
• UNISYS Product Information
Announcement
0 New Release • Revision 0 Update 0 New Mail Code

Title

V Series Systems Operations Guide, Volume 3: System Utilities

This Product Information Announcement announces a revision of the V Series Systems Operations Guide, Volume 3:
System Utilities. This revision is relative to the 3.3.0 release of the V Series operating system.

This revision includes descriptions of the following new utilities:

• DPKANL, a utility for analyzing and correcting diskpack problems, with the ability to work with diskpack
structures at a very low level

• LOADER, a utility for validating print train identifiers and creating custom train printer buffer files

• SQUASH, a utility for consolidating areas on a diskpack

• TAPDIR, a utility for printing lists of the files on magnetic tapes produced by the SYSTEM/COPY, LOADMP, and
PACKUP utilities

• TRKTAP, a utility that collects on tape the data produced by the TRAK diagnostic facility

• VFUGEN, a utility that creates electronic vertical forms (EVF) files, which take the place of mechanical vertical
formatting units in some buffered printers

The discussion of V Series diskpack subsystems has been updated with a discussion of Version 4 diskpack families.

Various technical and editorial changes have been made to improve the quality and usability of the document.

Changes are indicated by vertical bars in the margins.

To order additional copies of this document

• United States customers, call Unisys Direct at 1-800-448-1424.

• All other customers, contact your Unisys sales office.

• Unisys personnel, use the Electronic Literature Ordering (ELO) system.

Announcement only: Announcement and attachments: System: V Series
SD Release: 3.3.0 May 1995

Part number: 4127 0000-100

• UNISYS V Series
Systems
Operations
Guide
Volume 3: System Utilities

Priced Item

May 1995

Printed in US America
4127 0000-100

• UNISYS V Series
Systems
Operations
Guide
Volume 3: System Utilities

Copyright © 1995 Unisys Corporation.
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.3.0

Priced Item

May 1995

Printed in US America
4127 0000-100

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related
information described herein is only furnished pursuant and subject to the terms and conditions of a
duly executed agreement to purchase or lease equipment or to license software. The only warranties
made by Unisys, if any, with respect to the products described in this document are set forth in such
agreement. Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, special, or consequential
damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

RESTRICTED - Use, reproduction, or disclosure is restricted by DFARS 252.227-7013 and 252.211-
7015/FAR 52.227-14 for commercial computer software.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using
the Business Reply Mail form at the back of this document or by addressing remarks to Software
Product Information, Unisys Corporation, 25725 Jeronimo Road, Mission Viejo, CA 92691-2792
U.S.A.

Unisys is a registered trademark of Unisys Corporation.

V Series
Systems
Operations
Guide
Volume 3: System
Utilities

4127 0000-100

V Series
Systems
Operations
Guide

Volume 3:
System Utilities

4127 0000-100

Bend here, peel upwards and apply to spine.

Page Status

Page Issue

iii through xi -100
xii Blank
xiii through xxvii -100
xxviii Blank
xxix through xxxi -100
xxxii Blank
xxxiii through xxxiv -100
1-1 through 1-3 -100
1-4 Blank
2-1 through 2-6 -100
3-1 through 3-37 -100
3-38 Blank
4-1 through 4-7 -100
4-8 Blank
5-1 through 5-30 -100
6-1 through 6-11 -100
6-12 Blank
7-1 through 7-2 -100
8-1 through 8-3 -100
8-4 Blank
9-1 -100
9-2 Blank
10-1 through 10-14 -100
11-1through11-3 -100
11-4 Blank
12-1 through 12-6 -100
13-1 through 13-3 -100
13-4 Blank
14-1 through 14-23 -100
14-24 Blank
15-1through15-2 -100
16-1 through 16-12 -100
17-1 through 17-11 -100
17-12 Blank
18-1through18-2 -100

Unisys uses an 11-digit document numbering system. The suffix of the document number
(1234 5678-xyz) indicates the document level. The first digit of the suffix (x) designates a
revision level; the second digit (y) designates an update level. For example, the first release of
a document has a suffix of-000. A suffix of-130 designates the third update to revision 1.
The third digit (z) is used to indicate an errata for a particular level and is not reflected in the
page status summary.

4127 0000-100 iii

Page Status

iv

Page

19-1 through 19-4
20-1
20-2
21-1 through 21-10
22-1 through 22-13
22-14
23-1 through 23-19
23-20
24-1 through 24-22
25-1 through 25-3
25-4
26-1 through 26-12
27-1 through 27-4
28-1 through 28-27
28-28
29-1 through 29-36
30-1 through 30-16
31-1 through 31-34
32-1 through 32-3
32-4
33-1 through 33-9
33-10
34-1 through 34-9
34-10
35-1 through 35-3
35-4
36-1 through 36-7
36-8
37-1 through 37-16
38-1 through 38-5
38-6
lndex-1 through-20

Issue

-100
-100
Blank
-100
-100
Blank
-100
Blank
-100
-100
Blank
-100
-100
-100
Blank
-100
-100
-100
-100
Blank
-100
Blank
-100
Blank
-100
Blank
-100
Blank
-100
-100
Blank
-100

4127 0000-100

About This Guide

Purpose
This guide is written as a companion text to the V Series Systems Operations Guides,
Volumes 1, 2, and 4. This guide describes the utilities you can use with the Unisys Master
Control Program for V Series (MCP/VS) operating system. These utilities perform many
functions, including such tasks as copying and moving files, initializing disks and disk
packs, and establishing data communications.

Scope
In this guide, the descriptions of each utility or system feature include its purpose, its use,
and any commands or messages that are associated with it. In many cases, examples of
operator input are provided. In some cases, technical details of program interaction or file
layout are included.

Audience
The target audience for this guide is an experienced user of Unisys V Series equipment.

Prerequisites
Anyone using this guide should be familiar with the Master Control Program for V Series
(MCP/VS) and the information included in the other operations guides.

Organization
This guide consists of 33 sections that discuss a utility or intrinsic program and 5 sections
that discuss system features.

Section I. B 97 4LD Intrinsic Program

Use the B 974LD intrinsic program with the B 974 Data Communications Processor.

4127 0000-100 v

About This Guide

vi

Section 2. CPLOAD-Communication Processor Firmware Loading Program

The CPLOAD utility program loads firmware to communications processors that are
connected to the V Series Communication System (VCS).

Section 3. DISPKV-Disk Pack Utility Program

The DISPKV utility program initializes and purges LAK disk (100-byte-per-sector) and disk
pack (180-byte-per- sector) media. The DISPKV program can verify the contents of a disk
or disk pack, relocate sectors on a disk or disk pack, change selected fields in a disk pack
label, and list the addresses of sectors on a disk or disk pack Also, the DISPKV program
is useful when a media failure occurs.

Section 4. DLPXCO AND DLPXNO-DLP Utility Programs

A data link processor (DLP) is an interface between the V Series processor and a
peripheral device. The DLPXCO and DLPXNO utilities dump and clear data link
processors that are not functioning because of irrecoverable I/O errors.

Section 5. DMP ALL-File Conversion Utility Program

The DMP ALL utility program lists, copies, and converts disk, disk pack, and tape files.
The DMP ALL program can move files from one medium to another. Unlike the
SYSTEM/COPY utility program, the DMP ALL program can work with files that were not
created by a Unisys V Series system, and that have unusual blocking factors, no tape label,
or other unusual characteristics. Also, the DMP ALL program can list all or part of disk,
disk pack, tape, and card files, including object code disk files. In addition, the DMP ALL
program can produce listings in hexadecimal code, and can produce a translation into
characters.

Section 6. DMP ANL-MCP Memory Dump Analysis Program

The DMP ANL utility program produces a formatted analysis of a memory dump of the
MCP.

Section 7. DMPCPY-Memory Dump File Copy Utility Program

The DMPCPY utility program copies a memory dump file from one magnetic tape to
another.

Section 8. DMPMEM-Memory Dump Utility Program

The DMPMEM utility program is a floppy-disk based utility that dumps MCP memory to
tape. You use the DMPMEM program to produce memory dumps in abnormal situations
that cannot be handled by the MCP intrinsic Fault Handler.

Section 9. ECMANL-Environmental Control Module Analysis Utility Program

The ECMANL utility program formats environmental information about the V 500 system
and creates a printer backup file.

4127 0000-100

About This Guide

Section 10. LDCNTL-Pseudo Reader Load Control Utility Program

The LDCNTL utility program creates pseudo card files from other types of files. You can
use these pseudo card files to control the system.

Section 11. LDHOST-Host Load Intrinsic Program

The LDHOST utility program downloads firmware (microcode) from the V Series system
to devices that are interfaces to peripheral devices. The LDHOST program can download
firmware to a programmable controller, a data communication processor (DCP), or a
Uniline device.

Section 12. LOADFW-Offline Firmware Loader Program

The LOADFW utility program downloads firmware (microcode) files from the V Series
system to certain devices that interface between V Series systems and peripheral devices
or between multiple V Series systems. These devices are the disk pack controller, the
shared system processor (SSP), and the Uniline data link processor (Uniline DLP).

Section 13. MAKTRN-Translation File Generator Program

The MAKTRN program creates a disk file that is used with the key translation option of
the SORT intrinsic utility programs (SORT. and SORT:).

Section 14. MDCOPV-Floppy Disk Copy Utility Program

The MDCOPV utility program copies files to and from floppy disks and performs floppy
disk maintenance functions. The MDCOPV program recognizes the industry-compatible
minidisk (ICMD) format and the micro-minidisk unit (MMDU) format.

Section 15. MERG:-MCP Merge Intrinsic Program

The MERG: intrinsic program provides file merging functions to utilities written in V
Series COBOL ANSI-7 4.

Section 16. NIFMRG-DCP Utility Program

The NIFMRG utility program merges together files called network information files (NIF).
These files contain information used for data communications with the B 87 4 or B 97 4
data communications processors, the Offline Reader-Sorter (ORS-DLP), the TELCOM DLP,
and CP2000 communications processors. If you plan to use more than one type of these
devices at the same time, you must merge the NIF files with the NIFMRG program.

Section 17. PBDPRN-Printer Backup Utility Program

The PBDPRN utility program prints out printer backup files that other utility programs
have created.

4127 0000-100 vii

About This Guide

viii

Section 18. PCOPY-Object Program Copy Utility Program

The PCOPY utility program copies object code files from 100-byte disk to 180-byte disk
pack and vice versa.

Section 19. PKCOPY-Disk Pack Copy Utility Program

The PKCOPY utility program copies the data from one disk pack to another.

Section 20. SNP ANL-SNAP Analysis Utility Program

The SNP ANL utility program takes a raw SNAP file and breaks out the machine state for
analysis.

Section 21. SORT.-Sort Intrinsic Program

The SORT. utility program provides rapid sorting facilities for programs written in COBOL
ANSI-68 and BPL.

Section 22. SORT:-Tapeillisk Sort Intrinsic Program

The SORT: utility program provides rapid sorting facilities for programs written in COBOL
ANSI-7 4 and for the SRTUTL utility program.

Section 23. SRTUTL-Generalized Sort Utility Program

The SRTUTL utility program is a stand-alone interface for the SORT. utility program. It
provides sorting facilities for programs written in RPG and for operators. The SRTUTL
program sorts indexed sequential, relative, or sequential files according to keys. Also, the
SRTUTL program generates either an ADD ROUT or sequential file.

Section 24. SYSTEM/COPY-File Transfer Utility Program

The SYSTEM/COPY utility program copies and converts files from one file storage medium
to another, or copies files that are on the same medium. It copies and moves files to and
from disk, disk pack, and tape, and also lists the files that reside on various media.

Section 25. SYSUP-Automatic System Recovery Facility

The SYSUP utility program helps to automatically recreate the operating environment
when the system fails.

Section 26. UNLODV-Uniline DLP Utility Program

A Uniline DLP is one kind of interface device between a V Series system and a peripheral
device. The UNLODV utility program helps prepare a Uniline DLP for use.

4127 0000-100

About This Guide

Section 27. DCP-Data Communications Processor

You can use a B 87 4 or B 97 4 data communications processor (DCP) to reduce the
workload on the V Series system involved in data communications. This section contains
MCP configuration records, commands, link effor codes, and firmware interface elTor
codes for the B 874 and B 974 data communications processors.

Section 28. Debug Facility

The Interactive DEBUG facility enables you to use debug activities (modification of
memory, breakpoints, and so forth) for user programs and, optionally, for the operating
system.

Section 29. QWIK Disk

QWIK Disk enables you to use part of system memory as RAM disk for rapid-access
storage of files.

Section 30. SHARED-Shared Systems and Devices

This section discusses the ability of multiple V Series systems to access the same files on
the same media, using a shared system processor (SSP).

Section 31. Pack Subsystems

This section describes the concepts, structure, and operations of pack subsystems for
V Series systems.

Section 32. OBJCHK-File Compression Utility Program

This section describes how to use the utility program OBJCHK to compress and
decompress a file.

Section 33. VFUGEN-Vertical Format Unit File Builder

This section describes how to use the utility program VFUGEN to create an electronic
vertical format (EVF) file that can take the place of a mechanical vertical formatting unit
on certain buffered printers.

Section 34. TRKTAP-TRAK to Tape Program

This section describes how to use the utility program TRKTAP to capture diagnostic
information produced by the TRAK facility on magnetic tapes.

Section 35. TAPDIR-Tape Directory Report Program

This section describes how to use the utility program TAPDIR to produce reports
analyzing the directories of SYSTEM/COPY, LOADMP, and PACKUP tapes.

Section 36. DPKANL--Diskpack Analysis Program

This section describes how to use the utility program DPKANL to diagnose and repair
problems with diskpack structures.

4127 0000-100 ix

About This Guide

Section 37. SQUASH-Diskpack Squash Program

This section describes how to use the utility program SQUASH to consolidate data on a
diskpack.

Section 38. LOADER-Train Printer Buffer File Generator

This section describes how to use the utility program LOADER to produce a custom train
printer buffer file for use in loading the train printer translate buffer. Also discussed are
the standard train p1inter buffer files.

Results
After reading this guide, you will be able to use those utilities and system features that are
relevant to your programming and operating environment.

Related Product Information

x

This guide is a companion text to the following documents:

V Series Systems Operations Guide Volume 1: Installation (4127 4804)

V Series Systems Operations Guide Volume 2: System Commands (4127 4994)

V Series Systems Operations Guide Volume 4: System Messages and Recovery
(4127 0018)

These documents are referred to in the text as Volume 1, Volume 2, and Volume 4,
respectively.

The following Unisys documentation may also be of use:

B 2000/B 3000/B 4000/V Series TABSII Installation and Operations Guide
(5031735)

B 9290-30 Intelligent Laser Printing System Operator's Guide

B 874/B 974/0RS-DLP MCS Message Headers Programming Reference Manual
(5024219)

B 974 Data Communications Processor Software Installation and Operations
Guide (5022965)

B 974 Network Definition Language (NDL) Programming Reference Manual
(5023104

V Series COBOLANSI-74 Compiler Programming Reference Manual, Volume 1:
Basic Implementation (4127 4945)

V Series COBOL ANSI-74 Compiler Programming Reference Manual, Volume 2:
Product Interfaces (4127 4952)

V 300 Maintenance User's Guide

V 500 Reference Manual

4127 0000-100

(

About This Guide

V Series CANDE Installation and Operations Reference Manual (4127 0109)

V Series VCS Operations and Utilities Reference Manual (4127 0042)

V Series FLAME Operations Reference Manual (4127 4986)

V Series Systems Software Logging Operations Reference Manual (4127 4812)

V Series TELCOM DLP Installation and Operations Guide (4127 0083)

V Series WFL Compiler Programming Reference Manual (5031461)

4127 0000-100 xi

About This Guide

xii 4127 0000-100

Contents

About This Guide . v

Section 1. B 97 4LD Intrinsic Program

Overview . 1-1
Network Initialization . 1-2
Recovery of Messages .. 1-2
Additional Tasks .. 1-2

System and Program Dump Files 1-2
B 974 System Maintenance Logs 1-3
Printer Backup Files 1-3
NOL Compilation . 1-3

Section 2. CPLOAD-Communication Processor Firmware
Loading Program

Overview 2-1
Initiating CPLOAD .. 2-1

LH Command 2-1
FE*IBL Label (CP 368X only) 2-2
VCS Initiation 2-2

Error Messages 2-3

Section 3. DISPKV-Disk Pack Utility Program

Overview 3-1
Execution Syntax 3-2
Commands .. 3-11

INITIALIZE Command .. 3-11
CONFIGURE Command ... 3-13
REPORT Command .. 3-14
SINGLE Command ... 3-15
RELOCATE Command .. 3-17
RENAME Command 3-18
RECONFIGURE Command .. . 3-20
RECONFIGUREL Command 3-21
LABEL Command ... 3-21
6591VR Command 3-22

Responding to ODT Input Messages 3-26
Displaying Status Information . 3-26

4127 0000-100 xiii

Contents

Initializing M9710, MD4, MD8, 680, and 682 Disk Pack
Types ... 3-26

Disk Pack and Controller Styles Supported 3-27
File Equate Information . 3-29
Input Examples . 3-30
Results of Input . 3-30
Card Input Rules . 3-31
DISPKV Messages . 3-32

Informational Messages . 3-32
Operator Prompts . 3-33
Error Messages 3-34

Initializing Disk Packs to 100-Byte Mode 3-37

Section 4. DLPXCO AND DLPXNO-DLP Utility Programs

Overview .. 4-1
Executing DLPXCO 4-2
Executing DLPXNO 4-4
Error Messages 4-5

Section 5. DMPALL-File Conversion Utility Program

Overview .. 5-1
Using DMPALL to List Files 5-2
Using DMPALL To Convert Files .. 5-11

Overview of Syntax for Converting Files with DMPALL .. 5-12
Detailed Syntax for Converting Files with DMPALL 5-12
Detailed Media Conversion Options 5-14

Using Miscellaneous DMPALL Functions 5-22
Listing LOADMP and PACKUP Library Tape Files 5-22
Listing Object Code Files from Disk 5-22
Listing A Series Printer Backup Tapes 5-22
Displaying Tape Directories 5-22
Listing LOADMP and PACKUP Library Tape

Directories 5-23
Using the ZIP Mechanism 5-23

Starting DMPALL with the EXECUTE Command 5-24
How to Start DMPALL with the EXECUTE Command 5-24
VALUE 0 = 100000 ... 5-24
VALUE 0 = 000001 ... 5-25
VALUE 0 = 001000 ... 5-25

Encountering a Parity Error .. 5-26
DMPALL Examples 5-27

Section 6. DMPANL-MCP Memory Dump Analysis Program

Overview 6-1
Requirements for Dump Analysis 6-1
Starting DMPANL Under MCPJVS 3.n 6-1

xiv 4127 0000-100

Contents

DMPANL Command Syntax 6-2
DMPANL Parameters 6-3
DMPANL Table Selection .. 6-4
Table List . 6-5
DMPANL Raw Memory Selection 6-9
DMPANL Save File Assignment 6-9
DMPANL Task Selection ... 6-10

Task Parameters ... 6-10

Section 7. DMPCPY:-Memory Dump File Copy Utility
Program

Overview 7-1
Executing DMPCPY ... 7-1

Section 8. DMPMEM-Memory Dump Utility Program

Overview 8-1
Executing DMPMEM 8-1

Section 9. ECMANL-Environmental Control Module
Analysis Utility Program

Overview . 9-1
Obtaining a Hard Copy of ECM Information 9-1

Section 10. LDCNTL-Pseudo Reader Load Control Utility
Program

Overview 10-1
LDCNTL System Commands and Options 10-2

LDC NTL MCP Control Commands 10-2
LDC NTL Keyboard Input Commands 10-2

Determining When to Use Pseudo Card Files 10-3
Creating a Pseudo Card File 10-4
Requirements for a Control Deck 10-4
Initiating Load Control .. . 10-5
MCP Capabilities in LDCNTL 10-6
Operating Procedures 10-6

Manual Procedure .. 10-7
Automatic Procedure 10-7

Deleting Pseudo Card Files 10-7
Recovery of Pseudo Card Files 10-8

Typical Pseudo Card Files 10-8
Files and Records 10-10
File Assignment ... 10-11

Deallocation 10-12

4127 0000-100 xv

Contents

LDCNTL-Punch Backup to Pseudo Card File
Conversion . 10-13

Section 11. LDHOST-Host Load Intrinsic Program

Overview . 11-1
Host Load for B 97 4 DCPs 11-1
Host Load for B 874 DCPs ... 11-1
Automatic Operation 11-2
Host Load for DCDLP 11-3
Loading the LOS into an Intelligent Laser Printer 11-3

Section 12. LOADFW-Offline Firmware Loader Program

Overview 12-1
Execution of LOADFW .. 12-2
Normal Messages 12-3
Error Messages 12-5

Section 13. MAKTRN-Translation File Generator Program

Overview 13-1
Operating Instructions . 13-1
MAKTRN Parameter Records . 13-2
MAKTRN Options 13-2

IDNT Option 13-2
ALF A Option 13-2
NUMR Option 13-3
SEQN Option . 13-3

Section 14. MDCOPV-Floppy Disk Copy Utility Program

Overview 14-1
Supported Hardware 14-1
Format Information .. 14-2
Operating Instructions . 14-2
Executing MDCOPV and Setting Switches 14-3
Copy Functions 14-3

Copying Files to a Floppy Disk 14-4
Copying Files from a Floppy Disk 14-4
Duplicating Floppy Disks ... 14-4
Command Syntax of the Copy Function 14-4
Duplicating Floppy Disks with the Copy Function 14-7

File and Floppy Disk Analyze Functions 14-7
Copy Function for Floppy Disk Image Files 14-11
Conversion Functions . 14-13
File Equate Information .. . 14-15
MDCOPV Messages 14-16

Informational Messages . 14-16

xvi 4127 0000-100

Contents

Input Prompts .. 14-18
Error Messages 14-19

Section 15. MERG:-MCP Merge Intrinsic Program

Overview . 15-1
Functional Description . 15-2

Section 16. NIFMRG-DCP Utility Program

Overview 16-1
Capabilities ... 16-1
Files ... 16-1

Initiating NIFMRG . 16-2
Parameter Syntax 16-4

DCP Statement . 16-4
Description 16-5
Constraints .. 16-6

MERGED Statement ... 16-7
END Statement .. 16-7
QUIT Statement ... 16-8
Syntax Example 16-8

Statements Longer Than One Line .. 16-9
Errors 16-9
Listing .. 16-9

Description 16-9

Section 17. PBDPRN-Printer Backup Utility Program

Overview . 1 7-1
Executing PBDPRN .. 17-7
Auto Printing . 1 7-7
PBDPRN Syntax Errors 17-8
AX Errors ... 17-9
Messages Displayed for Line Printers 17-10

Section 18. PCOPY-Object Program Copy Utility Program

Overview . 18-1
Operating Instructions ... 18-1

Section 19. PKCOPY-Disk Pack Copy Utility Program

Overview 19-1
Operating Instructions . 19-2

Obtaining PK COPY Status 19-3
PK COPY Messages 19-3

4127 0000-100 xvii

Contents

xviii

Section 20. SNPANL-SNAP Analysis Utility Program

Overview . 20-1
Obtaining a Hard Copy of the SNAP Picture 20-1

Section 21. SORT .-Sort Intrinsic Program

Overview . 21-1
Memory Requirements .. 21-1
Disk Requirements 21-2
Input ... 21-2
Sorting ... 21-3
Output .. 21-4
Special Provisions for Sorting Variable-Length Records 21-4
Site-Specific Sort. Parameters 21-5

Details on Site-Specific Parameters 21-6
Error Messages ... 21-7

Section 22. SORT:-TapejDisk Sort Intrinsic Program

Memory Requirements
Key Specifications .. .
Input and Output Requirements .. .
Input Restrictions .. .
Input and Output Assumptions .. .
Rules for Sequence of Output Files
Tape Sorting

Tape Sort Operation
Disk or Disk Pack Sorting

Disk Sort Media .. .
Default Sort Media .. .
Work File Requirements
Disk Sort Operation
Operating Considerations .. .

Default Media Override
Virtual Collating Sequence

Translate Option
Translate Tables

Error and Warning Messages
Non-Fatal Errors .. .

Recovery
Correctable Fatal Errors .. .
Noncorrectable Fatal Errors

Section 23. SRTUTL-Generalized Sort Utility Program

22-1
22-2
22-3
22-3
22-4
22-4
22-4
22-4
22-5
22-5
22-5
22-5
22-5
22-6
22-6
22-9

22-10
22-10
22-10
22-10
22-11
22-11
22-12

Overview 23-1
Syntax 23-1
FILE Statement 23-2

4127 0000-100

Contents

MUL TIFILE Statement 23-5
KEY Statement 23-6
SORT Statement .. 23-8
ADDROUT Statement 23-9
IDENT Statement 23-9
COMPARE Statement ... 23-10
MEMORY Statement ... 23-11
PARITY Statement 23-11
RECORDS Statement .. 23-12

Executing SRTUTL . 23-12
Execution Commands (EXECUTE, COMPILE) 23-13
Executing SRTUTL through WFL 23-13
SRTUTL Memory Usage ... 23-13
Cardless Executions 23-14

Label Equation ... 23-16
Dollar Options .. 23-17

Section 24. SYSTEM/COPY-File Transfer Utility Program

Overview .. 24-1
Program Initiation 24-2
Program Flow .. 24-2
Security ... 24-4
Maximum Values 24-4
Date Handling .. 24-5

Selecting the Right Date for Use with the
Keyword ... 24-5

Dates Are Inclusive .. 24-5
When SYSTEM/COPY Examines File Dates 24-6
Use of the TODAY Keyword 24-6
How SYSTEM/COPY Affects a File's Dates 24-6

BNA File Transfer .. 24-7
Error Messages ... 24-7
Warning Messages .. 24-10
Library Maintenance Messages .. 24-11
1/0 Error Handling and Messages ... 24-12
Additional Error Possibilities 24-13
Recovery Options 24-13
Reliability Handling and Messages . 24-14
Missing File Handling and Messages 24-15

Missing Disk Packs 24-15
Missing Disk and Disk Pack Files 24-16
Missing Tape Files 24-16
Duplicate Disk and Disk Pack Files 24-16

Nonlibrary Tape Handling and Messages 24-17
LOADMP/PACKUP Tape Handling and Messages 24-17
ICTAPE Format 24-1 7

Directory Format 24-18
Reading An ICTAPE ... 24-18
TAPE Format 24-19
Reading a TAPE ... 24-21

4127 0000-100 xix

Contents

Determining the Format of a TAPE Programmatically 24-21
Determining the Format of a Tape Visually 24-22

Section 25. SYSUP-Automatic System Recovery Facility

Overview .. 25-1
SYS UP Programming Considerations 25-2
Example SYS UP Programs .. 25-2

Section 26. UNLODV-Uniline OLP Utility Program

Overview 26-1
Firmware File USP3BH 26-2
Firmware File UST3BH 26-3
System Configuration Records 26-4
Executing UNLODV 26-4
Data Communications Options 26-5
UNLODV Commands .. 26-11
Firmware File Format .. 26-12
Loading Firmware to Uniline 26-12

Section 27. DCP-Data Communications Processor

Overview .. 27-1
System Requirements .. 27-1

MCS ... 27-1
DCP .. 27-1

Network Initialization ... 27-2
MCP Interfaces 27-2

DLP Record 27-2
DCP UNIT Record ... 27-2
LIMIT DCPQUE Record .. 27-2
LIMIT DCPBUF Record :...................... 27-3
SO Command with the DCP Option 27-3
LH Command ... 27-3
BUFFER Control Instruction 27-3

Section 28. Debug Facility

Overview 28-1
Initiating a Debug Session . 28-1
MCP Initialization . 28-1
Utility Commands 28-2
DEBUG Command 28-2
INTERACTIVE DEBUG Command (ID) 28-5
ENTER DEBUG Command (ED) .. 28-6
QUERY DEBUG Command (QD) 28-6
User Interface Menus .. 28-7

The State of a Debugged Task 28-8

xx 4127 0000-100

Contents

Main Menu
Main Menu Actions

Status Menu
Status Menu Actions

Trace Menu .. .
Trace Menu Actions
Output (Device) Options
User-Selected Opcodes

Breakpoint Menu
Breakpoint Menu Actions
Hypercall/BCT Breakpoints
Address Breakpoint .. .
Opcode Breakpoint
Overflow Breakpoint
Taken Branch Breakpoint

State Menu
State Menu Actions

Debug Session Examples
Stop User Program
Using the PEEK and POKE Functions

PEEK Function
POKE Function

Using the Trace Functions
Debug Session Errors
Error Messages Related to Debug Commands

Section 29. QWIK Disk

Overview
Installing QWIK Disk
Performance Improvement Guidelines

QWIK Disk Peripheral Performance
General System Performance
Code File Overlays
Sort Performance
DMSll and !SAM Performance
Transaction System Performance

System Analysis-An Overview .. .
System Use
Memory Use
Peripheral Activity

Performing a System Analysis
Step 1. Examine System Utilization and Determine the

MCP Idle Time .. .
Step 2. Determine the Time Spent Waiting for MCP

and Program Overlays
Step 3. Examine MCP and Program Overlays to

Determine Memory Utilization
MCP Overlays
Program Overlays .. .

Step 4. Examine 1/0 Wait Time for Peripheral Activity

4127 0000-100

28-10
28-10
28-12
28-12
28-14
28-14
28-15
28-15
28-15
28-16
28-17
28-17
28-18
28-18
28-18
28-19
28-19
28-20
28-20
28-22
28-22
28-23
28-23
28-24
28-27

29-1
29-2
29-3
29-3
29-4
29-4
29-4
29-4
29-4
29-4
29-5
29-5
29-6
29-7

29-8

29-9

29-10
29-10
29-10
29-12

xxi

Contents

xxii

Step 5. Determine 1/0 Counts to Disk and Disk Pack ..
Step 6. Analyze General File 1/0
Step 7. Examine 1/0 Volume to MCP Files
Step 8. Examine 1/0 Volume to Classes of Files
Step 9. Examine 1/0 Volume to Individual Files
Step 10. Analyze Channel/Subsystem/ID

Selecting Dynamic Profile or Static Profile
Static Profile
Dynamic Profile

Sample Environments
Sample of Development Environment
Sample of Production Environment
Sample of Disk Pack Environment

Measurement Techniques .. .
Using FLAME .. .

Files
General File Selection Criteria

File Size
File Size
File Areas Heavily Accessed
File Overflow .. .

File Access
Read-Only Files
Temporary and Work files
Update Files
Code File Overlay

File Volatility
Restart .. .
Cold-Start Acceptable

File Activity
High 1/0 Wait Time
High I/Os Per Second

File Selection Suggestions
Compiler .. .

File Sizing .. .
Placing Compiler Files in QWIK Disk
QWIK Disk Performance Expectations

Sort
File Size
Placing SORT Work Files in QWIK Disk
QWIK Disk Performance Expectations

DMSll
File Size

Placing DMSll Files in QWIK Disk
QWIK Disk Performance Expectations

!SAM .. .
File Sizing .. .
Placing !SAM Files in QWIK Disk
QWIK Disk Performance Expectations

GEMCOS .. .
File Sizing
Placing GEMCOS Files in QWIK Disk

29-14
29-15
29-16
29-16
29-17
29-17
29-18
29-18
29-18
29-18
29-18
29-19
29-19
29-19
29-20
29-20
29-20
29-21
29-21
29-21
29-21
29-21
29-22
29-22
29-22
29-22
29-22
29-22
29-22
29-22
29-23
29-23
29-23
29-23
29-23
29-24
29-24
29-24
29-25
29-25
29-25
29-25
29-25
29-25
29-26
29-26
29-26
29-27
29-27
29-27
29-27
29-28

4127 0000-100

Contents

QWIK Disk Performance Expectations
System Configuration Records for QWIK Disk

Putting the MCP in QWIK Disk
Using QWKMEM and QWIKPOOL Options
Shared Systems
Operations
Maintenance Processor Commands
Caution on Maintenance Test Commands
Powering On the System
Halt/Load
Putting Files in QWIK Disk .. .
Using SYSTEM/COPY .. .
Loading and Unloading Files from QWIK Disk
Firmware .. .

Programming Considerations .. .
Programmatic File Creation in QWIK Disk
QWIK Disk as Default Disk
Work File Subsystem Default
File Equation to QWIK Disk
Random and Sequential 1/0
Code File Overlays
Deviation from Standard Disk Operation

Error Conditions
Memory Error
Result Descriptors .. .
Single Bit Errors

Section 30. SHARED-Shared Systems and Devices

Overview
Single-System Shared Environment
Multisystem Shared System Environment
Types of Shared Systems

Single-System Shared
Multisystem Shared
Shared Disk Only System .. .
Shared Disk Pack Only System
Shared Disk and Disk Pack System

Definition of Shared File 1/0 Operations
Components of a Shared System
Configuration and Initialization of Shared Systems

Single System Shared
Multiple-Shared System

File 1
File 2
Stacked Deck .. .

Section 31. Pack Subsystems

29-28
29-28
29-29
29-30
29-30
29-30
29-30
29-31
29-32
29-32
29-32
29-32
29-33
29-33
29-33
29-33
29-33
29-33
29-34
29-34
29-35
29-35
29-36
29-36
29-36
29-36

30-1
30-4
30-4
30-5
30-5
30-5
30-5
30-5
30-6
30-7

30-11
30-12
30-12
30-13
30-14
30-15
30-15

Disks and Packs 31-1

4127 0000-100 xxiii

Contents

xx iv

Development of V Series Disk and Pack Subsystems
Components of Pack Subsystems .. .
Physical Organization of a Pack
Organization of Pack Data
Logical Organization of Packs
Physical and Logical Organization of Files
MCP Structures .. .
Pack Versions
Organization of Version 1 Pack Families

Types of Version 1 Packs
Types of Version 1 Families
How the MCP Accesses Files on a Version 1 Pack

Family .. .
Labeling a Version 1 Pack .. .
Building MCP Structures on a Version 1 Pack
Rebuilding MCP Structures on a Version 1 Pack
Purging All Files from a Version 1 Family
Renaming a Version 1 Pack or Pack Family

Organization of Version 2 and Greater Pack Families
Types of Version 2 and Greater Packs
Types of Version 2 and Version 3 Pack Families
Restrictions .. .

How the MCP Accesses Files on a Version 2 or Version 3
Pack Family .. .

How the MCP Accesses a Directory on a Version 3 Pack
Family

Scramble Strings .. .
Directory Blocking
Directory Searches for Specific Filenames
Directory Searches for Masked File Names

How the MCP Accesses a Directory on a Version 4 Pack
Family

Version 4 Locking Schemes
Opening and Closing Files
Specific File Name Changes
Masked File Name Changes
Specific File Name Removes
Masked File Name Removes
Miscellaneous Directory Accesses

BLT Entries
Shared Version 4 Packs

Using the ALTER PACK, ALTER NEW PACK, and ALTER
FAMILY Commands on Version 2 and Greater Packs

Using the FILES Attribute to Preallocate Additional
Directory Blocks

Labeling and Building MCP Structures
Rebuilding MCP Structures
Purging All Files from a Pack Family
Renaming a Pack or Pack Family

Comparison of Pack Versions
Converting Version 1 Families to Version 2 or Greater

Families .. .

31-2
31-4
31-5
31-8

31-10
31-10
31-12
31-13
31-13
31-13
31-15

31-15
31-19
31-19
31-19
31-20
31-20
31-20
31-20
31-21
31-21

31-23

31-24
31-24
31-25
31-25
31-25

31-26
31-26
31-26
31-26
31-26
31-27
31-27
31-27
31-27
31-27

31-28

31-28
31-28
31-28
31-29
31-29
31-30

31-31

4127 0000-100

Contents

If You Use System Security with a Mirrored User File .. 31-32
Converting Between Version 3 and Version 4 Packs and

Fam iii es . 31-33
Coexistence of Pack Versions ... 31-34
Coexistence of MCP Versions and Pack Versions 31-34

Section 32. OBJCHK-File Compression Utility Program

Overview .. 32-1
File specification ... 32-1
Operating Instructions ... 32-1

Compressing a File .. 32-2
Decompressing a File 32-2

Error Messages 32-3

Section 33. VFUGEN-Vertical Format Unit File Builder

Overview 33-1
Initiating VFUGEN . 33-1

Initiating VFUGEN From VCS 33-1
Declaring VFUGEN to VCS 33-2
Creating a VCS Transaction for VFUGEN 33-2

Initiating VFUGEN from CAN DE 33-3
Initiating VFUGEN from the ODT or OCS 33-3

Operating VFUGEN 33-4
Welcome Screen 33-4
File Specification Screen 33-5

Input File 33-5
Output File 33-5

Redirect Output Screen .. 33-6
Master Selection Menu 33-6
Change Line/Channel Screen 33-7
Delete Line Screen .. . 33-9

Section 34. TRKTAP-TRAK to Tape Program

Overview 34-1
Buffer Management 34-1
Operating Instructions . 34-2
Printing with TRKTAP .. 34-3

Instructions for Operating the TRKTAP Printing
Functions 34-3

Selecting TRKTAP Printing Options 34-4
Selecting Options with Switch Settings 34-9

Section 35TAPDIR-Tape Directory Report Program

Overview . 35-1
Operating Instructions . 35-1

4127 0000-100 xxv

Contents

xx vi

Output .. 35-1

Section 36. DPKANL-Diskpack Analysis Program

Overview . 36-1
Initiating DPKANL . 36-1

Section 37. SQUASH-Diskpack Squash Program

Overview
Recovery Tape .. .
Procedures before Executing SQUASH

Determine which Diskpacks Should Be Squashed
Check the Reliability of the Diskpacks
Make Backups .. .

Initiating SQUASH
Allocating SQUASH Memory

Access to Diskpacks
Access to the Base Diskpack when Squashing a

Continuation Diskpack
Squashing a Shared Diskpack

Pre-allocating Directory Blocks for Safety
Using SQUASH to Recover from Diskpack Error Conditions .

Rebuilding Diskpack Structures
Recovering to a Different Spindle

Interrupting SQUASH .. .
Monitoring the Squash Process .. .

Monitoring the Stage of Processing
Messages for Stage of Processing

Monitoring the Percentage of Processing
Errors during SQUASH Operation

Errors on a Diskpack of Version 2 or Greater
Error Display
Errors Messages and Error Recovery

Tape Recovery Errors
Pack Errors when Reloading from a Tape
Label Errors
Master Available Table, Available Table, and

Directory Errors
Error Messages When Squashing a File Area
Error Messages When Squashing a File Header ..
Miscellaneous Errors

Section 38. LOADER-Train Printer Buffer File Generator

37-1
37-1
37-1
37-2
37-2
37-2
37-2
37-3
37-3

37-3
37-3
37-4
37-4
37-5
37-5
37-5
37-6
37-6
37-6
37-7
37-8
37-8
37-8
37-8
37-9

37-11
37-11

37-13
37-14
37-15
37-16

LOADER Deck 38-1
Train Printer Buffer Files 38-3

File Format 38-3
Buffer Files Supplied 38-3

4127 0000-100

Contents

Error Messages . 38-4

Index

(

4127 0000-100 xx.vii

Contents

xxviii 4127 0000-100

Figures

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.

5-1.
5-2.

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.

DISPKV Syntax
DISPVK General Syntax
DISPKV INITIALIZE Syntax
DISPKV CONFIGURE Syntax
DISPKV REPORT Syntax .. .
DISPKV SINGLE Syntax
DISPKV RELOCATE Syntax .. .
DISPKV RENAME Syntax
DISPKV RECONFIGURE Syntax .. .
DISPKV RECONFIGUREL Syntax
DISPKV LABEL Syntax .. .
DISPKV 6591VR Syntax
Sample DISPKV Executive Deck

DMPALL File Listing Syntax
DMPALL File Conversion Syntax-Overview .. .

PM Command Syntax for MCP Dumps
DMPANL Command Parameters
DMPANL Table Selection Options .. .
DMPANL Raw Memory Selection Syntax
DMPANL Save File Assignment
DMPANL Task Selection Syntax
DMPANL Task Selection Parameters
DMPANL Task Memory Selection Syntax

3-2
3-3

3-12
3-14
3-15
3-16
3-17
3-19
3-20
3-21
3-22
3-23
3-32

5-3
5-12

6-3
6-3
6-4
6-9
6-9

6-10
6-10
6-11

10-1. Typical Pseudo Card File ... 10-9
10-2. Execute Program .. 10-10

14-1. MDCOPV Floppy Disk Copy Syntax ... 14-5
14-2. MDCOPV Floppy Disk Duplication Syntax ... 14-7
14-3. MDCOPV Flexible Disk Analyze Syntax .. 14-8
14-4. MDCOPV Floppy Disk Image File Syntax 14-11
14-5. MDCOPV File Conversion Syntax .. 14-13

16-1. DCP Statement ... 16-4
16-2. MERGED Statement .. 16-7
16-3. END Statement ... 16-7
16-4. QUIT Statement 16-8
16-5. NIFMRG Listing ... 16-10

17-1. PRINT (PBDPRN) Syntax .. 17-2
17-2. SEARCH Option Syntax .. 17-4

412 7 0000-100 xxix

Figures

I

19-1. PK COPY Syntax 19-2

23-1. SRTUTL Program Statements .. . 23-2
23-2. FILE Statement 23-2
23-2. FILE Statement 23-3
23-3. MUL TIFILE Statement 23-5
23-4. KEY Statement 23-6
23-5. SORT Statement .. . 23-8
23-6. ADDROUT Statement .. . 23-9
23-7. IDENT Statement .. . 23-9
23-8. COMPARE Statement .. . 23-10
23-9. MEMORY Statement 23-11
23-10. PARITY Statement .. . 23-11
23-11. RECORDS Statement 23-12
23-12. SRTUTL Execution Card Deck .. . 23-12
23-13. SRTUTL Execution without Cards 23-12

24-1. Library Maintenance Message Format 24-11
24-2. 1/0 Error Message Format 24-12
24-3. Block Error Message .. . 24-14

28-1. DEBUG Command Syntax 28-2
28-2. Syntax for Parameter List 28-3
28-3. ID Command Syntax 28-5
28-4. ED Command Syntax .. . 28-6
28-5. QD Command Syntax 28-6
28-6. User Interface Menus 28-8
28-7. Status Line--Example 28-8
28-8. Main Menu 28-10
28-9. Status Menu .. . 28-12
28-10. Trace Menu 28-14
28-11. Breakpoint Menu 28-16
28-12. State Menu .. . 28-19
28-13. Main Menu-Breakpoint Example 28-20
28-14. Breakpoint Menu-Address Breakpoint Example 28-21
28-15. Main Menu--Example 28-21
28-16. Main Menu-PEEK Input Example 28-22
28-17. Main Menu-PEEK Display Example 28-22
28-18. Main Menu-POKE Example 28-23
28-19. Trace Menu--Example .. . 28-24

29-1. Example Memory Partition between the MCP and QWIK Disk 29-3
29-2. Comparison of Idle Time to Execution Time 29-8
29-3. Factors That Contribute to MCP Waiting Time 29-9
29-4. Amount of Time the System Spends Waiting Overlays 29-11
29-5. Amount of Time the MCP Spends Waiting 1/0 .. . 29-13
29-6. Pattern of 1/0 Traffic to Disk, Pack, and Other Media 29-14
29-7. Disk 1/0 Analysis of a System Waiting 1/0 to Different File Type 29-15
29-8. Types and Locations of I/Os 29-17
29-9. BLOCKSIZE and Time Factors for Completing I/Os to QWIK Disk 29-35

xxx 412 7 0000-100

30-1. Concurrent File Access
30-2. Shared Disk Pack Only System
30-3. Shared Disk and Disk Pack System

31-1. Components of a Pack Subsystem .. .
31-2. Sequential and Interlaced Organization of Sections
31-3. Physical Organization of a Pack (Side View) .. .
31-4. Physical Organization of a Pack (Top View) .. .
31-5. Logical Organization of Pack Data
31-6. Physical Organization of Blocks
31-7. Logical Organization of Packs
31-8. Organization of Packs and Files .. .
31-9. Organization of Directories and Headers .. .
31-10. Access Point to a Version 1 Pack Family
31-11. Version 1 Pack Family Configuration-Example 1
31-12. Version 1 Pack Family Configuration-Example 2
31-13. Configuration of a Version 2 or Greater Pack Family
31-14. Directory Structure-Version 3 Base Pack

33-8. VFUGEN Delete Line Screen

4127 0000-100

Figures

30-3
30-6
30-7

31-5
31-6
31-7
31-8
31-9
31-9

31-10
31-11
31-12
31-14
31-17
31-18
31-23
31-25

33-9

xxxi

Figures

xxxii 4127 0000-100

Tables

3-1. DISPKV Parameter Keywords and Default Values 3-4
3-2. Maximum Number of Cylinders ... 3-8
3-3. Highest Addressable Sector 3-9
3-4. DISPKV Command Functions 3-25
3-5. SW8 Uses 3-26
3-6. Available Disk (100-Byte) Styles ... 3-27
3-7. Available Disk Pack (180-Byte) Styles ... 3-28
3-8. DISPKV Commands and Qualified Disk (100-Byte) Types 3-28
3-9. DISPKV Commands and Qualified Disk Pack (180-Byte) Types 3-29

10-1. Pseudo Card File Format ... 10-11
10-2. Pseudo Card Record Format 10-11

14-1. Names of Files for MDCOPV ... 14-16

23-1. Valid INSERT Values for Cardless Execution .. 23-14
23-2. Meanings of INSERT Values for Cardless Execution 23-14
23-3. SRTUTL Files and Format 23-15
23-4. SRTUTL File Names 23-16

24-1. ICTAPE Format RIF .. 24-18
24-2. TAPE Format RIF ... 24-20

25-1. Bound SYSUP Program ... 25-2
25-2. User SYSUP Program ... 25-3

27-1. B 874 Link Errors ... 27-3
27-2. B 974 Link Errors ... 27-4
27-3. Firmware Interface Errors Detected by the MCP 27-4

28-1. Hypercall/BCT Breakpoints 28-17
28-2. Address Breakpoints ... 28-17
28-3. Opcode Breakpoints .. 28-18
28-4. Fault Indicators ... 28-24
28-5. Invalid Command Extension (IEX)-Digits 80-81 28-25
28-6. Invalid Command Extension (IEX)-Digits 78-79 28-26

29-1. FLAME Graphs 29-20
29-2. QWIK Disk File Section Criteria ... 29-21
29-3. Size Estimates for Compiled COBOL Files ... 29-24

30-1. 1/0 Operations 30-3

4127 0000-100 xxxiii

Tables

31-1. Capabilities and IVR Functions for Pack Types ... 31-2
31-2. Comparison of Pack Versions ... 31-30

33-1. Actions for VFUGEN Screens .. 33-4

34-1. TRKTAP Print Options-first Group ... 34-5
34-2. TRKTAP Print Options-Second Group .. 34-5
34-3. TRKTAP Print Options-Third Group .. 34-6

36-1. DPKANL INSERT String Bit Values 36-2

38-1. LOADER Card Deck ... 38-2
38-2. Train Printer Buffer File Format on Disk ... 38-3
38-3. Bound Train Buffer Files 38-4

xxxiv 4127 0000-100

Section 1
B 97 4LD Intrinsic Program

Overview
The B 974LD program on the host communicates with the HOST LOAD program on the
B 974 data communications processor (DCP). The program transfers files, executes
Network Definition Language (NDL) compiles, and initializes and activates the
communications network. This section gives an overview of the B 97 4LD program
features.

The B 974 DCP Software Installation and Operations Guide provides procedures for
initiating the B 97 4LD program.

The host initiates the B 97 4LD program in the following situations:

• When you set the MCP DCP option with the SO command and the DCP option or when
the system sets the MCP DCP option because the system configuration file contains a
USE record with the DCP option

• When you use the LH command to reactivate the B 97 4

• When the host finishes precompiling a Network Definition Language (NDL) source file
and the compilation process needs to be completed on the B 974

• When a message from the B 97 4 must be displayed on the host operator display
terminal (ODT)

The B 974LD program communicates with only one B 974 at a time. Therefore, hosts with
multiple B 97 4s can have multiple copies of the B 97 4LD program running simultaneously.
The program performs the following functions:

• Transfers various files, including printer backup listings, B 97 4 firmware code files,
B 97 4 system memory dumps, and B 97 4 resident program dumps to the host

• Transfers the B 97 4 system maintenance logs (MLOGs) and printer backup files
generated by B 974MCS trace and other utilities to the host

• Transfers B 97 4 NDL source code files, firmware code files, and host message control
system (MCS) information files from the host to the B 974

• Initiates and monitors NDL compiles on the B 974 from the host

• Displays information from the B 97 4 on the host ODT

• Activates the data communications network

4127 0000-100 1-1

B 97 4LD Intrinsic Program

Network Initialization
When you use the LH, LH (with the WARM option), or SO (with the DCP option)
commands to execute the B 974LD program, or when there is a USE record (with the DCP
option) in the system configuration file, the MCP attempts to initialize and activate the
data communications network.

• If you use the LH command, the B 974LD program transfers the firmware code file
from the host to the B 974.

• If you use the LH (with the WARM option) command or the SO (with the DCP option)
command, the B 97 4LD program transfers the firmware code file from the host to the
B 97 4 only if the firmware code file on the host is not the same as the firmware code
file on the B 974. If the firmware code file is the same on both the host and the B 974,
the B 97 4LD program does not transfer the firmware code file.

Recovery of Messages
Messages are lost in the following situations:

• If the host fails (all messages queued on the host are lost).

• If a firmware code file is transferred to the B 97 4 when you initialize it (all messages
queued on that DCP are lost). If the file is not transferred, the messages are retained.
To retain the messages, use either the LH (with the WARM option) command or the
SO (with the DCP option) command. (Note that you will lose the messages ifthe
system transfers a firmware file, regardless of the command you use.) To discard the
messages, use the LH command.

For more information on when the B 974LD program transfers the firmware code file,
refer to the B 974 DCP Software Installation and Operations Guide.

Whenever you execute a message control system (MCS) that was previously active, all
messages queued in the B 974 during the host failure are sent to the MCS.

Additional Tasks
After network initialization or NDL compilation, the B 97 4LD program performs the tasks
described in the following paragraphs.

System and Program Dump Files

1-2

The B 97 4LD program uploads to the host system memory dumps or B 97 4 resident
program dumps.

4127 0000-100

B 97 4LD Intrinsic Program

B 97 4 System Maintenance Logs

The B 974LD program analyzes maintenance log (MLOG) files generated by the B 974 and
uploads the listings to the host.

Printer Backup Files

The B 97 4LD program uploads printer backup files from the B 97 4 disk to the host. The
files could have been generated by an MCS issuing a trace function header.

NOL Compilation

The B 97 4 NDL compilation process has two stages, one on the host and one on the B 97 4.
When the stage on the host is completed with no en-ors, the B 974LD program transfers an
intermediate code file to the B 97 4. The B 97 4 then completes the compilation, which
results in a firmware code file.

If the compilation on the B 97 4 contains no en-ors, the B 97 4LD program transfers a copy
of this completed firmware code file to the host for safekeeping. For more information
.about this process, refer to the B 974 DCP Software Installation and Operations Guide.

4127 0000-100 1-3

B 97 4LD Intrinsic Program

1-4 4127 0000-100

Section 2
CPLOAD-Communication Processor
Firmware Loading Program

Overview
CPLOAD is a utility program provided as part of the V Series Communication System
(VCS). CPLOAD loads firmware and files to communication processors (CPs) that are
connected to the host system through VCS. CPLOAD can load the following
communication processors:

• TELCOM DLP. CPLOAD provides the same functions as the LDHOST utility
provides in a non-VCS environment.

• CP 368X Front End Processor. CPLOAD provides the functions that the
CP 368X-specific programs FD PLOD and FD PRES provide in a non-VCS environment.
These functions include CP 368X firmware, system, and form file downloading.

• B 874 Data Communications Processor. CPLOAD provides the same functions as
the LDHOST utility provides in a non-VCS environment.

• B 974 Data Communications Processor. CPLOAD provides the same functions as
the B 97 4LD utility provides in a non-VCS environment.

Initiating CPLOAD
The CPLOAD program begins under the following conditions:

• The MCP detects a label containing the value FE*IBL in the input received from a CP
368X.

• VCS software requests the operating system to initiate the CPLOAD program.

• You enter an LH command, using the CP <CP number> or the NCP <NCP number>
syntax option.

Note: Use the LH command only for debugging. Unisys does not recommend its
use for normal operations.

LH Command
You can initiate the CPLOAD program with VCS-dependent options of the LH command.
The CPLOAD program performs specific actions in response to other syntax options of the
LR command.

4127 0000-100 2-1

CPLOAD-Communication Processor Firmware Loading Program

WARM Option

When you enter the LH command with the WARM option, the CPLOAD program compares
the versions of the firmware files residing on the CP and on the host system. The CPLOAD
program loads only those firmware files that are present in different versions on the CP
and the host system.

When you do not enter the WARM option, all firmware files are unconditionally loaded to
the CP.

DUMP Option

The CPLOAD program responds differently to the DUMP option of the LH command,
depending on the type of CP:

• For TELCOM DLPs and B 87 4 DCPs, the CPLOAD program dumps CP memory into a
file on the host system before it loads the firmware.

• For CP 368Xs, the CPLOAD program transfers the system parameter file of the CP
368X into a file on the host system before it loads the firmware.

• For B 974 DCPs, no special action is taken.

In any case, the program names the host system file CxxxyP, where :xxx represents the
last three digits of the CP number and y represents the system number of the host system
on which the CPLOAD program is executing. For example, if you enter the LH command
LH CP 14 DUMP on system number 2, the CPLOAD program creates a dump file named
C0142P.

You can analyze dump files from TELCOM DLPs or B 874 DCPs with the DClANL utility
program. You can analyze system parameter files from CP 368Xs with the VCSPRN utility
program. Refer to the V Series Communication System (VCS) Operations Reference
Manual for more information.

FE*IBL Label (CP 368X only)

When the MCP detects a label with the value FE*IBL in the input from a CP 368X, it
performs the functions of the CP 368X-specific program FDPLOD. The CPLOAD program
loads only a code file into the memory of the CP. This process is called host booting the
GP.

VCS Initiation

2-2

VCS software can respond to a wide variety of conditions in a data communications
network In several situations, VCS instructs the operating system to execute the
CPLOAD program by passing specific instructions that it can interpret. The VCS software
can request that certain specific files be unconditionally loaded to the CP. When the
CPLOAD program receives such a request, it determines if any additional files must be
loaded to the CP and then loads all the required files.

4127 0000-100

(

CPLOAD-Communication Processor Firmware Loading Program

Error Messages
The CPLOAD program or a network controller (NC) can display any of the following
messages:

CP IS NOT IN A LOADABLE STATE

The CPLOAD program cannot load files to the CP. This error message usually appears
together with the following message:

ERROR FOR FEP REQUEST: FC = 14, SFT = 05, EC = 02, Pl = 0000

Depending on runtime conditions, you could choose to boot the CP or ignore the
error. However, if the system file timestamps mismatch you must boot the CP.

CP 368X FORMS LIST (FEPRES) NOT FOUND

This message means that the forms list used for loading the CP 368X resident forms
must be application number 3.

SYSTEM FILE UPLOAD ABORTED: FILE XXXXXX ON XXXXXX

An unrecoverable error has occurred during a dump of a CP 368X. Any information
transferred to the host system before the dump was aborted is retained.

FEP REQUEST ERROR: FC = XX, SFT = XX, EC = XX, Pl = XX

This message appears when the CP 368X detects an error during a function request.
The function code, the sub-function, the error code, and parameter 1 fields and their
values also appear on the ODT.

INAPPROPRIATE REQUEST FOR TELCOM

This message comes from a TELCOM DLP in response to a load request.

INCORRECT CP: SOUGHT # XXXXXX, FOUND # XXXXXX

Certain data in the VCS initialization file is incorrect. This message appears when the
network controller (NC) fails during an update, before the update is complete. The
SOUGHT field shows the number of the CP that the CPLOAD program was looking
for; the FOUND field shows the number of the CP that the CPLOAD program was able
to find.

INCORRECT INDEX: SOUGHT # XXXXXX, FOUND # XXXXXX

Certain data in the VCS initialization file is incorrect. This message appears when the
network controller (NC) has failed during an update, before the update was complete.
The SOUGHT field shows the number of the CP that the CPLOAD program was
looking for; the FOUND field shows the number of the CP that the CPLOAD program
was able to find.

4127 0000-100 2-3

CPLOAD-Communication Processor Firmware Loading Program

INIT FILE CONTAINS NO RECORDS: XXXXXX ON XXXXXX

The CPLOAD program is unable to read any information from the VCS initialization
file. The CPLOAD program could be attempting to read a non-VCS file. This message
appears infrequently and indicates that the operating system passed incoITect
information about the location of the VCS initialization file to the CPLOAD program.

INIT FILE NOT FOUND: XXXXXX ON XXXXXX

The VCS initialization file is not present. This message appears infrequently and
indicates that the operating system passed incorrect information about the location of
the VCS initialization file to the CPLOAD program.

INIT FILE: SOUGHT XXXXXXXXXXXX, FOUND XXXXXXXXXXXX

Certain data in the VCS initialization file is incoITect. This message appears when the
network controller (NC) fails during an update, before the update is complete. The
SOUGHT field shows the type ofVCS entity that the CPLOAD program was searching
for; the FOUND field shows the type of entity that the CPLOAD program was able to
find.

INSUFFICIENT TELCOM MEMORY FOR REQUESTED FUNCTION

This message comes from a TELCOM DLP in response to a load request.

INVALID FORMAT: XXXXX BY XXX: XXXXXX ON XXXXXX

The VCS initialization file is in the wrong format. This message appears infrequently
and indicates that the operating system passed incoITect information about the
location of the VCS initialization file to the CPLOAD program.

INVALID INIT FILE KEY: XXXXXXXX, TYPE XXXXXXXXXXXX

Certain data in the VCS initialization file is incoITect. This message appears when the
network controller (NC) fails during an update, before the update is complete. The
KEY field shows the key value the CPLOAD program was searching for; the TYPE field
shows the type of VCS initialization record that the CPLOAD program was looking for.

LINE PROCESS NOT AVAILABLE FOR PROTOCOL # XXXXXX

A TELCOM line references a protocol for which there is no line process. The possible
causes are the following:

• TELCOM does not support this protocol.

• The wrong line process file was specified in the CP record of the initialization file.

2-4 4127 0000-100

CPLOAD-Communication Processor Firmware Loading Program

NET FILE: INVALID HEADER: ERROR DIGIT INDEX = XXXX

This message indicates a specific Network File enor that can occur. The error digit
index gives the position of the inconect digit in the Network File direct I/O header.
Possible causes for this enor include invalid data passed to the CPLOAD program by
the operating system, invalid data in the VCS initialization file, or inconsistencies
within the CPLOAD program.

NET FILE: <error text>

This enor relates to the Network File and the CPLOAD program displays it.

NO HOST CONNECTED TO THIS CP CLAIMS TO BE MASTER

The CPLOAD program cannot find a master host system in the VCS initialization file
for the specified CP. This message appears infrequently.

DUMP ABORTED: FILE XXXXXX ON XXXXXX

An unrecoverable enor has occurred during a dump of a TELCOM DLP. Any
information transfened to the host system before the dump was aborted is retained.

TELCOM FUNCTION NOT DONE, NO REASON GIVEN

This message comes from a TELCOM DLP in response to a load request. The
TELCOM has not returned any data to the CPLOAD program.

TELCOM LINE OR STATION MUST BE NOT READY

This message comes from a TELCOM DLP in response to a load request.

TELCOM TABLE NOT DELETED, OUTPUT QUEUE IS NOT EMPTY

This message comes from a TELCOM DLP in response to a load request.

TIMESTAMP OF ZERO FOUND IN HOST FILES

A timestamp with a value of zero exists in one or more of the host system VCS files.
This message appears infrequently. Possible causes for this enor include an inconect
file name in the CP or HOST records of the VCS initialization file, or a problem with
the network controller (NC).

UNRECOGNIZED INITIALIZATION PARAMETERS VERSION

A mismatch has occUlTed between the versions of CPLOAD and the operating system.
The mismatch is caused by differing release levels of the operating system and the
CPLOAD program.

4127 0000-100 2-5

CPLOAD-Communication Processor Firmware Loading Program

2-6

UNRECOGNIZED RBI RECEIVED FROM TELCOM, RBI = xx

This message comes from a TELCOM DLP in response to a load request.

XXXXXXXXXXXX: EXPECTED TO FIND XXXXXX, FOUND XXXXXX

Certain data in the VCS initialization file is incorrect. This message appears when the
network controller (NC) has failed dming an update, before the update was complete.

The first field in the message shows the VCS entity type (for example STATION), the
EXPECTED TO FIND field shows the expected number of entities, and the
ACTUALLY FOUND field shows the actual count. This message indicates an error
condition, but the CPLOAD program continues loading firmware files.

ZERO OR NON-MATCHING TIMESTAMPS RETURNED

The timestamps of the firmware files on the CP do not match the timestamps of the
firmware files on the host, even after the CPLOAD program has loaded new firmware
files.

This message appears infrequently. Possible causes for this error include a CP in a
state where file loading is invalid, or errors detected by the CP dming the loading of
files. When files are loaded to a CP 368X, the CPLOAD program does not detect any
errors, but the operating system does display error messages.

4127 0000-100

Section 3
DISPKV-Disk Pack Utility Program

Overview
The DISPKV utility program performs disk and disk pack initialization functions. The
specific functions performed during each execution are determined by the command and
by other supporting data input such as a string either through the ODT or on cards.

DISPKV is used to format certain disks or disk packs. The Initialization, Verification, and
Relocation (IVR) functions are used to format a disk or disk pack. For a list of the disk
packs for which DISPKV is used, refer to Table 31-1inSection31, "Pack Subsystems."

Use DISPKV only for version 1 disk packs. For version 2 and greater disk packs, use the
ALTER NEW PACK system command. For a complete description of the vaiious disk
pack versions, refer to Section 31, "Pack Subsystems." The ALTER NEW PACK command
is discussed in the V Series Systems Operations Guide Volume 2: System Commands.

The major functions that you can perform with the DISPKV program include the following:

• Initializing virgin media as version 1 disk pack (180-byte sectors)

• Initializing virgin media as disk (100-byte sectors)

• Reinitializing previously initialized media (100- or 180-byte sectors) as disk pack
(180-byte sectors)

• Reinitializing previously initialized media (100- or 180-byte sectors) as disk (100-byte
sectors)

• Reinitializing a selected cylinder or a range of cylinders of a previously initialized disk
or version 1 disk pack

• Relocating a selected sector on a disk or version 1 disk pack

• Verifying all sectors on a disk or version 1 disk pack

• Labeling a version 1 disk pack

• Changing selected fields in a version 1 disk pack label

• Purging a version 1 disk pack

• Listing the addresses of all relocated sectors on a disk or disk pack

4127 0000-100 3-1

DISPKV-Disk Pack Utility Program

Execution Syntax

3-2

Figure 3-1 shows the two forms of the syntax you use to execute the DISPKV program.

- EX DISPKV -,---------,.----.---------,----------i
L (, "SPO") J ~ VA 1 = 100000 ~

VA 1 = 010000
VA 1 = 110000

or

- EX DISPKV -.------------------,~-------1
L <

1
10000000 J~-L~--~) J
01000000 "SPO" J
11000000

Figure 3-1. DISPKV Syntax

EXDISPKV

Use this option to execute the DISPKV program. When you execute the DISPKV
program, you must provide parameters to indicate what you want it to do. The default
input medium for these parameters is a card file called INPUTF.

(,"SPO")

Use this option to specify that you will provide the parameters for the DISPKV
program with the AX command on the ODT.

If the program encounters an error during ODT input, a detailed set of instructions
appears on the terminal screen to explain how to correct the input error.

VA 1=100000

You must use this value statement, which sets switch 1, when you perform the
following functions:

Request a full IVR on a 235, 207, or 659 disk pack

Convert a 235 or 207 disk pack from 100-byte to 180-byte format.

Convert a 235 or 207 disk pack from 180-byte to 100-byte format.

Convert a 207 or 659 disk pack from sequential to interlaced mode.

Convert a 207 or 659 disk pack from interlaced to sequential mode.

This value statement forces a short (one pass) IVR operation for all disk pack types
except 207, 235, 659, 680, 682, MD4, and MD8.

VA 1=010000

Use this value statement, which sets switch 2, to eliminate retries during verification.
When switch 2 is set, the system relocates any errors found during verification and
does not perform any retries.

4127 0000-100

DISPKV-Disk Pack Utility Program

VA 1=110000

Use this value statement to set both switches 1 and 2. Refer to VA 1=100000 and VA
1=010000 earlier in this section for more information about setting switches.

Figure 3-2 shows the syntax for the DISPKV program parameters that you enter on the
ODT.

- <mix number> - AX - " ----------------~

.- /1*\ co INITIALIZE l
-C = -=r t- CONFIGURE

END" ~

t- REPORT
t- SINGLE
t- RELOCATE
t- RENAME
t- RECONFIGURE
t- RECONFIGUREL
t- LABEL
'- 659 IVR

t- /1*\ cu [= _J
<cc>

[:<alt chan> J
/<uu> _,

t- /1*\ SN [=] <serial number>

r-AC~R = M ___,
RM _,
u ----'

t- PN [= _J
<pack name>

t- SC
L=J [~~ ~

I- OI [=] <owner's ID> ~

~ER
/49\ l

L = _J
<error address>

t- CY
L=J

<cylinder name>

t- AD [=] <address>

.__ FILES <number>

Figure 3-2. DISPVK General Syntax

<mixno>AX"

After you execute the DISPKV program with the (, "SPO") option, you enter
parameters, using the AX command on the ODT. You must enclose the entire
parameter string in quotation marks. All data input within the quotation marks is
freeform.

4127 0000-100 3-3

DISPKV-Disk Pack Utility Program

3-4

Precede each parameter with a two-letter keyword that identifies the parameter. An
equal sign is optional between the keyword and the parameter. If you do not place an
equal sign after the keyword, you must follow it with at least one blank

Table 3-1 shows the DISPKV program keywords, their meanings, and their default values
(if any). If you want to use the default value, do not enter the keyword associated with
that value.

co

Table 3-1. DISPKV Parameter Keywords and Default Values

Keyword Meaning Default

co Command None

cu Channel/unit None

SN Serial number None

AC System access code U (Unrestricted)

PN Pack name SYS180

SC System interchange code MS (Medium Systems)

01 Owner's-id All blanks

ER Error address None

CY Cylinder number None

AD Address None

FILES Files 110

This keyword identifies the command parameter. All subsequent keywords and
parameters are related to the command parameters until the next CO, and you can
enter them in any order. Each command is described in its own railroad diagram
under "Commands" later in this section. Table 3-4 in this section identifies the
functions that each DISPKV program command performs.

Examples

CO= INITIALIZE

CO RECONFIGURE .•.

cu <CC>:<alt chan>/<UU>

This keyword identifies the parameter for the channel, alternate channel, and unit
numbers.

All three parts of the parameter must be numeric. Channel and unit are required, but
the alternate channel portion of the parameter is optional. You can declare only one
alternate channel in the CU parameter. The alternate-channel declaration, if specified,
must be preceded by a colon.

4127 0000-100

(

DISPKV-Disk Pack Utility Program

The alternate-channel declaration enables the DISPKV program to use an alternate I/O
path to a disk pack subsystem. To declare an alternate channel to a disk pack, refer to
the DISK, DLP, and EXCHANGE records in Volume 1. After you execute the DISPKV
program, you can use the CU parnmeter to indicate that the disk pack can be accessed
with the alternate channel. You can use the alternate channel to reduce competition
for the primary channel, when you pe1form lengthy DISPKV commands such as
INITIALIZE and CONFIGURE.

The channel and alternate channel must be valid disk pack DLPs, and the unit must be
a unit number 0-15. If you do not specify an alternate channel, the DISPKV program
uses the primary channel. The channel, alternate channel, and unit that you have
specified must be declared on the system and must have a hardware type of DPK or
DSK.

Examples

•.. CU=B/2

If the MCP configuration file includes DLP 7 DSK, DLP 8 DSK, or EXCHANGE 8 7,
then the following could be the DISPKV input:

". cu 8: 7 /2

SN <serial number>

This keyword identifies the serial-number parameter. The serial number is a 1- to 6-
digit numeric combination. It cannot be all zeros.

Examples

ACRM
ACR
ACM
ACU

SN=12345

SN 123456 ••.

The AC keyword identifies the parameter for the system access code. This optional
parameter specifies the disk pack type and access restriction.

The available access codes and their names are the following:

• RM (Restricted Master). Family names are required to access files on this type of
disk pack subsystem. If you do not assign another name to this disk pack with the
PN parameter, you must use the default family name SYS180 to access the files on
this string of disk packs.

• R (Restricted). This code assigns continuation disk packs to a restricted master
disk pack. The family names assigned to these continuation disk packs must
match the name of the string for the restricted master disk pack.

• M (Master). This code declares master disk pack for unrestricted system resource
use. Family names are not required to access files on this type of disk pack
subsystem.

4127 0000-100 3-5

DISPKV-Disk Pack Utility Program

3-6

• U (Unrestricted). This value is the default, and it declares continuation disk packs
to an unrestricted disk pack subsystem. Family names are not required to access
files on this disk pack

Disk packs with system access codes of M or RM are base disk packs. Disk packs
with system access codes of R or U are continuation disk packs. Restricted disk
packs (system access code of R or RM) can contain only files having a multifile ID
identical to the disk pack name. The syntax is <family name>/<file ID>. For example,
if a disk pack has a system access code of RM and a disk pack name (family name) of
FAM, all files written to that disk pack must be specified as FAM/<file ID>.

You can assign files in either of the following formats as unrestricted disk packs
(system access code ofU or M): <pack name>/<file ID> or <file ID>.

If you do not include the keyword AC in the string, the program uses the default
access code of unrestricted. If you set the system interchange code to IC, then the
system access code must be unrestricted.

Examples

AC=R

AC RM

PN <pack name>

This keyword identifies the disk pack name parameter. The disk pack family name
can be up to 17 characters long, but the MCP recognizes only first six characters. The
name cannot be all blanks, nor can it contain special characters or embedded blanks.
The default disk pack name is SYS180.

The disk pack name is also called the family name for that disk pack Files located on
disk pack are referred to by a multifile ID consisting of <family name>/<file name>.
For example, a file named BAND on a disk pack named ZEPHER would be referenced
as ZEPHER/BAND.

Multiple disk packs can have the same disk pack names but must have different serial
numbers. The system designates one as the base disk pack and the others as
continuation disk packs. The master disk pack has a system access code of RM
(restricted master) or M (master). Continuation disk packs have a system access code
of R (restricted) or U (unrestricted).

A disk pack name of DISK, PACK, or DSKn (where n is any single character, including
a space) is not allowed. These names are reserved for the MCP.

Examples

SCIC
SCMS

PN=JAKE

PN BACKUP ...

This keyword identifies the parameter for the system interchange code. This optional
parameter specifies how you intend to use the disk pack When it is set to interchange
(IC), you can use the disk pack to interchange files between various families of Unisys

4127 0000-100

(

DISPKV-Disk Pack Utility Program

systems. When it is set to medium system (MS), you can use the disk pack on Unisys
V Series systems. The default value for SC is MS.

Example

... SC=MS

OI <owner's ID>

This keyword identifies the owner's ID parameter. The owner's ID is a field in the disk
pack label. It can be up to 14 characters long with no embedded blanks. The default
value for the owner's ID is all blanks.

Examples

OI=DOCGROUP

or ZEPHYRBAND

ER <error address>

This keyword identifies the error address parameter. Use this optional parameter to
identify, by address, possible bad spots on the disk media. The DISPKV program
relocates these addresses to spare sectors.

Each 225-type disk pack has a paper label attached. The label lists addresses that
were found to be marginal by factory IVR functions.

When you use the DISPKV INITIALIZE command, enter the listed addresses in the
form ER=CCCC/HH/SSS:

CCCC = The cylinder number of the error address

HH = The head number of the error address

SSS = The sector number of the error address

You can enter a maximum of 50 addresses.

Examples

ER=24/7/65 ER 228/8/6

ER 12/3/31 ...

Note: Any bad areas on 235-type disk packs have already been relocated and
MUST NOT be input to DISPKV.

CY <cylinder number>

This keyword identifies the cylinder number parameter. This parameter is required
for the SINGLE command and is optional for the 659IVR command. The parameter
specifies the cylinder or cylinders to be reinitialized. The cylinder number can be 1 to
4 digits in length and range between zero and the maximum number of cylinders on
the disk pack. Table 3-2 shows the maximum number of cylinders on each type and
mode of disk pack.

4127 0000-100 3-7

DISPKV-Disk Pack Utility Program

3-8

Table 3-2. Maximum Number of Cylinders

Type Mode Cylinders

225 In 100- or 180-byte mode 405

235 In 100- or 180-byte mode 811

206 Interlaced in 100- or 180-byte mode 814

206 Sequential in 100- or 180-byte mode 814

206 Binary Interlaced in 100- or 180-byte mode 814

206 Binary Sequential in 100- or 180-byte mode 814

207 Decimal Interlaced in 100- or 180-byte mode 1397

207 Decimal Sequential in 100- or 180-byte mode 1397

207 Binary Sequential in 100- or 180-byte mode 1563

207 Binary Interlaced in 100- or 180-byte mode 1563

659 Binary Sequential in 100- or 180-byte mode 2241

659 Binary Interlaced in 100- or 180-byte mode 2241

677 Binary Sequential in 100- or 180-byte mode 822

677 Binary Interlaced in 100- or 180-byte mode 822

680 t Binary Sequential in 180-byte mode 884

682 t Binary Sequential in 180-byte mode 1768

MD4 t Storage Module Device (SMD) 180-byte mode 821

MD4 t Storage Module Device (SMD) 100-byte mode 821

MD8 t Extended Storage Module Device (XSMD) 180- 823
byte mode

M9710 t SCSI device in 180-byte mode 1494

t The SINGLE command is not allowed with these drive types.

Examples

CY=l08

CY 228

AD <address>

This keyword identifies the address parameter. This parameter is required for the
RELOCATE command. It specifies the decimal sector address to be relocated. The
address can be 1 to 6 digits in length and range between zero and the highest
addressable sector on the disk pack. Table 3-3 shows the highest addressable sector
on each type of disk pack.

4127 0000-100

DISPKV-Disk Pack Utility Program

Table 3-3. Highest Addressable Sector

Type Mode Address

225 In 100-byte mode 654974

225 In 180-byte mode 485169

235 In 100-byte mode 969144

235 In 180-byte mode 969144

206 Decimal Interlaced in 100-byte mode 565729

206 Decimal Sequential in 100-byte mode 476189

206 Decimal Interlaced in 180-byte mode 362229

206 Decimal Sequential in 180-byte mode 321529

206 Binary Interlaced in 100-byte mode 565729

206 Binary Sequential in 100-byte mode 476189

206 Binary Interlaced in 180-byte mode 362229

206 Binary Sequential in 180-byte mode 321529

207 Decimal Interlaced in 100-byte mode 998854

207 Decimal Sequential in 100-byte mode 998854

207 Decimal Interlaced in 180-byte mode 998854

207 Decimal Sequential in 180-byte mode 998854

207 Binary Interlaced in 100-byte mode 1117544 t

207 Binary Sequential in 100-byte mode 1117544 t

207 Binary Interlaced in 180-byte mode 1117544

207 Binary Sequential in 180-byte mode 1117544

659 Binary Interlaced in 100-byte mode 4696989 t

659 Binary Sequential in 100-byte mode 3957129 t

659 Binary Interlaced in 180-byte mode 3015489

659 Binary Sequential in 180-byte mode 2679189

677 Binary Interlaced in 100-byte mode 2185064 t

677 Binary Sequential in 100-byte mode 1841050 t

677 Binary Interlaced in 180-byte mode 1403214

677 Binary Sequential in 180-byte mode 1246844

continued

4127 0000-100 3-9

DISPKV-Disk Pack Utility Program

3-10

Table 3-3. Highest Addressable Sector (cont.)

Type Mode Address

680 t Binary Sequential in 180-byte mode 2413320

682 t Binary Sequential in 180-byte mode 4829369

MD4 t Storage Module Device (SMD) in 180-byte 682259
mode

MD4 t Storage Module Device (SMD) in 100-byte 682259
mode

MD8 t Extended Storage Module Device (XSMD) 1389179
in 180-byte mode

MD8 t Extended Storage Module Device (XSMD) 1389179 t
in 100-byte mode

M9710 t SCSI device in 180-byte mode 3746952

t The MCP can address up to only 999999 sectors in the 100-byte mode on these devices.

t The RELOCATE command is not allowed with these drive types.

Examples

AD=8105

AD 680738

FILES <number>

This keyword identifies the optional files parameter. You can use FILES only with the
LABEL command. It specifies the number of files expected on the disk pack

When you use the files parameter, the DISPKV program constructs the appropriate
number of contiguous directory sector entries for the specified number of files.
Because the entire directory will be on a contiguous area of disk pack, head
movement is minimized during directory use.

If you do not use the files parameter, the DISPKV program assigns a default directory
size that is large enough for 110 files. If the directory fills up, the MCP expands it by
assigning additional areas, as available, elsewhere on the disk pack

You must enter the entire word (FILES).

Examples

FILES 3758

FILES 14284 ...

END

This option terminates ODT input. You can continue to enter AX commands until you
enter END. The keyword END and the final quotation mark signal the end of the input
data for this ACCEPT statement.

4127 0000-100

DISPKV-Disk Pack Utility Program

Examples

12AX "END"

Commands
The following pages describe and give the railroad diagrams for each of the DISPKV
program commands. A command is identified by the CO keyword.

INITIALIZE Command

The INITIALIZE command is the most comprehensive DISPKV command. It pmges and
completely recreates the entire disk pack. INITIALIZE performs the following three major
functions:

• Initialization. This function directs the disk pack controller to wiite sector
addresses and gaps in all sectors on the disk pack. Then the program wiites a
predefined data pattern in the data field of each sector.

• Verification. This function directs the controller to read and check all the
addressable sectors on the disk pack for address errors and protection-code errors. In
addition, the program compares the data field of each sector against the predefined
data pattern to check for validity.

• Relocation. This function specifies that if an error is detected dill'ing verification, it
is retried IO times. If the error is still present after the tenth retry, the program
relocates the sector in error to a spare sector. The relocate procedme writes the
address of the sector error into a spare sector address field and writes the predefined
data pattern into the data area of the spare sector.

Together these functions are abbreviated IVR. After each relocation, the system repeats
the Verification function to check for additional errors. The system permits a maximum of
five relocates per cylinder. If errors occur after the fifth relocate, the system removes the
rest of the cylinder from the master available table (XPed), starting with the error address
just received.

The system permits a maximum of 2000 XPs for each disk pack. After 2000 XPs, a
message appears on the ODT stating the total number of errors and the cylinder number of
the last error. You can then terminate the DISPKV program or continue it. If you
terminate the DISPKV program, the total number of errors received for each read/write
head appears on the ODT. If you continue the DISPKV program, the program continues to
remove sectors from the master available table.

When the IVR function is complete, the DISPKV program creates the following items:

• A disk pack label that contains the serial number, system access code, pack name,
system interchange code, and owner's ID

• A master available table that contains all usable space on the disk pack

• An available table that contains all space not removed (XPed)

• An empty disk pack directory table

4127 0000-100 3-11

DISPKV-Disk Pack Utility Program

3-12

In addition, the DISPKV program generates an error summary report if it encounters any
errors during the IVR process. This report contains any error result descriptors obtained
and the I/O descriptor fired to the device.

Because of the error checking and the size of the disk packs, the INITIALIZE command
can take from 60 to 300 minutes. Processing time varies, depending on the job mix, the
channel activity, and the type of disk pack being initialized.

Figure 3-3 shows the syntax for the DISPKV INITIALIZE command.

- <mix no> AX"CO ~[-=-]--.-- INITIALIZE - CU ~[-=-]--.-- <cc>

-i-J~-----~- /<uu> - SN --r---...,.- <serial number> ------7
l :<alt chan> J L = _J

LAc~~f LPN
[=] <pack name> J

) L SC
[=] L~~JJ L QI

[=] <owner 1 s-i d> J

) I _,_ /49\ I L END J
LL_E_R ____ <error address> _LJ

[=]

Figure 3-3. DISPKV INITIALIZE Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Serial number

The program uses default values for all parameters that it does not find in the input string.
Detailed information regarding these parameters and their defaults appears under
"Execution Syntax" earlier in this section.

Restrictions

The INITIALIZE command is invalid for 680, 682, MD4, and MD8 disk packs. To perform
the IVR functions on a 680 or 682 disk pack, use the peripheral test driver (PTD) program
named M68IVR. To perform the IVR functions on MD4 or MD8 disk pack, use the PTD
program named SMDIVR. Then use the LABEL command of the DISPKV program to
create the disk pack label, the master available table, the available table, and the empty
directory. PTD programs are available from your Unisys Customer Service Engineering
representative.

4127 0000-100

DISPKV-Disk Pack Utility Program

Use the INITIALIZE command when you are converting 100-byte disk packs to 180-byte
disk packs and 180-byte disk packs to 100-byte disk packs. You also use INITIALIZE when
you are converting interlaced to sequential mode or vice versa. When you are converting
207, 235, or 659 disk packs, refer to the value statements that are described under
"Execution Syntax" in this section.

INITIALIZE may or may not be valid for 659 disk packs, depending on the situation:

• If you used the DISPKV program to perform the IVR functions on a 659 disk pack
(relocating a maximum of five sectors on each cylinder), INITIALIZE is valid.

• If you used the PTD program named SEQIVR (also called the shared spares version of
PTD IVR) to relocate more than five sectors, INITIALIZE is invalid.

Addresses are not written on 235 or 207 disk pack, but data fields are initialized.

The disk pack directory and available tables are created only on 180-byte disk packs.

Example

BAX "CO INITIALIZE CU B/2 SN 7142 AC=RM PN=MYPACK OI=MARIBEL"

BAX "CO INITIALIZE CU 6/4 SN 2B391 END"

In this example, the syntax causes the DISPKV program to perform the IVR functions on
two disk packs. The first one has a serial number of 7142 and is on unit 2 connected to
DLP 8. It will be initialized as a restricted master with a disk pack name of MYP ACK and
an owner's ID of MARIBEL. The other parameters will assume default settings.

The second disk pack has a serial number of 28391 and is on unit 4 connected to DLP 6.
All optional parameters will assume default values.

At the conclusion of the second INITIALIZE, the DISPKV program will go to end-of-job.

CONFIGURE Command

The CONFIGURE command purges information and performs Verification and Relocation
functions on disk packs that are either preinitialized from the factory or have been
previously initialized with the DISPKV INITIALIZE command. The preinitialized disk
packs include the 207, 235, and 659 types.

The CONFIGURE command checks all addressable sectors on the disk pack for errors.
The program relocates any sectors in error to spare sectors. Any previously relocated
sectors remain relocated. If the disk pack being checked is in 180-byte mode, the program
creates the disk pack label, available table, and directory table. If errors occur, the
program generates an error-summary report.

Figure 3-4 shows the syntax for the DISPKV CONFIGURE command.

- <mix no> AX"CO -..----.- CONFIGURE - CU --,----.,,- <cc> -------t
[=] [=]

-+>-L--:<_a_l_t_c_h_a_n_>_]_ /<uu> - SN-[-=_]_ <serial number> ------7

4127 0000-100 3-13

DISPKV-Disk Pack Utility Program

'LAc~~f LPN
[=] <pack name> J

) L SC
[=] L~~T LOI

[=] <owner's-id> J

) Lt--- /49\]] L END J
ER [= J <error address>

Figure 3-4. DISPKV CONFIGURE Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Serial number

The program uses default values for all parameters that it does not find in the input string.
Detailed information regarding these parameters and their defaults appears under
"Execution Syntax" earlier in this section.

Restrictions

The disk pack tables are created only on 180-byte disk packs.

The CONFIGURE command is invalid for 680, 682, MD4, and MD8 disk packs. To perform
the IVR functions on a 680 or 682 disk pack, use the peripheral test driver (PTD) program
named M68IVR. To perform the IVR functions on MD4 or MD8 disk packs, use the PTD
program named SMDIVR. PTD programs are available from your Unisys Customer Service
Engineering representative.

The CONFIGURE command may or may not be valid for 659 disk packs, depending on the
situation:

• If you used the DISPKV program to perform the IVR functions on a 659 disk pack
(relocating a maximum of five sectors on each cylinder), CONFIGURE is valid.

• If you used the PTD program named SEQIVR (also called the shared spares version of
PTD IVR) to relocate more than five sectors, CONFIGURE is invalid.

REPORT Command

3-14

The REPORT command scans all spare sectors on the disk pack and produces a printed
report of all relocated sectors.

Figure 3-5 shows the syntax for the DISPKV REPORT command.

4127 0000-100

DISPKV-Disk Pack Utility Program

- <mix no> AX"CO ~-~-REPORT - CU~-~- <cc> -------4
[=] [=]

-+>~[-: <_a_l_t_c_h_a_n_>_J-.- /<uu> - SN ~[-=-]-,- <serial number> ~[-EN_D_J~_,

+- II ----------------------------!

Figure 3-5. DISPKV REPORT Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Serial number

All other parameters in the input string are checked for valid syntax, but are not used.
Detailed information regarding these parameters and their defaults appears under
"Execution Syntax" earlier in this section.

Restrictions

The REPORT command is invalid for 680, 682, MD4, and MD8 disk packs.

The REPORT command may or may not be valid for 659 disk packs, depending on the
situation:

• If you used the DISPKV program to perform the IVR functions on a 659 disk pack
(relocating a maximum of five sectors on each cylinder), REPORT is valid.

• If you used the peripheral test driver (PTD) program named SEQIVR (also called the
shared spares version of PTD IVR) to relocate more than five sectors, REPORT is
invalid.

SINGLE Command

The SINGLE command performs IVR functions on a single cylinder of a 100-byte or
180-byte disk pack The disk pack label, tables, and other data on the disk pack are not
affected.

You can use SINGLE if a particular cylinder on an initialized pack has an excessive
number of errors or if the addresses are corrupted and you do not want to perform a full
disk pack IVR. The program writes all addresses, error protection codes, and predefined
data patterns on each sector of the specified cylinder. Then the program reads the sectors
to check for address errors, protection code errors, and data validity. The program
relocates any bad sectors to spare sectors in the cylinder.

Before initializing and verifying a cylinder, the DISPKV program reads all the cylinder
spares. If any of the spare sectors are in use, an ODT display identifies the relocated
sectors and asks whether they are to be relocated after the cylinder is reinitialized. When
the DISPKV program completes the IVR functions, you can relocate any previously

4127 0000-100 3-15

DISPKV-Disk Pack Utility Program

relocated sectors again. The DISPKV program also relocates any ER addresses supplied
during the process.

When the DISPKV program completes the entire SINGLE process, an ODT display
identifies all relocated sectors and other sectors that you need to remove.

Figure 3-6 shows the syntax for the DISPKV SINGLE command.

- <mix no> AX CO ---,------.--- SINGLE - CU ---,-----.-- <cc>
L=_J L=_J

+l-ir-------....,.- /<uu> - SN~--- <serial number>
L :<alt chan> _J L = _J

+)----------------~ CY ---,----- <cylinder number> -----7

I -4--- /49\ I L = _J
~ ER <error address> _lJ

[=]

) LEND J

Figure 3-6. DISPKV SINGLE Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Serial number

• Cylinder

In addition, you can use the address parameter with the SINGLE command to identify
addresses to be relocated. All other parameters in the input string are checked for valid
syntax but are not used. Detailed information regarding these parameters and their
defaults appears under "Execution Syntax" earlier in this section.

Restrictions

To perform a single cylinder IVR, you must reserve the entire cylinder to be processed
with the SINGLE command, using the XP system command.

The SINGLE command is invalid for 680, 682, MD4, and MD8 disk packs. To perform a
single cylinder IVR on a 680 or 682 disk pack, use the peripheral test driver (PTD) program
named M68IVR. To perform a single cylinder IVR on MD4 or MD8 disk packs, use the PTD
program named SMDIVR. PTD programs are available from your Unisys Customer Service
Engineering representative.

The SINGLE command may or may not be valid for 659 disk packs, depending on the
situation:

• If you used the DISPKV program to perform the IVR functions on a 659 disk pack
(relocating a maximum of five sectors on each cylinder), SINGLE is valid.

3-16 4127 0000-100

(

DISPKV-Disk Pack Utility Program

• If you used the PTD program named SEQIVR (also called the shared spares version of
PTD IVR) to relocate more than five sectors, SINGLE is invalid.

RELOCATE Command

The RELOCATE command takes the specified decimal address and relocates it into a
spare sector on the cylinder if one is available. You can use this procedure when a sector
on the disk pack produces an excessive number of errors and when you do not want a
single cylinder or full disk pack IVR.

If no sector is available, the progran1 aborts the request and a message appears on the
ODT. After the DISPKV program relocates the sector, the program pelforms a verify pass
against the entire cylinder to check for effors in the relocation process. If the relocated
sector has effors, the program retries the relocation five times. After the fifth
unsuccessful attempt, a message appears on the ODT and the system terminates the
process.

The disk pack label, tables, and all other data on the disk pack are not affected by the
RELOCATE command.

Figure 3-7 shows the syntax for the DISPKV RELOCATE command.

- <mix no> AX"CO --.-------.- RELOCATE - CU --r------.- <cc> -----~
[=] [=]

-rl---.-----------.- /<uu> - SN --r------.- <serial number> - AD--~
l :<alt chan> J L = J

) [= J <address
[END j

Figure 3-7. DISPKV RELOCATE Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Serial number

• Address

All other parameters in the input string are checked for valid syntax, but are not used.
Detailed information regarding these parameters and their defaults appears under
"Execution Syntax" earlier in this section.

Restrictions

The address to be relocated must be reserved using the XP system command.

The RELOCATE command is invalid for 680, 682, MD4, and MD8 disk packs. To relocate
an address on 680 or 682 disk packs, use the Peripheral Test Driver (PTD) program named
M68IVR. To relocate an address on MD4 or MD8 disk packs, use the PTD program named

4127 0000-100 3-17

DISPKV-Disk Pack Utility Program

SMDIVR. PTD programs are available from your Unisys Customer Service Engineering
representative.

RELOCATE may or may not be valid for 659 disk packs, depending on the situation.

• If you used the DISPKV program to pe1form the IVR functions on a 659 disk pack
(relocating a maximum of five sectors on each cylinder), RELOCATE is valid.

• If you used the PTD program named SEQIVR (also called the shared spares version of
PTD IVR) to relocate more than five sectors, RELOCATE is invalid.

RENAME Command

3-18

The RENAME command is valid only for a 180-byte disk pack. The RENAME command
changes various fields on the disk pack label without purging the disk pack or changing
any tables. You can change the following with the RENAME command:

• Packname

• System access code

• Owner'sID

4127 0000-100

(

DISPKV-Disk Pack Utility Program

Figure 3-8 shows the syntax for the DISPKV RENAME command.

- <mix no> AX"CO -..------,- RENAME - CU -..------,.- <cc> --------7
[=] [=]

-+)~--------.- /<uu> - SN ~---.-<serial number>-------?
l :<alt chan> J l = J

'LAc~~f LPN [=]<pack name>]

~)-,---------,---,--------------,--,-----,- II --j
l SC MS J LOI <owner's-id> J L END J

[=] [=]

Figure 3-8. DISPKV RENAME Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Serial number

If disk pack name, system access code, and owner's ID appear in the input string, then the
program updates the label to these values. If they are not included in the input string, the
program assigns default values to these parameters.

All other parameters in the input string are checked for valid syntax, but are not used.
Detailed information regarding these parameters and their defaults appears under
"Execution Syntax" earlier in this section.

Restrictions

The serial number must match the existing serial number in the label. The system
interchange code, if included, must equal MS. Otherwise, the RENAME command aborts.

4127 0000-100 3-19

DISPKV-Disk Pack Utility Program

RECONFIGURE Command

3-20

The RECONFIGURE command is valid only for 180-byte disk pack. The RECONFIGURE
command purges all files on the disk pack and creates a new available table and empty
directory, using the existing master available table. The disk pack label is not changed.

Figure 3-9 shows the syntax for the DISPKV RECONFIGURE command.

- <mix no> AX"CO -,----.- RECONFIGURE - CU -..----.- <cc> ---~
[=] [=]

...,.>~------- /<uu> - SN-,---- <serial number> - OI __ _.
[:<alt chan> J L = J

> [= J <owner's id> [END J

Figure 3-9. DISPKV RECONFIGURE Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Serial number

• Owner's ID

Note: Owner's ID is required only if you specified it when you executed the
DISPKV program.

All other parameters in the input string are checked for valid syntax, but are not used.
Detailed information regarding these parameters and their defaults appears under
"Execution Syntax" earlier in this section.

Restrictions

If the serial number and owner's ID parameters do not match the existing serial number
and owner's ID in the disk pack label, the RECONFIGURE command aborts.

4127 0000-100

DISPKV-Disk Pack Utility Program

RECONFIGUREL Command

The RECONFIGUREL command is valid only for 180-byte disk pack. The
RECONFIGUREL command purges all files on the disk pack and creates a new available
table and empty directory, using the existing master available table. You can change the
disk pack name, system access code, and owner's ID fields in the disk pack label.

Figure 3-10 shows the syntax for the DISPKV RECONFIGUREL command.

- <mix no> AX"CO [= J RECONFIGUREL - CU [= J <cc>

i /<uu> - SN [= J <seri a 1 number>
L. :<alt chan> _J

+i ~[_A_C_[_=_J_~-~M-t--.-.,...[-pN---~[-:::_-=_-_]~-<-pa_c_k_n_a-me_>_]-.- or --~

i [= J <owner's id> [END J

Figure 3-10. DISPKV RECONFIGUREL Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Sedal number

• Owner'sID

Note: Owner's ID is required only if you specified it when you executed the
DISPKV program.

If disk pack name and system access code appear in the input stdng, the program updates
the label to these values. If they are not included in the input stdng, the program assigns
default values to these parameters. Detailed information regarding these parameters and
their defaults appears under "Execution Syntax" earlier in this section.

LABEL Command

The LABEL command is valid only for 180-byte disk pack The LABEL command purges
all files on the disk pack and creates a new label, master available table, available table,
and empty directory. You can change the system access code, disk pack name, system
interchange code, and owner's ID fields in the disk pack label.

4127 0000-100 3-21

DISPKV-Disk Pack Utility Program

Figure 3-11 shows the syntax for the DISPKV LABEL command.

- <mix no> AX"CO [= J LABEL - CU [= J <cc>

) /<uu> - SN <serial number> ____ ____,
L :<alt chan> _J L = _J

·cAC~~I LPN
[=] <pack name> J

) L SC
[=] L~~T L 01

[=] <owner's-id> J

) I: _____ /49\ - I L FILES<number> J LEND J)
~ ER <error address> _lJ

[=]

Figure 3-11. DISPKV LABEL Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Serial number

If the system access code, disk pack name, system interchange code, or owner's ID appear
in the input string, then the program creates a new label, using these values. The program
assigns default values to any of these parameters that are not included in the input string.

You can use the files parameter to establish a contiguous directory table large enough to
hold the maximum number of files expected to be put on the disk pack Detailed
information regarding these parameters and their defaults appears under "Execution
Syntax" earlier in this section.

Restrictions

The LABEL command does not verify the disk pack and it does not perform error
correction. The program will ignore all previously unavailable (XPed) sectors when it
builds the new tables.

6591VR Command

3-22

The 659IVR command performs an IVR on a single cylinder, on a selected range of
cylinders, or on all cylinders of any type of disk pack except 680, 682, MD4, or MD8. The
command unconditionally retains all previously relocated sectors and relocates any new
sectors found in error.

4127 0000-100

DISPKV-Disk Pack Utility Program

Dependillg on the range of cylinders chosen, the 659IVR command may or may not purge
all files on the disk pack and create a new label, master available table, available table,
and empty directory. You can change the system access code, disk pack name, system
interchange code, and owner's ID fields in the disk pack label.

Figure 3-12 shows the syntax for the DISPKV 659IVR command.

- <mix no> AX"CO L = _j 659IVR - CU~--~ <cc>---------> L = _j
> /<uu> - SN~--~ <serial number> ____ ___,

L :<alt chan> _J L = _J

'LAc~~f LPN
[=] <pack name> J

) L SC
[=] LA~T L OI

[=] <owner's-id> J

) Lt--- /49\ iJ
ER [= J <error address>

)[
CY [= J <beginning cylinder> [J

<ending cylinder>

) LEND J

Figure 3-12. DISPKV 6591VR Syntax

Required Parameters

The DISPKV program requires the following parameters:

• Command

• Channel/unit

• Serial number

If cylinder 0, which contains the label information, is to be initialized, then the system
access code, disk pack name, system interchange code, and owner's ID should appear in
the input string to be included in the new label. The program assigns default values to any
of these parameters not included in the input string. Detailed information regarding these
parameters and their defaults appears under "Execution Syntax" in this section.

The value of the beginning cylinder is the number of the cylinder to be initialized. The
value of the endillg cylinder is the number of the last cylinder to be initialized. This
parameter is valid only if you have specified the beginning cylinder parameter.

• If you do not specify the beginning parameter, the program initializes the entire disk
pack.

4127 0000-100 3-23

DISPKV-Disk Pack Utility Program

3-24

• If you use the ending cylinder, separate it from the beginning cylinder with a dash.

• If you omit the ending cylinder parameter or if you specify a value that is greater than
the number of cylinders on the disk pack, then the program performs the initialization
through the last cylinder.

• If you do not specify any cylinder numbers, then the DISPKV program asks you to
specify whether initialization is to begin with cylinder 0. If your response to this
request is yes (Y), then the DISPKV program pe1forms the IVR functions on all
cylinders on the disk pack Otherwise, it performs an IVR of the first through the last
cylinders on the disk pack

• If you specify a range of cylinder numbers beginning with cylinder 0, then the DISPKV
program asks you to confirm that you want to include cylinder 0. If your answer is no
(N), the program follows the original request for all cylinders except cylinder 0.

Restrictions

The 659IVR command is invalid for 680, 682, MD4, and MD8 disk packs. You must use
peripheral test driver (PTD) programs to initialize them.

Table 3-4 shows the DISPKV command functions.

4127 0000-100

DISPKV-Disk Pack Utility Program

Table 3-4. DISPKV Command Functions

I nit Cnfig Rpt Sgl Reloc Rename Recnf Recnfl Label 6591VR

Writes all sector y N N N N N N N N Y/N
addresses

Checks all y y N N N N N N N Y/N
addressable sectors

Relocates sectors in y y N N N N N N N y
error

Purges all files y y N N N N y y y Y/N

Creates new disk y y N N N N N N y Y/N
pack label

Updates existing disk N N N N N y N y N N
pack label

Creates new master y y N N N N N N y Y/N
available table

Creates new y y N N N N y y y Y/N
available table

Creates new disk y y N N N N y y y Y/N
pack directory table

Creates error y y N N N N N N N y
summary report if
errors are found

Creates report of all N N y N N N N N N N
relocated sectors

Writes sector N N N y N N N N N Y/N
addresses in a single
cylinder

Checks addressable N N N y N N N N N Y/N
sectors in a single
cylinder

Relocates sectors in N N N y N N N N N Y/N
error in a single
cylinder

Relocates specified N N N N y N N N N N
sectors

4127 0000-100 3-25

DISPKV-Disk Pack Utility Program

Responding to ODT Input Messages
If the DISPKV program asks for a specific input, for example, serial number or
channel/unit, then you should enter only the data it requests. You must not reenter the
keyword. Do not enter the keyword END, if the program requests specific input. If you
enter END in this case, the program ignores it.

Displaying Status Information
During execution, you can set a switch that causes the DISPKV program to display status
information. Use the SW system command to set switch 8 to one of three values.

You can use SW8 to interrogate the DISPKV program for either the cylinder number of the
disk pack that is being initialized or configured, the number of errors that have been
detected, or both. Table 3-5 shows the syntax and results.

Table 3-5. SW8 Uses

<mix no>SW8=1 Displays the current cylinder number

<mix no>SW8=2 Displays the total number of errors
encountered on a basis of each read/write
head

<mix no>SW8=3 Displays both the current cylinder number
and the number of errors

Initializing M9710, MD4, MOS, 680, and 682 Disk
Pack Types

3-26

You cannot use the DISPKV program to initialize M9710, MD4 (SMD), MD8 (XSMD), 680,
or 682 disk pack types. You must use the PTDMNO program that is on the MCP system
tape.

Before attempting to initialize media with the PTDMNO program, load and print the
PTDMNI, M68FVI, SMDIVI, SCSIVI, and SCSIVR files to disk from the MCP system tape.
These files contain documentation on the operation of the PTDMNO program and are in
printer backup disk format.

You can use the DISPKV program to rename and relabel MD4, MD8, 680, and 682 disk
pack

4127 0000-100

DISPKV-Disk Pack Utility Program

Disk Pack and Controller Styles Supported
The DISPKV program supports many different models of disk pack controllers and disk
packs.

The program supports the following controllers:

• BX383 DPDC through an HT-DLP

• BX384 DPDC through an HT-DLP

• BX385 DPDC through an HT-DLP

• B 9387 DPDC through an HT-DLP, or SEQ-HT-DLP

• B 9389 DPDC through an SEQ-HT-DLP

Note: SMD and XSMD disks do not use a disk pack controlwr. They are connected
directly to a DLP.

Tables 3-6 and 3-7 show the disk and disk pack styles that the DISPKV program supports.

Table 3-6. Available Disk (100-Byte) Styles

Style Type Notes

B 9486-4 225 Dual spindle, removable

B 9484-8 235 Dual spindle, removable

B 9484-5 206 Dual spindle, removable

B 9494-41 207 Dual spindle, fixed

B 9484-12 677 Memorex removable

B 9494-5 659 Memorex fixed

MD4-2 or-4 MD4 SMD fixed

4127 0000-100 3-27

DISPKV-Disk Pack Utility Program

225

235

206

207

677

659

MD4

3-28

Table 3-7. Available Disk Pack (180-Byte) Styles

Style Type Notes

B 9486-4 225 Dual Spindle, removable

B 9484-8 235 Dual spindle, removable

B 9484-5 206 Dual spindle, removable

B 9494-41 207 Dual spindle, fixed

B 9484-12 677 Memorex removable

B 9494-5 659 Memorex fixed

B 9494-12 680 Memorex fixed, dual

B 9494-24 682 Memorex fixed, dual
actuator-double density

MD-2 or-4 MD4 SMD fixed

MD8-2 or-4 DB XSMD fixed-double density

M9710 M9710 SCSI fixed

Tables 3-8 and 3-9 show the DISPKV commands that are valid for each disk and disk pack
type.

Table 3-8. DISPKV Commands and Qualified Disk (100-Byte) Types

lnit Cnfig Rpt Sgl Reloc Rename Recnf Recnfl Label 6591VR

Yes Yes Yes Yes Yes N/A N/A N/A N/A Yes

Yes Yes Yes Yes Yes N/A N/A N/A N/A Yes

Yes Yes Yes Yes Yes N/A N/A N/A N/A Yes

Yes Yes Yes Yes Yes N/A N/A N/A N/A Yes

Yes Yes Yes Yes Yes N/A N/A N/A N/A Yes

Yes Yes Yes Yes Yes N/A N/A N/A N/A Yes

No No No No No N/A N/A N/A N/A No

4127 0000-100

(

DISPKV-Disk Pack Utility Program

Table 3-9. DISPKV Commands and Qualified Disk Pack (180-Byte) Types

I nit Cnfig Rpt Sgl Reloc Rename Recnf Recnfl Label 6591VR

225 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

235 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

206 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

207 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

677 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

659 Yest Yest Yest Yest Yest Yes Yes Yes Yes Yes

680 No No No No No Yes Yes Yes Yes No

682 No No No No No Yes Yes Yes Yes No

MD4 No No No No No Yes Yes Yes Yes No

MD8 No No No No No Yes Yes Yes Yes No

M9710 No No No No No Yes Yes Yes Yes No

t These five functions of the DISPKV program may or may not be valid for 659 disk packs, depending on the
situation. They are valid if you have used the DISPKV program to perform the IVR functions on the 659 disk pack
(relocating a maximum of five sectors on each cylinder). They are invalid if you have used the peripheral test
driver (PTD) program named SEQIVR (also called the shared spares version of PTD IVR) to relocate more than five
sectors, these functions of DISPKV are invalid.

File Equate Information
When you execute the DISPKV program, you may need to know the following internal and
external names used by the program for all its input and output files:

• DISPKV input card file

Internal name INPUTF

External name INPUTF

• DISPKV output error summary report

Internal name PRINTF

External name PRINTF

• DISPKV output DLP eITor report

Internal name DLPERR

External name DLPERR

4127 0000-100 3-29

DISPKV-Disk Pack Utility Program

Input Examples
The DISPKV program permits both ODT and card input. The following examples show
valid ODT input. Figure 3-13 shows valid card input.

Valid ODT inputs are the following:

EX DISPKV (,"SPO")

Enter input for the DISPKV program. You must enclose the entire line with quotation
marks. You must enter END to stop ACCEPT commands.

**DISPKV=002 ACCEPT

2 AX "CO CONFIGURE CU 8/1 SN 2 CO INITIALIZE"

**DISPKV=002 ACCEPT

2 AX "CU 8:7/5 SN 11 AC RM ER 1/1/1 ER 2/3/4"

**DISPKV=002 ACCEPT

2 AX "PN JAKES OI IVRSUN"

**DISPKV=002 ACCEPT

2 AX "CO SINGLE CU 8/4 SN 875 CY 300 ER 300/6/29"

**DISPKV=002 ACCEPT

2 AX "CO RELOCATE CU 8/6 SN 39 AD 385472"

**DISPKV=002 ACCEPT

2 AX "CO CONFIGURE CU 6:5/4 END"

Results of Input

3-30

If each of the units that you have designated is a 180-byte disk pack, the results of the
previous "Input Examples" are as follows:

"CO CONFIGURE CU 8/1 SN 2 CO INITIALIZE"

Unit 8/1 is verified, all files are purged, the disk pack label is written, and pack
directory and tables are initialized. The disk pack serial number is 2. The pack is a
system resource (unrestricted) disk pack, with a default disk pack name of SYS180, a
system interchange code of medium system (MS), and an owner's ID of all blanks. An
INITIALIZE is performed on the disk pack specified by the next CU that is input to
DISPKV.

4127 0000-100

DISPKV-Disk Pack Utility Program

"CU 8:7/5 SN 11 AC RM ER 1/1/1 ER 2/3/4 PN JAKES or IVRSUN"

Unit 5 is initialized with DLP 7 (the alternate channel) rather than 8 (the primary
channel) as a restlicted master with a selial number of 11, a disk pack name of
JAKES, an owner's ID of IVRSUN, and a system interchange code of MS. The input ER
1/1/1 specifies that cylinder 1, head 1, sector 1 must be relocated. The input ER 2/3/4
specifies that cylinder 2, head 3, sector 4 must be relocated.

"CO SINGLE CU 8/4 SN 875 CY 300 ER 300/6/29"

A single cylinder IVR is performed for cylinder 300 of the disk pack on channel 8, unit
4. The serial number of the disk pack must be 875. The 29th sector, as accessed by
head 6, must be relocated.

"CO RELOCATE CU 8/6 SN 39 AD 385472"

A single sector RELOCATE of sector 3854 72 is performed on channel 8, unit 6. The
disk pack on channel 8 unit 6 must have a SERIAL NUMBER of 39.

"CO CONFIGURE CU 6:5/4 END"

Unit 4 is initialized using channel 5 (the alternate channel) rather than channel 6 (the
primary channel) and then verified. In addition, all the files are purged, the disk pack
label is written, and the disk pack directory and tables are initialized. After the
CONFIGURE command is complete, the DISPKV program goes to end-of-job.

Card Input Rules
When you enter the DISPKV parameters on cards, the order is unimportant except that
you must use the CO keyword to group a set of data items. Until it encounters the next
keyword CO, the program assumes that everything following the keyword CO belongs to
the same set.

You can place the input data on several cards, starting in any column. However, the
keyword must NOT cross card boundaiies. The data associated with a keyword also must
NOT cross card boundalies. You can either place an equal sign (=) after the keyword (for
instance, CO=INITIALIZE CU=8/3 SN=ll PN=MASTER) or place at least one blank after
the keyword.

Figure 3-13 shows a sample DISPKV execution and parameter deck.

4127 0000-100 3-31

DISPKV-Disk Pack Utility Program

? END

PN = JAKES 10 = IVRSUN

CU= 08:07/05 SN= 11 AC= RM ER= 1/1/1ER=2/3/4

CO - INITIALIZE

? DATA INPUTF

? EXECUTE DISPKV

Figure 3-13. Sample DISPKV Executive Deck

DISPKV Messages
The DISPKV program can display messages from any of the following categories:

• Informational Messages. These messages indicate the completion of a function and
require no operator intervention.

• Operator Prompts. These messages prompt you for some type of input.

• Error Messages. These messages indicate problems that occur when you are
running the DISPKV program.

Informational Messages

3-32

The following messages provide information; they do not require a response. However,
you may need to act upon the information in the message.

The following message appears on the ODT after a single cylinder IVR if the relocation of
a sector was required or if a portion of the cylinder must be removed from the disk
available table (with XP system command for 180-byte disk pack or XD system command
for 100-byte disk pack):

4127 0000-100

DISPKV-Disk Pack Utility Program

CYLINDER <number> ON CC/U HAS BEEN INITIALIZED AND
THE FOLLOWING ADDRESSES WERE RELOCATED

1 ccc/hh/ssssss (<sector>) 2 = ccc/hh/ssssss (<sector>)
3 ccc/hh/ssssss (<sector>) 4 = ccc/hh/ssssss (<sector>)
5 ccc/hh/ssssss (<sector>)

ALSO, THE FOLLOWING ADDRESSES MUST BE XP'ED
ccc/hh/ssssss THRU ccc/hh/ssssss (<sector> FOR <length>)

A sector was corrupted and could not be relocated. The rest of the cylinder could not
be verified and, therefore, it must be removed from the available table. On 100-byte
disk packs, remove the addresses specified on the ID number to which the disk pack
is assigned. On 180-byte disk packs, replace the addresses of the cylinder that were
removed before the execution of the DISPKV program (using the RXP system
command), and then remove the addrnsses in the display. The following is an
example of this display:

CYLINDER 10 ON 14/06 HAS BEEN INITIALIZED AND
THE FOLLOWING ADDRESSES WERE RELOCATED

1 =10/1/60 (4600) 2 =10/1/62 (4602)
3 =10/1/63 (4603) 4 =10/1/82 (4622)
5 =10/4/22 (4832)

ALSO, THE FOLLOWING ADDRESSES MUST BE XP'ED
10/4/33 THRU 10/4/84 (4843 FOR 52)
PACK TYPE 207: DATA FIELD ONLY INITIALIZE

A 207 disk pack is being initialized. Only the data portion of every sector is initialized;
the addresses are not affected. If any addresses are corrupted, you must perform a
single cylinder IVR on the associated cylinder or set a VA 1 = 100000 to override this
function if you need a full IVR.

PACK TYPE 235: DATA FIELD ONLY INITIALIZE

A 235 disk pack is being initialized. Only the data portion of every sector is initialized;
the addresses are not affected. If any addresses are corrupted, you must perform a
single cylinder IVR on the associated cylinder.

Operator Prompts

When the DISPKV program displays the following prompts, you must provide a response
before processing can continue.

4127 0000-100 3-33

DISPKV-Disk Pack Utility Program

The following message appears when you are doing a single cylinder IVR if any of the
spares on that cylinder are in use.

WANT TO RELOCATE THESE ADDRESSES ON CC/U AGAIN?

1 cccc/hh/ssssss (<sector>) 2
3 cccc/hh/ssssss (<sector>) 4
5 cccc/hh/ssssss (<sector>)

cccc/hh/ssssss (<sector>)
cccc/hh/ssssss (<sector>)

ENTER YES, NO, OR # OF ONES TO RELOCATE

If you want to relocate all of the sectors again after the initialize function, enter YES. If
you do not want to relocate any sectors again, enter NO. If you want selective sectors to
be relocated again, enter the number that precedes the equal sign (=) that corresponds to
the address to be relocated, as in the following example:

WANT TO RELOCATE THESE ADDRESSES ON 14/6 AGAIN?

1 10/4/22 (4832) 2 = 10/1/60 (4600)
3 10/1/62 (4602) 4 = 10/1/63 (4603)
5 10/1/82 (4622)

ENTER YES, NO, OR # OF ONES TO RELOCATE

All of the sectors displayed were relocated before the single cylinder IVR was complete.
Any or all of the sectors may be relocated again, if desired. If you enter a YES, the
program will relocate all five sectors again. If you enter a NO, the program will not
relocate any five sectors again. If you enter the numbers 234, the program will relocate
sectors 4600, 4602, and 4603 again.

Error Messages

3-34

The following error messages may appear on the ODT.

ACCESS CODE MUST BE BLANK FOR INTERCHANGE PACKS

The system interchange code specified is IC, and the system access code is not
unrestricted. The system access code must be unrestricted on all interchange disk
packs.

COMMAND IS NOT ALLOWED TO THIS UNIT

This message appears when you enter any of the following commands for a 680, 682,
MD4, or MD8 disk pack: INITIALIZE, CONFIGURE, SINGLE, REPORT, or RELOCATE.

CONTROLLER ERR - RD TAG PRESENT

A DLP extended result descriptor RID tag was returned with directions for a controller
malfunction, invalid disk Device Dependent Port (DDP) status, controller failure, and
so forth.

4127 0000-100

(

DISPKV-Disk Pack Utility Program

OLP ERROR R/D RETURNED ON THE OLP

Invalid result descriptor was returned from the DLP. Possible causes are DLP
descriptor error, parity error, Device Dependent Port (DDP) parity error, timeout, and
so forth.

ERROR CARDS IGNORED, COMMAND IS NOT INITIALIZE

You can specify error addresses only when you use the initialization function.

ERRORS PER HEAD: <head number>=<error count> <head number>=<error count>

This message shows the total number of errors encountered for each read/write head.
This message appears only when the total count exceeds 2000 and the DISPKV
program terminates.

!OT ERROR CONDITION ON THE OLP

An invalid result descriptor was returned from the IOT. Possible causes are timeout,
memory parity error, longitudinal parity error, and so forth.

INVALID INPUT CYLINDER NUMBER

The cylinder number input to the SINGLE command exceeds the maximum number of
cylinders for that disk pack.

INVALID LABEL ON MEDIA DESIGNATED

Label on the channel and unit specified is in the incorrect format or cannot be read.

INVALID OWNER'S ID FOR RECONFIGURE

PACK OWNER'S ID on the channel and unit specified does not match the OWNER'S
ID input to the DISPKV program. RECONFIGURE must have matching OWNER'S IDs.

INVALID PACK SERIAL NUMBER FOR RECONFIGURE

PACK SERIAL NUMBER on the channel and unit specified does not match the serial
number input to the DISPKV program. RECONFIGURE must have matching serial
numbers.

INVALID RELOCATE ADDRESS

The sector address input to the RELOCATE command exceeds the maximum
addressable sector for that type of disk pack

INVALID R/D ON READ = <result descriptor>

An attempt to read the spare sectors of a cylinder has failed. The result descriptor
specified was returned from this read.

4127 0000-100 3-35

DISPKV-Disk Pack Utility Program

3-36

INVALID R/D RECEIVED ON ERROR RELOCATE = <result descriptor>

Invalid result descriptor was retmned on an error sector relocate. Possible causes are
parity error, write fault, address error, and so forth.

INVALID R/D RECEIVED ON I/O <result descriptor>
R =RETRY, N =NEXT COMMAND STRING
D = DUMP, NEXT COMMAND STRING

An error was found when doing an I/O operation. A response of R will cause the I/O to
be retried 10 times or until it is successful. If the I/O fails again after 10 retries the
same message is displayed. A response of N will cause the current command to
terminate and the DISPKV program will process the next command string. If no
further commands are available, the DISPKV program terminates. A response of D is
the same as N except that the program will take a memory dump.

INVALID R/D RETURNED ON READ UNIT= <result descriptor>

An invalid result descriptor was returned from the controller when the program
attempted to obtain the firmware revision level and drive type. Possible causes are
that the controller is offline, the unit is in maintenance mode, the unit is not present,
and so forth.

LABEL COULD NOT BE READ

The label sector cannot be read after 10 retries.

PACK TYPE (IE 235, 206) IS UNDEFINED

Pack type returned on read unit ID is not supported by this version of the DISPKV
program. The cause is incorrect firmware loaded into the controller or an incorrect
version of the DISPKV program.

PACK TYPE RETURNED ON TEST OP IS INVALID

The disk pack type returned on read unit ID is not supported by this version of the
DISPKV program. The cause is incorrect firmware loaded into the controller or an
incorrect version of the DISPKV program.

PAC~S CAPACITY EXCEEDS THE VERSION 1 LIMIT
APPROXIMATELY 18 GB IS AVAILABLE FOR USE

DISPKV has been run against a version 1 diskpack that has a capacity greater than
18 GB. The capacity limit enforced by the MCP for Version 1 diskpacks is 18 GB. For
this reason, DISPKV will build the "available" tables for an 18 GB capacity, and the
MCP will allocate only 18 GB of the diskpack.

4127 0000-100

DISPKV-Disk Pack Utility Program

REQUEST NOT ALLOWED, ADDRESS <number> FOR <length> NOT XP'ED

The address and length specified must be removed before doing a single cylinder IVR
(SINGLE). Remove these addresses, using the XP system command on 180-byte disk
packs or the XD system command on 100-byte disk packs, and reexecute the DISPKV
program.

REQUEST NOT ALLOWED, ADDRESS <number> NOT XP'ED

The address specified in a RELOCATE command for a 180-byte disk pack was not
removed from the disk available table. Remove the appropriate address, using the XP
system command, and reexecute the DISPKV program.

REQUEST NOT ALLOWED ON 100-byte MEDIA

The DISPKV program does not pennit a command of RECONFIGURE or
RECONFIGUREL on 100-byte disk packs. Tables are not used on these disk packs.

SECTOR <number> ON <cc/u> CANNOT BE RELOCATED, LEAVE IT XP'ED

The sector input to the DISPKV program cannot be relocated because no spares are
available for use, or the available spares are bad. This sector should be removed from
the available table (XPed) until full disk pack IVR or single cylinder IVR functions can
be performed.

SECTOR <number> ON <cc/u> CANNOT BE VERIFIED, <number> IS BAD

An attempt failed to verify the cylinder containing the sector address to relocate. The
sector specified did not pass the verify and should also be relocated. The original
sector input to the DISPKV program was relocated.

Initializing Disk Packs to 100-Byte Mode
To prepare a disk pack in 100-byte mode, perform the following steps:

1. Ensure that the drive has been strapped for 100-byte mode.

2. Declare the spindles using the DISK MCP configuration record. Use the SAVED or
RESERVED option so the MCP will not attempt to use the drive for storage. Refer to
Volume 1 for more information.

3. Execute DISPKV and initialize the media.

4. Ready the drive with the RY system command.

4127 0000-100 3-37

DISPKV-Disk Pack Utility Program

3-38 4127 0000-100

Section 4
DLPXCO AND DLPXNO-DLP Utility
Programs

Overview
DLPXCO and DLPXNO are two utility programs that dump and clear Data Link Processors
(DLPs) that hang because of irrecoverable I/O operations.

When the MCP is running, use the DLPXNO program. If the MCP is not up and you are
working from a V 300 system, use the floppy disk based DLPXCO program. If the MCP is
not up and you are working from a V 500 system, use the DLPXCO program from the hard
disk of the maintenance processor.

Both programs read the firmware in the DLP and dump it. Both programs can display the
dump information on the screen and print it. The screen display includes the following
information:

• The stack, including microcode address

• The microcode word

• The status count of the DLP

Because the DLPXNO program uses the services of the MCP, the program creates a printer
backup file of the dump information. You can print this file or copy it to tape for later use.
Because the DLPXCO program runs without the support of the MCP, it dumps directly to
the printer.

The print file of the DLP dump contains the following information:

• All error messages following the I/O in error

• An I/O trace of console DLP operations

• Logging information from the DLP or connecting module

When the MCP detects a hung DLP, it displays the following message:

cc/u <device mnemonic> NO RSLT DESC
<program ID> INV I/O DESC <file ID> <address> X <segment>
<program ID> DS OR DP

Both programs display error messages if they encounter problems. A list of these error
messages, along with a brief description of each, appears later in this section.

4127 0000-100 4-1

DLPXCO AND DLPXNO-DLP Utility Programs

These programs enable you to clear another DLP before resuming normal operations.
Note that after these programs are finished, you must reload the firmware.

Executing DLPXCO

4-2

The following pages present the procedures you use to execute the floppy disk version of
the DLPXCO program at the maintenance processor from a V 300 system and from a V 500
system.

V300 System

If you are working from a V 300 system, use the following procedure to execute the floppy
disk version of the DLPXCO program at the maintenance processor.

1. Press the ON LINE switch on the system cabinet so the word CONSOLE lights up.

2. Insert the floppy disk named CV33nA (where n represents the release number) in the
floppy disk drive.

3. If you have set the ODT channel number with the SO command and the ODT option
on PANDMV, enter the following command:

LOAD SYS DLPXCO; RUN

If you have not set the ODT channel number on PANDMV, enter the following
command (where nn represents the ODT channel number you will use):

LOAD SYS DLPXCO; MEM SYS 34 = nn; RUN 7.

You can enter the LOAD, MEM, and RUN commands separately.

4. Press the ON LINE switch on the system cabinet so that the word ON LINE lights up.

The system prompts you to enter the date, the time, and the printer channel number
with the following prompts:

ENTER DATE: MMDDYY

ENTER TIME: HHMM

ENTER 2 DIGIT PRINTER CHANNEL:

5. Enter the date (month, day, and year), the time (hour and minute), and the channel
number of the printer that will print the dump. If you are not going to print the dump
or if the printer is not available, enter FF.

The system displays the following prompt:

ENTER TB CHAN, TEST CHAN AND TYPE AS <BBCCTTT>

In this prompt, BB represents the DLP number of the test bus, CC represents the DLP
number to be tested and cleared, and TTT represents the DLP type.

4127 0000-100

DLPXCO AND DLPXNO-DLP Utility Programs

6. Enter the test bus channel number, the channel number of the hung DLP, and the DLP
type.

The following are the DLP types:

• Common front end (CFE) device (this value is the default): HT, MTP, CRD, PCH,
orTPR

• Shared system processor (SSP)

• Path selection module (PSM)

For example, you could enter LOAD SYS DLPXCO; RUN

7. When the execution of DLPXCO is complete, reload the firmware required by the DLP.

V 500 System

If you are working from a V 500 system, use the following procedure to execute the
DLPXCO program from the hard disk of the maintenance processor.

1. Enter the following command:

LOAD PROGRAM DLPXCO SYS Y;

2. Enter RUN SYS and then press either GO or function key F8 [EVENT].

The following messages prompt you to enter the date, the time, and the printer
channel number:

ENTER DATE: MMDDYY

ENTER TIME: HHMM

ENTER 2 DIGIT PRINTER CHANNEL:

3. Enter the date (month, day, and year), the time (hour and minute), and the channel
number of the printer that will print the dump. If you are not going to print the dump
or if the printer is not available, enter FF.

The system displays the following prompt:

ENTER TB CHAN, TEST CHAN AND TYPE AS <BBCCTTT>

In this prompt, BB represents the test bus number, CC represents the DLP number to
be tested and cleared, and TTT represents the DLP type.

4. Enter the test bus channel number, the channel number of the hung DLP, and the DLP
type.

The following are the DLP types:

• Common front end (CFE) device (this value is the default): HT, MTP, CRD, PCH,
orTPR

• Shared system processor (SSP)

• Path selection module (PSM)

4127 0000-100 4-3

DLPXCO AND DLPXNO-DLP Utility Programs

5. When the execution of the DLPXCO program is complete, reload the firmware
required by the DLP, and then halt/load the system.

Executing DLPXNO

4-4

V300 System

If you are working from a V 300 system, use the following procedure to execute the
DLPXNO program.

1. Enter the following syntax to identify the test bus channel you will use to clear the
hung DLP so you can execute the DLPXNO program:

UNIT <channel>/1 NST

In this syntax, <channel> represents the system console DLP number, as in the
following example:

UNIT 0/1 NST

2. Press the transmit (XMT) key after you have identified this channel.

V 500 System

If you are working from a V 500 system, use the following procedure to execute the
DLPXNO program.

1. Enter the following syntax to identify the test bus channel you will use to clear the
hung DLP so you can execute the DLPXNO program.

UNIT 83/0 NST

In this syntax, the channel number 83 is the channel number of the V 500 test bus.
The DLP channel number is 83.

2. Press the transmit (XMT) key after you have identified the channel.

V 300 and V 500 Systems

From either system, execute the DLPXNO program by performing the following steps.

1. First, enter the following to inhibit the hung DLP so that other programs cannot
access it while you are working with it:

XC+<DLP channel number>

4127 0000-100

DLPXCO AND DLPXNO-DLP Utility Programs

2. Next, enter the following to execute DLPXNO:

EX DLPXNO (,"ccxx","yyy")

In this syntax, cc represents the channel number of the test bus access, xx represents
the hung DLP channel number, and yyy represents the DLP type.

The following are the DLP types:

• Common front end (CFE) device (this value is the default): HT, MTP, CRD, PCH,
orTPR.

• Shared system processor (SSP)

• Path selection module (PSM)

Example

EX DLPXNO (,"1003","SSP")

This example clears an SSP on channel 03, using the test bus interface of the console DLP
on channel 10. When the DLP has been cleared, use the following command to return it to
the system.

XC-<DLP channel number>

Then you can load the firmware that the DLP requires.

Error Messages
DLPXCO and DLPXNO can display the following error messages. Recovery procedures
are included as needed.

CONSOLE DLP CANNOT BE CLEARED OR IN BASE WITH MODULE BEING CLEARED

A Universal Console DLP must be manually cleared. Press the BASE CLEAR button
on the DLP base. This procedure is normally performed by a Unisys Customer Service
Engineering representative.

FAILED CONNECTING TO BASE

The console DLP operation to connect the base was unsuccessful.

FAILED DISCONNECTING

The previous console DLP operation to disconnect from the maintenance card of the
base being tested was unsuccessful.

FAILED FINAL CLEAR OF DRIVERS

The previous console DLP operation to clear the maintenance drivers was
unsuccessful.

4127 0000-100 4-5

DLPXCO AND DLPXNO-DLP Utility Programs

4-6

FAILED INITIAL CLEAR OF DRIVERS

A console DLP operation to clear the maintenance drivers was unsuccessful.

FAILED INITIAL READ

A console DLP operation to read and clear the buffer was unsuccessful.

FAILED LOCAL CLEAR

The previous console DLP operation to clear the DLP was unsuccessful.

FAILED OBTAINING DATA

The previous console DLP operation to collect the logging information in the console
DLP buffers was unsuccessful.

FAILED READ OF DATA

The previous console DLP operations to collect the logging information in the console
DLP buffers was unsuccessful.

FAILED SETTING OUT

A console DLP operation to specify the unit to be logged and cleared was
unsuccessful.

INVALID CLASS OF DLP: <type of DLP>

The type of DLP declared is not correct. Execute the program again, with the correct
DLPtype.

TEST CHANNEL <declared channel> NOT XCED

The declared channel was not inhibited with the XC command. Verify that the correct
channel was entered, inhibit it if necessary, and then execute the program again.

TEST CHANNEL <declared channel> NON NUMERIC

The second two characters identifying the hung DLP were not numeric. Execute the
program again with the correct test channel.

UC CHANNEL <console DLP channel number> NON NUMERIC

The first two characters of the console DLP channel number were not numeric.
Execute again with the correct channel number.

4127 0000-100

(

DLPXCO AND DLPXNO-DLP Utility Programs

UC CHANNEL <declared channel> NOT UC DLP

A check of the declared channel did not return an ID indicating that it is a console
DLP. Execute the program again with the co!Tect console DLP channel.

UC TEST BUS <UC DLP channel/I> NOT DECLARED

The channel specified as the UC DLP did not have unit 1 declared as NST. Verify that
the UC DLP channel is declarnd and that the unit <UC DLP channeVl> is declared as
NST; then execute the program again.

These messages require that you reexecute the operation that failed. Contact a Unisys
Customer Service Engineering representative if the problem persists.

4127 0000-100 4-7

DLPXCO AND DLPXNO-DLP Utility Programs

4-8 4127 0000-100

Section 5
DMPALL-File Conversion Utility
Program

Overview
The DMP ALL utility program enables you to list, copy, and convert disk, disk pack, tape,
and card files. These DMPALL functions are organized as follows:

• Listing Function. This function enables you to print the contents of any disk, disk
pack, magnetic tape, or punched card file in either an alphanumeric, a digit, or a
combined format. You can specify that the printing start or stop at any particular
record; you select the record either by record number or by testing the contents of the
record.

• Media Conversion Function. This function enables you to copy a data file, to
change file ID, record length, blocking factor, and parity, and to copy the file to
another hardware type. You can specify that this operation sta1t or stop at any
particular record; you select the record by record number or by testing the contents of
the record. The total buffer size that DMP ALL uses to perform this operation must be
less than 242K. (The total buffer size is the sum of the input and output record lengths
multiplied by their respective blocking factors.)

• Miscellaneous Functions. These functions include the following:

Printing the contents of a printer backup tape produced by a Unisys A Series or
B 5000/B 6000/B 7000 Series system

Printing object code disk files in hexadecimal format

Listing the names of files that are on a multifile tape, including those produced by
the discontinued LOAD MP or PACKUP library utility programs

Printing the contents of a file that is on a tape produced by the discontinued
LOAD MP or PACKUP library utility programs

You can initiate the DMPALL program with the PERFORM or PFM command, or with the
EXECUTE command. If you use PERFORM or PFM, you should directly enter the
parameters described in this section. If you use EXECUTE, you can enter parameters with
the AX command, from a card file, or from an executing program.

4127 0000-100 5-1

DMPALL-File Conversion Utility Program

Using DMPALL to List Files

5-2

The DMP ALL program lists the contents of files. The following restrictions apply to the
DMPALL LIST operation:

• The DMP ALL program assumes magnetic tape file (MTP) if you omit the hardware
type.

• The DMP ALL program accepts only one KEY statement for each execution.

• The options SKIP and STOP take precedence over the options WHEN and UNTIL. The
options SKIP, STOP, WHEN and UNTIL take precedence over the KEY option.

When the DMP ALL program lists ASCII files, it automatically translates them to EBCDIC
unless you use the NT option. When the DMP ALL program goes to end-of-job, a count of
the records input and the records output appears on the ODT and at the end of the
DMPALL listing. The printed listing also includes the DMPALL options selected.

Figure 5-1 shows the syntax for operating the DMPALL program. A discussion of the
syntax elements appears after the figure. You can request more than one operation by
using the keyword THEN, and following it with syntax for further operations starting with
PERFORM or PFM.

4127 0000-100

DMPALL-File Conversion Utility Program

PFM LIST <file ID> ----7

L PERFORM J L LSTl J L <l i nes per page> J
' L HOST J L <hostname> J
~ L <record length>

L_ <blocking factor> _J

1-- DISK 1-- A
1- DISC 1-- ALPHA
1-- DSK 1- UA
1-- CARD 1-- N
1- CARDS 1- UN
1-- CRD 1-- COMPUTATIONAL -
1-- CRDS 1-- COMP
1-- CTLDCK CRD -i ._ CMP
1-- PACK
1- DPK
1-- DPS
1-- DPM
1- MTP
1-- MT9
1- MTC
1-- MPE
'-- GCR

/1\- ALL THEN
/1\- AT <hostname>
/1 \- FORM ___ __,
/1\,- NT

L ASCII
/1\

1
PBD
PBP
PBT
PRO

/1\

1
VARIABLE
VARY
VARI

1-- <position specification>,
1-- <when/until>
._ <key specification>

Figure 5-1. DMPALL File Listing Syntax

4127 0000-100 5-3

DMPALL-File Conversion Utility Program

5-4

<position specification>

E /1 \ SKIP <integer> ----.-~------------------;
/1\ STOP <integer> __J
/1\ START <integer> _J

<when/until>

___r: /1\ -.- WHEN
L UNTIL

<position> <length>
UN
UA
NM

(<boolean key expression>)

<key specification>

- /1\ - KEY <position> <length>
UN GTR
UA >
NM GEQ

>=
EQL

LEQ
<=
LSS
<
NEQ

(<boolean key expression>)

GTR
>
GEQ
>=
EQL

LEQ
<=
LSS
<
NEQ

<data>

Figure 5-1. DMPALL File Listing Syntax (cont.)

PFM
PERFORM

These options start the DMP ALL program. They are equivalent.

LIST
LSTl

<data>

These options tell DMP ALL to list a file, not convert one. LIST provides a double
spaced listing. LSTl provides a single-spaced listing.

4127 0000-100

DMPALL-File Conversion Utility Program

<lines per page>

You can use this option to specify the number of lines for each page, excluding
heading lines. The 12-punch on a carriage control tape, however, will override any
lines per page entry that the 12-punch precedes. The default value for lines per page
is 55.

<file ID>

This option is required. It names the file you want listed. For multifile tapes or disk
packs, format this parameter as multifile ID/file ID, where the multifile ID is the tape
name or the disk pack family name. If the file name contains special characters,
surround them with parentheses. The maximum length of the file ID is 8 characters- a
6-character name plus 2 parenthesis characters.

<host name>

Use this option to indicate that the file to be listed resides on a remote host. The
output listing is produced on the local host unless you enter the AT host name
element. If the host name contains special characters, surround them with
parentheses. The host name parameter can consist of 1 to 17 alphanumeric characters
plus 2 parenthesis characters if needed.

<record length>

Use this option to format (unblock) tape files or to override the record length given in
the disk or disk pack directory for disk or disk pack files. If you omit this option for
tape files, the system assumes a record length of the memory size allocated to the
DMP ALL program minus 6000 digits. If you do not specify a record length for disk or
disk pack files, the system uses the record length and blocking factor specified in the
disk or disk pack directory. If you do specify the record length, be sure that it is an
even number, denoting the length of a logical record in bytes. If you use a blocking
factor, always specify a record length first. The maximum record length is 49998
bytes.

<blocking factor>

Use this option to format (unblock) tape records or to override the blocking factor
given in the disk or disk pack directory for disk or disk pack files. If you do not specify
the value of the blocking factor, the system uses a value of 1, which indicates a single
record for each block.

DISK
DISC
DSK

Use these options, which are equivalent, to indicate that the file to be listed is on disk
(100-byte-per-sector media).

4127 0000-100 5-5

DMPALL-File Conversion Utility Program

5-6

CARD
CARDS
CRD
CRDS

Use these options, which are equivalent, to indicate that the file to be listed is a
punched card file. If there are any control cards in the card file, they will not be listed.
A control card is a card with an invalid character, usually a question mark (?), in
column one.

CTLDCKCRD

Use this option to indicate that the file to be listed is a punched card file. If there are
any control cards in the card file, they will be listed. A control card is a card with an
invalid character (customarily a question mark, ?) in column 1.

PACK
DPK
DPS
DPM

Use these options to indicate that the file to be listed is a disk pack file. PACK is the
default. DPK and DPM indicate that the output file can be spread over more than one
spindle of the disk pack family. DPS indicates that the file must be confined to a single
disk pack spindle.

MTP
MT9
MTC
MPE
GCR

Use these options to indicate that the file to be listed is a tape file. MTP is the default.
MT9 indicates NRZ recording mode. MTC indicates magnetic cartridge tape mode.
MPE indicates phase-encoded recording mode. GCR indicates group character
recognition recording mode.

A
ALPHA
UA

Use these options, which are equivalent, to list the file in alpha (character) format.
Alpha format translates your file into characters so that you can read the text
portions. You can enter both this option and the next option (UN or N) to get a listing
that includes both alpha and numeric formats, which is the default. The default is a
good choice for files such as memory dumps that include both text passages and
numeric passages.

4127 0000-100

DMPALL-File Conversion Utility Program

N
UN
COMPUTATIONAL
COMP
CMP

Use these options, which are equivalent, to list the file in numeric (digit) format. They
print the four-bit hexadecimal characters that make up the file without providing a
translation into alphanumeric format. This format can be useful for a numeric data
file. You can enter both this option and the preceding option (ALPHA, A, or UA) to get
a listing that includes both alpha and numeric formats, which is the default. The
default is a good choice for files such as memory dumps that include both text
passages and numeric passages.

SKIP <integer>
START <integer>

Use these options, which are equivalent, to create a listing that starts with the record
number you enter. Enter any number from 0 to 99999999. If you omit this option or if
the integer value equals 1, printing begins with the first record in the file.

STOP <integer>

Use this option to create a listing that stops after the record number you enter. Enter
any number from 0 to 99999999.

WHEN

WHEN causes the listing to begin with the first record that meets the conditions you
specify. A discussion of the conditional statements appears under the KEY option in
this section. You can use the <boolean key expression> to set multiple conditions; all
must be met before printing begins.

UNTIL

Use this option to create a listing of the file that begins with the first record that meets
the conditions you specify. When the conditional statement becomes true, the
DMP ALL program stops printing the file and then performs any request given by the
THEN instruction. A discussion of the conditional statements appears under the KEY
option in this section. You can use the <boolean key expression> to set multiple
conditions; all must be met before printing begins.

KEY

Use this option to print selected records. The program selects a record for printing, if
a field within it meets the conditions you set.

You can set only one condition in the KEY statement. In the WHEN and UNTIL
statements, you can set several conditions, all of which must be met before the
statement takes effect.

4127 0000-100 5-7

DMPALL-File Conversion Utility Program

5-8

The following paragraphs describe elements that are used in the WHEN, UNTIL, and KEY
statements.

<position>

This option gives the position, within the record, of the field that you want tested. If
you use the WHEN, UNTIL, or KEY clause, the <position> is required. Enter this
option in digits or bytes, as determined by the UN, VA, or NM entry; the default value
is digits. The program determines the test to be applied from the algebraic operators
and the data statement. The first digit or byte of the record is digit or byte 1, not 0.

<length>

UN
VA
NM

This option gives the length of the field you want tested. If you use the WHEN,
UNTIL, or KEY clause, the <length> is required. Enter this option in digits or bytes, as
determined by the UN, VA, or NM element; the default value is digits. The maximum
length is 40 digits or 20 bytes.

Use this option to designate the type of data you want tested and to determine the
meaning of the position and length options. If you do not specify one of these options,
the default value, UN, is used.

UN means 4-bit unsigned numeric data; the position and length options are in digits.

VA means 8-bit unsigned alphanumeric data; the position and length options are in
bytes.

NM means 8-bit signed numeric; the position and length options are in bytes.

GTR (or>)
GEQ (or>=)
EQL (or=)
LEQ (or<=)
LSS (or<)
NEQ

These algebraic operators determine how the program is to compare the designated
field and the data. The following table shows the operators, their meanings, and their
alternate forms.

Greater than
Greater than or equal to
Equal to
Less than or equal to
Less than
Not equal to

GTR (or>)
GEQ (or>=)
EQL (or=)
LEQ (or<=)
LSS (or<)
NEQ

4127 0000-100

DMPALL-File Conversion Utility Program

<data>

This option indicates the value that is compared with the value in the specified field.
If you use the WHEN, UNTIL, or KEY clause, the <data> is required.

<boolean key expression>

Use this option to enter more than one condition (multiple keys). The conditions are
enclosed in parentheses and are separated by the following Boolean operators: NOT,
AND, OR. The order of precedence is: NOT, AND, OR.

You can enter a maximum of 20 conditions. Each condition must include the following
elements: position, length, and data. In addition, you can specify the type of data and
an algebraic operator.

WHEN (0 4 UA EQL "TEST" AND 6 2 UN EQL 01)

This example has two conditions connected with AND. Records are printed
when both conditions are met. A record must have the word TEST in the first
four positions and the value 01 beginning at position 6 to satisfy both
conditions.

KEY (NOT (73 5 UA EQL "ERROR" OR 73 5 UA EQL "DEBUG"))

This example has two conditions connected with OR. Records that contain
either the word ERROR or the word DEBUG will not be printed. Because NOT
is surrounded by an exterior set of parentheses, it applies to either condition
in the interior set of parentheses.

ALL

Use this option to print all the files on a multifile tape, beginning with the first file you
specify with the file ID option.

AT <host name>

Use this option to specify the name of a remote host on which you want the print file
to be created. This option lets you specify only the destination host name for the print
file. That is, the input file you want listed is still assumed to reside on the local host
unless you enter a host name option after the file ID.

FORM

NT

Use this option to notify the DMP ALL program that you want your listing printed on a
special forms printer. You specify the printer with the FM system command (refer to
Volume 2). You can abbreviate FORM as FM.

Use this option to prevent translation of characters. When you use this option, the
DMP ALL program will not convert ASCII to EBCDIC or EBCDIC to ASCII.

4127 0000-100 5-9

DMPALL-File Conversion Utility Program

5-10

ASCII

Use this option for proper translation of ASCII data, including unlabeled ASCII tapes.
The listing will be in EBCDIC.

PBD

Use this option to direct the printer file to a printer backup disk.

PBP

Use this option to direct the printer file to a printer backup disk pack.

PBT

Use this option to direct the printer file to a printer backup tape.

PRO

Use this option to direct the printer file to a line printer. This is the default, but you
can set up the system configuration file to override it.

VARIABLE
VARY
VARI

Use these options, which are equivalent, to list a tape file that has variable record
length, variable number of records per block, and variable block size. The first four
bytes of each record must contain the length of that record in bytes. You do not need
this option for a tape file that has variable record length but is unblocked or has 1
record per block.

THEN

Use this option to enter another string ofDMPALL syntax. Follow the keyword THEN
with syntax starting with the PFM command. The second string of syntax will be
executed after the first string is completed.

4127 0000-100

DMPALL-File Conversion Utility Program

Using DMPALL To Convert Files
The syntax that appears in Figures 5--2 and 5--3 shows how to direct the DMPALL program
to convert a file from one storage medium to another or to copy a file into another file
with different characteristics on the same storage medium.

The following restrictions apply to converting files with the DMPALL program:

• The optional file characteristics for both input and output must be nested. That is, if
you specify the blocking factor, you must specify the record length. If you specify the
records per area, then you must specify the record length and the blocking factor. If
you specify the number of areas, then you must specify all the file characteristics.

• The BIN routine type must not be used with pseudo readers and is prohibited from
going to punch backup. In addition, when it is reading binary cards, you can terminate
the DMP ALL program, using either the QT system command, DS system command, or
a binary end card. The output file ID NONE is required when you are converting from
binary to binary.

• The control parameter SORT can be specified only in a media conversion operation.
The SORT statement will override any specified SKIP, STOP, WHEN, or UNTIL
parameters in a media conversion operation. The maximum allowable SORT
statements are 10.

• Random files with noncontiguous areas (for example, a file with 5 areas, in which only
areas 1 and 5 are allocated) cannot be copied with the DMP ALL program.

When the DMP ALL program goes to end-of-job, the input record count, output record
count, and blocking factor appear on the ODT.

4127 0000-100 5-11

DMPALL-File Conversion Utility Program

Overview of Syntax for Converting Files with DMPALL

Figure 5-2 is an overview of the syntax for using the DMP ALL program to convert files.

-r PFM _J <routine type>
L PERFORM

~--<input file ID>----,-------------~-~
L. <input file characteristics> _J

> L <output file ID> :J L <output file characteristics> :J

> C. <control parameters> :J

Figure 5-2. DMPALL File Conversion Syntax-Overview

Detailed Syntax for Converting Files with DMPALL

5-12

Figure 5-3 shows a detailed syntax for using the DMP ALL program to convert media.

L ~~~F-OR_M_:J--.---- <routine type> - <input file ID>------

> L <input hostname> :J L ASCIIDATA :J

> L <input record length> ----.--------------.---'
L. <input blocking factor> _J

<output file ID>
"NONE" ---~

) L (N) :J L ASCIIDATA :J

<output hostname> (A)
(C)

<record length> ----.-------------------
<blocking factor> ----.-------------.--1

<position specification>
<when/until> ____ __,
<key specification> _ ___,
<sort specification>

<position specification>

/1\ ALL
/1\ CRUNCH
/1\ REMOVE
/1\ SAVE

<areas>

THEN

c /1 \ SKIP <integer> -~..___----------------1
/1\ STOP <integer> _J
/1\ START <integer> _J

Figure 5-3. DMPALL File Conversion Syntax-Detailed

4127 0000-100

DMPALL-File Conversion Utility Program

<when/until>

~/1\ WHEN
-------C; 1\ UNT I L

<key specification>

<position> <length> <data>
UN GTR
UA >
NM GEQ

>=
EQL

LEQ
<=
LSS
<
NEQ

{<boolean key expression>) -------~

- /1\ - KEY <position><length> ~--~--~<data>~-------.

<sort specification>

UN GTR
UA >
NM GEQ

>=
EQL

LEQ
<=
LSS
<
NEQ

(<boolean key expression>) ---------'

__c: /10\ - SORT <position> <length> BJ1 UA
A SA
D UN

SN

Figure 5-3. DMPALL File Conversion Syntax-Detailed (cont.)

4127 0000-100 5-13

DMPALL-File Conversion Utility Program

Detailed Media Conversion Options

5-14

The following paragraphs describe the options that appear in Figures 5-2 and 5-3. You can
select conversion with a looping process by choosing different options for the same
parameter. Limits for these processes are specified by the integer associated with the
bridge (refer to Figure 5-3). These limits cannot be exceeded. You can request more than
one operation by using the THEN keyword and giving the syntax for another operation,
starting with the PERFORM or PFM command.

PFM
PERFORM

Use these options, which are equivalent, to start the DMP ALL program.

<routine type>

This required option notifies the DMP ALL program that you are converting a file, not
listing one. Also, this element designates which storage medium is the source and
which storage medium is the destination. The routine type consists of a 6-character
concatenation of abbreviations for two hardware types. The first three characters
specify the input device (where the file you want to convert resides). The last three
characters specify the output device (where you want the converted file to be placed).
The following table shows the abbreviations you can use for the concatenation:

Binary cards (input or output)

Card reader (input) or card punch (output)

Card punch output

Magnetic tape (NRZ, phase-encoded, or GCR recording
mode). This is the default.

Magnetic tape (NRZ recording mode)

Magnetic cartridge tape (MTC recording mode)

Magnetic tape (phase-encoded recording mode)

Magnetic tape (GCR recording mode)

Head-per-track-disk or LAK disk pack

Disk pack (file can be spread over more than one disk
pack spindle)

Disk pack (file is confined to a single disk pack spindle)

Operator Display Terminal

BIN

CRD

CPU

MTP

MT9

MTC

MPE

GCR

DSKorDSC

DPMorDPK

DPS

ODT

4127 0000-100

DMPALL-File Conversion Utility Program

When you convert a file from disk to disk pack, the concatenation is DSKDPM or
DSCDPK.

<input file ID>

This option selects the file that is to be converted. It is required. If you do not want to
use an input identifier, you should enter a dummy identifier, and you can then access
the file with a UL system command. You must surround special characters with
parentheses. The input file ID can be any identifier that is from 1 to 6 characters long
(not counting any parentheses). For multifile tapes or disk packs, you can format this
entry as <multifile ID/file ID>.

<input file characteristics>

This option describes the file that is to be converted. It is optional; the dafaults are
given for each characteristic in the following paragraphs.

<input host name>

This option indicates that the input file resides on a remote host. You can specify a
host name preceded by the key word HOST, HOSTNAME, or HN and an optional equal
sign.

ASCIIDATA

When used as a qualifier following the <input file ID>, ASCIIDATA indicates that the
source file is in ASCII and the destination file is to be translated into EBCDIC. Use this
keyword to ensure proper handling of an unlabeled ASCII tape.

<input record length>

This option indicates the record length of the input file, in bytes. The input record
length can range from 4 to 49998 bytes. This is optional. For disk and disk pack files,
the default record length is the record length defined in the disk or disk pack header.
For all other devices, the default is 80 bytes.

<input blocking factor>

This option indicates the blocking factor of the input file. The value can be 1 to 3
digits long. This is optional. For disk and pack files, the default blocking factor is the
blocking factor defined in the disk or disk pack header. For all other devices, the
default is unblocked files.

<output file ID>

4127 0000-100

This option indicates the name to be given to the converted file. You must surround
any special characters with parentheses. The file name can be from 1 to 6 characters
long, not counting any parentheses. A multiple file entry is permitted for tape or disk
pack files. This is optional; if you omit it, the output file is given the same name as
the input file.

5-15

DMPALL-File Conversion Utility Program

5-16

If you want to create an unlabeled file, enter "NONE" for the output file ID, including
the quotation marks. This applies only to files other than disk or disk pack files.

<output file characteristics>

(A)
(I)

This option describes the converted file that you want the DMP ALL program to
produce. It is optional; the defaults are given for each characteristic in the following
paragraphs.

Use these options to define the file label you want on the output file. If you want to
use an ANSI label, enter (A). If you want to use an installation-defined label, enter (I).
The use of an ANSI label or an installation-defined label applies only to output files
written to devices other than disk or disk pack This is optional; the default is the
Unisys V Series Standard Label.

If you want to create an unlabeled file, enter "NONE" for the output file ID. This
applies only to files other than disk or disk pack files.

<output host name>

(A)
(C)

(N)

Use this option to indicate that the output file is to be placed on a remote host. You
can specify a host name preceded by the keyword HOST, HOSTNAME, or HN.

Use these options to determine how the file is assigned on disk or disk pack. Enter
(A) to have the file assigned by disk or disk pack areas. Enter (C) to have the file
assigned by disk pack cylinders; this choice is valid only if the destination is disk
pack These are optional; the default is to assign the file by available space.

Use this option to declare a nonstandard parity. Enter an (N) to declare a nonstandard
parity for the output file. If you are using a BCL Punch file, you must specify (N).

ASCIIDATA

When used as a qualifier following the <output file ID> or 11 NONE 11
, the keyword

ASCIIDATA indicates that the destination tape is to be translated into ASCII.

<record length>

Use this option to specify the record length of the output file, in bytes. The record
length can range from 4 to 49998 bytes. If you omit this option, the program uses the
record length of the input file.

4127 0000-100

DMPALL-File Conversion Utility Program

<blocking factor>

Use this option to specify the number of records per block for the output file. The
value can be 1to3 digits long. If you omit this option, the program uses the'blocking
factor of the input file.

<rec/area>

Use this option to specify the disk or disk pack area size, in records, of the output file.
You use this option only for disk and disk pack files. The value can be 1 to 8 digits
long. If you omit this option, the output file will have the same number of records per
area as the input file. If the input file is not a disk or disk pack file and you do not give
a value for output records per area, the program uses the default value of 500 records
per area.

<areas>

Use this option to specify the number of disk or disk pack areas assigned to the output
file. You use this option only for disk and disk pack files. If you omit this option, the
program assumes 20 areas unless the input is from disk or disk pack If the input file is
not a disk or disk pack file and you omit this option, the default value is 20 areas.

<control parameters>

Use these options to choose the records you want to copy from the input file to the
output file. Specific examples of control parameters appear under "DMP ALL
Examples" later in this section. The control parameters include START <integer>,
SKIP <integer>, STOP <integer>, WHEN, UNTIL, and KEY.

START <integer>
SKIP <integer>

Use these options, which are equivalent, to start a conversion at the record number
you enter, skipping over the previous records. You can enter any number from 0 to
99999999. If you omit this option or if the integer equals 1, conversion begins with the
first record in the file.

STOP <integer>

Use this option to stop the conversion after the record number you enter. You can
enter any number from 0 to 99999999.

WHEN

Use this option to start the conversion with the first record that meets the conditions
you specify. A discussion of the conditional statements appears under the KEY option
in this section. You can use the <boolean key expression> to set multiple conditions,
all of which must be met before conversion can begin.

4127 0000-100 5-17

DMPALL-File Conversion Utility Program

UNTIL

Use this option to stop the conversion of the file at the first record that meets the
conditions you specify. When the conditional statement becomes true, the DMP ALL
program stops converting the file and then pe1forms any request given by the THEN
instruction. A discussion of the conditional statements appears under the KEY option
in this section. You can use the <boolean key expression> to set multiple conditions,
all of which must be met before conversion can begin.

KEY

You can use this option to copy selected records from the input file to the output file.
A record is selected for conversion if a field within it meets the conditions you set.
You select the field to be tested and set the conditions to be met by using the
following options.

You can use the <boolean key expression> to set multiple conditions, all of which
must be met before conversion can begin.

The following paragraphs describe options that can be used in the WHEN, UNTIL, and
KEY statements.

<position>

This option specifies the position, within the record, of the field you want tested. If
you use a WHEN, UNTIL, or KEY clause, <position> is required. Enter the position in
digits or bytes, as determined by the UN, UA, or NM entry; the default is digits. The
algebraic operators and the data statement indicate the test to be applied. The first
digit or byte of the record is digit or byte 1, not 0.

<length>

UN
UA
NM

This option to specifies the length of the field you want tested. If you use a WHEN,
UNTIL, or KEY clause, <length> is required. Enter the length in digits or bytes, as
determined by the UN, UA, or NM element; the default is digits. The maximum length
is 40 digits or 20 bytes.

This option designates the type of data you want tested and to determine the meaning
of the position and length options. If you do not specify UN, UA, or NM, the program
assumes UN.

• UN means 4-bit unsigned numeric data; position and length are in digits.

• UA means 8-bit unsigned alphanumeric data; position and length are in bytes.

• M means 8-bit signed numeric; position and length are in bytes.

5-18 4127 0000-100

DMPALL-File Conversion Utility Program

GTR (or>)
GEQ (or>=)
EQL (or=)
LEQ (or<=)
LSS (or<) NEQ

Use these required algebraic operators to determine the compadson that the program
will perform between the designated field and the data. The following table shows the
operators, their meanings, and their alternate forms.

Greater than
Greater than or equal to
Equal to
Less than or equal to
Less than
Not equal to

GTR (or>)
GEQ (or>=)
EQL (or=)
LEQ (or<=)
LSS (or<)
NEQ

<data>

This option designates the value that is compared with the value in the specified field.
If you use a WHEN, UNTIL, or KEY clause, <data> is required.

<boolean key expression>

Use this option to enter more than one condition (multiple keys). The conditions are
enclosed in parentheses and are separated by the following Boolean operators: NOT,
AND, OR. The order of precedence is: NOT, AND, OR.

You can enter a maximum of 20 conditions. Each condition must include the following
elements: <position>, <length>, and <data>. In addition, you can specify the type of
data and an algebraic operator. The following examples illustrate the use of the
<boolean key expression>.

SORT

WHEN (0 4 UA EQL "TEST" AND 6 2 UN EQL 01)

In this example, two conditions are joined by AND. Records are plinted when
both conditions are met. A record must have the word TEST in the first four
positions and the value 01 beginning at position 6 to satisfy both conditions.

KEY (NOT (73 5 UA EQL "ERROR" OR 73 5 UA EQL "DEBUG"))

In this example, two conditions are joined by OR. If records contain either the
word ERROR or the word DEBUG they will not be plinted. Because NOT is
surrounded by an extedor set of parentheses, it applies to either condition in the
intedor set of parentheses.

This option causes the DMPALL program to call the SORT. intdnsic program with the
parameters you specify to sort the input file records into the output file. You can enter
multiple SORT statements to designate multiple sort keys. The firnt key you enter is
the most significant. You can enter a maximum of 10 SORT statements.

4127 0000-100 5-19

DMPALL-File Conversion Utility Program

5-20

The final sequence of the sorted output file is based on the sort parameters. The
following paragraphs describe the sort parameters, which include position, length,
ASCENDING, A, DESCENDING, D, UA, SA, UN, and SN.

The SORT. intrinsic program is described in Section 21.

The following paragraphs describe options that can be used in the SORT statement.

<position>

This option indicates the position in the record of the field that is to be used as a sort
key. You enter this option in digits if you specify UN or SN as the data type or in bytes
if you specify UA or SA as the data type.

<length>

Use this required option to specify the length of the field that is to be used as a sort
key. You enter this option in digits if you specify UN or SN as the data type or in bytes
if you specify UA or SA as the data type.

A (ASCENDING)
D (DESCENDING)

UA
SA
UN
SN

Use this option, which is optional, to determine the sequence of records in the sorted
output file. The abbreviation A stands for ASCENDING; the abbreviation D stands for
DESCENDING. The default value is DESCENDING.

Use this option to specify the data type of the sort key(s). The default value is UN. The
following table shows the values for each data type:

8-bit unsigned alphanumeric UA

8-bit signed alphanumeric SA

4-bit unsigned numeric computational UN

4-bit signed numeric computational SN

The following options apply to the entire conversion operation.

ALL

Use this option during a tape-to-tape operation to copy all files on a multifile tape.
Copying begins with the file you identified in the input file ID.

4127 0000-100

DMPALL-File Conversion Utility Program

CRUNCH

Use this option to specify that the output disk or disk pack file is to be closed with
CRUNCH. This means that the file is condensed. All assigned but unused areas are
discarded, and the records per area value is reduced to the actual records used.

REMOVE

Use this option to close disk and disk pack output files. When you do so, any existing
file that has the same name as the output file on the destination medium is removed
automatically.

SAVE

Use this option to cause a SA VE WITH LOCK operation on the output file if the
DMP ALL program is terminated abnormally.

THEN

Use this option to enter another string of DMP ALL syntax. After the keyword THEN,
enter syntax starting with the PFM command. This syntax will be executed following
the completion of the first syntax.

4127 0000-100 5-21

DMPALL-File Conversion Utility Program

Using Miscellaneous DMPALL Functions
The following paragraphs describe miscellaneous functions that you can perform with the
DMPALL progran1. Several featmes are included in the program for operator or
programmer convenience.

Listing LOADMP and PACKUP Library Tape Files

The PERFORM LIBLST function causes the DMPALL program to print the contents of a
file from a tape produced by the LOADMP or PACKUP programs. (These programs are no
longer supported by Unisys.) The format of the file you want to list must be the same as
that of a printer backup disk file. The syntax for printing a file from these library tapes is
as follows:

PFM LIBLST <tape ID> <file ID>

Example

PFM LIBLST LIBT AAAA

Listing Object Code Files from Disk

The PERFORM LIST DSK function causes the DMPALL program to produce a
hexadecimal listing of the object code disk file specified by the file ID. This function also
formats the segment dictionary and indicates the location on disk or diskpack of the
beginning of each logical program segment. The syntax for printing an object code file is
as follows:

PFM LIST <file ID> OSK CODE

Example

PFM LIST AAAA OSK CODE

Listing A Series Printer Backup Tapes

The PERFORM PB67 function causes the DMP ALL program to print the contents of an A
Series or B 5000/B 6000/B 7000 printer backup tape. The tape must be labeled BACKUP.
The correct channel/unit can be designated by an IL (Ignore Label) system command.
Refer to Volume 2 for more information. The syntax for printing a file from an A Series
printer backup tape is as follows:

PFM PB67

Displaying Tape Directories

5-22

The SEARCH function lists the names of the files on a multifile tape. This list is primarily
for use with multifile tapes created by programs running on V Series systems. The
DMP ALL program locates a tape that has a tape name (multifile ID) that matches the tape

4127 0000-100

DMPALL-File Conversion Utility Program

ID you enter. Then, the DMP ALL program scans the tape. The DMP ALL program displays
all the file names on the ODT and lists information for each file. The syntax for listing the
file names from a multifile tape is as follows:

PFM LIST <tape-id> SEARCH

or

PFM LIST <tape-id> SEA

Example

PFM LIST MYTAPE SEARCH

Listing LOADMP and PACKUP Library Tape Directories

The PERFORM PD function causes the DMPALL program to print a directory listing of a
library tape produced by the. LOAD MP or PACKUP programs. (LOAD MP and PACKUP are
no longer supported by Unisys.) The syntax for printing a directory listing of these tapes is
as follows:

PFM PD <tape-id>

or

PFM PD <channel number/unit number>

Example

PFM PD LIBT PFM PD 6/2

Using the ZIP Mechanism

ZIP is a programmatic interface for MCP system commands. The keyword ZIP followed by
the name of a program causes that program to be started when the DMP ALL program goes
to end-of-job. Both of the following examples cause the program named PROGA to be
scheduled for execution after the DMP ALL program finishes.

Examples

PFM LIST AAAA ZIP PROGA

In this example, the DMP ALL program lists the file called AAAA. When the DMP ALL
program ends, the program called PROGA begins.

lOAX DSKMTP AAAA BBBB ZIP PROGA

In this example, the DMP ALL program lists the file called AAAA on the tape called BBBB.
When the DMP ALL program ends, the program called PRO GA begins.

4127 0000-100 5-23

DMPALL-File Conversion Utility Program

Starting DMPALL with the EXECUTE Command
Start the DMP ALL program with the EXECUTE command instead of the PERFORM
command. You can enter EXECUTE from an ODT, a remote terminal, a caTd file, or an
executing program. When you start the DMP ALL program in this way, you give it
parameters with the AX (Accept) command. Refer to Volume 2 for more information about
commands.

If you start the DMP ALL program with the PERFORM command, you can use all of the
options presented under "Using DMPALL to Convert Files" earlier in this section. In
addition, you can use a VALUE clause to access features that enable you to give
commands to the DMP ALL program from a card file or from an executing program. These
VALUE clauses are discussed in this section.

How to Start DMPALL with the EXECUTE Command

To start DMPALL with the EXECUTE command, proceed as follows:

1. At the ODT or a remote terminal, enter this command:

EXECUTE DMPALL

The DMP ALL program· displays the following prompt:

DMPALL = <mix no> ACCEPT

2. Enter an AX command as shown here:

<mix no> AX <options>

The mix no is the mix number of the DMP ALL program as displayed in the Accept
message. The options are the DMPALL parameters are shown in Figures 5-1and5-3.

Example

EX DMPALL BOJ DMPALL=002 (MCP) 08:10 DMPALL=002 ACCEPT
2AX PFM LIST AAA STOP 100

To start DMP ALL from a card file or an executing program, refer to the VALUE clauses in
this section.

VALUE 0 = 100000

5-24

The EXECUTE DMP ALL VALUE 0 = 100000 statement enables you to enter one
PERFORM or PFM command to the DMP ALL program from a card reader. You can enter
the EXECUTE instruction from the ODT or from a card deck. When you use this
statement, the DMP ALL program searches for a card file with the file name of DMP ALL
and executes the instruction it contains. The first card in the file must say ?DATA
DMP ALL. The instructions can occur in any column on the cards. If there is more than one
PERFORM or PFM instruction in the card deck, the program uses only--the last one.

4127 0000-100

DMPALL-File Conversion Utility Program

Example

?EXECUTE DMPALL VALUE 0 = 100000 ?DATA DMPALL
PFM DSKMTP AAAA 5000 7 350 BBBB 5000 1 ?END

This example is of a card deck that starts the DMP ALL program and copies a file from disk
to tape (DSKMTP) with input (AAAA) and output (BBBB) having record lengths of 5000
bytes. The input disk file (AAAA) has 350 records per area with a blocking factor of 7. The
output file (BBBB) is unblocked.

VALUE 0 = 000001

The EXECUTE DMPALL VALUE 0 = 000001 statement enables you to enter more than one
PERFORM or PFM command to the DMPALL program at one time from a card reader. You
can enter the EXECUTE statement from the ODT or from a card deck. When you use this
statement, the DMP ALL program searches for a card file called DMP ALL and then
executes the instructions in that file. The first cai:d in the file must say ?DATA DMP ALL.
The instructions can occur in any column position on the cards. If you use parentheses or
quotation marks, the left and right characters must be on the same card.

Example

?EXECUTE DMPALL VALUE 0 = 000001 ?DATA DMPALL PFM DSKMTP AAAA AFILE/AAAA PFM
DSKMTP BBBB AFILE/BBBB PFM DSKMTP CCCC AFILE/CCCC ?END

This example shows syntax that starts DMP ALL and creates a multifile tape (AFILE) with
the files AAAA, BBBB, and CCCC being copied on the tape (AFILE). The output (tape)
files will have the same record lengths and blocking factors as the input (disk) files.

VALUE 0 = 001000

The EXECUTE DMP ALL VALUE 0 = 001000 statement enables the DMP ALL program to
receive data from another program by way of a FILL statement when the language used
provides this capability. The FILL statement invokes the Core-to-Core interprogram
communication function to get the DMP ALL parameters.

The DMP ALL program does a global FILL from any program. The program sending the
DMP ALL parameters must send them to the program named DMP ALL. You must provide
the program to send the DMP ALL parameters. The DMP ALL parameters can start in any
column, but can be no longer than 60 characters.

Example

WORKING-STORAGE SECTION.
77 DMPALL-EXECUTE PIC X(72)
77 SPECS PIC X(60)

PROCEDURE DIVISION.
START -DMPALL.
ZIP DMPALL-EXECUTE.
FILL SPECS INTO "DMPALL".

4127 0000-100

VALUE "EX DMPALL VA 0 = 1000. ".
VALUE "PFM LIST MSTRFL OSK STOP 100. "

5-25

DMPALL-File Conversion Utility Program

In this example, the ZIP statement will start the DMP ALL program and inform it that the
specifications will come from Core-to-Core. The FILL statement will then supply the
specifications.

Encountering a Parity Error

5-26

When the DMP ALL program encounters a parity error on an input tape, the system
displays a warning message indicating the error and then requests that you enter an AX or
DS (Discontinue) command.

Examples

==> RP 6/4 06/4 MPE PURGED 06/1 MTP PAR ERR
DMPALL=l4 DROPPED BLOCKING # 16 DMPALL=14 AX or DS

These examples show the messages produced at the ODT by a parity error.

When the system encounters a parity error, you can perform one of the following
operations:

• Terminate the DMP ALL program by entering the following:

<mix no> DS

The <mix no> value is the mix number of the DMP ALL program, as displayed in the
request to accept or discontinue.

Example

14 DS

• Continue processing and ignore this parity error and all subsequent parity errors in
this execution of the DMP ALL program by entering the following:

<mix no> AX IGNORE

The IGNORE clause can be abbreviated as I, IG, IGN, IGNO, or IGNOR.

Example

14 AX IGNORE 14 AX IGN

• Continue processing and ignore this specific paTity error by entering the following:

<mix no> AX XXXXX

If you use any word (customarily XXXXX) except IGNORE or its abbreviations (I, IG,
IGN, IGNO, or IGNOR), the DMP ALL program ignores only the first parity error. Any
subsequent parity errors cause the DMPALL program to stop. When the program
stops, it issues a warning message and an AX or DS option appears on the ODT. At this
point, you can enter any response, including IGNORE, and the DMPALL program
continues processing.

4127 0000-100

DMPALL-File Conversion Utility Program

Example

14 AX XXXXX

DMPALL Examples
PFM LIST TAPl ALL PFM LIST TAPl/CCCC ALL

The first command in this example causes all files on TAPl to print. The second
command causes all files on TAPl to print, beginning with file CCCC.

PFM LIST AAAA AT MCPSystemB

This command causes the AAAA file to print on another system (MCPSystemB).

PFM LIST AAAA FORM

This command notifies the DMP ALL program that special forms are to be printed on
a specific printer through the FM system command.

PFM LIST AAAA HOST

This command indicates that the file AAAA resides on a remote host.

PFM LIST AAAA KEY 10 2 UA EQL AB

This command causes only those records that are in file AAAA and that have AB in
bytes 10-11 to print. The contents of the comparison are based in the KEY option
specified by position 10, for a field length of 2, and for the specified data AB. The
data type tested is defined as UA. The record is printed if the EQL condition operator
is matched.

PFM LIST AAAA

This command causes records from the AAAA file to be printed in double-spaced
format.

PFM LSTl AAAA

This command causes records from the AAAA file to be printed in single-spaced
format.

PFM LIST AAAA NT

This command prints the contents of a magnetic tape with no translation (NT).

PFM LIST AAAA PBD

This command prints the file AAAA to a printer backup disk (PBD).

4127 0000-100 5-27

DMPALL-File Conversion Utility Program

5-28

PFM LIST AAAA PBP

This command prints the file AAAA to a p1inter backup disk pack (PBP).

PFM LIST AAAA PBT

This command prints the file AAAA to a printer backup tape (PBT).

PFM LIST AAAA PRO

This command prints the file AAAA to a line printer (PRO).

PFM LIST AAAA SKIP 100

This command causes printing to begin with the record number denoted by the
integer 100.

PFM LIST AAAA START 100

This command causes printing to begin with the record number denoted by integer
100. If you specify integer 0, printing begins with the first record in the file.

PFM LIST AAAA STOP 30

This STOP command causes the first 30 records (records 1-30) of the AAAA file to
be printed.

PFM LIST AAAA DSK STOP 30 THEN PFM DSKMT9 AAAA MASTER 100 5

This command lists the first 30 records of the disk file AAAA. Then the file AAAA is
written to a magnetic tape with a file ID of MASTER. According to this command, the
output tape MASTER has a record length of 100 bytes and a blocking factor of 5.

PFM LSTl AAAA VARIABLE A

This command produces a single-spaced listing (LSTl), in alpha format (A), of the
data on a variable-length record tape labeled AAAA.

PFM LIST AAAA DSK WHEN 10 2 UA EQL AB

This command causes printing to begin with the record that is first in the AAAA file
and that matches the WHEN parameter. The contents of comparison are based in the
WHEN option specified by position 10, for a field length of 2, and for the specified
data AB. The data type tested is UA. The record is printed if the EQL condition
operator is matched.

PFM LIST AAAA DSK UNTIL 10 2 UA EQL AB THEN PFM DSKMT9 AAAA BBBB 100 5

This command indicates that printing begins immediately, but stops when the first
record in the AAAA file matches the UNTIL option. The contents of comparison are
based in the UNTIL option specified by position 10, for a field length of 2, and the
specified data field AB. The data type tested is UA. The DMP ALL program stops the

4127 0000-100

DMPALL-File Conversion Utility Program

print process when the EQL condition operator is met; then it perlorms the next
function.

PFM MTPMTP AAAA BBBB ALL

This command initiates the copying of all files on AAAA.

PFM DSKDSK AAAA BBBB CRUNCH

This command closes and condenses the file BBBB by indicating CRUNCH.

PFM DSKDSK AAAA BBBB KEY 10 2 UA EQL AB

This command indicates that only those records that are in file AAAA and that have
AB in bytes 10-11 are selected. The contents of comparison are based in the KEY
option specified by position 10, for a field length of 2, and the specified data field AB.
The data type tested as UA. The record is copied if the EQL condition operator is
matched.

PFM DSKDSK AAAA BBBB REMOVE

This command copies the file AAAA under the new name BBBB. Old copies of BBBB
are removed automatically.

PFM DSKDSK AAAA BBBB SAVE

In this example, the option SA VE closes the file BBBB with lock if DMP ALL
terminates abnormally.

PFM DSKDSK AAAA BBBB SKIP 100

In this example, SKIP causes the program to select records beginning at record 100
in the AAAA file.

PFM DSKDSK AAAA BBBB SORT 1 7 D UA

In this example, PFM causes a disk file named AAAA to be sorted in descending
sequence. The SORT key has unsigned alphanumeric data, a position in the first byte
of the record, and a length of 7 bytes. The sorted output disk file is named BBBB.

PFM DSKDSK AAAA BBBB START 100

In this example, START causes the selection of records in the AAAA file to begin at
record 100.

PFM DSKDSK AAAA BBBB STOP 500

In this example, STOP causes the first 500 records of the AAAA file to be copied.

4127 0000-100 5-29

DMPALL-File Conversion Utility Program

5-30

PFM DSKDSK AAAA BBBB STOP 100 THEN PFM DSKMTP AAAA BBBB MASTER 100 5

In this example, the first 100 records of the disk file AAAA are copied to disk, using
the same file name. Then the AAAA file is copied to a magnetic tape with an output
file ID named MASTER. The output tape has a record length of 100 bytes and a
blocking factor of 5.

PFM DSKDSK AAAA BBBB WHEN 10 2 UA EQL AB

In this example, copying begins with the first record that is in the AAAA file and that
matches the WHEN option. The contents of comparison are based in the WHEN
option specified by position 10, for a field length of 2, and the specified data field AB.
The data type tested is UA. Copying begins when the EQL condition operator is
matched.

PFM DSKDSK AAAA BBBB UNTIL 10 2 UA EQL AB THEN PFM DSKMTP AAAA BBBB 100 5

In this example, copying begins immediately, but stops when the first record in the
AAAA file matches the UNTIL option. The contents of comparison are based in the
UNTIL option specified by position 10, for a field length of 2, and the specified data
field AB. The data type tested is UA. The DMP ALL program stops the copy when the
EQL condition is met; then the program performs any new request. In this example,
the THEN function is executed.

4127 0000-100

Section 6
DMPANL-MCP Memory Dump
Analysis Program

Overview
The DMPANL program reads an MCP memory dump from disk, disk pack, or tape and
produces a printer backup file containing a formatted analysis of the dump. The internal
name of the printer backup file is DUMP/MEMORY.

Requirements for Dump Analysis
The following requirements must be met before you can use the DMPANL program:

• Include a USE record specifying the dump file location in the cold-start deck (or the
system configuration file), as in the following example:

USE DUMP DISK

• If you do not include a USE DUMP record or a USE DUMP TAPE record, use the
DMPMEM program to obtain a memory dump. Refer to Volume 1 for information
about the USE record with the DUMP option.

• Use the standard MCP LINKER template to link the MCP. The DMPANL program
requires that all link decks contain the same number of modules in the same relative
order.

• Be sure that the version of the MCP MID that you use to link an MCP is compatible
with the versions of the DMPANL and the DMPOUT programs.

• Do not patch the XM firmware to halt on hardware calls. Such patches prevent entry
to the fault handler that produces the dump.

Starting DMPANL Under MCP /VS 3.n
To analyze an MCPNS 3.n dump on a machine that is running MCPNS 3.n, use the PM 1
system command to initiate the DMPANL program.

By stringing the commands after the PM 1, you can enter the DMP ANL command syntax
when you enter the PM 1 command, as in the following example:

PM 1 ALL

4127 0000-100 6-1

DMPANL-MCP Memory Dump Analysis Program

You can also enter the command followed by an aste1isk. The asterisk makes the
DMPANL program wait for commands in the form of a mix number AX (Accept)
command. If you use the AX command, you must terminate the string of commands with
the word END, as in the following example:

Enter the following:

PM 1 *

The system responds with the following message:

DMPANL=018 ENTER <DUMP SPECS> or HELP or END:
** DMPANL=Ol8 ACCEPT

You respond by entering the following:

18 AX ALL END

Commands for the DMP ANL program are additive; that is, if you request a given table
anywhere in the DMP ANL commands, the program will print it.

DMPANL Command Syntax
Because of the ever-increasing size of the MCP tables, limiting the information you want to
print will become more and more important. The command syntax enables you to specify
what is to be printed, down to the level of the specific tables. The syntax appears later in
this section.

• If you enter the PM 1 command with no parameters, the results depend on how you
set up the USE record with the DUMP option in the system configuration file:

If the USE record with the DUMP option specifies DISK or PACK, the DMPANL
program produces a brief summary listing and copies the entire memory dump to
a tape.

If the USE record with the DUMP option specifies TAPE, the DMP ANL program
produces an error message because no memory dump file is available.

• If you enter an asterisk:

The DMPANL program displays the following message:

ENTER <DUMP SPECS> OR HELP OR END

The DMP ANL program issues an ACCEPT and awaits input.

You respond as follows:

<mix no> AX <dmpanl parameters>

• If you use the asterisk(*) and enter AX commands, then you can enter multiline input.

6-2 4127 0000-100

DMPANL-MCP Memory Dump Analysis Program

• Enter END to finish the DMP ANL command syntax.

• Enter <mix no> AX HELP to get a list of DMP ANL parameters. Then the DMPANL
program awaits input.

If the system detects a syntax enor in the parameters, the system displays an error
message and ignores all parameters following the one in error. Then, the DMPANL
program continues to await input.

Figure 6-1 shows the syntax for the PM command for MCP dumps.

~ PMl ~~~~-r-..--~--.--r-~~~~~~~~----.~~~~~~~--;
L TAPE J L * J L <dmpanl parameters> J

Figure 6-1. PM Command Syntax for MCP Dumps

TAPE

This keyword indicates that the source of the memory dump is tape. The tape could
have been created with the DMPMEM or DMP ANL program as described in this
section. If you do not enter any other parameters, the DMPANL program produces a
brief summary listing.

*
If you enter an asterisk, the DMP ANL program issues an ACCEPT and awaits input.
Enter multiline input in this manner.

DMPANL Parameters

Figure 6-2 shows the parameters for the DMP ANL command.

--.- ALL J
t- HELP

I

r- SUMMARY

l ' l
r- <table selection>
1-- <raw memory se 1 ect ion> -1

r- <save file assignment> -1
~< select' task 10n >

Figure 6-2. DMPANL Command Parameters

4127 0000-100 6-3

DMPANL-MCP Memory Dump Analysis Program

ALL

This parameter prints all the loaded MCP, the system tables, and all other allocated
memory.

In most cases, the listing you produce with the ALL parameter will exceed the
maximum size of the disk or disk pack printer backup file. Use the file-equate clause
to send the PRINT file to tape.

HELP

This parameter produces a list of the DMPANL parameters. You can enter it only after
an asterisk(*). After producing the list, the DMPANL program continues to await
input.

SUMMARY

This parameter prints a brief summary of the dump, including the current task
information, the function path, the MCP stack frame of the current task, the MCP
object patch history list, and the patch history lock value.

DMPANL Table Selection

6-4

Figure 6-3 shows the options for DMPANL table selection.

EXTTBL -------1
MCP ~-------1

<table list>
MOD~ <table list>
NOTBL -------l
TBL ---------1

<table list>
<table list-----'

Figure 6-3. DMPANL Table Selection Options

EXTTBL

This option prints the system tables and all the task MCP tables, such as the soft
IOATs, the incore DFHDRs, and the address blocks. This option does not produce a
raw memory dump.

MCP

This option produces a system table breakout and a raw dump of the MCP and overlay
area.

In most cases, the listing you produce with the MCP option will exceed the maximum
disk or disk pack printer backup file size. Use the file equate clause to send the
PRINT file to tape.

4127 0000-100

DMPANL-MCP Memory Dump Analysis Program

MOD

This option prints the system tables, the memory from 0 KD to the top of the overlay
area, any MCP modules that were loaded, and any independent runners that were
executing.

In most cases, the listing you produce with the MOD option will exceed the maximum
disk or disk pack printer backup file size. Use the file equate clause to send the
PRINT file to tape.

NOTBL

This option overrides the default that prints the system tables when you request
specific MCP tables.

TBL

This option prints the system tables, but does not print a raw memory dump.

Table List

The following paragraphs describe the data structures (tables) of the internal operating
system that the DMPANL program can analyze.

AVLQUE

This option prints all of the I/O queue elements from the available queue list.

CHAN <channel #> [<channel#>] :ALL:

This option prints out all of the I/O activity for the channel number(s) you specify.
The printout includes the channel table entry and device table entry for all units on
the channel; all I/O, service, and available elements queued on the channel, on any
unit on the channel, or on any exchange associated with the channel; and a table that
shows the address and position of the queue elements in the IOQUE link list.

Specify as many channel numbers as you want (separated by blank characters), or
specify ALL to get a printout of the I/O activity of all of the channel numbers existing
in the channel table.

CHTBL

This option p1ints the channel table for all the channels in the system.

4127 0000-100 6-5

DMPANL-MCP Memory Dump Analysis Program

6-6

CMPLX

This option prints information about tasks waiting in complex wait.

DCP

This option p1ints all of the information relating to the data communication
processors. This information includes the DCP station table, and the DCP and MCS
tables and their entries and buffers.

DEVTBL

This option prints the information from the device table for all of the devices
connected to the system.

DMS

This option prints information from two internal DMSII data structures, the database
program (DBP) table and the database user program control table.

EU

This option prints the EU table and the disk subsystem table.

FILE

This option prints the following information for every open file:

• TheFIB

• The IOAT

• The external FIB

• The incore DFHDR

• The address blocks

This option also prints the following for every open PORT file:

• The Port Attribute Structure

• The Subpart Directory

• The Subpart Attribute Structures

GLOBAL

This option prints the global code and overlay segment.

4127 0000-100

DMPANL-MCP Memory Dump Analysis Program

HLPARMS

This option prints the halt/load parameters.

IOAT

This option prints the IOAT table.

IOQUE

This option lists all of the queue elements that are in the I/O queue linked list.

JMR

This option prints internal data structures that the Job Manager uses.

MAST

This option prints the memory area status table and provides the location where
memory is available for use and is in use on the system.

MAT

This option prints the memory area tables for every task and MCP function.

MIX

This option prints the Mix table.

MSG POOL

This option lists all of the information that is linked to the message activity in the
system. This option invokes the MSGSND, MSGREC, and MSGTWT options.

MS GS ND

This option prints all of the information from the send list of the message module.

MSG REC

This option prints all the information from the receive list of the message module.

4127 0000-100 6-7

DMPANL-MCP Memory Dump Analysis Program

6-8

MSGTWT

This option prints all of the information from the task wait table. The information is
printed in ascending order by task number.

PORTS

This option prints information from the port global data memory area and the
candidate list memory area.

The port global data memory area contains entries for active ports on the system.
Each entry contains attributes shared by all subports connected to the port, including
an event directory.

The candidate list memory area contains entries for subports the system is trying to
open. An entry contains attributes needed to match subports, control state, and status
information.

SEC

This option prints the security user table.

SEG

This option prints the segment dictionary table.

SERVQUE

This option lists all of the elements that are in the service queue linked list.

QUEUES

This option lists all of the J/O queue elements that are in memory area 3. Use this
option to track J/O queue elements that are no longer linked in the IOQUE linked list
but still exist (in original form) in the memory area.

SLOG

This option prints the last hundred records of the ODT log.

SNAP

This option prints a formatted listing of the SNAP picture contained in the memory
dump file. SNAP pictures are inserted into memory under certain program or system
failure conditions. The contents of a SNAP picture differs depending on the type of V
Series system (V 300, V 500, and so forth).

SUBPORTIO

This option prints the contents of the shared subport memory area (SSMA). There is
one SSMA for each pair of open subports on the system. An area contains the input
and output data queues and attributes shared by both connected subports.

4127 0000-100

DMPANL-MCP Memory Dump Analysis Program

TRAK

This option prints the TRAK buffer.

TS

This option prints the timesharing system information block and the shared area table.

V500

This option can be used to analyze a dump file from a V 500 on any system.

vcs

This option p1ints the internal data structures used by the V Series Communication
System (VCS).

WAIT

This option prints the information about every task waiting on the system, including
the locks it owns and the locks it is attempting to get.

DMPANL Raw Memory Selection

Figure 6--4 shows the syntax for DMPANL raw memory selection.

- RAW <beginning address> <ending address> ________ ___,

Figure 6-4. DMPANL Raw Memory Selection Syntax

RAW

This option prints memory from the specified beginning address to the specified
ending address. The option does not print the system tables.

DMPANL Save File Assignment

To copy the MCP memory dump file as a permanent, multi-area diskpack file, use the
syntax shown in Figurn 6-5:

- SAVEID <file name> ~-------------.--------1
L_ ON <diskpack family name> ::J

Figure 6-5. DMPANL Save File Assignment

If you do not specify a diskpack family name, the default is system resource pack

4127 0000-100 6-9

DMPANL-MCP Memory Dump Analysis Program

DMPANL Task Selection

Figure 6-6 shows the syntax for DMPANL task selection.

- TASK <task number> [J
<task parameters>

Figure 6-6. DMPANL Task Selection Syntax

TASK

This option prints information about the task, which is indicated by the number that
follows the command. The default consists of all of the task memory areas and MCP
data relating to the task

Task Parameters

6-10

If you select TASK, you can specify the task parameters that appear in Figure 6-7.

1
DATAPAGE -'-----~~1------------<~
FILEBUFFERS -------t
FILES ----------t
MCPAREAS -------<
MEM <task memory selection> -
USERAREAS ---------'

Figure 6-7. DMPANL Task Selection Parameters

DATAPAGE

This parameter prints the MCP data page for a task

FILEBUFFERS

This parameter prints the same information as the FILES parameter and the external
file buffers of any files that have them.

FILES

This parameter prints the information about all the files that are currently open or that
were opened and closed without release.

4127 0000-100

DMPANL-MCP Memory Dump Analysis Program

MCPAREAS

This parameter prints just the MCP data related to a task.

MEM

This parameter prints a raw dump of the specified memory area for the task. To get a
raw memory dump of a memory area if you did not specify MAT, the program uses the
first MAT. Also, if you did not specify a memory area, the program uses memory area
zero, which is the user data area. For code files generated by pre-V Series compilers,
the only allowable MAT is the default. The beginning and ending addresses are
specified in Iill. If you do not specify them, the program prints the entire memory
area.

USERAREAS

This parameter prints just the user data and code.

Task Memory Selection

Figure 6--8 shows the syntax for DMPANL task memory selection.

L M <MAT number> J [MA <memory area number> J l <begi n>-<end> J

Figure 6-8. DMPANL Task Memory Selection Syntax

M <MAT number>

This option specifies the number of the desired Memory Area Table (MAT). The
system defaults to the first MAT number if you do not specify a MAT. For code files
generated before MCP Mark l.O, the only allowable MAT is the default.

MA <memory area number>

This option specifies the number of the desired Memory Area (MA). If you do not
specify a Memory Area number, the default will be memory area zero, which is the
user memory area.

<begin>-< end>

This option specifies the beginning and ending addresses, in Iill. The addresses are
joined with a hyphen. If you omit this, the system prints the entire memory area.

Refer to the commands DM, DP, IL, and PM in Volume 2 for more information.

4127 0000-100 6-11

DMPANL-MCP Memory Dump Analysis Program

6-12 4127 0000-100

Section 7
DMPCPY-Memory Dump File Copy
Utility Program

Overview
The MCPNS operating system creates a memory dump file when you enter a DM
command with a value of 0 or when the system fails. You can store the memory dump file
on disk, disk pack, or magnetic tape. Because it is so large, many companies choose to
store the file on tape. For information about how to direct a memory dump file to tape,
refer to the USE record with the DUMP option in Volume I or the PM command in
Volume 2.

After you store the memory dump file on tape, normal tape-handling utilities (for example
SYSTEM/COPY or DMPALL) cannot copy the file onto other tapes because the format of a
memory dump file is not compatible with that of the normal tape utility programs. To
copy a memory dump file from one tape to another, use the DMPCPY utility program.

Executing DMPCPY
Perform the following steps to execute DMPCPY:

I. Mount the tape containing the memory dump file onto a tape drive. Use the RY
command to ready the drive.

2. Enter the following system command:

EX DMPCPY

You do not need any special syntax to execute the DMPCPY program. It automatically
searches for an input tape file named $00001. If a file with that name does not exist on
tape, the system marks the program as waiting and waits until a tape with a file named
$0000 I is available.

When the program finds the input file, it requests a scratch tape to use for the output file.
If the program encounters the end of the output tape before the end of the input tape a
message appears on the ODT asking you to mount another tape.

When the program encounters an I/O error, the following message appears on the ODT:

ERROR ON INPUT TAPE. <MIX> AX TO CONTINUE

4127 0000-100 7-1

DMPCPY-Memory Dump File Copy Utility Program

7-2

In almost all situations, having an exact copy of the memory dump file is important. For
this reason, you should execute the DMPCPY program again with another tape or a
different drive instead of continuing with errors.

4127 0000-100

Section 8
DMPMEM-Memory Dump Utility
Program

Overview
Typically, the Fault Handler performs dumps for normal failures. In an abnormal failure,
you can dump the MCP to tape, using the DMPMEM program, which is the memory dump
utility that is floppy-disk based. DMPMEM is a control state program executed from the
maintenance processor.

From a V 300 system, use the DMPMEM program to dump the MCP to tape. From a V 400
or V 500 system, load the DMPMEM program from the hard disk of the maintenance
processor. When the DMPMEM program has dumped the MCP to tape, you can use the
DMPANL program to analyze the MCP dump.

When the program writes to the tape, it writes first a header block and then a data block.
The dump starts at the memory address 0 and continues to the end of MCP memory. The
DMPANL program uses this header block to detect errors. This header block describes
the data block, which is an exact duplication of data contained in a segment of memory.
The tape that DMPMEM writes is always uncompressed, regardless of the setting of the
system or unit COMPRESS option.

Executing DMPMEM
V300 System

From a V 300 system, execute the DMPMEM program as follows:

1. Press the ON LINE/CONSOLE switch on the system cabinet so that the label
CONSOLE on the switch lights up.

2. Insert the floppy disk named CV33nA (where n represents the release number) into
one of the floppy disk chives in the system cabinet and enter the following command:

LOAD SYS DMPMEM; RUN

When the loading of the DMPMEM program is complete and execution begins, press the
ON LINE/CONSOLE switch again so that ON LINE lights up. The system displays the
following prompts:

Please enter tape drive channel & unit (cc/uu):

Please mount tape on cc/uu.

4127 0000-100 8-1

DMPMEM-Memory Dump Utility Program

8-2

Tape <serial number> mounted.

O.K. to continue? Y/N

If the DMPMEM program cannot write to the tape, it tries again and displays the following
message:

Tape write retry.

If this message appears frequently, use another tape. If an unrecoverable error occurs, the
DMPMEM program terminates instead of producing an unreliable tape.

When the DMPMEM program accepts the channel/unit and the tape, the ODT displays the
following message:

Memory Dump to tape Started

Refer to Section 6, "DMPANL-MCP Memory Dump Analysis Program," for more
information about analyzing MCP dumps.

V 400 or V 500 System

From a V 400 or V 500 system, execute the DMPMEM program as follows:

1. Enter the following command at the maintenance processor:

LOAD DMPMEM

2. Press the GO key. On a V 500 system, then press function key F8.

When the loading of the DMPMEM program is complete and execution begins, the system
displays the following prompts:

Please enter tape drive channel & unit (cc/uu):

Please mount tape on cc/uu.

Tape <serial number> mounted.

O.K. to continue? Y/N

If the DMPMEM program cannot write to the tape, it tries again and displays the following
message:

Tape write retry.

If this message appears frequently, use another tape. If an unrecoverable error occurs, the
DMPMEM program terminates instead of producing an unreliable tape.

When the DMPMEM program accepts the channel/unit and the tape, it displays the
following message:

Memory Dump to tape Started

4127 0000-100

DMPMEM-Memory Dump Utility Program

When the DMPMEM program execution is complete, the following message appears on
the ODT:

Memory dump to tape completed

Dismount and label tape on cc/uu.

After the program performs the dump, it terminates on a halt-branch instruction (0P=29).

Refer to Section 6, "DMP ANL-MCP Memory Dump Analysis Program," for more
information on analyzing MCP dumps.

4127 0000-100 8-3

DMPMEM-Memory Dump Utility Program

8-4 4127 0000-100

Section 9
ECMANL-Environmental Control
Module Analysis Utility Program

Overview
The MCP automatically invokes the Environmental Control Module Analysis utility
program (ECMANL) when the ECM log file transfer occurs on a V 500 system. The
ECMANL program formats the environmental information and creates a printer backup
file.

Obtaining a Hard Copy of ECM Information
You can use the LN (Transfer and Print Log) command to print information about the
internal operating environment of the V 500.

• Use the LNA command to analyze all logs, including the ECM Log.

• Use the LNE command to analyze only the ECM Log.

When you use the LNA or LNE command, MPCOPY automatically copies the log files to
the V 500 disk.

Refer to Volume 2 for more information about the LN command. Refer to the V 500
Maintenance Reference Manual for more information about Environmental Control
programs.

4127 0000-100 9-1

ECMANL-Environmental Control Module Analysis Utility Program

9-2 4127 0000-100

Section 10
LDCNTL-Pseudo Reader Load Control
Utility Program

Overview
The Pseudo Reader Load Control Program (LDCNTL) enables you to create a disk or disk
pack file, called a pseudo card file, from a card deck A pseudo card file is also referred to
as a control deck and can contain either data, MCP commands, or MCP commands and
data. Although the LDCNTL program is a utility bound to the MCP, you can code and use
your own version of the utility if you wish.

A pseudo card file created from a card deck can be useful for the following functions:

• Compiling programs that are punched on cards

• Running programs or program systems by punching the necessary commands on
cards, and then reading the cards

• Carrying out commands that are punched on cards

• Reading data that is punched on cards

• Improving the efficiency of a card-based system

When the deck has been input and you have created the pseudo card file, you must
activate the file before you can run it. The activation process depends on the procedure
used to create a pseudo card file. If you use the manual procedure, use the RN or RNP
command to activate the pseudo card file. If, on the other hand, you include the USE
record with the APCR option, the MCP automatically activates the pseudo card file.

If you use cards, the pseudo card files improve the efficiency of your system in the
following ways:

• Several card files can be read simultaneously, even though you have only one or two
card readers.

• Data in a pseudo card file can be read faster than data read from a card reader.

• Files can be made accessible to many jobs simultaneously because the LDCNTL
program can transfer your files to disk or disk pack devices.

If you use the pseudo card file more than once, follow the manual procedure to create
your pseudo card file. Otherwise, the pseudo card file is purged from disk or disk pack
after it is used. Refer to "Operating Procedures" in this section for more information.

4127 0000-100 10-1

LDCNTL-Pseudo Reader Load Control Utility Program

LDCNTL System Commands and Options
When you use the LDCNTL program, you can use a number of system commands and MCP
options. There are two types of system commands: MCP control instrnctions and
keyboard input messages. You use these system commands to direct the MCP to perform
particular actions.

You can enter MCP control instructions either on cards or from the keyboard, but you can
enter keyboard input messages only from the keyboard. Volume 2 provides more detailed
information about each of these command types, including the specific commands.

The following lists include the MCP control instrnctions and system commands used with
the LDCNTL program.

LDCNTL MCP Control Commands

The following are MCP control commands:

• AX

• CHANGE

• CHARGE

• COMPILE

• DATA/DATAB (DATA CTLDCK)

• END/ENDCTL

• EXECUTE (LDCNTL)

LDCNTL Keyboard Input Commands

The following are keyboard input commands:

• AX

• CD, CDP

• CV,CVP

• DA,DAP

• DQ

• GO

• LD,LDP

• 01

• RD,RDP

• RN,RNP

• RO

• SD

10-2 4127 0000-100

LDCNTL-Pseudo Reader Load Control Utility Program

• so
• TO

Note: The AX command is both an MCP control command and a keyboard input
command.

The MCP provides a number of options. You can specify a USE record to designate that a
certain option is to be used. If you omit the USE record, the option is not used. Use the
SO, RO, TO commands to set, reset, or interrogate an option.

Volume I provides more detailed information about the following USE records that affect
the treatment of pseudo card files:

• APCR

• AURD

• PCRM

The LIMIT records set the sizes of certain MCP tables and the values of certain system
parameters. Refer to Volume I for information about the limit on pseudo card files.

Determining When to Use Pseudo Card Files
If any of the following conditions apply, you should use card readers instead of pseudo
card files:

• You only use card decks occasionally.

• You do not do a lot of multiprogramming work that involves cards. Multiprogramming
means that you have more than one program running at the same time.

• Only a few of your programs use card files.

Other considerations include the following:

• The amount of time it takes to load a card file to disk or disk pack

• The amount of space a large card deck requires on the disk or disk pack

• The small amount of memory needed for the pseudo card file processing

• The requirement for punched-card equipment

4127 0000-100 10-3

LDCNTL-Pseudo Reader Load Control Utility Program

Creating a Pseudo Card File
Use one of the following procedures to create a pseudo card file:

• Enter an LD or LDP command or an EXECUTE LDCNTL command.

• Enter CHANGE <file name> TO#. This command assigns a pseudo card file number
to a disk or disk pack file; however, the file must already be in pseudo card file format.
The MCP then assigns a number to the pseudo card file as described below. Write this
number down so you can activate the pseudo card file later with the command RN or
RNP. The following message then appears on your terminal:

<file name> CHANGED TO #pnnnn

• Use the CANDE (Command and Edit) system to enter a COPY TO CTLD command.
Refer to the V Series CANDE Installation and Operations Guide for more
information.

• Write a user program that creates files in pseudo card file format. Refer to "Files and
Records" later in this section for format requirements.

When you create a pseudo card file, the output disk or disk pack file identifier must be
#00000 even if you create a pseudo card file with a user program independently of the
LDCNTL program. The special identifier #00000 tells the MCP to assign the next
sequential pseudo card file number when a file is opened.

All pseudo card files have a name of the form #pnnnn.

• The pound sign(#) indicates a pseudo card file.

• The letter p represents the number of the system on which the file was created.

• The letters nnnn represent the number that the MCP assigns the file.

Requirements for a Control Deck

10-4

To read in a card deck from a physical card reader, you must first include two special
cards that indicate where the deck begins and ends.

The first card in your card deck must be ?DATA CTLDCK. The last card tells the MCP that
you want to end the LDCNTL program. Therefore, the last card in your last card deck
must be ?ENDCTL.

The MCP only processes ODT control instructions as it creates the pseudo card file. ODT
control instructions enable you to enter keyboard input messages from a card reader. The
cards must be punched in the following format:

?SPO <text>

where <text> is the keyboard input message.

4127 0000-100

LDCNTL-Pseudo Reader Load Control Utility Program

The MCP reads all other control instrnctions, including the ?END cards, as data. It does
, not execute these commands unless the pseudo card file is either automatically activated

or manually activated and executed.

In the CTLDCK file, the deck includes all physical cards from the ?DATA CTLDCK card
tluough the ?ENDCTL card. The data file includes all cards between ?DATA CTLDCK and
?ENDCTL (except ODT control instrnctions), even though some contain invalid characters
in column 1.

If you include the USE record with the AURD option, pseudo card files with enoneous
combinations of control instrnctions are removed automatically. If you do not include the
USE record with the AURD option, the MCP displays the message CONTROL CARD
ERROR followed by an ACCEPT message. You must then fix the enor before you can use
an AX command to tell the LDCNTL program to continue.

An example of an enoneous combination of control instrnctions is a ?END card that is not
followed by a control instrnction or the special ?ENDCTL card.

Initiating Load Control
You can initiate the LDCNTL program at any time, as described in "Creating A Pseudo
Card File" in this section. The LDP command puts the pseudo card file on disk pack. The
LD command puts the pseudo card file on disk, one file per card reader.

If you execute the LDCNTL program when you first initialize the system, you can leave it
in the mix until processing is complete for the day. In this case, you would not use the
?ENDCTL card until you had read in the last card deck for the day. If the LDC NTL
program does remain in the mix all day, it will be idle most of the time. However, the
LDCNTL program does not consume much memory.

You can enter more than one LD or LDP command at one time. However, if you input
more LDCNTL program messages than there are card readers, you use more memory
without increasing productivity.

The MCP does not require that the LDCNTL program be in the mix to process pseudo card
files.

The cards that you read in can be in EBCDIC or BCL format, or in both. However, you
must put a ?DATA control instrnction in front of those cards that are in EBCDIC format, or
a ?DATAB control instrnction in front of those cards in BCL format. The LDCNTL
program cannot process BINARY decks.

If the input from which a pseudo card file is made comes from a Remote Job Entry (RJE)
terminal, the program should execute a PROGRAM BCT to obtain its RJE link. Enter the
RJE link value in columns 75-76 of the control instrnctions in the pseudo card file, a move
of 2 UA to 2 UA, and put @FF@ in column 7 4. This link value provides a route back to the
RJE station for messages that the pseudo card file generates.

4127 0000-100 10-5

LDCNTL-Pseudo Reader Load Control Utility Program

MCP Capabilities in LDCNTL
A pseudo card file can contain as many as 100,000 card images. When you activate a
pseudo card file, the MCP creates a record in the disk-resident Pseudo-Reader Cross
Reference Directory (PCRXRF). The PCRXRF is capable of handling 80 active pseudo
card files for each system. A total of 9999 pseudo card files can be on disk for each
system; however, only 80 can be active simultaneously.

Use the SD command to further restdct the number of pseudo card files the APCR facility
activates simultaneously. Enter SD <integer> where the integer is any value from 1 to 80.

If the directory becomes full or the operating system reaches the limit, the MCP
temporadly stops activating pseudo card files. You can overdde this pause with the RN or
RNP command, which activates more pseudo card files up to a maximum of 80 for each
system.

Operating Procedures
If you want to use a pseudo card file without reading it in a second time, you must use the
manual procedure. If you intend to use a pseudo card file only once, you can use the
automatic procedure, which will then remove the pseudo card file after processing is
complete.

The following steps outline the procedures for creating pseudo card files. Steps 1-5 apply
to both the manual and the automatic procedures.

1. Punch the cards ?DATA CTLDCK and ?ENDCTL.

2. Place the ?DATA CTLDCK card at the beginning of the physical card file.

3. Place the ?ENDCTL card at the end of the deck unless you plan to use the LDCNTL
program again later in the day. Refer to "Creating a Pseudo Card File" and "Typical
Pseudo Card Decks" in this section.

4. Place the card file in the card reader and start it.

5. Enter TO APCR to determine if the USE record with the APCR option is included in
the system configuration file.

• If APCR = 1, the MCP will automatically create and run the pseudo card file.

• If APCR = 0, you must use the manual procedure.

• If you need to use the pseudo card file more than once, you must use the manual
procedure.

10-6 4127 0000-100

LDCNTL-Pseudo Reader Load Control Utility Program

Manual Procedure

1. Enter RO APCR to change the value from I to 0, if applicable.

2. Enter LD or LDP and transmit.

3. Enter DQ to obtain the deck number. You will need the deck number later.

Note: With the deck number, you can obtain the status of the pseudo card file by
entering the CD, CDP, or OL commands. Use CD or CDP for inactive
pseudo card files and OLfor active pseudo card files.

• Enter RN or RNP <deck number> SA VE to activate and process a pseudo card file
on the system from which you enter this command.

• Enter RN or RNP <system number> <deck number> SA VE to activate a pseudo
card file on another system.

• Enter RN or RNP = SA VE to activate and process all pseudo card decks on the
system from which you enter this command.

• Enter RN or RNP <system number> = to activate and process all pseudo card
files on another system.

• Enter RN or RNP A = to activate and process all pseudo card files on all systems.

Note: An active pseudo card file is accessible to all programs on the system on which
it was processed.

Automatic Procedure

1. Enter LD or LDP and transmit.

2. Enter DQ to obtain the deck number; you may need the deck number later.

Note: With the deck number, use the OL command to obtain the status of the
pseudo card files that the MCP has activated.

3. Run the appropriate programs to use the pseudo card file (the MCP automatically
activates and processes the pseudo card file).

4. Put the ?ENDCTL card through the card reader when you are finished with the
LDCNTL program.

Deleting Pseudo Card Files
You can use any of the following methods to remove a pseudo card file from the system:

• Use an RD or RDP command to remove inactive pseudo card files created manually.
Before attempting to remove a pseudo card file, use the DA or DAP command to make
it inactive.

• Include the USE record with the APCR option to have each pseudo card file
automatically removed after it is processed. If the program reading the pseudo card
file is discontinued or fails, the pseudo card file remains on the system.

4127 0000-100 10-7

LDCNTL-Pseudo Reader Load Control Utility Program

• If a pseudo card file contains a source file for a COMPILE and GO operation, and if the
compile fails or the system finds an ?END or ?DATA card during flushing of control
instructions, the system removes the pseudo card file.

• Include the USE record with the AURD option to have pseudo card files that contain
en-oneous combinations of control instructions automatically removed from the
system.

Recovery of Pseudo Card Files

When the system fails in a manner that requires a halt/load while pseudo card files are
active, recovery of the active pseudo card files is automatic. The system searches the
Pseudo-Reader Cross Reference Directory and reinitializes all active pseudo card files.
However, it puts the pseudo card files in a not-ready state. Use the command RN or RNP
to reactivate these pseudo card files regardless of the value of the USE record with the
APCR option.

Typical Pseudo Card Files

10-8

Figure 10-1 shows a typical CTLDCK file. This example CTLDCK file contains only one
data file and one set of control instructions.

4127 0000-100

(

LDCNTL-Pseudo Reader Load Control Utility Program

? END.END DECK 3

? DATAX

?EXECUTEPROGCCHARGE99963

? END.END DECK 2

? EXECUTE PROGB CHARGE 345

? END.END DECK 1

? DATA CARDS

? PRIORITY

? EXECUTE PROGA CHARGE 9

? DATA CTLDCK

Figure 10-1. Typical Pseudo Card File

Note the first card, ?DATA CTLDCK. All the cards to be translated into the pseudo card
file follow this card.

Note the last card, ?END.END DECK 3. This card indicates that this part of the LDCNTL
program is finished, but that more card decks can be processed.

4127 0000-100 10-9

LDCNTL-Pseudo Reader Load Control Utility Program

These cards are processed sequentially, in the exact order in which they are entered.

Note: If you enter the LD or LDP command at the beginning of the day and plan to
use the LDCNTL program all day, do not use the ?ENDCTL card until you pass
the last card deck through the reader.

You can create more than one pseudo card file out of a single card deck. Each time the
MCP reads an ?END card, the pseudo card file is closed. If more cards follow the ?END
card, a new file is opened, the MCP assigns the next number in sequence to the new file,
and those cards are stored in that file.

A single pseudo card file can contain one or more data files or sets of control instructions.
A pseudo card file that contains more than a single set of control instructions or a single
data file is called a stacked pseudo card file. Stacked pseudo card files with more than
one set of control instructions have a value in the link field. When it creates a stacked
pseudo card file, the LDCNTL program enters this value, which is the record number of
the next control card in the file.

Figure 10-2 shows an example of a stacked pseudo card file. Because the MCP processes
the pseudo card file serially, the MCP does not process the second EXECUTE request until
it reads all cards in the first data file.

~?END
~
~

data file

? DATA INFO 1
r---'

? CHARGE 9

? EXECUTE PROG 1
I--'

1--

f---J

Figure 10-2. Execute Program

Files and Records

10-10

A pseudo card is a file consisting of card images with both program data and MCP control
instructions. Table 10-1 shows the format of a pseudo card file.

4127 0000-100

LDCNTL-Pseudo Reader Load Control Utility Program

Table 10-1. Pseudo Card File Format

File Attribute Disk Disk Pack

Record size 100 UA 120 UA

Blocking Factor 8 6

Records per Area 1000 1200

Number of Areas 100 100

A file must contain an integral number of blocks per area. The LDC NTL program creates
pseudo card files on disk or disk pack Table 10-2 shows the fom1at of each record in a
pseudo card file.

Table 10-2. Pseudo Card Record Format

Field Size Notes

Record Type 1 UN D for control instructions; 8 for data cards

Flag Digit 1 UN F (control instructions) specifies link present

Link 6 UN Zero relative key to next control instruction

Data 96 UA Card Image

Filler 20 UA Present for disk pack file only

The record-type field contains the first digit of the result descriptor that occurred when
the system read the card. D (undigit) means an invalid character appears on the card.
The system replaces invalid characters in control instructions with an EBCDIC question
mark character (6F).

The flag digit is present in control instructions when the control instruction link is present.
The MCP automatically enters the link field value when it creates a stacked pseudo card
file.

You can recognize control instructions by examining the result descriptor for the record.
The first three digits of the result descriptor for control instructions are D40. The system
uses an 800 descriptor for all other cards.

File Assignment
When the MCP processes an active pseudo card file, it processes all control instructions
until it reaches a ?DATA statement. A ?DATA statement identifies the name of the data
file. When a program needs the data file with that name, the MCP checks both the IOAT
and the Pseudo-Reader Directory for the name of the data file.

4127 0000-100 10-11

LDCNTL-Pseudo Reader Load Control Utility Program

Make sure that each data file has a unique name. The MCP assigns files as described in
the following paragraphs.

File assignment for a card reader involves connecting of the program file information
block (FIB) of the card file to the appropriate MCP IOAT entry and initially loading the
program buffers.

Pseudo card file assignment requires the following activities. First, the MCP must obtain a
4 KD main memory buffer for pseudo card file use. In this memory area, the MCP builds
an IOAT entry and DFH (Disk File Header) skeleton for the file. Internally, the MCP treats
the pseudo card file as a type of disk file. The MCP marks the pseudo card file "in use" in
the directory and associates it with the program FIB. Because the external memory area
functions as buffers, the MCP modifies the program FIB to reduce the file to a single
internal buffer. The MCP reads a block of card images into the external buffer; the MCP
fills the program internal buffer, if necessary. This process completes the OPEN request.

Pseudo card file assignment requires the following activities:

1. The MCP must obtain a 4 KD main memory buffer for pseudo caTd file use.

2. In this memory area, the MCP builds an IOAT entry and disk file header (DFH)
skeleton for the file. Internally, the MCP treats the pseudo card file as a type of disk
file.

3. The MCP marks the pseudo card file "in use" in the directory and associates it with the
FIB program.

4. Because the external memory aTea functions as buffers, the MCP modifies the FIB
program to reduce the file to a single internal buffer.

5. The MCP reads a block of card images into the external buffer; the MCP fills the
program internal buffer, if necessary. This process completes the OPEN request.

READ operations cause the transfer of records from the external buffer to the
program buffer and, if necessary, to the program work area. This transfer may be
necessary because the MCP empties the external buffer when it initiates a disk read to
refill it. With program execution, the system overlaps all I/O operations.

Deallocation

10-12

Deallocation means that the system terminates the association between a card reader or
pseudo card file and the program using the data file, not that the card reader or pseudo
card file is deactivated or removed. A pseudo card file is deallocated when the system
detects an end-of-file (EOF) condition, when the program executes a CLOSE request
before the EOF, or when the program terminates before either event occurs.

EOF detection means that a control instruction (other than an ODT control instruction)
appears while the program is associated with the device. Unlike other devices, card
readers are detached from the program at the point of EOF rather than at a CLOSE
request. For pseudo card files, the MCP releases all memory space allocated to the
pseudo caTd file and performs certain maintenance functions on the Pseudo-Reader
Directory entry.

4127 0000-100

LDCNTL-Pseudo Reader Load Control Utility Program

If the program executes a CLOSE request or terminates normally before it reaches EOF,
the MCP deallocates the card reader or pseudo card file and flushes it to the next control
instruction. The system flushes a card reader by passing cards through the card reader
until it reaches the next control instruction or until it makes the card reader "not ready."

Pseudo card file flushing achieves similar results, but the system accomplishes it in a
different manner. When the pseudo card file is ready for flushing, the MCP examines the
next card image in the pseudo card file.

• If the card is a control instruction, the MCP stops the flushing operation.

• If that card is not a control instruction, the MCP uses the control instruction link
found in the last DATA statement to flush the pseudo card file. This link provides a
rapid method of finding the next control instruction without the overhead of reading
each record from the disk.

• If the link is not present, the MCP attempts to find the next control card by manually
reading each card.

• If the program terminates abnormally (for example, with a DS command), the MCP
deactivates the pseudo card file and removes it from the Pseudo-Reader Directory, but
does not remove it from the Disk Directory. This puts the pseudo card file in a not
ready condition and you must use the command RN or RNP to reactivate it.

LDCNTL-Punch Backup to Pseudo Card File Conversion

Use the command CV or CVP to initiate LDCNTL to convert a file in punch backup format
to a file in pseudo card file format. Doing so is useful when existing programs generate
card files that will be read by subsequent programs, but you do not need the cards.

The system always converts punch backup files to pseudo card files on the same media,
disk or disk pack. To keep the punch backup file in addition to the pseudo card file,
specify SA VE. If you specified CHRG ALL at the time of cold-start, you must also include
the CHARGE parameter instruction. The system does not provide special handling of card
punch records selected by the stacker.

Enter one of the following:

CV <deck number> SAVE

or

CVP <deck number> SAVE

or

CV <deck number>

or

CVP <deck number>

4127 0000-100 10-13

LDCNTL-Pseudo Reader Load Control Utility Program

10-14

The MCP automatically enters the following parameters into the LDCNTL program:

BASE.+ 32 5 UN CV deck number

1 UN flags

8 bit CV command

4 bit pack media

2 bit <unused>

1 bit save flag

If you create a user program called LDCNTL, the MCP also enters these parameters into
your program automatically.

4127 0000-100

Section 11
LDHOST-Host Load Intrinsic
Program

Overview
The Host Load Intrinsic Program (LDHOST) downloads firmware to a programmable
controller, a data communications processor (DCP), or a Uniline device. For a B 974 DCP,
the LH command invokes the utility program B 97 4LD. The system does not permit you to ·
download firmware to the primary MCP disk channel.

After the load is completed, the LDHOST program displays the release level of the
firmware that was just loaded if you loaded a disk pack/disk channel.

If the LDHOST program fails to load any device, the program leaves the channel of that
device inhibited and notifies you that the load failed and that the channel is inhibited. The
LDHOST program also displays the segment of device memory that was being loaded at
the time of the failure, the result descriptor (RID), and the number of digits actually
transferred.

You need not load SMD DLP II. The SMD stands for Storage Module Device, and DLP
stands for Data Link Processor.

Host Load for B 974 DCPs
The B 974 DCP Software Install,ation and Operations Guide provides procedures for
loading the B 97 4. In some cases, you use the LH command to initiate the B 97 4LD utility
program. In other cases, you use the SO command with the DCP option, which does an
automatic LH. For more information about the LH command, refer to Volume 2. For more
information about the SO command with the DCP option, refer to Section 27, "Data
Communications Processor (DCP)."

Host Load for B 874 DCPs
When you invoke the Host Load program to load a B 87 4 DCP, the system automatically
dumps the S-memory of the DCP. This dump appears as a listing called S-DUMP and a
disk file called DCxxpP: where xx represents the channel of the B 87 4 DCP and p
(lowercase) represents the system number of the host.

4127 0000-100 11-1

LDHOST-Host Load Intrinsic Program

Automatic Operation

11-2

The MCP can schedule the LDHOST program automatically when a disk or disk pack
controller fails. However, the following conditions are necessary before this can happen:

• You must have previously designated one of two conditions:

Entered LH <channel> <firmware name> to associate the name of the firmware
file that is to be loaded to the controller and the number of the channel to which
the controller is connected.

Specified the name of the firmware file on a DLP record in the system
configuration file.

• The firmware file to be loaded to the controller must be on disk.

• The firmware file must be accessible (that is, it must not be on the disk where the
controller failed).

If the MCP determines that it can load the controller, one of the following messages
appears on the system console:

CHANNEL <channel number> FIRMWARE LOAD SCHED

In this case, you need not do anything.

CHANNEL <channel number> FIRMWARE LOAD REQD

In this case, you must determine the problem and take the appropriate corrective action.

The MCP automatically enters the following parameters into the LDHOST program:

BASE 32 UN= Firmware ID 6 UA

Primary Channel 2 UN

Alternate Channel 2 UN

B 874 DCP S-Memory Size (HEX) 4 UA

S-Memory Dump Flag 1 UN

Inhibit Channel Flag 1 UN

Hardware Type 2 UN

Unit 1 UN

DCP 'WARM" Load Flag 1 UN

Hardware Subtype 1 UN

Filler 1 u

4127 0000-100

LDHOST-Host Load Intrinsic Program

Host Load for DCDLP
When you invoke the Host Load program to load a DCDLP, the system might automatically
dump the memory of the DCDLP. The memory dump occurs in the following conditions:

• Memory is always dumped when you use the LH command to load the DCDLP.

• If you use the SO DCP command to load the DCDLP, the Host Load program reads the
status word of the DCDLP. If the status word indicates that the DCDLP has been
cleared, then the Host Load program dumps the memory of the DCDLP.

If an 1/0 elTor occurs during the memory dump, the Host Load program terminates the
memory dump and proceeds with the loading of the DCDLP.

Loading the LOS into an Intelligent Laser Printer
An Image Page Printer (IPP) is one type of intelligent laser printer. Perform the following
steps to load the Loadable Operating System (LOS) into an IPP.

1. Make sure that the device is online and is in the Resident Operating System (ROS)
mode.

2. Enter LH <channel number> to load the LOS.

Refer to the B 9290-30 Intelligent Laser Printing System Operator's Guide for operating
instructions.

4127 0000-100 11-3

LDHOST-Host Load Intrinsic Program

11-4 4127 0000-100

Section 12
LOADFW-Offline Firmware Loader
Program

Overview
Use the Offline Firmware Loader Program (LOADFW) before you perform a cold-start to
load firmware to disk pack controllers, shared system processors (SSPs), and Uniline
DLPs. The LOADFW program performs the initialization, verification, and relocation
(IVR) functions for LAK disk packs on an individual basis. With a V 300 system, this
program resides on a floppy disk With a V 400 or V 500 system, this program resides on
the hard disk of your maintenance processor.

The LOADFW program loads the firmware files from a tape or a disk pack If the firmware
is on a tape, it must be a SYSTEM/COPY tape with the default buffersize of 18000 digits. If
the firmware is on disk pack, the disk pack must have a standard label. If the firmware is
on a version 2 disk pack family, it must be on the base pack of that family.

The LOADFW program loads firmware to the following types of devices:

• Uniline DLPs

• Shared system processors (SSPs)

• Disk or disk pack controllers-BX383, BX384, BX385, B9387

The LOADFW program can also perform the IVR functions for LAK disk packs that are
shipped in 180-byte format. This capability is useful for systems that need a disk pack in
100-byte format to use as MCP disk IVR performs the following functions:

• Initialization. Initializes the track and sector structures on the disk pack into a 100-
byte format.

• Verification. Verifies that the track and sector structures of the disk pack have been
initialized properly.

• Relocation. Relocates and thereby removes bad sectors from use.

Also, you can use the utility program DISPKV to perform IVR functions on disk packs in
LAK mode. DISPKV can be more convenient because it is used while the MCP is running.
Refer to Section 3, "DISPKV-Disk Pack Utility Program,'' for more information. You
cannot use DISPKV for MD4 SMD LAK; you must use PTDMNO instead.

You operate the LOADFW program from an ODT linked to the console DLP or an
Operating Control System (OCS) linked to a Uniline DLP. First you press the ON LINE
switch on the system cabinet to put in console mode; then you load the program from the

4127 0000-100 12-1

LOADFW-Offline Firmware Loader Program

floppy disk or the maintenance processor into memory. When the program is in memory,
you execute it, using various commands, depending on the functions required.

Execution of LOADFW

12-2

Use one of the following procedures to execute the LOADFW program, depending on the
system you are using.

V 300 System

1. Insert the floppy disk named CV33nA (where n represents the release level) into the
primary floppy drive.

2. Make sure the ODT is offline and in console mode by pressing the ON LINE/CONSOLE
switch on the system cabinet so that the word CONSOLE on the switch lights up. The
system should be stopped (as indicated by the ODT status heading). Ifit is still
running, press the SPCFY key or enter the TERM command to stop the system. Wait
until the ODT status heading indicates that the system has stopped.

3. Enter the following command:

LOAD SYS LOADFW; RUN

The ODT set up with the SO command and the OCS option will be used for
communication. For this reason, you must set up the command beforehand. Do not
use a SO command with the OCS option for a Uniline OCS that does not have
firmware loaded to it.

4. If you intend to use the ODT for communication, be sure that the ODT is online. Do
so by pressing the ON LINE/CONSOLE switch on the system cabinet, which causes
the word ON LINE to light up. The program then begins the dialog by prompting you
for the channel and unit of the tape or disk pack that contains the firmware files.

V 400 and V 500 Systems

1. Enter the following command:

LOAD PROGRAM
File Name (Def Dir=[Sys] <Program>) loadfw ------[Load SYS? (Y/N, Def = N)]_Y _________ _

2. Press the FS function key. The system loads the LOADFW program into memory from
the maintenance processor. The system changes from STOPPED to RUNNING status,
and then the LOADFW program begins to execute.

3. Enter the channel and unit number of the tape or disk pack that has the firmware file.

(channel number/unit number)

4127 0000-100

LOADFW-Offline Firmware Loader Program

4. Enter the name of the firmware file to be loaded. The LOADFW program will find the
firmware and load it into memory.

(firmware file name)

5. When the LOADFW program notifies you that the firmware has been loaded into
memory, enter the channel number of the device that the firmwaxe is to be loaded to.

(channel number)

6. When the LOADFW program displays a message that the firmware has been loaded
into the device, petform one of the following:

• To load the same firmware to another device of the same type, enter another
channel number.

• To load a different type of firmware to a different type of device, enter the name
of another firmware file.

• To use a different tape or disk pack firmware source, enter the channel/unit.

• To load a disk controller, enter INI or VER and the unit number. INI both
initializes and verifies the disk pack; VER only verifies it.

• To quit the program, enter END.

While the program is running, various prompts appear on your terminal.

The LOADFW program displays error messages when it cannot run successfully. Refer to
"Error Messages" later in this section for more information.

Normal Messages
The following messages, which are listed in alphabetical order, report on program status
or ask you to enter information.

Canceling channel ...

The LOADFW program is canceling the channel. This message is normally sent when
SSP DLPs are loaded. There is a 10-second delay to allow the DLP to reinitialize.

<cc/uu> <LAK type> {initialized} with no error(s), no relocate(s)
{verified} with no error(s), no relocate(s)

The LAK was successfully initialized or verified.

<channel> SSP cleared and unlocked

The LOADFW program loaded the SSP successfully. The SSP is clear and initialized.

4127 0000-100 12-3

LOADFW-Offline Firmware Loader Program

12-4

Enter channel to be loaded

This message prompts you to enter the number of the channel to load.

Enter firmware name

This message prompts you to enter the name of the firmware file to be loaded.

Enter input tape or disk pack cc/uu

This message prompts you to enter the channel and unit numbers of the tape drive or
disk pack that has the firmware files.

Enter: <channel>
<name>
<channel/unit>
or END

Enter: <channel> ...••.•..
<name> ..•...•.
<channel/unit> .•..•.•.
INI <unit> ...•.•..
VER <unit>
or END

for next channel to load,
for new firmware,
for new firmware source,

for next channel to load,
for new firmware,
for new firmware source,
to initialize,
to verify,

The LOADFW program displays the two preceding prompts when it completes an
operation. The program wants to know what you want it to do next. At this point you
can instruct it to do one of five things, depending on which of the following you enter:

• To load the same firmware to another channel, enter the channel number. To load
another firmware file, enter the firmware file name.

• To designate a new channel and unit number of the tape or disk pack that has the
firmware file, enter the channel or unit number.

• To initialize an LAK, enter the INI command and its unit number.

• To verify an LAK, enter the VER command and its unit number.

• To quit the program, enter the following:

END {Initialization}
{Verification}<percent> complete
Time remaining: <minutes> minutes, <seconds> seconds

4127 0000-100

LOADFW-Offline Firmware Loader Program

During an LAK initialization or verification, you receive this progress report:

Reading firmware ...

The LOADFW program is seru·ching the input medium for the requested firmware file.

Loading firmware ...

The LOADFW program is loading the requested firmware.

(<release code>) phase {1} {2} {3} loaded {all}

The LOADFW program has completed the requested firmware load operation.

EOJ LOADFW

The LOADFW program has gone to end-of-job.

Error Messages
The LOADFW program displays the following error messages.

• <ccluu> invalid label

• <ccluu> not ready

• <cc/uu> unlmown input medium tape

• <ccluu> does not have <firmware file name>

• <cc/uu> read error continue?

• Corrupted directory/header link

The LOADFW program displays one of these messages when it cannot load firmwru·e. The
actual message it displays indicates why it cannot perform the function.

<cc/uu> not LOADMP, PACKUP or SYSTEM/COPY tape

The device on channeVunit has the wrong tape format. The tape must have a
LOADMP, PACKUP, or SYSTEM/COPY tape format. The SYSTEM/COPY format is
recommended.

Enter input tape or disk pack <cc/uu> again

The program displays this message when it wants you to reenter the channel and unit
number. Frequently, this message appears after another error message that refers to a
previously used tape or disk pack.

4127 0000-100 12-5

LOADFW-Offline Firmware Loader Program

12-6

<cc/uu> got invalid I/O on load

An I/O error occmTed when the LOADFW program attempted to load the firmware.

<cc/uu> is not a LAK or initializable media

Either the device on that channel is not LAK disk pack in 100-byte format, or it is the
wrong type of device. The LOADFW program cannot initialize or verify MD4 SMD
disks. To initialize MD4 disks, use the peripheral test driver (PTD) program SMDIVR.

<cc/uu> <LAK type> {initialized}
{verified} with <number> errors, <number> relocates

After the program finishes an initialize or verify operation, it displays this summary.

DLP not an HT, SSP, or Uni line -- enter channel:

The LOADFW program determines the device type with a TEST ID operation. The
program can load either a host transfer, SSP, or Uniline DLP. This message usually
indicates that the requested channel is other than one of these three types. The
message can appear when a DLP is hung. Refer to Section 4, "DLPXCO and DLPXNO
DLP Utility Programs," for information about clearing a hung DLP.

Error on sector <number> in cylinder <number> of <max cylinder number> Enter
(I)gnore, (R)elocate, (E)nd or blank for retry

During an initialize or verify operation, the LOADFW program found an error on the
hardware. Enter one of the following choices:

I-Ignore and continue with the next cylinder.

R-Relocate the bad sector.

E-End to terminate the operation.

Blank to retry the operation.

Fatal !OP error occurred <cc/uu> !OP R/D = <R/D>

The LOADFW program found an IOP error. The result descriptor (RID) involved
appears on the second line of the message.

Segment <number> not loaded - <number> of digits passed

The LOADFW program stopped just before the indicated segment number. The
number of digits passed indicates the amount of firmware loaded.

4127 0000-100

Section 13
MAKTRN-Translation File Generator
Program

Overview
You can perform the following functions with the MAKTRN program:

• Create a complete new collating sequence for sorting

• Interchange specific characters, retaining the remainder of the normal collating
sequence

• Assign the same collated value to multiple characters

The MAKTRN program creates a disk file used with the key translation option of the SORT
intrinsic utility programs (SORT. and SORT:). In COBOL, this option is called the
COLLATING SEQUENCE. The file that the MAKTRN program creates is a 400-byte,
single-record, single-area file on 100-byte disk. The file contains a translate table in the
format expected by the SORT intrinsic programs.

The MAKTRN program reads parameter records that describe either an entire collating
sequence or only the non-standard portions of a collating sequence. The program checks
the parameter records for correct syntax. If it does not find any syntax errors, the
MAKTRN program creates a valid translate table.

Operating Instructions
Use the following pseudo deck or control cards to execute the MAKTRN program:

?EXECUTE MAKTRN
?DATA CARD <parameter records>
?END

4127 0000-100 13-1

MAKTRN-Translation File Generator Program

MAKTRN Parameter Records
The format of <parameter records> is as follows:

• All parameter records have a dollar sign ($) in column 1.

• A valid MAKTRN option name must appear in columns 2 through 5.

• Columns 6-71 are free form. You cannot continue characters from one record to
another record.

• The MAKTRN program does not use Columns 72 through 80.

MAKTRN Options
The valid MAKTRN options are IDNT, ALFA, NUMR, and SEQN.

IDNT Option
This option determines the file name of the translate file you create. IDNT is not required.
If you omit this option, the MAKTRN program assigns a default name of TRANS*. The
IDNT option must be the first option in the parameter records.

Example

$IDNT TRANSl

This example assigns the name TRANSl to the translation file that the MAKTRN program
creates.

ALFA Option

13-2

This option indicates changes in a collating sequence. To translate a character to a
different character, include the old and new characters next to each other, without
intervening spaces. At least one space must appear between pairs of characters. The
ALF A option is a convenient method of converting graphic characters.

Characters not included on ALFA (or NUMR) option records retain their standard position
in the collating sequence. A character can appear as the first part of a pair only once. A
character can appear as the second part of a pair as many times as needed. This enables
you to collate any number of characters to the same character.

Example

$ALFA ([)] -/

This example collates parentheses as brackets and dashes as slashes.

4127 0000-100

MAKTRN-Translation File Generator Program

NUMR Option

This option uses two-digit numeric values to represent the old and new characters. You
can use the NUMR option for any characters, but it is most convenient for non-graphic
characters. AB with the ALF A option, enter old and new characters in contiguous pairs.
Separate the pairs with spaces.

Characters not included on NUMR (or ALFA) option records retain their standard position
in the collating sequence. A character can appear as the first part of a pair only once. A
character can appear as the second part of a pair as many times as needed. This enables
you to collate any number of characters to the same character.

Example

$NUMR 0040 81Cl 82C2 83C3

This example collates NULL characters (00) as spaces (40) and lowercase letters a, b, and
c as uppercase A, B, and C.

SEQN Option

This option directs the MAKTRN program to create an entire new collating sequence in
the translate file. If the SEQN option appears in the parameter records, you cannot use
the ALFA and NUMR options.

The SEQN option requires that all 256 possible character combinations be included on the
record. After you enter the keyword $SEQN, enter the character that collates as 00, then
enter the character for 01, and so forth. A hyphen between characters denotes a range of
values. Be sure to separate ranges of characters or single characters with spaces.

Example

$SEQN 40-EF FO-FF 00-3F

This example creates a collating sequence of spaces, special characters, letters, numbers,
and data communication control characters.

4127 0000-100 13-3

MAKTRN-Translation File Generator Program

13-4 4127 0000-100

Section 14
MDCOPV-Floppy Disk Copy Utility
Program

Overview
The MDCOPV utility program copies files to and from floppy disks and performs
maintenance functions on floppy disks.

The information is stored on the floppy disks, using the industry-compatible minidisk
(ICMD) format or micro-minidisk unit (MMDU) format and depending on whether you
have a system that uses 5.25- or 8-inch floppy disks. MDCOPV automatically determines
the type of system it is running on and selects the corresponding storage format, ICMD or
MMDU. MDCOPV pe1forms the following basic functions:

• Copy function-copies files or an image of an entire floppy disk to and from a floppy
disk.

• Analysis function-initializes floppy disks and removes files. Reports the amount of
space used by files and the amount still available.

• Conversion function-converts object code or A Series S-code files to MMDU
compatible format.

Supported Hardware
MDCOPV functions under the release level of the MCPNS operating system covered in
this document. The only V Series systems that require MDCOPV are V 300 systems.
MDCOPV can also function in other environments, subject to the following system and
hardware requirements:

System OLP Floppy Disk Storage Required
Format Capacity Unit Number

V300/B4900 UC-OLP 51/4 MMOU (640K8) 2 or 3

82900/3900 UC-OLP 5 1/4 ICMO-LAK (246K8) 2 or 3

82900/3900 UC-OLP SICMO (246K8) 2 or 3

Pre-900 sys IC MO-OLP 8 ICMO (246K8) 0 or 1

4127 0000-100 14-1

MDCOPV-Floppy Disk Copy Utility Program

All copy functions require an initialized floppy disk. Refer to the IN option under "File and
Floppy Disk Analyze Functions" later in this section. The ICMD-LAK format floppy disks
cannot be initialized with the MDCOPV program. You must use the DIAG20 maintenance
program, which runs in the universal console, to initialize these floppy disks.

Because of hardware limitations, the MDCOPV program can access only floppy disk drive
units 0 and 1 when running through a control or ICMD-DLP, or units 2 and 3 when iunning
through a UC-DLP. You must include the following records in the system configuration
file before the MCP can access the floppy disk drives:

• The DLP CONSOLE record

• The UNIT NST record

The input and output channel numbers for these records is that of the console DLP for
MMDU format floppy disks.

Valid unit numbers for floppy disks attached through controls or HT-DLP are "O" and "l".
Valid unit numbers for floppy disks attached through a UC-DLP are "2" or "3".

Format Information
Industry-compatible minidisk (ICMD) format floppy disks must use the industry
compatible format for floppy disks described in IBM publication GA21-9190-1. These
floppy disks have a maximum record size of 128 bytes and a blocking factor of 1.

Industry-compatible look-alike (ICMD-LAK) format floppy disks are a combination of
MMDU format and ICMD format. The floppy disk is initialized in MMDU format (256 bytes
per sector) and used as ifit were ICMD fonnat (128 bytes per sector). Micro-Minidisk Unit
(MMDU) format floppy disks have a maximum record size of 256 bytes and a blocking
factor of 1.

Operating Instructions

14-2

To use the MDCOPV program, you must first execute the program with the EXECUTE
command and then use the AX command to enter commands. The AX command
associates commands input to the executed program with a mix number. When you
execute the MDCOPV program, write down the mix number. Use the following syntax to
execute the MDCOPV program:

EX MDCOPV

When the execution of the MDCOPV program is complete, the program displays the
following message on the ODT:

ENTER INPUT PARAMETERS FOR MDCOPV

4127 0000-100

MDCOPV-Floppy Disk Copy Utility Program

Enter the mix number and the commands you want in the following manner:

<MIX>AX"CH2 12 MINI/FINBAR HOMER BYPASS"

After you enter the commands and the system completes the processing, the MDCOPV
program displays the same message again to indicate that it is ready for more input.

ENTER INPUT PARAMETERS FOR MDCOPV

You can input another command string, or you can input the following command to stop
processing:

<MIX>AX END

The prompts and the messages that the MDCOPV program displays while it is processing,
appear in this section.

Executing MDCOPV and Setting Switches
Program switch 1 (SWl) sets the length of the header record length field, which is used by
the Purge and Remove functions.

SWl, with a value of 0, sets the header record length to 80 bytes, which is the default.
Execute the MDCOPV program without setting any switches to get this record length.

SWl, with a value of 1, sets the header record length to 128 bytes for the ICMD format or
256 bytes for the MMDU format.

Example

EX MDCOPV; VA 1 100000

In this example, the MDCOPV program is executed and SWl is set to a value of 1, which
makes the header record length 128 bytes for ICMD or 256 bytes for MMDU.

Copy Functions
The following paragraphs discuss the copying functions that the MDCOPV program
performs. These functions include copying files to and from a floppy disk and copying
pseudo card reader files. Refer to "Copy Function for Floppy Disk Image Files" in this
section for information about copying floppy disk image files.

Note: In all cases, the MDCOPV copy function requires that the floppy disk be
initialized before it can be used. Refer to the IN option under "File and Floppy
Disk Analyze Functions" later in this section for more information about
initializing floppy disks.

4127 0000-100 14-3

MDCOPV-Floppy Disk Copy Utility Program

Copying Files to a Floppy Disk

When you copy files to the floppy disk, the MDCOPV program checks for the largest
available area on the floppy disk If no space is available, a message appears on the ODT.
Otherwise the MDCOPV program writes the file. If the file is too big, the MDCOPV
program writes as much as it can and then requests that you insert another floppy disk so
that it can continue to wiite the file.

For ICMD and ICMD-LAK format floppy disks, the maximum record size is 128 bytes. For
MMDU format floppy disks, the maximum record size is 256 bytes. You must be careful
when you copy files to a floppy disk with a record size greater than these maximums. The
MDCOPV program displays a warning message stating that the record size is greater than
the maximum and that, if allowed to continue, record truncation will occur. To continue,
you must use the AX command to enter Y. If you want to stop processing, you must use
the AX command to enter N.

Copying Files from a Floppy Disk

When you copy files from the floppy disk to disk or to disk pack, the copied files are
created according to the options you entered when you executed the MDCOPV program.
If you did not use output file specifications, the new file has a default record size, blocking
factor, number of areas, and records per area.

The MDCOPV program can copy files into pseudo card reader (PCR) format. This feature
enables you to create data files or execution decks on floppy disk Then when these files
are copied from the floppy disk, the MCP can activate them through standard pseudo card
reader processing.

The MDCOPV program interrogates the file being copied for control records. If the first
record is not a control record (?DATA or ?EX, for example), the MDCOPV program puts a
?DATA <file name> record at the front of the pseudo card file. The file name is that
specified in the input string. The MDCOPV program also creates a ?END record at the end
of the file if one is not already there.

Duplicating Floppy Disks

When the MDCOPV program duplicates a floppy disk, it makes an exact copy of the disk
The program starts at the first sector on the floppy disk and copies all the sectors
thereafter. When the copy function is complete, the label, tables, and data are identical on
the original and duplicated disks.

Command Syntax of the Copy Function

14-4

Figure 14-1 shows the command syntax for copying files to and from a floppy disk The
copy function syntax can copy files from 100-byte disk and 180-byte disk pack to the
floppy disk Conversely, it can copy files from a floppy disk to 100-byte disk and 180-byte
disk pack media.

4127 0000-100

(

MDCOPV-Floppy Disk Copy Utility Program

You can also use this syntax to copy pseudo card reader files and floppy disk image files
to and from the floppy disk

- <mix number> AX 11

1
DSKDK <unit number 0-3> ~
DPKDK <unit number 0-3>
DK <unit number 0-3> DSK
DK <unit number 0-3> DPK

) c= <copy from floppy disk channel no.> :J

) [:<copy to floppy disk channel no.> J

+-<name of file to copy> - <name of copied file> -,-C:-ps_E_U_D_o_:J.----t

) [: BYPASS J

Figure 14-1. MDCOPV Floppy Disk Copy Syntax

<mix number> AX 11

When you execute the MDCOPV program, write down the mix number. Enter the
commands for the program with the mix number and the AX command. The
commands for the MDCOPV program must be enclosed in quotation marks.

DSKDK<unit number 0-3>

Use this option to indicate that the file is to be copied from a 100-byte disk to the
floppy disk drive that has the specified unit number.

DPKDK<unit number 0-3>

Use this option to indicate that the file is to be copied from a 180-byte disk pack to the
floppy disk drive with the specified unit number.

DK<unit number 0-3>DSK

Use this option to indicate that the file is to be copied from the floppy disk drive with
the specified unit number to 100-byte disk

DK<unit number 0-3>DPK

Use this option to indicate that the file is to be copied from the floppy disk drive with
the specified unit number to 180-byte disk pack Copy the file to a disk pack family by
using a multifile name.

<copy from floppy disk channel number>

Use this option to indicate the number of the channel to which the floppy disk drive
unit is connected. This channel must be declared to the system with the hardware
type NST (non-status device). The input and output channel numbers are those of the
console DLP for MMDV format floppy disks.

4127 0000-100 14-5

MDCOPV-Floppy Disk Copy Utility Program

14-6

<Copy to floppy disk channel number>

Use this option to indicate the channel number to which the floppy disk unit is
connected. The floppy disk channel must be declared on the system and have a
hardware type ofNST (non-status device).

The default output channel number is the input channel number specified.

<name of file to copy>

Use this option to specify the file name in this form:

<multifile name>/<file name>

The multifile name, which can be the name of a disk pack family, is optional. The file
name can be from 1 to 8 characters in length for a file on the floppy disk. It can be
from 1 to 6 characters in length for a file on disk or disk pack. You can specify a
multifile name entry for disk, disk pack, or floppy disk files.

If you use the multifile name, it can be any name from 1 to 6 characters in length.
When you use a multifile name, enclose the entire command string in quotation marks.
The multifile name for floppy disks is the volume ID referred to in the volume label.

If you do not use the multifile name, the system uses the following default values:

• Floppy disk-all blanks (EBCDIC)

• DPK-system default disk pack

<name of copied file>

Use this option to indicate the name of the copied file, which takes the form <multifile
name>/<file name>, where the multifile name is optional.

Refer to the option called name of file to copy for more information about multifile
names.

PSEUDO

Use this option only to copy files to disk or disk pack. It indicates that the output file
being copied is in pseudo card reader deck format. This option assigns the file a
pseudo deck number that enables the MCP to activate the file in normal pseudo card
reader processing.

BYPASS

Use this option only for files on floppy disk. When the bypass indicator is set, you
cannot reset it.

4127 0000-100

MDCOPV-Floppy Disk Copy Utility Program

The bypass option provides two capabilities:

• It enables you to set the bypass indicator in the File Header when you are copying
a file to the floppy disk.

• It enables you to access a floppy disk file when the bypass indicator is set.

If you begin a command string with a quotation mark, you must end it with one.

Duplicating Floppy Disks with the Copy Function

Use the command syntax shown in Figure 14-2 to duplicate a floppy disk.

- <mix number> AX 11
- DK <unit number 0-3> -----------4

+- <copy from floppy disk channel no.>--------------->

~!---------------~--------~ II ~ c= <copy to floppy disk channel no.> =1 c= C <# of copies> =1

Figure 14-2. MDCOPV Floppy Disk Duplication Syntax

DK<unit number 0-3>DK<unit number 0-3>

Use this option to indicate that you plan to copy the entire floppy disk from the floppy
disk drive with the specified unit number to another floppy disk drive with its
specified unit number.

C<# of copies>

Use this option to indicate the number of times you want to duplicate a floppy disk.
Enter C followed by the number of copies you want. For example, C5 requests five
copies. The value can be up to three digits in length. The default value is one copy.

File and Floppy Disk Analyze Functions
Use the command syntax shown in Figure 14-3 to analyze the status of the floppy disk.
This command syntax performs the following functions:

• Lists the files on the floppy disk

• Displays the volume ID of the floppy disk

• Prints a status listing of the floppy disk

• Changes a file name on the floppy disk

• Renames the volume ID of the floppy disk

4127 0000-100 14-7

MDCOPV-Floppy Disk Copy Utility Program

14-8

• Purges the floppy disk

• Removes a file from the floppy disk

• Initializes a floppy disk

Before you enter these commands, you must execute the MDCOPV program. When you
execute the program, write down the mix number.

- <mix number> AX" PD <unit number 003>
PN <unit number 0-3>
PS <unit number 0-3>
CH <unit number 0-3>
RN <unit number 0-3>
PG <unit number 0-3>
RM <unit number 0-3>
IN <unit number 0-3>

<channe 1 number> __ __,

l [<i nput-fi 1 e-name> J [<output-file-name> J [BYPASS J
) l I <01-13 interlace> J

Figure 14-3. MDCOPV Flexible Disk Analyze Syntax

<mix number> AX "

PD

PN

PS

When you execute the MDCOPV program, wiite down the mix number. Enter the
commands for the program with the AX command. The commands for the MDCOPV
program must be enclosed in quotation marks.

Use this option to indicate the files that are on a floppy disk.

The names of all the files on the floppy disk appear on the system ODT. The floppy
disk volume ID also appears. If the floppy disk does not contain any files, a message
appears on the ODT.

Use this option to indicate the volume ID of the floppy disk.

The volume ID of a floppy disk (multifile name) appears on the system ODT. The
MDCOPV program requires the volume ID when it performs file maintenance or copy
functions. The default value for volume ID is all blanks.

Use this option to print a status listing of the floppy disk. This listing includes the
volume ID, the file names, the beginning and ending of each file, and the total space
available.

4127 0000-100

CH

RN

PG

RM

MDCOPV-Floppy Disk Copy Utility Program

The MDCOPV program creates a printer backup file with the name MDSTAT. This file
gives the exact status of a floppy disk. This listing contains a detailed analysis of the
floppy disk directory along with pertinent volume label information. It also contains
all the information about the files on the floppy disk; for example, BOE (beginning-of
extent), EOE (end-of-extent), bypass indicator, and EOD (end-of-data). The MDCOPV
program also prints the total available space and largest available area on the floppy
disk.

Use this option to change the name of the file on the floppy disk.

Use this option to rename the volume ID.

Depending on the manufacturer, preinitialized floppy disks have a volume ID of either
all blanks or IBMIRD. You can change these names with this option.

Use this option to purge all the files on the floppy disk and then return all the label
sectors to their original preinitialized state. This option accesses only the floppy disk
index track sectors 7 through 25; that is, it changes only the floppy disk directory,
while all the other sectors remain the same.

The header record length field in all file headers are set to 80 bytes unless you set
switch 1 (SWl) at the time that you execute the MDCOPV program. If you set SWl,
the program sets the length to 128 bytes for ICMD format floppy disks or 256 bytes for
MMDU format floppy disks.

Use this option to remove files on an individual basis. The MDCOPV program does
not permit multiple or group removals. When you remove a file from the floppy disk,
the system retums the directory header of the file and all the data sectors. The
MDCOPV program then tries to combine all contiguous available sectors into one
large available area. If no sectors adjacent to the returned area are available, the area
is marked available, so possible checkerboarding can occur.

This option can remove a file that contains invalid extents. The MDCOPV program
does not try to combine this space with any other available areas. The file header is
written with the extents equal to their preinitialized values. Removing a file in this
manner can cause a missing disk situation.

The header record length field in the removed file header is set to 80 bytes unless you
set switch 1 (SWl) when you execute the program. If you set SWl, the length is set to
128 bytes for ICMD format or 256 bytes for MMDU format.

4127 0000-100 14-9

MDCOPV-Floppy Disk Copy Utility Program

IN

Use this option to initialize (format) a floppy disk. The process of initializing
(formatting) floppy disks destroys all data previously recorded on the floppy disk.
You can use this option to make an unreadable floppy disk readable.

You cannot use the MDCOPV program to initialize ICMD-LAK format floppy disks.
You must use the DIAG20 program, which is released on the maintenance test
program tape.

<unit number 0-3>

Use this option to indicate the unit number of the device. Because of hardware
limitations, the unit numbers must be 0 or 1 when you are using an HT-DLP, or 2 or 3
when you are using a UC-DLP.

<channel number>

Use this option to indicate the channel number of the floppy disk drive you are using.

<input file name>

The MDCOPV program requires this option only for the CH, RM, and RN options. Use
this option to indicate the name of the file to change (CH) or remove (RM), or to
indicate the volume ID to rename (RN).

<output file name>

The MDCOPV program requires this option only for the command that changes the
name of a file (CH). Use this option to indicate the new name of the file, which can be
any name from 1 to 8 characters in length. The MDCOPV program ignores a multifile
name entry when you are using the CH function.

BYPASS

Use this option only for the commands that remove a file, or change its name.

This option enables you to remove or to change a file name that has its bypass
indicator set. If the file you are accessing has the bypass indicator set and you do not
use this keyword, a "file-not-on-floppy-disk" condition occurs.

Note: The bypass indicator cannot be set or reset by the CH function.

14-10 4127 0000-100

MDCOPV-Floppy Disk Copy Utility Program

l<Ol-13 interlace>

Use this option only for the IN function. It specifies the data pattern to be written
during the floppy-disk initialization. Specify the interlace code by entering I followed
by the 2 digit interlace number, which can range from 01 through 13.

The default interlace code for a floppy disk connected through a DLP (the MMDU
format) is Il3. The default for a floppy disk connected through a standard I/O control
(the ICMD format) is IOI.

You must use quotation marks to end a command string that you enter for the
MDCOPV program.

Copy Function for Floppy Disk Image Files
An image file is a single file on a 100-byte disk that contains all the information and files
for a floppy disk. In some cases, image files are included on release tapes and can be
copied to floppy disk.

To perform a copy of the whole floppy disk image file to or from the floppy disk, enter the
syntax for the MDCOPV program, as shown in Figure 14-4.

In the syntax, use the <number-of-copies 00-99> option to specify where the image file is
going. A value of 00 writes the file to a 100-byte disk. Any other value causes the
MDCOPV program to read an image file on disk and copy it to floppy disk, and to repeat
this process the specified number of times.

Unisys Customer Service Engineering representatives use this feature.

- <mix number> AX" COPY/<image file name>/~--~-----------
N
c
R
A
B
p
T

+-<floppy disk channel number'.;>----------------~
~ <unit number 0-3><number of copies 00-99>" ------------i

Figure 14-4. MDCOPV Floppy Disk Image File Syntax

4127 0000-100 14-11

MDCOPV-Floppy Disk Copy Utility Program

14-12

<mix number> AX "

You should have written down the mix number when you executed the MDCOPV
program. Enter the commands for the program with the AX command. The
commands for the MDCOPV program must be enclosed in quotation marks.

COPY/<image file name>

N

c

R

A

B

p

T

Use this option to indicate the name of the file to copy. It can be from 1 to 6
characters long.

Use this option to indicate that the MDCOPV program should not check the part
number.

Use this option to initiate a compare pass after writing each copy.

Use this option to recycle used floppy disks for new copies.

Use this option to set the options N, C, and R.

Use this option to set the options C and R.

Use this option to protect the floppy disk master file or copies (inserts P in headers,
includes option C).

Use this option to terminate the program without removing the floppy disk (one copy,
includes options N, C, and R).

<floppy disk channel>

Use this option to indicate the channel number of the floppy disk drive.

<unit 0-3>

Use this option to indicate the unit number of the floppy disk drive.

4127 0000-100

(

MDCOPV-Floppy Disk Copy Utility Program

<number of copies 00-99>

,,

Use this option to indicate the number of copies you want. Enter a two digit number
to indicate the number of copies.

If you enter 00, the MDCOPV program copies the file from the floppy disk to 100-byte
disk.

You must use quotation marks to end a command string that you enter for the
MDCOPV program.

Conversion Functions
The MDCOPV conversion function converts 100-character-per-record code files or 128-
character-per-record S-code files into a 256-character-per-record disk or disk pack file.
You can use the conversion function to copy code files to a 5.25 inch floppy disk, or you
can use the copy function.

Use the MDCOPV conversion function to convert the following types of files:

• An object code file created by the BPL compiler with the MCPP compiler option set

• An object code file created by the ASMBLR compiler

• A 128-character-per-record S-code file created by the PTL compiler on an A Series
System

The syntax shown in Figure 14-5 starts the floppy disk file conversion function.

- <mix> AX " ___________________________ ,

1
OBJDSK - <input file name> --r-----------..-------~"1

<output file name>
OBJDPK - <input file name> - <pack name> /<output file name> -------1

OBJDK - <unit no.><floppy disk channel no.><floppy name>/<output name>

Figure 14-5. MDCOPV File Conversion Syntax

<routine type>

Use this option to specify a 6-character concatenation of the literal OBJ and a 3-
character output device mnemonic. The following values are the only ones Unisys
supports:

• OBJDSK. The object or S-code file is converted to a 256-character-per-record
format on disk

• OBJDPK. The object or S-code file is converted to a 256-character-per-record
format on disk pack.

4127 0000-100 14-13

MDCOPV-Floppy Disk Copy Utility Program

14-14

• OBJDK<unit number>. The object or S-code file is converted to 256-character
per-record format and then copied to the floppy disk on the specified unit number.
You must specify the channel number of the floppy disk drive for this option.

<floppy disk channel number>

Use this option to specify the channel number of the floppy disk drive. The MDCOPV
program requires this number if you use the routine type OBJDK; otherwise, it is
invalid.

<input file name>

Use this option to identify the input object or S-code file. You can specify a multifile
ID if the file is on disk pack

<output file name>

Use this option to specify the name of the output file. You can specify a multifile ID
for disk pack and floppy disk files. The MDCOPV program requires this option for
output to floppy disk, but does not require it for disk or disk pack output files. The
default output file name is the same as the input file name, except that the last
character of the name is a z.

<pack name>

Use this option to specify the name of the pack that you want the file to be copied to.

<floppy disk name>

Use this option to specify the name of the floppy disk that you want the file to be
copied to.

Examples

The following examples show how to enter commands to the MDCOPV program.

Copying files to a floppy disk:

31 AX "DSKDK2 24 HSTLDP HSTLDP"

31 AX "DSKDK3 13 HSTLDQ SYSTEM/HSTLDQ BYPASS"

31 AX "DPKDK3 13 HERBIE/HSTLDN MINI/HSTLDN BYPASS"

Copying files from a floppy disk to disk and disk pack:

31 AX "DK2DSK 24 HSTLDP HSTLDP "

31 AX "DK3DSK 13 SYSTEM/HSTLDQ HSTLDQ BYPASS"

31 AX "DK3DPK 13 MINI/HSTLDN HERBIE/HSTLDN PSEUDO BYPASS "

4127 0000-100

MDCOPV-Floppy Disk Copy Utility Program

Copyillg an entire floppy disk to another floppy disk:

31 AX "DK2DK3 7 7"

31 AX "DK2DK3 7 C99"

31 AX "DK3DK2 7 7 C32"

Copyillg image files to and from a floppy disk:

31 AX "COPY/PANDLP/Al3300"

31 AX "COPY/PANEL1/Cl3201"

Converting and copyillg code files to floppy disks that can be executed in control state:

31 AX "OBJDSK LOADFW LOADFW"

31 AX "OBJDPK LOADFW HRWPAK/LOADFW"

31 AX "OBJDK2 0 LOADFW CV330A/LOADFW"

Analyzing files:

31 AX "PD3 13"

31 AX "PN3 13"

31 AX "PS2 13"

31 AX "CH2 12 MINI/FINBAR HOMER BYPASS"

31 AX "RN2 12 MYMINI"

31 AX "PG3 12"

31 AX "RM2 13 MINI/HOMER BYPASS"

31 AX "IN3 15"

Converting files:

31 AX "OBJDK3 10 M68FVR PTDISK/M68FVR"

31 AX "OBJDSK LOADOB LOADFW"

File Equate Information
Table 14-1 lists the internal and external file names that the MDCOPV program uses:

4127 0000-100 14-15

MDCOPV-Floppy Disk Copy Utility Program

Table 14-1. Names of Files for MDCOPV

Internal Name External Name Comment

MDSTAT MDSTAT Status Report Listing

PAKFIL PAKFIL Output Disk/disk pack file

PSRFIL #<file number> Pseudo card reader file

INPAK INPAK Input Disk/disk pack file

FLCFIL FLCFIL Image file - ICMD format

COPFIL COPFIL Image file - MMDU format

Object Code input OBJ I NP OBJINP

S-code input SC ODE I SCODEI

Converted Object Output OBJOUT OBJ OUT

MDCOPV Messages
The messages the MDCOPV program displays fall into these categories:

• Informational messages. These messages indicate a function is complete and
requires no operator intervention.

• Input prompts. These messages prompt you for some type of input.

• Error messages. These are error messages that do not require operator intervention.
After displaying one of these messages the MDCOPV program usually aborts the
cuffent operation and returns to the "waiting-input-parameters" state.

Informational Messages

14-16

The following messages provide information; they do not require a response. However,
you may need to act on the information in the message.

<file name> CHANGED TO <file name>

The specified file name was changed successfully to a different file name with the CH
function.

<volume ID> CHANGED TO <volume ID>

The specified floppy disk volume ID was changed successfully to a different volume
ID with the RN function.

<file name> COPIED TO MINIDISK AS <volume ID>/<file name>

4127 0000-100

MDCOPV-Floppy Disk Copy Utility Program

A disk or disk pack file has been copied successfully to the floppy disk identified by
<volume ID>/<file name>.

<volume ID>/<file name> COPIED TO <media> AS <file name>

The floppy disk file identified by the <volume ID>/ <file name> construct has been
copied successfully to either disk (<media> DSK) or disk pack (<media> DPK).

MINIDISK COPY COMPLETED ON <channel number/unit number>

The duplicate floppy disk function has been completed successfully.

MINIDISK COPY #<copy number> COMPLETED ON <channel number/unit number>

The duplicate floppy disk function has completed copy number <copy number>.
Remove the floppy disk on the specified channel number and unit number and replace
it with a scratch floppy disk if you want more copies. Then enter <mix> AX GO to
make more copies.

<channel number/unit number> MINIDISK PURGED

The floppy disk on the specified channel number and unit number has been purged
successfully.

<file name> REMOVED FROM MINIDISK

The floppy disk file <file name> has been removed successfully from the floppy disk.

<channel number/unit number> VOLUME LABEL ID<volume ID>

This message comes from the PN function and shows the volume ID of the floppy
disk.

<interlace type> MINIDISK INITIALIZED ON <channel number/unit number>
<bad tracks message>

These messages appear after a floppy disk has been initialized successfully. The
interlace type will be either INTERLACED or SEQUENTIAL, depending on the
interlace code used during initialization. The bad tracks message will be one or more
of the following:

• NO BAD TRACKS

• FIRST BAD TRACK= nn

• SECOND BAD TRACK= nn

4127 0000-100 14-17

MDCOPV-Floppy Disk Copy Utility Program

Input Prompts

14-18

When the MDCOPV program displays the following prompts, you must respond with an AX
command before the program can continue processing.

ADDITIONAL <memory required> KD REQUIRED FOR READ BUFFER REEXECUTE MDCOPV WITH
ADDITIONAL MEMORY

Because of the size of the inpu1Joutput file buffer, the program requires additional
memory for processing this function. Enter EX MDCOPV MEMORY+ <memory
required> to reexecute the MDCOPV program.

CONTINUATION MINIDISK <sequence number> REQUIRED LOAD AND <MX>AXDK<UNIT#>

The program is reading or writing a floppy disk file that extends across more than one
floppy disk and requires the next floppy disk in sequence. If you are creating a file,
the sequence number is the number that is wiitten to the floppy disk identified by
DK<UNIT#>. If you are reading the file, the sequence number identifies the next
floppy disk required. Load the appropriate floppy disk and enter the appropriate ODT
response.

ENTER INPUT PARAMETERS FOR MDCOPV

The MDCOPV program displays this message when it has been executed. When you
have entered the input parameter string, and the specified function is complete the
MDCOPV program displays this message again and waits for input. Enter <MIX>AX
END to end processing.

INVALID R/D RETURNED ON SECTOR WRITE DIR R/D: <result descriptor> DIR EXT R/D:
<extended descriptor> ENTER R RETRY OR N NO RETRY

An attempt was made to write the word deleted on a faulty sector. The result
descriptors that appear here were received after 10 retries. At this point, enter N. The
MDCOPV program stops the current function and returns to the waiting input
parameters state.

MINIDISK COPY #<copy number> COMPLETED ON <channel number/unit number> MOUNT A
SCRATCH MINIDISK ON <channel number/unit number> AND ENTER GO WHEN READY

The duplicate floppy disk function has completed copy number <copy number>.
Remove the floppy disk on the specified channel number and unit number and replace
it with a scratch floppy disk if you want more copies. Then, enter <MIX> AX GO to
make more copies.

4127 0000-100

MDCOPV-Floppy Disk Copy Utility Program

READ EXTENDED FAILED R/D DIR R/D: <result descriptor> DIR EXT R/D: <extended
descriptor> ENTER R = RETRY OR N = NO RETRY

The result descriptor and extended descriptor that appear here were received when
the MDCOPV program attempted to pe1form a Read Extended Status operation. An
invalid result descriptor was received on the previous I/O, which caused the MDCOPV
program to attempt a Read Extended Status operation to determine the exact
problem. Enter N to have the MDCOPV program abort the current function and return
to the "waiting input parameters" state.

RECYCLE USED MINIDISK OK? ENTER Y(ES) OR N(O)

The floppy disk to be used for malting a copy of an image file contains valid data. If it
is all right to overwrite this floppy disk, then enter <MIX> AX Y; otherwise enter
<MIX>AXN.

INPUT REC SIZE EXCEEDS <record size> BYTES TRUNCATION WILL OCCUR IF COPIED TO
MINIDISK CONTINUE Y = YES N = NO

Caution
This message indicates that the disk or disk pack file that is being copied to the
floppy disk has a record size greater than 128 for ICMD format or 256 for MMDU
format. If the copy is allowed to continue, the records written to the floppy disk
will be truncated and data will be lost.

INVALID RD RETURNED ON <channel number/unit number><result descriptor> ENTER R
RETRY, ORN NO RETRY

An I/O error occurred while the MDCOPV program was reading or writing to the
floppy disk on the designated channel number and unit number. If you enter N, the
MDCOPV program displays the following messages and waits for input:

COPY TO MINIDISK ON <channel number/unit number> FAILED
MOUNT A SCRATCH MINIDISK ON <channel number/unit number>
AND ENTER GO WHEN READY

Error Messages

After the MDCOPV program displays one or more of the following error messages, it
aborts and returns to the waiting input parameters state.

4127 0000-100 14-19

MDCOPV-Floppy Disk Copy Utility Program

14-20

ABORTED DUE TO BAD SECTOR

This message appears if you enter a NO response to the message ENTER R = RETRY
OR N = NO RETRY. A memory dump occurs when this message appears.

<file name> ALREADY PRESENT ON MINIDISK

The disk or disk pack file to be copied to the floppy disk already exists. Either copy
the file to another floppy disk or remove the file from the floppy disk with the RM
function.

BAD FILE-UNDIGITS IN START ADDRESS

The object code file input to the conversion function has undigits in the start address
at BASE.+94. You cannot use this file.

BAD FILE-No Start Address at 94

The object code file input to the conversion function has zero in the start address at
BASE.+94, or the address controller at the start address is not zero. You cannot use
this file.

DUPLICATE MEDIA NOT ALLOWED

The six characters that indicate the direction of the copy cannot contain duplicate
hardware types.

FILE ID NOT CHANGED

The file name specified for this CH function already exists on the floppy disk.

INPUT FILE NOT ON MINIDISK

The input file specified cannot be found on the floppy disk. The file name and bypass
indicator must match before you can access this file.

INV CONTINUATION FILE SEQ#, IS nn, EXPECTED nn

The MDCOPV program encountered a multivolume floppy disk file, and you put in the
wrong continuation floppy disk. The sequence numbers that appear here are the ones
that MDCOPV expected and the ones actually received.

INV HEADER EXTENTS, SECTOR number

The File Header number that appears here has overlapping or invalid extent fields.
The MDCOPV program cannot use this floppy disk until you perform a purge or
initialize it.

4127 0000-100

MDCOPV-Floppy Disk Copy Utility Program

INV INPUT BLOCK SIZE > 99

The records-per-block value in the disk file header of the input disk or disk pack file is
greater than 99. If you want to copy this file to the floppy disk, it must be reblocked.

INV MULTI VOL SEQ# <header-volume-seq-number>

The header-volume sequence number found in the input File Header label is invalid.
MDCOPV expects either a blank volume sequence number and blank multivolume
indicator for single floppy disk files, or a C or Lin the multivolume indicator and 01
through 99 in the volume sequence number for multivolume floppy disk files.

INV OUTPUT NUMBER OF COPIES

The MDCOPV program expected the number of copies parameter, or the parameter
was invalid in some way. The correct syntax is C followed by a 1- to 3-digit number.
There is no space between the C and the number (for example, 1Cl01 is the correct
entry if you need 10 copies).

INVALID CONTINUATION MINIDISK REC SIZE

The record size that appears in the File Header of a continuation floppy disk does not
equal the original record size.

INVALID IMAGE-COPY ROUTINE INPUT ENTERED

The MDCOPV program cannot find the name of the image file or the second 1
/

1

delimiter.

INVALID INPUT ENTERED

The string you entered in response to the prompt ENTER INPUT PARAMETERS
contains an invalid token. An example of an invalid token is a multifile name that is
greater than 6 characters.

INVALID INPUT FILE RECORD SIZE

The code file that you designated for the conversion function does not have a record
size of 100 characters (object code) or 128 characters (S-code).

INVALID INPUT FUNCTION

The input hardware type you specified is invalid, or the MDCOPV program does not
recognize the 3-character analyze function you have entered.

INVALID INPUT ROUTINE TYPE

The first item in the input parameter string is not 3 characters (for the analyze
function), 6 characters (for the copy function), or 'COPY/' for the image file copy
function.

4127 0000-100 14-21

MDCOPV-Floppy Disk Copy Utility Program

14-22

INVALID INTERLACE CODE

The interlace code that you entered as part of the IN function parameter string was
invalid. The correct format is Inn where nn represents a number in the range of 01
through 13.

INVALID MINIDISK CC/U

The channel and unit combination you have entered is not correct.

INVALID MINIDISK CHANNEL #

The channel number you have entered either is not present or is invalid.

INVALID MINIDISK UNIT #

The unit number you have entered is not in the range of 0 through 3.

INVALID OUTPUT FILE ID

The MDCOPV program expected an output file name but did not find one.

INVALID OUTPUT FUNCTION

The output hardware type you have specified is invalid.

INVALID OUTPUT REC SIZE

The record size value in the label for this floppy disk file is not mod 4. The MDCOPV
program aborts the copy function.

INVALID '(O)CCUNN' INPUT

The parameters for the image file copy function were missing or invalid.

INVALID S-CODE FILE FORMAT

The input S-code file has a record size of 128 characters, but does not contain PTL in
the first record. Therefore, this S-code file has an incorrect format.

I/O ERROR IN TRACK ZERO BAD MINIDISK - INITIALIZE ABORTED ON <channel
number/unit number>

MDCOPV was unable to initialize the floppy disk because of an error in track zero.
The floppy disk is not usable and you should discard it.

MINIDISK MEDIA NOT PRESENT

A floppy disk hardware specification (DK<unit number>) was not found in the routine
type you specified. A floppy disk must be present as either the input or output device.

4127 0000-100

MDCOPV-Floppy Disk Copy Utility Program

NO AVAILABLE SPACE ON MINIDISK

There is insufficient room on this floppy disk to complete the requested function. You
should either use another floppy disk or obtain space on the current floppy disk by
removing files or by purging the floppy disk.

NO CHANGED TO FILE ID

A CH function was requested, but you did not enter an output file name.

NO FILES ON MINIDISK FILE <file name> NOT LOADED

An image file could not be created because there were no files on the floppy disk.

NO INPUT FILE ID PROVIDED

You must enter a file name for the CH, RM or RN functions.

NO RECORDS IN INPUT FILE

The file to be copied to the floppy disk contains no records. Your request will be
aborted.

OUTPUT MINIDISK NAME IS REQUIRED

A floppy disk name must be input when converting an object code or S-code file
directly onto a floppy disk.

VOL ID MISMATCH, MINIDISK ID <volume ID>

The volume ID of the floppy disk does not match the multifile name you entered for
the floppy disk.

WRONG FILE (NOT MCPP OR ASSEMBLER)

This code file cannot be converted for one of the following reasons: This object code
file was not compiled with the ASMBLR compiler. This object code file was compiled
with the BPL compiler, but you did not set the MCPP dollar option.

WRONG MINIDISK FORMAT FILE <file name> NOT LOADED

This floppy disk cannot be used to make an image file.

1 TO 6 CHARACTERS FOR IMAGE FILE NAME

The image file name was missing or was greater than 6 characters in length.

4127 0000-100 14-23

MDCOPV-Floppy Disk Copy Utility Program

14-24 4127 0000-100

Section 15
MERG:-MCP Merge Intrinsic
Program

Overview
The MCP Merge Intrinsic (MERG:) utility program is the only MCP merge intrinsic
program that you can use with COBOL ANSI-7 4. This section contains an overview of the
MERG: program and a concise functional description. If you are interested in a complete
discussion of this program, you should refer to the V Series COBOL ANSI-7 4 Compil,er
Programming Reference Manual (Volumes 1 and 2).

When you invoke a merge, the MCP initiates a MERGE task to perform the merge and
suspends the calling program until the merge is complete.

The MERG: program uses information from the input parameters to establish how much
memory is required for the merge operation. First, one buffer is allocated for each input
file; the buffer size is determined with the following formula:

file record length x blocking factor

If you specified any alternate areas for a file in the COBOL program, then the MERG:
program will allocate a second buffer for this file.

At this point, the MERG: program determines its own memory requirement.

• If it needs more memory than the COBOL program is using, the MERG: program uses
a GROW BCT to acquire more memory. This extra memory is returned to the MCP
when control is returned to the COBOL program.

• If the MERG: program finds that the COBOL program is larger than the calculated
merge memory requirement, the MERG: program uses the extra space to allocate a
second buffer to any input file for which a second buffer has not already been
allocated.

Thus, two input file buffers are allocated if required. However, two buffers are always
allocated for the output data file.

4127 0000-100 15-1

MERG:-MCP Merge Intrinsic Program

Functional Description
The MERG: program accepts presorted input files and merges them together to create one
output file. The MERG: program can merge up to eight input files into a single output file.
The physical block size of input and output files can be different. However, the files to be
merged must all have an identical record size.

Records are merged on the basis of the ascending or descending keys that you specify in
the COBOL MERGE statement. The rules for comparing operands in a relation condition
are used to compare conesponding key record fields of the input files that you want to
merge. When these key fields are equal, the order of the output of these records follows
the order in which you name the files with the USING clause of the COBOL MERGE
statement. All such "equal" records with one input file are output before records from
another file.

The MERG: program assumes that you have ordered all input records identically. If the
MERG: program does not find input records in the sequence you specified with the merge
keys, these improperly ordered records are output immediately after being read. The
MERG: program continues to output data records from an out-of order file until it finds a
record that brings the file back into the proper sequence. This procedure can cause the
output to be in a different ascending or descending sequence from the one anticipated by
the program that invoked the MERG: program.

Note: The MERG: program does not display a warning message when merging files
contain incorrectly sequenced keys.

15-2 4127 0000-100

Section 16
NIFMRG-DCP Utility Program

Overview

Capabilities

Files

The NIFMRG utility program enables a data communications subsystem to use more than
one type of data communications processor (DCP) simultaneously. The DCPs can be
Unisys B 874s, B 974s, CP 2000 communications processors (ICPV), an Offload Reader
Sorter Data Link Processor (ORS-DLP), and a Telcom DLP (which are both referred to as
DCDLPs).

The ORS feature for the NIFMRG utility enables you to run more than 10 Offload Reader
Sorters simultaneously on a V series host. In addition, you can use DCP numbers that are
greater than 9 for the ORS type.

The following two Network Infonnation Files (NIFs) are required to define a network
configurntion for a V Series host:

• Master Control Program Network Information Files (MCPNIF)

• Message Control System Network Information Files (MCSNIF)

The NIFMRG utility program combines the MCPNIF and the MCSNIF files and produces a
single MCPNIF file and a single MCSNIF file. After the merge, both of these files will
contain information regarding all of the DCPs. The NIFMRG utility alters B,874 firmware
files during the merge.

The Network Definition Language (NDL) compilers produce a pair of NIFs that are to be
merged for all the DCP devices except the ORS-DLP. Only this pair of corresponding NIFs
should be used as input files for the NIFMRG program. The CPNDLl compiler creates
NIFs for B 874s, the NDL 974 compiler creates NIFs for the B 974s, and the NDLDCl
compiler creates NIFs for Telcom DLPs. In addition, the CP2NIF program creates NIFs
for each CP 2000 communications processor.

4127 0000-100 16-1

NIFMRG-DCP Utility Program

For the ORS-DLP, Unisys supplies four pairs of base NIFs that contain ORS-DLP
information to serve the ORS. Each pair of base NIFs, RSPNnF AND RSSNnF, contain
information for a particular system number n, where n is either 0, 1, 2, or 3. RSPNnF and
RSSNnF will abide by the following naming conventions:

STATION NAME: RDSndd

MCS NAME: DLPndd

The letter "n" represents the processor number for a multi-host environment. The letters
"dd" represent the designated ORS DCP number.

One NDL compilation includes information on multiple DCPs of a single type, but it does
not contain information on more than one type of DCP.

If all the DCPs are the same type, you can use multiple DCPs in a data communications
subsystem without using the NIFMRG utility program. However, if you are using CP 2000s
you must use the NIFMRG utility. For further information regarding the NIFMRG utility
and NIFs, refer to the B 974 Network Definition Language (NDL) Programming
Reference Manual, the B 874/B 974/0RS-DLP MCS Message Headers Programming
Reference Manual, and the V Series TELCOM DLP Installation and Operations Guide.

Initiating NIFMRG

16-2

You can initiate the NIFMRG utility from the operator display terminal (ODT), or from
cards. The following pages explain how to input parameter syntax: from the ODT, cards,
or a preexisting disk file. In addition, an example of how to compile data in a CANDE data
file and submit it to the NIFMRG utility is illustrated.

From the ODT

To enter parameter syntax: from the ODT, you must initiate the program by entering the
following statement from cards or from the ODT:

EX NIFMRG (, "SPO")

The NIFMRG program displays the following message:

===> ENTER NEXT INPUT <===

You can now enter parameter syntax: with the AX command. The program flags syntax:
errors so you can correct the syntax:. The input is freeform. Refer to "Statements Longer
Than One Line" later in this section for more information.

4127 0000-100

NIFMRG-DCP Utility Program

From Cards

To enter parameter syntax from cards, you must initiate the program by entering the
following command from cards or from the ODT:

EX NI FMRG

The program now looks for a card deck containing the parameter syntax input.

From a Preexisting Disk File

To enter parameter syntax from a preexisting disk file, you must initiate the program by
entering the following from cards or from the ODT:

EX NIFMRG FILE INPARM=<disk file name> DSK

The program now looks for a disk file with the specified name, and the file that contains
the parameter syntax. You can create the file with an editor, or in some other manner.

Note: The disk file must have 80 characters per record and 1 record for each block.

From a CANDE Data File

You can also create a CANDE data file to compile the data, and submit the data to the
NIFMRG utility.

Example

?EX
?DATA
DCDLP
B974
ORS
MERGED
END.
?ENDCTL.

4127 0000-100

NIFMRG.
IN PARM.
DDPNOF,
M9PNOF,
NUPNOF,
P04NOF,

DDSNOF,
M9SNOF,
NUSNOF,
S04NOF.

(0,9), (DDONOF, FOONOF),(DDONOF, F09NOF).
(1), (M99NOF, FOlNOG).
(3, 17), (RSONOF, F03NOF), (RSONOF, FO?NOF).

16-3

NIFMRG-DCP Utility Program

Parameter Syntax
The following four kinds of statements are used in the NIFMRG syntax:

• DCP

• MERGED

• END

• QUIT

The DCP, MERGED, and END statements are required. You can enter QUIT statements
only from the ODT; otherwise, the syntax is the same whether you input it from cards, the
ODT, or a disk file. Each statement must end with a period.

DCP Statement

16-4

The NIFMRG utility program requires a DCP statement. You should specify one or more
DCP statements for each pair of NIFs that you want to merge. The syntax for the DCP
statement appears in Figure 16-1.

1
~~~!J <mcpnif> [ 

DCDLP 
ICPV 
ORS 

J <mcsnif> [ J 

rr/9 \- , ----, 
~<dcp number>-1-) ---.--------.----------------

rf--/9\ 

~ ( - <firmware in> 
[f-- J 1 [ J <firmware out> - ) 

Figure 16-1. DCP Statement 

4127 0000-100 



NIFMRG-DCP Utility Program 

Description 

B874 
B974 
DCDLP 
ICPV 
ORS 

Use these options to specify the type of DCP that will apply to this statement. DCDLP 
represents Telcom DLPs, or ORS-DLPS if the DCP number is less than 10. ICPV 
represents CP 2000 communications processors, and ORS represents ORS-DLPs. 

<mcpnif> 
<mcsnif> 

Use these options to enter the file names of the input MCPNIF and MCSNIF files as 
they are created by the NDL compiler or as they are supplied by Unisys. 

<dcp number> 

Use this option to enter the numbers of the DCPs that will apply to this statement. A 
maximum of 10 DCP numbers can be specified in the parenthesis. The merged NIFs 
contain information only for the DCPs that are declared. DCP numbers are assigned 
in the NDL source, and must be consistent with the specifications on the DCP UNIT 
record when you perform a cold-start or a warm-start. 

• DCP numbers for B 874s, B 974s, DCDLPs and ICPVs will range from 0 to 9. 

• DCP numbers for ORS will range from 0 to 63. 

<firmware in> 

Use this option to enter the name of the firmware file that is created by the NDL 
compiler or that is supplied by Unisys. The firmware file is named in the NDL CODE 
FILE statement. You can change the file name with an NDL file-equate clause. 

The names for the <firmware in> files are the exact names of the files as they 
currently exist. For example, assume that an NDL compilation contains the statement 
CODE FILE = MC9NOF in the DCP section. In this case, you could use a file-equate 
clause to rename the code file CC9NOF. The file-equate clause would then cause the 
compiler to create a code file named CC9NOF. You would need to change this name 
to MC9NOF before installing the NDL. Otherwise, the MCP would use the CODE FILE 
name actually stored in the MCPNIF file to identify the firmware file. 

When you merge the file using the NIFMRG utility, the <firmware in> file name is 
CC9NOF. The <firmware out> name can be different; for example, it could be 
CX9NOF. If you used these names, the NIFMRG utility would create a file named 
CX9NOF, and the MCPNIF file created by NIFMRG would specify CX9NOF as the 
firmware name for the DCP. 

4127 0000-100 16-5 



NIFMRG-DCP Utility Program 

<firmware out> 

Constraints 

Use this option to enter the name of the firmware file that is to be created by the 
NIFMRG utility. In addition, enter the name that the program will place in the merged 
MCPNIF file for the firmware file name of this DCP. 

Because the NIFMRG utility program creates an output B 87 4 firmware file that is a 
modified version of the input, you might want to rename the output file so you have a 
copy of the original, in case the merge is repeated or abandoned. 

You must list the <firmware in> and <firmware out> file pairs in the same order that 
you list the DCP numbers. For example, if you specify the DCP numbers in the order 
of 4 followed by 3, the first <firmware in> I <firmware out> file pair must correspond 
to the DCP number 4 and the second DCP to the number 3. 

• You can not use merged NIFs produced by the NIFMRG program as input files to 
create other NIFs. 

• The B 87 4 statement must be the first statement. 

• You can not use more than 10 different pairs of NIFs in one input set of DCP 
statements. 

• The NIFMRG utility program will not create an output ICPV firmware file. However, 
you can specify the same name for the <firmware in> file (default name ICPRUN) and 
the <firmware out> file, or you can use the system copy command to copy the 
<firmware in> file as the <firmware out> file manually after the merge 

• For B 874s, and B 974s you must specify in the DCP statement all of the DCPs that are 
included in the input NIF files that are created by the NDL compiler. 

16-6 4127 0000-100 



NIFMRG-DCP Utility Program 

MERGED Statement 

The NIFMRG program requires the MERGED statement to name the newly merged NIFs. 
You can specify any number of MERGED statements. However, if you use more than one 
statement, the NIFMRG program flags the error and processes only the last statement. 
This enables you to change your mind about the file names. The syntax for the MERGED 
statement appears in Figure 16-2. 

- MERGED -<new mcpnif name>--<new mcsnif name>--

Figure 16-2. MERGED Statement 

If the newly merged NIF has the same name as a file that already exists, a DUP LIB 
(duplicate library file) condition occurs. You can overwrite the old file by entering a mix 
number with the RM command. If you set the MCP option RMOV, the program overwrites 
the old files automatically. You can set this option in the system configuration file, or with 
the SO command and the RMOV option. 

Example 

MERGED CCPNOF CCSNOF. 

END Statement 

The END statement is a required statement, because it signals the end of your input to the 
NIFMRG program. It must be the last statement you enter in your syntax. If your syntax 
has no errors, the NIFMRG program begins merging NIFs. If you are entering syntax from 
the ODT, you can correct the errors and enter END again. The syntax for the END 
statement appears in Figure 16-3. 

- END - • 

Figure 16-3. END Statement 

4127 0000-100 16-7 



NIFMRG-DCP Utility Program 

QUIT Statement 

Enter the QUIT statement only from the ODT, because it will end the syntax and exit from 
the program, leaving all of the files unchanged. The syntax for the QUIT statement 
appears in Figure 16-4. 

- QUIT - • ------------------------" 

Figure 16-4. QUIT Statement 

Syntax Example 

16-8 

Use the following example if you need to create NIFs for a network with B 87 4 and B 97 4 
communications processors with two ORSs. To add two ORSs to a network, you will need 
to use a base pair of ORS-DLP NIFs with input parameters that contain the following 
NIFMRG statements: 

B874 C8PNOF, C8SNOF, (1), (C8WNOF, FClNOF). 

ORS ORPNOF, ORSNOF, (03,19), (ORFNOF, F03NOF), (ORFNOF, F19NOF). 

B974 J9PNOF, J9SNOF, (9), (J09NOF, FC9NOF). 

MERGED FCPNOF, FCSNOF. 

END. 

4127 0000-100 



NIFMRG-DCP Utility Program 

Statements Longer Than One Line 
There are times when a DCP statement is longer than the 80-column card image or the 60-
column ODT line. All statements can occupy as many lines as needed; just remember to 
te1minate each statement with a period. 

Examples 

The following examples are DCP input statements that contain more than one line of 
input: 

Errors 

B874 C8PN1F C8SN1F (1,7) 
(C81NlF,CC1N2F),(C87NlF,CC7N2F). 

B974 C9PN5F C9SN5F 
(5) 
(C95N1F ,C95N2F) 

DCDLP CCPN8F,CCSN8F (3,4,2), 
(XX3NlF ,XX3N2F), 
(XX2N1F ,XX2N2F). 

When NIFMRG finds an error in the syntax, it ignores all input until it finds a period. If the 
error is an omitted period, NIFMRG ignores all input until it finds another period. If the 
input is from an ODT, NIFMRG flags the error so you can enter the correct syntax. 

Listing 
The NIFMRG utility program generates a listing that has several parts. A sample listing is 
shown Figure 16-5. 

Description 

The first part of the listing labeled "SUMMARY OF NIF-MERGE INPUT PARAMETERS" 
includes the parameter syntax that you entered, error locations, and the syntax NIFMRG 
interpreted as single statements. Statements are double-spaced to show where one 
statement ends and the next begins. The lines for a single statement and its errors are 
single-spaced. 

The next part of the listing is a table labeled "SUMMARY OF NIF-MERGE TABLES 
GENERATED" that provides information about the MCPNIF and MCSNIF files. This table 
will include the following information: 

• Index numbers for reference 

4127 0000-100 16-9 



NIFMRG-DCP Utility Program 

16-10 

• The names of the original NIF files 

• The DCP type 

• The total number of DCPs and their corresponding DCP numbers 

Following the preceding table is a list of the DCP numbers and the con-esponding file 
names for the firmware in and firmware out files. In addition, the global information 
count lists the number of valid entries that will be used from the first table and the names 
of the merged NIF files. 

The last part of the listing displays the con-esponding station names, logical station 
numbers (LSNs), MCS IDs, and DCP numbers in the merged NIF files. 

EXECUTED ON: 08/18/92 AT 14:56:04 N I F M E R G E R REPORT PAGE 001 

SUMMARY OF NIF-MERGE INPUT PARAMETERS 

-----------------------------------------

8874 NU8NPF, NU8NSF, (00) (NU8NFF, FOONOF). 

8974 NU91PF, NU91SF, (01) (NU91FF, FOlNOF) • 

ICPV NU2NPF, NU2NSF, (02) (NU2NFF, F02NOF). 

DCDLP NUTNPF, NUTNSF, (03) (NUTNFF, F03NOF). 

ORS NUPNOF, NUSNOF, (24,14), (RSONOF, F24NOF),(RSONOF, F14NOF). 

ORS NUPNOF, NUSNOF, (25,15), (RSONOF, F25NOF), (RSONOF, F15NOF). 

ORS NUPNOF, NUSNOF, (05,06)' (RSONOF, F05NOF),(RSONOF, F06NOF) • 

ORS NUPNOF, NUSNOF, (07 ,33)' (RSONOF, F07NOF),(RSONOF, F33NOF) • 

MERGED PClNOF,SClNOF. 

END. 

Figure 16-5. NIFMRG Listing 

4127 0000-100 



NIFMRG-DCP Utility Program 

EXECUTED ON: 08/18/92 AT 14:56:04 N I F M E R G E R REPORT PAGE 002 

SUMMARY OF NIF-MERGE TABLES GENERATED 

INDEX MCPNIF MCSNIF DCP TYPE TOTAL DCPS DCP NBRS 

-O--------NU8NPF-----NU8NSF------B874----------0l----OO. 
-1--------NU91PF-----NU91SF------B974----------01----0l. 
-2--------NU2NPF-----NU2NSF------ICPV----------01----02. 
-3--------NUTNPF-----NUTNSF------DCDLP---------01----03. 
-4--------NUPNOF-----NUSNSF------ORS-----------08----24,14,25,15,05,06,07,33. 

-5-------- ----------
-6--------
-7--------
-8--------
-8--------

DCP # FIRMWARE IN FIRMWARE OUT 

-OO----------NU8NFF------------FOONOF---
-01----------NU91FF------------F01NOF---
-02----------NU2NFF------------F02NOF---
-03----------NUTNFF------------F02NOF---
-05----------RSONOF------------F05NOF---
-06----------RSONOF------------F06NOF---
-07----------RSONOF------------F07NOF---
-14----------RSONOF------------F14NOF---
-15----------RSONOF------------Fl5NOF---
-24----------RSONOF------------F24NOF---
-25----------RSONOF------------F25NOF---
-33----------RSONOF------------F33NOF---

GLBL INFO COUNT MERGED MCPNIF NAME MERGED MCSNIF NAME - - - -

-05---------------------------PClNOF------------------SClNOF---

TOTAL OVERALL DCPS DECLARED IS 12. 

Figure 16-5. NIFMRG Listing (Cont.) 

4127 0000-100 16-11 



NIFMRG-DCP Utility Program 

EXECUTED ON: 08/18/92 AT 14:56:04 N I F M E R G E R R E P 0 R T PAGE 003 

STATION NAME LSN MCS ID DCP # 

------------

STOlOl 0000 NUOMCS 00 
ST0102 0001 NUOMCS 00 
ST0103 0002 NUOMCS 00 
ST0104 0003 NUOMCS 00 
ST0105 0004 AC 00 
ST0106 0005 NUOMCS 00 
ST0107 0006 AC 00 
ST0108 0007 NUOMCS 00 
ST0109 0008 AC 00 
STOllO 0009 NUOMCS 00 
ST9001 0010 NUOMCS 01 
ST9002 0011 AC 01 
ST9003 0012 NUOMCS 01 
ST9004 0013 AC 01 
ICPOOO 0014 .PFMCS 02 
ICPOOl 0015 AC 02 
ICP002 0016 NUOMCS 02 
STTOl 0017 NUOMCS 03 
STT02 0018 AC 03 
STT03 0019 AC 03 
STTTTY 0020 TSHMCS 03 
RDS005 0021 DLP005 05 
RDS006 0022 DLP006 06 
RDS007 0023 DLP007 07 
RDS014 0024 DLP014 14 
RDS015 0025 DLP015 15 
RDS024 0026 DLP024 24 
RDS025 0027 DLP025 25 
RDS033 0028 DLP033 33 

0000 WARNING MESSAGES 

NO ERRORS, FILES MERGED 

Figure 16-5. NIFMRG Listing (Cont.) 

16-12 4127 0000-100 



Section 17 
PBDPRN-Printer Backup Utility 
Program 

Overview 
The Printer Backup Utility Program (PBDPRN) is a bound utility that prints printer backup 
files on various types of printers, including image page printers. This utility replaces 
PBDOUT and PBTOUT. 

You can use the PBDPRN program to: 

• Print printer backup files by number or name from 

Tape 

Disk pack 

Disk 

• Create printer backup tapes. 

• Search the backup file for a certain string of text and, when found, to print the string. 

• Start and stop printing at any position in a file. 

• Translate all lowercase letters to uppercase letters during printing. 

Notes: 

• PBDPRN can print a printer backup file from disk or disk pack, regardless of the 
medium on which the file was created. It is possible to have the same backup file 
number on both disk and disk pack: when this occurs, PBDPRN will print the 
printer backup file residing on disk. If you want to print the printer backup file 
residing on disk pack, use the FROM <disk pack name> option. 

• Prior to MCP/VS 3.2 all files were read block 10, but now PBDPRN can read printer 
backup files with the same blocking factor as that used to create the file. 

• The backup number is now included in the file printed message. 

See Figure 17-1 forthe PBDPRN syntax. 

4127 0000-100 17-1 



PBDPRN-Printer Backup Utility Program 

17-2 

- PRINT 1 <printer backup file number> 
<printer backup file name> ~ 
ALL~~~~~~~~~-----l 

<cc/u> -C:: :file name> ] 

~ L & -----r SET - ( - <printer options> - ) J 
LAND _J 

> l FROM DISK I L TO <unit ID> J l SAVE J 
-r= ~~~~kpack name> ~ 

> L <number of copies> J L * J 

<printer options> 

' 
B 
G 

ART 

FORM 
NOLA 
NOMS 
PBT 
REST 
SEAR 
SKIP 
STOP 
TRN 
UN LAB 

CH = <string spec> -
<l-999999> 
<l-99999999> 

l 

Figure 17-1. PRINT (PBDPRN) Syntax 

PRINT 

Use this option to invoke the PBDPRN program. 

<printer backup file number> 

~ 

Use this option to print individual files according to their backup file number. 

<printer backup file name> 

Use this option to print individual files according to their backup file name. 

Use these options to print all printer backup files. Unless you specify DISK or PACK, 
the program prints all the printer backup files on both disk and disk pack 

4127 0000-100 



cc/uu <file name> 
cduu= 

PBDPRN-Printer Backup Utility Program 

Use this option to print printer backup files from tape. You must specify the channel 
number and unit number for the tape drive. If you use a file name, only that file is 
printed. If you enter an equal sign, all the printer baclrup files that are on that tape are 
printed. 

AND SET 
&SET 

Use these keywords to set options. Enclose the options in parentheses. If you use 
more than one option, separate each option with a comma. 

FORM 

Use this option to direct output to the printer you previously named in the MCP file 
equate control card (for example, FILE PRINT = SHORT/OUTPUT). 

NO LAB 

Use this option if you do not want a block letter label to appear on the cover page of a 
printout. However, the program prints the line that indicates the backup file number, 
its name, and the file label information. 

NO MSG 

Use this option to stop the PBDPRN program from displaying messages on the system 
console when it finishes printing a file. 

PBT 

Use this option to direct the printer backup listing to tape. 

RESTART 

Use this option to restart a print job that was stopped with the QT command or 
terminated along with the PBDPRN program because of VSID message protocol 
errors. With this option, you can start printing at the beginning of the page the 
program was printing when it was stopped. If the program does not find the beginning 
of a page, it resumes at the beginning of the last line it was printing when it was 
stopped. This option does not work for files on printer backup tapes (PBT). 

To use RESTART, enter the same syntax as that you used to start the job originally, 
but include the option RESTART. 

SEARCH <string spec> 

Use this option to search a column of text and to start printing the file where it finds a 
matching string of characters. The string cannot exceed 99 characters. 

4127 0000-100 17-3 



PBDPRN-Printer Backup Utility Program 

Figure 17-2 shows the syntax for the SEARCH option: 

- SEARCH -<column number>'------------------~ 
L "<character string>" 

<string length>---c= ~~ =:r-<character string;._l 

Figure 17-2. SEARCH Option Syntax 

<column number> 

Use this option to indicate the column to search. It can be any number between 1 and 
132. Note that the sum of the column number and the string length cannot exceed 
133. 

''<character string>'' 

Use this option to indicate a string of characters that you want the PBDPRN program 
to sem·ch. The string cannot be longer than 99 characters, including blanks. 

<string length> 

UA 
UN 

Use this option to indicate how many characters and blanks are in the string. There 
can be up to 99 characters in the string. 

Use UA to indicate that the string is a representation of bytes as you would see on a 
printed listing. 

Use UN to strip the zone portions off a character. You can do this only for a backup 
on tape condition, where you are printing a backup from DISK/PACK. In this case, the 
program assumes that UA is the compare type. 

SKIP <1-999999> 

Use this option to begin printing at a certain line number. Use it with the option STOP 
to print part of a file. 

STOP <1-99999999> 

Use this option to stop printing at a certain line number. Use it with the option SKIP 
to print part of a file. 

TRN 

Use this option to translate all lowercase letters to uppercase letters. 

Note: This option is automatically set whenever the printer is dedared 
UPPERCASEONLY. 

17-4 4127 0000-100 

( 



PBDPRN-Printer Backup Utility Program 

UN LAB 

Use this option when you do not want a label or any other type of information to 
appear on the cover page of the printout. 

FROM DISK 
FROM PACK 
FROM <disk pack name> 

Use the option FROM DISK to specify a printer backup file on disk. 

Use the option FROM PACK to specify a printer backup file on disk pack. The 
PBDPRN program searches the following: 

• The primary backup family declared on the CONTROL BACKUP record during 
system initialization 

• The secondary backup family declared on the CONTROL BACKUP record dming 
system initialization (if no secondary backup family is declared, PBDPRN skips 
this search) 

• All unrestricted disk packs 

Use the option FROM <disk pack name> to indicate that the printer backup file is 
stored on a specific disk pack. The PBDPRN program searches only that disk pack for 
the file. 

If you do not include a FROM clause in the PRINT command, the PBDPRN program 
searches the disk, the primary backup family, the secondary backup family (if any). If 
no primary or secondary backup families are specified, PBDPRN searches all 
unrestricted disk packs. 

4127 0000-100 17-5 



PBDPRN-Printer Backup Utility Program 

17-6 

TO <unit ID> 

Use this option if you want to specify a particular printer. If you are using an image 
page printer, you must use the option PCF =<file name>. If you use this option, the 
file is saved after printing. 

If you do not use this option, the PBDPRN program prints the file on the first available 
line printer. 

SAVE 

Use this option to save the printer backup file after it is printed. 

<number of copies> 

* 

Use this option if you want to p1int more than one copy. You can print up to 99 copies 
for each print job. If the PBDPRN program is printing backup files from a tape, it 
ignores this option. 

Use the asterisk to put the PBDPRN program into a waiting-accept condition. The 
program will display ENTER SPECS on ODT and PROMPT you with ACCEPT. You 
can then use the AX command to enter parameters to the PBDPRN program. The use 
and syntax of the parameters are the same as those used in the PB command. Refer to 
Volume 2 for more information about the PB command. 

Examples 

PRINT 12345 

In this example, the printer backup file @12345 is printed on any available line printer. 

PRINT 12345 AND SET (SKIP 100, STOP 1000) 

In this example, the printer backup file @12345 prints starting at line 100 and stops 
printing at line 1000. Because you did not specify a printer, the program printed the 
file on any available line printer. 

PRINT 6/1 = 

In this example, all the baclmp files from the tape on the drive with the cc/uu number 
6/1 are printed on any available line printer. 

PRINT BKFILE & SET (SEARCH 10 "SAM") TO SPEC 5 

In this example, the program searched column 10 of the text and began printing when 
it found the string SAM. The program printed that entire line through to the end of the 
file. You specified the printer named SPEC, and you requested five copies. 

4127 0000-100 



PBDPRN-Printer Backup Utility Program 

Executing PBDPRN 
You can execute the PBDPRN program with the EXECUTE command and the following 
syntax: 

EX PBDPRN. 

When you have executed the program, the following instructions appear on the ODT: 

PBDPRN = <mix number> ENTER SYNTAX. AX 'END' TO TERMINATE INPUT. 

Enter syntax with AX commands, and then enter END to terminate your input. 

Auto Printing 
You can use MCP control file equation cards to automatically direct printer backup files to 
the image page printer. 

The following examples illustrate the different syntax that you use to print automatically 
to a line printer rather than an image page printer. 

To print to a line p1inter, the MCP FILE control card should look like this: 

?FILE LINE = SPEC/OUTPUT FORM AUTO 

To print this file to an image page printer, the card should look like this: 

?FILE LINE = DOCPCF/OUTPUT FORM AUTO. 

Note: DOCPCF is the unit ID for an image page printer. 

4127 0000-100 17-7 



PBDPRN-Printer Backup Utility Program 

PBDPRN Syntax Errors 

17-8 

The PBDPRN program displays the following messages when e1Tors in syntax are input 
from a terminal. 

AT <token> 

This message indicates where in the syntax an error occurred. 

BAD COMPARE STRING 

Refer to the PB command in Volume 2. 

BAD OFFSET 

Refer to the PB command in Volume 2. 

BAD SKIP FACTOR 

An invalid sldp was detected. 

BAD STRING LENGTH 

An invalid length of compare string was detected. 

DESTINATION MISSING 

The keyword TO must be followed by the unit ID of the printer the PBDPRN program 
is to print the file on. 

INVALID COPY NUMBER, TWO DIGIT NUMBER EXPECTED 

The PBDPRN program prints a maximum of 99 copies for each execution. 

INVALID FILE IDENTIFIER 

File names can be up to 6 characters long. 

INVALID OPTION, 'SET' EXPECTED 

You must use the keyword SET when you invoke the AND SET options. For example, 
enter the following: 

PRINT 12345 & SET {NOLAB, TRN). 

INVALID SET OPTION OR ')' EXPECTED 

Valid options are listed in the railroad diagram. They must be in parentheses. For 
example, enter the following: 

PRINT MYFILE AND SET (NOLAB). 

4127 0000-100 



PBDPRN-Printer Backup Utility Program 

INVALID SOURCE, 'PACK' OR 'DISK' EXPECTED 

PACK OR DISK are the proper names for media. 

INVALID STOP NUMBER 

The PBDPRN program stops p1inting files at a line number from 1 to 99999999. 

INVALID SYNTAX, 'FROM' OR 'TO' EXPECTED 

You specified something other than FROM, TO, SA VE, copy number, or* after the file 
name and the AND SET options. 

MISSING FILE IDENTIFIER 

The PBDPRN program needs to lmow the file to print. You can identify files by 
specifying the backup file name, backup file number, the keyword ALL, or the 
symbol=. 

MISSING LEFT PAREN 

Parentheses are required with the AND SET options. For example, enter the 
following: 

PRINT MYFILE AND SET (NOLAB). 

'UA' OR 'UN' EXPECTED 

When you use the SEARCH option and specify the length of the string, you must 
indicate ifthe string is UA or UN. For example, enter the following: 

PRINT 12345 & SET (SEARCH 1 3 UA SAM). 

AX Errors 
When you use an asterisk at the end of the command syntax, you can then enter various 
options with the AX command. If you make an error, the PBDPRN program displays one 
of the following messages. 

BAD COMPARE STRING 

Refer to the PB command in Volume 2. 

BAD OFFSET 

Refer to the PB command in Volume 2. 

BAD SKIP FACTOR 

Refer to the PB command in Volume 2. 

4127 0000-100 17-9 



PBDPRN-Printer Backup Utility Program 

ENTER SPECS 

When you invoke the PBDPRN program with an asterisk at the end of the command 
string, it displays this message to let you lmow that it is ready for you to enter options 
with the AX command. 

INVALID PARAMETER - TRY SOMETHING ELSE 

The syntax that you entered is not correct. Try again. 

Messages Displayed for Line Printers 

17-10 

The program displays the following messages, depending on the printer you are using. 

<F-N> PRINTED cc/uu COPY [<copy-number>] 

Refer to the PB command in Volume 2. 

<F-N> STOPPED cc/uu <copy-number> RECORD <record number> 

Refer to the PB command in Volume 2. 

*** PARITY ERROR AX OR DS? 

The PBDPRN program has detected a parity error in a tape file. Use the AX command 
to force the program to print error flags marking the corrupt block and to continue 
printing the file. Use the DS command to discontinue the job. 

FI LE NOT PRESENT 

The PBDPRN program cannot find the file on disk or disk pack. 

FI LE NOT STOPPED 

Refer to the PB command in Volume 2. 

INVALID FI LE 

Refer to the PB command in Volume 2. 

INVALID PAPERMOTION FIELD 
DS OR DP? 

Refer to the PB command in Volume 2. 

NO MATCHING RECORD 

Refer to the PB command in Volume 2. 

4127 0000-100 



PBDPRN-Printer Backup Utility Program 

PBDPRN =<mix number> CURRENT PRINT IS <percent> COMPLETE 
ESTIMATED TIME TO COMPLETION IS hh:mm:ss (EOJ AT hh:mm) 

The PBDPRN program displays this message to indicate when a document will finish 
printing. This message is in response to the SW command. To find out when the 
PBDPRN program will finish printing, enter the following: 

<mix number> SWl 1. 

PBK ON MORE THAN ONE SYSTEM 

More than one file with the same name exists on the shared system when PBDPRN 
program asks for the system number. Enter the system number with the AX command 
so the program can continue with the print job. 

PRINT SKIPPED [FORWARD/BACKWARD] <a number of> RECORDS 

A number of records have been skipped, forward or backward, because you used the 
SK command. 

STRING FOUND AT RECORD <record number> 

Refer to the PB command in Volume 2. 

4127 0000-100 17-11 



PBDPRN-Printer Backup Utility Program 

17-12 4127 0000-100 



Section 18 
PCOPY-Object Program Copy Utility 
Program 

Overview 
The PCOPY program copies and modifies program code files or WFL code files. The 
PCOPY program transfers code files from a 100-byte disk to a 180-byte disk pack and vice 
versa. 

The disk pack or disk pack family on which the programs reside can be either shared or 
nonshared. Refer to the CONTROL CODEPACK record in Volume 1 for more information 
about code files on disk pack 

The PCOPY program does not support the transfer or conversion of remote files through 
the BNA network. 

Operating Instructions 
Execute the PCOPY program with the following syntax: 

EX PCOPY (100 , "<program ID>" , "<disk pack ID>") 

The 100 is an optional parameter setting VALUE 0 equal to 1. 

The program ID that you specify must reside on a 100-byte disk or a 180-byte disk pack 
and must be a valid code file. The program produces self-explanatory error messages if 
these criteria are not met. 

• If you want to transfer the code file from 100-byte disk to 180-byte disk pack, the disk 
pack ID must identify the disk pack or disk pack family where the code file is to 
reside. It must be a valid full disk pack name or family name (not a disk pack group 
ID). A transfer from 100-byte disk to 180-byte disk pack is the default value for the 
PCOPY program. 

• If you want to transfer the code file from 180-byte disk pack to 100-byte disk, you 
must use the VA 0 1 option. With this option, you indicate that the destination of the 
code file is a 100-byte disk, and that the disk pack ID identifies the name of the disk 
pack or disk pack family where the code file currently resides. 

When the code file transfer to disk pack is complete, you can execute it in the normal 
manner. Refer to the EXECUTE and COMPILE statement syntax in Volume 2 for more 
information. 

4127 0000-100 18-1 



PCOPY-Object Program Copy Utility Program 

18-2 

Note: PCOPY is not necessarily needed when you are using the COBOL ANSI-74 and 
RPG compilers (release ASR 6.5, and greater). These compilers are capable of 
generating code files directly to disk pack in the properformat. Refer to 
COMPILE statement syntax in Volume 2 for more information. 

Examples 

EX PCOPY (,"COBOL", "SPLIBS") 

In this example, the program transfers the COBOL compiler to the disk pack family 
named SPLIBS. You can then use the compiler to compile a program with the 
following statement: 

CMP JAKE WITH COBOL ON SPLIBS LIB. 

In this example, the program creates a new program called JAKE on DISK. 

EX PCOPY (100, "COBOL", "SPLIBS") 

In this example, the program transfers the code file named COBOL from the disk pack 
family named SPLIBS to 100-byte disk. 

4127 0000-100 



Section 19 
PKCOPY-Disk Pack Copy Utility 
Program 

Overview 
Use the PKCOPY program to exactly duplicate all the data on one disk pack on a second 
disk pack. Both disk packs must be the same type and model. The PKCOPY program 
performs the copy function on a sector-by-sector, direct I/O basis that makes it faster than 
SYSTEM/COPY. Format the destination disk pack before you use it. 

Neither disk pack can be accessed until the copy function is complete. When it is 
complete, both disk packs are in a saved mode. When a disk pack is in the saved mode, 
you must use the RY command to make it available. 

When the copy function is complete, one disk pack is an exact duplicate of the other. 
Each disk pack has the same files, the same family name, the same available table, and, 
depending on whether or not you use the feature, the same se1ial numbers. 

If PK COPY detects an error during copying, it changes from a block copy mode to a sector 
copy mode with a higher retry count, to preserve as much data in the block as possible. 

If you choose the COMP ARE feature, the data copied to the destination disk pack is 
compared with the data on the source disk pack. If there is a descrepancy, you are given 
the option to stop or to continue copying. 

The utility also has a feature that lets you change the serial number of the destination disk 
pack. Otherwise, both disk packs have the same serial numbers. On version 1 disk packs, 
do not change the serial numbers if the source disk pack contains parts of a file that span 
two or more disk packs, because the disk pack serial numbers are needed to find all parts 
of the file. 

The MCP uses the available table to keep track of the amount of space available on the 
disk pack and to omit bad sectors from use. The XP command is used to indicate the bad 
disk pack sectors that cannot be used. The MCP stores the information that you enter 
with the XP command in the available table. Therefore, the duplicate disk pack, which 
has a duplicate available table, has the same sectors omitted from use as the source disk 
pack does. 

The default amount of memory allocated to the program when it executes is 42KD. The 
default buffer size is 36KD. The program uses one hundred sectors for each I/O for 
copying and fifty sectors for a COMP ARE. For larger I/Os and increased speed, use the 
MEMORY command to provide additional memory. 

4127 0000-100 19-1 



PKCOPY-Disk Pack Copy Utility Program 

Operating Instructions 

19-2 

Use the EXECUTE command to execute the PKCOPYprogram. You enter PKCOPY 
commands with the AX command as follows: 

EX PKCOPY; AX "<command>" 

Figure 19-1 shows the command syntax for the PKCOPY program. 

~ COPY I :J <input cc/uu> ~ <output cc/uu> ~ 
'--r-[_A_N_D -:J~ COMPARE 

> L <serial no.> :J 

Figure 19-1. PKCOPY Syntax 

COPY 

This option begins the PKCOPY command syntax. Note that it must begin with a 
quote. 

COMPARE 
AND COMPARE 

Either option invokes a feature that compares the data on both disk packs. If there is 
a discrepancy, the PKCOPY program displays an error message and a prompt asking if 
you want to continue. 

<input cduu> 

This option indicates the channel and unit number of the disk pack from which the 
data are to be copied. 

<output cduu> 

This option indicates the channel and unit number of the disk pack to which the data 
are to be copied. 

<serial no.> 

This option enables you to specify a serial number for the new disk pack. If you do 
not specify a serial number, both disk packs end up with the same serial number. A 
disk pack serial number can range from 1 to 999999. On a version 1 diskpack, do not 
change the serial numbers if the disk pack contains parts of a file that spans two or 
more disk packs, because the serial numbers are needed to find all parts of the file. 

4127 0000-100 



PKCOPY-Disk Pack Copy Utility Program 

Examples 

EX PKCOPY; AX "COPY 04/02 04/03" 

EX PKCOPY; AX "COPY COMPARE 14/02 04/03 206043" 

EX PKCOPY; AX "COPY AND COMPARE 04/02 04/03 206043" 

Obtaining PKCOPY Status 

You can get a report on the progress of PKCOPY while it is executing by entering the 
following command: 

<mix number of PKCOPY> SWl=l 

Example responses follow: 

CURRENT COPY PHASE IS 25% COMPLETE 
ESTIMATED TIME TO COMPLETION IS 00:22:10, (EOJ AT 12:55) 

CURRENT COMPARE PHASE IS 80% COMPLETE 
ESTIMATED TIME TO COMPLETION IS 00:05:44, (EOJ AT 15:12) 

The estimated time to completion and the estimated time of completion refer only to the 
completion of the current phase of the program-COPY or COMP ARE. Estimates vary 
from request to request because PKCOPY is affected by other tasks in the mix and by 
various I/O factors. 

PKCOPY Messages 
The PKCOPY program displays messages when it encounters errors while reading or 
writing. It displays the following message asking whether or not you want to continue: 

DO YOU WANT TO CONTINUE? (YES/NO) 

When this message appears on the ODT, use the <mix number> AX command to enter 
YES or NO. For example, if you want to continue, you might enter the following 
command: 

26 AX YES 

Error messages and explanations for the PKCOPY program appear in the following 
paragraphs: 

COMPARE ERROR ON SECTOR address 

The PKCOPY program copies data on a sector by sector basis. In this case, a 
compare operation discovered a discrepancy between two sectors that should 
contain the same data. 

4127 0000-100 19-3 



PKCOPY-Disk Pack Copy Utility Program 

19-4 

INPUT/OUTPUT DRIVE INVALID OR BUSY 

The copy operation cannot continue because either one of the two disk packs is in 
use, or the channel and unit numbers you specified for one or both disk packs are 
not correct. 

INVALID FUNCTION-USE 'COPY' OR 'COPY [ AND] COMPARE' 

One or more of the commands you entered after the AX command is misspelled or is 
invalid. 

INVALID PACK LABEL <name> 

The program did not find the disk pack label <name>. 

NO COPY-PACKS MUST BE OF IDENTICAL TYPE 

The PKCOPY program copies data between the same types of disk packs. It does not 
copy data from one type of disk pack to another type of disk pack. You must use the 
SYSTEM/COPY utility program to do so. 

NO COPY-UNKNOWN UNIT ID RECEIVED 

The unit number that you specified for one of the disk packs is not correct. 

READ ERROR ON SECTOR number UNREADABLE RD = <result descriptor> 

A read operation from the indicated disk pack sector did not finish successfully. This 
result can indicate a bad sector, so that the data it contains could be corrupt. 

WRITE ERROR ON PACK <cc/uu> RD = <result descriptor> 

A write operation to the indicated disk pack sector did not complete successfully. 
This can indicate a bad sector, which means that the data it contains could be corrupt. 

4127 0000-100 



Section 20 
SNPANL-SNAP Analysis Utility 
Program 

Overview 
The SNAP Analysis Utility Program (SNPANL) takes a raw SNAP file on a V 500 system 
and breaks out the machine state for analysis by support personnel. 

Obtaining a Hard Copy of the SNAP Picture 
To obtain a hard copy of the SNAP picture on a V 500 system, perform one of the following 
procedures: 

• Enter an LNM command to execute MLGOUT and invoke SNP ANL. The LNM 
command transfers and analyzes the maintenance log. SNP ANL analyzes any SNAP 
files that are present. 

• Execute SNP ANL with a file equate to the specific SNAP picture, as follows: 

EX SNPANL FILE SNAPFI (. MpSxx) 

where: 

p = system number 

xx = picture number; value 00 through 99 

Either of these steps produces a printer backup file that contains formatted images of the 
specified SNAP picture. 

4127 0000-100 20-1 



SNPANL-SNAP Analysis Utility Program 

20-2 4127 0000-100 



Section 21 
SORT .-Sort Intrinsic Program 

Overview 
The Sort Intrinsic Program (SORT.) provides a way to execute rapid disk or disk pack 
sorts from any program written in COBOL ANSI-68 or in BPL. 

When you invoke a sort, the MCP initiates a SORT task and suspends the calling program 
until the sort is complete. For information about the memory used by SORT. refer to 
"Memory Requirements" in this section. 

You can use a parameter file to modify the SORT intrinsic parameters to match the 
specific requirements of your site. Use a file with the reserved name of SORT .. or SORT.n 
(where n is the system number) for this purpose. If the operating system finds either of 
these files when SORT. is executed, it uses the parameters in the file. 

Default SORT. parameters direct work files to 100-byte disks, where they are assigned on 
a space-available basis. 

You can also substitute a user-provided SORT. program. The operating system searches 
the code path before calling the bound SORT. intrinsic. If the system finds any file or 
program with the file identifier SORT., it ignores the bound version and executes the 
program. 

Memory Requirements 
Memory requirements for the SORT. program are the following: 

• Minimum limit is 15K digits 

• Maximum limit is 300K digits 

Within these minimum and maximum limits, the operating system examines the following: 

• The value of the LIMIT SRTMEM record in the system configuration file, discussed in 
the V Series Systems Operations Guide Volume 1: Installation. 

• The memory occupied by the program that called the SORT. program 

The operating system gives the SORT. program the larger of these two values, as long as 
the amount of memory does not violate the minimum or maximum limits. 

The minimum memory limit is larger if files have record or block sizes that approach the 
maximum limits for record or block size. 

4127 0000-100 21-1 



SORT .-Sort Intrinsic Program 

To determine the memory requirement of an object program that uses the SORT. intrinsic, 
use the information contained in the following file information block (FIB) fields as a 
guide. 

• FIBMRL-Record length is specified in digits. 

• FIBMBS-Block size is specified in digits. 

• FIBV AR-Most common record size for vaiiable-length record; defaults to FIBMRL 
(maximum record length) if you do not specify variable-length records. 

• MM-The size of this field is 100 if FIBMRL is greater than 1000; otherwise it is 20. 

• SIZE-For fixed-length records, this field contains the value of FIBMRL rounded to 
the next highest multiple of MM if FIBMRL is not already a multiple. For variable
length records, this field contains the value of FIBV AR rounded to the next highest 
multiple of MM if it is not already a multiple. 

• TOTAL KEY-Size of all keys is specified in digits. 

Using the values from these fields, the minimum memory for the SORT. program is the 
following: 

• Fixed-length records: 

((2 x FIBMBS) + (10 x SIZE)+ (10 x TOTAL KEY)+ 7000 digits) or 30,000 digits, 
whichever is larger 

• Variable-length records: 

((2 x FIBMBS) + (10 x SIZE)+ (10 x TOTAL KEY)+ 10,000 digits) or 30,000 digits, 
whichever is larger 

Disk Requirements 

Input 

The SORT. intrinsic uses 100-byte disk for scratch work files unless you specify input 
parametric information for disk pack (180-byte ). The work files used for sorting are about 
two and one quarter to two and a half times the size of the input file. 

The input file must be wholly contained on a single hardware type. You cannot mix 
hardware types within the same file. For example, a tape file cannot be contained on two 
different types of tape (MPE, GCR, and so forth). The SORT. program accepts input from 
any of the following media: 

• Cards (coded in BCL or EBCDIC) 

• Magnetic tape 

• 100-byte disk 

• 180-byte disk pack 

21-2 4127 0000-100 



SORT .-Sort Intrinsic Program 

The followillg limits apply to SORT. input: 

• Maximum blocking factor is 999 records for each block 

• Maximum record length is 4,998 bytes 

• Maximum block size (record size times blocking factor) is 4,998 bytes 

When input records are larger than output records (from SORT.), the input records are 
tmncated on the iight to match the smaller size. 

For input files on any media other than disk or disk pack, the number of records to be 
sorted must pass from the calling program to the SORT. intrinsic. The SORT. intrinsic 
assumes this value is accurate. For disk or disk pack input files, the SORT. program 
identifies the number of records from the disk (or disk pack) header information. 

Additional information required by the SORT. intrinsic includes the followillg: 

• Disposition of input and output files (type of close) 

• Instmctions regarding disposition of unreadable blocks in the input data file 

• Choice of 100-byte disk or 180-byte disk pack for work files 

• Instmctions regarding sort keys 

• Instmctions to execute sort and translate if required (refer to Section 13, "MAKTRN
Translation File Generator Program") 

Sorting 
The SORT. program arranges records from the input file according to the keys that you 
specify within each record, jn the stated ascending or descending collating sequence. 
Signed numeric keys are sorted algebraically. Negative numbers are less than any positive 
number. 

The followillg list shows the restrictions on the sort key: 

• Sort keys can be mixed, ascending or descending. 

• Maximum number of sort keys is 40 (subject to any restrictions imposed by the 
language of the program that calls the SORT. program). 

• Total length of all the sort keys cannot exceed 290 bytes or 580 4-bit "units." 

4127 0000-100 

Alphanumeric keys: Each byte in an alphanumeric key counts as one byte or two 
units. If the key is signed alpha (represented in COBOL by PIC S9 without 
COMPUTATIONAL), the high-order (or leftmost) unit of the key contains the sign. 

Unsigned numeric keys: Every four bits of an UN field counts as one "unit." 

Signed numeric keys: Every four bits of an SN field counts as one unit. The sign 
counts as an additional unit. 

21-3 



SORT .-Sort Intrinsic Program 

Output 
The possible output media from the sorting operation include the following: 

• Cards (coded in BCL or EBCDIC) 

• Magnetic tape 

• 100-byte disk 

• 180-byte disk pack 

• Line printer 

Any records that are output to a line printer and that are smaller than a printer line (132 
characters) appear left justified with space filled on the right. Any added content of 
output records that you define to be larger than the input records is comprised of all nulls. 
Output records that you specify as shorter than input records are truncated from the right. 

Whenever a group of contiguous input records have equal key values, the order of those 
same records in the output file is unspecified. 

Special Provisions for Sorting Variable-Length 
Records 

21-4 

The SORT. program can accept variable-length records on magnetic tape as input and can 
produce them for output. When you use variable-length records, the record size is stored, 
right-justified, in the first four bytes of each record. The maximum record and block sizes 
are specified in the FIB. 

The MCP blocks the records into the output buffer when it writes a variable-length file 
until the buffer cannot hold another record. At that time, the MCP performs the physical 
writing and resumes blocking at the beginning of the buffer. 

When the MCP passes the FIB for variable-length files to the SORT. program, it must treat 
each input record as a maximum length (FIBMRL) because the system does not permit 
variable-length records in random disk files. The system creates the work files for the 
SORT program sequentially and accesses them randomly. 

A provision has been made for optimizing the way the SORT. intrinsic allocates disk space 
for variable-length records. In addition to the maximum record length, the SORT. intrinsic 
needs to know the record length that occurs most often. The parameter FIBV AR, which is 
the FIB through the four digits at FIB+ 106, contains this information. 

FIBV AR must contain the length, in digits, for the most common record size in the file 
being sorted. FIBV AR must not be less than the size of the shortest record in the file and 
cannot exceed FIBMRL (maximum input record length). If you are unsure of the correct 
value for FIBV AR, you can use the value in FIBMRL. However, doing so disables the 
optimization logic of the disk allocation in the SORT. intrinsic. 

Do not specify a sort key location that is outside the bounds of the sh01test variable-length 
record you are going to sort. 

4127 0000-100 



SORT .-Sort Intrinsic Program 

If the SORT. program determines that any record input to it is not long enough to contain 
all the sort key fields specified in the parameters, the program deletes that record during 
the input ( distdbution) phase. A count of all such deleted records appears on the ODT 
before the program enters the merge phase. You can direct the SORT. program to 
continue with the truncated input file, or you can enter the DS command to discontinue 
the program. 

Site-Specific Sort. Parameters 
You can create SORT. parameter files to modify the sort parameters to do the following: 

• Direct work files to multiple disk packs. 

• Restdct work files to a single disk pack. 

• Specify area assignments by file, by area, and by ID number. 

The SORT. parameter files contain syntax that invokes the DMP ALL utility program. 

The SORT. parameter file named SORT.s where s is the system number establishes new 
SORT. parameters for that system. The SORT. parameter file named SORT .. (the word 
SORT followed by two periods) establishes new site-wide SORT. parameters. 

These files consist of unblocked SO-character records. If either SORT .. or SORT.s is on 
disk at the time a user program calls the SORT. program, the SORT. program uses the file 
to modify the standard default parameter set. If both files are on disk, the SORT. program 
uses SORT.s. 

The following is an example of a card file that invokes DMP ALL to create SORT. 
parameter files. 

?PFM CRDDSK PARAMS (SORT .. ) 
?DATA PARAMS 
$FILE 
$WORK PACK 
$PACK LESPAK 
?END 

?PFM CRDDSK PARAMS (SORT.2) 
?DATA PARAMS. 
$FI LE 
$WORK PACK 
$PACK SYSTEM 
?END 

In this example, DMP ALL sets site-wide parameters directing all sort work files to 
a disk pack named LESP AK. It then establishes parameters for system number 2 
that direct work files to a disk pack named SYSTEM. 

You can also create the control file using the CANDE Editor. Pelform the following steps: 

1. Make a file of type DATA. 

4127 0000-100 21-5 



SORT .-Sort Intrinsic Program 

21-6 

2. Enter the parameter records. 

3. Use the Editor COPY ALL TO DISK AS <name> command to convert the file to the 
format expected by the SORT. program. 

4. Use the command ?CH <name> TO SORT.s or SORT .. to name the file according to 
what SORT. expects. 

The parameters that you can set with a control file are $FILE, $AREA, $E. U., $WORK, and 
$PACK. Not all these options need to be set in each SORT. parameter file. If you include 
more than one value for a parameter, only the value that appears last is used. If the SORT. 
program finds errors in the SORT. parameter file when it executes, a warning message 
appears on the system ODT, and the SORT. program ignores the entire SORT. parameter 
file. 

The following paragraphs describe each option. 

$FILE 

This record directs the SORT. program to place the entire file on one disk ID. To 
select the disk ID use a process based on the internal file number (FIBDFN in the file 
information block). 

$AREA 

This record-directs the SORT. program to place each area of the file on a specific disk 
ID. To select the disk ID use a process based on the area number. 

$E.U. 

This card directs the SORT. program to assign disks by disk ID number. The 
designation EU refers to the name of an entity analogous to the current disk ID. Enter 
one or two disk ID numbers after column 5. Disk IDs are numbered from 1 to 89. 
Each number must be two digits long, for example, 01. 

$WORK 

When one number appears, all sort work files are forced to the disk represented 
by the disk ID number. 

When two numbers appear, work files alternate between both disk IDs. 

This record directs the SORT. program to assign work files to disk pack The reserved 
word PACK must appeai· after card column 5. User program parameters, which you 
enter through the SORT BCT, override this site default option. 

$PACK 

This record enables you to specify multifile pack IDs. This card must follow the 
WORK cai·d. The first multifile pack ID begins after column 5 on the card, and you 
can specify up to two of them. The disk pack ID is from 1 to 6 characters long. If you 
use equal signs ( =) in the name, the program recognizes them as masking characters 
and permits you to use any one of a number of disk packs. For example, if you enter a 

4127 0000-100 



( 

SORT .-Sort Intrinsic Program 

disk pack ID LES===, then all disk packs with disk pack IDs beginning with LES are 
available to the SORT program. 

Details on Site-Specific Parameters 

Spaces function as word delimiters on all dollar sign ($) records. 

You can disable the default ovenide mode for the SORT. program at any time simply by 
removing the SORT../SORT.s parameter file or by changing it to a different name. 

The maximum allowable buffer or single block size in any SORT. program file is 4998 
bytes (characters). The SORT. program does not check this limit; if you exceed it, 
incorrect output could result. 

The SORT work file WnnOOO is a very small file containing pointers that the SORT. 
program uses. If you use a SORT . ./SORT.s parameter file to place SORT. work files on 
disk pack or a specific disk ID, the WnnOOO work file is still assigned to system resource 
disk. 

Error Messages 
ASCD/DSND ERROR SORT KEY <text> 

You have specified a sort key other than ascending or descending. The <text> 
indicates the relative key number and the error information. The SORT. program 
aborts. 

CLASS ERROR SORT KEY <text> 

A sort key contains an invalid class. The text includes the relative key number and the 
error information. The SORT. program aborts. 

FIBVAR SPEC ERROR; ALL RECDS SORTED AS MAXIMUM LTH. 

Input is variable length and the 4-digit parameter at FIB+ 106(FIBV AR) does not 
contain a valid size. The SORT. program continues. 

FILE <F-N> IS NOT A TRANSLATE FILE 

A check of the header before a translate table file is loaded reveals that the supplied 
file is not a valid translate file. The SORT. program aborts. 

ILLEGAL CONTENTS-RECORDS DISCARDED 

A key contains the value of][ (hexadecimal 5A4A). The SORT. program continues. 

INSUFFICIENT MEMORY FOR SORT 

The SORT. program has tried to perform the requested job in the memory available 
but has found that it cannot proceed. The SORT. program aborts. 

4127 0000-100 21-7 



SORT .-Sort Intrinsic Program 

21-8 

INSUFFICIENT MEMORY SORT OUTPUT 

The output block length is too large to be processed in the amount of memory 
available. The SORT. program aborts. 

<integer> VAR RCDS SHORTER THAN SORT KEY DISCARDED: ENTER YES 
TO CONTINUE SORTING: ELSE DS OR DP 

During variable-length sorting, records were encountered that were shorter than the 
sort key and so were discarded. The SORT. program waits for you to enter YES, DS, 
or DP. 

INVALID CLOSE CODE TO SORT 

The CLOSE type requested for the input or output file is invalid. The SORT. program 
aborts. 

INVALID INPUT FILE USERBLOCK DATA 

User-blocking data has been specified for an input file, and this data conflicts with 
information in the file information block (FIB). The SORT. program aborts. 

INVALID SIZE SORT KEY <text> 

The size of a sort key is invalid. The text includes the relative key number and the 
error information. The SORT. program aborts. 

INVALID LOCN SORT KEY <text> 

A sort key has been specified beyond the end of the record. The text contains the 
relative key number and error information. The SORT. program aborts. 

INVALID SORT INPUT HOW TYPE 

Input must be from cards, tape, 100-byte disk, or disk pack. The SORT. program 
aborts. 

INVALID SORT OUTPUT HOW TYPE 

Output must be to cards, tape, 100-byte disk, disk pack, or printer. The SORT. 
program aborts. 

INVALID OUTPUT FILE USERBLOCK DATA 

User-blocking data has been specified for an output file, and this data conflicts with 
information in the file information block (FIB). The SORT. program aborts. 

KEY FIELDS DELIMITER MISSING 

The SORT. program is unable to identify the last sort key parameter. The SORT. 
program aborts. 

4127 0000-100 



SORT .-Sort Intrinsic Program 

PARITY ERROR BLOCK <integer> 
PARITY ERROR BLOCK <integer> 

BLOCK USED 
BLOCK DROPPED 

If a USE or PURGE on ERROR statement in the calling program causes the SORT. 
program to use or drop a parity enor block, one of these messages appears on the 
ODT. The integer is the block number. The SORT. program continues. 

PARITY USE OPTION INVALID 

An invalid option has been passed for handling parity enors. The SORT. program 
aborts. 

SORT INPUT VOLUME NOT NUMERIC 

The number-of-records parameter contains hexadecimal values A-F. The SORT. 
program aborts. 

SORT INPUT VOLUME NOT STATED 

The number-of-records parameter is zero, and the SORT. program input is something 
other than 100-byte disk or disk pack. The SORT. program aborts. 

SORT KEY <integer> OUTSIDE RECD; <text> 

A key has been specified beyond the record size. The relative key number (<integer>) 
and information (<text>) appear on the ODT. The SORT. program aborts. 

SORT RECORD COUNT ERROR: <integer-1> <integer-2> 

The conect record count ( <integer-1>) and the enor count ( <integer-2>) are 
displayed to indicate that the SORT. program realizes there is an error. If the same job 
repeatedly gives the same enor count, there could be a hardware malfunction. 
Contact a Unisys Customer Service Engineering representative. The SORT. program 
aborts. 

SORT TRANSLATE FILE <F-N> IS NOT ON DISK 

A SORT using the translate option has been specified, but there is no file on 100-byte 
disk with the specified file name. Whenever the file is loaded, the sort proceeds. The 
SORT. program waits for you to load the file. 

VARIABLE RECD SORT INTERNAL ERROR 

The SORT program recognizes that it has made an enor. If the same job repeatedly 
gives the same error message, contact a Unisys Customer Service Engineering 
representative. The SORT. program aborts. 

VARIABLE RECORD FIB DATA SYNTAX ERROR 

This message appears and the SORT. program aborts if you specified variable-length 
input and if neither input nor output are on magnetic tape, or if the user-blocking bit is 
set (on). The SORT. program aborts. 

4127 0000-100 21-9 



SORT .-Sort Intrinsic Program 

ZERO RECORD INPUT TO SORT INTRINSIC 

This is a warning message only. The SORT. program continues. 

21-10 4127 0000-100 



Section 22 
SORT:-TapejDisk Sort Intrinsic 
Program 

You can use the Tape/Disk Sort Intrinsic Program (SORT:) to sort one or more unordered 
files into a specified sequence. Specify tape, disk, or disk pack media as a sorting 
medium. The SORT: program is bound to the operating system. You can invoke it by 
using the SORT verb from within the program. The SORT: program is available for use 
only with the SRTUTL utility program and the COBOL ANSI-7 4 programming language. 
Refer to the V Series COBOL ANSI-74 Compiler Programming Reference Manual 
(Volumes 1 and 2) for more information. 

Normal operating parameters for the SORT: program include work files on magnetic tape, 
100-byte disk, or 180-byte disk pack Work files on disk are assigned to default 
subsystems. Work files on disk pack are assigned on a space available basis to system 
resource (non-restricted) disk packs. 

Memory Requirements 
The memory limits for SORT: are the following: 

• Minimum limit: 25K bytes 

• Maximum limit: 499.5K bytes 

Within the minimum and maximum limits, the operating system examines the following: 

• The value of the LIMIT SRTMEM record in the system configuration file, discussed in 
the Volume 1. 

• The memory occupied by the program that called the SORT: program. 

• The memory value passed to the operating system in the parameters of the program 
call BCT. Some compilers make this value default to the size of the calling program. 

The operating system allocates memory to the SORT: program based on the largest of 
these values. If the largest value is outside of the minimum or maximum limit, the 
operating system uses the limit value. 

Pay particular attention to memory used for sorting when large record sizes are involved. 
Do not minimize sort memory too much when sorting large records. The number of tape 
or disk I/O operations and the number of sort passes depend on the number of records 
that can be evaluated in memory during the sort. As record sizes approach the maximum 
design value for a given program, the number of records that can be evaluated becomes 
relatively small if the memory available to the SORT: program is too minimal. For 

4127 0000-100 22-1 



SORT:-TapejDisk Sort Intrinsic Program 

example, if the record size is 4000 bytes or more, invoking the SORT: program with less 
than lOOK bytes of memory causes a less than optimal sort performance. 

Key Specifications 

22-2 

The SORT: program aiTanges the records of the input files according to specified keys 
within each record in the ascending or descending collating sequence that you specify. 

All signed key fields are treated as computational items. If they appear in the record 
description as signed 8-bit, they will be packed into signed 4-bit before key comparison. 
All signed keys are sorted algebraically, and negative numbers are less than any positive 
number. 

The sort key can consist of up to 40 separate fields, and the size of the combined keys 
cannot exceed 290 bytes, which ai·e allocated as follows: 

• One byte for each two digits of any computational key item. 

• One byte for each two digits of any signed item plus one digit for the sign. 

• One byte for each character of any other class of key item. 

The first two in the previous list are rounded up to the next whole byte. 

The SORT: program permits special COBOL trailing-sign bytes and separate leading-sign 
bytes. For these key types, the sign counts as a whole byte. 

A single key field cannot exceed 98 units in length. In this context, units mean digits for 
computational items and bytes for all others. 

Do not specify a sort key location that is outside the bounds of the records to be sorted. 
For vaiiable-length records, this means the shortest record to be encountered throughout 
the run. If while reading the input file the SORT: program determines that any input 
record is not long enough to contain all the sort key fields specified by the calling 
program, that record is deleted during the input phase. A count of such deleted records 
appears on the ODT after the last input file has been read, and you can continue the sort 
without the offending records. 

4127 0000-100 



SORT:-TapejDisk Sort Intrinsic Program 

Input and Output Requirements 
The SORT: program can accommodate input to and output from cards, pseudo card files, 
tape, disk, or disk pack medium that are supported by the operating system. 

Input Restrictions 
Any one input file must be wholly contained on one physical media type, but you can mix 
any media and physical block sizes in any combination. The record size (FIBMRL) must 
be identical for all files participating in the sort. For variable-length files, the maximum 
record length for the output file cannot be less than that for any of the input files. 

The maximum record size (FIBMRL) for SORT: is 4998 bytes or 9996 digits. If the record 
size is larger than this, the SORT: intrinsic aborts. 

The actual files you want to sort must agree with the declarations of those files as 
specified in the calling program. For example, if you declare an input file with one 
blocking factor and the actual file presented has some other block size, the SORT: 
program aborts. 

When you specify multiple input files, you must still specify only one output file. If the 
calling program requires that more than 10 files be input to the SORT: program, the sorting 
memory requirement is increased by 500 bytes over the amount of memory that would 
otherwise be needed for each file after the tenth. 

The largest block size you can use for SORT: depends on how much memory you can 
assign to the sort task. When you use large block size files, you increase the amount of 
memory required for efficient sorting. The largest block size for the SORT: program is 
19998 bytes if you assign less than 150K bytes of memory to the sort task. If you assign 
150K bytes or more, then the block size can be up to 29998 bytes. 

Tape files consisting of variable-length records that are supported by the operating system 
can be processed by the SORT: program. However, if you use such variable-length 
records, you must specify all the files that participate in that sort as variable-length files. 
If you use variable-length records, the record size is stored right justified in the first four 
bytes of each record. The MCP blocks the records into the output buffer when writing a 
variable length file until the buffer cannot hold another record. When this situation 
occurs, the physical 1/0 is performed, and blocking resumes at the beginning of the buffer. 

When the FIB for a variable-length file is passed to the SORT: program, treat each input 
record as the maximum (FIBMRL) length because variable-length records are not 
permitted in random disk files. The SORT: program creates work files sequentially and 
accesses them randomly. To optimize the allocation of scratch disk for variable-length 
records, the SORT: intrinsic requires the calling program to supply the length of the most 
common (that is, most frequently occun'ing) record in addition to the maximum record 
length. 

The most common length is passed to the SORT: program in one of the interface 
parameters. When the SORT: program obtains this value, it breaks each variable-length 
record into fragments of that value. These smaller-sized fragments are processed 

4127 0000-100 22-3 



SORT:-TapejDisk Sort Intrinsic Program 

throughout the merge passes, which reduce both disk space required and time needed for 
the sort. 

Input and Output Assumptions 
Card, magnetic tape, disk, and disk pack input files must be in EBCDIC code. The SORT: 
program does not accept binary or ASCII input files. Blocked files on tape can consist of a 
variable number of fixed-length records (frequently the last block on a tape is a short 
block). The only exception is variable-length records on tape, where each record carries 
its own length in a 4-byte container at the front of the record. 

Rules for Sequence of Output Files 
The SORT: program has two rules for the sequence of output files. The program does not 
specify the relationship between the records in the output file within a given group of 
contiguous equal key records. Neither does it specify the ordering of those same records 
in any input file. 

Tape Sorting 
The Tape Sort mode of the SORT: program uses from three to eight work tapes in the 
sorting operation. You may specify the number of tapes in the interface parameters, but 
you cannot alter them at run time. If an input file is on tape or the output file is going to 
be on tape, that tape unit can serve its input function before being used as a work tape or 
its output function after having served as a work tape. 

Work file units can be on any supported tape type; you can mix them in any combination. 
If you specify the sorted output as tape, that output will usually be directed to the tape 
unit that was first made available as one of the work tapes. 

Tape Sort Operation 

22-4 

The SORT: program first acquires and then validates the control parameters from the 
caller. Next it opens the work file tapes. The number of work tapes that it needs is one 
fewer than the number you specified for the given sort. 

Then the SORT: program opens input files, reads them one at a time, and writes them onto 
the work tapes in sequenced runs. When the program has read the last input file, it opens 
the last work file and performs a series of merge passes on the work files. 

When the SORT: program determines that the number of mns remaining is less than the 
number of work file tapes, it opens the output file. Then the final merge operation writes 
the sorted file to the media that you specify. 

Make sure that all scratch work tapes are large enough to hold the entire sort input 
because work files cannot be multireel files. If sort input is 01iginally very close to being 
in sequence, most of the sort data can end up on one single work tape because work file 

4127 0000-100 



SORT:-TapejDisk Sort Intrinsic Program 

output reel swap during the input phase only occurs when a new sequenced run is to 
begin. 

If sort data is more or less random, you can increase the total number of records that can 
be sorted in a single sort by increasing the number of tape units available to the program. 

Disk or Disk Pack Sorting 

Disk Sort Media 

The DISK/PACK mode of SORT: uses work files on 

• 180-byte disk pack 

• 100-byte disk 

Default Sort Media 

The default sort media is 180-byte unrestricted disk pack If the calling program so 
specifies, 100-byte default disk is used instead. The work file media is always on one type 
of media only, either all 100-byte or all 180-byte. 

Work File Requirements 

The amount of work file space that the SORT: program requires for a disk sort is 
approximately 2.5 times the size of the combined input files. If the work files you are 
using are on removable media, all volumes of the media must be present during the entire 
sorting operation. 

Disk Sort Operation 

The SORT: program acquires and then validates the control parameters from the caller. 
Next it apportions available memory according to the number of input records that are 
expected. When the SORT: program determines the number of input records, it opens a 
multiarea disk or disk pack work file large enough to hold the expected number of 
records. 

Then the SORT: program opens the input files, reads one at a time, and writes sequenced 
runs to the work file. When the program has read the last input file, it reallocates the 
resources. This resource allocation is based on the number of records actually read and 
the number of merge passes that will be needed to merge the sequenced runs into a single 
run. 

The purpose of this allocation is to minimize the number of passes to merge files 
consistent with the memory available to the program. Each pass reads a work file, which 
produces fewer runs of longer length, and then writes an output work file. These passes 
continue until the program observes that the next pass is to be the last. When the SORT: 
program reaches the final pass, it opens the output file and produces the sorted file. 

4127 0000-100 22-5 



SORT:-TapejDisk Sort Intrinsic Program 

Operating Considerations 

The SORT: program does not use a specific method of work file allocation unless you are 
using a default-media override. If the work files end up on the same spindle or on disk 
units already experiencing a high level of activity, the performance of the SORT: program 
will be adversely affected. If work files are assigned to a disk ID that is also the prime 
disk ID containing the disk directory, then overall system performance may be adversely 
affected. 

Default Media Override 

22-6 

No facility in the SORT/MERGE interface enables you to control the specific disk/disk 
pack storage units that should be used for sort work files. One reason for this is that such 
unit-specific information is frequently unknown when a program is compiled. Also the 
amount of space available for work files tends to vary significantly from spindle to spindle 
over time. For these reasons, assigning work files to specific media is deferred until run 
time. 

Because of this assignment delay and because the MCP does not always lmow the 
particulars of your configuration or of its usage, the media to which the MCP assigns the 
work files is not always optimal. This fact can cause particular problems when the 
spindles with the most space available are the ones accessed most frequently. 

Because of these potential problems, a media default override feature permits all 
decisions you make about sort intrinsic work files to be based on default media 
parameters that you supply to the system. (This feature is similar to the one implemented 
for the earlier SORT. program. The SORT: program uses a control file that affects only its 
operation. The syntax for this control file and for the control file used by the SORT. 
program are similar, but not interchangeable.) 

The presence of a small control file on the system disk activates the media default system. 
This file is named SORT:s. The first five characters are always the same. The last 
character (sin this example) can be a digit 0, 1, 2, or 3, in which case the named control 
file applies only to the system represented by that number. If the last character is a colon, 
the control file applies to all systems. When both SORT:s and SORT:: are present, SORT:s 
takes precedence. 

After you have created the control file, the program will do a syntax check and then 
reformat the control file. This process is performed only once, by the first sort that 
encounters a control file. All media names, subsystem numbers, and ID numbers specified 
in the control file should be mounted and ready at the time that the control file is first 
encountered by the SORT: program. 

You can use the default media override feature to specify assignment environments for 
multiple sort work file media. You can use provisions in the SORT/MERGE interface and 
in the COBOL compiler to direct SORT: to use a specific environment number for a 
particular sort. You can change the pack name for any environment by modifying the 
control file. You can specify environment numbers from 1to90. Control file records not 
specified for a particular environment are for environment 0, which will be used with 

4127 0000-100 



SORT:-TapejDisk Sort Intrinsic Program 

programs that did not specify an environment number or programs that were compiled 
before the multiple environment feature was implemented in the COBOL compiler. 

You can create the control file with the DMP ALL utility program as follows, where s is the 
system number~ 

? PFM CRDDSK PARAMS (SORT:s) 
? DATA PARAMS 
? END. 

You can also create the control file using the CANDE Editor. Perform the following steps: 

1. Make a file of type DATA. 

2. Enter the parameter records. 

3. Use the Editor COPY ALL TO DISK AS <name> command to conve1t the file to the 
format expected by the SORT: program. 

4. Use the command ?CH <name> TO SORT:x to name the file according to what SORT: 
expects. 

The following paragraphs describe the various records that compose the control file. You 
need not include all types. The sequence of these records is not significant except where 
noted. 

$SUPR 

This record suppresses error messages that occur as a result of problems with the 
control file. Its specific function varies depending on its position in the control file. 

• If $SUPR is the first record in the file, then after the first sort to sense and report 
an error this record suppresses all error messages that pertain to the default 
media override feature. 

• If a $SUPR record appears in a non-zero environment, or if a $SUPR record 
appears in environment 0 but is not the first record, it affects only the 
environment it is in. 

$ENVT 

This record begins an environment declaration. All records that appear in the control 
file prior to the first $ENVT apply to environment 0. You must enter a two-digit 
environment number after column 5. All records from this $ENVT record to the next 
$ENVT record (or until the end of the file) apply to the environment that is being 
declared. 

You do not have to declare environments in any particular order. If the media for a 
non-zero environment are missing when the control file is first processed, then the file 
will be initialized for the error-free environments only. When the SORT: program 
subsequently calls on the missing media environment, SORT: will display a warning 
message for each failed attempt to identify the missing media (unless all error 
messages have been suppressed with the $SUPR record). 

4127 0000-100 22-7 



SORT:-TapejDisk Sort Intrinsic Program 

$DFLT 

This optional record is valid only for environment 0. It is possible that a program 
compiled to request a particular environment might be run on a system with a control 
file for which that environment number was not declared. When this happens, the 
default is to proceed with that sort as though the default media override feature were 
not being used (ie: no SORT:: file on the system). The $DFLT record ovenides that 
default and forces environment 0 to be used in place of nonexistent environments if 
they are encountered. 

$FILE 

This record directs the SORT: program to place each work file on one disk ID (sets 
FIBDTK = 1 in the file information block). The disk ID is selected through a process 
based on the internal file number (FIBDFN in the file information block). You cannot 
specify $FILE when you use $AREA or $E.U. 

$AREA 

This record directs the SORT: program to place each area of the file on a specific disk 
ID (sets FIBDTK = 2 in the file information block). The disk ID is selected through a 
process based on the area number. You cannot specify $AREA when you use $FILE 
or $I.D. 

$E.U. 

This record assigns disks by disk ID number. The designation EU refers to a previous 
entity analogous to the current disk ID. You can enter one or two disk ID numbers 
after column 5. This record type exists to provide compatibility with SORT:: files 
prepared for use with earlier versions of this product. 

$I.D. 

This record assigns disks by disk ID number. You can enter one or two disk ID 
numbers after column 5. Disk IDs are numbered from 1 to 89. Each number must be 
two digits long and followed by at least one space (for example, 01 for disk ID 
number 1). 

• When one number appears, all sort work files are forced to the disk represented 
by the disk ID number. 

• When two numbers appear, work files alternate between both disk IDs. 

$SUBS 

This record assigns work files by disk subsystem number. You can enter one or two 
disk subsystem numbers after column 5. Each number must be a single digit followed 
by at least one space. 

• When one number appears, all sort work files are forced to the disk subsystem 
represented by that number. 

• When two numbers appear, work files alternate between both disk subsystems. 

22-8 4127 0000-100 



SORT:-TapejDisk Sort Intrinsic Program 

$PACK <family!> <family2> 

This record assigns disk pack work files to family names 1 and 2. These disk packs 
can be restricted. If you specify only one name, all disk pack work files are directed 
to that disk pack family. 

$WRKP 

This record ignores the work file type specified in the calling program. The setting of 
the system option WRKP determines all work file assignments. Work files are 
assigned to 100-byte disk if WRKP is reset or to 180-byte disk pack if WRKP is set. 
You cannot specify $WRKP when you use $WORK. Refer to Volume 1 for a 
description of the USE WRKP system parameter. 

$WORK DISK 
$WORK PACK 

This record ignores the work file type specified in the calling program. The media 
selection word DISK or PACK determines whether work files are assigned to 100-byte 
disk or 180-byte disk pack. You cannot specify $WORK when you use $WRKP. 

The command word occurs in columns 1-5 of each record. The remainder of the 
record is free format. Spaces or commas are delimiters. The program checks the 
work media control file for elTors and inconsistencies when you execute the SORT: 
program. If the program finds any errors, it ignores the file and proceeds without 
refonnatting the file for use by future sorts. For example, the $FILE and $AREA 
records cannot both be present. Also, if you use the $I.D. record, you cannot use 
$FILE or $AREA. 

The $WORK and $WRKP records are mutually exclusive. Such errors, or the inclusion 
of unidentified records, cause the following elTor message: <file name> MEDIA 
CONTROL FILE CONTAINS ERRORS. In addition, if you specify specific disk ID 
numbers or disk pack family names, those media should be present when you perform 
a sort. Otherwise, the message NON-PRESENT DPK/DSK/SUBS REQUESTED AS 
SORT WORK MEDIA appears on the ODT. Any syntax elTor makes the entire media 
ovenide feature inoperative. Invoking a non-existent environment causes the 
following error message: ENVIRONMENT <number> IS NOT ACTIVE (MISSING 
MEDIA). 

The default media for sorting is 180-byte disk pack. 

Virtual Collating Sequence 
This option alters the sequence in which the SORT: program arranges records during the 
sorting process. Normally, all characters that the program encounters in the sort keys are 
alTanged in the hardware collating sequence of V Series Systems (that is, 00 through FF). 
Only those elements of the sort key described as unsigned alphanumeric are affected by 
the translation capability. Computational sort keys are always processed according to the 
hardware collating sequence. 

4127 0000-100 22-9 



SORT:-TapejDisk Sort Intrinsic Program 

The virtual collating sequence lets you do the following: 

• Specify an entirely new collating sequence for the particular program invoking the 
SORT: program. 

• Retain the normal collating sequence of 00 through FF, except for certain characters 
whose rank in the sequence you want to interchange. 

• Make a number of characters have the same rank for the ordering of records. 

The features of the virtual collating sequence option are particularly useful when you are 
using foreign alphabets or conversions from other computer systems. 

Translate Option 

You can invoke the SORT: program with the Translate option by specifying the name of 
the translate table file in the SORT CALL parameters. When you do so, the SORT: program 
acquires this file during initialization and uses it during all subsequent key processing. In 
this way, records are arranged as though the hardware collating sequence had been the 
virtual sequence that you specified. 

Translate Tables 

Any translate tables you want to use with the SORT: program (prepared by the MAKTRN 
program) must be on disk at the time you invoke the SORT: program. Refer to Section 13, 
"MAKTRN-Translation File Generator Program," for more information. 

The names of the translate table files should be unique so that the files are not 
inadvertently sorted into the wrnng sequence. The translate table file consists of a 400-
byte single record, single-3-!ea file on disk The SORT: program verifies the header 
information before it opens the Translate Table File to ensure that the file is a 400-byte 
single record, single-area file. 

Error and Warning Messages 
Each failure termination of the SORT: program displays an error message. For 
recoverable errors, continue the sort and the task that invoked the message in spite of the 
error. For all other errors, the SORT: program produces a memory dump and proceeds to 
error termination. Error termination cancels the caller and whatever job system the caller 
pertains to. 

Non-Fatal Errors 

22-10 

The following non-fatal error messages can appear on the ODT. 

INPUT RECDS BEGIN WITH SORT MARKER CHAR 

This error message indicates that the SORT: program found input records that have 
the reserved character combination j [ (5A4A) in the first two characters. Input 

4127 0000-100 



SORT:-TapejDisk Sort Intrinsic Program 

records cannot violate this rule. Refer to "Recovery" later in this section for 
information about responding to this effor. 

RECORDS SHORTER THAN LAST POSITION OF SORT KEY 

This enor occurs when the SORT: program processes variable-length records and 
determines that at least one input record is shorter than some portion of the sort key. 
An example of this condition occurs when a sort key begins at byte 102 and an input 
file contains a 100-byte record. Refer to "Recovery" later in this section for 
information about coffecting this effor. 

Recovery 
During the input phase, the SORT: program discards all records that do not meet the 
requirements presented in this section. The program keeps a count of the number of 
records discarded. Appropriate effor messages appear when the program has read all the 
input. You can continue the sort without the records that produced the effors. If you 
choose to continue, the program produces the sort file and returns control to the caller. If 
you choose not to continue, the SORT: program aborts. 

Correctable Fatal Errors 

The following paragraphs describe fatal effors that can occur. These effor messages are 
self-explanatory and you can coffect them. To recover, coffect the effor and restart the 
sort. 

ALL FILES NOT DECLARED SAME RECD SZ 

Except for variable-length sorts, all files included in the sort must have the same 
record size (FIBMRL). This effor can also occur ifthe block size or record size for an 
input file does not exactly match the size declared for that file in the calling program. 

KEY OUTSIDE RECORD OR SIZE ERROR 

You have specified a sort key that either has zero length, is too long, or all or part of it 
is beyond the maximum record size FIBMRL. 

MUST SPECIFY INPUT RECDS EXPECTED 

You did not state explicitly the size of the file. File size cannot be determined from a 
header because input is not from disk or disk pack 

NUMBER OF TAPES FIELD INVALID 

The number of tapes is not within the expected parameters of 3 to 8. 

OUTPUT FILE IS DECLARED TOO SMALL 

The capacity of the output file as declared cannot hold the number of records 
expected. 

4127 0000-100 22-11 



SORT:-TapejDisk Sort Intrinsic Program 

REC/BLK SIZE NOT AS DECLARED IN FIB 

For disk and disk pack input files, the SORT: program checks the header when it 
opens a file to verify that the real record size equals the stated record size. This 
message indicates an inconsistency. 

SORT KEY CLASS SPECIFIER INVALID 

The program has found a key field that is not UN, UA, or any other permitted value. 

Noncorrectable Fatal Errors 

22-12 

The fatal errors described in the following paragraphs are not normally correctable. The 
error can be an interface error possibly caused by the compiler that invoked the sort. The 
error can also be an internal SORT: program error. 

If the specific error doesn't always occur, the hardware might be deficient. 

If the specific error doesn't always occur and changes as you modify data, memory size, or 
sort keys, a program deficiency might be the cause. In such cases, you should save 
memory dumps and copies of the data and the calling program for analysis. 

APPARENT MISSING TAPE BLOCK BCT 0794 FAIL OR PARAM SIZE ERROR 

This error indicates a program CALL BCT failure. The parameters passed do not 
match MCP expectations. 

DISTR PHASE MEM ALLOCATION ERROR 
DUMMY RUN ASSIGNMENT FAILURE 
DYNAMIC CODE RELOCATION FAILURE 
DYNAMIC FIB RELOCATION FAILURE 
INTERNAL SORT ASC/DESC FAILURE 
MEMORY (DYNA) ALLOCATION ERROR. 
MERGE PHASE MEM ALLOCATION ERROR 
MERGE PHASE RUN CONTROL FAILURE 
MERGE PHASE SEEK CONTROL ERROR 
MERGE PHASE UNBLOCKING FAILURE 
NOT ENOUGH MEMORY (PARAM READ) 
NOT ENOUGH MEMORY (SORT BUFFERS) 
OUTPUT PHASE MEM ALLOCATION ERROR 
PASS TO PASS RECORD COUNT ERROR 

These errors can result from internal inconsistencies in the SORT: program. Contact 
your Unisys Customer Service Engineering representative. 

SMDP FIELD INVALID OP SPECIFIER 
SMDP OP=Ol MISSING OR DUPLICATE 
SMDP OP=28,29 MISSING OR SEQ ERR 

The SORT: program has either found no sort key specifiers or specifiers where they 
were not expected. This error can occur when a calling program, which is compiled 

4127 0000-100 



SORT:-TapejDisk Sort Intrinsic Program 

with a particular version of COBOL, is now running on a version of the MCP that 
invokes an incompatible version of the SORT: program. 

SMDP OP=31,35,36 MISSING OR ERR. TRANSLATE FILE SPEC INV OR MISSING 

The translate file name is too long, or the bracketing characters required around it in 
the parameters are missing. 

VARIABLE LENGTH PARAMS DO NOT AGREE 

The SORT: program has found a variable-length file that was not expected. Ifvariable
length sort is active, all files participating in that sort must be specified as variable
length files. (FIBBLK = 2). 

VAR RECD INPUT PROCESS ERROR VAR RECD MERGE PROCESS ERROR VAR RECD OUTPUT 
PROCESS ERROR 

The SORT: program has detected a failure in the management of variable records and 
portions of records in unexpected locations. 

4127 0000-100 22-13 



SORT:-TapejDisk Sort Intrinsic Program 

22-14 4127 0000-100 



Section 23 
SRTUTL-Generalized Sort Utility 
Program 

Overview 
The Generalized Sort Utility program (SRTUTL) sorts sequential, relative, or indexed 
sequential files by keys. It then generates either an ADD ROUT file acceptable to RPG or a 
new sequential file of complete records. Both RPG and COBOL users can use the SRTUTL 
program. However, many functions that the SRTUTL program provides are available 
within the COBOL compiler. 

Indexed and relative files that you sort with the SRTUTL program must have been created 
by a program compiled with a compatible release of COBOL or RPG. Additionally, you 
can selectively designate or drop input records before you actually begin sorting. 

Syntax 
The SRTUTL program accepts both a primary and secondary source file, each of which 
defines the sort requirements and then generates a sorted file in the format you request. 

The SRTUTL program ignores anything that you enter following a percent sign (%). The 
percent sign indicates that the data comprise a comment. These comments appear on the 
output listing. 

The SRTUTL program does not have an Editor file type reserved. If you plan to maintain 
the SRTUTL program parameters in Editor files, you should use file types whose sequence 
numbers are in positions 73 to 80 (ADS, BPL, FORTRAN, DASDL, WFL). 

If you use the DASDL format, you can include the SRTUTL program jobs in SYS COMP 
because the compile commands are identical. 

Program statements for SRTUTL can occur in any order as input to the SRTUTL program. 
You enter the program statements in free format into positions 1 to 72 of an input record. 
Positions 73 to 80 are reserved for sequence numbers. The input to SRTUTL consists of 
the series of program statements that appear in Figure 23-1. 

4127 0000-100 23-1 



SRTUTL-Generalized Sort Utility Program 

<file-statement> -----r-~-----------------i 
<key-statement> -----; 
<sort-statement> __ _, 
<ident-statement> 
<compare-statement> 
<multifile-statement> 
<memory-statement> 
<records-statement> 
<parity-statement> 
<addrout-statement> 

Figure 23-1. SRTUTL Program Statements 

FILE Statement 

23-2 

The file statement enables you to describe the format both for the input file you want to 
sort and for the output file that results from the sort. Be as accurate as possible when you 
enter the descriptions, especially when you are describing indexed and relative files 
because these file types store information in a control block in the maximum record 
position of the file. 

All FILE statements must include the medium, the record length, and the blocldng factor 
for each file. Also specify in the statement either the file identifiers, the close with 
PURGE disposition of the input file, or both. 

You must begin the FILE statement with the reserved word FILE followed by the reserved 
word IN and an input file description; next enter the reserved word OUT, and an output 
file description. 

The syntax for the FILE statement appears in Figure 23-2. 

- FILE - IN --------------------------? 

ri------------- /a\ 
> <file-id> - ( -.- <physical attributes>-.- ) ~ 

L {INDEXED) _J L <disk/pack default> __J 

L (RELATIVE) _J 

+-OUT - <file-id> - ( -.- <physical attributes>-,--) 
L <disk/pack default> __J 

<file id> 

- <file name>~------------------------< 
l ON <pack name> J 

Figure 23-2. FILE Statement 

4127 0000-100 



SRTUTL-Generalized Sort Utility Program 

<physical attributes> 

f- TAPE ~---------------------1 t-- CARDS ___________________ ____, 

f- CARD ~---------------------1 
DISK ---,- ( <records per area> - ) -
PACK _J L <areas> BY _J 

+- <record size> -,---------,---,-------,----------1 
L <blocking factor J l PURGE J 

<disk/pack default> 

L ~!~~ T DEFAULT L PURGE J 

Figure 23-2. FILE Statement (cont.) 

The following paragraphs describe the components of the FILE statement. 

FILE 

This keyword begins each <file statement>. 

IN 

This keyword begins the input file characteristics. 

OUT 

This keyword begins the output file characteristics. 

(INDEXED) 
(RELATIVE) 

These options identify the input file as an indexed or relative file. If you do not 
specify either, , then the program assumes that the file is a normal sequential file. 

<file id> 

Be sure that this ID label conforms to the standard format of 1 to 6 alphanumeric 
characters, the first of which must be alphabetic. If the file identifier includes any 
special characters or if the identifier is a reserved word, you must enclose it in 
quotation marks. If you specify more than one <file id> in the FILE IN phrase, then 
multiple input files will be merged into a single output file. If you want more than one 
file to be sorted without being merged, use the MULTIFILE statement instead of 
multiple input file names in the FILE IN phrase. 

4127 0000-100 23-3 



SRTUTL-Generalized Sort Utility Program 

23-4 

<physical attributes> 

Use this option to define the hardware on which the input and output files reside. 
Enter one of the following reserved words in the definition: 

TAPE-Tape file 

CARD or CARDS-Card file 

DISK-Disk file 

PACK-Disk pack file 

<disk/pack default> 

You can invoke default settings for both input and output files. 

• Input file: If the input file is on disk or pack, you can specify DEFAULT. The 
number of areas, records per area, record-size, and blocking factor is 
automatically obtained from the disk file header. If this information is not 
available, you must specify the number of records for each area. The default 
number for the number of areas is set to 100. 

• Output file: The default value for records per block for the output file is set to 1. 

<areas> 

The default value for number of areas is set to 20, and the default value for 
records per area is set to 2000. The individual record length is equal to the record 
length that you have established for the input file. 

If you do not use the DEFAULT option, you must specify the number of records per 
area for all output files and for any input file on disk or disk pack. Also, you can elect 
to specify the number of areas; if you do, you must enter the word BY following the 
number. The default value for number of areas is 100. 

<record size> 

If you do not use the DEFAULT option, you can use the record size option to specify 
the logical record length in characters. This specification is required. Input records 
may not be of variable length. The maximum record length accepted by the SRTUTL 
program is 4,998 characters. If the record size you enter is not divisible by 2 (that is, 
an even number of words), the SRTUTL program pads the size. 

<blocking factor> 

Enter the block size to define the number of logical records in a block. This value 
cannot exceed 999 per block. If you omit a blocking factor, the SRTUTL program 
assumes fixed-length records, blocked 1. 

4127 0000-100 



SRTUTL-Generalized Sort Utility Program 

PURGE 

You can specify the disposition of the input file as close with PURGE. Indicate this 
disposition by entering the word PURGE. If you omit this option, the object program 
closes the input file with RELEASE. 

You must enclose in parentheses and delimit by a space all options that indicate 
media, record length, block size, and disposition. 

If you declare more than one input file but do not declare a SORT statement, then the 
SRTUTL program merges the two files. 

Example 

FILE IN(INDEXED) "DISK" (DISK(20) 200 10) 
OUT SORTED (PACK (20 BY 100) 200 5) 

In this example, the FILE statement describes an indexed sequential input file 
called DISK. The file resides on disk, has 20 records per area, and is composed of 
200-character records blocked 10. The output file is to be written to disk pack (20 
areas, 100 records for each area) and is to be composed of 200-character records 
blocked 5. The input file ID DISK is enclosed in quotes because DISK is a 
reserved word in the SRTUTL program. 

MUL TIFILE Statement 

The MULTIFILE statement allows you to name additional input files to be included in the 
sort. The <file-id>s included in the MULTIFILE statement are in addition to the <file-id> 
included in the FILE IN phrase. Each of the files listed in the MULTIFILE statement is 
sorted, but the files are not merged together. If you want the sorted files to be merged into 
a single output file, use multiple <file-id>s in the FILE IN phrase. 

- MULTIFILE - ( _t <file-id>]_) ------; 

Figure 23-3. MUL TIFILE Statement 

4127 0000-100 23-5 



SRTUTL-Generalized Sort Utility Program 

KEY Statement 

23-6 

The KEY statement enables you to describe the keys by which the file should be sorted. 
You must begin the key description with one of the reserved words: KEY, KEYS, FIELD, or 
FIELDS. The reserved word must be followed by a description of each key. 

The syntax for the KEY statement appears in Figure 23-4. 

FIELD 1 ~~~s ~ FIELDS 
r~-----------~/29\----------~ 

+-1- (<location> <length> --..--------..-~----~----~ -Y 
A -----1 ALPHA 
ASCENDING UA ----1 

D ----4 NUMERIC 
DESCENDING UN ----1 

SA ----1 

SN--~ 

Figure 23-4. KEY Statement 

The following paragraphs describe the components of the KEY statement. 

location 

The location is the most significant character or digit of the sort key related to the 
beginning of the record. The first character or digit of the record, depending on the 
data type you are using, is considered to be location 1. If the field you want to sort is 
signed numeric, the location is the sign digit. For a sort on signed alphanumeric data, 
the location is the character containing the sign. 

length 

Use this option to specify the number of characters or digits in the sort key, depending 
on the DATA TYPE. You must include this parameter. The sign character is included 
in the length of a signed alphanumeric field, but the sign digit is not included in the 
length of a signed numeric field. 

Sequence 

Use this option to specify the sequence to which the field should be sorted. The 
SRTUTL codes an A or ASCENDING for ascending sequence and a D or 
DESCENDING for a descending sequence. If you omit the code, the SRTUTL program 
assumes an ascending sequence. You can mix ascending and descending sequence 
sort keys within the total key. 

4127 0000-100 



( 

SRTUTL-Generalized Sort Utility Program 

Data Type 

You can specify the type of data to be sorted by entering one of the following reserved 
words: 

• ALPHA OR UA for unsigned alphanumeric (data is in bytes) 

• NUMERIC OR UN for unsigned numeric data (data is in digits) 

• SA for signed alphanumeric data (the sign is in the most significant digit of the 
most significant character and the data is in bytes) 

• SN for signed numeric data (data is in digits) 

Sign Position 

If you do not enter an R or RIGHT here, the data will be defined as left-signed SA or 
SN. For right-signed SA data, the sign will be in the most significant digit of the 
rightmost character. For right-signed SN data, the sign will be in the rightmost digit. 
You cannot enter a UN or an ALPHA data type in this position. 

You can specify different data types for individual keys within a total key. If you omit the 
data type, the SRTUTL program assumes an unsigned alphanumeric. 

Enclose each field description in parentheses and separate it from other descriptions with 
a space. You can delimit the parameters within an individual description by a space. 

The individual number of sort keys that the SRTUTL program permits is 30. The total key 
must not exceed 100 units. The total key is the field that results from the concatenation of 
the individual keys. The units are bytes (characters) for UA and SA keys whereas the 
units are digits for UN and SN keys. The combined length of all keys, including any 
padding digits necessary to align keys to byte boundaries, must not exceed 560 digits. 

When you enter fields that overlap, they are not acceptable. For example, the 
specification KEY (3 5) ( 4 6) will be flagged as a syntax error. 

Note: A key containing the character combination ] [ (the characters right bracket-left 
bracket, the EBCDIC representation of hexadecimal 5A4A) is illegal. 

Example 

KEY (5 5) (25 2 SN) (30 3 D) 

In this example, the KEY statement causes a sort that proceeds in the following manner: 

• First, by major key, which is five unsigned alphanumeric characters beginning in the 
fifth character position of each record, into ascending sequence 

• Then by two signed numeric digits whose sign is located in the twenty-fifth digit 
position of each record, into ascending sequence 

• Finally by the minor key, three unsigned alphanumeric characters, beginning in the 
thirtieth character position of each record, into descending sequence. 

4127 0000-100 23-7 



SRTUTL-Generalized Sort Utility Program 

SORT Statement 

23-8 

The SORT statement enables you to describe the type of sort you want performed. If you 
omit this statement, then the SRTUTL progran1 assumes the HOTSORT option unless you 
declare more than one input file in the FILE statement. In that case, the SRTUTL program 
pe1forms a merge operation. 

You can define up to a maximum of eight files as input to merge. The SRTUTL program 
assumes that each of the input files you define are already in the desired sequence. 

The syntax for the SORT statement appears in Figure 23-5. 

~ HOTSORT l 
TAPESORT <integer> -j 
DISKSORT -----~ 

HOTSORT 

Figure 23-5. SORT Statement 

Use this option to perform the following functions: 

• Read a relative, indexed, or sequential data file sequentially. 

• Call the sort utility SORT: to sort the records, using disk for the work files. 

TAPESORT 

Use this option to designate the number of tapes that will be used for the sort. The 
number of tapes you enter must be between 3 and 8. 

DISKSORT 

Use this option to read a relative, indexed, or sequential data file, and call the SORT. 
program to sort the records, using disk for the work files. 

INCLUDE 
DELETE 

If you omit these options, the SRTUTL program calls the sort directly. Otherwise, it 
creates an intermediate disk file with the same name as that of the output and displays 
the number of records to be sorted. 

4127 0000-100 



SRTUTL-Generalized Sort Utility Program 

ADDROUT Statement 

You can use the ADDROUT statement to automatically select the requested sort keys 
(refer to the KEY statement in this section), concatenate them, and then write a file of 
records. This file should consist of an 8-digit relative record number, plus the 
concatenated keys. ADDROUT then uses the concatenated keys to request a sort. The 
default value for the sort is HOTSORT. 

The syntax for the ADD ROUT statement is shown in Figure 23-6. 

- ADDROUT ----------------------< 

Figure 23-6. ADDROUT Statement 

IDENT Statement 

The IDENT statement enables you to assign a specific name to the SRTUTL output listing. 
If you omit this statement, spaces instead of a program name appear at the top of the 
listing instead of a program name. 

The syntax for the ID ENT statement appears in Figure 23-7. 

- IDENT <program name> ----------------------1 

Figure 23-7. IDENT Statement 

The program name must be from 1 to 6 alphanumeric characters long, the first of which 
must be alphabetic. If you use special characters in the program name or include reserved 
words, you must enclose them in quotation marks. 

4127 0000-100 23-9 



SRTUTL-Generalized Sort Utility Program 

COMPARE Statement 

23-10 

Use the COMPARE statement to specify the inclusion or exclusion of records. 

The syntax for the COMP ARE statement appears in Figure 23-8. 

L INCLUDE [< <key specification> _._I _______ ---1 

DELETE _J t ~~D _j 

<key specification> 

~ ( ~ <displacement 1> 

1 
EQL r <displacement ]-J2> 
NEQ "<literal 1>" 
LSS "<literal 2>" 
LEQ 
GTR 
GEQ 

4-..----~~-----.--) 
<length> UA __ __, 

ALPHA 
UN ----1 

NUMERIC 

Figure 23-8. COMPARE Statement 

The words INCLUDE and DELETE are reserved words. You can enter them only once 
within a set of sort specifications. However, one or more keys can follow each of these 
words. If you specify both INCLUDE and DELETE, the program applies INCLUDE first. 

You can join multiple keys within INCLUDE or DELETE by using the reserved words AND 
or OR. However, the total number of keys you specify cannot exceed 10. The resulting 
expressions are then evaluated element by element, left to right. 

Caution 
If OR is encountered and all previous expression elements are satisfied, the 
evaluation is terminated as TRUE. If AND is encountered but not all previous 
expression elements are satisfied, the evaluation is terminated as FALSE. In all 
other circumstances, the entire expression is evaluated to a TRUE or FALSE 
conclusion. 

You can use the first operand (displacement 1) to specify the offset of the key from the 
beginning of the record. If you specify ALPHA as the key, the offset is in bytes. If you 
specify NUMERIC as the key, the offset is in digits. 

You can specify the length of the field in the length field. If you omit this specification, the 
default value is 1. The entry that follows the key displacement is the relational operator 

4127 0000-100 



SRTUTL-Generalized Sort Utility Program 

that is used in comparing the specified operands. Valid entries are EQL (equal), NEQ (not 
equal), LSS (less), LEQ (less or equal), GTR (greater), and GEQ (greater or equal). 

You can use the second operand (displacement 2) to specify the displacement into the 
record or as an alphanumeric or hexadecimal literal. As a displacement, the second 
operand is subject to the rule outlined for the first operand. 

Hexadecimal literals are delimited by@ (the "at" sign), and can contain 1to6 hexadecimal 
digits. Character literals are delimited by " (quotation marks) and can contain up to three 
characters. All characters are valid with the exception of the quotation or question mark 
Literals are padded or truncated as necessary, depending on the setting of the length 
attribute. 

Use the length field to specify the length of the operands to be compared. If you omit this 
specification, the default value is 1. Use ALPHA and NUMERIC to specify whether the 
operands are character or digit oriented. You can abbreviate these entries to UA and UN, 
respectively. If you omit this specification, the default is UA (ALPHA). 

MEMORY Statement 

Use the MEMORY statement to increase the memory that the SORT: program is to use (up 
to 999 KD). The default for this setting is digits. Normally, the SORT: program uses the 
same amount of memory as the SRTUTL program. 

The syntax for the MEMORY statement appears in Figure 23-9. 

- MEMORY <integer> E J 
DIGITS 
WORDS 

Figure 23-9. MEMORY Statement 

PARITY Statement 

The PARITY statement enables you to drop all unreadable records that are identified 
during the actual sort. The default value for this statement is to not have the option set. 
In this case, any parity errors will cause the program to stop. 

The syntax for the PARITY statement appears in Figure 23-10. 

- PARITY - DISCARD ----------------------1 

Figure 23-10. PARITY Statement 

4127 0000-100 23-11 



SRTUTL-Generalized Sort Utility Program 

RECORDS Statement 

The RECORDS statement enables you to optimize the sort operation by estimating the 
total number of records to be sorted. If you also enter INCLUDE and DELETE statements, 
the SRTUTL program calculates this number. Otherwise, the SORT: program attempts to 
determine file sizes from disk or disk pack headers. If the input is from tape and the 
sorting medium is not tape, you must enter the RECORDS statement. 

The syntax for the RECORDS statement appears in Figure 23-11. 

- RECORDS <integer> --------------------1 

Figure 23-11. RECORDS Statement 

Executing SRTUTL 

23-12 

You can execute the SRTUTL program in one of the following ways: 

• With a card deck (refer to Figure 23-12) 

• With an INSERT statement (refer to Figure 23-13) 

The SRTUTL program, by default, expects a card file as input. You can override this 
default value by adding the INSERT clause to the EXECUTE command. 

? { ~~::~:: user-id [WITH] } SRTUTL 
CMP 

? DATA CARD 
program statements 

?END 

Figure 23-12. SRTUTL Execution Card Deck 

{ 

EXECUTE 
EX 

? COMPILE user-id 
CMP 

[WITH] } S~UTL IN 0 4 UA 'abed' 

Figure 23-13. SRTUTL Execution without Cards 

4127 0000-100 



SRTUTL-Generalized Sort Utility Program 

Execution Commands (EXECUTE, COMPILE) 

You can initiate the SRTUTL program with either the EXECUTE or the COMPILE 
command. The advantage of using the COMPILE command is that additional features are 
available: 

• In ODT displays, system logs, and Work Flow Language (WFL) job summaries, the 
program name is represented as "<multi-program identifier>/SRTUTL." The multi
program identifier can be any 1 to 6 character identifier, such as the name of the file 
being sorted or the name of a program in a logical job stream. Thus, you can easily 
identify individual copies of the SRTUTL program in a multiprogramming mix. 

• If the SRTUTL program detects errors in the input parameter statements, it notifies 
you because the execution of subsequent programs can be affected. The message 
** SYNTAX ERR appearing on the EOJ line in the ODT display or on the EOT line in a 
WFL job summary indicates an error. The SRTUTL program removes programs linked 
to this execution by the MCP command AFTER from the schedule if you set the MCP 
AFTR option and if SRTUTL detects an input parameter error. Uniqueness for job 
streams is possible by using the multi-program identifier. 

Example 

?COMPILE PAllO SRTUTL; FILE CARD PAllOC 
?EX PA120 AFTER PAllO/SRTUTL 

In this example, the SRTUTL program executes PA120 if you set the MCP option AFTR, 
and only if it finds no errors in the parameters and goes to a normal end-of-job. 

Executing SRTUTL through WFL 

A WFL job can test for successful processing of the input parameters with the 
COMPILEDOK syntax, as shown in the following example. 

Example 

COMPILE PROGl WITH SRTUTL [Pl]; IF Pl IS COMPILEDOK THEN ... 

In this example, if you initiate the SRTUTL program with EXECUTE (or, in WFL, RUN), 
errors in the input parameters are noted only in the output listing, and the SRTUTL 
program goes to a normal end-of-job. The program does not notify you of the errors, and 
subsequent programs assume that the sort has occurred. 

SRTUTL Memory Usage 

The SRTUTL program allocates dynamic memory to hold buffers, and includes and deletes 
code. Normally, the space is adequate. However, ifthe files to, and other output from, the 
sort have very large blocks, you might need to enter a ?MEM =nn statement. 

4127 0000-100 23-13 



SRTUTL-Generalized Sort Utility Program 

Cardless Executions 

23-14 

In the INSERT clause, a, b, c, and d represent alphabetic character positions. Fill each 
position with a letter or a blank Enclose stiings in quotation marks. Always leave 
position c blank. 

Each position within the INSERT clause represents an input file or file format. The 
character in the position indicates either the device type on which the file is located or the 
format of the file (refer to Tables 23-1and23-2). 

Table 23-1. Valid INSERT Values for Cardless Execution 

Position Represents Permissible Default 

a Primary Symbolic File C, D, P, T, s c 
b Secondary Symbolic File C, D, P, T, s D 

c Not Used s s 

d Primary File is Editor Format E, s s 

s =space 

Table 23-2. Meanings of INSERT Values for Cardless Execution 

Position Character Meaning 

a, b c Card Reader 

D Disk (any 100-byte) 

p Disk pack (180-byte) 

T Magnetic Tape 

s device unspecified 

d E Editor-format primary symbolic file 

s Primary symbolic is non-Editor file 

s =space 

You can indicate the input files by specifying the appropriate combination of permissible 
values from Table 23-2 in positions a, b, and d of the INSERT clause. After you have 
specified the media and file format, you can assign file names on dollar records or in file 
equate clauses if the actual names of the files are not the default names that the SRTUTL 
program assumes. 

Table 23-3 summarizes the input and output files and the formats that are acceptable 
when you use SRTUTL (an X indicates an acceptable file). It also summarizes SRTUTL's 
internal name for each file (for use in file equating) and the values that must be supplied in 
the INSERT clause when you execute without cards. 

4127 0000-100 



SRTUTL-Generalized Sort Utility Program 

Table 23-3. SRTUTL Files and Format 

Input/ 80xl 80x EDIT file 80x Disk Disk- pack 80x 132xl 
Output File File name Card file Disk file on disk pack File edit file Tape file Print file 

Primary CARD or x x x x x x 
symbolic EDIT FL 

Insert value (a=C) (a=D) (a=D, (a=P) (a=P, d=E) (a=T) 
d=E) 

Secondary SOURCE x x x x 
symbolic 

Insert Value (b=C) (b=D) (b=P) (b=T) 

Output 
Listing 

PRINT x 

Note: Source input files can use any blocking factor from 1 through 9. The name of 
the primary file is CARD when it is a non-Editor format file, and EDITFL when 
it is an Editor file. 

DISK is the default medium for the primary symbolic file when you specify Editor format. 

The values you specify in an INSERT clause take precedence over information in dollar 
records. For instance, a dollar record can supplement the information in an INSERT 
statement by providing the name of the secondary input file. 

Examples 

EXECUTE SRTUTL IN 0 1 UA "D" FI LE CARD = PROGlS 

In this example, input specifications for the SRTUTL program are in a disk file named 
PROG IS. There is no other input file. 

EXECUTE SRTUTL IN 0 4 UA "DP E" FILE EDITFL = PATCjc 

In this example, there are two input files containing the input specifications for the 
SRTUTL program. The primary symbolic file is an Editor file on disk, named PATCjc. 
It contains records to add to other records or to replace other records in the 
secondary file. The secondary symbolic file is on disk pack; its name and the name of 
its disk pack are specified on a dollar record (not shown). 

4127 0000-100 23-15 



SRTUTL-Generalized Sort Utility Program 

Label Equation 

23-16 

Label equation cards must be used to uniquely identify source program files in a 
multiprogramming environment. The internal file names and external file identifiers for 
the SRTUTL program files appear in Table 23-4. 

Table 23-4. SRTUTL File Names 

Internal File Name External File ID Function 

CARD CARD Non-Editor primary symbolic file 

EDITFL EDIT FL Editor Primary symbolic file 

SOURCE SOURCE Secondary symbolic file 

PRINT PRINT Printed output listing 

PDATAB PmxTpB SRTUTL work file, where mx indicates 
mix- number and p is the system-number 

When you want to change the external file identifier on a primary source language file, the 
label equation statement you would use is the following: 

?FILE CARD = <file ID> 

The file ID is a unique file identifier of six characters or fewer. 

You can also direct files to specific hardware devices with the MCP FILE statement. For 
example, to direct the SRTUTL program work file to a specific disk pack, you can use the 
following label equation: 

?FILE PDATAB = pack ID/PDATAB DPK 

The pack ID is the name of the disk pack you want. 

Note that by default the SRTUTL work file resides on the same hardware device as the 
output sorted file. 

You can specify punched cards, disk, disk pack, or magnetic tape as a source language 
input medium for a single input file or for a master file. If you use two input files, SRTUTL 
merges them according to sequence number. 

Records of input files are 80 bytes long. You can use any blocking factor between 1 and 9 
inclusively for input from disk, disk pack, or magnetic tape. 

4127 0000-100 



SRTUTL-Generalized Sort Utility Program 

Dollar Options 
Certain options are available to you during operation, and you can activate or deactivate 
them with "dollar" options. These options have a dollar sign character ($) in column 1 and 
can be interspersed at any point in or immediately before the primary or secondary input 
file. You can specify one or more dollar options following the dollar sign character($). 

If you do not have control records, the default entry is LIST, and a single card deck is 
expected as input. 

The dollar options SET and RESET enable you to turn on or turn off options you specify 
on a given line without affecting any other options that you do not specify. When SET or 
RESET is not the first dollar sign ($) option listed on the dollar sign ($) card, the options 
listed are turned on and all others are turned off. 

The following paragraphs describe the dollar options available to you. 

CHECK 

This option flags sequence errors with a warning message. 

CLEAR 

This option means that all options that do not have associated values are reset, except 
MERGE. 

CORRECTOK 

When you set this option in a dollar record, the SRTUTL program attempts to correct 
certain syntax errors in the sort parameters. When the SRTUTL program detects an 
error, that it can attempt to correct, the error is flagged with a message in the 
following form: 

CORRECTED: <text of error message> 

The SRTUTL program prints the word CORRECTED when it detects a correctable 
error, regardless of whether it actually makes the correction. However, the SRTUTL 
program does not actually make the correction unless you have specified 
$CORRECTOK. 

DELETE 

This option appears only in the primary source file, and the program ignores it unless 
you set $MERGE. Images from the secondary source file are discarded (including 
other dollar options) until you reset this option. Items discarded are not listed in the 
execution listing unless you set the LISTDELETED option. 

DOUBLE 

This option produces a double-spaced listing of source images processed and of any 
resulting error messages. 

4127 0000-100 23-17 



SRTUTL-Generalized Sort Utility Program 

23-18 

ERRORLIMIT = nrm 

With this option, execution is terminated when the number of en-ors you specified in 
nnn occurs, where nnn represents a 3-digit integer with a default value of 100. 

LIST or LIST$ 

This option produces a single-spaced listing of source images processed. The program 
uses this option as the default value unless you reset it. 

LISTCCI 

This option produces lists of all dollar options in the output listing. Another name for 
dollar options is compiler control images (CCI). 

LISTDELETED 

This option lists deleted or voided images in the output. 

LISTOMITI'ED 

This option lists omitted images in the output. 

LISTP 

This option lists card images only (not source file) when you reset LIST. 

MERGE ["file identifier"] [device] 

This option permits you to compile a program with two symbolic input files. The 
inputs are merged on the basis of sequence numbers, one input being the primary 
input file that contains this option. The file identifier is either file ID or multifile 
ID/file ID, where file ID and multifile ID must be alphanumeric literals, each not more 
than six characters long. The file ID specifies the file name of the secondary input 
file. SOURCE is the assumed file name if none is specified; however, you can override 
this file ID with label equation. Device is the hardware on which the second input file 
resides. Valid devices are DISK, TAPE, and disk pack. DISK is the default. 

Once you set this option, you cannot reset it and it remains in effect for the entire 
program. 

OMIT 

This option appears in both primary and secondary source input files. Images from 
any source are ignored (but passed to new source) until you reset this option. Items 
omitted are not included in the output listing unless you set the LISTOMITI'ED option. 
Any dollar options encountered while OMIT is set are processed normally. 

PAGESIZE = nn 

This option specifies that the maximum number of lines for each page of the output 
listing is equal to nn, where nn represents a 2-digit integer with a default value of 56. 

4127 0000-100 



SRTUTL-Generalized Sort Utility Program 

SEQ nnnnnn +nnnnnn 

With this option, source images are resequenced starting with the sequence number 
nnnnnn and incrementing by +nnnnnn. The default start (or base) is 10, and the 
increment defaults to +10. 

SEQ CHECK 

Refer to the CHECK option in this section. 

SEQUENCE 

Refer to the SEQ option in this section. 

SUMMARY 

This option produces a listing of the execution summary when you reset the LIST 
option. This summary is included in the LIST option. 

VOIDnnnnnn 

This option discards images from secondary source files until a sequence number 
larger than nnnnnn is encountered in the secondary source file. 

4127 0000-100 23-19 



SRTUTL-Generalized Sort Utility Program 

23-20 4127 0000-100 



Section 24 
SYSTEM/COPY-File Transfer Utility 
Program 

Overview 
The SYSTEM/COPY program is a bound intrinsic that performs file transfer and directory 
functions for the V Series MCP. You invoke the SYSTEM/COPY program with the 
commands COPY, MOVE, COPYADD, COMPARE, MERGE, and DIR. Refer to Volume 2 
for more information. 

The SYSTEM/COPY program performs the following functions: 

• Copies files from one or more sources at a time 

• Merges files from one or more source tapes and from disk and disk pack to one or 
more tapes 

• Compares data between source and destination files 

• Copies files to one or more destinations at a time 

• Changes the names of files as they are being transferred 

• Copies files from tape to their original volumes 

• Permits flexibility in job scheduling and AFTER executions because simultaneous 
executions of COPY can use a unique multiprogram ID 

• Stores files in requested sequence on all output tape volumes 

• Produces two tape formats: ICTAPE (interchange format) and TAPE 

• Recognizes and reads automatically a variety of tape formats: LOAD MP (type 5), 
PACKUP (type 6), TAPE, andICTAPE 

• Permits the use of large, multilevel file names on tapes 

• Copies from any reel of a multireel tape set because each reel includes a directory of 
the files on it and all subsequent reels 

• Supports 38000 BPI magnetic cartridge tapes (MTC) 

• Supports 9-track tapes (NRZ, PE and GCR) 

• Lists directories for disk, disk pack, and tape. Refer to the DIR command in Volume 2 
for more information 

I 0000-100 24-1 



SYSTEM/COPY-File Transfer Utility Program 

Program Initiation 
You can initiate SYSTEM/COPY in either of two ways: 

• You can use any of the commands COPY, COMP ARE, MOVE, COPYADD, or DIR to 
present SYSTEM/COPY syntax to the operating system. The command syntax is given 
in the V Series Systems Operations Guide Volume 2: System Commands. The 
operating system initiates the SYSTEM/COPY program, places the syntax in a pass file 
and submits the pass file to the program. A pass file is a disk file that contains the 
command syntax and that is used to pass the syntax to SYSTEM/COPY. 

• You or an application can prepare the pass file. Then you execute the SYSTEM/COPY 
program, giving it the name of the pass file. For applications that generate large 
SYSTEM/COPY requests via pseudo card reader decks or programmatic ZIP 
statements, this option can improve performance by reducing reparsing of the syntax. 

The pass file is expected to be a disk file with 100-byte records, blocked one record 
per block The file name is as follows, where mm is a unique pass file number and s is 
the system number: 

o/ammOs* 

To use this option, initiate SYSTEM/COPY with an INSERT statement with the unique 
file pass number at address 0 for a length of 2 digits, as follows where mm is the pass 
file number: 

EXECUTE COPY; INSERT 0 2 mm 

SYSTEM/COPY purges the pass file after using it. 

Program Flow 

24-2 

This section provides a high-level program flow description for the SYSTEM/COPY 
program. The operating system (MCP/VS) executes the SYSTEM/COPY program directly 
and receives the required syntax from a pass file. 

When it is initiated, SYSTEM/COPY receives a pass file as described earlier in "Program 
Initiation." The program first analyzes the syntax received from the pass file. Warnings or 
error messages for problems that the program encounters are displayed. If the program 
does not find fatal errors it acquires memory to accommodate the necessary number of 
file structures and buffers, based on the values of the BUFFERS and BUFFERSIZE options 
in the COPY command syntax and the COPYBUFS and COPYBUFSZ limits in the system 
configuration file. If there is insufficient memory to accommodate the memory size 
requested, the program might be marked as PR STOPPED (priority stopped). 

4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

When the program has acquired the appropriate memory, file expansion occurs. For those 
source volumes that require it, group specifiers are then expanded to their respective 
single-file names. The program also uses tape-dlive space efficiently in the following way: 

• If there are any destination-tape volumes, the program searches tape-source volumes 
for both group specifiers and single files. 

• If destination-tape volumes are not involved, source-tape file expansion is postponed 
until that volume is actually needed for transfer. This technique provides better use of 
tape drives. 

When the program has generated a complete file list for all sources and a tape directory 
for any destination tape volumes, the SYSTEM/COPY program is ready to perform the 
required tasks. 

Beginning with the first source file, the program uses the file list associated with that 
source to perform the required functions. This process continues for each specified 
source volume and its associated file list. 

Each file transfer proceeds when the program finds and opens the file on the current 
source volume. If the COPYADD function is in progress, each destination volume is 
checked for the presence of the destination file name, which may differ from the source 
file- name when you use the AS capability. Then the program opens all destination files, 
and each file is transferred with minimum I/Os and with effective use of buffers. As a 
general rule, mixing destination types (for example, copying a disk file to tape as well as 
to disk pack) increases overhead. Most transfers occur in a single pass of the source file 
unless disk or disk pack files are transferred to mixed destination media (for example, 
copying a disk file to tape and to disk pack). In these cases, the source file is first 
transferred to the "like" medium and then to the "unlike" medium. 

After all transferring is complete, the program closes each file according to its transfer 
type. That is, COPY and COPYADD commands release the source file, and MOVE 
commands remove the source file if no errors have occurred and a compare function is 
not pending. The system removes any duplicates from the destination files. 

For tape files, if the RETAIN volume attribute is specified, the tape will not be dismounted 
at end-of-reel and end-of-volume. If the UNLOAD volume attribute is specified, the tape 
will be dismounted. If neither RETAIN nor UNLOAD is specified, by default the last reel of 
a source volume will be retained, and all reels of a destination volume will be unloaded. 

The SYSTEM/COPY program performs the compare function if you request it to do so. 
Only those files that were transferred successfully are eligible for comparison. If you used 
a MOVE statement as the transfer function, the program removes the source file after it 
performs a successful comparison. 

Finally, if you request the summary option, the SYSTEM/COPY program generates the 
ODT portion of the summary, listing only those files that were transferred successfully. 
Counts show the number of files transferred with and without errors. The SYSTEM/COPY 
program also generates a printed summary that duplicates the information that appears on 
the ODT. The printed summary includes more information on errors encountered and 
related operator responses. 

4127 0000-100 24-3 



SYSTEM/COPY-File Transfer Utility Program 

Security 
All secmity attributes that are associated with a given source file are copied to all 
destination files. Similarly, tape files cany their attributes with them when they are 
transferred to disk or disk pack 

If a file located on a source tape has corrupt security information, the SYSTEM/COPY 
program assigns PUBLIC/IO as its security use and type value when this file is transferred 
to any destination volumes. 

Maximum Values 
The following list shows the various maximum values that are associated with the current 
release of the SYSTEM/COPY program. The characters mm represent the mix number of 
the COPY program and the character p represents the system number. 

• Syntax pass file (mmOpO-contains the input syntax): 40 segmentss/area, 20 areas = 
800 lines. 

• Directory pass file (mmOpO-contains directory information): 90 segments/area, 100 
areas. 

The directory pass file contains file identifiers. The maximum number of file 
identifiers that can be contained in the directory pass file varies depending on 
whether or not you select files by date (CREATED, ACCESSED, UPDATED, and 
BACKEDUP options) and whether the source is a disk or pack file. The following table 
shows the limits. 

then the maximum 
If the source files number of file IDs in the 
are on ... pass file is ... 

DISK and you selected files by date 99999 

DISK and you did not select files by date 99999 

PACK and you selected files by date 17998 

PACK and you did not select files by date 99999 

• Work file (WmmOpO-contains volume and file information): 1000 segments/area, 100 
areas = 100,000 records. 

Record requirements vary with the number of volumes and files you specify and the 
number of file identifiers into which group specifiers are expanded. The maximum 
number of specified files for each volume is 999,999; the maximum number of 
expanded files for each group specifier is also 999,999. 

• Tape directory file (TmmOpO-generated tape directory): 1500 segments/area, 100 
areas= 150,000 records. 

• File maximum depends on file name sizes. 

24-4 4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

• Print file (SYSTEM/COPY): Unlimited capacity if printer is used; backup capacity is 
governed by MCP limits. 

• Destination volumes: You cannot specify more than 10 destination volumes.. The 
number of somce volumes is not limited. 

• The maximum buffer size is 199800 digits. The buffer size multiplied by the number of 
buffers and then added to the program size of SYSTEM/COPY must not be greater 
than 1 million digits. 

Date Handling 
Vmious information about a file is stored in the file header. For diskpack files, this 
information includes the following dates: 

• The date the file was first opened output or output/input (creation-date) 

• The date the file was last opened input/output or extend (last-update-date) 

• The date the file was last opened in any manner (last-access-date) 

• The date the most recent baclmp copy of the file was made (last-backup-date). 
Specifically, this is the last time that SYSTEM/COPY, with BACKUPRUN SET, 
successfully transferred the file. (Before MCP 3.2.5, this was the date that a version 2 
or later pack file was opened input by SYSTEM/COPY.) 

These dates can be used to select files for copying, using the CREATED, ACCESSED, 
UPDATED, and BACKEDUP keywords. The file date selection criteria for SYSTEM/COPY 
are very versatile, but can be confusing. The following considerations will give some ideas 
on how to use date selection while avoiding mistakes. 

Selecting the Right Date for Use with the Keyword 

Care must be exercised in correlating the date and the meaning of the keyword. For 
example, the ACCESSED keyword refers to the file's last-accessed-date. Consider a file 
ABC that was accessed once on 3/25/94 and again on 3/31/94. This file's last-access-date is 
3/31/94. But consider the following syntax: 

COPY AND SET (ACCESSED BEFORE 03/30/94) = FROM TESTl(PACK) TO TESTA(TAPE) 

The file ABC was indeed accessed before 3/30/94, namely on 3/25/94. But the file's last
access-date is 3/31/94, and so the file will not be copied. 

Dates Are Inclusive 

Dates used with the BEFORE, AFTER, and BETWEEN keywords are inclusive. For 
example, consider the following syntax: 

COPY AND SET (UPDATED AFTER 02/28/94) = FROM TESTl(PACK) TO TESTA(TAPE) 

This syntax selects files with a last-updated-date of 2128/94 and later. 

4127 0000-100 24-5 



SYSTEM/COPY-File Transfer Utility Program 

Similarly, consider the following syntax: 

COPY AND SET (CREATED BETWEEN 94001 94002) = FROM TESTl(PACK) TO TESTA(TAPE) 

This syntax selects files that were created on 94001 (1/1/94) and files that were created on 
94002 (1/2194). 

When SYSTEM/COPY Examines File Dates 

A masked file name (one that contains an equal sign) requires SYSTEM/COPY to examine 
the directories to determine which files to copy. In this case, SYSTEM/COPY obtains the 
date information for all the files at the same time. 

When file names without masking characters are specified, SYSTEM/COPY examines the 
date information for each file as it is opened for processing. 

Use of the TODAY Keyword 

Potential windows can open when you use the TODAY keyword. Consider a daily request 
to dump files that were updated today: 

COPY AND SET (UPDATED TODAY) TO DAILY(TAPE) 

This syntax will miss files that update after SYSTEM/COPY completes its file selection 
process but before midnight. To cover this kind of condition, it may be best to provide a 
day of overlap in your request. For example, you could dump all files that have updated 
today or yesterday using a syntax like the following: 

COPY AND SET (UPDATED AFTER TODAY - 1) TO DAILY(TAPE) 

For Monday's daily backup, the weekend must be considered as well. To get the same kind 
of coverage as the previous example, the Monday night dump needs to regress three days 
to cover the period from Friday night through Monday night. For a Monday night dump, 
the syntax could be similar to the following: 

COPY AND SET (UPDATED AFTER TODAY - 3) TO DAILY(TAPE) 

How SYSTEM/COPY Affects a File's Dates 

24-6 

SYSTEM/COPY is the only program that can open a file without changing the file's dates 
(creation-date, last-access-date, and last-update-date as appropriate for the particular 
access). Also, the destination files made by SYSTEM/COPY inherit the dates of their 
source files. This means that the backed-up copy of a file has the same dates as the 
original copy of the file. Also, when the backed-up copy is reloaded to the system, it has 
the same dates as the original copy. 

IfBACKUPRUN is TRUE, a file's last-backup-date is updated. IfBACKUPRUN is FALSE, 
the last-backup-date is not updated. You might want to set BACKUPRUN to TRUE while 
malting archives, and to FALSE while making a casual copy of a file for nonarchival 
purposes. The default is FALSE. 

4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

The last-backup-date is set as of the start of execution of SYSTEM/COPY. If the execution 
spans midnight, files continue to be marked with the previous day's date, to provide 
consistency within the run. 

The last-baclmp-date is changed only upon successful completion of file transfer. If an 
error occurs dming a file transfer or compare, or if a file is skipped for any reason, the 
last-backup-date remains unchanged. 

BNA File Transfer 
For BNA facilities the SYSTEM/COPY program performs file transfers with the 
HOSTNAME attribute. There are several limitations necessary to implement the current 
BNA: 

• The COPYADD function is not supported. 

• Transfers involving tapes are not supported. 

• The PCOPY function is not supported. 

• The file BLOCKSIZE value must be less than 131,070. 

The SYSTEM/COPY program will attempt to optimize the transfer by increasing the 
number of buffers for each file. The maximum number of buffers used is 9. When all 
HOSTNAMEs specified are recognized as the local host, the BNA network and associated 
transfer scheme will not be used. 

Error Messages 
When it encounters errors, the COPY program goes to an abnormal end-of-job. Error 
messages are always displayed on the ODT, regardless of the system or requested options. 
Consequently, an appropriate error message precedes any library maintenance messages 
that indicate an error has occurred. In general, the SYSTEM/COPY program attempts to 
pinpoint the syntax errors by displaying the text line in question and pointing to the word 
it was looking at when the error occmred. The following list contains brief explanations 
of the error messages the SYSTEM/COPY program can display. 

BUFFERSIZE HAS 3600 DIGIT MINIMUM AND 199800 DIGIT MAXIMUM 

For the BUFFERSIZE option, you specified a value that is not in the required range. 
BUFFERSIZE has a 3600 digit minimum and a 199800 digit maximum. 

CAN'T COPY MIRRD. USERFL 

A mirrored user file (USERFL) cannot be copied with SYSTEM/COPY. For the 
procedme for copying USERFL from one diskpack to another, refer to "Converting 
Version 1 Families to Version 2 or Greater Families" in "Pack Subsystems" in this 
manual. 

4127 0000-100 24-7 



SYSTEM/COPY-File Transfer Utility Program 

24-8 

COPY ABORTED; GROW REQ TOO BIG 

A request for additional memory failed. 

ADD FUNCTION ILLEGAL FOR BNA APPLICATION 

The COPYADD function is not legal when a HOSTNAME attribute is present. 

EXPECTED FILE LIST 

The program expected a file ID or list of file IDs. 

EXPECTED KIND ATTRIBUTE (DISK, PACK, TAPE, ICTAPE, OLDTAPE) 

The program found a non-default volume identifier without a KIND attribute. 

EXPECTED OPTION OR VALID OPTION ABBREVIATION (COMPARE, SUMMARY, ODTSUMMARY, 
PRNSUMMARY, MPID, MANDATORY, SYNTAX, CHECK, BUFFERSIZE, BUFFERS, BACKUPRUN, 
CREATED, ACCESSED, UPDATED, BACKEDUP, SPECIFY, ALLOCATED) 

The program found an invalid option. SPECIFY appears in this message only if you 
used the keyword MERGE. ALLOCATED appears only if you are using MCPIX. 

EXPECTED VERB (COPY, COPYADD, MOVE, COMPARE, DIR, MERGE) 

The program found an invalid verb. 

EXPECTED "TO" 

The program expected the beginning of an output specification. 

EXPECTED "TRUE" OR "FALSE" 

A Boolean SET option argument was illegal. 

EXPECTED II (II 

The program expected a left parenthesis. 

EXPECTED ")" OR "," 

The program expected a right parenthesis or comma. 

EXPECTED II. II 

The program expected a comma. 

INCOMPATIBLE FILE IDS FOR VOLUME KIND 

You attempted to use on disk or disk pack media a multilevel file ID or an ID greater 
than 6 characters. 

4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

INVALID ATTRIBUTE 

The program found an invalid or unsupported file or volume attribute. 

INVALID ATTRIBUTE ARGUMENT 

The value for this file or volume attribute is illegal. 

INVALID COMBINATION OF ATTRIBUTES SPECIFIED 

Not every attribute can be used with every other attribute or with every type of file. 
Check the input syntax. 

INVALID DATE SPECIFIED 

The valid date formats are mm/dd/yy, mm/dd/yyyy, yyddd, yyyyddd, TODAY, and 
TODAY - <number of days>. 

INVALID FILE IDENTIFIER 

A file identifier must be less than or equal to 6 characters in length and must begin 
with an alpha character or an acceptable special character. 

INVALID NUMBER OF BUFFERS SPECIFIED (2<= N <= 10) 

The range for the BUFFERS option is 2-10. 

INVALID OPTION ARGUMENT 

The specification for this option is illegal. 

INVALID SYNTAX - EXPECTED ",", "EXCEPT", "FROM", OR "TO" 

Another file or source specification, except specification, or destination specification 
was expected. 

INVALID USE OF "ALLOCATED" OPTION 

You have the ALLOCATED option, but you also specified a source as a destination. 
This specification is invalid. 

INVALID USE OF "ORIGIN" AS A VOLUME KIND 

You used origin either as a source kind or as a destination kind, and you did not 
supply any tape sources. 

INVALID VOLUME IDENTIFIER 

A volume identifier must have no more than 6 characters and must follow the same 
rules as a file identifier. 

4127 0000-100 24-9 



SYSTEM/COPY-File Transfer Utility Program 

MAX BNA BLOCKSIZE ERROR 

If you use the SYSTEM/COPY program with BNA, the file BLOCKSIZE value must be 
less than 131,070. 

MISSING CLOSE PARENTHESIS 

The program did not find matching parenthesis for a beginning parenthesis. 

MISSING CLOSE QUOTE 

The program did not find a closing quote for an opening quote. 

MULTIPLE DATE SELECTION OPTIONS NOT ALLOWED 

You can use only one of the date selection options at a time-CREATED, ACCESSED, 
UPDATED, or BACKEDUP. 

NUMBER OF DESTINATION VOLUMES EXCEEDS MAXIMUM 

You have exceeded the current limit of 10 output destinations. 

"ON" EXPECTED 

The program found invalid syntax for the DIR command. You must precede the 
specification of the volume with ON. 

TAPE HARDWARE ILLEGAL FOR BNA APPLICATION 

TAPE volumes are not supported across a BNA network. 

<volume name><file name> GROW RQST TOO BIG 

A request for additional memory has failed. Refer to "Recovery Options," in this 
section for more information about the choices that appear on your ODT. 

Warning Messages 
DATE OPTION IGNORED - NOT IMPLEMENTED 

The DATE SET option is not implemented and its specification is ignored. 

SAVEFACTOR ATTRIBUTE TOO BIG - 999 SUBSTITUTED 

The maximum save factor permitted is 999 days. 

UNSUPPORTED ATTRIBUTE IGNORED: attribute 

The specified attribute is not supported. 

24-10 4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

Library Maintenance Messages 
The SYSTEM/COPY program generates a library maintenance message for each file it 
attempts to copy. If you set the USE COPY option, these messages appear on the ODT. 

If you use the SUMMARY option, a listing of all files copied appears on the ODT. Also, the 
program prints a list that contains the library maintenance messages. Figure 24-1 shows 
the format of these messages. 

- FILE L _J t COPIED~ <message> - <file-id> 
NOT MOVED 

ADDED 

l l AS <file-id> J E 6~ T <volume-name> J 

Figure 24-1. Library Maintenance Message Format 

The TO and FROM volume names occur when you use the ORIGIN option for destination 
volumes. 

The following paragraphs briefly describe each of the library maintenance error messages. 

DESTINATION ERROR 

An error has occurred on the destination volume. When this happens, the COPY 
program goes to an abnormal end-of-job. 

FILE ALREADY PRESENT 

This error occurs when you use COPYADD. A file has the same name as that of the 
file to be copied. 

FILE INCOMPLETE DUE TO PARITY ERROR 

During the operation for copying a file from tape, a parity error occurred. If you 
choose to use the CONTINUE command, the portion of the file that had been copied 
before the error occurred is left on the destination. 

FILE NOT COPIED-UPDATED BY MERGE: <file ID> 

The file identified was not copied because of a MERGE. 

FILE NOT COMPARED-UPDATED BY MERGE: <file ID> 

The file identified was not copied, and therefore not compared, because of a merge. 

FILE NOT PRESENT 

The requested file was missing from the source volume. If you set the MANDATORY 
option, the COPY program goes to an abnormal end-of-job. 

4127 0000-100 24-11 



SYSTEM/COPY-File Transfer Utility Program 

INTERNAL ATTRIBUTE ERROR 

An irrecoverable error occurred in the validation of the file header at file open time. 
The COPY program goes to an abnormal end-of-job. 

NOT ON REQUESTED VOLUME INDEX 

OK 

The file was not on the tape reel you requested. Because the tape directory contains 
all files residing on this and any subsequent reels of a volume set, the COPY program 
uses this message to indicate any files that did not begin on the reel you requested. 
The COPY program goes to an abnormal end-of-job. 

The stated function occurred without error. 

VOLUME WAS ABANDONED 

The relevant source volume was abandoned. Reasons for doing so vary (refer to 
"Error Messages" earlier in this section for more information). The COPY program 
goes to an abnormal end-of-job. 

UPDATED BY MERGE 

The program did not copy the requested file because the keyword MERGE was used. 
Another copy of this file was found on a subsequent source, so this file was updated 
by that file, and only that file was copied to the destination. 

1/0 Error Handling and Messages 

24-12 

When unrecovered or internal errors occur, the SYSTEM/COPY program displays a 
message on the ODT. An internal error is one that is recognized only by the 
SYSTEM/COPY program. A parity error is handled by the operating system first. 

I!O errors are retried in accordance with established operating system guidelines. If 
recovery is not possible, control passes to the SYSTEM/COPY program for interpretation 
and possible action on your part. 

Figure 24-2 shows the format of these error messages. 

- <error type> ERROR - ON <volume name><channel/unit> WHILE------+ 
L READING Tf <file-id> 

WRITING HEADERS for <file-id> j L VOLUME ABANDONED _J 
DIRECTORY ______ _. 

Figure 24-2. 1/0 Error Message Format 

The <error type> constiuct defines the error. The <volume-name> construct specifies the 
volume on which the error occurred; when appropriate, the program also gives the 
<channel/unit> identifier. 

4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

The following paragraphs briefly explain each type of error. 

COUNT ERROR 

Each block on a SYSTEM/COPY tape is numbered to ensure that data items are read 
back in the proper sequence. This error message indicates a violation of that 
sequence. The error can be caused by an undetected read or write function, by 
dropped or added tape blocks, or by data corruption. When this error occurs, the 
COPY program goes to an abnormal end-of-job. 

PARITY ERROR 

An unrecoverable parity error occurred. The COPY program goes to an abnormal end
of-job. 

PREMATURE EOF 

The program encountered a premature end-of-file condition was encountered when it 
was reading or writing this file. 

RELIABILITY ERROR 

This error occurs when you are copying from a tape source that had an error when it 
was created. That error caused the file to be abandoned. The COPY program goes to 
an abnormal end-of-job. 

Additional Error Possibilities 
Both TAPE and ICTAPE volumes present additional error possibilities related to their 
headers, which precede the file and store information about the file. If an error occurs 
while the program is reading or writing this header information, the HEADERS FOR 
phrase notifies you. 

Similarly, each tape volume has a directory near the front of each reel. Errors 
encountered while the program is reading or writing this information are signaled by the 
DIRECTORY message. If an error occurs while the Directory is being read, you have no 
recovery options. The volume is abandoned. 

Recovery Options 
In addition to an error message, the program may give you recovery options. The 
SYSTEM/COPY program judges the severity and recoverability of the e1Tor to determine 
the possibilities to offer. These options appear in this format after the error message and 
are in this format: 

• AX "CONTINUE" to ignore error 

• AX "QUIT" to abandon this file only 

• AX "ABORT" to abandon this volume 

4127 0000-100 24-13 



SYSTEM/COPY-File Transfer Utility Program 

You can abbreviate the response to the first letter, and the program checks it for validity. 

The CONTINUE option instmcts the SYSTEM/COPY program to ignore an enor and to 
continue with the operation. If tape destinations are involved, the block containing the 
enor is marked as umeliable. For this reason, a reliability enor is noted if you use the 
volume block as input. Any disk or disk pack destination files are properly closed, 
although they are incomplete. You must determine the reliability of the file. 

The QUIT option stops the transfer of this file and continues to the next file if one exists. 
Any destination tape files are marked, and a subsequent usage will result in a nontransfer 
for this file. Any disk or disk pack destination files are purged. 

The ABORT option performs all the functions of the QUIT option and skips any remaining 
files requested from the current source volume. 

Reliability Handling and Messages 

24-14 

Each block on a SYSTEM/COPY generated TAPE and ICTAPE contains reliability 
information. This information consists of a block count and a data integrity flag. 

The block count begins at 1 and is incremented by 1 for each block of the file as it is 
written to the tape. When the program reads the tape, either during the compare phase or 
during subsequent use, it verifies this sequence will be verified. If the program finds a 
discrepancy, a COUNT enor occurs. 

The data integrity flag indicates the validity of the information contained in this block. If 
an enor occUTI'ed on the source file when this tape file was created, you will be given 
various options. Your response is reflected in the value of the integrity flag written to the 
tape. When the tape block is read, the program interprets the value and produces the 
following message: 

BLOCK NUMBER <number> ON TAPE <tape-name> CONTAINS UNRELIABLE DATA 
FOR SECTORS range OF FILE <file name> 

This message tells you that an enor occurred when the tape file was created. It gives 
the block number and sector range where the enor occUTI'ed. A second message 
could appear, indicating the final outcome of this enor. 

Figure 24-3 shows the format of these messages. 

--.-- FILE ----r- WAS ABANDONED AT THIS POINT 
L VOLUME _J 

Figure 24-3. Block Error Message 

If you respond to this message with a CONTINUE statement, the ABANDONED message 
does not appear. 

4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

The FILE WAS ABANDONED message indicates that you abandoned the file by using the 
QUIT response. 

The VOLUME WAS ABANDONED message indicates that you abandoned this file and all 
files requested from that source volume by using the ABORT response. 

The ABANDONED statement causes all destination files to be purged. Any tape 
destination files are marked with the same reliability information. 

Caution 
When you respond with a CONTINUE statement to a reliability error, take great 
care not to use the file before you investigate the cause of failure and repair the 
file as necessary. 

Missing File Handling and Messages 
The SYSTEM/COPY program might encounter a variety of missing file conditions during 
execution. Generally, these conditions are missing disk packs, missing disk or disk pack 
files, missing tape files, or duplicate disk and disk pack files. The following paragraphs 
describe each of them. 

Missing Disk Packs 

When you create destination tapes, you need to get directory information before any file 
transfer can occur. The SYSTEM/COPY program assumes the disk directory to be 
accessible, but a disk pack may be offline when its directory is needed. If this condition 
occurs, the SYSTEM/COPY program responds with the following messages: 

<volume name> disk pack NOT ON LINE 

You can mount the required disk pack or ignore the request for this source volume. The 
program displays two options as follows: 

AX "CONTINUE" ONCE ON LINE, AX "ABANDON" TO ABANDON THIS VOLUME 

You can abbreviate your response to the first letter, and the program checks it for validity. 
If the summary option is set, your response is reflected on the summary. 

4127 0000-100 24-15 



SYSTEM/COPY-File Transfer Utility Program 

Missing Disk and Disk Pack Files 

Missing disk and disk pack file messages can be sent when the program searches the 
directory or afterwards as the files are about to be opened for transfer. 

If a file is missing or has been removed from the disk or disk pack after being located, the 
SYSTEM/COPY program sends the following message: 

<file name> NOT FOUND ON <volume type> <volume name> 

If the MANDATORY option was set, the SYSTEM/COPY program displays the following 
message: 

<count> FILE(S) NOT FOUND ON <volume type> <volume name> PLEASE AX TO 
ACKNOWLEDGE AND CONTINUE 

The SYSTEM/COPY program halts until you aclmowledge that some files have not been 
found. If you respond with an AX command, the SYSTEM/COPY program continues with 
the next file. 

Missing Tape Files 

When working with somce tape volumes, you must enter the directory and search it for all 
requested files. If you request more than one file for a destination of disk or disk pack 
only, the order of the files might be altered to coincide with their order on the directory to 
avoid rewinding the tape. As with disk and disk pack files, the SYSTEM/COPY program 
ensmes that requested files are present and notifies you of their absence. 

When a tape is created, a file can appear in the tape volume directory without actually 
being downtape. An example of this would be a parity error that was on the tape when it 
was created, which was located after the directory but before the file was transfened. If 
the volume was abandoned at that point, the file would be in the directory of the tape but 
not downtape. The SYSTEM/COPY program notifies you of this situation with the 
following message: 

FILE NOT FOUND DOWNTAPE ON TAPE <tape name>: <file name> 

Duplicate Disk and Disk Pack Files 

24-16 

If you copy to disk or disk pack when a file with a matching ID is already present, the 
existing file is replaced with the new file. If the existing file is in use when the new file is 
copied, the existing file is removed when it is no longer in use. If another person tries to 
access the existing file while it is still in use, the person receives the newly copied file, not 
the existing, or original file already on disk or disk pack. 

4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

Nonlibrary Tape Handling and Messages 
If you provide tape as input to the SYSTEM/COPY program and if the tape is not a 
SYSTEM/COPY, LOADMP, or PACKUP format tape (that is, if it is a tape created by 
DMPALL or is a "foreign" tape), then the following message appears and the 
SYSTEM/COPY program goes to an abnormal end-of-job. 

<volume name> (cc/uu) IS NOT SYSTEM/COPY, LOADMP OR PACKUP TAPE-ANALYSIS 
ABANDONED 

LOADMP /PACKUP Tape Handling and Messages 
If you use the VOLUMEINDEX option with a LOADMP or PACKUP tape, then the 
following message appears and the SYSTEM/COPY program goes to an abnormal end-of
job. 

<volume name> (cc/uu) IS A LOADMP OR PACKUP TAPE VOLUMEINDEX SPECIFICATION 
IS NOT ALLOWED-ANALYSIS ABANDONED 

ICTAPE Format 
The ICTAPE format follows the Unisys Corporate Standard format for interchangeable 
media. At this time however, neither B 1000 Series nor the A Series implement this 
standard. It is a multifile tape format. The general format of an ICTAPE is the following: 

VOLL .. file(s) 

VOLl represents the volume label written to the tape by the MCP. In this case, a file is of 
this general form: 

HDR1 ... HDR2 ... TM ... FID ... data block(s) •.. TM ... EOF1 ... EOF2 

HDRl and HDR2 are 80-byte records that are written by the MCP when the file is opened. 
The MCP receives the information for the HDRl and HDR2 records from the 
SYSTEM/COPY program. These records do not contain the file header information that is 
kept in a disk or disk pack file header. The HDR2 record contains the maximum blocksize 
that occurs on the tape. 

TM represents a tape mark 

FID, or file description block, contains the information found in a disk or disk pack file 
header. Both an object header (system dependent) and a symbolic header (system 
independent) are contained in the FID. 

Unless you use the BUFFERSIZE option to override this default, the FID and all data 
blocks are 9KB blocks plus 12 bytes of block information. The last block of a file cannot 
have a full 9KB of valid data, but the program still writes a 9KB block Actual file end-of
file (EOF) must be detennined from the file header information in the FID. 

4127 0000-100 24-17 



SYSTEM/COPY-File Transfer Utility Program 

EOFl and EOF2 are 80-byte records that am written by the MCP when the file is closed, 
and they are essentially duplicates of the HDRl and HDR2 records. 

Directory Format 

The first complete file on a tape is the DIRECTORY. The following is the format of the 
DIRECTORY: 

HDR1 ••• HDR2 ••• directory block(s) ••• EOF1 ••• EOF2 

where the first directory block consists of 

FORMAT ENTRY ••• FILE ENTRIES 

Any subsequent directory block or blocks consist of only file entries. A file entry of all 
zeros is the last entry. 

Each block that is written to the tape contains a 12 byte Block Information Field. This 
field is referred to as the Record Information field or RIF. Because of this field, each 
block is actually 9012 bytes; the first 12 bytes are this field. These 12 bytes are identical to 
the first 12 bytes of the RIF for a TAPE format tape. 

Table 24-1 shows the information in these 12 bytes. 

Table 24-1. ICTAPE Format RIF 

Pos (UN) Field Name Len/Type Content 

1-20 Transaction number lOUA This field is a count on all data blocks 
in a file, starting with one for each 
file. 

21-22 Block type lUA This field is a flag indicating the type 
of block: 
1 = directory 
2 = FID 
3 =data 

23-4 Reliability lUA This field indicates the reliability of 
the data contained in this block. 

Reading An ICTAPE 

24-18 

A program must specifically allocate an extra label area large enough to accommodate the 
USASI Standard label that an ICTAPE has, that is, 28 bytes for a basic label area and 80 
bytes each for the HDRl and HDR2 records. 

4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

Opening the tape file with the multifile ID set to the tape name and the file ID set to blanks 
causes in the first file on the tape to be opened. This file ID is TAPDIR for reel one, or the 
continuation of the file from the previous reel for any subsequent reels of a multireel set. 

For any reel beyond reel 1, the first file ID on the tape is Fxxxxx, where xx:xxx is a file 
sequence number relative to the first file on reel 1. This file is continued from the 
previous reel onto this reel. The next file is TAPDIR. 

Each file on the tape is a separate file. Therefore, subsequent readings will read through 
the file until EOF is sensed. Once the EOF is sensed, the file can be closed. If the file ID 
is reset to blanks, the next open will yield the next file. If you want a particular file, you 
can then request that file ID, and the MCP searches the tape until it finds the requested 
file. 

You should perform open and close files with the no-rewind option if you want to read 
through the entire tape. A simple closing rewinds the tape, but leaves the program 
attached. A close release rewinds the tape and returns the unit to the system. 

TAPE Format 
The TAPE format is somewhat similar to the LOADMP/P ACKUP tape format in that it is a 
single file tape. The general format of a TAPE is the following: 

VOL1 ... HDR1 ... HDR2 ... TM ... file(s) ... TM ... EOF1 ... EOF2 

where a file is of the general form 

FID ... data blocks 

VOLl represents the volume label written to the tape by the MCP. 

HDRl and HDR2 are 80-byte records that the MCP writes when the file is opened. The 
MCP gets the information for the HDRl and HDR2 records from the SYSTEM/COPY 
program. These records do not contain the file header information that is kept in a disk or 
disk pack file header. The HDR2 record contains the maximum blocksize that occurs on 
the tape. 

TM represents a tape mark 

The file description block (FID) contains the information that is found in a disk or disk 
pack file header. Both an object header (system dependent) and a symbolic header 
(system independent) are contained in the FID. 

The FID and all data blocks that are not a full block are written as short blocks to the tape. 
Though the exact size of a given data block is not stored, data block size can be 
determined from FIBRAD after the block is read. Actual file EOF must be determined 
from the file header information in the FID. 

4127 0000-100 24-19 



SYSTEM/COPY-File Transfer Utility Program 

24-20 

EOFl and EOF2 are 80-byte records that are wTitten by the MCP when the file is closed. 
These records are essentially duplicates of the HDRl and HDR2 records. The first file is a 
directory and has the general format: 

directory blocks 

where the first dirnctory block consists of: 

FORMAT ENTRY ... FILE ENTRIES 

Any subsequent directory blocks consist only of file entries. A file entry of all zeros is the 
last entry. 

DiTectory blocks are also written as short blocks if they are not a full 9KB. 

The definitions of these fields am identical to the description in this document, with the 
following exception: the fifth byte in the HDR2 record is a U, which designates variable 
length records, whern length is determined by each I/O statement. 

Each block written to the tape contains a 24--byte Record Information field. This is 
rnfened to as the RIF. Because of this field, each full block is actually 9024 bytes, where 
the first 24 bytes are this field. 

Table 24-2 shows the information in these 24 bytes. 

Table 24-2. TAPE Format RIF 

Pos (UN) Field Name LenjType Content 

1-20 Transaction number lOUA Counts all data blocks in a file, 
starting with 1 for each file 

21-22 Block type lUA Flags the type of block 
1 = directory 
2 = FID 
3 =data 

23-24 Reliability lUA Indicates the reliability of the data 
contained in this block 

25-36 Checksum field 12UN Used explicitly by DMCOPY (DMSll) 

37 Checksum flag lUN Used explicitly by DMCOPY (DMSll) 

38 DMCOPY tape type lUN Used explicitly by DMCOPY (DMSll) 

39-48 Filler lOUN Reserved for future use 

4127 0000-100 



SYSTEM/COPY-File Transfer Utility Program 

Reading a TAPE 
A TAPE is one continuous physical file. Different block types have been defined to 
logically differentiate one file from another. These block types are designated in a field in 
the RIF (see block type in Table 24-2). 

A program must specifically allocate extra label area large enough to accommodate the 
USASI Standard label that a TAPE has, that is, 28 bytes for a Basic Label Area and 80 bytes 
each for the HDRl and HDR2 records. 

Opening the tape file with the multifile ID set to the tape name and the file ID set to blanks 
causes the only file on the tape to be opened. This file ID is TAPDIR for reel one, or 
Fxx:xxx, where xxxxx is a file sequence number, for any reel beyond reel 1. Fxx:xxx 
indicates this reel is not reel 1 and that the first logical file is a continuation of the file 
from the previous reel. The next logical file is TAPDIR. 

After the file is opened, the first reading yields a type 1, or directory block (for reel 1). 
Because there can be more than one directory block, the end of the directory can be 
determined by reading type 2 block (FID). 

The FID is followed by any number of type 3 data blocks. When another type 2 block is 
read, then the program can determine the end of the previous file. This procedure is 
repeated for each file on the tape. The end-of-file for the last file is determined by an 
actual EOF on the read statement. 

Determining the Format of a TAPE 
Programmatically 

You can differentiate ICTAPE, TAPE, LOADMP, and PACKUP tape formats by first 
opening the tape. 

The program must allocate extra label area large enough to accommodate the USASI 
standard label that a TAPE and an ICTAPE have, that is, 28 bytes for a basic label area, 
and 80 bytes each for the HDRl and HDR2 records. LOADMP and PACKUP tapes have a 
standard label. 

The tape file must be opened with the multifile ID set to the tape name and the file ID set 
to blanks. This causes the first file on the tape to be opened. 

When the file opened, the label area is filled. 

If the HDRl and HDR2 records are not filled in, then the tape is a LOADMP or PACKUP 
tape. The eighth byte of the basic label area differentiates the tape format. For LOAD MP 
it is 5, and for PACKUP it is 6. 

If the HDRl and HDR2 records are filled in, then the tape is a TAPE or an ICTAPE. The 
fifth byte of the HDR2 record differentiates the tape format. For a TAPE, this byte is a U, 
and for an ICTAPE it is an F. 

4127 0000-100 24-21 



SYSTEM/COPY-File Transfer Utility Program 

Determining the Format of a Tape Visually 

24-22 

For a TAPE, the only physical file on the tape is named TAPDIR. For an ICTAPE, the first 
file is T APDIR. For any reel other than reel 1 of a multireel set of tapes, the first file on an 
ICTAPE has a file ID of F:x:xxxx, where xxxxx is a file sequence number relative to the 
first file on reel 1. This file is continued from the previous reel onto this reel. 

The only file on a LOAD MP or PACKUP tape is named FILE. 

If you enter 01 MTP on the ODT when a tape is mounted and ready, the multifile ID and 
the first file ID appears. For TAPE and ICTAPE format tape, the response is the following: 

<multifile ID>/TAPDIR for SYSTEM/COPY TAPE or ICTAPE 

<multifile ID>/Fxxxxx for SYSTEM/COPY ICTAPES (reel > 1) 

For LOADMP/PACKUP tapes, the response looks like this: 

<multifile ID>/FILE for LOADMP/PACKUP tapes 

To determine the exact format of a tape, TAPE, ICTAPE, LOADMP, or PACKUP, you 
should use the SYSTEM/COPY DIRECTORY command to get a directory listing of the tape. 
The printer backup file generated will describe the exact tape format. 

4127 0000-100 



Section 25 
SYSUP-Automatic System Recovery 
Facility 

Overview 
The Automatic System Recovery facility (SYSUP) provides a means to automatically 
recreate the operating environment after a halt/load or system failure. The facility is 
specifically advantageous for systems that fail in an unattended, online environment. 
When the system fails, the SYSUP facility can provide information regarding the type of 
halt/load and the task number of the job being executed at the time. Also, it can execute a 
user program that performs such tasks as executing programs, readying printers, and 
recreating the operating environment. 

The MCP can initiate the SYSUP facility automatically after any type of halt/load. If a user 
version of SYSUP is available, the MCP executes it; otherwise, the MCP executes a version 
bound to the MCP. 

The MCP passes two digits of information to the SYSUP program when it is initiated. The 
first digit describes the type of halt/load that took place, the second digit contains the 
system number. 

A user SYSUP program can use the data that the MCP passes to SYSUP. A user version 
tends to be more sophisticated than the version bound to the MCP to suit the needs of 
your installation. The bound version of the SYSUP facility is fairly simple. It zips a 
command to the MCP and goes to end-of-job. On the other hand, user versions of the 
SYSUP facility can do such things as make disk packs ready, set up printers, dump MCP 
memory, and bring up timesharing and handlers. 

When you enter the maintenance processor command LOAD MCP, a halt/load occurs. 

• If you include a USE record with the AUHL option in the system configuration file, an 
automatic halt/load occurs after the system fails. 

• If you include a USE record with the SYSUP option, the SYSUP facility is executed 
automatically. For more information about these USE records and options, refer to 
Volume 1. 

• If you set the AUHL option and a halt/load occurs, the bound SYSUP program sends a 
command to the MCP to start the DMPANL program to analyze the MCP memory 
dump file. 

The SYSUP facility stores two digits of information in memory at base-relative addresses 
32-33. The following paragraphs explain the meaning of each digit. 

4127 0000-100 25-1 



SYSUP-Automatic System Recovery Facility 

The first digit indicates the type of halt/load. It can have the following values and 
meanings: 

Digit Type of haltjload 

0 Manual halt/load 

1 ODT halt/load 

4 Cold-start halt/load 

9 Automatic halt/load 

The second digit indicates the system number. 

SYSUP Programming Considerations 
You usually need a full dump to determine why the system failed. Therefore, you may 
want your version of the SYSUP facility to execute the DMP ANL program with a ZIP PM 1 
request. You should then wait for the DMPANL program to finish before you start any 
jobs or handlers. You might want to print out the MCP table (TBL) dump for immediate 
use or copy the dump file ($p0001) to tape or disk pack for later analysis. 

Example SYSUP Programs 

25-2 

These are examples of SYSUP programs. Example 25--1 illustrates the bound SYSUP 
program. Example 25--2 illustrates a user SYSUP program that will restart an unattended 
timesharing system. 

BEGIN 
CONTROL STACK:= O& FLAT PROGRAM 
INTEGER WHOCALLS (1) = 32, 

PROCNUM (1) = 33; 
ALPHA DUMPER (16) := "SPO PMl" 
IF WHOCALLS = 9 THEN 
BEGIN 

ZIP DUMPER; 
END; 

END; 

Example 25-1. Bound SYSUP Program 

4127 0000-100 



SYSUP-Automatic System Recovery Facility 

SYSUP: 

4127 0000-100 

BEGIN 
CONTROL STACK := O;& FLAT PROGRAM; 

INTEGER WHOCALLS (1) = 32, 
PROCNUM (1) = 33, 
PROGRAM_RUNNING (2);& TO SEE IF JOB IS RUNNING; 

ALPHA DUMPER (8) := "SPO PMl. 11
; 

& FIRST READY ALL OF THE DISK PACKS & IN CASE H/L SAVED THEM; 
ZIP 11 SPO RY 8/0. II 

ZIP 11 SPO RY 8/1. II ; 

ZIP "SPO RY 8/2. II ; 

ZIP 11 SPO RY 8/3. II ; 

& NOW SET UP THE PRINTERS CORRECTLY; 
ZIP 11 SPO RY7/0 DOC96. 11 

; & WHITE PAPER; 
ZIP 11 SPO RY 17/0 SHORT. 11 

; & SHORT BLUE PAPER; 
ZIP 11 SPO RY 15/0 LINED. 11 

: & GREEN STOCK FORMS; 
ZIP 11 SPO RY 19/0 SPEC. " ;& DOCUMENTATION PRINTER; 

& SAVE THE SPECIAL FORMS PRINTERS; 
ZIP "SPO sv 17 /0. II ; 

ZIP "SPO sv 15/0. II ; 

ZIP "SPO sv 19/0. II ; 

& IF AUTOMATIC HALTLOAD DO A DUMP FIRST; 
IF WHOCALLS = 9 THEN& AUTOMATIC H/L? 
BEGIN 

ZIP DUMPER; 
& WAIT FOR DMPANL TO FINISH; 
DO BEGIN 

DOZE 10; 
PROGRAM RUNNING : = TASKID "DMPANL " 

END UNTIL PROGRAM_RUNNING = O; 
END;& END OF SYSTEM DUMP CODE; 

& BRING UP THE SYSTEM MONITOR (IF NOT ALREADY UP) 

PROGRAM RUNNING := TASKID "SYSMON " 
IF PROGRAM_RUNNING EQL 0 THEN 

ZIP "EX SYSMON PR 6 MEM 13 LOCK. " 

& AND NOW TO BRING UP TIME-SHARING; 

ZIP "EX CTLMCS PR 7 LOCK. " ; 
END; 

Example 25-2. User SYSUP Program 

25-3 



SYSUP-Automatic System Recovery Facility 

25-4 4127 0000-100 



Section 26 
UNLODV-Uniline OLP Utility Program 

Overview 
Use the UNLODV program for Uniline DLPs that connect the system to different kinds of 
data terminal equipment (DTE) and data communications equipment. This equipment 
includes ODTs, Remote Job Entry terminals, and teletypewriters. Other devices include 
various kinds of RS232 equipment and modems. 

The UNLODV program matches the data communications parameters that the Uniline DLP 
uses to those that the device attached to that Uniline DLP uses. The program sets these 
data communications parameters in the form of firmware, and can either save the 
firmware in a file or load it to the DLP. If saved in a file, the firmware can be loaded to the 
Uniline DLP later with the LH command or with the LOADFW or UNLODV programs. 

The data communications parameters must be matched to establish the first level 
interface, which is the electrical connection used to exchange and check signals between 
the Uniline DLP and the device. If these parameters do not match, the Uniline DLP and 
the device will probably not communicate. 

Two different files store the basic firmware that UNLODV reads in and modifies. The files 
are named USP3BH and UST3BH. The file that you use depends on the classification of 
equipment that is attached to the Uniline DLP. These basic firmware files are distributed 
on the system software release tape and on the UNILINE support files tape, which are 
included in the UNILINE test and field package. 

The UNLODV program customizes the firmware in memory in accordance to the 
commands that you enter. Then the UNLODV program either loads the firmware into the 
Uniline DLP, stores the customized firmware in a file that you name, or both. You can 
load the customized firmware file into the Uniline DLP later. 

The following paragraphs describe the two basic firmware files. 

4127 0000-100 26-1 



UNLODV-Uniline OLP Utility Program 

Firmware File USP3BH 

26-2 

This file contains ODT look-alike firmware. Use this file if the device connected to the 
Uniline supports a secondary ODT connected with an RS232 asynchronous direct 
connection. This file supports the following equipment: ET, MT 983, TD8, T 27, TD 830, 
TC 4000. 

The USP3BH settings are the following: 

ASCII Setting 

BAUD RATE 09600 

ADAPTER-IQ 00 

ASYNCHRONOUS SET 

EIA SET 

83900 SET 

UNILINE 2AC 

CHAR-LENGTH 7 BITS 

DIRECT CONNECT SET 

TIMEOUT-EQT RESET 

RETURN CR AS: CR 

RECEIVE-DELAY 00001 

TRANSMIT-DELAY 00100 

SQUELCH-DELAY 00000 

TIME-CUT 09999 

STOPBITS 1 

4127 0000-100 



UNLODV-Uniline OLP Utility Program 

Firmware File UST3BH 
This file contains standard terminal control look-alike firmware that you use for various 
types of data tenninal equipment (DTE) and modems. You can use it to connect the 
Uniline to a network of tenninals using poll/select or to communicate system-to-system 
either with a direct connect or a telephone system. This file runs RS232, synclu·onous or 
asynchronous, or TDI with or without modems. The connection can be with switched 
(dial) or leased lines. 

The UST3BH settings are the following: 

ASCII Setting 

BAUD RATE 09600 

ADAPTER-IQ 00 

ASYNCHRONOUS SET 

EIA SET 

83900 SET 

UNILINE 2AC 

CHAR-LENGTH 7 BITS 

DIRECT CONNECT SET 

TIMEOUT-EQT RESET 

RETURN CR AS: CR 

RECEIVE-DELAY 00001 

TRANSMIT-DELAY 00002 

SQUELCH-DELAY 00016 

TIME-CUT 05000 

STOPBITS 1 

You can display the setting of the data communications options in a file: 

1. Execute the UNLODV program and load the file in memory. 

2. Enter the DISPLAYP ARA command to display the settings on the screen. 

4127 0000-100 26-3 



UNLODV-Uniline OLP Utility Program 

System Configuration Records 
You can use two different types of system configuration records to declare Uniline DLPs. 
You must use a DLP record to declare what channel the Uniline DLP is on. Then you must 
use a UNIT record to declare the type of device that is connected to the Uniline DLP. The 
following system configuration records declare Uniline DLPs and devices to the MCP: 

• DLPrecord 

• UNIT RJE record 

• UNIT TC5 record 

• UNIT VDD record 

• UNIT TWX record 

Refer to Volume 1 for more information about these records. 

Executing UNLODV 

26-4 

You can execute UNLODV from an ODT or from a card reader. If you execute the 
program from an ODT, enter the commands and data communications parameters with 
the AX command. You can enter only one command with each AX command. 

If you execute the program from a card reader, enter the commands and the data 
communications parameters when you execute it. 

When you have executed the UNLODV program, you can customize firmware for one 
Uniline DLP while it loads finnware to another Uniline DLP. 

Use the following syntax to execute the UNLODV program from an ODT: 

EX UNLODV (,"<name of file with the basic firmware>", "S") 

If you execute the UNLODV program from a card reader, you can enter only one command 
or parameter per record. The program expects a data card with the name COMFIL. 

Use the following syntax to execute the UNLODV program from a card reader: 

?EX UNLODV (,"<name of file with the basic firmware>") 
?DATA COMFIL 
TD8 
MAKE FILEAA 
?END 

Many of the data communications parameters have value ranges. You must enter a value 
for each parameter that has a value range. 

4127 0000-100 



UNLODV-Uniline OLP Utility Program 

When you execute the UNLODV program, write down the mix number. You need the mix 
number to enter data communications parameters and commands to the program. The 
following are examples of the syntax you use to enter AX commands and parameters: 

< mix number> AX 11 TD8 11 

< mix number> AX "MAKE FILEAA " 

Data Communications Options 
The following table lists the data communications options and their values, if appropriate. 
If a value appears, you must enter a value. The default value for each file appears under 
the discussion of the TDS option in this section. 

Data Communications 
Options Value Range 

ADAPTERID <hex number 0-lF> 

ASCII 

ASYNCHRONOUS 

BAUD <110-19200> 

BDI 

CHARACTERLENGTH <5-8> 

CONVERTCR 

DATASET 

DIRECTCONNECT 

EBCDIC 

EIA 

LEASEDLINE 

PARITY <ODD, EVEN, or DISABLED> 

POLL TIMEOUTEOT <SET or RESET> 

PUSH <0-4> 

RECEIVEDELAY <0-255> 

SQUELCHDELAY <0-255> 

STOPBITS <l, 1.5, or 2> 

SWITCHEDLINE 

SYNCHRONOUS <SINGLE or DOUBLE or none> 

TDS 

TOI 

continued 

4127 0000-100 26-5 



UNLODV-Uniline OLP Utility Program 

26-6 

Data Communications 
Options Value Range 

TIMEOUT <number of milliseconds 1-9999> 

TRANSMITDELAY <number of milliseconds 0-255> 

U2AC 

U2B 

RECEIVEDELAY and SQUELCHDELAY are additive on any I/O (including poll and 
transparent options) that contains WRITE-FLIP READ. 

You can shorten any option so long as the abbreviation is unique from other options. For 
example, you can abbreviate ASYNCHRONOUS to ASY but not to AS, because AS could 
also designate ASCII. 

The following pages describe each of the data communications options. 

ADAPTERID <hex number 0-lF> 

This option sets the adapter ID in a standard terminal control. The program uses the 
adapter ID only in the result descriptor of a TEST I/O operation, which is generally 
used by remote job applications (RJE). 

ASCII 

This option makes the Uniline sensitive to ASCII control codes. The option must 
match the ASCII/EBCDIC hardware strap. 

ASYNCHRONOUS 

This option makes the transmission and reception of data asynchronous. 

BAUD <110-19200> 

BDI 

This option sets the BAUD rate for the transmission and reception of data. Use this 
option only when ASYNCHRONOUS is set. 

The BAUD rates for the Uniline type 2B range from 110 to 19200. 

The BAUD rates for the Uniline types 2, 2A, and 2C range from 110 to 9600. 

This option enables the BDI interface. 

CHARACTERLENGTH <5-8> 

This option sets the number of data bits per transmitted and received character. 

4127 0000-100 



UNLODV-Uniline OLP Utility Program 

CONVERTCR 

This option causes a received CR code (OD hex) to be converted to an ETX code (03 
hex) during a READ CONTROL operation, the read portion of a WRITE FLIP TO 
READ CONTROL operation, or the positive response to a POLL operation. 

DATASET 

This option describes the remote device that is connected to the Uniline with a data 
set to a switched (dialed) line. 

DIRECTCONNECT 

This option describes the remote device that is connected directly to the Uniline DLP 
(for example, without an intervening data set). You can specify TDI or BDI 
separately. 

EBCDIC 

EIA 

This option makes the Uniline sensitive to EBCDIC control codes. This option must 
match the ASCII/EBCDIC hardware strap. 

This option is the same as RS232. 

LEASED LINE 

This option indicates that the Uniline is attached to a leased line data set. 

PARITY <ODD, EVEN, or DISABLED> 

This option describes the parity generation and checks for each character transmitted 
and received on the data communications line. 

POLL TIMEOUTEOT 

This option causes a timeout on a RECIRCULATING POLL I/O OPERATION to be 
treated as a negative response instead of returning a timeout result descriptor. 

PUSH<0-4> 

This option represents the number of push characters (FF hex) appended to each 
synchronous transmission. Use this option to "push" the last data characters through 
the sync data sets. 

RECEIVEDELAY <0-255> 

This option sets the delay in milliseconds between the detection of the caiTier detect 
signal and the beginning of the firmware search for valid data. 

4127 0000-100 26-7 



UNLODV-Uniline OLP Utility Program 

26-8 

SQUELCHDELAY <0-255> 

This option sets the delay in milliseconds between the last bit being transmitted and 
the next event. This value applies only to a DATASET device; set it to zero for a direct 
connect line. 

STOPBITS <l, 1.5, or 2> 

This option sets the number of stop bits transmitted or expected for each character 
transmitted or received. Use this option only for asynchronous transmissions. 

SWITCHEDLlNE 

This option has the same meaning as the DATASET command and indicates that the 
UNILlNE is attached to a switched (dial) line data set. 

SYNCHRONOUS <SINGLE, DOUBLE or none> 

This option indicates that the transmission or reception of data is synchronous and 
the number of sync characters to expect before synchronization is achieved. Because 
sync characters are always expected on a synchronous line, you should use 
SYNCHRONOUS DOUBLE. 

TD8 

This option sets the parameters for the firmware (refer to the following tables). For 
Uniline 2, use command TD8 and Baud to set Baud rate. 

ASCII Asynchronous 

BAUD 9600 

CHARACTERLENGTH 7 

DIRECT CONNECT 

PARITY EVEN 

RECEIVE-DELAY 2 

TRANSMIT-DELAY 10 

STOPBITS 1 

TIME-OUT 5000 

4127 0000-100 



UNLODV-Uniline OLP Utility Program 

The following are the USP3BH settings with TDS. 

ASCII Setting 

BAUD RATE 05907 

ADAPTER-IQ 00 

ASYNCHRONOUS SET 

EIA SET 

83900 SET 

UNILINE 2AC 

CHAR-LENGTH 7 BITS 

DIRECT CONNECT SET 

TIMEOUT-EQT RESET 

RETURN CR AS: CR 

RECEIVE-DELAY 00002 

TRANSMIT-DELAY 00010 

SQUELCH-DELAY 00000 

TIME-CUT 05000 

STOPBITS 1 

TDI 

This option enables two-wire direct interface hardware. 

TIMEOUT <1-9999> 

This option sets the number of milliseconds to wait for receiving a character before 
timing out. 

TRANSMITDELAY <number of milliseconds 0-255> 

This option sets the number of milliseconds to delay between receiving the clear-to
send signal and transmitting the data. 

U2AC 

This option sets the firmware to that used by the Uniline types 2A or 2C. 

4127 0000-100 26-9 



UNLODV-Uniline OLP Utility Program 

The following are the USP3BH settings with U2AC. 

ASCII Setting 

BAUD RATE 09600 

ADAPTER-IQ 00 

ASYNCHRONOUS SET 

EIA SET 

83900 SET 

UNILINE 2AC 

CHAR-LENGTH 7 BITS 

DIRECT CONNECT SET 

TIMEOUT-EQT RESET 

RETURN CR AS: CR 

RECEIVE-DELAY 00001 

TRANSMIT-DELAY 00100 

SQUELCH-DELAY 00000 

TIME-CUT 09999 

STOP BITS 1 

U2B 

This option sets the firmware to that used by the Uniline type 2B. 

The following are the USP3BH settings with U2B. 

ASCII Setting 

BAUD RATE 09600 

ADAPTER-IQ 00 

ASYNCHRONOUS SET 

EIA SET 

83900 SET 

UNILINE 2B 

CHAR-LENGTH 7 BITS 

DIRECT CONNECT SET 

continued 

26-10 4127 0000-100 



UNLODV-Uniline OLP Utility Program 

ASCII Setting 

TIMEOUT-EQT RESET 

RETURN CR AS: CR 

RECEIVE-DELAY 00001 

TRANSMIT-DELAY 00100 

SQUELCH-DELAY 00000 

TIME-CUT 09999 

STOPBITS 1 

UNLODV Commands 
When you execute the UNLODV program and enter the data communications parameters 
to modify the firmware, use the following commands to save the customized firmware in a 
file, to load the firmware to a Uniline DLP, and to patch the firmware object code. 

END 

This command ends the UNLODV session. 

DISPLAYP ARA 

This command displays the data communications settings of the firmware file. 

LOAD <Uniline DLP channel number> 

This command loads the modified firmware from memory to the Uniline DLP that is 
connected to the specified channel. 

MAKE <file-name> 

This command tells UNLODV to store the firmware that has been customized in 
memory in a file with the given name. Load this file to the Uniline DLP later with the 
LH, UNLODV, or LOADFW command. 

4127 0000-100 26-11 



UNLODV-Uniline OLP Utility Program 

PATCH 

This command permits modifications to the actual object code in the firmware. The 
syntax for PATCH is the following: 

PATCH V <version number> <hex address> <hex data> 

The data can be up to 60 characters in length. For example, if the firmware has the 
hex data 0123456789 patched into it at hex address OF AS, the input command is as 
follows: 

PATCH V601 OFA8 0123456789 

Firmware File Format 
The UNLODV program stores firmware in a single-area firmware file blocked 100 bytes by 
1. The first record contains information on the size of each load phase. There can be up 
to three load phases although only the first phase is applicable to the Uniline. following 
table represents the first record in the file. It specifies the size of each phase. Zero 
indicates that the program has skipped that phase. 

Offset SizejType Description 

0 6 UN Phase One Load Size 

6 6 UN Phase Two Load Size (Zero for this program) 

12 6 UN Phase Three Load Size (Zero for this program) 

18 182 UN Zero Fill 

All other records in the file contain 100 bytes ofload data each. The file resides on disk 

Loading Firmware to Uniline 

26-12 

To load firmware to a Uniline from a V 300, refer to the V 300 Maintenance User's Guide. 

To load firmware to a Uniline from a V 500, refer to the V 500 Maintenance Reference 
Manual. 

4127 0000-100 



Section 27 
DCP-Data Communications 
Processor 

Overview 
A Data Communications Processor (DCP) enhances the data communications capabilities 
of the V Series systems. A DCP reduces the worldoad on the host system by performing 
data communication tasks that the host would otherwise have to handle. Some of these 
tasks include routing messages to terminals, recovering from errors, translating code, 
managing lines, and managing networks. 

System Requirements 

MCS 

DCP 

A data communications system that uses B 874, B 974, TELCOM, or ICPV (CP 2000) DCPs 
requires a message control system (MCS), a network definition language (NDL), and the 
DCP module of the MCP. 

The MCS enables you to manage various aspects of the data communications system, such 
as security, file control, error handling, audit and data recovery, message routing to 
applications programs, and resource allocation. Unisys can supply an MCS (for example, 
GEM COS), or you can write your own in a high level language such as COBOL or BPL. 
Refer to the B 874/B 974/0RS-DLP MCS Message Headers Programming Reference 
Manual for more information. 

The required B 874 or B 974 Network Definition Language (NDL) source program includes 
a concise description of the network and of the procedures you should follow to control 
the network. Normally, you would write the NDL source so that it meets your local 
network requirements. This NDL source is compiled with the B 874 NDL compiler 
(CPNDLl) or the B 974 NDL compiler (NDL974). The compilation process creates the 
following files: one NDL firmware file for each DCP, an MCP network information file 
(MCPNIF), and an MCS network information file (MCSNIF). These files reside on disk on 
the host system. 

The MCPNIF must be present on disk when you set the required DCP module on the host 
system. The NDL programmer selects the name of the firmware file. The names of the 
NIF files are MCPNpF and MCSNpF where the p represents the system number of the host 

4127 0000-100 27-1 



DCP-Data Communications Processor 

system that will use the files. If you want a B 87 4 and a B 97 4 DCP to run simultaneously 
on the same system, you must use the NIFMRG program to merge the NIF files. 

You must load the firmware file into the DCP before it can operate. There are two 
commands you can use to load the firmware file into the B 87 4 or B 97 4: the LH command 
and the SO command with the DCP option. Refer to Volume 2 for more information about 
these commands. 

Network Initialization 
Use the following procedure to initialize a data communications network to run a B 87 4 or 
a B 97 4 Data Communications Processor. 

1. Perform a cold-start on the system and be sure to declare the channel for each DCP. 
Each DCP must have its own UNIT card. Refer to Volume 1 for more information 
about the UNIT record with the DCP option. 

2. Generate a firmware file for each DCP and the MCPNIF and MCSNIF files, using the 
appropriate NDL compiler. AB 87 4 and a B 97 4 DCP cannot nm simultaneously on 
the same system unless you use the NIFMRG program to merge the NIF files. 

3. Enter the SO command with the DCP option. An LH command occurs automatically 
when you use the DCP option and the SO command. 

4. Execute the MCS when the LDHOST program goes to end-of-job or the B 974LD 
program displays the following message: 

DATA COMM TO STATIONS HAS BEEN SUCCESSFULLY ACTIVATED 

MCP Interfaces 
The following MCP records and commands initialize and control B 874, B 974, TELCOM or 
ICPV DCPs. For more information about UNIT and LIMIT records, refer to Volume 1. For 
more information about commands and control instructions, refer to Volume 2. 

OLP Record 

The DLP record declares a DLP for the DCP. 

DCP UNIT Record 

The DCP UNIT record configures the system for a DCP. 

LIMIT DCPQUE Record 

27-2 

The LIMIT DCPQUE record sets the maximum WRITE functions (type 30) that can be 
outstanding in the DCP for each station. 

4127 0000-100 



DCP-Data Communications Processor 

LIMIT DCPBUF Record 

The LIMIT DCPBUF record sets the default number of input messages that an MCS result 
pool can store. 

SO Command with the DCP Option 

The SO command with the DCP option sets the DCP option and loads the DCP module 
into the host system memory. The command executes the LDHOST program for each 
B 874 and the B 974LD program for each B 974. 

LH Command 

The LH command loads firmware and initializes DCPs. 

BUFFER Control Instruction 

The BUFFER control instruction specifies the number of input messages an MCS result 
pool can store. BUFFER overrides the value specified for a specific MCS in the LIMIT 
DCPBUF Record. 

Table 27-1listsB874 error conditions. 

Table 27-1. B 874 Link Errors 

INV R/D R/D = <result-descriptor> 

CONTROL TIMEOUT R/D = FOOO 

HTMALFUNCTION R/D = F800 

B 874 MALFUNCTION R/D = F700 

S-MEM PARITY R/D = CCOO 

MTEB R/D = C400 

MTEX R/D = C200 

HTLINK PARITY R/D = DlOO 

B 874 LINK PARITY R/D = D200 

INV S-MEM ADRS S-PTR = <S-mem-address> 

INV FUNCTION TYPE FUNC = <function-number> 

INV PSN PSN = <PSN-value> 

Table 27-2 lists B 974 error conditions. 

4127 0000-100 27-3 



DCP-Data Communications Processor 

Table 27-2. B 974 Link Errors 

INV R/D R/D = <result descriptor> 

HUB NOT READY R/D = EOOO 

BUS PARITY ERROR t R/D = DOOO 

BUS PARITY ERROR t R/D = D300 

DATA TIMEOUT R/D = COlO 

HUB PARITY ERROR R/D = C020 

ACCESS DENIED R/D = C040 

HUB TIMEOUT R/D = C050 

PARTNER ERROR R/D = C060 

READ ON WRITE ERROR R/D = C070 

MEMORY PAR ERROR R/D =COBO 

WRITE SYSTEM GONE R/D = C090 

EARLY TERMINATION R/D = COAO 

LENGTH ERROR R/D =COBO 

CONTROL XFER TIMEOUT R/D =COCO 

LPC ERROR R/D =GODO 

AMR WRITE ERROR R/D = COEO 

MEM BUS PARITY ERROR R/D = COFO 

DCP DID NOT RESP TO A TEST 

t The HC-2 DLP lacks the "nonstandard" strap 

Table 27-3 lists the interface errors. 

Table 27-3. Firmware Interface Errors Detected by the MCP 

INV R/H ON READ, FUN/OFN <R/H-type> <orig-function> 

INV R/H TYPE, FUNC <R/H-type> 

INV R/H ORIG FUN, 0 FUNG <function-number> 

INV R/H LSN, LSN <LSN-value> 

INV R/H S-PTR I S-PTR <S-mem-address> 

INV R/H MCS# MCS# <MCS-number> 

NO R/H ORIG FUNG, FUN, OFN <R/H-type ><orig-tune> 

INV R/H TEXT SIZE, SIZE <integer> 

27-4 4127 0000-100 



Section 28 
Debug Facility 

Overview 
The MCP Debug Facility is an interactive, menu-driven tool for debugging the MCP and the 
user programs at the machine-language level. You can run up to ten Debug sessions at one 
time. 

You initiate a Debug session by entering one of two commands at an ODT. The ODT then 
becomes an interactive terminal for that Debug session. The Debug Facility enables you 
to switch back and forth between any of the active Debug sessions and between a Debug 
session and the normal operation of the ODT. 

Initiating a Debug Session 
Use the following commands to initiate the Debug Facility: 

• The DEBUG command initiates a program and attaches the program to a Debug 
session. 

• The INTERACTIVE DEBUG (ID) command creates a Debug session for a program that 
is already in the active mix. 

When you enter either of these commands, the ODT becomes an interactive terminal for a 
Debug session. The terminal is reset and internally reprogrammed for the forms mode. A 
set of user interface menus appears. 

When you finish the Debug session, the system reinstates the terminal to its original state 
and clears all screens. 

MCP Initialization 
To use the Debug Facility commands, you must include either of the following when you 
initialize the system: 

• The CONTROL DEBUG MCP system configuration record 

• The CONTROL DEBUG USER system configuration record in the system 
configuration file when you initialize the system 

The CONTROL DEBUG MCP system configuration record enables you to use the 
interactive Debug Facility with the MCP or with user programs. The CONTROL DEBUG 
USER system configuration record enables you to use the interactive Debug Facility only 
with user programs. 

4127 0000-100 28-1 



Debug Facility 

For a complete description of system configuration records, refer to Volume 1. 

Utility Commands 
The following utility commands are useful for running a number of Debug sessions 
concurrently: 

• The ENTER Debug (ED) command returns you to any of ten Debug sessions from the 
ODT. 

• The QUERY Debug (QD) command displays the number of active Debug sessions on 
the system and their respective session numbers. 

These two utility commands are useful because you can leave the Debug Facility and 
return to normal ODT operations at any time by using the ODT action on the Main Menu 
(refer to "Main Menu" in this section). 

DEBUG Command 

28-2 

The DEBUG command starts a program and simultaneously attaches the ODT to a Debug 
session for that program. Enter this command only from an ODT. You can run up to ten 
Debug sessions concurrently. 

The syntax for the DEBUG command appears in Figure 28-1. 

- DEBUG - <program name>-.,-----------.------------? 
L ON <media name> _J 

) L <parameter list> J 

Figure 28-1. DEBUG Command Syntax 

<program name> 

This option is the name of the program to be attached to an interactive Debug session. 
The program must contain executable object code and must be stored on the disk or 
pack specified by the media name. 

<media name> 

This option refers to the name of the storage device on which the desired program is 
stored. If you do not specify the media name, the program must reside on the code 
path. 

If you do not include ON <media name>, the code path is searched. 

The <media name> can be one of the following: 

4127 0000-100 



Debug Facility 

DISK 

This option looks for the desired program on 100-byte media only. If the program 
is not found, an error message appears on the ODT. 

PACK 

This option looks for the desired program on all of the system unrestricted packs. 
If the program is not found, an error message appears on the ODT. The program 
cannot be found unless it is stored in 180-byte code file format. 

To ensure that the program is stored in the correct format, copy it onto the disk 
pack using the PCOPY utility, or compile the program using the code file media ID 
option of the COMPILE (Compile Program) command. Refer to Volume 2 for 
more information. 

<pack family name> 

This option looks for the desired program on the disk pack family that you 
specify. If the program is not found, an error message appears on the ODT. 

If the program is not found on disk or on unrestricted disk pack, an error message 
appears on the ODT. 

<parameter list> 

This option can include up to three parameters that you enter in a program when you 
begin the program. 

These parameters enable you to enter Boolean, string, and integer values that the 
program can use when you execute the program. 

The syntax for the parameter list appears in Figure 28-2. 

-(~----------,c-r--------------~ 
<parameter 1> , <parameter 2> ~--------.---. 

,<parameter 3> 

+-) 
, - ,<parameter 3> --------' 

Figure 28-2. Syntax for Parameter List 

The following list shows the integer parameters: 

• These parameters contain unsigned numeric data up to eight digits in length (8 
UN). 

• These parameters have values ranging from 0-F. 

• These parameters are right-justified and zero-filled in the high-order digits if they 
are less than the maximum length. 

4127 0000-100 28-3 



Debug Facility 

• These parameters cause a syntax error if they are greater than the maximum 
length. 

String parameters: 

• These parameters contain alphanumeric data up to six characters in length (6 
UA). 

• These parameters must be within quotes. To pass a quote as a parameter, a 
double quote must appear in the parnmeter string; as in the following example: 

DEBUG MYPROG (,"TRY""XX"). 

• These parameters can be composed of any EBCDIC characters. 

• These parameters are left-justified and blank-filled in the low-order bytes if they 
are less than the maximum length. 

• These parameters will be truncated in the low-order bytes if they are greater than 
the maximum length. 

<parameter 1> 

This parameter can be an integer up to eight digits in length. This parameter sets 
switches at program address O; as in the following example: 

DEBUG MYPROG (10100000). 

<parameter 2> 
<parameter 3> 

These parameters can be either 8-digit integers or 6-character strings. 

Parameter 2 is inserted into the code file at base-relative address 8. Parameter 3 is 
inserted into the code file at base-relative address 20, as in the following examples: 

DEBUG MYPROG (,12345678) 

DEBUG MYPROG (101,"TOTEST"). 

When either parameter 2 or parameter 3 are specified, you must have either a value or 
a comma in the preceding parameters, as in the following example: 

DEBUG MYPROG (,,"TAPE"). 

The program permits a null entry, as in the following example: 

DEBUG MYPROG (,O,"ABC") 

This example does not change the switches, but it does insert 00000000 at address 8 
and the string ABC at address 20. 

Note: The parameter list replaces slash parameters which were standard on earlier 
versions of the MCP. The MCP still supports slash parameters. 

28-4 4127 0000-100 



( 

Debug Facility 

Examples 

DEBUG PAYRLl 

In this example, the Debug Facility looks for a program named PAYRLl on the disk 
named CODEPACK or on unrestricted disk pack. Then it starts the program and 
attaches it to an interactive Debug session. 

DEBUG UPDATE ON PACK 

In this example, the Debug Facility looks for a program named UPDATE on all 
unrestricted disk packs, starts the program, and attaches it to an interactive Debug 
session. 

DEBUG STATOl ON ACCTS ; FILE OUTPUT = LINEPR/ST1985 

In this example, the Debug Facility looks for a program named STATOl on the disk 
pack family named ACCTS, starts the program, and directs the file named OUTPUT to 
a specific printer. 

INTERACTIVE DEBUG Command (ID) 
Use the INTERACTIVE DEBUG (ID) command to debug a task in the active mix. When 
you enter the ID command from the ODT to invoke a Debug session, the Debug Facility 
attaches the task corresponding to the task number to the session. 

Use this command to debug a task when you do not know the status of the execution, 
such as in a deadlock or an infinite loop, or during the execution of an independent 
runner. 

The syntax for the ID command appears in Figure 28-3. 

- <mix number> - ID ---------------------

Figure 28-3. ID Command Syntax 

<mix number> 

This option refers to the mix number of an active job in the mix. 

Example 

55 ID 

In this example, the syntax invokes the Debug Facility for the program associated with 
mix number 055. 

4127 0000-100 28-5 



Debug Facility 

ENTER DEBUG Command (ED) 
The ENTER DEBUG (ED) command enables you to go back to a specified Debug session 
from the ODT. 

The syntax for the ED command appears in Figure 28-4. 

- ED - <session number> ----------------------i 

Figure 28-4. ED Command Syntax 

You can go back to any Debug session from the ODT as long as the Debug session was 
initiated from that ODT. The session number must follow the keyword ED because it 
identifies an independent runner that controls the session (as opposed to a normal task 
number). 

The four-digit session number is prominently displayed within each session. You can use 
the QD command described in this section to view the session numbers of all active Debug 
sessions. 

Example 

ED 1387 

In this example, you enter Debug session number 1387 so that you can go back to it. 

QUERY DEBUG Command (QD) 

28-6 

The QUERY DEBUG (QD) command identifies the Debug sessions present on the system 
and displays the four-digit session number of each. You must enter this command from 
the ODT. 

The syntax for this command appears in Figure 28-5. 

- QD --------------------------i 

Figure 28-5. QD Command Syntax 

4127 0000-100 



Debug Facility 

User Interface Menus 
The Debug Facility contarns several menus as well as an online help facility. These menus 
are the following: 

• MainMenu 

The Main Menu appears after a DEBUG or ID command when the task can be run. 

• Status Menu 

If the task cannot be run from the Marn Menu, the Status Menu appears. 

• TraceMenu 

The Trace Menu enables you to trace and record the execution of the task up to a 
specified point. 

• Breakpoint Menu 

The Breakpoint Menu enables you to set breakpoints in the instructional stream 
where you want execution of the program to stop. 

• State Menu 

The State Menu gives you access to memory so that you can examine and, if you wish, 
alter memory contents. 

Figure 28-6 illustrates the series of user interface menus. 

4127 0000-100 28-7 



Debug Facility 

DEBUG Command 

ODT 

Interactive 
Treminal 

TRACE 
MENU 

Runnable Program 

MAIN 
MENU 

BREAKPOINT 
MENU 

ID Command 

Non-'"""']' Program 

STATUS 
MENU 

STATE 
MENU 

Figure 28-6. User Interface Menus 

The State of a Debugged Task 

28-8 

All menus display the state of the debugged task on the second line, as shown in Figure 
28-7. 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 

Figure 28-7. Status Line-Example 

4127 0000-100 



Debug Facility 

The following information is included: 

TASK 

MODE 

STATE 

ENVMNT 

NIA 

COMS 

HJ A/ON tr 

TIPIMIDIU 

4127 0000-100 

The task number assigned to the task 

The Debug mode (USR, MCP, SYS, or REL). Refer to the Mode 
option under "Main Menu" later in this section. 

The internal state of the task: 

DEBUG-presently debugging 
STOP-stopped 
GO ON-running 
BRK-PNT-Breakpoint Menu invoked 
HCL-BPT-Hypercall/BCT brealq>ointed 
ADDR-BPT-address brealq>ointed 
OP-BPT-Opcode breakpointed 
OVF-BPT--0verflow brealq>ointed 
BR-BPT-taken branch brealq>ointed 

The current environment of the task This field allows six digits; 
the last three digits are the module number. 

The next instruction address to be executed. 

The comparison toggles. Refer to "State Menu" later in this 
section. 

An asterisk indicates which breakpoint has been used to stop the 
program: 

H-Hyper Call/BCT 
A-address 
0--0pcode 
V--0verflow 
T-taken branch 

Refer to "Brealq>oint Menu" later in this section. 

An asterisk indicates which trace action has been set: 

T-trace 
P-path 
M-monitor 
D-module 
U-user 

Refer to "Trace Menu" later in this section. 

28-9 



Debug Facility 

Main Menu 

The Main Menu (refer to Figure 28-8) appears when you enter a DEBUG or ID command, 
but only when the task to be debugged can be run. 

If the task is initially in a waiting state, such as when it is waiting on a resource, the Status 
Menu appears (refer to Figure 28-9). The Main Menu appears when the task can be run. 

From the Main Menu, you can access the Trace, Breakpoint, and State menus for the 
purpose of executing code in an observable, controlled manner. 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 

CMNDS:REF [ ] STOP [ ] SI [ ] RUN [0000] GO[ ] IGN [ ] QUIT [ ] END [ ] 
: PEEK [ ][ ][ ][ ][ ] POKE [ ] RLE [ ] MODE [ 

OTHER MENUS: HELP [ ] TRACE [ ] BREAKPOINTS [ ] STATE [ ] DDT [ ] 

Figure 28-8. Main Menu 

Main Menu Actions 

28-10 

You can invoke the following actions from the Main Menu. 

REF 

STOP 

SI 

RUN 

GO 

IGN 

Refreshes the screen by redisplaying the current menu. 

Causes the task to stop executing instructions. 

Permits single instruction execution. 

Permits execution of a specified number of instructions before 
stopping again. 

The syntax for the RUN action is: 

RUN <n> 

where n is a 4-digit number of instructions. 

Permits execution until either an error condition arises or a 
breakpoint is reached. 

Permits the reported error to be ignored when the task is armed or 
when the task receives an asynchronous message. 

4127 0000-100 



QUIT 

END 

PEEK 

POKE 

RLE 

MODE 

HELP 

4127 0000-100 

Debug Facility 

Detaches the task from the session and ends the session. The task 
continues running. 

Note: Use QUIT to terminate a session where a system 
independent runner is being debugged; QUIT ensures that 
the task will be detached. 

Terminates both the task and the Debug session. 

Note: Do not use END to end the session when debugging a 
system independent runner; use the QUIT action. 

Displays memory at the indicated offset and memory area for the 
specified length. The syntax for the PEEK action is: 

PEEK <offset>, <length>, <memory area>, <environment number>, 
<task number> 

The environment and task numbers are optional. The default 
values 
are the current environment and task numbers of the task you are 
debugging. The digit lengths of these parameters are the following: 

Offset-6 digits 
Length-3 digits 
Memory area-2 digits 
Environment number-6 digits 
Task number-4 digits 

Enables you to change memory by inserting a P at the beginning of 
any lines in the display area. 

Displays the Reinstate List Entry of the specified task number. 

Changes the Debug mode to any of the following modes: 

USR-Enables Debug for the user program portions of the task 
only. 
MCP-Enables Debug for the MCP portion of the task only. 
SYS-Enables Debug for both the MCP and USER portions of the 
task 
REL-Disables Debug completely until either the task terminates or 
the program reaches an eITor. 

For those portions of the task where Debug is disabled, the task 
will run at the normal system speed. Enter all actions that resume 
execution of the task or terminate the task only when the debugged 
task is in a stopped state. Judicious use of these modes can reduce 
debugging time significantly. For example, if you want to debug a 
user program, you need not fault after each instruction executed 
within the MCP code. Use of the USR mode would prevent this. 

Displays a series of help menus. 

28-11 



Debug Facility 

TRACE Displays the Trace Menu (desc1ibed in this section). 

BREAKPOINTS Displays the Breakpoint Menu (desclibed in this section). 

STATE Displays the State Menu (desclibed in this section). 

ODT Enables you to switch to the ODT. Use the ED command to return 
to the Debug session from the ODT. 

Status Menu 

The Status Menu (refer to Figure 28-9) appears when you enter a DEBUG or ID command 
and the task that you want to debug cannot be run, because it is in a waiting state (for 
example, when the program is waiting on a resource). 

When you can run the task, the Main Menu (refer to Figure 28-8) appears. 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 

COMMANDS: REF [] END [] 
:PEEK [ ][ ][ ][ ][ ] POKE[ ] RLE[ ] MODE[ 

OTHER MENUS: HELP [ ] 

Figure 28-9. Status Menu 

Status Menu Actions 

You can invoke the following actions from the Status Menu. 

REF Refreshes the screen by redisplaying the current menu. 

END Terminates both the task and the Debug session. 

28-12 4127 0000-100 



PEEK 

POKE 

RLE 

MODE 

HELP 

4127 0000-100 

Debug Facility 

Displays memory at the indicated offset and memory area for the 
specified length. 

The syntax for the PEEK action is the following: 

PEEK <offset>, <length>, <memory area>, <environment number>, <task 
number> 

The environment and task numbers are optional. The default values are 
the cunent environment and task numbers of the task you are 
debugging. The digit lengths of these parameters are the following: 

Offset-6 digits 
Length-3 digits 
Memory area-2 digits 
Environment number-6 digits 
Task number--4 digits 

Enables you to change memory by inserting a P at the beginning of any 
lines in the display area. 

Displays the Reinstate List Entry of the specified task number. 

Changes the Debug mode to any of the following modes: 

USR--enables Debug for the User Program portions of the task only 
MCP--enables Debug for the MCP portion of the task only 
SYS-enables Debug for both the MCP and USER portions of the task 
REL-disables Debug completely until either the task terminates or an 

error is reached 

For those portions of the task where Debug is disabled, the task runs at 
the normal system speed. You can enter all actions that resume 
execution of the task and terminate the task only when the debugged 
task is in a stopped state. Judicious use of these modes can reduce 
debugging time significantly. For example, if you want to debug a user 
program, you need not fault after each instruction executed within the 
MCP code. Use of the USR Mode would prevent this. 

Displays a series of help menus. 

28-13 



Debug Facility 

Trace Menu 

You access the Trace Menu (refer to Figure 28-10) from the Main Menu (refer to Figure 
28-8). The Trace Menu enables you to direct a valiety of trace output to three types of 
media simultaneously. 

TASK MODE STATE ENVMNT NIA COMS 

OTHER MENUS: 
HELP [ ] 

DEVICES 

USER OPS [ 

RETURN []------------TRACE 
ODT [ ] : [ ] 
PRN [ ] I [ ] : [ ] 

] PBD [ ] /PBT [ ] : [ ] 

H/A/O/V/T T/P/M/D/U 

PATH PROC MODULE USER 

H H H H 
[] [] [] [] 

Figure 28-10. Trace Menu 

Trace Menu Actions 

28-14 

You can invoke the following actions from the Trace Menu. 

HELP Displays a series of help menus. 

RETURN Enables you to return to the Main Menu. 

The following table shows the types of trace actions. 

TRACE 

PATH 

PROC 

MODULE 

USER 

Traces all instructions executed until the task terminates, an 
error occurs, or a breakpoint is reached. 

Produces a trace line when instruction execution ceases to be 
sequential, as with Taken Branch instructions and Enter. 

Produces output lines whenever the task enters or exits a 
procedure. 

Produces output lines whenever the task enters or exits a 
procedure and the environment changes 

Produces output lines whenever the task executes a user-selected 
opcode. 

4127 0000-100 



Debug Facility 

Output (Device) Options 

You can output any combination of the trace actions to all devices. The following table 
shows the output options. 

ODT 

PRINTER 

PBDorPBT 

User-Selected Opcodes 

Enter any non-blank character. 

Enter <channel number>/<unit number>. 

The <channel number> is a 4-digit number and the <unit 
number> is a 2-digit number. 

Enter any non-blank character for printer backup disk (PBD) or 
printer backup tape (PBT). Only one printer backup file can be 
opened at a time. 

The USER OPS field enables you to specify a maximum of ten 2-hex-character opcodes. 

Breakpoint Menu 

You access the Breakpoint Menu (refer to Figure 28-11) from the Main Menu (refer to 
Figure 28-8). This menu enables you to set a maximum of 32 breakpoints on 10 
Hypercall/BCT instructions, 10 instruction adcfresses, 10 opcodes, or an overflow or taken 
branch. You can easily set or reset all breakpoints by entering any nonblank character in 
the able/disable field that precedes each breakpoint. 

4127 0000-100 28-15 



Debug Facility 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 

OTHER MENUS: HELP [ ] RETURN [ ] 

BP BCT ADDRESS OPCODE 

NO B NO OF MASK CT A OFFSET ENV-NO CT 0 OP AFBF CT 
1 [ ] [ ] [ ] 
2 [ ] [ ] [ ] 
3 [ ] [ ] [ ] 
4 [ ] [ ] [ ] 
5 [ ] [ ] [ ] 
6 [ ] [ ] [ ] 
7 [ ] [ ] [ ] 
8 [ ] [ ] [ ] 
9 [ ] [ ] [ ] 

10 [ ] [ ] [ ] 
-----------------------------------------------------------------

[ ] [OJ VERFLOW [ ] [T] AKENBRANCH 

Figure 28-11. Breakpoint Menu 

Breakpoint Menu Actions 

You can use the following actions on the Breakpoint Menu: 

HELP Displays a series of help menus. 

RETURN Enables you to return to the Main Menu. 

28-16 4127 0000-100 



Debug Facility 

HypercalljBCT Breakpoints 

The actions for setting this breakpoint and their default values are shown in Table 28-1. 

Table 28-1. HypercalljBCT Breakpoints 

Field Description Default 

B Any character Not applicable 

NO 4 digit number 0000 

OF 2 digit number 00 

MASK 6 hex value FOFOFO 

CT 2 digit number 00 

Enter any character in the first field (B) to enable this breakpoint. 

The second field (NO) assigns a four-digit number to this breakpoint. For example, to stop 
on BCT 0214, you enter 0214 (refer to the examples in this section). 

The offset (OF) is the number of digits relative to the start of the HCIJBCT parameters. 

The mask (MASK) is compared with the offset value, and the task is stopped on a perfect 
match. 

The count (CT) specifies the number of occurrences of the Hypercall/BCT to be skipped 
before the task will stop. 

Address Breakpoint 

The actions and their default values for setting this breakpoint appear in Table 28-2. 

Table 28-2. Address Breakpoints 

Field Description Default 

A Any character Not applicable 

OFFSET 6 digit number 000000 

ENV-NO 6 digit number 000000 

CT 2 digit number 00 

Enter any character in the first field (A) to enable this breakpoint. 

The address offset (OFFSET) is the instruction address on which the task is to be stopped. 

4127 0000-100 28-17 



Debug Facility 

The Environment Table number (ENV-NO) is the MAT number. 

The count (CT) specifies the number of occurrences of the address that are to be skipped 
before the task will stop. 

Opcode Breakpoint 

This breakpoint stops execution at a given number of occmTences of a specified 
instruction. The actions and their default values for setting this breakpoint appear in 
Table 28-3. 

Table 28-3. Opcode Breakpoints 

Field Description Default 

0 Any character Not applicable 

OP 3 character string 3 blanks 

AFBF 4 digit number FFFF 

CT 2 digit number 00 

Enter any character in the first field (0) to enable this breakpoint. 

The symbolic opcode (OP) is the mnemonic for the opcode. 

The AFBF field is the actual value that is compared to the code stream before the task is 
stopped. 

The count specifies the number of occurrences of the opcode ignored before the task is 
stopped. 

Overflow Breakpoint 

You can stop the task when an executed instruction causes the Overflow Toggle to be set. 

Taken Branch Breakpoint 

28-18 

This breakpoint enables you to stop the task when the sequential flow of the instruction 
stream has been broken. 

4127 0000-100 



Debug Facility 

State Menu 

You can display and modify the state of the task and the data structure in memory with 
the State Menu (refer to Figure 28-12). You access the State Menu from the Main Menu 
(refer to Figure 28-8). 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 

OTHER MENUS:HELP [] RETURN [ ]---------------------------------------------
STK [ ] NSTK [ ] PSTK [ ] NIA [ ] COMS [ ] INT [ ] MOD [ ] 
MOP [ ] ACC [ ] IXl [ ] IX2 [ ] 
IX3 [ ] IX4 [ ] IX5 [ IX6 [ ] IX? [ ] 

Figure 28-12. State Menu 

State Menu Actions 

You can invoke the following actions from the State Menu. 

HELP 

RETURN 

STK 

NSTK 

PSTK 

NIA 

COMS 

4127 0000-100 

Displays a series of help menus. 

Enables you to return to the Main Menu. 

Displays the topmost stack frame. 

Displays the next stack frame relative to the last one displayed. 

Displays the previous stack frame relative to the last one 
displayed. 

Displays/modifies the next instruction address. 

Displays/modifies the comparison toggles for the task. The 
encodings are as follows: 

0-0verflow is set-COM 04 
E-COMS programs are set (EQUALCOM 03) 
L---COMS programs are set (LOWCOM 02) 
H-COMS programs are set (lGHCOM 01) 
N-COMS programs are set (NULLCOM 01) 

28-19 



Debug Facility 

INT 

MOD 

MOP 

ACC 

IXn 

Displays/modifies the interrnpt mask. The encoctings are as 
follows: 

0-System overtemperature (INT 20) 
T-Timer (INT 10) 
R-Real-Time I/O (INT 04) 
E-Error I/O (INT 02) 
N-Norrnal I/O (INT 01) 
0-No bits set (INT 00) 

Displays/modifies the mode toggles. The encodings are as 
follows: 

F-Soft Fault enabled (MODE 08) 
P-Privileged task (MODE 04) 
T-Trace enabled (MODE 02) 
S-Snap enabled (MODE 01) 
0-No toggles set (MODE 00) 

Displays/modifies the measurement register. 

Displays/modifies the current accumulator. 

Displays/modifies a system index register, where n is a number 
between 1 and 7, inclusive. 

Debug Session Examples 
The following examples show how to use the Debug interactive menus. 

Stop User Program 

28-20 

To stop a user program on an instrnction address, you mark the BREAKPOINTS field on 
the Main Menu (refer to Figure 28-13). 

TASK MODE STATE ENVMNT NIA COMS H/A/0/V/T T/P/M/D/U 
0002 SYS DEBUG D00002 071930 02 

CMNDS:REF [ ] STOP [ ] SI [ ] RUN [0000] GO[ ] IGN [ ] QUIT [ ] END [ ] 

: PEEK [000000] [000] [00] [ ] [ ] POKE [ ] RLE [000000] MODE [ 
OTHER MENUS: HELP [ ] TRACE [ ] BREAKPOINTS [X] STATE [ ] ODT [ ] 

TASK IS ATTACHED AND ENABLED 

Figure 28-13. Main Menu-Breakpoint Example 

4127 0000-100 



Debug Facility 

When you transmit the Main Menu, the system displays the Breakpoint Menu (refer to 
Figme 28-14). 

TASK MODE STATE ENVMNT NIA COMS 
0002 SYS BRK-PNT D00002 071930 02 

H/A/O/V/T T/P/M/D/U 

OTHER MENUS: HELP [ ] RETURN [ ] 

BP BCT ADDRESS OPCODE 

NO B NO OF MASK CT A OFFSET ENV-NO CT 0 OP AFBF CT 
1 [ ] [X 005258 000001 ] [ ] 
2 [ ] [ ] [ ] 
3 [ ] [ ] [ ] 
4 [ ] [ ] [ ] 
5 [ ] [ ] [ ] 
6 [ ] [ ] [ ] 
7 [ ] [ ] [ ] 
8 [ ] [ ] [ ] 
9 [ ] [ ] [ ] 

10 [ ] [ ] [ ] 
-----------------------------------------------------------------[ ] [O]VERFLOW [ ] [T] AKENBRANCH 

Figure 28-14. Breakpoint Menu-Address Breakpoint Example 

Transmit this menu and retmn to the Main Menu (use the RETURN field). The Main Menu 
appears in Figure 28-15. 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 
0002 SYS DEBUG D00002 071930 02 * 

CMNDS: REF [ ] STOP [ ] SI [ ] RUN [0000] GO[X] IGN [ ] QUIT [ ] END [ ] 

: PEEK [000000] [000] [00] [ ] [ ] POKE [ ] RLE [000000] MODE [ 
OTHER MENUS: HELP [ ] TRACE [ ] BREAKPOINTS [ ] STATE [ ] ODT [ ] 

ADDRESS BREAKPOINT- TASK STOPPED <BP#Ol 005258 000001 00> 

Figure 28-15. Main Menu-Example 

Place a mark in the GO field and transmit the menu. The system executes the breakpoint 
and displays a message showing the breakpoint number, the offset number, the 
environment number, and the count number. 

4127 0000-100 28-21 



Debug Facility 

Using the PEEK and POKE Functions 

The PEEK function displays the memory at the indicated address. The POKE function 
enables you to change the memory displayed. 

PEEK Function 

28-22 

On the Main Menu (refer to Figure 28-16), complete the first three fields of the PEEK field 
(the environment field and task number field are optional). Make sure that the GO field is 
blank. 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 
0002 SYS DEBUG D00002 071930 02 

CMNDS:REF [ ] STOP [ ] SI [ ] RUN [0000] GO[ ] IGN [ ] QUIT [ ] END [ ] 
: PEEK [003292] [012] [01] [ ] [ ] POKE [ ] RLE [000000] MODE [ ] 

OTHER MENUS: HELP [ ] TRACE [ ] BREAKPOINTS [ ] STATE [ ] ODT [ ] 

Figure 28-16. Main Menu-PEEK Input Example 

The system displays the contents of the memory at location 003292 for a length of 12 digits 
(refer to Figure 28-17). 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 
0002 SYS DEBUG D00002 071930 02 

CMNDS:REF [ ] STOP [ ] SI [ ] RUN [0000] GO[ ] IGN [ ] QUIT [ ] END [ ] 
: PEEK [003292] [012] [01] [ ] [ ] POKE [ ] RLE [000000] MODE [ ] 

OTHER MENUS: HELP [ ] TRACE [ ] BREAKPOINTS [ ] STATE [ ] ODT [ ] 

003292 012 01 FOFOFOFOFOFl 

Figure 28-17. Main Menu-PEEK Display Example 

4127 0000-100 



Debug Facility 

POKE Function 

Use the POKE function to change the instructions in the memory location that appears in 
Figure 28-17. 

Perform the following steps (refer to Figure 28-18): 

1. Clear the PEEK fields. 

2. Mark the POKE field. 

3. Move the cursor to the display of the memory address. 

4. Place a P immediately before the address number. 

5. Change the memory contents. 

6. Transmit. 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 
0002 SYS DEBUG D00002 071930 02 

CMNDS:REF [ ] STOP [ ] SI [ ] RUN [0000] GO[ ] IGN [ ] QUIT [ ] END [ ] 

: PEEK [ ] [ ] [ ] [ ] [ ] POKE [X] RLE [000000] MODE [ 
OTHER MENUS: HELP [ ] TRACE [ ] BREAKPOINTS [ ] STATE [ ] ODT [ ] 

P003292 012 01 FlFlFlFlFlFl 

Figure 28-18. Main Menu-POKE Example 

Using the Trace Functions 

The Trace Menu enables you to direct trace output to a variety of media. 

Mark the TRACE field on the Main Menu to access the Trace Menu (refer to Figure 28-19). 
Mark the desired fields. In this example, the request is for a complete trace of instructions 
to be sent to a printer backup file on disk (PBD). 

When you transmit the menu, the system returns the message: 

NEW PRINTER BACKUP-FILE HAS BEEN OPENED 

4127 0000-100 28-23 



Debug Facility 

TASK MODE STATE ENVMNT NIA COMS H/A/O/V/T T/P/M/D/U 
0002 SYS DEBUG D00002 071930 02 * 

OTHER MENUS: 
HELP [ ] RETURN [ ]------------ TRACE PATH PROC MODULE USER 

DEVICES DDT [ ] : [ ] [] [] [] [] 
PRN [ ] I [ ] : [ ] 

USER OPS [FFFFFFFFFF] PBD [X] /PBT [ ] : [X] 
[] [] [] [] 
[] [] [] [] 

Figure 28-19. Trace Menu-Example 

Debug Session Errors 

28-24 

When the system is executing on behalf of a debugged task and encounters an error, it 
reports the error to the session with a hardware interrupt. The exact nature of the fault 
appears in the fault indicators (refer to Table 28-4). 

Table 28-4. Fault Indicators 

Digit Bit Type of Fault 

72 8 Hard Memory Area 

72 4 Trace 

72 2 Invalid Arithmetic Data 

72 1 Soft Memory Area 

73 8 Invalid Instruction- More information in the IEX Byte 
(refer to Table 28-5) 

73 4 Uncorrectable Memory Parity Error 

73 2 Address Error- More information in the AEX Byte 
(refer to Table 28-6) 

73 1 Instruction Timeout 

74 8 Stack Overflow 

74 4 Accumulator Trap taken 

74 2 Snap Picture taken 

74 1 Soft Fault 

4127 0000-100 



Debug Facility 

Table 28-5 lists the additional information generated by the invalid command extensions 
(digits 80-81). 

Table 28-5. Invalid Command Extension (IEX)-Digits 80-81 

Description Value 

GENERAL 00 

Invalid Operator Code 01 

Privileged Mode Violation 02 

Invalid Address Controller 03 

Stack Overflow 04 

Counter Overflow/Underflow 05 

Invalid Field Comparison 06 

Invalid Operand Field 07 

Invalid AF or BF, GENERAL 20 

Literal Not Permitted 21 

Invalid Literal 22 

Invalid Indirect Field Length 23 

Invalid Variant 24 

Invalid AF 25 

Invalid BF 26 

Invalid Privileged Primary Access 31 

Invalid Privileged Sec. Access 32 

Invalid Attempt to Modify Original or Fault Memory 35 
Table Entry 

Copy Protection Violation 36 

Stack Protection Violation 37 

4127 0000-100 28-25 



Debug Facility 

28-26 

Table 28-6 lists the additional information generated by the invalid addrnss extensions 
(digits 78-79). 

Table 28-6. Invalid Command Extension (IEX)-Digits 78-79 

Description Value 

GENERAL 00 
Invalid Address Relationship 01 
Hypercall Function Limit Error 02 
Odd Operand Address 03 
Invalid MAT Entry 04 

Index Register, GENERAL 10 
Invalid Arithmetic 11 
Index Register Contains Undigit 12 
Invalid Base Indicant 13 
IX3 Negative on RETURN 14 
IX3 Odd on RETURN 15 

Base/Limit Error, GENERAL 20 
Command Fetch 21 
Address Resolution 22 
Operand Write 23 
Operand Read 24 
Global Link Address 25 

Address Undigit, GENERAL 30 
Command Fetch 31 
Address Resolution 32 
Operand Write 33 
Operand Read 34 
Global Link Address 35 

Branch Address, GENERAL 40 
Address >= Limit 41 
Address Contains Undigit 42 
Odd Address 43 

Invalid Environment Descriptor 50 

Invalid Environment Number 51 
Invalid Most Significant Digit 52 
Index Contains Undigit 53 
Memory Area No. Contains Undigit 54 
Environment Number or Memory Area Number Out of Range, 56 

GENERAL 
Environment No. Out of Range 57 
Memory Area No. Out of Range 58 

continued 

4127 0000-100 



Debug Facility 

Table 28-6. Invalid Command Extension (IEX)-Digits 78-79 (cont.) 

Description Value 

Invalid Memory Area Table Entry 60 

Invalid Environment Number 61 
Invalid Most Significant Digit 62 
Index Contains Undigit 63 
Memory Area No. Contains Undigit 64 
Environment Number or Memory Area Number Out of Range, 66 

GENERAL 
Environment No. Out of Range 67 
Memory Area No. Out of Range 68 

Error Messages Related to Debug Commands 
The following paragraphs describe the error messages that the DEBUG, ID, and ED 
commands can generate. 

EXCEEDED DEBUG SESSION LIMIT 

There are ten active Debug sessions on the system. No new sessions can be invoked 
until at least one of the current sessions terminates. Use the QD command to identify 
the current sessions. 

ERROR IN INITIATING DEBUG SESSION 

There was an internal error in the session. 

TASK CURRENTLY BELONGS TO ANOTHER SESSION 

The task that you attempted to attach to this session was being debugged in another 
session. 

DEBUG SESSION DOES NOT BELONG TO OCS 

The session number does not correspond with the ODT from which this command 
was issued. 

DEBUG SESSION UNASSIGNED 

The session number is invalid and does not correspond to any current session. 

FOUR DIGIT SESSION NO REQD 

You must include a four-digit session number in the command. 

4127 0000-100 28-27 



Debug Facility 

28-28 4127 0000-100 



Section 29 
QWIK Disk 

Overview 
The V Selies QWIK Disk utilizes extra system memory to simulate a high performance 100-
byte disk subsystem. This section desclibes the system bottlenecks that QWIK Disk can 
remedy. It also desclibes file-selection cliteria, file-placement suggestions, installation 
and cold-start procedures, as well as operational and programming considerations for 
QWIKDisk. 

QWIK Disk is easy to install. You can use it on any V Selies system and it is fully 
compatible with all releases of the V Selies MCPNS. You do not need to change any 
existing software to use QWIK Disk. 

QWIK Disk is very easy to use because it simulates existing 100-byte disk subsystems. 
You can read and wlite to files in QWIK Disk in the same way that you read and wlite files 
to any other 100-byte disk. To obtain the maximum performance from your system, you 
must be selective when you decide which files to put in QWIK Disk. Because of its limited 
capacity, QWIK Disk is not recommended for use as default disk. 

Caution 
Because QWIK Disk makes use of main memory, information stored in QWIK Disk 
can be lost because of power failures or because of some system faults. Critical 
files should be considered for QWIK Disk only if you have adequate backup 
procedures or if the performance benefits justify the potential recovery overhead. 

QWIK Disk is an excellent storage medium for files that have a high I/O volume. It is also 
an excellent medium for read-only files in a transaction processing system that requires a 
short response time. When you select files for QWIK Disk, keep in mind a basic size-to-I/O 
ratio. Use the smallest files with the highest I/O volume. 

QWIK Disk significantly reduces the amount of time it takes to complete an I/O; it does not 
reduce the number of I/Os that talce place. Instead, it speeds them up in one of the 
following ways. 

• By using RAM memory for disk storage, QWIK Disk eliminates "seek time," which is 
the time spent waiting as a disk head goes through the mechanical process of finding a 
sector and reading data. 

• QWIK Disk has a high rate of data transfer. 

4127 0000-100 29-1 



QWIK Disk 

Installing QWIK Disk 

29-2 

To install QWIK Disk, you must do the following: 

1. Load the latest IOP firmwru:e from floppy disk 

2. Determine the amount of the memory the MCP will use and the amount QWIK Disk 
will use. 

3. Use two maintenance processor commands to set the MCP limit and the QWIK Disk 
option. 

4. Cold-start the system with two special records in the system configuration file. 

One of the special records tells the system how much storage QWIK Disk has. The other 
special record reserves channel 40 for QWIK Disk 

For information on initializing your system, refer to "Maintenance Processor Commands" 
in this section, "Initializing the System" in the Volume 1 and in the hardware 
documentation for your processor. 

When the installation and cold-start are complete, you can read and write files to and from 
QWIK Disk as you would to and from any other disk subsystems. 

Figure 29-1 shows an example of the division of memory between the MCP and QWIK 
Disk 

4127 0000-100 



MAIN MEMORY 

System Memory 

MCP 

QW/K DISK 

Workfiles 

QWIKMEM 

QWIKPOOL 

SORT Files 

User Programs 

ISAM Key Files 
OMS Index Files 
FORMS Files 
Q-Files 
Etc. 

This division is set by the 
SO LIMIT Maintenance 
Processor command. 

Log Files 
Dump Files 
$ 00001 

Disk 

QWIK Disk 

Figure 29-1. Example Memory Partition between the MCP and QWIK Disk 

Performance Improvement Guidelines 
The performance figures for QWIK Disk vary depending on the file classes and individual 
files you select for QWIK Disk. Heavy peripheral activity can cause performance variance. 

The following paragraphs describe performance guidelines that are based on benchmark 
tests run in empty environments. For consistency, the performance improvements are 
expressed as factors computed as according to the following formula: 

Factor = Old Time/New Time 

QWIK Disk Peripheral Perlormance 

Because QWIK Disk eliminates seek time, the average QWIK Disk I/O requires only 1 to 2.4 
milliseconds. For QWIK Disk, I/O time is all data transfer time. QWIK Disk can transfer 
the largest possible block size (20,000 bytes) in 16 milliseconds. 

QWIK Disk I/O speed can be at least 9 times faster than devices with movable heads, such 
as LAK 206 and 207. 

4127 0000-100 29-3 



QWIK Disk 

General System Performance 

When you use QWIK Disk in a general production or development environment, the 
performance results vary significantly depending upon the files you place in QWIK Disk 
QWIK Disk improvement usually varies directly with the percentage of total I/Os shifted to 
QWIKDisk 

Code File Overlays 

Most systems use the QWIKPOOL option to avoid disk-overlay accesses. Unisys 
recommends that you do overlays in the QWIKPOOL. 

Sort Performance 

Solt and SRTUTL performance can improve based on placement of input, output, and/or 
work files in QWIK Disk SORT: shows marginal improvement with work files in QWIK 
Disk 

SORT input and output files usually receive more I/Os than work files (which generally 
have large blocking). For optimum SORT performance, place at least the SORT input and 
work files in QWIK Disk 

DMSll and ISAM Performance 

Because of the large number of files involved, DMSII and ISAM performance figures vary 
significantly. Because of their small size, ISAM key files and DMSII index files (sets and 
subsets) are good candidates for QWIK Disk 

Functions with high I/O waiting time, such as ISAM, DMSII DELETE, and OUTPUT WRITE 
(CREATE/STORE) operations are particularly effective if the files involved reside in QWIK 
Disk. 

Transaction System Performance 

Transaction-based mixes generally consist of a message control system (MCS), 
transaction-processing programs, and a Data Management System II (DMSII) Data Base 
Program (DBP). DMSII structures will usually receive the highest I/O traffic. 

System Analysis-An Overview 

29-4 

The following paragraphs outline a method of analysis that can help you to isolate the 
types of system bottlenecks that QWIK Disk can remedy. These paragraphs include 
examples of using QWIK Disk in different types of environments and a list of the various 
system reports and tools that can help you with this analysis. 

4127 0000-100 



QWIK Disk 

Because Unisys systems are used worldwide for many different applications, this analysis 
can be considered only an outline to complement your understanding of your system 
environment. 

To integrate QWIK Disk into your processing environment, you need to study the 
following system characteristics to isolate the types of bottlenecks QWIK Disk can 
remedy: 

• System use 

• Memoryuse 

• Peripheral activity 

System Use 

Examine the use of the system to determine the amount ofMCP idle time. If the MCP 
idles more than 10 percent, an opportunity for QWIK Disk exists, and you should proceed 
with the rest of the analysis. If not, the MCP is system bound, and QWIK Disk can do little 
to improve its total performance. 

Memory Use 

After you examine the system use and find out the MCP idle time, look at the system 
memory use to improve your MCP and program overlay performance. 

Find out if the MCP spends more than 10 percent of its waiting time waiting for MCP or 
program overlays. If so, you might be able to improve your system performance by 
moving the MCP code file or programs to QWIK Disk. 

Remember, QWIKPOOL is the best tool to use for overlays. If it is not already in use, it 
can increase your system overlay performance more than QWIK Disk. 

However, QWIK Disk can improve the performance of programs with overlays too big for 
the QWIKPOOL. Oversized overlays normally come from disk. But if you move the 
program into QWIK Disk, they will go to RAM memory instead. 

4127 0000-100 29-5 



QWIK Disk 

Peripheral Activity 

29-6 

After you improve yom system memory performance, you can begin to isolate its I/O 
bottlenecks. 

Determine which peripheral devices have the most I/O traffic. Find out if traffic is spread 
out evenly among all the peripheral devices or if it is unevenly distdbuted. If it is uneven, 
you can improve performance by relocating files onto different peripheral devices as well 
as onto QWIK Disk. 

Also look for high I/O traffic to classes of files, individual files, and individual file areas. In 
these cases, move the groups of files, the individual file, or the individual file areas to 
QWIKDisk. 

Remember to move the smallest files with the highest I/O volume to QWIK Disk. 

4127 0000-100 



QWIK Disk 

Performing a System Analysis 
The followillg paragraphs describe the system analysis you need to perlorm. 

You can use both the FLAME software package and the TABSII software package to 
analyze your system. 

4127 0000-100 29-7 



QWIK Disk 

Step 1. Examine System Utilization and Determine the MCP Idle 
Time 

29-8 

Examine your system use to find out the amount of time the MCP spends waiting. If it 
idles more than 10 percent, an opportunity for QWIK Disk exists and you should proceed 
with the analysis. If not, the MCP is system bound, and QWIK Disk can do little to 
improve its total performance. 

The MCP/USER graphs produced by the FLAME software package can help you determine 
the MCP idle time. If you do not have FLAME, a "soaker" program will perform a similar 
job. A soaker program is a priority 1 program that loops, continually counting, soaking up 
the unused system time when no other program is executing and the MCP is idling. 

Figure 29-2 illustrates a system in which the MCP idles (waits) 57 percent of the time. 
The system spends another 40 percent executing user jobs, and the MCP executes 3 
percent of the time. 

MCP IDLE 
57% 

USER JOBS EXECUTING 
40% 

MCP 
EXECUTING 

3% 

Figure 29-2. Comparison of Idle Time to Execution Time 

4127 0000-100 



QWIK Disk 

Step 2. Determine the Time Spent Waiting for MCP and Program 
Overlays 

If your MCP spends more than 10 percent of its time waiting, determine what it waits for. 

Figure 29-3 illustrates a number of factors that contdbute to MCP waiting time. 

The following are overlays for which QWIK Disk can reduce waiting time: 

• MCP overlays 

• Program overlays 

The following are VOs for which QWIK Disk can reduce waiting time: 

• VOs to disk or disk pack 

• VOs to classes of files 

• VOs to individual files 

WAITING PROGRAM OVERLAY 

9% ----

WAITING MCP OVERLAY 
2% 

WAITING OPERATOR 
2% 

WAITING STOPPED ~ 

1%~~ 
WAITING S~RT 

4% 

WAITING SLEEPING 
1% 

WAITING EXECUTE 
2% 

USER JOBS EXECUTING 
40% 

WAITING 1/0 
39% 

Figure 29-3. Factors That Contribute to MCP Waiting Time 

4127 0000-100 29-9 



QWIK Disk 

Step 3. Examine MCP and Program Overlays to Determine 
Memory Utilization 

Find out how much time is spent waiting for MCP and program overlays. 

MCP Overlays 

Use the FLAME graphs in the Memory Analysis series of reports entitled "MCP Overlays" 
to get an idea of how much the system waits for MCP overlays. Refer to the V Series 
FLAME Installation and Operations Reference Manual for more information. 

The QWKMEM option is the primary tool for speeding up MCP overlays. This option 
provides an area of main memory to be used exclusively for MCP overlays. The most 
recently called MCP overlay is stored in this area so that it can be retrieved from memory 
when it is needed, eliminating disk I/O time. Refer to Volume 1 for more information 
about QWKMEM. 

If the system frequently accesses MCP overlays from disk even though you have set the 
QWKMEM option, you can improve system performance by moving the MCP code and 
files to QWIK Disk. 

Program Overlays 

29-10 

Examine the amount of time programs spend waiting for overlays. The FLAME graphs in 
the Memory Analysis series of reports entitled "Percent of Jobs In MIX Waiting Program 
Overlays" and "Number of Program Overlays Called" can help with this analysis. Refer to 
the V Series FLAME Installation and Operations Reference Manual for more 
information. Also, the TABSII reports "QWIKPOOL Usage Summary" and "Average 
Overlay Call Hit Rate" are useful. Refer to the B 2000/B 3000/B 4000/V Series TABS!! 
Installation and Operations Guide for more information. 

If more than 10 percent of waiting time is spent waiting for program overlays, you should 
be able to improve performance. The primary goal is to increase the amount of memory 
allocated to the QWIKPOOL, which is an area of memory reserved for the most recently 
used program overlays. QWIKPOOL reduces the number of overlays that must be read 
from disk. 

4127 0000-100 



Figme 29-4 illustrates the amount of time spent waiting for overlays. 

WAITING PROGRAM OVERLAY 
9% ----

WAITING MCP OVERLAY 
2% 

WAITING OPERATOR 
2% 

WAITING STOPPED ~ 
1%~ 

WAITING S~~R-T / 4%~) 
WAITING SLEEPING 

1% 

USER JOBS EXECUTING 
40% 

WAITING 1/0 
39% 

QWIK Disk 

Figure 29-4. Amount of Time the System Spends Waiting Overlays 

4127 0000-100 29-11 



QWIK Disk 

Step 4. Examine 1/0 Wait Time for Peripheral Activity 

29-12 

Examine the Run Log (RLOG) I/O counts and the FLAME report entitled "Job Waiting" to 
find out how much time the MCP spends waiting for I/O. If the MCP spends more than 10 
percent of its waiting time waiting for I/O, proceed with the following analysis. 

Find out how much time it spends waiting for I/Os to disk or disk pack, MCP code files, 
various classes of files, and individual files. This information will enable you to fit your 
system into one of the following categories: 

• System bound. Jobs are being executed at least 90 percent of the time. QWIK Disk 
can offer little performance improvement. 

• Memory bound. The system is waiting for MCP or program overlays more than 10 
percent of the time. QWIK Disk, QWKMEM, and QWIKPOOL can improve overlay 
performance. 

• 1/0 bound. A high percentage of waiting time is spent waiting for I/Os to peripheral 
devices and files. You can improve system performance by moving files with a high 
I/O volume to QWIK Disk. 

• 1/0 and memory bound. A high percentage of the system waiting time is spent 
waiting overlays and I/Os. First, improve overlay performance by maximizing the 
QWKMEM and QWIKPOOL; then decide if you can improve the time spent waiting for 
I/Os. The following steps provide instructions for isolating the files and peripheral 
devices. 

Figure 29-5 illustrates the amount of time that the MCP waits for overlays. 

4127 0000-100 



WAITING PROGRAM OVERLAY 
9%---+ 

WAITING MCP OVERLAY 
2% 

WAITING OPERATOR 
2% 

WAITING STOPPED ~ 
1%~ 

WAITING S~~R-T / 4%~) 
WAITING SLEEPING 

1% 

WAITING EXECUTE 
2% 

USER JOBS EXECUTING 
40% 

WAITING 1/0 
39% 

Figure 29-5. Amount of Time the MCP Spends Waiting ljO 

4127 0000-100 

QWIK Disk 

29-13 



QWIK Disk 

Step 5. Determine 1/0 Counts to Disk and Disk Pack 

29-14 

If a majority of I/Os go to disk pack, your system can be characterized as a disk pack
based system. If the majority are going to disk, it is a disk-based system. Determine the 
nature of your system and apply the following: 

• Disk Pack Based. If your system is a disk pack-based system, you can use QWIK 
Disk as a fo1m of cache by moving files in and out as needed. Doing so may require 
operational or programming changes. Because these files are moved to QWIK Disk 
for temporary use, you must remember to copy them back to disk pack when you 
finish and thus update the original files. The analyses described in steps 6 through 9 
can help you identify the types of files or the individual files with the highest I/O 
volume. 

• Disk Based. If your system is a disk-based system, proceed with the next analysis. 

Figure 29-6 illustrates a system that has 65 percent of its I/Os going to disk and 30 percent 
going to disk pack. The remaining I/Os go to other media. This system is a disk-based 
system. 

I/Os TO OTHER MEDIA ~ 
5% ____....-

I/Os TO DISK 
65% 

I/Os TO DISKPACK 
30% 

Figure 29-6. Pattern of 1/0 Traffic to Disk, Pack, and Other Media 

4127 0000-100 



QWIK Disk 

Step 6. Analyze General File 1/0 

If excess MCP waiting time is spent waiting for IIO, use FLAME and Run Log (RLOG) 
repo1ts to identify the files or file types the MCP waits for most often. 

This file I/O analysis is broken down according to the following categ01ies: 

• High I/Oto MCP files 

• High I/O wait time on individual files 

• High I/O wait time on various classes of files including 

- Workfiles 

- Datafiles 

- Data base files 

- ISAMfiles 

Figure 29-7 illustrates the file types for which a system is waiting. 

COMPILER FILES 
14% 

DATABASE FILES 
24% 

MCP OVERLAYS Jf 
2% ___/ 

MCP I/Os / 

3% ~ J 
PROGRAM OVERLAYS 

MCP FILES 
12% 

PROGRAM DATA FILES 
13% 

WORKFILES (SORT..) 
11% 

' ~~~MS FILES 
~7% 

Figure 29-7. Disk 1/0 Analysis of a System Waiting 1/0 to Different File Type 

4127 0000-100 29-15 



QWIK Disk 

Step 7. Examine 1/0 Volume to MCP Files 

Use FLAME graph 37, "MCP I/O," to determine if the MCP files have a high I/O volume. 

• If they do, consider moving them to QWIK Disk. 

• If not, proceed with the next analysis. 

Step 8. Examine 1/0 Volume to Classes of Files 

29-16 

Use the Run Log (RLOG) to identify the file classes (such as database files) that have the 
highest I/O volume. Make a list of the worst offenders and consider moving the smallest 
files with the highest I/O volume to QWIK Disk. 

You can route certain classes of files to QWIK Disk either by declaring a work file 
subsystem when you perform a cold-start or by using such system options as WRKP. 
Refer to "Files" and "Programming Considerations" later in this section for more 
information. 

4127 0000-100 

( 



QWIK Disk 

Step 9. Examine 1/0 Volume to Individual Files 

Use the Run Log (RLOG) to determine specific file I/O counts and the percentage of total 
I/O wait time for a job. List the worst offenders and consider moving the smallest files 
with the highest I/O volume to QWIK Disk Refer to "General File Selection Criteria" later 
in this section for information about refining the list. 

Figure 29-8 illustrates a disk I/O analysis. 

DISK USER I/Os-EU 2 
33% 

DISK USER I/Os-EU 5 / 4%~ 

DISK MCP I/Os EU-1 
12% 

I/Os TO PACK, OTHER 
35% 

Figure 29-8. Types and Locations of ljOs 

Step 10. Analyze Channel/Subsystem/ID 

Underconfigured systems and lopsided peripheral configurations can cause system 
bottlenecks. 

If a disk ID or spindle is disproportionately busy, consider moving some of its files to 
QWIK Disk. Use the FLAME peripheral activity graphs to analyze the disk subsystem and 
disk ID. 

Evenly divide the percentage of time a peripheral is in use over the disk channels of the 
system. If a disk channel is consistently used more than 40 percent of the time, you might 

4127 0000-100 29-17 



QWIK Disk 

want to move some of its files to QWIK Disk. Because of its speedy I/O transfer rate, 
QWIK Disk use will rarely exceed 25 percent. 

Selecting Dynamic Profile or Static Profile 
Because QWIK Disk is a volatile storage device (it loses its files if the power goes off), you 
should now determine whether the system would be best served by a static area where 
you load specific files that reside in QWIK Disk for the entire production cycle or by a 
constantly changing (dynamic) area. 

Static Profile 

A static environment with files of permanent residency can still support some dynamic 
files. However, you should develop a backup procedure for all noninquiry QWIK Disk 
files. 

A static profile contains files with the following characteristics: 

• Long file access span 

• Inquiry or limited update file 

• ISAM 

• Code files (for overlays) 

Dynamic Profile 

A dynamic profile includes files with the following characteristics: 

• Short file access span 

• Temporary or output 

• Workfiles 

For dynamic files, consider the following question: Are the files in QWIK Disk recoverable 
by a user-coded restart? 

Sample Environments 
The following paragraphs contain examples of how you might use QWIK Disk in different 
types of environments, including development, production, and disk pack environments. 

Sample of Development Environment 

29-18 

In this sample development environment, both dynamic (steadily changing) files, and 
static (nonchanging) files are placed in QWIK Disk. 

Compilation of dynamic files are frequently cycled through the QWIK Disk to achieve a 
high compilation rate. Also, heavily accessed work files are routed to QWIK Disk. In 

4127 0000-100 



QWIK Disk 

addition, QWIK Disk holds static files, such as an inquiry-only file containing software 
reference sections. 

Sample of Production Environment 

In this sample production environment, file-access spans are generally long, and file 
residency is more nearly permanent. A goal for this type of environment is to mitigate 
bottleneck structures. Critical issues include online response time and transactions per 
hour. This environment would be considered a static one where some data update can 
occur. 

Sample of Disk Pack Environment 

In this sample disk pack environment, nearly all accessed files reside on 180-byte media. 
QWIK Disk serves as a type of disk pack cache, where heavily accessed disk pack files are 
copied to QWIK Disk for use. Then they are copied back to disk pack to update the 
originals. 

Because all QWIK Disk files are backed up on disk pack, you might consider using a QWIK 
Disk-resident MCP to facilitate MCP overlays and directory I/Os. This option is not 
recommended unless the impact of directory loss is minimal. 

Note: If the disk directory is lost from QWIK Disk, you must perform a cold-start to 
recover. 

Measurement Techniques 
The following paragraphs discuss the system commands and reports you use to monitor 
system performance. Use this information to decide which files to put in QWIK Disk. The 
reports show the sizes of various files and the number of program overlays and 
peripherals QWIK Disk uses. 

The commands include the following: 

• KA (reports on file sizes and their location) 

• KS (reports all areas of disk use by ID number) 

• OL (reports on channel activity) 

• WO (reports on overlay activity in the QWIKPOOL) 

The utility programs include the following: 

• RLGOUT (reports on file sizes and I/O activity) 

• FLAME (reports on the overall performance of QWIK Disk) 

4127 0000-100 29-19 



QWIK Disk 

Using FLAME 

Files 

FLAME is an effective tool for measming certain performance areas. You should monitor 
the system environment both before and after QWIK Disk file placement. 

Table 29-1 lists the graphs that should be of particular interest. Refer to the V Series 
FLAME Installation and Operations Reference Manual for more information. 

Table 29-1. FLAME Graphs 

Graph Subject 

30-37 Jobs in the mix marked waiting 

11 Percentage of time user jobs are executing 

12 Percentage of time MCP is executing and 
idling 

21 MCP disk overlays 

22 MCP main memory overlays 

23 Number of program overlays from memory 

42 MCP I/Os versus total I/Os to disk 

58 Percent of time channels are busy 

57 Number of I/Os to channels 

The following paragraphs discuss criteria for selecting the files that you want to place in 
QWIK Disk The discussion includes the files that are possible candidates for placement 
in QWIK Disk, and general procedures for loading and unloading files to and from QWIK 
Disk 

General File Selection Criteria 

29-20 

QWIK Disk is ideal for files that have a high I/O volume or that require a short response 
time, or both. The performance improvement that you obtain by putting these files in 
QWIK Disk depends on the ratio of IIO time to system time for the jobs that access the 
files. 

Also, you must consider the volatility of QWIK Disk If the power goes off or if you 
perform a cold-start on the system, all disk files, including those in QWIK Disk, are lost. 

Table 29-2 highlights the criteria for selecting files for QWIK Disk and the paragraphs 
following the table describe these criteria. 

4127 0000-100 



QWIK Disk 

Table 29-2. QWIK Disk File Section Criteria 

File Selection Criteria 

File size Is it less than QWIK Disk capacity? 

Certain areas heavily accessed? 

Can the file overflow to another ID? 

File Access Is it read-only or inquiry? 

Is it temporary or a work file? 

Is it an update file? 

Does it have code file overlays? 

File Volatility Is restart feasible? 

Will data loss compromise integrity? 

File Activity Does it have a high 1/0 wait? 

Are large blocks being transferred? 

Does it need a high number of I/Os 
per second? 

File Size 

Consider the following issues of file size when placing files in QWIK Disk. 

File Size 

Files that you place in QWIK Disk cannot be larger than the storage available. 

File Areas Heavily Accessed 

Sometimes you can split a file and put the area used most in QWIK Disk, with the less
used areas on LAK or 5N disk. 

File Over11ow 

When the storage capacity of QWIK Disk fills up, the system seeks space on the default 
disk subsystem(s). This creates a situation in which there is high-speed access to the part 
of the file in QWIK Disk and low-speed access to the part of the file that has overflowed to 
another disk ID. 

File Access 

Consider the following issues of file access when placing files in QWIK Disk. 

4127 0000-100 29-21 



QWIK Disk 

Read-Only Files 

QWIK Disk offers high speed access to files that are accessed on a read-only basis. 

Temporary and Work files 

These files generally have a high J/O volume, and you use them as logical extensions of 
main memory. Therefore, they benefit greatly from the access speeds and transfer rates 
provided by QWIK Disk. Consider how clitical the file is because files in QWIK Disk are 
more volatile than files on disk or disk pack DMSII offers an alternative, but recovery is 
vital. 

Update Files 

The high-speed access to files that QWIK Disk offers can improve the response time in an 
online environment where transactions coming from a network are updating files. You 
must consider the possibility of loss; however, the DMSII recovery capability can provide 
an option. 

Code File Overlay 

Use the QWIKPOOL option for program overlays. However, if specific programs have 
overlays that are too large for QWIKPOOL, consider placing the entire code file in QWIK 
Disk. For additional information on QWIKPOOL, refer to the discussions of the USE 
QWIK and LlMIT QWIKPOOL records in Volume 1. 

File Volatility 

Restart 

Consider the following issues of file volatility when placing files in QWIK Disk. 

Because QWIK Disk uses RAM memory, information stored in QWIK Disk can be lost 
when the power fails or when you perform a power down or a cold-start. Could you 
restore or regenerate files that are lost? 

Cold-Start Acceptable 

If the MCP resides in QWIK Disk and the system loses power, you must perform a cold
start on the system and reload the MCP to QWIK Disk. Doing so causes the loss of the 
master disk directory and the loss of all data on disk. 

File Activity 

Consider the following issues of file activity when placing files in QWIK Disk. 

29-22 4127 0000-100 



QWIK Disk 

High ljO Wait Time 

Files that are accessed randomly and that require a lot of I/Os usually have a high I/O wait 
time. These files are good candidates for QWIK Disk If you use multiple buffers, I/O wait 
time for files that are accessed sequentially can usually be eliminated. If doing so is not 
possible, you can consider these files for placement in QWIK Disk 

High ljOs Per Second 

If the run time of a job is directly proportional to the number of I/Os per second, you can 
reduce the run time by putting the file in QWIK Disk Put the smallest files with the 
highest I/O volume in QWIK Disk You can also use QWIK Disk in the following cases: 

• Files have large blocks to transfer 

• Files are small, but frequently accessed 

• Files have a high transaction rate that causes high I/O traffic 

File Selection Suggestions 

The following paragraphs describe the pros and cons of putting various classes of files in 
QWIK Disk These paragraphs discuss the following topics: 

• Compiler 

• SORT 

• DMSII 

• ISAM 

• GEMCOS 

For each class of file, an illustration suggests which files to put in QWIK Disk and which to 
keep on other media. 

Compiler 

File Sizing 

The following paragraphs discuss issues related to compilations. 

Table 29-3 shows size estimates per 10,000 COBOL ANSI-74 records as compiled by the 
COBOL compiler. These figures average about 1 megabyte per 1,000 lines of code, or 
500,000 bytes, if you assign the work files to disk Fifteen megabytes of QWIK Disk can 
handle approximately 12,000 lines of COBOL code if you send the printer backup files to 
hard disk These figures assume that you are compiling only one program at a time. 

4127 0000-100 29-23 



QWIK Disk 

Table 29-3. Size Estimates for Compiled COBOL Files 

File Type Megabytes per 10,000 Records 

Work file 5.6 

Source 0.9 

Code file 1.2 

Listing 1.6 

Total 9.3 

Placing Compiler Files in QWIK Disk 

You control the work file placement for COBOL ANSI-74, RPG and FORTRAN compilers 
by resetting the compiler option WRKP (RO WRKP). You must also declare the QWlK 
Disk ID 40/0 as subsystem 8 in the cold-start parameters. This feature of MCP/VS causes 
all work files to go to disk subsystem number 8 first if there is one. Otherwise, they go to 
the default disk subsystem. 

Because work files are temporary and usually have a high I/O volume, they are good 
candidates for QWlK Disk. 

Put compiler input files and source and COPY libraries in QWlK Disk by using 
SYSTEM/COPY. Refer to "Operations" later in this section for more information. 

QWIK Disk Performance Expectations 

Sort 

29-24 

Compilation rates vary depending upon listing options, database invocations, and work 
file locations. Also, the QWlK Disk storage capacity limits the number of compilations 
that can use QWlK Disk at the same time. 

Work files constitute approximately 60 percent of the compiler I/O traffic. If you put work 
files in QWlK Disk, you should improve compilation rates by approximately 1.3 to 1.4 
times. 

Some compilers, such as COBOL (900-Series compilers), do few overlays. Placement of 
the compiler code files in QWlK Disk will produce little improvement on these systems, 
even if you have not set the QWlKPOOL option. 

COBOL copy libraries can cause numerous file openings and closings, in addition to many 
I/Os. If you use copy libraries heavily, you can improve compilation rates up to 3 times by 
putting library files in QWlK DISK. 

The following paragraphs discuss issues related to sorting. 

4127 0000-100 



File Size 

QWIK Disk 

The work files for the SORT intrinsic programs use disk space about 2.25 to 2.6 times the 
actual size of the input file. 

Placing SORT Work Files in QWIK Disk 

You can assign SORT work files to disk with the COBOL ANSI-7 4 SORT SELECT clause or 
the BPL SORT statement. However, you must declare the QWIK Disk subsystem as the 
default subsystem to allocate work files to QWIK Disk. 

QWIK Disk Performance Expectations 

DMSll 

File Size 

The SORT: program improves marginally when you place its work files in QWIK Disk 

If you place SORT input and output files in QWIK Disk, you will see a significant 
improvement in performance because of their higher I/O activity. 

The following paragraphs discuss issues related to DMSII performance. 

DMSII file sizes can vary up to hundreds of megabytes, depending upon file attributes and 
file population. INDEXED SEQUENTIAL sets and subsets are usually less than 1/4 the 
size of their associated data sets; therefore, they are good candidates for QWIK Disk. 

Placing DMSll Files in QWIK Disk 

Declare the location of a DMSII file with the file assignment specification in the DASDL 
physical attribute description of the structure. 

• If you specify the QWIK Disk ID or subsystem number when you first compile the 
DASDL source, the structure is created in QWIK Disk. 

• If you perform a cold-start on the system, you must move the file between the backup 
medium and QWIK Disk to avoid losing of data. 

Alternately, you can place the file on disk with the physical attribute description of the 
structure. Then move the file to QWIK Disk with the SYSTEM/COPY program and specify 
the ID or subsystem number of QWIK Disk. 

If you have used a DMSII file on another medium, you can change its location to QWIK 
Disk by changing the physical attribute description in DASDL and recompiling the DASDL 
source with the $REORGANIZE or $UPDATE option set. 

• If you use the $REORGANIZE option, the Reorganize DBP initially moves the file. 
Then you must archive and restore the file to QWIK Disk. 

4127 0000-100 29-25 



QWIK Disk 

• If you use the $UPDATE option, you must move the file to QWIK Disk with the 
SYSTEM/COPY program. 

The DASDL syntax is as follows: 

FAMILYNAME = DISK { <disk assignment technique> } 

where <disk assignment technique> can have the following values: 

BYID = <integer> 

The <integer> represents the ID number of QWIK Disk. 

BYSUBSYSTEM = DSKn 

The n represents the subsystem number of QWIK Disk and can have a value from 
I to 8. 

QWIK Disk Performance Expectations 

ISAM 

File Sizing 

29-26 

A DMSII database can consist of hundreds of structures. You should consider only the 
smallest structures with the highest I/O volumes for QWIK Disk. Index sequential set and 
subset files consume much less space than data files. In addition, they are accessed 
relatively often, so they are good candidates for QWIK Disk. 

QWIK Disk pe1formance varies widely, depending on the specific file placement. If you 
place all or selected database files in QWIK Disk, you can improve performance by a 
factor of I to 4. 7 times. The higher the number of database structure buffers, the less the 
impact of QWIK Disk because of the reduction of physical I/Os. The DMSII DELETE and 
CREATE-STORE functions usually generate the highest I/O wait time; QWIK Disk has a 
favorable impact on these functions. 

If the information in QWIK Disk is lost, you must use DMSII recovery or database rebuild 
with the audit trail to recover. 

Note: You should never put the audit trail or the control file in QWIK Disk. 

The following paragraphs discuss issues related to the use of ISAM files. 

COBOL ANSI-74 and RPG programs offer an indexed sequential file organization (ISAM) 
and a relative file organization. ISAM clusters consist of a data file and an optional 
primary key file with up to 98 alternate key files. 

ISAM and RELATIVE file sizes vary widely, depending on file attributes and file 
population. ISAM indexed sequential key files are usually less than 1/4 the size of the data 
file, and thus are good candidates for QWIK Disk. 

4127 0000-100 



QWIK Disk 

Placing ISAM Files in QWIK Disk 

You can direct ISAM output data files to QWIK Disk by using the following syntax when 
you execute the program: 

If QWIK Disk is the default subsystem, use this syntax: 

? FILE <ISAM DATA file-name>= <ISAM DATA file-name> DSK 

Use this syntax when you execute the program: 

? FILE <ISAM DATA file-name> = <ISAM DATA file-name> QWK 

If you enter QWK, the MCP assigns the file to QWIK Disk at open output time. 

Refer to Volume 2 for more information about the FILE command. 

Note: The MCP directs the associated key fil,e cluster to the location of the data file. 

You can copy existing ISAM file clusters that are already on disk onto QWIK Disk by using 
the SYSTEM/COPY program and specifying the QWIK Disk subsystem number as the 
destination. You can separate key files from large data files and place them in QWIK Disk 
individually using this method. 

If you place ISAM files in QWIK Disk, you must establish a data recovery procedure. 

QWIK Disk Performance Expectations 

ISAM functions improve if you place data and key files in QWIK Disk Performance varies, 
depending on the number of buffers declared; the default value is 3. 

The largest improvement from QWIK Disk occurs with the following ISAM functions with 
high I/O volumes: RANDOM WRITE, DELETE, and RANDOM READ. 

GEMCOS 

File Sizing 

The following paragraphs discuss issues related to GEMCOS files. 

The GEMCOS files with the highest activity are the following: 

• Control File (GMCTL) Monitor Messages (GMSGS) 

• Queue File (GMQ) Format File (GMFMT) 

• Audit File (GMAUnn) 

The QUEUEFILE and QUEUERECORDSIZE statements in the Transaction Control 
Language (TCL) source determine the Queue File size. Their size is usually less than 1 
megabyte. 

4127 0000-100 29-27 



QWIK Disk 

The Monitor Message file is read-only and usually contains fewer than 600 80-byte records. 

The read-only Format File contains station message formats. The number of TCL formats 
varies widely if you use the format option. 

Placing GEMCOS Files in QWIK Disk 

Use the GEM COS TCL definition language to direct various files to disk in the GLOBAL 
subsection: 

CONTROLFILE = (DISK I DSK} 
FORMATFILE = (DISK I DSK} 
MONMSGFILE = (DISK I DSK} 
QUEUEFILE = (DISK I DSK} 

You can place all GEMCOS files in QWIK Disk with the SYSTEM/COPY program by 
specifying the QWIK Disk subsystem number or ID number as the destination. You can 
file equate all GEMCOS files at mn time. 

QWIK Disk Perlormance Expectations 

Caution 
You must never place the audit file in QWIK Disk because MCS recovery depends 
on it. 

You can use the MCS queue file as an overflow for GEMCOS main memory input and 
station queuing. You should use it infrequently, but you can exploit QWIK Disk fast I/O 
turnaround in this way to get higher queue throughput during network peak periods. 

Monitor Message and Format files are smaller read-only files that you can place in QWIK 
Disk. If each transaction accesses fonnat files, you can use QWIK Disk as a type of format 
cache. 

The GEM COS Control file is usually less than a megabyte, but it sometimes creates high 
I/O counts in an audited environment (SYNChronized recovery, CHECKPOINT recovery, 
W AITFORAUDIT). If performance bottlenecks become critical, consider moving the 
Control file to QWIK Disk. You must be aware that loss of the Control file information 
could compromise network recovery procedures. You might have to use archival recovery 
to rebuild the control file. 

System Configuration Records for QWIK Disk 

29-28 

You must add two special records to your system configuration file to use QWIK Disk. 

The DLP special record reserves DLP channel 40 for QWIK Disk. If your system currently 
has a DLP assigned to channel 40, then you must change the channel number for that DLP. 

4127 0000-100 



QWIK Disk 

If you do not change the channel number for that DLP, you will not be able to access it 
when you install QWIK Disk. 

The DISK special record tells the system how much storage QWIK Disk has. 

The following system initialization record reserves channel 40 for QWIK Disk: 

DLP 40 DSK 

The following system initialization record tells the system how much storage QWIK Disk 
has and declares QWIK Disk as a nonshared subsystem. 

DISK 40/0 ID <nn> SUBSYSTEM <nn> 0 <available QWIK Disk sectors (or 
segments)> 

You must always declare QWIK Disk as a nonshared subsystem. For more information 
about using QWIK Disk on shared systems, refer to "Shared Systems" in this section. 

You can enter the TO ALL command to determine the number of available QWIK Disk 
sectors or segments. If necessary, you can also convert the amount of memory allocated 
to QWIK Disk into disk sectors by dividing the amount of QWIK Disk memory in digits 
(not KD or MD) by 200. 

Notes: 

You must subtract 1 from the number of available QWIK Disk sectors on the disk 
declaration card because disk addressing is zero relative. 

If the DISK card indicates more available sectors than are really available, an IIO 
error message is displayed when access to that area is attempted. 

For more information about system initialization, refer to Volume 1. 

Putting the MCP in QWIK Disk 

Because QWIK Disk loses all its information in the event of a power failure or power 
down, you should not put the MCP in QWIK Disk. If the power fails, you would lose the 
MCP, the disk file directories, and all files on disk. Also, in environments that are memory 
bound (to the exclusion of 500,000 bytes for QWKMEM), you can expect only marginal 
improvements over a 206-disk environment. 

However, if you do decide to put the MCP in QWIK Disk, you need to add the following 
records to the system configuration file. These records help you to conserve space in 
QWIK Disk by directing the system log files to a disk other than to QWIK Disk. In the 
LOGSUBSYS record, nn represents a number other than that of QWIK Disk. 

CONTROL LOGSUBSYS nn 

4127 0000-100 29-29 



QWIK Disk 

Use the following record to conserve additional space in QWIK Disk by directing the MCP 
dump file to a medium other than the QWIK Disk subsystem. 

USE DUMP DISK SUBSYSTEM <nn> 

USE DUMP PACK <family> 

or 

USE DUMP TAPE 

Using QWKMEM and QWIKPOOL Options 

You can do overlays faster from QWKMEM than from QWIK Disk. When you set the 
QWKMEM option, you can place code files on a low speed disk and achieve the same 
performance as you would if they were in QWIK Disk 

For information about the USE QWIK, LIMIT QWIKMEM, and LIMIT QWIKPOOL records 
and about system initialization, refer to Volume 1. 

Shared Systems 

In a shared system, you can use QWIK Disk for each system. However, because QWIK 
Disk uses memory for storage, the files in QWIK Disk can be accessed only by the system 
that is storing them. QWIK Disk does not have the capability of being exchanged. 
Therefore, you must declare QWIK Disk as a nonshared ID when you perform a cold-start. 
For more information about initialization and QWIK Disk, refer to Section 1 of Volume 1. 

For consistency, Unisys recommends that all QWIK Disk IDs in a shared environment be 
declared with the same subsystem number. Doing so enables you to specify QWIK Disk 
on all systems in the same manner. Also, this shared number enables application 
programs that specify QWIK Disk to use QWIK Disk on any system on which they run. 

Operations 

QWIK Disk operation is treated in the same way as any other disk ID. You can load and 
dump files in the same manner as you would for any other disk. 

Maintenance Processor Commands 

Use the following maintenance processor commands for QWIK Disk. 

SET OPTIONS QWIKDISK SET OPTIONS MCP SET OPTIONS LIMIT 

Use these commands to set system configurations with a form. 

RESET QWIKDISK 

Use this command to disable QWIK Disk. 

29-30 4127 0000-100 

,' 
( 



QWIK Disk 

SHOW OPTIONS MCP 

Use this command to display the system configurations. 

LOAD MCP 

Use this command to perform a halt/load. The command loads the MCP loader program 
into the system memory from the MP disk. Later, the MCP loads the MCP code from a 
default system disk. 

CLEAR MEM 

Use this command to clear memory or load memory with a pattern. You should load the 
control store RAMs (LOAD CS command) before you use this command. 

MEM ABS 

Use this command to read from or write to memory at the specified absolute address. The 
program automatically follows a memory-write command with a memory-read command. 

Refer to "Initializing the System" in Volume 1 and to the hardware documentation for your 
processor for more information about these commands. 

Each time you enter any of the first three commands, the system displays the following: 

QWIKDISK base = <nnnnnnnn> 

QWIKDISK sectors = <nnnnnnnn> 

QWIKDISK <status> 

PHYSICAL MEMORY LIMIT SET TO <nnnnnnnn> 

Caution on Maintenance Test Commands 

The following maintenance test commands can destroy the file that is in QWIK Disk. If 
you use these commands, the system displays this warning: 

Caution 
This command will destroy memory/QWIK Disk contents. 

Before the system can execute the command, you must give it permission by appending 
the word CLOBBER. If you use the word CLOBBER the first time you use the command, 
the system does not display the warning and executes the command. 

You should copy the files in QWIK Disk to a safe medium before you use any of the 
following commands: 

4127 0000-100 29-31 



QWIK Disk 

• CHAINTO-T7CLOBBER 

• TEST CH TO -T7 CLOBBER 

• START MODTST <SPATH> CLOBBER 

• CLEAR 0 CLOBBER 

• CLOCK 0 CLOBBER 

• TEST MEM CLOBBER 

• DISPLAY TO - T7 CLOBBER 

• MSEL, MSHIIT, MCKEN, MGCKEN 

Powering On the System 

Each time you power on the system, you must clear all system memory. You do so with 
the CLEAR MEM command. You must do this regardless of whether you plan to cold-start 
the system. For more information, refer to Volume 1. 

Halt/Load 
When you halt/load a system that has QWIK Disk, the QWIK Disk memory area is 
rewritten and cleared of any transient single bit memory errors. No information in QWIK 
Disk is lost or changed, but this operation can make the halt/load take longer to complete. 

Putting Files in QWIK Disk 

Perform the following steps to place files in QWIK Disk: 

1. Move selected files to QWIK Disk before you start a program. You can move them 
with the SYSTEM/COPY program or create them programmatically in QWIK Disk. 

2. Execute the program. It will receive performance benefits from accessing files from 
QWIKDisk. 

3. When the program finishes, move files (other than read-only files) from QWIK Disk to 
other media to archive or to update backup copies. 

You can move files with the SYSTEM/COPY program or with a Work Flow Language 
(WFL) program that moves the files to QWIK Disk, starts the job, and moves the files back 
to the original medium when the job finishes. You do not need to move temporary work 
files to or from other media. 

Using SYSTEM/COPY 

29-32 

Use the SYSTEM/COPY program to copy files to QWIK Disk. Specify the QWIK Disk ID 
number or the subsystem number as the destination. Refer to Section 24, 
"SYSTEM/COPY-File Transfer Utility Program," for a description of this program. Also, 
refer to the COPY command in Volume 2 for the command syntax. 

4127 0000-100 



QWIK Disk 

Examples 

COPY MYFILE FROM DISK TO DISK (ID 1) 

where QWIK Disk is ID 1 

COPY MYFILE FROM DISK TO DISK (SUBSYSTEM 8) 

where QWIK Disk is disk subsystem 8 

Loading and Unloading Files from QWIK Disk 

Loading 15 megabytes of QWIK Disk from PE tape can take from two to two-and-one-half 
minutes. 

Firmware 

The firmware you load from the floppy P ANDMV redirects I/Os to a "soft" channel/unit 
40/0. Externally, this configuration looks like a 5N disk 

Programming Considerations 
The following paragraphs describe the programming considerations for QWIK Disk 

Programmatic File Creation in QWIK Disk 

You can create files programmatically in QWIK Disk with the file attributes or file 
declarations available with individual programming languages. 

QWIK Disk as Default Disk 

Unisys does not recommend that you use QWIK Disk as your default disk, because QWIK 
Disk has a limited capacity. It can fill up if all the files created on disk, without a specific 
subsystem or ID number, go to QWIK Disk If QWIK Disk does fill up, the system looks for 
available space on nondefault subsystems and displays the following message: 

NEED nnnn DSK SEGS FOR <file-id> <prog-id> = <mix number> 

Work File Subsystem Default 

A feature of the MCP directs all compiler work files to the disk subsystem number 8 if 
there is one. If not, the system places the work files as it did for prior releases of the MCP. 

You must set the MCP option WRKP to take advantage of this option. 

4127 0000-100 29-33 



QWIK Disk 

This feature enables you to automatically direct work files to QWIK Disk by declaring it as 
subsystem number 8. Because work files are temporary and usually have a high I/O 
volume, they are good candidates for QWIK Disk. 

When the system displays the following message indicating that QWIK Disk is full, you can 
direct the ove1flow to another medium. 

** NO USER DISK <job-specifier> 

File Equation to QWIK Disk 
QWK is the hardware type designation for QWIK Disk. Use the following syntax to 
perform file equation operations for QWIK Disk: 

FILE <file-name> = <file-name> QWK 

This syntax causes the MCP to assign the file to QWIK Disk at open (output) time. If there 
is no QWIK Disk, the file goes to the default disk. WFL supports this syntax. 

Random and Sequential 1/0 

29-34 

Random and sequential I/O access times are the same in QWIK Disk. The use of random 
or sequential I/O causes data to be stored in RAM memory. Therefore, the data transfer 
time is not dependent on seek time or latency positioning. 

The amount of time it takes to complete a QWIK Disk I/O equals the amount of time it 
takes to transfer data. You can approximate the QWIK Disk I/O time by dividing the block 
length in bytes by the QWIK Disk data transfer rate of 1.5 megabytes per second. 

Figure 29-9 shows the BLOCKSIZE and time factors for completing I/Os to QWIK Disk. 

4127 0000-100 



12 

4 

0 

0 

QWIK DISK 
1/0 TIME 

5KB lOKB 
BLOCKSIZE 

15KB 

QWIK Disk 

20KB 

Figure 29-9. BLOCKSIZE and Time Factors for Completing ljOs to QWIK Disk 

Code File Overlays 

The QWIKPOOL option provides the best performance for code file overlays. However, 
you can use QWIK Disk in memory constrained environments or in situations where many 
overlays exceed the size of the QWIKPOOL PAGE. If you direct the oversize overlays to 
QWIK Disk, you can optimize the I/O wait time that would have otherwise been spent 
accessing the overlay on conventional disk. A QWIK Disk overlay of 9000 bytes costs 
about 6 milliseconds. 

Deviation from Standard Disk Operation 

There is one other deviation from standard disk operation. Normally, when a write 
operation to disk does not fill out a sector, the point from the end of the data through to 
the end of the sector is filled with zeros. QWIK Disk does not do this. For QWIK Disk, the 
write operation ends when the data runs out. The bytes remaining in that block remain set 
as they were set before the write operation. 

4127 0000-100 29-35 



QWIK Disk 

Error Conditions 
The following paragraphs describe QWIK Disk error conditions. 

Memory Error 

The following error message indicates that an I/O operation tried to exceed the end of 
memory. The system thinks the memory limit is higher than it really is. This happens at 
cold-start time when the DSK card indicates that there were more segments available in 
QWIK Disk than there really are. 

Not ready (COOO 8000) 

Result Descriptors 

The following QWIK Disk hardware exceptions can appear. If the MCP encounters any of 
these elTors, they appear in the maintenance log (MLOG). 

The following elTor message indicates that a read operation encountered a double bit 
elTor in QWIK Disk memory. 

Data read error (COBO 0021 0002 0000) 

The following elTor message indicates that a write operation encountered a double bit 
elTor in MCP memory. 

Memory error result (C400 0000 0000 0000) 

Single Bit Errors 

29-36 

All single bit memory errors encountered in QWIK Disk are recorded in the maintenance 
log (MLOG) in the same way as elTors in MCP memory areas are recorded. 

Caution 
In the event of a power failure or if the system is turned off, QWIK Disk loses all 
the information it is storing. Because the V Series QWIK Disk does not provide 
battery backup, you might want to use an Uninterruptible Power System (UPS) as 
backup. In the event of a power failure, you could use the power from the UPS to 
copy the QWIK Disk files to tape, disk pack, or hard disk. 

4127 0000-100 

( 



Section 30 
SHARED-Shared Systems and 
Devices 

Overview 
Shared systems (SHARED) provide a method for multiple programs (including the MCP) 
to access disk and disk pack files concurrently. In addition, up to four systems can 
concurrently access files resident on shared disk or disk pack media. 

Specifically, a shared system accomplishes some or all of the following goals: 

• Permits multiple programs to access a common file concurrently. The SHARED 
feature provides additional I/O operations and a block lockout table (BLT) to lock files 
at block level, which prevents simultaneous updating. The following example 
illustrates block-level locking: 

Program A reads a record of a file. 

Program B reads the same record. 

Program A modifies some fields and writes the record. 

Program B modifies some fields and writes the same record, thus destroying the 
update accomplished by Program A. To prevent this problem, each program uses 
shared I/O operations to lock out other programs while it updates the record. 

Here is another example: 

Program A reads a record, using a read with lock operation. 

Program B tries to read the same record in the same file, but cannot because 
program A has already locked the record. Program B must wait until program A 
unlocks the record. 

Program A modifies some fields, writes the record, and then unlocks it. 

Program B can now lock and read the record, update some fields, and then write 
the record and unlock it. 

• Permits multiple systems to share disk and disk pack resources. Hardware that is 
called a shared systems processor (SSP) accomplishes this sharing and acts as a 
common repository for all locks and contentions between the shared systems. 

4127 0000-100 30-1 



SHARED-Shared Systems and Devices 

30-2 

• Provides a growth path for a memory-bound environment. Hardware memory 
limitations are often overcome by adding another mainframe tied to the existing 
peripherals, which provides added memory resources to the user environment. 

• Provides a growth path for a system bound environment. The addition of another 
mainframe tied into the existing peripheral network augments the processing power 
of the user environment. 

• Provides redundancy. Many users require a fault-tolerant environment. Shared 
systems permit the duplication of mainframe resources (system, memory, DLPs, and 
so forth) either in a passive or active state. Often one system is dedicated to online 
activity while the other is processing batch mode. If the critical online system should 
fail, the batch system can take over that responsibility with minimal disruption. 

A special set of file I/O operations regulates concurrent file access. By using shared file 
I!O operations, programs can read, seek, and write file blocks in a manner that prevents 
data conuption by other programs that are also using shared file I/O operations. If a 
program opens a file and accesses it without using shared file I/O operations, the file is not 
protected and the data can be conupted. 

The following rules apply to shared file I/O operations: 

• If one program opens a file for shared access, all programs should open the file 
shared. You should follow locking and unlocking protocols to prevent simultaneous 
updates. 

• All programs must declare the same record size and blocking factor for the file they 
are sharing. 

• Shared files must be declared random access. 

• A program can relock a record (for example, LOCK followed by READ LOCK). 

• A program is terminated if it attempts to unlock a block that it does not have locked. 

• A program is terminated if it attempts to write to a block that is locked by another 
program. You should do some locking operations (for example, LOCK, READ LOCK, 
and so forth) before the write. 

A program performs lock/unlock operations on a record level, but because the MCP deals 
with blocks of records for I/O, the locking operation is accomplished on the block level. 
This is why all accessing programs must refer to a shared file with the same record size 
and blocking factor. 

Figure 30-1 illustrates concurrent file access. 

4127 0000-100 



( 

V380 

PROGRAM IE"l PROGRAM 
A liJ B 

SHARED-Shared Systems and Devices 

V380 

PROGRAM IE"l PROGRAM 
A liJ B 

FILE 
A 

SSP 

FILE 
A 

Figure 30-1. Concurrent File Access 

V380 

W
BL PROGRAM 

c 

Only the COBOL and BPL programming languages support shared file I/O operations. The 
types of shared file I/O operations and the corresponding syntax appear in alphabetical 
order in Table 30-1. 

Table 30-1. 1/0 Operations 

Function BPL COBOL BCTjVariant 

LOCK LOCK READLOCKONL Y 0114/4 

LOCK NO CONTEND LOCK SEEK SEEKLOCKONL Y 0314/4 

UNLOCK UNLOCK UNLOCK 0234/8 

READ READ READ 0114/0 

continued 

4127 0000-100 30-3 



SHARED-Shared Systems and Devices 

Table 30-1. 1/0 Operations (cont.) 

Function BPL COBOL BCT /Variant 

LOCK, READ READ LOCK READLOCK 0114/8 

LOCK, READ, UNLOCK READ NO LOCK READLOCKWAIT 0114/C 

SEEK SEEK SEEK 0314/0 

LOCK SEEK SEEK LOCK SEEK LOCK 0314/8 

LOCK, SEEK, UNLOCK SEEK NO UNLOCK SEEKLOCKWAIT 0314/C 

WRITE WRITE LOCK WRITE LOCK 0234/4 

WRITE, UNLOCK WRITE WRITE 0234/0 

Single-System Shared Environment 
A single-shared system does not need hardware modification to perform concurrent file 
access. All disk and disk pack media are capable of storing shared files, and the system 
runs shared by default. An SSP is not required in a single-system shared configuration. 

All programs sharing a file must declare the same blocking factor for the file. When you 
access the file, you must declare it random access and shared. 

Multisystem Shared System Environment 

30-4 

In a multisystem shared environment, you declare and name an SSP with the DLP 
configuration record. All disks and disk packs that the multiple systems are to access 
should be set up as SHARED VIA <SSP name>. Not all media must be shared. The 
following paragraphs describe shared configuration rules: 

• If any disk is shared, subsystem 1 must be shared because the MCP and disk directory 
must be available to all systems. 

• Additional disks can be shared, but all disks belonging to a specific subsystem must 
have the same shared attributes. 

• QWIKDISK cannot be shared, because it is not accessible by other systems. 

• All disk packs belonging to the same family must have the same shared attributes, 
either shared or non-shared. 

Because the MCP considers all disk and disk pack media eligible to store shared files by 
default, file placement can no longer be guaranteed. Thus, the SHARED open attribute 
merely enables the program to issue shared file I/O operations to that file. This feature is 
different from that of previous MCPs, which only allowed shared file assignment to media 
declared SHARED. 

4127 0000-100 



SHARED-Shared Systems and Devices 

All programs accessing a shared file must do so consistently. That is, erroneously the 
same file could be opened simultaneously shared and non-shared, thus leading to the loss 
of the record protection that shadng is intended to afford. This loss is consistent with 
previous MCPs. 

Types of Shared Systems 
"Shared" refers to the ability of programs to access the same disk or disk pack file 
simultaneously, yet be afforded protection from simultaneous updating because of a 
shared record locking/unlocking protocol. 

The following paragraphs descdbe the types of shared system configurations that are 
available. 

Single-System Shared 

This term refers to a shared system that uses only one mainframe. Multiple programs are 
able to access a common file simultaneously. Under previous MCPs, single-system shared 
configuration was invoked by the SHARED option of the DSKn and PACK MCP 
configuration records and by the SHRD system option. An MCPNS 2.0 or later version 
eliminates these requirements. The system is considered to be single-system shared by 
default. 

Multisystem Shared 

This term refers to a shared system that is extended to multiple mainframes. 

A multisystem shared configuration requires the addition of a shared systems processor 
(SSP) to handle the locking/unlocking between systems. Up to four V Sedes mainframes 
can be configured in a multisystem shared environment. 

Shared Disk Only System 

This term refers to a multisystem shared configuration that has one or more disks as 
common resources and no shared disk pack resources. The MCP disk must be shared. 
Each system runs the same MCP code file and shares the disk directory and available 
table. In this configuration, subsystem 1 must be shared and additional disks can be 
shared on a subsystem level. 

Shared Disk Pack Only System 

This term refers to a multiple-system configuration that has one or more disk packs as 
common resources and no shared disk resources. The peculiarity here is that each system 
rnns a separate copy of the MCP. The copies of the MCP must be the same version and 
release level. 

Figure 30-2 illustrates a shared disk pack only system. 

4127 0000-100 30-5 



SHARED-Shared Systems and Devices 

V380 

DISK 

SHARED 
PACK 

SSP 

SHARED 
PACK 

SHARED 
PACK 

Figure 30-2. Shared Disk Pack Only System 

V380 

DISK DISK 

Shared Disk and Disk Pack System 

30-6 

This system is a multisystem shared configuration that has one or more disks and one or 
more disk packs as common resources. The MCP disk must be shared. Each system runs 
the same MCP code file and shares the disk directory and available table. Additional disks 
can be shared at the subsystem level, and disk packs can be shared at the family level. 

Figure 30-3 illustrates a shared disk and disk pack system. 

4127 0000-100 



SHARED-Shared Systems and Devices 

V380 

PACK 

SHARED 
DISK 

SHARED 
PACK 

SSP 

SHARED 
DISK 

SHARED 
PACK 

SHARED 
DISK 

SHARED 
PACK 

V380 

PACK 

Figure 30-3. Shared Disk and Disk Pack System 

Definition of Shared File 1/0 Operations 

PACK 

The following paragraphs define the shared file I/O operations that appear in Table 30-1. 

BLT Contention 

BLT contention occurs when one program wants to access a file block that another 
program running on the same system has locked. Refer to "Overview" earlier in this 
section for more information about the block lockout table (BLT). When the 
programs are running on different systems, this situation is called SSP contention. 

Contention 

When one or more programs attempt to lock a block that is locked by another 
program, the programs are suspended. They must wait until the block is unlocked. A 
suspended program is said to be contending for the block. 

4127 0000-100 30-7 



SHARED-Shared Systems and Devices 

30-8 

The amount of time a program can contend for a file block is called the contention 
cycle. If the block does not become available during the contention cycle, the 
operating system intervenes and either reinstates the program at a stalemate-use 
routine, if one has been coded into the program, or terminates the program. 

The default contention cycle is 10 seconds. Use the LIMIT DELAY record in the 
system configuration file to override the default. Refer to Volume 1 for more 
information. 

If two or more programs are waiting in contention, the program with the highest 
system p1iority gets the block first. Use the PRIORITY command to set the priority of 
a program. The system then restarts the contention cycle for the other programs that 
are contending for the block. 

Contention Cycle 

The contention cycle is the period of time that a program can contend for a file block. 
After this period of time expires, the system either reinstates the program at a 
stalemate-use routine, if one was coded into the program, or it terminates the 
program. Refer to "Contention" earlier in this section for more information. 

LOCK 

This shared file I/O operation locks a block and prevents other programs that are 
using shared file I/O operations from locking the block. The block remains locked 
until it is unlocked. If the block is locked already by another program, a program 
must contend for the block. 

LOCK NO CONTEND 

This shared file I/O operation performs the function of the normal lock operation, but 
does not contend for the lock if it is locked by another program. In this case, the MCP 
immediately reinstates the program at a stalemate use routine, if one was coded into 
the program, or terminates the program. 

LOCK, READ 

This shared file I/O operation locks a block and then reads it. The block remains 
locked until it is unlocked. 

LOCK, READ, UNLOCK 

This shared file I/O operation locks a block, reads it, and then unlocks it. 

LOCK SEEK 

This shared file I/O operation locks a block and reads it to a buffer for later use. The 
block remains locked until it is unlocked. 

4127 0000-100 



SHARED-Shared Systems and Devices 

LOCK, SEEK, UNLOCK 

This shared file I/O operation locks a block, reads it to a buffer for later use, and then 
unlocks it. 

MAILBOX 

This term refers to an intersystem message-passing mechanism used to synchronize 
systems for MCP functions that require exclusive access to shared resources. For 
MCP/VS 2.0 or later, the mailbox was moved into the SSP and is no longer on disk 
The record in the system configuration file that declared a MAILBOX for previous 
MCPs is not used with MCP/VS 2.0 or later. However, the DLP SSP record in the 
system configuration file must include the MAILBOX attribute for the SSP that you are 
using and that contains the mailbox. 

READ 

This I/O operation reads a file block even if another program has locked that block 

RLT 

RLT is the record lockout table, which is the MCPIX/MCP/VS Mark 1.0 version of the 
MCP/VS Mark 2.0 or later block lockout table (BLT). 

Stalemate 

This situation occurs when two or more programs cannot continue processing 
because they are trying to lock mutually exclusive blocks within a file. Because they 
are waiting for each other, their contention cycle expires and the system either 
reinstates them at a stalemate-use routine, if one has been coded into the program, or 
it terminates the programs. 

Here is an example of a stalemate: 

Program A locks record 10 of a file. 

Program B locks record 20 of the same file. 

Program A attempts to lock record 20 of the same file, fails, and goes into a 
contention condition. 

Program B attempts to lock record 10 of the same file, fails, and goes into a 
contention condition. 

The period of time these programs can wait in contention (10 seconds or the amount 
specified by the LIMIT DELAY record) expires. The MCP intervenes and either 
terminates the programs or reinstates them at a stalemate use routine. 

The MCP does not detect true stalemate conditions. It merely sets a limit to the time 
that a program can wait for a lock without being given an opportunity to retry it 
because another program has unlocked. The program that owns the lock may not 
have sufficient system resources to perform an unlock, so the program does not get 

4127 0000-100 30-9 



SHARED-Shared Systems and Devices 

30-10 

the opportunity to retry. Refer to "Stalemate Use Routine" in this section for more 
information. 

SSP Contention 

This condition occurs when a program running on one system wants to lock a block 
that a program running on another system has locked. If the programs are running on 
the same system, it is called BLT contention. Refer to "Contention Cycle" and "Shared 
System Processor" in this section for more information. 

Stalemate Use Routine 

This mechanism enables you to reinstate a program at a routine instead of terminating 
it when the program is in contention for a period of time exceeding the contention 
overtime cycle. The sophistication of the stalemate-use routine can vary from simply 
ignoring the condition and returning to the main program logic, to backing out a 
previous series of updates and allowing the other programs to complete their 
operation. 

SEEK 

This operation locates a block and reads it to a buffer for later use even if another 
program has locked that block. 

UNLOCK 

This shared file J/O operation unlocks a locked block. If the program that uses this 
operation does not already have the block locked, the program is terminated. 

WRITE 

This J/O operation expects the relevant block to be locked already. However, it 
attempts the lock if it is unlocked. If this attempt fails, the program is terminated. If 
the block was already locked by the program or if the attempted lock was successful, 
the block is written and then unlocked. 

WRITE NO UNLOCK 

This J/O operation requires that the block be locked already by the program. 
Otherwise, the program is terminated. Also, when the block is written, it is left 
locked. These WRITE operations and requirements are consistent with previous 
MCPs. 

4127 0000-100 



SHARED-Shared Systems and Devices 

Components of a Shared System 
The following paragraphs describe the components of a shared system. 

BLOCK LOCKOUT TABLE (BLT) 

This component keeps track of the file blocks that are locked by which programs. 
The block lockout table (BLT) resides in memory, and the MCP updates it every time a 
program locks or unlocks a file block. The MCP provides a BLT with a sufficient 
number of entries to handle most circumstances. However, this default setting can be 
changed with the MCP configuration record LlMIT BLT. Refer to the LlMIT BLT 
record in Volume 1 for more information. 

DISK 

From the single-system perspective, all disk is considered eligible for shared file 
access. From a multisystem perspective, disk sharing is determined at the subsystem 
level. This means that all members of the same disk subsystem must have the same 
shared attpbutes. The SHARED option on the MCP configuration record DISK 
declares a disk to be multisystem shared. Refer to Volume 1 for more information. 

DISKPACK 

From the single-system perspective, all disk pack is considered eligible for shared file 
access. From a multisystem perspective, disk pack sharing is determined at the family 
level. You can declare some disk pack units shared, and you can declare other disk 
pack units not shared. All members of the same disk pack family should be either 
shared or not shared. 

The SHARED option of the record called PACK in the system configuration file 
declares a disk pack to be multisystem shared. When you declare a disk pack shared, 
you must assign the same logical ID number and the same SSP name for each system. 

FAMILY NAME 

Individual disk packs can be organized into families (groups). A family name is the 
name that you assign to a group of disk packs that is organized into a family. The 
MCP can then direct individual files to and store individual files on these groups of 
disk packs according to the family name. 

LOGICAL SUBSYSTEM 

This component represents a family of disk devices. Disk pack devices can be 
grouped into families for file assignment; similarly, disks can be grouped into 
subsystems. Subsystems have attributes such as default (available for generic file 
assignments) and shared (accessible to multiple systems). Use the SUBSYSTEM 
option of the record DISK in the system configuration file to define a disk subsystem. 

4127 0000-100 30-11 



SHARED-Shared Systems and Devices 

MASTER CLEAR 

This component is an electronic signal that the system uses to initialize a DLP and its 
associated hardware. Master Clear does not clear the SSP. When you do a BASE 
CLEAR, make sure that none of the systems attached to the base are using the SSP 
because it will cease to function and have to be reloaded. 

When you enter TERM on the V Series, you generate a MASTER CLEAR. You generate 
BASE CLEAR with the switch on the base. 

PHYSICAL SUBSYSTEM 

This component is a group of disks and disk packs, or both, connected to the system 
with the same DLP. 

SHARED SYSTEM PROCESSOR (SSP) 

This component is a special hardware device that controls concurrent file access for 
programs running on two to four V Series systems. It is a specialized four-card DLP 
that resides in a dedicated base shared by the systems. The shared system processor 
(SSP) keeps track of the file locks held by a system and the systems that might be 
contending for those locks. It also stores the intersystem mailbox. 

You must load the SSP with the proper firmware before you can use it. MCPNS Mark 
2.0 or later requires firmware level SSP302 or greater. You must never reload the SSP 
while it is in use by other systems because all locks and contentions would be purged. 
Refer to Section 12, "LOADFW-Offline Firmware Loader Program," for more 
information about how to load firmware to SSPs. 

Refer to Volume 1 for more information about the system configuration file record 
called SSP DLP. 

Configuration and Initialization of Shared Systems 
The following paragraphs describe configuring and initializing single and multisystem 
shared systems. 

Single System Shared 

30-12 

Initialization of a single-system shared system is similar to a normal system initialization 
because the system is designed to support this feature by default. Note that this differs 
from previous MCPs, where disk and disk packs used to store shared files were declared 
shared. The only modifications might be to increase or decrease the number of BLT 
entries or the contention overtime cycle with the LIMIT BLT and LIMIT DELAY 
configuration records. The defaults for these records will suffice for most operations. 

4127 0000-100 



SHARED-Shared Systems and Devices 

Multiple-Shared System 

There are several additions and modifications required for the initialization of multiple 
shared systems. You might need to add or modify the following records in the system 
configuration file for shared operations. 

• SYSTEM record. This record identifies a system configurntion file in stacked 
configuration decks. 

• CONNECT record. This record identifies the systems to be connected to this system 
to comprise a multisystem shared system. 

• DISK record. This record declares a disk unit as a multisystem shared through a 
particular SSP. 

• PACK record. This record declares a disk pack unit as a multisystem shared through 
a particular SSP. 

• UNIT SHARED record. This record declares a tape unit as a multisystem shared. 

• SSP DLP record. This record declares the SSP to use for multisystem shared 
configurations. 

• LIMIT BLT record. This record declares the number of entries in the Block Lockout 
Table. 

• LIMIT DELAY record. This record sets the contention cycle. 

These records enable the MCP and other programs to access files concurrently and to 
share peripherals. The system uses these records when you cold-start the system. Refer 
to Volume 1 for more information. 

You can maintain shared configuration files in one of the following ways: 

• Each system can have its own file. Such is the case when the CONFIG utility is used 
to maintain the file on floppy disk or when the systems are only sharing disk packs. 

• One system can input and build the configuration files for all shared systems. The 
system does so with a stacked configuration deck, where the configuration decks 
follow one another and are identified by the SYSTEM record. 

The following examples illustrate a two-system shared disk and disk pack configuration. 
In example file 1, the system is named NSHARED and has the system number 0. In 
example file 2, the system is named MSHARED and has the system number 2. Finally, the 
example of a stacked deck covers both file 1 and 2. It would be input when system 
NSHARED is initialized. It generates the system configuration files (on disk) for 
NSHARED (where the file is named CONFGO) and MSHARED (where the file is named 
CONFG2). 

4127 0000-100 30-13 



SHARED-Shared Systems and Devices 

File 1 

30-14 

In this example, the system configuration file is set up for a system named NSHARED, 
with the hardwired system number 0. 

1 ... HOSTNAME NSHARED 
2 ... CONNECT 2 
3 ... OLP 34 SSP SSPAAA SSP302 MAILBOX 
4 ... OLP 04 OSK HSTLQG 
5 ... DISK 4/0 ID 01 SUBSYSTEM 1 DEFAULT SHARED VIA SSPAAA 
6 ... DISK 4/1 ID 02 SUBSYSTEM 1 DEFAULT SHARED VIA SSPAAA 
7 •.. PACK 4/2 ID 03 SHARED VIA SSPAAA 
8 ... PACK 4/3 ID 04 SHARED VIA SSPAAA 
9 ... OLP 06 MPE 
10 ... UNIT 6/1 MPE SHARED. 
11 ... UNIT 6/2 MPE SHARED. 
12 ... UNIT 6/3 MPE SHARED. 
13 ... UNIT 6/4 MPE SHARED. 
14 ... OLP 26 MPE 
15 ... UNIT 26/0 MPE 
16 ... OLP 13 PRN PRN256 
17 ... UNIT 13/0 PRN256 PRN 
18 ... OLP 01 CRD 
19 ... UNIT 1/0 CRD 
20 ... OLP 10 CONSOLE 
21 ... UNIT 10/4 SPOB ODT LEVEL 9 AD SK 1 HOR MSG D 4 
22 ... OLP 12 UNILINE. 
23 ... UNIT 12/0 SPOC OCS LEVEL 9 AD SK 1 HOR (WM AM) (MTP OSK DPK PRN) 
24 ... USE SLOG AUTO 10000 WRAP 
25 ... USE RLOG 
26 ... USE BOJ 
27 ... USE EOJ 
28 ... USE PBD 
29 ... USE DUMP DISK 
30 ... LIMIT DELAY 30 
31 ... STOP 

4127 0000-100 



File 2 

SHARED-Shared Systems and Devices 

In this example, the system configuration file is for a system named MSHARED, with the 
hardwired system number 2. 

33 ... HOSTNAME MSHARED 
34 ... CONNECT 0 
35 ... OLP 34 SSP SSPAAA SSP302 MAILBOX 
36 ... OLP 04 OSK HSTLQG 
37 ... DISK 4/0 ID 01 SUBSYSTEM 1 DEFAULT SHARED VIA SSPAAA 
38 ... DISK 4/1 ID 02 SUBSYSTEM 1 DEFAULT SHARED VIA SSPAAA 
39 ... PACK 4/2 ID 03 SHARED VIA SSPAAA 
40 ... PACK 4/3 ID 04 SHARED VIA SSPAAA 
41 ... OLP 06 MPE 
42 ... UNIT 6/1 MPE SHARED. 
43 ... UNIT 6/2 MPE SHARED. 
44 ... UNIT 6/3 MPE SHARED. 
45 ... UNIT 6/4 MPE SHARED. 
46 ... OLP 01 CRD 
47 ... UNIT 1/0 CRD 
48 ... OLP 13 PRN PRN256 
49 ... UNIT 13/0 PRN256 PRN 
50 ... OLP 10 CONSOLE 
51 ... UNIT 10/4 SPOB ODT LEVEL 9 AD SK 1 HOR MSG D 5 
52 ... OLP 12 UNILINE. 
53 ... UNIT 12/0 SPOC OCS LEVEL 9 AD SK 1 HOR (WM AM) (MTP OSK DPK PRN) 
54 ... USE SLOG AUTO 10000 WRAP 
55 ... USE RLOG 
56 ... USE BOJ 
57 ... USE EOJ 
58 ... USE PBD 
59 ... USE DUMP DISK 
60 ... LIMIT DELAY 30 
61 ... STOP 

Stacked Deck 

In this example, the system configuration file would be input to system N when it is cold
started. That system would then build the configuration files for both systems, NSHARED 
and MSHARED. 

1 ... HOSTNAME NSHARED 
2 ... CONNECT 2 
3 ... OLP 34 SSP SSPAAA SSP302 MAILBOX 
4 ... OLP 04 OSK HSTLQG 
5 ... DISK 4/0 ID 01 SUBSYSTEM 1 DEFAULT SHARED VIA SSPAAA 
6 ... DISK 4/1 ID 02 SUBSYSTEM 1 DEFAULT SHARED VIA SSPAAA 
7 ... PACK 4/2 ID 03 SHARED VIA SSPAAA 
8 ... PACK 4/3 ID 04 SHARED VIA SSPAAA 
9 ... OLP 06 MPE 
10 ... UNIT 6/1 MPE SHARED. 

4127 0000-100 30-15 



SHARED-Shared Systems and Devices 

11 ... UNIT 6/2 MPE SHARED. 
12 ... UNIT 6/3 MPE SHARED. 
13 ... UNIT 6/4 MPE SHARED. 
14 ... DLP 26 MPE 
15 ... UNIT 26/0 MPE 
16 ... DLP 13 PRN PRN256 
17 ... UNIT 13/0 PRN256 PRN 
18 ... DLP 01 CRD 
19 ... UNIT 1/0 CRD 
20 ... DLP 10 CONSOLE 
21 ... UNIT 10/4 SPOB ODT LEVEL 9 AD SK 1 HDR MSG D 4 
22 ... DLP 12 UNILINE. 
23 ... UNIT 12/0 SPOC OCS LEVEL 9 AD SK 1 HDR (WM AM) (MTP DSK DPK PRN) 
24 ... USE SLOG AUTO 10000 WRAP 
25 ... USE RLOG 
26 ... USE BOJ 
27 ... USE EOJ 
28 ... USE PBD 
29 ... USE DUMP DISK 
30 ... LIMIT DELAY 30 
31 ... SYSTEM 2 
32 ... HOSTNAME MSHARED 
33 ... CONNECT 0 
34 ... DLP 34 SSP SSPAAA SSP302 MAILBOX 
35 ... DLP 04 DSK HSTLQG 
36 ... DISK 4/0 ID 01 SUBSYSTEM 1 DEFAULT SHARED VIA SSPAAA 
37 ... DISK 4/1 ID 02 SUBSYSTEM 1 DEFAULT SHARED VIA SSPAAA 
38 ... PACK 4/2 ID 03 SHARED VIA SSPAAA 
39 ... PACK 4/3 ID 04 SHARED VIA SSPAAA 
40 ... OLP 06 MPE 
41 ... UNIT 6/1 MPE SHARED. 
42 ... UNIT 6/2 MPE SHARED. 
43 ... UNIT 6/3 MPE SHARED. 
44 •.. UNIT 6/4 MPE SHARED. 
45 ... OLP 01 CRD 
46 ... UNIT 1/0 CRD 
47 ... OLP 13 PRN PRN256 
48 ... UNIT 13/0 PRN256 PRN 
49 •.. OLP 10 CONSOLE 
50 ... UNIT 10/4 SPOB ODT LEVEL 9 AD SK 1 HDR MSG D 5 
51 ... OLP 12 UNILINE. 
52 ... UNIT 12/0 SPOC OCS LEVEL 9 AD SK 1 HOR (WM AM) (MTP DSK DPK PRN) 
53 ... USE SLOG AUTO 10000 WRAP 
54 ... USE RLOG 
55 ... USE BOJ 
56 ... USE EOJ 
57 ... USE PBD 
58 ... USE DUMP DISK 
59 ... LIMIT DELAY 30 60 ... STOP 

30-16 4127 0000-100 



Section 31 
Pack Subsystems 

This section describes the concepts, structure, and operations of pack subsystems for 
V Series systems. 

Disks and Packs 
Disks and packs are similar types of storage media. The difference between the two is the 
number of bytes per sector: 

• Disks are formatted into 100 bytes per sector. 

• Packs are formatted into 180 bytes per sector. 

Note that the terms pack and disk pack are interchangeable. 

In many cases, disks can be formatted as packs and packs can be formatted as disks. 
Disks and packs are formatted with the Initialization, Verification, and Relocation (IVR) 
functions. 

V Series systems supports one type of disk that can only have 100-byte sectors: QUIK 
Disk. 

Other disk types are soft-sectored; they can be formatted as 180-bytes-per-sector media. A 
pack that is formatted into 100 bytes per sector is known as a look-alike, or LAK, device. 
You can use either the DISPKV utility program or the PTD program to perform IVR 
functions on a pack. 

Table 31-1 lists for each type of pack device which program is used (DISPKV or PTD) to 
perform IVR functions, indicates whether the pack can be formatted as an LAK device, 
and specifies whether or not the pack is removable from the pack drive. 

4127 0000-100 31-1 



Pack Subsystems 

Table 31-1. Capabilities and IVR Functions for Pack Types 

Pack Type LAK Capable? Removable? IVR Functions 

206 Yes Yes DISPKV 

207 Yes No DISPKV 

225 Yes Yes DISPKV 

235 Yes Yes DISPKV 

659 No No DISPKV 

677 Yes Yes DISPKV 

3680 No No PTD 

3682 No No PTD 

MD4 Yes No PTD 

MD8 Yes No PTD 

SCSI Yes No PTD 

Unisys V Series systems treat various models of packs, regardless of different capacities 
and performance capabilities, as logically identical. 

Look-alike (LAK) packs are not discussed further in this section. 

Development of V Series Disk and Pack Subsystems 

31-2 

This section discusses the evolution of disk and pack subsystems for Unisys B 2000/B 
3000/B 400 and V Series mainframes. This information may be helpful in understanding 
the current development of these subsystems. 

The original Medium System mainframes used only 100-byte disks as primary storage 
media. Each disk was represented by an Electronics Unit (EU) and one or more Storage 
Units (SUs). The EU was the smallest unit to which files could be assigned. This term is 
still used today to denote an individual disk unit. 

Multiple EUs could be grouped together with an exchange cabinet to form a physical 
subsystem. With MCP release 6.6, this subsystem concept was changed to provide a 
logical subsystem organization separate from the physical organization. 

Under this organization, one or more subsystems can be declared as default. This default 
designation permits general usage of the subsystems without explicit EU or subsystem 
assignment, as in COPY ... TO DISK. Nondefault subsystems are assignable only by specific 
request, as in COPY ... TO DISK (SUBSYSTEM 5). 

Because there is only one disk directory for all of the EUs and subsystems, determining 
which EU or subsystem houses the file is not a concern in file retrieval. This organization 

4127 0000-100 



Pack Subsystems 

provides for great control and flexibility over the disk system and allows for both genetic 
usage and specific file placement. 

The introduction of 180-byte pack media occurred with the release of MCPl and MCP2 
(ASR 4.0 and 4.2). The larger sector size of pack media provided better utilization of the 
media, and the removable d1ives provided increased flexibility and lower costs. 

The initial implementation provided what today are lmown as unrestricted families. 
Through specific naming schemes, assignment could be made to a specific pack, to a 
group of packs by way of a masked family name, or genetically to any pack by the absence 
of a specific designation. In this way, packs could be organized and used like disk 

Restricted families were later introduced. These families required a specific family name 
designation in order to create or access files. Restticted pack families are equivalent to 
nondefault disk subsystems. 

MCPNS ASR 2.0 introduced the ID method for identifying disks and shared packs. For 
disks, the ID number replaced the EU number; for example: COPY ... TO DISK (ID 7). This 
method was also used to generate lock addresses for shared disks and shared packs. 

MCPNS ASR 3.1 introduced anew version of packs (called version 2) to simplify this 
flexible but complicated organization of packs (called version 1). By streamlining the 
organization of pack families and eliminating redundant pack structures, version 2 packs 
offer a simpler organization and enhanced performance. 

MCPNS ASR 3.2 introduced another version of packs (called version 3) to enhance the 
performance of directory searches., By creating subsets (called scramble strings) of the 
entire directory, specific file name searches are limited to only part of the directory and 
results in enhanced performance. Directory blocking was also increased to reduce I/Os 
and to improve performance. 

MCPNS ASR 3.3 introduced a new version of packs (called version 4) with the ability to 
allow simultaneous access to a pack directory by multiple programs. 

Version 1 pack families can be converted to version 2 or greater pack families, and all 
versions can coexist on the same pack subsystem. All the members of a family must be of 
the same version, however. Conversion and coexistence are discussed later in this section. 

Caution 
Data corruption results if all of the following conditions are true: 

• A SCSI diskpack has a capacity greater than the limit enforced by the MCP 

• The "available" tables have not been limited to the MCP limit by the use of the 
DISPKV utility, the ALTER NEW PACK command, or the ALTER FAMILY 
REBUILD command 

• The MCP attempts to allocate an address beyond the limit enforced by the 
MCP 

4127 0000-100 31-3 



Pack Subsystems 

Components of Pack Subsystems 

31-4 

Pack subsystems consist of the following: 

• The pack is the physical magnetic medium on which information is stored. 

• The pack unit is also called a drive or spindw. The pack unit is considered a 
peripheral device. 

• The controlwr handles the interface between the channel or data link processor (DLP) 
and one or more units. Some pack drives do not require a controller (for example, 
MD4s and MD8s ); for these drives, the DLP assumes the function of the controller. 
Usually, a controller must be loaded with firmware. Loading can occur automatically 
during system initialization, or manually through the LH keyboard command or 
through the LOADFW standalone utility. For complete information on the LH 
keyboard command, refer to Volume 2; for a description of the LOADFW utility, refer 
to Section 12 in this volume. 

• The data link processor (DLP) provides the interface between the host and the 
controller (or between the host and the unit for drives that do not require a 
controller). This interface is also known as a channel. Note that many pack types 
support the ability to connect several channels to a controller (or to a unit for packs 
that do not use a controller). In such a case, the channels are said to be exchanged. 
This technique provides multiple access paths between the host and the units, thus 
permitting simultaneous data transfer. 

• The software controls the utilization of the components of the subsystem. The 
software provides the logical structure for the information stored on the pack 
subsystem. 

The components of a pack subsystem are illustrated in Figure 31-1. 

The unit is represented by a channel and unit address. This address is designated in this 
guide as cc/uu. The cc number, or channel designation, names a specific connection 
between the host and the controller. The uu number, or unit designation, names a specific 
connection between the controller and the unit. 

4127 0000-100 



Pack Subsystems 

ll': ~ 

~11; ii~ 
11 , .. , \J 

~ It; PACK CONTROLLER r-- +11 ~ UNITS 
'\I 

~ 11 ... ~ 
1/0 BASE i 

DLPs 
1
11 SINGLE I 

'\I 
HOST !+-+ PATH 

ll': ~ h l"I 

~ii; + + + ~ t Ii~ 
DUAL h '' ~ 

TO \ ....- --,. 

OTHER CONTROLLER i.._ ...... r 1 PACK 
PERIPHERALS ....- PATHS I UNITS --,. 

'\ 

CHANNELS ..... ()\ ~ 

h "" --.-l' II 
11 ~ 
'\ 

Figure 31-1. Components of a Pack Subsystem 

Physical Organization of a Pack 
Each pack consists of one or more platters: circular plates coated with a thin film of 
magnetic matelial. The platters are mounted on a central spindle. The spindle and 
platters may or may not be removable from the pack dlive, depending on the pack model. 

Associated with each platter is one or more read/write heads used to read and write 
information on the magnetic film. A head moves to the specified location on a platter to 
access data. The movement of the head to this location is called a seek. 

Data is stored on a platter in concentlic iings called tracks. All the tracks on the vadous 
platters of a pack that have the same radius form a cylinder. The controller identifies a 
track by the cylinder and head to which it belongs. 

Tracks are divided into sectors. A sector is the smallest portion of physical data that can 
be uniquely addressed. On a pack there are 180 bytes per sector. The two methods for 
organizing sectors on a track are 

• Sequential format 

• Interlaced format 

In sequential format, sectors on a track are arranged in sequential order: 1, 2, 3, 4, and so 
on. In interlaced format, which was often used by older models of packs, the sectors on a 

4127 0000-100 31-5 



Pack Subsystems 

SECTOR 1 

31-6 

track are arranged nonsequentially (for example, 1, 45, 2, 46, 3, 47, and so on). Figme 31-2 
illustrates the two formats. 

Sequential format offers improved data transfer time over interlaced format because 
adjacent sectors are contiguous and time is not spent waiting for the next logical sector to 
rotate. Interlace format packs offer increased capacity over sequential format packs 
because of smaller inter-sector gaps. 

SEQUENTIAL FORMAT INTERLACED FORMAT 

SECTOR 2 

SECTOR 4 

SECTOR 1 

Figure 31-2. Sequential and Interlaced Organization of Sections 

4127 0000-100 



Pack Subsystems 

The physical organization of a pack is illustrated in Figures 31-3 and 31-4. 

SECTORS 
(180 BYTES) 

PLATTERS 

4127 0000-100 

TRACKS 

CYLINDERS= 

READ/WRITE TRACKS OF 
EQUAL 

HEADS RADIUS 

Figure 31-3. Physical Organization of a Pack (Side View) 

31-7 



Pack Subsystems 

TRACKS 

DIRECTION OF 
HEAD TRAVEL 

HEAD ASSEMBLY 

Figure 31-4. Physical Organization of a Pack (Top View) 

For data access, the controller decodes each address into a cylinder/head/sector 
designation. This kind of designation can be seen on a Maintenance Log (MLOG). (For a 
complete description of the Maintenance Log, refer to the V Series Systems Software 
Logging Operations Reference Manual.) The heads are then moved to the specified 
cylinder. This action results in seek time. After the heads are positioned, the appropriate 
head is activated and must wait until the rotation of the platter brings the specified sector 
beneath it. This wait is called rotational latency time. Data transfer can then occur; the 
amount of time required for this data transfer is called transfer time. Additional time is 
also required for DLP and MCP queueing. 

Organization of Pack Data 
Data on a pack is organized into a logical hierarchy. This hierarchy-from lowest to 
highest-is as follows: 

• Individual data is contained in afield. 

• One or more fields compose a record. 

• A given number of records compose a block. The number of records per block is 
called the blocking factor. The blocking factor is currently limited to 999. 

• A given number of blocks are stored in an area. Physically, an area is made up of a 
given number of sectors. The sectors that make up an area have sequential addresses. 

• One or more areas contain the contents of afile. A file is a named collection of 
related information. The number of areas per file is currently limited to 100. 

31-8 4127 0000-100 



Pack Subsystems 

Figure 31-5 compares the logical and physical organization of pack data. 

LOGICAL PHYSICAL 

AREA 2 

TRACKS 

Figure 31-5. Logical Organization of Pack Data 

The size of each field, the size and organization of a record, the number of records per 
block, the number of records per area, and the number of areas are all user defined. 

Physically, a block begins on a sector boundary. If the block size (the record size 
multiplied by the blocking factor) is not equal to a whole number of sectors, dead space 
exists up to the next sector boundary (refer to Figure 31-6). Dead space cannot be used 
to store data and can result in space and access inefficiencies. 

/ DEAD SPACE~ 

BLOCKS 
.___R_E_c1_0R_D_.___R_E_c2_0R_D___.I I REc3oRo I REC~RD I I REC~RD I ••• 

SECTORS I 
Figure 31-6. Physical Organization of Blocks 

A program can open a file with a record size and a blocking factor that are different from 
those specified when the file was created. Typically, the blocking factor is increased to 

4127 0000-100 31-9 



Pack Subsystems 

improve I/O efficiency. Great care must be taken to ensure that proper record and block 
alignment occur and that dead space is not accessed as data. 

Logical Organization of Packs 
Each physical pack belongs to a packfamily. A family is a logical grouping of one or 
more packs. The MCP logically links family members together so that they are treated as 
a single entity for storing files (refer to Figure 31-7). Therefore, packs can be added to a 
pack family as space requirements increase. When a pack is labeled, it is assigned to a 
pack family by specifying the pack family name. A pack family can contain packs of 
different pack types, sector formats (sequential or interlaced), and channel and unit 
designations. The link between packs in a pack family is solely a logical link as indicated 
by a common family name. 

FAMILY 2 

~FAMILY3 

FAMILY 1 

Figure 31-7. Logical Organization of Packs 

Physical and Logical Organization of Files 

31-10 

A file is stored in a number of areas. Each area is a group of contiguous sectors; however, 
the areas in which a file is stored are not necessarily contiguous. All the areas of a file are 
the same size, as specified when the file is created. Different files can have different area 
sizes. 

A file can be stored in one or more areas (up to 100). The MCP allocates areas for the file 
as needed and as available. Thus, the MCP may place the various areas of a file on 
different packs. These packs are always members of the same pack family. In other 
words, a file can be physically spread across a pack family. 

This organization of packs and files is illustrated in Figure 31-8. 

4127 0000-100 



Pack Subsystems 

; ; 
~ FILEA 

; 

~Areas 1-10 

/

Areas 11-14 
Area 15 
Areas 16-30 
Areas 31-100~ 

I FILEA 
Areas 32,99 

fGl Areas for 
l±I other files 

Figure 31-8. Organization of Packs and Files 

Logically, the MCP keeps track of the file and of the physical addresses of each area of the 
file in special structures: a directory and hea.der. These special structures are stored 
within the same pack family as the file. 

A directory contains file names, pointers to headers and other information. 

Each file has a corresponding file header that contains the physical addresses of the areas 
of the file. The header also contains other information such as the length of the records in 
the file. The MCP accesses each area of a file by obtaining its physical address from the 
file header. 

This organization of directories and headers is illustrated in Figure 31-9. 

4127 0000-100 31-11 



Pack Subsystems 

DIRECTORY 

FILEA 

FILE 
NAME 

HEADER 
POINTER 

r 
ATIRIBUTES, 

RECORD LENGTH 
ETC. 

HEADER 

r 
AREA 

ADDRESS 

Figure 31-9. Organization of Directories and Headers 

MCP Structures 

31-12 

In addition to the directory and header, there are three other MCP structures on each 
pack: 

• The l,abel 

• The master avail,able table 

• The avail,able table 

The label contains the pack name and pointers to the master available table, the available 
table, and the directory. 

The master available table contains address/length pairs for all usable areas on the pack. 
The master available table is created when the pack label is created, and changes when 
the pack is reinitialized, or when an XP command or RXP command changes the usable 
space on the pack. For more information on the XP and RXP commands, refer to 
Volume 2. 

The available table contains address/length pairs for all usable and currently unused space 
on the pack. This table is dynamic and changes as the MCP utilizes the pack for storage. 

4127 0000-100 



Pack Subsystems 

When the pack stmctures are first built, the available table is virtually identical to the 
master available table. 

Pack Versions 
The organization of a pack family, the presence or absence of a directory or headers on a 
pack, and the way in which the MCP accesses files varies depending on the version of the 
pack. The pack versions are as follows: 

• Version 1 

• Version 2 (introduced at ASR 3.1) 

• Version 3 (introduced at ASR 3.2) 

• Version 4 (introduced at ASR 3.3) 

Different methods for creating MCP structures are required for version 1 packs as 
opposed to version 2 and greater packs. 

Organization of Version 1 Pack Families 
For a discussion of the development of version 1 pack families, refer to "Development of 
Unisys Disk and Pack Subsystems" earlier in this section. 

Types of Version 1 Packs 

There are three types of version 1 packs: 

• Master 

• Base 

• Continuation 

The use of these pack types is based on the concept of a central, logical access point to 
the pack family for the pack subsystem (refer to Figure 31-10). 

4127 0000-100 31-13 



Pack Subsystems 

31-14 

MASTER OR BASE PACK 

SYSTEM---- CONTINUATION PACKS 

Figure 31-10. Access Point to a Version 1 Pack Family 

A master pack is explicitly declared when the pack is labeled. A pack that is not declared 
as a master pack is considered to be a continuation pack. The status of a pack as a master 
or continuation pack is a physical attribute that is specified during the labeling procedure. 

A base pack can be thought of as a logical master pack. When a file is created and an 
explicitly declared master pack has not been declared (or when the master pack is for 
some reason unavailable), the MCP selects a pack to be the base pack and to serve the 
same function that a master pack would. All master packs are base packs, but not all base 
packs are master packs. 

A base pack is the primary point of access for the version I pack family. In addition to the 
label, master available table, and available table, each base pack contains the following 
MCP structures: 

• A directory which contains an entry for each file in the pack family 

• A header for each file in the pack family 

In addition, the base pack contains the initial area of each file in the pack family. 

The MCP uses continuation packs to provide additional storage capacity for the pack 
family. A continuation pack can contain one or more areas of a file. Although the initial 

4127 0000-100 



Pack Subsystems 

area of the file must be on the master or base pack, the remaining areas can be spread 
across the pack family. The MCP normally chooses a pack on which to place each area as 
it is allocated. The MCP bases this choice on several critelia, although the pack with the 
greatest percentage of available space is usually the plime candidate to receive the area. 

In addition to a label, master available table, and available table, each continuation pack 
contains a directory and a header for any file that has one or more areas on that pack. 
Therefore, in a version 1 pack family, all base and continuation packs contain a directory 
and headers. 

Types of Version 1 Families 

There are two types of version 1 pack families: 

• Restlicted 

• Unrestlicted (also known as a system resource pack) 

A pack is explicitly declared as restlicted or unrestlicted when the pack is labeled. 

A restlicted version 1 pack family can have only one master pack, but does not require 
any. An unrestlicted version 1 pack family can have multiple master packs, but does not 
require any. 

Both restlicted and unrestricted version 1 pack families can have multiple base packs 
(that is, the MCP can assign more than one base pack if no master pack has been 
declared). 

Each family (restlicted or unrestlicted) has afamily name, which can be up to 6 
characters long. The family name is used as follows: 

• A restlicted version 1 pack family requires that the exact family name be used for 
creating or accessing a file within the family. 

• An unrestlicted version 1 pack family permits you to use an exact, masked, or null 
family name for creating or accessing a file within the family. Several MCP commands 
and utility functions access unrestlicted families by using the keyword PACK (for 
example, COPY ... TO PACK). Family name masking is the ability to specify a wildcard 
as part of the family name; for example, specifying A = selects all unrestlicted family 
names beginning with A. 

How the MCP Accesses Files on a Version 1 Pack Family 

Figure 31-11 illustrates a typical configuration of a version 1 pack family. 

In this example, 24/0 is the master (and base) pack for this pack family. It contains a 
directory that points to the header for each file stored on the family. In addition, this pack 
contains the initial area of each file stored on the family. 

This pack family also consists of two continuation packs on 24/1 and 24/2. Each 
continuation pack also contains a directory with an entry for each file that has an area on 
the pack. Each entry points to the header for each file. 

4127 0000-100 31-15 



Pack Subsystems 

31-16 

The file FILEA is stored on all three disks: the initial area is stored on 2410, and the 
remaining areas are spread across the two continuation packs. These areas were assigned 
by the MCP on an as-needed and as-available basis. 

When you open FILEA, the MCP accesses the directory on the master pack, and then 
locates the header for the file from the directory. When a record is read or written, the 
MCP calculates which area of the file contains the record and accesses that area address 
in the header. The area address can be in one of the two following formats: 

• If the area is on the master pack, the area pointer contains the physical address of the 
area. 

• If the area is on a continuation pack, the area pointer contains a continuation 
indicator and the serial number of that continuation pack. The MCP must access the 
directory on that pack, locate the file, access the local header, and obtain the physical 
address of the area. 

In actual practice, this process of locating and resolving area addresses is optimized to 
improve efficiency. 

4127 0000-100 



FILEA 
Initial area Al ____. 
Areas A2 & A3 ___-
Areas A4 & A55 

FILEA 

FILEA 

DIRECTORY 

DIRECTORY 

FILEA Header 

Area 2 
Area 3 

FILEA 

Pack Subsystems 

DIRECTORY 

Figure 31-11. Version 1 Pack Family Configuration-Example 1 

4127 0000-100 31-17 



Pack Subsystems 

31-18 

Figure 31-12 illustrates another typical configuration of a version 1 pack family. 

DIRECTORY 
FILEA 

Area Al 

FILEA Header 

DIRECTORY 
B 

Area Bl 

FILES Header 

\ Fm 
Initial area Al 

Areas A2, A3, & A4 
Areas A5 

FILES 
Initial area Bl 

Areas B2, B3, & B4 

DIRECTORY 
FILEA 
FILEB 

DIRECTORY 
E 

Area A5 

FILEA Header 

Figure 31-12. Version 1 Pack Family Configuration-Example 2 

4127 0000-100 



Pack Subsystems 

In this example, there is no declared master pack for this family. Two files have been 
created: FILEA and FILEB. When FILEA was created, the system chose 22/0 as the base 
pack and created a directory entry, a header, and the initial arna for the file on this pack 
(In the absence of a master pack, the system usually chooses as a base pack the pack with 
the greatest percentage of space available.) When FILEB was created, the system chose 
22/1 as its base pack. 

This pack family also consists of two nonbase continuation packs on 22/2 and 22/3. Each 
continuation pack contains a directory with an entry for each file that has an area on the 
pack. Each entry points to the header for that file, which contains appropriate area 
addresses. 

File areas are allocated as needed, usually on the pack having the greatest percentage of 
space available at the time of the request. The exception to this is the initial area 
assignment; the initial area always goes to the base pack of the file. FILEA is stored on 
three packs: the initial area is stored on the base pack 2210, and the remaining areas are 
spread across the continuation packs 2212 and 2213. FILEB is stored on two packs: the 
initial area is stored on the base pack 2211, and the remaining areas are stored on the pack 
2212. 

When FILEA is opened, the MCP accesses the directory on the base pack for the file and 
then locates the header for the file from the directory. When a record in FILEA is read or 
written, the MCP calculates which area of the file contains the record and accesses the 
appropriate pack. 

Labeling a Version 1 Pack 

When a version 1 pack is labeled, you declare the pack as one of the following: 

• A restricted pack 

• A restricted master pack 

• An unrestricted master pack 

• An unrestricted pack 

You can label a version 1 pack by using the DISPKV utility (refer to Section 3 of this 
volume). You can use the ALTER PACK command to modify an existing label (refer to 
Volume2). 

Building MCP Structures on a Version 1 Pack 

To build pack-resident MCP structures on a version 1 pack, you must use the DISPKV 
utility. 

Rebuilding MCP Structures on a Version 1 Pack 

To rebuild MCP structures after an initialization or when a catastrophic failure occurs, you 
must use the DISPKV INITIALIZE, CONFIGURE, or RECONFIGURE commands. 

4127 0000-100 31-19 



Pack Subsystems 

Purging All Files from a Version 1 Family 

To remove individual files or a group of files from a pack, use the RM keyboard command. 

To remove all files from a pack, use the DISPKV RECONFIGURE command. This 
command removes all files by reinitializing the directory and available tables. You can 
also remove all files from a pack by using the RM keyboard command and a completely 
masked file name. However, this process requires a null mix for the MCP and can take 
considerable time to complete. 

Renaming a Version 1 Pack or Pack Family 

To rename a pack, use the DISPKV RENAME command or the ALTER PACK keyboard 
command. To rename an entire pack family, you must rename each member separately. 

Organization of Version 2 and Greater Pack Families 
The organization of version 2 and greater pack families alleviates the confusion and 
inefficiencies caused by multiple directories, headers, and base packs. Version 2 and 
greater pack families differ from version 1 pack families in the following ways: 

• There is a single base pack for each family. The use of an explicitly declared master 
pack (or implicit base packs) has been replaced by the use of a single, required, 
explicitly-declared base pack that acts as the access point for the pack family. 

• There is a single directory for each family. This directory is located only on the base 
pack 

• There is a single header for each file in the family. This header is located only on the 
base pack. 

• The initial area of a file can be stored on any member of the pack family. 

• There is one, and only one, resource (unrestricted) family. 

• The ALTER PACK and ALTER FAMILY keyboard commands assume many of the 
functions of the DISPKV utility for labeling packs and building MCP structures. For a 
complete description of the ALTER command, refer to Volume 2. 

The directory for version 3 and greater pack families differs from the directories for 
version 1 and version 2 pack families. The directory for a version 3 or greater pack 
consists of 10 subsets of the entire directory. To locate a specific file name, only one of 
the subsets is searched rather than the entire directory. 

Types of Version 2 and Greater Packs 

There are two types of version 2 and greater packs: 

• Base 

• Continuation 

31-20 4127 0000-100 



Pack Subsystems 

A base pack is the primary point of access for version 2 or greater pack families. There is 
one and only one base pack for each version 2 or greater pack family. The base pack is 
declared by the user when the pack is labeled. In addition to a label, a master available 
table, and an available table, the base pack contains the following MCP structures: 

• A directory, which contains an entry for each file in the pack family 

• A header for each file in the pack family 

A continuation pack is any member of the pack family that has been declared as a 
continuation pack. Continuation packs are used to provide additional storage capacity for 
the pack family. 

The only MCP structures contained on version 2 and greater continuation packs are the 
label, the master available table, and the available table; version 2 and greater 
continuation packs do not contain directory or header structures. Therefore, there is one 
and only one directory for the pack family. Also, there is one and only one header for each 
file in the family. 

Types of Version 2 and Greater Pack Families 

There are two types of version 2 and greater pack families: 

• Restricted 

• Resource (also called unrestricted or default) 

A restricted version 2 or greater pack family requires that you use the exact family name 
when accessing a file within the family. 

There can be only one version 2 or greater resource pack family at any given time. This 
resource family requires that you use the exact family name or a null family name when 
accessing a file within the family. Several MCP commands and utility functions access the 
resource family by specifying the keyword PACK (for example, COPY ... TO PACK). 

Family name masking was allowed for version 1 resource packs (refer to the description 
earlier in this section), but because there can be only one version 2 or greater resource 
pack family, family name masking is ignored. Commands and file open requests 
containing family name masking are directed to the resource family regardless of name 
matching. 

Restrictions 

A version 2 or greater pack family cannot have more than 15 members (one base and 14 
continuation packs). 

Foreign or interchange mode packs are no longer supported. 

Certain system files that are accessed by utilities using a channel/unit designation (for 
example, MCP and configuration files accessed by LOADER and firmware files accessed 
by LOADFW) must reside on the base pack of the family. 

4127 0000-100 31-21 



Pack Subsystems 

31-22 

When you use the SQP keyboard command for a version 2 or greater continuation pack, 
the system requires exclusive access to the base pack of the family in order to access the 
directory. 

The CHANGE and REMOVE commands which contain a channeVunit designation must 
specify the base pack of the family. 

Once a file has been opened on a family, OU commands are not allowed to direct areas to 
other families. 

4127 0000-100 



Pack Subsystems 

How the MCP Accesses Files on a Version 2 or 
Greater Pack Family 

Figure 31-13 illustrates a typical configurntion of a version 2 or greater pack family. 

DIRECTORY 

FILEA 

Figure 31-13. Configuration of a Version 2 or Greater Pack Family 

In this example, 24/0 is the base pack for this restricted pack family. Pack 24/0 contains 
the directory that points to the header for each file stored in the family. The areas of 
FILEA are stored on the continuation packs, 24/1 and 24/2. The initial area of FILEA is on 
the continuation pack 24/1. 

When FILEA is opened, the MCP accesses the directory on the base pack and locates the 
file header from the directory entry. The MCP then locates the address of each area of the 
file from the header. 

4127 0000-100 31-23 



Pack Subsystems 

How the MCP Accesses a Directory on a Version 3 
or Greater Pack Family 

Packs of version 3 and greater are organized exactly the same as version 2 packs. The 
difference between these versions is in the way the directory is built and accessed. Prior 
to version 3 packs, the directory was searched from the beginning until a file name was 
found. With version 3 and greater packs, only a fraction of the directory must be 
searched. 

Scramble Strings 

31-24 

A version 3 or greater pack directory consists of 10 subsets of the complete directory. 
These subsets are called scramble strings. A file name is "scrambled" into a single 
number from 0 to 9 and is placed into the scramble string corresponding to that number. 
The file names are scrambled in a manner that attempts to create an even distribution of 
file names in each scramble string. 

Figure 31-14 illustrates a directory structure for a version 3 or greater base pack. The 
starting scramble string address when searching for a specific file name is as follows: 

directory-address + (scramble-string number * directory-blocking-factor) 

The end of each scramble string is forward-linked to the beginning of the next scramble 
string; thus, a search of the entire directory remains functional (for example, PD A=). 

The following are the special characters used in Figure 31-14. 

# 

& 

* 

This character indicates the "first-sector-for-scramble," which is the beginning of each 
scramble string (specific file name searches start here). 

This character indicates the "last-logical-scramble-sector," which is the last sector that 
contains assigned file entries (specific file name searches end here). 

This character indicates the "last-physical-scramble-sector," which is the physical end of each 
scramble string. 

4127 0000-100 



Directory --+ 
Address 

10 Scramble 
Strings 

Primary Directory 
Blocks 

# 
0 

& 

* 
# 

1 
& 

* 
# 

2 
& 

* 
# 

3 
& 

* 
# 

4 
& 

* 
# 

5 
& 

* 
# 

6 
& 

* 
# 

7 
& 

* 
# 

8 

# 
9 

& 

* 

Pack Subsystems 

~ = Block Link 

Extension Block 

6 
* 

Extension Block Extension Block 

8 
& 

8 
* 

Figure 31-14. Directory Structure-Version 3 or Greater Base Pack 

Directory Blocking 

Each block of the version 3 or greater pack directory contains 20 records, as opposed to 
version 1 and version 2 directories, which contain 10 records for each block. Each record 
contains 11 file names along with other information. When attempting to locate a file 
name, the MCP reads in one block at a time, so the larger block size can decrease the 
number of reads that are necessary to locate a file name. 

Directory Searches for Specific Filenames 

A search of the entire directory is not needed to locate a specific file name. Instead, a 
search is limited to only one scramble string because the file name is scrambled as 
explained previously. The result is a decrease in search time to locate a file. 

Directory Searches for Masked File Names 

A search of the entire directory must still be performed for masked file names (such as 
PD A=) because it is not known what scramble string a masked file name belongs to. 

4127 0000-100 31-25 



Pack Subsystems 

These searches are slightly more efficient than version 1 and version 2 pack searches 
because of the larger block size, as explained previously. 

How the MCP Accesses a Directory on a Version 4 
Pack Family 

The structures on version 4 packs are organized identically to version 3 packs. The 
difference between version 3 and version 4 packs is the directory access method. For 
version 3 packs, only one directory access is allowed at a time by requiring that address 20 
be locked before the directory is searched. For version 4 packs, up to 10 directory 
accesses are allowed simultaneously by locking the primary scramble string blocks 
independently. This allows, for example, a total of 10 file opens and closes to occur 
simultaneously. (Certain directory accesses must still be single-threaded to avoid deadly 
embrace situations.) 

Version 4 Locking Schemes 

Scramble strings 0 through 9 are locked and unlocked by their primary block address. 
Currently, these addresses are 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 for scramble 
strings 0 through 9 respectively. 

The locking schemes for accomplishing specific operations are described in the following 
sections. 

Opening and Closing Files 

Opening a file requires a lock and unlock of the p1imary block address of the scramble 
string where a file resides. This address is saved in the soft IOAT (input-output assignment 
table) of the file during the file open process. During the file close process, the saved 
address is used to lock and unlock the affected scramble string. 

Specific File Name Changes 

The primary block address of scramble string 0 is locked in order to single-thread the 
function of changing a specific file name. A maximum of two additional primary block 
addresses of scramble strings are also locked (one for the current file name and one for 
the new file name). The primary block address of each affected scramble string is 
unlocked in descending numerical order. 

Masked File Name Changes 

31-26 

The primary block addresses of scramble strings 0 through 9 are locked in ascending 
numerical order before a masked file name change is performed, because all of the 
scramble strings will probably be accessed to complete this function. The primary block 
address of each scramble strings is unlocked in descending numerical order (9 through 0). 

4127 0000-100 



Pack Subsystems 

Specific File Name Removes 

During the operation of removing a specific file name, the primary block address of the 
scramble st1ing where a file resides is locked and unlocked. 

Masked File Name Removes 

First, to single-thread the function of a masked file-name remove, the primary block 
address of scramble string 0 is locked, and it is kept locked until the function is complete. 
The primary block addresses of scramble strings 1 through 9 are locked and unlocked in 
sequence as each scramble string is searched. 

Miscellaneous Directory Accesses 

For any other function, such as pack recovery, that accesses the directory and requires the 
directory to be locked, the locking is performed per the primary block address of each 
scramble string, rather than by locking address 20. 

BLT Entries 

If a LIMIT BLT (Limit Block Lockout Table) record is included in a configuration file, it 
should specify a minimum of 40 block lockout entries. This is because up to 10 scramble 
strings and file headers can be locked at the same time, resulting in 20 entries in the BLT. 
Any additional BLT entries that are required are then available for utilization by user 
programs or other MCP functions. 

If a LIMIT BLT record is not included in a configuration file, the number of entries is 
calculated by the MCP and will always exceed the minimum requirement of 40. For 
information on the LIMIT BLT record, refer to Volume 1. 

Shared Version 4 Packs 

Since the locking protocol for version 4 packs is different from previous versions, if packs 
are shared between multiple systems, an MCP release level of at least 3.30 must be 
running on each system. 

In order to convert a shared pack family to version 4 format, the following steps must be 
taken in the specified order: 

1. All packs in a family must be saved on each system that they are declared on. 

2. A family should be altered to version 4 format on only one system using the ALTER 
syntax as explained later in this document. 

3. Ready the previously saved packs on all applicable systems. 

4127 0000-100 31-27 



Pack Subsystems 

Using the ALTER PACK, ALTER NEW PACK, and 
ALTER FAMILY Commands on Version 2 and Greater 
Packs 

The ALTER PACK, ALTER NEW PACK, and ALTER FAMILY commands are used as 
descdbed in the following paragraphs. 

Using the FILES Attribute to Preallocate Additional Directory Blocks 

One of the options of the ALTER NEW and the ALTER FAMILY commands is the FILES 
attdbute (see the descdption of the ALTER command in Volume 2 for details). This 
option performs the following functions: 

• On version 2 packs it preallocates contiguous directory blocks at the end of the 
directory in addition to the default number of directory blocks. 

• On version 3 and greater packs it preallocates contiguous directory blocks for each 
scramble stdng in addition to the default number of directory blocks. 

If you know approximately how many files will reside on a pack, you can use the FILES 
attdbute to further reduce the search time for a file. 

Notes: It is advantageous to preallocate additional contiguous directory blocks to 
minimize head movement if you know that more than the default number of 
directory blocks will be required; since any directory blocks dynamically 
allocated by the operating system will not be contiguous to the initial blocks. 

Any preallocated directory blocks are not searched until they are used, so 
allocating additional directory blocks will not affect system performance. 

Labeling and Building MCP Structures 

You must use the ALTER NEW PACK command to label a version 2 or greater pack For 
information on the ALTER NEW PACK command, refer to Volume 2. Options for this 
command enable you to specify whether the pack is base or continuation and whether it is 
restdcted or resource. 

Rebuilding MCP Structures 

31-28 

To rebuild MCP structures after an initialization or when a catastrophic failure occurs, you 
can 

• Use the ALTER NEW PACK command for each member of the pack family. 

• Use the ALTER FAMILY REBUILD command for the entire pack family. 

These commands reinitialize all MCP structures, purging all files and areas marked out by 
the XP command in the process. 

4127 0000-100 

( 



Pack Subsystems 

An ALTER NEW PACK command that specifies a continuation pack assigns the next 
available family index to the pack (up to the limit for version 2 and greater of 15 packs per 
family). 

The ALTER FAMILY REBUILD command reestablishes the existing base pack as family 
index 1, and reassigns family indexes to each continuation pack sequentially. 

Note: You can use the ALTER NEW PACK command only once for a particular 
continuation pack. Each ALTER NEW PACK command causes the family index 
to increment by one. As a result, after use of this command, family indexes will 
be out of sequence, and the number of packs that can be declared for the family 
will be fewer than 15 packs. 

To get the indexes back in sequence, you have the following choices: 

Pmform an ALTER NEW PACK command on the base pack and on each 
continuation pack in the family. 

Use the ALTER FAMILY REBUILD command 

Use the INDEX option of the ALTER NEW PACK command. 

Purging All Files from a Pack Family 

To remove individual files, use the RM keyboard command. To remove all files from a 
pack family, use the ALTER FAMILY PURGE keyboard command. 

Renaming a Pack or Pack Family 

To rename an individual pack, use the ALTER PACK keyboard command. To rename all 
the members of a pack family, use the ALTER F AMlLY RENAME command. 

4127 0000-100 31-29 



Pack Subsystems 

Comparison of Pack Versions 

31-30 

Table 31-2 compares the features of version 1 with the features of version 2 and greater 
packs. 

Table 31-2. Comparison of Pack Versions 

Feature Version 1 Version 2 and Greater 

Number of master packs per Unrestricted: 0 through n 1 
family 

Restricted: 0 or 1 

Multiple base packs possible per Yes No 
family? 

Continuation packs possible per Limited only by 14 
family? configuration maximums 

Multiple resource families? Yes No 

Directory and headers on Yes No 
continuation packs? 

Multiple simultaneous directory No Version 4 only 
accesses? 

Family name masking for Yes Directed to resource 
resource family? family regardless of name 

Utility or command to generate DISPKV ALTER NEW PACK 
label 

Utility or command to alter label DISPKV or ALTER PACK ALTER PACK 

Utility or command to generate DISPKV ALTER NEW PACK 
directory and available tables 

Default directory size 110 files 1100 files (Version 2) 

2200 files (Version 3 and 
greater) 

Utility or command to rebuild DISPKV RECONFIGURE for ALTER NEW PACK for 
MCP structures each pack each pack or ALTER 

FAMILY REBUILD for 
entire family 

Utility or command to purge all DISPKV RECONFIGURE for ALTER FAMILY PURGE for 
files from family each pack family 

Utility or command to rename DISPKV RENAME or ALTER ALTER PACK for each 
pack or family PACK for each pack pack or ALTER FAMILY 

RENAME for family 

4127 0000-100 



Pack Subsystems 

Converting Version 1 Families to Version 2 or 
Greater Families 

Perform the following steps to convert an existing version 1 family to a version 2 or 
greater family. For additional important information on converting shared packs, refer to 
"Shared Version 4 Packs" in this section. 

1. Dump all the desired files from the version 1 family to tape or other medium using 
SYSTEM/COPY or other such utility. As subsequent steps will destroy the odginal 
information, use of the COMP ARE options and careful handling are highly 
recommended. 

2. Determine any bad areas on each pack by using the WXP keyboard command, or by 
using DISPKV or PTD to reinitialize or reconfigure each pack. 

3. Convert the family to the version 2 or greater format. This can be accomplished by 
converting the entire family at once or by converting each family member individually. 

a. To convert the entire family at once, follow these steps: 

Save each member of the family. 

Use the ALTER FAMILY REBUILD keyboard command. The MCP will 
automatically assign the base pack for the family (usually the previous master 
pack) and assign all other packs found with the same family name as continuation 
packs. Note that when converting a Version 1 pack with the 
ALTER FAMILY REBUILD command, if you do not specify a version to convert to, 
the default is to convert to Version 3. 

Ready the base pack and then each of the continuation packs. Refer to Example 1 
for conversion syntax. 

b. To convert packs individually, use the following procedure: 

Save the pack that will be designated as the base pack of the family. 

Delete all other members of the family with the DL keyboard command. 

Create the base pack with the ALTER NEW PACK keyboard command. 

Ready the base pack. 

Add in each additional continuation pack with the PACK keyboard command. Use 
the SAVED attdbute to avoid any pack version conflicts. 

Ready each of the continuation packs. Refer to Example 2 for conversion syntax. 

4. Use the XP keyboard command to delete any bad areas on any pack as necessary. 

5. Reload the files previously dumped. 

Note: The ALTER FAMILY & ALTER PACK keyboard commands allow attributes to be 
specified to override the existing attributes of the family or pack. Refer to 
System Operations Guide, Volume 2 for complete syntax and descriptions of the 
commands. 

4127 0000-100 31-31 



Pack Subsystems 

You must be able to save a pack in order to use ALTER NEW PACK to convert it. You 
cannot save a pack in use by the MCP, such as a pack designated for the system dump file 
(USE DUMP PACK ... ). Thus, converting all pack families may require advanced planning. 

Example 1: 

Old family - 24/0 MCPACK (Restricted, Master) 
24/1 MCPACK (Restricted, Continuation) 
24/1 MCPACK (Restricted, Continuation) 

sv 24/0, 24/1, 24/2 
ALTER FAMILY MCPACK REBUILD 
RY 24/0 
RY 24/1, 24/2 

Example 2: 

Old Family - 24/0 BAPACK (Restricted, Master) 

sv 24/0 
DL 24/1, 24/2 

24/1 BAPACK (Restricted, Continuation) 
24/2 BAPACK (Restricted, Continuation) 

ALTER NEW PACK 24/0 
RY 24/0 
PACK 24/1 SAVED 
PACK 24/2 SAVED 
ALTER NEW PACK 24/1 
ALTER NEW PACK 24/2 
RY 24/1, 24/2 

If You Use System Security with a Mirrored User File 

31-32 

Special procedures are necessary for converting the diskpack that contains the mirrored 
security accesscode file, known as the user file or USERFL. 

System security is invoked by the SECURITY record in the system configuration file. The 
mirrored USERFL is created by the MEDIA phrase in the SECURITY record. 

Use the following procedure to convert the diskpack family that is named in the MEDIA 
phrase of the SECURITY record. This procedure can be used for converting between any 
two diskpack versions. 

1. Perform step 1 of the procedure "Converting Version 1 Families to Version 2 or 
Greater Families." In this step you dump the files from the diskpack to tape. When you 
do this step for the diskpack that contains the mirrored user file, do not dump the 

4127 0000-100 



Pack Subsystems 

mirrored user file. Use the EXCEPT syntax of the SYSTEM/COPY utility to accomplish 
this. 

The name of the milTored user file is .USRnL where n is the system number. An 
example of the SYSTEM/COPY syntax for system number 1 could be: 

COPY = EXCEPT (.USRlL) FROM PACKl TO TAPEl 

2. Perform steps 2, 3, and 4 of the procedure "Converting Version 1 Families to Version 2 
or Greater Families." to convert the diskpack family to the new version. 

3. To create a new milTored user file on the newly converted diskpack family, haltlload 
the system. 

4. Reload the files previously dumped. 

Converting Between Version 3 and Version 4 Packs 
and Families 

Version 4 packs can be created from version 3 packs and vice versa without rebuilding the 
pack directory. Only the pack label and EU table entry need to be changed, to reflect the 
version of the pack. For this reason file information on the pack is preserved. 

The ALTER PACK command can be used to create a version 4 pack from a version 3 pack 
as follows: 

ALTER PACK <cc/u> VERSION 4 

Any other parameters that are cunently allowed on the ALTER PACK command can also 
be specified. 

The ALTER FAMILY command can be used to create a version 4 pack family from a 
version 3 pack family as follows: 

ALTER FAMILY <family name> RENAME NAME <family name> VERSION 4 

Any other parameters that are cunently allowed on the ALTER FAMILY RENAME 
command can also be specified. The family name does not have to be changed. 

To create a version 3 pack or family from a version 4 pack or family, use either the ALTER 
PACK or the ALTER FAMILY syntax as explained above and specify 3 in the VERSION 
attribute. 

For information on converting shared packs, refer to "Shared Version 4 Packs" in this 
section. 

You can also use the ALTER NEW PACK and the ALTER FAMILY REBUILD commands to 
convert a Version 3 pack or family to a version 4 pack or family by specifying 4 in the 
VERSION attribute and using the culTent syntax for any other attributes that are desired. 
However, when you use this method new structures are created on the pack resulting in 
the loss of all file information. 

4127 0000-100 31-33 



Pack Subsystems 

Coexistence of Pack Versions 
Different pack versions can coexist under the following guidelines: 

• Packs with the same name belong to the same family. 

• All packs within a particular family must be the same version. 

• Families of version 2 and greater are limited to 15 members. 

• Packs in the system resource family must all be the same version. 

If the system resource family is version 1, multiple resource families are allowed. 

If the system resource family is version 2 or greater, there can be only one 
resource family. 

Coexistence of MCP Versions and Pack Versions 

31-34 

MCP releases prior to ASR 3.3 support only certain pack versions. For example, since 
version 2 packs were introduced at ASR 3.1, any release prior to 3.1 does not support 
version 2 packs. If a pack version is not supported by a particular MCP release, the pack 
is made not ready and an error message indicating that the label type is invalid is 
displayed. In order to access existing files on the pack, an MCP release that supports the 
pack version must be running on the system. 

4127 0000-100 



Section 32 
OBJCHK-File Compression Utility 
Program 

Overview 
The OBJCHK program compresses and decompresses disk or pack files. You can use, at 
the execution of the utility program, the FILE EQUATE system command to specify the 

• Input file to be compressed or decompressed 

• Resulting output file 

During compression, the OBJCHK program translates files into a combination of ASCII 
and binary characters so that the resulting compressed files can be transmitted safely 
across existing data communication systems. OBJCHK decompression performs the 
reverse translation, restoring the original versions of the files from their compressed 
forms. 

File specification 
The OBJCHK program operates on two external file names: 

• LARGE (uncompressed files) 

• SMALL (compressed files) 

When compressing a file, OBJCHK copies and compresses file LARGE to file SMALL. 
When decompressing a file, OBJCHK copies and decompresses file SMALL to file LARGE. 

To specify any file on disk or pack, the FILE EQUATE (FILE) command must be used. 
The default file type for files LARGE and SMALL is DISK, so the override DPK must be 
used in file equate statements for files residing on pack Refer to Volume 2 for more 
information on this command. 

LARGE and SMALL can be the same file, but both file-equate statements for LARGE and 
SMALL must be specified at the time of execution of OBJCHK. 

Operating Instructions 
You can execute OBJCHK from an ODT. 

4127 0000-100 32-1 



OBJCHK-File Compression Utility Program 

Compressing a File 

To copy and compress <filel - id> to <file2 - id>, use the following syntax: 

EX OBJCHK; VA 0 1; FILE LARGE= <filel-id>; FILE SMALL= <file2-id> 

The VALUE command sets switch 0 to cause the program to perform compression. 

Note: The OBJCHK program replaces any existing fiw <fiw2 - id> with the 
compressed version of <fiwl - id>. 

After the completion of the compression, the ODT displays the following: 

OBJCHK=<mix#> >> <filel-id> on <multifilel-id> compressed as 
<file2-id> on <multifile2-id> 

OBJCHK=<mix#> >>Compression Ratio = <ratio> to 1 

Note: The system dump file ($s0001, wheres= system number) cannot be compressed 
by the program due to MCP restraints. OBJCHK opens allfiws to be compressed 
with a lock access to prevent updating of the fiw during compression. The 
system dump file, however, cannot be opened with lock access, since the system 
requires the fiw to always be availabl,e the MCP. To bypass this constraint, you 
can copy the dump fiw to a different name with the SYSTEM/COPY utility 
through the COPY system command, and then compress that fiw. 

Decompressing a File 

To copy and decompress <file2 - id> to <file3 - id>, use the following syntax: 

EX OBJCHK; FILE SMALL = <file2-id>; FILE LARGE = <file3-id> 

Note: The program replaces any existing fiw <fiw3 - id> with the decompressed 
version of <fiw2 - id>. 

After the completion of the decompression, the ODT displays the following: 

OBJCHK=<mix#> >> <file2-id> (<filel-id>) on <multifile2-id> 
decompressed as <file3-id> on <multifile3-id> 

In the response, <file I - id> is the name of the file that originally produced the compressed 
file, <file2 - id>. 

Examples 

EX OBJCHK; VA 0 1; FILE LARGE = MYFILE; FILE SMALL = MYFILE 

This compresses the file MYFILE on disk and replaces the original file with the 
compressed version. 

EX OBJCHK; VA 0 1; FILE LARGE WORK/TESTl DPK; FILE SMALL = TEST2 

32-2 4127 0000-100 



OBJCHK-File Compression Utility Program 

This compresses the file TESTI on the pack WORK and places the compressed 
version in the file TEST2 on disk. 

EX OBJCHK; FILE SMALL = BBB; FILE LARGE = PUBLIC/AAA DPK 

This decompresses the file BBB on disk and places the uncompressed version in the 
file AAA on the pack PUBLIC. 

Error Messages 
Error messages are displayed on the ODT when OBJCHK cannot complete successfully. 
The error messages are as follows: 

** Abnormal Termination 

A premature EOF is encountered during decompression. A program memory dump is 
produced. 

**Checksum Error: Record No <record no> 

An internal decimal-to-binary conversion error occurred on the record numbered 
<record no>. A program memory dump is produced. 

**File Structure Error 

An incorrect decompression of a file occurred. A program memory dump is produced. 

**Input File Invalid Format 

Either the file SMALL is not a compressed file, or the file LARGE exceeds a record 
size of 40,000 digits when compression is executed. 

**Input File Not Available 

Either the file equated with LARGE does not exist in the location specified when 
compression is executed, or the file equated with SMALL does not exist in the location 
specified when decompression is executed. 

4127 0000-100 32-3 



OBJCHK-File Compression Utility Program 

32-4 4127 0000-100 



Section 33 
VFUGEN-Vertical Format Unit File 
Builder 

Overview 
The vertical format unit file builder program, VFUGEN, allows you to create, edit, print, 
and save an electronic vertical forms (EVF) file. The EVF file can be downloaded to a 
buffered printer that has electronic vertical forms unit (EVFU) capability. The electronic 
vertical forms unit capability takes the place of mechanical vertical formatting units. 
Setting up the electronic vertical form is the equivalent of punching channels in the paper 
tape of a mechanical unit. 

VFUGEN is an interactive utility. You use screens that VFUGEN presents to tell VFUGEN 
what to do. 

You can operate VFUGEN in the following ways: 

• from the V Series Communication System (VCS) 

• from the OCS or ODT 

• from versions of V Series CANDE that support initiation of timesharing tasks from the 
CANDE EDITOR. 

The VFUGEN utility must be stored on disk. It can read and write both disk and diskpack 
files. 

Initiating VFUGEN 
Initiate VFUGEN from a data communications terminal or from the terminal acting as the 
OCS or ODT. The VFUGEN screens will display at the same terminal. 

Initiating VFUGEN From VCS 

You initiate VFUGEN from VCS using a transaction that you name and declare. The 
following text describes how to declare VFUGEN to VCS, and how to create a transaction 
for initiating VFUGEN from a VCS station. 

If you follow the suggestions here, you initiate VFUGEN with the following VCS 
transaction: 

/VFUGEN-27 

4127 0000-100 33-1 



VFUGEN-Vertical Format Unit File Builder 

Declaring VFUGEN to VCS 

Use the APPL-ADD transaction to declare VFUGEN to VCS. You can choose any name 
you like for the application; this example uses VFUGEN-27. The APPL-ADD transaction 
would be the following: 

/APPL-ADD,VFUGEN-27 

For more information on the APPL-ADD transaction, consult the V Series VCS 
Implementation Reference Manual Volume 2: System Transactions. 

When you enter the APPL-ADD transaction, VCS displays the Applications screen. Figure 
33-1 shows the values that should be entered in this screen. Use your own values where 
asterisks (****) are shown. For details, consult the V Series VCS Implementation 
Reference Manual Volume 2: Entities and Screens. 

PG. 1 ADD 
FACILITY 
ACTION: [ 

APPLICATION 26 14:29:11 ON 01/21/94 

USERCODE: BENSON VERSION: VCS271 ON MPV027 

VCS NC 

FORM: 609 

NAME [VFUGEN-27 ] PROG-ID [VFUGEN] 
USERCODE [**** PASSWORD [**** ] CG [**** ] 
EXECUTION HOST [your-host-name**** ] 
BOJ STATUS (UP,DOWN) [DOWN] MODE (FULL/PART) [FULL] SINGLE USER [Y] 
QUEUE MSG IF APPL IS DOWN [Y] UP WHEN THRESHOLD EXCEEDED {Y/N) [Y] 
QUEUE THRESHOLD TO UP APPL O] ON IN ONE OUT (Y/N) [NJ 
ROLL OUT CRITERIA (MINUTES) O] IDLE DOWN TIMEOUT (MINUTES): [ 5] 
APPLICATION DOWN FORM INDEX O] DOWN ASSIGNED STN IF APP DOWN (Y/N) [NJ 
ALWAYS UPDATE CONTINUATOR (Y/N)[Y] SUPPRESS CONTINUATOR (Y/N) [NJ 
APPL TO APPL ALLOWED (Y/N) [NJ PRIVILEGED APPLICATION (Y/N) [NJ 
HEADER TYPE [GEMCOS] ASSIGN NOTIFY (Y/N) [NJ 
COMM TYPE (STOQ,CRCR,PORT) [CRCR] AC RESPONSE SEPARATE PATH (Y/N) [NJ 
STOQUE OPTNS: QUEUE LIMIT [ OJ SND CRCR WAKEUP (Y/N) [NJ CLR QUEUE (Y/N) [NJ 

MCP CONTROL COMMANDS [ ] 
(VALUE, INSERT, FILE, [ ] 
PRIORITY, ETC.) [ ] 

Figure 33-1. Declaring VFUGEN to VCS 

Creating a VCS Transaction for VFUGEN 

33-2 

Use the TRAN-ADD transaction to create a VCS transaction for initiating VFUGEN. You 
can choose any name you like for the transaction; this example uses VFUGEN-27. The 
TRAN-ADD transaction would be the following: 

/TRAN-ADD,VFUGEN-27 

For more information on the TRAN-ADD transaction, consult the V Series VCS 
Implementation Reference Manual Volume 2: System Transactions. 

When you enter the TRAN-ADD transaction, VCS displays the Transaction screen. Figure 
33-2 shows the values that should be entered in this screen. Use your own values where 

4127 0000-100 



VFUGEN-Vertical Format Unit File Builder 

asterisks (****) are shown. For details, consult the V Series VCS Implementation 
Reference Manual Volume 1: Entities and Screens. 

ADD TRAN 
ACTION: 

104 14:54:40 ON 01/21/94 VCS NC FACILITY 
] 

USERCODE: BENSON VERSION: VCS27I ON MPV027 FORM: 50 

TRANSACTION NAME [VFUGEN-27 ] SECURITY GROUP NAME [****] 
ROUTING: APPLICATION (A), APPLICATION GROUP (AG), COMM. PROC. (CP), [A] 

APPLICATION CONTROLLER (AC) OR NETWORK CONTROLLER (NC) 
SPECIAL ROUTING (LO = LOGON, LK = LINK, CL = CLEAR) [LO] 
APPL/APPL GROUP NAME [VFUGEN-27 

BOJ STATUS (UP, DOWN) [ UP] 
AUDIT (YES,NO) [ NJ 
APPL-LINK WELCOME FORM NUMBER [ OJ 
TRANSACTION TYPE 

(NDL,ITBR,CHAIN,GEMCOS) [ITBR] 
BREAKOUT NOTIFY (YES,NO) [ NJ 
PRIORITY (IF TYPE = CHAIN) [ OJ 
PARSING LENGTH [ OJ 
HOST FOR ROUTING [ 

(VALID ONLY FOR ROUTING TYPE OF AC OR NC) 

DCS TRAN CODE 
I/O MODE (FULL,PART) 

TRANSACTION TIMEOUT (SECS) 
TEST MODE (YES,NO) 
INITIATOR BYPASS FORM INDEX 
CHAIN NUMBER 
PARSE START OFFSET 

Figure 33-2. Creating a VCS Transaction for VFUGEN 

Initiating VFUGEN from CANOE 

[ OJ 
[FULL] 
[999] 
[ NJ 
[ ] 

[ O] 
[ OJ 

You can initiate VFUGEN from the CANDE EDITOR if you are using version of CANDE 
and the CANDE EDITOR that support the SYSTEM command. This version of CANDE is 
commonly called OLD-CANDE. 

From the CANDE EDITOR, use the following command: 

SYS VFUGEN 

Note: VFUGEN cannot be initiated from the CANDE Editor if you are using a version 
of CANDE (NEW-CANDE) that runs under VCS. If you are using this version of 
CANDE, initiate VFUGEN directly from VCS. 

Initiating VFUGEN from the ODT or OCS 

If you are at the operator display terminal (ODT) or operator control station (OCS), you 
can initiate VFUGEN with the following command, where ccu is the channel number and 
unit number of the ODT or OCS. Note that there is no slash between the channel number 
and unit number. 

EX VFUGEN (<ccu>) 

For example, the following command would initiate VFUGEN on an ODT or OCS that is 
unit 0 on channel 27: 

EX VFUGEN (270) 

4127 0000-100 33-3 



VFUGEN-Vertical Format Unit File Builder 

Operating VFUGEN 
All of the VFUGEN screens have the same basic format. 

• At the top of each screen is the following: 

The title of the screen 

A field labeled "Action" 

A list of actions you can put in the "Action" field. The capitalized letters show 
how you can abbreviate the command. 

• The body of the screen has fields for you to enter your choices. 

• Error messages are displayed at the bottom of the screen. 

The actions that you can put in the Action field are described in Table 33-1. Note that not 
every action can be used in every screen. 

Table 33-1. Actions for VFUGEN Screens 

Action Description 

ABort Terminates the VFUGEN utility immediately and returns you to the 
system environment. The work done during the VFUGEN session is lost. 

CHange Writes the text on the screen to the output file. Use this action to 
modify, add, or create a line. 

DELete Deletes a record from the output file. (A record is equivalent to a line.) 

End Terminates the VFUGEN utility and saves your input in the output file. If 
the medium you select for your output file is not available when you 
select End, you are given the opportunity to redirect the output to 
another medium. 

HEip Explains how to fill in the screen. 

HOme Returns you to the Master Selection Menu. 

NExt Displays the next screen with additional information, or a fresh screen. 

PREvious Displays the previous screen. If there was no preceding screen, the 
current screen is redisplayed. 

REFresh Redisplays the current screen, discarding any data that was changed 
since the original display. 

Welcome Screen 

The Welcome screen is the first screen displayed. 

Press the Xmit key to display the File Specification Screen. 

33-4 4127 0000-100 



VFUGEN-Vertical Format Unit File Builder 

Unisys Corporation 

Vertical Format Unit Builder 

Please set your terminal to upper case only, no scrolling. 
Either set terminal to full screen transmit or home the cursor before 
transmitting. 
All data should be in upper case (except filenames where appropriate). 

Hit XMT to continue [ ] 

Figure 33-3. VFUGEN Welcome Screen 

File Specification Screen 

The File Specification screen is the second screen displayed. It lets you select the EVF 
files that you want to work with. 

Input File 

File Specification Screen 
Action: [ ] 

HElp REFresh ABort 

Input File 
File Id: 

Output File 
File Id: 

] ON 

ON 

For disk/pack, use <filename> on <familyname>, 
If output file not specified, input file is default 
output file. 

Figure 33-4. VFUGEN File Specification Screen 

VFUGEN 

] 

] 

If you provide the name of an input file, VFUGEN reads that file and displays the records it 
contains. 

If the input file is on disk, enter the file name only. If the input file is on diskpack, enter 
the diskpack family name in the ON field. 

If you are creating a new EVF file from scratch, do not enter an input file name. 

Output File 

The output file is the EVF file you are creating. 

If the output file is to be on disk, enter the file name only. If the input file is to be on 
diskpack, enter the diskpack family name in the ON field. 

4127 0000-100 33-5 



VFUGEN-Vertical Format Unit File Builder 

If you enter an input file name but do not enter an output file name, the input file name is 
used for the output file. 

If the medium ( diskpack family or disk) you select for the output file is not available when 
you select End, the Redirect Output Screen is displayed so that you can select a different 
medium. 

Redirect Output Screen 

If the medium (diskpack family or disk) you select for the output file is not available when 
you select End, the Redirect Output screen is displayed so that you can select a different 
medium. 

If the output file is to be on disk, enter the file name only. If the input file is to be on 
diskpack, enter the diskpack family name in the ON field. 

You can also use this screen to change the name of the output file. If you leave the File Id 
field blank, VFUGEN uses the name you put in the File Specification Screen. 

Redirect Output Screen VFUGEN 
Action: [ ] 

HElp REFresh ABort 

Output File 
File Id: ON [ 

For disk/pack, use <filename> on <familyname> 

Figure 33-5. VFUGEN Redirect Output Screen 

Master Selection Menu 

33-6 

The Master Selection screen is the main menu of the VFUGEN utility. It displays after you 
successfully specify the name and medium of the output file and, if applicable, the input 
file. 

Choice 1 displays the Change Line/Channel Screen so that you can electronically punch a 
channel for a specific line. 

Choice 2 displays the Delete Line Screen so that you delete a line from the output file. 

Choice 3 prints the output file to a print file. This printer backup file contains the entire 
electronic vertical forms (EVF) file. When you end your VFUGEN session, the printer 
backup file ID is displayed. 

To make a choice, type the corresponding number in the Selection Number field and press 
the Xmit key. 

4127 0000-100 



VFUGEN-Vertical Format Unit File Builder 

Master Selection Menu (home screen) 
Action: [ ] 

t HElp REFresh End ABort 

Commands: 
(1) Change (Add, modify or create) 
(2) Delete Line 
(3) Print File 

Selection Number: [ ] 

VFUGEN 

Figure 33-6. VFUGEN Master Selection Menu Screen 

Change Line/Channel Screen 

The Change Line/Channel screen allows you to electronically punch a channel for a 
specific line. 

Change Line{Channel Screen VFUGEN 
Action: [CHange 

HElp HOme REFresh ABort PREvious NExt CHange 

Total form length [ ] lines (max valid value is 144) 
e.g. 18 inch form at 8 lpi 

LINE 
NUMBER CHANNELS 

2 3 4 5 6 7 8 9 10 11 12 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 

Figure 33-7. VFUGEN Change Line/Channel Screen 

If you need more columns or a fresh screen, use the NExt action. 

To punch any channels on any lines, do the following: 

1. Put a value in the Total form length field. This value is required. The maximum is 144 
lines. 

2. Enter the line number in the LINE NUMBER field. 

3. Enter any character in the input field corresponding to the channel you want to punch. 

4127 0000-100 33-7 



VFUGEN-Vertical Format Unit File Builder 

33-8 

4. Continue adding line numbers and marking channels until you are finished punching. 
If you need more lines, type CHange in the Action field and press the Xmit key. 

5. When you are finished punching, type CHange in the Action field and press the Xmit 
key. 

If you need to delete a line and its channel punches, use the Delete Line screen. Blanking 
out the line number and the punches does not delete the line from the output file. 

Duplicate line numbers are not allowed. 

Zero is not a valid line number. 

Each line for which you enter a line number must have at least one channel punched. 

The maximum number of lines that can be punched is 62. The highest line number used 
must not be higher than the Total Form Length specified. 

Channel 1 is used exclusively to define Top of Form. Line 1 is reserved for a channel 1 
punch only; therefore you cannot punch on line 1. (This is a printer limitation.) 

Channels 2 through 11 do not have any special requirements, and may be punched in any 
combination. 

Channel 12 is used for bottom-of-form sensing. One line must have channel 12 punched. 
This line must be the last line, and can have no other channels punched. The line number 
of this line must be less than the value used for Total Form Length. 

4127 0000-100 



VFUGEN-Vertical Format Unit File Builder 

Delete Line Screen 

Use the Delete Line screen to delete a line from the output EVF file or to change the total 
form length. 

To delete a line, put any character in the field at the left of the line, and press the Xmit 
key. 

Delete Line Screen VFUGEN 
Action: [DElete ] 

Total 

[ ] 

H 
H 
[ ] 
[ ] 
[ ] 
[ ] 
[ ] 

4127 0000-100 

HElp Home RE Fresh ABort PREvious NExt CHange 

form length: 

LINE 
NUMBER 

2 

xxx 

CHANNELS 

3 4 5 6 7 8 9 

<If the file is not empty, lines and 
channel punches will be displayed.> 

10 11 

Figure 33-8. VFUGEN Delete Line Screen 

12 

33-9 



VFUGEN-Vertical Format Unit File Builder 

33-10 4127 0000-100 



Section 34 
TRKTAP-TRAK to Tape Program 

Overview 
The TRKTAP program allows you to collect data that is output by the TRAK diagnostic 
facility. It frees you from the 999 KD size limit of the TRAK buffer in system memory by 
transferring the TRAK data to tape. 

The TRKTAP program also creates reports based on the collected TRAK data. You can 
select the TRAK data to be reported on, and the format of the reports printed. 

Other than data collection to tape and report generation, the operation and use of TRAK 
are not affected by the TRKTAP program. 

Buffer Management 
There are three buffer limits involved with TRKTAP: 

• TRKTAP maximum buffer size. This is the maximum size of each of the two buffers 
that are used to collect TRAK data for transfer to the TRKTAP program. You can set 
the TRKTAP maximum buffer size when you initiate TRKTAP. The range is 20 KD 
through 466 KD. The default is 100 KD. 

• TRKTAP buffer trigger point. The TRAK facility puts data into the TRKTAP buffer. 
When the amount of data in the current TRKTAP buffer reaches the trigger point, the 
MCP transfers the current buffer to the TRKTAP program. The proper adjustment of 
the trigger point will ensure that the MCP always transfers the buffer before the buffer 
overflows. 

You can set the TRKTAP buffer trigger point when you initiate TRKTAP. The default 
size is 50 KD. 

• LIMIT TRAKBUFFER. The TRAKBUFFER LIMIT is the size of the TRAK buffer in 
system memory. It is set by the LIMIT TRAKBUFFER record in the system 
configuration file and by the ALTER TRAKBUFFER system command. The maximum 
is 999 KD. The default is 20 KD. The setting can be displayed with the SHOW TRAK 
system command. 

It is recommended that the LIMIT TRAKBUFFER value be at least twice the TRKTAP 
buffer size. 

The TRAK buffer in system memory is a circular buffer, and when the buffer becomes 
filled, new data begins overwriting existing data. The intent of the TRKTAP program is 
intended to prevent this loss of data. If newer TRAK data overwrites earlier TRAK data 

4127 0000-100 34-1 



TRKTAP-TRAK to Tape Program 

before the data can be transfened to tape, a missing data warning message is displayed. 
Reports can still be generated if there is missing data, but if three overwrites occur in 
succession, then the TRKTAP utility waits for an AX command before continuing. 

If the missing data warning message occurs, investigate the following possibilities: 

• The TRKTAP program might be running at too low a priority on a processor-bound 
machine. It is recommended that the TRKTAP program execute at priority 9. 

• The TRAK buffer in memory is not laxge enough, and should be increased by 
increasing the LIMIT TRAKBUFFER value. 

• The TRKTAP buffer trigger point and the TRKTAP maximum buffer size are too small. 
They should be adjusted to accommodate the tape device used. 

• TRKTAP expects a scratch tape to be mounted and ready when it switches reels. If 
the TRKTAP buffer fills before reel switching can be done, data can be lost. Be sure 
that a scratch tape is available at reel switch time. 

Operating Instructions 

34-2 

1. If appropriate, use the ALTER TRAKBUFFER command to change the size of the 
TRAK buffer in system memory. Note that the TRAK option must be reset to use the 
ALTER TRAKBUFFER command. You can use the TO TRAK command to check the 
status of the TRAK option, and the RO TRAK command to reset the TRAK option. 

2. Be sure the TRAK option is set. You can use the TO TRAK command to display the 
status of the TRAK option. If the TRAK option is not set, use the SO TRAK command 
to set it. If the TRAK option is not set when the TRKT AP program initiates, then the 
TRKTAP program waits. 

You can use the BT command to initiate a TRAK session before you initiate the 
TRKTAP program. When you initiate the TRKTAP program, the TRAK data will be 
directed to tape. 

3. Initiate the TRKTAP program, using the EXECUTE command with parameters. The 
syntax is as follows: 

- EXECUTE - TRKTAP - (,~---~ ~--~
L "Y" J 

"GET" 

"PRINT" 

"BOTH" 

"Y" 

"GET" 
"PRINT" 
"BOTH" 

L "N" _J 

This selects the data collection function. This is the default. Note 
that the leading comma is required. 

This selects the report preparation function. TRKTAP will display 
options for selection of TRAK data and formatting of reports. 

This selects both the data collection and report preparation functions. 

This selects the default sizes for the TRKTAP buffer size and the 
TRKT AP buffer trigger point. This is the default. 

4127 0000-100 



TRKTAP-TRAK to Tape Program 

"N" This requests special settings for the TRKTAP buffer size and the 
TRKTAP buffer trigger point. The TRKTAP program will prompt you 
for the values you want to use. 

4. Use the BT (Begin TRAK) command to select a set of TRAK calls and cause the TRAK 
facility to begin tracking those calls. (If a TRAK session is already active, this step is 
optional.) 

5. Use the ET (End TRAK) command when you are ready to terminate the TRAK session. 
TRKTAP will receive all the TRAK data and then will be notified that the TRAK 
session has terminated. At this point TRKTAP closes its tape file and terminates. 

You can terminate TRKTAP without terminating the TRAK session by using the 
following command: 

<mix number of TRKTAP> QT 

6. If you have terminated the TRAK session, you can use the RO TRAK command to 
return to the system the memory used by the TRAK module. 

Examples 

EX TRKTAP (,"GET","Y") 

This is equivalent to EX TRKTAP. The result is that TRKTAP will open an output 
tape and wait for TRAK data. 

EX TRKTAP (,"BOTH") 

TRKTAP will open an output tape and wait for TRAK data. When TRAK data 
collection is terminated, TRKTAP will re-open the tape as an input file and 
prepare reports. 

Printing with TRKTAP 
After you run TRKTAP and create a tape file containing collected TRAK entries, you can 
use TRKTAP to format and print a report based on the collected data. If you have created 
multiple tape files, the report can begin with any of these tapes. There are options for 
selecting and formatting the TRAK entries. 

Instructions for Operating the TRKTAP Printing Functions 

Follow this procedure to create reports from collected TRKTAP data: 

1. To print in TRKTAP, use the EXECUTE command to initiate TRKTAP with the 
parameter PRINT: 

EX TRKTAP (,"PRINT") 

The TRKTAP program starts, opens a tape file, and prompts for further input: 

"ENTER OPTIONS, HELP OR END. 

4127 0000-100 34-3 



TRKTAP-TRAK to Tape Program 

2. You use the AX command to enter the options you want. You can make one or more 
selections in a single AX command. You can select a total of one start time, one stop 
time, one date, 14 operating system modules, 20 TRAK codes, one I/O channel, and 
one task number. 

3. When you are finished selecting options, use the AX command to enter the word END, 
as follows: 

<mix number>AX "END" 

This terminates your input and starts TRKTAP formatting and printing your data. 

You can also include the word END with other options, as shown: 

<mix number>AX "ALLF END" 

In this case TRKTAP begins formatting and printing as soon as you have answered all 
of the prompts. 

Selecting TRKTAP Printing Options 

34-4 

Use the following command to see a list of options: 

<mix number>AX "HELP" 

The HELP display is shown as follows. 

"ALL[F] 
"CLEAR 
"HELP 
"END 
II II 

"HEAD[NF] 
"Q[l/2] 
"DATA 
"STACK [B /P] 
"IOM[D/Q] 
II II 

"TIME 
"DATE 
"MODULE 
"CODE 
"CHAN 
"TASK 

- SET ALL PRINT OPTIONS [USE FORMAT HEADINGS]" 
- CLEAR OPTIONS" 
- THIS DISPLAY" 
- END OPTION INPUT" 

- PRINT AND FORMAT HEADER [NO HEADING FORMAT]" 
- PRINT AND FORMAT Ql AND Q2 INFO" 
- PRINT USER DATA - NO FORMAT HEADINGS" 
- PRINT STACK BACK AND STACK PARMS" 
- PRINT AND FORMAT DEVICE TBL AND SYS Q'S" 

- SELECT TIME" 
- SELECT DATE" 
- SELECT MODULE" 
- SELECT CODE" 
- SELECT SYS Q ELEMENT CHANNEL" 
- SELECT TASK" 

The words in the left-hand column are the commands you use to get the results shown in 
the right-hand column. The portions in brackets are optional. For example, to print and 
format the header, if TRKTAP is executing as mix number 22, enter the following: 

22 AX "HEAD" 

To print the header without formatting, enter the following: 

22 AX "HEADNF" 

4127 0000-100 



TRKTAP-TRAK to Tape Program 

The TRKTAP options are discussed below, in groups as they appear on the HELP listing. 
More discussion is included under the BT command in the V Series Systems Software 
Operations Guide Volume 2: System Commands. 

TRKTAP Print Options-First Group 

The first group of options affects the operation of the TRKTAP printing function. 

Option 

AL UFJ 

CLEAR 

HELP 

END 

Table 34-1. TRKTAP Print Options-First Group 

Description 

ALL and ALLF print all available reports, and are equivalent to selecting all of 
the options in the second grouping. ALLF prints formatted data similar to a 
DMPANL listing, with format headings that give the field acronyms for the TRAK 
data. ALL prints unformatted data without the headings. 

You must either select ALL or ALLF, or else select one or more of the options 
in the second grouping. 

This clears any options that you have already set. 

This repeats the display of options. 

This must be entered when you are finished selecting options. 

TRKTAP Print Options-Second Group 

The second group of options selects portions of the TRAK entries to be printed. You must 
either select one of these options or else select ALL or ALLF. 

Option 

HEAD[NFJ 

Q[l/2] 

DATA 

STACK[B/Pl 

IOM[D/Ql 

4127 0000-100 

Table 34-2. TRKTAP Print Options-Second Group 

Description 

Each TRAK entry has a TRAK header. HEAD prints these TRAK headers. 
HEADNF prints the headers without formatting. 

QI prints the input/output queue elements to be initiated. Q2 prints the 1/0 
queue elements that have completed. Q prints both kinds of 1/0 queue 
elements. 

This prints user data. User data includes various kind of data collected for the 
different TRAK entries. This data is printed without format headings. 

STACKB prints stack traceback data. STACKP prints stack parameters. 
STACK prints both kinds of stack data. 

IOMD prints the device table. IOMQ prints the system queues. IOM prints both 
types of Input/Output module data. The output is similar to the output from 
DMPANL. Selecting DATA or ALL outputs the same 1/0 module user data 
without headings, but also outputs user data from other modules. 

34-5 



TRKTAP-TRAK to Tape Program 

34-6 

TRKTAP Print Options-Third Group 

The options in the third group select the TRAK entries to be printed. For each of these 
options that you select, an additional menu displays, prompting you for further input. 

Option 

TIME 

DATE 

MODULE 

CODE 

CHAN 

Table 34-3. TRKTAP Print Options-Third Group 

Description 

This selects TRAK entries by time. It produces the following prompts: 

"ENTER START TIME (LENGTH ll=MICRO, B=MILL, 5=SEC) OR O" 
"ENTER STOP TIME (LENGTH ll=MICRO, B=MILL, 5=SEC) OR H" 

Each line displays and the TRKTAP program waits for your input. Use AX 
commands to enter the START time and STOP time as microseconds past 
midnight (11 digits), milliseconds past midnight (8 digits) or seconds past 
midnight (5 digits). Enter 0 (zero) for the START time to start from the 
beginning of the file. Enter H for the STOP time to end with the end of the file. 

This selects TRAK entries by date. It produces the following prompt: 

"ENTER DATE (YYYYMMDD)" 

Use an AX command to enter the date. For example, January 30, 1995 would 
be 19950130. 

This selects TRAK entries contained within one or more operating system 
modules. It produces the following prompt: 

"ENTER MODULES, CLR (TO CLR TBL), OR END - VALID MODS: " 
"IOM MES DCP VCS NCP PRT NWK JMR DCU RJE STQ MBX CWT ISC SCA " 

Use AX commands to select up to a maximum of 14 modules. 

The module names are listed on the second line of the prompt. For 
explanations, refer to the BT command in the V Series Systems Operations 
Guide Volume 2: System Commands. 

This selects TRAK entries by four-digit code. It produces the following prompt: 

"ENTER CODES, CLR (TO CLR TBL), OR END" 

Use AX commands to enter up to 20 TRAK codes. 

The TRAK codes and interpretations are printed out by DMPANL in its analysis 
of the TRAK buffer. 

This selects 1/0 queue elements associated with a particular channel. It 
produces the following prompt: 

"ENTER SYS Q CHANNEL (NN) OR ALL" 

Use an AX commands to enter a two-digit channel number, or ALL for all 
channels. 

continued 

4127 0000-100 



TRKTAP-TRAK to Tape Program 

Option 

TASK 

Example 1 

Table 34-3. TRKTAP Print Options-Third Group (cont.) 

Description 

This selects TRAK entries that relate to a particular task. It produces the 
following prompt: 

"ENTER TASK (NNNN)" 

Use an AX command to enter a four-digit task number. 

EX TRKTAP (,"PRINT");AX"ALLF END" 

This prints all entries, using formatting similar to DMP ANL 

Example 2 

EX TRKTAP (,"PRINT");AX"HEADNF DATA CODE TIME CHAN END" 

This prints headings without a format line, and prints user data for the selected TRAK 
entries. You select the TRAK entries by using the prompts for CODE, TIME, and 
CHAN. These prompts, and example responses, are shown below, in the order in 
which TRKTAP presents them. 

Prompt 

"ENTER SYS Q CHANNEL (NN) OR ALL" 

Sample Response 

<mix number>AX"04" 

Result 

System queue user data is printed only if it is from channel 4. 

Prompt 

"ENTER START TIME (LENGTH ll=MICRO, B=MILL, 5=SEC) OR O" 

Sample Response 

<mix number>AX"28800" 

Result 

TRAK entries after 8:00 a.m. are selected for printing. 

4127 0000-100 34-7 



TRKTAP-TRAK to Tape Program 

34-8 

Prompt 

"ENTER STOP TIME (LENGTH ll=MICRO, B=MILL, 5=SEC) OR H" 

Sample Response 

<mix number>AS"28860" 

Result 

TRAK entries before 8:01 a.m. are selected for printing. 

Prompt 

"ENTER CODES, CLR (TO CLEAR TBL), OR END" 

Sample Response 

<mix number>AX"9910 END" 

Result 

TRAK code 9910, "I/O Complete (PIQed)," is selected for printing. 

The result of this example is that TRKTAP prints user data and headers for I/O 
completes on channel 04 from 8:00 a.m. to 8:01 a.m. 

Example 3 

EX TRKTAP (,"PRINT");AX"HEAD MOD END" 

This prints headings with a format line for the selected TRAK entries. You select 
the TRAK entries by responding to the prompt for MOD. The prompts and a 
sample response follow: 

Prompts 

"ENTER MODULES, CLR (TO CLEAR TBL), OR END - VALID MODS: " 
IOM MES DCP VCS NCP PRT NWK JMR DCU RJE STQ MBX CWT ISC SCA " 

Sample Response 

<mix number>AX"PRT END" 

4127 0000-100 



TRKTAP-TRAK to Tape Program 

Result 

This selects TRAK entries from the PORT module of the operating system. All 
TRAK entries from the PORT module are selected for printing. 

Selecting Options with Switch Settings 

You can use programmatic switches to set TRKTAP printing options without entering AX 
commands. The values are bit coded so that a single switch can be used for multiple 
options. You will still be prompted for relevant values. 

Table 34-4. TRKTAP Programmatic Switches for Printing Options 

Digit Meaning or Values 

0 Change options after printing has begun. 

I I = Print header 
2 = Print user data 

2 I = Print stack parameters 
2 = Print stack traceback data 

3 I = Print 1/0 operations to be initiated (QI) 
2 = Print 1/0 operations completed (Q2) 

4 Formatting options: 
I = Print headings with the system queues 
2 = Print headings with the device table 
4 = Print headings with the TRAK headers 
8 = Print headings with the Input/Output queues (Ql/Q2) 

5 I = Prompt for selection by time 
2 = Prompt for selection by date 

6 I = Prompt for TRAK code 
2 = Prompt for operating system module 
4 = Prompt for 1/0 channel 
8 = Prompt for task number 

7 (Reserved for debugging use) 

Examples 

The following two examples produce the same results: 

EX TRKTAP (01004020,"PRINT") 

EX TRKTAP (,"PRINT");AX"HEAD MOD END" 

The following two examples produce the same results: 

EX TRKTAP (03000150,"PRINT") 

EX TRKTAP (,"PRINT");AX"HEADNF DATA CODE TIME CHAN END") 

4127 0000-100 34-9 



TRKTAP-TRAK to Tape Program 

34-10 4127 0000-100 



Section 35 
TAPDIR-Tape Directory Report 
Program 

Overview 
The TAPDIR program analyzes tapes produced by the following utilities: 

• SYSTEM/COPY 

• LOADMP 

• PACKUP 

The analysis includes a list of the files on each tape. The analysis is provided as a printer 
backup file. 

Operating Instructions 
Initiate the TAPDIR utility using the EXECUTE system command. The name of the tape to 
analyze is the first slash parameter, as follows: 

EXECUTE TAPDIR/<name of tape> 

Alternatively, initiate TAPDIR without a slash parameter. The system will request a tape. 
Use the IL system command to provide the channel and unit number of the tape drive. 
The IL system command is described in the V Series Systems Operations Guide 
Volume 2: System Commands. 

Output 
The TAPDIR program produces a printer backup file with the internal file name FILE and 
the external file name TAPDIR. The listing includes the following information: 

• For the tape: 

4127 0000-100 

Date of TAPDIR execution 

The name of the program that produced the tape (SYSTEM/COPY, LOADMP, 
PACKUP) 

The name, serial number, reel number, and density of the tape analyzed, and the 
channel number and unit number on which it was mounted while TAPDIR was 
analyzing it 

35-1 



TAPDIR-Tape Directory Report Program 

35-2 

The date on which the tape was created, and its purge date 

• For each file on the tape: 

The name of the medium on which the file originated (for example, the disk or 
diskpack family name), and the type of medium on which it originated (for 
example, DISK or PACK). 

The title (name) of the file. This is the value of the FILENAME file attribute. 

The date and time at which the file was created. 

The type of file (COBOL, DATA, etc.). The letter [C] indicates that the file was 
created by the CANDE Editor. 

The record size, in bytes. 

The number of records per block. 

The maximum number of areas allowed for the file. This is the setting of the 
AREAS file attribute. 

The area size. This is the value of the AREALENGTH file attribute. 

The number of records in the file. 

The amount of memory required for executable program files. 

The usercode under which the file was created. 

The setting of the SECURITYTYPE file attribute. 

The setting of the SECURITYUSE file attribute. 

If SYSTEM/COPY created the tape and was given a command to transfer a file to the tape, 
but TAPDIR does not find the file on the tape, the TAPDIR listing will show the following 
message: 

FILE SKIPPED OR NOT PRESENT AT TIME OF TRANSFER 

The following circumstances can produce this condition: 

• The SYSTEM/COPY syntax included an EXCEPT phrase. 

• An attempt was made to copy a mirrored user file (USERFL). 

• The file was removed after the COPY command was entered but before the file was 
physically copied. 

File attributes are discussed in the V Series MCPIVS Programming Reference Manual. 
The SECURITYTYPE and SECURITYUSE file attributes and the use of usercodes are 
discussed in the V Series System Security Installation and Operations Reference 
Manual. 

Examples 

The following example initiates TAPDIR to analyze the directory of the tape named 
MYTAPE. 

EX TAPDIR/MYTAPE 

4127 0000-100 



TAPDIR-Tape Directory Report Program 

The following example shows the use of the IL command. If you do not specify a tape 
when you initiate TAPDIR, TAPDIR opens an input tape with the internal file name 
TAPEIN and the external file name TAPEIN/. You can then use the IL command to direct 
TAPDIR to the desired tape name or tape drive. 

In this example, TAPDIR enters the schedule under mix number 027. It begins executing 
at 8:34 a.m. TAPDIR waits on a NO FILE condition, waiting for the file TAPEIN/. The IL 
command directs TAPDIR to the tape that is mounted on the tape drive at channel 6, 
unit 1. 

EX TAPDIR 

==> EX TAPDIR 
TAPDIR=027 SCHED 
BOJ TAPDIR=027 032394 08:34 
** NO FILE TAPEIN/ MTP RL# 001 TAPDIR=027 

27 IL 6/1 

==> 27 IL 6/1 

4127 0000-100 35-3 



TAPDIR-Tape Directory Report Program 

35-4 4127 0000-100 



Section 36 
DPKANL-Diskpack Analysis 
Program 

Overview 
The DPKANL program has evolved as the primary diagnostic tool used by Unisys 
personnel for validating and investigating problems with diskpack structures. 

Cautions 
1. The DPKANL program is provided solely as a diagnostic aid. It should be 

used only in extreme cases under the supervision of Unisys support 
personnel. Great caution should be exercised in its use. 

2. This program has the ability to patch diskpack sectors and therefore may 
pose a risk to the integrity of your data and of the diskpack structures. 

3. This program has the ability to display data directly from diskpack sectors 
and therefore may pose a security risk. 

Initiating DPKANL 
Initiate DPKANL with the EXECUTE command. Include an INSERT command that 
encodes the functions desired, as listed in Table 36-1. 

If you do not include the INSERT command with the EXECUTE command, DPKANL 
displays a list of its functions and an ACCEPT message. Perform a <mix number> IN 
command to provide the information and a <mix number> AX command to proceed, as 
shown in the second example at the end of this section. 

An INSERT command includes a data string known as the INSERT string. The INSERT 
string for DPKANL is a five-digit string starting at address 0. It can contain digits (0-9) 
and/or undigits (A-F). You construct the insert string from the bit meanings given in 
Table 36-1. 

For example, to request that DPKANL print the master available table, you would enter 
the following: 

EXECUTE DPKANL; INSERT 0 5 UN 40200 

4127 0000-100 36-1 



DPKANL-Diskpack Analysis Program 

36-2 

When DPKANL starts, it requests the channel number/unit number of the diskpack you 
want to work with. Enter this information with an AX command, using the format 
<channel number>l<unit number>, including the slash. 

The first action DPKANL takes is to perform an 01 command to ensure that the device is a 
diskpack. Then the diskpack is saved, because Direct I/O is used for all reads and writes. 
The pack remains saved when DPKANL completes. 

In general, DPKANL detects and displays read and write errors. 

Table 36-1 gives the meaning of each bit in each digit of the INSERT string. 

Table 36-1. DPKANL INSERT String Bit Values 

Digit: Bit Meaning 

0:8 Format and print the volume label. 

0:4 Format and print the master available table. 

0:2 Format and print the available table. 

0:1 Not used. 

1:8 Format and print the master available table and the available table. 

1:4 Format and print the full diskpack directory. 

1:2 Format and print a particular file header. 

When you request this function, DPKANL displays the following lines, and waits 
for your AX response after each line: 

ENTER DIRECTORY ADDRESS - 8 DIGITS 
ENTER DIRECTORY ENTRY NUMBER - 4 DIGITS 
ENTER FILE HEADER ADDRESS - 8 DIGITS 

When it receives all of your input, DPKANL reads the requested directory 
sector. It then outputs some information from the directory, and then reads, 
formats, and prints the file header. 

1:1 Print all file headers. 

For this function, DPKANL goes through the directory, following each file entry 
to its header. Each file header is then formatted and printed. 

2:8 Print all volume structures. 

This function formats and prints the following structures: 

• Label 

• Directory 

• Master available table 

• Available table 

continued 

4127 0000-100 



Digit: Bit 

2:4 

2:2 

2:1 

4127 0000-100 

DPKANL-Diskpack Analysis Program 

Table 36-1. DPKANL INSERT String Bit Values (cont.) 

Meaning 

Obtain a structure address through an ACCEPT. 

This function can be used in conjunction with any other function that requests 
a structure analysis. It allows you to input the structure address in situations 
where DPKANL cannot obtain the structure address from the diskpack itself. 
DPKANL issues an ACCEPT message, and then you enter the structure 
address with an AX command. 

For example, you might want to analyze the directory on a diskpack that has a 
smashed label. Since DPKANL cannot obtain the directory address from the 
diskpack label, you would include this request (2:4) along with the directory 
analysis request (1 :4). DPKANL requests the directory address and then 
proceeds with the analysis. 

Always set this bit. It indicates that the INSERT string is valid. If you do not 
set this bit, DPKANL ignores the INSERT string and again displays the list of 
functions and the ACCEPT message. 

Display and patch sectors. 

This is a basic implementation of the standard DISPLAY ABSOLUTE and PATCH 
ABSOLUTE commands as applied to diskpacks. It allows you to display and 
patch diskpack data by sector number and offset within the sector. 

When you request this function, you see the following ACCEPT display: 

DISPLAY <SECTOR> <OFFSET> <LENGTH> 
PATCH <SECTOR> <OFFSET> <LENGTH> <DATA> 
AX END TO QUIT 

Respond by entering the word DISPLAY or PATCH followed by the relevant 
data. This function loops until you enter the word END, so that you can do 
multiple displays or patches as needed. 

The <sector> is zero-relative. The <offset> and <length> are in digits. The 
<data> is UN (unsigned numeric digits). 

continued 

36-3 



DPKANL-Diskpack Analysis Program 

Table 36-1. DPKANL INSERT String Bit Values (cont.) 

Digit: Bit Meaning 

3:8 Search for headers. 

This function searches for sectors that resemble header structures (structures 
in which header self-pointer = this address). When one is found, DPKANL 
formats and prints it, and then continues the search. DPKANL keeps a count 
of the total number found, displaying the count at the end of the analysis. 

When you request this function, DPKANL displays the following lines, and waits 
for your AX response after each line: 

ENTER START ADDR OR END 
ENTER LENGTH OF SEARCH 

In response to the first line, enter the address (sector number) at which to 
begin the search. In response to the second line, enter the number of sectors 
to search. To abort the function, enter END in response to the first line. 

This function can be used in a situation where directory blocks are corrupted. 
Stranded headers can be located, and from that information, the directory 
sectors can be rebuilt manually. 

3:4 Print a file header. 

When you request this function, DPKANL displays the following line and waits 
for your AX response: 

ENTER FI LE ID 

DPKANL attempts to locate the file identifier in the directory and to obtain the 
file header address from the directory entry. It then formats and prints the file 
header. 

3:2 Search for directories. 

This function searches for groups of sectors that resemble directory 
structures (directory self-pointer = this address and directory-validity-flag = F). 
When such a group is found, DPKANL formats and prints the first five sectors, 
and then continues the search. It keeps a count of the total number found, 
displaying the count at the end of the analysis. 

When you request this function, DPKANL displays the following lines, and waits 
for your AX response after each line: 

ENTER START ADDR OR END 
ENTER LENGTH OF SEARCH 

In response to the first line, enter the address (sector number) at which to 
begin the search. In response to the second line, enter the number of sectors 
to search. To abort the function, enter END in response to the first line. 

This function can be used in a situation where directory linkages have been 
accidentally severed. Stranded entries can be located and relinked manually. 

continued 

36-4 4127 0000-100 



Digit: Bit 

3:1 

4:8 

4:4 

DPKANL-Diskpack Analysis Program 

Table 36-1. DPKANL INSERT String Bit Values (cont.) 

Meaning 

Search for partial directories. 

This function searches for individual sectors that resemble directory structures 
(directory self-pointer = this address and directory-validity-flag = F). When one 
is found, DPKANL displays its address, and then continues the search. 
DPKANL keeps a count of the total number found, displaying the count at the 
end of the analysis. 

When you request this function, DPKANL displays the following lines, and waits 
for your AX response after each line: 

ENTER START ADDR OR END 
ENTER LENGTH OF SEARCH 

In response to the first line, enter the address (sector number) at which to 
begin the search. In response to the second line, enter the number of sectors 
to search. To abort the function, enter END in response to the first line. 

This function differs from the previous function in that it can find directory 
fragments instead of assuming some coherency (five sectors) to the directory. 

Sector copy. 

This function copies sectors from the source address to the destination 
address. 

When you request this function, DPKANL displays the following message and 
waits for your AA response: 

COPY <SOURCE ADDR> <# SECTORS> <DESTINATION ADDR> 

In response, enter the word COPY followed by the necessary data. The 
<source addr> is the zero-relative sector at which to start copying. The 
<destination addr> is the zero-relative sector at which to start overwriting 
data. The <# sectors> is the length of data to copy, in sectors. 

Copying is done 5 sectors at a time (or less on the last 1/0) until the request is 
fulfilled. 

Search for bad headers. 

This function goes through the directory, following each file entry to its header, 
checking for the following: 

• A creation date that contains undigits 

• A header self-pointer not equal to the directory header address 

4127 0000-100 36-5 



DPKANL-Diskpack Analysis Program 

36-6 

Example 

The following example shows two ways of requesting an analysis of the volume structmes 
(label, directory, and available tables) of a diskpack on channel 54, unit 1. 

In the first example, the INSERT command is included with the EXECUTE command. 

EXECUTE DPKANL; INSERT 5 5 UN OOAOO 
DPKANL=029 SCHED 
BOJ DPKANL=029 081694 17:07 
DPKANL=029 ENTER CC/UU OF DEVICE TO ANALYZE. 

** DPKANL=029 ACCEPT 
==> 29 AX "54/01" 
==> SV 54/01 (Note that this SV was done by DPKANL.) 

54/1 DPK ID 151 SAVED 
@10613 DPKANL OPEN OUT DPKANL=029 
@10613 DPKANL 20/1 DPK ID 121 LOCKED DPKANL=029 
EOJ DPKANL=029 17:08 IN 00:46 CHG 00:01 

4127 0000-100 



DPKANL-Diskpack Analysis Program 

The second example makes the same request, but uses the prompts from DPKANL. 

==> EX DPKANL 
DPKANL=029 SCHED 
BOJ DPKANL=029 081694 17:07 
FIRST DIGIT 
BIT 8: PRINT THE VOLUME LABEL 

4: PRINT THE MASTER AVAILABLE TABLE. 
2: PRINT THE AVAILABLE TABLE. 
1: PRINT THE WORKING AVAILABLE TABLE. 

SECOND DIGIT. 
BIT 8: PRINT ALL AVAILABLE TABLES. 

4: PRINT THE FULL DIRECTORY. 
2: PRINT A FILE HEADER GIVEN ADDRESS 
1: PRINT ALL FILE HEADERS. 

THIRD DIGIT 
BIT 8: PRINT ALL VOLUME STRUCTURES 

4: OBTAIN STRUCTURE ADDRESSES VIA ACCEPT 
2: VALUE STATEMENT PROVIDED. 
1: FIX A SECTOR BY PATCHING 

FOURTH DIGIT 
BIT 8: LOOK FOR HEADERS 

4: PRINT A HEADER GIVEN FILE ID 
2: LOOK FOR DIRECTORIES 
1: LOOK FOR PARTIAL DIRECTORIES 

FIFTH DIGIT 
BIT 8: SECTOR COPY 
BIT 4: LOOK FOR BAD HEADERS 
'IN' REQUEST TO BASE AND 'AX' TO CONTINUE 

** DPKANL=029 ACCEPT 
==> 29 IN 0 5 OOAOO; 29 AX 

DPKANL=029 O= OOAOO 
DPKANL=029 ENTER CC/UU OF DEVICE TO ANALYZE. 

** DPKANL=029 ACCEPT 
==> 29 AX "54/01" 
==> SV 54 (Note that this SV was done by DPKANL, not by the operator.) 

54/1 DPK ID 151 SAVED 
@10614 DPKANL OPEN OUT DPKANL=029 
@10614 DPKANL 20/1 DPK ID 121 LOCKED DPKANL=029 
EOJ DPKANL=029 17:08 IN 00:46 CHG 00:01 

4127 0000-100 36-7 



DPKANL-Diskpack Analysis Program 

36-8 4127 0000-100 



Section 37 
SQUASH-Diskpack Squash Program 

Overview 
The SQUASH utility can reclaim space and improve performance on a diskpack by 
consolidating areas and reducing "checkerboarding." This consolidation is referred to as 
"squashing" the diskpack. SQUASH squashes a diskpack by moving the data and updating 
the table links, diskpack directory, and file headers. 

The SQUASH utility can also reconstruct some of the diskpack tables in the event of 
failure. The information in the "master available table" and the diskpack directory is used 
to reconstruct the working available table. Because the directory is the complement of 
the available table, this rebuilding of tables is called "complementing" the diskpack. 

V Series diskpack concepts are discussed in "Pack Subsystems" in the V Series Systems 
Operations Guide Volume 3: System Utilities. 

Recovery Tape 
You can request that the SQUASH utility create a recovery tape that contains the contents 
of the diskpack before carrying out a squash. This recovery tape can serve as a backup 
tape for the diskpack. 

If the squashing process fails, run SQUASH again by entering the SQP command again. 
SQUASH will read the recovery tape and, if possible, will complete the squash and recover 
the diskpack. 

You can create a recovery tape even if you do not need to squash the diskpack. The 
recovery tape can be used as a backup of the data on the diskpack. Use the VALUE 0 2 
syntax in the SQP command to create a recovery tape and compare it to the data on the 
pack. Use the VALUE 0 3 syntax to create the recovery tape and skip the comparison. 

The tape identifier of the recovery tape is constructed from the name and serial number of 
the diskpack. The tape identifier will be: 

<diskpack name>/<diskpack serial number> 

4127 0000-100 37-1 



SQUASH-Diskpack Squash Program 

Procedures before Executing SQUASH 
The following steps will help to ensure that the operation of SQUASH is safe and effective. 

Determine which Diskpacks Should Be Squashed 

To determine if a diskpack is a candidate for squashing, use the following command (see 
the V Series Systems Operations Guide Volume 2: System Commands for details): 

SHOW PACK <cc/u> A <n> 

This shows in tabular form the amount of checkerboarding present on a diskpack. 

If you never have programs waiting for space on a diskpack, then the diskpack might not 
need to be squashed. Even so, squashing the diskpack might speed up data access, since 
the data will be located physically closer together, resulting in decreased seek time. 

Check the Reliability of the Diskpacks 

Before you run the SQUASH utility on a diskpack or diskpack family, you should examine 
the Diskpack Exception Report and the Diskpack Volume Exception Condition Report to 
determine if the diskpack or diskpack family is encountering many errors. A diskpack 
that is encountering an abnormal number of errors during normal processing has a higher 
probability of encountering an error during a squash. In this case a squash of the diskpack 
is not recommended. Refer to the V Series System Software Logging Operations 
Reference Manual for information on the diskpack exception reports, the Maintenance 
Log, and the MLGOUT utility program. 

Make Backups 

Before you squash a diskpack, first back up the diskpack family. Then squash those 
diskpacks in the family that will benefit from a squash. 

Back up the family using whatever method you prefer, including: 

• The Disk Pack Copy Utility Program, PKCOPY, discussed in this manual 

• The File Transfer Utility Program, SYSTEM/COPY discussed in this manual 

• Making a SQUASH recovery tape for each diskpack in the family, using the procedures 
discussed in this section. 

37-2 4127 0000-100 

( 



SQUASH-Diskpack Squash Program 

Initiating SQUASH 
The SQUASH utility is invoked by the SQP system command. The complete syntax of the 
SQP command is described in the V Series Systems Operations Guide Volume 2: System 
Commands. 

The diskpack must not be in use when SQUASH is initiated. If any files are open on the 
designated diskpack when SQP is entered, the MCP will display the following message: 

** KBD IGNORED: UNIT IN USE 

No other programs can access the diskpack until SQUASH terminates. 

Allocating SQUASH Memory 

The speed at which data is moved from its old location to its new location is very much 
dependent on the amount of memory SQUASH is allowed to use. If no extra memory is 
supplied, then SQUASH uses its own internal buffer, which can contain a maximum of 30 
diskpack sectors. Including a MEM 999 clause in the SQP command assigns 999KD of 
memory to SQUASH, providing a buffer of approximately 2580 diskpack sectors in length. 
This can dramatically decrease the number of I/Os required to move the data on a 
diskpack. 

Keep in mind that not all I/Os are done at the maximum size. If a MEM 999 clause is used, 
the I/O size used is the minimum of 2580 sectors or that which is necessary to move a 
structure, whether it is a directory block (10 sectors), a file header (1-3 sectors) or a data 
area (1-9999999 sectors). 

Access to Diskpacks 
You should be aware that executing SQUASH limits the access that other programs have 
to a diskpack. 

Access to the Base Diskpack when Squashing a Continuation 
Diskpack 

For a diskpack family of version 2 or greater, the base diskpack contains all of the 
directory blocks and headers for all of the files on all of the diskpacks of the family. The 
continuation diskpacks do not contain any directories or file headers, just data areas. 
When the SQUASH utility is squashing a continuation diskpack, it needs to know what 
data is on the diskpack and where it resides. To obtain that information, the SQUASH 
utility needs exclusive access to the base diskpack of the family. For this reason, when a 
continuation diskpack is squashed, SQUASH uses both the continuation diskpack and the 
base diskpack, simultaneously. Therefore only one continuation diskpack in a family may 
be squashed at a time. 

4127 0000-100 37-3 



SQUASH-Diskpack Squash Program 

Squashing a Shared Diskpack 

Before you run SQUASH on a shared diskpack, reserve the diskpack on all systems except 
the one on which you will execute SQUASH. A diskpack can be reserved by using the 
UR+ system command. 

When you execute SQUASH on a shared diskpack, SQUASH displays the following 
message: 

THE AFFECTED PACK <cc/u> IS SHARED 
PLEASE RESERVE ALL PACKS IN FAM ON ALL OTHER SYSTEMS 
DO YOU WANT TO CONTINUE (ENTER YES OR NO)? 

Check to see that the diskpack has been reserved as needed. If you are ready to proceed, 
enter YES as follows: 

<mix number of SQUASH> AX YES 

If you enter <mix number of SQUASH> AX NO, then SQUASH terminates. 

Refer to the V Series Systems Operations Guide Volume 2: System Commands for details 
of the UR (fuhibit or Uninhibit Unit) command. Refer to the V Series Systems Operations 
Guide Volume 1: System Initialization for information on the RESERVED option of the 
PACK record of the system configuration file. 

Pre-allocating Directory Blocks for Safety 

37-4 

The most dangerous structure to move on a diskpack is a directory block Each directory 
block has a backward link to the block preceding it and a forward link to the block 
following it. This means that three directory blocks actually need to be updated for each 
block that is moved. The possibility of a diskpack being corrupted accidentally due to 1/0 
errors is greatly reduced if SQUASH does not have to move any directory blocks. 

To ensure that future executions of SQUASH do not have to move directory blocks, 
allocate enough contiguous directory blocks to hold the information for the maximum 
number of files that you expect to reside on the diskpack family. 

To allocate contiguous diskpack directory blocks, use the appropriate FILES syntax in the 
ALTER NEW PACK or ALTER FAMILY commands for diskpacks of version 2 or greater, or 
use the FILES syntax in the DISPKV command string for version I diskpacks. 

Note that when you use the FILES option of the ALTER NEW PACK command, the 
ALTER FAMILY command, or the DISPKV utility, all files on the diskpack are purged. 

4127 0000-100 



SQUASH-Diskpack Squash Program 

Using SQUASH to Recover from Diskpack Error 
Conditions 

Some diskpack problems can be fixed without loss of data by using the SQUASH utility 
and a recovery tape. These conditions are discussed under "Rebuilding Diskpack 
Structures" and "Recovering to a Different Spindle" below. More serious problems require 
using the ALTER command or the diskpack utility program, DISPKV. The DISPKV utility 
is discussed in this guide. The ALTER command is discussed in the V Series Systems 
Operations Guide Volume 2: System Commands. 

Rebuilding Diskpack Structures 

By rebuilding the "working available table," the SQUASH utility can perform a certain 
amount of recovery on a troubled diskpack. You can have SQUASH rebuild the "working 
available table" without squashing the diskpack by using the SQP command with the 
syntax VALUE 0 C or the syntax VALUE 0 F. 

If the diskpack label is unreadable, you can use SQUASH to rebuild the diskpack with a 
valid label. Use the SQP command with the syntax VALUE 0 E. 

Recovering to a Different Spindle 

If a physical diskpack spindle is defective, and you have a recovery tape for the diskpack, 
you might be able to recover the diskpack to another spindle. This can be done by using 
the SQP command with the syntax VALUE 0 E. This causes SQUASH to ignore the 
diskpack serial number when it rebuilds the diskpack. 

Caution 
Use only a spare (scratch, unneeded) diskpack to perform a recovery to a 
different spindle, because the data on the diskpack will be overwritten and the 
spindle will inherit the data and attributes of the spindle that was used to create 
the recovery tape. The spare pack must have a capacity at least as large as that 
of the spindle used to make the recovery tape. 

Interrupting SQUASH 

Caution 
Never use the DS command to stop the SQUASH utility. 

You can safely interrupt SQUASH during its operation. In this way you can do a partial 
squash, completing it as time permits. 

4127 0000-100 37-5 



SQUASH-Diskpack Squash Program 

To safely interrupt SQUASH dming operation, enter the following command: 

<mix number of SQUASH program> QT 

The command is safe to use at any time because it forces SQUASH to terminate the 
cmrent phase at its next logical break point and then go to end-of-job. If the command is 
entered dming the squash phase, SQUASH interrupts the squash phase at a logical break 
point and then proceeds through the complement phase before terminating. 

Entering the QT command during the loading of a recovery tape leaves the diskpack in a 
"tape recovery" state because the data has been only partially restored to the diskpack; in 
this state the diskpack cannot be made ready. In this case use the SQP command, which 
causes the diskpack to be automatically reloaded from the recovery tape so that squashing 
and recovery can complete. 

Monitoring the Squash Process 
SQUASH provides information on its process. It always reports on errors it encounters. 
By setting programmatic switches 1 and 4, you can get additional details. Switch 1 
produces an estimate of the percentage of squashing that has been completed. Switch 4 
initiates reporting on the stage of squash processing. 

Monitoring the Stage of Processing 

37-6 

The SQUASH utility goes through several phases to accomplish the squashing of the data 
on the diskpack. You can monitor the progress of the utility as it moves from phase to 
phase. There are two ways to accomplish this: 

• Set programmatic switch 4, at program address 4, to a value of 1 when initiating 
SQUASH. This can be accomplished by using the following syntax: 

SQP <cc/u>; IN 4 1 1 

• Set programmatic switch 4 to a value of 1 while the SQUASH program is executing. 
This is accomplished by using the following syntax: 

<mix number of SQUASH program> SW4 = 1 

Either of these methods of setting switch 4 results in messages being displayed on the 
OCS showing the progress of the SQUASH utility. 

SQUASH moves through the following phases: 

1. Analyzing the contents of the diskpack 

2. Creating or loading the recovery tape 

3. Comparing the recovery tape to the data on the diskpack 

4. Squashing the data on the diskpack 

5. Complementing the diskpack and building a "working available table" on the diskpack 

4127 0000-100 



I 

SQUASH-Diskpack Squash Program 

Messages for Stage of Processing 

The following messages are produced when programmatic switch 4 is set. These 
messages are for informative purposes only, to let you know when SQUASH moves from 
one phase to the next. 

During initial diskpack open: 

THIS IS A <pack type> PACK WITH BINARY ADDRESSING. 
THIS IS A <pack type> PACK WITH DECIMAL ADDRESSING. 
THIS IS A <pack type> BASE PACK WITH BINARY ADDRESSING. 
THIS IS A <pack type> BASE PACK WITH DECIMAL ADDRESSING. 

While the diskpack contents are being analyzed: 

ANALYSIS FILE TARGET ADDRESSES ASSIGNED. 
ANALYSIS DIRECTORY/HEADER RECORDS UPDATED. 
ANALYSIS FILE RECORDS UPDATED. 
ANALYSIS COMPLETE. 

While a recovery tape is being created: 

START OF TAPE DUMP. 
END OF TAPE DUMP. 

While the recovery tape's contents are compared to the diskpack: 

START OF PACK DATA COMPARE. 
END OF PACK DATA COMPARE. 

While the actual squash is being done: 

START OF SQUASH PHASE. 
END OF SQUASH PHASE. 
BASE PACK READS: <number of reads pelformed from base pack> 
BASE PACK WRITES: <number of writes perfom1ed to base pack> 
PACK READS: <number of reads performed> 
PACK WRITES: <number of writes pe1formed> 
DIRECTORY READS: <number of reads performed from pack directory> 

While the disk available table is being built: 

START OF COMPLEMENT PHASE. 
END OF COMPLEMENT ANALYSIS. 

When a bad 1/0 must be retried and eventually completes successfully: 

SUCCESSFUL RECOVERY. 

When a recovery tape is being loaded to the diskpack: 

START OF PACK LOAD. 
END OF TAPE LOAD. 

4127 0000-100 37-7 



SQUASH-Diskpack Squash Program 

Monitoring the Percentage of Processing 

When SQUASH is in the squash phase of processing, which is the most time-consuming 
phase, you can request an estimate of the percent of squash processing that is completed. 
Use the following syntax: 

<mix number of SQUASH program> SW 1 = 1 

This is a rough estimate because it is dependent on many factors including the amount of 
checkerboarding on the diskpack. The estimate becomes more accurate as the 
percentage completed increases. 

The estimate messages have the following form: 

SQUASH IS APPROXIMATELY nnn% COMPLETE 
ESTIMATED TIME TO COMPLETION IS hh:mm:ss (EOJ AT hh:mm) 

Errors during SQUASH Operation 
This section discusses errors that can occur while SQUASH is executing. 

Errors on a Diskpack of Version 2 or Greater 

If an error occurs on a base diskpack of version 2 or greater, the base diskpack must be 
recovered before squashing any continuation diskpacks in its family. The reason is that 
SQUASH uses the base diskpack when it squashes a continuation diskpack. 

If an error occurs on a continuation diskpack of version 2 or greater, the continuation 
diskpack must be recovered before squashing any other diskpacks in its family. The 
reason is that SQUASH updates structures on the base diskpack during recovery of the 
continuation diskpack. If another continuation diskpack were squashed, the structures on 
the base diskpack would change, which would endanger the information that SQUASH 
needs to recover the failed continuation pack. 

Error Display 

37-8 

If the SQUASH utility encounters an error during operation, it displays the following 
information: 

• The structure on which the error occurred (directory, available table, file header, file 
area, etc.) 

• The address and, if applicable, the file id on which the error occurred 

In most cases, if the squash cannot finish successfully the recovery flag in the diskpack 
label is cleared so that the diskpack can be made ready and recovery measures can be 
taken. 

4127 0000-100 



SQUASH-Diskpack Squash Program 

Errors Messages and Error Recovery 

This section is organized according to the type of error. Within an error type, the specific 
error messages, their meaning, and the recommended recovery actions are given. In 
general, the recommendations for recovery are listed in order from least severe to most 
severe. The recovery technique listed first should be tried first, if applicable. If that 
technique fails, try the technique listed second, and so on. 

Tape Recovery Errors 

RECOVERY TAPE IN INVALID FORMAT 
RECOVERY TAPE IS INVALID VERSION 

A recovery tape is in an invalid format or contains invalid data so it cannot be 
used to reload the diskpack. 

• Use another tape drive. 

• Use another recovery tape to reload the diskpack. 

RECOVERY TAPE IS NOT FOR THIS PACK 
RECOVERY TAPE IS NOT FOR THIS TYPE 

A recovery tape's header record does not match the label information and/or the 
physical diskpack type for the diskpack to which it is being reloaded, so it cannot 
be used to recover the diskpack. 

• Use another tape drive. 

• Use the same diskpack spindle that created the recovery tape. 

• Use a different recovery tape because the wrong recovery tape is being used 
to reload the diskpack. 

• If the correct recovery tape is being used for a diskpack, use the VALUE 0 = E 
option when executing the SQUASH utility to bypass the diskpack label 
validation when reloading the diskpack. 

COMPARISON ERROR ON RECOVERY TAPE 

The data contained on a recovery tape does not compare equally with the data on 
a diskpack. This error will only occur if a compare is done (a compare is done by 
default) when a recovery tape is created or loaded. 

• If a recovery tape was in the process of being created it will be purged. No 
data is lost on the diskpack and the diskpack can be made ready. If there are 
multiple recovery tape reels then the entire set is invalid and should be purged 
manually. Another attempt can be made to create a recovery tape. 

4127 0000-100 37-9 



SQUASH-Diskpack Squash Program 

37-10 

• If the diskpack was h1 the process of being reloaded, it is in a "tape recovery" 
state and cannot be made ready. The recovery options at this point are: 

Execute the SQUASH utility which will reload the diskpack from a 
recovery tape automatically. If this fails, try a different tape drive. 

If a tape compared successfully when it was created, then the data on it 
should be valid and the problem is probably caused by the diskpack. As a 
last resort, if the data on a tape must be accessed and there is an available 
diskpack spindle with equal or greater capacity than the diskpack spindle 
used to create the recovery tape, the data on the recovery tape can be 
loaded to it by executing the SQUASH utility with a VALUE 0 = E 
statement. Keep in mind that the diskpack will inherit the data and 
attributes of the structures on the recovery tape. So, for example, if the 
diskpack that the data is being loaded to has a larger capacity than that of 
the diskpack on the recovery tape, the available table that is loaded will 
not reflect the true capacity of the larger diskpack. If loading a recovery 
tape to a different diskpack spindle is successful, the problem is likely 
caused by the diskpack and diagnostics should be run against it to 
determine the nature of the problem. 

For a version 1 diskpack, rebuild the diskpack using the DISPKV utility. 
Then recovery measures, such as using SYSTEM/COPY, must be taken to 
reload the data to the diskpack or family. 

For a diskpack of version 2 or greater, rebuild the diskpack or family with 
either the ALTER NEW PACK, ALTER FAMILY PURGE, or ALTER 
FAMILY REBUILD commands. Recovery measures, such as using 
SYSTEM/COPY, must then be taken to reload the data to the diskpack or 
family. 

SEQUENCE ERROR ON RECOVERY TAPE 

In an attempt to reload a diskpack from a recovery tape, the data on the 
recovery tape was found to be in an improper sequence. 

• Use another tape drive. 

• If a diskpack can be made ready after this error occurs then another attempt 
can be made to reload it from a recovery tape or other recovery measures, 
such as using SYSTEM/COPY, can be taken to reload the data to the diskpack. 

• If the diskpack was in the process of being reloaded, it is in a "tape recovery" 
state and cannot be made ready. The recovery options at this point are: 

Execute the SQUASH utility which will reload the diskpack from a 
recovery tape automatically. If this fails, try a different tape drive. 

For a version 1 diskpack, rebuild the diskpack using the DISPKV utility. 
Recovery measures, such as using SYSTEM/COPY, must then be talrnn to 
reload the data to the diskpack or family. 

For a diskpack of version 2 or greater, rebuild the diskpack or family with 
either the ALTER NEW PACK, ALTER FAMILY PURGE, or ALTER 
FAMILY REBUILD commands. Recovery measures, such as using 

4127 0000-100 



SQUASH-Diskpack Squash Program 

SYSTEM/COPY, must then be taken to reload the data to the diskpack or 
family. 

Pack Errors when Reloading from a Tape 

BAD LABEL WRITE - SECTOR = <sector address> 
BAD MASTER AVAILABLE TABLE WRITE - SECTOR = <sector address> 
BAD AVAILABLE TABLE WRITE - SECTOR = <sector address> 
BAD DIRECTORY WRITE - SECTOR = <sector address> 
BAD HEADER WRITE - SECTOR = <sector address> 
BAD FILE AREA WRITE - SECTOR = <sector address> 
BAD WRITE - SECTOR = <sector address> 

Label Errors 

During a diskpack reload from a recovery tape, an error occurred on a diskpack 
structure. The diskpack will be in a "tape recovery" state and cannot be made 
ready. 

• A tape recovery can be forced by executing the SQUASH utility with a 
VALUE 0 = D statement. 

• If a tape compared successfully when it was created then the data on it 
should be valid and the problem is probably caused by the diskpack. As a last 
resort, if the data on a tape must be accessed and there is an available 
diskpack spindle with equal or greater capacity than the diskpack spindle 
used to create the recovery tape, the data on the recovery tape can be loaded 
to it by executing the SQUASH utility with a VALUE 0 = E statement. Keep in 
mind that the diskpack will inherit the data and attributes of the structures on 
the recovery tape. So, for example, if the diskpack that the data is being 
loaded to has a larger capacity than that of the diskpack on the recovery tape, 
the available table that is loaded will not reflect the true capacity of the larger 
diskpack. If loading a recovery tape to a different diskpack spindle is 
successful, the problem is likely caused by the diskpack and diagnostics 
should be run against it to determine the nature of the problem. 

• For a version 1 diskpack, rebuild the diskpack using the DISPKV utility. 
Recovery measures, such as using SYSTEM/COPY, must then be taken to 
reload the data to the diskpack or family. 

• For a diskpack of version 2 or greater, rebuild the diskpack using the ALTER 
NEW PACK, ALTER FAMILY PURGE, or ALTER FAMILY REBUILD 
commands. Recovery measures, such as using SYSTEM/COPY, must then be 
taken to reload the data to the diskpack or family. 

BAD LABEL READ 
BAD LABEL WRITE 
BAD OR INCOMPATIBLE BASE PACK LABEL (diskpacks of version 2 and greater only) 

4127 0000-100 

The diskpack label is invalid and the diskpack is in a "mid-squash" state so it 
cannot be made ready. 

37-11 



SQUASH-Diskpack Squash Program 

• Force a diskpack complement by executing the SQUASH utility with a 
VALUE 0 = C statement. 

• If a recovery tape exists, force a tape recovery by executing the SQUASH 
utility with a VALUE 0 = E statement, which bypasses the validation of the 
diskpack label. 

• For a version 1 diskpack, rebuild the diskpack using the DISPKV utility. 
Recovery measures, such as using SYSTEM/COPY, must then be taken to 
reload the data to the diskpack or family. 

• For a diskpack of version 2 or greater, rebuild the diskpack or family with 
either the ALTER NEW PACK, ALTER FAMILY PURGE, or ALTER FAMILY 
REBUILD commands. Recovery measures, such as using SYSTEM/COPY, 
must then be taken to reload the data to the diskpack or family. 

INVALID RECOVERY SPECIFICATION IN PACK LABEL 

An unknown value is contained in the recovery flag field in the diskpack label. 
This flag is used by the SQUASH utility to determine the type of recovery that it 
needs to perform. 

Clear the recovery flag in the diskpack label via one the following measures: 

• Force a diskpack complement by executing the SQUASH utility with a 
VALUE 0 = C statement. 

• If a recovery tape exists, reload the diskpack by executing the SQUASH utility 
with a VALUE 0 = E statement, which bypasses the validation of the diskpack 
label. 

• For a version 1 diskpack, rebuild the diskpack using the DISPKV utility. 
Recovery measures, such as using SYSTEM/COPY, must then be taken to 
reload the data to the diskpack or family. 

• For a diskpack of version 2 or greater, rebuild the diskpack or family using 
the ALTER NEW PACK, ALTER FAMILY PURGE, or ALTER FAMILY 
REBUILD commands. Recovery measures, such as using SYSTEM/COPY, 
must then be taken to reload the data to the diskpack or family. 

Master Available Table, Available Table, and Directory Errors 

37-12 

BAD TABLE READ 
BAD TABLE MARKER 
BAD DIRECTORY LINK 
BAD DIRECTORY READ - SECTOR = <directory address> 
BAD DIRECTORY WRITE - SECTOR = <directory address> 

4127 0000-100 



SQUASH-Diskpack Squash Program 

A critical structure such as a directory, a master available table, or an available 
table may be conupted and the diskpack is unusable. The diskpack is in a "mid
squash" state and cannot be made ready. 

• Force a diskpack complement by executing the SQUASH utility with a 
VALUE 0 = C statement. 

• If a recovery tape exists, a tape recovery can be forced by executing the 
SQUASH utility with a VALUE 0 = D statement. 

• For a version 1 diskpack, rebuild the diskpack using the DISPKV utility. 
Recovery measures, such as using SYSTEM/COPY, must then be taken to 
reload the data to the diskpack or family. 

• For a diskpack of version 2 or greater, rebuild the diskpack or family with 
either the ALTER NEW PACK, ALTER FAMILY PURGE, or ALTER FAMILY 
REBUILD commands. Recovery measures, such as using SYSTEM/COPY, 
must then be taken to reload the data to the diskpack or family. 

INSUFFICIENT SPACE FOR AVAILABLE TABLE 
AREAS LOST 

The SQUASH utility cannot find 10 sectors available to extend the available table 
during the complement phase. The available table will not reflect the entire 
available space on the diskpack, but no file data is lost and the diskpack can be 
made ready. 

• Files must be removed on the diskpack to free up some space for the 
extension of the available table. A diskpack complement can then be forced 
by executing the SQUASH utility with a VALUE 0 = F statement. 

Error Messages When Squashing a File Area 

BAD FILE AREA READ - SECTOR = <area address> 
BAD FILE AREA WRITE - SECTOR = <area address> 
THE AREA COULD NOT BE MOVED - FILE ID = <file id> 

An unsuccessful read or write of a file area occurred when attempting to move a 
file area. 

In addition, if the new area location overlaps the previous area location then the 
area is probably corrupted (depending on how much of the data was actually 
moved) and the following error message is displayed: 

AN AREA MAY BE CORRUPTED STARTING AT SEC <area address> FOR A 
LENGTH OF <length of possible corruption in sectors> 

BAD HEADER READ - SECTOR = <header address> 
BAD HEADER WRITE - SECTOR = <header address> 

4127 0000-100 37-13 



SQUASH-Diskpack Squash Program 

AREA ADR IN HOR NOT UPDATED - AREA ADR <new header address>, 
FILE-ID = <file id> 

The file area was successfully moved but an error occurred when attempting to 
update a file header with the new area address. 

In addition, if the new area location overlaps the previous area location then the 
area is corrupted and the following error message is displayed: 

AN AREA IS CORRUPTED STARTING AT SECTOR <area address> 
FOR A LENGTH OF <length of corruption in sectors> 

• The diskpack is in a "complement required" state so it cannot be made ready. 
The following message is displayed by the SQUASH utility, and when the 
SQUASH utility is re-executed a complement is performed automatically: 

A PACK COMPLEMENT IS REQUIRED - RE-EXECUTE SQUASH 

• If a subsequent diskpack complement is successful, the diskpack is made 
ready. If there are no corrupted file areas then the diskpack does not have to 
be recovered and no data is lost. 

• If a subsequent complement fails, the diskpack will not have any available 
space and the recovery flag in the diskpack label is cleared so that the 
diskpack can be readied. An attempt should be made to dump the data off of 
the diskpack and then it can be recovered by one of the following measures: 

If a recovery tape exists, force a tape recovery by executing the SQUASH 
utility with a VALUE 0 = D statement. 

For a version 1 diskpack, rebuild the diskpack using the DISPKV utility. 
Recovery measures, such as using SYSTEM/COPY, must then be taken to 
reload the data to the diskpack or family. 

For a diskpack of version 2 or greater, rebuild the diskpack using either 
the ALTER NEW PACK, ALTER FAMILY PURGE, or ALTER FAMILY 
REBUILD commands. Recovery measures, such as using SYSTEM/COPY, 
must then be taken to reload the data to the diskpack or family. 

• If a file has a corrupted area it can be restored using one of the following 
measures: 

The file can be removed and restored from a backup copy. 

The area can be examined to determine the nature of the corruption and 
measures can be taken to restore the affected data. 

Error Messages When Squashing a File Header 

37-14 

BAD HEADER READ - SECTOR = <header sector address> 
BAD HEADER WRITE - SECTOR = <header sector address> 
THE HEADER COULD NOT BE MOVED - FILE ID = <file id> 

An unsuccessful read or write of a file header occurred when attempting to move 
the header. 

4127 0000-100 



SQUASH-Diskpack Squash Program 

If the new header location overlaps the previous header location, an attempt to 
rewrite the header at its previous location is attempted since the header address 
in the file's directory entry still points to the previous location. If the write is 
successful the header information should be valid, otherwise the header is 
c01rupted and the following error message is displayed: 

THE HEADER IS CORRUPTED STARTING AT SEC <header address> 
FOR A LENGTH OF <length of corruption in sectors> 

BAD DIRECTORY READ - SECTOR = <directory address> 
BAD DIRECTORY WRITE - SECTOR = <directory address> 
HDR ADR IN DIR NOT UPDATED - ADDRESS = <new area address>, 

FILE-ID = <file id> 

The header data was successfully moved but an error occurred when attempting 
to update a file's new header address in the file's directory entry. If the new 
header location overlaps the previous header location then the header is 
corrupted and the following error message is displayed: 

THE HEADER IS CORRUPTED STARTING AT SEC <header address> 
FOR A LENGTH OF <length of corruption in sectors> 

• The diskpack is in a "complement required" state so it cannot be made ready. 
The following message is displayed by the SQUASH utility, and when the 
SQUASH utility is re-executed a complement is performed automatically: 

A PACK COMPLEMENT IS REQUIRED - RE-EXECUTE SQUASH 

• If a subsequent complement is successful, the diskpack is made ready. If 
there are no corrupted file headers then the diskpack does not have to be 
recovered and no data is lost. 

• If a subsequent complement fails, the diskpack will not have any available 
space and the recovery flag in the diskpack label is cleared so that the 
diskpack can be readied. An attempt should be made to dump the data off of 
the diskpack and then recover it by one of the following measures: 

If a recovery tape exists, force a tape recovery by executing the SQUASH 
utility with a VALUE 0 = D statement. 

For a version 1 diskpack, rebuild the diskpack using the DISPKV utility. 
Recovery measures, such as using SYSTEM/COPY, must then be taken to 
reload the data to the diskpack or family. 

For a diskpack of version 2 or greater, rebuild the diskpack using the 
ALTER NEW PACK, ALTER FAMILY PURGE, or ALTER FAMILY 
REBUILD commands. Recovery measures, such as using SYSTEM/COPY, 
must then be taken to reload the data to the diskpack or family. 

• If a file header is corrupted then the associated file is lost. At this point the 
file cannot be removed explicitly but its name can be changed and a new copy 
of the file can be created or reloaded to the diskpack family. In order to 
remove the file, the diskpack must be rebuilt using the DISPKV utility for 

4127 0000-100 37-15 



SQUASH-Diskpack Squash Program 

version 1 diskpacks or the ALTER commands for diskpacks of version 2 and 
greater. 

Miscellaneous Errors 

PACK I/O ERR <result descriptor> ADR <sector address> 

An I/O effor occuU"ed when reading or writing to a diskpack. This effor is 
displayed in addition to a more specific error message describing on which 
structure the effor occuU"ed. 

The recovery from this error will vary depending on the severity of the effor. Use 
the appropriate recovery method as described under the specific effor message. 

UNKNOWN PACK UNIT TYPE, SQUASH ABORTED 
UNKNOWN BASE PACK UNIT TYPE - SQUASH ABORTED (version 2 and greater packs only) 

The diskpack type is not recognized by the SQUASH utility so a squash cannot be 
performed on the diskpack. 

• None. The diskpack cannot be squashed using the SQUASH utility. 

MISSING OR DUPLICATE AREAS ON PACK <cc/u> 
DUPLICATE AREAS ON PACK <cc/u> 

A diskpack has missing or duplicate areas so a squash cannot be performed on the 
diskpack. 

• Execute the DSKOUT utility with the PS <cc!u> = syntax to find all of the 
missing and duplicate areas. 

• If there are only missing areas, execute the SQUASH utility with the 
complement option (VALUE 0 = F) and then re-execute the SQUASH utility to 
squash the diskpack as originally attempted. 

• If there are duplicate areas, the diskpack cannot be squashed until the 
situation is resolved. 

37-16 4127 0000-100 



Section 38 
LOADER-Train Printer Buffer File 
Generator 

The MCP intrinsic LOADER reads a card deck labeled TABLES and creates a single
record train printer buffer file on disk This file is used by the MCP to determine the 
correct train ID and for loading the train printer translate buffer. 

Train printer buffer files are identified by a train file ID. Included in the buffer file are the 
train ID, the train size, and the character set size. The train file ID can be up to six 
characters in length. 

The train ID is used by the MCP to validate the print train currently on a particular train 
printer. The train ID consists of a 2-digit number, ranging from 00 to 7F; for 1100 LPM 
train printers only, 40 must be added to the ID (for example a train ID of 10 used on an 
1100 LPM printer becomes 50). Having the 4-bit ON in the train ID indicates to the MCP 
that an 1100 LPM train printer is being used. 

Train size is the physical number of print positions on the train printer train. Allowed 
sizes are 192 and 288. The character set size refers to the number of characters in one 
train set, where a set can be 16, 18, 48, 64, 72, or 96 characters. The program repeats this 
set to build a complete train table. If all of the train sets are not identical, the complete 
train table may be specified by making the character set size the same as the train size and 
listing all of the characters in the train. 

Note: Utilities such as the MCP DEBUG trace assume a standard train on the printer. 
A non-standard train with these programs will result in garbage output. It is 
recommended that a non-standard train be used only to circumvent temporary 
train limitations. 

LOADER Deck 
The MCP utility LOADER reads in a card deck labeled TABLES, and from it creates a train 
printer buffer file. Table 38-1 shows the format for the LOADER input deck 

4127 0000-100 38-1 



LOADER-Train Printer Buffer File Generator 

38-2 

Table 38-1. LOADER Card Deck 

Card 
Number Columns Function 

1 

1-6 File name of buffer file to be created 

7-8 Train ID. Range is 00-7F. Add 40 for 1100 LPM printer. 

9-11 Train size. Valid sizes are 192 and 288. 

12-14 Character set size. Valid sizes are 16, 18, 48, 64, 72, and 
96. This should match the number of characters punched in 
the remaining cards. 

15 Character to be printed to represent an Invalid character. 
Normally a question mark (?). 

16 Character to be printed to represent a blank character. 
Normally EBCDIC 40 (blank character). 

2 through end 
(200 to 750 LPM printers) 

1-80 The EBCDIC characters corresponding to the characters in 
the train set. 

The character in column 1 corresponds to the first position 
in the train set, the character in column 2 corresponds to 
the second position in the train set, and so on. Use all 80 
columns and then go on to the next card, using as many 
cards as necessary. 

The total number of characters should equal the character 
set size given in columns 12-14 of card number 1. 

The character to be printed for an invalid character must be 
specified as part of the train set. 

2 through end 
(1100 and 1500 LPM printers) 

1-80 This is the same as for 200 to 750 LPM printers, except 
that the character in column 1 corresponds to the second 
position in the train set, the character in column 2 
corresponds to the third position in the train set, and so on. 
The first character in the train set is punched in the last 
column used. This is required for hardware timing 
considerations. 

Notes: The LOADER utility cannot generate a buffer file for 2000 LPM printers. For 
2000 LPM printers, use the standard bound printer buffer file PRN256. 

4127 0000-100 



Example 

? EX LOADER 
? DATA TABLES 
EBC18 41288018? 
235689$@4"71.*-,?0 
? END 

LOADER-Train Printer Buffer File Generator 

This example is for an 1100 LPM printer with a 288-character train and an 
IS-character train set. Invalid characters are represented by a question mark(?). 
The actual train ID is 01; 40 has been added to arrive at the 1100 LPM printer 
designation of 41. 

Train Printer Buffer Files 
You use the LOADER to create custom train printer buffer files. Supplied with the MCP 
release are six standard train printer buffer files. These files are bound to the MCP and 
are identical in format to the files created by execution of the LOADER program. 

File Format 

Train printer buffer files are single area, single record disk files with the format shown in 
Table38-2. 

Table 38-2. Train Printer Buffer File Format on Disk 

Digit Position 

0-3 

4-5 

6-7 

8-9 

10-N 

N+l (Last character) 

Buffer Files Supplied 

Function 

Length of train in use. Must be 192 or 288. 

Train ID 

The character to be printed to represent an invalid character. 
Can be EBCDIC character 40 (blank character). Must also be 
declared as part of the train set. 

For 200-750 LPM printers, the first character on the train. For 
1100 or 1500 LPM printers, the second character on the train. 
For 1100 or 1500 LPM printers, the first character on the train 
becomes character N in the file. 

Remaining characters in the train set. 

Character to be used to represent the blank character. 

The standard train buffer files bound to the MCP are listed in Table 38-3. 

4127 0000-100 38-3 



LOADER-Train Printer Buffer File Generator 

File Name 

FUL96 

FUL72 

T75048 

T75064 

T75096 

PRN256 

Table 38-3. Bound Train Buffer Files 

Contents 

A full 96-character set for 1100 and 1500 LPM printers 

A full 72-character set for 1100 and 1500 LPM printers 

A full 48-character set for 750 LPM printers 

A full 64-character set for 750 LPM printers 

A full 96-character set for 750 LPM printers 

A 256-character EBCDIC translate table for all buffered printers 

Error Messages 

38-4 

MISSING CARDS TO DESCRIBE TRAIN <train file ID> 

Card file EOF was encountered before all of the cards required to describe the 
character set were read. 

INVALID TRAIN FILE ID: <train file ID> 

The specified name was not alphanumeric or contained embedded spaces. 

INVALID TRAIN LENGTH: <train ID>, MUST BE 192 OR 28899 

The train length specified in columns 0-3 must be 192 or 28899. 

INVALID TRAIN ID: <train ID> 

The train ID must be a hexadecimal number in the appropriate range. One of the 
following two messages will also occur: 

750 LPM TRAIN ID MUST BE 00 TO 3F 

1100 LPM OR 1500 LPM TRAIN ID MUST BE 40 TO 7F 

WARNING: INVALID CHARACTER SET LENGTH <length> 

This message is produced if the character set length is not 16, 18, 48, 64, 72, 96, 192, or 
288. Execution continues if no other errors are detected. 

INVALID CHARACTER: <character> NOT PRESENT ON TRAIN 

The character specified to be printed as the invalid character must be present in the 
train set. 

4127 0000-100 

( 



LOADER-Train Printer Buffer File Generator 

TRAIN IMAGE FILE <train file ID> GENERATED 

The train file was successfully generated. 

TRAIN IMAGE FILE <train file ID> NOT GENERATED 

One or more errors were found and displayed. 

NO INPUT CARDS 

Empty input file. 

TRAIN LENGTH NOT MULTIPLE OF CHARACTER SET 

The character set length specified does not fit the specified train length. 

If any of these error messages occur other than INVALID CHARACTER SET LENGTH, 
TRAIN LENGTH NOT MULTIPLE OF CHARACTER SET, or FILE GENERATED, the file 
currently being generated will be purged and the program will continue with the next 
input card. 

4127 0000-100 38-5 



LOADER-Train Printer Buffer File Generator 

38-6 4127 0000-100 



Index 

A 

abnormal failures 
use ofDMPMEMfor, 8-1 

AC keyword 
with DISPKV program, 3-5 

access code 
description of, 3-6 
list of, 3-5 

AD keyword 
with DISPKV program, 3-8 

address 
description of, 3-8 

address breakpoints 
Debug Facility 

actions for setting, 28-16 
algebraic operators 

list of, 5-8 
alternate channel 

use of, 3-5 
alternative program 

to initialize 
disk pack types, 3-25 

APCR 
with LDCNTL program, 10-6 

area, 31-8 
ASCII files 

automatic translation of, 5-2 
ASCII tapes-DMPALL utility, 5-10 
ASCIIDATA keyword-DMP ALL utility, 5-13, 

5-16, 5-17 
Automatic System Recovery Facility (SYSUP) 

description of, 25-1 
initiating, 25-1 

available table, 31-12 
used to omit bad sectors, 19-1 

AX command 
END required, 6-2 
starting DMP ANL with, 6-2 
with DISPKV program, 3-3 
with DMPALL program, 5-1 
with MDCOPV program, 14-2 
with PBDPRN program, 17-7 

4127 0000-100 

B 

with PKCOPY program, 19-2 
with UNLODV program, 26-4 

B874DCP 
host load for, 11-1 

B 874 Link Errors 
chart of, 27-3 

B974DCP 
host load for, 11-1 

B 97 4 Link Errors 
chart of, 27-4 

B 97 4LD program 
analyzing MLOG files, 1-3 
description of, 1-1 
features 

overview, 1-1 
functions 

list of, 1-1 
initiating, 1-1 
NDL compilation, 1-3 
tasks 

list of, 1-2 
uploading dump files, 1-2 
uploading printer backup files, 1-3 

base pack, 31-13, 31-20 
block, 31-8 
blocking factor, 31-8 
Breakpoint Menu 

c 

Debug Facility 
decription of, 28-14 
list of actions, 28-15 

cache 
using QWIK Disk 

with disk pack-based system, 29-10 
with disk-based system, 29-11 

lndex-1 



Index 

cru:d format 
control instructions for, 10-5 

card images 
maximum number permitted, 10-6 

card reader 
conditions for use 

list of, 10-3 
characters 

old and new, 13-3 
CO keyword 

for DISPKV program, 3-4 
COBOL 

MERGE statement, 15-2 
code file overlays 

with QWIKPOOL option 
in QWIK Disk, 29-3 

code file transfer 
from 100-byte disk, 18-1 
from 180-byte disk pack, 18-1 

collating sequence 
ASCENDING 

discussion of, 21-3 
changes to, 13-2 
COBOL 

with the MAKTRN program, 13-1 
creating new, 13-1 
DESCENDING 

discussion of, 21-3 
commands 

LNA, 9-1 
LNE, 9-1 

comments 
in SRTUTL syntax, 23-1 

communication processor 
host booting of, 2-2 
types 

list of, 2-1 
compacting diskpacks, 37-1 
COMPILE operation 

with LDCNTL program, 10-8 
compiling with COBOL 

for SRTUTL, 23-1 
compiling with RPG 

for SRTUTL, 23-1 
complementing of diskpack, 37-1 
compressing a file, 32-2 
concurrent DEBUG sessions 

commands for 
description of, 28-2 

concurrent file access 
diagram of, 30-2 

configuration rules 
in multisystem shared environment 

lndex-2 

discussion of, 30-4 
CONFIGURE command 

effor summary report for, 3-14 
continuation pack, 31-13, 31-20 
control deck 

requirements for, 10-4 
special cards 

?DATA CTLDCK, 10-4 
?ENDCTL, 10-4 

control file 
creating 

for SORT: intrinsic program, 22-6 
control instructions 

effoneous combination of, 10-5 
controllers supported 

by DISPKV program, 3-25 
conversion of 

100-byte to 180-byte disk packs, 3-13 
180-byte to 100-byte disk packs, 3-13 
interlaced to sequential mode, 3-13 
sequential to interlaced mode, 3-13 

converting files 
with DMP ALL program 

restrictions, 5-12 
syntax for, 5-12 

copy files 
to floppy disk, 14-4 

copying files 
from floppy disk 

with MDCOPV program, 14-4 
CPLOAD functions 

for communication processors, 2-1 
CPLOAD utility program 

description of, 2-1 
dump file 

naming convention, 2-2 
effor messages, 2-3 
functions 

list of, 2-1 
initiating, 2-1 

creating files 
in QWIK Disk, 29-30 
pro grammatically 

in QWIK Disk, 29-30 
CTLDCK 

contents, 10-5 
CU keyword 

for DISPKV program, 3-4 
CV command 

with LDCNTL program, 10-13 
CVP command 

with LDCNTL program, 10-13 
cylinder, 31-5 

4127 0000-100 



D 

DA command 
with LDCNTL program, 10-7 

DAPcommand 
with LDCNTL program, 10-7 

DASDL 
use with SRTUTL, 23-1 

Data Communications Processor 
BUFFER control instruction 

description of, 27-3 
declaring channels for, 27-2 
description of, 27-1 
error conditions 

chart of, 27-3 
firmware files for, 27-1 
initializing network for, 27-2 
MCP interfaces for, 27-2 
system requirements for, 27-1 
UNIT record 

for Data Communications 
Processors, 27-2 

datafile 
unique name requirement, 10-11 

DClANL utility program 
with CPLOAD program, 2-2 

DCDLP 
Host-loading, 11-3 

DCP (See Data Communications Processor) 
dead space, 31-10 
deallocation 

of card reader 
definition of, 10-12 

of pseudo card file 
definition of, 10-12 

DEBUG command 
for Debug Facility 

description of, 28-2 
examples of, 28-4 
options for, 28-2 
syntax for, 28-2 

parameter list 
syntax for, 28-3 

DEBUG commands 
DEBUG 

description of, 28-1 
ENTER Debug (ED) 

description of, 28-2 
INTERACTIVE DEBUG (ID) 

description of, 28-1 
QUERY Debug (QD) 

description of, 28-2 

4127 0000-100 

Debug Facility 
address breakpoints 

description of, 28-16 
settings for, 28-16 

Breakpoint Menu 
description of, 28-14 
list of actions, 28-15 

examples 
debug sessions, 28-19 

functions 
stop user program, 28-19 

Hypercall/BCT Breakpoints 
actions for setting, 28-15 
description of, 28-15 

Main Menu 
description of, 28-9 
list of actions, 28-9 

opcode brealqloint 
description of, 28-17 

opcode brealqloint actions 
list of, 28-17 

overflow breakpoint 
description of, 28-17 

PEEK and POKE functions 
using, 28-21 

PEEK function 
description of, 28-21 

POKE function 
description of, 28-22 

State Menu 
description of, 28-17 
list of actions, 28-17 

state of task 
menu display, 28-9 

status line 
example of, 28-9 

Status Menu 
description of, 28-11 
list of actions, 28-11 

taken branch breakpoint 
description of, 28-17 

trace functions 
using, 28-23 

Trace Menu 
description of, 28-13 
list of actions, 28-13 

user interface menus 
list of, 28-6 

user selected opcodes 
field for, 28-14 

debugging 
TRAK to tape, 34-1 

decompressing a file, 32-2 

Index 

lndex-3 



Index 

default disk 
using QWIK Disk 

discussion of, 29-30 
default media 

SORT: intrinsic program, 22-9 
default media override 

SORT: intrinsic program 
description of, 22-6 

directory, 31-10 
disk, 31-1 

5N, 31-1 
LAK, 31-1 
Look-Alike, 31-1 
QWIKDISK, 31-1 
soft-sectored, 31-1 

disk pack name 
PN keyword, 3-6 

disk pack serial numbers 
range of, 19-3 
when to change, 19-1 

disk pack, see pack, 31-1 
disk pack-based system 

using QWIK Disk 
as a cache, 29-10 

disk sorting 
operation of, 22-5 
SORT: intrinsic program 

control parameters for, 22-5 
default media for, 22-5 
media used for, 22-5 
operating considerations for, 22-5 
resource allocation for, 22-5 
work file requirements, 22-5 

disk-based system 
using QWIK Disk 

as a cache, 29-11 
diskpack 

checkerboarding, 37-1 
complementing, 37-1 
label 

recovery flag, 37-8 
pelformance 

squashing, 37-1 
rebuilding tables, 37-1 
recovery, 37-1 
recovery flag, 37-8 
space recovery, 37-1 
squashing, 37-1 
troubleshooting-DPKANL, 36-1 

Diskpack Analysis Utility (DPKANL), 36-1 
diskpacks 

converting to version 4, 31-33 
shared version 4 packs, 31-27 

lndex-4 

version 4, 31-3, 31-26 
DISPKV commands 

659IVR, 3-22 
CONFIGURE, 3-13 
INITIALIZE, 3-11 
LABEL, 3-21 
RECONFIGURE, 3-19 
RECONFIGUREL, 3-20 
RELOCATE, 3-17 
RENAME, 3-18 
REPORT, 3-15 
SINGLE, 3-16 

DISPKV initialization 
for disks and disk packs, 3-1 

DISPKV keywords 
AC, 3-5 
AD, 3-8 
chart of, 3-4 
co, 3-4 
cu, 3-4 
ER, 3-7 
FILES, 3-10 
or, 3-7 
PN, 3-6 
SC, 3-7 
SN, 3-5 

DISPKV program input 
with AX command, 3-2 

DISPKV program messages 
types 

list of, 3-31 
DISPKV utility program 

659IVR command, 3-22 
available table, 3-12 
card input 

rules for, 3-30 
command functions 

list of, 3-23 
CONFIGURE command, 3-13 
controllers supported, 3-25 
description of, 3-1 
disk pack label, 3-12 
empty disk pack directory table, 3-12 
END option, 3-11 
error messages, 3-33 
examples, 3-13 
executing, 3-2 
file names 

external, 3-28 
internal, 3-28 

functions 
list of, 3-1 

informational messages, 3-31 

4127 0000-100 



INITIALIZE command, 3-11 
initializing disk packs 

to 100-byte mode, 3-36 
input examples, 3-28 
LABEL command, 3-21 
LAK disk pack functions 

Initialize, 12-1 
Relocate, 12-1 
Verify, 12-1 

master available table, 3-12 
operator prompts, 3-32 
RECONFIGURE command, 3-19 
RECONFIGUREL command, 3-20 
RELOCATE command, 3-17 
RENAME command, 3-18 
REPORT command, 3-15 
SINGLE command, 3-16 
value statements 

use of, 3-2 
DLP 

dump print file 
contents of, 4-1 

requirements 
for reloading firmware, 4-2 

screen display 
contents of, 4-1 

DLPrecord 
for Data Communications Processors, 27-2 

DLPXCO and DLPXNO utility programs 
description of, 4-1 
dump information 

how produced, 4-1 
error messages for, 4-5 

DLPXCO utility program 
executing 

example of, 4-3 
procedures for, 4-2 

use with V 300 system, 4-1 
DLPXNO utility program 

executing 
example of, 4-5 
proceduresfor,4-4 

use with MCP, 4-1 
DM command 

with DMPANL program, 6-11 
with DMPCPYprogram, 7-1 

DMPALL card decks 
examples 

for SORTx intrinsic program, 21-6 
DMPALL commands 

list of, 5-1 
DMP ALL media conversion 

options 

4127 0000-100 

list of, 5-15 
DMP ALL parity e1Tor 

examples of messages, 5-27 
message for, 5-27 

DMP ALL utility program 
description of, 5-1 
examples of, 5-28 
functions 

list of, 5-1 
miscellaneous, 5-23 

initiating, 5-1 
options 

list of, 5-2 
PERFORM LIBLST function 

example of, 5-23 
PERFORM PD function 

example of, 5-24 
syntax for, 5-24 

PFM LIST DSK function 
example of, 5-24 

PFM PB67 function 
syntax for, 5-23 

SEARCH function 
example of, 5-24 
syntax for, 5-24 

use to modify 
default parameters, 21-5 

use with SORT: 
to create control file, 22-6 

ZIP mechanism, 5-24 
DMPANL 

dump file on disk, 6-9 
DMP ANL command syntax 

used to limit 
information to print, 6-2 

DMPANL parameters 
list of 

syntax for, 6-3 
DMP ANL utility program 

description of, 6-1 
keywords 

list of, 6-3 
parameters 

list of, 6-4 
syntax for, 6-4 

starting with PM 1 command, 6-1 
syntax errors, 6-3 
table list options 

list of, 6-5 
table selection options 

list of, 6-4 
task parameters 

list of, 6-10 

Index 

lndex-5 



Index 

DMPCPY utility program 
description of, 7-1, 9-1 
executing 

procedure for, 7-1 
input error 

message for, 7-1 
procedure for handling, 7-1 

DMPMEM utility program 
description of, 8-1 
executing from V 300 system 

procedure for, 8-1 
executing from V 500 system 

procedure for, 8-2 
terminating with 

halt branch instruction, 8-3 
DMSII performance 

with QWIK Disk, 29-3 
dollar sign ($) cards 

list of 
for SORT: intrinsic program, 22-7 
for SORTx intrinsic program, 21-6 

restrictions 
for SORT: intrinsic program, 22-8 

dollar sign ($) options 
in SRTUTL utility program 

list of, 23-16 
DP command 

withDMPANLprogram, 6-11 
DPKANL utility, 36-1 
DScommand 

with SORTx intrinsic program, 21-5 
dump 

analysis 
requirements for, 6-1 

dump file on disk, 6-9 
dynamic environment 

file characteristics 
for QWIK Disk analysis, 29-15 

E 

Electronic Vertical Forms Unit (EVFU), 33-1 
END option 

DISPKV program, 3-11 
end-of-file condition 

detection of, 10-12 
ENTER DEBUG command 

for Debug facility 
description of, 28-6 
example of, 28-6 
syntax for, 28-6 

lndex-6 

ER keyword 
with DISPKV program, 3-7 

error address 
description of, 3-7 

error conditions 
Data Communications Processors 

chart of, 27-3 
error messages 

DISPKV program, 3-33 
for debug commands 

list of, 28-27 
for DLPXCO and DLPXNO programs, 4-5 
for LOADFW program, 12-5 
for SORT: intrinsic program, 22-10 
from DLP programs 

discussion of, 4-1 
non-fatal 

SORT: intrinsic program, 22-10 
recovery of 

for SORT: intrinsic program, 22-11 
SORT: intrinsic program 

list of, 22-10 
SYSTEM/COPY utility program 

list of, 24-7 
error recovery 

SYSTEM/COPY utility program, 24-13 
Errors 

debug session 
list of, 28-24 

EVFU-see Electronic Vertical Forms 
Unit, 33-1 

Examples 
DEBUG command 

for Debug Facility, 28-4 
Debug Facility 

status line, 28-9 
debug session, 28-19 
DISPKV input, 3-28 

results, 3-29 
DISPKV utility program, 3-13 
ENTER DEBUG command 

for Debug facility, 28-6 
EXECUTE command 

starting DMP ALL with, 5-25 
file equating 

in SRTUTL utility program, 23-15 
for DMP ALL utility program, 5-28 
INTERACTIVE DEBUG command 

for Debug Facility, 28-5 
MDCOPV utility program, 14-14 

switch setting, 14-3 
NIFMRG utility program 

DCP statement, 16-5 

4127 0000-100 



END statement, 16-7 
MERGED statement, 16-7 
statements longer than one line, 16-9 

of DLPXCO utility program, 4-3 
of DLPXNO utility program, 4-5 
of messages 

for DMP ALL parity errors, 5-27 
of SYSUP facility, 25-2 
PBDPRN utility program, 17-6 
PCOPY utility program, 18-2 
PERFORM LIBLST function 

DMP ALL utility program, 5-23 
PFM LIST DSK function 

DMPALL utility program, 5-24 
PKCOPY utility program, 19-3 
shared file operations 

stalemate, 30-9 
shared systems 

multisystem shared disk and disk 
pack, 30-13 

SORTx intrinsic program 
DMPALL card decks, 21-6 

SRTUTL utility program, 23-4 
cardless execution, 23-14 
executing, 23-11 
KEY statement, 23-6 

SYSTEM/COPY utility program 
with QWIK Disk, 29-30 

typical pseudo card files, 10-8 
value clauses, 5-25, 5-26 
ZIP mechanism, 5-24 

EXECUTE command 

F 

starting DMPALL with 
description of, 5-25 
example of, 5-25 
procedure for, 5-25 

with MDCOPV program, 14-2 
with PBDPRN program, 17-7 
with PKCOPY program, 19-2 
with UNLODV program, 26-4 

family name, 31-15 
fatal error messages 

correctable 
for SORT: intrinsic program, 22-11 

non-correctable 
for SORT: intrinsic program, 22-12 

fault indicators 
debug session 

4127 0000-100 

list of, 28-24 
FlBMRL 

definition of, 22-3 
for SORTx intrinsic program, 21-4 

discussion of 
for SORTx intrinsic program, 21-5 

FIBVAR 
definition of 

for SORTx intrinsic program, 21-5 
field, 31-8 
file, 31-8 
file assignment 

description of, 10-12 
file equating 

for QWIK Disk 
syntax for, 29-31 

in SRTUTL utility program 
examples of, 23-15 

file header, see header, 31-10 
file 1/0 operations 

rules for shared systems, 30-2 
file names 

format for, 10-4 
file selection criteria 

for QWIK Disk 
file access, 29-19 
file activity, 29-20 
file size, 29-18 
file volatility, 29-19 

file type analysis 
for QWIK Disk, 29-11 

file category list, 29-12 
file types 

for Editor files 
in SRTUTL, 23-1 

FILES keyword 
with DISPKV program, 3-10 

firmware 
downloading 

restrictions for, 11-1 
to data communications processor 

(DCP), 11-1 
to programmable controller, 11-1 
to Uniline device, 11-1 

loading 
to disk controller, 12-1 
to disk pack controller, 12-1 
to Shared System Processors 

(SSPs ), 12-1 
to Uniline DLPs, 12-1 

firmware code file 
transfer of, 1-2 

Index 

lndex-7 



Index 

firmware files 
comparing, 2-2 
loading, 2-2 

FLAME software graphs 

G 

for MCP idle time analysis 
for QWIK Disk, 29-5 

for MCP overlay analysis 
for QWIK Disk, 29-7 

for program overlay analysis 
for QWIK Disk, 29-8 

to monitor system envirorunent 
for QWIK Disk, 29-17 

use for file type analysis 
for QWIK Disk, 29-11 

general system performance 
with QWIK Disk, 29-3 

GO operation 
with LDCNTL program, 10-8 

guide 
about this, v 

H 

halt/load 
performing 

with QWIK Disk, 29-29 
with SYSUP facility 

chart of types, 25-2 
hardware type 

for QWIK Disk, 29-31 
header, 31-10 
high I/O volume files 

moved to QWIK Disk 
discussion of, 29-5 

highest addressable sector 
chart of, 3-8 

Host-Load 
DCDLP, 11-3 

Hypercall/BCT Breakpoints 
Debug Facility 

description of, 28-15 

I!O analysis 
for QWIK Disk 

lndex-8 

IIO and memory bound category, 29-10 
IIO bound category, 29-10 
memory bound category, 29-9 
system bound category, 29-9 
system category list, 29-9 

I!O error handling 
SYSTEM/COPY utility program 

description of, 24-12 
I!O error messages 

SYSTEM/COPY utility program 
description of, 24-12 
format for, 24-12 
list of, 24-12 

IIO operating analysis 
for QWIK Disk 

list of types, 29-6 
IIO volume analysis 

for file classes 
for QWIK Disk, using Run Log 

(RLOG), 29-13 
for individual files 

for QWIK Disk, using Run Log 
(RLOG), 29-13 

for MCP files 
for QWIK Disk, using FLAME software 

graphs, 29-13 
IL command 

with DMP ANL program, 6-11 
informational messages 

DISPKV program, 3-31 
INITIALIZE command 

error summary report for, 3-12 
functions 

list of, 3-11 
INTERACTIVE DEBUG command 

for Debug Facility 
description of, 28-5 
example of, 28-5 
options for, 28-5 
syntax for, 28-5 

interlaced format, 31-5 
intrinsic programs 

B 974LD, 1-1 
MERG:, 15-1 
SORT:, 22-1 
SORTx 

with MAKTRN program, 13-1 
SORTx intrinsic program 

description of, 21-1 
SORTy 

with the MAKTRN program, 13-1 
ISAM performance 

with QWIK Disk, 29-3 

4127 0000-100 

( 



IVR (See INITIALIZE command) 
IVR functions, 31-1 

L 

label, 31-12 
LABEL command 

restrictions for, 3-22 
LAK disk, 31-1 
LDcommand 

with LDCNTL program, 10-4, 10-6, 10-7 
LDCNTL utility program 

card format 
BCL, 10-5 
EBCDIC, 10-5 

description of, 10-1 
initiating, 10-5 
invalid characters 

in control instructions, 10-11 
MCP control instructions used with 

list of, 10-2 
parameters 

discussion of, 10-13 
pseudo card file 

format of, 10-11 
system commands used with 

list of, 10-2 
LDHOST utility program 

automatic operation 
conditions required for, 11-2 

description of, 11-1 
failure 

discussion of, 11-1 
parameters 

list of, 11-2 
with Data Communications Processor, 27-2 

LDPcommand 
with LDCNTL program, 10-4, 10-6, 10-7 

LR command 
to reactivate a B 97 4, 1-1 
with CP option, 2-1 
with DCP option, 27-2 
with DUMP option, 2-2 
with LDHOST program, 11-3 
with NCP option, 2-1 
with WARM option, 1-2, 2-1 

library maintenance messages 
SYSTEM/COPY utility program 

description of, 24-11 
format for, 24-11 
list of, 24-11 

4127 0000-100 

Index 

LIMIT DCPBUF record 
for Data Communications Processors, 27-3 

LIMIT DCPQUE record 
for Data Communications Processors, 27-2 

LIMITSRTMEM record, 21-1, 22-1 
list files 

with DMPALL program 
syntax elements for, 5-2 
syntax for, 5-2 

LNMcommand 
with SNPANL program, 20-1 

Loadable Operating System (LOS) 
for Image Page Printer (IPP) 

how to load, 11-3 
LOADER utility, 38-1 
LOADFW utility program 

description of, 12-1 
executing 

from a V 300 system, 12-2 
from a V 500 system, 12-2 

LAK disk pack functions 
Initialize, 12-1 
Relocate, 12-1 
Verify, 12-1 

messages 
error, 12-5 
normal, 12-3 

operating instructions, 12-2 
loading files 

for PTD programs, 3-25 
LOAD MP 

Tape Directory Report Program, 35-1 
LOADMP and PACKUP 

library files 
listing with DMP ALL, 5-23 

LOADMP and PACKUP tape directories 
listing 

with DMPALL program, 5-24 
LOCK, 30-8 
Look-Alike disk, 31-1 
lowercase letters 

translated to uppercase 
with PBDPRN utility program, 17-1 

M 

main memory buffer 
Disk File Header, 10-12 
IOAT entry, 10-12 

lndex-9 



Index 

Main Menu 
Debug Facility 

description of, 28-9 
ODT action, 28-2 

maintenance processor 
commands 

for QWIK Disk 
description of, 29-27 

maintenance test commands 
for QWIK Disk 

list of, 29-29 
warning message for, 29-28 

MAKTRN program 
description of, 13-1 
functions 

list of, 13-1 
operating instructions, 13-1 
options 

list of, 13-2 
parameter records 

format for, 13-2 
master available table, 31-12 
master pack, 31-13 
MCP 

placing in QWIK Disk, 29-26 
MCP control instructions 

used with LDCNTL program 
list of, 10-2 

MCP debugging 
TRAK to tape, 34-1 

MCP dump file on disk, 6-9 
MCP idle time 

determining 
for QWIK Disk analysis, 29-5 

examining 
for QWIK Disk analysis, 29-6 

MCP initialization 
for Debug Facility 

description of, 28-1 
MCP interfaces 

LIMIT records 
description of, 27-2 

UNIT records 
description of, 27-2 

MCP overlays 
related to performance 

with QWIK Disk, 29-8 
MCP patch history-printing, 6-4 
MCP structures, 31-12 
MDCOPV utility program 

analysis function 
description of, 14-7 
list of options, 14-8 

lndex-10 

syntax for, 14-8 
bad tracks 

description of, 14-17 
conversion function 

description of, 14-13 
list of file types, 14-13 

copy function 
description of, 14-3 
duplicating floppy disks, 14-4 
from floppy disk, 14-4 
list of options, 14-5, 14-12 
restrictions for, 14-2 
syntax for, 14-4 
to floppy disk, 14-4 

description of, 14-1 
duplicating floppy disks 

syntax for, 14-7 
error messages 

list of, 14-19 
examples, 14-14 
executing 

syntax for, 14-2 
with switch settings, 14-3 

file names 
external, 14-16 
internal, 14-16 

floppy disk 
format requirements, 14-2 

floppy disk file 
syntax for conversion of, 14-13 

floppy disk image files 
description of, 14-11 
syntax for, 14-12 

functions 
list of, 14-1 

hardware supported 
list of, 14-1 

informational messages 
list of, 14-16 

input prompts 
list of, 14-18 

required records for, 14-2 
switch setting 

examples, 14-3 
types of messages 

description of, 14-16 
memory division 

MCP 
diagram of, 29-3 

QWIKDisk 
diagram of, 29-3 

memory dump file on disk, 6-9 

4127 0000-100 



memory requirement 
for object program 

determining, 21-2 
memory use charncteristic 

with QWIK Disk, 29-4 
MERG 

intrinsic program 
functional description of, 15-1 
input records 

order of, 15-2 
memory requirements for, 15-1 
operation of, 15-1 
overview of, 15-1 

message for 
successful load, 11-2 
unsuccessful load, 11-2 

message from B 97 4 
displayed on ODT, 1-1 

messages 
disposition 

with firmware code file, 1-2 
recovery of, 1-2 

mirrored USERFL, 24-7, 31-32 
MLGOUT 

executing, 20-1 
multiple characters 

assigning collated values to, 13-1 
multisystem shared configmation 

environmentfor,30-4 

N 

Network Definition Language 
compilation on a B 97 4, 1-1 

NIFMRG utility program 
DCP statement 

examples of, 16-5 
DCP statement options 

list of, 16-5 
description of, 16-2 
END statement 

description of, 16-7 
examples of, 16-7 
syntax for, 16-7 

file processing for, 16-1 
initiating, 16-2 
listing 

description of, 16-10 
MERGED statement 

description of, 16-7 
example of, 16-7 

4127 0000-100 

0 

syntax for, 16-7 
QUIT statement 

description of, 16-8 
syntax for, 16-8 

statements longer than one line 
examples of, 16-9 

types of statements 
list of, 16-4 

with Data Communications 
Processors, 27-1 

OBJCHK program, 32-1 
error messages, 32-3 
file specification, 32-1 

object code files 
listing from disk 

with DMP ALL program, 5-23 
object patch historysprinting, 6-4 
ODT 

input messages 
how to respond to, 3-25 

Olkeyword 
with DISPKV program, 3-7 

opcode breakpoint 
Debug Facility 

description of, 28-1 7 
opcode breakpoint actions 

Debug Facility 
list of, 28-17 

operator prompts 
DISPKV program, 3-32 

optional files 
description of, 3-10 

output device options 
list of, 28-14 

overflow breakpoint 
Debug Facility 

description of, 28-1 7 
overlay analysis 

for QWIK Disk 
list of types, 29-6 

p 

pack, 31-1 
base, 31-13, 31-20 
building MCP structures on a, 31-19 
continuation, 31-13, 31-20 

Index 

lndex-11 



Index 

converting version 1 to version 2, 31-31 
familyname, 31-15 
IVR procedures, 31-1 
label, 31-12 
labeling a version 1, 31-19 
labeling a version 2, 31-28 
masking the family name, 31-15 
master, 31-13 
purging files from a version 1, 31-20 
purging files from a version 2, 31-29 
rebuilding MCP structures on a, 31-28 
rebuilding version 1 structures on a, 31-19 
recovery, 37-1 
recovery flag, 37-8 
renaming a version 1, 31-20 
renaming a version 2, 31-29 
resource pack, 31-21 
restdcted, 31-15, 31-21 
restdctions, 31-21 
squashing, 37-1 
structures, 31-12 
system resource, 31-15 
unrestricted, 31-15 
unrestdcted pack, 31-21 
version 1, 31-13 
version 1 families, 31-13 
version 2, 31-13 
version 2 families, 31-20 
version 3 and greater, 31-24 
versions, 31-13 

compadson of, 31-30 
pack controller, 31-4 
pack ddve, 31-4 
pack types, 31-1 
PACKUP 

Tape Directory Report Program, 35-1 
pass file-SYSTEM/COPY, 24-2 
patch history-printing, 6-4 
PB command 

with PBDPRN program, 17-6 
PBDPRN utility program 

auto printing 
instructions for, 17-7 
syntax for, 17-7 

AX errors 
list of, 1 7-9 

description of, 1 7-1 
error recovery messages 

for image page printer, 17-14 
examples of, 17-6 
executing, 17-7 
image page printer messages 

list of, 17-12 

lndex-12 

messages for printers 
list of, 17-10 

options 
list of, 1 7-2 

SEARCH string 
syntax for, 17-4 

syntax errors 
list of, 17 -8 

syntax for, 17-1 
used for auto printing, 17-7 

PCOPY utility program 
description of, 18-1 
examples of, 18-2 
operating instructions for, 18-1 

PCRXRF (See Pseudo-Reader Cross 
Reference Directory) 

PEEK function 
Debug Facility 

descdption of, 28-21 
performance factors 

for QWIK Disk, 29-3 
performance improvement 

with QWIK Disk, 29-4 
pedpheral activity characteristic 

with QWIK Disk, 29-5 
peripheral analysis 

for QWIK Disk 
using FLAME software graphs, 29-14 

pedpheral performance 
with QWIK Disk, 29-3 

Peripheral Test Ddver (PTD) program 
to initialize 

certain disk pack types, 3-25 
Pedpheral Test Ddver (PTD) programs 

list of, 3-13 
PKCOPY utility program 

descdption of, 19-1 
examples of, 19-3 
messages 

list of, 19-4 
operating instructions for, 19-2 
options 

list of, 19-2 
syntax for, 19-2 

platter, 31-5 
PMlcommand 

starting DMP ANL with, 6-1 
PM command 

with DMPANL program, 6-11 
with DMPCPYprogram, 7-1 

PNkeyword 
with DISPKV program, 3-6 

4127 0000-100 



POKE function 
Debug Facility 

description of, 28-22 
powering on 

requirements for 
with QWIK Disk, 29-29 

printer backup files 
PBDPRN utility program 

used to create, 17-1 
with SNAP images 

creating, 20-1 
printer backup tapes 

listing A Series 
with DMP ALL program, 5-23 

printers 
train printer buffer file generator, 38-1 

program overlays 
related to performance 

with QWIK Disk, 29-8 
programming considerations 

for SYSUP facility, 25-2 
pseudo card files 

activating, 10-5 
assignment of 

procedure for, 10-12 
contents of, 10-10 
creating 

for efficiency, 10-1 
functions of, 10-1 
manual procedure, 10-1 
more than one, 10-10 
procedure for, 10-1 
procedures for, 10-4 

deleting, 10-7 
file identifier, 10-4 
instruction link for, 10-13 
LIMIT records 

used with, 10-3 
maximum number permitted, 10-6 
MCP options 

USE records for, 10-3 
naming convention, 10-4 
not ready status 

description of, 10-13 
ODT control instructions, 10-4 
operating procedures 

automatic, 10-6 
discussion of, 10-6 
manual, 10-6 

recovery of, 10-8 
RJE link for, 10-5 
stacked 

description of, 10-10 

4127 0000-100 

description oflink field, 10-10 
example of, 10-10 

typical 
examples, 10-8 

Index 

Pseudo-Reader Cross Reference Directory 
(PCRXRF), 10-6 

PTD (See Peripheral Test Driver programs) 
punch backup files 

converting 
to pseudo card file, 10-13 

Q 
QUERY DEBUG command 

for Debug facility 
description of, 28-6 
syntax for, 28-6 

QWIKDisk 
applying to your system 

discussion of, 29-4 
as default disk 

discussion of, 29-30 
creating files for, 29-30 

programmatically, 29-30 
error conditions 

description of, 29-32 
file equating, 29-31 
file overflow, 29-18 
file selection for, 29-17 
file sizing 

with COBOL compiler, 29-20 
with DMSII, 29-22 
with GEMCOS, 29-24 
with ISAM, 29-23 
with SORT, 29-22 

hardware type, 29-31 
hardware type code, 29-31 
installing 

procedures for, 29-1 
loading files 

discussion of, 29-30 
loading firmware 

discussion of, 29-30 
options for 

description of, 29-27 
overview of, 29-1 
performance expectations 

with COBOL compiler, 29-21 
with DMSII, 29-23 
with GEMCOS, 29-25 
with ISAM, 29-24 

lndex-13 



Index 

with SORT, 29-22 
placing files on 

procedures for, 29-29 
with COBOL compiler, 29-21 
with DMSII, 29-22 
with GEMCOS, 29-25 
with ISAM, 29-24 
with SORT, 29-22 

placing work files on 
procedure for, 29-31 

unloading files 
discussion of, 29-30 

with random I/O 
discussion of, 29-33 

with sequential I/O 
discussion of, 29-33 

with shared systems 
discussion of, 29-27 

write operation 
method for handling, 29-32 

QWIK Disk analysis 
of system characteristics, 29-4 

QWIK Disk errors 
result descriptors 

in maintenance log (MLOG), 29-33 
single bit 

in maintenance log (MLOG), 29-33 
QWIK Disk operations 

description of, 29-27 
QWIKDISK, 31-1 
QWIKPOOL 

for code file overlays 
with QWIK Disk, 29-3, 29-32 

for overlays 
with QWIK Disk, 29-4 

for QWIK Disk 
description of, 29-27 

QWKMEM 

R 

for QWIK Disk 
description of, 29-27 

used with QWIK Disk, 29-7 

RD command 
with LDCNTL, 10-7 

RDPcommand 
with LDCNTL, 10-7 

RECONFIGURE command 
restrictions for, 3-20 

RECONFIGUREL command 

lndex-14 

restrictions for, 3-21 
records, 31-8 

truncated 
with SORTx intrinsic program, 21-3 

recovery flag, 37-8 
RELOCATE command 

restrictions for, 3-18 
RENAME command 

restrictions for, 3-19 
Resident Operating System (ROS) 

for Image Page Printer, 11-3 
resource pack, 31-21 
restricted pack, 31-15, 31-21 
restrictions 

659IVR command, 3-23 
for dollar sign ($) cards 

for SORT: intrinsic program, 22-8 
for sort keys, 21-3 
LABEL command, 3-22 
RECONFIGURE command, 3-20 
RECONFIGUREL command, 3-21 
RELOCATE command, 3-18 
RENAME command, 3-19 
SINGLE command, 3-17 
SORT: intrinsic program 

for output file, 22-3 
result descriptor 

examining 
for control instructions, 10-11 

RN command 
with LDCNTL program, 10-6 

RNPcommand 
with LDCNTL program, 10-6 

RO command 
with APCR option, 10-7 

rotational latency, 31-6 
Run Log (RLOG) 

use for file type analysis 
for QWIK Disk, 29-11 

RY command 
with DMPCPYprogram, 7-1 
with PKCOPYprogram, 19-1 

s 
sample development environment 

for QWIK Disk, 29-15 
sample disk pack environment 

for QWIK Disk, 29-16 
sample production environment 

for QWIK Disk, 29-16 

4127 0000-100 



SA VEID keyword-DMP ALL utility, 6-9 
SC keyword 

with DISPKV program, 3-7 
SCSI diskpack capacity, 31-3 
SD command 

with LDCNTL program, 10-6 
sector, 31-5 
security 

mhrored USERFL, 24-7, 31-32 
seek time, 31-6 
selecting files 

for QWIK Disk, 29-17 
sequential format, 31-5 
setting switches 

to display status information 
for DISPKV program, 3-25 

SHARED 
system feature 

description of, 30-1 
shared 

shared version 4 diskpacks, 31-27 
shared environment 

with a single system, 30-4 
with multisystems, 30-4 

shared file operations 
BLT contention 

definition of, 30-7 
contention 

definition of, 30-7 
contention cycle 

definition of, 30-8 
definition of, 30-7 
LOCK NO CONTEND 

definition of, 30-8 
LOCK READ 

definition of, 30-8 
LOCK READ UNLOCK 

definition of, 30-8 
LOCK SEEK 

definition of, 30-8 
LOCK SEEK UNLOCK 

definition of, 30-9 
MAILBOX 

definition of, 30-9 
READ 

definition of, 30-9 
RLT 

definition of, 30-9 
SEEK 

definition of, 30-10 
SSP contention 

definition of, 30-10 

4127 0000-100 

stalemate 
definition of, 30-9 
example of, 30-9 

stalemate use routine 
definition of, 30-10 

UNLOCK 
definition of, 30-10 

WRITE 
definition of, 30-10 

WRITE NO UNLOCK 
definition of, 30-10 

shared files 
blocking factor for, 30-4 
I/O operations for 

chart of, 30-3 
restrictions for 

discussion of, 30-2 
shared system type 

multisystem shared 
description of, 30-5 

shared disk and disk pack system 
description of, 30-6 
diagram of, 30-6 

shared disk only system 
description of, 30-5 

shared disk pack only system 
description of, 30-5 
diagram of, 30-5 

shared system 
description of, 30-5 

single-system shared 
description of, 30-5 

shared systems 
components 

list of, 30-11 
file I/O operations 

rules for, 30-2 
goals 

list of, 30-1 

Index 

multisystem shared disk and disk pack 
examples of, 30-13 

types 
list of, 30-5 

shared systems initialization 
discussion of, 30-12 
for multiple systems 

discussion of, 30-13 
for single systems 

discussion of, 30-12 
SINGLE command 

restrictions for, 3-17 
single system 

shared environment for, 30-4 

lndex-15 



Index 

SN keyword 
for DISPKV program, 3-5 

SNAP picture 
hard copy 

creating, 20-1 
SNP ANL utility program 

executing, 20-1 
SO command 

with DCP option, 1-1 
to load firmware, 27-2 

soft-sectored disk, 31-1 
sort key 

restrictions for, 21-3 
sort performance 

with QWIK Disk, 29-3 
SORT: intrinsic program 

control file 
creating, 22-6 

control parameters 
for disk sorting, 22-5 
for tape sorting, 22-4 

default media override 
description of, 22-6 

description of, 22-1 
discussion of tape files 

with variable-length records, 22-3 
disk sorting 

default media for, 22-5 
media used for, 22-5 
work file requirements, 22-5 

error messages 
discussion of, 22-10 
non-fatal, 22-10 
recovery of, 22-11 

elTor messages and warnings, 22-10 
fatal elTor messages 

colTectable, 22-11 
non-correctable, 22-12 

input files 
in EBCDIC code, 22-4 

input/output requirements 
discussion of, 22-2 

keys 
definition of, 22-2 
rules for, 22-2 

maximum block size, 22-4 
memory requirements 

discussion of, 22-1 
list of, 22-1 

operating considerations 
for disk sorting, 22-5 
for tape sorting, 22-4 

lndex-16 

output file 
restdctions, 22-3 

record arrangement 
by keys, 22-2 

resource allocation 
for disk sorting, 22-5 

sequence of output files 
rules for, 22-4 

signed key fields 
how sorted, 22-2 
how treated, 22-2 

sort keys 
discussion of, 22-2 

tape sorting 
description of, 22-4 
operation of, 22-4 

virtual collating sequence, 22-9 
functions of, 22-10 

work file tapes, 22-4 
work file units 

requirements for, 22-4 
work files 

description of, 22-1 
SORTx intrinsic program 

bound 
description of, 21-1 

disk requirements for, 21-2 
dollar sign ($) cards 

description of, 21-6 
list of, 21-6 

error messages 
list of, 21-7 

hardware types 
restdctions for, 21-1 

information required 
list of, 21-3 

input files 
restdctions for, 21-1 

input limits 
list of, 21-3 

input media 
list of, 21-3 

input records 
maximum length (FIBMRL), 21-4 

memory requirements for, 21-1 
minimum memory requirements for, 21-2 
output media 

list of, 21-4 
parity errors 

list of, 21-8 
site-specific parameters 

discussion of, 21-7 

4127 0000-100 

( 



SORTBCT 
definition of, 21-5 

SORT work file 
discussion of, 21-7 

SORT .. file 
lised defined, 21-1 
with user programs, 21-5 

SORT.nfile 
use defined, 21-1 
with user programs, 21-5 

sorting procedure 
description of, 21-3 

specific site defaults 
how to create, 21-5 

user-provided 
description of, 21-1 

variable-length records 
provisions for, 21-4 

source code files 
B974NDL 

transfer of, 1-1 
specific characters 

interchanging, 13-1 
spindles, 31-5 
SQP command, 37-2 
SQUASH utility, 37-1 

recovery, 37-1 
SRTUTL utility program 

ADDROUT statement 
description of, 23-8 
syntax for, 23-8 

COMP ARE statement 
description of, 23-8 
reserved words for, 23-9 
specifying displacement, 23-9 
specifying length of field, 23-9 
specifying length of operand, 23-10 
specifying offset of key, 23-9 
syntax for, 23-9 

description of, 23-1 
dollar sign ($) options 

description of, 23-15 
list of, 23-16 

example of, 23-4 
executing 

examples of, 23-11 
procedures for, 23-11 

executing without cards 
examples of, 23-14 
procedures for, 23-12 

FILE statement 
list of options, 23-3 
requirements for, 23-2 

4127 0000-100 

syntax for, 23-3 
IDENT statement 

description of, 23-8 
syntax for, 23-8 

KEY statement 
description of, 23-5 
examples of, 23-6 
list of options, 23-5 
syntax for, 23-5 

MEMORY statement 
description of, 23-10 
syntax for, 23-10 

PARITY statement 
description of, 23-10 
syntax for, 23-10 

RECORDS statement 
description of, 23-10 
syntax for, 23-10 

SORT statement 
description of, 23-7 
list of options, 23-7 
syntax for, 23-7 

syntax for, 23-1 
State Menu 

Debug Facility 
description of, 28-1 7 
list of actions, 28-1 7 

static environment 
file characteristics 

for QWIK Disk analysis, 29-15 
status information 

how to display 
for DISPKV program, 3-25 

Status Menu 
Debug Facility 

description of, 28-11 
stop user program 

Debug Facility 
functions, 28-19 

subsystems 
disk, 31-1 
pack, 31-1 

successful load 
message for, 11-2 

switch 
setting 

description of, 3-2 
syntax errors 

DMP ANL utility program, 6--3 
system analysis 

for QWIK Disk 
overview of, 29-4 
steps for performing, 29-5 

Index 

lndex-17 



Index 

system commands 
used with LDCNTL program 

list of, 10-2 
used with QWIK Disk 

to generate reports, 29-16 
system configuration file 

adding records 
for QWIK Disk, 29-26 

AUHLoption 
with SYSUP facility, 25-1 

CONNECT record 
for shared systems, 30-13 

CONTROL DEBUG MCP option 
description of, 28-1 

CONTROL DEBUG USER option 
description of, 28-1 

DISK record 
for shared systems, 30-13 

for shared systems 
list of required records, 30-13 

LIMIT BLT record 
for shared systems, 30-13 

LIMIT DELAY record 
for shared systems, 30-13 

PACK record 
for shared systems, 30-13 

SSP DLP record 
for shared systems, 30-13 

SYSTEM record 
for shared systems, 30-13 

UNIT SHARED record 
for shared systems, 30-13 

USE record 
with APCR option, 10-7 
with AURD option, 10-5 
with DCP option, 1-1 
with DUMP option, 6-1, 6-2, 7-1 

system environment analysis 
for QWIKDisk 

dynamic, 29-15 
static, 29-15 

system features 
Data Communications Processor (DCP) 

description of, 27-1 
SHARED 

description of, 30-1 
system interchange code 

restriction for, 3-6 
SC keyword, 3-7 

system resource pack, 31-15 
system use characteristic 

with QWIK Disk, 29-4 
SYSTEM/COPY 

lndex-18 

date handling, 24-5 
pass file, 24-2 

SYSTEM/COPY utility program 
additional e1Tor possibilities, 24-13 
BNA file transfer 

description of, 24-7 
description of, 24-1 
duplicate files 

on disk and disk pack, 24-16 
error messages 

list of, 24-7 
error recovery, 24-13 
functions 

list of, 24-1 
I/O error handling 

description of, 24-12 
I/O error messages 

description of, 24-12 
format for, 24-12 
list of, 24-12 

ICTAPE format 
directory format, 24-1 7 
discussion of, 24-17 
performing a read, 24-18 

implementing 
maximum values for, 24-4 

library maintenance messages 
list of, 24-11 

LOADMP/PACKUP tape handling 
discussion of, 24-17 

missing disk packs 
discussion of, 24-15 

missing files 
discussion of, 24-15 
on disk and disk pack, 24-15 
on disk pack, 24-15 
on tape, 24-16 

nonlibrary tape handling 
discussion of, 24-17 

program flow 
description of, 24-2 

reliability information 
block error message, 24-14 
discussion of, 24-14 

security attributes 
of files copied, 24-3 

TAPE format 
description of, 24-19 
determining programmatically, 24-21 
determining visually, 24-22 
performing a read, 24-21 

use with QWIK Disk 
example of, 29-30 

4127 0000-100 

( 



waining messages 
list of, 24-10 

SYSUP (See Automatic System Recovery 
Facility) 

SYSUP facility 
examples of, 25-2 
programming considerations for, 25-2 

T 

taken branch breakpoint 
Debug Facility 

description of, 28-17 
TAPDIR-Tape Directory Report 

Program, 35-1 
tape 

Tape Directory Report Program, 35-1 
tape directories 

displaying 
with DMP ALL program, 5-24 

tape sorting 
SORT: intrinsic program 

control pai·ameters for, 22-4 
operating considerations, 22-4 

TO ALL command 
for QWIK Disk, 29-26 

trace functions 
using 

in Debug Facility, 28-23 
Trace Menu 

Debug Facility 
description of, 28-13 
list of actions, 28-13 

track, 31-5 
train printer buffer file generator, 38-1 
TRAK 

to tape, 34-1 
TRKTAP program, 34-1 

transaction system performance 
with QWIK Disk, 29-4 

transfer time, 31-6 
translate file 

file name of, 13-2 
translate table 

description of, 13-1 
translation 

MAKTRN 
file generator program, 13-1 

TRKTAP program, 34-1 

4127 0000-100 

u 
UNLODV utility program 

commands 
list of, 26-11 

data communications options 
chart of, 26-5 
displaying, 26-3 
list of, 26-6 

description of, 26-1 
executing 

procedures for, 26-4 
firmware file USP3BH 

setting, 26-2 
settings with TD8, 26--8 
settings with U2AC, 26-9 
settings with U2B, 26-10 

firmware file UST3BH 
settings, 26-3 

firmware files 
discussion of, 26-1 

system configuration records 
list of, 26-3 

unrestricted pack, 31-15, 31-21 
unsuccessful load 

message for, 11-2 
USE record 

with APCR option, 10-3 
with AURD option, 10-3 
with PCRM option, 10-3 

user file-see USERFL, 31-32 
user selected opcodes 

for Debug Facility 
field for, 28-14 

USERFL 
mhTored, 24-7 
mirrored USERFL, 31-32 

utility programs 
CPLOAD, 2-1 
DClANL, 2-2 
DISPKV, 3-1, 12-1 
DLPXCO, 4-1 
DLPXNO, 4-1 
DMPALL, 5-1, 21-5, 22-6 
DMPANL, 6-1 

in relation to DMPMEM, 8-1 
DMPCPY, 7-1 
DMPMEM, 8-1 
ECMANL, 9-1 
LDCNTL, 10-1 
LDHOST, 11-1 

Index 

lndex-19 



Index 

v 

with Data Communications 
Processors, 27-2 

LOADFW, 12-1 
MDCOPV, 14-1 
NIFMRG, 16-2 

with Data Communications 
Processors, 27-1 

PBDPRN, 17-1 
PCOPY, 18-1 
PKCOPY, 19-1 
SRTUTL, 23-1 
SYSTElWCOPY, 24-1 
UNLODV, 26-1 
use with QWIK Disk 

to generate reports, 29-16 

V Series Communication System (VCS), 2-1 
initiation, 2-2 

validity of CONFIGURE for 
659 disk packs, 3-15 

validity of INITIALIZE for 
659 disk packs, 3-13 

validity of RELOCATE for 
659 disk packs, 3-18 

validity of REPORT for 
659 disk packs, 3-15 

validity of SINGLE for 
659 disk packs, 3-17 

value clauses 
examples of, 5-25, 5-26 
to start DMP ALL 

from card file, 5-25 
from executing program, 5-25 

version 1 pack, 31-13 
version 1 pack families, 31-13 
version 2 pack, 31-13 
version 4 diskpacks, 31-3, 31-26 

converting, 31-33 
shared packs, 31-27 

Vertical Format Unit File Builder 
(VFUGEN), 33-1 

VFUGEN utility, 33-1 
virtual collating sequence 

functions 
list of, 22-10 

SORT: intrinsic program, 22-9 
translate option 

description of, 22-10 

lndex-20 

translate tables 
description of, 22-10 
naming convention, 22-10 

w 
waiting I/O analysis 

use of FLAME software graphs 
for QWIK Disk, 29-9 

use of Run Log (RLOG) 
for QWIK Disk, 29-9 

warning messages 
SYSTElWCOPY utility program 

list of, 24-10 
work files 

placing in QWIK Disk 
procedUl'e for, 29-31 

write operation 
with regard to QWIK Disk, 29-32 

x 
XPcommand 

with PKCOPY program, 19-1 

z 
ZIP mechanism 

DMP ALL utility program 
examples of, 5-24 

100-byte mode 
initializing disk packs to 

with DISPKV program, 3-36 
659 disk packs 

rules for, 3-28 
validity of CONFIGURE for, 3-15 
validity of INITIALIZE for, 3-13 
validity of RELOCATE for, 3-18 
validity of REPORT for, 3-15 
validity of SINGLE for, 3-17 

659IVR command 
restrictions for, 3-23 

4127 0000-100 



~ euu penop Buo1e lnQ 
r-------------------------------------------------------

ede1 
uelse.:1 pue p10.:1 esee1d 

Fold here 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 817 DETROIT, Ml 48232 

POSTAGE WILL BE PAID BY ADDRESSEE 

ENTERPRISE SERVER DIVISION 
PRODUCT INFORMATION 
UNISYS CORPORATION 
25725 JERONIMO ROAD 
MISSION VIEJO CA 92691-9826 

II 1 I 1111 I ii 1 II 11 I 1 I 1 1111 I I I 1 I 11 I 11 1. II 1.1.11 .. 1 .. 1.1 

NO POSTAGE 

NECESSARY IF 

MAILED IN THE 

UNITED STATES 



-------------------------------------------------------, 
• UNISYS Help Us To Help You 

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will 
use them to improve the quality of your Product Information. Please check type of suggestion: 

0 Addition 0 Deletion 0 Revision 0 Error 

Publication title 

Document number Date 

Name Telephone number 
( ) 

Title Company 

Address 

City State ZIP code 



( 

( 



41270000-100 


