
Information
Processing Systems

Burroughs
B 5500

INFC)RMATION PROCESSING SYSTEMS

EXTENDED ALGOL

REFERENCE MANUAL

Business Machines Group

Sales Technical Services

Systems Documentation

Burrou~s Corporation ~
Detroit, Michigan 48232 W

Copyright © 1966, 1964, 1962
BURROUGHS CORPORATION
11596952 11739491

PREFACE

One of the programing languages utilized by the Burroughs B 5500

Electronic :rnformation Processing System is Extended ALGOL. In

addition to implementing virtually all of ALGOL 60, Extended ALGOL

provides for communication between the processor and input/output

devices, enables editing of data, and facilitates program debug-

ging. Wi th:ln the framework of an Extended ALGOL program, the

programmer can thus exercise close control over data transmission

and manipulation to any desired degree.

This manual is a detailed reference source for Extended ALGOL. It

describes all the structures contained in the language through

the use of syntactical descriptions, pertinent examples, and

semantics. Although the material contained herein is not inten-

ded as a teaching aid, serious and careful study should provide

the reader with a thorough understanding of Extended ALGOL.

Except wherE~ spaces are specifically prohibited or mandatory, as

described in the following text, the use of blanks is optional.

For this reason, the spacing within many examples has been deli­

berately varied to illustrate both optimum program readability

and optimum packing of information on punched cards.

When a reserved word is actually used in a given construct, it

appears in capital letters; when it is merely descriptive, however,

it is in lowercase letters. For example, a "LIST declaration"

contains thE~ reserved word LIST, but a "list part" does not.

The reader is assumed to have had some experience in systems

programing. For those unfamiliar with ALGOL 60, the Burroughs

B 5500 Electronic Information Processing System, or both, the

following publications are suggested:

1. Burroughs B 5500 Information Processing System Reference

Manual (1021 3 26)

2. Burroughs B 5500 System Operation Manual (102491 6)

iii

3. Thurnau, D. H., et al., ALGOL Programing - A Basic

Approach~

4. Naur, P., et al., Revised Report on the Algorithmic

Language ALGOL 60 (Communications of the Association

for Computing Machinery, Vol. 6, No.1, Jan., 1963).

5. McCracken, Daniel D., An Introduction to ALGOL

Programming (New York, New York: John Wiley and

Sons, 1962).

In many cases, portions of reference 4 have been reproduced in

this manual with little change in order to adhere as closely as

possible to the formal definition of ALGOL 60.

iv

SECTION

1

2

3

TABLE OF CONTENTS

NOTE

The various elements of Extended ALGOL are discussed

in paragraphs labeled Syntax, Semantics, and Res­

trictions, immediately following each pertinent sub­

ject heading. To avoid needless repetition, these

subordinate headings have been omitted from the

Table of Contents.

TITLE

INTRODUCTION

STRUCTURE OF THE LANGUAGE .

General .

Conventions Used in the Description
of the Language .

Character Set .

BASIC COMPONENTS: BASIC SYMBOLS, IDENTIFIERS,
NUMBERS, AND STRINGS.

General .

Letters .

Digits

Logical Values.

Delimiters.

Spacing .

The Use of Comments .

Identifiers .

Numbers •

Size Limitations of Numbers .

Strings .

Use of Strings.

Letter String .

Constituents and Scopes

Values and Types.

GENERAL COMPONENTS.

General .

..

PAGE

xiii

1-1

1-1

1-2

1-4

2-1

2-1

2-1

2-1

2-2

2-2

2-3

2-4

2-5

2-6

2-7

2-7

2-8

2-8

2-9

2-9

3-1

3-1

v

SECTION

3 (cont)

4

vi

TABLE OF CONTENTS (cont)

TITLE

Variables .

Simple Variables.

Subscripted Variables .

Number of Subscripts.

Evaluation of Subscripts.

Partial Word Designators.

Values Allowed for Field.

Switch File Designator.

Switch Format Designator.

Switch List Designator.

Function Designators.

Standard Functions.

The TIME Functions.

Type Transfer Functions .

ENTIER.

REAL

BOOLEAN .

Interrogate Function.

STATUS

EXPRESSIONS .

General .

Arithmetic Expressions.

Simple Arithmetic Expressions .

Primaries .

Conditional Arithmetic Expressions.

Operators and Types .

Arithmetic Operators.

Arithmetic Expression Types .

Precedence of Operators .

Numerical Limitations and
Significant Digits.

Boolean Expressions .

Simple Boolean Expressions.

PAGE

3-1

3-2

3-2

3-3

3-3

3-3

3-4
3-4
3-5
3-6

3-7
3-8

3-9

3-9
3-10

3-10

3-10

3-10

3-10

4-1
4-1
4-1
4-3
4-3
4-4

4-5
4-6

4-6

4-7

4-8

4-8

4-10

SECTION

4 (cont)

.5

6

TABLE OF CONTENTS (cont)

TITLE

Conditional Boolean Expressions

Types.....

Relational and Logical Operators.

Relational Operators.

Logical Operators . .

Precedence of Operators .

Designational Expressions . .

PAGE

4-11
4-12
4-12
4-12

4-13
4-13
4-14

Simple Designational Expressions. . 4-1.5
Conditional Designational
Expressions

The Subscript Expression of a
Switch Designator .

Concatenate Expression.

PROGRAMS, BLOCKS, AND COMPOUND STATEMENTS .

General

STATEMENTS.

Nested Blocks .

Disjoint Blocks

General .

Unconditional Statements.

Assignment Statements . • . • • .

Types

GO TO Statements ..

Dummy Statements.

Fill Statements • .

Row Designator.

Value List. . .

Library Call Statements .

DOUBLE Statements . .

Procedure Statements ..

Value Assignment (Call by Value) ..

Name Replac em-ent (Call by Name) . .

stream Procedure Call Statement ~

4-15

4-16
4-16

.5-1

.5-1
5-2
.5-2

6-1
6-1
6-1
6-2
6-4

6-.5
6-.5
6-6

6-6

6-7

6-7
6-8

6-10
6-12
6-12

6-15

vii

SECTION

6 (cont)

viii

TABLE OF CONTENTS (cont)

TITLE

Stream Value Parameters .

Stream Name Parameters

Input/Output Statements .

READ Statements . .

Free-Field Data .

Logical Values.

RELEASE Statements

SPACE Statements

WRITE Statements

REWIND Statements .

LOCK Statements .

CLOSE Statements ..

Break-Out Statements.

WHEN Statement.

WAIT Statement.

Fault Statement .

ZIP Statement

Label Equation Statement.

SORT Statement and MERGE Statement

Edit and Move Statement .

Disk I/O Statement.

Disk READ Statement

Disk WRITE Statement.

Disk READ SEEK Statement.

Disk SPACE Statement ..

Disk REWIND Statement .

Disk CLOSE Statement.

Disk LOCK Statement

Data Communications I/O Statement .

Status Word

Data Communications READ Statement ..

Data Communications READ LOCK Statement .

Data Communications READ SEEK Statement . .

PAGE

6-16

6-16

6-18

6-18

6-21

6-24

6-25

6-26

6-27

6-29

6-30

6-30

6-32

6-32

6-33

6-34

6-36

6-37
6-40

6-41

6-42

6-42

6-44

6-45

6-47

6-48

6-48

6-49

6-49

6-50

6-52

6-54

6-55

SECTION

6 (cont)

7

8

9

TABLE OF CONTENTS (cont)

TITLE

Data Communications WRITE Statement .

Data Communications WRITE LOCK Statement.

Interrogate Function.

Data Communications CLOSE Statement .

Data Communications REWIND Statement.

CASE Statement.

SEARCH Statement.

CONDITIONAL STATEMENTS.

General .

IF Statement.

IF . . ELSE Statement .

Nested IF Statements.

Entering a Conditional Statement.

ITERATIVE STATEMENTS.

General .

FOR Statement .

The For-List.

Arithmetic Expression Element .

STEP-UNTIL Element.

WHILE Element .

STEP-WHILE Element.

Value of Controlled Variable on
Exit from FOR Statement .

DO Statements .

WHILE Statements.

DECLARATIONS.

General .

Type Declarations .

Local or OWN.

Type.

ARRAY Declarations.

SAVE Arrays .

PAGE

6-57

6-59

6-59
6-61

6-61

6-62

6-62

7-1

7-1

7-2

7-2

7-2

7-4

8-1

8-1

8-1

8-2

8-3

8-3

8-4

8-5

8- .5
8-6

8-6

9-1

9-1

9-2

9-3

9-3

9-3

9-5

ix

SECTION

9 (cont)

10

x

TABLE OF CONTENTS (cont)

TITLE

Local or OWN.

Type.

Bound Pair List .

SWITCH Declarations .

Evaluation of Expressions in the
Switch List .

Influence of Scope.

DEFINE Declarations .

Nesting of Definitions.

LABEL Declarations.

FILE Declarations .

SWITCH FILE Declarations.

FORMAT Declarations .

Input Editing Specifications.

Input Editing Phrases .

Output Editing Specifications .

Output Editing Phrases.

The Meaning of the Symbol

SWITCH FORMAT Declarations.

LIST Declarations .

SWITCH LIST Declarations.

FORWARD Reference Declarations.

MONITOR Declarations.

Monitor List Elements .

DUMP Declarations .

FAULT Declarations.

PROCEDURE DECLARATIONS.

General .

Procedure Heading .

Procedure Body.

Scope of Identifiers Other Than
Formal Parameters .

Special Rules of Typed Procedures .

PAGE

9-5

9-5

9-5
9-6

9-6

9-7

9-7

9-8

9-9
9-10

9-18

9-19

9-20

9-20

9-25

9-26

9-31

9-32

9~33

9-34

9-35

9-36

9-36

9-38

9-40

10-1

10-1

10-3

10-4

10-4

10-4

SECTION

11

TABLE OF CONTENTS (cont)

TITLE

STREAM PROCEDURE DECLARATIONS .

General .

Formal Parameters and
Value Part.

Stream Declarations .

Compound Stream Tail.

Automatic Index Adjustment.

Stream Statements .

Unconditional Stream Statements .

Set Address Statements.

Store Address Statements.

Skip Address Statements .

Recall Address Statements . .

Destination String Statements .

Transfer Words

Transfer Characters .

Input Convert .

Output Convert.

Transfer and Add.

Transfer Character Portions .

Literal Characters.

Literal Bits

Repetitive Indicator ..

Blank Replacement .

Stream GO TO Statements .

SKIP Bit Statements .

Stream TALLY Statements

Stream Nest Statements.

Stream RELEASE Statements •

Compound Stream Statements .•

Stream Dummy Statements .

Conditional Stream Statements .

Source With Literal .

Source With Destination.

PAGE

11-1

11-1

11-2

11-2

11-3

11-4

11-5

11-5

11-6

11-6

11-7

11-8

11-8

11-10

11-10

11-10

11-10

11-11

11-11

11-12

11-12

11-12

11-12

11-13

11-13

11-14

11-14

11-15

11-16

11-16

11-17

11-18

11-18

xi

TABLE OF CONTENTS (cont)

SECTION TITLE

11 (cont) Source Bit.

TOGGLE ...

Source For Alpha ..

12 SORT STATEMENT AND MERGE STATEMENT. .

SORT statement.

Program Example . .

MERGE Statement

APPENDIX A - RESERVED WORDS .

APPENDIX B'- INTERNAL CHARACTER CODES.

INDEX . . .

FIGURE

6-1

TABLE

3-1
4-1

4-2

4-3

4-4

4-5

6-1

6-2

9-1

9-2

9-3

9-4

xii

LIST OF ILLUSTRATIONS

TITLE

Format for Control Deck on Disk

LIST OF TABLES

TITLE

Results of Differen~ TIME (AE) Parameters

Represented Values of Primaries in
Arithmetic Expression . . .•.

Meaning of *
Types of Values Resulting from an
Arithmetic Operation

Values Represented by Primaries in
a Boolean Expression

Operation of Logical Operators ..

Program Errors for Fault Types.

Values for Output Media Digit ..

Characteristics of Types of Input
Editing Phrases

Boolean Values for Various Field Widths
Input Editing Phrase. •.

Characteristics of Types of Output
Editing Phrases

Boolean Values for Various Field Widths
in Output Editing Phrase•.

in

. . . .

PAGE

11-18

11-18

11-18

12-1

12-1

12-4

12-5

A-I

B-1

one

PAGE

6-38

PAGE

3-9

4-3
4-6

4-7

4-11

4-13
6-35
6-40

9-21

9-23

9-27

9-29

INTRODUCTION

Extended ALGOL, one of the languages used for programing the

Burroughs B 5500 Electronic Information Processing System, is

based on the definitive "Revised Report .£!! the Algorithmic

Language ALGOL 60" (Communications of the ACM, Vol. 6, No.1;

January, 1963). Extended ALGOL implements virtually all of ALGOL

60, and adds certain extensions which are necessary to handle

situations peculiar to computer operations: input/output opera­

tions, partial-word operations, character manipulation, and

diagnostic facili ties. The extensioll.s which have been added were

designed with the philosophy used in the design of ALGOL 60.

xiii

GENERAL.

SECTION 1

STRUCTURE OF THE LANGUAGE

ALGOL 60 deals with the formation of rules for calculation of a

value or values by means of a computer. Burroughs Extended ALGOL

also includes the means required by a programmer to communicate

with the computing equipment.

Extended ALGOL employs a vocabulary of reserved words and symbols.

These reserved words and symbols may not be used in a program for

any purpose other than that defined by the language description

in this manual.

Reserved words and symbols are grouped in ways prescribed by the

syntax to form the various constructs of the language. These con~

structs can be divided into five major categories: basic compo-

nents, general components, expressions, statements, and declara­

tions.

Basic components may be combined in accordance with the rules of

the language to form general components and expressions. Four

different forms of expressions are defined in the language: arith­

metic, Boolean, designational, and concatenate.

The results produced by the evaluation of arithmetic, Boolean, and

concatenate expressions can be assigned as the values of variables

by means of assignment statements. These assignment statements

are the principle active elements of the language.

In addition, to provide control of the computational processes and

external communication for a program, certain additional statements

are defined. These statements provide iterative mechanisms, con­

ditional and unconditional program control transfers, and input/

output operations. In order to provide control points for trans­

fer operations, statements may be labeled.

1-1

Declarations are provided in the language for giving the Compiler

information about the constituents of the program such as array

sizes, the types of values that variables may assume, or the ex­

istence of subroutines. Each such construct must be named by an

identifier, and all identifiers must be declared before they are

used.

A series of statements enclosed by the reserved words BEGIN and

END is called either a compound statement or a block; each pro­

vides a method for grouping related statements. If a declaration

of identifiers appears immediately after the word BEGIN, the

statement group is called a block. A statement group may contain

subordinate statement groups. A program is a grouping of state­

ments, usually a block. (To be completely precise, a program may

also be a compound statement.)

CONVENTIONS USED IN THE DESCRIPTION OF THE LANGUAGE.

The syntax of the language is described through the use of meta­

linguistic symbols. These symbols have the following mean:ings:

a.

b.

c •

d.

1-2

<)

. .­.. -

{ }

Left and right· broken brackets are used to contain

one or more characters representing a metalinguis­

tic variable whose value is given by a metalinguis­

tic formula.

The symbol ::= means "is defined as," and separates

the metalinguistic variable on the left of the for­

mula from its definition on the right.

The symbol I means or. This symbol separates

multiple definitions of a metalinguistic variable.

Braces are used to enclose metalinguistic variables

which are defined by the meaning of the English­

language expression contained within the braces.

This formulation is used only when it is impossible

or impractical to use a metalinguistic formula.

The above metalinguistic symbols are used in forming a metalin­

guistic formula. A metalinguistic formula is a rule which will

produce an allowable sequence of characters and/or symbols. The

entire set of such formulas defines the constructs of Extended

ALGOL.

Any mark or symbol in a metalinguistic formula which is not one

of the above metalinguistic symbols denotes itself. The juxta­

position of metalinguistic variables and/or symbols in a meta­

linguistic formula denotes juxtaposition of these elements in the

construct indicated.

Spaces have been used between language elements for readability

in this document, but in general, spaces may be used or omitted

except as prescribed herein. See pages 2-3 and 2-4 in particular.

In order to indicate specifically the differences between Extended

ALGOL and ALGOL 60, each metalinguistic formula is preceded by an

underlined number. These numbers have the following meanings:

a. 1 Same as ALGOL 60 except for character set.*

b. 2 Different from ALGOL 60.

c. ~ In addition to ALGOL 60 (all or in part).

To illustrate the use of syntax, the following example is offered:

1 (identifier) .. -.. - (letter) (identifier) (letter)

(identifier) (digit)

The above metalinguistic formula is read as follows: an identi-

fier is defined as a letter, or an identifier followed by a letter,

or an identifier followed by a digit.

The metalinguistic formula defines a recursive relationship by

which a construct called an identifier may be formed. Evaluation

*Formulas preceded by the number 1 represent the material presen­
ted in "Report .2!! ~ Algorithmic-Language, ALGOL 60" (Communica­
tions of the Association for Computing Machinery, Vol. 3, No.5;
May, 1960) as modified by the changes which were made during the
Rome meeting of the ALGOL Committee (April 2-3, 1962).

1-3

of the formula shows that an identifier begins with a letter; the

letter may stand alone, or may be followed by any mixture of

letters and digits.

The number 1 indicates the departure of the defined construct from

the definitions of ALGOL 60, as noted above.

CHARACTER SET.

SYNTAX.

The syntax for (character) is as follows:

2 (character) .. - (string character) I (string bracket

character) I (illegitimate character)

2 (string character) ::= (visible string character) I (single

space)

2 (visible string character) ::= . I[I(I<I~I&I$I*I)I; 1<1-1/1

,I%I=IJ I#I@I: I>I?I+IAIBICI

DIEIFIGIHIIlxlJIKILIMINIOI

pIQIRI~ISITIUIVIWIXIYIZIOI
112131 4 151 6 171 8 19

2 (single space) ::= {a single unit of horizontal spacing

which is blank}

(space) (single space) I (space) (single space)

2 (string bracket character) ::= "

1 (empty) ::= {the null string of symbols}

2 (illegitimate character) .. - ?

NOTE

The illegitimate character? is not used

in writing Extended ALGOL programs. It

serves to represent any illegitimate card

code detected during a card read opera­

tion. It is shown here merely to complete

the illustration of the character set.

SEMANTICS.

The above character set has been defined; therefore, the

1-4

definition of Extended ALGOL will reflect the use of this charac­

ter set. The visible string characters, the string bracket char­

acter, the single space, and the illegitimate character provide

a total of 64 characters.

1-5

SECTION 2

BASIC COMPONENTS:
BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS

GENERAL.

SYNTAX.

The syntax for (basic symbols) is as follows:

1 (basic symbol) ::=·(letter) I (digit) I (logical value) I

(delimiter)

SEMANTICS.

The entire Extended ALGOL language is formed from the above basic

symbols.

LETTERS.

SYNTAX.

The syntax for (letter) is as follows:

1 (letter) ::= AIBICIDIEIFIGIHIIIJIKILIMINIOlplQIRISITIUlvl

WIXlylZ

SEMANTICS.

The alphabet defined for Extended ALGOL is restricted to the

uppercase letters of the English alphabet. The lowercase let­

ters are specifically disallowed. Individual letters do not have

individual meaning but serve to form identifiers and strings (see

page 2-5, Identifiers, and pages 2-7 and 2-8, Strings).

DIGITS.

SYNTAX.

The syntax for (digit) is as follows:

SEMANTICS.

Digits are used for forming numbers, identifiers, and strings.

2-1

LOGICAL VALUES.

SYNTAX.

The syntax for (logical value) is as follows:

1 (logical value) ::= TRUE I FALSE

SEMANTICS.

Logical values are the only values defined for Boolean quantities

(see pages 9-2 and 9-3, Type Declarations).

DELIMITERS.

SYNTAX.

The syntax for (delimiter) is as follows:

2-2

1 (delimiter) ::= (operator) I (separator) I (bracket) I

(declarator) I (specificator)

1 (operator) ::= (arithmetic operator) 1 (relational operator)

1 (logical operator) 1 (sequential operator)

2 (arithmetic operator) ::= +1-lxI/IDIVI*IMODITIMES

1 (relational operator) ::= <I<I=I~I>I~ILSSILEQIEQLIGEQI

GTRINEQ

2 (logical operator) ::= EQvlIMPIORIANDINOT

2 (sequential operator) ::= GOITOIIFITHENIELSEIFORIDOIREADI

WRITE 1 DOUBLE 1 RELEASE I DS 1 TOGGLE I

JUMplSKIPIDBIDIISETILOCKIZIPICII

sc 1 DC 1 RESET I SB I SI 1 TALLY I RE'WIND 1

CLOSEISPACEIFILLlpAGEIDBLINOI

BREAK

2 (separator) ::= ,I· 1@1:1;1-1&I(single space) 1 STEP 1 UNTIL 1

WHILE 1 COMMENT 1 LOCIWDSIADDI SUB 1 LIT 1 CHRINUMI

ZONIDECIOCTIWITHI :=

2 (bracket) ::= (I)I[I] 1 "IBEGINIENDI#ILBIRB

2 (declarator) ::= OWN 1 BOOLEAN 1 INTEGER 1 REAL 1 ARRAY 1 SWITCH 1 LABELl

LOCALIFORWARDISAVElpROCEDUREISTREAMILISTI

FORMAT I IN lOUT I MONITOR 1 DUMP 1 FILE' 1 ALPHA 1

DEFINE 1 REVERSE

2 (specificator) ::= VALUE

SEMANTICS.

Delimiters are the class of operators, separators, brackets, de-

clarators, and specificators. As the word "delimiter" indicates,

an important function of these elements is to separate the various

entities which make up a program.

In order to accept input from equipment not having the full char­

acter set as shown on page 1-4, alternate representations of cer-

tain delimiters are provided as follows:

LSS <

LEQ <

EQL =
GEQ >

GTR >

NEQ (=

TIMES x

LB [
RB]
. -. - +-

Throughout the text of this manual, the symbols in the right-hand

column are used.

Delimiters have fixed meanings which will be made clear as they

appear in various constructs below. Delimiters and logical values

are considered basic symbols of the language, having no relation

to the individual letters of which they are composed. Conse-

quently, the words which constitute the basic symbols are reserved

for specific use in the language. A complete list of these words,

and details of the applicable restrictions, are given in Appendix

A.

SPACING.

In the ALGOL 60 Reference Language, spaces have no significance

since basic components of the language such as BEGIN are con-

strued as one symbol. In a machine implementation of such a

language, however, this approach is not practical. In Extended

2-3

ALGOL, for instance, BEGIN is composed of five letters, TRUE

is composed of four, and PROCEDURE of nine. No space may appear

between the letters of a reserved word; otherwise, it will be

interpreted as two or more elements.

The basic components (reserved words and symbols) are used, to­

gether with variables and numbers, to form expressions, state-

ments, and declarations. Because some of these constructs place

quantities which have been defined by the programmer next to

delimiters composed of letters, it is necessary to separate one

from the other. The space is used as a delimiter in these cases;

therefore, a space must separate any two basic components of the

following forms:

a. Multicharacter delimiter.

b. Identifier.

c. Logical value.

d. Unsigned number.

Aside from these requirements, a space may appear (if desired)

between any two basic components without affecting their meaning.

THE USE OF COMMENTS.

In order to include explanatory material at various points in

the program, several conventions exist as defined below. The

reserved word COMMENT indicates that the information following

is explanatory rather than part of the program structure.

2-4

Sequence of Basic Symbols

COMMENT {any sequence of characters

not containin~ ;}

BEGIN COMMENT {any sequence of charac­

ters not containing ;}

END {any sequence of letters and/or digits,

including blanks, but excluding the

Equivalent

BEGIN

reserved words END, ELSE, UNTIL} END

The above conventions mean that any construct which appears on

the left may be used in place of the corresponding construct on

the right without any effect on the operation of the program.

IDENTIFIERS.

SYNTAX.

The syntax for (identifier) is as f'ollows:

1 (identifier) ::= (letter) I (identifier) (letter)

(identifier) (digit)

Examples:

I

ID

A5
G76D3

ARITHMETICMEAN

SEMANTICS.

Identifiers are used as labels, and also serve to name programs,

variables, arrays, switches, procedures, files, formats, and

lists. The identifiers used in a program may be chosen freely.

RESTRICTIONS.

Reserved words of Extended ALGOL may not be used as identifiers.

An identifier must start with a letter, which can be followed

by any combination of letters or digits, or both. The latter

restriction also applies to labels, since integer labels are

specifically disallowed.

No space may appear within an identifier.

Identifiers may be as short as one letter or as long as 63 letters

and digits.

2-5

NUMBERS.

SYNTAX.

The syntax for (number) is as follows:

1 (number) ::= (unsigned number) I +(unsigned number) I
-(unsigned number)

1 (unsigned number) ::= (decimal number) I (exponent part)

1

1

(decimal number) .. -.. -

(exponent part) ::= @

(decimal number) (exponent part)

(unsigned integer) I (decimal fraction)

I (unsigned integer) (decimal fraction)

(integer)

1 (decimal fraction) ::= . (unsigned integer)

1 (integer) ::= (unsigned integer) I +(unsigned integer) I
-(unsigned integer)

1 (unsigned integer) ::= (digit) I (unsigned integer) (digit)

Examples:

Numbers:

o
549755813887
8.758@-47
4.314@68

Exponent Parts:

@68

@-46
@+54

Unsigned Integers:

5

69

SEMANTICS.

Unsigned Numbers:

1354.543
@68
1354.54@68

Decimal Fractions:

·5
.69

Decimal Numbers:

1354
.546
1354.543

Integers:

+546
-62256
12

Numbers may be of two basic types, INTEGER or REAL. Int€gers

are of type INTEGER; all other numbers are of type REAL.

2-6

SIZE LIMITATIONS OF NUMBERS.

In general, the number of digits (disregarding the decimal point

and exponent part, if any) in an unsigned number may not exceed

eleven; otherwise, the value will be truncated to the most sig­

nificant eleven digits. Twelve digits are allowed if, disre­

garding the decimal point and exponent part, they do not exceed

549755813887 in value.

The first series of examples under Numbers (page 2-6) shows the

lower and upper limits of the absolute values of numbers, of both

INTEGER and REAL types, which are allowed in Extended ALGOL.

also page 4-8, Numerical Limitations and Significant Digits.)

RESTRICTION.

(S~e

No space may appear within an unsigned number; an embedded space

will cause it to be interpreted as more than one number.

STRINGS.

SYNTAX.

The syntax for (string) is as follows:

2 (string) ::= "(proper string)" I "(string bracket character)"

2 (proper string) ::= (string character) I (proper string)

(string character)

Examples:

String:

"ALGOL"

" " "
"THE FOLLOWING TABLE OF RESULTS WAS BASED ON FORMULA:
A = B*C"

Proper String:

#A@FG

ALGOL 60

2-7

SEMANTICS.

Strings are of two forms:

a. A proper string delimited on both ends with the

string bracket character.

b. """

USE OF STRINGS.

Strings can be used to form arithmetic expressions (see pages 4-1
through 4-8, Arithmetic Expressions), FORMAT declarations (see

pages 9-19 through 9-32, FORMAT Declarations), FILL statements

(pages 6-6 and 6-7) and destination string statements (pages 11-8

through 11-12, Destination String Statement).

RESTRICTION.

A string may not exceed 63 characters in length.

LETTER STRING.

SYNTAX.

The syntax for (letter string) is as follows:

~ (letter string) ::= (letter) I (letter string) (letter)

(space) I (letter string) (space)

Examples:

A

ABCDEF

ALGOL

SEMANTICS.

The letter string may incorporate a space as an integral part of

its construct, and any spaces appearing between the delimiters of

a letter string. will, be so interpreted.

A letter string may be used in a parameter delimiter for explana­

tory purposes in a parameter list (pages 6-10 through 6-15, Pro­

cedure Statements and section 10, PROCEDURE Declarations).

2-8

RESTRICTION.

A letter string may not exceed 63 characters in length.

CONSTITUENTS AND SCOPES.

The following kinds of quantities are declared in Extended ALGOL:

simple variables, arrays, labels, switches, and procedures. In

addition, certain other constituents are declared: files, for­

mats, definitions, lists, forward references, and diagnostics.

The scope of any quantity or other constituent is the block in

which th"e quantity or constituent is declared. All the above

quantities and other constituents must be declared before they

are referenced in any manner.

VALUES AND TYPES.

Certain syntactical units have values. The value of an arith­

metic expression is a number, the value of a Boolean expression

is a logical value, and the value of a designational expression

is a label. The value of an array identifier is the ordered set

of values of the associated subscripted variables; this may be

a set of numbers, a set of logical values, or a set of proper

strings.

The types (INTEGER, REAL, BOOLEAN, and ALPHA) associated with

syntactical units refer to the values of these units.

2-9

GENERAL.

SYNTAX.

SECTION 3

GENERAL COMPONENTS

The syntax for (general components) is as follows:

(general components) .. -.. - (variable) (partial word desig­

nator) I (switch file designator)

(switch format designator)

(switch list designator) I (function

designator)

SEMANTICS.

Combinations of basic components are used to create general com­

ponents, which in turn are combined in building expressions.

It should be understood, however, that no sharp dividing line can

be drawn between general components and expressions since they are

used recursively; i.e., expressions are formed from general com­

ponents, but general components also use expressions in their

definitions.

VARIABLES.

SYNTAX.

The syntax for (variable) is as fol.lows:

1

1

1

1

(variable) .. -.. - (simple variable) (subscripted variable)

(simple variable) .. -.. -
(variable identifier)

(subscripted variable)

(vaT-liable identifier)

::= (identifier)

::= (array identifier) [(subscript

list)]

1 (array identifier) ::= (identifier)

1 (subscript list) ::= (subscript expression) (subscript

list), (subscript expression)

1 (subscript expression) ::= (arithmetic expression)

3-1

Examples:

Simple Variables:

ALPHAINFO

BETA4

Q

Subscripted Variables:

A[5J

A [ITHJ

KRONECKER [ITH + 2, JTH - ITHJ

MAXQ [IF BETA = 30 THEN -2 ELSE K + 2J

Subscript Lists:

5

ITH

ITH, JTH

ITH + 2, JTH - ITH

IF BETA = 30 THEN - 2 ELSE K + 2

SEMANTICS.

A variable is the symbolic representation of a particular value.

A variable may be used in an expression in order to produce another

value. The value designated by a variable may be changed through

the use of an assignment statement (see pages 6-2 through 6-4,

Assignment Statements). There are two forms of variables: sim­

ple and subscripted.

SIMPLE VARIABLES.

A simple variable is defined as being composed of a single vari­

able identifier. The type of value that a simple variable may

represent is defined by its type declaration (see pages 9-2 and

9-3, Type Declarations).

SUBSCRIPTED VARIABLES.

A subscripted variable represents a value which is a member of a

set of values described by an array. A subscripted variable is

composed of an array identifier and a subscript list. The array

identifier specifies a particular array (see pages 9-3 through

3-2

9-6, ARRAY Declarations). The subscript list specifies one ele­

ment of the array. A subscript expression is defined as an arith­

metic expression. Each arithmetic expression occupies a subscript

position in the subscript list and is referred to as a subscript.

NUMBER OF SUBSCRIPTS. The total number of subscripts in a sub­

script list must equal the number of dimensions given in the

ARRAY declaration.

EVALUATION OF SUBSCRIPTS. Each subscript expression ih the sub-

script list is evaluated from left to right. Each subscript

expression is treated as a variable of type INTEGER. If, upon

evaluation, the subscript expression yields a value of type

REAL, it will be rounded by the following automatically-invoked

transfer operation (see pages 3-9 and 3-10, Type Tra~sfer

Func tions') :

subscript value = ENTIER (value of subscript expression

+ O.s)

The values which result from the evaluation of the subscript

expressions provide the actual integral values of the subscripts

by which the array component is referenced. If the value of a

subscript falls outside the limits declared for the array, the

value of the element so referenced is undefined.

PARTIAL WORD DESIGNATORS.

SYNTAX.

The syntax for (partial word designator) is as follows:

(partial w.ord designator) ::= (partial word operand)

(partial word operand) .. -.. -
[(field description)]

(variable) I (function desig-

(field descript~on)

(left bit of field)

(bits in field) .. -.. -

nator) «arithmetic

.. -.. -
expression»)

(left bit of field)

field)

::= (unsigned integer)

(uns~gned integer)

: (bits in

3-3

Examples:

Partial Word Designators:

X. [3 : 6J

Z(A).[l:lJ

A[1 , 3 J . [9 : 39 J
(Q + 3.543).[2:lJ

Field Descriptions:

3:6

9:39
1:1

2:1

42:6

SEMANTICS.

The function of a partial word designator is to allow operations

upon portions of the numerical or character representations

assigned to certain quantities, rather than upon the entire re­

presentation or word.

VALUES ALLOWED FOR FIELD.

The value of a partial word operand is contained in a word which

is 48 bits in length. The addressable bits in this word are num-

bered from left to right, from 1 to 47. (Bit 0 cannot be add-

ressed.) Therefore, neither the value of the left bit of the

field nor the value of the bits in the field may exceed 47. In

addition, the sum of the left bit of the field and the bits in

the field must not be greater than 48 (e.g., [46:2J specifies

bit 46 and 47).

SWITCH FILE DESIGNATOR.

SYNTAX.

The syntax for (switch file designator) is as follows:

(switch file designator)

(switch file identifier)

3-4

· .-· .-

· . -· . -

(switch file identifier)

[(subscript expression)J

(identifier)

Examples:

SWHFI[IJ

SWIFI[IF X > N THEN 0 ELSE lJ

FISW[REAL (X <N)J

SEMANTICS.

Switch file designators are used in I/O statements in the same

fashion as file identifiers.

A switch file designator is used in conjunction with the SWITCH

FILE declaration specified by the switch file identifier. The

value of the subscript expression determines which file identi­

fier in the related switch file list is to be selected for use

in the I/O statement. The value of the subscript expression must

correspond to the position of one of the file identifiers in the

switch file list. The values of these positions start with o.
If the value of the expression is other than integer, it will

be converted to an integer in accordance with the rules appli­

cable to subscript expressions (page 3-3). If the value of the

expression is outside the scope of the switch file list, the file

so referenced is undefined.

SWITCH FORMAT DESIGNATOR.

SYNTAX.

The syntax for (switch format designator) is as follows:

(switch format designator) · .-· .-

(switch format identifier) · .-· .-
Examples:

SF[IJ

SWHFT [IF X > N THEN 0 ELSE lJ

SEMANTICS.

(switch format identifier)

[(subscript expression)J

(identifier)

Switch format designators are used in I/O statements in the same

fashion as are format identifiers.

3-5

A switch format designator is used in conjunction with the SWITCH

FORMAT declaration specified by the switch format identifier. The

value of the subscript expression determines which editing speci­

fication part in the related switch format list is to be selected

for use in the I/O statement. The value of the subscript expres­

sion must correspond to the position of one of the specification

parts in the switch format list. The values of these positions

start with O. If the value of the expression is other than inte-

ger, it will be converted to integer in accordance with the rules

applicable to subscript expressions (see page 3-3).

If the value of the expression is outside the scope of the switch

format list, the editing specification so designated is undefined.

SWITCH LIST DESIGNATOR.

SYNTAX.

The syntax for (switch list designator) is as follows:

2 (switch list designator)

2 (switch list identifier)

Examples:

SWLST [I]

· .-· .-

· .-· .-

(switch list identifier)

[(subscript expression)]

(identifier)

SWLI [IF A > B THEN 2 ELSE 3]

SEMANTICS.

Switch list designators are used in I/O statements in the same

fashion as list identifiers.

A switch list designator is used in conjunction with the SWITCH

LIST declaration specified by the switch list identifier. The

value of the subscript expression determines which list identi­

fier will be used from the switch list.

The value of the subscript expression must correspond to the

position of one of the list identifiers in the switch list. The

values of these positions start with O. If the value of the ex-

pression is other than integer, it will be converted in accordance

with the rules applicable to Bubscript expressions (see page 3-3).

3-6

If the value of the subscript expression is outside the scope of

the switch list, the list identifier so ref~renced is undefined.

FUNCTION DESIGNATORS.

SYNTAX.

The syntax for (function designator) is as follows:

1

1

1

1

2

(function designator) ::= (procedure identifier) (actual

parameter part)

(procedure identifier) ::= (identifier)

(actual parameter part) ::= (empty) I «actual parameter

list))

(actual parameter list)

(actual parameter)

::= (actual parameter) I (actual

parameter list) (parameter

delimiter) (actual parameter)

(expression) I (array row) I (array

identifier) I (procedure identifier)

(file identifier) I (format identifier)

I (list identifier) I (switch iden­

tifier) I (switch file identifier) I
(switch format identifier)

(switch list identifier)

file designator) I (switch

designator) I (switch list

I
(switch

format

designator)

(parameter delimiter) : : = , I) " (1 e t t e r s t ring)" (

Examples:

Function Designators:

J(A, B + 2, Q[I,LJ)

GASVOL(K) "TEMPERATURE"(T) "PRESSURE"(P)

RANDOMNO

Actual Parameter Parts:

(A, B + 2, Q [I,J])

(K)"TEMPERATURE"(T)"PRESSURE"(P)

3-7

SEMANTICS.

A function designator defines a single value. This value is pro­

duced by application of a given set of rules defined by a special

form of a PROCEDURE declaration (see section 10, PROCEDURE Declara­

tions). This set of rules is applied to the actual parameters of

the function designator, thereby producing a single value.

A function designator may be used, depending upon its type, in

either arithemtic or Boolean expressions (see pages 4-1 through

4-8. Arithmetic Expressions, and pages 4-8 through 4-14, BOOLEAN

Expressions).

STANDARD FUNCTIONS.

The standard (or "intrinsic") functions supplied for Extended

ALGOL are listed below, with appropriate definitions. Given that

AE is an arithmetic expression, then:

ABS (AE)

SIGN (AE)

SQRT (AE)

SIN (AE)

COS (AE)

ARCTAN (AE)

LN (AE)

EXP (AE)

Produces the absolute value of AE.

Produces one of three values, depending upon

the value of AE (+1 for AE > 0, 0 for AE = 0,

-1 for AE < 0).

Produces the square root of the value of AE.

Produces the sine of the value of AE.

Produces the cosine of the value of AE.

Produces the principle value of the arctangent

of the value of AE.

Produces the natural logarithm of the value of

AE.

Produces the exponential function of the value

of AE, i.e., e AE

These functions are understood to operate indifferently on argu­

ments both of type REAL and type INTEGER. They all yield values

3-8

of type REAL, except for SIGN (AE) which produces a value of

type INTEGER. The function ABS (AE) also produces a result of

type INTEGER when the value which results from the evaluation

of AE is of type INTEGER.

For SIN, COS, and ARCTAN, the angle i~ considered to be in radians.

These functions may be used without a specific PROCEDURE declara­

tion, since they are an integral part of the Compiler itself.

THE TIME FUNCTIONS.

TIME (AE) makes available the time registered on the internal

timing device of the system. This feature may be used to measure

the time required by the system, or certain components of it, to

execute a program, or parts of a program (see table 3-1). (AE)

must yield an integer value of zero through four. The result

of the function is determined by the parameter.

Table 3-1

Results of Different TIME (AE) Parameters

Parameter Result Type

TIME (0) Current date (e. g. , 64323 (year and day)) ALPHA

TIME (1) Start time plus elapsed time since last INTEGER
start time, in sixtieths of a second

TIME (2) Elapsed processor time, in sixtieths of INTEGER
a second

TIME (3) Elapsed I/O time, in sixtieths of a second INTEGER

TIME (4) Value of 6-bit machine timer INTEGER

If the value of (AE) is not one of the integers indicated above,

the result of the function will be undefined.

TYPE TRANSFER FUNCTIONS.

In addition to the set of standard functions provided for Exten­

ded ALGOL, a set of type transfer functions is also provided.

3-9

These type transfer functions are listed below, with their defi­

nitions following.

ENTIER

REAL

BOOLEAN

(AE)

(BE)

(AE)

ENTIER. The function ENTIER yields a value of type INTEGER. This

function is understood to transfer an expression of type REAL to

an expression of type INTEGER, and produces the value which is the

largest integer not greater than the value of the arithmetic ex­

pression.

REAL. The function REAL (BE) yields a value of type REAL. The

use of ~his function does not alter the internal system represen­

tation of the value, but allows arithmetic operations to be

carried out on quantities which have been declared type BOOLEAN.

REAL (TRUE) = 1

REAL (FALSE) = 0

BOOLEAN. The function BOOLEAN (AE) yields a value of type

BOOLEAN. The use of this function does not alter the internal

system representation of the value, but allows BOOLEAN opera­

tions to be carried out on arithmetic quantities.

The functions REAL and BOOLEAN, used in conjunction, allow for

handling masking operations since the logical operators (page 4-13)

operate on the entire word in the system.

INTERROGATE FUNCTION.

STATUS. The function STATUS (AE,AE) causes the MCP to perform

different actions for a specified data communications terminal

unit and buffer. The STATUS function is described in detail

beginning on page 6-59.

3-10

GENERAL.

SYNTAX.

SECTION 4·

EXPRESSIONS

The syntax for (expression) is as follows:

2 (expression) ::= (arithmetic expression) I (Boolean

expression) I (designational expression)

(concatenate expression)

SEMANTICS

Expressions, which are basic to any algorithmic process, are

rules to obtain values of different kinds and types.

As mentioned on page 3-1, expressions are used to define certain

general components (subscripted variables and function designa­

tors), and these quantities in turn are used to define expressions.

The definition of expressions is therefore necessarily recursive.

ARITHMETIC EXPRESSIONS.

SYNTAX.

The syntax for (arithmetic expression) is as follows:

1

1

(arithmetic expression) .. -.. - (simple arithmetic expression)

(if clause) (arithmetic ex­

pression) ELSE (arithmetic

expression)

(simple arithmetic expression) ::= (term) I (adding operator)

I (simple arith-(term)

metic expression)

(adding operator) (term)

1 (if clause) ::= IF (Boolean expression) THEN

1 (term) ::= (factor) I (term) (multiplying operator) (factor)

1 (factor) ::= (primary) I (factor)*(primary)

2 (primary) ::= (unsigned number) I (variable) I (function

designator) I «arithmetic expression») I
(partial word designator) I (string) I
(concatenate expression) I (assignment state-

ment) 4-1

1 (adding operator) ::= + I -
2 (multiplying operator) ::= x I / I DIV I MOD

Examples:

4-2

Arithmetic Expressions:

Q*V*2

P MOD 2

+3

(IF X = 1 THEN 5.5 ELSE Y/2)

IF ERROR[I] = 1 THEN "OVERFL" ELSE "UNFLOW"

IF B = 0 THEN X ELSE Y + 2

Simple Arithmetic

COS(A + B)

Y*3

4 x R DIV S

+3

A[I] -B[J]

Terms:

Yl[1,2]

2*(X + Y)

4 x R DIV S

P MOD 2

Factors:

5.678
2*(X + Y)

Y*3

Q*V*2

Primaries:

5.678
Yl[1,2]

COS(A + B)

+

Expressions:

5·3

(IF X = 1 THEN 5.5 ELSE Q/2)

I.[9:39]

"ALPHA"

SEMANTICS.

An arithmetic expression is a rule for computing a numerical value.

Arithmetic expressions may be divided into two categories:

and conditional.

simple

SIMPLE ARITHMETIC EXPRESSIONS.

A simple arithmetic expression is composed of arithmetic operators

and primaries. It is evaluated by performing the indicated arith-

metic operations upon the actual numerical values of the primaries

from which it is formed. The arithmetic operators are explained

in detail on pages 4-6 and 4-7, Operators and Types.

PRIMARIES. Table 4-1 shows the values represented by the pri-

maries in an arithmetic expression.

Table 4-1

Represented Values of Primaries in Arithmetic Expression

Name of Primary Value Represented

Number The number itself

Variable The current value of the variable

Partial word designator The value of the field spec ified

Function designator Value obtained by applying the

computing rules of the respective

PROCEDURE declaration

Arithmetic expression The value derived, which must be
in parentheses described in terms of the primaries

from which it is formed

4-3

Table 4-1 (cont)

Represented Values of Primaries in Arithmetic Expression

Name of Primary Value Represented

Concatenate expression The value of the newly formed

primary

String The numerical value of the

string characters

Assignment statement Value derived, which must be

described in terms of the pri-'

maries from which it is formed

RESTRICTION. If a primary is a string, it should generally not

exceed six characters in length. It is permissible to use a

seven-character string, but a seven-character string must not be

used in comparisons or arithmetic operations, unless the left-most

character of the string is a digit not greater than seven.

CONDITIONAL ARITHMETIC EXPRESSIONS.

The evaluation of the conditional arithmetic expression proceeds

as described in the following paragraphs.

The Boolean expression is evaluated (see pages 4-8 through 4-14,
Boolean Expressions). If the value of the Boolean expression is

TRUE, the arithmetic expression following THEN is evaluated and

the evaluation of the conditional arithmetic expression is

complete.

If the value of the Boolean expression is FALSE, the arithmetic

expression following the delimiter ELSE is evaluated, thus com­

pleting the evaluation of the expression.

The arithmetic expressions following the delimiters THEN and ELSE

may also be conditional arithmetic expressions. As a result, a

conditional arithmetic expression could contain a series of IF

clauses in the expression following either or both of the deli­

miters.
4-4

In th~ case of a conditional arithmetic expression following the

delimiter THEN, the Boolean expression(s) in the IF clause(s) are

evaluated from left to right as long as they yield a logical value

of TRUE. If they all yield a logical value of TRUE, the expression

following the last delimiter THEN is executed, thus completing the

evaluation of the whole expression. If any of the Boolean expres-

sions yields a logical value of FALSE, the expression following

the corresponding delimiter ELSE is executed.

In the case of the conditional arithmetic expression following the

delimiter ELSE, th~ respective Boolean expressions in the IF

clauses are evaluated from left to right until a logical value of

TRUE is found. Then the value of the succeeding arithmetic ex-

pression is the value of the entire arithmetic expression. If

no TRUE value is found, the value of the whole expression is that

of the expression following the last ELSE.

In nested IF clauses, the first THEN corresponds to the last

ELSE, and the innermost THEN to the following (i.e., the inner­

most) ELSE. The delimiters THEN and ELSE between these extremes

follow the logical pattern established, i.e., the next outermost

THEN corresponds to the next outermost ELSE, and so on until the

innermost THEN-ELSE pair has been matched.

Appropriate positioning of parentheses may serve to establish a

different order of execution of operations within an expression.

RESTRICTION. If the primary is an assignment statement, partial

word designators are not allowed in the left part list.

OPERATORS AND TYPES.

The constituent variables of an arithmetic expression must be of

type INTEGER, REAL, or ALPHA. Note, however, that variables of

type BOOLEAN .may occur in an IF clause of an arithmetic expres­

sion. (See pages 9-2 and 9-3, Type Declarations.) Definitions

of the various arithmetic operators are given in the paragraphs

below.

4-5

ARITHMETIC OPERATORS. The operators +, -, x, and / have the con­

ventional mathematical meanings: addition, subtraction, multipli­

cation, and division, respectively. The operator DIV yields a

result defined as follows:

Y DIV Z = SIGN (Y/Z) x ENTlER (ABS (Y/Z»)

In the case of the operators / and DIV, the operation is undefined

if the value of the operand on the right equals zero. The .operator

MOD produces a result defined as follows:

Y MOD Z = Y - [Z x (SIGN (Y/Z) x ENTlER (ABS (Y/Z)))]

The operator * denotes exponentiation. Its meaning depends on

the types and values of the operands involved, as shown below.

Consider Y * Z in table 4-2.

Table 4-2

Meaning of *

IF Z IS TYPE INTEGER AND IF Z IS TYPE REAL AND
Z > 0 Z = 0 Z < 0 Z > 0 Z = 0 Z < 0

IF Y > 0 Note I I Note 2 Note 3 1 Note

IF Y < 0 Note 1 I Note 2 Note 4 I Note

IF Y = 0 0 Note 4 Note 4 0 Note 4 Note

Note I : Y * Z = Y x Y x ... x Y (Z times) .

Note 2: Y * Z = the reciprocal of Y x Y x ... x Y (Z times) .

Note 3 : Y * Z = EXP(Z x LN (Y)) .

Note 4 : Value of expression is undefined.

3
4

4

ARITHMETIC EXPRESSION TYPES. The type of a value resulting from

an arithmetic operation depends upon the types of operands as

well as the arithmetic operators used in obtaining that value.

In arithmetic operations, operands of type ALPHA are treated as

if they were of type REAL. All cases are shown in table 4-3.

4-6

Table 4-3

Types of Values Resulting from an Arithmetic Operation

OPERAND
ON LEFT

Integer

Integer

Real

Real

Note A:

OPERAND +,-,x
ON RIGHT / DIV MOD

Integer Integer Real Integer Real

Real Real Real Integer Real

Integer Real Real Integer Real

Real Real Real Integer Real

If the operand on the right is less than

zero, Real; otherwise, Integer.

PRECEDENCE OF OPERATORS.

*

Note

Real

Real

Real

A

In regard to evaluating a simple arithmetic expression, two dis-

tinct operations should be understood: the determination of the

numerical values of the primaries, and the arithmetic operations

involved when combining two operands according to the rules

associated with the arithmetic operators.

First, the numerical values of the primaries are determined from

left to right, yielding a number of values equal to the number of

primaries in the simple arithmetic expression. Next, these values

are used two at a time as operands in arithmetic operations, re­

ducing the number of values by one for each operation until all

operators have been utilized and a single value remains.

The sequence in which the arithmetic operations are performed is

determined by rules of precedence. Each arithmetic operator has

one of three orders of precedence associated with it, as follows:

a. First: *
b. Second: x / DIV MOD

c. Third: +-

When operators have the same order of precedence, the sequence

of operat~on is determined by the order of their appearance, from

left to right.

4-7

The expression between a left parenthesis and the matching right

parenthesis is evaluated by itself and this value is used in sub­

sequent calculations. Consequently, the desired order of execu­

tion of operations within an expression can always be arranged by

appropriate positioning of parentheses.

NUMERICAL LIMITATIONS AND SIGNIFICANT DIGITS.

Normally the result of an arithmetic operation involving the op­

erators +, -, and x is of type INTEGER if both operands are of

type INTEGER (see pages 4-5 and 4-6, Operators and Types). If

the value of the result exceeds 549755813887, however, it will

become of type REAL (left-justified) to ensure that least signifi­

cant rather than most significant digits are lost. Therefore, the

maximum absolute value of type INTEGER (right-justified) that an

arithmetic operation may yield is 549755813887.

Since the system utilizes an octal number system, the range of

absolute real values that an arithmetic operation may yield can

best be expressed as:

from (8 * 13 - 1) x 8 * 63 to (8 *12) x 8 * (-63), and zero

or approximately

from 4.3l4@68 to 8.758@-47, and zero.

BOOLEAN EXPRESSIONS.

SYNTAX.

The syntax for (Boolean expression) is as follows:

4-8

2 (Boolean expression) .. -.. - (simple Boolean) I (if clause)

(Boolean expression) ELSE

(Boolean expression)

1 (simple Boolean) ::= (implication) I (simple Boolean) EQV

(implication)
1 (implication) ::= (Boolean term) I (implication) IMP

(Boolean term)

1 (Boolean term) ::= (Boolean factor) I (Boolean term) OR
(Boolean factor)

1 (Boolean factor) .. -.. -

1 (Boolean secondary)

(Boolean secondary) I (BoolBan factor)

AND (Boolean secondary)

::= (Boolean primary) I NOT
(Boolean primary)

2 (Boolean primary) ::= (logical value) I (variable) I
(function designator) I (relation)

(Boolean expression») I (partial

word:designator) I (concatenate

expression) I (assignment statement»)

1 (relation) ::= (simple arithmetic expression) (relational

operator) (simple arithmetic expression)

1 (relational operator) ::= < I ~ I = I ~ I> I ~

Examples:

Boolean Expressions:

TRUE

NOT A ~ 0

Q.[16:1J AND GATE[1,2J

A = C AND (IF B = 4 THEN TRUE ELSE FALSE) OR GATE[1,2J

IF B = 4 THEN TRUE EQV GATE [1,2J ELSE Q.[16:1]

Simple Boolean Expressions:

TRUE

DIODE

NOT A ~ C IMP GATE[1,2]

Implications:

TRUE

GATE[1, 2J

NOT A ~ C IMP GATE[1,2]

Boolean Terms:

TRUE

NOT A ~ C

GATE[1,2]

A ~ C AND (IF B = 4 THEN TRUE ELSE FALSE) OR GATE[1,2]

Boolean Factors:

GATE[1,2]

NOT A ~ C

Q.[16:1] AND GATE[1,2]

4-9

Boolean Secondaries:

TRUE

NOT A ~ C

Boolean Primaries:

TRUE

DIODE

GATE[1,2]

J(A,B + 2,GATE[1,2])

A ~ C

(IF A ~ C THEN TRUE ELSE FALSE)

Q.[16:l]

(DIODE GATE[1,2])

SEMANTICS.

A Boolean expression is a rule for computing a logical value.

Boolean expressions can be divided into two categories: simple

Boolean expressions and conditional Boolean expressions.

SIMPLE BOOLEAN EXPRESSIONS. A simple Boolean expression is for-

med by logical operators* and Boolean primaries. It is evaluated

by carrying out the operations indicated by the logical operators

upon the associated Boolean primaries. The evaluation of a simple

Boolean expression is carried out according to the rules of pre­

cedence defined for the logical operators (see pages 4-13 and

4-14).

The value which results upon evaluation of a simple Boolean ex­

pression depends upon the primary or primaries which are used to

form the expression. Table 4-4 shows the values represented by

the primaries in a Boolean expression.

*The logical operators are analyzed on page 4-13.

4-10

Table 4-4

Values Represented by Primaries in a Boolean Expression

Name of Primary Value Represented

Logical value TRUE. or FALSE.

Boolean variable The current value of the variable.

Partial word designator The value of the field specified.

Function designator The value obtained by applying

the computing rules of the res-

pective PROCEDURE declaration.

Relation The value obtained by testing the

simple arithmetic expressions

against each other, according to

the operation of the specific

relational operator involved.

Boolean expression The value derived, which must be
enclosed in parentheses described in terms of the Boolean

primaries from which it is formed.

Concatenate expression The value of the newly formed

primary.

CONDITIONAL BOOLEAN EXPRESSIONS. The simplest form of the con-

ditional Boolean expression occurs when the IF clause contains a

simple Boolean expression. The evaluation of the conditional

Boolean expression in this case proceeds as follows. The simple

Boolean expression of the IF clause is evaluated according to the

methods described previously (page 4-10, Simple Boolean Expres­

sions). If the resulting logical value is TRUE, the Boolean ex­

pression~lowing the delimiter THEN is evaluated, thus com­

pleting the evaluation of the conditional Boolean expression. If

4-11

the logical value produced in the IF clause is FALSE, the evalua­

tion of the conditional Boolean expression is completed by eval­

uating the Boolean expression following the delimiter ELSE.

The Boolean expression in the IF clause, or the one following the

delimiter THEN or the delimiter ELSE, or all three, can be condi-

tional Boolean expressions. In this event, any of the IF clauses

consist of a series of IF clauses. Such a construct is said to

be nested. The evaJ_ua tion of such nested expressions occurs in

the same manner as that of analogous constructs in arithmetic

expressions.

TYPES.

The quantities which are used to form Boolean expressions must

have been declared as type BOOLEAN (see pages 9-2 and 9-3, Type

Declprations, and page 10-4, Special Rules of Typed Procedures),

with the exception of the constituents of relations and those

quantities which are under the influence of type transfer func­

tions (see pages 3-9 and 3-10, Type Transfer Functions).

RELATIONAL AND LOGICAL OPERATORS.

Two types of operators are defined for Boolean expressions:

relational and logical.

following paragraphs.

These operators are discussed in the

RELATIONAL OPERATORS. The relational operators denote the

following relations:

a. < (is less than) .

b. < (is less than or equal to).

c . = (is equal to) .

d. > (is greater than or equal to) .

e. > (is greater than) .

f. ~ (is not equal to) .

A relation is evaluated by comparing the values of the two simple

arithmetic expressions as designated by the relational operator.

If the relation is satisfied, the value of the Boolean primary is

TRUE; otherwise, it is FALSE.

4-12

LOGICAL OPERATORS. The operation of the logical operators NOT

(negation), AND (logical product), OR (logical sum), IMP (impli­

cation), and EQV (logical equivalence) is described in table 4-5.

Table 4-5

Operation of Logical Operators

Bl False False True True

B2 False True False True

NOT Bl True True False False

Bl AND B2 False False False True

Bl OR B2 False True True True

Bl IMP B2 True True False True

Bl EQV B2 True False False True

PRECEDENCE OF OPERATORS.

The sequence of operations within a simple Boolean expression is

generally from left to right, with the additional rules shown

below. The following specific rules of precedence are defined:

a. First: Arithmetic expressions, according to the rules

given on pages 4-7 and 4-8.

b. Second: < < = > > ~

c . Third: NOT

d. Fourth: AND

e. Fifth: OR

f. Sixth: IMP

g. Seventh: EQV

A Boolean expression contained in parentheses is evaluated by

itself; this value is then used in any subsequent evaluation.

Therefore, the desired order of execution of operations within

4-13

an expression can always be effected by appropriate positioning

of parentheses.

RESTRICTION.

If the primary is an assignment statement, partial word desig­

nators are not allowed in the left part list.

DESIGNATIONAL EXPRESSIONS.

SYNTAX.

The syntax for (designational expression) is as follows:

1 (designational expression) ::= (simple designational

expression) I (if Clause)

(designational expression)

ELSE (designational

expression)

1 (simple designational expression) ::= (label) I (switch

designator) r

(designational

1 (switch

1 (switch

2 (label)

designator) · .-

identifier) · .-· .-
.. - (identifier) .. -

expression»)

(switch identifier) [(subscript

expression)J

(identifier)

Examples:

4-14

Designational Expressions:

START

CHOOSEPATH[I + 2J

(START)

IF K = 1 THEN SELECT[2J ELSE START

Simple Designational Expressions:

START

SELECT[2J

(START)

Switch Designators:

SELECT[2J

CHOOSEPATH[I + 3J

SEMANTICS.

A designational expression is a rule for obtaining a label of a

statement (see Section 6, Statements). As is true of other ex­

pressions, designational expressions may be differentiated as

simple designational and conditional designational expressions.

SIMPLE DESIGNATIONAL EXPRESSIONS. The process of evaluating a

simple designational expression depends upon the constructs

from which it is formed. If a simple designational expression

is a label, the value of the expression is self-evident. When

a simple designational expression is a switch designator, the

actual numerical value of the subscript expression (see page 3-3)

designates one of the elements in the switch list. The element

selected may be any form of simple designational expression which

is evaluated as stated above, or it may be a conditional desig­

national expression which is evaluated as stated below.

If a simple designational expression is formed from a designational

expression in parentheses, the latter is evaluated according to

the applicable rules.

CONDITIONAL DESIGNATIONAL EXPRESSIONS. The evaluation of a con-

ditional designational expression proceeds as follows. The

Boolean expression contained in the IF clause is evaluated (see

pages 4-8 through 4-14, Boolean Expressions). If a logical

value of TRUE results, the designational expression following the
1'r~J ;
~ clause is evaluated, thus completing the evaluation of the

conditional designational expression. If the logical value pro-

duced by the IF clause is FALSE, the designational expression

following the delimiter ELSE is evaluated, thereby completing the

evaluation of the designational expression.

Since the designational expressions following the delimiters THEN

and ELSE, or both, can be conditional designational expressions,

4-1.5

the analysis of the operation of a designationa1 expression be­

comes recursive in a manner similar to that of the conditional

arithmetic and.Boo1ean expressions. In the case of a designa­

tiona1 expression, however, the result produced is always a label.

THE SUBSCRIPT EXPRESSION OF A SWITCH DESIGNATOR.

The value of the switch designator is defined by positive integer

values 1, 2, J, ... , Q, where n is the number of entries in the

switch list. If the value of the subscript expression is of a

type other than integer, it is rounded to an integer in accor­

dance with the rules applicable to the evaluation of subscripts

(see page 3-3, Evaluation of Subscripts). If the value of the

expression is outside the scope of the switch list, the switch

designator is undefined, and program control continues in sequence.

CONCATENATE EXPRESSION.

SYNTAX.

The syntax for (concatenate expression) is as follows:

2 (concatenate expression) ::= (left base) (link part)

2 (left base) ::= (general primary) I (concatenate expression)

2 (general primary) ::= (primary) I (Boolean primary)

2 (link part) ::= (concatenate operator) (right base) (link

description)

2 (concatenate operator) ::= &

2 (right base) ::= (general primary)

2 (link description) ::= [(left bit of left base) :

(left bit of right base) :

(number of bits in 1ink)J

2 (left bit of left base) ::= (unsigned integer)

2 (left bit of right base) ::= (unsigned integer)

2 (number of bits in link) ::= (unsigned integer)

Examples:

4-16

E & D [J6:42:6J & C [JO:42:6J & B [24:42:6J & A [18:42:6J
S & (R + T) [42:42:6J

SQRT (c) & 1 [1:47:1J

X & Y [l:l:lJ & Z [2:2:46J

M & N [4:4:6J

SEMANTICS.

The concatenate expression provides an efficient method of forming

a primary, or Boolean primary, from selected bits of two or more

primaries, or Boolean primaries, respectively.

A concatenate expression can utilize any number of concatenate

operators; the expression is evaluated from left to right. Each

concatenate operator causes a concatenated result to be formed;

this concatenated result may be the final result of the ex­

pression, or a left base.

A concatenated result is formed by obtaining the value of the

left base and then replacing a portion of it with a link made up

of bits from the right base. The link is placed in the left base,

starting at the bit specified by the left bit of left base. The

link is obtained from the right base, starting with the bit

designated by the left bit of right base. The number of bits in

the link is designated by the value of the number of bits in the

link.

RESTRICTIONS.

The integers used for designating the number of bits in the link,

the left bit of the left base, and the left bit of the right base

may range from 1 through 47. The sum of the left bit of the left

base and the number of bits in the link, or the left bit of the

right base and the number of bits in the link, must not exceed 48.

4-17

GENERAL.

SYNTAX.

SECTION 5

PROGRAMS, BLOCKS, AND COMPOUND STATEMENTS

The syntax for (program) is as follows:

g (program) ::= (block).(space) I (compound statement).(space)

1 (bloCk) ::= (unlabeled block) I (label) : (bloCk)

1 (unlabeled block) ::= (block head) ; (compound tail)

1 (block head) ::= BEGIN (declaration) I (block head)

(declaration)

1 (compound tail) .. - (statement) END I (statement) ; .. -
(compound tail)

1 (compound statement) .. - (unlabeled compound statement) .. -
(label) : (compound statement)

1 (unlabeled compound statement) .. - BEGIN (compound tail) .. -

Examples.

I

The syntactical structure of the compound statement and the block

can be illustrated in the following manner.

Given:

S = statement

S = compound statement
c

L = label

D = declaration

B = block

Then:

Compound Statement:

S = BEGIN S;S;S; ... S END
c

Block:

= L:S
c

B = BEGIN D;D; ... ;D;S;S; ... ;S END

= L:B

5-1

Because of the syntactical definition of statements (Section 6),

it should be kept in mind that S in the above examples could itself

be a compound statement or a block.

SEMANTICS.

A series of statements which are common to each other by virtue

of the defining declarations, and which are bounded by the bracket

symbols BEGIN and END, constitute the active elements of a block.

Every block automatically introduces a new level of nomenclature.

Therefore, any identifier occurring within the block may, through

a suitable declaration (see Section 9, Declarations), be specified

to be local to the block in question. Such a declaration means

that:

a. The entity represented by this identifier inside the

block has no existence outside the block.

b. Any entity represented by the same identifier outside

the block is completely inaccessible inside the block.

An identifier occurring within an inner block and not declared

within that block will be nonlocal to it; that is, the identi­

fier will represent the same entity inside the block and in the

level or levels immediately outside it, up to and including the

level in which the identifier is declared.

Since a statement within a block may itself be a block, the con­

cepts of local and nonlocal to a block must be understood recur-

sively. Thus, an identifier which is nonlocal to block A mayor

may not be nonlocal to block B in which block A is one statement.

NESTED BLOCKS. Block B is said to be nested in block A if block

B is a statement in the compound tail of block A.

DI:5JOINT BLOCKS. Block A and block B are said to be disjoint if

neither is a statement in the compound tail of the other.

5-2

GENERAL.

SYNTAX.

SECTION 6

STATEMENTS

The syntax for (statement) is as follows:

2 (statement)

SEMANTICS.

.. -.. - (unconditional statement) (conditional

statement) (iterative statement)

The basic constituents of an Extended ALGOL Program are state-

ments. Statements may be divided into three major groups: un-

conditional, conditional, and iterative statements. Unconditional

statements are much like imperative sentences in the English

language whereby a particular action is directly specified. A

conditional statement may be compared to a conditional sentence

since the function of the conditional statement is to ask a ques­

tion and, depending upon the answer, select an appropriate course

of action in the program. The iterative statement is used to

describe a repetitive process.

Statements are normally executed in the order in which they are

written. However, the sequence of operations may be changed by a

conditional statement, or by an unconditional statement which

explicitly defines its labeled successor.

NOTE

Only unconditional statements are further

discussed in this section. Conditional

statements and iterative statements are

discussed in Sections 7 and 8 respec­

tively.

UNCONDITIONAL STATEMENTS.

SYNTAX.

The syntax for (unconditional statement) is as follows:

6-1

1 (unconditional statement) ::= (compound statement) I (block)

1 (basic statement) .. -.. -
(basic statement)

(unlabeled basic statement)

(basic statement)

I (label)

2 (unlabeled basic statement) (assignment statement)

SEMANTICS.

(go to statement) I (dummy

statement) I (fill statement)

(library call statement) I
(double statement) I
(procedure statement)

(stream procedure call

statement) I (I/O statement)

(break-out statement) I
(when statement) I (wait

statement) I (fault statement)

(zip statement) I
.(label equation statement)

(sort statement) (merge

statement) I (edit and move

statement) I (disk I/O

statement) I (data communication

I/O statement) I (case

statement) I (search statement)

This group of statements includes (besides such basic constructs

as the assignment, GO TO, and procedure statements) all the

numerous kinds of input/output statements.

In the following paragraphs, each statement listed above will be

discussed separately.

ASSIGNMENT STATEMENTS.

SYNTAX.

The syntax for (assignment statement) is as follows:

1 (assignment statement)

6-2

.. -.. - (left part list) (arithmetic

expression) I (left part list)

(Boolean expression)

2 (left part list) ::= (left part) (left part list) (left

part) I (partial word designator) ~

(variable) ~ I (procedure identifier) ~ 1. (left part) .. -.. -

Examples:

Assignment statements:

A ~ A + 1

Q.[JO:l] ~ P > R

P ~ "RESULT"

A~B~C~D~l

X. [47: 1] ~ X - Z - 0

Left Part List:

A -

Q.[JO:l] ~

X - y - Z

Left Parts:

A-

PROCID -

SEMANTICS.

The assignment statement causes the value represented by an ex­

pression to be assigned to the variable appearing on the left of

each assignment symbol. As shown in the last two examples above,

one value may be assigned to two or more variables through the

use of two or more assignment symbols. The operation of the

assignment statement proceeds in three steps, as follows:

a. The subscript expressions of the left part variables

are evaluated from left to right.

b. The expression following the right-most assignment

symbol is evaluated.

c. The value of the expression is assigned to all the left

part variables, with subscript expressions, if any,

having values as determined in the first step.

6-J

TYPES.

All variables in the left part list must be either exclusively of

type BOOLEAN or of an arithmetic type, i.e., REAL, INTEGER, or

ALPHA (which is treated as type REAL). (See"pages 9-2 and 9-3,

Type Declarations.)

If the variables are of type BOOLEAN, the value to be assigned

must be that of a Boolean expression.

If there is a difference between the declared type of the left

part variable and the value to be assigned to it, or the left

part variables are of different arithmetic types, the Compiler

will reconcile the differences, but this procedure may cause a

change (rounding to integer) in the value assigned.

The following rules apply:

a. If the left part list is of type REAL and the

expression value is of type INTEGER, the value is

stored unchanged.

b. If the left part list is of type INTEGER and the

expression value is of type REAL, the transfer

function ENTIER (E +0.5, where E is the value

of the expression) is automatically invoked and

the value obtained is stored.

c. If the left part list contains variables of different

types, assignment of the value is executed from right

to left. If, during this process, a real number is

transferred to integer, this integer value is assigne~

to all following variables at the left of the integer

variable, regardless of their type.

RESTRICTIONS.

Assignment to a procedure identifier may occur only within the

body of a procedure defining the value of a function designator.

6-4

GO TO STATEMENTS.

SYNTAX.

The syntax for (go to statement) is as follows:

1 (go to statement) · .-· .- GO TO (designational expression)

Examples:

GO TO START

GO TO SELECT[2]

GO TO IF K = 1 THEN SELECT[2] ELSE START

SEMANTICS.

The GO TO statement provides an unconditional transfer to the

point in the program defined by the designational expression.

When the designational expression is a label, the statement

causes a transfer to the point in the program indicated by the

label. In the case of a more complex designational expression,

the path taken depends upon the label produced by the expression

(see pages 4-14 through 4-16, Designational Expressions).

Labels must be declared in, and therefore are local to, the

innermost block in which they appear as a statement label. A

GO TO statement cannot lead from outside a block to a point in­

side that block; each block must be entered at the block head

so that the associated declarations can be invoked.

The normal consecutive sequence of statement execution is unal­

tered in the case of an undefined switch designator (see page

3-3, Evaluation of Subscripts).

DUMMY STATEMENTS.

SYNTAX.

The syntax for (dummy statement) is as follows:

~ (dummy statement) · .-· .- (empty)

6-5

Examples:

Ll:

EXIT:

SEMANTICS.

A dummy statement executes no operation. It may serve to place

a label.

FILL STATEMENTS.

SYNTAX.

The syntax for (fill statement) is as follows:

~ (fill statement) ::= FILL (array identifier) [(row designator)]

WITH (value list)

1 (array identifier) ::= (identifier)

~ (row designator) ::= * / (row),*

~ (row) ::= (arithmetic expression) / (row), (arithmetic

expression)

~ (value list) ::= (initial value) / (value list), (initial

value)

~ (initial value) ::= (number) / (string) / OCT (octal number)

~ (octal number) ::= (octal digit) / (octal number) (octal digit)

~ (octal digit) ::= 0/1/2/3/4/5/6/7

Examples:

FILL MATRIX[*] WITH 458.54, +546, - l354.54@6, l6@-12

FILL GROUP[l,*] WITH .25, "ALGOL", " " If, OCT14, "365 t1

SEMANTICS.

The FILL statement causes one row of an array to be filled with

a list of specified values.

ROW DESIGNATOR. The row designator indicates which row is to be

filled by designating a specific value for each subscript posi­

tion of the array row. The symbol * must appear in the right-most

subscript position of the row designator.

6-6

If the value of a row designator is other than integer, it is

rounded to an integer in accordance with the rules applicable to

assignment statements (see page 6-4, Types).

VALUE LIST. Each initial value may have one of three forms

(number, string, or octal number), and a value list may contain

any mixture of these forms. The concept of type does not apply

to initial values, and transfer functions are not invoked, be­

cause the array is filled as indicated.

A number is converted to its octal equivalent, then stored.

A string causes the six-bit code for each character in the string,

other than the two string bracket characters at the ends, to be

stored. The string may contain as many as eight characters.

fewer than eight characters are in the string, leading zeros

are supplied.

An octal number will be stored as such, and must not exceed 16

digits.

The number of initial values in the value list may differ from

If

the number of elements in the row being filled. If the "number of

values is less than the number of elements, the elements with

the largest subscript values retain their former values. If the

number is greater than the number of elements, the right-most

values in the value list are not used.

RESTRICTIONS.

The maximum number of words allowed in a single FILL statement

is 1022. A defined identifier (see pages 9-7 through 9-9) must

not be used in a FILL statement. There must be no space between

OCT and the octal number which follows.

LIBRARY CALL STATEMENTS.

SYNTAX.

The syntax for (library call statement) is as follows:

6-7

J (library call statement) .. -.. - ZIP (program designator),

(library designator»)

2 (program designator)

2 (library designator)

Examples:

· .-· .-
· .-· .-

(arithmetic

(arithmetic

expression)

expression)

ZIP (" PROGIDT", "MCPROG")

ZIP (A, "MCPHOG")

ZIP (ARA [IJ ,B)

SEMANTICS.

Execution of a library call statement causes the program indicated

by the program designator to be called out from the library tape

indicated by the library designator. Immediately after causing

the specified program to be called out, the calling program

continues to be processed. The called program and calling pro-

gram may then be multiprocessed.

RESTRICTION.

The values provided by the program designator and the library

designator are interpreted as alpha variables. Therefore, these

designators must be strings or arithmetic expressions which yield

alpha values. Alpha values of less than seven characters are

right-justified in a field of zeros.

DOUBLE STATEMENTS.

SYNTAX.

The syntax for (double statement) is as follows:

2 (double statement)

2 (double expression)

2 (double primary)

6-8

.. -.. -

DOUBLE (double expression), -,

(most-significant variable),

(least-significant variable»)

(double primary) (double expression),

(double primary), (double operator)

(double primary), (double expression),

(double operator)

(double constant) (most-significant

portion), (least-significant portion)

2 <double operator) ::= + I - I x I /
2 <double constant) ::= <number)

2 <most-significant variable) ::= <variable)

2 <least-significant variable) ::= <variable)

2 <most-significant portion) ::= <arithmetic expression)

2 <least-significant portion) ::= <arithmetic expression)

Examples:

Storing single-length variable into array:

DOUBLE (X, 0, ~, MATRIX [OJ, MATRIX [lJ)

Double-length equivalent of RESULT ~ (X - Y x Z)

x.33333333333 is:

DOUBLE (HX, LX, HY, LY, HZ, LZ, x, -,

.3333333333333333333, x, ~ HRESULT, LRESULT)

Matrix Multiplication:

FOR I ~

FOR J ~

BEGIN

THIGH ~

FOR K ~

DOUBLE

0 STEP 1 UNTIL M DO

0 STEP 1 UNTIL N DO

TLOW ~ O· ,
0 STEP 1 UNTIL R DO

(A[I, 2 x KJ , A[I, 2 x K + 1], B[K, 2 x JJ,

B[K, 2 x J + lJ, x, THIGH, TLOW, +,

THIGH, TLOW);

DOUBLE (THIGH, TLOW, ~ C[I, 2 x JJ, C[I, 2 x J + lJ)

END

SEMANTICS.

The DOUBLE statement assigns the double-length result of the

double expression to the variables following the assignment opera­

tor, i.e., to the right-hand part of the statement.

Double-.length values have the same range as real numbers. The

difference is in the number of significant digits. Double-length

6-9

values may have a maximum of 26 significant octal digits.

Double constants are decimal numbers which are converted to their

equivalent double-length octal value.

A double expression is a suffix Polish notation, i.e., an alge­

braic notation, which -- in contrast to the parentheses notation

of common algebra -- omits the use of parentheses, brackets, and

braces, using only operands and operators, arranged in sequence

in such a manner that operations are executed in order of priority.

The evaluation of a double expression proceeds as follows. The

occurrence of a double primary causes the double primary to be

evaluated and the double-length value retained in the order in

which the double primaries occur. The occurrence of a double

operator causes the indicated arithmetic operation to be executed

on the last two double primaries and the result to be saved. The

evaluation continues in this fashinn until the expression string

is exhausted, leaving a double-length value as the result.

PROCEDURE STATEMENTS.

SYNTAX.

The syntax for (procedure statement) is as follows:

1 (procedure statement) .. -.. - (procedure identifier) (actual

parameter part)

1 (procedure identifier) ::= (identifier)

1 (actual parameter part) ::= (empty) I «actual parameter list»

1 (actual parameter list)

2 (actual parameter)

6-10

.. -.. -

.. -.. - (actual parameter)

(actual parameter list)

(parameter delimiter)

(actual parameter)

(expression) (array row)

(array identifier) I
identifier) (file

(format identifier)

(switch identifier)

(procedure

identifier)

(list identifier)

(switch file identifier)

(switch format identifier)

(switch list identifier)

(switch file designator)

(switch format designator)

(switch list designator)

2 (parameter delimiter) :: = , I) "(letter string)" (

2 (array row) ::= (array identifier) [(row designator)]

Examples:

ALGORITHM123 (A + 2)

ALGORITHM546 (A + 2) "AVERAGE PLUS TWO"(CALCRULE)

SEMANTICS.

A procedure statement causes a previously defined procedure, ex­

cluding typed procedures, to be activated (called for execution).

(See Section 10, PROCEDURE Declarations.)

The procedure identifier references the procedure body which is

to be executed. The actual parameter part contains a list of

the actual parameters to be supplied to the procedure. A one-for-

one correspondence must exist between the actual parameters in

the actual parameter part and the formal parameters which appear

This in the formal parameter part of the PROCEDURE declaration.

correspondence is one of position, where the position of an

actual parameter given in the procedure statement corresponds to

the position of a formal parameter in the PROCEDURE declaration.

A general description of the operation of the procedure statement

can be given as follows:

a. The formal parameters which are named in the VALUE

part (call by value) of the PROCEDURE declaration

are assigned the values of the corresponding actual

parameters. These formal parameters are then treated

as local to the procedure body.

6-11

b. The formal parameters not named in the VALUE part

(call by name) are replaced, wherever they appear

in the procedure body, by the corresponding actual

parameters. Identifiers thus introduced into the

procedure body may be identical to local identifiers

already there. Each is handled in such a way, how-

ever, that no conflict occurs.

c. The procedure body, when modified as stated above, is

then entered.

The above discussion covers the basic operation of the procedure

statement. A more detailed analysis is necessary, however, be-

cause of the complexity of call by value, call by name, and exe­

cution of the procedure body.

VALUE ASSIGNMENT (CALL BY VALUE). The actual parameters that

may be called by value are arithmetic, Boolean, and designational

expressions. Where an arithmetic, Boolean, or designational ex-

pression is given as an actual parameter, the expression is evalu­

ated according to the rules previously defined, and the resulting

value is assigned to the appropriate formal parameter.

The evaluation of the actual parameters, and their subsequent

assignment to the corresponding formal parameters, takes place

according to the order indicated by the actual parameter list

of the call statement. These assignments take place before entry

is made into the procedure body.

NAME REPLACEMENT (CALL BY NAME). The actual parameters that may

be called by name are general components, expressions, and array,

switch, switch format~ switch file, procedure, file, format, and

list identifiers. The action taken in a call by name differs

from that in a call by value. Instead of a value being assigned,

the actual expression or pertinent identifier of the actual para­

meter replaces the corresponding formal parameter wherever it

appears in the procedure body. A detailed analysis of this mecha-

nism requires that each kind of allowable actual parameter be

examined.

6-12

If a simple variable which is an actual parameter is called by

name, the corresponding formal parameter is replaced, wherever it

appears in the procedure body, by the identifier of the simple

variable. The value represented by the simple variable is refer-

enced each time the variable is encountered during the execution

of the procedure body.

If a subscripted variable is an actual parameter, the subscripted

variable is placed in the procedure body wherever the correspond­

ing formal parameter appears. The subscript expression remains

intact and is evaluated each time the subscripted variable is

referenced during the execution of the procedure body.

If a partial word designator is given as an actual parameter, the

partial word designator replaces the corresponding formal para­

meter throughout the procedure body, and is referenced each time

it is encountered during the execution of the procedure body.

The formal parameter corresponding to a partial word designator

must not appear in the left part of an assignment statement.

Where the actual parameter is a function designator, the corre­

sponding formal parameter is replaced by the function des~gnator

wherever the formal parameter appears in the procedure body. The

function designator is evaluated wherever it ~s encountered during

the course of execution of the procedure body.

When an arithmetic, Boolean, or designational expression ~s called

by name, the corresponding formal parameter is replaced by the ex-

pression in question. This expression is evaluated wherever it is

encountered during the execution of the procedure body.

When the actual parameter called by name is an array identifier,

the corresponding formal parameter is replaced by the array iden­

tifier wherever the formal parameter appears in the procedure body.

For those types of actual parameters thus far discussed, a call by

value differs significantly from a call by name. A call by value

(1) creates a quantity which is local to the procedure and which

is identified by the formal parameter, (2) ass~gns to it the value

6-13

of the corresponding actual parameter, and (3) makes the corre­

sponding actual parameter thereafter inaccessible to the procedure

(unless the procedure is called again). A call by name, on the

other hand, utilizes the actual parameter, or its constituents, as

nonlocal quantities. Thus, the value of a quantity used as an

actual parameter cannot be changed as a result of the procedure

execution, provided that the corresponding formal parameter is

called by value. If it is called by name, however, the actual

parameter is accessible throughout the procedure and therefore

can have its value altered.

If a switch, switch file, switch list, or switch format identifier

is used as an actual parameter, the corresponding formal parameter

is replaced by the respective identifier wherever the formal para-

meter occurs in the procedure body. Thus a switch, switch file,

switch format which has been declared outside the procedure body

can be accessed during the execution of the procedure body.

When a procedure identifier is passed as an actual parameter, the

corresponding formal parameter is replaced by the procedure iden­

tifier wherever the formal parameter appears in the procedure

body. Access can thus be made to another procedure which has

been declared outside the procedure body.

When a file, format, or list identifier is passed as an actual

parameter, the corresponding formal parameter is replaced by the

identifier of the actual parameter wherever the formal parameter

appears in the procedure body. Input/output statements in a

procedure body can thus utilize files, formats, and lists which

have been declared outside the procedure body.

RESTRICTIONS.

Formal and actual parameters must correspond both in type and in

kinds of quantities.

A formal parameter which occurs as a left part variable in an

assignment statement within the procedure body, and which is not

called by value, can correspond only to an actual parameter which

is a variable~

6-14

Any quantity that is nonlocal to a procedure is inaccessible to

that procedure if that quantity is local to some other procedure,

unless it has been declared OWN.

A stream procedure identifier must not be used as an actual

parameter.

STREAM PROCEDURE CALL STATEMENT.

SYNTAX.

The syntax for (stream procedure call statement) is as follows:

2 (stream procedure call statement)

.. -.. -

(stream procedure

identifier)

(stream actual

parameter list»)

(identifier) 2 (stream procedure identifier)

2 (stream actual parameter list) (stream actual parameter)

(stream actual parameter

2 (stream actual parameter)

2 (stream value parameter)

list), (stream actual

parameter)

(stream value parameter)

(stream name parameter)

(arithmetic expression)

(Boolean expression)

2 (stream name parameter) ::= (array identifier) I (array row)

(variable) I (file identifier)

(indexed file identifier) I
(switch file designator)

(indexed switch file designator)

(format identifier) I (switch

format designator)

2 (indexed f±le identifier) ::= (file identifier) (arithmetic

expression»)

2 (indexed switch file designator) ::= (switch file designator)

(arithmetic expression»)

6-15

Examples:

EDIT(FILEID, A)

MOVE(A[*J, X, I + 1, A[I + 2J)

SP(SWF[2J (0), Fl(O))

SEMANTICS.

A stream procedure call statement causes the execution of a

stream procedure body which has been previously defined by a

STREAM PROCEDURE declaration (Section 11). It supplies the

actual parameters to the stream procedure and then transfers

control to the stream procedure body.

A stream procedure call statement must have an actual para­

meter part which may not be empty.

A one-to-one correspondence must exist between the actual para­

meters in the stream procedure call and the formal parameters

appearing in the STREAM PROCEDURE declaration.

The formal parameters may be called by name or by value.

ingly, the actual parameters are in two classes:

a. Stream value parameters which correspond to the

VALUE part of the STREAM PROCEDURE declaration.

b. Stream name parameters which correspond to the

call-by-name formal parameters of the STREAM

PROCEDURE declaration.

Accord-

STREAM VALUE PARAMETERS. Stream value parameters may be only

arithmetic or Boolean expressions. The corresponding formal

parameters are given the values of the stream actual parameters

when the stream procedure call statement is executed.

STREAM NAME PARAMETERS. Stream name parameters may be array

identifiers, file identifiers, indexed file identifiers, indexed

switch file designators, variables, array rows, format identifiers,

6-16

switch format designators, and switch file designators. When

the stream procedure call statement is executed, absolute

addresses are supplied to the corresponding formal parameters.

If a stream name parameter is a file identifier or a switch file

designator, an address of a pointer word is supplied. This poin­

ter word contains the address of the file buffer. If a stream

name parameter is a variable, the address of that variable is

supplied.

It should be noted that arrays are mapped in memory by rows.

ments of a row are contiguous, but rows are not contiguous.

If a stream name parameter is an array identifier, the address

supplied is:

a. The address of the lowest element of the array

for a single-dimensional array.

b. The address of the lowest element of the first

(highest-level) block of descriptors for a

multidimensional array.

Ele-

If a stream name parameter is an array row, the address supplied

is that of the lowest element of that row.

If a stream name parameter is an indexed file identifier or

indexed switch file designator, the address supplied is that of

the left-most character of a word in the current buffer being

used by the indicated file. The word is designated by the value

of the arithmetic expression in the indexed file identifier or

indexed switch file designator. The words in the buffer are

numbered starting with zero. If the value of the arithmetic

expression is of a type other than INTEGER, it is converted to

an integer in accordance with the rules applicable to assignment

statements (see page 6-4, Types).

A declared format specification may be changed during processing

by means of a stream procedure. In such cases, a format

6-17

identifier or a switch format designator may be passed as an

actual parameter. The address supplied will be that of the first

word of the specified format array.

RESTRICTIONS.

Designational expressions, switch identifiers, switch file iden­

tifiers, switch format identifiers, switcR list identifiers,

switch list designators, list identifiers, and call by name ex­

pressions are not allowed as actual parameters to stream proce­

dures.

INPUT/OUTPUT STATEMENTS.

SYNTAX.

The syntax for (I/O statement) is as follows:

2 (I/O statement)

SEMANTICS.

(read statement) I (write statement)

(release statement)

(close statement) I
(lock statement)

I (space statement)

(rewind statement) I

Input/output statements cause values to be communicated to and

from a program and provide programmatic control of most files

and their corresponding I/O units. Disk files and data communi­

cations files are handled by the disk and data communications

I/O statements respectively.

READ STATEMENTS.

SYNTAX.

The syntax for (read statement) is as follows:

2 (read statement) .. -.. - READ (direction)

(action labels)

2 (direction) .. - (empty) I REVERSE

«input parameters»)

2 (input parameters) .. - (file part) (buffer release),

(format and list part) (file part)

(buffer release) I (file part)

(buffer release), (free-field part)

6-18

2 (file part) ::= (file identifier) I (switch file designator)

2 (buffer release) ::= (empty) I [NO]

2 (format and list part) ::= (format) I (format), (list) I
(format), (list identifier) I *,

(list) I *, (list identifier)

(arithmetic expression), (array

row)

2 (format) ::= (format identifier) I (switch format designator)

2 (free-field part) ::= /, (list) I /, (list identifier)

2 (action labels) ::= [(end-of-file label) : (parity label)] I
[(end-of-file label)] I [: (parity label)] I
(empty)

2 (end-of-file label) ::= (designational expression)

2 (parity label) ::= (designational expression)

Examples:

READ (FILEID, FMT, LISTID) [LEOF]

READ (FILEID [NO], FMT, LISTID)

READ REVERSE (FILEID, FMT, A, B, C, ARA[l]) [:LPAR]

READ (FILEID, *, LISTID)

READ (FILEID, X + Y, ARA[*]) [LEO:F: LPAR]

READ (FILEID,FMT)

READ REVERSE(FILEID,50,ARA2[1,*]) [:LPAR]

READ (FILEID)

READ (FILEID, /, FOR I ~ 0 STEP 1 UNTIL 16 DO A [IJ)

READ (FILEID[IF X > N THEN 0 ELSE 1J, 50, AES[*J)

READ (SPO, FRMT, LST)

READ (SPO, /, LST)

SEMANTICS.

The READ statement causes values to be assigned to program varia­

bles. It can also place information in strings defined in the

FORMAT declaration.

Direction must be indicated only when magnetic tape is to be read

6-19

in the reverse direction. In all other cases, the direction part

of the statement must be empty.

The file part specifies which file is to be read.

The buffer release indicates whether the input buffer is to be re­

filled after it has been read and edited. If [NO] is used, the

buffer is not refilled, and the same buffer will be the next

one accessed.

The format and list part specifies the action to be taken on input

data.

A READ statement with an empty format and list part causes one

logical record to be passed without being read; i.e., such a

statement acts as a SPACE (FILE, 1) statement.

A format part without a list part indicates that the referenced

FORMAT declaration contains a string into which corresponding

characters of the input data are to be placed; the string in the

FORMAT declaration is replaced by the string in the input data.

A format part with a list or list identifier designates that the

input data is to be edited according to the specifications of

the referenced FORMAT declaration and assigned to the variables

of the list.

The symbol *, together with a list or list identifier, specifies

that the input data is to be processed as full words, and that

it is to be assigned to the variables of the referenced list

without being edited. The number of words read is determined

by the number of variables in the list or the maximum record

size, whichever is smaller.

An arithmetic expression with an array row designator specifies

that input data is to be processed as full words, and that it

is to be assigned to the elements of the designated array row

without being edited. The number of words read is determined by

6-20

the number of elements in the array row, the buffer size, or the

value of the arithmetic expression, whichever is smallest.

The symbol/specifies free-field input. Such input does not

require a FORMAT declaration to provide specifications for data.

Editing specifications in this case are determined by the format

of the data itself (see Free-Field Data below).

Action labels provide a means of transferring control from a READ

(or SPACE) statement when an End-of-File or irrecoverable parity

error occurs. A branch to the label preceding the colon takes

place when an End-of-File condition occurs. A branch to the

label following the colon takes place if an irrecoverable parity

error occurs.

When a READ statement is executed where the file is assigned to

the console typewriter, a mess~ge is typed on the SPO and the

program is temporarily suspended.

The form of the message on the SPO follows:

(job specifier) ACCEPT

The operator responds to the above message by typing a message

as follows:

(mix index) AX (input message)

The (input message) which follows AX is then read as specified

by the READ statement and the program is re-initiated. The buffer

will contain an end-of-message character following the last

character of the (input message). This end-of-message character

has the same code as the code for the character ~

FREE-FIELD DATA.

SYNTAX. The syntax for (free-field data) is as follows:

2 (free-field data) ::= (field) (field delimiter) I (free-field

data) (field) (field delimiter)

6-21

2 (field) ::= (number)

(empty)

(string) 1 % (octal number) I / I * I

2 (field delimiter) .. - , I (letter) {any proper string not

containing a comma} I {if the field

is a slash (/), the end of the current

record serves as a field delimiter}

Examples:

1,

2 . .5,
2.48 @ -20,

2 @ 34,

"THIS IS A STRING",

%12347,
1 DELIMITER,

2 . .5 ANY COMMENT OR NOTE NOT CONTAINING A COMMA,

2.48 @ -20 VALUE FOR z* (-3),

2 @ 34 ET CETERA,

"THIS IS A STRING" THIS IS A COMMENT,

% 12347 AN OCTAL NUMBER,

* TERMINATES READ,

SEMANTICS. All Free-Field Input is in the form of free-field

data. Each field, except the slash (/), is associated with the

list element to which it corresponds according to position.

A free-field data sentence is in no way affected by the end of

a record. That is, a field or field delimiter may be carried over

from one record to another. Continuation from record to record

is automatic untiJ the LIST is exhausted or an asterisk (*) field

is encountered. Unused characters (if any) on the last record

read are lost.

All blanks in free-field data except those in strings are com­

pletely ignored.

6-22

Fields are handled as follows:

a. Numbers. A number which is represented as an INTEGER

will be converted as an INTEGER unless it is larger than

the largest allowable INTEGER, in which case it will

b.

c •

be converted as REAL. Numbers which contain a decimal

fraction will be converted as REAL.

Strings. strings may be of any length. Each list

element will receive six characters until either the

list or the string is exhausted. If the number of

characters in the string is not a multiple of six, then

the last list element receives the remaining characters

of the string. The string characters are stored right­

justified in the list elements.

Octal Numbers. Octal numbers are placed right-justified

in the list element, unchanged. The largest octal number

allowed is 3777777777777777. A non-octal digit will

terminate the number, treating the remainder of the

field as comment.

d. Empty. An empty field will cause the corresponding list

element to be ignored.

e. Slash (/). The slash (/) field will cause the remainder

of the current record to be ignored. The record follo­

wing the slash is considered the beginning of a new

field; therefore, the slash field does not require

(or recognize) any field delimiter other than the end

of the record in which it occurs. A slash field has

no effect on list elements. The slash is a field by

itself and must not be placed within another field or

between a field and its delimiter.

f. Asterisk (*). The asterisk (*") field termina tes the

read statement. The program continues with the next

statement in sequence. The list element corresponding

to the asterisk is left unchanged,

subsequent elements in the .list.

as well as any

6-23

LOGICAL VALUES. For the purpose of Free-Field Input, an INTEGER 1

(one) must be used in lieu of the logical value TRUE, and an

INTEGER 0 (zero) must be used in lieu of the logical value FALSE.

The example below demonstrates the Free-Field Input facility:

Example:

Consider each of the following lines as individual records:

1

2

3
@

29

+1

29

23 o

+ . 1 2 3 @ 3 2

@ +

, 0, X, Al ,4 A 5 B, / CARD 124

15 IGNORED, ZERO,

% 177, %30, "THIS IS A STRING",

"STRING", *, 2.7, 8.4,
"""

If the above records (free-field data) were read with the state­

ment

READ(FILEID,/,FOR I~O STEP 1 UNTIL 18 DO A [IJ}

values would be assigned to A as follows:

A [OJ = l23@29

A [1 J = 123@29

A [2J = l23@29

A [3J = 0

A [4 J = Unchanged

A [5J = Unchanged

A [6J = 4

A [7J = 15

6-24

A [8J = Unchanged

A [9J = 177 (octal)

A [10J = 30 (octal)

A [llJ = OOTHIS I

A [l2J = OOS A ST

A [l3J = OOOORING

A [14 J = 0000000"

A [l5J = OOSTRING

A [l6J = Unchanged

A [l7J = Unchanged

A [l8J = Unchanged

The occurrence of the asterisk (*) field on the last record term­

inates the read statement without assigning any values to A [16J,

A [17J, or A [18J. The value of I (the controlled variable of

the FOR clause) will remain at 16.

RELEASE STATEMENTS.

SYNTAX.

The syntax for (release statement) is as follows:

2 (release statement) ::= RELEASE (file part)} I RELEASE

(file part), (word count)}

2 (word count)

Examples:

.. -.. - (arithmetic expression)

RELEASE(FILEID}

RELEASE (FILEID, AE)

SEMANTICS.

If the file is an input file, the RELEASE statement causes the

the buffer to be refilled with new input.

If the file is an output file, the RELEASE statement causes the

information in the buffer to be written on the output unit.

The number of words released is determined by the buffer size,

6-25

unless a RELEASE statement indicates a word count; thereafter,

the buffer size is considered equal to the last word count indi­

cated by a RELEASE statement.

RESTRICTIONS.

The word count of a RELEASE statement must not exceed the buffer

size. Due to the fact that READ, SPACE, and WRITE statements

cause I/O descriptors associated with a file to be altered, RE­

LEASE statements should not be mixed with READ, SPACE, or WRITE

statements referencing the same file. One exception to this is

that on files using only one buffer and containing only unblocked

records, RELEASE statements may be freely mixed with READ, SPACE,

and WRITE statements. RELEASE statements are not allowed on disk

files when operating under the File Security System, and if' used,

the program will be terminated.

SPACE STATEMENTS.

SYNTAX.

The syntax for (space statement) is as follows:

2 (space statement) .. -.. - SPACE (file part), (number of records»

(action labels)

2 (number of records) ::= (arithmetic expression)

Examples:

SPACE (FILEID, 5) [LEONF:LPAR]

SPACE (FILEID, -3) [LEOF:LPAR]

SPACE (FILEID, A + B - C)

SEMANTICS.

The SPACE statement is used to bypass input logical records with­

out reading them.

The value of the arithmetic expression determines the number of

records to be spaced and the direction of the spacing. If the

expression is positive, the records are spaced in a forward di­

rection; if negative, in the reverse direction.

6-26

WRITE STATEMENTS.

SYNTAX.

The syntax for (write statement) is as follows:

2 (write statement) ::= WRITE «output parameters»

2 (output parameters) ::= (file part) (carriage control)

(file part) (carriage control)

(format and list part)

2 (carriage control) ::= [PAGEJ I (skip to channel) I [DBLJ

[NOJ I (empty)

2 (skip to channel)

Examples:

.. -.. - [(arithmetic expression)J

WRITE (FILEID, FMT, LISTID)

WRITE (FILEID [PAGEJ)

WRITE (FILEID, FMT)

WRITE (FILEID, *, LISTID)

WRITE (FILEID [DBLJ,FMT, A, B, C, ARA[6J)

WRITE (FILEID, X+Y-Z, ARAJ[l,l,*J)

WRITE (FILEID)

WRITE (FLE[X + 2J, FT, LST)

WRITE (spa, la, A[*J)

WRITE (spa, FRMT, LST)

SEMANTICS.

The WRITE statement causes output of information in the form of

computational results and messages.

The file part specifies the file to be used.

The carriage control may be included to allow for paper control

on the line printer. If the specified output unit is not a line

printer, carriage control is irrelevant and is ignored.

[PAGEJ causes the printer to skip to channell after each line

of print.

Skip to channel causes the printer to skip to the channel

6-27

indicated by the value of the arithmetic expression after each

line of print.

[DBL] causes the printer to double space after each line of print.

[NO] causes the printer to suppress spacing after each line of

print.

The format and list part specifies the action to be taken on the

output data.

A format identifier alone indicates that the referenced FORMAT

declaration contains one or more strings which constitute the

entire output.

A format identifier followed by a list or list identifier desig­

nates the variables in the list are to be placed in a format

according to the specifications of the FORMAT declaration and

written as output.

as noted above.

The FORMAT declaration may contain strings

The symbol * followed by a list or list identifier specifies that

the variables in the list are to be processed as full words, and

are to be written as output without being edited. The number of

words written is determined by the number of variables in the

list or the maximum record length, whichever is smaller. When

unblocked records are used, the maximum record length is the

buffer size.

An arithmetic expression used with a row designator specifies

that the elements of the designated array row are to be processed

as full words and are to be written as output without being

edited. The number of words written is determined by the number

of elements in the array row, the maximum record length, or the

absolute value of the arithmetic expression, whichever is

smallest. When unblocked records are being used, the maximum

record length is the buffer size.

6-28

WRITE statements which do not reference a FORMAT declaration

provide a faster output operation than those which require data

to be edited.

When a WRITE statement is executed where the file is assigned to

the console typewriter, the output will be typed on the SPO.

Writing is terminated when the end-of-message character (code

for -) is encountered in the message. This character is placed

into the first character of the word immediately following the

last output word. However, the program can place the character

- in the output string, if desired.

RESTRICTION.

The arithmetic expression in skip-to-chann~l requires an integer

value from 1 through 11. If the arithmetic expression yields a

value other than integer, it will be rounded to an integer in

acoordance with the rules applicable to the evaluation of sub­

scripts (see page 3-3, Evaluation of Subscripts).

REWIND STATEMENTS.

SYNTAX.

The syntax for (rewind statement) is as follows:

2 (rewind statement) ::= REWIND (file part»

Example:

REWIND (FILEID)

SEMANTICS.

The REWIND statement causes the referenced file to be closed and

if tape, to be rewound.

control.

The I/O unit will remain under program

RESTRICTION.

On paper tape files, the REWIND statement may be used only on

input.

6-29

LOCK STATEMENTS.

SYNTAX.

The syntax for (lock statement) is as follows:

2 (lock statement) ::= LOCK «file part), RELEASE) I LOCK

«file part), SAVE) I LOCK «file part»)

Examples:

LOCK (FILEID, RELEASE)

LOCK (FILEID, SAVE)

SEMANTICS.

The LOCK statement causes the referenced file to be closed. If

the file is tape, it is rewound and a system message is printed

to notify the operator to remove the reel and save it.

If the file is not a disk file, the unit is made inaccessible

to the system until the operator resets it again manually.

The three forms of the LOCK statement are equivalent.

CLOSE STATEMENTS.

SYNTAX.

The syntax for (close statement) is as follows:

2 (close statement) .. - CLOSE ((file part), RELEASE) .. -
CLOSE «file part), SAVE) I
CLOSE «file part») I
CLOSE ((file part), *) I CLOSE

part), PURGE)

Examples:

CLOSE (FILEID, RELEASE)

CLOSE (FILEID, SAVE)

CLOSE (FILEID, *)
CLOSE (FILEID, PURGE)

6-30

«file

SEMANTICS.

The CLOSE statement causes the referenced file to be closed. The

following actions take place:

a. On a card output file, a card containing an ending

label is punched.

b. On a line printer file, the printer is skipped to

channell, an ending label is printed, and the

printer is again skipped to channell.

c. On an unlabeled tape output file, a tape mark is

written after the last block on tape.

d. On a labeled tape output file, a tape mark and ending

label are written after the last block on tape.

If only the file part is used, or the SAVE or RELEASE is used,

the I/O unit is released to the system. If the file is a tape

file, the tape is rewound.

If the symbol * is used, the file must be a tape file. The I/O

unit remains under program control and the tape is not rewound.

This construct is used to create multi-file reels.

If PURGE is used, the file is closed, purged, and released to

the system.

When the symbol * is used on multi-file input tapes, the following

action can take place:

a. If the last reference to a file was a READ or SPACE

FORWARD statement and a CLOSE «file part), *) is

executed, the tape is positioned forward to a point

just following the ending label of the file.

b. If the last reference to the file was a READ or SPACE

REVERSE statement and a CLOSE «file part), *) is exe­

cuted, the tape is positioned to a point just in front

of the beginning label for the file.

6-31

c. If the CLOSE «file part), *) is executed after the

End-of-File branch has been taken, no action is per­

formed to position the file.

When the CLOSE «file part), *) is used on a single-file reel,

the action taken is the same as for a multi-file reel. The next

reference to this file must be a READ in the opposite direction

from that of the prior READ on the file. A system halt can occur

if this rule is violated.

BREAK-OUT STATEMENTS.

SYNTAX.

The syntax for (break-out statement) is as follows:

2 (break-out statement) ::= BREAK

Examples:

BREAK

IF X = 2 THEN BREAK

SEMANTICS.

The break-out statement causes all information necessary to re­

start the program, from the point where the statement appeared,

to be written on magnetic tape. The program continues in se-

quence after execution of the break-out statement.

WHEN STATEMENT.

SYNTAX.

The syntax for (When statement) is as follows:

2 (When statement) ::= WHEN «seconds»

2 (seconds) ::= (arithmetic expression)

Examples:

6-32

WHEN (X)

WHEN (10)

SEMANTICS.

The WHEN statement provides a means for a program to suspend

itself from processing for a given number of seconds. The para-

meter (seconds) specifies the number of seconds to suspend the

program using this statement.

When a program executes a WHEN statement, the MCP suspends pro­

cessing of that program and allows other processing to take place.

Subsequently, after the designated number of seconds have elapsed,

control is returned to the program and processing commences at

the point immediately following the WHEN statement.

WAIT STATEMENT.

SYNTAX.

The syntax for (wait statement) is as follows:

2 (wait statement) ::= WAIT «absolute address), (mask»

2 (absolute address) ::= (arithmetic expression)

2 (mask) ::= (arithmetic expression)

Examples:

WAIT (ADDRESS, MASK)

WAIT (REALSTREAMADDR(A), 1023)

SEMANTICS.

The WAIT statement provides a program the means to temporarily

suspend its processing until a specified Re-Initiate condition

exists.

The first parameter (absolute address) of the WAIT statement

must provide the absolute address of a test word. This address

must be in the fifteen low-order bits of the parameter, while

the remaining bits are ignored.

The second parameter (mask) of the WAIT statement is a mask

which the test word is compared against. If a bit in the test

word is to be tested, the corresponding bit in the value of the

parameter (mask) must be set to ONE (1).

6-33

A R"e-Ini tia te condi tion exists whenever any corresponding bit

position of the test word and the mask expression both have a

value of ONE (1). The value of the test word must be changed by

another program since the program executing the WAIT stat1ement

has been suspended.

When a program executes a WAIT statement, the MCP suspends pro­

cessing of that program, but allows other processing to take

place. Periodically, the MCP examines the test word to determine

if a Re-Initiate condition exists. When this occurs, control is

returned to the program at the point immediately following the

WAIT statement. If the test word value is not changed by some

other program, the program which executed the WAIT statemE~nt is

suspended indefinitely.

FAULT STATEMENT.

SYNTAX.

The syntax for (fault statement) is as follows:

2 (fault statement) (fault type) ~ 0 I
(fault type) ~ (designational

expression)

2 (fault type) ::= EXPOVR I INTOVR I INDEX I FLAG I ZERO

Examples:

EXPOVR 0

INTOVR ~ INTTOOBIG

INDEX ~ SELECTPATH [I]

FLAG ~ IF K = 1 THEN FINIS ELSE REDO

SEMANTICS.

The fault statement provides the means by which a programmer may

specify programmatic action for any of the specific program errors.

The program errors are associated with each fault type as shown

in table 6-1. The fault statement requires a fault declaration

(described on page 9-40).

6-34

Table 6-1

Program Errors for Fault Types

(fault type) Meaning

EXPOVR Exponent overflow

INTOVR Integer overflow

INDEX Invalid index

FLAG Flag bit

ZERO Divide-by-zero

If one of the program errors occurs and there is an associated

(fault type) ~ (designational expression) statement, transfer of

control to the evaluated designational expression will take

place provided:

a. The error occurred during the execution of a statement

within the scope of the label.

b. The error occurred in a procedure that was called by a

procedure call statement that is within the scope of

the label.

Transfer of control will not take place if it will result in the

entering of a block other than through the block head.

The designational expression is evaluated when the fault state­

ment is executed and not at the time that the error occurs. If

multiple fault declarations are made (i.e., in nested blocks)

when an error occurs, only the most local declaration for that

type will be examined.

The (fault type) ~ 0 statement is the means of turning off the

transfer control fault statement. After this form of fault state-

ment has been executed, the program will be terminated if the

specific error occurs.

6-35

ZIP STATEMENT.

SYNTAX.

The syntax for (zip statement) is as follows:

2 (zip statement) .. -.. - ZIP WITH (array row)

ZIP WITH (file part)

Examples:

ZIP WITH CONTROLCARD[I,*]

ZIP WITH FILEID

SEMANTICS.

The ZIP WITH (array row) statement causes information in the

designated array row to be recognized as control and/or program

parameter card information. The information in the array row

must be in the BCL (6-bit) format as it would appear on the con-

trol program parameter cards. The letters CC may be used in lieu

of a question mark (?), but only one may appear in the array row.

The information in the array row appears as a single punched card,

but is not limited to 72 characters. The information that would

be contained on more than one control card may be put into the

array row, but a semicolon must be used to delimit the end of

a card.

The control information to be utilized by the ZIP WITH (array

row) statement should pertain to only one Compiler or Object

Program. The last card in the array row must contain the

following:

END.

After the ZIP WITH (array row) statement has been executed, the

Object Program that executed the st"atement continues processing,

while the MCP examines the control information in the array row.

If the MCP finds an error in this control information, an appro­

priate error message is typed on the supervisory printer to notify

the operator.

6-36

The ZIP WITH (file part) statement causes information in the de­

signated disk file identified by (file part) to be considered as

a control deck. Each logical record must be one card, i.e., 10

words. Logical record zero (0) must be a control card and must

contain in its tenth word the logical record number (a binary

integer) of the next control card in the control deck including

LABEL cards. Each successive control card, likewise, points to

the next control card. There must be an END control card in the

control deck as the last card which points to itself. The proper

format of a control deck on disk is illustrated in figure 6-1.

When the ZIP WITH (file part) statement is executed, the Object

Program which executed the statement continues processing, while

the file (file part) is passed to the MCP. If a file other than

a disk file is referenced, the ZIP statement is ignored. If the

referenced disk file is not on disk, the ZIP statement is ignored.

The MCP does not check to ensure that the control deck is properly

arranged; this is a responsibility of the programmer.

After execution of the ZIP WITH (file part) statement is com­

pleted, the control deck referenced by the designated file is

purged from the disk directory.

LABEL EQUATION STATEMENT.

SYNTAX.

The syntax for (label equation statement) is as follows:

2 (label equation statement) .. -.. - FTLL (file part) WITH

(label equation information)

2 (label equation information) .. -.. - (multi-file identification)

,(multi-file identification),

(file identification)

(multi-file identification),

(file identification),

(reel number) I
(multi-file identification),

(file identification),

6-37

0\
ZIP WITH (file id) I CONSTRUCT w

00
Logical Record WD 1 WD 2 WD 3 WD 4 WD 5 WD 6 WD 7 WD 8 WD 9 WD 10

{:
? EXECUTE ANY/JOB 1 (in binary)

30 word ? LABEL INPUT 9 (in binary) segment
(DATA CARDS)

J " "
4 " "
5 " "
6 If If

7 " "
8 " "
9 ? COMPILE A/B WITH ALGOL 10 (in binary)

10 ? DATA CARD 17 (in binary)

11 (SOURCE LANGUAGE CARDS)

12 " " "
13 " " "
14 " If ff

15 II II II

16 " " "
17 ? DATA DATA 21 (in binary)

18 (DATA CARDS)

19 " II

20 tI II

21 ? END. 21 (in binary)

Figure 6-1. Format for Control Deck On Disk

(reel number), (date)

(multi-file identification),

(file identification),

(reel number), (date),

(cycle number) I
(multi-file identification),

(file identification),

(reel number), (date),

(cycle number),

(output media digit)

2 (multi-file identification) ::= (arithmetic expression) I *
2 (file identification) ::= (arithmetic expression) I *
2 (reel number) ::= (arithmetic expression) I *
2 (date) ::= (arithmetic expression) I *
2 (cycle number) ::= (arithmetic expression) I *
2 (output madia digit) ::= (arithmetic expression) I *

Examples:

FILL FID WITH "MULTI", "FILEID"

FILL FI WITH *t "FILEID", *, 66123

FILL SFI[IJWITH X, Y, R; D, C, 2

SEMANTICS.

The label equation statement provides the means to programmati­

cally specify the file LABEL information associated with a file

(file part). This statement is a programmatic program parameter

card. To have effect, a label equation statement must be execu­

ted before the designated f'ile is open; otherwise, the statement

is ignored.

When a label equation statement is executed, the label equation

information is assigned to the file (file part) and is used in

association with the input/output statements using the specified

file. If any part of the label equation information contains an

asterisk, that part of the information will remain as it was

before the statement was executed.

6-39

All label equation information, except the output media digit,

must be in the format required in a standard label. The values

which the output media digit may have and their meanings are

listed in table 6-2. The values of the multi-file and file iden­

tification parts are interpreted as ALPHA and can contain up to

seven characters in the variable or string.

(output media
value

0

1

2

4

5

6

7

8

9
10

11
-.

12

13

14
--~ ...

15

16

17

18

32

Table 6-2

Values for Output Media Digit

digi t)

Card punch

Line printer

Meaning

Labeled magnetic tape

Line printer or printer backup tape

Labeled designated output file

Printer backup tape

Unlabeled designated output file

Unlabeled paper tape

Unlabeled magnetic tape

Random disk file

Supervisory printer

Serial disk file

Update disk file

Data communications file

Printer backup disk

Printer backup tape or disk

Line printer or printer backup disk

Line printer or printer backup tape or disk

Special forms message required

SORT STATEMENT AND MERGE STATEMENT.

Because of the requirements of the SORT and MERGE statement para­

meters, these two statements are explained in Section 12 of this

manual.

6-40

EDIT AND MOVE STATEMENT.

SYNTAX.

The syntax for (edit and move statement) is as follows:

2 (edit and move statement)

2 (edit and move read)

2 (edit and move write)

Examples:

.. -.. -

.. -.. -

.. -.. - (edit and move read)

(edit and move write)

READ (array row),

(format and list part»)

READ (array row),

(free field part»)

WRITE (array row),

(format and list part»)

READ (A[*], FMT, LST);

WRITE (XA[I,*], 25, B[*]);

READ (DD[*], /, R, A);

SEMANTICS.

The edit and move statement provides the means of utilizing the

editing features of READ and WRITE statements without using I/O

files and buffer areas. In effect, the (array row) designated

in the edit and move statement is analogous to a buffer area.

When an (edit and move read) statement is executed, data in the

designated array row is edited and pl.aced in the list. The for­

mat part determines what editing is to take place as the data is

moved from the array row to the list.

When an (edit and move write) statement is exeouted, data from

the list is edited and placed into the designated array row. The

data is edited as specified by the format part as it is moved

from the list to the array row.

If the edit and move statement calls for more than one physical

record, the array row will be reused when the new record is

required.

6-41

DISK I/O STATEMENT.

SYNTAX.

The syntax for (disk I/O statement) is as follows:

.1 (disk I/O statement) .. - (disk read statement) I .. -
(disk write statement) I
(disk read seek statement)

(disk space statement) I
(disk rewind statement) I
(disk close statement) I
(disk lock statement)

SEMANTICS.

The disk I/O statements allow the programmer to utilize the disk

for creating files and using created files. A record pointer is

associated with the I/O statements. This record pointer is al­

ways set to the address or the logical record that is accessed

by a READ or WRITE statement.

DISK READ STATEMENT.

SYNTAX.

The syntax for (disk read statement) is as follows:

.1 (disk read statement) :: READ (direction)

.1 (diSk input parameters)

«disk input parameters»

(action labels)

(file part) (record address and

release part),

(format and list part) I
(file part)

(record address and release part) I
(file part)

(record address and release part),

(free field part)

.1 (record address and release part) ::= [(address)] I [-NO]

(empty)

.1 (address)

6-42

.. -.. - (arithmetic expression)

Examples:

HEAD REVERSE (OLDFILE, FRMAT, LST)

HEAD (FREEFILE, /, FREELIST) [:PAR]

HEAD (NEWFILE[NO], *, BILST) [EOF:PAR]

READ (DATA[NEXT], NOREC, ARA[I,*])

SEMANTICS.

A disk READ statement causes data to be read from a disk record

and placed into the list variables as specified by the format.

The record pointer may be adjusted by the READ statement.

If a REVERSE direction is used in the READ statement, the value

of the record pointer is decreased by one prior to performing

the read. If the value of the record pointer is N when a read

reverse is executed, the record pointer is set to N-I before the

read is performed. At the completion of the read reverse, the

record pointer remains at N-I.

If an (address) is used in the record address and release part,

the (address) specifies the relative address in the file of the

record to be read and edited as specified in the READ statement.

The record pointer is set to (address) before the read is per­

formed. The record pointer is not adjusted after the read is

executed. An (address) must be used when a file is declared

RANDOM.

If an (address) is not specified and NO is not used, the record

read will be the one pointed to by the record pointer. After

the read has been executed, the record pointer is adjusted to

point to the next record in the file.

If NO is used, the record read will be the one to which the

record pointer is set. After the read has been executed, the

record pointer will not be adjusted.

The format and list part have the same meaning for disk I/O

that they have for all other I/Ols.

6-43

The action labels provide a means of transferring control from a

READ statement when an End-of-File or Parity condition occurs.

The label preceding the colon is branched to on an End-of-File

condition. The label following the colon is branched to on a

Parity Error condition.

An End-of-File condition occurs whenever an attempt is made to

read a record of which the address is greater than the EOF indi­

cator, or less than zero. The EOF indicator is the address of

the highest record address written when the file was created.

This indicator is updated whenever additional records are written

onto the file.

DISK WRITE STATEMENT.

SYNTAX.

The syntax for (disk write statement) is as follows:

2 (disk write statement) ::= WRITE (disk output parameters»

[(action labels)]

2 (disk output parameters) .. -.. - (file part) (record address part)

(file part) (record address part),

(format and list part)

2 (record address part) ::= [(address)] I (empty)

Examples:

WRITE (FILEX[NEXT], *, LIT)

WRITE (INVNTRY[PARTNO], 60, ARA[*])

WRITE (NEWFILE, FRMT, LST)

SEMANTICS.

Disk WRITE statements cause information to occur as output accor­

ding to the format from the list specified. Whenever the WRITE

statement is executed, the record pointer will be adjusted.

The disk file on which the omtput is to be written is specified

by the file part.

6-44

If an (address) is specified, the record pointer is set to this

relative address prior to executing the WRITE statement. The

(address) must be provided if the specified file is declared

RANDOM.

If the record address part is empty, the WRITE statement will

cause the output to be written onto the file at the present re­

cord pointer location.

The record pointer is always adjusted to the next record location

following the execution of the WRITE statement.

The format and list part have the same meaning for disk I/O as

it has for other I/O's. However, if it is empty, the contents of

the current buffer are written onto the disk. An empty format

and list part should only be used with unblocked files where the

information is placed into the buffer through the use of a stream

procedure.

An End-of-File condition occurs if an attempt is made to write a

record which has an address outside of the file, as declared. The

End-of~File actiop label provides the programmer with the means of

branching to a label if this condition occurs.

DISK READ SEEK STATEMENT.

SYNTAX.

The syntax for (disk read seek statement) is as follows:

2 (disk read seek statement)

Example:

.. -.. -

READ SEEK (PARTFILE[NEXT])

SEMANTICS.

READ SEEK {(file part)

[(address)])

The principle use of the READ SEEK statement is with files de-

clared RANDOM. It provides the means of filling a buffer in

6-45

anticipation of a READ or WRITE action on the record as specified

by the (address).

When each READ SEEK statement is executed, records are subsequently

read into buffer areas. The records are queued according to the

order in which they were requested. If more READ SEEK statements

are executed than there are buffers, records are lost, starting

at the head of the queue.

When a READ is executed, the record addressed is searched for,

starting at the head of the queue. If the first record in the

queue is not the desired record, that record is released or lost

and the next record becomes the head of the queue. This sequence

continues until the record is found or the queue is empty. If

the record is not in the queue, the addressed record is then read

from the disk file.

When a WRITE statement is executed, a copy of the record may be

required in core before the WRITE is performed (explained under

file declarations for disk files in Section 9).

performed, one of the following may occur:

If a WRITE is

a. If a copy of the record is not required, the record

at the head of the queue would be lost.

b. If a copy of the record is in a buffer area, that

buffer will be used as an output buffer and all

records in the queue preceding the record written

are lost.

c. If a copy of the record is required, an implicit

READ takes place and all records in the queue are

lost.

An example of the misuse of a READ SEEK statement follows:

READ (PARTFILE[3], .);

6-46

READ SEEK (PARTFILE[18J);

WHITE (PARTFILE[3 J , ·) ;

Conslder the file to be declared RANDOM, blocked, and with one

buffer area. The actions that would take place as the statements

shown are executed would be:

a.. The physical record containing record [3J would be read.

b. The READ SEEK on record [18J would cause record [3J

to be lost.

c. The WRITE of record [3J would require the physical

record containing record [3J to be reread into the

buffer, destroying record [18J.

Programs containing such statements are not desirable and should

be avoided. Used properly, the READ SEEK statement can be of

great value.

If a READ SEEK statement is performed on a SERIAL or UPDATE file,

the READ SEEK statement specifies that the next record to be pro­

cessed is given by the (address).

DISK SPACE STATEMENT.

SYNTAX.

The syntax for (disk space statement) is as follows:

2 (disk space statement)

2 (number of records)

Examples:

.. -.. -

SPACE (FILEID, 5)

SPACE (FILEID, -5)

SPACE (FILEID, CNTR)

SPACE «file part),

(number of records»

(arithmetic expression)

6-47

SEMANTICS.

The SPACE statement provides the means of adjusting the value of

the record pointer. When the SPACE statement is executed, the

record pointer is adjusted by the value of the arithmetic ex­

pression.

DISK REWIND STATEMENT.

SYNTAX.

The syntax for (disk rewind statement) is as follows:

2 (disk rewind statement) ::= REWIND «file part»)

Example:

REWIND (FILEID)

SEMANTICS.

The REWIND statement causes the record pointer to be set to the

address of the first record in the file.

DISK CLOSE STATEMENT.

SYNTAX.

The syntax for (disk close statement) is as follows:

2 (disk close statement) .. - CLOSE «file part») .. -
CLOSE ((file part), RELEASE)

CLOSE ((file part), SAVE) I
CLOSE ((file part), *) I
CLOSE ((file part), PURGE)

Examples:

CLOSE (FILEID)

CLOSE (FILEID, RELEASE)

CLOSE (FILEID, SAVE)

CLOSE (FILEID, *)
CLOSE (FILEID, PURGE)

6-48

SEMANTICS.

A CLOSE statement causes the buffer areas reserved for the file

to be returned. Also, if the file is a temporary file, the disk

space for the file is returned.

If a CLOSE with PURGE statement is executed on a permanent file,

that file is removed from the disk directory and the disk space

is returned.

DISK LOCK STATEMENT.

SYNTAX.

The syntax for (disk lock statement) is as follows:

2 (disk lock statement) ::= LOCK «file part»)

Examples:

LOCK (FILEID)

LOCK (FILEID, RELEASE)

LOCK (FILEID, SAVE)

SEMANTICS.

LOCK «file part), RELEASE)

LOCK «file part), SAVE)

A LOCK statement causes a tempDrary file to be made permanent.

All of the LOCK statements cause the same action on the file.

When it is executed, an entry is made into the disk directory

for the file and the buffer areas reserved for the file are

returned.

DATA COMMUNICATIONS I/O STATEMENT.

SYNTAX.

The syntax for (data communications I/O statement) is as follows:

2 (data communications I/O statement) .. -.. - (data comm read

statement)

(data comm read lock

statement)

6-49

SEMANTICS.

(data comm read seek

statement)

(data comm write

statement)

(data comm write lock

statement)

(interrogate function)

(data comm close

statement)

(data comm rewind

statement)

The data communications I/O statements allow the programmer to

utilize the data communications equipment and converse with

remote station devices. It is the responsibility of the Object

Program to provide for various types of abnormal conditions that

might occur. The MCP will make available to the user program all

of the information that is known as to the status of a particular

unit. This information is contained in a word called the

"status word."

STATUS WORD.

FORMAT.

The format of the status word is as follows:

FIELD

0:1

1:7

8:1

9:4

13:1

6-50

DEFINITION

Flag bit = O.

Undefined.

= 0 - a data transmission control unit (DTCU)

is present.

Terminal unit number (1 through 15).

= 0 - automatic code translation was performed

by DTCU on this I/O operation (remote

stations device code to BCL).

YIELD (cont) DEFINITION (cont)

14:4 Buffer address in terminal (O through 15).

22:1

23:1

24:1

= 1 station busy_

= 1 - abnormal condition sensed by the

adapter.

= 1 buffer is Read Ready.

25:1 = 0

= 1

I/O operation terminated by a group mark.

I/O operation terminated by a Full

Buffer condition with no group mark.

26:1 = 1 BREAK key depressed during output.

27:1 = 1 - buffer is Write Ready. (The last

message written did not contain a

group mark.)

28:1 = 1 input error (buffer overflow) .

29:1 = 1 write in process on remote station.

30:1 = 1 - remote station is not ready.

31:17 Undefined.

SEMANTICS.

The status word is provided to the user program as the first

word in the I/O buffer on each READ statement execution on a

data communications file. It can also be referenced implicitly

by the use of the Interrogate function which has been provided

for Object Programs which utilize data communications equipment.

Any of the undefined fields on the Stqtus word will not be cleared

to zero.

6-51

DATA COMMUNICATIONS READ STATEMENT.

SYNTAX.

The syntax for (data comm read statement) is as follows:

2 (data comm read statement) ::= READ (data comm input

parameters» (data comm input

action labels)

2 (data comm input parameters) ::= (file part) (data comm

record address and release

part), (format and list part)

I (file part) (data comm

record address and release

part), (free field part)

2 (data comm record address and release part) ::= (terminal

buffer

spec ifier)

(wait part»

(empty)

2 (terminal buffer specifier) ::= (arithmetic expression)

(empty)

2 (wait part) ::= ,(arithmetic expression) I (empty)

2 (data comm input action labels) ::= [(no-input label)

(abnormal-condition label)]

I [(no-input label)] I
[: (abnormal-condition

label)] I (empty)

2 (no-input label) ::~ (designational expression)

2 (abnormal-condition label) ::= (designational express~on)

Examples:

6-52

READ (DATACOM, 29, DATA[*])

READ (REMOTE(O&TU[9:44:4] & BUF[14:44:4]), FMT, LST)

READ (REMOTE(OLDSTATUS, 2) , 8, A[*]) [NOIN:WRONG]

READ (B300(O,1), FMTl, LST2) [NOGO:WHY]

SEMANTICS.

The data communications READ statement is the means by which

information in a data communications buffer which has been

attached to the Object Program by the MCP can be read and trans­

ferred to the list under control of the format.

The terminal buffer specifier indicates to the MCP the physical

terminal and buffer from which the data is to be transferred. The

terminal number must be in field 9:4 and the buffer number must

be in the field 14:4 of this arithmetic expression. The terminal

unit and buffer number specified must have integral values that

correspond to equipment available in the hardware configuration.

If the terminal buffer specifier is zero or left empty, data will

be read from any terminal buffer which has been attached to the

Object Program by the MCP. This option makes it. possible to read

from any attached terminal buffer without performing READ state­

ments on individual terminal buffers.

The wait part is checked to determine what action is to be taken

on the action label for a no-input condition.

A branch to the no-input label will be made if:

a. A READ statement could not be executed within the time

specified by the wait part because another job had

exclusive use of the terminal buffer.

b. A READ statement could not be executed within the time

specified by the wait part because the terminal buffer

did not contain any input.

If a READ statement which does not contain a no-input label is

executed, the job will be suspended until the terminal buffer

becomes Read Ready, regardless of how long that might be.

A branch to the abnormal-condition label will be made after the

READ statement has been executed if any of the abnormal conditions

6-53

are sensed. The Object Program must examine the status word pro­

vided on the READ, or obtained through the use of the Interrogate

function. Some of the conditions that will cause an abnormal-

condition branch are:

a. A parity error sensed on input.

b. An end-of-transmission, line-loss, or disconnect.

c. A buffer overflow occurred when information was entered

as input before the buffer was read.

If the READ statement does not include an abnormal-condition

label, and any abnormal condition is sensed, that program will

continue without any indication that the condition occurred.

The wait part has significance only if the READ statement ingludes

a no-input label. The value of the wait part is the number of

seconds that the program is willing to wait for a READ READY

condition of the terminal buffer.

If the wait part is empty in a READ statement that has a no-input

label, the wait part value is equivalent to a wait part value of,

for all practical purposes, infinity.

DATA COMMUNICATIONS READ LOCK STATEMENT.

SYNTAX.

The syntax for (data comm read lock statement) is as follows:

2 (data comm read lock statement) :: = READ LOCK «data comm

input parameters»)

(data comm action labels)

Examples:

READ LOCK (REMOTE(OLDSTATUS), 8, A[*]) [NOGO:WHY]

SEMANTICS.

The purpose of a data communications READ LOCK statement is to

6-54

allow a program to attach itself exclusively to a terminal buffer.

This could be used if more than one remote station is attacheq

to the terminal buffer (multi-poirtt line). Programs that share

such a terminal buffer must observe some mutually developed dis­

cipline. If a program uses the LOCK construct, the program should

release the terminal buffer by excluding the word LOCK from the

READ or WRITE statement. The LOCK functions in the same manner

when a WRITE statement is executed.

The presence of LOCK on a READ or WRITE statement causes the

following action:

a. Suspends the job until 'no other job has exclusive use of

the specified terminal buffer.

b. Establishes this job as the exclusive user of the

terminal buffer.

After exclusive use has been established, the READ or WRITE is

performed. The exclusive use status is retained.

The absence of LOCK on a READ or WRITE statement causes the

following action:

a. Suspends the job until no other job has exclusive use

of the specified terminal buffer.

b. Performs the READ or WRITE operation.

c. Releases the exclusive use status after the READ or

WRITE has been performed if this job had exclusive use

of the specified terminal buffer.

The semantics of the remainder of the READ LOCK statement are

identica.l to the data communications READ statement.

DATA COMMUNICATIONS READ SEEK STATEMENT.

SYNTAX.

The syntax for <data comm read seek statement) is as follows:

6-55

2 (data comm read seek statement) ::= READ SEEK «data comm

input parameters»)

(data comm action labels)

Example:

READ SEEK (BJOO (STATWORD))

SEMANTICS.

The data communications READ SEEK statement provides the program­

mer with the means of establishing this program as the exclusive

user of the specified terminal buffer. In addition, the MCP

will immediately fill the buffers of the specified file when a

Read Ready Interrupt is received from the specified terminal

buffer.

Only the file part and terminal buffer specifier are used in the

READ SEEK statement. If other parts are included, they are ig-

nored (including the action labels).

If the terminal buffer specifier is zero or empty, no action is

performed and the program continues in sequence.

If the specified terminal buffer already has an exclusive user,

no action takes place and the program continues in sequence.

If a READ SEEK had previously been performed on the specified file,

the effect of the previous SEEK is negated. Therefore, a second

READ SEEK will cause the previously specified terminal buffer to

be released from the status caused by the first SEEK.

The seek fea ture allows asynchronous buffering of input :from

data communications equipment. When a READ is performed on a

file which has been "seeked," the terminal buffer specifier of

the READ statement is ignored and the first-in buffer is returned

to the program.

6-56

DATA COMMUNICATIONS WRITE STATEMENT.

SYNTAX.

The syntax for (data comm write statement) is as follows:

2 (data comm write statement) .. -.. - WRITE (data comm output

parameters») (data comm

output action labels)

2 (data comm output parameters) .. -.. - (file part) (data comm record

2 (data comm output action labels)

address and release part)

(file part) (data comm

record address and release

part), (format and list part)

.. -.. - [(output-impossible label)

: (break label)] I
[(output-impossible

label)] I [: (break

label)] I (empty)

2 (output impossible label) .. - (designational expression)

2 (break label) ::= (designational expression)

Examples:

WRITE (REMOTE(A[O]), 8, A[*])

WRITE(TYPER(STATWRD,15), FMT, LST) [NOTNOW:HOLDIT]

SEMANTICS.

The data communications WRITE statement provides the means of

sending information to a remote station. The MCP will transfer

the data in the list under control of the format to the specified

terminal buffer.

A terminal buffer specifier must be present in all data communi­

cations WRITE statements. The format of the expression must be

the same as specified for the READ statement for data communica­

tions. The terminal number and buffer number must correspond to

equipment available in the hardware configuration.

6-57

The wait part is checked to determine what action is to be taken

when an output-impossible condition is sensed.

A branch to the output-impossible label will be made if:

a. A WRITE statement could not be executed within the time

specified by the wait part because another job had

exclusive use of the terminal buffer.

b. A WRITE statement could not be executed within the time

specified by the wait part because all of the output

buffers are full.

c. A WRITE statement could not be executed because of the

output buffers being full and the occurrence of one of

the following conditions:

1) The specified terminal buffer is Read Ready or Busy.

2) An end-of-transmission, line-loss, or disconnect

occurred.

If conditions a or b above occur and no output-impossible label

has been provided, the job will be suspended until the WRITE

can be performed.

If condition c above occurs and no output-impossible label has

been provided, the job will be terminated.

A branch to the break label will be made on each WRITE statement

after the BREAK key has been depressed on the remote station.

This action will continue until a READ statement is executed on

the specified terminal buffer. If no break label is included in

the WRITE statement, the Object Program will not be aware that

the BREAK key has been depressed.

When a branch is made to .the output-impossible label, the reason

for the branch must be determined by the examination of the

status word. The status word can be obtained through the use

of the Interrogate function only.

6-58

The wait part has no significance unless an output impossible

label has been provided.

If the wait part is absent in a WRITE statement containing an

output impossible label, the value of the wait part is considered

to be, for all practical purposes, infinity.

DATA COMMUNICATIONS WRITE LOC~ STATEMENT.

SYNTAX.

The syntax for (data comm write lock statement) is as follows:

2 (data comm write lock statement) .. -.. - WRITE LOCK «data comm

output parameters»

(data comm output

action labels)

Examples:

WRITE LOCK (ALLMINE(A[O] ,SEC), 8, A[*])[NOPE:WHYNOT]

SEMANTICS.

The data communications WRITE LOCK statement allows a program to

establish the spec~fied terminal buffer to be assigned exclusively

to this job. The semantics of the WRITE LOCK are the same as for

the READ LOCK statement.

The semantics for the remainder of the WRITE LOCK statement are

the same as for a normal WRITE statement.

INTERROGATE FUNCTION.

SYNTAX.

The syntax for (interrogate function) is as follows:

.1 (interrogate function) ::= STATUS «terminal buffer specifier),

(action part»

2 (action part) ::= (arithmetic expression)

Examples:

STATUS (O&I[9:44:4] &J [14:44:4], I)

STATUS (STATWRD, J)

6-59

SEMANTICS.

The purpose of this construct is to yield a value which is the

status word. Since this is a function, the construct is an

arithmetic expression.

The terminal buffer specifier must be specified and must have the

same format as any status word.

The action part can only have a value of zero, one, three, or

four.

If the action part value is zero, the value of the function will

be the copy of the MCP's last status word at the time of the last

interrupt on the specified terminal buffer.

If the action part value is one, the following action takes

place:

a. The MCP will perform a Hardware Interrogate I/O

operation on the terminal buffer.

b. The MCP's copy of the status word will be updated and

the function will yield a copy of this newly-updated

status word.

The action part with values of three or four are added to allow

a program - which may be handling many remote users - to create

a free file. The action taken by the MCP for each value follows:

a. If the value is three, then the USERCODE entry for

the program is made empty. Any disk files that are

entered into the disk directory are made free files.

b. If the value is four, then the program's USERCODE

table is reestablished. Any disk files entered into

the disk directory will be entered with the latest

USERCODE entry.

The data communications Interrogate function has been extended

to update the USERCODE table with the user code associated with

6-60

terminal buffer specified. This allows a program - which handles

more than one user - to create and/or access disk files for the

specific user code of each user.

The word STATUS may be used as declared in a program. If it is

used, then the Interrogate function cannot be used within the

scope of the declaration using STATUS.

DATA COMMUNICATIONS CLOSE STATEMENT.

SYNTAX.

The syntax for (data comm close statement) is as follows:

.1 (data comm close statement) .. - CLOSE «file part» .. -
CLOSE «file part), RELEASE)

CLOSE «file part), SAVE) I
CLOSE «file part), *) I
CLOSE «file part), PURGE)

Examples:

CLOSE (REMOTE)

SEMANTICS.

All CLOSE statements cause the same action for data communications

files. The buffer areas are returned and the effect of a READ

SEEK statement is released.

DATA COMMUNICATIONS REWIND STATEMENT.

SYNTAX.

The syntax for (data comm rewind statement) is as follows:

2 (data comm rewind statement) ::= REWIND «file part»

Examples:

REWIND (REMOTE)

SEMANTICS.

A REWIND statement causes the core buffer areas to be returned

and the effect of a READ SEEK statement is released.

6-61

CASE STATEMENT.

SYNTAX.

The syntax for (case statement) is as follows:

2 (case statement) .. -.. - (case statement header) (compound

statement)

2 (case statement header) ::= CASE (arithmetic expression) OF

Examples:

CASE I OF

BEGIN (statement 0);

(statement 1);

(statement N) END;

SEMANTICS.

The CASE statement provides the programmer the means for selective

execution of one of a series of statements.

At execution time, the value of the arithmetic expression selects

which of the statements within the compound statement will. be

executed. Only that statement is executed and control is then

transferred to the statement following the END of the compound

statement. The statements within the compound statement can be

any statement, including compound statements, blocks, CASE state­

ments, and null statements. (A null statement is a dummy state­

ment which occupies a position in a CASE statement.)

The value of the arithmetic expression, I, must be such that 0 <

I < N. If the value is less than zero or greater than N (N is

the value of the last statement number), the Object Program will

terminate with an invalid index.

SEARCH STATEMENT.

SYNTAX.

The syntax for the (search statement) is as follows:

2 (search statement)

6-62

.. -.. - SEARCH «file part), (array row»

2 (file part) .. -.. - (file identifier) I (switch file designator)

Examples:

SEARCH (DISKFILE, A[*])

SEARCH (DISKFILESWITCH [I], A[*])

SEARCH (DISKFILE, B[J,*])

SEMANTICS.

The SEARCH statement provides a programmer with the means to

determine the existence of a disk file which is accessible under

the File Security System. The SEARCH statement causes the MCP

to perform a disk directory search for the specified file.

Values are assigned to the elements of the designated array row

depending on the results of the directory search.

If the specified file is present and the requester is a legi­

timate user of the file, the MCP will set the designated array

row as follows:

WORD

o

1

2

3

4

5

6

CONTENTS

7 if primary user

3 if secondary user

2 if tertiary user

Multi-file identification

File identification

Record length

Block length

End-of-file pointer

Open counter

If the specified file is not present in the disk directory, the

MCP will set words 0, 3, 4, 5, and 6 of the designated array row

all to negative one (-1).

6-63

If the specified file is present but the requester is not a

legitimate user of the file, the MCP will set words 0, J, 4, 5,
and 6 of the designated array row to zero (0) .

The designated array row must be at least seven (7) words in

length. If the array row is less than seven words, the Object

Program will be terminated with an invalid index.

6-64

GENERAL.

SYNTAX.

SECTTON 7

CONDITIONAL STATEMENTS

The syntax for (conditional statement) is as follows:

1 (conditional statement) ::= (if statement)

(if statement) ELSE (statement)

(label) : (conditional statement)

g (if statement) .. -.. - (if Clause) (statement)

Examples:

Conditional Statements:

IF A > B THEN FOR I ~ 1 STEP 1 UNTIL 5 DO R[IJ~

p[I + 2J

IF A > B THEN A ~ A + 1

IF GATE [1,2J AND GATE [1,3J THEN GO TO CHI ELSE

IF GATE [1,4J AND GATE [1,5J THEN GO TO BOS ELSE

GO TO ERRORl

IF Statements:

IF A > B THEN A ~ A + 1

IF GATE [1,2J AND GATE [1,3J THEN GO TO Ll

IF' Clauses:

IF A > B THEN

IF GATE[1,2J AND GATE[1,3J THEN

SEMANTICS.

Conditional statements provide a means whereby the execution of a

statement, or a series of statements, is dependent upon the logical

value produced by a Boolean expression.

7-1

IF STATEMENT.

One of the permissible forms of a conditional statement is the IF

statement. The IF statement operates as follows. The statement

following the sequential operator THEN is executed if the logical

value of the preceding Boolean expression is TRUE; otherwise, that

statement is ignored.

NOTE

In the examples which follow, BE

represents any Boolean expression,

and S represents any statement.

r---truell 1
IF BE THEN S; S

Lfalse 1

IF . . ELSE STATEMENT.

A second form of the conditional statement contains the sequential

operator ELSE. The operation of this conditional statement pro-

ceeds as follows. If the logical value produced by the Boolean

expression is TRUE, the statement following the sequential opera­

tor THEN is executed and the statement following the sequential

operator ELSE is ignored. If the logical value of the Boolean ex-

pression is FALSE, the statement following the sequential operator

ELSE is executed and the statement following the sequential opera­

tor THEN is ignored.

rtrue
, I 1

IF BE THEN S ELSE S; S

Lfal se 11 t

NESTED IF STATEMENTS.

The statements following the delimiters THEN and ELSE, or both,

may be conditional statements, or a series of nested conditional

statements.

7-2

The Boolean expressions in the IF clauses of these statements are

evaluated left to right in a manner similar to the evaluation of

the conditional arithmetic expression. (See pages 4-1 through

4-8.)

When using nested conditional statements, the programmer must

remain aware of the necessity of maintaining correspondence be­

tween the delimiters THEN and ELSE.

For explanatory purposes, let us assume that a given statement

has equally matched THEN-ELSE pairs. In such a case, the inner­

most THEN and the immediately following (i.e., the innermost)

ELSE will be treated as one pair, and from this center the pairs

proceed outwards. This case is illustrated by:

Conditional S: I I
THEN(l) ELSE(4)

~I ------------------~I

THEN(2) ELSE(3)

I
THEN(3)

I~ ---------~I

I
ELSE(2)

THEN(4) ELSE(l)

S;

If THEN appears more often than ELSE in the statement, the pairs

of de~Limiters are matched as described in the example above, and

the first, and any following THEN not having a corresponding ELSE,

will cause the program to transfer to the next statement if the

Boolean expression yields a value of FALSE.

trated by:

This case is illus-

7-3

Conditional S:

THEN(I)
r---~

THEN(2)
I~-------------I

THEN(J) ELSE(2)

I
THEN(4)

I
ELSE(I)

In the case illustrated by:

Conditional S:
I !

THEN(I) ELSE(J)

THEN(2)
I~----------------~I

THEN(J) ELSE(2)

I I
THEN(4) ELSE(I)

S;

S;

the ALGOL Compiler 'Would not produce the required result because

ELSE(J) would be matched with THEN(2), and, if the Boolean expres­

sion preceding THEN(I) yielded a value of FALSE, the program would

skip ELSE(J) and continue in sequence.

Since, however, a statement within a statement could itself be a

compound statement or a block, the correspondence of the delimi­

ters could be established clearly by defining the nested condi­

tional statements as compound statements, the bracket words BEGIN

and END indicating the different levels of nomenclature.

ENTERING A CONDITIONAL STATEMENT.

A GO TO statement may lead to a labeled statement within a condi­

tional statement. The successor is then determined in the same

way as if entrance had been made at the beginning of the condi­

tional statement.

7-4

GENERAL.

SYNTAX.

SECTION 8

ITERATIVE STATEMENTS

The syntax for (iterative statement) is as follows:

2 (iterative statement)

SEMANTICS.

.. -.. - (for statement)

(while statement)

(do statement)

Iterative statements provide methods of forming loops in a pro­

gram. They allow for the repetitive execution of a statement

zero or more times.

FOR STATEMENTS.

SYNTAX.

The syntax for (for statement) is as follows:

1 (for statement) .. -.. - (for clause) (statement) I (label)

(for statement)

1 (for clause) ::= FOR (variable) - (for-list) DO

1 (for-list) ::= (for-list element) I (for-list),

(for-list element)

2 <for-list element)

Examples:

FOR Statements:

.. -.. - (arithmetic expression)

(arithmetic expression)

STEP (arithmetic expression)

UNTIL (arithmetic expression)

(arithmetic expression) WHILE

(Boolean expression) I
(arithmetic expression) STEP

(arithmetic expression) WHILE

(Boolean expression)

FOR I - A + 2 DO BETA - I + BETA

8-1

FOR K ~ A + 2, 1 STEP 1 UNTIL N DO P[KJ ~ R[KJ

FOR Clauses:

FOR I

FOR K

FOR-Lists:

A + 2

A + 2 DO

A 2, 1 STEP 1 UNTIL N DO

A + 2, 1 STEP 1 UNTIL N, A + 2 WHILE A > B, 1 STEP 1

WHILE A > B

FOR-List Elements:

A + 2

1 STEP 1 UNTIL N

A + 2 WHILE A > B

1 STEP 1 WHILE A > B

SEMANTICS.

The FOR statement can be best understood by isolating three dis­

tinct operational steps:

a. Value assignment to the controlled variable.

b. Test of limiting condition.

c. Execution of the statement following DO.

Each type of for-list describes a different process and will

therefore be discussed separately. All, however, have one proper­

ty in common, i.e., the initial value assigned to the variable of

the FOR clause (called the controlled variable) is that of the

left-most arithmetic expression in the for-list elements.

THE FOR-LIST. The for-list may contain more than one for-list

element. However, for explanatory purposes, it will be assumed

that there is only one. In order to expand the meaning of a

single for-list element in a for-list to that of multiple for-list

e'"lements, one need only consider the following. The process

8-2

described by more than one for-list element in a for-list is ex­

actly like that which would be described by writing a series of

FOR statements, each with one of the for-list elements, identical

controlled variables, and the same statement following each DO.

The for-list element determines what values are to be assigned

to the controlled variable and what test to make of the controlled

variable in order to decide whether or not to execute the state-

ment following DO. When a for-list element has been exhausted,

the next element in the for-list is considered, progressing, from

left to right. When all the elem~nts in a for-list have been

utilized, the for-list is considered exhausted and control is

continued in sequence.

ARITHMETIC EXPRESSION ELEMENT. The format for a for-list using

an arithmetic expression element is:

A for-list element may be simply an arithmetic expression, in

which case only one value is assigned to the controlled variable,

V. Since there is no limiting condition, no test is made. After

assignment of the initial value to the controlled variable, the

statement following DO is executed. The element is then ex~

hausted. A concise description is:

STEP-UNTIL ELEMENT.

UNTIL element is:

The format for a for-list using a STEP-

FOR V - AEl STEP AE2 UNTIL AE3 DO Sdo; S

This element calls for a new value to be assigned to the con­

trolled variable Veach time the statement following DO is

8-3

executed. First, an initial value, that of AEl, is assigned to

the controlled variable. All subsequent assignments are equiva-

lent to: v ~ V + AE2, and are made immediately after the DO

statement is executed. The limiting condition on the value of V

is given by AEJ, which is evaluated anew each time through the

loop.

A test is made immediately after each assignment of a value to V

to determine whether or not the value of V has passed AEJ. Whe-

ther AEJ is an upper or lower limit depends upon the sign of AE2;

AEJ is an upper limit if AE2 is positive, and is a lower limit if

AE2 is negative. If V has not passed AEJ, the statement follow-

ing DO is executed. If V has passed AEJ, the element has been

exhausted and the statement following DO is not executed.

cise description is:

V ~ AEl;

A con-

L2: IF AE2 = 0 OR (SIGN(AE2) = +1 AND V < AEJ) OR (SIGN(AE2) =
-1 AND V > AEJ) THEN BEGIN Sdo; V ~ V + AE2; GO TO L2 END;

S

It can readily be seen that if the value of AE2 is zero, the

program will be caught in a closed loop.

WHILE ELEMENT. The format for a for-list using a WHILE element

is:

FOR V ~ AE WHILE BE DO Sdo; S

This element causes the value of AE to be assigned to the con­

trolled variable V as long as the logical value of the Boolean

expression BE is TRUE.

follows.

The detailed operation proceeds as

First, the value of AE is assigned to the controlled variable. A

test is made on the logical value produced by BE; if the value is

TRUE, the statement following DO is executed. This process is

8-4

continued until the value of BE is FALSE, at which time the list

element has been exhausted and control is transferred to the

next statement in the program. A concise description is:

L2! V +- AE;

IF BE THEN BEGIN Sdo; GO TO L2 END;

S

STEP-WHILE ELEMENT. The format for a for-list using a STEP-WHILE

element is:

FOR V +- AEI STEP AE2 WHILE BE DO Sdo;

S

This element calls for a new value to be assigned to the con­

trolled variable V if the value of BE is TRUE each time the state-

ment following DO is executed. First, an initial value, AEI, is

assigned to the controlled variable. All subsequent assignments

are V +- V + AE2, made immediately after the DO statement is exe-

cuted. The limiting condition in this case is the logical value

produced by BE. A test is made after each assignment to V to

determine if the logical value produced by BE is TRUE. If the

value of BE is TRUE, the statement following DO is executed;

otherwise, control is transferred to the next succeeding state­

ment. This can be stated concisely as:

V +- AEI;

L3 : IF BE THEN BEGIN S do; V ~-,. V + AE2; GO TO L3 END;

S

VALUE OF CONTROLLED VARIABLE ON EXIT FROM FOR STATEMENT.

Upon exit from the FOR statement, the value of the controlled

variable is indeterminate.

RESTRICTION.

A transfer to a labeled statement within the scope of a FOR state­

ment, through the use of a GO TO statement outside the FOR state­

ment, is not allowed.

8-5

DO STATEMENTS.

SYNTAX.

The syntax for <do statement) is as follows:

J. <do statement) DO <statement) UNTIL (Boolean expression)

Example:

DO SPACE (FILEID, -3) UNTIL A > C

SEMANTICS.

The DO statement provides a method of controlling an iterative

process in which exit from the loop depends on reaching a limit.

The statement is first executed; the test is then made, and the

execution of the statement is repeated as long as the Boolean

expression is FALSE. A concise description is:

LD: IF NOT BE THEN GO TO LD

WHILE STATEMENTS.

SYNTAX.

The syntax for <while statement) is as follows:

J. <while statement) WHILE <Boolean expression)

DO <statement)

Example:

WHILE C = A DO SPACE(FILEID, A + B - C)

SEMANTICS.

The WHILE statement provides a method of controlling an iterative

process in which exit from the loop depends on exceeding a limit.

The Boolean expression is first tested; the following statement

is then executed as long as the value of the Boolean expression

is TRUE. A concise description is:

8-6

LW: IF BE THEN BEGIN S hOI; GO TO LW END
W 1 e

SECTION 9

DECLARATIONS

GENERAL.

PROCEDURE declarations are covered in Section 10, while Section

11 covers STREAM PROCEDURE declarations.

SYNTAX.

The syntax for (declaration) is as follows:

2 (declaration)

SEMANTICS.

.. -.. - (type declaration) (array declaration)

(switch declaration) I
(define declaration) I
(label declaration) I (file declaration)

(switch file declaration) I
(format declaration) I
(switch format declaration)

(list declaration) I
(switch list declaration)

(forward reference declaration)

(monitor declaration) I (dump declaration)

(procedure declaration) I
(stream procedure declaration)

(fault declaration)

The purpose of a declaration is to define the characteristics of

a quantity and assign an identifier to the quantity so that it

may be referenced. The scope of a declaration is the block in

which it appears. This means that, at the time of entry into a

block (through the BEGIN, since the labels inside are local and

therefore inaccessible from outside), all identifiers declared

in the block head assume the significance implied by their decla­

rations. Conversely, at the time of exit from a block (through

an END or a GO TO statement), all identifiers declared in the

associated block head lose their applicable significance.

9-1

A conflict of significance can arise when blocks are nested, that

is, when one block is a statement in the compound tail of another

block. This situation occurs when the same identifier is declared

in the respective block heads of two or more nested blocks. The

conflict is resolved as follows. Assume that block B is nested

in block A, and that the identifier CC is declared in both block

heads.

In block B, the identifier CC has the significance implied by its

declaration in block head B. The quantity declared in block head

A and identified by the common identifier CC is inaccessible in

block B. This is the only case where an identifier loses its

significance prior to exit of the program from the block in which

the identifier is declared. When the program exits from block B,

the identifier CC again assumes the significance given by the de­

claration in block head A.

Apart from the identifiers associated with the standard functions

(pages 3-8 and 3-9, Standard Functions; page 3-9, Time Functions;

pages 3-9 and 3-10, Type Transfer Functions; and page 3-10, Inter­

rogate Function), all identifiers of a program must be declared.

RESTRICTION.

An identifier must not be declared to represent more than one

entity in a single block head.

TYPE DECLARATIONS.

SYNTAX.

The syntax for (type declaration) is as follows:

I (type declaration) .. - (local or own type) (type ... -
I (local or own type) .. - (type) I OWN (type) .. -
.J. (type) ::= REAL I INTEGER I BOOLEAN I ALPHA

I (type list) .. - (simple variable) I (type list), .. -
(simple variable)

9-2

list)

Examples:

INTEGER A,B,C

ALPHA NAME, CODE, AREA

OWN REAL Q,R,T

SEMANTICS.

A type declaration declares one or more identifiers to represent

certain simple variables, and defines the types of values that

may be represented by these variables.

LOCAL OR OWN. The local or OWN portion of the type declaration

indicates whether the value associated with a simple variable is

to be retained upon exit from the block in which it is declared.

A variable which has been declared as OWN retains its value upon

exit from the block and, at the time of reentry ~nto that block,

is derined UH to its value. The values of variables not declared

OWN are undefined upon reentry ~nto the block, and these var~­

abIes must be initialized again.

TYPE. Four declarators are defined for type declarations; their

meanings are shown below.

u. HEAL (positive and negative values, including zero).

b. INTEGER (positive and negative integral values,

including zero).

c. BOOLEAN (logical value of TRUE and FALSE).

d. ALPHA (any set of six (or fewer) characters, not

including the illegitimate character ?).

ARRAY DECLARATIONS.

SYNTAX.

The syntax for (array declaration) is as follows:

.1 (array declaration) ::= (array kind) ARRAY (array list)

SAVE (array kind) ARRAY (array list)

.1 (array kind) ::= (empty) I (local or own type)

9-3

I (loca1 or own type) .. - (type) I OWN (type) .. -
1 (array list) · .- (array segment) I (array list), · .-

(array segment)

I (array segment) .. - (array identifier) [(bound pair list)]

(array identifier), (array segment)

1 (bound pair list) ::= (bound pair) I (bound pair list),

(bound pair)

I (bound pair) · .- (lower bound) . (upper bound) .
1 (lower bound) · .- (arithmetic expression)

1 (upper bound) · .- (arithmetic expression) · .-

Examples:

ARRAY Declarations:

INTEGER ARRAY MATRIX [l:IF B2 THEN B + K ELSE B + IJ

OWN REAL ARRAY GROUP [0:9J

SAVE OWN BOOLEAN ARRAY GATE [1:10, 3:9J

ARRAY Lists:

MATRIX [0:9J

MATRIX, GROUP [0:9, 3:9J

ARRAY Segments:

MATRIX [0:9J

MATRIX, GROUP [0:9J

Bound Pair Lists:

9:9

0:9, 3:9

A + 2:B + 4
IF Bl THEN A + K ELSE A + I:IF B2 THEN B + K ELSE B + I

SEMANTICS.

An ARRAY declaration declares one or more identifiers to represent

arrays of subscripted variables, and gives the dimensions of the

arrays, the bounds of the subscripts, and the types of the

variables.

9-4

SAVE ARRAYS. The declarator SAVE causes absolute storage alloca-

tion for an array to remain fixed. This is necessary only when an

array is being used in conjunction with a stream procedure (see

Section 11, STREAM PROCEDURE Declarations) in order to maintain

the validity of the stream address indexes upon exit from and

reentrance to the stream procedure.

LOCAL OR OWN. An array may be declared as OWN with the same

effect as that given for simple variables (see page 9-2, Type

Declarations).

In the case of dynamic OWN arrays, i.e. those arrays whose

elements behave as OWN declared variables and whose subscript

bounds may change with each entrance to the block in which the

array is declared, the array is remapped in memory automatically.

However, this remapping may cause the loss of some elements of the

original array. Only those elements whose subscripts are the same

as the subscripts of the new array are copied over to this new

array. The rest of the elements of the old array are lost.

TYPE. Each array must be declared as to type, unless it is of

type REAL. An array which is not declared as to type will be

considered type REAL (see Restrictions below).

RESTRICTIONS. Arrays which are declared together must be of the

same type.

declared.

If the array is OWN, REAL must also be explicitly

BOUND PAIR LIST. The bound pair list defines the dimensions of

the array and the number of elements in each dimension. Bound

pairs are formed by expressions (see page 3-3, Evaluation of

Subscripts). The expre"ssions are evaluated onc e, from left to

right, upon entrance into the block.

Expressions used in forming bound pairs can depend only on vari­

ables and procedures which are nonlocal to the block for which

the ARRAY declaration is valid.

9-5

If an array is declared OWN, the values of the corresponding sub­

scripted variables are defined only for those variables which

have subscripts within the most recently calculated bounds.

RESTRICTIONS.

Arrays declared in the outermost block must use constant bounds.

Upper bounds must not be smaller than the corresponding lower

bounds. No dimension may contain more than 1023 elements.

SWITCH DECLARATIONS.

SYNTAX.

The syntax for (switch declaration) is as follows:

~ (switch declaration) .. -.. - SWITCH (switch identifier) -

(switch list)

1 (switch list)

Examples:

.. -.. - (designational expression)

(switch list), (designational expression)

SWITCH CHOOSEPATH ~ Ll, L2, L3, L4, SWl [3J, LAB

SWITCH SELECT - START, ERRORI, CHOOSEPATH [I + 2J

SEMANTICS.

A SWITCH declaration defines a set of values corresponding to a

switch identifier. These values are the designational expressions

in the switch list. With each of these designational expressions

there is associated a positive integer, 1, 2, . . . ,
counting the items in the list from left to right.

obtained by

This integer

indicates the position of the designational expression in the

switch list. The value of the switch designator corresponding to

a given value of the subscript expression (see pages 4-14

through 4-16, Designational Expressions) determines which desig-

national expression is selected from the switch list. The desig-

national expression thus selected supplies a label in the program

to which control is transferred.

EVALUATION OF EXPRESSIONS IN THE SWITCH LIST. An expression in

the switch list is evaluated each time it is selected using the

9-6

current values of the variables from which it is composed.

INFLUENCE OF SCOPE.

If a quantity appears in a designational expression of a switch

list and a switch designator selects the above-mentioned designa­

tional expression outside the scope of this quantity, the quanti­

ty which would otherwise be inaccessible to the switch designa­

tor will be used in the evaluation of the selected designational

expression.

Examples:

BEGIN

BOOLEAN B;

LABEL LI, L2, LJ, L4, L5;

SWITCH SW ~ LI, L2, LJ, IF B THEN L4 ELSE L5;

S;

BEGIN

INTEGER B;

S;

GO TO SW [4J;

END;

S;

END

DEFINE DECLARATIONS.

SYNTAX.

The syntax for (define declaration) is as follows:

2 (define declaration) ::= DEFINE (definition list)

2 (definition list) ::= (definition part) I (definition list),

(definition part)

2 (definition part) ::= (defined identifier) = (definition) #
2 (defined identifier) ::= (identifier)

2 (definition) ::= (well-formed construct)

2 (well-formed construct) ::= (basic component set)

9-7

2 (basic component set)

(well-formed construct)

(basic component set)

(delimiter) (identifier)

(unsigned number) I (string)

(logical value) .

Examples:

DEFINE RK = RUNGEKUTTA#, ROOT = (-B + SQRT(B *2 - 4 x A x

C))/(2 x A)#

DEFINE INT = INTEGRATE (X, Y, z)#

DEFINE LP = (#, RP =)#,RTDIG = [42:6J#

DEFINE FORI = FOR I - I STEP I UNTIL #

SEMANTICS.

The DEFINE declaration provides a method whereby an identifier

can be defined to represent a well formed ALGOL construct.

The appearance of a defined identifier in a program is equivalent

to the appearance of its definition.

At declaration time, a definition is of no consequence; it has

meaning only in relation to the context in which its related

defined identifier appears. For this reason, undeclared identi­

fiers may appear in definitions; all identifiers must have been

declared, however, when the defined identifier is used.

The reserved word COMMENT within a definition will be recognized

and everything following it, up to the next semicolon, will be

treated as a COMMENT.

During compilation, syntax errors (if any) in a definition are

noted following the use of the defined identifier.

NESTING OF DEFINITIONS. Definitions can be nested; that is,

defined identifiers may be used in definitions. For instance,

9-8

in the example below, the definition for D3 is equivalent to the

definition for DD. In the example, the definition +A+A is consi­

dered nested one level in the first declaration. In the second

declaration the definition +A+A is considered nested two levels,

etc.

Example:

DEFINE Dl = +A+A#

DEFINE D2 = Dl Dl #

DEFINE D3 = D2 D2 #

DEFINE DD = +A+A +A+A +A+A +A+A #

RESTRICTIONS.

A definition cannot be nested more than eight levels. Defined

identifiers may not be used in a FORMAT or SWITCH FORMAT declara­

tion. If a definition ends with the word END, its defined iden­

tifier may be followed in the program only b~ja semicolon or the

words ELSE, END, or UNTIL. The maximum number of characters (ex­

cluding the COMMENTs and superfluous blanks*) that may appear

in a single definition may range from 1971 to 2035, depending upon

the number of characters in the defined identifier, as follows:

IDENTIFIER
SIZE

1-5

6-13

14-21

22-29

30-37

LABEL DECLARATIONS.

SYNTAX.

IDENTIFIER
MAXIMUM SIZE

2035 38-45

2027 46-53

2019 54-61

2011 62-63

2003

The syntax for (label declaration) is as follows:

2 (label declaration) .. -.. - LABEL (label list)

MAXIMUM

1995

1987

1979

1971

*Blanks are superfluous except in strings or when used as
deli.miters.

9-9

2 (label list) ::= (label) I (label list),(label)

2 (label) ::= (identifier)

Examples:

LABEL START

LABEL ENTER, EXIT, START, LOOP

SEMANTICS.

As is true of all identifiers, a label must be declared before

it is used. A label must be declared in the head of the inner­

most block in which the associated labeled statement appears. If

any statement in a procedure body is labeled, the declaration of

this label must appear within the procedure body.

RESTRICTION.

A procedure body itself may not be labeled.

FILE DECLARATIONS.

SYNTAX.

The syntax for (file declaration) is as follows:

2 (file declaration) ::= (file lock part) (mode part) FILE

(in-out part) (file identifier)

(label equation part) «buffer part)

(save factor)}

2 (file lock part) ::= (empty) I SAVE

2 (mode part) ::= (empty) I ALPHA

2 (in-out part) ::= IN lOUT I (empty)

2 (file identifier) ::= (identifier)

2 (label equation part) ::= (output media part) (disk file

description) (label part)

2 (output media part) ::= (output media digit) I (empty)

(disk access technique)

~ (label part) ::= (file identification part) I

9-10

(multi-file identification part)

(file identification part) I (empty)

DISK

2 (disk file description) ::= (empty) I [(number of areas)

(size of areas)]

2 (number of areas) ::= (arithmetic expression)

2 (size of areas) ::= (arithmetic expression)

2 (disk access technique) ::= SERIAL I RANDOM I UPDATE I (empty)

2 (file identification part) ::= u{7 or less string characters}"

2 (multi-file identification part) ::= "{7 or less string

characters}"

2 (buffer part) ::= (number of buffers), (record specifications)

2 (number of bUffers) ::= (unsigned integer)

2 (record specifications) ::= (unblocked specification) I
(blocking specifications)

2 (unblocked specification) ::= (fixed physical record size)

~ (blocking specifications) .. -.. - (fixed logical record size),

(fixed physical record size)

(fixed physical record size),

(fixed logical record size)

2 (fixed logical record size) ::= (arithmetic expression)

2 (fixed physical record size) ::= (arithmetic expression)

2 (save factor) ::= , SAVE (arithmetic expression) I (empty)

ExamEles:

FILE IN REED (1, 10)

FILE OUT RITE (2, 15)
FILE OUT RITE 1 (2, 15)
FILE OUT CARDS (2 , 10)

FILE OUT CARDS 0 (2, 10)

FILE IN TAPE (2, 300, 40)

ALPHA FILE OUTTAPEOUT 2 (2, 400, 45)

SAVE FILE TAPEIO (2, 40)

FILE FILEID "IDENTI" (2, 350, 25)

SAVE ALPHA FILE OUT FILEID 2 "MULTIFI" "IDENTIF" (2, 470,
35, SAVE 25) . .

ALPHA FILE OUT FIS (1, 10)

ALPHA FILE IN DATACOM 14 (2, 29)

ALPHA FILE OUT REPLY 14 (5, 5)

FILE IN RIED DISK SERIAL (2, 30)

FILE IN RANRIED DISK RANDOM (1, 60, ISO)

9-11

FILE RANRW DISK RANDOM [3:6000J (1, 30, 120)

FILE OUT NEW DISK SERIAL [4:2000J "A123456" (3, 12, 180)

FILE UPD DISK UPDATE [N:SJ "PREFIX" "FILEID" (A, B, C)

SAVE FILE ID DISK SERIAL [3:3000J "PART" "REC" (3, 30, 120,
SAVE 30)

SEMANTICS.

The FILE declaration associates a file identifier with the speci­

fications which govern the handling of that file.

Upon exit from the block in which a file is declared, the file

is closed and related I/O units are released to the system.

Tape units, if any, are rewound.

The file lock part causes the implied execution of a LOCK state­

ment upon the file when exiting the block in whose head the file

declaration is made.

The mode part may be included in the declaration of a file using

magnetic tape and data communications; in all other cases, it

should be empty. For magnetic tape files, ALPHA is used to speci-

fy that records recorded with even parity are to be written on

an output file or read from an input file. Records recorded

with odd parity on tape files are assumed if the mode part is

empty.

If the mode part specifies ALPHA on a data communications file,

then the I/O channel will perform a BCL-to-internal translation

on each READ statement and an internal-to-BCL translation on

each WRITE statement. A data transmission control unit is re­

quired to ensure that automatic terminal code-to-BCL or BCL-to-

terminal code translation takes place. The absence of a control

unit would require programmatic translation; therefore, the mode

part would be left empty to inhibit automatic I/O translation.

The in/out part may contain IN or OUT, or may be empty, and has

effect only if the file is opened by a stream procedure access

9-12

or a RELEASE statement. Data communications file declarations are

required for input and output.

cannot be used both in and out.

The same data communications file

In the case of tape files which are both used for output and in­

put in the same program, the in/out part must be empty.

The in/out part designates the type of action to be taken when

the buffer is released if the buffer had been opened by other

than a READ, SPACE, or WRITE statement. If no direction is

stated, it will be interpreted as IN.

All file identifiers in a program should be unique. The file

identifier is used in the program, and in Program Parameter cards,

it references the declared file.

The label equation part has the same function as a Label Equation

card and may be used in lieu of the card. If the label equation

part and Label Equation card are both used, the card takes pre­

cedence.

The output media part specifies the output medium. With the ex-

ception of the SPO and data communications, the output media is

ignored on input files and should be left empty.

in the output media part are shown in table 6-2.

The digits used

An output media

part of 11 must be used on both input and output files referencing

the SPO. An output media part of 14 ~ust be used on both input

and output files referencing the data communications unit.

If the output media part is left empty, a 2 is assumed for output

files.

The label part serves to designate the identifier in the label of

a particular file which differs from the declared file identifier.

It also indicates use of a multi-file reel. Data communications

files do not have labels, but if they are used, they have no

effect on program execution.

The buffer part specifies the number o:f buffer areas desired and

9-13

the size (number of words) needed for each buffer area. When the

file is referencing the sPa, the input message is assumed to be

80 characters in length. Consequently, all spa file buffer sizes

must always be at least 10 words long. The buffer size of an

input data communications file must be large enough to accommodate

the largest hardware terminal buffer plus one word for the status

word. The hardware terminal buffers can only be multiples of

28 characters, with a maximum of 448 characters.

The information in one punched card requires a buffer of 10

words. A buffer of 15 or 17 words is required for one line of

print on the 120 or 132 position line printers respectively.

If more than one buffer is specified and storage is inadequate to

accommodate the number designated, the program cannot be executed.

For data communications input files, only one buffer will be used,

regardless of the value of (number of buffers) unless a Data

Communications Read Seek statement is performed on the file.

Blocked records may be read or written when using magnetic tape

or disk files. This is specified by the (record specifications)

of the file declaration. The (fixed logical record size) speci­

fies the number of words for each record, while the (fixed phy­

sical record size) specifies the number of words in the entire

block. The block size depends on the type of blocking used and

should be determined as described in the following paragraph.

When using magnetic tape files, two types of blocking may be.

used:

9-14

a. If the (record specifications) is of the form (fixed

logical record size), (fixed physical record size),

then the block size will be a multiple of the record

size. For example, a file declaration such as FILE

OUT TAPEI (2, 55, 550) would create a tape where there

are 55 words to each record and 10 records per block,

for a total block size of 550 words.

b. If the (record specifications) is of the form (fixed

physical record size), <fixed logical record size),

then the block size must be large enough to include

link words. For example, to create a tape with the

same blocking factor as the above example, the file

declaration would be FILE OUT TAPEI (2, 561, 55).

The <fixed physical record size) must be a multiple

of the logical record size plus the number of logical

records plus one or 10 x 55 + 10 + 1 = 561. The

additional 11 words are link words created by the MCP.

When the file declaration references a disk file, the blocking

can only be of the form <fixed logical record size), <fixed

physical record size). Each physical record will start at the

beginning of a disk segment and may contain a maximum of 63

segments.

The SAVE factor is applicable to labeled magnetic tape output

files and disk files that are entered into the disk directory.

When a SAVE factor is used on tape files, the value of the arith­

metic expression is added to the current date and included in the

tape label as the purge date. When a SAVE factor is used on a

disk file, the value of the arithmetic expression is added to

the current date every day that the file is accessed, creating

a dynamic purge date. A SAVE factor may be specified on a data

communications file but has no effect.

The disk access technique used with disk files specifies the

buffering action to be used with the file. Which technique to

use is dependent on the primary purpose for accessing the file.

The six basic purposes for accessing a file on disk are to:

a. Serially read records.

b. Serially write records.

c . Randomly read records.

d. Randomly write records.

e. Serially update records.

f. Randomly update records.

9-15

The file should be declared SERIAL if the primary purpose is

either a or b above. The file should be declared RANDOM if the

primary purpose is either £, d, or f above. If ~ is the primary

purpose, the file should be declared UPDATE.

When a disk file is declared SERIAL, the following actions take

place:

a. As READ statements are performed, reading is buffered.

The buffers are filled with records of consecutively

higher addresses than the record last accessed.

b. If the file is declared unblocked and a WRITE statement

is performed, there is never a need for an implicit

READ before writing, and writing is buffered.

c. If the file is declared blocked, if necessary, an im­

plicit READ will be made before a WRITE statement is

performed. This action is required since the entire

physical record which contains the logical record must

be written.

When a disk file is declared RANDOM, the following action takes

place:

a. READ operations are buffered only through the use of

a READ SEEK statement.

b. If the file is declared unblocked and a WRITE statement

is performed, an implicit READ is not required and

writing is buffered.

c. If the file is declared blocked and a WRITE is per­

formed, the action taken is the same as for a serial

disk file.

READ and WRITE statements which reference a random file must

contain a record address.

9-16

When a disk file is declared UPDATE, buffer handling is designed

to provide optimum handling of I/O statements that cause a record

to be read but not released, and then updated and written. Each

time a WRITE is performed, the buffer used for the output record

is written and immediately refilled with the next record to be

buffered in from disk. The buffers of the file are filled with

records of consecutively higher addresses than the last record

read and/or written.

The disk file description is used when a file on disk is being

created. It consists of the (number of areas) and the (size

of areas), each defined below.

a. The number of areas can have any value from 1 through

20. This specifies the maximum number of areas on

the disk that the file may occupy.

b. The size of the areas specifies the size of each area

tha t the file on disk may occupy. This size is j_n

terms of the number of logical records that the

area is to contain.

The total area that the file could occupy on disk is the number

of areas times the size of each area. When more than one area

is declared, the next area is not allocated until the preceding

area has been filled with the number of logical records specified

by the size of the area.

RESTRICTIONS.

A program may contain more than one FILE declaration involving

the same file identifier; however, no such file after the first

may be accessed with a label equation card.

A file identifier may designate a file on a multi-file magnetic

tape. More than one such file may be used in a program; however,

no more than one file on a given multi-file tape may be open at

any time.

9-17

A variable number of words may be contained in one magnetic tape

block, but the number may not exceed 1023.

A disk file description should not be used with files declared IN.

If a file which exists on the disk is specified by a disk file

declaration, the disk file description must be empty.

SWITCH FILE DECLARATIONS.

SYNTAX.

The syntax for (switch file declaration) is as follows:

.1 (switch file declaration) .. - SWITCH FILE (switch file .. -
identifier) «- (switch file list)

.1 (switch file identifier) .. - (identifier) .. -

.1 (switch file list) .. - (file identifier) I (switch .. -
(file identifier)

Examples:

SWITCH FILE SWHTAPE «- TAPE1, TAPE2, TAPE3

SWITCH FILE SWHUNIT «- CARDOUT, TAPEOUT, PRINT

SEMANTICS.

file list),

The SWITCH FILE declaration associates a switch file identifier

with a number of files, as designated by the file identifiers

in the switch file list.

Associated with each of the file identifiers in the switch file

list is an integer reference. The references are 0, 1, 2, . . . ,
obtained by counting the identifiers from left to right. This

integer indicates the position of the file identifier in the

list. The file identifiers are referenced, according to position,

by switch file designators.

If the switch file designator yields a value which is outside

the range of the switch file list, the file so referenced is

undefined. Each file identifier used in a switch file list must

have appeared previously in a prevailing FILE declaration and

9-18

eac'h file is go-ve:vned according to the FILE declara tion in which

it was declared.

FORMAT DECLARATIONS.

SYNTAX.

The syntax for (format declaration) is as follows:

2 (format declaration) ::= FORMAT (input or output) (format

part)

2 (input or output) ::= IN lOUT I (empty)

2 (format part) ::= (format identifier) (editing specifications»

I (format part), (format identifier)

(editing specifications»

2 (format identifier) ::= (identifier)

2 (editing specifications) ::= (editing segment)

(editing specifications) /

/ (editing specifications)

(editing specifications) /

(editing segment)

2 (editing segment) ::= (editing phrase) I (repeat part)

(editing specifications» I

(editing segment), (editing phrase)

(editing segment), (repeat part)

(editing specifications»

2 (editing phrase) .. - (repeat part) (editing phrase type)

(field part) I (string)

2 (repeat part) .. - (empty) I (unsigned integer) I * .. -
2 (editing phrase type) : : = A I D I E I F I I I L I 0 I'R I

S I V I X

2 (field part) .. - (empty) I (field width) I (field width) .. -
(decimal places)

2 (field width) ::= (unsigned integer) I *
2 (decimal places) ::= (unsigned integer) I *

Examples:

FORMAT IN EDIT (x4, 2I6, 5E9.2, 3F5.l, x4)

.

9-19

FORMAT IN Fl (A6,5(XJ,2ElO.2,2F6.l),JI7),F2(A6,D,A6)

FORMAT OUT FORMI (X56, "HEADING",X57),FORM2 (xlO,4A6/X7,
5A6/X2,5A6)

FORMAT OUT F3 (10230)1

FORMAT OUT F4(F5.2, X2, R3.l, S-2)

FORMAT FMTI (*1*)

FORMAT FMT2 (*V*.*)

SEMANTICS.

The FORMAT declaration associates a set of editing specifications

with a format identifier. The following discussion of FORMAT

declarations is divided into two parts:

and those used for output.

those used for input

INPUT EDITING SPECIFICATIONS. Input data can be introduced to

the system by various media such as punched cards or magnetic

tape. Once the information is in the system, however, it may

be considered a string of bits, regardless of the input equipment

used.

For editing purposes, this string can be processed in one or two

ways: either as a set of six-bit characters (see Appendix B, In-

ternal Character Codes), or an eight-character word. The input

editing specifications, through the editing phrases, designate

where and in what form the initial values of variables are to be

found in this string.

INPUT EDITING PHRASES. The editing phrases, except the D and 0

types, designate six-bit character processing. They describe

a portion of the input data in which the initial value of one

variable is to be found. Editing phrases type D and 0 cause the

input string to be processed as full eight-character words.

A phrase such as rAw has the same effect as Aw, Aw ... , Aw(r

times), where r is the repeat part and w the field width. The

field width may specify from one to 63 characters. If the repeat

part of an editing phrase is empty, it is given a value of 1.

1. The last character before the right parenthesis is the letter
0, not zero.

9-20

Characteristics of the input editing phrase types are summarized

in table 9--1.

Table 9-1

Characteristics of Types of :Input Edi ting Phrases

Type of Example
Editing Editing Processed As

Variable of
Phrase Phrase Being Field
Type Example Initialized Contents

A A6 6-bit characters ALPHA TOTALS

D D Full word None Any operand

E E9·2 6-bit characters REAL +O.18@-O3

F F7·l 6-bit characters REAL -3892.5

I I6 6-bit characters INTEGER +76329

L L.5 6-bit characters BOOLEAN FALSE

0 0 Full word Any Any operand

R RJ.l.4 6-bit characters REAL +2l23 l 2J@+4

S S-2 6-bit characters REAL None

X X7 6-bit characters None Any 7 characters

The definition of each input editing phrase type is given below.

a. A - initializes a variable to the characters found in

the field described by the field width. If the

field width is greater than six, the right-most six

characters are taken as the value to be assigned to

the variable. If the field width is less than six,

zeros are appended to the left of the characters in

the field to make a total of six characters.
[-'! -
,-; I

b. D - causes one full word of eight characters in the

input data string to be ignored.

should be empty.

The field part

c. E - initializes a variable to the number found in the

field described by the field width. The field

9-21

9-22

width must be at least 7 greater than the number

of decimal places specified since the input data

is required to be of the following form:

+ + -n.dd---d@-ee

The sign of the number must appear first.

and a decimal point must follow the sign.
I

A digit

One or

more digits may follow the decimal point. The

number of digits following the decimal point must

equal the number of decimal places indicated by

the editing phrase. Following the digits must be

the symbol @, the sign of the exponent, and a two­

digit exponent. The sign of the number may be

indicated by +, -, or a single space which is inter-

preted as positive. The number must be right-

justified in the designated field.

d. F - initializes a variable to the number found in the

e . I -

field described by the field width. The input data

must be in one of the following forms:

+
-nn---n. + -nn---n.dd-d nn---n.dd---d

nn---n. + -.dd---d .dd---d

The sign of the number is optional. If there is

a sign, it must appear first; if there is no sign,

the number is assumed to be positive. A decimal

point must be present; zero or more digits may pre-

cede it. There must be as many digits after the

decimal point as specified by the editing phrase.

The number must be right-justified in the designated

field.

initializes a variable to the integer found in the

field described by the field width. The sign of the

number is optional; the applicable rules are the same

as in the case of editing phrase F.

The number itself may consist of one or more digits

which must be right-justified in the designated field.

f. L - initializes a variable to the logical value found in

the field described in the field width. There are two

possible values, TRUE and FALSE; the programmer may

truncate these input words as shown in table 9-2.

Table 9-2

Boolean Values for Various Field Widths in Input Editing Phrase

Boolean Value
Editing Phrase

TRUE FALSE

Ll T or b F

L2 TR or bT FA

L3 TRU or bTR FAL

L4 TRUE or bTRU FALS

L5 TRUEb or bTRUE FALSE

Ln, where n > 5 Skip n-5 then same as L5

g. 0 - initializes a variable to the contents of an eight-

character word taken from the input string.

part is ignored and should be left empty.

The field

h. R - initializes a variable to the contents of an input

field which may be written according to the specifica-

tions of the I, F, or E editing phrase. A decimal

point as implied in the editing phrase is sufficient;

its location is considered to be as many digit-positions

to the left, from the right-most position of the field,

as indicated by d in the editing phrase. An actual

decimal point in the input takes precedence over the

implied decimal point. If there is an actual decimal

point in the input, the input data may appear anywhere

9-23

within the field. No explicit sign is reqpired in

either the characteristic or the mantissa; allowed

exponents range from -68 to +68. If the input field

is a field of blanks, a -0 (minus zero) is generated.

The d indicator of the editing phrase is ignored if the

input consists only of an exponent part. The symbol &

may be used in place of +, and E in place of @. An

error condition transfers control to the parity action

label, if one is present; otherwise, the program will

be terminated.

i. S - the integer number in the editing phrase itself is

used as a power of 10 to multiply all values associated

with subsequent R editing phrases. More than one S

phrase may appear in a format, each taking precedence

over the one before.

j. V - causes an access to the list during the program execu­

tion to determine the (editing phrase) type. The value

obtained from the list should be one of the characters

A, D, E, F, I, L, 0, R, S, or X.

k. X - causes the number of characters indicated by the field

width to be ignored.

If the input editing phrase is a string, the string in the FORMAT

declaration is repJ_aced by the corresponding input string. The

number of characters transferred from the input string is equal to

the number of characters in the FORMAT declaration which are enclos­

ed between the string bracket characters. If the editing phrase is

not D or 0, the field part must not be empty.

If the (repeat part), (field width), or (decimal places) of an

(editing phrase) is an asterisk (*), the value of the next list

element during execution of the program will be used to complete

the definition of the (editing phrase). If the value of the list

element corresponding to the repeat part

0, the editing phrase will be skipped.

9-24

is less than or equal to

If the repeat part pre-

ceding a. left parenthesis is an asterisk, the number of repetitions

is determined by the value of the corresponding list element as

follows:

a. If the value is greater than 0, then repeat the number

of times of the value.

b. If the value is equal to 0, then repeat indefinitely.

c. If the value is less than 0, then skip to the corresponding

right parenthesis.

Examples of the above and the V editing phrase are shown below.

FORMAT FMTI (*I*);
FORMAT FMT2 (*V*.*);

READ (INPUT, FMTl, 2, 4, A, B);

WRITE (LINE, FMT2, 3, "F fI, 6, 4, X, Y, z);

The READ causes FMTI to be executed as 2I4, while the WRITE causes

FMT2 to be executed as 3F6.4.

When a READ statement uses a free-field part, no FORMAT declaration

is required to provide the editing specifications for data. Editing

specifications, in this case, are determined by the format of the

data. Such data m~st be formatted as described on page 6-21.

OUTPUT EDITING SPECIFICATIONS. Output can be performed by the system

through various media such as magnetic tape and the line printer.

The information in the system, ready for output but not yet trans­

ferred to the output equipment, may be considered a string of bits,

regardless of the output equipment to be used. For editing purposes,

this string can be built in one of two ways: either from a set of

six-bit characters (see Appendix B), or from a set of eight-charac-

ter full words. The output editing specifications, by means of the

9-25

editing phrases, designate where and in what forms the values of

expressions are to be placed in this string.

OUTPUT EDITING PHRASES. The editing phrases, except D and 0 types,

designate six-character processing. They describe a portion of the

output data string into which output information is to be placed.

This information may be one of three kinds:

a. The value of an expression.

b. The characters of the editing phrase itself

(when the editing phrase is a string).

c. The insert characters 0 (zero) and single space.

Editing phrase types D and 0 designate that the output string is

to be built from full words. The field width may specify a length

of one to 63 characters. The expression rAw has the same effect as

Aw, Aw, ... , Aw (r times), where r is the repeat part and w is the

field width. If the repeat part of an editing phrase is empty, it

is given a value of 1. Characteristics of the output editing

phrase types are summarized in table 9-3.

The definition of each output editing phrase is given below.

9-26

a. A - places the value of one expression (six characters) in

the field width. If the field width is greater than six,

the six characters are placed at the right end of the

field and leading blanks are inserted to fill out the

field. If the field width is less than six, the right-

most characters of the expression value are placed in

the field.

b. D - places one full word of all zeros in the output data

string.

c. E - places the value of one expression in the field describ­

ed by the field wid th. This value has the fo~Llowing

form when placed in the output data string:

l>n.dd---d@~ee

Editing
Phrase
Type

A

D

E

F

I

L

0

R

S

X

Table 9-3

Characteristics of Types of Output Editing Phrases

Editing Type of Example
Phrase Processed As Evaluated of Field
Example Expression Contents

A6 6-bit characters ALPHA RESULT

D Full word None One full word
of zeros

E.ll.4 6-bit characters REAL -1.2500@+O2

F8.3 6-bit characters REAL 6735.125

I6 6-bit characters INTEGER bb1416

L5 6-bit characters BOOLEAN bTRUE

0 Full word Any Any operand

Rll.4 6-bit characters REAL b2.l231@+09

S-2 6-bit characters REAL None in field;

X8

result:
~lO*(-2» xR
subsequent)

6-bit characters None 8 blanks

The sign of the number is represented by a single space

if positive, and a minus sign if negative (~ = blank

or minus). If the field width is more than seven great­

er than the number of decimal places specified, leading

single spaces are used to complete the field. Then the

sign of the number, the first significant digit, and a

decimal point are inserted. The value of the expression

is rounded to the number of decimal places specified by

the editing phrase. If the number of significant digits

in the expression value is less than the number of

decimal places specified, the digits are left-justified

with trailing zeros. To complete the field, the symbol

@, the sign of the exponent, and the appropriate two-

digit exponent are inserted. The sign of the exponent

9-27

9-28

is indicated by either + or -.

d. F - places the value of one expression in the field describ­

ed by the field width. This value has the following

form when placed in the output string:

!?nn---n.dd--d

The expression value is rounded to the number of desig-

nated decimal places. If the number is smaller than

the field specified, it is placed in the field right­

justified. If the number of digits equals the number

of places specified and if the number is:

1) Positive, it will be placed in the field

without a sign.

2) Negative, the entire field will be filled

with asterisks (*).

If the number is greater than the field specified, the

entire field will be filled with asterisks.

is treated as in editing phrase E.

The sign

e. I - places the value of one expression in the field describ-

ed by the field width. The expression value is rounded

to an integer and placed right-justified in the field,

preceded by leading single-spaces, if any are required.

If the number is greater than the maximum allowable

integer, the entire field will be filled with asterisks.

The sign is treated as in editing phrase F.

f. L - places the value of one Boolean expression in the field

designated by the field width. Table 9-4 shows the

effect of various values of field width.

Table 9-4

Boolean Values for Various Field Widths in Output Editing Phrase

g.

h.

Boolean Value
Field Width

Ll

L2

LJ

L4

L5

Ln,

0 -

R -

TRUE FALSE

T F

TR FA

TRU FAL

TRUE FALS

TRUEb FALSE

where n > 5 Skip n-5 then same as L5

places the value of one expression, in full word form,

:in the output string.

places the value of one expression in the field describ-

ed by the field width. The output will be either an

type or an E-type field, depending upon the magnitude

the expression. Assuming that:

E = exponent number,

sign = 0 for +, 1 for -,

w = total field width,

d = number of decimal places to the

right of decimal point, and

I = number of decimal digits to the

left of decimal point, then:

1) The output will be in F-format if the absolute

value of the number is equal to or greater than

F-

of

1 but less than the maximum allowable integer, and

w > I + d + 1 + sign

9-29

or if the absolute value of the number is less

than 1, and

w > d + 1 + sign

and either

ABS(E) < d

or

w < d + 6 + sign

2) The output will be in E-format if the conditions

for F-format are not met, and

w > d + 6 + sign

3) If none of the above conditions are fulfilled, the

field will be filled with asterisks.

i. S - the values associated with the subsequent R format

phrases will be multiplied by such powers of 10 as

designated by the integer in the S format phrase it­

self. More than one S phrase may appear in a format,

each taking precedence over the one before.

j. V - causes an access to the list during program execution

to determine the (editing phrase) type. The value

obtained from the list should be one of the characters

A, D, E, F, I, L, 0, R, S, or X.

k. X - places a number of single spaces, as indicated by the

field width, in the output string.

An output editing phrase may itself be a string; this editing

phrase is defined as placing itself, except for the delimiting

string bracket characters, in the output string.

9-30

If the (repeat part), (field width), or (decimal places) of an

(editing phrase) is an asterisk (*), the value of the next list

element during execution of the program will be used to complete

the definition of the (editing phrase). If the value of the list

element corresponding to the repeat part is less than or equal to

0, the editing phrase will be skipped. If the repeat part preced­

ing a left parenthesis is an asterisk, the number of repetitions is

determined by the value of the corresponding list element as follows:

a. If the value is greater than 0, then repeat the

number of times of the value.

b. If the value is equal to 0, then repeat indefinitely.

c. If the value is less than 0, then skip to the

corresponding right parenthesis.

Examples of the above and the V editing phrase are shown below.

:Ei'ORMAT FMTI (*I*);
FORMAT FMT2 (*V*.*);

READ (INPUT, FMTl, 2, 4, A, B);

WRITE (LINE, FMT2, 3, "F", 6, 4, x, Y, z);

The READ causes FMTI to be executed as 2I4, while the WRITE causes

FMT2 to be executed as JF6.4.

RESTRICTION. In editing phrases ° and D the field part must be

empty; in all other cases it must not be empty.

THE MEANING OF THE SYMBOL /. The /(slash) used in editing specifica-

tions causes output from, and clearing of, the buffer. The buffer

is cleared by filling it with single spaces. The right-most

parenthesis of the editing specification performs the function of

one slash. When the line printer is used, consecutive slashes

9-Jl

cause vertical spacing of the printer by printing blank lines. It

should be taken into account, however, that the first slash will

cause the actual contents of the buffer to be printed.

SWITCH FORMAT DECLARATIONS.

SYNTAX.

The syntax for (switch format declaration) is as follows:

2 (switch format declaration) ::= SWITCH FORMAT (switch format

identifier) ~ (switch format

list)

(switch format identifier) (identifier)

(switch format list) (editing specifications»)

(switch format list), (editing

specifications»)

Examples:

SWITCH FORMAT SF ~ (A6, 314, 12, X60),(I4,X2,2I4,3I2),

(X7 8 ,I2),(X2);

SWITCH FORMAT SWHFT ~ (X78,I2),(4A6,I2),(10A6,I2);

SEMANTICS.

The SWITCH FORMAT declaration associates a switch format identifier

with the editing specifications in the switch format list.

Associated with each of the editing specification parts is an integer

reference starting from 0, obtained by counting the editing specifi­

cations from left to right. This integer reference indicates the

position of the editing specification part in the list. The edit­

ing specifications are referenced according to position, by switch

format designators.

If a switch format designator yields a value which is outside the

range of the switch format list, the format so referenced is un­

defined.

9-32

LIST DECLARATIONS.

SYNTAX.

The syntax for (list declaration) is as follows:

.1 (list declaration) .. - LIST (list part) .. -

.1 (list part) .. - (list identifier) «list)) .. -
(list part), (list identifier)

.1 (list identifier) · .- (identifier) · .-

«list»)

.1 (list) ::= (list segment) I (list), (list segment)

.1 (list segment) ::= (expression part) I (for clause)(list

segment) I (for clause)[(expression list)]

(expression part) · .-· .-

(expression list) · .-· .-

Examples:

(arithmetic expression)

expression)

I (Boolean

(list segment)

(list segment)

I (expression list),

LIST Ll (X,Y,A[J], FOR I ~ P STEP 1 UNTIL 5 DO B [I])

LIST ANSWERS (p + Q,Z,SQRT (R», RESULTS (Xl,X2,X3,x4/2)

LIST LIST3 (FOR I ~ 0 STEP 1 UNTIL 10 DO FOR J ~ 0 STEP 1

UNTIL 15 DO A [I,J])

LIST L4 (B AND C, NOT AB1, IF X = 0 THEN Rl ELSE R2)

LIST RESULTS (FOR I ~ 1 STEP 1 UNTIL N DO [A[I], FOR J ~ 1

STEP 1 UNTIL K DO[B[I,J], C[J]]])

SEMANTICS.

A LIST declaration serves to associate a set of expressions (arith­

metic or Boolean) with a list identifier. A list identifier may be

used in a READ statement (pages 6-18 through 6-21) for specifying

the variables to be initialized and the order in which the initial-

9-33

izing is to be done. Since input may not be made to any construct

other than a variable, a list identifier used in a READ statement

must refer to a LIST declaration which includes variables only.

The variables in a LIST declaration must have been previously de­

clared as to type.

The list identifier may be used in a WRITE statement (pages 6-27

through 6-29) for specifying values to b~ included in an output

operation. These values are placed in· the output string in the

order of their appearance in the LIST declaration. Variables in a

LIST declaration may be either local or nonlocal to the block in

which the·LIST declaration appears.

SWITCH LIST DECLARATIONS.

SYNTAX.

The syntax for (switch list declaration) is as follows:

(switch list declaration) .. -.. - SWITCH LIST (switch list

identifier) - (switch list list)

(switch list identifier) (identifier)

(switch list list) .. -.. - (list identifier) (switch list desig­

nator) (list identifier), (switch

list list) I (switch list designator),

(switch list list)

Examples:

SWITCH LIST LXI - Ll, L2, L3

SWITCH LIST LX2 Ll, LXI [lJ, L3

SEMANTICS.

A SWITCH LIST declaration associates a switch list identifier with

a number of list identifiers. Associated with each of the list

identifiers is an integer reference which is obtained by counting

the list identifiers from left to right starting with O. This

integer indicates the position of the list identifier in the switch

list. These list identifiers are referenced by means of switch list

9-34

designators.

If a swi.tch list designator yields a value which is outside the

range of the switch list, the list so referenced is undefined.

Each list used in the switch list must have been previously declared.

FORWARD REFERENCE DECLARATIONS.

SYNTAX.

The syntax for (forward reference declaration) is as follows:

(forward reference declaration) · .-· .- (forward procedure declar­

ation) I (forward switch

declaration)

(forward procedure declaration) · .-· .- (procedure type) PROCEDURE

(procedure heading) FORWARD

2 (procedure type) ::= (empty) (type)

2 (forward switch declaration) ::= SWITCH (switch identifier)

FORWARD

Examples:

SWITCH SELECT FORWARD

INTEGER PROCEDURE SUM (A,B,C); VALUE A,B,C; INTEGER A,B,C;
FORWARD

SEMANTICS.

Before a procedure or a switch can be called in a program, it must

have been declared previously. A contradiction arises in two

special cases, namely:

a. When a procedure calls another procedure, which

in turn references the first procedure.

b. When a switch references another switch, which in

turn references the first switch.

In such cases, the first PROCEDURE declaration must contain at least

one reference to the second, as yet undeclared at this point; a

similar situation would occur in the case of switches used in this

9-35

way.

To enable the programmer to use such recursive references, the

FORWARD construct has been introduced. This is, in effect, a

temporary declaration and does not eliminate the need for the normal

PROCEDURE and SWITCH declarations which must follow in the program.

MONITOR DECLARATIONS.

SYNTAX.

The syntax for (monitor declaration) is as follows:

2 (monitor declaration) .. -.. - MONITOR (monitor part)

2 (monitor part) · .-· .-

2 (monitor list) · .-· .-

(file identifier) «monitor list»

(monitor part), (file identifier)

«monitor list»

(monitor list element)

(monitor list), (monitor list element)

2 (monitor list element) .. -.. - (simple variable) (subscripted

variable) I (array identifier)

(switch identifier) I (procedure

identifier) I (label)

Example:

MONITOR ANSWER (A,Q[I,J], GROUP1, START, SELECT, INTEGRATE)

SEMANTICS.

The diagnostic declaration MONITOR declares certain quantities to

be placed under surveillance during the execution of the program.

Each time an identifier included in the monitor list is used in

one of the ways described below, the identifier and its current

value are written on the file indicated in the MONITOR declaration.

MONITOR LIST ELEMENTS. When a simple variable in the monitor list

is used as a left part in an assignment statement, the following

information is written on the designated file:

9-36

(simple variable) = {value of variable}

When a subscripted variable in the monitor list is encountered

during the execution of the program as the left-most element in a

left part list, the following information is written on the designat­

ed file:

(array identifier)[{value of subscript expression}] =

{value of variable}

When only an array identifier is given in the monitor list, and a

subscripted variable of that array is encountered as the left-most

element in a left part list, the following information is written

on the designated file:

(array identifier)[{value of subscript expression}] =

{value of-variable}

When a switch designator is encountered with a switch identifier

which is in the monitor list, the following information is written

on the designated file:

(switch identifier)

When a procedure identifier in the monitor list is used as a func­

tion designator during the execut~on of a program, the following

information is written on the designated file:

(procedure identifier) = {valu~ of function designator}

Each time a label which is in the monitor list is encountered in

the program, the label is written on the designated file.

RESTRICTIONS.

Only the first seven characters of any identifier are written. All

pertinent subscripts, however, are written. Only one subscripted

variable from an array may be monitored at one time. If a monitor

list, or several monitor lists, contain more than one subscripted

9-37

variable which are elements of the same array, only the last of

these is monitored.

DUMP DECLARATIONS.

SYNTAX.

The syntax for <dump declaration) is as follows:

2 <dump declaration) ::= DUMP <dump part)

2

2

<dump part) · .- <file identifier) (<dump list)) · .-
<label):<dump indicator) I <dump part),

<file

<dump

<dump list) · .- <dump · .-
list

<dump list element)

<dump indicator) .. -.. -

identifier) (<dump list)) <label):

indicator)

list element) I <dump list), <dump

element)

<simple variable) I <subscripted

variable) I <label) I <array identi­

fier)

<unsigned integer) I <simple variable)

Example:

DUMP INPUTDATA (A,Q[I,J] ,GROUPl,START) ENTER:4,

OUTPUTDATA (A,GROUPl) EXIT:X

SEMANTICS.

The DUMP declaration declares certain quantities to be placed under

surveillance during the execution of the program. Diagnostic

information requested by means of the DUMP declaration is written

on the designated file when a label in the dump part has been

passed the number of times equal to the associated dump indicator.

Since the dump indicator can be a simple variable, dump information

can be obtained more than once during each execution of the block

containing the DUMP declaration. The number of times the controll­

ing statement is executed applies only to one pass through the

DUMP declaration block. The number is not cumulative from one pass

9-38

to the next~

DUMP LIST ELEMENTS. A simple variable in the dump list causes the

current value of that variable to be supplied in the following form:

(simple variable) = {value of variable}

A subscripted variable in the dump list causes the current value

of that variable to be supplied in the following form:

(array identifier) [{value of subscript expression}] =

{value of variable}

An array identifier in the dump list causes the current values of

all elements in that array to be supp~lied in the following form:

(array identifier) = {value of first six elements}

{value of second six elements}

{value of last elements}

The order in which the array elements are written is as follows.

All subscripts are first set to their declared lower bounds and

the corresponding value is printed out. The right-most subscript

is then counted up, and the corresponding value is printed; this

procedure continues until the subscript reaches its declared upper

bound. After this printout, the right-most subscript is again set

to its declared lower bound, the next left subscript is counted up,

and the process recycles until all subscripts have reached their

declared upper bounds.

RESTRICTION.

Only the first seven characters of any identifier are written. All

pertinent subscripts, however, are written.

9-39

FAULT DECLARATIONS.

SYNTAX.

The syntax for (faul t declaration) is as :follows:

(fault declaration) MONITOR (fault list)

(fault list) (fault type) (fault list), <fault type)

(fault list), (fault equate)

2 (fault type) ::= EXPOVRIINTOVRIINDEXIFLAGIZERO

(fault equate) (fault type) ~ (identifier)

Example:

MONITOR INTOVR, ZERO, FLAG ~ PENNANT

SEMANTICS.

The fault declaration allows the programmer to indicate to the

Compiler that he wishes to specify, via a fault statement, action

to be taken upon the occurrence of one of the errors included in the

fault list.

The fault list may include from one to five fault type identifiers.

Each fault type identifier is associated with a specific program

error, as indicated in table 6-1, page 6-35.

In any block in which a fault type identifier does not appear in a

fault declaration, it may be declared as any other type of quantity.

A fault equate construct assigns the identifier on the right of the

assignment operator to the fault type on the left. The identifier

may then be used in a fault statement, and the fault name (ZERO,

FLAG, etc.) may be used as any other identifier.

9-40

GENERAL

SYNTAX.

SECTION 1.0

PROCEDURE DECLARATIONS

The syntax for (procedure declaration) is as follows:

1 (procedure declaration) ::= PROCEDURE (procedure heading)

(procedure body) I
(type) PROCEDURE (procedure heading)

(procedure body)

1 (procedure heading) .. -.. - (procedure identifier) (formal

parameter part); (value part)

(specification part)

1 (procedure identifier) ::= (identifier)

1 (formal parameter part) ::= (empty) I «formal parameter list)}

1 (formal parameter list) ::= (formal parameter) I (formal

parameter list) (parameter

delimiter) (formal parameter)

1 (formal parameter) ::= (identifier)

1 (value part) ::= VALUE (identifier list); I (empty)

1 (identifier list) ::= (identifier) I (identifier list),

(identifier)

2 (specification part) ::= (empty) I (specification list)

2 (specification list) ::= (specification); I (specification

list) (specification);
2 (specification) ::= (specifier) (identifier list) I

(array specification)

2 (specifier) ::= LABEL I (type) , SWITCH' PROCEDURE' (type)

PROCEDURE , FILE , LIST , FORMAT , SWITCH FILE

SWITCH FORMAT' SWITCH LIST

10-1

(array specification) .. -.. - ARRAY (array specifier list) I
(type) ARRAY (array specifi"er list)

2 (array specifier list) ::= (array specifier) I

(array specifier) .. -.. -

(array specifier list), (array

specifier)

(array identifier list) [(lower bound

list)]

2 (array identifier list) ::= (identifier list)

2 (lower bound list) ::= (specified lower bound) I (lower

bound list), (specified lower bound)

2 (specified lower bound) ::= (integer) I *

2 (procedure body) ::= (statement)

Example:

PROCEDURE ROOT (A, B, C, N, Xl, X2, X3);

VALUE N;

INTEGER N; ARRAY A, B, C, Xl, X2[1]; ALPHA ARRAY X3[1];

BEGIN

INTEGER I; REAL DISC; LABEL START;

START: FOR I ~ I STEP I UNTIL N DO

BEGIN DISC ~ B[I] * 2 - 4 x A[I] x C[I];

IF DISC < 0 THEN X3[I] ~ "IMAG" ELSE

BEGIN XI[I] ~ (-B[I] + SQRT (DISC))/(2 x A[I]);

X2[I] ~ (-B[I] - SQRT (DISC))/(2 x A[I]);

X3[I] <t- "REAL"

END

END

END ROOT

SEMANTICS.

A PROCEDURE declaration declares an identifier to represent a

procedure, and defines what this procedure shall be. Whenever

10-2

the identifier followed by the appropriate parameters appears in

the program, it produces a call upon the procedure (see pages

6-10 through 6-15, Procedure Statements).

Procedures which start with a type declarator cannot be called

by procedure statements, but must be used as function designators.

A PROCEDURE declaration is composed of two parts:

heading and the procedure body.

the procedure

PROCEDURE HEADING.

The procedure heading contains the identifier for the procedure,

the list of formal parameters, and information pertaining to the

formal parameters.

Whenever the procedure is activated, formal parameters in the

procedure body will be assigned the values of, or be replaced by,

actual parameters. The formal parameter part contains a listing

of all formal parameters used in the procedure body.

The VALUE part specifies which formal parameters are to be called

by value. Formal parameters called by value are called in the

order in which they appear in the formal parameter list. Formal

parameters not in the VALUE part are called by name. The value

part of a procedure heading should contain only the identifiers of

formal parameters which are specified as simple variables. If

identifiers of arrays are included, they are ignored.

The speci.fication part indicates certain characteristics of the

formal parameters, that is, the kinds of identifiers they represent.

Every formal parameter must appear in the specification part.

In the case of formal parameters used as array identifiers, in-

formation about the lower bounds must be given. A lower bound

specified by an integer indicates that any corresponding actual

parameter has a declared lower bound equal to this value. A

specified lower bound of * indicates that the declared lower bound

10-3

of the corresponding actual parameter may vary in value from one

calIon the procedure to the next. Whep a specifier of the form

ARRAY A, B, C, ... , X, Y, z [*];

is used in a procedure heading, it is assumed that the lower bound

for each actual parameter will be the same, and its value will be

determined by the value found for the lower bound of the actual

array row corresponding to z.

PROCEDURE BODY.

The procedure body is a statement that is to be executed when the

procedure is called. This statement may be any of those listed

in the syntax of statements (see Section 6, statements), and

therefore may be a procedure statement calling upon itself.

cedures may thus be called recursively.

SCOPE OF IDENTIFIERS OTHER THAN FORMAL PARAMETERS.

Pro-

Identifiers in the procedure body which are not formal parameters

are either local or nonlocal to the body, depending on whether

they are declared within the body or outside the body. Those which

are nonlocal to the body may be local to the block which contains

the PROCEDURE declaration in its head.

Any quantity that is nonlocal to a procedure is inaccessible to

that procedure if that quantity is local to some other procedure

and is not declared to be OWN.

SPECIAL RULES OF TYPED PROCEDURES.

Certain procedures are called by means of function designators. In

such cases, the PROCEDURE declaration must start with a type decla­

rator.

The procedure body of a typed declaration must contain, and cause

to be executed, an assignment statement with the procedure identi­

fier in the left part list.

RESTRICTIONS.

A procedure body itself must not be labeled. A GO TO statement

10-4

appearing in a typed procedure may not lead outside that procedure.

Furthermore, in using a procedure statement within a typed proce­

dure, any procedure called for execution in this manner must not

contain a GO TO statement leading outside the typed procedure.

If any statement in a procedure body is labeled, the declaration

of that label must appear in the appropriate block head within

the procedure body.

10-5

GENERAL.

SYNTAX.

SECTION 11

STREAM PROCEDURE DECLARATIONS

The synt'ax for (stream procedure declaration) is as follows:

2 (stream procedure declaration) ::= STREAM PROCEDURE

(stream procedure heading)

(stream block) I
(type) STREAM PROCEDURE

(stream procedure heading)

2 (stream procedure heading) .. -.. -
(stream block)

(procedure identifier)

(stream formal parameter part);

(va~lue part)

2 (stream formal parameter part) ::= «formal parameter list»

2 (stream block) ::= (stream block head);(compound stream tail)

2 (stream block head) ::= BEGIN (stream declaration) I
(stream block head);(stream declaration)

2 (compound stream tail) ::= (stream statement) END I
(stream statement);(compound

stream tail)

2 (stream declaration) ::= (stream variable declaration) i
(label declaration)

2 (stream variable declaration) ::= LOCAL (stream variable list)

I (empty)

2 (stream variable list) ::= (stream simple variable)

(stream variable list),

(stream simple variable)

2 (stream simple variable) ::= (variable identifier)

Example:

STREAM PROCEDURE MOVE (SOURCE, DESTINATION,_DIV32, MOD32);

VALUE DIV32, MOD32;

11-1

BEGIN

COMMENT THIS PROCEDURE WILL MOVE N WORDS FROM A FILE TO A

TWO-DIMENSIONAL ARRAY OR VICE VERSA;

LOCAL SOURCEDESC, DESTINATIONDESC;

SI ~ SOURCE; DI - LOC SOURCEDESC; DS ~ WDS;

SI ~ DESTINATION; DI - LOC DESTINATIONDESC; DS - WDS;

S1 ~ SOURCEDESC; DI ~ DESTINATIONDESC;

DIV32 (DS ~ 32 WDS); DS ~ MOD32 WDS;

END MOVE

SEMANTICS.

The STREAM PROCEDURE declaration defines an identifier which re­

presents a special kind of procedure, the stream procedure. The

stream procedure is designed exclusively for the manipulation of

words, characters, and bits. For this reason, the language used

to describe a stream procedure differs from that of conventional

procedures.

Some of the problems to which a stream procedure can be applied

are those involving complex editing of information on input and

output operations, packing and unpacking of data for more effi­

cient information storage, and scanning operations for comparison

of data. These are but a few of the many applications in which

stream procedures can be of significant value to the programmer.

FORMAL PARAMETERS AND VALUE PART. All formal parameters of a

stream procedure are treated as local to the stream block. The

corresponding actual parameters provide initial values for the

formal parameters as indicated by the VALUE part.

The formal parameters listed in the VALUE part (call by value)

are assigned the values of the corresponding actual parameters

when the stream procedure is called. The formal parameters not

listed in the VALUE part (call by name) are assigned the absolute

addresses of the corresponding actual parameters.

STREAM DECLARATIONS. All stream simple variables in a stream

block must be declared by a stream variable declaration (LOCAL).

11-2

All stream simple variables are therefore local to the stream

block. All labels in a stream block must be listed in a LABEL

declaration.

COMPOUND STHEAM TAIL. The stream block includes, in addition to

the variable and LABEL declarations, a stream statement or a series

of stream statements. Before descr;ibing the stream statements

individually, it is necessary to clarify certain concepts appli­

cable to every statement in the STREAM PROCEDURE declaration.

The basic delimiters used in stream procedures are SI and DI. SI

(source index) denotes the core address from which information is

to be taken. DI (destination index) denotes the core address to

which information is to be moved.

As has been stated, stream procedures manipulate not only words,

but individual characters or bits as well. Hence, for the sake of

brevity as well as clarity, the following notation has been adopted

for discussing the various stream statements:

a. SI - word address portion of source index.
w

b. DI - word address portion of destination index.
w

c. SI - character designator portion of source index;
c

SI = 0 for left-most character of word, 7
c

for right-most character.

d. DI - character designator portion of destination
c

index; DI = 0 for left-most character of
c

word, 7 for right-most character.

e. SIb - bit designator portion of source index; SIb =
o for left-most bit of character, 5 for right­

most bit.

f. DI - bit designator portion of destination index;
b

DIb = 0 for left-most bit of character, 5 for

right-most bit~

11-3

g. CI - word address portion of control index.
w

h. CI - syllable designator portion of control index;
s

CI = ° for left-most syllable of word, 3 for
s

right-most syllable.

i. ri - repetitive indicator.

AUTOMATIC INDEX ADJUSTMENT. Before certain stream statements are

executed, either the source index, the destination index, or both

may be automatically adjusted. These adjustments are conditional

and fall into two categories. The controlling conditions and the

adjustments made are outlined below and are referenced throughout

the succeeding discussion whenever applicable.

11-4

a. Adjustment Category I.

1) Source index.

If SIb ~ ° or SI ~ 0, then SI c w
SI ~ SI ~ 0. b c

If SIb = ° and SI = 0, then no
c

2) Destination index.

If DIb ~ ° or DI ~ 0, then DI c w
DI ~ DI ~ 0. b c

If DIb = ° and DI = 0, then no c

b. Adjustment Category II.

1) Source index.

If SIb ~ 0, then SIb ~ 0; SIc ~

into SI may occur). w

~ SI
w + 1;

adjustment is made.

~ DI + 1; w

adjustment is made.

SI
c

+ 1 (overflow

If SIb = 0, then no adjustment is made.

2) Destination index.

If DIb ~ 0, then DIb ~

into DI may occur).
w

0; DI ~ DI
c c

+ 1 (overflow

If DIb = 0, then no adjustment is made.

STREAM STATEMENTS.

SYNTAX.

The syntax for (stream statement) is as follows:

2 (stream statement) (unlabeled stream statement)

(label):(stream statement)

2 (unlabeled stream statement)

SEMANTICS.

.. -.. - (unconditional stream

statement) I
(conditional stream statement)

Stream statements are unique to STREAM PROCEDURE declarations and

may not be used outside such declarations. Stream statements and

their uses are discussed in the following paragraphs.

UNCONDITIONAL STREAM STATEMENTS.

SYNTAX.

The syntax for (unconditional stream statement) is as follows:

2 (unconditional stream statement) .. -.. - (stream address statement)

(destination string

statement) I
(stream go to statement)

(skip bit statement)

(stream tally statement)

(stream nest statement) I
(stream release statement)

I (compound stream

statement)

(stream dummy statement)

11-5

2 <stream address statement)

SEMANTICS.

.. -.. - <set address statement)

<store address statement)

<skip address statement)

<recall address statement)

The various types of unconditional stream address statements are

described individually in the following paragraphs.

SET ADDRESS STATEMENTS.

SYNTAX.

The syntax for <set address statement) is as follows:

2 <set address statement) ::= SI <source address part)

DI <destination address part)

2 <source address part) ::= LOC <stream simple variable) I sc
2 <destination address part) ::= LOC <stream simple variable) I DC

Examples:

SI SC

DI ~ LOC Ql

SEMANTICS.

The set address statement using the delimiter LOC causes either

the source or destination index to be set to the core location of

the indicated stream variable.

The set address statement using the delimiter SC or DC (see b,

page 11-4) assigns the value contained in the next 18 bits of the

applicable string to the source or destination index.

STORE ADDRESS STATEMENTS.

SYNTAX.

The syntax for <store address statement) is as follows:

2 <store address statement)

2 <stream address index)

11-6

.. -.. - SI

<stream simple variable)

<stream address index)

I DI I CI

Examples:

T2 ~ DI

TJ ~ CI

SEMANTICS.

The store address statement causes the current value of the indi­

cated index to be assigned to the indicated stream variable.

The CI (Control Index) register contains the core address of the

program word and the next program syllable to be executed.

SKIP ADDRESS STATEMENTS.

SYNTAX.

The syntax for (skip address statement) is as follows:

2 (skip address statement) .. -.. - DI ~ DI (stream arithmetic

expression) I
SI ~ SI (stream arithmetic

expression)

2 (stream arithmetic expression) ::= (adding operator)

(stream primary)

1 (adding operator)

2 (stream primary)

Examples:

SI ~ SI + J

DI ~ DI - T4

SEMANTICS.

•• - + I .. - -
.. -.. - (unsigned integer)

(stream simple variable)

The skip address statement causes SI or DI to be increased or
c c

decreased by the value of the stream primary.

RESTRICTION.

The source index (SI) and the destination index (DI) must never

point to the same location, that is, SI must never equal DI .
w w

11-7

RECALL ADDRESS STATEMENTS.

SYNTAX.

The syntax for (recall address statement) is as follows:

2 (recall address statement)

Examples:

SI - SOURCE

DI - T2

SEMANTICS.

.. -.. - (stream address index) -

(stream simple variable)

The recall address statement causes the value of a stream variable

to be assigned to the indicated index.

DESTINATION STRING STATEMENTS.

SYNTAX.

The syntax for (destination string statement) is as follows:

2 (destination string statement) ::= DS - (transfer part)

2 (transfer part) ::= (source string transfer) I (literal trans­

fer) I (blank replacement transfer)

2 (source string transfer) ::= (repetitive indicator)

(transfer type)

2 (repetitive indicator) ::= (stream repeat part)

(stream simple variable)

2 (stream repeat part) ::= (empty) I (unsigned integer)

2 (transfer type) ::= (transfer words) I (transfer characters)

(transfer and convert) I (transfer and add)

I (transfer character portions)

2 (transfer words) ::= WDS

2 (transfer characters) ::= CRR

2 (transfer and convert) ::= (input convert) I (output convert)

2 (input convert) ::= OCT

2 (output convert) ::= DEC

2 (transfer and add) ::= ADD I SUB

2 (transfer character portions) ::= ZON I NUM

11-8

~ (literal transfer) ::= (literal characters) I (literal bits)

~ (literal characters) ::= (unsigned integer) LIT (string)

~ (literal bits) ::= (repetitive indicator) SET I (repetitive

indicator) RESET

~ (blank replacement transfer) ::= (repetitive indicator) FILL

Examples:

Transfer words: DS ~ 6 WDS

Transfer characters: DS ~ 5 CHR

Input convert: DS ~ 6 OCT

Output convert: DS ~ 5 DEC

Transfer and add: DS ~ 3 ADD

DS - 2 SUB

Transfer zone bits: DS - VARY ZON

Transfer numeric bits: DS - 4 NUM

Literal transfer: DS - 7 LIT "HEADING"

Literal bits: DS - X SET

DS - Y RESET

Blank replacement: DS - 8 FILL

SEMANTICS.

To be able to use the bit manipulating possibilities of the desti­

nation string statements, it is necessary to know that, within a

character, the bit positions are designated as shown below:

B I A 1 84 2 1

o 1 2 3 4 5

The B and A bits are referred to as the zone bits of the character.

The 8, 4, 2, and 1 bits are referred to as the numeric part of the

character. It is possible to operate independently on either the

zone or the numeric part of a character.

TOGGLE is the name of a TRUE/FALSE indicator which can be set and

reset by various stream procedure operations.

11-9

TRANSFER WORDS. The transfer words option (see a, page 11-4) causes

the number of words specified by the repetitive indicator to be

transferred from the source string to the destination string. The

execution of this statement affects SI and DI as follows:

SI ~ SI + ri
w w

DI ~ DI + ri
w w

TRANSFER CHARACTERS. The transfer characters option (see b, page

11-4) causes the number of characters specified by the repetitive

indicator to be transferred from the source string to the desti-

nation string.

DI as follows:

The execution of this statement affects SI and

SI ~ SI + ri (overflow into SI can occur)
c c w

DI ~ DI + ri (overflow into DI can occur)
c c w

INPUT CONVERT. The input convert option (page 11-4) causes the

number of source characters (numeric bits only) specified by the

repetitive indicator to be transferred and converted to one octal

word in the destination string. The resulting octal word is an

integer. The sign of the integer is determined by the zone bits

(B,A) of the right-most character in the source field (1,0 = minus;

any other combination = plus).

affects SI and DI as follows:

The execution of this statement

SI ~ SI + ri (overflow into SI can occur)
c c w

DI ~ DI + 1
w w

RESTRICTION. The value of the repetitive indicator must not be

greater than 8.

OUTPUT CONVERT. The output convert option (page 11-4) causes one

octal word in the source string to be transferred and converted to

the number of decimal destination characters specified by the re­

petitive indicator. The octal word is treated as an integer. The

sign is placed in the zone bits (B,A) of the right-most destina­

tion character (1,0 = minus; any other combination = plus). All

other destination zone bits are set to ZERO.

11-10

If the converted value requires more than the specified number o~

destination characters, the most-significant digits are lost and

TOGGLE is set to FALSE; otherwise, TOGGLE is set to TRUE.

cution of this statemBnt affects SI and DI as follows:

The exe-

SI ~ SI + 1
w w

DI ~ DI + ri (overflow into DI can occur)
c c w

RESTRICTION. The value of the repetitive indicator must not be

greater than 8.

TRANSFER AND ADD. The transfer and add option (see page 11-4)
causes the number of source characters specified by the repetitive

indicator to be algebraically added to or subtracted from a like

number of destination characters. The signs of the two fields are

the zone bits (B,A) of their respective right-most characters

(1,0 = minus; any other combination = plus). All other source

zone bits are ignored and all other destination zone bits are set

to zero. The sign of the result is placed in the zone bits of

the right-most destination character. If overflow occurs in the

destination field, TOGGLE is set to TRUE; otherwise, it is set to

FALSE. The execution of this statement affects SI and DI as

follows:

SI SI + ri (overflow into SI can occur)
c c w

DI DI + ri (overflow into DI can occur)
c c w

TRANSFER CHARACTER PORTIONS. The transfer character portions

option (see page 11-4) causes either the zone bits or the numeric

bits of the number of source characters specified by the repetitive

indicator to be transferred to the same portions of a like number

of destination characters.

When the transfer zone bits option is used, the numeric portions

of the destination characters are not affected. When numeric bits

only are transferred, however, the zone portions of the destination

characters are set to zero. TOGGLE is set only when numeric bits

alone are transferred as follows: If the zone bits (B,A) of the

11-11

right-most source character are 1,0 (minus), TOGGLE is set to TRUE;

otherwise, it is set to FALSE.

affects SI and DI as follows:

The execution of this statement

SI SI + ri (overflow into SI can occur)
c c w

DI ~ DI + ri (overflow into DI can occur)
c c w

LITERAL CHARACTERS. The literal characters option causes the num-

ber of string characters specified by the unsigned integer to be

placed in the destination string. The unsigned integer should

equal the number of characters in the string. If it is greater

than the number of string characters, repetitive left-to-right

use is made of the string characters until the designated number

of destination characters are filled., If it is less, the right-

most string characters are ignored.

ment affects DI only, as follows:

The execution of this state-

DI ~ DI + unsigned integer (overflow into DI can occur)
c c w

LITERAL BITS. "Literal bits" causes the number of destination

bits specified by the repetitive indicator to be set to ONE or re-

set to ZERO. The execution of this statement affects DI only, as

follows:

DIb~DIb + ri (overflow into DIc can occur, as well as

overflow into DI)
w

REPETITIVE INDICATOR. The value of the repetitive indicator must

never exceed 63.

BLANK REPLACEMENT. The blank replacement transfer only affects

the destination string and the destination string address. The

destination string address is adjusted so that the field begins

at a character boundary. Each character of the destination string

is examined and if it is equal to or less than zero «0) in the

collating sequence, that character is replaced with the blank

character code. Replacement stops if a character is equal to or

greater than one.

1l-12

STREAM GO TO STATEMENTS.

SYNTAX

The syntax for (stream go to statement) is as follows:

2 (stream go to statement)

Example:

GO TO START

SEMANTICS.

.. -.. - GO TO (label)

The stream GO TO statement causes transfer of control to ·the

statement with the designated label.

clared in the stream block.

The label must be one de-

RESTRICTION.

A stream GO TO statement must not cause transfer into or out of a

stream nest statement.

SKIP BIT STATEMENTS.

SYNTAX.

The syntax for (skip bit statement) is as follows:

2 (skip bit statement) .. -.. - SKIP (repetitive indicator)

(source or destination bit)

2 (source or destination bit) ::= SB I DB

Examples:

SKIP N SB

SKIP 12 DB

SEMANTICS.

The SKIP bit statement affects only SI or DI, and does so as

follows:

SIb ~ SIb + ri (overflow into SI can occur, as well
c

as overflow into SI) w

DIb ~ DIb -+ ri (overflow into DI can occur, as well c
as overflow into DI) w

11-13

STREAM TALLY STATEMENTS.

SYNTAX.

The syntax for (stream tally statement) is as follows:

2 (stream tally statement)

Examples:

TALLY ABLE

TALLY +- TALLY + 1

TALLY ~ TALLY + BETA

GAMMA +- TALLY

SEMANTICS.

.. -.. - TALLY ~ (stream primary)

TALLY +- TALLY + (stream primary)

(stream simple variable) +- TALLY

The stream TALLY statement provides a counting mechanism for

stream procedures. TALLY may contain values ranging from a to 63.

The counter may be stepped by adding an integer to its current

value. All overflows are lost. To reset or decrement TALLY, the

program must increment it to or beyond the overflow point.

STREAM NEST STATEMENTS.

SYNTAX.

The syntax for (stream nest statement) is as follows:

2 (stream nest statement) ::= (repetitive indicator)

«compound nest»)

2 (compound nest) ::= (nest) I (nest);(compound nest)

2 (nest) ::= (stream statement) I (jump out statement)

(label) (jump out statement)

2 (jump out statement) ::= JUMP OUT I JUMP OUT (number of nests)

TO (label)

2 (number of nests) ::= (empty) I (unsigned integer)

Examples:

25 (IF SC = "E" THEN JUMP OUT; SI ~ SI + 1; TALLY +- TALLY + 1)

11-14

30 (IF 8 SC = DC THEN 8 (IF SC = ALPHA THEN JUMP OUT 2 TO

L2; SI ~ SI + 1); TALLY ~ TALLY 1); L2: S

SEMANTICS.

The stream nest statement serves as a repetitive control state­

ment by means of which loops can be described and the number of

passes specified by the repetitive indicator. Any stream state­

ment may appear in a compound nest.

An additional statement, the JUMP OUT statement, is allowed only

in a compound nest. The simple form of JUMP OUT statement trans­

fers control to the statement immediately beyond the next right

parenthesis. The JUMP OUT to a label form may be used to escape

from as many nests as desired and to a specific labeled statement.

The JUMP OUT statement itself may be labeled. The number of nests

(right parentheses) over which a JUMP OUT is to be effective must

be given as an integer. If the integer is 1, it may be omitted.

RESTRICTIONS.

A stream nest statement may be entered only at its beginning. The

JUMP OUT statement must nvt be used in any construct other than a

stream nest statement.

STREAM RELEASE STATEMENTS.

SYNTAX.

The syntax for (stream release statement) is as follows:

2 (stream release statement)

Example:

RELEASE (FILENAME1)

SEMANTICS.

.. -.. - RELEASE «formal parameter»)

The actual parameter corresponding to the formal parameter of a

stream RELEASE statement must be a file identifier. If the iden-

tifier is that of an input file, the stream RELEASE statement

causes one buffer of the file to be filled with new data. If the

identifier is that of an output file, the stream RELEASE statement

11-15

causes the contents of one output buffer to be transferred to the

appropriate output device.

Both SI and DI mu~t be reset since the values of both are lost

with a stream RELEASE statement.

RESTRICTION.

The formal parameter of a stream RELEASE statement must not be

called by value.

COMPOUND STREAM STATEMENTS.

SYNTAX.

The syntax for (compound stream statement) is as follows:

2 (compound stream statement) .. -.. - BEGIN (compound stream tail)

Example:

BEGIN SI +- LOC Ql; T2 +- -DI; DI +- Tl END

SEMANTICS.

The compound st~eam statement is a set of stream statements bounded

by BEGIN and END.

STREAM DUMMY STATEMENTS.

SYNTAX.

The syntax for (stream dummy statement) is as follows:

2 (stream dummy statement) ::= <empty)

Examples:

BOTTOM:

FINI:

SEMANTICS.

A dummy statement executes no operation.

label.

11-16

It may serve to place a

GONDITIONAL STREAM STATEMENTS.

SYNTAX.

The syntax for (conditional stream statement) is as follows:

2 (conditional stream statement) .. -.. - (stream if clause)

(unconditional stream

statement)

(stream if clause)

(label) : (unconditional

stream statement)

(conditional stream state­

ment) ELSE (stream state­

ment)

2 (stream if clause) ::= IF (test) THEN

2 (test) ::= (source with literal) I (source with destination)

(source bit) I TOGGLE I (source for alpha)

2 (source with literal) .. -.. - SC (relational operator)

,,(string charac ter)" I
SC (relational operator)

"(string bracket character)"

2 (source with destination) ::= (repetitive indicator) SC

(relational operator) DC

2 (source bit) ::= SB

2 (source for alpha) ::= SC = ALPHA

Examples:

Conditional Stream Statements:

Stream IF clause: IF SC == "E" THEN GO TO CONTTNUE

Stream IF clause

with labeled statement: IF SC > "E" THEN REPLACE:

DS +- 5 LIT " FALSE ft

Conditional Stream Tests:

Source with literal: IF SC .- "E ft THEN GO TO CONTINUE

11-17

Conditional Stream Tests (cont):

Source with destination:

Source bit:

Toggle:

Source for alpha:

IF 8 SC < DC THEN GO ']~O TUSCON

IF SB THEN SI ~ SI + 1

IF TOGGLE THEN DS ~ X ZON

IF SC = ALPHA THEN SI ~ SI + 1

SEMANTICS.

The conditional stream statement causes the stream statement

following the IF clause to be executed if the test is TRUE; other­

wise, the statement is ignored. The execution of every conditional

stream statement sets TOGGLE to TRUE or FALSE according to the

result of the test. One exception to this is that a test of

TOGGLE does not change the TOGGLE value.

SOURCE WITH LITERAL. The source with literal option (see b, page

11-4, for SI only) causes one source character to be compared with

the character indicated in the test.

SOURCE WITH DESTINATION. The source with destination option (see

b, page 11-4) compares a specified number of source characters with

the same number of destination characters. The execution of this

statement affects SI and DI as follows:

SI ~ SI + ri (overflow into SI can occur)
c c w

DI ~ DI + ri (overflow into DI can occur)
c c w

SOURCE BIT. This test causes one source bit to be tested for 1.

TOGGLE. This test is merely one for the value of TOGGLE.· As

mentioned above, it causes no change in the value of TOGGLE.

SOURCE FOR ALPHA. The source for alpha option (see b, 11-4,

for SI only) tests one source character for equal condition only.

A syntax error will resul t if the test is made for unequal. condi-

tion. If the source character is a letter or a digit, TOGGLE is

set to TRUE; otherwise, TOGGLE is set to FALSE.

11-18

SECTION 12

SORT STATEMENT AND MERGE STATEMENT

SORT STATEMENT.

SYNTAX.

The syntax for (sort statement) is as follows:

2 (sort statement) .. -.. - SORT «output option), (input optl0n),

(number of tapes), (hivalue procedure),

(compare procedure), (record length)

(size specifications»)

2 (size specifications) ::= (empty) I (core size) (core size)

(disk size)

2 (core Size) ::= , (arithmetic expression)

2 (disk Size) ::= , (arithmetic expression)

2 (record length) ::= (arithmetic expression)

2 (compare procedure) ::= (identifier)

2 (hivalue procedure) ::= (identifier)

2 (number of tapes) ::= (arithmetic expression)

2 (input option) ::= (file part) I (input procedure)

2 (input procedure) ::= (identifier)

2 (output option) ::= (file part) I (output procedure)

2 (output procedure) ::= (identifier)

Examples:

SORT (OUTPRCD, INPRCD, J, RIVAL, COMP, J)

SORT (OUTFID, INFID, O,RI, CMP, 2)

SEMANTICS.

The SORT statement provides the means whereby data, as specified

by the (input option), is reordered and returned to the program,

as specified by the (output option). The sequence of reordering

the data is determined by the (compare procedure).

The size specifications allow the programmer to specify the amount

of main memory and the amount of disk storage that may be used.

The core size, if present, specifies the number of words of main

12-1

memory that may be used.

assumed.

If unspecified, a value of 1200 is

The disk size, if present, specifies the amount of disk storage in

words that may be used. If unspecified, a value of 600,000 words

of disk storage is assumed (this is equivalent to 0.5 disk file

modules).

The record length represents the length vn words of the largest

item that will be presented to the SORT statement. If the value

of the arithmetic expression is not a positive integer, the largest

integer which is less than the absolute value of the expression

will be used (i.e., a record length of 12 would be used if an

expression had a valu~ of -12.995). If the value of the arithmetic

expression is zero (0), the program will loop indefinitely.

The compare procedure is called by the SORT to determine which of

two records should be used next in the sorting process. It must

be a BOOLEAN procedure with exactly two (2) parameters. Both of

the parameters must be arrays. The Boolean value which is returned

via the procedure identifier should be TRUE if the array given as

the first parameter is to appear in the output before the array

given as the second parameter. As an example, the following pro-

cedure could be used for sorting in ascending sequence:

BOOLEAN PROCEDURE CMP (A, B);

ARRAY A, B [OJ;

CMP ~ A[OJ S B[OJ;

In the example, CMP would be TRUE if array A is equal to or less

than array B, and CMP would be FALSE if array A is greater than

array B. This would result in the lower valued array being passed

to the output first.

The hivalue procedure is called by the SORT to create a unique

record for its own internal use. The record created is not re-

turned as sorted output. This created record must be such that

it will cause the compare procedure to determine that it should

appear after all valid input items being sorted. This procedure

12-2

must be untyped and must have an array as its only parameter.

This procedure is a hivalue procedure if sorting in ascending

sequence, and essentially a low-value procedure if sorting in a

descending sequence. An example of a hivalue procedure that

could be used by the compare procedure on page 12-2 follows:

PROCEDURE HV (A);

ARRAY A[O];

FILL A[*] WITH OCT77777777777.7777;

The number of tapes specifies the number of tape files that may

be used, if necessary, in the sorting process. If the value of

the arithmetic expression is less than three (3), no tapes will

be used. If five (5) or more tapes are specified, five tapes may

be used if it is necessary; otherwise, the specified number of

tapes will be used, if necessary.

If an input file is used as the input option, the records in that

file will be used as input to the SORT. This file will be LOCKed

after all of the records on the file have been read by the SORT.

If an input procedure is used as the input option, the procedure

is called on to furnish input records to the SORT. This input

procedure must be a BOOLEAN PROCEDURE, with an array as its only

parameter. This procedure, on each call, will:

a. Either insert the next record to be sorted into

its array parameter.

b. Or assign a TRUE value to the procedure identifier.

When a TRUE is returned by the input procedure, the SORT will not

use the contents of the array parameter and will not calIon the

input procedure again during'the SORT. An example of an input

procedure that will sort N elements of the array Q follows:

BOOLEAN PROCEDURE INPROC (A);

ARRAY A[O];

IF NOT (INPROOr (N~N-l) < 0) THEN A[OJ ~ Q[NJ;

12-3

If an output file is specified as the output option, the SORT will

write the sorted output on this file. Upon completion of the SORT,

the file will be LOCKed.

If an output procedure is specified as the output option, the SORT

will calIon this procedure once for each sorted record and once

to allow end-of-output action. This procedure must be untyped and

must use two parameters. The first parameter must be Boolean and

the second parameter must be an array. The Boolean parameter

will be FALSE until the last record has been returned from the

SORT. When the first parameter is FALSE, the second parameter

will contain a sorted record. When all records ha've been returned,

the first parameter will be TRUE and the second parameter must not

be accessed. An example of an output procedure follows:

PROCEDURE OUTPHOC (B, A);

VALUE B;

BOOLEAN B;

ARRAY A[O];

IF B THEN CLOSE (FILEID, RELEASE) ELSE WRITE (FILEID,
RECSIZE, A[*]);

PROGRAM EXAMPLE.

The following is an example of a program to perform a tag sort

of a disk file, with printed output.

12-4

SAMPLE TAG SORT PROGRAM BEGIN

FILE IN DISK DISK RANDOM "INPUT" "TOSORT"(2,15,JO);

FILE OUT P 6(2,15);

BOOLEAN BOO;

ARRAY Q[O:l4];

INTEGER N;

BOOLEAN PROCEDURE IP(A); ARRAY A[O];

BEGIN LABEL EOF,XIT;

READ(DISK[N] ,15,Q[*])[EOF];

A[O]~Q[O]; A[l]~N; N~N+l;

GO TO XIT;

EOF: BOO-TRUE;

XIT: Ipr-BOO;

END IP;

BOOLEAN PROCEDURE CMP(A,B); ARRAY A,B[O]; CMpr-A[O]~B[O];

PROCEDURE HV(A); ARRAY A[O]; A[0]~549755813887;

PROCEDURE OP(B,A); VALUE B; BOOLEAN B; ARRAY A[O];

IF B THEN CLOSE(P) ELSE
<!>

BEGIN FORMAT F(I8,"

"
HEAD(DISK[A[l]],F,N);

WRITE(P,F,A[O]);

END OP;

COMMENT START OF PROGRAM;

BO~FALSE;

N~O;

SORT(OP,IP,O,HV,CMP,2);

END OF PROGRAM.

MERGE STATEMENT.

SYNTAX.

The syntax for (merge statement) is as follows:

2 (merge statement) ::= MERGE «output option), (hivalue

procedure), (compare procedure),

(record length), (merge file list»)

2 (merge file list) ::= (merge file), (merge file) I
(merge file), (merge file list)

"
"

2 (merge file) ::= (file identifier) I (switch file designator)

Examples:

MERGE (FA, HV, CMP, 10, SWF[I] , Fe, FILESW[I]);

SEMANTICS.

The MERGE statement causes data in all of the files specified by

the merge file list to be combined and returned. The compare

procedure determines the manner in which the data is combined. The

12-5

output option specifies the way in which the data is returned

from the merge.

The merge file list must contain two files but may contain as

many as seven merge files as input to the merge.

12-6

APPENDIX A

RESERVED WORDS

Some reserved words in Extended ALGOL may be used as identifiers

in certain constructs. Hence, the following list of reserved

words is divided into four types as follows:

Type I - reserved throughout Extended ALGOL.

Type 2 - reserved in Stream Procedures only.

Type 3 - standard function designators. These may be used

for any purpose for which they have been declared;

if not declared, they will be interpreted as

function designators of the standard functions.

Type 4 - may be used as identifiers, except in those con­

structs where they appear in the syntax.

Type 1

ALPHA EQV LIST SAVE

AND FALSE LOCK SPACE

ARRAY FILE MOD STEP

BEGIN FILL MONITOR STREAM

BOOLEAN FOR NOT SWITCH

CLOSE FORMAT OR THEN

COMMENT FORWARD OUT TO

DEFINE GO OWN TRUE

DIV IF PROCEDURE UNTIL

DO IMP READ VALUE

DOUBLE IN REAL WHILE

DUMP INTEGER RELEASE WITH

ELSE LABEL REWIND WRITE

END

A-I

Type 2

ADD DS RESET TALLY

CHR JUMP SB TOGGLE

CI LIT SC WDS

DB LOC SET ZON

DC LOCAL SI

DEC NUM SKIP

DI OCT SUB

Type J

ABS ENTlER SIGN STATUS

ARCTAN EXP SIN TIME

COS LN SQRT

Type 4

BREAK INTOVR PUNCH TIMES

DBL LB PURGE UPDATE

DISK LEQ RANDOM WAIT

EQL LSS RB WHEN

EXPOVR MERGE REVERSE ZERO

FLAG NEQ SEARCH ZIP

GEQ NO SEEK

GTR PAGE SERIAL

INDEX PRINT SORT

•

A-2

APPENDIX B

INTERNAL CHARACTER CODES
(In Order of Collating Sequence)

Character 6-bit Code Character 6-bit Code

blank 11 0000 H 01 1000

01 1010 I 01 1001

[01 1011 x 10 0000

(01 1101 J 10 0001

< 01 1110 K 10 0010

+--- 01 1111 L 10 0011

& 01 1100 M 10 0100

$ 10 1010 N 10 0101

* 10 1011 a 10 0110

) 10 1101 P 10 0111

10 1110 Q 10 1000

< 10 1111 R 10 1001

10 1100 ~ 11 1100

/ 11 0001 S 11 0010

11 1010 T 11 0011

% 11 1011 U 11 0100

= 11 1101 V 11 0101

] 11 1110 W 11 0110

" 11 1111 X 11 0111

00 1010 Y 11 1000

@ 00 1011 Z 11 1001

00 1101 a 00 0000

> 00 1110 1 00 0001

> 00 1111 2 00 0010

+ 01 0000 J 00 0011

A 01 0001 4 00 0100

B 01 0010 5 00 0101

C 01 0011 6 00 OlIO

D 01 0100 7 00 0111

E 01 0101 8 00].000

F 01 0110 9 00].001

G 01 0111 ? 00].100

B-1

INDEX

METALINGUISTIC VARIABLES

The syntactical definition of each Extended ALGOL metalinguistic

variable will be found on the pages shown below.

<abnormal~condition label) 6-52

<absolute address) 6-33

<action labels) 6-19

<action part) 6-59

<actual parameter) 3-7

<actual parameter list) 3-7

<actual parameter part) 3-7

<adding operator) 4-2

<address) 6-42

<arithmetic expression) 4-1

<arithmetic operator) 2-2

<array declaration) 9-3

<array identifier) 3-1

<array identifier list) 10-2

<array kind) 9-3

<array list) 9-4

<array row) 6-11

<array segment) 9-4

<array specification) 10-2

<array specifier) 10-2

<array specifier list) 10-2

<assignment statement) 6-2

<basic component set) 9-8

<basic statement) 6-2

<basic symbol) 2-1

<bits in field) 3-3

<blank replacement
transfer) 11-9

<block) 5-1

<block head) 5-1

<blocking specifications) 9-11

<Boolean expression) 4-8

<Boolean factor) 4-8

<Boolean primary) 4-9

<Boolean secondary) 4-8

<Boolean term) 4-8

<bound pair) 9-4

<bound pair list) 9-4

<bracket) 2-2

<break label) 6-57

<break-out statement) 6-32

<buffer part) 9-11

<buffer release) 6-19

<carriage control) 6-27

<case statement) 6-62

<case statement header) 6-62

<Character) 1-4

<close statement) 6-30

<compare procedure) 12-1

<compound nest) 11-14

<compound statement) 5-1

<compound stream statement) 11-16

<compound stream tail) 11-1

<compound tail) 5-1

<concatenate expression) 4-16

<concatenate operator) 4-16

<conditional statement) 7-1

<conditional stream
statement) 11-17

<core Size) 12-1

<cycle number) 6-39

<data comm close statement) 6-61

one

(data comm input action
labels) 6-52

(data comm input parameters)

(data communications I/O
statement) 6-49

(data comm output action
labels) 6-57

(data comm output
parameters) 6-57

(data comm read lock
statement) 6-54

(data comm read seek
statement) 6-56

6-52

(data comm read statement) 6- 52

(disk file description) 9-11

(disk input parameters) 6-42

(disk I/O statement) 6-42

(disk lock statement) 6-49

(disk output parameters) 6-44

(disk read seek statement) 6-45

(disk read statement) 6-42

(disk rewind statement) 6-48

(disk space statement) 6-47

(disk size) 12-1

(disk write statement) 6-44

(do statement) 8-6

(double constant) 6-9 (data comm record address and
release part) 6-52

(data comm rewind statement)

(data comm write lock
statement) 6-59

(double expression) 6-8
6- 61 (double operator) 6-9

(data comm write statement) 6-57

(date) 6-39

(decimal fraction) 2-6

(decimal number) 2-6

(decimal places) 9-19

(declaration) 9-1

(declarator) 2-2

(define declaration) 9-7

(defined identifier) 9-7

(defini_tion) 9-7

(definition list) 9-7

(definition part) 9-7

(delimiter) 2-2

(designational expression) 4-14

(destination address part) 11-6

(destination string
statement) 11-8

(digit) 2-1

(direction) 6-18

(disk access technique) 9-11

(disk close statement) 6-48

two

(double primary) 6-8

(double statement) 6-8

(dummy statement) 6-5

(dump declaration) 9-38

(dump indicator) 9-38

(dump list) 9-38

(dump list element) 9-38

(dump part) 9-38

(edit and move read) 6-41

(edit and move statement) 6-41

(edit and move write) 6-41

(editing phrase) 9-19

(editing phrase type) 9-19

(editing segment) 9-19

(editing specifications) 9-19

(empty) 1-4

(end-of-file label) 6-19

(exponent part) 2-6

(expression) 4-1

(expression list) 9-33

(expression part) 9-33

(factor) 4-1

<fault declaration) 9-40

<fault equate) 9-40

<fault list) 9-40

<fault statement) 6-34

<fault type) 6-34

<field) 6-22

<field delimiter) 6-22

<field description) 3-3

<field part) 9-19

<field width) 9-19

<file declaration) 9-10

<file identification) 6-39

<file identification part)

<file identifier) 9-10

<file lock part) 9-10

<file part) 6-19

9-11

<free-field part) 6-19
<function designator) 3-7

<general components) 3-1

<general primary) 4-16

<go to statement) 6-5

<hiv~lue procedure) 12-1

<identifier) 2-5

<identifier list) 10-1

<if clause) 4-1

<if statement) 7-1

<illegitimate character) 1-4

<implication) 4-8

<indexed file identifier)

<indexed switch file
designator) 6-15

<initial value) 6-6

<in-out part) 9-10

6-15

<fill statement) 6-6

<fixed logical record

<fixed physical record

<for clause) 8-1

<for-list) 8-1

size) 9-11 <input convert) 11-8

size) 9-11 <input option) 12-1
<input or output) 9-19

<for-list element) 8-1

<for statement) 8-1

<formal parameter) 10-1

<formal parameter list)

<formal parameter part)

<format) 6-19

10-1

10-1

<format and list part) 6-19

<format declaration) 9-19

<format identifier) 9-19

<format part) 9-19

<forward procedure
declaration) 9-35

<forward reference
declaration) 9-35

<forward switch declaration)

<free-field data) 6-21

<input procedure) 12-1

<input parameters) 6-18

<integer) 2-6

<interrogate function) 6-59

<I/O statement) 6-18

<iterative statement) 8-1

<jump out statement) 1~-14

<label) 4-14

<label declaration) 9-9

<label equation information) 6-37

<label equation part) 9-10

<label equation statement)

<label list) 9-10
6-37

<label part) 9-10

<least-significant portion) 6-9

9-35 <least-significant variable) 6-9

three

(left base) 4-16

(left bit of field) .3-3
(left bit of left base) 4-16

(left bit of right base)

(left part) 6-3

(left part list) 6-3

(letter) 2-1

(letter string) 2-8

4-16

(library call statement) 6-8

(library designator) 6-8

(link description) 4-16

(link part) 4-16

(list) 9-33

(list declaration) 9-33

(list identifier) 9-33

(list part) 9-33

(list segment) 9-33

(literal bits) 11-9

(literal characters) 11-9

(literal transfer) 11-9

(local or own type) 9-2

(lock statement) 6-30

(logical operator) 2-2

(logical value) 2-2

(lower bound) 9-4

(lower bound list) 10-2

(mask) 6-33

(merge file) 12-5

(merge file list) 12-5

(merge statement) 12-5

(mode part) 9-10

(monitor declaration) 9-36

(monitor list) 9-36

(monitor list element) 9-36

(monitor part) 9-36

(most-significant portion) 6-9

(most-significant variable) 6-9

four

(multi-file identification) 6-39

(multi-file identification
part) 9-11

(multiplying operator) 4-2

(nest) 11-14

(no-input label) 6-52

(number) 2-6

(number of areas) 9-11

(number of bits in link)

(number of buffers) 9-11

(number of nests) 11-14

(number OI records) 6-26

(number of tapes) 12-1

(octal digit) 6-6

(octal number) 6-6

(operator) 2-2

4-16

(output convert) 11-8

(output-impossible label) 6-57

(output media digit) 6-39

(output media part) 9-10

(output option) 12-1

(output parameters) 6-27

(output procedure) 12-1

(parameter delimiter) 3-7

(parity label) 6-19

(partial word designator) 3-3

(partial word operand) 3-3

(primary) 4-1

(procedure body) 10-2

(procedure declaration) 10-1

(procedure heading) 10-1

(procedure identifier) 3-7

(procedure statement) 6-10

(procedure type) 9-35

(program) 5-1

(program deSignator) 6-8

(proper string) 2-7

(read statement) 6-18

(recall address statement) 11-8

(record address part) 6-44

(record address and release
part) 6-42

(record length) 12-1

(record specifications) 9-11

(reel number) 6-39

(relation) 4-9

(relational operator) 2-2

(release statement) 6-25

(repeat part) 9-19

(repetitive indicator) 11-8

(rewind statement) 6-29

(right base) 4-16

(row) 6-6

(row designator) 6-6

(save factor) 9-11

(search statement) 6-62

(seconds) 6-32

(separator) 2-2

(sequential operator) 2-2

(set address statement) 11-6

(simple arithmetic
expression) 4-1

(simple Boolean) 4-8

(simple

(simple

(single

designationa1
expression) 4-14

variable) 3-1

space) 1-4

(size of areas) 9-11

(size specifications) 12-1

(skip address statement) 11-7

(skip bit statement) 11-13

(skip to channel) 6-27

(sort statement) 12-1

(source address part) 11-6

(source bit) 11-17

(source for alpha) 11-17

(source or destination bit) 11-13

(source string transfer) 11-8

(source with destination) 11-17

(source with literal) 11-17

(space) 1-4

(space statement) 6-26

(specification) 10-1

(specification list) 10-1

(specification part) 10-1

(specificator) 2-2

(specified lower bound) 10-2

(specifier) 10-1

(statement) 6-1

(status word) 6-50

(store address statement) 11-6

(stream actual parameter) 6-15

(stream actual parameter
list) 6-15

(stream address index) 11-6

(stream address statement) 11-6

(stream arithmetic
expression) 11-7

(stream block) 11-1

(stream block head) 11-1

(stream declaration) 11-1

(stream dummy statement) 11-16

(stream formal parameter
part) 11-1

(stream go to statement) 11-13

(stream if clause) 11-17

(stream name parameter) 6-15

(stream nest statement) 11-14

(stream primary) 11-7

(stream procedure call
statement) 6-15

(stream procedure
declaration) 11-1

(stream procedure heading)

(stream procedure
identifier) 6-15

11-1

five

(stream release statement) 11-15

(stream repeat part) 11-8

(stream simple variable) 11-1

(stream statement) 11-5

(stream tally statement) 11-14

(stream value parameter) 6-15

(stream variable
declaration) 11-1

(stream variable list) 11-1

(string) 2-7

(string bracket character) 1-4

(string character) 1-4

(subscript expression) 3-1

(subscript list) 3-1

(subscripted variable) 3-1

(switch declaration) 9-6

(switch designator) 4-14

(switch file declaration) 9-18

(switch file designator) 3-4

(switch file identifier) 3-4

(switch file list) 9-18

(switch format declaration) 9-32

(switch format designator) 3-5

(switch format identifier) 3-5

(switch format list) 9-32

(switch identifier) 4-14

(switch list) 9-6

(switch list declaration) 9-34

(switch list designator) 3-6

(switch list identifier) 9-34

(switch l~st list) 9-34

(term) 4-1

(terminal buffer specifier) 6-52

(test) 11-17

(transfer and add) 11-8

(transfer and convert) 11-8

six

(transfer character
portions) 11-8

(transfer characters) 11-8

(transfer part) 11-8

(transfer type) 11-8

(transfer words) 11-8

(type) 9-2

(type declaration) 9-2

(type list) 9-2

(unblocked specification) 9-11

(unconditional statement) 6-2

(unconditional stream
statement) 11-5

(unlabeled basic statement) 6-2

(unlabeled block) 5-1

(unlabeled compound
statement) 5-1

(unlabeled stream statement) 11-5

(unsigned integer) 2-6

(unsigned number) 2-6

(upper bound) 9-4

(value list) 6-6

(value part) 10-1

(variable) 3-1

(variable identifier) 3-1

(visible string character) ~.-4

(wait part) 6-52

(wait statement) 6-33

(well-formed construct) 9-7

(when statement) 6-32

(while statement) 8-6

(word count) 6-25

(write statement) 6-27

(zip statement) 6-36

Q)
c

-0
Q)

01-
01-

o
-0
0>
C
o
o

01-

::::>
u

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: ___________ _

CHECK TYPE OF SUGGESTION:

DADDITION DDELETION DREVISION

FORM:
DATE:

DERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE ___ . ___ _

TITLE
COMPANY _______________ __

ADDRESS

STAPLE

FOLD DOWN SECOND FOLD DOWN

I ,
t
J

• I
J
t
I

• • f ,
I
t
f
I

• t

f
t
I ,
t
T
1

• T
1

• t
t
4
t
T ,
t
t ,
• ---~----------------------------r

attn: Sales Technical Services
Systems Documentation

[

--.---- BUSINESS REPLY MAIL .-­

First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

I
~ ,
{

• t
t ,
+
t ,
f
t
I
4
t
t
1 ,
t ,
t'
t
I ..
t
t
1
f
r
L
~
t
l ,
t
r ,
t
t ,
• f

--~-~-----------------1

FOLD UP FIRST FOLD UP
• f
r ,
t
t ,
~.

r
1
4
1
1 ,
t
1 ,
f
t ,
f
t
I
f
t
f ,
t
t ,
• ,
I

• t
I
I
f
(

~

1028024

Wherever There's
Business There's Burroughs

7-67 Printed in U .S. Arn'~

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	A-1
	A-2
	B-1
	B-2
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	replyA
	replyB
	zBack

