
Information­

Processi ng Systems

Burroughs
B 5500

INFORMATION PROCESSING SYSTEMS

Printed in U. S. America

COMPATIBLE ALGOL
REFERENCE MANUAL

Burroughs Corporation
Detroit, Michigan 48232

5.Q9 1038643

ii

COPYRIGHT© 1968, 1969 BURROUGHS CORPORATION

AA32499

This manual contains material from
"Burroughs B 5500 Information Processing Systems Extended ALGOL Reference Manual"

COPYRIGHT @1966, 1964, 1962 BUP.ROUGHS COR.DORATION

AA596952 AA739491

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con­
sequences arising out of the use of this material. The infor­
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

SECTION

1

2

J

TABLE OF CONTENTS

TITLE

INTRODUCTION

STRUCTURE OF THE LANGUAGE.

General •

Conventions Used in the Description
of the Language •

Character Set ,

BASIC COMPONENTS: BASIC SYMBOLS,
IDENTIFIERS, NUMBERS, AND STRINGS.

General •

Delimiters.

Spacing.

The Use of Comments.

Basic Components.

Identifiers •

Numbers •

Size Limitations of Numbers.

Strings •

Constituents and Scopes.

Values and Types.

GENERAL COMPONENTS .

General •

Variables •

Simple Variables •

Subscripted Variables.

Number of Subscripts •

Evaluation of Subscripts •

File Designators.

Switch File Designators.

Format Designators.

Switch Format Designators.

List Designators.

Switch List Designators.

PAGE

• ix

· 1-1

· 1-1

• 1-2

· l-J

• 2-1

• 2-1

• 2-1

• 2- J
• 2-4

• 2-4

• 2- 5

• 2- 6

· 2-7

• 2-8

· 2-9

· 2-9

· J-l
· J-l
· J-l
• J-2

· J-J
· J-J
· J-3

· J-J
· J-4

· J-5

· J-5

· J-6

· J-6

iii

SECTION

3 (cont)

I

4

iv

TABLE OF CONTENTS (cont)

TITLE

Function Designators.

Standard Functions.

Time Functions.

MAX and MIN Functions •

Type Transfer Functions .

EXPRESSIONS.

General •

Arithmetic Expressions.

Simple Arithmetic Expressions.

Primaries • •

Concatenation. •

PAGE

· · 3-7
· 3- 8

· • 3- 9
· 3-10
· 3-11

· 4-1
· 4~1

· 4-1
· 4-4

· 4-4
· 4-4

Conditional Arithmetic Expressions •• 4-6
Operators and Types ••

Arithmetic Operators.

Arithmetic Expression Types .

Precedence of Operators.

Boolean Expressions •

Simple Boolean Expressions

Concatenation. •

Boolean Primary. •

Conditional Boolean Expressions.

Types.

· 4-7
· 4-8

· 4-8

· 4-9
· 4-10

· 4-13
· 4-13
· 4-14

. . 4-15

· 4-16
Relational and Logical Operators ••• 4-16

Relational Operators. • 4-16
Logical Operators •

Precedence of Operators.

Designational Expressions •

Simple Designational
Expressions •

Conditional Designational
Expressions •

Pointer Expressions • •

Pointer Designators;

· 4-16

· 4-17
· 4-17

· 4-18

· 4-19
· 4-20

4- 2J

SECTION

5

6

TABLE OF CONTENTS (cont)

TITLE

PROGRAMS, BLOCKS, AND COMPOUND STATEMENTS.

General •

STATEMENTS .

General .

Nested Blocks •

Disjoint Blocks •

Unlabeled Conditional Statements.

Unlabeled Unconditional Statements.

Go To Statement •

Procedure Statement •

Do Statement.

Case Statement.

Assignment Statement.

Types.

Iteration Clause.

String Transfer Statements.

I/O Statements.

Read Statements •

Free-Field Data.

Logical Values.

Space Statements.

Write Statements.

Rewind Statements •

Lock Statements •

Close Statements.

Fault Statement.

Zip Statement •

Label Equation Statement.

Edit and Move Statement.

Disk I/O Statement.

Disk Read Statement •

Disk Write Statement.

Disk Read Seek Statement.

PAGE

· 5-1

· 5-1

· 5-3
· 5-3

· 6-1

• 6-1

• 6-2

· 6-2

• 6- 3

• 6- 3

· 6-4

· 6- 5

· 6-6

· 6-7
· 6-8
" 6-11

· 6-15

• 6-16

· 6-19

· 6-21

• 6-23

· 6-24

· 6- 26

· 6- 27

• 6-27
· 6-29

· 6- 31

· 6- 32

• 6- 35
· 6-36

· 6-37

· 6-39
O
£ 1.1""\

-'-tv

v

SECTION

6 (cant)

7

vi

TABLE OF CONTENTS (cant)

TITLE

Disk Space Statement.

Disk Rewind Statement •

Disk Close Statement ••

Disk Lock Statement •

Search Statement •••

Fill Statement •••

Row Designator.

Value List ••.

Sort Statement.

Merge Statement

DECLARATIONS .

General .

Type Declarations

Local or OWN.

Type •.

Label Declarations.

Array Declarations.

Save Arrays •

Local or OWN.

Type.

Bound Pair List .

Pointer Declarations.

Switch Declarations.

Evaluation of Expressions in
the Switch List. • •.•

Influence of Scope .

Define Declarations and Invocations •

Nesting of Definitions ...

Forward Reference Declaration •

I/O Declarations.

File Declarations .

Switch File Declarations.

Format Declarations .

PAGE

· 6-42
· 6-42
· 6-43

. . 6-43

· 6-44
· 6-45
· 6-46
· 6~46

· 6-47
· 6-52

· 7-1
· 7-1
· 7-2
· 7-3
· 7-3
· 7-3
· 7-4
· 7-5
· 7-5
· 7-6
· 7- 6

· 7-6
7-7

· 7-8

· 7-8

· 7-9
· 7-12
· 7-13
· 7-14
· 7-14
· 7-22
· 7-23

SECTION

7 (cont)

8

TABLE OF CONTENTS (cont)

TITLE PAGE

Input Editing Specifications ••• 7-25
Input Editing Phrases •••••• 7-25
Output Editing Specifications •• 7-30
Output Editing Phrases. •• • 7-30
The Meaning of the Symbol / ••• 7-36

Switch Format Declarations. ~ ~ 7-37
List Declarations . • • •

Switch List Declarations .•

Monitor Declarations •••

Monitor List Elements

Dump Declarations . • • • • •

Dump List Elements ••.

Fault Declarations.

PROCEDURE DECLARATIONS •

General •
Procedure Heading •

Procedure Body. •

Scope of Identifiers other than
Formal Parameters • • • • • • • •

Special Rules of Typed Procedures •

· 7-38
· 7-39
· 7-40

'1-uO , .-

· 7-42
· 7-43

. . . 7- 44

. . 8-1

• 8-1

~ 8-4
8-5

• 8- 5

· 8- 5

APPENDIX A - RESERVED WORDS • • · A-I

APPENDIX B - INTERNAL CHARACTER CODES .

APPENDIX C - COMPILER ERROR MESSAGES ••

INDEX • • • . • . . •

LIST OF ILLUSTF_~TIONS

FIGURE TITLE

. .
· B-1

• C-l

• one

PAGE

6-1 Format for Control Deck on Disk •.••••••• 6-33

vii

I

TABLE

3-1

4-1

4-2
4-3

4-4

4-5
6-1
6-2

7-1

7-2

7-3

7-4

viii

LIST OF TABLES

TITLE

Results of Different TIME Parameters.

Represented Values of Primaries in
Arithmetic Expression.

Meaning of * .
Types of Values Resulting from an
Arithmetic Operation.

Values Represented by Primaries in
a Boolean Expression .

Logical Operators Truth Table.

Program Errors for Fault Types •

Values for Output Media Digit.

Characteristics of Types of Input
Editing Phrases.

Boolean Values for Various Field Widths
in Input Editing Phrase.

~haracteristics of Types of Output
Editing Phrases.

Boolean Values for Various Field Widths
in Output Editing Phrase .

NOTE

The various elements of Compatible ALGOL

are discussed in paragraphs labeled Syntax,

Semantics, and Restrictions immediately

following each pertinent subject heading.

To avoid needless repetition, these sub-

ordinate headings were omitted from the

Table of Contents.

PAGE

· 3-10

· 4- 5

• 4-8

· 4-9

· 4-14
· 4-16
· 6-30

· 6-35

· 7-26

· 7-28

· 7-32

· 7-34

INTRODUCTION

Burroughs B 5500 Compatible ALGOL is based on the definitive "Re­

vised Report on the Algorithmic Language ALGOL 60" (Communications

of the ACM, Vol. 6, No.1; January, 1963). This manual describes

the ALGOL language implemented by the B 5500 Compatible ALGOL

Compiler. Compatible ALGOL represents a subset of B 6500 Extended

ALGOL and should be useful for facilitating conversion to a B 6500

System. This language is intended to be used where character mode

manipulation is required without jeopardizing the integrity of the

operating system or other multiprocessing programs.

ix

I

GENERAL.

SECTION 1

STRUCTURE OF THE LANGUAGE

The ALGOL 60 Language deals with the formation of rules for calcu­

lation of a value or values by means of a computer. B 5500 Compat­

ible ALGOL contains additional language constructs which allow pro­

grammers to perform input and output operations and efficiently

manipulate data in the form of character strings.

Compatible ALGOL employs a vocabulary of reserved words and symbols.

The use of these reserved words and symbols in a program is defined

by the language description in this manual.

Reserved words and symbols are grouped in ways prescribed by the

syntax to form the various constructs of the language. These con-

structs can be divided into five major categories: basic compo­

nents, general components, expressions, statements, and declara­

tions.

Basic components may be combined in accordance with the rules of

the language to form general components and expressions. Four

different forms of expressions are defined in the language:

arithmetic, Boolean, designational, and pointer.

The results produced by the evaluation of arithmetic, Boolean, and

pointer expressions can be assigned as the values of variables

by means of assignment statements. These assignment statements

are the principle active elements of the language.

In addition, to provide control of the computational processes

and external communication for a program, certain additional

statements are defined. These statements provide iterative mecha-

nisms, conditional and unconditional program control transfers,

and input/output operations. In" order to provide control points

for transfer operations, statements may be labeled.

Declarations are provided in the language for giving the compiler

1-1

information about the constituents of the program, such as array

sizes, the types of values that variables may assume, or the exist-

ence of subroutines. Each such construct must be named by an

identifier, and all identifiers must be declared before they are

used.

A series of statements enclosed by the reserved words BEGIN and END

is called a compound statement. If a declaration of identifiers

appears immediately after the word BEGIN and prior to the related

statements, the statement group is called a block. Both compound

statements and blocks provide a method for grouping related state­

ments, and they therefore can be the constituents of still more

compound statements and blocks.

statements.

A program is a grouping of such

CONVENTIONS USED IN THE DESCRIPTION OF THE LANGUAGE.

A metalanguage is a language used to talk about other languages.

A metalinguistic symbol is a symbol used in a metalanguage to define

the syntax of a language. The following metalinguistic symbols will

be used in this manual:

1-2

a. (> Left and right broken brackets are used to contain one

b.

c.

d.

. .­.. -

{ }

or more characters representing a metalinguistic variable

whose value is given by a metalinguistic formula.

The symbol ::= means "is defined as." It separates

the metalinguistic variable on the left of a metal in­

guistic formula from the definition on the right.

The symbol I means "or." This symbol separates multiple

definitions of a metalinguistic variable.

Braces are used to enclose metalinguistic variables

which are defined by the meaning of the English language

expression contained within the braces. This formula­

tion is used only when it is impossible or impractical

to use a metalinguistic formula.

Metalinguistic symbols are used in forming a metalinguistic formula.

A metalinguistic formula is a rule which will produce an allowable

- h ' d l b 1 sequence 01- c aract;ers an jor sym 0 s. These formulae are used

to define the syntax of the B 5500 Compatible ALGOL language. The

syntax, in conjunction with the semantics contained in this manual,

defines the B 5500 Compatible ALGOL language.

Any mark or symbol in a metalinguistic formula which is not one

of the above metalinguistic symbols denotes itself. The juxtapos-

ition of metalinguistic variables and/or symbols in a metalinguistic

formula denotes juxtaposition of these elements in the construct

indicated.

An example of a metalinguistic formula is:

<identifier) ::= <letter) I <identifier) <letter)

<identifier) <digit)

This metalinguistic formula is read: an identifier is defined

as a letter, or an identifier followed by a letter, or an identi­

fier followed by a digit.

The metalinguistic formula given above defines a recursive relation­

ship by which a construct called an identifier may be formed. That

is, evaluation of the formula shows that an identifier begins with

a letter. The letter may stand alone, or may be followed by any

mixture of letters and digits.

CHARACTER SET.

SYNTAX.

<letter) ::= AIBlcID\EIFIGIHIIIJIKILIMINIOlpIQIRIS\TIUlvl
I I I

WIXIYIZ

<special character) ::= ·1, I[IJ I (I) 1+1- @I/I<I>I~L:::I=I~I
~I%I$I*\#\@I: I; 1&

1-3

(string character) ::= (letter) (digit)

character) I (single space)

(string bracket character) 1f

(special

(single space) ::= {one horizontal blank position}

(space) ::= (single space) (space) (single space)

(invalid character) .. - ?

(character)

ter)

.. -.. - (string character)

(invalid character)

(string bracket charac-

SEMANTICS.

The Burroughs Common Language character set consists of 64 charac-

ters: letters, digits, special characters, the space, the string

bracket character, and the invalid character.

1-4

SECTION 2

BASIC COMPONENTS:

BASIC SYMBOLS, IDENTIFIERS, NL~BERS; AND STRINGS

GENERAL.

SYNTAX.

The syntax for (basic symbol) is as follows:

(basic symbol) ::= (letter) I (digit)

(delimiter) I (empty)

(logical value) ::= TRUE I FALSE

(empty) {the null string of symbols}

SEMANTICS.

Only upper case letters are permitted.

(logical value) I

Individual letters do not have individual meanings.

DELIMITERS.

The syntax for (delimiter) is as follows:

(delimiter) ::= (operator) I (separator) I (bracket)

(declarator) I (specificator)

(operator) ::= (arithmetic operator) I (relational operator)

(logical operator) I (sequential operator)

(replacement operator) I (concatenate operator)

(ari thmetic operator) ::= + I - I (9 I / I DIV I MOD I
* I TIMES

(relational operator) ::= < > < > = i -/: i LSS

EQL I GEQ I GTR NEQ

(logical operator) ::= EQV I IMP I OR I AND I NOT

LEQ

2-1

I

(sequential operator) ::= GO I IF I THEN I ELSE I FOR I DO I

CASE I FILL I WHILE I REPLACE I SCAN

(replacement operator) ~ I

(concatenate operator) ::= &

(separator) ::= ,

COMMENT

(bracket) .. - (.. -)

WITH OF

I [I] I

@ I (space) I STEP I UNTIL I

BY I TO

" I BEGIN I END I # I LB I RB

(declarator) .. - OWN I BOOLEAN I INTEGER I REAL I ARRAY

SWITCH I LABEL I FORWARD I SAVE I PROCEDURE I

LIST I MONITOR I DUMP I FILE I ALPHA I DEFINE

POINTER I FORMAT I SET

(specificator) VALUE

SEMANTICS.

Delimiters are the class of operators, separators, brackets, de­

clarators, and specificators. As the word "delimiter" indicates,

an important function of these elements is to separate the various

entities which make up a program.

In order to accept input from equipment not having the full char­

acter set as shown on ~age 1-3, alternate representations of cer-

tain delimiters are provided as follows:

LSS <

LEQ <

EQL =

GEQ >

GTR >

NEQ (;

TIMES @

2-2

LB [

RB]

.­.-

Throughout the text of this manual, the symbols in the right-hand

column are used.

Delimiters have fixed meanings which will be made clear as they

appear in various constructs in this manual. Delimiters and

logical values are considered basic symbols of the language, having

no relation to the individual letters of which they are composed.

Consequently, the words which constitute the basic symbols are

reserved for specific use in the language. A complete list of these

words and details of the applicable restrictions are given in

appendix A.

SPACING.

In ALGOL 60, spaces have no significance, since basic components of I
the language such as BEGIN are construed as one symbol. In a

machine implementation of such a language, however, this approach

is not practical. In Compatible ALGOL, for instance, BEGIN is

composed of five letters, TRUE is composed of four, and PROCEDURE

of nine. No space may appear between the letters of a reserved

word; otherwise, it will be interpreted as two or more elements.

The basic components (reserved words and symbols) are used, together

with variables and numbers, to form expressions, statements, and

declaratives. Because some of these constructs place quantities

which have been defined by the programmer next to delimiters com­

posed of letters, it is necessary to separate. one from the other.

The space is used as a delimiter in these cases; therefore;

must separate any two basic components of the following forms:

2-3

a. Multicharacter delimiter.*

b. Identifier.

c. Logical value.

d. Unsigned number.

Aside from these requirements, a space may appear (if desired)

between any two basic components without affecting their meaning.

THE USE OF COMMENTS.

In order to include explanatory material at various points in

the program, several conventions exist as defined below. The

reserved word COMMENT indicates that the information following

is explanatory rather than part of the program structure.

Sequence of Basic Symbols

COMMENT {any sequence of charac­

ters not containing ;}

BEGIN COMMENT {any sequence of charac­

ters not containing ;}

END {any sequence of letters and/or

digits, including blanks, but

excluding the symbols END, ELSE,

UNTIL, or ;}

Equivalent

BEGIN

END

The above conventions mean that any construct which appears on.

the left may be used in place of the corresponding construct on

the right without any effect on the operation of the program.

BASIC COMPONENTS.

SYNTAX.

The syntax fOT (basic component) is as follows:

(basic component) (identifier) (number) (string)

* Except those multicharacter delimiters which begin or end with
special characters.

2-4

SEMANTICS.

Basic components are the most primitive structures of Compatible

ALGOL.

IDENTIFIERS.

SYNTAX.

The syntax for <identifier) is as follows:

(identifier) .. - <letter) <identifier) <letter)

<identifier) <digit)

Examples:

I

ID

A5

G76DJ

ARITHMETICMEAN

SEMANTICS.

Identifiers have no absolute meaning.

Identifiers are used to name labels, variables, arrays, switches,

procedures, files, formats, lists, and so forth. The identifiers

used in a program may be chosen freely.

RESTRICTIONS.

Type 1 reserved words of Compatible ALGOL may not be used as iden­

tifiers (see appendix A).

An identifier must start with a letter, which can be followed by

any combination of letters or digits, or both. The latter res-

triction also applies to labels, since integer labels are speci­

fically disallowed.

No space may appear within an identifier.

2-5

I

Identifiers may be as short as one letter or as long as 63 letters

and digits.

The same identifier cannot be used to denote two different enti-

ties simultaneously.

The Type 2 standard function designators and the Type 3 multi­

character delimiters listed in appendix A may be declared as

identifiers. An identifier so declared may not be used as a

function or a delimiter within the scope of the declaration.

NUMBERS.

SYNTAX.

The syntax for (number) is as follows:

2-6

(number) (sign) (unsigned number) (string)

(unsigned number) ::= (decimal number) (exponent part)

(decimal number) (exponent part)

(decimal number) ::= (unsigned integer) (decimal fraction)

(unsigned integer) (decimal fraction)

(unsigned integer).

(exponent part) @(integer)

(decimal fraction) ::= .(unsigned integer)

(integer) ::= (sign) (unsigned integer)

(unsigned integer)

(digit)

.. -.. - (digit)

(sign) ::= (empty) I + I -

(unsigned integer)

Examples:

Numbers: Unsigned Numbers: Decimal Numbers:

o

549755813887

8.758@-47

4.314@68

Exponent Parts:

@68

@-46

@+54

Unsigned Integers:

5

69

SEMANTICS.

1354.543
@68

1354.54@68

Decimal Fractions:

·5
.69

1354
.546

1354.543

Integers:

+546

- 62256
12

Numbers may be of two basic types: INTEGER or REAL. Integers

are of type INTEGER; all other numbers are of type REAL.

The number sets are symmetrical with respect to zero (i.e., the

negative number corresponding to any valid positive number may

also bel expressed in the language and the object program).

The exponent part is a scale factor expressed as an integral

power of 10.

No space may appear within an unsigned number; an embedded space

will cause it to be interpreted as more than one number.

SIZE LIMITATIONS OF NUMBERS.

In general, the number of digits (disregarding the decimal point

and exponent part, if any) in an unsigned numbe~ may not exceed

eleven; otherwise, the value will be truncated to the most sig­

nificant eleven digits. Twelve digits are allowed if, disregarding

2-7

the decimal point and exponent part, they do not exceed 549755813887

in value.

The maximum absolute value of a single precision real number is

approximately 4.314@68 and the minimum value is approximately

8.758@-47.

A string may be used to represent a number. The length of such a

string is limited to seven BCL characters or 15 octal characters.

STRINGS.

SYNTAX.

The syntax for (string) is as follows:

(string) (ALPHA string) I (numeric string)

(ALPHA string) ::= "(BCL string)"

(numeric string) : : = 3 " (oc tal string) "

(octal string) ::= (octal character)

(octal character)

(octal character) ::= 0 I 1 2 I 3

(BCL string) ::= (string character)

(string character)

SEMANTICS.

Strings may consist of:

three-bit characters (octal)

six-bit characters (BCL)

(octal string)

4 5 I 6 I 7

" (BCL string)

The type of string is indicated by the presence (or absence) of a

special code which precedes the string. A code of J indicates

that the string following is an octal string. The absence of a

string code indicates that the string is a BCL string of six-bit

2-8

characters. The string is normally justified right with leading

zeros. However, if the string contains more than 48 bits, it is

justified left with trailing zeros.

The quote character (,,) may be used in a BCL string only if it

immediately follows the initial bracketing quote.

The permissible length of a string depends upon the context in

which the string is used. w~en used as an operand, it is normally

not greater than seven BCL characters or 15 octal characters.

The maximum length of a BCL string is 63 characters.

length of an octal string is 16 octal characters.

The maximum

CONSTITUENTS AND SCOPES.

The following kinds of quantities must be declared before they

may be referred to in Compatible ALGOL programs: simple variables,

arrays, labels, switches, procedures, files, formats, definitions,

lists, forward references, and diagnostics.

The scope of any quantity is the block in which the quantity is

declared.

VALUES AND TYPES.

Certain syntactical units have values. The value of an arithmetic

expression is a number, the value of a Boolean expression is a

logical value, and the value of a designational expression is a

label. The value of an array identifier is the ordered set of

values of the associated subscripted variables; this may be a

set of numbers, a set of logical values, or a set of proper

strings.

The types (INTEGER, REAL, BOOLEAN, and ALPHA) associated with syn­

tactical units refer to the values of these units.

2-9

GENERAL.

SYNTAX.

SECTION 3

GENERAL COMPONENTS

The syntax for (general component) is as follows:

(general component) .. - (variable) (partial word designator)

(switch file designator) (switch format

designator) (switch list designator)

(function designator)

SE:f\LA.NTICS.

General components are constituents of expressions. Normally,

general components are less complex structures than expressions.

It should be understood, however, that no sharp dividing line·can

be drawn between general components and expressions since they are

used recursively;' i.e., expressions are formed from general com­

ponents, but general components also use expressions in their de­

finitions.

VARIABLES.

SYNTAX.

The syntax for (variable) is as follows:

(variable) (simple variable) (subscripted variable)

(simple variable) (variable identifier)

(variable identifier) ::= (identifier)

(subscripted variable)

list)]

(array identifier) [(subscript

(array identifier) ::= (identifier)

(subscript list) ::= (subscript) (subscript list),(subscript)

3- 1

(subscript) .. -.. - (arithmetic expression)

Examples:

Simple Variables:

ALPHA INFO

BETA4

Q

Subscripted Variables:

A[5J
A [ITHJ

KRONECKER [ITH + 2, JTH - ITHJ

MAXQ [IF BETA = 30 THEN -2 ELSE K + 2J

Subscript Lists:

5
ITH

ITH, JTH

ITH + 2, JTH - ITH

IF BETA = 30 THEN -2 ELSE K + 2

SEMANTICS.

A variable is the symbolic representation of a particular value.

A variable may be used in an expression in order to produce another

value. The value designated by a variable may be changed through

the use of an assignment statement (see page 6-6, assignment

statement). There are two forms of variables: simple and

subscripted.

SIMPLE VARIABLES.

A simple variable is defined as being composed of a single variable

identifier used to reference some quantity. The type of value that

a simple variable may represent is defined by its type declaration

(see page 7-2, type declarations).

3-2

SUBSCRIPTED VARIABLES.

A subscripted variable is an array identifier followed by a sub-

script list. The array identifier refers to a set of values

(see array declaration, page 7-4). An array identifier with a

subscript list refers to a single value within that set. The

subscript list specifies one element of the array.

A subscript expression is defined as an arithmetic expression.

Each arithmetic expression occupies a subscript position in the

subscript list and is referred to as a subscript.

NUMBER OF SUBSCRIPTS.

The total number of subscripts in a subscript list must equal the

number of dimensions given in the array declaration or array speci­

fication.

EVALUATION OF SUBSCRIPTS.

Each subscript expression in the subscript list is evaluated from

left to right. Each subscript expression is treated as a variable

of type INTEGER. If, upon evaluation, the subscript expression

yields a value of type REAL, it will be rounded automatically as

follows (see page 3-11, type transfer functions):

integral subscript value = ENTIER (subscript value + 0.5)

The values which result from the evaluation of the subscript

expressions provide the actual integral values of the subscripts

by which the array component is referenced. If the value of a

subscript falls outside the limits declared for the array, the

value of the element so referenced is undefined and an invalid

index error is generated at run time.

FILE DESIGNATORS.

SYNTAX.

The syntax for (file designator) is as follows:

3-3

(file designator) ::= (switch file identifier)

[(subscript)] I (file identifier)

(switch file identifier) ::= (identifier)

(file identifier) ::= (identifier)

SEMANTICS.

A file designator specifies a file.

A switch file identifier refers to a set of files.

SWITCH FILE DESIGNATORS.

SYNTAX.

The syntax for (switch file designator) is as follows:

3 (switch file designator) ::= (switch file identifier)

[(subscript)]

2 (switch file identifier) ::= (identifier)

Examples:
. r __,

SWH.F'lLlJ

SWIFI[IF X > N THEN 0 ELSE I]

FISW[REAL (X <N)]

SEMANTICS.

Switch file designators are used in I/O statements in the same

fashion as file identifiers.

A switch file designator is used in conjunction with the SWITCH

FILE declaration specified by the switch file identifier. The

value of the subscript expression determines which file identifier

in the related switch file list is to be selected for use in the

I/O statement. The value of the subscript expression must corres­

pond to the position of one of the file identifiers in the switch

file list. The values of these positions start with o. If the

value of the expression is other than integer, it will be converted

to an integer in accordance with the rules applicable to subscript

expressions. If the value of the expression is outside the scope of

3-4

the switch file list, the file so referenced is undefined.

FORMAT DESIGNATORS.

SYNTAX e

The syntax for (format designator) is as follows:

(format designator) ::= (switch format identifier)

[(subscript)J I
(format identifier)

SEMANTICS.

A (format designator) specifies a file.

A (switch format identifier) refers to a set of formats.

SWITCH FORMAT DESIGNATORS.

SYNTAX.

The syntax for (switch format designator) 1S as follows:

3 (switch format designator) ::= (switch format identifier)

[(subscript)J

1 (switch format identifier) ::= (identifier)

Examples:

SF[IJ

SWHFT [IF X > N THEN 0 ELSE lJ

SEMANTICS.

Switch format designators are used in I/O statements in the same

fashion as are format identifiers.

A switch format designator is used ln conjunction with the SWITCH

FORMAT declaration specified by the switch format identifier. The

value of the subscript expression determines which editing specifi­

cation part in the related switch format list is to be selected for

use in the I/O statement. The value of the subscript expression

must correspond to the position of one of the specification parts

in the switch format list. The values of these positions start with

O. If the value of the expression is other than integer, it will be

3-5

converted to integer in accordance with the rules applicable to

subscript expressions.

If the value of the expression is outside the scope of the switch

format list, the editing specification so designated is undefined.

LIST DESIGNATORS.

SYNTAX.

The syntax for (list designator) is as follows:

(list designator) ::= (switch list identifier) [(subscript)]

(list identifier)

SEMANTICS.

A (list designator) specifies a list.

A (switch list identifier) refers to a set of lists.

SWITCH LIST DESIGNATORS.

SYNTAX.

The syntax for (switch list designator) is as follows:

2 (switch list designator) ::= (switch list identifier)

[(subscript)]

2 (switch list identifier) ::= (identifier)

Examples:

SWLST [IJ

SWLI [IF A > B THEN 2 ELSE 3]

SEMANTICS.

Switch list designators are used in I/O statements in the same

fashion as list identifiers.

A switch list designator is used in conjunction with the SWITCH

LIST declaration specified by the switch list identifier~ The

value of the subscript expression determines which list identifier

will be used from the switch list.

The value of the subscript expression must correspond to the posi-

3-6

tion of one of the list identifiers in the switch list. The values

of these positions start with 0, If the value of the expression is

other than integer, it will be converted in accordance with the

rules applicable to subscript expressions. If the value of the

subscript expression is outside the scope of the switch list, the

list identifier so referenced is undefined.

FUNCTION DESIGNATORSe

SYNTAX.

The syntax for (function designator) is as follows:

(function designator) ::= (procedure identifier) (actual
- - \ parameter part)

(actual parameter part) ::= (empty)

list»)

(actual parameter

(actual parameter list) ::= (actual parameter) (actual

parameter list) (parameter delimiter)

(actual parameter)

(actual parameter) ::= (expression) I (subarray designator)

(array identifier) I (switch identifier) I
(file designator) I (format designator) I I
(switch file identifier)

(parameter delimiter) ::= ,) "(letter string)" (

(letter string) ::= (letter) I (letter string) (letter)

(space) I (letter string) (space)

(procedure identifier) ::= (identifier)

(subarray designator) ::= (array identifier) [(subscript

part) (subarray part)]

(subscript part) ::= (empty) I (subscript list) ,

(subarray part) ::= * (subarray part) , *

3-7

Examples:

Function Designators:

J(A, B + 2, Q [r,L])

GASVOL(K) "TEMPERATURE"(T) "PRESSURE"(P)

RANDOMNO

Actual Parameter Parts:

(A, B + 2, Q[I,J])

(K) "TEMPERATURE"(T) "PRESSURE"(P)

SEMANTICS.

A function designator is a procedure which returns a single value.

The value is produced from the actual parameter(s) by the applica­

tion of a given set of rules defined by a typed PROCEDURE declara­

tion (see section 8, PROCEDURE declarations).

A function designator may be used, depending upon its type, in

either arithmetic or Boolean expressions (see page 4-1, arithmetic

expressions; page 4-10, Boolean expressions).

STANDARD FUNCTIONS.

The standard ("intrinsic") functions supplied for Compatible ALGOL

are listed below. AE stands for arithmetic expression.

ABS(AE)

SIGN(AE)

SQRT(AE)

SIN(AE)

COS(AE)

ARCTAN(AE)

3-8

Produces the absolute value of AE.

Produces one of three values, depending upon

the value of AE (+1 for AE > 0, 0 for AE = 0,

-1 for AE < 0).

Produces the square root of the value of AE.

Produces the sine of the value of AE.

Produces the cosine of the value of AE.

Produces the principle value of the arctangent

of the value of AE.

LN(AE)

EXP(AE)

DELTA(Pl,P2)

Produces the natural logorithm of the value

of AE.

Produces the exponential function of the value

of AE, i.e., eAE •

Yields an integer value representing the

number of characters between the two pointer

expressions (P2-Pl). If Pl is greater than

P2, the sign of delta is minus. PI and P2

must refer to the same string; otherwise, a

value of 220 is returned.

Except for DELTA, which requires pointer expressions as arguments,

these functions are understood to operate indifferently on arguments

both of type REAL and type INTEGER. All these functions yield

values of type REAL, except for SIGN(AE) which produces a result of

type INTEGER. The function ABS(AE) also produces a result of type

INTEGER when the value which results from the evaluation of AE is

of type INTEGER 0

For SIN, COS, and ARCTAN, the angle is considered to be in radians.

These functions may be used without a specific PROCEDURE declaration

since they are an integral part of the compiler itself.

TIME FUNCTIONS.

TIME(AE) makes available the time registered on the internal timing

device of the system. This feature may be used to measure the time

required by the system, or certain components of it, to execute

a program, or parts of a program (see table 3-1). (AE) must yield

an integer value of zero through four. The result of the function

is determined by the parameter.

3-9

Parameter

TIME (0)

TIME (1)

TIME (2)

TIME (3)

TIME (4)

Table 3-1

Results of Different TIME Parameters

Result

Returns the current date in ALPHA (in the

format "YYDDD").

Returns as an integer value the time of

day, in sixtieths of a second.

Returns as an integer value the elapsed

processor time of the job, in sixtieths

of a second.

Returns as an integer value the elapsed

I/O time of the job, in sixtieths of a

second.

Returns as an integer value the contents

of a 6-bit machine clock which increments

every sixtieth of a second.

Type

ALPHA

INTEGER

INTEGER

INTEGER

INTEGER

If the value of (AE) is not one of the integers indicated above,

the result of the function will be undefined.

MAX AND MIN FUNCTIONS.

SYNTAX.

The syntax for MAX and MIN functions is as follows:

(limit function) ::= (limit function ID) (limit list»)

(limit function ID) ::= MAX I MIN

(limit list) ::= (arithmetic expression) (limit list) ,

(arithmetic expression)

SEMANTICS.

The semantics of each function, MAX and MIN, is implied by its name,

i.e., the value returned by the MAX function is the maximum value

3-10

of the arithmetic expression evaluated and the value returned by

the MIN function is the minimum value so obtained.

Example:

Y :=MAX(3,5,I+J)

TYPE TRANSFER FUNCTIONS.

In addition to the set of standard functions provided for Compatible

ALGOL, a set of type transfer functions is also provided. These

type transfer functions are listed below, with their definitions

following. The value returned by a type transfer function is a

primary of the type indicated.

ENTIER (AE)

INTEGER (Ali')
\ .LJI

BOOLEAN (AE)

REAL (BE)

REAL {D 1\T \
\.L , n I

Transfers an expression of type REAL to an

integral value which is the largest integer

not greater than the value of AE.

Transfers an expression of the type REAL to

an integral value equal to ENTIER (AE + 0.5).

Yields a value of type BOOLEAN. Permits arith-

metic expressions to be used in BOOLEAN opera­

tions.

Yields a value of type REAL. Permits BOOLEAN

expressions to be used in arithmetic opera­

tions.

REAL (TRUE) = 1

REAL (FALSE) = 0

starting at P; as an

arithmetic value. P is a pointer expression,

N is an arithmetic expression whose value must

not specify more than 48 bits. If the value

of N is equal to 8 and if the most-significant

string bit referenced by P is equal to 1, a

flag-bit error will result.

3-11

INTEGER (P,N)

I

3-12

Yields an integer value represented by a string

of N characters starting at P. P must be a

BeL pointer expression. N is an arithmetic

expression and must not be greater than 8.

NOTE

The functions REAL and BOOLEAN, used

in conjunction, allow for handling

masking operations since the logical

operators (page 4-16) operate on the

entire word in the system.

GENERAL.

SYNTAX.

SECTION 4
EXPRESSIONS

The syntax for (expression) is as follows:

(expression) .. - (arithmetic expression) (Boolean
. \ I / \ expresslon; I \designational expression/

(pointer expression)

SEMANTICS.

Expressions, which are basic to any algorithmic process, are

structures used to obtain values of different kinds and types.

As mentioned on page 3-1, expressions are used to define certain

general components (subscripted variables and function designa-

tors), and these quantities in turn are used to define

The definition of expressions is therefore necessarily recursive.

ARITHMETIC EXPRESSIONS.

SYNTAX.

The syntax for (arithmetic expression) is as follows:

(arithmetic expression) ::= (simple arithmetic expression)

(if clause) (arithmetic expression) ELSE

(arithmetic expression) (simple prefix)

(simple

(term prefix) (factor prefix) (arithmetic

assignment)

arithmetic expression) (simple prefix)

(term) ::= (term prefix) (factor)

(factor) ::= (factor prefix) (primary)

(term)

4-1

(primary) ::= (unsigned number) I (string) I (partial word

operand) I (partial word operand) . (field

I description) I (primary) & (arithmetic expression)

[(concatenation)]

(partial word opera.nd) ::= (arithmetic variable) I (arithmetic

function designator) I ((arithmetic expression»)

(concatenation) ::= [(left bit-to) : (left bit-from) :

(number of bits)] I [(left bit-to) : (number

of bits)]

(left bit-to) ::= (arithmetic expression)

(left bit-from) ::= (arithmetic expression)

(number of bits) ::= (arithmetic expression)

(simple prefix) ::= (sign) I (simple arithmetic expression)

(adding operator)

(term prefix) ::= (empty) I (term) (multiplying operator)

(factor prefix) ::= (empty) I (factor) *

(adding operator) ::= + I -

(multiplying operator) ::= x I / I DIV I MOD I TIMES

(arithmetic assignment) ::= (arithmetic variable)

(replacement operator) (arithmetic expression)

(if clause) ::= IF (Boolean expression) THEN

(arithmetic variable) ::= (variable)

(arithmetic function designator) ::= (function designator)

Examples:

Arithmetic Expressions:

4-2

A + B

A + B

Q*V*2

P MOD 2

+3

M N

M - N + Z ~ X/Y

(IF X = 1 THEN 5.5 ELSE Y/2)

IF ERROR[I] = 1 THEN "OVERFL" ELSE "UNFL01-I"

IF B = 0 THEN X ELSE Y + 2

Simple Arithmetic Expressions:

COS(A + B)

Y*3

4 x R DIV S

+3

A[I] -B[J] + 5.3

Terms:

Yl[1,2]

2*(X + Y)

4. x R DIV S

P MOD 2

Factors:

5.678
2*(X + Y)

Y*3

Q*V*2

Primaries:

5.678
Yl[1,2]

COS(A + B)

(IF X = 1 THEN 5.5 ELSE Q/2)

I.[9:l0]

"ALPHA"

I

I

4-3

Concatenation:

SEMANTICS.

SQRT (C) & 1 [47:0:1J

X & Y [l:l:lJ & Z [2:2:1J

M & N [4:4:5J

B[I-I+1J & A[I,JJ [47-J MOD 46:J:1J

o & LOWER[HERE:THISMANYJ

An arithmetic expression defines a numeric value. Arithmetic ex-

pressions may be devided into two categories:

tional.

SIMPLE ARITHMETIC EXPRESSIONS.

simple and condi-

A simple arithmetic expression is composed of arithmetic operators

and primaries. It is evaluated by performing the indicated arith­

metic operations upon the actual numerical values of the primaries

from which it is formed. The arithmetic operators are explained

in detail on page 4-7, operators and types.

PRIMARIES. Table 4-1 shows the values represented by the primaries

in an arithmetic expression.

RESTRICTIONS.

A variable or function designator used as a primary in arithmetic

expression must be of an arithmetic type: REAL, INTEGER, or ALPHA.

If the primary is a string, it may not exceed 47 bits in length.

CONCATENATION.

The concatenation form of arithmetic expression provides an effi­

cient method of forming a primary from selected bits of two or

more expressions.

The concatenation operator is the ampersand. A concatenation

expression is formed by following a primary with & (arithmetic

expression) [(concatenation)J. A concatenate expression may contain

any number of concatenation terms. The terms are evaluated from

left to right in the expression. Each concatenate operator causes

4-4

a concatenated result to be formed. The concatenated result may

be the final result of the expression, or a primary.

Table 4-1

Represented Values of Primaries in Arithmetic Expression

Name of Primary

Number

Variable

Partial word designator

Function designator

Arithmetic expression
in parentheses

Concatenate expression

String

Assignment statement

Value Represented

The number itself.

The current value of the variable.

The value of the field specified.

Value obtained by applying the

computing rules of the respective

PROCEDURE declaration.

The value derived, which must be

described in terms of the primaries

from which it is formed.

The value of the newly formed

primary.

The numerical value of the string

characters.

Value derived, which must be des­

cribed in terms of the primaries

from which it is formed.

A concatenated result is formed by obtaining the value of the

primary and then replacing a portion of it with a field made up

of bits from the concatenation term. The field is placed in the

primary starting at the bit specified by the (left bit-to)

4-5

expression. The field is obtained from the concatenation term,

starting with the bit designated by the (left bit-from) expres-

sion of the concatenation term. The number of bits in the field

is determined by the value of the (number of bits) term in the

(concatenation) part. If the (concatenation) part does not speci­

fy a (left bit-from) part, the right-most (low order) field is

used.

RESTRICTIONS.

The (number of bits) term must be an integer between 1 and 47.
The sum of the (left bit-to) expression and the (number of bits)

term in the field, or the (left bit-from) expression and the

(number of bits) term in the field, must not exceed 48.

CONDITIONAL ARITHMETIC EXPRESSIONS.

A conditional arithmetic expression is of the form:

(if clause) (arithmetic expression) ELSE (arithmetic

expression)

The evaluation of the conditional arithmetic expression proceeds

as described in the following paragraphs.

The Boolean expression in the (if clause) is evaluated (see page

4-10, Boolean expressions). If the value of the Boolean expres-

sion is TRUE, the arithmetic expression following THEN is eval­

uated and the evaluation of the conditional arithmetic expression

is complete.

If the value of the Boolean expression is FALSE, the arithmetic

expression following the delimiter ELSE is evaluated, thus com­

pleting the evaluation of the expression.

The arithmetic expressions following the delimiters THEN and ELSE

4-6

may also be conditional arithmetic expressions. As a result, a

conditional arithmetic expression could contain a series of IF

clauses in the expression following either or both of the delimi­

ters.

In the case of a conditional arithmetic expression following the

delimiter THEN; the Boolean expression(s) in the IF clause(s) are

evaluated from left to right as long as they yield a logical value

of TRUE. If they all yield a logical value of TRUE, the expression

following the last delimiter THEN is executed, thus completing the

evaluation of the whole expression. If any of the Boolean expres­

sions yields a logical value of FALSE, the expression followi~g

the corresponding delimiter ELSE is executed.

In the case of the conditional arithmetic expression following the

delimiter ELSE, the respective Boolean expressions in the IF

clauses are evaluated from left to right until a logical value

of TRUE is found. Then the value of the succeeding arithmetic

expression is the value of the entire arithmetic expression. If

no TRUE value is found, the value of the whole expression is that

of the expression following the last ELSE.

In nested IF clauses, the first THEN corresponds to the last ELSE,

and the innermost THEN to the following (i.e., the innermost)

ELSE. The delimiters THEN and ELSE between these extremes follow

the logical pattern established, i.e., the next outermost THEN

corresponds to the next outermost ELSE, and so on until the inner­

most THEN-ELSE pair has been matched.

Appropriate positioning of parentheses may serve to establish a

different order of execution of operations within an expression.

OPERATORS AND TYPES.

No two operators may be adjacent.

allowed.

Implied multiplication is not

4-7

ARITHMETIC OPERATORS. The operators +, -, (9, and / have the con­

ventional mathematical meanings of addition, subtraction, multi­

plication, and division, respectively. The operator DIV yields

a result defined as follows (integer division):

Y DIV Z = SIGN (Y/Z) @ ENTlER (ABS (Y/Z))

In the case of the operators /, DIV, and MOD, the operation is

undefined if the value of the operand on the right equals zero.

The operator MOD produces a result defined as follows (remainder

division) :

Y MOD Z = Y -Z@(SIGN (Y/Z)@ENTIER (ABS (Y/Z)))

The operator * denotes exponentiation. Its meaning depends on

the types and values of operands involved, as shown below (consi­

der y*Z in table 4-2).

Table 4-2

Meaning of *

IF Z IS TYPE INTEGER AND IF Z IS TYPE REAL AND
Z > 0 Z = 0 Z < 0 Z > 0 Z = 0 Z < 0

IF Y > 0 Note 1 1 Note 2 Note J 1 Note

IF Y < 0 Note 1 1 Note 2 Note 4 1 Note

IF Y = 0 0 Note 4 Note 4 0 Note 4 Note

Note 1: Y * Z = Y@Y@·0 Y (Z times) •

Note 2: Y * Z = the reciprocal of Y@YG·· €)Y (Z times) •

Note J: Y * Z = EXP(Z @ LN(Y))"

Note 4: Value of expression is undefined.

ARITHMETIC EXPRESSION TYPES. The type of a value resulting from

an arithmetic operation depends upon the types of operands as

4-8

J

4

4

well as the arithmetic operators used in obtaining that value,

unless that value is undefined.

Table 4-3

Types of Values Resulting from an Arithmetic Operation

OPERAND
ON LEFT

Integer

Integer

Real

Real

Note 1:

Note 2:

Note 3:

OPERAND
+~-® / DIV MOD * ON RIGHT

Integer Note 3 Real I Integer Real Note

Real Real Real Integer Real Note

Integer Real Real Integer Real Note

Real Real Real Integer Real Note

If the operand on the right is negative or the
absolute value of the result is not less than
2*39, real; otherwise, integer.

If the operand on the right is zero, integer;
otherwise, real.

If the absolute value of the result is less
than 2*39, integer; otherwise, real.

PRECEDENCE OF OPERATORS.

1

2

2

2

In regard to evaluating a simple arithmetic expression, two dis-

tinct operations should be understood: the determination of the

numerical values of the primaries, and the arithmetic operations

involved when combining two operands according to the rules asso­

ciated with the arithmetic operators.

First, the numerical values of the primaries are determined from

left to right, yielding a number of values equal to the number of

primaries in the simple arithmetic expression. Next, these values

are used two at a time as operands in arithmetic operations, re­

ducing the number of values by one for each operation until all

operators have been utilized and a single value remains.

The sequence in which the arithmetic operations are performed is

4-9

determined by rules of precedence. Each arithmetic operator has

one of three orders of precedence associated with it, as follows:

a. First: *
b. Second: ® / DIV MOD

c • Third: + -

When operators have the same order of precedence, the sequence of

operation is determined by the order of their appearance, from

left to right.

An expression between parentheses is evaluated by itself and this

value is used in subsequent calculations. That is, the normal

order of precedence of operators can be overridden by the judicious

placement of parentheses.

BOOLEAN EXPRESSIONS.

SYNTAX.

The syntax for (Boolean expression) is as follows:

4-10

(Boolean expression) .. - (simple Boolean) (if clause)

(Boolean expression) ELSE (Boolean expression)

(simple Boolean prefix) (implication prefix)

(Boolean term prefix) (Boolean factor prefix)

(secondary prefix) (Boolean assignment)

(simple Boolean) (simple Boolean prefix) (implication)

(implication) .. -.. - (implication prefix) (Boolean term)

(Boolean term) ::= (Boolean term prefix) (Boolean factor)

(Boolean factor) .. -.. -
secondary)

(Boolean secondary)

(Boolean factor prefix) (Boolean

e 0-.. - (secondary prefix) (Boolean primary)

(Boolean primary) ::= (logical value) I (relation) I
(Boolean partial word operand) I (Boolean partial

word operand) . (field description) I (Boolean I
primary) & (Boolean expression) [(concatenation)]

(alpha test) I (string relation) I (pointer relation)

(alpha test) ::= (arithmetic expression) IN ALPHA

(string relation) ::= (update pointer) (pointer expression)

(relational operator) (update pointer) (pointer

expression) FOR (arithmetic expression) I (update

pointer) (pointer expression) (relational operator)

(string) I (update pointer) (pointer expression)

(relational operator) (string) FOR (arithmetic

expression)

(pointer relation) ::= (pointer expression) (equality

operator) (pointer expression)

(equality operator) ::= ~ I = I NEQ I EQL

(Boolean partial word operand) ::= (Boolean variable) I
(Boolean function designator)

(Boolean expression»)

(simple Boolean prefix) ::= (empty) I (simple Boolean) EQV

(implication prefix) ::= (empty) (implication) IMP

(Boolean term prefix) ::= (empty) (Boolean term) OR

(Boolean factor prefix) ::= (empty) (Boolean factor) AND

(secondary prefix) ::= (empty) I NOT

(Boolean assignment) ::= (Boolean variable) (replacement

operator) (Boolean expression)

4-11

(Boolean variable) ::= (variable)

(Boolean function designator) ::= (function designator)

(relation) ::= (simple arithmetic expression) (relational

operator) (arithmetic expression)

(field description) ::= [(left bit of field) (bits in field)J

(left bit of field) ::= (unsigned integer)

(bits in field) ::= (unsigned integer)

Examples:

4-12

Boolean Expressions:

TRUE

NOT A -I 0

Q.[16:1J AND GATE[1,2J

A = C AND (IF B = 4 THEN TRUE ELSE FALSE) OR GATE[1,2J

IF B = 4 THEN TRUE EQV GATE [1,2J ELSE Q.[16:l]

Implications:

TRUE

GATE[1,2J

NOT A -I C IMP GATE[1,2J

Boolean Terms:

TRUE

NOT A -I C

GATE[1,2J

A -I C AND (IF B = 4 THEN TRUE ELSE FALSE) OR GATE[1,2J

Boolean Factors:

GATE[1,2J

NOT A -I C

Q.[16:l] AND GATE[1,2J

Boolean Primaries:

TRUE

DIODE

GATE[1,2]

J(A,B + 2,GATE[1,2])

A :} C

(IF

Q .. [16:1J

(DIODE ~ GATE[1,2])

Boolean Secondaries:

TRUE

NOT A I c

SEMANTICS.

A Boolean expression defines a logical value.

Boolean expressions can be divided into two categoriei:

Boolean expressions and conditional Boolean expressions.

SIMPLE BOOLEAN EXPRESSIONS.

simple

A simple Boolean expression is formed by logical operators (see

page 4-16) and Boolean primaries. It is evaluated by carrying out

the operations indicated by the logical operators upon the associ­

ated Boolean primaries. The evaluation of a simple Boolean ex­

pression is carried out according to the rules of precedence defined

for the logical operators (see page 4-16).

The value which results upon evaluation of a simple Boolean expres­

sion depends upon the primary or primaries which are used to form

the expression. Table 4-4 shows the values represented by the

primaries in a Boolean expression.

CONCATENATION.

The concatenation form of Boolean expression is identical to that of

arithmetic expression (see page 4-4) except that the resulting value

is treated as type Boolean. In other words, only the low order bit

(bit 0) is significant unless a type conversion function designator

is used.
4-13

I

Table 4-4

Values Represented by Primaries in a Boolean Expression

Name of Primary

Logical value

Boolean variable

Partial word designator

Function designator

Relation

Boolean expression
enclosed in
parentheses

Concatenate expression

Value Represented

TRUE or FALSE.

The current value of the variable.

The value of the field specified.

The value obtained by applying

the computing rules of the res­

pective PROCEDURE declaration.

The value obtained by testing

the simple arithmetic expressions

against each other, according to

the operation of the specific

relational operator involved.

The value derived, which must be

described in terms of the Boolean

primaries from which it is formed.

The value of the newly formed

primary.

BOOLEAN PRIMARY.

A (string relation) Boolean primary compares two strings according

to the BCL collating sequence.* The arithmetic expression speci-

fies the number of characters to compare. If a literal string

*

4-14

This will cause any comparisons other than = or ~ to be incom­
patible with the B 6500.

follows the relational operator and FOR (arithmetic expression)

is present, then the string is treated as specified for source

strings in the string transfer statement (see page 6-11). Other=

wise, the string characters are used for comparison one time only

and the number of characters compared is equal to the number of

characters in the string.

A <pointer relation) Boolean primary determines whether or not two

pointer expressions refer to the same character position of the

same string. If the character sizes of the two pointers are not

equal, the comparison will always be unequal.

The <alpha test) construct has the value TRUE if a given character

is a letter or digit. The character is the value of the arithmetic

expression.

CONDITIONAL BOOLEAN EXPRESSIONS.

The simplest form of the conditional Boolean expression occurs

when the IF clause contains a simple Boolean expression. The

evaluation of the conditional Boolean expression in this case

proceeds as follows. The simple Boolean expression of the IF

clause is evaluated according to the methods described previously

(page 4-13, simple Boolean expressions). If the resulting logical

value is TRUE, the Boolean expression following the delimiter THEN

is evaluated, thus completing the evaluation of the conditional

Boolean expression. If the logical value produced in the IF

clause is FALSE, the evaluation of the conditional Boolean ex­

pression is completed by evaluating the Boolean expression fol­

lowing the delimiter ELSE.

The Boolean expression in the IF clause, or the one following the

delimiter THEN or the delimiter ELSE, or all three, can be condi-

tional Boolean expressions. In this event, any of the IF clauses

consist of a series of IF clauses. Such a construct is said to

be nested. The evaluation of such nested expressions occurs in

the same manner as that of analogous constructs in arithmetic

expressions.

4-15

TYPES.

A variable or function designator used as a Boolean primary must

be of type BOOLEAN (see page 7-2, type declarations, and page

8-5, special rules of typed procedures), with the exception of

the constituents of relations and those quantities which are under

the influence of type transfer functions (see page 3-7, type

transfer functions).

RELATIONAL AND LOGICAL OPERATORS.

Two types of operators are defined for Boolean expressions:

relational and logical.

RELATIONAL OPERATORS. The relational operators denote the

following relations:

a. < or LSS (is less than) .

b. < or LEQ (is less than or equal to).

c. = or EQL (is equal to).

d. > or GEQ (is greater than or equal to).

e. > or GTR (is greater than) .

f. r- or NEQ (is not equal to).

A relation is evaluated by comparing the values of the two simple

arithmetic expressions as designated by the relational operator.

If the relation is satisfied, the value of the Boolean primary is

TRUE; otherwise, it is FALSE.

LOGICAL OPERATORS. The operation of the logical operators is

defined in the following truth table.

Table 4-5
Logical Operators Truth Table

Operand A Operand B NOT A A AND B A OR B A IMP B A EQV

TRUE TRUE FALSE TRUE TRUE TRUE TRUE

TRUE FALSE FALSE FALSE TRUE FALSE FALSE

FALSE TRUE TRUE FALSE TRUE TRUE FALSE

FALSE i FALSE TRUE FALSE FALSE i TRUE TRUE

4-16

B

PRECEDENCE OF OPERATORS.

The sequence of operations within a simple Boolean expression is

determined by the precedence of the operators (generally from left

to right, with the additional rules shown below). When operators

are of the same order of precedence, the sequence of operations

is determined by the left-to-right order of appearance of the

operators. The following specific rules of precedence are defined:

a. First: Arithmetic expressions, according to

the rules given on page 4-9.

b. Second: Relational operators «, <, =, >, ::::" 1)

c . Third: NOT

d. Fourth: AND

e. Fifth: OR

f. Sixth: IMP

g. Seventh: EQV

A Boolean expression contained in parentheses is evaluated by

itself; this value is then used in any subsequent evaluation.

Therefore, the desired order of execution of operations within

an expression can always be effected by appropriate positioning

of parentheses.

DESIGNATIONAL EXPRESSIONS.

SYNTAX.

The syntax for <designational expression) is as follows:

(designational expression) ::= (label) (switch designator)

(if Clause) (designational expression) ELSE

(designational expression)

(label) ::= (identifier)

4-17

I

(switch designator)

(switch identifier) .. -.. -

(switch identifier) [(subscript)J

(identifier)

Examples:

Designational Expressions:

START

CHOOSEPATH [I + 2J

(START)

IF K = 1 THEN SELECT [2J ELSE START

Simple Designational Expressions:

START

SELECT [2J

(START)

Switch Designators:

SELECT [2J
rlTTAAr T\ A TT\TT r -r ..:... n 1
vnVV0~rftin L~ • JJ

SEMANTICS.

A designational expression defines a label. As is true of other

expressions, designational expressions may be differentiated as

simple designational and conditional designational expressions.

SIMPLE DESIGNATIONAL EXPRESSIONS. The process of evaluating a

simple designational expression depends upon the constructs from

which it is formed. If a simple designational expression is a

label, the value of the expression is the label. When a simple

designational expression is a switch designator, the actual numeri­

cal value of the subscript expression (see page 3-3) designates

one of the elements in the switch list. The element selected may

be any form of simple designational expression which is evaluated

as stated above, or it may be a conditional designational expres-

sion which is evaluated as stated below.

4-18

A switch designator is a switch identifier and a subscript. A

switch identifier refers to a set of designational expressions.

A switch identifier with a subscript refers to a designational

expression.

The elements of a switch identifier correspond to the ordinal

numbers from 1 to N (where N is the number of elements in the set).

If the value of the subscript of a switch designator is not an

integer, the subscript is rounded:

Integral subscript value = ENTIER (value of subscript + 0.5)

If N is the number of elements referred to by a switch identifier

and the subscript value is not between 1 and N, the switch desig­

nator is not defined.

If a simple designational expression is formed from a designational

expression in parentheses, the latter is evaluated according to

the applicable rules.

CONDITIONAL DESIGNATIONAL EXPRESSIONS. The evaluation of a condi-

tional designational expression proceeds as follows. The Boolean

expression contained in the IF clause is evaluated (see page 4-10,

Boolean expressions). If a logical value of TRUE results, the

designational expression following the IF clause is evaluated,

thus completing the evaluation of the conditional designational

expression. If the logical value produced by the IF clause is

FALSE, the designational expression following the delimiter ELSE

is evaluated, thereby completing the evaluation of the designa­

tional expression.

Since the designational expressions following the delimiters THEN

and ELSE, or both, can be conditional designational expressions,

the analysis of the operation of a designational expression becomes

recursive in a manner similar to that of the conditional arithmetic

and Boolean expressions. In the case of a designational expression,

however, the result produced is always a label.

4-19

POINTER EXPRESSIONS.

SYNTAX.

The syntax for (pointer expression) is as follows:

(pointer expres~ion) ::= (if clause) (pointer expression)

ELSE (pointer expression) I (simple pointer

expression)

(simple pointer expression) .. - (pointer primary) (skip) I
(painter assignment)

(pointer primary) ::= (pointer designator) I (pointer

identifier) «pointer expression»)

(skip) ::= (empty) I (adding operator) (arithmetic

expression)

(pointer identifier)

(pointer designator)

(pointer parameters)

.. -.. - (identifier)

POINTER «pointer parameters»)

(array part) (array part)

(parameter delimiter) (character size)

(array part) ::= (array row) I (subscripted variable)

(array row) ::= (array identifier) [(row designator)]

(character size) ::= 6 8

(row designator) ::= * (row) *

(row) ::= (arithmetic expression) I (row) , (arithmetic

expression)

Examples:

• NEXTCHAR - POINTER (ACCUM[l] ,6) + 1

CHARPOSITION - POINTER (OUTARRAY[PAGENO, LINENO, *J ,8)

4-20

CHARPOSITION-: =CHARPOSITION -NCHARS

CARDCOL:=POINTER (CARDARRAY[O]) + 6

CHARPOSITION - IF PERCENT AND NOT ENDOFCARD THEN
CHARPOSITION + 1 ELSE CHARPOSITION

SEMANTICS.

A pointer expression defines a character position within an array.

An identifier used as a pointer primary must be of type POINTER.

If a pointer expression is enclosed in parentheses, it is evaluated

first and its value used as a primary.

If (skip) is not empty, the pointer value is adjusted by L charac­

ters to the right or left, where L is the absolute value of the

arithmetic expression. If the adding operator is +, skipping is

to the right. If the operator is -, skipping is to the left.

POINTER DESIGNATORS.

The following pointer designator constructs are used to associate

pointer identifiers with array row character positions.

POINTER (A,L) Yields a pointer value pointing to A.

A is an array row or a subscripted

variable. L is a character size in

bits (6 or 8).

POINTER (A) Same as POINTER (A,6).

Associated with a pointer expression is a "pointer level" defined

as follows:

a. (pointer identifier). The pointer level determined by

the declaration of the pointer identifier (see pointer

declarations, page 7-6).

b. (pointer assignment). The level of pointer variable

preceding the assignment operator.

4-21

•

c • (pointer primary) (skip).

primary.

The level of the pointer

d. (if clause) (pointer expression) ELSE (pointer expres­

sion). The greater level of the two expressions.

The pointer level of a pointer expression is used by the compiler

to determine the validity of the pointer assignments and pointer

update operations (see pointer assignment, page 6-7; Boolean

expressions, page 4-10; and string scan and transfer statements,

page 6-11).

4-22

GENERAL.

SYNTAX.

SECTION 5

PROGRAMS, BLOCKS, AND COMPOUND STATEMENTS

The syntax for (program) is as follows:

(program) ::= (block) . (space) I (compound statement) .

(space)

(block) ::= (block head) ; (compound tail)

(block head) ::= BEGIN (declaration) I (block head)

(declaration)

(compound tail) ::= (statement) END I (statement)

(compound tail)

(compound statement) ::= BEGIN (compound tail)

Examples:

The syntactical structure of the compound statement and the block

can be illustrated in the following manner.

Given:

S = statement

S = compound statement
c

L = label

D = declaration

B = block
rr"I"l- ___ _

.1.1.1 ell ;

Compound Statement:

S = BEGIN S;S;S; ... S END
c

Block:

= L:S
c

B = BEGIN D;D; ... ;D;S;S; ..• ;S END

== L:B

5-1

Because of the syntactical definition of statements (section 6),

S in the above examples could itself be a compound statement or a

block.

SEMANTICS.

A series of statements which are common to each other by virtue

of the defining declarations, and which are bounded by the bracket

symbols BEGIN and END, constitutes the active elements of a block.

Every block automatically introduces a new level of nomenclature.

Therefore, any identifier occurring within the block may, through

a suitable declaration (see section 7, declarations), be specified

to be local to the block in question.

that:

Such a declaration means

a. The entity represented by the identifier inside the

block will not be recognized by that identifier outside

the block.

b. Conversely, any entity represented by the identifier

outside the block will not be recognized by that

identifier inside the block.

An identifier occurring within an inner block and not declared

within that block is "global" to it; that is, the identifier

represents the same entity inside the block and in the level or

levels immediately outside it, up to and including the level at

which the identifier is declared.

Since a statement within a block may itself be a block, the con­

cepts of local and global to a block must be understood recursively.

Thus, an identifier which is global to block A mayor may not be

global to block B in which block A is one statement.

5-2

NESTED BLOCKS. Block B is said to be nested in block A if block

B is a statement in the compound tail of block A.

DISJOINT BLOCKS. Block A and block B are said to be disjoint if

neither is a statement in the compound tail of the other.

5-3

GENERAL.

SYNTAX.

SECTION 6

STATEMENTS

The syntax for (statement) is as follows:

(statement) (conditional

statement)

(unconditional

(conditional statement) ::= (unlabeled conditional statement)

I (label) : (conditional statement)

(unlabeled conditional statement) ::= (if clause) (statement)

I (if clause) (unconditional statement) ELSE

(conditional statement) I (iteration clause)

(unconditional statement) ::= (unlabeled unconditional state­

ment) I (label) : (unconditional statement)

(unlabeled unconditional statement) ::= (iteration clause)

(unconditional statement) (compound statement)

(block) I (go to statement) I (procedure statement)

I (I/O statement) I (do statement) I (case

statement) I (string transfer statement) I (fill

statement) I (assignment statement) I (string

scan statement) I (if clause) (unconditional I
statement) ELSE (unconditional statement)

S E:tvJ..ANTI C S •

Statements are the units of operation of the language. A statement

denotes an action to be performed.

The definition of statement is recursive because statements may

be grouped in compound statements and blocks.

6-1

A conditional statement causes certain statements to be executed or

skipped depending upon the value produced by a Boolean expression.

UNLABELED CONDITIONAL STATEMENTS.

SYNTAX.

One form of (unlabeled conditional statement) shown in the syntax

on page 6-1 is:

(unlabeled conditional statement) ::= (if clause) (statement)

In this form, the statement following the sequential operator THEN

is executed if the value of the preceding Boolean expression is

TRUE. Otherwise, the statement is ignored.

Another form of (unlabeled conditional statement) is:

(unlabeled conditional statement) ::= (if clause)

(unconditional statement) ELSE (conditional

statement)

In this form, if the value of the Boolean expression is TRUE, the

unconditional statement following the sequential operator ELSE is

ignored. If the Boolean expression evaluates FALSE, the conditional

statement following ELSE is executed and the unconditional statement

following THEN is ignored.

UNLABELED UNCONDITIONAL STATEMENTS.

SYNTAX.

One form of (unlabeled unconditional statement) on page 6-1 is:

(unlabeled unconditional statement) ::= (if clause)

(unconditional statement) ELSE (unconditional

statement)

In this form, if the value of the Boolean expression is TRUE, the

unconditional statement following THEN is executed and the uncon-

ditional statement following ELSE is ignored. If the Boolean ex-

pression evaluates FALSE, the unconditional statement following

ELSE is executed and the unconditional statement following THEN is

ignored.

6-2

Since the definitions of conditional statements and unconditional

statements are recursive, nested conditional statements may occur.

A GO TO statement may lead to a labeled statement within a con-

ditional statement. Subsequent action is the same as would occur

if the conditional statement were entered at the beginning and sub-

sequent evaluation of the Boolean expression led to the labeled

statement.

An unlabeled unconditional statement of the form (empty) executes I
no operation. This form may serve to place a label.

GO TO STATEMENT.

SYNTAX.

The syntax for <go to statement) is as follows:

<go to statement) ::= GO TO <designational expression)

GO <designational expression)

Examples:

GO TO START

GO TO SELECT[2J

GO TO IF K = 1 THEN SELECT [2J ELSE START

SEMANTICS.

The GO TO statement transfers control to the label that is the

value of the designational expression.

If the designational expression is undefined, control continues

to the statement which would have been the successor of the GO TO

statement if the GO TO statement were empty.

PROCEDURE STATEMENT.

SYNTAX.

The syntax for <procedure statement) is as follows:

6-3

(procedure statement) (procedure identifier) (actual

parameter part)

Examples:

ALGORITHM123 (A + 2)

ALGORITHM546 (A + 2) "AVERAGE PLUS TWO"(CALCRULE)

SEMANTICS.

A procedure statement causes a previously defined procedure to be

executed.

The actual parameter list of the procedure statement must have the

same number of entries as the formal parameter list of the pro­

cedure declaration heading.

Formal and actual parameters must correspond in number, type, and

kind of quantities. The correspondence is obtained by taking the

entries of these two lists in the same order.

DO STATEMENT. -_. --

SYNTAX.

The syntax for (do statement) is as follows:

(do statement) DO (statement) UNTIL (Boolean expression)

Example:

DO A[IJ ~ I UNTIL I ~ I-I = 0

SEMANTICS.

The DO statement causes the statement to be executed and then the

Boolean expression to be evaluated. If this value is FALSE, the

statement is executed again and the Boolean expression re-evaluated.

The sequence continues until the Boolean expression evaluates TRUE.

A concise description is:

6-4

LD: S,_; IF NOT BE THEN GO TO LD
au

where:

LD ~ label

Sdo - DO statement

BE - Boolean Expression

CASE STATEMENT.

SYNTAX.

The syntax for (case statement) is as follows:

(case statement) •. - CASE (arithmetic expression) OF

(case body)

(case body) (compound statement)

Examples:

CASE I OF

BEGIN (statementO);

(statement
l

);

(statement
N

) END;

SEMANTICS.

The CASE statement provides the programmer the means for selective

execution of one of a series of statements.

At execution time, the value of the arithmetic expression deter­

mines which of the (statement)s will be executed within the com-

pound statement~

The sequence of action is:

a. The arithmetic expression is evaluated.

6-5

b. If the value is not an integer, the value is rounded:

Integer value = ENTlER (value + 0.5).

c. The value is used as the ordinal number of a statement

in the case body.

d. If the value lies outside the range of 0 to N-l (where N

is the number of statements in the case body), an error

interrupt occurs.

e. Otherwise, the selected statement is executed.

f. At the end of the selected statement, control is trans­

ferred to the point beyond the end of the case body

unless the selected statement causes a transfer of control

outside the scope of the case statement.

ASSIGNMENT STATEMENT.

SYNTAX.

The syntax for (assignment statement) is as follows:

I (assignment statement) ::= (pointer assignment) I
(arithmetic variable) (partial word part)

(replacement operator) (arithmetic expression)

(Boolean variable) (partial word part) (replacement

operator) (Boolean expression)

(partial word part) ::= (empty) . (field part)

(pointer assignment) ::= (pointer identifier) (replacement

operator) (pointer expression)

Examples:

A ~ A + 1

Q.[JO:l] ~ P > R

p ~ "RESULT"

6-6

X.[47:1J ~ x ~ z ~ 0

SEMANTICS.

The assignment statement causes the expression to the right of

the replacement operator to be evaluated. The value of the

expression is assigned to the variable or field on the left.

A form of arithmetic expression is the <arithmetic assignment). A I
form of Boolean expression is the <Boolean assignment). A form of

pointer expression is the pointer assignment.

The action of the assignment statement is as follows:

a. The <variable) is evaluated.

b. The <partial word part), if not empty, is evaluated.

c. The expression following the replacement operator is

evaluated.

d. The value of the expression is assigned to the variable

(or to the specified part thereof). In an arithmetic

assignment, the appropriate implicit type conversion

(integer and real) is performed as required.

The <pointer assignment) is invalid if the pointer level of the

pointer expression exceeds the pointer level of the pointer

identifier (see pointer expressions, page 4-20, and pointer de­

clarations, page 7-6).

TYPES.

All variables in the left part list must be either exclusively of

type BOOLEAN or of an arithmetic type, i.e., REAL, INTEGER, or

ALPHA (which is treated as type REAL). (See page 7-2, type

declarations.)

6-7

I

If the variables are of type BOOLEAN, the value to be assigned

must be that of a Boolean expression.

If there is a difference between the declared type of the left

part variable and the value to be assigned to it, or the left

part variables are of different arithmetic types, the Compiler

will reconcile the differences, but this procedure may cause a

change (rounding to integer) in the value assigned.

The following rules apply:

a. If the left part list is of type REAL and the

expression value is of type INTEGER, the value is

stored unchanged.

b. If the left part list is of type INTEGER and the

expression value is of type REAL, the transfer

function ENTIER (E + 0.5), where E is the value

of the expression, is automatically invoked and

the value obtained is stored.

c. If the left part list contains variables of different

types, assignment of the value is executed from right

to left. If, during this process, a real number is

transferred to integer, this integer value is assigned

to all following variables at the left of the integer

variable, regardless of their type.

RESTRICTIONS.

Assignment to a procedure identifier may occur only within the

body of a procedure defining the value of a function designator.

ITERATION CLAUSE.

SYNTAX.

The syntax for (iteration clause) is as follows:

6-8

(iteration clause) ::= FOR (variable) (replacement operator)

(for list) DO I WHILE (Boolean expression) DO I
THRU (arithmetic expression) DO

(for list) ::= (for list element) I (for list) , (for list

element)

(for list element) ::= (initial part) (increment part)

(initial part) ::= (arithmetic expression)

(increment part) ::= (empty) 1 (step part) L~TIL (arith­

metic expression) I (step part) WHILE (Boolean

expression) I WHILE (Boolean expression)

(step part) ::= STEP (arithmetic expression)

Examples:

FOR Statements:

FOR I ~ A + 2 DO BETA ~ I + BETA

FOR K A + 2, 1 STEP 1 UNTIL N DO P [KJ ~ R [KJ

FOR Clauses:

FOR I ~ A + 2 DO

FOR K ~ A + 2, 1 STEP 1 UNTIL N DO

FOR-Lists:

A + 2

A + 2, 1 STEP 1 UNTIL N, A + 2 WHILE A > B, 1 STEP 1

WHILE A > B

FOR-List Elements:

A + 2

1 STEP 1 UNTIL N

A + 2 WHILE A > B

1 STEP 1 WHILE A > B

6-9

SEMANTICS.

The iteration clause provides a means of forming loops in a pro­

gram. (See statements, section 6.)

The FOR (variable) (replacement operator) (for list) DO form of

the iteration clause is evaluated as follows:

a. The initial value assigned to the variable (referred to

as the controlled variable) is that of the left-most

arithmetic expression in the for list. Subsequent values

of the controlled variable depend on the elements of the

for list and associated action.

b. The for list elements provide rules for obtaining values

to be assigned to the controlled variable; also, the for

list elements furnish the tests to be made to decide

whether or not to execute the statement following DO.

c. Control is transferred beyond the for clause and its

affiliated statement when:

1) A test is failed, or

2) An appropriate GO TO statement is executed in the

affiliated statement, or

J) The for list is exhausted.

The WHILE (Boolean expression) DO form of the iteration clause

is evaluated as follows:

6-10

a. The Boolean expression is evaluated.

b. If the value is true, the statement following is

executede

c. The sequence is repeated until:

1) The value is FALSE, or

2) A change of control is executed in the

statement following.

The THRU (arithmetic expression) DO form of the iteration clause

is evaluated as follows:

a. The arithmetic expression is evaluated.

b. The statement following the DO is executed the number

of times indicated by the initial value of the arithmetic

expression.

STRING TRANSFER STATEMENTS.

SYNTAX.

The syntax for (string transfer statement) is as follows:

(string transfer statement)

BY (source list)

REPLACE (destination)

(string scan statement) ::= SCAN (source) (scan part)

(source list) ::= (source part) I (source list) , (source

part)

(source part) ::= (source) (transfer part) I (string)

(optional unit count) I (arithmetic expression)

(optional unit count) I (output convert) I

(scan part) ::= FOR (maxcount) (condition) I (condition>
I , I

(transfer part) (scan part) I (unit count)

(unit count) ::= FOR (arithmetic expression) (units)

(condition) ::= WHILE (relational operator) (arithmetic

expression) I UNTIL (relational operator)

6-11

I

(arithmetic expression) I WHILE IN ALPHA I
UNTIL IN ALPHA

(optional unit count) ::= (empty) I (unit count)

(maxcount) ::= (update count) (arithmetic expression)

(destination) ::= (update pointer) (pointer expression)

(source) ::= (update pointer) (pointer expression)

(update pointer) ::= (empty) (pointer identifier)

(update count) ::= (empty) I (simple variable) :

(units) ::= (empty) I WORDS

(output convert) ::= (arithmetic expression) FOR

(arithmetic expression) DIGITS

Examples:

SCAN CARDCOL:CARDCOL - POINTER (BUFFARRAY [OJ) FOR

COUNT: SO-COUNT WHILE ~ n n

REPLACE ID - POINTER (ACCUM [lJ) + J BY CARDCOL:

CARDCOL FOR COUNT:63 WHILE IN ALPHA

SEMANTICS.

A string transfer statement transfers characters or words from one or

more sources to a destination. If a character transfer is specified,

the pointer expressions must refer to characters of the same size.

There are several forms of the string transfer statement, depending

upon the form of the (source part).

a. (source) (unit count)

Used to transfer a given number of words or characters.

b. (source) FOR (maxcount) (condition)

This statement transfers characters either until a

6-12

maximum count is exhausted, or until (or while) a

condition is satisfied. The condition may specify a

relation between source characters and a given character

(arithmetic expression), or it may specify membership

of source characters in the ALPHA character set. The

ALPHA character set consists of (letters) and (digits).

c. (source) (condition)

d.

This statement does the same as b above, except the

maximum count is not given; 8184 is assumed.

(string) (unit count)

This statement transfers a string under control of a

count.

1) If the string represents fewer than 48 bits, the

string is extended to 48 bits by concatenating it

with itself an appropriate number of times, and the

characters of this 48-bit string are transferred

repeatedly until -the unit count is exhausted; other-

wise,

2) The string represents more than 47 bits. In this

case, the string is transferred until the count is

exhausted. If the count exceeds the string length,

the results are undefined.

e. (string)

This statement transfers the characters of a string

exactly once.

f. (arithmetic expression) (unit count)

This statement is the same as e above, except the value

is assumed to be a 48-bit string. Its characters are

assumed to be equal in size to those of the destination

6-13

I

g. (arithmetic expression)

This statement transfers the 48 bits of the value of the

arithmetic expression exactly once.

h. (output convert)

This statement converts the value of the first arithmetic

expression into the number of digits specified by the second

arithmetic expression and places them into the string. The

value of the second expression must be less than or equal

to 8. If the converted value requires more than the speci-

fied number of digits, the right-most digits will be used.

A string scan statement is identical to statement b or c above,

except that no destination is required and no character transfer

takes place. It merely examines a given string.

At the completion of a string scan or string transfer statement,

certain updated values are available, and are saved as determined

by the presence of the optional update constructs. If N characters

have been transferred (or scanned), the update pointer values are the

original values of the pointer expressions + N. The updated count

value is the original value of the count arithmetic expression - N.

The arithmetic expression in (unit count) specifies a word count if

WORDS is present; otherwise, it specifies a character count.

Whenever a non-empty update pointer is specified, the statement is

invalid if the pointer level of the pointer expression exceeds the

pointer level of the pointer identifier preceding the colon (see

pointer expressions, page 4-20, and pointer declarat~ons, page 7-6).

Scan and replace statements with a "scan part" may not be used on

eight-bit strings. String comparison will also not accept eight-bit

characters, although these strings can be compared u.sing the REAL

string intrinsic.

6-14

I/O STATEMENTS.

SYNTAX.

The syntax for (I/O statement) is as follows:

(I/O statement) ::= (read statement) (wrjte statement)

(space statement) (close statement)

(lock statement) (rewind statement)

(fcr statement)

(fcr statement) ::= (file identifier). ACCESS - (access media)

(access media) ::= RANDOM SERIAL I UPDATE

SEMANTICS.

Input/output statements cause values to be communicated to and from

a program and provide programmatic control of most files and their

corresponding I/O units. Disk files and data communications files

are handled by the disk and data communications I/O statements,

respectively.

The (fcr statement) applies only to disk files and is executed only

ir the last reference to the file was a CLOSE, REWIND, or LOCK state­

ment. It has two functions:

a. It sets the access mode as specified.

b. When it is executed after a LOCK statement, conditions are

established such that the file placed in the disk directory

by the LOCK statement remains addressable through the same

file declaration.

Example.

FILE A DISK SERIAL [20:l000J (2,10,150);

WRITE(A ,FMTI ,LSTl);

LOCK(A); %PUTS A IN DIRECTORY

A. ACCESS-RANDOM;

READ(A[IJ ,FMT2,LST2); %THE FILE A IN THE DIRECTORY IS ACCESSED

6-15

I

I

I

IThe remaining r/o statements are the same as those described in

reference manual for B 5500 ALGOL.

READ STATEMENTS.

SYNTAX.

The syntax for (read statement) is as follows:

(read statement) ::= READ (direction) (input parameters»)

(action labels)

(direction) ::= (empty) I REVERSE

(input parameters) ::= (file part) (buffer release),

(format and list part) I (file part)

(buffer release) I (file part)

(buffer release) , (free-field part)

the

(file part) ::= (file identifier) I (switch file designator)

6-16

(buffer release) ::= (empty) ! [NO]

(format and list part) ::= (format) I (format) , (list) I
(format) , (list identifier) I * , (list) I *,
(list identifier) I (arithmetic expression) ,

(array row)

(format) ::= (format identifier) (switch format designator)

(free-field part) ::= / , (list) / , (list identifier)

(action labels) ::= [(end-of-file label) : (parity label)]

[(end-of-file label)] I [: (parity label)] I (empty)

(end-of-file label) ::= (designational expression)

(parity label) ::= (designational expression)

Examples:

READ (FILEID, FMT, LISTID) [LEOF]

READ (FILEID [NOJ, FMT, LISTID)

READ REVERSE (FILEID, FMT, A, B, C, ARA[lJ) [:LPAR]

READ (FILEID, *, LISTID)

READ (FILEID, X + Y, ARA[*]) [LEOF:LPAR]

READ (FILEID,FMT)

READ REVERSE(FILEID,SO,ARA2[1,*J)

READ (FILEID)

r . T IlARl
L • Dr .J. J

READ (FILEID, /' FOR I - 0 STEP 1 UNTIL 16 DO A [I])

READ (FILEID[IF X > N THEN 0 ELSE lJ, 50, AES[*])

READ (SPO, FRMT, LST)

READ (SPO, /' LST)

SEMANTICS.

The READ statement causes values to be assigned to program variables.

It can also place information in strings defined in the FOm~T de­

claration.

Direction must be indicated only when magnetic tape is to be read in

the reverse direction. In all other cases, the direction part of

the statement must be empty.

The file part specifies which file is to be read.

The buffer release indicates whether the input buffer is to be re-

filled after it has been read and edited. If [NOJ is used, the

buffer is not refilled, and the same buffer will be the next one

accessed.

The format and list part specifies the

data.

action to be taken v.!..!.

A READ statement with an empty format and list part causes one

logical record to be passed without being read; i.e., such a state­

ment acts as a SPACE (FILE, 1) statement.

A format part without a list part indicates that the referenced

FORMAT declaration contains a string into which corresponding

characters of the input data are to be placed; the string in the

FORMAT declaration is replaced by the string in the input data.

A format part with a list or list identifier designates that the

input data is to be edited according to the specifications of the

referenced FORMAT declaration and assigned to the variables of

the list.

The symbol *, together with a list or list identifier, specifies

that the input data is to be processed as full words, and that

it is to be assigned to the variables of the referenced list with-

out being edited. The number of words read is determined by the

number of variables in the list or the maximum record size, which­

ever is smaller.

An arithmetic expression with an array row designator specifies

that input data is to be processed as full words, and that it is

to be assigned to the elements of the designated array row without

being edited. The number of words read is determined by the number

of elements in the array row, the buffer size, or the value of the

arithmetic expression, whichever is smallest~

The symbol/specifies free-field input. Such input does not

require a FORMAT declaration to provide specifications for data.

Editing specifications in this case are determined by the format

of the data itself (see Free-Field Data page 6- 19).

Action labels provide a means of transferring control from a READ

(or SPACE) statement when an End-of-File or irrecoverable parity

error occurs. A branch to the label preceding the colon takes

place when an End-of-File condition occurs. A branch to the label

following the colon takes place if an irrecoverable parity error

occurs.

6-18

When a READ statement is executed where the file is assigned to the

console typewriter, a message is typed on the SPO and the program

is temporarily suspended.

The form of the message on the SPO is:

(job specifier) ACCEPT

The operator responds to the above message by typing a message as

follows:

(mix index) AX (input message)

The (input message) which follows AX is then read as specified by

the READ statement and the program is re-initiated. The buffer will

contain an end-of-message character following the last character

of the (input message). This end-of-message character has the

same code as the code for the character

FREE-FIELD DATA.

SYNTAX. The syntax for (free-field data) is as follows:

(free-field data) ::= (field) (field delimiter) I (free-field

data) (field) (field delimiter)

(field) ::= (number) I (string) I % (octal number) I / I * I
(empty)

(field delimiter) ::= , I (letter) {any proper string not

containing a comma} , I {if the field is a slash

(/), the end of the current record serves as a

field delimiter}

6-19

Examples:

1,

2.5,
2.48 @ -20,

2 @ 34,

"THIS IS A STRING",

%12347,

1 DELIMITER,

2.5 ANY COMMENT OR NOTE NOT CONTAINING A COMMA,

2.48 @ -20 VALUE FOR z* (-3),

2 @ 34 ET CETERA,

"THIS IS A STRING" THIS IS A COMMENT,

% 12347 AN OCTAL NUMBER,

* TERMINATES READ,

SEMANTICS. All Free-Field Input is in the form of free-field

data. Each field, except the slash (/), is associated with the

list element to which it corresponds according to position.

A free-field data sentence is in no way affected by the end of

a record. That is, a field or field delimiter may be carried over

from one record to another. Continuation from record to record

is automatic until the LIST is exhausted or an asterisk (*) field

is encountered. Unused characters (if any) on the last record

read are lost.

All blanks in free-field data except those in strings are com­

pletely ignored.

Fields are handled as follows:

6-20

a. Numbers. A number which is represented as an INTEGER

will be converted as an INTEGER unless it is larger than

the largest allowable INTEGER, in which case it will

be converted as REAL. Numbers which contain a decimal

fraction will be converted as REAL.

b.

c .

strings. Strings may be of any length. Each list

element will receive six characters until either the

list or the string is exhausted~ If the number of

characters in the string is not a multiple of six, then

the last list element receives the remaining characters

of the string. The string characters are stored right­

justified in the list elements.

Octal Numbers. Octal numbers are placed right-justified

in the list element, unchanged. The largest octal number

allowed is 3777777777777777. A non-octal digit will

terminate the number, treating the remainder of the field

as comment~

d. Empty. An empty field will cause the corresponding list

element to be ignored.

e. Slash I / \
\ /) . The slash (/) field will cause the remainder

of the current record to be ignored. The record following

the slash is considered the beginning of a new field;

therefore, the slash field does not require (or recog­

nize) any field delimiter other than the end of the

record in which it occurs. A slash field has no effect

on list elements. The slash is a field by itself and

must not be placed within another field or between a

field and its delimiter.

f. Asterisk (*). The asterisk (*) field terminates the

read statement. The program continues with the next

statement in sequence. The list element corresponding

to the asterisk is left unchanged, as well as any

subsequent elements in the list.

LOGICAL VALUES. For the purpose of Free-Field Input, an INTEGER 1

(one) must be used in lieu of the logical value TRUE, and an

INTEGER 0 (zero) must be used in lieu of the logical value FALSE.

6-21

The example below demonstrates the Free-Field Input facility:

Example:

Consider each of the following lines as individual records:

1

2

3
@

29

+1

29

23 o

+ • 123 @3 2

@ +

, 0, X, AI, 4 A 5 B, / CARD 124

15 IGNORED, ZERO.

% 177, %30, "THIS IS A STRING", u"u

"STRING", *, 2.7, 8.4,

If the above records (free-field data) were read with the state­

ment

READ(FILEID,/,FOR I~O STEP 1 UNTIL 18 DO A [IJ)

values would be assigned to A as follows:

A [OJ = 123@29

A [IJ = 123@29

A [2J = 123@32

A [J J = 0

A [4 J = Unchanged

A [5J = Unchanged

A [6J = 4

A [7J = 15

A [8J = Unchanged

A [9J = 177 (octal)

6-22

A [10J = 30 (octal)

A [llJ = OOTRIS I

A [l2J = OOS A ST

A [l3J = OOOORING

A [l4J = OOOOOOOtl

A [l5J = OOSTRING

A r 1 6l L.L J = Unchanged
A r 1 '"11 = Unchanged .t-1. L ...L I J

A [l8J = Unchanged

The occurrence of the asterisk (*) field on the last record term­

inates the read statement without assigning any values to A [16J,

A [17J, or A [18J.
I . _, "'1

The value of I \the controiiea varlaOie of

the FOR clause) will remain at 16.

SPACE STATEMENTS.

SYNTAX.

The syntax for <space statement) is as follows:

<space statement) ::= SPACE «file part), <number of records»)

<action labels)

<number of records) <arithmetic expression)

Examples:

SPACE (FILEID, 5) [LEONF:LPARJ

SPACE (FILEID, -3) [LEOF:LPAR]

SPACE (FILEID, A + B - C)

SEMANTICS.

The SPACE statement is used to bypass input logical records with­

out reading them.

The value of the arithmetic expression determines the number of

records to be spaced and the direction of the spacing. If the

expression is positive, the records are spaced in a forward di­

rection; if negative, in the reverse direction.

6-23

WRITE STATEMENTS.

SYNTAX.

The syntax for (write statement) is as follows:

(write statement) ::= WRITE (output parameters»

(output parameters) ::= (file part) (carriage control)

(file part) (carriage control) (format and

list part)

(carriage control) ::= [PAGEJ I (skip to channel) I [DBLJ

[NOJ (empty) I [STOpJ

(skip to channel) ::= [(arithmetic expression)J

Examples:

WRITE (FILEID, FMT, LISTID)

WRITE (FILEID [PAGEJ)

WRITE (FILEID, FMT)

WRITE (FILEID, *, LISTID)

WRITE (FILEID [DBL],FMT, A, B, C ARA[6J)

WRITE (FILEID, X+y+Z, ARAJ[l,l*J)

WRITE (FILEID)

WRITE (FLE[X + 2J, FT, LST)

WRITE (SPO, 10, A[*J)

WRITE (SPO, FRMT, LST)

SEMANTICS.

The WRITE statement causes output of information in the form of

computational results and messages.

The file part specifies the file to be used.

The carriage control may be included to allow for paper control

on the line printer. If the specified output unit is not a line

printer, carriage control is irrelevant and is ignored.

6-24

[PAGE] causes the printer to skip to channel after each line of

print.

Skip to channel causes the printer to skip to the channel indicated

by the value of the arithmetic expression after each line of

print.

[DEL] causes the printer to double space after each line of print.

[NO] causes the printer to suppress spacing after each line of

print.

[STOP] causes the automatic carriage return and line feed to be

suppressed at the end of a line written on a data communications

unit.

The format and list part specifies the action to be taken on the

output data.

A format identifier alone indicates that the referenced FORMAT

declaration contains one or more strings which constitute the

entire output.

A format identifier followed by a list or list identifier desig­

nates the variables in the list are to be placed in a format

according to the specifications of the FORMAT declaration and

written as output.

as noted above.

The FORMAT declaration may contain strings

The symbol * followed by a list or list identifier specifies that

the variables in the list are to be processed as full words, and

are to be written as output without being edited. The number of

words written is determined by the number of variables in the

list or the maximum record length, whichever is smaller. When

unblocked records are used, the maximum record length is the

buffer size.

An arithmetic expression used with a row designator specifies

6-25

that the elements of the designated array row are to be processed

as full words and are to be written as output without being

edited. The number of words written is determined by the number

of elements in the array row, the maximum record length, or the

absolute value of the arithmetic expression, whichever is smallest.

When unblocked records are being used, the maximum record length

is the buffer size.

WRITE statements which do not ref'erence a FORMAT declaration

provide a faster output operation than tho~e which require data

to be edited.

When a WRITE statement is executed where the file is assigned to

the console typewriter, the output will be typed on the spa.
Writing is terminated when the end-of-message character (code

for~) is encountered in the message. This character is placed

into the first character of the word immediately following the

last output word. However, the program can place the character

~ in the output string, if desired.

RESTRICTION.

The arithmetic expression in skip-to-channel requires an integer

value from 1 through 11. If the arithmetic expression yields a

value other than integer, it will be rounded to an integer in

accordance with the rules applicable to the evaluation of sub­

scripts (see page 3-3, evaluation of subscripts).

REWIND STATEMENTS.

SYNTAX.

The syntax for (rewind statement) is as follows:

(rewind statement)

Example:

REWIND (FILEID)

6-26

.. -.. - REWIND «file part»)

SEMANTICS.

The REWIND statement causes the referenced file to be closed and

if tape, to be rewound. The I/O unit will remain under program

control.

RESTRICTION.

On paper tape files, the REWIND statement may be used only on

input.

LOCK STATEMENTS.

SYNTAX.

The syntax for (lock statement) is as follows:

(lock statement) ::= LOCK «file part), RELEASE) I LOCK

«file part), SAVE) I LOCK «file part»)

Examples:

LOCK (FILEID, RELEASE)

LOCK (FILEID, SAVE)

SEMANTICS.

The LOCK statement causes the referenced file to be closed. If

the file is tape, it is rewound and a system message is printed

to notify the operator to remove the reel and save it.

If the file is not a disk file, the unit is made inaccessible

to the system until the operator resets it again manually.

The three forms of the LOCK statement are equivalent.

CLOSE STATEMENTSe

SYNTAX.

The syntax for (close statement) is as follows:

(close statement) ::= CLOSE «file part), RELEASE)

CLOSE «file part), SAVE) I CLOSE «file part»)

CLOSE «file part), *) I CLOSE «file part), PURGE)

6-27

Examples:

CLOSE (FILEID, RELEASE)

CLOSE (FILEID, SAVE)

CLOSE (FILEID, *)

CLOSE (FILEID, PURGE)

SEMANTICS.

The CLOSE statement causes the referenced file to be closed. The

following actions take place:

a. On a card output file, a card containing an ending

label is punched.

b. On a line printer file, the printer is skipped to

channell, an ending label is printed, and the

printer is again skipped to channel 1.

c~ On an unlabeled tape output file~ a tape mark is

written after the last block on tape.

d. On a labeled tape output file, a tape mark and ending

label are written after the last block on tape.

If only the file part is used, or the SAVE or RELEASE is used,

the I/O unit is released to the system. If the file is a tape

file, the tape is rewound.

If the symbol * is used, the file must be a tape file. The I/O

unit remains under program control and the tape is not rewound.

This construct is used to create multi-file reels.

If PURGE is used, the file is closed, purged, and released to

the system.

w~en the symbol * is used on a labeled multi-file input tape, the

following action can take place:

a. If the last reference to a file was a READ or SPACE

6-28

FORWARD statement and a CLOSE «file part), *) is

executed, the tape is positioned forward to a point

just following the ending label of the file.

b. If the last reference to the file was a READ or SPACE

REVERSE statement and a CLOSE «file part), *) is exe­

cuted, the tape is positioned to a point just in front

of the beginning label for the file.

c. If the CLOSE «file part), *) is executed after the

End-of-File branch has been taken, no action is per­

formed to position the file.

When the CLOSE «file part), *) is used on a single-file reel,

the action taken is the same as for a multi-file reel.

FAULT STATEMENT.

SYNTAX.

The syntax for (fault statement) is as follows:

(fault statement) .. - (fault type) - 0

(designational expression)

(fault type)

(fault type) ::= EXPOVR I INTROVR I INDEX I FLAG I ZERO

Examples:

EXPOVR - 0

INTOVR INTTOOBIG

INDEX - SELECTPATH [I]

FLAG - IF K = 1 THEN FINIS ELSE REDO

SEMANTICS.

The fault statement provides the means by which a programmer may

specify programmatic action for any of the specific program errors.

The program errors are associated with each fault type as shown

in table 6-1. The fault statement requires a fault declaration

(described on page 7-44).

6-29

Table 6-1

Program Errors for Fault Types

<fault type) Meaning

EXPOVR Exponent overflow

INTOVR Integer overflow

INDEX Invalid index

FLAG Flag bit

ZERO Divide-by-zero

If one of the program errors occurs and there is an associated

<fault type) ~ <designational expression) statement, transfer of

control to the evaluated designational expression will take place

provided:

a: The error occurred during the execution of a statement

within the scope of the label.

b. The error occurred in a procedure that was called by a

procedure call statement that is within the scope of

the label.

Transfer of control will not take place if it will result in the

entering of a block other than through the block head.

The designational expression is evaluated when the fault statement

is executed and not at the time that the error occurs. If multiple

fault declarations are made (i.e., in nested blocks) when an error

occurs, only the most local declaration for that type will be

examined.

The <fault type) ~ 0 statement is the means of turning off the

transfer control fault statement. After this form of fault

statement has been executed, the program will be terminated if

the specific error occurs.

6-30

ZIP STATEMENT.

SYNTAX.

The syntax for (zip statement) is as follows:

(zip statement) ::= ZIP WITH (array row)

ZIP WITH (file part)

Examples:

ZIP WITH CONTROLCARD[I,*]

ZIP WITH FILEID

SEMANTICS.

The ZIP WITH (array row) statement causes information in the

designated array row to be recognized as control and/or program

parameter card information. The information in the array row

must be in the BCL (6-bit) format as it would appear on the con-

trol The letters CC may be used in lieu

of a question mark (?), but only one may appear in the array row.

The information in the array row appears as a single punched card,

but is not limited to 72 characters. The information that would

be contained on more than one control card may be put into the

array row, but a semicolon must be used to delimit the end of

a card.

The control information to be utilized by the ZIP WITH (array

row) statement should pertain to only one Compiler or object

program. The last card in the array row must contain the

following:

END.

After the ZIP WITH (array row) statement has been executed, the

object program that executed the statement continues processing,

while the MCP examines the control information in the array row.

If the MCP finds an error in this control information, an appro­

priate error message is typed on the supervisory printer to notify

the operator.

6-31

The ZIP WITH (file part) statement causes information in the desig­

nated disk file identified by (file part) to be considered as a

control deck. Each logical record must be one card, i.e., 10 words.

Logical record zero (0) must be a control card and must contain in

its tenth word the logical record number (a binary integer) of the

next control card in the control deck including LABEL cards. Each

successive control card, likewise, points to the next control card.

There must be an END control card in the control deck as the last

card which points to itself. The proper format of a control deck

on disk is illustrated in figure 6-1.

When the ZIP WITH (file part) statement is executed, the object

program which executed that statement continues processing, while

the file (file part) is passed to the MCP. If a file other than a

disk file is referenced, the ZIP statement is ignored. If the ref-

erenced disk file is not on disk, the ZIP statement is ignored.

The MGP does not check to ensure that the control deck is properly

arranged; this is a responsibility of the programmer.

After execution of the ZIP WITH (file part) statement is completed,

the control deck referenced by the designated file is purged from

the disk directory.

LABEL EQUATION STATEMENT.

SYNTAX.

The syntax for (label equation statement) is as follows:

(label equation statement) ::= FILL (file part) WITH

(label equation information)

6-32

(label equation information) ::= (multi-file identification)

(multi-file identification), (file identification)

(multi-file identification), (file identification),

(reel number) I (multi-file identification), (file

identification), (reel number), (date) I (multi-file

identification), (file identification), (reel number),

(date), (cycle number) (multi-file identification),

(file identification), (reel number), '(date), (cycle

number), (output media part)

ZIP WITH (file id) CONSTRUCT

Logical Record WD .1 WD 2 WD J WD 4 WD 5 WD 6 WD 7 WD 8 WD 9 WD 10

0 ? EXECUTE ANY/JOB .1 (in binary)

1 ? I.,ABEL INPUT 9 (in binary)

2 (DATA CAUDS)

J " "
4 " "
5 " "
6 " "
7 " "
8 " "
9 ? COMPILE A/B WITH ALGOL .10 (in binary)

10 ? DATA CARD 17 (in binary)

~Ll (SOURCE LANGUAGE CARDS)

.L2 " " "
LJ " " "
~L4 " " "
1·5 " " "
~L6 " " "
17 ? DATA DATA :21 (in binary)

1.8 (DATA CARDS)

19 II II

20 II "
21 ? END. 21 (in binary)

0'\
I Figure 6-1. Format for Control Deck On Disk \.....)

\.....)

(multi-file identification) ::= (arithmetic expression) *

(file identification) ::= (arithmetic expression) *

(reel number) ::= (arithmetic expression) *

(date) ::= (arithmetic expression) *

(cycle number) ::= (arithmetic expression) *

(output media part) .. -.. - (arithmetic expression) * I REMOTE

Examples:

FILL FID WITH "MULTI", "FILEID"

FILL FI WITH *, "FILEID", *, 66123

FILL SFI[IJWITH X, Y, R, D, C, 2

SEMANTICS.

The label equation statement provides the means to programmatically

specify the file LABEL information associated with a file (file

This s ta temen t is a prograrrnnct tic proe;:ram p8rameter card.

To have effect, a label equation statement must be executed while

the designated file is not open; otherwise, the statement is ig­

nored.

When a label equation statement is executed, the label equation

information is assigned to the file (file part) and is used in

association with the input/output statements using the specified

file. If any part of the label equation information contains an

asterisk, that part of the information will remain as it was

before the statement was executed.

All label equation information, except the output media part, must

be in the format required in a standard label. The values which

the output media digit may have and their meanings are listed in

table 6-2. The values of the multi-file and file identification

parts are interpreted as ALPHA and can contain up to seven charac­

ters in the variable or string.

6-34

An output media part of REMOTE indicates a data communications file.

(output media

0

1

2

4

5

6

7

8

9
10

11

12

13

REMOTE

15

16

17

Table 6-2

Values for Output Media Digit

part)

Card punch

Line printer

Meaning

Labeled magnetic tape

Line printer or printer backup tape

Labeled designated output file

Printer backup tape

Unlabeled designated output file

Unlabeled paper tape

Unlabeled magnetic tape

Random disk file

Supervisory printer

Serial disk file

Update disk file

Data communications file

Printer backup disk

Printer backup tape or disk

Line printer or printer backup disk

18

32

Line printer or printer backup tape or disk

Special forms message required

EDIT AND MOVE STATEMENT.

SYNT.Lt\,,-X.

The syntax for (edit and move statement) is as follows:

(edit and move statement) ::= (edit and move read)

(edit and move write)

(edit and move read) READ «array row), (format

6-35

and list part») I READ «array row),

(free field part»)

(edit and move write) ::= WRITE «array row),

(format and list part»)

Examples:

READ (A[*], FMT, LST);

WRITE (XA[I,*], 25, B[*]);

READ (DD[*], /, R, A);

SEMANTICS.

The edit and move statement provides the means of utilizing the

editing features of READ and WRITE statements without using I/O

files and buffer areas. In effect, the (array row) designated

in the edit and move statement is analogous to a buffer area.

When an (edit and move read) statement is executed, data in the

designated array row is edited and placed in the list. The format

part determines what editing is to take place as the data is moved

from the array row to the list.

When an (edit and move write) statement is executed, data from the

list is edited and placed into the designated array row. The data

is edited as specified by the format part as it is moved from the

list to the array row.

If the edit and move statement calls for more than one physical

record, the array row will be reused when the new record is re­

quired.

DISK I/O STATEMENT.

SYNTAX.

The syntax for (disk I/O statement) is as follows:

(disk I/O statement) ::= (disk read statement)

(disk write statement) I (disk read seek statement)

6-36

SEMANTICS.

(disk space statement)

(disk close statement)

(disk rewind statement)

(disk lock statement)

The disk I/O statements allow the programmer to utilize the disk

for creating files and using created files. A record pointer is

associated with the I/O statements. This record pointer is always

set to the address of the logical record that is accessed by a

READ or WRITE statement.

DISK READ STATEMENT.

SYNTAX.

The syntax for (disk read statement) is as follows:

(disk read statement) ::= READ (direction) «disk input

parameters») (action labels)

/~. 1.. ., 1_._ .\ I _

\Q1SK lnput; paramet;ers) ::= \1-1.le part) \record address and

release part), (format and list part) I (file part)

(record address and release part) I (file part)

(record address and release part), (free field part)

(record address and release part)

(empty)

(address) ::= (arithmetic expression)

Examples:

READ REVERSE (OLDFILE, FRMAT, LST)

READ (FREEFILE, /, FREELIST) [:PAR]

READ *, BILST) [EOF:PAR]

READ (DATA[NEXT], NOREC, ARA[I,*])

SEMANTICS.

[(address)] I [NO]

A disk READ statement causes data to be read from a disk record

and placed into the list variables as specified by the format.

The record pointer may be adjusted by the READ statement.

6-37

If a REVERSE direction is used in the READ statement, the value of

the record is decreased by one prior to performing the read. If

the value of the record pointer is N when a read reverse is exe­

cuted, the record pointer is set to N-I before the read is performed.

At the completion of the read reverse, the record pointer remains

at N-I.

If an (address) is used in the record address and release part,

the (address) specifies the relative address in the file of the

record to be read and edited as specified in the READ statement.

The record pointer is set to (address) before the read is performed.

The record pointer is not adjusted after the read is executed. An

(address) must be used when a file is declared RANDOM.

If an (address) is not specified and NO is not used, the record

read will be the one pointed to by the record pointer. After the

read has been executed, the record pointer is adjusted to point to

the next record in the file.

If NO is used, the record read will be the one to which the record

pointer is set. After the read has been executed, the I'ecord

pointer will not be adjusted.

The format and list part have the same meaning for disk I/O that

they have for all other I/O's.

The action labels provide means of transferring control from a READ

statement when an End-of-File or Parity condition occurs. The

1
1. abel preceding the colon is branched to on an End-of-File condi­

tion. The label following the colon is branched to on a Parity

Error condition.

An End-of-File condition occurs whenever an attempt is mad~ to

read a record of which the address is greater than the EOF indica­

tor, or less than zero. The EOF indicator is the address of the

highest record address written when the file was created. This

indicator is updated whenever additional records are written onto

the file.

6-38

DISK WRITE STATEMENT.

SYNTAX.

The syntax for (disk write statement) is as follows:

(disk write statement) ::= WRITE «disk output parameters»)

[(action labels)]

(disk output parameters) ::= (file part) (record address part)

I (file part) (record address part), (format and

list part)

(record address part)

Examples:

.. -.. - [(address)]

WRITE (FILEX[NEXT], *, LIT)

WRITE (INVNTRY[PARTNO], 60, ARA[*])

WRITE (NEWFILE, FRMT, LST)

SEMANTICS.

I (empty)

Disk WRITE statements cause information to occur as output accord­

ing to the format from the list specified. Whenever the WRITE

statement is executed, the record pointer will be adjusted.

The disk file on which the output is to be written is specified

by the file part.

If an (address) is specified, the record pointer is set to this

relative address prior to executing the WRITE statemen.t. The

(address) must be provided if the specified file is declared RANDOM.

If the record address part is emptY1 the WRITE statement will cause

the output to be written onto the file at the present record

pointer location.

The record pointer is always adjusted to the next record location

following the execution of the WRITE statement.

The format and list part have the same meaning for disk I/O as

6-39

it has for other I/O's. However, if it is empty, the contents of

the current buffer are written onto the disk. An empty format

list part should only be used with unblocked files.

An End-of-File condition occurs if an attempt is made to write a

record which has an address outside of the file, as declared. The

End-of-File action label provides the programmer with the means of

branching to a label if this condition occurs.

DISK READ SEEK STATEMENT.

SYNTAX.

The syntax for (disk read seek statement) is as follows:

(disk read seek statement) ::= READ SEEK «file part)

[(address)])

Example:

READ SEEK (PARTFILE[NEXT])

SEMANTICS.

The principle use of the READ SEEK statement is with files declared

RANDOM. It provides the means of filling a buffer in anticipation

of a READ or WRITE action on the record as specified by the

(address).

When each READ SEEK statement is executed, records are subsequently

read into buffer areas. The records are queued according to the

order in which they were requested. If more READ SEEK statements

are executed than there are buffers, records are lost, starting

at the head of the queue.

When a READ is executed, the record addressed is searched for,

starting at the head of the queue. If the first record in the

queue is not the desired record, that record is released or lost

6-40

and the next record becomes the head of the queue. This sequence

continues until the record is found or the queue is empty. If

the record is not in the queue, the addressed record is then read

from the disk file.

When a WRITE statement is executed, a copy of the record may be

required in core before the WRITE is performed (explained under

file declarations for disk files in section 7).
performed, one of the following may occur:

If a WRITE is

a. If a copy of the record is not required, the record

at the head of the queue would be lost.

b. If a copy of the record is in a buffer area, that

buffer will be used as an output buffer and all

records in the queue preceding the record written

are lost.

c. If a copy of the record is required, an implicit

READ takes place and all records in the queue are

lost.

An example of the misuse of a READ SEEK statement follows:

READ (PARTFILE[3J, .);

READ SEEK (PARTFILE[18J);

WRITE (PARTFILE[3J, .);

Consider the file to be declared RANDOM, blocked, and with one

buffer area. The actions that would take place as the statements

shown are executed would be:

a. The physcial record containing record [3J

would be read.

6-41

b. The READ SEEK on record [18J would cause record [3J
to be lost.

c. The WRITE of record [3J would require the physical

record containing record [3J to be reread into the

buffer, destroying record [18J.

Programs containing such statements are not desirable and should

be avoided. Used properly, the READ SEEK statement can be of

great value.

If a READ SEEK statement is performed on a SERIAL or UPDATE file,

the READ SEEK statement specifies that the next record to be pro­

cessed is given by the (address).

DISK SPACE STATEMENT.

SYNTAX.

The syntax for (disk space statement) is as follows:

(disk space statement) ::= SPACE «file part),

(number of records»

(number of records) ::= (arithmetic expression)

Examples:

SPACE (FILEID, 5)

SPACE (FILEID, -5)

SPACE (FILEID, CNTR)

SEMANTICS.

The SPACE statement provides the means of adjusting the value of

the record pointer. When the SPACE statement is executed, the

record pointer is adjusted by the value of the arithmetic expres-

sion.

DISK RElVIND STATEMENT.

SYNTAX.

syntax (disk

6-42

" . "-s"ta"temen"t) is as follows:

(disk rewind statement) .. REWIND «file part»)

Example:

REWIND (FILEID)

SEMANTICS.

The REWIND statement causes the record pointer to be set to the

address of the first record in the filee

DISK CLOSE STATEMENT.

SYNTAX.

The syntax for (disk close statement) is as follows:

(disk close statement) ::= CLOSE «file part») I
CLOSE «file part), RELEASE) I CLOSE «file part),

SAVE) I CLOSE «file part), *) I CLOSE «file

part), PURGE)

Examples:

CLOSE (FILEID)

CLOSE (FILEID, RELEASE)

CLOSE (FILEID, SAVE)

CLOSE (FILEID, *)
CLOSE (FILEID, PURGE)

SEMANTICS.

A CLOSE statement causes the buffer areas reserved for the file

to be returned. Also, if the file is a temporary file, the disk

space for the file is returned.

If a CLOSE with PURGE statement is executed on a permanent file,

that file is removed from the disk directory and the disk space

is returned.

DISK LOCK STATEMENT.

SYNTAX.

The syntax for (disk lock statement) is as follows:

6-43

(disk lock statement) ::= LOCK «file part)

LOCK «file part), RELEASE) I
LOCK «file part), SAVE)

Examples:

LOCK (FILEID)

LOCK (FILEID, RELEASE)

LOCK (FILEID, SAVE)

SEMANTICS.

A LOCK statement causes a temporary file to be made permanent. All

of the LOCK statements cause the same action on the file. When it

is executed, an entry is made into the disk directory for the file;

and the buffer areas reserved for the file are returned.

SEARCH STATEMENT.

SYNTAX.

The syntax for the (search statement) is as follows:

(search statement) ::= SEARCH «file part), (array row»)

(file part) ::= (file identifier) I (switch file designator)

Examples:

SEARCH (DISKFILE, A[*])

SEARCH (DISKFILESWITCH [I], A[*J)

SEARCH (DISKFILE, B[J, *])

SEMANTICS.

The SEARCH statement provides a programmer with the means to de­

termine the existence of a disk file which is accessible under the

File Security System. The SEARCH statement causes the MCP to per­

form a disk directory search for the specified file. Values are

assigned to the elements of the designated array row depending on

the results of the directory search.

If the specified lile is present and the requester is I· ! a iegl~lma~e

6-44

user of the file, the MCP will set the designated array row as

follows:

WORD

o

1

2

3
4

5

6

CONTENTS

7 if primary user

3 if secondary user

2 is tertiary user

Multi-file identification

File identification

Record length

Block length

End-of-file pointer

Open counter

If the specified file is not present in the disk directory, the

MCP will set words 0, 3, 4, 5, and 6 of the designated array row

all

If the specified file is present but the requester is not a legi­

timate user of the file, the MCP will set words 0, 3, 4, 5, and 6

of the designated array row to zero (0).

The designated array row must be at least seven (7) words in length.

If the array row is less than seven words, the object program will

be terminated with an invalid index.

FILL STATEMENT.

SYNTAX.

The syntax for (fill statement) is as

/ ~ • ., ., I \ ~""T T /
\Il~~ s~atement) ;;= ~~LL \array

WITH (value list)

follows:

identifier)

(row designator) ::= * I (row) , *

(row) .. -.. - (arithmetic

expression)

expression) (row), (arithmetic

6-45

(value list) .. -.. - (initial value) (value list) , (initial

value)

(initial value) ::= (number)

«value list»

(string) (unsigned integer)

Example:

FILL MATRIX[~J WITH 458.54, +546, -1354.54@6, 16@-12

SEMANTICS.

The FILL statement fills an array row with specified values.

ROW DESIGNATOR. The row designator indicates which row is to be

filled by designating a specific value for each subscript position

of the array row except the right-most position. The symbol *
must appear in the right-most subscript position of the row desig­

nator.

If the values of a row are other than integer, it is rounded to an

integer in accordance with the rules applicable to assignment

statements (see page 6-6).

VALUE LIST. Each initial value may have one of three forms (num­

ber, string, or octal number), and a value list may contain any

mixture of these forms. The concept of type does not apply to

initial values, and transfer functions are not invoked because the

array is filled as indicated.

A number is converted to its octal equivalent, then stored.

A string causes the six-bit code for each character in the string,

other than the two string bracket characters at the ends, to be

stored. The string may contain as many as eight characters. If

fewer than eight characters are in the string, leading zeros are

supplied.

An octal number will be stored as such, and must not exceed 16
digits.

6-46

The number of initial values in the value list may differ from

the number of elements in the row being filled. If the number of

values is less than the number of elements, the elements with the

largest subscript values retain their former values. If the number

is greater than the number of elements, the right-most values in

the value list are not used.

RESTRICTIONS.

The maximum number of words allowed in a single FILL statement is

1023. A defined identifier (see page 7-9) must not be used in a

FILL statement. There must be no space between OCT and the octal

number which follows.

SORT STATEMENT.

SYNTAX.

The syntax for (sort statement) is as follows:

(sort statement) .. - SORT (output option), (input option),

(number of tapes), (hivalue procedure), (compare

procedure), (record length) (size specifications»)

(size specifications) ::= (empty) I (core size) I (core size)

(disk size)

(core size) .. -.. - (arithmetic expression)

(disk size) , (arithmetic expression)

(record length)

(compare procedure)

(hivalue procedure)

(arithmetic expression)

.. -.. - (identifier)

: : = (identifier'>
, I

(number of tapes) ::= (arithmetic expression)

(input option) ::= (file part) (input procedure)

(input procedure) ::= (identifier)

6-47

(output option) ::= (file part) I (output procedure)

(output procedure) ::= (identifier)

Examples:

SORT (OUTPRCD, INPRCD, J, HIVAL, COMP, J)

SORT (OUTFID, INFID, 0, HI, eMP, 2)

SEMANTICS.

The SORT statement provides the means whereby data, as specified

by the (input option), is reordered and returned to the program, as

specified by the (output option). The sequence of reordering the

data is determined by the (compare procedure).

The size specifications allow the programmer to specify the amount

of main memory and the amount of disk storage that may be used.

The core size, if present, specifies the number of words of main

memory that may be used.

assumed.

If unspecified, a value of 1200 is

The disk size, if present, specifies the amount of disk storage in

words that may be used. If unspecified, a value of 600,000 words

of disk storage is assumed (this is equivalent to 0.5 disk file

module).

The record length represents the length in words of the largest

item that will be presented to the SORT statement. If the value

of the arithmetic expression is not a positive integer, the largest

integer which is less than the absolute value of the expression

will be used (i.e., a record length of 12 would be used if an

expression had a value of -12.995). If the value of the arithmetic

expression is zero (0), the program will loop indefinitely.

The compare procedure is called by the SORT to determine which of

two records should be used next in the sorting process.

be a BOOLEAN procedure with exactly two (2) parameters.

6-48

It must

Both of

the parameters must be arrays. The Boolean value which is returned

via the procedure identifier should be TRUE if the array given as

the first parameter is to appear in the output before the array

given as the second parameter. As an example, the following pro-

cedure could be used for sorting in ascending sequence:

BOOLEAN PROCEDURE CMP (A, B);

ARRAY A, B [OJ;

CMP ~ A[OJ < B[OJ;

In the example, CMP would be TRUE if array A is equal to or less

than array B, and CMP would be FALSE if array A is greater than

array B. This would result in the lower valued array being passed

to the output first.

The hivalue procedure is called by the SORT to create a unique

record for its own internal use. The record created is not re-

turned as sorted output. This created record must be such that

it will cause the compare procedure to determine that it should

appear after all valid input items being sorted. This procedure

must be untyped and must have an array as its only parameter.

This procedure is a hivalue procedure if sorting in ascending se­

quence, and essentially a low-value procedure if sorting in a des-

cending sequence. The following is an example of a hivalue proce-

dure that could be used by the compare procedure above.

PROCEDURE HV (A);

ARRAY A[OJ;

FILL A[*J WITH OCT777777777777777;

The number of tapes specifies the n~T.ber of tape files that may

be used, if necessary, in the sorting process. If the value of

the arithmetic expression is less than three (3), no tapes will

be used. If five (5) or more tapes are specified, five tapes may

be used if it is necessary; otherwise, the specified number of

tapes will be used, if necessary.

If fu""1. file is used as the the records in that

6-49

file will be used as input to the SORT. This file will be LOCKed

after all of the records on the file have been read by the SORT.

If an input procedure is used as the input option, the procedure

is called on to furni~h input records to the SORT. This input

procedure must be a BOOLEAN PROCEDURE, with an array as its only

parameter. This procedure, on each call, will:

a. Either insert the next record to be sorted into

its array parameter.

b. Or assign a TRUE value to the procedure identifier.

When a TRUE is returned by the input procedure, the SORT will not

use the contents of the array parameter and will not calIon the

input procedure again during the SORT. An example of an input

procedure that will sort N elements of the array Q follows:

BOOLEAN PROCEDURE INPROC (A);

ARRAY A[OJ;

IF NOT (INPRO~ (N~N-I) < 0) THEN A[OJ ~ Q[NJ;

If an output file is specified as the output option, the SORT will

write the sorted output on this file.

the file will be LOCKed.

Upon completion of the SORT,

If an output procedure is specified as the output option, the SORT

will calIon this procedure once for each sorted record and once

to allow end-of-output action. This procedure must be untyped and

must use two parameters. The first parameter must be Boolean and

the second parameter must be an array. The Boolean parameter will

be FALSE until the last record has been returned from the SORT.

When the first parameter is FALSE, the second parameter will con-

tain a sorted record. When all records have been returned, the

first parameter will be TRUE and the second parameter must not be

accessed. An example of an output procedure follows:

PROCEDURE OUTPROC (B, A);

6-50

VALUE B;

BOOLEAN B;

ARRAY A[OJ;

IF B THEN CLOSE (FILEID, RELEASE) ELSE WRITE (FILEID,
RECSIZE, A[*]);

PROGRAM EXAMPLE.

The following is an example of a program to perform a tag sort of

a disk file, with printed output.

SAMPLE TAG SORT PROGRAM BEGIN

FILE IN DISK DISK RANDOM "INPUT" "TOSORT"(2,15,30);

FILE OUT P 6(2,15);

BOOLEAN BOO;

ARRAY Q[O:14];

INTEGER N;

BOOLEAN PROCEDURE IP(A); ARRAY A[O];

BEGIN LABEL EOF,XIT;

READ(DISK[N],15,Q[*])[EOF];

A[OJ~Q[O]; A[l]~N; N~N+1;

GO TO XIT;

EOF: BOO-TRUE;

XIT: IP-BOO;

END IP;

BOOLEAN PROCEDURE CMP(A,B); ARRAY A,B[O]; CMP-A[O]<B[O];

PROCEDURE HV(A); ARRAY A[O]; A[O]~549755813887;

PROCEDURE OP(B,A); VALUE B; BOOLEAN B; ARRAY A[O];

IF B THEN CLOSE(P) ELSE

BEGIN FORMAT F(I8,"
"
fI

READ(DISK[A[lJ],F,N);

WRITE(P,F,A[O]);

END OP;

COMMENT START OF PROGRAM;

BOO-FALSE;

") ;

"
rr

6-51

N~O;

SORT(OP,IP,O,HV,CMP,2);

END OF PROGRAM.

MERGE STATEMENT.

SYNTAX.

The syntax for (merge statement) is as follows:

(merge statement) ::= MERGE (output option), (hivalue

procedure), (compare procedure), (record length),

(merge file list»)

(merge file list) .. - (merge file), (merge file)

file), (merge file list)

(merge

(merge file) (file identifier) I (switch file designator)

Examples:

MERGE (FA, HV, eMP, 10, SWF[I] , FC, FILESW[IJ);

SEM.,!'tNTICS.

The MERGE statement causes data in all of the files specified by

the merge file list to be combined and returned. The compare pro-

cedure determines the manner in which the data is combined. The

output option specifies the way in which the data is returned from

the merge.

The merge file list must contain two files but may contain as many

as seven merge files as input to the merge.

6-52

GENERAL.

SYNTAX.

SECTION 7

DECLARATIONS

The syntax for (declaration) is as follows:

(declaration) ::= (type declaration) I (array declaration)

(pointer declaration) ! (switch declaration)

(define declaration) I (label declaration) I
(procedure declaration) I (I/O declaration) I
(forward reference declaration) I (dump declaration)

(monitor declaration) I (fault declaration) I
(file declaration) I (switch file declaration) I
(format declaration) I (switch format declaration)

(list declaration) I (switch list declaration)

Declarations define certain properties of entities and relate these

entities with identifiers.

The entities dealt with in Compatible ALGOL are:

a. Variables.

b. Labels.

c. Procedures.

d. Strings.

Every identifier has a scope. The scope of the identifier is

usually the block in which it is declared. The exceptions are:

a. Formal symbols in a define declaration.

b. Formal parameters in a procedure declaration.

An identifier is said to be local to the block in which it is

declared. That is, the entity represented by the identifier in­

side the block is not recognized by that identifier outside the

block. Conversely, any entity represented by the identifier outside

the block is not recognized by that identifier inside the block.

7-1

An identifier is said to be global to a block if:

a. It is not declared in the block, and

b. It is declared in an exterior block.

When the block is entered, all identifiers declared for the block

assume the significance implied by the nature of the declarations.

At the time of exit from the block, all identifiers which are

declared for the block lose their significance and reassume any

previous significance which they may have had.

I If the quantity represented by an identifier was declared OWN, the

value{s) associated with the quantity are not lost upon block

exit and are available upon reentry into the block.

An identifier may not be declared to represent more than one

entity within a given block.

TYPE DECLARATIONS.

SYNTAX.

The s}rntax for lS as follows!

(type declaration) ::= (local or own type) (type list)

(local or own type) ::= (type) OWN (type)

(type) ::= REAL I INTEGER I BOOLEAN I ALPHA

(type list) (identifier)

Examples:

INTEGER A, B, C

ALPHA NAME, CODE, AREA

OWN REAL, Q,R,T

SEMANTICS.

(type list) , (identifier)

A type declaration defines the type of value of each identifier

in the type list.

7-2

LOCAL OR OWN. The local or OWN portion of the type declaration

indicates whether the value associated with a simple variable is

to be retained upon exit from the block in which it is declared.

A variable which has been declared as OWN retains its 'value upon

exit from the block, and, at the time of reentry into that block,

is defined as to its value. The values of variables not declared

OWN are undefined upon reentry into the block, and these variables

must be initialized again.

TYPE. Four declarators are defined for type declarations; their

meanings are shown below.

a. REAL (single precision positive and negative values,

including zero).

b. INTEGER (positive and negative integral values,

including zero).

c. BOOLEAN (logical value).

d. ALPHA (character values, treated as REAL except for

monitoring purposes).

LABEL DECLARATIONS.

SYNTAX.

The syntax for (label declaration) is as follows:

(label declaration) ::= LABEL (label list)

(label list) (identifier) I (label list)

Examples:

LABEL START

LABEL ENTER, EXIT, START, STOP

SEMANTICS.

, (identifier)

As in the case of all identifiers, a label must be declared before

7-3

it is used. A label identifier must appear in a label declaration

in the head of the block in which it is used to label a statement.

A label declaration defines each identifier in its label list as

a label identifier.

If any statement in a procedure body is labeled, the declaration

of this label must appear within the procedure body.

ARRAY DECLARATION.

SYNTAX.

The syntax for (array declaration) is as follows:

(array declaration) ::= (array kind) ARRAY (array list)

(array kind) ::= (empty) I (local or own type) I SAVE

(local or own type)

(array list) ::= (array segment) I (array list) , (array

segment)

(array segment) ::= (identifier) [(bound pair list)J

(identifier), (array segment)

(bound pair list) ::= (bound pair) I (bound pair list) ,

(bound pair)

(bound pair) ::= (lower bound) : (upper bound)

(lower bound)

(upper bound) .. -.. -

(arithmetic expression)

(arithmetic expression)

Examples:

7-4

ARRAY Declarations:

INTEGER ARRAY MATRIX [l:IF B2 THEN B + K ELSE B + IJ

OWN REAL ARRAY GROUP [0:9J

SAVE OWN BOOLEAN ARRAY GATE [1:10, 3:9J

ARRAY Lists:

MATRIX [0:9J
MATRIX, GROUP [0:9, 3:9J

ARRAY Segments:

MATRIX [0:9J
MATRIX, GROUP [0:9J

Bound Pair Lists:

9:9
0:9, 3:9
A + 2:B + 4
IF Bl THEN A + K ELSE A + I:IF B2 THEN B + K ELSE B + I

SEMANTICS.

An ARRAY declaration declares one or more identifiers to represent

arrays of subscripted variables, and gives the number of dimensions

of the arrays', the bounds of the subscripts, and the types 'of the

variables.

SAVE ARRAYS. The declarator SAVE causes absolute storage allocation

for an array to remain fixed. SAVE prevents overlaying of the

storage areas allocated for an array.

LOCAL OR OWN. An array may be declared as OWN with the same effect

as that given for simple variables (see page 7-2, type declara­

tions) .

In the case of dynamic OWN arrays, i.e., those arrays whose ele­

ments behave as OWN declared variables and whose subscript bounds

may change with each entrance to the block in which the array is

declared, the array is remapped in memory automatically.

However, this remapping may cause the loss of some elements of the

original array. Only those elements whose subscripts are the same

as the subscripts of the new array are copied over to this new

array. The rest of the elements of the old array are lost.

7-5

TYPE. Arrays which are declared in the same array declaration must

be the same type. If an array is declared OWN, the type must be

Ideclared. If the array is not OWN, type may be omitted, in which

case the type will become REAL by default. If an array with vari­

able bounds is declared OWN, the values of the corresponding sub­

scripted variables are defined for only those variables which have

subscripts within the most recently calculated bounds.

BOUND PAIR LIST. The bound pair list defines the dimensions of the

array and the number of elements in each dimension; the subscript

bounds for an array are given in the first bound pair list follow­

ing the array identifier (see page 3-3, evaluation of subscripts).

The bound pair list gives the lower and upper bounds of all sub­

scripts taken in order from left to right. The expressions are

evaluated once, from left to right, upon entrance into the block.

Expressions used in forming bound pairs can depend only on vari­

ables and procedures which are nonlocal to the block for which the

ARRAY declaration is valid. Arrays declared in the outermost block

must therefore use constant bounds.

The number of dimensions in the array equals the number of bound

pairs in a bound pair list.

Upper bounds must not be smaller than the corresponding lower

Ibounds. No dimension may contain more than 1023 elements.

POINTER DECLARATIONS.

SYNTAX.

The syntax for (pointer declaration) is as follows:

7-6

(pointer declaration) ::= POINTER (pointer list)

(pointer list) ::= (identifier)

(identifier)

(pointer list) ,

SEMANTICS.

A pointer represents the address of a character position in a one-

dimensional array or array row.

character position.

That is to say it points to a

The pointer declaration establishes each identifier in the pointer

list as a pointer identifier.

Associated with each pointer identifier is a pointer level. This

level is defined to be the lexicographic (addressing) level at

which the pointer identifier is declared. This represents the

innermost (or greatest) addressing level to which the pointer

identifier may point. No pointer assignment or pointer update

operation may cause a pointer identifier to point into an array

which is declared at a greater lexicographic level.

The rules for obtaining the lexicographic level of a declaration

are:

a. Assign a lexicographic level of 2 for the outermost

block of the program. Repeat the following steps

until the subject declaration level is reached.

b. Add 1 for each block head BEGIN.

c. Subtract 1 for each block compound tail END.

In other words, the lexicographic level for a given declaration is

equal to the block nesting count, starting with 2 for the outer

program block.

SWITCH DECLARATIONS.

SYNTAX.

The syntax for (switch declaration) is as follows:

(switch declaration) ::= SWITCH (identifier) (replacement

operator) (switch list)

7-7

(switch list) ::= (designational expression)

(designational expression)

Examples:

(switch list)

SWITCH CHOOSEPATH ~ Ll, L2, LJ, L4, SW1[JJ, LAB

SWITCH SELECT := START, ERRORI, CHOOSEPATH [I + 2J

SEMANTICS.

A SWITCH declaration defines an identifier to represent a set of

designational expressions. These values are the designational

expressions in the switch list. Associated with each designational

expression in the switch list (from left to right) is an ordinal

number from 1 to N (where N is the number of designational ex-

pressions). This integer indicates the position of the desig-

national expression in the switch list. The value of the switch

designator corresponding to a given value of the subscript ex­

pression (see pages 4-17 through 4-19, designational expressions)

determines which designational expression is selected from the

switch list. The designational expression thus selected supplies

a label in the program to which cuntrol .l.::; t .. callsferred.

EVALUATION OF EXPRESSIONS IN THE SWITCH LIST. An expression in

the switch list is evaluated each time it is selected using the

current values of the variables from which it is composed.

INFLUENCE OF SCOPE.

If a quantity appears in a designational expression of a switch

list and a switch designator selects the above-mentioned designa­

tional expression outside the scope of this quantity, the quantity

which would otherwise be inaccessible to the switch designator

will be used in the evaluation of the selected designational ex­

pression.

Examples:

BEGIN

BOOLEAN B;

7-8

LABEL Ll, L2, LJ, L4, L5;

SWITCH SW - Ll, L2, LJ, IF B THEN L4 ELSE L5;

S;

BEGIN

INTEGER B;

S;

GO TO SW [4J;

END;

S;

END

DEFINE DECLARATIONS AND INVOCATIONS.

SYNTAX.

The syntax for (define declaration) is as follows:

(define declaration> ::= DEFINE (definition list) \ -- - - / \ ,

(definition list) ::= (definition) I (definition list) ,

(definition)

(definition) ::= (defined identifier) (formal symbol part)

= (text) #

(defined identifier)

(formal symbol part) .. -.. -

(identifier)

(empty) I «formal symbol list»)

(formal symbol list) .. - (formal symbol) I (formal symbol

list) , (formal symbol)

/- - ~ -\ /.~ .. ~. \ \1"orma.l symbO.l} ::= \laent;lIler}

(text) ::= {any sequence of valid symbols not including free #}

The syntax for (invocation) is as follows:

(invocation) ::= (defined identifier) (actual text part)

7-9

•

•

I

(actual text part) ::= (empty) I «closed text list») I
[(closed text list)]

(closed text list) ::= (closed text) I (closed text list) ,

(closed text)

(closed text) ::= {an actual text not containing unmatched

bracketing symbols or unbracketed commas}

Examples:

7-10

Define Declaration:

DEFINE FORI = FOR I-I STEP 1 UNTIL#,ADDUP = AxB+C/D#

Definition List:

MOVER = - #

SPLIT = GO TO #, LOOK (LOOKl, LOOK2) = IF Q = "." THEN
LOOKI - TRUE ELSE LOOKI - LOOK2 - FALSE #

Definition:

LOOPl(LOOPll,LOOP12,LOOPlJ) = FOR LOOPll - LOOP12
STEP 1 UNTIL LOOPlJ#

Formal Symbol List:

IDENTIFIERONE, TWO

ONLY

Text:

(

PROCEDURE

ANYID

IF A THEN GO TO SOUTH ELSE BEGIN X-ZxQ;GO TO NORTH END EG;

Invocation:

FLOO

GUARANTY(X-Y+l)

Actual Text Part:

(ERGO)

(X-l;GO TO L;)

[U+V, M-N]

SEMANTICS.

The DEFINE declaration assigns the meaning of the defined identi­

fiers. An invocation causes the replacement of the defined iden­

tifier being invoked by the text which is associated with the

identifier.

If the definition of a defined identifier included any formal

symbols, any appearance of these symbols in the text of the defi­

nition (but not in a string or comment) will be replaced by the

corresponding actual texts. Formal symbol identifiers must be

constructed by appending integer digits to the defined identifier.

The integer digits must correspond to the location of the formal

symbol in the list (i.e., D(Dl,D2,DJ, ...)).

The word COMMENT is recognized in a text. It and all characters

up to and including the next semicolon are deleted from the text.

No text may include an incomplete comment.

In a closed text list, the closed texts are separated by commas,

and the closed text list is terminated by a right parenthesis or

bracket.

In a closed text, a comma may appear only between matching

bracketing symbols. No unmatched bracketing may appear.

The scope of a formal symbol is the text of the definition in

which the formal symbol appears.

Bracketing symbols are [], (), and the group consisting of:

DEFINE = # ;

At declaration time, a definition is of no consequence; it has

meaning only in relation to the context in which its related de­

fined identifier appears. For this reason, undeclared identifiers

may appear in definitions; all identifiers must have been declared,

however, when the defined identifier is used.

I

During compilation, syntax errors (if any) in a definition are

noted following the use of the defined identifier.

NESTING OF DEFINITIONS. Definitions can be nested; that is,

defined identifiers may be used in definitions. For instance,

in the example below, the definition for D3 is equivalent to the

definition for DD. In the example, the definition +A+A is consi­

dered nested one level in the first declaration. In the second

declaration, the definition +A+A is considered nested two levels,

and so forth.

Example:

DEFINE Dl = +A+A#

DEFINE D2 = Dl Dl #

DEFINE D3 = D2 D2 #

DEFINE DD = +A+A +A+A +A+A +A+A #

RESTRICTIONS.

A definition cannot be nested more than eight levels. Defined iden­

tifiers may not be used in a FORMAT or SWITCH FORMAT declaration.

No more than nine (formal symbol)s may be used in a (formal symbol

list). If a definition ends with the word END, its defined iden-

tifier may be followed in the program only by a semicolon or the

words ELSE, END, or UNTIL. The maximum number of characters (ex­

cluding the COMMENTs and superfluous blanks*) that may appear in

a single definition may range from 1971 to 2035, depending upon

the number of' characters in the defined identifier, as follows:

IDENTIFIER
SIZE

1-5

6-13

MAXIMUM

2034

2027

* Blanks are superfluous except in strings or when used as
delimiters.

7-12

IDENTIFIER
SIZE

14-21

22-29

30-37
38-45

46-53
54-61
62-63

FORWARD REFERENCE DECLARATION.

SYNTAX.

MAXIMUM

2019
2011

2003

1995
1987

1979
1971

The s)~tax for (forward reference declaration) is as follows:

(forward reference declaration) ::= (forward procedure

declaration) I (forward switch declaration)

(forward procedure declaration) ::= (procedure type)

P"RnrH"nTT"RH" !T\,..,,,r-or!"""e "ho",r!';'Y\n'\ H"{)P1.iAPTl
-. ..L'-'-''-''-L.J..L.J'\,J...L'-.J..J \.t-' "'''-' """t.A....L --- ..L.J..~~'""'..L...L~f5/ .1.: '-J.L\".,..t"3...L\...LJ

(forward switch declaration) ::= SWITCH (identifier) FORWARD

Examples:

SWITCH SELECT FORWARD

INTEGER PROCEDURE SUM (A,B,C); VALUE A,B,C; INTEGER A,B,C;
FORWARD

SEMANTICS.

Before a procedure of a switch can be called in a program, it must

have been declared previously. A contradiction arises in two

special cases, namely:

a. When a procedure calls another procedure, which

in turn references the first procedure.

b. When a switch references another switch, which in

turn references the first switch.

7-13

In such cases, the first PROCEDURE declaration must contain at

least one reference to the second, as yet undeclared at this point;

a similar situation would occur in the case of switches used in

this way.

To enable the programmer to use such recursive references, the

FORWARD construct has been introduced. This is, in effect, a

temporary declaration and does not eliminate the need for the normal

PROCEDURE and SWITCH declarations which must follow in the program.

I/O DECLARATIONS.

SYNTAX.

The syntax for (I/O declaration) is as follows:

(I/O declaration) ::= (file declaration) I (format declaration)

SEMANTICS.

I (list declaration) I (switch format declaration)

(switch file declaration) I (switch list declaration)

I/O declarations describe the environment in which input to and

output from a program must be handled.

FILE DECLARATIONS.

SYNTAX.

The syntax for (file declaration) is as follows:

(file declaration) ::= (file lock part) (mode part) FILE

(in-out part) (file identifier) (label equation

part) «buffer part) (save factor»)

(file lock part) ::= (empty) I SAVE

(mode part) ::= (empty) I ALPHA

(in-out part) ::= IN lOUT I (empty)

(file identifier) ::= (identifier)

7-14

(label equation part) ::= (output media part) (disk file

description) (label part)

(output media part) ::= (output media digit) I (empty) I DISK

(disk access technique) I REMOTE

(output media digit) ::= (arithmetic expression) I *

(label part) ::= (file identification part) I <multi~file
identification part) (file identification part)

(empty)

(disk file description) ::= (empty) I [(number of areas)
/ - - \ ., \Size ot" areas)J

(number of areas) ::= (arithmetic expression)

(size of areas) ::= (arithmetic expression)

(disk access technique) ::= SERIAL I RANDOM I UPDATE I (empty)

(file identification part) ::= n{7 or less string characters}"

(multi-file identification part) ::= u{7 or less string

characters}ff/

(buffer part) ::= (number of buffers, (record specifications)

(number of buffers) ::= (unsigned integer)

(record specifications) ::= (unblocked specification)

(blocking specifications)

(unblocked specification) ::= (fixed physical record size)

(blocking specifications) ::= (fixed logical record size),

(fixed physical record size) I (fixed physical

record .size), (fixed logical record size)

(fixed logical record size) ::= (arithmetic expression)

(fixed physical record size) :: = (arithmetic expressi.on)

I

7-15

<save factor) , SAVE <arithmetic expression) I <emtpy)

Examples:

FILE IN REED (1, 10)

FILE OUT RITE (2, 15)

FILE OUT RITE 1 (2, 15)

FILE OUT CARDS (2, 10)

FILE OUT CARDS 0 (2, 10)

FILE IN TAPE (2, 300, 40)

ALPHA FILE OUT TAPEOUT 2 (2, 400, 45)

SAVE FILE TAPE10 (2, 40)

FILE FILEID "IDENTI" (2, 350, 25)

SAVE ALPHA FILE OUT FILEID 2 "MULTIFI"/"IDENTIF" (2, 470,
35, SAVE 25)

ALPHA FILE OUT F18 (1, 10)

ALPHA FILE IN DATACOM 14 (2, 29)

I ALPHA FILE OUT REPLY REMOTE (5, 5)

FILE IN RIED DISK SERIAL (2, 30)

FILE IN RANRIED DISK RANDOM (1, 60, 180)

FILE RANRW DISK RANDOM [3:6000J (1, 30, 120)

FILE OUT NEW DISK SERIAL [4:2000J "A123456" (3, 12, 180)

FILE UPD DISK UPDATE [N:SJ "PREFIX"/"FILEID" (A, B, C)

SAVE FILE ID DISK SERIAL [3:3000 "PART"/flREC" (3, 30, 120,
SAVE 30)

SEMANTICS.

The FILE declaration associates a file identifier with the specifi­

cations which govern the handling of that file.

Upon exit from the block in which a file is declared, the file is

closed and related I/O units are released to the system. Tape

units, if any, are rewound.

The file lock part causes the implied execution of a LOCK statement

upon the file when exiting the block in whose head the file decla­

ration is made.

7- 1 6

The mode part may be included in the declaration of a file using

magnetic tape and data communications; in all other cases, it

should be empty. For magnetic tape files, ALPHA is used to specify

that records recorded with even parity are to be written on an

output file or read from an input file. Records recorded with odd

parity on tape files are assumed if the mode part is empty.

If the mode part specifies ALPHA on a data communications file,

then the I/O channel will perform a BCL-to-internal translation

on each READ statement and an internal-to-BCL translation on each

WRITE statement. A data transmission control unit is required to

ensure that automatic terminal code-to-BCL or BCL-to-terminal code

translation takes place. The absence of a control lmit would

require programmatic translation; therefore, the mode part would

be left empty to inhibit automatic I/O translation.

The in/out part may contain IN or OUT, or may be empty.

In the case of tape files which are both used for output and input

in the same program, the in/out part must be emptye

The in/out part designates the type of action to be taken when

the buffer is released if the buffer had been opened by other

than a READ, SPACE, or WRITE statement. If no direction is stated,

it will be interpreted as IN.

All file- identifiers in a program should be unique. The file iden-

tifier is used in the program; and in Program Parameter cards,

it references the declared file.

The label equation part has the same function as a Label Equation

card and may be used in lieu of the card. If a label equation

part and Label Equation card are both used, the card takes pre­

cedence.

The output media part specifies the output medium. With the ex­

ception of the SPO and data communications, the output media is

ignored on input files and should be left empty. The digits used

7-17

in the output media part are shown in table 6-2. An output media

part of 11 must be used on both input and output files referencing

the SPO. An output media part of 14 or REMOTE must be used on

both input and output files referencing the data communications

unit.

If the output media part is left empty, a 2 is assumed for output

files.

The label part serves to designate the identifier in the label of

a particular file which differs from the declared file identifier.

It also indicates use of a multi-file reel. Data communications

files do not have labels; but if they are used, they have no effect

on program execution.

The buffer part specifies the number of buffer areas desired and

the size (number of words) needed for each buffer area. When the

file is referencing the SPO, the input message is assumed to be

80 characters in length. Consequently, all SPO file buffer sizes

must always be at least 10 words long. The buffer size of a data

communications file should be declared to be 10 words long.

The information in one punched card requires a buffer of 10 words.

A buffer of 15 or 17 words is required for one line of print on the

120 or 132 position line printers, respectively.

If more than one buffer is specified ~~d storage is inadequate to

accommodate the number designated, the program cannot be executed.

For data communications input files, only one buffer will be used,

regardless of the value of (number of bUffers).

Blocked records may be read or written when using magnetic tape

or disk files. This is specified by the (record specifications) of

the file declaration. The (fixed logical record size) specifies

the number of words for each record, and the (fixed physical

record size) specifies the number of words in the entire block.

The block size depends on the type of blocking used and should be

7-18

determined as described in the following paragraph.

When using magnetic tape files, two types of blocking may be used:

a. If the <record specifications) is of the form <fixed

logical record size), <fixed physical record size),

then the block size will be a multiple of the record

size. For example, a file declaration such as FILE

OUT TAPEI (2, 55, 550) would create a tape where there

are 55 words to each record and 10 records per block,

for a total block size of 550 words.

b. If the <record specifications) is of the form <fixed

physical record size), <fixed logical record size),

then the block size must be large enough to include

link words. For example, to create a tape with the

same blocking factor as the above example, the file

declaration would be FILE OUT TAPEl (2, 561, 55).

The <fixed physical record size) must be a multiple

of the logical record size plus the number of logical

records plus one or 10 x 55 + 10 + 1 = 561. The

additional 11 words are link words created by the MCP.

When the file declaration references a disk file, the blocking can

only be of the form <fixed logical record size), <fixed physical

record size). Each physical record will start at the beginning

of a disk segment and may contain a maximum of 63 segments.

The SAVE factor is applicable to labeled magnetic tape output files

and disk files that are entered into the disk directory. When a

SAVE factor is used on tape files, the value of the arithmetic ex-

pression is added to the current date and included in the tape

label as the purge date. When a SAVE factor is used on a disk file,

the value of the arithmetic expression is added to the current date

every day that the file is accessed, creating a dynamic purge date.

A SAVE factor may be specified on a data communications file but

has no effect.

7-19

The disk access technique used with disk files specifies the

buffering action to be used with the file. Which technique to

use is dependent on the primary purpose for accessing the file.

The six basic purposes for accessing a file on disk are to:

a. Serially read records.

b. Serially write records.

c . Randomly read records.

d. Randomly write records.

e. Serially update records.

f. Randomly update records.

The file should be declared SERIAL if the primary purpose is

either a or b above. The file should be declared RANDOM if the

primary purpose is either £, d, or f above.

purpose, the file should be declared UPDATE.

If e is the primary

When a disk file is declared SERIAL, the following actions take

place:

a. As READ statements are performed, reading is buffered.

The buffers are filled with records of consecutively

higher addresses than the record last accessed.

b. If the file is declared unblocked and a WRITE statement

is performed, there is never a need for an implicit

READ before writing, and writing is buffered.

c. If the file is declared blocked, if necessary, an im­

plicit READ will be made before a WRITE statement is

performed. This action is required since the entire

physical record which contains the logical record must

be written.

When a disk file is declared RANDOM, the following action takes

place:

7-20

a. READ operations are buffered only through the use of

a READ SEEK statement.

b. If the file is declared unblocked and a WRITE statement

is performed, an implicit READ is not required and

writing is buffered.

c. If the file is declared blocked and a WRITE is performed,

the action taken is the same as for a serial disk file.

READ and WRITE statements which reference a random file must contain

a record address.

When a disk file is declared UPDATE, buffer handling is designed to

provide optimum handling of I/O statements that cause a record to

be read but not released, and then updated and written. Each time

a WRITE is performed, the buffer used for the output record is

written and immediately refilled with the next record to be buf­

fered in from disk. The buffers of the file are filled with

records of consecutively higher addresses than the last record

read and/or written.

The disk file description is used when a file on disk is being

created. It consists of the (number of areas) and the (size of

areas), each defined below.

a. The number of areas can have any value from 1 through

20. This specifies the maximum number of areas on the

disk that the file may occupy.

b. The size of the areas specifies the size of each area

that the file on disk may occupy. This size is in

terms of the number of logical records that the area

is to contain.

The total area that the file could occupy on disk is the number

of areas times the size of each area. When more than one area

is declared, the next area is not allocated until the preceding

7-21

area has been filled with the number of logical records specified

by the size of the area.

RESTRICTIONS.

A program may contain more than one FILE declaration involving

the same file identifier; however, no such file after the first

may be accessed with a Label Equation card.

A file identifier may designate a file on a multi-file magnetic

tape. More than one such file may be used in a program; however,

no more than one file on a given multi-file tape may be open at

any time.

A variable number of words may be contained in one magnetic tape

block, but the number may not exceed 1023.

A disk file description should not be used with files declared IN.

If a file which exists on the disk is specified by a disk file

declaration, the disk file description must be empty.

SWITCH FILE DECLARATIONS.

SYNTAX.

The syntax for (switch file declaration) is as follows:

(switch file declaration) SWITCH FILE (switch file

identifier) (replacement operator) (switch file

list)

(switch file identifier) .. -.. - (identifier)

(switch file list) .. -.. - (file identifier)

(file identifier)

I (switch file list),

Examples:

7-22

SWITCH FILE SWHTAPE ~ TAPEl, TAPE2, TAPE3

SWITCH FILE SWHUNIT:=CARDOUT, TAPEOUT, PRINT

SEMANTICS.

The SWITCH FILE declaration associates a switch file identifier

with a number of files, as designated by the file identifiers in

the switch file list.

Associated with each of the file identifiers in the switch file

list is an integer reference. The references are 0, 1, 2, . .. ,
obtained by counting the identifiers from left to right. This

integer indicates the position of the file identifier in the list.

The file identifiers are referenced, according to position, by

switch file designators.

If the switch file designator yields a value which is outside the

range of the switch file list, the file so referenced is undefined.

Each file identifier used in a switch file list must have appeared

previously in a prevailing FILE declaration and each file is

governed according to the FILE declaration in which it was de­

clared.

FORMAT DECLARATIONS.

SYNTAX.

The syntax for (format declaration) is as follows:

(format declaration)

part)

FORMAT (input or output) (format

(input or output) ::= IN lOUT I (empty)

(format part) .. - (format identifier) (editing specifica­

tions») I (format part), (format identifier)

(editing specifications»)

(format identifier) ::= (identifier)

(editing specifications) ::= (editing segment) (editing

specifications) / I / (editing specifications) I
(editing specifications) / (editing segment)

7-23

(editing segment) ::= (editing phrase) I (repeat part)

«editing specifications») I (editing segment),

(editing phrase) I (editing segment), (repeat part)

«editing specifications»)

(editing phrase) ::= (repeat part) (editing phrase type)

(field part) I (string)

(repeat part) ::= (empty)

(editing phrase type)

S I V I X

(field part) ::= (empty)

(decimal places)

(unsigned integer) I *

A I DI ElF I I I L I 0 I R I

(field width) I (field width)

(field width) ::= (unsigned integer) I *

(decimal places) ::= (unsigned integer) I *

Examples:

FORMAT IN EDIT (X4, 216, 5E9.2,3F5.l, x4)

FORMAT IN Fl (A6,5(X3,2ElO.2,2F6.l),3I7),F2(A6,D,A6)

FORMAT OUT FORMI (X56, "HEADING",X57),FORM2 (xlO,4A6/X7,
5A6/X2,5A6)

FORMAT OUT F3 (1023 0)1

FORMAT OUT F4(F5.2, X2, R3.l, S-2)

FORMAT FMTI (*1*)

FORMAT FMT2 (*V*.*)

SEMANTICS.

The FORMAT declaration associates a set of editing specifications

with a format identifier. The following discussion of FORMAT

declarations is divided into two parts: those used for input and

those used for output.

1. The last character before the right parenthesis is the letter
0, not zero.

7-24

INPUT EDITING SPECIFICATIONS. Input data can be introduced to

the system by various media such as punched cards or magnetic tape.

Once the information is in the system, however, it may be consi­

dered a string of bits, regardless of the input equipment usedo

For editing purposes, this string can be processed in one or two

ways: either as a set of six-bit characters (see appendix B, in-

ternal character codes), or an eight-character word. The input

editing specifications, through the editing phrases, designate

where and in what form the initial values of variables are to be

found in this string.

IN~JT EDITING PHFASES~ The editing phrases; except the D and 0

types, designate six-bit character processing. They describe a

portion of the input data in which the initial value of one vari-

able is to be found. Editing phrases type D and 0 cause the

input string to be processed as full eight-character words.

A phrase such as rAw has the same effect as Aw, Aw ... , Aw{r times),

where r is the repeat part and w the field widtho The field width

may specify from one to 63 characters. If the repeat part of an

editing phrase is empty, it is given a value of 1.

Characteristics of the input editing phrase types are summarized in

table 7-1.

The definition of each input editing phrase type in table 7-1 is

given below.

a. A - initializes a variable to the characters found in

the field described by the field width. If the

field width is greater than six, the right-most six

characters are taken as the value to be assigned to

the variable. If the field width is less than six,

zeros are appended to the left of the characters in

the field to make a total of six characters.

7-25

Table 7-1

Characteristics of Types of Input Editing Phrases

Editing
Type of Example

Editing Variable of Phrase Phrase Processed As Being Field Type

A

D

E

F

I

L

0

R

S

X

7-26

Example
Initialized Contents

A6 6-bit characters ALPHA TOTALS

D Full word None Any operand

E9.2 6-bit characters REAL +O.18@-O3

F7.l 6-bit characters REAL -3892.5

I6 6-bit characters INTEGER +76329

L5 6-bit characters BOOLEAN FALSE

0 Full word Any Any operand

Rll.4 6-bit characters REAL +2l23l23@+4

I S-2 6-bit characters REAL None

X7 6-bit characters None Any 7 characters

b. D - causes one full word of eight characters in the

input data string to be ignored. The field part

should be empty.

c. E - initializes a variable to the number found in the

field described by the field width. The field

width must be at least seven greater than the num­

ber of decimal places specified since the input data

is required to be of the following form:

+ +
-n.dd---d@-ee

The sign of the number must appear first. A digit

and a decimal point must follow the sign. One or

more digits may follow the decimal point. The number

of digits following the decimal point must equal the

number of decimal places indicated by the editing

phrase. Following the digits must be the symbol @,

the sign of the exponent, and a two-digit exponent.

The sign of the number may be indicated by +, -, or

a single space which is interpreted as positive. The

number must be right-justified in the designated field.

d. F - initializes a variable to the number found in the

field described by the field width. The input data

must be in one of the following forms:

+ -nn---n.

nn---n.

+ -nn---n.dd-d
+
-.dd---d

nn---n.dd---d

.dd---d

The sign of the number is optional. If there is a

sign, it must appear first; if there is no sign,

the number is assumed to be positive. A decimal

point must be present; zero or more digits may pre-

cede it. There must be as many digits after the

decimal point as specified by the editing phrase.

The number must be right-justified in the designated

field.

e. I - initializes a variable to the integer found in the

field described by the field width. The sign of the

number is optional; the applicable rules are the same

as in the case of editing phrase F.

The number itself may consist of one or more digits

which must be right-justified in the designated field.

f. L - initializes a variable to the logical value found in

the field described in the field width. There are two

possible values~ TRUE and FALSE; the programmer may

truncate these input words as shown in table 7-2.

7-27

7-28

Table 7-2

Boolean Values for Various Field
Widths in Input Editing Phrase

Boolean Value

Editing Phrase TRUE FALSE

Ll T or b F

L2 TR or bT FA

LJ TRU or bTR FAL

L4 TRUE or bTRU FALS

L5 TRUEb or bTRUE FALSE

Ln, where n > 5 Skip n-5 then same as L5

g. 0 - initializes a variable to the contents of an eight­

character word taken from the ~nput string. The

field part is ignored and should be left empty.

h. R - initializes a variable to the contents of an input

field '>Thich be the specifica-

tions of the I, F, or E editing phrase. A decimal

point as implied in the editing phrase is sufficient;

its location is considered to be as many digit-posi­

tions to the left, from the right-most position of the

field, as indicated by d in the editing phrase. An

actual decimal point in the input takes precedence

over the implied decimal point. If there is an actual

decimal point in the input, the input data may appear

anywhere within the field. No explicit sign is

required in either the characteristic or the mantissa;

allowed exponents range from -68 to +68. If the input

field is a field of blanks, a -0 (minus zero) is gen-

era ted. The d indicator of the editing phrase is

ignored if the input consists only of an exponent part.

The symbol & may be used in place of +, and E in place

of @. An error condition transfers control to the

parity action label, if one is present; otherwise,

the program will be terminated.

i. S - the integer number in the editing phrase itself is

used as a power of 10 to multiply all values associated

with subsequent R editing phrases. More than one S

phrase may appear in a format, each taking precedence

over the one before.

j. V - causes an access to the list during the program execu­

tion to determine the (editing phrase) type. The

value obtained from the list should be one of the

characters A, D, E, F, I, L, 0, R, S, or X.

k. X - causes the number of characters indicated by the field

width to be ignored.

If the input editing phrase is a string, the string in the FORMAT

declaration is replaced by the corresponding input string. The

number of characters transferred from the input string is equal to

the number of characters in the FORMAT declaration which are en­

closed between the string bracket characters. If the editing

phrase is not D or 0, the field part must not be empty.

If the (repeat part), (field width), or (decimal places) of an

(editing phrase) is an asterisk (*), the value of the next list

element during execution of the program will be used to complete

the definition of the (editing phrase). If the value of the list

element corresponding to the repeat part

0, the editing phrase will be skipped.

is less than or equal to

If the repeat part pre-

ceding a left parenthesis is an asterisk, the number of repetitions

is determined by the value of the corresponding list element as

follows:

a. If the value is greater than 0, then repeat the number

of times of the value.

7-29

b. If the value is equal to 0, then repeat indefinitely.

c. If the value is less than 0, then skip to the correspon­

ding right parenthesis.

Examples of the above and the V editing phrase are shown below.

FORMAT FMTI
FORMAT FMT2

(*I*) .
(*V*. ~) ;

READ (INPUT, FMTl, 2, 4, A, B);

WRITE (LINE, FMT2, 3, "F", 6, 4, x, Y, z);

The READ causes FMTI to be executed as 2I4, while the WRITE causes

FMT2 to be executed as 3F6.4.

When a READ statement uses a free-field part, no FORMAT declaration

is required to provide the editing specifications for data. Editing

specifications, in this case, are determined by the format of the

data. Such data must be formatted as described on page 6-19.

OUTPUT EDITING SPECIFICATIONS. Output can be performed by the sys-

tern through various media such as magnetic tape and the line printer.

The information in the system, ready for output but not yet trans­

ferred to the output equipment, may be considered a string of bits,

regardless of the output equipment to be used. For editing purposes,

this string can be built in one of two ways: either from a set of

six-bit characters (see appendix B), or from a set of eight-charac­

ter full words. The output editing specifications, by means of the

editing phrases, designate where and in what forms the values of

expressions are to be placed in this string.

OUTPUT EDITING PHRASES. The editing phrases, except D and 0 types,

designate six-character processing. They describe a portion of the

7-30

output data string into which output information is to be placed.

This information may be one of three kinds:

a. The value of an expression.

b. The characters of the editing phrase itself

(when the editing phrase is a string).

c. The insert characters 0 (zero) and single space.

Editing phrase types D and 0 designate that the output string is

to be built from full words. The field width may specify a length

of one to 63 characters. The expression rAw has the same effect

as Aw, Aw, ... , Aw (r times), where r is the repeat part and w is

the field width. If the repeat part of an editing phrase is empty,

it is given a value of 1. Characteristics of the output editing

phrase types are summarized in table 7-3.

The definition of each output editing phrase is given below.

a. A - places the value of one expression (six characters) in

the field width. If the field width is greater than

six, the six characters are placed at the right end

of the field and leading blanks are inserted to fill

out the field. If the field width is less than six,

the right-most characters of the expression value are

placed in the field.

b. D - places one full word of all zeros in the output data

string.

c. E - places the value of one expression in the field des-

cribed by the field width. This value has the follow-

ing form when placed in the output data string:

b +
-n.dd---d@-ee

7-31

Editing
Phrase
Type

A

D

E

F

I

L

0

R

S

X

7-32

Table 7-3

Characteristics of Types of Output Editing Phrases

Editing Type of Example
Phrase Processed As Evaluated of Field
Example Expression Contents

A6 6-bit characters ALPHA RESULT

D Full word None One full word
of zeros

Ell.4 6-bit characters REAL -1.2500@+O2

F8.3 6-bit characters REAL 6735.125

I6 6-bit characters INTEGER bb14l6

L5 6-bit characters BOOLEAN bTRUE

0 Full word Any Any operand

Rll.4 6-bit characters REAL b2.l23l@+09

S-2

X8

6-bit characters REAL None in field;
result:
~lO*(-2» x R
subsequent)

6-bit characters None 8 blanks

The sign of the number is represented by a single

space if positive and a minus sign if negative (~ =
blank or minus). If the field width is more than

seven greater than the number of decimal places spe­

cified, leading single spaces are used to complete

the field. Then the sign of the number, the first

significant digit, and a decimal point are inserted.

The value of the expression is rounded to the number

of decimal places specified by the editing phrase.

If the number of significant digits in the expression

value is less than the numbe.r of decimal places speci­

fied, the digits are left-justified with trailing

zeros. To complete the field, the symbol @, the sign

of the exponent, and the appropriate two-digit

exponent are inserted. The sign of the exponent

is indicated by either + or -.

d. F - places the value of one expression in the field des-

cribed by the field width. This value has the fol-

lowing form when placed in the output string:

b _ _ _
-nn---n.dd--d

The expression value is rounded to the number of desig-

nated decimal places. If the number is smaller than

the field specified, it is placed in the field right-

justified. If the number of digits equals the number

of places specified and if the number is:

1) Positive, it will be placed in the field

without a sign.

2) Negative, the entire field will be filled

with asterisks (*).

If the number is greater than the field specified, the

entire field will be filled with asterisks.

is treated as in editing phrase E.

The sign

e. I - places the value of one expression in the field des-

cribed by the field width. The expression value is

rounded to an integer and placed right-justified in

the field, preceded by leading single-spaces, if any

are required. If the number is greater than the

maximum allowable integer, the entire field will be

filled with asterisks: The sign is treated as in

editing phrase F.

f. L - places the value of one Boolean expression in the

field designated by the field width. Table 7-4 shows

the effect of various values of field width.

7-33

7-34

Table 7-4

Boolean Values for Various Field
Widths in Output Editing Phrase

Boolean Value

Field Width TRUE FALSE

LI T F

L2 TR FA

L3 TRU FAL

L4 TRUE FALS

L5 TRUEb FALSE

Ln, where n > 5 Skip n-5 then same as L5

g. 0 - places the value of one expression, in full word

form, in the output string.

h. R - places the value of one expression in the field

described by the field width. The output will be

either an F-type or an E-type field, depending upon

the magnitude of the expression. Assuming that:

E exponent number,

sign = 0 for +, I for -,

w = total field width,

d = number of decimal places to the

right of decimal point, and

I = number of decimal digits to the

left of decimal point, then:

1) The output will be in F-format if the absolute

value of the number is equal to or greater than

I but less than the maximum allowable integer,

and

w > I + d + 1 + sign

or if the absolute value of the number is 1 Less

than 1, and

w > d + 1 + sign

and either

ABS(E) < d

or

w < d + 6 + sign

2) The output will be in E-format if the conditions

for F-format are not met, and

w > d + 6 + sign

J) If none of the above conditions are fulfilled,

the field will be filled with asterisks.

i. S - the values associated with the subsequent R format

phrases will be multiplied by such powers of 10 as

designated by the integer in the S format phrase

itself. More than one S phrase may appear in a

format, each taking precedence over the one before.

j. V - causes an access to the list during program execution

to determine the (editing phrase) type. The value

obtained from the list should be one of the characters

A, D, E, F, I, L, 0, R, S, or X.

k. X - places a number of single spaces, as indicated by the

field width, in the output string.

An output editing phrase may itself be a string; this editing

phrase is defined as placing itself, except for the delimiting

string bracket characters, in the output string.

7-J5

If the <repeat part), <field width), or <decimal places) of an

<editing phrase) is an asterisk (*), the value of the next list

element during execution of the program will be used to complete

the definition of the <editing phrase). If the value of the list

element corresponding to the repeat part is less than or equal to

0, the editing phrase will be skipped. If the repeat part preced-

ing a left parenthesis is an asterisk, the number of repetitions is

determined by the value of the corresponding list element as

follows:

a. If the value is greater than 0, then repeat the

number of times of the value.

b. If the value is equal to 0, then repeat indefinitely.

c. If the value is less than 0, then skip to the corres­

ponding right parenthesis.

Examples of the above and the V editing phrase are shown below.

FORMAT FMTI (*I*);
FORMAT FMT2 (*V*.*);

READ (INPUT, FMTI, 2, 4, A, B);

WRITE (LINE, FMT2, 3, tlF", 6, 4, x, Y, z);

The READ causes FMTI to be executed as 2I4, while the WRITE causes

FMT2 to be executed as 3F6.4.

RESTRICTION. In editing phrases ° and D the field part must be

empty; in all other cases it must not be empty.

THE MEANING OF THE SYMBOL I. The I (slash) used in editing spec i-

fications causes output from, and clearing of, the buffer. The

buffer is cleared by filling it with single spaces. The right-most

7-36

parenthesis of the editing specification performs the function of

one slash. When the line printer is used, consecutive slashes

cause vertical spacing of the printer by printing blank lines. It

should be taken into account, however, that the first slash will

cause the actual contents of the buffer to be printed.

SWITCH FORMAT DECLARATIONS.

SYNTAX.

The syntax for (switch format declaration) is as follows:

(switch format declaration) ::= SWITCH FORMAT (switch

format identifier) (replacement operator)

(switch format list)

(switch format identifier) (identifier)

(switch format list) ::= (editing specifications»)

(switch format list), (editing specifications»)

Examples:

SWITCH FORMAT SF ~ (A6, 314,12, X60),(I4,X2,2I4,3I2),

(X78, 12), (X2);

SWITCH FORMAT SWHFT ~ (X78,I2),(4A6,I2),(lOA6,I2);

SEMANTICS.

The SWITCH FORMAT declaration associates a switch format identifier

with the editing specifications in the switch format list.

Associated with each of the editing specification parts is an

integer reference starting from 0, obtained by counting the editing

specifications from left to right. This integer reference indi­

cates the position of the editing specification part in the list.

The editing specifications are referenced according to position,

by switch format designators.

If a switch format designator yields a value which is outside the

range of the switch format list, the format so referenced is un­

defined.

7-37

LIST DECLARATIONS.

SYNTAX.

The syntax for (list declaration) is as follows:

(list declaration) ::= LIST (list part)

(list part) ::= (list identifier) «list» I (list part),

(list identifier) «list»

(list identifier) ::= (identifier)

(list) ::= (li~t segment) I (list), (list segment)

(list segment) ::= (expression part) I (for clause) (list

segment) I (for clause) [(expression list)]

(expression part) ::= (arithmetic expression) I (Boolean

expression)

(expression list) ::= (list segment) I (expression list),

(list segment)

Examples:

LIST Ll (X,y,A[J], FOR I - P STEP 1 UNTIL 5 DO B [I])

LIST ANSWERS (p + Q,Z,SQRT (R», RESULTS (Xl,X2,X3,X4/2)

LIST LIST3 (FOR I - 0 STEP 1 UNTIL 10 DO FOR J - 0 STEP 1

UNTIL 15 DO A [I,J])

LIST L4 (B AND C, NOT ABl, IF X = 0 THEN Rl ELSE R2)

LIST RESULTS (FOR I-I STEP 1 UNTIL N DO [A[I], FOR J - 1

STEP 1 UNTIL K DO[B[I,J], C[J]]])

SEMANTICS.

A LIST declaration serves to associate a set of expressions (arith­

metic or Boolean) with a list identifier. A list identifier may be

used in a READ statement (pages 6-16 through 6-23) for specifying

7-38

the variables to be initialized and the order in which the initiali-

zing is to be done. Since input may not be made to any construct

other than a variable, a list identifier used in a READ statement

must refer to a LIST declaration which includes variables only.

The variables in a LIST declaration must have been previously de­

clared as to type.

The list identifier may be used in a WRITE statement (pages 6-24

through 6-26) for specifying values to be included in an output

operation. These values are placed in the output string in the

order of their appearance in the LIST declaration. Variables in a

LIST declaration may be either local or nonlocal to the block in

which the LIST declaration appears.

SWITCH LIST DECLARATIONS.

SYNTAX.

The syntax for (switch list declaration) is as follows:

(switch list declaration) .. - SWITCH LIST (switch list

identifier) (replacement operator) (switch list

list)

(switch list identifier) (identifier)

(switch list list) .. - (list identifier) (switch list

designator) I (list identifier), (switch list list)

(switch list designator), (switch list list)

Examples:

SWITCH LIST LXI ~ Ll, L2, L3

SWITCH LIST LX2 ~ Ll, LXI [lJ, L3

SEMANTICS.

A SWITCH LIST declaration associates a switch list identifier with

a number of list identifiers. Associated with each of the list

identifiers is an integer reference which is obtained by counting

the list identifiers from left to right starting with O. This

7-39

integer indicates the position of the list identifier in the switch

list. These list identifiers are referenced my means of switch

list designators.

If a switch list designator yields a value which is outside the

range of the switch list, the list so referenced is undefined.

Each list used in the switch list must have been previously de­

clared.

MONITOR DECLARATIONS.

SYNTAX.

The syntax for (monitor declaration) is as follows:

(monitor declaration) MONITOR (monitor part)

(monitor part) (file identifier) «monitor list»)

(monitor part), (file identifier) «monitor list»)

(monitor list) .. - (monitor list element)

(monitor list element)

(monitor list),

(monitor list element) ::= (simple variable) (subscripted

variable) I (array identifier) I (switch identifier)

I (procedure identifier) I (label)

Example:

MONITOR ANSWER (A,Q[I,J], GROUPl, START,SELECT,INTEGRATE)

SEMANTICS.

The diagnostic declaration MONITOR declares certain quantities to

be placed under surveillance during the execution of the program.

Each time an identifier included in the monitor list is used in one

of the ways described below, the identifier and its current value

are written on the file indicated in the MONITOR declaration.

MONITOR LIST ELEMENTS. When a simple variable in the monitor list

is used as a left part in an assignment statement, the following

information is written on the designated file:

7-40

(simple variable) = {value of variable}

When a subscripted variable in the .~ monluor list lS enco~~tered

during the execution of the program as the left-most element in a

left part list, the following information is written on the desig­

nated file:

(array identifier)[{value of subscript expression}] =
{value of variable}

When only an array identifier is given in the monitor list, and a

subscripted v~riable of that array is encountered as the left-most

element in a left part list, the following information is written

on the designated file:

(array identifier)[{value of subscript expression}] =

{value of variable}

When a switch designator is encountered with a switch iden-tifier

which is in the monitor list, the following information is written

on the designated file:

(switch identifier)

When a procedure identifier in the monitor list is used as a func­

tion designator during the execution of a program, the following

information is written on the designated file:

(procedure identifier) = {value of function designator}

Each time a label which is in the monitor list is encountered in

the program, the label is written on the designated file.

RESTRICTIONS.

Only the first seven characters of any identifier are written. All

pertinent subscripts, however, are written. Only one subscripted

variable from an array may be monitored at one time. If a monitor

list, or several monitor lists, contain more than one subscripted

7-41

variable which are elements of the same array, only the last of

these is monitored.

DUMP DECLARATIONS.

SYNTAX.

The syntax for (dump declaration) is as follows:

(dump declaration) ::= DUMP (dump part)

(dump part) ::= (file identifier)

(label):(dump indicator)

(file identifier) (dump

(dump indicator)

(dump list»)

I (dump part),

list») (label):

(dump list) (dump list element) (dump list), (dump

list element)

(dump list element) .. - (simple variable) I (subscripted

variable) (label) I (array identifier)

(dump indicator) (unsigned integer) (simple variable)

Example:

DUMP INPUTDATA (A,Q[I,J] ,GROUPI , START) ENTER:4,

OUTPUTDATA (A,GROUPl) EXIT:X

SEMANTICS.

The DUMP declaration declares certain quantities to be placed under

surveillance during the execution of the program. Diagnositc

information requested by means of the DUMP declaration is written

on the designated file when a label in the dump part has been

passed the number of times equal to the associated dump indicator.

Since the dump indicator can be a simple variable, dump information

can be obtained more than once during each execution of the block

containing the DUMP declaration. The number of times the control­

ling statement is executed applies only to one pass through the

7-42

DUMP declaration block.

to the next.

The number is not cumulative from one pass

DUMP LIST ELEMENTS. A simple variable in the dump list causes the

current value of that variable to be supplied in the following

form:

(simple variable) = {value of variable}

A subscripted variable in the dump list causes the current value

of that variable to be supplied in the following form:

(array identifier) [{value of subscript expression}] =

{value of variable}

An array identifier in the dump list causes the current values of

all elements in that array to be supplied in the following form:

/ ., .. ~. \

\array lOentlIler) {value of first six elements}

{value of second six elements}

{value of last elements}

The order in which the array elements are written is as follows.

All subscripts are first set to their declared lower bounds and

the corresponding value is printed out. The right-most subscript

is then counted up, and the corresponding value is printed; this

procedure continues until the subscript reaches its declared upper

bound. After this printout, the right-most subscript is again set

to its declared lower bound, the next left subscript is counted up,

and the process recycles until all subscripts have reached their

declared upper bounds.

RESTRICTION.

Only the first seven characters of any identifier are written. All

pertinent subscripts, however, are written.

7-43

FAULT DECLARATIONS.

SYNTAX.

The syntax for (fault declaration) is as follows:

(fault declaration) MONITOR (fault list)

(fault list) (fault type) (fault list)

(fault list), (fault equate)

, (fa u 1 t t yp e)

(fault type) EXPOVRIINTOVRIINDEXIFLAGIZERO

(fault equate)

Example:

.. -.. - (fault type) ~ (identifier)

MONITOR INTOVR, ZERO, FLAG ~ PENNANT

SEMANTICS.

The fault declaration allows the programmer to indicate to the

Compiler that he wishes to specify, via a fault statement, action

to be taken upon the occurrence of one of the errors included in

the fault list.

The fault list may include from one to five fault type identifiers.

Each fault type identifier is associated with a specific program

error, as indicated in table 6-1, page 6-30.

In any block in which a fault type identifier does not appear in a

fault declaration, it may be declared as any other type of quantity.

A fault equate construct assigns the identifier on the right of the

assignment operator to the fault type on the left. The identifier

may then be used in a fault statement, and the fault name (ZERO,

FLAG, etc.) may be used as any other identifier.

7-44

GENERAL.

SYNTAX.

SECTION 8

PROCEDURE DECLARATIONS

The syntax for (procedure declaration) is as follows:

(procedure declaration) ::= (procedure type) PROCEDURE

(procedure heading) (procedure body)

(procedure heading) ::= (identifier) (formal parameter part)

(formal parameter part) ::= (empty) I (formal parameter list»);1

(value part) (specification part)

(formal parameter list) ::= (formal parameter) I (formal

parameter list) (parameter delimiter) (formal

parameter)

(value part) ::= (empty) I VALUE (identifier list);

(formal parameter) ::= (identifier)

(identifier list) ::= (identifier)

(identifier)

(identifier list) ,

(specification part) ::= (specification); I (specification

part) ; (specification)

(specification) ::= (specifier) (identifier list) I (array

specification)

(specifier) ::= LABEL I SWITCH I +~Tpa \ I FTLR
\ J '" / I - ---

FORMAT I SWITCH FORMAT i SWITCH FILE

LIST I POINTER

(procedure type) ::= (empty) I (type)

T.TQ.rr' I
~ I

SWITCH

(array specif"ication) ::= (array type) ARRAY (array specifier

list)

8-1

(array type) ::= (empty) I (type)

(array specifier list) ::= (array specifier) I (array

specifier list) , (array specifier)

(array specifier) ::= (array identifier list) [(lower

bound list)]

(array identifier list) ::= (identifier list)

(lower bound list) ::= (specified lower bound) (lower

bound list) , (specified lower bound)

(specified lower bound) ::= * I (integer)

(procedure body) ::= (unlabeled conditional statement)

(unlabeled unconditional statement)

Example:

PROCEDURE ROOT (A, B, C, N, Xl, X2, XJ);

VALUE N;

INTEGER N; ARRAY A, B, C, Xl, X2[IJ; ALPHA ARRAY XJ[IJ;

BEGIN

INTEGER I; REAL DISC; LABEL START;

START: FOR I ~ I STEP I UNTIL N DO

BEGIN DISC ~ B[I] * 2 - 4 x A[I] x C[I];

IF DISC < 0 THEN XJ [I] ~ "IMAG" ELSE

BEGIN XI[I] ~ (-B[I] + SQRT (DlSC}}/(2 x A[I]);

X2[l] ~ (-B[l] - SQRT (DlSC}}/(2 x A[l]);

XJ[I] ~ "REAL"

END

END

END ROOT

SEMANTICS~

A PROCEDURE declaration defines the procedure identifier as the

name of a procedure. Whenever the identifier followed by the

8-2

appropriate parameters appears in the program, it produces a call

upon the procedure (see page 6~3, procedure statement).

A procedure declared with a non-empty procedure type cannot be

called as a procedure statement, but may be used only as a function

designator.

Every formal parameter must appear in the specification part.

The value part specifies which formal parameters are to be called

by value. When a formal parameter is called by value, the formal

parameter is set to the value of the corresponding actual para­

meter; thereafter, the formal parameter is handled as a variable

that is local to the procedure body. That is, any change of value

of the variable will not ramify outside the procedure body.

Only expressions may be given as actual parameters to be called

by value. These expressions are evaluated once, left-to-right,

in the order in which they occur in the actual parameter list.

Formal parameters not in the value part are called by name. This

means that wherever an actual parameter, called by name, appears

in the procedure body, the actual parameter is replaced by the

formal parameter.

A specified lower bound form of integer denotes that the corres­

ponding dimension of the actual parameter has a declared lower

bound equal to this value.

A specified lower bound form of * indicates that the corresponding

dimension of the actual parameter has a declared lower bound that

may vary in value.

Procedures may be called recursively.

Procedures which start with a type declarator cannot be called

by procedure statements, but must be used as function designators.

B-3

A PROCEDURE declaration is composed of two parts:

heading and procedure body.

the procedure

PROCEDURE HEADING.

The procedure heading contains the identifier for the procedure,

the list of formal parameters, and information pertaining to the

formal parameters.

Whenever the procedure is activated, formal parameters in the

procedure body will be assigned the value of, or be replaced by,

actual parameters. The formal parameter part contains a listing

of all formal parameters used in the procedure body.

The VALUE part specifies which formal parameters are to be called

by value. Formal parameters called by value are called in the

order in which they appear in the formal parameter list. Formal

parameters not in the VALUE part are called by name. The value

part of a procedure heading should contain only the identifiers of

formal parameters which are specified as simple variables. If

identifiers of arrays are included, they are ignored.

The specification part indicates certain characteristics of the

formal parameters, that is, the kinds of identifiers they repre-

sent. Every formal parameter must appear in the specification part.

In the case of formal parameters used as array identifiers, infor-

mation about the lower bounds must be given. A lower bound speci-

fied by an integer indicates that any corresponding actual para-

meter has a declared lower bound equal to this value. A specified

lower bound of * indicates that the declared lower bound of the

corresponding actual parameter may vary in value from one calIon

the procedure to the next. When a specifier of the form

ARRAY A, B, C, ... , X, Y, z [*];

is used in a procedure heading, it is assumed that the lower bound

for each actual parameter will be the same, and its value will be

8-4

determined by the value found for the lower bound of the actual

array row corresponding to z.

PROCEDURE BODY.

The procedure body is a statement that is to be executed when the

procedure is called. This statement may be any of those listed in

the syntax of statements (see section 6, statements), and therefore

may be a procedure statement calling upon itself.

thus be called recursively.

SCOPE OF IDENTIFIERS OTHER THAN FORMAL PARAMETERS.

Procedures may

Identifiers in the procedure body which are not formal parameters

are either local or global to the body, depending on whether they

are declared within the body or outside the body. Those which are

global to the body may be local to the block which contains the

PROCEDURE declaration in its head.

Any quantity that is non-local to a procedure is inaccessible to

that procedure if that quantity is local to some other procedure

and is not declared to be OWN.

SPECIAL RULES OF TYPED PROCEDURES.

Certain procedures are called by means of function designators. In

such cases, the PROCEDURE declaration must start with a type decla­

rator.

The procedure body of a typed declaration must contain, and cause

to be executed, an assignment statement with the procedure identi­

fier in the left part list.

RESTRICTIONS~

I

A procedure body itself must not be labeled. A GO TO statement

appearing in a typed procedure may not lead outside that procedure.

Furthermore, in using a procedure statement within a typed procedure,

any procedure called for execution in this manner must not contain a

GO TO statement leading outside the typed procedure. If any state­

ment in a procedure body is labeled, the declaration of that label

must appear in the appropriate block head within the procedure body.

8-5

APPENDIX A

RESERVED WORDS

Some reserved words in Compatible ALGOL may be used as identifiers

in certain constructs. Hence, the following list of reserved

words is divided into three types as follows:

Type I - reserved throughout Compatible ALGOL.

Type 2 - standard function designators. These may be used

for any purpose for which they have been declared;

if not declared, they will be interpreted as

function designators of the standard functions.

Type J - may be used as identifiers, except in those con-

structs where they appear in the syntax.

Type 1

ALPHA EQV LIST SAVE

AND FALSE LOCK SPACE

ARRAY FILE MOD STEP

BEGIN FILL MONITOR STREAM

BOOLEAN FOR NOT SWITCH

CLOSE FORMAT OR THEN

COMMENT FORWARD OUT TO

DEFINE GO OWN TRUE

DIV IF PROCEDURE UNTIL

DO IMP READ VALUE

DOUBLE IN REAL WHILE

DUMP INTEGER RELEASE WITH

ELSE LABEL RE11IND WRITE

END

A-I

Type 2

ABS ENTIER MIN STOP

ARCTAN EXP SIGN TIME

CASE LN SIN

COS MAX SQRT

Type 3

BREAK INTOVR PURGE TIMES

DBL LB RANDOM UPDATE

DISK LEQ RB WAIT

EQL LSS REMOTE WHEN

EXPOVR MERGE REVERSE ZERO

FLAG NEQ SEARCH ZIP

GEQ NO SEEK

GTR PAGE SERIAL

INDEX PUNCH SORT

A-2

APPENDIX B

INTERNAL CHARACTER CODES
(In Order of Collating Sequence)

Character 6-bit Code Character 6-bit Code

blank 11 0000 H 01 1000

01 1010 I 01 1001

[01 1011 x 10 0000

(01 1101 J 10 0001

< 01 1110 K 10 0010

01 1111 L 10 0011

& 01 1100 M 10 0100

$ 10 1010 N 10 0' 1"'\' ..LV..L

* 10 1011 a 10 0110

) 10 1101 P 10 0111

10 1110 Q 10 1000

< 10 1111 R 10 1001 I
10 1100

I

11 1100 --I-

T

/ 11 0001 S 11 0010

11 1010 T 11 0011

% 11 1011 U 11 0100

= 11 1101 V 11 0101

] 11 1110 W 11 0110

" 11 1111 X 11 0111

00 1010 Y 11 1000

@ 00 1011 Z 11 1001

00 1101 a 00 0000

> 00 1110 1 00 0001

> 00 1111 2 00 0010

+ 01 0000 J 00 0011

A 01 0001 J. f\f\ f\,f\f\ .,. VV V.LVV

B 01 0010 5 00 0100

C 01 0011 6 00 0110

D 01 0100 7 00 0111

E 01 0101 8 00 1000

F 01 0110 9 00 1001

G 01 0111 ? 00 1100

B-1

ERROR
NUMBER

000

001

002

003

005

006

007

008

009

010

011

012

013

014

015

016

{)17
~~ I

018

019

020

021

APPENDIX C

COMPILER ERROR MESSAGES

ROUTINE

BLOCK

BLOCK

PROCEDUREDEC

BLOCK

PROCEDUREDEC

PROCEDUREDEC

PROCEDUREDEC

PROCEDUREDEC

PROCEDUREDEC

PROCEDUREDEC

PROCEDUREDEC

PROCEDUREDEC

PROCEDUREDEC

PROCEDUREDEC

ARRAYDEC

ARRAYDEC

ARHAYDEC

ARRAYDEC

ARRAYSPEC

BLOCK

BLOCK

ERROR MESSAGE

DECLARATION NOT FOLLOWED BY SEMICOLON.

IDENTIFIER DECLARED TWICE IN S~~E
BLOCK~

SPECIFICATION PART CONTAINS IDENTIFIER
NOT APPEARING IN FORMAL PARAMETER PART.

NON-IDENTIFIER APPEARS IN IDENTIFIER
LIST OF DECLARATION.

PROCEDURE DECLARATION PRECEDED BY
ILLEGAL DECLARATOR.

PROCEDURE IDENTIFIER USED BEFORE IN
SAME BLOCK (NOT FORWARD).

PROCEDD~E IDENTIFIER NOT FOLLOWED BY
(OR SEMICOLON IN PROCEDURE
DEC LA...1:{ATI ON •

FORMAL PARAMETER LIST NOT FOLLOWED
BY).

FORMAL PARAMETER PART NOT FOLLOWED BY
SEMICOLON.

VALUE PART CONTAINS IDENTIFIER WHICH
DID NOT APPEAR IN FORMAL PARAPART.

VALUE PART NOT ENDED BY SEMICOLON.

MISSING OR ILLEGAL SPECIFICATION PART.

OWN USED IN ARRAY SPECIFICATION.

SAVE USED IN ARRAY SPECIFICATION.

ARRAY CALL-BY-VALUE NOT IMPLEMENTED.

ARRAY ID IN DECLARATION NOT FOLLOWED
BY [.

LOWER BOUND IN ARRAY DEC NOT FOLLOWED
BY:.

BOU~D PAIR LIST NOT FOLLOWED BY J.
ILLEGAL LOWER BOUND DESIGNATOR IN
ARRAY SPECIFICATION.

OWN APPEARS IMMEDIATELY BEFORE
IDENTIFIER (NO TYPE).

SAVE APPEARS IMMEDIATELY BEFORE
Tn~hl~T~T~D {hl~ ~VD~\
-L...LJ~.1.." ..I.. -L..L- -L-LJ..L'- \ .1. .. \,J ..L..L ~ .L:.t I •

C-1

ERROR
NUMBER

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

C-2

ROUTINE

BLOCK

PROCEDUREDEC

BLOCK

FILEDEC

FILEDEC

FILEDEC

FILEDEC

IODEC

LISTDEC

FORMATDEC

SWITCHDEC

SWITCHFILEDEC

SWITCHFILEDEC

SUPERFORMATDEC

SUPERFORMATDEC

SUPERFORMATDEC

BLOCK

IODEC

HANDLESWLIST

HANDLESWLIST

IODEC

IODEC

DEFINEDEC

ARRAE

TABLE

PROCEDUREDEC

PROCEDUREDEC

ERROR MESSAGE

DECLARATOR PRECEDED ILLEGALLY BY
ANOTHER DECLARATOR.

LABEL CANNOT BE PASSED TO FUNCTION.

DECLARATOR OR SPECIFIER ILLEGALLY
PRECEDED BY OWN OR SAVE OR SOME OTHER
DECLARATOR.

MISSING (IN FILE DEC.

MISSING RECORD SIZE.

ILLEGAL BUFFER PART OR SAVE FACTOR
IN FILE DEC.

MISSING) IN FILE DEC.

MISSING COLON IN DISK DESCRIPTION.

MISSING (IN LISTDEC.

MISSING (IN FORMAT DEC.

SWITCH DEC DOES NOT HAVE OR
FORWARD AFTER IDENTIFIER.

MISSING ~ AFTER FILED.

NON FILE ID APPEARING IN DECLARATION
OF SWITCHFILE.

FORMAT ID NOT FOLLOWED BY ~.

MISSING (AT START OF FORMATPHRASE.

FORMAT SEGMENT >1023 WORDS.

NUMBER OF NESTED BLOCKS IS GREATER
THAN 31.

PROGRAM PARAMETER BLOCK SIZE EXCEEDED.

MISSING ~ AFTER SWITCH LIST ID.

ILLEGAL LIST ID APPEARING IN SWITCH
LIST

MISSING] AFTER DISK IN FILEDEC.

MISSING [AFTER DISK IN FILEDEC.

MISSING "=" AFTER DEFINE ID.

NON-LITERAL ARRAY BOUND NOT GLOBAL
TO ARRAY DECL.

ITEM FOLLOWING @ NOT A ~~MBER.

NUMBER OF PARAMETERS DIFFERS FROM
FWD DECL.

CLASS OF PARAMETER DIFFERS FROIvI FWD
DECL.

ERROR
NUMBER ROUTINE

050 PROCEDUREDEC

059 ARRAYDEC

061 FAULTDEC

062 SCANSTMT OR
REPLACESTMT

063 SCANSTMT OR
REPLACESTMT

070 CASESTMT

071 CASESTMT

072 SCANSTMT OR
REPLACESTMT

073 SCANSTMT OR
REPLACESTMT

074 SCANSTMT OR
REPLACESTMT

075 SCANSTMT OR
REPLACESTMT

076 REPLACESTMT

077 REPLACESTMT

078 SCANSTMT OR
REPLACESTMT

079 PRIMARY

080 PRIMARY

090 PARSE

091 PARSE

092 PARSE

093 PARSE
{IO!.
,-"./-r PARSE

095 PARSE

100 ANYWHERE

101 CHECKER

ERROR MESSAGE

VALUE PART DIFFERS FROM FWD DECL.

MISSING ~ IN FAULT STATEMENT.

INVALID FAULT TYPE: MUST BE FLAG, EXPOVR,
ZERO, INTOVR, OR INDEX.

LEVEL OF POINTER EXPRESSION EXCEEDS
LEVEL OF UPDATE POINTER IDENTIFIER.

UPDATE POINTER MAY NOT BE CALL-BY-NAME
FORMAL PARAMETER.

MISSING "BEGIN".

MISSING END.

POINTER IDENTIFIER REQUIRED.

SIMPLE ARITHMETIC VARIABLE REQ.

RELATIONAL OP OR IN EXPECTED.

CONDITION MUST START WITH WHILE OR
UNTIL.

BY MISSING AFTER DESTINATION POINTER.

SOURCE MUST BE POINTER OR ARITHMETIC
EXP.

ALPHA REQUIRED AFTER IN.

ILLEGAL EXPRESSION TYPE.

MISSING COMMA.

MISSING LEFT BRACKET.

MISSING COLON.

ILLEGAL BIT NUMBER.

FIELD SIZE MUST BE LITERAL.

MISSING RIGHT BRAC~T.

ILLEGAL FIELD SIZE.

UNDECLARED IDENTIFIER.

AN ATTEMPT HAS BEEN MADE TO ADDRESS AN
IDENTIFIER WHICH IS LOCAL TO ONE
PROCEDURE AND GLOBAL TO ANOTHER. IF
THE QUANTITY IS A PROCEDURE NAME OR AN
OWN VARIABLE, THIS RESTRICTION IS
RELAXED.

C-3

ERROR
NUMBER ROUTINE

102 AEXP

103 PRIMARY

104 ANYWHERE

105 ANYWHERE

106 PRIMARY

107 BEXP

108 EXPRSS

ERROR MESSAGE

CONDITIONAL EXPRESSION IS NOT OF
ARITHMETIC TYPEH.

PRIMARY MAY NOT START WITH A QUANTITY
OF THIS TYPE.

MISSING RIGHT PARENTHESIS.

MISSING LEFT PARENTHESIS.

PRIMARY MAY NOT START WITH DECLARATOR.

THE EXPRESSION IS NOT OF BOOLEAN TYPE.

A RELATION MAY NOT HAVE CONDITIONAL
EXPRESSIONS AS THE ARITHMETIC
EXPRESSIONS.

109 BOOSEC, SIMPBOO, THE PRIMARY IS NOT BOOLEAN.
AND BOOCOMP

110 BOOCOMP A NON-BOOLEAN OPERATOR OCCURS IN A
BOOLEAN EXPRESSION.

III BOOPRIM NO EXPRESSION (ARITHMETIC, BOOLEAN, OR
DESIGNATIONAL) MAY START WITH A QUANTITY
OF THIS TYPE.

112 BOOPRIM NO EXPRESSION (ARITHMETIC, BOOLEAN,
OR DESIGNATIONAL) MAY START WITH A
DECLARATOR.

113

114

115

116

117

118

119

120

121

123

124

c-4

DOTSYNTAX

DEXP

IFCLAUSE

BANA

BANA

COMPOUNDTAIL

COMPOUNDTAIL

ACTUALPARAPART

ACTUALPARAPART

ACTUALPARAPART

EITHER THE SYNTAX OR THE RANGE OF THE
LITERALS FOR A CONCATENATE OPERATOR IS
INCORRECT.

EITHER THE SYNTAX OR THE RANGE OF THE
LITERALS FOR A PARTIAL WORD DESIGNATOR
IS INCORRECT.

THE EXPRESSION IS NOT OF DESIGNATIONAL
TYPE.

MISSING THEN.

MISSING LEFT BRACKET.

MISSING RIGHT BRACKET.

MISSING SEMICOLON OR END.

MISSING END.

INDEXED FILES MAY NOT BE PASSED.

THE ACTUAL AND FORMAL PARAMETERS DO NOT
AGREE AS TO TYPE.

ACTUAL AND FORMAL ARRAYS DO NOT HAVE
SAME NUMBER OF DIMENSIONS.

ERROR
NUMBER

126

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

146

147

148

ROUTINE

ACTUALPARAPART

ACTUALPARAPART

ACTUALPARAPART

RELSESTMT

DOSTMT

WHILESTMT

LABELR

LABELR

LABELR

FORMATPHRASE

FORMATPHRASE

FORMATPHRASE

TABLE

NEXTENT

SCANNER

DEFINEGEN

COMPOUNDTAIL

STMT

STMT

STMT

SWITCHGEN

GETSPACE

GETSPACE

ERROR MESSAGE

NO ACTUAL PARAMETER MAY START WITH A
QUANTITY OF THIS TYPE.

EITHER ACTUAL AND FORMAL PARAMETERS DO
NOT AGREE AS TO NUMBER, OR EXTRA RIGHT
PARENTHESIS.

ILLEGAL PARAMETER DELIMITER.

NO FILE NAl"\1E.

MISSING UNTIL.

MISSING DO.

MISSING COLONe

THE LABEL WAS NOT DECLARED IN THIS
BLOCK.

THE LABEL HAS ALREADY OCCURRED.

IMPROPER FORMAT EDITING PHRASE.

A FORMAT EDITING PHRASE DOES NOT HAVE
AN INTEGER WHERE AN INTEGER IS REQUIRED.

THE WIDTH IS TOO SMALL IN E OR F
EDITING PHRASE.

DEFINE IS NESTED MORE THAN EIGHT DEEP.

AN INTEGER IN A FORMAT IS GREATER
THAN 1023.

INTEGER OR IDENTIFIER HAS MORE THAN
63 CHARACTERS.

A DEFINE CONTAINS MORE THAN 2047
CHARACTERS (BLANK SUPPRESSED).

EXTRA END.

NO STATEMENT MAY START WITH THIS TYPE
IDENTIFIER.

NO STATEMENT MAY START WITH THIS TYPE
QUANTITY.

NO STATEMENT MAY START WITH A DECLARATOR
- MAY BE A MISSING END OF A PROCEDuHE
OR A MISPLACED DECLARATION.

MORE THAN 256 EXPRESSIONS IN A SWITCH
DECLARATION.

MORE THAN 1023 PROGRAM REFERENCE TABLE
CELLS ARE REQUIRED FOR THIS PROGRAM.

MORE THAN 255 STACK CELLS ARE REQUIRED
FOR THIS PROCEDURE.

C-5

ERROR
NUMBER ROUTINE

150 THRUSTMT

151 FORSTMT

152 FORSTMT

153 FORSTMT

154 FORSTMT

155 IFEXP

156 LISTELEMENT

157 LISTELEMENT

158 LISTELEMENT

159 PROCSTMT

160 PURGE

161 PURGE

162 PURGE

16'3 FORMATPHRASE

164 UNKNOWNSTMT

165 IMP FUN

166 PEXP

167 PTRPRIMARY

168 VARIABLE

169 ARRAE

170 SWAPSTMT

171 SWAPSTMT

200 EMIT

201 SIMPLE VARIABLE

202 SIMPLE VARIABLE

203 SUBSCRIPTED
VARIABLE

204 SUBSCRIPTED
VARIABLE

C-6

ERROR MESSAGE

MISSING DO IN THRU CLAUSE.

INDEX VARIABLE MAY NOT BE BOOLEAN.

MISSING LEFT ARROW FOLLOWING INDEX
VARIABLE.

MISSING UNTIL OR WHILE IN STEP ELEMENT.

MISSING DO IN FOR CLAUSE.

MISSING ELSE.

A DESIGNATIONAL EXPRESSION MAY NOT BE
A LIST ELEMENT.

A ROW DESIGNATOR MAY NOT BE A LIST
ELEMENT.

MISSING RIGHT BRACKET IN GROUP ELEMENTS.

ILLEGAL USE OF PROCEDURE OR FUNCTION
IDENTIFIER.

DECLARED LABEL DOES NOT OCCUR.

DECLARED FORWARD PROCEDURE DOES NOT
OCCUR.

DECLARED SWITCH FORWARD DOES NOT OCCUR.

THE WIDTH OF A FIELD IS MORE THAN 63.

MISSING COMMA IN ZIP OR WAIT STATEMENT.

MISSING COMMA IN DELAY PARAMETER LIST.

THE EXPRESSION IS NOT OF POINTER TYPE.

POINTER PRIMARY MAY NOT START WITH A
QUANTITY OF THIS TYPE.

POINTER MAY NOT HAVE PARTIAL WORD SYNTAX.

POINTER ARRAYS NOT PERMITTED.

MISSING COMMA.

PARAMETERS MUST BE 2-DIMENSIONAL ARRAYS.

SEGMENT TOO LARGE (> 4093 SYLLABLES).

PARTIAL WORD DESIGNATOR NOT LEFT-MOST
IN A LEFT PART LIST.

MISSING, OR-.

WRONG NUMBER OF SUBSCRIPTS IN A ROW
DESIGNATOR.

MISSING] IN A ROW DESIGNATOR.

ERROR
NUMBER ROUTINE

205 SUBSCRIPTED
VARIABLE

206 SUBSCRIPTED
VARIABLE

207 SUBSCRIPTED
VARIABLE

208 SUBSRCIPTED
VARIABLE

209 SUBSCRIPTED
VARIABLE

210 SUBSCRIPTED
VARIABLE

211 VARIABLE

212 VARIABLE

213 MAKEPOINTER

214 STRINGRELATION

215 MAKE PO INTER

216 VARIABLE

217 VARIABLE

218 STRINGRELATION

219 BOOPRIM

268 EMITC

269 TABLE

281 DBLSTMT

282 DBLSTMT

283 DBLSTMT

284 DBLSTMT

285 DBLSTMT

ERROR MESSAGE

A ROW DESIGNATOR APPEARS OUTSIDE OF AN
ACTUAL PARAMETER LIST OR FILL STATEMENT.

MISSING J.

MISSING [.

WRONG NUMBER OF SUBSCRIPTS.

PARTIAL WORD DESIGNATOR NOT LEFT-MOST
IN A LEFT PART LIST.

MISSING , OR -.

PROCEDURE ID USED OUTSIDE OF SCOPE IN
LEFT PART.

SUB-ARRAY DESIGNATOR PERMITTED AS ACTUAL
PARAMETER ONLY.

POINTER REQUIRES ARRAY ROW, SUBSCRIPTED
VARIABLE, OR ONE-DIMENSIONAL ARRAY ID.

POINTER RELATION MUST BE = OR f ONLY.

CHARACTER SIZE MUST BE LITERAL 6 or 8.

LEVEL OR POINTER EXPRESSION EXCEEDS
LEVEL OR LEFT-PART POINTER IDENTIFIER.

LEFT-PART POINTER MAY NOT BE CALL-BY­
NAME FORMAL PARAMETER.

POINTER UPDATE NOT PERMITTED WITH
POINTER RELATION.

RELATIONAL OPERATOR EXPECTED WHEN
POINTER UPDATE CONSTRUCT USED.

A REPEAT INDEX ~ 64 WAS SPECIFIED OR
TOO MANY FORMAL PARAMETERS, LOCALS,
AND LABELS.

A CONSTANT IS SPECIFIED WHICH IS TOO
LARGE OR TOO SMALL.

MISSING (.

TOO MANY OPERATORS.

TOO MANY OPERANDS.

MISSING , .
MISSING).

C-7

ERROR
NUMBER

300

301

302

303

304

305

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

C-8

ROUTINE

FILLSTMT

FILLSTMT

FILLSTMT

FILLSTMT

FILLSTMT

FILLSTMT

CHECKCOMMA

OUTPROCHECK

OUTPROCHECK

OUTPROCHECK

OUTPROCHECK

SORTSTMT

HVCHECK

HVCHECK

HVCHECK

EQLESCHECK

EQLESCHECK

EQLESCHECK

EQLESCHECK

INPROCHECK

INPROCHECK

INPROCHECK

SORTSTMT

ERROR MESSAGE

THE IDENTIFIER FOLLOWING THE WORD FILL
IS NOT AN ARRAY IDENTIFIER.

MISSING WITH IN FILL STATEMENT.

IMPROPER FILL ELEMENT.

NON OCTAL CHARACTER IN OCTAL FILL. THE
THREE LOW ORDER BITS ARE CONVERTED AND
COMPILATION CONTINUES.

IMPROPER ROW DESIGNATOR.

NUMBER OF DATA WORDS EXCEEDS 1023.

MISSING OR ILLEGAL PARAMETER DELIMITER
IN SORT OR MERGE STATEMENT.

ILLEGAL TYPE FOR SORT OR MERGE OUTPUT
PROC.

OUTPUT PROCEDURE IN SORT OR MERGE STMT
DOES NOT HAVE EXACTLY TWO PARAMETERS.

FIRST PARAMETER OF OUTPUT PROCEDURE
MUST BE BOOLEAN.

SECOND PARAM OF OUTPUT PROCEDURE MUST
BE ONE-DIM ARRAY.

MISSING (.

ILLEGAL TYPE FOR SORT OR MERGE HIGHVALUE
PRO.

HIVALUE PROCEDURE DOES NOT HAVE EXACTLY
ONE PARAMETER.

HIVALUE PROCEDURE PARAM NOT ONE-DIM
ARRAY.

SORT OR MERGE COMPARE PROCEDURE NOT
BOOLEAN.

COMPARE PROCEDURE DOES NOT HAVE EXACTLY
TWO PARAMETERS.

COMPARE PROCEDURE FIRST PARAM NOT 1-D
ARRAY.

COMPARE PROCEDURE SECOND PARAM NOT 1-D
ARRAY.

SORT STMT INPUT PROCEDURE NOT BOOLEAN.

INPUT PROCEDURE DOES NOT HAVE EXACTLY
ONE PARAMETER.

INPUT PROCEDURE PARAMETER NOT ONE-D
ARRAY.

MISSING).

ERROR
NUMBER ROUTINE

367 MERGESTMT

368 MERGESTMT

369 MERGESTMT

400 MERRIMAC

401 MERRIMAC

402 MERRIMAC

403 MERRIMAC

404 MERRIMAC

405 MERRIMAC

406 MERRIMAC

407 MERRIMAC

408 MERRIMAC

409 DMUP

410 DMUP

411 DMUP

412 DMUP

413 DMUP

414 DMUP

415 DMUP

416 DMUP

417 DMUP

418 DMUP

419 DMUP

420 READSTMT

421 READSTMT

ERROR MESSAGE

MISSING (.

MORE THAN 7 or LESS THAN 2 FILES TO
MERGE.

MISSING).

MISSING FILE ID IN MONITOR DEC.

MISSING LEFT PARENTHESIS IN MONITOR DEC.

IMPROPER SUBSCRIPT FOR MONITOR LIST
ELEMENT.

IMPROPER SUBSCRIPT EXPRESSION DELIMITER
IN MONITOR LIST ELEMENT.

IMPROPER NUMBER OF SUBSCRIPTS IN MONITOR
LIST ELEMENT.

LABEL OR SWITCH MONITORED AT IMPROPER
LEVEL.

IMPROPER MONITOR LIST ELEMENT.

MISSING RIGHT PARENTHESIS IN MONITOR
DECLARATION.

IMPROPER MONITOR DECLARATION DELIMITER.

MISSING FILE IDENTIFIER IN DUMP
DECLARATION.

MISSING LEFT PARENTHESIS IN DUMP
DECLARATION.

SUBSCRIPTED VARIABLE IN DUMP LIST HAS
WRONG NUMBER OF SUBSCRIPTS.

SUBSCRIPTED VARIABLE IN DUMP LIST HAS
WRONG NUMBER OF SUBSCRIPTS.

IMPROPER ARRAY DUMP LIST ELEMENT.

ILLEGAL DUMP LIST ELEMENT.

MORE THAN 100 LABELS APPEAR AS DUMP
LIST ELEMENTS IN ONE DUMP DECLARATION.

ILLEGAL DUMP LIST ELEMENT DELIMITER.

MISSING OR NON-LOCAL LABEL IN DUMP
DECLARATION.

MISSING COLON IN DUMP DECLARATION.

IMPROPER DUMP DECLARATION DELIMITER.

MISSING LEFT PARENTHESIS IN READ
STATEMENT.

MISSING LEFT PARENTHESIS IN READ
REVERSE STATEMENT.

C-9

ERROR
NUMBER

422

424

425

426

427

428

429

430

431

433

434

,. '") ~
"Tjj

436

437

438

439

440

441

442

443

444

C-10

ROUTINE

READSTMT

READSTMT

READSTMT

READSTMT

READSTMT

READSTMT

READSTMT

READSTMT

FCRSCAN

ERROR MESSAGE

MISSING FILE IN READ STATEMENT.

IMPROPER FILE DELIMITER IN READ
STATEMENT.

IMPROPER FORMAT DELIMITER IN READ
STATEMENT.

IMPROPER DELIMITER FOR SECOND PARAMETER
IN READ STATEMENT.

IMPROPER ROW DESIGNATOR IN READ
STATEMENT.

IMPROPER ROW DESIGNATOR DELIMITER
IN READ STATEMENT.

MISSING ROW DESIGNATOR IN READ STATEMENT.

IMPROPER DELIMITER PRECEDING THE LIST
IN A READ STATEMENT.

IMPROPER SYNTAX.

HANDLETHETAILEND MISSING RIGHT BRACKET IN READ OR SPACE
OFAREADORSPACESTA STATEMENT.
TEMENT

SPACESTMT

SPACESTlviT

SPACESTMT

SPACESTMT

WRITESTMT

WRITESTMT

WRITESTMT

WRITESTMT

WRITESTMT

WRITESTMT

WRITESTMT

MISSING LEFT PARENTHESIS IN SPACE
STATEMENT.

IMPROPER FILE IDENTIF'ITER IN SPACE
STATEMENT.

MISSING COMMA IN SPACE STATEMENT.

MISSING RIGHT PARENTHESIS IN SPACE
STATEMENT.

MISSING LEFT PARENTHESIS IN A WRITE
STATEMENT.

IMPROPER FILE IDENTIFIER IN A WRITE
STATEMENT.

IMPROPER DELIMITER FOR FIRST PARAMETER
IN A WRITE STATEMENT.

MISSING RIGHT BRACKET IN CARRIAGE
CONTROL PART OF A WRITE STATEMENT.

ILLEGAL CARRIAGE CONTROL DELIMITER
IN A WRITE STATEMENT.

IMPROPER SECOND PARAMETER DELIMITER IN
1a.TRITE STATEMENT.

IMPROPER ROW DESIGNATOR IN A WRITE
STATEMENT.

ERROR
NUMBER

445

446

448

449

450

451
452

453

454

455

456

457
458

459

460

461

462

463

464

465

500

501

502

ROUTINE

WRITESTMT

WRITESTMT

WRITEST}1T

READST1'·fT

LOCKSTMT

LOCKSTMT

LOCKSTMT

LOCKSTMT

LOCKSTMT

CLOSESTMT

CLOSESTMT

CLOSESTMT

CLOSESTMT

CLOSESTMT

RWNDSTMT

RWNDSTMT

RWNDSTMT

BLOCK

BLOCK

DMUP

SEARCHLIB

SEARCHLIB

SEARCHLIB

ERROR MESSAGE

MISSING RIGHT PARENTHESIS AFTER A ROW
DESIGNATOR IN A WRITE STATEMENT.

IMPROPER DELIMITER PRECEDING A LIST IN
A WRITE STATEMENT.

IMPROPER LIST DELIMITER IN A WRITE
STATEMENT.

IMPROPER LIST DELIMITER IN A READ
STATEMENT.

MISSING LEFT PARENTHESIS IN A LOCK
STATEMENT.

IMPROPER FILE PART IN A LOCK STATEMENT.

MISSING CO~_~ IN A LOCK STATEMENT.

IMPROPER UNIT DISPOSITION PART IN A
LOCK STATEMENT.

MISSING RIGHT PARENTHESIS IN A CLOSE
STATEMENT.

MISSING LEFT PARENTHESIS IN A
STATEMENT.

IMPROPER FILE PART IN A CLOSE STATEMENT.

MISSING COMMA IN A CLOSE STATEMENT.

IMPROPER UNIT DISPOSITION PART IN A
CLOSE STATEMENT.

MISSING RIGHT PARENTHESIS IN A CLOSE
STATEMENT.

MISSING LEFT PARENTHESIS IN A REWIND
STATEMENT.

IMPROPER FILE PART IN A REWIND
STATEMENT.

MISSING RIGHT PARENTHESIS IN A REWIND
STATEMENT.

A MONITOR DECLARATION APPEARS IN THE
SPECIFICATION PART OF A PROCEDURE.

A DUMP DECLARATION APPEARS IN THE
SPECIFICATION PART OF A PROCEDLmE.

DUMP INDICATOR MUST BE UNSIGNED INTEGER
OR SIMPLE VARIABLE.

ILLEGAL LIBRARY IDENTIFIER.

LIBRARY IDENTIFIER NOT CONTAINED IN
DIRECTORY.

ILLEGAL LIBRARY START POINT.

C-11

ERROR
NUMBER

503

504

505

507

508

509

C-12

ROUTINE

SEARCHLIB

SEARCHLIB

SEARCHLIB

SEARCHLIB

ANYWHERE

IODEC

ERROR MESSAGE

SEPARATOR REQUIRED BETWEEN START POINT
AND LENGTH.

ILLEGAL LIBRARY LENGTH.

MISSING BRACKET.

TAPE POSITIONING ERROR.

CONSTRUCT NOT ALLOWED IN TIME SHARING
SYSTEM.

NON-LITERAL FILE VALUE NOT GLOBAL TO
FILE DECL.

I

INDEX

METALINGUISTIC VARIABLES

The syntactical definition of each Compatible ALGOL metalinguistic

variable will be found on the pages shown below.

(access media) 6-15

(action labels) 6-16

(actual parameter) 3-7
(actual parameter list) 3-7
(actual parameter part) 3-7
(actual text part) 7-10

(adding operator) 4-2
/ " \ /' ,....-, <...aaaress) 0-;> I

(ALPHA string) 2-8

(alpha test) 4-11

(arithmetic assignment) 4-2

(arithmetic function
deSignator) 4-2

(arithmetic operator) 2-1

(arithmetic variable) 4-2

(array declaration) 7-4

(array identifier) 3-1

(array identifier list) 8-2

(array kind) 7-4
(array list) 7-4

(array part) 4-20

(array row) 4-20

(array segment) 7-4
/ a...,...,,,,,,r
\ .l..l. c<'J ST"\al"';-F';r-~+;on\

...t-''-'''-''''...L.&...""~-.;-..- / 8-1

(array specifier) 8-2

(array specifier list) 8-2

(array type) 8-2

(assignment statement) 6-6

(basic component) 2-4

(basic symbol) 2-1

(BCL string) 2-8

(bits in field) 4-12

(block) 5-1

(block head) 5-1

(blocking specifications) 7-15

(Boolean assignment) 4-11

(Boolean expression) 4-10

(Boolean factor) 4-10

(Boolean factor prefix) 4-11

(Boolean function
designator) 4-12

(Boolean partial word
operand) 4-11

(Boolean primary) 4-11

(Boolean secondary) 4-10

(Boolean term) 4-10

(Boolean term prefix) 4-11

(Boolean variable) 4-12

(bound pair) 7-4

(bound pair list) 7-4

(bracket) 2-2

(buffer part) 7-15

(buffer release) 6-16

(carriage contrOl) 6-24

(case body) 6-5

(case statement) 6-5

(character) 1-4

(character size) 4-20

(close statement) 6-27

(closed text) 7-10

(closed text list) 7-10

one

I

I

(compare procedure) 6-47
(compound statement) 5-1

(compound tail) 5-1
(concatenate operator) 2-2

(concatenation) 4-2
(condition) 6-11
(conditional statement) 6-1

(core size) 6-47
(cycle number) 6-34

(date) 6-34
(decimal fraction) 2-6
(decimal number) 2-6
(decimal places) 7-24

(declaration) 7-1
(declarator) 2-2
(define declaration) 7-9
(defined identifier) 7-9

(definition) 7-9
(definition list) 7-9
I rial -ln1-l +r>. \ "J.l \,-,cO"""' __ ...a....&..I..L Vv.L/ ~-...L.

(designational expression) 4-17
(destination) 6-12

(digit) 1-3
(direction) 6-16
(disk access technique) 7-15
(disk close statement) 6-43

(disk file description) 7-15
(disk input parameters) 6-37
(disk I/O statement) 6-36
(disk lock statement) 6-44
(disk output parameters) 6-39
(disk read seek statement) 6-40

(disk read statement) 6-37
(disk rewind statement) 6-43

(disk size) 6-47
space statement) 6-42

two

(disk write statement) 6-39
(do statement) 6-4

(dump declaration) 7-42

(dump indicator) 7-42
(dump list) 7-42
(dump list element) 7-42

(dump part) 7-42
(edit and move read) 6-35
(edit and move statement) 6-35

(edit and move write) 6-35
(editing phrase) 7-24

(editing phrase type) 7-24
(editing segment) 7-24
(editing specifications) 7-23

(empty) 2-1
(end-of-file label) 6-16
(equality operator) 4-11

(exponent part) 2-6
(expression) 4-1

(expression list) 7-38
(expression part) 7-38
(factor) 4-1
(factor prefix) 4-2
(fault declaration) 7-44

(fault equate) 7-44
(fault list) 7-44
(fault statement) 6-29
(fault type) 6-29, 7-44
(fer statement) 6-15

(field) 6-19
(field delimiter) 6-19
(field description) 4-12

(field part) 7-24

(field width) 7-24
(file declaration) 7-14

(file designator) 3-4

I

I

I

(file identification) 6-34 (increment part) 6-9

(file identification part) 7-15 (initial part) 6-9

(file identifier) 3-4, 7-14 (initial value) 6-46

(file lock part) 7-14 (in-out part) 7-14

(file part) 6-16~ 6-44 (input option) 6-47

(fill statement) 6-45 (input or output) 7-23

(fixed logical record size) 7-15 (input parameters) 6-16

(fixed physical record size) 7-15 (input procedure) 6-47

(for list) 6-9

(for list element) 6-9

(formal parameter) 8-1

(formal parameter list) 8-1

(formal parameter part) 8-1

(formal symbol) 7-9

(integer) 2-6

(invalid character) 1-4

(invocation) 7-9

(I/O declaration) 7-14

(I/O statement) 6-15

(iteration clause) 6-9

(label) 4-17

(label declaration) 7-3

(formal symbol list) 7-9

(formal symbol part) 7-9

(format) 6-16

(format and list part) 6-16

(label equation information) 6-32

(label equation part) 7-15

(format declaration) 7-23

(format designator) 3-5

(format identifier) 7-23

(format part) 7-23

(forward procedure
declaration) 7-13

(forward reference
7-13

(label equation statement) 6-32

(label list) 7-3

(label part) 7-15

(left bit-from) 4-2

(left bit of field) 4-12

(left bit-to) 4-2

(letter) 1-3 declaration)

(forward switch declaration) 7- 13 (letter string) 3-7

(free-field data) 6-19 (limit function) 3-10

(free-field part) 6-16

(function designator) 3-7
/.... I , n ,

\genera~ componen~sJ ~-~

(go to statement) 6-3

(hivalue procedure) 6-47

(identifier) 2-5

(identifier list) 8-1

(if clause) 4-2

(implication) 4-10

(implication prefix) 4-11

(limit function ID) 3-10

(limit list) 3-10

(list) 7-38

(list declaration) 7-38

(list designator) 3-6

(list identifier) 7-38

(list part) 7-38

(list segment) 7-38

(local or own type) 7-2

three

I

I

I
I

(lock statement) 6-27

(logical operator) 2-1

(logical value) 2-1

(lower bound) 7-4

(lower bound list) 8-2

(maxcount) 6-12

(merge file) 6-52

(merge file list) 6-52

(merge statement) 6-52

(mode part) 7-14

(monitor declaration) 7-40

(monitor list) 7-40

(monitor list element) 7-40

(monitor part) 7-40

(multi-file identification) 6-34

(multi-file identification
part) 7-15

(multiplying operator) 4-2

(number) 2-6

(number of areas) 7-15

(number of bits) 4-2

(number of buffers) 7-15

(number of records) 6- 23,

(number of tapes) 6-47

(numeric string) 2-8

(octal character) 2-8

(octal string) 2-8

(operator) 2-1

(optional unit count) 6-12

6-42

I (output convert) 6-12

(output media digit) 7-15

(output media part) 6-34, 7-15

(output option) 6-48

(output parameters) 6-24

(output procedure) 6-48

(parameter delimiter) 3-7

four

(parity label) 6-16

(partial word operand) 4-2

(partial word part) 6-6

(pointer assignment) 6-6

(pointer declaration) 7-6

(pointer designator) 4-20

(pointer expression) 4-20

(pointer identifier) 4-20

(pointer list) 7-6

(pointer parameters) 4-20

(pointer primary) 4-20

(pointer relation) 4-11

(primary) 4-2

(procedure body) 8-2

(procedure declaration) 8-1

(procedure heading) 8-1

(procedure identifier) 3-7

(procedure statement) 6-4

(procedure type) 8-1

(program) 5-l
(read statement) 6-16

(record address part) 6-39

(record address and release
part) 6-37

(record length) 6-47

(record specifications) 7-15

(reel number) 6-34

(relation) 4-12

(relational operator) 2-1

(repeat part) 7-24

(replacement operator) 2-2

(rewind statement) 6-26

(row) 4-20, 6-45

(row designator) 4-20, 6-45

(save factor) 7-16

(scan part) 6-11

(search statement) 6-44
(secondary prefix) 4-11
\

(separator) 2-2

(sequential operator) 2-2

(sign) 2-6

(simple arithmetic
expression) 4-1

(simple Boolean) 4-10

(simple Boolean prefix) 4-11

(simple pointer expression) 4-20

(simple prefix) 4-20

(simple variable) 3-1

(single space) 1-4
(size of areas) 7-15
(Size specifications) 6-47

(Skip) 4-20

(skip to channel) 6-24

(sort statement) 6-47
(source) 6-12

(source list) 6-11

(source part) 6-11

(space) 1-4

(space statement) 6-23

(special character) 1-3

(specification) 8-1

(specification part) 8-1

(specificator) 2-2

(specified lower bound) 8-2

(specifier) 8-1

(statement) 6=1

(step part) 6-9

(string) 2-8

(string bracket character) 1-4

(string character) 1-4

(string relation) 4-11
/ + . ~ s+a+aman+\ ~_11 \ S v r lUg sea...... v v u v I '-' ~ ~

(string transfer statement) 6-11

(subarray designator) 3-7
(subarray part) 3-7

(subscript) 3-2

(subscript list) 3-1

(subscript part) 3-7

(subscripted variable) 3-1

(switch declaration) 7-7
(SWitch designator) 4-18

(switch file declaration) 7-22

(switch file designator) 3-4 I
<switch file identifier) 3-4, 7-22 ,
(SWitch file list) 7-22

(switch format declaration) 7-37
(SWitch format designator) 3-5 I
(switch format identifier) 7-37
(SWitch format list) 7-37
(switch identifier) 4-18

(SWitch list) 7-8
(SWitch list declaration) 7-39
(switch list designator) 3-6 I
(SWitch list identifier) 7-39
(SWitch list list) 7-39
(term) 4-1

(term prefix) 4-2

(text) 7-9
(transfer part) 6-11

(type) 7-2

(type declaration) 7-2

(type list) 7-2

(unblocked specification) 7-15
(unconditional statement) 6-1
(unit count) 6-11

(units) 6-12

(unlabeled conditional
+ + 1"r1en+\ h 1 S va ve ... < .L v / 'V - ...L.

five

(unlabeled unconditional
statement) 6-1

(unsigned integer) 2-6

(unsigned number) 2-6

(update count) 6-12

(update pointer) 6-12

(upper bound) 7-4
(value list) 6-46

(value part) 8-1

(variable) 3-1

(variable identifier) 3-1

(write statement) 6-24

(zip statement) 6-31

six

Q)
c

"U
Q) ,

• • 1

• 0)1
C I
o •

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: ___________ _

CHECK TYPE OF SUGGESTION:

DADDITION DDELETION DREVISION

FORM: __________ __
DATE:

DERROR

o .~--
GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION: -:J

U

FROM: NAME
TITLE
COMPANY -----------­
ADDRESS

DATE _______ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

---~----------------------------

attn: Sales Technical Services
Systems Documentation

BUSINESS REPLY MAIL
First Ciass Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

--
FOLD UP FIRST FOLD UP

1038643

.~- _." .. ,'''. - .- '-:: ..
_.~~t;;"·~,,"",,;r-

Wherever There's
Business There J s

5·69 Printed in U. S. America

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	8-01
	8-02
	8-03
	8-04
	8-05
	A-01
	A-02
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB
	xBack

