Burroughs

B 500

Systems

MASTER CONTROL
PROGRAM II

REFERENCE MANUAL

Burroughs

B 500
Systems

MASTER CONTROL PROGRAM 1
REFERENCE MANUAL

B,

Burroughs Corporation
Detroit, Michigan 48232

$5.00

Printed in U.S. America 2-72 1057205

COPYRIGHT®© 1972 BURROUGHS CORPORATION

Burroughs Corporation believes the program described in this
manual to be accurate and reliablé, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con-
sequences arising out of the use of this material. The infor-
mation contained hetein is subjectito change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

SECTION

TABLE OF CONTENTS

TITLE

INTRODUCTION ¢ ¢« « &+ o o o o o o o« o

GENERAL SYSTEMS SPECIFICATIONS
General . L L] L] . L] . . L] L] . . L] .

Hardware System Requirement. . . .

EXECUTIVE AND MANUAL CONTROL FUNCTIONS
General. + « « « o o s ¢ o o o o+

Executive Functions. . « « « o« « =

Disk Version Executive (Z > > DKEX). .

Magnetic Tape Version Executive
(2> > TPEX) v v v v v v v v v v e

End-of-Job Function (> > > EOJF) , , ,
Date Check Function (Z > > DCKF) . . .

Numeric Date Assignment Function
(22 = NDAF) . + « v v v v v e e

Alphanumeric Date Assignment Function
(Z=>>2ADAF) . .+« v v v v e e e e e

Interrupting Function Call Check
(222 IFCC) v v v v v v o v e e e

Function Call Check Function
(> = > FCDF) MCP II Disk Version Only.

Function Call Check Function - Table 1
(> = = FC1F) MCP II Magnetic Tape
Version. « « « o o o o o o o o o o o
Function Call Check Function - Table 2
(Z > > FCZF) MCP II Magnetic Tape
VersioN. « o o o o« o o o o o o o o o o

Function Call Check Function - Table 3
(= = = FC3F) MCP II Magnetic Tape
Version.: « o« o« « o « o o o o o o o o

File Open Function (i > > OPNF). . . .

Multiprogramming Controller Function
(> >M/PC) v v v v e e e e e e

Reject Program Function (z > > REJC) .

Save Memory Function (> > > SAVD,
MCP Disk Version) (> > > SAVE, MCP
Magnetic Tape Version) . . « « « « o« o

Memory Availability Check Function
(Z=>MEMC) . . . v v v v v v o o .

PAGE

XV

2-5

2-6

2-6

2-7

_=T7

2-11

idii

SECTION

iv

2 (cont)

TABLE OF CONTENTS (cont)
TITLE

Restore Memory Function (> > > FECH

MCP Disk Version) (> > > GETS MCP
Magnetic Tape Version). . « « + « + « .

Input/Output Configuration Check
Function (> > > I/0C) . +. + « + « « «

Input/Output File Declaration #1
Function (> > > TOFD) « « « « .

Input/Output Declaration #2
Function (> > > SPFD) . . « « « « « « &

End-of-Program Function (> > > EOPG). .

Standard End—of-Fﬁle Function
(2> 2 SEOF) . v v v v v o o o o o o 4

Relative Overlay Load Function
(> > > ROLD) MCP Magnetic Tape
Version .« « o o o o o o o o o o o« o o

Close File Function (> > > CLSF). . . .

Executive Loader Function (> > > DSCL)
MCP IT Disk Version . « ¢« « o o o o o o

Magnetic Tape Version Executive

Loader Function (> > > LTSC).
Multiprogramming Systém Tables e e e e o e
System I/0 Table. o o « o « « o « o o &
Program Table « + « « o o o« o o o o o o
Program I/0 Table « « o + o« « o« o o +
I/0 Control Segmeht e e e e e e e e e
Multiprogramming Flag Table « « « « «
Multiprogramming Counter Table.
Discontinue Flag. . « « +« « + « o« « +

Disk Address of Operating System . . .
Overlay Linkage . . . e e e e e e
Program/Function Switch
Interrupt « + v « ¢ o o o o o o o+ o o
Tank Switch . . . « « « ¢« o « ¢ « o o
Todays and Report Date Storage.
Function/Program Ident Hold Area. . . .

User Program Library Disk Address . . .

PAGE

2-16
2-17
2-18
2-19
2-20
2-22
2-23
2-24
2-24
2-24
2-24
2-24
2-25
2-25
2-25
2-25
2-25

SECTION
2 (cont)

TABLE OF CONTENTS (cont)

TITLE
Standard End-of-File Card
(or record) e e 4 4 e e e e e e e e
Manual Call Functions . « « + « ¢ o « o«

Dupljcate Systems Tape Function
(= =|2DUPL). « « v v v v v v v v .

Change (or load) Date Function
(>>>=CHDF). . « « « v v v v v v o

Load MCP II Function (> > > LDOP) . .

. .

Switch to MCP II Disk Executive Function

(> > > STDJ) Magnetic Tape Only . . .

Switch to MCP II Tape Executive Function

(> > > STTF) Disk Only.

Load Autoload and Go Function
(2> > LALG) . v v v v v v e e e e

Discontinue Multiprogramming Program
Function (> > > DISC) « « « « « « & .

Set Data Communications Interrogate
Function (> > > SDCM)

Multiprogramming Mix Listing
Function (> > > MXTB)

Change Systems I/0 Table
Function (> > > TIOTB) « « + « « + « .

Accept SPO Message Function
(> > AXCE): v v v v v v v 4 e e

Program Call-Out From User Library
(2= = PADD): + v v « 4 4 0 e e e e

UTILITY FUNCTIONS o ¢ ¢ o o o o o o o o o o
General .+ « .« ¢ ¢« ¢ 0 e e e e e e e e
Print Memory (> > > PRME)

Disk to Tape Single Segment
(2= 2DTST)e v v v v v v o o e

Tape to Disk Single Segment
(2> 2 TDSJI)e v v v v o 4 v o v e e

Disk to Tape Utility-Multiple
Segments (> > > DTTR) . . + « « + . .

Tape to Disk-Multiple Segments
(> > > TTDR) . v v o v v v v v v v v

Disk Dump Disk Load (> > > DDDL). . .

Disk to Card with Control
Numbers (> > > DCCN). « + « « « « o .

PAGE

2-26
2-26

3-5

3-7

3-9

3-11
3-13

3-15

SECTION

3 (cont)

TABLE OF CONTENTS (cont)

TITLE v
Card to Disk - with Control

Numbers(> > > CDCN)« + + « . .
Print Disk (> > > PRDK) . . . « . . .
Clear Disk (> > > CLDK) . . « « « . .
Disk Word Change Utlllty

(Z > =DCWR)e + vinv v o 4 o o o o o
Disk to Disk (> ziz DTDK) . « « « . .
Binary Tape to Taée (Z > = BTTR). . .

Printer Back-up Function (> > > PRTB)
Tape to Print Utility (> > > TUTL). .
Card Utility Function (= > > CARD). .
Tape Utility Function (> > > TAPE). .

USER PROGRAM LIBRARY FUNCTIONS. . « « « « «
General . .« .+ ¢« ¢ « o4 o 0 0 0 e e e e
Create Program Add Tape (> > = PADR) .

Program Add Record Format

Program Library Tépe Merge
(> > = PLTM) Magnetlc Tape

Version o « v v o v v v o e 0 e 0 e
Tape Word Corrector (> > > TWCR)
Magnetic Tape Version . . « « +« « +

Delete Programs From Tape Library
(> = > DPTL) Magnetic Tape Version. .

List Library Tape Program

(> > > LLTP) Magnetic Tape Version. .
List Tape Overlay: Names

(2 > = LTON)Magnetic Tape Version . .

Delete Function From Users System
File Call (2 > > DELF) Magnetic Tape

Version « ¢ « o« o o o o o o o o o o
Add Functions to MCP II (> > > ADDR)
Magnetic Tape Version . « « + o« o« o+ o

Load Program Add Tape to Disk Library
(> > > LPAT) Disk Version

Load COBOL Collector Tape to Disk
Library (> > > CPAT) Disk Version . .

Disk Word Corrector (> = > DWCR)
Disk Version. . .+« « « ¢ « o « « o o

List Disk Library Program (> > > LDPL),

PAGE

3-17
3-19
3-21

3-23
3-25
3-27
3-29
3-31
3-33
3-35

h-9

h-11
L-15
h-17

4-19

heo21
4-23
L-25
=29

h-31
h-35

SECTION
4 (cont)

TABLE OF CONTENTS (cont)

TITLE

Delete Programs from Disk Library
(> > > DPDL) Disk Version

List Disk Overlay Names (> > > LDON)
Disk Version. « « o« « « o o o o o o

COBOL Source Program Maintenance
Function (> > > COBL) Disk Only . . .

Symbolic Tape Maintenance Call
(z Z ..>_ STMT)’ 4 4 3

Symbolic Tape Update and Resequence
Call (> > > STUR) + « « & o o « o o &

Output From Symbolic Program Tape

Call (= > > SSTO) 4+ « « v & & o o o+
MCP II SORT CALL FUNCTIONS: @« « o« o o« o o« o o
General .+ + ¢ &+ + 4 s e 4 e s e e e e

Sort/Merge Generator II (> > > SG2T). . .
Sort Generator II +
Audit Phase e e e e e s e e e W

Allocate Memory Phase e e a4 e

Process Generated Program Phase

Generation End/Assembly Call Phase

Magnetic Tape Merge Generator .« o s

Sort Generator IV (2 > = SGIV): v v v o &

MCP II ASSEMBLER FUNCTIONS. . . « « « « « « .
Ge'l’lel"al L] .
Basic Assembler Call (> > > ASBL) . .

Re-reference Basic Assembler .
Symbolics Call (> > > REFR)

Re-number Basic Assembler
Symbolics Specification Card
(= =22RP&L) « v ¢« v ¢« & o« & o« o « .

Advanced Assembler Call (> > > ASOP).

Re-reference Analyzer Call
(Z=2=2RFAZ). v v v v v v e e e e e

Create Macro Library Tape Call
(2> 2 CMLT). v« v v v v v v v e

Create Systems Tape (z = = CSTP). o«

1 [|
it S L S e T Ve A U B UL R

Ut Ut Ut Ut ot ot bt Ut ot Ut
1

6-17

6-19
6-21

vidi

TABLE OF CONTENTS (cont)

SECTION

TITLE

7 OPERATING SYSTEM ASSEMBLER.

General

Input Capabilities . « . « « .+ .+ .

viii

Punched Card. « .
Paper Tape. « « + o+ o« =
Magnetic Tape . « « .« .
Disk File + + « « o « &

Advanced Assembler Language.

Coding Procedures . . .
Page (Columns 1-3). . .
Line (Columns 4=6) . .
Symbolic Label (Columns

Symbolic Name. ., .

Program Points . .
OP Code (Columns 13-16)
Variant (Columns 17-20)

A, B, and C Address Fields

(Columns 21-56)
Tag « « o« o« o o &
Symbolic Name,

Program Point.

Self-Addressing

Machine Absolute

Literals « « o« « o

Character Increment.

r,L.C. (Forced Last Character)
Remarks (Columns 57-80).

Pseudo Instruction

SLC (Set Location Counter).
ALC (Adjust Location Counter)

EQU (Equate). . « .+ . .
CST (Constant).
RSV (Rerserve Memory) .
HDG (Heading)
OVR (Overlay) . . .« . .

SAD3(Symbolic Three-Character

Addresses)s « + + o o

AR B s B B B B
1
O FE ENONNN N e

7-10
7-10
7-10
7-11
7-11
7-12
7-12
7-13
7-1h
7-14
7-14
7-15
7-16
7-16
7-17
7-17
7-18
7-18

7-19

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
7 (cont) GPMK (Group Mark) . « « &« « o & o « o o o 7-20
TPMK (Tape Mark). « « o« o o« o o o o o o« 7-20

END (End of Program). « « « + « o« o« o o 7-20

Macro Instructions (Non-Multiprocessing)

LNK (Link to Routine) . . . +« « & « o « . 7-21

SET (Set Exit Address). . « + « « « o« o & 7-21

Output Capabilities . . ¢ « ¢ ¢« o « + o o o« 7-22

Program Listing . « « « ¢ o o o o o o« o o 7-22

Auto-Load . .+ « + « ¢ ¢« ¢ ¢ 4 4 e e e e 7=24

Auto-Load Qutput on Magnetic Tape . . 7-26

Auto-Load Output on Paper Tape. . . . 7-26

Auto-Load Output on Disk. . . + .+ .+ = 7-26

Re~-numbered Symbolic Program

Deck. o o« o o« o ¢ o o o o o o o o o 7=-26

Method of Specification T-27

8 MCP TIT ASOP MACRO INSTRUCTIONS. ¢« + & 4+ o o o o« =« 8-1
General .+ ¢ « ¢ ¢« 4 v e e e e e e e e e e e 8-1
Macro Instructions. . . . ¢« « « « ¢« & « « o« 8~1
Linking of Macro Routines . . .+ + « + « . 8-3
Macro Definitions . « « « ¢ &+ o o« o o o o « & 8-4
AXCE (Accept SPO Message) « o« o« o« o & o« & 8-4
ACPT (AccePt) o ¢ v v o v o « o o o o o 8-U
BEGN (Begun Run). .« « « « « « o o o o « 8-5
CLOS (File CloS€) + v « o « o o o o o« o 8-9
DISP (Display)s o« o « o o o o o o o o « 8-10

FILE (File Descriptor). « « o« o« o« o« « « & 8-11
LDRO (Load Relative Overlay). . « . « . . 8-173
M/PI (Multiprogramming Interrupt) o e e e 8-173
OPEN (Open) . . v v v v o o o v o « o o . 8-1L4
PF/C (Programmatic Function Call) 8-15
POSN (Position) « « « « ¢ « o « o o« o o 8-16

READ (Read) « v v & o o o o o o o o« o o 8-17
RECD (Record DescriptoT). . « « o« o « .+ . 8-18
ROVR (Relative Overlay) . « « « « « & o« . 8-20

ix

SECTION
-8 (cont)

10

TABLE OF CONTENTS (cont)

TITLE
STOP (End Run). « « « « &« &« o o o o
WRIT (Write). « o ¢« v o v o o o o .
ZTIP (Stop One Program-Start Another

Library Routines'(Macro and Call
Routines) « « o o« o o o o« o o« o o

Library Macro Requirements . .

B 500 COBOL COMPILER ., . . v 4 o « o o o o &

General. « ¢« « o o « o s+ o &+ o o o « o o

COBOL Compilation for Operating
System. + o « s « o s e o s e e o

Blank Executive Routine Save Area
(2. 2 z. BLNK)‘ . «

Set-Up COBOL Compiler Loader
(_>-. _>— i SCCL) . . L} . .)

Compile COBOL Source Program Functi
(=>>CMPL). « ¢« « « « v « « o o .

COBOL Multiprogramming. . « « « o+ o

PROGRAMMING SPECIFICATIONS: « « ¢ « o o o + o
General.: « ¢ o« « o o & o s e o e e e s .
Multiprogramming Specifications.

Initializing the System. . . « « « « o«

Executive « +« ¢ ¢« ¢ ¢ ¢ ¢ o« o o o
Call Record Block « + o « o o o o«

Multiprogramming Control Overlay
Loader. . .« + ¢ o o « o & o o o o

Memory Check Funection . + + « +« « .
Input/Output Check Routine.
Assigner Routine. . . ¢« ¢« + « « +
Date Check Function « . .+ .

Input/Output File Declaration
Function. « . « &+ « « + ¢ « « « + .

Input/Output File Declaration
#2 Function . . o L] L] * L]

File Open Function(OPNF).

File Close Function . . « « +« « .+ .

).

PAGE
8-21
8-22
8-23

8-25
8-26

10-1
10-1
10-1
10-2
10-3
10-3

10-4
10-4
10-4
10-5
10-5

10-6

10-6
10-7
10-7

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
10 (cont) End-of-Program Function 10-8
MCP II Capabilities 10-8
Multiprogramming General System
Features. « « ¢« ¢ o o o o ¢ o o o o o o 10-9
Customizing the Operating System. 10-9
Program Library « « + o o o o o o o o o 10-9
Overlay Calls .+« « « o « o o o o o o o o 10-13
Non-Multiprogramming Overlays 10-14
Multiprogramming Overlay (Calls) . . . 10-14
COBOL Segmentation. « « « o« « o« ¢ o « o 10-14
Discontinue (Non-Multiprogramming). . . . 10-14
Discontinue (Multiprogramming). ¢ s e e s 10-15
End-of-Job. ¢« ¢« « ¢ ¢ ¢« o ¢ o o o e s e 10-15
Stop=Run. « ¢« + « v « o o o« o o o o o« o 10-16
Data Communication Interrupts 10-16
Programmed Interrupts
Non-Multiprogramming. . « « « o o o o o+ 10-17
Multiprogramming Interrupts . . « « « + . 10-17
COBOL InterruptS. +« + « + &+ o o o « o o o 10-17
Programmatic Function Call., . . « . .+ .« . 10-18
COBOL Function or Program Call. . . .+ + « .+ . 10-19

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
2-1 Disk Executive Loader Control Card . .« « + « + « o 2-15
2=-2 Tape Executive Loader Control Card « + « « « o « o o 2-16
2-3 DISC SPO MESSAEZEeS. « o+ o o o o o o o o o o o o o o 2-Lo
2-4 MXTB SPO MeSSAZES: o o o o o o o o o o o o o o o o 2-43
2-5 TJOTB SPO MeSSagesS. « « « o o o o o o o o o« o o o o 2-Ug
2-6 AXCE SPO MeSSageSe + o« + o o o o o o o o o o o o o 2-48
31 Memory Print Example . « « « + o o o« o o s o o o o o 3=4
3=2 DTSJ Function Listing Example. + ¢« « o o « o o o o 3-6
3=-3 Example of Area Cleared with C's Dumped to Tape

and Multiple Segments with > > > DTTR and Printed
to show Multiple Segments. « « « « ¢ ¢ ¢« o o« o « o 3=-10

xi

FIGURE
3-U
3-5
3-6

| S N D D [IR N N A . |
~N Ot W N FEFEF NNy -

A e B B e B S

-3
1
0]

xii

LIST OF ILLUSTRATIONS (cont)

TITLE
Disk to Card Record Format . , « « « ¢« + . .
Example of > > > PRDK or > > > CLDK Listing.

A Listing with both BCL and Binary Variable
Length Reoords . . L] L] L] L] L] . L] .

Example of a PADR Program Add: Listing. . . .
Example of LPAT Library Listing.
Example of a LDPL Listing of CDTAP
Example of a LDON Listing. . ; o e e s e s s
Change Deck. « + o + o o « o o o« o o o o« o =«

Control Deck Example « + ¢ « & &+ o o o o o

Head Card Format . . « . + « ¢« + « o « o o o
Coding Form. « « « ¢ o« o o o+ o o o o o o o
Acceptable Symbolic Names. .« « + + « o« o+ o+ o
Program Point Usage. + « ¢ ¢ « « o« o o o o o
Forced M and N Variants. « . « « . .
Forced Transfer Variants . . . « « « « + + &
Symbolic Name . ¢ « ¢ o o o o« o o s o o o

Program Point as an Address. « « + ¢ « « o
Self-Addressing. e e s e e 4 e e e e e e s e
Machine Actual Address . .+« « &« o o o o « o o
Packing Literals Within an Instruction . . .
ADM Literal. . « « ¢ o o o o o o o o o o o
Character Increment.« ¢« « « ¢ « « + .
Forced Last Character. . .« + « « « o « o« o« o
Adjusting the Set Location Counter .,
Adjusting the Location Counter

Equate Statements. . . + « « v ¢« o o o« o o

A Constant with 60 Data Characters and 668 Blanks.
Reserving 728 Character Positions Labeled TAPEIN .

Normal Heading . .« ¢ « o« « o o o o o o o o
Typical Overlay Card .« +« « « ¢« & o o o o o
6-Character 2-Part Constant. . « « « « o« + =
1-Character Group Mark . ¢« ¢« o« + o o« o o o
Tape Mark Coding .« « « + & o« '« o s o o o o
End Coding « « + o o o o o o v o 4 o e e

Link to Subroutine with a Reﬂurn to the Next
Instruction and a Return to X. « « ¢ « « +

PAGE
3-15
3-20

3-32
h-5

Lh-27
h-36
L-Lo
4Ll
L-L48
6-12
7-3

7-4

7-9

7-10
7-11
7-11
7-12
7-12
7-12
7-13
7-14
7-14
7-15
7-16
7-16
=17
=17
7-18
7-19
7-19
7-20
7-20
7-20

FIGURE
7-26

7-27

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17

8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28

8-29
8-30
8-31

LIST OF ILLUSTRATIONS (cont)

TITLE

Set Exit for Return to Next Instruction and Set

Exit for Return to X. .+ ¢« ¢ o ¢ ¢ ¢ o o o o

Operating System Assembler Program Listing. .

Auto-Load Program Card. . + « « « o « « + o« o
ACPT Supervisory Printer Message.
ACPT Listing. « « + o o« o o o o o o o s o o o
BEGN I/0 Macro with Data Linkage.
BEGN Listing. « ¢« ¢« « ¢ o« ¢ o o o o o o o o o

CLOS and I/O Unit Placement to Program
I/0 Table v v v v v v o o o o o o o v o " . .

CLOS Listing. « « o « o « o o o o o o o o o @
Output Data for SPO . .+ .« « + « &+ o o o « o =
DISP Listing. « o o o o o o o o o o o o o o o
File Code Entry .« « ¢ o o o o o o o o o o o
FILE Listing. « « « ¢ o o o o o o o o o o o
IDRO Load . + o « v ¢ « o o o o o o o o o o o
IDRO Listing. « o« « o o« o o o o o o o o o o
Control Transfer. . « .« « +« o ¢« « o« « o « o o
M/PT Listing. « « o« o « o o o« o o o o« o« o o« .
File OPEN with the Reading of First Record. .
OPEN Listing. . +« « o o o o o o o o o s o o

Operating System Function to Print Disk from
Segment 1,000 thru 2,999. . ¢ ¢ ¢ « ¢« o« o +

PF/C Listing. « « v o o v « o o v o o o« o o .
Appropriate I/O Positioning + . « « « « o o«
POSN Listing. « « ¢ « o o o o o o o o o o o &
Read Next Record Available. « +« ¢« + + « « « o

Read Listing. .« « + « o o ¢« o« o« o« o s o o o

Record Description and Selection of I/0 Routine

Auto-Load Output Codes. + « « + ¢« o o o« o &
ROVR Listing. « + o« o o o o o o o o o o o o
Termination of Processing . « « ¢« o« o« o« o o
Stop Run Macro. + .+ « « ¢« ¢ o o o o o o o o

Heading Write Followed by Double Space on
Line Printer. « « + +« o o o o o o o o o o« o

Wfite or Position Printer File Macro Listing.
Write Macro Listing .« « « o« o o o o o o o o

Program/Start Zip StOPe o ¢ o 4 e e e e e e

PAGE

7-22
7-23
7-24
8-5
8-5
8-8
8-9

8-10
8-10
8-11
8-11
8-11
8-12
8-13
8-13
8-14
8-14
8-14
8-15

8-15
8-16
8-16
8-17
8-18
8-18
8-19
8-20
8-21
8-21
8-21

8-22
8-23
8-23
8-24

xiii

FIGURE
8-32
9-1
9-2
9-3
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10~9

xiv

LIST OF ILLUSTRATIONS (cont)

TITLE
ZIP Listing. « « « ¢« o« o o o« o o o o »
COBOL ENVIRONMENT DIVISION Example . .
Assembler Program in the User Library.

Segmented COBOL in the Disk Library. .

Date Assignment Format « .+ .+ .
Program Beginning. . « +« ¢« « ¢ « « +
Specific Overlay Identification. . . .

Non-Multiprogramming Overlay Linkage .
Non-Multiprogramming Discontinue . . .
Multiprogramming Discontinue

Branch to Executive Controller

Return Address Branch for Interrupt Test

Stores Return Address. + « o o o o o
LIST OF TABLES

TITLE
Executive Callse. « o+ « ¢ o« o o o o o o
Second Word User Coding. . « « « o o+ o
Flags and Table Positions. « « « « «

Manually Initiated Function Calls. . .

Utility FunCtiOns. L] . L] L] L] L] L] L] . L]
Program Library Functions. « « « « «
Assembler Function . « . « + « « « o &

B 500 Standard Mnemonic Operation Codes.

PAGE
8-24
9-2
9-6
9-7
10-11
10-12
10-13
10-14
10-15
10-15
10-15
10-17
10-19

PAGE
2-1
2-4
2-17

INTRODUCTION

The Burroughs B 500 Disk/Tape Master Control Program (MCP) IT is a
multiprogramming or batch processing operating system that provides
control and maintenance of the User Program Library for tape and or
disk configurated systems. MCP II provides control for the execution
of one, two, or three independent user programs on a multiprogramming

basis.

The software and hardware requirements for the system are defined so
that the user may better understand the Executive and Automatic
System Control Functions, This includes memory allocétion and auto-
matic reassignment of actual to relative address at execution time,
the creation of printer back-up tapeé for the line printer, the
ability to add or delete functions from the disk version of MCP IT,

and program segmentation.

MCP IT also provides Sort Generation Functions for customizing sort
programs. Advanced and Basic Assemblers are also provided in both
the disk and tape versions that can be initiated manually with an

appropriate function call to the Executive.

A section of the document emphasizes some of the programming tech-
niques relating to MCP II, and the capability of including the COBOL

Compiler as part of the disk version.

The Executive Routine is always resident in core memory when MCP II
is in control of the system. The controller function maintains re-
turn linkages between multiprogramming programs. Linkage to the
Executive allows for programmatic roll—in/or roll-out, e.g., inter-
ruption of processing, storage of the data in core memory on punch
cards, disk or magnetic tape, loading of the called program into
memory, or the recall and restoration of a stored program at the

point of interruption.

At the conclusion of a program the End-of-Job Function will output an
End-of-Job message to the system operator. The Executive will then
loop continuously through an Interrogate Routine waiting for another
job to be dinitiated.

XV

As an user option, the Data Communicétion System can be interrogated
for an input or output ready status. When a terminal is found in a
ready status, the terminal number is stored within the Executive, and
a user program. Either the DFI (input) or DFO (output) is auto-
matically called by the Executive.

Peripheral assignment (when in the multiprogramming mode) is the res-

ponsibility of MCP II and is of no concern to the programming staff.
Programs should be written to handle files via READ and WRITE macros,
and not specific peripheral units. When a program is retrieved into
memory, the peripheral requirements fgr that program are reserved., As
each file is programmatically opened, the MCP will specifically assign
unit(s) from the System I/0 Table. Programmers should take into con-
sideration, the sequence that magnetib tape files are declared in
their program, and document the operating instructions in such a way

that the operator may pre-mount his tapes when preparing for that

particular run.

MCP ITI may be used in conjunction with the Supervisory Control Program

(sCP) to provide control of On-Line Teller System installations.
The following is a list of MCP II capabilities:

a. Control for executing one, two, or three completely

independent user programs in a multiprogramming mode.
b. Control functions are provided to process the following:

1) End-of-job.

2) Date assignment and changes.
3) Overlay loading.

4) Systems duplication.

5) Saving and restoring of memory.
c. Executive routine control of the following I/0 devices.
1) Magnetic tape (BCL).

2) Card reader.

xvi

3) Paper tape reader.
4) card puhch.

5) Paper tape punch.
6) Line printer.

7) Disk file.

8) Supervisory printer.

Memory allocation and automatic reassignment of actual

address to relative address at execution time,

Creation of printer back-up tapes for eventual line printer

output is provided automatically if such action is specified.
A functicn to print printer back-up tapes is also provided.
User Program Library creation and maintenance.

A capability of adding or deleting functions from the MCP
disk version provides for minimizing disk storage require-
ments, This allows the user to customize the MCP to his

particular installation.

ASOP Assembler Macros provide the user with multiprogramming
I/0 control and set-up procedures (includes blocking and un-

blocking of records). The multiprogramming macros ares

l) Begin run.

2) File descriptor.

3) Record descriptor.

4) File open.

5) PFile close.

6) Read.

7) Write.

8) Position (line printer and magnetic tape).
9) 2ZIP (to execute another program or function).
10) Accept (input from SPO).

11) Display (output on the SPO).

xvii

12) Multiprogramming interrupt.
13) Programmatic function call.
14) Load relative overlay.

le) Relative overlay.
16) Stop run.

j. Program segmentation based on macro statements.

k. ASOP, Advanced Assembler II, and B 500 COBOL Compiler pro-
vides for the automatic assignment of relative address codes,

which allows. the "floating" of programs within core memory.

xviii

GENERAL.

SECTION 1
GENERAL SYSTEMS SPECIFICATIONS

The MCP II is a software Operating System designed to provide the

following capabilities:

Systems control for the following areas.

1) Tape system control,

2) Disk file system control.

3) ‘Executive control for multiprogramming.

4) Executive control of input/output devices.

5) Reassignment of actual address to relative

address at execution time.
Creation and maintenance of a User Program Library.

Utility functions to provide many standard functions required
by a user. The routines may be initiated through a function
call from the card reader, supervisory printer or user

program.
Sort functions that allows generating of specialized sorts.

Programs used in conjunction with the COBOL Compiler that

allow the user to compile a program under control of the MCP,

Assembler functions that allow assembly of user programs

under control of the MCP.

HARDWARE SYSTEM REQUIREMENT.

The following is the minimum hardware requirement for utilization of

the operation system.

Central Processor (9.6 or 19.2K).

1) Transfer Branch (TCB) option.
2) Interrogate Package.

Supervisory printer.
Card reader.
Line printer.

One disk file module (or systems memory)

and two, or three magnetic tape units.

NOTE
B 500 COBOL Compiler

requires 19.2K memory.

SECTION 2
EXECUTIVE AND MANUAL CONTROL FUNCTIONS

GENERAL.

MCP IT is designed around an Executive routine that resides in memory.
The Executive provides program linking to MCP functions, and a
continuous interrogating loop through the card reader, Supervisory

Printer, and selectively a Data Communications System.
The functiomns are divided into two types: Executive and Manual.

EXECUTIVE FUNCTIONS.

The following functions are automatically called by the MCP to control
the operation of a mnormal processing cycle. Executive functions

cannot be called by the programmer, or operator.
The Executive Call functions are listed in table 2-1.

Table 2-1

Executive Calls

Call Description
= = Z>DKEX Disk Version Executive
> > >TPEX Magnetic Tape Version Executive
> > >EOJF End-of-Job Function
> > >DCKF Date Check Function
> > >NDAF Numeric Date Assignment Function
> > ZADAF Alphanumeric Date Assignment Function
> > 2IFCC Interrupting Function Call Check
> > >FCDF | Function Call Check Function (Disk Version)
= > >FC1F Function Call Check Function-Table 1 (M.T. Version)
> > >FC2F | Function Call Check Function-Table 2 (M.T. Version)

Table 2-1 (cont)

Executive Calls

Call Description

v
v

>FC3F Function Call Check Function-Table 3 (M.T. Version)

> > >0PNF | File Open Function
> > >M/PC Multiprogramming Controller Function
> > >REJC Reject Program Function

> > >SAVD Save Memory Function (Disk Version)
> > >SAVE Save Memory Function (M.T. Version)

v
v

>MEMC Memory Availability Check Function

v
IV

>FECH Restore Memory Function (Disk Version)

Y
v

>GETS | Restore Memory Function (M.T. Version)

> > >7/0C Input/Output Configuration Check Function

> > >I0FD Input/Output File Declaration #l Function

> = >SPFD Input/Output File Declaration #2 Function

> = >EOPG End-of-Program Function

= > >SEOF Standard End-of-File Function

> > >ROLD | Relative Overlay Load Function (M.T. Version)

= > >CLSF Close File Function

> > >DSCL Disk Version Executive Card Loader Function

> > >LTSC Magnetic Tape Version Executive Loader Function

DISK VERSION EXECUTIVE (> > > DKEX).
The Disk Version Executive contains controls that allow in-process

programs to exit to an End-of-Job Function, handle requests for

program. overlays to be retrieved into memory, and a reQuest for MCP
functions to be loaded and executed. ThefEXecutive also retrieves
object programs from the User Program Library;'handles interrupts fér
operator intervention, or optionally interrogates for data

communications.

When date constants are required by the object programs, Todays-Date

and Report-Date stored in the DKEX Function are called.

When the SWITCH constant contained in the DKEX Function is set ON, it
indicates that the program in process has interrupted another program.
This program will automatically be restarted at the point of interrupt

when an End-of-Job condition is detected in the interrupting program.

MAGNETIC TAPE VERSION EXECUTIVE (z = = TPEX) .

The magnetic tape version Executive like the disk version Executive
contains controls that permit in-process programs to exit to an End-
of=-Job Function, and to handle requests for program overlays ﬁo be
retrieved and executed. This Executive also retrieves object pro-
grams from the User Program Library, and handles interrupts for
operator intervention. This Executive will not handle Data

Communication devices..

A SWITCH constant contained within the Executive is tested to find out
whether the Save Memory (SAVE or SAVD) had been performed prior to the
loading of the current operating program. If the test is TRUE, the
Restore Memory Function (FECH or GETS) will be called to reload the
saved program into memory in its original condition and to resume the

interrupted job.

END-OF-JOB FUNCTION (> > > EOJF).

The End-of-Job Function is automatically retrieved into memory when
the End-of-Job linkage is entered in the Executive. This condition
occurs when an operating program transfers control to memory location

000, or when the Central Processor is cleared by pressing CLEAR and
then CONTINUE.

The supervisory printer and card reader are interrogated to allow the
systems operator to execute a function or a program, If the operator
wishes to execute any of the MCP functions or a user program, the
INPUT REQUEST key on the supervisory printer must be depressed (or the
card reader made READY) in order for the MCP to receive a call. Once
a call has been received by the operating system the EOJ Function

returns control to the Executive.

DATE CHECK FUNCTION (> > > DCKF).

The MCP will automatically call the Date Check Function to test the
second word of all user programs. The DCKF Function determines if the
code (in the second word of the user program) will cause a formatted
date(s) constant to be constructed by the ADAF or NDAF Functions.

User coding for the second word is found in table 2-2.

Table 2-2
Second Word User Coding

Word Position Code Remarks

0 and 1 4D Date test positions,

2 Y YES, todays-date is required, other-
wise, leave blank.

3 Y YES, report-date is required, other-
wise, leave blank.

L (Type)* See NDAF and ADAF Function for codes.

5 (Type)** See NDAF and ADAF Function for codes.

6 thru 8 (Location) Memory location where todays-date is

stored in the user program.

9 thru @ (Location) Memory location where report-date is
stored in the user program.

* todays-date
*¥¥%¥ report-date

The Date Check Function tests the Todays-Date and Report-Date
parameters, and issues a call to automatically retrieve the Numeric
(NDAF) or Alphanumeric (ADAF) Date Assignment Function. The dates
will be formatted as specified by the type code and stored in the
memory location specified. In addition the formatted dates will be
displayed on the SPO (supervisory printer) for operator verification.
A BOJ (begin run) message will be displayed on the SPO and a branch

to the first instruction in the user program will be taken.

NUMERIC DATE ASSIGNMENT FUNCTION (> > > NDAF).

The Numeric Date Assignment Function is automatically called by the
DCKF Function to format and store date constants when a numeric or a
julian-date is required by a user program. Either todays-date and/or
report~date may be formatted by this function. The second word (posi-
tions 4 and 5) of the user program may contain any of the following

codes to obtain the type of numeric formatting reflected by the

following:
Type Code Format Type of Date
1 MM~-DD-YY Month-day-year
2 DD-MM-~-YY Day-month-year
3 YYDDD Year-julian-day
4 DDDYY Julian-day-year

ALPHANUMERIC DATE ASSIGNMENT FUNCTION (E > > ADAF),
The Alphanumeric Date Assignment Function performs exactly as the
Numeric Date Assignment Function with the exception of formatting

the dates.

Type Code Format Type of Date
A Alpha-month DD, YYYY Month-day-year
B DD alpha-month YYYY Day-month-year
J Alpha-month DD, YYYY Abbreviated-month-day year
K DD alpha-month YYYY Day-abbreviated-month-year

2-5

INTERRUPTING FUNCTION CALL CHECK (= > > 1IFCC).
The Interrupting Function Call Check Routine performs the following

actions:

a. Determines the type of interrupt being initiated,

e.g., operator, programmatic, or data communications.

b. Displays a SPO message reflecting the function being

programmatically called.

c. Calls the Save Memory Function (SAVD or SAVE) to
accomplish a roll-out of an operating program prior

to calling the requested function.

NOTE
An area within the disk operating
system has been reserved for the

saving of programs.

d. Tests the Multiprogramming Flag to see if the function
being called is consistent with the present operational
mode (multi or non-multiprogramming), and displays a SPO

message if an inconsistency exists.

e. Exits to either DFI or DFO, after setting up the proper

overlay call for data communication interrupt.

FUNCTION CALL CHECK FUNCTION (2 > = FCDF) MCP IT DISK VERSION ONLY.

This routine is an automatic function that performs the tests
necessary to determine the validity of an operator initiated function
call., It determines if the Save Memory (SAVD) Function has to be
called and will initiate the automatic call if required. The Function
Table set up for the validating of functional calls is contained with-
in the FCDF Function and has an unlimited capacity. FEach table entry
contains a U-character function identity code, and a 7-character disk
file starting address where the function resides. Nine table entries
constitute a full Function Table segment, each of which are

overlayable within the FCDF Function.

2-6

FUNCTION CALL CHECK FUNCTION - TABLE 1 (> > > FC1F) MCP II MAGNETIC
TAPE VERSION.

This routine is an automatic function that performs the tests

necessary to determine the validity of a function call. It will also
test to determine if the Save Memory (SAVE) Function must be called,
and will initiate the function when required. The Function Table set
up for the validating of functional calls is contained within the FC1F
Function and has a capacity of 20 functions. Each tgble entry

contains a lU-character function identity code.

FUNCTION CALL CHECK FUNCTION - TABLE 2 (> > > FC2F) MCP II MAGNETIC
TAPE VERSION.

This routine is an extension of the FC1lF Function and provides an

additional 20 table entries.

FUNCTION CALL CHECK FUNCTION - TABLE 3 (z = > FC3F) MCP II MAGNETIC
TAPE VERSION.

This routine is an extension of the FC2F Function and provides an

additional 20 table entries.

FILE OPEN FUNCTION (> > > OPNF).

The File Open Function is called by the Executive whenever a pro-
cessing program requires the opening of a file. Programs to be multi-
programmed must communicate with the Multiprogramming Controller to

obtain the OPEN Function, and the following actions will occur.

a. The I/O Control Segment and the Program I/O Table are

retrieved.

b. The I/0 unit and number are assigned by the MCP on a

next unit-available basis.

c. The assigned I/O unit number is deleted from the system
I/0 Table to reflect that the unit will not be available
for assignment until the file is closed or the program is

discontinued.

d. The Multiprogramming Controller is recalled and if the
specified type of I/O unit cannot be assigned by the I/O

_-7

File Declaration Function (> > > IOFD) an exit is

initiated to the program END Macro.
e. A FILE OPEN message is displayed on the SPO,
O OMN file-name bbbbbbbeeeeecee
where:

1) O - open
OMN - the Operation Code, M and N variants
of the file being opened.

2) ©bbbbbbb - beginning address of the pertinent

file on disk.

3) eeceeecee - ending address of the pertinent file

on disk.

f. The UNIT NOT AVATILABLE message is displayed on the SPO

whenever the required unit is not available.

g. The O ERR file-name message will be displayed whenever

an error is detected in attempting to open the file.

MULTIPROGRAMMING CONTROLLER FUNCTION (> > > M/PC).

The Multiprogramming Controller is called into the scratch-pad work
area (machine location 490 thru 79@) whenever a program designed for
multiprogramming (relative addresses) is loaded. The function is re-
called following any interrupt condition which requires the use of the
scratch-pad area. The purpose of the M/PC Function is to perform I/0
operatiohs, and set up and maintain return linkages to one, two, or
three (maximum) multiprogramming object programs. The following

messages may be displayed by this function:

a. OMN ER
A read/write error (ER) has occurred on the unit specified by
OMN (OP Code, M and N variants). If the message persists,

the operator must discontinue the program with (Z = = DISC).

b. OMN NR
The unit specified by OMN has been tested and found to
be NOT READY.

c. FN/O
A rTead or write operation was specified and the file has an
unopened status. All files must be OPENed prior to perform-
ing an I/O function; therefore, a programmatic error exists

and the program is automatically discontinued.

d. FC MP
A non-multiprogramming program (not relatively addressed)
has been initiated and will not operate under the Multi-
programming Controller. The systems operator must restart
the program after the multiprogramming schedule has been

completed.

REJECT PROGRAM FUNCTION (> > > REJC).

The Reject Program Function is called whenever a condition which pro-
hibits the ekecution of a program is encountered. The REJC Function
contained in the MCP II disk version will insert the first rejected
call into a tank for automatic recall whenever the necessary I/O unit,
available memory, or the number of programs being operated become less
than the maximum number (three) allowed. The following messages may

be displayed on the SPO during the Reject Function process.

a. Program-name NO MEM,
The amount of available memory is insufficient to process

the program,

b. Program-name INV PT,.
An invalid non-multiprogramming program has been called
for execution. The systems operator must restart the pro-

gram after the multiprogramming schedule has been completed.

c. Program-name MIX LT.
The maximum number of multiprogramming programs are

presently operating in the mix.

2-9

d. Program-name NO I/O.

I/O units necessary to operaﬁe the program are not available.

e. Program-name TNK.
The program cannot operate at the present time, because the
parameters are stored in theEtank area. No action by the
system operator is require@. When the required I/Q unit,
the required memory, or the ﬁumber of programs in the mix be-
come less than the maximum, ﬁhe program will be automatically

recalled and executed.

NOTE
The tank area ié capable of
holding only oné program name.,
Whenever multipﬁe programs are
called for exec@tion and cannot
be run, only thé first program

will be automatically recalled.

SAVE MEMORY FUNCTION (> > > SAVD, MCP DISK VERSION) (> > > SAVE, MCP
MAGNETIC TAPE VERSION).

The Save Memory Function is used by tﬁe Executive to cause the roll-
out of program(s) from memory to a reserved disk area, magnetic tape,
or (optionally) cards: Whenever memoﬁy requirements are insufficient.
The systems operator must be aware ofithe peripheral assignments for
the program being called for executioﬁ so that a conflict of I/O unit
usage between a called program and the roll-out program can be avoided.
The following message may be displayéd on the SPO by the MCP II

magnetic tape version,
SAVE MEM-DESIG. UNIT

The systems operator must reply with one of the following unit desig-
nations to tell the MCP on which I/O unit to dump the contents of mem-
ory. The disk version will automatically store the contents of memory

into its own area of disk.

where:
a. # - card punch.
b. 1, 2, 3, 4, or 5 = magnetic tape unit,. A scratch tape with
a write ring must be mounted on the designated physical
magnetic tape unit. The function or program to be executed

during the interrupt must not use this unit number.

MEMORY AVATILABILITY CHECK FUNCTION (> > > MEMC).

The Memory Availability Check Function determines whether or not a
relative program can be processed at a given time within a multipro-
gramming schedule. It checks to see if the MCP is operating in a
multiprogramming mode, whether the number of programs in the mix is
less than the maximum, and if the program will fit into available
memory. If all of the conditions are satisfied, the I/0C Function
is called. If the tests fail, the REJC Function is called and the

program does not enter the mix.

RESTORE MEMORY FUNCTION (> > > FECH MCP DISK VERSION) (> > > GETS
MCP MAGNETIC TAPE VERSION).

The Restore Memory Function is automatically called by the Executive
to restore memory. The following messages will be displayed on the
SPO by the magnetic tape version. The disk version will cause the

SAVD programs to be rolled into memory from MCP II reserve area.

a. LD CDS TO RESTORE MEM.
The program or function executed during an interrupt is
completed, The MCP is ready to restore the interrupted
program from the punch cards created by the SAVE Function.
The systems operator must place the appropriate auto-load
cards in card reader 1, and press START to reinstate the

original program.

b. CD SEQ ERR.
Memory restoring auto-load cards are not in their proper
sequence., Correct the sequence, and clear the read buffer

by accomplishing the following action.

1) Note the location displayed in the Instruction
Address Register (IAR).

2) Press CLEAR, LOAD, and CLEAR at the Central Processor.

3) Re-index the noted location into the TIAR and press
CONTINUE on the Central Processor.

After completion of the Restore Memory Function, the interrupted

program is resumed.

INPUT/OUTPUT CONFIGURATION CHECK FUNCTION (> > > I/0C).

The Input/Output Configuration Check Function tests to insure that
the I/O units required by a program are available for assignment.
The following SPO message is displayed when the I/O units are not

available.
program-name NO I/0O

The program cannot be executed at this time. The program will be

tanked and recalled when the required I/0 units become available.

INPUT/OUTPUT FILE DECLARATION #1 FUNCTION (> > > IOFD).
The Input/Output File Declaration #1 Function stores the following

information in the I/O0 Control Segments.

a. An Interrogate OP Code and M variant.
b. Program I/0 Table position and length.
c. An appropriate I/0 OP Code and M variant.

If a file requires the card reader or card punch, and the device has
not been assigned to the program, a switch is automatically set to

discontinue the program.

INPUT/OUTPUT FILE DECLARATION #2 FUNCTION (> > > SPFD).
The Input/Output File Declaration #2 Function sets up the linkage to
cause a program calling for an invalid I/0 unit to be discontinued.

The SPFD Function will assign a file to either the line printer, or

optionally, to a magnetic tape back up if specified by the program.

However, it should be noted that the COBOL program does not have the
printer back-up capability. The file-name will be displayed on the

SPO along with the assigned I/0 unit. The following messages may be
displayed on the SPO.

a. BOJ Program-name.

The called program has been read into memory.

b. Program-name I/F S.
An invalid I/O unit has been called by the operating

program, and the program discontinued.

END-OF-PROGRAM FUNCTION (> > > EOPG).
The End-of-Program Function is automatically called at the EOJ of each
program to remove it from the mix, and to restore memory and I/O units

to the systems tables.

This function is called by the linkage inserted by the STOP RUN Macro
or the COBOL Compiler. In addition, EOPG causes an End-of-Program

message to be displayed on the SPO, recalls the M/P Controller if pro-
grams are multiprogramming, and exits to the End-of-Job Routine when
there are no other programs in process. The following messages may be

displayed on the SPO.

a. FEOP program-name.

This message signifies the end of a program.

b. PG ER.
A MCP error has occurred. The EOPG Function is unable to
determine which program to remove from the Memory Require-

ment Table. All jobs in process will be discontinued.

STANDARD END-OF-FILE FUNCTION (Z > > SEOF).
The Standard End-of-File Function is called by the Executive when an
end-of-tape, end-of-page, or an end-of-disk-area condition occurs dur-

ing the execution of an I/O instruction specifying the standard EOF

address. The SEOF Function determinegs the condition that caused it

to be called, and performs the following action:
a. End-of-tape.

1) Writes a tape mark.

2) Rewinds the magnetic tape.

3) Displays an end-of-tape message on the SPO.
4) Recalls the Executive.

b. End-of-page.

1) Skips paper to top of page.
2) Recalls the Executive.

C. End-of-disk-area.

1) Displays an end-of-area message (DSKLMTXXXXXXX) on the
SPO. This message identifies the last disk segment read

or written.

2) The program is automatically discontinued.

RELATIVE OVERLAY LOAD FUNCTION(z > i.ROLD)MCP MAGNETIC TAPE VERSION.
The Relative Overlay Load Function will load the first block of a
relative program into a specified overlay memory area. It will store
the program block count in a work arpa; and position the system tape
to the first block of the program. This function conditions the

Executive to load the program, and to reassign addresses.

CLOSE FILE FUNCTION (2 > > CLSF).

The Close File Function is called by the Multiprogramming Controller
when the files are closed by an operating program. The I/0 units used
by the operating program are released, and made available to the MCP
for further assignment to another program. The FILE CLOSE message is
displayed on the SPO and the Multiprogramming Controller recalled.

The CLSF Function causes an exit to the END Macro if a file is not in

an OPEN status prior to being CLOSED. One of the following messages
are displayed on the SPO whenever a file is CLOSED.

C OMN file-name
C OMN file-name PRTR TP

EXECUTIVE LOADER FUNCTION (z == DSCL), MCP II DISK VERSION.
The DSCL Function loads the Disk Executive from the disk file and
transfers control to the DKEX Function. The operating instructions

are as follows:

a. Load the MCP II disk version (if not already present) to
disk file by using the manually initiated LDOP Function

located in the tape version.

b. Load the Disk Executive Loader Control Card into memory

from card reader 1.
C. Press CLEAR and CONTINUE on the Central Processor.

The format for the Disk Executive Loader Control Card is illustrated

in figure 2-1.

DISK
ADDRESS
OF DISK
SYSTEM
K|2{5|o|3]o|u|o]o] o{u|ofK|8| bjol1]o|o]|4|o|o| Ljof6|1|bjujojolbb b b b b CONTROLLER | b b b bfg|2]{6|0|ojofb h bbb b LOAD| IDSK| [EXEC| |c AR D

010 0{0]0
70{30}31 32 33 34 35 337 38 39 40 41 42 4344 45 46 47 anfeslsalsilsz
UL i

IRRRERI RRRRRRIIRREE]

5354155 58 57 59 59 6okt 62{83 64 65 6816759 68 70(71]72 73 74 75 6|77 78 78 g
1t

IRERRRI RIRRRIIRRIIIBERIIIREN]

=1
- O
—
— o D
)
— D
3
S
-
— 3 &
— =
-
=
s
—_— &
»

- O

N
ol
N
N
~
N
N

2222222222222)222212)2)22
313(3(3/3]313133333313333333|133333[3)33
AAAAAA4A404444(44404040a04
5/5555555/5555555(55555/555
6

2222222212222)2222(212222(22222
333333[33{3333(3(333|3(333333333

T s W

D N e W N
@ N

@ N

N

N

N

w N

N

N

-~
-~
-~
-
-
-
o~

[T -)
fd

555555(555555/5(555/5(5555[(55555
666666(66(66606/6(6606/6(6666(5/6666
11111 apn 11y

S
& W N

2
3
44444 4(44(444404(44404[4444014444
5
666666)66666686(6606666{6/66(6/6
1

~—
~—

UL UL UL UL UL UL U AR R R LR R R R R R LR R R R
8|8(8|8|8(8[8|66B8888880888888888|8(3(8
91919/199909899/99090999(99999/9(9/9

2l|2lfll 1 32 33 34 35 36(37 38 39 40 41 42 43{44 45 46 47 49 (49{50(51|

(27 L 61 62|63 64 65 66{67/68 69 70(11{72 73 74 75 76/77 70 13

8
999999999?&99%99999999919999
53154(55 56 57 50 50 60

315

Figure 2-1. Disk Executive Loader
Control Card

The Disk Executive Loader Control Card is automatically punched by the

LDOP Function (reference item a).

The following control message is displayed on the SPO and indicates

that the system is under the control of the MCP II disk version.
DISK EXEC CONTROLLER LOADED

MAGNETIC TAPE VERSION EXECUTIVE LOADER FUNCTION (> > > LTSC).
The LTSC Function loads the Tape Executive from tape unit 6, and
transfers control to the TPEX Function. The operating instructions

are as follows:

a. Mount the MCP II systems tape (with no write ring)
onto MIU-6.

b. Place the supervisory printer in REMOTE status.

c. Load Tape Executive Loader Control Card from card reader 1,
and press CLEAR and CONTINUE on Central Processor.

The format for the Tape Executive Loader Card is illustrated in

figure 2-2.

Di9l6|of3jojo|u|ojuiojoRsiu|u{ulol6]0]2]|6|0|OjOf6|1|P|4 OO LTS C(bblg2 2/]bbbbb bbb 93 3/bbbbbbbbb b|TAPEB|START CARD/bbb b

00000000 ooﬂouobouon o0ofo000000000/oooolooooooooooooooo

0 0
AN AN 2NUB AN BB QUSRI FADNLVUBAIRAONRSUBRNEANI RN B AN
1 1

IR R R R RN IR RN R R IR R R RN RERR BRI RRE

- D
- - o
-— -
-
-— D
-— s Oy
z: o
2 S

—
-

S
=
- S
—_
-_ 0
=]

22222222)22(222)1222]222222)222{2222222222(2222|2[2222222222(2222
3(3333333(33(333(333333333333(33333333333333(3(33333333333333
4
5

@ N
[d
€
€
fd
©«
(=]
L
(o
d
[)
(o
w N
“ N
o
w N
@ N

o
©«“
«w N
[
[
@
e
@ N

AAAAAAAAAMAAAA 444444444 44440400440400400[40400440440404044
5655555555(5558

o~
-~
-
-
>
-~
-
-~
-~
(1.3 o~
=
-
-~
-~
-~
-~
~
~
-~

5 55(5/5(5555555/55{555(555555555(555(5555555555(5555
66/6/6{6|6]6/6:6/6/6(6/6/6/6/6 6 6 66 66/66666/66666666666666666666666666

[l
wn
&
o
o
&N
n 4
o o -
o
@
o
o

6666666666/6666
111111711117

6
TP I III I I InI11111111 9711 1)1
88880684(88)88808080808888(88083086068088888806888388888888/6888
9
66

~ @
~ @D

> oo
> . oo
S

- oo
X

[

@

[

R oo
P
F-
N [-3

9|9|9

16117118

9999999/99(999(999999999(999/99

9 9
28 20 30 31 32 33 34135 3730!{‘04!02‘43“454647 43 50 51|52 5 54

999999919999
55 6 64 68

56 57 58 59 60 61(62

67 TONT2NRIATSIEI WK

Figure 2-2. Tape Executive Loader
Control Card

The following control message is displayed on the SPO to indicate that

the system is under control of the MCP IT magnetic tape version.

TAPE EXEC CONTROLLER LOADED END OF JOB-LTS

MULTIPROGRAMMING SYSTEM TABLES.

The Multiprogramming system utilizes numerous tables to perform its
set up and control procedures. The tables are described in detail on

the following pages.

Table 2~-73
Flags and Table Positions

gii?i?in Length Contents
005 Zone Bit Discontinue Flag
005 7 Base disk address of MCP
016 6 Overlay linkage
028 1 Program/Function switch
P=Prog F=Funct
030 Entrance for program interrupt
035 1 Tank Switch
036 6 Today's Date Storage
oL3 3 Return Address to Interrupted Program
108 Data Comm Interrogate Switch
115 5 Function/Program Ident Hold Area
11# 7 Disk Address of User Program Library
179 1 Interrupt Switch
220 Save Work Area
260 12 Program Table

Table 2-3 (cont)
Flags and Table Positions

%iEZigin Length Contents
270 6 M/P Call Work Area
276 6 Report Date Storage
290 12 Systems I/0 Table
31@ 1 Number of programs in mix
356-387 Function call input area
361 5 Program/Function Ident
318 1 Multiprogramming Flag

SYSTEM I/0 TABLE.

The System I/0 Table is maintained by the Operating System, and it
provides the MCP with the unit numbers of all the available units on
the system. A function call (z > > IOTB) allows the user to specify
or change the I/O configuration. The table is located at machine
location 290.

When assigned to a program, the units are removed from the Systems I/O
Table by the I/0O Check Routine and are returned to the Systems I/0
Table when the program reaches the EOJ Function. If a program is not
terminated by the EOJ Function (for example - discontinued) the opera-
tor must return the I/O device to the I/O Table by calling the IOTB

Function.
Position Contents
1 Input reader 1.

1 - card reader 1 is available.
A -~ paper tape reader 1 is available.

Blank - not available

Position Contents

2 Input reader 2.
2 = card reader 2 is available.
B - paper tape reader 2 is available.

Blank - not awvailable.

3 Output punch.
0O - card punch is available.
+ - paper tape punch is available.

Blank - not available.

4 Reserved for system.
5 Printer output 1.
1 - line printer 1 is available.

Blank - not available.

6 Printer output 2.
2 = line printer 2 is available.

Blank - not available.

7-12 Magnetic tape units
1-6 - available unit members.
Position 7 is for unit 1.
Position 8 is for unit 2.

Position 12 is for unit 6.

The contents of each position is set to either the unit number or to

blank (if the unit is not available).

PROGRAM TABLE.

The Program Table is maintained by the MCP. Its purpose is to provide
control informaticn for each of the programs in process. The informa-
tion determines if sufficient memory is available in consecutive loca-
tions for the loading of additional programs. The table format is as

follows:

PROGRAM I/0O TABLE.

Position

1-2

3-4
5-6
7-8

9-10

11-12

Contents
Address Modifier (ADM) counter (the number of
480 character blocks the base address assigned)
for the first program in memory.
Number of program blocks in the first program.
ADM counter for the second program in memory.
Number of program blodks in the second program.

ADM counter for the third program in memory.

Number of program blocks in the third program.

The I/0 Check Routine utilizes the Call Record I/0 Configuration and
the Systems I/0 Tables to determine the availability of required /0

units.

An I/0 Table is created for each program. The Program 1/0

Table contains the I/O units assigned to the program. The Program I/O

Table is used as follows:

To store the units deleted from the Systems I/0 Table

prior to their assignment to a program.

Upon execution of file OPEN, the units are deleted from

the program I/O Table and assigned to specific files.

Storage for I/0 commands and related information is pro-

vided in each files I/0 Control Segment.

Upon execution of file CLOSE, units are reassigned to the

Program I/O Table. The units may be reused by the program

through the execution of additional file OPENS.

When the units are released by the program through
execution of a file CLOSE and End-of-Job Function, the

units are reassigned to the Systems I/0 Table.

Position Contents

1 Input reader 1.
1 - card reader 1 is assigned.
A - paper tape reader 1 is assigned.

Blank - not assigned.

2 Input reader 2.
2 - card reader 2 is assigned.
B - paper tape reader 2 is assigned.
Blank - not assigned.

3 Output punch.

O - card punch is assigned.
+ - paper tape punch is assigned.

Blank - not assigned.
L Reserved for system.

5 Printer output 1.
1 - line printer 1 is assigned.

Blank - not assigned.

6 Printer output 2.
2 - line printer 2 is assigned.

Blank - not assigned.

7-12 Magnetic tape input/output.
1-6 - assigned unit numbers.
Position 7 is for unit 1.
Position 8 is for unit 2.

. . .

Position 12 is for unit 6.

The contents of each position is set to either the assigned unit

number or to blank (if the unit is not assigned).

I/0 CONTROL SEGMENT.
An I/O Control Segment is created by the assembler for each I/0 file.

The purpose is to provide control information to the Multiprogramming

Controller for the execution of inputYoutput commands .

The I/0 Control Segment format is as follows:

Position

1-3

L-6

7-9

10

11-12

13-14

16-17

18

Contents

I/0 error address - set by the user's READ or WRITE
Macro. If an user address is not supplied, a stan-
dard error routine address is inserted by the

assembler.

End-of-File return address - inserted by the user's
READ or WRITE Macrd. On output files it is the end-

of-tape or the end-of-page address.

Tape backspace code - inserted by the File Open
Routine., It is useﬁ as a storage area for the disk

file address.

I/0 n variant storage - used by the File Open
Routine to store thk variant contained within the

program I/O Table.

I/0 code storage for printer tape backup - the T/0
File Declaration Rdutine moves the I/0 code to these
positions when a prﬁnter tape is assigned in lieu of

a line printer.
Reserved for expansion.

Interrogate OP Codé and M variant - supplied by the

I/0 File Declaration Routine.

Maximum number of units for the specified type

interrogate n variant - the maximum number of units

Position Contents

is set by the I/0 File Declaration Routine. The
File Open Routine replaces this number with the

interrogate n variant.

19-21 Program I/0 Table base address for units of the
specified I/0 type - inserted by the I/0 File

Declaration Routine.

22-273 I/O command -~ OP code and m variant are supplied by
the File Open Routine. The A, B, and C address is
set by the assembler.

A - Error address/output area.
B - End-of-file address.

¢ - Error address/input area.

If the I/0 type is a disk file, the assembler sets

the addresses as follows:

A - Address of the disk file address.
B - Input/output address.
C - Not ready address (MCP).

34-36 End-of-program linkage - inserted by the assembler,
it is a fixed label and must be PRGEND.

37-39 Retry linkage address - I/0 execution linkage

address. It is inserted by the assembler.

Lo-42 Return address - inserted by the assembler. Control
is returned to this address after the execution of
the I/0 command, and after one cycle through each

program in the mix.

MULTIPROGRAMMING FIAG TABLE.
This is a one position table located at machine location 318, and it
is used to indicate the type of processing in effect. The table may

contain the following:

0 (Zero) - Multiprogramming in process.
1 - Machine language program or function in process.

BLANK - Neutral-set by End-of-Job Routine.

MULTIPROGRAMMING COUNTER TABLE.

This is a one position table located;at machine location 31@, and it
contains the number of multiprogramming programs in the process. It
may contain either O, 1, 2, or 3. Iﬁs purpose is to determine if
additional programs can be loaded. it is also used by the End-of-
Program and Discontinue Routines to determine if the End-of-Job Rou-

tine or the Multiprogramming Controlier needs to be called.

DISCONTINUE FLAG.
The Discontinue Flag is used to halt a program or function. It may be
programmatically set by the transfer of a B~bit. The flag is located

at machine location 005. If on, the‘program will abort and the dis-

continue message and program identification is printed on the SPO.

DISK ADDRESS OF OPERATING SYSTEM.

The base disk address where the MCP was loaded. The address is stored
in a seven position location starting at madhine location 005. This
address is used as a base to calculaﬁe the disk address of the Operat-
ing System Functions., Within each aﬁtomatic function is a constant
that is computed and added to the base address. It determines the
disk address where that function wiil reside on disk. For this
reason the automatic functions should never be deleted from MCP II or

rearranged.

OVERLAY LINKAGE.
Overlay linkage is used to store the overlay name and address when
programmatically calling for user overlays., This six position

storage address is located at machine address 016,

PROGRAM/FUNCTION SWITCH.
The Program/Function Switch located at machine location 028 is used
to determine the type of program in execution. It is set to P when

a program is executed, and F when a function is executed.

2-24

INTERRUPT.

A program interrupt is programmatically achieved by transferring the
program return address into machine location 043, and branching to
030, The Executive checks for DATA COMM Interrupts or operator inter-
vention. If an interrupt is not sensed, control is returned to the

address stored at machine location 043 of the interrupted program.

TANK SWITCH.
This one position switch is located at machine location 035. The
switch is automatically set when a program is called and either I/O

or sufficient memory is not available.

When these conditions do not exist, the MCP will automatically call the

program from the program tank into memory for execution.

NOTE
Only omne program can be

stored in the program tank.

TODAYS AND REPORT DATE STORAGE.

Todays Date is stored in the Executive Routine at machine location
036. The CHDF Function stores Todays Date at this location. The
second word in the user program is used to derive different types of
dates from this address. The Report Date is used in the same manner,

and stored at machine location 276.

FUNCTION/PROGRAM IDENT HOLD AREA.
This five position hold area within the Executive is used to store the

identification of the program or function being executed.

USER PROGRAM LIBRARY DISK ADDRESS.

The seven position base disk address location where the User Program
Library is stored on disk is machine location 11# within the Executive.
When a user program is called for execution the Executive Routine uses
the base address to read the program directory. The program directory
is searched to find the appropriate program, and the disk address of
where the program is stored. The program is then loaded according to

program type and the number of blocks.

STANDARD END-OF-FILE CARD (OR RECORD),
The following is the card or record f@rmat for a standard End-of-File

Record (b = a blank character).

>>>bEOF
1 -=--=-=-7

MANUAL CALL FUNCTIONS.

The following pages describe each manually initiated function. The
functions are initiated via card reader 1 or through the SPO. The
functions are manually initiated by the user during the operation of
MCP II. The functions are listed in table 2-4, and are used whenever

the situation requires their use.

Table 2-4
Manually Initiated Function Calls

Call De?cription
= = >DUPL Duplicate MCP Systems Tape Function
> > >CHDF | Change (or Load) Date Function
> > >LDOP | Load MCP II Function (M.T. Version)
> = =>STDJ Switch to MCP II Disk Executive Function (M.T. Version)
> > >STTF Switch to MCP II M.T. Executive Function (Disk Version)
= = ZLALG Load Autoload Program and Go Function
= = =DISC Discontinue Multiprogramming Program Function
> > >SDCM Set Data Communications Interrogate Function
> > >MXTB Multiprogramming Mix Listing Function

v
v

=>I0TB Change Systems I/O Table Function

v
v

ZAXCE Accept input from Supervisory Printer

v
v

ZPADD Program Call-Outs from User Library

>>> DUPL

DUPLICATE SYSTEMS TAPE FUNCTION (2 = = DUPL).
The DUPL Function is designed to create a copy of the MCP II systems

tape, and to verify the copy on a word-for-word basis.
The DUPL format is as follows:

> > DUPL

N

=1V

Operating instructions are displayed at the SPO, and EOJ-DUPL is auto-
matically displayed when the tape has been successfully duplicated and

verified.

It is advisable to always have a back up copy of the MCP II systems
tape.

At EOJ-DUPL the MCP will return to the interrogate loop waiting for
the next call. If an in-process program was interrupted to accomplish
the DUPL Function it will cause a roll-in of the interrupted program,

and return control to the program.

>>> CHDF

CHANGE (OR LOAD) DATE FUNCTION (> > > CHDF).

The CHDF Function provides a Todays Date and a Report Date for use by
any in-process program. By optionally coding the second word of the
program with the data parameters described in the NDAF or ADAF Func-

tionss CHDF makes available the two date constants.

The following format is used to display the dates stored.

The format to change Todays Date and/or Report Date is as follows:

CHDF&%MDDY@&MMDDYY

CHDFTMMDDYY
CHDFRMMDDYY

v Iv IV
v 1v v
v iv 1v

Each of the above calls must start at position 1, and the appropriate
messages that reflect the dates presently stored in the Executive are

displayed on the SPO.

At EOJ-CHDF the MCP will return to the interrogate loop waiting for
the next function. If an in-process program was interrupted to

accomplish the CHDF Function it will cause a roll-in of the

interrupted program and then return control to the program.

>>> LDOP

LOAD MCP II FUNCTION (Z > = LDOP).

The LDOP Function reads the MCP II disk version from the master
systems tape. Starting at the address specified in the function call,
it loads the disk operation system onto the disk. The Disk Executive
Loader Control Card used by the DSCL Function will be created and
punched by the LDOP Function. A Function Table is created and placed
into the Call Check Function (> > > FCDF) for the validation of

function names during the manually initiated calls.

The Function Table is comprised of entries that reflect a l4-character
call name, and a 7-character disk file starting address for each func-
tion. A copy of the Function Table is maintained in FCDF as protec-

tion against an erroneous entry during a manually initiated call,

The LDOP Function format is as follows:

2Z2Z2LDOPXxxXy 5y YyYYYYyY
1 - === =-78 <10 11- = = - =17
where:
a. xxx - number of functions to be loaded.

b. vyyyyyy - starting disk file address required to load MCP IT.

Messages stating the number of functions that were loaded, and their

beginning and ending disk addresses, are displayed on the SPO.

The EOJ-LDOP will return control to the tape Executive Controller

interrogation for the next function to be initiated.

2-31

>>> STDJ

SWITCH TO MCP II DISK EXECUTIVE FUNCTION (> > > STDJ)
MAGNETIC TAPE ONLY.

The purpose of the STDJ Function is to transfer control from the MCP
maghetic tape version to the MCP disk version. The disk version must
be resident on the disk file before control can be passed. This is

accomplished with the use of the LDOP Function.

The Disk Executive Controller is loaded into memory from the disk

file, and control is transferred to Executive.
The STDJ Function format is as follows:

>>s T D J
T

B

Y Y Y Y Y Y Y
8 - - - - - 14

where:
a. yyyyyyy - starting MCP IT disk address.

When control has been successfully passed to the disk executive version

of MCP ITI, the appropriate DISK EXEC LOADED message is displayed on the
SPO.

2-33

>>> STTF

SWITCH TO MCP II TAPE EXECUTIVE FUNCTION (> > > STTF) DISK ONLY.

The purpose of the STTF Function is to transfer control from the MCP
disk version to the MCP magnetic tape version. The magnetic tape
Executive is loaded into memory from the systems tape, and control

is transferred to the magnetic tape Executive.

The STTF Function format is as follows:

When control is successfully passed to the tape Executive version of
MCP IT, the appropriate TAPE EXEC LOADED message is displayed on the
SPO.

2-35

>>> LALG

LOAD AUTOL.OAD AND GO FUNCTION (2 > = LALG).
The purpose of the LALG Function is to permit an object program load
and go operation under MCP II control., Programs containing overlays

and multiprogramming may not be called by this function.
The LALG Function format is as follows:

=>L A L G a a a i u c¢
- == - - 7 8 -~ 10 11 12 13

=V

where:
a. aaa - address where the program will begin operation.

b. i - input devices where the auto-loads reside
C - input from card reader 1.

B - input from magnetic tape.
C. u - MTU designate where auto-loads reside.

d. ¢ - LALG Function call method code S to specify that
the function will be called by the SPO. Any other code
will result in 42 characters being transferred (start-
ing at this position) to the function call area. This
feature allows parameters to be transferred to memory

for use by the program that was loaded during operations.

A SPO message will indicate any errors.

2=-37

>>> DISC

DISCONTINUE MULTIPROGRAMMING PROGRAM FUNCTION (z > > DISC).

The purpose of the DISC Function is to remove a specified program from
the Program and Return Linkage Tables. The mix is reduced by one, and
an appropriate message is displayed on the SPO. The memory space used
by the discontinued program is returned to the MCP, and the Multipro-
gramming Controller recalled when additional programs are in the mixj
otherwise, control will pass to the End-of-Job Function. All programs
in the mix or waiting in the tank may be discontinued by the system

operator.
The DISC Function format is as follows:

>2=2DISCp p P P P
- - ===7 8 - - - 12

I A

where:

a. ppppp - program ID to be discontinued. If *ALL¥ is

entered, both the mix and tank are discontinued.

A SPO message will indicate that the program(s) have been

discontinued.

Figure 2-3 is an example of a multiprogramming environment

> > > DISC Function,

>>> DISC

continued

2-40

ONE PROGRAM

222 PADDOP3TI1
EEGIN RUN ~ OP3T!

O #01 C1
0 b21 Ti
#1 NR

222DI SCOP3T!

DIS - OP3T1

END OF JOB - M/PC

THREE PROGRAMS

222PADDOP3T!

BEGIN RUN -

0 #01 C1
0 b21 Ti1
#1 NR

OP3T1

222PADDOP3T2

EEGIN RUN -

#1 NR
oDl T
0 A01 P
DI2 NR

OP3TZ2

222PADDOP3T3

EEGIN RUN -

D2 NR
0 @00 CP
0O D13 TP
D13 NR

OP3T3

222 DI SCkALL*

s - OP3TI1

DIS - OP3T2
DLS - OP3T3
END OF JOB - M/PC

Figure 2-3.

DISC SPO Messages

>>> SDCM

SET DATA COMMUNICATIONS INTERROGATE FUNULLOUN (> > > SDCM).

The purpose of the SDCM Function is to notify the Executive Controller
that the interrogation of Data Communications Terminals is, or is not
required. The setting is recorded in the Executive on the disk and in

memory. The set will remain until it is changed by a subsequent SDCM

call,

The SDCM Function format is as follows:

A SPO message will indicate whether the interrogation of the Data

Communication Terminals has been turned on or off.

2-41

>>> MXTB

MULTTPROGRAMMING MIX LISTING FUNCTION (> > > MXTB).

The purpose of the MXTB Function is to provide a SPO listing of the
programs currently being executed, and the block size and memory
addresses for each program. This function is callable, and does not

require a SAVE memory prior to the execution of MXTB.

The MXTB Function format is as follows:

>>MXTB
- - - - -7

Y

The SPO message indicates the program ID, block size, and the memory
area assigned to each programs in the mix and available memory. When
processing is not in the multiprogramming mode, a message of NOT MP is

displayed (figure 2-L4).

222MXTB

PG #1 OP3T1 06 BLKS 800 TO S00
PG #2 OP3T2 07 BLKS SO0 TO xx0
PG #3 OP3T3 08 BLKS xx0 TO B+0
AVAIL CORE 17 BLKS B+O TO 000

222MXTR
NOT MP
END OF JOB - MXTB

Figure 2-4. MXTB SPO Messages

2-43

>>> 10TB

CHANGE SYSTEMS I/0 TABLE FUNCTION (> > > IOTB).

The purpose of the IOTB Function is to provide the capability of
changing the systems configuration maintained within the Systems I/O
Table. The message displayed on the SPO reflects the old and new pa-
rameters. This function either recalls the Executive Controller, or
exits to the End-of-Job Function; depending on whether a job is in the

mix.

The IOTB Function format is as follows:

>>>T 0TBabc d e ¢ g g 888 8

1 - === =789 10 11 12 13 14 - - - =19

where:

a. a - card reader 1 if column 8 contains a 1.
paper tape reader 1 if column 8 contains an A,
blank signifies neither is available.

b. b - card reader 2 if column 9 contains a 1.

paper'tape reader 2 if column 9 contains a B.

blank signifies neither is available.

¢c. ¢ - card punch 1 if column 10 contains a 0 (zero).
paper punch 1 if column 10 contains a +.

blank signifies neither is available.
d. d - blank . This position is reserved.

e. e - line printer 1 if column 11 contains a 1.

blank signifies that line printer 1 is not available.

f. £ - line printer 2 if column 12 contains a 2.

blank signifies that line printer 2 is not available.

g. ggesgge - magnetic tape units 1 through 6. Codes the
available physical MTUs in their order, If a MTU is

not available the corresponding columns must be blank,

2-45

>>> |0TB

continued

For example, if all the MTUs are available the code
is 123456, and if MTUs 2 and 4 were not available,
the code would be 1b3b56.

2221 0TB
I10T:
D2 NR

2221 0TB

NOTE
All 19 positions must be entered
when the IOTB Table is revised. If
= > > I0TB is entered without units,
the function will print the cur-
rent setting of the systems I/O
Table on the SPO (see figure 2-5).

456

IOT: 1 0 1 123456
END OF JOB - 10TB

2-46

Figure 2-5. I0TB SPO Messages

>>> AXCE

ACCEPT SPO MESSAGE FUNCTION (2 > = AXCE).

The AXCE Function is used in conjunction with the ACCEPT Macro.
When a message isg displayed on the SPO that requires a reply from
the system operator, the AXCE Function passes the message to the

correct program.
The AXCE Call format is as follows:

>>AXCEidentmessage
- = = = =78 - =212 13 - - - =h2

=V

where:

a. ident - program identification.

b, message - information the operator must pass to the program.

The following is an example of how to use the AXCE Function. In
order to inform the operator that information is needed, it is sug-
gested that a display message indicate the program requiring the
message, and the type of program expected. This information may be
indicated either in the operating instructions or as part of the

display message.

In figure 2-6 the system operator is awaiting a YES reply so that a

ZIP to another program can be accomplished.

2-47

>>> AXCE

2-48

continued
>>>PADDAXTST entered by operator.
EEGIN RUN - AXTST printed by operating system.
DISP AXTST» printed by executing program.
TST DI SPLAY printed by executing program.
AX: AXTST printed by executing program.
222 AXCEAXTSTYES en?ered by operator.
DISP AXTST, printed by AXCE Function.
YES printed by executing program.
EOP - AXTST printed by end-of-program function.
ZIPPADDOP3T1 printed by operating system.
BEGIN RUN - OP3T1 printed by operating system.
0 #01 C1 printed by file open function.
0 D21 T1 printed by file open function..
#1 NR printed by multiprogramming controller.
Figure 2-6. AXCE SPO Messages

>>> PADD

PROGRAM CALL-OUT FROM USER LIBRARY (> > > PADD).
The purpose of this function is to provide a capability for retrieving

user programs from the MCP II User Program Library via the supervisory

printer or card reader.
The PADD Call format is as follows:

>>PADDIident Program Parameters

- - = - = 782221213« = - - = = - 5k

Ll B

where:

a. ident - the identification of the program being

called from the User Program Library.

b. program parameters - any parameter necessary to

execute the program, up to a maximum of 27 characters.

2-49

SECTION 3
UTILITY FUNCTIONS

GENERAL.

The MCP II utility functions provide for the execution of operations
that are standard at most installations., The utility functions can be
called by either the operator or a user program. It must be noted
that the utility functions do not have the necessary float codes for
multiprogramming capabilities: The Save/Restore feature of MCP II may

be used by the utility functions.

The following pages within this section provide a detailed description
of the utility functions and the operational procedures required to

successfully utilize their capabilities.
The functions described in this section are listed in table 3-1.

Table 3-1
Utility Functions

Call Description

v
Y

>PRME Print Memory

v
v

=>DTSJ Disk to Tape ~ Single segment

v
v

>TDSJ Tape to Disk

Single segment

v
Y

=DTTR Disk to Tape Multiple segments

Y
Y

=>TTDR Tape to Disk - Multiple segments

v
v

>DDDL | Disk to Tape/Tape to Disk

v
v

=>DCCN Disk to Card - Control numbers

Y
v

=>CDCN Card to Disk -~ Control numbers

v
Y

=PRDK Print Disk

v
v

>CLDK | Clear Disk

Table 3-1 (cont)
Utility Functions

Call Description
> > >DCWR Disk Word Change
> > >DTDK Disk to Disk
> = ZBTTR Binary Tape to Tape
> > >PRTB Printer Back-~up Function
= > >TUTL Tape to Print Utility
> > >CARD Card Utility Function
> > Z>TAPE TAPE Utility Function.

>>> PRME

PRINT MEMORY (> > > PRME).
This function prints the contents of memory and the address of each
word. If the beginning and ending parameters are not specified, all

of memory is printed.

The Print Memory Function is one block in length, and permits the
utility routine to be executed from 400 thru 79@. This allows the
execution to be accomplished during an interrupt and without the

execution of the Save Memory requirement.
The PRME Function format is as follows:

>>PRM Ebb e e
- - = = -7 8 9 10 11

=V

where:

a. bb - the start print memory address (tens and hundreths

positions only).

b. ee - the end print memory address (tens and hundreths

positions only).

If the Begin and End addresses are not entered with the function call,

memory will be printed from 000 through the end of core.

Figure 3-1 is an example of a > > > PRME Function, and illustrates

a print memory starting from machine location 000 through machine
location 880.

3-3

=€

ADRS

onn
050
100
150
200
250
3nn
35n

400

450
500
550
600
650
700
750
800
850

TNST/DATA

61 050007500
127172005144
Q2 240356
k22144800130
5622164n2150
Tx1258053179

61 0602>>PRM
+2NVR2PAMFOI
702361 503
71050050 685
521506504570
A01670

701656 179

ANRS

010
néo
110
160
210
260
310
360

410

460
5190
560
610
660
710
760
819
R60

TNST/DATA

61 2320VRINP
703nAA800156
61 NAPRME 00
K8 160130160
Tx229A40 216
Tx126R051179
40 32 32106
£N089%¢ 1234S
ROt
A10870460

J n1ns503
561507504490
¢+ T7no7

61 Nap00O0

Figure 3-1.

ANDRS

0620
07ro
120
170
220
270
320
370
220
470
520
570
620
70
720
T70
R20
R70

INST/DATA

7x102405F179
702156 38204
090000009012
J 400156 36

090971
70232602 270
6ele
504361596440

7018761 261

50250335360N
7035766811399
5413186720640

MEM PRINTFDe

ADRS

030
n&o
130
180
230
2890
330
380
430
480
530
580
430
A4R0
730
TR0
A3n
R80

790670

INST/DATA

61 09E090971
Tx2067150216
91 1360DSK RN
121216180216
7x1238055179

321270152273

541361496450
68n
J 018499

7035866855N0
7x2616330270n
650 701656
730 73n 7

Memory Print Example

ADRS

040
090
140
190
240
290
340
390
440
490
540
590
640
690
740
790
840

INST/DATA

A1 FNDaa0aan
+10250108249
ER 000R240¢
117152144144
Tx1248054179
1 01 123456

127274005144
704566 361
703503¢ 749
I 018509
A1 460
521656179000
179 660
3n 7 749

penujjuod
IWAd <<<

>>> DTSJ

DISK TO TAPE SINGLE SEGMENT (> > > DTSJ).
This function writes the contents of a specified area of disk onto
magnetic tape. The contents are formatted one tape block for each

disk segment.

This function resides in memory beginning at machine location 800,
fills three blocks of core, and utilizes the end of memory for binary

tape writes.

DTSJ contains programmed interrupts to the Executive Controller and
may be interrupted by another program. If a running program is inter-
rupted the Save/Restore Memory Function of the MCP is automatically
called.,

The DTSJ Function format is as follows:

>>DT S Jb b bbbbbbeeee e e e
- - m = = 7 8 = = = = 214 15 = = = = =21

=V

where:

a. bbbbbbb - the beginning address of the disk file segment
to be dumped onto tape.

b. eeeeeee - ending address of the disk file segment to be

dumped onto tape.

Figure 3-2 is an example of a DTSJ Function, This example illus-
trates an area cleared with Cs, and dumped to tape with > > > DTSJ

printed to show single segment > > > DTSJ00000010000050+,

3-5

9-¢

001
101
201
3o}
401

001
101
201
3o1
401

001
101
201
301
401

001
101
201
301
401

001

101

201
301
401

001
101
201
301
401

001
101
201
301
401

000000100000%0

CoRttbateasdetithbte
RECNRD NUMBER

ceceececececcecccceecececceceeccnceceeeececccecececececcecececcececececcececcecceecececccececeeccceccecececeeeccceece
ceeecececnccecececececeecceeccecaceceeeccceceeccceccecceceecceecccecceecccecceeceececceeeeccceccceecceceececceece
cececcecececceccccrceccceceeccecccececece

I I T YT L T Y Y
RECNRD NUMBER

ceccceccerccecccencececcccecccecccececcecececcceeccccecccceeccecceecececcececcccececcececeeceececececcecccece
cecccecececrcceccccecccceceeeccececececeecceeccececcccceecececeececececceccceecccecceeececcecceeccccceeccecce
cececeecceccccecccencecccccececcceeecececcce

TR ARRE O R R R RN NN R RS S
RECNRD NUMBER

cecccecccecceccecncccececcecccecacecccecceeccecceccecccececceeececeeceececcceccecccceeececceccceeeececcecece
ccceteccecrccceccencecececececccncecececececccececcececccceceeeccceeccecececccceeccceeccceeccecccececccecccece
cceecceccececceccccnrceccecceeccecccececcce

ITITI I T T YT T Y
RECNRD NUMBER

ceceeecececccccccccrcecceccecccecececcccceceecccecceccecececccecececceccccececccccececececcecccececcecccece
ccceccccceecceccccrceccecccecccecccecrececceccecccecceccececcecececceecceccecceeceeccececcecceeeeececececeace
cceceecccececceecccecerceccecceecccecececceccecece

1232222 2222222222 213

RECNRD NUMBER

ccecececceccececececaceccecceecencecacecccccceecccecceceecccecccecccececececccccceeccececceecececccceeceecceece
ceecececcececcecceernceceeccceeccececececececceeccccecccecccceeecceecccececaccececcecececcecccecccccecececcecccccce
cceecrceccecececerccccecccceccecccececece

[X222 222X Y XY
RECNARD NUMBER
cccececeeeccccecccnceccnecceceecccececncececcecccececececcceccecececeecccececceeccecccceccecceccceenccecccceeceecceece
cececercceeccencecrecceacercecrncencecececcecececcceececececcecceceenccececeenceccecececcecceaeccececceccecececcenceecece
ccececeeccercceaccercccececceceeccenceceeceece

T R P T T I T T
RECNRD NUMBER

Figure 3-2. DTSJ Function Listing Example

BINARY

01

BINARY

B8INARY

03
BINARY

BINARY

05
BINARY

06
BINARY

or

panuijuod
rs1d <<<

>>> TDSJ

TAPE TO DISK SINGLE SEGMENT (> > > TDSJ).

The Tape to Disk Function is used in conjunction with the Disk to
Tape Single Segment Function. The TDSJ Function reads the magnetic
tape created by the DTSJ Function and writes the contents into a
specified area of the disk file. If the disk address specified by
the function call differs from the disk address contained in the tape
label, a message is printed on the SPO; the decision whether or not

to execute the function is made by the user.

The function is based at machine location 800 filling five blocks of
core, and contains program interrupts to the Executive Controller.
The Save/Restore Memory Function is automatically called when it is

required.
The TDSJ Function format is as follows:

ZZ2TDS Jbbbbbbbeeeeeee
- = = = =78 = =« = =« 21415 = = = < - 21

=]V

where:

a. bbbbbbb - disk address where the first tape record is placed.

b. eeeeeee - disk address where the last tape record is placed.

3-7

>>> DTTR

DISK TO TAPE UTILITY - MULTIPLE SEGMENTS (> > > DTTR).

This function writes the contents of an area within the disk file (as

specified within the parameters of its call) onto magnetic tape in 10

segment blocks (binary).
10 blocks (depends on the size of the disk area being dumped).

may be interrupted via the SPO so that other functions,

The last written block may contain from 1 to

DTTR

utilities,

calls, or user programs may be processed (figure 3-3).

The implementation of this routine requires a working knowledge of the

operating requirements.

The operating functions are as follows:

The DTTR

The £

Scratch tape is mounted on MTU-

l.

The DTTR Call is either entered via the SPO or card reader 1.

format is as follows:

>DTTR
7

ollowing messages can be displayed

ENTER SEGMENT ADDRESS

This is the begin-run message
enter 14 numeric digits. This
ning disk address (first seven

address (last seven digits) of

MOUNT WORK TP Ul
This message signifies
been reached, and that
on MTU-1. CONTINUE on
by the operator.

another

WR ER UI T™
This message signifies that an

tape mark has failed.

on the SPO:

requesting that the operator
entry represents the begin-
digits), and the ending disk
the area to be dumped.

that the physical end-of-reel has

scratch tape must be mounted

the Central Processor is then pressed

attempt to write the final

The operator may press CONTINUE on

3-9

o1-¢

001
101
201
301
401
501
601
701
801
901
1001
1101
1201
1301
1401
1501
1601
1701
1801
1901
2001
2101
2201
2301
2401

001

101

201
301
401
501
601
701
801
901

000000010000020

ceeceecececccecececcccececccecceeccececececcecceceeccceccececccecececcccecceeceecccecece
cececeecececceeceenceceececececcccecececccecceecccececcceccccecccececceccececceeccceccccecececceccececcececcececccecce
cceceecececececcecceecnceccecccececccecececcceccececcccecceccceeeccccec

I I A R I I I I I I L I G L e I I I I

RECNRD NUMBER

occeceeccceecececccenccccecceeecccecccecececececcececccceccecccececececccccececceccccecececeececceccceeencceenccececece

£CCLLECCCCCCCCCLCOCECCCCEreeCreeereeeeccceeeececcecececececeCecCCeeeCecCeccceeeececeecceecaceccceece

cceeccececececcccececencccececceecececceecceceeccececceccceccececcccecccceccececcceeccecccececcecececececceecccceeccrncccecece
cecceecececeecceccceeccceececececcceccececececceecccceeccceccceececceececcecccececececcceccccecceecceccceccercecencccece
cececeecececcececececeececcececceceeccecacacececcccececccccececceccccecceccecccecccececeecccececceceeccecececececcceecceeceeence
cececeeeceecececcceccceceececccececececcececceccceecceececcceccecececcecceccececcecececcececcececceccccececccecceececece
cceeceecceeceececeeecnccccaceccccecececcececcecceecceccecccececececcececcececececececcececececeecececceecceeeceecccece
ccecececeececccecececncccceececececcceccceceencceecceccccceccccececceeccececeeccececceccccececeecceccceececcaccececec
cececececeeeceecccecnceccceceececceccceecccecceeccccecceccccececceeccecececccccceccececececceccecerecceccancecece
cecer” Teegccccecceers ‘cerccccceccececeen” Teeccccccecer” : Tegeeccence

LY o o Lalale Y YT YR

Figure 3-3. Example of Area Cleared with C's Dumped to Tape and Multiple

Segments with > > > DTTR and Printed to Show Multiple Segments.
The Header Contains the Parameters of the Area Dumped, and

the Control Character (zero) is located in the First Position
of Each 2401 Character Block.

*uoT3oUNT

oU3 SNUTZUOOSTP 03 FANIINOD USU] pue YVIID J0 ¢ (posers Jo

pooedsyoeq oq j3o0u TTTm odej oU3) I0SS000Xd TeIjue) oUj

panuijuod
YL1d <<

>>> TTDR

TAPE TO DISK - MULTIPLE SEGMENTS (> > > TTDR).

The TTDR Function (in conjunction with the Disk to Tape Multiple
Segment Function) will write the contents of a tape onto a specified
area of the disk file in ten segment increments. This function cannot
be interrupted. If this function interrupts an executing program, the

Save Restore Memory Function is automatically called.

The TDDR Function executes from memory location 800 and requires three

blocks of core.

The TTDR Function format is as follows:

An information halt will verify the parameters contained in the tape

label.

3-11

>>> DDDL

DISK DUMP DISK LOAD (> > > DDDL).

The DDDL Function may be used in place of the DTTR and TTDR Functions.
The logic differs in that it dumps disk by module number only. This
will assure the complete dumping of a particular module. After the
disk is dumped the function will read the tape just written and check
for missing, duplicate, and the correct number of records., When re-
loading the disk from tape, it can be used to load an entire module or
any portion thereof. It is possible to load one segment or multiple
segments anywhere within the limits of that module. By entering addi-
tional parameters, several areas or files can be loaded during the

same program "Call-In."

This function executes from memory location 800, filling seven blocks
of core. The program cannot be interrupted. The Save/Restore Memory
Function is called automatically if the function interrupts an

executing program.

The DDDL Function format is as follows:

3-13

>>> DCCN

DISK TO CARD WITH CONTROL NUMBERS (> > > DCCN).
This function punches the contents of a specified area of a disk file
into cards. It will include the disk file address and card number in

each card punched (figure 3-4),

The DCCN Function resides at machine location 800, and fills four
blocks of core. The program contains interrupts to the Executive

Controller.
The DCCN Function format is as follows:

>>DCCNbbbbbbb e e e e ee e

=
1l - = ===7 8 = = = = = 14 15~ - - - - 21
where:

a. bbbbbbb - beginning disk address of segment(s)

to be punched into cards.

b. eeeeceee - ending disk address of segment(s) to

be punched into cards.

DIsSK CARD
SEGMENT SEQ.
ADDRESS NO.

oocoooo000000CC0O00C000000000000000000000006000000000000000000000000(0000000

8 9 10 111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 69 69 70 71 72(73 74 75 76 717°76 79

(R R R R R R R R R R R R R R R R R AR R RN R R R

)

000000
2345867
(RRRRR
22(122222222
33)33333333
444444444444444444044444444444444444444444444044444444444444444444444444)44444444
55555555555555555555555565555555555556555555555555555555555565555565555556(5555555)5
66665666/6666666(6
1777711717171 710170717712117711727177117117717717177171171717701711010777171711717712100111179(1111111)1
$688688888888860888088806808868888806688880808086888888686888888088888068888066868080888888888(8
99952???29999999999999899999999999999999 999999999999999890998908909998(999999919

1234 0 53 54 55 56 57 58 59 60 5162 63 64 65 66 67 68 69 70 71 72|73 74 75 76 17 76 19}80

Figure 3-4. Disk to Card Record Format

3-15

222 DCCN
continued

NOTE
Each disk segment will initiate an out-
put of seven cards. The size of this

segment can be 96, 240, or 48O characters.

3-16

>>> CDCN

CARD TO DISK - WITH CONTROL NUMBERS (z > > CDCN).

This function is used in conjunction with the Disk to Card Function.
The cards punched by the CDCN Function is the source input. The func-
tion programmatically checks the control numbers during input, and
writes the contents of the input cards into the disk area specified by

the parameters (reference figure 3—3).

The function provides the necessary program interrupts to the Execu-
tive Controller and initiates the Save/Restore Memory Function when-
ever necessary. The function is based at machine location 800 and

requires four blocks of core.
The CDCN Function format is as follows:

= >CDCN b bbbbbb eeeeecee

=
1 = = =27 8 = = = - - 14 15- = - = - 21
where:

a. bbbbbbb - beginning disk address where the contents

of the punched cards are written.

b. eeceeee - ending disk address where the contents of

the punched cards are written.

3-17

>>> PRDK

PRINT DISK (> > > PRDK).

This utility function prints the contents of the disk file specified
by the input parameters. PRDK is based at machine location 800 and
utilizes five blocks of core. This function provides the necessary
program interrupts to the Executive Controller and initiates the

Save/Restore Function whenever necessary.

The PRDK Function format is as follows:

>>2>PRDK b b bbbbb eeceeecee s s s
1 = = = =78 = = = = = 14 15- = = - - 21 22- 24
where:
a. bbpbb - address of the first disk segment to be printed.
b. eeelpee - address of the last disk segment to be printed.

c. sss - segment size (096, 240, or 480).

Figure 3-5 is an example of a > > > PRDK Function.

3-19

0z-¢

NISK ANORESS

00nN001

00n0N0>

00n0nN0nYy

0000004

00n0nN0S

00n0N04

00nNN07

0 2 8 S L)
123‘*678°ﬂ}?3l56789ﬂ|2\‘567896}?3!567&90123!567890121!567890?73l567390{93C567‘961?3“67694g231567090

cceeercccececceeecccncececececcceecccecccceccceeccceececcecccceccceccccccceccceccecceeeecececccececceccccccecce
eceerececcceceernccrcccncececcceccecccecceccecceccceceeececccececcecceccccceecceccecceeernceecccececcececccccecce
cceeneccccecececccencecececcccecceecccccecce

cceeercceececeercecenccececccceccececcececccceceeccececceccccecccecccecccceccceceeaccececceccecceecceccencecececcccccccce
cceceencecercecececcecncecececccceecccccccecccceccecceccccecceccceccecceccececcceceeccceeccenececeeececcecccccccecce
ecceceececeecceeecccncececeeccccceeccceccccee

ceceeececeeccceececeaceccecececccacceeecccceccecccecceececcecccccceccececeececcecceececcecceececececcceccececcce
cceencecceceececcrccceacececcececcccecceccccececceeccececceeccececcceccecceeccccecceccecceececccececeecccceccccccccece
cceencecceecececceeecececcccceccccceccccce

cceencccececceeccrcececececcceecccecccceceeccececccececcecccecceccececetecceectceecncencececcceccececcceecee
cececencececceceecccececececececceeccececcececcececcecececccececccceececccecccececececceceececcenecenceccceccecccececcecc
cceeeecceceececccecececececcceecccecccccee

eceercccceccecccecccnceceeccececcececcccecccceccececceceecececcccccecccceceececcecccececeeceacceececeececcccccecce
cceeercceecceececcececncececcceeccceccececeecccecceececececcccceccccececeecececeecenceececenceceececccececce
ccececerececceececececneeacenececccceccceccecee

tceceergecceceecccececnececcccceccecceccceccceeccececececeececcecccececceccecercececeecenceceececececeecececcecece
ccecercecceececerccececncececceceecceccecceececceeecceaceccececceecccecceccccececceceececceeceecnecceenceececccecceccece
cceereeceececceccencencececccceecceccnccecce

ceeerecccecereccecececececcececcccccccececeeccccceecceccecceeccceccececceeaccecececeececncececececcencecccecccece
ccecercecrececrecercecececeecceecececceacceccececcceccececececceeceececccececcenceccecececccceeencaecceeeceeceeccccccccce
ceceereececececcccrcacecececcecececacceccee

Figure 3-5, Example of = = = PRDK or
> > > CLDK Listing

panuijuos
AQYd <<<

>>> CLDK

CLEAR DISK (> > > CLDK).

The Clear Disk Function is used to fill an area of disk with a
specific character. It may be useful to programmatically call this
function within a program, fill the area with blanks or another char-
acter, then return to the first program, (An example is found in the

Programming Technique Section.)

This function is based at machine location 800, and fills eight blocks
of core, If this function is called for execution while another pro-
gram is executing, the Save/Restore Memory Function is automatically
called. CLDK contains programmed interrupts to the Executive

Controller and may be interrupted by another program.
The CLDK Function format is as follows:

>>2CLDEKDbDbbbbbbeeeeeeesssc
- = = = =78 - = = = =14 15 « = - - 21 22-24 25

~ |V

where:

a. 4bbjbbb - disk address of the first segment to be cleared.

b. qee

c. sss - disk segment size (096, 240, or 480).

eee - disk address of the last segment to be cleared.

d. ¢ = clear character.

NOTE
If a group mark is entered as the clear
character in position 25, an incomplete
BEGIN RUN message is printed on the SPO.
A YES reply will fill the specified disk

area with group marks.

Figure 3-5 is also an example of a CLDK Function.

3-21

>>> DCWR

DISK WORD CHANGE UTILITY (> > > DCWR).
This function permits the user to change any word of any file

resident within the disk.

The implementation of this function requires a working knowledge of
the operating requirements. The DCWR Call is entered via the card

reader or SPO.
The DCWR format is as follows:

>>DCVWR
.- - = 7

=]V

The following messages are displayed on the SPO:

a. ENTER SEGMENT ADDRESS
This is the begin-run message. The operator must
enter the 7-digit disk address of the word to be
changed via the SPO.

b. ENTER WORD NUMBER
This message requests the entry of two numeric
digits (the number of words l1l2-character groups)
between the beginning of the segment and the word

to be changed.
Example:
Assuming 240-character segments:

1) To change the first word enter 00,
2) To change the second word enter OLl.

3) To change the last word enter 19.

c, OLD WORD IS dddddddddddd IS THIS CORRECT
This message verifies the contents of the specified
location containing the expected information. If

the data (dddddddddddd) is correct the operator may

3-23

>>> DCWR

continued

3-24

reply YES; if incorrect, a reply of NO will cause the input
specification to be ignored. If the data contains a group-
mark, the SPO message will terminate after the character

prior to the printed group-mark.

ENTER NEW WORD
This message requests the operator to enter the required
l12-character new word to replace the dddddddddddd parameter

in item c.

MORE CHANGES
This message is self-explanatory. The operator may enter
YES and the routine will continue: NO will cause the routine

to proceed to End-of-Job.

>>> DTDK

DISK TO DISK (> > > DTDK).

The Disk

to Disk Function will copy the contents of a specified area

of the disk file to another specific area of the disk file.

This function is based at machine location 800 and fills eight blocks

of core.

If this function is called for execution while another pro-

gram is executing, the Save/Restore Memory Function is automatically

called.

DTDK contains programmed interrupts to the Executive

Controller and can be interrupted by another program.

The DTDK

>

=V

where:

Function format is as follows:

>DTDXKbbbbbbbeeeeeeetttttttsss
- = = =78 - - = - =14 15- - - - 21 22- - - - -28 29- 31

bbbbbbb - disk address of the first segment to

be transferred.

eeeeceee - disk address of the last segment to

be transferred.

ttttttt -~ beginning disk address of the first

segment where the contents will be transferred.

sss - disk segment size (096, 240, or 480).

3-25

>>> BTTR

BINARY TAPE TO TAPE (> > > BTTR).

This function will copy a binary tape with one or more input reels
having the same record length. The parameters that specify the num-
ber of input reels and record lengths up to a maximum of 4800 binary

characters are passed to this function at begin run time.

BTTR can also be used to position the COBOL Collector Tape so that
additional programs can be added to the tape. This can be accom-
plished by specifying two input reels and 0080 character binary input.
When the second input reel is requested, the tape is positioned to add
additional programs to the Collector Tape, CLEAR is pressed and then

CONTINUE on the Central Processor to discontinue the function.,

The BTTR Function is executed from machine location 800 and fills
three blocks of core. It also utilizes the upper end of memory for
binary tape writes (depending on the number of binary characters to

be written).

This function cannot be interrupted to process another function or
program. If called by a program, the Save/Restore Memory Function
will be called automatically.

The BTTR Function format is as follows:

>>BTTR

=V

3-27

>>> PRTB

PRINTER BACK-UP FUNCTION (> > > PRTB).

This function provides the capability of printing printer back-up
tapes created by the system., It may also be used to print BCL tapes
formatted with the first three characters of each unblocked tape
record containing the OP, M, and N variant of the print instruction
The remainder of the record is a line of print information that is

120 or 132 characters in length.

The Printer Back up Function is one block in length, thus permitting
this utility to be accomplished during an interrupt, and without the

execution of the Save/Restore Memory Function requirement.
The format for the PRTB Function is as follows:

>>>PRTB
1 - === =7

3-29

>>> TUTL

TAPE TO PRINT UTILITY (> > > TUTL).

The Tape to Print Function will print any labeled or unlabeled tape
written on the system. It has the capability of printing BCL and/or
binary records of variable length and inter-mixed records

(figure 3-6).

The TUTL Function is executed from Machine Location 800 and utilizes

9.6K core.
The TUTL Function is as follows:

>>TUTL
I

=]V

3-31

ce-¢

09=09

001
101
201
301
401
501
601
701
801
901
1001
1101
1201

001
101
201
301
401
501
601
Tol
801
901
1001
1101
1201

001
101
201
301
401
501
601
701
601
901
1001
1101
1201

001
101
201
301
401

1 2 Q 4 S] 7 8 9
1234547090123A5677901234547A89A1234%6TA0012345678901234567TAR0012345678901234567890123485678001234567R9

Q000000 Nt 0N000Ne 02 00000R0 NI 0000088 OS 00001%0 09
aN00204 10 0000224 12 0000234 90 0000332 15 0000368 21 0N00424
17 00D0ARR 18 ENGOATH 27 0NONAAR 20 00005184 22 0000382 16 0NN0S3IS6 BA G70083I4 66 00MN0928 30
o0noaTa 19 0000884 28 0001008 8RS

0001054 &S 0N%11720
142 40e11720183 ANe11760146 SHNT11A8 A7 SHO1152 43 Q 01174 97 SuN1168 &t

+118601
00+08740
529 TINATOO0 A6 3IReOSTALIATL IR4NENE0BT2 3IR406221273 IR+064608T4 3INE06A20A7S
3R+067B0ATK 3R+06941077 3IR407141478 3IRGOTA21479 3R+07701069 61 PRO22>
Von10S2 an G700792 2% 3R+0O5740270 0000292 14

0001180 Sa
(XX R R R A I R Y Y Y S Y R R X X R X R X3 X X2X22221211¢%3

RECNRD NUMBER

SA1LJAJLRKIOS 00¢ J3222702x%RY XLSTHI1LUS KL761 XL0O0000000N000NA2000K4000T60004Q000FX000PKNOOYNOO
09F00|0“00\KOOOITQ0010H001EHOOINVOO!Y 000000000000000000 t 2 3

STAWCOVR TYPSFQ 0123456789200123456789200
173!567l°i00173!54789!00123.567!9!!L0f 1 34 MISST
NG CONTROL CARD TNVALIN DISK SEGMUENT ST7E CONE INVALID CNMPILER RASE ADD
RESS HISSING OVERLAY MISSING ENN OVR CARO OR OVR NUMBER TILLEG
AL MATINTENANCE FUNETINN CONE TMPROPER CARD SEQUENCE NUMBER IMPROPER MEM ADNDR NR OVER
LAY SFQUENCE 201PROPRO72NS543720Kx9QP0S01227 Q6RL0501227 Q7R 0501227 QBRLO7Z3IANNI 240705007
20161 tuMn 62PROTYANJS 2407TNSQR? 2L161 L1MO 61PROV3IANOT 2M0TOSRK? 2L161 1M0 63PRO701Z27 1762
™1727 1P2701227 SPOS03Z2ARP6RXNAN Rx000NRQ0OT03IZ228 $a6703224% F76703228 1J7703228 7165012
33 K@3IMISN1Z33 LAPB1ISN1233 NB+1NT7IANAT 2M070S P7 2L161 1M0 64PRO 215

[Ty P R R R T I R R RN I T R I R R E R T IR R R TR TR I T R R Y Y N R R R 2 R R R R R A T T I T yYIY Y Y

RECNRD NUMBER

S61LJAJLAKIOS 002LJ3I222TN2xXRY KLS7TNILJUS KLT761 KLﬂOOOOOOOOOOOOA?DOOKCOOOTGOOOCQOOOFlOOOPKOODYHOO
09FN01+HONIXK+001TANOL1AU0OIFWONINYNNTY 000000000000000000 2 3

[STAWCOVR TYOSFQ 01234S6789200123454789280
1234547802801 23454A7R92001234547A9%0 0 #¢ MISST
NG CONTRM CARD TNVALIND DISK SEGMENT ST7¢F CONDE INVALTIN CNMPILER RASE ADD
RFSS MISSTNG OVERLAY WISSING FND OVR CARD OR NVR NUMBER TLLEG
AL MATNTFNANCE FUNCTINN cONE TMPROPER CARD SEQUENCE NUMARER IMPROPER MEM ADNR NR OVER
LAY SFQUENCE 201PROPRO7205483720Kx9QP0501227 Q6RL_0OS501227 Q7RL0501227 QBRLOTIANNI 2u0705Q07

20161 1un 62PROTRANJ® 2M0TNSAQRY 2L161 1M0 61PRO73aNQ7 P2MOTOSRKT 2L161 1MN 63PROTONI1227 762
701727 1P2701227 SPOSN322RRPEAIXNED RxNNONRADT03Z248 $a5703228 F767037228 1J7703228 7165017
33 X@IM3ISN1Z33 | #PB1501Z33 MO+1NTIANQT 2M0706S P7 2L161 1Mn 64PRO 215

(X R R R R X R R R F R R AR R R R A R R R R R R A X A I R RIS Y Y Y Y Y Y Y2322)

RECNRD NUMBER

KN2U05n00U20«8 $50010130561373572590P01S

AN X2707708 73+0¢C 1K01¢22B20 T10 AD11NANT20 Th1T3 T757027146T50013K22UnS5000120KkR TSOUY
0T60POLITT 005521372TA20009991100 +[f &8 97U059ROFEN 9213110 929110 @) SYNT
AY FRROR(SY WERE FAUNN, COIMPIILATINN ARORTEN [28Rw# 740Q60 voo

50 S50 USO115 W2/VT/79T61 W2 XY I T YR 2220 L]

RECNRD NUMBER

Figure 3-6. A Listing with both BCL and
Binary Variable Length Records

PG 0%

BeCols

01
BeColo

02
BeCole

03

BINARY

0a

panuijuoo
1lNL <<

>>> CARD

CARD UTILITY FUNCTION (> > > CARD).
The Card Function provides the capability for reproducing a card deck,

creating a BCL card record file on tape, or listing the card input on

the line printer. A tape mark-group mark (> e) will cause a short
tape record. The Card Function is one block in length and executes
from 400 thru 79@. It can interrupt a running program without calling

the Save/Restore Memory Function.
The CARD Function format is as follows:

>>CARDX

=
1 - ===-1738

where:

x - T card to tape.

!

card to print.

C card to punch.

3-33

>>> TAPE

TAPE UTILITY FUNCTION (3 > > TAPE).
The Tape Function provides the capability of either punching a BCL
card image tape, or making a duplicate copy of an 80 character BCL

tape.

The tape is formatted into 80 character BCL code. A tape mark - group

mark (> <) will cause a short tape record.

The Tape Function is executed from memory location 400 thru 79@, thus
permitting execution without requiring the Save/Restore Memory

Function.
The Tape Function format is as follows:

>>TAPEx
- - = = =78

=V

where:

a., x - T tape to tape.
P tape to punch.

3-35

SECTION 4
USER PROGRAM LIBRARY FUNCTIONS

GENERAL.

MCP II contains all the functions necessary to create and maintain a
User Program Library. The capability of including user programs as
call features of the system is also available. The programs added to
the system can either be in a multiprogramming and/or a non-multipro-

gramming mode,

The User Program Library capability improves the systems operation,
and replaces the tedious task of manually loading programs with a Call

from the User System File.

MCP ITI contains the functions necessary to initiate and maintain this
library. The user can manipulate tape and disk files, or tape and

disk libraries by merging, deleting, or adding information.,

The pages in this section provide a description of the User Program

Library Functions that are listed in table 4-1.

Table 4-1

Program Library Functions

Call Description

v
v

>PADR Create Program Add Tape Call

Program Add Record Format

v
Y

>PLTM Program Library Tape Merge Call

Y
(Y

>TWCR Magnetic Tape Word Corrector Call

v
v

=DPTL Delete Programs From Library Tape Call

v
Y

>LLTP List Library Tape Program Call

>LTON List Overlay Names Call

v
v

Table 4-1 (cont)

Program Library Functions

Call Description
> > >DELF Delete Functions From Users System File Call
> > >ADDR Add Functions to MCP II Disk
> > Z2LPAT Load Program Add Tape to Disk Library Call
> > Z>CPAT COBOL Collector Tape to Disk
> > >DWCR Disk File Word Corrector Call
> > ZLDPL List Disk Library Program Call
> = >DPDL Duplicate or Delete from User Disk Library Call
> > >LDON List Disk Overlay Names Call
> > >COBL COBOL Source Program Maintenance
= > 2STMT Symbol Tape Maintenance
> > >STUR Symbolic Tape Update and Resequence Call
> = >8S8TO Output from Symbolic Program Tape Call

>>> PADR

CREATE PROGRAM ADD TAPE (> > > PADR).
The purpose of the PADR Function is to create a Program Add Tape of

480 character binary records, and a Program Add Listing.

This function uses the following steps to build a Program Add Tape.

a.

The PADR

i

>

Fach Program Add Record is written on tape in the format
of a Call or PADD Record. (Reference the PADD record

format for Program Add Card specifications.)

The object program is written on tape in 480 character

binary records.

A Program Add Listing is prepared when the Program Add

Tape is created.

A count of the programs and overlays converted to tape
is made. The count is printed on the SPO following the
completion of the PADR Function. When updating a User

Program Library it should be used as the count.
The following checks are made on the programs,.

l) The program identity in the Program Add Record must

be the same as the object program record.

2) Card sequence for detail records must be those supplied

by the assembler.

3) Total blocks written must equal the total blocks

specified in the Program Add Record for each program.

An End-of-Job file card signals the completion of a program

addition.
Function format is as follows:

>PADR i s s d d d d d 4 d
- == =-7 8 9 1011 = = = = = 17

4-3

>>> PADR

continued

where:

A

i - designates the type of peripheral input unit used to

create the Program Add Tape.

C - cards

- binary tape

paper tape
96 character - segment disk file.

240 character - segment disk file.

0 85 U 9 O
1

- 480 character - segment disk file.

NOTE
Disk file input must be

blocked six card image records.

ss - system specifications. This entry is only used to
create MCP system tape. When a system tape is created,
the code SY with binary tape input is used; otherwise, the

field is blank.

ddddddd - beginning disk file address. If the input is
stated as disk file input, this field will indicate the

beginning disk address of the auto-loads on disk,

Figure 4-1 is an example of a PADR initiated Program Add Listing.

L=l

S-%

PROGRAN TDENTIFICATINNS

BLx NO,
caLL

00n1
0001
0001
00n1

00n2
00n?
00n2
0002

oon3
0on3
non3
00n3

oona
0ona

non5

0006

00n7

00NRK

0099

0010

no11

0012

FULLL
)

20
25
30
35

20
25
30
5

20
25
190
35

20
28

20

20

20

20

20

20

20

20

16

20

20

20

20

20

20

20

20

nP3ITL, as OF
WORD NO, + O

>22PANDOP3TY
+3EGNP3ITHASO
+

Sa7928921R60

TL6+26850366
4N0D10400+20

TASASGAPNGIY

*
7xRC13+400+23
740CAN330363

NIN+2ATY
INST/WDRNS

INST/WOARNS
INST/WORNS
INST/KDRDNS
INST/W0RNS
INST/WNRNS
INST/WNRNS
INST/WNRNS

INST/WNRNS

Figure L4-1.

N9e09=71
WORN NN, ¢ 1§

INY 1

61 SFY
Tx2849XX 916

+
TX7471400478

FO2A6808 270
703316NPNO19
+ C€2070079n

LYY T

TOINLAFNPD19

STARTING AT Nnao

WARD NA, &+ 2
120012
+20Ct 840

>22 ENF

6t SET
»22 ENF

7380330363
Tn2R2608 270
7x8RA3IZANGBA3

61 BR70
T03C76CLSN1Y

70202415 270

FTLLED WTTH RLANKS TN COMPLETE

WORD NN, & 3

+02T1 +00

400780

RINBAGCY

TK3IR40330363
+ R927n0C30
703C360LS019
T02CA609 270

7K 0800330370

WORD NO, ¢ &

TL6866450366
92AD10RR0903

[]

(34 34 1)

R70+26T1

768924 134
T02Ca609 270
7J000033038Y

THE ALOCK

STARTTING

STARTING

STARTING

STARTING

STARTING

STARTING

STARTING

QTARTTING

AT

AT

AT

AT

AT

AT

AT

Foo

400

x00

K00

v00

nno

200

nn

FTLLED

FTILLED

FTLLED

FTILLED

FTLLED

FTLLED

FTLLED

FTLLFD

WITH

WTTH

WITH

WITH

WITH

WITH

WITH

WITH

BLANKS

RLANKS

RLANKS

RLANKS

RLANKS

RLANKS

RLANKS

RILANKS

71

TN

TN

TN

T

T

TN

COMPLETE TuE

COMPLETE TuHE
COMPLETE TkE
COMPLETE TwE
COMPLFTE THE
COMPLETE THE
COMPLFTF TWF

COMPLETF TuE

Example of a PADR Program
Add Listing.

aLocx

RLNCK

ALNCK

ALOCK

RLOCK

RLOCK

RLOCK

RLNCK

PA
ADRS CARD ¢ R/A FL

000

8on
aso0

900
9s0

+00
+S9
AOO
ASn

R00
LL1))
coo
csa

non

0000

0002
00013
06004
000S

0006
noor
000A
0009

0010
0011
0012
0013

0014

Y YYS
L]
1s

$SST
1s»
18SSS
STSSS

TSSS

GE
AGS

panuijuoo
ddvd <<<

>>> PADR
“continued

PROGRAM ADD RECORD FORMAT.

Each auto~load program that is used as input to the PADR Function must

be preceded by a PADD record.

The PADD format is as follows:

-l'v

--=7 8 - - - 12131415 - - - - = - - - - - - 27 2829 -
where:

a., > > > PADD - user program call.

b, diiiii - program identification.

c. t - type of program being stored.

serial (non-programming).

-~ on-line tramsaction routines.
multiprogramming assembler program,
- multiprogramming COBOL programs.

- non-programming COBOL programs.

n QN °O =3 =
i

- MCP II systems tape.
d. b - reserved - must be blank.

e. i/oconf - is the input and output configuration

required for running the program. This field applies

only to multiprogramming programs.
i - input reader 1.
1 - card reader 1.
A - paper tape reader.

blank - unit is not required.

/ - input reader 2.
1 - card reader 2.
A - paper tape reader.

blank - unit is not required.

L-6

>>PADD i i i 4 i t b i / o ¢ o n f i g ur a t n p p 1 1

>>> PADR

continued

o - output punch.
0 - card punch.

+ - paper tape punch.

blank - unit is not required.
¢ - blank (reserved for the system).
o - line printer 1.

1 - printer (no tape back-up).
T - printer, tape back-up is allowed if
a printer is not available (assembler

programs only).

n - line printer 2.
2 - printer (no tape back-up).
T -~ printer (tape back-up is allowed).

f - number of magnetic tape units.
1-6 - number required.

O or blank - none required.
f. dguratnpp - reserved for the MCP.

g. 11 - program blocks to load when the main portion of

the program is loaded into core memory.

h. tttt - total program blocks (main core plus overlays)

included with this program.

The following tests are made on input data during the Program Add Tape

creation run.

a. The program identity in the Program Add Record must be

identical in each card image record.

b. The sequence number field must be identical to that

supplied by the assembler.

b=

>>> PADR

continued

c. The "Program Blocks" field to load, and the "Total Program
Blocks" supplied by the Call or Padd record must agree with

the actual input counts.

A standard End-of-File card (or record) signifies the completion of

the function.

>>> PLTM

PROGRAM LIBRARY TAPE MERGE (2 > > PLTM) MAGNETIC TAPE VERSION.

The purpose of the PLTM Function is to create a Tape Operating User
System File. The MCP II System Tape (or previous User System
File) is merged with the program ADD tape to create a current User

System File.

To become part of the User System File, the programs on a Program Add
Tape must be in alphabetic sequence. This function will test the
sequence of the Program Add Tape, and merge the User System File with
the Program Add Tape.

The PLTM Function is executed from machine location 800 and utilizes

eight blocks of core using the end of memory for binary tape writes.

The PLTM Function is used in conjunction with the maintenance of the

User Program Tape Library. The format is as follows:

>>> TWCR

TAPE WORD CORRECTOR (z > > TWCR) MAGNETIC TAPE VERSION.

The word corrector for the User Systems File provides the user with
the capability to change any word (12 characters) of any user program
in the library. This function is used in conjunction with the

maintenance of the User Program Tape Library.

This function is executed from machine location 800 and utilizes six

blocks of core.
The following steps describe how the TWCR Function operates.

a. A corrector card or message is read for each word to be

changed.

b. The Call or Padd Record for the referenced program is

located and used as the starting point for the block count.

c. The block number within the specified program is located

and the change made.

d. All changes within the same block are made before the

block is rewritten on a new library tape.

e. The corrector cards or messages must be in the following

sequence,

l) All corrector cards and messages must be grouped by

block number and program,

2) The program sequence must be the same as the library
tape. The library tape (with the exception of the
operating system itself) is arranged by the five-

character identification collating sequence.,

3) The block sequence must be maintained within the

program sequence. The sequence is:

4-11

>>> TWCR

continued

Call record
Block 0001

Block nnnn

4) Word number sequence by block is not mandatory, but

it is recommended to simplify off-line maintenance.

f. Complete tapes are duplicated in sequence. (Changes are

made to affected blocks only.)

g. Changing the Call or Padd Record is accomplished by using
CALL as the block number.

h. After each change is made, the record is printed on the

line printer.,

i. The word corrector listing is grouped by program. FEach

new program causes a skip to the heading line of a new page.

The Tape Word Corrector format is as follows:

v
\

> TWCRi
- - -=--78

=V

where:

a. i - input type. Specifies the type of input device
used for the word corrector.
C - card reader,

S - supervisory printer.
The format for the detail card or SPO message is as follows:

old word new word
CORiii 4 i b b b b w w r r o 0 6 06 6 0 6 06 06 0 0 0 r * a n nnonnmnhhmmnmnannam

zzzvw
1234567891011 121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 K1 b2 &) bk &3 K6

f.12

>>> TWCR

continued

.....

is made.
b. bbbb - block number in which the word is being changed.

c. ww - word number being changed.

d. rr - reserved for the system.
e, 000000000000 - old word being deleted.
. nnnnnnnnnnnn - new word. Replaces the information in

the o0ld field.

Before the Word Corrector input is executed, the detail information

must pass the following validity tests.

a, The program identification number must match a wvalid

program number contained in the library.

b. The block number can not exceed the total number of

blocks specified in the Call Record Program.

c. The old word field must compare equally with the actual
information contained in the library. The check is a 12-

character compare.

An End-of-File card or message is used to signify that all of the

corrections have been processed,

4-13

>>> DPTL

DELETE PROGRAMS FROM TAPE LIBRARY (2 = > DPTL) MAGNETIC TAPE VERSION.

The DPTL Function allows user programs to be deleted from the User

System File, and is used in conjunction with the maintenance of the

User Tape Library Program.

The following steps describe how the DPTL Function is executed.

a.

The DPTL

Ll A

where:

>

The Tape Operating System is duplicated from the old

User System File to a new User System File.

Programs from the old User System File are duplicated
until a Delete Program (specified by the Delete Card or

message) is encountered.

The program to be deleted on the old User System File
is bypassed.

The Call or Padd Record for each deleted program is printed.

Delete cards or messages must be arranged in library
sequence. The sequence is a low-to-high collating order

of the five~character identification field. Out-of-sequence
cards or messages are not processed, and a message indicating

this condition is printed.

An End-of-File record or message specifies that all of the

deletions have been processed.

Function format is as follows:

>DPTL i

- - - =-178

i - dinput device. This field designates the type of
input used for the delete card or message.
C - card reader

S5 - supervisory printer

4-15

>>> DPTL
“continued

The format for the delete card or SPO message used as input for each

deleted program is as follows:

e Y

=>>P D E L i d e n
7 8 - - = 12

where:

ident - the identification of the program to be deleted
from the User System File.

L-16

>>> LLTP

LIST LIBRARY TAPE PROGRAM (Z > > LLTP) MAGNETIC TAPE VERSION.
The purpose of this function is to obtain a listing of any program in
the User System File Library. This function will format a listing

that corresponds with the listing created by the PADR Function.
The LLTP Function format is as follows:

>>LLTPi
- - - - - 78

= 1V

where:

a. i - input device. This field designates the type
of input used for the detail record.
C - card reader.

S - supervisory printer.
The format for the detail card or message is as follows:

>>LTAPident
- - - - -7 8- - -12

=V

where:

ident - program identification for which the listing is
prepared. A detail record must be used for each entry
(unless all programs are to be listed). ALLPG is entered

in the ident field when all programs are required.

L-17

>>> LTON

LIST TAPE OVERLAY NAMES (> > > LTON) MAGNETIC TAPE VERSION.
The purpose of this function is to assist the programmer with the
assignment of program and overlay names. A listing of all the pro-

gram and overlay names (includes those used by the MCP) is printed.

When assigning names to programs and overlays, the list can be

referenced to prevent duplications.
The LTON Function format is as follows:

>>LTON

=V

4-19

>>> DELF

DELETE FUNCTION FROM USERS SYSTEM FILE CALL (z > = DELF)
MAGNETIC TAPE VERSION.

This function allows the user to customize the disk version of MCP II
by eliminating those functions that are not required by the user

operation.

When DELF is used to delete functions that contain overlays (such as
Sort or an Assembler) the user can maximize the disk savings by also

eliminating each of the associated overlays.

Care must be taken not to delete any of the functions that are

automatically called by the Executive or Multiprogramming Controller.
The DELF Function format is as follows:

>>DELTF x
- - = - -178

o A

where:

a. x - input device. This field designates the type
of input used for the deletion card or SPO message.
C - punched card inpnt.

S - supervisory printer input.

The Deletion Input format is as follows:

i i i i
1 - - 4
where:
iiii - function identification

The deletion cards or messages must be in the same sequence as they
occur on the Master System Tape. The LDON listing of the MCP (after
it has been loaded onto disk) will show the function sequence and

appropriate function names that can be used for this purpose.

L-21

>>> ADDR

ADD FUNCTIONS TO MCP IT (Z > > ADDR) MAGNETIC TAPE VERSION.

The purpose of this function is to allow the user to incorporate
"in-house" auto-load formatted functions into the MCP II disk version,

and to customize the MCP.

The first word of the auto-load programs to be added to the MCP must

contain the following format:
+>0VRZ>1iiidizcece
where:

a., diiiz - four character function name. The z parameter
must contain a 12 (R) zone if the function is to be
executed in memory locations 400 through 79@; other-
wise, the function will be called and executed from
location 800.

b. cc - block count of the program being added.

The ADDR Call format is as follows:

> > > ADDR
1~ - —=-7

NOTE
Programs executing from machine loca-
tion 400 should not exceed one block.
The automatic calling of Save/Restore
will not be performed for those programs

executing from machine location 400.

L-23

>>> LPAT

LOAD PROGRAM ADD TAPE TO DISK LIBRARY (z == LPAT) DISK VERSION.

The purpose of this function is to initialize a User Program Library
or to add programs to an existing User Program Library. A program
library listing is created that indicates the beginning disk file
address of each program, and the number of blocks loaded onto disk.

A SPO message will indicate the beginning and ending disk address of
the disk file User Program Library. The beginning disk address of the
User Program Library is stored in the Executive Routine at machine

location 11#.

The switching of libraries may be accomplished with this function.
When it is necessary to have more than one User Program Library (e.g.,
for debugging purposes), control can be passed between User Program
Libraries (once they are loaded) by initiating the LPAT Function,
stating the number of programs, overlays, and the disk address where
the alternate library had previously been loaded. If a tape unit is
designated as #2 it must be in local status. When the message IS THIS
CORRECT is printed on the SPO, an answer of YES must be returned.

When the system hangs on a tape command, press CLEAR and then CONTINUE
on the Central Processor to return control to the Executive Routine,
and then any program in that User Program Library may be called in the

usual manner.

By placing a U in position 14 of the LPAT Function Call instead of the
normal beginning disk address,>the adding of programs to an existing
User Program Library may be accomplished after a library has been
established and sufficient room is available for the addition. When
initializing a User Program Library, it is advisable to allow for

additional programs and overlays.

The input tape must be formatted (by the PADR Function for Assembler
Programs) in such a way that the Call Record precedes each program,

and the program is in 480 character binary blocks (PADR format).

L-25

>>> LPAT

continued

The LPAT Call format is as follows:

>>>LPAT p p p o o o d d d 4 d4d 4 d
1 « =-==--7 8 - 1011 - - 14 15 - - - - 20
where:
a. ppp - number of programs being loaded. If for an initial
library creation, it designétes the anticipated number
of programs to be included in the User Program Library.
b. o000 - number of overlays being loaded., If for an initial

library creation, it designétes the anticipated number

of overlays to be included in the User Program Library.

c. ddddddd - base disk address where the User Program Library
is to be loaded. If position 14 contains the alphabetic
character U, it signifies tﬁat the programs being loaded

are to be added to the existing User Program Library.

NOTE
The CPAT Function must be used
whenever COBOL programs are loaded

or added to a User Program Library.

Figure 4-2 is an example of a LPAT iﬁitiated library listing.

L4-26

Le-%

npaTH
nP3T2
NP3ty
oP3TA
AYTST
CNTAP
TPPCH
TPTAP

12
14
16
14
na
na
na
n5

Figure 4-2.

1.
AL RLOEKS T7 CALL TV

TNTAL BLACKS TYPE

0112
0014
anté
0018
0n0nAa
0d07
0007
onnv

NNVDODOO®P”D

Example of LPAT Library Listing

NTSK FILE BERINNTNG ADDRESS

000911 4
0009030
000916R
0009100
0009128
0009148
2009158
0009172

panuijuod
Lvdl <<<

Lzzz CPAT I

LOAD COBOL COLLECTOR TAPE TO DISK LIBRARY (> > > CPAT) DISK VERSION.

The purpose of this function is to load or add COBOL programs to the
User Program Library from a COBOL collector tape.

The use of this function eliminates the need for the PADR Function.
(PADR is required with assembler type programs.) The direct loading
of COBOL programs to the User Program Library is accomplished with
this function. After a library of different types of programs (COBOL
and Assembler) has been created on disk, a copy of the library may
be dumped to tape using the DPDL Function. The LPAT Function must
then be used to reload the back-up-program tape.

The CPAT Function format is as follows:

=>2>=2CPAT p p p o o o d d d d d d d

1 -===--7 8 = 1011 - 13 14 - - - - - 20

where:

a. ppp - number of programs being loaded. For an initial
library creation, it designates the anticipated number
of programs to be included in the User Program Library.

b. o000 - number of overlays being loaded. For an initial

library creation, it desigmnates the anticipated number

of overlays to be included in the User Program Library.

c, ddddddd - base disk address where the User Program Library
is to be loaded. If position 14 contains the alphabetic
character U, it signifies that the programs being loaded

will be added to the existing User Program Library.

NOTE
The CPAT Function must be used
whenever COBOL programs are loaded

or added to the User Program Library.

%-29

>>> DWCR

DISK WORD CORRECTOR (Z = > DWCR) DISK VERSION.
The purpose of this function is to provide the user with the
capability to change any word (12 characters) in any program of the

User Program Library.

This function is based at machine location 800 and utilizes six blocks

of core.
The following information describes how the DWCR Function operates.

a. Each word to be changed requires a Corrector Card or SPO

message.

b. The Call or Padd Record for the referenced program is used

to build the address of the specified program block.
c. Call records are located only when program identity changes.

d. All changes within the same block (if in sequence) are made

before the block is rewritten onto the disk file.

e, Corrections may be processed in any order; however, a

recommended sequence is as follows:

l) Program identity sequence should be in the same
order as the additions to the library (reference

the LDON Library Listing).

2) All Corrector Cards or messages for a program

should be together, and grouped by program block numbers.

f. Provision is made for changing the Call or Padd Record

by using CALL as a block number.

g. After each change is completed, a record of the change is

printed.

h. If a change is not completed, a message is printed

indicating this fact (along with the reason).

431

>>> DWCR

continued

i. The Word Corrector listing is grouped by program. Each

new program causes a skip to the heading of a new page.

J. Before a change can be made, the Corrector Card or message

must pass the following validity tests:

1) The program number must be a valid program contained

in the User Program Library.

2) The block number cannot exceed the total number of

blocks in a specified program.

3) The 0l1d Word Field must compare equally with the
actual information contained in the User Program
Library. (This check ig the reason for requiring
a fixed l2-character field for each change.) An
equal compare on l2-characters reduces the possibility

of changing the wrong field.

k. An End-of-File card or message is used to indicate that all

the corrections have been processed.

The Disk Word Corrector Function format is as follows:

=>=>=>2DWCRIi
1 -=-=---728
where:
a. i - input device. This field specifies the type of input
device.
C - card reader.
S - supervisory printer.

The detail card or SPO message format is as follows:

old word new word
WCOR1iii 4 i b b b b w w r r ©¢ 0 0 0 0 0 © 0 © 0 © O r r n 0 n N n N NN " Nn NN
4 567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4O 41 42 43 L4 45 46

2\

zz
23

4-32

>>> DWCR

continued

.....

is made.

bbbb - block number in which the word is being changed.

ww - word number being changed.

rr - reserved for the system,

000000000000 = 0ld Word being deleted.

nnnnnnnnnnnn - New Word. Replacesthe information in

the old field.

Before the Word Corrector input is executed, the detail information

must pass the following validity tests.

The program identification number must match a valid

program number contained in the library.

The block number cannot exceed the total number of

blocks specified in the Call Record Program.

The 0ld Word Field must compare equally with the

. information contained in the library. The check

is a l1l2-character compare.

An End-of-File card or message is used to signify that all of the

corrections have been processed.

4-33

>>> LDPL

LIST DISK LIBRARY PROGRAM (Z = > LDPL).
The purpose of this function is to obtain a listing of any program in
the User Program Disk Library. A listing similar to that created by

the PADR Function (when the program was originally loaded to the
library) is made (figure 4-3).

The LDPL Function format is as follows:

>>LDPLi
- - - - -78

e A

where:

a. 1 - input device. This field specifies the type of
input device for the program identification record(s).
C - card reader.

S - supervisory printer.
The format for the detail card or SPO message is as follows:

>>LDSKident
- - - - - 78 ---12

=1V

where:

a., ddent - the program identification for which a listing
will be made., A record must be entered for each program.
If a listing of the complete User Program Library field is
required, ALLPG is entered in the ident field.

h-35

9¢ -4

PROGRAM
8Lx NO,

cALL

PROGRAM
8Lk w0,

0001
0001
0001
0001
0001
000}
0001
0001

0002
0002
0002
0002
0002
0002
0002

0002

0003
0003
0003
00013
00013
0003
00013y
0003

0002
0004
0008
0008
00048
00048
0004
0008

YDENY!FYC!TYHNI ’25"’ IS OF 09=A9e7}

00

LS 0

0N09144LNTAP

WARA NO, ¢+

Nt 1

'DENTIFICIY‘“NI PDTAP. AS OF 09=N9e74

00
05
10
15
20
?5
10
15

00
0s
10
15
?20
25
30
15

0o
05
10
15
20
25
30
5

no
n5
10
15
20
25
30
35

WARD NO, ¢+ O

+2AVR2ASIAOY
5823047204820
Tn3T12 513
KR25506805%0
707730 392
Th3712 183
61 000

117012392392

117012392392
Tx3183410623
60 110110080
512181387270
60 2102101R0
71125200 161
J 000289000

111350326326

+3EGCNTAPASO
87050 YY SC
9950000092548

+20FILE= 900
95050 c

€
29050 ¢
0n 5007105

0399610520
Tn2856R50396
BSNS0 Wss»SC
8NCTLA30702C
702¢Cc76C7

Figure 4-3.

WORN ND. L |

592713304470
+ 18664000483

+ 000306

702304 P10
7807728 220
702710 387
004000000060
K22392400020

K22392400020
7n23870002%6
583126336130
T12210000456
J 00318627
542162189150
700a68ASGA00
581360326136

NTAP 0010000
9+ LARELSSOS

+N2FILE= 900
DTAP 00Q
+005

CARDSOO
DTAP NOTTO02A
90540560A505
76897201
701063 co2
DTAP 010T90S
44C60399CN0S
N39A701963

WORD NO, ¢ 2

040007

WORD ND, ¢ 2

4 4007124n0
703306 722
To714a 730
K22730000580
703722 249
Tx3722000166
000000000000
543316400060

543316400060
703450 289
703289000336
702387000256
111161161161
702453400241
700568000500
Tx1378000324

+0000000002¢
00000000
0 SCOTAP

0 COTaP

000000
564503967019
0 4ssS COTAP
+401250364A0
701963 cea
905605607018
0 »SIWCDTAP
nN12701963

WARN NQ, ¢ 3

WNRD NOQ, ¢ 3

135429718719
703306 309
127718005725
KA2580680580
S$21722630678
Q1 6860SK RD
0000002

Sn2181387410

502181387410
J 000289
7031364356169
J 0004005e
812301611356
T7S0400000SET
700668000600

+080348--000

002
900%0

00%
+50%0

619700

59 4927019
NNAs01R00C7
940980050 IW
701963 €32
2e A087013C
011610520
n22¢so0so0 S

WORD N0, ¢ &

WARD NN, & &

112440720720
1223043691349
X027250008%0
TOST1S 3R9
TO3712 0R}
ERR = DISCe

T0®380 490

709340 400
2212560922%6
703146400186
2212%61922%6
J " 001169793
70228104 308
734768000700
000000000 .

61 AS50¢00 18
9999

coTaP 003

COTAP 0N6

+LABEL ERRe
59 80270138
0972702816483

»JCOTAP 0nO
T03¢30 500
240413700721+

610AS0

WssCNTAP 012

Example of a LDPL Listing of CDTAP

PAGE 001

PAGE 002

alv
gl \4
EARY
25
o

g3

>>> DPDL

DELETE PROGRAMS FROM DISK LIBRARY (> > > DPDL) DISK VERSION.
The purpose of this function is to delete user programs from the User

Program Library.
The following procedure is used during the execution of the function.

a. The Call or Padd Record for each specific program is located,

and the program name is replaced with the word DELETE.

b. The End-of-File card or message indicates that all the

deletions have been processed.

c. All remaining user programs on the disk file are written

onto magnetic tape as follows:
1) Each call record is checked.
2) If flagged with DELETE, the record is ignored.

3) If it is mnot flagged with DELETE, the CALL Record
is written onto magnetic tape. The CALL Record
locates the program and formats it from a disk file

program to a Program Add Tape Format.

4) A count of the number of programs converted to

magnetic tape is printed on the supervisory printer.

d. The Load Program Add Tape to Disk Library Function (LPAT)

can be used to reload the User Program Library.
The DPDL Function format is as follows:

>>DPDL i
-----78

=V

h-37

>>> DPDL

“continued

where:

a. 1i - input device, This field specifies the type of
input device for the delete records.
C - card reader.

S - supervisory printer.

The delete card or SPO message used as input for program deletion is

as follows:

>>PDELident
- = = = =78 - = - 12

=1V

where:

a. ddent - the identification of the program to be deleted

from the User Program Library.

NOTE
The DPDL Function dan be used
to create a tape back-up of the
User Program Library by entering
(> > > bEOF) a standard End-of-
File card or messaée. The func-
tion will copy the!User Program

Library to tape with no deletions.

4-38

>>> LDON

LIST DISK OVERLAY NAMES (> > > LDON) DISK VERSION.
The purpose of this function is to prevent the assignment of dupli-

cate names to programs or overlays within the User Program Library.

The LDON Function format is as follows:

= > > LDONi

1 - - --=-78
where:

a. 1 = input.

L - listing. This entry will list only the
program overlaYs from the User Program Library.
blank - will list all the names and addresses from

the User Program Library.

N

Figure U4-4 is an example of an LDON listing after a User Program

Library has been created.

k-39

>>> LDON

continved

DISK NVFRLAY NAMFES AND ANDRFESSES AS NF=N9=09=71,
0P SYSTFM NVERLAYS,

FOJF —
NCKF
NDAF

Automatic Functions

ADAF
nsScL

tFCC

FCOF ___J
STTF NONT7SSA
SAVD 00N7540
FECH 00N763N

SDCM 00Nn76AN
V\/\/\/\/W

PRNOGRAM JVFRLAYS,
NP3ITY NON9N16
AP3IT2 NNNI0DAN
AP3IT3 NANGODARA
nP3IT4 00N9100
AXTST NON912R
CNTAP NNNIYLAG

TPPCH NNNJ1ISA

Figure U4-U4, Example of a LDON Listing

h-Lo

>>> COBL

COBOL SOURCE PROGRAM MAINTENANCE FUNCTION (> > > COBL) DISK ONLY.
The purpose of this function is to provide the user with the capa-

bility of maintaining a magnetic tape file of COBOL source programs.
The function capabilities are as follows:

a. Create a Source Program Tape.
b. Add or delete program(s) to or from the Source Program Tape.
c. Revise, add, or delete Source Program records.

d. List or punch Source Program information.

The implementation of this function requires a working knowledge of

the operating requirements.
The operating functions are as follows:

a. A scratch tape is mounted on MTU-1 for the new

Source Program Tape.

b. The Source Program Tape is updated by mounting

a previous tape on MTU-2.

c. If programs are added from an update tape, they

are mounted on MTU-=73.
The COBL Call format is as follows:

>>CO0BL

la'd

i A%

The first record of each source program must have the following format.

ident b LABEL
1---5 6 7---11

where:

a. ident - a unique five character program name

(the first four characters cannot be CALL).

L=k

>>> COBL

continued

b. b - blank.
c. LABEL - the literal LABEL,

The Source Program Tape Record addition, or revision format is as

follows:

S 8 8 8 S8 X X X X X

- - =--6 7 - - -280

where:
a. ssssss - the record sequence number to be added or revised.
b. =xxxxXx - Source Program coding as required.

The Source Program Tape record deletion format is as follows:

s s s s s s DELETE

1 - ---6 7 -+« -12
where:
a. ssssss - the record sequence number where the

record is to be removed.
b. DELETE - the literal DELETE.

The following is a list of SPO messages, and the actions to be taken

by the system operator,

a. ENTER REQUEST
This message asks what operations the user wants the

COBL Function to perform.
The response is as follows:

1) BUILD - creates an unlabeled 80-character card image
tape of COBOL source programs. The input is through
the card reader, and the new tape is on MTU-1. All of

h-l2

3)

k)

>>> COBL

continued

the programs are sequenced, and a listing made of the

new sequence numbers. BUILD is entered via the SPO.

LISTPG - returns a WHICH LIST FUNCTION message via the
SPO.

The replies to this message are as follows:
a) ALL - prints the complete file.

b) PGMID - prints program identifications. If PGMID
is entered via the SPO, a listing of program names

submitted through the card reader are printed.

c) program identification - prints that individual

program.
ADDPGM - returns a DEVICE message via the SPO.
The replies to this message are as follows:

a) TAPE - programs are added from magnetic tape.

b) CARD - programs are added from the card reader.

This entry copies the Source Program Tape from MTU-2
onto MTU-1, and adds new program(s) from either MTU-3

or the card reader onto MTU-1.

CHANGE - requires an input deck to reflect the revisions

to the Source Program Tape.

The tape mounted on MTU-2 is copied onto MTU-1 until
a matching program name is found. At this point the
change cards (additions or revisions) replace the

existing record(s) from MTU-2.

If the change record includes DELETE neither record is
written on MTU-1.

-l

>>> COBL

continued

If the record sequence numbers do not match, the input
change records are automatically sequenced. A maximum
of 50 records can be inserted between each source record.

A listing is also made for the user.

An example of the update cycle using the CHANGE option

is illustrated in figure 4-5.

222 HEOF
SSSSSSDELETE
PGIDNTbLABEL
SSSSSSDELETE
SSSSss |
SSSSSSDELETE
PGIDNTbLLABEL

Figure 4-5, CHANGE Deck

NOTE
The input deck must be in the same

sequence as the Source Program Tape.

5) PUNCH - returns a PGMID message that requires a five
character program name response. This entry identifies

the program to be punched.

6) REMOVE - requires an input deck be entered through the
card reader. The cards must use the same format as the
first source program record (columns 1 through 11). The
contents of the tape on MTU-2 are copied onto MTU-1.

The programs entered via the card reader are bypassed.

A listing of the programs on MTU-1 is automatically made

for the user.

L-hly

>>> COBL

continued

NOTE
All of the options must have
a standard End-of-File (???bEOF)

entry as the last input record.
The B 500 compiler will accept Source Program Tape as input.
The operating functions are as follows:

a. The Source Program Tape is mounted on MIU-2, -3, -4, -5,

or -6,
b. The Library Call Card is required by the compiler.
The Library Call Card format is as follows:

TAPEubXzXxX X X
1 --45617---11

where:
a., TAPE - the actual TAPE.

b. u - the number of the MTU where the Source Program

Tape is mounted.
c. b - blank.

d. xxxxx - the name of the program to be compiled. (The

first program is compiled when this entry is blank.)

A 999 halt will occur when a program cannot be found.

h-Ls

>>> STMT

SYMBOLIC TAPE MAINTENANCE CALL (> > > STMT).
The purpose of this call is to create and maintain separate Master
.Program Library Tapes at the program level. The input can either be

symbolic source language or auto-load card image programs.

‘The implementation of this function requires a working knowledge of

the operating requirements.
The operating functions are as follows:

a. A scratch tape is mounted on MTU-1 for a newly created

Master Program Library Symbolic Tape.

b. The Master Program Tape is normally updated by mounting
a binary Master Programs Library Symbolic Tape on MTU-1
and the scratch tape on MTU-2,

c., The line printer is made READY.
d. The STMT Call is entered wvia the card reader or the SPO.
The STMT Call format is as follows:

>>STMT

- a7

=V

A control card must precede each source program that the user wants to

Add, Delete, or Replace. The formats are as follows:

> > > ADD Adds the following program.
> = > REPLACE Replaces a program with the following.
> > = DELETE Deletes specific programs.

The programs being ADDed must be placed at the end of the update
control deck, and programs that are REPLACEd and/or DELETEd must be in
the same sequence as the program in the Master Program Library Sym-
bolic Tape. The sequence is determined by the verification listing

made during the initial or last update cycle.

LWy

>>> STMT

continued

The first instruction for every program being ADDed must be as follows:

+>0VR>iden ¢t

1 - =-==-=-67--- 11
where:
a. dident - program identification.

A Control Deck setup for the update of a Master Program Library Tape

is shown in figure U4-6.

AUTOLOAD

SYMBOLIC (or)
(cols. 1-8)

Figure U4-6. Control Deck Example

A pass is automatically provided to check the newly created Master
Programs Library Symbolic Tape. This check verifies that the program
has been copied correctly, and that the Master Tape was updated as
specified. The program identifications are tested, which reflects the

sequence of the updated version of the Master Tape.

The following is a list of the SPO messages and the actions to be
taken by the user.

L4-48

>>> STMT

continued

IS BINARY CARD TO TAPE REQUIRED
The message asks if the run is an initial creation of

the Master Program Library Symbolic Tape, or an update.
The response is as follows:

1) YES - initial creation.

2) NO - update run.

The STMT option allows the user to create and verify a binary

card image tape of any card file (regardless of context).

REMOVE WRITE RING

This message indicates that the update or initial creation

is completed, and the verification pass is in progress. The
user follows the message instructions and processes the up-
date deck through the card reader by pressing CONTINUE on the

Central Processor.

VERIFICATION ERROR RESTART

This message indicates that an error has occurred in the
update or initial creation pass. The job is discontinued
by removing the deck from the card reader, and pressing
CONTINUE on the Central Processor.

INVALID UPDATE CONTROL CARD

This message indicates that an improperly punched Add,
Delete, or Replace update control card is in the process.
The job is discontinued by removing the deck from the

card reader, and pressing CONTINUE.

FORMAT ERROR

This message indicates that the format of the first word of
master tape data, or the first instruction in a program card
deck is not +>OVR>iiiiib. The job is discontinued by

removing the deck from the card reader and pressing CONTINUE.

=49

>>> STUR

SYMBOLIC TAPE UPDATE AND RESEQUENCE CALL (Z > > STUR) .

The purpose of this call is to maintain Advance Assembler symbolic
Source Programs at the page and line level., The programs must be
resident on the Master Programs Library Symbolic Tape created by the
STMT Call.

The implementation of this function requires a working knowledge of

the operating requirements.
The operating functions are as follows:

a. The symbolic tape is mounted on MTU-1.

b. The scratch tape is mounted on MTU—Z.*

c. The line printer is made READY.

d. The Call STUR is entered via the card reader or the SPO.
e. Load the input deck into the card reader and press START.

The STUR Call format is as follows:

>>STMT
- - - -7

=V

A control card must precede each source program that the user wants to

Add, Delete, or Replace. The format is as follows:

>>>ADD (additions)
>>>DELETE (deletions)
>>>REPLACE (replacements)
1 --------10

The change deck must be in page and line number sequence, because the
page and line numbers in the source cards serve as the controlling
factor. A control card must precede the source cards that need to be

added, deleted, or replaced.

¥ MTU-2 will comntain the updated and resequenced symbolic tape after
the STUR Function is completed.

h-51

2>> STUR

continued

An End-of-File Card > > >bEOF (columns 1-7) must be placed behind the

last source card of the update deck.

A pass automatically checks the newly created Master Programs Library
Symbolic Tape. The check verifies that the programs have been copied
correctly, and that the updating was accomplished as specified. A
listing of program identification is created that reflects the

sequencing of the updated Master Programs Library Symbolic Tape.

The following is a list of SPO messages and the actions to be taken by

the user.

a. ENTER TAPE NAME TAPE-DISK-SCP-USER
This is a parameter request message. The user must respond
with TAPE/DISK/SCP/USER in order to obtain the sequencing in
their respective categories of 1-49999/50000-99999/1-99999/
1-99999.

b.. FORMAT ERROR
The last card read does not contain one of the specific
control card formats for columns 1<10. After the card is

corrected, the STUR Function is restarted.

c. RD ERR Ul
A read error has occurred on MIU-1. The user can press
CONTINUE on the Central Processor to try again, or CLEAR
and CONTINUE to abort the function.

d. REMOVE WRITE RING
The new symbolic tape has been made and the verification pass
is in progress. The user must remove the write ring from the
MTU~-2 tape, place the update deck back into the card reader,
and press CONTINUE on the Central Processor. This completes

the update verification.

h-52

>>> STUR

continued

VERIFICATION ERROR RESTART
The newly created symbolic tape has not been correctly
verified. The user must press CLEAR and CONTINUE on the

Central Processor to abort the function.

RD ERR U2
A read error has occurred on MTU-2 during the verification
pass. The user can press CONTINUE on the Central Processor

to try again, or CLEAR and CONTINUE to abort the function.

h-53

>>> SSTO

OUTPUT FROM SYMBOLIC PROGRAM TAPE CALL (> > > SSTO).
The purpose of this call is to obtain various types of output from

Basic or Advanced Symbolic Program Master Tapes.

The implementation of this function requires a working knowledge of

the operating requirements.
The operating functions are as follows:
a. The Symbolic Program Master Tape is mounted on MTU-4,

b. Scratch tapes are mounted on MTU-1 and -2 when an assembly

is required.
c. The line printer is made ready when a listing is required.

d. The card punch is made ready when punched card output is

required,

e. The Call (> > > SSTO) is entered via the card reader or the

SPO.
f. Follow the instructions displayed on the SPO.

The SSTO Call format is as followss

The following is a list of the SPO messages and the action to be taken.

a. ENTER 10 CHARACTER PROG HDR ID
This is a parameter request message and will re-occur after
the entry is processed, or until a standard End-of-File mes-
sage is processed., If all the programs on the Symbolic Pro-
gram Master Tape are to be output, the response is ALL. When
individual programs are affected, the response is a

10-character request of +>OVR>TIDEN.

h-55

222 SSTO
continued

b. ENTER TYPE OF OUTPUT - ASBL, ASOP, PCH, LIST or P&L. This
is a parameter request message and is used in conjunction

with the item a message. The response is as follows:

1) ASBL - Basic Assembler Call.

2) ASOP - Advanced Assembler Call.

3) PCH - punches the specified program.

4) LIST - lists the specified program.

5) P&L - punches and lists the specified program.

c. IS OUTPUT TYPE SAME FOR ALL ENTRIES
This is a parameter request message and is used in

conjunction with item b. The response is as follows:

1) YES - all subsequent entries will have the same type
of output.

2) NO - an ENTER TYPE OF OUTPUT message will appear for

all subsequent entries.

d. SAVE MEMORY - DESIGNATE UNIT
This is a parameter request message, and will follow
item ¢ after an Assembler has been specified. This message
will appear after the first specification, and signifies the
type of media on which the SAVE or SAVD Function will store
memory before completing the assembly process, The response

is as follows:

1) MTU number - memory is stored on magnetic tape.

2) # - punch card memory.

Each subsequent assembly process will bypass the SAVE
MEMORY - DESIGNATE UNIT message, and memory will be stored

on the previously specified media.

e. IS OUTPUT SAME FOR ALL ASOP PROGRAMS
This parameter request message is displayed when the first

request for a program on the Symbolic Program Master Tape

L-56

Z>> SSTO

continued

and MCP II Advanced Assembler is received. If the
response is YES, it will initiate a subsequent

ENTER TYPE OF OUTPUT message (item b). This will auto-
matically call ASOP., This reply will not make it neces-
sary to repeatedly respond to this message. A NO entry
will indicate a message that requires assistance from the

system operator.

CARD OUTPUT FOR ASOP

This parameter request message appears whenever an ASOP
parameter is used to assemble a program from the Symbolic
Program Master Tape. (Reference item b.) The response

is as follows:

1) YES - the auto-load object program card deck is punched.

2) NO - the punch operation will not occur.

PROGRAM TYPE - ADVAN, BASIC, AUTOL, 80-80
This parameter request message is used in conjunction with
the PCH, LIST, or P&L replies to the item b message. The

response is as follows:

l) ADVAN - the requested program ID identifies a
program in the MCP II Advanced Assembler symbolic

format (reference item a).

2) BASIC - the requested program ID identifies a
program in the Basic Assembler symbolic format

(reference item a).

3) AUTOL -~ the requested program ID identifies a

program in the auto-load format (reference item a).

4) 80-80 - an exact card image must be produced for the

date represented by the program-ID (reference item a).

IS PROGRAM TYPE SAME FOR ALL ENTRIES
This parameter request message is used in conjunction with

the AUTOL or 80-80 of item g. The response is as follows:

k=57

>>> SSTO

continued

4-58

1) YES - all subsequent PROGRAM TYPE message requests

will automatically call the specified format.

2) NO - indicates to SSTO that the format type specified
in item g will not be the same, and that each PROGRAM .

TYPE message requires a response.

END FLAG SAME FOR ALL 80-80 ENTRIES
This parameter request message is used in conjunction with

the 80-80 reply in item g. The response is as follows:

1) YES - all subsequent END FLAG messages will automatically
call the specified formats. The 80-80 function will look
for the same ending label on each subsequent 80-80

request.
2) NO - all END FLAG request messages require a response.

END FLAG LENGTH

This parameter request message is used in conjunction with
the item g 80-80 reply. The response to this message is
the number of characters in the ending record flag that will

be used to delimit the transfer of data to the 80-80 function.

A one character response can indicate from 1 to 12 characters

of flag data entered in the following manner:
1, 2, 3, 4, 5, 6, 7, 8, 9, #, @, 0, (#=10, @=11, 0=12).

This message is repeated if an invalid character is entered

by the user.

END FLAG POSITION

This parameter request message is used in conjunction with
the item g 80-80 reply. The response to this message is
the MSD (most-significant-digit) character position of the
flag field within the ending record that the 80-80 function

will seek to delimit the transfer of data.

>>> SSTO

continued

The reply must be machine words and characters 000 through
067, e.g., 0l@ is the 24th position of the record, and 019
the 21st.

This message is repeated if an invalid character is entered

by the user.

END FLAG CODE

This parameter request message is used in conjunction with
the item g 80-80 reply. The response must be the actual
contents of the flag field (1 to 12 characters of significant
ending label flag data).

PROGRAM NOT FOUND ON TAPE program-ID
This message indicates that the end-of-tape has been

processed, and the specific program-ID was not found.

The RWD Call should be used as a precautionary measure to
assure the user that the tape was properly positioned. After

using RWD, the user can re-enter the SSTO Call.

If the program is truly missing, SSTO can be discontinued by

using CLEAR and CONTINUE on the Central Processor.

flag data NO END RECORD
This message indicates that the end of tape has been pro-

cessed, and the flag data specified in item 1. was not found.

The SSTO Function is automatically discontinued. The user
must re-enter the SSTO Call, and the correct end flag data

when it is requested.

Lh-59

SECTION 5
MCP II SORT CALL FUNCTIONS

GENERAL.

MCP II provides the user with the functions to assist in the genera-
tion of sort programs., Magnetic tape or disk file working storage
can be specified by the user. The Sort IV Mark II Generator will

produce object programs that can be executed in a multiprogramming

environment.

The following pages within this section describe each of the sorts

and their features.

The functions described in this section are:

¥ a, > > > SGRT Sort/Merge Generator II (tape sorts).
*¥%¥ b, > > > SGIV Sort Generator IV (disk sorts).

¥ Refer to B 500 Sort Generator II Reference Manual (103M279) for
detailed information.

*% Refer to B 500 Sort Generator IV Reference Manual (1034139) for
detailed information.

>>> SG2T

SORT/MERGE GENERATOR II (> > > SG2T).

This function is divided into two parts: Sort Generator II, and

Magnetic Tape Merge Generator.

SORT GENERATOR IT.

This function provides the capability of producing efficient sort and
merge programs designed to meet individual file and system require-
ments. Sort or merge programs can be generated for either a 9,.6K or
19.2K system, and tape unit requirements range from a minimum of three

to a maximum of six., The unbalanced merge technique is employed.

An optional output for the generator may be in Advanced Assembler
Symbolic form. This form provides several points for modifying the

generated program; otherwise, an object program is genérated.

Three input specification cards provide the file parameters and

system characteristics required for program generation. Some of the
program features are magnetic tape label processing, sort key of up

to 60 characters located in up to ten fields within the record, and
the sequence in ascending or descending order. The location of the
sort key within the record may be specified at generation timé or,
optionally, at run time. Interrupt and restart capabilities are also

provided.

Program generation is based upon the selective routine method, and it

in turn depends upon one or more input specification values.

The generator is a single-pass program divided into four phases. The

following is a brief description of each of the phases.

AUDIT PHASE. During the audit phase of the generator, the three spec-
ification cards are read and their contents audited. The specifica-
tion cards are printed in an edited format, followed by specification
errors (if any). During this phase, the nucleus of a wvalue area

needed for the routine selection process is established.

5-3

>>> 5G2T

continued

ALLOCATE MEMORY PHASE. Memory requirement allocation for the gener-
ated program is based on logic requirements, I/O requirements, and
user requirements., The balance of the values area requirement is
inserted. If memory requirements exceed memory availability, alter-
nate methods of generation are automatically attempted. If these
alternate methods give unacceptable results, generation is

discontinued.

PROCESS GENERATED PROGRAM PHASE. Generator program routines are
checked and needed routines are selected from the prototype file. The
output is in punched cards or written on magnetic tape. An Advanced

Assembler Control Card for the generated program will be produced.

GENERATION END/ASSEMBLY CALL PHASE. The necessary housekeeping
function for the generator are completed (and if final output was
designated as symbolic) the program ends at HALT 999. If Auto-Load
Output is specified, the ASOP Assemblgr is called, and the generated

symbolic sort program is assembled to Auto-Load.
The following is a list of features:
a, Files may be sorted into ascending or descending sequence.

b. A generated sort program will process BURROUGHS standard

beginning and ending labels for input and output tapes.
cs Unit records up to 1200 characters in length may be sorted.
d. The Sort Key may have a maximum of 60 characters.

e. The Sort Key may be located in as many as ten sort fields
within the record. FEach field can be alphanumeric or

numeric.
f. Total control is provided at the user's option.

g. Input and output blocking of up to 1200 characters is
permitted.

5-4

>>> 5G2T

continued
h. Logic routines are optimized.
i. Generated coding is optimized.
Je Intermal blocking throughout a sort will be the maximum

permitted by available memory.

k. Modification points have been provided in every phase of
the sort.

l. A restart procedure has been incorporated into each sort.

m. The Sort Key locations can be specified at generation or at

run time.

MAGNETIC TAPE MERGE GENERATOR.
Like generated sorts, a merge provides for interrupt and restart
capability, along with several user modification points within the

program.

The following is a list of features provided for generated tape merge

programs.,
a. Files may be merged in ascending or descending sequence,
b. A generated merge program will process beginning and ending

BURROUGHS standard tape labels for input and output tapes.
c. Records of up to 1200 characters in length can be merged.
d. The Merge Key may have a maximum of 60 characters.

e. The Merge Key may be located in as many as ten fields within

the record.
f. Input requirements.

1) Labeled and unlabeled files may be mixed.

2) Input blocking may be mixed for and between files.

5-5

>>> SG2T

continued

g. Provision has been made to provide access to unique modifi-

cation points for each input file, and common modification

points for all files.

h., A restart procedure is incorporated into every tape merge.

>>> SGIV

SORT GENERATOR IV (> > > SGIV).

Sort Generator IV provides the user with a generator program for
customizing sort programs. The generated programs are désigned to

utilize the disk file during the sorting operation.

SGIV is a single-pass multiple-phase program that generates a
tailored Record or Tag Sort in either the Advanced Assembler or
Auto-Load form. Programs may be generated for multiprogramming or
non-multiprogramming execution. In addition to providing the sort
program, the Sort Generator produces a completely documented program
listing which includes numerous "modification points." Using this
listing the user can modify the generated program at the symbolic

level.

The disk sort employs an eight-way balance merge when sorting on a
9,600 character memory system, and a 16-way balanced merge when sort-
ing on a 19,200 character memory system. During the internal sorting
phase variable length strings are created. This ensures the least
possible number of merge passes. The size of the stringing array is
dependent upon the individual file parameters and the system charac-
teristics for the program generated. The sort generator allows for
the interruption of the program at any time during the sorting opera-
tion, and may be resumed simply by reloading the sort program with

RESTART punched into the work area card.

The parameters are passed to the generator by three input specifica-
tion cards. Prior to generation these specification cards are
printed and edited. Any error or inconsistency during this edit
phase will cause a message on the line printer, and generation is

discontinued.
The following is a list of the Sort Generator IV features.

a. Sorts records of up to 1920 characters in length (1200

characters on a 9.6K system).

5-7

>>> SGlV

continued

b.

Sorts blocked or unit records stored on magnetic tape, disk

file, punched cards, or punched paper tape.

Produces sorted output of blocked or unit records on mag-
netic tape, disk file, punched cards, or punched paper

tape.
Sorts files on either a 9.6K or a 19.2K memory system.
Permits a sort key of up to 96 characters in length.

Allows the sort key to be located in up to ten fields within
the record, and permits each of the ten fields to be either

alphanumeric or numeric.

Arranges the file in either ascending or descending

sequence.

Allows the termination of a Tag Sort with either address

output or control record output.

Permits the sorting operation to be interrupted and then

restarted.

Provides for a record count and block count during input

and output phases.

Provides for the printing of the readable portion of

unreadable input records (with an optional halt).
Sorts as many records as can be held on the disk work area.

Deletes or selects records during the input phase, under the
control of a given characteér in any specified location

within the record.

Processes a standard tape header and/or trailer label, also
any non-standard tape header label (with or without trailer

labels) up to 80 characters in length.

>>> 5GIV

continued

Provides for the user modification of generated programs at

the symbolic level.

Provides an area of memory for the insertion of Translation

Tables to utilize the Transfer and Translate command.
Operates with or without the Operating System.,

Generates programs for execution in either a batch or

multi-programming mode.

5-9

SECTION 6
MCP ITI ASSEMBLER FUNCTIONS

GENERAL.

MCP II provides Advanced and Basic Assemblers as self-contained func-
tions within the disk and magnetic tape versions. The assemblers (as
well as several related functions) can be initiated either program-
matically or manually by issuing an appropriate function call to the

Executive Controller.

The MCP II Basic Assembler is a subset of the B 300 Basic Assembler
(ASOlh). SPO messages have been added, and most of the halt-operators

eliminated.

The MCP II ASOP Assembler is a subset of the free-standing Advanced
Assembler (ASOl6). It will produce object programs that optionally
are "memory floatable" to allow multiprogramming. In addition the
assembler will automatically create interrupts after the issuance of
an I/O operation, so that the multiprogramming capability can be fully

utilized.

Also available for use is a modified version of the ASOP Assembler
which may be obtained from the latest Software Master. This assembler
may be used in lieu of the BASIC and ASOP Assembler. The enhanced
features include a 19.2K Disk Assembler with all ASOP features, capa-
bility to enter Basic Assembler Routines, and a resident Macro
Library. This Assembler will make a significant difference in

assembly time whenever a Macro Library is required.

The following pages within this section provide a detailed descrip-
tion of the Assembler and its related functions. These functions are

listed in table 6-1.

Additional operating procedures may be found in the MCP II Operations

Manual (1043783), and in the Basic Assembler Reference Manual
(1035813).

Table 6-1

Assembler Function

Call Description
> = > ASBL Basic Aésembler Call
> > > REFR Re-reference Basic Assembler
Symbolics Call
> > = ASOP Advanced Assembler Call
> > = RFAZ Re-reference Analyzer Call
> > > CMLT Create Macro Library Tape Call
> = = CSTP Create Systems Tape

>>> ASBL

BASIC ASSEMBLER CALL (2 > > ASBL).

The Basic Assembler will not operate in a stacked input mode, but re-
turns control to the Executive Controller at the end of every assem-

bler output process. If successive assemblies are required, it will

be necessary to place an ASBL Call Card in front of each symbolic deck

of the batch.

The MCP II Basic Assembler output is in the form of an auto-load
object program deck, and does not contain the "flotation code" needed

for multiprogramming.

The peripherals required to use this assembler are: Two scratch-
tapes (designated units one and two), card punch, and a line printer.

The assembler may be called through the SPO or card reader.

The ASBL Function format is as follows:

=>>>=A S BLXx
1 -==-=-728
where:
a. x - type of symbolic source input.

B - binary coded magnetic tape input.

blank - punched card input.

>>> REFR

RE-REFERENCE BASIC ASSEMBLER SYMBOLICS CALL (z > = REFR).
The purpose of this function is to re-assign reference points within
a Basic Assembler symbolic source program card deck, and to produce a

reference program listing and new source card deck.

This function utilizes the card reader, line printer, card punch, and
magnetic tape unit. Symbolic source input is entered through the card

reader, and is followed by a standard End-of-File card.

The REFR Call format is as follows:

>=>2>REFRZXx
1 - - - - -78
where:
a. x - variable entries.

C - stacked programs are assigned consecutive numbers.
blank - the first page number of every program starts
with number 01, and is numbered consecutively until

another program in the input stack is processed.

>>> RP&L

RE-NUMBER BASIC ASSEMBLER SYMBOLICS SPECIFICATION CARD (z = > RP&L) .

The purpose of this card is to reassign specific page and line numbers

within the

Basic Assembler symbolic program source card deck.

This card must be used in conjunction with the REFR Function call.

After the REFR Call is initiated, the following format for the RP&L

specification card is used.

zZz2

1 - -
where:

a. p

b. 1

RP&LDPI1
---789

- page number to be assigned at the point of insertion.

- line number to be assigned at the point of insertion.

6-7

>>> ASOP

ADVANCED ASSEMBLER CALL (> > > ASOP).

The MCP II Advanced Assembler returns control to the Executive Con-
troller at the end of every assembly output process. If successive
assemblies are required it will be necessary to place an ASOP Call
card in front of each symbolic deck to be processed in the batch.

The output produced by the MCP IT Advanced Assembler will be in the
form of an auto-load object program deck, an auto-load object program
magnetic tape, or the auto-loads may be placed on a specified disk
file area for the creation of a Program Add Tape (depending on the
coding of the HEAD card). If Multiprogramming Macros are utilized,

the auto-load data will contain multiprogramming flotation code.

If a macro library tape is used as input, mount the macro library

tape on magnetic tape unit (MTU)#l, ready the line printer, and enter
the ASOP Call, Additional operating procedure can be found in the

MCP II Operations Manual (1043783). Instruction format for ASOP can
be found in the Advanced Assembler IT Reference Manual (1042769).

The ASOP Call format is as follows:

>>>A S 0 P t u b b b b b b

1-=-=- - -7 8 9 10 - - - - 15
where:

a. t - type of input device code.

B - binary magnetic tape.

C - card reader.

- disk file (96-character segment).
- disk file (240-character segment).
disk file (480-character segment).
- BCL magnetic tape.

H =2 9 8 0O
1

- paper tape reader.

b. u - unit number of the specified type device. If the type

of unit has been specified as being D, E, or F then this

6-9

>>> ASOP

continued

entry must contain the high-order digit (MSD) of the
beginning address where the file is to reside within
the disk file. :

c. Dbbbbbb - disk file address.é The six lower digits of the
beginning address where the file is to reside within the
disk file. If the type of uhit has been specified as being
D, E, or F then position 10 bay contain an N (if the type of
unit specified is not D, E, or F) to suppress the punching of

card auto-load output.

The following messages may be displayéd on the SPO.

a. TYPE FOR HEADER NOT SPEC ASC - T -M-B ~-D - E - F
An invalid type of input device has been specified for

the HEAD. The system operaﬁor recalls ASOP.

b. 1ST RECORD NOT HEAD
The first record of the source input is not the HEAD. The

system operator must correct the situation and recall ASOP.

c. WORKING STORAGE INV
The type of working storage specified in the HEAD Record
is incorrect. The system op@rator must correct the card

and recall ASOP.

d. WORK TAPES ON x AND y
This message verifies the specifications contained in
columns 31 and 32 of the HEAD Record. No system operator

action is required.

e. LT bbbbbbb/ceccece R W/A bbbﬁbbb/eeeeeee
This message informs the sys%em operator of the assigned
disk file working-storage aréas pertaining to the beginning
(bbbbbbb) and ending (eeceeee) addresses of the Label Table
(LT) and the symbolic Record Work Area (R W/R).

6-10

>>> ASOP

continued

£f. 1INV 1I/0
Disk file input has been specified along with a magnetic tape
work-storage declaration. The system operator must change

the input to some media other than disk file and recall ASOP.

g&. WORK TAPES ON x AND y A/L bbbbbbb
This message informs the system operator of the assigned
beginning (bbbbbbb) disk file address where the object pro-
gram auto-load images will be stored. Reference item d for

an explanation of x and v.

h. NOT ML
This message informs the system operator that the magnetic
tape mounted on MTU-1 does not contain the Macro Library.
The systems operator must mount the proper tape and recall

ASOP.

i. E S/u
This is a MCP II magnetic tape version request that the
system operator enter a MIU. The MTU is used for memory

retention. Any assembler work tape can be used for this

purpose.,

The format for the ASOP Head Record is illustrated in figure 6-1.

6-11

>>> ASOP

6-12

continued
BSEIEEEPE
Nl & A Slzlal . . :
/ MUST BE | PROGRAM g §§EE§ . § aa‘é 5 DIsk “?‘E ADDRESSES
BLANK | IDENT 4 g‘;éa 8 B REMARKS
2SRt 5'4555 ‘
HE A D) 2l 8 [RIRE[FEE BEG. END | BEG. END
000000{00000j0{0000/0j0]0/0j0/010 0/0/0]0(0)0 000000/000000000000/000000/000000000000000000000000
12343 6)70 910 0)12)13 1415 8[17)is]19j28n NP nusanummutg«ummnuuumuuanusunmuuuunuunnnnnunnnnu
IRRRERRNRRERRINERERIT IO RIEIIUL IR RN R R R R R RER AR R R R ERRERERRARER
222222)1222222|122 2 2]2{2]2]2]2(2)2 20212 2222222222?2222222222222222222222222222222222222
333333133333(3|13333[3(3]3]313[3]3 33/3(3]3(3 3333333333?3333333333333333333333333333333333333
4444444040440 4400 001404144 4414/414 4444444444?4444444444444444444444444‘44444444444
555555/55555/5(5555/5(5(5/5/5{5(5 5{5(5{5[55 5555555555?5555555555555555555555555555555555555
666666/66666!6/66066/6/6/6/6(6/6/6 6/6/6/6/6(6 8888BBGGSB;GGGGGBGGG8688866638666666866656656866
177171117171711717171f11 Hm 1171111777571117711177171111T1177771717111117171
8868688888888/8888/8/3)8/8/8(8188/8/8/8/8)8 00080008ﬂlp0800ﬂ88!88080888888880088800000800800
999999/99999]9/99899/9/9(91919(919 8(9(8/9|98 9999999999§9999999999999999999999999999999999999
12345 6j7 8 910 11)12)13 14 15 18[17 18|19, 21'12 N lﬂ 33 34 35 36 37 38[30 4041 4243 M[45 46 AT A0 495031 525354 S5 SB[ST SISO GOGI RZBIMMBS BN NN RTNIUITSNTINAN
Figure 6-1. Head Card Format
Columns Description

1-6 This field is reserved and must be blank.

7-11 Program identificatipn that is later punched into
columns 72-=77 of the:resultant auto-load object pro-
gram deck and placed on each page of the output list-
ing. Any combination of letters and/or digits is
acceptable. When lo?ding/updating the program
library, this field should (as a reference) contain
the current date (MMbDY).

12 Processor memory capacity. The acceptable codes are:
a. 2 - signifiles 9.6K system.
b. 4 - signifies 19.2K system.
13-16 The entry HEAD must be entered in this field to
identify a program header card.
17

This field is reservéd and must be blank,

Columns

18

19

20

21

22

>>> ASOP

continued

Description

Source input sequence check. The acceptable codes

are as follows:

a. N - sequence checking is required.

b. Blank - sequence checking is not required.

sreates a renumbered source deck. The acceptable

codes are as follows:

a. A - renumbered deck is required.

b. Blank - renumbered deck is not required.

If A is coded, the output listing will reflect the
new numbers. If column 18 is blank, the input

sequence number is checked.

The Macro Library is created prior to, or used during

assembly. The acceptable codes are as follows:

a. L - Macro Library is created prior to

assembly.

b. M - the ASOP Macro Library magnetic tape

must be present during assembly.
C. Blank - macros are not required.
This field is reserved and must be blank.

Creates a symbolic listing on magnetic tape (binary).
FEach source input record is placed on tape in a for-
matted 120-character record preceded by the OP Code
and M and N variants of the print instruction. The

acceptable codes are:

a., 1 thru 5 - indicates which MTU is designated

to create a print tape.

b. Blank - print tape not required.

6-13

>>> ASOP

“continued
Columns Description
23-24 This field is reserved and must be blank.
25 Auxiliary auto-load output media. The acceptable
codes are as follows:
a. D - disk file.
b. 1 thru 6 - indicates which MTU is designated
for binary magnetic tape card images.
c. Blank - none are required.
26 Punched card auto-load output/paper tape auto-load
output. The acceptable codes are as follows:
a. P - punched card output.
b. I - paper tape output.
c. Blank -~ indicates that neither is required.
27 This field is reserved and must be blank.
28 Input media is used as input. The codes are:
a. B - magnetic tape (binary) card image.
b. C - punched cards from the card reader.
c. D - disk file - 96 character segments.
d. E - disk file - 240 character segments.
e. F - disk file - 480 character segments.
f. M - magnetic tape (BCL) card image.
29 Input media unit number. The acceptable codes are:
a. 1 or 2 - card or paper tape reader.
b. 1 thru 5 -~ magnetic tape unit.
30 Working storage media that is used during process
assembly. The accepfable codes are:

6-14

Columns

31-32

33-38

39-1k

L5-50

51-56

57-80

>>> ASOP

continued

Description
a. D - disk file - 96 character segments.
b. E - disk file - 240 character segments.
c. F - disk file - 480 character segments.
d. M - magnetic tape.

Working storage media unit number or the disk file

storage unit that is used during program assembly.

Two units must be designated. The first unit
entered in column 31 and the second in column

The acceptable codes are as follows:

a. O thru 9 - disk file.
b. 1 thru 5 - magnetic tape.

Beginning address of the working-storage area

for the unit specified in column 31.

Ending address of the working-storage area on

for the unit specified in column 31.

Beginning address of the working-storage area

for the unit specified in column 32,

Ending address of the working-storage area on

for the unit specified in column 32,

is

32.

on disk

disk

on disk

disk

This field may be used for remarks by the user. The

remarks will be printed at the top of each page of

the output listing.

6-15

>>> RFAZ

RE-REFERENCE ANALYZER CALL (> > > RFAZ).
This function is used to produce a cross-reference listing of the

source programs written in MCP II Advanced Assembler.

This function will process symbolic input from punched cards or

magnetic tape.
The format for the RFAZ Call is as follows:

>>RFAZi
- - - - -7 8

=V

where?s

a. i - type of input.
B - magnetic tape input (binary).

C - punched card input.

Error messages and additional information may be found in the MCP II

Operations Manual (1043783).

6-17

>>> CMLT

CREATE MACRO LIBRARY TAPE CALL (> > > CMLT).

This function will create a Macro Library Tape. It converts the Macro
Edit Routines to magnetic tape with 480-character binary records. All
symbolic macro cards are read and written to tape as binary card image
records. The first card of each macro must contain the macro name in
columns 2-5, preceded by a plus (+) in column 1., Macro routines in
symbolic form may be added to the library tape by maintaining the as-
cending macro name sequence, and by placing an appropriate "spec-card"

with the macro name prior to the symbolic as noted in this paragraph.

The CMLT Function requires that the symbolic macro routines be

arranged in an ascending macro name Ssequence.

The CMLT creates a Macro Directory during the symbolic card-to-tape
operation and writes it to tape. This operation also includes a

search routine as the last record on tape prior to the tape mark,

The CMLT Function is called by the ASOP Assembler of MCP II when col-
umn 20 of the HEAD Record is coded L. It is necessary to previously
construct the Macro Library Tape prior to the execution of ASOP,

because the macro routines will be required by the source program.

The multiprogramming macros obtained from the latest Software Master

are used as input for this function.

A scratch Tape is needed on MTU #1l. The CMLT Function format is as

follows:

>>CMLT
- - - - -7

=V

Additional operating instruction and error messages may be found in

the MCP II Operations Manual (1043783).

6-19

>>> CSTP J

CREATE SYSTEMS TAPE (> > > CSTP).

This function is primarily used to assemble the Operating System. It
may be used to assemble Multiple Advanced Assembler Programs from a
binary card image tape without manually recalling the ASOP Assembler
after each assembly. Output auto-load records will be magnetic tape
in binary card image form. The auto-load tape may be used as input to

PADR for the creation of a program add tape.

The CSTP Function format is as follows:

>>>CSTPnt

1l - ==-=-7809
where:

a. n - systems tape.

1 - Tape/Disk Operating System.
3 - Multiprogramming Operating System (MCP II).

4 - Multiprogramming Operating System and 19.2K

Supervisory Control Program.
b. t - symbolic listing code specified in the HEAD Record.

The CSTP Function performs all the operations necessary to create a

system tape from a symbolic binary tape.
The following format is used to create a binary card image tape.
a. PADD record for a Tape Operating System.

b. Auto--load records of all the programs in the Tape Operating
System.

Cc. Standard End-of-File Record.

d. DPADD record for the Disk Operating System, or the Disk
Operating System plus the Supervisory Control Programs (SCP).

6-21

>>> CSTP

continued

e. Auto-load records for the Disk Operating System Programs.
f. If MCP II/SCP is specified, auto-load records for SCP.
g. Standard End-of-File Record.

CSTP passes the necessary parameters to call in PADR and create the

system tape.

NOTE
The PRTB Function of MCP II is designed
to print BCL records; however, this
function may be used if the tape reads

are manaully changed to a binary read.

6-22

SECTION 7
OPERATING SYSTEM ASSEMBLER

GENERAL.

The Operating System Assembler (ASOP) is an enhanced version of
Advanced Assembler II. Primary features include name and program
point labeling (with entry incrementing and decrementing capabili-
ties),Control Transfer and Edit Commands, a program debugging package,
memory dumps, library capabilities, and a large complement of pseudo

and macro commands.

INPUT CAPABILITIES.

The Operating System Assembler permits the input source program to be

in the form of punched cards, punched paper tape, magnetic tape, or

disk file.

PUNCHED CARD.

Punched Card input is any wvalid character.

PAPER TAPE.
Paper tape input must be an eighty character card image format and
contain any valid character. The input tape is not rewound before

assembly.

MAGNETIC TAPE.

Magnetic tape input can be in a BCL or binary mode, but both modes
must contain card image records. Binary records may contain any valid
character. Group marks cannot be used in the BCL mode. The input
tape will not be rewound prior to assembly, thus allowing multiple
assemblies from the same tape. Output from an assembly may be pro-
duced on the same tape as the input source program, but the input

source program is destroyed.

DISK FILE.
The disk file input must be blocked as follows:

a. Block size must be 480 characters.

b. Each block must contain six card image records,

The input data must be located at the disk address specified in the
program header card. If the head record is on the disk file it may be
either the first record of the first block, or located in a separate

block. Input is destroyed during the assembly process.

ADVANCED ASSEMBLER LANGUAGE.

Throughout this section references will be made to the coding form
illustrated in figure 7-1. The fields and their various uses are

descrited in the following paragraphs.

CODING PROCEDURES.,

Each line of coding form represents one entry (an instruction or a
constant) that is divided into nine fields. In preparing the symbolic
program, it is dimportant that all of the entries be made in the cor-
rect fields and columns. References are made in the following para-
graph to any "acceptable character." A question mark is not a valid

character.

PAGE (COLUMNS 1-3).
The page number is a three-position alphanumeric field that is used to

sequence multiple sheets of coding.

LINE (COLUMNS 4-6).

The line entry is a sequence number for each line of user code. This
field is usually numeric with the units position (col. 6) reserved to
indicate the insertions of additional entries after initial coding is

complete.

If sequencing is required, columns 1-6 will be checked during assembly

by the standard collating procedure.

SYMBOLIC LABEL (COLUMNS 7-12).

The symbolic label is a group of characters that serve as a name of an
address in memory. The assembly process will assign a unique address
to each unique symbol appearing in the program. Two types of entries

are permissible as symbolic labels: Symbolic Names and Program Points.

€-L

Burroughs ADVANCED ASSEMBLER II CODING FORM

1{2]3 PROGRAMMER DATE
PAGE
PROGRAM IDENT.
LINE| symeoLic | op [VARIANT A ADDRESS B ADDRESS C ADDRESS
REMARKS
vol| “nme |cooe [uTw| e | fuc[oir| wo [foclom| e [focgr
4]sle]7]s]slioftfi2f1al1a]is|i6}s 7t s]t oo ol 21fe2]esloalo sl2s]2 28R nls o] s 2|5] alas36]s7]s a]s oac]a 1 s2]ss]sales]ac]a2[as]s o5 o5 1[s2]s] sa]ss]s6]s7 s a]s o]e ole 1]62]s e fe s[eele e elo o o] 1 [r2fra]7 4 fr sl 6] 77 8] o] a0

01,IIIIIIIIIIIIIII 1S R T N T T TS N O A O T

oz'Illllllllllllll) I S T N T N T A Y I A B o

°3|llJlIIIIIllllll I 1 O N N 1 T T O N I O O O I

oal vyl

osl vy vl

1 1 1 S T T O v

[S N 1 T (5 T T A IO O T I

osIIIllIllll AN I N Y N A W I o i v

°7| | I I | [1 11 T N N T T Y O O O I O R

o8| |) 441 I

°9I [N

1ol fy vy laa]

| 11111 11 1 111 | 1111 L1 Y S N T O 1 T O I I I

1 1 1111 11 L1 11 11 I T T 1 N T N T O A

121 11111 111 l] I 1 1 1111 | L1 1 1| 1N T OO O T T O (s O T O O
13' [111 i | | 1 1 1111 11 L 111 | 1 [1 T T N T A I I IO
14[1 1111 1 &1 { | I T | 11 | - I ! L1 11 11 N T T I T T O T 1 s o B

15 v o v gl oaa g

16 |y vyl iaala

17 byl

8] oyl

L1 N N NN

2ol by gy fiaa b g B

jllLlIIIlllIJ_Llll 1 | 1 N T N T T O N S T T T A I A |

||ll|I|IIIIILlIII (1N N N T T N N T O O T T I O I

I
|
|
I
I
I
|
|
I
I ,
RIE NN R e NN Lt i
I
I
I
I
|
I
I
I
I
I
|
I

AT

l | j I O O I I | | I | L d) N N T N N U s Y T O N T A A B
Printed in U.S. America Form 1041969

Figure T7-1. Coding Form

SYMBOLIC NAME. A symbolic name is a collection of from one to six
alphanumeric characters (including blanks). The first character must
appear in column 7 of the Symbolic Label Field. Special characters
are permissible in any position of the symbolic label except the
first. Characters other than a decimal point should normally be used

(figure 7-2).

LINE| symBoLic | op [VARIANT A ADDRESS B ADDRESS C ADDRESS
No.[1| LABEL | CODE | y | y TAG r.c| Shen: TAG F.Lc| S TAG F.L.C)
4sfe]7]s[s]roftefrzfra]1afrs]sofs 7]s o] ofeof2fezfealealosfas]orleefeslsals fa2]asfsafas|aslarfasla aclat|sz]assskaslac]aras]as]s ofs1]s2]ss]:
ot/ N v JADD L T AL Ll B Ll IS 1
oz Lyl pa el i ICRILJIIIIII B BN !
os| INAMEI2ICST | | “19 [=12 |3|' 1-5'16-|7|"|81' O -0 il iii1g |
oal Ly vyl RN RN RN TN |

Figure 7-2. Acceptable Symbolic Names

PROGRAM POINTS. These points are reusable two-character labels, the

first character is a decimal point and the second character is alpha-
betic (A through Z). Each alphabetic character may be used a maximum
of 100 times. The relative position of each program point address

indicates its use.

Between two program point addresses having the same character, a pro-
grammer may prefer to minus that specific character (meaning the last
program point defined with that letter) or he may prefer to plus that
character (indicating the next symbolic program point of that

particular character, figure 7-3).

OP CODE (COLUMNS 13-16).
Standard mnemonic operation codes are a left-justified entry. Table
7-1 lists the acceptable mnemonic operation codes. This field is also

used for assembler control commands.

7=k

LINE SYMBOLIC oP VARIAN A ADDRESS B ADDRESS C ADDRESS
No|1| LABEL | CODE | y | y TAG Fic) Suen: TAG FLc| Sham TAG F.Lcl fNeR
afsle]7]8]o]roft1]i2]1a]rais]is 17]181 9f20] 21]e2f2324]25]26]27]282 of3 o] 3 1]s2]3 3|3 4[5 5|3 6]37]3 6[3 ofa0a 42{45[14 45]46[47[43]49[50 51[s2[s3 54[55]56
o1 A W TER L BHF 1 | |1i@10101|| N e W LA
oz| L&y [TCB | 1 L BHH Ll Ry Ll =AL 00,3
o3| [Fy [TFER LT 2FA c Lo Bl Ll MK L1
°4|l||1151R1L311||“1A|||1 I T O T I | I I | L1
os| .M s 1) JADD |ﬂ||2'f\ 11 e f S Ll 1 K1 11
osl | vy HLT | 2] Ot F A N NN L1
o7| K 1 €8T]| 2lo0 1 | Lot e N R 11
°°|0|RIIIIBIRIUIIII"IFIIII Ll 11 I |) I T S O T I | 1 1
oglolAllllHlLlTl lgllglllll 1411 | |] | I A O | Lt
1ol LF) |BRUYU Ly -A N A Ll il L1
Figure 7-3. Program Point Usage
Table 7-1
B 500 Standard Mnemonic
Operation Codes
Mnemonic Operation
Operation Code p

ADD Add

SUB Subtract

MUL Multiply

DIV Divide

ADM Address Modification

CAE Compare Alphabetic Branch on Equal

CZE Compare Zone Branch on Equal

CNE Compare Numeric Branch on Equal

CAU Compare Alphabetic Branch on Unequal

CZU Compare Zone Branch on Unequal

7-5

7-6

Table 7-1 (cont)

B 500 Standard Mnemonic
Operation Codes

Mnemonic
Operation Code

Operation

CNU

BRC

BRU

ICR

IPR

ICcp

1PP

ILP

IPL

ISP

IMR

IMW

TSS

BBE

SBT

RSB

BBU

NOP

HLT

TFR

TCB

Compare Numeric Branch on Unequal

Branch Conditional

Branch Unconditional

Interrogate
Interrogate
Interrogate
Interrogate
Interrogate
Interrogate
Interrogate
Interrogate
Interrogate
Interrogate
Interrogate
Interrogate
Interrogate

Interrogate

Card Reader

Paper Tape Reader

Card Punch

Paper Tape Punch

Line Printer

Lister

Supervisory Printer
Magnetic Tape Unit Read
Magnetic Tape Unit Write
Sense Switch

Bit branch on Equal

Set Bit

Reset Bit

Bit Branch on Unequal

No Operation

Halt and Branch

Transfer Character

Transfer Character and Branch

Table

7-1 (cont)

B 500 Standard Mnemonic
Operation Codes

Mnemonic
Operation Code

Operation

TFZ

TZB

TT2
TT3
DDC
DEC
MSK
CRD
CRI
CRB
PCH
PBN
PRT
PRL
PLN
PLM
SKP
SKL
SLL

SPO

Transfer

Transfer

Transfer

Transfer

Transfer

Zone

Zone and Branch

and Translate (Table 1)
and Translate (Table 2)

and Translate (6 bit to 12 bit)

Data Compress

Data Expand

Mask

Card Read

Card Read Branch Busy

Card Read Binary

Punch Card

Binary Card Punch

Print on Line Printer

Print on Lister

Print on Lister

Print on Lister

Skip/Space on Line Printer

Skip/Space on Lister

Slew Lister

Print on Supervisory Printer

-7

Table 7-1 (cont)

B 500 Standard Mnemonic
Operation Codes

Mnemonic
Operation Code

Operation

SPR
SRD
SRF
CTL
TRD
TWR
TER
BSP
RWD
MWR
BWR
BRD
PRD
PSF
PSB
PRW
PWR
DFW
DFR
DFC

DFI

Supervisory Printer Read

Sorter-Reader Demand

Sorter-Reader Flow

Control Sorter

Magnetic
Magnetic
Magnetic
Magnetic
Magnetic
Magnetic
Magnetic

Magnetic

Paper Tape
Paper Tape
Paper Tape
Paper Tape

Paper Tape

Tape
Tape
Tape
Tape
Tape
Tape
Tape

Tape

Read

Write

Erase
Backspace
Rewind
Memory Write
Write Binary

Read Binary

Read

Space Forward
Space Backwards
Rewind

Write

Disk File Write

Disk File Read

Disk File Check

Disk File Interrogate

Table 7-1 (cont)

B 500 Standard Mnemonic
Operation Codes

Mnemonic Operation
Operation Code p
DCR Data Communication Read
DCW Data Communication Write
DCI Data Communication Interrogate

VARIANT (COLUMNS 17-20).

For transfer type commands or any of the six permissible compare
commands, the Variant Field is treated as a four-digit numeric field.
For other commands it is separated into M and N variant fields of two
characters each. The M and N variants can represent any value indi-
cated by the Systems Reference Manual (1042769). Leading zeros are

permitted (but not required) for any numeric variant.

If the variant is part of the machine language operation code, the
variant field may be left blank and the assembler will insert the
proper character. If it is required to override the assembler, inser-
tion of the M and/or N variant (or both) may be forced by inserting an
@ sign in the high-order position of the field, and the desired char-
acter in the lower position of the variant (figure 7-4). The

insertion character will not be error checked.

LINE SYMBOLIC oP VARIAN A ADDRESS B ADDRESS C ADDR
No.|1| LABEL | CODE | y | y TAG Fect Suen: TAG rLc| e TAG |

a]sfe]7]8]olro]1s}i2]ia]1a]is]ie]i7]18]1o]20]21]e2]23]24]25]26|27]28Je ofs of 3 1|32]3 33 a|35]36[a7[3 8]a ofa 0] 1]a2]|as]asas]aslar]as]as]s0
or| iy |ADD RARBIA | Ll B NN YR

oz|llll|lllylll I | [T T N S I | Y T N R T

[&]

Figure 7-4. Forced M and N Variants

To force the M and N variant in a transfer type command, a single @
sign is entered in column 17, followed by the two characters to be

inserted (figure 7-5).

No.|1| LABEL | CODE | y | TAG Jre] Shen: TAG FLc) SR TAG |
4sle]7|s[so]1ofssfiz]1a]rais|ic]i7]18]1 020 21]22]20]24]25|26]2 7|2 8] ofs o] 3 1}s2]33}3 a]as]36]37]3 6ls olaola1]s2|as]saas|as]ar]as]acso]51
o1 | 1y TER RCIDH A 1 11 HENE RN Pl B
OZI | 1 41 |l| | | I T O N O O | 1 || | I |

Figure 7-5. Forced Transfer Variants

For transfer and compare type of commands, the variant field is nor-
mally a four-digit numeric field indicating the number of characters
to be operated on. If the number of characters specified is greater
than 132 (transfer type commands), or greater than 12 (compare type

commands), an error flag is printed.

A, B, AND C ADDRESS FIELDS (COLUMNS 21-56).

All three address fields have essentially the same characteristics;
therefore, only the entries for one will be described. Each Address
Field is divided into a tag forced last character and character incre-
ment. The Tag Field becomes the base or starting address while the
character increment is used as an extension of the base address. The
paragraphs that follow describe the coding for each segment within the
address field.

TAG. The following type of addressing is permitted.

a. Symbolic name.
b. Program points.
c. Self-addressing.

d. Machine absolute.

Symbolic Name.

Symbolic names refer to the address assigned to the corresponding

symbolic name in the label field (figure 7-6).

7-10

LINE| gymeoLic | or |vARAN A ADDRESS B ADDRESS

No.|1| LABEL CODE | 'm | n TAG Frc| Shen: TAG Frcl NeRe
aJs{e] T o] oftsfr2]afra]ssfic]i 7]t o ofecf 2 1feelzafeafesfeelz rfeseofs of o fa2]as]aalas]ae]s7]aels ofac]s 1]a2]as]as
ot |y (BR L ISTART P4 ol o | Ll
IR ENENEE SN REE EEEEEE NEEEEEEREEE NEEW
osl iy arjesh bl a0 Ll LlLlil L
oa| {sTART TER | | 13lAL1 110 AR EEEEEE NEEW ,

Figure 7-6. Symbolic Name

Program Point.

Program points are entered as either plus or minus, and followed by an
alphabetic character. A minus followed by a single letter (figure
7-7) refers to the last symbolic label identified by a decimal point'
followed by that particular letter. A plus and a letter refers to the
next symbolic label identified by a decimal point, followed by that
character., If the symbolic label field is identified by a decimal
point followed by a character, and the address field refers to that
same character as a program point, the minus program will reference
the current line of the program. The plus program point refers to the

next symbolic label identified by that character.

LINE] symBoOLIC OoP VARIANT] A ADDRESS B ADDRESS C ADDR
No.|1| LABEL | CODE | y | y TAG FLcl Snen: TAG el SHaR: TAG !
a]s]e 7] loltoft1]io]1s]ra]rs]ie]i {1 8]1 o] o] 21]22f23]2a|25]es]2 7]2 8| ofs of 3 1[5 25 3]s afss|36]s 7|3 8]s o]a o]a1]a2]as]aafas a6 a7]as]as]50]s1
01 I Lttt 11 Bleul { l | _IKI L 11 | 1 1 B I | | I O
on B O 1 11 | L 1 | I | 11 | I I | | J | | .

Figure 7-7. Program Point as an Address

Self-Addressing.

Self-addressing is indicated by an asterisk in the high-order position

of the tag field of an address, followed by five blanks. It refers to
the address of the OP Code position of the entry being written.
Reference figure 7-8. The B Address is transferred to the OP Code

Field of this instruction.

7-11

LINE| gymBoLIc | oP |VARIANT] A ADDRESS B ADDRESS C ADDR

LABEL ODE CHAR, CHAR,
NO.J T c M| N TAG FLC| INCR. TAG F.LC| INCR . TAG |

a]s[e} 7 s[oto]tsliz]sa]1a]is|is]s 7] 1 6]t o] o] 21[22]23]ea]25[26]2 7|28 o]3 o 3 }52]3 33 a|as| 6|3 7]3 8ls ofao]s 1]a2]aslases|aclar]as]aols 0

o Ly ITER LAy 0 LBl Ll B

02!11111114:]1111” Ll e b1t [

O
w

Figure 7-8. Self-Addressing

Machine Absolute.

Machine absolute coding is indicated by an @ sign in the high-order
position of the tag field of the address, and followed by a three-

character machine address constant user entry (figure 7-9).

LINE| symBoLic | op |varian A ADDRESS B ADDRESS C ADDR
No.|1| LABEL | CODE | y | y TAG FLc| Snen: TAG rLc| Shen TAG |
als]e]7]s]o]ioft1[12]13]1a] 5[7]18]1 920 2122[23]ealzs[26]27]2 82 ofa of 3 1[s2[s 3]s a[s5[36]5 7|3 8]3 ola0fa1]a2]aslaafas[a6]aras]as]50[51
o1 |y BRU || @800 T N I
Ozl IllllllLlllLllll |lllJl|!) I I I O O |

Figure 7-9. Absolute Address

LITERALS. Literals may be packed in the unused fields of an
instruction (figure 7-10).

LINE SYMBOLIC oP VARIAN A ADDRESS B ADDRESS C ADDR

i R,
Nnoli| LABeL | copE [y [w TAG FLc| Snen: TAG FLCl NG TAG ‘

afsle]7]s]o 1o]11]i2]13]1afisfi6}s 7[18 19]20]21[22]23]24]25]26]27]28 s of3 of 3 1|32 33]34)35|36[37]38]3 of40]41 a2]a3laalas]as]arfas]as]so

o] | TFR VT3 1y L BEABRC | Ll ITAGE)

w
o
-

ozllllllllllJllIllI [T O I T o I | 0 S T N Y S T A §

Figure 7-10., Packing Literals Within
An Instruction

In addition, literals are permitted in the A Address of an ADM command,
and the B address of DEC and DCC commands. This special case applies
only to these commands. The literals are written with a # sign, fol-

lowed by one to four numbers whose value is O through 1199 (figure

7-12

7-11).

characters to be

The numeric is left-justified and refers to the number of

added.

The number is converted to the appropriate

number of words and characters for inserting a machine language com-

mand .

Preceding zeros may be used provided the length of the literal

(including the # sign) does not exceed five characters.

CHARACTER INCREMENT.

LINE| symBoLic | oP |VARIANT] A ADDRESS B ADDRESS C ADDR
No|1| LABEL | CODE | y | y TAG Frel Sian: TAG FLc| ShaR. TAG i
alsle 7[elobohlbz13b4b5h617h§19ko2|kzhak4k5haz7zah9343ﬂsz34@4343434333940k142%3%445h6kﬂ}4445051
?
o] b ADM L L LS % RN NN clear b
02| L 111t L L1 JEV? Ll i1 % Ll 11 I T l I I I
7
o3| by ADM | BROIL3 % plre iy Ll g
oal | il L OPH L é Pl g BN RN
os| {11411 ADM | | Rool3, é N N [
Figure 7-11. ADM Literal

Character incrementation will cause the tag

address to be modified by the number of words and characters entered

in the Character Increment Field (figure 7-12).

The two most signifi-

cant digit positions represent the word(s) increment, and the least

significant digit position represents the character increment.

Character increment is described as follows:

a.
b.
C.
d.
e.
f.
g.
h,
i,
Je
k.

® % VW NI O F LW NV HF X O

or
of
or
or
or
or
or
or

or

o
o)

BB Q odgdg w2z =2

zero increment.

code position of word.

- M variant position of word.

-~ N address position of word.

- A address position of word.

Tenth position of word.

Fourth or fifth position of word.
B address position of word.
Séventh or eighth position of word.

C address position of word.

Eleventh position of word.

7-13

LINE| symeoLic | op |varian A ADDRESS B ADDRESS C ADDR
No. 1| LABEL | CODE | y | n TAG el e TAG rrc| fae: TAG

4]s e} 7]8]olioftsfiz]1al1alis|i6]s 1]1 6]t o]z 0| 21]e2fes]ales]z6]2 7|2 6foola o] s fs2]s 3]s afas[ae]s7]5 6]s ofao]s1]a2]asfases]ac]ar]as]a o5 0fs1
o] |y ADD | Sl Sk 1y L 1 INCOWINT L BIGOUNT,
02| | [lll [I | |1 T U I O I N S VO U O I

Figure 7-12. Character Increment

F.L.C. (FORCED LAST CHARACTER). The F.L.C. entry is the final step
for developing an address by the assembler. This entry causes the
specific character to be inserted into the low-order position of the
assembled address (figure 7-13). The forced last character takes pre-
cedence over the resultant address formed by the tag and character

increment.

No]i| LABEL | copbE [w | n TAG Frc| Shen: TAG FLc) NeR . TAG ¢

4 I5 6 71 819 ll Oll lIIZ I3Ii 4[1 5l| 6 I’Ill 8 19l20 z1lzz|zelzalzs]zs 27 28}2930'3 1132 33[34]35136]37138 39 40[4\ 42143J44 45146[47]48[49'50

ol [BRI FAL

021 L1t i1 [|!| L1 i 11

(2]

’Iilllllll Pl b

Llre e g tlr b

Figure 7-13. Forced Last Character

REMARKS (COLUMNS 57-80). This field provides the user with a means
of documenting his output listing. Any acceptable character may be

entered in this field.

PSEUDO INSTRUCTION.

Pseudo and macro instructions are important features of this assembler.
The two types of instructions are written in the same general format
as machine instructions, but their affect on the assembly program is

quite different.

Macro instructions can be described as generative type instructions;
whereas, pseudo instructions may be defined as information given the

assembler in the form of a symbolic instruction that describes the

7-14

program being assembled, or a specified manner of assembly. A pseudo
instruction does not usually generate object code in an assembled

program.

Pseudo operation code is written in the operation field while the
variant and address fields contain the information to define the
effect of the pseudo operation. If a symbolic label is associated
with a pseudo instruction (other than EQU) it will be assigned the
current setting of the location counter (the internal counter the
assembler uses to keep track of assigned addresses) prior to any

adjustment of the location counter by the pseudo operation.

The following pseudo operations are treated as entries, and are

documented as follows:

SLC (SET LOCATION COUNTER) .

The SIC is a pseudo instruction that sets the location counter to the
value entered in the A Address Field. The A address may be a machine
language address or a previously defined symbolic name (see figure
7—14). Character incrementation may be used to advance the location
counter ahead of a current value. If the location counter is set
backward, or if the A address contains a non-existent machine address

for a specific object system, an error message will be printed.

LINE| symBoLic | opr [VARIANT] A ADDRESS B ADDRESS C ADDR
No.|1| LABEL | CODE | y [y tac | el Shen: TAG el e TAG |
s]s o] 7]e]olroltsiz]1s)ralrs]efs o] aft ofocf21[ezfes|zazsfoslztele ol o] s tfsefsslaafss]aefs]aels olacfa a2|aslasfes]as|arlaslas]so]st
ot {y i obG || @M | HENE FREEN Ll
oz |y g b M i [I I [B
o3 |y LG |y | [EIINPUT, I I
oal | | 14 11 PPl I T T O O I
osl |y gy LG LBy 1 25 L1111 I

Figure 7-14. Adjusting the Set Location Counter

7-15

ALC (ADJUST LOCATION COUNTER) .

The ALC instruction will adjust the location counter indicated by
the M variant. If the low-order position of the M variant has an
entry, the location counter will be set forward, (if required) so
that its low-order position equals the low-order position of the M
variant. If the high-order position of the M variant has an entry,
the location counter equals the high-order position of the M var-
iant. If both the high and low~order positions of the M wvariant
are filled, then both the units and tens position of the location

counter will be adjusted in that order(figure 7-15).

LINE| symeoLic | op |vARAN A ADDRESS B ADDRESS c AD
No. 1| LABEL CODE | y [n TAG Frel Suap: TAG FLc| e TAG

4]s [e]7TeToTroftssz]rara]r sfrefi o]t sfoo] 2 1fezfesfesfzsfes|e7fes e ofs o 2 1fsz]asfssfss]scfs7[ssla ofaofs1]s2|safaaas]as[ar|as]as]s
ot | JALG O g HEEE FRNEN S NN
o2l { o ALG D L cle g I
o3|l | v 1 JALG 19O 1 | I N N RN

Figure 7-15. Adjusting the Location Counter

EQU (EQUATE).

The label in the Symbolic Label Field is assigned the same address
as the entry in the A Address Field. The A Address Field entry must
either be machine language, or does not exceed the present address
of the location counter (except by character incrementation).

Figure 7-16 illustrates the entries that equate A and B to machine

address.

LINE sSYMBOLIC oP VARIAN A ADDRESS B ADDRESS C ADDR
No./1| LABEL | CODE | y | n TAG F.c| SNAR. TAG FLc| e TAG |
a]se|7]s]olroftifiz]1a]ralis]ie]i 7] 6]t o]z 0|2 1e2]eafeal2s|o6]2 7]z 8 e ofs o] 5 1]s2fs 3]s a[as]s6]s 7]s 8a o|aofa1[s2]as]as)as as]a7]as[as]50]ss
o1l A EQU L [@Z96 NN FEEEN HENE RN
°2|B|||||;E|QIU|||1'1A|||1 Llaa b g Ll

Figure 7-16. Equate Statements

7-16

CST (CONSTANT).

The length of a constant is specified by an entry in the M and N
Variant Field., A maximum of 60 characters of data may be entered in
each constant line starting at the high-order position of the A
Address Field (figure 7-17). Constants longer than 60 characters
will use the first 60 characters of the entry, and the balance of
the field will be filled with blanks.

LINE| symBoLic | op |vARiANT A ADDRESS B ADDRESS C ADDRESS
NO. 1] LABEL CODE | m | n TAG FLcl Snen: TAG FLc| e TAG Frcl feR
a]s]ef7]8]slrofts]io]131a]is|i6]i 7]t 8}1 o]z 0} 21]o2]es]eales|e6]2 7|26 ols of 3 [s2]55]aalas]a6ls7]s 8]s o]aola1[az]aslaskes]asar]as]as]5 05 1]52]s0 54/s5]s6].

o1] [LABEL, |ICST | 7ZBAAAAAE HT T 11 M) —AA

0z] L1 L] L L1111 b 111 ! 11 [1

Figure 7-17. A Constant with 60
Data Characters and
668 Blanks

RSV (RESERVE MEMORY).
This entry is similar to CST, except that the entire area is set to
blanks (figure 7-18). Any part of the Address or Remark Field can

be used for comments.

LINE sSYMBOLIC OP VARIANT] A ADDRESS B ADDRESS C ADDR

No. 1| LABEL | CODE | y | n TAG FLc) Shap: TAG el R TAG |

alsle]7]eloltoft1]i2]13]rais]i6]i 7]18]1 o]2o]21]o2f23]24]25f26]27 28f2ol30[31]s2 33]34]35[36]37]33 o Y X T I I) T T I

o1] TAPEINRSV, | (28| (1,1, AREE NN B TN

ozlllllillljlllllll [D T D T O B I | Y T NN Y O O O T |

[Z)

Figure 7-18. Reserving 728 Character Positions
Labeled TAPEIN

7-17

HDG (HEADING).

This instruction is used to insert remarks on an assembly listing.

All information contained in this record is printed. The M and N
variants of this pseudo operation controls the spacing and skipping,
before printing (M variant) and after printing (N variant). Error
checking is not performed on the variant coding. If the M and N vari-
ants are left blank, a single space will not be executed (figure 7-19).

These options provide form spacing for segmenting the program listing.

LINE| symeoLic | op |VARIANT A ADDRESS B ADDRESS ' C ADDR

No. 1| LABEL CODE | m [n TAG Frel Suen: TAG Frel iNch: TAG |

728203 0|3 1|32f33]34]35[36]37]5 8]a ofac]a1]a2[a3]as]as]acla7]as]as]s0]51

a]s]e|7]8]olrofts]iz]13]ia] 5|16} 7]1 81 o2 of 21]22]23]24]2 5]26

ot |y HOG Ll g AENE FENEEE
oz |yl ||| I I [E O B

o3l | 1 1 HDG O]] i RN RN

N

[T N Y B

1 O T |

[NN
oal [yl ML Llot gt N RN
os[|1y HDG oI 1111 Ll b [A
osl | v ool [P Lt b N |
07| IIIIIWIDIGI I N N NI IO AR

Figure 7-19. Normal Heading

OVR (OVERLAY).

This instruction defines an overlay starting with the next instruction
and continuing to an OVR or END command. The next instruction will
have the address specified by the A address that has the same require-

ments as the SLC command (figure 7-20). If this is the first OVR

7-18

LINE SYMBOLIC oP VARIANT] A ADDRESS B ADDRESS C ADDR
No.j1| LABEL | CODE | y | y TAG Fec| Suen: TAG FLc| S TAG |
4]5 6 7" 8 I 9 I' 0I| ‘I|2 13'1 "I' 5I16 l7|1 8 ‘9]20 2]'22]23]24'25'26 27 2812930]3 |I32y 33]34]35[36]37]38 39 4014‘ 42]43[44 45]46[47'45'49[50 51
o] [VR LA L 2AL NN NN
Ozl I 11 lll L1 11 1 1 | I | I T

Figure 7-20. Typical Overlay Card

entry encountered in the program, the auto-load records for the object
program will be produced to the end of the object memory as specified
by the HEAD card (unless the location counter is set to 000).

Subsequent overlays will terminate after the¢ last character is used.

The last auto-load output of each overlay segment will contain aster-
isks in columns 61-63, a sequential overlay segment number in column
64-65, (0l1-xx), program identification in columns 72-76, and card

sequence number in columns 72-80. The remaining columns will be blank.

Overlays may start or terminate at a non-module-O address, All auto-
load cards (except the last) will contain 60 characters with the
applicable beginning address in columns 61-63 and word character count

in columns 64-65,

An overlay entry will always start at the beginning of a new page on
the program listing; therefore, an OVR will force a skip to channel

one.

SAD 3 (SYMBOLIC THREE-CHARACTER ADDRESSES).
This instruction generates a three-character address constant (figure

7-21).

LINE SYMBOLIC oP VARIAN A ADDRESS B ADDRESS C ADDR

No.[1| LABEL | CODE | y | y TAG F.rel Snen: TAG FLc) SR TAG |

28];9 3013 IISZ 33[34[3 5]36]37135 39| 40[41 42]43144 45146[47148]49]50

i =B Y. SRR

) T T N S T N Y VN O T T

wn

alsle]|7]s]o]io]iifiz v13]14[1 sli i 7{1 81 of2 0] 2122]25]24]2 5|26
ot | 110 [OADB] 2953, |

[
ﬁzl L1111 1 11 ||| L1 41

7

Figure 7-21. 6-Character - 2
Part Constant

7-19

GPMK (GROUP MARK).

This instruction generates a one-position constant consisting of a

group mark (figure 7-22).

LINE| symBoLic | op |VARIANT A ADDRESS B ADDRESS C ADDR
No.|1| LABEL CODE | » [n TAG F.L.C. ?né‘g: TAG F.L.C f,:'é,f_‘ TAG I
a]s]e]7]8]o]iofifio]1a]ia]is]ie]i7]ie 19[20]21z2[25[24]25]26]27 28f29f30[3 1[32]33]34s536[37]3 39]a0la1]az]aslaafes]asar[as]as]50]s1]:
01 l | | GIPlMl | ,] | I 11 | | L1 |
02 I 1.1 1 11 1 11 | I I L1 1 1 1 ! 1 L+ 1 11 1 || I I

Figure 7-22.

TPMK (TAPE MARK).

This instruction generates a two-position constant consisting of a

l1-Character Group Mark

tape mark followed by a group mark (figure 7—23).

Figure 7-23.

END (END OF PROGRAM).
This instruction must be the last program entry (figure 7-24).

Tape Mark Coding

LINE| symBoLic | op [VARANT] A ADDRESS B ADDRESS C ADDR
No.|1| LABEL | CODE | w | n TAG F.ec| Snen: TAG FLc| em TAG ;
als]e[7]s]o]to]t11]iz13]rafis]i6]i 7]1e 19[20]21]2223]24]2 52627 282 930[3 1[32[53]3 43 5]36]37]3 83 64 0] a2a3fasfas|aslarlaslalsols1]:
o] [TPMKL L v AN FENEN RN EEEEE
ozllllllllllll 1 1111 (N O O N T | I T I U O A N O

LINE| symeoLic | op |vARIANT] A ADDRESS B ADDRESS C ADDR
No.|1| LABEL | CODE | y | n TAG F.LC] SheR TAG Fuel el Tas |
als|e]7]e]o]iofts]izf13]1a]is]i6|i 7|18} o]2o|21]22]e]24]25|26]2 7|28]2 o[3 o] 3 1|3 2]33]a4]ss]36]s7]5 8]a oaofar]s2]as]asss]as]ar]as]ao]sof51
°1| L1111 EJWQ ! || L1111 Ll 11 I l L1 [
o2 [vyt b bv v A b b g Ll by

Figure 7-24., End Coding

MACRO INSTRUCTIONS (NON-MULTIPROCESSING).
Macro instructions cause the assembler to place various address pa-
The skeleton

rameters into the skeleton taken from the Macro Library.

7-20

then becomes the desired subroutine and is assembied into the symbolic
program. The macro instruction is included in the program by writing
the name of the macro instruction in the OP Code Field, and the pa-

rameters of the macro instruction in the A, B, and C Address Fields.

The following macro instructions are treated as entries, and

documented as follows:

LNK (LINK TO ROUTINE).

This entry will create a two instruction linkage to a routine. The A
address is the required branch-to address. The B address is the exit
location of the sub-routine. The C address is the address where con-
trol will return after the routine is completed. If the C Address
Field is blank, control will return to the instruction following the

LNK entry (figure 7-25).

LINE| symBoLic | or |vARAN A ADDRESS B ADDRESS C ADDR
No. 1| LABEL | CODE | y [y TAG Ficl Shen: TAG Fuc| Shem TAG !
a]se]7]e]o]tofts]iz]1a]ra]is]i6]i 7]t s}1 ofoo]21]22]es]2a|es|26]27]2 82 ola o] 3]a2] 3|5 4]55]36[s 7|3 8]a o]a0]a1]s2]aslaafss]as a7]aslas]s0s1
01] e N L) RTING L JERIT NN EEEEN
o2| |y oy [LNK] ITRITINI L1 Ll JEIXIT NN SN

Figure 7-=-25. Link to a Subroutine With a
Return to the Next Instruction
and a Return to X

SET (SET EXIT ADDRESS).

This macro instruction is similar to LNK except that a branch is not
taken, The A Address Field contains the routine exit location. The
B Address Field specifies where control will return after the routine

has been completed.

If the B Address Field is blank, control will return to the
instruction following the SET entry (figure 7-26).

7=21

LINE| symBoLic | op |VARIANT A ADDRESS B ADDRESS C ADDR

No.[1| LABEL | CODE | y | y TAG F.Lcl SHAR. TAG FLc| ShaR TAG |
+]s [7 [e o roftsfrz]so]ra]rs]tofs 7t]t sfeo] 2 fezfealeazsfes]2rlecfeslsof a fs2]aslsslasaslarfaels olaclat]s2]sslssfas aclaras as]s ofs
o] |y USET L EXIT Ll bt N NN
o2 | 1 ISEM | L EXTT e N N
ost byl by iy NN NN BN RN

7

Figure 7-26. Set Exit for Return to Next
Instruction, and Set Exit
for Return to X

OUTPUT CAPABILITIES.

The Operating System Assembler allows the assembly process output to
be either a printed copy, magnetic tape, or punched paper tape rec-
ords. A multiple output media may be specified for either the program
listing and/or the auto-load assembly output, but a program listing

must be printed.

PROGRAM LISTING.
A portion of a program listing is illustrated in figure 7-27. Except
for the following exceptions, the format is generally the same as the

Basic Assemblers.

The listing is single spaced with a normal End-of-Page sensing. Page
control is provided within the Header (HDG) entries. An Overlay (OVR)
entry will cause an automatic skip to a new page. Auto-load output
information is also shown on the program listing with a card number
shown for each entry. A Reserve (RSV) entry shows only the beginning
auto-load number; however, a Constant (CST) entry indicates the auto-

load information up to the first sixty (60) positions of the entry.

7=-22

ERRORETICATEEN Ridkirmsprce

S (2 23

/N
sn
1)

un

Wo
X0
Yo

/7 0
7/

/80
710
/U0
/vn
/4N
7%
/Y0
/70
s N
S/n
$S0
ST0
sSun
sVn
SWn
SXN

€e=L

T10800ENDTTO
70y 6 "we
703 3 Vze
710770 L]

703 U6WSE X9

832VZ8YS6 w3
TOIXXXX X3
T10XXX XyYx

J 003 W3vWwi
J 013 Xx9uze
Sn3 X9 794 O
543 X9 Y9 WO

703/S6V/6/13
708XXY Sv2
SS1SV2/U08Y0
J 0048/7T3731
541SV3TT0/70
501SVA/T6STO
Sa?2SV3ITT0/T0
5n2TTNSS68S0
521TTOSSASTO
TROSTO T2
7O3ITVILITTTO
702STATVOSY3
701SVS Sye
709XXX TTX
543TT0/v9SY0
TNISYATTOTTI

nPoo3 Y
SY/LAB OP/C WMNN A AUE

STR

SET=ypP
NYX

TFR
LAST
FIN

TRCC
NOTT

TRF

Figure 7-27.

ove

HhQGQ

TER
TFR
TFR
TFR

HNG

TeR
MSK
TFR
TFR
ANM
ANM
CAE
Cay

HNG

TFR
TFR
c7u
ANM
cay
CAE
cay
CaAE
cAy
BRE
TFR
TFR
TFR
TFR
cay
TFR

2920
12

12

2020

32
12

-

2020

-

- AN e -

w w0 =)W

T _PRO
FLEL

e 0

AS OF: 09=09e71

PAGE ¢

Kﬂas FIELD C ADRS FIELD REMARKS.soscocccovscoses SEQe

TRACE ROUTINE

*e® TRACE ROUTINE *e+e

0800
STR
STR
op

6
A

®END

Qe
EYIT
Loe
LNeOP

*ea SET UP PRINT eee

LN 0
XXX
XXX
8003
0013
TFR
TFR

PeiLN
MASK
ox

NX
TFR
FIN
LAST

TFR
NY
TFR
(288 ¢
NY=LN
NYX LN
PRTeT
NY

*¢n SET UP RRANCHES wee

B

- & w

N B O

TARBLE
[]

*
TT
ne
T
np
TRCC
TREC

aL1TY
RR=ANR

ILP
np

TT
TRE
MS¥
eT3y
TY
NATT
TY
TREC
NOTT
Qe
ne
TRE
TRE
ne

"

oP

Program Listing

SET AAA TO CORE LOC USED

»» 0

(3]

SEY AAA TO RESQ ANDR R ST
SET UP TRACE EXIT

TFR LOC YO PRY

ALPHA TFR OP TN PRTY

SETY
SET
TFR
TFR

UP TFR Y9 PRY

UP TFR AAA ANRS
AAA ADRS TO TFR
WORD TO PRINT

ADV TO NEXT ANDR

ADM RY 15 TN NEXT WORD
IF FINAL BR Tn PRINT
IF NAT EQ Ccc LONP

SET UP TARLE TFR

TFR TABLE ENTRY TO TFR

FALL THRU IF NUMERIC

ADM TARLE TFR

TF OP=CNDE = TARLE ENTRY

TF M=VAR NOT HSFN

TF OM = TABRLE FNTRY

TF O = LY

TF NP=CNANE = T=INTR

IF N=VAR 8=RTT 1INTR=1/0

SET P NCI & TNTR=I/N

SET UP TFR RRS

SET TFR BRS TN np L0OC

TFR RRS Tn 0p

CAE FOR SPEC PRT=INT R?
IF EQ BZ RR 0N SELF

Operating System Assembler

102

103

108
105
109
110

11

112
113
114
113
116
17
118
119

iei

122
123
124
125
126
127
128
129
130
131
132
133
138
135
136
137

¢ 203

0001
0001
0001
0001

0001
0002
0002
0002
0002
0002
0003
0003

0003
0003
0003
0004
0004
0004
0004
0004
0005
000S
0005
000S
000S
0006
0006
0006

AUTO-LOAD.
Auto-Load output consists of 160 or 320 cards in the standard,

module-0, five-instruction-per-card férmat (figure 7-28).

FIELD 1 FIELD 2 FIELD 3 FIELD 4 FIELD 5 6!0‘ FLOAT| IDENT. | CARD
INSTRUCTION INSTRUCTION | INSTRUCTION INSTRUCTION | INSTRUCTION =§ CODES NO.
OR DATA OR DATA OR DATA OR DATA OR DATA

CHARS

00000000000000000DDDﬂ000000000000000%000000000000000000

10 11 42{13 1415 16 17 10 19 20 21 22 23 24|25 26 27 28 29 30 31 32 33 34 35 36137 30 39 40 41 42 43 44 45:46 47 4849 50 51 52 53 34 55 56 57 58 38 60[81 62 63

(BBl R AR AR AR R R RN R R R R R NI R R RN R RIIRE
222222222222{222222222222{2222222222222222222221222222222222222Q222

00000/ 000000000

67 60 69 70 717273 74 15 76 11(78 713 80

R RRRIHERRRRIEE]

-—-
= ¥ © NO.WORDS
=¥s

~N
N

22222222222)222
3333333333333

N

333!33333333333333333333

=

A4 444444440 440444444040044444444444000444444/4441 4444444040400 0000000000100 00440444
565555565555/555555555555/555555555555(5555556555:555555555555555(555/55555555(555555(555
6666666668668886656556658666658E865EEBESﬁGGGGfﬁ68liBB66666866666666666666855586888

IR R R R IR R R I R R RN RN R RN R R R R R R IR IR RRRIIER

098000800808888080888888888888088888800888088;880888808868880”880888888088088680
999999999999|1999999999999/89999999599 999999999%99999999999999999999999 88/999999(8
Nnx W40 60 166 "

9999 9
123458700 RNWISTNSNNRDNBRD 313233 34 35 337 AT 42 43 44 4545 47 4849 50 51 52 53 54 55 56 57 58 59 6061 62 63{64|65 [66/67 68 64 70 71|12 713 74 75 76 17

Figure 7-28. Auto-Load Program Card

Auto-load Record Contents Card Column
Instruction or data 1-12
Instruction or data 13-24
Instruction or data 25-36
Instruction or data 3?-48
Instruction or data 49-60
Storage address 61-63
Number of words 64
Number of characters 65
Relative Address Codes 67-71
Identification 72=77

Card number 78-80

724

Auto-load output for program overlays (except the last card) contain
60 characters of data with the applicable beginning address and word-
character count. An overlay segment can begin or terminate at a non-
module-0 address. The program listing includes the auto-load card
number for each entry. An end of overlay segment output will be

produced using the following format.

Card Column Contains
1-60 Blanks
61-63 * ¥ ¥
64-65 Sequential overlay No. (01-99)
66-71 Blank
72-76 Program identification
77-80 Card sequence number

The following is a list of multiprogramming MCP II Relative Address

Codes. Columns 67-71 of the auto-load record may contain these codes.

Field(s) To Be

BCL Code Bit Configuration Incremented
/ AB1 OP
S AB2 A
T AB21 OP & A
U ABL B
v ABA41 OP & B
W ABL42 A & B
X ABL421 OP, A & B
Y ABS8 C
Z AB81 OP & C
, AB82 A& C

7-25

Field(s) To Be

BCL Code Bit Configuration Incremented
% AB821 OP, A & C
AB8L4 B & C
= AB841 OP, B & C
] AB842 A, B & C
" AB8421 OP, A, B & C
Blank AB NONE

The bit codes are as follows:

OP Code Fields
A Address Field
B Address Field
C Address Field

o &= N =
nou

AUTO-LOAD OUTPUT ON MAGNETIC TAPE. THe output on magnetic tape

consists of 80-character binary card image records.

AUTO-LOAD OUTPUT ON PAPER TAPE. The output on paper tape consists of

80-character auto-load image records.

AUTO-LOAD OUTPUT ON DISK. The disk output consists of 80-character
auto-load image records blocked six records per 480-character block.
The area immediately following the last specified work area is used

as the output area if disk auto-load is specified.

RENUMBERED SYMBOLIC PROGRAM DECK. The ASOP Assembler provides the
user with an option to request that a renumbered symbolic program deck

be punched on cards.

The program output listing will reflect the new page and line number;
however, if a sequence check is desired, the original input page and

line number will be checked.

7-26

Method of Specification.

The ASOP Assembler requires a program HEAD Card preceding each program
being assembled. (Reference the ASOP Assembler Function for Header

information.)

The HEAD Card provides the assembler with the output requirements for
the assembly process, specifies the work storage units, defines the
object system, and indicates the media for the input source program.

The HEAD Card is edited prior to the assembly process.

SECTION 8
MCP IT ASOP MACRO INSTRUCTIONS

GENERAL .
When the multiprogramming capabilities of MCP II are utilized, the
programmer does not communicate with the B 500 to perform I/O

operations, but rather through MCP IT.

MACRO INSTRUCTIONS.
The Operating System Advanced Assembler allows the use of 79 multi-

programming macros. The Macro Library containing the multiprogramming

macros must be created under control of MCP II and the CMLT Function.

The following is a list of multiprogramming macros that are described

in the following pages of this section.

Macro Description
ACPT Accept input from SPO.
BEGN Begin run.

CLOS File close.

DISP Display output on SPO.

FILE File descriptor.

LDRO Load relative overlay.

M/PI Multiprogramming interrupt.
OPEN File open.

PF/C Programmatic function call.
POSN Position magnetic tape or line printer.
READ Read an input record.

RECD Record description,

ROVR Relative overlay.

Macro Description

STOP Stop run.
WRIT Write an output record.
Z1P Stop program in process and call another program.

The following routines are supplied with the Macro Library and used by

certain multiprogramming macros as automatic object code inserts,

whenever an applicable macro is called by the source program.

Routine Description
CLOO Write standard EOF record and close file.,
PERR Macro error routine.
RE<D Disk file input blocked is less than 133 characters.
RE<E Disk file output blopked is less than 133 characters.
RE<I Input blocked records are less than 133 characters.
RE<O Output blocked records are less than 133 characters.
RE>D Disk input blocked records are greater than 132

characters.

RE>E Disk output blocked records are greater than 132
characters.

RE>T Input blocked records are greater than 132 characters.

RE>0 Output blocked records are greater than 132 characters.

REUD Disk file input unit records.

REUE Disk file output unit records.

REUI Input for unit records.

REUO Output for unit records.

REUP Output for line printer records.

WRIP Write or position line printer file.

LINKING OF MACRO ROUTINES.
Macro routines are linked to the object program in the following

manner,
a. The next input record is saved.
b. Detail macro records from the Macro Library tape are read.

c. Parameters are assigned to all equal addresses contained
within the macro routine. The equal addresses must be

within the following specifications.

Field Length Type
SY LABEL 6 POS ANY
M VAR 2 POS NOT CST/RSV
M VAR 4 pos ONLY CST/RSV
N VAR 2 POS NOT CST/RSV
A ADRS 12 POS NOT RSV
A ADRS-FLC 2 POS NOT CST/RSV
A ADRS-CI 3 POS NOT CST/RSV
B ADRS 12 POS NOT CST/RSV

Remainder of B ADRS field same as A, and
C ADRS field same as B,

d. TIf the 1l2-position A, B, or C Address Fields reference
parameter N (and parameter N is blank), parameter M, if
coded within the field immediately following parameter N,

will be inserted to replace parameter N,

e. Supplies each symbolic record to the assembler following

parameter assignments.

f. END operation code is replaced with the HDG operation code.

g. All switches are reset and the next symbolic record is

restored to the input area.

MACRO DEFINITIONS.

The following macro formats define the syntax to be used in the con-
struction of the multiprogramming macros. Included with each descrip-
tion is a detailed listing of the symbolic code that is emitted from
the Macro Library at the time of assémbly.

AXCE (ACCEPT SPO MESSAGE).
This function is used in conjunction with the ACPT Macro. In order to
pass the necessary information to the program, the operator will use

the following format.

>>AXCEidentmessage

- = = = -7 8 - - 212 13- - - - - 80

Ll R

where:

a. ddent - program identification.

b. message - message to be pasged to the specified program.

A Display Macro (DISP) is usually implemented prior to ACPT so that
the operator is aware of what programs are waiting for a message entry
through the SPO. Three programs can‘be in operation, and all indepen-
dently waiting for a different reply. Considering this possibility,
the programmer should include the program identification with the

display message to inform the operator which program needs action.

ACPT (ACCEPT).

The purpose of this macro is to obtain input data from the supervisory
printer. The symbolic label to be agsigned to the accepted message is
entered in the A Address Field, and the B Address contains the exit
address., If the B Address is blank, the next address in sequence will

be inserted. The C Address is always blank (figure 8-1).

8-U4

LINE| symaoLic | op |[varun A ADDRESS B ADDRESS C ADDRESS

no.|i1] LABEL ‘cooE [u [& TAG . c) C,S&':: TAG e Lcl f':icARR: TAG F o mﬂ;, REMARKS

a]s o7 o o o[s]raf12]t afs s]iofs 7]1 o]t ofe]2 fa2]e sz 4feo]e6]a]z e o]aofa [s2]s fs s s]as]s7]o 85 ofa ofar[s2]asfuafes[asfara] a s[5 |31]s2]sa|sa[ss]se[s7]s 8so]6 ofe 1]62]e e afe oo cle rJeee o] o] s [r2]ra[rars[7e]r 7] o 00
o] |y |C|HT1|1‘ 11(1£|XIIJT1)"'|1111|1|f|11 I Y U T T T T Y I 5 O 1 T
ozlllllllllllllllll N N O Y I | T ST 7 U 1 T T Y O Y O 0 O O O B I B B B |

Figure 8-1. ACPT Supervisory
Printer Message

Figure 8-2 illustrates an example of symbolic code emitted from the

macro library at the time of assembly.

ACCEPT MACRD

uDG 2020 ACCEPT SUPERVISORY PRINTFR MESSAGE
TFR 5%BEGLA 4 * PISET P PROGRAM I D
SPO " M PRINT ACCEPT MESSAGE
6ST 12+AX1 IDENTe MESSAGE CONSTANT

«/ TFR 5xADRTH B* XADRTB ALINK TO M/P
TCB 2=/ BXINTER XADRTH ¢ CONTROLLER
TCR 428366 %2%0 * 10STORE MESSAGE

o X Fau *

%1 eST 48 MESSAGE STORAGE

o/ FQU *
END 2020 #x% END OF MACRO

Figure 8-2. ACPT Listing

BEGN (BEGUN RUN).

The purpose of this two-card macro is to set up the I/O configuration
needed to run a particular program, and to remove the required I/O
units from the Systems I/0 Table. This macro also sets up the neces-
sary date linkage. The A Address contains the beginning execution

address entry.

The B Address specifies the I/0 configuration needed to execute the
object program, and the date codes are entered in the C Address Field.
This macro is used whenever an object program run in a multiprogram-

ming mode is required.

8-5

The entry codes for I/0 configuration are as follows:

Column (B Address) Contents

33 Input reader 1.
1 - card reader required
A - paper tape reader required.

Blank - none required.

34 Input reader 2.
2 - card reader required.
B - paper tape reader required.

Blank - none required.

35 Output punch.
0O - card punch required.
+ - paper tape punch required.

Blaﬁk - none required.
36 Blank - Reserved for the system.

37 Line printer 1.
1 - line printer only.
T - line printer or printer tape.

Blank - none required.

38 Line printer 2.
2 = line printer only.
T - line printer or printer tape.

Blank - none required.

39 Magnetic tape.

1 thru 6 - number of units required.

8-6

The coding for the dates is as follows:

Column (C Address)

45
46
e
48

ho

50

Contents

Must contain a + (plus zero).

D if either date is required.

Y if today's date is required.

Y if report date is required.

Today's date format.

WL N R G W

alpha month, day, year.

day, alpha month, year.

abbreviated alpha month, day, year.
day, abbreviated alpha month, year.
numeric month, day, year,

numeric day, month, year.

Julian YYDDD.

Julian DDDYY.

Report date format - same as the above

Today's date.

Data pertaining to the BEGN Macro is entered as follows:

The A Address must contain a symbolic address for today's-date,

B Address contains the symbolic address for the Report-date, and the

program blocks (to load and total) are entered in the C Address Field

(figure 8-3).

8-7

LINE

SYmBoLIC

oP [VARIANT]

B ADDRESS

no.|1| LAeEL CODE el t:::: £ LC) AG Fr?c‘nnf REMARKS

«Js e[oo ro]vi[oz] vs]ia]i 5]t el Is0]3 1]s2]ssfsalss]se]s7|se]s olaofar Jar]asfas|sofss [sels7[safss]eofer]e2fssfsafeslscle[eslos]s ofr1[22parafrs[relr]r o] oo
ov] 1)1y 1) |BEGA L1 b o il Ll DY AL L IsSTéRAGE, ADRS, FioR THDAYS, |
ozl iy aualaay 11 1l 11 L DATE L vt

os] Joe et 11 1§ NN TR ARSI

oa| |*r o) 11y [Ll 11 Lt e et by

os| TDATE, €8T [1 ll; 11 15E@ﬁﬁ&&L@Q&&JE@&J&§&@Eﬂ_
os| [RDATE [CioT DDl | A ENE FEN! I DATE (v Ly

°H_SJMMJ1 L1l 1] Ll e NN N N

Figure 8-3.

BEGN I/0 Macro
Data Linkage

with

Figure 8-4 illustrates an example of bEGN symbolic code from the Macro

Library at the time of assembly.

HNG
HNG
AVR
LSy
)
€£ST
nST
fSsT
ST
HDG
XBEGLBCST
CSY

SAD3

HDG
rsy

SAD3

HDG
XINTERFQU
XADRTBEQU
xEXI/0FQU
xINSEGFQU
XxERRORF QU
XSTDERFAQU
XN EQFFQU
xOYRWAFQU
xXSYJOTFQU
XxOVRNMFQU
XOQVRCLFQU
XOVRTSEQU
xBGCSTFQU
XROLDRFQU
xP F/CrEQU
xF/CARFQU
xPRIABFQU
02FDKEFQU
SW SPOFQU
RETADRFQU
RETLNKFQU

HDG

END

RESTIN RUN MACKD

2020
20

PROGRAM ADD RECORD
REGIN RUN MACRD
R750
7222PANN
5%7
2RN
16%2
6%6
24
2020
4+BEG
S%7
%1
2020
6%3
%4
2020
2030
3040
2450
2366
8600
700
R780
A270
2290
8019
#330
2363
2304
8670
2020
8356
8RN4
2100
8260
2399
8540
10*****ﬁ******************************t***********************

2020 *uk END OF MACRD Hww

REGIN RUN MACRD

PROGRAM TIDENTITY
TYPE & BEG HALT CODES
/0 CONFIGURATION

PRNGRAM ADD CARD
PROGRAM LAREL
LABEL
PROGRAM IDENTITY
REGINNING EXECUTINN ADRS
NATE CONSTANT
NATE CONSTANT
%5 NATE STORAGE ADDRESSES
FQUATES FOR ASSEMBLER MACRNS

Figure 8-4., BEGN Listing

CLOS (FILE CLOSE).

This macro is used to close a file.

mark,

and rewinds the tape.
the Program I/0 Table.
of the file to be closed.

It writes the last block,
This macro will return the I/0 unit(s) to

tape

The A Address Field must contain the file-name

The B and C Address Fields are blank

(figure 8-5).

8-9

These parameters are converted to the following:
a. %1 - file-name.
b. %2 - file-name with CI of 2B.
c. %3 - file-name with CI of 10.
d. %4 - file-name with CI of 2A.
e. %5 - file-name with CI of 6O,

LINE| symBoLIC | oP [VARWN A ADDRESS B ADDRESS C ADDRESS

No[1] LABEL | CODE | y | n TAG F.oc| Snan: rac | froc] Sube TAG F.uc! foon REMARKS

a]s e+ Te]o]iofts]iz]1sfr a]isrof: o] o]t s o] 2 1R2feafe4f2 o] 2e 2 28 ofs o] 3 faz)s s afssfaefs s ofs ofaofa 1[az[asfaafesfac]ar]as]as]s0]2 1[s2]s5[sas8]se]s 7 [sas0fs ofe1[e2]e se aJe sfsc]e 7 eefos]r of 1 [r2]ralralr []7 o] ofso
or| EDF) jelds] 1. Tl"l'ld’l'—lﬂ ' BN i o fl L Ctese TAPE ¢t FnlE |
1111 ST NS N N S ' NN A W, NN NN NN
03] 1ot rrgl lll 11111 | I I | 'I. L1t 1t §39 11 I Y N T N T T O N O Y Y A O O O |
°‘I I lJllIlllll | I I T I I | llllll’ll 1 {1l N T T T Y O Y T T I O O B |
0!' 11111 | Ill L1 11 11 11411 Jl [N NN N TR0 TR Y T T T N T 1 0 O S O A O B |
°‘]|||||||1||t 111 L 1t [ERNEN Ll b b bbb by gt
°ﬂ 141910t 111 Ill 11111 11 111 [| T | 1 11) N T TN T N T T N N T T [N T [T N N |

Figure 8-5. CLOS and. I/0 Unit Placement
to Program I/O Table

Figure 8-6 dillustrates an example of CLOS symbolic code emitted from

the Macro Library at the time of as$embly.

FTILFE CLOSE MACRD

HNG 2010 FILE CLOSE MACRD

4D G LOTRBE RN AR RS R R LR AR R RN AR AR AR AR LR RO R R AR AR R AL AR AR #
TFR I BRCLS x(OVRNM LINK TN EXEC CONTROLLER

TFR 2% RROY9 XNVRWA

TCR 12% 10x0VRCL xOVRTS TO CALL FILE

SAD3 * 1N%2 CILNSE

CsT 6%1 : ROUTINE,

“4NG TO A kdskkdedehhdkkddhdehdhhh ko hdk ke dd dede s sk Ak Ak vk kb ke ok ok ok ok ok ok e ok
END 20 i ke END MF MACRN dxw

Figure 8-6. CLOS Listing

DISP (DISPLAY).

This macro provides output data to fhe SPO. The A Address entry
contains the address of the message to be displayed. The B Address
and C Address Fields are blank (figure 8-7).

Pigure 8-7.

LINE| symBoLIC .op Y A ADDRESS B ADDRESS C ADDRESS

Nol1] LABEL | coDE [y |y TAG Fcl Shan TAG F) o TAG Fuc! G REMARKS

o5 o [[o[s[rofvsfiz|ssfiafi sio]i o]s o]y o 2 1e2fo 5[]z ofzs 2] zelzn;[;ﬂ;z [4fssse[a 7o afs o] ofs1[ezasfsafusfaear[se]ao]s ofs1|sfss[safssfsc 57]s s s[s o] 1]e2]s asafo s[as]s Jeefs o7 of71[72ra[7]rs[r6[77]7 6] o6
o by IDISH |1 ER-MS NN RN] IllllLi.}i-lll NN RN RN NN
o2 |y e bl aaaa AR FEEEN BN R BN RN
'l FETEEE FETE B TS R RN TEEEE cla v NS EEEEEE RN

Output Data for SPO

Figure 8-8 illustrates an example of DISP symbolic code emitted from

the Macro Library at the time of assembly.

HDG
NG
TCR
rsy
PMK
SPND
SPO
HDG
FND

11

-/
7

*

1IDISP INENT,

LE R

20

*

Figure 8-8,

FILE (FILE DESCRIPTOR).

REGIN DISPLAY MACRO

& K

IR 2222222222222 3222222022342 2220223222222 2220022
SxPR[LAQ

178STNRF PROGRAM JODENT

PROGRAM TDENT
PROGRAM INFNRMATTON

LB

DISP Listing

IOk hhkhhkhdh ke kR Rk Rk kR Ak h kAR AR kR Ak ke kAR kA ke hk ke kdh
20

END DISPLAY MACRD »#

The macro provides the I/O codes for the files used by the program.

The file name is entered in the A Address Field (six positions) and
the B Address contains the I/0 codes.
(figure 8-9).

The C Address Field is blank

LINE| symmoLic | op [VARIAN A ADDRESS B ADDRESS C ADDRESS

LABEL | cope ERAR, AR, TR REMARKS
NOI MmN TAG FLc] Gner TAG FLcl INeR TAG Frcl ince,
«Js [s | 7o o]rofie]i2]a]1a]ro]ref: 7[r 6] o]z 2fafeszalegzsle 7z el ol o [az[s3faalasaes a0 slacfe1[s2esfsafes asfarfaefs ofsols1]s2]s sa]s3]s6]s7 e pse]s o[s1[s2[s sfs afe sfee[e [sels sl o[1[r2frs[rafr o] e]s 7] a7 o0
ool {1 [FTLEL 1) CARDT, EENE . CHENE /NN N N I I N U U U O O 0 B O B A O W B
Ozl |l|lll|]lll | .| llJlllllfllllllJ__Jdéql'll 1T T U I U T O U O I I |

Figure 8-9.

File Code Entry

The I/0 codes for the B Address Field are as follows:

Code Information

#0 Card reader input file.

E2 Paper tape output file.

F1 Paper tape input file,

F2 Paper tape input file (direct).

D1 Magnetic tape input.

K2 Disk input file.

@0 Card punch output file (BCL).

@1 Card punch output file (BULL).

@2 Card punch output file (ICT).

AO Printer file (120 positions).

A+ Printer file (132 positions).

D2 Magnetic tape output file.

KO Disk output file,

PO Printer tape output file (120 positions).
P+ Printer tape output file (132 positions).

Figure 8-10 illustrates an example of FILE symbolic code emitted from

the Macro Library at the time of assembly.

FYLE NESCRIPTOR MACRO:

WMDG 2010 FILE DESCRIPTOR MACRO

HDG 10###ﬁ##l###
£ST 1+ ‘

rsT 2%2 1/0 TYPE

£ST 6%1 FILE NAME

SAD3 %1 FILE NAME

MDG MR E AR R E R R A R R AR R R R R R R R R R R R g R 3 R e
FND 20 k%% END OF MACRD #%#

Figure 8-10. FILE Listing

LDRO (LOAD RELATIVE OVERLAY).

This macro calls a multiprogramming routine to load a relative overlay
into an available area. The A Address Field must contain the overlay
name. The address of the first instruction to be executed in the
overlay must be inserted in the B Address. If the B Address Field is
blank, the first address of the overlay is inserted. The C Address is

blank (figure 8-11).

LINE| symBoLic | o ANT A ADDRESS B ADDRESS C ADDRESS

nol1| vaseEL | cooe [oT TAG F.c| San: TAG Fuc) Shan. TAG i) en REMARKS

alsTeT e s Troftsp2fis]ia]is]iefi o] o]s ofo o] 2 1Re2foafeafe f2e]2 zu}szoF‘];z s3safas]se[s s als ofsofsr]sz[asfeafusac]a7[as]asls 0|1 [s2]s3[s4] : 7[se]ss[s ofs1[s2]e s[s aJe s[es]s 1[sefes[r of71[12fr o[rafrsfrer 7] a7 fuo)
1] |1|||LDIR@|||EmJ1R|T ENEE NN II'IIILJ/}”IJI IO U O Y T T Y Y O Y I A Y
Ozl L1111t 1t lII 111 1.1 | I A | | 1 1t 31 1] 1 | I | Pty 4ot gy pbrrd
0!' F I T 111 III 11 i 1111 | 1 11 11411 1 1 0 T NN N Y N T T T I Y A

Figure 8-11. LDRO Load

Figure 8-12 illustirates an example of LDRO symbolic code emitted from
the Macro Library at the time of assembly.

LOAD RELATIVE NOVERLAY MACRD

HNG 2010 LAAD RELATIVE OVERLAY MACRD

HNG LTORBERERRL L RRA B AR RH ARG R LA AR UL RR R AR BB R R R LR AR R
TFR 2xREGLRB xB8GCST STARE ADM COUNTER

TFR 3w R%1 XBGCST NSTORE OVERLAY ADDRESS
TFR 2% B%2%1 XADRTSH ASET EXIT ADRS

TFR 6* 18 XOQVRTS LINK 70 M/P CONTROLLER
2AN3 861 xROLDR %1 TO CALL OVERLAY

€Sy 3%t

HMDG T Ohdkhdk kb bk kk Ak kbbb h kb bk ks hhkkhh ek h kv sk hkkkkkkk kb kW
FND 20 *+% END OF MACRD ##%x

Figure 8-12, LDRO Listing

M/PI (MULTIPROGRAMMING INTERRUPT).

The purpose of this macro is to transfer control from one program to
another. M/PI is not required when I/0 Macros are used. If there is
little I/O activity in the object program, the Multiprogramming Inter-
rupt Macro should be used to accomplish transfer control. The A, B,

and C Address Fields are always blank (figure 8-13).

LINE

sympoLic | or [vARANT] A ADDRESS B ADDRESS C ADDRESS .

REMARKS
NoJI| LABEL | cooE | [y TAG Frcl hen TAG o) SHan TAG .l rm
afs[o [rTeToTrofvsfiaf ool arofrefs ofrefr s}z vpafesfeaafeclefespslsc]s dsefssfsafselsls s elsofacfer [sefesfeafes]ee]e e s]oels 1]o2foafsa]sa]: 1]se]ss]eofs1[62]o afsafes[ee[s [ee]s ofs o] 1r2fr sl afraf76]r7[r e o s0
o] 1y iy iz N I S IS NN N RN tlr et e ey bebgd
°:l 11111 llllll 1121l | | 11111 1.1 11 14111 1411 0 T N T O T T T Y Y I O N |

Figure 8-13.

Control Transfer

Figure 8-14 illustrates an example of M/PI symbolic code emitted from

the Macro Library at the time of assembly.

4yne 2010

HDG

TFR 5xADRTA
TCR 2m4

QU *

HDG

FND 20

OPEN (OPEN).

MULTI=PROCESSING INTERRUPT MACRD

MULTTI=PROCESSING INTERRUPT MACRD

B¥1%20
RxINTER

XxADRTR

XxANDRTH ¢

Figure 8-1.4,

M/PI Listing

LORRRAREKERERRERDHRBRRE R AR AR UNL L IR B RN R AR RB R AR R AR RRL
ASHIFT TABLE 0OF RETURN

ADNRESSES AND ADD THIS
ONF TO THE TABILE.

TOKbkehkhhhhdkhhhkkhkhhhdhhrhhdhdrhbhhhhkhhhdrhhrhhhhhhhhdrrhhhdhhhhnrhisk

xkx END OF MACRD #*ax

The purpose of this macro is to open a file by reading the first

available record.

beginning disk address,

of the file (figure 8-15).

The B and

file other than disk is required.

The A Address contains the file-name, B Address the
and C Address

contains the ending disk address

C Address Fields are blank

if a

RESS B ADDRESS : C ADDRESS

=] symeouic | oe - 200 THAR CHAR a CHAR REMARKS

NoJ1] LABEL | CODE | y | TAG F.ic) Sncn: TAG F.Lc| R el wen

afs{e 1L Lo [o[t ifiz] e s[raisfiefi o] o] sl o} 2 sRzfas]zafas]eele fe s olsof s fsa]salsafssfses [asls afac]e s]az]asf [asfs6]s7[s8[s0]s ofe1[s2[6 5[safesfes[s 7[sse s of 7 1[72fra[7afrs[61 7] 81 of8 o)
01| ISTART, IOPEN , 1, C AN SN Ll RSN NN NN
ozl 11111 111 lll 11 0 1 1 111 1 11 |1 Lll; 1t) 0 T Y O T T T T T T 0 IO O I
osl Jy 101 1 L [TAR NS FENEE L A NEEN RN E N NN NN
o‘l 11111 111 lll L1111 1 11 L1111 Ll 11 | 1O W U Y O T O O [0 T O T A T B
°sll||ll Jllill 11111 1111 I I | 1 1 ji) S O S T T T T S O T I O O |

Figure 8-15.

of First Record

File OPEN with the Reading

The parameters are converted to:

a.
b.
C.

d.

%1 - file-name.

%2
%3
A

BEG disk file ADRS.
END disk file ADRS
file-name with CI of 2B.

Figure 8-16 illustrates an example of OPEN

the Macro Library at the time of assembly.

unG
HDG
TFR
TFR
TeB
SAD3
nsT
GPMK
st
ST
ALC
HD G
FND

201

2

1
0

0

3w
2 %
7 *
*
6%1

7%2
3%3

FILF DPEN MACROD

FILE OPEN MACRO
10#ERAR LR A EREH RN RREL AR E AR LB H A AR R R RS LA AR AR BB RN

BRNPN

BReo8
10x0OVRCL
30%4

XIVRNM
XDVRWA
XQVRTS

symbolic code emitted from

LINK Tn EXEC CONTROLLER

TO

CALL
NRPEN

FILE
ROUTINE

10***.***'k*
*hk END OF MACRD #kwx

2

0

Figure 8-16,

PF/C (PROGRAMMATIC FUNCTION CALL).
This two-card macro sets up the linkage to call a function of MCP II

for execution.

tions,

OPEN Listing

The A Address contains the first 12 parameter posi-

B Address the second 12 parameter positions,

and the third 12

parameter positions are entered in the C Address Field (figure 8-17).

LINE| symBoiic | op [vARANT] A ADDRESS ® ADDRESS C ADDRESS

No 1| LABEL CODE | u [N TAG F.Lc) c':::u: TAG F.L.C) fx&?: TAG F.L.C. fr:‘cAna.' REMARKS

L e o TeTeTrore ol afslef ol sk ofz feafesfeafe facleeeR slaofs afssfsalsafsels oals faofr|aafosfaafesfasfefassosclsi]selsslsafosles]sr efels s fsele foaefosfofoefsols dr[rapalrafrafralrar el ofoo
or] |y PR/ L [PROK 1|11 jooeLioog 29/99,2 it L CARDI Ly vyt
0z} RN EWEE NN NS NN el b |||1||t,11| CARD2 | 4 1y 1111111
[YTH SNENEE NENE Nl NS FEERE Ll Jvia 1 B 11 it b N RN NN NS SN
oal J oy vl g el B I N % NI TN R NN NN RNy

Figure 8-17.

Operating System Function
to Print Disk from Segment
1,000 thru 2,999

If a second card is required, the A Address Field contains the last 11

parameter positions,

and the B and C Addresses are blank,

Figure 8-18 illustrates an example of PF/C symbolic code emitted from

the Macro Library at the time of assembly.

HDG
HDG
TFR
TFR
TCcRB
ST
ST
ST
ST
ST
csT

TFR

HNG
END

2010

D%
I
S4x
3222
4%1
12%2
12%3
12%4
11%%

2%

20

PROGRAMMATIC

FUNCTION CALL

MACRO

PROGRAMMATIC FUNCTION CALL MACRN

1ORABEARER AU R ARG R BB R A R AR A A AR R AR R R AR R R DAL RR o
a3

7OXADRTA
xF /CAR

RROY

B3

10xP F/C

ReR630

®113
I R Y R S s R R R R R R AR

Figure 8-18.

POSN (POSITION).

This macro is used to position the appropriate I/0 unit.

ASET EXIT ADDRESS
MOVE F/C & PARAMETERS

NAME
PARAMETERS

PF/C Listing

k4x END NF MACRD ##%

The A

Address contains the file name of the unit to be positioned, B Address

the type of positioning required, and the C Address Field is blank
(figure 8-19).

04]

111
111
L1t

vac ot

]
1
1

|
|
1

LiNE] symmoLic | op [varun A ADDRESS B ADDRESS C ADDRESS

no 1| LAmEL [copE | [, TAG F.uc SHAR. TAG I TAG el G REMARKS

3 33 1 0 3 0., 0 0 1, O 2 2 0 500 0) 5) 2 5) 2 6) 0 O 2 D D D T T

X1 0 RN L T U L Ry ol gl [REWIND TAPEDGT AT EdF | |

°zl J I lIl | 1 | |||||l|v||l|l|ll||ll||ll|||lLll]l|

03] et la by B i FETEE . N NN NN R R EE Y
| 1 |‘ (I 1 11

P b0t bttty

Figure 8-19.

Positioning

Appropriate I/O

Acceptable codes for positioning are as follows:

a. R -

rewind tape.

b. B - backspace tape.

C. SS

- single space printer.

d. DS - double space printer.

e. CN - skip to channel N after printing, where N is 1-@,

Figure 8-20 illustrates an example of POSN symbolic code emitted from

the Macro Library at the time of assembly.

PNSTTION MAGNETIC TAPF FILF MACRD

HDG 2010 PISITION MAGNFTIC TAPE FTILF MAGRN

HNG IR T2 2R RS N RN X R S N N S F R S R N R R N E RS R LY
TFR 36%8 x[NSEG MOVE T/0 SEGMENT

TFR 1% B%6 xINSFG 1TMONDIFY M VARIANMT

TFR 6% 18 Xx[OSEG 30MODIFY RET & RETRY ADRS

BRI XEXT/ND -/ * 1060 TN EXECUTE

HDG 10********************'h******************ﬁ*****t**************
END 20 xdk END OF MACRD ##w

Figure 8-20. POSN Listing

These parameters are converted to:

a. %1
b. %2
c. %3
d. %4
e. %5
f. %6
g. 7
h., %8

READ (READ).
The purpose

processing.

- file-name.

- not used.

- end-of-cutput address.

- file-name with CI of 2A.

- space/skip variants.

-~ position OP Code or variant.
- file-name with CI of 60.

- file-name with CI of 2B.

of this macro is to make the next record available for

The A Address contains the file-name, B Address the error

address (if B Address is blank a standard address is assumed), and the

End-of-Input return address is entered in the C Address Field

(figure 8-21).

LINE| symoLic | op [vaRan A ADDRESS B ADDRESS C ADDRESS

noli| taeeL | cooe [\ s AT o A tac Foc] G REMARKS

“Jefe [rTeTo rofusafsofs <fishiefy oo ofeofa eafeofeafeofec]e fzofe s ofs fsefodlsafsefsefsefs s sfaofasazfasfeafasfucfe feelefocls foafes]selssfoslsfsefelsoferfezlefefesfees Jesfeofr 7 [raflrafrafrefro[r o feo
01] M|||Rﬁwoullcw&mh?| co e B Ly EBOE B b
ﬂJTMPﬁHlREmDIIITﬁfﬁJI;I e T T Ll b et bttt
'T1H NEEWEE NEn Nl PEEEE T A AEEE IR N NN NN NN RN
oal oy v vl b oy Gl d v cna B b b s Bl Lo e a1

Figure 8-21. Read Next Record Available
The parameters are converted to:

a. %l - file-name.
b. %2
c. %3 - end-of-input address.

d. %4 - file-name with CI of 2A.

error-address. If blank, standard is inserted.

Figure 8-22 illustrates an example of READ symbolic code emitted from
the Macro Library at the time of assembly.

RFEAN MACRN
DG 2010 READ MACKN

UnG 10#########ﬂ##ﬂ########t###ﬂ##ﬂ###ﬂ##############ﬂ############
TCR A% 1A%1 %4 LNK Tn RECORD ROUTINE
NOP * @2 10%2 %3 TO GET NEXT RECORD

HDG 10t***************i***********************t*******************
END 20 wkk END DOF MACRD *kw

Figure 8-22. Read Listing

RECD (RECORD DESCRIPTOR).

The purpose of this two-card macro is to describe the records to be
processed. It works in conjunction with the File Descriptor Macro to
select the proper I/O routines, depending on whether the records are

blocked or unblocked.

The A Address on the first card contains the record name, B Address the
record length (4 positions), and C Address the records per block (3

positions).

The A Address of the second card contains the I/0 code to be used by
the file. If the records are disk, the segment size is entered in the
B Address and the segments per block in the C Address Field. The
acceptable codes are 01-10 (figure 8-23).

LINE| symsoLic | o Y A ADDRESS B ADDRESS C ADDRESS
LABEL | cobpe CHAR, CHAR, TR REMARKS

No1 (N TAG F.Lc| SheR TAG F.LC! MeR TAG F.uc! iweR

als s [FTe]sTro[rs[i] 1]t o]t o] o[et oo of 2 tfocfesfoafeefeela]2 afe sls of s [s2fs ofs afs o aefs s ofs o] ofa 1 [azfasfeafas[acfarls a]a ofs ofs [s2]s sl sassoe]s 7]sa]as]s o] 1[s2[e s as s[eee Jsefs s o] 1 [r2fra[afrsfre]r 7] o] of o)
o] ICARDI |RECP] , |, [C L1 jooBo Ll joah o vt gy
ozlllllllll lll#olll 1} 11 1 ¢t 1 11 1 14 I | |ll‘lllllllllllllllllll]lll
03' 11§11 11 III L1111 [| | j | NEEEE NEEE L1l bttt et b et ekl
oal ly oyl d el viay 1 O T T T Lyl bt pe v b e e e gt

Figure 8-23. Record Description
and Selection of
I/0 Routine

The parameters are converted to:
a. %l - record name.
b. %2 -~ record length (also used as M VAR/Record length).
c. %3 - block length (RECD length x RECDS/BLK).

d. %4 - block length plus excess disk area (excess DSK
Area = SEG/BLK x SEG SZE).

e. %5 - number of characters for last TFR (RECD SZE divided

by 120. Zero remainder set to 120) four positions.
f. %6 - record size less character size of last TFR.

g. %7 - number of characters for last ADM (preceded by #)

four positions total.
h. %8 - number of segments per block.

i, %9 - last two positions of record length if unit records

or last two positions of last TFR are blocked records.

This macro will automatically insert the proper routines to
effectively handle the blocking and unblocking of records. The

routines are provided as part of the Advanced Assembler II Macros.

ROVR (RELATIVE OVERLAY).

This macro assigns codes to the auto-load output listing (columns
67-71). The codes are used to relocate the program at object time.
The A Address contains the overlay name (three significant positions),
B Address the number of program blocks in the overlay, and the

C Address Field is blank (figure 8-2.4).

LINE| symeoLic | o |vAmianT] A ADDRESS B ADDRESS C ADDRESS

Nno.[1] LABEL | copE [y |y TAG | S TAG FLc] e TAG Fcl e REMARKS

sl e[TeTo T[] ssfvarsfrofofrefrsfofz feafesfeafesfeefe el slsofs sszfsafs assfsefs oo afs sfacfat[aaasfas psaefer s es[so]s 1 [sefsa|safs[oe [s7 s afsls o s [se]e sfeafosfecfe foeless 1] -2p sfaf oo 7 oo
o iy ROYRE L EDEN | L XX a0 ol Bl Lo [sem dvEeRrLAY (PR REL ADR,
oz| vyl yadaly |1||135|1|1|x||:'||’|1||||,||| Ll
osl |y auaadaly |11|1"|111111|/”1|1n||1|':1f||||||||||111||||111111|||
°4|||1|||1|||1|1||1'/i‘-1111:||1€'|||11|||"f||11||||||||||||||||111|||
os| |y LRl |, [TDEN | B4 |, ! A Lo v L JCALL ONERLAY, 100000
osl |y vl b Ll P Lo B b b e g
o7 |4y 4 [THE [ABION]E TNSTERVCTLON WTULEL dlAD, [TWE, OVERUAY, WIDEN* | 0 i
ool | 1y 1 JAND [BRIANJCH TO; ICAITIIOM BKA /1D, - R TiHE B FlretlD TS v 10y vt a1y
ool |y BLANK, | Al BRANCH Tid TiHE QV|E/LAIL}3!|LL|L-L_|@1C AN NN
10] NNl RNTE NN NERERE * TR S UREE - N EW SRR NS NN N
LI NIRRT NUEE N Nl FERNEE & NN SN SRS R bl rraa Lloe ety g

FTigure 8-24., Auto-Load Output Codes
The parameters are converted to:

a. %l - overlay name.
b. %2 - number of blocks.

c. %3 - overlay base address.

Figure 8-25 illustrates an example of ROVR symbolic code from the

Macro Library at the time of assembly.

8-20

RELATIVE OVERLAY MACRD

avR %3

NG 2010 RELATIVE OVERLAY MACRDN

HDG IEVEZ 2SR EA 2RSSR RN RN RN RS RN EET SRS TR T
£STY 6+20VR2 NVERILAY

rnsT 0h%1

£ST 242 LABEL

UnaG TOhkkkkhhdkdrhehhhkbhhbhhhhdrhkbhhddkhdhh ok dhdokdd kb bk kb e ok de ok W ok ok o o & o o o
FND 20 **x END 0OF MACRD **w

Figure 8-25. ROVR Listing

STOP (END RUN).

This macro ends processing, removes a program from the programs in

the Program Table, returns the I/O units to the Systems I/O Table,

and updates the Available Memory Table. Control is returned to the

Executive Routine, and the A, B, and C Address Fields are blank

(figure 8-26).

LINE| symBoLic | op [vaARiAN A ADDRESS B ADDRESS C ADDRESS

No|1| LABEL | CODE [4 [y ™G FLc) Shan: TAG F.Lc| Siat TAG Ficl G REMARKS
4’0ﬂﬂ¢¢¢N¢¢¢“mﬂ¢“¢¢$**“”¢”$ﬁﬂ$¢$¢$NN¢“+1“+++¢¢“”+“++‘*¢*¢$$$*$¢*$¢¢***¢#¢*¢*0
o |y ISTORA L | ll_llltjllllllllIlllllllv/lll Ll b
oz[llllllll lll lllll?':rlll lllll|ll|||lllll|l|l|l|l|ll||||l|l|llll
03! | O O |]I] l|l|l4|l||||||’lll|||l|l 11 N N T S T T T T O I I B A |

Figure 8-26. Termination of Processing

Figure 8-27 illustrates an example of STOP symbolic code emitted from
the Macro Library at the time of assembly.

STIP RUN MACRD

DG 2010 STOP MACRN

NG 1ORARARERER AN R A BBE AR AR RR N R LD L AR A AR ARG R At A AR AL
TFR 3% RRENP X JVRNM LINK Tn EXEC CONTROLLER
TFR 2% B@15 XOVRWA TO cALL THE ENN OF

Ten 24xBEGILR xNDVRCL ¥NVRTS C PRMNGRAM ROUTINE

HNG B R R R R R 22222232222 S22 R R AR X2 R 2R R R R R AR A A LSRR SRR ED]
Frn 20 kx% END OF MACRDO x%w

Figure 8-27. Stop Run Macro

WRIT (WRITE).

The purpose of this macro is to provide a means of moving records to
an output area. If blocked records are written, an appropriate block-
ing sub-routine is automatically provided, but if unblocked records
are used they will be written on the appropriate output device. This
is a two-card macro (figure 8-28). The first card contains the file
name in the A Address Field, B Address the error address (a standard
address is assumed if this field is blank), and the C Address contains
the End-of-File Branch Address entry (a standard address is assumed if
this field is blank).

LINE| symBoLic | op |vARAN A ADDRESS B ADDRESS C ADDRESS

NoJ1| LABEL | CODE | y | y TaG Fc| Shen: TAG ech Shan. TAG F.Lcl e REMARKS

‘lﬁ 617 I Hl']' OI‘ |I|Z |3J'_‘l| 5"5 |7[|O |9I20 2'[22123124 25%]26(27| 25k93;!-3|_3‘; 33]3!'35 35[31'38 3940]“ ‘7!"!“ 'k‘¥‘7]l!ll?]50 51 ‘7{‘ ‘,[! 7iﬂ![SQIB()[ﬂ‘]GZIﬁ3|54|55|56]67IG!!69I70[7|I72|73'7‘l§[76|77l76[7§|50
ol iy i1 TR |P|F|I|L|E3/’:11111||"5 ‘Lllll._l’lll TR T U 0 T O A O Y O O A O B B A I
ozl by bbb Bl Laa L 1111111|1'B:LJA|N1'G|||||111||:11|111L
osl by gy WRET L HDGS P (i L b NSNS NN
oal vy L|101$J|i1’f1|1 LiL 11 L ol s c gyt
osllllllllllll lllll;llJ_lllll | O T . 0 A N U T A I N O 0 O A Y O O
IR NN NN NE NS NURERE FENNN EEEEN! Lid 11 Ll el r iyt

Figure 8-28. Heading Write Followed
by Double Space on
Line Printer

A second card contains the printer spacing (printer files) in the

A Address Field. The B and C Address Fields are blank.

Acceptable codes are:

a. SS single space after printing.
b. DS - double space after printing.
c. NS - no space after printing.

d. CN - skip to channel N after printing, where N is 1-@.
The following parameters are converted tos

a. %1 - file-name.
b. %2
c. %3 - end of output. If blank standard is used.

error ADRS. If blank standard is used.

8-22

d. %4 - file-name with CI of 2A.
e. %5 - space/skip variants,

f. %6 - printer of code-A.

g. %7 file-name with CI of 60.

Figures 8-29 and 8-30 illustrate examples of the WRIT symbolic code

emitted from the Macro Library at the time of assembly.

WRITE OR POSITION PRINTER FILE MACRO

HnG 2010 WRTITE NR PASITINN PRINTER FILE MACRD

HDG TOERRER R ARG AN G RE SRR BB AV R G R R R BB BB R BN R AR R RSB RS R ARt
TFR 3* 20 L Y4 SET PRINT OR SPACE NPCDE
TcR 8w 1A%1 %4 LINK TN RECORD ROUTINE
£ST 1%6 TO «4RITE NR

rsT 2%5 POSITION

SANn3 * 10%2 %3 PRINTER FILE

4ngG I N R R 222 a I I I I I ™
FND 20 *ex END OF MACRD wex

Figure 8-29. Write or Position Printer
File Macro Listing

WRITE MACRD

HDG 2010 WRITE MACRYD

HDG LOABAR AR R R R AL AR AR R R H R AR AR AR R R AR AR AL AR A RR AR R BN L ISR
TeR 8 * 1A%1 %4 LINK TN RECORD ROUTINE
NOP * 10%2 %3 T WRITE RECORD

HNG 10 de e de de e de e e e e de e ok e ke de s ke ok ke ke sk e ke e e Wk sk ek ke ke e ke ek kR R bk ke ke ke o
FND 20 *k% END OF MACRD www

Figure 8-30. Write Macro Listing

ZIP (STOP ONE PROGRAM - START ANOTHER) . ‘

The purpose of this macro is to provide the capability to program-
matically stop and/or start a program. The A Address entry for the
End Run/Zip to next program card, contains the identity of the pro-
gram to be called (columns 21 thru 25). The B and C Address Fields
are blank (figure 8-31).

UNE[symmoric | or arany A ADDRESS a ADDRESS C ADDRESS

T REMARKS
noli| vasew | cooe [™ DA R T T A IOk

ov] END ,, 2R lllRMM-lzl bl B N W

°zl 11111 111 III 1)) kg 11 111 11 |) S N T T T N T T v O O |

~ Foc

Ll [rTeTofrofcspafrofi<psfrediafr spofesheafesfeafees]efaske sofs sz s3fsdfsafsefszfaels slaofsfazfashapasfeelarfeefes]sofs saoalsd] e 7oe]ssfedfefozfesledfeJoe]e rJsefosh o] J22frs]rarafreroJ7 el ofool
1 5
1
1

- B
A SR S LA

4\
| N T 1 1 N T N T T W Y O
1
1

|
I
I N 7 1
1

L1111 k1 N 1 T N O T T N N O T T A T B A |

M I FNEETE Nl NN AN . INENENEEE N

Figure 8-31. Program/Start Zip Stop

Figure 8-32 illustrates an example of ZIP symbodic code emitted from

the Macro Library at the time of assembly.

7IP MACROD == STUP & CALL ANOTHFER PROGRAM

4nG 2020 7ZIP MACRD =~ STOP R CALL ANOTHER PROGRAM

TFR 13* 40N XF/CAR SET 721P CALL

TFR In RAREDP xIVRNM LINK TO EXEC CONTROLLER
TFR 2% RA1S xOVRWA TO CALL THE END OF
TCA 24xBEGL B x(JVRCI. x(OVRTS e PRNGRAM ROUTINE
r£sST 7TZIPPADD 71P CALL CONSTANT

ST 5%1 71P PROGRAM IDENTITY
AP MK

ST 11 TO EVEN OUT MACRN

FQu * SET FOR FALL THRU ADRS
END 2020 *x4 END OF MACROD *xw

Figure 8-32. ZIP Listing

The program points within a macro entry do not interfere with the
program points used by the programmer; because program points are

always local to the library level in which they occur.

A macro instruction can refer to other macro instructions (e.g., a
macro instruction inside a macro instruction, inside a macro instruc-
tion, within the main program) and also the CALL pseudo entry. The
only pseudo operation not allowed inside a macro routine is OVR. A
programmer need not be concerned about the length of included macro
instructions for entry increment purposes, or if any of the included

sub-routines contain program points.

The calling strings of the included macro routine may contain refer-
ences to the calling string of the next higher level macro instruction
(i.e., percent references are permissible in the calling string of a

macro routine).

8-24

LIBRARY ROUTINES (MACRO AND CALL ROUTINES)w

Library routines are written the same as other sections of coding,
except it allows program control to return to the parameters of the
calling string (line or lines of code that call the macro). The addi-
tional type of addressing (called Percent Addressing) is provided for

this purpose.

Percent Addressing is coded as % followed by a number from O through
9. This coding corresponds to the parameters reflected in the A, B,
and C Address Fields of the calling string. For example, the unit
number in the Macro Tape Read entry would be referred to as %3. A %O
entry refers to the address for the line of code following the macro
entry. Percent Addresses may be included in any or all of the

following positions:

a. High-order position of the symbolic label field. Percent
Addressing will use the first six characters from the calling

string and insert them as a symbolic label.

b. M or N Variants. In either position, Percent Addressing will
take the first two characters from the calling string and

insert them into the variant field of the symbolic command.

c. High-order position of an address field. The full 12~
character symbolic address from the calling string will be

inserted into the address field.

d. Entry increment field (positions directly following the sign
position). The first two characters from the calling string

will replace the percent reference.

A second or third percent address may be written directly following
the first. 1In essence this construct says that if the left-most

Percent Address Field is blank use the one to the immediate right.

Macro routines are to be used by the programmer as though they were

a single special purpose instruction. The number of lines to be

inserted by the macro routine counts for only as many entries as it
takes the programmer to declare it (usually one). An example of this
is the READ Macro. The programmer may consider this as a special com-
mand with three address fields. The fact that it provides for error
checking in addition to reading a tape is unimportant (as far as
coding is concerned). The programmer can treat it as one line of

entry, or just as he would an actual machine language instruction.

LIBRARY MACRO REQUIREMENTS. The coding of macro routines is the same

as regular coding with the following differences:

a. Absolute symbolic labels (as opposed to program points)
should never be used, because it causes duplicate labels

whenever a specific macro is used more than once in a

program.

b. When writing a macro routine, it must be possible to make
use of the parameters furnished by the programmer when

calling for the routine.

In order to accomplish item b, an address composed of a % followed by
a number from 0-9 is used. %l through %9 refers to the nine possible
parameters that may be used by the person requesting a macro insertion.
The %O entry is the address assigned to the entry directly following
the macro routine in the calling program, The % references may be
used in many places within a macro, and in all cases it will result in
the appropriate number of characters to replace the % reference. The

locations where these references may appear are as follows:

a. Symbolic label - the first six characters from the

appropriate parameter field becomes the symbolic address.

b. M and N variants - the first two characters of the

appropriate parameter are used.

c. A, B, and C Addresses - the complete l2-character

parameter is used.

NOTE
Refer to the Advanced Assembler
II Reference Manual (1042769) for
additional information concerning

the CALL or Macro routines.

SECTION 9
B 500 COBOL COMPILER

GENERAL .
MCP IT has the capability of storing the COBOL Compiler on disk and

making it callable as a MCP II Function.

MCP IT also contains the COBOL Compiler maintenance and start-up

programs that are available to the user as function calls.

By coding OP-SYSTEM under the OBJECT-COMPUTER paragraph, the source
program is compiled at base machine location 800, and an execution
under MCP ITI control is achieved. If MULTIPROGRAMMING 4is specified
under the OBJECT-COMPUTER paragraph, the resultant object program

will automatically contain float codes for multiprogramming.

COBOL COMPILATION FOR OPERATING SYSTEM.
The following must be observed within the ENVIRONMENT DIVISION of
the source program so that the object:program can be added to the

program library (figure 9—1).

UINE A 8

4 6iTl8 e ‘

ot E ELNIVIIR1¢INIM1EIN1-T‘I quAVJLSxIL(ble-l I T U W T O T O O T
oz | CL@nNJFIiGlulRleTLL(bLNL LSJElClTlIlg)lN-l 1 S N U Y O W S W T Y O O O Y
03l Sl(DLUl ClE-n"lCnd)lMPnUmELRn IBPSIODLOJ T G WO W Y U Y U 0 T W O O
04 B E 1T1’1C|¢1MLP|L(1T1E1R01 181510101 T VO U O U T T G T W T T O
05 114 @&%ﬂSNﬁﬂﬂElen [T Y O | T W T I Y SO S U Y O
06! L1 1EPNQRNXISJ?5511L9;LOKM L*%AREHJTE”§5111 I N
ori ||, ASSIGN PBJECT-PROGRAM T LINE-PRINTER .
03: L1 SéiJl%hL:GMSJEECﬂi Eﬂ?dﬂaFt Jq Tﬂn,;LASDEn1 T O S B W T
09: N SN T R N SO U YN TN S SN U N (T VN W N W T YO [(S N S T VO N U Y Y Y |

Figure 9-1. COBOL ENVIRONMENT
DIVISION Example

The OP-SYSTEM statement will cause source program output to be com-
piled at base 800. If MULTIPROGRAMMfNG is specified the program will
contain float codes for multiprogramming. The resultant Collector
Tape may contain several object programs that will be subsequently

loaded to the User Program Library.

COBOL programs must be loaded into the User Program Library from the
Collector Tape using the CPAT Function, Specifications for CPAT are

the same as LPAT and may be found in Section Four of this manual.

After the COBOL program is loaded to the User Program Library and a
program delete (DPDL) is executed, the output from the DPDL Function
(back-up library tape) must be reloaded using LPAT.

CPAT is only used to initially load COBOL object programs from a
Collector Tape.

The COPR Function of MCP II is used to load the B 500 COBOL Compiler
to disk. The COBOL Binary Card Image Tape must be mounted on TSU #1
with scratch tape on TSU #2.

The format of this function is:g

>>>C 0 P R a b b b c¢c d e £
1 ~--- - - 7 8 9 - 11 12 13 14 15
where:
1 = 48O-character segments
a, a - disk segment size 2 = 240-character segments

96-character segments

3

b. bbb - base disk address where the compiler is to be loaded
onto disk. The address must be expressed in thousands. An

electronic unit zero is assumed and cannot be changed.
Example:
015 indicates a disk address of 0015000,

fl = object program to run with MCP II.
C. ¢ - MCP II indicator 10

object program is not to run with
MCP I1TI.

132-print positions.
120-print positions.

d. d - line printer #1 size {é

{same as printer #1. Must be
e. e - line printer #2 size coded even though two line
1 printers may not be available.
O = create base tape and load tape
f. f - maintenance type to disk.
1 = load base or intermediate tape.

An example of a > > > COPR entry is as follows:

> > > COPR20201110

This example will create a COBOL Base Tape, and load it to 240-char-
acter disk segments starting at 20,000. The object programs will
run with MCP ITI.

If system memory is used, the compiler should be loaded no lower than
segment 6,000. The resident compiler requires approximately 1400
segments of 240-character disk. The 2,000 segments immediately pre-
ceding the compiler, and the area from segment address 0000000 to N-1
(depending on the size of the source program) will be used as an I/O

work area.

BLANK EXECUTIVE ROUTINE SAVE AREA (2 > = BLNK).
The BLNK Routine is an automatic function called by COPR to save the

Executive Routine, while the COPR Function is being executed.

SET-UP COBOL COMPILER LOADER (> > > SCCL).
This function is automatically called at the conclusion of the COPR

Function to pass parameters from COPR to the CMPL Function.

It is necessary to reload the compiler with COPR whenever the Oper-
ating System is initially loaded to disk; otherwise, COBOL

compilations will not be processed under MCP II Control.

>>> CMPL

COMPILE COBOL SOURCE PROGRAM FUNCTION (> > > CMPL).

This function will save the Executive Routine in the area called

BLNK, pass any changes in printer size and/or the MCP II indicator

to the COBOL Compiler, load the compiler into memory, and execute

the compilation of a COBOL source program,

The operating instructions are as follows:

d.

Mount a scratch tape on MTU-1.

Mount a scratch tape on MTU-2 for the object program
Collector Tape.

Ready the line printer.

Enter CMPL via card reader 1 or the SPO.

The format for the CMPL Function is as follows:

o B

where:

>>CMPLa b ¢ d

- -——=7 8 9 10 11

1 - object program to run with the
a - MCP II indicator. MCP IT.
O - object program not to run with

the MCP IT.

- 132 print positions.
- 120 print positions.

b - Line Printer #1 size. {é
¢ - Line Printer #2 size. Same as printer #1.

1l - compile for syntax only.
]\Blank - compile with object code.

o
|

Syntax only.
NOTE

If any of the parameters are changed,

all the parameters must be re-entered.

9-5

The following message may be displayed on the SPO.
Message:
PARAMETERS NOT CORRECT

The parameters entered with the function call were not correct. A

restart is required.

Figure 9-2 illustrates the position of assembler information.

+>0VR>ASIG 1st 240

LOADER 2nd 240

- e am mm o e = = me wm e

OBJECT CODE 3rd 240

Figure 9-2., Assembler Program in
the User Library

COBOL MULTIPROGRAMMING.

The COBOL programs are loaded to the User Program Library in an
auto-load format. The first block of the program (an assigner) is
read into machine location 400 with control transferring to machine
location 400. The COBOL Assigner Routine will select information
from the Executive, store the Executive in the reserve memory loca-
tion, and read the second block of the program (loader) into machine
location 000, The loader reads the object program block to the
address as required, and then transfers the object code to main core

at its new execution address.

An ASG block follows each overlay section. When the ASG block is
recognized, control will transfer to the ASG Routine. The ASG Rou-
tine will test for subscript 6lAxxx in the object program. If 61lAxxx
is found, the four position field (Axxx) is added to decimally, and a
test for +BEG in the first word of the object program is performed.

If no 4+BEG in the first word of the object program is performed, and
if no 4+BEG is found, the object code is considered an overlay and will

be written onto the disk at the location specified by the file limits

of the source statement. After the overlay has been written, control
is returned to the loader to read the next block(s) of object code.
If +BEG is found, the Executive will be restored and updated with
I/O requirements, the next program start address etc., after which

control will pass to the Executive (figure 9-3).

ASTG

LOADER

OBJECT CODE
(Autoloads)

. ASG

+BEG

OBJECT CODE
(Autoloads)

Figure 9-3. Segmented COBOL in
the Disk Library

SECTION 10
PROGRAMMING SPECIFICATIONS

GENERAL .

This section emphasizes some MCP IT programming techniques. Most of
the examples use the Operating System Assembler (ASOP) format and a

few COBOL techniques. The programmer can use either Basic or Auto-

load formatted programs (provided they have the necessary linkage to

the Executive Routine for execution).
In order to use MCP II in a multiprogramming environment, the
following multiprogramming specifications must be used.

The Operating System execution of a relative user program is presented

in the following format.

MULTIPROGRAMMING SPECIFICATIONS.

In order to effectively use MCP II as a multiprogramming system, the

following programming specifications must be followed:

a. Programs may be written in ASOP (Adyanced Assembler
language), or B 500 COBOL.

b. All addressing must be symbolic except for the Set

Location Counter and Overlay entries.
c. The use of SAD2 is not allowed.

d. SAD3 may be used for address tables in a normal address

position of a word (OP, A, B, or C).
e. MCP II Multiprogramming Macros must be used for input/output.

f. If input/output operations are infrequent or non-existent
in a program, the Multiprogramming Interrupt Macro should

be placed within each execution cycle of the program.

10-1

g. The sequence of a user program is relatively unrestricted
following the initial entries. The initial entries must be

in the following sequence,
l) The Begin Run Macro must: be the first entry.

2) All files must be described immediately following

the Begin Run Macro.

3) All records must be described immediately following

the File Descriptor Macros.

4) Constants should be placed after file and record

descriptors.

h. Files must be OPENed prior to the execution of a READ or
WRITE Macro.

i. If the initial positioning of the file is required, the

Position Macro must be executed.

j. Files must be CLOSEd prior to the execution of the STOP-RUN
Macro if the units are to be returned to the Systems I/0

Table at end-of-job time.

k. After the execution of the file CLOSE Macro, files cannot

be accessed by the execution of another file OPEN Macro.

INITTALTIZING THE SYSTEM.

The following steps are used by MCP II to execute a multiprogramming

program.
The program call is initiated via the card reader or SPO.
a. An interrupt occurs.

b. The Executive branches to machine location 260 and
sets the SPO initialize flag (a one (1) in machine

location 179), and branches to 050 in the Executive.

10-2

IFCC (Interrupting Function Call Check) is called

to determine the following:

1) Type of input (Function CALL or user program CALL).

2) Checks to see if Save Memory is required.

3) Sets the Program/FunctionSwitch at machine

location 028 to P.

4) Checks machine location 318 to determine if the

system is in a multiprogramming mode.

5) Transfers the disk address of the User Program

Library from 11# to 144 in the Executive Routine.

EXECUTIVE.

The Executive reads the User Program Directory Library Record, and

transfers control to the Directory.

CALL RECORD BLOCK.

The Directory Record transfers three words from the program to the

function call input area (location @ 370).

The three words consist of:

a.
b.
c.
d.

e .

Program

Program
Program
Program
Program

Program

IDENT is

The input/output

CALL work area at machine location 270,

disk address.

identification.

input/output requirements.
MODE (Relative COBOL segmented,
blocks.

compared, and the MODE checked.

requirements are transferred to

machine location 330 in the Executive.

etc.).

the multiprogramming

and control is transferred to

10-3

MULTIPROGRAMMING CONTROL OVERLAY LOADER.

Calculates the relative address.
Adds the relative address to the base.

Branches to machine location 060 which

loads the Memory Check Function,

MEMORY CHECK FUNCTION.

Tests the multiprogramming flag at machine location

318 for MODE.

Checks machine location 31@ for the number of programs

in process.

Determines if enough memory is available to execute

the program.

The linkage is set in the Executive Routine to call

the Input/Output Check Routine.

INPUT/OUTPUT CHECK ROUTINE.

.

10-4

Stores the I/O Table located at machine location 290

to machine location 400.

Program I/O requirements are checked against the Systems

I/0 Table for available units.

Assigns the I/0 units to the program and then removes the

I/0 units from the Systems I/0O Table.

Linkage for loading the Memory Assigner Routine is set,

and the linkage accomplishes the following:

1) Transfers the Revised System I/O Table from machine
location 400 to 290.

ASSIGNER

DATE

2) Transfers Revised Program Table to Executive Program

Table at machine location 280,

3) Transfers the ADM counter from machine location 304

to 356.

4) Transfers the beginning disk address from machine

location 309 to 306.
5) Increments the program counter at machine location 31@.

6) Branches to machine location 060 to load the Assigner

Routine.
ROUTINE.

Tests the ADM counter for 00. (00 identifies the first

multiprogramming program in the mix.)

Sets the transfer to ADDRESS.

ADM's beginning address.

Transfers the first 10 words of the program into memory.
Decreases the program block counter at machine location 396.

Performs steps b thru e, until all the program blocks are

loaded, and the linkage for loading the Date Check Function.

CHECK FUNCTION,

a .

Tests for relative overlay, if the relative overlay recalls

the multiprogramming loader.
Tests for DATE. (Second word of object program.)
Checks program type at machine location 380 for an "R."

Transfers the first two words of the program to 354,

10-5

Tests for TODAY's and REPORT dates.
Prints BEGIN RUN message on the SPO.

Sets linkage for loading Input/Output File Declaration

Function.

INPUT/OUTPUT FILE DECLARATION FUNCTION.

This function stores the following items in the I/0 Control Segment.

Interrogate, OP CODE, M-VAR.
Table position length.
Program I/0 Table position.
I/0 command (OP CODE & M-VAR).

Sets the linkage for loading the second I/0

File Declaration Function.

INPUT/OUTPUT FILE DECLARATION #2 FUNCTION.

10-6

Tests for error flag (2) at machine location 382, and sets

a discontinue if equal. The error flag will be set by IOFD.

Assigns the printer or tape to the file requesting the line

printer with tape backup.
Prints the file name and the type of I/O assigned on the SPO.

Sets up the user program return address linkage table

(machine location 049).

Branches to the Executive which will load the

multiprogramming controller.

Control will transfer to the user program to begin execution.

FILE OPEN FUNCTION (OPNF).

a. The OPNF Function will store the file name and disk file

address for the open message.
b. Sets the address of the I/0 Control Segment.
c. Determines the type of I/O device.

d. Assigns the I/0 unit number (inserted into the I/0 Control
Segment by the I/0 File Declaration Routine).

e. Deletes the I/0 unit from the Program I/0 Table.

f. Restores the updated I/0 Control Segment and Program I/0
Table.

g. Prints the file OPEN message on the SPO,
h, Sets the linkage to recall the Multiprogramming Controller.

NOTE
When an end-of-file condition
occurs, the user program will
set the linkage (Close Macros)
to call the File Close Function.

FILE CLOSE FUNCTION.

a. Saves the file name.

b. Tests the type of file.

c. Restores the unit to the Program I/O Table.

d. Removes the unit from the I/0 Control Segment.

e. Sets the programs return address.

f. Prints the file CLOSE message on the SPO.

g. Sets the linkage and recalls the Multiprogramming Controller.

10-7

END-OF-PROGRAM FUNCTION.

jc

Turns the Call Record Switch on, and transfers A "#"

to machine location 015,

Returns the I/0 units (from the Program I/0 Table)
to the Systems I/O Table.

Eliminates the program from the Return Linkage Table.
Restores memory space to the system.

Prints the End-of-Program message on the SPO.

Reduces the program count.

Tests for ZIP.

Tests for more than one program in the mix.

Tests program TANK.

Recalls Multiprogramming Controller.

MCP II CAPABILITIES.

10-8

(=Y

The capability of customizing the Disk Operating System to

utilize it to its fullest intent.

Maintains a User Program Library containing Basic, Advanced,
or COBOL programs, and the capability of loading a program

with minimum effort.
Assigning of dates through the Operating System.
The ability to call program overlays.

The automatic handling of End-of-Job or discontinue routines

for return to the Executive Controller.

f. Allows serial jobs to be interrupted so that the execution
of other programs can be accomplished, and automatically re-

stores and restarts the program that was interrupted.

g. The capability to programmatically call another program or

function.
MULTIPROGRAMMING GENERAL SYSTEM FEATURES.
a. Multiprogramming of a maximum of three user programs.,
b. MCP II Macros to automatically handle I/O.
c. Discontinue of one or all programs in the mix.

d. Available core query and/or what programs are presently

in the mix and their core requirements.

e. Automatic assignment of peripheral units and control of
the I/0 Table.

f. Automatic relocation of programs at the time of execution.

CUSTOMIZING THE OPERATING SYSTEM.
This feature is accomplished with the Delete (DELF) and Add (ADDR)

Functions: Both functions are on the Tape Operating System. The DELF
Function provides the capability of deleting any function(s) that are
not required, and the ADDR Function provides a means of adding func-
tions to the Disk Operating System. These functions are used to free
library space and to minimize the time needed to load a program and

repack the User Program Library.

PROGRAM LIBRARY.

In order to load a user program into the User Program Library, a pro-
gram PADD record must be furnished each object program. This record
is automatically provided when the Begin Run Macro or OP-SYSTEM

is used. For other types of programs the user can insert a SLC at

machine location 750 followed by the PADD record specification

10-9

described as constants. This entry will create a PADD Record during
assembly. The Object Program must be assigned with the first word
residing at machine location 800, The first two words at machine
location 800 and 810 are reserved for the Operating System. Machine

location 800 must contain the following BEGIN Program Label.
a. Position 1-4 +BEG-positions.
b. Positions 5-9 Program identity.

C. Positions 10-12 Address of first instruction

to be executed in object program.

The second reserved word at machine location 810 is used for Date
Assignment Codes. This field is blank if date assignments are not
used. The following data represents the necessary coding for the

date assignment,
a. (position 1) +.
b. (position 2) D if either Today's or Report is required.
c. (position 3) Y if Today's date is required.
d. (position 4) Y if Report date is required.
e. (position 5) Today's date type code or blank.
f. (position 6) Report date type code or blank.

g. (positions 7-9) the address in the user program used

to store today's date.

h. (positions 10-12) the address in the user program used

to store report date.

10-10

The following are acceptable types of date format codes.

Type Code
A

B

3
4

The dates supplied to the user-specified area are left-justified.

Format Type of Date

Alpha-month DD, YYYY Month~day-year

DD Alpha-month YYYY Day-month-year

Alpha-month DD, YYYY Abbreviated month-day-year
DD Alpha-month YYYY Day-abbreviated month-year
MM-DD-YY Month-day-year

DD-MM~YY Day-month~-year

YYDDD Year-Julian day

DDDYY Julian day-year

following are several examples of daté formatted output.

=S

January 31, 1970 (alpha: month, day, year)

B 01 April 1970 (alpha: day, month, year)

Lo R oROg

SEPT 05 1970 (abbreviated alpha: month, day, year)
10 JUN 1970 (abbreviated alpha: day, month, year)
01-15-70 (numeric: month, day, year)

31-03-70 (numeric: day, month, year)

70150 (numeric: vyear, Julian day)

36570 (numeric: Julian day, year)

Figure 10-1 illustrates the date assignment format.

=l ,
0 (ON
2505 | g5
+|D|Y|Y|So|l a & A
SR =) =
g 8
J o< = <
&
1f213]efslefr 8 sjiom 12

Figure 10-1., Date Assignment Format

The

10-11

CT-0T

LINE| symBoLic | o [VARIAN A ADDRESS B ADDRESS C ADDRESS
NO. LABEL | CODE | y |\ TAG Fc)Shen: TAG FLc| han: TAG Ficl mem REMARKS
a]sfel7]sfo]roftshafsafrafisfie]irjro]sslool21jzefealzaosfeslzesleofac]a sz 33341351361371"94°J“421‘31“-‘5146147J‘°l‘915°5‘ s2[sasa[ss]ss[s7[sessleole1[sz]safsafesfse]er[selsolr cfr[r2rslzafrsr6lr 7] el s]so
01] IL[IJSJLIC:LLII?IEEloll J_LLI[IILII L1t I T T T T T T A T O A B
oz by ST W L TPES=PADEA | [[y Z 1 L1l L Fowemaiony CALL ID 00010
oafl |11 |GST) | SILDENT RN NN //%/ L1 L1l (Lo PROGRAM IDENTTTY ¢ 1011 Ly
oa] |4y IGST 1My AR R ;%/ L L1 Ll TYPE PROGRAM 11 1111
os| | 14341 [CST) ||L‘NI_L1L1 [O //%/ 14 L1 L1 BIE|G'|I1N|"|RULNI HJAILlTl I I I O I
ol 1 JCST | 106] 1 a0 Ll % L L1l L RESERVED 1 1 i1t
o7l |y ST] 210 RN EEEN ?%/ N L1l Ll MATND CORE BLOCK COUNT 1
oel |11, ICGST || 40002 | L1 L1 % 11 L1l Ll MeTAL BLOCK COUNT 41 111
ool | v ICST] 128 10000 AN NEN % 11 ! NN RN
ol |y JCST | W2HBEGIDENTB20 | 4 f% L1 111 Ll |BEGIN RECORD v 111111
vy ST IR2EDYYGHEZI509,60] 4) Z L1 L1l 1111 IDATE RECDRD | 1 1 111 11111
12] START, H B N N EN [L1 % L1 L1l L1 ISTART, @F PROGRAM 1 11 111
vl vy b el Ll Z L1 BN RN N
Figure 10-2. Program Beginning

Figure 10-2 illustrates the symbolic entries required to start an

Assembler program.

OVERLAY CALLS.

MCP II has provisions for locating and loading user program overlays.
The overlays are located by the names specified within the overlay
label (see figure 10-3). A program may call any overlay within the
User Program Library, but a multiprogramming program may not call an

overlay that does not contain relative address codes.

After the Executive receives the parameters to call an overlay, it
searches the Overlay Table to locate the correct disk address segment.
The overlay is loaded one block at a time, starting at the address
specified in the overlay label. After the completion of the load

operation, control transfers to the first word of the overlay.

When an overlay is called, MCP II makes no provisions to save memory
before loading, or to restore memory after the overlay has been com-
pleted, If these functions are required, the user must make the

necessary provisions to call them.

The first overlay instruction must be an overlay label using the

following format:
a. (positions 1-6) +>OVR>.

b (positions 7-10) unique overlay name (positions 7-9

must be unique).

Co (positions 11-12) number of blocks in the overlay

(each block contains 480 characters).

LINE[symaoLic | op |[vARIANT] A ADDRESS B ADDRESS C ADDRESS

No.l1 LABEIL CODE M N TAG F.LC) Cné: TAG £.LC) ?;(:A: TAG FLc) ﬁ:‘e‘nﬂ REMARKS

Js T TeTo rof shof rofrafrofs o]t o[io]s ofoof 2 fefefeaasfeoele fze e o] dfoz]s ofsafss]aefs[oele sfaofar|azfasfaakesaearJae]as]ecls]sesalsa]ss[aslor[sofss]s ofe [ez]e oo sJocfo Jesls sfs ofr r2fralsafrafrelr 7 oy of e
o] by GO 1142 . I vl vERLAY, LABEL

o2| [yl agadaly llllL:-'lIlltlll‘|llLL_llJllllllllll]_ll‘LJIl
H l FEEENE BuTE B II_LIL/;J i b N NN NN NN

Figure 10-3. Specific Overlay Identification

10-13

NON-MULTIPROGRAMMING OVERLAYS. The linkage must be supplied to the
Executive to programmatically call the desired overlay. This is
accomplished by transferring the name of the overlay into machine
location 019, and the address of where the overlay is to be loaded

into machine location 016 (see figure 10-4).

LINE SYMBOLIC oP ARIANT] A ADDRESS B ADDRESS C ADDRESS REMARKS

NO.|1} LABEL [CODE | wm|w TAG el e, TAG REES TAG Fuct inea

oJs o [T o rofiafr2]vafrafisfrefs o]t s[zo| 2 [ezfea[eafesfzc[z 7|z ol o] sz 2] afssasfs 7] afa ofwc]a [a2safua e s[as[a 7] [ofs o[s1[52]s3] sa[ss]s6]s7 s]s o[s o] [s2]s s[ea]e s[s e [efe o[z o7 1] 2] 7a 5[6f 7] o7 o[e0)
% 27 0.

01| 7 N 2,016 N TFR LINKAGE 1o CALL VR

L TFR ||16*1|1|1’:”1111311||r ; i1
biv IR (4] Ris): P loviR /ﬂNE|)| BranGH (T CGALL QVERLAY

oz| BRw | 111 [Boi0 4 L P

11
11 111
11

1131t

L1
L1 !

oal |41 [S EET U FON0N N T / T U O H 0 O O I B
111 !

1
Lh 1
4] ETENENENTEEEE NEETENEEEEE NN TS RSN RN SRR

Figure 10-4. Non-Multiprogramming
Overlay Linkage

After passing the required information, the user program will branch

to location 010,

MULTIPROGRAMMING OVERLAY CALLS. Programs awaiting execution in the
multiprogramming mode may call those overlays that have been assem-
bled with relative address codes. The macro call for this setting
is LDRO. This call requires that the overlay ident and block count
(parameter entries) have been established by the ROVR Macro. For

additional information refer to the Advanced Assembler IT Reference

Manual (1042769).

COBOL SEGMENTATION.

COBOL program overlays can be obtained by using segmentation. Over-
lays are useful whenever memory is exceeded during compilation, or to
1limit the size of main core. Segmentation is assigning priority num-
bers to section names. The priority number determines whether the
section is resident or an overlayable section. For additional

information refer to the COBOL Reference Manual (1045226).

DISCONTINUE (Non-Multiprogramming).
The discontinue of a non-multiprogramming program because of error

conditions determined programmatically, can be accomplished by storing

10-14

a B-bit in machine location 005 and exiting to machine location 000,
The Executive Controller automatically restores this bit after the

program is discontinued (see figure 10-5).

LINE| symBoLIc | oP |VARIANT] A ADDRESS B ADDRESS C ADDRESS REMARKS

No[r| LABEL | CODE | y { n TAG Fc| Shen TAG FLc| e TAG Fcl en

oI5 [s [Je [o Fro[ualiz[Gia]s [t efs o[o] spof 12z s[zaeafasle [z el os o 3 sefs s afos[ssfa [ofs sfa ofst[42]aa[aa s e[7Ja s a o[of s1[s2]s[saJss[es]s [s o] s[s o] [e2]e afs afo s[ee]eeels o o] 3] 7232 afrs[rer 7 sl oo
I P LB v B Pees bl [STeRE DL sGoMTIMUE BIT |

o] ERROR [TFR | 4 |
oz gy |BRY]
|

°3| L)1l 111 1

Booo B b b bl B BRANGH (T8 EXECUTTIVIE | |
! ﬁ 1

1 1|l|l'~lll.lll|l.l4|lll % | T Y I 1 N T T T 0 Y O

Figure 10-5. Non-Multiprogramming Discontinue

DISCONTINUE (Multiprogramming).
To programmatically discontinue a multiprogramming program, it is

necessary to pass the parameters to the disk Executive and call the

Discontinue Function (see figure 10-6),.

LINE| sympoLic | op [vARIAN A ADDRESS B ADDRESS C ADDRESS

no 1] vameL | cooe [T . e o] A E o] G e o] S REMARKS

fsfef Lol [rofudie]vafiafisfrcfi s 5F5Z'Pfhah‘k5h6=72°k°3a:43=53343ﬂ36h7F°§°‘°P"zb!k44ﬂh°h7pikﬁh°5"ﬁ' [ss[oefs]se]sofoos [s2[s Jeafs focfefeelsofr o[1[2zrsrar ol o] el e
o] |y [TCB | B3P 1 11y 1[198:020 % @356 1], | [TER DI SC Fi/ic AND BRANCH |
o2 |4y [CST] IBRP22DI ST OENT] | | |, % [111 |PARAMETERS, FdR DISS | | 1
03] IIIIILLIIIIIIIII;LIIILIIIA IIIIIJ_L;/;JII Lyt i it

Figure 10-6. Multiprogramming Discontinue

END-OF-JOB.
The End-of-Job Routine is called after the completion of each user

program, and to returm control to the Operating System (see figure

figure 10-7).

LINE| symBoLic | oP |[VARIANT] A ADDRESS 8 ADDRESS C ADDRESS
CHAR,

noJi] LABEL [copE [, | TAG el Shen: TAG Fcl Sha TAG Fecl R
e s Tro]ts[s2]ra]1] 5|1 ofs 7]r o]t sleof 21fe2f20]24f2 o262

2o sy o] Js2fssfsJss[se[s o efo sfacfut[a2]asfusfas[ae s 7Jaa]as[s 0[5 s2]sa[safss]: ,jsa]soleo];[:z[aslook5]56[97]00’69[10]1:]12[71[75]1%6177]75]79[5
20,00, i FE FEEETE N ST PR % e BRAaneH (T¢ EXECUTITVIE + 1

REMARKS

o
~

4]s
o] I, BRI]

°2[Lt 11 111 IIl I % W 11 lllll_fl o | 111
. . §
ll llllI’I 11 Illllpﬁglil lllllr_‘ll N0 O N N T T T N 1 T O U O O O B W B |

&
I § IS W T S N W N T N N O T W O I |

o3l | 1111 [

Figure 10-7. Branch to Executive Controller

10~15

STOP RUN.
The COBOL STOP-RUN construct generates a branch to machine location

000 and returns control to the disk Executive.

DATA COMMUNICATION INTERRUPTS.

Data Communication Interrupts are somewhat restricted by the specific
requirements that must be met., The user must provide two one-block
overlays residing in the User Program Library. The overlays are used
to control the inquiries for determining I/0O replies. The names and
location are reserved, and each overlay must be assembled at machine
location 400. With the input ready conditions, the DFI (reserved
overlay name) overlay is used to process data communication input

messages on input ready conditions.

The overlays must provide the readying of input messages by proces-
sing or programmatically calling the program to process the input mes-
sage, and for transmitting additional replies for multiple buffer load

messages.,

After detecting a data communication interrupt the Operating System

performs only the following functions:

a. Interrogates all the terminals for an input or output

ready condition.

b. TUpon detection of a ready condition, the executive will
store the terminal unit number at machine location 108
and call either the DFI or DFO overlay, and transfer

control to that overlay.

If an additional program is brought into memory the DFI or DFO overlay
is destroyed. Therefore if the message and/or any additional infor-
mation from DFI or DFO is required for the execution of the program,
the data must be stored below the area that will be used by the

program to be called.

For example if the inquiry program is eight blocks long, the informa-

tion to be retained can be stored in the area between 0X0 and the End-

10-16

of-Memory will automatically be saved before loading the inquiry

program (unless the overlay was entered from the End-of-Job Routine).
After the processing of the inquiry has been completed, the user may
branch to machine location 030. The saved contents will be restored
automatically, and control will return to the point originally speci-

fied by the interrupt linkage.

PROGRAMMED INTERRUPTS NON-MULTIPROGRAMMING. At some point(s) during
processing the programmer may want to interrupt a non-multiprogramming
program and have the Operating System interrogate the supervisory
printer, data communications terminals, and/or card reader for an
inquiry or function call (see figure 10—8). The following information

must be furnished to the OP/System.

a. The address within the program where control should be
returned after the interrupt has been completed. This

address must be stored at machine location 0473,

b. Branch to machine location 030.

LINE| symmoLic | o |vARAN # ADDRESS B ADDRESS C ADDRESS

nolil taee. | cooe [T A6 r.Lcl Shan: TAG roc| AR TAG Frc! en REMARKS

s [e]rTeTs oo spa]ro]ra]s ofio]s 7o ofs sfeo]erfedfeafeaafesle fzefesisofs o2fosfoafos]acla oty ofaoa]s2fasfeafes]ae]a faefas]so]s] o2]sa] safssfse]s s slosloc]s [s2]esfo o es]e Jeeles]r o] [rafr ol rafrafre]r]y ofs o]
o [y TRR Lo BP0 1 IBR|E|T'|U|RIN L1 Pod3 b | [TRANSFER RETURN ADDRESS
ozl |1y, |BRG Y1, [PO30) 11 IlJlll L1 111 Lo BRETURN FdR (INTERRUPT 11 |
o3| RETWRAL v oo Ja by o s Bl vy cdoa v P L L TEST a1
10 FEREEE FETE AT N R T FEEETE . N TN E NN ST R N
osl by ool iu gy TN TN 411111:Lf:41 RN NN NN R

Figure 10-8. Return Address Branch
for Interrupt Test

MULTIPROGRAMMING INTERRUPTS. Multiprogramming Interrupts are supplied
to a user program by Macro routine(s), and after each I/O operation,
For those programs that require very few I/O operations, the Interrupt
Macro (M/PI) should be used. The Interrupt Macro will store the

necessary program return linkage, and release control to the Executive.

COBOL INTERRUPTS. The INTERRUPT Verb generates the linkage to the
Operating System for a test of the input requests. If an input re-

quest has been made, the Executive will call the Save/Restore Memory

10-17

Function (if required), call the function or program requested, and

release control to the requested function or program. At End-of-Job
the Executive Controller will restore memory (if it had been saved)

and control will return to the program issuing the interrupt. If an
input request is not detected, control returns to the instruction

immediately following the interrupt.

Maximum multiprogramming benefits can be derived through the use of

this verb whenever a few I/O routines are used by the program.

PROGRAMMATIC FUNCTION CALL.
A user program can call for the execution of any function within the

Operating System.

If a program calls a function, the following linkage to the Operating

System must be furnished by the programmer.

a. The address from the program where control will return
after the function has been executed. The return address
must be stored in machine location O43. If the user does
not want to return to this program after execution of the

function, the word END must be stored at machine location

o4s3.

If required, the disk Executive will automatically save

memory on the reserved area of disk.

b. When the tape Executive has control, and the user wants
control returned to his program, the Save and Memory Unit

Code must be stored at location 045,
The Codes are as follows:

1) 1 through 5 - tape unit 1 through 5 where memory

will be written.

2) # - cards.

10-18

c. Three tape marks (2 = Z) must be stored at location 356.

d. The four-digit function ID must be stored at location 359.

e, The parameters required by the function must be saved

starting at machine location 361.

f. A branch to machine location 020 must be executed.

For example, assume that the program wants to clear an area of disk

programmatically and return.

The following linkage within the pro-

gram will clear an area of 240-character disk segments from 0010000

through 6010999 with the CLEAR character "A"(figure 10—9).

LINE| sympoLic | op |vARianT] A ADDRESS B ADDRESS C ADDRESS

No|1| LABEL [CODE | y |y TAG Frc) Snen: TAG e e TAG F.LCl NeR REMARKS
AORENDENEEDEERDDED zo[zz[zs[zihske2725[29331_“]32 s3] 4fss[3es7aala cfac[[a2]asfeafes[ss[a7faalas]s0]s1[s2]sa]sa[ss]se[s 7]sa]so[s o] 1[s2e 3[s afe afsc e]s efso]r o] 7 172]ra[7a] s8] v6[r 7]] e)
o) i TER L I3 P |1 B RETURNLL 1 | 11 [P043) | [STORE RETURN, PADDRESS: 1 11
oz| | 4 JTCRL 1261% (1 (1 P d@@pﬁler Ll 2356 ;JﬁljwﬁAQJ&M&JﬁKJEQJEM@&LIJLiL
o3l |11y CST | 12622 CLDEo0 100000101 09240 1 1 1 / L1 JPARAMETERS 1ttt
04 RlE’-l'ﬁUnRtAlrl T NITEEEEEEE NN e Aol oo b b CONTINUGE PROCESSTING 1 1 11]
os| o bbb b e b B Lo b e P Lo b v v v

COBOL FUNCTION or PROGRAM CALL.

W

Figure 10-9.

Stores Return Address

The COBOL verb ZIP will programmatically call another program or

function.

ZIPing to a data-name.

The execution of a program or function is performed by

The data-name must contain the program or

function call parameters.

After the completion of the program or

function, control will return to the next instruction in the seq-

uence.

related to ZIP.

Reference COBOL Manual (10h5226) for additional information

10-19

cut along dotted line

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS
REMARKS FORM

TITLE: __B500 SYSTEMS FORM: __ 1057205
___MASTER CONTROL PROGRAM Il _ DATE: __ 272

Reference Manual

CHECK TYPE OF SUGGESTION:
[JADDITION []DELETION [JREVISION [JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE
TITLE
COMPANY
ADDRESS

STAPLE

FOLD DOWN SECOND FOLD DOWN

No
Postage Stamp
Necessary

Postage
Will Be Paid

by
Addressee

If Mailed in the
United States,

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

attn: Sales Technical Services
Systems Documentation

FOLD up FIRST FOLD UP

Wherever There's
Business There's | Burroughs

1057205 2-72 Printed in U.S. America

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-29
	02-31
	02-33
	02-35
	02-37
	02-39
	02-40
	02-41
	02-43
	02-45
	02-46
	02-47
	02-48
	02-49
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	replyA
	replyB
	xBack

