
Bu.rrougl~s

B57·~

FORTRAN COMPILER
REFERENCE MANUAL

Burroughs
B 5700

INFORMATION PROCESSING SYS.TEMS

Printed in U.S. America

FORTRAN COMPILER
REFERENCE MANUAL

Burroughs Corporation
Detroit, Michigan 48232

$4.00

1-71 1051182

COPVRIGHT© 1971 BURROUGHS CORPORATION

This manual contains material from "Burroughs B 5500
Information Processing Systems FORTRAN Compiler Reference Manual"

COPYRIGHT © 1967, 1968 BURROUGHS CORPORATION

AA 945756 AA 9433

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However. the Corporation cannot
acc~pt any responsibility, financial ~r otherwi~e, for any con
sequences arising out of the use of this material. The infor
mation contained herein is subject to change. Revisions may
be issued to advise of such changes andlor additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

SECTION

1

2

3

4

TABLE OF CONTENTS

TITLE

INTRODUCTION •

GENERAL PROPERTIES .

General .

Program Cards .

Comment Card.

Dollar Sign Card.

Deck Set-Up .

CHARACTER SET, CONSTANTS, VARIABLES.

Character Set .

Digits .

Letters.

Special Characters .

Constants .

Integer Constant .

Real Constant.

Double Precision Constants .

Use of Single Precision
Constants in Double
Precision statements.

Complex Constant .

Logical Constant .

Hollerith Constant.

Variables .

Simple Variable.

Subscripted Variable .

EXPRESSIONS.

General

Arithmetic Expression.

Logical Expression.

Relation .

ASSIGNMENT STATEMENTS.

General •

Arithmetic Assignment Statement .

PAGE

ix

1-1

1-1

1-1

1-3
-. .,
..L-'+

1-5

2-1

2-1

2-1

2-1

2-1

2-2

2-3

2-3
2-4

2-5

2-5

2- 6

2-6

2-7

2-7

2-8

3-1

3-1

3-1

3-4

3-5

4-1

4-1

4-1

iii

SECTION

4 (cant)

5

6

7

iv

TABLE OF CONTENTS (cant)

TITLE

Logical Assignment Statement ••

ASSIGN Statement •••••••

PAGE

• 4-2

· 4-3

CONTROL STATEMENTS. • • • • . . • • . . • •. 5-1

Gene ral • • • • • • • • • • • • . • • • • 5-1

Unconditional GO TO Statement •

Computed GO TO Statement.

Assigned GO TO Statement.

Arithmetic IF Statement.

Logical IF Statement ••

5-1

• • . . 5-2

5-3

· • 5--4

• • • 5-4
DO Statement. • • • • • • •• • ••• 5-5

CONTINUE Statement •••••••••••• 5-7
PAUSE Statement • • . • • • • • • • •

STOP or CALL EXIT Statement • • • • •

· • 5-8

· . 5-8

RETURN Statement ••

CALL Statement •••

CALL ZIP Statement"

DECLARATIVE STATEMENTS •

General •

DIMENSION Statement .

Variable Dimensions.

COMMON Statement ••••

EQUIVALENCE Statement •

Type Statement •••••

EXTERNAL Statement.

DATA Statement

INPUT / OUTPUT • .

General •

· . 5-9

• • 5-10

• 5- 11

· 6-1

· 6-1
6-1

· . 6-2

• • • 6- 3

• . • 6-7

· . · 6-10

• 6-11

.6-12

• 7-1

· • • 7-1

Input Statements ••••••.....•. 7=1

Formatted Input Statements •. . 7-2

Unformatted Input Statements . • 7-J
Output Statements • • • • • • • • •. 7-4

Formatted Output Statements ••••• 7-4

SECTION

7 (cont)

TABLE OF CONTENTS (cont)

TITLE

Unformatted Output Statements.

I/O Lists .

Implied DO Loop .

Action Labels .

Auxiliary r/o Statements.

REWIND Statement .

BACKSPACE Statement.

ENDFILE Statemente

CLOSE Statement.

LOCK Statement .

PURGE Statement.

FORMAT Statement.

Integer Conversion on Input
Using Iw .

Integer Conversion on Output
Using Iw •

Real Conversion on Input
Using Fw.d .

Real Conversion on Output
Using Fw.d •

Real Conversion on Input
Using Ew.d .

Real Conversion on Output
Using Ew.d .

Double Precision Conversion on
Input Using Dw.d .

Double Precision Conversion on
Output Using Dw.d.

Real Conversion on Input
Using Gw.d •

Real Conversion on Output
Using Gw.d •

Octal Conversion on Input
Using Ow •

Octal Conversion on Output
Using Ow •

Logical Conversion on Input
Using Lw •

PAGE

7-5
7-6
7-6

7-7
1"1 0
1- 0

7-9
7-9
7-10

7-10

7-11
7-12
7-12

7-13

7-14

7-14

.7-15

7-16

7-17

7-18

7-18

'7-19

7-19

7-20

7-21

7-21

v

SECTION

7 (cont)

vi

TABLE OF CONTENTS (cont)

TITLE

Logical Conversion on Output
Us ing Lw • • • • . • • • • •

PAGE

7-22
Alphanumeric Conversion on Input
Using Aw . • • • • • . • . • • • • . 7-22
Alphanumeric Conversion on Output
Using Aw • • • . • 7-23
Inputting a Character String
Using wHs. 0 •••••••• 7-23
Outputting a Character String
Using wHs. • • • . . • . • . 7-24
Inputting a Character String
Us ing If s If. • • • • • • • • • 7-25
Outputting a Character String
Using If s ". 0 0 • • • • • • • • • • • 7 - 2 5

Skipping Characters Using nX . . 7-25
Editing Using Tn .

Scale Factor nP. . .

Scale Factor on Input •.

Scale Factor on Output .

7-25
· . 7- 26

. . . 7- 26

· . 7- 27
Format Specification in an Array ..

Carriage Control

7-27
7-?R , --

Use of Slash (/) 0 •

Repeat Specifications •.

· . 7- 28

· · • · 7- 29
Format and I/O List Interaction. • • 7-29

NAMELIST Statement .

Input Using NAMELIST .

Output Using NAMELIST ..

Tape and Disk I/O

Unformatted Output •

RECORD Control Word .

Examples of Unformatted
Tape Output • . • •

· 7-30
· 7-31

· · 7- 32

7-33
7-33

· 7-34

· 7-35
Unformatted Disk Output 7-41
BLOCKING •

BUFFERING

Disk I/O • •

SERIAL Disk I/O .

RANDOM Disk I/O

. • . . 7- 48

. . . 7-49

· . 7-49
;0 7-50

· . 7-51

SECTION

TABLE OF CONTENTS (cont)

TITLE PAGE

8 SUBPROGRAMS.

General

Functions .

Statement Functions

Intrinsic Functions

External Functions . .

• 8-1

· 8-1

. 8-1

. . • . • 8-1

· 8-2

· 8-J
Referencing External Functions . . 8-5

Subroutine. . · 8-6
Defining Subroutine Subprograms .• 8-6

Passing Array Data to a

Subroutine

Nonstandard Returns from

. . . . 8-8

Subroutines 8-10

Multiple Entry Points into a

Subprogram. .

BLOCK DATA

. · 8-10

8-1J

· • A-I APPENDIX A - GLOSSARY .

APPENDIX B - FILE CARDS

APPENDIX C - DOLLAR SIGN CARDS

. B-1

APPENDIX D - COMPILE TIME ERROR MESSAGE

APPENDIX E - OBJECT TIME ERROR TERMINATION MESSAGES .

APPENDIX F - BURROUGHS VERSUS USASI FORTRAN, EXTENSIONS

AND DIFFERENCES. . .

APPENDIX G - COLLATING SEQUENCE •

APPENDIX H - BIT-MANIPULATION INTRINSICS

APPENDIX I - PRT CONTENTS OF A FORTRAN OBJECT PROGRAM .

APPENDIX J - TIME-SHARING FORTRAN

INDEX •

FIGURE

,1-1

1-2

1-J

LIST OF ILLUSTRATIONS

TITLE

Program Card Layout.

Comment Card • • •

Dollar Sign Card .

• • C-1

· D-1

· E-1

· F-1

· G-1

· H-1

· I-I

· J-1

· one

PAGE

· • 1-1

• 1-J

· . 1-4

vii

FIGURE

5-1

7-1

TABLE

3-1
3-2

3-3
3-4
4-1

6-1

7-1
8-1

B-1

viii

LIST OF ILLUSTRATIONS (cont)

TITLE

DO Nesting. .

File Format Using Unformatted Output
Statements.

LIST OF TABLES

TITLE

Resultant Type for Operation A**B .

Combination of Elements • • • .

Definitions of Logical Operators.

Relations and Meanings .•....

Rules for Arithmetic Assignment Statement
(v'=a).••...

EQUIVALENCing Multiple Subscripts to
One Subscript . . . • .

Datum Conversion.

Resulting Actions of an Intrinsic Function.

File Default Descriptions ..•.

PAGE

5-6

7-32

PAGE

3-2

3-3

3-5
3-6

4-2

6-9

7-20

8-14

B-1

INTRODUCTION

This manual provides a complete description of the Burroughs

FORTRAN compiler language.*

The FORTRAN language is designed for writing programs for scientific

and engineering applications. Statements can be written in the

general format of mathematical notation, thus increasing the ease

of solving formula oriented problems.

The Burroughs FORTRAN compiler operates under the control of the

Master Control Program (MCP) and similarly, the object code pro

duced by the compiler is executed under the control of the MCP.

For a description of the MCP, reference should be made to the

System Operation Manual.

The FORTRAN compiler language is based on USASI FORTRAN (refer to

the publication: Refer to appendix F of this

manual for a listing of the constructs which differ from USASI

FORTRAN.

* FORTRAN is an acronym for FORmula TRANslation and was originally
developed for International Business Machine equipment.

ix

SECTION 1

GENERAL PROPERTIES

GENERAL.

Normally, a FORTRAN source program is prepared on punched cards.

These cards are of three general types: general program cards,

comment cards, and dollar sign cards. These cards have certain

column restrictions, and their format is referred to as "restricted

field format." A free-field format, as used in time-sharing mode,

is described in appendix J.

PROGRAM CARDS.

Program cards are used to contain FORTRAN statements under the

following limitations (see figure 1-1):

/
i LABEL FORTRAN STATEMENTS IDENT

OR
SEQUENCE

00
1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 424344 45 46 47 48 49 50 51 5253 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 787980

11

22

33

44

55

66

77

88

99
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 '8 29 3D 31 323334 35 36 37 38 39 40 41 424344 45 46 47 4B 49 50 51 525354 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 727374757677 78 7980

Figure 1-1. Program Card Layout

a. Columns 1-5. The label of a labeled statement consists of

from one to five digits and must be placed in columns

1 through 5. The label may be placed anywhere within these

columns; neither blanks nor leading zeros are significant

in differentiating statement labels. All labels within a

1-1

1-2

program unit must be distinct. The label field is ignored

on all non-executable statements and continuation cards

except for cards containing FORMAT statements.

b. Column 6. Column 6 of the initial card of a statement must

be either blank or zero. Column 6 of a continuation card

(any additional card after the initial card needed to contain

the statement) must contain any character other than blank

or zero. An unlimited number of continuation cards may

follow an initial card. Continuation cards may not be

labeled.

c. Blank characters are significant only in column 6 of a non

comment card, in a Hollerith constant, or in a Hollerith

d.

)
field specification. With these exceptions, blanks may be

used or omitted without affecting the interpretation of a

FORTRAN statement.

Column 7-72. Columns 7 through 72 contain the FORTRAN

statement.

e. Columns 73-80. These columns are not interpreted by the

compiler and may contain identification or sequencing in

formation. This field is, however, analyzed when changes

are merged with a source tape (see appendix C).

f. Two or more statements may be punched on the same physical

card if they are separated by semicolons. If columns 1

through 5 of the card are interpreted as a label, the label

corresponds to the first statement on the card. Subsequent

statements on that card are considered unlabeled. The last

statement must not end with a semi-colon.

g. A program unit must have an END statement as its last card.

The END statement is used only to tell the compiler that

it has reached the end of a program unit.

The END statement is a card with blanks in columns 1

through 6, the characters E, N, and D once each and in

that order in columns 7 through 72, preceded by, inter

spersed with, or followed by blanks.

The END statement is not an executable statement. If a

program attempts to execute an END statement, the program

is terminated with an INVALID EOJ message.

COMMENT CARD.

Comment cards are not interpreted by the compiler, but their infor

mation does appear on the compilation listing for documentation

purposes.

a.

b:

c.

Card punching limitations are as follows (see figure 1-2):

Column 1. A comment card must have the comment code, the

letter C, in columd 1.

Columns 2-72. Columns 2 through 72 may used :for comments.

Columns 73-80. These columns may contain identification

or sequencing information.

COMMENTS IDENT
OR

SEQUENCE

00
123456789ro"UnU~~n~~~~~~N~~~~~~~~~~~~~~~~~~~~~~~~~OO~~~M~~~~~~~~~M~~~~~ronn3u~~nnn~

11

22

33

44

55

616 5 516 5 5 6 6 6 6 6

717 7,7 7 7 7 7 7 7 7

88

99
123456789rollunu~~n~~~~~~N~~~n~~~~~~~~~~~~~~~~~~~~~oo~~~M~~~~~~~~~M~~~~~ronnnu~~nnn~

Figure 1-2. Comment Card

1-3

DOLLAR SIGN CARD.

A dollar sign card is used to specify certain compiler options (see

appendix C). Dollar sign cards must not be interspersed between the

continuation cards of a multi-card statement. Punching limitations

of the dollar sign card are as follows (see figure 1-3):

a.

b.

c •

('I

Column 1. Column 1 of a dollar sign card must contain

a $.

Columns 2-72. Columns 2 through 72 contain the compiler

options desired.

Columns 73-80. These columns may contain identification

or sequencing information.

COMPILER OPIIONS TDENT
OR

SEQUENCE

00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 J.4 35 36 37 38 J9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5& 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

11

227.22222222222222222222222222222

33333333333333333333333333~333

44

55

66

777777777777777777777777777777777777717177

88

99
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2:l 24 25 26 27 28 29 30 31 32 33 J.4 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5& 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Figure 1-3. Dollar Sign Card

1-4

DECK SET-UP.

The arrangement of cards for use with the FORTR~N compiler is as

follows:

? COMPILE CARD

? FORTRAN FILE LABEL EQUATION CARDS
See System

? FORTRAN CONTROL CARDS 1 Operation Manual
? OBJECT FILE LABEL EQUATION CARDS

? OBJECT CONTROL CARDS

? DATA CARD

DOLLAR SIGN CARD

FILE CARDS

? END

SOURCE DECK
or

PATCH DECK

See appendices

,

The question mark (?) represents an invalid character, and must

appear in column 1.

1-5

SECTION 2

CHARACTER SET, CONSTANTS, VARIABLES

CHARACTER SET.

The FORTRAN character set consists of digits, letters, and special

characters.

DIGITS.

A digit is anyone of the following ten characters: 0, 1, 2, 3, 4,

5, 6, 7, 8, 9. Digits will be in the decimal number system unless

otherwise specified.

LETTERS.

A letter is anyone of the following 26 characters: A, B, C, D, E,

F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V, W, X, Y, z.

SPECIAL CHARACTERS.

The special characters are divided into two categories,

FORTRAN special characters and those added to Burroughs FORTRAN.

The USASI FORTRAN special characters are the following:

Character

=

+

*
/
(

)

$

Name

Equal Sign

Plus Sign

Minus Sign

Asterisk

Slash

Left Parenthesis

Right Parenthesis

Comma

Decimal Point

Blank

Dollar Sign

B 5700 FORTRAN also recognizes the quote character (tt).

2-1

The following BCL* characters are recognized as alternatives to

the standard FORTRAN character set:

FORTRAN BCL
Character Alternative

+ &

= # or

(%
) [

* x (BCL mUltiplication sign)

" @ or

The relational operators are represented in FORTRAN as two-letter

mnemonics which are preceded and followed by a period. These

operators and their BCL alternatives are:

FORTRAN
Mnemonic

.LT.

.LE.

.NE.

.GT.

.GE.

.EQ.

Meaning

Less Than

Less Than or Equal

Not Equal

Greater Than

Greater Than or Equal

Equal

BCL
Alternative

<

<

>

>

=

Two remaining BCL characters serve special purposes. The semicolon

(;) may be used to separate two or more statements on one physical

card, and may also be used in a Hollerith field. The right bracket

(J) is reserved for use by the compiler. Imbedded blanks have no

meaning in a FORTRAN statement except in a Hollerith field.

paragraph c, page 1-2).

CONSTANTS.

(see

Six basic types of constants are allowed in the FORTRAN programming

language: integer, real, double precision, complex, logical, and

Hollerith.

* BCL is an abbreviation for Burroughs Common Language.

2-2

INTEGER CONSTANT.

An integer constant is formed by a string of decimal digits.

The general form is:

N

An integer constant is written without a decimal point or exponent.

If the range specified above is exceeded, the constant is inter

preted as a double precision constant.

Examples:

12

-16729

3624138

REAL CONSTANT.

A real constant is a string of decimal digits with a decimal point

and, optionally, an exponent.

The general form is:

M.NEX

where M and N are strings of decimal digits, only,
one of which may be blank; X is a signed or un
signed one or two-digit integer which is the ex
ponent.

A real constant may be signed or unsigned.

An exponent is optional. If it is used, then a letter E follows

the mantissa and precedes the exponent.

The exponent, if present, is interpreted such that lOX is multiplied

times the mantissa.

2-3

4.3l359l46672E68 ~ ABS(R) ~ 8.758ll5402lE-47, where R is a real

constant, is the range within which a real constant may fall.

Examples:

56.9

.075

-253.

7l.32E+02 (which represents 7132.0)

-7l.32E-2 (which represents -.7132)

DOUBLE PRECISION CONSTANTS.

A double precision constant is of the same form as a real constant,

except that its mantissa may contain up to 23 decimal digits and

its exponent is preceded by a D instead of an E.

The general form is:

M.NDX

where M and N are strings of decimal digits, only
one of which may be blank; X is a signed or unsigned

lone or two-digit integer which is the exponent.

The mantissa may contain up to 23 decimal digits. If more are used,

then the mantissa is truncated to the 23 most-significant digits.

The range of a double precision constant is identical to that of a

real constant.

A cbnstant which does not have an exponent but which specifies more

digits than a single precision value can maintain is interpreted as

a double precision constant.

Examples:

2-4

l2D-l

-5.36D+56

52D-07

USE OF SINGLE PRECISION CONSTANTS IN DOUBLE PRECISION STATEMENTS.

There can be a great difference in the internal machine representa

tion of single or double precision constants when they are used in

double precision statements. An example shows this situation best:

Given: DOUBLE PRECISION D

1 D = 3.14159265 (Single Precision Constant)

2 D = 3.14159265D+OO (Double Precision Constant)

The internal representation of statement 1 takes 13 octal digits:

D. t 1 = 3.11037552362200000000000008 ln erna

The internal representation of statement 2 takes 26 octal digits:

D. t 1 = 3.11037552362152360417363708 ln erna

Thus, due to the very large (perhaps indefinitely large) number of

octal digits required to represent the constant .14159265, there is

a difference in the internal representations.

COMPLEX CONSTANT.

A complex constant, in the mathematical sense, is composed of a

real part and an imaginary part.

The general form is:

(M,N)

where M is the real part and
N is the imaginary part.

Each of the two components may be either a real constant or an

integer constant.

Double precision components are not permitted.

2-5

Examples:

Complex
Constant

(5,64.2)
(0,-1)

(3.5E-2,75.9)

LOGICAL CONSTANT.

Mathematical
Interpretation

5 + 64.2i
-i

.035 + 75.9i

A logical constant may be either true or false.

The general form is:

Examples:

• TRUE .

. FALSE.

HOLLERITH CONSTANT.

• TRUE .

. FALSE.

NOTE

i = V-1

A Hollerith constant is a string of any valid FORTRAN characters.

The general form is:

wHs

where w is the width of the
string and s is the string.

ns"

where s is the string.

Blanks appearing in the string must be included in the field width

w when form wHs is used.

The string may contain any valid FORTRAN characters except the

quote character (,,) 8.nd its alternatives: @ and :.

2-6

/ r
l~ 0'('\ S

Strings are stored in memory, six characters per word.

Although a word is capable of storing eight characters, only the
~

six right-most character positions are used for storage. The two
~ -. - '_U"W~1IIt!1M •.. , .~ "1: .. I'~'.'"' _ _T._!ltl~,

left-most character positions always contain zeros.

If a string does not contain a multiple of six characters, then in

the last word used for storing the string the remaining characters

are stored left-justified over a field of blanks.

Examples: (b represents blank)

2HbT

4H"C:1t

"DOUTtf

5HABCDE

VARIABLES.

There are two forms of variables: simple and subscripted. Each of

these are, in turn, classified into five basic types:

real, double precision, complex, and logical.

SIMPLE VARIABLE.

A simple variable represents a single value.

The general form is:

From one to six alphanumeric characters~
the first of which must be alphabetic.

integer,

A variable name with a first character of I, J, K, L, M, or N

implicitly types that variable as an integer variable. A variable

name beginning with any other alphabetic character is implicitly

typed as a real variable unless otherwise defined in a Type state

ment.

A variable of type DOUBLE PRECISION, COMPLEX, or LOGICAL must be

declared as such in a Type statement.

2-7

Examples:

Integer
Variables

IB2

J12

KALPHA

Real
Variables

A12J

TSUB2

ZSQD

SUBSCRIPTED VARIABLE.

A subscripted variable refers to a particular element of an array

of the same, name as the subscripted variable.

additional discussion.)

{See section 6 for

The general form is:

where N is the array name, al,a2' •.. ,an are
arithmetic expressions which determine the
values of the subscripts of the subscripted
variable, and n is the number of subscripts
declared in the declaration of the array N~

A subscripted variable is named and typed according to the same

rules as a simple variable.

As specified by default or in the Type statement (see page 6-10),

all elements of an array must be of the same type, i.e., if N(2) is

integer, then N{J) must also be integer.

A subscript may be an integer or real arithmetic expression.

If a subscript is a real arithmetic expression, then it will be

evaluated and converted to integer by rounding before being used

as a subscript.

Subscripted variables must have their subscript bounds specified in

a DIMENSION, Type, or COMMON statement prior to their first appear

ance in either an executable statement or in a DATA statement.

2-8

A subscript value, after any necessary conversion, must be greater

than zero and may not exceed the bound specified for the array in

the DIMENSION, Type, or COMMON statement in which it is declared.

Multi-dimensioned arrays are stored with the left-most subscript

varying most rapidly and the right-most subscript varying least

rapidly.

For example 9 the array A(2, 3, 4) would be stored:

A(l, 1, 1)

A(2, 1, 1)

A(l, 2, 1)

A(2, 2, 1)

A(l, 3, 1)

A(2, 3, 1)

A(l, 1, 2)

A(2, :L, 2)

A(l, 2, 2)

A(2, 29 2)

A(l, 3, 2)

A(2, 3, 2)

A(l, 1, 3)
A(2, 1, 3)
A(l, 2, 3)
A(2, 2, 3)
A(l, 3, 3)
A(2, 3, 3)
A(l, 1, 4)

A(2, 1, 4)

A(l, ,... I. \
t::., '+)

A(2, 2, 4)

A(l, 3, 4)

A(2, 3, 4)

2-9

Examples:

2-10

B(I)

GSUB(8*K+3,L)

DMIN(I,J,K)

ISUB(I,J,*K/L,C,B*D,F/G)

GENERAL.

SECTION 3

EXPRESSIONS

An expression is any constant, variable, or function reference, or

combination of these separated by operators, commas, or parentheses.

There are two types of expressions:

a. Arithmetic.

b. Logical.

ARITHMETIC EXPRESSION.

An arithmetic expression is a rule for computing a numerical value.

The general form is:

Any constant, variable, or function ref
erence, or combination of these separated
by operators, commas, or parentheses.

An arithmetic expression may contain the following arithmetic

operators:

Operator

+

*
/
**
()

Meaning

Addition

Subtraction

Multiplication

Division

Exponentiation

Grouping Operator Pair

Arithmetic expressions may be connected by arithmetic operators

to form longer arithmetic expressions, provided no two operators

appear in sequence and no arithmetic operator is assumed to be

present. Examples of invalid arithmetic expressions are:

A++B

(A+2) (B+3)

3-1

Any arithmetic expression can be enclosed in parentheses.

All actual arguments of a function reference are evaluated before

the function is evaluated.

Parentheses may be used in an arithmetic expression to denote the

order in which operations are to be performed. Parentheses have

first precedence in determining the order of evaluation and, when

nested parentheses occur, evaluation proceeds from the innermost

to outermost set.

The precedence order used in evaluating an arithmetic expression

is as follows:

(highest)

(lowest)

Primary

Exponentiation

Multiplication and division

Addition and subtraction

where the precedence for successive operators of the same level is

from left to right, e.g., A**B**C is evaluated as (A**B)**C.

For the operation A**B, the valid combinations and results are

noted in table 3-1.

Table 3-1

Resultant Type for Operation A**B

Exponent B

Base A Double
Integer Real Precision Complex

Integer Integer Real Double Not permitted
Precision

Real Real Real Double Not permitted
Precision

Double Double Double Double Not permitted
Precision Precision Precision Precision

Complex Complex Complex Complex Not permitted
(see NOTE)

3-2

NOTE

The double precision exponent is con
verted to real before exponentiation.

Any element may be combined with any other element through use of

all the arithmetic operators except exponentiation. The resultant

type is listed in table 3-2 for A OP B, where A and B are operands

and OP is either +, -. *. or f. ,. t -

Examples:

B

2.316

K + 1

(X + A(I,J,L) - SIN(Y(K)))

X - C + Y(I,L) * 16.397

Table 3-2

Combination of Elements

B
A Double

Integer Real Precision

Integer Integer Real Double
(see NOTE 1) Precision

Real Real Real Double
Precision

Double Double Double Double
Precision Precision Precision Precision

Complex Complex Complex Complex
(see NOTE

NOTE 1

Complex

Complex

Complex

Complex
(see NOTE

Complex
2)

Integer division yields a truncated result.

NOTE 2

The double precision element is con
verted to real before the operation.

2)

3-3

LOGICAL EXPRESSION.

A logical expression is a rule for computing a logical value.

The general form is:

Any constant, variable, or function reference,
or combination of these separated by operators,
logical operators, commas, or parentheses.

Logical quantities may be combined by logical operators to form

logical expressions in a manner analogous to the combination of

arithmetic quantities by arithmetic operators.

A logical quantity, of itself, may also constitute a logical ex

pression.

A logical quantity may be:

a. Any logical variable.

b. Either of the logical constants .TRUE. or . FALSE.

c. Any logical function reference.

d. Any relation.

The logical operators are defined in table 3-3.

The precedence of operators in the evaluation of logical expres-

sions is:

(highest)

(lowest)

Function reference

** (Exponentiation)

* and / (Multiplication and division)

+ and - (Addition and subtraction)

. LT., . LE., . EQ., . NE., • GT., . GE •

• NOT •

. AND.

.OR.

Parentheses may be used to alter the order of evaluation (just as

in arithmetic expressions).

3-4

Operator

• NOT.

. AND.

. OR.

Examples:

Table 3-3
Definitions of Logical Operators

Definition

The expression .NOT. P is .TRUE .
when P is .FALSE. The expression
.NOT. P is .FALSE. when P is
eTRUE.

The expression P .AND. Q is .TRUE .
when both P and Q are .TRUE. It
is .FALSE. if either P or Q is
. FALSE. or both are .FALSE.

The expression P .OR. Q is .TRUE .
if either P or Q, or both, are
.TRUE. It is .FALSE. if and only
if both P and Q are .FALSE.

If A and B are logical then each of the following is

also a logical expression:

.NOT. E

A

(B)

A.OR.B

((B))

B .AND. A

RELATION.

A relation is a conditional logical expression.

The general form is:

A OP B

where A and B are arithmetic expres
sions and OP is a relational operator.

The relational operators and their meaning are noted in table 3-4.

3-5

Table 3-4
Relations and Meanings

Relation Meaning

Al .GT. A2 Al Greater Than A2

Al .GE. A2 Al Greater Than or Equal to A2

Al .LT. A0
"-

Al Less Than A2

Al .LE. A2 Al Less Than or Equal to A2

Al .NE. A2 Al Not Equal to A2

Al .EQ. A2 Al Equal to A2

NOTE

Al and- A2 may be of type INTEGER, REAL, or DOUBLE
PRECISION. Neither may be of type COMPLEX.

Relations, when evaluated, may have one of two values, true or

false.

Chains of relations are not permitted, e.g.,

A .LT. B .LT. C

A correct form would be:

A .LT. B .AND. B .LT. C

or

A .LT. B .AND. A .LT. C

whichever is intended.

Examples:

(A, B, Q, Z, E, F, X, G, H, and Yare arithmetic expressions.)

3-6

A • LT. B

A .LT. B .AND. Q .GT. Z

(E+F).NE.SIN(X).OR.(G-H).LT.ABS(Y)

A.LT.B.AND.(C.NE.D.OR.A.NE.D)

GENERAL.

SECTION 4
ASSIGNMENT STATEMENTS

There are three types of assignment statements:

a. Arithmetic assignment statement.

b. Logical assignment statement.

c. ASSIGN statement.

ARITHMETIC ASSIGNMENT STATEMENT.

The arithmetic assignment statement causes the value represented

by an arithmetic expression appearing to the right of the assign

ment operator (=) to be assigned to the simple or subscripted

variable appearing to the left of the assignment operator.

The general form is:

v = a.e.

where v represents a va~iable name,
simple or subscripted, and a.e. rep
resents an arithmetic expression.

The variable v cannot be of type LOGICAL.

The rules provided in table 4-1 apply f'or type and value assign

ment in arithmetic expressions.

Examples:

x = Y+Z

X(lO) = A(5)+B(6)-(CjD)
JX = 342

x = 5.49
X(l) = B(l)+COS(A(l))

x(4) = D - C**2

X(I,J) = A(I,J)+B(J,I)

4-1

Table 4-1
Rules for Arithmetic Assignment Statement (v = a)

v a Rule

Integer Integer Assign.

Integer Real Truncate to an integer and assign.

Integer Double Truncate to an integer and assign.
Precision

Integer Complex Not permitted.

Real Integer Assign.

Real Real Assign.

Real Double Assign the most-significant part.
Precision

Real Complex Not permitted.

Double Integer Extend to double precision and assign.
Precision

Double Real Extend to double recision and assi p g n.
Precision

Double Double Assign.
Precision Precision

Double Complex Not perm; tted ~
Precision

Complex Integer Not permitted.

Complex Real Not permitted.

Complex Double Not permitted.
Precision

Complex Complex Assign.

LOGICAL ASSIGNMENT STA~EMENT.

The logical assignment statement causes the value represented by the

logical expression appearing to the right of the assignment operator

(=) to be assigned to the simple or subscripted variable of type

LOGICAL appearing to the left of the replacement operator.

The general form is:

4-2

v = I.e.

where v is a simple or subscripted
variable of type LOGICAL and I.e.
represents a logical expression.

The variable v must be of type LOGICAL.

Examples:

(K, L, M, and N are logical variables.)

K = A • OR. B

L(J,S) = .TRUE.

M = A • LT. B

N = Q .GT. R .AND. Z .LT. P

ASSIGN STATEMENT.

The ASSIGN statement is used to initialize an assigned GO TO

statement (see section 5).

The general form is:

ASSIGN n TO t

where n is a statement label ref
erenced in an assigned GO TO state
ment, and t is a simple integer or
real variable appearing in the same
assigned GO TO statement.

The statement label n must be referenced in the assigned GO TO

statement being initialized.

The variable t must be the same variable referenced in the assigned

GO TO statement being initialized.

Example:

ASSIGN 10 TO J

4-3

GENERAL.

SECTION 5

CONTROL STATEMENTS

Control statements are used to alter the normal flow of a program.

They may transfer control to another part of the program, terminate

computation, or control iterative processes. Control may be trans

ferred to labeled executable statements only. There are 12 dif-

a.

b.

c.

d.

e.

f.

g.

h.

i.

j •

k.

1.

control statements:

Unconditional GO TO statement.

Computed GO TO statement.

Assigned GO TO statement.

Arithmetic IF statement.

Logical IF statement.

DO statement.

CONTINUE statement.

PAUSE statement.

STOP or CALL EXIT statement.

RETURN statement.

CALL statement (not including CALL EXIT and CALL ZIP).

CALL ZIP statement.

UNCONDITIONAL GO TO STATEMENT.

Execution of this statement causes control to be transferred to a

statement other than that sequentially following the unconditional

GO TO statement.

The general form is:

GO TO n

where n is a statement label which
exists within the same program unit.

A statement label n must be defined within the same program unit

as the unconditional GO TO statement which references it.

5-1

The statement labeled n may appear berore or after the uncondi

tional GO TO statement referencing it.

Example:

GO TO 31

31

COMPUTED GO TO STATEMENT.

Execution of this statement causes control to be transferred to one

of several statements other than that sequentially following the

computed GO TO statement.

The general form is:

where nl,n2"" ,ni are statement labels
and t is an arithmetic expression.

Control will be transferred to the statement label whose position

in the list is equal to the value of the arithmetic expression

t, i. e. , n
t

.

The statement labels nl,n?, ... ,no must exist in the same program _ 1

unit as the computed GO TO statement.

The computed ~O TO sta~ement is valid for values of t such that

1 < t < i, otherwise the program will be terminated with an INVALID

INDEX.

The arithmetic expression t must be of type INTEGER or of type

REAL.

If t is of type REAL, it will be evaluated and then rounded to an

integer.

5-2

Example:

K=4

GO TO (so,40!30,20,10)!K

Execution of these two statements will cause control to be trans-

felTed to statement 20.

ASSIGNED GO TO STATEMENT.

Execution of this statement causes control to be transferred to

one of several alternative statements other than that sequentially

following the assigned GO TO statement.

The general form is:

where t is a simple integer or real vari-
able and statementl

Control will be transrerred to the statement whose label has been

ASSIGNed to t with an ASSIGN statement.

The values ASSIGNable to t are the actual statement labels appear

ing in the list n l ,n2 ,··· ,n i .

The variable t must be a simple integer or real variable.

If t has not been assigned a label appearing in the list, an INVALID

INDEX termination of the program will result.

The statement labels n
l

,n
2

, ... ,n
i

must appear in the same program

unit as the ASSIGN statement and the ASSIGNed TO statement (see

ASSIGN statement, section 4).

Example:

ASSIGN 10 TO J
GO TO J,(50,40,30,20,10)

5-3

Execution of these two statements will cause control to be trans-

ferred to statement 10.

ARITHMETIC IF STATEMENT.

Execution of the arithmetic IF statement causes an arithmetic

expression to be evaluated and a different branch to be made de

pending upon whether the expression evaluated is negative, zero, or

positive.

The general form is:

where a.e. is an arithmetic expression
and n

l
,n

2
, and n3 are statement labels.

Execution of the arithmetic IF statement causes control to be trans

ferred to nl~n2' or n3 if a.e. is less than, equal to, or greater

than zero, respectively.

The arithmetic expression a.e. may not be complex.

Examples:

IF(A-B) 1,2,3

IF(X(I,J)-C*E) 43,51,96

LOGICAL IF STATEMENT.

Execution of the logical IF statement causes a logical expression

to be evaluated and the sequence of execution of the program state

ments to be altered, depending upon whether the logical expression

evaluated is true or false.

The general form is:

IF (1. e.) s

where I.e. is a logical expression and
s is an executable FORTRAN statement.

The statement s may be any executable FORTRAN statement except a

DO statement.

5-4

Execution of the logical IF statement results in the logical ex-

pression I.e. being evaluated. If I.e. is true, statement s is

executed. If I.e. is false, then statement s is not executed, and

control is transferred to the next sequential executable statement

following the logical IF statement.

Examples:

X and Yare of type LOGICAL.

IF(X .AND. Y) A = 3.1

IF(A .LE. B .OR. I .EQ. 0) GO TO 5

DO STATEMENT.

The DO statement provides a means of controlling program loops.

The general form is:

DO m

where m is a statement label, i
is a variable, and nl,n2j and
n3 are arithmetic expressions.

Execution of a DO statement results in the following actions:

a. The control variable i is set to the initial value n
l

.

b. All executable statements up to and including the terminal

statement are executed.

c • The control variable i is incremented by n
3

.

d. The value of the control variable i is compared to the

terminal value n
2

. If the terminal value has been ex-

ceeded, control is transferred to the first executable

statement following the terminal statement. Otherwise,

steps b through d are repeated until the control variable

comparison is satisfied.

In the general form, the control variable i is a simple integer or

real variable.
5-5

In the general form, m is the label of an executable statement

terminating the DO loop.

In the general form, n
l

, n
2

, and n3 are integer or real arithmetic

expressions which are the initial, terminal, and incremental para

met~rs, respectively, for the control variable i.

If not specified, n3 is assumed to be 1.

If present~ n3 must be greater than zero.

In the general form, n
2

must be greater than n
l

.

The DO statement is always executed once with its initial value.

The DO parameter is incremented and compared to n 2 prior to its

use and may be modified by any statement within the range of the

DO loop.

The control variable i is available for use by all statements within

the DO loop, including the terminal statement, and may be modified

as desired. The control variable i is available for computation

when exiting from a DO loop by transferring outside the loop and

not making a normal exit. When a normal exit is made from the DO

loop, the control variable is~undefined.
~~ \.-~~··"""""-"'''-''''''''-'''''''''''''''.''-P,.,/

A DO statement may appear within a DO loop. This is defined as

being a DO nest. However, all statements in the range of the

latter DO loops must be within the range of the initial DO loop

(see figure 5-1).

DO[DO[

DO

DO[
Figure 5-1. DO Nesting

5-6

Nested DO's may specify the same statement as their last statement m.

Any number of DO statements may be nested within the range of another

DO statement.

There are 8restrictions on transfer out of or into the range of a

DO loop. If a transfer is made into the range of a DO loop, then

the programmer is responsible for the appropriate assignment of a

value to the control variable i. If no assignment for i is

indicated, it is assumed to be zero.

When several DO statements share the same last statement m, the

control variable i of the outermost DO statements is not reassigned

and tested until each of the inner DO statements in its range is

satis£ied, starting with the innermost one. When the outermost

DO statement is satisfied, a normal exit is made and cont.rol is

transferred to the next executable statement following the range of

the just-satisfied DO loop.

Examples:

10

5

DO 10 1=2,200,4

DO 5 1NDEX=5,10
DO 5 J=l,lO

CONTINUE STATEMENT.

The CONTINUE statement is considered a dummy statement because it

causes no action in the execution of a program. It is :frelluently

used as the terminal statement of a DO loop to provide a transfer

point for an IF or GO TO statement.

The general form is:

CONTINUE

5-7

Example:

DO 30 J=2,N
B(J)=NM(J-l) + INC
IF (N(J).LT. MAX) GO TO 30
K=J-l
GO TO 40

30 CONTINUE
40

PAUSE STATEMENT.

The PAUSE statement is used to interrupt execution of' a program

when action is required of the computer operator.

The general form is:

PAUSE n

where n is an integer constant up
to six digits long or is blank.

If the n is present, it is displayed to the operator at the time of

in t errupt ion. Execu~ion is resumed with The first executable state-

ment immediately following the PAUSE statement after an OK message

has been keyed in at the SPO (refer to System Operation Manual).

Examples:

PAUSE

NOTE

SPO stands for SuPervisOry printer,
and specifies the console typewriter.

PAUSE 10

STOP OR CALL EXIT STATEMENT.

The STOP statement causes an immediate termination of the program.

A STOP statement must appear prior to the END statement in the main

program. If it is omitted, the program will be DSed with an

INVALID EOJ.

5-8

The general form is:

STOP n

where n is an integer constant up
to six digits long or is blank.

The CALL EXIT statement is equivalent to STOP.

The general form is:

I CALL EXIT

Examples:

STOP

STOP 4

CALL EXIT

RETURN STATEMENT.

Execution of the RETURN statement causes control to be transferred

from a subprogram to the calling program.

The general form is:

RETURN n

where n is an arithmetic
expression or is blank.

Every subprogram must contain at least one RETURN statement, but

more than one may appear in a subprogram.

If" n is not blank, control returns to the point of reference and is

used to select one of the formal parameters in the subroutine re-

presented by an asterisk (nonstandard return). Control then returns

to the statement specified by a corresponding actual parameter in

the calling program (see nonstandard returns, section 8).

If n is blank, then control returns to the point of reference in

the calling program unit.

5-9

CALL STATEMENT.

A subroutine is referenced by a CALL statement.

The general form is:

CALL N

CALL N(a l ,a2 ,·· . ,a)
n

where N is the name of the subroutine and
a l ,a2 ,··· ,an are the actual parameters.

The actual parameters which constitute the parameter list must

agree in order, number, and type with the corresponding formal

parameters in the program unit defining the subroutine subprogram.

If a formal parameter is real, then an integer actual parameter

may be used.

For purposes of type agreement, a Hollerith constant is considered

of type INTEGER.

An actual parameter in a subroutine reference may be one of the

following:

a. A Hollerith constant.

b. A variable name.

c. A subscripted variable.

d. An array name.

e. An expression.

f. The name of a subprogram.

g. $label (see nonstandard returns, section 8)

Execution of a subroutine reference results in an association of

actual parameters with all appearances of formal parameters in

executable statements in the subroutine body, and in an association

of actual parameters with variable dimensions in the subroutine,

if any exist.

5-10

Following the above associations, control is trans~erred to the

first executable statement in the subroutine body.

If an actual parameter is a subscripted variable with an arith

metic expression as a subscript, then, effectively, the arithmetic

expression is evaluated, and the resulting subscripted variable is

associated with the corresponding formal parameter in the sub-

routine.

If a formal parameter of a subroutine is an array name, the corres

ponding actual parameter must be an array name or an array element

name.

Examples:

CALL FALL(X,Y,Z)

CALL KOST (A (I+J ,2) ~B , "HEAD")

CALL ZIP STATEMENT.

The CALL ZIP statement is used to pass control and/or parameter

card information to the MCP.

The general form is:

CALL ZIP(A)

where A is an array name.

The parameter A should be a real or integer array which is large

enough to contain any information that will be placed into it 6

characters per word.

If l),.~ is la.rger

used.

r-,.-n' -.r
'-"~~...L y the first ?'7

'- I of A '-Jill be

The information contained in A must be in BCL format as it would

appear on physical control/program cards.

The letters CC must be the first two characters contained in the

array. Only one set of these letters may appear in the array A.

5-11

The information following the letters CC must appear as a single

punched card except that the array A may contain up to 162 charac

ters (27 words, 6 characters per word).

The information that would be contained on more than one physical

control card may be put into the array, but a semicolon must be

used to delimit the end of a logical card.

The last logical card must be:

END.

The control information in A should pertain to only one compiler or

object program.

After the CALL ZIP statement has been executed, the FORTRAN object

program that executed the statement continues processing while the

MCP examines the control information in the array A. If the MCP

finds an error in this control information, an appropriate error

message is typed on the SPO.

Example:
'T"'\,.-yw .. r...- ... T,.......-r-" ... T ,....,,/'"1'"'\
lJ-LlVl~1''<i ;:'-LV1'l .J:!., ~ J..~ J
READ(5,25,END=30) (E(I),I=l, 12)

25 FORMAT(12A6)
30 CALL ZIP(E)

Input: 1234........... (card column)
CC EXECUTE A/B; COMMON=20;END.

In the above example, the first program, after executing statement

30, will continue processing with the next executable statement.

Meanwhile, the MCP will scan the information in array E and, if

program A/B is on disk, will initiate the execution of A/B. The

array is available for other uses immediately upon returning from

ZIP. Thus, the original program and the program initiated by it

will be running simultaneously but independently.

5-12

GENERAL.

SECTION 6

DECLAR~TIVE STATEMENTS

The declarative statements are non-executable statements used to

supply variable and array information and storage allocation infor

mation. The seven different declarative statements are:

a. DIMENSION statement.

b. COMMON statement.

c. EQUIVALENCE statement.

d. Type statement.

e. EXTERNAL statement.

f. DATA statement.

g. Function statement (see page 8-1).

DIMENSION STATEMENT.

The DIMENSION statement provides a means for specifying a collection

of values with a single name, and at the same time specifying to the

compiler the structure which is imposed on the collection.

The general form is:

where each a is an array name and each i repre
sents dimension information having the form of
one or more subscript bounds separated by commas.

Each bound is an integer constant.

Variable names appearing with subscripts in the source program must

have dimension information specified for them prior to their use.

Dimension information may be given in a DIMENSION, COMMON, or Type

statement; however, the dimension information for a specific array

name must appear only once in the program unit.

The magnitude of the values of the subscript bounds indicates the

maximum values the subscripts may obtain in any reference to the

array. The lower subscript bound is always one.

6-1

An array may have variables for its subscript bounds in a FUNCTION

or SUBROUTINE subprogram only. In this case, the array name and

all variables used as subscript bounds must appear as formal para-

meters in the subprogram. The actual values assumed by these

variables are not determined until the subprogram is entered at

execution time (see variable dimensions below).

No array may exceed 32767 words.

VARIABLE DIMENSIONS.

An array can be placed in a subprogram with variables used as

dimensions instead of constants. The advantage to this is that a

given subprogram can perform calculations on such a generally

stated array with specific dimensions provided from any calling

program. The specific dimensions must be provided in a DIMENSION

statement in the calling program. The actual values assumed by

these variables are not determined until the subprogram is en

tered at execution time.

The general form is:

where each a is an array name and each i is
one or more subscript bounds separated by
commas. Each bound is an integer variable.

Variables can be used as dimensions of an array in a FUNCTION or

SUBROUTINE subprogram only.

The variables must appear in a DIMENSION statement of the subroutine.

The array name and all variables used as dimensions must appear as

formal parameters in the initial FUNCTION, SUBROUTINE, or ENTRY

statement.

Specific dimensions passed to the subprogram from the calling

program must be identified in a DIMENSION statement of the calling

program.

6-2

Specific variable size can be passed down through more than one

level of a subprogram to a given subprogram using the variable

as a dimension.

Example:

DIMENSION A(IO,20)

I=5
J=7
CALL SUB(A,I,J)

END
SUBROUTINE SUB(B,K,L)
DIMENSION B(K,L)

END

COMMON STATEMENT.

The COMMON statement provides a means for sharing core storage between

the main program and its subprograms, or among the subprograms. In

formation appearing in the storage area reserved by a COMMON state

ment is ordered in the sequence specified by the COMMON statement.

The ordered information is relative to the beginning of a given

COMMON block. They are two types of COMMON storage:

unlabeled.

The general form is:

Ix la , n ' n

labeled and

where each a in the co~rnox statement is a list
containing any combination of variable names,
array names, or dimensioned array names, and
each x is a block name or is empty. If xl is
empty, the first two slashes are optional.

6-3

Array names in a COMMON statement may have their dimensioning infor

mation appended to them. When arrays are dimensioned in a COMMON

statement, they cannot be dimensioned in Type or DIMENSION statements.

COMMON area storage is assigned in the order of appearance of the

elements within the COMMON block list.

Block names may be duplicated within a program unit, causing the

associated elements from each COMMON block list having the same

name to be cumulativ'ely assigned to one block with the same name.

The effect is the same as declaring the block name once and listing

all elements for that block in the COMMON block list. This is also

true for multiple unlabeled COMMON block lists within a given program

unit.

Variables and array names may not be duplicated in COMMON statements.

COMMON elements may be assigneq initial values through use of the

BLOCK DATA subprogram.

The number and type of variables appearing in the COMMON block list

and related EQUIVALENCE statements specify the length of the COMMON

block.

All subscript bounds for any array which appears in a COMMON state

ment must be integer constants.

A COMMON block need not hav'e the same size in each program unit in

which it appears. However, if the size of a block is greater than

1023 words in any program unit, it must also be greater than 1023

words in the first program unit in which it appears.

No COMMON block may exceed 32767 words.

A double precision or complex variable in a COMMON block must be

positioned such that the first of the two words containing the double

precision or complex variable is always located at an odd-numbered

word location in the block. As an example, assume the variables A,

B, and C to be declared as follows:

6-4

DOUBLE PRECISION A

COMPLEX B

REAL C

COMMON could then be declared in either of the following ways:

COMMON A, B, C

COMMON B, A, C

In both of these declarations, A and B begin in odd-numbered loca-

tions.

COMMON COMMON
BLOCK UTArtv

J.J.L.IV\..l~\.

I Al I BI
2 A2 2 B2

J BI J Al
4 B~ 4

~21 5 /1 5

However, it would be incorrect to declare COMMON as:

COMMON C, A, B

COMMON C, B, A

COMMON A, C, B

COMMON B, C, A

In the first two examples, both A and B would begin in even locations.

COMMON COMMON
BLOCK BLOCK

I C I I I C I
2 A_ 2 I BI I .L

J A2 J B2
4 BI 4 Al

5 B2 5 A2

6-5

In the third example, A would be positioned correctly but B would not.

COMMON
BLOCK

I Al

2 A2

3 C

4 BI

5 B2

In the final example, B would be positioned correctly but A would not.

COMMON
BLOCK

I BI

2 B2

3 C

4 Al
~ A
J ~2

Labeled COMMON statements are specified by a COMMON block name,

slashes, preceding the list of elements assigned to that labeled

COMMON block. Termination of the list of elements assigned to a

block is by:

a. Termination of the COMMON statement.

b. Introduction of a new block name.

c. Introduction of an unlabeled COMMON block.

COMMON block names are unique identifiers, however, a block identi

fier may be reused within the program unit to represent another type

element. When a block name is present in a COMMON statement, it is

embedded in slashes, e.g., /x/.

Blocks of labeled COMMON statements in different program units which

have the same block name will occupy the same storage area.

6-6

Unlabeled COMMON statements are specified by a blank block name,

e.g., / /, followed by the unlabeled COMMON block list. The two

slashes may be omitted if they appear at the beginning of a COMMON

statement list. Termination of an unlabeled COMMON block is accom

plished by the introduction of a block name or termination of the

COMMON statement.

(see page 6-13).

COMMON elements may not be used in DATA statements

Examples:

COMMON X,Y,Z

COMMON /Y/Q,R,S

COMMON / / K(5,5),L

COMMON A,B,C/S/D(10,10),E

COMMON /Y/Q,R,S/ /K(5,5),L

EQUIVALENCE STATEMENT.

By using the EQUIVALENCE statement, a storage location can be given

more than one name. Variables or array elements not listed in an

EQUIVALENCE statement have unique storage assignments.

The general form is:

where each Q is a list of two or more
simple or subscripted variables or
array names separated by commas.

Subscripts must be positive integer constants and must correspond in

number to the declared number of dimensions of the array, or be

single subscripted by equating the element position in +1-. r..
U.L..LC

+,... v

a single subscript. For an explanation of the latter, see table 6-1.

An array name without subscripts is considered as that identifier

with a subscript of one.

Any number of equivalence lists may appear in an EQUIVALENCE state

ment.

6-7

Elements may be entered into COMMON blocks by setting them equivalent

to an element appearing in a COMMON statement list. If the element

is an array element, the whole array is brought into COMMON. This

may extend the size of the COMMON block involved either at its begin

ning or at its end.

Example:

COMMON Z
DIMENSION Z(100),E(200)
EQUIVALENCE (E(200),Z(l))

END
SUBROUTINE SBT
COMMON X(lOO)

The above statements will allocate storage so that X will be equiva

lent to the first 100 locations of E, not Z. In other words, the

EQUIVALENCE statement has displaced the origin of COMMONe

When two elements share storage because of their appearance in one

or more EQUIVALENCE statements, only one may appear in a COMMON

statement.

All subscript bounds for an array which appears in an EQUIVALENCE

statement must be integer constants.

An EQUIVALENCE statement must precede any reference to the elements

EQUIVALENCEd.

6-8

0\
I

\0

Table 6-1

EQUIVALENCing Multiple Subscripts To One Subscript

~.------------~-----'-----------'--------------~------.----------._----------'-' __ ------------------
Number of
Dimensions

1

2

J

4

Example:

Array
Declarations

A(I)

A(I,J)

A(I,J,K)

A(I,J,K,L)

DIMENSION C (120)

Array
Element

A(i)

A(i, j)

A(i,j,k)

A(i,j,k,l)

Same Array Element
W~th One Subscript

A(i)

A(i+Ix(j-.l))

A(i+Ix(j-l)+IxJx(k-l»

A(i+Ix(j-l)+IxJx(k-l)+IxJx
Kx(1-1»

DIMENSION B (4,5,6) Element referenced B (3,2,1)

EQUIVALENCE (B C)

B(J,2,1) = C([J]+[4x(2-l)]+[4x5x(1-1)]) = C(7)

Maximum Single
Subscript Value

I

IxJ

IxJxK

IxJxKxL

~'---'-===================~ ~------------_-----,""--------------------------------.---------------

When two elements share storage because of their appearance in one

or more EQUIVALENCE statements, only one may appear in a COMMON

statement.

All subscript bounds for an array which appears in an EQUIVALENCE

statement must be integer constants.

An EQUIVALENCE statement must precede any reference to the elements

EQUIVALENCEd.

Example:

DIMENSION A(lO), B(5,5) D(J,J,J)
EQUIVALENCE (A(J), B(5,4), D(l,l,l)), (A(l),E)

The above statements assign specific variable values to the same

storage locations, as shown below, where each horizontal line is

one memory location.

Variable Value

A~l) B(J,4) E
A 2) B(4,4)
A(?) B(5,4) D(l,l,l)

B(l,S)
- I _ _ _ \

A~4) D~~,l..,l..)

A 5) B(2,5) D(J,l,l)
A(6) B(J,5) D(1,2,1)
A(7) B(4,5) D(2,2,1)
A(S) B(5,5) D(J,2,1)
A~9) D(l,J,l)
A 10) D(2,J,1)

TYPE STATEMENT.

Type statements are used to declare the type of variables, array

names, and function names. The general form is:

INTEGER type list
REAL type list
DOUBLE PRECISION type list
COMPLEX type list
LOGICAL type list

where a type list is composed of variable
names, array names, or statement function
names separated by commas. In addition, . ""Y'1'-y'I~ T~ rr !:t \T nim R n a~~~)~ ~-J be ___ en_1Lned by appendlng
the dimension information to the array
name in one or more subscript positions.

6-10

When a subscripted variable is declared DOUBLE PRECISION or COMPLEX,

the compiler will automatically assign two words of storage for

each element of an array.

Implicit type assignment is overridden by Type statements.

A variable name must be typed prior to its use in an executable

statement or DATA statement. If the first letter of a variable

name isI, J, K, L, M, or N, it is implicitly declared of type

INTEGER and need not appear in a Type statement. If a variable

name begins with any other letter, it is implicitly declared of

type REAL and need not appear in a Type statement.

Examples:

INTEGER X,Y,Z,A(lO,lO)
REAL H,I,J,K
LOGICAL ATEST, BTEST

EXTERNAL STATEMENT.

When an actual parameter list of a function or subroutine reference

contains a function or subroutine name, that name must appear in an

EXTERNAL statement.

The general form is:

where the n's are the names of the functions
or subroutines appearing in the parameter
list of a function or subroutine reference.

The EXTERNAL statement appears in the calling program unit.

Example:

EXTERNAL SIN,COS
CALL SUBT (SIN,COS)

END
SUBROUTINE SUBT (A,B)
TANX=A(X)/B(X)

RETURN
END

6-11

DATA.STATEMENT.

The DATA statement permits variables and arrays to be initialized

to predetermined values.

The general form is:

A list element may be an array name or a simple or
subscripted variable name, where the subscripts must
be integer constants. If more than one element of
an array is to be initialized, an implied DO loop
must be employed (see implied DO loop in section 7).
The d. represents a constant, or has the form i*c,
where1i is a repeat count and c is a constant.

The constants may be any of the following:

a. Integer, real, or double precision constant.

b. Octal constants of the form Odd •.• d, i.e., the letter 0

followed by an optional sign, followed by 1 to 16 octal

digits (not greater than 0+3777777777777777 nor less

than 0-3777777777777777). If a minus sign is included,

the mantissa sign bit [l:lJ is set to 1 if it was pre

viously 0, or 0 if it was 1.

c. Logical constants. The quantities may be expressed as

. TRUE. ,. FALSE. ,T, or F.

d. Hollerith constants.

A one-tb-one correspondence must exist between the list elements

and the constants.

The first time a subprogram is entered, all of the variables contained

in all DATA statements within that subprogram are initialized. In

succeeding entries to the subprogram, the DATA statements are ignored

and the variables within the DATA statement assume the last value

assigned to them at the time of the previous exit from the subprogram.

6-12

If a Hollerith constant is used, it must be considered a single value

and must correspond to a single element, even though it may actually

occupy several computer words. If it occupies more than one word,

the list element must be an array name or an implied DO loop with

enough array elements remaining in the array to contain the Hollerith

constant (see Hollerith constant in section 2).

Elements in a COMMON block may appear in a DATA statement only in a

BLOCK DATA statement (see BLOCK DATA in section 8).

Variables assigned quantities by a DATA statement may be assigned

other values during execution.

When an array name without subscripts appears in the list, the entire

array is initialized.

Subscripted variables appearing in a program must have their sub

script bounds specified in a DIMENSION, COMMON, or Type statement

prior to the first appearance of the subscripted variable in a

DATA statement.

Example:

DIMENSION T(J),V(3)

INTEGER X,Y,Z,A(5,5)

REAL H,I~J,N(8),K

LOGICAL ATEST,BTEST

DATA X,Y,H/l,3,5.7/,I,J,ATEST/6.2,99.99,F/

DATA Z,A,K,BTEST,(N(I),I=1,8)/O,25*O,-99. ,.TRUE. ,8*77.77/

DATA T(5)/6HONEWRD/

DATA V/14HABCDEFGHIJKLMN/

6-13

GENERAL.

SECTION 7

INPUT/OUTPUT

The following areas of Input/Output (I/O) are covered in this

section:

a. Input statements.

b. Output statements.

c. I/O lists.

d. Implied DO loop.

e. Action labels.

f. Auxiliary I/O statements.

g. FORMAT statement.

h. NAMELIST statement.

i. Tape and Disk I/O.

INPUT STATEMENTS.

In explanations presented in this manual section, the symbols

u, r, f, k, and 1 have the following meanings unless otherwise

specified:

u - file specifier or unit number. The file specifier is an

arithmetic expression whose value identifies the file

being used for input or output. The file specifier must

conform to the restrictions of a subscript. Unless other

wise specified by a FILE card (see appendix B), it is as

sumed at object time that the file specifier designates a

tape unit. The range of u must be 0 < u < 31.

r - random record number. It is an arithmetic expression

whose value represents a particular record within a random

disk file.

f - format specifier. It may be the label of a FORMAT state-

ment, an array identifier, or a NAMELIST identifier.

7-1

1 - action label. It specifies a statement label to which a

branch is made if a parity error or an End-of-File con

dition is encountered during execution of an input state

ment.

k - input/output list. It may be a blank or,it may contain

one or more variables and/or implied DO loops, in any

combination.

Execution of any of the READ statements causes the next record to

be read from the specified file. The information is scanned and con

verted as specified by the format specifier f if the statement is

a formatted READ statement. The values are assigned to the ele-

ments specified by the list k. If the list is not specified, either

a record is skipped or data is read into the locations in storage

occupied by the FORMAT statement.

FORt'1ATTED INPUT STATEMENTS.

Formatted input statements are always associated with a FORMAT

statement, an array containing FORMAT specifications, or a NAMELIST.

The general form is:

1. READ f,k

2. READ(u,f) k

3. READ(u,f,l) k

4. READ(u=r,f) k

5. READ(u=r,f,l) k

In all five forms, the input list may be empty (i.e., blank).

When the first form is used, the input will be assumed to be from

a card, tape file labeled READER, or a terminal unit (see time

sharing appendix J).

When the second. or third form is used, input will be assumed to be

from a tape file labeled FILEn, where n is the value of u in the

input statement, unless otherwise specified by a FILE card (see

append ix B).

7-2

When the fourth or fifth form is used, then input must be from a

random disk file. In this instance, a FILE card must be used.

In using the fourth or fifth form, the random record number r,

when evaluated, must have a non-negative integer value (see random

disk I/O, 7-S1).

Examples:

READ 75
READ(8,BID),«I,J,A(I,J),J=6,9),I=1,S)

READ(UNIT,7S)x,Z,A

READ(14,LISTA)

READ(6=S*X-3,25,END=101,ERR=77) ARRAY

For further information, see I/O lists, implied DO loop, action

labels, FOlli~AT statement, NAMELIST statement, and tape and disk

I/O in this section; FILE cards in appendix B.

UNFORMATTED INPUT STATEMENTS.

Unformatted input statements do not have a format specifier assoc-

iated with them. Input must be from a tape or disk file which has

been created with an unformatted output statement.

The general form is:

1. READ(u) k

2. READ(u,l) k

3. READ(u=r) k

4. READ(u=r,l) k

In all four forms, the input list k may be empty (i.e., blank).

If the list k is not specified, than a record is skipped.

The file used for input must have been previously created with a

similar unformatted output statement if a list part is present.

7-3

When either of the first two forms is used, input must be from a

tape or serial disk file.

When either of the last two forms is used, input must be from a

random disk file (see random disk I/O, page 7-51).

Examples:

READ.(9) I ,A ,J ,B ,D

READ(2*U,ERR=J7) SAM

READ(UNIT=10,END=99) FEAT,HAMER

For further information, see I/O lists, implied DO loop, action

labels, tape and disk I/O in this section; FILE cards in appendix B.

OUTPUT STATEMENTS.

In explanations following, the symbols u, r, f, and k have the

same meanings as outlined under input statements.

Execution of any of the output statements causes the next record in

the output file to be created. The information is converted and

positioned on output as spec:if'terl by the format specifier f if the

statement is a formatted output statement. If the list is not

specified, either a record is skipped or data contained in the

locations in storage occupied by the FORMAT statement is outputted.

FORMATTED OUTPUT STATEMENTS.

Formatted output statements are always associated with a FORMAT

statement, an array containing FORMAT specifications, or a NAMELIST.

The general form is:

1. PRINT f,k

2. PUNCH f,k

J. WRITE(u,f) k

4. WRITE(u=r,f) k

In all four forms, the output list k may be empty (i.e., blank).

7-4

If the first form is used, output will be to a line printer file

labeled PRINT or a terminal unit (see time-sharing appendix J).

If the second form is used, output will be to a card punch file

labeled PUNCH.

When the third form is used, output will be to a tape which will be

labeled FILEn, where n is the value of u in the output statement,

unless otherwise specified by a FILE card.

When the fourth form is used, output should be to a random disk

file. In this instance, a FILE card must be used.

In using the fourth form, the random record number r, when evalu

ated, must have a non-negative integer value (see random disk I/O,

page 7 - 51) .

Examples:

PRINT 95,V(J),K(4),ZEDD

PUNCH 55

WRITE(NO,A) ROW

WRITE(3=200-R,68) MATRIX

For further information, see I/O lists, implied DO loop, FORMAT

statement, tape and disk I/O, and random disk I/O in section 7;

FILE cards in appendix B.

UNFORMATTED OUTPUT STATEMENTS.

Unformatted output statements do not have a format specifier as-

sociated with them. Output must be to a tape or disk file.

The general form is:

1. WRITE(u) k

2. WRITE(u=r) k

In both forms, the output list k can't be empty (i.e., blank). See

page 7-3.

When the first form is used, output must be to a tape or serial

disk file.

7-5

When the second form is used, then output must be to a random disk

file (see random disk I/O, page 7-51).

Examples:

WRITE(OUT) (X(K) ,K=I ,J) ,XX

WRITE(ll=REC) BaaL

For further information, see I/O lists, implied DO loop, tape and

disk I/O, and random disk I/O in section 7; FILE cards in appendix B.

I/O LISTS.

An input list k in an input statement specifies the variables to

which values are assigned on input. An output list k specifies the

variables whose values are transmitted on output. The input and

output lists are of the same form.

The general form is:

where k l ,k2 , ... ,kn are variables, array names,
or implied DO loops, or any combination thereof.

An element k. of an I/O list may be a simple variable, a subscripted
1

variable, an array name without subscripts, or an implied DO loop.

An I/O list k may consist of any combination of these elements.

An array name without subscripts in an I/O list is equivalent to

inputting or outputting the entire array in the same order in which

the elements are stored in memory, i.e., column-wise: with the

left-most subscripts varying most rapidly.

Examples:

I,J,A,KP,B(I)

(A(INDEX) ,LP,INDEX=1,20) ,ZIP,ZAP

In addition, see implied DO loop and FORMAT statement in section 7.

IMPLIED DO LOOP.

An implied DO loop is used as an element in an I/O list to specify

a repeated cycle of list elements.

7-6

The general form is:

Example:

1. (L,i=n
1

,n
2

,n
J

)

~---
2. ((L,i=nl,n2,nJ),j=ml,m2,mJ)

where L is a list of I/O elements
which may contain an implied DO
loop, and i,nl,n2,nJ and their
counterparts j,ml,m2,mJ are as
defined for the DO statement.

PRINT J5,((I,B(I,J),I=1,J),J=6,7)

The output for the above statement would take the following form:

1 B(1,6)
2 B(2,6)
J B(J,6)
1 B(1,7)
2 B(2,7)
J B(J,7)

where the subscripted Bls represent the values of those elements.

For further information, see DO statement, section 5;

section 7.

ACTION LABELS.

I/O list,

The formatted and unformatted input statements can be extended to

programmatically recover from either End-of-File conditions or non

recoverable parity conditions, or both, through use of action

labels.

The general form is:

1. ERR=n 1
...L

2. END=n
2

J. ERR=n
l

,END=n
2

4. END=n2 ,ERR=n
l

where nl and n2 are
statement labels.

7-7

When an attempt is made to read a record which has a parity error

from which the operating system cannot recover, control will be

transferred to the statement labeled n
l

.

When an attempt is made to read an End-of-File, control will be

transferred to the statement labeled n
2

.

The program will be terminated immediately by the operating system

if either of the above conditions occurs and the associated label

is not specified in the input statement being executed.

An End-of-File condition can occur under the following circum

stances:

a. Attempting to read a card with an invalid character in

column one.

b. Attempting to read an End-of-File record on tape.

c. Attempting to read a record from an area of disk which

has not been written.

d. Attempting to read a record beyond the furthest record

written on disk.

Examples:

READ(3,END=99) (See page 7-3).

READ(6=R,J5,ERR=70) A

READ(11,85,END=77,ERR=78) J,S,V

For further information, see input statements and tape and disk

I/O, section 7.

AUXILIARY I/O STATEMENTS.

There are six types of auxiliary I/O statements:

a.

b.

v •

7-8

REWIND statement.

BACKSPACE statement.

ENDFILE statement.

d. CLOSE statement.

e. LOCK statement.

f. PURGE statement.

REWIND STATEMENT.

The REWIND statement causes the pointer for the specified tape or

disk file to be reset to the beginning of the file or, in the case

of multi-file tape, to Beginning-of-Tape.

The general form is:

REWIND u

Execution of the REWIND statement causes the file u to be positioned

to its initial point.

If the last reference to the file u was a WRITE statement, then an

End-of-File record is written prior to positioning the file to its

initial point.

The REWIND statement is undefined for other than tape or disk files.

Examples:

REWIND 5

REWIND UNIT

BACKSPACE STATEMENT

The BACKSPACE statement causes the file pointer to be returned to the

preceding program record. For example: If the pointer in file u were

positioned at record n, the execution of this statement would position

the pointer to record {n-l}.

The general form is:

BACKSPACE u I
If the last reference prior to a BACKSPACE or REWIND instruction to a

file is a WRITE statement, the file cannot be read beyond the record

associated with the last WRITE statement.

7-9

Examples:

BACKSPACE 8

BACKSPACE N

The execution of this statement has no effect on the program when

file u is positioned at its initial point.

ENDFILE STATEMENT.

The ENDFILE statement causes an End-of-File record to be written on

the specified file and the file to be closed.

The general form is:

ENDFILE u

The ENDFILE statement is undefined for anything other than a tape

file.

When an ENDFILE statement follows a WRITE statement on the same

file u, then an End-of-File record is written and the tape is

positioned such that the next record written Will~the End

of-File record.

When an ENDFILE statement follows a READ statement on the same

file u, then the tape is positioned to the beginning of the~
file on the tape.

When an ENDFILE statement follows a BACKSPACE statement on the same

file u, then the tape is positioned to the beginning of the file u .

.......... -----.. -
When an ENDFILE statement follows REWIND or another ENDFILE state

ment on the same file u, then the ENDFILE statement is ignored.

Examples:

ENDFILE TFl

ENDFILE 7

CLOSE STATEMENT.

The CLOSE statement causes the referenced file to be closed.

7-10

The general form is:

CLOSE u

On a card output file, a card containing an ending label is punched,

and the card punch is released to the system.

On a line printer file, the printer is skipped to channell, an

ending label is printed, the printer is again skipped to channel

1, and the printer is released to the system.

On a labeled tape output file, a tape mark and ending label are

written after the last block on tape, and the tape is released to

the system.

On an unlabeled tape output file, a tape mark is written after the

last block on tape, and the tape is released to the system.

Examples:

CLOSE 19

CLOSE N

LOCK STATEMENT.

The LOCK statement causes the referenced file to be closed.

The general form is:

LOCK u

If the file is tape, then it is rewound and a system message is

written to notify the op~rator to remove the reel and save it.

If the file is not a disk file, then the unit is made inaccessible

to the system until the operator resets it manually.

Examples:

LOCK NUT

LOCK 7
7-11

PURGE STATEMENT.

The PURGE statement causes the referenced file to be closed,

purged, and released to the system.

The general form is:

PURGE u

Examples:

PURGE TAPE

PURGE 8

FORMAT STATEMENT.

The FORMAT statement specifies what type of conversion is to be

performed on data from external representation to internal machine

representation or vice-versa.

The general form is:

where n is a statement label and
f l ,f2 , ... ,fn are format specifi
cations.

The FORMAT statement is non-executable.

The FORMAT statement is always associated with one or more formatted

input and/or output statements.

The commas separating the format specifications may be replaced

with one or more slashes. However, slashes· in a FORMAT statement

are used for record control.

Each FORMAT specification must agree in type with the corresponding

variable in the list of the associated r/o statement.

7-12

When inputting data under a numeric format specification (I, F, E,

D, G, 0), leading blanks are not significant and imbedded blanks are

interpreted as zeros.

Plus signs are optional on input and may be omitted.

When inputting data under a real format specification (F, E, G, D),

a decimal point appearing in the input field overrides the decimal

point placement specified.

Any entire blank fields read in under a numeric format specification

(I, F~ E, D, G) which are outputted with no action being performed

on them between inputting and outputting will appear in the output

field as negative zeros.

In the following FORMAT discussions, the symbols w, d, b, and swill

have these meanings:

w - total input or output f'i eld width, a pos it i ve uns i gned

integer.

d.- number of decimal places, a non-negative unsigned integer.

b - blank.

s - a string of any valid FORTRAN characters.

INTEGER CONVERSION ON INPUT USING Iw.

The integer format specification Iw on input causes the value of

the integer datum in the input field to be assigned to the corres

ponding integer variable in the input list.

The general form is:

The integer datum must be in the form of an integer constant right

justified in the input field.

7-13

Exh-ml11 e s :

Input Field

567

bb-329

-bbbb27

27bbb

b-bb234

Specification

13

16

17

15

16

INTEGER CONVERSION ON OUTPUT USING Iw.

Internal Value

+567

-329

-27

+27000

-234

The integer format specification Iw on output causes the value of

the corresponding integer variable in the output list to be written

on the specified output file.

The general form is:

The integer is placed right-justified in the output field over a

field of blanks.

The plus sign is omitted for positive numbers.

If the size of the integer exceeds the specified field width w,

the output field will be filled with asterisks.

Examples:

Internal Value Specification Output Field

+23 r4 bb23

-79 14 b-79

+67486 15 67486

-67486 15 *****
+978 II *
0 13 bbO

REAL CONVERSION ON INPUT USING Fw.d.

The real format specification Fw.d on input causes the value of

the real datum in the input field to be assigned to the corres-

ponding real variable in the input list.

7-14

The general form is:

If there is no decimal point in the input field, then a decimal

point is inserted d places from the right side. Embedded or

trailing blank columns are interpreted as zero.

The field width w must be greater than or equal to the specified

number of decimal places d. An input datum optionally may have

an exponent (see real conversion on input using Ew.d).

Examples:

Input Field SEecification Internal Value

36725931 FB.4 +3672.5931

3.672593 FS.4 +3.672593

-367259 FB.4 -367259

-3672.E2 FB.4 -367200

367259E2 F8.4 +3672.59

3.672E-l FB.4 +3672

367259 F6.6 +0.367259

b-b3456 F7.2 -34.56

b2032b F6.0 +20320

REAL CONVERSION ON OUTPUT USING Fw.d.

The real format specification Fw.d on output causes the value of

the corresponding real variable in the output list to be written

on the specified output file.

The general form is:

I Fw.d

The real number is placed, right-justified and rounded to d decimal

places, in the output field over a field of blanks.

The plus sign is omitted for positive numbers.

7-15

If the size of the number exceeds the specified field width w, then the

output field will be filled with asterisks. A safe rule to use is:

(w - d) ~ 3

Examples:

Internal Value Specification Output Field

+36.7929 F7.3 b36.793

+36.7934 F9.3 bbb36.793

-0.0316 F6.3 -0.032

0.0 F6.4 0.0000

0.0 F6.2 bbO.OO

+579.645 F4.2 ****
+579.645 F6.2 579.65

-579.645 F6.2 ******

REAL CONVERSION ON INPUT USING Ew.d.

The real format specification Ew.d on input causes the value of the

real datum in the input field to be assigned to the corresponding real

variable in the input list.

The general form is:

Ew.d

If there is no decimal point in the input field, then a decimal point

is inserted d places from either the right side of the input field or

from the E denoting the exponent, if there is one.

The field width w must be greater than or equal to the specified num

ber of decimal places d.

An input datum mayor may not have an exponent.

Embedded or trailing blank columns are interpreted as zero, and can

cause problems. When blank columns are located on the right end of a

field they are interpreted as zero and large errors can occur. For

example: If the value 4.527xl0
4

were punched as 4.527E4b, it would

be stored internally as 4.527xl0 40 .

It is advisable to always punch E-field exponents as far to the right

as possible.

7-16

Examples:

Input Field

bbbbbb25046

bbbbb25.046

-bb25046E-J

bb250.46E-J

b-b25.04678

bbb4.S27Elb

Specification

Ell.4

Ell.4

Ell.4

Ell.4

Ell.4

E11.4

REAL CONVERSION ON OUTPUT USING Ew.d.

Internal Value

+2.5046

+25.046

-0.0025046

+0.25046

-25.04678

+45270000000.

The real format specification Ew.d on output causes the value of

the corresponding real variable in the output list to be written

on the specified output file.

The general form is:

The real number is placed right-Justified and rounded to a d~digit

mantissa, together with a four-place exponent field, in the output

field over a field of blanks. Note that with the Ew.d format

specification, d takes on a slightly different interpretation

since no significant digits are written to the left of the decimal

point in the output field. The plus sign is omitted for positive

numbers. If the following rule is violated, the output field will

be filled with asterisks:

(w - d) > 6

If a scale factor n is used, then it will control the decimal

normalization between the number part and the exponent part as

f"'ollows:

a. If n S 0, then Inl zeros will be placed immediately to

the right of the decimal point with (d-Inl) significant

digits following the zeros.

b. If n > 0, then n significant digits will be placed to the

left of the decimal point and (d-n+l) significant digits

will be placed to the right of the decimal point.

7-17

Examples:

Internal Value

+36.7929

-36.7929

-36.7924

+36.7929

+36.7929

Specification

E12.5

EIl.5

EIO.5

-2PEI2.5

+2PE12.5

DOUBLE PRECISION CONVERSION ON INPUT USING Dw.d.

Output Field

bb.36793Eb02

-.36793Eb02

bb.00368Eb04

36.79290EbOO

The double precision format specification Dw.d on input causes

the value of the real datum in the output field to be assigned

to the corresponding variable of type DOUBLE PRECISION in the

input list.

The general form is!

Dw.d

Aside from the fact that a double precision value is stored in two

words, and that the exponent in the input field is preceded by a D

rather than an E, the double precision format specification Dw.d

behaves in the same manner as Ew.d.

DOUBLE PRECISION CONVERSION ON OUTPUT USING Dw.d.

The double precision format specification Dw.d on output causes the

value of the corresponding do~ble precision variable in the output

list to be written on the specified output file.

The general form is:

Dw.d

The double precision format specification Dw.d is identical to Ew.d,

with the following exceptions:

7-18

a. The value associated with it is stored in two machine

words.

b. The variable name associated with the value must be of

type DOUBLE PRECISION.

c. The exponent part of the output contains a D rather than

an E.

REAL CONVERSION ON INPUT USING Gw.d.

The real format specification Gw.d on input is identical to Fw.d.

The general form is:

B
REAL CONVERSION ON OUTPUT USING Gw.d.

The real format specification Gw.d on output causes the value of

the corresponding real variable in the output list to be written

on the specified output file.

The general form is:

The representation in the output field is a fraction of the magni

tude of the real number .being outputted.

If N is the magnitude of the number being outputted, then table

7-1 shows how the number will appear in the output field.

If a scale factor is used, then it will have no effect on output

conversion unless the magnitude of the number being written is

outside the range which permits effective use of F conversion.

Examples:

Internal Value

+10.

+1000.

+100000.

+1000000.

Specification

G12.5

G12.5

G12.5

G12.5

Output Field

bblO.OOO

bblOOO.O

bb.10000Eb06

bb.10000Eb07

7-19

Table 7-1

Datum Conversion

Magnitude of Datum Equivalent Conversion Effected

O.l<N<l F{w-4). d, 4x

l<N<lO F{w-4). (d-l) , 4x -
· ·
· ·
· ·

; 10d-2<10d-l F{w-4). 1 , 4x -
10d-l<10d F{w-4). 0, 4x -
Otherwise Ew.d

OCTAL CONVERSION ON INPUT USING Ow.

The octal format specification Ow on input causes the value of the

octal datum in the input field to be assigned to the corresponding

variable in the input list.

The general form is:

If the datum is less than 16 long, then it is r; p'ht.-
-- - (J

justified and stored in a machine word. The maximum octal constant ,
which can be read is J77i777~77777777.

Octal constants can be signed or unsigned. The plus sign (+) and

the ampersand (&) sign are skipped over and the minus (-) sign causes

bit 1 of the input element to be complemented with 1. Leading, im

bedded, and trailing blanks are treated as zeros. An execution time

type error is emitted if the sign occurs more than once or occurs

imbedded within the octal constants, or if the magnitude of the octal

constant exceeds
r : r

¢J77~777777777777. , I - ,

Examples:

7-20

Input Field

16

1777777777777777

-lb

Specification Internal Value

000000000000016

177777777777777

200000000000016

OCTAL CONVERSION ON OUTPUT USING Ow.

The octal format specification Ow on output causes the octal value

of the corresponding variable in the output list to be written

on the specified output file.

The general form is:

jo:l
, ,

The octal value is placed right-justified in the output field over

a field of blanks.

Examples:

Internal Value

0000376754320017

0000376754320017

0000376754320017

Specification

03
PlO

¢16

LOGICAL CONVERSION ON INPUT USING Lw.

Output Field

017
"..:

6754320017 It· ((j I~Q

0000376754320017

The logical format specification Lw on input causes the value of

the logical datum in the input field to be assigned to the corres

ponding variable of type LOGICAL in the input list.

The general form is:

The input field width w must be greater than or equal to one. There

may be leading blanks. Normally, the first character encountered in

the field exclusive of leading blanks is eiLher T or F, for true or

false, respectively. Any characters following the T or F will be

ignored. If the first non-blank character is a T, then the variable

will be assigned a value of true, otherwise it is false.

7-21

Examples:

Input Field

T

bbF

bbbTRU

Specification

Ll

LJ

L6

LOGICAL CONVERSION ON OUTPUT USING Lw.

Internal Value

TRUE

FALSE

TRUE

The logical format specification Lw on output causes the logical

value of the corresponding variable of type LOGICAL in the output

list to be written on the specified output file.

The general form is:

The logical value is placed right-justified in the output field

over a field of blanks as a T or F, for true or false, respectively.

Examples:

Internal Value

FALSE

FALSE

TRUE

Specification

Ll

LJ

L2

ALPHANUMERIC CONVERSION ON INPUT USING Aw.

Output Field

F

bbF

bT

The alphanumeric format specification Aw on input causes the charac

ter string of width w in the input field to be assigned to the

corresponding variable in the input list.

The general form is:

The variable may be real or integer. The field width w should

never exceed six. If it does, then the right-most six characters

7-22

in the string are stored and the rest are ignored. If w is less

than six, then the string is stored left-justified with (6-w)

trailing blanks.

Examples:

Input Field Specification Internal Value

ABCDEFGHIJK

ABCDEFGHIJK

ABCDEFGHIJK

AJ
A6

All

ALPHANUMERIC CONVERSION ON OUTPUT USING Aw.

ABCbbb

ABCDEF

FGHIJK

The alphanumeric format specification Aw on output causes the char~

acter string assigned to the corresponding variable in the output

list to be written on the specified output file.

The general form is:

-~"'-....
The string is Placed(righ~jUstified in the output field over a

field of blanks. .

Examples:

Internal Value

ABCbbb

ABCbbb

ABCbbb

Specification

AJ
A5
A9

INPUTTING A CHARACTER STRING USING wHs.

Output Field

ABC

ABCbb

bbbABCbbb

The Hollerith field speci£ication wHs on input causes the character

string of width w in the input field to replace the character string

s of the Hollerith field specification in a FORMAT statement.

The general form is:

7-2J

The Hollerith field specification on input may be used to read in

page headings which are to be printed on output, but which may

vary in content from one run to another.

Example:

READ 15

15 FORMAT(2X,9HDUMMYbbbb)

PRINT 15

1 1

Input: 1 2 J 4 5 6 7 8 9 0 1 (card column)

X Y b A b S A M P L E

Output: b b A b S A M P L E

Note that in the printed output, although 2X has been specified,

only one blank is printed since the first blank is a carriage

control character (see carriage control, page 7~28)a

OUTPUTTING A CHARACTER STRING USING wHs.

The Hollerith field specification wHs on output causes the charac

ter string s of width w of the Hollerith field in a FORMAT state

ment to be written on the specified output file.

The general form is:

The string s remains unchanged.

Example:

PUNCH

95 FORMAT(12HbBURROUGHSbb)

I 1 1

Output: 1 2 J 4 5 6 7 8 9 0 I 2 (card column)

b B U R R 0 U G H S b b

7-24

INPUTTING A CHARACTER STRING USING "sit.

The literal string specification "s" on input is identical in

operation to the Hollerith field specification wHs.

The general form is:

Example:

Input:

Output:

READ 15
15 FORMAT (2X, "DUMMYbbbb H)

PRINT 15

1 1

1 2 3 4 5 6 7 8 901

X Y b A b SAM P L E

b b A b SAM P L E

OUTPUTTING A CHARACTER STRING USING Its".

(card column)

The literal string specification "s" on output is identical (except

for ",! ,@) in operation to the Hollerith field specification wHs.

The general form is:

SKIPPING CHARACTERS USING nX.

The format editing specification nX on input or on output will

cause n characters to be skipped in the respective input or output

field.

The general form is:

EDITING USING Tn.

The format editing specification Tn is used to transfer data to or

from a specified position n within a record. The use of Tn in a

7-25

format list will cause the next item of data transferred in the

corresponding I/O list to be transferred to or from the position

indicated by the letter n.

Example:

WRITE (6,1) A,B,C

1 FORMAT (F4.l, TlO, F7.2, T25, E12.4)

In the above example, the data referenced by the variable B will be

positioned in the tenth position of the record when it is written,

and the data referenced by the variable C will be positioned in the

25th position of the record.

The general form is:

SCALE It'ACTOR nP.

A scale factor is defined for use with the F, E, G, and D format

specifications, and is of the form:

nP

where the scale factor n is
a signed integer constant.

When FORMAT control is initiated, a scale factor of' zero is auto

matically established and applies until a scale factor is encountered

in the FORMAT statement. Once a scale factor is encountered, it

applies to all subsequently encountered F, E, G, and D conversions

until another different scale factor or the end of the FORMAT state-

ment is encountered.

SCALE FACTOR ON INPUT.

For F, E, G; and D format specifications on input 1 where the input

datum does not have an exponent, the input datum is multiplied by
-n

10 ,where n is the scale factor. For example, the datum 573.19

7-26

read with a format of 2PF6.2 would be stored internally as 5.7319.

If the input datum contains an exponent, the scale factor has no

effect.

SCALE FACTOR ON OUTPUT.

For F, E, and D format specification on output, when the output

datum does not have an exponent, the output datum is multiplied by
n 10 ; where n is the scale factor. For example, the n~~ber stored

internally as 5.7319 and written with a format of 2PF6.2 would have

the external value of 573.19. If the output datum contains an ex

ponent, the datum is multiplied by IOn and the exponent is reduced

by n. Therefore, the value is not changed. For example, the number

stored internally as 5.7319E+02 and written with a format of IPEll.3

would have the external value of 57.319E+Ol.

For the G format specification on output, the effect of the scale

factor is suspended unless the magnitude of the datum being out-

putted is outside the range that permits effective use of F con-

version. If the use of E conversion is required, then the scale

factor has the same effect as when using the E format specification

on output.

For further information, see real conversion on page 7-16 using

Ew.d.

FORMAT SPECIFICATION IN AN ARRAY.

Any of the formatted input/output statements may contain an array

name in place of a FORMAT statement label. At the time the input/

outp~t statement containing the array reference is executed, the

array must contain the equivalent of a FOR~AT statement; with the

first non-blank character being a left parenthesis. Any charac

ters in the array following the final right parenthesis of the

FORMAT statement in the array are ignored.

Example:

DIMENSION FORM (5),INFO(6)
READ(S,7S) FORM

75 FORMAT(5A6)

7-27

READ(20,FORM) Q,R,(INFO(I),I=1,6)

Input: (F6.2,3X,E15. 8 ,6I3)bbbbbbbbbbb

CARRIAGE CONTROL.

When a line printer is used for output, the first character of

each line of print controls the spacing of the printer carriage.

The control characters are:

Examples:

Character Action

Blank One space before printing.

Zero Double space before printing.

1-9 Skip to channel 1-9 of the
carriage control tape before
printing.

Plus sign No advance before printing.

25 FORMAT(lHO,E12.6,A5)

Causes the carriage to double space before printing.

35 FORMAT(6H+TITLE)

Provides no carriage advance before printing.

45 FORMAT(3X,6I5)

Causes the carriage to single space before printing.

55 FORMAT(lHl,"TITLE")

Causes the printer to page eject and print TITLE.

USE OF SLASH (/).

A slash in a FORMAT statement is used to indicate the end of a

record. On input, any remaining characters in the current record

are ignored when a slash is enco~~tered in the FOR~~T statement~

On output, the current record is terminated and any subsequent

output is placed in the next record. Multiple slashes may be used

7-28

to skip several records on input or create several blank records

on output.

REPEAT SPECIFICATIONS.

Repetition of any format specification except nX, wHs, "sl1, or

Tn is accomplished by preceding it with a positive integer con

stant called the repeat count. If the I/O list warrants it, the

specified conversion will be interpreted repetitively up to the

specified number of times. If a scale factor is included, then

it must precede the repeat count.

Repetition of a group of format specifications is accomplished by

enclosing them within parentheses and preceding the left parenthe-

sis with a positive integer constant called the group repeat count,

which indicates the number of times to interpret the enclosed

groupings. If a group repeat count is not given, then the group

is repeated until the I/O list is exhausted. Grouping with paren=

theses may be continued to any desired level.

Example:

85 FORMAT(JE16.6,5(FlO.5,IJ,4A2))

FORMAT AND I/O LIST INTERACTION.

The execution of a formatted I/O statement initiates format control.

If there is an I/O list, then at least one format specification

other than wHs, "s", nX, or Tn must exist in the FORMAT statement

referenced.

When a formatted input statement is executed, one record is ini-

tially read. No other records are read unless otherwise

by the FORMAT statement. The I/O list associated with a FORMAT

statement may not require more data of a record that it contains.

When a formatted output statement is executed, writing of a new

record occurs each time the FORMAT statement referenced so speci-

fies. Terminating execution of a formatted output statement causes

the current record to be written.

to be written.

A slash also causes the record

7-29

Except for the effects of repeat counts, the FORMAT statement is

interpreted from left to right.

To each I, F, E, G, D, 0, A, or L format specification there corres

ponds one element in the I/O list. A list element of type COMPLEX

is considered, for purposes of I/O conversion, as two list elements

of type REAL. Thus, there must be two format specifications (or a

format specification preceded by a repeat count) for every list

element of type COMPLEX.

There is no corresponding I/O list element for any wHs, "s", Tn,

or nX format specification. The information indicated by the wHs

and "sft is inputted or outputted directly to or from the FORMAT

statement.

If, under format control, the right-most right parenthesis of the

FORMAT statement is encountered and the I/O list is still not ex

hausted, then format control reverts to the last previously encoun

tered left parenthesis. If a group repeat count precedes this left

parenthesis, then it also takes effect.

If, during execution of a formatted I/O stat,ement, the I/O list is

exhausted but the right-most right parenthesis of the specified

FORMAT statement has not been encountered, then execution of the

I/O statement is complete. This action, of itself, has no effect

on the scale factor.

NAMELIST STATEMENT.

The NAMELIST statement associates an I/O list with a unique iden-

tifier. This identifier may not be used for any other purpose in

the program unit in which it occurs. Only variable and array iden

tifiers may be used as NAMELIST elements. These identifiers may

not be formal parameters.

The general form is:

7-3 0

where Nl and N2 are NAMELIST iden
tifiers and al, .•. ,a and bl, ••. ,b

. 1 n n are var1ab e or array names.

INPUT USING NAMELIST.

Input using NAMELIST is accomplished by executing a formatted READ

statement which has as its format specifier f a NAMELIST identi

fier which has previously been declared in the same program unit.

No input list k is allowed in the READ statement.

The input data file is free format except for the first two charac-

ters of the first record. The first character is ignored and the

second must be a dollar sign ($). The NAMELIST identifier desig-

nated in the associated READ statement must follow the dollar sign,

with one or more blanks following the NAMELIST identifier.

Following the NAMELIST identifier and blank{s) are placed, in free

format, the variables assigned to the NAMELIST and the values which

are being assigned to them.

or any combination thereof:

These may take anyone of three forms,

a. V = N, where V is a simple or subscripted variable

assigned to the NAMELIST identifier, and N is the

value being assigned to the variable V.

b. B(i) = m
i

, mi+l,···,mn , where B is a previously DIMEN-

SIONed array of size n, i is an integer constant desig-

nating an element of the array B (i is less than or equal

to n)., and m. 4 ••• 4 m are the values being assigned to the
1" . n - -

array elements B(i) through B(n) and are either constants

or are of the form i*c, where i is a repeat count and c

is a constant. Values must be assigned to all elements

of the array from B(i) through B{n).

c. A = ml ,m
2

, .•• ,m
n

, where A is a previously DIMENSIONed

array and m
1

,m
2

, ... ,m
n

are the values being assigned to

7-31

the entire array A, and are either constants or are of

the form i*c, where i is a repeat count and c is a con

stant.

If the first record is other than that specified above, then addi

tional records are read until the required record is found or the

End-of-File is encountered.

The READ statement will be terminated when a second dollar sign is

encountered in the data file. Anything following the dollar sign

within the record is ignored. Trailing blanks are interpreted as

zeros. An assignment of the form V=E cannot be divided between two

data cards. That is, V on one card, and E on another.

Example:

First input card:

Second input card:

OUTPUT USING NAMELIST.

DIMENSION A(4,4),M(lO),N(20)
NAMELIST/NAMEA/A,D,K,M,N,X/NAMEB/M,N,X
READ NAMEA

12345678. (card cOlumn)

b$NAMEA D=7.l,N(4)=2.9,5.7,1.5,X=2.5,

12345678..... (card column)

A(2,3)=15.9,M=2,1,3*6,4*74$

Output using NAMELIST is accomplished by executing a formatted

output statement which has as its format specifier f a NAMELIST

identifier which has previously been declared in the same program

unit. No output list k is allowed in the output statement.

Output records produced by using NAMELIST may be read by a READ

with NAMELIST statement, and are therefore of the same general for

mat as that specified for input to a READ with NAMELIST statement.

Example:

7-32

DIMENSION A(4,4),M(lO),N(20)
NAMELIST/NAMEA/A,D,K,M,N,X/NAMEB/M,N,X

WRITE(6,NAMEA)

WRITE(6,NAMEB)

TAPE AND DISK I/O.

Tape and disk file unformatted output statements, BLOCKING and

BUFFERing options, serial and random disk I/O information are

available in this section of the document.

UNFORMATTED OUTPUT.

When a tape file is written using unformatted output statements, it

is formatted in the manner illustrated by figure 7-1.

~4~----------------------------------LOGICAL RECORD-----------------------------------..

r- First I Intermediate ~ -1
Physical Record----~.~.~---PhysicaL Records Last Physical Record
(R words lon~) (each R words long) ,- - -

~,

A
I--

B
r--

C

A=777778 Denotes first
B=O Physical Record

C=R-l

A
~

B
~

C

A=O

B=O

C=R-l

I ~

~~
4

~.
l 4>

4

Denotes intermediate
Physical Records

A
~

B
~

C

A=O

B=777778
O<C<R-l

Denotes last
Physical Record

(number of words used in
final record)

Figure 7-1. File Format Using Unformatted Output Statements

NOTE

Numbers with subscript 8 are octal.

7-33

In figure 7-1, R represents the number of words per record declared

by the RECORD option of the FILE card. The logical record size is

determined by the number of items in the I/O list. A, B, and Care

partial words that comprise the control, or first word of each phys

ical record.

A = [3:l5J

B = [lS:15J

C = [33:l5J

RECORD CONTROL WORDS. Each physical record in a tape file contains

a control word. The control word is always the first word of each

record, and is classified into four types.

a. Type 1 - 0777771777771xxxxxs

This type of control word indicates that the entire logical

record follows the control word in the next XXXXXS words of

the physical record.

b. Type 2 - 077777ioooooixxxxxS

This control word indicates that the first XXXXXS words of

the logical record are contained in the physical record

associated with the control word. The remainder of the

logical record is contained in the physical record or

records that follow.

c. Type 3 - oooooolooooolxxxxxS

7-34

This control word indicates that the physical record associ

ated with it is an intermediate record and contains XXXXXS

words of the logical record. This means that the first part

of the logical record is contained in a preceding physical

record or records, and that the remainder is contained in

the physical record or records that follow.

d. Type 4 - 000000177777)XXXXXS

This control word indicates that the associated physical

record contains the last XXXXXS words of the logical record.

Examples of Unformatted Tape Output.

The following examples illustrate unformatted tape output. PR indi-

cates the n~T.ber of words in a given physical record~ and LR the

nQ~ber of words in a given logical record=

Example 1 PR = 10, LR = 5, BLOCKING = 2.

The tape output for a program writing a five word logical record (1,

2,3,4,5) four times is illustrated in the following manner.

If
BLOCK 1 (20 WORDS) BLOCK 2 (20 WORDS)

07777777777000058 If 07777777777000058
1 1

I LRI
2 I ~R3 2
3 3

PR L 4 PR L 4

5 5

r 07777777777000058 r 07777777777000058
1 1

LR2 2 2

PR L 3 LR4 3

4 PR L 4

L
5

[
5

The block size of a tape file is determined by multiplying the BLOCK

ING factor by the physical record length. The block size in example

1 is 2 x 10 = 20 words.

7-35

The BLOCKING factor is the number of physical records in a block.

When the size of the logical record is less than the physical record

as shown in example 1, then the first LR words after the control word

of the physical record comprises the logical record. The remaining

words in the physical record are invalid.

Example 2 PR = 10, LR = 5, 8, 10, BLOCKING = 2.

The tape output of a program that writes three variable logical rec

ords (1,2,3,4,5), (1,2, ••• ,8), and (1,2, •.• ,10) is illustrated in the

following manner.

BLOCK 1 (20 WORDS)

IT.
07777777777000058

1

2

3 PRl 4

I
5

j

IT
077777777770001~

1

2

3

II
4

5

6

7

8 L=I

r
BLOCK 2 (20 WORDS)

o 7 7 7 7 7 0 0 0 0 0 0 0 0 1 18

1

2

3
LR3! 4

PR I I 5
I I 6

11 ~

f I
00000077 7 77 0000 ;8

LR3 0 t 1

PR

Note that the control word uses one word of the physical record, and

that the ten word logical record (1,2, •.• , 10) could not be completely

contained in the first physical record of block two.

7-36

Example 3 PR = 10, LR = 5, UNBLOCKED.

The tape output of a program that writes a five word logical record

(1,2,3,4,5) two times to an unblocked tape file is illustrated in the

following manner.

IT.
PR j

BLOCK 1 (10 WORDS)

07777777777000058
1
2

3

4

5

L,
~----------------~

IT
~R _1_

BLOCK 2 (10 WORDS)

07777777777000058
1

2

3

: I

An unblocked tape file implies, and is implied by a blocking factor

of one.

Example 4 PR = 6, LR = 4, BLOCKING = 5.

The tape output for a program that writes a four word logical record

(1,2,3,4) six times is illustrated as the following.

7-37

BLOCK 1 (30 WORDS) BLOCK 2 (30 WORDS)

IT 07777777777000048 IT 07777777777000048
1 1
2 2

PR 1 3 PR l 3

n
4 L 4

07777777777000048
1
2

PR 1 3

ti
4

07777777777000048
1
2

PR 1 3
4

07777777777000048

1 1
LR4 2

PIR 1 3

4

07777777777000048
1
2

I=~=:~I 3
4

Example 5 PR = 10, LR = 25, BLOCKING = 2~

The tape output for a program that writes a 25 word logical record

(1,2,3, · , 25) two times is illustrated in the following

manner.

7-38

BLOCK 1 (20 WORD.) BLOCK 2 (20 WORDS)

0000007777700007 Q I
19 U I

20

21

22

23
24

25

2

BLOCK 3 (20 WORDS)

00000000000000118 I
10 I

11

12

1 3

14

15

16

1 7

18

00000077777000078
19

20

21

22

23

24

25

If the logical record is greater than or equal to the physical

record, then the first (PR-l) words of the logical record will be

contained in the first associated physical record.

7-39

Example 6 PR = 10, LR = 25, UNBLOCKED.

The format of the tape output for a program that writes two 25-word

logical records (1, 2, J, ,25) to an unblocked file is

illustrated as follows.

7-40

BLOCK 1 (10 WORDS)

07777700000000118

1

2
3

4

5

6

7
8

9

BLOCK 2 (10 WORDS)

0000 00 00000 00 0 1 18

10

1 1

1 2

1 3

14

1 5

1 6

1 7

1 8

BLOCK 3 (10 WORDS)

00000077777000078
19

20
21

22
23

24

25

n

BLOCK 4 (10 WORDS)

o 7 7 7 7 7 0 0 0 0 0 0 0 0 1 18

1

2
3

4

5

6

BLOCK 5 (10 WORDS)

7

8

9

o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 18

10

1 1

pll : ~
LR2 14

11
15

16

1 7

18

<--------J

II
PR 1
I I

BLOCK 6 (10 WORDS)

00000077777000078
19

20
2 1

22
23

24

25

~ 0...-1 ______ -----l

UNFORMATTED DISK OUTPUT

The disk is allocated into 30 word segments, and the longest record

that can be written to disk is 1023 words.

Efficient use of the disk capability can be achieved by using a

blocking factor that will either be 30 words (240 characters), or an

integral multiple thereof.

The compiler generates syntax errors for disk files when PR is

greater than 1023 words, or the block size (PR x BLOCKING factor) is

greater than 1890 words (63 disk segments).

When writing to disk, each block will start at the beginning of the

next disk segment.

The size of the logical record is determined by the number of items

in the I/O list of the WRITE statement. For example: In the state-
/,,-\ . ~ ~ ment WRITE ~b} A, ~, ~, D, E where A, B, C, D, E are simple variables,

the logical record size is five.

The following examples illustrate some of the various disk unformatted

output formats. PR indicates the number of words in a given physical

record, and LR the number of words in a given logical record.

Example 1 PR = 10, LR = 5, BLOCKING = 2.

The disk output for a program writing a five word logical record

(1, 2, 3, 4, 5) three times is illustrated in the following

manner.

7-41

It would be more efficient to use a blocking factor of three.

DISK I
SEGMENT 0 1 1 2 1 3 I 4 1 5 1 I 1 I 21 3 I 4 , 5 I I 1 1 2 1 3 , 4 , 5 I I

tt-----LR_~R_'t_LR~:: _,t=_LR--l_PR -=:1
For maximum efficiency let PR=5, and the BLOCKING factor=6.

The substitution of these values will create six 5-word logical

records on one disk segment.

Example 2 PR = 10, LR = 5, 8, 10, BLOCKING = 2.

A program that writes three logical records (1, 2, J, 4, 5),

(1, 2, J, 4, 5, 6, 7 , 8) and (1, 2, J, 4, 5, 6, 7 , 8, 9, 10) is

illustrated in the following manner.

DISK 1
SEGMENT 0 1 I 2 I 3 I 4 i 5 i x i x I x I x I x I 1 i 2 I 3 I 4 i 5 I 6 I 7 I 8 i x I X I x i x i x x I x i x i x i x x x I

f--LR-j 1t4--.. - LR ---t'l 1 I

~~ ~P_R~-B~i==_n==1·~n~'1
DISK I
SEGMENT II 1 l 2 f 3 I 4 , 5 , 6 I 7 I- 8 I 9 ,10 I x 1 x 1 x 1 x I x 1 x I x I X I x I x I x I X I x I X 1 x I x I x I x I x I x

x = INVALID DATA

When the disk file is read, both valid and invalid data is pro

cessed by the compiler.

The block size of an unblocked disk file is the same -size as the

physical record; i.e., the blocking factor assumes a value of one.

If the blocking factor is not specified, and the LR less than or

equal to the PR, the physical record that contains the logical record

is written one per block.

7-42

Example 3 PR = 10, LR = 5, UNBLOCKED.

The disk output for a program writing a five word logical record

(1, 2, 3, 4, 5) three times is illustrated in the following

manner.

DISK

111 2 1 3 1 4 1 5 1 I I I SEGMENT 0

8 :1: :1:
PR PR PR~

BLOCK BLOCK BLOCK

DISK
SEGf\1EI'-~T 1 Ij2 1 3 1 4 1 5 1

DISK
SEGMENT 2

NOTE

Each block starts at a new disk segment.

The length of a logical record cannot exceed the length of a physical

record. When this condition exists, the remaining (LR-PR) words of

the logical record are lost.

Example 4 PR = 10, LR = 25, BLOCKING = 2.

The disk output for a program writing a 25 word logical record

(1, 2, 3, ... , 24, 25) three times is illustrated in the fol

lowing manner.

DISK
SEGMENT 0

DISK
SEGMENT 1

11 I 2 I 3 ! 4! 5 I 6! 7 I 8 ! 9 ! wi 1 I 2 , 3 I 4! 5! 6 I 7 ! 8 1 9 110 I

111 21 3 1 4 I 5 1 6 I 7 I 8 I 9 ,10 I
*

7-43

Each logical record is written to the end of the physical record

as indicated by the asterisk (*), and records 11 through 25 are

lost.

When the blocking factor is not specified, and the LR is greater than

the PR, the physical record will contain the first PR words of the

logical record. The size of the physical record is the same as the

size of the block, and each block starts at the beginning of the next

disk segment when the files are unblocked.

Example 5 PR = 10, LR = 25, UNBLOCKED

The disk output for a program writing an unblocked 25-word

logical record (1, 2, 3, , 24, 25) three times is illus-

trated in the following manner.

DISK
SEGMENT 0 1112 ,3 ,4 ,5 ,6 17 18 19 ,10 I

~LR I

~ PR

I
BLOCK ·1 I-

DISK
SEGMENT 1 11 I 2 I 3 14 I 5 16,7 I 8 I 9 ,10 I

DISK I
SEGMENT 2 1 1 2 1 3 14 I 5 I 6 1 7 I 8 19 ,10 I

Example 6 PR = 10, LR = 5, BLOCKING =4

7-44

The disk output for a program that writes a five word logical

record (1, 2, 3, 4, 5) eight times is illustrated in the

following manner.

DISK
11 1 2 1 3, 4 15 , SEGMENT 0

~L~--: r- LR-1
.1. PR ----.-.....

BLOCK

DISK
SEGMENT 1 1121314151

DISK I
SEGMENT 2 I 1 1 2 1 3 14 15

I

111 2 1 3 1 4 151

DISK

11 SEGMENT 3 12 13 14 15

If a blocking factor of six had been specified, six records

could be contained in two disk segments.

However, maximum efficiency could be achieved by letting PR=5,

along with a blocking factor of 6. Using this case~ all six

records could be contained within one disk segment.

When the block size is 80, each block will use three disk segments,

and each block will start at the beginning of the next disk segment.

7-45

Example 7 PR = 40, LR = 20, BLOCKING =2

The disk output from a program that writes a logical record

(1, 2, 3, , 20) three times is illustrated in the fol-

lowing manner.

DISK
SEGMENT 0

DISK I 11 I 2 110 111 112 Ii 3 I 14 I 15 116117 P 8 119 I 20 I SEGMENT 1 1 3 14 15 1 6 171 8 19

~PRI ·1:

LR2

:1 PR 2

DISK I SEGMENT 2

I·
I

PR 2 ·1
DISK I I I
SEGMENT 3 11 121314151617 18191101111121131141151161171181191201 I

I:
LR3 ·1

·1
PR 3

i...

Example 8 PR = 40, LR = 20, UNBLOCKED

The disk output for a program that writes a logical record

(1, 2, J, , 19, 20) three times to an unblocked disk file

is illustrated in the following manner.

7-46

DISK I
SEGMENT 0 112,3,4 ,516,7,8,9,101111121131141151161171181191201

l I 1 _~ _______ LRI

i
I- -I

DISK I
SEGMENT 1 L~~~~ __ L-L-L-~~~IL-__ __

r----I-- PR 1 -\

I

DISK I I

SEGMENT 2 I 1 12 13141516171819 1101111121131141151161171181191201

I:
LR2 ~I

PR 2

DISK

I I SEGMENT 3

I' PR 2 ·1

DISK

11 12 SEGMENT 4 131415 1 6 1 7 18 19 110 111112113114115 J16 117 118 119 120 I

I· LR3 .,
Since the blocking factor is undeclared, the physical record

size also becomes the block size. In the above example, each

block requires two disk segments.

.j

7-47

BLOCKING.

The BLOCKING option on the FILE card provides the capability of

packing more than one record into a physical block.

There are two advantages in blocking files:

a. Faster I/O speeds can be obtained since many records can

be brought into or out of internal storage in a single

access, thus giving a faster access time per record.

b. More efficient packing of data can be obtained. For

example, an SO-character record written on disk unblocked

would waste 160 characters. This is because the smallest

addressable area on disk is the segment which contains

240 characters. By specifying three records per block

(BLOCKING = 3), 100% utilization of disk can be obtained.

Another example is tape blocking. By writing longer

blocks, the amount of tape space wasted by inter-record

gaps would be reduced.

For most efficient utilization of disk, the blocking should be

such that the block size should be 30 words (240 characters) or

some integer multiple thereof.

The block size for disk should not exceed 1890 words.

The blocking of records during WRITE and unblocking during READ is

handled automatically by the operating system.

7-48

BUFFERING.

The FILE card has an option whereby the number of buffers assigned

to a file can be specified (two are assigned by default).

The number of buffers that should be specified for a given file

depends on the characteristics of the file.

A file from which a record is accessed infrequently should have

only one buffer. Specifying more wastes internal storage space.

A file that is accessed frequently should have two buffers. While

data is being processed into or from one buffer, I/O can be in

progress on the other buffer.

A file that is accessed N times between long processing loops should

have N buffers. Since the operating system always tries to keep

the buffers rull for input and empty for output, the N buffers could

be processed without having to wait for any actual I/O. Then, during

the long processing loops, the operating system can do the required

actual I/O operations.

DISK I/O.

The assignment of a file to disk requires the use of a FILE card

(see appendix B).

If the AREA option is specified, the first reference to the file

will cause the MCP to set up a directory indicating the amount of

disk specified.. In making the actual allocation of disk, the MCP

will subdivide the file into 20 areas, each area containing 1/20

of the file. Actual~allocation of disk space for each area occurs

only when a WRITE statement references a record in that area.

7-49

If the FILE option card does not specify the AREA option, the first

reference to the file expects the file to exist on disk.

To create a permanent file on disk, it is necessary to lock the

file by either:

a. Specifying the LOCK and SAVE options on the FILE card, or

b. Executing a LOCK statement on the specified file before

the program comes to an end, and specifying the SAVE option

on the FILE card.

Each record on disk is addressed by its relative location in the

file; the first record is record 0 (zero). The MCP, in order to

compute an actual disk address from a record address, requires

that each record be of fixed length. This record length is either

17 words (by default) or the record size specified in the FILE card.

Attempting to write or read a logical record where the amount of

data specified by the list exceeds the amount of data in the record

will result in program termination. For the situation where a

logical record is written which is smaller than the record size, the

contents of that portion of the record left unfilled is undefined.

Attempting to read this undefined data should be avoided; program

termination can occur.

Associated with each file on disk is an End-of-File pointer. Each

WRITE operation updates this pointer so that its value is always

that of the highest record written.

SERIAL DISK I/O. Serial Disk I/O is selected by specifying the

SERIAL option on the FILE card.

The operating system keeps an internal record pointer to control

serial disk I/O. This pointer is set to -1 initially. Each READ

or WRITE statement counts the pointer up by 1, then uses it as the

relative record address to read or write.

7-50

The random access forms of the READ or WRITE I/O statement can be

used for a file specified serial (see random disk I/O). When used,

the internal record pointer is set equal to the address specified

in the I/O statement rather than being counted by 1. Using the

random access forms of the I/O statement on files specified as

serial, although allowed, is slower than when the file is specified

as random.

The results of mixing or alternating serial disk READ and WRITE

statements without intervening REWINDs are not defined.

REWIND sets the internal record pointer to -1.

RA~~Dorvl DISK -. I r..
.L/ v. Random Disk I/O is selected by specifying RANDOM

on the FILE card. Associated with random access is a special form

of file identifier in the READ and WRITE I/O statements as follows:

u = r

where r is the relative address
of the record to be accessed.

The rules for the form of r are the same as for an array subscript.

The record specified by r will be the record accessed.

The internal record pointer is always set from r in the I/O state

ments. If the serial forms of the I/O statements are used with a

file specified random, the internal record pointer is not changed.

This results in several consecutive serial I/O statements accessing

the same record repeatedly.

Mixing READ and WRITE statements is allowed in any sequence.

REWIND sets the internal record pointer at zero.

Examples:

READ(l=I ••••)

WRITE(6=(A+B-C) •••

7-51

GENERAL.

SECTION 8

SUBPROGRAMS

A subprogram is a program unit, a self-contained and independent

routine, which may be referenced by the main program and by other

subprograms. There are three types of subprograms.

a. FUNCTION subprograms.

b. SUBROUTINE subprograms.

c. BLOCK DATA subprograms.

FUNCTIONS.

In mathematics, if the value of one quantity is

value or values of another quantity, then it is said to be a func-

tion of the other quantity. The first quantity is called the

function and the other quantities are called the arguments. For

example, in

arctan(x}

arctan is the function and x is the argument.

Functions may be divided into three categories:

a. Statement functions.

b. Intrinsic functions.

c. External functions.

STATEMENT FUNCTIONS.

A statement function is declared within the program unit in which

it is referenced. It is defined by a single statement similar in

form to an arithmetic or logical assignment statement.

The general form is:

where f is the statement function name,
xl,x2' •.. ,xn are the dummy arguments,
and e is an expression:

8-1

The rules for naming a function subprogram are the same as those

for naming a variable (see section 2). The dummy arguments may

be simple or subscripted variables. They represent values which

are passed to the function subprogram and are used in the expression

e in order to evaluate the function f. The dummy arguments are

undefined outside of the statement function and may be redefined

within the program unit. Together, f and e must conform to the

rules for arithmetic or logical assignment statements.

Aside from the dummy arguments, the expression e may contain:

a. Variables used in the program unit.

b. Intrinsic function references.

c. References to previously defined statement functions.

d. External function references.

A statement function must be declared before the first executable

statement.

A statement function is referenced in the same manner as a FUNCTION

subprogram is referenced.

The name of a statement function must not appear in an EXTERNAL

statement, nor as a variable name or an array name in the same

program unit.

Example:

DIMENSION A(lO)
LOGICAL STAFUN,Y,Z
STAFUN(N)=X .LT. SIN(A(N))
READ 25,X,Y,(A(I),I=1,10)

25 FORMAT(F8.2,L2,10F7.2)
DO 50 J=l,lO
Z=Y .AND. STAFUN(J)

50

INTRINSIC FUNCTIONS.

The intrinsic functions are those functions made available to a

FORTRAN object program by the operating system. The names, types,

8-2

and definitions of the intrinsic functions are predefined, so they

need only be referenced in order to be used.

An intrinsic function name may be redefined within a program unit.

However, if it has been redefined, then that intrinsic function

will no longer be recognized by the compiler, but its identifier

will be used as it has been redefined.

Also, the user may redefine the meaning of an intrinsic for an entire

program by providing a FUNCTION subprogram of the same name. How

ever, the type of the function and the number and type of its para

meters must be the same as the original intrinsic.

Exampl~:

REAL FUNCTION SIN(Y)
SIN=COS(Y)
RETURN
END

An intrinsic function is referenced by using it as a primary in an

arithmetic or logical expression. The actual parameters which

constitute the parameter list must agree in type, number, and

order with the specifications in table 8-1, and may be any expres

sion of the specified type. (For an explanation of actual para

meters, see CALL statement, section 6.) lV-hen a real parameter

is specified, however, an integer parameter may be used.

Execution of an intrinsic function reference results in the passing

of the actual parameter values to the corresponding formal parameters

of the intrinsic function and an evaluation of the intrinsic. The

resultant value is then assigned to the intrinsic function identifier

and thereby passed back to the intrinsic function reference.

Examnles:
I

IBIG=MAXO(I,J,K,LEST)

TANGE=SIN(X+Y)/COS(A-B)

EXTERNAL FUNCTIONS.

An external function is a program unit which has as its first state-

ment a FUNCTION statement.

8-3

The general form is:

where:

a. t is either INTEGER, REAL, DOUBLE
PRECISION, LOGICAL, COMPLEX, or
empty.

b. f is the symbolic name of the
function being defined.

c. al'." ,an are formal parameters
which may be either a variable
name, an array name, a SUBROUTINE
or FUNCTION name·

An external function is normally referenced by another program

unit. However, Burroughs FORTRAN permits an external function to

reference itself, i.e., recurse.

The construction of external functions is subject to the following

conditions:

8-4

a. The function name must be used as a variable within the,

function subprogram to the left of the replacement operat,or

(=) in an assignment statement at least once. Its value

at the time of execution of any RETURN statement within

the function subprogram is the value of the function.

b. The name of the function must not appear in any non

executable statement in the function subprogram, except

for the FUNCTION statement.

c. The symbolic names of the formal parameters may not appear

in an EQUIVALENCE, COMMON, or DATA statement in the func

tion subprogram.

d. The function subprogram may define or redefine one or more

of its parameters to effectively return results in addi

tion to the value of the function.

e. The function subprogram may contain any statements ex

cept SUBROUTINE, another FUNCTION statement, or BLOCK

DATA.

f. The function subprogram must contain at least one RETURN

statement.

g. An END statement must be the last statement of the sub-

Example:

program body_

FUNCTION EVAL(U,V)
IF(U .LT. V) GO TO 1
EVAL=V/U
RETURN

1 EVAL=U/V
RETURN
END

REFERENCING EXTERNAL FUNCTIONS.

An external function is referenced by using it as a primary in an

arithmetic or logical expression. The actual parameters, which

constitute the parameter list, must agree in order, number, and

type with the corresponding formal parameters in the defining pro-

gram unit. If a formal parameter is real, an integer actual para-

meter may be used. An actual parameter in an external function

reference must be one of the following:

a. A Hollerith constant.

b. A variable name.

c. An array element name.

d. An array name.

e. An arithmetic or logical expression.

f. The name of a function or subroutine.

If an actual parameter is a function name (external or intrinsic)

or a subroutine name, then the corresponding formal parameter

must be used as a function name or a subroutine name, respectively.

8-5

If an actual parameter corresponds to a formal parameter that is

defined or redefined in the referenced subprogram, the actual

parameter must be a variable name, an array element name, or an

array name. Execution of an external function reference, as de

scribed in the foregoing, results in an association of actual para

meter with all appearances of corresponding formal parameters in

the executable statements of the subprogram, and in an association

of actual parameters with variable dimensions, if present, in the

subprogram. Following these associations, execution of the first

executable statement of the subprogram body is undertaken.

An actual parameter which is an array element name containing vari

ables in the subscript could in every case be replaced by the same

parameter with a constant subscript containing the same values as

would be derived by computing the variable subscript just before

association of parameters takes place.

If a formal parameter of an external function is an array name,

the corresponding actual parameter must be an array name or array

element name.

~xample:

TOTAL=EVAL(P,X)+CPS(Y)

SUBROUTINE.

A subroutine is defined externally to the program unit that refer

ences it. A subroutine defined by a FORTRAN statement headed by a

SUBROUTINE statement is called a subroutine subprogram.

DEFINING SUBROUTINE SUBPROGRAMS.

The SUBROUTINE statement is one of the forms:

8-6

SUBROUTINE N

SUBROUTINE N (al ,a2 ,···an)

where:

a. The letter N is the symbolic name of
the subroutine to be defined.

b. The a's are formal parameters which may be
either a variable name, an array name, a
function or subroutine name, or an asterisk (*).

The construction of subroutine subprograms is subject to the

following restrictions:

a. The symbolic names of the formal parameters may not appear

in an EQUIVALENCE, COMMON, NAMELIST, or DATA statement in

the subprogram.

b. The subroutine subprogram may define or redefine one or

more of its parameters in order to effectively return

results.

c. The subroutine subprogram may contain any statements ex

cept FUNCTION, another SUBROUTINE statement, or BLOCK DATA.

d. The subroutine subprogram must contain at least one

RETURN, STOP, or CALL EXIT statement.

e. An END must be physically the last statement.

In Burroughs FORTRAN, a subroutine may call itself, i.e., recurse.

Example:

SUBROUTINE FALL(T,V,S)
G=32.l72
S=G*T**2/2
V=G*T
RETURN
END

8-7

PASSING ARRAY DATA TO A SUBROUTINE. The first subscript of an array

varries most rapidly, and the last subscript the least rapidly. An

array A dimensioned J x J is linearly layed-out as follows:

A(l,l) A(2,1) A(J,l) A(1,2)

Example:

DIMENSION A (3,3)

DO 10 I=1,3

DO 10 J=1,3

K= K+l

A(I,J) = K

10 CONTINUE

M=2

CALL SUB (A,M)

STOP

END

SUBROUTINE SUB (B,N)

DIMENSION B (N,N)

RETURN

END

A(2,2) A(J,2) A(l,J) A(2,J) A(J,J)

In this example, the main program assigns values to the A array and

variable M, and then passes the data to the subroutine SUB. The act

ual parameters A and M corresponds to the formal parameters Band N of

the subroutine. Note: The B array is dimensioned 2x2; whereas, A is

dimensioned JxJ.

The following is an example of the mapping sequence set-up between the

four elements of B, and the first four elements of A.

8-8

A(l,l) A(2,1) A(J,l) A(1,2) A(2,2) A(J,2) A(l,J) A(2,J) A(J,J)

I I I I
5 6 7 8 9

B(l,l) B(2,l) B(l,2) B(2,2)

The mapping is always set-up so that the n elements of the subroutine

array will correspond to the first n elements of the array passed to

it .in the calling program.

When an array is passed to a subroutine, the size of the correspond

ing subroutine array cannot exceed the size of the array being passed

by the calling program. If this condition exists an "INVALID INDEX"

message is printed at the time of program execution.

8-9

NONSTANDARD RETURNS FROM SUBROUTINES.

If a subroutine contains one or more nonstandard return state

ments (has the term RETURN n), the formal parameter list must

contain one asterisk (*) for each return number. The actual

parameter list of the referencing program unit must then have a

dollar sign ($) followed by a label in the corresponding position.

Example:

Calling Program

CALL XYZ (A,B,$10,$15)
5

10

15

END

Called Program

SUBROUTINE XYZ (U,V,*,*)

IF (EXP) 1,2,3
1 RETURN
2 RETURN 1
3 RETURN 2

END

In the above example, if the value of EXP is negative, control will

be returned to the referencing program at the statement labeled 5;

if the value of EXP is zero, control will be returned at label 10;

and if the value of EXP is positive, control will be returned at

label 15.

MULTIPLE ENTRY POINTS INTO A SUBPROGRAM.

For a normal entry into a subroutine subprogram, a CALL statement

that refers to the subroutine.is used. A normal entry into a

FUNCTION subprogram is made by a reference to the function name

in an arithmetic expression. Entry is made at the first executable

statement following the SUBROUTINE or FUNCTION statement.

8-10

A subprogram can also be entered by way of a CALL statement or a

function reference that refers to the name in an ENTRY statement

in the subprogram. The entry is made at the first executable state

ment following the ENTRY statement.

ENTRY statements are non-executable. Therefore, they do not affect

control sequencing during normal execution of a subprogram. The

type, order, and number of parameters need not agree between the

SUBROUTINE or FUNCTION statement and the ENTRY statement, nor do

the ENTRY statements have to agree among themselves. However, each
~

CALL or function reference must agree in type, order, and number

with the SUBROUTINE, FUNCTION, or ENTRY statement that it refers to.

The ENTRY statement in the called subprogram is one of the forms:

Example:

ENTRY N

where:

a. N is the symbolic name of an entry point.

b. The a's are formal parameters which may be
either a variable name, an array name, a
subroutine or function name, or an asterisk (*).

Calling Program Called Program

SUBROUTINE SUB(U,V,W,X)

5 CALL SUB(A,B,C,D)
10

10 CALL ENTI

15 CALL ENT2(G,H)

END

ENTRY ENTl
GO TO 10

ENTRY ENT2(G,H)

END

8-11

In the above example, execution of statement 5 causes entry into

SUB, starting with the first executable statement of the subroutine.

Execution of statements 10 and 15 also causes entry into the called

program, starting with the first executable statement following the

ENTRY ENTI and ENTRY ENT2(G,H) statements respectively.

The following are additional rules for entry points:

a. An ENTRY name may appear in an EXTERNAL statement in the

same manner as a FUNCTION or SUBROUTINE name.

b. ENTRY statements may appear only in subprograms.

c. Entry into a subprogram initializes all references in the

entire called subprogram from items in the parameter list

of the CALL or function reference.

d. If an adjustable array name or any of its variable

dimensions appear in a parameter list for a FUNCTION,

SUBROUTINE, or ENTRY statement, that array name and all

its variable dimensions must appear in that parameter

list.

e. If an array is passed as a parameter to a SUBROUTINE or

FUNCTION and is also used by a section of the program

entered through an ENTRY statement, then the array name

must appear in the parameter list of the ENTRY statement.

f. In a FUNCTION subprogram, only the FUNCTION name may be

used as the variable to carry a result back to the call-

ing program.

purpose.

The ENTRY name may not be used for this

g. An ENTRY name defined in a subroutine subprogram, if refer-

8-12

enced, must be referenced by a CALL statement. Similarly,

an entry defined in a function subprogram, if referenced,

must be referenced as a function.

BLOCK DATA.

Further use of the DATA statement is in the BLOCK DATA subprogram.

It is used to enter data into COMMON blocks; however, the follow

ing must be observed:

a. There may be no executable statements in a BLOCK DATA

subprogram. The first statement of the subprogram must

be BLOCK DATA.

b. The subprogram may contain only Type, EQUIVALENCE, DATA,

DIMENSION, and COMMON statements.

c. All elements of a COMMON BLOCK must appear in the COMMON

statement list even though some do not appear in the DATA

statement list.

d. More than one COMMON block may be initialized by a single

BLOCK DATA subprogram.

e. There may be as many BLOCK DATA subprograms as desired

in a program~ but any block identifier may occur in only

one BLOCK DATA subprogram.

Example:

BLOCK DATA
COMMON /TEST/ K, L, S/ AATWO/ B,C
DIMENSION C(lO)
DATA L, S/ 1, 3.5/, C/ 10*16.2/
END

8-13

Table 8-1

Resulting Actions of an Intrinsic Function

-
Function Definition Number of Symbolic Type of Type of

Arguments Name Argument Function

A bsolute Value I al I ABS Real Real
IABS Integer Integer
DABS Double Double
CABS Complex Real

T runcation Sign of a times I AINT Real Real
larfest integer INT Real Integer
<la IDINT Double Integer

emaindering* a l (mod a 2) 2 AMOD Real Real
MOD Integer Integer

R

DMOD Double Double

C hoosing Largest Value Max (al ,a2 ···) >2 AMAXO Integer Real
AMAXI Real Real

MAXO Integer Integer
MAXI Real Integer

DMAXI Double Double

hoosing Smallest Value Min (al ,a2 ···) >2 AMINO Integer Real -
AMINI Real Real

C

MINO Integer Integer
MINI Real Integer

DMINI Double Double

F loat Conversion I FLOAT Integer Real
from integer
to real

*Note: The functions MOD, AMOD and DMOD (al ,a2) are defined as a l - [a
l
/a

2
J*a

2
, where

[a] denotes the integral part of a.

00
I
f-i
\Jl.

Table 8-1 (cant)

Resulting Actions of an Intrinsic Function

Function

F'ix

'}'ransfer of sign

Positive Diff'erenc e

Obtain Most Significant
Part of Double Precision
Argument

l~xpress Single Precision
Argument in Double
Precision Form

Obtain Real Part

Obtain Imaginary Part

Create Oomplex

Complex Conjugate

gxponential

Definition

Conversion
from real
to integer

~ign of a 2
times I all

aI-Min (al ,a2)

C = a l + ia2

C = X - iY

a
e

Number of
Arguments

I

2

2

I

I

I

I

2

I

I
I
I

Symbolic
Name

IFIX

SIGN
ISIGN
DSIGN

DIM
IDIM

SNGL

DBLE

REAL

AIMAG

CMPLX

CONJG

EXP
DEXP
CEXP

Type of
Argument

Heal

Heal
Integer
Double

Real
Integer

Double

Real

Complex

Complex

Real

Complex

Real
Double
Complex

Type of
Function

Tnteger

Real
Tnteger
Double

Real
Tnteger

Real

Double

Heal

Heal

Complex

Complex

Real
Double
Complex

00
I Table 8-1 (cont)

/---l
~ Resulting Actions of an Intrinsic Function

--
Function Definition

Number of Symbolic Type of Type of
Arguments Name Argument Function

Natural Logarithm log (a) 1 ALOG Real Real
e 1 DLOG Double Double

1 CLOG Complex Complex

Common Logarithm loglO (a) 1 ALOGlO Real Real
1 DLOGlO Double Double

Trigometric Sine sin (a) 1 SIN Real Real
1 DSIN Double Double
1 CSIN Complex Complex

Trigometric Cosine cos (a) 1 COS Real Real
1 DCOS Double Double
1 COOS Complex Complex

Arctangent arctan (a) 1 ATAN Real Real
1 DATAN Double Double

Arctangent arctan (al/a~~) 2 ATAN2 Real Real
2 DATAN2 Double Double

Square Root (a) 1/2 1 SQRT Real Real
1 DSQRT Double Double
1 CSQRT Complex Complex

Hyperbolic Tangent tanh (a) 1 TANH Real Real

Trigometric Tangent tan (a) 1 TAN Real Real

Trigometric Cotangent cot (a) 1 COTAN Real Real

NOTE: Where applicable, trigonometric functions must be in radians.

Table 8-1 (cont)

Resulting Actions of an Intrinsic Function

Function Definition Number of Symbolic Type of Type of
Arguments Name Argument Function

Arcsine arcsine (a) 1 ARSIN Real Real

Arccosine arccosine (a) I ARCOS Real Real

Hyperbolic Sine sinh (a) I SINH Real Real

Hyperbolic Cosine cosh (a) I COSH Rea.l Real

Error Function error function (a) 1 ERF Real Real

Gamma Function gamma (a) 1 GAMMA Real Real

Log Gamma Functiol 1 log gamma (a) 1 ALGAMA Real Real

47-bit Logical AN]) 2 AND Real ReEll

47-bit Logical OR 2 OR Real Real

47-bit Logical COM PLEMENT 1 COMPL Real Re;al

47 -bit Logical EQl JIVALENCE 2 EQUIV Real Real

Concatenation 5 CONCAT Real Real
Integer

Time a = o , date in I TIME Integer Alpha
form OYYDDD when
(right- a=O
adJusted) I

(JJ
I
j-I
(JJ

·

· ·

Ti me

.

Function

(cont)

Table 8-1 (cant)

Resulting Actions of an Intrinsic Function

Definition
Number of Symbolic
Arguments Name

a ::: I , time of day 1
in s ixt i (~ths
of a second
(based on 24-
hour clock)

a ::: 2 , elapsed
processor time
of program
since its
start in six-
tieths of a
second.

a ::: 3 , elapsed I/O
time of pro-
gram since its
start in six-
tieths of' a
second.

a ::: 4, value of
6-bit machine
timer •

Type of Type of
Argument Function

Integer
when
a:::l,2,3,4.

APPENDIX A

GLOSSARY

ACTUAL PARAMETERS. Those parameters in the parameter list of a

subroutine call or function reference. In contrast to FORMAL

PARAMETERS.

ALPHANUMERIC. Contraction of alphabetic and numeric, signifying

the alphabetic and numeric characters.

ASSIGNMENT OPERATOR. In FORTRAN, the equal sign (=).

BCL. An acronym for Burroughs Common Language.

EXECUTABLE PROGRAM. A program that can be used as a self-contained

computing procedure. It consists minimally of one main program.

It may consist of one main program and any number of subprograms.

EXECUTABLE STATEMENT. A non-declarative statement which is ex

ecuted at object time. In contrast to NON-EXECUTABLE STATEMENT.

EXPONENT. That part of a real (floating-point) number which deter

mines the decimal point placement in the mantissa.

EXPRESSION. Any constant, variable, or function reference, or any

combination of these separated by operators, commas, or parentheses.

FIXED-POINT. An arithmetic notation in which the decimal point is

not present and is assumed to be on the extreme right of a number.

In contrast to FLOATING-POINT.

FLOATING-POINT. An arithmetic notation in which the position of the

decimal point does not remain fixed with respect to one end of the

numerals. In contrast to FIXED-POINT.

FORMAL PARAMETERS. Those parameters in the parameter list of a

subroutine or function declaration. In contrast to ACTUAL PARA

METERS.

A-I

MAIN PROGRAM. A set of statements and comments not containing a

FUNCTION, SUBROUTINE, or BLOCK DATA statement.

MANTISSA. That part of a real (floating-point) number which con-

tains the significant digits.

MCP. An acronym for the Master Control Program, the executive

system.

NON-EXECUTABLE STATEMENT. A declaration which, at compile time,

provides the compiler with a description of data. It is not ex-

ecuted at object time. In contrast to EXECUTABLE STATEMENT.

PRIMARY. An arithmetic expression enclosed in parentheses, a

constant, a variable reference, an array element reference, or a

function reference.

PROGRAM UNIT. Refers to either a main program or subprogram.

PRT. An acronym for Program Reference Table. An area in memory

for the storage of operands, references to arrays, references to

segments of a program, and references to files. Permits programs

to be independent of the actual memory locations occupied by data

and parts of the program.

REFERENCE. A term used with special meaning to indicate an identi-

fication of:

SPO.

a. A datum, implying that the current value of the datum will

be made available during the execution of the statement

containing the reference.

b. A procedure, implying that the actions specified by the

procedure will be made available upon reference.

An acronym for SuPervisOry Printer, the system console type-

writer.

SUBPROGRAM. A set of statements and comments hv
.- .J a FUNCTION,

SUBROUTINE, or BLOCK DATA statement.

A-2

APPENDIX B

FILE CARDS

FILE cards are optional since all the parameters used in declaring

a file have default values. The various I/O statements and their

default descriptions when a FILE card is not used are listed in

table B-l~ Time-Sharing FORTRAN default conditions are described

in appendix J.

I/O Statement

READ f,k*

, READ (u ,f) k
READ(u) k

WRITE(u,f) k
WRITE(u) k

PRINT f,k*

PUNCH f,k*

Table B-1

File Default Descriptions

File Name

READER

FILEi
(where i is the
value of u)

FILEi
(where i is the
value of u)

PRINT

PUNCH

NOTE
In all cases,
the multi-file
name is empty.

Blocking

10 Word Buffer,
80 Characters

17 Word Buffer,
132 Characters,
(size of logical
record is un
limited)

17 Word Buffer
132 Characters,
(size of logical
record is un
limited)

17 Word Buffer,
132 Characters

10 Word Buffer,
80 Characters

Mode

Alpha

Binary

Binary

Alpha

Alpha

*FILE cards cannot be used for these I/O statements.

FILE CARD FORMAT

Peripheral

Tape or
Card Reader

Tape

Tape

Line Printer

Card Punch

FILE cards are free format, with the exception of card columns 1-6:

1 2 3 456
F I L Ebb

(card column)

where a blank is denoted by b.

B-1

I

Columns 73 through 80 are used for a sequence number or identifica

tion only, and will be ignored by the compiler except when merging

a card and tape file at compile time.

Following the two blanks, the following information must be inserted

in free format:

N = FID

or

N = MFID/FID

where N is an unsigned integer constant representing the logical

unit number. It is the value of u in READ(u,f)k and WRITE(u,f)k.

MFID is the multi-file identification, and FID is the file identifi-

cation. If MFID is not included, then it is assumed to be seven

zeros. For further information, reference should be made to the

System Operation Manual.

The following is a list of options which may be included on the

FILE card. They may be in free format, but they must come in the

order in which they are given below:

B-2

a. ,UNIT = t

where t is one of the following:

PRINT

PRINTER

READER

PUNCH

DISK

TAPE

REMOTE

TAPE is the default option for UNIT.

b. ,UNLABELED

LABELED is the default option if unlabeled is not specified

(tape only).

c. ,ALPHA

BINARY is the default option if ALPHA is not specified

(tape only).

d. ,SAVE = n

where n is an unsigned integer whose value cannot exceed

999. It is the save factor, in days (see System Operation

Manual). The default save factor is zero.

e. ,LOCK

When this option is used, the MCP will close and lock a

disk file when the program creating it has gone to End

of-Job (see tape and disk I/O, section 7)~. In the case

of a disk file, if a CLOSE statement or END FILE state

ment appears for the designated file, the LOCK will be

overridden and the file will be released.

f. ,SERIAL

, RANDOM

This option specifies the access mode for disk files only.

The default option is SERIAL.

g. ,AREA = n

where n is an unsigned integer constant which denotes the

amount of area on disk (in number of records) to reserve

for this file (see tape and disk I/O, section 7). If a

file is to be opened for input this option must not be

present.

h. ,BLOCKING = n

where n is an unsigned integer which represents the nQ~-

ber of logical records per physical block. The default

option is unblocked f'iles, i. e., a blocking f'ac tor of one.

i. ,RECORD = n

where n is an unsigned integer which represents the size

(in words) of a logical record. The default option is 17
(see table B-l)=

B-3

j. ,BUFFER = n

where n is an unsigned integer which represents the num

ber of buffers. The default option is 2 (see tape and

disk I/O, section 7).

If the FILE option extends across more than one card, then the next

card must be flagged as a FORTRAN continuation card with a charac

ter other than a blank or zero in card column 6.

In the I/O statements READ(u,f)k and WRITE(u,f)k, if u is not an

integer constant, then its value at run time must correspond to

a logical unit number declared on a FILE card.

If the option

UNIT = t

is used to declare the file as a line printer, card punch, or card

reader, then the remaining default descriptions used for this file

are designated in table B-1.

B-4

APPENDIX C

DOLLAR SIGN CARDS

A dollar sign card is optional and is used to indicate to the compi

ler that certain options are to be used at compile time. The format

of a dollar sign card is:

Card Column

1

2-72

73-80

The dollar sign card may be placed:

Contents

$

Options in free field format.

Card number or blank.

a. Immediately after the MCP control cards used for compila

tion and immediately before the first FORTRAN FILE card

or FORTRAN source or patch card if no FILE cards are used

(see section 1).

b. Anywhere else in the source or patch deck with a proper

sequence number in order to change options at some point

in compilation, e.g., to list only a part of the compiled

source program. Dollar sign cards may not, however, be

interspersed with the continuation cards of a multi-card

statement.

Example:

$ CARD

A=B+C
$CARD LIST

X=SQRT(Y**2+Z**2)
PAR=TAN(X/A)

V=SIN(X+Y-Z)
$CARD

Sequence
Number

00000100

00009000
00009100
00009200
00009300

00012200
00012300

C-l

Only cards 00009200 through 00012200 will be listed on the file LINE.

Each dollar sign card causes all previous options to be reset, with

the exceptions: $REMOTE, $ONSITE, $SEQXEQ, $SEQ, $NOSEQ, and $TIME.

If no dollar sign card is included with the source deck, then the

CARD and LIST options are assumed (see appendix J).

The various options available are as follows:

TAPE or CARD

a. One of these, but not both, should be the first option on the

dollar sign card immediately following the dollar sign.

b. CARD indicates to the compiler that the source program input

is entirely from the file labeled CARD.

c. TAPE indicates to the compiler that the source program input

is from the file named TAPE and labeled FORSYM and that

change or patch cards may be inputted from the file labeled

CARD. If a change or patch card file is used, then it is

merged into the source program from the file named TAPE and

labeled F'ORS-Y-l\'i as a function of the sequence number in co1-

umns 73-80. If a listing is obtained, then the source

statements from the TAPE file will have a T following the

sequence number, and the source statements being merged from

the CARD file will have an R following the sequence number

on the compiled source listing. The merging process uses

the system alphanumeric collating sequence (see appendix G).

d. If the first word on a dollar control card is not CARD or

TAPE, then the dollar control card input mode (either card

or tape) is set to the mode of the previous dollar control

card. The initial mode is card.

LIST

C-2

a. If present, then a compiled source listing of the source

program will be made on the file LINE, including any change

or patch cards.

b. Segment and address information will also be listed with

the source program.

SGL or SINGLE.

a. If present, then a single-spaced compiled source listing of

the source program will be made on the file line.

also present, the SGL or SINGLE takes precedence.

If LIST is

PRT

a.' If present, a new source tape file labeled FORSYM is

created which includes all change or patch cards and

FILE cards, but does not include dollar sign cards.

a. If present, then a listing of the source program will be

made on the file LINE, including any change or patch

cards, and at the end of each program unit listing, a

listing of PRT* and stack assignments for each local

identifier within that program unit will be made.

b. At the end of the entire program, PRT assignments for

all global names will be listed.

c. If PRT is specified, then LIST is automatically evoked.

DEBUGN

a. If present, then the actual machine code emitted by the

compiler is also listed on the file LINE together with

octal values of constants and format of PRT entries.

b. If DEBUGN is specified, then PRT and LIST are automatically

evoked.

TRACE

a. If present, then information is listed on the file LINE

which indicates how the FORTRAN compiler is analyzing the

syntax of the source program.

* PRT is an abbreviation for Program Reference Table (see the System
Operation Manual).

C-J

b. TRACE should be used only in extreme cases because of the

great vnlume of output produced.

c. If TRACE is specified, the LIST, PRT, and DEBUGN options

are automatically evoked.

SEQ f s i

a. If present, the listing on file LINE and the new source

program on the file NEWTAPE, labeled FORSYM (if NEW or

NEW TAPE is specified), will be resequenced.

b. The specifications following SEQ have the following in

terpretations:

f - the sequence number of the first card of the

source program.

s - any special character, usually plus (+) or

comma (,).

i-increment. If i=O, or i is not a number, then

an increment of 1000 is used.

c. The SEQ option, if used, must be the last option on the

dollar sign card.

NOSEQ

HOL

c-4

a. If present, will cause the SEQ option to·be turned off.

a. If the source cards are punched in IBM code and the HOL

option is not used, then the listing of the source program

produced by the compiler will be in IBM card codes, e.g.,

(will be printed as %, = will be printed as #, etc. How

ever, the compiler will properly interpret the source

program and compile it,

TIME

b. If the source cards are punched in IBM card code and the

HOL option is used, then all characters will be converted

to BeL before printing on the file LINE.

c. If the source cards are punched in IBM/360 card code, then

the HOL option must be used to convert the source program

to BCL.

d. The HOL option will translate all IBM or IBM/360 cards

to BCL including strings and Hollerith constants. This

option also causes the object program produced by the

compiler to automatically convert into BCL data read with

an A format specification and data read into Hollerith

strings.

e. The use of the HOL option will slow compilation speed.

For repeated compilations from large source programs,

it would be advantageous to use the NEW TAPE option with

HOL on the first compilation. Thereafter, compilations

may be made without the HOL option from the generated

source tape.

a. If present and if the LIST option is not present, then the

source program will not be listed, but at the end of the

compilation, compilation information will be listed on the

file LINE.

CHECK

a. If present, the number of sequence errors detected in the

source file is printed next to the number of syntax errors.

Also, under the $CHECK option, a sequence error for a source

record will cause the card image and a warning message to

be written to the file LINE:

SEQUENCE ERROR "n" < lip"

C-5

where n is the sequence number of the card image and p is

the sequence number of the previous card image. The system

alphanumeric collating sequence is used (see appendix G).

VOID n

c-6

a. If present, VOID must be the only option on the dollar

sign card. This option is used only when merging a CARD

and TAPE file.

b. If present, and if n is blank, the record on the TAPE

file with the same sequence number (in columns 73-80) as

the $VOID card will be ignored by the compiler, will not

be listed on the file LINE, and will not be inserted in

the file NEWTAPE, if the NEW option has been specified

previously.

c. If present, and if n is not blank, n must be the sequence

number of a record existing on the TAPE file and, in addi

tion, the $VOID card must have a sequence number in

columns 73-80. The records on the TAPE file, starting

with the record which has the same sequence number as the

$VOID card (columns 73-80), will be ignored up to but not

including the record on the TAPE file with the sequence

number n. These records will be ignored by the compiler,

not listed on the file LINE, and not inserted in the file

NEWTAPE, if the NEW option has been specified previously.

d. If the first word on a dollar control card is not VOID,

all dollar control card options are set to OFF. Only

those options invoked by the current dollar control card

are set to ON.

NOTE

See appendix J, Time-Sharing FORTRAN,

for additional option information.

ERROR
NUMBER

000

001

002

003

004

005

006

007

008

009

010

all

012

013

014

015

016

017

018

019

020

021

022

023

APPENDIX D

COMPILE TIME ERROR MESSAGES

ERROR MESSAGE

SYNTAX ERROR

MISSING OPERATOR OR PUNCTUATION

CONFLICTING COMMON AND/OR EQUIVALENCE ALLOCATION

MISSING RIGHT PARENTHESIS

ENTRY STMT ILLEGAL IN MAIN PGM OR BLOCK DATA

MISSING END STATEMENT

ARITHMETIC EXPRESSION REQUIRED

LOGICAL EXPRESSION REQUIRED

TOO MANY LEFT PARENTHESES

TOO MANY RIGHT PARENTHESES

FORMAL PARAMETER ILLEGAL IN COMMON

FORMAL PARAMETER ILLEGAL IN EQUIVALENCE

THIS STATEMENT ILLEGAL IN BLOCK DATA SUBPROGRAM

INFO ARRAY OVERFLOW

IMPROPER DO NEST

DO LABEL PREVIOUSLY DEFINED

UNRECOGNIZED STATEMENT TYPE

ILLEGAL DO STATEMENT

FORMAT STATEMENT MUST HAVE LABEL

UNDEFINED LABEL

MULTIPLE DEFINITION

ILLEGAL IDENTIFIER CLASS IN THIS CONTEXT

UNPAIRED QUOTES IN FORMAT

NOT ENOUGH SUBSCRIPTS

024 TOO MANY SUBSCRIPTS

025 FUNCTION OR SUBROUTINE PREVIOUSLY DEFINED

026 FORMAL PARAMETER MULTIPLY DEFINED IN HEADING

027 ILLEGAL USE OF NAMELIST

028 NUMBER OF PARAMETERS INCONSISTENT

029 CANNOT BRANCH TO FORMAT STATEMENT

()~n -_J- SUBROUTINE OR FL~~CTION NOT DEFINED -r,.T
..L1'1 PROGRAM

D-l

D-2

ERROR
NUMBER

031

032

033

0.34

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

APPENDIX D (cont)

COMPILE TIME ERROR MESSAGES

ERROR MESSAGES

IDENTIFIER ALREADY GIVEN TYPE

ILLEGAL FORMAT SYNTAX

INCORRECT USE OF FILE

INCONSISTENT USE OF IDENTIFIER

ARRAY IDENTIFIER EXPECTED

EXPRESSION VALUE REQUIRED

ILLEGAL FILE CARD SYNTAX

ILLEGAL CONTROL ELEMENT

DECLARATION MUST PRECEDE FIRST REFERENCE

INCONSISTENT USE OF LABEL AS PARAMETER

NO. OF PARAMS. DISAGREES WITH PREVo REFERENCE

ILLEGAL USE OF FORMAL PARAMETER

ERROR IN HOLLERITH LITERAL CHARACTER COUNT

ILLEGAL USE OF FORMAL PARAMETER

TOO MANY SEGMENTS IN SOURCE PROGRAM

TOO MANY PRT ASSIGNMENTS IN SOURCE PROGRAM

LAST BLOCK DECLARATION HAD LESS THAN 1024 WORDS

ILLEGAL I/O LIST ELEMENT

LEFT SIDE MUST BE SIMPLE OR SUBSCRIPTED VARIABLE

VARIABLE EXPECTED

ILLEGAL USE OF .OR.

ILLEGAL USE OF .AND.

ILLEGAL USE OF .NOT.

ILLEGAL USE OF RELATIONAL OPERATOR

ILLEGAL MIXED TYPES

ILLEGAL EXPRESSION STRUCTURE

ILLEGAL PARAMETER

RECORD BLOCK GREATER THAN 1023

TOO MANY OPTIONAL FILES

FILE CARDS MUST PRECEDE SOURCE DECK

ERROR
N"UMBER

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

APPENDIX D (cant)

COMPILE TIME ERROR MESSAGES

ERROR MESSAGES

UNDEFINED FOlli~AT Nu~BER

ILLEGAL EXPONENT IN CONSTANT

ILLEGAL CONSTANT IN DATA STATEMENT

MAIN PROGRAM MISSING

PARAMETER MUST BE ARRAY IDENTIFIER

PARAMETER MUST BE EXPRESSION

PARAMETER MUST BE LABEL

PARAMETER MUST BE FUNCTION IDENTIFIER

PARAMETER MUST BE FUNCTION OR SUBROUTINE ID

PARAMETER MUST BE SUBROUTINE IDENTIFIER

PARAMETER MUST BE ARRAY IDENTIFIER OR EXPRESSION

ARITHMETIC - LOGICAL CONFLICT ON STORE

ARR~YID MUST BE SUBSCRIPTED IN THIS CONTEXT

MORE THAN ONE MAIN PROGRAM

ONLY COMMON ELEMENTS PERMITTED

TOO MANY FILES

FORMAT OR NAMELIST TOO LONG

FORMAL PARAMETER MUST BE ARRAY IDENTIFIER

FORMAL PARAMETER MUST BE SIMPLE VARIABLE

FORMAL PARAMETER MUST BE FUNCTION IDENTIFIER

FORMAL PARAMETER MUST BE SUBROUTINE IDENTIFIER

FOR.'1AL PAR.~~1ETER ~1VST BE FV~CTIO~ OR SVBRODTIXE

DO OR IMPLIED DO INDEX MUST BE INTEGER OR REAL

085 ILLEGAL COMPLEX CONSTANT

086 ILLEGAL MIXED TYPE STORE

087 CONSTANT EXCEEDS HARDWARE LIMITS

088 PARAMETER TYPE CONFLICTS WITH PREVIOUS USE

089 COMPLEX EXPRESSION ILLEGAL IN IF STATEMENT

090 COMPLEX EXPRESSION ILLEGAL IN RELATION

091 TOO MANY FORMATS REFERENCED BUT NOT YET FOUND

092 VARIABLE ARRAY BOUND MUST BE FORMAL VARIABLE

D-J

ERROR
NUMBER

093

094

095

096

097

098

099

100

101

102

103

104

105

106
1 ,)"i
.i.. '-' I

108

109

110

III

112

113

114

115

116

117

118

119

120

121

122
"1 "-) ,')

-1.~.J

D-4

APPENDIX D (cont)

COMPILE TIME ERROR MESSAGES

ERROR MESSAGES

ARRAY BOUND MUST HAVE INTEGER OR REAL TYPE

COMMA OR RIGHT PARENTHESIS EXPECTED

ARRAY ALREADY GIVEN BOUNDS

ONLY FORMAL ARRAYS MUST BE GIVEN VARIABLE BOUNDS

MISSING LEFT PARENTHESIS IN IMPLIED DO

SUBSCRIPT MUST BE INTEGER OR REAL

ARRAY SIZE CANNOT EXCEED 32767 WORDS

COMMON OR EQUIV BLOCK CANNOT EXCEED 32767 WORDS

THIS STATEMENT ILLEGAL IN LOGICAL IF

REAL OR INTEGER TYPE REQUIRED

ARRAY BOUND INFORMATION REQUIRED

REPLACEMENT OPERATOR EXPECTED

IDENTIFIER EXPECTED

LEFT PARENTHESIS EXPECTED

ILLEGAL FOR~AL PAR~METER

RIGHT PARENTHESIS EXPECTED

STATEMENT NUMBER EXPECTED

SLASH EXPECTED

ENTRY STATEMENT CANNOT START PROGRAM UNIT

ARRAY MUST BE DIMENSIONED PRIOR TO EQUIV STMT

INTEGER CONSTANT EXPECTED

COMMA EXPECTED

SLASH OR END OF STATEMENT EXPECTED

FORMAT, ARRAY OR NAMELIST EXPECTED

END OF STATEMENT EXPECTED

10 STATEMENT WITH NAMELIST CANNOT HAVE 10 LIST

COMMA OR END OF STATEMENT EXPECTED

STRING TOO LONG

MISSING QUOTE AT END OF STRING

ILLEGAL ARRAY BOUND

TOO -r-1ANY HANGING BRANCHES

ERROR
NlJ""MBER

124

125

126

127

128

129

130

131

132

133

134

APPENDIX D (cont)

COMPILE TIME ERROR MESSAGES

ERROR MESSAGES

TOO MANY COMMON OR EQUIVALENCE ELEMENTS

ASTERISK EXPECTED

COMMA OR SLASH EXPECTED

DATA SET TOO LARGE

TOO MANY ENTRY STATEMENTS IN THIS SUBPROGRAM

DECIMAL WIDTH EXCEEDS FIELD WIDTH

UNSPECIFIED FIELD WIDTH

UNSPECIFIED SCALE FACTOR

ILLEGAL FORMAT CHARACTER

UNSPECIFIED DECIMAL FIELD

DECIMAL FIELD ILLEGAL FOR THIS SPECIFIER

ILLEGAL T It. UU"T
.L.I.M..J.J~.L.I

136 UNDEFINED NAMELIST

137 MULTIPLY DEFINED ACTION LABELS

138 TOO MANY NESTED DO STATEMENTS

139 STMT FUNCTION ID AND EXPRESSION DISAGREE IN TYPE

140 ILLEGAL USE OF STATEMENT FUNCTION

141 UNRECOGNIZED CONSTRUCT

142 RETURN, STOP OR CALL EXIT REQUIRED IN SUBPROGRAM

143 FORMAT NUMBER USED PREVIOUSLY AS LABEL

144 LABEL USED PREVIOUSLY AS FORMAT NUMBER

145 NON-STANDARD RETURN REQUIRES LABEL PARAMETERS

146 DOUBLE OR COMPLEX REQUIRES EVEN OFFSET

147 FORMAT PARAMETER ILLEGAL IN DATA STATEMENT

148 TOO MANY LOCAL VARIABLES IN SOURCE PROGRAM

149 A TSS SOURCE LINE MUST HAVE LESS THAN 67 COL

150 A TSS HOL OR QUOTED STRING MUST BE ON 1 LINE

151 THIS CONSTRUCT IS ILLEGAL IN TSS FORTRAN

152 ILLEGAL FILE CARD PARAMETER VALUE

SEQUENCE ERROR "n" < "p",
where n is the sequence number of the card image and
p is the sequence number of the previous card image.

D-5

APPENDIX E

OBJECT TIME ERROR TERMINATION MESSAGES

The following object time error termination messages may be gen

erated by FORTRAN compiled programs:

ARG .GT. MAX f (where f is CSIN or CCOS)

Imaginary component exceeds 158.

DATA STMT ERR

a. Too much or too little data for list.

b. Complex, double, or logical list element must correspond

with complex, double, or logical data.

DIV BY ZERO (job specifier), (terminal reference)

An object program performed a Divide operation using a zero

denominator; processing of the subject program was discontinued.

(job specifier) = (mix index) DS-ED

Processing of an object program was discontinued before

End-of-Job; the EOJ option was set.

(compiler name) / (program identifier) = (mix index) DS-ED

Compilation was discontinued before the compiler reached

End-of-Job; the TYPE EOJ option was set.

EOF NO LABEL (file designator) : (job specifier), (terminal
~~+'~~~~~~\
..L C..L C..L C~LvC/

An object program has reached the end of the designated file

and has not specified what is to be done; processing of the

program was discontinued.

E-l

EXPON OVRFLW (job specifier), (terminal reference)

An object program has performed an operation which caused an

exponent overflow to occur; processing of the program was

discontinued.

FLAG BIT (job specifier), (terminal reference)

An object program has performed an operation which caused a

word with a flag bit of 1 to be accessed as if it were an

operand; processing of the program was discontinued.

FRMT ERROR

a. Illegal character in format.

b. Unrecognizable format specification.

c. Required numeric field is not numeric.

d. Field width greater than 63.

e. Format specifies record longer than buffer.

INTGR OVRFLW (job specifier), (terminal reference)

An object program performed an operation which caused an in

teger overflow to occur; processing of the program was discon

tinued.

INVALD ADRSS (job specifier), (terminal reference)

An object program performed an operation which addressed a

memory location in an absent memory module or an address less

than 00512; processing of the program was discontinued.

INVALID ARG CONCAT

See appendix H.

INVALID EOJ

E-2

A STOP, CALL EXIT, or transfer of control statement was miss

ing from the mainline program, and an attempt was made to exe-

cute an END statement~

LIST SIZE ERROR

The number of elements in the list of a READ statement exceeds

the number of data items in the logical record.

NEGATIVE BASE XTOI

A**B, where A is negative and B is not an integer.

NEGTV ARGMNT LN (program specifier) (terminal reference)

A negative argument has been passed to the intrinsic which

computes the natural logarithm.

NEGTV ARGMNT SQRT (program specifier) (terminal reference)

A negative argument has been passed to the SQRT intrinsic.

NMLS'l' ERR

This error message can be generated during input only.

a. Illegal subscript on data card.

b. Too many or too few subscripts.

c. Illegal character encountered.

d. = missing.

e. or * missing after a constant.

f. Repeat count not an integer constant.

OPRTR DS-ED (job specifier), (terminal reference)

The system operator caused processing of a program to be dis-

continued through use of a DS message.

SELECT ERROR (file designator) : (job specifier), (terminal

reference)

An object program performed an 'invalid operation on the

designated file, e.g., rewinding a card reader.

the program was discontinued.

Processing of

E-J

STACK OVRFLW (job specifier), (terminal reference)

The operations performed by an object program have caused its

stack to overflow its limit; processing of the program has

been discontinued.

TYPE ERR

a. Exponent part in data contains non-digit after D, E, +,

or - (input only).

b. The data read- in using an I specification in a FORMAT

statement is either:

1) Greater than the maximum integer allowed (549755813887).
2) Double, real, or alpha.

c. The list element using a D specification in a FORMAT state

ment is not double precision (output only).

d. The list element using an E, F, or G specification in a

FORMAT statement is logical, integer, or double precision

(output only).

e. The list element using an L specification in a FORMAT

statement is not logical (output only).

ZERO ARGMNT LN (program specifier) (terminal reference)

An argument of zero has been passed to the intrinsic which

computes the natural logarithm.

ZERO MODULUS DMOD

DMOD(A,B), where B = O.

ZIP ERROR - IGNORED

E-4

This message is typed if a program performs a generalized ZIP

statement, but provides control information containing an

error. Occurrence of this message signifies that the error

was present and that all control information following and

including the error was ignored.

NOTE

For further information, refer to the

System Operation Manual.

E-5

APPENDIX F

BURROUGHS VERSUS USASI FORTRAN,
EXTENSIONS AND DIFFERENCES

Those extensions and differences listed below are based on a com

parison of Burroughs FORTRAN and USASI FORTRAN, as specified in the

document ASA X3.9-l966.

EXTENSIONS PERMITTED IN BURROUGHS FORTRAN.

The following extensions are permitted in Burroughs FORTRAN.

a. More than one statement per card is allowed.

b. The character set includes the quote sign (") .

c. The relational operators <, s" 1-, >, > are allowed in

place of their FORTRA.N mnemonics.

d. Hollerith constants may be used in assignment statements.

e. Theoretically, there is no limit to the number of dimen~

sions which can be declared for an array.

f. A subscript may be any integer or real arithmetic expres-

sion.

g. In the statement:

GO TO i , (kl ,k2 ' • · • ,kn)

i may be an integer or real variable.

h. In the statement:

GO TO(kl ,k2 ,··· ,k), i
n

i may be an integer or real arithmetic expression.

i. In the statement:

IF(l.e.) s

s may be any executable statement except a DO statement.

j. The terminal statement of a DO loop may be any executable

statement, with any implications invnlved assumed to be

understood by the programmer.

F-l

F-2

k. In the statement:

DO m i=n
l

,n
2

,n
3

i may be an integer or real simple variable.

n
l

,n
2

,n
3

may be integer or real arithmetic expressions.

n
l

and n
2

do not have to be greater than zero.

i,n
l

,n
2

, and n3 may be redefined within the range of the

DO statement, with any implications involved assumed to be

understood by the programmer.

1. CLOSE u; LOCK u; PURGE u.

m. In I/O and AUXILIARY I/O statements, u may be an arith

metic expression.

n. NAMELIST and NAMELIST I/O.

o. READ f,k; PUNCH f,k; PRINT f,k.

p. The intrinsics: TAN, COTAN, ARSIN, ARCOS, SINH, COSH, ERF,

GAMMA, ALGAMA, AND, OR, COMPL, EQUIV, CONCAT, TIME, DIV, MOD.

q. Random disk I/O.

r. Action labels.

s. Non-standard returns from subroutines.

t. Multiple entry points to subprograms.

u. Each of the two components of a complex constant may be

either real or integer.

v. Hollerith constants and literals may be enclosed in quotes.

w. The format specifications Ow and Tn.

x. The ability to have a subroutine recurse (call itself).

y. Labeled common blocks do not need to be the same length in

all subprograms.

z. Variables can be preassigned values in both labeled common

blocks and the unlabeled common region through the use of the

BLOCK DATA subprogram.

DIFFERENCE FROM USASI FORTRAN.

In the statements STOP n and PAUSE n, n is blank or an integer

constant of up to ~ digits.

F-J

G-l

CHAR.

Blank

[

(

<

-
&

$

*

)

;

<

/

%

1
..

I

@

>
>

+

A

B

C

D

E

F

G

SA

11

01

01

01

01

01

01

10

10

10

10
I 10
I

10

11

I 11

I 11

I 11

I 11

11

00

00

00

00

00

01

01

01

01

01

01

01

APPENDIX G

COLLATING SEQUENCE

CODES

INTERNAL CODE BCl CODE

I
I
I

8421

0000

1010

1011

1101

1110

1111

1100

1010

1011

1101

1110

1111

1100

0001

1010

1011

1101

1110

1111

1010

1011

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

OCTAL
CODE

60

32

33

35

36

37

34

52

53

55

56

57

61

72

73

75

76

n

12

13

15

16

17

20

21

I
I
II

I

SA

01

11

11

11

11

11

11

10

10

10

10

10

10

01

01

01

01

01

01

00

00

00

00

00

11

11

22 II 11
23 11

24

25

11

11

I

I

8421

0000

1011

1100

1101

1110

1111

0000

1011

1100

1101

1110 I
1111 I
0000 I

I

0001

1011 I
1100

1101 I
1110

1111

1011

1100

1101

1110

1111

1010

0001

0010 I
0011 I

0100

0101

0110 I
0111

CARD CODE

ZONE I NUM.

- I -
I

12 8-3

12 8-4

12 8-5

12 8-6

12 8-7

12 -

11 8-3

11 8-4

11 8-5
!

11
1

8 - 6

~ o
...J

11

w
U z ! 8 -7 I

I I~ 11 I -

0

0 8-3

0 8-4

0 8-5

0 8-6

0 8-7

1 8 - 3

8-4

8-5

8-6

18-7

12 I 0 I

12
I

1

12 I 2
I

12 I 3

12 4

12 5

12

I
6

12 7

C)
Z
t= «
...J
...J

o
U

::I:
C)

::I:

CHAR.
SA

H 01

I

I
01

x 10

I J I 10
I I

K 10

L 10
I

M I 10

N I 10

10 0 I

P
I

10

Q 10

R 10

I 11

S 111
I

T I 11 !

U 11

V 11

W 11

X 11

Y 11

Z 11

0 00

00

2 00

3 00

4 00

5 00

6 00

7 00

8 00

9 00

? 00

APPENDIC G (cant)

COLLATING SEQUENCE

INTERNAL CODE BCl CODE I

8421

1000

1001

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1100

0010

0011

0100

0101

0110

0111

1000

1001

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

OCTAL
CODE

30

31

40

41

42

43

44

45

46

47

50

51

74

62

63

64

I
I

I
i

SA

n
11

10

10

10

10

10

10

10

10

10

10

01

01

01

01

65 01

66 01

67 01

70 01

71 01

00 00

01 00

02 00

03 00

04 00

05 00

06 00

07 00

10 00

11 00

8421

1000

1001 I

1010 I
0001

I
0010

0011

01001

0101 I
____ i

UIIU I

0111 I
I
! 1000 I

1001 I
I

1010 I
0010 i

!

0011 I
0100

0101

0110

0111

1000

1001

1010

0001

0010

0011

"'00 I
VI I
0101 ,

0110

0111

1000

1001

CARD CODE

ZONE I NUM.

12 8

12 9

11 0

11 1

11 2 -

11 3

11 4

11 5

ii 6

11 7

11 8

11 9

0 8-2

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

0

2

3

A ..
5

6

7

8

9

1100 14 00 0000 I All OTHER
I CARD CODES

I

I
I

I
I
I

I
I

t
I

:I:
C>
:I:

G-2

APPENDIX H

BIT-MANIPULATION INTRINSICS

The FORTRAN compiler provides five intrinsics for use in bit

manipulation and masking. It is assumed that the programmer who

makes use of these intrinsics has a prior working knowledge of the

system. All five of these intrinsics permit access to all but the

left-most bit, bit zero, of a word.

AND.

This intrinsic logically ANDs bit numbers 1 through 47 of its two

arguments. The arguments remain unchanged.

The general form is:

AND(A,B)

where A and B are real arithmetic expressions.

Examples:

A subscript of 8 indicates an octal number.

Y=AND(S,T)

S

37777777777777778

12345670234567018

OR.

T

11111111111111118

32107654321076548

Y

11111111111111118

121056502200660°8

This intrinsic logically ORs bit numbers 1 through 47 of its two

arguments. The arguments remain unchanged.

The general form is:

OR(A,B)

where A and B are real arithmetic expressions.

H-1

Examples:

A subscript of 8 indicates an octal number.

Y=OR(S,T)

S

37777777777777778

12345670123456708

COMPLEMENT.

T

11111111111111118

32107654321076548

Y

37777777777777778

32347674323476748

This intrinsic returns the logical COMPLEMENT of its argument. The

argument remains unchanged.

The general form is:

COMPL(A)

where A is an arithmetic expression.

Examples:

A subscript of 8 indicates an octal number.

Y=COMPL(S)

S

37777777777777778

EQUIVALENCE.

Y

00000000000000008

25432107654321078

This intrinsic logically EQUIVALENCEs its two arguments. The

arguments remain unchanged.

The general form is:

EQUIV(A,B)

where A and B are real ari thmetic expressions. j

H-2

Examples:

V 1:j'flTT,,/ (c: IT' \
..L - .L:JIclU..LV u,J..)

S T

37777777777777778

12345670123456708

11111111111111118

32107654321076548

CONCAT.

y

11111111111111118

1753575357535753 8

The FORTRAN intrinsic CONCAT provides general bit-wise partial-word

manipulation. CONCAT is a REAL FUNCTION of the form:

0r\M011.'T' (II.."R. c::.l .c::.? M\ v \JJ." v.n....1. \.n... ,.J...J ,,...L ,....., '- , ... I

where:

a. A and B are integer or real arithmetic expressions;

b. Sl, S2, and N are integer arithmetic expressions;

c.

d.

e.

f.

g.

Sl

S2

N >

Sl

S2

> O· ,
> 0;

O· ,
+ N < 48;

+ N < 48.

If anyone of conditions (c) through (g) is not true, the object

program will be discontinued with an INVALID ARG CONCAT message.

When this function is called, first bit S2 of B is transferred to

bit Sl of A, then bit S2 + 1 of B is transferred to bit Sl + 1 of A,

and so forth, until N bits have been transferred. In other words,

starting with bit S2 of B and moving to the right, each successive

hit is transferred to A, starting with bit 81 of A, until N bits

have been transferred. A, B, Sl, S2, and N remain unchanged after

the operation unless they are to the left of the replacement

operator (=) in the statement referencing CONCAT.

Although there are 48 bits in a word, numbered 0 through 47, bit

number 0 cannot be accessed by using CONCAT.

H-3

Example 1:

IWORD=64
JWORD=l
IBIT=46
JBIT=47
N=l
X=CONCAT(IWORD,JWORD,IBIT,JBIT,N)

bit 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

IWORD
(before and after) x

X
(after)

bit 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

o 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

~IIIIIIIIIII~~
Example 2:

DATA IWORD,JWORD,IBIT,JBIT,N/~777,~1111,39,36,6/

JWORD=CONCAT(IWORD,JWORD,IBIT,JBIT,N)

H-4

KOF=CONCAT(O,1750,24,36,12)

KOF
(after)

Example 4:

bit

INTEGER BIT

A=24.0E+O
BIT=42
A=CONCAT(A,12,38~BTT,6)

H-5

H-6

A
(before)

A
(after)

bit 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

[X
~

bit 18 21 24 2

APPENDIX I

PRT CONTENTS OF A FORTRAN OBJECT PROGRAM

R + 0
1
2

3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50

EEEEEEEE
Used by . LABEL.
500000000
FPB
SD
BC
AIT
MSCW
INCW
COM/PRL
R + 0, Stack
OWNARRAY description
ALGOL WRITE
ALGOL READ
ALGOL FILE CONTROL
o
BLOCKCTR
JUNK
BASENSIZE
LISTRTN
CLASN
HOLTOG
Powers of Ten
21 word ARRAY for any formatted
output and for use by ZIP

ERR
SQRT
ARSIN
EXP
SIN
ALOG
TAN
ATAN
GAMMA
DATAN
DCOS
DSIN
ATAN2
CABS
DMOD
DEXP
DSQRT

I-I

APPENDIX J

TIME-SHARING FORTRAN

This appendix describes capabilities of FORTRAN compilers equipped

for time-sharing.

For Source Programs compiled/executed from the card reader:

$TSSEDIT Option.

This option causes the compiler to print diagnostic messages when

ever a source statement contains a construct{s) which would elicit

a syntax error if the source statement were compiled from the term

inal. These constructs are:

a. The PAUSE statement.

b. Formal subprograms.

c. Hollerith or quoted strings extended from one line to

another.

Also, the ZIP construct is not reserved in Time-Sharing FORTRAN.

If the $NEW TAPE option accompanies the $TSSEDIT option, the format

of the new symbolic file will be the "REMOTE FREE FIELD" format

(see page J-4). This Source File Editing option, when used with a

disk file label-equate, allows the user to automatically prepare a

card or tape source program or subprogram for remote terminal usage.

$SEQXEQ Option.

A program compiled under this option will cause Run-Time terminating

errors (e.g., Div by Zero, Invalid Index) to reference the sequence

number of the source line containing the terminating construct, in-

stead of its segment/address. Note that this option has meaning only

if it precedes the first executable statement. It may not be reset.

File Unit REMOTE.

See page J-2 for a description of the File Unit REMOTE.

J-l

APPENDIX J (cont)

If in an object program an I/O statement using a REMOTE File Unit is

executed, the program will be DR-ED with a nCTU NOT ASSIGNED message.

The REMOTE Unit designation has legitimate meaning only for programs

executed from the terminal. (Of course, the REMOTE unit designation

may be used in source programs compiled to the library from a card

reader.)

For Source Programs compiled/executed from the terminal:

$TSSEDIT Option.

This option causes the compiler to consider the format of the

source file to be the ordinary restricted field format. The option

is treated as any other $OPTION, and must be renewed on each $

Control Card (if renewal is desired). This option may be thought of

as TURNING OFF the Remote Free-Field format. Note, however, that

the source line may not exceed 66 columns.

$ERRMES Option.

Ordinarily, compilation syntax errors elicit the message "ERR#nnn @

mmmmmmmm: nnnnnn", where nnn is the error number, mmmmmmmm is the

line number (see $SEQXEQ Option, page J-l), the nnnnnn is the erro

neous construct; use of this option will cause the compiler to

print a description of the error next to nnnnnn.

$LIST Option.

This is the familiar $LIST option. However, unlike card/tape input

compilations, this option is initially set to OFF when compiling from

a terminal. Use of the option from a terminal provides a line printer

listing of the compilation, and each listed line of terminal file will

be flagged with a D in column 82.

File Uni't REMOTE.

Use in a source program of a file card containing UNIT=REMOTE will

cause relevant I/O statements to reference the terminal from which the

source program was compiled and/or executed. No buffer or blocking

information is required and, if provided, it will be ignored.

J-2

APPENDIX J (cont)

New Meaning for the PRINT Statement and the READ Statement Without

an Input Unit.

Ordinarily, the PRINT statement references the line printer, and the

READ statement without a unit designator ref"erences a file labeled

READER. In Time-Sharing FORTRAN, however, source programs compiled

from the terminal will by default have their PRINT and READ state

ments reference the terminal from which the associated object program

is executed. If this effect is undesired, use of the new option

$ONSITE at compile time restores the statement references to their

ordinary meaning.

Use of the new option $REMOTE causes source programs compiled from

the card reader to have their PRINT and READ statements reference

the terminal from which the associated object program is executed.

Note that using $REMOTE from the terminal merely re-initiates the

(unordinary) default file references, and that using $ONSITE from

the card reader merely' re-ini tiates the ordinary file reference.

Also, note that these two new $ options have meaning only if they

precede the first executable statement, and they will be ignored if

'placed anywhere else.

General Observations.

FORTRAN programs written, compiled, and executed from the terminal

will normally:

a. Be written in REMOTE FREE-FIELD format (see page J-4).

b. Not contain constructs indicated on page J-l under $TSSEDIT

option) "

c. Have r/o statements wi th a Uni t Number n, 1,yhere n is defined

in a file card of the form:

FILEbbn=FILEN,UNIT=REMOTE

or use the PRINT and READ statements (which by default

reference the user's terminal).

J-J

APPENDIX J (cont)

d. Have their compilation and execution errors printed on

the terminal and referencing a line number.

e. Not produce any line printer compiler output.

FORTRAN REMOTE FREE-FIELD FORMAT (Time-Sharing).

Ordinarily, FORTRAN retains special meaning for columns 1, 1-5, 6,

and 7-72. However, in Time-Sharing FORTRAN, these special meanings

are abandoned, and the following conventions are used (assuming that

$TSSEDIT is not used, see page J-2). Note that column 1 refers to

the first column following the sequence number.

J-4

a. Continuation cards contain a minus (-) in column 1, and the

card text starts in the first non-blank column or in column

7, whichever comes first.

b. Comment cards contain a C in column 1, a minus (-) in

column 2, and the comment starts in column 3.

c • Label~ may be a maximum of five columns

imbedded blanks (imbedded blanks do not contribute to the

value of the label but do count in the five column limita-

t ion) . A non-blank non-numeric character, or the seventh

column after the start of the label, ends the label and

starts the card text. A label may be separated from the

sequence number by any number of blanks.

(b represents blank):

SEQ#

lOOObbb ... bblA=B

2000bbb ••• bblb2b3b!=B

3000bbb ... bblb3bbb£A=B

4000bbb •.. bb123 45!=B

For example,

In the above examples, the underlined character is the first

character of the card text, and the labels have, respective

ly, the values 1, 123, 13, and 12345.

APPENDIX J (cant)

d. File cards must start in column 1, therefore, the word

FILEbb starting in column 1 is reserved in REMOTE FREE

FIELD format.

e. Dollar-sign control cards contain a $ in column 1 and

control information in columns 2 through 72.

f. For all other cards, the card text starts with th~ first

non-blank character.

g. Only 66 columns of card text (see paragraphs a, c, and f

above) are allowed. Additional text will elicit syntax

error #149 (A TSS SOURCE LINE MUST HAVE LESS THAN 67 COLS.).

FORTRAN LIMITED FREE-FIELD READ.

The characteristics of a limited free-field READ in the compiler is

as fol101--1S:

a. The free-field READ is indicated by a slash (/), and

replaces the format statement number in the READ statement~

b. All blanks in the data field are ignored.

c. Only numerical or logical statements are acceptable to the

compiler.

d. Commas (,) are used as delimiters.

e. "TRUE" or 1, and "FALSE" or 0 represent that particular

condition in a logical data field.

f. Double precision is permitted, but only the most significant

half is transmitted. This means that double precision is

treated as a single precision constant.

g. If a parity branch appears in a READ statement, a type

error will cause that branch to be taken.

J-5

h. The free-field READ condition is terminated when either a

list is exhausted, or an End-of-File is encountered.

Examples:

J-6

READ /, A, B, C, D

5.4, bb3. 572, .95E+03, 5. 39E-04

LOGICAL X,Y

READ /, C, D, X, Y

4 . 9 , . 039 , " TRUE", 1 , 5

LOGICAL A, B, C, D

READ (5, /) A, B, C, D

0, "TRUE", "FALSE", 1

READ(l,/, END=50, ERR=6) c, D

5.4E+06, .095

Action Label, 7-2, 7-7

Actual Argument, 3-2

Actual Parameters, 5-9, 5-10,
5-11, 6-9, 8-3, 8-5, 8-6, A-l

Alphanumeric, A-l

AND, 3-5, H-l

Area Option, 7-49, 7-50

-ARG .GT. MAX f, E-l

Argument, Actual, 3-2

Arguments, Dummy, 8-1,

Arithmetic Assignment
Statement, 4-1

Arithmetic Expression,

8-2

3-1

Arithmetic IF Statement, 5-4

Arithmetic Operators, 3-1

Array, 2-8, 2-9, 6-2, 7-1, 7-27

Array Subroutine Transfer, 8-8

Array, Format In, 7-27

ASSIGN Statement, 4-3, 5-3

Assigned GO TO Statement, 4-3,
5-3

Assignment Operator, 4-2, A-l

Assignment Statement,
Arithmetic, 4-1

Assignment Statement,
Logical, 4-2

Auxilairy I/O Statement, 7-8

Aw, 7-22, 7-23

BACKSPACE Statement, 7-9, 7-10

BCL, 2-2, A-l

Bit-Manipulation
Intrinsics, H-l

Blanks, Significance of, 1-1,
1-2, 2-2, 7-13

BLOCK DATA Statement, 6-4, 6-13,
8-5, 8-7, 8-13

BLOCKING, 7-48, B-3

Bounds, Subscript, 2-8, r ...
0-.1.

INDEX

BUFFERing, 7-49, B-4

CALL EXIT Statement, 5-8

CALL Statement, 5-10, 8-10

CALL ZIP Statement, 5-11

Cards, Change, 1-2

Cards, Comment, 1-1, 1-3

Cards, Continuation, 1-2, 1-3, B-4

Cards, Dollar Sign, 1-1, 1-4, C-l

Cards, FILE, 7-48, 7-49, 7-50,
B-1, C-l

Cards, Patch, C-1

Cards, Program, 1-1

car~e Control, 7-28, 7-29

Change Cards, 1-2

Character Set, 2-1

Character String, 2-6, 7-23, 7-24,
7-25

CHECK Option, C-5

CLOSE Statement, 7-10

Collating Sequence, G-l

Comment Cards, 1-1, 1-3

COMMON Statement, 2-8, 6-1, 6-3,
6-8, 6-13, 8-4, 8-7, 8-12, 8-13

Compile Time Error Messages, D-l

COMPLEMENT Intrinsic, H-2

Complex Constant, 2-5

Complex Variable, 2-7, 6-4

Computed GO TO Statement, 5-2

CONCAT Intrinsic, H-3

Constant, Complex, 2-5

Constant, Double Precision, 2-3,
2-4

Constant, Hollerith, 2-6, 5-10,
8-5, 6-13

Constant, Integer, 2-3

Constant, Logical, 2-6

one

INDEX (cont)

Constant, Real, 2-3

Constants, 2-2

CONTINUE Statement, 5-7

Continuation Cards, 1-2, 1-3,
1-4, B-4

Control, Carriage, 7-28, 7-29

Control Statement, 5-1

DATA Statement, 2-8, 6-12, 8-4,
8-7, 8-12, 8-13

-DATA STMT ERR, E-l

DEBUGN Option, C-3

Deck Set-Up, 1-5

Declarative (Non-Executable)
statement, 6-1

Default Descriptions, File, B-1

Differences From USASI
FORTRAN, F-3

DIMENSION Statement, 2-8, 6-1,
6-3, 6-13, 8-13

Dimensions, Variable, 5-10, 6-2,

Disk File, Random, 7-4,

Disk File, Serial, 7-4,

Disk I/O, 7-49

Disk Unformatted Output,

Disk I/O, Random, 7-51

Disk I/O, Serial, 7-50

-DIV BY ZERO, E-l

DO Loop, Implied, 7-6

DO Statement, 5-5

7-5, 7-6

7-5

7-41

Dollar Sign Card Options, C-2

Dollar Sign Cards, 1-1, 1-4, C-l

Double Precision Constant, 2-4

Double Precision Variable, 2-7,
6-4, 7-18

Dummy Arguments, 8-1, 8-2

Dw.d, 7-18, 7-26

End-of-File Condition, 7-7

END Statement, 1-2, 1-3, 8-5, 8-7

ENDFILE Statement, 7-10

Entry Points, Multiple, 8-10

ENTRY Statement, 8-11

-EOF NO LABEL, E-l

EQUIVALENCE Intrinsic, H-2

EQUIVALENCE Statement, 6-4, 6-7,
8-4, 8-7, 8-13

Error Messages, Compile Time, D-l

Error Termination Messages,
Object Time, E-l

Ew.d, 7-16, 7-17, 7-18, 7-26

Executable Program, A-I

Executable Statement, 2-8, A-I

-EXPON OVRFLW, E-2

Exponent, A-I

Expression, 3-1, A-I

Expression, Arithmetic, 3-1

Expression, Logical, 3-4, 4-2

Extensions Permitted in Burroughs
FORTRAN, F-l

External Function, 8-3, 8-5

EXTERNAL Statement, 6-11, 8-2,
8-12

Field, Hollerith, 2-2, 7-23,
7-24, 7-25

FILE Card Format, B-1

FILE Card Options, B-2

FILE Cards, 7-48, 7-49, 7-50,
B-1, C-l

FILE Default Descriptions, B-1

FILE Specifier (Unit Number), 7-1

File, Random, 7-1, 7-51

Fixed-Point, A-I

-FLAG BIT, E-2

Floating-Point, A-I

Formal Parameters, 5-9, 5-10,
5-11, 8-3, 8-5, 8-6, 7-1, A-I

two

INDEX (cont)

Format, FILE Card, B-1

Format In Array, 7-27

Format Specifier, 7-1, 7-2, 7-4,
7-5

FORMAT Statement, 7-1, 7-2, 7-4,
7-12, 7-23, 7-27, 7-29

Formatted Output Statements, 7-4,
7-l2, 7-27, 7-29, 7-32

Free Field Format, 1-1

Free Field Read, J-5

-FRMT ERROR, E-2

Function, External, 8- J, 8-5

Function, Intrinsic, 8-2

Function Reference, 3-2, 3-4

FUNCTION Statement, 8-1, 8-2

Function, Statement, 8-1, 8-2

Function Subprogram, 8-1

Gw.d, 7-11, 7-26

GO TO Statement, 5-1

GO TO Statement, Assigned, 4-3,
5-3

GO TO Statement, Computed, 5-2

GO TO Statement, Uncon-
ditional, 5-1

HOL Option, c-4

Hollerith Constant, 2-6, 5-10,
8-5

Hollerith Field, 2-2, 7-23,
7-24, 7-25

wHs; 7-23; 7-24, 7-25

Identification, B-2

IF Statement, 5-4

Implied DO Loop, 7-6

Index, Invalid, 5-2, 5-3

Input Statement, 7-1, 7-6

Input Statements,
Formatted, 7-2, 7-27, 7-29

Input Statements,
Unformatted, 7-3

Integer Constant, 2-3

Integer Variables, 2-7, 7-13

-INTGR OVRFLW, E-2

Intrinsic Function, 8-2

Intrinsics, Bit Manipulation, B-1

-INVALID ADRSS; E-2

-INVALID ARG CONCAT, E-2

-INVALID EOJ, 1-3, E-2

Invalid Index, 5-2, 5-3

I/O, Disk, 7-33, 7-49

I/O, List, 7-2, 7-6, 7-29, 7-30

I/O, Random Disk, 7-51

I/O, Serial Disk, 7-50

I/O, Tape, 7-33

Iw, 7-13, 7-14

Label, Action, 7-2, 7-7

Label, Statement, 1-1, 1-2

LIST Option, C-2

List, I/O, 7-2, 7-6, 7-29, 7-30

-LIST SIZE ERROR, E-3

Literal String, 7-25

LOCK Statement, 7-11

Logical Assignment Statement, 4-2

Logical Constant, 2-6

Logical Expression, 3-4, 4-2

Logical IF Statement, 5-4

Logical Operators, 3-4, 3-5

Logical Quantity, 3-4

Logical Variable, 2-7, 3-4, 7-21

Loop, Implied DO, 7-6

Lw, 7-21, 7-22

Main Program, A-2

Mantissa, A-2

three

INDEX (cant)

MCP, ix, A-2

Multiple Entry Points, 8-10

-NAMELIST Statement, 7-1, 7-2,
7-4, 7-30

-NEGATIVE BASE XTOI, E-3

-NEGTV ARGMNT LN, E-3

-NEGTV ARGMNT SQRT, E-3

NEW or NEW TAPE Option, C-3

-NMLST ERR, E-3

NOSEQ Option, c-4

Non-Executable (Declarative)
Statement, 1-2, 6-1, A-2

Nonstandard Return, 8-10

NOT, 3-5

Number, Sequence, 1-2, 1-3, B-2
C-l, C-2

Object Program, PRT Contents of
a FORTRAN, I-I

Object Time Error Termination
Messages, E-l

Octal (DATA stmnt) , 7-20

Operator, Assignment, 4-2, A-I

Operators, Arithmetic, 3-1

Operators, Logical, 3-4, 3-5

Operators, Relational, 2-2

-OPRTR DS-ED, E-3

Option, AREA, 7-49, 7-50

Option, RANDOM, 7-51

Option, SERIAL, 7-50

Options, Dollar Sign Card, C-2

Options, FILE Card, B-2

Options, Time-Sharing, J-l

OR, 3-5, H-l

Output Statement, 7-4, 7-6

Output Statements, Formatted,
7-l2, 7-27, 7-29, 7-32

7-4,

Output Statements, Unformatted,
7-3, 7-5, 7-33, 7-41

Ow, 7-20, 7-21

nP (Scale Factor), 7-17, 7-26,
7-29

Parameters, Actual, 5-9, 5-10,
5-11, 6-11, 8-3, 8-5, 8-6, A-I

Parameters, Formal, 5-9, 5-10,
5-11, 8-3, 8-5, 8-6, 8-10, A-I

Parity Condition, 7-7

Patch Cards, C-l

PAUSE Statement, 5-8

Precedence, 3-2, 3-4

Primary, A-2

Program Cards, 1-1

Program, Executable, A-I

Program, Main, A-2

Program Unit, A-2

PRT Option, A-2, C-3

PRT Contents of a FORTFAN
Object Program, I-I

PURGE Statement, 7-12

Quantity, Logical, 3-4

Random Disk File, 7-4, 7-5, 7-6

Random Disk I/O, 7-51

Random File, 7-1, 7-51

Random Option, 7-51

Random Record Number, 7-1, 7-3,
7-5

Read, Free-Field, J-5

Real Constant, 2-3

Real Variable, 2-7, 7-14, 7-16

Record Number, Random, 7-1, 7-3,
7-5

Record Control Words, 7-34

four

INDEX (cont)

Recurse, 8-4, 8-7

Reference, A-2

Reference, Function, 3-2, 3-4

Relation, 3-4, 3-5

Relational Operators, 2-2

Remote Free-Field Format
(Ti~e Sharing), J-4
Repeat Count, 7-29

Restricted Field Format, 1-1

Return, Nonstandard, 8-10

RETURN Statement, 5-9, 8-4, 8-5,
8-7

REWIND Statement, 7-9

Scale Factor, 7-17, 7-26, 7-29

-SELECT ERROR, E-3

Semicolon, 1-2, 2-2

SEQ f s i Option, c-4

Sequence, Collating, G-l

Sequence Number, 1-2, 1-3,
C-l, C-2

Serial Disk File, 7-4, 7-5
Serial Disk I/O, 7-50

SERIAL Option, 7-50

SGL or SINGLE Option, C-2

B-2,

Significance of Blanks, 1-2, 2-2,
7-13

Simple Variable, 2-7

Slash, 7-28

Specifier, File (Unit Number),
7-1

Specifier, Format, 7-1, 7-2, 7-4,
7-5

SPO, 5-8, A-2

-STACK OVRFLW, E-4

Statement, Arithmetic
Assignment, 4-1

Statement, Arithmetic IF, 5-4

Statement, ASSIGN, 4-3, 5-3

Statement, Assigned GO TO, 4-3
5-3

Statement, Auxiliary I/O, 7-8

Statement, BACKSPACE, 7-9, 7-10

Statement, BLOCK DATA, 6-4, 6-13,
8-5, 8-7, 8-13

Statement, CALL, 5-10, 8-10

Statement, CALL EXIT, 5-8

Statement, CLOSE, 7-10

Statement, COMMON, 2-8, 6-1, 6-3,
6-7, 6-l3~ 8-4, 8-7, 8-12, 8-13

Statement, Computed GO TO, 5-2

Statement, CONTINUE, 5-7

Statement, Control, 5-1

Statement, DATA, 2-8, 6-12, 8-4,
8-7, 8-12, 8-13

Statement, DIMENSION, 2-8, 6-1,
6-3, 6-13

Statement, Declarative
(Non-Executable), 6-1

Statement, DO, 5-5

Statement, END, 1-2, 1-3, 8-5,
8-7

Statement, ENDFILE, 7-10

Statement, ENTRY, 8-11

Statement, EQUIVALENCE, 6-4, 6-7,
8-4, 8-7, 8-13

Statement, Executable, 2-8, A-I

Statement, EXTERNAL, 6-11, 8-2,
8-10

Statement, FORMAT, 7-1, 7-2~ 7-4~
7-12, 7-23, 7-27, 7-29

Statement Function, 8-1, 8-2

Statement, FUNCTION, 8-3, 8-5,
8-7, 8-10

Statement, GO TO, 5-1

Statement, IF, 5-4

Statement, Input, 7-1, 7-6

five

INDEX (cont)

Statement, Label, 1-1, 1-2

Statement, LOCK, 7-11

Statement, Logical Assignment,
4-2

Statement, Logical IF, 5-4

Statement, NAMELIST, 7-1, 7-2.
7-4, 7-30

Statement, Non-Executable
(Declarative), 6-i, A-2

Output, 7-4, 7-6

PAUSE, 5-8

PURGE, 7-12

TAPE or CARD Option, C-2

TIME Option, C-5

Time-Sharing FORTRAN, J-l

Tn, 7-25

TRACE Option, C-3

-TYPE ERR, E-4

Type Statement, 2-7, 2-8, 6-1,
6-3, 6-10, 6-13, 8-13

Unconditional GO TO Statement,
5-1

Statement,

Statement,

Statement,

Statement,
8-7

RETURN, 5-9, 8-4, 8-5,

Unformatted Disk Output, 7-JJ

Examples Of, 7-41

Unformatted Output Statements,
7-3, 7-5, 7-J3 Statement,

Statement,

Statement,
8-7, 8-10

REWIND, 7-9,

STOP, 5-8

Subroutine,

7-51

8-5, 8-6,

Statement, Type, 2-7, 2-8, 6-1,
6-3, 6-10, 6-13, 8-11

Statement, Unconditional GO TO
TO, 5-1

STOP Statement, 5-8

String, Character, 2-6, 7-23,
7-24, 7-25

String, Literal, 7-25

Subprogram, 8-1, A-2

Subprogram, Function, 8-1

Subprogram , Subroutine, 8- 6

Subroutine Statement, 8-5, 8-6,
8-7, 8-10

Passing Data, 8-8

Subroutine Subprogram, 8-6

Subscript Bounds, 2-8, 6-1

Subscripted Data Transfers, 8-8

Subscripted Variable, 2-8, 5-11

Subscripts, 2-7, 2-8, 5-11

Unformatted Tape Output, 7-JJ,

Examples Of, 7-35

Unit Number (File Specifier), 7-1

Use of Single Precision Const~~ts
in Double Precision Statements,
2-5

USASI, ix, ?--l

USASI FORTRAN, Difference From,
F-J

Variable, Complex, 2-7, 6-4

Variable Dimensions, 5-10, 6-2

Variable, Double Precision, 2-7,
6-4, 7-18

Variable, Integer, 2-7, 7-lJ

Variable, Logical, 2-7, J-4, 7-21

Variable, Real, 2-7, 7-14, 7-16,
7-19

Variable, Simple, 2-7

Variable, Subscripted? 2-8, 5-11

Variables, 2-7
VOID n, C-5

six

nX, 7-25

-ZERO ARGMNT LN, E-4

-ZERO MODULUS DMOD, E-4

ZIP Error - Ignored, E-4

ZIP Statement, CALL, 5-11

INDEX (cant)

seven

• I
I
I
I
I

• • • I

0>
C • o •

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: B 5700 Information Processing Systems
FORTRAN Compiler

Reference Manual

CHECK TYPE OF SUGGESTION:

DADDITION DbElETION DREVISION

FORM: 1051182

DATE: 1-71 -------

DERROR

- ~,--

~ I GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:
:l
u

FROM: NAME
TITLE
COMPANY __________ _

ADDRESS

DATE ______ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

---~.------------------~--~-----

attn: Sales Technical Services
Systems Documentation

BUSINESS REPLY MAll
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

---~~~~~--------------------

FOLD UP FIRST FOLD UP

I
I
I
I

I
I
t

~'t'herever There's
's]3l.1rrollgh,s

051182 -71 Prilted 'n S ArrH~l'ica

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	I-01
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	replyA
	replyB
	xBack

