

The

OPERATIONAL CHARACTERISTICS

of the

PROCESSORS

for the

Burroughs B 5000

SALES TECHNICAL SERVICES
Equipment and Systems Marketing Division

Burroughs Corporation
DETROIT 32, MICHIGAN

5000-21005
Revision A

COPYRIGHT © 1962
Burroughs Corporation

Revised Edition A
Copyright © 1963

Burroughs Corporation

Section

1

2

TABLE OF CONTENTS

Title Page

INTRODUCTION
General .. .
System Description

Processor Module A
Processor Module B
Input/Output Channels
Memory Modules
Storage Drums
Card Readers
Line Printer
Catd Punch
Magnetic Tape Units '

ORGANIZATION
General .. .
Operation .. .

States .. .
Levels ~
Modes

Programing .
Syllables .. .
Word Mode Syllables
Character Mode Syllables
Descriptors
Program Descriptors
Data Descriptors ' .. .
Syllable-Descriptor Operation
Operands .: . . .
Control Words

Registers
Program Registers .
Primary Stack and Source Registers .
Secondary Stack and Destination Registers . '
Utility Registers

Interrupt System ,
Independent Interrupts
Dependent Interrupts
Interrupt Register
Interrupt Detection
Word Mode Interrupt
Character Mode Interrupt
Return Normal .

Parallel and Serial Arithmetic
Parallel .. .
Serial .. .

Communication
Dual Processors

1-1
1-1
1-1
1-1
1-2
1-2
1~2

1-3
1-3
1-3
1-4
1-4

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-8
2-8
2-9
2-9
2-10
2-10
2-10
2-11
2-11
2-11
2-11
2-11
2-12

iii

Section

3

4

5

Iv

TABLE OF CONTENTS (Continued)

Title

OPERATION
General .. .
Storage .. .

Stacks
Program Reference Table
Program Segments
Data Storage
Input/Output Areas

Subroutines
Mark Stack Flip-Flop
Subroutine Entry
Subroutine Exit

Addressing .
Programs
Data Addressing
Input/Output Addressing '
Subroutine Addressing

Data Editing

DESCRIPTORS
General .. .
Program Segments

Program Descriptor
Data and Input/Output

Data Descriptor
Supervisory Printer Descriptor
Keyboard Descriptor .. ;
Drum Read Descriptor .
Drum Write Descriptor
Card Read Descriptor
Card Punch Descriptor
Line Printer Descriptor
Magnetic Tape Read Descriptor
Magnetic Tape Write Descriptor
Paper Tape Read Descriptor
Paper Tape Write Descriptor
External Control Descriptor .
External Result Descriptors

SYLLABLES
General .. .
Word Mode

Syllable Description
Literal
Operand Call
Descriptor Call
Operators 0 ••••••••••••••••••••••••••••••••

Character Mode
Syllable Description
Operators .. .

Control State
Syllable Description

Page

3-1
3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-8
3-8
3-8

4-1
4-1
4-2
4-2
4-3
4-3
4-4
4·5
4·6
4-7
4·8
4·9
4·10
4-11
4-12
4-13
4-14
4-15
4-16

5-1
5-1
5-1
5-2
5-2
5-2
5-2
5-2
5-8
5-9
5-9
5-14
5-14

APPENDIX A
APPENDIX B

FIGURE

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
3-1
3-2
3-3
3-4
3-5
3-6

APPENDIXES

Program Operators- Functional Listing
Program Operators-Alphabetical Listing by Mnemonic Codes

LIST OF ILLUSTRATIONS

TITLE

Processor A Configuration
System Console .
B 124 Card Reader .
B 122 Card Reader .
B 321 Line Printer
B 303 Card Punch
B 304 Card Punch
B 422 Magnetic Tape Unit
Processor Organization.
State Operation
Single Level Operation .
Word Mode Syllable and Operand Format
Character Mode Syllable and Data Word
Mode Operation
Program W ord-Word Mode
Program Word-Character Mode
Program Descriptor .
Data Descriptor
Referencing A Descriptor. ~ .
Syllable-Descriptor Table
Data Word-Word Mode
Fixed and Floating Point Representation
Data Word-Character Mode
Program Registers .
Primary Stack and Source Registers
Secondary Stack and Destination Registers
Subroutine Nesting Control "
Register Configuration .
Interrupt Conditions
Resulting Stack in Memory-Interrupt Control.
Resulting Stack in Memory-Loop Control.
Parallel Binary Add Operation.
Serial Decimal Adder .
Dual Processor Registers , .
Storage Co-ordination.
Stack Push-Down.
Indexing the PRT
Program Segment Operation.
Parameter and Temporary Storage for Subroutines
Subroutine Entry Options .

A-I
B-1

PAGE

1-2
1-2
1-3
1-3
1-3
1-3
1-4
1-4
2-1
2-1
2-2
2-2
2-2
·2-2
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-7
2-7
2-8
2-9
2-10
2-10
2-11
2-11
2-12
3-1
3-2
3-3
3-3
3-4
3-5

v

vi

FIGURE

3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14

LIST OF ILLUSTRATIONS (Continued)

TITLE PAGE

Subroutine Exit Options .. 3-6
Constant Indexing .. 3-7
Variable Indexing. 3-7
Multilevel Indexing .. 3-7
Sub-Program Level Call Syllable Formats. 3-8
Data Word-Character Mode 3-9
Character Mode-Syllable Format .. 3-9
Source-Destination Operation. .. 3-9

GENERAL
The purpose of this manual is to present the basic
internal operations of the Processors for the B 5000
Information Processing System. It is intended to
provide a reference for those familiar with the over­
all system as set forth in the B 5000 DESCRIPTOR.

This manual describes the internal programing and
operation of the processors. However, the primary
programing techniques for which the B 5000 was
designed do not require the programer to be familiar
with the actual functions of the Processor. Highly
efficient machine code programs are automatically
generated by problem-oriented language compilers
which are an integral part of the programing system.

The manual is divided into Sections, each of which
discusses a general area of machine functions. The
subjects include logical organization, basic concepts,
and a description of internal programing codes.
Other manuals may be obtained for information
regarding the operating system (Master Control
Program) and compiler programing techniques
(ALGOL and COBOL).

It should be recognized that the B 5000 Processor is
basically a problem-language (that is, compiler)
oriented unit and, as such, its internal language
represents a decided departure from conventionally
organized processors. The purpose of this type of
internal machine language is to permit the efficient
compilation and execution of programs coded as
problem statements. In fact, programs which are
prepared independently may be processed simul­
taneously. The simplification of the man-machine
communication problem represents a significant
advance in the area of data processing as applied to
computer systems.

Your local Burroughs Representative should be
consulted for additional information concerning the
operations of the B 5000.

SECTION 1
INTRODUCTION

SYSTEM DESCRIPTION
The B 5000 is a new, modular, high performance,
solid state system with a radically different proc­
essor organization designed to permit users to
use efficiently advanced problem-oriented program­
ing languages. The system consists of truly modular
components which provide a high degree of flexibility
in tailoring the system to a wide range of applications.

The need for modularity is further emphasized by
the tendency of computer systems to assume ever
increasing work loads never contemplated during
the inception of these systems. The over-all system
is more fully described in other literature, but a
brief description is included here for review purposes.

Processor Module A
The B 5280 Processor provides a new approach to
internal computer organization. It is a high speed
parallel computer which contains the registers,
internal logic, and a parallel as well as a serial adder.
Implementation of problem-oriented languages in
an efficient manner is greatly simplified by the logical
organization of this unit. The Module A group also
includes the following units as shown in Figure 1-1.

A powerful Memory Exchange provides parallel
access between the multiple memory module system,
the processors, and the I/O Channels. This permits
memory modules to communicate with any processor
or with any I/O Channel at any time.

Similarly, for the input/output units, an Input /
Output Exchange is included to permit individual
units to communicate with any I/O Channel without
prearranged connections. This allows complete free­
dom in the assignment of input/output units,
simplifies the programing system, and maximizes
the simultaneous use of peripheral units.

A comprehensive interrupt communication system,
which provides automatic and instantaneous recog-

1-1

1-2

POWER SUPPLY PROCESSOR A INPUT/OUTPUT DISPLAY AND
DISTRIBUTION

CENTRAL
CONTROL

CORE MEMORY DRUM

Figure 1-1. Processor A Configuration

nition for a wide range of control conditions, is an
outstanding feature. To supplement the internal
control of programing operations, an internal timer
is included as part of the interrupt system. This
provides a method for timing system operations.

The power control and supply equipment is also
provided in the Module A grouping.

Figure 1-2. System Console

For general system supervision, a System Console
(Figure 1-2) is provided as a means for observing
the operating status of the system components.
Direct communication between the operator and
the system is available through the Supervisory
Printer and associated keyboard.

Processor Module B
The B 5281 Processor is an optional unit for expanded
processing capabilities. It contains logical, arith­
metic and editing facilities identical to the B 5280
Processor. Each processor is independent and pro­
vides parallel computational and processing facilities.

Processor B is contained within one cabinet and
is connected to the processor A configuration.

Input/Output Channels
The B 5282 I/O Channel controls and transfers data
to and from peripheral input/output equipment.

Up to four I/O channels are available in one B 5000
cabinet. These units permit instantaneous con­
nections to be made between any input/output
unit and any memory module. One channel can
control and communicate with the maximum num­
ber of external devices available for the system.
Additional channels provide the ability to perform
simultaneous input/output operations.

Memory Modules

The high speed memory for the B 5000 is provided
by the B 460 Memory Modules. Each module
contains 4096 words of 49 bits each, including parity.
Up to eight of these modules can be incorporated in
the system. Two cabinets can be used. Each
cabinet contains from 1 to 4 memory modules.
Thus, a total capacity of 32,768 words of core
storage is available to the system.

Each module contains its own addressing and
accessing control. Through use of the Memory
Exchange and the individual memory access register,
multiple memory modules provide parallel access to
stored information.

Storage Drums
Auxiliary storage for the B 5000 is available in the
form of high speed, high capacity magnetic storage

drums. Each B 430 Storage Drum has a capacity of
32,768 words. These words are recorded parallel by
bit, serial by character in frames of 6 bit characters.
Each word consists of 48 bits plus a six bit parity
frame. The drum organization includes 64 bands
each with. 512 interlaced words. Two drums can be
included in the system. The drum cabinet may
contain either one or two drums depending upon'
the system requirements.

Card Readers

Two card reader models are available for the B 5000.
The B 124 Card Reader operates at 800 cards-per­
minute and can handle 51, 60, 66, or 80 column
cards. The B 122 Card Reader operates at 200 cards­
per-minute. Two card readers in any comb~nation
can be included in the system. Both unIts use
immediate access clutches and photoelectric reading
devices.

Figure 1-3. B 124 Card Reader

Figure 1-4. B 122 Card Reader

Line Printer
The B 321 Line Printer produces alphanumeric out­
put at a rate of over 700 lines-per-minute. Each
print line consists of 120 positions, spaced at 10
characters-per-inch horizontally. Vertical spacing
may be either six or eight lines-per-inch. Two of
these units can be included in the system.

Figure 1-5. B 321 Line Printer

Card Punch

Two card punch models are available for the
B 5000. The B 303 operates at 100 cards-per­
minute and the B 304 operates at 300 cards-per­
minute. Both punches contain an internal row
buffer as standard equipment and perform a
check on all information punched. The system will
accommodate one punch unit.

Figure 1-6. B 303 Card Punch

1-3

1-4

Figure 1-7. B 304 Card Punch

Magnetic Tape Units
The B 422 Magnetic Tape Unit provides high speed
input/ output and auxiliary storage for the system.
Reels containing up to 2400 feet of tape can be
processed at 120 inches-per-second and rewound at
320 inches-per-second. Recording density is either
200 or 555.5 alphanumeric frames-per-inch. A dual
"gap head provides a check on information written
by the unit. The unit can read tape forward or
backward at information transfer rates of either
24,000 or 66,600 alphanumeric frames-per-second.
Up to sixteen tape units can be accommodated on
the system.

Figure 1-8. B 422 Magnetic Tape Unit

GENERAL

In order to properly understand the utility of the
B 5000 System, a basic working know ledge of the
fundamental organization within the B 5280 and
B 5281 Processors is necessary. This Section presents
a general description of the logical operation within
the processors.

OPERATION
The fundamental operation of the processors is
based on the flow chart pictured in Figure 2-l.
There are three different conditions under which the
processors must be operating at all times. These
three conditions are:

1) State
2) Level
3) Mode

STATE

LEVEL

MODE

SECTION 2
ORGANI ZATION

States

There are two states; the Normal State and the
Control State. The Normal State is the predominant
state of operation. However, when the Interrupt
Register signals that a special condition has arisen
within the system, Processor A automatically
switches to the Control State and causes a branch to
a specific location. While in the Control State, cer­
tain operations can be performed, which would be
ignored by the processor if they were encountered
in the Normal State. These operations are defined
in Section 5.

NORMAL
STATE

INTERRUPT PRESENT
v

A

NO INTERRUPT PRESENT

CONTROL
STATE

Figure 2-2. State Operation

Figure 2-1. Processor Organization

2-1

A return to the Normal State is initiated when an
examination of the Interrupt Register discloses that
no interrupt bits are on. The processor is returned
to the Normal State and an automatic branch is
normally made to the program which was interrupted,
unless a program of higher priority is ready for proc­
essing or the interrupted program is flagged as not
ready.

Levels
Within either state, there are two levels of operation.
These are the Program Level and the Sub-Program
Level. The Program Level may be thought of as the
level at which a main program is operating. This
main program may call upon subroutines in the
course of processing. Whenever this occurs, the
processor switches automatically to the Sub-Program
Level of operation. An automatic exit is provided in
a manner specified in detail in Section 3. While in
the Sub-Program Level, direct reference can be
made to a wider variety of special memory areas than
are available in the Program Level. For example, in
the Sub-Program Level, convenient reference can be
made to a range of locations in the Stack, Program
Reference Table, Temporary Working Storage, and
the Program Segment. This provides flexible opera­
tion for independent subroutines. In the Program
Level, only the top of the Stack and the Program
Reference Table are required. Both levels, of course,
permit access to all other nonrestricted areas of
memory through the use of Descriptors in the
Program Reference Table.

DESCRIPTOR CALL ON A
OPERAND PROGRAM DESCRIPTOR

PROGRAM

SUB­
PROGRAM

EXECUTION OF A RETURN OPERATOR

Figure 2-3. Single Level Operation

In addition, one subroutine may call for another
subroutine or for itself in a recursive operation. This
type of nesting can be practically infinite. To
return from one subroutine to another or to the
Program Level, a specific Return or Exit operator
is executed. This operator automatically resets the
processor to the level which existed prior to entry
into the subroutine, and resets pertinent registers.

Modes
There are two basic modes of operation within the
processor. These are called the Word Mode and the
Character Mode.

2-2

In the Word Mode, information is normally treated
as words of 48 bits in length. Arithmetic and com­
parison operations are performed through the use of
a parallel binary adder. Operands are formated as
13 octal digit mantissas plus sign, with an exponent
of two octal digits plus sign. Program syllables have
the format of a two-bit identifier and a lO-bit literal
operator code or relative address.

/ .,.,,--------48 BITS----------I

OPERAND SIGN EXPONENT SIGN

FLAG

1--12 BITS4

I oooooooooo I 00 I
SYLLABLE

OPERAND

Figure 2-4. Word Mode Syllable
and Operand Format

In the Character Mode, information is normally
handled as six-bit alphanumeric characters. Fields
can start at any character position in a word and a
single operation can operate on fields of any length
up to 63 characters long. Arithmetic is performed on
binary-coded decimal numbers in a serial, character­
at-a-time manner. As a result, memory is treated as
strings of alphanumeric characters. Program syl­
lables in this mode have a normal format of a six-bit
repeat field and a six-bit operator code.

I 48 BITS I
ICHAR/CHARlcHAR/CHARlcHAR/CHARlcHARlcHARI

DATA WORD
~12 BITS-f

I 000000 I 00000o I
SYLLABLE

Figure 2-5. Character Mode Syllable
and Data Word

Both the Word Mode and the Character Mode are
available in the Sub-Program Level.

OPERAND CALL ON A PROGRAM
DESCRIPTOR DESCRIPTOR WITH

MODE BIT ON
CHARACTER

MODE

WORD
MODE EXECUTION OF AN EXIT OPERATOR

Figure 2-6. Mode Operation

Whenever a program descriptor is called for which
has the mode bit set to one, the processor is auto­
matically switched from the Word Mode to the
Character Mode. The Exit Character Mode operator

is used to return to the previous Program or Sub­
Program Level from which the Character Mode was
entered.

PROGRAMING
Programing for the B 5000 is performed at the level
of problem statements. These statements are con­
verted into machine language through the use of
powerful compilers which derive their power from
the unique machine language employed by the B
5000 Processors.

This language basically involves the separation of
instruction from control information. The instruc­
tions are called syllables and are contained in areas
apart from control information. Control informa­
tion is retained in the form of words called descrip­
tors and stored in another area of memory called
the Program Reference Table (PRT).

Syllables
An instruction is contained in a 12 bit group called
a syllable. There is one set of syllables for the Word
Mode and another set for the Character Mode.
However, in either mode there are four syllables
contained within a 48 bit word. A definition and the
format of the syllables used in both modes is found
in Section 5.

Word Mode Syllables
In the Word Mode, there are four types of syllables.
These are:

Operators-arithmetic and logical control
Literals-program constants and indexes
Operand Calls-storage references
Descriptor Calls-storage references

Each type of syllable has specific functions which
are defined in more detail in Section 5. An example
of Word Mode operation is given in Figure 2-7.

o ~

ADD : 01 I EQL: 01 I 0643 i 00 I BFC: 01

12 BITS 12 BITS 12 BITS 12 BITS

Figure 2-7. Program Word-Word Mode

The first syllable adds two 13 octal-digit fixed or
floating point operands together. The second syl­
lable compares an operand from the stack to the
result of the addition. The third syllable is a literal
syllable which, in this case, supplies a relative
address within the program to which a branch may
occur. The fourth syllable checks to see if the pre­
vious comparison was true, and if so, a branch
operation takes place; otherwise, control continues
in sequence.

Syllables are provided in the Word Mode for per­
forming operation such as:

Stack Manipulation
Parallel Arithmetic
Storing
Logical Operations
Relational Operations
Branching
Operand/Descriptor Manipulation
Bit Manipulation

Character Mode Syllables
In the Character Mode, there is a single type of
syllable called an operator. Its format differs from
that of operators in the Word Mode. A detailed
definition is found in Section 5. However, an
example of Character Mode operation is given in
Figure 2-8.

o 47

06 I BLP A : TEQ I 05 JFC 77 I TRP I
12 BITS 12 BITS 12 BITS 12 BITS

Figure 2-8. Program Word-Character Mode

The first syllable initiates a program loop which is
to be repeated six times. The second syllable tests
the first character of data to ascertain if it is an "A".
The third syllable causes a relatively-indexed for­
ward jump over five syllables if the previous test
was true. If the test result was false, then the fourth
syllable causes 63 characters to be transferred from
one area in memory to another area. (Note: 77 in
octal notation is equal to 63 in decimal notation.)

Sy llables are provided in the Character Mode for
the following operations:

Data String Addressing
Comparing
Data String Skipping
Testing
Transferring
Bit Operations

Descriptors

Counting
Converting
Addition and Subtraction
Branching
Looping

The previous examples demonstrate the function of
syllables. Their purpose is to provide control over
the internal functions of the processors. For pro­
viding indirect addressing and supplementary
control when necessary, a single 48 bit word, called
a descriptor, is used.

There are two types of descriptors: Program
Descriptors and Data Descriptors. In addition to
the description given here, a detailed definition of
these descriptors is contained in Section 4.

2-3

Descriptors always have a "flag" bit of one. They
normally contain a base address which can be
indexed to locate a specific word in memory. Beyond
this, they also contain supplementary control bits
and addresses which are necessary to a specific oper­
ation.

Program Descriptors
The general layout of a Program Descriptor IS

shown in Figure 2-9.

o 47

F P M A
L

I/D ~ I/D
0 R CORE

A D G ADDRESS
G S E U

Figure 2-9. Program Descriptor

It contains an identification field, a "presence" bit
for determining whether the program segment is on
the magnetic drum or in core memory, and a
"mode" bit to identify whether the segment is com­
posed of Word or Character Mode syllables. The
"arguement" bit is used to indicate that a segment
requires parameters. A Program Descriptor speci­
fies core memory location of the segment.

Data Descriptors
A Data Descriptor is illustrated in Figure 2-10.

o 47

F P NUMBER I
C

L R 0 CORE
A I/O E OF N N ADDRESS
G S WORDS T T

Figure 2-10. Data Descriptor

This descriptor contains an identification field, a
presence bit for determining whether or not the
data is in the core memory, and an integer bit used
in conjunction with storing operations. The number
of words or size of the field addressable by the
descri ptor and core memory location is also
specified.

A by -product of specifying the number of words in
the area addressed by a Data Descriptor, is the
ability to prevent a program from accidentally stor­
ing information beyond the specified area and inter­
fering with other areas or programs. If the final
indexed address of a Data Descriptor exceeds the
specified area, an automatic interrupt occurs before
the operation is executed to notify the system of
this condition. This feature and others combine

2-4

to make Data Descriptors a highly efficient means
of controlling working storage areas.

Data Descriptors are also used to initiate input/
output operations. When used for this purpose, the
Data Descriptor also contains the input/output
unit number and control bits for controlling the
operation.

Syllable-Descriptor Operation
In the course of operating a program, frequent refer­
ence is made to new information, working storage,
output areas, and other program segments or sub­
routines. In order to reference this information,
syllables utilize the descriptors. A feature of this
concept is that several syllables may reference a
single descriptor to obtain different words from one
area.
Descriptors for a single program are stored in con-
secutive words relative to an address contained in
the R register which is described later in this
section. This series of consecutive words is called
the Program Reference Table. A specific descriptor
is obtained by referencing the PRT through the
means of the R register and an Operand or Descrip­
tor Call syllable. See Figure 2-11. The R register
contains the 3 high order octal digits of a memory
address. For purposes of exposition the example is
shown with decimal digit representations.

PRT

00225 DESCRIPTOR

T REGISTER R REGISTER M REGISTER

I 0025 I DC I + I 00200 I = I 00225 I
(10 bits) (2 bits) (9 bits) (15 bits)

Figure 2-11. Referencing a Descriptor

The final result of referencing the PRT depends on
the specific syllable and descriptor involved.

A table of initial conditions and ultimate results is
shown in Figure 2-12. This table is intended as a
summary of interactions between different syllables
and descriptors. Section 3 contains a more detailed
explanation.

SYLLABLE PROGRAM REFERi'~NCE TABLE RK'>ULT

Operand Call Program Descriptor Enter Program Seg.
to Obtain Operand

Operand Call Data Descriptor Operand

Operand Call Operand PRT Operand

Descriptor Call Program Descriptor Enter Program Seg.
to Obtain Descriptor

Descriptor Call Data Descriptor Data Descriptor

Descriptor Call Operand Descriptor for the
Operand

Figure 2-12. Syllable-Descriptor Table

Operands
The processors can operate either with fixed length
words or with variable length fields. The former is
used in the Word Mode while the latter is used in
the Character Mode. Since both modes are avail­
able in each processor, the system can operate in
the mode most desirable for the operation at hand.

When a processor is operating in the Word Mode,
the standard format for data words is illustrated in
Figure 2-13.

o
F S S L
A / /
G o E

1 1 1

EXPONENT MANTISSA

6 39
S/E-SIGN OF THE EXPONENT
S/O-SIGN OF THE OPERAND

47

Figure 2-13. Data Word-Word Mode

Note that the standard word is an octal floating
point word. However, the mantissa is treated as an
integer with the decimal point to the right rather
than as a fraction. This provides two features. First,
an integer has the same internal representation as
its un-normalized floating point correspondent.
Second, the range of the numbers that can be
expressed is from 8+76 to 8-63 rather than being 8+64

to 8-63 • The first feature eliminates the need for
fixed-to-floating point conversion and a separate set
of instructions. The second feature expands the
range where difficulty with range is most often
encountered, namely, in numbers of extremely large
magnitude. Thus, this data word provides as much
resolution for floating point arithmetic as many
methods offer in fixed point arithmetic-

o 0101001 0000002205000

FIXED POINT REPRESENTATION

2205000000000
FLOATING POINT REPRESENTATION

Figure 2-14. Fixed and Floating
Point Representation

The "flag" serves a dual purpose. The function of
the "flag" depends on how the program references
the data word. If the data word is a single variable
or an element of an array, a "flag" bit of zero
identifies the word as being an operand. If the word
o

is an element of an array, a "flag" bit of one may
be used to identify this particular element as an
array boundary which is not to be processed by the
normal program. This latter case causes an inter­
rupt which may be used to notify the program that
a boundary point has been reached in an array.

When operating in the Character Mode, each data
word consists of eight 6-bit alphanumeric characters
as illustrated in Figure 2-15.

Programs in the Character Mode can address any
character or any bit in a word. Fields may start at
any position in a word and single operations may
process fields up to 63 characters in length. A more
detailed explanation of the Character Mode is found
in Section 3.

Control Words
Control words are automatically created by the
processor when certain operators are executed, or
when an interrupt occurs. They contain the con­
tents of various registers and the settings of control
flip -flops, and are used for restoring the registers and
flip-flops when required.

1. Return Control Word
It is placed in the stack at the time of sub­
routine entry and contains the contents of the
C, F, K, G, V, L, and H registers and the
setting of the Descriptor/Operand Call Indi­
cator. It provides the information required for
restoration of registers when leaving a sub­
routine and the location of the associated mark
stack control word.

2. Mark Stack Control Word
I t is placed in the stack as a result of exe­
cuting a Mark Stack operator or entering a
subroutine which does not require arguments
and contains the contents of the F and R
registers and the settings of the Mark Stack
and Program Level flip-flops.

3. Loop Control Word (1)
I t is used in conjunction with Character Mode
syllables and contains the repeat field of its
associated Begin Loop operator, the address of
the next sy lIable following the Begin Loop
operator and F register setting.

Loop Control Word (2)
It is formed when an interrupt occurs when the

47

FIRST CHAR SECOND CHAR THIRD CHAR FOURTH CHAR FIFTH CHAR SIXTH CHAR SEVENTH CHAR EIGHTH CHAR

6 6 6 6 6 6 6 6 BITS

Figure 2-15. Data Word-Character Mode

2-5

2-6

processor is in the Character Mode. The organ­
ization of Loop Control Word (2) is identical
with that of Loop Control Word (1), except
that the field containing the contents of the
F register will contain the contents of the
S register.

4. Interrupt Control Word
It is placed in the stack when a processor is
interrupted or when Processor B is idled as a
result of a Halt Processor B operator and
contains the contents of the M and R
registers and the setting of the Mark Stack
flip-flop.

It is formed when an interrupt occurs and
contains the contents of the C, F, K, G, V, L,
and H registers and an indicator specifying
whether the B register was full or empty at the
time the interrupt occurred.

6. Initiate Control Word
It is used to identify the top of the stack when
performing the Initiate operator and contains
the contents of the S register and the setting
of the mode bit.

REGISTERS
The B 5280 and B 5281 Processors each contain a
complete set of 15 control registers. They are
generally grouped in four classifications:

Program Registers
Primary Stack and Source Registers
Secondary Stack and Destination Registers
Utility Registers

Program Registers
The program registers are used to control the
direction of program segments which are in opera­
tion. These registers are called the P register, C
register, L register, and T register. The P register
is a 48-bit register used to hold the current word
from the program segment being executed. As such,
it can access and control four syllables at a time.
See Figure 2-16.

MEMORY

-1 000000000000000 I rC

'I 011000 I 0010~1 I rT

Figure 2-16. Program Registers

The C register is a 15-bit register used to specify
the memory location where the program word in the
P register was accessed. The syllable which is being
executed at anyone time is contained in the 12-bit
T register, and its position within the P register is
indicated by the L register. The latter is a two-bit
register which counts up as each syllable is executed.
When this register overflows, it carries into the low
order position of the C register to provide the
address of the location from which the next program
word will be fetched.

Primary Stack and Source Registers
To implement the Word and Character Modes of
operation, two concepts called the stack and source
string are implemented by the logical operation of
the B 5000. These concepts are discussed in more
detail in Section 3. A group of registers called
the primary stack and source registers are used to
facilitate the stack and the source string operations.

In the Word]\tlode, these registers are used to imple­
ment the operation of the stack by controlling the
information in the A register when the stack is fully
"pushed up." In the Character Mode, they are used
to provide control over the operation of the source
string word contained in the register.

The information register in this grouping is called
the A register. It is 48 bits in length and associated
with it is a one-bit flip-flop which indicates the
presence or absence of information. The A register
is normally used to hold an operand prior to Word
Mode arithmetic operations, although it may con­
tain a descriptor during certain data transfer
operations. In the Character Mode, one data word
from the source string is contained in the A register.

Three address registers are used to control informa­
tion moving between the A register and memory.
These are the M register, G register, and H register
as shown in Figure 2-17.

MEMORY

-1000000000000000 I rM

000000000000000000000000 rA G
FLIP-FLOP

Figure 2-17. Primary Stack and Source Registers

The M register is 15-bits in length and specifies the
location of the word in memory associated with the
transfer of data to and from the A register both in
the Word Mode and Character Mode.

The G register is used to locate an individual
character or group of six-bits within the A register.
The G register is three bits in length. During char­
acter operations, it automatically overflows to count
up the M register.

The H register is used to locate specific bits within
the character position addressed by the G register.
This register is also three bits in length; but it
recycles after six counts, since there are only SIX

bits in a character position.

Secondary Stack and Destination
Registers
This grouping of registers is similar in function to
that of the primary stack and source registers.
However, the functions differ in some respects. In
the Word Mode, these registers are used again to
implement the operation of the stack; but in this
case, they control the next to the top word when
the stack is completely "pushed up." In the Char­
acter Mode, the registers are used to provide control
over the operation of the destination string.

The information register in this grouping is called
the B register. This register is 48 bits in length, and
associated with it is a one-bit flip-flop which indi­
cates the presence or absence of information. It is
normally used to hold an operand prior to Word
Mode arithmetic operations, and the results of these
operations are generally located here. In the Char­
acter Mode, one word from the destination string is
contained in the B register.

Three registers are used to control information
moving between the B register and memory. These
registers are the S register, K register, and V
register as illustrated in Figure 2-18.

MEMORY

WORD -1 000000000000000 I

rB 0
Figure 2-18. Secondary Stack FLIP-FLOP

and Destination Registers

The S register is 15-bits in length and specifies the
location in memory of the word associated with the
transfer of data to and from the B register, both
in the Word Mode and Character Mode.

The K register is used to locate an individual char­
acter or group of six bits within the B register. This
register is three bits in length. While character
operations are proceeding, it automatically over­
flows to count up the S register.

The V register is used to locate specific bits within
the character position addressed by the K register.
This register is three bits in length; but it recycles
after six counts, since there are only six bits in a
character position.

Utility Registers
Certain utility registers are also provided within
each processor to complement fully the previously
described array of registers. These registers have
specific purposes, but they do not come under any
of the foregoing headings.

The F register is a 15-bit register used to hold an
address when program control is transferred from
one program level to another. Normally, the address
in the F register is the address that was contained
in the S register when control information was
transferred to the stack, as in Figure 2-19. This
control information contains, among other control
information, the previous setting of the F register
so that sub-program levels may be indefinitely
nested.

CONTROL
WORD-

CONTROL
WORD-

00313

00312

00311

00310

00307

00306

00305

00304

00303

00302

00301

00300

STACK
rS rF

OPERAND 100310 1 1 00307 1

OPERAND

OPERAND

00302

OPERAND

OPERAND

OPERAND

OPERAND

00000

OPERAND

OPERAND

Figure 2-19. Subroutine Nesting Control

Figure 2-19 shows the condition of the stack after
transfer of control to sub-program levels. The F
register always contains the location where the
control information is stored. This greatly facilitates
automatic exits from subroutines.

The Program Reference Table was discussed in an
earlier section. The base location for the Program
Reference Table of anyone program is maintained
in the R register while in the Word Mode. This is a
nine-bit register which contains the high-order bits
of a 15-bit address in memory. The low-order bits
of the address, for a specific descriptor in the Pro­
gram Reference Table, are supplied by the particular
Operand Call or Descriptor Call syllable referencing

2-7

2-8

that descriptor. Note that there is an overlap since
the call syllables have ten-bit address fields. The
examples in this manual, however, show it as having
I5-bits for making incrementation more readily
understood.

In the Character Mode, the R register is used as a
counting device and can be manipulated by a
program.

The X register is used as an extension of either
the A or the B registers during certain arithmetic
operations in the Word Mode. This register is 39
bits in length so as to accommodate an extension
of the mantissa of an operand. For certain internal
control operations, it is used as a holding register for
the G, H, K, and V registers.

INTERRUPT SYSTEM
A high performance computer system requires an
extensive interrupt system in order to provide
optimum operation. An interrupt system furnishes
a means for continuous automatic recognition of
exception conditions which, otherwise, would have
to be checked programatically at intervals.

PROCESSOR A
r--

I F I
CI:=J 00
I B I

I x I
I A I
~ ~0

I CD CD /
0

E I P I
X
C [TI ~ H
A
N I/O CHANNEL
G
E I I/O DES. I

I :

I GR I

: I I/O DES. I
I GR I

~

For the comprehensive interrupt system within the
B 5000, there are two types of interrupts. These
are the processor independent type, and the proc­
essor dependent type.

I ndependent Interrupts

Processor independent interrupts are those which
are not initiated or generated by any program code,
but are received from an external source. These
interrupts are:

Time Interval
Processor B Busy
Input/Output Channel Busy
Keyboard Request
Input/Output Channel Finished

Any syllable in process will always be completed
when one of these interrupts occurs. That is, the
actual interrupt will occur after execution of a
syllable is completed, but it may occur between
syllables of a program word.

MEMORY
;---

~
I IB I

M
E
M
0
R
Y

E
MEMORY X

C
H ~ A
N
G I I E IB

I

~

Figure 2-20. Register Configuration

Dependent Interrupts

Processor dependent interrupts are initiated or
generated by a program code operating within a
processor. These interrupts are:

Memory Parity Error.
Invalid Address
Communication Operator
Flag Bit
Continuity Bit
Program Release
Stack Overflow
Presence Bit
Invalid Index
Exponent Underflow
Exponent Overflow
Integer Overflow
Divide By Zero

In this type of interrupt, the syllable in process is
immediately terminated as soon as the condition
is detected with the exception of Memory Parity
Error and Stack Overflow.
Interrupt Register

The Interrupt Register performs the function of
co-ordinating the recognition of exceptional condi­
tions within the system. Upon recognition of such a
condition, an automatic transfer of control is made
to a specific memory location. A partial list of the
interrupts contained in the Interrupt Register is
shown in Figure 2-21. Scanning precedence is also
shown in this figure.

A brief explanation of several types of interrupt is
presented below.

Time Interval- an internal clock turns this bit
on every second for checking
program running time.

Memory Parity- indicates a parity error in a
word read from memory.

Processor B Busy-used to determine the pres­
ence of or to indicate a mal­
function of Processor B.

I/O Channel Busy- used to determine the system
configuration available or to
indicate a malfunction of an
I/O Channel.

Invalid Address-used to determine the pres­
ence of or to indicate a mal­
function of a memory module
or program error, and to pro­
tect MCP memory.

MEMORY PARITY ERROR-PROCESSOR A
INVALID ADDRESS-PROCESSOR A
TIME INTERVAL
I/O BUSY
KEYBOARD REQUEST
PRINTER 1 FINISHED
PRINTER 2 FINISHED
I/O CHANNEL 1 FINISHED
I/O CHANNEL 2 FINISHED
I/O CHANNEL 3 FINISHED
I/O CHANNEL 4 FINISHED
PROCESSOR B BUSY
INQUIRY REQUEST
SPECIAL INTERRUPT 1
SPECIAL INTERRUPT 2
SPECIAL INTERRUPT 3
MEMORY PARITY ERROR-PROCESSOR B
INVALID ADDRESS-PROCESSOR B
STACK OVERFLOW-PROCESSOR B
COMMUNICATION OPERt\TOR-PROCESSOR B
PROGRAM RELEASE OPERATOR-PROCESSOR B
CONTINUITY BIT-PROCESSOR B
PRESENCE BIT (I/O STATUS BIT)-PROCESSOR B
FLAG BIT-PROCESSOR B
INVALID INDEX-PROCESSOR B
EXPONENT UNDERFLOW-PROCESSOR B
EXPONENT OVERFLOW-PROCESSOR B
INTEGER OVERFLOW-PROCESSOR B
DIVIDE BY ZERO-PROCESSOR B
STACK OVERFLOW-PROCESSOR A
COMMUNICATION OPERATOR-PROCESSOR A
PROGRAM RELEASE-PROCESSOR A
CONTINUITY BIT-PROCESSOR A
PRESENCE BIT (I/O STATUS BIT)-PROCESSOR A
FLAG BIT-PROCESSOR A
INVALID INDEX-PROCESSOR A
EXPONENT UNDERFLOW-PROCESSOR A
EXPONENT OVERFLOW-PROCESSOR A
INTEGER OVERFLOW-PROCESSOR A
DIVIDE BY ZERO-PROCESSOR A

Figure 2-21. Interrupt Conditions

Communication Operator-Communicate infor­
mation to MCP.

Flag Bit-used to indicate the end of a data
array.

Keyboard Request-indicates that the system
operator has a request to
enter via the keyboard.

Continuity Bit-indicates multiple input/ output
areas with linked descriptors.

Invalid Index- indicates that a program index
value exceeds the size of a
descriptor area.

Exponent Underflow-indicates that an arith­
metic operation has re­
sulted in an exponent
value less than-63

2-9

(operand less than 8-51).

Exponent Overflow- indicates that an arithmetic
operation has resulted in an
exponent value greater
than +63 (operand greater
than or equal to 8+76 •

Integer Overflow- indicates that an operand ex­
ceeds 813 when a floating point
number is being converted to
an integer.

Divide by Zero- indicates that the divisor is
zero when a divide operation
is executed.

I/O Channel Finished-indicates that an Ex­
ternal Result descriptor
has been returned to
memory.

Program Release- indicates an input/ output
area is freed to receive or
transfer information.

Stack Overflow- indicates that the S register is
equal to the R register and the
stack is about to exceed its area.

Presence Bit-indicates that a program has re­
ferred either to information that is
not present in memory or to input /
output information that is not
available.

Interrupt Detection

When operating in the Normal State and an in­
terrupt occurs, all necessary registers and flip­
flops are stored in the stack to allow the program
to be continued after the interrupt has been proc­
essed. Following the interrupt, Processor A is
placed in the Contro] State and the address of the
cell assigned to the interrupt is transferred to the
C register.

All interrupts are processed on a priority basis. All
possible interrupts are sampled continuously and
simultaneously. There is no queuing of interrupts.

Processor B cannot be placed in the Control State.
When an interrupt occurs that is associated with
Processor B, the processor stores its registers, forms
and stores the appropriate control words and then
idles. When Processor A is operating in the Control
State, all interrupts remain set until an Interrogate
Interrupt operator is executed.

2-10

WORD MODE INTERRUPT

The presence of an interrupt results in the following
action: If the A and/ or B registers are full, they are
pushed into the stack. An Interrupt Control Word
followed by a Return Control Word (2) is placed
into the stack.

The resulting stack in memory is shown in Figure
2-22.

IINTERRUPT RETURN CONTROL WORDIMEMORY CELL
S+3

INTERRUPT CONTROL WORD

A REGISTER

B REGISTER I MEMORSY CELL

Figure 2-22. Resulting Stack In
Memory-Interrupt Control

An Initiate Control Word is stored in memory lo­
cation R + 8.

CHARACTER MODE INTERRUPT
All Character Mode operators, with the exception
of the Call Repeat Field operator, allow interrupt
only at the completion of the operator. In the case
of the Call Repeat Field operator, the operator fol­
lowing the Call Repeat Field operator is executed
and completed before interrupt is allowed.

The presence of an interrupt results in the following
action: If the B register is occupied it is placed in
the stack followed by a Loop Control Word (2),
Interrupt Control Word and a Return Control
Word (2). The resulting stack in memory is shown
in Figure 2-23.

IINTERRUPT RETURN CONTROL WORDI MEMORY CELL
S + 3

INTERRUPT CONTROL WORD

INTERRUPT LOOP CONTROL WORD

B REGISTER IMEMORSY CELL

Figure 2-23. Resulting Stack
in Memory-Loop Control

An Initiate Control Word is stored in memory lo­
cation R + 8.

RETURN TO NORMAL

When an Initiate Processor PI operator is executed,
the 15 low -order bits of the A register are placed in
the S register and the Mode flip-flop is set. The
Control Words are then automatically taken from
the stack and the registers restored. Control is re­
turned to the next syllable in sequence in the inter­
rupted program.

PARALLEL AND SERIAL ARITHMETIC
The B 5000 Processors each contain both a parallel
word adder and a serial character adder. The paral­
lel adder operates on an octal number base while
the serial character adder operates on a binary­
coded decimal number base. The system also has
the ability to automatically convert from one num­
ber base to another by hardware means.

Parallel
The Word Mode uses the octal number system, and
information is handled one word at a time. A
parallel binary adder is used for performing all
arithmetic operations in this mode. Fixed and float­
ing point information can be intermixed and oper­
ated on by all arithmetic commands, see Figure
2-24.

rA

RESULT I rB

rB

Figure 2-24. Parallel Binary Add Operation

Serial
The Character Mode operates on decimal informa­
tion when performing arithmetic operations. Each
decimal or alphanumeric character is handled indi­
vidually. As a result, the arithmetic operations of
add and subtract operate on successive pairs of
characters in a serial fashion. For this reason, a
serial decimal adder is provided for this mode. See
Figure 2-25 for an example of its operation.
With two processors, one processor may be com­
puting with its parallel adder while the other
processor performs its computations with a serial
adder, or both may be computing with parallel
adders or both with serial adders. The inclusion of
two distinct types of adders provides a high degree
of flexibility in handling a wide range of arithmetic
operations.

rA (SOURCE)

---1FIELDJ­

IAIuITI ol21 s lo121
rB (DESTINATION)

T 0 2 4 6 1 rB (DESTINATION)

--1FIELDt--

Figure 2-25. Serial Decimal Adder

COMMUNICATION
The processors on the B 5000 can communicate di­
rectly with any memory module through a special
Memory Exchange. This exchange also permits
simultaneous parallel access into multiple memory
modules.

The Memory Exchange is the focus of data flow
within the system. It provides automatic parallel
routing and control of communications and in­
formation. This exchange resolves communication
conflicts by scheduling, rather than by merely
buffering. It accomplishes its function with a com­
paratively small amount of circuitry and without
delay, either for the no-conflict case or for the
priority case of conflicting operations. If two or
more units simultaneously address the same mem­
ory module, the exchange automatically resolves
the conflict, using a priority technique, and queues
the lower priority request. One unit gains imme­
diate access while the next unit is delayed only
until completion of the first memory transfer.
Resolution of multiple conflicts is performed in
parallel with no lost time to any memory modules
involved in the conflicts. The priority system is
pre-emptive in that a new request with a high
priority will precede a low priority request already
in the queue.

To store or access data in a memory module, the
processor sets the desired address in the Memory
Address register for the particular module. If the
operation is a store, the processor transfers the data
from one of its registers to the Information Buffer
register in the module. The processor is then re­
leased while the core storage operation takes place.
If the operation is an access, the information is
transferred from core storage to the Information
Buffer. The processor then transfers the data from
the Information Buffer to the required register.
In order to transfer data between memory and
peripheral input/output units, an input/output
descriptor (Data Descriptor) is transmitted to an

2-U

I/O Control Unit. An Initiate I/O operator causes
an I/O data descriptor address to be transmit­
ted to one of the available I/O units. The I/O
unit then continues independently of the Processor
by fetching the input/output descriptor from the
specified address to the I/O control register. Upon
termination of an I/O operation, the original input/
output descriptor is modified and sent to a specific
memory address as a result descriptor.

The registers in the processors that communicate
with the Memory Address registers are the S, M,
and C registers.

Information is transferred between the Information
Buffer registers in individual modules and the A,
B, and P registers of the processors.

DUAL PROCESSORS
The B 5280 Processor is a high speed computation
and control unit. The capabilities of this unit are
more than sufficient for most applications. How­
ever, in certain cases a higher computational work­
load will require more computer facilities. To pro­
vide this, a second processor, the B 5281, can be
added to the system.

Dual processors provide completely independent
parallel control and computational abilities. The
B 5281 Processor has its own logic and control as
well as registers which allow it to control a separate
set of programs. In addition, this processor has an
independent pair of adders to permit parallel
computation.

The efficiency of parallel dual processors is de­
pendent on the availability of multiple memory
modules. The multiple memory modules permit
each processor to utilize separate modules of mem­
ory and eliminate time-sharing of storage facilities.
When there is a large quantity of input or output,
multiple I/O Channels will allow the processors
optimum access to the peripheral units.

2-12

I F I
com IT]

M

I B I E
M
0

I x I R
Y

I A I E
X

~w 0 C
H
A

W I T I N
G
E

I p I
W ~

I F I
LO~ 0
I B I

I x I
I A I
~w 0
0 I T I
I p I
W W

~

Figure 2-26. Dual Processor Registers

GENERAL
The design of the processors for the B 5000 System
is directed toward the implementation of several
new concepts. One important purpose of the im­
plementation of these concepts is to permit highly
efficient machine code programs to be generated
automatically by advanced compilers .. These com­
pilers derive their power, to a large extent, from the
improved internal logical organization of the pro­
cessors. This is accomplished through the transla­
tion of the problem-oriented language statements
into a machine language which is operationally ef­
ficient. The instructions and operands are combined
in a manner compatible with the source language

PROGRAM
SEGMENTS I I DESCRIPTORS

I -,---------
II OPERANDS

I

STACK

PRT

CI CONTROL
I

SECTION 3
OPERATION

expressions, and at the same time, they are in a
form which is immediately useful for computer
operation.

STORAGE

The allocation of internal storage areas is performed
in a manner which provides a high degree of stand­
ardization and control. Storage areas within the
internal memory of the B 5000 are divided into five
general types. These are stacks, program reference
tables, program segments, data storage, and input!
output areas as illustrated in Figure 3-1. The syl­
lables used for communication between the areas
are also shown, as well as the resultant information.

C I DESCRIPTORS DATA
- -1- - - - - - - - - - +------.t AREAS

I
I

OPERANDS

--1-------- -
I! OPERANDS

I
I

DESCRIPTORS

OPERANDS

--:------ - - -1--------1
I I OPERANDS

I

I/O
AREAS

---.- ----- - --I: INFORMATION

Figure 3-1. Storage Co-ordination

3-1

Stacks

Stacks are an efficient form of automatic temporary
storage. A stack is essentially a list of ordered items
of information. In the B 5000, it is a list of operands
and control information stored sequentially in the
order of processing. The physical stack is composed
of the A and B registers and the memory area ad­
dressed by the S register.

A new word coming into the stack pushes down the
information previously held in the registers. The
information contained in the registers is the last
information entered into the stack; the stack oper­
ates on a last in, first out principle.

As operands are fetched by a program, they are
placed in the A register. If the A register already
contained a word, that word is transferred to the
B register prior to loading the operand into the A
register. If the B register is also occupied by in­
formation, then the S register is automatically in­
creased by one, and the word in the B register is
stored in a cell addressed by the S register. Then
the word in the A register can be transferred to
the B register and the operand brought into the A
register, see Figure 3 -2.
As information is operated on in the stack, operands
are eliminated from the stack and results of oper­
ations are returned to the stack. The need for in­
formation contained in the stack may require an
automatic "push-up" to occur. This operation
causes a word to be brought to the A or B register
from the memory area addressed by the S register.
The S register is then counted down by one.

The flip-flops associated with the A and B registers
are used to eliminate unnecessary stack operations.
When an operand is to be placed in the stack, and
either of the registers is empty, no push-down into

BEFORE

rS

00000073411 rA

00000045731 rB

MEMORY STACK

memory occurs. No push-up is executed either,
when an ogeration leaves one or both of the registers

l

empty.

Note that the use of the stack, combined with the
internal logic of the processor, eliminates the need
for programing the storage or recall of intermedi­
ate results.

In the case of multiprocessing, each program has
its own stack. When an interrupt occurs, all required
registers and control flip-flops are automatically
pushed into the appropriate stack and the last S
register setting is stored in a fixed location. To re­
turn to a program, this location is programatically
fetched by the operating system and the S register
is reset from the contents of the word. The other
registers are then automatically reset and control
continues in sequence.

Program Reference Table
Programs for the B 5000 System are independent
of machine locations. This is achieved by the use
of a Program Reference Table. A separate reference
table is used for each program.

The PRT is a relocatable area in memory that can
be up to 1024 words in length. The R register con­
tains the address of the base location of the reference
table for the program being executed. The PRT is
used primarily for storing words that locate data
areas, program segments, or describe input-output
operations. These words are called descriptors and
are discussed in more detail in Section 4. They
contain the base address and size of data areas,
program segments and input-output areas as well
as other control information.

Operands may also be stored in the PRT, providing
direct access to single values such as indexes,
counts and other control information.

AFTER

MEMORY

Figure 3-2. Stack Push Down

3-2

As a result of keeping all base addresses in the PRT,
the program itself does not contain any actual ad­
dresses, but only references to the PRT. To specify
one of the possible 1024 positions in the PRT re­
quires only 10 bits. This is an important factor in
providing a high program density in the B 5000.

Since the PRT is relocatable, program references to
it are to locations which are relative to the R regis­
ter. The program is, therefore, completely freed
from any dependence on actual memory location,
see Figure 3-3.

LOCATION PRT \010001 rR

01000 +

01001

01002
o 0 0 41 LITERAL PORTION

. OF CALL SYLLABLE

01003

01004
10 1 0 0 41 rM

'-..".. '""""""'- ~

Figure 3-3. Indexing the PRY

PROGRAM
SEGMENT

BRANCH NO.1

UBF nn

BRANCH SEQUENCE

COM COM

INTERRUPT

INTERRUPT

PROGRAM
SEGMENT

NO.2

Program Segments
Program segments are logical portions of a program.
There is a program descriptor for each segment.
One of the features of the B 5000 is that a program
is independent of the actual memory locations for
both itself and the data it is processing. Through
automatic program segmentation, the program size
is independent of the size of the core memory.

Program segments are composed of strings of syl­
lables. Each program word contains four syllables
and they are executed sequentially in a left-to-right
order within the program word. Each word is exe­
cuted sequentially in an ascending manner. Branch­
ing is allowed to any syllable. Branching within a
program segment is self-relative since the distance
to jump either forward or backward is specified,
rather than an actual address.

Program segments are linked together by the
Communication Operator, which causes an inter­
rupt to permit entry to the next segment.
Entry is made to a subroutine via its program
descriptor in the PRT. The program descriptor
contains a core address, drum address and an indi­
cation if the subroutine is currently in core memory.

SUB-ENTRY
ROUTINE

OC OR DC SEGMENT
ONA

PD

I EXIT I
l RETURN

Figure 3-4. Program Segment Operation

3-3

If the segment is not in core memory when it is
called for, an interrupt occurs to provide notifica­
tion of this fact. These cases are illustrated in
Figure 3-4.

handled by entering the Sub-Program Level which
was discussed in a prior section. The subroutine
control provided in the processors allows for nesting
subroutines to an indefinite level. It also allows
complete freedom for using recursive procedures.
Dynamic allocation of storage for parameter lists
and temporary working storage simplify the use of
subroutines. Storage is automatically allocated and
released as required.

3-4

Data Storage
For the storage of data arrays such as tables,
working areas, and other information of this type,
areas in memory can be allocated and referenced by
Data Descriptors. These descriptors contain array
size, core location of the first element and, if required,
a drum location, as well as an indication of whether
the information is in core memory or on the drum.

Any element within an array can be accessed by
incrementing the core address of the first element of
the array by an index value which is not greater
than the size field in the descriptor. This method
provides the features of completely generalized
indexing and complete storage protection, both
within and outside a program. Another result is that
the PRT can be considered as a series of index
registers up to a total of 1024 for any single program.

I nput/Output Areas
Input/Output areas are sections of memory that
contain information read from or information to be
written to a peripheral input/output unit.

The input/output Data Descriptors contain the
beginning core address, size field, unit number, and
special control information for the specific unit
when necessary. These descriptors can be used to
either reference data within an input/output area
or to execute the input/output operation when it
is called for.

SUBROUTINES
Subroutines in the B 5000 System are normally

14726
14725
14724

To enter a subroutine, control in the processor
which is performing the operation is set to the
Sub-Program Level. This has the following effects
on the program being executed:

Operand and Descriptor Call syllables are
formated in a slightly different manner. This is
explained in Section 5.

The call syllables are allowed to directly reference
limited areas in the stack and subroutine seg­
ment, as well as in the PRT.

Entry to the subroutine, exit from the subroutine,
and housekeeping for temporary storage areas
and registers is automatically provided.

In the Sub-Program Level, the F register plays a
vital part. It is used in conjunction with the S
register and Mark Stack Flip-Flop (MSFF) to
provide efficient control of subroutine entries,
nesting, parameter, and temporary storage separa­
tion and exits.

Mark Stack Flip Flop
The Mark Stack Flip-Flop is controlled by a special
operator called Mark Stack. This operator is used
to do as its name implies, that is, mark the stack.
The purpose of marking the stack is to provide a
defined area for the storage of parameters before
actually entering a subroutine. The action of a

rS 14723
14722 TEMPORARY

114723 1

I 14721 I
+ 0003

TO REFERENCE IC:=========~> 14721

14720 STORAGE
14717

RETURN CONTROL WORD c:::=::::!> + 14716 rC'

14715
14714 PARAMETER

TO REFERENCE CI ==========> = i!!i!. -_- _-=--_ -=-S!.0!!A~(=-= = ~ :: _-_-_-_ <~========:::::J
14712

MARK STACK CONTRO L WORD c:!> 14711 PROG LEVEL rF 00000
14710

Figure 3-5. Parameter and Temporary Storage for Subroutines

1 14716 I
- 0003

I 14713 I

rM

rF

rM

M·ark Stack operator is as follows:

The contents of the A and B registers are pushed
into the memory stack.

The F and R register contents and settings of the
MSFF and Program Level Flip-Flops are stored
in the next location in the stack.

If the MSFF is off, the Mark Stack control word
is stored in the PRT (R+ 7).

The contents of the S register are copied into the
F register.

The 15 low -order bits of the A register are
copied into the C register and the L register is
set to zero.
The Sub-Program Level is entered (if it has
not been previously entered by another call
syllable).

The A and B registers are marked empty.

Control is transferred to the program word
specified by the C register.

The MSFF is turned on.

Once the Mark Stack operation is executed, the
program may then store parameters in ascending
locations in the stack. When this is complete, a
call syllable is used to enter the actual subroutine
as described in Case 1. This operation also turns
the Mark St8ck Flip-Flop off. The subroutine may
then obtain parameters by referring to locations the
addresses of which are lower than the address spec­
ified in the F register, see Figure 3 -5.

Case 2: Operand Call or Descriptor Call with the
Mark Stack Flip-Flop turned off.

Locations above the F register are considered as
temporary working storage for the subroutine, and
these words are also referenced directly by use of
the contents of the F register as a base address.
Note that the S register continues to control the
extent of the temporary storage area.

Subroutine Entry
When a call syllable references a Program Descriptor
in the PRT, the Program Descriptor is brought to
the A register and checked for its presence in core
memory. If the segment is not present, an interrupt
occurs to provide notification. When the segment
is in core memory, one of the following cases will
occur:

Case 1: Operand Call or Descriptor Call with the
Mark Stack Flip-Flop turned on. Mark Stack
control word has been stored.

A Return control word is stored in the stack.

The contents of the S register are copied into
the F register.

STORE STORE

A Return control word is stored in the stack
and a MKS control word is stored in the stack.
Set F from register A.

The 15 low-order bits of the A register are
copied into the C register and the L register
is set to zero.

The Sub-Program Level is entered (if it had not
been previously entered by another call syllable).

The A and B registers are ·marked empty.
Control is transferred to the program word
specified by the C register.

In general, Operand Call syllables are used to enter
a subroutine and obtain an operand, while Descriptor
Call syllables are used to enter a subroutine to
obtain an address.

Subroutine Exit
When a subroutine has completed its operation and
an exit to the calling program is required, a Return
or Exit operator is executed depending on the mode.
The following operations then take place to provide
an automatic exit:

The Return control word addressed by the F
register is accessed and placed in B register.

The S, C, G, H, K, V and L registers are restored
from this location. If the Operandi Descriptor bit
in this location is zero, the flag bit in the A
register is set to zero, otherwise it is set to one.

SET rC ENTER
OC/DC ? MKS RETURN SET BRANCH

FROM rA SUB-CONTROL CONTROL TO CALL ON I-- MSFF - rF I-- SET rL - PROGRAM
'--

A PD WORD WORD IN
TO 00 LEVEL

(rC, rL)
IN STACK STACK

ION

Figure 3-6. Subroutine Entry Options

3-5

3-6

1. 2 · 3.

RESET rF,
DECREASE EXIT RESET REGISTERS OPERAND~ SET rA rR, MSFF AND

OPERATOR FROM RETURN DESCRIPTOR 0 FLAG TO PLFF FROM rS
r-- ~ r.-- - BY EXECUTED CONTROL WORD BIT 0 LOCATION IN

ONE
rS

11
SET rA

FLAG TO
1

Figure 3-7. Subroutine Exit Options

The Mark Stack control word addressed by the S
register is accessed and the F and R registers and
the Mark Stack and Program Level Flip-Flops
are restored from this word. If the Mark Stack
bit is one and the Program Level bit is one,
steps 1,2 and 3 are repeated until a Mark Stack
bit of zero is found. A and B registers are marked
empty.
The contents of the S register are decreased by
one.

The functions thus described for subroutine handl­
ing provide a highly efficient and automatic method
of operation.

ADDRESSING
Addressing techniques used in the B 5000 System
make programs completely independent of actual
memory locations. This concept allows programs to
be loaded into different and non -contiguous areas
of memory to suit operating conditions present at
the time of a run. It also permits very large pro­
grams to be segmented and run on any machine,
regardless of memory size. Finally, this allows
multiprocessing techniques to be efficiently imple­
mented on a B 5000 System.

Programs

Programs are divided into segments. Within a seg­
ment, syllables are executed in a sequential manner.
Transfers of control within a segment are self­
relative and only specify the number of syllables
that a branch will span. References to other pro­
gram segments in the Program Level are made
indirectly through the use of the Communication
Operator. References to subroutines in the Sub­
Program Level are made indirectly through the use

of Operand and Descriptor Calls on Program
Descriptors.

Data Addressing
Data areas are referenced indirectly through Data
Descriptors in the PRT; each descriptor references
a unique area in memory. If an area consists of a
single word, the Data Descriptor contains the
address of that word. However, if an area consists
of a data array, the Data Descriptor contains the
base address of the array. To obtain a word from
an array, this base address is indexed to obtain the
required address.

The base core address contained in a descriptor can
be indexed in any of several ways. Multilevel index­
ing is also provided so that indexes of arrays can
themselves be elements of arrays. For example,
when an Operand Call syllable references a Data
Descriptor with a size field greater than zero, an
automatic index operation occurs. The index value
is then checked to determine that it is within the
area defined by the descriptor. The address of the
descriptor is then incremented by the 10 low-order
bits of the B register. The operand at the con­
structed address is then brought to the A register for
subsequent operation. This operation as described,
assumes that the index value was inserted in the B
register as the result of a prior fetch or computation
operation. Literal syllables from the program
segment are also used for this operation.

Literals are normally used for constant indexing.
This is shown in Figure 3-8. In this illustration a
literal of lOis placed in the A register from the
program word. An Operand Call then fetches a
descriptor whose address field (14711) is indexed by
this value. Following the index operation, an
operand is automatically fetched from the indexed
location (14721).

STEP

1.

2.

IOC I

rP

rP

",----,-I 0 1_-------'10 I rA

AFTER INDEXING RESULT

0025
1

1 147U rA 1 10000 1 1147211 rA 101 OPERAND rA

0 10 rB

Figure 3-8. Constant Indexing

For variable indexing, any algebraic computation
may be performed with the result left in the B
register for subsequent indexing. An illustration of
this is given in Figure 3-9. Two successive Operand
Calls are used to fetch two operands which are
then added together to form an index value. The

STEP

1.

2.

3.

rP

4.

0 0000000000001 rA

0 0000000000003 rB

1.1 1 -1,.
1 0000000000713 rA

0 0000000000004 rB

remainder of the operation is similar to the previous
example.
If multilevel indexing is desired, it is only a normal
extension of these operations in the system. A brief
example of multilevel indexing is presented in
Figure 3-10.

AFTER INDEXING RESULT

10 I I 00000000007171 rA 101 OPERAND rA

Figure 3-9. Variable Indexing

STEP

1.

2.

rP

rP

3.

I oc I rP

1

0

1

0

I 0000000000010 I rA

AFTER INDEXING RESULT

0000000015700 rA
111 1°0000000 1 15710 I 1

0
1 100000000000071

0000000000010 rB

AFTER INDEXING RESULT

0000.000007000 rA
111 114000000 I 07007

1 1 01
OPERAND

0000000000007 rB

Figure 3-10. Multilevel Indexing

3-7

3-8

Note that this example used an indexed descriptor
to obtain an index value. This latter index was
then used to obtain the required operand for some
problem.

Multilevel indexing can be expanded indefinitely in
many combinations to take into account complex
addressing requirements. It should be noted that
if the presence bit in a descriptor indicates that the
information is not in core memory, an automatic
interrupt occurs to provide notification of this fact.

I nput/Output Addressing
Input/Output areas are addressed in the same
manner as data areas. These areas are also addressed
indirectly through the PRT, and can thus be
relocated to any area of memory without affecting
the program segments. If an input/output area is in
the process of receiving new information from a
peripheral unit or transmitting information to such
a unit, an interrupt immediately occurs if the area
is referenced by a program segment during this
operation.

Subroutine Addressing
Subroutines are provided with a generalized method
of addressing in order to make them virtually
independent of the Program Reference Table which
is specially composed for each program. To achieve
this, the abilities of the Operand Call and Descriptor
Call syllables are extended in the Sub-Program
Level so that they can address the stack directly,
and so that they can use it for parameters and
temporary storage. Constants may be stored in the
subroutine string, and these syllables can be used to
address them also.

Normally the parameters required by each sub­
routine are stored in, or referenced by, the Program
Reference Table. These parameters are transferred
to the stack just prior to the execution of the call
syllable which references the Program Descriptor.
Once control is transferred, the subroutine can
address the stack for required parameters, as
described in Section 3, as well as constants in its
own program string. The subroutine may, under
certain circumstances, reference items in the Pro­
gram Reference Table, and through it reference
data in general storage.

The format of Operand Call and Descriptor Call
syllables in the Sub-Program Level is illustrated in
Figure 3-11. Indicator bits in high order positions
of the address field indicate whether reference is to
be made to parameters and temporary storage in
the stack, to constants located within the sub­
routine segment, or to the Program Reference Table.

I' I PRT

I 0 I 000000000 11~
ADDRESS

PROGRAM

ADDRESS

11 III STACK

1110/110/11 0000000 1101
ADDRESS

Figure 3-11. Sub-Program
Level Call Syllable Formats

DATA EDITING
The B 5280 and B 5281 Processors can operate
with fixed length words or variable length fields.
These two modes of operation are called the Word
Mode and the Character Mode. For certain opera­
tions, a processor operating on words is most useful;
for other operations, a variable field length mode
of operation is most desirable. By combining both
abilities in one processor, the system can operate
in the mode most desirable for the operation at
hand. In the B 5000 System, it is even possible
for one processor to be operating in the Word
Mode and the other in the Character Mode.

The purpose of the Word Mode. is to provide the
advantages of high speed parallel operations,
floating point abilities and the inherent information
density possible in a binary machine. The purpose
of the Character Mode is to provide editing, scan­
ning, comparison, and data manipulative abilities,
although addition and subtraction are also pro­
vided. This latter mode is also particularly well
suited to list structures.

The Character Mode is entered by an Operand or
Descriptor Call or Initiate operator against a
Program Descriptor in the PRT. The Program
Descriptor must have the mode bit set to one. The
processor is placed in the Sub-Program Level as a
result of the call against the Program Descriptor.
An Exit operator is used to exit from the Character
Mode subroutine to the calling routine, which is
normally in the Word Mode.

When operating in the Character Mode, each data
word consists of eight alphanumeric characters as
illustrated in Figure 3-12.

o (7

FIRST CHAR SECOND CHAR THIRD CHAR FOURTH CHAR FIFTH CHAR SIXTH CHAR SEVENTH CHAR EIGHTH CHAR

6 6 6 6 6 6 6 6 BITS

Figure 3-12. Data Word-Character Mode

Programs in the Character Mode can address any
character or any bit within a character. Fields can
start at any position in a word. A processor in a
single operation can operate on fields of any length
up to 63 characters long. For example, two 63
character fields can be compared in a single opera­
tion. Operations on fields of greater length can easi­
ly be programed.

There are three instances when the Character Mode
operates with words of the type used in the Word
Mode. Operations are provided in the Character
Mode for converting numeric information in the
alphanumeric representation to the octal notation
used in the Word Mode, as well as converting octal
information to alphanumeric representation. In
both instances, the length of the alphanumeric
fields being converted to or from the Word Mode
representation can be no greater than eight char­
acters long. Again, conversion of fields of greater
length can easily be programed. Transfer Words
specify the number of words to be moved.

In the Character Mode of the B 5280 and B 5281
Processors, a special type of syllable is used. The
Character Mode syllable is divided into two 6-bit
parts: The last part specifies the operation to be
performed and, when applicable, the first part speci­
fies the number of times the operation is to be per­
formed, see Figure 3-13.

REPEAT
FIELD

OPERATOR
CODE

Figure 3-13. Character Mode-Syllable Format

Syllable operators are provided for transferring,
deletion, comparison, and insertion of characters or
bits. There are also operations which allow the
repetition of syllable strings. This latter feature is
very useful for complex table look-up operations,
and for editing information which contains repeated
patterns.

Program segments in the Character Mode are con­
structed of strings of these syllables. The Character
Mode is designed to provide editing, formating,
comparison, and other forms of data manipulation.
In so doing, a processor uses two general areas of
memory-the source area and the destination area.
Before a program switches from Word Mode to
Character Mode, two descriptors containing the
base addresses of these areas are supplied to the
stack. When the call syllable references the appro­
priate Program Descriptor with the mode bit on,
the source and destination address registers are set
from the descriptors previously supplied to the
stack as parameters. The source area or destination
area may be changed at any time during Character
Mode operation, so that one program may act on
several areas.

I "';'1 I'M SOURCE AREA

IABCDEFGHIIJKLMNOplQRSTUVWXIYZ123456

1450 1451 1452 1453

rK rV

DESTINATION AREA

15002 15004 15005

OOABCDEF 00000000 00000000

Figure 3-14. Source-Destination Operation

An example of Character Mode operation is illus­
trated in Figure 3-14. The source string address
registers (M, G, and H) indicate that the third
character of the word in location 01451 is being
processed and has already been transferred from the

3-9

source register (A register) to the destination regis­
ter (B register). The exact location to which it has
been sent is identified by the destination string ad­
dress registers (8, K, and V) which specify the fifth
character of the word in location 15003. Note that
in this case, the character "A" was transferred from
the first position in a word to the third position in
another word, demonstrating that fields may begin
at any character position (or bit position) and end

3-10

at any character position (or bit position). Further­
more, insertions, deletions, comparisons, introduc­
tion of different source strings, retention of previous
destination string information, and arithmetic com­
putations may take place during a single editing
operation.

All of these facilities combine to make the Character
Mode a very flexible tool for data manipulation.

GENERAL
Descriptors are used to make programs independent
of a fixed data location and program location. This
provides a flexible means of indirect addressing.
Each descriptor contains an actual base memory
location and a size field, along with special control
information where necessary. The Program Refer­
ence Table is used as a storage area for these descrip­
tors.

Since the base addresses for anyone program are
located in a single PRT, they are easily modified
whenever necessary. For instance, core memory ad­
dress fields are easily modified when segment over­
lays are made during the operation of a large program
in a small memory. They are also easily modified in
the case of multiprocessing several programs in a
single system.

Several syllables may reference a single descriptor
in the PRT. This feature permits a highly efficient
utilization of memory, because addresses and con­
trolinformation do not have to be repetitively stored
for each instruction. Control information may con­
sist of unit number, binary I alpha representation,
status, presence, continuity, mode, and other
similar types of control fields.

SECTION 4
DESCRIPTORS

Program protection is provided through use of a size
field. This field contains the maximum number of
words allocated to the area defined by the descrip­
tor. All index values are automatically checked
against the size field before the actual index oper­
ations take place. This insures that references are
always made to words within the particular area.

Descriptors are identified by the high -order bit
known as the "flag" bit. When this bit is on, and
the word has come from the PRT, the associated
word is a descriptor. There are two general types of
descriptors. These are identified by the liD (Identi­
fication) field.

1. Program Descriptors-used to identify and
locate segments of a program.

ADDRESS

2. Data Descriptors-used to identify and
locate working storage areas, tables, inputl
output areas, and other similar information
for a program.

SIZE ADDRESS

A detailed description of each descriptor is presented
in the following section.

4-1

PROGRAM SEGMENTS

Program Descriptor
This type of descriptor is used to identify the loca­
tion of a program segment in memory and on the
drum. If the presence bit is off, an interrupt will
occur when attempting to enter the segment. The
program segment must then be read into an avail­
able memory area. The processor will enter either
the Word Mode or Character Mode as specified by

the Mode bit before transferring control to the first
syllable of the new program segment. The param­
eter bit indicates whether parameters are needed
for the execution of_the program segment. The
segment will not be entered if they are required
and have not been stored in the stack.

4-2

18 33

o 000 000 000 000 000 000 000 000

BIT
POSITION USE

o FLAG-type of word
I-descriptor

1-3 IDENTIFICATION-type of descriptor
IPl-Program Descriptor

2 PRESENCE-availability of segment for
execution

0-not in core memory
I-in core memory

4 MODE-type of syllables in this segment
O-word
I-character

5 ARGUMENT BIT
If the M bit is one and the A bit is zero,
the A register is marked full. and the
operation ended. If the M bit is zero and
the A bit is zero, a Mark Stack control
word is formed and placed in the stack.
If the A bit is one and the Mark Stack
Flip-Flop is zero, the A register is set to
full and the operation is ended.

O-argument not required
1-argument required

6-32 Reserved for use by Programing Systems

33-47 CORE ADDRESS-of the first program
word. Succeeding program words are
stored in consecutively ascending loca­
tions.

47

000 000 000 000 000

CORE ADDRESS

DATA AND INPUT/OUTPUT
Data Descriptor
This type of descriptor is used to indicate the core
address of the base of a data array. The size field
indicates the length. If the presence bit is off, an

interrupt will occur. The integer bit can be used
to specify whether a word is to be stored in fixed
or floating point form.

012345678 19 33

o 000 000 000 000 000 000 000 000 000 000 000 000

SIZE CORE ADDRESS

BIT
POSITION USE

o FLA G-type of word
I-descriptor

1 IDENTIFICATION-type of descriptor
0-Data Descriptor

2 PRESENCE-availability of data for
processing.

0-not in core memory
1-in core memory

3-7 Reserved for use by Programing Systems

8-17 SIZE-number of words in data array.
Zero indicates a one word area.

18 Reserved for use by Programing Systems

19 INTEGER-for Conditional Integer Store
operators use

O-data is to remain in floating point
notation.
I-data is to be converted into an integer.

20 CONTINUITY BIT-for controlling the
type of interrupt caused by a Program
Release operator.

O-set the Program Release Interrupt
-,-1/0 areas not tanked.

I-set the Continuity Interrupt-I/O
areas are tanked.

21-32 Reserved for use by Programing Systems

33-47 CORE ADDRESS-of the first data word.
Succeeding words will be located in con­
secutively ascending locations.

47

4-3

4-4

Supervisory Printer Descriptor
This descriptor is used to transfer alphanumeric
data from memory to the Supervisory Printer. The

transfer is terminated when a group mark IS

encountered in the message.

o 1 3 8 17 33

o 000 000 000 00 000 000

BIT
POSITION USE

o FLAG-type of word
I-descriptor

I IDENTIFICATION-type of descriptor
0-Data Descriptor

2 STATUS-availability of output area
O-area available to output unit only
I-area available to program only

3-7 UNIT DESIGNATION
lIllO-Supervisory Printer Unit 30

8-23 Reserved for use by Programing Systems

24 EXTERNAL
O-printout

25-32 Reserved for use by Programing Systems

33-47 CORE ADDRESS-the address in mem­
ory from which the first character will
be printed.

47

000 000 000 000 000

CORE ADDRESS

Keyboard Descriptor
This descriptor is used to transfer alphanumeric data
from the supervisory keyboard to memory. The
transfer is terminated when the End-Of-Message

(EOM) key is depressed, causing a group mark to
be stored as the last character of the message.

17 20 32 33 47

o 000 000 000 00 000 000 000 000 000 000 000

BIT
POSITION USE

o FLAG-type of word
I-descriptor

1 IDENTIFICATION-type of descriptor
O-Data Descriptor

2 STATUS-availability of input area
O-area available to input unit only
I-area available to program only

3-7 UNIT DESIGNATION
lIllO-Supervisory Printer Unit 30

8-23 Reserved for use by Programing Systems

24 EXTERNAL
1-keyboard input

25-32 Reserved for use by Programing Systems

33-47 CORE ADDRESS-the address in mem­
ory into which the first character will
be stored.

CORE ADDRESS

4-5

4-6

Drum Read Descriptor
This descriptor is used to transfer program seg­
mentsor data from a drum storage unit to a memory

module. Up to 1023 words can be transferred from
the drum by use of a single descriptor.

8 18 33

o 000 000 000 000 000 000 000 000

SIZE DRUM ADDRESS

BIT
POSITION USE

o FLAG-type of word
I-descriptor

1 IDENTIFICATION-type of descriptor
O-Data Descriptor

2 EXTERNAL-type of operation
I-read

3-7 UNIT DESIGNATION
00100-Drum No.1 Unit 4
01000-Drum No.2 Unit 8

8-17 SIZE-number of words to be read
From 0 to 1023 words

18-32 DRUM ADDRESS-the address on the
drum from which the first word is to be
read.

33-47 CO~E ADDRESS-the address in mem­
ory into which the first word is to be
read. Following words are read into con­
secutively ascending locations.

47

000 000 000 000 000

CORE ADDRESS

Drum Write Descriptor
This descriptor is used to transfer data from a mem­
ory module to a drum band. Up to 1023 words may

be transferred to a drum by a single descriptor.

8 18 33

o 000 000 000 000 000 000 000 000

SIZE DRUM ADDRESS

BIT
POSITION USE

o FLAG-type of word
I-descriptor

1 IDENTIFICATION -type of descriptor
O-Data Descriptor

2 EXTERNAL-type of operation
O-write

3-7 UNIT DESIGNATION
OOIOO-Drum No.1 Unit 4
OlOOO-Drum No.2 Unit 8

8-17 SIZE-number of words to be written
From 0 to 1023 words

18-32 DRUM ADDRESS-the address on the
drum to which the first word is to be
written.

33-47 CORE ADDRESS-the address in mem­
ory which contains the first word to be
written. Following words are written
from consecutively ascending locations.

47

000 000 000 000 000

CORE ADDRESS

4-7

4-8

Card Read Descriptor
This descriptor is used to cause a card to be read
from a designated card reader into a set of contigu­
ous memory locations. The core address of the

descriptor gives the location into which the first
word will be read.

24 33

o 000 000 000 0 000 000 000

BIT
POSITION USE

a FLAG-type of word
l--descriptor

1 IDENTIFICATION -type of descriptor
O-Data Descriptor

2 STATUS-availability of input area
O-area available to input unit only
I-area available to program only

3-7 UNIT DESIGNATION
alOIa-Card Reader No.1
OIIIO-Card Reader No.2

Unit 10
Unit 14

8-18 Reserved for use by Programing Systems

19 INTEGER-for Conditional Integer Store
operators use

a-data is to remain in floating point
notation.

I-data is to be converted into an integer.

20 CONTINUITY -used for tanking
I-one of two or more descriptors for a

tank, but not the last.
a-last descriptor for a tank, or the only

descriptor if no tank.

21 FORMAT-information representation
I-information is in column binary

format
a-information is in alphanumeric

format

22-23 Reserved for use by Programing Systems

24 EXTERNAL
I-input

25-32 Reserved for use by Programing Systems

33-47 CORE ADDRESS-the address into
which the first information from the card
will be read. Following information will
be read into consecutively ascending
locations.

47

000 000 000 000 000

CORE ADDRESS

Card Punch Descriptor

This descriptor is used to cause a card to be punched
from memory. The core address of the descriptor
gives the base address of the area from which the

card will be punched. Following words will be
punched from consecutively ascending locations.

8

o 000 000 000

BIT
POSITION USE

o FLAG-type of word
1-descriptor

1 IDENTIFICATION-type of descriptor
O-Data Descriptor

2 STATUS-availability of output area
O-area available to output only
I-area available to program only

3-7 UNIT DESIGNATION

01010-Card Punch Unit 10

8-18 Reserved for use by Programing Systems

19 INTEGER-for Conditional Integer Store
operators use

O-data is to remain in floating point
notation.

I-data is to be converted into an integer.

20 CONTINUITY -used for tanking
I-one of two or more descriptors for a

tank, but not the last one.
O-last descriptor for a tank or the only

descriptor if no tank.

21-23 Reserved for use by Programing Systems

24 EXTERNAL
O-output.

25-31 Reserved for use by Programing Systems

32 STACKER (300 CPM only)
I-select auxiliary stacker
o -select primary stacker

33-47 CORE ADDRESS-the address from
which the first word will be punched.
Following words are punched from con­
secutively ascending locations.

47

000 000 000 000 000

CORE ADDRESS

4-9

Line Printer Descriptor
This descriptor is used to cause information from
memory to be printed on a designated line printer.
Each word printed from memory is assumed to be

8

o 000 000 000

BIT
POSITION USE

4-10

o FLAG-type of word
I-descriptor

I IDENTIFICATION-type of descriptor

O-Data Descriptor

2 STATUS-availability of output area
O-area available to output unit only
I-area available to program only

3-7 UNIT DESIGNATION
IOIIO-Printer No. I Unit 22
IIOIO-Printer No.2 Unit 26

8-17 Reserved fo~ use by Programing Systems

18 PRINT­
O-print
I-inhibit print, space paper as speci­

fied in 27-32.

19 INTEGER-for Conditional Integer Store
operators use

O-data is to remain in floating point
notation.

I-data is to be converted into an integer.

alphanumeric format. Line spacIng or skipping
occur after a line has been printed.

27 33

00 10000 000 000 000 000 000

PAPER CORE AD~RESS

20 CONTINUITY -used for tanking
I-one of two or more descriptors for a

tank, but not the last one.
O-last descriptor for a tank, or the only

descriptor if no tank.

21-23 Reserved for use by Programing Systems

24 EXTERNAL
O-output

25-26 Reserved for use by Programing Systems

27 -32 PAPER-used to control spacing and
skipping.

Bits 27-28
OO-no space
01-double space
10-single space
II-double space

Bits 29-32
f=O-space paper as indicated in bits
27 and 28
f =1= O-skip to stop specified by selected

channel (f) in Carriage Control
Tape

33-47 CORE ADDRESS-the address from
which the first eight characters are
printed. Following characters are
printed from consecutively ascending
locations.

47

Magnetic Tape Read Descriptor
This descriptor is used to cause the next record to
be read from a designated tape storage unit. Tapes
may be read forward or backward as specified by
the descriptor. Data is read as octal or alphanu-

meric characters depending on the Format bit of the
descriptor.

33 47

o 000 000 000 00 000 000 000 000 000 000 000

SIZE

BIT
POSITION USE

o FLAG-type of word
I-descriptor

1 IDENTIFICATION-type of descriptor

O-Data Descriptor

2 ST ATUS-availability of input area
O-area available to input unit only
I-area available to program only

3-7 UNIT DESIGNATION
XXXXl-all odd unit numbers from 1

to 31, inclusive

8-17 SIZE-number of words to be read. Any
additional words are lost.

18 O-unit control bit

19 INTEGER-for Conditional Integer Store
operators use

O-data is to remain in floating point
notation.

I-data is to be converted into an integer.

CORE ADDRESS

20 CONTINUITY -used for tanking
I-one of two or more descriptors for a

tank, but not the last one.
O-last descriptor for a tank, or the only

descriptor if no tank.

21 FORMAT -information representation
I-information is in binary format
O-information is in alphanumeric

format

22 DIRECTION -tape movement
O-forward
I-backward

23 WORD CONTROL
I-use size field to control read
O-ignore size field

24 EXTERNAL
I-input

25-32 Reserved for use by Programing Systems

33-47 CORE ADDRESS-the address into
which the first character will be read
from tape. The memory address steps
up when reading in the forward direc­
tion or steps down when reading in the
backward direction.

4-11

Magnetic Tape Write Descriptor
This descriptor is used to write data from memory
to a designated tape storage unit. When writing in
binary format,size field is used to specify the record

o 1 3 8 18 22 23

o 000 000 000

SIZE

BIT
POSITION USE

o FLAG-type of word
I--descriptor

1 IDENTIFICATION-type of descriptor

0-Data Descriptor

2 STATUS-availability of output area
O-area available to output unit only
1-area available to program only

3-7 UNIT DESIGNATION
XXXXl-all odd unit numbers from 1

to 31, inclusive.

8-17 SIZE-number of words to be written
(binary format only'-group mark is
encountered in the alphanumeric format)

18 1-erase

length. When writing in alphanumeric format,
writing continues until a group mark is sensed. The
group mark is not written on tape.

33

00 000 000 000 000 000 000 000

CORE ADDRESS

20 CONTINUITY -used for tanking
1-one of two or more descriptors for a

tank, but not the last one.
O-last descriptor for a tank, or the only

descriptor if no tank.

21 FORMAT-information representation
I-data written in binary code by words.
o -data written in alphanumeric code

by characters.

22 DIRECTION
O-forward

23 TERMINATION
O-alphanumeric (terminated by group

mark)
1-binary or binary erase (terminated

by N words)

24 EXTERNAL
O-output

47

25-32 Reserved for use by Programing Systems

19 INTEGER-for Conditional Integer Store 33-47 CORE ADDRESS-the address from

4-12

operators use
O-data is to remain in floating point

notation.
1-data is to be converted into an integer.

which the first word or characters will
be written. Following characters or
words are written from consecutively
ascending locations.

Paper Tape Read Descriptor
This descriptor is used to cause the next record
to be read from a designated unit. Paper tape can
be read in the forward direction only. Data is read

as octal or alphanumeric characters depending on
the format bit of the descriptor.

o 1 3 8 18 21 25 33

o 000 000 000 00 000 000

SIZE

BIT
POSITION USE

o FLAG-type of word
1-descriptor

1 IDENTIFICATION -type of descriptor
O-Data Descriptor

2 STATUS-availability of input area
O-area available to input unit only
1-area available to program only

3-7 UNIT DESIGNATION
10010-Reader No.1
10100-Reader No.2

Unit 18
Unit 20

8-17 SIZE-number of words to be read

19-20 Reserved for use by Programing Systems

18, 21-24 CONTROL-
00011-Read alpha
01011-Read binary
10011-Space-Stop on control code
11011-Space-Stop on word counter

XX111-Rewind

25-32 Reserved for use by Programing Systems

33-47 CORE ADDRESS-starting memory
address

47

000 000 000 000 000

CORE ADDRESS

4-13

Paper Tape Write Descriptor
This descriptor is used to write data from memory
to a designated punch unit. When writing in
binary f9rmat, size field is used to specify the

record length. When writing in alphanumeric for­
mat, control code or size field is used to specify
record length.

o 1 2 3 8

4-14

18 25 33

o 000 000 000 00 000 000 000 000 000 000 000

SIZE CORE ADDRESS

BIT
POSITION USE

o FLAG-type of word
I-descriptor

1 IDENTIFICATION -type of descriptor
O-Data Descriptor

2 STATUS-availability of output area
O-area available to output unit only
I-area available to program only

3-7 UNIT DESIGNATION
10010-Punch No.1 Unit 18
10100-Punch No.2 Unit 20

8-17 SIZE-number of words to be punched in
binary mode. Maximum number of
words to be punched in alpha mode.

19-20 Reserved for use by Programing Systems

18, 21-24 CONTROL-
00 X 10-Punch alpha -Stop control

code
01 X 10-Punch binary-Stop on word

counter
10 X 10-Punch all channels-Stop on

control code
11 X 10-Punch all channels-Stop on

word counter

25-32 Reserved for use by Programing Systems

33-47 CORE ADDRESS-Starting memory
address

47

External Control Descriptor
This descriptor is used to control operations of the
magnetic tape units and line printers which do not

require information to be read from or written into
core memory.

o 1 3 8 33

o 000 000 000 0000

CHAN

BIT
POSITION USE

o FLAG-type of word
I-descriptor

1 IDENTIFICATION-type of original
I/O Descriptor

O-Data Descriptor

2 ST ATUS-availability of area
O-area available to unit only
1-area available to program only
I-Data Descriptor

3-7 UNIT DESIGNATION-magnetic tape
unit or line printer descriptors.

8-17 Reserved for use by Programing Systems

18 EXTERNAL-type of operation
I-perform functions indicated by bits

24 through 32

19-23 Reserved for use by Programing Systems

24 ERASE
1-Erase tape to next record
O-no operation

25 REWIND
I-rewind tape
O-no operation

26 Reserved for use by Programing Systems

27 -32 PAPER-used to control spacing and
skipping.

Bits 27-28
OO-no space
OI-double space
IO-single space
II-double space

Bits 29-32
f = O-space paper as indicated in bits

27 and 28
f+O-skip to stop specified by selected

channel (f) in paper tape loop
control

33-47 Reserved for use by Programing Systems

47

000 000 000 000 000

4-15

External Result Descriptors
These descriptors are the original Input/Output
Descriptors sent to the I/O Channels, but with
certain control information inserted in them to

describe the results of the I/O operation. This con­
trol informa-tion is presented in Table 4-1, Indicated
Error Conditions.

o 1 8

4-16

26

000 000 000 000 000 000 o 000 000

BIT
POSITION USE

o FLAG-type of word
I-descriptor

ERROR

33

1 IDENTIFICATION-type of descriptor
0-Data Descriptor

2 Irrelevant

3-7 UNIT DESIGNATION

8-25 Irrelevant

26-32 ERROR CONDITIONS
See Table 4-1

33-47 CORE ADDRESS-the address of the last
location referenced in memory.

47

000 000 000 000 000

CORE ADDRESS

Table 4-1 I ndicated Error Conditions

BIT POSITIONS

UNIT 26 27 28 29 30 31 32

Message Memory Parity Not-Ready Descriptor Busy
Printer Overflow Error Parity

Memory Not-Present
To I/O

Keyboard Memory Character Malfu nction Descriptor Busy
Overflow Input Power-Off Parity

Error

Drum Memory Parity Not-Ready Descriptor Busy
Read Overflow Error Parity

Drum Not-Present
To I/O

Drum Memory Lockout Parity Malfunction Descriptor Busy
Write Overflow Error Parity

Memory
To I/O

Card Memory End of Read Invalid Not-Ready Descriptor Busy
Read Overflow File Error Character Hopper Parity

Empty

Stacker Full
Card Punch Memory Punch Parity Card Jam Descriptor Busy

Overflow Error Error
Not-Present

Parity

Memory
To I/O

Line Memory End of Print Parity Not-Ready Descriptor Busy
Printer Overflow Page Che.ck Error No Paper Parity

Previous Memory
Power-Off

Line Malfunction
To I/O Not-Present

Magnetic Memory End of Character Not-Ready Descriptor Busy
Tape Read Overflow File Parity Parity

Error Local

Tape to I/O Tape Break
Magnetic Lockout End of Parity Parity Descriptor Busy
Tape Write (26 & 28 Tape Error Error Power-Off Parity

bits) Memory
To I/O Not-Present

External End of Unjt Not-Ready Descriptor Busy
Control Page Not- Parity

Present See Mag
Tape and
Printer

Paper Tape Memory Low Parity Not-Ready Descriptor Busy
Punch Overflow Tape Error Local Parity

Memory Tape Break
To I/O Power-Off

Paper Tape Memory End of Beginning Parity Not-Ready Descriptor Busy
Read Overflow Tape of Tape Error Local Parity

Tape Break

Power-Off

4-17

GENERAL
The coding structure for the B 5000 System is com­
posed of a set of instructions called syllables. Each
syllable is twelve bits in length and contains a code
which directs the processor to execute a defined
function. These functions are described in a general
manner in this section.

There are two modes of operation as described in
Section 2, Word Mode and Character Mode. Each
mode has its own specific set of syllables. As a
result, the syllables for each mode are described
separately in the following sections. They are pre­
sented in functional order by mnemonic code within
each section. An alphabetic listing of these opera­
tors is contained in the Appendix, as well as a listing
by function.

WORD MODE
When operating in this mode, data is usually mani­
pulated as a 48- bit word. For all operations requir­
ing operands in the A and/ or B registers, the stack
control tests for the required conditions and adjusts
the contents of these registers as necessary. The
description of the syllables assumes that this stack
control operation has occurred.

Unless otherwise stated, after the execution of any
syllable, the A and/or B registers are set to empty
if they contained an operand required by the syl­
lable and do not contain a result developed by the
operation.

For arithmetic operations, a word is considered as
having the following format:

SECTION 5
SYLLABLES

BIT USE

o Flag
O-Operand

1 Sign of the operand
O-Positive
I-Negative

2 Sign of the exponent
O-Positive
I-Negative

3-8 Exponent
Range 00 through 77 (octal). Each bit
represents one octal digit of the integer

9-47 Integer
Consists of 13 octal digits. Normaliza­
tion or shifting is accomplished by
moving the integer left or right in an
octal manner and adjusting the exponent.

A program string consists of a series of I2-bit syl­
lables. There are four types of syllables. The format
and a description of each type is as follows:

BITS

0-9

o 9 11

o 0 0 0 0 0 0 0 0 0 10 01

USE

Operation code and/or data depending on
syllable type.

OI-Operator
OO-Literal

o 1 2 3 8 9 OPERAND 47

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

5-1

10-0perand Call
11-Descriptor Call

10-11 Syllable type

Syllable Description
LITERAL
The ten high-order bits of the syllable are placed in
the A register as a positive integer.

OPERAND CALL
The ten high-order bits of the syllable are added to
the contents of the R register and the resulting
address is stored in the M register. The word found
at this address is brought into the A register and
examined:

If it is an operand, no further action occurs.

If it is a Data Descriptor, the size field of the
descriptor is examined. If it is non-zero, the ten
low -order bits of the B register are first checked
against the size field and then added to the fifteen
low-order bits of the descriptor. If it is zero, no
incrementation takes place. In either case, the
word found at the address specified by the descrip­
tor is brought into the A register.

If it is a Program Descriptor and the Mark Stack
Flip-Flop is on, the contents of the C, Land F
registers and the syllable-type indicator are
stored in the stack at an address specified by the
S register. If the MSFF is off, see Section 3 for a
complete description. The fifteen low-order bits of
the descriptor are stored in the C register and
the L register is set to zero. The mode bit of the
descriptor is examined. If it is zero, the proces­
sor remains in the Word Mode. If it is one, the
processor enters the Character Mode.

If it is a control word, it is treated as an operand.

DESCRIPTOR CALL
The ten high -order bits of the sy liable are added to
the contents of the R register and the resulting
address is stored in the M register. The word found
at this address is brought into the A register and
examined.

5-2

If it is an operand, it is replaced by the contents
of the M register which was the address of the
operand. The flag bit is set to one making it a
descriptor and the size field is set to zero.

If it is a Data Descriptor, the size field of the
descriptor is examined. If it is non-zero, the ten
low -order bits of the B register are first checked
against the size field, added to the fifteen low­
order bits of the descriptor and the size field is

set to zero. If it is zero, no incrementation occurs.

If it is a Program Descriptor and the Mark Stack
Flip-Flop is on, the contents of the C, Land F
registers and the syllable-type indicator are
stored in the stack at an address specified by the
S register. If the MSFF is off, see Section 3 for a
complete description. The fifteen low -order bits of
the descriptor are stored in the C register and
the L register is set to zero. The mode bit of the
descriptor is examined. If it is zero, the processor
remains in the Word Mode; if it is one, the
processor enters the Character Mode.

If it is a control word, it is made a descriptor of
size zero.

OPERATORS
This type of syllable designates the manner in
which the data in the A and/or B register is to be
operated on. Note that for some operators, the six
high-order bits of the syllable are used as a counter
or modifier. A description of each operator is given
in the following paragraphs. Special conditions
which would cause interrupts to occur are not
covered in this manual.

Arithmetic Operators

ADD 1011
ADD. Add algebraically the operands in the A and
B registers. If the exponent of either or both
operands was non-zero, round and normalize the
sum. Mark the A register empty.

SUB 101 1

SUBTRACT. Subtract algebraically the operand
in the A register from the operand in the B register.
If the exponent of either or both operands was non­
zero, round and normalize the difference. Store the
difference in the B register. Mark the A register
empty.

MUL TIPL Y. Multiply algebraically the operand in
the B register by the operand in the A register and
store the product in the B register. Mark the A
register empty.

DIV 101 I
DIVIDE. Divide the operand in the B register by

the operand in the A register. Store the normalized
and rounded quotient in the B register. Mark the A
register empty.

IDV 1 01 I

INTEGER DIVIDE. Normalize the operands in
the A and B registers. Divide the operand in the
B register by the operand in the A register. Store
the quotient in the B register. Mark the A register
empty.

RDV 1011
REMAINDER DIVIDE. Normalize the operands
in the A and B registers. Divide the operand in the
B register by the operand in the A register. Store
the remainder in the B register. Mark the A regis­
ter empty.

ADL 101 1

ADD DOUBLE LENGTH. Add the double length
operand in the A and B registers to the double
length operand located in the next two words of the
stack. Normalize the sum, and store it in the A and
B registers. The A register contains the most signifi­
cant part of the result.

SDL 101 I

SUBTRACT DOUBLE LENGTH. Subtract the
double length operand in the A and B registers from
the double length operand located in the next two
words of the stack. Store the normalized difference
in the A and B registers. The A register contains
the most significant part of the result.

MDL 101 1

MULTIPLY DOUBLE LENGTH. Multiply the
double length operand in the A and B registers by
the double length operand located in the next two
words of the stack. Store the normalized product in
the A and B registers. The A register contains the
most significant part of the result.

DIVIDE DOUBLE LENGTH. Divide the double
length operand in the A and B registers into the
double length operand located in the next two words
of the stack. Store the normalized quotient in the A
and B registers. The A register contains the most
significant part of the result.

Stack Operators

XCH 101 1

EXCHANGE. Replace the contents of the A regis­
ter by the contents of the B register. Simultaneously
replace the contents of the B register by the con­
tents of the A register.

DUP 1 01 1

DUPLICATE. Adjust the stack until the A register
is empty and the B register is full. Duplicate the
contents of the B register in the A register and
mark the A register full.

Logical Operators

LOGICAL AND. Examine corresponding bits of
the A and B registers. If a one appears in both
registers, retain the one in the B register; otherwise,
place a zero in that position in the B register. The
flag bit remains unaltered. Mark the A register
empty.

LOR 1 01 I

LOGICAL OR. Examine corresponding bits of the
A and B registers. If a one appears in either regis­
ter, place a one in the corresponding bit position
of the B register. The flag bit remains unaltered.
Mark the A register empty.

LOG ICAL EQUIVALENCE. Examine corre­
sponding bits of the A and B registers. If they are
equal, place a one in the corresponding bit position
of the B register; otherwise, place a zero in that
position of the B register. The flag bit remains
unaltered. Mark the A register empty.

5-3

LOGICAL NEGATE. Replace everyone bit in the
A register with a zero and each zero bit with a one.
The flag bit remains unaltered.

Relational Operators

These operators perform comparisons on the two
top operands in the stack. The operands are
removed from the stack and the result of the com­
parison is placed in the B register. The operands
may be in an un -normalized form with the required
scaling taking place in the comparison operation.
Operands of zero, minus zero and a zero mantissa
with a non-zero exponent are considered equal.

GTR 101 1

B GREATER THAN A. Compare the operand in
the B register to the operand in the A register. If
the value of the operand in the B register is greater
than the value of the operand in the A register, set
the B register to one; otherwise, set it to zero. Mark
the A register empty.

LSS 1 01 1

B LESS THAN A. Compare the operand in the B
register to the operand in the A register. If the
value of the operand in the B register is less than
the value of the operand in the A register, set the
B register to one; otherwise, set it to zero. Mark
the A register empty.

LEQ 1 01 1

B LESS THAN OR EQUAL TO A. Compare the
operand in the B register to the operand in the A
register. If the value of the operand in the B regis­
ter is less than or equal to the value of the operand
in the A register, set the B register to one; other­
wise, set it to zero. Mark the A register empty.

B EQUAL TO A. Compare the operand in the B
register to the operand in the A register. If the
value of the operand in the B register is equal to the
value of the operand in the A register, set the B
register to one; otherwise, set it to zero. Mark the
A register empty.

5-4

B NOT EQUAL TO A. Compare the operand in
the B register to the operand in the A register. If
the value of the operand in the B register is not
equal to the value of the operand in the A register,
set the B register to one; otherwise, set it to zero.
Mark the A register empty.

B GREATER THAN OR EQUAL TO A. Compare
the operand in the B register to the operand in the
A register. If the value of the operand in the B
register is greater than or equal to the value of the
operand in the A register, set the B register to one;
otherwise, set it to zero. Mark the A register empty.

Subroutine Operators

MKS 1 01 1

MARK STACK. Push down the contents of the A
and B registers into the stack if they are full. Con­
struct a Mark Stack control word containing the
contents of the F and R registers and the settings of
the Mark Stack and the Program Level Flip-Flops
and store it in the stack. Copy the address of the
cell containing the Mark Stack control word into
the F register. Examine the setting of the Mark
Stack Flip-Flop. If it is zero, store the Mark Stack
control word in a specific location. Set the Mark
Stack Flip-Flop to one.

XIT 1 01 1

EXIT. Access the word addressed by the F register,
the Return control word, and place it in the B
register. Reset the contents of the C, L, G, H, K,
and· V registers from the control word. Set the S
register to the contents of the F register field of the
Return control word.

Access the word addressed by the S register, the
Mark Stack control word. Reset the contents of the
Rand F registers and the settings of the Mark
Stack and the Program Level Flip-Flops from the
Mark Stack control word.

Decrease the setting of the S register by one and
mark the A and B registers empty.

Examine the Mark Stack bit in the Mark Stack

control word. If it is a zero, store the Mark Stack
control word in a specific location.
If the Mark Stack bit is a one, access the previous
Mark Stack control word addressed by the F regis­
ter. Repeat the process until a Mark Stack control
word is obtained with a Mark Stack bit of zero.
Store the control word in a specific location.

RNO 1 01 1

RETURN NORMAL. Adjust the stack until the A
register is full and the B register is empty.

Access the word addressed by the F register, the
Return control word, and place it in the B register.
Reset the C, L, G, H, K, and V registers from their
respective fields of the control word. Set the S regis­
ter to the contents of the F. register field of the
Return control word.

Access the word addressed by the S register, the
Mark Stack control word. Reset the contents of the
Rand F "register and the settings of the Mark Stack
and the Program Level Flip-Flops from the Mark
Stack control word. Decrease the setting of the S
register by one.

Examine the Mark Stack bit in the Mark Stack
control word. If it is a zero, store the Mark Stack
control word in a specific location.

If the Mark Stack bit is a one, access the previous
Mark Stack control word addressed by the F regis­
ter. Repeat the process until a Mark Stack control
word is obtained with a Mark Stack bit of zero.
Store the Mark Stack control word in a specific
location.

Examine the Syllable Indicator bit in the Return
control word. If it is a zero, the word in the A
register is treated as though it was obtained by an
Operand Call syllable; if it is a one, the word in the
A register is treated as though it was obtained by a
Descriptor Call syllable.

RETURN SPECIAL. Adjust the stack until the A
register is full and the B register is empty.

Access the word addressed by the S register, the
Return control word, and place it in the B register.
Reset the C, L, G, H, K, and V registers from their
respective fields of the Return control word. Replace
the contents of the S register with the contents of
the F register field of the Return control word.

Access the word addressed by the S register, the
Mark Stack control word. Reset the contents of the
Rand F registers and the settings of the Mark
Stack and the Program Level Flip-Flops from the
Mark Stack control word. Decrease the setting of
the S register by one.

Examine the Mark Stack bit in the Mark Stack
control word. If it is a zero, store the Mark Stack
control word in a specific location. If the Mark
Stack bit is a one, access the previous Mark Stack
control word addressed by the F register. Repeat
the process until a Mark Stack control word is
obtained with a Mark Stack bit of zero. Store the
Mark Stack control word in a specific location.

Examine the Syllable Indicator bit in the Return
control word. If it is a zero, the word in the A
register is treated as though it was obtained by
an Operand Call syllable; if it is a one, the word
in the A register is treated as though it was obtained
by a Descriptor Call syllable.

Branching Operators
The word in the top of the stack is used to specify
the cell or syllable to which branching will occur.
If it is an operand, it will specify the number of
syllables to be jumped, forward or backward,
relative to the location of the branch operator. If
it is a descriptor, it will specify the address to which
the branch will be made.

Conditional branches test the low -order bit of the
B register. Branches will occur on a false condition.

BFU 101 1

BRANCH FORWARD UNCONDITIONAL.
Examine the word in the A register. If it is an
operand, increase the contents of the C and L
registers by the 12 low-order bits of the operand.
If it is a descriptor, replace the contents of the C
register by the 15 low-order bits of the descriptor
and set the L register to zero. In either case, mark
the A register empty.

BBU 1 01 1

BRANCH BACKWARD UNCONDITIONAL.
Examine the word in the A register. If it is an
operand, decrease the contents of the C and L
registers by the 12 low -order bits of the operand.
If it is a descriptor, replace the contents of the C
register by the 15 low-order bits of the descriptor
and set the L register to zero. In either case, mark
the A register empty.

5-5

BFC 101 1

BRANCH FORWARD CONDITIONAL. If the
low -order bit of the B register is a one, mark the
A and B registers empty and terminate the opera­
tion. If the low -order bit of the B register is a
zero, examine the word in the A register. If it is an
operand, increase the contents of the C and L
registers by the 12 low -order bits of the operand.
If it is a descriptor, replace the contents of the C
register by the 15 low -order bits of the descriptor
and set the L register to zero. In either case, mark
the A and B registers empty.

BBC 101 1

BRANCH BACKWARD CONDITIONAL. If
the low -order bit of the B register is a one, mark
the A and B registers empty and terminate the
operation. If the low -order bit of the B register is a
zero, examine the word in the A register. If it is an
operand, decrease the contents of the C and L
registers by the 12 low-order bits of the operand.
If it is a descriptor, replace the contents of the C
register by the 15 low -order bits of the descriptor
and set the L register to zero. In either case, mark
the A and B registers empty.

BRT 1 01 1

BRANCH RETURN. Examine the presence bit
of the word in the A register. If it is zero, set the
presence bit in the Interrupt Register and terminate
the operation. If it is one, reset the Sand C registers
from the contents of the word in the A register.
Set the L register to zero.

Access the word referred to by the S register and
restore the Rand F registers and the settings of
the Mark Stack and the Program Level Flip-Flops
from the contents of this word. Decrease the setting
of the S register by one and mark the A and B
registers empty.

Bit Operators

RESET FLAG BIT. Set the flag· bit of the word
in the A register to zero, regardless of its previous
setting, making it an operand.

5-6

SET FLAG BIT. Set the flag bit of the word in
the A register to one, regardless of its previous
setting, making it a descriptor.

TEST FLAG BIT. Examine the flag bit of the
word in the B register. If it is zero, clear the A
register and then set the low -order bit to one. If it
is a one, clear the A register. In either case, mark
the A register full.

DIAL A. Examine the contents of nn, the six high­
order bits of the operator. If they are not zero,
replace the contents of the G and H registers by nn;
otherwise no operation takes place.

DIAL B. Examine the contents of nn, the six high­
order bits of the operator. If they are not zero,
replace the contents of the K and V registers by nn;
otherwise no operation takes place.

RSB 101 1

RESET SIGN BIT. Set the sign of the operand
in the A register to zero, regardless of its previous
setting.

SET SIGN BIT. Set the sign of the operand in the
A register to one, regardless of its previous setting.

CSB 101 1

CHANGE SIGN BIT. If the sign of the operand in
the A register is positive, change it to negative.
If it is negative, change it to positive.

TRANSFER BITS. Transfer bits from the A
register to the B register. The number of bits to be
transferred is indicated by the six high-order bits
of the operator. The G, H, K, and V registers

determine the initial bit positions in the A and B
registers. Reset the G, H, K, and V registers to
their original setting. Transfer of bits will terminate
if either the A or B registers have been exhausted
before nn reaches zero. In either case, mark the A
register empty.

I nn ! CFE I 01 I
COMPARE FIELD EQUAL. Compare a field of
the A register whose high-order bit is indicated by
the G and H registers to a field of the B register
whose high-order bit is indicated by the K and V
registers. The number of bits to be compared is
specified by nn, the six high-order bits of the oper­
ator. Comparison of the low-order bit of either
register also may terminate the operation. If the
result of the comparison is equal, set the A register
to one; otherwise, set it to zero. Reset the contents
of the B, G, H, K, and V registers to what they
contained prior to the operation.

COMPARE FIELD LOW. Compare a field of the
A register whose high-order bit is indicated by the
G and H registers to a field of the B register whose
high -order bit is indicated by the K and V registers.
The number of bits to be compared is specified by
nn, the six high-order bits of the operator. Com­
parison of the low -order bit of either register may
also terminate the operation. If the value of the
specified B register bit is lower, set the A register
to one; otherwise, set it to zero. Reset the contents
of the B, G, H, K, and V registers to what they
contained prior to the operation.

Store 0 perators

SND 101 1

STORE NONDESTRUCTIVE. If the A register
contains a descriptor, store the contents of the B
register at the address specified by the descriptor.
If the A register contains an operand, store the
contents of the B register at the address specified by
modifying the R or F register with portions of the
10 low -order bits of the operand depending on the
operating level. In either case, the contents of the
B register are retained. Mark the A register empty.

STD 101 1

STORE DESTRUCTIVE. If the A register con­
tains a descriptor, store the contents of the B

register at the address specified by the descriptor.
If the A register contains an operand, store the
contents of the B register at the address specified
by modifying the R or F register contents with
portions of the 10 low-order bit of the operand
depending on the operating level. In either case,
mark the A and B registers empty.

ISN 101 1

INTEGER STORE NONDESTRUCTIVE.
Convert the contents of the B register to an integer.
If the A register contains a descriptor, store the
contents of the B register at the address specified
by the descriptor. If the A register contains an
operand, store the contents of the B register at the
address specified by modifying the R orF register
contents with portions of the 10 low-order bits of
the operand depending on the operating level. In
either case, the contents of the B register are
retained. Mark the A register empty.

ISD 101 I

INTEGER STORE DESTRUCTIVE. Convert
the contents of the B register to an integer. If the
A. r~gister contains a descriptor, store the contents
of the B register at the address specified by the
descriptor. If the A register contains an operand,
store the contents of the B register at the address
specified by modifying the R or F register with
portions of the 10 low-order bits of the operand
depending on the operating level. In either case,
mark the A and B registers empty.

CIN 1011
CONDITIONAL INTEGER STORE NON­
DESTRUCTIVE. If the integer bit position of the
word in the A register is on, convert the contents of
the B register to an integer. If the A register con­
tains a descriptor, store the contents of the B
register at the address specified by the descriptor.
If the A register contains an operand, store the
contents of the B register at the address specified
by modifying the R or F register with the 10 low­
order bits of the operand depending on the operat­
ing level. In either case, the contents of the B
register are retained. Mark the A register empty.

CID 101 1

CONDITIONAL INTEGER STORE DESTRUC­
TIVE. If the integer bit position of the word in the

5-7

5-8

A register is on, convert the contents of the B
register to an iteger. If the A register contains
a descriptor, store the contents of the B register at
the address specified by the descriptor. If the A
register contains an operand, store the contents of
the B register at the address specified by modifying
the R or F register contents with the 10 low-order
bits of the operand depending on the operating
level. In either case, mark the A and B registers
empty.

Miscellaneous Operators

PRL 101 I
PROG RAM RELEASE. Examine the flag bit of
the word in the A register.

If it is a one and

the presence bit is zero, set the presence bit
in the Interrupt Register and terminate the
operation.

the presence bit is a one, obtain the word
addressed by the 15 low -order bits of the A
register and place it in the A register. Set the
presence bit of the word in the A register to
zero and store it back in· its original location.

If it is a zero, obtain the word at the address
specified by modifying the R or F register with
portions of the 10 low-order bits of the word in
the A register, depending on the operating level.
Set the presence bit of the word in the A register
to zero and return the word to its original location.

Examine the continuity bit of the word obtained
from memory. If it is a one, set the continuity bit
in the Interrupt Register; if it is a zero, set the
program release bit in the Interrupt Register. In
either case, mark the A register empty.

If the processor is in the Normal State the address
of the word obtained from memory is stored in a
specific location.

COC 101 1

CONSTRUCT OPERAND CALL. Exchange the
contents of A and B registers. Turn on the flag bit
and the identification bits of the word in the A
register making it a Data Descriptor. If its size
field is non-zero, make the contents of the B register
an integer. Compare it against the size field of the

word in the A register and add the 10 low-order
bits of the integer to the descriptor address in the
A register. Mark the B register empty. Subsequent
action of this syllable is identical to that of an
Operand Call syllable after having caused a word to
be read from memory.

CDC 1 01 1

CONSTRUCT DESCRIPTOR CALL. Exchange
the contents of the A and B registers. Turn on the
flag bit and the identification bits of the word in
the A register making it a Data Descriptor. If its
size field is non-zero, make the contents of the B
register an integer. Compare the integer against the
size field in the A register and add the 10 low­
order bits of the integer to the descriptor address
in the A register. Mark the B register empty.
Subsequent action of this syllable is identical to that
of a Descriptor Call syllable after having caused a
word to be read from memory.

COM 101 1

COMMUNICATION OPERATOR. If operating
in Processor A, store the contents of the word at
the top of the stack in a specific location. Delete
the word from the stack. Set the communication bit
in the interrupt register.

LOAD OPERATOR. If a descriptor is in the A
register, replace it with the word located by the
address in the descriptor. If an operand is in the A
register, obtain the word at the address specified by
modifying the contents of the R register with por­
tions of the 10 low-order bits of the operand depend­
ing on the operating level.

INX 101 I

INDEX. Add the 15 low-order bits of the B register
to the 15 low-order bits of the A register and sup­
press overflow. Mark the B register empty.

CHARACTER MODE
In this mode, data is normally treated as 6-bit
alphanumeric characters. However, word and bit
operations can also be performed. The basic format
for data is as follows:

BA 8421 BA 8421 BA 8421 BA 8421

00 0000 00 0000 00 0000 00 0000

CHAR 1 CHAR 2 CHAR 3 CHAR 4

The concept for manipulation of information
between source and destination strings was explained
in Section 3. For all operations in this mode, transfer
of information from memory to the source and
destination registers, and back to memory from the
destination register is performed automatically.
The description of the operators given here assumes
that these memory transfers are taking place on a
continuing basis.

The program string in the Character Mode consists
of a series of 12-bit syllables. The format for these
syllables is as follows:

o 5 6 11

1 000000 1 000000

BITS USE
0-5
6-11

REPEAT FIELD
OPERATOR CODE

Syllable Descrijltion

The description of the individual operator syllables
in the Character Mode is presented in the following
paragraphs.

OPERATORS

Transfer Operators
These operators are used to transfer information
from one area in memory to another. In general,
transfer operations proceed from high-order to low­
order within a word and to successively higher
addresses by word. Transfers may occur from any
character position within a word to any character
position in another word.

000000 ! TWD!
TRANSFER WORDS. Align the source string and
destination string to the beginning of the next word
unless they are already aligned. Transfer the next
successive words from the source string to the
destination string. The repeat field specifies the
number of words to be moved. If this field is zero,
only alignment occurs. At the completion of this
operation the M and S registers specify the next
word in sequence.

00000o !TRP!
TRANSFER PROGRAM CHARACTERS.
Transfer successive characters from the program

BA 8421 BA 8421 BA 8421 BA 8421

00 0000 00 0000 00 0000 00 0000

CHAR 5 CHAR 6 CHAR 7 CHAR 8

segment to the successive positions in the destina­
tion string, beginning with the next group of six bits
adjacent to this syllable. The repeat field specifies
the number of characters to be moved. If the num­
ber of characters is odd, the first group of six bits is
ignored and the next group is transferred.

00000o ! TRS I
TRANSFER SOURCE CHARACTERS. Transfer
the next successive characters from the source string
to successive positions in the destination string. The
repeat field specifies the number 9f characters to be
moved.

00000o ! TNU I
TRANSFER NUMERIC. Transfer the numeric
bits of successive characters in the source string to
successive character positions in the destination
string. If the source string field is negative, set the
True/False toggle to true. The repeat field specifies
the number of characters whose numeric bits are to
be transferred. Set the destination zone bits of
these characters to zero.

00000o I TZN I
TRANSFER ZONE. Transfer the zone bits of
successive characters in the source string to suc­
cessive character positions in the destination
string. The repeat field specifies the number of
characters whose zone bits are to be transferred.
The numeric bits of the characters in the destina­
tion string are unaltered.

Test Operators
These operators provide the ability to test a char­
acter or bit in the source area against a predeter­
mined character or bit in the program string. These
operations do not cause an advancement in the
source area, thus enabling repeated tests of a
character.

00000o I TFA I
TEST FOR ALPHANUMERIC. Compare the
character in the repeat field with the next character

5-9

in the source string. If the source string character
is greater than or equal to the character in the
repeat field, and it is other than a multiply or not
equal character, set the True/False toggle to one;
otherwise, set it to zero. Do not advance the M and
G registers.

000000 I TEQ I
TEST FOR EQUAL. Compare the character in the
repeat field with the character in the source string.
If the source character is equal to the repeat field
character, set the True/False toggle to one; other­
wise, set it to zero. Do not advance the G and
M registers.

000000 I TN E I
TEST FOR NOT EQUAL. Compare the character
in the repeat field with the character in the source
string. If the source character is not equal to the
repeat field character, set the True/False toggle to
one; otherwise, set this toggle to zero. Do not
advance the G or M registers.

000000 I TGR I
TEST FOR GREATER. Compare the character
in the repeat field with the character in the source
string. If the source character is greater than the
repeat field character, set the True/False toggle to
one; otherwise, set this toggle to zero. Do not
advance the G or M registers.

000000 I TEL I
TEST FOR EQUAL OR LESS. Compare the
character in the repeat field with the character in
the source string. If the source character is equal to
or less than the repeat field character, set the True/
False toggle to one; otherwise, set this toggle to
zero. Do not advance the G or M registers.

000000 I TLS I
TEST FOR LESS. Compare the character in the
repeat field with the character in the source string.
If the source character is less than the repeat field
character, set the True/False toggle to one; other­
wise, set this toggle to zero. Do not advance the
G or M registers.

5-10

000000 I TG E I
TEST FOR GREATER OR EQUAL. Compare
the character in the repeat field with the character
in the source string. If the source character is equal
to or greater than the repeat field character, set
the True/False toggle to one; otherwise, set this
toggle to zero. Do not advance the G or M registers.

000000 I TBT I
TEST BIT. Compare the addressed bit in the
source string with the low -order bit of the repeat
field. If they are equal, set the True/False toggle to
one; if they are unequal set it to zero. Do not
advance the M, G and H registers.

Comparison Operators
These operators are used for comparing two identi­
cal length fields of alphanumeric characters. Fields
may start at any position within a word; word
boundaries are ignored. Although the result of the
comparison may be known b~fore all characters of
the fields have been compared, the address registers
are advanced the full amount.

000000 I CNE I
COMPARE FOR NOT EQUAL. Compare the
next successive characters in the source string with
the next successive characters in the destination
string. The number of characters to compare is
specified by the repeat field. If the source string is
not equal to the destination string, set the True/
False toggle to one; otherwise, set this toggle to zero.

000000 I CMG I
COMPARE FOR GREATER. Compare the next
successive characters in the source string with the
next successive characters in the destination string.
The number of characters to compare is specified by
the repeat field. If the source string is greater than
the destination string, set the True/False toggle to
one; otherwise, set this toggle to zero.

000000 I C LS I
COMPARE FOR LESS. Compare the next suc­
cessive characters in the source string with the
next successive characters in the destination string.
The number of characters to compare is specified by

the repeat field. If the source string is less than
the destination string, set the True/False toggle to
one; otherwise, set this toggle to zero.

000000 I CGE I
COMPARE FOR GREATER OR EQUAL. Com­
pare the next successive characters in the source
string with the next successive characters in the
destination string. The number of characters to
compare is specified by the repeat field. If the
source string is equal to or greater than the destina­
tion string, set the True/False toggle to one; other­
wise, set this toggle to zero.

000000 I CEQ I
COMPARE FOR EQUAL. Compare the next
successive characters in the source string with the
next successive characters in the destination string.
The number of characters to compare is specified
by the repeat field. If the source string is equal to
the destination string, set the True/False toggle to
one; otherwise, set this toggle to zero.

000000 I CEL I
COMPARE FOR EQUAL OR LESS. Compare the
next successive characters in the source string with
the next successive characters in the destination
string. The number of characters to compare is
specified by the repeat field. If the source string is
equal to or less than the destination string, set the
True/False toggle to one; otherwise, set this toggle
to zero.

Jump Operators
These operators are used to adjust the C and L
registers to provide branching in the program string
or for executing repeated program strings.

000000 I J FU I
JUMP FORWARD UNCONDITIONAL. Increase
the contents of the C and L registers by the con­
tents of the repeat field. Prior to this operation the
C and L registers contain the address of the next
syllable in sequence.

00000o I J RU I
JUMP REVERSE UNCONDITIONAL. Decrease

the contents of the C and L registers by the contents
of the repeat field. Prior to this operation the C and
L registers contain the address of the next syllable
in sequence.

000000 I J FC I
JUMP FORWARD CONDITIONAL. If the
True/False toggle is false, increase the contents
of the C and L registers by the contents of the
repeat field. Prior to this operation the C and L
registers contain the address of the next syllable in
sequence. If the toggle is true, the next syllable
in sequence is fetched. In either case the True/
False toggle remains unchanged.

00000o I J RC I
JUMP REVERSE CONDITIONAL. If the
True/False toggle is false, decrease the contents
of the C and L registers by the contents of the
repeat field. Prior to this operation the C and L
registers contain the address of tre next syllable in
sequence. If the toggle is true, the next syllable
in sequence is fetched. In either case, the True/
False toggle remains unchanged.

00000o I BLP I
BEGIN LOOP. Execute the following series of
syllables which is terminated by an END LOOP
syllable. The repeat field specifies the number of
times the loop will be executed. If the repeat field
is zero or one, execute the loop one time.

00000o I ELP I
END LOOP. Identifies the end of a program loop.
The repeat field is irrelevant. If the loop has been
executed the specified number of times, execute the
next syllable following the END LOOP syllable.
Otherwise return to the syllable beginning the loop.

00000o I J LP I
JUMP OUT LOOP. Jump forward over the num­
ber of syllables specified by the repeat field and
delete the count of the repetitions associated with
the program string.

5-11

00000o I JLC I
JUMP OUT LOOP CONDITIONAL. If the
True/False toggle is false, jump forward over the
number of syllables specified by the repeat field
and delete count of repetitions associated with
loop; otherwise, continue in sequence.

Skip Operators
These operators are used to set the address registers
associated with the source and destination character
strings.

00000o I SFS I
SKIP FORWARD SOURCE. Skip forward the
number of successive source string characters
specified by the repeat field. The characters skipped
over remain in the source string.

00000o I SRS I
SKIP REVERSE SOURCE. Skip backward the
number of successive source string characters
specified by the repeat field. The characters skipped
over remain in the source string.

00000o I SRD I
SKIP REVERSE DESTINATION. Skip back­
ward the number of successive destination string
characters specified by the repeat field. The
characters skipped over remain in the destination
string.

00000o I SFD I
SKIP FORWARD DESTINATION. Skip forward
the number of successive destination string char­
acters specified by the repeat field. The characters
skipped over remain in the destination string.

00000o I SBS I
SKIP BIT SOURCE. Skip successive bits in the
source string. The repeat field specifies the number
of bits to skip.

00000o I SBD I
SKIP BIT DESTINATION. Skip successive bits

5-12

in the destination string. The repeat field specifies
the number of bits to skip.

Address Operators
These operators are used for storing addresses in
the stack, calling addresses from the stack, and
addressing locations in the stack. In addition, it is
possible to obtain source and destination addresses
from the source and destination character strings.

000000 I TSA I
TRANSFER SOURCE ADDRESS. Set the source
string address by loading the M and G registers
from the next three characters in the source string.
Place the three most significant bits in the G
register. Set the H register to zero.

000000 I TDA I
TRANSFER DESTINATION ADDRESS. Set the
destination string address by"loading the Sand K
registers from the next three characters in the
destination string. Place the three most significant
bits in the K register. Set the V register to zero.

00000o I SES I
SET SOURCE ADDRESS. Obtain an address by
decreasing the contents of the F register by the
contents of the repeat field. Set the M register
with the address. Set the G and H registers to zero.
Retain the original contents of the F register.

000000 I SED I
SET DESTINATION ADDRESS. Obtain an
address by decreasing the contents of the F register
by the contents of the repeat field. Set the S regis­
ter with this address. Set the K and V registers to
zero. Retain the original contents of the F register.

STORE SOURCE ADDRESS. Store the source
string address, as contained in the M and G registers,
in the stack at the address formed by decreasing the
contents of the F register by the contents of the
repeat field. Retain the original contents of the F
register. Set the flag bit of the word at that address
to zero.

00000o I SDA I
STORE DESTINATION ADDRESS. Store the
destination string address, as contained in the Sand
K registers, in the stack at the address formed by
decreasing the contents of the F register by the
contents of the repeat field. Retain the original con­
tents of the F register. Set the flag bit of the word
at that address to zero.

00000o I SCA I
STORE CONTROL ADDRESS. Store the con­
tents of the C and L registers in the stack at the
address formed by decreasing the contents of the F
register by the contents of the repeat field. Set the
flag bit of the word at that 'address to zero. Retain
the original contents of the F register.

00000o I RCA I
RECALL CONTROL ADDRESS. Obtain a word
from the stack at the address formed by decreasing
the contents of the F register by the contents of the
repeat field. Retain the original contents of the F
register. If the word is a descriptor, reload the C
register from the contents of the word and set the L
register to zero. If the word is an operand, reload
the C and L registers from the contents of this
word. Advance the L register by one to specify the
next syllable in sequence.

00000o I RSA I
RECALL SOURCE ADDRESS. Obtain a word
from the stack at the address formed by decreasing
the contents of the F register by the contents of the
repeat field. Retain the original contents of the F
register. If the word is a descriptor reload the M
register from the contents of this word and set the
G and H registers to zero. If the word is an operand
reload the M and G registers from the contents of
this word and set the H register to zero.

000000 I RDAI
RECALL DESTINATION ADDRESS. Obtain a
word from the stack at the address formed by
decreasing the contents of the F register by the
contents of the repeat field. Retain the original con­
tents of the F register. If the word is a descriptor,
reload the S register from the contents of this word
and clear the K and V registers. If the word is an

operand, reload the Sand K registers from the
contents of this word and set the V register to zero.

Arithmetic Operators

00000o I FAD I
FIELD ADD. Add algebraically a field of succes­
sive source string characters to a field of successive
destination string characters. The repeat field
specifies the field length, in characters, for both
strings. Ignore zone bits except those of the low­
order character in each field which contain the sign.
If there is field overflow, set the True/False toggle
to true; otherwise, set it to false.

000000 I FSU I
FIELD SUBTRACT. Subtract algebraically a
field of successive source string characters from a
field of successive destination string characters. The
repeat field specifies the field length, in characters,
for both strings. Ignore zone bits except those of the
low-order character in each field which contain the
sign. If there is field overflow, set the True/False
toggle to true; otherwise, set it to false.

Conversion Operators

00000o I OCV I
OUTPUT CONVERT. Align the source string
address registers to the beginning of the next word
unless already aligned. Convert the mantissa of the
octal word in the source string to a field of successive
decimal digits in the destination string. The field
length of the destination string is specified by the
repeat field up to a maximum of eight decimal digits.
Translate the sign of the octal operand and store
it in the zone bits over the low -order digit in the
decimal field. If the number of digits in the result
is greater than the field length specified in the
repeat field, set the True/False toggle to false;
otherwise, set it to true.

INPUT CONVERT. Align the destination
string address registers to the beginning of the next
word if alignment is necessary. Convert the decimal
value of a field of successive characters in the source
string to a one word octal integer and store it in the
destination string. The field length of the source
string is specified by the repeat field, up to a maxi-

5-13

mum of eight decimal characters. Translate the
zone bits of the low -order decimal character and
store it as the sign of the octal word.

Miscellaneous Operators

000000 I SET I
SET TALLY. Set the R register to the value
specified in the repeat field.

000000 liNT I
INCREASE TALLY. Increase the setting of the
R register by the increment specified in the repeat
field. Ignore any overflow of the R register.

000000 I STT I
STORE TALLY. Store the contents of the R
register in the stack at the location specified by the
repeat field, relative to the address in the F register.

000000 I SEB I
SET BIT. Set succeSSIve bits in the destination
string to one. The repeat field specifies the number
of bits to be set.

000000 I REB I
RESET BIT. Set successive bits in the destination
string to zero. The repeat field specifies the number
of bits to be reset.

00000o I CRF I
CALL REPEAT FIELD. Obtain a word from the
stack at the address formed by decreasing the con­
tents of the F register by the contents of the repeat
field. Examine the six low-order bits of the word.
If they are not zero, use them as the repeat field
for the next syllable. If they are zero, use the repeat
field of the next syllable and treat it as a Jump
Forward Unconditional operator.

000000 I ECMI
EXIT CHARACTER MODE. Obtain the Return

5-14

control word from the stack and set the C, L, G,
H, K, and V registers from their respective fields
of the control word. Set the S register to the con­
tents of the F register field of the Return control
word. Obtain the Mark Stack control word from the
location specified by the S register. Set the Rand F
registers and the Mark Stack and Program Level
Flip-Flops from their respective fields in the Mark
Stack control word. Decrease the S register contents
by one. Place the processor in the Word Mode.

CONTROL STATE
Entry to this state from the Normal State is
made when any bit in the interrupt register is
turned on as explained in Section 3. At entry time
all pertinent registers and flip-flops are automati­
cally stored in contiguous cells of the stack.

When a processor is in the Control State it may use
all of the operators used in the Normal State plus
the following operators. These Qperators would
function as no-ops if encountered when in the
Normal State. Note that these operators have the
same format as operators in the Word Mode.

SYLLABLE DESCRIPTION

Halt P2

HLB I Oil
Cause Processor B to store its registers in its stack
and idle after the completion of ·processing the
current syllable.

Initiate I/O

110 I Oil
Access the word in the A register and store it in
a specific location. Mark the A register empty. Send
an Initiate I/O signal to Central Control for selec­
tion of an I/O channel.

Initiate Pi

INA I Oil
Place the 15 low-order bits of the A register in the
S register. Set mode. Set all pertinent registers of
Processor A from stack and exit from the Control
State.

Initiate P2

INB I 01 1

Access the word in the A register and store it in a
specific location. Mark the A register empty. Send
an Initiate P2 signal to Central Control to activate
Processor B.

I/O Release

lOR I 01 1

If the word in register A is a descriptor and the
presence bit is one, the contents of the location
addressed by the 15 lower bits of the A register
are placed in the A register. The presence bit of
the word in the A register is set to one and the
word stored back at the location initially addressed.
A register is set to empty.

If the word in register A is an operand, the ten
lower bits of the word in the A register are used

as a relative address. Indexing takes place with
R or F registers. The word addressed is placed in
A register, presence bit set to zero and stored back
in original location.

Interrogate Interrupt

Interrogate the Interrupt Register for interrupt bits.
If an interrupt bit is on, transfer control to the
memory location corresponding to that bit, reset the
bit in the Interrupt Register, clear the L register
and set the S register to a specific setting. If no
interrupt bits are on, control continues in sequence.

Read Timer

RTM 1 01 1

Place the six bits of the timer setting into the A
register as an integer.

5-15

APPENDIX A

PROGRAtyi OPERATORS-FUNCTIONAL LISTING
WORD MODE

Arithmetic Operators Page

ADD Add 5-2
SUB Subtract 5-2
MUL Multiply 5-2
DIV Divide 5-2
IDV Integer Divide 5-3
RDV Remainder Divide 5-3
ADL Add Double Length 5-3
SDL Subtract Double Length 5-3
MDL Multiply Double Length 5-3
DDL Divide Double Length 5-3

Logical Opera tors

LND Logical And 5-3
LOR Logical Or 5-3
LQV Logical Equivalence 5-3
LNG Logical Negate 5-4

Relational Operators

GTR B Greater Than A 5-4
GEQ B Greater Than or Equal to A 5-4
EQL B Equal to A 5-4
LEQ B Less Than or Equal to A 5-4
LSS B Less Than A 5-4
NEQ B Not Equal to A 5-4

Branch Operators

BFU Branch Forward Unconditional 5-5
BBU Branch Backward Unconditional 5-5
BFC Branch Forward Conditional 5-6
BBC Branch Backward Conditional 5-6
BRT Branch Return 5-6

Store Operators

STD Store Destructive 5-7
SND Store Nondestructive 5-7
ISD Integer Store Destructive 5-7
ISN Integer Store Nondestructive 5-7
CID Conditional Integer Store Destructive 5-7
CIN Conditional Integer Store Nondestructive 5-7

A-l

APPENDIX A (Continued)

Bit Operators Page

DIA Dial A 5-6
DIB Dial B 5-6
TFR Transfer Bits 5-6
CFE Compare Field Equal 5-7
CFL Compare Field Low 5-7
RFB Reset Flag Bit 5-6
SFB Set Flag Bit 5-6
TFB Test Flag Bit 5-6
RSB Reset Sign Bit 5-6
SSB Set Sign Bit 5-6
CSB Change Sign Bit 5-6

Subroutine Operators

MKS Mark Stack 5-4
XIT Exit 5-4
RNO Return Normal 5-5
RSP Return Special 5-5

Stack Operators

XCH Exchange 5-3
DUP Duplicate 5-3

Miscellaneous Operators

LOD Load Operator 5-8
INX Index 5-8
COC Construct Operand Call 5-8
CDC Construct Descriptor Call 5-8
COM Communication Operator 5-8
PRL Program Release 5-8

CHARACTER MODE

Transfer Operators

TRS Transfer Source Characters 5-9
TRP Transfer Program Characters 5-9
TZN Transfer Zone 5-9
TNU Transfer Numeric 5-9
TWD Transfer Words 5-9

Test Operators

TGR Test for Greater 5-10
TGE Test for Greater or Equal 5-10
TEQ Test for Equal 5-10
TEL Test for Equal or Less 5-10
TLS Test for Less 5-10
TNE Test for Not Equal 5-10
TFA Test for Alphanumeric 5-9
TBT Test Bit 5-10

A-2

APPENDIX A (Continued)

Comparison Operators Page

CMG Compare for Greater 5-10
CGE Compare for Greater or Equal 5-11
CEQ Compare for Equal 5-11
CEL Compare for Equal or Less 5-11
CLS Compare for Less 5-10
CNE Compare for Not Equal 5-10

Jump Operators

JFU Jump Forward Unconditional 5-11
JRU Jump Reverse Unconditional 5-11
JFC Jump Forward Conditional 5-11
JRC Jump Reverse Conditional 5-11
BLP Begin Loop 5-11
ELP End Loop 5-11
JLP Jump Out Loop 5-11
JLC Jump Out Loop Conditional 5-12

Skip Operators

SFS Skip Forward Source 5-12
SRS Skip Reverse Source 5-12
SFD Skip Forward Destination 5-12
SRD Skip Reverse Destination 5-12
SBS Skip Bit Source 5-12
SBD Skip Bit Destination 5-12

Address Operators

SSA Store Source Address 5-12
SDA Store Destination Address 5-13
SCA Store Control Address 5-13
RSA Recall Source Address 5-13
RDA Recall Destination Address 5-13
RCA Recall Control Address 5-13
SES Set Source Address 5-12
SED Set Destination Address 5-12
TSA Transfer Source Address 5-12
TDA Transfer Destination Address 5-12

Arithmetic Operators

FAD Field Add 5-13
FSU Field Subtract 5-13

Conversion Operators

ICV Input Convert 5-13
OCV Output Convert 5-13

A-3

APPENDIX A (Continued)

Miscellaneous Operators Page

SET Set Tally 5-14
INT Increase Tally 5-14
S'IT Store Tally 5-14
REB Reset Bit 5-14
SEB Set Bit 5-14
CRF Call Repeat Field 5-14
ECM Exit Character Mode 5-14

CONTROL STATE

INI Interrogate Interrupt 5-15
lOR I/O Release 5-15
110 Initiate I/O 5-14
INA Initiate PI 5-14

INB Initiate P2 5-15
HLB Halt P2 5-14
RTM Read Timer 5-15

A-4

APPENDIX B

Program Operators-Alphabetical Listing by Mnemonic Code

MNEMONIC MODE OPERATOR PAGE

ADD W Add 5-2
ADL W Add Double Length 5-3
BBC W Branch Backward Conditional 5-6
BBU W Branch Backward Unconditional 5-5
BFC W Branch Forward Conditional 5-6
BFU W Branch Forward Unconditional 5-5
BLP C Begin Loop 5-11
BRT W Branch Return 5-6
CDC W Construct Descriptor Call 5-8
CEL C Compare for Equal or Less 5-11
CEQ C Compare for Equal 5-4
CFE W Compare Field Equal 5-7
CFL W Compare Field Low 5-7
CGE C Compare for Greater or Equal 5-11
CID W Conditional Integer Store Destructive 5-7
CIN W Conditional Integer Store Nondestructive 5-7
CLS C Compare for Less 5-10
CMG C Compare for Greater 5-10
CNE C Compare for Not Equal 5-10
COC W Construct Operand Call 5-8
COM W Communication Operator 5-8
CRF C Call Repeat Field 5-14
CSB W Change Sign Bit 5-6
DDL W Divide Double Length 5-3
DIA W Dial A 5-6
DIB W Dial B 5-6
DIV W Divide 5-2
DUP W Duplicate 5-3
ECM C Exit Character Mode 5-14
ELP C End Loop 5-11
EQL W B Equal to A 5-4
FAD C Field Add 5-13
FSU C Field Subtract 5-13
GEQ W B Greater Than or Equal to A 5-4
GTR W B Greater Than A 5-4
ICV C Input Convert 5-13
IDV W Integer Divide 5-3
INT C Increase Tally 5-14
INX W Index 5-8
ISD W Integer Store Destructive 5-7
ISN W Integer Store Nondestructive 5-7
JFC C Jump Forward Conditional 5-11
JFU C Jump Forward Unconditional 5-11
JLC C Jump Out Loop Conditional 5-12
JLP C Jump Out Loop 5-11
JRC C Jump Reverse Conditional 5-11
JRU C Jump Reverse Unconditional 5-11

B-1

APPENDIX B (Continued)

MNEMONIC MODE OPERATOR PAGE

LEQ W B Less Than or Equal to A 5-4
LND W Logical And 5-3
LNG W Logical Negate 5-4
LOD W Load Operator 5-8
LOR W Logical Or 5-3
LQV W Logical Equivalence 5-3
LSS W B Less Than A 5-4
MDL W Multiply Double Length 5-3
MKS W Mark Stack 5-4
MUL W Multiply 5-2
NEQ W B Not Equal to A 5-4
OCV C Output Convert 5-13
PRL W Program Release 5-8
RCA C Recall Control Address 5-13
RDA C Recall Destination Address 5-13
RDV W Remainder Divide 5-3
REB C Reset Bit 5-14
RFB W Reset Flag Bit 5-6
RNO W Return Normal 5-5
RSA C Recall Source Address 5-13
RSB W Reset Sign Bit 5-6
RSP W Return Special 5-5
SBD C Skip Bit Destination 5-12
SBS C Skip Bit Source 5-12
SCA C Store Control Address 5-13
SDA C Store Destination Address 5-13
SDL W Subtract Double Length 5-3
SEB C Set Bit 5-14
SED C Set Destination Address 5-12
SES C Set Source Address 5-12
SET C Set Tally 5-14
SFB W Set Flag Bit 5-6
SFD C Skip Forward Destination 5-12
SFS C Skip Forward Source 5-12
SND W Store Nondestructive 5-7
SRD C Skip Reverse Destination 5-12
SRS C Skip Reverse Source 5-12
SSA C Store Source Address 5-12
SSB W Set Sign Bit 5-6
STD W Store Destructive 5-7
STT C Store Tally 5-14
SUB W Subtract 5-2
TBT C Test Bit 5-10
TDA C Transfer Destination Address 5-12
TEL C Test For Equal or Less 5-10
TEQ C Test for Equal 5-10
TFA C Test for Alphanumeric 5-9
TFB W Test Flag Bit 5-6

B-2

APPENDIX B (Continued)

MNEMONIC MODE OPERATOR PAGE

TFR W Transfer Bits 5-6
TGE C Test for Greater or Equal 5-10
TGR C Test for Greater 5-10
TLS C Test for Less 5-10
TNE C Test for Not Equal 5-10
TNU C Transfer Numeric 5-9
TRP C Transfer Program Characters 5-9
TRS C Transfer Source Characters 5-9
TSA C Transfer Source Address 5-12
TWD C Transfer Words 5-9
TZN C Transfer Zone 5-9
XCH W Exchange 5-3
XIT W Exit 5-4

B-3

• • •
DETROIT 32, MICHIGAN

Office. in Principal Citi ..

In Canada: Burroughs Business Machines Ltd., Toronto, Ontario

LITHO IN U. S. A. 3-5·6 5000-21006

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	xBack

