
Burroughs

B500
Systems

MASTER CONTROL
PROGRAM II

REFERENCE MANUAL

Burroughs
B 500

Sys·tems

MASTER CONTROL PROGRAM II

REFERENCE MANUAL

Burroughs Corporation
Detroit, Michigan 48232

$5.00

Printed in U.S. America 2-72 1057205

COPYRIGHT@ 1972 BURROtlJGHS CORPORATION

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con­
sequences arising out of the use of this material. The infor­
mation contained herein is subject! to change. Revisions may
be issued to advise of such changes: and/or additions.

Correspondence regarding this document should ~e forwarded using the Remarks Form at
the back of the manual, or may be addressed <;tfrectly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

SECTION

1

2

TABLE OF CONTENTS

TITLE

INTRODUCTION .

GENERAL SYSTEMS SPECIFICATIONS .

General.

Hardware System Requirement.

EXECUTIVE AND MANUAL CONTROL FUNCTIONS .

General.

Executive Functions.

Disk Version Executive (:::, :::, :::, DKEX).

Magnetic Tape Version Executive
(:::, :::, :::, TPEX) .

End-of-Job Function (:::, :::, :::, EOJF) .

Date Check Function {:::,:::,:::, DCKF') .

Numeric Date Assignment Function
(:::, :::, :::, NDAF) .

Alphanumeric Date Assignment Function

PAGE

xv

1-1

1-1

1-1

2-1

2-1

2-1

2-2

2-3

2-3

2-4

2-5

(:::, :::, :::, ADAF) . 2-5

Interrupting Function Call Check
(:::,:::,:::, IFCC) • 2-6

Function Call Check Function
(:::, :::, :::, FCDF) MCP II Disk Version Only. 2-6

Function Call Check Function - Table 1
(:::,:::,:::, FClF) MCP II Magnetic Tape
Version. 2-7

Function Call Check Function - Table 2
(:::, :::, :::, FC2F) MCP II Magnetic Tape
Version. •

Function Call Check Function - Table 3
(:::, :::, :::, FC3F) MCP II Magnetic Tape

2-7

Version. 2-7

File Open Function(:::,:::,:::, OPNF). 2-7

Multiprogramming Controller Function
(:::, :::, :::, M/PC) .

Reject Program Function (:::, :::, :::, REJC) .

Save Memory Function (:::, :::, :::, SAVD,
MCP Disk Version) (;:::, > :::, SAVE, MCP
Magnetic Tape Version}

Memory Availability Check Function
(:::, :::, :::, MEMC) .

2-8

2-9

2-10

2-11

iii

SECTION

2 (cont)

iv

TABLE OF CONTENTS (cont)

TITLE

Restore Memory Function (~ ~ ~ FECH
MCP Disk Version) (~ > ~ GETS MCP
Magnetic Tape Version). . . • . . .

Input/Output Conf~guration Check
Function (;::, ~ ~ I/OC) .

Input/Output File. Declaration #1
Function l~ ~ ~ IOFD) • . . .

Input/Output Declaration #2
Function (~ ~ ~ SPFD) •

End-of-Program Function(~~~ EOPG).

Standard End-of-File Function
(~ ~ ~ SEOF). .

Relative Overlay Load Function
(~ ~ ~ ROLD) MCP Magnetic Tape
Version .

Close File Function (~ ~ ~ CLSF).

Executive Loader Function (~ ~ ~ DSCL)
MCP II Disk Versiun .

Magnetic Tape Ver;sion Executive
Loader Function (> ~ ~ LTSC).

Multiprogramming System Tables

System I/O Table.

Program Table .

Program I/O Table .

I/O Control Segment .

Multiprogramming Flag Table .

Multiprogramming Counter Table.

Discontinue Flag.

Disk Address of Operating System

Overlay Linkage •

Program/Function Switch .

Interrupt .

Tank Switch .

Todays and Report Date Storage.

Function/Program Ident Hold Area.

User Program Lib~ary Disk Address .

PAGE

2-11

2-12

2-12

2-12

2-13

2-13

2-14

2-14

2-15

2-16

2-17

2-18

2-19

2-20

2-22

2-23

2-24

2-24

2-24

2-24

2-24

2-25

2-25

2-25

2-25

2-25

SECTION

2 (cont)

3

TA~~ OF CONTENTS (cont)

i

I TITLE

Stanlard End-of-File Card
(or fecord) •

Manual C~ll Functions .

Duplt' cate Systems Tape Function
(:::.:::.:::. DUPL) ...

Change (or load) Date Function
(:::. :::_ :::. CHDF) .

Load MCP II Function (:::. :::. :::. LDOP) .

Switch to MCP II Disk Executive Function
(:::. :::. :::. STDJ) Magnetic Tape Only .

Switch to MCP II Tape Executive Function
(:::. :::. > STTF) Disk Only.

Load Autoload and Go Function
(::::_ :::. :::. LALG) . •

Discontinue Multiprogramming Program
Fune ti on (:::. :::. ::::_ DISC)

Set Data Communications Interrogate
Function (:::_ :::_ :::_ SDCM) .

Multiprogramming Mix Listing
Function (:::_ :::_ ::::_ MXTB)

Change Systems I/O Table
Fune ti on (:::_ :::_ :::_ IOTB) • •

Accept SPO Message Function
(:::. :::_ :::. AXC E) .

Program Call-Out From User Library
(:::_ :::. :::_ PAD D) . •

UTILITY FUNCTIONS .

General .

Print Memory (> > > PRME)

Disk to Tape Single Segment
(:::_ :::_ :::_ DT S J) •

Tape to Disk Single Segment
(:::_ :::_ :::_ TD S J) •

Disk to Tape Utility-Multiple
Se gm en ts (:::_ :::_ ;;::, DTTR) .

Tape to Disk-Multiple Segments
(:::_ :::_ :::_ TTDR) .

Disk Dump Disk Load (:::_ :::_ :::_ DDDL) .•.

Disk to Card with Control
Numbers (:::_ :::_ :::_ DCCN) .•

PAGE

2-26

2-26

2-27

2-29

2-31

2-33

2-35

2-37

2-39

2-L~1

2-43

2-45

2-47

2-49

3-1

3-1

3-3

3-5

J-7

3-9

3-11

3-13

3-15
v

SECTION

3 (cont)

4

vi

TABLE OF CONTENTS (cont)

TITLE

Card to Disk - with Control
Numbers(~ ~ ~ CDCN) .

Print Disk (> > ~ PRDK) .

Clear Disk (~ > ~ CLDK) .

. . . .
Disk Word Change Utility
(~ ~ ~ DCWR).

Disk to Disk (~ ~ ~ DTDK) .

Binary Tape to Tape (~ ~ ~ BTTR).

Printer Back-up Function '(~ ~ ~ PRTB)

Tape to Print Utility (~ > > TUTL). .
Card Utility Function (~ > > CARD).

Tape Utility Function (~ > > TAPE). .
USER PROGRAM LIBRARY FUNCTIONS.

General .

Create Program Add Tape (~ ~ ~ PADR).

Program Add Record Format .

Program Library Tape Merge
(~ ~ ~ PLTM) Magnetic Tape
Version . . .

Tape Word Corrector (~ ~ ~ TWCR)
Magnetic Tape Version .

Delete Programs From Tape Library
(~ ~ ~ DPTL) Magnetic Tape Version.

List Library Tape Program
(~ ~ ~ LLTP) Magnetic Tape Version. .

List Tape Overlay Names
(~ ~ ~ LTON) Magnetic Tape Version . .

Delete Function From Users System
File Call (~ ~ ~ DELF) Magnetic Tape
Version .

Add Functions to MCP II (~ ~ ~ ADDR)
Magnetic Tape Version . .

Load Program Add Tape to Disk Library
(~ ~ ~ LPAT) Disk Version • • • •

Load COBOL Collector Tape to Disk
Library (~ ~ ~ CPAT) Disk Version

Disk Word Corrector (~ ~ ~ DWCR)
Disk Version.

.

.

List Disk Library Program (~ ~ ~ LDPL).

PAGE

3-17

3-19

3-21

3-23

3-25

3-27

3-29

3-31

3-33

3-35

4-1
4-1

4-3

4-6

4-9

4-11

4-15

4-17

4-19

4-21

4-23

4-25

4-29

4-31

4-35

SECTION

4 {cont)

5

6

TABLE OF CONTENTS (cont)

TITLE

Delete Programs from Disk Library
{~ ~ > DPDL) Disk Version .

List Disk Overlay Names {~ ~ ~ LDON)
Disk Version.

COBOL Source Program Maintenance
Function (> > > COBL) Disk Only . - - -
Symbolic Tape Maintenance Call
(~ ::::_ ~ STMT) •

Symbolic Tape Update and Resequence
Call (~ ~ ~ STUR) •

Output From Symbolic Program Tape
Call (~ ::::_ ::: SSTO) •

MCP II SORT CALL FUNCTIONS.

PAGE

4-37

4-39

4-41

4-47

L~-51

4-55

5-1

General . 5-1

Sort/Merge Generator II (~ ::::_ ~ SG2T). 5-3

Sort Generator II . 5-3

Audit Phase 5-3

Allocate Memory Phase 5-4

Process Generated Program Phase 5-4

Generation End/Assembly Call Phase . 5-4

Magnetic Tape Merge Generator 5-5

Sort Generator IV {~ ~ ::::_ SGIV). 5-7

MCP II ASSEMBLER FUNCTIONS.

General .

Basic Assembler Call {> > > ASEL) .

Re-reference Basic Assembler
Symbolics Call (~ ~ ~ REFR) .

Re-number Basic Assembler
Symbolics Specification Card
(::::_ ;: ::::_ RP&L) .

Advanced Assembler Call {::::_ ::::_::: ASOP).

Re-reference Analyzer Call
(;: ::: ::::_ RF AZ) .

Create Macro Library Tape Call
(;: ::::_ ::: CMLT) .

Create Systems Tape (~ ~ ~ CSTP).

6-1

6-1

6-3

6-5

6-7

6-9

6-17

6-19

6-21

vii

SECTION

7

viii

TABLE OF CONTENTS (cont)

TITLE

OPERATING SYSTEM ASSEMBLER.

General

Input Capabilities .

Punched Card.

Paper Tape. •

Magnetic Tape .

Disk File .

Advanced Assembler Language .•

Coding Procedures .

Page (Columns 1-3).

Line (Columns 4~6)

Symbolic Label (Columns 7-12)

Symbolic Name.

Program Po1nts .

OP Code (Columns 13-16) •

Variant (Columns 17-20) .

A, B, and C Address Fields

(Columns 21-56)

Tag

Symbolic Name.

Program Point.

Self-Addressing .

MachLne Absolute.

Literals .

Character Increment ..

V.L.C. (Forced Last Character) .

Hemarks (Columns 57-80).

Pseudo Instruction • •

SLC {Set Location Counter).

ALC {Adjust Location Counter) .

EQU {Equate).

CST {Constant).

RSV (Rerserve Memory) .

HDG (Heading) •

OVR (Overlay) ..

SAD3(Symbolic Three-Character
Addresses)•

PAGE

7-1

7-1

7-1

7-1

7-1

7-1

7-1

7-2

7-2

7-2

7-2

7-2

7-4

7-4

7-4

7-9

7-10

7-10

7-10

7-11

7-11

7-12

7-12

7-13

7-14

7-14

7-14

7-15

7-16

7-16

7-17

7-17

7-18

7-18

7-19

SECTION

7 {cont)

8

TABLE OF CONTENTS (cont)

TITLE

GPMK (Group Mark) ..

TPMK {Tape Mark) ...

END {End of Program).

Macro Instructions (Non-Multiprocessing).

LNK {Link to Routine) .

SET {Set Exit Address) ...

Output Capabilities

Program Listing .

Auto-Load . . .

Auto-Load Output on Magnetic Tape • .

Auto-Load Output on Paper Tape ..

Auto-Load Output on Disk. • • •

Re-numbered Symbolic Program
Deck.

Method of Specification .

MCP II ASOP MACRO INSTHUCTIONS ..

General

Macro Instructions ...

Linking of Macro Routines .

Macro Definitions . • . . . •

AXCE (Accept SPO Message) .

ACPT (Accept) .•.•..

BEGN {Begun Run). .

CLOS (File Close)

DISP (Display)~ .•....

FILE (File Descriptor) ••

LDRO {Load Relative Overlay) .••.••.

M/PI (Multiprogramming Interrupt) •.

OPEN (Open) . Q •••••••••••••

PF/C {Programmatic Function Call) .

POSN (Position)

READ (Read) . o • • • • • • • •

RECD {Record Descriptor).

ROVR {Relative Overlay) . .

PAGE

7-20

7-20

7-20

7-20

7-21

7-21

7-22

7-22

7-24

7-26

7-26

7-26

7-26

7-27

8-1

8-1

8-1

8-3

8-4

8-4

8-4

8-5

8-9

8-10

8-11

8-13

8-13

8-14

8-15

8-16

8-17

8-18

8-20

ix

SECTION

8 (cont)

9

10

x

TABLE OF CONTENTS (cont)

TITLE

STOP (End Run).

WRIT (Write).

ZIP (Stop One Program-Start Another).

Library Routines (Macro and Call
Routines) • • . ..

Library Macro Requirements .

B 500 COBOL COMPILER

PAGE

8-21

8-22

8-23

8-25

8-26

9-1

General. 9-1

COBOL Compilation for Operating
System. 9-2

Blank Executive Routine Save Area
(~ ~ ~ BLNK). 9-4
Set-Up COBOL Com~iler Loader
(~ ~ ~ SCCL). 9-4
Compile COBOL Source Program Function
(~ ~ ~ CMPL). • • . • • . 9-5

COBOL Multiprogramming. 9-6

PROGRAMMING SPECIFICATIONS •.

General.

Multiprogramming Specifications.

Initializing the System.

Executive . . .
Call Record Block .

Multiprogramming Control Overlay
Loader.

Memory Check Function .

Input/Output Check Routine.

Assigner Routine. •

Date Check Function .

Input/Output File Declaration
Function. • . • .

Input/Output File Declaration
#2 Function • • .. .

File Open Function(OPNF).

File Close Function •

• • 0

10-1

10-1

10-1

10-2

10-J

10-J

10-4

10-4

10-4

10-5

10-5

10-6

10-6

10-7

10-7

TABLE OF CONTENTS (cont)

SECTION TITLE

10 (cont) End-of-Program Function .

FIGURE

2-1

2-2

2-3

2-4

2-5

2-6

3-1

3-2

3-3

MCP II Capabilities .

Multiprogramming General System
Features.

Customizing the Operating System.

Program Library .

Overlay Calls .

Non-Multiprogramming Overlays .

Multiprogramming Overlay (Calls) .

COBOL Segmentation.

Discontinue (Non-Multiprogramming).

Discontinue (Multiprogramming).

End-of-Job.

Stop-Run.

Data Communication Interrupts .

Programmed Interrupts
Non-Multiprogramming.

Multiprogramming Interrupts .

COBOL Interrupts.

Programmatic Function Call.

COBOL Function or Program Call.

LIST OF ILLUSTRATIONS

TITLE

Disk Executive Loader Control Card .

Tape Executive Loader Control Card .

DISC SPO Messages.

MXTB SPO Messages.

IOTB SPO Messages.

AXCE SPO Messages.

Memory Print Example .

DTSJ Function Listing Example.

Example of Area Cleared with C's Dumped to Tape
and Multiple Segments with> > > DTTR and Printed
to show Multiple Segments.

PAGE

10-8

10-8

10-9

10-9

10-9

10-13

10-14

10-14

10-14

10-14

10-15

10-15

10-16

10-16

10-17

10-17

10-17

10-18

10-19

PAGE

2-15

2-16

2-40

2-43

2-46

2-48

3-4

3-6

3-10

xi

FIGURE

3-4

3-5

3-6

4-1

4-2

4-3

4-4

4-5

4-6

6-1

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

7-'11

7-12

7-13

7-14

7-15

7-16

7-17

7-18

7-19

7-20

7-21

7-22

7-23

7-24

7-25

xii

LIST OF ILLUSTRATIONS (cont)

TITLE

Disk to Card Record Format •

Example of > > ::::, PRDK or ::::, > > CLDK Listing.

A Listing with both BCL and Binary Variable
Length Records .

Example of a PADR Program Add Listing.

Example of LPAT Library Listing.

Example of a LDPL Listing of CDTAP .

Example of a LDON Listing.

Change Deck.

Control Deck Example .

Head Card Format .

Coding Form.

Acceptable Symbolic Names.

Program Point Usage.

Forced M and N Variants.

Forced Transfer Variants .

Symbolic Name

Program Point as an Address.

Self-Addressing.

Machine Actual Address .

Packing Literals Within an Instruction .

ADM Literal.

Character Increment.

Forced Last Character.

Adjusting the Set Location C~unter .

Adjusting the Location CounteT .

Equate Statements.

A Constant with 60 Data Characters and 668 Blanks.

Reserving 728 Character Positions Labeled TAPEIN •

Normal Heading .

Typical Overlay Card .

6-Character 2-Part Constant.

I-Character Group Mark .

Tape Mark Coding .

End Coding .

Link to Subroutine with a Retjurn to the Next
Instruction and a Return to X.

PAGE

3-15

3-20

3-32

4-5

4-27

4-36

4-40

4-44

4-48

6-12

7-3

7-4

7-5

7-9

7-10

7-11

7-11

7-12

7-12

7-12

7-13

7-14

7-14

7-15

7-16

7-16

7-17

7-17

7-18

7-19

7-19

7-20

7-20

7-20

7-21

FIGURE

7-26

7-27

7-28

8-1

8-2

8-3

8-4

8-5

8-6

8-7

8-8

8-9

8-10

8-11

8-12

8-13

8-14

8-15

8-16

8-17

8-18

8-19

8-20

8-21

8-22

8-23

8-24

8-25

8-26

8-27

8-28

8-29

8-30

8-31

LIST OF ILLUSTRATIONS (cont)

TITLE

Set Exit for Return to Next Instruction and Set
Exit for Return to X .. •

Operating System Assembler Program Listing.

Auto-Load Program Card.

ACPT Supervisory Printer Message.

ACPT Listing.

BEGN I/O Macro with Data Linkage.

BEGN Listing.

CLOS and :c/o Unit Placement to Program
I/O Table .

CLOS Listing.

Output Data for SPO .

DISP Listing.

File Code Entry .

FILE Listing.

LDRO Load .

LDRO Listing.

Control Transfer.

M/PI Listing.

File OPEN with the Reading of First Record.

OPEN Listing.

Operating System Function to Print Disk from
Segment 1,000 thru 2,999 ...•

PF /c Listj_ng.

Appropriate I/O Positioning .

POSN Listing.

Read Next Record Available.

Read Listing.

Record Description and Selection of I/O Routine .

Auto-Load Output Codes.

ROVR Listing.

Termination of Processing .

Stop Run Macro.

Heading Write Followed by Double Space on
Line Printer. •

Write or Position Printer File Macro Listing.

Write Macro Listing .

Program/Start Zip Stop.

PAGE

7-22

7-23

7-24

8-5

8-5

8-8

8-9

8-10

8-10

8-11

8-11

8-11

8-12

8-13

8-13

8-14

8-14

8-14

8-15

8-15

8-16

8-16

8-17

8-18

8-18

8-19

8-20

8-21

8-21

8-21

8-22

8-23

8-23

8-24

xiii

FIGURE

8-32

9-1

9-2

9-J

10-1

10-2

10-J

10-4

10-5

10-6

10-7

10-8

10-9

TABLE

2-1

2-2

2-J

2-4

J-1

4-1

6-1

7-1

xiv

LIST OF ILLUSTRATIONS (cont)

TITLE

ZIP Listing.

COBOL ENVIRONMENT DIVISION Example •

Assembler Program in the User Library.

Segmented. COBOL in the Disk Library.

Date Assignment Format .

Program Beginning.

Specific Overlay Identification.

Non-Multiprogramming Overlay Linkage •

Non-Multiprogramming Discontinue .

Multiprogramming Discontinue •

Branch to Executive Controller •

Return Address Branch for In~errupt Test •

Stores Return Address.

LIST OF TABLES

TITLE

Executive Calls.

Second Word User Coding.

Flags and Table Positions.

Manually Initiated Function Calls.

Utility Functions.

Program Library Functions.

Assembler Function .

B 500 Standard Mnemonic Operation Codes.

PAGE

8-24

9-2

9-6

9-7

10-11

10-12

10-lJ

10-14

10-15

10-15

10-15

10-17

10-19

PAGE

2-1

2-4

2-17

2-26

J-1

4-1

6-2

7-5

INTRODUCTION

The Burroughs B 500 Disk/Tape Master Control Program (MCP) II is a

multiprogramming or batch processing operating system that provides

control and maintenance of the User Program Library for tape and or

disk configurated systems. MCP II provides control for the execution

of one, two, or three independent user programs on a multiprogramming

basis.

The software and hardware requirements for the system are defined so

that the user may better understand the Executive and Automatic

System Control Functions. This includes memory allocation and auto-

matic reassignment of actual to relative address at execution time,

the creation of printer back-up tapes for the line printer, the

ability to add or delete functions from the disk version of MCP II,

and program segmentation.

MCP II also provides Sort Generation Functions for customizing sort

programs. Advanced and Basic Assemblers are also provided in both

the disk and tape versions that can be initiated manually with an

appropriate function call to the Executive.

A section of the document emphasizes some of the programming tech­

niques relating to MCP II, and the capability of including the COBOL

Compiler as part of the disk version.

The Executive Routine is always resident in core memory when MCP II

is in control of the system. The controller function maintains re-

turn linkages between multiprogramming programs. Linkage to the

Executive allows for programmatic roll-in/or roll-out, e.g., inter­

ruption of processing, storage of the data in core memory on punch

cards, disk or magnetic tape, loading of the called program into

memory, or the recall and restoration of a stored program at the

point of interruption.

At the conclusion of a program the End-of-Job Function will output an

End-of-Job message to the system operator. The Executive will then

loop continuously through an Interrogate Routine waiting for another

job to be initiated.

xv

As an user option, the Data Communic<;:ttion System can be interrogated

for an input or output ready status. When a terminal is found in a

ready status, the terminal number is stored within the Executive, and

a user program. Either the DFI (input) or DFO (output) is auto­

matically called by the Executive.

Peripheral assignment (when in the multiprogramming mode) is the res­

ponsibility of MCP II and is of no concern to the programming staff.

Programs should be written to handle files via READ and WRITE macros,

and not specific peripheral units. When a program is retrieved into

memory, the peripheral requirements f~r that program are reserved. As

each file is programmatically opened, the MCP will specifically assign

unit(s) from the System I/O Table. Programmers should take into con­

sideration, the sequence that magnetic tape files are declared in

their program, and document the operating instructions in such a way

that the operator may pre-mount his tapes when preparing for that

particular run.

MCP II may be used in conjunction with the Supervisory Control Program

(SCP) to provide control of On-Line Teller System installations.

The following is a list of MCP II capabilities:

xvi

a. Control for executing one, two, or three completely

independent user programs in a multiprogramming mode.

b. Control functions are provided to process the following:

1) End-of-job.

2) Date assignment and changes.

3) Overlay loading.

4) Systems duplication.

5) Saving and restoring of memory.

c. Executive routine control of the following I/O devices.

1) Magnetic tape (BCL).

2) Card reader.

J) Paper tape reader.

4) Card punch.

5) Paper tape punch.

6) Line printer.

7) Disk file.

8) Supervisory printer.

d. Memory aJ.location and automatic reassignment of actual

address to relative address at execution time.

e. Creation of printer back-up tapes for eventual line printer

output is provided automatically if such action is specified.

f. A function to print printer back-up tapes is also provided.

g. User Program Library creation and maintenance.

h. A capability of adding or deleting functions from the MCP

disk version provides for minimizing disk storage require­

ments. This allows the user to customize the MCP to his

particular installation.

i. ASOP Assembler Macros provide the user with multiprogramming

I/O control and set-up procedures (includes blocking and un­

blocking of records). The multiprogramming macros are:

1) Begin run.

2) File descriptor•

J) Record descriptor.

4) File open.

5) File close.

6) Read.

7) Write.

8) Position (line printer and magnetic tape).

9) ZIP (to execute another program or function).

10) Accept (input from SPO).

11) Display (output on the SPO).

xvii

12) Multiprogramming interrupt.

13) Programmatic function call.

14) Load relative overlay.

15) Relative overlay.

16) Stop run.

j. Program segmentation based on macro statements.

k. ASOP, Advanced Assembler II, and B 500 COBOL Compiler pro­

vides for the automatic assignment of relative address codes,

which allows the "floating" of programs within core memory.

xviii

SECTION 1

GENERAL SYSTEMS SPECIFICATIONS

GENERAL.

The MCP II is a ::>oft:ware Operating System designed to provide the

following capabilities:

a. Systems control for the following areas.

1) Tape system control.

2) Disk file system control.

J) Executive control for multiprogramming.

4) Executive control of input/output devices.

5) Reassignment of actual address to relative

address at execution time.

b. Creation and maintenance of a User Program Library.

c. Utility functions to provide many standard functions required

by a user. The routines may be initiated through a function

call from the card reader, supervisory printer or user

program.

d. Sort functions that allows generating of specialized sorts.

e. Programs used in conjunction with the COBOL Compiler that

allow the user to compile a program under control of the MCP.

f. Assembler functions that allow assembly of user programs

under control of the MCP.

HARDWARE SYSTEM REQUIREMENT.

The following is the minimum hardware requirement for utilization of

the operation system.

1-1

1-2

a. Central Processor (9.6 or 19.2K).

1) Transfer Branch (TCB) option.

2) Interrogate Package.

b. Supervisory printer.

c. Card reader.

d. Line printer.

e. One disk file module (or systems memory)

and two, or three magnetic tape units.

NOTE

B 500 COBOL Compiler

requires 19.2K memory.

SECTION 2

EXECUTIVE AND MANUAL CONTROL FUNCTIONS

GENERAL.

MCP II is designed around an Executive routine that resides in memory.

The Executive provides program linking to MCP functions, and a

continuous interrogating loop through the card reader, Supervisory

Printer, and selectively a Data Communications System.

The functions are divided into two types: Executive and Manual.

EXECUTIVE FUNCTIONS.

The following functions are automatically called by the MCP to control

the operation of a normal processing cycle. Executive functions

cannot be called by the programmer, or operator.

The Executive Call functions are listed in table 2-1.

Table 2-1

Executive Calls

Call Description

> > >DKEX Disk Version Executive - -
> > >TPEX Magnetic Tape Version Executive - -
> > >EOJF End-of-Job Function - -
> > >DCKF Date Check Function - -
> > >NDAF Numeric Date Assignment Function - -
> > >ADAF Alphanumeric Date Assignment Function - -
> > >IFCC Interrupting Function Call Check - -
> > >FCDF Function Call Check Function (Disk Version) - - -
> > >FClF Function Call Check Function-Table 1 (M.T. Version) - -
> > >FC2F Function Call Check Function-Table 2 (M.T. Version) - -

2-1

Call

> > >FCJF - -
> > >OPNF - -
> > >M/PC - -
> > >REJC - - -
> > >SAVD - - -
> > >SAVE - -
> > >MEMC - -
> > >FECH - -
> > >GETS - -
> > :::I/oc - -
> > >IOFD - -
> > >SPFD - - -
> > >EOPG - - -
> > >SEOF - -
> > >ROLD - - -
> > >CLSF - -
> > >DSCL - - -
> > >LTSC - - -

Table 2-1 (cont)

Executive Galls

Description

Function Call Check Function-Table J (M.T. Version)

File Open Function

Multiprogramming Controller Function

Reject Program Function

Save Memory Function (Disk Version)

Save Memory Function (M.T. Version)

Memory Availability Check Function

Restore Memory Function (Disk Version)

Restore Memory Function (M.T. Version)

Input/Output Configuration Check Function

Input/Output File Declaration #1 Function

Input/Output File Declaration #2 Function

End-of-Program Function

Standard End-of-File Function

Relative Overlay Load Function (M.T. Version)

Close File Function

Disk Version Executive Card Loader Function

Magnetic Tape Version Executive Loader Function

DISK VERSION EXECUTIVE (> > ~ DKEX).

The Disk Version Executive contains controls that allow in-process

programs to exit to an End-of-Job Function, handle requests for

2-2

program.overlays to be retrieved into memory, and a request for MCP

functions to be loaded and executed. The Executive also retrieves

object programs from the User Program Library, handles interrupts for

operator intervention, or optionally interrogates for data

communications.

When date constants are required by the object programs, Todays-Date

and Report-Date stored in the DKEX Function are called.

When the SWITCH constant contained in the DKEX Function is set ON, it

indicates that the program in process has interrupted another program.

This program will automatically be restarted at the point of interrupt

when an End-of-Job condition is detected in the interrupting program.

MAGNETIC TAPE VERSION EXECUTIVE (> :::_ > TPEX).

The magnetic tape version Executive like thB disk version Executive

contains controls that permit in-process programs to exit to an End­

of-Job Function, and to handle requests for program overlays to be

retrieved and executed. This Executive also retrieves object pro­

grams from the User Program Library, and handles interrupts for

operator intervention. This Executive will not handle Data

Communication devices •.

A SWITCH constant contained within the Executive is tested to find out

whether the Save Memory (SAVE or SAVD) had been performed. prior to the

ioading of the current operating program. If the test is TRUE, the

Restore Memory Function (FECH or GETS) will be called to reload the

saved program into memory in its original condition and to resume the

interrupted job.

END-OF-JOB FUNCTION (> > :::_ EOJF).

The End-of-Job Function is automatically retrieved. into memory when

the End-of-Job linkage is entered in the Executive. This condition

occurs when an operating program transfers control to memory location

000, or when the C(~ntral Processor is cleared by pressing CLEAR and

then CONTINUE.

2-J

The supervisory printer and card reader are interrogated to allow the

systems operator to execute a function or a program. If the operator

wishes to execute any of the MCP functions or a user program, the

INPUT REQUEST key on the supervisory printer must be depressed (or the

card reader made READY) in order for the MCP to receive a call. Once

a call has been received by the operating system the EOJ Function

returns control to the Executive.

DATE CHECK FUNCTION (> > > DCKF).

The MCP will automatically call the Date Check Function to test the

second word of all user programs. The DCKF Function determines if the

code (in the second word of the user program) will cause a formatted

date(s) constant to be constructed by the ADAF or NDAF Functions.

User coding for the second word is found in table 2-2.

Word Position

0 and 1

2

3

!+

5

6 thru 8

9 thru @

* todays-date
** report-date

2-!l

Table 2-2

Second Word User Coding

Code Remarks

+D Date test positions.

y YES, todays-date is required, other-
wise, leave blank.

y YES, report-date is required, other-
wise, leave blank.

* (Type) See NDAF and ADAF Fu.nc ti on for codes.

** (Type) See NDAF and ADAF Function for codes.

(Location) Memory location where todays-date is
stored in the user program.

(Location) Memory location where report-date is
stored in the user program.

The Date Check Function tests the Todays-Date and Report-Date

parameters, and issues a call to automatically retrieve the Numeric

{NDAF) or Alphanumeric {ADAF) Date Assignment Function. The dates

will be formatted as spe.cified by the type code and stored in the

memory location specified. In addition the formatted dates will be

displayed on the SPO {supervisory printer) for operator verification.

A BOJ {begin run) message will be displayed on the SPO and a branch

to the first instruction in the user program will be taken.

NUMERIC DATE ASSIGNMENT FUNCTION (~ ~ ~ NDAF).

The Numeric Date Assignment Function is automatically called by the

DCKF Function to format and store date constants when a numeric or a

julian-date is re~quired by a user program. Either todays-date and/or

report-date may be formatted by this function. The second word {posi­

tions 4 and 5) of the user program may contain any of the following

codes to obtain the type of numeric formatting reflected by the

following:

Type Code Format Type of Date

1 MM-DD-YY Month-day-year

2 DD-MM-YY Day-month-year

J YYDDD Year-julian-day

4 DDDYY Julian-day-year

ALPHANUMERIC DATE ASSIGNMENT FUNCTION (~ ~ ~ ADAF).

The Alphanumeric Date Assignment :Function performs exactly as the

Numeric Date Assignment Function with the exception of formatting

the dates.

Type Code Format Type of Date

A Alpha-month DD, YYYY Month-day-year

B DD alpha-month YYYY Day-month-year

J Alpha-month DD, YYYY Abbreviated-month-day year

K DD alpha-month YYYY Day-abbreviated-month-year

2-5

INTERRUPTING FUNCTION CALL CHECK (:;:::;:::;:: IFCC).

The Interrupting Function Call Check Routine performs the following

actions:

a. Determines the type of interrupt being initiated,

e.g., operator, programmatic, or data communications.

b. Displays a SPO message reflecting the function being

programmatically called.

c. Calls the Save Memory Function {SAVD or SAVE) to

accomplish a roll-out of an operating program prior

to calling the requested function.

NOTE

An area within the disk operating

system has been reserved for the

saving of programs.

d. Tests the Multiprogramming Flag to see if the function

being called is consistent with the present operational

mode (multi or non-multiprogramming), and displays a SPO

message if an inconsistency exists.

e. Exits to either DFI or DFO, after setting up the proper

overlay call for data communication interrupt.

FUNCTION CALL CHECK FUNCTION (>:;:::;:: FCDF) MCP II DISK VERSION ONLY.

This routine is an automatic function that performs the tests

necessary to determine the validity of an operator initiated function

call. It determines if the Save Memory {SAVD) Function has to be

called and will initiate the automatic call if required. The Function

Table set up for the validating of functional calls is contained with­

in the FCDF Function and has an unlimited capacity. Each table entry

contains a 4-character function identity code, and a 7-character disk

file starting address where the function resides. Nine table entries

constitute a full Function Table segment, each of which are

overlayable within the FCDF Function.

2-6

FUNCTION CALL CHECK FUNCTION - TABLE 1 (~ >'> FClF) MCP II MAGNETIC
TAPE VERSION.

This routine is an automatic function that performs the tests

necessary to determine the validity of a function call. It will also

test to determine if the Save Memory (SAVE) Function must be called,

and will initiate the function when required. The Function Table set

up for the validating of functional calls is contained within the FClF

Function and has a capacity of 20 functions. Each t.~ble entry

contains a 4-character function identity code.

FUNCTION CALL CHECK FUNCTION - TABLE 2 (~ ~ ~ FC2F) MCP II MAGNETIC
~VERSION.

This routine is an extension of the FClF Function and provides an

additional 20 table entries.

FUNCTION CALL CHECK FUNCTION - TABLE J (~ ~ ~ FCJF) MCP II MAGNETIC
TAPE VERSION.

This routine is an extension of the FC2F Function and provides an

additional 20 table entries.

FILE OPEN FUNCTION (~ ~ ~ OPNF).

The File Open Function is called by the Executive whenever a pro­

cessing program requires the opening of a file. Programs to be multi­

programmed must communicate with the Multiprogramming Controller to

obtain the OPEN Function, and the following actions w111 occur.

a. The I/O Control Segment and the Program I/O Table are

retrieved.

b. The I/O unit and number are assigned by the MCP on a

next unit-available basis.

c. The assigned I/O unit number is deleted from the system

I/O Table to reflect that the unit will not be available

for assignment until the file is closed or the program is

discontinued.

d. The Multiprogramming Controller is recalled and if the

specified type of I/O unit cannot be assigned by the I/O

2-7

File Declaration Function (~ ~ ~ IOFD) an exit is

initiated to the program END Macro.

e. A FILE OPEN message is displayed on the SPO.

0 OMN file-name bbbbbbbeeeeeee

where:

1) 0 - open

OMN - the Operation Code, M and N variants

of the file being opened.

2) bbbbbbb - beginning address of the pertinent

file on disk.

J) eeeeeee - ending address of the pertinent file

on disk.

f. The UNIT NOT AVAILABLE message is displayed on the SPO

whenever the required unit is not available.

g. The 0 ERR file-name message will be displayed whenever

an error is detected in attempting to open the file.

MULTIPROGRAMMING CONTROLLER FUNCTION (~ ~ > M/PC).

The Multiprogramming Controller is called into the scratch-pad work

area (machine location 490 thru 79@) whenever a program designed for

multiprogramming (relative addresses) is loaded. The function is re­

called following any interrupt condition which requires the use of the

scratch-pad area. The purpose of the M/PC Function is to perform I/O

operations, and set up and maintain return linkages to one, two, or

three (maximum) multiprogramming object programs. The following

messages may be displayed by this function:

2-8

a. OMN ER

A read/write error (ER) has occurred on the unit specified by

OMN (OP Code, Mand N variants}. If the message persists,

the operator must discontinue the program with (~~~DISC).

b. OMN NR

The unit specified by OMN has been tested and found to

be NOT HEADY.

c. FN/O

A read or write operation was specified and the file has an

unopened status. All files must be OPENed prior to perform­

ing an I/O function; therefore, a programmatic error exists

and the program is automatically discontinued.

d. FC MP

A non-multiprogramming program (not relatively addressed)

has been initiated and will not operate under the Multi­

programming Controller. The systems operator must restart

the program after the multiprogramming schedule has been

completed.

REJECT PROGRAM FUNCTION (~ ~ > REJC).

The Reject Program Function is called whenever a condition which pro­

hibits the execution of a program is encountered. The REJC Function

contained in the MCP II disk version will insert the first rejected

call into a tank for automatic recall whenever the necessary I/O unit,

available memory, or the number of programs being operated become less

than the maximum number (three) allowed. The following messages may

be displayed on the SPO during the Reject Function process.

a. Program-name NO MEM.

The amount of available memory is insufficient to process

the program.

b. Program-name INV PT.

An invalid non-multiprogramming program has been called

for execution. The systems operator must restart the pro­

gram after the multiprogramming schedule has been completed.

c. Program-name MIX LT.

The maximum number of multiprogramming programs are

presently operating in the mix.

2-9

d. Program-name NO I/O.

I/O units necessary to opera~e the program are not available.

e. Program-name TNK.

The program cannot operate a~ the present time, because the
i

parameters are stored in the jtank area. No action by the

system operator is require~. When the required I/9 unit,

the required memory, or the riumber of programs in the mix be­

come less than the maximum, the program will be automatically

recalled and executed.

NOTE

The tank area is capable of

holding only on9, program name.

Whenever multip~e programs are

called for exec~tion and cannot

be run, only th~ first program

will be automat~cally recalled.

SAVE MEMORY FUNCTION (~ ~ ~ SAVD, MCP DISK VERSION) (~ > ~ SAVE, MCP
MAGNETIC TAPE VERSION).

The Save Memory Function is used by t~e Executive to cause the roll­

out of program{s) from memory to a reserved disk area, magnetic tape,

or {optionally) cards: Whenever memo~y requirements are insufficient.
j

The systems operator must be aware of !the peripheral assignments for

the program being called for executio~ so that a conflict of I/O unit

usage between a called program and th~ roll-out program can be avoided.

The following message may be displayed on the SPO by the MCP II

magnetic tape version.

SAVE MEM-DESIG. UNIT

The systems operator must reply with one of the following unit desig­

nations to tell the MCP on which I/O unit to dump the contents of mem­

ory. The disk version will automatically store the contents of memory

into its own area of disk.

2-10

where:

a. # - card punch.

b. 1, 2, J, L~, or 5 - magnetic tape unit. A scratch tape with

a write ring must be mounted on the designated physical

magnetic tape unit. The function or program to be executed

during the interrupt must not use this unit number.

MEMORY AVAILABIL:[TY CHECK FUNCTION (~~~MEMC).

The Memory Availability Check Function determines whether or not a

relative program can be processed at a given time within a multipro-

gramming schedule. It checks to see if the MCP is operating in a

multiprogramming mode, whether the number of programs in the mix is

less than the maximum, and if the program will fit into available

memory. If all of the conditions are satisfied, the I/OC Function

is called. If the tests fail, the REJC Function is called and the

program does not enter the mix.

RESTORE MEMORY FUNCTION (> ;::: ~ FECH MCP DISK VERSION) (~ ~ ~ GETS
MCP MAGNETIC TAPE~ VERSIONJ.

The Restore Memory Function is automatically called by the Executive

to restore memory. The following messages will be displayed on the

SPO by the magnetic tape version. The disk version will cause the

SAVD programs to be rolled into memory from MCP II reserve area.

a. LD CDS TO RESTORE MEM.

The program or function executed during an interrupt is

completfld. The MCP is ready to restore the interrupted

program from the punch cards created by the SAVE Function.

The systems operator must place the appropriate auto-load

cards in card reader 1, and press START to reinstate the

original program.

b. CD SEQ E~RR.

Memory restoring auto-load cards are not in their proper

sequencE~. Correct the sequence, and clear the read buffer

by accomplishing the following action.

2-11

1) Note the location displayed in the Instruction

Address Register (IAR).

2) Press CLEAR, LOAD, and CLEAR at the Central Processor.

3) Re-index the noted location into the IAR and press

CONTINUE on the Central Processor.

After completion of the Restore Memory Function, the interrupted

program is resumed.

INPUT/OUTPUT CONFIGURATION CHECK FUNCTION (~ ~ ~ I/oc).

The Input/Output Configuration Check Function tests to insure that

the I/O units required by a program are available for assignment.

The following SPO message is displayed when the I/O units are not

available.

program-name NO I/O

The program cannot be executed at this time. The program will be

tanked and recalled when the required I/O units become available.

INPUT/OUTPUT FILE DECLARATION #1 FUNCTION (~ ~ ~ IOFD).

The Input/Output File Declaration #1 Function stores the following

information in the I/O Control Segments.

a. An Interrogate OP Code and M variant.

b. Program I/O Table position and length.

c. An appropriate I/O OP Code ahd M variant.

If a file requires the card reader or card punch, and the device has

not been assigned to the program, a switch is automatically set to

discontinue the program.

INPUT/OUTPUT FILE DECLARATION #2 FUNCTION (~ ~ ~ SPFD).

The Input/Output File Declaration #2 Function sets up the linkage to

cause a program calling for an invalid I/O unit to be discontinued.

The SPFD Function will assign a file to either the line printer, or

2-12

optionally, to a magnetic tape back up if specified by the program.

However, it should be noted that the COBOL program does not have the

printer back-up capability. The file-name will be displayed on the

SPO along with the assigned I/O unit. The following messages may be

displayed on the SPO.

a. BOJ Program-name.

The called program has been read into memory.

b. Program-name I/F S.

An invalid I/O unit has been called by the operating

program, and the program discontinued.

END-OF-PROGRAM FUNCTION (~ ~ ~ EOPG).

The End-of-Program Function is automatically called at the EOJ of each

program to remove it from the mix, and to restore memory and I/O units

to the systems tables.

This function is called by the linkage inserted by the STOP RUN Macro

or the COBOL Compiler. In addition, EOPG causes an End-of-Program

message to be displayed on the SPO, recalls the M/P Controller if pro-

grams are multiprogramming,. and exits to the End-of-Job Routine when

there are no other programs in process. The following messages may be

displayed on the SPO.

a. EOP program-name.

This message signifies the end of a program.

b. PG ER.

A MCP error has occurred. The EOPG Function is unable to

determine which program to remove from the Memory Require­

ment Table. All jobs in process will be discontinued.

STANDARD END-OF-FILE FUNCTION (~ ~ ~ SEOF).

The Standard End-of-File Function is called by the Executive when an

end-of-tape, end-of-page, or an end-of-disk-area condition occurs dur­

ing the execution of an I/O instruction specifying the standard EOF

2-13

address. The SEOF Function determines the condition that caused it

to be called, and performs the following action:

a. End-of-tape.

1) Writes a tape mark.

2) Rewinds the magnetic tape.

3) Displays an end-of-tape message on the SPO.

4) Recalls the Executive.

b. End-of-page.

1) Skips paper to top of page.

2) Recalls the Executive.

c. End-of-disk-area.

1) Displays an end-of-area message (DSKLMTXXXXXXX) on the

SPO. This message ident;ifies the last disk segment read

or written.

2) The program is automatically discontinued.

RELATIVE OVERLAY LOAD FUNCTION(>>>: ROLD)MCP MAGNETIC TAPE VERSION.

The Relative Overlay Load Function w~ll load the first block of a

relative program into a specified overlay memory area. It will store

the program block count in a work ar;ea, and position the system tape

to the first block of the program. This function conditions the

Executive to load the program, and to reassign addresses.

CLOSE FILE FUNCTION (~ > ~ CLSF).

The Close File Function is called by the Multiprogramming Controller

when the files are closed by an operating program. The I/O units used

by the operating program are released, and made available to the MCP

for further assignment to another program. The FILE CLOSE message is

displayed on the SPO and the Multiprogramming Controller recalled.

The CLSF Function causes an exit to the END Macro if a file is not in

2-14

an OPEN status prior to being CLOSED. One of the following messages

are displayed on the SPO whenever a file is CLOSED.

C OMN file-name

C OMN file-name PRTR TP

EXECUTIVE LOADER Ji'UNCTION (.:::, > > DSCL), MCP II DISK VERSION.

The DSCL Function loads the Disk Executive from the disk file and

transfers control to the DKEX Function.

are as follows:

The operating instructions

a. Load the MCP II disk version (if not already present) to

disk filH by using the manually initiated LDOP Function

located in the tape version.

b. Load the Disk Executive Loader Control Card into memory

from card reader 1.

c. Press CLEAR and CONTINUE on the Central Processor.

The format for thE~ Disk Executive Loader Control Card is illustrated

in figure 2-1.

I
K 2 5 0 J 0 4 0 0 0 4 0 KS bO 1 0

0 0 0 0 0 0 0 0 0 0 0 0 ~o 00 00
I 2 3 4 5 • 7 • I II 1112 3~4 15 11 17 I~
11 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1

2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 u

44 lu 44 44 44 44 44 44 44

5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 66

11 7 7 77 7 7 7 7 7 7 11 7 7 11

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
I 2 3 4 5 • 7 I • 10 II 12 ~3~4 15 11 1111

DISK
ADDRESS
OF DISK
SYSTEM

04 0 0 1 0 6 1 b 4 0 0 bbbbbb CONTROLLER bbbbb '9 2 6 0 0 0 bhbbbb

u 00 00 ~o 00 0 0 000000 0000000 0 0 0 0 0 b 0 0 0 0 0 000000 ~o
!120 121122 n!M ~- 21 21 21311 313233343531 37 31 38 40 41 42 43 4445414748 9 50 51 52 5354 55 58 57 51 59 IO 11112

I 1 1 1 1 1 ~ 1 1 1 11 111111 1111111 11111 ~ 1 11 11 111111 ~ 1

:z2 2 2 2 2 2 2 22 2 2 222222 2222222 2 2 2 2 2 2 2 2 2 2 2 222222 ~2

33 3 3 3 3 3 3 3 3 3 3 333333 3333333 3 3 3 3 3 3 3 3 3 3 3 333333 3 3

u 44 44 44 44 44 444444 4444444 44444 44 44 44 44 44 44 44

5 5 5 5 5 5 5 5 5 5 5 5 555555 5555555 5 5 5 5 5 5 5 5 5 5 5 555555 5 5

166 66 6 6 6 6 6 6 6 6 666666 6666666 6 6 6 6 6 6 6 6 6 6 6 666666 6 6

77 7 7 11 11 11 11 111111 1111111 11111 77 11 7 7 777777 7 7

8 8 8 8 8 8 8 8 8 8 8 8 888888 8888888 8 8 8 8 8 8 8 8 8 8 8 888888 8 8

9 9 9 9 9 9 9 9 9 9 9 9 999999 9999999 9 9 9 9 9 9 9 9 9 9 9 999999 9 9
19 20 ~1122 23 24 25 21 2121 21311 31 32 33 34 35 38 37 31lt40414243 4445484748 ~9 50 5152 5354 55 58 57 51 59 60 6162

Figure 2-1. Disk Executive Loader
Control Card

LOAD DSK F. XE C CARD

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13641588 87 68 68 70 71 72 73 74 75 b& 17 7819 80

1111 1111 11111 11111

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4444 4444 4 44 44 ~ 44 44

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

1111 1111 77 77 7 7 77 77

8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
13 64 65 6i 67 68 69 70 7172737475 b& 17 7179 Ill

2-15

The Disk Executive Loader Control Card is automatically punched by the

LDOP Function {reference item a).

The following control message is displayed on the SPO and indicates

that the system is under the control of the MCP II disk version.

DISK EXEC CONTROLLER LOADED

MAGNETIC TAPE VERSION EXECUTIVE LOADER FUNCTION (~ ~ ~ LTSC).

The LTSC Function loads the Tape Executive from tape unit 6, and

transfers control to the TPEX Function. The operating instructions

are as follows:

a. Mount the MCP II systems tape {with no write ring)

onto MTU-6.

b. Place the supervisory printer in REMOTE status.

c. Load Tape Executive Loader Control Card from card reader 1,

and press CLEAR and CONTINUE on Central Processor.

The format for the Tape Executive Loader Card is illustrated in

figure 2-2.

;1
09 6 0 '.J 0 0 4 0 4 0 0 5 4 4 4 0 6

00 00 00 0 0 00 0 0 ~lo 00 00
I 2 3 4 5 • 1 I I 10 111~ 3 14 I~ II 1111

1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1

2 2 22 2 2 2 2 2 2 22 22 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

44 44 44 44 44 44 44 44 44

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

6 6 66 6 6 66 66 6 6 6 6 66 6 6

11 11 7 7 11 7 7 11 7 7 11 7 7

8 8 8 8 88 8 8 8 8 88 88 8 8 88

9 9 99 99 9 9 9 9 99 99 9 9 99
I 2 3 4 5 8 1 I • 10 II 12 13 14 15" 1711

2-16

0 2 6 0 00 6 1 b400LT5C bb 19 2 2 bbbbbbbb~ 9)) bbbbbbbbbb

0 0 00 00 ~o 00000000 0 Q 0 0 0 000:000000 0 0 0 0000000000
I~ 20 21 22 231~ Its 21 27 21 21 30 31 32 33 34 35 ~ 31 31 38 40 41 42 43 44 45 41 47 41 41 50 51 52 53 54 55 51 57 51 51 Ill 11

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 11U11111 1 1 1 1111111111

2 2 2 2 2 2 2 2 22222222 2 2 222 2 2 2:2 2 2 2 2 2 2 2 2 2222222222

3 3 3 3 3 3 3 3 33333333 3 3 3 3 3 333333333 3 3 3 3333333333

44 44 44 44 44444444 44 444 44U44444 444 4444444444

5 5 5 5 5 5 5 5 55555555 5 5 5 5 5 555555555 5 5 5 5555555555

66 6 6 6 6 6 6 66666666 6 6 6 6 6 666666666 6 6 6 6666666666

7 7 11 7 7 11 11111111 11 111 777777777 111 1111111111

8 8 88 8 8 8 8 88888888 8 8 8 8 8 888888888 8 8 8 8888888888

9 9 99 9 9 9 9 9 9 9. 9 9 9 9 9 9 9 9 9 9 999999999 9 9 9 9999999999
19 20 21 22 23 24 25 21 27 ,. 21 30 31 32 33 34 35 31 37 31 39 40 41 42 :o 44 45 46 47 48 49 50 51 52 53 54 55 56 57 51 59 60 61

Figure 2-2. Tape Executive Loader
Control Card

TAPE bSTART CARD b b b b

0 0 0 0 00000000000 0000
ju 131415 •1111111011nn147511 777171111

1 1 1 1 1 1 1 1 .1 1 1 1 1 1 1 1 1 1 1

~ 2 2 2 22222222222 2 2 2 2

3 3 3 3 33333333333 3 3 3 3

4444 44444444444 U44

5 5 5 5 55555555555 5 5 5 5

6 6 6 6 66666666&66 6 6 6 6

1111 11111111111 111 7

8 8 8 8 88888888888 8 88 8

9 9 9 9 99999999999 9 9 9 9
62 63 64 65 Iii 11 .. 89 70 11 72 73 14 75 71 111119 Ill

The following control message is displayed on the SPO to indicate that

the system is under control of the MCP II magnetic tape version.

TAPE EXEC CONTROLLER LOADED END OF JOB-LTS

MULTIPROGRAMMING SYSTEM TABLES.

The Multiprogramming system utilizes numerous tables to perform its

set up and control procedures. The tables are described in detail on

the following pages.

Machine
Location

005

005

016

028

030

035

036

043

108

115

11#

179

220

260

Table 2-3

Flags and Table Positions

Length

Zone Bit

7

6

1

1

6

3

5

7

1

12

Contents

Discontinue Flag

Base disk address of MCP

Overlay linkage

Program/Function switch
P=Prog :F=Funct

Entrance for program interrupt

Tank Switch

Today's Date Storage

Return Address to Interrupted Program

Data Comm Interrogate Switch

Function/Program Ident Hold Area

Disk Add~ess of User Program Library

Interrupt Switch

Save Work Area

Program Table

2-17

Machine
Location

270

276

290

31@

356-387

361

318

SYSTEM I/O TABLE.

Length

6

6

12

1

5

1

Table 2-3 (cont)

Flags and Table Positions

Contents

M/P Call Work Area

Report Date Storage

Systems r/o Table

Number of programs in mix

Function call input area

Program/Function Ident

Multiprogramming Flag

The System I/O Table is maintained by the Operating System, and it

provides the MCP with the unit numbers of all the available units on

the system. A function call (.:::, .:::, .:::, IOTB) allows the user to specify

or change the I/O configuration. The table is located at machine

location 290.

When assigned to a program, the units are removed from the Systems I/O

Table by the I/O Check Routine and are returned to the Systems I/O

Table when the program reaches the EOJ Function. If a program is not

terminated by the EOJ Function {for example - discontinued) the opera­

tor must return the I/O device to the I/O Table by calling the IOTB

Function.

Position

1

2-18

Contents

Input reader 1.

1 - card reader 1 is available.

A - paper tape reader 1 is available.

Blank - not available

Position

2

3

4

5

6

7-12

Contents

Input reader 2.

2 - card reader 2 is available.

B - paper tape reader 2 is available.

Blank - not available.

Output punch.

0 card punch is available.

+ - paper tape punch is available.

Blank - not available.

Reserved for system.

Printer output 1.

1 - line printer 1 is available.

Blank - not available.

Printer output 2.

2 - line printer 2 is available.

Blank - not available.

Magnetic tape units

1-6 - available unit members.

Position 7 is for unit 1.

Position 8 is for unit 2.

Position 12 is for unit 6.

The contents of each position is set to either the unit number or to

blank (if the unit is not available).

PROGRAM TABLE.

The Program Table is maintained by the MCP. Its purpose is to provide

control information for each of the programs in process. The informa­

tion determines if' sufficient memory is available in consecutive loca­

tions for the loading of additional programs. The table format is as

follows:

2-19

Position

1-2

J-4

5-6

7-8

9-10

11-12

Contents

Address Modifier {ADM) counter {the number of
480 character block~ the base address assigned)
for the first program in memory.

Number of program b+ocks in the first program.

ADM counter for the second program in memory.

Number of program blocks in the second program.

ADM counter for the third program in memory.

Number of program blocks in the third program.

PROGRAM I/O TABLE.

The I/O Check Routine utilizes the Call Record I/O Configuration and

the Systems I/O Tables to determine the availability of required I/O

units. An I/O Table is created for each program. The Program I/O

Table contains the I/O units assigned to the program. The Program I/O

Table is used as follows:

2-20

a. To store the units deleted from the Systems I/O Table

prior to their assignment to a program.

b. Upon execution of file OPEN, the units are deleted from

the program I/O Table and assigned to specific files.

Storage for I/O commands and related information is pro­

vided in each files I/O Control Segment.

c. Upon execution of file CLOSE, units are reassigned to the

Program I/O Table. The uni t,s may be reused by the program

through the execution of addji tional file OPENS.

d. When the units are released by the program through

execution of a file CLOSE and End-of-Job Function, the

units are reassigned to the Systems I/O Table.

Position

1

2

J

4

5

6

7-12

Contents

Input reader 1.

1 - card reader 1 is assigned.

A - paper tape reader 1 is assigned.

Blank - not assigned.

Input reader 2.

2 - card reader 2 is assigned.

B - paper tape reader 2 is assigned.

Blank - not assigned.

Output punch.

0 - card punch is assigned.

+ - paper tape punch is assigned.

Blank - not assigned.

Reserved for system.

Printer output 1.

1 - line printer 1 is assigned.

Blank - not assigned.

Printer output 2.

2 - line printer 2 is assigned.

Blank - not assigned.

Magnetic tape input/output.

1-6 - assigned unit numbers.

Position 7 is for unit 1.

Position 8 is for unit 2.

Position 12 is for unit 6.

The contents of each position is set to either the assigned unit

number or to blank (if the unit is not assigned).

2-21

I/O CONTROL SEGMENT.

An I/O Control Segment is created by the assembler for each I/O file.

The purpose is to provide control information to the Multiprogramming

Controller for the execution of input/output commands.

The I/O Control Segment format is as follows:

Position

1-3

4-6

7-9

10

11-12

lJ-14

16-17

18

2-22

Contents

I/O error address - set by the user's READ or WRITE

Macro. If an user address is not supplied, a stan­

dard error routine address is inserted by the

assembler.

End-of-File return address - inserted by the user's

READ or WRITE Macrq. On output files it is the end-

of-tape or the end-of-page address.

Tape backspace code: - inserted by the File Open
j

Routine. It is use~ as a storage area for the disk

file address.

I/O n variant storage - used by the File Open

Routine to store th~ variant contained within the

program I/O Table.

I/O code storage for printer tape backup - the I/O

File Declaration Rd,utine moves the I/O code to these

positions when a pr;inter tape is assigned in lieu of

a line printer.

Reserved for expansion.

Interrogate OP Code and M variant - supplied by the

I/O File Declaration Routine.

Maximum number of units for the specified type

interrogate n varia,nt - the maximum number of units

Position

19-21

22-23

34-36

37-39

40-42

Contents

:is set by the I/O File Declaration Routine. The

Jti'ile Open Routine replaces this number ·with the

:interrogate n variant.

Program I/O Table base address for units of the

specified I/O type - inserted by the I/O File

Declaration Routine.

T/O command - OP code and m variant are supplied by

the File Open Routine. The A, B, and C address is

set by the assembler.

A - Error address/output area.

B - End-of-file address.

C - Error address/input area.

If the I/O type is a disk file, the assembler sets

the addresses as follows:

A - Address of the disk file address.

B - Input/output address.

C - Not ready address (MCP).

End-of-program linkage - inserted by the assembler,

j_ t is a fixed label and must be PRGEND.

Retry linkage address - I/O execution linkage

address. It is inserted by the assembler.

Return address - inserted by the assembler. Control

is returned to this address after the execution of

the I/O command, and after one cycle through each

program in the mix.

MULTIPROGRAMMING FLAG TABLE.

This is a one position table located at machine location 318, and it

is used to indicatEi the type of processing in effect. The table may

contain the following:

2-23

0 {Zero) Multiprogramming in process.

1 - Machine language pro&ram or function in process.

BLANK - Neutral-set by End-of-Job Routine.

MULTIPROGRAMMING COUNTER TABLE.

This is a one position table located.at machine location Jl@, and it

contains the number of multiprogramming programs in the process. It

may contain either O, 1, 2, or J. I~s purpose is to determine if

additional programs can be loaded. It is also used by the End-of­

Program and Discontinue Routines to determine if the End-of-Job Rou­

tine or the Multiprogramming Controller needs to be called.

DISCONTINUE FLAG.

The Discontinue Flag is used to halt a program or function. It may be

programmatically set by the transfer of a B-bit. The flag is located

at machine location 005. If on, the program will abort and the dis-

continue message and program identification is printed on the SPO.

DISK ADDRESS OF OPERATING SYSTEM.

The base disk address where the MCP was loaded. The address is stored

in a seven position location starting at machine location 005. This

address is used as a base to calculate the disk address of the Operat­

ing System Functions. Within each al;ltomatic :function is a constant

that is computed and added to the base address. It determines the

disk address where that function will reside on disk. For this

reason the automatic functions should never be deleted from MCP II or

rearranged.

OVERLAY LINKAGE.

Overlay linkage is used to store the overlay name and address when

programmatically calling for user overlays. This six position

storage address is located at machine address 016.

PROGRAM/FUNCTION SWITCH.

The Program/Function Switch located at machine location 028 is used

to determine the type of program in execution. It is set to P when

a program is executed, and F when a function is executed.

2-24

INTERRUPT.

A program interrupt is programmatically achieved by transferring the

program return address into machine location 043, and branching to

030. The Executive checks for DATA COMM Interrupts or operator inter­

vention. If an interrupt is not sensed, control is returned to the

address stored at machine location 043 of the interrupted program.

TANK SWITCH.

This one position switch is located at machine location 035. The

switch is automatically set when a program is called and either I/O

or sufficient memory is not available.

When these conditions do not exist, the MCP will automatically call the

program from the program tank into memory for execution.

NOTE

Only one program can be

stored in the program tank.

TODAYS AND REPORT DATE STORAGE.

Todays Date is stored in the Executive Routine at machine location

036. The CHDF Function stores Todays Date at this location. The

second word in the user program is used to derive different types of

dates from this address. The Report Date is used in the same manner,

and stored at machine location 276.

li'UNCTION/PROGRAM IDENT HOLD AREA.

This five position hold area within the Executive is used to store the

identification of the program or function being executed.

USER PROGRAM LIBRARY DISK ADDRESS.

The seven position base disk address location where the User Program

Library is stored on disk is machine location 11# within the Executive.

When a user program is called for execution the Executive Routine uses

the base address to read the program directory. The program directory

is searched to find the appropriate program, and the disk address of

where the program is stored. The program is then loaded according to

program type and the number of blocks.

2-25

STANDARD END-OF-FILE CARD (OR RECORD).

The following is the card or record format for a standard End-of-File

Record {b =a blank character).

> > > b E 0 F

1 - - - 7

MANUAL CALL FUNCTIONS.

The following pages describe each manually initiated function. The

functions are initiated via card reader 1 or through the SPO. The

functions are manually initiated by the user during the operation of

MCP II. The functions are listed in table 2-4., and are used whenever

the situation requires their use.

Call

> > >DUPL

> > >CHDF

> > >LDOP

> > >STDJ

> > >STTF

> > >LALG

> > >DISC

> > >SDCM

> > >MXTB

> > >IOTB

> > >AXCE

> > >PADD

2-26

Table 2-4
Manually Initiated Function Calls

Description

Duplicate MCP Systems Tape Function

Change (or Load) Date Function

Load MCP II Function (M.T. Version)

Switch to MCP II Disk Executive Function {M.T. Version)

Switch to MCP II M.T. Executive Function (Disk Version)

Load Autoload Program and Go Function

Discontinue Multiprogramming Program Function

Set Data Communications· Interrogate Function

Multiprogramming Mix Listing Function

Change Systems I/O Table Function

Accept input from Supervisory Printer

Program Call-Outs from User Library

>>> DUPL

DUPLICATE SYSTEMS 'TAPE FUNCTION (~ ~ ~ DUPL).

The DUPL Function is designed to create a copy of the MCP II systems

tape, and to verify the copy on a word-for-word basis.

The DUPL format is as follows:

> > > DUPL

1 - - ---7

Operating instructions are displayed at the SPO, and EOJ-DUPL is auto­

matically displayed when the tape has been successfully duplicated and

verified.

It is advisable to always have a back up copy of the MCP II systems

tape.

At EOJ-DUPL the MCP will return to the interrogate loop waiting for

the next call. If an in-process program was interrupted to accomplish

the DUPL Function it will cause a roll-in of the interrupted program,

and return control to the program.

2-27

>>> CHDF

CHANGE (OR LOAD) DATE FUNCTION (~ ~ ~ CHDF).

The CHDF Function provides a Todays Date and a Report Date for use by

any in-process program. By optionally coding the second word of the

program with the data parameters described in the NDAF or ADAF Func­

tions: CHDF makes available the two date constants.

The following format is used to display the dates stored.

> > > CHDF

1 - - ---7

The format to change Todays Date and/or Report Date is as follows:

> > > CHD*~1MDDn#rnDDYY
j l \.

> > > CHDF~~DDYY
! '

> > > CHDF~DDYY
) I

Each of the abovH c&lls must start at position 1, and the appropriate

messages that reflect the dates presently stored in the Executive are

displayed on the SPO.

At EOJ-CHDF the MCP will return to the interrogate loop waiting for

the next function. If an in-process program was interrupted to

accomplish the CHDF Function it will cause a roll-in of the

interrupted program and then return control to the program.

2-29

>>> LOOP

LOAD MCP II FUNCTION (~ > > LDOP).

The LDOP Function reads the MCP II disk version from the master

systems tape. Starting at the address specified in the function call,

it loads the disk operation system onto the disk. The Disk Executive

Loader Control Card used by the DSCL Function will be created and

punched by the LDOP Function. A Function Table is created and placed

into the Call Check Function (~ ~ ~ FCDF) for the validation of

function names during the manually initiated calls.

The Function Table is comprised o:f entries that reflect a 4-character

call name, and a 7-character disk file starting address for each func­

tion. A copy of the Function Table is maintained in FCDF as protec­

tion against an erroneous entry during a manually initiated call.

The LDOP Function format is as follows:

> > > L D 0 P x x x y y 'Y y y y y

1 - - - - - 7 8 -10 11- - -17

where:

a. xxx - number of functions to be loaded.

b. yyyyyyy - starting disk file address required to load MCP II.

Messages stating the number of functions that were loaded, and their

beginning and ending disk addresses, are displayed on the SPO.

The EOJ-LDOP will return control to the tape Executive Controller

interrogation for the next function to be initiated.

2-31

>>> STDJ

SWITCH TO MCP II DISK EXECUTIVE FUNCTION (~ ~ ~ STDJ)
MAGNETIC TAPE ONLY.

The purpose of the STDJ Function :Ls to transfer control from the MCP

magnetic tape version to the MCP disk version. The disk version must

be resident on the disk file before control can be passed. This is

accomplished with the use of the LDOP Function.

The.Disk Executive Controller is loaded into memory from the disk

file, and control is transferred to Executive.

The STDJ Function format is as follows:

>>>STD J Y Y Y Y Y Y Y

1 - 7 8 14

where:

a. yyyyyyy ·- starting MCP IT disk address.

When control has been successfully passed to the disk executive version

of MCP II, the appropriate DISK EXEC LOADED message is displayed on the

SPO.

2-JJ .-

>>> STTF

SWITCH TO MCP II TAPE EXECUTIVE FUNCTION (_::: _::: _::: STTF) DISK ONLY.

The purpose of the STTF Function is to transfer control from the MCP

disk version to the MCP magnetic tape version. The magnetic tape

Executive is loaded into memory from the systems tape, and control

is transferred to the magnetic tape Executive.

The STTF Function format is as follows:

> > > STTF

1 - - ---7

When control is successfully passed to the tape Executive version of

MCP II, the appropriate TAPE EXEC LOADED message is displayed on the

SPO.

2-35

>>> LALG

LOAD AUTOLOAD AND GO FUNCTION (~ ~ ~ LALG).

The purpose of the LALG Function is to permit an object program load

and go operation under MCP II control. Programs containing overlays

and multiprogramming may not be called by this function.

The LALG Function format is as follows:

> > > L A L G a a a i u c

1 - 7 8 10 11 12 13

where:

a. aaa - address where the program will begin operation.

b. i - input devices where the auto-loads reside

c - input from card reader 1.

B - input from magnetic tape.

c. u - MTU designate where auto-loads reside.

d. c - LALG Function call method code S to specify that

the function will be called by the SPO. Any other code

will result in 42 characters being transferred (start­

ing at this position) to the function call area. This

feature allows parameters to be transferred to memory

for use by the program that was loaded during operations.

A SPO message will indicate any errors.

2-37

>>> DISC

DISCONTINlJE MULTIPROGRAMMING PROGRAM FUNCTION (~~~DISC).

The purpose of the DISC Function is to remove a specified program from

the Program and Return Linkage Tables. The mix is reduced by one, and

an appropriate message is displayed on the SPO. The memory space used

by the discontinued program is returned to the MCP, and the Multipro­

gramming Controller recalled when additional programs are in the mix;

otherwise, control will pass to the End-of-Job Function. All programs

in the mix or waiting in the tank may be discontinued by the system

operator.

The DISC Function format is as follows:

> > > DISC p p p p p

1 ---7 8 12

where:

a. ppppp - program ID to be discontinued. If *ALL* is

entered, both the mix and tank are discontinued.

A SPO message will indicate that the program(s) have been

discontinued.

Figure 2-3 is an example of a multiprogramming environment

> > > DISC Function. - - -

2-39

>>> DISC
continued

2-40

ONE PROGRAM

~~~PADDOP3Tt 

EEGIN RUN - OP3T1 
0 #01 c 1 
0 021 T 1 
#01 NR 

~~DI SCOP3Tl 
DIS - OP3Tl 
END OF JOB - M/PC 

THREE PROGRAMS 

~~;?: PADOOP3T 1 
EEGIN RUN - OP3T1 
0 #01 c 1 
0 021 T 1 
HOl NR 
~~PADDOP3T2 

EEG! N RUN - OP3T2 
#01 NR 
0 012 T 
0 A01 P 
012 NR 
::2~ PADDOP3T3 
EEGI N RUN - OP3T3 
D12 NR 
0 @00 CP 
0 013 TP 
D13 NR 

~~'.?DI SC*ALL* 
DIS - OP3T1 
DIS - OP3T2 
DIS - OP3T3 
END Or JOB - M/PC 

Figure 2-J. DISC SPO Messages 



>>> SDCM 

SET DATA COMMUNICATIONS INTERROGAT.1:!; J:l'Ul\JvT-1Ul'J l_::: .::_ > SDCM) • 

The purpose of the SDCM Function is to notify the Executive Controller 

that the interrogation of Data Communications Terminals is, or is not 

required. The setting is recorded in the Executive on the disk and in 

memory. The set will remain until it is changed by a subsequent SDCM 

call. 

The SDCM Function format is as follows: 

> > > SDCM 

1 - - ---7 

A SPO message will indicate whether the interrogation of the Data 

Communication Terminals has been turned on or off. 

2-41 



>>> MXTB 

MULTIPROGRAMMING MIX LISTING FUNCTION (~ ~ ~ MXTB). 

The purpose of the MXTB Function is to provide a SPO listing of the 

programs currently being executed, and the block size and memory 

addresses for each program. This function is callable, and does not 

require a SAVE memory prior to the execution of MXTB. 

The MXTB Function format is as follows: 

>>>MXTB 

1 - 7 

The SPO message indicates the program ID, block size, and the memory 

area assigned to each programs in the mix and available memory. When 

processing is not in the multiprogramming mode, a message of NOT MP is 

displayed (figure1 2-4). 

~~MXTB 

PG # 1 OP3Tl 
PG # 2 OP3T2 
PG # 3 OP3T3 
AVAIL CORE 

~?!MXTB 

l\DT MP 

06 BLKS 800 TO SOO 
0 7 BLKS SOO TO xxQ 
08 BLKS xxo TO B+O 
l 1 BLKS B+O TO 000 

&ND OF JOB - MXTB 

Figure 2-4. MXTB SPO Messages 

2-43 



>>> IOTB 

CHANGE SYSTEMS I/O TABLE FUNCTION (~ ~ ~ IOTB). 

The purpose of the IOTB Function is to provide the capability of 

changing the systems configuration maintained within the Systems I/O 

Table. The message displayed on the SPO reflects the old and new pa­

rameters. This f'unction either recalls the Executive Controller, or 

exits to the End--of-Job Function; depending on whether a job is in the 

mix. 

The IOTB Function format is as follows: 

> > > I 0 T B a b c d e f g g g g g g 

1 - 7 8 9 10 11 12 13 14 - - - -19 

where: 

a. a - card reader 1 if column 8 contains a 1. 

paper tape reader 1 if column 8 contains an A. 

blank signifies neither is available. 

b. b - card reader 2 if column 9 contains a 1. 

paper tape reader 2 if column 9 contains a B. 

blank signifies neither is available. 

c. c - card punch 1 if column 10 contains a 0 (zero). 

paper punch 1 if column 10 contains a +. 

blank signifies neither is available. 

d. d - blank • This position is reserved. 

e. e - line printer 1 if column 11 contains a 1. 

blank signifies that line printer 1 is not available. 

f. f - line printer 2 if column 12 contains a 2. 

blank signifies that line printer 2 is not available. 

g. gggggg - magnetic tape units 1 through 6. Codes the 

available physical MTUs in their order. If a MTU is 

not available the corresponding columns must be blank. 

2-45 



>>> IOTB 
c;ntinued 

2-46 

For example, if all the MTUs are available the code 

is 123456, and if MTUs 2 and 4 were not available, 

the code would be lb3b56. 

;;2~10TB 

IOT: 
D12 NR 

~;::I OTB 

NOTE 

All 19 positions must be entered 

when the IOTB Table is revised. If 

> > > IOTB is entered without units, 

the function will print the cur­

rent setting of the systems I/O 

Table on the SPO (see figure 2-5). 

Li56 

IOT: 1 0 1 123456 
END OF' JOB - I OTB 

Figure 2-5. IOTB SPO Messages 



>>> AXCE 

ACCEPT SPO MESSAGE FUNCTION (~ ~ ~ AXCE). 

The AXCE Function is used in conjunction with the ACCEPT Macro. 

When a message is displayed on the SPO that requires a reply from 

the system operator, the AXCE Function passes the message to the 

correct program. 

The AXCE Call format is as follows: 

> > > A X C E i d e n t m e s s a g e 

1 - 7 8 - - -12 13 - -42 

where: 

a. ident - program identif~cation. 

b. message - information the operator must pass to the program. 

The following is an example of how to use the AXCE Function. In 

order to inform the operator that information is needed, it is sug.­

gested that a display message indicate the program requiring the 

message, and the type of program expected. This information may be 

indicated either in the operating instructions or as part of the 

display message. 

In figure 2-6 the system operator is awaiting a YES reply so that a 

ZIP to another program can be accomplished. 

2-47 



>>> AXCE 
-c~-;:;tinued 

~?!?!PA DOA XT ST 
E£GIN RUN - AXTST 
DI SP AXT ST, 
TST DI SPLAY 
AX: AXTST 

2::?:2:AXCEAXTSTYES 
DI SP AXT ST, 
YES 
EDP - AXTST 
ZI PPADDOP3Tt 
EEG! N RUN - OP3T1 
0 #01 Cl 
0 021 Tl 
HO 1 NR 

entered by operator. 
printed by operating system. 
printed by executing program. 
printed by executing program. 
printed by executing program. 

entered by operator. 
printed by AXCE Function. 
printed by executing program. 
printed by end-of-program function. 
printed by operating system. 
printed by operating system. 
printed by file open function. 
printed by file open function •• 
printed by multiprogramming controller. 

Figure 2-6. AXCE SPO Messages 

2-48 



>>> PADD 

PROGRAM CALL-OUT FROM USER LIBRARY (~ ~ ~ PADD). 

The purpose of this function is to provide a capability for retrieving 

user programs from the MCP II User Program Library via the supervisory 

printer or card reader. 

The PADD Call format is as follows: 

> > > P A D D i d e n t Program Parameters 

1 - - - - - 7 8 - - - 12 13 - - - - - - - 54 

where: 

a. ident - the identification of the program being 

called from the User Program Library. 

b. program parameters - any parameter necessary to 

execute the program, up to a maximum of 27 characters. 

2-49 



GENERAL. 

SECTION 3 

UTILITY FUNCTIONS 

The MCP II utility functions provide for the execution of operations 

that are standard at most installations. The utility functions can be 

called by either the operator or a user program. It must be noted 

that the utility functions do not have the necessary float codes for 

multiprogramming capabilities: The Save/Restore feature of MCP II may 

be used by the utility functions. 

The following pages within this section provide a detailed description 

of the utility functions and the operational procedures required to 

successfully utilize their capabilities. 

The functions described in this section are listed in table 3-1. 

Call 

> > >PRME - - _, 

> > >DTSJ - -
> > >TDSJ - - -· 
> > >DTTR - -
> > >TTDR - - -
> > >DDDL - - -
> > >DCCN - - -
> > >CDCN - - -
> > >PRDK - -
> > >CLDK - - -

Table 3-1 

Utility Functions 

Description 

Print Memory 

Disk to Tape - Single segment 

Tape to Disk - Single segment 

Disk to Tape - Multiple segments 

Tape to Disk - Multiple segments 

Disk to Tape/Tape to Disk 

Disk to Card - Control numbers 

Card to Disk - Control numbers 

Print Disk 

Clear Disk 

3-1 



Call 

> > >DCWR - - -
> > >DTDK - - -
> > >BTTR - -
> > >PRTB - - -
> > >TUTL - -
> > >CARD - - -
> > >TAPE -

3-2 

Table 3-1 (cont) 

Utility Functions 

Description 

Disk Word Change 

Disk to Disk 

Binary Tape to Tape 

Printer Back-up Function 

Tape to Print Utility 

Card Utility Function 

TAPE Utility Function. 



>>> PRME 

PRINT MEMORY (~ ~ ~ PRME). 

This function prints the contents of memory and the address of each 

word. If the beginning and ending parameters are not specified, all 

of memory is printed. 

The Print Memory Function is one block in length, and permits the 

utility routine to be executed from 400 thru 79@. This allows the 

execution to be accomplished during an interrupt and without the 

execution of the Save Memory requirement. 

The PRME Function format is as follows: 

> > > P R M E b b e e 

1 - - - - - 7 8 9 10 11 

where: 

a. bb - the start print memory address (tens and hundreths 

positions only). 

b. ee - the end print memory address (tens and hundreths 

positions only). 

:ff the Begin. and End addresses are not entered with the function call, 

memory will be printed from 000 through the end of core. 

Figure 3-1 is an example of a > ~ ~ PRME Function, and illustrates 

a print memory starting from machine location 000 through machine 

location 880. 

3-3 



Aoqs T~C)T/04TA 

ooo ~t tl5oon1500 
050 12717,0115144 
100 t:>2 2i1in356 
150 K2n 44Anot 30 
200 5622164ntt5o 
250 7xt2560~1t79 
300 
350 61 060~>~PR~ 

~00 +~JlVR~P~_,.,.fQJ 
450 70,36t 50'.\ 
500 710500511 685 
550 52t50~5n4570 
600 A01670 
650 701656 179 
700 
750 
800 
85() 

nto 61 ?lfOVRINP 
n60 7tl3,,~~400t56 
110 6t ,,4PR~E 00 
16~ ~" 160D0160 
'10 7~2?1~40 216 
260 7xt~6~051119 
310 Al) 1?. 1?106 
360 Et')0~9• 12345 
4__1 Q_ -~QJ_ - ------
460 A10f,1()41'0 
ii; , 0 .J "t 0 5 0 3 
560 5,,tl\0'7504490 
610 + 11no1 
660 6' 'l4!'0000 
., t 0 
760 
"t 0 
R60 

AnRS TNST/OATA 

o~o 7M102405r11Q 
070 702156 'J~20~ 
120 0900000'l90t' 
t70 J 400156 H 
~20 

?70 090<Ht 
120 7023260, ?70 
'HO 6•1• 
420 5fl431.1t59644n 
4 7 0 i 0 i 4 f~ 1 -4-6 , 
5~0 5n25o33~'6on 
570 70357~6At499 
620 541ltA6?e64n 
~70 

720 
770 MF.:M PRl~TF'D• 
R20 
"70 

A'1RS INST /DUA 

030 61 09E09097t 
OAO 7x~0671502t~ 
t30 H 1'6DSK Rn 
tAO 12t2161_,0'1f, 
?30 7xt238055t79 
?RO 
no 321210152213 
'Rn 
41n 54tHt49645'l 
.fA 0 -19_6_6 tb 6-A ll 
530 J 018499 
5~0 7015A66~551'l9 
~30 7x26t633027o 
6AO 650 701656 
730 730 731' 7 
7AO 
~30 

~130 

Figure 3-1. Memory Print Example 

ADRS IN~T/OATA 

040 ~1 ~ND440440 
o9o +to?5otn8,41 
140 E~ 000~240• 
190 117152144144 
240 7x1?48054179 
290 t 0 1 1~3456 
340 n7,74on5t44 
39n 
44n 1041'66 361 
490 1n~~n3• 149 
540 1 nt85n9 
590 ~t 460 
640 52t6~6t79000 
69n t79 660 
740 lO 7 74'l 
790 
840 

n Iv 
olv 
::Jlv 
::!". 
::J -0 
c ::;;o 
Cl>~ a.. m 



>>> DTSJ 

DISK TO TAPE SINGLE SEGMENT (~ ~ ~ DTSJ). 

This function writes the contents of a specified area of disk onto 

magnetic tape. The contents are formatted one tape block for each 

disk segment. 

This function resides in memory beginning at machine location 800, 

fills three blocks of core, and utilizes the end of memory for binary 

tape writes. 

DTSJ contains programmed interrupts to the Executive Controller and 

may be interrupted by another program. If a running program is inter­

rupted the Save/Restore Memory Function of the MCP is automatically 

called. 

The DTSJ Function format is as follows: 

> > > D T S J b b b b b b b e e e e e e e 

1 - 7 8 -14 15 - - - - -21 

where: 

a. bbbbbbb - the beginning address of the disk file segment 

to be dumped onto tape. 

b. eeeeeee - ending address of the disk file segment to be 

dumped onto tape. 

Figure J-2 is an example of a DTSJ Function. This example illus­

trates an area cleared with Cs, and dumped to tape with ~ > > DTSJ 

printed to show single segment ~. ~ ~ DTSJ00000010000050-. 

3-5 



\...J 
I 
0\ 

oot 
tot 
201 
lot 
•ot 

001 
lOt 
201 
lOl 
•ot 

OOt 
lOt 
201 
lOl 
401 

001 
101 
201 
lOl 
401 

001 
-iol 
201 
lOl 
401 

001 
101 
201 
l<H 
•01 

onnnon1nonnn-sn BINARY 

•••••••••••••••••••• 
~EC"RD NUMBER Ot 

cccccr.cccccccccccr.cccecccccccr.cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccr.cccccccr.~ccccccccccr.cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccr.cccccccccccccccccccccc 

•••••••••••••••••••• 
'tEC"RD .. UMBElt 

cr.cccccccr.cccccccr.cccccccccccr.cccr.cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
crcccccr.crcccccccccccccccccccr.cccccccccccccccccccccccccccr.cccccccccccccccccccccccccccccccccccccccccc 
crcccccccccccccccr.cccccccccccr.cccecccccc 

•••••••••••••••••••• 
R[tnRO llU'48E't 

crcccrcccr.cccccccr.ccccr.ccccccr.cr.cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccr.rcccrcccr.cccr.cccccccccc-cr.cccr.cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccr.cccccc 
cccccrccccr.ccccccr.cccccccr.r.ccr.cccr.cccccc 

******************** 
"EC"RD 'IUMBER 

ccccr.r.cr.cccccccccr.cccccccccccr.cccr.cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cr.tttcccr.r.ccccc.ccr.·ccccccccr.ccr.cccr.cr.cccccccccccccccccccccccccceccccc-cccccccccc-ccccccccccccr.ccccccr.cc 
ccccr.ccccr.cccccccr.cr.cccccccccr.cccr.cccccc 

•••••••••••••••••••• 
"ECtiRO .. UMBElt 

cccr.rr.ccr.r.rccrcccr.crccccccr.crr.cr.cr.ccccccccccccccccccccccccccccccccccccccccccccccccccccccccr.ccccccr.cc 
cr.cccrcccrcccccccr.r.ccccccr.cccrcr.cr.cccr.cccr.cccccccccccccccr.cccccccr.cccr.cccccccccccccccccccccccr.cccccc 
cccccrccr.ccccccccrcccccccccccr.cccccr.cr.cc 

•••••••••••••••••••• 

81URY 

Ol 

BINARY 

05 

BINARY 

q[C~RD 'IUMBEq 06 

001 r.r.cccr.cr.r.rr.cr.r.cccr.crcr.r.ccr.r.ccr.cr.cr.cr.ccccccccr.ccccccccccccr.cccr.ccccccccccccccccccr.r.ccccccccr.ccccccccc Bt.,ARY 
101 cr.cr.crcccr.ccr.r.cr.r.r.rccr.r.cr.rr.ccr.r.ccr.r.ecrccccr.ccccccccccr.cccr.r.cccccccccccccccccr.cccccccr.ccccccccr.cccccc 
201 ccccr.r.cccr.ccr.r.cccr.crcccccr.ccrr.cr.cr.r.ccrcc 
301 
401 •••••••••••••••••••• 

qrcn~o 'luwer~ 01 

Figure 3-2. DTSJ Function Listing Example 

nlv 
01v 
~.' v 
:s 0 
c -I 
CD Vl 
a..'--



>>> TDSJ 

TAPE TO DISK SINGLE SEGMENT (~ ~ ~ TDSJ). 

The Tape to Disk Function is used in conjunction with the Disk to 

Tape Single Segment Function. The TDSJ Function reads the magnetic 

tape created by the DTSJ Function and writes the contents into a 

specified area of the disk file. If the disk address specified by 

the function call differs from the disk address contained in the tape 

label, a message is printed on the SPO; the decision whether or not 

to execute the function is made by the user. 

The function is based at machine location 800 filling five blocks of 

core, and contains program interrupts to the Executive Controller. 

The Save/Restore Memory Function is automatically called when it is 

required. 

The TDSJ Function format is as follows: 

> > > T D S J b b b b b b b e e e e e e e 

1 - - - 7 8 - - -14 15 - - - - - 21 

where: 

a. bbbbbbb -· disk address where the first tape record is placed. 

b. eeeeeee -· disk address where the last tape record is placed. 

3-7 





>>> DTTR 

DISK TO TAPE UTILITY - MULTIPLE SEGMENTS (_::: _::: _::: DTTR). 

This function writes the contents of an area within the disk file (as 

specified within the parameters of its call) onto magnetic tape in 10 

segment blocks (binary). The last written block may contain from 1 to 

10 blocks (depends on the size of the disk area being dumped). DTTR 

may be interrupted via the SPO so that other functions, utilities, 

calls, or user programs may be processed (figure J-J). 

The implementation of this routine requires a working knowledge of the 

operating requirements. 

The operating functions are as follows: 

a. Scratch tape is mounted on MTU-1. 

b. The DTTR Call is either entered via the SPO or card reader 1. 

The DTTR format is as follows: 

>>>DTTH 

1 - - 7 

The following messages can be displayed on the SPO: 

a. ENTER SEGMENT ADDRESS 

This is the begin-run message requesting that the operator 

ent~r 14 numeric digits. This entry represents the begin­

ning disk address (first seven digits), and the ending disk 

address (last seven digits) of the area to be dumped. 

b. MOUNT WORK TP Ul 

This message signifie-s that the physical end-of-reel has 

been reached, and that another scratch tape must be mounted 

on MTU-1. CONTINUE on the Central Processor is then pressed 

by the operator. 

c. WR ER UI TM 

This message signifies that an attempt to write the final 

tape mark has failed. The operator may press CONTINUE on 

3-9 



u 
I 

f--1 
0 

OOt 
lOt 
201 
301 
401 
501 
601 
701 
801 
901 

toot 
1101 
1201 
1301 
1401 
1501 
1601 
1701 
1801 
1901 
2001 
'-1 Ot 
2201 
2301 
2401 

0000000100000?0 

ccccccccr.cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccr.r.ccccccr.cccccccccccr.cr.cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccr.cccccc 
cccccccccr.cccccccr.cccccccccccr.cr.cr.ccccccccccccccccccccccccccc 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
~ECl"IRO t4UMBER 

001 occcr.r.cccccccccccr.cccccccccccr.cccr.ccccccccccccccccccccccccccccccccccccccccccccccccccccccccr.ccr.cccccc 
·tot c c-c-e cc-cc cc ccccc.cccc-ec cccc c c-ecr. c ccc.c.c.cccc c ccc cc_cc.c_c c_cc cc cc cute cc cc e_c_c ~-c_C.!:_~ cc_c;cc_c c ccc_c_c cc cc r;cc ~-c_ccc_cc 
201 cccccccccr.cccccccr.cccccccccccrccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccr.ccr.cccccc 
301 cccccrcccr.ccccccccccccr.ccccccr.cccr.cr.cr.ccccccccccccccccccccccccccccccccccccccccccccccccccccr.ccr.cccccc 
•ot cr.cccr.cccccccccccr.cccccccr.cccr.cr.cr.ccccccccccccccccccccccccccccccccccccccccccccccccccccccccr.ccr.cccr.cc 
sot ccccr.r.cccccccccccr.cccccccccccr.cccr.r.ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccr.cccccc 
601 cccccccccccccccccr.ccccr.ccccccr.cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccr. 
101 ccccccccccr.ccccccr.ccccc.ccccccr.cccccccr.cccr.ccccccccccccccccc«ecccccr.cccr.cccccccccccr.cccccccc~ccr.cccr.cc 
eot cccccr.ccr.r.r.r.r.ccccr.cccccccccccr.cccccccccccccccccccccccccccccccccccr.cccccccccccccccr.cccccrcccccr.cccccc 
901 Ccrrr -ArCCCCCCCCCr"' . r~r.CCCCCCCCCCCCCr"' -A~CCCCCCccr.r~ '"CCCCCCCCC 

Figure 3-3. 

'"r.cr.··,.r,..,. -.. ,.,.,.,._ 

Example of Area Cleared with C's Dumped to Tape and Multiple 
Segments with~~~ DTTR and Printed to Show Multiple Segments. 
The Header Contains the Parameters of the Area Dumped, and 
the Control Character (zero) is located in the First Position 
of Each 2401 Character Block. 

1-i) 
~ 
::s 
0 
ct 
f-1· 
0 
::s 

ol V 
o IV 
:s IV ::::. 
:s 0 c -4 
(I) -4 

0 ct a.. ;:::o 

'1 P" 
CD 

CD 
'1 0 
!ll CD 
Ul ::::! 
CD ct 
p.. '1 ..._ !ll 

f--1 

0 1-d 
'1 '1 

0 
0 0 
t'-1 CD 
t:i:J Ul 

~ Ul 
0 
'1 

!ll 
::s -p.. ct 

P" 
ct CD 
P" 
CD ct 
::::! .. lll 

I'd 
0 CD 
0 z ~ 
~ f-1· 
H f--1 

a f--1 

t:i:J ::s 
0 

ct ct 
0 

o' 
p.. CD 
f-1· 
Ul o' 
0 PJ 
0 0 
::s ~ 
ct Ul 
f-1· ID 
g PJ 

0 
CD CD 

p.. 
ct 
P" 
CD 



>>> TTDR 

TAPE TO DISK - MULTIPLE SEGMENTS (_::: _::: _::: TTDR). 

The TTDR Function (in conjunction with the Disk to Tape Multiple 

Segment Function) will write the contents of a tape onto a specified 

area of the disk :file in ten segmE~nt increments. This function cannot 

be interrupted. Tf this function interrupts an executing program, the 

Save Restore Memory Function is automatically called. 

The TDDR Function executes from mE~mory location 800 and requires three 

blocks of core. 

The TTDR Function format is as follows: 

> > > TTDR 

1 - - ---7 

An information halt will verify the parameters contained in the tape 

label. 

3-11 





>>> DDDL 

DISK DUMP DISK LOAD (~ ~ ~ DDDL). 

The DDDL Function may be used in place of the DTTR and TTDR Functions. 

The logic differs in that it dumps disk by module number only. This 

will assure the complete dumping of a particular module. After the 

disk is dumped the function will read the tape just written and check 

for missing, duplicate, and the correct number of records. When re­

loading the disk from tape, it can be used to load an entire module or 

any portion thereof'. It is possible to load one segment or multiple 

segments anywhere within the limits of that module. By entering addi­

tional parameters, several areas or files can be loaded during the 

same program "Call-In." 

This function executes from memory location 800, filling seven blocks 

of core. The program cannot be interrupted. The Save/Restore Memory 

Function is called automatically :if the function interrupts an 

executing program. 

The DDDL Function format is as follows: 

> > > DDDL 

1 - - ---7 

J-13 





>>> DCCN 

DISK TO CARD WITH CONTROL NUMBERS (~ ~ ~ DCCN). 

This function punches the contents of a specified area of a disk file 

into cards. It will include the disk file address and card number in 

each card punched. {figure J-4). 

The DCCN Function resides at machine location 800, and fills four 

blocks of core. 

Controller. 

The program contains interrupts to the Executive 

The DCCN Function format is as follows: 

> > > DCCN b b b b b b b e e 

1 - - ---7 8 - - - 14 15-

where: 

e e e e e 

- 21 

a. bbbbbbb ·- beginning disk address of segment ( s) 

to be punched into c~rds. 

b. eeeeeee ·- ending disk address of segment { s) to 

be punched into cards. 

DISK CARD 
SEGMENT SEQ. 
ADDRESS NO. 

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOJOOOOOOOOOOOOOOOOOOOOO 
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 JI 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 15 76 77' 18 79 80 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 2 2·2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 :1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

44 44 44 4 4 4 4 4 4 4 4 4 4 4 4 ·~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 13 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

77777777777777777777777777777777777777777777777777777777777777777777777777777777 

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 188 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

99999999999999999999999999999999999999999999999999999999999999999999999999999999 
1 2 3 4 5 8 7 a 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3~ 36 31 38 39 40 41 42 43 44 45 4~ 41 48 49 50 51 52 53 54 5~ 56 51 58 59 60 61 62 63 64 65 66 61 68 69 10 11 72 13 74 15 76 17 18 79 80 

Figure J-4. Disk to Card Record Format 

3-15 



>>> DCCN 
-co~tinued 

3-16 

NOTE 

Each disk segment will initiate an out-

put of seven cards. The size of this 

segment can be 96, 240, or 480 characters. 



>>> CDCN 

CARD TO DISK - WTTH CONTROL NUMBERS (.::_ .::_ .::_ CDCN). 

This function is used in conjunction with the Disk to Card Function. 

The cards punched. by the CDCN Function is the source input. The func­

tion programmatically checks the control numbers during input, and 

writes the contents of the input cards into the disk area specified by 

the parameters (reference figure J-J). 

The function provides the necessary program interrupts to the Execu­

tive Controller and initiates the Save/Restore Memory Function when­

ever necessary. The function is based at machine location 800 and 

requires four blocks of core. 

The CDCN Function format is as follows: 

> > > CDCN b b b b b b b e e e e e e e 

1 - - ---7 8 - - - - - 14 15- - - 21 

where: 

a. bbbbbbb - beginning disk address where the contents 

of the punched cards are written. 

b. eeeeeee ·- ending disk address where the contents of 

the punched cards are written. 

J-17 





>>> PROK 

PRINT DISK (?:: ?:: _::: PRDK). 

This utility function prints the contents of the disk file specified 

by the input parameters. PRDK is based at machine location 800 and 

utilizes five blocks of core. This function provides the necessary 

program interrupts to the Executive Controller and initiates the 

Save/Restore Function whenever necessary. 

The PRDK Function format is as follows: 

> > > PRDK b b b b b b b e e e e e e e s s s 

1 - - - -7 8 - - - - - 14 15- - - 21 22- 24 

where: 

a. 

b. 

c. 

~b~bb - address of the 

1eeeree - address of the 

sss - segment size {096, 

first disk segment to be printed. 

last disk segment to be printed. 

240, or 480) • 

Figure 3-5 is an example of a > > > PRDK Function. 

3-19 



I...:) 
I 

1\) 

0 

'llSK llll)R[~S 

OOl\nno1 

ooMnoo 

oonono~ 

ccccr.cccccccr.cccr.cr.cr.ccccccccccccccccccccccccr.ccccccr.ccccccccccccccccccr.ccccccccccccr.ccccr.cccccccccc 
r.cccr.ccccr.ccrr.ccrcccr.cccr.cccccccccccccccccccccccr.cccccr.ccccccccccccccccccccccr.ccr.ccccccccccccccccccc 
cccc~cccccccccccr.cccr.cccccccccccrccccccc 

ccr.cr.ccccccccrccr.r.ccccccccccccccr.ccccccrccccccccccccccrccccccccccccr.cccccccccr.ccccccr.ccccccccccccccc 
r.cccr.ccc~ccccr.ccr.cr.cr.ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccr.cccccccccccccccccccc 
r.cccr.crccccccr.crr.cr.ccccccccccccccccccccc 

ccccr.crcr.r.ccccccr.cccr.cccr.cccr.cccccccccccccccccccccr.cccccccccccccccccccccccccccccr.cccr.ccccccccccccccc 
ccccr.ccccccccr.ccr.r.ccr.r.r.ccccccccccr.cccccccccccccccccccccccccccccccccccccccccccr.cccccccccccccccccccccc 
ccccr.ccccccccr.ccr.cr.r.r.cr.ccccccccccccccccc 

c c·c ct:e·cc-cr, ccc r. c c-r. cr.-c r.c r. cr.-c cc c-ccc er. c-c-c-ec c-c-ccec ccccec-c-cec-ceec-c-e cee-e-e-e-e-ee-ee-e-e-e-e-c-~ec-ec-e cc ccccc-c-ecc cctc(c 
ccccr.cccr.cccr.cccr.cccr.cccccccccccccccccccccccccccccccr.ccccccccccccccccccccccccccc~cccr.ccccccccccccccc 
r.cr.cr.r.ccr.cccccccr.cccr.r.r.crccccccccccccccc 

r.cccr.cccccccccccr.cccr.ccccccccccccr.cccccccccccccr.ccccccccccccccccr.ccccccccccccr.ccr.cccr.ccccccccccccccc 
r.cccr.cccccccccccrcccr.cccr.cccccccccccr.ccccccccccr.r.cccccccccccccccccccccccccccccccr.cccr.ccccccccccccccc 
ccccr.cccr.r.cccccc~cr.cr.r.r.ccccccccccccccccc 

r.ccrrr.rcccccr.r.ccrcr.cr.cr.cccccccccccccccccccccccccccccccccccccccccr.cccr.ccccccccr.ccr.cccr.ccccccccccccccc 
ccccrccccr.cccr.ccr.cr.r.r.cr.cr.cccccccccccccccccccr.ccccccccccccccccccccccccccccccccr.cr.r.cccr.ccccccccccccccc 
ccccr.cccr.r.ccccccr.r.ccr.ccccccccccccr.cccccc 

r.cccrr.cccrccrr.ccr.ccr.ccr.ccccccccccccccccccccccccr.ccr.cr.ccccccccccccccccccr.ccccccr.r.r.cccr.ccccr.cccccccccc 
r.ccc~cccr.cccrr.ccrr.r.cr.cccr.ccccccccr.ccccccccccr.cccccccr.cccccccccccr.ccccccr.cccccr.cr.r.ccccccccccccccccccc 
r.ccc~r.ccccccccccrcr.cr.cr.cr.ccccccccccccccc 

Figure 3-5. Example of ~ ~ ~ PRDK or 
~ ~ ~ CLDK Listing 

o IV 
OI V 
~IV 
:J -0 
c :::::0 
CD 0 
a../'\ 



>>> CLDK 

CLEAR DISK (~ ~ ~ CLDK). 

The Clear Disk Function is used to fill an area of disk with a 

specific charactE!r. It may be useful to programmatically call this 

function within a program, fill the area with blanks or another char-

acter, then return to the first program. 

Programming Technique S.ection.) 

(An example is found in the 

This function is based at machine location 800, and fills eight blocks 

of core. If this function is called for execution while another pro­

gram is executing, the Save/Restore Memory Function is automatically 

called. CLDK contains programmed interrupts to the Executive 

Controller and may be interrupted by another program. 

The CLDK Function format is as follows: 

> > > C L D K b b b b b b b e e e e e e e s s s c 

1 - - 7 8 - - -14 15 - - - - 21 22-24 25 

where: 

a. 

b. 

c. 

~bb~bb - disk address of the 

~ee4eee - disk address of the 

sss - disk segment size {096, 

first segment to be cleared. 

last segment to be cleared. 

240, or 480) . 

d. c - clear character. 

NOTE 

If a group mark is entered as the clear 

character in position 25, an incomplete 

BEGIN RUN message is printed on the SPO. 

A YES reply will fill the specified disk 

area with group marks. 

Figure 3-5 is also an example of a CLDK Function. 

3-21 





>>> DCWR 

DISK WORD CHANGE UTILITY (;:::,;:::,;:::, DCWR). 

This function permits the user to change any word of any file 

resident within the disk. 

The implementation of this function requires a working knowledge of 

the operating requirements. The DCWR Call is entered via the card 

reader or SPO. 

The DCWR format i.s as follows: 

> > > D C W R 

1 - - 7 

The following messages are displayed on the SPO: 

a. ENTER SEGMENT ADDRESS 

This is the begin-run message. The operator must 

enter the 7-digit disk address of the word to be 

changed via the SPO. 

b. ENTER WORD NUMBER 

This message requests the entry of two numeric 

digits {the number of words 12-character groups) 

between the beginning of the segment and the word 

to be changed. 

Example: 

Assuming 240-character segments: 

1) To change the first word enter oo. 
2) To change the second word enter 01. 

3) To change the last word enter 19. 

c. OLD WORD IS dddddddddddd IS THIS CORRECT 

This message verifies the contents of the specified 

location containing the expected information. If 

the data {dddddddddddd) is correct the operator may 

3-23 



>>> DCWR 
C:'Oi;""tinued 

3-24 

reply YES; if incorrect, a reply of NO will cause the input 

specification to be ignored. If the data contains a group­

mark, the SPO message will terminate after the character 

prior to the printed group-mark. 

d. ENTER NEW WORD 

This message requests the operator to enter the required 

12-character new word to replace the dddddddddddd parameter 

in item c. 

e • MORE CHANGES 

This message is self-explanatory. The operator may enter 

YES and the routine will continue: NO will cause the routine 

to proceed to End-of-Job. 



>>> DTDK 

DISK TO DISK (~ ~ ~ DTDK). 

The Disk to Disk Function will copy the contents of a specified area 

of the disk file to another specific area of the disk file. 

This function is based at machine location 800 and fills eight blocks 

of core. If this function is called for execution while another pro-

gram is executing, the Save/Restore Memory Function is automatically 

called. DTDK contains programmed interrupts to the Executive 

Controller and can be interrupted by another program. 

The DTDK Function format is as follows: 

> > > D T D K b b b b b b b e e e e e e e t t t t t t t s s s 

1 - - - - - 7 8 - - -14 15- - -21 22- - - - -28 29- Jl 

where: 

a. bbbbbbb ·- disk address of the first segment to 

be transferred. 

b. eeeeeee ·- disk address of the last segment to 

be transferred. 

c. ttttttt - beginning disk address of the first 

segment where the contents will be transferred. 

d. sss - disk segment size (096, 240, or 480). 

J-25 





>>> BTTR 

BINARY TAPE TO TAPE (,:::?:?: BTTR). 

This function will copy a binary tape with one or more input reels 

having the same record length. 'rhe parameters that specify the num­

ber of input reels and record lengths up to a maximum of 4800 binary 

characters are passed to this function at begin run time. 

BTTR can also be used to position the COBOL Collector Tape so that 

additional programs can be added to the tape. This can be accom­

plished by specifying two input reels and 0080 character binary input. 

When the second input reel is requested, the tape is positioned to add 

additional programs to the Collector Tape, CLEAR is pressed and then 

CONTINUE on the Central Processor to discontinue the function. 

The BTTR Function is executed from machine location 800 and fills 

three blocks of core. It also utilizes the upper end of memory for 

binary tape writHs (depending on the number of binary characters to 

be written). 

This function cannot be interrupted to process another function or 

program. If called by a program, the Save/Restore Memory Function 

will be called automatically. 

The BTTR Function format is as follows: 

>>>BTTR 

l - - - - - 7 

3-27 





>>> PRTB 

PRINTER BACK-UP FUNCTION (> > > PRTB). - - -
This function provides the capability of printing printer back-up 

tapes created by the system. It may also be used to print BCL tapes 

formatted with the first three characters of each unblocked tape 

record containing the OP, M, and N variant of th~ print instruction 

The remainder of the record is a line of print information that is 

120 or 132 characters in length. 

The Printer Back up Function is one block in length, thus permitting 

this utility to be accomplished during an interrupt, and without the 

execution of the Save/Restore Memory Function requirement. 

The format for the PRTB Function is as follows: 

> > > P R T B 

1 - - - - - 7 

3-29 





>>> TUTL 

TAPE TO PRINT UTILITY (;::, 2:,;::, TUTL). 

The Tape to Print Function will print any labeled or unlabeled tape 

written on the system. It has the capability of printing BCL and/or 

binary records of variable length and inter-mixed records 

(figure 3-6). 

The TUTL Function is executed from Machine Location 800 and utilizes 

9.6K core. 

The TUTL Function is as follows: 

>>>TU'J~L 

1 - 7 

-3-31 



w 
I 

w 
1\.) 

09•09 

001 
tot 
20t 
lot 
•ot 
~Ot 
60t 
70t 
lot 
90t 

toot 
tl01 
UOt 

OOt 
101 
201 
lOt 
eot 
50t 
60t 
70t 
lot 
90t 

toot 
1101 
t20t 

oot 
tnt 
201 
lOl 
•Ot 
50t 
601 
701 
80t 
901 

1001 
1101 
1201 

001 
101 
201 
301 
40t 

ononMo ~' nnoOOl'\A 0'- 00000"0 n1 onooou 05 noont~o n9 
nnno2n• 'o onno2u ,, nooo2u. 90 000033, 15 onoo1u '' onoou• ,, n"on••" 1 e £"noon 21 onn"•"• H 000051• '2 000038, 16 Ol}no5l6 88 G7008'U 66 001'\09'" 10 

Of\ftO•U '9 000081'• ,. nnoton" 115 
000105• -~ O"H t 720 

U2 •n+11uo1•1 An+tt760tU 5'4f)1 to ., 5~ntt5' u Q nt 17" 97 5~tU 168 " +tl86n1 
on+O&Ho 

5'9 ''.,"''o R6 1q+o57~t•71 Jq+n6n6ne12 Jq+o6221211 Jq+o6e6o"7• Jq+o&~20A75 
lA+06780A1~ ]q+060•t077 l~+07t•t•'8 3R+07•2t•r• )q+o7701069 61 PRO~~~ 

v•n1~5' •n G?On79? '-' Jq+n51eo21n onoo292 t• 
0,,011110 5• 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
q[cnRo .. UMBER 

561LJ•Jl~~,JOJ 00fLJl~~~70?•R1 ~L~70lLJ5 KL761 ~Loonoonnonononl2000K•OOOT60004QOOOr•nonPKnooYN00 
09rno1+Mnn1K+no1r-.notauootr1itont,,Yno1v ooonoooonooooooooo t 2 1 

a ST~WCOVR TYPSrQ Ol2l•56780t•012Je5A789l•O 
l'le5A7"0l,Ot'l•5~7R9t•012l•5A79'9t•LOr. ft MISS! 
NG CO~TROL CIRO TNVALI~ DIS~ SEG~E .. T ST7E eo~E INVALID cnMPILEq AISE 100 
RFSS Mt~SING OV[RLAV ~ISSING EN~ OVA CARO 0~ OVR NUMBER ILLEG 
AL ~ATNTf~lNC[ ru~r.TtON cnnE TMPAOPER CA~O SEQU[NCE NUM~[R IMPROPER M[M ·~~R "" OVER 
LAY S~QIJ[Nr.E tOtPAOPR072n5•172nK•9QP050tZ27 Q6~Ln5n1z21 Q7qL050tZ27 Q8RL07l•~Nl '~o7n5Q07 
'Lt6t t~n 62PR07'•NJ• '~o7n5QR7 ?Lt6t IMO 61PR07l•N07 'M07n~RK7 2L16t l~O 6JPR07ntl27 162 

1nt7'7 1P270tZ?? SP050ll2~RP6q•n6n R•OoonRQ070ll2A ~•6703l2" r76703Z28 1J7703Z2~ 1165011 
l' K,,~l5n1z13 L~D815ntll3 M~+tn7'•"o7 2M0705 P7 2Lt6t 1MO ~-P~O 215 

···~·························································~······································ qrcnRo NUMBER 

561LJ•JL~KJOJ ontLJl~~~7~?•R7 ~L~7ntLJ~ KL76t KLnooooooononoo12oo~K•oooT&ooo•oooor•oonP~noovMoo 
09rnot+Mnn1w+notTQno1•uon1rwon1,,vnt\tY ooonoononoooooooon t 2 1 

4 ST~WCOVR TYDSrQ Ol2345~7R9t•Ot21e5A789t~O 
1'le5~7R9t•Ot,345~7R9t•Ot2l45A7~9t•tor. fl MISSt 
Ht; r.o~TROI CUD TNVALtll DISK SEGME~T snr conE INVALtn cnMPILE" •USE •nn 
RrS~ MJ~STN~ nvrqLAV ~15SJN~ rNo OVR CARD OR ovq NUMBER ILLEG 
AL MATNTr~ANC~ ru~crtnN r.onE TMPROP!R caqo SEQUENCE NUM~ER lMPqOPER M[M AOOR "~ OVER 
LAY S~QlfE~CE tn1PROPR01'-n5417.2nK•9QP050tZ27 06RL05ntZ27 Q7RL0501Z27 o8qL07l4NN3 ,~o7n5Q07 

'Lt61 '~" 6'PR07'0NJ• ?M07n~~R1 'Lt6t 1MO 6tPRn714~Q7 'Mn705RK7 2L16t tMO 6lPR07n1Z?1 /6? 
1011?1 1P21n1z'1 sPo5~3Z2~RP6~•n6o R•nnon~~o101z28 ~4~1n1z28 r16101z2~ tJ1101Z?8 1t65ntz 
3, l(_,M,~n1z'' L'P8t50tZ33 M'+1n7,4nQ7 ,~070~ P7 'L16t 1MO A4Pqo 215 

••••*•********************************************************************************************** 

PG 01 

01 

a.c.L. 

02 

a.c.L. 

~EcnRo ~U~BE~ 03 

Kl"l2110'5000lJ201(R SSOllt O•J30~6t 313~7'~90P01 S 8lPURY 
~Ill J(?707Tll5 73+r r , ICOt utq?n Tt 0 AOt •140T20 71'\t Tlt T157n2T46T5011131(?2U050001J"01C." T5nu1 
OT60P01 T71 0055"t37'Tf',~009Q9'10t'I +er 4 9711059ROF'EO 9n1110 929'1\0 ri SVNT 
AY f'RQOQC4'1 !Of[R[ r'titJNn. C'JMP11.ATI'1~ AqORTF.:I) [U••f 140Qnn vno 

50 50 11501\5 W'IV71\J76t W2 •******************* 
~r.enRo ~UMBEq 04 

Figure 3-6. A Listing with both BCL and 
Binary Variable Length Records 

01 v 
01 v 
~.' v 
:J -I 
c c 
~ -I 

I 



>>>CARD 

CARD UTILITY FUNCTION (>>>CARD). - - -
The Card Function provides the capability for reproducing a card deck, 

creating a BCL card record file on tape, or listing the card input on 

the line printer. A tape mark-group mark (~ -) will cause a short 

tape record. The Card Function is one block in length and executes 

from 400 thru 79@~ It can interrupt a running program without calling 

the Save/Restore :Memory Function. 

The CARD Function format is as follows: 

>>>CARDx 

1 - - 7 8 

where: 

x - T card to tape. 

P card to print. 

C card to punch. 

3-33 





>>> TAPE 

TAPE UTILITY FUNCTION (~~~TAPE). 

The Tape Function provides the capability of either punching a BCL 

card image tape, or making a duplicate copy of an 80 character BCL 

tape. 

The tape is formatted into 80 character BCL code. A tape mark - group 

mark (> -) will cause a short tape record. 

The Tape Function is executed from memory location 400 thru 79@, thus 

permitting execution without requiring the Save/Restore Memory 

Function. 

The Tape Function format is as follows: 

> > > T A P E x 

1 - - '7 8 

where: 

a. x - T tape to tape. 

P tape to punch. 

J-35 





SECTION 4 

USER PROGRAM LIBRARY FUNCTIONS 

GENERAL. 

MCP II contains all the functions necessary to create and maintain a 

User Program Library. The capability of including user programs as 

call features of the system is also available. The programs added to 

the system can either be in a multiprogramming and/or a non-multipro­

gramming mode. 

The User Program Library capability improves the systems operation, 

and replaces the tedious task of manually loading programs with a Call 

from the User System File. 

MCP II contains the functions necessary to initiate and maintain this 

library. The user can manipulate tape and disk files, or tape and 

disk libraries by merging, deleting, or adding information. 

The pages in this section provide a description of the User Program 

Library Functions that are listed in table 4-1. 

Table 4-1 
Program Library Functions 

Call Description 

> > >PADR Create Program Add Tape Call - -
Program Add Record Format 

> > >PLTM Program Library Tape Merge Call - -
> > >TWCR Magnetic Tape Word Corrector Call - -
> > >DPTL Delete Programs From Library Tape Call - -
> > >LLTP List Library Tape Program Call - -
> > >LTON List Overlay Names Call - - -

4-1 



Call 

> > >DELF - -
> > >ADDR - -
> > >LPAT - -
> > >CPAT - -
> > >DWCR - -
> > >LDPL - -
> > >DPDL - -
> > >LDON - -
> > >COBL - -
> > >STMT - -
> > >STUR - -
> > >SSTO - -

4-2 

Table 4-1 {cont) 

Program Library Functions 

Description 

Delete Functions From Users System 

Add Functions to MCP II Disk 

File Call 

Load Program Add Tape to Disk Library Call 

COBOL Collector Tape to Disk 

Disk File Word Corrector Call 

List Disk Library Program Call 

Duplicate or Delete from User Disk Library Call 

List Disk Overlay Names Call 

COBOL Source Program Maintenance 

Symbol Tape Maintenance 

Symbolic Tape Update and Resequence Call 

Output from Symbolic Program Tape Call 



>>> PADR 

CREATE PROGRAM ADD TAPE (~ ~ ~ PADR). 

The purpose of the PADR Function is to create a Program Add Tape of 

480 character binary records, and a Program Add Listing. 

This function uses the following steps to build a Program Add Tape. 

a. Each Program Add Record is written on tape in the format 

of a Call or PADD Record. (Reference the PADD record 

format for Program Add Card specifications.) 

b. The object program is written on tape in 480 character 

binary records. 

c. A Program Add Listing is prepared when the Program Add 

Tape is created. 

ct. A count of the programs and overlays converted to tape 

is made. The count is printed on the SPO following the 

completion of the PADR Function. When updating a User 

Program Library it should be used as the count. 

e. The following checks are made on the programs. 

1) The program identity in the Program Add Record must 

be the same as the object program record. 

2) Card sequence for detail records must be those supplied 

by the assembler. 

3) Total blocks written must equal the total blocks 

specified in the Program Add Record for each program. 

f. An End-of-Job file card signals the completion of a program 

addition. 

The PADR Function format is as follows: 

> > > P A D R i s s d d d d d d d 

1 - - - 7 8 9 10 11 - 17 

4-3 



>>> PADR 
continued 

where: 

a. i - designates the type of peripheral input unit used to 

create the Program Add Tape. 

C - cards 

B - binary tape 

P - paper tape 

D - 96 character - segment disk file. 

E - 240 character - segment disk file. 

F - 480 character - segment disk file. 

NOTE 

Disk file input must be 

blocked six card image records. 

b. ss - system specifications. This entry is only used to 

create MCP system tape. When a system tape is created, 

the code SY with binary tape input is used; otherwise, the 

field is blank. 

c. ddddddd - beginning disk file address. If the input is 

stated as disk file input, this field will indicate the 

beginning disk address of the auto-loads on disk. 

Figure 4-1 is an example of a PADR initiated Program Add Listing. 

4-4 



PROG'>A'4 TOF~T1rJe&Ttn~11 nP)T1• AS or n9•0Q•71 l'AGE 001 
BLK lrilO. ""~" .. n. 1itn~o Jfn. • 0 llf(Ut') Nn • + t lll"l~O 1\1'1. + 2 wn1to Nn. + ) lllORD Nn. + • An st~ eun t "" FLAGS 

CALL f\O >HPl'lOOPlTt qN' uonu 000 ooon 

oon1 '0 +~EGOPltf.150 +tOCt uo +O'lt +00 7L686U5n)H 8M oon' Y YYS 
001\t .,5 + 61 ~F'T "1')07AO 9?f'Dt09'•090l "5n 0001 .. 
oon1 '0 l\a79'8921 lll60 7•')"f.9YX 916 ~~~ E"IF 9on noo• J. 
001"'11 '~ .. t5n t\00~ 

oon2 ?0 7L6+?64503'-6 + 6\ SET +79'78n +00 noo& s u 
oon' ,5 ll\noo1n+oo+20 1x7+71 +00+78 Hi!! El'lF' •5!'9 "007 JJ 
oon2 'lO .. AM noM 
OOo? ':, "oH;;6nPilini v 7o?A66f\tt 21n fl(]APiOH0163 Rtn8~6et .. ,~,, 0009 SSST 

oon1 "0 70Ht6nPlllOt9 71\2Fi,61'.\f' ?10 7ttlR40H03U R70+'6T1 rtoo notn SSST 
oon3 '5 • 7•8RR3~4n8~3 + R9271)0Cl0 7689'A ..,,. A5n OOlt 1 •• 
oonl '0 7xRC13+on+?3 + e,0100190 flt R70 70,Cl6r.LS019 1nnuot nn coo nno JSSSS 
oon3 'l5 7JOC"033n363 ,..,,,"66r.1 71')3C76CLS,,t9 1o'C"6nt nn 1 J00t>OlltU6' C5n non STSSS 

oon• "0 l"'lt o+'"T1 101111 "rnPo t 9 7n20,~15 210 71C08'\0HOHO nn,, 0014 TSSS 
oono .,. 16 TNST/WO""S ~TA~Tt .. G AT 'l40 FTLLEO WTT~ RLA~ICS ,,, COMPLETE T14E "LOCIC 

oons ,0 20 tNST /WMnS c;TARTT~G AT rno f"TLLED wTT~ 'H•Nl(S T'1 CD ... PLET£ Ti.tE ALOCI( 

0006 ?O 20 TNST/WORl'\S c;TARTt~G H ~no f TLLEO WTT~ RLANICS Tf1 CDMPLF'T£ T'4E qLrJCIC 

00,,7 .,0 20 TNST/WO•H)S ~HRTT"G AT •OO FTLL[f') wTTl-4 RLANICS ,,, COt.tPLrTF: TlofE RLOCIC 

oon,. "0 20 ,..,s r 111101rns ~T ~IHPJG AT l(nO F"TLLEO WTTl-f RLANl(S Tl'.1 COt.tPLET£ Tl-f~ RLOCI( 

OO!'l9 ?O 20 l"'ST/WnQl15 ~PRTPIG AT -..oo FT LLE1l WTTl-f RLANIC'S T'1 C0"4PU"Tf TME A.LOCI( 

0010 ?O ?O r~sr1wncrns qAIH!'JCi AT '100 F nu:n w T Tl-4 qLAN1tS T'1 r.Ot.4PLF'.Tf TME RLOr.lf 

0011 ?0 20 TNST/Wn~n~ ~URTt'Jc; A ·r 131'10 F TL u: O WTTM RLANl(S T,, COl.iPLF"TF' T-.F RL•lCI( 

olv 
0012 ?'l ?O P.IST/WnQl15 ~nRTT"lli AT ')() rTLU'I') w TT 1-4 qi_ ANi<S Tn r.0"4PLF.:Tr Tl.4E ~LOCI( 01v 

~.I v 
;j ~ c )> Figure 4-1. Example of PADR Program CD a a.. 0 

+=- Add Listing. :::::::0 
I 

Vt 



>>> PADR 
co;tinued 

PROGRAM ADD RECORD FORMAT. 

Each auto-load program that is used as input to the PADR Function must 

be preceded by a PADD record. 

The PADD format is as follows: 

~ ~ ~ PADD i i i i i t b i I 0 c o n f i g u r a t n p p 1 1 

27 28 29 -1 - - ---7 8 - 12 1) 14 15 -

where: 

4-6 

a. > > > PADD - user program call. 

b. iii·ii - program identification. 

c. t - type of program being stored. 

M - serial {non-programming). 

T - on-line transaction routines. 

R - multiprogramming assembler program. 

Z - multiprogramming COBOL programs. 

C - non-programming COBOL programs. 

S - MCP II systems tape. 

d. b - reserved - must be blank. 

e. i/oconf - is the input and output configuration 

required for running the program. This field applies 

only to multiprogramming programs. 

i - input reader 1. 

1 - card reader 1. 

A - paper tape reader. 

blank - unit is not required. 

/ - input reader 2. 

1 - card reader 2. 

A - paper tape reader. 

blank - unit is not required. 

t t t t 

36 



>>> PADR 
co;tinued 

o - output punch. 

0 - card punch. 

+ - paper tape punch. 

blank - unit is not required. 

c - blank (reserved for the system). 

o - line printer 1. 

1 - printer (no tape back-up). 

T - printer, tape back-up is allowed if 

a printer is not available (assembler 

programs only) • 

n - line printer 2. 

2 - printer (no tape back-up). 

T - printer (tape back-up is allowed). 

f - number of magnetic tape units. 

1-6 - number required. 

0 or blank - none required. 

f. iguratnpp - reserved for the MCP. 

g. 11 - program blocks to load when the main portion of 

the program is loaded into core memory. 

h. tttt - total program blocks (main core plus overlays) 

included with this program. 

The following tests are made on input data during the Program Add Tape 

creation run. 

a. The program identity in the Program Add Record must be 

identical in each card image record. 

b. The sequence number field must be identical to that 

supplied by the assembler. 

4-7 



>>> PADR 
co;tinued 

c. The "Program Blocks" field to load, and the "Total Program 

Blocks" supplied by the Call or Padd record must agree with 

the actual input counts. 

A standard End-of-File card {or record) signifies the completion of 

the function. 

4-8 



>>> PLTM 

PROGRAM LIBRARY TAPE MERGE (> > > PLTM) MAGNETIC TAPE VERSION. - - -
The purpose of the PLTM Function is to create a Tape Operating User 

System File. The MCP II System Tape {or previous User System 

File) is merged with the program ADD tape to create a current User 

System File. 

To become part of the User System File, the programs on a Program Add 

Tape must be in alphabetic sequence. This function will test the 

sequence of the Program Add Tape, and merge the User System File with 

the Program Add Tape. 

The PLTM Function is executed from machine location 800 and utilizes 

eight blocks of core using the end of memory for binary tape writes. 

The PLTM Function is used in conjunction with the maintenance of the 

User Program Tape Library. The format is as follows: 

> > > PLTM 

1 - - ---7 

4-9 





>>> TWCR 

TAPE WORD CORREC'rOR (~ > > TWCR) MAGNETIC TAPE VERSION. 

The word corrector for the User Systems File provides the user with 

the capability to change any word (12 characters) of any user program 

in the library. This function is used in conjunction with the 

maintenance of the User Program Tape Library. 

This function is executed from machine location 800 and utilizes six 

blocks of core. 

The following stE~ps describe how the TWCR Function operates. 

a. A corrector card or message is read for each word to be 

changed. 

b. The Call or Padd Record for the referenced program is 

located and used as the starting point for the block count. 

c. The block number within the specified program is located 

and the change made. 

d. All changes within the same block are made before the 

block is rewritten on a new library tape. 

e. The corrector cards or messages must be in the following 

sequence~ 

1) All corrector cards and messages must be grouped by 

block number and program. 

2) The program sequence must be the same as the library 

tape. The library tape {with the exception of the 

operating system itself) is arranged by the five­

character identification collating sequence. 

J) The block sequence must be maintained within the 

program sequence. The sequence is: 

4-11 



>>> TWCR 
~~;tinued 

Call record 

Block 0001 

Block nnnn 

4) Word number sequence by block is not mandatory, but 

it is recommended to simplify off-line maintenance. 

f. Complete tapes are duplicated in sequence. 

made to affected blocks only.) 

(Changes are 

g. Changing the Call or Padd Record is accomplished by using 

CALL as the block number. 

h. After each change is made, the record is printed on the 

line printer. 

i. The word corrector listing is grouped by program. Each 

new program causes a skip to the heading line of a new page. 

The Tape Word Corrector format is as follows: 

> > > TWCRi 

1 - - ---78 

where: 

a. i - input type. Specifies the type of input device 

used for the word corrector. 

C - card reader. 

S - supervisory printer. 

The format for the detail card or SPO message is as follows: 

old word new word 
~ ~ ~ W c o R i i i i i b b b b v v r r o o o o o o o o o o o o r r n n n n n n n n n n a a 
1 2 l 4 5 6 7 8 9 10 11 12 1) 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4) 44 45 46 



>>> TWCR 
-c~-;:;tinued 

where: 

a. iiiii - program identd..fi.cation in which a word change 

is made. 

b. bbbb - block number in which the word is being changed. 

c. ww - word number being changed. 

d. rr - reserved for the system. 

e. 000000000000 - old word being deleted. 

f. nnnnnnnnnnnn - new word. Replaces the information in 

the old field. 

Before the Word Corrector input is executed, the detail information 

must pass the following validity tests. 

a. The program identification number must match a valid 

program number contained in the library. 

b. The block number can not exceed the total number of 

blocks specified in the Call Record Program. 

c. The old word field must compare equally with the actual 

information contained in the library. The check is a 12-

character compare. 

An End-of-File card or message is used to signify that all of the 

corrections have been processed. 

4-13 





>>> DPTL 

DELETE PROGRAMS FROM TAPE LIBRARY (::::::::: DPTL) MAGNETIC TAPE VERSION. 

The DPTL Function allows user programs to be deleted from the User 

System File, and is used in conjunction with the maintenance of the 

User Tape Library Program. 

The following steps describe how the DPTL Function is executed. 

a. The Tape Operating System is duplicated from the old 

User System File to a new User System File. 

b. Programs from the old User System File are duplicated 

until a Delete Program {specified by the Delete Card or 

message) is encountered. 

c. The program to be deleted on the old User System File 

is bypassed. 

d. The Call or Padd Record for each deleted program is printed. 

e. Delete cards or messages must be arranged in library 

sequence. The sequence is a low-to-high collating order 

of the five~character identification field. Out-of-sequence 

cards or messages are not processed, and a message indicating 

this condition is printed. 

f. An End-of-File record or message specifies that all of the 

deletions have been processed. 

The DPTL Function format is as fo~Llows: 

> > > D P T L i 

1 - - - 7 8 

where: 

a. i - input device. This :field designates the type of 

input used for the delete card or message. 

C - card reader 

S - supervisory printer 

4-15 



>>> DPTL 
~-;;;;-tinued 

The format for the delete card or SPO message used as input for each 

deleted program is as follows: 

> > > P D E L i d e n t 

1 - 7 8 12 

where: 

4-16 

ident - the identification of the program to be deleted 

from the User System File. 



»> LLT~ 
LIST LIBRARY TAPE PROGRAM (~ ~ ~ LLTP) MAGNETIC TAPE VERSION. 

The purpose of this function is to obtain a listing of any program in 

the User System File Library. This function will format a listing 

that corresponds with the listing created by the PADR Function. 

The LLTP Function format is as follows: 

> > > L L T P i 

1 - - - 7 8 

where: 

a. i - input device. This field designates the type 

of input used for the detail record. 

C - card reader. 

S - supervisory printer. 

The format for the detail card or message is as follows: 

> > > L T A P i d e n t 

1 - - - 7 8 - 12 

where: 

ident - program identification for which the listing is 

prepared. A detail record must be used for each entry 

(unless all programs are to be listed). ALLPG is entered 

in the ident field when all programs are required. 

4-17 





>>> LTON 

LIST TAPE OVERLAY NAMES (~ ~ ~ LTON) MAGNETIC TAPE VERSION. 

The purpose of this function is to assist the programmer with the 

assignment of program and overlay names. A listing of all the pro­

gram and overlay names (includes those used by the MCP) is printed. 

When assigning names to programs and overlays, the list can be 

referenced to prevent duplications. 

The LTON Function format is as follows: 

>>>LTON 

1 - - - - - 7 

4-19 





DELETE FUNCTION FROM USERS SYSTEM FILE CALL (> ~ ~ DELF) 
MAGNETIC TAPE VERSION. 

>>> DELF 

This function allows the user to customize the disk version of MCP II 

by eliminating those functions that are not required by the user 

operation. 

When DELF is used to delete functions that contain overlays (such as 

Sort or an Assembler) the user can maximize the disk savings by also 

eliminating each of the associated overlays. 

Care must be taken not to delete any of the functions that are 

automatically called by the Executive or Multiprogramming Controller. 

The DELF Function format is as follows: 

> > > D E L F' x 

1 - - - - - 7 8 

where: 

a. x - input device. This field designates the type 

of input used for the deletion card or SPO message. 

C - punched card input. 

S - supervisory printer input. 

The Deletion Input format is as follows: 

i i i i 

1 - - 4 

where: 

iiii - function identification 

The deletion cards or messages must be in the same sequence as they 

occur on the Master System Tape. The LDON listing of the MCP (after 

it has been loaded onto disk) will show the function sequence and 

appropriate function names that can be used for this purpose. 

4-21 





>>> ADDR 

ADD FUNCTIONS TO MCP II (~ ~ ~ ADDR) MAGNETIC TAPE VERSION. 

The purpose of this function is to allow the user to incorporate 

"in-house" auto-load formatted functions into the MCP II disk version, 

and to customize the MCP. 

The first word of' the auto-load programs to be added to the MCP must 

contain the following format: 

+ > 0 V R > i i i z c c 

where: 

a. iiiz - four character function name. The z parameter 

must contain a 12 (R) zone if the function is to be 

executed in memory locations 400 through 79@; other­

w~se, the function will be called and executed from 

location 800. 

b. cc - block count of the program being added. 

The ADDR Call format is as follows: 

> > > ADDR 

1 - - ---7 

NOTE 

Programs executing from machine loca­

tion 400 should not exceed one block. 

The automatic calling of Save/Restore 

will not be performed for those programs 

executing from machine location 400. 

4-23 





>>> LPAT 

LOAD PROGRAM ADD TAPE TO DISK LIBRARY (~ ~ ~ LPAT) DISK VERSION. 

The purpose of this function is to initialize a User Program Library 

or to add programs to an existing User Program Library. A program 

library listing is created that indicates the beginning disk file 

address of each program, and the number of blocks loaded onto disk. 

A SPO message will indicate the beginning and ending disk address of 

the disk file User Program Library. The beginning disk address of the 

User Program Library is stored in the Executive Routine at machine 

location 11#. 

The switching of libraries may be accomplished with this function. 

When it is necessary to have more than one User Program Library (e.g., 

for debugging purposes), control can be passed between User Program 

Libraries (once they are loaded) by initiating the LPAT Function, 

stating the number of programs, overlays, and the disk address where 

the alternate library had previously been loaded. If a tape unit is 

designated as #2 it must be in local status. When the message IS THIS 

CORRECT is printed on the SPO, an answer of YES must be returned. 

When the system hangs on a tape command, press CLEAR and then CONTINUE 

on the Central Processor to return control to the Executive Routine, 

and then any program in that User Program Library may be called in the 

usual manner. 

By placing a U in position 14 of the LPAT Function Call instead of the 

normal beginning disk address, the adding of programs to an existing 

User Program Library may be accomplished after a library has been 

established and su:fficient room is available for the addition. When 

initializing a User Program Library, it is advisable to allow for 

additional programs and overlays. 

The input tape must be formatted (by the PADR Function for Assembler 

Programs) in such a way that the Call Record precedes each program, 

and the program is in 480 character binary blocks (PADR format). 

4-25 



>>> LPAT 
~o;;-tinued 

The LPAT Call format is as follows: 

>>>LPAT 

1 - - - 7 

p 

8 

p p 0 0 

10 11 -

0 d d d 

14 15 -

d d d d 

20 

where: 

a. ppp - number of programs be~ng loaded. If for an initial 

library creation, it designates the anticipated number 

of programs to be included ~n the User Program Library. 

b. ooo - number of overlays be~ng loaded. If for an initial 

library creation, it designates the anticipated number 

of overlays to be included in the User Program Library. 

c. ddddddd - base disk address where the User Program Library 

is to be loaded. If posi~iQn 14 contains the alphabetic 

character U, it signifies that the programs being loaded 

are to be added to the existing User Program Library. 

NOTE 

The CPAT Function must be used 

whenever COBOL programs are loaded 

or added to a User Program Library. 

Figure 4-2 is an example of a LPAT initiated library listing. 

4-26 



,,B~A~Y \'~r,~r, AS ~f-OQ•n9•11. Qr,RAM n ~ TrTCATTON t~tTTAL qLOr.1<~ T'l CALL T" trirAL ~Lncscs TYPE 'H St< 

OPH, ,, Oit' R 

OP3T2 , 4 ont~ R 
0P.H3 t6 OtH6 R 

0PH4 , 4 0014 ~ 

AYT~T ,,8 O'lO" p 

C'lTAP r"a oio1 7 
TPPr,H ,, 4 0001 l 
TPTAP ,,5 onn1 7 

Figure 4-2. Example of LPAT Library Listing 

F'ILE RE'H~NT~G 

ono9'lt,. 
ooo9noln 
onn9"6" 
0009100 
oon91'-" 
00091 u 
000915A 
ooo9t n 

AOORFC\~ 

olV 
01 v 
~IV 
:J I c ..,, 
CD )> 
a.. -I 





>>> CPAT 

LOAD COBOL COLLECTOR TAPE TO DISK LIBRARY (~ ~ ~ CPAT) DISK VERSION. 

The purpose of this function is to load or add COBOL programs to the 

User Program Library from a COBOL collector tape. 

The use of this function eliminates the need for the PADR Function. 

{PADR is required with assembler type programs.) The direct loading 

of COBOL programs to the User Program Library is accomplished with 

this function. After a library of different types of programs (COBOL 

and Assembler) has been created on disk, a copy of the library may 

be dumped to tape using the DPDL Function. The LPAT Function must 

then be used to reload the back-up-program tape. 

The CPAT Function format is as follows: 

>>>CPAT 

1 - - - 7 

where: 

p 

8 

p p 0 0 

10 11 -

0 d d 

13 14 -

d d d d d 

20 

a. ppp - number of programs being loaded. For an initial 

library creation, it designates the anticipated number 

of programs to be included in the User Program Library. 

b. ooo - number of overlays being loaded. For an initial 

library creation, it designates the anticipated number 

of overlays to be included in the User Program Library. 

c. ddddddd - base disk address where the User Program Library 

is to be loaded. If position 14 contains the alphabetic 

character U, it signifies that the programs being loaded 

will be added to the existing User Program Library. 

NOTE 

The CPAT Function must be used 

whenever COBOL programs are loaded 

or added to the User Program Library. 

4-29 

• 





>>> DWCR 

DISK WORD CORRECTOR (~ ~ ~ DWCR) DISK VERSION. 

The purpose of this function is to provide the user with the 

capability to change any word (12 characters) in any program of the 

User Program Library. 

This function is based at machine location 800 and utilizes six blocks 

of core. 

The following information describes how the DWCR Function operates. 

a. Each word to be changed requires a Corrector Card or SPO 

message. 

b. The Call or Padd Record for the referenced program is used 

to build the address of the specified program block. 

c. Call records are located only when program identity changes. 

d. All changes within the same block (if in sequence) are made 

before the block is rewritten onto the disk file. 

e. Corrections may be processed in any order; however, a 

recommended sequence is as follows: 

1) Program identity sequence should be in the same 

order as the additions to the library (reference 

the LDON Library Listing). 

2) All Corrector Cards or messages for a program 

should be together, and grouped by program block numbers. 

f. Provision is made for changing the Call or Padd Record 

by using CALL as a block number. 

g. After each change is completed, a record of the change is 

printed. 

h. If a change is not completed, a message is printed 

indicating this fact (along with the reason). 

4-Jl 



>>> DWCR 
-c-;;;tinued 

i. The Word Corrector listing is grouped by program. Each 

new program causes a skip to the heading of a new page. 

j. Before a change can be made~ the Corrector Card or message 

must pass the following validity tests: 

1) The program number must be a valid program contained 

in the User Program Library. 

2) The block number cannot .exceed the total number of 

blocks in a specified program. 

J) The Old Word Field must compare equally with the 

actual information contained in the User Program 

Library. (This check is the reason for requiring 

a fixed 12-character field for each change.) An 

equal compare on 12-characters reduces the possibility 

of changing the wrong field. 

k. An End-of-File card or mess~ge is used to indicate that all 

the corrections have been processed. 

The Disk Word Corrector Function format is as follows: 

> > > D W C R i 

1 - - - - - 7 8 

where: 

a. i - input device. 

device. 

This field specifies the type of input 

C - card reader. 

S - supervisory printer. 

The detail card or SPO message format is as follows: 

old word new word 
~ ~ ~ w c o R i i i i i b b b b w w r r o o o o o o o o o o o o r r n n n n n n n n n n n n 
1 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 )1 32 )) )4 )5 )6 )7 )8 )9 40 41 42 4) 44 45 46 

4-32 



>>> DWCR 
-c"7>~tinued 

where: 

a. iiiii - program identification in which a word change 

is made. 

b. bbbb - block number in which the word is being changed. 

c. ww - word number being changed. 

d. rr - reserved for the system. 

e. 000000000000 - Old Word being deleted. 

f. nnnnnnnnnnnn - New Word. Replacesthe information in 

the old field. 

Before the Word Corrector input is executed, the detail information 

must pass the following validity tests. 

a. The program identification number must match a valid 

program number contained in the library. 

b. The block number cannot exceed the total number of 

blocks specified in the Call Record Program. 

c. The Old Word Field must compare equally with the 

information contained in the library. 

is a 12-character compare. 

The check 

An End-of-File card or message is used to signify that all of the 

corrections have been processed. 

4-JJ 





>>> LDPL 

LIST DISK LIBRARY PROGRAM (~ ~ ~ LDPL). 

The purpose of this function is to obtain a listing of any program in 

the User Program Disk Library. A listing similar to that created by 

the PADR Function (when the program was originally loaded to the 

library) is made {figure 4-J). 

The LDPL Function· format is as follows: 

> > > L D P L i 

1 - - - 7 8 

where: 

a. i - input device. This field specifies the type of 

input device for the program identification record(s). 

C - card reader. 

S - supervisory printer. 

The format for the detail card or SPO message is as follows: 

> > > L D S K i d e n t 

1 - - - 7 8 - - - 12 

where: 

a. ident - the program identification for which a listing 

will be made. A record must be entered for each program. 

If a listing of the complete User Program Library field is 

required, ALLPG is entered in the ident field. 

4-35 



+:­
I 

w 
0\ CALl 

0001 
0001 
ooot 
ooot 
ooot 
ooot 
ooo't 
OOOt 

000? 
000, 
000' 
000' 
000' 
000, 
OOO' 

--0-00'-

000, 
0001 
000' 
000, 
0001 
0001 
0001 
0001 

0004 
0004 
0004 
0004 
ooo• 
0004 
000'1 
0004 

no 

no 
n5 
10 
15 
,0 
,5 
10 
15 

no 
n5 
10 
n 
,0 
,5 
'0 
,5 

no 
05 
to 
15 
,0 
,5 
10 
15 

no 
n5 
1 0 
15 
,0 
,5 
'0 
15 

+~nYRUStlllnt 
5•'30'12000 
7"1712 5t l 
K'-255nH0550 
71\7730 19' 
71\3712 Ul 
,, 000 
t 1 rotn9n92 

t t 7nt ?]92192 
7•11814106?1 
6n u ntt ooftn 
'"2181187270 
6" 210'-101 "O 
7"t25'nn Ut 
J oon?ft9noo 
n-ns-nlts-3'6 

+q[GCnTAPA50 
ftl\050 YY SC 
n5oonno925-. 

+•nnu:• 9CH, 
9~0'50 c 

.. 
Al\050 C 
O" '500Tl05 
019961()540 
7n,R5~R50396 

Al\050 W•••SC 
4,,r.7tA,07nn: 

7tnC76r.1 

l .. , l 

51\'-7' '10070 
+ tuuoonu 
+ noo306 
1n210• 710 
71\71'5 llO 
rnnt~ 10 
Oft4000000060 
0219,4000'-0 

0'-19?4000,0 
7n2'\87ono'-56 
50t26:U6UO 
TU't 0000456 
J 1)01186?7 
54~Utt89t~O 
7MUfUSG•oo 
54-1 16-tt-l-2-6-1-l-6 

OUP 00101)00 
9+ LAR£L8505 

+"'-"TL E • e>oo 
OUP 004 

+005 

r.uosoo 
OTAP 00770,A 
90560'St.OA505 

711897,tH 
71Ho63 C02 
OUP 01 OT905 
4~C60'99Cl'\05 
l')H~7nt 061 

OU007 

wo~n .. n. + ' 

+ 4007t2Un 
7n)l0A '" 
7n7tU ?Jn 
02730000580 

7072, '"' 
hl72'-000t 66 
000000000000 
5•HtU0006n 

54HtA•non6n 

701450 ''" 
70l2890001 l6 
1n11e1000'"6 
l tt l6t 16116' 
70,45lUO?At 
rooisuonnon 
7wH1-A&OOl~4 

+t)OOOOOOOn~• 
onoooooo 
0 SCOTAP 

0 COT AP 

000000 
56~5039&7ntQ 
0 ~., S COUP 

+4nt,5SU6an 
7tHQ63 r,,A 
90560~6071')1" 

0 • S1WC0TAP 
nt '-701963 

, ,~429115715 
70006 J09 
1'77U0057H 
IC" 258068 0580 
5'-t 722U'678 
Qt 6HOSIC RD 
00f)0002 
5n,teU8UtO 

5n?t8U87'lO 
J 000289 
7n11164156169 
J 0004005• 
54tn•t6it56 
nounooosn 
700668000600 
+n-.n--3-&&··----ooo 

0t)2 
90050 

t)t)lj 

+5050 

6tt>ron 
5Q U2'70l9 

"'>"t01MOC7 
un9qno5n 1w 
7nU6l Cl2 
2• •0870'C 

'l116t05•0 
nnc5o5n s 

MORO NO. + • 

W'1RD .. O. + • 

t t2U07207'0 
l'U006'1~9 
W027HOOGl\50 
705115 1"9 
701112 O"l 

£RR • DISC• 

7093"0 uo 
H1156o9H'J6 
7Ut•UOOtH 
Hl256tHn6 
J . 00lt697') 
702Htoa 1n• 
7l'7HOOO?n0 
-000600000. 

6' A50UO U 
9999 

COUP on:s 

+LAAEL ER"• 
'i9 B027o'B 
nQ717028tUl 
.1cnUP nn9 

101c10 5no 
UO• t 1701),, + 

610A5n 
WuCnUP Ot? 

Figure 4-J. Example of a LDPL Listing of CDTAP 

~Al! 002 

nl V 
olv 
~Iv 
:J r­
e 0 
(I) ..,, 

a... r-



>>> DPDL 

DELETE PROGRAMS FHOM DISK LIBRARY ( :::_ :::_ :::_ DPDL) DISK VERSION. 

The purpose of this function is to delete user programs from the User 

Program Library. 

The following procedure is used during the execution of the function. 

a. The Call or Padd Record for- each specific program is located, 

and the program name is replaced with the word DELETE. 

b. The End-of-File card or message indicates that all the 

deletions have been processed. 

c. All remaining user programs on the disk file are written 

onto magnetic tape as follows: 

1) Each call record is checked. 

2) If fJ.agged with DELETE, the record is ignored. 

3) If it is not flagged with DELETE, the CALL Record 

is written onto magnetic tape. The CALL Record 

locates the program and formats it from a disk file 

program to a Program Add Tape Format. 

4) A count of the number of programs converted to 

magnetic tape is printed on the supervisory printer. 

d. The Load Program Add Tape to Disk Library Function (LPAT) 

can be used to reload the User 

The DPDL Function format is as follows: 

> > > D P D L i 

1 - - - 7 8 

Program Library. 

4-37 



>>> DPDL 
co;tinued 

where: 

a. i - input device. This field specifies the type of 

input device for the delete records. 

C - card reader. 

S - supervisory printer. 

The delete card or SPO message used as input for program deletion is 

as follows: 

> > > P D E L i d e n t 

1 - - - 7 8 - 12 

where: 

4-38 

a. ident - the identification of the program to be deleted 

from the User Program Library. 

NOTE 

The DPDL Function can be used 

to create a tape back-up of the 

User Program Libra~y by entering 

(~ ~ ~ bEOF) a stabdard End-of­

File card or messa~e. The func­
i 

tion will copy the :user Program 

Library to tape with no deletions. 



>>> LDON 

LIST DISK OVERLAY NAMES (~ ~ ~ LDON) DISK VERSION. 

The purpose of this function is to prevent the assignment of dupli­

cate names to programs or overlays within the User Program Library. 

The LDON Function format is as follows: 

> > > LDONi 

1 - - ---78 

where: 

a. i - input. 

L - listing. This entry will list only the 

program overlays from the User Program Library. 

blank - wirl list all the names and addresses from 

the User Program Library. 

Figure 4-4 is an example of an LDON listing after a User Program 

Library has been created. 

4-39 



>>>LOON 
~o;;-tinued 

4-40 

DIS~ ~vrRLAV NAMfS ANO annRr~sr~ AS or•n9•09•7t. 

OP ~YSTr~ nvrRLAYS. 

roJr 

nCKf' 

~OH 

AOAr Automatic Functions 

l')SCL 

HCC: 

rcr>r 

4\ T TF' flnn75'>ft 

~AVO oon1m;ftn 

r:"[CM Ot)n761~ 

~DCM oon1640 

PQOr,RA"4 lJVf'~LAVc;, 

'1P3T1 oonqot,, 

nP3T? (')t')n904n 

riP'H' 'lOnQO,,A 

'1P3T4 oof'9ton 

AXT ST onnQt'" 

en TAC) (')O"Q144 

TPPCH ')On9t5A 

Figure 4-4. Example of a LDON Listing 



>>> COBL 

COBOL SOURCE PROGRAM MAINTENANCE FUNCTION (~ ~ ~ COBL) DISK ONLY. 

The purpose of this function is to provide the user with the capa­

bility of maintaining a magnetic tape file of COBOL source programs. 

The function capabilities are as follows: 

a. Create a Source Program Tape. 

b. Add or d(3lete program(s) to or from the Source Program Tape. 

c. Revise, add, or delete Source Program records. 

d. List or punch Source Program information. 

The implementation of this function requires a working knowledge of 

the operating requirements. 

The operating functions are as follows: 

a. A scratch tape is mounted on MTU-1 for the new 

Source Program Tape. 

b. The Source Program Tape is updated by mounting 

a previous tape on MTU-2. 

c. If programs are added from an update tape, they 

are mounted on MTU-J. 

The COBL Call format is as follows: 

>>>COBL 

1 - r"'f - - - - ' 
The first record of each source program must have the following format. 

i d e n t b 

1 - - - 5 6 

where: 

LABEL 

7 - - - 11 

a. ident - a unique five character program name 

(the first four characters cannot be CALL). 

4-41 



>>> COBL 
~-;;:;tinued 

b. b - blank. 

c. LABEL - the literal LABEL. 

The Source Program Tape Record addition, or revision format is as 

follows: 

s s s s s s x x x x x 

1 - - - - 6 7 - - - 80 

where: 

a. ssssss - the record sequence number to be added or revised. 

b. xxxxx - Source Program codin& as required. 

The Source Program Tape record deletion format is as follows: 

s s s s s s D E L E T E 

1 - - - - 6 7 - - - - 12 

where: 

a. ssssss - the record sequence number where the 

record is to be removed. 

b. DELETE - the literal DELETE. 

The following is a list of SPO messages, and the actions to be taken 

by the system operator. 

4-42 

a. ENTER REQUEST 

This message asks what operations the user wants the 

COBL Function to perform. 

The response is as follows: 

1) BUILD - creates an unlabeled SO-character card image 

tape of COBOL source programs. The input is through 

the card reader, and the new tape is on MTU-1. All of 



>>> COBL 
-c-O-;:;tinued 

the programs are sequenced, and a listing made of the 

new sequence numbers. BUILD is entered via the SPO. 

2) LISTPG - returns a WHICH LIST FUNCTION message via the 

SPO. 

The replies to this message are as follows: 

a) ALL - prints the complete file. 

b) PGMID - prints program identifications. If PGMID 

is entered via the SPO, a listing of program names 

submitted through the card reader are printed. 

c) program identification - prints that individual 

program. 

3) ADDPGM - returns a DEVICE message via the SPO. 

The replies to this message are as follows: 

a) TAPE - programs are added from magnetic tape. 

b) CARD - programs are added from the card reader. 

This entry copies the Source Program Tape from MTU-2 

onto MTU-1, and adds new program{s) from either MTU-3 

or the card reader onto MTU-1. 

4) CHANGE - requires an input deck to reflect the revisions 

to the Source Program Tape. 

The tape mounted on MTU-2 is copied onto MTU-1 until 

a matching program name is found. At this point the 

change cards {additions or revisions) replace the 

existing record{s) from MTU-2. 

If the change record includes DELETE neither record is 

written on MTU-1. 

4-43 



>>> COBL 
-c~~tinued 

4-44 

If the record sequence numbers do not match, the input 

change records are automatically sequenced. A maximum 

of 50 records can be inserted between each source record. 

A listing is also made for the user. 

An example of the update cycle using the CHANGE option 

is illustrated in figure 4-5. 

SSSSS$DELETE 

PGIDNTb~ABEL 

SSSSSSDELETE 

ssssss 
SSSSSSDELETE 

PGIDNTbLABEL 

Figure 4-5. CHANGE Deck 

NOTE 

The input deck must be in the same 

sequence as the Source Program Tape. 

5) PUNCH - returns a PGMID message that requires a five 

character program name response. This entry identifies 

the program to be punched. 

6) REMOVE - requires an input deck be entered through the 

card reader. The cards must use the same format as the 

first source program record {columns 1 through 11). The 

contents of the tape on MTU-2 are copied onto MTU-1. 

The programs entered via the card reader are bypassed. 

A listing of the programs on MTU-1 is automatically made 

for the user. 



>>> COBL 
-~-;:;tinued 

NOTE 

All of the options must have 

a standard End-of-File (~~~bEOF) 

entry as the last input record. 

The B 500 compiler will accept Source Program Tape as input. 

The operating functions are as follows: 

a. The Source Program Tape is mounted on MTU-2, -J, -4, -5, 
or -6. 

b. The Library Call Card is required by the compiler. 

The Library Call Card format is as follows: 

T A P E u b x x x x x 

1 - - 4 5 6 7 - - - 11 

where: 

a. TAPE - the actual TAPE. 

b. u - the number of the MTU where the Source Program 

Tape is mounted. 

c. b - blank. 

d. xxxxx - the name of the program to be compiled. (The 

first program is compiled when this entry is blank.) 

A 999 halt will occur when a program cannot be found. 

4-45 





>>> STMT 

SYMBOLIC TAPE MAINTENANCE CALL (> ~ ~ STMT). 

The purpose of this call is to create and maintain separate Master 

.Program Library Tapes at the program level. The input can either be 

symbolic source language or auto-load card image programs. 

·The implementation of this function requires a working knowledge of 

the operating requirements. 

The operating functions are as follows: 

a. A scratch tape is mounted on MTU-1 for a newly created 

Master Program Library Symbolic Tape. 

b. The Master Program Tape is normally updated by mounting 

a binary Master Programs Library Symbolic Tape on MTU-1 

and the scratch tape on MTU-2. 

c. The line printer is made READY. 

d. The STMT Call is entered via the card reader or the SPO. 

The STMT Call format is as follows: 

>>>STMT 

1 - - - - - ? 

A control card must precede each source program that the user wants to 

Add, Delete, or Replace. The forma.ts are as follows: 

> > > ADD Adds the following program. 

> > > REPLACE Replaces a program with the following. 

> > > DELETE Deletes specif'ic programs. 

The programs being ADDed must be placed at the end of the update 

control deck, and programs that are REPLACEd and/or DELETEd must be in 

the same sequence as the program in the Master Program Library Sym­

bolic Tape. The sequence is determined by the verification listing 

made during the initial or last update cycle. 

4-47 



>>> STMT 
~~~inued 

The first instruction for every program being ADDed must be as follows:

+ > 0 V R > i d e n t

1 - - 6 7 - 11

where:

a. ident - program identification.

A Control Deck setup for the update of a Master Program Library Tape

is shown in figure 4-6.

+ :::_ OVR :::_ BBBBa

:::_:::_:::_DELETE

+ :::_ OVR :::_ AAA.AA

:::_ :::_ :::_ REPLACE

SYMBOLIC (or}
AUTOLOAD

(cols. 1-8)

:::_ :::_ :::_bEOF

:::_ :::_ :::_bEOF

Figure 4-6. Control Deck Example

A pass is automatically provided to check the newly created Master

Programs Library Symbolic Tape. This check verifies that the program

has been copied.correctly, and that the Master Tape was updated as

specified. The program identifications are tested, which reflects the

sequence of the updated version of the Master Tape.

The following is a list of the SPO messages and the actions to be

taken by the user.

4-48

>>> STMT
-co-;:;tinued

a. IS BINARY CARD TO TAPE REQUIRED

The message asks if the run is an initial creat,ion of

the Master Program Library Symbolic Tape, or an update.

The response is as follows:

1) YES - initial creation.

2) NO - update run.

The STMT option allows the user to create and ve.rify a binary

card image tape of any card file (regardless of context).

b. REMOVE WRITE RING

This message indicates that the update or initial creation

is completed, and the verification pass is in progress. The

user follows the message :instructions and processes the up­

date deck through the card reader by pressing CONTINUE on the

Central Processor.

c. VERIFICATION ERROR RESTART

This message indicates that an error has occurred in the

update or initial creation pass. The job is discontinued

by removing the deck from the card reader, and pressing

CONTINUE on the Central Processor.

d. INVALID UPDATE CONTROL CARD

This message indicates that an improperly punched Add,

Delete, or Replace update control card is in the process.

The job is discontinued by removing the deck from the

card reader, and pressing CONTINUE.

e. FORMAT ERROR

This message indicates that the format of the first word of

master tape data, or the first instruction in a program card

deck is not +.::_OVR>iiiiib. The job is discontinued by

removing the deck from the card reader and pressing CONTINUE.

4-49

>>> STUR

SYMBOLIC TAPE UPDATE AND RESEQUENCE CALL (> > > STUR).

The purpose o:f this call is to maintain Advance Assembler symbolic

Source Programs at the page and line level. The programs must be

resident on the Master Programs Library Symbolic Tape created by the

STMT Call.

The implementation o:f this :function requires a working knowledge o:f

the operating requirements.

The operating :functions are as :follows:

a. The symbolic tape is mounted on MTU-1.

* b. The scratch tape is mounted on MTU-2.

c. The line printer is made READY.

d. The Call STUR is entered via the card reader or the SPO.

e • Load the input deck into the card reader and press START.

The STUR Call :format is as follows:

>>>STMT

1 - - 7

A control card nrust precede each source program that the user wants to

Add, Delete, or Replace. The :format is as :follows:

> > >A D D (additions)

> > > D E L E T E (deletions)

> > > R E P LA C E (replacements)

1 - - - - 10

The change deck must be in page and line number sequence, because the

page and line numbers in the source cards serve as the controlling

factor. A control card must precede the source cards that need to be

added, deleted, or replaced.

* MTU-2 will contain the updated and resequenced symbolic tape after
the STUR Function is completed.

4-51

>>> STUR
-C"C;;tinued

An End-of-File Card > > >bEOF (columns 1-7) must be placed behind the

last source card of the update deck.

A pass automatically checks the newly created Master Programs Library

Symbolic Tape. The check verifies that the programs have been copied

correctly, and that the updating was accomplished as specified. A

listing of program identification is created that reflects the

sequencing of the updated Master Programs Library Symbolic Tape.

The following is a list of SPO messages and the actions to be taken by

the user.

4-52

a. ENTER TAPE NAME TAPE-DISK-SCP-USER

This is a parameter request message. The user must respond

with TAPE/DISK/SCP/USER in order to obtain the sequencing in

their respective categories of 1-49999/50000-99999/1-99999/

1-99999.

b. FORMAT ERROR

The last card read does not contain one of the specific

control card formats for columns 1~10. After the card is

corrected, the STUR Function is restarted.

c. RD ERR Ul

A read error has occurred on MTU-1. The user can press

CONTINUE on the Central Processor to try again, or CLEAR

and CONTINUE to abort the function.

d. REMOVE WRITE RING

The new symbolic tape has been made and the verification pass

is in progress. The user must remove the write ring from the

MTU-2 tape, place the update deck back into the card reader,

and press CONTINUE on the Central Processor. This completes

the update verification.

>>> STUR
C:o;;tinued

e. VERIFICATION ERROR RESTART

The newly created symbolic tape has not been correctly

verified. The user must press CLEAR and CONTINUE on the

Central :Processor to abort the function.

f. RD ERR U2

A read error has occurred on MTU-2 during the verification

pass. The user can press CONTINUE on the Central Processor

to try again, or CLEAR and CONTINUE to abort the function.

4-53

>>> SSTO

OUTPUT FROM SYMBOLIC PROGRAM TAPE CALL (~ ~ ~ SSTO).

The purpose of this call is to obtain various types of output from

Basic or Advanced Symbolic Program Master Tapes.

The implementation of this function requires a working knowledge of

the operating requirements.

The operating functions are as follows:

a. The Symbolic Program Master Tape is mounted on MTU-4.

b. Scratch tapes are mounted on MTU-1 and -2 when an assembly

is required.

c. The line printer is made ready when a listing is required.

d. The card punch is made ready when punched card output is

required ..

e. The Call (> > > SSTO) is entered via the card reader or the

SPO.

f. Follow the instructions displayed on the SPO.

The SSTO Call format is as follows:

> > > SSTO

1 - - ---7

The following is a list of the SPO messages and the action to be taken.

a. ENTER 10 CHARACTER PROG HDR ID

This is a parameter request message and will re-occur after

the entry is processed, or until a standard End-of-File mes­

sage is processed. If all the programs on the Symbolic Pro­

gram Master Tape are to be output, the response is ALL. When

individual programs are affected, the response is a

10-character request of +::::_OVR::::_IDEN.

4-55

>>> SSTO
co;tinued

4-56

b. ENTER TYPE OF OUTPUT - ASEL, ASOP, PCH, LIST or P&L. This

is a parameter request message and is used in conjunction

with the item a message. The response is as follows:

1) ASEL - Basic Assembler Call.

2) ASOP - Advanced Assembler Call.

3) PCH - punches the specified program.

4) LIST - lists the specified program.

5) P&L - punches and lists the specified program.

c. IS OUTPUT TYPE SAME FOR ALL ENTRIES

This is a parameter request message and is used in

conjunction with item b. The response is as follows:

1) YES - all subsequent entries will have the same type

of output.

2) NO - an ENTER TYPE OF OUTPUT message will appear for

all subsequent entries.

d. SAVE MEMORY - DESIGNATE UNIT

This is a parameter request message, and will follow

item c after an Assembler has been specified. This message

will appear after the first specification, and signifies the

type of media on which the SAVE or SAVD Function will store

memory before completing the assembly process. The response

is as follows:

1) MTU number - memory is stored on magnetic tape.

2) # - punch card memory.

Each subsequent assembly process will bypass the SAVE

MEMORY - DESIGNATE UNIT message, and memory will be stored

on the previously specified media.

e. IS OUTPUT SAME FOR ALL ASOP PROGRAMS

This parameter request message is displayed when the first

request for a program on the Symbolic Program Master Tape

>>> SSTO
~-;;;tinued

and MCP II Advanced Assembler is received. If the

response is YES, it will initiate a subsequent

ENTER TYPE OF OUTPUT message (item b). This will auto­

matically call ASOP. This reply will not make it neces­

sary to repeatedly respond to this message. A NO entry

will indicate a message that requires assistance from the

system operator.

f. CARD OUTPUT FOR ASOP

This parameter request message appears whenever an ASOP

parameter is used to assemble a program from the Symbolic

Program Master Tape. (Reference item b.) The response

is as follows:

1) YES -· the auto-load object program card deck is punched.

2) NO - the punch operation will not occur.

g. PROGRAM 'I'YPE - ADVAN, BASIC, AUTOL, 80-80

This parameter request message is used in conjunction with

the PCH, LIST, or P&L replies to the item b message. The

response is as follows:

1) ADVAN - the requested program ID identifies a

program in the MCP II Advanced Assembler symbolic

format (reference item a).

2) BASIC - the requested program ID identifies a

program in the Basic Assembler symbolic format

{reference item a).

J) AUTOL - the requested program ID identifies a

program in the auto-load format (reference item a).

4) 80-80 - an exact card image must be produced for the

date represented by the program-ID (reference item a).

h. IS PROGRAM TYPE SAME FOR ALL ENTRIES

This parameter request message is used in conjunction with

the AUTOL or 80-80 of item g. The response is as follows:

4-57

>>> SSTO
~ontinued

4-58

1) YES - all subsequent PROGRAM TYPE message requests

will automatically call the specified format.

2) NO - indicates to SSTO that the format type specified

in item g will not bo the same, and that each PROGRAM:

TYPE message requires a response.

i. END FLAG SAME FOR ALL 80-80 ENTRIES

This parameter request message is used in conjunction with

the 80-80 reply in item g. The response is as follows:

1) YES - all subsequent END FLAG messages will automatically

call the specified formats. The 80-80 function will look

for the same ending label on each subsequent 80-80

request.

2) NO - all END FLAG request messages require a response.

j. END FLAG LENGTH

This parameter request message is used in conjunction with

the item g 80-80 reply. The response to this message is

the number of characters in the ending record flag that will

be used to delimit the transfer of data to the 80-80 function.

A one character response can indicate from 1 to 12 characters

of flag data entered in the following manner:

1 ' 2 ' J ' 4 ' 5 ' 6 ' 7 ' 8 ' 9 ' #' @ ' 0 ' (#= 10 J ®= 11 ' 0= 12) •

This message is repeated if an invalid character is entered

by the user.

k. END FLAG POSITION

This parameter request message is used in conjunction with

the item g 80-80 reply. The response to this message is

the MSD (most-significant-digit) character position of the

flag field within the ending record that the 80~80 function

will seek to delimit the transfer of data.

>>> SSTO
co;tinued

The reply must be machine words and characters 000 through

067, e.g., 01@ is the 24th position of the record, and 019

the 21st.

This message is repeated if an invalid character is entered

by the user.

1. END FLAG CODE

This parameter request message is used in conjunction with

the item g 80-80 reply. The response must be the actual

contents of the flag field (1 to 12 characters of significant

ending label flag data).

m. PROGRAM NOT FOUND ON TAPE program-ID

This message indicates that the end-of-tape has been

processed, and the specific program-ID was not found.

The RWD Call should be used as a precautionary measure to

assure the user that the tape was properly positioned. After

using RWD, the user can re-enter the SSTO Call.

If the program is truly missing, SSTO can be discontinued by

using CLEAR and CONTINUE on the Central Processor.

n. flag data NO END RECORD

This message indicates that the end of tape has been pro­

cessed, and the flag data specified in item 1. was not found.

The SSTO Function is automatically discontinued. The user

must re-·enter the SSTO Call, and the correct end flag data

when it is requested.

4-59

SECTION 5

MCP II SORT CALL FUNCTIONS

GENERAL.

MCP II provides the user with the functions to assist in the genera­

tion of sort programs. Magnetic tape or disk file working storage

can be specified by the user. ThB Sort IV Mark II Generator will

produce object programs that can be executed in a multiprogramming

environment.

The following pages within this section describe each of the sorts

and their features.

The functions described in this section are:

*a. > > > SG2T Sort/Merge Generator II (tape sorts).

** b. > > > SGIV Sort Generator IV (disk sorts).

* Refer to B 500 Sort Generator II Reference Manual (1034279)
detailed information.

** Refer to B 500 Sort Generator IV Reference Manual (1034139)
detailed information.

for

for

5-1 '

SORT/MERGE GENERATOR II (~ ~ ~ SG2T).

This function is divided into two parts:

Magnetic Tape Merge Generator.

SORT GENERATOR II~

>>> SG2T

Sort Generator II, and

This function provides the capability of producing efficient sort and

merge programs designed to meet individual file and system require-

men ts. Sort or merge programs can be generated for either a 9.6K or

19.2K system, and tape unit requirements range from a minimum of three

to a maximum of six. The unbalanced merge technique is employed.

An optional output for the generator may be in Advanced Assembler

Symbolic form. This form provides several points for modifying the

generated program~ otherwise, an object program is generated.

Three input specification cards provide the file parameters and

system characteristics required for program generation. Some of the

program features are magnetic tape label processing, sort key of up

to 60 characters located in up to ten fields within the record, and

the sequence in ascending or descending order. The location of the

sort key within the record may be specified at generation tim~ or,

optionally, at run time.

provided.

Interrupt and restart capabilities are also

Program generation is based upon the selective routine method, and it

in turn depends upon one or more input specification values.

The generator is a single-pass program divided into four phases. The

following is a brief description of each of the phases.

AUDIT PHASE. During the audit phase of the generator, the three spec-

ification cards are read and their contents audited. The specifica­

tion cards are prj_nted in an edited format, followed by specification

errors (if any). During this phase, the nucleus of a value area

needed for the routine selection process is established.

5-3

>>> SG2T
co;:;-tinued

ALLOCATE MEMORY PHASE. Memory requirement allocation for the gener-

ated program is based on logic requirements, I/O requirements, and

user requirements. The balance of the values area requirement is

inserted. If memory requirements exceed memory availability, alter-

nate methods of generation are automatically attempted. If these

alternate methods give unacceptable results, generation is

discontinued.

PROCESS GENERATED PROGRAM PHASE. Generator program routines are

checked and needed routines are selected from the prototype file. The

output is in punched cards or written on magnetic tape. An Advanced

Assembler Control Card for the generated program will be produced.

GENERATION END/ASSEMBLY CALL PHASE. The necessary housekeeping

function for the generator are completed (and if final output was

designated as symbolic) the program ends at HALT 999. If Auto-Load

Output is specified, the ASOP Assembler is called, and the generated

symbolic sort program is assembled to Auto-Load.

The following is a list of features:

5-4

a. Files may be sorted into ascending or descending sequence.

b. A generated sort program will process BURROUGHS standard

beginning and ending labels for input and output tapes.

c. Unit records up to 1200 characters in length may be sorted.

d. The Sort Key may have a maximum of 60 characters.

e. The Sort Key may be located in as many as ten sort fields

within the record. Each field can be alphanumeric or

numeric.

f. Total control is prov£ded at the user's option.

g. Input and output blocking of up to 1200 characters is

permitted.

h. Logic routines are optimized.

i. Generated coding is optimized.

>>> SG2T
continued

j. Internal blocking throughout a sort will be the maximum

permitted by available memory.

k. Modification points have been provided in every phase of

the sort.

1. A restart procedure has been incorporated into each sort.

m. The Sort Key locations can be specified at generation or at

run time.

MAGNETIC TAPE MERGE GENERATOR.

Like generated sorts, a merge provides for interrupt and restart

capability, along with several user modification points within the

program.

The following is a list of features provided for generated tape merge

programs.

a. Files may be merged in ascending or descending sequence.

b. A generated merge program will process beginning and ending

BURROUGHS standard tape labels for input and output tapes.

c. Records of up to 1200 characters in length can be merged.

d. The Merge Key may have a maximum of 60 characters.

e. The Merge Key may be located in as many as ten fields within

the record.

f. Input requirements.

1) Labeled and unlabeled files may be mixed.

2) Input blobking may be mixed for and between files.

5-5

>>> SG2T
co;tinued

5-6

g. Provision has been made to provide access to unique modifi­

cation points for each input file, and common modification

points for all files.

h. A restart procedure is inco~porated into every tape merge.

>>> SGIV

SORT GENERATOR IV (~ ~ ~ SGIV).

Sort Generator IV provides the user with a generator program for

customizing sort programs. The generated programs are designed to

utilize the disk file during the sorting operation.

SGIV is a single-pass multiple-phase program that generates a

tailored Record or Tag Sort in either the Advanced Assembler or

Auto-Load form. Programs may be generated for multiprogramming or

non-multiprogramming execution. In addition to providing the sort

program, the Sort Generator produces a completely documented program

listing which includes numerous "modification points." Using this

listing the user can modify the generated program at the symbolic

level.

The disk sort employs an eight-way balance merge when sorting on a

9,600 character memory system, and a 16-way balanced merge when sort­

ing on a 19,200 character memory system. During the internal sorting

phase variable length strings are created. This ensures the least

possible number of merge passes. The size of the stringing array is

dependent upon the individual file parameters and the system charac­

teristics for the program generated. The sort generator allows for

the interruption of the program at any time during the sorting opera­

tion, and may be resumed simply by reloading the sort program with

RESTART punched into the work area card.

The parameters are passed to the generator by three input specifica-

tion cards. Prior to generation these specification cards are

printed and edited. Any error or inconsistency during this edit

phase will cause a message on the line printer, and generation is

discontinued.

The following is a list of the Sort Generator IV features.

a. Sorts records of up to 1920 characters in lepgth (1200

characters on a 9.6K system).

5-7

>>> SGIV
~orl"'ti nued

5-8

b. Sorts blocked or unit records stored on magnetic tape, disk

file, punched cards, or punched paper tape.

c. Produces sorted output of blocked or unit records on mag­

netic tape, disk file, punched cards, or punched paper

tape.

d. Sorts files on either a 9.6K or a 19.2K memory system.

e. Permits a sort key of up to 96 characters in length.

f. Allows the sort key to be located in up to ten fields within

the record, and permits each of t,he ten fields to be either

alphanumeric or numeric.

g. Arranges the file in either ascending or descending

sequence.

h. Allows the termination of a Tag Sort with either address

output or control record output.

i. Permits the sorting operation to be interrupted and then

restarted.

j. Provides for a record coun~ and block count during input

and output phases.

k. Provides for the printing of the readable portion of

unreadable input records (with an optional halt).

1. Sorts as many records as can be held on the disk work area.

m. Deletes or selects records during the input phase, under the

control of a given character in any specified location

within the record.

n. Processes a standard tape header and/or trailer label, also

any non-standard tape header label (with or without trailer

labels) up to 80 character$ in length.

>>> SGIV
co~tinued

o. Provides for the user modification of generated programs at

the symbolic level.

p. Provides an area of memory for the insertion of Translation

Tables to utilize the Transfer and Translate command.

q. Operates with or without the Operating System.

r. Generates programs for execution in either a batch or

multi-programming mode.

5-9

SECTION 6

MCP II ASSEMBLER FUNCTIONS

GENERAL.

MCP II provides Advanced and Basic Assemblers as self-contained func-

tions within the disk and magnetic tape versions. The assemblers (as

well as several related functions) can be initiated either program­

matically or manually by issuing an appropriate function call to the

Executive Controller.

The MCP II Basic Assembler is a subset of the B JOO Basic Assembler

(AS014). SPO messages have been added, and most of the halt-operators

eliminated.

The MCP II ASOP Assembler is a subset of the free-standing Advanced

Assembler (AS016). It will produce object programs that optionally

are "memory floatable" to allow multiprogramming. In addition the

assembler will automatically create interrupts after the issuance of

an I/O operation, so that the multiprogramming capability can be fully

utilized.

Also available for use is a modified version of the ASOP Assembler

which may be obtained from the latest Software Master. This assembler

may be used in lieu of the BASIC and ASOP Assembler. The enhanced

features include a 19.2K Disk Assembler with all ASOP features, capa­

bility to enter Basic Assembler Routines, and a resident Macro

Library. This Assembler will make a significant difference in

assembly time whenever a Macro Library is required.

The following pages within this section provide a detailed descrip-

tion of the Assembler and its related functions.

listed in table 6-1.

These functions are

Additional operating procedures may be found in the MCP II Operations

Manual (1043783), and in the Basic Assembler Reference Manual

(1035813).

6-1

Table 6:-1

Assembler Function

Call Description
i

> > > ASBL Basic A~sembler Call - - -
> > > REFR Re-reference Basic Assembler - - - Symbolics Call

> > > ASOP Advanced Assembler Call - - -
> > > RFAZ Re-refeFence Analyzer Call - - -
> > > CMLT Create Macro Library Tape Call - - -
> > > CSTP Create Systems Tape - - -

6-2

>>> ASBL

BASIC ASSEMBLER CALL(~~~ ASEL).

The Basic Assembler will not operate in a stacked input mode, but re­

turns control to the Executive Controller at the end of every assem­

bler output process. If successive assemblies are required, it will

be necessary to place an ASEL Call Card in front of each symbolic deck

of the batch.

The MCP II Basic Assembler output is in the form of an auto-load

object program dE~ck, and does not contain the "flotation code" needed

for multiprogramming.

The peripherals required to use this assembler are: Two scratch­

tapes (designated units one and two), card punch, and a line printer.

The assembler may be called through the SPO or card reader.

The ASEL Function format is as follows:

> > > A S B L x

1 - - - 7 8

where:

a. x - type of symbolic source input.

B - binary coded magnetic tape input.

blank - punched card input.

6-J

>>> REFR

RE-REFERENCE BASIC ASSEMBLER SYMBOLICS CALL (~ ~ ~ REFR).

The purpose of this function is to re-assign reference points within

a Basic Assembler symbolic source program card deck, and to produce a

reference program listing and new source card deck.

This function utilizes the card reader, line printer, card punch, and

magnetic tape unit. Symbolic source input is entered through the card

reader, and is followed by a standard End-of-File card.

The REFR Call format is as follows:

>>>REFRx

1 - - - '7 8

where:

a. x - variable entries.

C - stacked programs are assigned consecutive numbers.

blank - the first page number of every program starts

with number 01, and 1s numbered consecutively until

another program in the input stack is processed.

6-5

>>> RP&L

RE-NUMBER BASIC ASSEMBLER SYMBOLICS SPECIFICATION CARD (~ ~ > RP&L).

The purpose of this card is to reassign specific page and line numbers

within the Basic Assembler symbolic program source card deck.

This card must be used in conjunction with the REFR Function call.

After the REFR Call is initiated, the following format for the RP&L

specification card is used.

> > > R P & L p 1

1 - - - 7 8 9

where:

a. p - page number to be assigned at the point of insertion.

b. 1 - line number to be assigned at the point of insertion.

6-7

>>> ASOP

ADVANCED ASSEMBLER CALL (~ ~ ~ ASOP).

The MCP II Advanced Assembler returns control to the Executive Con-

troller at the end of every assembly output p~ocess. If successive

assemblies are required it will be necessary to place an ASOP Call

card in front of each symbolic deck to be processed in the batch.

The output produced by the MCP II Advanced Assembler will be in the

form of an auto-load object program deck, an auto-load object program

magnetic tape, or the auto-loads may be placed on a specified disk

file area for the creation of a Program Add Tape (depending on the

coding of the HEAD card). If Mul tiprog.ramming Macros are utilized,

the auto-load data will contain multiprogramming flotation code.

If a macro library tape is used as input, mount the macro library

tape on magnetic tape unit (MTU)#l, ready the line printer, and enter

the ASOP Call. Additional operating procedure can be found in the

MCP II Operations Manual (1043783). Instruction format for ASOP can

be found in the Advanced Assembler II Reference Manual (1042769).

The ASOP Call format is as follows:

> > > A S o P t u b b b b b b

1 - 7 8 9 10 -

where:

a. t - type of input device code.

B - binary magnetic tape.

C - card reader.

D - disk file (96-character

E - disk file (240-character

F - disk file (480-character

M - BCL magnetic tape.

T - paper tape reader.

15

segment).

segment).

segment).

b. u - unit number of the specified type device. If the type

of unit has been specified as being D, E, or F then this

6--9

>>> ASOP
~o;tinued

entry must contain the high-order digit (MSD) of the

beginning address where the file is to reside within

the disk file.

c. bbbbbb - disk file address.· The six lower digits of the

beginning address where the file is to reside within the

disk file. If the type of u~it has been specified as being

D, E, or F then position 10 ~ay contain an N (if the type of

unit specified is not D, E, or F) to suppress the punching of

card auto-load output.

The following messages may be display~d on the SPO.

6-10

a. TYPE FOR HEADER NOT SPEC AS C - T - M - B - D - E - F
!

An invalid type of input device has been specified for

the HEAD. The system operator recalls ASOP.

b. lST RECORD NOT HEAD

The first record of the sourpe input is not the HEAD. The

system operator must correct the situation and recall ASOP.

c. WORKING STORAGE INV

The type of working storage ~pecified in the HEAD Record

is incorrect. The system op:erator must correct the card

and recall ASOP.

d. WORK TAPES ON x AND y

This message verifies the sp~cifications contained in

columns Jl and 32 of the HEAD Record. No system operator

action is required.

e. LT bbbbbbb/eeeeeee R W/A bbbpbbb/eeeeeee

This message informs the system operator of the assigned

disk file working-storage areas pertaining to the beginning

{bbbbbbb) and ending (eeeeeee) addresses of the Label Table

{LT) and the symbolic Record Work Area (R W/R).

>>> ASOP
~o;tinued

f. INV I/O

Disk file input has been specified along with a magnetic tape

work-storage declaration. The system operator must change

the input to some media other than disk file and recall ASOP.

g. WORK TAPES ON x AND y A/L bbbbbbb

This message informs the system operator of the assigned

beginning (bbbbbbb) disk file address where the object pro­

gram auto-load images will be stored. Reference item d for

an explanation of x and y.

h. NOT ML

This message informs the system operator that the magnetic

tape mounted on MTU-1 does not contain the Macro Library.

The systems operator must mount the proper tape and recall

ASOP.

i. E s/u
This is a MCP II magnetic tape version request that the

system operator enter a MTU. The MTU is used for memory

retention. Any assembler work tape can be used for this

purpose~

The format for the ASOP Head Record is illustrated in figure 6-1.

6-11

>>> ASOP
-continued

MUST BE PROGRAM
BLANK IDENT.

000000 00008
123451 1 1 111 n
111111 11111

222222 22222

333333 33333

444444 44444

555555 5 5 5 5 5

666666 66 6 66

117111 7117 7

888888 81188

999999 9 9 99 9
123451 1 I • 1111

~ Q Clliri ~ ti Q r.:i
r.lt> M~ I g
Ul:Z:

~Ii ~u t!i!
H Eli!A D

:z:lfil

00000 00 00
12131415 11 1111 111•
11111 11 11

22222 22 22

33 3 3 3 33 33

44444 414 44

5 5 5 5 5 55 55

66 6 6 6 66 66

7 717 7 7 7 71

8 88 8 8 8 8 88

99 9 9 9 9 9 99
12 13 14 11 11 11~1 11)211

~ ~ ~~ =~ o~ ~o ~a :z:r.:i

=-
E-<z DISK FI~ ADDRESSES

~ i~ cn:Z:

:S::3 M M~ '!::: REMARKS
IQ~ ti ~IE E~ ~~ ~a :.

ENDI ~ i BEG. BEG, END 1-1:.i
~o ooooh 00 00 00 00 00 00 00 IO 000000 000000 000000000000000000000000

211D! jnM iai- 2121 1211-1 ~1 3Z 3UUll313731 ••4142 ~ 44 j4s•4141•• 11 52 51 54111 • P•••~aaM••n••nnnnunnnnn•

11 11 1 1 1 1 11 ~ 1 111111 111111 111111 111111 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 22 22 22 22 ~2 222222 2222~2 222222 222222 222222222222222222222222

33 33 33 33 33 13 3 333333 333383
I

333333 333333 333333333333333333333333

44 44 414 44 44 ~4 444444 4444~4 44 44 44 444444 4444444444i4444444444444
i

55 55 55 5 5 5 5 5 5 555555 555555 555555 555555 555555555555555555555555
!

66 66 66 66 66 ~6 866666 686666 666666 666666 666666666666666666666866

11 71 71 11 71 7 7 711171 7777~7 711711 171171 7777t7777777777777777777

88 88 8 8 88 88 ~8 888888 8888~8 888888 888888 888888888888888888888881

99 99 99 99 99 ~9 999999 999999 999999 999999 999999999999999999999999
21122 In 24 Jain 21j21 laP. ~I 3Z 33 34 35 31 37 31 • 40414Z43 44 454147414850 51 52 53 54 55 51 P•••~aaM••P•Mwnnnunnnnn•

Figure 6-1. He~d Card Format

Columns Description

1-6

7-11

12

lJ-16

17

6-12

This field is reserved and must be blank.

Program identifica ti:on that is later punched into
I

columns 72-77 of the, resultant auto-load object pro-

gram deck and placed on each page of the output list­

ing. Any combinatiop of letters and/or digits is
I

acceptable. When lo/ading/upda ting the program

library, this field !should (as a reference) contain

the current date (MM~DY).

Processor memory cap;aci ty. The acceptable codes are:

a. 2 - signifi~s 9.6K system.

b. 4 - signifi;es 19. 2K system.

The entry HEAD must be entered in this field to

identify a program header card.

This field is reserved and must be blank.

Columns

18

19

20

21

22

>>> ASOP
-~;:;tinued

Description

Source input sequence check. The acceptable codes

are as follows:

a. N - sequence checking is required.

b. Blank - sequence checking is not required.

Creates a renumbered source deck. The acceptable

codes are as follows:

a. A - renumbered deck is required.

b. Blank - renumbered deck is not required.

If A is coded, the output listing will reflect the

new numbers. If column 18 is blank, the input

sequence number is checked.

The Macro Library is created prior to, or used during

assembly. The acceptable codes are as follows:

a. L - Macro Library is created prior to

assembly.

b. M - the ASOP Macro Library magnetic tape

must be present during assembly.

c. Blank - macros are not required.

'rhis field is reserved and must be blank.

Creates a symbolic listing on magnetic tape (binary).

J~ach source input record is placed on tape in a for­

matted 120-character record preceded by the OP Code

and M and N variants of the print instruction. The

acceptable codes are:

a. 1 thru 5 - indicates which MTU is designated

to create a print tape.

b. Blank - print tape not required.

6-13

>>> ASOP
-co-;:;tinued

Columns

23-24

25

27

28

29

JO

6-14

Description

This field is reserved and must be blank.

Auxiliary auto-load output media. The acceptable

codes are as follows:

a. D - disk file.

b. 1 thru 6 - indicates which MTU is designated

for binary magnetic tape card images.

c. Blank - none are required.

Punched card auto-load output/paper tape auto-load

output. The acceptable codes are as follows:

a. P - punched card output.

b. I - paper tape output.

c. Blank - indicates that neither is required.

This field is reserved and must be blank.

Input media is used as input. The codes are:

a. B - magnetic tape (binary) card image.

b. C - punched cards from the card reader.

c. D - disk file - 96 character segments.

d. E - disk file - 240 character segments.

e. F - disk file - 480 character segments.

f. M - magnetic tape (BCL) card image.

Input media unit number. The acceptable codes are:

a. or 2 - card or paper tape reader.

b. 1 thru 5 - magnetic tape unit.

Working storage media that is used during process

assembly. The acceptable codes are:

Columns

31-32

33-38

39-44

45-50

51-56

57-80

a. D -
b. E -
c. F -
d. M -

Description

disk file - 96 character

disk file - 240 character

disk file - 480 character

magnetic tape.

>>> ASOP
continued

segments.

segments.

segments.

Working storage media unit number or the disk file

storage unit that is used during program assembly.

Two units must be designated. The first unit is

entered in column 31 and the second in column 32.

The acceptable codes are as follows:

a. 0 thru 9 - disk file.

b. 1 thru 5 - magnetic tape.

Beginning address of the working-storage area on disk

for the unit specified in column 31.

Ending address of the working-storage area on disk

for the unit specified in column 31.

Beginning address of the working-storage area on disk

for the unit specified in column 32.

Ending address of the working-storage area on disk

for the unit specified in column 32.

This field may be used for remarks by the user. The

remarks will be printed at the top of each page of

the output listing.

6-15

>>> RFAZ

RE-REFERENCE ANALYZER CALL (:::,:::,:::, RFAZ).

This function is used to produce a cross-reference listing of the

source programs written in MCP II Advanced Assembler.

This function will process symbolic input from punched cards or

magnetic tape.

The format for the RFAZ Call is as follows:

> > > R F A Z i

1 - - - 7 8

where:

a. i - type of input.

B - magnetic tape input (binary).

C - punched card input.

Error messages and additional information may be found in the MCP II

Operations Manual (1043783).

6-17

>>> CMLT

CREATE MACRO LIBRARY TAPE CALL (~ ~ ~ CMLT).

This function will create a Macro Library Tape. It converts the Macro

Edit Routines to magnetic tape with 480-character binary records. All

symbolic macro cards are read and written to tape as binary card image

records. The first card of each macro must contain the macro name in

columns 2-5, preceded by a plus (+) in column 1. Macro routines in

symbolic form may be added to the library tape by maintaining the as­

cending macro name sequence, and by placing an appropriate "spec-card"

with the macro name prior to the symbolic as noted in this paragraph.

The CMLT Function requires that the symbolic macro routines be

arranged in an ascending macro name sequence.

The CMLT creates a Macro Directory during the symbolic card-to-tape

operation and wri ties it to tape. This operation also includes a

search routine as the last record on tape prior to the tape mark.

The CMLT Function :is called by the ASOP Assembler of MCP II when col-
' umn 20 of the HEAD Record is coded L. It is necessary to previously

construct the Macro Library Tape prior to ~he execution of ASOP,

because the macro routines will be required by the source program.

The multiprogramming macros obtained from the latest Software Master

are used as input :for this function.

A scratch Tape is needed on MTU #1. The CMLT Function format is as

follows:

>>>CMLT

1 - - - - - 7

Additional operating instruction and error messages may be found in

the MCP II Operations Manual (1043783).

6-19

>>> CSTP

CREATE SYSTEMS TAP1~ (:::: :::: :::: CSTP).

This function is primarily used to assemble the Operating System. It

may be used to assemble Multiple Advanced Assembler Programs from a

binary card image tape without manually recalling the ASOP Assembler

after each assembly. Output auto-load records will be magnetic tape

in binary card image form. The auto-load tape may be used as input to

PADR for the creation of a program add tape.

The CSTP Function format is as follows:

> > > C S T P n t

1 - - - - - 7 8 9

where:

a. n - systems tape.

1 - Tape/Disk Operating System.

3 - Multiprogramming Operating System (MCP II).

4 - Multiprogramming Operating System and 19.2K

Supervisory Control Program.

b. t - symbolic listing code specified in the HEAD Record.

The CSTP Function performs all the operations necessary to create a

system tape from a symbolic binary tape.

The following format is used to create a binary card image tape.

a. PADD record for a Tape Operating System.

b. Auto~-load records of all the programs in the Tape Operating

System.

c. Standard End-of-File Record.

d. PADD record for the Disk Operating System, or the Disk

Operating System plus the Supervisory Control Programs (SCP).

6-21

>>> CSTP
~o;tinued

e. Auto-load records for the Disk Operating System Programs.

f. If MCP II/SCP is specified, auto-load records for SCP.

g. Standard End-of-File Record.

CSTP passes the necessary parameters to call in PADR and create the

system tape.

6-22

NOTE

The PRTB Function of MCP II is designed

to print BCL records; however, this

function may be used if the tape reads

are manaully changed to a binary read.

GENERAL.

SECTION 7

OPERATING SYSTEM ASSEMBLER

The Operating System Assembler (ASOP) is an enhanced version of

Advanced Assembler II. Primary features include name and program

point labeling (with entry incrementing and decrementing capabili­

ties), Control Transfer and Edit Commands, a program debugging package,

memory dumps, library capabilities, and a large complement of pseudo

and macro commands.

INPUT CAPABILITIES.

The Operating System Assembler permits the input source program to be

in the form of punched cards, punched paper tape, magnetic tape, or

disk file.

PUNCHED CARD.

Punched Card input is any valid character.

PAPER TAPE.

Paper tape input must be an eighty character card image format and

contain any valid character. The input tape is not rewound before

assembly.

MAGNETIC TAPE.

Magnetic tape input can be in a BCL or binary mode, but both modes

must contain card image records. Binary records may contain any valid

character. Group marks cannot be used in the BCL mode. The input

tape will not be :rewound prior to assembly, thus allowing multiple

assemblies from the same tape. Output from an assembly may be pro-

duced on the same tape as the input source program, but the input

source program is destroyed.

DISK FILE.

The disk file input must be blocked as follows:

a. Block-size must be 480 characters.

b. Each block must contain six card image records.

7-1

The input data must be located at the disk address specified in the

program header card. If the head record is on the disk file it may be

either the first record of the first block, or located in a separate

block. Input is destroyed during the assembly process.

ADVANCED ASSEMBLER LANGUAGE.

Throughout this section references will be made to the coding form

illustrated in figure 7-1. The fields and their various uses are

descriled in the following paragraphs.

CODING PROCEDURES.

Each line of coding form represents one entry {an instruction or a

constant) that is divided into nine fields. In preparing the symbolic

program, it is important that all of the entries be made in the cor­

rect fields and columns. References are made in the following para­

graph to any "acceptable character." A question mark is not a valid

character.

PAGE (COLUMNS 1-J).

The page number is a three-position alphanumeric field that is used to

sequence multiple sheets of coding.

LINE (COLUMNS 4-6).
The line entry is a sequence number for each line of user code. This

field is usually numeric with the uni ts position {col. 6) res·erved to

indicate the insertions of additional entries after initial coding is

complete.

If sequencing is required, columns 1-6 will be checked duI'ing assembly

by the standard collating procedure.

SYMBOLIC LABEL (COLUMNS 7-12).

The symbolic label is a group of characters that serve as a name of an

address in memory. The assembly process will assign a unique address

to each unique symbol appearing in the program. Two types of entries

are permissible as symbolic labels: Symbolic Names and Program Points.

7-2

Burroughs ADVANCED ASSEMBLER II CODING FORM

I PAGE ITtJ DATE ____ _

PROGRAM IDENT·~~~~~~~~~~~~~~~~~~

LINE SYMBOLIC OP VARIANT A ADDRESS B ADDRESS C ADDRESS

INo.j rj LABEL CODE
M l N

CHAR. CHAR. CHAR. REMARKS
TAG F.L.C. INCR.

TAG F.L.C. iNCR. TAG F.L.C. INCR.

4}sl6 1IaI9Jicl_[11}2 I 3Ji 4.}1 5f 6 11}~9fo 2iJ.zaj_23I24J2~26, 12sI9 3<13P2 3:13~3~3'13~38 3 9 4ci41 42143144 1-isI46I4714sI4~50 s I 52153 s{si56 s1_i:_eis916'16{62I6316~~6'16716SJ:6~tl71l1:J.73l1,P~16177J?aJ.1~eo

011 ll.lll .l l l .1 l l llll.l l l l lllll l l l l l l l I l l 1. 11.ll.lll.lll.1.111.llll.l.l.1.ll

021 1.1.lll 1 .1.1 il1 .1 .1 .1 .l .l l. .1 l. lll. .1.1 l .1 .1 .1.11.lJ. j_ l. J_ 1.ll.1.1111-lJ.1.11.1.11..1.11.1111

0 31 .lllll l 1 .1 J_ J l ll.lll l 1..1 lllll. l l l Ill l l l l .1 l.lll.lll_J_l.ll.ll.lllllllll..1

041 ll.lll l .11. .1 l J_ llll.l l .1 l 1.111.l l J_ .1 J_J__lj_l j_ _l J_ lll..1..11.1.llllllllllllllll

o sl .l.llll l. l l i l .l ll.ll.l. .l J_ _l _l j_ _l _l _l _l .1 .1 l.llll l l J_ l1-l ll l. l.1.l.lllll l l l I _l l_l__l__l

0 &l J_ll_lJ l 1.1. lll lllll l 1-1 11.lll .l l l l_illl ~ l J_ .1 l.ll..1.ll..11.lllllllll.1.ll.lll

071 J_j__lJ_J_ l. J_ _l J_ l .1 .lllll l .1 l lllll l .1 .1 11-..1.1-1 l _l _l _l J_. l .1 _l ..l. J_ J_ l l l. _l _l J_ l l. .1 ...l .1 J_ J_ .1 .l

o al 1. 1. .1 l .1 l. l .1 l l .1 ll.lll l. .1 J_ l.l._ll_l _l .1 .1 .1.1.l.ll J l l lilll.111-llill.lll..lllll_.l_l

o sl l_l_lll l J_ J_ j_ 11 _l l l l l l .1 .1 lllll l l l l l l l l l l J_ llllllllllllllllllll.lll.

1 0 l lllll l .11. l l l lllll l 1. .1 lllll l. J_ l J_ l l J_ l
%

l l l lllllllllllllllll llllll

1 11 l l J_ l l l.l J. l l l ll.l.ll l. J_ J_ lllll l l l lllll I j l .l.lllllllllllllllllllll.1

121 .1.1.1-11 11..1 J_ 11 J_ J_ J_ J_ J_ J_ .1.1 l.llll J l l l .1 l l l 1. _l l .lll..11.ll..llllll.lll..1.llllll

131 .11 .1 j_ l l L l i l 1 lllll l ll l.illl l l l 11 l l J ~ J_ l l llllilillllllllll_l_lllll

141 .1.1111 l .11 l l 1 lllll l .1 j_ _illll l l l l .1 l l l l l l 1.lll.lllllllll.lllllll.lll

151 1. .1 1. .l .1 l .1 .1 .1 l .1 .1 .1 .1 J_ l. J_ .1 _l .1 J_ J_ .1 j_ J_ J_ J_ 111.1.l .1 l l l.lll.111.1..lllllllllll lll.1

161 1 lLll l 11 1 l 1 lllll l j_ .l lllll l l .1 l .1 l J_ J_ j_ _l j_ 1-.lll_.l_l_l_.1..1..lllllll.lllllll

171 11-ll.1 l j_ l i l .i lllll l l l lllll .1 .1 1 J_ l l J_ _l l l l 1-ll.llll_l_.il_lj__lj_J__l_lll.llll

181 lll ll l l l i l J l l l J l l l l l l l l l l l 1. lllll l l l llll.11.llllllllllllll.lll

191 J_ J_ l. j_ .1 J_ J_ .1 J_ l _l .1 .1 l .1 j_ j_ .l 1. l l l 1 J l l .1 l.1.lll .l l .l l.li..1111...11.ll.l.l..1.l.l.l.ll_.l.l.l.l

201 lll.l.1 l l .1 J l l 11 111 .l 11 .1.1111 l .1 .1 l..1.lll l l l lllll.11..1.lllllilllllllll

.l J J_J_jj_J_ j_ j_ J_ 1. l .l 1-.11-l.l .l .l .l 11_1.l.l J_ l J_ lll.11. l. 1 .l j_lj__l_l_lj_J_J_J_J__l_lj__l_l_lj_J_J__ll_j_

l. l .1.1111 lll j_ l l .1 J_ J 11 l l l 1.1.lll l l l lllll J 11 llllllll.lllll.lll.lllllll

..l. l l_l_lll l I -1 l. l l .l l. J_ l. .l .1 l l .1 .1 j_ _l .l j_ J_ .l l. l .l J_ l _l .1 J .l.l.l.l.l.ll__l_J_J_J_JJ.1.l.1.1111.l.1.l

Printed in U.S. America Form 1041969

Figure 7-1. Coding Form

SYMBOLIC NAME. A symbolic name is a collection of from one to six

alphanumeric characters (including blanks). The first character must

appear in column 7 of the Symbolic Label Field. Special characters

are permissible in any position of the symbolic label except the

first. Characters other than a decimal point should normally be used

(figure 7-2).

0. 1

02

03

04

PROGRAM POINTS.

A ADDRESS

191 -2-3-

B ADDF~ESS

TAG CHAR,
F.L.C. !NCR.

Figure 7-2. Acceptable Symbolic Names

C ADDRESS

TAG F.L.C.

These points are reusable two-character labels, the

first character is a decimal point and the second character is alpha­

betic (A through Z). Each alphabe'tic character may be used a maximum

of 100 times. The relative position of each program point address

indicates its use.

Between two program point addresses having the same character, a pro­

grammer may prefer to minus that specific character (meaning the last

program point defined with that letter) or he may prefer to plus that

character (indicating the next symbolic program point of that

particular character, figure 7-J).

OP CODE (COLUMNS lJ-16).

Standard mnemonic operation codes are a left-justified entry. Table

7-1 lists the acceptable mnemonic operation codes. This field is also

used for assembler control commands.

7-4

LINE SYMBOLIC OP
CODE

B ADDRESS C ADDRESS

01

02

03

04

05

06

07

08

09

, 0

LABEL TAG F .L.C. T~t~· TAG

.H

•
• F

00

R

l
il tK
2 LLLl_l_

2.oo
-M

9 9
BRU -A

Figure 7-J. Program Point Usage

Mnemonic
Operation Code

ADD

SUB

MUL

DIV

ADM

CAE

CZE

CNE

CAU

czu

Table 7-1
B 500 Standard Mnemonic

Operation Codes

Operation

Add

Subtract

Multiply

Di.vi de

Address Modification

Compare Alphabetic Branch on Equal

Compare Zone Branch on Equal

Compare Numeric Branch on Equal

Compare Alphabetic Branch on Unequal

Compare Zone Branch on Unequal

CHAR,
F.L.C. ·1NCR.

A
003

·_J_J_

7-5

7-6

Mnemonic
Operation Code

CNU

BRC

BRU

ICR

IPR

ICP

IPP

ILP

IPL

ISP

IMR

IMW

TSS

EBE

SET

RSB

BEU

NOP

HLT

TFR

TCB

Table 7-1 (cont)

B 500 Standard Mnemonic
Operation Codes

Operation

Compare Numeric Branch on Unequal

Branch Conditional

Branch Unconditional

Interrogate Card Reader

Interrogate Paper Tape Reader

Interrogate Card Punch

Interrogate Paper Tape Punch

Interrogate Line Printer

Interrogate· Lister

Interrogate Supervisory Printer

Interrogate Magnetic Tape Unit Read

Interrogate Magnetic Tape Unit Write

Interrogate Sense Switch

Interrogate Bit branch on Equal

Interrogate Set Bit

Interrogate Reset Bit

Interrogate Bit Branch on Unequal

No Operation

Halt and Branch

Transfer Character

Transfer Character and Branch

Mnemonic
Operation Code

TFZ

TZB

TTl

TT2

TTJ

DDC

DEC

MSK

CRD

CRI

CRB

PCH

PEN

PRT

PRL

PLN

PLM

SKP

SKL

SLL

SPO

Table 7-1 (cont)

B 500 Standard Mnemonic
Operation Codes

Operation

Transfer Zone

Tran sf er Zone and Branch

Transfer and Translate (Table

Transfer and Translate (Table

Tran sf er and Translate (6 bit

Data Compress

Data Expand

Mask

Card Read

Card Read Branch Busy

Card Read Binary

Punch Card

Binary Card Punch

Print on Line Printer

Print on Lister

Print on Lister

Print on Lister

Skip/Space on Line Printer

Skip/Space on Lister

Slew Lister

Print on Supervisory Printer

1)

2)

to 12 bit)

•

7-7

7-8

Mnemonic
Operation Code

SPR

SRD

SRF

CTL

TRD

TWR

TER

ESP

RWD

MWR

BWR

BRD

PRD

PSF

PSB

PRW

PWR

DFW

DFR

DFC

DFI

Table 7-1 {cont)

B 500 Standa~d Mnemonic
Operation Codes

Operation

Supervisory Printer Read

Sorter-Reader Demand

Sorter-Reader Flow

Control Sorter

Magnetic Tape Read

Magnetic Tape Write

Magnetic Tape Erase

Magnetic Tape Backspace

Magnetic Tape Rewind

Magnetic Tape Memory Write

Magnetic Tape Write Binary

Magnetic Tape Read Binary

Paper Tape Read

Paper Tape Space Forward

Paper Tape Space Backwards

Paper Tape Rewind

Paper Tape Write

Disk File Write

Disk File Read

Disk File Check

Disk File Interrogate

Mnemonic
Operation Code

DCR

DCW

DCI

VARIANT (COLUMNS 17-20).

Table 7-1 {cont)

B 500 Standard Mnemonic
Operation Codes

Operation

Data Communication Read

Data Communication Write

Data Communication Interrogate

For transfer type commands or any of the six permissible compare

commands, the Variant Field is treated as a four-digit numeric field.

For other commands it is separated into M and N variant fields of two

characters each. The M and N variants can represent any value indi­

cated by the Systems Reference Manual {1042769). Leading zeros are

permitted {but not required) for any numeric variant.

If the variant is part of the machine language operation code, the

variant field may be left blank and the assembler will insert the

proper character. If it is required to override the assembler, inser­

tion of the M and/or N variant {or both) may be forced by inserting an

@ sign in the high-order position of the field, and the desired char­

acter in the lower position of the variant {figure 7-4). The

insertion character will not be error checked.

LINE SYMBOLIC OP VARIAN

LABEL

7 8 9

01 BA
oz

:F'igure 7-4.

A ADDRESS

TAG
CHAR.

F.L.C. INCR.

B

B ADDRESS

TAG
CHAR,

F.L.C. INCR.

Forced M and N Variants

C ADDR

TAG

7-9

To force the M and N variant in a transfer type command, a single @

sign is entered in column 17, followed by the two characters to be

inserted (figure 7-5).

LINE SYMBOLIC

LABEL

7 8 9

o. 1

02

OP
CODE

VARIAN

M N

A

Figure 7-5.

A ADDRESS

TAG

B ADDRES:SS

TAG CHAR,
F.L.C. iNCR.

Forced Transfer Variants

C ACOR

TAG

For transfer and compare type of commands, the variant field is nor­

mally a four-digit numeric field indicating the number of characters

to be operated on. If the number of characters specified is greater

than 132 (transfer type commands), or greater than 12 {compare type

commands), an error flag is printed.

A, B, AND C ADDRESS FIELDS (COLUMNS 21-56).

All three address fields have essentially the same characteristics;

therefore, only the entries for one will be described. Each Address

Field is divided into a tag forced last character and character incre-

ment. The Tag Field becomes the base or starting address while the

character increment is used as an extension of the base address. The

paragraphs that follow describe the coding for each segment within the

address field.

TAG. The following type of addressing is permitted.

a. Symbolic name.

b. Program points.

c. Self-addressing.

d. Machine absolute.

Symbolic Name.

Symbolic names refer to the address assigned to the corresponding

symbolic name in the label field (figure 7-6).

7-10

LINE SYMBOLIC

LABEL
OP

COCIE M

A ADDRESS

TAG
CHAR.

F.L.C. INCR.

B ADDRESS

TAG CHAR.
F.L.C. INCR.

7 8 g 10111213141516171819202122232425262728 9303132333435363738394041424344

C ADDR

TAG

--'--+----'--+-_._..__.._. _

o. 1 B Rll
02

03

04 ST ir T FI~ B

Figure 7-6. Symbolic Name

Program Point.

Program points are entered as either plus or minus, and followed by an

alphabetic character. A minus followed by a single letter {figure

7-7) refers to the last symbolic label identified by a decimal point

followed by that particular letter. A plus and a letter refers to the

next symbolic label identified by a decimal point, followed by that

character. If the symbolic label field is identified by a decimal

point followed by a character, and the address field refers to that

same character as a program point, the minus program will reference

the current line of the program. 1rhe plus program point refers to the

next symbolic label identified by that character.

LINE SYMBOLIC

LABEL

0. 1

02

OF'
CODE

BRU

VARIAN

Figure 7-7.

Self-Addressing.

A ADDRESS B ADDRESS C ADDR

TAG
CHAR.

F.L.C. INCR. TAG CHAR.
F.L.C. iNCR. TAG

Program Point as an Address

Self-addressing is indicated by an asterisk in the high-order position

of the tag field of an address, followed by five blanks. It refers to

the address of the OP Code position of the entry being written.

Reference figure 7--8. The B Address is transferred to the OP Code

Field of this instruction.

7-11

LINE SYMBOLIC OP
LABEL

7 8 g

o. 1

02

Machine Absolute.

A ADDRESS

CHAR.
INCR.

B

B ADDRESS

TAG CHAR.
F.L.C. INCR.

Figure 7-8. Self-Addressing

C ACOR

TAG

Machine absolute coding is indicated by an @ sign in the high-order

position of the tag field of the address, and followed by a three­

character machine address constant us~r entry {figure 7-9).

LINE SYMBOLIC

LABEL

7 8 g

0. 1

02

OP
CODE

VARIAN

Figure 7-9.

A ADDRESS

CHAR,
JNCR,

B ADDRESS

TAG CHAR,
F.L.C. INCR.

Absolute Address

C ACOR

TAG

LITERALS. Literals may be packed in the unused fields of an

instruction {figure 7-10).

LINE SYMBOLIC OP
LABEL

7 8 g

0. 1

02

Figure 7-10.

A ADDRESS B ADDRESS
;

TAG
CHAR.

F.L.C. INCR.

c

Packing Literals Within
An Instruction

C ACOR

TAG

In addition, literals are permitted in the A Address of an ADM command,

and the B address of DEC and DCC commands. This special case applies

only to these commands. The literals are written with a #
lowed by one to four numbers whose value is 0 through 1199

7-12

sign, fol­

(figure

7-11). The numeric is left-justified and refers to the number of

characters to be added. The number is converted to the appropriate

number of words and characters for inserting a machine language com­

mand. Preceding zeros may be used provided the length of the literal

(including the # sign) does not exceed five characters.

LINE SYMBOLIC 01~ A ADDRESS B ADDRESS C ADDR

LABEL TAG F.L.C. T~tt- TAG

7 8 9 930 3132 33 34 35 36 37 38 39 40 41 42 43 44

0. 1

02

03

04

05

Figure 7-11. ADM Literal

CHARACTER INCREMENT. Character incrementation will cause the tag

address to be modified by the number of words and characters entered

in the Character Tncrement Field (figure 7-12). The two most signifi­

cant digit positions represent the word(s) increment, and the least

significant digit position represents the character increment.

Character increment is described as follows:

a. 0 - zero increment.

b. ¢ - OP code position of word.

c. 1 or M - M variant position of word.

d. 2 of N - N address position of word.

e. J or A - A address position of word.

f. 4 or 5 - Fourth or fifth position of word.

g. 6 or B - B address position of word.

h. 7 or 8 - Seventh or eighth position of word.

i. 9 or c - c address position of word.

j • # or T - Tenth position of word.

k. @ or E - Eleventh position of word.

7-13

LINE SYMBOLIC

LABEL

7 8 g

0. 1

02

OP
CODE

VARIAN A ADDRESS B ADDRESS C ADDR

TAG

UNT1

Figure 7-12. Character Increment

F.L.C. (FORCED LAST CHARACTER). The F.L.C.

for developing an address by the assembler.

entry is the final step

This entry causes the

specific character to be inserted into the low-order position of the

assembled address (figure 7-lJ). The forced last character takes pre-

cedence over the resultant address formed by the tag and character

increment.

LINE SYMBOLIC OP VARIAN A ADDRESS B ADDRESS C ADDR

LABEL CODE M N TAG F.L.C.
CHAR. TAG F.L.C.

CHAR. TAG INCR. INCR.

7 8 g 5 46 47 48 49 50 51 !

o. 1 Ru _j_J_

02 .-1

Figure 7-lJ. Forced Last Character

REMARKS (COLUMNS 57-80). This field provides the user with a means

of documenting his output listing.

entered in this field.

Any acceptable character may be

PSEUDO INSTRUCTION.

Pseudo and macro instructions are important features of this assembler.

The two types of instructions are written in the same general format

as machine instructions, but their affect on the assembly program is

quite different.

Macro instructions can be described as generative type instructions;

whereas, pseudo instructions may be defined as information given the

assembler in the form of a symbolic instruction that describes the

7-14

program being assE)mbled, or a specified manner of assembly. A pseudo

instruction does not usually generate object code in an assembled

program.

Pseudo operation code is written in the operation field while the

variant and address fields contain the information to define the

effect of the pseudo operation. If a symbolic label is associated

with a pseudo instruction (other than EQU) it will be assigned the

current setting of the location counter (the internal counter the

assembler uses to keep track of assigned addresses) prior to any

adjustment of the location counter by the pseudo operation.

The following pseudo operations are treated as entries, and are

documented as follows:

SLC (SET LOCATION COUNTER).

The SLC is a pseudo instruction that sets the location counter to the

value entered in the A Address Field. The A address may be a machine

language address or a previously defined symbolic name (see figure

7-14). Character incrementation may be used to advance the location

counter ahead of a current value. If the location counter is set

backward, or if the A address contains a non-existent machine address

for a specific object system, an error message will be printed.

LINE SYMBOLIC A ADDRESS B ADDRESS C ADDR

LABEL TAG CHAR.
F.L.C. INCR. TAG CHAR.

F.L.C. INCR. TAG

7 8 g 9303132333435363738394041424344 ~464748495051

o. 1 5L 00
02 ·I•

03 SLc PU if
04

05 SL£_ 2

Figure 7-14. Adjusting the Set Location Counter

7-15

ALC (ADJUST LOCATION COUNTER).

The ALC instruction will adjust the location counter indicated by

the M variant. If the low-order position of the M variant has an

entry, the location counter will be set forward, (if required) so

that its low-order position equals the low-order position of the M

variant. If the high-order position of the M variant has an entry,

the location counter equals the high-order position of the M var­

iant. If both the high and low-order positions of the M variant

are filled, then both the units and tens position of the location

counter will be adjusted in that order(figure 7-15).

LINE SYMBOLIC OP VARIAN A ADDRESS B ADDRESS CAD

LABEL N TAG
CHAR.

F.L;C. INCR. TAG
CHAR.

F.L.C. INCR. TAG

7 8 9
0

9303132333435363738394041424344 54647484950

o. 1

02

03

Figure 7-15. Adjusting the Location Counter

EQU (EQUATE) .

The label in the Symbolic Label Field is assigned the same address

as the entry in the A Address Field. The A Address Field entry must

either be machine language, or does not exceed the present address

of the location counter (except by character incrementation).

Figure 7-16 illustrates the entries that equate A and B to machine

address.

LINE SYMBOLIC OP VARIAN A ADDRESS B ADDRESS C ADDR

LABEL CODE . CHAR. CHAR
M N TAG F.LC. INCR. TAG F.L.C. INCR. TAG

0. 1

02

Figure 7-16. Equate Statements

7-16

CST (CONSTANT).

The length of a constant is specified by an entry in the M and N

Variant Field. A maximum of 60 characters of data may be entered in

each constant line starting at the high-order position of the A

Address Field (figure 7-17). Constants longer than 60 characters

will use the first 60 characters of the en.try, and the balance of

the field wiil be filled with blanks.

LINE SYMBOLIC OP A ADDRESS B ADDRESS C ADDRESS

LABEL CODE M TAG

0. 1 LABEL C5Ti
02

Figure 7-17. A Constant with 60
Data Characters and
668 Blanks

RSV (RESERVE MEMORY).

This entry is similar to CST, except that the entire area is set to

blanks (figure 7-18). Any part of the Address or Remark Field can

be used for comments.

0. 1 8
02

Figure 7-18.

C ADDR

TAG

9303132333435363738394041424344 5464748495051

Reserving 728 Character Positions
Labeled TAPEIN

7-17

HDG (HEADING).

This instruction is used to insert remarks on an assembly listing.

All information contained in this record is printed. The M and N

variants of this pseudo operation controls the spacing and skipping,

before printing (M variant) and after printing (N variant). Error

checking is not performed on the variant coding. If the M and N vari­

ants are left blank, a single space will not be executed (figure 7-19).

These options provide form spacing for segmenting the program listing.

LINE SYMBOLIC OP VARIANT A ADORES~ B ADDRESS C ADDR

Nolr LABEL CODE M N TAG F.L.C.
CHAR. TAG F.L.C.

CHAR.
TAG I INCR. iNCR.

41516 7 J 8] g Ji OJ 1 1J1 2 1 3J1 ,;r1 sJ1 6 11]t 8 1 9120 2 ~2~23}2~2~26 2 7 21_9 3o_l3132 3~3413~3~3~38 3 9 4~41 4214~44 14sJ4~4;r4sl4~5o st

o., I I I I I I H1DiGi I l I I J l .l l l l .l_Ll J _l J J J J J J J I

02J l_ll_ll l J l r ~ J_LJ_l_J_ l J l l I I I I I I I J I I I I

0 31 _l_J_J_ Ll iritOGi' thll l lJJJ_j_ l l l l I I I J I I I I I I I I

041 l I I _l_ I l l l Wt llill l J_ l l LI I l I I J 1 1 I l l

0 s l l l l I l H1D& rulliO l ll l l l l l l I I I I I I I I I I I I

o s I 1 l I 1 l l l l ~ llill l 1 l l I I I I I I I I 1 I I I

011 1 l l l l IH1D1G1 11110 lllil l J_ l l I I I L I I I 1 l I 1 l

Figure 7-19. Normal Heading

OVR (OVERLAY) •

This instruction defines an overlay starting with the next instruction

and continuing to an OVR or END command. The next instruction will

have the address specified by the A address that has the same require­

ments as the SLC command (figure 7-20). If this is the first OVR

7-18

LINE SYMBOLIC OP
CC>DE

VARIAN

LABEL

7· 8 g

o. 1

oz

Figure 7-20.

A ADDRESS B ADDRESS C ADDR

TAG
CHAR.

F.L.C. INCR. TAG CHAR.
F.L.C. INCR. TAG

5 46 47 48 49 50 51

Typical Overlay Card

entry encountered in the program, the auto-load records for the object

program will be produced to the end of the object memory as specified

by the HEAD card (unless the location counter is set to 000).

Subsequent overlays will terminate after the last character is used.

The last auto-load output of each overlay segment will contain aster­

isks in columns 61-63, a sequential overlay segment number in column

64-65. (01-xx), program identification in columns 72-76, and card

sequence number in columns 72-80. The remaining columns will be blank.

Overlays may start or terminate at a non-module-0 address. All auto­

load cards (except the last) will contain 60 characters with the

applicable beginning address in columns 61-63 and word character count

in columns 64-65.

An overlay entry will always start at the beginning of a new page on

the program listing; therefore, an OVR will force a skip to channel

one.

SAD 3 (SYMBOLIC THREE-CHARACTER ADDRESSES).

This instruction generates a three-character address constant (figure

7-21) •

LINE SYMBOLIC

LABEL

7 8 g

o. 1

oz

Figure 7-21.

B ADDRESS

TAG F.L.C. T~t::

6-Character - 2
Part Constant

C ADDR

TAG

7-19

GPMK (GROUP MARK).

This instruction generates a one-position constant consisting of a

group mark (figure 7-22).

LINE SYMBOLIC

LABEL
OP

CODE

VARIAN

M N

A ADDRESS

TAG CHAR.
F.L.C. INCR.

B ADDRESS C ADDR

TAG CHAR.
F.L.C. INCR. TAG

7 8 g 9303132333435363738394041424344 5464748495051 !

0. 1

02

Figure 7-22. 1-Character Group Mark

TPMK (TAPE MARK).

This instruction generates a two-position constant consisting of a

tape mark followed by a group mark (figure 7-23).

LINE SYMBOLIC

LABEL
OP

CODE

VARIAN A ADDRESS

M N TAG
CHAR.
INCR.

B ADDRESS

TAG CHAR.
F.L.C. INCR.

C ACOR

TAG

7 8 g 9303132333435363738394041424344 5464748495051!

o. 1

02

Figure 7-23. Tape Mark Coding

END (END OF PROGRAM).

This instruction must be the last program entry (figure 7-24).

LINE SYMBOLIC

LABEL
OP

CODE

VARIAN

M N

B ADDRESS

TAG
CHAR.

F.L.C. INCR. TAG CHAR.
F.L.C. INCR.

C ADDR

TAG.

78g10111213141516171819202122232425262728 9303132333435363738394041424344 5464748495051

o. 1

02

Figure 7-24. End Coding

MACRO INSTRUCTIONS (NON-MULTIPROCESSING).

Macro instructions cause the assembler to place various address pa-

rameters into the skeleton taken from the Macro Library. The skeleton

7-20

then becomes the desired subroutine and is assembled into the symbolic

program. The macro instruction is included in the program by writing

the name of the macro instruction in the OP Code Field, and the pa­

rameters of the macro instruction in the A, B, and C Address Fields.

The following macro instructions are treated as entries, and

documented as follows:

LNK (LINK TO ROUTINE).

This entry will create a two instruction linkage to a routine. The A

address is the required branch-to address. The B address is the exit

location of the sub-routine. The C address is the address where con-

trol will return after th€ routine is completed. If the C Address

Field is blank, control will return to the instruction following the

LNK entry (figure 7-25).

LINE SYMBOLIC

LABEL

0. 1

02

OP
CODE

LN
L~

VARIAN

Figure 7-25.

SET (SET EXIT ADDHESS).

A ADDRESS B ADDRESS

TAG CHAR.
F.L.C. INCR. TAG CHAR.

F.L.C. INCR.

Link to a Subroutine With a
Return to the Next Instruction
and a Return to X

C ADDR

TAG

This macro instruction is similar to LNK except that a branch is not

taken. The A Address Field contains the routine exit location. The

B Address Field specifies where control will return after the routine

has been completed.

If the B Address Field is blank, control will return to the

instruction following the SET entry (figure 7-26).

7-21

LINE SYMBOLIC
LABEL

OP
CODE

VARIAN

M N

A ADDRESS

TAG
' CHAR,

F.L.C. INCR.

B ADDRESS C ADDR

TAG TAG

7 8 g 10111213141516171819202122232425262728 ,9303132333435363738394041424344 5464748495051

o. 1

02 ETi E
03

Figure 7-26.

OUTPUT CAPABILITIES.

Set Exit for Return to Next
Instruction, and Set Exit
for Return to X

The Operating System Assembler allows the assembly process output to

be either a printed copy, magnetic tape, or punched paper tape rec­

ords. A multiple output media may be specified for either the program

listing and/or the auto-load assembly output, but a program listing

must be printed.

PROGRAM LISTING.

A portion of a program listing is illustrated in figure 7-27. Except

for the following exceptions, the format is generally the same as the

Basic Assemblers.

The listing is single spaced with a normal End-of-Page sensing. Page

control is provided within the Header (HDG) entries. An Overlay (OVR)

entry will cause an automatic skip to a new page. Auto-load output

information is also shown on the program listing with a card number

shown for each entry. A Reserve (RSV) entry shows only the beginning

auto-load number; however, a Constant (CST) entry indicates the auto­

load information up to the first sixty (60) positions of the entry.

7-22

li'RUrtcAlA2N FlP'Ht
OuNAU88B~CC

s •••

n 7,nftOOfNOTTO ,,., 1n' ,, 11/9
sn 7n~ 3 V71t
Tn 1, nnn w •

U'l 1t\'\ 116'954 X9
vn ~"Vl•USll 1113
Nn 1nHnx X3
xn 1tnnx 'OX
Yn J Ofl3 NlWWt
lf) J Otl X9WZf

I n 5n1 o z9•1 o
11n 543 X9 Y9 WO

/S'l 1n3/S6V/61T3
IT!'\ 1nuxx c;v2
/UO -;-;1sv21uoc;vn
/Vf'I J 004/T3H1
/Wn 1HtSVHTOITO
/Xf'I t;ntSV4/T6C\T0
/Yn 54'SV3TTn/Tn
nn m;ri?nnss(,c;so
s n r;a1TTnssAc;ro
sin T"9STn TT2
s~n 1f'HV9L t TTT9
!\Tf'I 10?SH1TVOC\V1
sun M1 SV5 c;v11
svn 1n9x>0< TTX
!\wn i;4 HTn1v9c;vo
sxn Tn3S'tf1TTOTT3

SY/LA9' OP/C '1Pno1 '51' PRORRAM "''4"N A A" F't EL 9 A.nRS F' t ELD C ADU
AS an 09•f),•7t

FIELD "EMA KS•••••••••••••••••
Ovit .. 0 TIUC[ROUTINE SET AAA Tft CORE LDC USE"

HnR '010 *** TRICE RnuTt ... E •••
STR yrq '2 '800 •E"IO OP SET AAA TO A!~ annR ' ST

Tr'R , STR 8 E'ttT 9 SET UP TRACE [WIT
Tr~ l STR ' Lnr. Tf'R LOC TO PitT
Tr'R t2 OP Ltil•nP ALPMA T'R Oft Tn PltT

HI'\ fl .,f)20 *** S£T UP PRINT ***
TrR l • 8 P•LN Tr'R c SET UP TF'R T'l ltRT

SFT•UP Mc;I(3 2 LN Ot '1ASK 6 tU A SET UP TF'R AU anRs
J.IX Tr'R l nxx •X TF'rt A Tf'R au ADRS TO TF'R
TF'R Tr'R !2 .xxx lt'UX TF'rt WORn TO 'RUT
LAST ,,, ... •003 NX A N~•LN ADY TO ttEXT anoR
F'TN An'4 •on TF'R c N'(•LN •5 A0'4 RY t5 Tn tilFXT MORO

CAE l TF'R c F'IN c P•n•T IF' F'TNIL 8~ Tn ltRtttT
CAU 3 TF'R c LAST c tU tr NnT EQ CCC LOnP

Hl'\G ,1).,1) *** SET UP qfUNr.HES ***
H'R 3 • ~ TAR LE TT A SET UP TABLE TF'R

TT fl:''R 4 .XU • Tctr N TF'R TARLE ENfqy TO TF'R
C7U t TRE "" . Mc;I(r'lLL TH"U IF' ~UW[RtC

TLP A l'\'4 '9004 TT A ftT1t All'4 Tl8LE TF'st
CAU 1 TRE 3 flP TT ,,. nP•CnOE • TAAL[ENT"Y
CAE 1 TRE 4 TT 6 N,,TT TF' M•VlR "'IOT •tsrr,
CA 1J 2 TR[3 flP TT Tr 014 • TAAL[£NTRY

uo CA[' OP TRCC 6 TRr.C tr ri14 • Lt
CAIJ 1 nP TRCC 8 NnTT Tr OP•CflOE • T•t~TR
R~E .. NOTT OP N IF" N•VAR ft•RTT T~TR•l /O

TRCC TrR 3 qR•AnR c •Lt T OD c SET !IP net l TNTR•l/n
l>HlTT TF"R ' • q ~R•AOR T~E A C\ET tlP TF'R A"~

TF"R t ur -; T~E t1 ~ET TF'~ 8RS T~ nP LOr.
TRF:' Tr'R 9 fl)()('I(OP •'(TrR qRs Tn OP

CAIJ l nP ILP 9 • ,4 CAE roR SPEC PRT•tNT A7
Tr:"R 3 * ~ 'IP OP A rr FQ ez A" ,, ... SELF'

Figure 7-27. Operating System Assembler
Program Listing

PAGE • 0032
SEO. • CR I

to2

tn

to• 0001
105 0001
109 0001
ttO 0001

Ill

lU 0001
lU 0002
tu 0002
115 0002
116 0002
ll1 0002
118 oon
ll9 oon

Ut

122 0001
lU 0001
12' 0001
125 OOO•
lH ooo•
127 ooo•
129 OOO•
129 000.
130 0005
Ul 0005
112 0005
Ul 0005
t 1' 0005
ll~ 0006
116 0006
U7 0006

AUTO-LOAD.

Auto-Load output consists of 160 or 320 cards in the standard,

module-0, five-instruction-per-card format (figure 7-28) .

FllLD 1 FllLD 2 fllLD 3
INSTRUCTION IN$TIUCTION INSTRUCTION

OR DATA OR DATA OR DATA

000000000000 000000000000 000000000000
I 2 3 4 5 I .7 I I 10 II 12 13 14 15 11111111 20 21 22 23 24 25 21 27 21 29 30 31 32 33 34 35 36

111111111111 111111111111 111111111111

222222222222 222222222222 222222222222

333333333333 333333333333 333333333333

44 44 44 44 44 44 444444444444 4444.44444444

555555555555 555555555555 555555555555

666666666666 688666666666 666666666666

111111111111 111111111111 111111171111

888888888888 888888888888 888888888888

999999999999 999999999999 999999999999
I 2 3 4 I I 1 I I 10 II 12 13 14 15 II 17 II It 20 21 22 23 24 252127'82930313233343536

Figure 7-28.

Auto-load Record Contents

Instruction or data

Instruction or data

Instruction or data

Instruction or data

Instruction or data

Storage address

Number of words

Number of characters

Relative Address Codes

Identification

Card number

7-24

FllLD 4. FIELD 5
.

VI FLOAT . .,.
~-

QVI

INSTRUCTION INSTRUCTION •"' CODIS o"'
OR DATA OR DATA ~~

g~
o o o o o o o o oio o o 000000000000 0 0 0 0 0 000000
373139404142434445'.464748 ~9 50 515253 54 ~ 51157 5159 60 111213 &4~5 j&611un1011

11111111H11 111111111111 1 1 T 11 111111

2 2 2 2 2 2 2 2 2:2 2 2 222222222222 2 2 2 2 2 222222

3 3 3 3 3 3 3 3 3!3 3 3 333333333333 3 3 3 3 3 333333

44 4 4 4 4 4 44144 4 444444444444 44 4 44 44 44 44

5 5 5 5 5 5 5 5 5i5 5 5 555555555555 5 5 5 5 5 555555

6 6 6 6 6 6 6 6 6i6 6 6 666666666666 6 6 6 6 6 666666

77777777fl77 111711111117 71 7 7 7 111117

8 8 8 8 8 8 8 8 818 8 8 888888888888 8 8 8 8 8 888888

9 9 9 9 9 9 9 9 9 '9 9 9 999999999999 9 9 9 9 9 999999
37 38 39 40 41 47 43 44 45;46 47 41 495051525354555657515960 &16213 &4'5 iM 17 u" 70 71

Auto-Load Program Card

Card Column

1-12

l'.3-24

2'5-36

J\7-48

4:9-60

61-63

64

65

67-71

72-77

7~-80

IDINT.

000000
72 73 74 75 7111

111111

222222

333333

444444

555555

666666

111111

888888

999999
727374757117

CARD
NO.

0 0 0
71 79 IO

111

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9
71 79 IO

Auto-load output for program over.lays (except the last card) contain

60 characters of data with the applicable beginning address and word­

character count. An overlay segment can begin or terminate at a non­

module-0 address. The program listing includes the auto-load card

number for each entry. An end of overlay segment output will be

produced using the following format.

Card Column

1-60

61-63

64-65

66-71

72-76

77-80

Contains

Blanks

* * *
Sequential overlay No. (01-99)

Blank

Program identification

Card sequence number

The following is a list of multiprogramming MCP II Relative Address

Codes. Columns 67-71 of the auto-load record may contain these codes.

Field(s) To Be
BCL Code Bit Confi~ration Incremented

I ABl OP

s AB2 A

T AB21 OP & A

u AB4 B

v AB41 OP & B

w AB42 A & B

x AB421 OP, A & B

y ABB c

z AB81 OP & c

AB82 A & C

7-25

BCL Code Bit Confi~ration

% AB821

I AB84

= AB841

J AB842

" AB8421

Blank AB

The bit codes are as follows:

1 = OP Code Fields

2 = A Address Field

4 = B Address Field

8 = C Address Field

Field(s) To Be
Incremented

OP, A & c

B & c

OP, B & c

A, B & c

OP, A, B & c

NONE

AUTO-LOAD OUTPUT ON MAGNETIC TAPE. Th~ output on magnetic tape

consists of BO-character binary card image records.

AUTO-LOAD OUTPUT ON PAPER TAPE. The output on paper tape consists of

BO-character auto-load image records.

AUTO-LOAD OUTPUT ON DISK. The disk output consists of SO-character

auto-load image records blocked six records per 480-character block.

The area immediately following the last specified work area is used

as the output area if disk auto-load is specified.

RENUMBERED SYMBOLIC PROGRAM DECK. The ASOP Assembler provides the

user with an option to request that a renumbered symbolic program deck

be punched on cards.

The program output listing will reflect the new page and line number;

however, if a sequence check is desired, the original input page and

line number will be checked.

7-26

Method of Specification.

The ASOP Assembler requires a program HEAD Card preceding each program

being assembled. (Reference the ASOP Assembler Function for Header

information.)

The HEAD Card provides the assembler with the output requirements for

the assembly process, specifies the work storage units, defines the

object system, and indicates the media for the input source program.

The HEAD Card is edited prior to the assembly process.

7-27

SECTION 8

MCP II ASOP MACRO INSTRUCTIONS

GENERAL.

When the multiprogramming capabilities of MCP II are utilized, the

programmer does not communicate with the B 500 to perform I/O

operations, but rather through MCP II.

MACRO INSTRUCTIONS.

The Operating System Advanced Assembler allows the use of 79 multi­

programming macros. The Macro Library containing the multiprogramming

macros must be created under control of MCP II and the CMLT Function.

The following is a list of multiprogramming macros that are described

in the following pages of this section.

Macro Description

ACPT Accept input from SPO.

BEGN Begin run.

CLOS File close.

DISP Display output on SPO.

FILE File descriptor.

LDRO Load relative overlay.

M/PI Multiprogramming interrupt.

OPEN File open.

PF/C Programmatic function call.

POSN Position magnetic tape or line printer.

READ Read an input record.

RECD Record description~

ROVR Relative overlay.

8-1

Macro Des;cription

STOP Stop run.

WRIT Write an output record.

ZIP Stop program in process and call another program.

The following routines are supplied with the Macro Library and used by

certain multiprogramming macros as automatic object code inserts,

whenever an applicable macro is called by the source program.

Routine

CLOO

PERR

RE<D

RE<E

RE<I

RE<O

RE>D

RE>E

RE>I

RE>O

REUD

REUE

REUI

REUO

REUP

WRIP

8-2

Description

Write standard EOF record and close file.

Macro error routine.'

Disk file input blocked is less than 133 characters.

Disk file output blo~ked is less than 133 characters.

Input blocked recorqs ar€ less than 133 characters.

Output blocked records are less than 133 characters.

Disk input blocked ~ecords are greater than 132
characters.

Disk output blocked records are greater than 132
characters.

Input blocked records are greater than 132 characters.

Output bloc~ed records are greater than 132 characters.

Disk file input unit records.

Disk file output unit records.

Input for unit records.

Output for unit records.

Output for line printer records.

Write or position line printer file.

LINKING OF MACRO ROUTINES.

Macro routines are linked to the object program in the following

manner.

a. The next input record is saved.

b. Detail macro records from the Macro Library tape are read.

c. Parameters are assigned to all equal addresses contained

within the macro routine.. The equal addresses must be

within the following specifications.

Field Length ~ ---
SY LABEL 6 POS ANY

M VAR 2 POS NOT CST/RSV

M VAR 4 POS ONLY CST/RSV

N VAR 2 POS NOT CST/RSV

A ADRS 12 POS NOT RSV

A ADRS-FLC 2 POS NOT CST/RSV

A ADRS-CI 3 POS NOT CST/RSV

B ADRS 12 POS NOT CST/RSV

Remainder of B ADRS field same as A, and
C ADRS field same as B.

d. If the 12-position A, B, or C Address Fields reference

parameter N (and parameter N is blank), parameter M, if

coded within the field immediately following parameter N,

will be inserted to replace parameter N.

e. Supplies each symbolic record to the assembler following

parameter assignments.

f. END operation code is replaced with the HDG operation code.

8-J

g. All switches are reset and the next symbolic record is

restored to the input area.

MACRO DEFINITIONS.

The following macro formats define the syntax to be used in the con­

struction of the multiprogramming maoros. Included with each descrip­

tion is a detailed listing of the symbolic code that is emitted from

the Macro Library at the time of assembly.

AXCE (ACCEPT SPO MESSAGE).

This function is used in conjunction with the ACPT Macro. In order to

pass the necessary information to the program, the operator will use

the following format.

~ > > A X C E i d e n t m e s

1 7 8 - - -12 13- -

where:

s a g e

- 80

a. ident - program identificat~on.

b. message - message to be passed to the specified program.

A Display Macro (DISP) is usually implemented prior to ACPT so that

the operator is aware of what programs are waiting for a message entry

through the SPO. Three programs can be in operation, and all indepen­

dently waiting for a different reply., Considering this possibility,

the programmer should include the program identification with the

display message to inform the operator which program needs action.

ACPT (ACCEPT).

The purpose of this macro is to obta~n input data from the supervisory

printer. The symbolic label to be assigned to the accepted message is

entered in the A Address Field, and the B Address contains the exit

address. If the B Address is blank, the next address in sequence will

be inserted. The C Address is always blank (figure 8-1).

8-4

Figure 8-1. ACPT Supervisory
Printer Message

Figure 8-2 illustrates an example of symbolic code emitted from the

macro library at the time of assembly.

ACCEPT ~ACRO

4DG 2020 ACCEPT SUPERVISORY PRINTER MF:: SSA GE
TF'R 5><8EGLB 4 * ?QSET UP PROGRAM I 0
c; p 0 • tM PR TNT ACCEPT MESSAGE
r. ST 12+AXI InENT4- t..iE SS A GE CONSTANT

• I TFR 5><AORTB R* XAORTB A LINK TO M/P
TCB 2•/ B)(INTER XAf)IHB c CONTROLLER
TCB 42@1366 %2%0 * ins TORE MESSAGE .)(rQU * %1 ".!ST 48 'AES SAGE STORAGE

•I f QU * f.ND 2020 *** END OF M A·C R 0

Figure 8-2. ACPT Listing

BEGN (BEGUN RUN).

The purpose of this two-card macro is to set up the I/O configuration

needed to run a particular program, and to remove the required I/O

units from the Systems I/O Table. This macro also sets up the neces­

sary date linkage. The A Address contains the beginning execution

address entry.

The B Address specifies the I/O configuration needed to execute the

object program, and the date codes are entered in the C Address Field.

This macro is used whenever an object program run in a multiprogram­

ming mode is required.

8-5

The entry codes for I/O configuration are as follows:

8-6

Column (B Address)

33

J4

35

36

37

JS

39

Contents

Input reader 1.

1 - card reader required

A - paper tape reader required.

Blartk - none required.

Input reader 2.

2 - card reader required.

B - paper tape reader required.

Blank - none required.

Output punch.

0 - card punch required.

+ - paper tape punch required.

Blartk - none required.

Blank - Reserved for the system.

Line printer 1.

1 - line printer only.

T - line printer or printer tape.

Blank - none required.

Line printer 2.

2 - line printer only.

T - line printer or printer tape.

Blank - none required.

Magnetic tape.

1 thru 6 - number of units required.

The coding for the dates is as follows:

Column (C Address)

45

46

47

48

Contents

Must contain a + (plus zero).

D if either date is required.

Y if today's date is required.

Y if report date is required.

Today's date format.

A - alpha month, day, year.

B - day, alpha month, year.

J - abbreviated alpha month, day, year.

K - day, abbreviated alpha month, year.

50

1 - numeric month, day, year.

2 ·- numeric day, month, year.

3 ·- Julian YYDDD.

4 ·- Julian DDDYY.

Report date format - same as the above

Today's date.

Data pBrtaining to the BEGN Macro is entered as follows:

The A Address must contain a symbolic address for today's-date,

B Address contains the symbolic address for the Report-date, and the

program blocks (to load and total) are entered in the C Address Field

(figure 8-J).

8-7

Figure 8-J. BEGN ~/o Macro with
Data tl..iinkage

Figure 8-4 illustrates an example of BEGN symbolic code from the Macro

Library at the time of assembly.

8-8

~H)G 2020
~~I) (1 2 0
'1VR ta750

Rt.'HN RUN MACRrJ

PROGRAM AOD RECORO
REGI~ RUN MACRfJ

r.sr r~~~P~rrn
r, ST 5t: '7
r,sr 2RN
~ST 16%2
r.sr 6%6
CST 24 PRnGRAM ADn CARD
HOG 2020 PROGRAM LAREL

xBfGLar.sr 4+BEG
CST 5%7
c;AD3 it
40G 2020
rsr 6%3
~.~D3 %4
HDG 2020

XINTERrQu ~030

xAORTA[QU '040
xt.XI/QrQU ~450

xIOSEGrQU ~366
xERROREQU ~600
xSTDrRrQU ~100

XN EOFrQU ~760
xQVRWArQU ~270

xSYIOT~QU ~290
xOVRNM~QU ~019
xOVRCL~QU ~330

xOVRTSEQU ~363
xBricsrrQu ~304
xRnLOR~QU ~670

xP f /CCQU ~020
xr/CARr.QU ~356

xPRLABfQU ~804
02FDKfr.QU ~100

SW SPOrQU ~260
RETADRr.QU ~399
RETLNK~QU ~540

OATE CONSTANT

%5
r,'QIJATfS F"OR ASSEMBLER MACRl1S

REGIN RUN MACRO

PRnGRAM IDENTITY
TYPE ~ BEG HALT CO~ES
tin CONFIGURATION

LA REL
PRnGRAM IDENTITY
BEGINNING EXECUTION ADRS

nATE CONSTANT
nATE STORAGE ADDRESSES

40G 10•***
~NO 2020 *** ENO or ~ACRO ***

Figure 8-4. BEGN Listing

CLOS (FILE CLOSE).

This macro is used to close a file. It writes the last block, tape

mark, and rewinds the tape. This macro will return the I/O unit(s) to

the Program I/O Table. The A Address Field must contain the file-name

of the file to be closed. The B and C Address Fields are blank

(figure 8-5).

8-9

These parameters are converted to the following:

a. %1 - file-name.

b. %2 - file-name with CI of 2B.

c. %.3 - file-name with CI of 10.

d. %4 - file-name with CI of 2A.

e. %5 - file-name with CI of 60.

LINE SYMBOLIC OP lvARIANT A ADDRESS II ADDRIESS . C ADDRESS

CODE MTN TAG F.L.C. ~~~:· TAG F.LC. f~tR~.' TAG F.L.C. fNHCARR.
REMARKS

LABEL INo.jr

•ls le 1111 e]t Of1 if. 2 I ;f1;i;;j°16 I ;i;;r1 ;po 2;-inr2i]'2~26 272!£!3~3132 3~3~3~3~3~38 39 •tl• • ·~·ijf· '4~•~•tl.•~.Vi[so '1 sifss s4fs;j'~e s;fs;rs9Ts~slJs2fsi]'s~s6fs~e"8{e9]"1~1lf12f1~1;:(1~16Ff1;J"1;{"so
o, I IE..tb1F1 I I c,t1•.s I I I tf1P1-1¢>1UiI _l _l _J_

ozJ J 1 J I _l _l _l _l I I I I I I I _l I I I

o:sl I I I I I I I I I I I I I I I _l _J_ _l _l

041 I I I I _l _J_ _l_J_ _J_l _l _l_J__l -1.l .l .l I

o s I I I I I I I I I I J J I l I I _l _l _l _l

a.I I I I I _l _J_ _l_l _lj .l .l _l _l _l .l .l _l_J_

071 I I I I J I Jl 1 l _l -1...1...1 -1...1 ...1 _l _l

Figure 8-5.

!

c 1L 1~1$1e.1 1T1A1P 1E.1 _L¢>lLJ1T1 1 Fi l.t Lie1 _i_1 1 1 _l_lj_l_l _l _l J _l_lJ.j__J " I I I

J J I I I _l _l j _l J. _J_ _l _J_ I

J _l_l_J__l _l _J_ Ji _l_l_l_J__J_ " I I I I I I I I I I I I l_l_J I I I I LI I I I I I

I .l.l_l.l 1 _l J .l.l.l.'.l.J. I _l _l _l_ll I I I I l_l I I I l_l_l_ll l_l_l_l_l_l

_l _l _l _l _l _l _J__J_' -1...1...1 -1...1 <I I I I I I I I I I I I I l_l_l_l_LlJ l-1111 I I

_l .l..l_l.l _l _l ..l. .l.l.l .l.l I I J I l f_l_i_l_i_lll.l_l.l.l-1...l_l.l_l_l_l_l_l

...1 _lj__J__l .l ...1...1' -1...1 -1-1...1 , I I I I I l-1_11111 l-1J.-1-1..1_l_l _J _l _J_ _J_ _J_

CLOS and. I/O Unit Placement
to Program I/O Table

Figure 8-6 illustrates an example of CLOS symbolic code emitted from

the Macro Library at the time of as~embly.

l.f 0 G
4DG
TFR
TFR
TCR
CSA03
r, S T
4DG
c- ND

FTLf. CLOSE MACRO

2010 rrLE CLOSE MACRO:
10t#t#l#i#l###################~#l####ll#f#,###t###########f##I

3• R~CLS XQVRNM LINK rn EXEC CONT~OLLER
2• B~09 XOVRWA

12• tOxOVRCL ~OVR~S TO CALL FILE
* 10%2 CL8SE

6%1 . ROUTINE.
10****************************~*******************************
20 *** ENO nF MACRn ***

Figure 8-6. CLOS Listing

DISP (DISPLAY).

This macro provides output data to the SPO. The A Address entry

contains the address of the message to be displayed.

and C Address Fields are blank (figure 8-7).

8-10

The B Address

Figure 8-7. Output Data for SPO

Figure 8-8 illustrates an example of DISP symbolic code emitted from

the Macro Library at the time of assembly.

*** gEGIN OTSPLAY MACRO ***
µDG 1
4f)G

1.
tO#f##tt##«#t#####~####t#############f#tf##t#############lf###

Tr; B
r, S T
tiPMK
c; p 0
~PO

s~PRLAq * 20• 17~TnRE PROGRAM !DENT
110ISP I11ENT,

PROG~4,M

PROGRAM
I DENT
INFORMATION

~o~ 10**
~ND 20 ** ~NO DISPLAY MACRO **

Figure 8-8. DISP Listing

FILE (FILE DESCRIPTOR).

The macro provides the I/O codes for the files used by the program.

The file name is Emtered in the A Address Field (six positions) and

the B Address contains the I/O codes.

(figure 8-9).

The C Address Field is blank

Figure 8-9. File Code Entry

The I/O codes for the B Address Field are as follows:

8-11

Information

#O Card reader input file ..

E2 Paper tape output file ..

Fl Paper tape input file.

F2 Paper tape input file (direct).

Dl Magnetic tape input.

K2 Disk input file.

@O Card punch output file (BCL).

@l Card punch output file (BULL).

@2 Card punch output file (ICT) .

AO Printer file (120 positions).

A+ Printer file (132 posit.ions).

D2 Magnetic tape output file.

KO Disk output file.

PO Printer tape output file (120 positions).

P+ Printer tape output file (132 positions).

Figure 8-10 illustrates an example of FILE symbolic code emitted from

the Macro Library at the time of assembly.

L.f r> G
HDG
r. ST
r. S T
r, 5 T
~AD3
4DG
F.'ND

8-12

FTLE nESCRJPTOR MACRO

2010 rtLE DESCRIPTOR YACRO
10####1###1#######.####l######~#########l#################J###

1 ...
2%2
6%1
u

I/O TYPE
F'ILE NAME
r:tLE NAME

10•***
'-0 *** ENO OF MACRO ***

Figure 8-10. FILE Listing

LDRO (LOAD RELATIVE OVERLAY).

This macro calls a multiprogramming routine to load a relative overlay

into an available area. The A Address Field must contain the overlay

name. The address of the first instruction to be executed in the

overlay must be inserted in the B Address. If the B Address Field is

blank, the first address of the overlay is inserted. The C Address is

blank {figure 8-·11).

Figure 8-11. LDRO Load

Figure 8-12 illustrates an example of LDRO symbolic code emitted from

the Macro Library at the time of assembly.

~H)G

40G
TFR
T F' R
Tf"R
Tf R
t; An 3
CST
qDG
nio

L~AO RELATIVE OVERLAY MACRO

2010 L~~ry RELATIVE nVERLAY MACRO
lO#########ll#####lt#t#~##t#t#####l##l#####l##t##H#t##########

2)(R E G 1 .. 8 x !HJ C S T S T n R E A D M C 0 U N T E R
3* All XHGCST NSTORE OVERLAY ADDRESS
2• A12%1 xAORTB ASET EXIT ADRS
6• 1B XOVRTS LINK TO M/P CONT~OLLER
~61 xROLnR %1 TO CALL OVERLAY

3%1
10••**
20 *** ENO OF' MACRO ***

Figure 8-12. LDRO Listing

M/PI (MULTIPROGRAMMING INTERRUPT).

The purpose of this macro is to transfer control from one program to

another. M/PI is not required when I/O Macros are used. If there is

little I/O activity in the object program, the Multiprogramming Inter­

rupt Macro should be used to accomplish transfer control. The A, B,

and C Address Fields are always blank (figure 8-13).

8-13

Figure 8-lJ. Control Transfer

Figure 8-14 illustrates an example of M/PI symbolic code emitted from

the Macro Library at the time of assembly.

MIJLTI•PROCESSING tNTEiRRUPT MACRO

4DG 2010 MULTI•PROCESSIN~ INTERRUPT MACr~o
NDG lO####f###f#l################~####f#######!###########H##Hf###
TF'R 5><ADRFl 8~1%0 xAnFHR .~SHIFT TABLE OF' Rt::TUR\I
TCB 2•+ BxINTeR xAO~T8 c AOORFSSES AND 40D THIS
l'°Ql.J * '1~r. TO THE TAfH.E.
HOG 10***************************~********************************
~Nn 20 *** ENO OF MACRO ***

Figure 8-14. M/PI Listing

OPEN (OPEN) •

The purpose of this macro is to open a file by reading the first

available record. The A Address contains the file-name, B Address the

beginning disk address, and C Address contains the ending disk address

of the file (figure 8-15). The Band C Address Fields are blank if a

file other than disk is required.

Figure 8-15.

8-14

File OPEN with the Reading
of First Record

The parameters arn converted to:

a. %1 - filB-name.

b. %2 - BEG disk file ADRS.

c. %3 - END disk file ADRS

d. %4 - fil.a-name with CI of 2B.

Figure 8-16 illustrates an example of OPEN symbolic code emitted from

the Macro Library at the time of assembly.

LH)G
qr> G
TFR
TFR
TCB
t; A 0 3
r; S T
flPMK
r. S T
r. S T
f\ LC
4DG
rNo

FILF nPEN MACRO

2010 FILE OPEN MACRO
10##*#t#~#f#t~f###########t#####f#i########!########i#########

3* B~OPN xoVRNM LINK TO EXEC CONTRnL.LER
2* R~08 xOVRWA

27• 10XOVRCL XQVRTS
* 10~4

6%1

7%2
13%3

0

TO CALL FILE
OPEN ROUT] NE

10**~*****
20 *** ENO OF MACRO ***

Figure 8-16. OPEN Listing

PF/C (PROGRAMMATIC FUNCTION CALL).

This two-card macro sets up the linkage to call a function of MCP II

for execution. The A Address contains the first 12 parameter posi­

tions, B Address the second 12 parameter positions, and the third 12

parameter positions are entered in the C Address Field {figure 8-17).

Figure 8-17. Operating System Function
to Print Disk from Segment
1,000 thru 2,999

8-15

If a second card is required, the A ~ddress Field contains the last 11

parameter positions, and the B and C Addresses are blank.

Figure 8-18 illustrates an example of PF/C symbolic code emitted from

the Macro Library at the time of assembly.

HOG
HOG
Tf R
T F' R
1' CB
r, ST
r. S T
CST
r. ST
r. S T
CST
TFR
YOG
tNO

pql)(lRAMMATJC FUNCTION CALL MACRO

2010 P~OGRAM~ATIC FUNCTION CALL M~CRO
10#########~##f###f~########~###f#l###################t##tf##1

2* A~04 ~tt3
3* B* 70xA~RTB

54• tnxP F/C xfiCAR
3~~~
4%1

12%2
12%3
12~4

11 %5
2• B~630 @113

ASET EXIT ADORESS
MOVE r1c & PARAMETERS

NAME
PARAMF.:TERS

10•***
20 *** ENO nF MACRO ***

Figure 8-18. PF/C Listing

POSN (POSI°TION) •

This macro is used to position the appropriate I/O unit. The A

Address contains the file name of the, unit to be positioned, B Address

the type of positioning required, andl the C Address Field is blank

(figure 8-19).

8-16

Figure 8-19. Appropriate I/O
Positioning

Acceptable codes for positioning are as follows:

a. R - rewind tape.

b. B - backspace tape.

c. SS - single space printer.

d. DS - double space printer.

e. CN - skip to channel N after printing, where N is 1-@.

Figure 8-20 illustrates an example of POSN syrnboli.c code emitted from

the Macro Library at the time of assembly.

P~SITTO~ ~AGNtTIC TAPF FILE MACRO

4 D G 2 0 1 0 P 1J SI Tl 0 N MA G N r. T I C T A PE F" t L E M A C R 1
4nG 10t###~###t###############################f###############i###

TfR 3618 XIOSEG ~OVE I/O SEGMENT
rrR l• 8%6 XIOSEG 1TMOnIFY M VARIANT
TrR 6• tR xIOSEG 30MODIFY RET & RETRY ADRS
qRU ~EXI/ry ~1 * tOGO TO EXECUTE
HOG 10**
~NO 20 *** ENO OF MACRO ***

Figure 8-20. POSN Listing

These parameters are converted to:

a. %1 - file-name.

b. %2 - not used.

c. %3 - end-of-output address.

d. %4 - file-name with CI of 2A.

e • %5 - space/skip variants.

f. %6 - position OP Code or variant.

g. %7 - file-name with CI of 60.

h. %8 - file-name with CI of 2B.

READ (READ) .

The purpose of this macro is to make the next record available for

processing. The A Address contains the file-name, B Address the error

address (if B Address is blank a standard address is assumed), and the

End-of-Input return address is entered in the C Address Field

(figure 8-21).

8-17

Figure 8-21. Read Next Record Available

The parameters are converted to:

a. %1 - file-name.

b. %2 error-address. If blank, standard is inserted.

c. %3 - end-of-input address.

d. %4 - file-name with CI of 2A.

Figure 8-22 illustrates an example of READ symbolic code emitted from

the Macro Library at the time of assembly.

RF:Ar, MACRO

4DG 2010 READ MACR~
4DG tO####t#t#f«###########«############tf###########t#####,f#####
TCB ~· 1,A%1 %4 LNK TQ RECORD ROUTINE
NO p· • ta? t O % 2 ·~ 3 T 0 GE T NEXT REC 0 RD
40G 10**
r.Nn 20 *** END Or MACRO ***

Figure 8-22. R~ad Listing

RECD (RECORD DESCRIPTOR).

The purpose of this two-card macro is to describe the records to be

processed. It works in conjunction w~th the File Descriptor Macro to

select the proper I/O routines, depending on whether the records are

blocked or unblocked.

The A Address on the first card contains the record name, B Address the

record length (4 positions), and C Address the records per block (J

positions).

8-18

The A Address of the second card contains the I/O code to be used by

the file. If the records are disk, the segment size is entered in the

B Address and the segments per block in the C Address Field. The

acceptable codes are 01-10 (figure 8-23).

Figure 8-23.

The parameter·s ar.3 converted to:

a. %1 - record name.

Record Description
and Selection of
I/O Routine

b. %2 - record length (also used as M VAR/Record length).

c. %3 - block length (RECD length x R,ECD$/BLK).

d. %4 - block length plus excess disk area (excess DSK

Area= SEG/BLK x SEG SZE).

e. %5 - number of characters for last TFR (RECD SZE divided

by 120. Zero remainder set to 120) four positions.

f. %6 - record size less character size of last TFR.

g. %7 - number of characters for last ADM (preceded by #)
four positions total.

h. %8 - number of segments per blo.ck.

i. %9 - last two positions of record length if unit records

or last two positions of last TFR are blocked records.

8-19

This macro will automatically insert the proper routines to

effectively handle the blocking and unblocking of records. The

routines are provided as part of the Advanced Assembler II Macros.

ROVR (RELATIVE OVERLAY).

This macro assigns codes to the auto-load output listing (columns

67-71). The codes are used to relocate the program at object time.

The A Address contains the overlay name (three 5ignificant positions),

B Address the number of program· blocks in the overlay, and the

C Address Field is blank (figure 8-24).

Figure 8-24. Auto-Load Output Codes

The parameters are converted to:

a. %1 - overlay name.

b. %2 - number of blocks.

c. %3 - overlay base address.

Figure 8-25 illustrates an example of ROVR symbolic code from the

Macro Library at the time of assembly.

8-20

RF"LATIVE l'JVERL.1'Y f.i!ACRn

'1VR ~.3
~OG 2010 RELATIVE nVERLAY MACRO
4DG 10####j##tttHfff########~##H########f4#f#,#i######~########i###

~ST 6+~ovq~ nV(RL4Y
~ST l~%1.

r.sr 2%2 LABEL
~DG 10•***
rNn 20 *** END OF MACRO ***

Figure 8-25. ROVR Listing

STOP (END RUN) •

This macro ends processing, removes a program from the programs in

the Program Table, returns the I/O units to the Systems I/O Table,

and updates the Available Memory Table. Control is returned to the

Executive Routine, and the A, B, and C Address Fields are blank

(figure 8-26).

Figure 8-26. Termination of Processing

Figure 8-27 illustrates an example of STOP symbolic code emitted from

the Macro Library at the time of assembly.

sr;Jp RUN MACRO

40G 2010 STOP MACRn
~DG 10####1#,#t,f###############N########*t####t##########N#######
Tn~ 3• R~E:OP ><OVR~M LINK Hl EXEC CONTROLLER
TFR 2• A@15 XOVRWA TO C~Ll THE ENn nv
res 24xBEGLR xnVRCL xoVRTS c PROGRAM ROUTINE
4nG 10•********~*************i************************************
~~n ?O *** END OF MACRO ***

Figure 8-27. Stop Run Macro

8-21

WRIT (WRITE) •

The purpose of this macro is to provide a means of moving records to

an output area. If blocked records are written, an appropriate block-

ing sub-routine is automatically provided, but if unblocked records

are used they will be written on the appropriate output device. This

is a two-card macro (figure 8-28). The first card contains the file

name in the A Address Field, B Address the error address (a standard

address is assumed if this field is blank), and the C Address contains

the End-of-File Branch Address entry (a standard address is assumed if

this field is blank).

l..INE SYMBOL.IC OP VARIANT A ADDRESS B ADDRESS C ADDRESS

t:-:T:- L.ABEL. CODE I CHAR, CHAR. CHAR. REM AR KS
~~·L~ M N TAG F.L.C. INCR. TAG F.L.C. INCR. TAG F.L.C. tNCR,

4-IsJ6 7"J e] ;-i1~1 !{12 1~1~~16 1 il:1!{1 ~20 2_il2~2~2~2e 21 2~93C>.l_3_132 3~3~3tl3~3.i38 3U~4t 4~4~4"4:14~4j4!1.4~50 51 5~53 5.IJs5J56 5;:[5BT5~6~elT6~6il6~6~6iJ.6~e~1~1_il1.~Vihb~hbViJ?.~J_eo

0" I I I I I lr.J.R11:iT I I_]_ J:L~F-1I..1L.Jf ~ _]_ _]_ _]_ _]_ _l j _]_ _]_ h _l _l _]_ _]_ ...1 _l _l I i.2 _]_ _]__ l I I I I I I I I I I I I I I I I LLJ__J _l I I

oz! 1 1 1 1_1 Ll--1 _i_I t LLl...l...l < _i --1--1 _i --1--1...1--1 ~ -1 ...l...l -1...1...l --1...l ~; .J. 1 1 IB1L1A1N1IG 1 1 1 1 11JLl -1 .l-1 1 1 11 Ll

03_1 _l_j__l.J._J_ ~~T _t_l_t H1Di6-1~l_..l .J. _J__l _]_ _J__l__l_l _l __l__l _l_J__l _l_J_ ~; _l l l l..l_l l I I J J Ll_l_l__l__l _l _]_ Ll_j__l _l j _l

0 4 I l l l I l l I I I I l 01$1 l I . I ·: I I J l l I l J ~ l __l ..L _l l _l J ~J p; _l _]__ I

osJ _L_l_L-1.1 _L_t_L ...t-1-1 _t_L_L..1..1 / ...t _L_L _t_L_L_L_L .1 _L...L J....L..l_L_L .1 1 1 Ji_Ll l t.J...1-11._L_L_L...l..1...l. LL.L-1-1.1-1

0 • I I I I I I I I I I I I l I I I I I I l l I _l___l__L_L_ .__L _J _J .1 I _J .1 1 L 1· I I I I I I I I I I I I I I I I l l I I I I I l

Figure 8-28. Heading Write Followed
by Double Space on
Line Printer

A second card contains the printer spacing (printer files) in the

A Address Field. The B and C Address Fields are blank.

Acceptable codes are:

a. SS - single space after printing.

b. DS - double space after printing.

c. NS - no space after printing'.

d. CN skip to channel N after printing, where N is 1-@.

The following parameters are converted to:

a. %1 - file-name.

b. %2 - error ADRS. If blank standard is used.

c. %3 - end of output. If blank standard is used.

8-22

d. %4 - fil1a-name with CI of 2A.

e. %5 - space/skip variants~

f. %6 - printer of code-A.

g. %7 - file-name with CI of 60.

Figures 8-29 and 8-JO illustrate examples of the WRIT symbolic code

emitted from the Macro Library at the time of assembly.

HOG
Yl1G
T F' R
f CB
CST
r. S T
c; Af) 3
4r:>G
r. ~JO

wqrrE OR POSITION PRINTER rILE MACRO

2010 ~RTT~ n~ P@SITinN PRINTER rrLE MACRO
10f#####-#f###f###########t###############################f###

3• ?O %7 SET ORJNT OR SPACE OPCDE
~* 1A%1 %4 LINK TO RECORD ROUTI~E
1%6 TO ~RITE OR
2%5 POSITION
* t0%2 %3 PRINTER FILE

10**~*****************
20 ••• ENO OF MACRO ***

Figure 8-29. Write or Position Printer
File Macro Listing

\'HU TE MACRO

~~ n G 2 0 to w R I T F: M ~ c ~ 0
HOG 10########~!f##########~##t###############################j###

T~R R• 1A%1 %4 LINK TO RECORD ROUTI\IE
~OP • 1012 %3 TO ~qITE RECORn
4DG 10**
~NO 20 *** END OF MACRO ***

Figure 8-JO. Write Macro Listing

ZIP (STOP ONE PROGRAM - START ANOTHER).

The purpose of this macro is to provide the capability to program­

matically stop and/or start a program. The A Address entry for the

End Run/Zip to next program card, contains the identity of the pro­

gram to ~e called (columns 21 thru 25). The Band C Address Fields

are blank (figure 8-Jl).

8-23

Figure 8-Jl. Program/Start Zip Stop

Figure 8-32 illustrates an example of ZIP symbo~ic code emitted from

the Macro Library at the time of assembly.

4f)G
Tf R
T F" R
't F' R
TCB
r. ST
CST
(;PMK

20?0
13•

3•
2•

24><BEGtB
7 7 I PP ArP1
5%1

r. S T 1 1
~(JU *
r~rn 2020

7IP MACRO •• STOP ~ CALL ANOTH~R PROGRAM

7-I P MACRO
4n

AQf"OP
R@l 15

xOVRCt..

... STD~ ~

xF /CAf~
XfJVRNM
xOV~WA

x{)VRTS

C A LL~ A N 0 T 1-n: R PR 0 GR A M
SET ltP CALL
LINK TO EXEC CONTROLLER

TO CALL THE END or
C PROGRAM ROUTI~E

?IP CALL CONSTANT
ZIP PROGRAM IOENTITV

TO EVE~ OUT MACRO
SET roR FALL THRU ADRS

*** END or ~ACRO •••

Figure 8-J2. ZIP Listing

The program points within a macro entry do not interfere with the

program points used by the programmer; because program points are

always local to the library level in which they occur.

A macro instruction can refer to other macro instructions (e.g., a

macro instruction inside a macro instruction, inside a macro instruc­

tion, within the main program) and alsp the CALL pseudo entry. The

only pseudo operation not allowed inside a macro routine is OVR. A

programmer need not be concerned about the length of included macro

instructions for entry increment purposes, or if any of the included

sub-routines contain program points.

The calling strings of the included macro routine may contain refer­

ences to the calling string of the next higher level macro instruction

(i.e., percent references are permissible in the calling string of a

macro routine).

8-24

LIBRARY ROUTINES (MACRO AND CALL ROUTINES)~.

Library routines are written the same as other sections of coding,

except it allows program control to return to the parameters of the

calling string (line or lines of code that call the macro). The addi­

tional type of.addressing (called Percent Addressing) is provided for

this purpose.

Percent Addressing is coded as % followed by a number from 0 through

9. This coding corresponds to the parameters reflected in the A, B,

and C Address Fields of the calling string. For example, the unit

number in the Macro Tape Read entry would be referred to as %J. A %0

entry refers to the address for the line of code following the macro

entry. Percent Addresses may be included in any or all of the

following positions:

a. High-order position of the symbolic label field. Percent

Addressing will use the first six characters from the calling

string and insert them as a symbolic label.

b. M or N Variants. In either position, Percent Addressing will

take the first two characters from the calling string and

insert them into the variant field of the symbolic command.

c. High-order position of an address field. The full 12-

charact13r symbolic address from the calling string will be

inserted into the address field.

d. Entry increment field (positions directly following the sign

position). The first two characters from the calling string

will replace the percent reference.

A second or third percent address may be written directly following

the first. In essence this construct says that if the left-most

Percent Address F'ield is blank use the one to the immediate right.

Macro routines are to be used by the programmer as though they were

a single special purpose instruction. The number of ;Lines to be

8-25

inserted by the macro routine counts for only as many entries as it

takes the programmer to declare it {usually one). An example of this

is the READ Macro. The programmer may consider this as a special com-

mand with three address fields. The fact that it provides for error

checking in addition to reading a tape is unimportant {as far as

coding is concerned). The programmer can treat it as one line of

entry, or just as he would an actual machine language instruction.

LIBRARY MACRO REQUIREMENTS. The coding of macro routines is the same

as regular coding with the following differences:

a. Absolute symbolic labels {as opposed to program points)

should never be used, because it causes duplicate labels

whenever a specific macro is used more than once in a

program.

b. When writing a macro routine, it must be possible to make

use of the parameters furnished by the programmer when

calling for the routine.

In order to accomplish item b, an address composed of a % followed by

a number from 0-9 is used. %1 through %9 refers to the nine possible

parameters that may be used by the person requesting a macro insertion.

The %0 entry is the address assigned to the entry directly following

tpe macro routine in the calling program. The % references may be

used in many places within a macro, and in all cases it will result in

the appropriate number of characters to replace the % reference. The

locations where these references may appear are as follows:

8-26

a. Symbolic label - the first six characters from the

appropriate parameter field becomes the symbolic address.

b. M and N variants - the first two characters of the

appropriate parameter are used.

c. A, B, and C Addresses - the complete 12-character

parameter is used.

NOTE

Refer to the Advanced Assembler

II Reference Manual (1042769) for

additional information concerning

the CALL or Macro routines.

8-27

SECTION 9

B 500 COBOL COMPILER

GENERAL.

MCP II has the capability of storing the COBOL Compiler on disk and

making it callable as a MCP II Function.

MCP II also contains the COBOL Compiler maintenance and start-up

programs that are available to the user as function calls.

By coding OP-SYSTEM under the OBJECT-COMPUTER paragraph, the source

program is compiled at base machine location 800, and an execution

under MCP II control is achieved. If MULTIPROGRAMMING is specified

under the OBJECT-COMPUTER paragraph, the resultant object program

will automatically contain float codes for multiprogramming.

9-1

COBOL COMPILATION FOR OPERATING SYSTE~.

The following must be observed within the ENVIRONMENT DIVISION of

the source program so that the object program can be added to the

program library (figure 9-1).

LINE
NO

...

01

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

A

6 7 8 II

IB

12

I I I I I I I I I I

J,~, Lr ,J\\,E,-,P,R,I,N,T,E,R,_j_
0"1d>1 JiAP1E1•1 I I I I I I I I

Figure 9-1. COBOL ENVIRONMENT
DIVISION Example

The OP-SYSTEM statement will cause source program output to be com­

piled at base 800. If MULTIPROGRAMMI;NG is specified the program will

contain float codes for multiprogramming. The resultant Collector

Tape may contain several object programs that will be subsequently

loaded to the User Program Library.

COBOL programs must be loaded into the User Program Library from the

Collector Tape using the CPAT Function. Specifications for CPAT are

the same as LPAT and may be found in Section Four of this manual.

After the COBOL program is loaded to the User Program Library and a

program delete (DPDL) is executed, the output from the DPDL Function

(back-up library tape) must be reloaded using LPAT.

CPAT is only used to initially load COBOL object programs from a

Collector Tape.

9-2

The COPR Function of MCP II is used to load the B 500 COBOL Compiler

to disk. The COBOL Binary Card Tmage Tape must be mounted on TSU #1

with scratch tape on TSU #2.

The format of thj_s function is:

> > > C 0 P R a b b b c d e f

1 - - - 7 8 9 11 12 13 14 15

where:

a. a - disk segment size ! 1 = 480-character segments
2 = 240-character segments
3 = 96-character segments

b. bbb - base disk address where the compiler is to be loaded

c.

d.

e.

f.

onto disk. The address must be expressed in thousands. An

electronic unit zero is assumed and cannot be changed.

Example:

015 indicates a disk address of 0015000.

c - MCP II indicator

d - line printer #1

f 1 =

l 0 =

size

e - line printer #2 size

f - ma~ntenance type { : :

object program to run with MCP II.

object program is not to run with
MCP II.

132-print positions.
120-print positions.

f same as printer #1. Must be
coded even though two line 1 printers may not be available.

create base tape and load tape
to disk.

load base or intermediate tape.

An example of a ~ ~ ~ COPR entry is as follows:

> > > COPR20201110

9-3

This example will create a COBOL Base Tape, and load it to 240-char­

acter disk segments starting at 20,000. The object programs will

run with MCP II.

If system memory is used, the compiler should be loaded no lower than

segment 6,000. The resident compiler requires approximately 1400

segments of 240-character disk. The 2,000 segments immediately pre­

ceding the compiler, and the area from segment address 0000000 to N-1

(depending on the size of the source program) will be used as an I/O

work area.

BLANK EXECUTIVE ROUTINE SAVE AREA (~ ~ ~ BLNK).

The BLNK Routine is an automatic function called by COPR to save the

Executive Routine, while the COPR Function is being executed.

SET-UP COBOL COMPILER LOADER (~ ~ ~ S.CCL).

This function is automatically called at the conclusion of the COPR

Funct~on to pass parameters from COPR to the CMPL Function.

It is necessary to reload the compiler with COPR whenever the Oper­

ating System is initially loaded to disk; otherwise, COBOL

compilations will not be processed under MCP II Control.

9-4

>>> CMPL

COMPILE COBOL SOURCE PROGRAM FUNCTION (_::: _::: _::: CMPL).

This function will save the Executive Routine in the area called

BLNK, pass any changes in printer size and/or the MCP II indicator

to the COBOL Compiler, load the compiler into memory, and execute

the compilation of a COBOL source program.

The operating instructions are as follows:

The

a. Mount a scratch tape on MTU-1.

b. Mount a scratch tape on MTU-2 for the object program

Collector Tape.

c. Ready the line printer.

d. Enter CMPL via card reader 1 or the SPO.

format for the CMPL Function is as follows:

> > > CMPL a b c d

1 - - ---7 8 9 10 11

where:

a. a - MCP II indicator. t :
b. b - Line Printer #1 size.

c. c - Line Printer #2 size.

- object program to run with
MCP II.

object program not to run
the MCP II.

{
1 - 132 print positions.
8 - 120 print positions.

Same as printer #1.

~ 1 - compile for syntax only.

the

with

d. d - Syntax only. l Blank - compile with object code.

NOTE

If any of the parameters are changed,

all the parameters must be re-entered.

9-5

The following message may be displayed on the SPO.

Message:

PARAMETERS NOT CORRECT

The parameters entered with the function call were not correct. A

restart is required.

Figure 9-2 illustrates the position of assembler information.

+~OVR>ASIG 1st 240

- - - - ~ - - - -
LOADER 2nd 240

- - - - ~ - - - -
OBJECT CODE Jrd 240

Figure 9-2. Assembler Program in
the User Library

COBOL MULTIPROGRAMMING.

The COBOL programs are loaded to the User Program Library in an

auto-load format. The first block of the program (an assigner) is

read into machine location 400 with control transferring to machine

location 400. The COBOL Assigner Routine will select information

from the Executive, store the Executive in the reserve memory loca­

tion, and read the second block of the program (loader) into machine

location 000. The loader reads the object program block to the

address as required, and then transfers the object code to main core

at its new execution address.

An ASG block follows each overlay section. When the ASG block is

recognized, control will transfer to the ASG Routine. The ASG Rou­

tine will test for subscript 61Axxx in the object program. If 61Axxx

is found, the four position field (Axxx) is added to decimally, and a

test for +BEG in the first word of the object program is performed.

If no +BEG in the first word of the object program is performed, and

if no +BEG is found, the object code is considered an overlay and will

be written onto the disk at the location specified by the file limits

9-6

of the source statement. After the overlay has been written, control

is returned to the loader to read the next block(s) of object code.

If +BEG is found, the Executive will be restored and updated with

I/O requirements, the next program start address etc., after which

control will pass to the Executive {figure 9-J).

ASIG

LOADER

Figure 9-J. Segmented COBOL in

the Disk Library

9-7

GENERAL.

SECTION 10

PROGRAMMING SPECIFICATIONS

This section emphasizes some MCP II programming techniques. Most of

the examples use the Operating System Ass.embler (ASOP) format and a

few COBOL techniques. The programmer can use either Basic or Auto­

load formatted programs (provided they have the necessary linkage to

the Executive Routine for execution).

In order to use MCP II in a multiprogramming environment, the

following multiprogramming specifications must be used.

The Operating System execution of a relative user program is presented

in the following format.

MULTIPROGRAMMING SPECIFICATIONS.

In order to effectively use MCP II as a multiprogramming system, the

following programming specifications must be followed:

a. Programs may be written in ASOP (Adyanced Assembler

language), or B 500 COBOL.

b. All addr<essing must be symbolic except for the Set

Location Counter and Overlay entries.

c. The use of SAD2 is not allowed.

d. SADJ may be used for address tables in a normal address

position of a word (OP, A, B, or c).

e. MCP II Multiprogramming Macros must be used for input/output.

f. If input/output operations are infrequent or non-existent

in a program, the Multiprogramming Interrupt Macro should

be placed within each execution cycle of the program.

10-1

g. The sequence of a user progr~m is relatively unrestricted

following the initial entrie$. The initial entries must be

in the following sequence.

1) The Begin Run Macro must be the first entry.

2) All files must be described immediately following

the Begin Run Macro.

3) All records must be described immediately following

the File Descriptor Macros.

4) Constants should be placed after file and record

descriptors.

h. Files must be OPENed prior to the execution of a READ or

WRITE Macro.

i. If the initial positioning of the file is required, the

Position Macro must be executed.

j. Files must be CLOSEd prior to the execution of the STOP-RUN

Macro if the units are to be returned to the Systems I/O

Table at end-of-job time.

k. After the execution of the file CLOSE Macro, files cannot

be accessed by the execution of another file OPEN Macro.

INITIALIZING THE SYSTEM.

The following steps are used by MCP II to execute a multiprogramming

program.

The program call is initiated via the card reader or SPO.

10-2

a. An interrupt occurs.

b. The Executive branches to machine location 260 and

sets the SPO initialize flag (a one (1) in machine

location 179), and branches to 050 in the Executive.

c. IFCC (Interrupting Function Call Check) is called

to determine the following:

1) Type of input (Function CALL or user program CALL).

2) Checks to see if Save Memory is required.

3) Sets the Program/FunctionSwitch at machine

location 028 to P.

4) Checks machine location 318 to determine if the

system is in a multiprogramming mode.

5) Transfers the disk address of the User Program

Library from 11# to 144 in the Executive Routine.

EXECUTIVE.

The Executive reads the User Program Directory Library Record, and

transfers control to the Directory.

CALL RECORD BLOCK.

The Directory Record transfers three words from the program to the

function call input area (location@ 370).

The three words consist of:

a. Program disk address.

b. Program identification.

c. Program input/output requirements.

d. Program MODE (Relative COBOL segmented, etc.) •

e. Program blocks.

Program IDENT is compared, and the MODE checked.

The input/output requirements are transferred to the multiprogramming

CALL work area at machine location 270, and control is transferred to

machine location 330 in the Executive.

10-J

MULTIPROGRAMMING CONTROL OVERLAY LOADER.

a. Calculates the relative address.

b. Adds the relative address to the base.

c. Branches to machine location 060 which

loads the Memory Check Function.

MEMORY CHECK FUNCTION.

a. Tests the multiprogramming flag at machine location

Jl8 for MODE.

b. Checks machine location Jl@ for the number of programs

in process.

c. Determines if enough memory is available to execute

the program.

d. The linkage is set in the Executive Routine to call

the Input/Output Check Routine.

INPUT/OUTPUT CHECK ROUTINE.

10-4

a. Stores the I/O Table located at machine location 290

to machine location 400.

b. Program I/O requirements are checked against the Systems

I/O Table for available units.

c. Assigns the I/O units to the program and then removes the

I/O units from the Systems I/O Table.

d. Linkage for loading the Memory Assigner Routine is set,

and the linkage accomplishes the following:

1) Transfers the Revised System I/O Table from machine

location 400 to 290.

2) Transfers Revised Program Table to Executive Program

Table at machine location 280.

3) Transfers the ADM counter from machine location J04

to 356.

4) Transfers the beginning disk address from machine

location 309 to 306.

5) Increments the program counter at machine location 31@.

6) Branches to machine location 060 to load the Assigner

Routine •

.ASSIGNER ROUTINE.

a. Tests the ADM counter for 00. (oo identifies the first

multiprogramming program in the mix.)

b. Sets the transfer to ADDRESS.

c. ADM's beginning address.

d. Transfers the first 10 words of the program into memory.

e. Decreases the program block counter at machine location 396.

f. Performs steps b thru e, until all the program blocks are

loaded, and the linkage for loading the Date Check Function.

DATE CHECK FUNCTION.

a. Tests for relative overlay, if the relative overlay recalls

the multiprogramming loader.

b. Tests for DATE. (Second word of object program.)

c. Checks program type at machine location 380 for an "R."

d. Transfers the first two words of the program to 35#.

10-5

e. Tests for TODAY's and REPORT dates.

f. Prints BEGIN RUN message on the SPO.

g. Sets linkage for loading Input/Output File Declaration

Function.

INPUT/OUTPUT FILE DECLARATION FUNCTION.

This function stores the following items in the I/O Control Segment.

a. Interrogate, OP CODE, M-VAR.

b. Table position length.

c. Program I/O Table position.

d. I/O comrriand (OP CODE & M-VAR).

e. Sets the linkage for loading the second I/O

File Declaration Function.

INPUT/OUTPUT FILE DECLARATION #2 FUNCTION.

10-6

a. Tests for error flag (2) at machine location 382, and sets

a discontinue if equal. The error flag will be set by IOFD.

b. Assigns the printer or tape to the file requesting the line

printer with tape backup.

c. Prints the file name and the type of I/O assigned on the SPO.

d. Sets up the user program return address linkage table

(machine location 049).

e. Branches to the Executive which will load the

multiprogramming controller.

f. Control will transfer to the user program to begin execution.

FILE OPEN FUNCTION (OPNF).

a. The OPNF Function will store the file name and disk file

address for the open message.

b. Sets the address of the I/O Control Segment.

c. Determines the type of I/O device.

d. Assigns the I/O unit number (inserted into the I/O Control

Segment by the I/O File Declaration Routine).

e. Deletes the I/O unit from the Program I/O Table.

:f. Restores the updated I/O Control Segment and Program I/O

Table.

g. Prints the file OPEN message on the SPO.

h. Sets the linkage to recall the Multiprogramming Controller.

NOTE

When an end-of-file condition

occurs, the user program will

set the linkage (Close Macros)

to call the File Close Function.

FILE CLOSE FUNCTION.

a. Saves the file name.

b. Tests the type of fiLe.

c. Restores the unit to the Program I/O Table.

d. Removes the unit from the I/O Control Segment.

e. Sets the programs return address.

f. Prints the file CLOSE message on the SPO.

g. Sets the linkage and recalls the Multiprogramming Controller.

10-7

END-OF-PROGRAM FUNCTION.

a. Turns the Call Record Switch on, and transfers A "#"
to machine location 015.

b. Returns the I/O units (from the Program I/O Table)

to the Systems I/O Table.

c. Eliminates the program f'rom the Return Linkage Table.

d. Restores memory space to the system.

e. Prints the End-of-Program message on the SPO.

f'. Reduces the program count.

g. Tests f'or ZIP.

h. Tests f'or more than one program in the mix.

i. Tests program TANK.

j. Recalls Multiprogramming Controller.

MCP II CAPABILITIES.

10-8

a. The capability of' customizing the Disk Operating System to

utilize it to its fullest intent.

b. Maintains a User Program Library containing Basic, Advanced,

or COBOL programs, and the capability of' loading a program

with minimum ef'f'ort.

c. Assigning of' dates through the Operating System.

d. The ability to call program overlays.

e. The automatic handling of' End-of'-Job or discontinue routines

f'or return to the Executive Controller.

j:. Allows serial jobs to be interrupted so that the execution

of other programs can be accomplished, and automatically re­

stores and restarts the program that was interrupted.

g. The capability to programmatically call another program or

function.

MULTIPROGRAMMING GENERAL SYSTEM FEATURES.

a. Multiprogramming of a maximum of three user programs.

b. MCP II Macros to automatically handle I/O.

c. Discontinue of one or all programs in the mix.

d. Available core query and/or what programs are presently

in the mix and their core requirements.

e. Automatic assignment of peripheral units and control of

the I/O Table.

f'. Automatic relocation of programs at the time of execution.

CUSTOMIZING THE OPERATING SYSTEM.

This feature is accomplished with the Delete (DELF) and Add (ADDR)

Functions: Both functions are on the Tape Operating System. The DELF

Function provides the capability of deleting any function{s) that are

not required, and the ADDR Function provides a means of adding func­

tions to the Disk Operating System. These functions are used to free

library space and to minimize the time needed to load a program and

repack the User Program Library.

PROGRAM LIBRARY.

In order to load a user program into the User Program Library, a pro­

gram PADD record must be furnished each object program. This record

is automatically provided when the Be.gin Run Macro or OP-SYSTEM

is used. For other types of programs the user can insert a SLC at

machine location 750 followed by the PADD record specification

10-9

described as constants. This entry will create a PADD Record during

assembly. The Object Program must be assigned with the first word

residing at machine location 800. The first two words at machine

location 800 and 810 are reserved for the Operating System. Machine

location 800 must contain the following BEGIN Program Label.

a. Position 1-4 +BEG-positions.

b. Positions 5-9 Program identity.

c. Positions 10-12 Address of first instruction

to be executed in object program.

The second reserved word at machine location 810 is used for Date

Assignment Codes. This field is blank if date assignments are not

used. The following data represents the necessary coding for the

date assignment.

a. (position 1) +.

b. (position 2) D if either Today's or Report is required.

c. (position 3) Y if Today's date is required.

d. (position 4) Y if Report date is required.

e. (position 5) Today's date type code or blank.

f. (position 6) Report date type code or blank.

g. (positions 7-9) the address in the user program used

to store today's date.

h. (positions 10-12) the address in the user program used

to store report date.

10-10

The f'ollowing are acceptable types of date format codes.

Type Code Format Type of Date

A Alpha-month DD, YYYY Month-day-year

B DD Alpha-month YYYY Day-month-year

J Alpha-month DD, YYYY Abbreviated month-day-year

K DD Alpha-month YYYY Day-abbreviated month-year

1

2

3

4

MM-DD-YY

DD-MM-YY

YYDDD

DDDYY

Month-day-year

Day-month-year

Year-Julian day

Julian day-year

The dates supplied to the user-specified area are left-justified. The

following are several examples of date formatted output.

A January Jl, 1970 (alpha: month, day, year)

B 01 April 1970 (alpha: day, month, year)

J SEPT 05 1970 (abbreviated alpha: month, day, year)

K 10 JUN 1970 (abbreviated alpha: day, month, year)

1 01-15-70 (numeric: month, day, year)

2 Jl-OJ-70 (numeric: day, month, year)

J 70150 (numeric: year, Julian day)

4 36570 (numeric: Julian day, year)

Figure 10-1 illustrates the date assignment format.

~ ~ Cl) r::c:i Cl) r::c:i
Cl) E-t C/l E-t

D y y ~ ~ r::c:i < r::c:i <
+ 00 ~o ~o

r:c.. r:c.. 0 0
0 . 0 . . . < E-t < ~

E-t ~

.f '2> .3 4 5 6 , • 9 lO n 12
-·

Figure 10-1. Date Assignment Format

10-11

f--1
0
I

f--1
l\)

Figure 10- 2.

CHAR.
F.L.C. INCR.

REMARKS

Program Beginning

Figure 10-2 illustrates the symbolic entries required to start an

Assembler program.

OVERLAY CALLS.

MCP II has provisions for locating and loading user program overlays.

The ov 1erlays are located by the names specified within the overlay

label (see figure 10-J). A program may call any overlay within the

User Program Library, but a multiprogramming program may not call an

overlay that does not contain relative address codes.

After the Executive receives the parameters to call an overlay, it

searches the Overlay Table to locate the correct disk address segment.

The overlay is loaded one block at a time, starting at the address

specified in the overlay label. After the completion of the load

operation, control transfers to the first word of the overlay.

When an overlay is called, MCP II makes ~ provisions to save memory

before loading, or to restore memory after the overlay has been com-

pleted" If these functions are required, the user must make the

necessary provisions to call them.

The first overlay instruction must be an overlay label using the

following format:

a.. (positions 1-6) +:=:ovR>.

b.. (positions 7-10) unique overlay name (positions 7-9

must be unique).

c,, (positions 11-12) number of blocks in the overlay

(each block contains 480 characters).

Figure 10-J. Specific Overlay Identification

10-13

NON-MULTIPROGRAMMING OVERLAYS. The linkage must be supplied to the

Executive to programmatically call the desired overlay. This is

accomplished by transferring the name of the overlay into machine

location 019, and the address of where the overlay is to be loaded

into machine location 016 (see figure 10-4).

Figure 10-4. Non-Multiprogramming
Overlay Linkage

After passing the required information, the user program will branch

to location 010.

MULTIPROGRAMMING OVERLAY CALLS. Programs awaiting execution in the

multiprogramming mode may call those overlays that have been assem­

bled with relative address codes. The macro call for this setting

is LDRO. This call requires that the overlay ident and block count

(parameter entries) have been established by the ROVR Macro. For

additional information refer to the Advanced Assembler II Reference

Manual (1042769).

COBOL SEGMENTATION.

COBOL program overlays can be obtained by using segmentation. Over-

lays are useful whenever memory is exceeded during compilation, or to

limit the size of main core. Segmentation is assigning priority num­

bers to section names. The priority number determines whether the

section is resident or an overlayable section. For additional

information refer to the COBOL Reference Manual (1045226).

DISCONTINUE {Non-Multiprogramming).

The discontinue of a non-multiprogramming program because of error

conditions determined programmatically, can be accomplished by storing

10-14

a B-bit in machine location 005 and exiting to machine location 000.

The :E;xecutive Controller automatically restores this bit after the

program is discontinued (see figure 10-5).

Figure 10-5. Non-Multiprogramming Discontinue

DISCONTINUE (Multiprogramming).

To programmatically discontinue a multiprogramming program, it is

necessary to pass the parameters to the disk Executive and call the

Discontinue Function (see figure 10-6).

Figure 10-6. Multiprogramming Discontinue

END-OF-JOB.

The End-of-Job Routine

program, and to return

figure 10-7).

is called

control to

after the completion of each user

the Operating System (see figure

Figure 10-7. Branch to Executive Controller

10-15

STOP RUN.

The COBOL STOP-RUN construct generates a branch to machine location

000 and returns control to the disk Executive.

DATA COMMUNICATION INTERRUPTS.

Data Communication Interrupts are somewhat restricted by the specific

requirements that must be met. The user must provide two one-block

overlays residing in the User Program Library. The overlays are used

to control the inquiries for determining I/O replies. The names and

location are reserved, and each overlay must be assembled at machine

location 400. With the input ready conditions, the DFI (reserved

overlay name) overlay is used to process data communication input

messages on input ready conditions.

The overlays must provide the readying of input messages by proces­

sing or programmatically calling the program to process the input mes­

sage, and for transmitting additional replies for multiple buffer load

messages.

After detecting a data communication interrupt the Operating System

performs only the following functions:

a. Interrogates all the terminals for an input or output

ready condition.

b. Upon detection of a ready condition, the executive will

store the terminal unit number at machine location 108

and call either the DFI or DFO overlay, and transfer

control to that overlay.

If an additional program is brought into memory the DFI or DFO overlay

is destroyed. Therefore if the message and/or any additional infor­

mation from DFI or DFO is required for the execution of the program,

the data must be stored below the area that will be used by the

program to be called.

For example if the inquiry program is eight blocks long, the informa­

tion to be retained can be stored in the area between OXO and the End-

10-16

of-Memory will automatically be saved before loading the inquiry

program (unless the overlay was entered from the End-of-Job Routine).

After the processing of the inquiry has been completed, the user may

branch to machine lo ca ti on 0·30. The saved contents will be restored

automatically, and control will return to the point originally speci­

fied by the interrupt linkage.

PROGRAMMED INTERRUPTS NON-MULTIPROGRAMMING. At some point(s) during

processing the programmer may want to interrupt a non-multiprogramming

program and have the Operating System interrogate the supervisory

printer, data communications terminals, and/or card reader for an

inquiry or function call (see figure 10-8). The following information

must be furnished to the OP/System.

a. The address within the program where control should be

returned after the interrupt has been completed.

address must be stored at machine location 043.

b. Branch to machine location 030.

Figure 10-8. Return Address Branch
for Interrupt Test

This

MULTIPROGRAMMING INTERRUPTS. Multiprogramming Interrupts are supplied

to a user program by Macro routine(s), and after each I/O operation.

For those programs that require very few I/O operations, the Interrupt

Macro (M/PI) should be used. The Interrupt Macro will store the

necessary program return linkage, and release control to the Executive.

COBOL :INTERRUPTS. The INTERRUPT Verb generates the linkage to the

Operating System for a test of the input requests. If an input re­

quest has been madE~, the Executive will call the Save/Restore Memory

10-17

Function (if required), call the function or program requested, and

release control to the requested function or program. At End-of-Job

the Executive Controller will restore memory (if it had been saved)

and control will return to the program issuing the interrupt. If an

input request is not detected, control returns to the instruction

immediately following the interrupt.

Maximum multiprogramming benefits can be derived through the use of

this verb whenever a few I/O routines are used by the program.

PROGRAMMATIC FUNCTION CALL.

A user program can call for the execution of any function within the

Operating System.

If a program calls a function, the following linkage to the Operating

System must be furnished by the programmer.

10-18

a. The address from the program where control will return

after the function has been executed. The return address

must be stored in machine location 04J. If the user does

not want to return to this program after execution of the

function, the word END must be stored at machine location

04J.

If required, the disk Executive will automatically save

memory on the reserved area of disk.

b. When the tape Executive has control, and the user wants

control returned to his program, the Save and Memory Unit

Code must be stored at location 045.

The Codes are as follows:

1) 1 through 5 - tape unit 1 through 5 where memory

will be written.

2) # - cards.

c. Three tape marks (~ ~ ~) must be stored at location 356.

d. The four-digit funct1on ID must be stored at location 359.

e. The parameters required by the function must be saved

starting at machine location 361.

f. A branch to machine location 020 must be executed.

For example, assume that the program wants to clear an area of disk

programmatically and return. The following linkage within the pro­

gram will clear an area of 240-character disk segments from 0010000

through 0010999 with the CLEAR character "A"(figure 10-9).

Figure 10-9. Stores Return Address

COBOL FUNCTION or PROGRAM CALL.

The COBOL verb ZIP will programmatically call another program or

function. The execution of a program or function is performed by

ZIPing to a data-name. The data-name must contain the program or

function call parameters. After the completion of the program or

function, control will return to the next instruction in the seq­

uence. Reference COBOL Manual (1045226) for additional information

related to ZIP.

10-19

Q)
c

-0
.!
0

-0
O>
c

I-

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

Tl TLE: --=-B-=-5.=..;00:......;S::;._Y_.;;:;S_;;_T~EM..:....:...S;::._ _____ _

MASTER CONTROL PROGRAM II
Reference Manual

CHECK TYPE OF SUGGESTION:

0ADDITION DDELETION 0REVISION

FORM: 1057205 ·-----
DATE: 2-72

0ERROR

~ ~-~-------~------~ 0 GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME
TITLE
COMPANY----------­
ADDRESS

DATE __ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

-------~-----~---~·---------------------------

attn: Sales Technical Services
Systems Documentation

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

FOLD UP FIRST FOLD UP

10!57205

Wherever There's
Business There's

2-72 Printed in U.S. America

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-29
	02-31
	02-33
	02-35
	02-37
	02-39
	02-40
	02-41
	02-43
	02-45
	02-46
	02-47
	02-48
	02-49
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	replyA
	replyB
	xBack

