluation
chooses one statement from among all the following statements up to the END statement for execution.
After that one statement is executed, control passes to the first statement beyond the END statement.

DO, IF, CASE, PROCEDURE invocations or ASSIGNMENT statements may be imbedded in any of
the above statements in any order and to any depth.

ASSIGNMENT Statements

The ASSIGNMENT operation moves the contents of one identifier, called the source field, into the
memory-space of another identifier, called the destination field. Alignment, truncation or padding is
performed during assignment and is controlled by the length attributes of the identifiers involved, and
by the type of the receiving field.

The type attribute divides alignment control into two cases. The first case is an alphabetic move, which
aligns the data-names on their left-most or high order characters. The assignment is then performed in
a left to right order until one of the fields is exhausted. If the destination field is the shorter, data is trun
cated from the right. If the source field is the shorter, then the destination field is padded on the right
with space characters (%40%).

The second case is a numeric move, where the receiving field is aligned on the right-most, or low-order
digit. If the destination field is shorter than the number of significant digits in the sending field, the over
flow indicator is set and the operation terminates. If the source field is the shorter, the destination field
is left-filled with zeros.

COMPILER DIRECTING STATEMENTS

Compiler Directing statements include those which handle forms control, library routine functions, the
building of Independently Compiled Modules (ICM), and conditional compiling.

3-4

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

GENERAL

SECTION 4

DECLARATION STATEMENTS

Declaration statements are detailed in this section. For fast reference, an alphabetical list of these state
ments is shown in table 4-1. This table lists the heading (in this section) where you will find a description
of each declaration statement.

5024789

Table 4-1. Declaration Statements

Declaration

ADDRESS
ALPHA
ARRAY
BIT
COATE
COMMON
CONTROL
DEFINE
DOUBLE
DYNAMIC
FILE
FIXED DOUBLE
FIXED INTEGER
FIXED REAL
INDIRECT
INTEGER
LABEL
MOD
NUMERIC
OWN
PICTURE
PROCEDURE
REAL
SIGNED INTEGER
SUBROUTINE

Heading

ADDRESS
Data Declaration
Data Declaration
BIT
CDATE
COMMON
CONTROL
DEFINE
Data Declaration
DYNAMIC
FILE
Data Declaration
Data Declaration
Data Declaration
Data Declaration
Data Declaration
LABEL
ADDRESS/Data Declaration
Data Declaration
Data Declaration
PICTURE
PROCEDURE
Data Declaration
Data Declaration
SUBROUTINE

4-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

ADDRESS

The ADDRESS declaration is used to reset the location counter at compile time to a predetermined ad
dress or memory location,

The format of the address is:

{
[MOD] integer }

ADDRESS = DATA-name-1

ADDRESS;

Figure 4-1. Format of ADDRESS

MOD, if used, must be followed by an integer which does not exceed four digits in length and which has
a value greater than zero,

The use of MOD with a value other than 1, 2, or 4 will cause the entire block in which it appears to start
at a MOD location that is the common denominator of all MOD statements within the block

The /1 ADDRESS="," construct may be used inside a PROCEDURE to redefine either stack relative or
OWN local variables,

When ADDRESS is used with a register name (e,g,, IX2), BASE or a literal, the address reverts to a BASE
relative address, Otherwise, this construct is used to provide a segment relative address, It should be
noted that data may be initialized while in a "segment relative" mode; but cannot be initialized while
in a "base relative" mode at a location greater than the beginning of the segment dictionary, or 200,
whichever is smalleL
11 ADDRESS ;" resets the location counter to the point referenced prior to the last "ADDRESS ="
statement.

It should be noted that" ADDRESS=" and" ADDRESS;" are nested in a similar way to BEGIN/ENDS,
Each 11 ADDRESS ="except /1 ADDRESS MOD m" must have a matching" ADDRESS;" or a syntax
error occurs,

Example 1:

BEGIN

END;

ADDRESS= BASE.+280;
INTEGER A(l0):=3;

This is an illegal statement because an address greater than 200 is being initialized,

4-2

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Example 2:

BEGIN

END;

INTEGER B(16) :=4;
ADDRESS = B ;
INTEGER C(l6) :=5;
ADDRESS;

This statement is legal; segment relative location B and C will contain 0000000000000005.

Example 3:

BEGIN

END;

This is equivalent to:

BEGIN

END;

5024789

INTEGER A(l) = BASE;
ADDRESS = A ;

INTEGER A(l) BASE
ADDRESS = BASE

4-3

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

BIT
The BIT construct is used to symbolically reference a bit in memory.

The format of the BIT declaration is:

BIT [identifier-1] [. c:~:.J J L identifier-1]

[. , identifier-n]

Figure 4-2. Format of BIT

Identifier-2 through identifier-n, specifying additional bits, must be separated by commas(,). If a semi
colon (;) is used, the declaration is terminated.

If the value TRUE is specified, the bit will be set (on). If the value FALSE is specified, or if a value is
not present, the bit will be reset (off).

For example:

EXAMPLE9:
BEGIN

END;

BIT A, B, C ;
BIT D :=TRUE, E := FALSE
BIT F ;

Bits of a digit are allocated in the order: 8-bit, 4-bit, 2-bit, and 1-bit.

4-4

COATE

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

The function of CDA TE is to specify a compile time generation of the date compiled. The format for
CDATE is:

INTEGER identifier-1 (5) COATE L1
Figure 4-3. Format of CDATE

The compiler will store in identifier-I the current date in Julian form (YYDDD).

CDA TE may only be used in this form of declaration because it only has meaning at compile time.

5024789 4-5

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

COMMON
COMMON declarations are used to define and optionally initialize data areas being accessed by multi
ple ICMs.

The format of the declaration is:

COMMON identifier-1 BEGiN common-declarations_;_ END..:_

:Figure 4-4. Format of COMMON

Identifier-I is a 6 character unique name by which the data area is known. Up to 100 uniquely named
common blocks are permitted. Common declarations may only be used in an ICM.

Common declarations provide for the definition of type and length of data areas, and for the initializa
tion of the data declared. Refer to the heading DA TA DECLARATIONS in this section for the appropri
ate formats.

Example:

COMMON A BEGIN
SIGNED INTEGER C(U), D(11); (See note l.)
END;

COMMON B BEGIN
INTEGER E (4) := l; (See note 2.)
ALPHA JUNK (2); (See note 3.)
SIGNED INTEGER F(ll) := +3; (See note 4.)
END;

Notes:

1. A 24 digit area has been set up consisting of two signed 11 digit fields.

2. E is preset to 1.

3. JUNK is an unitialized 2 character alpha field.

4. Fis preset to C000000000003.

Ref er also to Appendix D.

4-6

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

CONTROL
~,,

The CONTROL statement is used to provide the BPL compiler information regarding the hardware fea-
tures and program format desired for the resultant object program.

The format of the CONTROL declaration is:

CONTROL option [, option ...]

Figure 4-5. Format of CONTROL

One or more options can be selected from the following list. When multiple options are specified, they
must be separated by commas.

Table 4-1. CONTROL Options

[MEMORY] := integer-1

ST ACK := integer-2

OP {B3500}
- B4700

EXTENDED

DICTIONARY := integer-3

BREAKOUT { TAPE}
DISK

CONTROL MEMORY requires an integer-1 being no greater than 6 digits in length. The object program
memory size will be set to the specified size, rounded up to the next modulo l 000 digits. Absence of this
control will create an object program whose size is the size of the object program plus stack, rounded up
to the next modulo 1000 digits.

CONTROL ST ACK requires an integer-2 being no greater than 6 digits in length. The object program
stack size will be set to the specified length. Absence of this control will force a stack size of 1000 digits.

CONTROL OP specifies the valid instruction set. Absence of this statement will cause the B2500/B3500
OP code set to be considered valid. CONTROL OP B4 700 permits the generation of certain machine in
structions which were not available on B2500/B3500 processors, including accumulator operations, bit
set and reset, and search linked list (SLL and SLD) instruction.

If set, CONTROL OP 4700 will remain in effect until reset by a CONTROL OP B3500 statement, and
conversely. This allows B3500/B4700 programs to be maintained in a single symbolic file. Warning 0501
will be generated if an attempt is made to set (reset) an already set (reset) option.

Setting a data-name to zero with CONTROL OP 4700 will always produce a BIT RESET instruction.
However, signed fields will not use the bit reset instruction, as this destroys the sign (@C@).

5024789 4-7

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

ff CONTROL OP B4700 is not set, FIXED REAL, FIXED DOUBLE, and FIXED INTEGER declara
tions are not syntaxed. The following attributes are assigned in such a case:

FIXED REAL A ; - REAL A(8);
FIXED DOUBLE B ; - REAL B(16);
FIXED INTEGER C ; - SIGNED INTEGER C(7).

Warning 0500 will be produced when this situation exists. Note that mixed INTEGER and FIXED oper
and arithmetics and assignments cannot be handled without the OP B4 700 option set.

CONTROL EXTENDED specifies that the program may exceed 100000 digits of data and/or coding,
and that the extended address feature is available. All addresses within any segment that exceeds the
above limit will have extended addressing, and all "INDIRECT" declarations and name parameters will
have extended addressing. It is important that this particular control statement appear before any decla
ration that is affected by the above rules. If an arithmetic operation is performed on a variable declared
INDIRECT and CONTROL EXTENDED is set, then the computation will be performed on the right
most six digits (as if a ".+2.6" modifier was used).

If CONTROL EXTENDED is set and a segment exceeds l OOKD (100000) digits, base relative and stack
relative addresses will not be made extended if the program is not an ICM.

CONTROL DICTIONARY specifies (by integer-3) the base-relative address of the start of the segment
dictionary for the program. If no declaration appears, the segment dictionary will begin at base-relative
address 64. Integer-3 must be greater than or equal to 64, a MOD 4 address, and less than 6 digits in
length. The programmer should note that base-relative data may be pre-initialized only up to base
relative address 200 or the start of the segment dictionary, whichever is lower.

CONTROL BREAKOUT is used to specify whether a programmatic BREAKOUT should be directed
to magnetic tape or disk. If omitted, any BREAKOUT will be to system default.

4-8

NOTE
A CONTROL declaration should be made only once for each type of varia
tion. CONTROL EXTENDED, when used, must be declared before any
INDIRECT declarations. See examples under data declaration.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

DATA DECLARATION
Data declarations are uued to define and optionally locate and/or initialize data areas within a BPL
program.

The format of the data declaration statements are:

Option 1:

[OWN] declaration-type [AR RAY]

[identifier-1] [Iinteger-11 l _!!nteger-21

[MOD integer-3

(see option2)

(see option3)

(see option4)

Figure 4-6. Format of Data Declaration, Option 1

The optional OWN declaration, if used within a procedure, causes those local variables preceded by
OWN to become segment relative as opposed to stack relative. OWN placed before any data type outside
of a procedure is ignored. The resources required for those declarations preceded by OWN are com
manded only when that segment is in memory. This option offers to the programmer, a more efficient
utilization of resources.

The declaration-type must be one of the following:

ALPHA

BIT

to specify 8-bit alphabetic data. ALPHA type identifiers may not be used in an arithmetic opera
tion unless a controller override is used (see CONTROLLER FIELDS);

to define an individual bit as data which can be referenced symbolically. This declaration may
contain a controller override, an index, or an increment or decrement. The order of allocation is
8-bit, 4-bit, 2-bit, 1-bit.

DOUBLE
Use to define a real number for use in a double precision operation. Accumulator instructions
will never be generated for any field defined in this category.

FIXED DOUBLE
Use to define a real number having a sixteen digit mantissa for use in a double precision opera
tion. If OP B4700 (see CONTROL statement) has been specified, accumulator commands will
be used on this field whenever applicable.

5024789 4-9

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

FIXED INTEGER
Use to define an integer of seven digits plus sign. If OP B4700 (see CONTROL statement) has
been specified, accumulator commands will be used on this field whenever applicable.

FIXED REAL
Use to define a real number having an eight digit mantissa. If OP B4700 (see CONTROL state
ment) has been specified, accumulator instructions will be used on this field whenever applicable.

INDIRECT
Use to define a field to be used to store an address. Although the INTEGER statement could be
used for this purpose, INDIRECT will compile as a six or eight digit address depending on the
CONTROL EXTENDED setting and will be forced to a MOD 2 address.

INTEGER
Use to define a numeric (4-bit) field.

NUMERIC

REAL

Use to specify a numeric field of 8-bit characters. Data defined as NUMERIC may be used in
arithmetic operation.

Use to define a real number for use in a single precision operation. Accumulator instructions will
never be generated for fields defined in this category. REAL and DOUBLE mean the same thing
for B3500 floating operators.

SIGNED INTEGER
Use to define a signed numeric (4-bit) field.

The ARRAY option is used to define a sequence of data-items which possess identical formats. If the
ARRAY option is used, any reference to identifier-1 must be subscripted (refer to SUBSCRIPTING).
It is the user's responsibility to assure that the value of the subscript does not exceed the bounds of the
ARRAY.

Identifier-I is the name to be assigned to this memory area (with the specified data attributes). Ifit is not
necessary to reference this declaration in the program, the identifier may be omitted.

Integer-1 specifies one less than the number of elements in an ARRAY and must be present when
ARRAY is used. When the identifier associated with an ARRAY is referenced, subscripting must be
used. If for example, integer-1 has a value of 5, the items in the ARRAY must be referenced as
identifier-1 [O] through identifier-! [5].

Integer-2 denotes the size of the entry, and must be enclosed in parentheses. This size takes on the attri
butes of the declaration-type; that is, the number of bytes for ALPHA, and the number of digits for IN
TEGER. A SIGNED INTEGER declaration will take one more digit of memory than specified for
integer-2, this digit being the sign digit. REAL and DOUBLE will take 4 more digits than specified (sign,
2 digit exponent, sign). Integer-2 is required for all data declarations except those listed below, for which
it is invalid.

4-10

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Table 4-2. Dedarntiolfll Type§ and Size§

Declaration-Type

FIXED DOUBLE

FIXED INTEGER

FIXED REAL

INDIRECT

Size

19 digits plus sign (16 digit mantissa)

7 digits plus sign (8.UN if OP 4700 is set)

11 digits plus sign (12.UN if OP 4700 is set)

6 digits unless CONTROL EXTENDED is
specified, in which case it is 8 digits.

MOD forces the address to the next exact multiple of a specified number (integer-3) unless the address
is currently modulo integer-3. ALPHA, INDIRECT and NUMERIC are assumed MOD 2 unless other
wise specified. FIXED, DOUBLE, FIXED REAL, and FIXED INTEGER are always assumed MOD 4.

Reals cannot be mixed with other data types. Only FIXED operands and integers with mod-4 addresses
and proper sizes (7SN, SUN, 1 lSN, 12UN, 19SN or 20UN) that are not name parameters can be mixed
within expressions, and only when CONTROL OP B4 700 is set.

A semicolon is used to terminate the declaration.

Option 2:

(from Option 1) ... , [ARRAY]

[identifier-2] [[integer-4]] (integer-5)
- -

[MOD integer 0 6] { ~ .. . }

~ (see Option 3)

~ (see Ootion 4)

Figure 4-7. Data Declaration, Option 2

A declaration-terminator of a comma allows additional declaration of the same declaration-type. All
fields following the comma have the same function as described for Option 1.

5024789 4-11

Option 3

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

(from Option 1) ..
{ ~dentifier-3}

mteger-7

Figure 4-8. Data Declaration, Option 3

An equal sign is used to equate the identifier (identifier-I) address to the address of a previously defined
identifier (identifier-3) or to a base relative address (integer-7).

Option 4

(from Option 1) : =

[identifier-4]

TRUE

FALSE

ALL

[JSL literal-1

JSR
{ ~ (see Option 2) }

Figure 4-9. Data Declaration, Option 4

The colon-equal is used to preset the contents of the data area to either the ADDRESS OF identifier-4
or to a literal.

If identifier-4 is used, it must be enclosed in brackets. The contents of the data area will then be preset
to the ADDRESS OF identifier-4.

lfTRUE is specified, the data area identifier-I will contain the value I; if FALSE is specified, the value
will be 0.

The ALL construct will force the entire data area to be initialized with repetition of the specified literal
(literal- I).

JSL is used to left-justify INTEGER or NUMERIC fields, appending any trailing zeros required; and
JSR is used to right-justify ALPHA fields, creating leading blanks when required.

If presetting an ARRAY, each element must be assigned a value.

NOTE
Uninitialized declarations will contain unpredictable data.

4-I2

Examples:

EXAMPLE

BEGIN

END;

Notes:

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

10:

CONTROL EXTENDED; & See note 1
CONTROL MEMORY: =200000 ;. & See note 2
INTEGER ARRAY BIG [999] (100); & See note 3
INTEGER A(5); & See note 4
ALPHA B(6),&(l):= II II • & See note 5 '
INTEGER C(6): =l; & See note 6
INTEGER D (8) : = [A] ; & See note 7
INTEGER ARRAY E [3] (2):=01,04,08,13; & See note 8
INTEGER INFL38 (2)=38; & See note 9
ALPHA F(200): = [ALL] "AB"; & See note 10
ALPHA G (5) : = [JSR] II A"; & See note 11

1. CONTROL EXTENDED is used to indicate that the program may exceed 100000 digits and
that extended addressing will be generated whenever applicable.

2. This statement specifies that the program will be at least 200000 digits in size.

3. This entry will set up an array of l 000 entries of 100 digits each.

4. A is an uninitialized five digit field.

5. B is a six byte field, followed by a one byte field containing a period.

6. C is a six digit field preset to 000001.

7. D will contain the address of A in its extended form because it resides at an address over l 00000
and CONTROL EXTENDED has been specified.

8. E is an array with four, two digit entries. These four entries are preset to 01, 04, 08, and 13
respectively.

9. INFL38 is a two digit field as absolute memory location 38, which may be used in indirect field
length moves.

10. F will be preset by the compiler to ABABAB. ..

11. G will be preset to "bbbbA" (b = space).

5024789 4-13

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

EXAMPLE 11:

BEGIN
CONTROL OP B4700; & See note 12
FIXED REAL R; & See note 13
FIXED INTEGER C : = 1 ; & See note 14
FIXED REAL D:=lOO.O; & See note 15
FIXED DOUBLE Dl:=lOO.O; & See note 16
SIGNED INTEGER E(7):= +3; & See note 17
SIGNED INTEGER F(7):= -0000003; & See note 18
INTEGER G(6):= 11ABC11 ; & See note 19
ALPHA H(3):= 123; & See note 20
INTEGER I(lO):= [BASE. UA] ; & See note 21
ALPHA J(3):= 12345; & See note 22

END;

Notes:

12. The statement specifies that a program be generated which will utilize machine instructions
implemented since the B3500.

13. R is an uninitialized real number.

14. C is preset to 1.

15. Dis preset to C03Cl0000000.

16. DI is a double precision number preset to C03C1000000000000000.

1 7. E will be preset to COOOOOO 3.

18. F will be preset to 00000003.

19. G will contain 000123.

20. H will contain F1F2F3.

21. I will contain 0000200000.

22. J will contain F1F2F3 truncated.

4-14

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Examples:

EXAMPLE 12:

BEGIN
CONTROL STACK:= 500,

BREAKOUT,
DICTIONARY:= 200;

ALPHA A(4) MOD 100:=12; & See note 23
INDIRECT NAMEIA; & See note 24
INDIRECT B:= [A] ; & See note 25
INDIRECT ARRAY C [3] : & See note 26
INDIRECT G·-.- [A. UA] ; & See note 27
INDIRECT H:= [A.IXl]; & See note 28
INDIRECT I = A. +6; & See note 29
NUMERIC J(4):= 1234; & See note 30
DOUBLE K(l2):= 100.0; & See note 31
REAL L(8):= 100.0; & See note 32

END;

Notes:

23. A is at the next even 100 address available and is preset to F1F24040.

24. NAMEIA is the name of a field which may be used for indirect data declaration.

25. B contains the address of A.

26. This is an array of indirect address containers

27. G contains the address of A with an Alpha controller.

28. H contains the address of A with an IX 1 controller.

29. I points to the address of A plus 6.

30. J contains F1F2F3F4.

31. K is preset to C03C 100000000000.

32. Lis preset to C03C10000000.

5024789 4-15

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

DEFINE

The DEFINE statement provides the capability to insert multiple copies of specified BPL source text
into a program during compilation, from only one image of the source text; and to define often-used rou
tines, with or without parameters, for use throughout a program.

Defines are transparent declarations that replace the calling DEFINE name with the defined portion.
The DEFINE declaration assigns the meaning of the defined identifiers. Any reference causes the re
placement of the defined identifier being referenced by the exact text, including all punctuation, which
is associated with the identifier.

The format of the DEFINE declaration is:

DEFINE ident-1 [{param. -1, param. -2, ...)] [defined-portion] # ;

Figure 4-10. Format of DEFINE

Identifier-1 is required and when (and wherever) used in the BPL program will reference the specified
definition (defined portion).

The parameter string is optional. If used, the DEFINE is known as a PARAMETRIC DEFINE. When
a PARAMETRIC DEFINE is referenced an argument may or may not be included for each parameter
specified. If excess arguments are provided, they will be ignored. If insufficient arguments are provided,
the corresponding rightmost parameters will be dropped from the symbolic code.

The defined-portion may be any BPL language element except a nested DEFINE declaration. The
defined-portion is optional; however, if omitted, spaces will replace the define call (identifier-1).

The number sign(#) is required to terminate the DEFINE, and the semicolon(;) is required to terminate
the statement.

During compilation, syntax errors (if any) in a definition are noted following the use of the defined
identifier.

A DEFINE statement must appear within the declaration section of the program or of a block. The scope
of a DEFINE is the same as the scope of any identifiers in that declaration section; that is, it exists in its
declaring block and all directly nested blocks.

Multiple DEFINEs may appear within one DEFINE statement and must be separated by commas.

Reserved words may be DEFINEd (used as identifier-1), but their special significance is lost within the
scope of the DEFINE statement.

The actual parameters associated with an occurrence of a definition name are not restricted to simple
identifiers. They may contain complex constructs but must be delimited by zero level commas, i.e., com
mas not enclosed within paired parentheses or braces. The actual parameters replace the formal parame
ters in the DEFINE statement in a left to right order and their number must be equal. The maximum
number of parameters is limited to ten per definition-name.

Definitions can be nested, but not more than eight levels; that is, defined identifiers may be used in other
definitions. For instance, in the table below, the definition for D3 is equivalent to the definition for DD.
In the example, the definition AA is considered nested one level in the first declaration. In the second
declaration, the definition AA is considered nested two levels, and so forth.

4-16

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Table 4-3. Definitions

Examples

I. DEFINE REPEAT
(TAGA, X) #;

ABC

IF X EQL 9 THEN REPEAT;

2 . DEFINE IN = INTEGER #
AL = ALPHA #;
IN X (5);
ALY(4);
IN Z (2);

3. DEFINE TRAIL (A, B, C) =
IF A EQL ZERO THEN A := B
ELSE C #;
TRAIL (TAGA, ABS [BX] ,
ex : = SQRF [BX]) ;

4. DEFINE X = ABC #,
ABC = X #;

5. DEFINE DI
DEFINE D2
DEFINE D3
DEFINE DD

5024789

AA#;
DI DI #;
D2 D2 #;
AAAAAAAA#;

Comments

The source code contained
between the = and the #
sign of the DEFINE statement
will be copied into the
BPL program whenever the
word REPEAT is used.

This statement is equivalent
to IF X EQL 9 THEN ABC
(TAGA, X);

The source code generated
would be:
INTEGER X (5);
ALPHA Y (4);
INTEGER Z (2);

This statement generates the
following:
IF TAGA EQL ZERO
THEN TAGA :=ABS
[BX] ELSE ex:= SQRF [BX];

This statement will cause an
diagnostic error at compile
time when the compiler
attempts to expand either
X or ABC into its TEXT.

Nesting example. D3 and DD
both generate the same
symbolic code (AA AA AA AA).

4-17

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Examples:

EXAMPLE 13:

BEGIN
INTEGER TAGA (5);
INTEGER X (1) ;
PROCEDURE ABC (A,B);

BEGIN
INTEGER A (5) ;
INTEGER B (1) ;
OWN INTEGER C (2);

END;

c := 4;
A := A/C
A := A*B;

DEFINE REPEAT = ABC (TAGA,X)#;
A: = 76;
B: = 2;
REPEAT;
REPEAT;
END;

EXAMPLE14:

BEGIN
DEFINE IN INTEGER # , AL ALPHA# ;
IN X (5);
ALY(4);
IN Z (2);
DEFINE X = ABC #, ABC X#; & ERROR NUMBER 2719 IF

4-18

DEFINE Dl AA#; & ABC OR X EVER USED
DEFINE D2 = Dl; Dl #;
DEFINE D4 = D2 ; D2 # ;
DEFINE DD = AA;AA;AA;AA#;
PROCEDURE AA;

Dl;
D2;
D4;
DD;
END;

BEGIN

END;
IXl : = IXl + 1 ;

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

DYNAMIC
The DYNAMIC declaration provides a means of addressing the area of memory between the largest
nested block (of the block in which the declaration is made) and the program stack.

The format of the DYNAMIC declaration is:

INTEGER

ALPHA

[identifier-1 l, DYNAMIC [~ integer-1 l l_ { ; }

Figure 4-11. Format of DYNAMIC

The DYNAMIC declaration type must be ALPHA or INTEGER.

Identifier-1 is optional. If present, it is the symbolic name by which the DYNAMIC area is referenced;
if absent, the DYNAMIC area may not be referenced symbolically.

Integer-1 specifies the minimum size of requested DYNAMIC areas and must be a numeric literal no
more than six (6) digits in length. The size is expressed in units of bytes for ALPHA declarations and in
units of digits for INTEGER declarations. A DYNAMIC area will always be adjusted to a MOD 4
address.

ADDRESS= MOD n within a dynamic block will reset the location counter forthat block to a modulo-n
value. The dynamic block for that segment will begin at an address that is the least common multiple of
all mod factors for that block.

The use of a comma (,) allows more declarations of the same type (ALPHA or INTEGER) to follow; a
semicolon terminates the DYNAMIC declaration. However, these declarations will not address the DY
NAMIC area.

The DYNAMIC statement does not reserve memory space, nor does it affect the memory size of a pro
gram. If the requested (integer-1) amount of DYNAMIC memory is not available, a warning message will
be provided at compile time. To increase the amount of available DYNAMIC space, a CONTROL
MEMORY instruction must be provided.

Data areas in the DYNAMIC area may be defined by equating a data-name to the DYNAMIC name, or
by an ADDRESS construct, however a DYNAMIC area cannot be pre-initialized. BPL does not check
subscript range, therefore an array could be declared following an ADDRESS where the number of ele
ments in the array is effectively ignored. Since the DYNAMIC area size may vary from compile to com
pile, the number of array elements would also vary.

It is the responsibility of the programmer to manage this DYNAMIC area (from end of coding to base
of stack) using indexing since DYNAMIC may cross the 100 KD limit.

To use this feature, the user/programmer must do the following:

• Insert "DYNAMIC DECLARATIONS" in those segments where all subsections of coding are to
be protected.

5024789 4-19

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Example:

(OUTER SEGMENT)
INTEGER DYN (DYNAMIC> 1000);

(SEGMENT A)

The DYNAMIC area
starts at a MOD 4
location following
the longer of
segment A or

(SEGMENT B) segment B.

Figure 4-12. Declaration of DYNAMIC

• Programrnatically determine memory size prior to using the program stack. If memory size is
greater than compiled size, add an adjustment factor to the stack pointer (BASE.+ 40. UN.6).

Example:

4-20

INTEGER TOTAL MEM (6),
STACK=WANTED (4)

TOTAL MEM := MEMORY;

:= 2000;

BASE.+40.6 := TOTAL MEM - STACK_WANTED;

Figure 4-13. Determining the Size of Memory

., Manage the DYNAMIC area by:

- Determining its size by subtracting the address of its base from the program stack pointer or

- Saving the original stack pointer and considering it to be a limit address for DYNAMIC.

WARNING
If the stack pointer is adjusted following any procedure entry, then results
are unpredictable.

FILE

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

The FILE declaration is used to establish file attributes.

The format of the FILE declaration is:

FI LE file-name, hardware-name

[SINGLE]

[[integer-1 BY] integer-2]

[, "literal-1"]

, RECORD identifier-1 [{
ALPHA }] integer-3

. INTEGER

[,BUFFERS integer-4 [= file-name-2]

[,BLOCKED integer-5]

[~1x2 {::.}]
[{

WORKAREA }]
..:. NO WORKAREA

[,WORK]

[,READ AFTER WRITE] ---

[~ASSIGN BY
AREA ·· 11
~DER j
FILE

NN

[,SAVE integer-7]

5024789

ALPHA

BINARY

EBCDIC

. ODDPAR

[integer-8]]

4-21

4-22

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

[, MULTIFILE "literal-2"]

[, OPTIONAL]

[{ {
~~~~~M} ..!.. KEY identifier-2} ] 

.!. SHARED 

[~ ~CB~;KUP [ { g:i~PACJ l l 
[, RERUN [ {~~;:}] integer-9 ] 

[, FORMS] 

.!.. TRANSLATE 

0 
1 
2 
4 
5 

..!. CHECK 

0 
1 
2 
4 
5 
6 

[ , PROCESSOR ] 

[, SORT] 

ROUTINE 

LABEL 

RETRY 

{ 

LABEL } 
IOERROR 
EOP 
SORTER 
STALEMATE 

{ 
~~: } [identifier-4] [integer-10]] 

~ 
{ 

IGNORE } l ABORT 
RTSLRESET 
RTSLSET 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

The keyword FILE must be the first word in the FILE statement. The remaining entries may be in any 
order. 

File-name is used to identify this file for all file handling statements (READ, WRITE, OPEN, CLOSE, 
etc.). File-name must be unique in the first six characters if the use of an MCP label equation (FILE) com
mand is anticipated. 

The hardware-name entry is required and defines the peripheral to be used by this file. Allowable 
hardware-name entries are: 

B500 

B774 

B2500 

B3500 

B4700 

B9350 

B9352 

DCP 

DISC 

DISK 

Table 4-4. Allowable Hardware-Name Entries 

DISKPACK 

DISPLA YUNIT 

PRINTER 

PTPUNCH 

PTREADER 

PUNCH 

READER 

SORTER 
(Reader/Sorter not 
on DLP or 4A Control) 

SORTER4 

(Reader/Sorter on 
DLP or 4A Control) 

TAPE (any type) 

T APEGCR (Group-coded 
recording tape only) 

T APEPE (Phase-encoded tape 
only) 

TAPE7 (7-channel tape only) 

T APE9 (9-channel tape only) 

TC500 

TC700 

TOUCHTONE* 

TWX 

* TOUCHTONE is a registered trademark of A.T. & T. 

The SINGLE option is for DISKPACK files only and is used to restrict a file to one pack. If omitted, a 
data file may be assigned to multiple packs. 

The integer-1 BY integer-2 clause is required for DISK and DISKPACK files, and is invalid for any other 
devices. Integer-I specifies the number of areas (pages) to be assigned to the file. If the integer is omitted, 
a default value of 20 will be used. The maximum number of areas allowed is 100. 

5024789 4-23 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

Integer-2 specifies the number of records per area, and must be a multiple of the blocking factor. Al
though this clause is required for all DISK and DISKPACK files, the specified values will be ignored for 
those files OPENed INPUT. 

Literal-I (enclosed in quotes) is used to specify the external file-ID. If not present, the first six characters 
of the internal file name (file-name) will be used. 

The RECORD entry is required and must be followed by an identifier (identifier-I) which specifies the 
RECORD name (and work area) for this file. Identifier-I must be previously declared unless the NO 
WORKAREA technique is used, in which case the buffer address will be used when reference is made 
to the identifier. The ALPHA or INTEGER entry is optional, and is used to describe the data type of 
integer-3. If omitted, ALPHA will be used. Integer-3 is required and defines the maximum record size. 

The BUFFERS clause is optional. If omitted, or if hardware-name is SORTER4 the default value of I 
is used. The maximum number of buffers (integer-4) which may be declared is 9, except that files of type 
SORTER or SORTER4 must have no more than 3 buffers. Each buffer requires additional memory 
space in the compiled object program. The file-name-2 option is used to equate the file buffers of the 
present file to the buffer area of the previously declared file-name(s). The original buffer area ((8 + buffer 
length) x number of buffers) must equal or exceed the buffer area size for the present file. Note that only 
buff er areas are being equated. 

The function of the BLOCKED clause is to specify the number of logical records to be contained in a 
block. If this clause is omitted, records are assumed to be unblocked. 

The IX2 option is used to set or reset the IX2 flag in the File Information Block. If set, each READ or 
WRITE performed for this file will cause the MCP to update IX2 to point to the beginning of the next 
logical record. This is primarily intended for use on blocked files using the buffer access technique (NO 
WORKAREA). 

The default values are: 

· ON If NO WORKAREA and multiple buffers are used. 

ON If NO WORKAREA and blocked records, regardless of number of buffers. 

OFF If a work area is specified. 

OFF If unblocked, one buffer, and NO WORKAREA is specified. 

The NO WORKAREA option is used to specify that the records are accessed from the buffer area. A sep
arate work area will not be assigned by the compiler. WORKAREA may be explicitly specified, if de
sired, for documentation purposes. 

The WORK option specifies to the MCP that this DISK or DISKPACK file is to be used as a work file, 
and that the MCP should insert the program mix number in the second and third character position of 
the file-ID, thus creating a unique file-name at object run time. The use of this option allows multi
programming of the same program without creating duplicate file-IDs for commonly used work files. If 
WORK is specified, PROCESSOR is assumed. 

The READ AFTER WRITE option may be used after a DISK write to perform a read for parity check. 

4-24 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

The ASSIGN clause is optional, and is permitted for DISK or DISKPACK files only. The allowable op
tions are: 

AREA 
For 100-byte DISK files, this option will assign areas to successive EUs or IDs within the 
default subsystem. For disk pack files, all areas after the first will be assigned to successive 
packs in such a manner that no pack with the same restriction status (as the pack with the 
first area) will have two areas of the file while another similarly restricted pack has none. 

CYLINDER 

FILE 

NN 

This option applies only to disk pack files, and specifies that areas be assigned by cylinder 
boundary. Cylinder boundary allocation can be limited in that the maximum areas as
signed thus on a pack will be one less than the number of cylinders. 

This option applies only to 100-byte DISK files and assigns disk space on the default sub
system by disk file number (within the program). 

This option applies only to 100-byte DISK files and assigns disk space on the EU, ID, or 
subsystem defined by NN. If subsystem assignment (as opposed to specific EU or ID) is 
desired, NN may be specified as 90 (default subsystem), or 91 - 93 (subsystem 1-3). 

The SA VE option is used to specify the number of days a magnetic tape file is to be saved before it can 
be automatically purged by the MCP and used for other purposes. Integer-7 is limited to numbers 001 
through 999. If the SA VE clause is omitted, a save factor of l is assigned to preclude expiration action 
when the system is being operated just prior to and shortly after midnight (2400). 

The SAVE FILE option causes the file to be CLOSEd with LOCK by the MCP if the file is OPEN at End
Of-J ob. (If a disk or diskpack file has not been previously saved in the directory, and SA VE FILE has not 
been specified, the file is purged if the creating program terminates without closing the file with RE
LEASE or LOCK.) 

The MODE clause is used to specify the recording mode for certain peripheral devices. Standard record
ing mode is assumed if this clause is omitted. Allowable recording modes are: 

DEVICE 

TAPE7 
PUNCH 
PTPUNCH 

Table 4-5. Allowable Recording Modes 

STANDARD 

Odd Parity 
EBCDIC 
BCL 

NON-STANDARD 

Even Parity 
BCL 
Binary 

The word VARIABLE specifies a magnetic-tape file containing variable-length records. The user must 
specify the actual size (in bytes) of the variable-length records in the first four bytes of each record, and 
each record size must be an even number of bytes. The four-character variable-size indicator is included 
in the physical size of each record. Integer-8 must be used if the file is input to the SORT intrinsic to indi
cate the most frequently used record size. 

The MULTIFILE clause is used with multi-file tape and disk pack files. Literal-2 is required immediate
ly following the word MULTIFILE, and is used as the MULTIFILE-ID. 

5024789 4-25 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

The word OPTIONAL is used to declare an INPUT file which may not be required to execute the job. 
If the file is not present at file OPEN time, the system operator may use the OF keyboard response to in
dicate an OPTIONAL file, thus forcing an end-of-file condition on the first READ of the file. 

The DISK or DISKPACK file types may be used to specify as RANDOM, SHARED, or SERIAL. The 
default is SERIAL if this clause is omitted. If RANDOM is specified, the KEY clause is required. 
Identifier-2 has different meanings depending upon the hardware-type used. For DISK or DISKPACK, 
it is the identifier of the 8-digit actual key. For a SORTER file it contains the identifier of the manual 
end of file. For an OLBANKING file it contains the address into which the MCP stores the terminal unit 
number (DIGIT) upon completion of each I/O operation. SHARED indicates a DISK or DISKPACK 
file which may be shared between multiple processors. Files declared SHARED are assumed RANDOM 
and the KEY clause must be used. The BACKUP option will cause printer or punch files to be assigned 
to backup media depending upon the MCP options. BACKUP TAPE causes printer files to be assigned 
to printer backup tape, regardless of MCP option settings, and BACKUP DISK or DISKPACK causes 
printer or punch files to be placed on backup disk or diskpack, regardless of MCP options. 

The NO BACKUP option will prevent the file from going to backup media unless otherwise specifically 
directed by the operator through an ODT message or label equate action. 

The RERUN clause sets up a communication with the MCP to create periodic control points (breakouts) 
so that an operational program encountering a malfunction can be restarted at the last RERUN control 
point instead of restarting from the beginning of the program. Integer-9, the rerun counter cannot exceed 
five digits. TAPE or DISK may be indicated in the CONTROL statement to specify where the RERUN 
(breakout) information should be stored. (Program breakout is not supported on MCP/VS 2.0 and later.) 

Use of the FORMS option with a PRINTER or PUNCH file will cause the MCP to halt the program at 
file OPEN time and to display a console message stating that special forms are required. For files sent 
to a backup medium (by the BACKUP option or an operator's action), the special forms message is dis
played when the file is printed/punched. 

The TRANSLATE option is used if code translation is to be performed on data before it is input to the 
program's buffer or written to the output medium. 

4-26 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

The TRANSLATE values have the following meanings: 

Table 4-6. The Functions of TRANSLATE Values 

TRANSLATE Value 

0 (default for non
datacomm devices) 

2 

4 (default for 
datacomm devices) 

5 

Function 

Most devices - no translation 
PTPUNCH, PTREADER - process 7-bit 
odd parity 

PTPUNCH, PTREADER - translate 
BCL/EBCDIC 
(6-bit odd parity) 

PTPUNCH, PTREADER - process 8-bit, 
no parity 
Datacomm - translate lower case to 
upper case (non-standard 
translation) 

Datacomm - Standard translation 
MT7 - translate BCL/EBCDIC 

TAPEPE, TAPEGCR - translate 
ASCII/EBCDIC 

The programmer must also be aware of the TRANSLATE executable statement, which allows digit/ 
character translation by table. 

The CHECK clause is for MICR files only (except those using 4A controls) and is used to specify which 
MICR check control is to be set in the 1/0 DESCRIPTOR. The allowable options are: 

Integer 

0 

1 

2 

4 

5 

6 

5024789 

Table 4-7. Integer Settings in the I/0 DESCRIPTOR 

Function 

Read and check all fields or 7. 7 5 inches 
maximum. 

End read validity check at seconds S2. 

End Read at second S2. 

Format and report errors in amount and trans
mit fields. 

Both 1 and 4. 

Both 2 and 4. 

4-27 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

The PROCESSOR option causes the MCP to put the processor number in the fifth position of disk file 
file-IDs. Processor is assumed if the WORK option is specified. 

The SORT option indicates to the compiler that the attributes of this file (record length, blocking factor, 
etc.) are to be used to compute the minimum amount of memory required for the SORT intrinsic. 

The ROUTINE clause is used to specify procedures which are in addition to the standard procedures 
supplied by the MCP. These are commonly known as "use" routines,in reference to the COBOL conven
tion of file USE routines in the DECLARATIVES section. BPL USE routines correspond to COBOL 
USE routines. Allowable ROUTINE types are: 

ROUTINE Type 

LABEL 

IO ERROR 

EOP 

SORTER 

STALEMATE 

Table 4~8. Allowable Routine Types 

Function 

Magnetic tape - identifies a label 
handling routine. 
SORTER - identifies the routine to 
process memory access, cannot read, 
unencoded, and double document errors. 

Magnetic tape - identifies the routine 
to which the MCP will transfer control 
if it encounters an irrecoverable parity 
error on this file. 

Datacomm - specifies BREAK key 
procedure. 

SORTER - amount field error procedure. 

PRINTER - end of page routine 
(channel 12). 

SORTER - transmit field error routine. 

SORTER - item pocket - select routine. 

DISK - contention use routine.Entered 
when MCP detects a stalemate condition 
on a shared file. 

Identifier-3 is the procedure name and must immediately follow the ROUTINE type. In addition, 
identifier-3 must have been previously declared as a label. 

A use routine is defined to be a cluster of program instructions, identified by a use routine label and ter
minated by the reserved word "EXITROUTINE" followed by the file name. 

A use routine label is simply a BPL label occurring somewhere in the segment in which the file is de
clared. A use routine is not a procedure and must not be declared with a PROCEDURE declaration. It 
is merely a branch point within the mainline code of the segment containing the FILE declaration. 

4-28 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

Since the use routine is a labeled routine, the normal blocking rules of BPL will guarantee that the use 
routine itself is not segmented outside of the segment containing the File Information Block. Each use 
routine has a special exit to the MCP and therefore should not be executed by other routines unless the 
EXITROUTINE communicate is bypassed. 

A use routine is entered when the MCP detects the occurrence of the condition specified in the preceding 
paragraphs under FUNCTION, during an input or output operation possibly including OPEN/CLOSE 
on the file. It is then the programmer's responsibility to take any necessary action. 

A LABEL routine is entered whenever a label is encountered or written on the file for which routine 
LABEL is specified. LABEL use routines have access to the following information through the reserved 
word ROUTINETYPE: 

Table 4-9. LABEL-use Routines 

Identifier 

ROUTINETYPE.1 
ROUTINETYPE. + 1.1 
ROUTINETYPE.+2.1 
ROUTINETYPE. + 3.3 

Indicator 

O=Input, 1 =Output. 
O=Beginning, 1 =Ending. 
0 =File, 1 =Reel. 
Reel number for multi-reel files 

It is the programmer's responsibility to check ROUTINETYPE fields for the applicable label type. 

The LABEL type clause is used to specify the type oflabel required for this file. Allowable types are: BUR 
to indicate Unisys standard label, USA to indicate USASCII standard label, UL to indicate an unlabelled 
file or INST to indicate an installation-defined label. Identifier-4 provides a symbolic reference to the 
label area and must not be previously declared. integer-10, when used denotes the lengt)l in bytes of any 
user area above the standard label size. For example, a Unisys standard label is 80 bytes in length. If 
integer-10 is used as a value of 20, the total label area reserved will be 100 bytes. 

The RETRY option allows retry short/long (RTSL) action for variable length files. IGNORE initiates no 
special action, no matter what the setting of the MCPVI option RTSL is. ABORT always gives action 
on short/long reads. RTSLSET gives action only if RTSL is set (default). 

The STALEMATE clause is used to specify the action to be taken when shared disk is used, and two proc
essors are accessing the same file. While one processor may try to read a record which is locked by a sec
ond processor, the second proessor may try to read a record locked by the first processor. This condition 
will cause both processors to wait indefinitely unless the USE ON STALEMATE option is used. 

5024789 4-29 



Example: 

4-30 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

BEGIN 

END; 

LABEL LABELPROC; 

FILE X . o o, ROUTINE LABEL LABELPROC, 
• & G' 

& Procedure declarations 

& Executable code 

LABELPROC: 
& Program branches to this point when a label is 
& detected on file X 

EXITROUTINE; 



LABEL 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

The LABEL declaration is used to reserve identifiers which will be used as control points within a proce
dure or block. 

The format of the LABEL declaration is: 

LABEL label-1 [ .!. label-2 .!. ••. .!... label-n J..:. 

Figure 4-14. Format of LABEL Declaration 

All LABEL declarations must appear in the declaration portion of the block in which they are to be used. 
Duplicate labels may appear in a program in different blocks; if duplicate labels appear within the same 
block, they cause a compile time syntax error. 

When labels are used within the program body, they must be followed by a colon(:). They may only occur 
within coding. This is used to specify a control point which may be used in a transfer of control statement 
such as GO TO or end-of-file. 

5024789 4-31 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

PICTURE 

The PICTURE declaration is used with the EDIT statement to create an edited field, primarily for 
printing. 

The format of the PICTURE declaration is: 

PICTURE identifier-1 : = "I iteral-1" ; --- --

Figure 4-15. Format of PICTURE Declaration 

The word PICTURE is required to identify the PICTURE declaration. 

Identifier-I may be any BPL identifier and will be used in the EDIT statement to reference the PIC
TURE declaration. 

The colon-equal (:=) is required. 

Literal-1 may be any valid COBOL editing picture, and must be contained in quotation marks and termi
nated with a semicolon. 

The micro-operator string generated by the PICTURE declaration assumes a standard edit table at 
BASE. +48 containing its characters plus sign (+),minus sign (-),asterisk(*), period(.), comma(,), dollar 
sign ($), zero, and space. 

Examples: 

PICTURE PICT! := "99/99/99"; 

PICTURE PIC2 : = "Z ( 8) II; 

PICTURE PC3 : = "ZZ9=99=9999"; 

4-32 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

PROCEDURE 
A PROCEDURE declaration defines the procedure-identifier as the name of a procedure. Whenever the 
identifier followed by the appropriate parameters appears in the program, it produces a call upon the 
procedure. 

The format of the PROCEDURE declaration is: 

[FORWARD] [SEGMENTED] [level-number] PROCEDURE L.J 

procedure-identifier [ l!ormal-parameter-listL] .:_ 

[VALUE value-parameter-list .!. ] [parameter-specifications .!. ] 

BEGIN [procedure-body-declarations .!. ] procedure-body 

END; 

Figure 4-16. Format of PROCEDURE Declaration 

The optional word FORWARD indicates that the following procedure declaration is a FORWARD dec
laration and that the actual declaration follows elsewhere in the same block. FORWARD PROCEDURE 
declarations are used in order to satisfy a BPL rule that procedures must be declared before they are used. 
If A calls Band B calls A, one of them must be declared FORWARD with the actual declaration appear
ing later in the segment. FORWARD PROCEDURE declaration up to and including the 
parameter-specifications. 

The optional word SEGMENTED is used to indicate that the following procedure is to be SEGMENT
ED (i.e., an overlay). 

Level-number is used as a method to structure PROCEDURE overlay levels without having the PROCE
DUREs physically structured. The level-number may be 0-99 inclusive with 0 being the default. Level 
numbers are relative to each other, within a block. 

For example: 

5024789 

Program Declarations 

PROCEDURE A; 
SEGMENTED PROCEDURE B; 
SEGMENTED 7 PROCEDURE C; 
SEGMENTED 5 PROCEDURE D; 
SEGMENTED PROCEDURE E; 
PROCEDURE F; 
SEGMENTED 7 PROCEDURE G; 

Memory Layout 

[A GLOBAL 
[ F GLOBAL 

B [ E LEVEL 0 

[D LEVEL 1 (5) 

[ C [ G LEVEL 2 ( 7 ) 

4-33 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

The word PROCEDURE is required to specify the type of declaration. The optional dot (period) indi
cates that an increment instruction to protect any local variables in the stack should not be generated 
since this is a low level procedure which does not call any other procedures. 

The procedure-identifier is required and may be any allowable BPL identifier. The procedure-identifier 
will be used within the program (block) to invoke the procedure. 

The formal-parameter-list is used to name any formal parameters which may be required by the PROCE
DURE. The formal-parameter-list, if used, must be enclosed in parentheses, and multiple parameters 
must be separated by commas. The maximum number of parameters for any PROCEDURE is 10. 

The semicolon following the formal-parameter-list is required. 

The VALUE option allows for the declaration of VALUE parameters (as opposed to name parameters). 
VALUE parameters are actually contained in the stack when a PROCEDURE is entered; whereas name 
parameters have their addresses in the stack, and are accessed indirectly. VALUE parameters have no 
meaning outside of the PROCEDURE in which they are declared. The word VALUE, followed by one 
or more of the named parameters in the formal-parameter-list specifies that those parameters are 
VALUE parameters. If the value-parameter-list contains more than one entry, they must be separated 
by commas. A semicolon delimiter is required to terminate the VALUE parameter list. 

Parameter-specifications are required if parameters are involved. Each parameter named in the formal
parameter-list must be declared, regardless of whether or not it is included in the 
value-parameter-list. 

The word BEGIN is required to indicate the beginning of the PROCEDURE body. 

The procedure-body-declarations are those variables local to the PROCEDURE. Labels used within the 
PROCEDURE should be declared here. Those declarations not preceded by OWN are stack-relative; 
that is they are placed in the stack. OWN declarations are segment-relative. Only OWN variables can be 
pre-initialized. A stack variable cannot be forced to a MOD n address. 

The PROCEDURE body is a statement that is to be executed when PROCEDURE is called. This state
ment may be any of those listed in the syntax of statements and therefore may be a PROCEDURE state
ment calling upon itself. Procedures may thus be called recursively. 

A PROCEDURE body itself must not be labeled. A GO TO statement appearing in a PROCEDURE 
should not lead outside that PROCEDURE. Branching outside the PROCEDURE without an EXT 
causes the stack to retain its PROCEDURE state when the program is no longer there. If any statement 
in a PROCEDURE body is labeled, the declaration of that label must appear in the appropriate block 
heading within the PROCEDURE body. 

The word END is required to terminate the PROCEDURE declaration. 

4-34 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

Examples: 

5024789 

EXAMPLE: 
BEGIN 
PROCEDURE A; 
BEGIN 

IXl O; 
IX2 1; 

END; 
PROCEDURE B; 
BEGIN 
INTEGER TEMP (2); 

IXl : = O; 
TEMP := IX2.UN.+6.2; 

END; 
PROCEDURE. C (Al, Bl, Cl) 

VALUE Al, Cl; 
INTEGER Al ( 6) ; 
ALPHA B 1 ( 11 ) ; 
SIGNED INTEGER Cl(7); 
BEGIN 

OWN INTEGER Dl(l):=O; 
IXl := Cl+Al; 
Bl "I LOVE LUCY"; 
Dl : = 1 

END; 
FORWARD PROCEDURE D; 
FORWARD PROCEDURE E(J,K,L,); 

VALUE J, K, L; 
BIT J, K, L; 

SEGMENTED PROCEDURE F(X,Y); 
ALPHA X(6); 
NUMERIC Y( 4); 

BEGIN 
LABEL L; 
L: X := Y; 

END; 
PROCEDURE E (J,K,L); 

VALUE J,K,L; 
BIT J,K,L; 

BEGIN 
J := TRUE 

END; 
PROCEDURE D; 
BEGIN 

DISPLAY "PROC D"; 
END; 
END; 

(See note 1.) 

(See note 2.) 

(See note 3.) 

& (See note 4.) 
& (See note 5.) 

& (See note 6.) 

& (See note 7.) 

& (See note 8.) 

4-35 



Notes: 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

1. A is a procedure with no formal parameters and no local variables. 

2. B is a procedure with no formal parameters but a 2 digit local variable (TEMP, which is stack 
relative). 

3. C is a procedure that is not to have an INC as first instruction to protect local variables. There 
are 3 formal parameters (2 of which are VALUE parameters) and a segment relative local varia
bles (D 1 ). 

4. Simple FORWARD PROCEDURE. 

5. Eis a FORWARD PROCEDURE declaration ofa PROCEDURE having 3 VALUE parameters 
J, K, L. 

6. Fis a SEGMENTED PROCEDURE that has 2 name parameters. 

7. Eis actual declaration of PROCEDURE mentioned in note 5. 

8. Dis actual declaration of PROCEDURE mentioned in note 4. 

4-36 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

SUBROUTINE 
The function of a SUBROUTINE declaration is to specify that another Type I ICM will be called from 
within this Type I ICM, and designates the structure of its parameters. 

The format of the SUBROUTINE declaration is: 

SUBROUTINE subroutine-identifier [ i formal-parameter-list l] , 

[parameter-specifications ; ] 

Figure 4-17. Format of SUBROUTINE Declaration 
. . 

SUBROUTINE is treated by the compiler much as a FORWARD PROCEDURE declaration, in that it 
merely states that a Type I ICM will be called, and describes its parameters. It does not occupy any mem
ory locations. 

The subroutine-identifier is required and may be any allowable BPL identifier. The subroutine
identifier will be used within the Type I ICM to invoke the SUBROUTINE. 

The formal-parameter-list is used to name any formal parameters which may be required by the SUB
ROUTINE. The formal-parameter-list, if used, must be enclosed in parentheses, and multiple parame
ters must be separated by commas. The maximum number of parameters is 10. 

The semi-colon following the formal-parameter-list is required. 

Parameter-specifications are required if parameters are involved. Each parameter named in the formal
parameter-list must be declared. All parameters involved with a SUBROUTINE must be name 
parameters. 

The SUBROUTINE declaration is valid only when being compiled to a Type I ICM file and is not per
mitted otherwise. 

Example: 

BEGIN 
@ICM II ANYTNG" 
PROCEDURE HERE; 
BEGIN 
SUBROUTINE THERE (ONE, TWO); 
SIGNED INTEGER ONE (7), TWO (7); 
SIGNED INTEGER ABC (7), DEF (7); 
ABC : =IXl; 
DEF :=IX2; 
THERE (ABC,DEF); 
END; 
@ICM 
END; 

5024789 

& Type I ICM DECLARATION 

& SUBROUTINE DECLARATION 
& PARAMETERS 
& LOCAL VARIABLES 

& SUBROUTINE CALL 
& OF ICM 

4-37 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Declaration Statements 

UNSEGMENTED 

The UNSEGMENTED declaration is used to inhibit segmentation and its resultant overlay mechanism 
when encountering a BEGIN followed by declarations. 

The format of the UNSEGMENTED declaration is: 

BEGIN UNSEGMENTED 

Figure 4-18. Format of UNSEGMENTED 

The BEGIN must be matched by a corresponding END to complete the UNSEGMENTED block. 

Care must be taken to ensure that the block is not "fallen into" as invalid instructions may result. It is 
the programmer's responsibility to manage this area. 

4-38 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

SECTION 5 

EXECUTABLE STATEMENTS/CONTROL AND ASSIGNMENT 

GENERAL 
Executable statements perform the data transformations and the decision-making functions of a BPL 
program. For ease of reference, they are described in alphabetical sequence on the following pages. 

5024789 5-1 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

ACCEPT 

The function of the ACCEPT statement is to permit entry of low-volume data through the operator's 
console (ODT). 

The format of the ACCEPT statement is: 

ACCEPT identifier-1 

Figure 5-1. Format of ACCEPT Statement 

This statement causes the operating object program to halt and wait for appropriate data to be entered 
on the operator's console (ODT). The ODT entry will replace the contents of memory specified by the 
identifier. The systems operator answers an ACCEPT halt by keying in the following message: 

mix-index AXdata-required 

If a blank appears between the AX and data-required, the blank character will be included in the data
stream. 

If the number of characters entered exceeds the size of the receiving identifier, the data will be truncated 
from the right. If the number of characters entered is less than the size of the receiving identifier, an ETX 
(@03@) will be placed in memory following the last character entered. The number of characters entered 
may not exceed 60. 

Because of the inefficiency of entering data through the keyboard, this technique of data transmission 
should be solely restricted to low-volume input data. 

An indirect field length override on identifier-1 will be ignored. 

5-2 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

ACCUMULATOR CONSTRUCTS 
A twenty-digit accumulator is provided for fixed-length arithmetic operations. Accumulator load, store, 
and arithmetic commands consist of a two digit operation code and one address syllable. The Accumula
tor Manipulate instruction is a four-digit instruction consisting of a two-digit operation code and two 
variant digits. The functions of the Accumulator Manipulate instruction are: 

• Normalize Accumulator 

• Convert real to integer 

• Set sign of Mantissa to +. 

• Set sign of Mantissa to -. 

• Complement Sign of Mantissa 

• Clear Accumulator to -99 + 0 

• Increment Algebraically the Exponent by the value in the second variant digit. 

• Decrement Algebraically the Exponent by the value in the second variant digit. 

Accumulator instructions are generated only when CONTROL OP B4 700 is specified. 

All data referenced by accumulator commands is assumed to be word-aligned, fixed-length data in the 
form (FIXED INTEGER or FIXED REAL) requested by the instruction, and REAL numbers may be 
single or double precision, as specified in the address controller of the instruction. 

The accumulator commands are associated with an error trap for overflow, underflow, or divide by zero 
conditions. If the error trap has been enabled by the programmer, error branching and passing required 
parameters are a by-product of the accumulator instructions. 

Accumulator instructions are generated by the compiler as they are needed, as explained in succeeding 
text. Except as shown, there is no BPL syntax to generate explicit Accumulator Manipulate instructions. 

The BPL language provides the following means to use the accumulator: 

IACCUM is used to specify usage FIXED INTEGER. 
RACCUM is used to specify usage FIXED REAL. 
DACCUM is used to specify usage FIXED DOUBLE. 

5024789 5-3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Following are examples of accumulator usages: 

FIXED INTEGER X,A; 
FIXED REAL R; 
FIXED DOUBLE DOUBON; 
IACCUM := X ; 
X := IACCM ; 
RACCUM R ; 
IA CC UM RA CC UM 
IACCUM IACCUM + A ; 
RACCUM RACCUM + 100.0 
RACCUM RACCUM * 100 ; 

RACCUM RACCUM / 10 ; 

DACCUM := DOUBON 
RACCUM IACCUM * 1.5 

& INTEGER LOAD 
& INTEGER STORE 
& REAL LOAD 
& CHANGE REAL TO INTEGER 
& INTEGER ADD 
& REAL ADD + 03 + l 0000000 
& ACCUMULATOR MANIPULATE 
& ADJUST EXPONENT BY + 2 
& ACCUMULATOR MANIPULATE 
& ADJUST EXPONENT BY - l 
& LOAD DOUBLE TO ACCUMULATOR 
& CHANGE INTEGER TO REAL AND 
& REAL MULTIPLY 

An accumulator name on the right side of an assignment statement states previous usage of the accumu
lator. No check is made by the compiler to ensure this. 

Example: 

IACCUM 
RAC CUM 

5 ; 
RACCUM. +3. 5; 

RACCUM := IACCUM.+3.5; 

& THE ACCUMULATOR'S 
& USAGE IS INTEGER FROM 
& FIRST INSTRUCTION YET 
& SECOND INSTRUCTION 
& SAYS PRIOR USAGE IS 
& REAL 
& CORRECT USAGE 

Multiple instructions may be generated by the compiler to get the individual operands in the same mode 
etc., for arithmetic operations. 

5-4 



ARM 

B 2000/B 3000/.B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of ARM is to request that the processor error/program exception soft interrupt be enabled. 
The format of the ARM statement is: 

ARM 

Figure 5-2. Format of ARM Statement 

The ARM statement is most valuable for programs which must provide a graceful termination or take 
special actions at a processor or program error or at breakout/restart time. If ARM is enabled, a processor 
error or program exception, defined as follows, will cause the MCP to transfer control to the program's 
soft interrupt routine. If ARM is not enabled when an error occurs, the program is terminated. 

When an exception occurs, the MCP places the following data into the ARMed program: 

Location 

BASE.+64.6 

BASE.+ 70.3 

BASE.+ 73.3 

BASE.+ 76.1 

BASE.+80.4 

Contents 

Base-relative program address at the time of 
the interrupt.(Absolute address with MCPs 
prior to ASR 6.1 MCPVI.) 

Base register value 

Limit register value 

ASCII, overflow, and comparison flip-flops 
stored as: 

8-bit = ASCII 
4-bit = Overflow 
2-bit =COM L 
1-bit =COM H 

Result descriptor (see following text) 

The program is then reinstated at the address specified in BASE.+ 94 if that is a valid address. If it is not 
valid, the program is not terminated. 

5024789 

NOTE 
Since the segment dictionary begins at address 64 by default, it must be 
moved to at least address 100 using the CONTROL DICTIONARY 
clause. 

5-5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Three classes of Result Descriptors may be returned to the program if it is ARMed. The first class con
sists of Pseudo-Processor Result Descriptors indicating hardware-detected errors. The second class con
sists of Breakout/Restart Result Descriptors indicating a breakout or restart has occurred or that the op
erator attempted a breakout (BR or BD request) when operator-initiated breakout is inhibited. The third 
class consists of Preterm Error Codes denoting various software detected program errors. 

Processor Result Descriptors are of the form CnOO, where n is a 1-digit integer. 

Breakout/Restart Result Descriptors are of the form COnO, where n is a 1-digit integer. 

Pretermination Result Descriptors are of the form 9nn0, where nn is a 2-digit integer. 

Result Descriptor numbers are documented in the System Software Interfaces Reference Manual. 

The ARM statement complements the current setting of the soft interrupt toggle. If the toggle is off, ARM 
will turn it on. If it is already on, executing the ARM statement will turn it off. It is the programmer's 
responsibility to know the ARM status. 

A program is no longer ARMed when the ARM branch has been taken. 

For additional information concerning the ARM statement, refer to the DISARM statement. 

5-6 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

ASSIGNMENT 
The assignment statement is used to assign the value of an expression to a specified identifier. 

The formats of the assignment statement are: 

identifier-1 : = [ 
{ literal-1 } 

identifier-2 

Figure 5-3. Format of the Assignment Statement, Option 1 (MOVE) 

The double special character colon-equal(:=) is called the assignment symbol and is read as "is replaced 
by". 

The value of literal-1 or identifier-2 to the right of the assignment symbol is assigned (moved) to 
identifier-I. Any identifier must have been previously declared before it can be used. 

Assignment overrides are used primarily in the simple assignment statement to override (or force) a par
ticular compiler action. The following assignment overrides are available: 

5024789 5-7 



5-8 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Override 

ALL 

CHR 

JSL 

JSR 

MVC 

TGL 

WDS 

Table 5-L Assiglrnment Override§ 

Function 

The [ALL] override indicates that some form of "spreading" is to 
take place. If indirect addressing is specified for the receiving 
field, and the size of the receiving field is not an integral multi
ple of the size of the sending field, a syntax error will result. The 
entire contents of the sending field (identifier-2) or the literal 
value (literal-1) will be repeated throughout the entire receiving 
field. If indirect field length is specified in either the sending or 
receiving field (or both), the lengthof the receiving field is taken 
as the number of repetitions of the entire sending field desired; 
that is, the effective length of the receiving field will be the prod
uct of the lengths of the sending and receiving fields. The send
ing field (or literal) may not be signed, nor may it exceed l 00 
(bytes or digits) in length. 

The "character" override forces the generation of a "move alpha" 
(MV A) command. Both addresses must be MOD 2 or a syntax 
error will occur. A literal (literal-1) is not allowed with this override. 

The "justified left" override has meaning only when it is desired 
to have a numeric field justified left with zero fill to the right. 

The "justified right" override has meaning only when it is de
sired to have an alpha-numeric field justified right with blank fill 
to the left. 

The "move and clear" override is the same as the [WDS] over
ride except that the sending field is set to 4-bit zeros. 

The "toggle" override indicates that the comparison indicator 
setting following this instruction is significant and the compiler 
should not attempt to optimize this particular move instruction. 
An error message will result if a single move instruction cannot 
complete the operation. 

The "words" override forces the generation of a "move words" 
(MVW) command. Both addresses must be MOD 4 or a syntax 
error will occur. If sizes are not equal, a warning is issued and 
the smaller size is used. The size (or number of words) to be 
moved is placed right-justified in the digit AF and BF fields of 
the generated code. If indirect field length is indicated for either 
operand, these AF and BF fields will be changed. Specifying indi
rect field length for identifier-2, the sending field, will place the 
indirect field length in the AF field, which is the number of thou
sands and hundreds of words to be moved. Specifying indirect 
field length for identifier-1, the receiving field, will place this in
direct field length in the BF field, which is the number of tens 
and units of words to be moved. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Consider the following example: 

BEGIN LABEL DOIT; 
INTEGER INFLA (2) = 36; 
INTEGER INFLB (2) = 38; 
INTEGER WORD A (8) MOD 4; 
INTEGER JUNKA ( 400); 
INTEGER WORDB ( 8); 
INTEGER JUNKE ( 400); 

DOIT: 
INFLA ·- l; .-
INFLB ·- 2; .-
WORDA.INFLB [ WDS] WORDB.INFLA; 

END: 

This example will generate a move of 0102 words (408 digits) starting at WORDB and moving to 
WORD A. A literal (literal-I) is not allowed with this override. 

If the sending field size is greater than the receiving field length, OVERFLOW A may occur. A numeric 
move will not take place and no warning is generated. If the sending field is 100 or more longer than the 
receiving field, numeric move OVERFLOW results are defined. 

identifier-3 identifier-4 [XCH] identifier-5 ; 

Figure 5-4. Format of the Assignment Statement9 Option 2 (EXCHANGE) 

The "exchange" option causes the generation of a "move links" (MVL) instruction to "exchange" the 
contents of the sending and receiving fields (identifier-3 and identifier-4). Both fields must be the same 
size and type, and must not overlap. The presence of a third identifier (identifier-5) causes generation 
of a 3-way "move-links" (MVL) instruction to replace the contents of identifier-3 with the contents of 
identifier-4, replace the contents of identifier-5 with the contents of identifier-3. The [XCH] override 
may appear anywhere after the receiving field operand and prior to the semicolon, however the above 
format is recommended. All fields (identifiers) must be the same size and type, and must not overlap. 

A move links may not be embedded within an expression. 

identifier-6 TO 

identifier-8 

identifier-7 

{ FORWARD} 
REVERSE 

Figure 5-5. Format of the Assignment Statement, Option 3 (MOVE DA TA, CONTROL OP B4700 only) 

5024789 5-9 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

When two identifiers precede the assignment symbol(:=) a "move data" (MVD) instrcution is generated. 
This instruction is valid only when CONTROL OP B4700 is specified. 

A "move data" FORWARD (default) statement will cause data to be moved from identifier-8 into the 
location beginning at identifier-6 up to the beginning of identifier-7. 

A "move data" REVERSE will cause data to be moved from the memory preceding identifier-8 into the 
area preceding identifier-6 until the lower limit identifier-? is reached. 

All addresses must be MOD 4 or a syntax error will result. 

A move data may not be embedded within an expression. 

identifier-9 : = { ide~tifier-10} 
Uteral-2 

{ 
identifier-11} [ IFPT! J 
literal-3 

arithmetic-operator 

Figure 5-6. Format of the Assignment Statement, Option 4 (COMPUTE) 

For more information on option 4, refer to note 1 at the end of the" Assignment" portion of this section. 

The preceding format causes the contents of identifier-9 to be replaced by the result of the arithmetic op
eration performed. 

Allowable arithmetic operators are: 

Operator 

+ (plus sign) 
- (minus sign) 
* (asterisk) or MUL 
I (slash) or DIV 

Function 

Addition 
Subtraction 
Multiplication 
Division 

In all operations, a literal may be used on either side of the arithmetic operator. 

A Boolean operand must not be used in an arithmetic operation 

5-10 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

If one operand of an arithmetic operation is FIXED, the other operand must fulfill one of the following 
requirements: 

1. It must be FIXED. 

2. It must have an "IA" controller and be pointing to a valid fixed field and defined in ( 1) or (3). 

3. It must be an integer with a mod-4 'address and is not a name parameter and is of one of the fol
lowing sizes: 

a. 7-SN 
b. 8-UN 
c. 11-SN 
d. 12-UN 
e. 19-SN 
f. 20-UN 

If the size declared for the result field does not conform to rules for the hardware operation, leading ze
roes will be provided, or leading digits dropped, in the code generated by the compiler. This can result 
in extra instructions and work-areas being generated. 

If the user intends to check for overflow after an arithmetic operation, it is his responsibility to assure 
that overflow is off prior to that operation. If overflow is detected during an operation, the result field 
is not changed. 

When using the DIV operator the length of the dividend must be greater than the length of the divisior. 

REMAINDER is a reserved word provided to gain access to the remainder of a divide operation. The 
length of any remainder is the length of the divisor plus the length of the quotient. Its type is signed nu
meric. The remainder location is volatile and if needed should be used promptly following a divide oper
ation since any subsequent divides in the same segment will destroy previous results. 

If an indirect field length is specified on the divisor and/or the quotient, REMAINDER is not used. In
stead, the dividend field is used. A warning is issued by the compiler if this condition exists. 

If an indirect field length is specified on only the dividend, the REMAINDER length is the sum of the 
lengths of the divisor and quotient; however, this may cause a run time overflow condition. 

The following assignment overrides are available for use in an arithmetic operation: 

Override 

FPT 

REM 

5024789 

Table 5-2. Assignment Overrides in Arithmetic Operations 

Function 

The "floating point" override causes generation of a floating 
point instruction to perform the indicated operation. In a com
pound expression it applies to the entire expression and all its 
operations. 

The "remainder" override causes the divident of a divide opera
tion (identifier-I 0) to be replaced with the remainder. The loca
tion accessed by the reserved word REMAINDER is not affected 
if the [REM] override is used. In a compound expression it ap
plies to the entire expression. 

5-11 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

NOTE 
Overlapping fields in arithmetics generate extra moves to overcome hard
ware limitations. To prevent extra moves, the REM override may be used. 

Compound arithmetic expressions are permitted. Refer to Note 1 at the end of the" Assignment" portion 
of this section. 

identifier-12 _ _ { literal-4 } 
identifier-13 { ~~D} NOT 

EOR 

. { literal-5 } 
identifier-14 

Figure 5-7. Format of the Assignment Statement, Option 5 (LOGICAL OPERATORS or BOOLEAN 
OPERATORS) 

For more information on option 5, refer to note 1 at the end of the" Assignment" portion of this section. 

The logical operators assignment type statement is used to manipulate or check individual bits, and is 
used to generate logical AND, NOT and OR instructions. The operands must both be unsigned integers, 
or both "numeric" or "alpha". An operand must not be signed, "real", or a Boolean value. 

If the two operands have different lengths then they are left-justified. The shorter operand is filled with 
trailing zeroes for AND and OR, or trailing hexadecimal Fs for NOT and EOR. The data type of the re
sult is the same as that of both the operands. 

The logical operator AND will compare the identifier-13 field bits with the corresponding identifier-14 
field bits and store a 1 bit into the corresponding identifier-12 field bit if the corresponding identifier-13 
and identifier-14 field bits are both on. 

The logical OR will compare the identifier-13 field bits with the corresponding identifier-14 field bits 
and store a 1 bit into the corresponding identifier-12 field bit if either or both of the corresponding 
identifier-13 and identifier-14 field bits are on. 

The logical NOT and EOR will compare the identifier-13 field bits with the corresponding identifier-14 
field bits and store a 1 bit into the corresponding identifier-12 field bit if the corresponding identifier-13 
and identifier-14 field bits are not equal. Either sending field (but not both) may be a literal. If the send
ing fieds are not the same length, the shorter field will be assumed to have trailing 4-bit zeros. Indirect 
addressing may be used, however the final data type of all three fields must be the same, and may not 
be signed numeric (SN). 

Examples: 

A : = @37@ AND B. 2UN; 
A.IXl := @l@ OR A.IXl ; & The@ is not required. 

Compound expressions are permitted. Refer to Note 1 at the end of the "Assignment" portion of this 
section. 

5-12 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

identifier-15 --

DATE 

JDATE 

QUICKTIME 

TIME 

TIME60 

Figure 5-8. Format of the Assignment Statement, Option 6 (SPECIAL BRANCH COMMUNICATES) 

For more information on option 6, refer to note 3 at the end of the" Assignment" portion of this section. 

The special branch communicate instructions are used to assign values unknown at compile time to 
identifier-15 at execute time. 

The special names involved and their formats are: 

Table 5-3. Names of Special Brand Communicate Instructions 

Name 
(Reserved Word) 

DATE 

JDATE 

QUICK TIME 

TIME 

TIME 

Format 

6UN MMDDYY 

SUN YYDD 

lOUN 
MMMMMMMMMM 

lOUN 
MMMMMMMMMM 

601 OUN OOHHMMSSss 

Function 

Current Calender Date 

Current Julian Date · 

Time of day - milliseconds 
See note. 

Time of day - milliseconds 

Time of day Hours, 
minutes, seconds, 
60/seconds 

identifier-16 : = [SEGDICT [. (literal-6) ] ] ; 

Figure 5-9. Format of the Assignment Statement, Option 7 (SEGDICT) 

For more information on option 7, refer to note 3 at the end of the" Assignment" portion of this section. 

5024789 5-13 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference 
Executable Statements/Control and Assignment 

Identifier-16 will contain the address of the segment dictionary, 

The hteral-6 option is used to get the address of a specific segment dictionary entry, Default case points 
to the same Segment Dictionary entry in which the statement appears, 

SEGDICT may also be used in an ADDRESS = statement 

NOTE 
BPL considers the start of the segment dictionary to be segment 0, The pro
gram main block is segment l, 

identifier-17 : = SEGMENT ; 

Figure 5-10, Format of the A§signment Statement, 

For more information on option 8, refer to note 3 at the end of the" Assignment" portion of this section, 

Identifier-17 will contain the segment number of the current block 

Identifier-17 must be declared INTEGER (4), 

identifier-18 : = FIND { literal-7 } 
identifier-19 

Figure 5-Uo Format of the Assignment Statement, Option (INTERROGATE FILE mi disk) 

identifier-18 FINDPACK 
{ literal-7 } { literal-lb J 

identifier-19 ON identifier-19b 

Figure 5-12. Format of the Assignment Option 9b (INTERROGATE FILE on Diskpack) 

For more information on options 9a and 9b, refer to note 3 at the end of the "Assignment" portion of 
this section, 

Option 9a requests the MCP to check for the presence of a disk file with a value of ID equal to literal-7 
or identifier-19, 

Option 9b requests the MCP to check for the presence of a diskpack file a name equal to literal-7 
or identifier-19, on the pack family named by literal-7b or identifier-19b, 

Identifier-19 and identifier-19b must be declared ALPHA ( 6), Literal-7 and literal-7b must be alpha 
literals of six characters or less, 

Identifier-18 must be declared INTEGER (1 ), 

5-14 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Upon execution, the MCP will place a 0 or 1 in identifier-18. If the file is found in the disk directory, 
identifier-18 will equal 1; otherwise, it will equal 0. 

identifier-20 : = { 
MEMORY } 
TRACE INTERROGATE 

JOB INFO 

Figure 5-13" Format of the Asf'lignment Statement, Option 10a (PROGRAM PARAMETER BRANCH 
COMMUNICATES, ANY MCP) 

identifier-20 : = 

MIX 

MIXCALLER 

MIX I 0 program-id 

MIXNUM program-id 

MIXTBL 

Figure 5-14. Format of the As§ignment Statement, Option 10b (PROGRAM PARAM~TER BRANCH 
COMMUNICATES, PRE-MCP/VS 2o0) 

identifier-20 : 

MIX-RUNNING mcp-id 

MIXCALLER RUNNING mcp-id 

MiXID'RUNNING mcp-id f?rogram-id 
-- -~-- " - -

MIXNUM,,RUNNING mcp-id,program-id 

MIXTBL RUNNING mcp-id 

Figure 5-15. Format of the Assignment Statemeint, Option Hk (PROGRAM PARAMETER BRANCH 
COMMUNICATES, MCP/VS 2.0 AND LATER) 

The program parameter branch communicates are used to determine, at runtime, values concerning the 
program and its environment. 

5024789 5-15 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Table 5-4 lists communicates that can be used with any current MCP. 

The special names involved and their formats are: 

Table 5-4. Special Names for Use with Any Current MCP 

Name Format 

MEMORY 6 UN MMMOOO 

TRACE INTERROGATE 1 UN 

JOB INFO See Note 4 

Function 

Memory assigned to program 
in thousands of digits. 
See Note 3. 

Returns a 1 if the calling 
program is being traced. 

Allows the programmer to 
determine information on 
the environment of the 
operating system. 

Table 5-5 lists communicates that can be used with MCP/VS 1.0 and the previous operating system. Pro
grams using these communicates will not run on MCP/VS 2.0 systems with job mix limits greater than 
99. The special names involved and their formats are: 

5-16 

Name 
(Reserved Word) 

MIX 

MIX CALLER 

MIXID program-id 

MIXNUM program-id 

MIXTBL 

Table 5-5. Communicates 

Format 

2 UN 

2 UN 

2 UN 

2 UN 

See Note 5 

Function 

Number of programs in the Mix. 

Mix number of calling program. 

Number of programs in the Mix with an 
identifier indicated by program-id. 
Program-id must be a six-character alpha 
literal or an identifier declared ALPHA (6). 

Mix number of programs identified by 
program-id. Program-id must be a six char
acter alpha literal or an identifier declared 
ALPHA (6). 

Returns information from the MCP mix 
table to the calling program. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The functions MIX, MIX CALLER, MIXID, MIXNUM and MIXTBL all generate a MIXTBL BCT (see 
the V Series Program Interfaces Programming Reference Manual). The format of the MIXTBL BCT will 
vary depending on the operating system. 

The mix functions defined in Option 1 Oc require you to specify the MCP name (mcp-id). The code gener
ated by these functions can be transported between MCP/VS 1.0 and MCP/VS 2.0 operating systems. 
The same program cannot contain statements using option 1 Ob and statements using option 1 Oc. A syn
tax error occurs if the two formats are used in the same program. 

MCP-id must be a 17-character alpha literal or an identifier declared ALPHA (17). A value in MCP-id 
of "MCP" followed by all spaces indicates the 2.0 or later version of MCP/VS. Any other MCP name 
(such as "MCPIX" or "MCP/VS") indicates an MCP prior to 2.0 MCP/VS. 

The special names involved and their formats for Option 1 Oc are: 

Table 5-6. Special Names for Option lOc 

Name 
(Reserved Word) Format 

MIX RUNNING mcp-id 4 UN 

MIXCALLER RUNNING 4 UN 
mcp-id 

MIXID program-id 4 UN 
RUNNING mcp-id 

MIXNUM program-id 4 UN 
RUNNING mcp-id 

MIXTBL RUNNING See Note 6. 
mcp-id 

5024789 

Function 

Number of programs in the 
Mix. 

Mix number of calling 
program. 

Number of programs in the 
Mix with an identifier 
indicated by program-id. 
Program-id must 
be a six character alpha 
literal or an identifier 
declared ALPHA (6). 

Mix number of programs 
identified by program-id. 
Program-id must be a six 
character alpha literal or 
an identifier declared 
ALPHA (6). 

Returns information from 
the MCP mix table to the 
calling program. 

5-17 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Note 1 (Arithmetic and Conditional Expressions): 

Compound arithmetic and conditional expressions are allowed. The operators and their priorities are: 

Highest: +, - (Monadic - acts on only one operand) 
*, I 
+, - (Dyadic - acts on two operands) 
LSS,EQL,LEQ,GTR,GEQ,NEQ 
AND 

Lowest: 

Examples: 

OR 
EOR, NOT (Dyadic) 
NOT (Monadic) 

A:= B + C + D 
is equated to 

temp:= B + C 
A :=temp+ D 
A:= B + C * D 

is equated to 
temp:= C * D 
A:= B+temp 

If an expression contains operators of the same priority then these operators are evaluated from left to 
right. 

The replacement operator(:=) is also a valid operator. It has higher priority than all operators to its left, 
and lower priority than all operators to its right. 

Example: 

A:= B := C IS EQUIVALENT TO 

Parentheses may be used to change these priorities. 

Note 2 (All Branch Communicate instructions): 

Any identifier in a BCT cannot be indexed. 

Note 3 (Memory): 

B := C; 
A:= C 

For compilers, the format is 7 UN, MMMXEES. MMM is the memory assigned to the compiler in thou
sands of digits. X is not used. EE is the disk Eu or ID number specified in the COMPILE command for 
the code file, Sis the SYNTAX flag (S = 1 if COMPILE ...... SYNTAX). If identifier-20 is 7 UN, the BPL 
compiler generates a warning. 

5-18 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Note 4 (JOBINFO): 

It is the programmer's responsibility to allocate a response area of sufficient size according to the follow
ing format: 

2 UA - 00 indicates normal response 
04 indicates response area too small 

17 UA- MCP name 
4 UA - MCP release number 
6 UA - MCP patch level 
6 UN - MCP version date 
2 UN - Processor number of caller 
1 7 U A - Hostname 
4 UN - MIX number of caller 
1 UN - Batch/TSM Flag (7 or A indicates TSM: 

all other values indicate Batch) 
9 5 UN - <Reserved> 

Note 5 (MIXTBL): 

It is the programmer's responsibility to allocate a table of sufficient size according to the following 
format: 

5024789 

Header 

Jobs in mix 3 UN 
Memory available 3 UN (mod 1000; first available area) 

Body (one entry for each program) 

MIX-ID 
MIX-MF 
MIX-NO 
MIX-BC 
MIX-CA 

6 U A (program name) 
6 UA (multi-program name) 
2 UN (mix number) 
1 UN (reserved, always zero) 
3 UN (memory used by job, including disk 
file headers) 

5-19 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Note 6 (MIXTBL Running mcp-id): 

It is the programmer's responsibility to allocate a table of sufficient size according to the following 
format: 

5-20 

Header 

Jobs in mix 
Memory available 

4 UN 
10 UN (mod 1000) 

Body (one entry for each program) 
Program Id 6 VA 

6 VA 
4UN 

Multi-Program Id 
Task Number 
Memory used by task 
Processor priority 
Memory priority 
Special program code 

7 UN (code and data) 
I UN 
1 UN 
I UN 

I = Program is a generator 
2 = Program is D MP ALL 
5 = Dskout or Pack Squash 
6 = Program has DCP or MCS status 
7 = Timesharing process 
8 = Timesharing Handler 
A = Generator in shared area 
B = DMS Control Program 
C = WFL Handler 
D = BNA Handler 
E = Program is copy 

Program Status Code 2 UN 
00 = EXECUTING 
01 = COMPILING 
02 =WAITING 1/0 
03 =WAITING CORE-TO-CORE 
04 =STOPPED 
05 = NO COMPLEX WAIT TABLE SPACE 
06 =WAITING COMPLEX WAIT 
07 =WAITING STOQUE ENTRY 
08 =WAITING STOQUE MEMORY 
09 =WAITING STOQUE NAME SLOT 
10 =WAITING STOQUE PROCESSING 
11 = WAITING TRACE 
12 =WAITING OPERATOR ACTION 
13 =WAITING MEMORY 
14 = SLEEPING 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

BREAKOUT 

The function of the BREAKOUT statement is to specify that a programmatic breakout is to be taken at 
this point, for possible restart. 

The format of the BREAKOUT statement is: 

BREAKOUT ; 

See CONTROL BREAKOUT for further explanation. Refer also to the OCS commands BD, BR, and 
RB in the System Software Operation Guide for MCP/VS LO, MCPIX, or MCPVL 

The program must have no DISKPACK files open when a BREAKOUT is executed. 

5024789 

NOTE 
BREAKOUT is not permitted under MCP/VS 2.0. 

5-21 



CASE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The CASE statement selectively executes one statement within a case-group of statements. 

Two formats for CASE statements are shown in the figures 5-16 and 5-17. 

Format 1 

CASE [NO] identifier-1 OF 

BEGIN 

statement-0 ELSE 

statement-1 ELSE 

statement-2 ELSE 

statement-n 

Figure 5-16. The CASE Statement, Format 1 

Format 2 

CASE_ [NO] identifier-1 OF 

BEGIN 

statement-0 ELSE 

statement-1 ELSE 

statement-2 ELSE 

statement-n-1 ELSE BEGIN 

statement-n 

ESAC 

Figure 5-17. The CASE Statement, Format 2 

5-22 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The word CASE or CASE_ is required, identifying the CASE statement. The NO option, if present, will 
cause the compiler to omit the validity checking code on the value contained in identifier-1 at execution 
time. 

Statement-0, statement-1, ... statement-n make up the statements in the CASE-group. 

At execution time, the value of identifier-1 is examined and used as a selector to choose from the state
ments in the CASE-group. The statements in the group are numbered from zero (0) to N-1 for N state
ments, and a single statement in the group is executed, depending on value contained in identifier-I. A 
value which is greater than the number of statements in the CASE-group will cause the highest value to 
be assumed, unless the NO option was used. In this case, a value out of range will not be detected and 
the results will be unpredictable. 

Any valid BPL statement, including nested CASE statements, DO-group statements, and IF-THEN
ELSE statements and blocks are allowed and are counted as single statements. 

CASE statements consisting of only "ELSE GO TO ... " will generate more efficient code. 

The CASE variable is limited to a maximum of 6 digits. Code and data space is slightly optimized for 
a two to six digit variable. The CASE statement destroys the previous value in IXl, leaving IX l negative. 

CASE_ differs from CASE in that it must be terminated by ESAC. ESAC provides a visible end to the 
CASE_ statement, and functions as both an implicit END END and an implicit branch label. 

Since ESAC is an implicit END END, an END must not be coded for the BEGIN at the start of the 
CASE_ statement. However, since ESAC is two implicit ENDs, a BEGIN must be coded before the final 
statement in the case-group (statement-n), even if that is a single statement. 

ESAC is an implicit branch label, permitting the verb EXITCASE to be used in a CASE_ statement. 
EXITCASE causes an immediate branch to the first executable statement following ESAC. EXITCASE 
must be surrounded by BEGIN and END. 

Refer also to IN_, OUT_, and ELSE_ in Appendix G. 

5024789 5-23 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Examples: 

5-24 

CASE I OF 
BEGIN 

END 

GO TO LO ELSE 
GO TO LI ELSE 
GO TO L2 ELSE 
GO TO INVALIDL 

CASE NO ABC OF 
BEGIN 

END ; 

CASE_ B OF 
BEGIN 

GO TO LO ELSE 
PROC ELSE 

BEGIN 
A = B ; 
C = D ; 

END ELSE 

GO TO INVALIDL 

ELSE 

& IF I 0 THEN GO TO LO 
& IF I I THEN GO TO LI 
& IF I 2 THEN GO TO L2 
& IF > 2 ITS INVALID 
& END OF CASE STATEMENT 

& NO RANGE CHECK ON ABC 

& IF I = 0 
& IF I = I, CALL PROC (A 
& PROCEDURE) 
& IF I = 2 DO 
& THIS 
& COMPOUND 
& STATEMENT 

& IF I = 3 ITS INVALID 
& IF I > 3 RESULTS 
& UNSPECIFIED 
& END OF CASE STATEMENT 

DISPLAY "O" 
DISPLAY "I" 
EXITCASE 
DISPLAY "3" 

ELSE BEGIN 
END ELSE BEGIN 

ESAC; 



CLOSE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of the CLOSE statement is to communicate to the MCP that the designated file-name being 
operated on or created is programmatically completed, and to fulfill the stated action requirements. 

The format of the CLOSE statement is: 

CLOSE [REEL] file-name-1 

LOCK 
PURGE 
RELEASE 
NO REWIND 
REWIND 
NO REWIND RELEASE 
REMOVE 
NO DISCONNECT 
LOCK CRUNCH 
RELEASE CRUNCH 

Figure 5-18. Format of the CLOSE Statement 

File-names must not be those defined as being SORT files. 

A file must have been OPENed previously before a CLOSE statement can be executed for that file. 

This statement applies to the fo~lowing categories of input and output files: 

• Files whose input and output media involve print files, card files, etc. 

• Files which are contained entirely on one reel of magnetic tape and are the only files on that reel. 

• Files which may be contained on more than one physical reel of magnetic tape. Furthermore, the 
number of reels might possibly be higher than the number of physical tape units provided on the 
system. · 

• Disk files. 

5024789 5-25 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

To show the effects of the CLOSE options, each type of file will be discussed separately. 

5-26 

" Card and MICR Input. 

- CLOSE - releases the input areas, but does not release the reader. 

- CLOSE NO REWIND - same as CLOSE. 

- CLOSE RELEASE - releases the input areas and returns the reader to MCP. 

- CLOSE LOCK - same as CLOSE WITH RELEASE. 

- CLOSE PURGE - same as CLOSE WITH RELEASE. 

" Card Output. 

- CLOSE - punches the trailer label (if any), releases the output areas, but does not release the 
punch. 

- CLOSE NO REWIND - same as CLOSE. 

- CLOSE RELEASE - releases the output areas and returns the punch to the MCP. 

- CLOSE LOCK - same as CLOSE WITH RELEASE. 

- CLOSE PURGE - same as CLOSE WITH RELEASE. 

., Tape Input 

- CLOSE - checks the trailer label (if any) and rewinds the tape. It does not release input areas, 
and the unit remains assigned to the program. 

- CLOSE NO REWIND - same as CLOSE except the tape is not rewound. 

- CLOSE LOCK - releases the input areas, checks the trailer label (if any), rewinds the tape, and 
the MCP marks the unit not ready. 

- CLOSE RELEASE - releases the input areas, checks the trailer label (if any), rewinds the tape, 
and returns the unit to the MCP. 

- CLOSE PURGE - releases the input areas, checks the trailer label (if any), rewinds the tape, 
and if a write ring is in the reel, over-writes the label, making the tape a scratch tape which be
comes a candidate for use by the MCP. The unit is returned to the MCP. 

- CLOSE NO REWIND RELEASE - same as CLOSE RELEASE except the tape is not rewound. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

• Tape Output. 

- CLOSE - writes the trailer label (if any), and rewinds the tape. The unit remains assigned to the 
program. 

- CLOSE NO REWIND - writes the trailer label (if any). The tape remains positioned beyond 
the trailer label (or tape mark if there is no trailer label). The unit remains assigned to the pro
gram. 

- CLOSE LOCK- releases the output areas, writes the trailer label (if any), rewinds the tape, and 
the MCP marks the unit not ready. 

- CLOSE RELEASE - releases the output areas, writes the trailer label (if any), rewinds the tape, 
and returns the unit to the MCP. 

- CLOSE PURGE - releases the output areas, writes the trailer label (if any), rewinds the tape, 
returns the unit to the MCP, and the MCP over-writes the label making it a scratch tape, which 
makes it a candidate for use by the MCP. 

- CLOSE NO REWIND RELEASE- same as CLOSE RELEASE except the tape is not rewound. 

.. Printer and Lister Output. 

- CLOSE - prints the trailer label (if any), releases the output areas but does not release the print
er or lister. 

- CLOSE NO REWIND - same as CLOSE. 

- CLOSE RELEASE - releases the output areas and returns the printer or lister to the MCP. 

- CLOSE LOCK - same as CLOSE WITH RELEASE. 

- CLOSE PURGE - same as CLOSE WITH RELEASE. 

.. Disk Files. The actions taken on files assigned to DISK will be discussed in terms of old files and 
new files. An old file is one that already exists on disk and appears in the MCP Disk Directory. 
A new file is one created by the program and does not appear in the Directory. A new file may 
only be referenced by the program which creates it. 

- CLOSE 

For an old file, the file is left in the Directory and remains assigned to the program (a subse
quent OPEN by the program does not require a disk directory search for the file. 

For a new file, the file is not entered in the Directory, however, it remains on the disk and may 
be OPENed again by this program. 

- CLOSE NO REWIND - not permitted on disk files. 

5024789 5-27 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

- CLOSE RELEASE. 

For an old file, the file is left in the Directory, and is available to other programs (a subsequent 
OPEN by the program requires a Directory search for the file). 

For a new file, the file is entered in the Directory (thereby making it an old file). The file is avail
able to be OPENed by any program. 

- CLOSE LOCK. 

For an old file, the file remains in the Directory and is made available. 

A new file is entered in the Directory. Subsequent action is identical to an old file. 

- CLOSE PURGE. 

An old file is immediately removed from the disk and deleted from the Directory. 

A new file will be immediately removed from the disk. 

- CLOSE REMOVE. 

An old file with the same name on disk is removed from the Directory and the :new file is en
tered in the Directory. 

- CLOSE LOCK CRUNCH. 

No effect on old file. 

On a new file, all unused disk will be returned to the MCP. 

- CLOSE RELEASE CRUNCH. 

Same as CLOSE LOCK CRUNCH. 

~ Remote Devices (Data Communications). 

- CLOSE - releases the input areas, but does not release the adapter. 

- CLOSE RELEASE - releases the input areas and returns the remote device to the system. 

- CLOSE NO DISCONNECT - the file is released to the system, but the line is not disconnected. 

If a file has been specified as being OPTIONAL, the standard END-OF-FILE processing is not permitted 
whenever the file is not present. 

If a CLOSE statement without the REEL option has been executed for a file, a READ, WRITE, or SEEK 
statement for that file must not be executed unless an intervening OPEN statement for that file is execut
ed. 

The CLOSE REEL option signifies that the file-name being CLOSEd is a multi-reel magnetic tape input/ 
output file. The reel will be CLOSEd at the time of encountering the CLOSE REEL statement and an au
tomatic OPEN of the next sequential reel of the multi-reel file will be performed by the MCP. 

5-28 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

COMMENT 
The function of COMMENT is to allow the programmer to write explanatory statements in his program 
which are to be produced on the source program listing for documentational clarity. 

The format of the COMMENT statement is: 

COMM ENT [any statement] , 

Figure 5-19. Format of the COMMENT Statement 

Any combination of the characters from the allowable character set may be included in the character 
string excluding the semicolon (;). 

If an ampersand(&) appears in:\ source image, the remaining information (through column 72) in that 
record is COMMENT. 

COMMENT may not be used following the reserved word "DEFINE" and before the equal sign ( =) in 
a define. 

5024789 5-29 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

COMPARE 

The function of the COMPARE is to generate a compare or test, with no branch following. Figures 5-20 
and 5-21 show the formats for the COMPARE statement. 

Option 1 

COMPARE condition-1 , 

Figure 5-20. Format of the COMPARE, Option 1 

This construct is primarily designed for those who require a test to occur, with the appropriate setting 
of the comparison indicator, but who do not want any kind of conditional branching. The COMPARE 
statement may be described as an IF statement without any THEN action. 

The compiler will not optimize this instruction to a BOT when comparing for zero. 

Condition-1 may be any expression containing a relational-operator or boolean-operator as defined for 
the IF statement option 1 and option 2. 

Option 2 

COMPARE 
{ 

identifier-1 } 
literal-1 

TO 
{ identifier-2} 

literal-2 

Figure 5-21. Format of the COMPARE, Option 2 

This construct allows a COMPARE without stipulating the relational operator. A COMPARE literal-I 
TO literal-2 is not allowed. 

5-30 



COPY 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of COPY is to allow library routines contained on a source language library file to be incor
porated into the program. 

The format of the COPY statement is: 

COPY .'..'..library-name.'..'.. i. 

Figure 5-22. Format of the COPY Statement 

A single COPY statement may contain only one library-name. The library-name is bounded by quotes 
and may not contain more than 6-characters. The library-name is the external (disk directory) name of 
the library file. 

The library file is inserted in the source program immediately after the COPY statement at compilation 
time. The result is the same as if the library data were actually a part of the source program. 

Library data can encompass an entire procedure which may be any number of statements. 

Library files may not contain COPY statements. 

The COPY construct is completely free form and may be surrounded by BPL statements on the same 
symbolic record. Any merging of patches will stop until the entire file has been copied. 

A library file may be created by inserting the @LIBR compiler directing statement in the source text, or 
by any program which writes 80-character source records, blocked 5 or 9, to disk. When using@LIBR, 
the records plac~d into the library file are simultaneously compiled into the program. See the @LIBR 
statement under Compiler Directing Statements. 

Library files copied from the library are flagged on the output listing by a counter preceded by an "L". 
The counter will not be initialized by successive copy statements within a single program. 

5024789 5-31 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

DISARM 
The function of the DISARM statement is to request that the processor error soft interrupt for the pro
gram be disabled. The format of the DISARM statement is: 

DISARM , 

Figure 5-23. Format of the DISARM Statement 

For further information, refer to ARM. 

5-32 

NOTE 
ARM and DISARM generate the same code, the effect of which is to toggle 
the processor error soft interrupt event for the given program. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

DISPLAY 

The function of DISPLAY is to provide for the printing of low-volume data, error messages, and opera
tor instructions on the console SPO or OCS display. Figures 5-24 and 5-25 show the formats for the DIS
PLAY statement. 

Option 1 

DISPLAY 
{

literal-1 } 
identifier-1 

Figure 5-24. Format of DISPLAY, Option 1 

The option l DISPLAY statement causes the contents ofliteral-1 or identifier-I to be written, preceded 
by the program identification ( <P-ID> = <mix-no>). 

Identifier-! may be subscripted and can be declared as an INTEGER or ALPHA item. 

A maximum of 60 digits/characters can be DISPLAYED with one statement in option 1 if the program 
is executed on disk. The limit is 50 if executed on pack, due to the longer program identifier(" on <pack
id>"). 

Option 2. 

DISPLAY LINES identifier-1 { 
literal-1 } 
identifier-2 

Figure 5-25. Format of DISPLAY, Option 2 

The option 2 DISPLAY LINES statement is used for multiline messages to ensure contiguity of all lines. 

Identifier-I may be subscripted, and can be declared as an INTEGER or ALPHA item. 

Literal-1 is a numeric literal not exceeding 3 digits. Identifier-2 is an integer data item not exceeding 3 
digits. Literal-1 or identifier-2 specifies the number of lines (up to 999) to be displayed. 

Each line must be 72 or fewer bytes in length. Lines less than 72 bytes must be delimited by a NULL 
( &00&) character. 

The program identification ( <P-ID> = <mix-index>) is not written on the ODT display. 

An indirect field length override on identifier-1 or identifier-2 will be ignored. 

5024789 5-33 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

DO 

DO causes a statement or set of statements to be executed repetitevely. Figures 5-26 and 5-27 describe 
the formats of the DO statement. 

[WHILE condition-1] DO statement-1 [UNTIL condition-2] 

Figure 5-26. Format 1 for DO 

[WHILE condition-1] DO_ statement-1 OD [UNTIL condition-2] , 

Figure 5-27. Format 2 for DO 

Statement-1 represents either a single statement or multiple statements. Ifthere are multiple statements, 
they must be surrounded by a standard BEGIN ... END when using Format-1. When using Format-2, the 
BEGIN ... END areimplicitly provided by the compiler. 

Statement-I is executed repetitevely and indefinitely (in a loop) until some programmatic action forces 
an exit from the loop, unless a WHILE clause prevents the DO from being executed. 

If WHILE is specified, the loop is executed while condition-1 is true. The WHILE is evaluated before the 
loop is entered. (That is, WHILE condition-I... is equivalent to IF condition-I THEN .... ) Thus, if 
condition-1 is false when the statement is first executed, the DO loop is never entered. 

If UNTIL is specified, the loop is executed until condition-2 becomes true. The UNTIL is evaluated after 
the loop is executed. Thus, if only an UNTIL clause is present, the loop is executed at least once. 

Both WHILE and UNTIL clauses may be specfied. In that case, the loop is entered if condition-1 is true, 
and is terminated when either condition-1 becomes false or condition-2 becomes true. 

Format-2 differs from Format-1 in the following ways: 

e A BEGIN ... END is implicitly provided around statement-1. 

" DO_ includes an implicit branch label, permitting the TOPLOOP verb to be used. 

" DO_ must be followed by OD. This provides a visible end to the loop on the program listing. 

0 OD includes an implicit branch label, permitting the EXITLOOP verb to be used. 

5-34 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The loop can be exited in four ways: 

1. lf WHILE is specified, the loop ends when condition-1 becomes false. 

2. If UNTIL is specified, the loop ends when condition-2 becomes true. 

3. The program can branch to a label outside of the DO. Such a label can be specified in a GO or 
in the action-label portion of a statement permitting such a label (such as READ or FILL). 

4. With DO_ ... OD (not DO), the verb EXITLOOP causes control to be transferred to the first exe-
. cutable statement afterthe next OD. (If UNTIL is present with that OD, UNTIL is bypassed.) 

If statement-1 consists of multiple statements, all of those statements are executed in one execution of 
the loop mentioned in exit conditions 1 and 2 above. 

Condition-1 and condition-2 conform to the rules for conditions under the IF statement. Refer to IF. 

When using Format 2 (DO_ ... OD) the verbs TOPLOOP and EXITLOOP can be used within statement-
1. 

TOPLOOP causes control to be transferred to the first executable statement in statement-1. 

EXITLOOP causes an immediate branch out of the loop. 

Examples: 

DO A := A + 1 or 
UNTIL A 9; 

The above statement is equivalent to: 

Ll: A := A+l ; 
IF A NEQ 9 GQ TO Ll; 

DQ_ A:=A + 1 
UNTIL A = 9; 

Statement-1 can be a compound statement bounded by BEGIN/END. 

5024789 5-35 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

For example 

WHILE Y < 500 
DO BEGIN 

A X*2; 
Y := Y+A; 

END 
UNTIL A 100; 

The above state is equivalent to: 

or 

Ll: IF Y LSS 500 THEN 
BEGIN 

A := X*2; 
Y : = Y+A; 

WHILE Y < 500 
DO_ 

A := X * 2; 
y y + A; 

OD 
UNTIL A = 100; 

IF A NEQ 100 GO TO LI; 
END; 

Condition-1 is tested before execution of the DO loop and condition-2 is tested after execution of the 
DO loop. 

Although the UNTIL clause does not have to be explicitly stated, the programmer must provide some 
mechanism for leaving the DO loop. The UNTIL clause may be contained in statement-1. 

For example: 

DO 
BEGIN READ X [ EOF] ; 

END; 
EOF: 

WRITE X; 

or DO_ 

OD; 
EOF: 

READ X [ EOF ] ; 
WRITE X; 

This is a valid DO statement with a self-contained UNTIL in the READ statement. 

5-36 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

This example illustrates TOPLOOP and EXITLOOP. The statements on the right are equivalent to 
those on the left. 

LABEL A, B: 
WHILE <condition> WHILE <condition> 
DO_ A: 

<statement> DO BEGIN 
<statement> 

.IF <condition> THEN 
EXITLOOP; IF <condition> THEN 

GO B; 
IF <condition> THEN 

TOPLOOP; IF <condition> THEN 
GO A : 

OD 
UNTIL <condition>; END 

UNTIL <condition> 
B 

5024789 5-37 



DOZE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function DOZE will cause the suspension of an executing object program for a specified number of 
seconds. · 

The format of the DOZE statement is: 

DOZE 
{ 

literal-1 } 
identifier-1 

Figure 5-28. Format of the DOZE Statement 

A DOZE statement specifying a literal will cause the executing object program to be suspended for that 
number of seconds and to automatically become reinstated, after the specified period of time has ex
pired, by the MCP. 

The DOZE statement is particularly effective in continuous polling loops where polling is required every 
few seconds, thus releasing the intervening time to the other programs in the mix. 

If identifier- I is specified as containing the DOZE value, it must be an INTEGER field of 5 digits or less. 

The maximum DOZEing period is 23 hours, 59 minutes, and 59 seconds (86,399 seconds). 

5-38 



DUMP 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The DUMP statement causes the contents of the specified memory locations to be dumped to a line 
printer or disk. 

The format of the DUMP statement is: 

DUMP [DISK] [identifier-1 [TO identifier-2] ] 

Figure 5-29. Format of the DUMP Statement 

DUMP with no data-name option causes a complete program DUMP. 

DISK specifies a DUMP to head-per-track disk. 

DUMP identifier-I will cause at least 1000 digits to be dumped including the complete value of 
identifier-I. The number of digits dumped will always be MOD 1000. 

DUMP identifier-! TO identifier-2 will give a dump beginning at the MOD 1000 address containing 
identifier-!, and will occur in 1000 digit segments to include all digits between the identifiers indicated. 
Identifier-I and identifier-2 may be program labels, however as no length is associated with a label the 
dump will begin with 1000 digit area containing the start of identifier-!, and will terminate with the I 000 
digit area containing the start of identifier-2. 

After the DUMP, execution of subsequent instructions continues normally. 

Examples: 

5024789 

DUMP 
DUMP X; 
DUMP X TO LAB 
DUMP DISK 

5-39 



EDIT 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of the EDIT staterner1t is to move and edit data, usually for printing on a line printer. 

The format of the EDIT statement is: 

EDIT identifier-1 WITH identifier-2 TO identifier-3 

Figure 5-30. Format of the EDIT Statement 

The contents of identifier-1 will be edited through the mask contained in identifier-2 and the result will 
be placed in the field specified by identifier-3. Identifier-2 must reference an ALPHA field, and should 
usually reference a field created with the PICTURE declaration. Identifier-3 must reference an ALPHA 
(or 8-bit) field. 

Examples: 

5-40 

EDIT A WITH PICT TO B 
EDIT A PICT B ; 
EDIT A WITH Q.UA.3 TO B; 



ENTER 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of the ENTER statement is to cause control information and parameters to be copied into 
the subroutine stack, and transfer control to a specified address. 

The format of the ENTER statement is: 

ENTER identifier-1 [WITH literal-1] 

Figure 5-31. Format of the ENTER Statement 

Identifier-I is the name of the subroutine, procedure or label to be ENTERed. 

Literal-I (if used) is the number of bytes of parameters to be passed. These parameters must be located 
immediately following the ENTER instruction (using the STORE instructions). 

The setting of the comparsion and overflow indicators are stored, then cleared by this instruction. 

The parameters may be referenced by using the contents of IX3 plus I 6, since the IX3 value points to 
the beginning of the current stack entry and linkage information occupies the first I 6 positions of the 
entry. 

5024789 

NOTE 
It is the programmer's responsibility to provide a corresponding EXIT 
statement for each ENTER, if entering a label. If the programmer has en
tered a procedure or subroutine the compiler will generate an EXIT. 

5-4I 



EXIT 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of EXIT is to allow branching from an ENTERed subroutine or procedure, thus reversing 
the stack action taken upon entry to the subroutine or procedure. 

The format of the EXIT statement is: 

EXIT 
{ label-1 }] 

identifier-1 

Figure 5-32. Format of the EXIT Statement 

An address following the EXIT statement is optional. ff omitted, control is transferred to the address 
specified in the first six digits of the stack entry (the address of the first instruction following the subrou
tine call). If label-! is specified, control will be returned to the address of label-1, and the current entry 
in the stack will be removed. 

No validity checking will be performed on the address specified by label-1, or identifier-I, therefore it 
is the responsibility of the programmer to ensure that control is returned to a valid address. 

If a branch or an EXIT is coded immediately before a procedure END, the implied exit is not produced. 
If an EXIT is coded before an ELSE of an IF statement, the implied branch is not produced. 

5-42 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

EXITBLOCK 
The EXITBLOCK statement causes an immediate branch out of the range of the current BEGIN_ 
... END block. Figure 5-33 shows the format of this statement. 

EXITBLOCK ; 

Figure 5-33. Format of the EXITBLOCK Statement 

EXITBLOCK is permitted anywhere within a statement block which begins with the reserved word 
BEGIN_. When EXITBLOCK is executed, it causes control to be transferred to the first executable 
statement following the END which corresponds to the first BEGIN_ preceding that EXITLOOP. 

5024789 5-43 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

EXITCASE 
The function of the EXITCASE statement is to return control from within a CASE_ statement through 
a mechanism other than the normal completion of the statement. 

EXITCASE , 

Figure 5-34. Format of the EXITCASE Statement 

EXITCASE is permitted only with the CASE_ statement. It is not permitted with the CASE statement. 
EXITCASE can appear anywhere within the CASE_ statement and when it is executed. control is trans
ferred to the first executable instruction after the ESAC statement. 

5-44 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

EXITCOND 
The function ofEXITCOND is to permit an early exit from a conditional statement before the complete 
processing of the statement is finished. 

EXITCOND , 

Figure 5-35. Format of the EXITCOND Statement 

EXITCOND is permitted anywhere within an IF_ statement. It causes control to be passed to the first 
statement following the Fl. 

Refer to IF_ (Format 2 of the IF statement) for further details. 

5024789 5-45 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

EXITLOOP 

The EXITLOOP statement causes an immediate branch out of the range of a DO_ statement. Figure 
5-36 shows the format of this statement. 

EXITLOOP , 

Figure 5-36. Format of the EXITLOOP Statement 

EXITLOOP is permitted only with the DO_ version of the DO statement. EXITLOOP can appear any
where within the statement loop. When executed, it causes control to be transferred to the first executa
ble statement after the OD statement. 

Refer to DO for further details. 

5-46 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

EXITROUTINE 

EXITROUTINE causes an exit from a file use routine, Figure 5-37 shows the format of this statement, 

EXITROUTINE <file name> 

Figure 5-37. Format of the EXITROUTINE Statement 

A use routine is any of those specified in a ROUTINE clause in a FILE declaration, 

EXITROUTINE must be the last statement executed in a file use routine, When executed, it causes con
trol to be passed to the first statement following the I/O statement which causes the branch to the use rou
tine, 

EXITROUTINE causes the program to be reinstated at the address in FIBRCW of the first buffer status 
block for the file, Consequently, a use routine must not perform an action which can result in entry to 
another use routine, or the return linkage can be destroyed, 

Refer also to ROUTINE under the FILE declaration, 

5024789 5-47 



FILL 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of the FILL statement is to pass data from one program to another when both programs 
are operating in the same multiprogramming mix. 

Figure 5-38 shows the format of the FILL statement. 

FILL {~UT} 

[ [action label} ] 

identifier-1 
{ non-numeric-literal-1} 

identifier-2 

[[ G~O JJ - -

Figure 5-38. Format of the FILL Statement 

The MCP Core to Core (CRCR) option must be set "ON" when an object program containing the FILL 
verb is being operated under the control of a version of the MCP prior to the MCP/VS 2.0. 

FILL OUT is the data-sending construct whereby a program using this statement can converse from a 
self-contained data-name, with another operating program in the same multiprogramming mix. The size 
of identifier-I is restricted only by the amount of memory required by the programs themselves. 
Identifier-2 must be declared as a 6 byte field (or literal) which specifies the program-identifier of the re
ceiving program as reflected in the MCP Program Directory. The receiving program must be in the MCP 
mix. If the literal-I is "bbbbbb" (blank), it specifies that any number ofreceiving programs are to become 
eligible for the transmission of data. 

The action label branch, when specified, will be taken when there is no receiving program ready to re
ceive a transmission. If the action label clause is not used, the program will wait until the FILL has been 
completed, before proceeding to the next instruction. 

FILL IN is the data-receiving construct whereby a program using this statement can receive data from 
a sending program (identifier-2) into a self contained field (identifier-I). The sending program must be 
in the MCP mix. If literal-I is "bbbbbb" (blank), it specifies that any number of sending programs are 
to become eligible for the transmission of data. 

The action label branch, when specified, will be taken if the sending program is not ready to transmit. 
The data types of the sender and receiver must match. 

Reference should be made to the DAT A COMM FILL verb located in the Data Communications section 
of this manual. 

5-48 



GO 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of GO is to alter the normal flow of the program by transferring control to another location 
in the program and continuing execution from that point. 

Figure 5-39 shows the format of the GO statement. 

GO TO 
{ label-1 } 

identifier-1 

Figure 5-39. Format of the GO Statement 

Two restrictions apply to GO statements: 

• A GO statement within a procedure cannot refer to a label or identifier outside that procedure. 

• A GO statement within a block cannot refer to a label or identifier outside that block. 

Except for the above restrictions, no validity checking will be performed on the address specified by 
label-1 or identifier-1, therefore it is the responsibility of the programmer to ensure that control is passed 
to a valid address. 

5024789 5-49 



IF 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of the IF statement is to allow a program to select between alternate paths depending on 
the results of a test. 

Figures 5-40 and 5-44 show the two formats you can use for IF statements. 

IF [NOT] condition-1 THEN statement-1 [ELSE statement-2] 

Figure 5-40. Format 1 for the IF Statement 

NOT may be placed immediately after the IF thus reversing the comparison results. 

Condition-1 may be represented in three ways, described by Options 1, 2, and 3 below. 

The word THEN is required; if missing, a syntax error will result. 

Statement-1 can be any BPL statement, procedure, or block. This statement will be executed ifthe condi
tion tested for is met (true). 

The optional ELSE condition (statement-2) will be executed ifthe condition tested for is not met (false). 

The options shown in figures 5-41 through 5-43 describe the condition (condition-1) that may be tested 
with the IF statement. (Refer to Note 4 under ASSIGNMENT for compound expressions.) 

{
- i~entifier-1 } 

llteral-1 
operand-1 

THEN • • • 

{ 
identifier-2 } 

relational-operator literal-2 
operant-2 

Figure 5-41. Test of Condition-I with IF, Option 1 

The result of an arithmetic operation can be used as an operand (for example, IF A+ 1 = B*3 THEN ... ). 

Either operand may be a literal, but not both. 

5-50 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Relational operators are: 

Table 5-7. Relational Operators 

Operator 

=(or EQL) 
-=(or NEQ) 
< (or LSS) 
<= (or LEQ) 
>(or GTR) 
>=(or GEQ) 

Function 

Test for equal 
Test for unequal 
Test for less than 
Test for less than or equal 
Test for greater 
Test for greater than or equal to 

The double special-character representation of NEQ, LEQ and GEQ must be written as shown above. 
Illegal usage would be = ", =<, or =>. · 

{ identifier·3 } 
literal-3 logical-operator 

{ 
identifier-4 } 
literal-4 

Figure 5-42. Test for Condition-1 with IF, Option 2 

THEN 

An assignment or the result of an arithmetic operation can be used as an operand. 

Either operand may be a literal, but not both. A literal, if used, must not exceed two digits (or one byte). 

Table 5-8 lists the logical operators (or Boolean operators) that are permitted, in hierarchical order. 

5024789 5-51 



5-52 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Operator 

AND 

OR 

NOT (or A) 

Table 5-8. Permitted Logical Operators 

Function 

To generate an AND instruction which determines 
the logical truth of the low-order bits of 
identifier-3 and identifier-4.If true (both bits are 
"on"), the THEN action will be taken.If a literal is 
used, a "bit one test" (BOT) instruction will be 
generated using the literal as a mask to be generat
ed using the literal as a mask to be repetitively ap
plied against each byte of the entire identifier spec
ified, and if any bit in the mask corresponds to a 
bit in the identifier, the THEN action will be taken. 

To generate an ORR instruction that determines 
the logical truth of the low-order bits of 
identifier-3 and identifier-4. If true (either bit or 
both "on"), the THEN action will be taken. A liter
al used with the OR operator has no meaning and 
will generate a syntax error. 

To generate a NOT instruction that determines the 
logical truth of the low order bits of identifier-3 
and identifier-4.If true (either bit "on" but not 
both), the THEN action will be taken. If a literal is 
used, a "bit zero test" (BZT) instruction will be 
generated using the literal as a mask to be 
repetitevely applied against each byte od the entire 
identifier specified. If any bit in the mask corre
sponds to a zero (bit off) in the mask corresponds 
to a zero (bit off) in the identifier, the THEN ac
tion will be taken. 

{ 
relational-operator } 
identifier-5 
OVERFLOW 

THEN 

Figure 5-43. Test for Condition-I with IF, Option 3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

If a relational operator is used (see Option l) a test will be generated against the setting of the comparison 
indicators. This form is used following, for example, a COMPARE or SCAN command. If the condition 
is met, the THEN action will be taken. 

If an identifier is specified, the low-order bit of the identifier will be tested, and if set (on) the THEN ac
tion will be executed. If identifier-5 references a bit, that bit will be tested. 

If OVERFLOW is specified, the overflow indicator will be tested. If set (on) it will be turned off (reset) 
and the THEN action will be executed. To force the overflow indicator off: IF 0 VE RF LOW THEN: 

[NOT] condition-1 THEN BEGIN statement-1 

[END ELSE BEGIN statement-2] Fl 

Figure 5-44. Format 2 for the IF Statement 

Format 2 includes the features of Format 1, with extensions. 

An IF_ statement must end with FI. FI thus provides a visible end to the IF_ statement. 

Since FI is an implicit END, THEN must be followed by BEGIN. Because FI is an implicit branch label, 
the EXITCOND verb may be used within an IF_ statement. 

An early exit from an IF_ statement can be caused by EXITCOND. EXITCOND causes control to be 
transferred to the first executable instruction following FI. 

Example: 

IF_ condition-! THEN BEGIN 
y := y + l ; 
IF Y = 10 THEN 

EXITCOND & Bypass the READ 
READ Z; 

FI ; 

Refer also to ELSE_, ELIF, and THEN_ in Appendix G. 

5024789 5-53 



B 

or 
the LOCK statemenL 

LOCK file-name [WITH SEEK] 

is set. 

In any case, must 

transfer of 

is currently 
if 

option 



OPEN 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of OPEN is to initiate the processing of both input and output files. The MCP performs 
checking or writing, or both, of labels and other input-output operations. Figure 5-46 describes the for
mat of the OPEN statement. 

OPEN {;T f 
01 

file-name 
[ { 

LOCK 
LOCK ACCESS 
REVERSE 
NO REWIND 

Figure 5-46. Format of OPEN Statement 

}] 

With every OPEN, the type of OPEN must be specified. Allowable options are IN (input), OUT (output), 
IO (input-output) or OI (output-input). 

The IO and OI options pertain to disk and disk pack files. In addition, IO may be specified for data com
munication devices. 

The file-name must be the name (not identifier) assigned to the file in the FILE declaration. 

When an OPEN OUT statement is executed for a magnetic tape file, the MCP searches the assignment 
table for an available scratch tape, writes the label as specified by the program and executes any label rou
tines for the file. If no scratch tape is available, a message to the operator is typed and the program is sus
pended until the operator mounts one, or one becomes available due to the termination ofa multiproces
sing program. OPENing of subsequent reels of multi-reel tape files is handled automatically by the MCP 
and requires no special consideration from the programmer. 

The IO option permits the OPENing of a disk or disk pack file for input and/or output operations. This 
option assumes the existence of the file on disk, and cannot be used if the file is being initially created. 
That is, the file to be OPENed must be present in the MCP Disk Directory, or have previously been creat
ed and CLOSEd in the same run of the program. 

When the IO option is used, the MCP immediately checks the Disk Directory to see if the file-identifier 
is present, or if this file has been created and CLOSEd in the same run of the program. The system opera
tor will be notified if it is absent, and the file can then be loaded (if available), or the program can be DSed 
(discontinued). 

The OI option is identical to OPEN IO with the exception being that the file is assumed to be a new RAN
DOM file to the Disk Directory. The OI option does not, nor was it intended to, replace the OPEN IO 
option, since the use of OPEN OI assumes that a new file is to be created each time. 

The LOCK option, executed on a permanent disk or disk pack file, will be performed only on a file not 
in use by any other program. Once a file is OPENed with LOCK, no other program will be able to OPEN 
the file until the LOCKing program has CLOSEd it. 

5024789 5-55 



B 1000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The LOCK ACCESS option, executed on a permanent disk or disk pack file, will be performed if the file 
is not OPEN in any manner other than IN put by any other program. Once a file is OPENed with LOCK 
ACCESS, any program may OPEN the file as INput, but not IO. 

With either LOCK or ACCESS, if OPEN action cannot be completed by the requesting (or 
any other) program, that program be suspended until the program LOCKing the file has CLOSEd; 
then automatically reinstated by the MCP. 

The NO option is used to OPEN magnetic tape files without OPENing (output) the second 
all subsequent files on a multi-file reel of magnetic tape. 

The REVERSE option can only be used with single reel, single file, tape files. When the REVERSE op
tion is the subsequent READ statements for the file make the data-records available in reverse 
record order starting with the last record. Each record be read into its record-area and will appear 
as if it been read a forward moving file. 

If 

5-56 

peripheral assigned to the file permits the following rules apply: 

the REVERSE nor 
statement for file cause the 

NO REWIND option is specified, execution of the OPEN 
to be positioned ready to read the first data-record. 

~ either the REVERSE or NO REWIND option is specified, execution of the OPEN 
statement does not cause the file to be positioned. the REVERSE option is specified, the 
file must be positioned at its physical end. When the NO REWIND option is specified, the file 
must be positioned at its physical beginning. 



B 2000/B 3000/B 4000/Y Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

OVERLAY 

The function of OVERLAY is to request the MCP to call in a specified overlayable segment if it is not 
present and when it becomes present, branch to the first executable instruction in that segment. Figure 
5-4 7 describes the format of the OYERLA Y statement. 

[ OVERLAY 
{ I iteral-1 } 

identifier-1 

Figure 5-47. Format of OVERLAY Statement 

Literal-1 or identifier-1 is the segment dictionary entry for the requested segment. Identifier-1 must be 
declared INTEGER (3). 

If the overlay is not in memory, the MCP reads the requested segment into the appropriate memory area 
and marks the segment present, thus any future call on a "present" overlay results in a direct branch to 
the segment without MCP intervention. 

5024789 5-57 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Procedure Call 
The procedure call statement passes control to (enters) a procedure. After the procedure has been com
pleted, the program control will return (exit) to the statement which follows the calling statement. 

The format for a procedure call is: 

procedure-name [ (actual-parameter-list) ] 

Figure 5-48. Format for a Procedure Call 

A procedure call is a statement. A procedure call must never appear adjacent to an assignment or com
parison operator. 

The procedure being called must reside within range. An overlayable procedure may not be called from 
another procedure occupying the same area of memory. Parameters are optional (see PROCEDURE 
declaration) but if used must be enclosed in parentheses. Multiple parameters must be separated by com
mas and may be composed of data-names or literals in any order. Evaluation of the actual parameter list 
is performed left to right. Only a single "name" or "value" will be passed for each parameter. The actual 
parameters passed at object run-time will be matched left to right with the formal parameter names con
tained in the PROCEDURE declaration of the invoked procedure. The maximum number of parame
ters that can be passed is I 0. 

A value will not be returned from a called procedure. If such a requirement exists, the result must be com
municated through the use of global data-names, or by passing a parameter by name and specifying the 
corresponding formal parameter in the procedure to the left of a replacement operator within an executa
ble statement. 

5-58 

Examples 

PROX; 

IF X THEN PROX 
ELSE PROY; 

Table 5-9. Calling Procedures 

Comments 

The procedure PROX is being invoked. 

One of the two procedures will be 
called depending on the data-name X. 



READ 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of this statement is twofold: 

• When processing sequential input files, a READ statement will cause the next sequential record 
to be moved from an input buffer area to the actual work area, thus making the record available 
to the program. The READ statement permits a branch to a specified label when an end-of-file 
condition is detected by the MCP. 

• For random file processing, the READ statement communicates with the MCP to explicitly cause 
the reading of a physical record from a disk file and also allows a branch to a specified label if the 
contents of the associated KEY data item is found to be invalid. 

The format of the READ statement is: 

READ file-name [identifier-1] [ WITH LOCK J 
WITH NO UN LOCK 

[ [eof-label] ] 

Figure 5-49. Format of READ Statement 

An OPEN statement must be executed for a file prior to the execution of the first READ statement for 
that file. 

File-name must be the name (not identifier) of a file declared in a FILE statement. 

The use of identifier-I in a READ statement changes the WORK.AREA location (see the FILE declara
tion) for this and all subsequent READ operations on the specified file. If this option is used, a 
WORK.AREA must have been specified in the FILE declaration. 

The eof-label provides an address to which program control will be returned when the logical end-of-file 
is reached. If used, it must reference a defined label and must be enclosed in brackets. If end-of-file is 
reached and no eof-label is provided, the program will be terminated. 

If the end of a magnetic tape reel is recognized during execution of a READ statement, the following op
erations are carried out: 

1. The standard ending reel label routine and the user's ending reel label routine, if specified by the 
ROUTINETYPE statement, are carried out. 

2. A tape swap is performed. 

3. The standard beginning reel label routine and the user's beginning label routine, if specified, are 
executed. 

4. The first data record on the new reel is made available. 

5024789 5-59 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

For RANDOM files, the READ statement implicitly performs the functions of the SEEK statement. If 
the contents of the associated KEY data item is out of the range of the file, the MCP will return control 
to the address specified. For RANDOM files, the sensing of an end-of-file condition does not preclude 
further READs on that file. For sequential files, a READ following end-of-file is invalid, and the program 
will terminate. 

If a READ parity error occurs, the MCP will retry the READ operation until the record is successfully 
read, or until a specified number ofretry attempts has been reached. If the parity error is unrecoverable, 
the MCP will branch to the ERROR routine provided by the programmer.· If an ERROR routine is not 
found, the program will be terminated. 

The use of the MCP Shared file capability allows three shared disk READ constructs. 

READ file-name ... 

READ file-name with 
LOCK 

READ file-name with 
NO UNLOCK 

Table 5-10. READ Constructs 

READS file even if block is locked. 

READS and locks a block of a disk 
file. 

Locks a block of a shared file, 
performs a read, and then unlocks 
the block. 

If the requested block is locked by 
another program, READ WITH NO UNLOCK 
waits until the record is unlocked. 
If the block is already locked by the 
program issuing the READ WITH NO 
UNLOCK, no delay is necessary. 

This statement obtains the contents of 
a record at a time when no other 
program has the record locked. It 
differs from READ WITH LOCK in that 
READ WITH NO UNLOCK does not leave the 
record locked. 

Under MCP releases prior to MCP/VS 2.0, the MCP's SHRD option must be set in order to use the 
LOCK or UNLOCK options. In any case, the FILE declaration must incLude the SHARED attribute. 

5-60 



SCAN 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The fonction of the SCAN statement is to scan a data field for a delimiting character. Figure 5-50 de
scribes the format of the SCAN statement. 

SCAN 

FOR 

[ EQUAL ] 
[ZONE] UNEQUAL 

{ identifier-2} 
literal-2 

{ identifier-1} 
literal-1 

Figure 5-50. Format of SCAN Statement 

The SCAN command compares the first identifier-1 field character with all identifier-2 field characters, 
and ifthe condition tested for (EQUAL or UNEQUAL) is found, the SCAN is complete. If not, the next 
identifier-1 field character is compared with all identifier-2 characters, and so forth until a match is 
found or until the identifier-1 field is exhausted. 

Every SCAN instruction stores a character count (not storage position) into Program Reserved Memory 
location 00038-39 according to the following rules: 

• 00 is stored if the first identifier-I character satisfies the condition tested. 

• The number of characters in the identifier-I field preceding the equal (or unequal) character is 
stored if the non-first character in the identifier- I field satisfies the condition tested. · 

• The length of the identifier-I field minus one is stored if no identifier-2 field character satisfies 
the condition tested. 

Use of the ZONE and/or the EQUAL/UNEQUAL options permits four variations of the SCAN state
ment: 

1. The SCAN EQUAL option (default): 

If the first character in the identifier-I field equals any of the delimiters in the identifier-2 field, 
the comparison is set to LOW. If any character in the identifier-I field other than the first is equal 
to one of the delimiters in the identifier-2 field, the comparison indicator is set EQUAL. If none 
of the characters in the identifier-I field are equal to any of the delimiters in the identifier-2 field, 
the comparison indicator is set HIGH. · 

5024789 5-6 I 



5-62 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

2. The SCAN UNEQUAL option: 

If the first character in the identifier-I field is not equal to any of the delimiters in the identifier-2 
field, the comparison indicator is set LOW. If any character in the identifier-I field other than 
the first is not equal to any of the delimiters in the identifier-2 field, the comparsion indicator is 
set EQUAL. If all characters in the identifier-1 field are equal to any of the delimiters in the 
identifier-2 field, the comparison indicator is set HIGH. 

3. The SCAN ZONE EQUAL option: 

If the zone portion of the first identifier-I field character is equal to the zone portion of any of 
the identifier-2 delimiter-zone characters, the comparison indicator is set LOW. If the zone por
tion of any character in the identifier-1 field other than the first is equal to the zone portion of 
any of the identifier-2 field delimiter-zone characters, the comparison indicator is set EQUAL. 
If no zone portion of any of the identifier-I field characters is equal to the zone portion of any 
of the identifier-2 field delimiter-zone characters, the comparison indicator is set HIGH. 

4. The SCAN ZONE UNEQUAL option: 

If the zone portion of the first identifier-I character is not equal to the zone portion of any of the 
identifier-2 field delimiter-zone characters, the comparison indicator is set to LOW. If the zone 
portion of any character in the identifier-I field other than the first is not equal to the zone por
tion of any of the identifier-2 delimiter-zone characters, the comparison indicator is set EQUAL. 
If the zone portion of every identifier-I field character matches an identifier-2 field delimiter
zone character, the comparison indicator is set HIGH. 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

SEARCH 
The function of SEARCH is to cause a search of a table to locate a table element that satisifes a specific 
condition, and store the address of the table element in IX 1. 

Figure 5-51 describes the format of the SEARCH statement. 

SEARCH 

FOR 

[ 
EQUAL ] 
LOW 
LOWEST 

{ identifier-3} 
literal-1 

identifier-1 [TH RU identifier-2] 

[ INCREMENT { 
literal-2 } ] 
ADDRESS identifier-4 
i nd ire ct-field-length-identifier 

Figure 5-51. Format of the SEARCH Statement 

The SEARCH statement will generate a hardware SEARCH command, which uses the C address con
troller to determine the type of SEARCH: UN indicates SEARCH EQUAL, SN indicates SEARCH 
LOW, and UA indicates SEARCH LOWEST. If the search type is omitted EQUAL is assumed. 

The SEARCH action for each of the three types is as follows: 

l. EQUAL (default) 

The value contained in identifier-3 (or literal-1) is compared with the value in identifier-I, then 
with the value in identifier-! plus the INCREMENT, and so forth. until an equal condition is de
tected; or until the address developed by incrementing identifier-! is equal to or greater than the 
address of identifier-2 (THRU option). If the THRU option is not specified, the length of the 
search will be the length defined for identifier-I. If an EQUAL condition is detected, the compar
ison indicator is set EQUAL, and the address of the EQUAL entry (identifier-I plus increments) 
is stored in IX I. If an EQUAL condition is not detected, the comparison indicator is set HIGH 
and IX 1 is unchanged. 

2. LOW 

The value contained in identifier-3 (or literal-I) is compared with the value in identifier-!, then 
the value in identifier-I plus the INCREMENT, and so forth until an entry is found where the 
value of identifier-! (plus increments) is lower than the value of identifier-3; or until the address 
developed by incrementing identifier-! is equal to or greater than the address of identifier-2 
(THRU option). If the THRU option is not specified, the length of the search will be the length 
defined for identifier- I. If a LOW condition is detected, the comparison indicator is set EQUAL, 
and the address of the LOW entry (identifier-I plus increments) is stored in IX I. If a LOW condi
tion is not detected, the comparison indicator is set HIGH and IX 1 unchanged. 

5024789 5-63 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

3. LOWEST 

The value contained in identifier-3 or (literal-1) is compared with the value in identifier-I, then 
with the value in identifier-1 plus the INCREMENT, and so forth until the address developed by 
incrementing identifier-1 is equal to or greater than the address of identifier-2 (THRU option). 
If the THRU option is not specified, the length of the search wiU be the length defined for 
identifier-I. If, on any comparison, the value of identifier-! is lower than the identifier-3 value, 
that value will be used in all remaining comparisons. If at least one identifier entry is found to 
be lower than the identifier-3 entry, the comparison indicator is set EQUAL, and IX l will con
tain the address of the LOWEST entry found. If no lower entry is found the comparison indicator 
will be set HIGH, and IX 1 will contain the address of identifier-3. If a literal is used, IX 1 will con
tain the address of the literal. 

NOTE 
The test for the bounds of the SEARCH is done before the SEARCH com
parison is made. 

The INCREMENT option allows specification of the table entry size. If a literal is used (literal-2), it must 
be an integer with a value of 1 to 100; and will represent digits or bytes depending on the attributes of 
identifier-1. If the ADDRESS option is used, a compile-time calculation of the INCREMENT will be 
performed by subtracting the address of identifier-I from the address of identifier-4. The difference must 
fall within the value range defined for literal-2. If the INCREMENT entry is omitted, the default value 
(of literal-2) will be one. 

When indirect addressing is used on identifier-2, it is the programmer's responsibility to set the appro
priate address controller in the final address field. 

An indirect address may not be used for identifier-I or identifier-4 if the ADDRESS option is used. A 
syntax error will result because the indirect address does not provide sufficient information for calcula
tion of the increment. 

Because comparison length is independent of the entry length, the SEARCH statement may be used for 
scanning as well as table lookup. This is accomplished by addressing the data area to be scanned 
(identifier-1 THRU identifier-2), the keyword address (identifier-3) and an INCREMENT value of one 
( 1 ). When this occurs, the entire data field will be scanned for occurrence of the keyword. 

5-64 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

SEARCH LINK/DELINK 
The function of the SEARCH LINK statement is to search a non-contiguous table for an element that 
satisifes a specific condition. and store the address of the table element in IX 1: SEARCH DELINK per
forms the same function but in addition saves the address of the previous table entry. 

Figure 5-52 shows the format of the SEARCH LINK DELINK statement. 

SEARCH { ~NK} [ ~~~:L l identifier-1 
GREATER 

FOR { literal-1 } 
identifier-2 

[ OFFSET { 

literal-2 } ] 
ADDRESS 

identifier-3 
indirect-field-length-identifier 

Figure 5-52. Format of the SEARCH LINK DELINK Statement 

The SEARCH LINK (or DELINK) instruction will test the table element addressed by identifier-1 in the 
manner prescribed by the search mode (described below). If the condition is not met, the first six digits 
contained in this table element (called link address) will be used as the address of the next table element 
to be tested, etc. until the condition is met, or until the first six digits of an element are zeros. If the condi
tion tested for is found, the address of the table element will be placed in IX 1. In addition, if D ELINK 
is specified, the address of the previous table element is placed in IX2. If the condition is not met, IX 1 
and IX2 are not changed. 

Either LINK or DELINK must be specified. The search mode defines the type of SEARCH to be per
formed. If the search mode is not specified, EQUAL is assumed. Allowable options are: 

• EQUAL (default) 

The contents of each table element are compared with the contents of identifier-2, or with 
literal-1 until an equal condition is found. If an equal condition is found, the comparison indica
tor is set EQUAL, otherwise it is set HIGH. 

• ANY 

The contents of identifier-2 or literal-1 are a mask which specify bits of the table elements to be 
considered in the test. A bit on in the mask signifies that the corresponding bit in the table ele
ment is to be considered; a bit off in the mask signifies that the corresponding bit in the table ele
ment is to be ignored. If any of the bits considered in the table element is on, the search is satis
fied. If such a match is found, the comparison indicator is set EQUAL otherwise it is set HIGH. 

5024789 5-65 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

" NONE 

The contents of identifier-2 or literal-1 are a mask which specify bits of the table elements to be 
considered in the test. A bit on in the mask signifies that the corresponding bit in the table ele
ment is to be considered; a bit off in the mask signifies that the corresponding bit in the table ele
ment is to be ignored. If all the bits considered in the table element are off, the search is atisfied. 
If such a match is found, the comparison indicator is set EQUAL; otherwise it is set HIGH. 

a GREATER 

The contents of each table element are compared with the contents of identifier-2, or literal-! 
until an elment is found that is less than or equal to the contents of identifier-2. If none are found. 
the comparison indicator is set HIGH. If an EQUAL condition is found, the comparison indica
tor is set EQUAL: if a less than condition is found, the comparison indicator is set LOW. 

The address controller of identifier-I is set by the type of SEARCH requested, as follows: 

0-EQUAL 
l -ANY 
2 - GREATER 
3 - NONE 

Indirect addressing cannot be specified for identifier-1. Indexing may be used with identifier-I, however 
neither indirect addressing nor indexing may be used on any link address. 

The address controller of identifier-2, or literal type, ifliteral-1 is used determines the data type of both 
fields; identifier-I and identifier-2. The length of the field to be tested is determined by the length of 
identifier-2, and must not exceed 100 (digits or bytes). Indexing may be used with identifier-2; indirect 
addressing may be specified only if CONTROL OP B4700 is used. 

The OFFSET option defines the location in the table element to be used for comparison. ff not specified, 
the default value is zero, resulting in a test on the link address. If a literal is used, that value, digits or 
bytes, depending on the address controller specified for identifier-2, is added to identifier-1 to determine 
the starting point in the table element for the comparison. Again the length of the field to be compared 
is determined by the length of identifier-2. If the ADDRESS option is used, identifier-3 will address the 
field in the table element to be used and the compiler will calculate the OFFSET value. 

5-66 

NOTE 
If CONTROL OP B4700 has been specified, a Search Link List or Search 
Link Delink instruction will be generated to perform this function. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Typically, the table would appear as: 

I link 
identifier-! 
address ____ ..... t 

I link 

t link-1 
address---~ 

I link 
link-2 
address ____ ..... 

1 

2 

3 

data of element 1 I 
identifier-! plus offset 

'---------------'---- address 

data of element 2 
link-1 address plus offset 

data of element 3 

etc. 

In the three-element table shown in the example above, if the conditions were met while pointing to ele
ment 3 during a SEARCH LINK statement, IX 1 would contain the address in link-2 (that is, the "link-2 
address" which is the address of element 3). If the conditions were met during a SEARCH DELINK 
statement, IX 1 would point to link-2 address and IX2 would point to link-1 address. 

5024789 5-67 



SEEK 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of SEEK is to initiate the accessing of a disk or disk pack record for a subsequent READ 
and/or WRITE operation. 

Figure 5-53 shows the format of the SEEK statement. 

SEEK file-name [ WITH 
{ LOCK }] _ 

NO UNLOCK 

Figure 5-53. Format of the SEEK Statement 

A SEEK statement pertains only to disk or disk pack storage files in the RANDOM access mode, and may 
be executed prior to the execution of each READ and/or WRITE statement. 

The SEEK statement uses the contents of the data-name in the associated KEY clause for the location 
of the record to be accessed. At the time of execution, the determination is made as to the validity of the 
contents of the KEY data item for the particular disk storage file. If the key is invalid, the invalid key 
branch ([ eoflabel]) of the next executed READ or WRITE statement for the associated file is taken. 

The key identifier should be set to the desired record before the SEEK is initiated. To preclude the possi
bility of overlaying input buffers, more than one data area should be specified in the FILE declaration. 

Two or more successive SEEK statements for a random storage file may logically follow each other. Any 
validity check associated with the first SEEK statement is negated by the execution of a second explicit 
or implied SEEK statement. 

If a READ or WRITE statement for a file assigned to disk or disk pack is executed, but an explicit SEEK 
has not been executed since the last previous READ or WRITE for the file, the implied SEEK statement 
is executed as the first step of the READ/WRITE statement. 

An explicit alteration of KEY after the execution of an explicit SEEK has been performed, but prior to 
a READ/WRITE, causes the initiation of an implied SEEK of the specified record, negating the value 
of the explicit SEEK. 

The use of the MCP Shared file capability allows three shared disk SEEK constructs. 

5-68 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Table 5-11. Shared Disk SEEK Constructs 

SEEK file-name 

SEEK file-name with LOCK 

SEEK file-name with 
NO UNLOCK 

Seeks even if locked. 

Seeks record and locks a block of 
a disk file. 

Initiates a LOCK and a SEEK. If the 
requested block is locked by another 
program, SEEK NO UNLOCK waits until 
the record is unlocked. If the block 
is already locked by the program 
issuing the SEEK NO UNLOCK, no delay 
is necessary. 

This statement obtains the contents 
of a record at a time when no other 
program has the record locked. It 
differs from SEEK LOCK in that 
SEEK NO UNLOCK does not leave the 
record locked. 

Under MCP releases prior to MCP/VS 2.0, the MCP's SHRD option must be set in order to use the 
LOCK or UNLOCK options. In any case, the FILE declaration must include the SHARED attribute. 

5024789 5-69 



r~-· 

I 

I 

I 
I 

I 
I 

I 

B 

sequence. 

T statement T. 

T statement. 

SORT file-name-·1 TO fi ECORD 

identifier-1 [PARITY 
~ 

-l r 
-~--~--1 , Jl Fl LESIZE 

J - ---~--
literal-

r 
I BY 

l 

f ASCEi\JDlf\JG j 
l DESCEl\JDING j 

f 
I r 
I -i 

L 

identifier-2 

ISl<PACI<: 

[ !o identifier-3 .;,,, ... ] 

• J 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Identifier-1 is the name of the sort RECORD area and will be used for the declaration of the sort keys; 
identifier-2, identifier-3, and so forth. 

The PARITY option, if used, may specify one of the following actions to be performed on an irrecovera
ble I/O parity error: 

@ END (default) 

The program will be terminated with appropriate operator notification. 

e PURGE 

All records in the block containing the parity error will be dropped. 

e RUN 

All records in the block containing the parity error will be retained, and sorted as if the parity 
error had not occurred. 

The WORK option is used to specify the number of records per area. The FILESIZE option is used to 
specify the total number of records in the file to be sorted. Literal-1 may be up to 8 digits. For DISK or 
DISKPACK input files this clause is not used, but may be specified for documentation. For input files 
other than DISK or DISKPACK the clause should be included for more efficient sort performance. 

The ASSIGN option is used to specify work file assignment technique, and the allowable options have 
the same meaning as described for the FILE declaration. 

DISKPACK is used to indicate that disk packs are to be the work file medium; SINGLE restricts the sort 
to a single disk pack. 

BREAKOUT specifies that rerun points will be available during the SORT. 

SUPPRESS specifies that the record count will not be printed on the SPO. 

The TRANSLATE clause may be used if a collating sequence other than the standard hardware collating 
sequence is required. Literal-2 is a 1-6 character literal used by the sort as the file-id of the translation 
table. This must be 400 byte single area file on head-per-track disk. The collating sequence specified in 
the translate file replaces the normal hardware collating for the sort key fields described as unsigned 8 
bit (alpha-numeric). If there are 4 bit fields in the sort key, the translation will not apply to those parts 
of the sort key. Translate table files in the format required by the sort, may be created through the use 
of the MAKTRN program. 

The CLOSE clause is optional and may be used to specify the type of CLOSE required on file-name-1 
(input) and file-name-2 (output). 

ASCENDING and DESCENDING specify the direction of the sort on each key. The sort key can be 
mixed ascending and descending, if desired, but their total length cannot exceed 290 bytes. Those may 
be up to 40 individual sort keys subject to the foregoing length restriction. 

The ".SA" option may be used as an override on the sort keys to indicate signed alpha. 

Refer to the System Software Operation Guide (SOG) for a discussion of MAKTRN and the SORT. in
trinsic: Volume 2 in MCP/VS 1.0 and MCPIX SOGs, and Volume 3 in MCP/VS 2.0 or later SOGs. 

5024789 5-71 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The of the SORT RETURN is to request a return from the sort intrinsic to the user program. 
Figure 5-55 shows format of the SORT RETURN statement. 

r 
~·~~~~~~~~~~~~~~~~-S-O=R:T_R~ET~U-R~N~~~~~~~~~-~~~~~~~~~~ 

Figure 5-55. Format of the SORT RETURN Statement 

The SORT RETURN statement is used only the SORT intrinsic. 

5-72 



SPACE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The statement is used to cause forward spacing of line printer paper, or forward/reverse record spacing 
on magnetic tape, paper tape, head-per-track disk or disk pack files. 

Figure 5-56 shows the format of the SPACE statement. 

SPACE file-name-1 [{ FORWARD} l REVERSE 

CHANNEL 
{ literal-1 } 

identifier-1 

[ [ identifier-2] ] 

Figure 5-56. Format of the SP ACE Statement 

File-name-I may only be assigned to TAPE, DISK, PRINTER, PTREADER, or DISKPACK. Literal-I 
must be numeric. 

For non-printer files identifier-1 or literal-I represents the number of records to be spaced (or posi
tioned) and should not exceed 4 digits in length. For a printer file, identifier-I or literal-I represents ei
ther the number oflines to be spaced, or the channel number (on a carriage control tape), neither of which 
should exceed 2 digits in length. 

Identifier-2 specifies the end-of-file or end-of page label, and must be enclosed in brackets (indicating ad
dress constant). 

Space Construct: 

REVERSE is an illegal option if a print file is specified. 
CHANNEL is an illegal option if a non print file is specified. 
Output paper tape files may not be saved. 
Output magnetic tape files may be REVERSE spaced only. 

5024789 5-73 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

SPOMESSAGE 
The functions of the SPOMESSAGE statement are to pass keyboard input messages to the MCP and to 
request that responses be returned to the program. 

Figure 5-57 describes the format of the SPOMESSAGE statement. 

SPOMESSAGE { identifier-1 } 
"literal-1" - -

identifier-2 

Figure 5-57. Format of the SPOMESSAGE Statement 

Identifier-I or literal-I may be 1 data-name of an ALPHA keyboard input message or a non-numeric lit
eral being the keyboard input message itself. This message must be in the same format as the keyboard 
input message actually typed at the ODT, and should be termina,ed by either a period or an ETX charac
ter (%03%). 

The following keyboard commands may be passed to the MCP in identifier- I or literal- I of the 
SPOMESSAGE statement. 

Table 5-12. Keyboard Commands in SPOMESSAGE 

AJ CN FN MR RA ST 

~-
AX DA FP MX RB SW 
BD DB FR NL RD TI 
BF DC GO NT RF TO 
BK DM GT OF RK UL w 
BP DP HN OK RM UP wx 
BR DQ IL OL RS WB WXD 
CA DS IN OT SB WC WXM 
CD FA LC OU SK WD WXP 
CK FM LP PD SS WJ WY 

xc 

If a keyboard command other than those listed in the preceding text is passed, identifier-2 contains 
@0707@ followed by **KBD IGNORED: REQUEST NOT ALLOWED. 

Each response line is placed in identifier-2 as it would appear on the SPO (including removale;tr ne
ous blanks if applicable). Each line is terminated by carriage return and line feed characters VoDO %:) 
the last (or only) line is additionally terminated by an ETX character (%03%). 

Identifier-2 must be at least I 60 digits long. If identifier-2 is too small for all lines of the response, a 
NULL character (%00%) follows the full last line which could fit into the area. If no lines could fit the 
first character of identifier-2 is NULL. 

Identifier-I and identifier-2 must not share any portion of their memory allocation. 

5-74 



STOP 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of the STOP statement is to halt the object program temporarily or to terminate execution. 

Figure 5-58 shows the format of the STOP statement. 

STOP [ literal-1 ] ; 
identifier-1 -

Figure 5-58. Format of the STOP Statement 

If STOP is used alone, then all files which remain OPEN will be CLOSEd automatically. Output files as
signed to DISK or DISKPACK, when FILE declarations do not include the SA VE FILE option, will be 
CLOSEd PURGE and all others will be CLOSEd RELEASE. All storage areas for the object program are 
returned to the MCP and the job is then removed from the MCP Mix. 

The STOP is not used for temporary stops within a program. STOP must be the last statement of the pro
gram execution sequence. 

If the literal-1 or identifier-I option is used, it will be D ISP LA Yed on the SPO and the program will be 
suspended. When the operator enters the MCP continuation message mix-index AX, program execution 
resumes with the next sequential operation. This option is normally used for operational halts to cause 
the system's operator to physically accomplish an external action. 

5024789 5-75 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

STOQUE 
The function of the STOQUE type statements is to receive/send data from/to a storage queue via the 
MCP STOQUE mechanism. 

Figure 5-59 shows the format of the STOQUE type statement. 

POPQ 

PUTQ 

PUSHQ 

PULLQ 

POLLO 

identifier-1 [ [action-label] ] 

Figure 5-59. Format for STOQUE Statements 

Identifier-I contains the address of the program's Storage Queue Parameter Block (see following text). 

Action-label is not valid with POLLQ, and is optional for the other constructs. When present. it specifies 
the label to which the program will branch if either of the following conditions occur and the program 
is not to wait for resolution: a) storage space is not available for a storage request; b) the data sought in 
a retrieval request is not in the queue. These conditions are further explained in the following para
graphs. 

The Storage Queue (STOQ UE) functions are performed by the STOQ UE extension module of the M CP. 
If its facilities are used, it must be loaded into memory by setting the STOQ system option. Under the 
2.0 and later releases of MCP/VS, STOQ is loaded automatically when it is needed. 

The STOQUE module has the basic function of transferring data from a data area in the program to an 
external memory buffer and retrieving that data upon request. The mechanism may be used simultane
ously by any number of programs as a means to transfer data between processes, or even as temporary 
storage for a single process. The data elements placed into the memory buffer are organized into one or 
more program-independent, symbolically named lists called storage queues. 

The STOQUE mechanism differs significantly from the Core to Core Feature (see the FILL verb) in that 
no synchronization of the sending and receiving programs is required. This is due to the fact that 
STOQUE does not transfer data directly from one program to another but stores the message in an exter
nal memory area until it is requested. This means that multiple transactions may be in the storage queue 
simultaneously; thus the use ofSTOQUE permits the complete overlap of processing between programs, 
with no necessity to interlock for each transaction. 

All requests made of the STOQUE function refer to the STOQUE Parameter Block area in the user pro
gram, whose address is given in identifier-I preceding. This program-maintained area contains the infor
mation needed by STOQUE to control the data elements; its format is as follows: 

5-76 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Table 5-13. Storage Queue Parameter Block 

ALPHA <queue name> 

INTEGER <entry name length> 

ALPHA <entry name> 

INTEGER <entry data length> 

ALPHA <entry data> 

Notes 

(6) 

(2) 

(NN) 

(4) 

(NNNN) 

& Identifies Individual 
& Queue 

& Name Length in Bytes 
& (O=NULL) 

& Entry Name (Optional) 

& Data Length in Bytes 
& (O=NULL) 
& POLLQ Response Area 

& Data Field (Optional) 

1. <queue name> identifies the programmatically assigned symolic name of the queue list to which 
the request pertains. 

2. <entry name length> specifies the size of the optional entry name field. 

3. <entry name>, if present, specifies the name associated with the individual queue entry. This 
name may be used to provide a substructure to a list and provides the means to access data ele
ments which are at locations other than the top or bottom of the queue. 

4. <entry data length> specifies the size of the entry data area which in turn contains the transac
tion to be accessed for a storage request. The maximum size of the entry data field is 2300 bytes. 
This field serves as the response area for a queue inquiry request (POLLQ). 

5. <entry data>, if present, contains the data to be added to the queue in a PUSHQ or PUTQ opera
tion; it receives the data in.a POPQ or PULLQ operation. This field is not applicable to a queue 
inquiry request (POLLQ) operation. 

Programs may execute three types of calls on the STOQUE module: store data, retrieve data and queue 
inquiry. 

The storage constructs, PUSHQ and PUTQ, put data into the queue at the top or bottom, respectively. 
The first PUSHQ or PUTQ executed cause the creation of a queue with the name specified if it does not 
already exist. If insufficient space is available in the queue for the storage request, the sending program 
is suspended until space becomes available unless the optional action-label (above) has been specified. 

The retrieval constructs, POPQ and PULLQ, retrieve data from the top or bottom of the queue respec
tively. If the designated queue is empty or no individual entry satisfies any specified name constraint (see 
following), the program is suspended until the desired element is placed into the queue unless the option
al action-label (preceding) has been specified. 

5024789 5-77 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

If the queue element being retrieved contains more than <entry data length> characters, only the first 
<entry data length> characters are returned. If the queue element contains fewer characters, <entry data 
length> is adjusted to show the number of characters actually returned. 

The storage and retrieval functions have important variations: 

• Elements may be added to or removed from a list at either the top or bottom, yielding the benefits 
of both FIFO (first-in-first-out) and LIFO (last-in-first-out) mechanisms. 

• The elements in a queue list may be named, using <entry name> and <entry name length> 
above. Access in that case is first to the queue named in <queue name>, then to the specific ele
ment named in <entry name>. 

The <entry name> need not be unique; several elements in the queue may have the same name. 
The name given to a queue element when stored may be longer than the <entry name> specified 
in a retrieval request: the queue is then searched for an element whose name, in the first <entry 
name length> characters, matches the specified <entry name> mask. In either of these cases of 
duplicate element names in a queue, the element accessed is the first matching name from the top 
of the queue on a POPQ or the first match from the bottom of the queue on a PULLQ. 

The queue inquiry function provides a rapid means of determining the size of a list without disturbing 
any elements. 

The inquiry construct, POLLQ, returns a count of the number of entries in a queue as an unsigned integer 
in the <entry data length> field. If an <entry name> is specified, the count is the number of entries for 
that name or name group only. If the <entry name> is omitted, the count is the total number of entries 
in the queue. A response of zero means that the queue or the designated portion of the queue is empty. 

5-78 



STORE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of STORE is to produce a string of constants into the object program. 

Figure 5-60 shows the format of the STORE statement. 

STORE [ Dnteger·ll l 
{ 

I iteral-1 } 
[identifier-11 

Figure 5-60. Format of the STORE Statement 

The STORE statement inserts a specified constant into the program. The constant is included in-line in 
the code string. Any hardware instruction may be built using this construct. 

All presetting values are preset left-justified in the in-line constant. 

Integer-1 is optional. If present, it indicates the number of digits or characters of constant. Digits are as
sumed unless the presetting value indicates alpha. 

ldentifier-1, if present, must be enclosed in brackets. The constant stored is the ADDRESS OF 
identifier-1. Literal-1 may be either a numeric literal, or an alpha literal enclosed in quotes. 

If identifier-1 or literal-1 are not present, the STORE statement is used only to allocate space. 

5024789 5-79 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Subroutine Call 

The subroutine call statement passes control to a Type I ICM subroutine from within another Type I 
ICM. After the Type I ICM has been completed, program control will return to the statement following 
the calling statement. 

Figure 5-61 describes the format of a subroutine call. 

subroutine-name [ (actual-parameter-list) 1 

Figure 5-61. Format of a Subroutine Call 

Parameters are optional (see SUBROUTINE declaration), but if used, must be enclosed within paren
theses. Multiple parameters must be separated by commas, and may be comprised of data-names or 
literals. 

The maximum number of parameters that can be passed is 10. 

The procedure call statement explanation contains much information useful in subroutine calls. 

The maximum number of subroutine call statements in a Type I ICM is 100. 

5-80 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

TOPLOOP 

The TOPLOOP statement causes an immediate branch to the first statement within a DO_ loop. Figure 
5-62 shows the format of the TOPLOOP statement. 

TOPLOOP ; 

Figure 5-62. Format of the TOPLOOP Statement 

TOPLOOP is permitted only within the DO_ version of the DO statement. When executed, it causes 
control to be transferred to the first statement following DO_ (statement-I in the DO_ format illustra
tion). 

Refer to DO for further details. 

5024789 5-81 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

TRACE 

The function of TRACE is to create documentation of all normal mode processing events and to output 
this data on a line printer. 

Figure 5-63 describes the format of the TRACE statement. 

TRACE {:} 
Figure 5-63. Format of the TRACE Statement 

When a TRACE statement is encountered during object program execution, one of the following actions 
will take place at that point in the program: 

5-82 

• The 0 or FALSE option will turn the TRACE off. 

• The 1 or TRUE option will cause a TRACE to an available printer of all normal mode instruc
tions until such time as any of the other options are encountered. 

• The 3 option will cause a TRACE to backup disk of all normal mode instructions until such time 
as any of the other options are encountered. 



B Series BPL 
Executable 

to a 

statemenL 

TRANSLATE identifier-1 \NiTH identifier-2 TO iclentifier-3 

statement 

15 

must 

1. A 

2. 

3. The groups are 

4. to 

5. to a corre-

3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Example: 

EBCDIC A is the binary number 11000001 2 

The stages of translation for this example are (the steps referred to in this list come from the list preceding 
the NOTE, above): 

a. If step 1, the binary number 11000001 2 becomes 110000010. 

b. If step 2, 110000010 becomes 110 000 010. 

c. If step 3, 110 00010 becomes the octal number 6028 • 

d. If step 4, table access address B + 602 is generated. 

e. If step 5, the character in B + 602 is moved to the C field. 

Figure 5-65 shows the general layout of translation tables in memory. Crossed out areas in figure 5-65 
are not accessed by the TRANSLATE instruction. 

Following Table 5-14 is a sample BPL program which illustrates the coding and use of a translation table. 

SECOND AND THIRD OCTAL DIGITS 

F 00 02 0406(08)10 12 14 16!18)20 22 24 26(28)30 32 (58)60 62 64 66(68)70 72 74 76 (78 80 82 84 86 88 90 92 94 98) 
I 0 
R 
s 1 
T 

2 
0 
c 3 
T 4 
A 
L 5 

D 6 
I 
G 7 
I 
T 

5-84 

~ 
~ 
1:8 
~ 
~ 
~ 

~ ~ 
'i~ 

~ ~ 
~ ~ '( ~ ~ 

~ ~ 
lX ~ ~ 
~ ~ ~ )<J 

~ ~ ); rx C8J 
~ ~ 

Figure 5-65. Translate Tables in Memory 

MSD LSD 

8 8 
TENS 

HUNDREDS 4 

2 

D UNITS 

P4302 

Figure 5-66. B Address (Identifier-I) Modification 



5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

B ADDRESS 

MODIFIED El 
ADDRESS DIGITS 

)( 

A-FIELD CHARACTER 

P4303 

)( H T u 

t 
II 

2 

MSD LSD 

Figure 5-67. B Address (Identifier-2) Modification 

5-85 



5-86 

]3 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

Table 5-14. Translate Table Address 

B INDEX 

A-Character H* T u 

lF 0 7 6 
IE 0 7 4 
ID 0 7 2 
lC 0 7 0 
lB 0 6 6 
lA 0 6 4 
19 0 6 2 
18 0 6 0 
17 0 5 6 
16 0 5 4 
15 0 5 2 
14 0 5 0 
13 0 4 6 
12 0 4 4 
I l 0 4 2 
10 0 4 0 
OF 0 3 6 
OE 0 3 4 
OD 0 3 2 
oc 0 3 0 
OB 0 2 6 
OA 0 24 
09 0 2 2 
08 0 2 0 
07 0 l 6 
06 0 1 4 
05 0 1 2 
04 0 l 0 
03 0 0 6 
02 0 0 4 
01 0 0 2 
00 0 0 0 

* Hundreds values are developed with the following 
A-character zone digit values: 

A-Character H 
Zone Value 

0 + 1 0 
2 + 3 1 
4 + 5 2 
6 + 7 3 
8 + 9 4 
A+B 5 
C+D 6 
E+F 7 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

BPL Program with Translation Table 

BEGIN 
&&&&&&&&&&&&&&&~&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

& Demonstrate the TRANSLATE statement and a translation 
& table. 
& A translate table in memory has eight 100-digit entries, 
& each holding two 40-digit fields and a 20-digit filler. 
& Each 40-digit (20-byte) field has 16 useable positions, 
& in four groups of four useable positions and a filler. 
& There is, therefore, one useable position in the table for 
& each of the 256 possible characters in the order 00 to FF. 
& To translate, place the new character in the table position 
& of the old character. 
& For example, this table translates lower case letter "a" 
& (81) to letter "A" (Cl) by placing the code Cl at the 81 
& position. 
& All lower-case letters (81-89, 91-99, A2-A9) are similarly 
& replaced by Cl-C9, Dl-D9, E2-E9. 

· & To leave a character untranslated, put its own code at that 
& code's position in the table. 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

ALPHA 
DATA-IN ( 40), 
DATA-OUT ( 40) ; 

ALPHA TRANSLATE_TBL (400) MOD 1000; 
ADDRESS = TRANSLATE_TBL; 
INTEGER 

(40) := @X>001020300040506070008090AOBOOOCODOEOFOo@>, 
(40) := @)1011121300141516170018191AlB001ClD1ElFOo@>, 
(20), 
(40) := @)2021222300242526270028292A2B002C2D2E2FOo@>, 
(40) := @)3031323200343536370038393A3B003C3D3E3FOo@>, 
( 20)' 
(40) := @)4041424300444546470048494A4B004C4D4E4FOo@>, 
(40) := @)5051525300545556570058595A5B005C5D5E5FOo@>, 
( 20)' 
(40) := @)6061626300646566670068696A6B006C6D6E6FOo@>, 
( 40) : = @)7071727300747576770078797A7B007C7D7E7FOo@>, 
( 20)' 
(40) := @)80ClC2C300C4C5C6C700C8C98A8B008C8D8E8FOo@>, 
(40) := @)90DlD2D300D4D5D6D700D8D99A9B009C9D9E9FOo@>, 
(20), 
(40) := @)AOA1E2E300E4E5E6E700E8E9AAABOOACADAEAF0o@>, 
(40) := @)BOBlB2B200B4B5B6B700B8B9BABBOOBCBDBEBFOo@>, 
(20)' 
(40) := @)COClC2C300C4C5C6C700C8C9CACBOOCCCDCECFOo@>, 
(40) := @)DODlD2D300D4D5D6D700D8D9DADBOODCDDDEDFOo@>, 
( 20)' 
(40) 
(40) 

5024789 

@)EOElE2E300E4E5E6E700E8E9EAEBOOECEDEEEFOo@>, 
@)FOFlF2F300F4F5F6F700F8F9FAFBOOFCFDFEFFOo@>, 

& 00-0F 
& 10- lF 

& 20-2F 
& 30-3F 

& 40-4F 
& 50-5F 

& 60-6F 
& 70-7F 

& 80-8F 
& 90-9F 

& AO-AF 
& BO-BF 

& CO-CF 
& DO-DF 

& EO-EF 
& FO-FF 

5-87 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

(20); 
ADDRESS; 
DISPLAY "Enter lower-case text to be translated to upper 
case"; 
ACCEPT DATA-IN; 
TRANSLATE DATA-IN WITH TRANSLATE_TBL TO DATA-OUT; 
DISPLAY DATA-OUT; 

END; 

5-88 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

UNLOCK 

The function of UNLOCK is to unlock a locked block of a shared disk or diskpack file. Figure 5-68 de
scribes the format of the UNLOCK statement. 

UNLOCK file-name 

Figure 5-68. Format of the UNLOCK Statement 

Under MCP releases prior to MCP/VS 2.0, the use of LOCK is valid only when the MCP SHRD option 
is set. In any case, the FILE declaration must include the SHARED attribute. 

5024789 5-89 



WAIT 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The WAIT statement suspends the execution of the object program either for a specified period of time. 
or until one or more conditions are true. Figure 5-69 shows the format of the WAIT statement. 

WAIT [ { ~dentifier-1 } ] integer-1 

[ ODTINPUTPRESENT J 
[ INPUTEVENT file-name J 

[ STOOINPUT id•ntm"-2 ] .. 

STOOOUTPUT 

[ CRCRINPUT id•ntifi.,-3 ] 

CRCROUTPUT 

[ USING id•ntifi"-4 ] 

GIVING identifier-5 _!_ 

Figure 5-69. Format of the WAIT Statement 

A WAIT with no options specified suspends the program for 86400 seconds (24 hours). 

Not more than one identifier-I or integer-1 can be specified, and if declared, must be the first item in 
the'list. Identifier-I must be an INTEGER of five digits or less. The maximum value for identifier-I and 
integer-I is 86399. 

When ODTINPUTPRESENT is specified, execution of the object program is suspended until an AX 
message is received for the program. 

When INPUTEVENT is specified, the program is suspended until the event becomes TRUE. File-name 
must be the name of a file declared in a FILE statement. 

When STOQINPUT is specified, the program is suspended until a STOQUE entry is available for retrie
val. When STOQOUTPUT is specified, the program is suspended until storage space is available. 
Identifier-2 specifies the STOQUE Parameter Block for the STOQUE queue to be checked. 

When CRCRINPUT is specified, the program is suspended until the sender is ready to transmit the data: 
when CRCROUTPUT is specified, the program is suspended until the receiver is ready to receive. 
Identifier-3 specifies the name of the program which is the object of the FILL statement, declared as 
ALPHA with a length of six. 

If any event in the list is TRUE, the WAIT is terminated and control is passed to the next executable 
statement. 

5-90 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

If no event is TRUE during initial scan of the events, program execution is suspended until any event 
listed becomes TRUE, at which time the WAIT statement is terminated and control is passed to the next 
exectuable statement. 

When the USING clause is not specified, each event in the list, from first to last, is tested for a TRUE 
condition. This process is repeated until an event becomes TRUE. If the USING clause is specified, the 
value referenced by identifier-4 determines the begin point for the TRUE condition search, one-relative 
from the beginning of the list. If identifier-4 is zero, evaluation begins with the first entry in the list. In 
any event, all entries are evaluated until a TRUE condition is found. Identifier-4 must be an INTEGER 
of two digits. 

When GIVING is specified, the item referenced by identifier-5 is set to the position of the event that ter
minated the WAIT statement. Identifer-5 must be an INTEGER of two digits. 

Examples: 

5024789 

WAIT 50; 

WAIT STOQINPUT STOQ_PARAMS; 

WAIT MA}LTIME 

ODTINPUTPRESENT 
CR CR INPUT PNAME 
CR CR OUTPUT NAME2 
USING POINTER 
GIVING HIT; 

5-91 



WHILE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

WHILE specifies a condition under which a DO statement may be executed: the DO is executed while 
the condition is true. The WHILE condition is evaluated before the DO is executed. 

Refer to DO for syntax and a detailed explanation. 

5-92 



WRITE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of WRITE is to release a logical record for an output file. It is also used to position forms 
vertically in the printer. For mass storage files, the WRITE statement also allows branching to a routine 
if the contents of the associated KEY are found to be invalid. 

Figure 5-70 describes the format of the WRITE statement. 

WRITE file-name [ work-area-name ] 

[WiTH LOCK) [ leof-labell ] .:.._ 

[ { 
PAGE } ] SINGLE 
DOUBLE 
NO 
integer 

Figure 5-70. Format of the WRITE Statement 

An OPEN statement for a file must be executed prior to executing the first WRITE statement for that 
file. 

If the work-area-name is specified, the corresponding FILE declaration must have requested a 
WORK.AREA. The WORKAREA indicated by the FILE declaration will be used until explicitly 
changed by the execution of a WRITE statement containing a different WORK.AREA name. 

The options for vertical positioning of the printer are: 

• When PAGE is used, a skip to a new page is forced, that is, a skip to CHANNEL l. 

• SINGLE and DOUBLE allow for single-spacing or double-spacing. DOUBLE is the default if no 
option is specified. 

• Overprinting is accomplished by use of NO. 

e Integer-I must be a 2 digit integer with a positive value between 0 l and 11. It specifies the channel 
number to which the printer will be advanced. 

A WRITE to a shared disk or diskpack file must be preceded by a LOCK. Since LOCK destroys the re
cord area, the record must be initialized after the LOCK. 

The WITH LOCK option applies only to shared disk and diskpack processing, and cannot be specified 
unless the current record has previously been locked by the program. When this option is specified, the 
current record is written, but the block is not UNLOCKed; therefore, the block is not available to other 
programs. If the WITH LOCK option is not used in shared disk processing, a record is written and if the 
block was locked, it is unlocked. Under MCP releases prior to MCP/VS 2.0, these constructs may be used 
only when the MCP SHRD option is set. In any event, the FILE declaration must include the SHARED 
attribute in order to use these constructs. 

5024789 5-93 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The record can be released by either a WRITE without the LOCK option, or by use of the UNLOCK 
statement. 

A simple WRITE to a shared file results in a write followed by an unlock operation. 

For disk and diskpack files which are being accessed in a SERIAL manner, the eof-label branch is execut
ed when the end of the last segment of the file (last record) has been reached and another attempt is made 
to WRITE to the file. For RANDOM files, the eof-label branch will be executed whenever the value of 
the KEY field is outside the defined bounds of the file. 

If the size and blocking of records being accessed in a RANDOM manner is such that a WRITE state
ment must place a record into a block without disturbing the other contents of the block, then an implicit 
SEEK will be given to load the block desired (if an explicit SEEK has not been given). If the file is being 
processed IO (INPUT/OUTPUT), either an explicit or implicit SEEK for a READ statement will suffice 
to load the block. 

If the value of the KEY field is changed after a SEEK and prior to the WRITE statement, an implied 
SEEK will be performed and the WRITE will use the new record address as the output record area. 

The shortest allowable records which can be written on 7 and 9 channel magnetic tape units are 8 and 
18 bytes respectively. 

When the WRITE statement is executed at object time, the logical record is released for output and is 
no longer available for referencing by the object program. When the blocking area becomes full, or par
tially full at EOJ or EOF, the object program will transfer control to the MCP to cause the block to be 
physicallywritten. Short blocks or records which are written during EOJ or EOF will be of no program
matic concern to the user when the file is processed as input at a later time. 

5-94 



ZIP 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Executable Statements/Control and Assignment 

The function of ZIP is to cause the MCP to execute a control instruction contained within the operating 
object program. 

·Figure 5-7 I describes the format of the ZIP statement. 

ZIP 
{ identifier-1} 

"literal-1" 

Figure 5-71. Format of the ZIP Statement 

Identifier-I must be assigned a value equivalent to the inforamtion contained in a MCP Control instruc
tion. 

Literal-I allows coding of the MCP control instructions within the ZIP format. The quote marks are re
quired. 

If the control text is longer than 72 characters, the text must start with a period. The control text must 
be terminated by a period. 

5024789 5-95 





B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

SECTION 6 

COMPILER DIRECTING STATEMENTS 

GENERAL 
The following BPL constructs are for use as compiler directing statements. For ease of reference, they are 
listed alphabetically in the following pages. 

5024789 6-1 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Compiler Directing Statements 

Conditional Compiling 
The function of Conditional Compiling is to allow the user to either include or exclude certain source 
statements depending on a flag setting. 

Figure 6-1 describes the format of the conditional compile double dollar-sign record. 

$$ [identifier-1] [lnteger-1) [ { TRUE } J DROP [identifier-2] 
FALSE 

Figure 6-L Format of the Conditional Compile, Double Dollar-Sign Record 

The BPL compiler makes available to the user. 50 flags to be set or reset as needed (flags are number 01 
through 50). 

These flags are set or reset by a$ SET or$ RESET record that includes the$ key word FLAG followed 
by one or more flag numbers not separated by commas and delimited only by another $ option or the 
end of the record. 

The double doHarsign ($$) must be in columns I & 2 of the record. 

Identifier-I is a one character identifier and must be in column 3 if used. 

Identifier-1 is used to overlap the conditional compile, see example below. 

Integer-1 is the FLAG number as specified in the regular dollar sign ($)record. Integer-I must not start 
in column 3 if used. This FLAG (integer-1) will be tested for a TRUE or FALSE condition. IfTRUE. or 
neither, the test will be for ON status of the FLAG. If FALSE the test will be for OFF status. 

The word DROP is for documentation only. Identifier-2 has the same restrictions and is used in conjunc
tion with identifier-I. 

If the$$ record is blank or contains only$$ identifier-1, all records unconditionally enter the compiler. 

All $$ records and symbolic records are placed on the new symbolic output file. 

The output listing will reflect all$$ records, and all symbolic records. ANY records not compiled will 
be so noted as will any records changed or conditionally compiled. This will highlight conditional coding 
whether patched or not. To suppress listing of uncompiled records, set the $DUS compiler control 
option. 

6-2 



Example: 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Compiler Directing Statements 

$ SET FLAG 02 48 
$$ 02 TRUE DROP B 

$$48 TRUE DROP 

$$ 

$$B 

& with 02 TRUE all records 
& to $$B will be ignored 

& if 02 FALSE 48 TRUE , record 
& to $$ would be dropped 

& stops 48 condition 

& stops 02 condition 

For low-volume conditional compiling, see also the IFF statement, elsewhere in the section. 

5024789 6-3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Compiler Directing Statements 

@LIBR 

The function of LIBR is to create library files for subsequent use by other programs. Figure 6-2 shows 
the format of the @LIBR statement. 

@LIBR [ " library-name " ] 

Figure 6-2. Format of the @LIBR Statement 

@LIBR must be in columns 1-5 of the record. 

Library-name must be enclosed in quotes and must be a non-numeric literal no more than 6 characters 
long. 

Library-name if present will cause a new library file to be created from this point. If not present the previ
ous library file will be closed at this point. 

AU source statements including compiler control records will be placed in a disk file with the file
identifier as specified by library-name. 

Examples: 

@LIBR "LIB l" 
statement-I 

statement-N 
@LIBR "LIB2" 

statement-I 

statement-N 
@LIBR 

& Create LIBl from this point 

& Close LIBl create LIB2 
& from this point 

& Close LIB2. 

Library names may not start with a blank or hyphen(-). The source data used to create an original library 
file will also be compiled into the object program at the point of appearance. 

All assigned library-names must be unique to other library-names contained in the library to preserve the 
integrity of the BPL library system. 

Library files to be used in BPL programs can be created by a user program which creates a card image 
file blocked five or nine on disk. Library files created with @LIBR are closed with CRUNCH and 
blocked nine. 

6-4 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Compiler Directing Statements 

@PAGE 

The function of PAGE is to cause the compiler to advance to the top of the next page of the compile list
ing. Figure 6-3 shows the format of the @PAGE statement. 

@PAGE 

Figure 6-3. Format of the @PAGE Statement 

@PAGE must be in columns 1-5 of the line. No other BPL statement should appear on the same line. 

5024789 6-5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Compiler Directing Statements 

@ICM Declaration 
The function of the ICM declaration is to create Type I Independently Compiled Modules (ICM) for sub
sequent compilation by other programs. Figure 6-4 shows the format of the ICM declaration. 

@ICM [ " subroutine-name " ] 

Figure 6-4. Format of the ICM Declaration 

@ICM must be in columns 1-4 of the line. No other BPI statements should appear on the line. 

Subroutine-name must be enclosed in quotes and must be no more than 6 characters long. 

Subroutine-name, if present, will cause a new Type I ICM to be created from this point. If not present. 
the Type I ICM currently being built will be concluded, and normal program compilation will continue. 

Example: 

? COMPILE ADDIT BPL LIBRARY 
? DATA CARD 
? CARD LIST 
BEGIN 
@ICM "ADDONE" 
PROCEDURE ADDONE (INFIELD, OUTFIELD); 
INTEGER INFIELD (6), 

BEGIN 
OUTFILED 
END; 
@ICM 
END; 
? END 

OUTFIELD (6); 

INFIELD + l 

NOTE 
Type I ICMs are for use in FORTIVand XFORTN FORTRAN programs 
only. 

See APPENDIX D (Independently Compiled Modules) for further information. 

6-6 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Compiler Directing Statements 

IFF Conditional Compiling 
The function of IFF conditional compiling is to allow an easy way to determine which of two groups of 
source statements in a group of symbolics is compiled. Figure 6-5 shows the format of the IFF statement. 

IFF (indicator, [true-part] , [false-part] ) -- ~ - -

Figure 6-5. Format of the IFF Statement 

The indicator must be present and should be a DEFINE indentifier. If the defined value of the indicator 
is false (%F0%,%40%, %00%), the false-part symbolics are compiled, otherwise the true-part symbolics 
are compiled. If the indicator is not found to be defined at the time the IFF is encountered, the true-part 
symbolics will be compiled. 

The true-part or false-part need not be present if the desire is presence or absence of symbolics, however, 
the separating commas must always be present. 

If the true-part or false-part contain commas, the entire true-part or false-part should be contained with
in parentheses. The true-part or false-part may not contain unmatched parentheses. 

For readability, IFF should be used for low volume conditional compiling. Larger amounts of symbolics 
should use the $$ conditional compiling feature. 

Example: 

BEGIN 
DEFINE KB30 = 1#; 
CONTROL MEMORY :=IFF (KB30,58000,88000); 

IFF (KB30,(INTEGER A (6),B (6)), 

(INTEGER A(lO), B(lO))); 

IXl :7; 
IX2 IFF (TRUEPART,A.3, A.7); 

END; 

NOTE 

& MEANS TAKE TRUE-PART 
& COMPILES CONTROL 
& MEMORY :=58000; 
& COMPILES INTEGER A(6), 
& B( 6); 
& COMMAS MUST BE WITHIN 
& PARENS 

& COMPILES IX2 :=A.3 
& BECAUSE TRUEPART IS 
& RETURNED AS THE 
& SYMBOL "TRUEPART" AND 
& IS NOT FALSE 

The changing of KB JO to a define ofO, would create a program 88000 digits 
in size with 2 variables, each 10 digits in length. The assignment of IX2 
would not be affected. 

5024789 6-7 





B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

SECTION 7 

DATA COMMUNICATIONS 

GENERAL 
This section deals with the BPL constructs' required to activate the data communications equipment as 
defined by the FILE declaration. 

The specific formats together with a detailed discussion of the restrictions and limitations associated 
with each, appear on the following pages in alphabetic sequence. 

5024789 

NOTE 
The Data Communications module of the operating system must be pres
ent to use any of the statements in this section. 

7-1 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

ACCEPT 

The function of ACCEPT is to permit the entry of low-volume data from a remote SPO. 

NOTE 
Remote SPOs are not supported by MCP/VS operating systems with a re
lease level of 2.0 or later. Programs that use DATACOMM ACCEPT state
ments do not work correctly when executed under an MCP/VS operating 
system with a release level of 2.0 or later. Effective with the 2.0 release of 
BPL, DAT A COMM ACCEPT is deleted from the BPL language, and its 
use will result in a syntax error. 

Figure 7-1 shows the format for this statement. 

OA;ACOMM ACCEPT data-name-1 
{ literal-1 } 

data-name-2 

Figure 7-1. Format of DATACOMM ACCEPT 

This statement causes the operating object program to halt and wait for appropriate data to be entered 
through a remote SPO. The remote SPO operator responds to an ACCEPT halt by keying in the following 
message: 

? <mix-index> AXdata-required 

If a blank appears between the AX and data-required, the blank character will be included in the 
data-stream. 

When the object program executes an ACCEPT statement, the information will be transmitted from the 
remote SPO keyboard into memory locations assigned to data-name-1. The data-name must define a UA 
field. 

Because of the inefficiency of entering data through the remote keyboard, this technique of data trans
mission should be used sparingly and solely restricted to low-volume data. 

The values of literal- I or data-name-2 describe the name of the remote SPO from which data will be 
transmitted into the receiving-data-name and must be the alpha mnemonic name assigned to that specif
ic remote SPO (this is the adapter ID which is specified in the MCP's UNIT record of the System Specifi
cation Deck). Literal-1 and data-name-2 cannot exceed six characters in length; if less than six charac
ters, it must be followed by a blank. 

Literal- l can also represent the channel and unit specification of the remote SPO in the format cc/u 
where cc represents the channel and u represents unit number. A trailing blank must follow unit number. 

If the named device is not a remote, or not a remote SPO, or not logged-in, the ACCEPT will be directed 
to the local SPO. 

7-2 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
· ·· Data Communications 

CANCEL 
The function of CANCEL is lo conditionally/unconditionally cancel the prior IO descriptor. It stops the 
flow of data to or frotn a remQt!t device with or without disconnecting a dial line and with or without sig
nalling a break to the opernH~r of the remote device. 

Figure 7-2 shows the format of this statement. 

OATACOMM CANCEL file-name 

FlRJtre 7-2. Format of DATACOMM CANCEL 

The CANCEL file-name (no qption) unconditionally cancels the prior descriptor verb and renders the 
Data Communications File insensitive to data transmission both to and from the remote device. 

~ : . ' 

When the BREAK option is w~ed, the prior descriptor verb is unconditionally cancelled and the Data 
Communications File is rende'red insensitive to data transmission to and from the remote device as well 
as transmitting a bteak to the remote device. However, the BREAK condition is only applicable to termi
nals and data sets that are <Jesigned to respond to a BREAK condition, (i.e., B 9350). 

When the DISCONNECT option is used, the prior descriptor is unconditionally cancelled. The Data 
Communications file is insensitive to data transmission (or requests), and the telephone line is discon
nected. This applies only to ~~itched line networks. 

5024789 7-3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

CONDCANCEL 
CONDCANCEL requests that a conditional cancel of the current 110 operation be performed on the des
ignated file. 

DATACOMM CONDCANCEL identifier-1 

Figure 7-3. Format of DATACOMM CONDCANCEL 

Identifier- I is the name of a previously defined file. 

The cancel is ignored if no 110 is in progress, if the adapter is sending data to the device, or if data from 
the device is being received. 

The operation POLL is cancelled only if the device currently being polled does not return a positive 
response. 

7-4 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

DISPLAY 

The function of DISPLAY is to provide for the printing of low-volume data, error messages, and opera
tor instructions on a remote SPO. 

NOTE 
Remote SPOs are not supported by MCP/VS operating systems with a re
lease level of 2.0 or later. Programs that use DA TACO MM DISPLAY 
statements do not work correctly when executed under an MCP/VS opera
ting system with a release level of 2.0 or later. Effective with the 2.0 release 
of BPL, DA TACO MM DISPLAY is deleted from the BPL language, and 
its use will result in a syntax error. 

Figure 7-4 describes the format of this statement. 

DATACOMM DISPLAY { 
literal-1 } 
data-name-1 

{ 
literal-2 } 
data-name-2 

Figure 7-4. Format of DATACOMM DISPLAY 

Data-name-1 and literal-1 (and their associated series) are specified as being the area within an object 
program from which data is to be transmitted to a receiving remote SPO. 

The DISPLAY statement causes the contents of each operand to be transmitted from the MCP SPO 
queue to ensure that an operational program is not delayed while the remote SPO message is being 
printed. · 

Data-name-1 may be subscripted and can be represented as INTEGER or ALPHA. 

Up to 60 characters may be contained in a literal, or data-name to be DISPLAYed. 

The value contained in literal-2 or data-name-2, describes the name of the remote Sf>O to which data will 
be transmitted and must be the alpha mnemonic name assigned that specific remote SPO as defined in 
the MCPs UNIT record of the Systems Specification Deck (the adapter identifier). 

Literal-2 can also represent the channel and unit specification of the remote SPO in the format cc/u; 
where cc represents the channel and u represents the unit number. A trailing blank must follow the unit 
number. 

5024789 7-5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Refe~eHce Manual 
Data Communications · 

ENABLE 
The function of this verb is to disconnect the telephone line for dial lines, recognize a ringing signal, or 
recognize an enquiry (ENQ) from an appropriate remote device. 

Figure 7-5 describes the format of ENABLE. 

DATACOMM ENABLE [EXTENDED data-name-1] file name [ laction-labe[] 

Figure 7-5. Format of ENABLE 

File-name must have been OPENed before an ENABLE can be executed. Once the file-name has been 
ENABLEd a WAIT statement must be used. Reference the WAIT verb in this section. 

The EXTENDED option causes the INTERROGATE and INTERROGATE ADDRESS operations to 
be performed at the end of the ENABLE operation. 

The ENABLE allows device recognition by the system by either depressing the Inquiry Key (ENQ) if the 
device is connected on leased lines or direct connect, or by dialing the system's telephone number of the 
device is on dialed lines. 

The ENABLE statement will cause dial telephone lines to be disconnected and will recognize input re
quests from the device in the form of a telephone ringing signal. 

The ENABLE statement for leased or direct connect lines will recognize input requests from the remote 
device in the form of an inquiry (ENQ). 

Data-name-1 is used only with the EXTENDED option. It is the response area for the INT.ERROGA TE 
.and INTERRROGA TE ADDRESS operations. Data-name-1 must be greater than or equal to 26 digits 
and will be in the following format: 

I/O Character Count 
Result Descriptor 
Expanded RID 

6 UN 
4 UN 
16 UN 

For a description of the action-label, see the WAIT statement. 

7-6 



FILL 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

The function of this verb is to initiate a specified type of 1/0 and allow a program to run without waiting 
for an 1/0 to be completed. It is useful when a program does not require the input data to continue 
processmg. 

Figure 7-6 shows the format if FILL. 

DATACOMM FILL [EXTENDED DATA-name-1] file-name [NOTIMEOUT] [PRESETSTX] 

[DIAL] [DELETEETX] 

[ 
WRITE 

l READ 
[POLL] [VOICE] [TONE] [STREAM] [FLIPFLAG] WRITERREAD 

WR ITETRANSR EAD 
WRITEREADTRANS 

[ l_action-labeLl_ ] .:.... 

Figure 7-6. Format of FILL 

FILL causes the operation to be initiated. The program must accomplish a READ to move the required 
data to the work area when using STREAM mode. 

The EXTENDED option causes the INTERROGATE and INTERROGATE ADDRESS operations to 
be performed at the end of the FILL operation. 

Data-name-1, see ENABLE statement. 

If the NOTIMEOUT option is used, the time-out feature is inhibited on a READ construct or the READ 
portion of a WRITEREAD, WRITETRANSREAD or WRITEREADTRANS. 

If the option PRESETSTX is used, the first character transmitted or received is considered text and is 
used in generating the longitudinal redundancy check character. The PRESETSTX function will be auto
matically pre-set by the first character. 

If the option DIAL is used, a dial number is accessed from memory starting at the record-name of the 
record-description for the file-name specified. The dial numbers must be declared as INTEGER and the 
dial number field must be terminated by the binary control code of 1100 (undigit 12) which can be repre
sented in BPL as an undigit literal @C@. The total number of digits comprising the dial number must 
be even, and a filler digit with a zero value must be inserted after the undigit literal if necessary. The rest 
of the record-description for file-name will describe the input data from the control code or filler, which
ever is applicable, to the end of the record description. 

If the option DELETEETX, WRITE or WRITEREAD is used, the control code EOT is transmitted but 
the control code denoting end-of-text (ETX) is not transmitted. This sequence causes the WRITE com
mand of the WRITE portion ·of a WRITEREAD command to become complete. The ETX function is 
ignored and the longitudianl redundancy check (LRC) character is not generated or sent. This option 
may be used for polling operations. 

5024789 7-7 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

If the VOICE option is used. the voice response adapters are ENABLEd automatically. Characters are 
passed from memory to the voice responder and are used as voice track addresses. The resulting signals 
from the voice responder are sent over the line. 

If the TONE option is used, the tone leads on the Tone Data Sets are activated. Characters received from 
memory by the I/O adapter are sent to the tone leads as follows: 

" "B11 characters to the 2025 hz lead. 

" /1 A" characters to the l 01 7 hz lead. 

.. All others to the silent lead. 

The tones or silence will continue for 300 milliseconds per character sent. 

The POLL option is only used with WRITEREAD. The output area will consist of a series of contiguous 
polling sequences. The WRITEREAD will be executed with the first such polling sequences to be trans
mitted to the remote device. If a message, other than a negative response (EQT) is returned, the entire 
operation terminates when the control character denoting end of text (ETX) is sensed at the end of the 
input message. If an exception condition (such as time-out) exists, the I/O will also complete. A negative 
response to a poll (EOT) does not enter main memory, and another polling sequence is automatically ini
tiated (WRITEREAD). If only negative responses are returned (EOT to every poll), the operation will 
also terminate when the ending control code ETX is sensed, telling the hardware that the polling se
quences have been exhausted. If a message is sent from the remote, it will be written in the area following 
the polling sequence which received the response, thus overlaying the remaining successive sequences. 

If the STREAM option is specified, the information is transferred into/from ascending memory loca
tions starting at the record-name of the record description for the specified file-name. See the STREAM 
option of the READ statement in this section for further information. 

The FUPFLAG option initiates a write/read check. 

FILL statements normally are initiated to several Data Communications files and are followed by a 
WAIT statement. See WAIT statement discussion in this section. 

If the action label option is not specified and the I/O goes complete, control transfers to the instruction 
following the WAIT statement. 

STREAM with POLL indicates recirculating poll. 

7-8 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

INTERROGATE 

The function of INTERROGATE is to obtain a result descriptor representing the operational status of 
a remote device. · 

Figure 7-7 shows the format of INTERROGATE. 

DATACOMM INTERROGATE [ADDRESS] file-name data-name-1 

Figure 7-7. Format of DATACOMM INTERROGATE 

Data-name-1, when ADDRESS is not specified, must be defined as 16 UN (INTEGER (16)). 

The result descriptor contains 16 digits which indicate conditions that occurred during an 110 operation. 
The digits of information within the result descriptor are assigned the following meanings when turned 
"ON". 

5024789 7-9 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

Table 7-1. Result Descriptor Digits 

Digit Number 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 

14 through 16 
4 and 5 
6 and 7 

Meaning 

Operation complete. 
Exception condition. 
Data - set not ready. 
Data error. 
Abandon call retry (ACR). 
Cancel complete. 
End-of-transmission (EOT). 
Attempt to exceed maximum 
address. 
Time out. 
Memory parity error. 
Write error. 
Carrier loss. 
Stream complete. 
Reserved. 
Data loss. 
Break detected. 

ON status is indicated by a value of 1. OFF status is indicated by a value of zero. Digits are independent 
of one another and can reflect varied combinations. 

Table 7-2 explains the status of the result descriptor digits shown in table 7- l. 

7-10 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

Digit Number 

2 

3 

4 

4 and 5 

5 

6 

6 and 7 

7 

5024789 

Table 7-2. The Status of Result Descriptor Digits 

Status 

Always ON if the attempted operation was completed. 

Will be ON if any combination of 3 through 16 are 
ON. This is the test position to see if any exception ex
ists. If this position is ON by itself, a partial complete 
condition exists due to the use of READ STREAM and 
will not occur in any other situation. 

Will be ON if the single line control or the local Data 
Set is not ready :11--..d the operation will be terminated. 
For multiline control the digit is set ON in the channel 
result descriptor unless it occurs during an operation, 
in which case it is set ON in the adapter result descriptor. 

If a data error (message or character parity) occurs. a 
READ operation continues until terminated in a nor
mal manner. The phone line is not disconnected. At
tempts to exceed maximum address, time out End-of
Text (ETX), or End-of-Transmission (EOT) can also 
occur. 

If data loss (missed memory access or MLC cycle). a 
READ operation continues until terminated in a nor
mal manner. Attempts to exceed maximum address, 
time out, End-of-Text (ETX), or End-of-Transmission 
(EOT) can also occur. The phone line is not discon
nected. A WRITE operation is terminated immediately 
and digit 11 is set. 

If an abandon call retry condition exists, this position 
will be set ON and the telephone line is disconnected. 
This position is also set on by a timer in the Automatic 
Calling Unit. 

If a cancel complete condition exists, this position will 
be set ON and CANCEL is initiated. 

If a break is detected, these positions will reset ON for 
a WRITE operation only and the operation is immedi
ately terminated. The telephone line is not 
disconnected. 

If the End-of-Transmission exists, this position is set 
ON and the telephone line is disconnected. 

7-11 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

Table 7-2. The Status of Result Descriptor Digits (Continued) 

Digit Number 

8 

9 

10 and 11 

12 

13 

14,15 and 16 

Status 

If an attempt to exceed maximum address exists, a 
READ operation will initiate a time out and wait for a 
control code denoting End-of-Text (ETX). 
This position along with position 7 will be set ON if an 
(EQT) is received before time out. This position and 
position 9 will be set ON if time out occurs without 
ETX or EOT. A WRITE operation is immediately ter
minated and this position along with position 11 is set 
ON. The telephone line is disconnected in each case. 

If time out exists, this position is set ON and the tele
phone line is not disconnected. Time out occurs on 
DA TA COMM READ and DAT A COMM WRITE 
instructions. 

If a memory parity error exists, these positions are set 
ON and the telephone line is not disconnected. Memo
ry parity error occurs only during a WRITE operation, 
and will immediately terminate the operation. 

A READ operation is terminated in a normal manner. 
The phone line is not disconnected. 

Used in multi-line control to check end-of- stream, 
when operating in STREAM mode. 

Reserved. 

If the ADDRESS option is specified, data-name will contain the number of characters transmitted to 
and/or from the current buffer of the file. Counting begins when the descriptor isinitiated and continues 
until it is complete. Data-name must be defined as INTEGER (6). If the I/0 is not complete on the cur
rent buffer, the INTERROGATE ADDRESS is ignored. 

7-12 



READ 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

Requests "Read to control" operation on designated file. The program is suspended until the operation 
is completed. 

Figure 7-8 describes the format of READ. 

DATACOMM READ [EXTENDED data-nam~-1] file-name [NOTIMEOUT] 

[PRESETSTX] [STREAM] [DIAL] [ leof-1 abell l 

Figure 7-8. Format of READ 

Loading will continue until an ending code such as End-of-Transmission (EOT), End-of-Text (ETX) or 
End-of-Transmission Block (ETB) is detected, or until the buffer is filled. 

The EXTENDED option causes the INTERROGATE and INTERROGATE ADDRESS operations to 
. be performed. 

Data-name-1, see ENABLE statement. 

NOTIMEOUT, refer to the FILL statement. 

PRESETSTX, refer to the FILL statement. 

If the STREAM option is used, the information is written into the record-name of the record-description 
for the file-name specified. The record-description entry must define at least 200 digits ( 100 bytes). A 
control code denoting End-of-Text (ETX) will terminate the operation. The use of a filler entry after the 
End-of-Text (ETX) control code will not be the last position in that entry. 

DIAL, see the FILL statement. 

eof-label, see WRITEREAD statement. 

5024789 7-13 



READY 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

Specifies that the STREAM mode buffer is empty and ready to READ more date or that the buffer is full 
and ready to WRITE. 

Figure 7-9 shows the format of READY. 

DATECOMM READY BUFFER file-name 

Figure 7-9. Format of READY 

Ready is executed implicitly by the MCP as READ and WRITE requests are made to file-name. READY 
must be received by the 1/0 control within the required period or data can be lost. 

7-14 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

TRAN ST BL 
Requests the transfer of data communications translate tables from the MCP to the requester. 

Figure 7-10 shows the format of TRANSTBL. 

DATACOMM TRANSTBL file-name 
{ data-name-1 } 

NO INPUT ---
{ data-name-2 } 

NO OUTPUT ; - -

Figure 7-10. Format of TRANSTBL 

Data-name-1 is the input table area and data-name-2 is the output table area. 

Both must be at a mod 4 address, but not necessarily at mod 1000. 

The reserved word NO followed by either INPUT or OUTPUT will allow either the input or the ouput 
table area to be zero when not needed. Please note that BOTH cannot be zero. 

The NO OUTPUT option must be used if non-standard translation is specified. 

5024789 7-15 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

WAIT 
The function of WAIT is to suspend an object until a response to an ENABLE or the completion of a 
FILL statement occurs, and (or) to suspend an object program for a specified number of seconds. 

Figure 7-11 shows the format of WAIT. 

DATACOMMWAIT 

Figure 7-U. Format of WAIT 

Literal reflects the number of seconds that the object program is to be suspended. The maximun WAIT
ing period is 23 hours, 59 seconds, and 59 seconds (86399). 

If the literal or data-name option is not used, the WAIT will suspend the object program until a response 
to an ENABLE or the completion of a FILL request occurs. At that time control is returned to the action 
label in the object program given with the ENABLE or FILL request for that device. If no action label 
was given, the processing contines at the statement immediately following the WAIT request. 

The WAIT request is programmed to place the object program in WAIT status until a specified number, 
data-name-1 or literal, of seconds have elapsed or until a previously initiated FILL or ENABLE opera
tion becomes complete, whichever occurs first. Data-name-1 must be described as INTEGER (5). 

The following rules apply when WAIT is used in conjunction with the ENABLE or FILL constructs: 

7-16 

~ If an ENABLE and/or FILL statement contains as action label and either statement comes "true", 
the object program will be reinstated at the appropriate action label. 

"' If the action label option is omitted and an ENABLE and/or FILL statement comes "true", the 
object program will be reinstated at the next instruction following the WAIT statement. 

@ If the action label is omitted, and the literal or data-name option is used, the object program must 
determine how it got to the next instruction. That is: did a FILL ENABLE come "true" or did the 
WAIT time expire? An INTERROGATE of all ENABLEd or FILLed files will have to be per
formed to determine the answer. 

• If more than one 1/0 complete occurs at a given time, the ENABLE and FILL completes are serv
iced in the order of priorites established at the time of the COLD ST ART loading. 



V'/RJTE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

You can use WRITE to request a "Write to Control" operation to a designated file. 

Figure 7-12 shows the format of WRITE. 

DATACOMM WRITE [EXTENDED data-name-1] file-name [DELETEETX] 

[PRESETSTX] [STREAM] [DIAL] [VOICE] [TONE] [leof-labell] i. 

Figure 7-12. Format of WRITE 

Data will be passed until a control code denoting End-of-Text is detected in the file-name. Control code 
characters denoting End-of-Text vary depending on the type of line adapter and remote being used. 

The EXTENDED option causes the INTERROGATE and INTERROGATE ADDRESS operations to 
be performed at the end of the WRITE operation. 

Data-name-1, see ENABLE statement. 

DELETEETX, see the FILL statement. 

PRESETSTX, see the FILL statement. 

STREAM, see the READ statement. 

DIAL, see the FILL statement. 

VOICE, see the FILL statement. 

TONE, see the FILL statement. 

eof-label, see the WRITEREAD statement. 

5024789 7-17 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

WRITE READ 

The function ofWRITEREAD is to pass data to a remote device from memory locations and, when suc
cessfully completed, to cause data to be read from the remote device and passed to appropriate memory 
locations. 

Figure 7-13 shows the format of WRITEREAD. 

DATACOMM WRITEREAD [EXTENDED data-name-1] file-name [NOTIMEOUT] 

[DELETEETX] [PRESETSTX] [VOICE] [DIAL] [TONE] [POLL] [STREAM] 

[ ! eof-label l ] , 

Figure 7-13. Format of WRITEREAD 

Data will be passed to the remote device from ascending memory locations starting at file-name-I and 
will continue wuntil a control code denoting End-of-Transmission (EQT) or End-of-Text (ETX) is de
tected. A READ will then be initiated on the remote device and the data will be passed to ascending 
memory locations immediately following the End-of-Transmission (EQT) or End-of-Text (ETX) control 
code wihich terminated the WRITE and will continue until an End-of-Text (ETX) control code from the 
remote device is encountered. Each portion of the message being written and read must be terminated 
by an End-of-Transmission (EQT) or End-of-Text (ETX) control code. 

The EXTENDED option causes the INTERROGATE and INTERROGATE ADDRESS operations to 
be performed at the end of the WRITEREAD operation. 

Date-name-1, see ENABLE statement. 

NOTIMEOUT, see the READ statement. 

DELETEETX, see the WRITE statement. 

PRESETSTX, see the READ statement. 

VOICE, see the WRITE statement. 

DIAL, see the WRITE statement. 

TONE, see the WRITE statement. 

POLL, see the WRITE statement. 

STREAM, see the WRITE statement. 

If the eof-label option is used, the End-of-Transmission control code received will cause the program to 
accomplish the indicated actions. Control will pass to the next instruction in the absence of an eof-label. 

Refer to the FILL and WAIT constructs, this section, for requirements of FILL with WRITE and FILL 
with WRITE and WAIT. 

STREAM with POLL indicates recirculating poll. 

7-18 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Data Communications 

WRITEREADTRANS 

The function of WRITEREADTRANSparent is to pass data to a remote device (normally a computer) 
from memory locations and, when successfully completed, to cause data to be read from the remote de
vice and passed to appropriate memory locations, and terminating at the end of the record-description 
without passing an End-of-Transmission (EOT) or End-of-Text (ETX) control code. 

Figure 7-14 shows the format of WRITEREADTRANS. 

DATACOMM WRITEREADTRANS [EXTENDED data-name-1] file-name [NOTIMEOUT] 

[DIAL] [ [ eof-label ] ] 

Figure 7-14. Format of WRITEREADTRANS 

Data will be passed to the remote device from ascending memory locations starting at file-name record 
and will continue until a control code denoting End-of-Transmission (EOT) or End-of-Text (ETX) is de-

. tected. A READ will then be initiated on the remote device and the data will be passed to ascending 
memory locations beginning with the location immediately following the End-of-Transmission (EOT) or 
End-of-Text (ETX) control code which terminated the WRITE and will continue until the end of file
name record. The attempt to exceed Maximum Address in the Result Descriptor will not be turned ON 
when the end of file-name record is reached. 

The EXTENDED option causes the INTERROGATE and INTERROGATE ADDRESS operations to 
be performed at the end of the WRITEREADTRANS operation. 

Data-name-1, see ENABLE statement. 

NOTIMEOUT, see the FILL statement. 

DIAL, see the FILL statement. 

eof-label, see the WRITEREAD statement. 

This statement is normally used for communication with remote computers. 

5024789 7-19 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Man...ial 
Data Communications 

WRITETRANSREAD 

The function of WRITETRANSREAD is to pass data to the remote device (normally a computer) until 
the end of the record description is reached and, when successfully completed, to cause data to be passed 
from the remote device to memory locations, starting at the end of the record-description and continuing 
until an End-of-Transmission (EOT) or End-of-Text (ETX) control code is detected. 

Figure 7-15 shows the format of WRITETRANSREAD. 

DATACOMM WRITETRANSREAD [EXTENDED data-name-1] file-name [NOT!MEOUT] 

[ [eof-label] ] 

Figure 7-15. Format of WRITETRANSREAD 

The READ portion of this statement will continue passing data until an End-of-Transmission (EOT) or 
End-of-Text (ETX) control code is detected, or will terminate the flow when the location, ending file
name record address + 199 is reached. 

The EXTENDED option causes the INTERROGATE and INTERROGATE ADDRESS operations to 
be performed at the end of the WRITETRANSREAD operation. 

Data-name-I, see ENABLE statement. 

NOTIMEOUT, see the FILL statement. 

DIAL. see the FILL statement. 

eof--label, see the WRITEREAD statement. 

This statement is normally used for communication with remote computers. 

The end of the record-area may be prograrnmatically altered by use of the KEY data-name must be de
fined as INTEGER ( 6). The value contained there-in will be used when the I/O is initiated to determine 
the number of characters in the record area. The ending address of the result descriptor will be adjusted 
accordingly. (Refer to INTERROGATE, elsewhere in this section, for information on the result 
descriptor.) 

7-20 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

GENERAL 

SECTl·ON 8 

PORT FILES 

Port files permit programs running on the same or different processors to exchange data. The port file 
is a means of interprogram communication. Ports are somewhat like the older Core-to-Core and Storage 
Queue mechanisms but differ from those in that a program can communicate through a port file with 
another program on any Unisys V Series, B 2000/B 3000/B 4000, A Series, B 5000/B 6000/B 7000, 
B 1000, or B 900 CMS systems. 

Port files are designated as local-only ports when both programs are executing on the same processor, and 
as remote ports when the programs are on different processors. The only difference between the two is 
that to use remote ports, BNA software must be on both systems, while to use local-only ports, only the 
current operating system and the STOQ option are required on V Series or B 2000/B 3000/B 4000 Se
ries systems. 

A port file contains from one to several hundred subports. Subports are themselves the individual files 
through which dialogues occur. Each subport shares the attributes of its parent port, and has its own attri
butes as well. 

To use port files, each program declares a port file and certain subport attributes to be used as matching 
criteria. If remote ports are to be used, each program specifies the hostname of the remote port file with 
which it wishes to communicate. If, when the subport is OPENed, the corresponding file is found, a dia
logue is established between the two programs. Records written to the subport of either program can be 
read from the subport of the corresponding program. 

The port file can be viewed as a more versatile substitute for the Storage Queue mechanism. 

Several declarations, statements, and features are used with ports. 

• The file declaration PORT 

• Extensions to OPEN, CLOSE, READ, WRITE and IF 

• The statements GET, SET, and WAIT 

• Port file attributes 

• Function output parameters 

These features are presented in this section. For further explanations, refer to the BNA Architectural De
scription Reference Manual, Volume 1, and to the V Series MCP IVS Programming Reference M anua/. 

5024789 8-1 



CLOSE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

The CLOSE statement terminates processing on the subfile specified in the PORT _KEY (refer to Func
tion Output Parameters in this section), or all subparts if the PORT _KEY equals zero. Figure 8-1 de
scribes the format of the CLOSE statement. 

CLOSE file-name [RELEASE] [NO WAIT] ---

Figure 8-1. Format of the CLOSE Statement 

File-name must be the name of a port file declared in a PORT statement. 

If RELEASE is not specified, RETAIN is assumed. 

If NO WAIT is not specified. the program will be suspended until the close is successful. When NO 
WAIT is specified, the program is reinstated immediately. 

8-2 



GET 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

The GET statement is used to obtain the current value of any attribute of a port file or a particular subfile 
of a port file. Figure 8-2 describes the format of the GET statement. 

GET file-name ~dentifier-1 FROM file-attribute-1 

[ , identifier-n FROM file-attribute-n] 

[ R ESU l TS identifier-a] [ [err-label] ) 

Figure 8-2. Format of the GET Statement 

File-name must be the name of a port file declared in a PORT statement. 

Identifier-! through identifier-n specify the location to which the value of the attribute will be returned. 
The type and size of the identifier must correspond with the value of the attribute. An integer identifier 
must be used for Boolean and mnemonic attributes. 

File-attribute-1 through file-attribute-n specify the file attribute identifier of the file attributes to be 
queried. 

The RESULTS clause is used to obtain information on the results of the GET request. Identifier-a is re
quired and must be previously declared. It should be an INTEGER with a size equal to two times the 
number of attributes in the list or an INTEGER ARRAY with an element size of two digits and one ele
ment for each attribute in the list. The MCP will return a 2-digit entry for each attribute in the list. Each 
entry will contain the error value resulting from the attempt to get the corresponding attribute. An error 
value of zero means no error. For additional error values, see the BNA Architectural Description Refer
ence A1anual, Volume 1. 

The err-label provides an address to which program control will return if an error occurs in attempting 
to GET any attribute. If the err-label is not provided, no indication of an error will be given. 

The user is responsible for updating the PORT _KEY with an appropriate subpart index. (PORT _KEY 
is described under Function Output Parameters elsewhere in this section.) The values of the subport at
tributes listed will be returned for the specified subport. If the PORT _KEY is zero when querying 
subport attributes, a run time error will result. The PORT _KEY must be zero to return the values of port 
attributes. 

A maximum of 99 attributes can be queried in a single statement. 

Examples 

GET 

GET 

5024789 

PORTOl 
COUNT FROM 
CHG_EVENT 

CENSUS, 
FROM CHANGEEVENT; 

PORT02 
IN_FLAG 
RESULTS 

INPUTEVENT 
LSTERR [ ER_LAB] 

8-3 



IF 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

The IF statement can (optionally) interrogate the value returned for a mnemonic attribute that had been 
assigned to identifier-I with the GET statement. The format is as follows: 

IF [NOT] identifier-1 relational-operator mnemonic-attribute-value 

THEN statement-1 [ELSE statement-2] 

Figme 8-3. Format of IF Interrogatiillg Identifier-1 

Identifier-1 corresponds to identifier-1 in the GET statement. The list of valid mnemonic-attribute
values can be found in the port/subport attribute paragraphs. In this specific context, the mnemonic
attribute-values are treated as keywords with the exception of the words EXTERNAL, FIXED and IO 
which are always reserved words. In any other context, these keywords may be used as identifiers. 

The list of possible mnemonic-attribute-values for each mnemonic attribute is represented internally as 
an ordered set of integers with ascending values. This allows all relational operators to be used when in
terrogating identifier-I. For example, for subpart attribute FILESTATE, the value OPENED is consid
ered greater than the value OFFERED. 

This representation also allows identifier-1 to be used as the case selector in a CASE statement. 

Mnemonic attributes with boolean values can be interrogated using the method described for the IF 
statement, option 3, identifier-5. 

Examples 

IF ATTR_VAL EQL CLOSE THEN 
GO OPEN_IT; 

IF ATTR_VAL GTR NO_ERROR THEN 
GO TO ERROR_ROUTINE; 

IF INPUTEVENT THEN 
GO GET_IT; 

8-4 



OPEN 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

The OPEN statement is used to attempt to open the subfile specified in the PORT_KEY or all subfiles 
if the PORT_KEY equals zero. (PORT_KEY is described under Function Output Parameters, else
where in this section.) Figure 8-4 describes the format of the OPEN statement. 

OPEN { ~:;:R } file-name 
AVAILABLE 

Figure 8-4. Format of the OPEN Statement 

File-name must be the name of a port file declared in a PORT statement. 

The WAIT option offers the subfile for matching. The program is suspended until a match is found. 

The OFFER option offers the subfile for matching while the program continues to run. 

The AVAILABLE option opens the subfile if a match is currently available. The program continues to 
run. 

5024789 8-5 



PORT 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

The PORT declaration is used to name the port file and to establish port and subpart attributes. Figure 
8-5 describes the format of the PORT declaration. 

PORT file-name ..!. RECORD identifier-1 integer-1 [FIXED] 

[, (file-attribute-1 [ [integer-2]] { attribute-value=1 } 
literal-1 

, file-attribute-n [ l!nteger-nll { attribute-value-n } 
literal-n 

Figure 8-5. Format of the PORT Declaration 

The file-name is used to identify the port for all file handling statements (READ, WRITE. etc.). It must 
be unique in the first seventeen characters. 

The RECORD clause is required and must be followed by an identifier and an integer which specify the 
record name and record size, respectively, for this file. The data type of the record is ALPHA by default. 
Integer-I must be six digits or less. The optional word, FIXED, is used to indicate that the declared re
cord and size will not vary throughout the program. This allows the MCP to optimize the I/O path. 

The record and/or size can be varied with the READ and WRITE statement if they have not been de
clared as FIXED. 

File-attribute-1 through file-attribute-n specify the file attribute names of the file attributes to be pre
initialized for the port and its subfile(s). 

Integer-2 through integer-n specify the subport to which the attribute applies. It is required for all subport 
attributes and must be four digits or less. A value of zero indicates that this attribute applies to all 
subports. This index is not allowed when specifying port attributes. 

Attribute-value-I through attribute-value-n specify a mnemonic value and may only be assigned to bool
ean and mnemonic file attributes. The mnemonic values are listed in column two of the attribute tables. 
The key words TRUE and FALSE are considered mnemonic values in the case of boolean file attributes. 

Literal-I through literal-n specify the value to be assigned to alphanumeric and numeric file attributes. 

Each port file must have a value for the TITLE, INTNAME and MAXRECSIZE attributes. If the TITLE 
or INTNAME attributes are not declared, the file-name will be used. If the MAXRECSIZE attribute is 
not declared, integer-I will be used. 

8-6 



Examples 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

PORT PORTO!, RECORD PORT_REC 100 FIXED, 

PORT 

5024789 

(TITLE := "TASKING", 
MYNAME : = "MASTER", 
MAXSUBFILES : = 2 , . 
HOSTNAME [ 0] "SYSTEM!", 
YOURNAME [ 1 ] : = "SLAVE!", 
YOURNAME [ 2] : = "SLAVE2"); 

PORT2, RECORD UTIL_REC 1000, 
(TITLE "UTILITY", MAXRECSIZE 1000); 

8-7 



READ 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

The READ statement is used to request the next message from a subport. Figure 8-6 describes the format 
of the READ statement. 

READ file-name [identifier-1] 
[ {~dentifier-2 } ] 

mteger-1 

[WITH NO WAIT) leof-lablel 

Figure 8-6. Format of the READ Statement 

An OPEN statement must be successfully executed for a port file prior to the execution of the first READ 
statement for that file. 

File-name must be the name of a port file declared in a PORT statement. 

Identifier-1 and identifier-2 or integer-1 can only be used ifthe record name and size were not declared 
as FIXED for this file in the PORT statement. The record name or size may be specified independently. 
The use of identifier-! changes the record address for this and all subsequent READ operations on the 
specified file. Identifier-1 must be ALPHA. The use of identifier-2 or integer-1 changes the record size 
for this and all subsequent READ operations on the specified file. ldentifier-2 must be an INTEGER 
with a maximum size of six digits. The size specified need not correspond to the declared size of the spec
ified record. 

A READ statement causes the program to wait until a logical record is available. This suspension can be 
avoided for port files by specifying the WITH NO WAIT phrase. 

The user is responsible for updating the PORT_KEY with an appropriate subfile index. (PORT_KEY 
is described under Function Output Parameter, elsewhere in this section.) If the PORT _KEY is non
zero, a read from the specified subfile is performed. If the PORT _KEY is zero, a non-directed read is 
performed and the PORT _KEY is updated to indicate the index of the subfile that was read. 

The eof-label is used for numerous error conditions that are documented in the BNA Architeclllral De
scription Reference Manual. Volume 1. See also the V Series MCP!VS Programming Reference Manual. 

Examples 

READ PORTOl; 
READ PORT02 NEW-REC 200 NO WAIT; 
READ PORT03 50 [ EOF] ; 

8-8 



SET 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

The SET statement is used to set one or more attributes of a port file or a particular subport of a port 
file. Figure 8-7 describes the format of the SET statement. 

{ ottci buto-,.lu•-1 } 
identifier-1 
literal-1 

SET file-name file-attribute-1 TO 

{ ottcibut.-.olu•-o } ] 
identifier-n 
I iteral-n 

[RESULTS identifier-o] [ [err-lable] .:_ l - -

Figure 8-7. Format of the SET Statement 

File-name must be the name of a port file declared in a PORT statement. 

File-attribute-1 through file-attribute-n specify the file attribute identifier of the file attributes to be set 
for the port or subport. 

Attribute-value-I through attribute-value-n specify a mnemonic value and may only be used to set boole
an and mnemonic file attributes. 

Identifier-I through identifier-n and literal-1 through literal-n specify the value to be assigned to an al
phanumeric or numeric file attribute. The value must correspond to the range of the attribute being set. 

The RES UL TS clause is used to obtain information on the results of the SET request. Identifier-o is re
quired and must be previously declared. It should be an INTEGER with a size equal to two times the 
number of attributes to be set or an INTEGER ARRAY with an element size of two digits and one ele
ment for each attribute to be set. The MCP will return a two digit entry for each attribute in the list. Each 
entry will contain the error value resulting from the attempt to set the corresponding attribute. An error 
value of zero means no error. For additional error values, see the BNA Architectural Description Refer
ence Manual, Volume 1. See also the V Series JYJCP!VS Programming Reference Manual. 

The err-label provides an address to which program control will return if an error occurs in attempting 
to set any attribute. If the err-label is not provided, no indication of an error will be given. 

The user is responsible for updating the PORT_KEY with an appropriate subpart index. (PORT _KEY 
is discussed under Function Output Parameters, elsewhere in this section.) If the PORT_KEY is non
zero, the subpart attributes listed will be set for all subports. The PORT_KEY must be zero to set port 
attributes. 

The user is also responsible for insuring that the file is in the proper state before attempting to set an at
tribute. The MCP requires all subparts to be closed before any port attribute can be set. 

A maximum of 99 attributes can be set in a single statement. 

5024789 8-9 



Example 

8-10 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

SET 

SET 

SET 

PORTO! 

PORT02 

PORT03 
RESULTS 

MAXSUBPORTS TO 5; 

BLOCKSTRUCTURE FIXED, 
SECURITYTYPE PRIVATE [ERROR] ; 

HOSTNAME TO H_NAME 
ERRLST; 



WAIT 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

The WAIT statement is used to cause the suspension of the execution of the object program for a speci
fied interval of time or until one or more conditions are true. Figure 8-8 describes the format of the 
WAIT statement. 

~~ff ..••.. -. integer-1 [. {identifier-1}] 

.[ :ODTINPUTPRESENT 

·•·[·:·--·· QvJPUTEVENT •. J~JEVENT 

G¥!~EEVENT 

file-name 
[ { [ '.dentifier-2 ]· } ] ] 

mteger-2 

[USfNG identifier-5] 
·~ 

{GJVfNG · identifier-6] 

Figute 8.;8. Format of the WAIT Statement 

AWAIT with no options specified causes the program to be suspended for 86400 seconds (24 hours). 

Not more than one identifier-l or integer-1 can be specified, and if specified, must be the first item in 
the list. Identifier-! must be an INTEGER of five digits or less. The maximum value for identifier-! and 
integer-1 is 86399. 

When ODTINPUTPRESENT is specified, the execution of the object program is suspended until an AX 
MCP Keyboard input message is received for the program. 

When OUTPUTEVENT, INPUTEVENT or CHANGEEVENT is specified, the program is suspended 
until the specified port file event becomes TRUE. File-name must be the name of a file declared in a 
PORT statement. Identifier-2 and integer-2 specify the index of the subport to be checked. Identifier-2 
must be an INTEGER of four digits or less. If identifier-2 or integer-2 is omitted or has a value of zero, 
the port file is checked. OUTPUTEVENT is only valid for a subport. 

If any event in the list is TRUE, the WAIT is terminated and control is passed to the next executable 
statement. 

If during the initial scan of the events, no event is found to be TRUE, program execution is suspended 
until any event in the list becomes TRUE. At that time, the WAIT statement is terminated and control 
is passed to the next executable statement. 

When the USING clause in not specified, each event in the list is tested for a TRUE condition, beginning 
with the first event in the list and proceeding to the last event in the list. The process then repeats. When 
the USING clauseis specified, the value referenced by indentifier-5 determines where in the specified 
event list the WAIT should begin testing for a TRUE condition. Identifier-5 must be an INTEGER of 
two digits. 

When the GIVING clause is specified, the data item referenced by identifier-6 is set to the position in 
the event list of the event that terminated the WAIT statement. Identifier-6 must be an INTEGER of two 
digits. 

5024789 8-11 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

Examples 

8-12 

WAIT 50; 
WAIT MAX_TIME 

WAIT 

ODTINPUTPRESENT; 

MAX_TIME 
OUTPUTEVENT 
CHANGE EVENT 
INPUTEVENT 
I NP UTE VENT 
CHANGE EVENT 
USING 
GIVING 

PORTO I 
PORTOl 
PORT02 
PORT02 
PORT02 
POINTER 
RESULT; 

[ 1 ] 

[ SUB_INDEX ] 
[ 3 ] 



( 

WRITE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

The WRITE statement is used to request that a message be sent through a subport. Figure 8-9 describes 
the format of the WRITE statement. 

WRITE file-name [ identifier-1] 
[ { ~dentifier-2} J 

mteger-1 

[WITH NO WAIT] [ [eof-label] ] 

Figure 8-9. Format of the WRITE Statement 

An OPEN statement must be successfully executed for a file prior to the execution of the first WRITE 
statement for that file. 

File-name must be the name of a port file declared in a PORT statement. 

Identifier-I and identifier-2 or integer-1 can only be used ifthe record name and size were not declared 
as FIXED for the file in the PORT statement. The record name or size may be specified independently. 
The use of identifier-I changes the record address for this and all subsequent WRITE operations on the 
specified file. Identifier-I must be ALPHA. The use of identifier-2 or integer- I changes the record size 
for this and all subsequent WRITE operations on the specified file. Identifier-2 must be an INTEGER 
with a maximim size of six digits. The size specified need not correspond to the declared size of the speci
fied record. 

A WRITE statement causes the program to wait until a buffer is available to store the record. This sus
pension can be avoided for port files by specifying the WITH NO WAIT phrase. 

The user is responsible for updating the PORT_KEY with an appropriate subport index. (PORT _KEY 
is described under Funetion Ouptut Parameters, elsewhere in this section.) If the PORT_KEY is non
zero, a write to the specified subport is performed. If the PORT_KEY is zero, a broadcast write is per
formed, for which data are sent to all opened subport of the port file. 

The eof-label is used for numerous error conditions which are documented in the BNA Architectural De
scription Reference Manual, Volume 1. 

Examples 

WRITE PORTOl; 

WRITE PORT02 PORT__DATA 500 [ EOF] ; 

WRITE PORT03 1000 NO WAIT; 

5024789 8-13 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference 
Port Files 

PORT FILE ATTRIBUTES 
Port file attributes allow a user to request the compiler to generate code to directly manipulate or interro
gate the characteristics of a port file. 

A file attribute may be alphanumeric, numeric or mnemonic. An alphanumeric port file attribute is con
sidered an ALPHA data item having a size equal to the mazimum size allowed for the specified attribute. 
Its content is left-justified and blank filled. A numeric port file attribute is considered an INTEGER data 
item having a size equal to the mazimum size allowed for the specified attribute. A mnemonic port file 
attribute is associated with values that are best expressed as mnemonic names. Port file attributes having 
a boolean nature are considered mnemonic attributes and are associated with the values TRUE and 
FALSE. 

Table 8-1 lists the valid port attributes; table 8-2 lists the subparts attributes. The columns of these tables 
are defined as follows: 

8-14 

Column 1 -
Column 2 -
Column 3 -

Column 4 -

Column 5 -

File attribute name 
Attribute value 
Access restrictions 
l - Attribute may be specified in a PORT declaration 
2 - Attribute may be interrogated in a GET statement 
3 - Attribute may be specified in a SET statement 
When attribute can be accessed in a GET statement 
A - anytime 
When attribute can be accessed in a SET statement 
A - anytime 
C - all subports must be dosed for port 

attributes; the specified subport must be 
closed for subports attributes 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

Table 8-1. Port Attributes 

Name Values Access Get 

BLOCKSTRUCTURE FIXED 1,2,3 A 
EXTERNAL 

CENSUS 0 THRU 99999 2 A 
CHANGEEVENT TRUE, FALSE 2 A 
CHANGEDSUBFILE 0 THRU 9999 2 A 
INPUTEVENT TRUE, FALSE 2 A 
INTNAME. ALPHA (17) 1,2,3 A 
LASTSUBFILE 0 THRU 9999 2 A 
MAXRESCIZE 2 THRU 19998 1,2,3 A 

(BYTES) 
MAX SUBFILES 1 THRU 9999 1,2,3 A 
MYHOSTNAME ALPHA (17) 2 A 
MYNAME ALPHA (99) 1,2,3 A 
SECURITY GUARD ALPHA (99) 1,2,3 A 
SECURITYTYPE PUBLIC 1,2,3 A 

PRIVATE 
GUARDED 

SECURITYUSE IO 1,2,3 A 
TITLE ALPHA(l 7) 1,2,3 A 

Notes: 

1. If not declared in the PORT declaration, the file-name is used. 

Set 

c 

c 

c 

c 

c 
c 
c 

A 
c 

2. If not declared in the PORT declaration, the record size is used. 

3. The local host name is used. 

Type Default 

M FIXED 

N 0 
M 
N 0 
M 
A NOTE 1 
N 0 
N NOTE 2 

N 1,6 
A NOTE 3 
A NULL 
A NULL 
M NOTE 4 

M IO 
A NOTE 5 

4. If not declared in the PORT declaration, the SECURITYTPE is obtained from the user's session 
when the program is executed. 

5. If not declared in the PORT declaration, the file-name is used. 

6. Under MCP/VS 2.0, MAXSUBFILES is temporarily restricted to a maximum of 700. 

5024789 8-15 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

Table 8-2. Subfile Attributes 

Name Values Access Get Set Type 

CENSUS 0 THRU 9999 2 A N 
CHANGEEVENT TRUE, FALSE 2 A M 
COMPRESSION TRUE, FALSE 1,2, A * M 

3 
COMPRESSIONPOSSIBLE TRUE, FALSE 2 M 
CURRENTRECORD 2 THRU 19998 2 N 

(BYTES) 
DIALOGPROTOCOLLEVENT 0 THRU 255 2 N 
FILESTATE CLOSED 2 M 

AW AITING_HOST 
OFFERED 
OPENED 
SHUTTING_DOWN 
BLOCKED 
CLOSED-PENDING 
DEACTIVATION_PENDING 
DEACTIVATED 

HOSTNAME ALPHA (17) 1,2, A c A 
3 

INPUTEVENT TRUE, FALSE 2 A M 
MAX CENSUS 0 THRU 9999 1,2, A A N 

3 
MAXRECSIZE 2 THRU 19998 2 A N 

(BYTES) 
OUTPUTEVENT TRUE, FALSE 2 A M 
SUBFILEERROR NO_ERROR 2 A M 

DISCONNECTED 
DATA_LOST 
NO_BUFFER 
NO_FILE_FOUND 
UNREACHABLE_HOST 
UNSUPPORTED_FUNCTION 

YO URN AME ALPHA (99) 1,2, A c A 
3 

YOURUSERCODE ALPHA (17) 1,2; A c A 
3 

*When COMPRESSIONPOSSIBLE =TRUE 

Notes: 

1. If not declared in the PORT declaration, the local host name is used. 

Default 

0 

FALSE 

FALSE 

0 
CLOSED 

NOTE 1 

3 

NO_ERROR 

NULL 

NOTE 2 

2. If not declared in the PORT declaration, the value for YOURUSERCODE is obtained from the 
user's session when the program is executed. 

8-16 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

FUNCTION OUTPUT PARAMETERS 

Ten fields in each port file FIB are updated by the MCP after each READ and WRITE request on the 
file, One of the fields is also used for input information, These fields can be accessed by the user through 
the reserved words described below, 

PORT_KEY - 4 UN 

The PORT_KEY field must be set before each request on a port file, if more than one subport 
is associated with the file, This field specifies the subpart index for the request, A value of zero 
means 'all subparts' or 'port' depending on the type of request After a successful non-directed 
read, this field will be set to the index of the subpart returning the data, 

PORT_MAXMSG - 6 UN 

This field specifies the maximum possible data size, in bytes, on the last I/O request, 

PORT_ERROR - 2 UN 

This field specifies the error value from the last request It is also updated after an OPEN and 
CLOSE (see note) 

PORT_STATE - l UN 

This field specifies the subport state at the completion of the last request, It is also updated after 
an OPEN and CLOSE (see note) 

PORT_EOF - 1 UN 

This field specifies the end-of-file condition as of the completion of the last read or write request. 
(see note) 

PORT_Q - 6 UN 

This field specifies the total number of input messages remaining to be read in all subports as of 
the completion of the last request, 

PORT_SUBQ - 4 UN 

This field specifies the number of input messages remaining to be read from the subports speci
fied in the PORT_KEY field as of the completion of the last request, 

5024789 8-17 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Port Files 

PORT_CURREC - 6 UN 

This field specifies the size, in bytes. of the current record as of the completion of the last read 
of write request. 

PORT_DATE - 5 UN 

This field specifies the Julian date as of the completion of the last READ request. 

PORT_TIME - 10 UN 

This field specifies the time of day in milliseconds as of the completion of the last READ request. 

NOTE 
For a list of all possible values, see the BNA Architectural Description Refer
ence Manual, Volume 1. 

These reserved words are intended to be used as overrides on port file name as follows: 

file-name.override 

Their primary use is in assignment and IF statements to set or interrogate the value of a particular func
tion output parameter. 

Examples 

8-18 

PORTOl.PORT-KEY := l; 

STATEl := PORTOl.PORT_STATE; 

IF PORTOl.PORT_ERROR GTR 0 THEN 
GO HANDLE_ERROR; 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

SECTION 9 

READER SORTER - PRE-4A CONTROL CONSTRUCTS 

GENERAL 
This section deals with the BPL constructs required to activate the READER SORTER equipment as de
fined by the FILE declaration SORTER clause. 

READER SORTER FILE HANDLING 
Certain reader/sorter file functions must be performed in use routines. The routine types and their func
tions are listed in Table 9-1. Refer to the ROUTINE clause of the FILE declaration for further details. 

Routine Type 

LABEL 

IO ERROR 

EOP 

SORTER 

Table 9-1. Routine Types and Their Functions 

Function 

Identifies the routine to process memory access, 
cannot read, unencoded, and double document 
errors. 

Amount field error procedure. 

Transit field error procedure. 

Item pocket-select routine. 

The reader sorter file must be declared RANDOM. 

The KEY clause of the FILE declaration specifies the label of the routine to handle manual end-of-file, 
jam, and mis-sort conditions. 

SPECIFIC STATEMENT FORMATS 
The specific statement formats together with a detailed discussion of the restrictions and limitations as
sociated with each, appear on the following pages in alphabetic sequence. 

5024789 

NOTE 
The use of any of the following requires the presence of the MICR module 
of the MCP. 

9-1 



B :2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - PRE-4A Control Constructs 

ACT~ON 0 (Pocket Select) 
The function of ACTION 0 is to pocket select the last document read to the pocket specified on the 
READER SORTER. Figure 9-1 describes the format of ACTION 0. 

ACTION file-name 0 data-name-1 [ too-late-to-process-label 

Figure 9-1" Format of ACTION 0 

Data-name must be declared as a four digit field and its format is NNRV, where: NN is the pocket to 
be selected. R is zero, and Vis either zero (if the current mode is to continue) or one (if FLOW is to be 
stopped). 

If the ACTION 0 for the document was too late to process, the program will branch to the too-late-to
process-label. FLOW mode is stopped and the document has been sent to the reject (R) pocket. The infor
mation read from the document which caused the too-late-to-process is stored in the record area. Howev
er, the trailing documents will not have been placed in memory, but will be routed to the reject (R) 
pocket. 

9-2 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - PRE-4A Control Constructs 

ACTION 4 (Pocket Light) 
The function of this ACTION is to cause a specified READER SORTER pocket light to become illumi
nated. Figure 9-2 describes the format of ACTION 4. 

ACTION file-name 4 data-name-1 

Figure 9-2. Format of ACTION 4 

Data-name-1 must be declared as a two (2) digit field. 

Data-name-1 must contain the 2-digit pocket number which specifies the pocket light desired to be 
turned "ON". 

Flow must be stopped and all documents pocket selected before issuing an ACTION 4 statement. 

Control is set to a NOT READY condition and must be cleared by depressing the START button on the 
READER SORTER. 

5024789 9-3 



B 2000/B 3000/B 4000/Y Series BPL Compiler Programming Reference Manual 
Reader Sorter - PRE-4A Control Constructs 

ACTION 6 (Batch Count) 
The function of this ACTION is to increment the batch counter in the READER SORTER by one. Figure 
9-3 describes the format of ACTION 6. 

ACTION file-name 6 , 

Figure 9-3. Format of ACTION 6 

Flow must be stopped and all documents pocket selected before issuing an ACTION 6 statement. 

9-4 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - PRE-4A Control Constructs 

ACTION 8 (Delay) 
The function of this ACTION is to delay the start of reading characters. Figure 9-4 describes the format 
of ACTION 8. 

ACTION file-name ~ { literal-1 } 
data-name-1 

Figure 9-4. Format of ACTION 8 

This statement sets a timer to the number of seconds to delay the start, specified by literal-I or data
name-1. 

Literal-I must be a I to 4 digit literal. 

Data-name-I must be a declared INTEGER (4). 

5024789 9-5 



OPEN 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - PRE-4A Control Constructs 

The function of this statement is to initiate the input processing of the READER SORTER. Figure 9-5 
describes the format of OPEN. 

OPEN IN file-name {
DEMAND} 

FLOW 

Figure 9-5. Format of OPEN 

At least one of the options must be specified before a file can be read. A CLOSE statement is required 
if it becomes necessary to change the mode of operation from either OPEN in DEMAND or FLOW 
mode. 

9-6 



READ 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - PRE-4A Control Constructs 

The function of this statement is to make available the next logical record from the READER SORTER 
in DEMAND or FLOW mode. Figure 9-6 describes the format of READ. 

READ file-name { 
DEMAND} 
FLOW Lmode-stopped-labell [batch-ticket-label] - -

Figure 9-6. Format of READ 

The record size must be declared as 200 characters. 

The READ FLOW .... statement must be given after an OPEN IN FLOW. This will start the flow of 
documents through the READER SORTER. 

If CHECK 4 is specified in the FILE declaration, the data is stored (in descending sequence) continuous
ly. If formatting is specified (CHECK 4 is omitted), the data is stored (in descending sequence) continu
ously until the first transit symbol is received. Blanks are then stored until the 40th character location 
is reached at which point the transit symbol and remaining data is stored. Blanks are stored following 
the last information character read until a total of 100 characters is stored. When formatting (CHECK 
4 is omitted) is specified, automatic validity checking of the amount and transit fields is performed. Va
lidity checking of the amount field includes checking: 

• The first and twelfth characters stored for amount symbols 

• The l 0 interventing characters for decimal digits 

Validity checking of the transit field includes checking: 

• The 40th and 50th characters stored for transit symbols 

• The nine intervening characters for the following: four decimal digits, hyphen (-), and four deci
mal digits 

Mode-stopped-label entry specifies the procedure to be executed when the flow mode is stopped. All doc
uments which were in motion will be processed and pocket selected before going to mode-stopped-label. 
A READ FLOW statement has to be executed to restart the READER SORTER in a flow mode. 

Batch-ticket-label entry specifies the procedure to be executed if a batch ticket (black band) was encoun
tered during the last document pocket selection. The record area has been blanked. The READER 
SORTER is in a stop flow mode and must be restarted with a READ FLOW statement. 

5024789 9-7 





B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

SECTION 10 

READER SORTER - DLP/4A CONTROL CONSTRUCTS 

GENERAL 

This section deals with the BPL constructs required to activate the READER SORTER equipment con
nected to the system through a DLP (900-series systems) or through a 4A I/O Control. In either of these 
cases, the hardware name in the FILE declaration is SORTER4. 

Refer to the B 2000/B 3000/B 4000 Series MCP Programmer's Guide for detailed information on the 
Reader/Sorter DLP and 4A Control application program interfaces. 

READER SORTER FILE HANDLING 

Certain reader/sorter file functions must be performed in use routines. The routine types and their funcc: 
tions are listed in Table 10-1. Refer to the ROUTINE clause of the FILE declaration for further details. 

Routine Type 

LABEL 

IO ERROR 

EOP 

SORTER 

Table 10-L Routine Types and Their Functions 

Function 

Identifies the routine to process memory access, 
Cannot Read, unencoded, and double document 
errors. 

Amount field error procedure. 

Transit field error procedure. 

Item pocket-select routine. 

The reader sorter file must be declared RANDOM. 

The KEY clause of the FILE declaration specifies the label of the routine to handler manual end-of-file, 
jam, and mis-sort conditions. 

SPECIFIC STATEMENT FORMATS 

The specific statement formats together with a detailed discussion of the restrictions and limitations as
sociated with each, appear on the following pages in alphabetic sequence. 

5024789 

NOTE 
The use of any of the following requires the presence of the MICR module 
of the MCP. 

10-1 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

ACTION 10 (Pocket Select) 
The function of this statement is to exit from the POCKET SELECT USER routine. Figure 10-1 de
scribes the format of ACTION I 0. 

ACTION file-name 10 

Figure 10-1. Format of ACTION 10 

An ACTION 10 statement must be issued by the POCKET SELECT USER ROUTINE for each item. 
This implies that the user routine is ready to read and pocket select the next item as soon as the character 
recognition system and the control make it available. 

10-2 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

ACTION 11 (Pocket Light Generate) 
The function of this statement is to illuminate the specified pocket light or generate image count marks 
on microfilm. Figure 10-2 describes the format of ACTION 11. 

ACTION file-name 11 [error-label) 

Figure 10-2. Format of ACTION 11 

Error-label is the branch taken whenever an error is detected in execution of this statement. 

5024789 10-3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

ACTION 12 (Status Inquiry) 

The function of this statement is to obtain information regarding the status of the READER SORTER. 
Figure l 0-3 describes the format of ACTION 12. 

ACTION file-name 12 [error-label] -

Figure 10-3. Format of ACTION 12 

The MCP places the status of the Reader Sorter in program soft interface area (buffer location 757). 

The status is a I-digit field. The formatting of the status digit is: 

LOCATION 757: 

Bit 8 1 : Slewing microfilm. 
Bit 4 1 : Camera not ready. 

= 0 : Camera ready or not present. 
Bit 2 = 1 : Endorser not ready. 

= 0 : Endorser ready or not present. 
Bit 1 = 1 : Sorter not .ready. 

10-4 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

ACTION 13 (Charateristics Inquiry) 

The function of this statement is to obtain the characteristics of the READER SORTER. Figure I 0-4 de
scribes the format of ACTION 13. 

ACTION file-name 13 [error-label] 

Figure 10-4. Format of ACTION B 

The MCP places the characteristics of the READER SORTER in the program soft interface area (buffer 
location 758-759). 

The READER SORTER characteristics are formatted in this 2 digit field, as follows: 

LOCATION 758: 

Bit 8 = 1 
Bit 4 = I 
Bit 2 = 1 
Bit 1 = 1 

LOCATION 759: 

5024789 

Bit 8 = 

Bit 4 = 

Bit 2 
Bit 1 = 

: Endorser band one present. 
: Endorser band two present. 
: Endorser band three present. 
: Endorser band four present. 

: Reader sorter is a B 9137-2. 
: Camera present. 
: Reserved. 
: Read station B present. 

l 0-5 



B 2000/B 3000/B 4000/Y Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

ACTION 14 (Microfilm Advance) 

The function of this statement is to advance the microfilm to the beginning of the next I 00-foot or 200-
foot reel within a cassette. Figure I 0-5 describes the format of ACTION 14. 

ACTION file-name 14 [error-label] -

Figure 10-5. Format of ACTION 14 

10-6 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

ACTION 15 (Start Flow) 
The function of this command is to initiate flow feed. Figure 10-6 describes its format. 

ACTION file-name 15 [error-label! Istopped-label! 

Figure 10-6. Format of ACTION 15 

Just prior to flow feed, the control reads the soft loaded delimiters, read delay, stop information, and 
band information from system memory. While in flow mode, only the POCKET SELECT and READ 
READER SORTER commands may be initiated. 

Flow must be stopped prior to issuing a start flow. 

Since start is not treated as a logical read, the user program must proceed to a READ READER SORTER 
command when it has been reinstated. 

If flow cannot be successfully started due to an error condition, the user program is reinstated at the 
error-label as specified at error-label. 

If flow is stopped, the stopped-label branch is taken. 

5024789 10-7 



CLOSE 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

The function of this statement is to close a READER SORTER file. Figure 10-7 descibes the format of 
CLOSE. 

CLOSE file-name RELEASE 

Figure 10-7. Format of CLOSE 

A 4A-type Reader Sorter file must to closed with RELEASE. 

10-8 



( 

OPEN 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

The function of this statement is to initiate the input processing of the READER SORTER. Figure 10-8 
describes the format of OPEN. 

OPEN IN file-'name { 
DEMAND}· 

FLOW 

Figure 10-8. Format of OPEN 

At least one of the options must be specified before a file can be read. A CLOSE statement is required 
if it becomes necessary to change the mode of operation from either OPEN in DEMAND or FLOW 
mode. 

5024789 10-9 



READ 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

The function of this statement is to make available the next logical record from the READER SORTER 
in DEMAND or FLOW mode. Figure I 0-9 describes the format of READ. 

READ file-name { DEMAND } lerror-labell 

FLOW 
lmode-stopped-labell 

Figure 10-9. Format of READ 

The record size must be declared as 780 characters. 

The READ FLOW .... statement must be given after an OPEN IN FLOW. This will start the flow of 
documents through the READER SORTER. 

Error-label entry specifies the procedure to be executed whenever an error is detected during the execu
tion of this statement. 

Mode-stopped-label entry specifies the procedure to be executed when the flow mode is stopped. All doc
uments which were in motion will be processed and pocket selected before going to mode-stopped-label. 
A READ FLOW statement has to be executed to restart the READER SORTER in a flow mode. 

10-10 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Reader Sorter - DLP/4A Control Constructs 

BUFFER 
When using SORTER4 constructs, the user must initialize the hard interface portion of the 780-digit 
buffer. The soft interface area is used by the MCP for control and for communicating to the user. 

USER FILE STATEMENT 
The users input/output and interface buffet is located at the address specified in FIB-WA. It contains 756 
digits of hard interface, followed by 24 digits of soft interface, for a total record size of 780 digits. The 
interface areas are defined in the B 2000/B 30001 B 4000 Series MCP Programmer's Guide. 

5024789 10-11 





B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

GENERAL 

SECTION 11 

OPERATING INSTRUCTIONS 

The BPL compiler, in conjunction with tlie MCP, allows various types of action during compilation. 
Control of the BPL source language input is derived from presenting the compilation file to the Master 
Control Program, and is explained as follows: 

1. The first input control record notifies the MCP to call out the BPL compiler and to compile the 
indicated program-name. In the absence of this control record, the system operator may manual
ly execute one of the compile options through the ODT. 

2. The second control record is the label record, and is formatted in the following manner: 

- ? DA TA CARD (indicates EBCDIC source language input). 

- ? DAT AB CARD (indicates BCL source language input). 

3. The third record is the compiler option control record($ in column 1 ). This record is used to noti
fy the compiler as to which options are required during compilation. If this record is omitted, $ 
CARD LIST is assumed. 

The Dollar-sign ($),must be in column 1. Any record containing a dollar-sign in column 1 is considered 
to be a compiler option control record. 

SET followed by one or more options sets the specified options (on) leaving all others unchanged. 

RESET followed by one or more options resets the specified options (off) leaving all others unchanged. 

If more than one option is requested on the same record for a function, the last option specified is 
accepted. 

Any compiler option control record not specifying SET or RESET will tum off all options not specified 
on that record. 

5024789 11-1 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Operating Instructions 

Allowable options are: 

11-2 

~ CARD - input is from source language cards or paper tape only. The CARD option should not be 
used on the same control record as the TAPE, DISK, or PACK options. 

0 NEWC - creates a new source language card file (EBCDIC). The NEWC option should not be 
used on the same control record as the NEWT, NEWD, or NEWP options. 

@ TAPE - indicates the primary input is from a source language tape with a file-identifier of 
BPLSYM. The tape must contain SO-character card images with a blocking factor not exceeding 
nine. The TAPE option should not be used on the same control record as the CARD, DISK or 
PACK options. 

• NEWT - creates a new source language tape file, including all pertinent changes. with a file
identifier of BPLSYM. Th BPLSYM tape file is created as 80-character record blocked name. 
The NEWT option should not be used on the same control record as the NEWC NEWD, or 
NEWP options. 

0 DISK - indicates that the primary input is from a source language disk file with a file-identifier 
of BPLSYM, the BPLSYM disk file must contain SO-character card images, blocked five, nine. 
or multiples of five. The DISK option should not be used on the same control record as the 
CARD, TAPE, or PACK options. 

0 NEWD - creates a new source language disk file, including all pertinent changes, with a file
identifier of BPLSYM. The BPLSYM disk file is created as SO-character record, blocked nine. 
The NEWD option should not be used on the same control record as the NEWC. NEWT. or 
NEWP options. 

" PACK - indicates to the compiler that the primary input is from a source language disk pack file 
with a file-identifier of BPLSYM. The BPLSYM disk pack file must contain SO-character card 
images, blocked five, nine, or multiples of five. The PACK option should not be used on the same 
control record as the CARD, TAPE, or DISK options. 

@ NEWP- creates a new source language disk pack file, including all pertinent changes. with a file
identifier of BPLSYM. The BPLSYM disk pack file is created as 80-character records, blocked 
nine. The NEWP option should not be used on the same control record as the NEWC. NEWT, 
or NEWD options. 

0 LIST- creates a full listing, double spaced, of the source language input with error messages where 
required. 

" LST 1 - same as LIST with single spacing. 

" NPRT - inhibits printing of compiler summary if the UST and LST 1 options are not specified. 
Syntax errors will always be listed regardless of the listing action specified. 

@ LNXX - the number of lines on a page for source printout may be specified by the programmer 
with this option. The letter XX designate the number of lines desired. If this option is omitted 
from the $ record, channel 12 is used to control page skipping. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Operating Instructions 

• JAPN - the output listing will be compressed and will start in column 37 of the print line. 

• CODE - list object code from the point of insertion. 

• SUPR - suppresses warning messages. 

• SPEC - negates LIST and LST 1 if syntax errors occur. 

• BLNK- causes all source file records with positions 1-72 blank to be automatically purged. A sub
sequent control record without BLNK will turn off this option. 

• RSEQ NNNNNNNN + NNNNNNNN - indicates resequencing of source language input onto 
the output listing and/or new source language file is desired. The first integer is the starting se
quence number, the second integer, preceded by a plus sign ( +) is the increment factor. If either 
integer is less than eight digits, leading zeros are assumed. The default integers are 00000000 and 
+ 00001000. Either of the integers appearing without RSEQ will be ignored. 

• DLIS - suppresses listing of dropped records in a $$ DROP conditional statement. 

• UPER - lists in upper case for the printers without lower case. Symbolic is unchanged. 

• REMV - removes any old copy of the object file and replaces it with the new copy. 

• VOID NNNNNNNN- VOIDs symbolic records from the point of insertion up to but not including 
the sequence number indicated by NNNNNNNN. The sequence number is required. 

• MTCH - matches BEGIN and END pairs on the program listing. 

• XREF <memory size> - indicates that a cross reference of the compiled program is to be listed 
by the program BPLXRF. <memory size> is optional and initiates BPLXRF with the memory 
size stated. When used, this option must appear in the first leading dollar record; see information 
on leading dollar records, following. 

• FLAG NN - SETS or RESETS FLAG numbers (NN) for conditional compiling. NN is a number 
from 01 to 50. 

• STK4 - will force all runtime stack frames to be aligned on mod-4 addresses. 

• ICM2 ~causes creation of a Type II ICM file from this compilation, rather than executable code. 
When used, this option must appear on a leading dollar record (see following), and it cannot be 
reset. See Appendix D for further information. 

• ICM3- causes creation of a Type III ICM file from this compilation, ratherthan executable code. 
When used, this option must appear on a leading dollar record (see following), and it cannot be 
reset. See Appendix D for further information. 

5024789 

NOTE 
The ICM3 compiler option is only available with a BPL compiler in the 2.n 
and later series of releases. This option is not available in the 7 .n series of 
BPL compilers. 

11-3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Operating Instructions 

BPL uses the sequence number field in the $ records contained in the symbolic file to determine which 
are leading $ records and which are imbedded. Any $ records with blank sequence numbers are leading 
$ records and any containing sequence numbers are imbedded, even if they should happen to be at the 
beginning of the symbolic file. (If the symbolic file is entered through CAN DE, a$ record must be includ
ed at the beginning of the file to be considered a leading $ record.) 

This is important because certain options are ignored unless their value is SET at the time the last leading 
dollar record is processed. These options are: 

DISC 
DISK 
CARD 
TAPE 

*Note: 

PACK 
NEWT 
NEWD 
NEWP 

NEWC 
XREF* 
JAPN 
ICM2 
ICM3 

XREF must be specified in the FIRST leading dollar record, or it is ignored. 

An alternative to the steps specified on page 9-1 is to compile a BPL program by entering control infor
mation through the ODT as follows: 

COMPILE .... INSERT 0 7 ABCDEFG 

or, 

COMPILE .... VALUE 0 = ABCDEF 

Under MCP/VS 2.0 or later: 

COMPILE <program-name> BPL (ABCDEFGO) LIB 

11-4 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Operating Instructions 

Table 11-1 shows the meaning of each bit in the value statement. 

Table 11-1. Bits in the Value Statement 

Digit Bit Function 

A 8 Patch input is on disk pack; file-identifier is CARD 
4 Patch input is on disk; file-identifier is CARD 
2 Patch input is on magnetic tape; 

file-identifier is CARD 
Patch input is on cards (default); 
file-identifier is CARD. 

B 8 Master symbolic input is on· disk pack (PACK) 
4 Master symbolic input is on disk (DISK) 
2 Master symbolic input is on magnetic tape (TAPE) 
1 Patch input is an EDITOR format file 

C 8 Create new symbolic disk pack file (NEWP) 
4 Create new symbolic disk file (NEWD) 
2 Create new symbolic magnetic tape file (NEWT) 
1 Create new symbolic card file (NEWC) 

D 8 Match begin/end pairs (MTCH) 
4 Delete blank records (BLNK) 
2 List cross reference (XREF) 
1 Reserved 

E 8 List generated code (CODE) 
4 List symbolic input, double spaced (LIST) 
2 List symbolic input, single spaced (LST l) 
1 Suppress warning messages (SUPR) 

F 8 List symbolic input beginning in print 
position 37 (JAPN) 

4 Print listing using upper case only (UPER) 
2 List only error lines (NPRT) 
1 Negate LIST and LSTl if syntax errors occur (SPEC) 

G 8 Replace an old copy of object file with new copy 
(REMY) 

5024789 

4 Reserved 
2 Suppress listing of dropped records 

in $$DROP statement (DUS) 
Reserved. 

11-5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Operating Instructions 

Example 

COMPILE EXAM WITH BPL VALUE 0 = 240600 

1. Compile BPL program EXAM 

2. Patch input is a magnetic tape 

3. Master Program is a magnetic tape 

4. No new file 

5. Delete blank records 

6. Cross-reference list 

COMPILE EXAM WITH BPL INSERT 0 7 0002480 

1. Compile BPL program EXAM 

2. Patch input is cards (default) 

3. Cross-reference listing 

4. Double space list 

5. 3 7 print position printing (compressed listing) 

Compiler Operational References 
Occasionally, a compile-time address error will occur due to stack overflow. This happens, for example, 
when IF or CASE statement are nested too deeply or there are too many levels in a data description for 
the compiler to handle with its normal stack mechanism. 

When this happens, the stack size can be increased beyond the 3000-digit default by inserting into the 
?COMPILE ... MCP control record, INSERT 10 6 NNNNNN where NNNNNN is a 6-digit number larg
er than 003000, specifying total stack size in digits. An MCP MEMORY clause must also be included 
to increase the compiler size by an equal number of digits. 

Large programs require additional memory for efficient compiles. In general, any program with more 
than 2500 lines of source will compile more efficiently if the compiler is given more memory. Increments 
of l OKD should be added as the size of the source increases. In addition, the following errors may occur 
during a compile which can indicate insufficient memory allocation. 

e Erroneous syntax errors 2311, and 2601. 

• Compiler failure with invalid arithmetic data. 

11-6 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Operating Instructions 

File Equate Information 
When you run the BPL compiler in a multiprogramming environment, you need to know the internal 
and external names BPL uses for its input and output files. Table 11-2 provides a list of these names. 

Table 11-2. Internal and External 110 File Names 

File Internal 
Name 

Master symbolic in (CARD, TAPE, MSTRFL 
DISK, PACK). 

Patch symbolic in (CARD, TAPE, PTCHFL 
DISK, PACK). 

Patch symbolic in (Editor format). REMTFL 

Master symbolic out (CARD, MSTROT 
TAPE. 
DISK, PACK). 

Symbolic/error list (PRINTER). PRINT 

Example 

? FILE MSTROT = FORTOT 

? FILE PRINT = FORTPR 

Input 

External 
Name 

BPLSYM 

CARD 

CARD 

BPLSYM 

PRINT 

The compiler can merge inputs from two sources on the basis of sequence numbers. When inputs are 
merged, the listing indicates inserts by a"*" preceding the sequence number, and replacementsby a"#" 
preceding #the sequence number. 

5024789 11-7 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Operating Instructions 

CANOE Editor Format Files 
CANDE EDITOR format files can be used as input to a BPL compiler and can function as patch input 
to a disk, tape, or disk pack symbolic. However, new symbolics created while using EDITOR files will 
not be in EDITOR file format. EDITOR input can be used for both batch and timeshared compiles. If 
running under the timeshared environment, the EDITOR will handle the necessary communication with 
the compiler. If running in batch, however, address 1 of the compiler must be set to 1 to indicate EDI
TOR format input; this is done with a VALUE or INSERT command in the COMPILE statement. For 
example, VA 0=410000 states that an EDITOR patch file on disk will be used; VA 0=810000 indicates 
a patch file on diskpack. Other dollar record options can also be included in this VALUE or INSERT 
statement. 

BPL compiles require either a leading dollar record (blank sequence number) as the first symbolic or a 
VALUE 0 or INSERT 0 statement if options other than the default values of card patch, double spaced 
listings are desired. However, since EDITOR format files require sequence numbers, the first symbolic 
record in an EDITOR files wil' be treated as a leading dollar record if: ( l) a dollar sign($) appears in the 
first position, (2) a dollar sign($) does not appear in the second position("$$ DROP ... " record is not a 
dollar record), and (3) the words "SET" or "RESET" do not appear as the next character string on that 
dollar record. Only the first record will be treated in this manner, and the grouping of several such dollar 
records at the beginning of the file will be the equivalent to having one leading dollar record and several 
other dollar records which reset the previous dollar record values. 

When running in the timeshared environment, a syntax error display listing a maximum of twenty errors 
and the associated symbolic lines will automatically be displayed onto the remote device from which the 
compile was initiated. In addition, any requested printer format listing will be generated. 

11-8 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

APPENDIX A 

BPL RESERVED AND KEY WORDS 

BPL places reserved type words in two levels, Class I (RESERVED) and Class II (KEY). 

A Reserved word is reserved throughout the entire compiler. It may be DEFINEd to give it new meaning 
within a block structure or the entire program. 

A Key word is only reserved in those contexts in which it is meaningful. Any other usage is permitted 
within the compiler. For instance the following example will function properly: 

INTEGER MVC (12) MOD 4, B(12); 
B := [MVC] MVC; 

Reserved Words - Class 1 

ACCEPT 
ACCESS 
ACTION 
ADDRESS 
ALPHA 
AND 
ARM 
ARRAY 
ATT8Al 
AVAILABLE 

BASE 
BCT 
BEGIN 
BEGIN_ 
BIT 
BREAKOUT 
B2500 
B3500 
B4700 
B500 
B9350 
B9352 

CASE 
CASE_ 
CDATE 
CHANNEL 
CLOSE 
COMMENT 
COMMON 
COMPARE 
CONTROL 
COPY 
CRUNCH 

5024789 A-1 



A-2 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
BPL Reserved and Key Words 

DACCUM 
DATACOMM 
DATE 
DCT2000 
DEFINE 
DEMAND 
DESCRIPTOR 
DISARM 
DISC 
DISCONNECT 
DISK 
DISKORPACK 
DISKPACK 
DISPLAY 
DISPLA YUNIT 
DIV 
DO 
DO_ 
DOUBLE 
DOZE 
DUMP 

EDIT 
ELSE 
END 
ENTER 
ENTRY 
EOR 
EQL 
ESAC 
EXIT 
EXITBLOCK 
EXIT CASE 
EXITCOND 
EXITLOOP 
EXITROUTINE 
EXTERNAL 

FALSE 
FI 
FILE 
FILL 
FIND 
FIND PACK 
FIXED 
FLOW 
FORWARD 
FRIDEN7311 

GEQ 
GET 
GLOBAL 



B 2000/B 3000/B 4000/Y Series BPL Compiler Programming Reference Manual 
BPL Reserved and Key Words 

GO 
GTR 

HALT 

IA 
IACCUM 
IBM1030 
IBMl050 
IBM1070 
IF 
IF_ 
IFF 
IN 
INDIRECT 
INITIATE 
INTEGER 
INTERROGATE 
IO 
IX1 
IX2 
IX3 

JDATE 

LABEL 
LEQ 
LINES 
LINKAGE 
LOCK 
LSS 

MEMORY 
MIX 
MIX CALLER 
MIX ID 
MIXNUM 
MIXTBL 
MOD 
MUL 

NEQ 
NM 
NO 
NOT 
NUMERIC 

ocs 
OD 
OF 
OFFER 

5024789 A-3 



A-4 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
BPL Reserved and Key Words 

OI 
OLBANKING 
OPEN 
OR 
OUT 
OVERFLOW 
OVERLAY 
OWN 

PAGE 
PICTURE 
POLLQ 
POPQ 
PORT 
PORT_CURREC 
PORT_DATE 
PORT_EOF 
PORT_ERROR 
PORT_KEY 
PORT _MAXMSG 
PORT_Q 
PORT_STATE 
PORT_SUBQ 
PORT_TIME 
PRINTER 
PROCEDURE 
PROG_ENTRY 
PT PUNCH 
PTREADER 
PULLQ 
PUNCH 
PURGE 
PUSH 
PUTQ 

QUICKTIME 

RACCUM 
READ 
READER 
REAL 
REEL 
REINSTATE 
RELEASE 
REMAINDER 
REMOVE 
RESULTS 
REVERSE 
REWIND 
ROUTINETYPE 

SCAN 
SEARCH 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
BPL Reserved and Key Words 

SEEK 
SEGDICT 
SEGMENT 
SEGMENTED 
SET 
SIGNED 
SINGLE 
SN 
SORT 
SORTER 
SORTER4 
SPACE 
SPOMESSAGE 
STOP 
STORE 
SUBROUTINE 

TAPE 
TAPEGCR 
TAPEPE 
TAPE? 
TAPE9 
TC500 
TC700 
THEN 
TIME 
TIMER 
TIME60 
TO 
TOP LOOP 
TOUCHTONE 
TRACE 
TRANSLATE 
TRUE 
TT28 
TWX 

UA 
UN 
UNLOCK 
UNSEGMENTED 
UNTIL 

VALUE 

WAIT 
WHILE 
WITH 
WRITE 

ZIP 

5024789 A-5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
BPL Reserved and Key Words 

Reserved Words - Class 2 

A-6 

ABORT 
AFTER 
ALL 
ANY 
AREA 
ASCENDING 
ASCII 
ASSIGN 
AW AITING_HOST 

BACKUP 
BINARY 
BLOCKED 
BLOCKSTRUCTURE 
BRANCH 
BREAK 
BUFFERS 
BUR 
BY 

CANCEL 
CENSUS 
CHANGEDSUBFILE 
CHANGEEVENT 
CHECK 
CHR 
CLOSED 
CLOSE_PENDING 
COMPRESSION 
COMPRESSIONPOSSIBLE 
COMPUTER 
CONDCANCEL 
CRCRINPUT 
CR CR OUTPUT 
CURRENTRECORD 
CYLINDER 

DATA_LOST 
DCP 
DEACTIVATED 
DEACTIV A TION_PENDING 
DELETEETX 
DELINK 
DESCENDING 
DGT 
DIAL 
DICTIONARY 
D IALOGPROTOCOLLEVEL 
DISCONNECT 
DISCONNECTED 
DYNAMIC 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
BPL Reserved and Key Words 

EBCDIC 
ENABLE 
EOP 
EQUAL 
EXTENDED 

FILESIZE 
FILESTATE 
FLIP FLAG 
FOR 
FORMS 
FPT 
FROM 

GIVING 
GREATER 
GUARDED 

HOSTNAME 

IGNORE 
INCREMENT 
INPUT 
INPUTEVENT 
INST 
INTNAME 
IO ERROR 

JSL 
JSR 

KEY 

LASTSUBFILE 
LINK 
LOW 
LOWEST 

MAX CENSUS 
MAXRECSIZE 
MAXSUBFILES 
MCP 
MODE 
MULTIFILE 
MVC 
MYHOSTNAME 
MYNAME 

NO_BUFFER 
NO_ERROR 
NO_FILE_FOUND 
NONE 
NOTIMEOUT 

5024789 A-7 



A-8 

8 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
BPL Reserved and Key Words 

ODD PAR 
ODTINPUTPRESENT 
OFF 
OFFERED 
OFFSET 
ON 
OP 
OPENED 
OPTIONAL 
OUTPUT 
OUTPUTEVENT 

PARITY 
POLL 
PRESETSTX 
PRIVATE 
PROCESSOR 
PUBLIC 

RANDOM 
READY 
RECORD 
REM 
RERUN 
RETRY 
RETURN 
ROUTINE 
RTSLRESET 
RTSLSET 
RUN 
RUNNING 

SA 
SAVE 
SECURITY GU ARD 
SECURITYTYPE 
SECURITYUSE 
SERIAL 
SHARED 
SHUTTING_DOWN 
STACK 
STALEMATE 
STOQINPUT 
STOQOUTPUT 
STREAM 
SUBFILEERROR 
SUPPRESS 

TGL 
THRU 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
BPL Reserved and Key Words 

TITLE 
TONE 
TRANSTBL 

UL 
UNEQUAL 
UNREACHABLE_HOST 
USA 
UNSUPPORTED_FUNCTION 
USING 

VARIABLE 
VOICE 

WAIT 
WDS 
WORK 
WORKAREA 
WRITEREAD 
WRITEREADTRANS 
WRITETRANSREAD 

XCH 

YO URN AME 
YOURUSERCODE 

ZONE 

5024789 A-9 





B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

APPENDIX B 

HOW TO WRITE A BPL PROGRAM 

GENERAL 

The writing of a computer program presupposes an understanding of the problem to be solved and the 
selection of a suitable programming language which will provide the most efficient solution to that prob
lem. Assuming that these conditions are satisfied, the following considerations are presented as a guide 
in the writing of a BPL source language program. 

WRITING RULES 

The BPL compiler accepts a card image input file where columns 1 through 72 may be used for state
ments, declarations, or comments and columns 73 through 80 are the record sequence-numbers. 

The coding may be specified in a completely free form; that is, any number of statements, declarations, 
or comments may appear on a single record[s] or over as many records as desired. Column 72 is consid
ered adjacent to column 1 of the next record. Extra spaces may be used freely throughout the BPL code 
to improve the readability of the text. 

For example, the IF statement may be written as: 

IF X EQL Y THEN X := 0 
ELSE X := 1 

Where each line on the page represents a separate record. 

FORM OF A BPL PROGRAM 

Programs are divided into logical units called PROCEDUREs and blocks, each beginning with a BEGIN 
statement and terminating with an END statement. PROCEDUREs have an internal structure as de
scribed in the Declaration Statements of this manual. A PROCEDURE has a definite ordered relation
ship to all other PROCEDUREs within a program: either side-by-side (parallel PROCEDURE) or subor
dinate (nested PROCEDURE). The ordering defines the scope or range of a data-name, and the 
PROCEDURE(s) which may be invoked from a given PROCEDURE. 

In the description that follows, the main program is considered to be the outermost block (level zero). 
The PROCEDURE(s) contained within the program are considered as being nested at least one level 
down; that is, they are on level 01 or greater. Data-names and nested PROCEDUREs which are used 
within a PROCEDURE must be declared before any executable statements in that PROCEDURE. 

5024789 B-1 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
How To Write a BPL Program 

Table B-1 shows the structure of a typical, though arbitrary, BPL program. Each bracket represents a 
PROCEDURE and is labeled as being PROCEDURE-n (P) through END-n (E ). The declarations and 
executable statements are indicated by D and X, where n denotes the PROCEDURE or block to which 
the statement belongs. Although the numnber and nesting of PROCEDUREs will vary among programs, 
the relationship of the parts, declarations, nested-PROCEDUREs, and their executable statements must 
be as shown. That is, all DECLAREs for a given PROCEDURE must appear in that PROCEDURE be
fore declaring any nested-PROCEDURE(s) and before execution of any statements. However, when a 
nested-PROCEDURE(s) is declared, it must be completed in its entirety (including the executable state
ments and END;) before the first executable statement of the parent-PROCEDURE can be specified. 

Five PROCEDUREs, three of which are on level I (P 1, P2 , and P) and two on level 2 (P~ and P) are shown 
in figure B-1. The outer block is called the program and has a BEGIN and END statement. 

Execution of an object BPL program starts at the first executable statement in the outermost block (state
ment XO) and is the statement which immediately follows all nested PROCEDUREs. Execution of state
ments then continues successsively from statement to statement within the outermost block until a 
STOP or the final END statement is encountered, which brings the program to a normal end-of-job. 

Since the source code line format in BPL is very flexible, it is suggested that statement levels be indented 
on new lines to improve the readability of a program. Thus, each new PROCEDURE may be indented 
to a new margin, and its corresponding END may be placed on that same margin. Also, since statements 
may contain other statements (such as DO, IF, and CASE), each lower statement-level may be indented 
and when a higher-level is resumed, its statements should be placed at the proper level margin. It should 
be noted that the above is only a suggestion, and that identing of statements will in no way affect the oper
ation of a BPL program. 

B-2 

BEGIN 
Do 

Statements 

Table B-L A Typical BPL Program 

Comments 

Declare global data-names 
(level- 0). 

Begin PROCEDURE 1. 
PROCEDURE l's local data 
declarations. 

PROCEDURE l's executable 
statements. 

END of PROCEDURE 1. 



5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
How To Write a BPL Program 

Table B-1. A Typical BPL Program (Continued) 

Statements 

P, 

E, 

D, 

D, 

X, 

X, 

D4 

Comments 

PROCEDURE 2 (level-2). 
Local data. 

PROCEDURE 2's executable 
statements. 

END of PROCEDURE 2. 

PROCEDURE 3's local data-names 
that are also global to 
PROCEDUREs 4 and 5 (level-1). 

PROCEDURE 4's local data-names 
(level-2). 

X4 PROCEDURE 4's executable 
statements. 

END of PROCEDURE 4 

B-3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
How To Write a BPL Program 

END; 

Tabie B-L A Typical BPL Prngram (Continued) 

Statements 
p_ 

) 

E_ 
) 

xi 

E, 

D 
) 

Comment§ 
PROCEDURE S's local data-names 
(level-2). 

PROCEDURE S's executable 
statements. 
END of PROCEDURE 5. 

PROCEDURE 3's executable 
statements. 

END of PROCEDURE 3. 

First executable statements in 
program. 
Last executable statements in 
program. 

A study of the examples given, with the detailed descriptions of the BPL statements and declarations as 
provided elsewhere in this manual, should aid in a better understanding of how a BPL Program is writ
ten. 

B-4 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
How To Write a BPL Program 

PROCEDURE CALLING 

Any PROCEDURE may call (invoke) any other PROCEDURE which is currently invoked (any direct
ancestor) or any PROCEDURE which is nested one level down within a currently invoked PROCE
DURE (any first-generation descendent). 

For definitional purposes, the program is considered as being the outer-most PROCEDURE and is al
ways in a currently-invoked status. 

The rule follows directly from the concept of scope. Each PROCEDURE passes all of its declared names, 
as globals, to all of its descendents. This includes the names of all PROCEDUREs nested one level down. 
Notice the difference between the name of a PROCEDURE on the current level and the PROCEDURE 
being named which is on the next lower level. 

Relationships 

Let figure B-1 depict the compile time relationships of the specified PROCEDUREs. 

PROGRAM 

LEVEL ZERO 

LEVEL ONE 

LEVEL TWO 

LEVEL THREE 

LEVEL FOUR 

Figure B-1. Compile Time Relationships of Procedures 

Then the SCOPE or range of each PROCEDURE is as follows: 

• PROCEDURE PN may invoke any of the following: PN, PAAB, PAA, PA, PAB, PB, or PC. 

• PROCEDURE PB may invoke any of the following: PA, PB, and PC. 
.. 

• The parent-PROCEDURE may invoke PA, PB, PC. 

• PROCEDURE PAB may invoke PAB, PABA, PA, PAA, PB, and PC. 

5024789 B-5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
How To Write a BPL Program 

As another example, let A, B, C, D, L M, and K be the names of a set of PROCEDUREs. If the compile 
time relationship of the PROCEDUREs is: 

A (B (K), C (L, M), D) 

Then the SCOPE of a PROCEDURE-invoking statement in each PROCEDURE is: 

e A may call A, B, C, or D. 

• B may call B, K, A, C, or D. 

° K may call K, B, A, C, or D. 

@ L may call L, C, M, A, B, or D. 

e M may call M, C, L, A, B, or D. 

• D may call D, A, B, or C. 

This example could be represented as shown in figure B-2. 

' .QI 

A 

I" 
c 

c D 

Figure B-2. The Scope of a Procedure 

B-6 

IK 

L_ 
IM 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
How To Write a BPL Program 

TABLE CREATION 

Any contiguous data group can be treated as a contiguous record or table. The following is an example 
of a table named INPUT _AREA: 

ALPHA INPUT.AREA ( 80) ; 
ADDRESS = INPUT_AREA; 
ALPHA LAST_NAME (15); 

ALPHA MID_INITIAL (l); 
ALPHA FIRST_NAME (16); 
INTEGER SS_NO (9); 
INTEGER USE_CODE (l); 

ALPHA COMMENT_AREA ( 43) ; 
ADDRESS; 
ALPHA END_TABLE (O); 

This same table could have been written without the first, second, and ninth lines and referred to as 
LAST_NAME THRU END_TABLE. 

5024789 B-7 



B .:?000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
How To Write a BPL Program 

&SAMPLE PROGRAM************************************************** 

B-8 

SAMPLE: & OPTIONAL PROGRAM ID. 

& 
& 
& 
& 
& 
& 
& 

********************************************** 
THIS IS A SAMPLE BPL PROGRAM TO PERFORM 
A CARD TO TAPE OPERATION.THE NUMBER OF 
CARDS READ IS DISPLAYED UPON THE ODT. 
********************************************** 

BEGIN 

LABEL EOF, LOOP; 

INTEGER COUNTER (6):= O; 
ALPHA DISPLAYEDCOUNTER (6); 
ALPHA WORKSPACE (80) MOD 4; 
FILE CARDIN, READER, 

RECORD WORKSPACE 80, BUFFERS 2; 
FILE TAPEOUT, TAPE, 

RECORD WORKSPACE 80, BUFFERS 2; 
OPEN IN CARDIN; 
OPEN OUT TAPEOUT; 

LOOP: 

EOF: 

END: 

READ CARDIN [ EOF] ; 
COUNTER : = COUNTER + 1 ; 

WRITE TAPEOUT; 
GO TO LOOP; 

CLOSE CARDIN; 

CLOSE TAPEOUT LOCK; 

DISPLAYEDCOUNTER := COUNTER; 
DISPLAY DISPLAYEDCOUNTER; 

& ONE BEGIN IS REQUIRED 
& AT THE BEGINNING OF 
& EACH PROGRAM. 
& LABEL DECLARATIONS 
& MUST APPEAR BEFORE 
& INSTRUCTION CODING. 
& COUNTER PRESET TO 0. 
& COUNTER FOR DISPLAY. 
& COMMON WORK AREA 

& CARD INPUT 

& TAPE OUTPUT 
& OPEN CARD INPUT FILE. 
& OPEN TAPE OUTPUT FILE 
& PREVIOUSLY DECLARED 
& LABEL. 
& READ CARD 
& INCREMENT COUNTER 
& BY 1. 
& WRITE CARD TO TAPE 
& RETURN TO READ. 
& WHEN LABEL IS USED IT 
& IS FOLLOWED BY A 
& COLON (:). 
& INSTRUCTIONS ARE 
& TERMINATED WITH A 
& SEMICOLON ( ; ) . 
& CLOSE INPUT CARD 
& FILE 
& CLOSE OUTPUT TAPE 
& FILE WITH LOCK. 
& CONVERT TO ALPHA MODE 
& TYPE COUNT ON SPO 
& ONE END IS REQUIRED 
& FOR EACH BEGIN. 
& ALSO THE LAST END 
& WILL GENERATE A 
& STOP RUN COMMUNICATE. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
How To Write a BPL Program 

SAMPLE: & Optional program ID 

& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
& This sample BPL program lists and reformats a diskpack file. 
& The number of records read is displayed at the ODT. 
& A procedure is used, to illustrate BPL program structure. 
& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

BEGIN & BEGIN is required at outermost block 

LABEL EOF; & Labels used within each block must be 
& declared before that block's 

INTEGER COUNTER (06) := O; 
BIT MORE_DATA : = TRUE; 

& statements 
& Counter preset to zero 
& Boolean flag 

ALPHA INREC (80) MOD 4, 
OUTREC (132) MOD 4; 

ADDRESS = INREC; 

& Must declare file record areas before 
& FILE, and must be MOD 4. 

ALPHA IN_NAME ( 40) , 
IN_ADDR ( 40) ; 

ADDRESS; 

& Redefine 
& fields 
& within INREC 
& End redefinition 

FILE INFILE, 
DISKPACK 20 BY 500, 
RECORD INREC 80, 
BUFFERS 2, BLOCKED 9; 

& Input file (name defaults to "INFILE") 
& Pack, 20 areas, 500 records/area 

FILE OUTFIL, 
PRINTER, "SAMPLE", 

RECORD OUTREC 132; 

& Record area is INREC. 
& 2 buffers, 9 records per block 
& Outut file 
& Creates a print file named "SAMPLE" 
& Record area is OUTREC. 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
& Procedures must be declared before the executable instructions 
& in the block 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

PROCEDURE DISPLAY-RESULTS; 
BEGIN 

5024789 

& To display count; OWN is 
"Records read = xxxxxx"; & required to 

OWN ALPHA DISPLAY_DATA (21) 

END; 

DISPLAY_DATA.+15.6.NM 
DISPLAY DISPLAY_DATA; 

preinitialize 
COUNTER; & Convert to display mode 

& Display it 

B-9 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
How To Write a BPL Program 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
& First executable statement is next 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

OPEN IN INFILE; 
OPEN OUT OUTFIL; 

WHILE MORE_DATA DO_ 
READ INFILE [EOF] 

EOF: 

OD; 

COUNTER : =COUNTER + l ; 
OUTREC :=IN_NAME; 
OUTREC.+50.40 := IN_ADDR; 
WRITE OUTFIL SINGLE; 
TOPLOOP; 

MORE__DATA :=FALSE; 

CLOSE INFILE; 
CLOSE OUTFIL; 
DISPLAY-RESULTS; 

END; 

B-10 

& Open input file 
& Open output file 
& Begins WHILE ... DO_ loop 
& Read record 
& Increment counter 
& NAME field to output record 
& Put ADDR 10 bytes past name 
& Write output, single-spaced 
& Return to beginning of loop 
& End_of_file label from READ 
& Reset boolean flag 
& End of WHILE ... DO_loop 

& Close files 
& 
& Procedure call 
& End program 



( 

( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

APPENDIX C 

WARNING AND ERROR MESSAGES 

GENERAL 
The following is a list of warning and error numbers with their respective descriptions. 

Warning numbers are four digit numbers where the first two digits range from 00 through 09 and the last 
two digits represent variations within each warning category. Currently the warning categories are: 

00 Sequence error (warning only). 

01 Receiving field warning. 

02 Limit warning. 

03 Address warning. 

04 Controller warning. 

05 Declaration warning. 

06 Through 09 are not used. 

Error numbers are four digit numbers where the first two digits range from 10 through 99 and the last 
two digits represent variations within each error category. Currently the error categories are: 

10 Excess operands. 

11 Subscript error. 

12 Controller error. 

13 Illegal operand. 

14 Missing special character. 

15 Duplicate word. 

16 Illegal word. 

17 Unidentified word. 

18 Missing reserved word. 

5024789 C-1 



19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

C-2 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

Illegal literal. 

Illegal statement. 

Invalid character. 

Begin/and error. 

Illegal declaration. 

Duplicate declaration. 

Incomplete statement. 

Illegal combination. 

Limit exceeded. 

Missing key word. 

Compiler error. 

Illegal special character. 

Illegal picture declaration. 

Expression errors. 

Through 99 are not used. 

NOTE 
All error and warning messages printed by BPL contain a line of XXXX-
-X to indicate the column in error. The number of "X"s indicate the col
umn in error. The error is always printed after the symbolic line in error. 
It is not necessarily printed immediately after the error condition due to 
scanning considerations. Most errors will be in the two symbolic records 
immediately preceding the error message. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

WARNINGS 

00 Sequence errors. 

0000 Sequence error. 

01 Receiving Field Warnings 

0100 

0101 

0102 

0103 

0104 

0105 

0106 

0107 

0108 

0109 

0110 

5024789 

Receiving field too large for logical operation. 

Dividend too large to move to REMAINDER. Possible run time error condition. 

Receiving field too large to contain MEMORY. 

Sizes are not equal when using [WDS] override. The smaller size is used. 

The sending and receiving fields for TRANS LA TE are not equal. The smaller size is used. 

Receiving field too small for literal. The literal is truncated. 

Receiving field for subscript computation too small if subscript has maximum possi
ble value. 

Indirect field length for receiving field on ADD, SUBTRACT, or MULTIPLY. Possi
ble run time overflow. 

Data name less than 6 digits. 6 digits will be used for timer instructions. 

Receiving field smaller than maximum attribute size. Possible truncation. 

Receiving field size should be less than the JOBINFO response area size. 

C-3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

02 Limit Warnings 

0200 Compiler could not assign as mush dynamic space as was requested. Summary will 
indicate what amount of memory space was actually obtained. 

0201 Requested core too small. Assigned core is shown in the summary. 

0202 Not enough memory for SORT intrinsic. 

0203 The REAL number used in this statement has been truncated. 

0204 Coding exceeds 300KD. Any BCT's or ENTER's above 300KD will given specified 
results. 

0205 Data name greater then 30 characters. Truncated to 30. 

0206 Eight bit data names are limited to 150 characters if initialized. 

0207 Alpha literal too long. Truncated to maximum size for specified attribute. 

0208 Identifier size exceeds maximum attribute size. Possible truncation. 

03 Address Warnings 

0300 A stack relative data name sent as a name parameter will generate an invalid address 
if the stack is at an address over 1 OOKD. 

0301 The DIVIDE instruction used indirect length fields on the dividend and quotient/ 
divisor such that REMAINDER length cannot be determined. The actual dividend 
will be used to store the REMAINDER. 

0302 An increment/decrement controller has been used with a name parameter. Resultant 
address will be offset to some stack address by the increment/decrement. 

0303 An address constant, alpha constant or instruction would have occurred on an odd 
address. One digit of fill was added. 

0304 Indirect data names used in arithmetic operations with CONTROL EXTENDED set 
have their addresses incremented by two digits and their size decreased by two digits. 

C-4 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

04 Controller Warnings 

0400 An index register has been used as a controller override on an operand having im
plied index usage, i.e., buffer or stack relative. 

0401 When indirect field length is used, the compiler cannot determine field sizes in an 
arithmetic expression. 

0402 A UN result is assigned to a receiving field with a UA or an SN controller. 

0 5 Declaration· Warnings 

0500 CONTROL OP B4700 is not set, so the following FIXED declarations are processed 
as indicated: 

0501 

0502 

0503 

0504 

0505 

0506 

0507 

0508 

5024789 

FIXED INTEGER A; - SIGNED INTEGER A(7); 

FIXED REAL B; - REAL B (8); 

FIXED DOUBLE C; - REAL C (16); 

Duplicate setting of CONTROL OP declaration: OP 4 700 or OP 3500 was previous
ly set when CONTROL statement was encountered. 

Global greater than 6 characters. Characters used as 2 digit hexadecimal. 

Not enough room in dictionary for entry. If not accompanied by 2932, when an extra 
forward declaration name of the same length was found. 

Multiple buffers disallowed. Defaulted automatically to 1. 

File must be unblocked. Defaulted automatically to 1. 

Segmentation directions disallowed for Type II and Type HI ICMs. 

You may produce unpredictable results if you use both options of the mix function 
syntax in the same program. 

The DAT ACOM ACCEPT and DAT ACOM DISPLAY constructs are not imple
mented on operating system MCP/VS 2.0 and greater. 

C-5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

ERRORS 

10 Excess Operands 

1002 Excess operands in a DAT A COMM statement. 

11 Subscript Errors 

1100 Literal subscript caused resultant address to be negative 

1101 Subscript variable is not an index register, data name or literal. 

1102 The subscript variable used within an "ADDRESS OF" construct contains other than 
a numeric literal. 

1103 Subscript not numeric. 

1104 Subscripting is being attempted on a data name already indexed, i.e., double indexing. 

1105 FIND, MIXID, and MIXNUM cannot have an array element as program-id or file-name. 

12 Controller Errors 

1200 One or more of the following basic controller errors have been found by the scanner: 

1. Double setting of IA. 

2. Double setting of hardware usage options, i.e., UN, UA, SN. 

3. Illegal word as a controller variable. 

4. Double setting of index registers. 

5. Double increment/decrement. 

6. Numeric literal 6 digits. 

7. Double length overrides or zero length. 

8. Double indirect field length labels. 

9. Illegal use of a length with an indirect field length. 

10. A function output parameter must be the only override. 

C-6 



1201 

1202 

1203 

1204 

1205 

1206 

1207 

1208 

1209 

1210 

1211 

1212 

1213 

1214 

1215 

1217 

1218 

1219 

1220 

1221 

1222 

5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

A controller other than an index register is associated with the REAL-DOUBLE operand. 

An undigit cannot be used as an override. 

The indirect field name used as a controller variable has a base relative address 38, 
36 if SRD. 

The indirect field name has a base relative address below 40 but is an uneven address. 

The decrement used as a controller override causes the address to go negative for the 
segment. 

SN controller not allowed in scans; UN not allowed on SCAN ZONE. 

An indirect field controller has been used illegally in association with this bit type 
statement or logical type statement. 

Controller fields of usage INFL, LENGTH, or IA may not be used in conjunction 
with a bit declaration. 

An indirect field length cannot be used with the "beginning of search" address in a 
SEARCH statement. 

A label has an increment or decrement which is greater than + 9999. 

An indirect field length has been used with a bit, label, or procedure name. 

Function output overrides are only allowed on port files. 

INFL not allowed when setting an attribute. 

An IA, UA, or NM was used on a field that does not start at a MOD 2 location. 

Controllers are not allowed with any of the following reserved words: DA TA, 
JDATE, TIME, TIME60, MEMORY, FIND, FINDPACK, MIX, MIXCALLER, 
MIXID, MIXNUM, MIXTBL, JOBINFO. 

IA not allowed on first list entry in SEARCH LINK/DELINK. 

SN not allowed as a search key controller in SEARCH LINK/DELINK. 

A when indirectly addressed and used in a logical comparison must have a length of one. 

Controllers are not allowed on the receiving field for MIXTBL. 

Controllers are not allowed with an [EOF] label. 

INFL field used as A_FIELD for SRD must be of length 4. 

C-7 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

13 Illegal Operands. 

1300 A literal cannot be a receiving field. 

1301 AF or BF field size exceeds 100. 

1302 "REMAINDER" has been used with no prior DIVIDEs in this segment. 

1303 Parameter block address must be MOD 4. 

1305 One or more of the operands is signed numeric in this Boolean expression. 

1306 Receiving field too small. 

1307 The data name in DOZE is greater than 5 digits long. 

1308 In a ZIP statement the data name must be ALPHA with no IA or indexing used. 

1309 REAL arithmetic requires signed operands. 

1310 A TRACE statement does not contain a literal, or contains a literal that is not UN, 
that is greater than 2 digits long or that has a value greater than 3. 

1311 The increment in the SEARCH statement is not a literal or an indirect field address. 

1312 IUegal receiving field in assignment. 

1313 The operand in this arithmetic statement is ALPHA. 

1314 SPOMESSAGE receiving field size is less than 160 digits. 

1315 An accumulator operand has been used but the CONTROL statement has not indi
cated B4700 OP codes. 

1316 The increment cannot be calculated in the SEARCH construct when INCREMENT 
ADDRESS is used because of one of the following: 

C-8 

1. A data name does not follow the word ADDRESS. 

2. The data name used after ADDRESS is on a different base then the 
search field name. 

3. Indexing with different index registers on the two fields. 

4. Indirect addressing is used on either of the two fields. 

5. Either one of the two fields is a label. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

1317 A data name used with a fixed length operand must be at a MOD 4 address and cor
rect length for INTEGER, REAL, or DOUBLE. 

1318 In SPOMESSAGE, the sending field must be a data name or literal and the receiving 
field must be a data name. 

1319 A data name is required for INTERROGATE ADDRESS that is INTEGER (6), IN
TEGER (16) for INTERROGATE. 

1320 A FIB name is required as the first entry in a DA TA COMM statement. 

1321 A WAIT variable must be declared INTEGER (5). 

1322 The sending or receiving field for ACCEPT or DISPLAY from remote SPO must be 
ALPHA and less than 100 characters. 

1323 The ACCEPT or DISPLAY SPO-id must be an ALPHA data- name, less than 60 
characters. 

1324 The TRANSLATE table must be at a MOD 1000 address. A literal address is not allowed. 

1325 "ADDRESS OF" cannot be used as an operand in arithmetics as the @C@ will cause 
erroneous results. 

1326 All fields in a move data instruction must be at MOD 4 addresses. 

1327 Missing file name or program name. Must be ALPHA literal of 6 characters or less. 

1328 OVERLAY requires segment number less than 999. 

1329 The response area for DAT A COMM EXTENDED must be a minimum of 26 digits 
m size. 

1330 

1331 

1332 

1333 

1334 

5024789 

A mantissa size of zero has been generated. A signed field of size 3 or less has been 
used as a REAL operand while the exponent requires 3 digits of the total length of 
this signed field to be used as a REAL operand. 

Sort key not within the sort record. 

Location for loading the mix table must be MOD 2. 

Sort record must be MOD 4 in length. 

Delay time for ACTION 8 MICR must be 4. UN. 

C-9 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

14 Missing Special Characters 

1400 Missing comma. 

140 l Missing right bracket. 

1402 Missing semicolon. 

1403 Missing right parenthesis. 

1404 Missing left bracket. 

1405 Missing left parenthesis. 

1406 Missing colon. 

1407 Missing assign. 

1408 Missing comma or right parenthesis in PROCEDURE call parameter string. 

1409 Missing "=" in a DEFINE declaration. 

1410 Missing assign or left parenthesis. 

1411 Missing right parenthesis, assign, or semicolon. 

1412 Missing left parenthesis in a PROCEDURE call declared with parameters. 

1413 Missing left parenthesis for a parametric DEFINE. Even if it is called with a null ar
gument list it must have the parenthesis. 

1414 An equal sign is expected. 

1415 A period is expected. 

15 Duplicate Words 

1500 Duplicate declaration. 

1501 File be same name. 

1502 Duplicate ODTINPUTPRESENT in the wait statement. 

1504 Duplicate label in this segment. 

C-10 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

16 Illegal Words 

1600 An identifier must start with a letter, not a number. 

1601 An identifier did not follow the reserved word PORT in the port declaration. 

1602 An identifier did not follow the reserved word FILE in the FILE declaration. 

1603 An illegal key word has been found in the FILE declaration. 

1604 An identifier did not follow the key word KEY in the file declaration. 

1605 An illegal word follows MOD in the DYNAMIC declaration. Should be a literal 2 or 
4 only. 

1606 Illegal word inside brackets. 

1607 This declaration contains either: 

1608 

1609 

1610 

1611 

1612 

1613 

1614 

1615 

1616 

1617 

1618 

1619 

5024789 

1. An illegal word inside parentheses not being an integer or the word 
DYNAMIC. 

2. A reserved word has been used as an identifier. 

Illegal word following MOD. Must be a numeric literal not exceeding 4 digits long 
and not 0. If local variable it may only be MOD 2. 

An identifier does not follow the reserved word PROCEDURE or SUBROUTINE. 

Illegal parameter specified in this PROCEDURE declaration. 

Illegal word as a primary declarative or statement starter. 

Illegal word in FILE declaration. 

An illegal word follows key word LABEL in FILE declaration. 

Hlegal word in I/O statement. 

Missing input file name following the reserved word SORT. 

Missing output file name in SORT statement. 

Illegal word in SORT statement. 

Illegal CLOSE option in SORT statement. 

Illegal PARITY type in SORT statement. 

C-11 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

1620 Illegal sort key in SORT statement. 

1621 A data name must follow operator or assign. 

1622 A reserved word has been used illegally or a unary + or - is not followed by a nu
meric literal. 

1623 An illegal word has been found in the head portion of the CASE statement. 

1624 An illegal word has been found in the TRACE, DUMP, ZIP, DOZE, FILL. STOP. 
EXITROUTINE, ACCEPT, DISPLAY. 

1625 An illegal word has been found or a word missing in the port declaration. 

1626 Illegal file attribute name. 

1627 An identifier did not follow the reserved word SET in the set statement. 

1628 Illegal use of override, for example, [ALL]. [JSL]. [XCH], and so forth. 

1629 Illegal use of reserved word ELSE. 

1630 A word other than a data name or label follows DUMP. 

1631 An illegal word has been found in declarations. 

1632 TRUE and FALSE used in context illegally. 

1633 Illegal word found in parameter list when PROCEDURE called, this is, mismatched 
parameters. 

1634 Illegal word as statement starter. 

1635 Illegal buffer area in FILL statement. 

1636 Illegal program-id in FILL statement. 

1637 Illegal action label in FILL statement. 

1638 Illegal formal parameter in a parametric DEFINE. Should be a BPL identifier. 

1639 Illegal word in EDIT statement; Should be a data name, label, or picture 

1640 In-line constants using the STORE statement can only be initialized to literal values. 

1641 Illegal word as entry point; must be a data name, label, or procedure. 

1642 Illegal word as EXIT point; must be a data name, label, or procedure. 

1643 Illegal word used in a TRANSLATE statement. All fields must be data names or labels. 

1644 An illegal word has been used as an arithmetic operand. 

C-12 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

1645 Illegal word in move data; must be a data name, label, or procedure. 

1646 Entity following TRANSLATE in SORT statement is not an alpha literal. 

164 7 A branch type instruction must usa a data name, label or procedure name. 

1648 A stack relative variable may only be referenced within the level of nesting in which 
it was declared. 

1649 Illegal word in MOVE LINKS; must be a label, data name, or procedure. 

1650 EXITCOND, EXITCASE, EXITLOOP, TOPLOOP does not appear within the ap
propriate type statement. 

1651 ODDPAR valid with type file only. 

1652 An illegal word has been found or a word missing in the get statement. 

1653 An illegal word has been found or a word is missing in the get statement. 

1654 Illegal option for the wait statement. 

1655 Record address was declared as fixed. Cannot be changed. 

1656 One of the following problems has been found. 

1657 

1658 

1659 

1660 

1661 

1662 

1663 

1664 

1665 

5024789 

1. INFL not allowed 

2. Wrong size. 

3. Wrong type. 

4. Not a data name. 

File must be a port file. 

The specified attribute cannot be set. 

Identifier is too small to receive results information. 

Unrecognized or illegal word found in Privileged Instructions. 

Module name is required for Type II ICMs. 

Hlegal word in the wait statement. 

An identifier did not follow the reserved word GET in the get statement. 

Missing filename in the wait statement. 

Missing identifier in the wait statement. 

C-13 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

17 Unidentified Words 

1701 Word not found in dictionary. 

1 702 Parameter declaration not found in formal parameter list. 

1703 LABEL was declared, used, but did not appear. 

1704 Missing module or program name. 

18 Missing Reserved Words 

1800 Missing reserved word INTEGER after SIGNED. 

1801 Missing reserved word PROCEDURE after SEGMENTED. 

1802 Missing reserved word THEN. 

1803 Missing delimiter. 

1804 Missing reserved word DO. 

1805 Missing reserved word UNTIL. 

1806 Missing reserved word [XCH]. Received 3 operands - believed to be a 3 way move link. 

1807 Missing reserved word IN or OUT in FILL statement. 

1808 Missing reserved word following FILL in this DAT A COMM construct. Should be 
READ, WRITE, WRITEREAD, WRITEREADTRANS. 

1809 Missing "ADDRESS;" required to unstack "ADDRESS=". 

1810 Missing reserved word MODE. 

1811 Missing keyword "ON" before family name. 

19 ILLEGAL LITERALS 

1900 Special literal within % or @is not range 0 through 9, A through F. 

1901 Special alpha literal (delimited by % ) is not an even number of digits. 

1902 Literal exceeds 99 digits or 99 characters. Truncated to 99. 

C-14 



i 
I 

1903 

1904 

1905 

1906 

1907 

1908 

1909 

1910 

1911 

1912 

1913 

1914 

1915 

1916 

1917 

1918 

1919 

1920 

1921 

1922 

1923 

1924 

1925 

1926 

5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

Number of areas (rows) in the FILE declaration exceeds maximum allowed by the 
MCP, namely 100. 

Number of records per area in the FILE declaration exceeds 8 digits in length. 

RECORD size is either not a numeric literal or exceeds 5 digits in length in the 
FILE declaration. 

A FIXED INTEGER literal may not exceed 7 digits in length. 

Literal exceeds 6 digits in length. 

The SAVE FACTOR literal in the FILE declaration exceeds 3 digits in length. 

Illegal literal following RERUN in the FILE declaration. 

Illegal associated with BUR standard label in the FILE declaration is not an alpha 
literal, or exceeds 44 characters. 

Illegal literal following BUFFERS in the FILE declaration. 

Illegal literal following BLOCKED in the FILE declaration. 

Illegal literal following TRANSLATE in the FILE declaration. 

Illegal channel number in WRITE statement. Literal exceeds 2 digits. 

Literal must be 1 or 2 digits long in Boolean conditional. 

Literal greater than declared field length. 

Literal mask in bit test cannot be signed. 

Literal mask in bit test cannot be. Boolean. 

A logical expression contains an illegal signed literal. 

A LIBRARY file name is either not an alpha literal or exceeds 6 characters in length. 

A literal is required after the decimal point of a REAL number. 

An" ADDRESS OF" literal is not allowed by B4700 fixed length arithmetics. 

Only integer literals can be used in the SPACE construct. 

For a print file, a literal for channel or lines cannot be more than 2 digits. For any 
other file, it cannot be more than 4 digits. 

Record size is not a numeric literal or exceeds six digits in length in the port declaration. 

Length for in-line STORE must be an integer literal less than or equal to 6 digits. 

C-15 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

1927 Literal larger than size given. 

1928 A literal used as the character count for an ENTER statement must not exceed 4 digits. 

1929 A literal sent as a parameter contains more significant digits than the formal declaration. 

1930 Literal in "ASSIGN BY nn" must be 99 or less. 

1931 Literal exceeds l digit in length. 

1932 Literal length must be MOD 2. 

1933 Literal not allowed. 

1934 Literal greater then: 

4 for SRD, HBK, and SMF; 

6 for STT. 

193 5 Variable size exceeds 4 digits in length in file declarations. 

1936 Formal declaration of parameter too large to generate literal. 

19 3 7 Support index is not a numeric literal or exceeds four digits in length in the port 
declaration. 

1938 Illegal value for a mnemonic attribute. 

1939 Literal type does not match attribute type. 

1940 Numeric literal exceeds maximum length for specified attribute. 

1941 Illegal attribute value. 

1942 Literal exceeds maximum length or value exceeds 86400 in the wait statement. 

1943 Literal exceeds six digits in length. 

20 Illegal Statements 

200 l Illegal entity following GO. 

2002 Illegal use of THEN. 

2005 An arithmetic statement contains an invalid arithmetic operator. 

C-16 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

2006 More than one move required when [TGL], IA, or IFL was specified. 

2007 An override of [WDS], [CHR], or [XCH] specified and one of the following condi
tions occured: 

2008 

2009 

2011 

2012 

2014 

2015 

2016 

2017 

5024789 

literal sending field, 

addresses not MOD 4 or MOD 2. 

length not MOD 2 char if [WDS]. 

if [XCH], sizes unequal, greater than 100, or usage are not equal. 

if [WDS], operands must be of equal word size. 

NOTES 
1. Appropriate syntax checks are inhibited when IA, IFL or 

indexing is indicated. 

2. On [WDS], ifIFL specified for one. must be specified for 
both. If [JSL] or [JSR] and one of the following condi
tions occurred: 

- IFL is specified. 

- IA is specified and move cannot be accomplished in 
one instruction. 

- The size of either operand is greater than 100. 

- The receiving field is alpha; the sending field is signed 
integer. 

On a numeric move when one or both operands exceed 100 and the receiving field is 
signed, both must be the same MOD 100 (i.e., 101-200, 201-300, etc.). 

[ALL] option literal or data name sending field may not be signed or exceed l 00. 
[XCH] does not allow a literal. 

Illegal operand in bit test. 

The unsigned numeric data name is being compared to 0 using a LSS or GEQ rela
tion, or to @F@using GTR or LEQ relation. 

Literal used following IF not allowed - two literals illegal in bit test. 

Length too long for comparison. 

Missing CASE· statement variable or missing NO. 

Size of the CASE statement variable exceeds 6 digits in length. 

C-17 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

2018 If the first operand is IA in a SEARCH statement the THRU option must be used. 

2021 Left bracket has appeared; an "ADDRESS OF" construct is assumed which is not 
acceptable. 

2023 RECORD key word and record name omitted. 

2024 A PROCEDURE has been called from within a "PROCEDURE." construct. 

2028 Illegal MICR IO construct. 

2031 Illegal conditional compile statement. 

2032 Expression is not followed by a valid delimiter. 

2033 Either a nested COPY statement or an attempt has been made to COPY while creat
ing a LIBRARY file. 

2034 The first list entry in SEARCH UNKJDEUNK must be a MOD 2 address. 

2035 The entity following parenthesized argument string in a parametric DEFINE is not a 
"," or a ")". 

2036 An invalid word follows DAT A COMM. 

2037 An illegal entity follows @LIBR or @ICM. 

2038 More data is only valid when CONTROL OP B4700 is declared. 

2039 "NO INPUT" and "NO OUTPUT" may not both be declared in a DATACOMM 
TRANSTBL statement. 

2040 DAT ACOM ACCEPT and DAT ACOM DISPLAY constructs are not supported 
under MCP/VS 2.0. 

21 Invalid Characters 

2100 Invalid character found in SCAN. 

22 Begin/End Errors 

2201 Program out of bounds on END that matched with first BEGIN, that is, information 
appears after final END. 

2202 Missing first BEGIN after program name. 

2203 Missing BEGIN within PROCEDURE. 

C-18 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

2204 BEGIN/END error in CASE statement. 

2205 Illegal presence of reserved word BEGIN. 

2207 Too few ENDs found on end of program ("END:" generated internally for other passes). 

2208 No BEGIN after COMMON. 

2209 Missing ender type FI, OD, or ESAC. 

23 Illegal Declarations 

2300 

2301 

2302 

2303 

2304 

2305 

2306 

2307 

2308 

2309 

2310 

2311 

2312 

2313 

2314 

5024789 

Right hand portion of equivalence is illegal. 

Invalid "ADDRESS =" declaration. 

The identifier's declared size exceeds 999999. 

Word following VALUE is not an identifier. 

Illegal DYNAMIC declaration; either a numeric literal does not follow ">" or the 
numeric literal exceeds 6 digits in length. 

Illegal CONTROL declaration. 

The DEFINE declaration does not have an identifier following reserved word DEFINE. 

Illegal ARRAY declaration; no ARRAY name, number of entries not a literal, or BIT 
is used with ARRAY. 

The identifier declaration has an illegal preset format; i.e., the entities following the 
replacement sign (left arrow or : =) are in error. 

Illegal LABEL declaration. 

Illegal declaration within a PROCEDURE declaration. 

The declaration within the actual PROCEDURE differs from the declaration in the 
FORWARD PROCEDURE, i.e., formal parameter declarations differ. 

FIXED INTEGER, FIXED REAL, or FIXED DOUBLE has been declared as a local 
variable (stack relative) in a PROCEDURE. Cannot guarantee MOD 4 in stack un
less $STK4 used. 

Global labels not permitted in Type II ICMs. 

A declaration cannot be pre-initialized in DYNAMIC space. 

C-19 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

2315 A data name declaration is being preset using the [ALL] option and is not an even 
multiple of the presetting literal. 

2316 The record name used within the FILE declaration is not MOD 4 in assigned address. 

2317 A label does not appear in the segment it was declared in. 

2319 WORKAREA or RECORD may not be declared as stack relative. 

2320 The WORKAREA or RECORD length is not MOD 4 in the FILE declaration. 

2321 The RANDOM KEY length is not 8 digits. 

2322 Records per area missing 

2323 No hardware type has been specified in the FILE declaration. 

2324 No RECORD name has been specified in the FILE declaration. 

2325 The reserved word OWN is followed by an illegal declaration. 

2326 Cannot pre-initialize data in an absolute memory location greater than base relative 
200 or start of segment dictionary, whichever is smaller. 

2327 The word following MULTIFILE is not a non-numeric literal. 

2328 ENTRY must be to a global procedure. Possible BEGIN-END error. 

2329 An index is not allowed on port attributes. 

2330 A PROCEDURE has been declared .within coding for this segment. If the procedure 
is not in coding, there is a missing END in the preceding procedure. 

2331 CONTROL EXTENDED has been declared after an INDIRECT declaration. 

2332 Cannot pre-initialize data in absolute memory greater than the size of main segment 
(MCPP option only). 

2333 An INDIRECT declaration is being preset to an "ADDRESS OF" construct with a 
".NO" controller (CONTROL EXTENDED set). 

2335 A DYNAMIC declaration occurred illegally while producing an Independently Com
piled Module. 

2336 An attribute value is required. 

2337 More than 100 named COMMON blocks is illegal. 

2338 Unnamed COMMON is not allowed. 

2339 Illegal declaration within COMMON. 

C-20 



( 

2340 

2341 

2342 

2343 

2344 

2345 

2347 

2348 

2349 

2350 

2351 

( 
2352 

2353 

2354 

2356 

2357 

2358 

2359 

2360 

2361 

2362 

2363 

2364 

5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

Illegal LINKAGE declaration. 

More than 9 names in LINKAGE statement is illegal. 

Unnamed declaration cannot be equated. 

Cannot" ADDRESS ="to an absolute address within COMMON. 

Cannot make equivalences from one COMMON area to another. 

A declaration within COMMON must have an identifier. 

Cannot preinitialize a declaration less than 6 digits long with an "ADDRESS OF" 
construct. 

The word DEFINE was found within a DEFINE declaration. Probably missing previ
ous "#". 

An identifier does not follow PICTURE declaration. 

A mask not provided in PICTURE declaration. 

The word following FIXED is not INTEGER, REAL, or DOUBLE. 

Illegal entity following the ASSIGN portion of a FILE declaration. 

A stack relative variable is being initialized. 

A FILE declaration with multiple buffers or blocking must contain either IX2 ON or 
a WORKAREA. 

An attempt has been made to initialize data equated to declarations in another pro
gram segment. 

An attempt has been made to declare a file or port with the address equated to an
other program segment. 

An ICM must be unique to the segment in which it is declared. It must have a MOM 
(parent) segment of 001. 

"ADD RESS ="has requested an address that occurs prior to the start of the segment. 

A data name within an ICM is being initialized to an" ADDRESS OF" greaterthan 9999. 

A declaration has appeared after coding within a PROCEDURE. 

SUBROUTINE may only appear within a ICM. 

DISK or DISKPACK files may not be declared unlabeled. 

Illegal backup request. 

C-21 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

2365 Illegal type appears as first declaration in global block. 

2366 More than 10 parameters declared for procedure. 

2367 IX2 must be off. 

2368 WORK.AREA for Reader-Sorter 4A Control or OLP must be 780 digits. 

2369 Global code not allowed in Type II ICMs. 

2370 Missing record clause in the port declaration. 

2371 An index must be specified for all subport attributes. 

2372 Must close with release. 

24 Duplicate Declarations 

2400 Duplicate declaration in CONTROL statement. 

2401 Duplicate LINKAGE declaration. 

25 Incomplete Statements 

2500 Missing third operand in a Boolean statement. 

2503 TRACE requires an operand. 

26 Illegal Combinations 

2600 The MODE is an illegal combination with the file type in the FILE declaration. 

2601 The total lengths of the formal and actual parameters to a PROCEDURE differ. 

2602 When [REM] is used, the dividend and quotient cannot be the same field. 

2603 A new work area in a READ or WRITE statement must be at a MOD 4 address. 

2604 When [REM] is used, the quotient size must equal the dividend size minus the divi
sor size. 

2605 Time option must be first. 

2606 Identifier and attribute are not compatible. 

C-22 



2607 

2608 

2609 

2610 

2611 

2612 

2613 

2614 

2615 

2616 

2617 

2618 

2619 

2620 

2621 

2622 

2623 

2624 

2625 

2626 

2627 

2628 

2629 

2630 

5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

Cannot have two integer or two alpha identifiers in port read or write statements. 

A SORTER use routine is present but the file is not for a reader-sorter. 

OPEN is followed by FLOW -or DEMAND but the file is not for a reader-sorter. 

A UN operand has been used with a UN operand illegally in a Boolean expression. 

A BIT declaration cannot appear as a named parameter to a procedure. 

One but not all operands have indirect field lengths in 3 way more links, i.e., [XCH]. 

Lengths differ for 3 way more links, i.e., [XCH] or possible missing ender to previ
ous statement. 

Usages differ for 3 way move links, i.e. [XCH]. 

Cannot have a FIXED REAL or FIXED DOUBLE as a value parameter to a proce
dure. Cannot guarantee MOD 4. 

Dividend and divisor have the same length causing a hardware error when executed. 
Could not generate extra move as [REM] was specified. 

CHANNEL allowed only with a print file. 

REVERSE not allowed with a print file. 

No indirect field length allowed on table offset for SEARCH/LINK/DELINK or 
SEARCH/LINK/LIST when CONTROL OP B4700 is not specified. 

Variable length records can only be specified if the hardware type is TAPE. 

EDIT mask and receiving field must be UA. 

Illegal controllers on BCT address. 

Illegal combination of move and/or arithmetic overrides. 

Overrides on a FILL statement must be DGT, CHR, or WDS. 

Either the address or the length is incompatible with the override specified. 

An attempt has been made to equate a data name to a label. 

A one address "snapshot" DUMP may not use indirect addressing. 

An attempt has been made to" ADDRESS ="to a label. 

COMMON relative data allowed in ICM only. 

An audited file must be HPT with work area access. 

C-23 



B 1000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

2631 Variable clause in FILE statement may only contain optional numeric literal. 

2632 Mix function statements specifying an MCP name (example: MIX RUNNING) may 
not be used in the same program with mixed function statements not specifying an 
MCP name (example: MIX). 

27 Limit Exceeded 

2701 EDIT mask is greater than 100 characters long. 

2702 Limit exceeded in dynamic array in COMPILER for segment header. Recompile re
questing more MEMORY. 

2703 Limit exceeded on 40 sort keys to SORT intrinsic. 

2704 Data in program over 100,000 digits when CONTROL EXTENDED not specified. 

2705 Coding in program exceeds 300,000 digits when CONTROL EXTENDED not specified. 

2706 A UA controller has forced the stated increment to exceed 999999 digits. 

2707 Increment in controller added to segment relative address causes address to exceed 
999999. 

2708 SEARCH table too large to handle. 

2709 Subscript literal variable added to ARRAY address exceeds 999999. 

2 710 SEARCH construct key exceeds 100 digits or characters in length. 

2711 SEARCH increment exceeds 100 digits or characters. 

2712 The VALUE parameters length exceeds 99 digits. 

2713 The length exceeds I 00 on 3 way move links, i.e., [XCH]. 

2714 Limit exceeded in dynamic table for attributes. Please recompile with more memory. 

2715 Resultant MOD adjustment for segment starting exceeds 9999. 

2716 The size of REMAINDER will exceed l 00 due to the combined lengths of the divi
sor and the quotient. 

2717 The size of the buffer area in the FILL statement exceeds 9999 units (digits, charac
ters or words). 

2718 An integer field of 6 digits long is being preset to an address being equal to or greater 
than 100,000, i.e., no room for hardware controller. 

C-24 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

2719 Too many DEFINEs or DEFINE/identifier duplications. Recompile giving more 
memory. Note - it is possible that a "define loop" has been generated. (A = B = A. 
etc.) or (A = B#, B = A#, etc.) 

2720 A declaration greater than 7 digits long is being preset to an address that is equal to 
or greater than 100,000 but the segment has not gone EXTENDED. 

2722 Over 99 segment strings to a parametric DEFINE. 

2723 The length of the field for translation exceeds 10000 digits or bytes. 

2724 The REMAINDER is greater than 99 digits (including sign) for the given operands. 

2725 The length of the field to be SCANed exceeds 100 digits or characters. 

2726 More occurrences of" ADDRESS;" than "ADDRESS =". 

2727 An overlay level greater than 99 has been requested. 

2728 The area specified for "snapshot" DUMP is too large or the ending address is greater 
than 999999. 

2729 Only one segment is allowed in an ICM. 

2730 More than one procedure with no global code may not be an ICM. 

2731 DISPLAY LINES may not specify more than 999 lines. 

2732 The size of the receiving field for SPOMESSAGE may not exceed 9998 digits. 

2733 Data name size greater than 99 digits will not create multiple moves. 

2734 EDITOR record greater than 72 characters. 

2735 Nesting level too deep to build dictionary. Compile with additional MEMORY. 

2 7 36 Only 100 subroutines allowed. 

2 7 3 7 Limit exceeded in dynamic table for wait options. Please recompile with more memory. 

2738 Length of record size identifier exceeds six digits. 

28 Missing Key Words 

2800 

2801 

2802 

5024789 

Missing key word or data name in data communications construct. 

Missing key word "KEY" with RANDOM file in FILE declaration. 

Missing key word or data name in SCAN statement. 

C-25 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

2803 Missing key word or data name in SEARCH UNK/DELINK statement. 

2804 Missing key word or data name in SEARCH statement. 

29 Compiler Errors 

NOTE 
2900 Group errors may appear at times. These are internal compiler er
rors. They may be caused by certain combinations of syntax errors causing 
recovery problems. Upon encountering a 29nn error, follow the following 
steps. 

1. Fix any obvious syntax errors and recompile. 

2. If still present, retain all documentation and report error to your Unisys 
Technical Representative. 

30 Illegal Special Characters 

3000 Illegal right bracket. 

31 Illegal Pictures 

3100 Invalid PICTURE characters or missing ")''. 

3101 Repeat part of PICTURE in error. 

3102 Float characters not valid. 

3103 Invalid sequence of PICTURE characters. 

3104 "P" PICTURE character(s) in error. 

3105 Sign error. 

3106 PICTURE requires mask that exceeds hardware limit 100. 

3107 Size specification error. 

C-26 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Warning and Error Messages 

32 Expression Errors 

3201 

3202 

3203 

3204 

3205 

3214 

3215 

3216 

3217 

3218 

3219 

3223 

3224 

3225 

3226 

3227 

3229 

3230 

3231 

3232 

3233 

3234 

3240 

3241 

5024789 

Stack operand overflow, too many operands. Break expression into smaller 
sub-expressions. 

Stack operator overflow, too many operators. Break expression into smaller 
sub-expressions. 

Operand stack underflow. Too many operands pulled from stack. 

Operator stack underflow. Too many operators pulled from stack. 

Unexpected EOF. 

Operand cannot be used in generating a bit test (BOT or BZT). 

Too many left parentheses. 

Relational used in an assignment statement, i.e., A := (B=C). 

Attempt to used result of operation as receiving field, i.e., (A+ B) : =C. 

Illegal operator within expression. 

Illegal operand in arithmetic operation. 

Too many right parentheses. 

Attempt to use result of conditional expressions as a value, i.e., IF (A=B) = C. 

Cannot use literal with "OR" in conditional mode. 

Illegal operator. 

Illegal operand in COMPARE statement. 

Buffer name of buffer construct is greater than 28 characters. 

No literal within parentheses for buffer number construct. 

Non-numeric literal used in buffer number construct. 

Value of literal for buffer number construct is greater than 9. 

Missing right parenthesis on buffer number construct. 

Buffer number._ does not exist. 

Illegal INFL on operand when temporary field is used as receiving field. 

[FPT] or [REM] too late in expression. Move to beginning of expression. 

C-27 





B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

APPENDIX D 

INDEPENDENTLY COMPILED MODULES (ICM) 

The BPL compiler can generate Independently Compiled Modules (ICMs) which can be bound together 
with other modules to create a single program. 

An ICM compilation creates a pseudo code file, rather than executable code. The binding process is re
quired to create the executable program code. 

Three types of ICMs can be created: 

• Type I ICMs are for use in FORTRAN (ANSI 66) programs as functions or sub-routines. They 
must be bound into a FORTRAN program by the FORTIV or XFORTN compilers. 

• Type II ICMs can be bound to other BPL Type II ICMs to create a single BPL program. They 
must be bound with the- BPLBND binder program. 

• Type III ICMs can be bound to any other Type III ICMs using the BINDER program. Type III 
ICMs can be produced by the FORT77, COBOL74, PASCAL and BPL compilers. For more in
formation about the BINDER program, see the V Series BINDER Programming Reference 
Manual. 

NOTE 
BPLBND is a class C product. 

5024789 D-l 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

TYPE I ICMs 
Type I Independently Compiled Modules (hereafter referred to as ICM 1 s) can be created by the BPL 
compiler for inclusion in a subsequent FORTRAN compilation as as subroutine or a function. 

An ICM I compikation causes a pseudo code file of the ICM l portion to be built by the compiler. No 
code file is generated for that compile, and in fact, the only portion of the program compiled is any 
bounded by @ICM. See the @ICM construct in Compiler Directing Statements, Section 6, for further 
information. 

An ICM 1 may be either a block or a procedure, therefore, it may not contain more than one segment. 
Only one ICM 1 may be created from a program segment, but several ICMs may be created during the 
compilation of a program. Only one ICM can be compiled ay any one time. 

ICM 1 s may be called from within other ICM 1 s. See SUBROUTINE declaration and SUBROUTINE 
call statement. 

There are three methods of communication between a calling program and an ICM 1. These are as fol
lows: 

e Parameters 
" COMMON blocks 
" LINKAGE Construct 

These are described on the following pages. 

Parameters 
These must be name parameters and care must be taken to ensure the agreement of the actual and formal 
parameters at the time of the CALL. FORTRAN does not check. 

The following FORTRAN program calls a subroutine to manipulate the variables I, J, and A. I contains 
integer data, J is an integer variable containing character data, and A is a character variable. 

I DENT ICMTST 
CHARACTER*3 A /"ABC"/ 
I = l 
J = "DEF" 
CALL ICMEX (I, A, J) 
WRITE (6, 90) I, A, J 

90 FORMAT (IX, I7, 2X, A3, 2X, A3) 
STOP 
END 

FORTIV and XFORTN have different data lengths and addressing considerations (see following), so the 
BPL declarations vary: 

D-2 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

FORTIV Subroutine (Extended addressing and accumulator functions) 

ICMEX: BEGIN 
CONTROL OP B4700, EXTENDED; & EXTENDED is required 
@ICM "ICMEX" 
PROCEDURE ADDONE (INT, CHARI, CHAR2); 

FIXED INTEGER INT; & Use FIXED for all numeric parameters 
ALPHA CHARI (3); & CHARACTER*3 is 3 bytes 
ALPHA CHAR2 (3); & Only want 3 bytes 
BEGIN 

-INT : = INT + 1; & Add 1 to INT 
CHARI := "UVW"; & Change contents of CHARI 
& FORTIV passes numeric name params with UN 
& controllers. 
& Since CHAR2 has alpha data, change controller to UA 
& (2) CHAR2 is 3rd parameter, so its 8-digit address 
& is offset 32 digits into the stack: 

BASE.IX3.+32.l.UN := 2; & Put UA controller on address 
& Now CHAR2 will be treated as alpha data: 

CHAR2 "XYZ"; & Change contents of CHAR2 
EXIT; & Return to FORTRAN 

END; 
@ICM 

END; 

Because FORTRAN permits alphabetic data to be stored in numeric fields, FORTIV replaces SN con
troller digits with UN controllers for the following data types. INTEGER, REAL, COMPLEX. This re
quires special handling in a BPL subroutine: 

Signed Numeric Items 

• BPL must declare these FIXED (in which case the signed controller is preserved and no adjust
ment is needed); or 

• BPL must adjust the controller digit in the stack; or 

• BPL must receive that type of item into an signed INTEGER field which is large enough to con
tain the sign digit. That field can then be moved to a second unsigned field which is redefined as 
SIGNED and is the field actually manipulated. The preceding example would then be in part: 

PROCEDURE ADDONE (INT); 
INTEGER INT (8); 
BEGIN 

INTEGER Yl ( 8); 
ADDRESS = Yl ; 

SIGNED INTEGER Y2 (7); 
ADDRESS; 
Yl := INT; 
Y2 := Y2 + l; & Add 1 to INT 
INT Yl; 
EXIT; 

5024789 D-3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Alphanumeric Data in Numeric-Type Fields 

BPL must adjust the controller in the stack (as with CHAR2 in the preceding example); or 

BPL must receive the item into an unsigned INTEGER field which is redefined as ALPHA, and 
manipulate the redefined field (as in case (3) under Signed Numeric Fields). 

FORTIV Subroutine Parameter Controller Digit Rules Summarized 

Signed controller digits are preserved for DOUBLE data types and for data types declared 
FIXED. 

Alphanumeric .controller digits are preserved for the FOR TRAN data types CHARACTER 
and LOGICAL. 

Other types of fields have unsigned numeric (UN) controller digits. 

FORTIV Stack Parameters and Extended Addresses 

FORTIV always places 8-digit extended addresses into the stack. Thus, the BPL routine must 
be compiled with CONTROL EXTENDED, and the BPL programmer must remember that 
parameter addresses in the stack are offset from each other by eight digits. 

XFORTN Subroutine 

ICMEX: BEGIN 
@ICM "ICMEX" 
PROCEDURE ADDONE (INT, CHARI, 

SIGNED INTEGER INT(5); 
CHAR2); 

& XFORTN integer is 5 byte~ + 
sign 

ALPHA CHARI ( 3); 
ALPHA CHAR2 ( 3) ; 
BEGIN 

& CHARACTER*3 is 3 bytes 
& Integer length is 3 bytes 

INT : = INT + 1 ; & Add 1 to INT 
CHARI : = "UVW"; & Change contents of CHARI 

& XFORTN passes numeric items with SN controllers. 
& Since CHAR2 has alpha data, change controller to UA 
& CHAR2 is 3rd parameter, so its 6-digit address is 
& offset 28 digits into the stack: 

BASE.IX3.+28.l.UN := 2; & Put UA controller on address 
& Now CHAR2 will be treated as alpha data 

CHAR2 "XYZ"; & Change contents of CHAR2 
EXIT; & Return 

END; 
@ICM 

END; 

FORTRAN permits alphanumeric data to be stored in numeric fields, but XFORTN places a signed nu
meric (SN) controller digit on all numeric fields. When alphanumeric data is passed as a parametr, the 
BPL programmer must follow the directions for Alphanumeric Data in Numeric-Type Fields, as de
scribed with the preceding FOR TIV subroutine. 

D-4 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

XFORTN Subroutine Parameter Controller Digit Rules Summarized 

Signed (SN) controller digits are preserved for all numeric data types. 

Alphanumeric (UA) controller digits are preserved for the FORTRAN data types CHARACTER 
and LOGICAL. 

XFORTN Stack Parameters 

XFORTN uses only 6-digit (non-extended) addresses. Thus, the BPL subroutine must NOT de
clare CONTROL EXTENDED. Stack parameter addresses are offset from each other by six dig
its. 

5024789 D-5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

COMMON Blocks 

When ICM ls are loaded by the FORTRAN loader, it matches up the names of COMMONs and maps 
the variables onto the COMMON area (FORTRAN) in the specified sequence. To declare these varia
bles in a BPL generated ICMl, a COMMON block is coded. There may be a maximum of 100 COM
MON blocks, each with a unique COMMON name. The format is: 

COMMON common-name BEGIN common-declarations END ; 

The COMMON declaration types between compilers match as follows: 

D-6 

FORTIV with 
Storage Unit Mapping* 

INTEGER 

REAL 

DOUBLE 

LOGICAL 

CHARACTER *nn 

NOTE 

BPL 

SIGNED INTEGER (7) MOD 4, ALPHA 
(2)* FIXED INTEGER, ALPHA (2)* 

REAL (8) MOD 4 
FIXED REAL 

REAL (16) MOD 4, ALPHA (2)* 
FIXED DOUBLE, ALPHA (2)* 

INTEGER (2) MOD 4, ALPHA (5)* 

ALPHA (nn) MOD 4 

*Under Storage Unit mapping, a numeric item is mapped into the mini
mum number of Numeric Storage Units required to contain the item. A 
numeric Storage Unit is 6 bytes (12 digits) of storage, word aligned. When 
smaller items (INTEGER or LOGICAL) occupy a Numeric Storage Unit, 
the Storage Unit is padded with trailing blanks, which the BPL program 
must take into account. CHARACTER *nn data is stored in nn Character 
Storage Units (CSU). A CSU is one byte and word aligned. The character 
string is padded with a trailing blank to a word boundary, if necessary. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

FORTIV without Storage 
Unit Mapping* ($NOSU) 

INTEGER 

REAL 

DOUBLE 

LOGICAL 

CHARACTER *NN 

XFORTN 

INTEGER 

REAL 

DOUBLE 

BPL 

SIGNED INTEGER (7) 
FIXED INTEGER 

REAL (8) 
FIXED REAL 

REAL (16) 
FIXED DOUBLE 

INTEGER (2) 

ALPHA (NN) 

BPL 

SIGNED INTEGER (integer size) 

REAL (real size) 
SIGNED INTEGER (real size +3) 

REAL (double size) 
SIGNED INTEGER (double size +3) 

LOGICAL 

CHARACTER *NN 

INTEGER (2) 

ALPHA (NN) 

FORTRAN manuals contain further information about COMMON and its uses. 

5024789 D-7 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

LINKAGE Construct 

The LINKAGE construct is useful only when writing your own FOR TRAN intrinsics or subroutines 
which must access files, or XFORTN external functions. LINKAGE provides an interface much like 
COMMON, with a fixed mapping. Figure D-1 describes the format of the LINKAGE declaration. 

LINKAGE identifier-1 [ , ... , identifier-9] 

Figure D-1. Format of the LINKAGE Declaration 

The identifier contain the addresses of the following fields, in this order: 

D-8 

1. FIBTBL-Address of the program's FIB table (constructed by the FORTRAN compiler). Table 
contains 20 entries, numbered 0 to 19. Each entry contains the address of a pointer to the FIB 
for the correspondingly-numbered file. If an entry is zero, no file with that number was declared. 
The example below shows the relationship between FIBTBL-to-FIB. The program in this exam
ple has declared FILEl and FILE3; addresses shown are examples only. The number preceding 
the boxed data is an address in the program's memory. The boxed data represents the contents 
of memory at that address. 

FIBTBL 

FIB Pointers 

FIBS 

760 10008281 
1------1 

794 10014281 
1------1 

1428 
IFILE3's FIBI 
-----------

The address of a file's FIB can thus be obtained by using the file number as an index into the 
FIBTBL. 

2. FRESUL T - Function result field (XFOR TN only). 

Size - max (2x(M+4), 2L, N= 1) 

3. INTRNTMP - Intrinsic temporary. 

Size - 4X(M+4) 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

4. HALF ADJ - Half adjust constant. 

Size - M + 7 

Contains - M+l COOCO . . . . . 05 ,... 
LJ--; I 

M zeros 

5. TWOCNST- A constant of two used for Integer to Real conversion when Integer size is greater 
than Real size. 

Size - N + 5 

M 
Contains - C l_l_I C2 05 

N zeros 

6. NFLOATFLD - Used for Real to Integer conversion. 

Size - max ((2xM)+4, N +4) 

N 
Contains - Cj_j_jCO 0 

I 
max (2M,N) zeros 

7. ACCUMFLD - Temporary storage 

Size = (2xM) + 4 

Contains - zeros 

5024789 D-9 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

8. CMPLXZERO - Complex zero 

Size - 2 X (M+4) 

Contains - D99co .... OD99Co .... o 

M zeros M zeros 

9. Not used. 

NOTE 
M = Real size; N = Integer size; L = Alpha size 

D-10 



B 2000/B 3000/B 4000/V Series 13PL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Example 1 - File handling 

The following routine could be called from a FORTIV program to close a tape file with no rewind and 
then reopen the file with no rewind. The file number is passed in the CALL: CALL TAPMK (file
number). 

BEGIN: 
CONTROL OP B4700, EXTENDED; 
@ICM 11TAPMK11 

PROCEDURE TAPMK (TAPENO); 
FIXED INTEGER TAPENO; 
BEGIN 

LINKAGE FIBTBL; 
OWN FIXED INTEGER X; 
OWN INTEGER FIBADDR (6); 
INTEGER TAPEUNIT (6); 
& Store file number in TAPEUNIT 

X := TAPENO; 
for use as index 

TAPEUNIT := X.+2.6.UN; & Bypass Extended Index/Controller 
& Get address of FIB 

IX2 := TAPEUNIT * 6; & 6 digits per FIBTBL entry 
IX2 : = FIBTBL . IX2 . 6 . UN; & IX2 now has address of FIB pointer 
FIBADDR := BASE.IX2.6.UN; & Put FIB address into FIBADDR 
& At this point the FIB's address is in FIBADDR. The file 
& is accessed by using FIBADDR as an indirect address. 
& This sample routine will merely close and open the file. 

CLOSE FIBADDR.IA NO REWIND; 
OPEN FIBADDR.IA NO REWIND; 
EXIT; 

END; 
@ICM 
END: 

Example 2 - BPL External Function for FORTRAN 

The following program invokes a function that increments the argument of the function by one: 

IDENT FNCALL 
I = 0 
I = INC (I) 
WRITE (6, 90) I 

90 FORMAT (lX, I6) 
STOP 
END 

FORTIX and XFORTN have different methods of returning function results. When using a BPL ICM1 
for XFORTN, the result must be left in the second field of the LINKAGE area (the Function Result 
Field). For FORTIV, the result must be left in the accumulator. 

5024789 D-11 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

XFORTN Function 

FUNCTN: BEGIN 
@ICM "INC" 
PROCEDURE INC(X) 

SIGNED INTEGER X(5) 
BEGIN 

END; 
@ICM 
END; 

LINKAGE FIELD!, FRESULT; 
FRESULT.5.SN X + I; & Increment and store result 
EXIT; 

Length and type overrides must be specified for FRESULT. 

FORTIV Function 

FUNCTN: BEGIN 
CONTROL OP B4700, EXTENDED; 
@ICM "INC" 
PROCEDURE INC(X); 

FIXED INTEGER X; 
BEGIN 

IACCUM X + I; 
EXIT; 

END; 
@ICM 
END; 

FORTRAN ICM Considerations 

& Increment and store result in accum 

You must observe the following rules when you develop BPL ICMs for FORTIV /XFORTN programs: 

• You must enter multi-procedure ICMs at the last procedure. 

• Procedures must not contain other procedures. 

• Files must be declared in the first procedure. 

D-12 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

TYPE 11 AND TYPE Ill ICMs 
The BPL compiler can create Independently Compiled Modules of the Type II or Type III form. Type 
III ICMs can only be created by a BPL compiler in the 2.n series of software releases. BPL compilers in 
the 7.n series of releases cannot create Type III ICMs. 

One or more Type II ICMs (ICM2s) can be bound (using the free-standing binder program BPLBND) 
to create a single executable program. One or more Type III ICMs (ICM3s) can be bound into an executa
ble program by using the BINDER program. 

A Type II ICM is created when the dollar option $ICM2 is set in the leading dollar record in a compile. 
This option must be on a leading dollar record and cannot be reset. (The@ICM directive used to create 
Type I ICMs is not used for Type II ICMs.) 

A Type III ICM is created when the dollar option $ICM3 is set in the leading dollar record in a compile. 
This option must be on a leading dollar record and cannot be reset. The@ICM directive is not used. 

No code files are created for any ICM2s or ICM3s being compiled. A code file is only created when one 
or more ICM2s are bound together or when one or more ICM3s are bound together. 

ICM2s or ICM3s can contain a single procedure or multiple procedures. 

5024789 D-13 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

BPL Language Constructs for Type II and Type Ill ICMs 
Type II and Type III ICMs are not compatible and cannot be bound together. The BPL language con
structs used to create Type II and Type III ICMs, however, are the same for either type ofICM. The fol
lowing constructs are implemented in the BPL compiler for use with Type II and Type III ICMs 
(ICM2/3): 

a. Module Name Declaration: 

Names the code module and the ICM2/3 file. 

b. Program Entry Point Declaration: 

Specifies that the module in which it is declared contains the procedure which is the program 
entry point, and names that procedure. 

c. Entry Declaration: 

Specified a procedure in this ICM2/3 which can be called from a procedure in another ICM2/3 
and specified the parameters involved, if any. 

d. External Declaration: 

Specifies a procedure in another ICM2/3 which is being called from within this ICM2/3, gives the 
local and external names of the procedure, and describes the parameters involved, if any. 

These constructs are explained further in the following pages. 

NOTE 
Generation of Type III ICMs is only available under BPL 2.0 or greater. 

D-14 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

MODULE NAME DECLARATION 
The first source record of an ICM2/3 must appear as it is shown in Figure D-2. 

module-name: BEGIN 

Figure D-2. First Source Record of an ICM2/3 

Example 

ICMBLl: BEGIN & Begins an ICM named ICMBLl 

The module-name identifies the code contained within the ICM2/3 file. 

In addition, the first six characters of the module name become the default library name of the compiled 
ICM2/3 file, unless overidden by a BPL compiler FILE equate statement when the ICM2/3 is compiled: 

Type II ICM: 
?CMP<prog name>BPL;FILE ICM2FL=<ICM2 file name> 

Type III ICM: 
?CMP<prog name>BPL;FILE ICM3FL=<ICM3 file name> 

If required, PROG_ENTRY, ENTRY, and EXTERNAL declarations must appear immediately follow
ing this source record. 

5024789 D-15 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

PROGRAM ENTRY POINT DECLARATION 

The function of a PROG_ENTRY declaration is to specify that this ICM2/3 contains the procedure 
which is the program entry point and to indicate that procedure's name. 

Figure D-3 shows the format of the PROG-ENTRY declaration. 

PROG ENTRY = procedure-name ; J 
Figure D-3. Format of the PROG-ENTRY Declaration 

One PROG_ENTRY declaration must be specified for each bound program. 

Procedure-name is required and may be up to 30 characters in length. This is the name of the procedure 
which begins the bound program. 

The entry point of a bound program is the first instruction in the procedure indicated in the PROG_ 
ENTRY statement. This differs from a conventional, unbound BPL program; its entry point is the first 
executable instruction following the procedure decarations. This follows from the the language restric
tion that all executable code in the outer block must be within procedures. 

D-16 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

ENTRY DECLARATION 
The function of an ENTRY declaration is to specify that this I CM2/3 contains a procedure that is called 
by another ICM2/3. It also describes the structure of the parameters to be passed, if any. Figure D-4 de
scribes the format of ENTRY. 

ENTRY procedure-name 

[ (formal-parameter-list) ; 
VALUE value-parameter-list;] 

parameter-specifications] ; 

Figure D-4. Format of ENTRY 

Example: 

ENTRY = PROG3(A,B); 
ALPHA A(lO); 

B(lO); 

& PROG3 is called from another 
& ICM2/3. It has two ALPHA 
& parameters, A and B 

A separate ENTRY declaration is required for each procedure that is called by another ICM2/3. 

The syntax for this statement following the equal sign is identical to a FORWARD PROCEDURE decla
ration. 

Procedure-name is required and can contain up to 30 characters. This is the name of the procedure which 
is called by another ICM2/3. 

The formal-parameter-list is optional. If specified, it names the formal parameters of the procedure. Up 
to 10 parameters may be specified, must be separated by commas, and must be enclosed by parentheses. 

The VALUE clause is optional and can only be used if parameters are specified. The word VALUE must 
be followed by one or more of the named formal parameters in the formal-parameter-list that are 
VALUE parameters. The parameters must be separated by commas. 

The parameter-specifications are required if parameters are specifed. There must be one specification 
for each formal-parameter-list. VALUE parameters are so declared in a separate VALUE declaration list 
prior to any formal parameter declarations. The specification identifier is to be the same as the one used 
in the formal-parameter-list. The specification identifier is to be the same as the one used in the formal
parameter-list. 

5024789 D-17 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

EXTERNAL DECLARATION 

The function of an EXTERNAL declaration is to indicate that a procedure in another ICM2/3 is to be 
called from this ICM2/3. The EXTERNAL statement also equates the local name used for the external 
pocedute in the call to the procedure-name given in the ICM2/3 in which that procedure is declared; this 
permits a procedure to be called by a name other than the name by which it was declared. If any parame
ters are involved, they are specified. 

Figure D-5 describes the format of the EXTERNAL declaration. 

EXTERNAL procedure-name-1 = 

module-name . procedure-name-2 

[ 
(formal-parameter-list) ; 
VALUE value-parameter-list ; ] 

parameter-specifications] ; 

Figure D-5. Format of the EXTERNAL Declaration 

Example: 

EXTERNAL PROG2 = 

ICMBL2.PROG3(A,B); 

ALPHA A( 10), 
B(lO); 

& A procedure in this ICM2/3 
& will call 

& 
& 
& 
& 

PROG2, which 
is declared in the ICM2/3 
"ICMBL2" as procedure 
"PROG3", with ALPHA 
parameters A and B. 

A separate EXTERNAL declaration is required for each procedure in another ICM2/3 which is called 
by a procedure in this ICM2/3. 

This statement replaces any SUBROUTINE declarations. 

Procedure-narne-1 is required and can contain up to 30 characters. This is the local name of a procedure 
in another ICM2/3 which is being called from this ICM2/3. Procedure-name-1 must be the procedure 
name used in the procedure call in this ICM2/3, excluding parameters. 

The module-name is required. ff the module-name specified is longer than six charactes, only the first 
six will be used. This name is used to identify the appropriate ICM2/3 which contains the procedure 
being called. 

Procedure-name-2 is required and can contain up to 30 characters. This is the name of the procedure 
being called as it appears in its ICM2/3; it must be written exactly as it appears in its ICM2/3, including 
parameters. 

Module-name and procedure-name-2 must be separated by a period. No embedded blanks are allowed. 

D-18 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

The formal-parameter-list is optional. If specified, it names the formal parameters of the procedure. Up 
to 10 parameters may be specified, must be separated by commas, and must be enclosed by parentheses. 

The parameter-specifications are required if parameters are specified. There must be one specification 
for each formal parameter in the formal-parameter-list. VALUE parameters are so declared in a separate 
VALUE declration list prior to any formal parameter declarations. The specification identifier is to be 
the same as the one used in the parameter list. 

An EXTERNAL procedure cannot be a user label routine (see compiler restriction b, Programming Con
siderations, in this manual). 

5024789 D-19 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Programming Considerations for Type U and Type rn ICM 
A Type II ICM is created when the dollar option $ICM2 is present in a compile. A Type III ICM is creat
ed with the dollar option $ICM3. Either option must be on a leading dollar record and neither option 
can be reset. (The@ICM directive used to create Type I ICMs is not used for Type II or Type III ICMs.) 

No code file is created for any Type II or Type HI ICM (ICM2/3) being compiled. A code file is only creat
ed when one or more ICM2/3s are bound together. 

An ICM2/3 can contain a single procedure or multiple procedures. 

All segmentation directives such as SEGMENTED and UNSEGMENTED are treated as noise words: 
segmentation is determined at bind time. 

Following are language restrictions that apply when you create ICM2/3s: 

.. All Global data will be allocated into a special named COMMON block called <module
name>.GLOBAL. 

NOTE 
This allocation is done by the compiler. 

.. Any executable code within the outer must be within procedures. 

This means that the program entry point in a bound program will be at a procedure. This differs 
from a conventional, unbound BPL program, which is entered at the first instruction following 
procedure declarations. 

0 All procedures within procedures will be considered as part of their outer procedure and cannot 
be called by another ICM2/3 or at bind time. 

0 To use dynamic storage, a COMMON block named "page_space_info" (the name must be in 
lower-case letters) must be declared. The declaration must consist of three INTEGER fields, each 
six digits in length. 

When the program is bound, the first field will be initialized to contain the address of the begin
ning of the dynamic area (the memory space beyond that used for instructions 'and data, and pre
ceding the base of the program stack). 

An execution time, code supplied by BPLBND or BINDER (depending on the type ofICM; Type 
II or Type III) will store the program's total memory size in a field called "memory_bct_ 
response". This field is allocated by BPLBND or BINDER (depending on the type ofICM; Type 
II or Type HI); the programmer need not declare the field. The supplied code will then initialize 
the remaining fields in "page_space_info" to the addresses of the base of the stack and limit of 
the program. The dynamic storage area will be a fixed size. 

® Global labels are not allowed. 

0 Bits cannot be passed as parameters to procedures. 

D-20 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

The following compiler restrictions apply to ICM2/3s. 

e When producing Type II or Type III ICMs, do not use the dollar-card option CODE. Program 
code, summary, and segmentation information can be obtained from BPLBND (Type II) or the 
BINDER (Type III). 

e In a FILE declaration, if the ROUTINE option is used, the user label routine cannot be declared 
EXTERNAL. 

s In a data declaration, the data name cannot be preinitialized to the address of a procedure name 
(for example, INTEGER (6) A := [PROCl]), if the procedure name is declared 
EXTERNAL. 

The following additional compiler restrictions apply when creating Type II or Type III ICMs: attempting 
to code any of them will result in a compiler error message number 2912: 

., The "ADDRESS OF" a procedure name in a different segment cannot be assigned; that is: 

A := [procedure-name] 

will work only if A and procedure-name are in the same segment. 

• In a data declaration, if the ROUTINE option is used, the user label routine cannot be declared 
EXTERNAL. 

There is no compatibility between Type I, Type n ICMs or Type III ICMs, nor is any intended. Type I 
ICMs can only be bound by FORTIV and XFORTN; Type II ICMs can only be bound by BPLBND. 
Type HI ICMs can only be bound by the BINDER. The different ICM types cannot be mixed in any bind. 

Example 
In this example three Type II ICMs are created and bound into a single program. For an example of bind
ing Type III ICMs, see the V Series BINDER Programming Reference Manual. 

The program shown in the following figures is intended to illustrate the use of language constructs for 
Type 2 ICMs, and not to constitute a practical application. As such, its functions are limited. 

The first module contains a single procedure, which is the main procedure for the program and is desig
nated as the program's entry point. This procedure calls procedures located in the two other modules to 
manipulate variables and to print information. 

Two COMMON blocks are in the first module. One holds two variables and will be accessed by one of 
the EXTERNAL procedures. The other illustrates the use of a "page_space_info" declaration to obtain 
information about the dynamic storage area. 

The second module contains a single procedure and one of the COMMON blocks declared in the first 
module. It calls a procedure from the third module to list the variables in the COMMON block, and then 
manipulates the variables. 

The third module contains three procedures and a FILE declaration. Two of the procedures can be called 
to open and to close the file:- The third procedure writes an output record constructed from a series of 
ALPHA parameters. Refer to Figures D-1, D-2, and D-3. 

5024789 D-21 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

The ICM2s can be bound together as program-id TESTER by BPLBND specifications such as the follow
ing: 

?COMPILE TESTER WITH BPLBND LIB 
?DATA INPUT 
REQUIRED MODULES: 

ICMBLl FROM ICMBLl, 
ICMBL2 FROM ICMBL2, 
ICMBL4 FROM ICMBL4; 

STACKSIZE = 300; 
END; 
?END 

See the BPLBND section for further information on program binding, and for an example of another 
way to bind this program. 

D-22 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

ICMBLl ICM: BEGIN 
PROG ENTRY = PROGl; 
EXTERNAL PROG 2 = 

ICMBL2_ICM.PROG3; 
EXTERNAL OPENIT = 

ICMBL4_ICM.OPENIT; 
EXTERNAL WRITIT = 

ICMBL4_ICM.WRITIT-prog(A,B,C): 
ALPHA A ( 12) , 

B(l2), 
c ( 12) ; 

EXTERNAL CLOSIT = 
ICMBL4 ICM.CLOSIT; 

CONTROL OP-B4700, EXTENDED; 
ALPHA PRIX ( 12); 
ADDRESS = PRTX; 

NUMERIC PRT NR (c) ; 
ALPHA PRT-FILL (6) :=" "; 

ADDRESS; 
PROCEDURE PROGl: 

BEGIN 

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 

& 
& 
& 
& 
& 

Declare entry point 
Declare 

all 
referenced 
procedures 
which 
are 
external 
to 
this 
module 

work 
area 
for 
passing 
numbers 

COMMON page_space_info 
BEGIN 

& "page-space-info" fields 

& 

& 

& 

INTEGER DYNAM BASE (6), 
STACK BASE (6), 
PRGM LIMIT (6); 

END; 

COMMON COMl 
BEGIN 

ALPHA X ( 12 ) , 
y ( 12) ; 

END; 

OPENIT; 
X := "AAAAAAAAAA"; 
Y :+ "BBBBBBBBBB"; 

WRITIT ("PROGl"," X = ", X); 
PROG 2; 
WRITIT ("PROGl", "NEW x = ", X); 

& 
& 
& 
& 

are pre-initialized: 
--by BPLBND 
--by BPLBND-supplied 

code 

& Used 
& by 
& PROGl 
& and PROG 2 

& Open printer file 
& Initialize fields 
& in block COMl 

& List original X 
& Interchange X & Y 
& List replaced value 

Figure D-6. Type II ICM Example, First Module 

5024789 D-23 



& 

& 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

PRT NR := DYNAM BASE; 
WRITIT ("PROGl"~ "DYNAM_BASE =",PRTX) 
PRT NR := STACK BASE; 
WRITIT ("PROGl"~ "STACK_BASE =",PRTX); 
PRT NR := PRGM LIMIT; 
WRITIT ("PROG111 , "PRGM_LIMIT",PRTX); 

& List 
& 
& 
& 
& 
& 

values 
contained in 
the COMMON 
block 
"page_space_inf o" 

I 

CLOSIT; 
END; 

& Close printer file 

END; 

COMPILE DATE 18:05 05/15/79 USING 010/79 BPL. PROGRAM ID IS ICMBLl. 

ELASPED TIME 7 SECONDS. RELEASE NUMBER: ASR 6.2 

ELASPED TIME IS TOTAL CLOCK TIME, NOT TIME CHARGEABLE TO COMPILATION. 

52 SYMBOLIC RECORDS COMPILED AT 445 RECORDS PER MINUTE. 

TOTAL NUMBER OF ERROR MESSAGES IS O. 

TOTAL NUMBER OF WARNING MESSAGES IS 0 INCLUDING NO SEQUENCE ERRORS. 

Figure D-6. Type II ICM Example, First Module (Continued) 

D-24 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

ICMBL2 ICM: BEGIN 
ENTRY = PROG3; 
EXTERNAL WRIT IT = 

& Declare entry point 
& Declare 

ICMBL4 ICM.WRITIT proc(A,B,C); 
ALPHA A(l2), -

& referenced 
& procedure 
& external to 
& this module 

B(l2), 
c ( 12) ; 

CONTROL OP B4700, EXTENDED; 
PROCEDURE PROG3; 

BEGIN 
& 

& 

& 

END; 
END; 

COMMON COMl 
BEGIN 

ALPHA X ( 12 ) , 
y ( 12) ; 

END; 

WRIT IT 
WRIT IT 

( 11 PROG 2 11 II - , 
( 11 PROG 2 11 II - , 

X : = Y [XCH]; 

x = II 

y = " 

& Used 
& by this 
& procedure 
& and PROGl 

X) & List variables 
Y); & at entry 

& Interchange variables 

COMPILE DATE 18:05 05/15/79 USING 010/79 BPL. PROGRAM ID IS ICMBL2. 

ELASPED TIME 6 SECONDS. RELEASE NUMBER: ASR 6.2 

ELASPED TIME IS TOTAL CLOCK TIME, NOT TIME CHARGEABLE TO COMPILATION. 

23 SYMBOLIC RECORDS COMPILED AT 230 RECORDS PER MINUTE. 

TOTAL NUMBER OF ERROR MESSAGES IS 0. 

TOTAL NUMBER OF WARNING MESSAGES IS 0 INCLUDING NO SEQUENCE ERRORS. 

Figure D-7. Type II ICM Example, Second Module 

5024789 D-25 



B 2000/B 3000/B 4000/Y Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

ICMBL4 ICM: BEGIN 
ENTRY = OPENIT; 
ENTRY= WRITIT_proc (A,B,C); 

ALPHA A ( 12 ) , 
B ( 12) , 
C(l2); 

ENTRY = CLOSIT; 
CONTROL OP B4700, EXTENDED; 
ALPHA PRNREC (132); 
ADDRESS = PRNREC, 

ALPHA PRTl ( 12), 
PRT2 (12), 
PRT3 (12); 

ADDRESS; 
FILE ICMPRT, PRINTER, RECORD PRNREC 

& 
PROCEDURE OPENIT; 

BEGIN 

END; 

OPEN OUT ICMPRT; 
PRNREC : = [ALL] II II; 

& 
PROCEDURE WRITIT_proc (A,B,C); 

ALPHA A ( 12 ) , 
B ( 12) , 
c ( 12) ; 

BEGIN 

END; 

PRTl := A; 
PRT2 := B; 
PRT3 := C; 
WRITE ICMPRT PRNREC; 
PRNREC : = [ ALL 1 II II 

& 
PROCEDURE CLOSIT; 

BEGIN 
CLOSE ICMPRT RELEASE; 

END; 
END; 

& Declare 
& entry 
& points 
& into 
& this 
& module 

& Output 
& record 
& for 
& printer 
& file 
& 
132: 

& Open the 
& printer 
& file and 
& clear 
& record 

& Assemble 
& and 
& write 
& an output 
& record 
& with contents 
& passed from 
& another 
& procedure; 
& clear record 
& 

& Close 
& the 
& printer 
& file 

Figure D-8. Type II ICM Example, Third Module 

D-26 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

THE BPLBND PROGRAM BINDER 
BPLBND is a stand-alone program which creates a single executable code file from one or more BPL 
Type II ICMs. BPLBND is not valid for Type III ICMs, which are bound together with the BINDER pro
gram. 

The programmer or program which calls BPLBND indicates which Type II ICMs contribute to the code 
file. 

The programmer or program which calls BP LB ND indicates the segmentation layout of the bound pro
gram. 

Code files written by BPLBND may be loaded and executed by the MCP. 

Functional Description 
BPLBND accepts control statements and Type II ICMs as input. As output, an executable code file (exe
cutable program) is produced along with a diagnostic listing of the bind. Optionally a code listing is pro
vided at the diagnostic listing. 

A complete binder execution deck follows the form: 

{CMP } 
? COMPILE <code-file-name> [WITH] BPLBND 

?DATA INPUT. 
Input statements: 

Selection 
Option 
Segmentation 
END Statement 

?END 

[ 
{ ~i~RARY } ] 

SAVE 
SYNTAX 

The <code-file-name> field on the COMPILE statement indicate the external or directory name of the 
bound code file; that is, the name of the executable program being procduced. 

BPLBND Input Statements 
The BPLBND input statements indicate which Type II ICMs to include in the bind, and describe the 
overlay structure. 

Input specifications are free-format and are separated from one another by semicolons. Multiple state
ments may appear on one line, and a single statement may extend onto several lines. 

A "line" is character positions 1 through 72 of an 80-character record. Positions 73 through 80 are re
served for sequence numbers. 

5024789 D-27 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Comments may be entered following a"%". BPLBND ignores all characters between a"%" and column 
72, inclusive. 

The elements ina list are separated from one another by commas. No word or number may straddle two 
source images or contain blanks. 

Binder keywords must be upper-case. Names may be lower-case, upper-case, or both. Since there is no 
folding of lower-case to upper-case, case conventions established in the BPL modules for files names, 
module names, and block names must be followed. 

BPLBND accepts four classes of input statements. 

1. Selection Statements: 

Selection statements specify the required modules and optional modules for the bind. The first 
required modules named is the host module. 

- REQUIRED statement 

The REQUIRED statement names those modules which must be included in the bound pro
gram. The first required module named is the host module. 

- OPTIONAL statement 

This statement lists optional modules. An optional module is included in the bound program 
only ifthere is a reference to a procedure in the optional module from a module which has been 
included. 

2. Option Statements 

D-28 

Option statements control error classifications, code file address extension, printer listings, and 
code file memory and stack size. 

The option control statements are: 

- PRINT ANALYSIS, PRINTCODE, PRINTREFERENCES, PRINTSEGANAL YSIS, and 
PRINT ALL statement 

These statements determine what information is printed on the bind listing. 

- PROGRAMLIMIT, PROGRAMSIZE, and STACKSIZE 

These statements regulate program and stack size for the bound code file. 

- NOEXTEND statement 

Specifing NOEXTEND prevents the use of extended addresses in the bound code file. 

- FATAL statement 

The level at which errors prevent formation of a code file can be reset with the FAT AL state
ment. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

3. Segmentation Statements 

Segmentation statements describe the overlay structure of the bound program. 

- SEGMENT statement 

This statement names the blocks that will be bound into segments. 

- OVERLAY statement 

This statement specifies the overlay structure of the bound program. 

4. Terminator Statement 

The END statement indicates the end of the input specifications. 

A module must be named in a selection statement before it can be named in an option or segmentation 
statement. 

A description of each of these input statements follows, in the order given previously. 

5024789 D-29 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

BPLBND INPUT SELECTION STATEMENTS: 

REQUIRED Statement 
The REQUIRED Statement names those modules (and type II ICMs) that must be included in the bind. 
Figure D-9 describes the format of this statement. 

REQUIRED MODULES: <module/icm list> 

Figure D-9. Format of the REQUIRED Statement 

An item in a <module/icm list> is of the form: 

<module name> FROM <icm name> 

Items in this list are separated by commas. 

The REQUIRED stateipent must immediately precede the OPTIONAL statement, if used. 

A module is required when it contains at least one procedure or COMMON block which must be includ
ed in the bound program. 

The first module named is the host module. 

In the event that no explicit program entry point has been specified in any of the contributing Type II 
ICMs, the first entry point in the host becomes the default program entry point. 

Example: 

REQUIRED MODULES: 
MODULA FROM 
MODB FROM 
MODC FROM 

ICMOOl, 
MODB, 
MODC; 

This statement specifies that MODULA, MODB, and MODC are required components of the program 
being bound, and that they are found in the ICM2 files named ICMOO 1, MODB, and MODC, respective
ly. 

(It is only necessary to name the module containing the program entry, the host module, in a RE
QUIRED statement. All other modules may be declared OPTIONAL if the programmer wishes, since 
they will be included if called). 

D-30 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

OPTIONAL Statement 
The OPTIONAL statement names those modules (and Type II ICMs) that will be used to satisfy unre
solved external references from the REQUIRED modules. OPTIONAL modules are included in the 
bound program only if they are called from other modules that have been included in the bound pro
gram. Figure D-10 shows the format of the OPTIONAL statement. 

OPTIONAL MODULES : <module/icm list> 

Figure D-10. Format of the OPTIONAL Statement 

An item in a <module/icm list> is in the following form: 

<module name> FROM <icm name> 

Items in this list are separated by commas. 

The OPTIONAL statement may be used to name modules which can be called by alternate versions of 
a conditionally compiled program. This permits the use of a single set of BPLBND control statements 
which can be used for all versions of a conditionally compiled program. Only the modules actually called 
by the version compiled will be included in the bound program. 

Example: 

OPTIONAL MODULES: 
MODX FROM ICMOOX, 
MODY FROM MODY, 
MODZ FROM MODZ; 

This statement specifies that MODX is to be bound into the program if there is a reference to it from an
other bound module. Likewise, either or both of MODY and MODZ will be bound modules. The three 
modules are to be found in the ICM2 files named ICMOOX, MODY, and MODZ, respectively. 

5024789 D-31 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

BPLBND OPTION STATEMENTS 

FATAL Statement 
The FATAL statement resets the level at which errors become fatal (that is. prevent the formation of a 
code file). Figure D-11 shows the format of the FAT AL statement. 

FATAL = <number> 

Figure D-11. Format of the FATAL Statement 

<Number> is a number between 1 and 10. 

Errors are ranked by severity level; the default FATAL level is 6. Level 10 errors are always fatal. 

A FAT AL statement takes effect as soon as it is recognized. All BP LB ND input statements are parsed 
before any other processing is done. When used, a FAT AL statement would normally be the first 
BPLBND input statement. 

Normally, the FAT AL level would not be reset. A programmer may use this statement to force a code 
file to be generated despite the detection of certain errors by BPLBND, or to cause low-level errors to 
prevent formation of a code file. 

D-32 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

NOEXTEND Statement 
The NOEXTEND statement prevents creation of a code file which uses extended addressing. Figure 
D-12 describes the format of this statement. 

NO EXTEND 

Figure D-12. Format of the NOEXTEND Statement 

5024789 D-33 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

BPLBND PRINT STATEMENT 
The PRINT statements specify optional information to be printed on the BPLBND output listing, fol
lowing the diagnostic output and in addition to the minimum information provided. 

The various PRINT options are described on the followng pages. They are all of the general form shown 
in Figure D-13 

<Print Statement> [<print list>] 

Figure D-13. General Format of PRINT Options 

The <Print Statements>s are: PRINTALL, PRINTANALYSIS, PRINTCODE, PRINTREFERENCE, 
AND PRINTSEGANALYSIS. 

On this and the following pages, a "code block" is a BPL procedure, and a "data block" is a BPL COM
MON block. 

When no PRINT statement is specified, the minimum printed output from BPLBND is a diagnostic list
ing of the input statements, a list of the ICM2s included in the bind and their compile dates, a map of 
the program's overall memory layout, base addresses and sizes of the code and data blocks present, the 
address of the host module's entry point, and a summary giving the number of fatal and non-fatal errors. 

The <print list> is defined as follows: 

[ {
.<module name> 
<module name> . <procedure> 
<module name> { <procedure-1>, ... ,<procedure-n> } 

}] [, .... ] 

If every code block is required, omit the print <print list>. 

Any explicitly referenced modules must previously have been named in a selection statement. 

D-34 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

PRINT ALL Statement 
The PRINT ALL statement names those (code) blocks for which both a code listing and an analysis must 
be printed. Figure D-14 describes the format of the PRINT ALL statement. 

PRINTALL [<print list>] 

Figure D-14. Format of PRINTALL 

The <print list> is described under PRINT Statements. 

PRINT ALL combines the effects of the PRINTANALYSIS and PRINTCODE statements. 

<Print list>s from PRINTALL statements add to the cumulative <print list>s from both 
PRINT ANALYSIS and PRINTCODE statements. 

For example, the following statement causes code and analysis listings to be printed for all of MODULE, 
for PROCl in MODB, and for Pl, P2, and P3 in MODC: 

PRINTALL MODULE, MODB.PROCl, MODC(Pl,P2,P3); 

5024789 D-35 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

PRINT ANALYSIS Statement 
The PRINT ANALYSIS statement names those (code) blocks for which analyses must be printed. Figure 
D-15 describes the format of this statement. 

PRINTANALYSIS [<printlist>l ; 

Figure D-15. Format of PRINTANALYSIS 

The analysis provides a list (an inverse reference graph) indicating the code blocks which access the 
blocks specified in the <print list>. That is, for each specified block, a list is provided of all code blocks 
which access that block. 

<Print list>s from separate PRINT ANALYSIS statements are cumulative. 

The <print list> is described under PRINT Statements. 

If every block is required, omit the <print list>. A reference graph of the entire program is then provided. 

Any explicitly referenced modules must have been named previously in a selection statement. 

For example, the following statement causes analysis listings to be printed for all of MODULE. for 
PROC l in MODB, and for P 1, P2, and P3 in MODC: 

PRINTANALYSIS MODULE, MODB.PROCl, MODC(Pl,P2,P3): 

Output from PRINT ANALYSIS appears on the BPLBND listing under the heading "REFERENCED 
BLOCKS". The blocks to be analyzed, and the code blocks referring to each, are listed. Blocks which are 
not explicitly accessed by user program statements in any procedure are marked "NOT 
REFERENCED." 

Output lines take the following form: 

{ CODE} 
DATA BLOCK <name> SEG #n 

D-36 

{ 
NOT REFERENCED 

REFERENCED BY 
CODE BLOCK <name> SEG #n [ . I } 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

PRINTCODE Statement 
The PRINTCODE statement names those (code) blocks for which a code listing must be printed. Figure 
D-16 describes the format of this statement. 

PRINTCODE [<printlist>J 

Figure D-16. Format of PRINTCODE 

<Print list>s from separate PRINTCODE statements are cumulative. 

The <print list> is described under PRINT Statements. 

If every code block is required, omit the <print list>. 

Any explicitly referenced modules must have been named previously in a selection statement. 

For example, the following statement causes code listings to be printed for all of MODULE, for PROCl 
in MODB, and for Pl, P2, and P3 in MODC. 

PRINTCODE MODULA, MODB.PROCl, MODC(Pl,P2,P3); 

5024789 D-37 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

PRINTSEGANAL YSIS Statement 

The PRINTSEGANALYSIS statement indicates that intersegment references must be printed. Figure 
D-1 7 describes the format of this statement. 

PRINTSEGANALYSIS [<print list>] 

Figure D-17. Format of PRINTSEGANALYSIS 

The <print list> is described under PRINT Statements. 

If every code block is required, omit the <print list>. 

Any explicitly referenced modules must have been named previously in a selection statement. 

For example, the following statement causes intersegment references to be listed for all of MODULA. 
for PROCl in MODB, and for Pl, P2, and P3, in MODC: 

PRINTSEG MODULA, MODB.PROCl, MODC(Pl,P2,P3); 

Output from the PRINTSEGANAL YSIS statement appears on the BPLBND listing under the following 
heading: 

REFERENCES MADE BY PROCS OF SEGMENT #n: <segment-name> 

Procedures in segment #n and the blocks accessed are listed in the same format as the output from 
PRINTREFERENCES. Only inter-segment references are listed; references between blocks in the same 
segment will not appear. If both PRINTREFERENCES and PRINTSEGANAL YSIS are specified in the 
BPLBND control statements, only the output from PRINTSEGANALYSIS will appear on the listing. 

D-38 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

PROGRAMLIMIT Statement 
This statement specifies the maximum desired size of the program. Its format is shown in Figure D-18. 

PROGRAM LIMIT = <max 6 digit number> 

Figure D-18. Format of PROGRAMLIMIT 

If the size specified is exceeded, a warning message is provided. 

5024789 D-39 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

PROGRAMSIZE Statement 
This statement specifies the minimum size (in digits) of the bound program. Its format is shown in Figure 
D-19 

PROGRAMSIZE = <max 6 digit integer> 

Figure D-19. Format of PROGRAMSIZE 

The program will be expanded to the specified size if it would otherwise be smaller. If the program is larg
er then the specified size, a warning message is provided. 

D-40 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

ST ACKSIZE Statement 
This statement permits the user to specify the size of the stack. Figure D-20 shows the format of this state
ment. 

STACKSIZE = <max 6 digit number> 

Figure D-20. Format of STACKSIZE 

If this statement is not present, the size assigned is the largest of the stack values provided by the ICM2s. 

5024789 D-41 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

BPlBND SEGMENTATION STATEMENTS 

SEGMENT Statement 
A SEGMENT statement names the blocks within the input modules which are to be bound together into 
a (possibly overlayable) segment. The "data blocks" shown in Figure D-21 are BPL COMMON blocks; 
"CODE blocks" are procedure blocks. 

SEGMENT [ <segment name>] 

CODE 
<module name> . <procedure> 

<module name> (<procedure> [ , <procedure> [ , ... ] { 

l { CODE { 

' DATA 

<module name> . <procedure> 

<module name> (<procedure> 

<common block name> 

, <procedure > . . 

Figure D-21. SEGMENT with Data Blocks 

·1l}} 1 ... 1] 

The <segment name> names the composite segment created from the code and the data items listed after 
it. . 

Procedure names are preceded by the word CODE. COMMON block names are preceded by the word 
DATA. 

A segment consists only of the code and data blocks explicitly assigned to it in a SEGMENT statement, 
and any associated constant pools (see following). A DATA block local to a CODE block will be placed 
in the same segment as the code only if both are named in the same SEGMENT statement. 

Constant and address constant pools for a procedure will be placed in that procedure's segment. These 
areas will be identified in BPLBND output listings as the following: 

<module name>.<procedure name>.CONST _POOL 
<module name>.<procedure name>.ACON_POOL 

If a <segment name> is duplicated, the <segment group> for the first occurrence is the one recognized. 

A <segment name> can appear only once in the OVERLAY statement of a bind. 

Example: 

SEGMENT X 
CODE PROGRMl.PROCEDUREl; 

This creates a segment called X. The segment will contain the procedure called procedure_!, from the 
module called PROGRM 1. 

D-42 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

SEGMENT J 
CODE PROGRMl (E, F, G) ; 

This statement will cause procedures E, F and G from the module PROGRM 1 to be contained in a seg
ment called J. 

SEGMENT Y 
CODE ( ... ), 
DATA PROGRMl.COMl 

This statement creates segment Y, containing the COMMON block COMl from the module 
PROGRMl, as well as the CODE block(s) specified. (An overlayable segment must contain at least one 
code block or it will never be brought into memory). 

5024789 D-43 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

OVERLAY Statement 
The OVERLAY statement determines which code and data blocks are overlayable, which segments 
share the same addresses and, hence, overlay one another, and where segments begin in memory relative 
to one another. 

Define the OVERLAY statement as shown in Figure D-22. 

OVERLAY <independent overlays list> 

Figure D-22. Definition of the OVERLAY Statement 

The <independent overlays list> is a list of independent overlays (defined below) separated by commas. 
Each <independent overlay> is specified as a list of one or more concurrent groups (defined below) sepa
rated by the symbol "<." 

A single <independent overlay> is specified as follows: 

[
<segment name> I < 

i<independent overlays list>l 

[ <segment name> l 
l J<independent overlays list>2 

[ I <segment name-n> 
... < 

i<independent overlays list -n>) l .. ·] 
For example, a valid OVERLAY statement would be: 

OVERLAY A< (B,C), D, J < (H,I) 
(1) (2) (3) 

In this example, the groups labelled (1), (2), and (3) are independent overlays (defined below). Within 
group (1), A and (B,C) are concurrent groups (defined below); withih group (3), J and (H,I) are concur
rent. In turn, B and C within (1) are independent; Hand I within (3) are independent. 

Program memory is divided into 2 areas: one for overlayable code data segments and one for non
overlayable (resident) segments. The OVERLAY statement describes the segmentation structure for the 
overlayable code data area. Any segment not indicated in an OVERLAY statement is non-overlayable 
by default. 

The layout of items in the program's overlayed region is hierarchically described by subclusters of items 
which are either "independent" or "concurrent". 

Independent groups are never simultaneously active in the program, and hence can occupy the same 
storage addresses at different points in time. Such groups share the same base address. The longest group 
determines the end address of the region. 

Concurrent groups are those which need to be present in memory simultaneously for program efficiency 
and hence, must occupy disjoint ranges of addresses. Such a group is a "working set". The end address 
of one group becomes the base address of the next group. 

D-44 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Any block units are formed by the concatenation of code and data blocks. These overlays can be defined 
and named in SEGMENT statements. 

Any block included in a bind but not listed in an OVERLAY statement is placed at an arbitrary position 
in resident memory. 

It is possible to include a code block in several overlays; a separate copy will bw created for each instance. 
There can be only one copy of a data blo7k in a program. 

A <segment name> can appear only once in the OVERLAY statement. 

If there is no OVERLAY statement, the entire program will be located in resident memory. 

In the previous- example, 

OVERLAY A< (B,C), D, J < (H,I) 

where J consists of the procedures E and F. Figure D-23 shows how G (as specified in a SEGMENT state
ment) is mapped. 

Base of End of Possible 
Overlayed Region Overlayed Region Working Sets 

B AB 
A 

c AC 

D D 

H EFGH 
E F G 

I EFGI 

Figure D-23. Mapping of Overlayed Regions 

5024789 D-45 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

BPLBND TERMINATOR STATEMENT 

END STATEMENT 
The END statement, which is optional, marks the end of the binder input statements. Figure D-24 de
scribes the format of this statement. 

END ; 

Figure D-24. Format of the END Statement 

If the END statement is omitted, a warning is provided. 

D-46 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Input-Output Facilities of BPLBND. 
BPLBND reads two kinds of input files: a card image file containing BPLBND input statements (these 
input statements must name one or more Type II ICM files), and the ICM2 files that will be bound. 

BPLBND writes two kinds of output files. It always generates a printer backup file which echoes 
BPLBND input statements, lists all bind-time errors, gives the overall memory map of the program and 
addresses of code and data blocks, and optionally prints code and analysis listings for selected code 
blocks. If there are no bind-time errors above the FAT AL level, BPLBND create an executable code file. 

Table D-1 lists BPLBND input and files. 

Table D-1. BPLBND Input and Files 

File Description 

Input statements 

Diagnostic/code 
listing 

Internal 

INPUT 

PRINT 

External 

INPUT 

PRINT 

Many BPLBND output message are printed in lower-case letters. Users whose printeres lack lower-case 
characters will need to use the TRN option of the MCP's PRINT (or PB) command when printing 
PBLBND output listings, to fold such messages into upper-case. 

5024789 D-47 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Debugging and Diagnostic Facilities of BPLBND 
BPLBND provides extensive error reporting and control, bind-time parameter checking. and extended 
addressing veto power. 

CODE AND DATA INFORMATION, ADDRESSES AND REFERENCES 

Compile dates of the bound ICM2s, an overall program memory map, base addresses and sizes of code 
and data blocks, and the host module's entry address are always provided by BPLBND. See the PRINT 
statements for additional information whch can be obtained. 

PARAMETER CHECKING 

Each inter-module entry point definition or reference has an ICM2 data structure which describes the 
formal or actual parameters. Calling and receiving sequences are compared to this description and must 
have the same number of parameter digits and use the same kind of addresses for the call by reference 
parametes. 

ERROR HANDLING 

BPLBND recognizes two classes of error: fatal and non-fatal. It reports each instance of each error found 
in the lasting for the bind. 

No code file is produced if a fatal error is detected. Whenever possible, BPLBND completes the current 
processing phase after it finds a fatal error so that other errors may be reported. It does not proceed to 
its next processing phase. 

An executable code file is produced if no fatal errors are encountered. Errors are ranked on a scale from 
1 to l 0. The higher the number, the more serious the error. Ten is always fatal. A FAT AL statement 
makes BP LB ND treat all errors of the severity level given and greater as fatal errors. The defalult FAT AL 
level is 6. 

It is the programmer's responsibility to determine the impact a BPLBND detected error will have on the 
generated code to decide whether to permit that error to remain. 

All error messages are identified by a number. The following list describes the various possible errors by 
error number. 

D-48 



Error 

101 

102 

103 

104 

105 

107 

109 

110 

111 

112 

113 

114 

115 

116 

118 

5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Level Error/Disposition 

Number expected. 
Value for fatal error level is unchanged. 

Unrecognized statement. 
All characters up to the next semicolon 
are skipped. 

Keyword expected: xxxx 
BPLBND keeps trying. 

Improper punctuation: xxxx name expected. 
All characters up to the next semicolon 
are skipped. 

Segment xxxx undefined. 
This segment is ignored. 

FATAL= xxxx: value exceeds 10. 
Value for fatal error level is unchanged. 

Punctuation expected: xxxx. 
BPLBND keeps trying. 

5 Segment xxxx duplicated in OVERLAY 
statement. 

END statement expected. 
End of input encountered; statement 
fragment is ignored. 

Identifier too long: remaining characters 
truncated. 
The left-most characters are processed 
and the remaining characters are skipped. 

Duplicate OVERLAY statement. 
The previous OVERLAY statement is ignored. 

5 Datablock xxxx.xxxx appears in more 
than one segment. 

10 No HOST indicated. 
Fatal. The bind cannot proceed beyond 
syntax checking without a host module. 

IO xxxx out of space. 
Fatal. BPLBND has overflowed the named 
in-memory table. 

5 Module xxxx is not in module list. 

D-49 



Error 

119 

120 

121 

122 

123 

124 

190 

203 

204 

205 

206 

D-50 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Level Error/Disposition 

Identifier expected. 
Value for fatal error level is unchanged. 

Number too long. 
The left-most digits are processed and the 
rest ignored. 

Module names xxxx and xxxx from ICM xxxx 
do not match. 
Value for fatal error level is unchanged. 

Illegal character. 
Value for fatal error level is unchanged. 

CODE or DATA expected. 
All characters up to the next semicolon 
are skipped. 

1 Segment xxxx is not in OVERLAY statement. 

5 xxxx appears in more than one Type II ICM. 
The first Type II ICM name is used. 
Fatal. A target name for a module cannot 
be determined. 

5 Unresolved reference from command deck 
to xxxx. 
The block was named in the command deck 
but did not appear in a Type II ICM. 

5 No code block in bind is named xxxx. 
The external reference is unresolved. 
It is linked to a binder-supplied 
routine that will issue a run-time 
message and terminate program execution 
at that point. 

10 File not found. 
Fatal. A file named in a binder input 
statement was unavailable when BPLBND 
tried to open it. 

10 Interface error. 



Error 

207 

208 

209 

213 

214 

215 

216 

218 

221 

222 

223 

303 

5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Level Error /Disposition 

10 Total calling sequence length different 
in definition and reference. 
Fatal. Code is not safe if number of 
digits placed on stack differs from 
number of digits read from stack in a 
procedure call. 

10 Incompatible return seg._on_stackfield. 
Fatal. Called PROC does not allow room 
for "return segment number" on stack frame. 

10 Incompatible address extension. 
Fatal. Modules use different 

·representations of call-by-reference 
parameters. 

6 Reference parameter list is shorter/longer 
than definition parameter list. 
The definition is linked with the refernce. 

3 Lengths are incompatible for parameter xxxx. 
The definition is linked with the reference. 

3 Types are incompatible for parameter xxxx. 
The definition is linked with the reference. 

3 Classes are incompatible for parameter xxxx. 
The definition is linked with the reference. 

5 Program entry points are not included in 
the bind. 
Fatal. 

10 Module xxxx is of incorrect ICM format for 
this BPLBND release. 
Fatal. 

5 Cannot find module xxxx. 
Fatal. 

To xxxx.xxxx from xxxx. 
This message qualifies other messages. 

2 This block was named in segment xxxx. 

D-51 



Error 

304 

305 

402 

407 

408 

409 

501 

502 

503 

600 

601 

602 

603 

604 

605 

606 

701 

D-52 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Level Error/Disposition 

5 Segment xxxx cannot be reused. 
The second and subsequent occurrences of 
segment xxxx in an overlay list are 
skipped rather than expanded. 

2 Data block xxxx is read_write and 
cannot be overlayed. 

7 Incompatible descriptions for data block 
xxxx-description from first module chosen. 
BPLBND uses the first description 
encountered as a data block. 

10 Incorrect index to code block in ICM xxxx. 
The block is ignored. 

5 ICM error - illegal data block in module 
XXXX. 

The block is ignored. 

10 Reference out of bound in module xxxx. 
Fatal. 

10 ICM error - entry point index out of range. 

10 ICM error - imerface index out of range. 

10 ICM error - no interface table. 

10 Block xxxx mapped above 1 OOKD limit. 

10 Block xxxx mapped over 300KD limit. 
Fatal. 

6 Program above 1 OOKD but extensions vetoed. 

5 xxxx cannot be duplicated. 

5 xxxx must be resident. 

10 xxxx has BCT over 300KD. 
Fatal. 

Program larger than specified size. 

10 Invalid controller on a never extended 
branch instruction. 
Fatal. 



Error 

702 

703 

704 

705 

706 

707 

709 

710 

711 

712 

713 

801 

802 

803 

804 

805 

806 

5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Level Error/Disposition 

10 Absolute address of never extended 
address form at exceeds 300000. 
Fatal. 

10 Absolute address of never extended 
address form at exceeds 100000. 
Fatal. 

10 Invalid code token type. 
Fatal. 

10 Invalid read on ICM. 

10 Trouble on LABEL TABLE file. 
Fatal. 

10 Trouble on CODE file. 
Fatal. 

10 Displacement offset exceeds the 
limit of the block. 
Fatal. 

10 Absolute address is less than zero. 
Fatal. 

10 Invalid dynamic destination. 
Fatal. 

10 Error in file. 
Fatal. 

4 ICM already opened in error. 

Field previously initialized xxxx. 

10 Host ICM is not available. 
Fatal. 

4 Host ICM was already opened. 

5 Invalid OP code in print table. 

10 Invalid segment number index. 

10 An address is > 6 digits. 
Fatal. 

D-53 



Error 

940 

976 

999 

D-54 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Level 

10 

Error/Disposition 

Invalid write while copying LABEL 1 ABLE 
from xxxx. 
Fatal. 

Binder error in summary. 

Not implemented. 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Operational Considerations for BPLBND 
There are several size restrictions in BPLBND: 

• There can be at most 99 Type II ICMs. 

• There can be at most 99 segments. 

• There can be at most 20 files. 

• In the entire program there can be at most 9998 (code and data) blocks, 9998 references to code 
or non-local data, 998 entry points, 9998 external references, and 9998 parameters. 

• In a single Type II ICM there can be at most 200 blocks and 200 external references. 

• The memory requirement of the bound program (after segmentation) must not exceed 300 KD. 

In binding a large program, performance of BPLBND can be enchanced by adding additional memory 
(?MEM + 20 following the compile command). 

5024789 D-55 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

BPLBND Examples 
Example 1: 

This example illustrates a complete set of BPLBND control statements. A hypothetical program is creat
ed from procedures located in several ICM2s. 

D-56 

?COMPILE TST2BK WITH BPLBND LIB 
?FILE PRINT = TST2BK PBK FORM 
DATA INPUT 

FATAL = 9; 
STACKSIZE = 2000; 
REQUIRED MODULES: 

prt_typ2_icm 
ranrd 
stop 
err 
print 
reacted 

OPTIONAL MODULES: 
debug 
trace 
dump 
pa ram 
arm 
trap 
put 

PRINTSEG; 

SEGMENT driver 

FROM II22bk, 
FROM IB22bk, 
FROM X5ESTO, 
FROM X5ESER, 
FROM X5EPRN, 
FROM X5EREA; 

FROM X5EBDB, 
FROM X5ETRC, 
FROM X5EDMP, 
FROM X5EPAR, 
FROM X5EARM, 
FROM X5ETRP, 
FROM X5EPUT; 

CODE prt_typ2_icm.main; 

SEGMENT parser 
CODE prt_typ2_icm(mark_error, echo, 
next_char, advance_ to, 
get_ident, get_number, 
next_token); 

SEGMENT header 
CODE prt_typ2_icm(print_header, print_day_and_time); 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

SEGMENT blocks 
CODE prt_type2_icm(print_all_block_des, 
print_block; 
prt_block_descriptor); 

SEGMENT eoj 
CODE err.error, 
CODE stop.program; 

OVERLAY driver, parser, header, blocks, eoj; 
END; 
?END 

The BPLBND printer output file ID will be TST2BK. 

The FAT AL statement has been used to increase the level number at which errors become fatal from 6 
to 9. 

The size of the bound program's stack will be 2000 digits. 

The -modules "prt_typ2_icm," "ranrd," "stop," "err," "print," and "reacted" are required for this pro
gram. That is, each module contains at least one procedure or COMMON block which must be bound 
into the program. 

The modules "debug," "trace," "dump," "param," "arm," "trap," and "put" contain procedures or 
COMMON blocks which can or cannot be called by any of the other modules bound into the program. 

Intersegment references will be printed on the diagnostic listing. 

Table D-2 shows how the five segments are declared. 

5024789 D-57 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Table D-2" Declaring the Five Segments 

Segment Name Explanation 

driver Contains the procedure "main" 
from the module "prt_typ2_icm." 

parser Contains the procedure "marLerror," 
"get_number," and "next_token" 
from the module "prt_typ2_icm." 

header Contains the procedures "print_header" 
and "print_day_and_time" from 
"prt_typ2_icm." 

blocks Contains the procedures "print_alLblocLdesc," 
"print_block," and "prt_blocLdescriptor" 
from the module "prt_typ2_icm." 

eOJ Contains the procedure "error" from the 
module "err," and the procedure "program" 
from the module "stop." 

The five segments are declared to be independent overlays. That is, all begin at the same address when 
in memory; no two will be in memory simultaneously. 

Finally, the END statement terminates the input. 

D-58 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

Example 2: 
The illustrations that follow show BPLBND control statements used to bind the three ICM2s given in 
the example at the end of the section on BPL Type II ICMs. The printed output produced by BPLBND 
is also shown. 

All modules are named in the REQUIRED list. Only ICMBLl_ICM, which contains the program entry 
point, must be named there; the others can be named as OPTIONAL MODULES, and BPLBND deter
mines that they must present. 

Code, analysis, and reference listings are requested. A segment analysis listing is not requested, because 
that would suppress the PRINTREFERENCES list. 

Three segments are specified. The first, main_seg, contains the main procedure and the COMMON data 
block COMl. The procedures called to open and to close the output files are grouped into a second seg
ment, and the procedures called to write output messages and to manipulate the variables in COMl are 
in the third segment. 

Since the second and third segments are never in use at the same time, they are declared to be indepen
dent and able to overlay each other. 

The program stack size is specified to be 300 digits. 

The remaining figures show the information provided by BPLBND. Bound modules and their compile 
dates are always listed. Warnings follow when BPLBND has not found references to certain blocks. 
These warnings can be ignored when they do not name blocks explicitly used in the modules. 

A map of the program's overall memory layout is always produced. When segmentation is requested, the 
segments and their locations and sizes are listed, and. a diagram of the spatial relationships between the 
segments is given. 

Details of addresses and sizes of all code and data blocks within all segments are always given. This listing 
shows the locations in resident memory of all blocks not named in SEGMENT statements, as well as the 
final layout of all segments declared in SEGMENT statements. 

A list of modules entry points is given. 

The output from the PRINTREFERENCES option is next. A heading is printed for every segment. Each 
procedure within the segment is listed, and the code and data blocks to which instructions in the proce-
dure refer are listed. · 

5024789 D-59 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

EXECUTION OF BINDER (Version 7/13/78 A) 

STACKSIZE = 300; 

REQUIRED MODULES: 
ICMBLl ICM FROM 
ICMBL2 ICM FROM 
ICMBL4 ICM FROM 

PRINTREF; 
PRINTCODE; 
PRINTANALYSIS; 

SEGMENT main_seg 

ICMBLl, 
ICMBL2, 
ICMBL4; 

CODE ICMBLl_ICM.PROGl, 
DATA COMl; 

SEGMENT open_close 
CODE ICMBL4_ICM.OPENIT, 
CODE ICMBL4 ICM.CLOSIT; 

SEGMENT work_seg 
CODE ICMBL4_ICM.WRITIT_proc, 
CODE ICMBL2 ICM.PROG3; 

OVERLAY main_seg < (open_close, work seg); 

END; 

Figure D-25. BPLBND Example, Contro! Statement Listing 

SEGMENT LAYOUT: 

---SEGMENT NAME--- SEG BASE SIZE SLACK INTERCEPT 
RESIDENT 1 260 1636 0 44 
main seg 2 1896 536 0 140 
open_close 3 2432 80 160 0 
work seg 4 2432 240 0 0 

CODE 

SEG LO---------------SPATIAL RELATIONSHIPS-------------------------HI 
2 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
3 xxxxxxxxx-----------------
4 xxxxxxxxxxxxxxxxxxxxxxxxxx 

Figure D-26. BPLBND Example, Program Information Listing (Sheet l of 8) 

D-60 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

----MODULE NAME---- ICM NAME---------COMPILED BY----COMPILE DATE 

ICMBLl ICM 
ICMBL2 ICM 
ICMBL4 ICM 

****203 UNRESOLVED 

ICMBLl 
ICMBL2 
ICMBL4 
REF FROM 

BPL 
BPL 
BPL 

COMMAND DECK TO iheap 

OVERALL MEMORY LAYOUT: 

----REGION----
RESERVED MEMORY 
SEG DICTIONARY 
RESIDENT SEG . 
OVERLAY AREA 
PAGE SPACE 
STACK 
TOTAL PROGRAM. 

BASE 
0 

100 
260 

1896 
2672 
3700 

0 

SIZE 
100 
160 

1636 
776 

1028 
300 

4000 

5/15/79 
5/15/79 
5/15/79 

(LEVEL 5: 

18: 5 
18: 5 
18: 6 
WARNING) 

Figure D-26. BPLBND Example, Program Information Listing (Sheet 2 of 8) 

5024789 D-61 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

DETAILS OF SEGMENT #1: RESIDENT 

BASE SIZE 
0 
0 

488 18 
508 8 
516 24 
540 280 

0 
820 96 
916 264 

1180 672 

DETAILS OF SEGMENT #2~ 

BASE 
1896 

2244 

SIZE 
348 

0 
0 

48 

EXT 

main 

EXT 

----------BLOCK NAJ\1E----------------
DATA BLOCK pparam 
DATA BLOCK BRANCH TARGET 
DATA BLOCK page_space_ info 
DATA BLOCK memory_bct_response 
DATA BLOCK ICMBLl ICM.GLOBAL -
DATA BLOCK ICMBLl ICM.PROGl.PROGl -
DATA BLOCK ICMBL2 ICM.GLOBAL -
DATA BLOCK ICMBL2 ICM.PROG3.PROG3 -
DATA BLOCK ICMBL4 ICM.GLOBAL 
DATA BLOCK ICMPRT 

seg 

----------BLOCK NAME---------------
CODE BLOCK ICMBLl ICM.PROGl 
DATA BLOCK ICMBLl ICM.PROGl.CONST POOL - -
DATA BLOCK ICMBLl ICM.PROGl.ACON POOL 
DATA BLOCK COMl 

DETAILS OF SEGMENT #3~ open_close 

BASE SIZE 
2432 48 

0 
0 

2480 32 
0 
0 

EXT ----------BLOCK NAME---------------
CODE BLOCK ICMBL4 ICM.OPENIT 
DATA BLOCK ICMBL4 ICM.OPENIT.CONST POOL - -
DATA BLOCK ICMBL4 ICM.OPENIT.ACON POOL 
CODE BLOCK ICMBL4 ICM.CLOSIT 
DATA BLOCK ICMBL4 ICM.CLOSIT.CONST POOL - -
DATA BLOCK ICMBL4 ICM.CLOSIT.ACON POOL 

DETAILS OF SEGMENT #4: work seg 

BASE 
2432 

2560 

D-62 

SIZE 
128 

0 
0 

112 
0 
0 

EXT ----------BLOCK NAME------·---------
CODE BLOCK ICMBL4 ICM.WRITIT proc 
DATA BLOCK ICMBL4=ICM.WRITIT=proc.CONST_POIT. 
DATA BLOCK ICMBL4_ICM,WRITIT_proc.ACON_POOL 
CODE BLOCK ICMBL2 ICM.PROG3 
DATA BLOCK ICMBL2 ICM.PROG3.CONST POOL - -
DATA BLOCK ICMBL2 ICM.PROG3.ACON POOL 

Figure D-26. BPLBND Example, Program Information Listing (Sheet 3 of 8) 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

MODULE ENTRY POINTS: 

------MODULE NAME-----
ICMBLl ICM 

----PROCEDURE NAME---
PROGl 

SEG 
2 

ICMBL2-ICM PROG3 
ICMBL4-ICM OPEN IT 
ICMBL4-ICM WRITIT_proc 

REFERENCES MADE BY PROCS OF SEGMENT #1: RESIDENT 

REFERENCES MADE BY PROCS OF SEGMENT #2: main_seg 

PROC ICMBLl ICM.PROGl SEG #2 REFERS TO 

4 
3 
4 

ADDRESS 
1896 
2560 
2432 
2432 

CODE BLOCK ICMBL4_ICM.OPENIT SEG #3 
DATA BLOCK ICMBLl ICM.PROGl.PROGl SEG #1 
DATA BLOCK COM! SEG #2 
CODE BLOCK ICMBL4_ICM.WRITIT_proc SEG #4 
CODE BLOCK ICMBL2 ICM.PROG3 SEG #4 
DATA BLOCK page space info SEG #1 
DATA BLOCK ICMBLl ICM~GLOBAL SEG #1 
CODE BLOCK ICMBL4-ICM.CLOSIT SEG #3 

REFERENCES MADE BY PROCS OF SEGMENT #3: open_close 

PROC ICMBL4 ICM.OPENIT SEG #3 REFERS TO 
DATA BLOCK ICMBL4 ICM.GLOBAL SEG #1 

PROC ICMBL4 ICM.CLOSIT SEG #3 REFERS TO NOTHING 

REFERENCES MADE BY PROCS OF SEGMENT #4: work_seg 
~ 

PROC ICMBL4_ICM.WRITIT_proc SEG #4 REFERS TO 
DATA BLOCK PROGRAM RESERVED MEMORY SEG #6 
DATA BLOCK ICMBL4 ICM.GLOBAL SEG #1 
DATA BLOCK ICMPRT-SEG #1 

PROC ICMBL2 ICM.PROG3 SEG #4 REFERS TO 
CODE BLOCK ICMBL4 ICM.WRITIT proc SEG #4 
DATA BLOCK COM! SEG #2 -

Figure D-26. BPLBND Example, Program Information Listing (Sheet 4 of 8) 

5024789 D-63 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

REFERENCED BLOCKS 

DATA BLOCK 
DATA BLOCK 
DATA BLOCK 
DATA BLOCK 

DATA BLOCK 
CODE BLOCK 
DATA BLOCK 
DATA BLOCK 
DATA BLOCK 

pparam SEG #1 NOT REFERENCED 
BRANCH_TARGET SEG #1 NOT REFERENCED 
iheap SEG #1 NOT PRESENT NOT REFERENCED 
page_space_info SEG #1 REFERENCED BY 

CODE BLOCK ICMBLl ICM.PROGl SEG #2 

memory_bct_response SEG #1 NOT REFERENCED 
ICMBLl_ICM.PROGl SEG #2 NOT REFERENCED 
ICMBLl ICM.PROGl.CONST POOL SEG #2 NOT REFERENCED 
ICMBLl-ICM.PROGloACON POOL SEG #2 NOT REFERENCED 
COMl SEG #2 REFERENCED BY 

CODE BLOCK ICMBL2 ICM.PROG3 SEG #4 
CODE BLOCK ICMBLl ICMoPROGl SEG #2 

CODE BLOCK ICMBL4 ICM.OPENIT SEG #3 REFERENCED BY 

DATA BLOCK 
DATA BLOCK 
CODE BLOCK 

DATA BLOCK 
DATA BLOCK 
CODE BLOCK 

CODE BLOCK ICMBLl ICM.PROGl SEG #2 

ICMBL4_ICM.OPENIT.CONST_POOL SEG #3 NOT REFERENCED 
ICMBL4 ICM.OPENIT.ACON POOL SEG #3 NOT REFERENCED 
ICMBL4-ICM.CLOSIT SEG #3 REFERENCED BY 

CODE BLOCK ICMBLl ICM.PROGl SEG #2 

ICMBL4_ICM.CLOSIT.CONST_POOL SEG #3 NOT REFERENCED 
ICMBL4_ICM.CLOSIT.ACON_POOL SEG #3 NOT REFERENCED 
ICMBL4 ICM.WRITIT proc SEG #4 REFERENCED BY 

- CODE BLOCK ICMBL2 ICMoPROG3 SEG #4 
CODE BLOCK ICMBLl-ICM.PROGl SEG #2 

DATA BLOCK ICMBL4 ICM.WRITIT proc.CONST POOL SEG #4 NOT REFERENCED 
DATA BLOCK ICMBL4-ICM.WRITIT-proc.ACON POOL SEG #4 NOT REFERENCED 
CODE BLOCK ICMBL2-ICM.PROG3 SEG #4 REFERENCED BY 

CODE BLOCK ICMBLl ICM.PROGl SEG #2 

DATA BLOCK ICMBL2_ICM.PROG3.CONST_POOL SEG #4 NOT REFERENCED 
DATA BLOCK ICMBL2 ICMoPROG3oACON POOL SEG #4 NOT REFERENCED 
DATA BLOCK ICMBLl-ICMoGLOBAL SEG-#1 REFERENCED BY 

CODE BLOCK ICMBLl ICM.PROGl SEG #2 

DATA BLOCK ICMBLl ICM.PROGloPROGl SEG #1 REFERENCED BY 
CODE BLOCK ICMBLl ICM.PROGl SEG #2 

DATA BLOCK ICMBL2 ICM.GLOBAL SEG #1 NOT REFERENCED 
DATA BLOCK ICMBL2-ICM.PROG3.PROG3 SEG #1 NOT REFERENCED 
DATA BLOCK ICMBL4-ICM.GLOBAL SEG #1 REFERENCED BY 

CODE BLOCK ICMBL4 ICM.WRITIT proc SEG #4 
CODE BLOCK ICMBL4 ICM.OPENIT SEG #3 

DATA BLOCK ICMPRT SEG #1 REFERENCED BY 
CODE BLOCK ICMBL4 ICM.WRITIT_proc SEG #4 

Figure D-26. BPLBND Program 5 8) 

D-64 



5024789 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

CODE LISTING FOR CODE BLOCK ICMBLl_ICM.PROGl, SEG #2 

02 001896 NTR 310002 002292 
02 001908 CNST 0 
02 001909 CNST 002 
02 001912 MVA 101012 200540 202244 
02 001930 MVA 101012 200560 202268 
02 001948 NTR 310014 002336 
02 001960 CNST 0 
02 001961 CNST 002 
02 001964 ACON 20000580 
02 001972 ACON 20000604 
02 001980 ACON 20002244 
02 001988 NTR 310002 002380 
02 002000 CNST 0 
02 002001 CNST 002 
02 002004 NTR 310014 002336 
02 002016 CNST 0 
02 002017 CNST 002 
02 002020 ACON 20000628 
02 002028 ACON 20000652 
02 002036 ACON 20002244 
02 002044 MVA 100608 000488 200516 
02 002062 NTR 310014 002336 
02 002074 CNST 0 
02 002075 CNST 002 
02 002078 ACON 20000676 
02 002086 ACON 20000700 
02 002094 ACON 20000516 
02 002102 MVA 100606 000494 200516 
02 002120 NTR 310014 002336 
02 002132 CNST 0 
02 002133 CNST 002 
02 002136 ACON 20000724 
02 002144 ACON 20000748 
02 002152 ACON 20000516 
02 002160 MVA 100606 000500 200516 
02 002178 NTR 310014 002336 
02 002190 CNST 0 
02 002191 CNST 002 
02 002194 ACON 20000772 
02 002202 ACON 20000796 
02 002210 ACON 20000516 
02 002218 NTR 310002 002406 
02 002230 CNST 0 
02 002231 CNST 002 
02 002234 BUN 27 000376 -

Figure D-26. BPLBND Example, Program Information Listing (Sheet 6 of 8) 

D-65 



CODE 

D-66 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

CODE LISTING FOR CODE BLOCK ICMBL2_ICM.PROG3, 

04 002560 NTR 310014 002432 
04 002572 CNST 0 
04 002573 CNST 000 
04 002576 ACON 20000820 
04 002584 ACON 20000844 
04 002592 ACON 20002244 
04 002600 NTR 310014 002432 
04 002612 CNST 0 
04 002613 CNST 000 
04 002616 ACON 20000868 
04 002624 ACON 20000892 
04 002632 ACON 20002268 

04 002640 MVL 091200 202268 202268 
04 002664 BUN 27 000376 

CODE LISTING FOR CODE BLOCK ICMBL4 ICM.OPENIT, SEG #3 

03 002432 BCT 300134 
03 002438 BUN 27 002454 
03 002446 ACON 001180 
03 002452 CNST 10 
03 002454 MVR 148266 404000 200916 
03 002472 BUN 27 000376 

LISTING FOR CODE BLOCK ICMBL4_ICM.WRITIT_proc, SEG #4 

04 002432 MVA 101212 F00020 200916 
04 002450 MVA 101212 F00028 200940 
04 002468 MVA 101212 F00036 200964 
04 002486 MVA 10A606 000916 001214 
04 002504 BCT 300234 
04 002516 BUN 27 002534 
04 002518 ACON 001180 
04 002524 CNST 000000 
04 002530 CNST 0200 
04 002534- MVR 14B266 404000 200916 
04 002552 BUN 27 000376 

Figure D-26. BPLBND Example, Program Information Listing (Sheet 7 of 8) 

SEG #4 

202244 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

CODE LISTING FOR CODE BLOCK ICMBL4_ICM,CLOSIT, SEG #3 

03 002480 BCT 300154 
03 002486 BUN 27 002502 
03 002494 ACON 001180 
03 002500 CNST 40 
03 002502 BUN 27 000376 

BINDER-SUPPLIED CODE: 

01 000260 BCT 300214 
01 000266 BUN 27 000282 
01 000274 ACON 000508 
01 000280 CNST 20 
01 000282 MVA 100306 000508 000500 

01 000300 SUB 040606 000040 000500 000494 
01 000324 MVA 100606 000494 000040 
01 000342 NTR 310002 001852 
01 000354 CNST 000 
01 000358 BRT 3304FF 200008 
01 000370 BCT 300194 
01 000376 MVN 110303 000017 000118 
01 000394 NEQ 25 000410 
01 000402 EXT 32 FOOOOO 
01 000410 MVA 100303 EOOOOO 200480 
01 000428 MPY 05A203 320000 000118 000473 
01 000452 INC 01A505 001000 000473 
01 000470 EXT 32 300000 
01 000478 BUN 27 000000 

INTER-SEGMENT TRANSFER CODE; 

01 001852 MVA 10B303 001896 200480 
01 001870 MVA 10A303 002000 000118 
01 001888 BUN 27 300164 
02 002292 MVA 108303 002432 200480 
02 002310 MVA 10A303 003000 000118 
02 002328 BUN 27 300196 
02 002336 MVA 10B303 002432 200480 
02 002354 MVA 10A303 004000 000118 
02 002372 BUN 27 300228 
02 002380 MVA 10B303 002560 200480 
02 002398 BUN 27 002354 
02 002406 MVA 10B303 002480 200480 
02 002424 BUN 27 002310 

MAX ERROR LEVEL: 5 
# OF WARNINGS: l 
# OF FATAL ERRORS: 0 
BIND COMPLETED 

Figure D-26, BPLBND Example, Program Information Listing (Sheet 8 of 8) 

5024789 D-67 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Independently Compiled Modules (ICM) 

The next output is from PRINT ANALYSIS. Since no blocks were specified in the statement, all code and 
data blocks in the program are listed. Following each are the names of code blocks which make reference 
to it. 

The code requested by PRINTCODE is given next. Segment numbers and instruction addresses precede 
the lines of generated code for each procedure. 

The BPLBND summary lines at the end of the listing are always produced. They give the maximum level 
of errors or warnings encountered, the number of warnings, the number of fatal errors, and an indication 
of whether a code file was produced. 

D-68 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

APPENDIX E 

COMMON BPL PROGRAMMING ERRORS 

The following have been found to be common mistakes. 

Forgetting that index registers are altered during the execution of the program. For example, IXl has a 
negative value after a CASE statement is 'entered. 

Forgetting that an indirect field length. of 00 means that 100 will be used. 

Forgetting that address controllers are included in the ADDRESS OF construct. For example if A is de
clared ALPHA at location 2000, then B := [A]; will result in 202000 being moved to B. 

Forgetting that index registers add to the digit address, not the character address. For example in step
ping through a character field with an index register, the register must be incremented by 2, not 1. 

Name parameters cannot have their addresses altered in a meaningful way. Since they are referred to in
directly through the stack, adding a value to the address (as A.+ 2) will add to the stack address, rather 
than the resultant address. 

Forgetting the "# 11 on a define, or the 11 ) 11 on a parametric define call. 

Defining key words. 

Unmatched BEGIN/ENDS. 

Having patch records out of sequence. 

Omitting 11 & 11 on a line before the comments. 

Leaving off the 11 , 11 • 

Including unmatched literal delimiters: 11 ..... , @FIC. ... , %C3D .... 

Boundary alignment problems; IA and ALPHA must be mod 2. 

Formal and actual parameters must agree in procedure to get expected results. 

When overriding a SIGNED INTEGER with a UN controller, a . + 1 must be included to get past the 
sign. 

Failing to declare something before it is used. 

For example: 

GO TO L; 
L: 

without having LABEL L; beforehand. 

Not realizing that the error pointer may in some instances be pointing to a line previous to the one imme
diately above it. 

5024789 E-1 





B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

APPENDIX F 

. EBCDIC, USASCll, AND BCL REFERENCE TABLE 

GENERAL 
This table reflects the internal EBCDIC st'ructure in its sequential code arrangement for V Series Sys
tems, plus the USASCII and BCL magnetic tape coding structures. 

The two methods of creating the two-character codes are as follows: 

1. 8-bit (byte) character code: 

Decimal Equivalent Binary 

0 
1 
2 

Decimal Equivalent 

0 
1 
2 

Converted 3 

0000 0000 
0001 0001 
0010 0010 
0011 0011 
1001 1001 
1010 1010 
1011 1011 
1100 1100 
1101 1101 
1110 1110 
1111 1111 

3 Converted 
9 

A 10 
B 11 
c 12 
D 13 
E 14 
F 15 

Undigit 
Character 

Undigit 
Character 

9 
10 } A 

_ l l } B 
12 } c 
13 } D 
14 } E 
15 } F 

Example: 

2. 

If a memory dump reflects A3, the internal code would be 1010 0011. The highest sequential 
code is FF and the internal code is 1111 1111. 

6-bit (byte) character code: 

Decimal Binary Decimal 

0 00 0000 0 
1 01 0100 4 Converted 
2 10 1001 9 
3 111010} 10 } A 
0 00 1100 } 12 } c 
2 10 1111} 15 } F 

NOTE 
There are only 64 unique 6-bit BCL tape codes. Therefore, where no BCL 
tape code is indicated in the table, there will be no BCL graphic character. 

5024789 F-1 



8-Bit 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
EBCDIC, USASCII, and BCL Reference Table 

EBCDIC US ASCII BCL 

8-Bit 6-Bit Card 
Internal Graphic Card Code Internal Tape Graphic Code 
Code Code Code 

00 NULL I2-0-9-8-1 80 
OI SOH I2-9-I 8I 
02 STX I2-9-2 82 
03 ETX I2-9-3 83 
04 12-9-4 84 
05 HT I2-9-5 85 
06 12-9-6 86 
07 DEL I2-9-7 87 
08 12-9-8 88 
09 12-9-8-I 89 
OA 12-9-8-2 8A 
OB VT I2-9-8-3 8B 
oc FF 12-9-8-4 8C 
OD CR I2-9-8-5 8D 
OE so I2-9-8-6 8E 
OF SI I2-9-8-7 8F 
10 DLE 12-I I-9-8-1 90 
1 I DCI 1 I-9- I 91 
12 DC2 II-9-2 92 
13 DC3 I I-9-3 93 
I4 1 I-9-4 94 
I5 NL 11-9-5 95 
16 BS 11-9-6 96 
17 lI-9-7 97 
I8 CAN I 1-9-8 98 
19 EM 11-9-8-1 99 
IA I 1-9-8-2 9A 
IB 11-9-8-3 9B 
lC FS Il-9-8-4 9C 
ID GS 11-9-8-5 9D 
IE RS I I-9-8-6 9E 
lF us Il-9-8-7 9F 
20 lI-0-9-8-1 
2I 0-9-1 
22 0-9-2 
23 0-9-3 
24 0-9-4 
25 LF 0-9-5 
26 ETB 0-9-6 
27 ESC 0-9-7 
28 0-9-8 
29 0-9-8-1 
2A 0-9-8-2 
2B 0-9-8-3 
2C 0-9-8-4 

F-2 



8-Bit 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
EBCDIC, USASCH, and BCL Reference Table 

EBCDIC US ASCH BCL 

8-Bit 6-Bit Card. 
Internal Graphic Card Code Internal Tape Graphic Code 
Code Code Code 

2D ENQ 0-9-8-5 
2E ACK 0-9-8-6 
2F BEL 0-9-8-7 
30 12-11-0-9-8-1 
31 9-1 
32 ·sYN 9-2 
33 9-3 
34 9-4 
35 9-5 
36 9-6 
37 EOT 9-7 
38 9-8 
39 9-8-1 
3A 9-8-2 
3B 9-8-3 
3C DC4 9-8-4 
3D NAK 9-8-5 
3E 9-8-6 
3F SUB 9-8-7 
40 SPACE AO 10 
41 12-0-9-1 
42 12-0-9-2 
43 12-0-9-3 
44 12-0-9-4 
45 12-0-9-5 
46 12-0-9-6 
47 12-0-9-7 
48 12-0-9-8 
49 12-8-1 
4A L 12-8-2 DB 3C 12-8-4 
4B 12-8-3 AE 3B 
4C < 12-8-4 BC 3E 12-8-6 
4D ( 12-8-5 A8 30 
4E + 12-8-6 AB 3A 12-0 
4F X! 12-8-7 DE 3F 
50 & 12 A6 30 
51 12-11-0-1 
52 12-11-9-2 
53 12-11-9-3 
54 12-11-9-4 
55 12-11-9-5 
56 12-11-9-6 
57 12-11-9-7 
58 12-11-9-8 
59 11-8-1 

5024789 F-3 



8-Bit 

B 2000/B 3000/B 4000N Series BPL Compiler Programming Reference Manual 
EBCDIC, USASCII, and BCL Reference Table 

EBCDIC US ASCII BCL 

8-Bit 6-Bit Card 
Internal Graphic Card Code Internal Tape Graphic Code 
Code Code Code 

5A ] 11-8-2 DD lE 0-8-6 
5B $ 11-8-3 A4 2B 
5C * 11-8-4 AA 2C 
5D ) 11-8-5 A9 2D 
5E ' 

11-8-6 BB 2E 
5F 

A 11-8-7 DC 2F < -
60 - 11 AD 20 
61 I 0-1 11 
62 11-0-9-2 
63 11-0-9-3 
64 11-0-9-4 
65 11-0-9-5 
66 11-0-9-6 
67 11-0-9-7 
68 11-0-9-8 
69 0-8-1 
6A 12-11 
6B 

' 
0-8-3 AC lB 

6C % 0-8-4 A5 lC 
6D 0-8-5 DF lA 

A 

0-8-2 - = 
6E > 0-8-6 BE OE 8-6 
6F ? 0-8-7 BF 00 
70 12-11-0 
71 12-11-0-9-1 
72 12-11-0-9-2 
73 12-11-0-9-3 
74 12-11-0-9-4 
75 12-11-0-9-5 
76 12-11-0-9-6 
77 12-11-0-9-7 
78 12-11-0-9-8 
79 8-1 
7A 8-2 BA OA 8-5 
7B # 8-3 A3 OB 
7C @ 8-4 co oc 
7D ' 8-5 A7 OF > 0-8-7 -
7E = 8-6 BD lD 0-8-5 
7F " 8-7 A2 lF 0-8-7 
80 12-0-8-1 
81 a 12-0-1 
82 b 12-0-2 
83 c 12-0-3 
84 d 12-0-4 
85 e 12-0-5 
86 f 12-0-6 

F-4 



8-Bit 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
EBCDIC, USASCII, and BCL Reference Table 

EBCDIC US ASCII BCL 

8-Bit 6-Bit Card 
Internal Graphic Card Code Internal Tape Graphic Code 
Code Code Code 

S7 g 12-0-7 
SS h 12-0-S 
S9 I 12-0-9 
SA 12-0-S-2 
SB 12-0-S-3 
SC 12-0-S-4 
SD 12-0-S-5 
SE 12-0-S-6 
SF 12-0-S-6 
90 12-11-S-l 
91 J 12-11-1 
92 k 12-11-2 
93 1 12-11-3 
94 m 12-11-4 
95 n 12-11-5 
96 0 12-11-6 
97 p 12-11-7 
9S q 12-11-S 
99 r 12-11-9 
9A 12-11-S-2 
9B 12-11-S-3 
9C 12-11-S-4 
9D 12-11-S-5 
9E 12-11-S-6 
9F 12-11-S-7 
AO 11-0-S-l 
Al 11-0-1 
A2 s 11-0-2 
A3 t 11-0-3 
A4 u 11-0-4 
AS v 11-0-5 
A6 w 11-0-6 
A7 x 11-0-7 
AS y 11-0-S 
A9 z 11-0-9 
AA 11-0-S-2 
AB 11-0-S-3 
AC 11-0-S-4 
AD 11-0-S-5 . 
AE 11-0-S-6 
AF 11-0-S-7 
BO 12-11-0-S-l 
Bl 12-11-0-1 
B2 12-11-0-2 
B3 12-11-0-3 

50247S9 F-5 



8-Bit 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
EBCDIC, USASCII, and BCL Reference Table 

EBCDIC US ASCII BCL 

8-Bit 6-Bit Card 
Internal Graphic Card Code Internal Tape Graphic Code 
Code Code Code 

B4 12-11-0-4 
BS 12-11-0-S 
B6 12-11-0-6 
B7 12-11-0-7 
BS 12-11-0-S 
B9 12-11-0-9 
BA 12-11-0-S-2 
BB 12-11-0-S-3 
BC 12-11-0-S-4 
BD 12-11-0-S-S 
BE 12-11-0-S-6 
BF 12-11-0-S-7 
co (+)PZ 12-0 
Cl A 12-1 Cl 31 
C2 B 12-2 C2 32 
C3 c 12-3 C3 33 
C4 D 12-4 C4 34 
cs E 12-S cs 3S 
C6 F 12-6 C6 36 
C7 G 12-7 C7 37 
cs H 12-S cs 3S 
C9 I 12-9 C9 39 
CA 12-0-9-S-2 
CB 12-0-9-S-3 
cc 12-0-9-S-4 
CD 12-0-9-S-S 
CE 12-0-9-S-6 
CF 12-0-9-S-7 
DO (!)MZ 11-0 Al 2A x 11-0 
Dl J 11-1 CA 21 
D2 K 11-2 CB 22 
D3 L 11-3 cc 23 
D4 M 11-4 CD 24 
DS N 11-S CE 2S 
D6 0 11-6 CF 26 
D7 p 11-7 DO 27 
DS Q 11-S Dl 2S 
D9 R 11-9 D2 29 
DA 12-11-9-S-2 
DB 12-11-9-S-3 
DC 12-11-9-S-4 
DD 12-11-9-S-S 
DE 12-11-9-S-6 
DF 12-11-9-S-7 

F-6 



8-Bit 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
EBCDIC, USASCII, and BCL Reference Table 

EBCDIC US ASCII BCL 

8-Bit 6-Bit Card 
Internal Graphic Card Code Internal Tape Graphic Code 
Code Code Code 

EO 0-8-2 
El 11-0-9-1 
E2 s 0-2 D3 12 
E3 T 0-3 D4 13 
E4 u 0-4 DS 14 
ES ·v 0-S D6 lS 
E6 w 0-6 D7 16 
E7 x 0-7 D8 17 
E8 y 0-8 D9 18 
E9 z 0-9 DA 19 
EA 11-0-9-8-2 
EB 11-0-9-8-3 
EC 11-0-9-8-4 
ED 11-0-9-8-S 
EE 11-0-9-8-6 
EF 11-0-9-8-7 
FO 0 0 BO OA 
Fl 1 1 Bl 01 
F2 2 2 B2 02. 
F3 3 3 B3 03 
F4 4 4 B4 04 
FS s s BS OS 
F6 6 6 B6 06 
F7 7 7 B7 07 
F8 8 8 B8 08 
F9 9 9 B9 09 
FA 12-11-0-9-8-2 
FB 12-11-0-9-8-3 
FC 12-11-0-9-8-4 
FD 12-11-0-9-8-S 
FE 12-11-0-9-8-6 
FF 12-11-0-9-8-7 

S024789 F-7 





B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 

APPENDIX G 

BPL68 

The following DEFINES constitute the BPL68 library file invoked by some internal Unisys software pro
grams. The use of these items is neither supported nor encouraged by Unisys Corporation. This informa
tion is supplied solely for those with the need and the authorization to compile or modify programs 
which invoke BPL68. 

DEFINE IN_= 

5024789 

OUT_= 
ELSE_= 
ELIF_ = 

THEN_= 
UNTIL_(C) = 
WHILE_(C) = 
END_= 
FI_= 
OD_= 
ESAC_ = 

EXITBLOCK_ = 
EXITCOND_ = 
EXITLOOP_ = 
EXITCASE_ = 
GOTOTOPLOOP _ = 
TOPLOOP_ = 

BEGIN BEGIN UNSEGMENTED#, 
END ELSE BEGIN UNSEGMENTED#, 
END ELSE BEGIN UNSEGMENTED#, 
END ELSE IF #, 
THEN BEGIN UNSEGMENTED#, 
; IF C THEN EXITLOOP; #, 
; IF NOT C THEN EXITLOOP; #, 
END#, 
FI#, 
OD#, 
ESAC #, 
EXITBLOCK #, 
EXITCOND #, 
EXITLOOP #, 
EXITCASE #, 
TOPLOOP #, 
TOPLOOP #; 

G-l 





B 2000/B 3000/B 4000N Series BPL Compiler Programming Reference Manual 

Special Characters 

&, signifying a comment 5-29 
:=, definition of 5-7 

A 

ACCEPT data communications statement, 

definition of 7-2 
syntax of 7-2 

ACCEPT statement, 
definition of 5-2 
syntax of 5-2 

accessing data areas, with multiple ICMs 4-6 
accumulator arithmetic commands 5-3 
accumulator constructs, 

definition of 5-3 
accumulator instructions, 

DACCUM 5-3 
examples of 5-4 

IACCUM 5-3 
RACCUM 5-3 
when generated 5-3 

accumulator load commands 5-3 
accumulator manipulate instruction, 

functions of 5-3 
accumulator store commands 5-3 
ACTION O statement, for reader/sorters, 

definition of 9-2 
syntax of 9-2 

ACTION 4 statement, for reader/sorters, 

definition of 9-3 
syntax of 9-3 

ACTION 6 statement, for reader/sorters, 

. definition of 9-4 
syntax of 9-4 

ACTION 8 statement, for reader/sorters, 

definition of 9-5 
syntax of 9-5 

ACTION JO statement, for reader/sorters, 
definition of I 0-2 
syntax of I 0-2 

ACTION 11 statement, for reader/sorters, 
definition of I 0-3 
syntax of I 0-3 

ACTION 12 statement, for reader/sorters, 

definition of I 0-4 
syntax of I 0-4 

ACTION J 3 statement, for reader/sorters, 
definition of I 0-5 

5024789 

INDEX 

syntax of I 0-5 

ACTION 14, for reader/sorters, 
definition of I 0-6 
syntax of I 0-6 

ACTION 15, for reader/sorters, 
definition of I 0-7 
syntax of 10-7 

ADDRESS declaration statement, 
definition of 4-2 
example of 4-2, 4-3 
syntax of 4-2 

address errors, compile-time, reasons for 11-6 
address, storing in a field 4-10 
addressing, and the DYNAMIC declaration statement 4-19 
alignment 

control 3-4 
of alphabetic data 3-4 
of numeric data 3-4 

alpha types, using in an arithmetic operation 4-9 
alphabetic data moves, 

and alignment 3-4 
alphabetic data types, 

and arrays 4-10 
and justification 4-12 
and modulo declaration 4-11 
and use of DYNAMIC 4-19 

ampersand, signifying a comment 5-29 
areas, 

assigning by cylinder boundary 4-25 
default number for a file 4-23 
specifying number of for a file 4-23 
specifying number of records in 4-24 

arithmetic expressions, 
compound 5-18 
examples of 5-18 

arithmetic operations, 

assignment overrides 5-11 
fixed length 5-3 

arithmetic operators, 

definition of 2-2 
list of 5-10 
use of 2-2 

ARM statement, definition of 5-5 
ARMed programs, how to disarm 5-32 
arrays, 

accessing elements of 4-10 
and subscripting 2-7 
and subscripting 4-10 

and various data types 4-10 
defining 4-10 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

definition of 2-7 

example of 2-8 

function of 2-7 
initializing contents of 4-12 

presetting contents of 4-12 

assignment 

overrides. 

and the assignment statement 5-8 

example of 5-9 
in arithmetic operations 5-11 

list of 5-8 
assignment 

statement, 

compute option 5-10 

definition of 1-1, 2-5, 3-4, 5-7 

definition of 5-7 

example of 5-9 

exchange option 5-9 

logical operators 5-12 

move data option 5-10 

SEGDICT option 5-13 

SEGMENT option 5-14 

special BCT option 5-13 

assignment 

symbol, 

definition of 2-2 

use of 2-2 

at sign, use of 2-10 

attributes. 

for port files. 

list of 8-15 

for ports and subports. 

definition of 8-!, 8-14 

establishing 8-6 

obtaining 8-3 

setting 8-9 
attributes. 

subport files, 

list of 8-16 

B 

BASE special identifier, description of 2-6 

basic symbols, 

definition of 2-2 

use of 2-2 

batch counter, 

in reader sorters. incrementing 9-4 

BCL character set, 

table of F-1 

BCT, see Branch Communicates 

BIT declaration, 

definition of 4-4 

2 

bit 

bit, 

example of 4-4 

syntax of 4-4 

reset 4-7 

set 4-7 

types 4-9 

declaring as data 4-9 

manipulating or checking 5-12 

block format 2-13 

blocks, 

and addressing 4-19 

as segments 2-14 

definition of 1-1 

definition of 2-13 

definition of B-1 

disjoint 2-13 

exiting 5-43 

handling duplicate labels in 4-31 

internal structure of 2-13 

nested 2-13 

specifying number of records in 4-24 

BNA network software, 

requirements for 8-1 

Boolean operators, 

and the assignment statement 5-12 

BPL 
character set 2-2 

compiler input options 11-2 

compiler, 

and CADE Editor files 11-8 

and multiprogramming environments 11-7 

directing statements 3-4 

examples of compilations 11-6 

function of l-1 

operating 11-1 

warning and error messages C-1 

key words, 

list of A-1 

language characteristics 2-1 
programs, 

common mistakes when writing E-1 

entry point defined 2-14 

example of structure B-2 

form of B-1 

format of 2-13 

hints on how to write B-1 

size considerations 2-14 

reserved words 2-4 

list of A-1 

source program, 

definition of 1-1 

statements, 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

definition of 3-1 

syntax notations 2-1 

syntax, 

BPL, 

arithmetic operators 2-2 

arrays 2-7 

assignment symbol 2-2 

at sign 2-IO 

basic symbols 2-2 

block format 2-13 

blocks 2-13 

braces 2-1 

brackets 2-2 

conditional relations 2-3 

consecutive periods 2-2 

controller fields 2-11 

duplicate identifiers 2-6 

ellipsis 2-2 

format of programs 2-13 

identifiers 2-5 

key words 2-1 

language statements 2-5 

literals 2-10 

examples of 2-10 

logical operators 2-2 

lower case words 2-1 

non-numeric literals 2-10 

numeric literals 2-IO 

optional words 2-1 

period 2-2, 2-11 

punctuation 2-4 

quotation marks 2-10 

scope of identifiers 2-6 

separators 3-1 

special identifiers 2-6 

statements 3-1 

subscripts 2-7 

undigit numeric literals 2-10 

advantages of 1-1 

and blocks 1-1 

and data communications 7-1 

and Independently Compiled Modules D-1 
and program size 2- I 4 

assignment statements for 1-1 

compound statements for 1-1 

declarations for 1-1 

example of program structure B-2... 
executable statemems for 1-1 

form of programs in B-1 

formal of 1-1 

hints on writing programs in B-1 

uses for 1-1 

BPLBND program binder. 

5024789 

and BINDER D-27 

definition of D-27 

use of D-27 

BPLBND statements, 

END, 

definition of D-46 

syntax of D-46 

FATAL, 

definition of D-32 

syntax of D-32 

NOEXTEND, 

definition of D-33 

syntax of D-33 

OPTIONAL, 

definition of D-31 

syntax of D-31 

OVERLAY, 

definition of D-44 

syntax of D-44 

PRINT, 

definition of D-34 

syntax of D-34 

PRINT ALL, 

definition of D-35 

syntax of D-35 

PRINT ANALYSIS, 

definition of D-36 

syntax of D-36 

PRINTCODE, 

definition of D-37 

syntax of D-37 

PRJNTSEGANAL YSIS, 

definition of D-38 

syntax of D-38 

PROGRAMLIMIT. 

definition of D-39 

syntax of D-39 

PROGRAMSIZE, 

definition of D-40 

syntax of D-40 

REQUIRED, 

definition of D-30 

syntax of D-30 

SEGMENT, 

definition of D-42 

syntax of D-42 

STACKSIZE, 

definition of D-41 

syntax of D-41 

BPLBND usage examples D-56 

braces, 

definition of 2-1 

use of 2-1 

3 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

brackets. 
definition of 2-2 
use of 2-2 

Branch Communicates, 
indexing of identifiers 5-18 
special, 

and assignment statement 5-13 
list of 5-13 

breakout, 

and restart, specifying 5-21 
and resulting program actions 5-5 
definition of 4-26 
directing output 4-8 
specifying 4-8 
specifying for a sort 5-71 

breakout result descriptors, description of 5-6 
BREAKOUT statement, 

definition of 5-21 
syntax of 5-21 

buffer access method, 
and NO WORKAREA 4-24 

buffers, 

c 

accessing records from 4-24 
maximum possible 4-24 
specifying number of 4-24 
stream mode 7-14 

calling procedures 3-1 

considerations for 3-1 
CANCEL data communications statement, 

definition of 7-3 
syntax of 7-3 

cancelling IO descriptors 7-3 

CANOE Editor files. 
compiling 11-8 

CASE statement, 
and compile-time address errors 11-6 
and efficiency of code 5-23 

as related to the IF statement 3-4 
definition of 3-4 
definition of 5-22 

examples of 5-24 
exiting 5-44 
syntax of 5-22 

CDA TE declaration statement. 
definition of 4-5 
syntax of 4-5 

character count, 

stored during a scan 5-58 
character set 2-2 
characters. 

4 

searching for specific 5-58 
Class I, reserved words defined 2-4 

Class II, reserved words defined 2-4 
CLOSE statement, 

definition of 5-25 
for port files 8-2 

syntax of 5-25, 8-2 
for reader/sorters, 

definition of I 0-8 
syntax of I 0-8 

operations caused by 5-26 
code translation, 

declaring option for 4-26 
colon-equal(:=), 

definition of 5-7 
COMMENT statement, 

definition of 5-29 
syntax of 5-29 

COMMON declaration statement, 
definition of 4-6 
examples of 4-6 
syntax of 4-6 

COMMON declarations, 
restrictions on 4-6 

COMPARE statement, 
definition of 5-30 

differences from the IF statement 5-30 
syntax of 5-30 

compilation, 

and CANOE Editor files 11-8 
examples 11-6 
memory space for 11-6 

compile-time address errors, 
reasons for I 1-6 

compile-time errors. 
and the DEFINE statement 4-16 

compiler directing statements 6-1. 6-2 
definition of 2-5. 3-4 · 

ICM 6-6 
IFF 6-7 
LIBR 6-4 

PAGE 6-5 
compiler, 

flags, 

setting and resetting 6-2 
function of 1-1 
input options 11-2 
operation, instructions for 11-1 

options. list of 11-2 
warning and error messages C-1 

compiling. 
BPL programs 11-1 

conditional 6-2 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

in multiprogramming environments 11-7 

compound arithmetic expressions, 

see assignment statement 

compound expressions, 

and the IF statement 5-50 

compound statements, 

definition of 1-1 

CONDCANCEL data communications statement, 

definition of 7-4 

syntax of 7-4 

conditional compiling, 

definition of 6-2 

example of 6-3 

syntax of 6-2 

conditional expressions, 

and CASE 3-4 

and IF 3-3 

compound 5-18 

examples of 5-18 

conditional relations, 

definition of 2-3 

use of 2-3 

conditional statements, 

definition of 2-5 

exiting 5-45 

consecutive periods, 

definition of 2-2 

use of 2-2 

constants, 

producing a string of 5-79 

contention conditions, 

how handled 4-29 

CONTROL declaration statement, 

and BREAKOUT option 4-8 

and DICTIONARY option 4-8 

and EXTENDED option 4-8 

definition of 4-7 

options 4-7 

syntax of 4-7 

control instructions, executing 5-9 5 

CONTROL options 4-7 

control points, 

how they are established 4-26 

specifying in a program 4-31 

control statements, 

definition of 2-5, 3-1 

function of 3- I 

control transfer. 

and ENTER 5-41 

and EXITBLOCK 5-43 

and the GO statement 5-49 

to an Independently Compiled Module 5-80 

TOPLOOP statement 5-81 

5024789 

controller field overrides, 

example of 2-13 

list of 2-11 

controller field reserved words 2-11 

controller fields, 

definition of 2-11 

function of 2-11 

overrides 2-11 

COPY statement, 

definition of 5-31 

syntax of 5-31 

core to core function, 

compared to port files 8-1 

difference from STOQUE 5-76 

cylinder boundaries, and area assignment 4-25 

D 

DACCUM accumulator instruction 5-3 

data areas, 

defining 4-9 

initial contents of 4-12 

initializi11g 4-9 

presetting in data declaration 4-12 

Data Communications Module, 

requirements for 7-1 

data communications statements, 

ACCEPT 7-2 

CANCEL 7-3 

CONDCANCEL 7-4 

DISPLAY 7-5 

ENABLE 7-6 

FILL 7-7 
INTERROGATE 7-9 

READ 7-13 

READY 7-14 

TRAN ST BL 7-15 

WAIT 7-16 

WRITE 7-17 

WRITEREAD 7-18 

WRITEREADTRANS 7- l 9 

WRITETRANSREAD 7-20 

data communications 

and BPL 7-1 

translate tables 7-15 

data declaration statement, 

and declaring arrays 4-10 

definition of 4-9 

examples of 4-13 thru 4-15 

syntax of 4-9 

data declaration, 

and presetting data areas 4-12 

and uninitialized identifiers 4-12 

5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

data translation, 
algorithm for 5-83 
example of 5-84, 5-87 

data types, 

alphabetic 4-9 
in an arithmetic operation 4-9 

bit 4-9 
double 4-9 
fixed double 4-9 
fixed integer 4-10 
fixed real 4-10 
indirect 4-10 
integer 4-10 
numeric 4-10 
real 4-10 
signed integer 4-10 

data, 
bit declared as 4-9 
displaying on the ODT 5-33 
entering through an ODT 5-2, 7-2 
moving and editing 5-40 
passing from one program to another 5-48 
passing from remote devices 7-18 thru 7-20 
passing to remote devices 7-18 thru 7-20 
printing on a remote SPO 7-5 
transferring between processes 5-76 
using translation tables on 5-83 

DATACOMM 
ACCEPT statement, definition of 7-2 
CANCEL statement, definition of 7-3 
CONDCANCEL statement, definition of 7-4 
DISPLAY statement, definition of 7-5 
ENABLE statement, definition of 7-6 
FILL statement, definition of 7-7 
INTERROGATE statement, definition of 7-9 
READ statement, definition of 7-13 
READY statement, definition of 7-14 

TRANSTBL statement, definition of 7-15 
WAIT statement, definition of 7-16 
WRITE statement, definition of 7-17 
WRITEREAD statement, definition of 7-18 
WRITEREADTRANS statement, definition of 7-19 

WRITETRANSREAD statement, definition of 7-20 
declaration statements, 

ADDRESS 4-2 

COATE 4-5 
COMMON 4-6 
CONTROL 4-7 
DEFINE 4-16 

6 

definition of 2-5, 3-1, 4-1 

definition of 3-1 
definition of 4-1 
DYNAMIC 4-19 

FILE 4-21 
function of 3-1 
LABEL 4-31 
list of 4-1 

PICTURE 4-32 
PROCEDURE 4-33 
SUBROUTINE 4-37 
UNSEGMENTED 4-38 
DATA 4-9 

declarations, 
and routines 4-16 
BIT 4-4 
definition of 1-1 
global 2-6 

local 2-6 
PORT 8-6 

DEFINE declaration statement, 
and nesting capabilities 4-16 
and parameters 4-16 
and reserved words 4-16 
description of 4-16 
examples of 4-17, 4-18 
syntax of 4-16 

destination field, 

and assignment operations 3-4 
DISARM statement, 

definition of 5-32 

see also ARM statement 
syntax of 5-32 

disjoint blocks, definition of 2-13 
diskpacks, 

limiting file assignment 4-23 

DISPLAY data communications statement, 
definition of 7-5 
syntax of 7-5 

DISPLAY statement. 
definition of 5-33 
syntax of 5-33 

DO statement, 
and EXITLOOP 5-46 
definition of 5-34 

examples of 5-35, 5-36 
syntax of 5-34 

DO statements, 

and UNTIL 3-2 
and WHILE 3-3 
definition of 3-2 
example of 3-2-3 

documenting source programs 5-29 
dollar options, list of 11-2 
dollar sign, 

and compiler directing statements 6-2 
dot, see period 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

double precision data 4-9 
and arrays 4-10 

double precision operations 4-9 
double types 4-9 
DOZE statement, 

definition of 5-34, 5-38 
syntax of 5-34, 5-38 

DO_ loops, and the TOPLOOP statement 5-81 
DUMP statement, 

definition of 5-39 
examples of 5-39 
syntax of 5-39 

dumping memory data 5-39 
duplicate identifiers, 

use of 2-6 
dynamic area, 

defined 4-19 
how to manage it 4-20 

dynamic area, see also DYNAMIC declaration statement 
DYNAMIC declaration statement, 

E 

and memory space 4-1 9 
and modulo adjustment 4-19 
and program space 4-1 9 
description of 4-19 
examples 4-20 
syntax of 4-1 9 

EBCDIC character set, table of F-1 
EDIT statement, 

definition of 5-40 
examples of 5-40 
syntax of 5-40 

Editor files, compiling 11-8 
ellipsis, 

definition of 2-2 
use of 2-2 

ENABLE data communications statement, 
and WAIT 7-6 
definition of 7-6 
syntax of 7-6 

enquiry, 
recognizing from a remote device 7-6 

ENTER statement, 
and importance of EXIT 5-41 
definition of 5-41 
syntax of 5-41 

entry point, definition 2-14 
equivalence tables, 

used with data translation 5-83 
error messages, 

displaying on a remote SPO 7-5 

5024789 

how to read C-1 
list of C-1 

errors, 
caused by insufficient memory allocation 11-6 
common programming causes E-1 
compile-time address, reasons for 11-6 
hardware-detected 5-6 

ESAC, use with CASL 5-23 
ETX character, 

as used with SPOMESSAGE 5-74 
exceptions, data passed to program 5-5 
executable .statements, 

ACCEPT 5-2 
ARM 5-5 
assignment 5-7 
BREAKOUT 5-21 
CASE 5-22 
CLOSE 5-25 
COMMENT 5-29 
COMPARE 5-30 
control 3-1 
COPY 5-31 
definition of 1-1, 2-5, 3-1 
DISARM 5-32 
DISPLAY 5-33 
DO 5-34 
DOZE 5-38 
DUMP 5-39 
EDIT 5-40 
ENTER 5-41 
EXIT 5-42 
EXITBLOCK 5-43 
EXITCASE 5-44 
EXITCOND 5-45 
EXITLOOP 5-46 
EXITROUTINE 5-47 
FILL 5-48 
function of 3-1, 5-1 
GO 5-49 
IF 5-50 
LOCK 5-54 
OPEN 5-55 
OVERLAY 5-57 
procedure call 5-58 
READ 5-59 
SCAN 5-58 
SEARCH 5-63 
SEARCH DELINK 5-65 
SEARCH LINK 5-65 
SEEK 5-68 
SORT 5-70 
SORT RETURN 5-72 
SPACE 5-73 

7 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

SPOMESSAGE 5-74 
STOP 5-75 
STOQUE 5-76 
STORE 5-79 
subroutine call 5-80 
TOPLOOP 5-81 
TRACE 5-82 
TRANSLATE 5-83 
types of 3-1 
UNLOCK 5-89 
WAIT 5-90 
WHILE 5-92 
WRITE 5-93 
ZIP 5-95 

execution, 
suspending or stopping 5-75, 5-90 
EXIT statement, 

and ENTER 5-42 
definition of 5-42 
syntax of 5-42 

EXITBLOCK statement, 
definition of 5-43 
syntax of 5-43 

EXITCASE statement, 
definition of 5-42, 44 
syntax of 5-42, 5-44 

EXITCOND statement, 
definition of 5-45 
·syntax of 5-45 

EXITLOOP statement. 
and DO statement. example of 5-37 
definition of 5-46 
syntax of 5-46 

EXITROUTINE statement, 
definition of 5-4 7 
syntax of 5-4 7 

expressions, 
arithmetic 5-18 
conditional 5-18 
order of evaluation 5-18 
order of precedence of 5-18 

extended addressing feature 4-8 
EXTERNAL declaration statement, 

definition of D-18 

F 

FALSE. 
and its value in a data area 4-12 

FIB, 

see File Information Block 
field, 

defining to store an address 4-10 

8 

justifying data in 4-12 
FILE declaration statement, 

description of 4-21 
syntax of 4-21 
to specify file size 4-23 

File Information Block, 

file 
and the IX2 flag 4-24 

labels, 
specifying type of 4-29 

names, 
internal and external 11-7 

size, 
specifying number of records per block 4-24 

types, 
default 4-26 
list of 4-26 

files, 
and parity checking 4-24 
assigning to one or more diskpacks 4-23 
avoiding duplicate names when multiprogramming 4-24 
checking for presence of on disk 5-14 
checking for presence of on disk pack 5-14 
creating, and the OPEN statement 5-55 
declaring an optional file 4-26 
default size 4-23 
initiating processing of 5-55 
library, creating 6-4 
programmatically closing 5-25 

random. 
accessing with SEEK 5-68 
specifying 4-26 

serial, specifying 4-26 
shared, specifying 4-26 
specifying file size 4-23 
specifying records per area 4-24 
status when using STOP 5-75 
tape, 

automatic purging 4-25 
specifying life of 4-25 

unlocking blocks of 5-89 
FILL data communications statement, 

definition of 7-7 
FILL statement, 

definition of 5-48 
syntax of 5-48 
see also DAT A COMM FILL 

fixed data types. 
and modulo declaration 4-11 

fixed double precision data 4-9 
fixed double types 4-9 
fixed integer data 4-10 

and modulo declaration 4-11 



( 

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

fixed operands, 
and mixing with integer arithmetics 4-8 

fixed real data 4-10 

and modulo declaration 4-11 

format 

of blocks 2-13 
of BPL programs 2-13 

program, 

providing BPL information on 4-7 

forms, 
halting a program for special forms 4-26 

forward procedure, 

example of 4-35 

see also procedures 

function output parameters, 

definition of 8-17 

interrogating their values 8-18 

G 

GET statement, 

for port files 8-3 

examples of 8-3 

syntax of 8-3 
global declarations 2-6 

GO statement, 

definition of 5-49 

syntax of 5-49 

H 

halting execution of a program 5-7 5 
hardware 

features, 
providing BPL information on 4-7 

names. 
valid for BPL 4-l3 

reader/sorter, 

activating through BPL 9-1, 10-1 

types, 

valid for BPL 4-23 

1/0 operations, cancelling 7-4 

IACCUM accumulator instruction 5-3 

ICM compiler directing statement, 

definition of 6-6 

example of 6-6 

syntax of 6-6 

ICM ls, 

see Independently Compiled Modules, Type I 

ICM2s, 

5024789 

see Independently Compiled Modules, Type II 

ICM3s, 

see Independently Compiled Modules, Type III 

ICMs, see Independently Compiled Modules 5-80 

identifiers, 

controller field override 2-12 

definition of 2-5-6 

duplicate 2-6 

function of 2-5 

rules for 2-5 

scope of 2-6 

special 2-6 

use of 2-5, 2-6 

IF statement, 
and compile-time address errors 11-6 

and EXITCOND 5-45, 5-53 

definition of 3-3, 5-50 

differences from the COMPARE statement 5-30 

example of 3-3, 5-53 

for port files 8-4 

examples of 8-4 

syntax of 8-4 

syntax of 5-50, 5-53 

IFF compiler directing statement, 

definition of 6-7 

example of 6-7 

syntax of 6-7 

Independently Compiled Modules, 

accessing data areas 4-6 

creating Type I 6-6 

EXTERNAL declaration for D-18 

function of D-1 

passing control to 5-80 

Type I D-1, D-2 

Type II D-1, D-13 

binding D-27 

Type III D-1, D-13 

types of D-1 

index registers, 

and ADDRESS 4-2 

and the File Information Block 4-24 

cautions concerning 2-7 

controller field override 2-12 

example of 2-8 

special identifiers for 2-6 

storing addresses in 5-63, 5-65 

use of 2-7 

indirect data types. 4-10 

and modulo declaration 4-11 

difference from integers 4-10 

input files, 

declaring as optional 4-26 

input/output operations, cancelling 7-4 

9 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

instruction sets, 

default 4-7 

specifying 4-7 

integer 

arithmetics, and mixing with fixed operands 4-8 
data types 4-10 

and arrays 4-10 

and justification 4-12 

and modulo declaration 4-11 

and use of DYNAMIC 4-19 

difference from indirect data types 4-JO 
intcrprogram communication, 

definition of 8-1 
INTERROGATE data communications statement, 

definition of 7-9 
10 descriptors, cancelling 7-3 

IX I special identifier, 

description of 2-6 

IX2 special identifier, 

description of 2-6 

IX3 special identifier, 

description of 2-6 

J 

JOBINFO, allocating space for 5-19 
justification of data in fields 4-12 

justifying data in fields 4-12 

K 

key words, 

definition of 2-1, A-I 

list of A-I 

use of 2-1 

keyboard commands, 

L 

valid through SPOMESSAGE 5-74 

passing to the MCP 5-74 

LABEL declaration statement, 

description of 4-3 l 
syntax of 4-31 

label routines, 

definition of 4-29 

list of 4-29 

labels, 

and scope considerations for 2-6 

file, specifying type of 4-29 

language statements, 

definition of 2-5 

types of 2-5 

10 

LIBR compiler directing statement, 

UBR compiler directing statement, 

definition of 6-4 

examples of 6-4 

libraries, as procedures 5-31 
library files, creating 6-4 

library routines, 

including in program 5-31 

LINKAGE construct, definition of D-8 

literals, 

definition of 2-10 

examples of 2-10 

function of 2-10 

non-numeric 2-IO 

numeric 2-10 

undigit numeric 2-IO 

local 

declarations 2-6 

variables, 

and low-level procedures 4-34 

pertaining to procedures 4-34 

local-only ports, 

definition of 8-1 
LOCK statement, 

and SEEK 5-54 

definition of 5-54 

see also UNLOCK 5-89 

syntax of 5-54 

use of WRITE after 5-93 

locked files, 

and considerations for future writes 5-54 

locking a file, 

with the OPEN statement 5-55 

logical operators, 

and the assignment statement 5-12 

definition of 2-2, 5-52 

example of 5-12 

list of 5-52 
use of 2-2 

logical records, 

releasing for output 5-93 

looping, with the DO statement 5-34 

loops, exiting 5-46 

lower case words, 

M 

definition of 2-1 

use of 2-1 

Magnetic Ink Character Recognition, 

and reader/sorters 9-1, I 0-1 

as a file type 4-27 

control options for 4-27 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

MCP, passing messages to 5-74 

memory 

and overlays, 

and the OVERLAY statement 5-57 

buffer, 

transferring data to and from 5-76 

data, 

dumping to printer or disk 5-39 

division of areas D-44 

locations, 

passing data from to remote devices 7-18 thru 7-20 

passing data to from remote devices 7-18 thru 7-20 

management, 

size, 

special identifiers for 2-6 

determining 4-20 

specifying 4-7 

space, 

allocation for a sort 5-70 

and requirements for compilation 11-6 

and use of DYNAMIC 4-19 

computing for SORT intrinsic 4-28 

increasing, see CONTROL 4-19 

required for buffers 4-24 

messages, passing to the MCP 5-74 

MICR, 

see Magnetic Ink Character Recognition 

microfilm, 

advancing on reader/sorters I 0-6 

generating image count marks on I 0-3 

mix functions. list of 5-17 

MIXTBL BCT, generating 5-17 

MIXTBL information. 

providing space for 5-19 

MOD declaration, 

definition of 4-11 

see also modulo 

modulo, 

and use of DYNAMIC 4-19 

declaration, 

and various data types 4-11 

defaults for 4-11 

definition of 4-11 

significance for translation tables 5-83 

move links, definition of 5-9 

multiprogramming environments, 

compiling in 11-7 

N 

nested blocks. definition of 2-13 

nesting, and DEFINE 4-16 

non-numeric literals. 

5024789 

definition of 2-IO 

function of 2-10 

nonlocal, 

see global 

numeric data moves, 

and alignment 3-4 

numeric data types 4-10 

and justification 4-12 

and modulo declaration 4-11 

numeric literals, 

definition of 2-IO 

function of 2-10 

0 

OPEN statement, 

and tape files 5-55 

definition of 5-55 

for port files 8-5 

syntax of 8-5 

for reader/sorters, 

definition of 9-6, I 0-9 

syntax of 9-6, I 0-9 

syntax of 5-55 

operating the BPL compiler 11-l 

operators, arithmetic, 

list of 5-I 0 

optional files, uses for 4-26 

optional words, 

definition of 2-1 

use of 2-1 

OVERLAY statement, 

definition of 5-57 

syntax of 5-5 7 

overlays, 

and limitations on calling procedures 5-58 

declaring segmentation for D-44 

default levels 4-33 

segmenting procedures 4-33 

structuring 4-33 

overriding segmentation 2-14 

p 

PAGE compiler directing statement, 

definition of 6-5 

syntax of 6-5 

pages, 

default number for a file 4-23 

specifying number of for a file 4-23 

parameters, 

function output 8-17 

specifying for a procedure 4-34 

11 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

used in a DEFINE statement 4-16 
value, definition of 4-34 

PARAMETRIC DEFINE statement, 
description of 4-16 

parity checking, 
when writing files 4-24 

parity errors, 
and the SORT statement 5-71 

period, 
and the ZIP statement 5-95 
definition of 2-2 
use of 2-2, 2-11 

peripheral names, valid for BPL 4-23 
peripherals, 

list of recording modes for 4-25 
specifying recording modes for 4-25 

PICTURE declaration statement, 
description of 4-32 
example of 4-32 
syntax of 4-32 

pocket light, on reader sorters, 
illuminating 9-3, I 0-3 

polling routines, 
and the DOZE statement 5-38 

PORT declaration, 
definition of 8-6 
examples of 8-7 
syntax of 8-6 

port file attributes, 
definition of 8-14 
list of 8-15 

port file statements, 
CLOSE 8-2 
GET 8-3 
IF 8-4 
OPEN 8-5 
READ 8-8 
SET 8-9 
WAIT 8-11 
WRITE 8-13 

port files, 
accessing fields in FIB 8-17 
and subports 8-1 
declaration for 8-6 
definition of 8-1 
fields updated after IO 8-17 
how to use them 8-1 
local only 8-1 
overrides on 8-18 
remote 8-1 
remote, and BNA 8-1 

preterm error codes, 
description of 5-6 

12 

printers, 
forward spacing of paper 5-73 
vertical positioning with WRITE 5-93 

procedure call statement, 
considerations for 3-1 
definition of 3-1, 5-58 
examples of 5-58 
function of 3-1 

procedure calls B-5 
examples of 5-58 
syntax for 5-58 

PROCEDURE declaration statement, 
description of 4-33 
example of 4-35 
structure of a procedure 4-34 
syntax of 4-33 

procedure statements, 
definition of 2-5 

procedures, 
as library data 5-31 
calling 3-1, 5-58, B-5 
calling before they are declared 4-33 
calling recursively 4-34 
calling, considerations for 3-1 
definition of B-1 
differences from routines 4-28 
example of 4-35 
forward, definition of 4-33 
invoking 4-34 
low level, defined 4-34 
restrictions on 4-34 
when they are executed 4-33 

program, 

definition of 1-1 
determining environment of 5-15 
execution, 

resuming after a STOP 5-75 
suspending 5-90, 8-11 
tracing of 5-82 

format, 
providing BPL information on 4-7 

parameter branch communicates, 

size, 
use of 5-15 

and use of DYNAMIC 4-19 
maximums 4-8 
specifying 4-7, 4-8 

specifying the segment dictionary start 4-8 
stack, and addressing 4-19 
suspension, 

DOZE statement 5-38 
with DATACOMM WAIT 7-16 

terminations, causing graceful 5-5 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

programming, 

common errors when E-1 

hints on writing programs B-1 

programs, 

arming to handle interrupts 5-5 

common mistakes when writing E-1 

establishing restart capability 4-26 

form of B-1 

hints on how to write B-1 

including library routines 5-31 

passing data between programs 5-48 

size considerations 2-14 

terminating execution of 5-75 

punctuation in BPL 2-4 

Q 

quotation marks, use of 2-10 

R 

RACCUM accumulator instruction 5-3 

random files, 

accessing with SEEK 5-68 

specifying 4-26 

read constructs, list of 5-60 

READ data communications statement, 

definition of 7-13 

syntax of 7-13 

READ statement, 

definition of 5-59 

for port files 8-8 

and OPEN 8-8 

examples of 8-8 

syn tax of 8-8 

for reader/sorters, 

definition of 9-7, 10-10 

syntax of 9-7, 10-10 

syntax of 5-59 

reader/sorter 

characteristics, obtaining ! 0-5 

file functions, performing 9-1, I 0-1 

files, closing I 0-8 

hardware, 

and use routines 9-1, I 0-1 

activating through BPL 9-1, 10-1 

statements, 

ACTION 0 9-2 

ACTION 4 9-3 

ACTION 6 9-4 

ACTION 8 9-5 

ACTION 10 10-2 
ACTION II 10-3 

5024789 

ACTION 12 10-4 

ACTION 13 10-5 

ACTION 14 10-6 

ACTION 15 10-7 

CLOSE I0-8 

OPEN 9-6, 10-9 

READ 9-7, 10-10 

status, obtaining l 0-4 

reader/sorters, 

initiating processing 9-6, i 0-9 

advancing microfilm on I0-6 

and generating count marks on microfilm l 0-J 
and microfilm I 0-3 

delaying start of read 9-5 

illuminating pocket light 9-3, I 0-3 

incrementing batch counter 9-4 

initiating flow feed i0-7 

reading records from 9-7, I0-10 

READY data communications statement, 

definition of 7-13, 7-14 

syntax of 7-14 

real data types 4-10 

and single precision operations 4-IO 

real numbers, 

and arrays 4-10 

defined for double precision 4-9 

recording modes, 

list of allowable 4-25 

specifying for a peripheral 4-25 

records, 

accessing for a READ or WRITE 5-68 

blocked and unblocked 4-24 

forward or reverse spacing 5-73 

moving IO the program's work area 5-59 

reader/sorter, reading 9-7, 10-10 

reader/sorter, reading 9-7 

specifying names for 4-24 

specifying number per area 4-24 

specifying number per block 4-24 

specifying size of 4-24 

specifying variable-length 4-25 

recursive procedures, 

definition of 4-34 

relational operators, list of 5-51 

remote devices, 

obtaining result descriptors for 7-9 

passing data lo and from 7-18 thru 7-20 

recognizing enquiry from 7-6 

stopping the flow of data from 7-J 

stopping lhe flow of data lo 7-3 

remote ports, 

and BNA 8-1 

definition of 8-1 

13 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

remote SPO, 
printing data on 7-5 
receiving data from 7-2 

repetitive execution, DO statement 5-34 
rerunning a program. 

how to set up files for 4-26 
reserved words, 

and the DEFINE statement 4-16 
class I defined 2-4 
class II defined 2-4 
definition of 2-4, A-1 
list of A-1 

resource utilization, 
efficient use of 4-9 

result descriptor digits, 
list of 7-10 
status of 7-11 

result descriptors, 
classes of 5-6 
obtaining for remote devices 7-9 

rewinding a file, 
and the OPEN statement 5-56 

ringing signal, recognizing 7-6 
routines, 

allowable types 4-28 
declaring with DEFINE 4-16 
definition of 4-28-29 
differences from procedures 4-28 
exiting 5-47 
functions of 4-28 
label, definition of 4-29 
when they are entered 4-29 

running the BPL compiler 11-1 

s 

SCAN statement, 
definition of 5-58 
syntax of 5-58 

scope of identifiers 2-6 
and duplicate identifiers 2-6 

scope, 
and duplicate label names 4-31 
and use of identifiers 2-6 
as applies to labels 2-6 

SEARCH DELINK statement, 
definition of 5-65 
syntax of 5-65 

SEARCH LINK statement, 
definition of 5-65 
syntax of 5-65 

search linked list instruction 4-7 
SEARCH statement, 

14 

definition of 5-63 
searching for a specific character, 

the SCAN statement 5-58 
seek constructs, list of 5-69 
SEEK statement, 

definition of 5-68 
syntax of 5-68 

segment dictionary entries, 
accessing 5-13 

segment dictionary, specifying 4-8 
segmentation 2-14 
segmentation overrides 2-14 
segmentation, and blocks 2-14 
segments, 

calling overlayable 5-57 
making variables segment relative 4-9 

separators, list of 3-1 
serial files. specifying 4-26 
SET statement, for port files 8-9 

examples of 8-10 
syntax of 8-9 

shared disk seek constructs, 
list of 5-69 

shared files, 
locking blocks of 5-54 
specifying 4-26 

signed identifier, 
controller field override 2-12 

signed integer data types 4-10 
signed integers, 

and arrays 4-10 
signed numeric literal, 

controller field override 2-11 
single precision operations, 

and real numbers 4-10 
size considerations, BPL programs 2-14 
soft interrupt routines. 

definition of 5-5 
soft interrupt toggle, 

and ARM statement 5-6 
soft interrupts, enabling 5-5 
SORT files, 

and the CLOSE statement 5-25 
SORT intrinsic, 

computing minimum memory for 4-28 
SORT RETURN statement, 

definition of 5-72 
syntax of 5-72 

SORT statement, 
definition of 5-70 
syntax of 5-70 

SORT. intrinsic, invoking 5-70 
sorter/reader hardware, 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

activating through BPL 9-1, 10-1 
source 

field, and assignment operations 3-4 
program, definition of 1-1 

SPACE statement, 
definition of 5-7 3 
syntax of 5-73 

special identifiers, definition of 2-6 
SPOMESSAGE statement, 

definition of 5-74 
syntax of 5-74 
valid keyboard commands for 5-74 

stack 
addresses, and segment size 4-8 
pointers, readjusting, 

warning about 4-20 
relative variables 4-9 
size, controlling 4-7 

stack, 
copying control information to 5-41 
copying parameters to 5-41 

stalemate conditions, 
how handled 4-29 

statements, 
assignment 2-5, 3-4 
binding together 3-2 
CASE 3-4 
compiler directing 2-5, 3-4 
conditional 2-5 
control 2-5, 3-1 
declaration 2-5, 3-1, 4-1 
definition of 3-1 thru 3-4 
DO 3-2-3 
executable 2-5, 3-1 

types of 3-1 
how to terminate 3-1 
IF 3-3 
PARAMETRIC DEFINE 4-16 
procedure 2-5 
procedure call 3-1 
types of 3-1 
UNTIL 3-2 
WHILE 3-3 

STOP statement, 
definition of 5-75 
resuming execution after using 5-75 
syntax of 5-75 

STOQUE module, 
definition of 5-76 

STOQUE parameter block, 
format of 5-76 

STOQUE statements, syntax of 5-76 
STOQUE type statements. 

5024789 

definition of 5-76 
STOQUE, 

difference from core to core 5-76 
see also storage queue 

storage queue parameter block, 
format of 5-76 

storage queue, 
compared to port files 8-1 
sending and receiving data 5-76 
see also STOQUE type statements 5-76 

STORE statement, 
definition of 5-79 
syntax of 5-79 

subport file attributes, 
list of 8-16 

subport files, 
closing 8-2 
opening 8-5 

subports, 
definition of 8-1, 8-14 
requesting messages from 8-8 
sending messages through 8-13 

subroutine call statement, 
definition of 5-80 
syntax of 5-80 

· SUBROUTINE declaration statement, 
description of 4-37 
syntax of 4-37 

subroutines, 
calling 5-80 
compared to forward procedures 4-37 

subscripting 4-10 
and arrays 4-10 
definition of 2-7 
rules for 2-8 

subscripts, 
and arrays 4-10 
definition of 2-7 
example of 2-8 
function of 2-7 
limits on use of 2-7 
use of 2-8 

suspending 
a program with DAT A COMM WAIT 7-16 
execution of a program 5-75 
program execution 5-90 

suspension of program execution 8-11 
syntax errors, list of messages C-1 
syntax, 

arithmetic operators 2-2 
arrays 2-7 
assignment symbol 2-2 
at sign 2-10 

15 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

T 

basic symbols 2-2 
braces 2-1 
brackets 2-2 
conditional relations 2-3 
consecutive periods 2-2 
controller fields 2-11 
duplicate identifiers 2-6 
format of programs 2-13 
identifiers 2-5 
key words 2-1 
language statements 2-5 
literals 2-10 

examples of 2-10 
logical operators 2-2 
lower case words 2-1 
non-numeric literals 2-10 
notations 2-1 
numeric literals 2-10 
optional words 2-1 
period 2-2, 11 
punctuation 2-4 
quotation marks 2-10 
reserved words 2-4 
scope of identifiers 2-6 
separators 3-1 
special identifiers 2-6 
subscripts 2-7 
underscore character 2-2 
undigit numeric literals 2-10 

table elements, 
conducting tests on 5-65 
searching for 5-63, 5-65 

tables, 
creation of B-7 
definition of B-7 
example of B-7 
searching for an clement in 5-63 

tape files, 

and the OPEN statement 5-55 
and the READ statement 5-59 
and the WRITE statement 5-94 
automatic purging 4-25 
specifying life of 4-25 
specifying variable-length records 4-25 

telephone line, disconnecting 7-6 
TOPLOOP statement, 

16 

and DO statement, example of 5-37 
definition of 5-81 
syntax of 5-81 
see also DO statement 

TRACE statement, 
definition of 5-82 
syntax of 5-82 

tracing program execution, 
statement for 5-82 

TRANS LA TE statement, 
algorithm for 5-83 
definition of 5-83 
example of 5-87 
example process of 5-84 
syntax of 5-83 

translate tables, 
data communications 7-15 

translation 
algorithm for 5-83 
of strings 5-83 
process, example of 5-84 
table address 5-86 
tables, 

example of 5-87 
format in memory 5-84 
used with data translation 5-83 

values and functions for 4-27 
TRANSTBL data communications statement, 

definition of 7-15 
syntax of 7-15 

TRUE, 
and its value in a data area 4-12 

truncation of data, 
and data moves 3-4 

type attribute, 
and alignment control 3-4 

types, 

u 

alphabetic 4-9 
alphabetic, in an arithmetic operation 4-9 
bit 4-9 
double 4-9 
fixed double 4-9 
fixed integer 4-10 
fixed real 4-10 
indirect 4-10 
integer 4-10 
numeric 4-10 
real 4-10 
signed integer 4-10 

underscore character, use of 2-2 
undigit numeric literals, 

definition of 2-10 
function of 2-10 

UNLOCK statement, 



B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual 
Index 

definition of 5-89 
syntax of 5-89 
see also LOCK 

UNSEGMENTED declaration statement, 
description of 4-38 
syntax of 4-38 

unsigned numeric literal, 
controller field override 2-11 

UNTIL statements, 
and DO 3-2, 5-34 
example of 3-2 

USASCII character set, table of F-1 
use routines, 

allowable types 4-28 
and the reader/sorter 9-1, I 0-1 
definition of 4-28 
differences from procedures 4-28 
example of 4-30 
exiting 5-47 
functions of 4-28 

user routines, 
when they are entered 4-29 

v 

value parameters. 
definition of 4-34 

value statement, 
meaning of bits in 11-5 

variable-length records, specifying 4-25 
variables, 

w 

making them segment relative 4-9 
redefining with ADDRESS 4-2 

WAIT data communications statement, 
definition of 7-16 
syntax of 7-16 

WAIT statement, 
definition of 5-90 
examples of 5-91 
for port files 8-11 

examples of 8-12 
syntax of 8-11 

syntax of 5-90 
warning messages, 

5024789 

how to read C-1 
list of C-1 

WHILE statement, 
and DO 3-3 
definition of 3-3, 5-92 
example of 3-3 
see also DO statement 

WHILE, and DO 5-34 
work area, 

specifying name for 4-24 
work files, 

creating 4-24 
naming conventions 4-24 

WORKAREA option, 
specifying ON or OFF 4-24 

WRITE data communications statement, 
definition of 7-17 
syntax of 7-17 

WRITE statement, 
and automatic unlock 5-94 
definition of 5-93 
for port files 8-13 

and OPEN 8-13 
examples of 8-13 
syntax of 8-13 

syntax of 5-93 
use of LOCK with 5-93 
use of OPEN with 5-93 

write to control operation, 
requesting 7-17 

WRITEREAD data communications statement, 
definition of 7-18 
syntax of 7-18 

WRITEREADTRANS data communications statement, 
definition of 7-19 
syntax of 7-19 

WRITETRANSREAD data communications statement, 
definition of 7-20 
syntax of 7-20 

z 

ZIP statement, 
and significance of the period 5-95 
definition of 5-95 
syntax of 5-95 

17 




