
•
UNISYS A Series

ALGOL
Programming
Reference Manual

Volume 2: Product Interfaces

Priced Item

September 1991
Printed in US America
8600 0734-000

• UNISYS A Series
ALGOL
Programming
Reference Manual

Volume 2: Product Interfaces

Copyright C> 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation

Release 3.9.0

Priced Item

September 1991
Printed in US America
8600 0734-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing. living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
sroup or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product Ucense or Asreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such Ucense or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to chanp without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence reprding this publication should be forwarded to Unisys Corporation either by
using the Business Reply Mail form at the back. of this manual or by addressi"I remarks directly to
Unisys Corporation, Technical Publications, 25725 Jeronimo Road, Mission Viejo, CA 92691.

Page Status

Pap Issue

iii -000
iv Blank
v through xi -000
xii Blank
xiii through xix -000
xx Blank
xxi -000
xxii Blank
1-1 through 1-12 -000
2-1 through 2-34 -000
3-1 through 3-65 -000
3-66 Blank
4-1 through 4-87 -000
4-88 Blank
5-1 through 5-61 -000
5-62 Blank
6-1 through 6-23 -000
6-24 Blank
7-1 through 7-88 -000
A-1 through A-9 -000
A-10 Blank
B-1 through B-10 -000
Glossary-1 through Glossary-42 -000
Bibliography-1 through -000
Bibliography-3
Bibliography-4 Blank
lndex-1 through lndex-17 -000
lndex-18 Blank

Unisys uses an 11-digit document numbering system. The suffix of the document number
(1234 5678-xyz) indicates the document level. The first digit (x) designates a revision
level; the second digit (y) designates an update level. For example, the first release of a
document has a suffix of -000. A suffix of -130 designates the third update to revision l.
The third digit (z) is used to indicate an errata for a particular level and is not reflected in
the page status summary.

8600 0734-000 iii

About This Manual

Unisys Extended ALGOL is a high-level, structured programming language
designed for A Series systems. In addition to implementing virtually all of ALGOL
60, Unisys has developed extensions that enhance the basic capabilities of the
language.

Purpose
The programming reference material for Unisys Extended ALGOL is divided into
two volumes. The A Serles ALGOL Programming Reference Manual, Volume 1:
Basic Implementation contains ALGOL language components that can be used for
all Unisys products. This volume, Volume 2, contains the ALGOL interfaces
specifically developed for the following products:

• Advanced Data Dictionary System (ADDS)

• Communications Management System (COMS)

• Data Management System II (DMSll)

• DMSII Transaction Processing System (TPS)

• Screen Design Facility Plus (SDF Plus)

• Semantic Information Manager (SIM)

ADDS and SIM are part of the lnfoExec<D (Information Executive) family of
products. COMS and SDF Plus are members of the lnterPro (Interactive
Productivity) family of products.

Volume 2 is designed to be used in conjunction with product-specific
documentation. Before developing an application program, consult the product's
documentation for a discussion of the product, programming considerations, and
concepts. (See "Related Product Information" later in this preface for a listing
and brief description of these manuals.)

Scope
Volume 2 includes the syntax, explanation, and examples for ALGOL language
interfaces with ADDS, COMS, DMSII, TPS, SDF Plus, and SIM.

lnfoExec is a trademark of Unisys Corporation.

8600 0734-000 v

About This Manual

Volume 2 describes

• The reason for developing ALGOL interfaces

• What product interfaces and extensions are available

• Prerequisites for and interrelationships among the interfaces and extensions

• What the interfaces and extensions do

• When and how to use the extensions

Audience
The primary audience for Volume 2 consists of the application programmers
responsible for implementing programs that use one or a combination of the
specified Unisys products.

Prerequisites
Volume 2 is written for application programmers who are familiar with Unisys
Extended ALGOL as described in Volume 1, and the Unisys A Series family of
systems. Readers should also be familiar with the product or products for which
they are developing applications.

How To Use This Manual

vi

The phrase "Volume 1" refers to the first volume of the ALGOL Programming
Reference Ma:n.uaJ. set; "Volume 2" refers to the second volume.

For ALGOL syntax and rules not covered in this volume, refer to Volume 1. Also
refer to Volume 1 for information on

• Compiling programs

• The interface to the library facility

• The compile-time facility

• The batch facility

• Data representation

• Run-time format-error messages

Consult the product documentation for product error messages.

Unless otherwise specified, manuals referred to in this volume pertain to A Series
systems. Unisys documents that pertain directly to Unisys Extended ALGOL and
the interfaces covered in this volume are listed under "Related Product
Information" in this section. All documents relating to the products covered in
this volume or referred to in the text are listed in the Bibliography.

8600 0734-000

About This Manual

For ease of reading, manual titles have been shortened within the text. However,
the first reference to a manual within a section always states the full title. The
shortened title contains the acronym for the product rather than the product's
full name. For example, the Communications Management System (COMS)
Programming Guide is shortened to the COMS Programming Guide.

The Glossary includes the definition and full spelling of the acronyms found in
this volume, and terms that are important in understanding the functions or
extensions described in this volume. For definitions of product-specific terms,
refer to the appropriate programming guide.

Railroad syntax diagram notation is used to represent ALGOL syntax. A complete
description of this notation can be found in Appendix A, "Understanding
Railroad Diagrams."

Organization
After a brief introduction to ALGOL program interfaces, this volume describes
the individual program interfaces in product-specific sections. The sections are
organized alphabetically, by product. Each section summarizes the product,
examines the interface for the product, and details the extensions developed for
the product. Within a section, extensions are grouped by function. All required
syntax and explanations, as well as program examples, are included.

Each section describes how to implement the functions covered in the product
programming guide, both when the product is used by itself and when the
product is used with other products. Where an extension serves as an interface to
allow two products to work together, the products are cross-referenced. When
appropriate, requirements and options for using a combination of interfaces are
included.

Section 1. Introduction to ALGOL Program Interfaces

This section outlines the Unisys ALGOL interfaces for ADDS, COMS, DMSII, TPS,
SDF Plus and SIM. The outline of each interface lists the Unisys extensions that
make up the interface and briefly describes each extension. The brief descriptions
can be used as a quick reference aid.

Section 2. Using Advanced Data Dictionary System (ADDS) Extensions

This section presents the changes and additions made to ALGOL to allow you to
use ADDS to import record data definitions into an ALGOL program.

Section 3. Using Communications Management System (COMS) Features

This section discusses the additions made to ALGOL that make COMS features
available to an ALGOL program. The section.details how to implement headers,
service functions, and DMSII statements.

8600 0734-000 vii

About This Manual

Section 4. Using the Data Management System II (DMSII) Interface

This section contains the extensions developed for the DMSII interface. These
extensions allow you to invoke a database, use data management statements and
database items, and handle exception errors.

Section 6. Using DMSII Transaction Processing System (TPS) Extensions

This section examines the changes and additions that allow ALGOL to work with
TPS to perform online collection of input and output data for specific
transactions.

Section 6. Using the Screen Design Facillty Plus (SDF Plus) Interface

This section contains the extensions developed for the SDF Plus interface. These
extensions allow you to define a complete form-based user interface for ALGOL
application systems.

Section 7. Using the Semantic Information Manager (SIM) Interface

This section describes how ALGOL can be used to manipulate data stored in a
SIM database. It covers declaring queries, performing transactions, and handling
exceptions.

Appendix A. Understanding Railroad Diagrams

This appendix explains how to read and interpret the diagrams used to depict the
syntax and use of ALGOL.

Appendix B. Extended ALGOL Reserved Words

This appendix explains and lists the three types of ALGOL reserved words.

A glossary, a bibliography, and a volume-specific index appear at the end of this
manual.

Results

viii

After reading this document, you will be more familiar with the product
interfaces to the Unisys Extended ALGOL programming language.

Additionally, you will be able to use this document to find answers to specific
questions about the ALGOL product interfaces, and to interpret product interface
syntax in existing ALGOL programs.

8600 0734-000

About This Manual

Related Product Information
The following list contains the Unisys documents you should read to best
understand the material covered in this manual.

A Serl.es ALGOL Programming Reference Manual, Volume 1: Baaic
Implementation (8600 0098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for programmers who are familiar with
programming concepts.

A Serl.es .ALGOL Test and Debug System (TADS) Programming Gulde
(1169539)

This guide describes the features of ALGOL TADS, an interactive tool used for
testing and debugging ALGOL programs and libraries. ALGOL TADS allows the
programmer to monitor and control the execution of programs under test and
examine the data at any given point during program execution. This guide is
written for programmers who are familiar with ALGOL programming language
concepts and terms.

A Serl.es Communications Management System (COMS) Programming Gulde
(8600 0650)

The guide explains how to write online, interactive, and batch application
programs that run under COMS. This guide is written for experienced
applications programmers with knowledge of data communication subsystems.

A Serles DMSH .Application Program Interfaces Programming Gulde
(5044225). Formerly A Series DMSII User Language Interface Programming
Guide.

This guide explains how to write effective and efficient application programs
that access and manipulate a Data Management System II (DMSII) database using
either the DMSII interpretive interface or the DMSII language extensions. This
guide is written for application programmers and database administrators who
are already familiar with the basic concepts of DMSII.

A Serles DMSII 71anaaction ProceBBing System (TPS) Programming Gulde
(1164043)

This guide describes the various modules of TPS and provides information on the
TPS library of transaction processing procedures. This guide is intended for
experienced systems programmers who are familiar with Data Management
System II (DMSII).

8600 0734-000 ix

About This Manual

x

A Serles Fl.le Attributes Programming Reference Manual (8600 0064).
Formerly A Series 1/0 Subsystem Programmi~ Reference Manual.

This manual contains information about each file attribute and each direct 1/0
buff er attribute. This manual is written for programmers and operations
personnel who need to understand the functionality of a given attribute. The
A Series 1/0 Subsystem Programmi~ Guide is a companion manual.

A Serles lnfoEzec ADDS Operations Guide (8600 0197)

This guide describes Inf oExec Advanced Data Dictionary System (ADDS)
operations, such as creating and managing Data Management System II (DMSII)
and Semantic Information Manager (SIM) database descriptions. This guide is
written for those who collect, organize, define, and maintain data and who are
familiar with DMSII and SIM.

A Serles lnfoEzec Semantk lnfonnatlon Manager (SIM) Programming Guide
(1196104)

This guide describes InfoExec programming concepts and the capabilities of the
InfoExec language extensions in COBOL 7 4, Pascal, and ALGOL. This guide is
written for programmers who know at least one of the host languages thoroughly
and who are familiar with SIM.

A Serles lnfoEzec: Semantic lnfonnatlon Manager (SIM) Technical Ooeroier.o
(1196112)

This overview describes the SIM concepts on which the Inf oExec data
management system is based. This overview is written for end users, applications
programmers, database designers, and database administrators.

A Serles Screen Design Factuty Plus (SDF Plus) Capabatties Manual
(8600 0270)

This manual describes the capabilities and benefits of SDF. This manual is
written for executive and data processing management.

A Serles Screen Destgn FacUtty Plus (SDF Plus) lnstalladon and Operations
GWde (8600 0262)

This guide explains how to use SDF Plus to create and maintain a user interface.
It gives specific instructions for installing SDF Plus, using the SDF Plus forms,
and installing and running a user interface created with SDF Plus.

A Serles Screen Destgn FacUtty Plu (SDF Plu) Technical Ooeroier.o
(8600 0272)

This overview provides the conceptual inf onnation needed to use SDF Plus
effectively to create user interfaces.

8600 0734-000

About This Manual

A Serles Software Release Installation Gulde (8600 0981)

This guide explains how to use the Simple Installation (SI) program to install a
new software release on an established A Series system. This guide is written for
system administrators, operators, and others responsible for the installation of a
new software release.

A Serles Task Attributes Programming Reference Manual (8600 0502)

This manual describes all the task attributes available on A Series systems. It
also gives examples of statements for reading and assigning task attributes in
various programming languages.

A Serles X.25 MOS Opera:tions and Programming Reference Manual
(8600 0677)

This reference manual describes how to use the X.26 message control system
(MCS) to interface with packet-switched data networks (PSDNs) that use the X.25
protocol recommended by the Consultative Committee on International
Telegraphy and Telephony (CCITT). This manual describes the operations
necessary for network data transfer and the functions available for application
programming. The manual is written for system administrators, system
programmers, and application programmers.

8600 0734-000 xi ,

Contents

Section 1. Introduction to ALGOL Program Interfaces

Advanced Data Dictionary System (ADDS) Extensions 1-2
Communications Management System (COMS) Extensions . 1-4
Data Management System II (DMSll) Extensions 1-6
DMSll Transaction Processing System (TPS) Extensions 1-8
Screen Design Faclllty Plus (SDF PLUS) Extensions 1-9
Semantic Information Manager (SIM) Extensions 1-10

Section 2. Using Advanced Data Dictionary System (ADDS)
Extensions

Guldellnes for Retrieving Data Descriptions
Retrieving Descriptions
Retrieving Entities of the Same Type
Record Restrictions

Relating ADDS Data Types to ALGOL
Mapping ADDS Types to ALGOL Types
ALGOL Data Types for ADDS
Guidelines for Using ADDS Types •...............

Entity Quallflers
Referencing Flelds and Records
Compiler Control Options

DICTIONARY Option: Establishing a Data Dictionary

STATUS Option: Selecting the Status of Descriptions

RANGECHECK Option: Checking Ranges of Run-time
Values•..........................

Data Dictionary Declarations
Specifying a DICTIONARY RECORD
TYPE Declaration and Invocation
Specifying a DICTIONARY ITEM
Passing Entities as Parameters
Binding Considerations for ADDS

Statements Used as ADDS Extensions
Assignment Statement
REPLACE and SCAN Statements

Functions Used as ADDS Extensions
LENGTH Function
OFFSET Function
POINTER Function
RESIZE Function
SIZE Function

8600 0734-000

2-2
2-2
2-2
2-2
2-3
2-3
2-4
2-6
2-7
2-9

2-11

2-12

2-13

2-15
2-16
2-16
2-18
2-20
2-21
2-23
2-24
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-32

xiii

Contents

xiv

UNITS Function • • 2-33

Section 3. Using Communications Management System
(COMS) Features

U1ln1 ADDS Extensions •• COMS Extensions
Purpose of the Rangecheck Option •••.......•...
Purpose of Functions ...••...•..•..••...•.•....

Unkln1 to COMS•.................
Linking to COMS by Title••...•..•...•....

Declarln1 Input and Output Headers
Type Declaration and Invocation for COMS Headers

Binding Considerations for COMS•...••
Accessing Header Fields ...•...•..•............
Input Header Structure and Type•..••.
Output Header Structure and Type ••.•.••..•...•
Designator Data Type••..••.........

Declarln1 a Meua1e Area•...•..
COMS Statements••...............................

COMS BEGINTRANSACTION Statement••.
DISABLE Statement ..••...•.•.••..•......•.•••
ENABLE Statement•...•..••.....••.••...
COMS ENDTRANSACTION Statement .••..••••••.
MESSAGECOUNT Statement .•.•••.••••••.•...•
RECEIVE STATEMENT•..••.•.•..•.•••..
SEND Statement ••...•...•.•..•..•.....••.••••

Error Handlln1 · · .. · · . · · · · · · · ·
STATUSVALUE Field Values .•..•.....•..•..•..•
FUNCTIONSTATUS Field Values .•.•••••.•...•••
Exception-condition Statements and DMTERMINATE

COMS Service Functions•......
Functional Descriptions .•...........•...•..••..
Declaring COMS Service Functions ..•....•.•••.•
CONVERT_TIMESTAMP•..•.•.......•..••
GET -DESIGNATOR-ARRAY _USING-DESIGNATOR

GET-DESIGNATOILUSING-DESIGNATOR •......
GET _DESIGNATOR-USING-NAME•.••...
GET _INTEGER-ARRAY _USING-DESIGNATOR
GET_INTEGER-USING-DESIGNATOR•..•...
GET _NAME-USING-DESIGNATOR•....•.
GET-REAL.ARRAY •.•..............•..•.....•
GET-5TRING-USING-DESIGNATOR••.•••.

• STATION_TABLE...ADD•.••.••..•.....••.
STATION_TABLLlNITIALIZE••.•.•....•.
STATION_TABLE-5EARCH•...
TEST-DESIGNATORS•..•........
Designators for COMS Entities•..•.•........

3-2
3-2
3-2
3-4
3-4
3-5

3-7
3-9
3-9

3-10
3-12
3-14
3-16
3-17
3-18
3-20
3-22
3-24
3-26
3-27
3-29
3-32
3-32
3-32

3-32
3-33
3-33
3-34
3-36

3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49

8600 0734-000

Contents

Service Function Mnemonics and Values 3-51
Service Function Result Values . . • 3-51

COMS Sample Propam . 3-52

Section 4. Using the Data Management System II (DMSll)
Interface

8600 0734-000

lnvokln1 a DMSll Database
Declaring a Database

Example: Simple Database
Example: Invoking Disjoint Data Sets
Example: Invoking a Logical Database

Database Equation Operations ..•...............
BDMSALGOL Basic Lan1ua1e Constructs

BDMS Naming and Qualification Conventions
BDMS Identifier Construct .•....•..........
Construct for Identifiers of Occurring Items
Qualification of Database Items

Referencing Database Items•...............
Input Mapping Used with Retrieval Statements

Output Mapping Used with Storage Statements

Selecting a Record in a Data Set •...............
BDMSALGOL Statements

ABORTTRANSACTION Statement •...............
ASSIGN Statement
DMSll BEGINTRANSACTION Statement
BDMS CANCELTRPOINT Statement
BDMS CLOSE Statement•...............
CREATE Statement•.
DMSll DELETE Statement•.......
DMTERMINATE Statement
DMSll ENDTRANSACTION Statement
FIND Statement
BDMS FREE Statement
GENERATE Statement
GET Statement
DMSll INSERT Statement
BDMS LOCK Statement
DMSll MODIFY Statement
BDMS OPEN Statement
PUT Statement
RECREATE Statement
REMOVE Statement•..•...
BDMS SAVETRPOINT Statement
SECURE Statement
BDMS SET Statement
STORE Statement•.........

BDMSALGOL Functions

4-2
4-2
4-6
4-7
4-8

4-10
4-12
4-12
4-12
4-13
4-14
4-15

4-16

4-19
4-22
4-26
4-27
4-28
4-30
4-33
4-34
4-36
4-38
4-40
4-41
4-44
4-46
4-48
4-50
4-52
4-54
4-57
4-58
4-61
4-63
4-65
4-67
4-68
4-71
4-74
4-77

xv

Contents

xvi

DMTEST Function . 4-77
STRUCTURENUMBER Function 4-79

Exception Processing . 4-80
Database Status Word . 4-81
Exception Handling . 4-82

BDMSALGOI. Complier Control Options 4-84
Binding and SEPCOMP of Databases . 4-85

Binding . 4-85
SEPCOMP . 4-86

Section 5. Using DMSll Transaction Processing System (TPS)
Extensions

Using the Transaction Formatting Language (TFL)
Declaring a Transaction Base
Creating Transaction Records

Declaring Transaction Record Variables
Creating Transaction Record Formats

Using Transaction Records
Passing Transaction Record Variables as Parameters

Assigning Transaction Record Variables
Accessing Transaction Record Items
Requirements for Data Item QuaHflc:atlon

Data Item Qualification
Format Name and Data Item Name Qualification
Subformat Name and Data Item Name Qualification

Format Name, Subformat Name, and Data Item
Name Qualification

Inquiring About Transaction Record Control Items
Using Transaction Compile-time functions
Using Transaction library Entry Points

CREATETRUSER
CLOSETRBASE
HANDLESTATISTICS
LOGOFFTRUSER
LOGONTRUSER
OPENTRBASE
PROCESSTRFROMTANK
PROCESSTRNORESTART
PROCESSTRANSACTION
PURGETRUSER
READTRANSACTION
RETURNLASTADDRESS
RETURNLASTRESPONSE
RETURNSTARTINFO
SEEKTRANSACTION
SWITCHTRFILE
TANKTRANSACTION

5-3
5-4
5-7
5-7
5-9

5-11

5-11
5-12
5-13
5-15
5-15
5-15

5-15

5-16
5-17
5-18
5-20
5-20
5-20
5-21
5-21
5-21
5-21
5-21
5-22
5-22
5-22
5-22
5-23
5-23
5-23
5-23
5-24
5-24

8600 0734-000

Contents

TANKTRNORESTART
TRUSERIDSTRING

Using Update Libraries
ACCESSDATABASE Entry Point
Methods of Structuring the Update Library

Example: Update library Skeleton Program
Transaction Processing Statements

TPS BEGINTRANSACTION Statement
TPS ENDTRANSACTION Statement
MIDTRANSACTION Statement
BDMS OPEN Statement with TPS

Sample User-written Applications
Example 1: Declaring a Transaction Base and Library

Example 2: Banking Application
DASDL Description of the database
TFL Description of the Transaction Base
ALGOL Banking Application Program
Update Library

Example 3: Detanking Procedure

Section 6. Using the Screen Design faclllty Plus (SDF Plus)
Interface

Understanding SDF Plus Interface Elements
Form Record Libraries
Form Records
Form Record Numbers
Transaction Types
Transaction Numbers
Using ALGOL Functions as SDF Plus Extensions

Invoking the Form Record Library
Using the SDF Plus Remote Fiie Interface

READFORM Statement
WRITEFORM Statement

Using the Form Record Number Attribute
Using the Transaction Number Attribute
Using SDF PLUS with COMS

Using COMS Input/Output Headers
Sending and Receiving Messages
Sending Transaction Errors
Sending Text Messages

SDF PLUS Sample Programs
Example 1: General Use of SDF Plus Program

Interface
Example 2: Using COMS with the SDF Plus Program

Interface

8600 0734-000

5-24
5-24
5-25
5-25
5-26
5-26
5-29
5-30
5-32
5-33
5-34
5-36

5-37
5-39
5-39
5-41
5-44
5-52
5-57

6-2
6-2
6-2
6-3
6-3
6-3
6-4
6-5
6-6
6-6
6-7

6-10
6-12
6-14
6-14
6-15
6-15
6-16
6-17

6-17

6-20

xvii

Contents

Section 7. Using the Semantic Information Manager (SIM)
Interface

Using ADDS Extensions as SIM Extensions
Purpose of the Dictionary Option
Purpose of the Rangecheck Option
Purpose of Functions

Declarln1 11 SIM Database
Mapping SIM Types Into ALGOL
Queries .. .

Retrieval and Update Queries
Declaring a Query Data Type

Declarlng DMRECORDS
Type Declaration and Invocation for SIM
Referencing DMRECORD Fields
Using DMRECORDS and Their Fields

Passing Fields of Type Real, Boolean, Double,
and Integer

Passing Fields of Type Entity Reference
Passing Fields of Type Record
Passing Fields of Type EBCDIC Array
Passing an Entire DMRECORD Variable
Assigning Pointers
Output of Real, Boolean, Double, Integer, and

EBCDIC Array Fields
Output of Entity Reference and Record Fields

Output of DMRECORD Variables
Binding Considerations for SIM

Impact of How a Variable is Declared in a
Subprogram

Impact of Packing
Declaring an Entity Reference Variable Data Type
U1ln1 Data Management functions and Expressions

OM Arithmetic Functions
OM String Functions
OM Symbolic Functions
OM Boolean Functions
OM Primaries•.....................
Selection Expressions

SIM Statements
Using Transactions
ABORTTRANSACTION Statement
SIM BEGINTRANSACTION Statement
CANCELTRPOINT Statement
SIM CLOSE Statement
Database Attribute Assignments
SIM DELETE Statement
DISCARD Statement
SIM ENDTRANSACTION Statement
SIM INSERT Statement

7-3
7-3
7-3
7-4
7-5
7-7
7-9

7-10
7-12
7-14
7-17
7-19
7-20

7-20
7-20
7-20
7-20
7-20
7-21

7-21

7-21
7-21
7-22

7-22
7-22
7-23
7-25
7-26
7-28
7-30
7-31
7-33
7-34
7-40
7-40
7-42
7-43
7-44
7-45
•7-46
7-49
7-51
7-52
7-53

xviii 8600 0734-000

Contents

SIM MODIFY Statement 7-56
SIM OPEN Statement . 7-59
RETRIEVE Statement . 7-61
SAVETRPOINT Statement . 7-62
SELECT Statement . 7-63
SETTO Statements . 7-70

Exception Handlln1 of SIM Statements 7-72
SIM Sample Proerams . • . 7-76

Example 1: Using Project-employee Projects 7-77
Example 2: Archiving Assignments 7-79
Example 3: Listing Subprojects 7-81
Example 4: Using COMS with a SIM Database 7-83

Appendix A. Understanding Railroad Diagrams

What Are Railroad Dlacrams7 A-1
Constants and Variables A-2
Constraints • . A-2

Vertical Bar . A-3
Percent Sign • . A-3
Right Arrow . A-3
Required Items . • . A-3
User-Selected Items . • . A-3
Loop .. A-4
Bridge . • . A-4

Foilowln1 the Paths of a Railroad Dlacram A-5
Railroad Dla1ram Examples with Sample Input A-6

Appendix B. Extended ALGOL Reserved Words

Type 1 Reserved Words . • . B-1
Type 2 Reserved Words . B-2
Type 3 Reserved Words . B-5
RESERVED WORDS ALPHABETICAL LISTING B-7

Glossary

Blbliography

Index

8600 0734-000 xix

Tables

1-1. ADDS Extensions . 1-2
1-2. COMS Extensions . 1-4
1-3. DMSll Extensions . 1-6
1-4. TPS Extensions . 1-8
1-5. SDF Plus Extensions . 1-9
1-6. SIM Extensions . 1-10

2-1.
2-2.

Mapping ADDS Types to ALGOL Types
Brief Description of ALGOL Data Types

2-4
2-5

3-1. Input Header Structure and Type 3-11
3-2. Output Header Structure and Type . 3-13
3-3. A Brief Explanation of COMS Service Functions 3-33
3-4. COMS Entities • . 3-49
3-5. Installation Data Values . 3-51

5-1. TFL Item Interpretations 5-3

7-1. Mapping SIM Types into ALGOL . 7-7
7-2. OM Function Keywords and Values Returned . 7-27

8600 0734-000 xxi

Section 1
Introduction to ALGOL Program
Interfaces

A program interface consists of the conventions, protocols, and syntax available
in a programming language to manipulate a software product to produce the
desired output.

As Unisys develops new software products, the existing program interface
components are not always able to manipulate the products for their intended
uses. When this occurs, Unisys also develops and implements any required,
additional program interface components.

The additional program interface components presented in the ALGOL
Programming Reference Manual are extensions of ALGOL 60. Collectively,
ALGOL 60 and Unisys extensions to ALGOL 60 are referred to as Unisys
Extended ALGOL. Extensions that are developed for use with a specific product
or products are described here, in Volume 2. These products are

• Advanced Data Dictionary System (ADDS)

• Communications Management System (COMS)

• Data Management System II (DMSII)

• DMSII Transaction Processing System (TPS)

• Screen Design Facility Plus (SDF Plus)

• Semantic Information Manager (SIM)

The following tables name and briefly describe the extensions used with each
product. The products are presented alphabetically, one per table. The extensions
are ordered alphabetically within the table.

8600 0734-000 1-1

Introduction to ALGOL Program Interfaces

Advanced Data Dictionary System (ADDS)
Extensions

1-2

The ADDS program interface allows programs to retrieve and incorporate data
descriptions as declarations. The ADDS extensions can be used to def'me records
and items. An ALGOL program can use ADDS extensions with COMS, DMSII, and
SIM extensions.

Outlined in Table 1-1 are the types, statements, dictionary entity declarations,
compiler control options, and functions that comprise the interface. Refer to
Section 2, "Using Advanced Data Dictionary System (ADDS) Extensions" for more
information.

Table 1-1. ADDS Extensions

Extension Explanation

Assignment statement

Data types

DICTIONARY option

DICTIONARY ITEM
declaration

DICTIONARY RECORD
declaration

Entity qualification

LENGTH function

OFFSET function

POINTER function

RANGECHECK option

REPLACE statement

RESIZE function

SCAN statement

SIZE function

STATUS option

TYPE declaration

Causes item on the right of the assignment operator to be
evaluated and the resulting value to be assigned to the item
on the left of the assignment operator.

Specific types for ADDS items and embedded items.

Establishes the dictionary to be used during compilation.

Declares which nonstructural entity description is to be
retrieved.

Declares which record description is to be retrieved.

Specifies the exact entity to be referenced.

Returns the length of a specified entity.

Returns the number of units a specified entity is offset from
the beginning of the outermost record.

Returns a pointer to a specified input.

Causes range checking to be performed at run time.

Transfers data from one or more sources to a destination.

Changes the size of the array underlying a given record
identifier.

Examines a contiguous portion of data in a field or record.

Returns the size of the array underlying a given record
identifier.

Specifies the status of data descriptions to be retrieved from
the ADDS.

Declares a user-defined type identifier with a format.

8600 0734-000

Extension

Type invocation

UNITS function

8600 0734-000

Introduction to ALGOL Program Interfaces

Table 1-1. ADDS Extensions (cont.)

Declares records which have their structures stored in a
specified type identifier.

Returns the default unit size of the data in the specified
entity.

1-3

Introduction to ALGOL Program Interfaces

Communications Management System (COMS)
Extensions

1-4

The COMS extensions, outlined in Table 1-2, allow you to write interactive and
batch application programs that run under COMS. The extensions are detailed in
Section 3, "Using Communications Management System (COMS) Features."

Through extensions, the programs can also use ADDS functions, DMSII and SIM
synchronized recovery, and COMS service functions. Statements used specifically
for synchronized recovery with DMSII are included as COMS extensions.
Statements for synchronized recovery with TPS are included in Section 5, "Using
DMSII Transaction Processing System (TPS) Extensions." Statements for
synchronized recovery with SIM are included in Section 7, "Using the Semantic
Information Manager (SIM) Interface."

Additional information related to COMS extensions is included in Section 4,
"Using the Data Management System II (DMSII) Interface," and Section 2, "Using
Advanced Data Dictionary System (ADDS) Extensions."

Extension

BEGINTRANSACTION
statement

COMSRECORO declaration

DISABLE statement

Designator type

ENABLE statement

ENOTRANSACTION
statement

INPUTHEAOER declaration

LENGTH function

MESSAGECOUNT
statement

OFFSET function

OUTPUTHEAOER
declaration

Table 1-2. COMS Extensions

Explanation

Places the program in transaction state. It is used only with
audited databases.

Retrieves COMS.related format definitions from an external
system library.

Logically disconnects COMS from a specified destination.

Allows programs, running under COMS, to control messages
symbolically.

Logically connects COMS from a specified destination.

Takes the program out of transaction state. It is used only
with audited databases.

Associates message routing or descriptive information with
an identifier when a program receives a message from
COMS.

Returns the length of a specified entity.

Returns the number of messages in specified queues.

Returns the number of units a specified entity is offset from
the beginning of the outermost record.

Associates message routing or descriptive information with
an identifier when a program sends a message to COMS.

8600 0734-000

Introduction to ALGOL Program Interfaces

Table-1-2. COMS Extensions (cont.)

Extension Explarudlon

POINTER function

PROCEDURE declaration

RANGECHECK option

RECEIVE statement

RESIZE function

SIZE function

SEND statement

UNITS function

8600 0734-000

Returns a pointer to a specified input.

Declares a service function entry point in a predeclared
library.

Causes range checking to be performed at run time.

Requests a message to be transferred from the COMS
program queue to the message area.

Changes the size of the array underlying a given record
identifier.

Returns the size of the array underlying a given record
identifier.

Requests a message, or portion of a message, to be
transferred from the message area to a specified
destination.

Returns. the default unit size of the data in the specified
entity.

1-5

Introduction to ALGOL Program Interfaces

Data Management System II (DMSll) Extensions

1-6

The DMSII extensions, outlined in Table 1-3, allow you to declare and use
databases in your application programs and to handle exception errors.

BDMSALGOL provides the extensions for declaring and using databases.
Programs that declare and use databases still can use the Binder program and the
separate compilation (SEPCOMP) f acillty.

DMSII and SIM databases can be manipulated in the same program. The DMSII
extensions must be used with the DMSII databases. The SIM extensions must be
used with the SIM databases. COMS can be used with DMSII for synchronized
recovery. TPS can also be used with DMSII. ADDS can be used to import
definitions.

For the details of the DMSII extensions, consult Section 4, "Using the Data
Management System II (DMSII) Interface."

Additional information related to DMSII extensions is included in Section 2,
"Using Advanced Data Dictionary System (ADDS) Extensions," Section 7, "Using
the Semantic Information Manager (SIM) Interface," Section 5, "Using DMSII
Transaction Processing System (TPS) Extensions," and Section 3, "Using
Communications Management System (COMS) Features."

Table 1-3. DMSll Extensions

Extension Explanation

ASSIGN statement

BEGINTRANSACTION
statement

BDMS CLOSE statement

BDMS FREE statement

BDMS LOCK statement

BDMS OPEN statement

BDMS SET statement

CREATE statement

DATABASE declaration

Establishes a link from one record in a data set to another
record of the same data set.

Places a program in transaction state. It is used only with
audited databases.

Closes a database when further access is no longer required.

Unlocks the current record.

Finds a record and locks it against a concurrent modification
by another user. The MODIFY and BDMS LOCK statements
are synonyms.

Opens a database for subsequent access and designates the
access mode.

Alters the current path or changes the value of an item in
the current record.

Initializes the user work area of a data set record.

Specifies which database or parts of a database are to be
invoked.

8600 0734-000

Introduction to ALGOL Program Interfaces

Table 1-3. DMSll Extensions (cont.)

Extension Explanation

database attribute
assignment statement

DATADICTINFO option

DELETE statement

DMTERMINATE statement

DMTEST function

ENDTRANSACTION
statement

FIND statement

GENERATE statement

GET statement

INSERT statement

LISTDB option

MODIFY statement

NODEFINE option

PUT statement

RECREATE statement

REMOVE statement

Selection expression

STORE statement

STRUCTURENUMBER
function

8600 0734-000

Allows the database to be specified at run time, and allows
access to databases under different usercodes and on packs
not visible to a task.

Determines whether information on the use of database
structure and items is placed in the object code file.

Deletes a specific record.

Aborts the current action.

Determines whether an item is null.

Takes a program out of a transaction state. It is used only
with audited databases.

Transfers a record to the work area associated with a data
set or global data.

Creates a subset in one operation. All subsets must be
disjoint bit vectors.

Transfers information from the user work area associated
with a data set or global data record into program variables
or arrays.

Places a record into a manual subset.

Determines whether information about the database is
included in the printer listing.

Finds a record and locks it against a concurrent modification
by another user. (See BDMS LOCK statement.)

Determines whether defines are expanded in BDMSALGOL
constructs.

Transfers information from program expressions into the
user work area associated with a data set or global data
record.

Partially initializes the user work area.

Removes a record from a subset.

Used in DELETE, FIND, MODIFY, and BDMS LOCK
statements to identify a specific record in a data set.

Places a new or modified record into a data set.

Determines the structure number of a data set, set, or
subset. It can be used to analyze exception condition results.

l-7

Introduction to ALGOL Program Interfaces

DMSI I Transaction Processing System (TPS)
Extensions

1-8

The TPS extensions, outlined in Table 1-4, aid DMSII users in processing a high
volume of transactions with synchronized recovery. Statements used specifically
for synchronized recovery are available only in BDMSALGOL. Synchronized
recovery can be provided through COMS.

Refer to Section 5, "Using the DMSII Transaction Processing System (TPS)
Extensions," for details of the extensions.

Additional information related to DMSII TPS extensions is included in Section 4,
"Using the Data Management System II (DMSII) Interface."

Table 1-4. TPS Extensions

Extension Explanation

BEGINTRANSACTION
statement

BDMS OPEN statement

Compile-time functions

CREATE statement

ENDTRANSACTION
statement

Item reference

MIDTRANSACTION
statement

TRANSACTION BASE
declaration

TRANSACTION RECORD
declaration

TRANSACTION RECORD
ARRAY declaration

Transaction record control
items

Transaction record variable
assignment

Places a program in transaction state. It is used only with
audited databases.

Opens a database for subsequent access and designates the
acces5 mode.

Provide access to properties of transaction record formats.

Initializes a transaction record variable to a particular format.

Takes a program out of a transaction state. It is used only
with audited databases.

Identifies and names a transaction record variable.

Causes the compiler to generate calls on the given
procedure prior to the call on the Data Management System
(OMS) procedure in Accessroutines.

Specifies which transaction base or subbase is to be
invoked.

Associates a transaction record variable with a transaction
base or subbase.

Allows transaction record to be passed to Transaction Library
as a parameter.

System-defined items maintained by TPS. Control items are
defined only after a transaction record has been created.

Copies content of one transaction record variable to another
transaction record variable in the same transaction base.

8600 0734-000

Introduction to ALGOL Program Interfaces

Screen Design Facility Plus (SDF Plus) Extensions

The SDF Plus extensions, outlined in Table 1-6, are used to write programs that
directly take advantage of SDF Plus. Programs also can be written to take
advantage of SDF Plus by way of the COMS interface.

Refer to Section 6, "Using the Screen Design Facility Plus (SDF Plus) Interface,"
for details of the SDF Plus extensions.

Additional information related to SDF Plus extensions is included in Section 3,
"Using Communications Management System (COMS) Features," and Section 2,
"Using Advanced Data Dictionary System (ADDS) Extensions."

Table 1-5. SDF Plus Extensions

Extension Expl•natlon

DICTIONARY option

DICTIONARY
FORMRECORDLIBRARY
declaration

Form record number
attribute

LENGTH function

OFFSET function

POINTER function

READFORM statement

RESIZE function

SIZE function

Transaction number
attribute

UNITS function

WRITEFORM statement

8600 0734-000

Establishes the dictionary to be used during compilation.

Invokes an SDF Plus form record library from the specified
ADDS dictionary.

Provides a means of performing 1/0 operations on form
record libraries to enable individual form records to be
specified at run time.

Returns the length of an entity in the designated units.

Returns the number of units a specified entity is offset from
the beginning of the outermost record.

Returns a pointer to the specified input.

Causes a form record to be read from the specified remote
file and stored in the specified buffer.

Changes the size of the array underlying a given record
identifier.

Returns the size of the array underlying a given record
identifier.

Provides a means of performing 1/0 operations on form
record libraries to enable individual transactions to be
specified at run time.

Accepts an entity as input and returns, as an integer value,
the default unit size expected by the LENGTH and OFFSET
functions.

Causes the contents of a form record to be written to the
specified remote file.

1-9

Introduction to ALGOL Program Interfaces

Semantic Information Manager (SIM) Extensions

1-10

The SIM extensions are used to manipulate the actual data stored in a SIM
database. These extensions are outlined in Table 1-6. Library programs can
define and access SIM databases. Query records can be passed to and from library
procedures.

COMS can be used with SIM for synchronized recovery. SIM and DMSII databases
can be manipulated in the same program. The SIM extensions must be used with
the SIM databases. The DMSII extensions must be used with the DMSII databases.

Data definitions can be retrieved from ADDS. Several ADDS functions can also be
used.

Consult Section 7, "Using the Semantic Information Manager (SIM) Interface," for
details of the SIM extensions, including synchronized recovery.

Additional information relating to SIM extensions is included in Section 3, "Using
Communications Management System (COMS) Features," Section 4,"Using the
Data Management System II (DMSII) Interface," and Section 2, "Using Advanced
Data Dictionary System (ADDS) Extensions."

Table 1-6. SIM Extensions

Extension Exp la nation

ABORTTRANSACTION
statement

BEGINTRANSACTION
statement

CANCEL TRPOINT
statement

CLOSE statement

database attribute
assignment statement

DELETE statement

DICTIONARY option

DISCARD statement

DMRECORD type

OM functions

Aborts transaction state. It is used only with audited
databases.

Places a program in transaction state. It is used only with
audited databases.

Cancels transaction state from a specified point. It is used
only with audited databases.

Closes the specified database.

Alters immediate attributes of the perspective class.

Deletes all entities from the class satisfying the selection
expression.

Establishes the dictionary to be used during compilation.

Frees control structure resources associated with query.

Provides a means to access the data returned by SIM in a
RETRIEVE statement.

Data Management (OM) arithmetic, string, symbolic, and
Boolean functions forwarded to SIM for evaluation.

8600 0734-000

Introduction to ALGOL Program Interfaces

Table 1-6. SIM Extensions (cont.)

Extension Expla1111tlon

DMRECORD variable
declaration

OM field reference

ENDTRANSACTION
statement

ENTITY REFERENCE
declaration

Exception expression

INSERT statement

Extension

LENGTH function

MODIFY statement

OFFSET function

OPEN statement

POINTER function

QUERY dedaration

RANGECHECK option

RESIZE function

RETRIEVE statement

SAVETRPOINT statement

SELECT statement

Selection expression

SEMANTIC DATABASE
declaration

SETTOCHILD statement

SETTOPARENT statement

8600 0734-000

Structured variable used for information retrieved from SIM.

Accesses information in a DMRECORD variable.

T,_kes a program out of transaction state. It is used only with
audited databases.

Contains an explicit reference to a database entity.

Provides additional information concerning data
management exceptions.

Causes attribute assignments to be applied to the database
and creates a new entity.

Explanation

Returns the length of a specified entity.

Causes attribute assignments to be applied to the database.

Returns the number of units a specified entity is offset from
the beginning of the outermost recard.

Opens the specified database.

Returns a pointer to a specified input.

Declares classes or types used in query.

Causes range checking to be performed at run time.

Changes the size of the array underlying a given record
identifier.

Retrieves the attributes associated with the query variable.

Saves transaction state from the specified point. It is used
only with audited databases.

Selects a set of entities from the perspective class and
associates it with the query variable.

Used to determine which entities from the database are
eligible for retrieval, deletion, or modification.

Specifies which SIM database and classes are available to
the program.

Adjusts level of the next retrieval away from the root of the
query tree.

Adjusts level of the next retrieval toward the root of the
query tree.

1-11

Introduction to ALGOL Program Interfaces

Extension

SIZE function

TYPE declaration

UNITS function

1-12

Table 1-6. SIM Extensions (cont.)

Explanation

Returns the size of the array underlyina a given record
identifier.

Defines a data structure description which can be used to
define a structured variable.

Returns the default unit size of the data in the specified
entity.

8600 0734-000

Section 2
Using Advanced Data ·Dictionary
System (ADDS) Extensions

The Advanced Data Dictionary System (ADDS) provides for the creation, storage,
and retrieval of data descriptions. A data description details the characteristics
of the data (such as length and type). It does not identify or define the value of
the data.

Through ADDS, a program can import record and item definitions. ALGOL
programs can incorporate the descriptions as declarations but cannot alter the
descriptions.

Consult the section "Using the Semantic Information Manager (SIM) Interface"
for an explanation of the relationship between ADDS and SIM. Ref er to the
section "Using the Data Management System II (DMSII) Interface" for further
information on the relationship between ADDS and DMSII.

Consult the lnfo&ec ADDS Operations Guide for a discussion of concepts,
procedures, and programming considerations when defining, using, and invoking
entities.

Conceptually, ALGOL regards ADDS as a "global" type description storage
dictionary. Retrieved entities are seen as type descriptions which are applied to
variables being declared in the ALGOL program. Variables declared using the
same entity (type description) are distinct variables with separate data spaces.

Note: Entities defined using a previous release of ADDS and migrated to 3.8
ADDS are accessible through the interface.

Additional information related to ADDS extensions is included in Section 7,
"Using the Semantic Information Manager (SIM) Interface," and Section 4, "Using
the Data Management System II (DMSII) Interface."

8600 0734-000 2-1

Using Advanced Data Dictionary System (ADDS) Extensions

Guidelines for Retrieving Data Descriptions
Data descriptions, or metadata, are the stored format descriptions of the data,
not the data itself. The data descriptions reside in ADDS.

To retrieve data descriptions, use the DICTIONARY compiler control option to
identify the data dictionary where the data descriptions reside. The data
dictionary must be specified before the first syntactic element of the program.
Once the data dictionary is identified, retrieval of a data description can be
performed using a dictionary declaration.

The TYPE declaration can be used as a substitute for DICTIONARY RECORD
declarations. The TYPE declaration associates a user-defined name with a record
structure description. It can be used multiple times to define data spaces with the
same description or to describe parameters to procedures.

Retrieving Descriptions

Use the DICTIONARY RECORD declaration to specify the record description you
want to retrieve. Use the DICTIONARY ITEM declaration to specify the item
description you want to retrieve. (An item is any nonstructural entity that can be
retrieved directly from ADDS.) A data dictionary must be established, using the
DICTIONARY option, before using these declarations.

Retrieving Entities of the Same Type

To retrieve several entities of the same type from ADDS, you can declare each
corresponding variable separately or you can list the variables in one declaration
list. The ordering of entities has no significance.

Record Restrictions

2-2

To be compatible for operations such as assignment, record variables must share
the same entity description. The variables must be described by the same
dictionary entity identifier and entity qualifiers.

Parameters must also share the same type description. The TYPE declaration can
be used to retrieve a structure which is then used repeatedly. This guarantees
that all declared variables are the same type. Note that TYPE declarations are
not necessary for ADDS-retrieved entities.

Records that are described by separate, distinct entities, even if they are identical
in format, are not compatible. Even if they match field for field, they are not
compatible because they do not share the same type identifier.

Additional information related to data descriptions is included under "Entity
qualifiers," and "TYPE Declaration and Invocation" in this section.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Relating ADDS Data Types to ALGOL
All the data types supported in ADDS are not supported in ALGOL. Some ADDS
types exist in ALGOL but cannot be retrieved through the interface. Therefore,
ALGOL programs can retrieve ADDS entities only if both of the following
conditions are met:

• ALGOL directly supports that data type.

• The ALGOL interface supports retrieving that description.

An entity can be any data type supported by both ADDS and the ALGOL
interlace to ADDS. The data type of the entity received from ADDS is verified
against the type specified in the program.

ADDS entities that are not structures are called "items." The following list shows
the ALGOL data types for items:

Binary
Boolean
Digit
Display

EBCDIC array
Event
Real
Task

Some ADDS entities, such as Records, can contain embedded items. Any
embedded item within the structure must be one of the following ALGOL data
types:

Binary
Boolean
Digit

Display
Double
EBCDIC array

Integer
Real
Record

All embedded items within a structure do not have to be the same data type.
However, they must all be supported data types for the structure to be retrieved
and acted upon correctly. An error will be reported during compilation if a
structure is retrieved that contains a field of a type not supported by ALGOL.

Each retrieved ADDS item and entity type is mapped into an existing ALGOL
type.

Mapping ADDS Types to ALGOL Types

Table 2-1 shows which ADDS types can be mapped into which ALGOL types. The
table is in alphabetical order, by ALGOL type. In addition, the table notes
whether the type can be mapped when the entity is an item or an embedded
entity.

8600 0734-000 2-3

Using Advanced Data Dictionary System (ADDS) Extensions

Table 2-1. Mapping ADDS Types to ALGOL Types

ALGOL Type Item Embedded ADDS Type

Binary x x Binary Numeric,
Binary filler

Boolean x x Boolean

Digits x x Number-Comp,
Comp filler

Display x x Display Numeric,
Numeric filler

Double x Double

EBCDIC array x x Alpha Display,
Alpha filler

Event x Event

Integer x Field

Real x x Real

Record x x Group, Record

Task x Task

Additional information related to types is included under "Guidelines for Using
ADDS Types," "Referencing Fields and Records," and "ALGOL Data Types for
ADDS" in this section.

ALGOL Data Types for ADDS

2-4

Table 2-2 briefly defines the ALGOL data types that ADDS items and embedded
items can be mapped into. Consult Volume l for information on data
representation and for in-depth definitions.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Table 2-2. Brief Description of ALGOL Data Types

ALGOL Type Brief Definition

Binary Can be used to map items and embedded items. A binary
is a 48·bit operand in integer format with an optional scale
factor. The sign can be ignored. As an embedded entity it
is byte-aligned.

Boolean Can be used to map items and embedded items. An
ALGOL "Boolean" aligned on a digit boundary. A 4·bit
type, all 4 bits are acted upon.

Digits Can be used to map items and embedded items. As an
embedded entity it is digit-aligned and has 1 to 23
hexadecimal characters with an optional sign and scale
factor. In arithmetic expressions it is used as a number.
Negative numbers are rounded away from zero (0).

Display Can be used to map items and embedded items. A display
is 1 to 23 EBCDIC numeric characters with an optional
sign and an optional scale factor. In arithmetic expressions
it is used as a number. Negative numbers are rounded
away from zero (0). As an embedded entity it is
byte-aligned.

Double Can be used to map embedded items. An ALGOL
"Double", aligned on a byte boundary.

EBCDIC array Can be used to map items and embedded items. All
EBCDIC characters are allowed. As an embedded entity it
is aligned on a byte boundary.

Event Can be used to map items. An ALGOL "Event".

Integer Can be used to map embedded items. An integer is
aligned on a digit boundary. It is a 1 to 48 bit integer,
left-justifed at the boundary, and padded with "filler" bits
on the right to the closest digit boundary. (The filler bits
cannot be referenced.) It is unsigned but always
considered to be positive.

Real Can be used to map items and embedded items. An
ALGOL "Real," as an embedded entity it is aligned on a
byte boundary.

Record Can be used to map items and embedded items. A
sequence of fields, as an embedded entity it is aligned on
a byte boundary.

Task Can be used to map items. An ALGOL "Task".

Additional information related to ADDS and ALGOL data types is included under
"Mapping ADDS Types to ALGOL Types," and "Guidelines for Using ADDS
Types" in this section.

8600 0734-000 2-5

Using Advanced Data Dictionary System (ADDS) Extensions

Guidelines for Using ADDS Types

2-6

All actions (reference or assignment) performed on a specified field must be
contained within the boundaries of that field. No explicit actions on one field can
explicitly or implicitly affect a neighboring field except as provided for by the
POINTER function. Within this guideline

• Fields of type EBCDIC array can be used anywhere an EBCDIC array can be
used.

• Fields of type Display, Digits, Binary, or Real can be used anywhere an
arithmetic primary can be used.

• Fields of type Boolean can be used anywhere a Boolean primary can be used.

• Fields of type Integer can be used anywhere an integer primary can be used.

• Fields of type Double can be used anywhere a double primary can be used.

• Fields of any type filler can never be explicitly referenced.

• Fields of type Record can be used anywhere a record can be used, except
where explicitly forbidden.

The ADDS extensions permit bit manipulation and partial reference of Real,
Boolean, and Integer fields.

Items can be used where their corresponding field types can be used (as described
above).

Arrays of fields are supported. An array of fields with a variable number of
elements is treated as an array of fields having the maximum possible number of
elements. A variable-length field is treated as a fixed-length field whose length is
the maximum possible length of that field. For example, if the length can vary
between 5 and 10 digits, a fixed length of 10 is assumed. Redef°mes are also
supported.

Additional information related to the use of ADDS types is included under
"POINTER function," "Mapping ADDS Types to ALGOL Types," "ALGOL Data
Types for ADDS," "Referencing Fields and Records," and "RANGECHECK Option:
Checking Ranges of Run-Time Values" in this section.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Entity Qualifiers
When entities are retrieved, to ensure the retrieval of the correct entity, the
entity must be identified in such a way that it cannot be confused with any other
entity. In an ALGOL program this is done with entity qualifiers. The entity
qualifiers are name, version, directory, and status.

The entity qualifiers are assigned to the entity previously in ADDS. The ALGOL
extensions only iterate the information. In the absence of specified entity
qualifiers, ADDS will apply default rules to locate and identify the appropriate
entity. Qualifiers do not have to be specified if the default rules uniquely identify
the entity. Consult the l'TlfoE:x:ec ADDS Operations Guide for the default rules.

Note: Allowing the default rules to be applied can cause a previously
compilable program to become non.compilable due to the creation of new
entities in the dictionary.

An attempt to retrieve an entity that is not recognized by ADDS results in an
error at compile time.

Syntax

<entity qualifiers>

- (1\... NAME • <entity name> ----------

!\...VERSION •<Version number> ------1
I\... DIRECTORY • - 11 1 :directory name> J 11

I\... STATUS •<Status value>-------'

Explanation

The entity qualifiers identify the exact entity to be retrieved from ADDS. Consult
the l'Tlfo&ec ADDS Operations Guide for a discussion of entity name, version,
directory, and status and the default search rules.

An entity name is the name of the type description within ADDS. If it is not
specified, the value in the identifier declaring the variable is used as the default.
Note that an entity name might contain hyphens but an identifier cannot.

Hyphens (-) are permitted only in the <entity name> construct of an ALGOL
declaration. At declaration time, hyphens are translated into underscores (_)
within the compiler. An error is generated if, in the same scope, the translated
identifier is already declared, or if a later declaration ·attempts to declare the
translated identifier.

A version number is an integer assigned to the entity by the data dictionary.

8600 0734-000 2-7

U1ln1 Advanced Data Dictionary System (ADDS) Extensions

2-8

The directory is a literal that represents a valid directory name recognized by
ADDS. The directory name is a maximum of 17 characters. An asterisk (*)
explicitly specifies that the entity to be retrieved has no directory name.

The status value allows a particular status to be retrieved. The qualifier specifies
the expected status value of the entity and overrides the status specified by the
STATUS compiler control option.

Valid status values are TFJJT and PRODUCTION. No other status can be invoked
by the ALGOL compiler.

Additional information related to status values is included under "STATUS
compiler control option" in this section.

Enmple

In the following example, all possible qualifiers are used to identify the entity:

(NAME • RECORD, VERSION • 123456,
DIRECTORY• "ACCOUNT", STATUS• TEST)

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Referencing Fields and Records
When referencing fields in a record, each field must be uniquely identified. The
field is qualified by the record identifier, the field identifier, and, as needed, by a
subscript field identifier.

Syntax

<qualified field ID and qualified record ID>

- <record ID>-. r <field ID> -----......... -------------1
~ <subscripted field ID> ~

<Subscripted field ID>

- <field ID> - [- <Subscript> -] -------------------1
Explanation

The <record ID> construct identifies the record that qualifies the field.

The <field ID> construct identifies the ADDS name for the field. If the field was
declared in the record as a subscripted field or as an EBCDIC array field, use the
<subscripted field ID> syntax to specify the occurrence of the field or the
element of an EBCDIC array.

The subscript can be any arithmetic expression. Arrays of fields (ADDS occurs)
are one-bounded. EBCDIC array fields are zero-bounded.

ADDS field identifiers might contain both underscores and hyphens. However, in
ALGOL, underscores must be used in place of the hyphens. This can cause two
fields in the same record to have the same name. For example, in ADDS the fields
can have the names NEW....ACCOUNT and NEW-ACCOUNT. In ALGOL they are
both noted as NEWACCOUNT and only the first field of that name can be
referenced.

Examples

In the following example, the field MAY is qualified by the record ACCOUNTS:

ACCOUNTS.MAY

Below, the field MAY is qualified by the form record ACCOUNTS and the form
record library GENERALLEDGER.

GENERALLEDGER.ACCOUNTS.MAY

8600 0734-000 2-9

Usln1 Advanced Data Dictionary System (ADDS) Extensions

2-10

The following example illustrates how to reference occurrence three in the
STUDENT field in the INSTRUCTOR record.

INSTRUCTOR.STUDENT[3]

The next example shows the syntax to reference character four of occurrence two
in the field STUDENT in the record INSTRUCTOR.

INSTRUCTOR.STUDENT[2,3]

8600 0734-000

Usln1 Advanced Data Dictionary System (ADDS) Extensions

Compiler Control Options
One compiler control option is specific to ADDS: the STATUS option. The
DICTIONARY option can be used as an ADDS and SIM extension. The
RANGECHECK option can be used as an ADDS extension, as well as both a COMS
and SIM extension.

• The DICTIONARY option establishes the dictionary to use during compilation.

Note: A dictionary must be established before the jirst ezecutable
statement in the progralm. A program that retrieves an entity must
speC'l/JJ a dictionary before it attempts the retrieval. 1J a dictionary is
not pl"6'Viously speciJied., the program wiU not com.pile. Only one
dictionary can be used by the 'P'f'Oflram.

• The STATUS option specifies the status value of the retrieved data
description. The status value can be changed as needed. A status value is not
required for successful compilation of the program.

• The RANGECHECK option causes the compiler to perform range checking on
some run-time values; it is not required for successful compilation of the
program.

8600 0734-000 2-11

Using Advanced Data Dictionary System (ADDS) Extensions

DICTIONARY Option: Establishing a Data Dictionary

2-12

The DICTIONARY compiler control value option establishes the ADDS to use
during compilation. The option can be used without retrieving any descriptions
from ADDS.

Note: A data dictionary must be estabti.shed before the first executabl.e
statement. Only one data dictionary can be used. by the program. If the
program attempts to retrieve a description and. a data dictionary wa,,
not previously specified, the program does not compile.

The compiler links to the specified ADDS (system library) when the first··
executable statement is encountered. The link is ended at the end of the
compilation. The data dictionary specified in the first occurrence of a
DICTIONARY option is used as the data dictionary. All other occurrences incur
warning messages but are otherwise ignored.

If the compiler cannot link to the specified data dictionary, the error message

DICTIONARY NOT PRESENT OR UNABLE TO LINK

is generated. The compilation is terminated.

Syn tu:

<dictionary option>

- 01cr10NARv -.-[-_-] " - <dictionary 10> -[.---.-]-.-" -----------

Explanation

The <dictionary ID> construct is the function name (system library) of the data
dictionary.

When using SIM, the dictionary ID must be the ADDS to which SIM is linked.

Example

In the following example, the dictionary with the name DATADICTIONARY will
be used during program compilation:

$SET DICTIONARY .. "DATADICTIONARV. II

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

STATUS Option: Selecting the Status of Descriptions

The STATUS option is a value option used to specify the status of the data
descriptions to be retrieved. The STATUS option can appear anywhere within the
program. The value can be changed as often as desired. This option has no effect
on declarations which explicitly specify an entity status.

Additional information related to status values is included under "Entity
qualifiers," "DICTIONARY RECORD declaration," and "DICTIONARY ITEM
declaration" in this section.

Syntax

<status option>

- STATUS - • - <Status value> -------------------

<status value>

1TEST---.----------------------------

PAOOIJCTION j
ANY-----'

Explanation

Instances where no status value is specified and where the status value is ANY
are treated in the same way. Refer to the lfl/oExec ADDS Operations Guide for
more complete definitions of status values and default rules.

Examples

In the example below, the dictionary DATADICTIONARY will be used during
program compilation. From this dictionary, the system will first try to retrieve
the record MAYLEDGER with a PRODUCTION status. If none can be found, the
system will try to retrieve the record MAYLEDGER with a TEST status.

$SET DICTIONARY - "DATADICTIONARY. II

$SET STATUS•ANY
DICTIONARY RECORD MAYLEDGER;

In the following example, the dictionary DATADICTIONARY will be used during
program compilation. From this dictionary, the system will only try to retrieve
the record MAYLEDGER with a TEST status.

$SET DICTIONARY• "DATADICTIONARY."
$SET STATUS-TEST
DICTIONARY RECORD MAYLEDGER;

As shown below, the dictionary DATADICTIONARY will be used during p~gram
compilation. Although the status option is set to TEST, the system will only
retrieve the record MA YLEDGER with a PRODUCTION status because the status
is explicitly set in the declaration.

8600 0734-000 2-13

Using Advanced Data Dictionary System (ADDS) Extensions

2-14

$SET DICTIONARY - 11 DATADICTIONARY. II

$SET STATUS-TEST
DICTIONARY RECORD MAYLEDGER (STATUs-PRODUCTION);

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

RANGECHECK Option: Checking Ranges of Run-time Values

The RANGECHECK option is a Boolean option that causes range checking to be
performed at run time. The option is set by default. Use $RESET to reset the
option.

The ranges checked include

• During assignments, checking if the numbers assigned into Display, Digits,
Integer, and Binary items or fields are too large to be assigned. (This also
checks for truncation errors.)

• Checking if subscripts are within the range for arrays of fields and for
EBCDIC array fields.

A run-time fault occurs if a value fails a range check; the program is discontinued
and an "Invalid Operation" is reported.

Syntax

<rangecheck option>

- RANGECHECK --------------------------!
Example

In the example, the RANGECHECK option is reset. The compiler does not perform
range checking at run time. This means the compiler emits faster code but allows
incorrect assignments or indexing.

$RESET RANGECHECK

8600 0734-000 2-15

Using Advanced Data Dictionary System (ADDS) Extensions

Data Dictionary Declarations
The DICTIONARY RECORD and DICTIONARY ITEM declarations are used to
retrieve record descriptions and item descriptions from the specified ADDS.

A data dictionary must be set using the DICTIONARY option before the compiler
encounters any data dictionary retrieval declaration.

Additional information related to data dictionary declarations is included under
"DICTIONARY Option: Establishing a Data Dictionary," and "Guidelines for
Retrieving Data Descriptions" in this section.

Specifying a DICTIONARY RECORD

2-16

The DICTIONARY RECORD declaration specifies which record description is to be
retrieved from ADDS.

A DICTIONARY RECORD can also be declared using a TYPE declaration and
invocation. Because ADDS entities are considered to be global, the TYPE
declaration and invocation are not required with ADDS entities.

Additional information related to the DICTIONARY RECORD is included under
"TYPE Declaration and Invocation," and "Binding Considerations for ADDS" in
this section.

Syntax

<dictionary record declaration>

- DICTIONARY RECORD 1 <record Ill> - • ?
~ <entity qualifiers>

<record ID>

- <identifier> ---------------------------!
Additional information related to items of the DICTIONARY RECORD is included
under "Entity Qualifiers," and "Referencing Fields and Records" in this section.

Explanation

The record ID is the name within the program of the variable being declared,

The record identifier can be qualified by any or all the entity qualifiers: entity
name, version number, directory, and status.

8600 0734-000

Usln1 Advanced Data Dictionary System (ADDS) Extensions

If the identifier is qualified by an entity name, the name identifies the entity
within ADDS. If an entity name is not specified, the record ID is used as the
entity name.

Hyphens (-) are permitted only in the <entity name> construct. At declaration
time, hyphens are translated into underscores(_) within the compiler. An error is
generated if, in the same scope, the translated identifier is already declared, or if
a later declaration attempts to declare the translated identifier.

More than one record description can be retrieved at one time using a single
DICTIONARY RECORD declaration.

Examples

In the example below, the records MONTH, DATE, and YEAR are retrieved from
the ADDS with the name DATADICTIONARY.

$SET DICTIONARY• "DATADICTIONARY."
DICTIONARY RECORD MONTHS. DATE, YEAR;

In this example, version 2 of record YEARLY stored under the directory ALL is
retrieved from the ADDS with the name DATADICTIONARY.

$SET DICTIONARY• "DATADICTIONARY."
DICTIONARY RECORD YEARLY (VERSION• 2, DIRECTORY• "ALL");

Shown below, version 2 of record B is retrieved from the ADDS with the the
name DAT:ADICTIONARY. The default version of record A is retrieved.

$SET DICTIONARY - "DATADICTIONARY. II
DICTIONARY RECORD A, B (VERSION• 2);

This example retrieves the record description FACTORY from the data dictionary
DATADICTIONARY. The description is applied to the record variable
MANUFACTURE.

$SET DICTIONARY• "DATADICTIONARY."
DICTIONARY RECORD MANUFACTURE (NAME• FACTORY);

In the following example, several records are declared in distinct declarations,
and the same records are declared in one declaration.

Separately

DICTIONARY RECORD X;
DICTIONARY RECORD T;
DICTIONARY RECORD L;

8600 0734-000

Single Declaration

DICTIONARY RECORD L, T, X;

2-17

Using Advanced Data Dictionary System (ADDS) Extensions

TYPE Declaration and Invocation

2-18

ADDS entities are assumed to be defined globally to the program. Thus, the TYPE
declaration and invocation are not required with ADDS entities. However, their
use does provide for a faster compilation when a dictionary record is declared
multiple times.

The TYPE declaration associates a user-defined type identifier with a data
description and must precede the type invocation. The type invocation declares
records that have the structure associated with the type identifier.

In the TYPE declaration, a type identifier is associated with DICTIONARY
RECORD declaration. In effect, the type identifier is the name of a record
structure description. The TYPE declaration does not create a variable, it simply
defines a type identifier that can be used to declare record variables. The
variables are declared using the syntax notation shown below.

Only variables that share the same entity description and type are compatible.
Records described by separate, distinct entities and identical in content are not
compatible if they do not share the same type identifier.

Additional information related to type declarations is included under "Record
Restrictions" in this section.

Syntax

<type declaration>

- TYPE - DICTIONARY RECORD 1 <type ID> -.----------..........._ ____ _

~ <entity qualifiers> ~

<type ID>

- <identifier> -------------------------

<type invocation>

- <type ID> C.r: :1---------------------
Additional information related to items in the type declaration is included under
"Specifying a DICTIONARY RECORD," "Referencing Fields and Records," and
"Entity Qualifiers" in this section.

Explanation

The DICTIONARY RECORD declaration in the TYPE declaration identifies the
record to be used as the data definition. When the declaration is used as part of

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

the syntax of a TYPE declaration and invocation, the type ID is the name of the
record structure description.

The type identifier is the user-defined name associated with the format. The
<type ID> construct includes the name of the record declared in the TYPE
declaration. Each record specified by a record identifier in the type invocation
has the structure defined by the type identifier.

The type identifier can be qualified by any or all the entity qualifiers: entity
name, version number, directory, and status.

Examples

In the example shown below, a TYPE declaration equates the identifier
NEWRECORDTYPE with the record structure of INSTRUCTOR. The record
PROFF.sSOR is then defined. By using the type invocation, the structure of
INSTRUCTOR becomes the structure of PROFF.sSOR.

TYPE DICTIONARY RECORD NEWRECORDTYPE (NAME•INSTRUCTOR);
NEWRECORDTYPE PROFESSOR;

In the following example, a TYPE declaration equates the identifier MYRECORD
with the record structure of PAY ABLE. The type invocation is then used to
impose the record structure onto the record NEXTP AY ABLE.

TYPE DICTIONARY RECORD MYRECORD (NAME • PAYABLE,
VERSION• 123456, DIRECTORY• "ACCOUNTING");
MYRECORD NEXTPAYABLE;

8600 0734-000 2-19

Using Advanced Data Dictionary System (ADDS) Extensions

Specifying a DICTIONARY ITEM

2-20

The DICTIONARY ITEM declaration specifies which item description is to be
retrieved from ADDS. An item is an entity that is neither a structure nor
embedded in a structure.

Syntax

<dictionary item declaration>

- DICTIONARY REAL ___ I <item ID> -.--

BOOLEAN ~ <entity qualifiers> ~
DISPLAY --

DIGITS ---1

BINARY ---i

EBCDIC ARRAY ~

EVENT---

TASK ----'

Additional information related to dictionary items is included under "Entity
Qualifiers" in this section.

Explanation

Real, Boolean, Display, Digits, Binary, EBCDIC array, Event, and Task are
ALGOL-supported types.

The item ID is the name of the item. It can be qualified by name, version number,
directory, and status.

Hyphens (-) are permitted only in the <entity name> construct. At declaration
time, hyphens are translated into underscores(_) within the compiler. An error is
generated if, in the same scope, the translated identifier is already declared, or if
a later declaration attempts to declare the translated identifier.

Additional information related to dictionary items is included under "Referencing
Fields and Records," and "ALGOL Data Types for ADDS" in this section.

Example

After establishing the data dictionary DATADICTIONARY, the dictionary items
X, Y, and Z are retrieved. All three items are type Real.

$SET DICTIONARY - "DATADICTIONARY. II
DICTIONARY REAL X,
Y (VERSION• 2),
Z (NAME• A, DIRECTORY• 11*11);

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Passing Entities as Parameters

To specify a formal parameter that has a description residing in ADDS, the
<dictionary entity declaration> or <type invocation> constructs found in the
<specification> construct of the PROCEDURE declaration must be used to
declare the formal parameter. Note that the TYPE declaration can be used with
the <type invocation> construct. (The type identifier will not be interpreted as
a parameter.)

Dictionary Records, Displays, Digits, and Binaries must be specified in this
manner. Dictionary Reals, Booleans, EBCDIC arrays, Tasks, and Events can be
specified in this manner or by using normal ALGOL declarations.

Refer to Volume 1 for a full discussion of the PROCEDURE declaration.

Additional information related to entities is included under " "Specifying a
DICTIONARY RECORD," "Specifying a DICTIONARY ITEM," and "TYPE
Declaration and Invocation" in this section.

Syntax

<specification>

<Specifier> C.i~ier>_ -----------------

<procedure specification> ----1

<array specification> -----1
- <dictionary entity declaration>

<type invocation> ------1
<type declaration> ------'

Additional information related to entities is included under "TYPE Declaration
and Invocation" in this section.

Explanation

All records are passed by name only. The actual and formal parameters must
have the same dictionary entity as their type description.

When passing embedded items to items or items to items, the entity type
determines the requirements, as shown below:

1. Types EBCDIC array, Display, Digits, or Record that are embedded entities:

When passed by reference, they are passed as a by-value pointer and a
lower bound. They cannot be passed by value only. In addition, for records
to be compatible, the actual and formal parameters must have the same
dictionary type description. For Display and Digits, signs, lengths, and scale
information is ignored.

8600 0734-000 2-21

Usln1 Advanced Data Dictionary System (ADDS) Extensions

2-22

2. Types Real, Boolean, Binary, and Integer:

As fields, all specified types can be passed by value only. As items, types
Real and Boolean are treated nonnally. As items, when passed by name, type
Binary can be passed only to type Binary. Sign and scale information is
ignored.

As implemented, records are logical structures imposed by the compiler on
"*"-bound EBCDIC arrays. Items can be passed as normal ALGOL variables. A
field in a record cannot be specified as the formal parameter.

Additional information related to ADDS entities is included under ''Relating
ADDS Data Types to ALGOL" in this section.

Examples

The following two coding examples can be used to accomplish the same
programming task. In the first example, the record RECl is declared. The formal
parameter for procedure P is REC2. REC2 is the same type as RECl. When
procedure Pis called, RECl is passed as a formal parameter.

$SET DICTIONARY• "DATADICTIONARY."
BEGIN
DICTIONARY RECORD RECl (NAME•X, VERSION-2);
PROCEDURE P (REC2);
DICTIONARY RECORD REC2 (NAME•X, VERSION-2);
BEGIN

END;
P (RECl)

END.

In the example below, the record RECl is declared. The identifier Xis assigned
the type. The formal parameter for procedure P is REC2, declared to be type X.
By using X, REC2 is noted as the same type as RECl. When procedure P is called,
RECl is passed as a formal parameter.

$SET DICTIONARY• "DATADICTIONARY. 11

BEGIN
TYPE DICTIONARY RECORD X (VERSION• 2);
X RECl;

PROCEDURE P (REC2);
X REC2;
BEGIN

END;
P (RECl);

END.

8600.0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Binding Considerations for ADDS

A DICTIONARY RECORD variable can be bound to another DICTIONARY
RECORD variable or to an "*"-bound EBCDIC array. A DICTIONARY RECORD
can also be bound to any other record type that can be bound to an "*"-bound
EBCDIC array. The Binder program does not check the record structures for
compatibility; therefore, it binds DICTIONARY RECORD variables to similarly
defined DICTIONARY RECORDs.

Procedures that have DICTIONARY RECORD formal parameters can also be
bound, but type checking will not be performed at bind time. The user must
ensure that the types of the formal and actual parameters are identical.

How the variable is declared in a subprogram determines what the subprogram
can do with the variable and whether the variable is properly protected against
write access.

• If the subprogram declares the variable as a DICTIONARY RECORD variable,
the DICTIONARY RECORD variable can be accessed through the described
fields.

• If the subprogram declares the variable as another type of record variable,
the variable can be accessed through the field names of the record. The
semantic rules for that type of record variable are enforced.

• If the subprogram declares the variable as an EBCDIC array, no field-oriented
access can be used. Assignment to the variable is allowed.

Refer to the Binder Programming Reference Manual for more information.
Additional information related to ADDS items used as parameters is included
under "Passing Entities as Parameters" in this section.

8600 0734-000 2-23

Using Advanced Data Dictionary System (ADDS) Extensions

Statements Used as ADDS Extensions
The assignment, REPLACE, and SCAN statements can be used with ADDS
entities. The assignment statement syntax is shown below. Consult Volume 1 for
the syntax of REPLACE and SCAN statements. Additional information related to
ADDS and pointers is included under "POINTER Function" in this section.

Assignment Statement

2-24

The assignment statement causes the item on the right of the assignment operator
(:-)to be evaluated and the resulting value to be assigned to the item on the left
of the assignment operator.

Three types of assignment statements can be used: arithmetic, Boolean, and
record. Refer to Volume 1 for a discussion of the assignment statement,
specifically arithmetic and Boolean assignment statements.

carithlletic assignment statement>

<display ID> ------.- :• - <arithmetic expression> --------t
<qualified display field ID> -

<digits ID>------

<qualified digits field ID> -

<binary ID> --------1
<qualified binary field ID> -

<real ID> -------1
<qualified real field ID> -

<qualified integer field ID> -i

<double ID> --------1
<qualified double ID> __ __,

<Boolean assignment statement>

1 <Boolean ID> ------- :• - <Boolean expression> ---------i
cqual ified Boolean field ID> ~

<record assignment statement>

- <record> - :• - <record> ----------------------t

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Explanation

If the arithmetic value to be assigned into a field or item of type Display or Digits
does not fit, the value is rounded and/or the high-order characters are truncated.
In effect, a MOD operation for remainder division is performed (as described in
Volume l). If the RANGECHECK compiler control option is set, a run-time fault
will be generated if any characters are truncated.

In assignments between Display fields or items, or between Digit fields or items,
the resulting value is converted into a 48- or 96- bit operand and then back into
characters. Blank fill is performed on unneeded character spaces.

The assignment of a Boolean value to a field of type Boolean affects all four bits
of the field.

If the arithmetic value to be assigned into a type Integer is too large, then the
high-order bits are truncated. In effect, a MOD operation is performed. If the
RANGECHECK compiler control option is set, a run-time fault will be generated if
any bits are truncated.

Records can only be assigned to records that share the same dictionary entity
type description. Two records described by disjoint type descriptions but that are
logically identical will not be compatible for the purposes of assignment.

Additional information relating to assignment statements is included under
"RANGECHECK Option: Checking Ranges of Run-time Values," "Referencing
Fields and Records," "Entity Qualifiers," and "Relating ADDS Data Types to
ALGOL" in this section.

Examples

In the following example of an arithmetic assignment, the Integer field MONTH is
embedded in record YEAR:

YEAR.MONTH :• 10;

REPLACE and SCAN Statements

The REPLACE statement, as described in Volume 1, causes character data from
one or more sources to be stored in a designated portion of an array row.

The SCAN statement, as described in Volume 1, examines a contiguous portion of
character data in an array row, one character at a time, in a left-to-right
direction. The source is always a pointer expression.

For both statements, fields and items of type EBCDIC array are considered to be
pointer expressions.

8600 0734-000 2-25

Usina Advanced Data Dictionary System (ADDS) Extensions

Functions Used as ADDS Extensions

2-26

The ALGOL functions, LENGTH, OFFSET, POINTER, RESIZE, and SIZE are
extended for use with ADDS. ADDS also provides the UNITS function. Record,
field, display, and digit identifiers are valid input for all these functions.

• LENGTH function

The LENGTH function returns the length of a specified entity in the
designated units.

• OFFSET function

The OFFSET function returns the number of units that the specified entity is
indexed from the beginning of the outermost record in which it is declared.

• POINTER function

The POINTER function returns a pointer to the specified input.

• RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier.

• SIZE function

The SIZE function returns the size of the array underlying a given record
identifier.

• UNITS function

The UNITS function accepts an entity as input and returns, as an integer
value, the default unit size expected by the LENGTH and OFFSET functions.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

LENGTH Function

The extended LENGTH function returns, as an integer value, the length of the
specified entity in designated units.

Syntax

<length function>

- LENGTH - (1 <record ID>

<qualified field ID>

<display ID>--~

<digit ID> -----'

Explanation

, - <units value>

The length of a record, field, display, or digit can be returned. If a field is
specified, the field must be qualified.

The valid values for units are 1, 4, 8, and 0 (zero). If a value is not specified, a
default is used. See "UNITS Function" for a list of defaults.

An error results if the length of the entity cannot be expressed as an integral
number of units. For example, the length of a 3-character EBCDIC array field
cannot be expressed in words.

Additional information related to the LENGTH function is included under
"Referencing Fields and Records," "Relating ADDS Data Types to ALGOL," and
"UNITS Function" in this section.

Examples

Shown below, A is assigned the Boolean field's length of 1. The field Booleanfield
is qualified by the record R.

A :•LENGTH (R.Booleanfield); SA• 1

In the following example, A is assigned the record's length of R. The default unit
size is bits.

A:• LENGTH (R); SA • number bits in R

In this example, A is assigned the record's length of R. The default unit size is
bits, but digits are specified.

A :•LENGTH (R,4); SA • number digits in R

8600 0734-000 2-27

Using Advanced Data Dictionary System (ADDS) Extensions

OFFSET Function

2-28

The OFFSET function returns, as an integer value, the number of units that the
designated entity is indexed from the beginning of the outermost record in which
the entity is declared.

Syntax

<Offset function>

- OFFSET - (1 <record ID>

<qualified field ID>

<display ID> -----i

<di git ID> ----

Explanation

• - <Units value>

The valid values for units are 1, 4, 8, and 0 (zero). If no value is specified, a
default is used. See "UNITS Function" for a list of defaults.

An error results if the offset of the field, record, display, or digit cannot be
expressed in an integral number of units or if the offset can only be determined
at run time and might not be expressible as an integral number of units. This can
occur when units larger than the default unit are specified or when a field is an
element in an array of fields.

-
Additional information related to the syntax of the OFFSET function is included
under "Referencing Fields and Records," "Relating ADDS Data Types to ALGOL,"
and "UNITS Function" in this section

Elaunplea

Below, A is first assigned the offset of field X in record R. The units are returned
in digits. A is then assigned the offset of field Y. The units are returned in bytes.

A :• OFFSET (R.X,4) SA • the offset of X in R in digits
A :•OFFSET (R.Y,8) SA• the offset of Y in R in bytes

In the following example, A is assigned the offset of T from 'the beginning of R, in
digits:

A :•OFFSET (R.S.T,4)

In the next example, A is assigned an offset in bits to be determined at run time.
The assignment is allowed because the offset is lmown to be expressible in bits.

A :•OFFSET (R.Q[N]);

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

POINTER Function

The POINTER function returns a pointer to the designated input. Records, while
. implemented as EBCDIC arrays, cannot be referenced as such without the explicit

use of the POINTER function.

Syntax

<pointer function>

- POINTER - (1 <qualified field ID>

<record ID> -----1
<display ID> -----4

<di git ID> ___ __.

Explanation

, - <character size>

The pointer acts as if it were pointing to data of the specified character size. If
the character size is not specified, and the designated field holds 4-bit characters,
a character size of 4 is assumed. In all other cases the default character size is 8.

The POINTER function bypasses all compiler restrictions related to field integrity
and type. A record can thus be referenced as a one-dimensional array.

Additional information related to the syntax of the POINTER function is included
under "Referencing Fields and Records," and "Guidelines for Using ADDS Types"
in this section.

Examples

In the following example, R is an EBCDIC field which is filled with spaces.

REPLACE POINTER F.R BY II II FOR LENGTH (F.R)

Below, the quoted string "ABCDEF" is used to fill the entire length of R. The
string is repeated as many times as necessary to fill the entire length.

REPLACE POINTER (R,8) BY "ABCDEF" FOR LENGTH (R,8);

8600 0734-000 2-29

Using Advanced Data Dictionary System (ADDS) Extensions

RESIZE Function

2-30

The RESIZE function changes the size of the array underlying a given record
identifier.

Syntax

<resize function>

- RESIZE - (- <record ID> - , - <new size> -....-------.--

Explanation

, RETAIN 1 DISCARD

PAGED

The RESIZE function changes the size of the array containing a record by
changing the upper bound of the array. The size of the entire array is changed,
regardless of the record's position in the array.

The <record ID> construct is the identifier of any valid record within the
ALGOL program.

The <new size> construct is an integer that represents the number of elements
in the array after the RESIZE function is performed. The size of each element
depends on the type of the underlying array. The element sizes of some common
record arrays are shown in the following table.

Record

Advanced Data Dictionary System (ADDS) records

Communication Management System (COMS) Input Headers, Output
Headers, or COMS records

Screen Design Facility Plus (SDF Plus) form record libraries

Semantic Information Manager (SIM) records

Element Size

Bytes

Words

Bytes

Bytes

More detailed information on the RESIZE function is included in Volume 1, under
"RESIZE Statement" in Section 5, "Statements". Additional related information is
included under "Referencing Fields and Records," and "Relating ADDS Data
Types to ALGOL" in this section.

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

Examples

In the following example, the array containing the record INPUTRECORD is
changed to the value of NEWSZ and the previous contents of the array are
discarded.

RESIZE(INPUTRECORD, NEWSZ, DISCARD)

In the foil owing example, the size of the array containing INPUTRECORD is
changed to be the same as the value of the MAXRECSIZE attribute of the file
INPUTFILE. The previous contents of the array are retained.

RESIZE(INPUTRECORD, INPUTFILE.MAXRECSIZE, RETAIN)

In this example, the size of the array containing INPUTRECORD is increased by
100 elements. The previous contents of the array are retained, but the array is
changed to be a paged (segmented) array.

RESIZE(INPUTRECORD, SIZE(INPUTRECORD)+lOO, PAGED)

8600 0734-000 2-31

Using Advanced Data Dictionary System (ADDS) Extensions

SIZE Function

2-32

The SIZE function returns the size of the array underlying a given record
identifier.

Syntax

<size function>

- SIZE - (- <record ID> -) ----------------------1
Explanation

The SIZE function accepts a record identifier and returns the number of elements
in the array that contains the record. This function returns an integer
representing the size of the entire array, regardless of the record's position in the
array.

The size of each element depends on the type of the underlying array. The
element sizes of some common record arrays are shown in the following table.

Record

Advanced Data Dictionary System (ADDS) records

Communication Management System (COMS) Input Headers, Output
Headers, or COMS records

Screen Design Facility Plus (SDF Plus) form record libraries

Semantic Information Manager (SIM) records

Element Size

Bytes

Words

Bytes

Bytes

More detailed information on the SIZE function is included in Volume 1, under
"Intrinsic Function Descriptions" in Section 6, "Expressions". Additional related
information is included under "Referencing Fields and Records," and "Relating
ADDS Data Types to ALGOL" in this section.

Examples

In the following example, ARRYLIMIT is assigned the size of the array that
contains the record INPUTRECORD.

ARRYLIMIT :• SIZE(INPUTRECORD)

8600 0734-000

Using Advanced Data Dictionary System (ADDS) Extensions

UNITS Function

The UNITS function accepts a specified entity as input and returns, as an integer
value, the defa\ilt unit size expected by the LENGTH and OFFSET functions.

Syntax

<Units function>

- UNITS - (1 <record ID>~ }

<qualified field ID>

<di splay ID>

<digit ID>

Explanation

The default unit size is the lowest common unit of the target type in which the
length and offset of the target can be expressed. In general, if a target contains
4-bit or 8-bit character data, the value returned is 4 or 8, respectively. Otherwise,
the value returned is 1.

The following shows how the unit sizes are interpreted:

Unit Munln1

1 Bits
4 Digits

8 Bytes
0 Words

Default unit sizes for ADDS fields and records are shown below.

Fleld or Record Default Unit Size

Display fields 8
EBCDIC Array fields 8
Digits fields 4
Binary fields 1
Boolean fields 1
Double fields 1
Entity Reference fields 1
Integer fields 1
Real fields 1
Record fields 1
Records 1

8600 0734-000 2-33

Using Advanced Data Dictionary System (ADDS) Extensions

2-34

Note that, by definition

LENGTH(R.X) • LENGTH (R.X,UNITS(R.X))

Additional information related to the syntax of the UNITS function is included
under "Referencing Fields and Records," "Relating ADDS Data Types to ALGOL,"
"LENGTH Function," and "OFFSET Function".

Example

The default unit size of field X in record R is returned.

A :• UNITS (R.X)

8600 0734-000

Section 3
Using Communications Management
System (COMS) Features

The Communications Management System (COMS) is a Message Control System
(MCS) developed to control interactive environments. COMS supports the
processing of multiple program transactions as well as single-station and
multiple-station remote files.

The ALGOL interface to COMS allows programs to communicate through COMS
with terminals or other programs. ALGOL programs interact with COMS through
the COMS direct-window interface. The following features and functions are
available to the programs:

• Message routing by transaction codes (trancodes) and agendas.

• Security checking of messages that programs receive and send.

• Service functions for manipulating COMS entities by translating COMS values
to names and translating names to COMS values.

• Dynamic opening of direct windows to terminals not attached to COMS, and
dynamic communication over a modem.

• Synchronized recovery for multiple database processing programs running
asynchronously.

• External definition of record formats related to COMS (COMSRECORD
declarations)

For COMS to perform these functions, the required version of COMS must be
installed and the ALGOL program must link to a COMS library and declare an
input header, an output header, and a message area.

COMS can be used with Advanced Data Dictionary System (ADDS), Data
Management System II (DMSII), and Semantic Information Manager (SIM). This
section briefly overviews the ALGOL functions that can be used with COMS and
details the statements that can be used for synchronized recovery with DMSII.
Refer to the Section 7, "Using the Semantic Information Manager (SIM)
Interface," in this volume and to the 111/oExec Semantic Information Manager
(SIM) Programming Guide for information on synchronized recovery with SIM.

Refer to the Communications Management System (COMS) Programming Guide
for a discussion of COMS programming issues and a detailed explanation of the
COMS features and functions available with each version of COMS.

8600 0734-000 3-1

Using Communications Management System (COMS) Features

The COMS interface has created the following new ALGOL type 2 reserved words:

AFrER
BEFORE
EGI
EMI
ESI

INPUTHEADER
MESSAGEQOUNT
NOCR
NOLF

OUTPUTHEADER
RECEIVE
SEND
TERMINAL

Additional information relating to COMS and SIM is included in Section 7, "Using
the Semantic Information Manager (SIM) Interface."

Using ALGOL Functions as COMS Extensions
The RANGECHECK compiler control option, as well as the LENGTH, OFFSET,
POINTER, and UNITS functions, can be used as COMS extensions. More detailed
information about these ALGOL functions is included in Section 2, "Using
Advanced Data Dictionary System (ADDS) Extensions."

Purpose of the RANGECHECK Option

The RANGECHECK option is a Boolean option that causes the compiler to
generate code that performs range checking at run time on values that were not
known at compile time. The option is set by default. A run-time fault occurs if a
value ·fails a range check; the program is discontinued and an "Invalid Operation"
is reported.

Purpose of Functions

3-2

The following ALGOL functions can be used with COMS.

• LENGTH function

The LENGTH function returns the length of a specified entity in the
designated units.

• OFFSET function

The OFFSET function returns the number of units that the specified entity is
offest from the beginning of the outermost record in which it is declared.

• POINTER function

The POINTER function returns a pointer to the specified input.

• RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier. For COMS input and output headers and COMS records, the size is
given in words. The size of the entire array is changed, regardless of the
record's position in the array.

8600 0734-000

Using Communications Management System (COMS) Features

• SIZE function

The SIZE function returns the size of the array underlying a given record
identifier. For COMS input and output headers and COMS records, the size is
given in words. The size returned is an integer representing the size of the
entire array, regardless of the record's position in the array.

• UNITS function

The UNITS function accepts an entity as input and returns, as an integer
value, the default unit size expected by the LENGTH and OFFSET functions.

8600 0734-000 3-3

Using Communications Management System (COMS) features

-Linking to COMS
An ALGOL program accesses a COMS library by declaring a COMS-releated record
format (for example, INPUTHEADER, OUTPUTHEADER, or COMSRECORD.

The library linkage is implicitly declared to the COMS library entry point entitled
DCIENTRYPOINT. A link to the library entry point is established when the first
COMS statement is encountered at run time. (This is preferable to declaring the
COMS DCILIBRARY and calling the entry point explicitly.)

The default library access is BYFUNCTION with a FUNCTIONNAME of
COMSSUPPORT. A LIBPARAMETER is generated by the compiler. The title,
function name, and library access attributes of the COMSSUPPORT library can be
changed in the same way as any other declared library, by using the internal
name of COMSSUPPORT. If these changes are made, they must be made prior to
the first executable statement in the program.

For further information on libraries and library declarations, consult Volume 1.
Refer to the System Software Utilities Operations Reference Manual for details
on library attributes, and the System Commands Operations Reference Manual
for a description of the SL (Support Library) command.

Additional information relating to COMS libraries is included under "COMS
Statements," "COMS Service Functions," "Declaring Input and Output Headers,"
and "Declaring a COMSRECORD" in this section.

Linking to COMS by Title

It is possible for an ALGOL program to link to COMS by title. The following is an
example of the statements that should be included at the beginning of the
program.

Example

COMSSUPPORT.LIBACCESS :•VALUE (BYTITLE);
REPLACE SCRATCH BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
COMSSUPPORT.TITLE :• STRING(SCRATCH[O], 256);

% Store the family name so it can be temporarily changed
REPLACE SCRATCH BY MYSELF.FAMILY;

% Reset family name to null in case running on disk named DISK
REPLACE MYSELF.FAMILY BY II. II;
ENABLE (<i nputheadername>, "ONLINE") ;

% Restore family name for accessing files, etc.
REPLACE MYSELF.FAMILY BY SCRATCH;

Note: Unisys does not recommend linking to COMS lYy title because this feature
might be deimplemented in a future Mark release. Linking lYy junction is
the recommended method.

3-4 8600 0734-000

Using Communications Management System (COMS) Features

Declaring an Input or Output Header
A header is a record structure with predefined field names and purposes. Consult
the COMS Programming Guide for information on the structure of the header.

An input or output header declaration associates a header identifier with a
header. It declares a header record as a variable. Input or output headers can
also be declared using TYPE declarations and invocations. Use the TYPE
declaration to declare a header record as a type identifier.

You can also declare input and output header formats using the COMSRECORD
declaration. The COMSRECORD declaration is the recommended way to declare
header formats. Refer to "Using COMSRECORD Declarations" later in this section
for more information about the COMSRECORD declaration.

Input and output headers are used when a program communicates with COMS
through a direct-window interface. Each header is one record and is composed of
multiple fields. The fields contain routing or descriptive information for the
actual message.

Although the message is not part of the header, it is associated with the header
for routing when it is named as the message area variable in a RECEIVE or SEND
statement.

Both input and output headers can have an optional conversation area field at
the end of the structure. The conversation area field is the only user-defined field
in an input or output header. Consult the COMS Programming Guide for a
definition of what can be contained in the conversation area field of an input or
output header.

The conversation area field is accessed in the same manner as the predefined
fields. If a header has a conversation area field and the header is passed as a
parameter, a TYPE declaration is required.

Input and output headers can be bound to other input or output headers. The
headers must have the same conversation area description.

Because the layout of input or output headers can change with each software
release, a program should not preserve any designators across executions.
Designators should not be used as keydata in a database. To guarantee the
validity of the data, save all necessary information in the appropriate header
every time the header is used.

Additional information relating to input and output headers is included under
"Input or Output Header Type Declaration" in this section.

8600 0734-000 3-5

Using Communications Management System (COMS) Features

Input or Output Header Declaration

3-6

Syntax

<header declaration>

1 INPUTHEADER - <inputheadername>

OUTPUTHEADER - <Outputheadername> ~ ~ <conversation area> ~

• [<addr equation> J
<inputheadername>

- <identifier> ---------------------------!
<Outputheadername>

- <identifier> ---------------------------!
<conversation area> -(1 <Boolean declaration>

<integer declaration> -----i
<real declaration> ------1
<conversation array declaration>

<Conversation array declaration>

------ARRAY - <identifier> - [- <bound pair> -] --------~

Real

Integer

Boolean

<addr equation>

- • <ADDS record ID> --.-----------------------!
<fnputheader ID>

<Outputheader ID>

<DMRECORD ID>

<real array ID>

<EBCDIC array ID>

8600 0734-000

Using Communications Management System (COMS) Features

Explanation

The <inputheademame> construct identifies an input header used to receive
messages through COMS. The <outputheademame> construct identifies an
output header used to send messages tlirough COMS. A program can have one or
more input or output headers.

The conversation area declaration is optional. However, if a header has a
conversation area, this declaration defines the type and length of the
conversation area field.

The <addr equation> construct is optional. This construct is similar to the
<array row equivalence> construct of an array declaration in that it causes the
declared input or output header to refer to the same data as the specified record
or array row.

Examples

As shown below, the input header RECEIVECOMS is declared. It has no
conversation area field.

INPUTHEADER RECEIVECOMS;

In the following example, the input header MYINPUT is declared as having a one
word Real conversation area identified as MY AREA:

INPUTHEADER MYINPUT (REAL MYAREA);

The conversation area field is declared as a REAL array in the following example:

OUTPUTHEADER SENDCOMS (REAL ARRAY CONVERSATION(0:90]);

Input or Output Header Type Declaration

The TYPE declaration can be used to associate a user-defined name with a header
format specified in an input or output header declaration. The format can then be
used as a data description. The TYPE declaration is required if a header has a
conversation area field and the header is passed as a parameter.

Normally, declaring an input or output header creates a structure as a variable.
In contrast, the TYPE declaration does not create a variable; it simply defines a
type identifier that can be used to declare record variables. A type identifier is
associated with an input or output header declaration. In effect, the type
identifier is the name of a record structure description.

Only variables that share the same entity description and type are compatible.
The TYPE declaration provides compatibility for the headers. Records described
by separate, distinct entities and identical in content are not compatible if they
do not share the same type identifier.

A TYPE declaration must precede a type invocation. The type invocation declares
records that have the structure associated with the type identifier.

8600 0734-000 3-7

Using Communications Management System (COMS) Features

Syntax

<header type declaration>

- TYPE INPUTHEADER I <header type ID>

OUTPUTHEADER _J ~ <conversation area> ~
<header type invocation>

- <header type ID>
<inputheadername> __ .__ ____________ --1

<Outputheadername> ~
<header type ID>

- <identifier> ---------------------------1
Additional information on the <inputheademame>, <outputheademame>, and
~conversation area> constructs is included under "Declaring Input and Output
Headers" in this section. Related information is also included under "Accessing
Header Fields" in this section, and under "Referencing Fields and Records" in
Section 2, "Using the Advanced Data Dictionary System (ADDS) Extensions."

Explanation

The header type identifier is the user-defined name associated with the format.
The <header type ID> construct includes the name of the input or output
header, as declared in the TYPE declaration. Each record specified by an
<inputheademame> or <outputheademame> construct in the type invocation
has the structure defined by the header type identifier.

Examples

In this example, a TYPE declaration creates a data definition from the input
header MYINPUT}JEADER. The type invocation is then used to impose the
structure onto the records NEXTHEADER and PREVHEADER.

TYPE INPUTHEADER MYINPUTHEADER; MYINPUTHEADER NEXTHEADER, PREVHEADER;

The following example creates a data definition from the output header OUTMSG.
The definition includes the conversation area CONAREA. The structure is then
imposed on the record ROUTE.

TYPE OUTPUTHEADER OUTMSG {REAL CONAREA); OUTMSG ROUTE;

Input Header Structure and Type

3-8

Table 3-1 shows the predefined fields of the input header that are available to an
ALGOL program. The fields are listed as they appear in the structure, including

8600 0734-000

Using Communications Management System (COMS) Features

the optional conversation area field. The listing gives their ALGOL name, data
type, and a brief description.

COMS places values (designators and integers) in the input header fields when an
ENABLE, MESSAGECOUNT, or RECEIVE statement is executed. You can use a
service function to translate a designator to a name representing a COMS entity.

input headers are used in receiving messages. For messages that are received, the
input header fields are used for the following tasks:

• Confirming message status

• Passing data in the conversation area field

• Detecting queued messages

• Determining message origin

• Obtaining direct-window notifications

• Processing transaction codes (trancodes) for routing

The fields, their COMS names and values, and their purposes are detailed in the
COMS Programming Gu:iAe.

Additional information relating to the fields of a COMS input header is included
under "COMS Service Functions" in this section.

Field Name

PROGRAMDESG

FUNCTIONINDEX

FUNCTIONSTATUS

USERCODE

SECURITYDESG

8600 0734-000

Table 3-1. Input Header Structure and Type

Data Type

Designator

Integer

Integer

Designator

Designator

Brief Desc:rtptlon

Designator that COMS has assigned
to the program or designator of the
program that sent the message.

Module Function Index (MFI) that
can be used in conjunction with
COMS trancode-based routing.

Positive value: COMS-defined error
value.

Negative value: Reports the status
of a dynamic attachment, a
confirmation request for output
messages, or a COMS notification
to a direct window.

Designator for the usercode
associated with the program or
station originating the message.

Designator that can be used for
security checking.

3-9

Using Communications Management System (COMS) Features

3-10

Table 3-1. Input Header Structure and Type (cont.)

Field Name

FIELDS. VTFLAG

FIELDS.TRANSPARENT

TIMESTAMP

STATION

TEXTLENGTH

STATUSVALUE

MESSAGECOUNT

RESTART

AGENDA

SDFINFO

SDFFORMRECNUM

SDFTRANSNUM

Conversation Area

Data Type

Boolean

Boolean

Real

Designator

Integer

Integer

Integer

Designator

Designator

Real

Real

Real

User-defined

Brief Description

Virtual Terminal {VT) flag returned
by COMS.

Shows whether the input message
is being passed in transparent
mode.

Time and date message first
encountered by COMS.

Terminal number for the terminal
being dynamically attached or
detached, or the station originating
the message.

Number of characters in the text of
incoming message, length of
destination's telephone number,
length of delivery confirmation, or
notification of a direct window
on/open activity.

Status of an input message.

Number of messages queued to the
program.

last message that COMS audited in
the DMSll-transaction trail.

Designator of the most recently
applied input agenda.

Identifies errors that occurred
during the processing of a form
message. See "Using COMS
Input/Output Headers" in Section
6, "Using the Screen Design
Facility Plus (SDF Plus) Interface,"
for more information about the
values of this field.

Designates the form record that is
received.

The number of the SDF Plus
transaction that is received. This
field should not be altered by the
user application.

Information passed by program,
processing item, or telephone
number for a direct-window
interface.

8600 0734-000

Using Communications Management System (COMS) Features

Additional information relating to the fields of a COMS input header is included
under "Using COMS Input/Output Headers" in Section 6, "Using the Screen
Design Facility Plus (SDF Plus) Interface."

Output Header Structure and Type

Table 3-2 shows the predefined fields of the output header that are available to
an ALGOL program. The fields are listed as they appear in the structure,
including the optional conversation area field. The listing gives their ALGOL
name, data type, and a brief description.

The output header is used in sending messages. You place designators into the
fields to route outgoing messages and describe their characteristics. You can
obtain designators by calling service functions to translate names representing
COMS entities to designators.

For messages that are output, the header fields are used in

• Specifying a destination

• Routing by transaction code (trancode)

• Sending messages using direct windows

• Confirming message delivery

• Checking the status of output messages

The fields, their COMS names and values, and their purposes are detailed in the
COMS Programming Guide.

Additional information relating to the fields of a COMS output header is included
under "COMS Service Functions" in this section.

Table 3-2. Output Header Structure and Type

Field Name

DESTCOUNT

TEXTLENGTH

STATUSVALUE

FIELDS. VTFLAG

8600 0734-000

Data Type

Integer

Integer

Integer

Boolean

Brief Description

Number of destinations to
which the program sends the
message.

Number of characters
contained in the text of an
outgoing message.

Used to note whether the
message was successfully sent
to its destination or if an error
occurred.

Virtual Terminal (V1) flag set
by direct-window program.

3-11

Using Communications Management System (COMS) Features

3-12

Table 3-2. Output Header Structure and Type (cont.)

Field Name

FIELDS.CONFIRMFLAG

FIELDS.CONFIRMKEY

FIELDS.TRANSPARENT

DESTINATIONDESG

NEXTINPUTAGENDA

TOGGLES.SETNEXTINPUTAGENDA

Data Type

Boolean

EBCDIC array
[0:2]

Boolean

Designator

Designator

Boolean

TOGGLES.RETAINTRANSACTIONMODE Boolean

AGENDA Designator

SDFINFO Real

SDFFORMRECNUM Real

Conversation Area User-defined

Brief Description

Used to request delivery
confirmation of an output
message.

User-defined tag for delivery
confirmation of an output
message.

Used to specify transparent
mode for an output message.

Destination for a message.

Agenda to be applied to the
next input for the current
dialog.

Used to specify if COMS
should use the contents of the
NEXTINPUTAGENDA field to
change the agenda for the
next input to the current
dialog of the destination
station.

Specifies whether or not
Transaction Mode is to be
retained for the current dialog.

Specifies an agenda for
postprocessing of the message
a program is sending.

Identifies type of form
message processing request.
See "Using COMS
Input/Output Headers" in
Section 6, "Using the Screen
Design Facility Plus
(SDF Plus) Interface," for
more information about the
values of this field.

Designates the form record to
be written.

Passes information, in addition
to the message data, to
processing items.

Additional information relating to the fields of a COMS output header is included
under "Using COMS Input/Output Headers" in Section 6, "Using the Screen
Design Facility Plus (SDF Plus) Interface."

8600 0734-000

Using Communications Management System (COMS) Features

Designator Data Type

The data type Designator is used only for specific fields of the COMS headers and
with COMS service functions. It is an internal code understood by COMS and used
to control messages symbolically in the data communications environment. COMS
can determine the kind of entity represented by a particular designator such as a
station or usercode.

In ALGOL, the data type Designator is acted upon as if it were the data type
Real. The compiler does not differentiate between the two types. However, COMS
operations require that no arithmetic operations are performed on a field of type
Designator. The Designator type should not be altered within a program unless
some type of operation is done by a COMS service function that decodes or
returns a value for the designators. Designators can be set to initial values by
setting them to 0 (zero).

Additional information relating to the Designator data type is included under
"Fields of the Input Header," "Fields of the Output Header,'' and "COMS Service
Functions" in this section.

8600 0734-000 3-13

Using Communications Management System (COMS) Features

Declaring a Message Area

3-14

The message area is the variable reserved for the actual message. You must
declare a message area variable before you can send or receive a message. (The
program builds messages in the message area.) Once information is returned from
COMB in the message area, the program determines any further processing.

The variable can be an EBCDIC array or an ADDS record, including SDF Plus
form record libraries stored in ADDS. If the variable is not large enough to
contain all the text of the message, COMS truncates the message. The
TEXTLENGTH field of the header is used to report the length of the valid text in
the message area.

Refer to the COMS Programming Guide for details of how COMS uses and
interprets the message area and for information on the fields of the headers.

Additional information on the message area is included under "COMS
BEGINTRANSACTION Statement," "COMS ENDTRANSACTION Statement,"
"RECEIVE Statement," and "SEND Statement," in this section. Related
information is also included under "Using SDF Plus with COMS" in Section 6,
"Using the Screen Design Facility Plus (SDF Plus) Interface."

8600 0734-000

Using Communications Management System (COMS) Features

Declaring a COMSRECORD
The COMSRECORD declaration is a way to obtain the declarations for COMS
record formats from an external system library, instead of from information
contained in the ALGOL compiler.

When the ALGOL compiler encounters a COMSRECORD declaration, it extracts a
character string (called a format mnemonic) from the declaration. The character
string is passed to the COMSLANGSUPPORT external system library. The library
checks the character string against an internal list of COMS record formats.

• If the character string is a valid format mnemonic, the COMSLANGSUPPORT
library returns a description of the format to the compiler. This description
contains the explicit declarations and definitions for the desired record
format (including the names, types and locations of the fields in the record).

• If the character string i.~ not a valid format mnemonic, the
COMSLANGSUPPORT library returns an error condition to the compiler. The
compiler generates a syntax error.

The ALGOL compiler has no information about the format mnemonics or record
formats. It simply passes the format mnemonic to the COMSLANGSUPPORT
library and receives either the record format definitions or the error condition.

Syntax

<COMSRECORD declaration>

- COMSRECORD --------------------------_.

J <fo""t ·-"ic> <re<On! td> -r---·-=-~-. ---J-.-.....--------.-..&...j
L. <Conversation area> ~ <addr equation> ~

Explanation

The keyword COMSRECORD causes the compiler to request the desired record
format from the COMSLANGSUPPORT external system library.

The <format mnemonic> construct is the identifier of a character string up to
64 characters long. There are currently three valid format mnemonics.

• INPUTHEADER

This format mnemonic represents the normal COMS input header record
format described earlier in this section. The results of a COMSRECORD
declaration with a format mnemonic of INPUTHE.ADER are identical to
explicitly declaring a COMS input header in your application program.

Refer to "Declaring an Input or Output Header" for the structure, field
names, and field types of a COMS input header record. Consult the COMS

8600 0734-000 3-15

Using Communications Management System (COMS) Features

Programming Guide for information about the use and meaning of the input
header fields.

• OUTPUTHEADER

This format mnemonic represents the normal COMS output header record
format described earlier in this section. The results of a COMSRECORD
declaration with a format mnemonic of OUTPUTHEADER are identical to
explicitly declaring a COMS output header in your application program.

Refer to "Declaring an Input or Output Header" for the structure, field
names, and field types of a COMS output header record. Consult the COMS
Programming Guide for information about the use and meaning of the output
header fields.

• X25

This format mnemonic represents the record format used with the A Series
X.25 MCS product.

Refer to "COMSRECORD Structures and Types" later in this section the
structure, field names, and field types of an X.25-format COMSRECORD.
Consult the A Series X.25 MCS Operatimls and Programming Reference
Manual for information about the use and meaning of the individual fields in
the record.

The <record id> construct identifies the individual COMSRECORD.

The <conversation area> construct is optional. If a COMSRECORD has a
conversation area, this declaration defines the type and length of the
conversation area field. The syntax used to declare a conversation area is
described under ''Input or Output Header Declaration" in this section.

The <addr equation> construct is optional. This construct is similar to the
<array row equivalence> construct of an array declaration in that it causes the
declared COMSRECORD to refer to the same data as the specified record or array
row.

Type Declaration of a COMSRECORD

3-16

A COMSRECORD type declaration associates a user-defined name (called a type
id) with a specific COMSRECORD format. After a COMSRECORD type is declared,
the user-defined name can be used as a data description. COMSRECORD type
declarations are used in the same way as type declarations for normal COMS
input and output headers. Ref er to "Input or Output Header Type Declaration"
earlier in this section for more information.

Syntax

<COMSRECORD type declaration>

8600 0734-000

Using Communications Management System (COMS) Features

- TYPE 1 COMSRECORD - <format mnemoni C> -.---------....-- <type id> ~
~ <Conversation area> ~

Explanation

The <format mnemonic> construct is the identifier of a character string up to
64 characters long. There are currently three valid format mnemonics:
INPUTHEADER, OUTPUTHEADER, and X25.

The <conversation area> construct is optional. If a COMSRECORD has a
conversation area, this declaration defines the type and length of the
conversation area field. The syntax used to declare a conversation area is
described under "Input or Output Header Declaration" in this section.

The <type id> construct is a user-defined name that is associated with the
specific COMSRECORD format.

Type Invocation of a COMSRECORD

A COMSRECORD type invocation must follow a COMSRECORD type declaration.
The type invocation declares a COMSRECORD that has whatever format is
associated with the type id.

<COMSRECORD type invocation>

- <type id> tr~ =1-'-----------------------1
The <type id> construct is a user-defined name that is associated with the
specific COMSRECORD format.

The <record id> construct identifies the individual COMSRECORD.

COMSRECORD Structures and Types

There are currently three different COMSRECORD formats: INPUTHEADER,
OUTPUTHEADER, and X26.

• INPUTHEADER

A COMSRECORD with a format mnemonic of INPUTHEADER has the same
structu:re and type as the normal COMS input header record described earlier
in this section. Refer to "Declaring an Input or Output Header" for the
structure, field names, and field types of a COMS input header record.
Consult the COMS Programming Guide for information about the use and
meaning of the input header fields.

• OUTPUTHEADER

8600 0734-000 3-17

Using Communications Management System (COMS) Features

A COMSRECORD with a format mnemonic of OUTPUTHEADER has the same
structure and type as the normal COMS output header record described
earlier in this section. Ref er to "Declaring an Input or Output Header" for the
structure, field names, and field types of a COMS output header record.
Consult the COMS Programming Guide for information about the use and
meaning of the output header fields.

• X25

The structure and type of a COMSRECORD with a format mnemonic of X26 is
described on the following pages.

Structure and Type of an X.25 COMSRECORD

3-18

Table 3-3 shows the predefined fields in an X.25-format COMSRECORD that are
available to an ALGOL program. The fields are listed as they appear in the
structure. The listing gives their ALGOL name, data type, and a brief description.

Table 3-3. X.25 COMSRECORD Structure and Type

field Name Data Type

CLASS Integer

VERSION Integer

FUNCTION Integer

COMMUNICATIONNUMBER Integer

QBIT Boolean

Brief Desc:rlptlon

The CLASS field describes the class or type
of the record. The record must contain a
CLASS field. The initial value for this field is
X25. X25 is the only possible value for use
with the A Series X.25 MCS.

The VERSION field contains the record
version number. Ail records must contain a
VERSION field. If changes occur in the
future t9 the structure of a record, this field
will be incremented. The initial value for this
field is X25PIRVERSION.

The FUNCTION field contains a description
of the packet type of the record. All records
must contain a FUNCTION field.

The COMMUNICATIONNUMBER field
contains the communication number
assigned to the connection by the A Series
X.25 MCS. The possible values for this field
are in the range 0 to (2**39) - 1.

The QBIT field contains the qualifier bit.
When set, this field qualifies a data packet
and corresponds to the qualifier bit in the
X.25 network packet.

8600 0734-000

Usiri1 Communications Mana1ement System (COMS) Features

Table 3-3. X.25 COMSRECORD Structure and Type (cont.)

Field Name Data Type Brief Description

OBIT Boolean Use of this field is not currently supported.

The OBIT field, when set, requests
acknowledgment from the remote DTE and
corresponds to a D·bit description of an X.25
level 3 packet.

DATAIDENTIFIER Integer Use of this field is not currently supported.

The DATAIDENTIFIER field is used to identify
the data message being sent or the data
message being acknowledged when the OBIT
field has been set to TRUE. The possible
values for this field are in the range 0 to
65535.

ORIGINATOR Integer The ORIGINATOR field is used in conjunction
with the CAUSE and DIAGNOSTIC fields. The
ORIGINATOR field describes the originator of
a message that is received by the application
program. The possible values for this field
are NETWORKORIGINATED,
SYSTEMORIGINATED, and
APPLICATIONORIGINATED.

CAUSE Integer The CAUSE field describes the reason the
record was sent. It corresponds to the Cause
field in an X.25 level 3 packet when the
ORIGINATOR field contains the value
NETWORKORIGINATED. The possible values
for this field are in the range 0 to 255.

DIAGNOSTIC Integer The DIAGNOSTIC field describes the
diagnostic information sent with the record.
It corresponds to the Diagnostic field in an
X.25 level 3 packet when the ORIGINATOR
field contains the value
NETWORKORIGINATED. The possible values
for this field are in the range 0 to 255.

ALREADYACCEPTED Boolean The ALREADYACCEPTED field is meaningful
only with the A Series X.25 MCS on a BNA
Version 2 platform.

This field is valid only with the
INCOMINGCALL function. The A Series
X.25 MCS sets this field to TRUE on an
incoming call if the connection has already •
been accepted by a CP 2000.

8600 0734-000 3-19

Using Communications Management System (COMS) Features

3-20

Table 3-3. X.25 COMSRECORD Structure and Type (cont.)

Field Name Data Type

WAITFORCHANNEL Boolean

TRUNCATED Boolean

REMOTEADDRESSLENGTH Integer

REMOTEADDRESS Hexadecimal

LOCALSUBADDRESSLENGTH Integer

Brief Description

The WAITFORCHANNEL field is valid only
with the CALLREQUEST function.

• On a BNA Version 1 platform, if a
logical channel is not currently available,
a TRUE value in this field instructs the
A Series X.25 MCS to hold the call to
the remote DTE until a channel is
available to make the connection.

• On a BNA Version 2 platform, a TRUE
value in this field instructs the A Series
X.25 MCS to initiate or wait for a
dialogue with the CP 2000.

The TRUNCATED field is valid only with the
DCEDATA function. A TRUE value in this
field indicates that the data message is
truncated.

The REMOTEADDRESSLENGTH field
contains the length of the REMOTEADDRESS
field in hex digits. The maximum value for
this field is 40. However, the A Series
X.25 MCS limits this field to 15 hex digits on
a BNA Version 1 platform or a BNA
Version 2 platform.

The REMOTEADDRESS field contains the
address of the remote DTE endpoint in hex
digits. The maximum value for this field is 40
hex digits. However, the A Series X.25 MCS
limits this field to 15 hex digits on a BNA
Version 1 platform or a BNA Version 2
platform.

The LOCALSUBADDRESSLENGTH field
contains the length of the
LOCALSUBADDRESS in hex digits. The
maximum value for this field is 14. However,
the A Series X.25 MCS limits this field to 10
hex digits on a BNA Version 1 platform or a
BNA Version 2 platform.

8600 0734-000

Using Communications Management System (COMS) Features

Table 3-3. X.25 COMSRECORD Structure and Type (cont.)

Fleld Name Data Type Brief Description

LOCALSUBADDRESS Hexadecimal The LOCALSUBADDRESS field contains the
local endpoint identification address in hex
digits. The maximum value for this field is 14
hex digits. However the A Series X.25 MCS
limits this field to 10 hex digits on a BNA
Version 1 platform or a BNA Version 2
platform. The data in this field must be
left-justified, binary-coded decimal (BCD)
characters.

FACILITIESLENGTH Integer The FACILITIESLENGTH field contains the
length of the FACILITIES field specified in
octets. This field corresponds to the X.25
level 3 Facility Length field. The maximum
value for this field is 109.

FACILITIES EBCDIC The FACILITIES field contains untranslated
information. It does not contain message
data. This field corresponds to the X.25 level
3 facility field. The maximum value for this
field is 109 octets.

Information in the FACILITIES field is passed
unchanged by the A Series X.25 MCS directly
to and from the X.25 network. Therefore, the
application program must format the
FACILITIES field exactly according to the
CCITI standards in use by the X.25 network.

ENSEMBLELENGTH Integer The ENSEMBLELENGTH field contains the
length of the ENSEMBLE field specified in
octets. The maximum value for this field is
17.

ENSEMBLE EBCDIC The ENSEMBLE field identifies the ensemble
through which the specified message is
routed. The same remote DTE address can
be reached through different ensembles. The
maximum value for this field is 17 octets.
This field is used for load balancing and
corresponds to a preferred station in the UK
and US formats of X.25 records.

PHONENUMBERLENGTH Integer The PHONENUMBERLENGTH field contains
the length of the PHONENUMBER field
specified in hex digits. The maximum value
for this field is 30. However, the A Series
X.25 MCS limits this field to 17 hex digits on
a BNA Version 2 platform and ignores this
field on a BNA Version 1 platform.

8600 0734-000 3-21

Using Communications Management System (COMS) features

3-22

Table 3-3. X.25 COMSRECORD Structure and Type (cont.)

Fleld Name Data Type

PHONENUMBER Hexadecimal

DATALENGTH Integer

DATA EBCDIC

Brief Description

The PHONENUMBER field contains the
complete phone number, in hex digits, that a
CP 2000 must call to establish a
connection. This field is meaningful only on a
BNA Version 2 platform for the
CALLREQUEST function. It is ignored for all
other functions.

The DATALENGTH field contains the length
of the DATA field (specified in octets). For
call user data, the maximum value for this
field is 128. For message data, there is no
maximum value.

The DATA field contains data. This field
corresponds to the data following an X.25
level 3 Data Packet header or untranslated
message in the X.25 level 3 User Data field.
This field is the only variable-length field in a
PIR.

8600 0734-000

Using Communications Management System (COMS) Features

Using Records in COMS
The following pages describe techniques used to work with records in a COMS
application program and considerations that affect how the records are used. The
information in.eludes

• accessing individual fields within a record

• binding considerations for COMS

Accessing Header Fields

Input headers, output headers, and COMSRECORDS are defined in ALGOL as
record structures whose fields have predefined names and purposes. The
individual fields can be accessed through fully qualified record syntax.

When referencing fields in a record, each field must be uniquely identified. The
field is qualified by the record identifier, the field identifier, and, as needed, by a
subscript field identifier.

Additional information relating to the fields of input or output headers is
included under "Input Header Structure and Type ", "Output Header Structure
and Type", and "COMSRECORD-Structures and Types" in this section.

Syntax

<input or output headers>

- <record ID> - . ~ -----J -------------t
--i= ::::~:r:::ed field ID>

<subscripted field ID>

- <field ID> - [- <subscript> -] --------------------1

Explanation

The <record ID> construct is the user-declared name of the input header, output
header or COMSRECORD.

Both the field and subscripted field identifiers are defined by COMS. The <field
ID> construct identifies the COMS name for the field. If the field is subscripted,
use the <subscripted field ID>. Subscripting is used to access a field in an
embedded packed record with a header.

When a field within a record is passed as a parameter in a procedure call, the
value of the field, rather than a reference to it, is passed. If you want to modify a
field through a procedure call, pass the record itself (input header, output
header, or COMSRECORD) rather than the field.

8600 0734-000 3-23

Using Communications Management System (COMS) Features

Examples

The example below accesses the subscripted field FIELDS.TRANSPARENT in the
record MYHEADER.

MYHEADER.FIELDS.TRANSPARENT

In the following example, the input header named MYIN assigns the value 32 into
the TEXTLENGTH field of the input header and the value of REQUESTDATA
into word 7 of the conversation area field.

REAL REQUESTDATA;
INPUTHEADER MYIN (ARRAY CONVERSATION[0:8]);
MYIN.TEXTLENGTH :• 32;
MYIN.CONVERSATION[6] :• REQUESTDATA;

Binding Considerations for COMS

3-24

The ALGOL interface to COMS contains three types of header records: input
headers, output headers and COMSRECORDs. The following paragraphs detail
some considerations that apply when you use the Binder program to bind
procedures or programs that contain COMS header records.

• A header record variable can be bound to another header record variable or
to an star-bounded REAL array. A header record can also be bound to any
other record type that can be bound to an star-bounded REAL array.

The Binder program does not check the record structures for compatibility
when they are bound. Because of no checking occurs, the Binder program
binds header record variables to similarly-defined header record variables.

• Procedures that have declared formal parameters can be bound, but no type
checking will be performed when the procedures are bound. Ensure that the
types of the formal and actual parameters are identical.

• When a variable is declared in a subprogram, the declaration of the variable
determines what the subprogram can do with the variable and whether the
variable is properly protected against write access.

- If the subprogram declares the variable as a header record variable, the
header record variable can be accessed through the described fields.

- If the subprogram declares the variable as another type of record
variable, the variable can be accessed through the field names of the
record. The semantic rules for that type of record variable are enforced.

- If the subprogram declares the variable as a REAL array, no field-oriented
access can be used. Assignment to the variable is allowed.

Refer to the Binder Programmi1,,g Reference Manual for more information.

8600 0734-000

Using Communications Management System (COMS) Features

COMS Statements
The COMS interface supports statements that pertain to the use of COMS features
and statements that provide synchronized recovery for application programs that
update Data Management System II (DMSII) and Semantic Information Manager
(SIM) databases.

The COMS interface supports the following two database statements. These
statements provide synchronized recovery for application programs that update
Data Management System II (DMSII) databases, as detailed in the COMS
Programming Guide.

BEGINTRANSACTION ENDTRANSACTION

The ALGOL interface to COMS also supports the following statements:

DISABLE
ENABLE
MESSAGECOUNT

RECEIVE
SEND

This section describes each of the above statements. The statements are
presented in alphabetical order. For information on when and why to use these
statements, consult the COMS Programming Guide.

Refer to Section 5, "Using DMSII Transaction Processing System (TPS)
Extensions," for the TPS statements that work with COMS. These statements are

BEGINTRANSACTION
ENDTRANSACTION

MIDTRANSACTION
OPEN

Access to the functional Semantic Information Manager (SIM) environment is
accomplished through the use of a COMS window. Refer to Section 7, "Using the
Semantic Information Manager (SIM) Interface," for the database management
statements that work with COMS. These statements are

ABORTTRANSACTION
BEGINTRANSACTION
CANCELTRPOINT
CLOSE

ENDTRANSACTION
OPEN
SA VETRPOINT

Refer to Section 6, "Using the Screen Design Facility Plus (SDF Plus) Interface,"
for an explanation of how to access SDF Plus from COMS. There are no
extensions specific to COMS that are required for SDF Plus.

Additional information relating to COMS statements is included in Section 6,
"Using the Screen Design Facility Plus (SDF Plus) Interface," Section 7, "Using
the Semantic Information Manager (SIM) Interface," Section 4, "Using the Data
Management System II (DMSII) Interface," and Section 5, "Using DMSII
Transaction Processing System (TPS) Extensions."

8600 0734-000 3-25

Using Communications Management System (COMS) Features

COMS BEGINTRANSACTION Statement

3-26

The COMS BEGINTRANSACTION statement places a program in transaction
state. It allows a program interfacing with COMS to support synchronization of
transactions and recovery. The statement is used in application programs that
update a DMSII database. It provides synchronized recovery if an exception
occurs while a program is in transaction state. (The SIM BEGINTRANSACTION
statement is used for SIM databases.)

Note: At any given time, a program can be in transaction state with only one
database. For proper recovery, the name of the database in transaction
state slumUl be the name of the database noted in the COMS Utility.

If the message area is specified, COMS stores restart information in the
transaction trail.

COMS updates the STATUSV ALUE field of the declared input header with the
result of the BEGINTRANSACTION statement.

Consult the COMS Programming Guide for more information about the
STATUSV ALUE field, synchronized recovery and transaction trails, message
areas, the restart data set, and handling a BEGINTRANSACTION exception.

Additional information on to the COMS BEGINTRANSACTION statement is
included under "Fields of the Input Header," "Service Function Result Values,"
and "STATUSVALUE Field Values" in this section. Related information is also
included under "DMSII BEGINTRANSACTION Statement" in Section 4, and "SIM
BEGINTRANSACTION Statement" in Section 7.

Syntax

<begintransaction statement>

- BEGilllTRANSACTION - <i nputheadername> -------....---------•~

l_ <message area> ~
~ --------------........ <restart data set> _, ______ _

t- (- <transaction record variable> -) -

1- AUDIT

'- NOAUDIT

~ <exception handling>~
Additional information on the <inputheademame> construct is included under
"Declaring Input and Output Headers" in this section. Information on the
<message area> construct is included under "Declaring Input and Output
Headers" in this section. Information on transaction processing and the
<exception handling> construct is included under "Passing Transaction Record

8600 0734-000

Using Communications Management System (COMS) Features

Variables as Parameters" and "Database Status Word" in Section 4, "Using the
Data Management System II (DMSII) Interface"

Explanation

The construct <inputheademame> identifies the declared input header.

The <message area> construct identifies the declared variable reserved for the
actual message.

The <transaction record variable> construct identifies a transaction record
created through the Transaction Processing System (TPS).

If AUDIT is specified, the restart area is captured. If NOAUDIT is specified, the
restart area is not captured. AUDIT is the default action.

The restart data set contains the restart records an application program can
access to recover database information after a system failure.

An exception is returned if the BEGINTRANSACTION statement is encountered
while the program is in transaction state. An ABORT exception frees all records
that the program locked. Note that deadlock can occur during execution of a
BEGINTRANSACTION statement.

Additional information is included under "Declaring a Message Area" in this
section, and under "Exception Processing" in Section 4, "Using the Data
Management System II (DMSII) Interface."

Example

The following BEGINTRANSACTION statement is for the input header declared
as MYHEADER. COMS will store restart information in the transaction trail
because the message area, MSG, is specified. Since AUDIT is included, the restart
area will be trapped. The restart data set is RDS.

BEGINTRANSACTION MYHEADER MSG AUDIT RDS;

8600 0734-000 3-27

Using Communications Management System (COMS) Features

DISABLE Statement

3-28

The DISABLE statement logically disconnects the program from the station in the
STATION field of the declared input header.

The DISABLE statement can be used as an integer-valued function. The returned
integer is the same as the value COMS places in the STATUSV ALUE field of the
input header. For example, a returned value of 0 (zero) means the STATION field
of the header contains a valid station designator and the disconnect was
successful.

COMS updates the FUNCTIONSTATUS field of the input header. Consult the
COMS Programming Guide for an explanation of the FUNCTIONSTATUS and
STATUS fields.

Additional information relating to DISABLE statement is included under "Fields
of the Input Header," "Service Function Result Values," "FUNCTIONSTATUS
Field Values," and "STATUSV ALUE Field Values" in this section.

Syntax

- DISABLE - (- <inputheadername> -L....------J.- , - <keyname> -) ------1
TERMINAL

<keyname>

1 <"alpha string literal">

<EBCDIC array roW> ---'

Additional information relating to the <inputheademame> construct is included
under "Declaring Input and Output Headers" in this section.

Explanation

The construct <inputheademame> identifies the input header.

The word "TERMINAL" specifies a disconnect from a station. If it is not
specified, it is assumed.

The valid values for the construct <keyname> are: "DIAL", "OONTCARE",
"RELEASE", and "RETAIN". They are detailed in the COMS Programming Guide.
Note that these values are literals and require quotation marks. If blanks are
entered or no keyname is specified, the default state of "DONTCARE" is
assumed.

Consult Volume l for an explanation of alpha string literals.

Additional information is included under "ENABLE Statement" in this section.

8600 0734-000

Using Communications Management System (COMS) Features

Examples

The DISABLE statement below disconnects a previously enabled dial-out station.

DISABLE{MYINPUT TERMINAL, "DIAL");

In the following example, the program is disconnected from the station specified
in the STATION field of the input header IN CO MS. If the station is a CP2000
station, the physical attachment will be released.

DISABLE {INCOMS TERMINAL, "RELEASE");

Shown below is an example of the DISABLE statement using the default options.
Even though the TERMINAL option is not specified, the disconnect is from the
station in the STATION field of the input header THEINPUTHEADER. Since no
keyname is given, the default state is "DONTCARE". If the station is a CP2000,
the terminal gateway will decide whether to retain or release the physical
attachment.

DISABLE{THEINPUTHEADER);

8600 0734-000 3-29

Using Communications Management System (COMS) Features

ENABLE Statement

3-30

The ENABLE statement logically connects COMS and the destination specified in
the Station Designator field of the declared input header.

The ENABLE statement can be used as an integer-valued function. The returned
integer is the same as the value COMS places in the STATUSVALUE field of the
input header. For example, a returned value of 0 (zero) means the ENABLE was
successful.

The STATUSVALUE field of the input header contains the status of the connect.

Consult the COMS Programming Guide for an explanation of the fields of the
headers.

Additional information relating to the ENABLE statement is included under
"Fields of the Input Header," "Service Function Result Values," and
"STATUSVALUE Field Values" in this section.

Syntax

<enable statement>

- ENABLE - (- <i nputheadername> -----J--..... , -<keyname> -) -----

L TERMINAL

Additional information relating to the <inputheademame> construct is included
under "Declaring Input and Output Headers" in this section. Information on the
<keyname> construct is included under "DISABLE Statement" in this section.

Explanation

The construct <inputheademame> identifies the input header.

If the word "TERMINAL" is not specified, the ENABLE statement initializes the
program with COMS. If TERMINAL is specified, the ENABLE statement performs
a dynamic attachment to a station.

The valid keynames depend on whether the TERMINAL syntax is used in the
ENABLE statement. "BATCH" and "ONLINE" cannot be specified if the word
"TERMINAL" appears in the statement.

The other valid keynames are: "DIAL", "NOW AIT", "WAIT", "W AITDIALOUT",
and "NOBUSY".

The "(HOSTNAME- <hostname>)" syntax can be used with the TERMINAL
option for "WAIT", "NOW AIT", "W AITDIALOUT", and "W AITNOBUSY"
keynames. HOSTNAME is the name of the host of the station in the Destination
field. The hostname string is not checked for accuracy by the compiler; it is used
by COMS at run time to define a host.

8600 0734-000

Using Communications Management System (COMS) Features

Note that the keyname values are literals and require quotation marks. Consult
the COMS Programming Guide for iiiformation on keynames and on batch and
interactive processing. ·

Additional information relating to the ENABLE statement is included under
"DISABLE Statement" in this section. '

Examples

The following ENABLE statement informs COMS that it is dealing with an
interactive program:

ENABLE(MYINPUT,"ONLINE");

In the example below, the conversation area field of the input header holds the
telephone number, the TEXTLENGTH field holds the telephone number length,
and the STATION field holds the station designator. The statement connects the
program for data transfer to a dial-out station.

ENABLE(MYHEADER TERMINAL,"DIAL");

The example below shows the syntax when a hostname, shown here as
MACHINE, is specified. The hostname is the name of the host of the station in the
Destination field. The hostname string is not checked for accuracy by the
compiler; it is used by COMS at run time to define a host.

ENABLE(MYHEADER TERMINAL, 11 WAIT (HOSTNAME •MACHINE)");

8600 0734-000 3-31

Using Communications Management System (COMS) Features

COMS ENDTRANSACTION Statement

3-32

The COMS ENDTRANSACTION statement takes a program out of transaction
state. It is used only in application programs that update a DMSII database. (The
SIM ENDTRANSACTION statement is used for SIM databases.)

Two of the basic tasks performed by the COMS ENDTRANSACTION statement
are to

1. Ensure that the information passed to COMS during the midtransaction
phase is safely stored in the transaction trail.

2. Perform a DMSII ENDTRANSACTION.

If the DMSII ENDTRANSACTION returns an exception, COMS resubmits the
current transaction after synchronized recovery is complete.

COMS updates the STATUSV ALUE field of the declared output header with the
result of the ENDTRANSACTION statement.

Consult the COMS Programming Guide for more information on the
STATUSVALUE field, synchronized recovery, the restart data set, and handling
an ENDTRANSACTION exception.

Additional information on the COMS ENDTRANSACTION statement is included
under "Fields of the Output Header," "Service Function Result Values,"
"STATUSVALUE Field Values," and "SEND Statement" in this section. Related
information is also included under "DMSII ENDTRANSACTION Statement" in
Section 4, "Using the Data Management System II (DMSII) Interface," and under
"SIM ENDTRANSACTION Statement" in Section 7, "Using the Semantic
Information Manager (SIM) Interface."

Syn tu:

<endtransaction statement>

- ENDTRANSACTION - <outputheadername with send options> -c-A-U-DI-T-~--.-----·

L NOAUDIT J
.,_ <restart data set> -.----....-.----------.-----------1

L SYNC J L <exception handling> J
<Outputheadername with send options>

- <Outputheadername> L J
[- <send options> -] L <message area> J

Additional information on the <exception handling> construct is included under
"Exception Processing" in Section 4, "Using the Data Management System II

8600 0734-000

Using Communications Management System (COMS) Features

(DMSII) Interface." Information on the <outputheadername> construct is
included under "Declaring Input and Output Headers" in this section. Information
on the <send options> construct is included under "SEND Statement," in this
section. Information on the <message area> construct is included under
"RECEIVE Statement," in this section.

Explanation

The construct <outputheadername> identifies the output header.

The send options describe the carriage and message controls that can be used
with a send operation.

The <message area> construct identifies the declared variable reserved for the
actual message. If a message area is specified, COMS ensures that the message is
sent before the DMSII ENDTRANSACTION is executed.

If AUDIT is specified, the restart area is captured. If NOAUDIT is specified, the
restart area is not captured. AUDIT is the default action.

The restart data set contains the restart records an application program can
access to recover database information after a system failure.

The word "SYNC" forces a syncpoint.

An exception is returned if an ENDTRANSACTION statement is attempted and
the program is not in the transaction state. Records are freed in all cases. The
transaction is not applied to the database.

Additional information relating to the COMS ENDTRANSACTION statement is
included under "Exception Processing" in Section 4, "Using the Data Management
System II (DMSII) Interface."

Example

In the following example, the output header is MYOUT. The send option instructs
the system to skip two lines. Since a message area (MSG) is specified, a message
will be sent during synchronized recovery. The restart area is captured in the
restart data set RDS.

ENDTRANSACTION MYOUT [SKIP 2] MSG AUDIT RDS;

8600 0734-000 3-33

Usln1 Communications Manacement System (COMS) Features

MESSAGECOUNT Statement

3-34

The ~AGECOUNT statement returns the number of queued messages for the
program. COMS places the number of messages into the MESSAGECOUNT field of
the designated input header.

'J;'he ~AGECOUNT statement can be used as an integer-valued function. The
returned integer is the number of queued messages. The STATUSVALUE field of
the input header is also updated. It contains the status of the MESSAGECOUNT
request. A status value of 0 (zero) means the operation was successful.

Consult the COMS Progra,m:ming Guide for more information about the
MESSAGECOUNT and STATUSV ALUE fields.

Additional information relating to the ~AGECOUNT statement is included
under "Fields of the Input Header," "Service Function Result Values," and
"STATUSVALUE Field Values" in this section.

Syntax

<messagecount statement>

- MESSAGECOUNT - (- <inputheadername> -) -----------------4
Additional information relating to the <inputheademame> construct is included
under "Declaring Input and Output Headers" in this section.

~lanation
The <inputheademame> construct identifies the input header.

Eu.mp le

The number of messages associated with the input header MYINPUT is assigned
to the variable COUNT and COMS puts the message count into the
MESSAGECOUNT field of MYINPUT.

COUNT :• MESSAGECOUNT(MYINPUT);

8600 0734-000

Using Communications Management System (COMS) Features

RECEIVE STATEMENT

The RECEIVE statement requests that a message be transferred from the program
queue to the designated message area. Information about the message is provided
in the specified input header.

The RECEIVE statement can also be used as an integer-valued function. The
returned integer is the same as the value COMB places in the STATUSV ALUE
field of the input header. For example, a returned value of 0 (zero) means a
message was received successfully.

Consult the COMS Programming Gu:iAe for an explanation of the fields of the
input header.

Additional information relating to the RECEIVE statement is included under
"Service Function Result Values," "Fields of the Input Header," and
"STATUSVALUE Field Values" in this section.

Syntax

<receive statement>

- RECEIVE - (- <fnputheademame> , - <message area> -) ---i
L [- OONTWAIT -] J

<message area>

1 <EBCDIC array rOW>

<ADDS structure>

Additional information relating to the <inputheademame> construct is included
under "Declaring Input and Output Headers" in this section.

Explanation

The construct <inputheademame> identifies the input header to receive the
message.

The OONTW AIT option allows the user to specify that a receive operation will
not wait for a message. If DONTW AIT is not specified, the receive operation
waits for a message.

The <message area> construct identifies the variable into which the actual
message will be placed.

Example

In the following example, the first RECEIVE statement is a conditional receive
operation. The variable COMSSTATUS, as well as the status value, will be
nonzero if there is no message waiting or if some other exception occurs. The
second receive operation will wait forever or until a message comes in.

8600 0734-000 3-35

Using Communications Management System (COMS) Features

3-36

INTEGER COMSSTATUS;
INTEGER RECEIVECODE;

COMSSTATUS :• RECEIVE(MYINPUT [DONTWAIT],MSG);

IF RECEIVE(MYINPUT,MSG) > 0 THEN
BEGIN
RECEIVECODE :• MYINPUT.STATUS;
CASE RECEIVECODE OF
BEGIN
95:
HANDLE..AGENDA._ERROR;

ELSE:
HANDLE..COM5-ERROR;
END;
END

ELSE
PROCESS....MESSAGE;

8600 0734-000

Using Communications Management System (COMS) Features

SEND Statement

The SEND statement requests a message or portion of a message to be transferred
from the specified message area to the program or station queue designated by
either the DESTINATIONDESG or AGENDA field of the output header.

The SEND statement can be used as an integer-valued function. The returned
integer is the same as the value COMS places in the STATUSVALUE field of the
output header and represents the result of the transfer. For example, a returned
value of 0 (zero) means the transfer was successful.

Delivery confirmation uses the CONFIRMFLAG and CONFIRMKEY fields of the
output header. If the value of the CONFIRMFLAG is TRUE when the SEND is
executed, the three bytes of the CONFIRMKEY field are used as the tag for
delivery confirmation.

Consult the COMS Programming Guide for an explanation of the fields of the
headers.

Additional information relating to the SEND statement is included under "Fields
of the Output Header," "Service Function Result Values," and "STATUSVALUE
Field Values" in this section.

Syntax

<Send statement>

- SEND - (- <outputheadername> -~--------....-- , - <message length> -+
L [-<Send opt ions> -] J

.,_ , - <message area> -) -----------------------1

<send options>

[<message control indicator> J L ~EFORE 1
L AFTER J

l'---f- SKIP -i- <arithmetic expression>

L SPACE J
1\- PAGE

1\- NOCR

1\- NOLF

<message control indicator>

8600 0734-000 3-37

Using Communications Management System (COMS) Features

3-38

<message length>

-i= :arithmetic expression>

Additional information relating to the <outputheademame> construct is
included under "Declaring Input and Output Headers" in this section.

Explanation

The <outputheademame> identifies the output header.

The send options describe the message controls and caniage controls to be
applied to the send.

A message control indicator is either the mnemonic or arithmetic value used to
select a type of output for the message. The output can be nonsegmented or
segmented. Segmented messages can be defined by changing the TEXTLENGTH
field of the output header and using one of the three segmenting options. The
TEXTLENGTH field is used by COMS to determine how much of the message area
variable is to be used as the segment in the SEND statement. Unless the
TEXTLENGTH field is set, COMS uses the entire message area.

The message control indicator mnemonics and their arithmetic equivalent are
shown in the following table. The default is EMI (the value 2). For a detailed
explanation of the indicators, consult the COMS Programming Guide.

Mnemonic

ESI

EMI

EGI

Value

1

2

3

Type of Indicator

End-of-Segment Indicator

End-of-Message Indicator (default)

End-of-Group Indicator

If multiple SEND statements are processed with the ESI control, and a SEND
statement with the EMI control is processed in the middle of these, the SEND
statement with the EMI control is sent immediately, while the other statements
wait until one of the ESI output conditions is TRUE. This means that, in some
cases, it can appear that the messages are not being sent in the correct order.

The results of the carriage control options can differ depending on the output
device. If no carriage controls are specified, the default value of AFTER SP ACE
l" is used. This sends the message and advances one line.

8600 0734--000

Using Communications Management System (COMS) Features

The carriage control options, summarized below, pertain to the output device.

• BEFORE and AFTER determine if the message is sent to the output device
before or after the rest of the carriage control options are executed.

• SKIP causes the printer to skip to the channel specified by the value of the
arithmetic expression.

• SP ACE causes the printer to space the number of lines specified by the
arithmetic expression.

• PAGE skips to the next page.

• NOCR suppresses the carriage return.

• NOLF suppresses line feed.

The <message length> construct gives the length, in bytes, of the data contained
in the message area. If a value is specified in the <message length> construct,
the TEXTLENGTH field of the output header is updated with that value.

Example

The following SEND statement sends the message specified by the EBCDIC array
MSG, with a text length of 32 characters, and then uses the SKIP option to skip to
channel 10 using the message control indicator EMI.

EBCDIC ARRAY MSG[0:32];

IF SEND(MYOUT [EMI AFTER SKIP 10], 32, MSG) THEN
BEGIN
CASE SENDCODE OF
BEGIN
98:
COMS..SECURITY_VIOLATION;

ELSE:
HANDLE_COMS_ERROR
END;
END
ELSE
RESUME-PROCESS;

8600 0734-000 3-39

Using Communications Management System (COMS) Features

Error Handling
When an error occurs during communication processing, the result of a COMS
statement can be determined in two ways:

1. The COMS statement can be used as a function.

2. The value stored in the STATUSVALUE field of the header can be compared
to the error codes for the particular statements.

All COMS statements can be used as functions. Each statement returns an integer
value. Except for the MESSAGECOUNT statement, the integer value is the same
as the status value COMS places in the STATUSV ALUE field of the respective
header. The MESSAGECOUNT statement returns the value COMS places in the
MESSAGECOUNT field.

When detaching a station or program, or when using the Modular Function Index
(MFI), the status of the operation is reported in the FUNCTIONINDEX field of the
input header. The value stored in this field can be used to check if the
detachment was successful or if an error occurred.

STATUSVALUE Field Values ·

The values and meanings for the STATUSV ALUE field of the input header and
output header and for the status of a call are listed and detailed in an appendix
of the COMS Programming Guide.

FUNCTIONSTATUS Field Values

COMS places values in the FUNCTIONSTATUS field of the input header when
performing a DISABLE statement or any MFI operation. These values are listed
and detailed in the COMS Programming Guide. Define these values in the
program using the DEFINE declaration, as shown in Volume 1 of this manual. For
example,

DEFINE CONTROLMSG • -1#, GOOD_DELIVERY • -12# ;

Exception-Condition Statements and DMTERMINATE

3-40

If you must use exception-condition statements to close a database, use the
DMTERMINATE statement for those exceptions not specifically handled by the
program.

Additional information relating to the DMTERMINATE statement is included
under "DMTERMINATE Statement" in Section 4, "Using the Data Management
System II (DMSII) Interface."

8600 0734-000

Using Communications Management System (COMS) Features

COMS Service Functions
COMS servi~e functions are entry points that allow programs to obtain
information on COMS entities and to translate designators and names that
represent these entities.

Umbrella service functions provide simple access to numerous specialized service
function entry points. The umbrellas map requests to specific service functions.

COMS umbrella service functions exchange either a name for a designator or a
designator for a name. When you pass a name or a designator to a service
function, the name or designator is used as an input parameter. The COMS library
returns output parameters and function values. The function values are given
under "Service Function Result Values."

To determine the length of a string returned by a service function, the program
must test for a blank. The string is always terminated by a blank character.

The following pages briefly describe the umbrella service functions, detail their
calling parameters, and define the values used to report the results of the call.

Consult the COMS Programming Guide for further information on the COMS
service functions.

Additional information relating to COMS service functions is included under
"Service Function Result Values," "Designator Data Type," "COMS Statements,"
"Error Handling," "Linking to COMS," and "Designators for COMS Entities" in
this section.

Functional Descriptions

The COMS service functions can be called by application programs and by
processing items. The service functions and a description of how to use input
aqnd output headers in coltjunction with service functions are covered in the
COMS Programming Guide. The service functions are explained briefly in Table
3-4.

Table 3-4. A Brief Explanation of COMS Service Functions

Service Function

CONVERT_TIMESTAMP

GET _DESIGNATOR-ARRAY _USING-DESIGNATOR

8600 0734-000

Brief Explanation

Converts value in a COMS
TIMESTAMP field to the date or
time as an EBCDIC array.

Gets a designator vector from a
structure represented by a
designator.

3-41

Using Communications Management System (COMS) Features

Table 3-4. A Brief Explanation of COMS Service Functions (cont.)

Service Function

GET_OESIGNATOFLUSIN<LOESIGNATOR

GET_DESIGNATOFLUSING-NAME

GET_INTEGEFLARRAY-USIN<LDESIGNATOR

GET_INTEGEFLUSIN<LOESIGNATOR

GET_NAME...USIN<LOESIGNATOR

GET _REAL.ARRAY

GET-5TRING_USIN<LOESIGNATOR

STATION_TABLE...ADD

STATION_ TABLE...INITIALIZE

STATIQN_TABLE...SEARCH

TEST _DESIGNATORS

Brief Explanation

Gets a specific designator out of the
structure represented by a
designator.

Converts a COMS entity name to a
COMS designator.

Gets a vector of integers from the
structure represented by a
designator.

Gets a specific integer out of the
structure represented by a
designator.

Converts a COMS designator to a
COMS name for that designator.

Gets a structure of data with no
connection to any entity.

Gets an EBCDIC string out of the
structure represented by a
designator.

Adds a station designator to an
existing station table.

Initializes a station table so that
station index values can be added
using STATION_TABLE...ADD.

Finds a station designator within a
station table.

Tests whether a designator is part of
a structure represented by another
designator.

Declaring COMS Service Functions

3-42

To declare the individual functions needed for an application, use the
PROCEDURE declaration with the library entry point specification. The syntax
for each service function is shown on the following pages.

The internal name "COMSSUPPORT" should not be used as the internal name of
the library "COMSSUPPORT". If it is, the appropriate version of COMS is
required as the FUNCTIONNAME or TITLE of the library.

8600 0734-000

Using Communications Management System (COMS) Features

Eumple 1: Use of FUNCTIONNAME

LIBRARY SERVI CE-LIB (FUNCTIONNAME • "COMSSUPPORT. ") ;

Eumple 2: Use of TITLE

LIBRARY SERVICE-LIB (LIBACCESS • BYTITLE, TITLE • "SYSTEM/COMS ON PACK.");

Consult Volume I of this manual for a complete explanation of the PROCEDURE
declaration, its syntax, and its constructs.

Consult the COMS Programming Guide for the valid designators for COMS
entities and for the service function mnemonics and values. The guide contains
detailed information regarding each service function.

The Pascal Programming Reference Manual, Volume 2: Product Interfaces
contains service functions specifically designed for Pascal arrays.

Additional information relating to declarations of COMS service functions is
included under "Linking to COMS" in this section.

8600 0734-000 3-43

Using Communications Management System (COMS) Features

CONVERT_TIMESTAMP

3-44

The following declares a procedure to convert a COMS TIMEST AMP field to a
date or time EBCDIC array.

LIBRARY SERVICE-LIB
(FUNCTIONNAME • 11 COMSSUPPORT. 11);

INTEGER PROCEDURE CONVERT_TIMESTAMP
(ENTY_TIMESTAMP, ENTY..MNEMONIC, ENTY_TIME);
VALUE ENTY-HNEMONIC;
REAL ENTY_TIMESTAMP;
INTEGER ENTY-HNEMONIC;
EBCDIC ARRAY ENTY_TIME[O];
LIBRARY SERVICE-LIB;

ENTY_TIMESTAMP is the TIME (6) timestamp used as input in the conversion.

The ENTY-MNEMONIC is the requested information. The only valid mnemonics
are TIME and DATE (with ALGOL values of 72 and 71, respectively.) The time is
returned in the form HHMMSS. The date is returned in the form MMDDYY.

ENTY_TIME is the array where the result from COMS is returned.

COMS provides a timestamp in the TIME(6) format for application programs
using a direct-window interface. The TIME(6) intrinsic returns a unique 48-bit
pattern for the time and date. The TIME(6) timestamp returns positive numbers
for the years 1970 through 1986 and negative numbers for the years 1987 and
beyond. This affects software that uses arithmetic compare operators, such as
greater than, less than, or equal to, against the TIME{6) format timestamp.
Consult Volume 1 for a definition and explanation of the TIME function.

8600 0734-000

Using Communications Management System (COMS) Features

GET _DESIGNATOR-ARRA y _us1 NG_DESIGNATOR

The following declares a procedure to retrieve a designator vector from the
structure represented by the designator.

LIBRARY SERVICE._LIB
(FUNCTIONNAME • "COMSSUPPORT.");
INTEGER PROCEDURE GET.J>ESIGNATOR...ARRAV_USING..DESIGNATOR
(ENTV_DESIGNATOR, ENTY_DESGTOTAL, ENTY.J>ESGVECTOR};
INTEGER ENTY_DESGTOTAL;
REAL ENTV_DESIGNATOR;
REAL ARRAY ENTY_DESGVECTOR[O];
LIBRARY SERVICE-LIB;

The ENTY_DESIGNATOR is the designator that represents the structure. The
only valid entry is a station list designator (ALGOL value 10).

ENTY_DESGTOTAL is the total number of designators returned in the vector.

The ENTY _DESGVECTOR is the vector in which the designators for the stations
are returned.

8600 0734-000 3-45

Usln1 Communications Mana1ement System (COMS) Features

GET-DESIGNATOR-USING-DESIGNATOR

3-46

The following declares a procedure to retrieve a specific designator from the
structure represented by the designator:

LIBRARY SERVICE..LIB
(FUNCTIONNAME • 11 COMSSUPPORT. 11);

INTEGER PROCEDURE GET..DESIGNATOR.JJSING..DESIGNATOR
(ENTY..DESIGNATOR, ENTYJ4NEMONIC, ENTY..DESGRES);
VALUE ENTY..MNEMONIC;
REAL ENTY..DESIGNATOR, ENTY..DESGRES;
INTEGER ENTY..MNEMONIC;
LIBRARY SERVICE..LIB;

The ENTY_DESIGNATOR is the designator that represents the structure. All
designators shown in "Designators for COMS Entities" can be used.

The ENTY-MNEMONIC is the requested designator type. For example, DEVICE
can be used only as an entry for a station designator.

Valid ALGOL values and ENTY-MNEMONIC names for the various structures are
given in the following table.

If ENn.J>ESIGNATOR Represents

Any Designator

Program

Station

User

V•lld ALGOL V•lue/ENn-MNEMONIC 11

52 • INSTALLATION_DATA...LINK

5 ·SECURITY

9 ·DEVICE
5 ·SECURITY

5 ·SECURITY

ENTY_DESGRES is the designator returned by COMS.

Additional information relating to COMS designators is included under
"Designators for COMS Entities" in this section.

8600 0734-000

Using Communications Management System (COMS) Features

GET_DESIGNATOR_USINCLNAME

The following declares a procedure to convert a COMS entity name to a COMS
designator.

LIBRARY SERVICE-LIB
(FUNCTIONNAME•11 COMSSUPPORT. 11);

INTEGER PROCEDURE GET..DESIGNATOll.USINGJ4AME
(ENTY_NAME, ENTY_TYPE, ENTY..DESIGNATOR);
VALUE ENTY_TYPE;
EBCDIC ARRAY ENTY_NAME[O];
REAL ENTY_DESIGNATOR;
INTEGER ENTY_TYPE;
LIBRARY SERVICE-LIB;

The ENTY_NAME contains the name of the entity. If the entity is an agenda, a
trancode, or installation data, and if the program calling the service function is
running in another window or outside of COMS, the format of the entity name
can be

<entity name> OF <window name>

For installation data, use the "ALL" entity when no window is specified and the
window in which the program is running does not have an entity of the same
name.

The ENTY_TYPE is the mnemonic or value for the requested name. See the tables
in "Designators for COMS Entities" for the ALGOL values.

The ENTY__DESIGNATOR is the returned designator.

To ensure the return of a valid designator when the entity is an agenda, trancode,
or installation data

• Call the service function only from a direct-window program.

• Call the service function only after a direct-window program has executed an
ENABLE statement.

• Do not allow a processing item to call the service function until the processing
item's library code has executed a FREEZE statement.

Additional information relating to COMS designators is included under
"Designators for COMS Entities" in this section.

8600 0734-000 3-47

Using Communications Management System (COMS) Features

GET_INTEGER-ARRAY_USING-DESIGNATOR

3-48

The following declares a procedure to retrieve a vector of integers from the
structure represented by the designator.

LIBRARY SERVICE-LIB
(FUNCTIONNAME • "COMSSUPPORT. ");
INTEGER PROCEDURE GET_INTEGER._ARRAY_USING_DESIGNATOR
(ENTY_DESIGNATOR, ENTY-MNEMONIC, ENTY_INTEGERTOTAL,
ENTY_INTEGERVECTOR);
VALUE
REAL
INTEGER
INTEGER ARRAY
LIBRARY SERVICE_LIB;

ENTY-MNEMONIC;
ENTY_DESIGNATOR;
ENTY_INTEGERTOTAL, ENTY-MNEMONIC;
ENTY_INTEGERVECTOR[O];

The ENTY_DESIGNATOR is the designator that represents the structure. All
designators shown in "Designators for COMS Entities" can be used.

The ENTY -.MNEMONIC describes which integer vector is requested. For example,
INST ALLA TION-1NTEGEILALL can be used as an entry for all designators.
However, MIXNUMBERS is valid only if the designator represents a program.

Valid ALGOL values and ENTY -.MNEMONIC names for the various structures are
given in the following table.

If ENTY-DESIGNATOR Represents

Any Designator

Program

Valid ALGOL Value/ENTY-MNEMONIC Is

45 - INSTALLATIQN_INTEGEILALL

84 • MIXNUMBERS

The ENTY-1NTEGERTOTAL is the number of integers returned in the vector.
ENTY..JNTEGERVECTOR is the vector itself.

Additional information relating to COMS designators is included under
"Designators for COMS Entities" in this section.

8600 0734-000

Using Communications Management System (COMS) Features

GET _I NTEGER_USIN6-DESIGNATOR

The following declares a procedure to extract a specific integer from the
structure represented by the designator.

LIBRARY SERVICF_LIB
(FUNCTI ONNAME - II COMSSUPPORT. II) ;

INTEGER PROCEDURE GET_INTEGER..USING....DESIGNATOR
(ENTY_DESIGNATOR, ENTY..MNEMONIC, ENTY_INTEGER);
VALUE ENTY..MNEMONIC;
REAL ENTY_DESIGNATOR;
INTEGER ENTY..MNEMONIC, ENTY_INTEGER;
LIBRARY SERVICE-LIB;

The ENTY -DESIGNATOR is the designator representing the structure. All
designators shown in "Designators for COMS Entities" can be used.

The ENTY-MNEMONIC describes which integer is requested. For example,
INSTALLATION_INTEGER-4 can be used as an entry for all designators.
However, CURRENT_USER-COUNT is valid only if the designator represents a
window.

Valid ALGOL values and ENTY-MNEMONIC names for the various structures are
given in the following table.

If ENTY-DESIGNATOR Represents

Any Designator

Program

Station

Window

The ENTY-1NTEGER is the result.

Valid ALGOL Value/ENTY_MNEMONIC Is

41 • INSTALLATION_INTEGEILl
42 • INSTALLATION_INTEGEIL2
43 • INSTALLATION_INTEGEIL3
44 • INSTALLATION_INTEGEIL4

61 • QUEUE._DEPTH
62 • MESSAGE...COUNT
63 • LAST _RESPONSE
64-AGGREGATE...RESPONSE

83 • LSN

81 • MAXIMUM_USEILCOUNT
82-CURRENT_USEILCOUNT

Additional information relating to COMS designators is included under
"Designators for COMS Entities" in this section.

8600 0734-000 3-49

Usln1 Communications Mana1ement System (COMS) Features

GET-NAME-USING-DESIGNATOR

3-50

The following declares a procedure to convert a COMS designator to a COMS
name.

LIBRARY SERVICE-LIB
(FUNCTIONNAME • "COMSSUPPORT. 11);

INTEGER PROCEDURE GET..NAME-USIN6-DESIGNATOR
(ENTY..DESIGNATOR, ENTY..NAME);
REAL ENTY..DESIGNATOR; .
EBCDIC ARRAY ENTY..NAME [0];
LIBRARY SERVICE-LIB;

The ENTY_DESIGNATOR is the supplied designator. All valid designators, as
shown in "Designators for COMS Entities," can be used.

The ENTY_NAME is the returned name. It is a string of 1to255 characters.

Additional information relating to COMS designators is included under
"Designators for COMS Entities" in this section.

8600·0734-000

Using Communications Management System (COMS) Features

GET-REAL.ARRAY

The following declares a procedure to retrieve a structure of data that has no
connection to any entity.

LIBRARY SERVICE-LIB
(FUNCTIONNAME • "COMSSUPPORT.");
INTEGER PROCEDURE GET-REAL.ARRAY
(ENTY..MNEMONIC, ENTY_REALTOTAL, ENTY-REALVECTOR);
VALUE ENTY.J1NEMONIC;
INTEGER ENTY.J1NEMONIC, ENTY_REALTOTAL;
REAL ARRAY ENTY_REALVECTOR[O];
LIBRARY SERVICE-LIB;

The ENTY-MNEMONIC is the requested structure of data. The only valid
mnemonic is STATISTICS (with an ALGOL value of 65).

ENTY-REALTOTAL is the total number of elements returned in the array.
ENTY-REAL VECTOR is the array where the information is returned.

The service function returns a table. Consult the COMS Programming Gurule for
details.

8600 0734-000 3-51

Using Communications Management System (COMS) Features

GET _STRING_USI NG-DESIGNATOR

3-52

The following declares a procedure to retrieve an EBCDIC string from the
structure represented by the designator.

LIBRARY SERVICE-LIB
(FUNCTIONNAME • "COMSSUPPORT.");
INTEGER PROCEDURE GET_STRIN6-USING..DESIGNATOR
(ENTY_DESIGNATOR, ENTY-HNEMONIC, ENTY-5TRINGTOTAL,
ENTY-5TRING);
VALUE
REAL
INTEGER
EBCDIC ARRAY
LIBRARY SERVICE-LIB;

ENTLMNEMONIC;
ENTY-DESIGNATOR;
ENTY_STRINGTOTAL,
ENTLSTRING[O];

ENTLMNEMONIC;

The ENTY_DESIGNATOR is the designator that represents the structure. All
designators shown in "Designators for COMS Entities" can be used.

The ENTY_MNEMONIC describes which string is requested.

Valid ALGOL values and ENTY-MNEMONIC names for the various structures are
given in the following table.

If ENTY_DESIGNATOR Represents

Any Designator

Station Designator 1

Valid ALGOL Value/ENTY_MNEMONIC Is

46 • INSTALLATION-5TRIN<Ll
47 • INSTALLATION-5TRINCL.2
48 • INSTALLATION-5TRING....3
49 • INSTALLATION-5TRIN<L4
50 • INSTALLATION_HE)Ll
51 • INSTALLATION_HEX-2

95 • LANGUAGE
120 - CONVENTION

1 To retrieve either the LANGUAGE or CONVENTION strings, you must use a station designator as
ENTY _DESIGNATOR.

The ENTY -8TRINGTOT AL is the number of valid characters in the string.
ENTY-8TRING is the returned string.

Additional information relating to COMS designators is included under
"Designators for COMS Entities" in this section.

8600 0734-000

Using Communications Management System (COMS) Features

STATION_TABLLADD

The following declares a procedure that adds a station designator to an existing
table of station designators (sometimes called a station table). The procedure
accepts the station table and a station designator. It returns a unique index into
the station table.

INTEGER PROCEDURE STATION_TABLE-ADD (STATION_HASH,
STATION_DESIGNATOR};

REAL ARRAY
STATION-HASH[O];

REAL
STATION_DESIGNATOR;

LIBRARY DCILIBRARY;

STATION-HASH represents the station table. The station table is implemented as
a hash table.

STATION-1)FSIGNATOR is the designator of the station that is added to the
station table.

8600 0734-000 3-53

Uslng·Communlcatlons Management System (COMS) Features

STATION_TABLLINITIALIZE

The following declares a procedure that initializes a table of station designators
(sometimes called a station table). The procedure accepts a station table and a
table modulus.

PROCEDURE STATION_TABLE-INITIALIZE (STATION-HASH, SHMOD);

REAL ARRAY
STATION-HASH[O];

INTEGER
SHMOD;

LIBRARY DCILIBRARY;

STATION.JIASH represents the station table. The station table is implemented as
a hash table.

SHMOD is the table modulus. The modulus determines the density of the station
table and the time required to access it.

• For fast access and lower table density, choose a value for the modulus that
is twice the maximum number of entries in the station table.

• For slower access and greater table density, choose a value for the modulus
that is one half of the maximum number of entries in the station table.

3-54 8600 0734-000

Using Communications Management System (COMS) Features

STATION_TABLLSEARCH

The following declares a procedure that finds a given station designator within a
table of station designators (sometimes called a station table). The procedure
accepts a station table and a station designator. It returns the index of the station
designator within the station table. If the station designator is not found, the
returned index is zero.

INTEGER PROCEDURE STATION_TABLE-SEARCH (STATION_HASH,
STATION_DESIGNATOR};

REAL ARRAY
STATION-11ASH[O];

REAL
STATION_DESIGNATOR;

LIBRARY DCILIBRARY;

STATION-11ASH represents the station table. The station table is implemented as
a hash table.

STATION-1>ESIGNATOR is the designator of the desired station (the station that
the procedure looks for in the station table).

8600 0734-000 3-55

Using Communications Management System (COMS) Features

TEST~DESIGNATORS

3-56

The following declares a procedure to test if a designator is part of a structure
represented by another designator.

LIBRARY SERVICE..LIB
(FUNCTIONNAME • "COMSSUPPORT.");
INTEGER PROCEDURE TEST.J>ESIGNATORS
(ENTY.J>ESIGNATOll.l, ENTY.J>ESIGNATOll.2);
REAL ENTY.J>ESIGNATOll.l, ENTY_DESIGNATOll.2;
LIBRARY SERVICE-LIB;

ENTY-DESIGNATOIL.1 and ENTY-DESIGNATOIL.2 are both designators. The
order in which they are passed does not affect the service function. However,
only device, device list, security, and security category designators are valid.
Device and device list designators can be used in combination. Security and
security category designators can be used in combination. The valid designators
are:

CATEGORY-LIST
DEVICE
DEVICE_LIST
INSTALLATION-DATA
INSTALLATION-DATA-1.INK
INSTALLATION--11EL1
INSTALLATION--11EX....2
INSTALLATION-1NTEGEILALL
INSTALLATION-1NTEGEIL1
INSTALLATION-1NTEGEIL2

INSTALLATION-1NTEGER-3
INSTALLATION-1NTEGEIL4
INSTALLATION-8TRING_l
INSTALLA.TION-8TRING-2
INSTALLATION-8TRING-3
INSTALLATION-8TRING_4
SECURITY
SECURITY-CATEGORY
SECURITY_CATEGORY_LIST

The valid ALGOL values for these are listed in "Designators for COMS Entities."

8600 0734-000

Using Communications Management System (COMS) Features

Designators for COMS Entities

Each entity in the COMS configuration has an associated designator that can be
used in service calls. Table 3-6 lists the most common entities, their ALGOL
value, and the information a program can request. Table 3-6 lists the mnemonics
for the installation data. Consult the COMS Programming Guide for information
on passing these values to service functions and for a complete listing of values.

Each designator for agendas, trancodes, and installation data must uniquely
identify a particular combination of a window and that entity. Each designator
for a station must uniquely identify a particular combination of a window, a
dialog, and a station.

Because the layout of COMS designators can change with each software release, a
program should not preserve any designators across executions. It is advisable
not to use designators as keydata in a database.

Entity Mnemonic

AGENDA

AGGREGATE._RESPONSE

CURRENT_USER-COUNT

DATABASE

DATE

DEVICE

Installation Data

DEVICE-LIST

INST ALLA TION_DATA

LAST _RESPONSE

LIBRARY

LSN

MAXIMUM-USER-COUNT

MESSAGE-COUNT

MDLNUMBERS

8600 0734-000

Table 3-5. COMS Entitles

Value

3

64

82

13

71

9

11

20

63

18

83

81

62

84

Type of Information

Name
Installation Data

Name
Installation Data

Name

Name
Installation Data

Name
Installation Data

Name
Installation Data

3-57

Uslnc Communications Management System (COMS) Features

3-58

Table 3-5. COMS Entitles (cont.)

Entity Mnemonic

PROCESSIN<LITEM

PROCESSIN<LITEM_l.IST

PROGRAM

SECURITY

SECURITY-CATEGORY

SECURITY _CATEGORY-LIST

STATION

STATION-LIST

STATISTICS

TIME

TRANCODE

QUEUE-DEPTH

USERCODE

WINDOW

WINDOW-LIST

V•lue

14

15

4

5

8

19

1

10

65

72

16

61

2

12

17

Type of lntommlon

Name
Installation Data

Name
Installation Data

Name
Installation Data
Security Designator
Current Input Queue Depth
Total Number of Input Messages
Handled
Response Time for Last Transaction
Response Time Aggregate
Mixnumbers for Active Copies

Name
Installation Data

Name
Installation Data

Name
Installation Data
Logical Station Number
Security Designator
Device Designator
Language
Convention

Name
Installation Data
Stations.in List

Name
Installation Data

Name
Installation Data
Maximum number of users
Current number of users

Name
Installation Data

8600 0734-000

Using Communications Management System (COMS) Features

The mnemonics and values for installation data are showin in Table 3-6.

Table 3-6. Installation Data Values

Entity Mnemonic Value

INSTALLATION_DATA 20

INSTALLATION_INTEGEILl 41

INSTALLATION_INTEGEfL.2 42

INSTALLATION_INTEGEfL.3 43

INSTALLATION_INTEGEIL4 44

INSTALLATION-'NTEGEILALL 45

INSTALLATION-5TRINCL.1 46

INSTALLATION-5TRIN<L.2 47

INSTALLATION_STRING-3 48

INSTALLATION-5TRINCL.4 49

INSTALLATION-HEX-1 50

INSTALLATION_HEX_2 51

INSTALLATION_DATA-'.INK 52

Service Function Mnemonics and Values

The mnemonics used by the generalized service functions are detailed in the
COMS Programming Guide. Each mnemonic indicates which data item(s) is being
requested. When passing values to the service functions, use the DEFINE
declaration as shown in Volume 1. For example,

DEFINE AGENDA • 3#;

Service Function Result Values

The values returned by COMS to give the status of the call are detailed in the
COMS Programming Guide.

8600 0734-000 3-59

Using Communications Management System (COMS) Features

COMS Sample Program

3-60

The following sample program monitors a sailboat race and updates a DMSII
database by using features of the COMS direct-window interface. The program
illustrates the techniques used in writing transaction processors that allow
synchronized recovery.

The program runs in a COMS environment that has been configured to include a
DMSII database called SAILDB. The database contains three data sets.

• RACE-CALENDAR contains one record for every race.

• ENTRY contains one record for each boat entered in the race. A boat can have
multiple records, depending on the number of races it enters.

• RDS is the restart data set.

An example of a program using COMS and a SIM database is included under
"Example 4: Using COMS with a SIM Database" in Section 7, "Using the Semantic
Information Manager (SIM) Interface."

BEGIN
% ONLINESAIL

REAL
COMS-5TATUS;

TYPE INPUTHEADER
COMS_IN_TYPE (ARRAY CONVERSATION [0:59));

COMS_IN-TYPE
COMS_IN;

OUTPUTHEADER
COMS_OUT;

DATABASE
SAILDB;

DEFINE
EOF_NOTICE • 99 #,
TEXT_LEN • 113 #;

EBCDIC ARRAY
SCRATCH[0:255],
MSG_TEXT[O : TEXT_LEN-1];

DEFINE
%
%

MS6-TCODE • MS6-TEXT[O] #,
MSG-FILLER
MSG-CREATE-RACE

MSG-CR-ID• INTEGER(MS6-TEXT[7],6) #,
MSG-CR-NAME • MS6-TEXT[l3] #,
MSG-CR-DATE • MS6-TEXT[33] #,
MSG-CR-TIME • MS6-TEXT[39] #,
MSG-CR-LOCATION • MS6-TEXT[43] #,
MS6-CR-5PONSOR • MS6-TEXT[63] #,
FILLER

8600 0734-000

Using Communications Management System (COMS) Features

MS~DD_ENTRY REDEFINES MSG..CREATE-RACE
MS~E-RACE-ID • INTEGER(MSG..TEXT[7],6} #,
MS~E-ID • MSG..TEXT[l3] #,
MS~E-NAME • MSG..TEXT[l9] #,
MS~E-RATING • INTEGER(MSG..TEXT[39],3} #,
MS~E-OWNER • MSG..TEXT[42] #,
MS~E-CLUB • MS6-TEXT[62] #,
FILLER

MSG-DELETE-ENTRY REDEFINES MSG..CREATE_RACE
MSG..DE-RACE-ID • INTEGER(MS6-TEXT[7],6} #,
MSG..DE-ID • MSG..TEXT[l3] #,

FILLER
MSG..STATUS • MSG..TEXT[83] #;

BOOLEAN B;

PROCEDURE SEND..MSG;
% Send the message back to the originating station. Do
% not specify an output agenda. Make sure to test
% the result of the SEND statement.
BEGIN
CQMS_OUT.DESTCOUNT :• l;
COMS_OUT.DESTINATIONDESG :• COMS_IN.STATION;
COMS_OUT.STATUSVALUE :• O;
COMS_STATUS :• SEND(COMS_OUT, TEXT_LEN, MSG..TEXT};
IF NOT(COMS-5TATUS • 0 OR COMS-5TATUS • 92} THEN

DISPLAY("Onl ine Program SEND Err: 11 ! ! STRINGS(COMS_STATUS, *)};
END SEND..MSG;

PROCEDURE CREATE-RACE;
% Enter a new race record into the database. Since the
% transaction is done in online mode, save the restart
% data in the conversation area only. If the program aborts
% at BEGINTRANSACTION or ENDTRANSACTION, go back to the
% RECEIVE statement.
BEGIN
CREATE RACE-CALENDAR;
PUT RACE-CALENDAR (RACE-NAME
PUT RACE-CALENDAR (RACE-ID
PUT RACE-CALENDAR (RACE-DATE
PUT RACE-CALENDAR (RACE-TIME
PUT RACE-CALENDAR (RACE-LOCATION
PUT RACE-CALENDAR (RACE-SPONSOR

BEGINTRANSACTION COMS_IN

IF B THEN
BEGIN

:• MSG_CR_NAME};
:• MSG_CR_ID);
:• MSG_CR_DATE};
:• MSG_CR_TIME};
:• MSG_CR_LOCATION);
:• MSG_CR_SPONSOR};

NOAUDIT RDS : B;

IF REAL(B.DMERROR} NEQ ABORT THEN
DMTERMINATE(B};

END
ELSE

BEGIN
STORE RACE-CALENDAR : B;
IF B THEN

REPLACE MSG..STATUS BY "Store Error", 11 11 FOR 19

8600 0734-000 3-61

Using Communications Management System (COMS) Features

3-62

ELSE
REPLACE MS<LSTATUS BY "Race Added", " " FOR 20;

ENDTRANSACTION COMS-OUT AUDIT RDS : B;
IF B THEN

BEGIN
IF REAL{B.DMERROR) NEQ ABORT THEN

DMTERMINATE(B);
END

ELSE
SEND-MSG;

END;
END CREATE-RACE;

PROCEDURE ADD-ENTRY;
% Enter a boat in a race. The restart requirements are the
% same as those for creating a race.
BEGIN
FIND RACE-SET AT RACE-ID • MSG...AE-RACE-ID: B;
IF B THEN

IF REAL(B.DMERROR) • NOTFOUND THEN
BEGIN
REPLACE MS6-STATUS BY "Race does not exist", " " FOR 11;
SEND-MSG;
END

ELSE
DMTERMINATE(B)

ELSE
BEGIN
CREATE ENTRY;
PUT ENTRY (ENTRY-BOAT-NAME :• MSG...AE-NAME);
PUT ENTRY (ENTRY-BOAT-ID :• MSG...AE-ID);
PUT ENTRY (ENTRY-BOAT-RATING :• MSG...AE_RATING};
PUT ENTRY (ENTRY-BOAT-OWNER :• MSG...AE_OWNER);
PUT ENTRY (ENTRV-AFF-Y-CLUB :• MSG...AE_CLUB);
PUT ENTRY (ENTRY-RACE-ID :• MSG...AE-RACE-ID);

BEGINTRANSACTION COMS_IN

IF NOT B THEN
BEGIN
STORE ENTRY : B;
IF B THEN

NOAUD IT RDS : B;

REPLACE MS6-STATUS BY "Store Error", " " FOR 19
ELSE

REPLACE MS<LSTATUS BY "Boat Added", " " FOR 20;
ENDTRANSACTION COMS_our AUDIT RDS : B;
END;

IF B THEN
BEGIN

IF REAL(B.DMERROR) NEQ ABORT THEN
DMTERMINATE(B};

END
ELSE

SEND_MSG;
END;

END ADD-ENTRY;

8600 0734-000

Using Communications Management System (COMS) Features

PROCEDURE DELETE..ENTRY;
% Delete a boat from a race. The restart requirements are
% the same as those for adding an entry.
BEGIN
LOCK ENTRY-RACE-SET AT

ENTRY-RACE-ID • MS6-DE..RACE..ID AND
ENTRY-BOAT-ID • MS6-DE..ID : B;

IF B THEN
IF REAL(B.DMERROR) • NOTFOUND THEN

BEGIN
REPLACE MSCLSTATUS BY "Boat Entry Not Found", " " FOR 10;
SEND..MSG;
END
ELSE
DMTERMINATE(B)

ELSE
BEGIN
BEGINTRANSACTION COMS_IN NOAUDIT RDS : B;
IF NOT B THEN

BEGIN
DELETE ENTRY : B;
IF B THEN

REPLACE MS6-STATUS BY "Found But Not Deleted", " " FOR 9
ELSE

REPLACE MS6-STATUS BY "Boat Deleted", " " FOR 18;
ENDTRANSACTION COMS_OUT AUDIT RDS : B;
END;

IF B THEN
IF REAL(B.DMERROR) NEQ ABORT THEN

DMTERMINATE(B);
SEND..MSG;
END;

END DELETE..ENTRY;
PROCEDURE CHECK_COMS_INPUT_ERRORS;

8600 0734-000

% Check for COMS control messages.
BEGIN

CASE COMS-5TATUS OF
BEGIN

93: REPLACE MS6-STATUS BY "MSG Causes Abort, Do Not Retry";
SEND..MSG;

20:
100:
101:
102: REPLACE MS6-STATUS BY "Error in STA Attach/Detachment";

SEND..MSG;
0:

92:
99:
ELSE:; % A good message, recovery message, or EOT notification.

END;
IF COMS_IN.FUNCTIONINDEX < 0 THEN

BEGIN
REPLACE MS6-STATUS BY "Negative Function Code", " " FOR 8;
SEND..MSG;
END;

END CHECK_COMS_INPUT_ERRORS;

Using Communications Management System (COMS) Features

3,..64

PROCEDURE CLOSE-DOWN;
I Close the database.

BEGIN
CLOSE SAILDB;
END CLOSE.JX>WN;

PROCEDURE PROCESS-TRANSACTION;
I Since the transaction type is based on the
I function index, make sure it is within
I range.
BEGIN
CASE COMS_IN.FUNCTIONINDEX OF

BEGIN
ELSE:BEGIN

REPLACE MSG-STATUS BY
"Invalid Trans Code", 11 11 FOR 12;

SEND-MSG;
END;

1: CREATE-RACE;
2: ADD-ENTRY;
3: DELETE-ENTRY;

END;
END PROCESS_TRANSACTION;

PROCEDURE PROCESS_COMS-INPUT;
I Gets the next message from COMS. If the status
I returned is an EOF_NOTICE, go to EOT, else make sure
I that it is a valid message before processing it.
BEGIN
REPLACE MS6-TEXT BY II II FOR TEXLLEN;
COMS-5TATUS :• RECEIVE(COMS_IN, MS6-TEXT);
IF COMS-5TATUS NEQ EOF_NOTICE THEN

BEGIN
CHECIL.COMS_INPUT_ERRORS;
IF (COMS_STATUS • 0 OR COMS_STATUS • 92) AND
COMS_IN.FUNCTIONINDEX >- 0 THEN

PROCESS_ TRANSACTION;
END;

END PROCESS_COMS_INPUT;

Ai--------------------------------------1
COMSSUPPORT.LIBACCESS :• VALUE(BYTITLE);
REPLACE SCRATCH BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
COMSSUPPORT.TITLE :• STRING(SCRATCH[0],256);

OPEN UPDATE SAILDB: B;
IF B THEN

·DMTERMINATE(B);

ENABLE(COMS_IN,"ONLINE");

CREATE RDS;

DO
PROCESS_CQMS_INPUT

8600 0734-000

Using Communications Management System (COMS) Features

UNTIL COMS_STATUS • EOF_NOTICE;

CLOSE-DOWN;
END.

8600 0734-000 3-65

Section 4
Using the Data Management System II
(DMSll) Interface

An interface to the Data Management System II (DMSII) is provided in the
BDMSALGOL language. BDMSALGOL is based on Unisys Extended ALGOL and
contains extensions that enable a programmer to declare and use databases. The
extensions to ALGOL that make up the BDMSALGOL language are described in
this chapter. These extensions provide the following capabilities:

• Invoking a database

• Manipulating data through data management statements

• Using database items through a mapping syntax

• Processing exceptions

Programs written in the BDMSALGOL language must be compiled with the
BDMSALGOL compiler. Typically, this compiler is titled "SYSTEM/BDMSALGOL".

Refer to the DMSII Application Program Interfaces Programming Guide for a
discussion of DMSII programming issues, such as audit and recovery. Consult the
DMSII Data and Structure Language (DASDL) Programming Reference Manual
for detailed information on DASDL.

DMSII and Semantic Information Manager (SIM) databases can be accessed and
used in the same program. Each database must be invoked, manipulated, and
processed with its own extensions. Use DMSII and BDMSALGOL extensions for
DMSII databases. Use SIM extensions for SIM databases.

You can also use DMSII with other products described in this volume, such as
Communications Management System (COMS), Advanced Data Dictionary System
(ADDS), and Transaction Processing System (TPS).

Additional information relating to DMSII extensions is included in Section 3,
"Using Communications Management System (COMS) Features," Section 2, "Using
Advanced Data Dictionary System (ADDS) Extensions," Section 6, "Using DMSII
Transaction Processing System (TPS) Extensions," and Section 7, "Using the
Semantic Information Manager (SIM) Interface."

8600 0734-000 4-1

Using the Data Management System II (DMSll) Interface

Invoking a DMSll Database
Invoking a database involves both database declarations and database equations.

Declaring a Database

4-2

Like all variables, a database must be declared in a BDMSALGOL program before
it is referenced. However, a DATABASE declaration is unlike other declarations
in that it is actually an invocation of a database that has already been fully
described and declared in the Data and Structure Definition Language (DASDL).

Two different databases can be updated in the same program only if they are the
same physical database.

If the compiler control options LIST and LISTDB are both TRUE, all invoked
structures, together with the record formats, item and key descriptions, database
titles, and other pertinent information, are written on the program listing. When
database application programs are being developed, the LISTDB option should be
used, and the resulting information should be studied carefully.

Additional information relating to the LIST and LISTDB options is included under
"BDMSALGOL Compiler Control Options"in this section.

Syntax

<database declaration>

- DATABASE - <database reference> --------------------1

<database reference>

.....----------..------------- <database name> ---••

~ <internal name> - ~ ~ <logical database name> OF ~

• [(- TITLE • 11 - <database title> - 11 -) J

<internal name>

- <BDMS identifier> -------------------------1

8600 0734-000

Using the Data Management System II (DMSll) Interface

<logical database name>

- <BDMS identifier> --------------------------1

<database name>

- <BDMS identifier> ------------------------1

<database title>

A properly formed <file title constant> (as defined in the Work Flow
Language (WFL) Programming Reference Manual) that has only one node;
that is, a file title constant that does not contain any slashes (/).

<data set reference>

""T""--------~ <data set name> ---.-------....----------1
L <internal name> • J L (<Set part>) J

<data set name>

- <BDMS identifier> --------------------------1

<Set part>

ALL

NONE

SET

SETS _ro cset ref ~rence>
<Set reference>

......---------.....- cset name> -------------------4
L <internal name> • J

<Set name>

- <BDMS identifier> ------------------------1
Additional information relating to the <BDMS identifier> construct is included
under "BDMS Identifier Construct" in this section.

8600 0734-000 4-3

Using the Data Management System II (DMSll) Interface

Explanation

A DAT ABASE declaration declares a database and specifies which database or
which parts of a database are to be invoked. If no data set reference parts and no
set reference parts are specified in a DATABASE declaration, then all data sets
and all sets for each data set are implicitly invoked.

The <internal name> construct assigns an internal name by which a database,
data set, set, or subset is known within the program. When an internal name is
specified, all subsequent references to the structure must use this internal name.

A database, data set, set, or subset can be invoked more than once; however, the
external name (the name in the description file) can be used to reference only one
invocation of a structure. Internal names must be used to provide unique names
for all other invocations of a structure. The default internal name of a structure
is its external name.

By using the internal names in the <data set reference> or the <set reference>
constructs, multiple record areas or set paths can be established. Thus, several
records of a single data set can be manipulated simultaneously.

The <logical database name> construct allows the program to reference a logical
database. A program can invoke structures selectively from a logical database, or
it can invoke the entire logical database. Selective invocations are specified in the
same manner as for physical databases; however, the choice of structures is
limited to those structures included in the logical database.

The database name form gives the external name of the database to be invoked.

The <database title> construct is an alphanumeric string. A usercode, if any, is
the usercode of the control file. The single node of the title is the directory node
under which the database files are stored. The family name, if any, is the family
name of the control file. The default database title is the external name of the
database plus the control file usercode and family name, if any, from the
description file. When opening the database, the Master Control Program (MCP)
builds the control file title from the database title specified in the declaration. See
the DMSII DASDL Programming Reference Manual for a discussion of control
files and description files.

This title equation is used only at run time, and cannot be used at compile time to
specify the title of the database description file. The primary use of the
<database title> construct is for modeling. See the DMSII DASDL Programming
Reference Manual for a description of modeling.

The <data set reference> construct specifies a particular data set from the
declared database. If a data set reference is used, only the specified structures
are invoked. A data set reference must be used to invoke a disjoint data set.

The <data set name> construct gives the external name of the data set to be
invoked.

8600 0734-000

Using the Data Management System II (DMSll) Interface

The <set part> construct invokes specific sets from the data set declared in the
data set reference that contains it. If the set part construct is omitted, all sets are
implicitly invoked. If the set part construct is used, all sets (ALL), no sets
(NONE), or only the specified sets are invoked.

The <set reference> construct establishes a set that is not implicitly associated
with any particular record area. To load a record area using the set name
specified in a set reference, the "<data set> VIA" form of the selection
expression must be used.

The <set name> construct gives the external name of the set to be invoked.

Only disjoint structures can be explicitly invoked. When a master data set is
invoked (either implicitly or explicitly), its embedded data set, sets, and subsets
are always implicitly invoked. When a data set containing an embedded set
associated with a disjoint data set is invoked, or a data set containing a link to
another disjoint data set is invoked, then a path is established. However, the
disjoint data set must be invoked if it is to be used.

Multiple invocations of a structure provide multiple record areas or set paths, or
both, so that several records of a single data set can be manipulated
simultaneously. Selecting only needed structures for UPDATE and INQUIRY
provides better use of system resources.

If remaps are declared in DASDL, they are invoked in the same manner as
conventional data sets.

8600 0734-000 4-5

Using the Data Management System II (DMSll) Interface

Example: Simple Database

4-6

The following examples apply to the database DB described by the following
DASDL description:

D DATA SET (
K NUMBER (6);
R NUMBER (5);
) ;

Sl SET OF D KEY K;
S2 SET OF D KEY R;

DATABASE DB: D
This declaration establishes one current record area for the data set D, one
path for the set 81 of data set D, and one path for the set 82 of data set D.
The statements "FIND 81 ", "MODIFY 81 ", "FIND 82", and "MODIFY 82"
automatically load the data into the D record area.

DATABASE DB: D, X•D (NONE)
This declaration establishes two current record areas (D and X) and two
paths (81 and 82). The sets 81 and 82 are implicitly associated with the D
record area. The set part NONE prevents a set from being associated with X.
Thus, the statements "FIND 81" and "FIND 82" load the D record area. The
statements "FIND X VIA 81" and "FIND X VIA 82" must be executed to
load the X record area using a set.

DATABASE DB: D, X•D
This declaration shows how multiple current record areas and multiple
current paths can be established. The statement "FIND 81 OF D" loads the D
record area without disturbing the path 81 OF X, and the statement "FIND
81 OF X" loads the X record area without disturbing the path 81 OF D.
Qualification of 81 is necessary to distinguish the paths.

DATABASE DB: D (SET Sl), X•D (SET Sl), Y•D (NONE)
This declaration shows how more current record areas than paths can be
established. Three record areas (D, X, and Y) are established, but only two
paths (81 OF D and 81 OF X) are established. The program must execute the
statement "FIND Y VIA 81 OF D", "FIND Y VIA 81 OF X", or "FIND Y" to
load the Y record area.

DATABASE DB: X•D (SET Sl), Y•D (SET T•Sl)
This declaration explicitly associates a set with a given work area. The
statement "FIND 81" loads the X record area, and the statement "FIND T"
loads the Y record area. 81 and T both use the same key.

DATABASE DB: D, SY•Sl
This declaration shows how a set reference can be used to establish a set
that is not implicitly associated with any particular record area. The
statement "FIND D VIA SY" must be executed to load a record area using
the set 81.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Example: Invoking Disjoint Data Sets

The following example shows when a data set reference must be used to invoke
disjoint data sets. The database DB is described by the following DASDL
description:

F DATA SET (
FI NUMBER (4};
} ;

E DATA SET (
EK NUMBER (8};
} ;

D DATA SET (
A NUMBER (6};
SE SET OF E KEY EK;
LINK REFERENCE TO F; ~~t
} ;

If data set references are not specified to invoke E and F, as in the declaration

DATABASE DB: D

the paths are established by invoking the embedded set SE and the link item
LINK. However, these paths cannot be used unless data set references for E and
F are specified to establish record areas associated with these paths, as in the
declaration

DATABASE DB: D,E,F

8600 0734-000 4-7

Using the Data Management System II (DMSll) Interface

Example: Invoking a Logical Database

4-8

In this example, the database EXAMPLEDB, shown on the following page, is
described by the DASDL description given below:

DI DATA SET (
A REAL;
B NUMBER (5);
C ALPHA (IO);
) ;

SIA SET OF Dl KEY IS A;
SIB SET OF DI KEY IS (A,B,C};
D2 DATA SET (

X FIELD (8);
Y NUMBER (2);
Z REAL;
E DATA SET (

VI REAL;
V2 ALPHA (2);
) ;

SE SET OF E KEY IS VI;
) ;

S2A SET OF D2 KEY IS X;
S2B SET OF 02 KEY IS (X,Y,Z);
LDBl DATABASE (Dl(NONE), D2(SET S•S2A));
LDB2 DATABASE (Dl(SET Sl•SlB), D2(SET S2•S28));
LDB3 DATABASE (0-02);

The following BDMSALGOL program invokes the logical database LDBI of
EXAMPLEDB. Data sets DI and D2 are available to the program; however, none
of the sets associated with DI are available. The only set associated with 02 that
is available is set S2A, which appears as set S. The output produced by the
LISTDB compiler control option is shown with the program.

$ SET LIST LISTDB
BEGIN

DATABASE LDBl OF EXAMPLEDB;
*DATABASE TITLE: EXAMPLEDB ON DISK
*01 Dl: DATA SET (#2)
* INVOKED SETS:
* RECORD ITEMS:
*02 REAL A
*02 INTEGER B: NUMBER (5)
*02 STRING C: ALPHA (10)
*01 02: DATA SET (#5)
* INVOKED SETS:
* S (#8, AUTOMATIC}, KEY• X
* RECORD ITEMS:
*02 REAL X: FIELD (8)
*02 INTEGER Y: NUMBER (2)
*02 REAL Z

8600 0734-000

Using the Data Management System II (DMSll) Interface

*02 E: DATA SET (#6)
* INVOKED SETS:
* SE (#7, AUTOMATIC), KEY• Vl
* RECORD ITEMS:
*03 REAL Vl
*03 STRING V2: ALPHA (2)
*DESCRIPTION TIMESTAMP: 06/09/82 @ 17:30:34
END.

8600 0734-000 4-9

Using the Data Management System II (DMSll) Interface

Database Equation Operations

4-10

The term "database equation" refers to three separate operations:

• Specification of database titles during compilation.

• Work Flow Language (WFL) database equation to override compiled-in titles.
(For more information, ref er to the DMSII Application Program Interfaces
Programming Guide for the WFL syntax.)

• Run-time manipulation of database titles.

To take advantage of the reentrance capability of the Accessroutines, the user
must be able to specify the title of a database at run time. Database equation
allows the database title to be specified at run time and allows access to
databases that are stored under other usercodes and on families that are not
visible to a task. For further information about the Accessroutines, consult the
DMSII Application Program Interfaces Programming Guide.

Database equation is operationally similar to file equation. WFL database
equation overrides the specification of a database title in the DATABASE
declaration, and run-time modification of a database title overrides both WFL
database equation and the DATABASE declaration. However, database equation
differs from file equation in that a run-time error results if a BDMSALGOL
program attempts to assign a value to or examine the TITLE attribute of a
database while it is open. For an explanation of the TITLE database attribute,
refer to "DATABASE Declaration" in this section.

The following syntax shows how the database TITLE attribute can be
manipulated during program execution.

Syntax

<database attribute assignment statement>

- <String-valued database attribute> - :• - <String expression> --------

<string-valued database attribute>

- <internal name> - . - TITLE

Additional information relating to the <internal name> construct is included
under "Declaring a Database" in this section.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Explanation

The string expression must evaluate to a string in the form of a database title.

The string-valued database attribute construct can be used anywhere a string
expression is valid.

Database titles never end with a period, and a replace pointer-valued attribute
statement is not valid for making assignments to database titles.

Note: BDMSALGOL programs employing database equation must be compiled.
with a BDMSALGOL compiler with a release level later than Mark 9.2.

Example

In this example, the first BDMS OPEN statement opens the database with the title
LIVEDB, whose data and control files are stored under the user's directory. The
second OPEN statement invokes the database TESTDB, whose files are stored on
TESTP ACK under the usercode UC.

BEGIN
STRING S;
DATABASE MYDB (TITLE•"LIVEDB"};
OPEN UPDATE MYDB;

CLOSE MYDB;
MYDB.TITLE :• "(UC}TESTDB ON TESTPACK";
OPEN UPDATE MYDB;

CLOSE MYDB;
S :• TAKE(MYDB.TITLE,5};

END.

8600 0734-000 4-11

Using the Data Management System II (DMSll) Interface

BDMSALGOL Basic Language Constructs
The constructs described on the following pages are used within the DMSII
"DATABASE" declaration and in DMSII data management statements and
functions. The descriptions cover the following topics.

• the conventions for naming databases, data sets, sets, items, and so forth

• input mapping and output mapping

• selection expressions

BDMS Naming and Qualification Conventions

Naming conventions in DASDL for databases and their components follow COBOL
rules; that is, names can contain hyphens, and some item and structure names can
require qualification. Although both of these conventions contradict normal
ALGOL naming rules, they must be allowed in programs that declare and use
databases.

BDMS Identifier Construct

4-12

The identifier of a database, data set, set, item, and so on is in the form of a
<BDMS identifier>.

Syntax

<BDMS identifier>

Explanation

The BDMS identifier construct must be fewer than 64 characters long.

Examples

If a database is described in DASDL by the following:

0-S DATA SET (
A-1 NUMBER {5);
A-2 NUMBER (10);
) ;

then in a BDMSALGOL program, the data set D-S and the items A-1 and A-2 can
be referenced as in the following examples:

INTEGER I;
GET 0-S (I :• A-1);
PUT D-S (A-2 :•I);

8600 0734-000

Using the Data Management System II (DMSll) Interface

Construct for Identifiers of Occurring Items

If an item is declared in the DASDL description to have an OCCURS clause, then
its identifier must be subscripted to denote which of its occurrences is to be used.

Syntax

<Subscripted BDMS identifier>

- <BDMS identifier> - [1 carithnietic :xpression> 1) ----------1
Explanation

The leftmost arithmetic expression denotes the subscript of the outermost
OCCURS clause that affects the item, the next arithmetic expression to the right
denotes the subscript of the next outermost OCCURS clause, and so on.

Examples

If items A and B are described in DASDL as follows:

DS DATA SET (
G GROUP (

A ALPHA (10);
B NUMBER (4) OCCURS 3 TIMES;
)

OCCURS 2 TIMES;
) ;

there are two occurrences of A, denoted

A[l] A[2]

and there are six occurrences of B, denoted

B[l,l]
B[l, 2]
B[l,3]

8600 0734-000

B [2, l]
8[2,2]
8[2,3]

4-13

Using the Data Management System II (DMSll) Interface

Qualification of Database Items

4-14

Database item names need not be unique within a database. Qualification is used
to distinguish between database items with the same names.

Syntax

<qualification>

1 <BDMS ide::ifier> -----------------------

Explanation

An item name can be qualified by the name of any structure that physically
contains the item. Any number of qualification names desired can be used,
provided that the result is unique. If improper or insufficient qualification is
used, a syntax error is given.

A set name can be qualified by the name of the data set it spans.

A group name can be used to qualify an item it contains.

Qualification need not be used if the unqualified name is unique. Qualification
must be used whenever there is ambiguity. A variable name can be declared with
the same name as a database item in BDMSALGOL without requiring qualification
of the item name.

Examples

If a database is described in DASDL as follows:

DSl DATA SET (
N NUMBER (4) OCCURS 4 TIMES;
) ;

DS2 DATA SET (
N NUMBER (4) OCCURS 4 TIMES;
) ;

then the following BDMSALGOL statements indicate how qualification is used to
distinguish between the two data items named N.

SET N OF DSl TO NULL;
S~ N OF OS2 TO NULL;

SET N(l) OF OSl TO NULL;
SET N(l) OF OS2 TO NULL;

8600 0734-000

Using the Data Management System II (DMSll) Interface

Referencing Database Items

The record area (user work area) is not directly accessible to a BDMSALGOL
program. Instead, an explicit mapping between database data items and program
variables must be specified whenever access to those items is desired.

Mappings specify the source and destination of data to be transferred into or out
of a user work area. Mappings are of two kinds: input mappings and output
mappings.

Example

If a database is described in DASDL by the following:

01 DATA SET (
A NUMBER (5);
X NUMBER (5) OCCURS 3 TIMES;
) ;

then the items of data set Dl can be referenced in the following ways:

INTEGER B,Yl,Y2,Y3;
S The following statement transfers the value of database item
S A to the locally declared integer B.
GET 01 (B :•A);

S The following statement transfers the value of locally
S declared integer B to the work area for 01.
PUT 01 (A :• B);
S The following statement transfers the values of all three
S occurrences of X into Yl, Y2, and YJ.
GET 01 (Yl :• X[l],

Y2 :• X[2],
YJ :• X [3]);

S The following statement transfers the values of locally
S declared integers Yl, Y2, and YJ into the three occurrences
S of database item X.
PUT 01 (X[l] :• Yl,

8600 0734-000

X[2] :• Y2,
X[J] :•YJ);

4-15

Using the Data Management System II (DMSll) Interface

Input Mapping Used with Retrieval Statements

4-16

Input mappings can be used with the retrieve statements DELETE, FIND, GET,
BDMS LOCK, and MODIFY. Input mappings transfer the value of a
DASDL-declared data item to a program variable. If the data item is an occurring
item (that is, if the item is declared in DASDL with an OCCURS clause), it must
be subscripted appropriately.

<input mapping>

1 <input ass~gnment> ,....-----------------------1
<input assignment>

<arithmetic variable> - :• <count item na111e> ---.....-.---------

<field item na111e> ---1

<numeric item nUe>

<population item na111e>

<real item name> ---
<record type item name>

<Boolean variable> - :• - <Boolean item na11e> -----1
<pointer variable> - :• 1 <alpha item name>

<group item name>

<numeric item name>

<alpha item name>
<Boolean item name>
<count item name>
<field item nante>
<group item name>
<numeric item name>
<population item name>
<real item name>
<record type item name>

1 <BDMS identifier> ·

<Subscripted BDMS identifier> ~
Additional information relating to the <BDMS identifier> construct is included
under "BDMS Identifier Construct" in this section. Information related to the
<subscripted BDMS identifier> construct is included under "Construct for
Identifiers of Occurring Items" in this section.

8600 0734-000

Using the Data Management System II (DMSll) Interface

For more information concerning the arithmetic variable, Boolean variable, and
pointer variable constructs, refer to Volume 1.

Explanation

An arithmetic variable can be an integer, real, or a double simple or subscripted
variable. A Boolean variable can be a subscripted or Boolean simple variable. A
pointer variable can be a pointer identifier or an element of a character array.

<arithmetic variable> :• <field item name>

Explanation

If the field item is defined to contain N bits, then N bits are stored right-justified
in the arithmetic variable. All other bits are set to zero.

Syntax

<arithmetic variable> :• <numeric item name>
<arithmetic variable> :• <real item name>

Explanation

The numeric item or real item is converted into a binary value with a scaie factor
of zero (its true value). The value is stored in the arithmetic variable as in a
normal arithmetic assignment; that is, it is converted to an integer or extended, if
necessary. An error and termination results if it is not possible to convert the
item to an integer, as in normal ALGOL arithmetic assignments.

<arithmetic variable> :• <count item name>
<arithmetic variable> :• <population item name>
<arithmetic variable> :• <record type item name>

Explanation

The value of the count item, population item, or record type item is placed in the
arithmetic variable. Use of a count item, population item, or record type item
allows read-only access to the particular field. Those items cannot be changed
directly. They are accessed only through input mappings, and cannot be used in
output mappings.

8600 0734-000 4-17

Using the Data Management System II (DMSll) Interface

4-18

Syntax

<Boolean variable> :• <Boolean item name>

Explanation

The Boolean variable is assigned the truth value (the value of bit 0) of the
Boolean item. Bits 1 through 4 7 of the Boolean variable are set to zero.

Syntax

<pointer variable> :• <alpha item name>
<pointer variable> :• <group item name>

Explanation

If the alpha item or group item is defined to contain N EBCDIC characters, then N
characters are transferred to the location pointed to by the pointer variable. A
fault results if one of the following conditions is satisfied:

1. The pointer is uninitialized.

2. The pointer is not an EBCDIC (8-bit) pointer.

3. Fewer than N character positions remain in the referenced array.

A group item is treated as if it were an alpha item; all subordinate data items are
transferred without change.

Syntax

<pointer variable> :• <numeric item name>

Explanation

This assignment talces advantage of the fact that a numeric item is maintained as
a hexadecimal string. If the numeric item is defined to contain N digits (including
the sign digit, if specified), the N hexadecimal characters are transferred to the
location pointed to by the pointer variable. A fault results if one of the following
conditions is satisfied:

1. The pointer is uninitialized.

2. The pointer is not a hexadecimal (4-bit) pointer.

3. Fewer than N hexadecimal character positions remain in the referenced
array.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Output Mapping Used with Storage Statements

Output mappings can be used with the storage statements PUT and STORE.
Output mappings transfer the value of a program variable or expression to a
DASDL-declared data item. If the data item is an occurring item (that is, if the
item is declared in DASDL with an OCCURS clause), it must be subscripted
appropriately.

Syntax

<Output mapping>

1 <Output as:ignment> -'-----------------------

<Output assignment>

<field item name>:] :• - <arithmetic expression>

<numeric item name>

<real item name>

<Boolean item name> - :• - <Boolean expression> ---~

<alpha item name> j :• 1 <pointer expression>

<group item name> <string literal>

<numeric item name>

Additional information relating to the <field item name>, <numeric item
name>, <real item name>, <Boolean item name>, <alpha item name>, and
<group item name> constructs is included under "Input Mapping Used with
Retrieval Statements" in this section.

Explanation

An arithmetic expression used in an output mapping can be single precision or
double precision.

Syntax

<field item name> :• <arithmetic expression>

Explanation

If the field item is defined to contain N bits, then the N rightmost bits of the
value of the arithmetic expression are assigned, unaltered, to the field item. Care
should be taken if the arithmetic value is real or double precision (that is, not
integer) because the value might be normalized, in which case the N rightmost
bits would not contain the value.

8600 0734-000 4-19

Using the Data Management System II (DMSll) Interface

4-20

Syntax

<numeric item name> :• <arithmetic expression>
creal item name> :• <arithmetic expression>

Explanation

The value of the arithmetic expression is scaled appropriately and assigned to the
numeric item or real item. If the numeric item or real item is unsigned, the
absolute value of the arithmetic expression is used.

Syntax

<Boolean item name> :• <Boolean expression>

Explanation

The truth value (the value of bit 0) of the Boolean expression is assigned to the
Boolean item. Bits 1 through 4 7 of the value of the Boolean expression are
ignored.

Syntax

<alpha item name> :• <pointer expression>
<group item name> :• <pointer expression>

Explanation

If the alpha item or group item is defined to contain N EBCDIC characters, then N
characters are transferred from the location pointed to by the pointer expression
to the alpha or group item. A fault results if any of the following conditions is
satisfied:

1. The value of the pointer expression is an uninitialized pointer.

2. The value of the pointer expression is not an EBCDIC (8-bit) pointer.

3. Fewer than N character positions remain in the referenced array.

Syntax

<numeric item name> :• <pointer expression>

Explanation

This mapping takes advantage of the fact that a numeric item is maintained as a
hexadecimal string. If the numeric item is defined to contain N digits (including
the sign digit, if specified), then N hexadecimal characters are transferred to the
numeric item from the location pointed to by the pointer expression. The user is
responsible for ensuring that the string is a valid representation of the item
declared in DASDL; that is, the proper sign and numeric characters, in the proper
format, must be used.

8600 0734-000

Using the Data Management System II (DMSll) Interface

A fault results if any of the following conditions is true:

1. The value of the pointer expression is an uninitialized pointer.

2. The value of the pointer expression is not a hexadecimal (4-bit) pointer.

3. Fewer than N hexadecimal character positions remain in the referenced
array.

Syntax

<alpha item name> :• <string literal>
<group item name> :•<string literal>

Explanation

The string literal is transferred to the alpha item or group item. The string literal
must be EBCDIC, or a syntax error results. If the string literal is shorter than the
alpha item or group item, it is extended with blank fill characters on the right. If
the string literal is longer than the alpha item or group item, the excess
characters on the right are truncated.

Syntax

<numeric item name> :• <string literal>

Explanation

The string literal is transferred to the numeric item. The string literal must be a
hexadecimal string and must contain the exact number of characters for the
numeric item or a syntax error results. The user is responsible for ensuring that
the string literal is a valid representation of the numeric item.

8600 0734-000 4-21

Using the Data Management System II (DMSll) Interface

Selecting a Record In a Data Set

4-22

A selection expression is used in DELETE, FIND, BDMS LOCK, and MODIFY
statt!ments to identify a particular record in a data set.

<Selection expression>

------------- cset selection expression> ------------1
cdata set> VIA

FIRST ~ cdata set>
LAST

NEXT

PRIOR

cdata set>

clink item> --------

- <qualification> -------------------------

cset selection expression>

------.- <Set>

csubset> ~ l___ AT ----r- <key condition> ~
L WHERE J

FIRST

LAST

NEXT

PRIOR

<Set>

- <qualification> -------------------------

<Subset>

- <qualification> --------------------------!
ckey condition>

----------.- AND-------.

OR

<numeric relation> ------............... ---------------'11
<alphanumeric relation> -----

...__.,..... ___ (- <key condition> -)

NOT

8600 0734-000

Using the Data Management System II (DMSll) Interface

<numeric relation>

1 <numeric item identifieJ <relational

<field item identifier>

operator> ----------__.

<real item identifier>

~ <arithmetic expressio::..J

L_ <pointer expression>

<numeric item identifier>
<field item identifier>
<real item identifier>

- <BDMS identifier> ------------------------

<alphanumeric relation>

- <alpha item identifier> - <relational operator> ---r- <CO~stant string.expression>~

L <po1nter express1on> -----'

<alpha item identifier>

- <BDMS identifier> --------------------------1
<link item>

- <qualification> --------------------------1
Additional information relating to the <BDMS identifier> construct is included
under "BDMS Identifier Construct" in this section. Information on the
<qualification> construct is included under "Qualification of Database Items" in
this section.

For more information concerning constant string expression and relational
operators, ref er to Volume 1.

Explanation

A set selection expression selects the record to which the set path refers. A
NOTFOUND exception is returned if the record has been deleted or if the path
does not ref er to a valid current record.

The construct "<data set> VIA" identifies the record area and current path to
be affected if the desired record is found. This option is used for link items and
for sets that are not implicitly associated with the data set.

The link item form is used to specify a link item defined in the DASDL
description. The record to which the link item refers is selected. An exception is
returned if the link item is NULL.

8600 0734-000 4-23

Using the Data Management System II (DMSll) Interface

4-24

The data set form is used to select the record to which the data set path refers. A
NOTFOUND exception is returned if the record has been deleted or if the path
does not ref er to a valid current record.

The word "FIRST" selects the first record in the specified data set, set, or subset.
If a key condition is also specified, the first record of the specified set or subset
that satisfies the key condition is selected. FIRST is assumed by default.

The word "LAST" selects the last record in the specified data set, set, or subset.
If a key condition is also specified, the last record of the specified set or subset
that satisfies the key condition is selected.

The word "NEXT" selects the next record relative to either the set path (if a set
or subset is specified) or the data set path (if a data set is specified). If a key
condition is also specified, the next record (relative to the current path) of the
specified set or subset that satisfies the key condition is selected.

The word "PRIOR" selects the prior record relative to either the set path (if a set
or subset is specified) or the data set path (if a data set is specified). If a key
condition is also specified, the prior record (relative to the current path) of the
specified set or subset that satisfies the key condition is selected.

In a set selection expression, the set or subset construct selects the record to
which the set or subset path refers. A NOTFOUND exception is returned if the
record has been deleted or if the path does not refer to a valid current record.

The words "AT" or "WHERE" indicate that a key condition follows. AT and
WHERE are synonyms.

A key condition specifies values used to locate specific records in a data set
referenced by a particular set or subset. If the name of a data item specified in a
key condition is not unique, the compiler provides implicit qualification through
the set or subset of the set selection expression. Although not necessary,
qualification of the item name by the name of the data set that contains the item
is allowed; however, the compiler handles this qualification as documentation
only.

The expressions that appear in a key condition cannot contain any transaction
item references.

A numeric relation specifies a particular numeric, field, or real item and
compares it to the value of an arithmetic expression or a pointer expression. The
pointer expression must evaluate to a hexadecimal pointer.

An alphanumeric relation specifies a particular alpha item and compares it to the
value of a constant string expression or a pointer expression. The pointer
expression must evaluate to an EBCDIC pointer. The constant string expression
must be an EBCDIC string.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Exam plea

These examples use the database described in DASDL by the following:

D DATA SET (
A ALPHA (3);
N NUMBER (5);
) ;

S SET OF D KEY IS N, DATA A;

LOCK S WHERE N NEQ 10

This LOCK statement acts upon the first S where the value of N is not equal
to 10.

FIND S AT A • 11ABC 11 AND (N • 50 OR N • 90)

This statement locates the first S where A is equal to the string "ABC" and
either N is equal to 50 or N is equal to 90.

8600 0734-000 4-25

Using the Data Management System II (DMSll) Interface

BDMSALGOL Statements

4-26

The following data management statements allow a BDMSALGOL program to use
and manipulate the data in a database.

ABORTTRANSACTION GET
ASSIGN INSERT
BEGINTRANSACTION BDMS LOCK
CANCELTRPOINT MODIFY
BDMS CLOSE BDMS OPEN
CREATE PUT
DELETE RECREATE
DMTERMINATE REMOVE
ENDTRANSACTION SAVETRPOINT
FIND SECURE
BDMS FREE BDMS SET
GENERATE STORE

Note that the BEGINTRANSACTION statement initiates a transaction which is
concluded by an ENDTRANSACTION statement. A transaction is a series of
changes to the database which are considered to be an indivisible logical change.
A transaction is the basic unit effecting change in the DMSll database.

Transaction state is that period of execution time when the DMSil database can
be updated. Every update program of an audited database must enter transaction
state in order to perform any data record update statements. Transactions are
applied but not actually committed until the ENDTRANSACTION statement is
executed.

COMS and DMSll can be used together to provide a recoverable transaction
system. Consult Section 3, "Using Communications Management System (COMS)
Features" for more information and for the needed syntax.

8600 0734-000

Using the Data Management System II (DMSll) Interface

ABORTTRANSACTION Statement

The ABORTTRANSACTION statement backs out all updates that occurred during
a transaction and takes a program out of the transaction state. The DMSII
database is returned to the point before the BEGINTRANSACTION statement
(which initiated the transaction) was executed.

The ABORTTRANSACTION statement is equivalent to performing a
CANCELTRPOINT statement followed by an END TRANSACTION statement.

Syntax

<aborttransaction statement>

- ABORTTRANSACTION --.-------....- <restart data set> -------•

L <COMS header ID> J

• [<exception handling> J
Additional information relating to the <exception handling> construct is
included under "Database Status Word" in this section.

Explanation

The <COMS header ID> construct identifies the COMS Output Header. If the
system fails during transaction state, COMS resubmitE the message when the
program is reexecuted.

The <restart data set> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

Example

In this example, the ABORTTRANSACTION statement notifies DMSII of the abort,
and assigns the result of the abort call to the variable DMSTATUS. All
transactions are backed out to the BEGINTRANSACTION statement, and the
program is taken out of transaction state.

BEGINTRANSACTION RSTDS;

SAVETRPOINT (l);

ABORTTRANSACTION RSTDS DMSTATUS;

8600 0734-000 4-27

Using the Data Management System II (DMSll) Interface

ASSIGN Statement

4-28

The ASSIGN statement establishes a link from one record in a data set to another
record of the same or a cliff erent data set. It assigns either the value of the
current record in a data set or the value in a link item to another link item. The
value of the second link item, called the target link item, then allows the system
to locate the record in the referenced data set.

The ASSIGN statement is effective immediately; therefore, the record containing
the target link item does not need to be stored unless data items of this record
have been modified.

Syntax

<assign statement>

- ASSIGN 1 <data 3et> TO

NULL

<link item>

- <link item> -----------.-----1
~ <exception handling>~

Additional information relating to the <data set> and <link item> constructs is
included under "Selecting a Record in a Data Set" in this section. Information on
the <exception handling> construct is included under "Database Status Word"
in this section.

Explanation

The data set must be declared in DASDL as the object data set of the target link
item. A value that points to the current record in the data set is assigned to that
link item.

If the <data set> form is used, the current pa.th of the specified data set must
be valid, but the record need not be locked. If the data set path is not valid, an
exception occurs.

If the word "NULL" is used, the relationship between records is severed by
assigning a NULL value to the target link item. If that link item is already NULL,
this option is ignored. A FIND, BDMS LOCK, or MODIFY statement on a NULL
link item results in an exception.

If the ASSIGN statement specifies two link items, the value of the first link item
is assigned to the target link item. The first link item must be declared in DASDL
to have the same object data set as the target link item and be the same type of
link (counted link, self-correcting link, symbolic link, unprotected link, or verified
link). If the link items are counted links, the count item is automatically updated,
even if the record that is referenced is locked by another program.

The current path of the data set containing the first link must be valid, but the
record need not be locked. If the data set path is not valid, an exception occurs.

8600 0734-000

Using the Data Management System II (DMSll) Interface

After the ASSIGN statement has executed, the target link item points to either
the current record in the specified data set or to the record pointed to by the first
link item.

The current path of the data set containing the target link item must be valid,
and the record must be locked; otherwise, an exception occurs.

If the target link item references a disjoint data set, then that link item can point
to any record in the data set. If the target link item references an embedded data
set, then only certain records in the data set can be referenced. In this case, the
record being referenced must be owned by the record containing the target link
item or by an ancestor of the record containing this link item. (An ancestor is the
owner of the record, the owner of the owner, and so forth.)

If an exception is returned, the ASSIGN statement is not completed, and a NULL
value is assigned to the target link item.

Example

If the database EXAMPLEDB is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
L IS IN E VERIFY ON N;
) ;

S SET OF D KEY A;

E DATA SET (
N NUMBER (3);
R REAL;
) ;

T SET OF E KEY N;

then the following BDMSALGOL program uses the ASSIGN statement to assign
the value of the current record of data set E to link item L.

BEGIN
FILE CARD_FILE(KINO-READER);
DATABASE EXAMPLEDB;
EBCDIC ARRAY X[0:2];
INTEGER Y;

OPEN UPDATE EXAMPLEDB;
WHILE NOT READ(CARD_FILE,<A3,I3>,X,Y) DO

BEGIN
FIND S AT A • X;
FIND T AT N • Y; .
ASSIGN E TO L;
END;

CLOSE EXAMPLEDB;
END.

8600 0734-000 4-29

Using the Data Management System II (DMSll) Interface

DMSll BEGINTRANSACTION Statement

4-30

The DMSII BEGINTRANSACTION statement places a program in transaction
state. This statement can be used only with audited databases.

The BEGINTRANSACTION statement performs the following steps in order:

1. It captures the restart data set if AUDIT is specified.

2. It places a program in transaction state.

Refer to the DMSII Application Program Interfaces Programming Guide for
further details regarding audit and recovery. Refer to the COMS
BEGINTRANSACTION statement when using DMSII and COMS and refer to the
TPS BEGINTRANSACTION statement when using DMSII and TPS.

Additional information relating to DMSII transactions is included under
"Declaring Transaction Record Variables" and "Transaction Processing
Statements" in Section 5, "Using DMSII Transaction Processing System (TPS)
Extensions."

Syntax

<begintransaction statement>

- BEGINTRANSACTION

[<inputheadername> - <message area> J
~ ---------------r- <restart data set> -------

1- (- <transaction record variable> -) ~

1- AUDIT -------------1
._ NOAUDIT -------------'

~ [<except ion handling> J
Additional information :relating to the <exception handling> construct is
included under "Database Status Word" in this section. Information on the
<inputheademame> and <message area> constructs is included under
"Declaring Input and Output Headers" and "RECEIVE Statement"in Section 3,
''Using Communications Management System (COMS) Features." Related
information is also included under "Passing Transaction Record Variables as
Parameters" in Section 5, "Using DMSII Transaction Processing System (TPS)
Extensions."

The <transaction record variable> construct identifies a transaction record
created through the Transaction Processing System (TPS).

8600 0734-000

Using the Data Management System II (DMSll) Interface

<restart data set>

- <qualification> -------------------------1

Additional information relating to the <qualification> construct is included
under "Qualification of Database Items" in this section.

Explanation

If the <transaction record variable> construct is used, it is the formal input
transaction record variable, and NOAUDIT is the default action.

The word "AUDIT" causes the restart area to be captured. The path of the
specified restart data set is not altered when the restart record is stored. AUDIT
is the default action.

The word "NOAUDIT" causes the restart area to not be captured. The <restart
data set> construct specifies the restart data set to be updated.

The <restart data set> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

An exception is returned if the BEGINTRANSACTION statement is attempted
while the program is in transaction state. If any exception is returned, the
program is not placed in transaction state. If an ABORT exception is returned, all
records that the program had locked are freed.

Deadlock can occur during execution of a BEGINTRANSACTION statement.

Any attempt to modify an audited database when the program is not in
transaction state results in a fault. The BDMSALGOL statements that modify
databases are:

ASSIGN
DELETE
GENERATE

Example

INSERT
REMOVE
STORE

If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT);

8600 0734-000

R RESTART DATA SET (
P ALPHA (10};
Q ALPHA (100);
) ;

D DATA SET (
A ALPHA (3);
N NUMBER (3};
) ;

S SET OF D KEY N;

4-31

Using the Data Management System II (DMSll) Interface

4-32

then the following BDMSALGOL program demonstrates how the
BEGINTRANSACTION statement can be used:

BEGIN
FILE CARD_FILE(KIND-READER);
DATABASE DBASE;
EBCDIC ARRAY MY_A[0:2];
INTEGER MY_N;

OPEN UPDATE DBASE;
MY_N :• l;
WHILE MY_N < 100 DO

BEGIN
CREATE D;
PUT D (N :• MY_N);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
MY_N :• * + l;
END;

WHILE NOT READ(CARD-FILE,<I3,A3>,MY_N,MY_A[O]) DO
BEGIN
LOCK S AT N • MY_N;
BEGINTRANSACTION R;
PUT D (A :• MY_A[O]);
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System II (DMSll) Interface

BDMS CANCELTRPOINT Statement

The BDMS CANCEL TRPOINT statement backs out all updates in a transaction to
an intermediate save point (set through the SA VETRPOINT statement) or to the
beginning of the transaction. The CANCELTRPOINT statement allows you to
cancel all or part of the update assignments without having to terminate the
transaction state. The program execution continues with the statement following
the CANCELTRPOINT statement.

Syntax

<canceltrpoint statement>

- CANCELTRPOINT ---.-----------......- <restart data set> ---

~ (- <integer expression> -) ~
Explanation

The inclusion of the <integer expression> construct causes DMSII to search for
the corresponding SA VETRPOINT statement and cancel only those transactions
lying between the two. If no corresponding SA VETRPOINT statement is found, or
if the <integer expression> construct is omitted or is zero, then all update
assignments performed during the current transaction state are discarded.
However, the cuITent transaction state is not terminated.

The <restart data set> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

Additional information on the BDMS SA VETRPOINT statement is included under
"BDMS SAVETRPOINT Statement" in this section.

Example

In this example, there is an intermediate transaction point with an integer value
of 1. If an error is detected, the CANCELTRPOINT statement backs out all
updates accumulated after the SA VETRPOINT statement.

BEGINTRANSACTION R;

SAVETRPOINT (1) R;

IF ERROR •.. THEN CANCELTRPOINT (1) R;

ENDTRANSACTION R;

8600 0734-000 4-33

Using the Data Management System II (DMSll) Interface

BDMS CLOSE Statement

4-34

The BDMS CLOSE statement closes a database when further access is no longer
required and performs the following steps in order:

1. It closes the database.

2. It frees all locked records.

Syntax

<BDMS close statement>

- CLOSE - <database identifier> --.---------.....------------t
~ <exception handling> ~

<database identifier>

- <BDMS identifier> -------------------------1

Additional information relating to the <BDMS identifier> construct is included
under "BDMS Identifier Construct" in this section. Information on the
<exception handling> construct is included under "Database Status Word" in
this section.

Explanation

The database identifier specifies the database to be closed. If the database was
declared to have an internal name, this internal name is the database identifier. If
the database does not have an internal name but is a logical database, then the
logical database name is the database identifier. For databases that do not have
an internal name and are not logical databases, the database name is the database
identifier.

An exception is returned if the CLOSE statement attempts to close a database
that is not open. A database abort occurs if the CLOSE statement attempts to
close a database that is in transaction state.

Use of the CLOSE statement is optional; the system closes any open database
when a program terminates. A syncpoint in the audit file occurs when a database
is successfully closed.

The CLOSE statement is the only BDMSALGOL statement in which the status
word has meaning when no exception is indicated. Therefore, after a CLOSE
statement, the status word should be examined by the program and appropriate
action taken, whether or not an exception is returned. An ABORT exception can
be obtained in this manner.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Example

If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT);
R RESTART DATA SET (

P ALPHA (10) ;
Q ALPHA (100);
) ;

D DATA SET (
A ALPHA (10);
B BOOLEAN;
N NUMBER (3);
) ;

S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR;
X SUBSET OF D BIT VECTOR;
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how to use the CLOSE statement
to close DBASE.

BEGIN
FILE CARD_FILE(KIND-READER),

PRINT_FILE(KIND-PRINTER);
DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;
WHILE NOT READ(CARD_FILE,<I3>,MN) DO

BEGIN
FIND S AT N • MN;
GET D (MA[O] :• A,MB :• B);
IF MB THEN

GET D (MR :• N)
ELSE

MR :• O;
WRITE(PRINT_FILE,<13, II ",A3," ",LS," ",E4.2>,

MN,MA[O],MB,MR);
END;

CLOSE DBASE;
END.

8600 0734-000 4-35

Using the Data Management System II (DMSll) Interface

CREATE Statement

4-36

The CREA TE statement initializes the user work area of a data set record and
performs the following steps in order:

1. It frees the current record of the specified data set. (If the
INDEPENDENTTRANS option is set in DASDL for the database and the
program is in transaction state, the CREA TE statement does not free the
current record.)

2. It reads any specified expression to determine the format of the record to be
created.

3. It initializes data items to one of the following values:

a. The DASDL-declared INITIAL VALUE, if present

b. The DASDL-declared NULL, if present

c. The default NULL

Note: When creating partitioned data sets, you must establish the partition
master record prior to execution of the CREATE command.

Additional information relating to the CREA TE statement is included under
"Creating Transaction Record Formats" in Section 5, "Using DMSII Transaction
Processing System (TPS) Extensions."

Syntax

<create statement>

- CREATE - <data set> --.---------------.---------·

[(- <arithmetic expression> -) J
• [<exception handling> J
Additional information relating to the <data set> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the <exception
handling> construct is included under "Database Status Word" in this section.

Explanation

The <data set> construct specifies the data set to be initialized. The current
path of the data set is not changed until a subsequent STORE statement has
completed successfully.

The arithmetic expression specifies the type of record to be created. This
arithmetic expression is required when a variable-format record is created;
otherwise, it must not appear.

An exception is returned if the arithmetic expression does not represent a valid
record type.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Normally, the CREATE statement is eventually followed by a STORE statement,
which places the newly created record into the data set. However, if a subsequent
STORE operation is not desired, the CREA TE statement can be nullified by a
subsequent CREATE, DELETE, FIND, BDMS FREE, BDMS LOCK, MODIFY, or
RECREATE statement.

The CREA TE statement sets up only a record area. If the record contains
embedded structures, the master record must be stored before entries can be
created in the embedded structures. If only entries in the embedded structure are
created (that is, if items in the master are not altered), the master need not be
stored a second time.

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (10);
B BOOLEAN;
N NUMBER (3);
) ;

S SET OF D KEY N;

then the following BDMSALGOL program shows how a record of data set D can
be created and stored.

BEGIN
FILE CARD-FILE(KINO-READER);
DATABASE DBASE;
EBCDIC ARRAY X[0:9];
INTEGER Y,Z;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD-FILE,<Al0,Il,I3>,X[O],Y,Z) DO

BEGIN
CREATE D;
PUT D (A :• X[O]);
IF Y • 1 THEN

PUT D (B :•TRUE);
PUT D (N :• Z);
STORE D;
END;

CLOSE DBASE;
ENO.

8600 0734-000 4-37

Using the Data Management System II (DMSll) Interface

DMSll DELETE Statement

4-38

The DMSII DELETE statement is identical to the FIND statement except that if a
record is found, it is locked and then deleted. The DELETE statement performs
the following steps in order:

1. It frees the current record, unless the selection expression is the name of the
data set and the current record is locked. In that case, the locked status is
not altered. (If the INDEPENDENTTRANS option is set in DASDL for the
database and the program is in transaction state, the DELETE statement
does not free the current record.)

2. It alters the current path to point to the record specified by the selection
expression, and locks this record.

3. It transfers that record to the user work area.

4. It removes the record from all sets and automatic subsets, but not from
manual subsets.

5. It removes the record from the data set.

If the record is found but cannot be deleted, an exception is returned and the
DELETE statement terminates, leaving the current path pointing to the record
specified by the selection expression.

If a set selection expression is used and the record is not found, then an
exception is returned and the set path is changed and invalidated. It refers to a
location between the last key less than the condition and the first key greater
than the condition. A set selection expression using NEXT or PRIOR can be done
from this point provided keys greater than and less than the condition exist. The
current path of the data set, the current record, and the current paths of any
other sets for that data set remain unchanged.

It is the responsibility of the programmer to ensure that no manual subset refers
to the record being deleted.

Syn tu:

<delete statement>

- DELETE - <selection expression> --.---------........ --------•

~<exception handling>~

• [(- <input mapping> -) J
Additional information relating to the <selection expression> construct is
included under 'Selecting a Record in a Data Set" in this section. Information on
the <exception handling> construct is included under "Database Status Word"
in this section. Information on the <input mapping> construct is included under
"Input Mapping Used with Retrieval Statements" in this section.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Explanation

The selection expression identifies the record to be deleted.

An exception is returned and the record is not deleted if the record has counted
links pointing to it, or if the record contains a nonnull link or a nonempty
embedded structure.

When the DELETE statement completes, the current paths still ref er to the
deleted record. Therefore, a FIND statement on the current record results in a
NOTFOUND exception; however, FIND NEXT and FIND PRIOR statements are
still appropriate.

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;

S SET OF D KEY N;

then the following BDMSALGOL program demonstrates the use of the DELETE
statement to delete a record of the data set D where item N is equal to the value
ofX:

BEGIN
FILE CARD_FILE(KIND-READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<13>,X) DO

DELETE S AT N • X;
CLOSE DBASE;

END.

8600 0734-000 4-39

Using the Data Management System II (DMSll) Interface

DMTERMINATE Statement

4-40

The DMTERMINATE statement aborts the current action. When an exception
occurs that the program does not handle, the DMTERMINATE statement can be
called to produce the same results as if the exception-handling syntax had not
been specified in the statement; that is, the DMTERMINA TE statement causes the
program to terminate with a fault.

Syntax

<dmterminate statement>

- DMTERMINATE 1 <Boolean fdentfffj
<integer identifier>

<real identifier>

For more information concerning the Boolean identifier, integer identifier, and
real identifier, refer to Volume 1.

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;

S SET OF D KEY N;

then the following BDMSALGOL program shows an example of the use of the
DMTERMINATE statement.

BEGIN
FILE CARD-FILE(KINO-READER);
DATABASE DBASE;
BOOLEAN RSLT;
REAL RRSLT • RSLT;
INTEGER X;

OPEN UPDATE DBASE;
FIND FIRST D :RSLT;
IF RSLT THEN

BEGIN
DISPLAY(11 D IS EMPTY DATA SET");.
DMTERMINATE(RSLT);
END

ELSE
WHILE NOT READ(CARO_FILE,<I3>,X) DO

BEGIN
DELETE S AT N • X :RSLT;
IF RRSLT.DMERROR • NOTFOUND THEN

DMTERMINATE(RSLT);
END;

CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System II (DMSll) Interface

DMSll ENDTRANSACTION Statement

The DMSII ENDTRANSACTION statement takes a program out of transaction
state. This statement can be used only with audited databases. The
ENDTRANSACTION statement performs the following steps in order:

1. It captures the restart area if AUDIT is specified.

2. It forces a syncpoint if the SYNC option is specified.

3. It implicitly frees all records of the database that the program has locked.

Refer to the DMSII Application Program Interfaces Programming Guide for
information regarding audit and recovery. Refer to the COMS ENDTRANSACTION
statement when using COMS and DMSII and refer to the TPS ENDTRANSACTION
statement when using TPS and DMSII.

Additional information relating to DMSII transactions is included under
"Declaring Transaction Record Variables" and "Transaction Processing
Statements" in Section 5, "Using DMSII Transaction Processing System (TPS)
Extensions.''

Syntax

<endtransaction statement>

- ENDTRANSACTION ---.---------------.-- <restart data set> --+
1- (- <endtransaction parameters> -) _,

t- AUDIT

'- NOAUDIT ----------'

• [SYNC J [<exception handling> J
cendtransaction parameters>

- <transaction record variable ID> - , - csaveoutput procedure identifier> ----

<saveoutput procedure identifier>

- <procedure identifier> -----------------------

Additional information relating to the <exception handling> construct is
included under "Database Status Word" in this section.

For information concerning transaction records, consult Section 6, "Using DMSII
Transaction Processing System (TPS) Extensions." For more information
concerning <procedure identifier>s, refer to Volume 1.

8600 0734-000 4-41

Using the Data Management System II (DMSll) Interface

4-42

Explanation

If the <endtransaction parameters> form is used, the <transaction record
variable ID> construct is the formal input transaction record variable. The
saveoutput procedure identifier is the name of the SA VERESPONSETR formal
procedure. For more information about the SA VERESPONSETR procedure, refer
to the DMSII Tra1&Saction Processing System (TPS) Programming Guide.

The word "AUDIT" causes the restart area to be captured. The path of the
restart data set is not altered when the restart record is stored.

The word "NOAUDIT" causes the restart area to not be captured. NOAUDIT is
the default action.

The <restart data set> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

The word "SYNC" forces a syncpoint.

An exception is returned if an ENDTRANSACTION statement is attempted and
the program is not in transaction state.

Records are freed in all cases. If an exception occurs, the transaction is not
applied to the database.

Example

Assume a database named DBASE is described in DASDL as follows:

OPTIONS(AUDIT);
R RESTART DATA SET (

P ALPHA (10);
Q ALPHA (100);
) ;

D DATA SET (
A ALPHA (3);
N NUMBER (3);
) ;

S SET OF D KEY N;

8600 0734-000

Using the Data Management System II (DMSll) Interface

The following BDMSALGOL program demonstrates how the ENDTRANSACTION
statement can be used with this database.

BEGIN
FILE CARD_FILE(KINO-READER);
DATABASE DBASE;
EBCDIC ARRAY MY..A[0:2];
INTEGER MY..N;

OPEN UPDATE DBASE;
MLN :• l;
WHILE MY_N < 100 DO

BEGIN
CREATE D;
PUT D (N :• MY_N);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
MY_N :• * + l;
END;

WHILE NOT REAO(CARD_FILE,<13,A3>,MY..N,MY..A[O]) DO
BEGIN
LOCK S AT N • MY_N;
BEGINTRANSACTION R;
PUT D (A:• MY..A[O]);
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;
END.

8600 0734-000 4-43

Using the Data Management System II (DMSll) Interface

FIND Statement

4-44

The FIND statement transfers a record to the user work area associated with a
data set or global data and performs the following steps in order:

1. It frees a locked record in the data set if a data set is specified in the FIND
statement, or frees a locked record in the associated data set if a set is
specified in the FIND statement. (If the INDEPENDENTTRANS option is set
in DASDL for the database and the program is in transaction state, the FIND
statement does not free the locked record.)

2. It alters the current path to point to the record specified by the selection
expression or database name.

3. It transfers that record to the user work area.

The FIND statement does not prevent reads by other transactions before an
update transaction is complete.

Syntax

<find statement>

1 FIND 1 <Selection expression> .-J
<database identifier>

FIND KEY OF - <Set selection expression> ~
• [(- <input mapping> -) J

~ <exception handling> J

Additional information relating to the <selection expression> and <set selection
expression> constructs is included under "Selecting a Record in a Data Set" in
this section. Information on the <database identifier> construct is included
under "BDMS CLOSE Statement" in this section. Information on the <exception
handling> construct is included under "Database Status Word" in this section.
Information on the <input mapping> construct is included under "Input
Mapping Used with Retrieval Statements" in this section.

Explanation

The selection expression form is used to specify the record to be transferred to
the user work area.

The database identifier form is used to specify the global data record to be
transferred to the user work area associated with the global data. If no global
data was described in DASDL for the database, a syntax error occurs.

If the invoked database contains a remap of the global data, the name of the
logical database, not the name of the global data remap, is used to LOCK the
global data rec;ord.

8600 0734-000

Using the Data Management System II (DMSll) Interface

The form "FIND KEY OF <set selection expression>" moves the key and any
associated data (as spe~fied in DASDL) from the key entry to the user work
area. A physical read is not performed on the data set; consequently, all items in
the record area that do not appear in the key entry retain whatever value they
had before the FIND statement. The current path of the data set is not affected.

If an exception is returned, the record is not freed. If a set selection expression is
used and the record is not found, then an exception is returned and the set path
is changed and invalidated. It refers to a location between the last key less than
the condition and the first key greater than the condition. A set selection
expression using NEXT or PRIOR can be done from this point provided keys
greater than and less than the condition exist. The current path of the data set,
the current record, and the current paths of any other sets for that data set
remain unchanged.

To access data items, input mapping is required.

Additional information relating to the <input mapping> construct is included
under "Input Mapping Used with Retrieval Statements" in this section.

Examples

FIND FIRST EMP AT DEPT-NO • 1019 :RSLT;
IF RSLT THEN

POP-EMPS[l019] :• O;

FIND EMP AT EMP-NO • SSN :RSLT;
IF RSLT THEN

ERR-OUT(INV_EMP_NO_ERR};

FIND NEXT EMP :RSLT;
IF RSLT THEN

GO NO_MORLEMP;

FIND FIRST OVR-65 AT DEPT-NO • 1019 :RSLT;
IF RSLT THEN

POP-OVR-65[1019] :• O;

8600 0734-000 4-45

Using the Data Management System II (DMSll) Interface

BDMS FREE Statement

4-46

The BDMS FREE statement unlocks the current record or structure.

Normally, a FREE statement can be executed after any operation. However, the
FREE statement is ignored if the current record or structure is already free, if no
current record or structure is present, or if the INDEPENDENTTRANS option is
set in DASDL for the database and the program is in transaction state.

The FREE statement can be used to unlock a record or structure that the user
anticipates cannot be implicitly freed for a relatively long time. A FREE
statement executed on a record or structure allows other programs to lock the
record.

Syn tu:

<BDMS free statement>

- FREE 1 <data set>

<database identifier>

STRUCTURE - <data set n111e> ~ ~ <exception handling> ~

Additional information relating to the <data set> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the <database
identifier> construct is included under "BDMS CLOSE Statement" in this section.
Information on the <exception handling> construct is included under "Database
Status Word" in this section.

Explanation

The data set form is used to specify the data set whose current record is to be
unlocked. The data set path and current record area remain unchanged.

The database identifier form is used to specify the global data record to be
unlocked. The data set path and current record area remain unchanged.

The STRUCTURE <data set name> construct frees all records in the structure.

If an exception is returned, the state of the database remains unchanged.

The FREE statement is optional in many situations because DELETE, FIND, BDMS
LOCK, and MODIFY statements can free a record before they execute. FIND,
LOCK, and MODIFY statements that use sets or subsets can free the locked record
or structure only if a new record or structure is successfully retrieved.
Otherwise, the previously locked record or structure remains locked. In general,
an implicit FREE statement is performed, if necessary, during any operation that
establishes a new data set path.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;

S SET OF D KEY N;

then the following BDMSALGOL program demonstrates the use of the FREE
statement to unlock the current record of data set D.

BEGIN
FILE CARD_FILE(KINO-READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<13>,X) DO

BEGIN
LOCK S AT N • X;
IF DMTEST(A ISNT NULL) THEN

DELETE D
ELSE

FREE D;
END;

CLOSE DBASE;
END.

8600 0734-000 4-47

Using the Data Management System II (DMSll) Interface

GENERATE Statement

4-48

The GENERATE statement creates an entire subset in one operation. All subsets
must be disjoint bit vectors. The GENERATE statement performs the following
steps in order:

1. It deletes all the records from the subset to be generated if it is not already
empty.

2. It assigns a null value, the records in another subset, or a combination of the
records in two other subsets to the subset that is generated.

Syntax

<generate statement>

- GENERATE - <Subset> - • ---r- NULL

• [<exception handling> J

L <Subset> ---.----------,,......

ANJD <Subset>
OR

+

Additional information relating to the <subset> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the <exception
handling> construct is included under "Database Status Word" in this section.

Explanation

The <subset> to the left of the equal sign (==) is the name of the subset to be
generated. This subset must be a manual subset, which must be a disjoint bit
vector.

The word "NULL" assigns a null value to the generated subset.

If <subset> follows the equal sign, it is the name of the subset whose records
are to be assigned to the generated subset. This subset must be of the same data
set as the generated subset, and it must be a disjoint bit vector.

If to the right of the equal sign there are two <subset>s joined by the operation
AND, OR, +, or -, then these two subsets are to be combined in the specified
manner. The result is then assigned to the generated subset. The two subsets
must be of the same data set, and must be disjoint bit vectors.

The operator "AND" specifies that the intersection of the two subsets is to be
assigned to the generated subset. The intersection is defined to be all the records
in the first subset that are also in the second subset.

8600 0734-000

Using the Data Management System II (DMSll) Interface

The operator "OR" specifies that the union of the two subsets is to be assigned to
the generated subset. The union is def"lned to be all the records that are in either
the f"lrst subset or the second subset.

The operator "+" specifies that the exclusive OR of the two subsets is to be
assigned to the generated subset. The exclusive OR consists of the records in
either the first subset or the second subset, but not the records that appear in
both subsets.

The operator"-" specifies that the subset difference of the two subsets is to be
assigned to the generated subset. The subset difference is defined to be the
records in the first subset that are not in the second subset.

Example

If the database DBASE is described in DASDL as the following:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;

X SUBSET OF D WHERE (N GEQ 21 AND NOT B) BIT VECTOR;
Y SUBSET OF D WHERE (R LSS 1000) BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how the GENERATE statement
can be used to assign all the records that are in ~oth X and Y to subset Z.

BEGIN
FILE CARD_FILE(KINO-READER);
DATABASE DBASE;
EBCDIC ARRAY S[0:2];
INTEGER T,U,V;

OPEN UPDATE DBASE;
WHILE NOT READ(CARO_FILE,<A3,Il,I3,I4>,S,T,U,V) DO

BEGIN
CREATE D;
PUT D (A :• S);
IF T • 1 THEN

PUT D (B :•TRUE);
PUT D (N :• U);
PUT D (R :• V);
STORE D;
END;

GENERATE Z • X AND Y;
CLOSE DBASE;

END.

8600 0734-000 4-49

Using the Data Management System II (DMSll) Interface

GET Statement

4-50

The GET statement is used to transfer information from the user work area
associated with a data set or global data record into program variables or arrays.

The GET statement does not access the database; it assumes that prior database
operations have loaded the proper record or data items into the user work area.

Syntax

<get statement>

- GET I <data set> ------ (- <input mapping> -) ---------1
L._ <database identifier> ~

Additional information relating to the <data set> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the <database
identifier> construct is included under "BDMS CLOSE Statement" in this section.
Information on the <input mapping> construct is included under "Input
Mapping Used with Retrieval Statements" in this section.

Explanation

The <data set> construct is used to transfer information from the user work
area associated with this data set into a program variable or array.

The <database identifier> is used to transfer information from the user work
area associated with the global data record into a program variable or array.

No exceptions are associated with the GET statement. However, if the database
containing the referenced data set or global data record has not been opened at
the time execution of the GET statement is attempted, the program terminates
with a fault.

Example

Assume a database named DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
);

S SET OF D KEY N;

8600 0734--000

Using the Data Management System II (DMSll) Interface

The following BDMSALGOL program demonstrates how the GET statement can be
used to assign current values of data items to program variables and arrays.

BEGIN
FILE CARD_FILE(KINO-READER),

PRINT_FILE(KINO-PRINTER);
DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;
WHILE NOT READ(CARD_FILE,<13>,MN) DO

BEGIN
FIND S AT N • MN;
GET D (MA[O] :• A,MB :• B);
IF MB THEN

GET D (MR :• R)
ELSE

MR :• O;
WRITE(PRINT_FILE,<13, II II ,A3, II II ,LS, II II ,E4. 2>,

MN,MA[O],MB,MR);
END;

CLOSE DBASE;
END.

8600 0734-000 4-51

Using the Data Management System II (DMSll) Interface

DMSll INSERT Statement

4-52

The DMSll INSERT statement places a record into a manual subset and performs
the following steps in order:

1. It inserts the current record of the specified data set into the specified
subset.

2. It alters the set path for the specified subset to point to the inserted record.

<insert statement>

- INSERT - <data set> - INTO - <Subset> -----------...-------4
~ <exception handling> ~

Additional information relating to the <subset> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the <exception
handling> construct is included under "Database Status Word" in this section.
Information on the <data set> construct is included under "Selecting a Record in
a Data Set" in this section.

Explanation

The <data set> construct specifies the data set whose current record is inserted
into the subset specified by <subset>. The path of the specified data set must be
the object data set of the specified subset.

The subset must be a manual subset, and it must be a subset of the specified data
set.

The path of the specified data set must refer to a valid record; if not, an
exception is returned. Other reasons an exception is returned are:

• If duplicates are not allowed for the specified subset and the record to be
inserted has a key identical to that of a record currently in that subset.

• If the specified subset is embedded in a data set that does not have a valid
current record.

• If "LOCK TO MODIFY DETAII.S" was specified in DASDL and the current
record is not locked.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;

X SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program shows how the INSERT statement can
be used to place the current record of data set D into subset X.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;
SET D TO BEGINNING;
FIND NEXT D :RSLT;
WHILE NOT RSLT DO

BEGIN
GET D (MN :• N);
IF MN > 10 THEN

INSERT D INTO X;
FIND NEXT D :RSLT;
END;

CLOSE DBASE;
END.

8600 0734-000 4-53

Using the Data Management System II (DMSll) Interface

BDMS LOCK Statement

4-54

The BDMS LOCK statement is similar to the FIND statement, except that if a
record or structure is found, it is locked against a concurrent modification by
another user. The LOCK statement provides an exclusive lock and can designate
either a structure lock or a record lock. The program owning an exclusive lock
prevents all other programs from successfully executing a SECURE or LOCK
statement. However, other programs can successfully execute a FIND statement.
Use the SECURE statement to allow other programs to secure the record or
structure.

The words "LOCK" and "MODIFY" are synonyms.

If the record or structure to be locked has already been locked by another
program, the system performs a contention analysis. In this case, the present
program waits until the record or structure is unlocked. However, if a wait would
result in a deadlock, all records or structures locked by the program with the
lowest priority involved in the deadlock are unlocked, and the operation in that
program terminates with a DEADLOCK exception.

A DEADLOCK exception also occurs if the program waits on a LOCK statement
longer than the period specified by the MAXW AIT task attribute.

Consult the DMSll Application Program lnterfa,ces Programming Gu.icle for more
information on the DEADLOCK exception. For information about task attributes,
consult the Task Attributes Programming Reference Manual.

The LOCK statement performs the following steps in order:

1. If the LOCK statement specifies a data set, then a locked record or structure
in the data set is freed. If the LOCK statement specifies a set, then a locked
record or structure in the associated data set is freed. (If the
INDEPENDENTTRANS option is set in DASDL for the database and the
program is in transaction state, the statement qoes not free the locked
record or structure.)

2. It alters the current path to point to the record or structure specified by the
selection expression or database identifier.

3. It locks the specified record or structure and then transfers that record to
the user work area.

Implicit structure locks are freed after execution of the ENDTRANSACTION
statement.

Additional information relating to locked records and structures is included under
"SECURE Statement" in this section.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Syntax

<BDMS lock statement>

1 LOCK Tt <selection expression> j
MODIFY <database identifier> ~ ~ <exception handling> ~

STRUCTURE - <data set name>

~ [(- <input mapping> -) J
Additional information relating to the <selection expression> construct is
included under 'Selecting a Record in a Data Set" in this section. Information on
the <database identifier> construct is included under "BDMS CLOSE Statement"
in this section. Information on the <exception handling> construct is included
under "Database Status Word" in this section. Information on the <input
mapping> construct is included under "Input Mapping Used with Retrieval
Statements" in this section.

Explanation

The selection expression is used to specify the record to be locked.

The database identifier is used to specify the global data record to be locked. If
the invoked database contains a remap of the global data, the name of the logical
database, not the name of the global data remap, is used to LOCK the global data
record.

The STRUCTURE <data set name> construct locks all records in the structure.
This is an explicit structure lock; therefore, the records are not freed after the
execution of the ENDTRANSACTION statement. Explicit structure locks are freed
with the FREE STRUCTURE statement or by closing the database.

If an exception is returned, the record is not freed.

If a LOCK statement using a set selection expression returns an exception, the
current path of the specified set is invalidated. However, the current path of the
data set, the current record, and the current paths of any other sets for that data
set remain unaltered.

To access data items, the <input mapping> construct must appear.

Because no other user can lock a record or structure once it is locked, a record or
structure must be freed when it is no longer required to be locked. A record or
structure can be freed explicitly by a BDMS FREE statement or implicitly by a
subsequent CREATE, DELETE, FIND, BDMS LOCK, or RECREATE statement on
the same data set.

8600 0734-000 4-55

Using the Data Management System II (DMSll) Interface

4-56

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;

X SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates the use of the LOCK
statement to lock records of subset X.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;
SET X TO .BEGINNING;
LOCK NEXT X :RSLT;
WHILE NOT RSLT DO

BEGIN
GET D (MN :• N);
IF MN <- 10 THEN

BEGIN
REMOVE D FROM X;
DELETE D;
END

ELSE
BEGIN
PUT D (B :•TRUE);
STORE D;
END;

LOCK NEXT X :RSLT;
END;

CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System II (DMSll) Interface

DMSll MODIFY Statement

The DMSII MODIFY statement is described under the BDMS LOCK statement in
this section. They are synonyms.

8600 0734-000 4-57

Using the Data Management System II (DMSll) Interface

BDMS OPEN Statement

4-58

The BDMS OPEN statement opens a database for subsequent access and specifies
the .access mode. The OPEN statement performs the following steps in order:

1. It opens an existing database. Appropriate "NO FILE" messages are
displayed if files required for invoked structures are not present in the
system directory.

2. It performs an implicit CREATE statement on the restart data set.

Additional information relating to the BDMS OPEN statement is included under
"BDMS OPEN Statement with TPS" and "Transaction Processing Statements" in
Section 5, "Using DMSII Transaction Processing System (TPS) Extensions".

Syntax

<BDMS open statement>

- OPEN -------<database identifier> --.--------~--t

~ <eXception handling> ~ INQUIRY

TRUPDATE

UPDATE

SINGLEUPDATE

Additional information relating to the <database identifier> construct is
included under "BDMS CLOSE Statement" in this section. Information on the
<exception handling> construct is included under "Database Status Word" in
this section.

ExPlanatlon

The word "INQUIRY" enforces read-only access to the database. This option is
specified when no update operations are to be performed on the database. An
exception is returned if the following BDMSALGOL statements are used when the
database has been opened with the INQUIRY option:

ASSIGN GENERATE
BEGINTRANSACTION INSERT
DELETE REMOVE
ENDTRANSACTION STORE

The data management system does not open any audit files if the "OPEN
INQUIRY" form has been used by all programs accessing the database.

The word "UPDATE" allows the program to modify the database being opened.
The UPDATE option must be specified in order to use the BDMSALGOL
statements listed above under the INQUIRY option. UPDATE is the default
option.

8600 0734-000

Using the Data Management System II (DMSll) Interface

The word "TRUPDATE" must be specified in order to use the MIDTRANSACTION
statement or the <transaction record variable ID> form of the
BEGINTRANSACTION or ENDTRANSACTION statements. Refer to Section
5,"Using the DMSII Transaction Processing System (TPS) Extensions," for more
information on the MIDTRANSACTION statement.

The word "SINGLEUPDA TE" allows only one user to modify the database being
opened. The SINGLEUPDA TE option can use the BDMSALGOL statements listed
under the INQUIRY option.

The database identifier specifies the database to be opened.

If an exception is returned, the state of the database remains unchanged. An
exception is returned if the database is already open.

An OPEN statement must be executed before the first access of the database;
otherwise, the program terminates with a fault.

Examples

Assume a database named DBASE is described in DASDL as follows:

OPTIONS{AUDIT);
R RESTART DATA SET (

P ALPHA {10);
Q ALPHA {100);
) ;

D DATA SET (
A ALPHA {10);

B BOOLEAN;
N NUMBER {3);
) ;

S SET OF D KEY N;
SS SUBSET OF D BIT VECTOR;
X SUBSET OF D BIT VECTOR;
Y SUBSET OF D BIT VECTOR;
Z SUBSET OF D BIT VECTOR;

The following BDMSALGOL program demonstrates the use of the OPEN statement
with the INQUIRY option to open database DBASE and perform read-only actions
on the database.

BEGIN
FILE CARD_FILE{KINO-READER),

PRINT_FILE(KINO-PRINTER);
DATABASE DBASE;
BOOLEAN MB;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2];

OPEN INQUIRY DBASE;

8600 0734-000 4-59

Usln1 the Data Mana1ement System II (DMSll) Interface

4-60

WHILE NOT READ(CARD-FILE,<13>,MN) DO
BEGIN
FIND S AT N • MN;
GET D (MA[O] :• A,MB :• B);
IF MB THEN

GET D (MR :• N)
ELSE

MR :• 0;
WRITE(PRINT-FILE,<13 1 11 11 1 A3 1 11 11 ,LS 1 11 11 1 E4.2>.

MN 1 MA[0] 1 MB,MR);
END;

CLOSE DBASE;
END.

The following BDMSALGOL program demonstrates the use of the OPEN statement
with the UPDATE option to open database DBASE and perform update actions on
the database.

BEGIN
FILE CARD_FILE(KIND-READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE 1 <I3> 1 X) DO

BEGIN
LOCK S AT N • X;
IF DMTEST(A ISNT NULL) THEN

DELETE D
ELSE

FREE D;
END;

CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System II (DMSll) Interface

PUT Statement

The PUT statement transfers information from program expressions into the user
work area associated with a data set or global data record.

The PUT statement does not update the database; a subsequent STORE statement
must be executed to place the data in the user work area into the database.

Any number of PUT statements can be used to update items before a STORE
statement is executed.

Syntax

<put statement>

- PUT I <data set> ----..- (- <Output mapping> -) -------

L... <database identifier> ~
Additional information relating to the <data set> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the <database
identifier> construct is included under "BDMS CLOSE Statement" in this section.
Information on the <output mapping> construct is included under "Output
Mapping Used with Storage Statements" in this section.

Explanation

The <data set> form is used to transfer information associated with this data
set into the user work area.

The <database identifier> form is used to transfer information associated with
the global data record into the user work area.

Output mappings transfer the value of a program variable or expression to a
DASDL-declared data item. If the data item is an occurring item, it must be
subscripted appropriately.

No exceptions are associated with the PUT statement. However, if the database
containing the specified data set or the specified database has not been opened,
the program terminates with a fault.

Example

Assume a database named DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;

X SUBSET OF D BIT VECTOR;

8600 0734-000 4-61

Using the Data Management System II (DMSll) Interface

4-62

The following BDMSALGOL program demonstrates how the PUT statement can be
used to assign values to data items.

BEGIN
FILE CARD-FILE(KIND-READER);
DATABASE DBASE;
EBCDIC ARRAY S[0:2];
INTEGER T,U,V;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD_FILE,<A3,Il,I3,I4>,S[O],T,U,V) DO

BEGIN
CREATE D;
PUT D (A :• S);
IF T • 1 THEN

PUT D (B :•TRUE);
PUT D (N :• U,R :• V);
STORE D;
END;

CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System II (DMSll) Interface

RECREATE Statement

The RECREATE statement partially initializes the user work area. All data items
remain unaltered; however, control items such as links, sets, counts, and data sets
are unconditionally set to NULL.

For variable-format records, the record type supplied must be the same as that
supplied in the CREA TE statement that created the record. If not, the subsequent
STORE statement results in a DATAERROR subcategory 4.

The RECREATE statement performs the following steps in order:

1. It frees the current record of the specified data set.

2. It reads any specified arithmetic expression to determine the format of the
record to be created.

3. It unconditionally sets links, sets, counts, and data sets to NULL.

Syntax

<recreate statement>

- RECREATE - <data set> --r------------""T"""-------....
~ (- carithlletic expression> -) ~

• [<exception handling> J
Additional information relating to the <data set> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the <exception
handling> construct is included under "Database Status Word" in this section.

Explanation

The <data set> construct specifies the data set to be initialized.

The arithmetic expression specifies a value indicating the type of record to be
created. This arithmetic expression is required when a variable-format record is
created; otherwise, it must not appear.

An exception is returned if the arithmetic expression does not represent a valid
record type.

8600 0734-000 4-63

Usin1 the Data Management System II (DMSll) Interface

4-64

Example

If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT);
R RESTART DATA SET (

P ALPHA (10);
Q ALPHA (100);
) ;

0 DATA SET (
A ALPHA (10);
B BOOLEAN;
N NUMBER (3);
) ;

S SET OF 0 KEY N;
SS SUBSET OF 0 BIT VECTOR;
X SUBSET OF 0 BIT VECTOR;
Y SUBSET OF 0 BIT VECTOR;
Z SUBSET OF 0 BIT VECTOR;

then the following BDMSALGOL program demonstrates how the RECREATE
statement can be used to partially initialize a record of data set D.

BEGIN
FILE CARD-FILE(KINO-READER);
DATABASE DBASE;
EBCDIC ARRAY X[0:9];
INTEGER Y,Z;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD-FILE,<Al0,Il,I3>,X[O],Y,Z) DO

BEGIN
CREATE D;
PUT D (A :• X[O]);
IF Y • 1 THEN

PUT 0 (B :•TRUE);
PUT 0 (N :• Z);
STORE D;
RECREATE D;
PUT 0 {N :• Z+l);
STORE D;
END;

CLOSE DBASE;
ENO.

8600•0734-000

Using the Data Management System II (DMSll) Interface

REMOVE Statement

The REMOVE statement is similar to the FIND statement, except that if a record
is found, it is locked and then removed from the specified subset.

The REMOVE statement performs the following steps in order:

1. It frees the current record. (If the INDEPENDENTTRANS option is set in
DASDL for the database and the program is in transaction state, the
REMOVE statement does not free the current record.)

2. It alters the current path to point to the record specified by CURRENT or
the data set.

3. It locks the previously found record and then removes the record from the
specified subset.

If an exception occurs after step 2, the current path is invalid. If an exception
occurs after step 3, the operation terminates, leaving the current path pointing to
the record specified by CURRENT or by the data set.

Syntax

<remove statement>

- REMOVE I CURRENT I" FROM - <subset>

L.. <data set> _J ~ <exception handling> ~
Additional information relating to the <data set> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the <subset>
construct is included under "Selecting a Record in a Data Set" in this section.
Information on the <exception handling> construct is included under "Database
Status Word" in this section.

Esplanation

The word "CURRENT" removes the current record from the specified subset. If
this option is specified, the subset must have a valid current record; if it does not
have a valid current record, an exception is returned.

The <data set> construct is used to f°md and remove from the specified subset
the record referenced by the current path. An exception is returned lf the record
is not in the subset.

The <subset> construct specifies the subset from which a record is to be
deleted. The subset must be a manual subset of the specified data set.

If the subset is embedded in a data set, the data set must have a current record
defined and that record must be locked; if not, an exception is returned.
Exceptions are also returned

1. If CURRENT is specified and the specified subset does not have a valid
current record.

8600 0734-000 4-65

Using the Data Management System II (DMSll) Interface

4-66

2. If a data set is specified and the record is not in the subset.

3. If the specified subset is embedded in a data set, and the data set does not
have a current record def"med and locked.

After the REMOVE statement is executed, the current paths still refer to the
. deleted record. Therefore, a subsequent FIND statement on the current record

results in a NOTFOUND exception. However, the FIND NEXT and FIND PRIOR
forms of the FIND statement give valid results.

Eumple

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;

SS SUBSET OF D BIT VECTOR;

then the following BDMSALGOL program demonstrates the use of the REMOVE
statement to lock and remove the record of data set D that is referenced by the
current path from the subset SS.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;
SET SS TO BEGINNING;
FIND NEXT SS :RSLT;
WHILE NOT RSLT 00

BEGIN
GET D (MN :• N);
IF MN < 10 THEN

REMOVE D FROM SS;
FIND NEXT SS :RSLT;
END;

CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System II (DMSll) Interface

BDMS SAVETRPOINT Statement

The BDMS SA VETRPOINT statement creates an intermediate transaction point.
The SAVETRPOINT statement is used in conjunction with the CANCELTRPOINT
statement. All updates occurring between a SA VETRPOINT statement and a
CANCELTRPOINT statement can be backed out if an error condition is
encountered that disrupts the integrity of the updates.

Syntax

<savetrpoint statement>

- SAVETRPOINT - (- <integer expression> -) - <restart data set> -------1

Explanation

The <integer expression> construct marks the intermediate transaction point. It
must have the same value as the <integer expression> construct of the
corresponding CANCELTRPOINT statement.

The <restart data set> construct identifies the data set containing the restart
records that application programs can access to recover database information
after a system failure.

Additional information relating to the BDMS CANCELTRPOINT statement is
included under "BDMS CANCEL TRPOINT Statement" in this section.

Example

In this example, there is an intermediate transaction point with an integer value
of 1. If an error is detected, the CANCELTRPOINT statement backs out all
updates accumulated after the SA VETRPOINT statement.

BEGINTRANSACTION R;

SAVETRPOINT {l) R;

IF ERROR ... THEN CANCELTRPOINT (1) R;

ENDTRANSACTION R;

8600 0734-000 4-67

Usln1 the Data Mana1ement System II (DMSll) Interface

SECURE Statement

4-68

The SECURE statement is similar to the FIND statement, except that if a record
or structure is found, it is locked against a concurrent modification by another
user. The SECURE statement provides a shared lock and allows other programs
to execute a SECURE statement or a FIND statement successfully. However, other
programs cannot execute a LOCK statement successfully.

If the record or structure to be locked has already been locked by another
program, the system performs a contention analysis. In this case, the present
program waits until the record or structure is unlocked. However, if a wait would
result in a deadlock, all records or structures locked by the program with the
lowest priority involved in the deadlock are unlocked, and the operation in that
program terminates with a DEADLOCK exception.

A DEADLOCK exception also occurs if the program waits on a SECURE statement
longer than the period specified by the MAXW AIT task attribute.

Consult the DMSII Application Program Interfaces Programming Guide for more
information on the DEADLOCK exception. For information about task attributes,
consult the Task Attributes Programming Reference Manual.

1, The SECURE statement performs the following steps in order:

1. If the SECURE statement specifies a data set, then a locked record or
structure in the data set is freed. If the SECURE statement specifies a set,
then a locked record or structure in the associated data set is freed. (If the
INDEPENDENTTRANS option is set in DASDL for the database and the
program is in transaction state, the statement does not free the locked
record or structure.) ·

2. It alters the current path to point to the record or structure specified by the
selection expression or database identifier.

3. It locks the specified record or structure and then transfers that record to
the user work area.

Implicit structure locks are freed after execution of the ENDTRANSACTION
statement.

Syntax

<Secure statement>

- SECURE 1 <Selection expression> j
<database identifier> -----1
STRUCTURE - <data set name>

• [(- <input mapping> -) J

[<exception handling> J

8600 0734-000

Using the Data Management System II (DMSll) Interface

Additional information relating to locked records and structures is included under
"BDMS LOCK Statement" in this section.

Additional information relating to the <selection expression> construct is
included under 'Selecting a Record in a Data Set" in this section. Information on
the <database identifier> construct is included under "BDMS CLOSE Statement"
in this section. Information on the <exception handling> construct is included
under "Database Status Word" in this section. Information on the <input
mapping> construct is included under "Input Mapping Used with Retrieval
Statements'' in this section.

Explanation

The selection expression is used to specify the record to be locked.

The database identifier is used to specify the global data record to be locked. If
the invoked database contains a remap of the global data, the name of the logical
database, not the name of the global data remap, is used to lock the global data
record.

The STRUCTURE <data set name> construct locks all records in the structure.
This is an explicit structure lock; therefore, the records are not freed after
execution of the ENDTRANSACTION statement. Explicit structure locks are freed
with the FREE STRUCTURE statement or by closing the database.

If an exception is returned, the record is not freed.

If a SECURE statement using a set selection expression returns an exception, the
current path of the specified set is invalidated. However, the current path of the
data set, the current record, and the current paths of any other sets for that data
set remain unaltered.

To access data items, the <input mapping> construct must appear.

Because no other user can lock a record or structure once it is locked, a record or
structure must be freed when it is no longer required to be locked. A record or
structure can be freed explicitly by a BDMS FREE statement or implicitly by a
subsequent CREATE, DELETE, FIND, BDMS LOCK, or RECREATE statement on
the same data set.

ham.pie

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;

X SUBSET OF D BIT VECTOR;

8600 0734-000

Using the Data Management System II (DMSll) Interface

4-70

then the following BDMSALGOL program demonstrates the use of the SECURE
statement to lock records of subset X.

BEGIN
DATABASE DBASE;
BOOLEAN RSLT;
INTEGER MN;

OPEN UPDATE DBASE;
SET X TO BEGINNING;
SECURE NEXT X :RSLT;
WHILE NOT RSLT DO

BEGIN
GET D (MN :• N};
IF MN <- 10 THEN

BEGIN
REMOVE D FROM X;
DELETE D;
END

ELSE
BEGIN
PUT D (B :•TRUE};
STORE D;
END;

SECURE NEXT X :RSLT;
END;

CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System II (DMSll) Interface

BDMS SET Statement

The BDMS SET statement alters the current path or changes the value of an item
in the current record. Only the record area is affected. The data set is not
affected until a subsequent STORE statement is executed.

The SET statement performs the following steps in order:

1. It frees the current path of the data set, set, or subset.

2. It performs one of the following actions:

a. Alters the current path of the data set, set, or subset to point to the
beginning or the ending of the indicated structure

b. Alters the set or subset path to point to the current path of another data
set

c. Assigns a NULL value to a particular item

Syntax

cBDMS set statement>

- SET <Set> -----r- TO

<subset> .J 1 <data set>

BEGINNING

ENDING

<exception handling> ~---t

<item>

<data set> - TO 1 BEGINNING

ENDING

<item> - TO - NULL

- <qualification> ------------------------1
Additional information relating to the <data set>, <set>, and <subset>
constructs is included under "Selecting a Record in a Data Set" in this section.
Information on the <qualification> construct is included under "Qualification of
Database Items" in this section. Information on the <exception handling>
construct is included under "Database Status Word" in this section.

Explanation

The constructs <data set>, <set>, or <subset> following the word "SET"
specify the data set, set, or subset, respectively, whose path is altered.

If "TO <data set>" is specified, the current path of the set or subset is altered
to point to the current record of the specified data set.

If "TO BEGINNING" is specified, the current path of the set, subset, or data set
is altered to point to the beginning of the set, subset, or data set, respectively.

8600 0734-000 4-71

Usln1 the Data Management System II (DMSll) Interface

4-72

If "TO ENDING" is specified, the current path of the set, subset, or data set is
altered to point to the ending of the set, subset, or data set, respectively.

The <item> construct specifies an item of the current record that is assigned a
NULL value. The item cannot be a link item. NULL can be the DASDL-declared
NULL value or the system default NULL value. Consult the DMSII DASDL
Programming Reference Manual for more information.

After a SET TO BEGINNING form of the SET statement, the FIND NEXT and
FIND FIRST forms of the FIND statement are equivalent; similarly, after a SET
TO ENDING, a FIND PRIOR and FIND LAST are equivalent.

Esample

Assume a database named DBASE is described in DASDL as follows:

D DATA SET {
A ALPHA (20);
B BOOLEAN;
N NUMBER {2);
R REAL;
) ;

S SET OF D KEY {N);
SS SUBSET OF D WHERE (N • 3);

The following BDMSALGOL program demonstrates different ways to use the SET
statement.

BEGIN
FILE CARD-FILE(KINO-READER),

PRINT_FILE(KIND-PRINTER);
DATABASE DBASE;
BOOLEAN MB,RSLT;
REAL MR;
INTEGER MN;
EBCDIC ARRAY MA[0:2] 0
LABEL CLOSE-DATABASE;

OPEN INQUIRY DBASE;
SET SS TO BEGINNING :RSLT;
IF RSLT THEN

BEGIN
WRITE(PRINT_FILE,<"** NO ENTRIES IN SS. **">);
GO CLOSE-DATABASE 0
END;

WHILE NOT READ(CARD-FILE,<I3>,MN) DO
BEGIN
FIND S AT N • MN;
SET SS TO D :RSLT;
IF RSLT THEN

WRITE(PRINLFILE,<13," NOT IN SS. 11>,MN)
ELSE

8600 0734-000

Using the Data Management System II (DMSll) lnterfHe

BEGIN
GET D(MA[O] :• A,MB :• B)i
IF MB THEN

GET D (MR :• R)
ELSE

MR :• Oi
WRITE(PRINT_FILE,<13 1 11 11 1A3, 11 11 ,LS, 11 11 1 E4.2>,

MN,MA[O],MB,MR)i
END;

ENDi

CLOSLDATABASE:
CLOSE DBASEi

END.

8600 0734-000 4-73

Using the Data Management System II (DMSll) Interface

STORE Statement

4-74

The STORE statement places a new or modified record into a data set or a global
record area. The data from the user work area for the data set or global record is
inserted into the data set or global record area.

The STORE statement performs the following actions after a CREATE or
RECREATE statement:

1. Check the data in the user work area for validity if a VERIFY condition is
specified in the DASDL.

2. Test the record for validity for insertion in each set in the data set (for
example, tests whether or not duplicates are allowed).

3. Evaluate the WHERE condition for each automatic subset.

4. Insert the record into all sets and automatic subsets if all conditions are
satisfied.

6. Lock the new record.

6. Alter the data set path to point to the new record.

After a BDMS LOCK or MODIFY statement, the STORE statement performs the
following actions:

1. Check the data in the user work area for validity if a VERIFY condition is
specified in the DASDL.

2. Reevaluate the conditions if items involved in the insertion conditions have
changed. If the condition yields FALSE, the record is removed from each
automatic subset that contains the record. If the condition yields TRUE, the
record is inserted into each automatic subset that does not contain the
record.

3. Delete and reinsert the record in the proper position if a key used in the
ordering of a set or automatic subset is modified so that the record must be
moved within that set or automatic subset.

4. Store the record in a manual subset, but performs no reordering on that
subset. The· user is responsible for maintaining manual subsets. A
subsequent reference to the record using that subset produces undefined
results.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Syntax

<store statement>

- STORE I <data set>

L... <database identifier> ~

• [(- <Output mapping> - } J

[<exception handling> J

Additional information relating to the <data set> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the <database
identifier> construct is included under "BDMS CLOSE Statement" in this section.
Information on the <exception handling> construct is included under "Database
Status Word" in this section. Information on the <output mapping> construct is
included under "Output Mapping Used with Storage Statements" in this section.

Explanation

If the <data set> form is used, the data in the user work area for the data set is
returned to the specified data set.

If the <database identifier> form is used, the data in the user work area for the
global data is returned to the global data record area. Th~ global data record
must be locked before a STORE statement references it; otherwise, the STORE
statement is terminated with an exception.

An exception is returned and the record is not stored if the record does not meet
any of the validity conditions.

An exception is returned if the data set path is valid and the current record is
not locked, or if the global data record is not locked.

hample

If the database DBASE is described in DASDL as follows:

OPTIONS(AUDIT);
R RESTART DATA SET

P ALPHA (10);
Q ALPHA (100);
) ;

D DATA SET (
A ALPHA (3);
N NUMBER (3);
) i

S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the STORE statement
can be used to place a record into the data set D.

8600 0734-000 4-75

Usln1 the Data Mana1ement System II (DMSll) Interface

4-76

BEGIN
FILE CARD-FILE(KIND-READER);
DATABASE DBASE;
EBCDIC ARRAY MY...A[0:2];
INTEGER MY..N;

OPEN UPDATE DBASE;
MY..N :• l;
WHILE MY..N < 100 DO

BEGIN
CREATE D;
PUT D (N :• MY..N);
BEGINTRANSACTION R;
STORE D;
ENDTRANSACTION R;
MY..N :• *+l;
END;

WHILE NOT READ(CARD_FILE,<I3,A3>,MY..N,MY...A[O]) DO
BEGIN
LOCK S AT N • MY..N;
BEGINTRANSACTION R;
PUT D (A :• MY...A[O]);
STORE D;
ENDTRANSACTION R;
END;

CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System II (DMSll) Interface

BDMSALGOL Functions
There are two data management functions available in the BDMSALGOL
language: DMTEST and STRUCTURENUMBER. These functions are described in
this section.

DMTEST Function

The DMTEST function determines whether an item is null. The function returns a
Boolean value of TRUE or FALSE. It is TRUE if the value of the relationship
expressed between the parentheses is TRUE; otherwise, it is FALSE. No status
value is associated with the DMTEST function.

Syntax

<dlntest function>

- DMTEST - (1 <a 1 pha i tern> -...--.- EQL

<link item>

<numeric itetn> IS

<real item> NEQ

<alpha item>
<numeric item>
<real item>

. -
ISNT

NULL -) ---------1

- <qualification> -------------------------1
Additional information relating to the <link item> construct is included under
"Selecting a Record in a Data Set" in this section. Information on the
<qualification> construct is included under "Qualification of Database Items" in
this section.

Explanation

The <alpha item> construct specifies an alpha item declared in the DASDL. The
alpha item contains a NULL value after a "SET <item> TO NULL" form of the
BDMS SET statement, where <item> is the alpha item.

The <numeric item> construct specifies a numeric item declared in the DASDL.
The numeric item contains a NULL value after a "SET <item> TO NULL" form
of the BDMS SET statement, where <item> is the numeric item.

The <real item> construct specifies a real item declared in the DASDL. The real
item contains a NULL value after a "SET <item> TO NULL" form of the BDMS
SET statement, where <item> is the real item.

8600 0734-000 4-77

Using the Data Management System II (DMSll) Interface

4-78

The <link item> construct specifies a link item declared in the DASDL. The link
item contains a NULL value if either of the following is TRUE:

1. The link item does not point to a record.

2. No current record is present for the data set that contains the link item. This
condition occurs following a BDMS OPEN statement, following the SET TO
BEGINNING and SET TO ENDING forms of the BDMS SET statement, or
when the record containing the link item has been deleted.

The link item contains a nonnull value if the link item points to a record, even if
that record has been deleted.

The word "NULL" represents the DASDL-defined NULL value.

Example

If the database DBASE is described in DASDL as follows:

D DATA SET (
A ALPHA (3);
B BOOLEAN;
N NUMBER (3);
R REAL;
) ;
S SET OF D KEY N;

then the following BDMSALGOL program demonstrates how the DMTF.8T
function can be used to determine whether or not the alpha item A is NULL:

BEGIN
FILE CARD_FILE(KINO-READER);
DATABASE DBASE;
INTEGER X;

OPEN UPDATE DBASE;
WHILE NOT READ(CARD-FILE,<I3>,X) DO

BEGIN
LOCK S AT N • X;
IF DMTEST(A ISNT NULL) THEN

DELETE D
ELSE

FREE D;
END;

CLOSE DBASE;
END.

8600 0734-000

Using the Data Management System II (DMSll) Interface

STRUCTURENUMBER Function

The STRUCTURENUMBER function allows the programmer to determine
programmatically the structure number of a data set, set, subset, or of global
data. This function can be used to analyze the result of exception conditions.

This capability is most useful when several sets span a data set and the previous
operation against the data set yielded an exception. The program can determine
which structure caused the exception from the corresponding structure number.

Syntax

<structurenumber function>

- STRUCTURENUMBER - (1 <database identifier>

<data set> ---

<set> -----

<subset> -------

Additional information relating to the <database identifier> construct is
included under "BDMS CLOSE Statement" in this section. Information on the
<data set>, <set>, and <subset> constructs is included under "Selecting a
Record in a Data Set" in this section.

Explanation

If the <database identifier> construct is used, the STRUCTURENUMBER
function returns the structure number of the global data. Otherwise, the function
returns the structure number of the data set, set, or subset specified by its
respective construct.

When a partitioned structure is declared in DASDL, it is assigned one or more
structure numbers, depending on <unsigned integer> in the "OPEN PARTITIONS
- <unsigned integer>" form of the DASDL OPEN data set option. For example,
if "OPEN PARTITIONS - 3" is specified, three structure numbers are assigned to
the partitioned structure. Refer to the DMSII DASDL Programming Reference
Manual for further information.

The STRUCTURENUMBER function returns the smallest structure number
assigned to the structure; however, DMSTRUCTURE, the value in the exception
status word, can evaluate to any of these values; that is, it does not necessarily
evaluate to the same structure number every time.

Example

REAL ERRORWORD;
IF STRUCTURENUMBER(D) • ERRORWORD.DMSTRUCTURE THEN

REPLACE EA BY "D FAULT";

8600 0734-000 4-79

Using the Data Management System II (DMSll) Interface

Exception Processing

4-80

When executing BDMSALGOL statements, any one of several exception
conditions, which prevent the operation from being performed as specified, can
be encountered. These conditions result if the operation encounters a fault or
does not produce the expected action. For example, execution of the statement

FIND S AT NAME • "JONES"

would result in an exception if there is no entry in S that has a value of "JON~"
for the key item. If the operation terminates normally, no exception occurs.

A database status word is returned to the BDMSALGOL program at the
conclusion of each BDMSALGOL statement. The value of this word indicates
whether or not an exception has occurred and specifies the nature of the
exception.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Database Status Word

In a BDMSALGOL statement, the user must specify the name of a real variable or
Boolean variable in which the value of the database status word is stored at the
completion of the BDMSALGOL statement. If no such variable is specified, the
status value cannot be interrogated.

The <exception handling> construct is used in the syntax of the BDMSALGOL
statements to denote those statements where a program variable can be
designated to receive the value of the database status word.

Syntax

<exception handling>

- : - cexception variable>--------------------

<exception variable>

1 <Boolean variabl::...J

<real variable>

Explanation

A Boolean variable is a Boolean simple variable or an element of a Boolean array.
A real variable is a real simple variable or an element of a real array.

For more information concerning Boolean and real variables, refer to Volume 1.

Example

REAL ERRORWORD;
OPEN UPDATE DBASE :ERRORWORD;

8600 0734-000 4-81

Using the Data Management System II (DMSll) Interface

Exception Handling

4-82

If the database status word is treated as a Boolean quantity, its value is TRUE if
the operation containing it results in an exception; otherwise, it is F AI.SE.

If an exception results from a database operation, but the value of the database
status word is not assigned to an exception variable in the program, the program
is terminated. If the value is assigned to an exception variable, no other
indication of the exception is given. The BDMSALGOL program is responsible for
determining the nature of the exception and responding appropriately. Failure to
do so can cause unpredictable results.

To determine the nature of an exception, the database status word is interrogated
by specifying a period(.) and an attribute name following the exception variable.
The attribute names are recognized by the BDMSALGOL compiler as
representations of the appropriate fields of the database status word.

The values that can be stored in the database status word are noted and
explained in the DMSII Application Progra:m ln'terjaces Programming Gu.ids.

Syntax

<exception value>

- <exception variable> - • 1 DMERROR j
DMERRORTYPE

DMSTRUCTURE

Explanation

The DMERROR attribute yields a numeric value identifying a major category.
Mnemonic names are also available to represent these numeric values. Either the
category number or the category mnemonic can be used to test for a particular
category.

The DMERRORTYPE attribute yields a numeric value identifying the subcategory
of the major category.

The DMSTRUCTURE attribute yields a numeric value identifying the structure
number of the structure involved in the exception. The structure numbers of all
invoked structures are shown in the program listing if the program was compiled
with the compiler control options LIST and LISTDB equal to TRUE.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Example

The following example illustrates one way of handling exceptions in a
BDMSALGOL program:

REAL ERRORWORD;
OPEN UPDATE DBASE :£RRORWORD;
IF BOOLEAN(ERRORWORD} THEN

IF ERRORWORD.DMERROR • OPENERROR THEN
IF ERRORWORD.DMERRORTYPE • 1 THEN

DISPLAY("I/O ERROR ON ACCESSROUTINES CODE FILE"};

If the exception variable is a Boolean variable, the preceding example is changed
as follows:

BOOLEAN ERRORWORD;
OPEN UPDATE DBASE :ERRORWORD;
IF ERRORWORD THEN

8600 0734-000

IF REAL(ERRORWORD}.DMERROR • OPENERROR THEN
IF REAL(ERRORWORD}.DMERRORTYPE • 1 THEN

DISPLAY("I/O ERROR ON ACCESSROUTINES CODE FILE"};

Usln1 the Data Management System II (DMSll) Interface

BDMSALGOL Compiler Control Options

4-84

The following compiler control options are available in the BDMSALGOL language
in addition to the options available in the ALGOL language. For information on
the compiler control options available in ALGOL, refer to Volume 1.

Syntax

<datadictinfo option>

- DATADICTINFO -------------------------1
Explanation

(Type: Boolean, Default value: FALSE) If the DATADICTINFO option is TRUE,
information about the usage of database structures and items is placed into the
object code f'lle. This information shows which database structures and items
were invoked by the program and whether they were read or written. This option
cannot be assigned a value after the appearance of the first syntactical item in
the program.

Syntax

<listdb option>

-LISTDB---------------------------1
Explanation

(Type: Boolean, Default value: FALSE) If both the LIST option and the LISTDB
option are TRUE, the printer listing contains information about the invoked
databases, structures, and items, including the declared database titles. If the
LIST option is TRUE but the LISTDB option is FALSE, the printer listing does not
contain this information. The value of LISTDB is ignored if the LIST option is
FALSE.

Syntax

<nodmdefines option>

- NOOMOEFINES ------------------------

Explanation

(Type: Boolean, Default value: FALSE) If the NODMDEFINES option is TRUE, no
defines are expanded in BDMSALGOL constructs.

When the NODMDEFINES option is FALSE, def"ines in BDMSALGOL constructs
are expanded, including defines in the following situations:

1. A database item has the same identifier as a define.

2. An alphanumeric string that is part of a database item identifier (between
two hyphens, before the first hyphen, or after the last hyphen) is the same
as the identifier of a define.

8600 0734-000

Using the Data Management System II (DMSll) Interface

Binding and SEPCOMP of Databases
Programs that declare and use databases can use the Binder program and the
separate compilation (SEPCOMP) facility of the compiler.

Binding

Programs that declare and reference databases can be bound together by the
Binder program. The following example shows a BDMSALGOL host program that

• Declares a database

• Declares an external procedure

• Declares a separate procedure that is to be bound to the host

• Declares the database in its global part

The DASDL description of the database TESTDB is as follows:

OS DATA SET (
NAME GROUP (

LAST ALPHA {lO)i
FIRST ALPHA {lO)i
) i

AGE NUMBER (2) i .
SEX ALPHA (l)i
SSNO ALPHA (9) i
) i

NAMESET SET OF OS KEY (LAST, FIRST);

The following program, compiled with the name SEP/HOST, is the BDMSALGOL
host program:

BEGIN
DATABASE TESTDB;
PROCEDURE P; EXTERNAL;
OPEN UPDATE TESTDB;
P;
CLOSE TESTDB;

ENO.

The following separate procedure, P, compiled with the name SEP /P, is to be
bound to the external procedure P of the host. Note how the database TF.STDB is
declared in the global part.

[DATABASE TESTDB;]
PROCEDURE P;

8600 0734-000

BEGIN
BOOLEAN EXCEPTIONWORD;
EXCEPTIONWORD :• FALSE;
SET NAMESET TO BEGINNING;

4-85

Using the Data Management System II (DMSll) Interface

WHILE NOT EXCEPTIONWORD DO
BEGIN
FIND NEXT NAMESET AT LAST • 11SMITH11

AND FIRST • 11 JOHN 11 :EXCEPTIONWORD;
S Other statements
END;

END;

The separate procedure P in SEP /P can be bound to the host SEP /HOST using the
following Work Flow Language (WFL) job. The resulting bound code file is named
GLOBDB.

?BEGIN JOB BIND/GLOB;
BIND GLOBDB WITH BINDER LIBRARY;
BINDER DATA
HOST IS SEP/HOST;
BIND P FROM SEP/P;

?END JOB.

SEPCOMP

4-86

Programs that declare and use databases can also make use of the SEPCOMP
facility of the compiler, as shown in the following example.

The DASDL description of the database ~TDB is as follows:

OS DATA SET (
NAME GROUP (

LAST ALPHA (10);
FIRST ALPHA (10);
) ;

AGE NUMBER (2);
SEX ALPHA (l);
SSNO ALPHA (9);
) ;

NAMESET SET OF OS KEY (LAST, FIRST);

Because the MAKEHOST compiler control option is TRUE, the following program,
compiled as MY /HOST, can be used as a host program for SEPCOMP:

$ SET MAKEHOST
BEGIN

DATABASE TESTDB;
PROCEDURE P;

BEGIN
BOOLEAN EXCEPTIONWORD;
EXCEPTIONWORD :• FALSE;
SET NAMESET TO ENDING;
WHILE NOT EXCEPTIONWORD DO

BEGIN
FIND NEXT NAMESET AT LAST • 11 SMITH11

1
2
3
4
5
6
7
8
9

10

8600 0734-000

Using the Data Management System II (DMSll) Interface

AND FIRST• 11 JOHN 11 : EXCEPTIONWORD;
S Other statements
END;

END;
OPEN UPDATE TESTDB;
P;
CLOSE TESTDB;

END.

11
12
13
14
15
16
17
18

The following source input invokes the SEPCOMP facility to change the record of
the host MY /HOST with sequence number 7, recompile the procedure P, and bind
the new P to the host:

$ SET SEPCOMP 11 MY/HOST11 S Patch follows
SET NAMESET TO BEGINNING; 7

8600 0734-000 4-87

Section 5
Using DMSll Transaction Processing
System (TPS) Extensions

The Transaction Processing System (TPS) provides Data Management System II
(DMSII) users the software means to process a high volume of transactions. TPS
separates into modules the various functions needed to perform database
processing. TPS also supplies a library of transaction processing procedures. By
using TPS, the DMSII user can

• Minimize program coding and maintenance.

• Eliminate much of the complexity that characterizes programming for
database processing.

• Centrally define all transactions to be performed against a database.

• Rely on comprehensive recovery capabilities.

Basically, there are two types of programs you write for TPS:

1. The application program, which can call Transaction Library points to
invoke library procedures.

2. The Update Library, which is a collection of transaction-processing routines
that provide an interface between the Transaction Library and a DMSII
database.

Consult the DMSJI 7'ra'RBaction Processing System (TPS) Programming Guide for
a thorough discussion of TPS, its modules and libraries, and its associated
Transaction Formatting Language (TFL). Pertinent information about the DMSII
and BDMSALGOL interface can be found in this volume.

The TPS program interface consists of extensions that provide access to a
transaction base. You can

• Invoke a transaction base.

• Create transaction records.

• Use transaction records to pass variables as parameters and to assign (or
copy) the contents of a variable to another transaction record variable.

• Access transaction record items.

• Inquire about transaction record control items.

• Use transaction record compile-time functions to access certain properties of
transaction record formats.

8600 0734-000 5-1

Using DMSll Transaction Processing System (TPS) Extensions

5-2

• Use Transaction Library entry point.s to invoke library procedures.

• Use the Update Library to perform data management of the database with
transaction processing statement.s.

Sample ALGOL programs at the end of this section demonstrate the uses of the
TPS interface.

The ALGOL compiler enforces all restrictions on the use of transaction record
variables noted in this section and, when appropriate, issues syntax errors.

Additional information relating to DMSII transactions is included in Section 4,
"Using the Data Management System II (DMSII) Interface."

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Using the Transaction Formatting Language (TFL)
Transaction Formatting Language (TFL) is a symbolic language used to define
information related to transaction processing. The symbolic descriptions of
transaction record structures are collectively referred to as a transaction base.
Consult the DMSII TPS Programmi11g Guide for a complete description of TFL.

Table 5-1 shows what type must be declared for each TFL item in ALGOL
application programs that access a transaction base. In the listing, <name> is
the declared item name. For ALPHA and FIELD TFL items, "n" is the length. For
all other items, "n" is an unsigned integer, "Sn" is a signed integer, and "m" is a
decimal.

Table 5-1 • TFL Item Interpretations

TFL Item ALGOL Type

<name> ALPHA(n) STRING <name>

<name> NUMBER(n) INTEGER <name>

<name> NUMBER(Sn) INTEGER <name>

<name> NUMBER{n,m) REAL <name>

<name> NUMBER(Sn,m) REAL <name>

<name> REAL REAL <name>

<name> REAL(n) INTEGER <name>

<name> REAL(Sn) INTEGER <name>

<name> REAL(n,m) REAL <name>

<name> REAL(Sn,m) REAL <name>

<name> BOOLEAN BOOLEAN <name>

<name> FIELD(n) REAL <name>

<name> GROUP STRING <name>

8600 0734-000 5-3

Using DMSll Transaction Processing System (TPS) Extensions

Declaring a Transaction Base

5-4

Before making any references to formats or items defined within a transaction
base, a user-written program must declare that transaction base. In the
declaration, you can

• Specify only the transaction base and, by default, invoke all structures in the
transaction base.

• Optionally specify a list of transaction record formats and subformats to
invoke only those structures of the transaction base.

Any program that invokes the Transaction Library should not be a library itself.

The program can also specify alternate internal names for the transaction base
and for any of the formats or subformats declared. If alternate internal names
are used for the base name, subbase name, format name, or subformat name, the
program must reference these internal identifiers rather than the TFL source
identifiers.

If a subbase has been defined for the transaction base, the program also can
invoke the subbase. When a subbase is invoked, only the transaction record
formats and subformats defined within that subbase are accessible to the
program. As in transaction base invocation, the program can specify a list of
transaction record formats and subf ormats, possibly using internal names that
can be invoked from the defined subbase.

Syntax

- TRANSACTION BASE - <base spec> --.[--------....

: - <format list> J
<base spec>

-.-----------------~~------------------.-<base name> -------1
L <internal base ID> - - J L <Subbase name> - OF J

<format list>

1 <format spec> --.----------..,....."---------------!
L (-<Subformat list> -) J

<format spec>

-.-c----------J......- <format name> ----------------1
<internal format ID> - •

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

<subformat list>

i:.-= ~; Spec> ~
<subformat spec>

-.------------.- <subformat name> --------------1
~ <internal subformat ID> - - ~

Explanation

The syntax "TRANSACTION BASE <base spec>" specifies the name of the
transaction base or subbase to be invoked. Optionally, a list of transaction record
formats and subformats can be invoked. If the list is not included, all transaction
record formats and subf ormats are invoked for the designated transaction base or
subbase. If the list is included, only the indicated transaction record formats and
subformats are invoked.

The different forms of the base spec construct specify either the transaction base
or subbase. The syntax "<internal base ID>= <base name>" is used to invoke a
transaction base with the designated internal name. The syntax "<subbase
name> OF <base name>" designates the name of a transaction subbase to be
invoked.

The format list is a list of transaction record format and sub format names
including, possibly, internal names. If only <format name> is specified in the
<format spec> syntax, by default all sub formats of that format are invoked.

When a subf ormat list is used in a <format spec> construct, it specifies the
name of the transaction record formc:1.t being invoked. If the "<internal format
ID>== <format name>" syntax is used, it specifies its internal name, an
indication of the transaction record subformats to be invoked, or both.

A subformat list indicates the specific subformats of a transaction record format.
If no subformat list is included for a particular format name, ALL is assumed.

If a transaction base with a list of formats has been invoked, specifying ALL
invokes all the subf ormats of that format. If a transaction sub base has been
invoked, specifying ALL invokes only those subformats specified for this format
in the TFL subbase declaration.

If only a format name is listed in the TFL subbase declaration, then by default
TFL includes all subformats of the format in the subbase declaration.

If NONE is specified for a particular transaction format, then no subformats are
invoked.

8600 0734-000 5-5

Using DMSll Transaction Processing System (TPS) Extensions

5-6

If a list of <subf ormat spec>s is specified, .only those subformats on the list are
invoked. If a transaction subbase is invoked, then <subformat spec>s can
include only those subf ormats def'med within the transaction sub base for a
particular format.

Examples

In the·example below, the transaction base BANKACCT is invoked. Since no
format list is invoked, all transaction record formats and subformats are also
invoked.

TRANSACTION BASE BANKACCT;

As seen in the following example, the transaction base MANUFACT is equated to
the internal name MNF and invoked. All transaction record formats and
subf ormats are invoked.

TRANSACTION BASE MNF • MANUFACT;

In the fallowing example a transaction base with the internal base identifier
DOCl is equated to DOC and invoked. The format list includes several formats
with subformat lists.

IFMTl, IFMT6, IFMT3, IFMT4, and IFMT5 are internal format identifiers that are
each equated to a format name.

The ALL option specifies that all the subformats of IFMT3 are invoked. Because
neither NONE nor a specific subformat is noted, any subformats of FMTO, IFMTl,
and IFMT6 are also invoked. (The default is ALL.)

The NONE option specifies that none of the subformats of IFMT4 are invoked.
Only the subformats Sl and 183 are invoked for IFMT5. The internal subformat
identifier 183 is equated to the subf ormat 83.

TRANSACTION BASE DOCl • DOC
FMTO,
IFMTl • FMTl,
IFMT6 • FMT6 1

IFMT3 • FMT3 (ALL),
IFMT4 • FMT4 (NONE).
IFMTS • FMTS (Sl,IS3 • S3);

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Creating Transaction Records
A transaction record is an array row that can contain the transaction data of one
of several transaction formats declared in the TFL source. A transaction record
variable names one of these array rows. A transaction record variable can
contain the transaction data of one of several transaction formats and can make
the transaction record, in effect, a structured variable.

A transaction record variable can be associated with only one transaction base or
transaction subbase. A transaction record variable can contain only formats and
subformats that have been invoked from its associated transaction base or
transaction subbase. The size of the array row is large enough to accommodate
the largest of all the formats invoked for it.

The following information explains how transaction record variables are declared
and how transaction records are created.

Declaring Transaction Record Variables

The transaction record can be declared as a one-dimensional or a two-dimensional
array. Use the <transaction record declaration> syntax to declare a
one-dimensional array. Use the <transaction record array> syntax to declare a
two-dimensional array.

Additional information relating to transaction record variables is included under
"Inquiring About Transaction Record Control Items," "Passing Transaction
Record Variables as Parameters," and "Accessing Transaction Record Items" in
this section.

Syntas

<transaction record declaration>

~ ~ TRANSACTION RECORD (<base ID>) ~ <transact;on :ariable Ill> :i_ ; ---1

LONG

<transaction record array declaration>

- TRANSACTION RECORD ARRAY - (- <base ID> -) _____________ _,.

<transaction array ID list>~ [- <bound pair list> -] 1 ; ---------1

<transaction array ID list>

1 <transaction• array ID> _._---------------------1

8600 0734-000 5-7

Using DMSll Transaction Processing System (TPS) Extensions

5-8

<bound pair list>

1 <arithmetic expression> - : ·_ carithmetic expression>----------

Es:planation

The <transaction record declaration> syntax is used with one-dimensional
arrays. The <transaction record array declaration> syntax is used with
two-dimensional arrays.

The option LONG suppresses the segmentation of transaction records. Ordinarily,
transaction records larger than 1024 words are segmented into 512-word entities.
(This segmentation is standard for all ALGOL arrays declared to have more than
1024 elements.)

The <base ID> construct is the name, or internal nan1e, of a transaction base or
transaction subbase. Specifying a base ID in the declaration of a transaction
record or transaction record array associates a transaction base or transaction
subbase with the particular record(s).

The <transaction variable ID> construct identifies the name of a transaction
record variable. The <transaction array ID> construct identifies the name of an
array of transaction record variables. Each fully subscripted element of a
transaction array ID is a transaction record.

The <bound pair list> construct gives the lower and upper bounds of all
subscripts taken in order from left to right.

Refer to Volume 1 for information about arithmetic expressions and bound pair
lists.

Eu.mp I es

As shown below, the transaction variables TRIN, TROUT, LASTINPUT, and
LASTRESPONSE are associated with the transaction base BANKACCT.

TRANSACTION RECORD (BANKACCT)
TRIN,
TROUT,
LASTINPUT,
LASTRESPONSE;

In the next example, the LONG option suppresses segmentation for the
transaction records in the transaction base DOC.

LONG TRANSACTION RECORD (DOC);

In the example below, the transaction base DOC is an array. TRARRAYl,
TRARRAY2, and TRARRAY3 are transaction array identifiers. The lower and
upper bounds of TRARRAY2 are 6 and 9, respectively. The lower and upper
bounds of TRARRAY3 are 0 and 0, respectively.

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

TRANSACTION RECORD ARRAY (DOC)
TRARRAYl,
TRARRAY2 [0:9],
TRARRAY3 [0:0];

Creating Transaction Record Formats

The contents of a transaction record variable are undefined until the variable is
initialized to a particular format by a CREATE statement. A CREATE statement
assigns the initial values of all items in the transaction record format (and
transaction subformat) to the record variable and initializes the transaction
record control items.

When a format is created, only those items in the common part are assigned
initial values. When a subformat is created, the common part items as well as the
subformat part items are assigned initial values. The record variable continues to
contain the given format until it is reinitialized by a subsequent CREA TE
statement. It is never cleared by the system.

Once a transaction record variable has been created in a particular transaction
format and, optionally, subformat, the items defined within the format and
subformat can be accessed and manipulated. If a transaction record is created in
a particular transaction record format, the record contains only the data items
associated with that transaction record format. If a transaction record is created
in a particular transaction record format and subformat, then the record contains
the 4ata items associated with the format and the data items associated with the
sub format.

Additional information relating to transaction record formats is included under
"Declaring Transaction Record Variables" and "Requirements for Data Item
Qualification" in this section. Related information is also available under
"CREATE Statement" in Section 4, "Using the Data Management System II
(DMSII) Interface."

Syntax

<create statement>

- CREATE - <transaction record> - . - <fonaat ID> ----------..- ; --I
[. - <subformat ID> J

<transaction record>

1 <transaction record variable ID>

<transaction record array ID> - [- <Subscript list> -] ~

8600 0734-000 5-9

Using DMSll Transaction Processing System (TPS) Extensions

5-10

<Subscript list>

Explanation

The <transaction record> construct is the name of the transaction record
variable to be initialized. If a transaction record array element is referenced, it
must be fully subscripted.

The <format ID> and <subformat ID> constructs are, respectively, the names
of the format and subformat (if given) whose data item's initial values are
assigned to the record variable.

The <subscript list> construct gives one or more <subscript>s that are
required to qualify the referenced item. In this syntax, it is a <transaction
record array ID>. The <subscript> form is defined as any legitimate ALGOL
arithmetic expression. Ref er to Volume 1 for further details on subscripting.

Examples

In this example, the transaction record variable TRIN is initialized. The data
items of the format ACCT are assigned to TRIN.

CREATE TRIN.ACCT;

Below, the transaction record variable TRRECORD is initialized. The data items
of the format ACCT and the subformat MAY are assigned to TRRECORD.

CREATE TRRECORD.ACCT.MAY;

As seen in the following example, the transaction record array TRARRAYl is
initialized. It has a subscript of 7. The data items of the format ACCT are
assigned to TRARRAYl.

CREATE TRARRAY1[7].ACCT;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Using Transaction Records
The compiler enforces certain restrictions on the use of transaction record
variables. Transaction record variables can be used only as shown below.

• To create transaction records and use compile-time and run-time functions.

• To store data in transaction records.

• To obtain data from transaction records.

• To pass transaction records as parameters in procedures.

Transaction record variables cannot be used

• In lists.

• In input or output statements.

• In assignment statements except as described in "Assigning Transaction
Record Variables."

Additional information relating to transaction records is included under
"Assigning Transaction Record Variables" in this section.

Passing Transaction Record Variables as Parameters

In transaction processing, most of the work is carried out by Transaction Library
procedures. Transaction records are passed to these procedures as parameters.
Transaction records cannot be passed to intrinsics or to external procedures
initiated through a CALL or PROCESS statement.

The formal and actual parameters must refer to the same transaction base, but
they need not specify the same list of transaction record formats. If a procedure
is given a transaction record in a format it has not invoked, the procedure is
limited as to what it can do with that record.

The transaction base or sub base must be declared before specifying the syntax
for a formal transaction record variable.

The compiler checks that all the uses of a particular transaction record variable
within a code file are compatible. When the variable is passed as a parameter to a
separately compiled code file (such as the Transaction Library), parameter
checking code ensures that the following attributes of the variable are those that
are expected:

• Transaction record format level

• Transaction record control item length

• Transaction base creation date-time stamp

The contents of the variable need not be inspected to make this check. If any of
these three attribute values do not match, the error message "MISMATCH AT

8600 0734-000 5-11

Using DMSll Transaction Processing System (TPS) Extensions

PARAMETER NUMBER <number>, TRANSACTION RECORD <attribute>s
DIFFER" is issued when an attempt is made to call a separately compiled code
file.

Additional information relating to transaction record variables is included under
"Declaring Transaction Record Variables" and "Using Transaction Library Entry
Points" in this section.

Assigning Transaction Record Variables

5-12

The contents of a transaction record variable can be assigned (that is, copied) to
another transaction record variable, provided that both variables represent the
same transaction base. Both the control and data portions of the transaction
record are transferred when an assignment is performed.

In DMALGOL, the implementation language for the Transaction Library, an
ARRAY reference variable can be assigned to a transaction record variable. This
construct is not permitted in user-written programs. Consult the DMALGOL
Programming Reference Manual for more information on DMALGOL.

Additional information relating to transaction record variables is included under
"Inquiring About Transaction Record Control Items" in this section.

Syntax

- <transaction record> - :• - <transaction record> -------------1
Explanation

The construct <transaction-record-1 > is the name of the transaction record
variable that receives its contents from another transaction record variable.

The construct <transaction-record-2> is the name of the transaction record
variable whose contents are being assigned or copied to another transaction
record variable.

Example

The contents of the transaction record TRRECORD are assigned to the transaction
record TRRECEIVE.

TRRECEIVE :• TRRECORD;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Accessing Transaction Record Items
A transaction record can contain only a transaction that has a format and
subformat declared for it in the TFL source. Data items in the declared format
and subformat of that transaction can be referenced.

Transaction record data items are considered normal data items and can be
referenced in the same manner as normal data items.

Syntax

<item reference>

- <transaction record>--.,--------........ --------...

L . - <format ID> J L . -<subformat ID> J
...... <item name> -------------------------

L [-<Subscript list> -] J
<item name>

<group item name> -----------------------

<alpha item name>

<Boolean item name>

<numeric item name>

<real item name>

<field item name>

Explanation

The construct <transaction record> is used to name a transaction record
variable. If a transaction record array element is used, it must be fully
subscripted.

The <format ID> and <subformat ID> constructs are normally optional.
However, they can be required for qualification.

The <item name> construct specifies an item within the transaction record
format or subf ormat presently occupying the record variable. The item name
must be fully subscripted if it is an element of an occurring item.

An item name can be used either as the left part of an assignment or REPLACE
statement or as a primary in an expression. The type of the item must be
consistent with the context in which it is used.

Data items of transaction record formats or subformats that are occurring items,
items embedded within one or more occurring groups, or items that occur and are
embedded within occurring groups must be subscripted. The <subscript>s

8600 0734-000 5-13

Using DMSll Transaction Processing System (TPS) Extensions

5-14

within a <subscript list> construct are listed from left to right, from the outer
most occurring GROUP to the innermost occurring GROUP or occurring items.

Additional information relating to transaction record items is included under
"Using the Transaction Formatting Language (TFL)" and "Requirements For Data
Item Qualification" in this section.

Examples

In the example, the item GR is within the transaction record format TRONE. The
content of the transaction record MANUF ACT is assigned to the item GR.

TRONE.GR :• MANUFACT;

The next example contains a subscript construct. The item ST is qualified by the
format GENLED and the subformat JONO. ST is an occurring item within the
transaction record format TRTWO. The content of AX is copied to the item.

TRTWO.GENLED.JONO.ST[9] :• AX;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Requirements for Data Item Qualification
A data item is qualified in order to make it unique or to differentiate it from
other similar items. Use qualification to assure that the items referenced are the
desired data items.

The amount of qualification required to access a data item of a particular
transaction record format or subformat varies. In every case, however, the
transaction record variable containing the desired data item must be referenced.

Shown below are the varying requirements and syntaxes for qualification. The
following tokens are used in the syntaxes.

DATAITEMNAME

FORMATNAME

SUBFORMATNAME

TRAN REC

Data Item Qualification

Token Name

Data item name

Format name

Subformat name

Transaction record

If the name of the desired data item is unique with respect to data items of other
invoked formats, specify only the data item name.

Example

TRANREC.DATAITEMNAME

Format Name and Data Item Name Qualification

If the name of the desired data item is not unique with respect to data items of
other invoked formats, but is unique to the format that contains it, specify both
the format and the data item name.

Example

TRANREC.FORMATNAME.DATAITEMNAME

Subformat Name and Data Item Name Qualification

Specify both the subformat name and the data item name whenever any of of the
following are true:

8600 0734-000 5-15

Using DMSll Transaction Processing System (TPS) Extensions

1. The name of the desired data item is not unique with respect to the common
portion of another invoked format.

2. The name of the desired data item is contained within a subformat.

3. Another data item within a different subformat of the same format has the
same name as the desired data item.

Also, if the desired data item is contained within a subformat whose name is
unique to all invoked formats and subformats, and the desired data item is not
unique with respect to a subformat of another format, then both the subformat
name and the data item name are needed.

Example

TRANREC.SUBFORMATNAME.DATAITEMNAME

Format Name, Subformat Name, and Data Item Name
Qualiflcatlon

5-16

When all the following statements are true, specify the format name, subformat
name, and data item name for qualification.

1. The desired item is not unique with respect to a subf ormat of another
invoked format.

2. The item is not unique with respect to the format that contains it.

3. The name of the subformat that contains the desired item is not unique with
respect to all invoked formats and subformats.

Example

TRANREC.FORMATNAME.SUBFORMATNAME.DATAITEMNAME

. 8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Inquiring About Transaction Record Control Items
Control items are system-defined items contained within every transaction
record. These items are maintained by the TPS and are read-only in all
BDMSALGOL programs. The initial values of these control items are assigned
when a transaction record is created. These items are defined only after a
transaction record has been created using the TPS CREATE statement.

Additional information relating to transaction record control items is included
under "Creating Transaction Record Formats," "Assigning Transaction Record
Variables," and "Declaring Transaction Record Variables" in this section.

Syntax

- <transaction record ID> --------- . - <record control item> ---

~ [<subscript>] ~
Explanation

The <transaction record ID> construct is a transaction record variable. The
variable must be fully subscripted if a transaction record array element is used.

A subscript is an ALGOL arithmetic expression that identifies a particular
transaction record variable within an array of transaction record variables.

The <record control item> construct identif"les the specific control item. The
valid items are described in the DMSII TPS Programming Guide.

Example

In the e:xample, the record control item TRCONTROLSIZE is used to specify the
size, in bytes of the control portion of the transaction record TRIN. The content is
assigned to the variable STOREBYTES.

STOREBYTES :• TRIN.TRCONTROLSIZE;

8600 0734-000 5-17

Using DMSll Transaction Processing System (TPS) Extensions

Using Transaction Compile-time Functions

5-18

Transaction compile-time functions provide access to certain properties of
transaction record formats that are constant at compile time. These compile-time
constructs are particularly useful when coding an Update Library.

Additional information relating to these compile time constructs is included under
"Using Update Libraries" in this section.

Syntax

<transaction compile-time functions>

- <transaction compile-time function name> - (---------------

.,_ <transaction compile-time function argument> -) --------------4
<transaction compile-time function argument>

L J <format ID>

cbase ID> - • L . -csubformat ID> J

• [• - <transaction item ID> J
Explanation

The transaction compile-time function names are identified and described in the
DMSII TPS Programmi'n{J Guide.

The constructs <base ID>, <format ID>, <subformat ID>, and <transaction
item ID> are all components of the transaction compile-time function argument.
The base ID is the name of a transaction base that has been invoked within the
program. The format ID specifies the name of a transaction format that has been
invoked within the program. A subformat ID is the name of a transaction
subformat that has been invoked within the program. The transaction item ID is
the name of a data item contained within an invoked transaction format or
subformat.

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Shown below are the possible arguments for each of the compile-time functions
available in ALGOL. Not all arguments apply to all functions. For example, the
<base ID> construct needs to be referenced only when transaction base
qualification is required.

Function

TR BITS

TR BYTES

TRDATASIZE

TRDIGITS

TRFORMAT

TROCCURS

TRSUBFORMAT

Examples

Arguments

<format ID>. <transaction item ID>
<format ID>.<subformat ID>.<transaction item ID>

<format ID>. <transaction item ID>
<format ID>. <subformat ID>. <transaction item ID>

<format ID>
<format ID>. <subformat ID>

<format ID>. <transaction item ID>
<format ID>.<subformat ID>.<transaction item ID>

<format ID>

<format ID>. <transaction item ID>
<format ID>. <subformat ID>. <transaction item ID>

<format ID>. <subformat ID>

TRBITS will return, in bits, the size of the transaction item REQUESTCASE. The
subformat is REMOTEREQUEST and the format is ACCT.

TRBITS(ACCT.REMOTEREQUEST.REQUESTCASE)

TROCCURS will return the maximum number of occurrences of the transaction
item REQUESTCASE. ACCT is the format and REMOTEREQUEST is the
subformat.

TROCCURS(ACCT.REMOTEREQUEST.REQUESTCASE)

TRSUBFORMA T will return the numeric valued assigned to the subformat
REMOTEREQUEST. The format is ACCT.

TRSUBFORMAT(ACCT.REMOTEREQUEST)

8600 0734-000 5-19

Using DMSll Transaction Processing System (TPS) Extensions

Using Transaction Library Entry Points
The Transaction Library is a collection of procedures that are accessed by
user-written programs to process or tank transactions and read them back from
transaction journal files. The procedures are accessed through a set of entry
points supplied by the Transaction Library.

The Transaction Library is tailored for a particular transaction during
compilation. The library performs functions such as

• Calling the Update Library to process a transaction against the data base.

• Saving transaction records in transaction journal files.

• Automatically reprocessing transactions backed out by DMSII recovery.

The external entry points to the Transaction Library are called by user- written
programs. Calling these entry points is the only method of invoking them. If the
Library detects an exception condition, the entry point returns a nonzero result
as the value of the procedure. The value can be examined to determine the cause
of the exception.

The TPS application program should not be a library itself whose entry points
invoke the Transaction Library's entry points.

The Transaction Library recovery mechanism requires that each program that
submits a transaction record for processing must have its own private library.
The first program that invokes an entry point which in tum invokes the
OPENTRBASE Transaction Library entry point becomes the only TPS user
recognized by the Transaction Library.

The following alphabetical listing briefly describes the purpose of each entry
point. The syntax used to declare the entry point is shown. Consult the DMSll
TPS Programming Guide for a detailed explanation of the entry points and
parameters.

CREATETRUSER

Creates and identifies a new transaction for the currently open journal.

INTEGER PROCEDURE CREATETRUSER(IDSTRING,IDNUM);
STRING IDSTRING;
STRING IDNUM;

CLOSETRBASE

Ends the use of TPS by the calling program.

INTEGER PROCEDURE CLOSETRBASE;

5-20 8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

HANDLESTATISTICS

Allows the user to print out all TPS statistics and reset the statistics while the
transaction base is open.

INTEGER PROCEDURE HANDLESTATISTICS(STATOPTION);
VALUE STATOPTION;
INTEGER STATOPTION;

Deactivates a transaction user.

INTEGER PROCEDURE LOGOFFTRUSER(IDNUM);
INTEGER IDNUM;

LOGONTRUSER

Makes a transaction user active.

INTEGER PROCEDURE LOGONTRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;

OPENTRBASE

Initiates transaction processing and opens a specified transaction journal for
subsequent use. OPENTRBASE must be the first Transaction Library entry point
called.

INTEGER PROCEDURE OPENTRBASE(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;

PROCESSTRFROMTANK

Similar to PROCESSTRANSACTION except a transaction user number other than
that of the input transaction is used to restart programs. It is used primarily for
processing transactions from a tank file.

INTEGER PROCEDURE PROCESSTRFROMTANK(IDNUM, TRIN, RESTARTNUM,
RESTARTTR);

INTEGER IDNUM, RESTARTNUM;
TRANSACTION RECORD (TRBASE) TRIN, RESTARTTR;

8600 0734-000 5-21

Using DMSll Transaction Processing System (TPS) Extensions

PROCESSTRNORESTART

Sends an input transaction record to the user's Update Library for processing
against the database. No restart transaction record is passed. Use
PROCESSTRNORESTART to process transactions against the database if the
program does not require the use of a restart transaction record.

INTEGER PROCEDURE PROCESSTRNORESTART(IDNUM, TRIN, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN, TROUT;

PROCESSTRANSACTION

Sends an input transaction record to the user's Update Library for processing
against the database. A restart transaction record is passed.

INTEGER PROCEDURE PROCESSTRANSACTION(IDNUM, TRIN, TROUT,
RESTARTTR);

INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN, TROUT, RESTARTTR;

PURGETRUSER

Purges or deletes a transaction user previously created by CREATETRUSER.
After PURGETRUSER is called, the transaction user is no longer lmown to the
currently open journal. Information about that user's transactions is discarded.

INTEGER PROCEDURE PURGETRUSER(IDNUM);
INTEGER IDNUM;

READTRANSACTION

5-22

Reads the next transaction record in sequence from the transaction journal and
returns the record in the parameter TRREC. The READTRANSACTION entry
point can be called only after the entry point SEEKTRANSACTION has opened
and positioned the current record pointer within a specific journal data file.

INTEGER PROCEDURE READTRANSACTION(TRREC);
TRANSACTION RECORD (TRBASE) TRREC;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

RETURNLASTADDRESS
Returns the address of the last transaction to be either tanked or processed by a
transaction user.

INTEGER PROCEDURE RETURNLASTADDRESS{FILENUM, BLOCKNUM, OFFSET,
IDNUM);

REAL FILENUM, BLOCKNUM, OFFSET;
INTEGER IDNUM.

RETURNLASTRESPONSE
Returns the last saved response transaction record for the user.

INTEGER PROCEDURE RETURNLASTRESPONSE{IDNUM, TRREC);
INTEGER IDNUM;
TRANSACTION RECORD {TRBASE) TRREC;

Note: For reliable program restarting, the response record returned from
RETURNLASTRESPONSE should be used in cO'fljunction with the restart
or input transaction record returned from the entry point
RETURNRESTARTINFO.

RETURNSTARTINFO
Helps restart a user-written program.

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TRREC);
INTEGER IDNUM;
TRANSACTION RECORD {TRBASE) TRREC;

SEEKTRANSACTION

Positions a current record pointer at a particular address within a journal data
file.

INTEGER PROCEDURE SEEKTRANSACTION{TRFILE, TRBLOCK, TROFFSET);
INTEGER TRFILE, TRBLOCK, TROFFSET;

8600 0734-000 5-23

Using DMSll Transaction Processing System (TPS) Extensions

SWITCHTRFILE

Forces a file switch on the current data file of the journal. The current file is
closed, the file number associated with the current file is incremented by 1, and
the next file in sequence is created. The next write to the journal occurs on the
new file.

If SWITCHTRFILE is not called, the Transaction Library creates the next journal
data file in sequence when the current file becomes full.

INTEGER PROCEDURE SWITCHTRFILE;

TANKTRANSACTION

Tanks an input transaction record and restart transaction record.

INTEGER PROCEDURE TANKTRANSACTION(IDNUM, TRIN, RESTARTTR);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN, RESTARTTR;

TANKTRNORESTART

Tanks an input transaction record only. It performs the same function as
T ANKTRANSACTION except that no restart transaction record is passed and
subsequently audited in the tank journal. For TANKTRNORESTART, only the
input transaction TRIN is saved in the tank journal.

INTEGER PROCEDURE TANKTRNORESTART{IDNUM,TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRBASE) TRIN;

TRUSERIDSTRING

5-24

Returns, in the parameter IDSTRING, the user identification string that
corresponds to the value of the input parameter IDNUM.

INTEGER PROCEDURE TRUSERIDSTRING(IDSTRING, IDNUM);
INTEGER IDNUM;
STRING IDSTRING;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Using Update Libraries
The Update Library is a collection of user-written transaction processing routines
that serve as an interface between the Transaction Library and a DMSII database.

The Update Library is the only user-written module within TPS that contains the
database declaration and all the code that performs data management statements
against the database.

To ensure effective interaction between the Update and Transaction Libraries,
follow the conventions regarding database consistency and reproducing
transactions when programming the Update Library. The Update Library
conventions and ACCESSDATABASE entry point are briefly explained here. For a
full explanation, refer to the DMSH TPS Programming Guide.

Additional information relating to the transaction library is included under
"Using Transaction Library Entry Points" in this section.

ACCESSDATABASE Entry Point

The Update Library must provide one entry point that makes it accessible to the
Transaction Library. For ALGOL Update Libraries, the procedure entry point
must be named ACCESSDATABASE.

The ACCESSDATABASE entry point accepts the following parameters, listed in
the order in which they must be declared:

1. A function flag indicating which basic function the Update Library should
perform. This value is input to the Update Library from the Transaction
Library.

2. An input transaction record containing input data for one of the transaction
update routines.

3. An output transaction record containing the data output from a transaction
update routine also known as the "response transaction record."

4. A Transaction Library procedure named SA VEINPUTTR that is passed as a
formal parameter to the Update Library and used in the MIDTRANSACTION
statement.

1. A Transaction Library procedure named SA VERESPONSETR that is passed
as a formal parameter to the Update Library. This procedure is used in the
TPS ENDTRANSACTION statement.

8600 0734-000 5-25

Using DMSll Transaction Processing System (TPS) Extensions

Methods of Structuring the Update Library

There are three approaches to structuring the Update Library:

1. Invoking the entire database using a single update library.

2. Invoking part of the database using a single update library.

3. Invoking multiple parts of the database using multiple update libraries.

Whatever approach is used to implement the Update Library, the library must
provide the external entry point ACCESSDAT ABASE and must be compiled as

<base name>/CODE/UPDATELIB

so that the Transaction Library can :rmd it.

Synchronizing TPS and DMSII recovery is an important consideration in deciding
which approach to use. Refer to the synchronization statements in this section for
more information.

Information relating to the synchronization statements is included under "TPS
BEGINTRANSACTION Statement," "TPS ENDTRANSACTION Statement,"
"MIDTRANSACTION Statement," "BDMS OPEN Statement with TPS," and
"Transaction Processing Statements" in this section.

Example: Update Library Skeleton Program

5-26

An example of the correct structure for an Update Library is shown in a skeleton
program on the following pages. The example uses multiple libraries to provide
the code that actually processes the transaction records ..

$ SHARING • PRIVATE
BEGIN I Transaction Update Library

LIBRARY DBSUBONE (TITLE • "TRBASE/UPDATELIB/SUBONE ");

PROCEDURE ACCESSSUBBASEONE(FUNCTIONFLAG,INQ,TRIN,TROUT,
SAVEINPUT, SAVERESPONSE);

VALUE FUNCTIONFLAG, INQ;
REAL FUNCTIONFLAG, INQ;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVEINPUTTR(); FORMAL;
PROCEDURE SAVERESPONSETR(); FORMAL;
LIBRARY DBSUBONE;

LIBRARY DBSUBTWO (TITLE - "TRBASE/UPDATELIB/SUBTWO II) ;

PROCEDURE ACCESSSUBBASETWO(FUNCTIONFLAG,INQ,TRIN,TROUT,
SAVEINPUT,SAVERESPONSETR);

VALUE FUNCTIONFLAG, INQ;
REAL FUNCTIONFLAG, INQ;
TRANSACTION RECORD (TRB) TRIN, TROUT;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

PROCEDURE SAVEINPUTTR(); FORMAL;
PROCEDURE SAVERESPONSETR(); FORMAL;
LIBRARY DBSUBONE;

DEFINE UPDATEV • 1 #,
FORCEABORTV • 2 #;

% Global variables
REAL LASTSUBBASE, OPENTYPE;

PROCEDURE FORCEABORT;
BEGIN

END;

CASE LASTSUBBASE OF
BEGIN

(2):

(3):

ACCESSSUBBASEONE(FORCEABORTV,SAVEFUNCTIONFLAG,TRIN,TROUT,
SAVEINPUT,SAVERESPONSE);

ACCESSSUBBASETWO(FORCEABORTV,SAVEFUNCTIONFLAG,TRIN,TROUT,
SAVEINPUT,SAVERESPONSE);

END OF CASE;

PROCEDURE UPDATE(TRIN,TROUT,SAVEINPUTTR,SAVERESPONSETR);
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVEINPUTTR(); FORMAL;
PROCEDURE SAVERESPONSETR(); FORMAL;
BEGIN

LASTSUBBASE :• TRIN.TRSUBBASE;
CASE TRIN.TRSUBBASE OF

BEGIN
(2):

(3):

ACCESSSUBBASEONE(UPDATEV,SAVEFUNCTIONFLAG,TRIN,TROUT,
SAVEINPUT,SAVERESPONSE);

% Invokes library DBSUBONE

ACCESSSUBBASETWO(UPDATEV,SAVEFUNCTIONFLAG,TRIN,TROUT,
SAVEINPUT,SAVERESPONSE);

% Invokes library DBSUBTWO
END OF CASES;

END;

PROCEDURE ACCESSDATABASE(FUNCTIONFLAG,TRIN,TROUT,SAVEINPUT,
SAVERESPONSE);

VALUE FUNCTIONFLAG;
REAL FUNCTIONFLAG;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVEINPUT(); FORMAL;
PROCEDURE SAVERESPONSE(); FORMAL;

% External entrypoint
BEGIN

8600 0734-000

CASE FUNCTIONFLAG OF
BEGIN

1: % Open update
OPENTYPE :• FUNCTIONFLAG;

2: % Open inquiry

5-27

Usln1 DMSll Transaction Processln1 System (TPS) Extensions

OPENTYPE :• FUNCTIONFLAG;
3: S Update

UPDATE(TRIN, TROUT, SAVEINPUT, SAVERESPONSE);
4: S Force abort

FORCEABORT;
5: S Close database

S Let BLOCKEXIT Do It;
END;

END ACCESSDATABASE;

5-28

EXPORT
ACCESSDATABASE;

FREEZE(TEMPORARY);

END OF LIBRARY.

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Transaction Processing Statements
Generally, DMSII program interface statements are used for programming the
Update Library in TPS. The following extensions and statements are required for
the Update Library to synchronize TPS recovery with DMSII recovery.

1. The MIDTRANSACTION statement.

2. Optional extensions to the BEGINTRANSACTION and ENDTRANSACTION
statements.

3. The TRUPDA TE option for the BDMS OPEN statement.

These extensions are detailed in alphabetical order on the following pages.
Examples of their use are in the sample programs at the end of this section.
Consult the DMSII TPS Programming Guide for further information on using the
statements. Refer to the DMSII Application Program Interfaces Programming
Guide for information on exception handling.

Note that the TPS syntax of these statements is uniquely designed for TPS. DMSII
applications that do not use TPS can continue to use the DMSII syntax that
existed prior to the implementation of TPS. However, user-written code in the
Update Library must use the syntax as it is defined here.

Additional information relating to the syntax of the TPS statements is included
under "TPS BEGINTRANSACTION Statement," "TPS ENDTRANSACTION
Statement," "MIDTRANSACTION Statement," "BDMS OPEN Statement with
TPS," and "Sample User-Written Applications" in this section.

8600 0734-000 5-29

Using DMSI I Transaction Processing System (TPS) Extensions

TPS BEGINTRANSACTION Statement

5-30

The TPS BEGINTRANSACTION statement places a program in transaction state.
This statement can be used only with audited databases. Any attempt to modify
an audited database when the program is not in transaction results in a fault.

The database must be opened with the TRUPDATE form of the BDMS OPEN
statement.

If a BEGINTRANSACTION statement is attempted while the program is in
transaction state, an exception is returned. The program is not placed in
transaction state. If an ABORT exception is returned, all records that the
program has locked are freed.

Deadlock can occur during execution of a BEGINTRANSACTION statement.

Additional information relating to the TPS BEGINTRANSACTION statement is
included under "Transaction Processing Statements," "Declaring Transaction
Record Variables," "BDMS OPEN Statement with TPS," Related information is
also available under "DMSII BEGINTRANSACTION Statement" in Section 4,
"Using the Data Management System II (DMSII) Interface."

Syntax

- BEGINTRANSACTION---------------....

L <inputheadername> -..-------..........

L <message area> ~
~ <transaction record variable> -) - <restart data set> [J

<exception handling>

Additional information relating to the <transaction record variable> construct is
included under "Passing Transaction Record Variables as Parameters" in this
section. Information on the <inputheademame> and <message area>
constructs is included under "Declaring Input and Output Headers," and
"RECEIVE Statement" respectively in Section 3, "Using Communications
Management System (COMS) Features." Information on the <exception
handling> construct is included under "database Status Word" in Section 4,
"Using the Data Management System II (DMSII) Interface."

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Explanation

The <transaction record variable> construct is the formal input transaction
record variable.

The restart data set name is detailed in the DMSII TPS Programming Guide.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

Example

In the following BEGINTRANSACTION statement, the transaction record variable
is TRIN, the restart data set is RDS, and the exception variable is RSLT. Note
that the colon preceding the exception variable is part of the exception handling
syntax.

BEGINTRANSACTION (TRIN) RDS :RSLT;

8600 0734-000 5-31

Using DMSll Transaction Processing System (TPS) Extensions

TPS ENDTRANSACTION Statement

5-32

The TPS ENDTRANSACTION statement takes a program out of transaction state.
This statement can be used only with audited databases. The database.must be
opened with the TRUPDATE form of the BDMS OPEN statement.

If an ENDTRANSACTION statement is attempted and the program is not in
transaction state, an exception is returned. Records are freed in all cases of an
exception and the transaction is not applied to the data base.

Refer to the DMSII Application Program Interfaces Programming Guide for
information regarding audit and recovery.

Additional information relating to the ENDTRANSACTION statement is included
under "Declaring Transaction Record Variables," "Transaction Processing
Statements," and "BDMS OPEN Statement with TPS" in this section. Information
is also available under "DMSII ENDTRANSACTION Statement" in Section 4,
"Using the Data Management System II (DMSm Interface."

Syntax

- ENDTRANSACTION - (- <endtransaction parlllll!ters> -) - <restart data set nlllll!> ---+

• [SYNC J [<exception handling> J
<endtransaction parameters>

- <transaction record variable ID> - , - <saveresponsetr procedure ID> -----

Explanation

The <transaction record variable ID> construct is the formal input transaction
record variable. The <saveresponsetr procedure ID> identifies the
SA VERESPONSETR formal procedure.

The restart data set name is detailed in the DMSII TPS Programming Guide.

The word "SYNC" forces a syncpoint.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

Example

In the following ENDTRANSACTION statement, the transaction record variable is
TRIN and the name of the saveresponsetr procedure variable is SA VERESPONSE.
The restart data set is RDS. There is no forced syncpoint. The exception variable
is RSLT. Note that the colon preceding the exception variable is part of the
exception handling syntax.

ENDTRANSACTION (TRIN,SAVERESPONSE) RDS :RSLT;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

MIDTRANSACTION Statement

The MIDTRANSACTION statement causes the compiler to generate calls on the
given procedure immediately before the call on the OMS procedure in the
Accessroutines.

The database must be opened with the TRUPDATE form of the BDMS OPEN
statement.

Additional information relating to the MIDTRANSACTION statement is included
under "Declaring Transaction Record Variables," "Transaction Processing
Statements," and "BDMS OPEN Statement with TPS" in this section.

Syntax

- MIDTRANSACTION - (- <midtransaction parameters> -) - <restart data set name>

• [<exception handling> J
<midtransaction parameters>

- <transaction record variable ID> - , - <saveinputtr procedure ID> -------1
Explanation

The <transaction record variable ID> construct is the formal input transaction
record variable. The <saveinputtr procedure ID> is the name of the SA VEINPUT
formal procedure.

The restart data set name is detailed in the DMSII TPS Programming Guide.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

Example

In the following MIDTRANSACTION statement, the transaction record variable is
TRIN and the name of the saveinputtr procedure variable is SA VEINPUT. The
restart data set is RDS. The exception variable is RSLT. Note that the colon
preceding the exception variable is part of the exception handling syntax.

MIDTRANSACTION (TRIN,SAVEINPUT) RDS :RSLT;

8600 0734-000 5-33

Using DMSll Transaction Processing System (TPS) Extensions

BDMS OPEN Statement with TPS

5-34

The BDMS OPEN statement opens a database for subsequent access and specifies
the access mode.·

An exception is returned if the database is already open. If an exception is
returned, the state of the database remains unchanged.

An OPEN statement must be executed before the first access of the database;
otherwise, the program terminates with a fault.

Additional information relating to the BDMS OPEN statement is included under
"Transaction Processing Statements" and "Methods of Structuring the Update
Library" in this section. Related information is also available under "BDMS OPEN
Statement" in Section 4, "Using the Data Management System II (DMSII)
Interface."

Syntax

<BDMS open statement>

- OPEN -------<database identifier>--.---------..-----

~ INQUIRY _J L <exception handling> J
L TRUPOATE J

Explanation

The word "INQUIRY" enforces read-only access to the database. This option is
specified when no update operations are to be performed on the database. An
exception is returned if the following BDMSALGOL statements are used when the
database has been opened with the INQUIRY option:

ASSIGN
BEGINTRANSACTION
DELETE
ENDTRANSACTION

GENERATE
INSERT
REMOVE
STORE

The data management system does not open any audit files if the "OPEN
INQUIRY" form has been used by all programs accessing the database.

The TRUPDA TE option must be specified in order to use the MIDTRANSACTION
statement or the <transaction record variable> form of the
BEGINTRANSACTION or ENDTRANSACTION statements.

The <database identifier> specifies the database to be opened.

Exception handling is detailed in the DMSII Application Program Interfaces
Programming Guide.

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Examples

In the following example, the word INQUIRY forces read-only access to the
database DB. The exception variable is RSLT. Note that the colon preceding the
exception variable is part of the exception handling syntax.

OPEN INQUIRY DB :RSLT;

In the example below, the word TRUPDATE allows write access to the database
DB.

OPEN TRUPDATE DB;

8600 0734-000 5-35

Using DMSll Transaction Processing System (TPS) Extensions

Sample User-written Applications

5-36

Three examples are shown in the following pages. The first example is a
user-written skeleton program that demonstrates how the transaction base and
Transaction Library entry points are declared. The second example shows a
complete transaction base banking application. The third example is a detanking
procedure.

The banking application, Example 2, includes the needed DASDL description, TFL
description, and Update Library. The descriptions are written in their respective
language (DADSL or TFL). The application program and Update Library are
written in ALGOL.

Example 3, the detanking procedure, builds on the banking application shown in
Example 2.

Related information about these user-written programs can be found in the DMSII
TPS Programming Guide.

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Example 1: Declaring a Transaction Base and Library

Any user-written program that invokes the TPS Transaction Library should not
be a library itself. Each program that submits a transaction record for processing
must have its own private library for recovery to be successful. If an application
program is written as a shared library, then the Transaction Library might not
work. The first program that invokes an entry point becomes the only TPS user
recognized by the Transaction Library.

BEGIN S Sample batch program using transactions.

TRANSACTION BASE TRB • BANKTR;
LIBRARY L(TITLE•"BANKTR/CODE/HOSTLIB. 11);

S Declare all entrypoints to be used.

INTEGER PROCEDURE CREATETRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE PURGETRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE LOGONTRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE LOGOFFTRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY L; ..

INTEGER PROCEDURE RETURNLASTRESPONSE(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY L;

INTEGER PROCEDURE TANKTRNORESTART(IDNUM, TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN;
LIBRARY L;

INTEGER PROCEDURE PROCESSTRNORESTART(IDNUM, TRIN, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN, TROUT;
LIBRARY L;

INTEGER PROCEDURE OPENTRBASE(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY L;

INTEGER PROCEDURE CLOSETRBASE;
LIBRARY L;

INTEGER PROCEDURE SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET);
INTEGER FILENUM, BLOCKNUM, OFFSET;
LIBRARY L;

INTEGER PROCEDURE READTRANSACTION (TRREC);
TRANSACTION RECORD (TRB) TRREC;
LIBRARY L;

INTEGER PROCEDURE SWITCHTRFILE;

8600 0734-000 5-37

Using DMSll Transaction Processing System (TPS) Extensions

LIBRARY L;
INTEGER PROCEDURE HANDLESTATISTICS(STATOPTION);

VALUE STATOPTION;
INTEGER STATOPTION;
LIBRARY L;

I Declare transaction record variables to be used.

TRANSACTION RECORD (TRB)
TRIN,
TROUT,
LASTINPUT,
LASTRESPONSE;

STRING JOURNALNAME;

.
I Start of program.
I Set LIBPARAMETER in declaration or before first call on entrypoint.

5-38

L.LIBPARAMETER :• JOURNALNAME;

I Body of program.

END.

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Example 2: Banking Application

The following example is a typical DMSII application using TPS. In the example,
bank accounts are created and deleted, deposits and withdrawals are made, and
account balances are determined.

For the application to operate properly, several pieces of user-supplied software
are needed:

• a Data Structure and Definition Language (DASDL) description

In DMSII, DASDL is used to describe a database logically and physically.

• a Transaction Formatting Language (TFL) description

In the TPS, the TFL is used to describe the transaction base logically and
physically.

• a user-written application program

The user-written ALGOL program shows how TPS can be used for a number
of simple banking transactions.

• an Update Library

The Update Library is capable of maintaining database consistency and
ensuring reproducibility.

The ALGOL application program and the TPS need both the DASDL and TPS
descriptions to ensure the integrity of data stored in the database and transaction
base.

Examples of the user-supplied software are included under "DASDL Description
of the database," "TFL Description of the Transaction Base," "ALGOL Banking
Application Program," and "Update Library" on the following pages.

DASDL Description of the database

OPTIONS{AUDIT);
PARAMETERS(SYNCPOINT • 10 TRANSACTIONS);

ACCOUNT DATA SET
{

ACCOUNT-NUM NUMBER{6);
NAME ALPHA{20);
BALANCE REAL(Sl0,2);

i Specify a data set to hold the account
i numbers and info associated with them.

DEPOSIT UNORDERED DATA SET % Used to keep history of the deposits
(i and withdrawals made.

) ;

8600 0734-000

TRANDATE REAL;
OLD-BALANCE REAL{Sl0,2);
AMOUNT REAL{Sl0,2); i Negative for withdrawal.
NEW-BALANCE REAL(Sl0,2);

5-39

Using DMSll Transaction Processing System (TPS) Extensions

5-40

) ;

ACCOUNT-SET SET OF ACCOUNT
KEY ACCOUNT·NUM;

RDS RESTART DATA SET S Remember, a restart data set must be specified.
(

X ALPHA(lO);
) ;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

TFL Description of the Transaction Base

BANKTR TRANSACTION BASE; S First declare the name of the transaction
S base we are about to describe.

PARAMETERS
(

) ;

STATISTICS,
DATABASE • BANKDB ON DISK,
RESTARTDATASET • RDS,
HOSTSYSTEM • SYS456

DEFAULTS S Specify defaults for items of transaction fonnats
S and for journal control and data files.

) ;

ALPHA (INITIALVALUE •BLANKS),
BOOLEAN (INITIALVALUE •FALSE),
NUMBER (INITIALVALUE • 0),
REAL (INITIALVALUE • 0),
CONTROL FILE
(

) .

AREAS • 100,
AREASIZE • 100 BLOCKS,
BLOCKSIZE • 20 SEGMENTS,
FAMILY • DISK,
CHECKSUM • TRUE

DATA FILE
(

AREAS • 100,
AREASIZE • 100 BLOCKS,
BLOCKSIZE • 30 SEGMENTS,
FAMILY • DISK,
CHECKSUM • TRUE

CREATEACCT TRANSACTION FORMAT
(

) ;

ACCTNUM NUMBER(6);
NAME ALPHA(20);

PURGEACCT TRANSACTION FORMAT
(

ACCTNUM NUMBER(6);
) ;
DEPOSIT TRANSACTION FORMAT
(

) ;

ACCTNUM NUMBER(6);
TRANDATE REAL;
AMOUNT REAL(l0,2);

WITHDRAWAL TRANSACTION FORMAT
(

ACCTNUM NUMBER(6);
AMOUNT REAL(l0,2);
TRANDATE REAL;

8600 0734-000

S The following fonnats are
S used in the application
S program and the Update
S Library.

5-41

Using DMSll Transaction Processing System (TPS) Extensions

5-42

) ;

STATUS TRANSACTION FORMAT
(

) ;

ACCTNUM NUMBER(6);
BALANCE REAL(Sl0,2);
G GROUP
(A ALPHA(20);

B REAL; };

RESTARTDETANKER TRANSACTION FORMAT
(

% This format illustrates possible
% information to be kept in a

) ;

TANKFILENUM FIELD(l4};
TANKBLOCKNUM FIELD(32);
TANKOFFSET FIELD(l6);

MANAGER TRANSACTION SUBBASE
(

) '

CREATEACCT,
PURGEACCT,
DEPOSIT,
WITHDRAWAL,
STATUS,

% restart transaction record.

% Example subbase that a manager might
% use. Note that a GUARDFILE is attached
% to the subbase for security.

GUARDFILE • BANKTR/MANAGER/GUARDFILE;

TELLER TRANSACTION SUBBASE % Example subbase a teller might use.
(

) ;

DEPOSIT,
WITHDRAWAL,
STATUS

TRHISTORY TRANSACTION JOURNAL % Example of specifying explicit values
CONTROL FILE % for the attributes of the TRHISTORY
(% journal.

) '

AREAS • 100,
AREASIZE • 100 BLOCKS,
BLOCKSIZE • 20 SEGMENTS,
FAMILY • DISK,
CHECKSUM • TRUE

DATA FILE
(

) ;

AREAS • 100,
AREASIZE • 2 BLOCKS,
BLOCKSIZE • 3 SEGMENTS,
FAMILY • DISK,
CHECKSUM • TRUE

TANK! TRANSACTION JOURNAL
CONTROL FI LE
(

) .
USERCODE • SAMPLEUSER,
FAMILY • PACK

DATA FILE
(

USERCODE • SAMPLEUSER,

% Example of TANK journal attribute
% specification.

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

DUPLICATED ON DISK
) ;

8600 0734-000 5-43

U1ln1 DMSll Transaction Proce11ln1 System (TPS) Extensions

ALGOL Bankln1 Application Program

BEGIN S Sample batch program using transactions.

ss
s s
S The library routines, declared below, provide the proper function S
S for either environment. S
s s
ss

ARRAY LIBPARAM[0:9];

ss
s s
S Declare the transaction base to be used. S
s s
ss

TRANSACTION BASE TRB • BANKTR; S Example of equating an internal
S name to the transaction base.

LIBRARY L(TITLE•"BANKTR/CODE/HOSTLIB. 11);

ss
s s
S Declare all the library entry points to be used. S s . s
ss
INTEGER PROCEDURE CREATETRUSER(IDSTRING, IDNUM);

STRING IDSTRING; INTEGER IDNUM;
LIBRARY L; .

INTEGER PROCEDURE PURGETRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE LOGONTRUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE LOGOFFTRUSER(IDNUM);
INTEGER IDNUM;
LIBRARY L;

INTEGER PROCEDURE RETURNLASTADDRESS(FILENUM, BLOCKNUM, OFFSET, IDNUM);
INTEGER IDNUM;
REAL FILENUM, BLOCKNUM, OFFSET;
LIBRARY L;

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY L;

INTEGER PROCEDURE RETURNLASTRESPONSE(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY L;

INTEGER PROCEDURE TANKTRNORESTART(IDNUM, TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN;
LIBRARY L;

INTEGER PROCEDURE PROCESSTRANSACTION(IDNUM, TRIN, TROUT, RESTARTTRREC);
INTEGER IDNUM;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

TRANSACTION RECORD (TRB) TRIN, TROUT, RESTARTTRREC;
LIBRARY L;

INTEGER PROCEDURE PROCESSTRNORESTART(IDNUM, TRIN, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN, TROUT;
LIBRARY L;

INTEGER PROCEDURE OPENTRBASE(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY L;

INTEGER PROCEDURE CLOSETRBASE;
LIBRARY L;

INTEGER PROCEDURE SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET);
INTEG£R FILENUM, BLOCKNUM, OFFSET;
LIBRARY L;

INTEGER PROCEDURE READTRANSACTION (TRREC);
TRANSACTION RECORD (TRB) TRREC;
LIBRARY L;

INTEGER PROCEDURE SWITCHTRFILE;
LIBRARY L;

INTEGER PROCEDURE HANDLESTATISTICS(STATOPTION);
VALUE STATOPTION; INTEGER STATOPTION;
LIBRARY L;

FILE LINE(KINO-PRINTER);
FILE RMOTE(KINO-REMOTE, MYUSE •IO);
TRANSACTION RECORD (TRB)

TRIN,
TROUT,
LASTINPUT,
RESTARTTRREC,
LASTRESPONSE;

REAL IDNUM, N, OPT;
INTEGER ACCT,TIMEOUT,STATISTICSOPTION;
INTEGER ACCT, TIMEOUT;
INTEGER RSLT;
ARRAY SP[O:l4];
BOOLEAN ERROR;
LABEL EXIT;
STRING ID, FNAME, JOURNALNAME;

ss
s %
% Body of the program. %
% %
ss
DEFINE TANKING • 3#;

DEFINE ERR •
BEGIN

ENO#;

WRITE(RMOTE, <"RSLT • 11 , 13, " @ 11 , 18>, RSLT, LINENUMBER);
ERROR :• TRUE;

DEFINE GETSTRING(S, X) •
BEGIN

REPLACE SP BY II II FOR 15 WORDS;
REPLACE SP BY "ENTER STRING FOR 11 , S;
WRITE(RMOTE, 15, SP);
READ(RMOTE, 15, SP);
SCAN SP FOR N:80 WHILE IN ALPHA;
X :• STRING(SP, 80-N);

ENO#;

8600 0734-000 5-45

Using DMSll Transaction Processing System (TPS) Extensions

5-46

DEFINE GETINTEGER(S, I) •
BEGIN

REPLACE SP BY II II FOR 15 WORDS;
REPLACE SP BY "ENTER INTEGER FOR"• S;
WRITE(RMOTE, 15, SP};

READ{RMOTE, /, I);
END#;

DEFINE GETREAL(S, R) •
BEGIN

REPLACE SP BY II II FOR 15 WORDS;
REPLACE SP BY "ENTER VALUE FOR", S;
WRITE(RMOTE, 15, SP);
READ{RMOTE, /, R);

END#;

DEFINE GETACCT • GETINTEGER("ACCOUNT NUMBER", ACCT)#;

PROCEDURE PROCESSTR;
BEGIN

IF OPT • TANKING THEN
BEGIN

IF RSLT :• TANKTRNORESTART(IDNUM, TRIN) > 0 THEN ERR;
END
ELSE

IF RSLT :• PROCESSTRANSACTION(IDNUM, TRIN, TROUT, RESTARTTRREC)
> 0 THEN ERR;

END PROCESSTR;
PROCEDURE GETLASTP;
BEGIN

IF OPT • TANKING THEN
BEGIN

IF RSLT :• RETURNRESTARTINFO(IDNUM, LASTINPUT) > 0 THEN
ERR

ELSE
WRITE(RMOTE,

END ELSE
BEGIN

<"LAST RESTART (FILE, BLOCK, OFFSET, FORMAT}: ", 415>,
LASTINPUT.TRFILENUM,
LASTINPUT.TRBLOCKNUM, LASTINPUT.TROFFSET,
LASTINPUT.TRFORMAT);

IF RSLT :• RETURNRESTARTINFO{IDNUM, LASTINPUT) > 0 THEN
ERR

ELSE
BEGIN

WRITE (RMOTE,
<"LAST RESTART (FILE, BLOCK, OFFSET, FORMAT): ", 415>,
LASTINPUT.TRFILENUM,
LASTINPUT.TRBLOCKNUM, LASTINPUT.TROFFSET,
LASTINPUT.TRFORMAT };

IF RSLT :• RETURNLASTRESPONSE(IDNUM, LASTRESPONSE) > 0 THEN
ERR

ELSE
WRITE{RMOTE,

END;
END;

<"LAST RESPONSE (FILE, BLOCK, OFFSET, FORMAT): ", 415>,
LASTRESPONSE.TRFILENUM,
LASTRESPONSE.TRBLOCKNUM, LASTRESPONSE.TROFFSET,
LASTRESPONSE. TRFORMAT) ;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

END GETLASTP;

PROCEDURE DISPLAYSTATUS;
BEGIN

IF TROUT.TRFORMAT NEQ TRFORMAT(STATUS) THEN
ERR

ELSE
WRITE(RMOTE 1 <"ACCOUNT NUMBER "• 15 1

": CURRENT BALANCE IS "• Fl0.2> 1

TROUT.STATUS.ACCTNUM.
TROUT.STATUS.BALANCE);

END DISPLAYSTATUS;
PROCEDURE CREATEP; S Create a new account number.
BEGIN

STRING NAME;
WRITE(RMOTE 1 <"FUNCTION IS CREATE">);
GETACCT;
GETSTRING("CUSTOMER NAME". NAME);
CREATE TRIN.CREATEACCT;
TRIN.CREATEACCT.ACCTNUM :•ACCT;
TRIN.CREATEACCT.NAME :• NAME;
PROCESSTR;

END CREATEP;

PROCEDURE PURGEP; S Eliminate an account number.
BEGIN

WRITE(RMOTE 1 <"FUNCTION IS PURGE">);
GETACCT;
CREATE TRIN.PURGEACCT;
TRIN.PURGEACCT.ACCTNUM :• ACCT;
PROCESSTR;

END PURGEP;

PROCEDURE STATUSP; S Display the status of an account.
BEGIN

WRITE(RMOTE. <"FUNCTION IS STATUS">);
GETACCT;
CREATE TRIN.STATUS;
TRIN.STATUS.ACCTNUM :• ACCT;
PROCESSTR;
IF (OPT NEQ TANKING AND NOT ERROR} THEN DISPLAYSTATUS;

END STATUSP;

PROCEDURE DEPOSITP; S Deposit some amount in an account.
BEGIN

REAL AMT;
WRITE(RMOTE 1 <"FUNCTION IS DEPOSIT">};
GETACCT;
GETREAL("AMOUNT OF DEPOSIT". AMT};
CREATE TRIN.DEPOSIT;
TRIN.DEPOSIT.ACCTNUM :•ACCT;
TRIN.DEPOSIT.TRANDATE :• TIME(6);
TRIN.DEPOSIT.AMOUNT :•AMT;
PROCESSTR;
IF (OPT NEQ TANKING AND NOT ERROR) THEN DISPLAYSTATUS;

END DEPOSITP;
PROCEDURE WITHDRAWALP; S Withdraw some amount from an account.
BEGIN

REAL AMT;

8600 0734-000 5-47

Using DMSll Transaction Processing System (TPS) Extensions

5-48

WRITE(RMOTE, <"FUNCTION IS WITHDRAWAL">);
GETACCT;
GETREAL("AMOUNT OF WITHDRAWAL", AMT);
CREATE TRIN.WITHDRAWAL;
TRIN.WITHDRAWAL.ACCTNUM :• ACCT;
TRIN.WITHDRAWAL.TRANDATE :• TIME(6);
TRIN.WITHDRAWAL.AMOUNT :• AMT;
PROCESSTR;
IF (OPT NEQ TANKING AND NOT ERROR) THEN DISPLAYSTATUS;

END WITHDRAWALP;

PROCEDURE NEWUSERP;
BEGIN

WRITE(RMOTE, <"FUNCTION IS NEWUSER">);
GETSTRING("USER ID", ID);
WRITE(RMOTE, <"USER: II' Al5>, ID);
IF RSLT :• LOGONTRUSER(ID, IDNUM) > 0 THEN

ERR
ELSE

WRITE(RMOTE, <"USER #: II' I3>, IDNUM);
END NEWUSERP;

PROCEDURE REOPENP;
BEGIN

WRITE(RMOTE, <"FUNCTION IS REOPEN">);
IF RSLT :• CLOSETRBASE > 0 THEN

ERR
ELSE
BEGIN

WRITE(RMOTE, <"WHAT DO YOU WANT TO DO?">);
GETINTEGER("CHOICE (1-UPDATE, 2•INQUIRY, 3•TANK, 4-READ,"

"s-EXCLUSIVEUPDATE)", OPT);
IF RSLT :• OPENTRBASE(OPT, 0) > 0 THEN ERR;

END;
END REOPENP;

PROCEDURE SEEKP;
BEGIN

REAL FILENUM, BLOCKNUM, OFFSET;
WRITE(RMOTE, <"FUNCTION IS SEEK">);
WRITE(RMOTE, <"ENTER FILENUM, BLOCKNUM, OFFSET">);
READ(RMOTE, /, FILENUM, BLOCKNUM, OFFSET);
IF RSLT :• SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET) > 0 THEN ERR;

END SEEKP;
PROCEDURE READP;
BEGIN

WRITE(RMOTE, <"FUNCTION IS READ">);
IF RSLT :• READTRANSACTION(TRIN) > 0 THEN

ERR
ELSE
BEGIN

WRITE(RMOTE, <"FILE, BLOCK, OFFSET:", 3I5>,
TRIN.TRFILENUM,
TRIN.TRBLOCKNUM,
TRIN.TROFFSET);

WRITE(RMOTE, <"FORMAT, SUBFORMAT:", 2I5>,
TRIN.TRFORMAT, .
TRIN.TRSUBFORMAT);

END;
END READP;

PROCEDURE CREATEUSERP;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

BEGIN
WRITE(RMOTE, <11 FUNCTION IS CREATEUSER11>);
GETSTRING(11 USER ID11 , ID);
WRITE(RMOTE, <11 USER: II. Al5>, ID);
IF RSLT :• CREATETRUSER(ID, IDNllt) > 0 THEN

ERR
ELSE

IF RSLT :• LOGONTRUSER(ID, IDNUM) > 0 THEN
ERR

ELSE
WRITE(RMOTE, <11 USER #: II. I3>, IDNllt);

END CREATEUSERP;

PROCEDURE PURGEUSERP;
BEGIN

WRITE(RMOTE, <11 FUNCTION IS PURGEUSER11>);
IF RSLT :• PURGETRUSER(IDNUM) > 0 THEN ERR;

END PURGEUSERP;
PROCEDURE QUITP;
BEGIN

WRITE(RMOTE, <11 FUNCTION IS QUIT11 >);
CLOSETRBASE;
GO EXIT;

END QUITP;

PROCEDURE SWITCHP;
BEGIN

WRITE(RMOTE, <11 FUNCTION IS SWITCH11>);
IF RSLT :• SWITCHTRFILE > 0 THEN ERR;

END SWITCHP;
PROCEDURE STATISTICSP;
BEGIN

WRITE(RMOTE, <11 FUNCTION IS STATISTICS11 >);
WRITE(RMOTE, <11 WHAT DO YOU WANT TO DO?");
GETINTEGER("CHOICE (1 • PRINT & RESET, 2 • PRINT"

"ONLY, 3 • RESET) 11 , STATISTICSOPTION) ;
IF RSLT :• HANDLESTATISTICS(STATISTICSOPTION) > O;
THEN ERR;

END STATISTICSP;

PROCEDURE HELPP;
BEGIN

WRITE(RMOTE, < 11 FUNCTIONS ARE: 11 , /,

11 CREATE 11 , I,
11 PURGE 11 , I,
11 DEPOSIT11 , /,

11 WITHDRAWAL11 , I,
11 QUIT11 • 1.
11 STATUS 11 , /,

11 NEWUSER11 , /,

11 REOPEN 11 , /,

11 SEEK 11 , /,

11 READ 11 , I,
11 GETLAST11 , I,
11 CREATEUSER11 , /,

11 PURGEUSER11 , /,

11 SWITCH11 , /,

11 STATISTICS11 • I.
11 HELP 11 >);

END HELPP;

8600 0734-000 5-49

Using DMSll Transaction Processing System (TPS) Extensions

5-50

ss
s s
S Set LIBPARAMETER before first call on a library entry point. The s
S LIBPARAMETER can be set in the library declaration rather than S
S here. S
s s
ss

GETSTRING("JOURNAL NAME", JOURNALNAME);
L.LIBPARAMETER :• JOURNALNAME;

WRITE(RMOTE, <"WHAT DO YOU WANT TO DO?">);
GETINTEGER("CHOICE (!-UPDATE, 2•INQUIRY, J•TANK, 4-READ,"

II S-EXCLUSIVEUPDATE) 11 , OPT);
WRITE(RMOTE,<11 WHAT VALUE FOR TIMEOUT SHALL WE USE?">);
READ(RMOTE,/,TIMEOUT);
IF RSLT :• OPENTRBASE(OPT, TIMEOUT) > 0 THEN ERR;

ss
s s
S A restart transaction record is created. It will be written to S
S the TRHISTORY file along with an input transaction. Here, we have S
S not assigned values to the items or this record. Normally, values S
S are assigned but, for simplicity, the code was left out of this S
S example. s
s s
ss

IF NOT ERROR THEN
BEGIN

CREATE RESTARTTRREC.RESTARTDETANKER;
GETSTRING(11 USER ID", ID) i
WRITE(RMOTE, <"USER: 11 , Al5>, ID);
IF RSLT :• LOGONTRUSER(ID, IDNUM) > 0 THEN ERR;
IF NOT ERROR THEN

WRITE(RMOTE, <"USER #: II' IJ>, IDNUM);
END;
ERROR :• FALSE;
WHILE TRUE DO
BEGIN

GETSTRING(11 FUNCTION NAME (OR HELP)", FNAME);
IF SP • 11 CREATEUSER11 THEN CREATEUSERP ELSE
IF SP • 11 PURGEUSER11 THEN PURGEUSERP ELSE
IF SP • "CREATE" THEN CREATEP ELSE
IF SP • "PURGE" THEN PURGEP ELSE
IF SP • "DEPOSIT" THEN DEPOSITP ELSE
IF SP • "WITHDRAWAL" THEN WITHDRAWALP ELSE
IF SP • "QUIT" THEN QUITP ELSE
IF SP • "STATUS" THEN STATUSP ELSE
IF SP • 11 NEWUSER11 THEN NEWUSERP ELSE
IF SP • "REOPEN" THEN REOPENP ELSE
IF SP • 11 SEEK11 THEN SEEKP ELSE
IF SP • "R" THEN READP ELSE
IF SP • "HELP" THEN HELPP ELSE
IF SP • "GETLAST" THEN GETLASTP ELSE
IF SP • "SW" THEN SWITCHP ELSE
IF SP • "STAT" THEN STATISTICSP ELSE
WRITE(RMOTE, <"DID NOT RECOGNIZE FUNCTION NAME">) i
ERROR :• FALSE;

END;

EXIT:

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

END OF THE APPLICATION PROGRAM.

8600 0734-000 5-51

Using DMSll Transaction Processing System (TPS) Extensions

Update Library

5-52

ss
s s
S SHARING must be PRIVATE 1n order to ensure that each application S
S program will get its own copy of the Update Library S
s s
ss
$SET SHARING-PRIVATE
BEGIN S User's Transaction Update Library

ss
s s
S This library is written by the user of the transaction system. S
S It consists of a single procedure, called "ACCESSDATABASE", which S
S is designed to perform four basic functions: OPENDATABASE (for S
S update or inquiry), UPDATE, FORCEABORT, and CLOSEDATABASE. The S
S function to be performed is identified by the first parameter to S
S the procedure. S
s s
S OPENDATABASE for update or inquiry is required to open the data S
S base. S
s s
S UPDATE is called by the transaction system once for each input S
S transaction to be processed. It must observe a few simple rules, S
S such as when to lock records and when to call the formal S
S procedures. It is expected to examine each input transaction S
S record, perform the appropriate actions, create a response S
S transaction, and exit. S
s s
S FORCEABORT is required so that the transaction system can cause S
S an abort, if necessary. S
s s
S CLOSEDATABASE must close the database. S
s s
ss

ss
s s
S Library global declarations. S
% %
ss

DATABASE DB • BANKDB; S Invoke the database and transaction
S base to be used.

TRANSACTION BASE TRB • BANKTR;
EBCDIC ARRAY SP0[0:79];

ss
s s
S Procedure update. S
s s
ss
PROCEDURE UPDATE(TRIN, TROUT, SAVEINPUT, SAVERESPONSE);

TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVERESPONSE(); FORMAL;

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

PROCEDURE SAVEINPUT(); FORMAL;
BEGIN

LABEL EXIT;
BOOLEAN RSL T;
CASE TRIN.TRFORMAT OF
BEGIN

(TRFORMAT(CREATEACCT)}: % Routine for creating a new account.
BEGIN

STRING SNAME;
EBCDIC ARRAY NAME[0:29];
SNAME :• TRIN.CREATEACCT.NAME;
REPLACE NAME[O] BY SNAME;
CREATE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
PUT ACCOUNT
(

) ;

ACCOUNT-NUM :• TRIN.CREATEACCT.ACCTNUM,
NAME :• NAME[O];

BEGINTRANSACTION (TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION (TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
STORE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
TROUT :• TRIN; % Return same TR as good TR-RESPONSE.
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;

END CREATEACCT FORMAT;
(TRFORMAT(PURGEACCT)): % Routine for purging an existing

% account.
BEGIN

REAL ACCT;
ACCT :• TRIN.PURGEACCT.ACCTNUM;
LOCK ACCOUNT-SET AT ACCOUNT-NUM •ACCT :RSLT;
IF RSLT THEN GO EXIT;
BEGINTRANSACTION {TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION (TRIN, S/WrJNPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
DELETE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
TROUT :• TRIN; % Signal OK
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;

END PURGEACCT FORMAT;

(TRFORMAT(STATUS)): % Example of an inquiry routine. It
% returns the balance of a particular
% account.

BEGIN

8600 0734-000

REAL ACCT, BAL;
ACCT :• TRIN.STATUS.ACCTNUM;
FIND ACCOUNT-SET AT ACCOUNT-NUM •ACCT :RSLT;
IF RSLT THEN GO EXIT;
GET ACCOUNT
(

BAL : • BALANCE
) ;
TROUT :• TRIN; % Signal OK
TROUT.STATUS.BALANCE :• BAL;

5-53

Using DMSll Transaction Processing System (TPS) Extensions

5-54

END STATUS FORMAT;
(TRFORMAT(DEPOSIT)): % Routine to perform a deposit into an
BEGIN % account.

REAL OLDBAL, NEWBAL;
REAL ACCT;
ACCT :• TRIN.DEPOSIT.ACCTNUM;
LOCK ACCOUNT-SET AT ACCOUNT-NUM •ACCT :RSLT;
IF RSLT THEN GO EXIT;
GET ACCOUNT
(

OLDBAL :• BALANCE
) .
NEWBAL :• OLDBAL + TRIN.DEPOSIT.AMOUNT;
CREATE DEPOSIT:RSLT;
IF RSLT THEN GO EXIT;
PUT DEPOSIT
(

) ;

TRANDATE :• TRIN.DEPOSIT.TRANDATE,
AMOUNT :• TRIN.DEPOSIT.AMOUNT,
OLD-BALANCE :• OLDBAL,
NEW-BALANCE :• NEWBAL

PUT ACCOUNT
(

BALANCE :• NEWBAL
) ;
BEGINTRANSACTION (TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION {TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
STORE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
STORE DEPOSIT:RSLT;
IF RSLT THEN GO EXIT;
CREATE TROUT.STATUS;
TROUT.STATUS.BALANCE :• NEWBAl;
TROUT.STATUS.ACCTNUM :• TRIN.DEPOSIT.ACCTNUM;
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;

END DEPOSIT FORMAT;
(TRFORMAT(WITHDRAWAL)): % Routine to withdraw money from an

% account.
BEGIN % Uses DEPOSIT data set, not WITHDRAWAL

REAL OLDBAL, NEWBAL;
REAL ACCT;
ACCT :• TRIN.WITHDRAWAL.ACCTNUM;
LOCK ACCOUNT-SET AT ACCOUNT-NUM •ACCT :RSLT;
IF RSLT THEN GO EXIT;
GET ACCOUNT
(

OLDBAL :• BALANCE
) ;
NEWBAL :q OLDBAL - TRIN.WITHDRAWAL.AMOUNT;
CREATE DEPOSIT:RSLT;
IF RSLT THEN GO EXIT;
PUT DEPOSIT
(

) ;

TRANDATE :• TRIN.WITHDRAWAL.TRANDATE,
AMOUNT :• - TRIN.WITHDRAWAL.AMOUNT,
OLD-BALANCE :• OLDBAL,
NEW-BALANCE :• NEWBAL

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

PUT ACCOUNT
(

BALANCE :• NEWBAL
) ;
BEGINTRANSACTION (TRIN) RDS :RSLT;
IF RSLT THEN GO EXIT;
MIDTRANSACTION (TRIN, SAVEINPUT) RDS: RSLT;
IF RSLT THEN GO EXIT;
STORE ACCOUNT:RSLT;
IF RSLT THEN GO EXIT;
STORE DEPOSIT:RSLT;
IF RSLT THEN GO EXIT;
CREATE TROUT.STATUS;
TROUT.STATUS.BALANCE :• NEWBAL;
TROUT.STATUS.ACCTNUM :• TRIN.DEPOSIT.ACCTNUM;
ENDTRANSACTION (TRIN, SAVERESPONSE) RDS :RSLT;
IF RSLT THEN GO EXIT;

END WITHDRAWAL FORMAT;
ELSE: % Flag an error

DISPLAY ("NO UPDATE ROUTINE FOR THE FORMAT PASSED IN");

END CASES;
EXIT:

IF REAL(RSLT) ISNT 0 THEN
BEGIN

END;

REPLACE SPO BY 0 FOR 10 WORDS;
WRITE(SPO[*], <"UPDATE RSLT:", Hl3>, RSLT);
DISPLAY(SPO);

END UPDATE;
%%
% %
% Procedure ACCESSDATABASE. %
% %
%%

PROCEDURE ACCESSDATABASE(FUNCTIONFLAG, TRIN, TROUT,
SAVEINPUT, SAVERESPONSE);

VALUE FUNCTIONFLAG;
INTEGER FUNCTIONFLAG;
TRANSACTION RECORD (TRB) TRIN, TROUT;
PROCEDURE SAVERESPONSE(); FORMAL;
PROCEDURE SAVEINPUT(); FORMAL;

BEGIN
CASE FUNCTIONFLAG OF
BEGIN

1: % Open update
OPEN TRUPDATE DB;

2: % Open inquiry
OPEN INQUIRY DB;

3: % Update
UPDATE(TRIN, TROUT, SAVEINPUT, SAVERESPONSE);

4: % FORCEABORT is called by the
CLOSE DB; % Transaction Library when the last call

% resulted in exiting this library while
% still in transaction state.

5: % Close.
CLOSE DB;

END CASES;
END ACCESSDATABASE;

%%%i%%%%%%i%%%%%%%%%%%%%%%%%%%

8600 0734-000 5-55

Using DMSll Transaction Processing System (TPS) Extensions

5-56

s s
S Initialize library. S
s s
ss

EXPORT
ACCESSDATABASE;

FREEZE(TEMPORARY);

END UPDATE LIBRARY.

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

Example 3: Detanking Procedure

The ALGOL procedure on the following pages illustrates "detanking." A
detanking procedure reads transactions from a tank journal and processes them
against the database.

The input parameter is the name of' the Tank journal. This procedure opens both
the Tank journal and the TRHISTORY journal, and then reads transactions from
the Tank journal and processes them against the data base.

The transaction base invoked by this procedure is defined in "Example 2:
Banking Application." The procedure also uses the previously defined DASDL
description and Update Library. Refer to "DASDL Description of the database,"
"TFL Description of the Transaction Base," and "Update Library" on the
preceding pages for details.

PROCEDURE DETANKER(TANKNAME);
ARRAY TANKNAME[*];
BEGIN

%%
% %
% This program can run on either the host system or a remote system. %
% The library routines declared below provide the proper function %
% for either environment. %
% %
%%

STRING TANKLIBPARAM;

%%
% %
% Declare the transaction base to be used. %
% %
%%

TRANSACTION BASE TRB • BANKTR;

%%
% %
% Declare all the library entry points to be associated with the %
% TRHISTORY journal. %
% %
%%

LIBRARY PROCESSLIB(TITLE-"BANKTR/CODE/HOSTLIB.",
LIBPARAMETER .. "TRHISTORY");

INTEGER PROCEDURE CREATE'TRHISTORYUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER.IDNUM;
LIBRARY PROCESSLIB(ACTUALNAME .. "CREATETRUSER");

INTEGER PROCEDURE LOGONTRHISTORYUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY PROCESSUB (ACTUAL.NAME .. "LOGONTRUSER");

8600 0734-000 5-57

Using DMSll Transaction Processing System (TPS) Extensions

5-58

INTEGER PROCEDURE RETURNRESTARTINFO(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY PROCESSLIB;

INTEGER PROCEDURE RETURNLASTRESPONSE(IDNUM, TROUT);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TROUT;
LIBRARY PROCESSLIB;

INTEGER PROCEDURE PROCESSTRFROMTANK(IDNUM, TRIN, RESTARTNUM, RESTARTTR);
INTEGER IDNUM, RESTARTNUM;
TRANSACTION RECORD (TRB) TRIN, RESTARTTR;
LIBRARY PROCESSLIB;

INTEGER PROCEDURE OPENTRHISTORY(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY PROCESSLIB(ACTUALNAME • 110PENTRBASE11);

INTEGER PROCEDURE CLOSETRHISTORY;
LIBRARY PROCESSLIB(ACTUALNAME • 11 CLOSETRBASE11);

ss
s s
S Declare all the library entry points to be associated with the S
S Tank journal. S
s s
ss

LIBRARY TANKLIB(TITLE•11BANKTR/CODE/HOSTLIB. 11);

INTEGER PROCEDURE CREATETANKUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY TANKLIB (ACTUALNAME • 11 CREATETRUSER11);

INTEGER PROCEDURE LOGONTANKUSER(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY TANKLIB(ACTUALNAME • 11 LOGONTRUSER11);

INTEGER PROCEDURE TANKUSERIDSTRING(IDSTRING, IDNUM);
STRING IDSTRING; INTEGER IDNUM;
LIBRARY TANKLIB(ACTUALNAME • 11TRUSERIDSTRING11);

INTEGER PROCEDURE TANKTRNORESTART(IDNUM, TRIN);
INTEGER IDNUM;
TRANSACTION RECORD (TRB) TRIN;
LIBRARY TANKLIB;

INTEGER PROCEDURE OPENTANK(USEROPTION, TIMEOUT);
INTEGER USEROPTION, TIMEOUT;
LIBRARY TANKLIB(ACTUALNAME • 110PENTRBASE11);

INTEGER PROCEDURE CLOSETANK;
LIBRARY TANKLIB(ACTUALNAME • 11 CLOSETRBASE11);

INTEGER PROCEDURE SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET);
INTEGER FILENUM, BLOCKNUM, OFFSET;
LIBRARY TANKLIB;

INTEGER PROCEDURE READTRANSACTION (TRREC);
TRANSACTION RECORD (TRB) TRREC;
LIBRARY TANKLIB;

8600 0734-000

Using DMSll Trannaction Processing System (TPS) Extensions

TRANSACTION RECORD (TRB)
TRIN,
TROUT,
RESTARTIR;

INTEGER IDNUM, N,
RESTARTNUM, TANKNAMESIZE,
FILENUM, BLOCKNUM,
OFFSET, CT,
TANKER, UPDATER,
MAXTANKER, RSLT;

ARRAY TRHISTORYUSERS[0:99]9
ARRAY SP[O:l4];
LABEL EXIT, LOOP, PRINTLAST;
STRING ID, FNAME;
BOOLEAN ALLDONE;
EBCDIC ARRAY SP0[0:79];

DEFINE ERR(L) ...
BEGIN

REPLACE SPO BY 11 RSLT • 11 , RSLT FOR * DIGITS,
" @ 11 , LINENUMBER FOR 8 DIGITS, NULL;

ACCEPT(SPO);
GO L;

END#,
NULL • 48"00"#,
NORESTARTREC • 3#,
REJECTED • 2#,
EOF ... l#;

MAXTANKER :• 99;

%%
% %
% Set the library parameter "lIBPARAMETER" for the Tank journal. %
% Then open the TRHISTORY journal for updating and the Tank journal %
% for reading. %
% %
%%

SCAN TANKNAME[*] FOR N:99 UNTIL • 0;
TANKNAMESIZE :• 99-N;
TANKLIBPARAM :• STRING{POINTER(TANKNAME,8), TANKNAMESIZE);
TANKLIB.LIBPARAMETER :• TANKLIBPARAM;
IF RSLT :• OPENTRHISTORY(l, 0) > 0 THEN ERR(EXIT); % Open update.
IF RSLT :• OPENTANK(4, O} > 0 THEN ERR(EXIT); % Open for reading.
ID :• TANKLIBPARAM;

% Create a user of the History file and then log him on.
CREATETRHISTORYUSER(ID, RESTARTNUM); % NO-OP if not necessary.
IF RSLT :• LOGONTRHISTORYUSER(ID, RESTARTNUM) > 0 THEN ERR(EXIT);

%%
% %
% The following code determines if the program has been restarted %
% after a HALT/LOAD. If so, it determines the location in the Tank %
% journal where we should begin reading transactions. It does this %
% by extracting the file, block, and offset from the items within %
% the restart transaction record: TANKFILENUM, TANKBLOCKNUM, and %
% TANKOFFSET. If the program was not restarted, start reading from %
% the beginning of the Tank journal. %
% %
%%

8600 0734-000 5-59

Using DMSll Transaction Processing System (TPS) Extensions

5-60

IF MYJOB.RESTARTED THEN
BEGIN

REPLACE SPO BY "DETANKING PROCESS RESTARTING", NULL;
DISPLAY(SPO); ·
IF RSLT :• RETURNRESTARTINFO(RESTARTNUM, RESTARTTR) •

NORESTARTREC THEN
BEGIN

FILENUM :• l;
BLOCKNUM :• OFFSET :• O; I Start at first record of file.
IF RSLT :• SEEKTRANSACTION(FILENUM,BLOCKNUM,OFFSET) > 0 THEN

ERR(EXIT);
END ELSE

IF RSLT > 0 THEN
ERR(EXIT)

ELSE I A restart record exists.
BEGIN

FILENUM :• RESTARTTR.TANKFILENUM;
BLOCKNUM :• RESTARTTR.TANKBLOCKNUM;
OFFSET :• RESTARTTR.TANKOFFSET;
REPLACE SPO BY 11 LAST GOOD TR FROM TANK AT (",

FILENUM FOR * DIGITS, II. II,

BLOCKNUM FOR * DIGITS, II.",
OFFSET FOR *DIGITS, ")", NULL;

DISPLAY(SPO);
IF RSLT :• SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET) > 0

THEN
ERR(EXIT);

I Now skip last good transaction.

IF RSLT :• READTRANSACTION(TRIN) > 0 THEN ERR(EXIT);
END;

END ELSE
BEGIN

FILENUM :• l;
BLOCKNUM :• 0;
OFFSET :• 0; I Start at first record of file 1.
IF RSLT :• SEEKTRANSACTION(FILENUM, BLOCKNUM, OFFSET) > 0 THEN

ERR(EXIT);
END;
CREATE RESTARTTR.RESTARTDETANKER;

LOOP:
IF ALLDONE THEN
BEGIN

END;

CLOSETANK;
CLOSETRHISTORY;
GO PRINTLAST;

I Read a transaction from the Tank Journal.
IF RSLT :• READTRANSACTION(TRIN) > 0 THEN
BEGIN

END;

IF RSLT • EOF THEN
BEGIN

ALLDONE :• TRUE;
GO LOOP;

END ELSE
ERR(EXIT);

I If we read a system transaction ignore it and continue with the

8600 0734-000

Using DMSll Transaction Processing System (TPS) Extensions

i next transaction in sequence.

IF TRIN.TRFORMAT • TRFORMAT(SYSTEMTR) THEN GO LOOP;
TANKER :• TRIN.TRUSERNUM;
IF TANKER > MAXTANKER THEN
UPDATER :• 0 ELSE
UPDATER:• TRHISTORYUSERS[TANKER];
IF UPDATER - 0 THEN
BEGIN

END;

IF RSLT :• TANKUSERIDSTRING(ID, TANKER) > 0 THEN ERR(EXIT);
CREATETRHISTORYUSER(ID, UPDATER}; % NO-OP if necessary.
IF TANKER > MAXTANKER THEN
RESIZE(TRHISTORYUSERS[*], (MAXTANKER:•TANKER)+l, RETAIN);
TRHISTORYUSERS[TANKER] :• UPDATER;

i Set up the restart record values to be the address of the input
i transaction and then process the transaction.

RESTARTTR.TANKFILENUM :• TRIN.TRFILENUM;
RESTARTTR.TANKBLOCKNUM :• TRIN.TRBLOCKNUM;
RESTARTTR.TANKOFFSET :• TRIN.TROFFSET;
IF RSLT :• PROCESSTRFROMTANK(UPDATER, TRIN, RESTARTNUM, RESTARTTR)

> 0 THEN

ERR(EXIT);
GO LOOP;

PRINTLAST:
FILENUM :• RESTARTTR.TANKFILENUM;
BLOCKNUM :• RESTARTTR.TANKBLOCKNUM;
OFFSET :• RESTARTTR.TANKOFFSET;

EXIT:

REPLACE SPO BY "LAST GOOD TR FROM TANK AT (",
FILENUM FOR * DIGITS, ",",
BLOCKNUM FOR * DIGITS, ", 11 ,

OFFSET FOR *DIGITS, ")", NULL;
DISPLAY(SPO);

END OF THE DETANKER PROCEDURE;

8600 0734-000 5-61

Section 6
Using the Screen Design Facility Plus
(SDF Plus) Interface

Screen Design Facility Plus (SDF Plus) is a user interface management system
that gives programmers the ability to define a complete form-based user interface
for an application system. It is a programming tool for simple and efficient
designing and processing of forms. SDF Plus provides form processing that
eliminates the need for complicated format language or code, and validates data
entered on forms by application users.

The program interface developed for SDF Plus includes

• Extensions that allow you to read and write form records or form record
libraries easily.

• Extensions that allow you to send and receive form records or form record
libraries easily.

• Extensions that allow you to invoke form record library descriptions into
your program as ALGOL declarations.

This section provides information about the extensions developed for SDF Plus.
Each extension is presented with its syntax and an example; sample programs are
also included.

For an alphabetized list of the extensions, see "Screen Design Facility Plus
(SDF Plus) Extensions" in the section "Introduction to ALGOL Program
Interfaces."

Refer to the SC1'een Design Facility Plus (SDF Plus) Capabilities Manual for
information defining the concepts and principles of SDF Plus. For information on
general implementation and operation considerations, refer to the SC1'een Design
Facility Plus (SDF Plus) Installation and Operations Guide. For information on
general programming concepts and considerations, ref er to the SC1'een Design
Facility Plus (SDF Plus) Technical Overview.

SDF Plus can be be used with the Advanced Data Dictionary System (ADDS), and
the Communications Management System (COMS). Refer to the specific product
documentation for information on the concepts and programming considerations
for using these products with SDF Plus. For more information on the extensions
used with these products, refer to Section 2, "Using Advanced Data Dictionary
System (ADDS) Extensions," and Section 3, "Using Communications Management
System (COMS) Features."

8600 0734-000 6-1

Using the Screen Design Facility Plus (SDF Plus) Interface

Understanding SDF Plus Interface Elements
Communication between ALGOL application programs and SDF Plus form record
libraries is achieved through either the remote file interface or the COMS
interface. Using the remote file interface, you can interact with SDF Plus
applications by means of remote files. By using the COMS interface, you can
interact with SDF Plus applications through COMS windows and have access to
all COMS capabilities and features.

SDF Plus interface elements include

• Form record libraries

• Form records

• Form record numbers

• Transaction types

• Transaction numbers

• ALGOL functions used as SDF Plus extensions

Form Record Libraries

Form record libraries are collections of form records and transaction types. This
union is achieved in the data dictionary. Form record libraries can be either
retrieved or invoked by the ALGOL program. The form records can then be used
in various ALGOL statements to transfer data.

Form Records

6-2

Form records are elements of form record libraries. Form records represent
records of data. This data is used either to output data from a form or to input
data to a form. A form can require several form records; therefore, a one-to-one
relationship between forms and form records does not exist.

In some manuals the term "message type" is a synonym for "form record."

Forms and form processing are established through the use of SDF Plus. The
ALGOL program reads and writes data to these forms. This arrangement provides
complete separation between data entered on a terminal and actions completed
within the program.. A user interface can be completely reconstructed without
modifying the application program, provided the form records are not changed.

·When referenced, a form record must be qualified with the form record library
name by which it was invoked. Each form record within a form record library
shares the same storage area. The storage area is created large enough to hold
the largest form record.

8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

Form Record Numbers

Form record numbers for form records are unique integers assigned at compile
time to each form record in a form record library.

In some manuals the term "message type number" is a synonym for "form record
number."

A form record number for a form record library is an attribute of the form record
library. This attribute contains the form record number of a specific form record.
Form record numbers determine I/0 operations for form record libraries, allowing
the form record to be specified at run time.

A self-identifying read is used when the executing program has not established
which form record in a specific form record library has been read. The program
must access the form record number attribute for the form record library to
determine the form record that has been read.

A self-identifying write allows the executing program to specifically identify the
form record to be written by placing the appropriate form record number value
into the form record number attribute of the form record library.

Transaction Types

Transaction types are elements of form record libraries. A transaction type
contains a pair of form records: an input form record and an output form record.
A transaction type identifies the relationship of the two form records that are
under it, namely, the input form record to the transaction type and the output
form record from the transaction type.

Transaction Numbers

Transaction numbers are similar to form record numbers. A transaction number is
a unique integer assigned at compile time to each transaction type in a form
record library.

A transaction number for a form record library is an attribute of the form record
library. This attribute contains the transaction number of a specific transaction
type. Transaction numbers provide another means of determining 1/0 operations
for form record libraries at run time.

After a self-identifying read, the application program must access the transaction
number attribute of the form record library being read to determine the
transaction type that has been executed.

8600 0734-000 6-3

Using the Screen Design Facility Plus (SDF Plus) Interface

Using ALGOL Functions as SDF Plus Extensions

Several ALGOL fuctions have been extended to work with SDF Plus. The
DICTIONARY compiler control option, as well as the LENGTH, OFFSET,
POINTER, RESIZE, SIZE and UNITS functions can be used as SDF Plus
extensions.

Additional information relating to these functions is included in Section 2, "Using
Advanced Data Dictionary System (ADDS) Extensions."

• DICTIONARY option

The DICTIONARY compiler control value option establishes the data
dictionary to use during compilation. This option is an ADDS extension that
can be used when SDF Plus is used with ADDS. A dictionary must be
established before the first executable statement. The dictionary specified in
the first occurrence of a DICTIONARY option is used as the data dictionary.
All other occurrences are ignored.

• LENGTH function

The LENGTH function returns the length of a specified entity in the
designated units.

• OFFSET function

The OFFSET function returns the number of units that the specified entity is
indexed from the beginning of the outermost record in which it is declared.

• POINTER function

The POINTER function returns a pointer to the specified input.

• RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier. For SDF Plus form record libraries, the size is given in bytes. The
size of the entire array is changed, regardless of the record's position in the
array.

• SIZE function

The SIZE function returns the size of the array underlying a given record
identifier. For SDF Plus form record libraries, the size is given in bytes. The
size returned is an integer representing the size of the entire array, regardless
of the record's position in the array.

• UNITS function

The UNITS function accepts an entity as input and returns, as an integer
value, the default unit size expected by the LENGTH and OFFSET functions.

8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

Invoking the Form Record Library
A form record library is invoked from a data dictionary that is specified with the
$SET DICTIONARY option. The form record library was placed in the data
dictionary by SDF Plus at the time that the form library dictionary was created.

Syntax

<dictionary form record library declaration>

- DICTIONARY FORMRECORDLIBRARY -------------------..

J <form record 1 ibrary ID> --.--------..--........_ ________ _

~ <entity qualifiers> ~
Explanation

The DICTIONARY FORMRECORDLIBRARY declaration invokes a form record
library with a description retrieved from the dictionary.

The form record library ID is the name by which the allocated record area is
recognized within the program and within the compiler. If the entity qualifier is
not specified, the form record library ID is used as the default name for both the
type and space.

The DICTIONARY FORMRECORDLIBRARY declaration can be declared using a
TYPE declaration and invocation. This type of declaration is not normally used.

Refer to the "Using the Advanced Data Dictionary System (ADDS) Extensions"
section of this volume for information describing entity qualifiers and TYPE
declarations.

Additional information relating to the <entity qualifiers> construct is included
under "Entity Qualifiers" in Section 2, "Using the Advanced Data Dictionary
System (ADDS) Extensions."

Examples

In the following example, the form record library titled APPLFORMRECLIB is
invoked from the dictionary and is allocated a buff er:

DICTIONARY FORMRECOROLIBRARY APPLFORMRECLIB;

In the following example, the form record library titled APPLFORMRECLIB is
invoked from the dictionary and is allocated a buff er called RECLIB:

DICTIONARY FORMRECOROLIBRARY RECLIB (NAME-APPLFORMRECLIB);

8600 0734-000 6-5

Using the Screen Design Faclllty Plus (SDF Plus) Interface

Usin-g the SDF Plus Remote File Interface
The following· paragraphs describe the syntax of the READFORM and
WRITEFORM statements. These statements are used to perform 1/0 operations
when interacting with SDF Plus by means of remote files.

READFORM Statement

6-6

The READFORM statement causes a form record to be read from the specified
remote file and stored in the specified storage area. Particular form records can
be read by designating the form record name. Self-identifying form records are
read by specifying the form record library name.

Syntax

<readform statement>

- READFORM - (- <file> - , --r- <form record> ~

L. <form record librarY>

Explanation

The READFORM statement returns the results of the 1/0 operation as a Boolean
value. If the 1/0 operation succeeds, the result is F ~E. The file used with this
statement must be a remote file. The compiler generates an error message if the
file is declared DmECT.

A specific read of a form record is completed by identifying the form record. The
result of the READFORM statement is to store that particular form record in the
storage area associated with the form record library.

A self-identifying read is performed by designating the form record library name
in the READFORM syntax. The form record returned is determined by the forms
processing performed in SDF Plus. A form record number is returned by
SDF Plus to be used to determine the form record that was read.

Esamples

In the following example, a self-identifying read of a form record library is
performed. The form record number field contains the form record number of the
form record that was read.

READFORM (RMTFILE, APPLFORMRECLIB);
FORMNUM :• APPLFORMRECLIB.FORMRECNUM;

In the following example, the form record FORMRECORDA is read from the form
record library APPLFORMRECLIB:

READFORM (RMTFILE, APPLFORMRECLIB.FORMRECORDA);

8600 0734-000

Using the Screen Design Faclllty Plus (SDF Plus) Interface

WRITEFORM Statement

The WRITEFORM statement causes a form record to be written to a specified
remote file. Specific form records can be written by designating the form record
name.

Syntax

<Writefonn statement>

- WRITEFORM - (- <file> --.t------------j..- ,
[- DEFAULT -]

[DATAERROR - <error #> -]

1 <f onn record> 3)
<fonn record library>

<text length> - , - <text>

<text length>

- <arithmetic expression> ---------------------

<text>

- <EBCDIC pointer> ------------------------1
Explanation

The WRITEFORM statement returns the results of the 1/0 operation as a Boolean
value. If the 1/0 operation succeeds, the result is F AI.8E.

The file used with this statement must be a remote file. The compiler generates
an error message if the file is declared DIRECT.

The DEFAULT option on a WRITEFORM statement causes SDF Plus to use
default values when it displays the form. This option is used when the
application program does not supply data for the form.

The DATAERROR option on a WRITEFORM statement allows you to respond to a
record received from the dictionary with an error indicator instead of another
record.

A specific write of a form record is completed by designating the form record. A
self-identifying write is performed by designating the form record library name in
the WRITEFORM statement and using the form record number attribute to assign
the form record number for that form record library. The form record number or
transaction number in the form record library must be assigned before the write
operation; otherwise, an error occurs.

8600 0734-000 6-7

Using the Screen Design Faclllty Plus (SDF Plus) Interface

6-8

Using the WRITEFORM statement with the text option causes the contents of a
text array to be written to a designateci remote f"lle.

8600 0734-000

Using the Screen Design Faclllty Plus (SDF Plus) Interface

Examples

In the following example, a self-identifying write of the form record library
APPLFORMRECLIB is performed. The form record number attribute assigns the
form record number of the form that is to be written.

APPLFORMRECLIB.FORMRECNUM :•
APPLFORMRECLIB.FORMRECORDB.FORMRECNUM;

WRITEFORM (RMTFILE, APPLFORMRECLIB);

In this example, the form record FORMRECORDA is written from the form record
library APPLFORMRECLIB:

WRITEFORM (RMTFILE, APPLFORMRECLIB.FORMRECORDA);

In the following example, the default values for the form record FORMRECORDA
are written:

WRITEFORM (RMTFILE [DEFAULT], APPLFORMRECLIB.FORMRECORDA);

In the following example, the program responds to the record received with an
error indicator:

WRITEFORM (RMTFILE [DATAERROR 5], FORMRECLIB);

In this example, the first 30 words of the text array T ...ARRAY are written to the
remote file RMTFILE and displayed in the text area of the form:

WRITEFORM (RMTFILE, 30, T..ARRAY);

8600 0734-000 6-9

Using the Screen Design Faclllty Plus (SDF Plus) Interface

Using the Form Record Number Attribute

6-10

The form record number attribute is used with either individual form records or
form record libraries. In some manuals the term "message type number" is used
as a synonym for "form record number."

The form record number attribute associated with individual form records is
preassigned by SDF Plus at compile time.

The form record number attribute associated with form record libraries is used
with self-identifying reads and self-identifying writes.

Syntax

<form record number>

1 <form record> ---.- . - FORMRECNUM

<form record 11brarY> ~
<form record>

- <form record library> - . - <form record name>-------------

<form record name>

- <identifier> --------------------------1
Explanation

The form record name must be qualified with the form record library name.

A form record number attribute of a form record library contains the form record
number field of the last form record read. This field should be queried after a
read of a specific form record to verify that the specific form record was actually
read. The transaction number field should be queried after a read of a
self-identifying form record to determine the action to be taken.

Changing the form record number attribute of a form record library allows
self-identifying writes. The form record number determines the form record that
is written.

A form record number attribute of a form record is the preassigned form record
number of the specified form record. These numbers are integer constants
assigned at compile time.

Attempting to change the form record number attribute of a form record results
in an error.

8600 0734-000

Using the Screen Design Faclllty Plus (SDF Plus) Interface

Examples

In the following example, B is assigned the integer value of the form record
FORMRECORDB:

B :-APPLFORMRECLIB.FORMRECORDB.FORMRECNUM;

In this example, the integer value B is assigned as a form record number for a
form record that is to be written in a self-identifying write:

APPLFORMRECLIB.FORMRECNUM :• B;

In the following example, the form record number of the form record
FORMRECORDB is assigned to be written using a self-identifying write:

APPLFORMRECLIB.FORMRECNUM :•
APPLFORMRECLIB.FORMRECORDB.FORMRECNUM;

This example shows an attempt to change the form record number attribute of
form record FORMRECORDB. This action results in an error.

FORMRECORDB.FORMRECNUM :• B;

8600 0734-000 6-11

Using the Screen Design Facility Plus (SDF Plus) Interface

Using the Transaction Number Attribute

6-12

The transaction number attribute is used with either individual transaction types
or form record libraries. Each transaction number is associated with a transaction
name.

Syntax

<transaction number>

1 <transaction type> ----r- . - TRANSNUM

<form record librarY> _J

<transaction type>

- <form record library> - . - <transaction name> --------------1

<transaction name>

- <identifier> ---------------------------1

Explanation

The transaction name must be qualified with the form record library name.

A transaction number of a form record library contains the transaction number of
the last transaction read. This field should be queried after every read to
determine what action the program should take. Note that the transaction
number uniquely indicates both the form record that was read and the action to
take with it, but the same form record can appear in two different transactions.
For example, one transaction might return an empty form record that is to be
prefilled, while another transaction might return the same form record that now
contains data to be processed. Both reads returned the same form record, but the
actions to be taken by the application differed. Only the transaction number
uniquely indicates which action to take-the form record number is not sufficient
in most cases.

Changing the transaction number of a form record library or a transaction type is
not allowed. You should use the form record number of the form record library to
indicate to SDF Plus the action to take on the next write.

Attempting to change the transaction number attribute of a transaction type
results in an error.

8600 0734-000

Using the Screen Design Faclllty Plus (SDF Plus) Interface

Examples

In the following example, G is assigned the integer value of the transaction
TRANSACTIONL:

G :• APPLFORMRECLIB.TRANSACTIONL.TRANSNUM;

In this example, the transaction number of a form record library is queried to
verify that a specific transaction has just been read. MYFORMRECPTT is a prefill
request from SDF Plus to the application program. MYFORMRECPREis a prefill
response from the application program to SDF PLus. -

IF APPLFORMRECLIB.TRANSNUM • FORMRECLIB.MYFORMRECPTT.TRANSNUM THEN
APPLFORMRECLIB.FORMRECNUM :• FORMRECLIB.MYFORMRECPRE.FORMRECNUM;

The next example shows the processing of an update transaction.
MYFORMRECTT is an update transaction that transfers data entered by the user
from SDF Plusto the application program. FORMRECLIBSR is a standard
response. There is one standard response per library. Thestandard response
indicates that the application program accepted the update transaction. Use this
technique when the application program allows SDF Plus to decide which form to
display next.

IF FORMRECLIB.TRANSNUM • FORMRECLIB.MYFORMRECTT THEN
FORMRECLIB.FORRECNUM :• FORMRECLIB.FORMRECLIBSR.FORMRECNUM;

8600 0734-000 6-13

Using the Screen Design Facility Plus (SDF Plus) Interface

Using SDF PLUS with COMS
SDF Plus can be used with COMS to take advantage of COMS direct windows.
Using SDF Plus with COMS provides enhanced routing capabilities for forms and
also allows preprocessing and postprocessing of form records.

Refer to the Communications Management System (COMS) Programming Guide
for detailed information on the use of the COMS direct window interface. The
following guidelines explain the steps to follow when using SDF Plus and COMS
together.

Using COMS Input/Output Headers

6-14

SDF Plus supports the use of COMS headers. Three fields are defined within the
headers for use with SDF Plus. These fields are SDFINFO, SDFFORMRECNUM,
and SDFTRANSNUM. A description of each follows.

The SDFINFO field is used to identify specific form message processing requests
(on output) or to return form message processing errors (on input). On the output
(sending) path, this field can contain the following values:

Value Explanation

0 Normal form message processing

100 last transaction error. This value is used for outgoing messages only.

101 Transaction error. Used when more than one transaction error is sent.
The application can send multiple messages in which the value of the
SDFINFO field is 101. This value is used for outgoing messages only.

200 Text message processing

On the input (receiving) path, this field can contain the following values, which
correspond to status information concerning the requested form message
processing:

Value ExplaMtlon

0 No error

-100 Form message timestamp mismatch

- 200 Incorrect form record number specified on the send operation

- 300 Incorrect transaction number specified on the send operation

The SDFFORMRECNUM field is used to designate the form record to be written
(on output) or the form record that is to be received (on input).

8600 0734-000

Using the Screen Design Facility Plus (SDF Plus) Interface

The SDFTRANSNUM field is meaningful only on input and contains the number
of the SDF Plus transaction that was received. This field should not be altered by
the user application.

Sending and Receiving Messages

When using SDF Plus and COMS together, follow the usual statements for each
product, with the following guidelines:

1. COMS input/output headers should be used instead of binary communication
descriptions to take advantage of the new features in SDF Plus.

2. To send normal messages, the application program must move the value 0
(zero) into the SDFINFO field of the output header. The application program
must set the SDFFORMRECNUM field. The form record library must then be
passed as the <message area> construct in a SEND statement.

3. To receive a message, the application program must do the following:

a. If the SDFINFO field contains a value less than 0 (zero), this field also
contains an error code that indicates a problem with message processing.
In addition, the FUNCTION-INDEX field of the input header contains the
value 100.

b. If the SDFINFO field contains the value 0 (zero), the application program
can query the form record number and transaction number attributes for
the form record library from the SDFFORMRECNUM and
SDFTRANSNUM fields of the input header.

Sending Transaction Errors

SDF Plus supports the ability to send error codes in response to incorrect data
received by the user application. These error codes are sent as integer values,
which are used by SDF Plus to process a user-defined error procedure for the
form record library.

To send transaction error codes, the user application must do the following:

• Move the value 100 or 101 into the SDFINFO field of the output header.

• Move the value of the transaction error into the SDFFORMRECNUM field of
the output header.

• Move the SDFTRANSNUM field from the input header to the output header.

• Send the output header to display the message.

The user application can send any arbitrary message area along with the output
he·ader. SDF Plus only processes the information within the output header.

8600 0734-000 6-15

Using the Screen Design Facility Plus (SDF Plus) Interface

Eu.mp le

In this example, INX contains the number of the transaction error.

COMS_OUT.SDFINFO :• 100;
COMS_OUT.SDFFORMRECNUM :• INX;
COMS_OUT.SDFTRANSNUM :• COMS_IN.SDFTRANSNUM;
COMS_OUT.TEXTLENGTH :• COMS_IN.TEXTLENGTH;
SEND(COMS_OUT,COMS-IN.TEXTLENGTH,APPLFORMRECLIB);

Sending Text Messages

6-16

SDF Plus supports the ability to send text messages for display on the text area
of a form.

To send a text message, the user application must do the following:

• Move the value 200 into the SDFINFO field of the output header.

• Move the text message into a message area to be sent through COMS.

• Use the SEND statement to send the text message.

The text message will be displayed when the next form is displayed.

For information about the extensions used with COMS, refer to Section 3, "Using
Communication Management System (COMS) Features."

Eu.mp le

In this example, literal text is moved into the message area. The form to display
the text message is FORMl.

COMS_OUT.SDFINFO :• 200;
REPLACE STEXT[O] BY "This is an example of application text" FOR 38;
SEND (COMS_our. 38, STEXT);
COMS_OUT.SDFINFO :• 0;
COMS_OUT.SDFFORMRECNUM :• FORMl.FORMRECNUM;
SEND (COMS_OUT, COMS_IN.TEXTLENGTH, FORMl);

8600 0734-000

Using the Screen Design Faclllty Plus (SDF Plus) Interface

SDF PLUS Sample Programs
Example 1 highlights the different uses of the SDF Plus program interface.

Example 2 demonstrates the use of the SDF Plus program interface.with COMS.

Example 1: General Use of SDF Plus Program Interface

The following is a sample program showing different uses of the SDF Plus
program interface. For information about handling remote file errors in an
application program, refer to the SDF Plv.s Technical Overview.

In this program, a READFORM statement is performed. The transaction number
attribute is then interrogated to determine the form record that was read. The
appropriate response is then indicated by setting the form record number
attribute.

The program accepts two string or binary inputs from a remote file, concatenates
or adds them together, and returns the original inputs and the result as outputs
on the terminal screen. The form record library was created in SDF Plus.

$SET LIST STACK
$SET DICTIONARY • "SDFPLUSDICT"
BEGIN

FILE REMFILE (BLOCKSIZE • 2040,
KIND • REMOTE,
MAXRECSIZE • 2040,
BLOCKSTRUCTURE • EXTERNAL,
MYUSE • IO,
UNITS •CHARACTERS);

DICTIONARY FORMRECORDLIBRARY DTCOMPLEXLIB
(DIRECTORY• "SMITH",

VERSION • 1);
BOOLEAN END_PGMV;
EBCDIC ARRAY MYSTRING1[0:24],

MYSTRING2[0:24],
MYSTRING[0:49];

INTEGER MYBNUMBER,
MYBNUMBERl,

DEFINE
MYBNUMBER2;
BLANK - II 11#;

PROCEDURE INITIALIZE-ALL;
BEGIN

8600 0734-000

REPLACE MYSTRINGl BY BLANK FOR 25;
REPLACE MYSTRING2 BY BLANK FOR 25;
REPLACE MYSTRING BY BLANK FOR 50;
MYBNUMBER :• 0;
MYBNUMBERl :• O;
MYBNUMBER2 :• O;
END; S INITIALIZE-ALL

6-17

Using the Screen Design Facility Plus (SDF Plus) Interface

6-18

PROCEDURE CONCATSTRINGS;
BEGIN
REPLACE MYSTRINGl BY

DTCOMPLEXLIB.APUTALPHAS.PASTRINGl FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS.PASTRINGl);

REPLACE MYSTRING2 BY
DTCOMPLEXLIB.APUTALPHAS.PASTRING2 FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS.PASTRING2);

REPLACE MYSTRING BY MYSTRINGl FOR 25, MYSTRING2 FOR 25;
END; % CONCATSTRINGS

PROCEDURE BINARYADD;
BEGIN
MYBNUMBERl :•

INTEGER(DTCOMPLEXLIB.APUTBINARY.PBNUMBERl);
MYBNUMBER2 :•

INTEGER(DTCOMPLEXLIB.APUTBINARY.PBNUMBER2);
MYBNUMBER :• MYBNUMBERl + MYBNUMBER2;
END; s·BINARYADD

PROCEDURE GETBINARY;
BEGIN
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBERl :• MYBNUMBERl;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER2 :• MYBNUMBER2;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER :• MYNUMBER;
END; % GETBINARY

PROCEDURE GETALPHAS;
BEGIN
REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRINGl

BY MYSTRINGl FOR 25;
REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING2

BY MYSTRING2 FOR 25;
REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING

BY MYSTRING FOR 50;
END; % GETALPHAS

PROCEDURE MAIN_FORM;
BEGIN
LABEL MAIN-FORM-EXIT;
IF READFORM (REMFILE, DTCOMPLEXLIB) THEN

BEGIN % true result ;mplies IO operation failed
WRITE(REMFILE,//,"READFORM ERROR");
END_PGMV :• TRUE;
GO MAIN_FORH-EXIT;
END;

CASE DTCOMPLEXLIB.TRANSNUM OF
BEGIN
(DTCOMPLEXLIB.AGETALPHASPTT.TRANSNUM):

BEGIN
DTCOMPLEXLIB.FORMRECNUM :•

DTCOMPLEXLIB.AGETALPHASPRE.FORMRECNUM;
GETALPHAS;
END;

(DTCOMPLEXLIB.AGETBINARYPTT.TRANSNUM):

8600 0734-000

Using the Screen Design Faclllty Plus (SDF Plus) Interface

BEGIN
DTCOMPLEXLIB.FORMRECNUM :•

DTCOMPLEXLIB.AGETBINARYPRE.FORMRECNUM;
GETBINARY;
END;

(DTCOMPLEXLIB.APUTALPHASTT.TRANSNUM):
BEGIN
DTCOMPLEXLIB.FORMRECNUM :•

DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
CONCATSTRINGS;
END;

(DTCOMPLEXLIB.APUTBINARYTT.TRANSNUM):
BEGIN
DTCOMPLEXLIB.FORMRECNUM :•

DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
BINARYADD;

(DTCOMPLEXLIB.AGETALPHASTT.TRANSNUM):
(DTCOMPLEXLIB.AGETBINARYTT.TRANSNUM):

BEGIN
DTCOMPLEXLIB.FORMRECNUM :•

DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
END;

ELSE:
BEGIN
WRITE(REMFILE.11."UNKNOWN TRANSACTION");
END_PGMV :• TRUE;
GO MAIN_FORM_EXIT;
END;

END; I CASE
IF WRITEFORM (REMFILE. DTCOMPLEXLIB) THEN

BEGIN I true result implies IO operation failed
WRITE(REMFILE.11."WRITEFORM ERROR");
END_PGMV :• TRUE;
END;

MAIN-FORM-EXIT:
END MAIN_FORM;

INITIALIZLILL;
DO MAIN-FORM
UNTIL END_PGMV;
END.

8600 0734-000 6-19

Using the Screen Design Faclllty Plus (SDF Plus) Interface

Example 2: Using COMS with the SDF Plus Program Interface

6-20

This sample program uses the same programming logic as that in Example 1.
However, this COMS interface example shows the application program interacting
with users through a COMS window. The SDFTRANSNUM field, which is located
in the COMS input header, is interrogated to determine the form record that was
read. The response is indicated by setting the SDFFORMRECNUM field, located in
the COMS output header. Additionally, the program accepts two string or binary
inputs from COMS into a message area declared in the program.

Refer to the COMS Programming Guide for a discussion of COMS programming
issues and a detailed explanation of the COMS features and functions available
with each version of COMS.

$SET LIST STACK
$SET DICTIONARY 11SDFPLUSDICT11

BEGIN
DICTIONARY FORMRECORDLIBRARY DTCOMPLEXLIB

BOOLEAN END..PGMV;

(DIRECTORY• 11 SMITH11 ,

STATUS• ANY,
VERSION• 1);

EBCDIC ARRAY MYSTRING1[0:24],
MYSTRING2[0:24],
MYSTRING[0:49],
STEXT[0:32];

INTEGER MYBNUMBER,
MYBNUMBERl,
MYBYNUMBER2;

DEFINE BLANK - II 11#;

S COMS declarations
INPUTHEADER COMS_IN;
OUTPUTHEADER COMS_OUT;
EBCDIC ARRAY MSG[0:255];
REAL SDF..AGENDA;
DEFINE EOF_NOTICE • 99#;

LIBRARY SERVICE-LIB
(LIBACCESS • BYFUNCTION,

FUNCTIONNAME • 11 COMSSUPPORT.",
LIBPARAMETER • 110211);

INTEGER PROCEDURE GET-DESIGNATOR-USIN6-NAME
(ENTY_NAME,

ENTY_TYPE,
ENTY-DESIGNATOR);

VALUE ENTy_TYPE;
EBCDIC ARRAY ENTY_NAME[O];
REAL ENTY-DESIGNATOR;
INTEGER ENTY_TYPE;

LIBRARY SERVICE-LIB;

8600 0734-000

Using the Screen Design Faclllty Plus (SDF Plus) Interface

PROCEDURE INITIALIZE..COMS;
BEGIN
S get the title of COMS
COMSSUPPORT.LIBACCESS :• VALUE(BYTITLE);
REPLACE MSG BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
COMSSUPPORT.TITLE :• STRING(MSG[0],256);
ENABLE(COMS_IN,"ONLINE");
S get the agenda designator
REPLACE MSG[O] BY "JONES", II II FOR 251;
GET_DESIGNATOR_USIN6-NAME(MSG,3,SDF..AGENDA);
END; S INITIALIZE..COMS;

PROCEDURE INITIALIZE..ALL;
BEGIN
REPLACE MYSiRINGl BY BLANK FOR 25;
REPLACE MYSTRING2 BY BLANK FOR 25;
REPLACE MYSTRING BY BLANK FOR 50;
MYBNUMBER :• 0;
MYBNUMBERl :• 0;
MYBNUMBER2 :• 0;
END; S INITIALIZE..ALL

PROCEDURE CONCATSTRINGS;
BEGIN
REPLACE MYSTRINGl BY

DTCOMPLEXLIB.APUTALPHAS.PASTRINGl FOR
LENGTH(DTCOMPLEXLIB.APUTALPHAS.PASTRINGl);

REPLACE MYSTRING2 BY
DTCOMPLEXLIB.APUTALPHAS.PASTRING2 FOR
LENGTH{DTCOMPLEXLIB.APUTALPHAS.PASTRING2);

REPLACE MYSTRING BY MYSTRINGl FOR 25, MYSTRING2 FOR 25;
END; S CONCATSTRINGS

PROCEDURE BINARYADD;
BEGIN
MYBNUMBERl :•

INTEGER(DTCOMPLEXLIB.APUTBINARY.PBNUMBERl);
MYBNUMBER2 :•

INTEGER(DTCOMPLEXLIB.APUTBINARY.PBNUMBER2);
MYBNUMBER :• MYBNUMBERl + MYBNUMBER2;
END; S BINARYADD

PROCEDURE GETBINARY;
BEGIN
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBERl :• MYBNUMBERl;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER2 :• MYBNUMBER2;
DTCOMPLEXLIB.AGETBINARYPRE.GBNUMBER :• MYBNUMBER;
END; S GETBINARY;

PROCEDURE GETALPHAS;
BEGIN

8600 0734-000

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRINGl
BY MYSTRINGl FOR 25;

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING2
BY MYSTRING2 FOR 25;

6-21

Using the Screen Design Facility Plus (SDF Plus) Interface

6-22

s

REPLACE DTCOMPLEXLIB.AGETALPHASPRE.GASTRING
BY MYSTRING FOR 50;

END; S GETALPHAS

PROCEDURE SENDTEXT;
BEGIN .
REPLACE STEXT[O] BY

"·- THIS IS A SEND TEXT TEST -- " FOR 31;
COMS_OUT.SDFINFO :• 200;
COMS_OUT.TEXTLENGTH :• 31;
SENDSTATUS :• SEND (COMS_OUT, 31, STEXT);
END; S SENDTEXT

~--' S MAIN PROGRAM S

~--s s
LABEL MAIN-EXIT;
s

INITIALIZLILL;
INITIALIZE-COMS;
s

DO
BEGIN
RECEIVE (COMS_IN, DTCOMPLEXLIB);
IF COMS_IN.STATUSVALUE NEQ EOF_NOTICE THEN

BEGIN
IF COMS_IN.FUNCTIONSTATUS GEQ 0 THEN

BEGIN
COMS_OUT.DESTCOUNT :• 1;
COMS_OUT.DESTINATIONDESG :• COMS-IN.STATION;
COMS_OUT.SDFTRANSNUM :• COMS_IN.SDFTRANSNUM;
COMS_OUT.AGENDA :• SDF...AGENDA;

CASE COMS_IN.SDFTRANSNUM OF
BEGIN
(DTCOMPLEXLIB.AGETALPHASPTT.TRANSNUM);

BEGIN
COMS_OUT.SDFFORMRECNUM :•

DTCOMPLEXLIB.AGETALPHASPRE.FORMRECNUM;
GETALPHAS;
SENDTEXT;
END;

(DTCOMPLEXLIB.AGETBINARYPTT.TRANSNUM):
BEGIN
COMS_OUT.SDFFORMRECNUM :•

DTCOMPLEXLIB.AGETBINARYPRE.FORMRECNUM;
GETBINARY;
END;

(DTCOMPLEXLIB.APUTALPHAS.TRANSNUM):
BEGIN
COMS_OUT.SDFFORMRECNUM :•

DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
CONCATSTRINGS;
END;

(DTCOMPLEXLIB.APUTBINARYTT.TRANSNUM):

8600 0734-000

Using the Screen Design Faclllty Plus (SDF Plus) Interface

BEGIN
COMS_QUT.SDFFORMRECNUM :•

DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
BINARYADD;
END;

(DTCOMPLEXLIB.AGETALPHASTT.TRANSNUM):
(DTCOMPLEXLIB.AGETBINARYTT.TRANSNUM):

BEGIN .
DTCOMPLEXLIB.FORMRECNUM :•

DTCOMPLEXLIB.DTCOMPLEXLIBSR.FORMRECNUM;
END;

ELSE:
BEGIN
END_PGMV :• TRUE;
GO MAIN_EXIT;
END;

END; S CASE

S set up COMS output header
COMS-OUT.TEXTLENGTH :• COMS-IN.TEXTLENGTH;
COMS_OUT.SDFINFO :• O;
SEND (COMS_OUT, COMS_IN.TEXTLENGTH,DTCOMPLEXLIB);
END; S COMS_IN.FUNCTIONSTATUS GEQ 0

END S COM..IN.STATUSVALUE NEQ EOF_NOTICE
ELSE

END_PGMV :• TRUE;
END
s

MAIN-EXIT:
UNTIL END_PGMV;
END.

8600 0734-000 6-23

Section 7
Using the Semantic Information
Manager (SIM) Interface

Semantic Information Manager (SIM) is a database management system that
provides for the control, retrieval, and maintenance of data.

This section explains how to use ALGOL to manipulate data in an SIM database
and provides samples of typical applications used with SIM. It contains
discussions of the ALGOL extensions developed for the following functions:

• Declaring a SIM database.

• Mapping SIM types into ALGOL.

• Declaring or discarding a query to a SIM database.

• Declaring an entity reference variable to explicitly hold a reference to a SIM
database entity.

• Opening and closing a SIM database.

• Assigning SIM database attributes.

• Using statements for transaction state and transaction points.

• Using selection expressions to determine entities or values within SIM
database statements.

• Selecting a set of entities and associating it \lvith the query.

• Altering level values in a transitive closure retrieval.

• Retrieving entities from the SIM database.

• Updating entities with single- or multiple-statement updates.

• Exception handling of SIM statements.

Refer to the 111/oE:l:ec Semantic 111/ormation Manager (SIM) Programming Guide
for detailed information on SIM programming considerations. Consult the
111/oE:l:ec Semantic 111/ormation Manager (SIM) Technical OvenJiew for SIM
concepts. For information on defining files and elements in SIM, refer to the
111/oE:l:ec ADDS Operations Guide.

For programming considerations when using SIM and COMS together, consult the
111/oExec SIM Programming Guide.

8600 0734-000 7-1

Using the Semantic Information Manager (SIM) Interface

7-2

The SIM interface uses the following ALGOL type 2 reserved words:

ABORTTRANSACTION DMMATCH INVERSE
ALL DMMAX MODIFY
APPLYINSERT DMMIN NONE
APPLYMODIFY DMNEXTEXCEPTION ORDER
BINARY DMPOS ORDERING
CANCELTRPOINT DMPRED QUERY
COLLATING DMRECORD RECORD
CURRENT DMRPT REFERENCE
DISCARD DMSQRT RETRIEVE
DMABS DMSUCC SA VETRPOINT
DMAVG DMSUM SELECT
DMCHR DMTRUNC SEMANTIC
DMCONTAINS ENTITY SETTOCHILD
DMCOUNT EQV_EQL SETTOPARENT
DMEQUIV EQV_GEQ SOME
DMEXCEPTIONINFO EQV_GTR STARTINSERT
DMEXCEPTIONMSG EQV...LEQ STARTMODIFY
DMEXCLUDES EQV~ SUBROLE
DMEXISTS EQV_NEQ TRANSITIVE
DMEXT EXCLUDE TYPE
DMISA EXISTS USING
DMLENGTH INCLUDE WHERE

The SIM, Data Management System II (DMSII), Communications Management
System (COMS), and Advanced Data Dictionary System (ADDS) interfaces can be
used within the same program. For example, both SIM and DMSII data bases can
be accessed in the same program. COMS and SIM work together to provide a
recoverable transaction system for a SIM database. The DICTIONARY and
RANGECHECK options of the ADDS interface can also be used as SIM extensions.

Note: lJ the DICTIONARY compiler control option does not appear before the
first executable statement, SIM defaults to the dictionary titled
"DATADICTIONARY" and the program might not compile properly.

Note that if DMSII and SIM databases are accessed in the same program, each
database must be invoked, manipulated, and processed with its own extensions.
Use DMSII and BDMSALGOL extensions for DMSII databases. Use SIM extensions
for SIM databases.

Additional information relating to ADDS, COMS and DMSII is included in Section
3, "Using Communications Management System (COMS) Features," and Section 4,
"Using the Data Management System II (DMSII) Interface."

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Using ADDS Extensions as SIM Extensions
ADDS can be used to define a SIM database. However, different methods of data
retrieval are used when directly interfacing to ADDS and when using SIM to
interface to ADDS.

• When a program accesses ADDS directly, the compiler links directly to ADDS
to get the non-SIM data descriptions.

• When a program accesses SIM, it indirectly accesses ADDS. The compiler does
not link directly to ADDS.

If a program accesses both ADDS and SIM, it gets two links to ADDS; one direct
and one indirect. Tracking data is not integrated.

The DICTIONARY and the RANGECHECK compiler control options, as well as the
LENGTH, OFFSET, POINTER, and UNITS functions can also be used as SIM
extensions. More detailed information about the ADDS extensions that are used

. with SIM is included in Section 2, "Using Advanced Data Dictionary System
(ADDS) Extensions."

Purpose of the Dictionary Option

The DICTIONARY compiler control value option establishes the data dictionary to
use during compilation. A dictionary must be established before the first
executable statement. The dictionary specified in the first occurrence of a
DICTIONARY option is used as the data dictionary. All other occurrences are
ignored. If a dictionary is not specified, SIM defaults to the dictionary titled
"DATADICTIONARY" and the program may not compile properly.

Purpose of the Rangecheck Option

The RANGECHECK option is a Boolean option that causes the compiler to
generate code that performs range checking at run time on values that were not
known at compile time. The option is set by default. A run-time fault occurs if a
value fails a range check; the program is discontinued and an "Invalid Operation"
is reported.

8600 0734-000 7-3

Using the Semantic Information Manager (SIM) Interface

Purpose of Functions

7-4

The following ADDS functions can be used with SIM. All of these functions can be
used with DMRECORDs.

• LENGTH function

The LENGTH function returns the length of a specified entity in the
designated units.

• OFFSET function

The OFFSET function returns the number of units that the specified entity is
indexed from the beginning of the outermost record in which it is declared.

• POINTER function

The POINTER function returns a pointer to the specified input.

• RESIZE function

The RESIZE function changes the size of the array underlying a given record
identifier. For SIM DMRECORDs, the size is given in bytes. The size of the
entire array is changed, regardless of the record's position in the array.

• SIZE function

The SIZE function returns the size of the array underlying a given record
identifier. For SIM DMRECORDs, the size is given in bytes. The size returned
is an integer representing the size of the entire array, regardless of the
record's position in the array.

• UNITS function

The UNITS function accepts an entity as input and returns, as an integer
value, the default unit size expected by the LENGTH and OFFSET functions.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Declaring a SIM Database
A SEMANTIC DATABASE declaration specifies the SIM database to be used in a
query. Only included classes and attributes belonging to the included classes can
be used in a query.

Multiple SIM databases can be declared in a program. A SIM database can be
declared more than once in the same program. Refer to the lnfoExec SIM
Programming Guide for the SIM-defined limit to the number of SIM databases
that can be declared in one program.

SIM and DMSII databases can be used in the same program, including separately
compiled programs that are bound. Each database must be declared in its own
DATABASE declaration. A DMSII database is available only from BDMSALGOL.

Note that if DMSII and SIM databases are accessed in the same program, each
database must be invoked, manipulated, and processed with its own extensions.
Use DMSII and BDMSALGOL extensions for DMSII databases. Use SIM extensions
for SIM databases.

Two different databases can be updated in the same program only if they are the
same physical database.

Before a SIM database can be used in a SIM statement, it must be declared and
opened. Also, an access method must be stated. The ADDS for the database must
be specified in the DICTIONARY compiler control value option that appears
before the first executable statement.

Any hyphens in the identifier of an entity are translated to underscores by the
ALGOL compiler before the identifier is passed to SIM.

Additional information relating to SIM database declarations is included under
"SIM OPEN statement" in this section and "Invoking a DMSII Database" in
Section 4, "Using the Data Management System II (DMSII) Interface." Related
information is also available under "DICTIONARY Option: Establishing a Data
Dictionary" and "Entity Qualifiers" in Section 2, "Using Advanced Data
Dictionary System (ADDS) Extensions."

Syntax

<database declaration>

- SEMANTIC - DATABASE - <database reference> --------------

8600 0734-000 7-5

Usln1 the Semantic Information Manager (SIM) Interface

7-6

<database reference>

- <database name> -...--------.

L <entity qualifiers> ~
(<class ID list>) -----

Additional information relating to the <entity qualifiers> construct is included
under "Entity Qualifiers" in Section 2, "Using Advanced Data Dictionary System
(ADDS) Extensions." ·

<class ID list>

r <Class ID> -'------------------1
L calfas ID> - • J

<alias ID>

- <identifier> -------------------------1
<Class ID>

- cfdentffier> ------------------------

Explanation

The prefix "SEMANTIC" identifies the database as a SIM database. If the prefix
is not used, a DMSll database is assumed.

A SIM database can be invoked more than once. The <database name> construct
is the name of the declared SIM data base. If there are multiple SIM databases
involved in a query, the entity qualifiers are used to resolve any ambiguity. The
database name must be unique within scope rules.

The <class ID list> construct is a list of the SIM database classes used by the
program. If the program accesses more than one SIM database, naming conflicts
can occur among the database classes. Using the <alias ID> construct ensures
uniqueness of the class names. If only one SIM database is declared in the
program or if there are no conflicts, no alias is needed.

Bu.mple

In the following example, the SIM database UNIVDB is declared. It is qualified by
its name and version. The class list includes the classes INSTRUCTOR and
COURSE. An alias, CLASS, is equated with the class COURSE. Note the colon (:)
preceding the class list.

SEMANTIC DATABASE UNIVDB
(NAME • UNIVERSITYDB, VERSION • 103)
(INSTRUCTOR, CLASS• COURSE);

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Mapping SIM Types Into ALGOL
SIM data items are normally mapped from the SIM database into an ALGOL
program according to the default types shown below in Table 7-1. Fields,
however, can be declared in DMRECORDs with any of the allowed types. When
this occurs, the compiler emits code to perform the mapping to the default type.

Table 7-1. Mapping SIM Types Into ALGOL

SIM Type Default Type Allowed Type

Integer, Date, Time, Integer Real, Double, Integer
Subrole

Real Real Double, Integer, Real

Number Double, Integer Integer, Real, Double

Character EBCDIC array [0:0] EBCDIC array[O:n]

Fixed & Variable String, EBCDIC array[O:n] EBCDIC
Symbolic

KANJI Character EBCDIC array[O:n•2] None

KANJI String Coerced into EBCDIC None

Boolean Boolean Real, Boolean

Compound Attribute Record Record

Entity Reference Entity Reference Entity Reference

Range Base type Base type

Enumeration Base type Base type

The SIM type "date" is mapped into an ALGOL integer. In an arithmetic form, the
date can be used with arithmetic operators such as MOD and DIV. The date is in
the format "YYYYMMDD". The format is explained below.

Symbol

yyyy

MM

DD

Meaning

A four-digit representation of the year

A two-digit representation of the month

A two-digit representation of the day

For example, "19891003" is October 3, 1989.

As a default, the SIM type "number" is mapped as either a double or an integer.
The default is double when the number is greater than 11 digits. The default is
integer when the number is less than or equal to 11 digits.

8600 0734-000 7-7

Using the Semantic Information Manager (SIM) Interface

7-8

If you use a string type or a symbolic type, remember that the upper bound of
the default ALGOL type is set up to handle the largest possible string or symbolic
value.

• For string types, the default upper bound is equal to the maximum string
length allowed by the compiler minus one.

• Symbolic types have a f'lxed length of 30 regardless of the symbolic value.
The default upper bound is therefore 29.

If you declare an upper bound that is less than the default, the compiled program
displays a warning message when an associated SELECT statement is executed.

SIM types are explained in the lfl/oExec Semantic lfl/ormati<m Manager (SIM)
Technical Overview. ALGOL types, except Record and Entity Reference, are
explained in Volume 1 of this manual.

Additional information relating to SIM types is included under "Declaring an
Entity Reference Variable Data Type," and "Type Declaration and Invocation for
SIM" in this section. Related information is also available in the definintion of
record types under "ALGOL Data Types for ADDS" in Section 2, "Using
Advanced Data Dictionary System (ADDS) Extensions."

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Queries
A query refers to both inquiry and update requests to a SIM database. A query
consists of the query statement, the query variable, and the DMRECORD.

A query statement is sent to SIM to instruct the SIM database about the action to
be performed. Query statements are constructed by the compiler from the
SELECT, MODIFY, INSERT, and DELETE statements. (The multiple-statement
MODIFY and INSERT update assignments are constructed as query statement
fragments.) The query statements are precompiled and stored with the object
code until run time, when SIM acts on the precompiled statements. One query
statement can be associated with more than one query variable.

The query variable represents an active query. It contains information about the
state of the query. The query variable can be associated with more than one
query statement, but only one query variable can be active at any time.

The DMRECORD gives the format of the data to be retrieved. A DMRECORD can
be used for multiple query statements, as long as the structure of the record is
compatible with the data to be retrieved.

Perform the following steps to create and use a query:

1. Declare and open the SIM database.

2. Declare the query variable and all other needed variables.

3. If desired, put the program in transaction state.

4. Execute the query. A query consists of statements that select, retrieve, and
manipulate the entities.

6. Take the program out of transaction state as needed. When the query is no
longer needed, close it with a DISCARD statement.

The DATABASE declaration specifies the SIM database. Only the classes included
in the declaration can be used in queries. The OPEN statement makes the SIM
database accessible and specifies an access mode.

The BEGINTRANSACTION statement initiates transaction state.

The SELECT, SETTOPARENT, SETTOCHILD, and RETRIEVE statements are used
to select the entities for the query and to retrieve the data.

The SELECT statement is used to associate a selected set of entities with the
query and to map SIM database attributes to previously def'med DMRECORDs.
Selection expressions can be used within the SELECT statement to specify which
entities are to be included in the selected set.

For all queries, a selection expression is used to identify the set of entities upon
which the query operates. The selection expression serves to narrow the group of
entities in the perspective class and classes of interest for the scope of the query.

8600 0734-000 7-9

Using the Semantic Information Manager (SIM) Interface

A global selection expression applies to the whole query. A local selection
expression applies only to a specific entity-valued attribute (EV A).

The RETRIEVE statement is used to retrieve the data.

The SETTOCHILD and SETTOP ARENT statements are used to manipulate the
levels involved in a selection and retrieval in transitive closure.

The query can be closed by ending the transaction state with an
ENDTRANSACTION statement (if the selection occurred within transaction
state), by closing the SIM database with a CLOSE statement, or discarding the
current query with a DISCARD statement.

Query variables can be passed as by-name parameters. Program variables and
expressions can be used within query statements. DMRECORDs cannot be the
target of an assignment; however, database attributes to be modified or inserted
that are associated with a query variable can be the target of a SIM database
assignment.

The SIM statements and the data management (DM) functions described in this
section are used to manipulate the query and the retrieved data.

SIM supports a variety of functions which, when used within a query, are
evaluated during the course of the query execution by the SIM system. These
functions are explained in this section.

Additional information relating to SIM queries is included under "SIM
Statements," "Using Data Management Functions and Expressions," "Type
Declaration and Invocation for SIM" and "Declaring an Entity Reference Variable
Data Type" in this section.

Retrieval and Update Queries

7-10

Retrieval queries are always used with the SELECT statement.

A retrieval query can span one or more classes. Generally, there is one class that
a query is directed from, the perspective class. Additional classes are viewed in
relation to the perspective class. The relationships are maintained via
entity-valued attributes (EV As).

When there are multiple classes of interest in a retrieval query, the classes must
be connected so that common entities can be selected. For example, if STUDENT
and INSTRUCTOR are both classes, it is possible to find students and instructors
with the same name or with the same age.

The layout of retrieved data is specified as part of the query and does not need
to bear any direct resemblance to the physical or conceptual layout of the data.
However, it must be consistent with the conceptual layout, as determined by SIM.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Update queries are used in transaction state to update entities using the attribute
assignment statements. Update queries can be used for limited purposes with the
SELECT statement.

There are two different forms of update statements, single- and
multiple-statement updates.

• With a single-statement update, all assignments are executed at the point
where a MODIFY or INSERT statement is encountered.

• The multiple-statement update allows dynamic specification of the attribute
assignments to be applied for the specified update. At run time, the
multiple-statement update is dynamically delimited by the ST ART and APPLY
syntax of the MODIFY and INSERT statements.

Additional information relating to retrieval and update queries is included under
"Declaring a Query Data Type," "Queries," "RETRIEVE Statement," "SELECT
Statement," "SIM MODIFY statement," "SIM INSERT statement," and "SIM
DELETE statement" in this section.

8600 0734-000 7-11

Using the Semantic Information Manager (SIM) Interface

Declaring a Query Data Type

7-12

The QUERY declaration specifies the name of the query variable and the classes
or types used in the query.

Additional information relating to the query declaration is included under
"Retrieval and Update Queries," and "Queries" in this section.

<query declaration>

- QUERY - <query ID> - (1 <Class ID> 3)
<DMRECORD ID>

<DMRECORD type ID>

<query ID>

- <identifier> ---------------------------1
Additional information relating to the <class ID> construct is included under
"Declaring a SIM Database" in this section. Information on the <DMRECORD
ID> construct is included under "Declaring DMRECORDS" in this section.
Information on the <DMRECORD type ID> contruct is included under "Type
Declaration and Invocation for SIM" in this section.

Explanation

The <query ID> construct identifies the query.

The <class ID> construct identifies the class to be modified in a
multiple-statement update. A class cannot be accessed unless it has been declared
in the class list of an opened SIM database.

In retrieval queries and in update queries that use a SELECT statement, the class
ID is used to establish the current path in the SIM database. The query ID can be
passed as an argument to the CURRENT function.

For a retrieval query, the construct <DMRECORD type ID> identifies a
previously defined DMRECORD type. This construct is the user-defined name
associated with the format.

If you use a query that is not declared in the program's outer block, use the
DISCARD statement to close that query when it is no longer needed. This
prevents the program from exceeding the maximum limit on the number of open
queries and avoids an unnecessary run-time error.

Additional information relating to SIM queries is included under "Type
Declaration and Invocation for SIM," "Declaring a SIM Database," and "DISCARD
Statement" in this section. Related information is also available in the description
of the CURRENT function under "Selection Expressions" in this section.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Example

The example below declares several queries. The first two queries specify class
identifiers. The class STUDENT will be used in UPDATE.....STU_QUERY and the
class INSTRUCTOR will be used in INSTRUCTOR-QUERY. The next queries
specify DMRECORD identifiers. The previously defined DMRECORD STU-REC
will be used in STUQ and the previously defined DMRECORD COURSE-REC will
be used in COURSEQ. And, the previously defined format INQ_TYPE will be used
in INQUIRYQ.

TYPE DMRECORD INQ_TYPE
(INTEGER soc_SEC_NO;
EBCDIC ARRAY NAME [0:29]);

QUERY UPDATE-STU_QUERY (STUDENT),
INSTRUCTOR-QUERY (INSTRUCTOR),
STUQ (STU_REC),
COURSEQ (COURSE-REC),
INQUIRYQ (INQ_TYPE);

8600 0734-000

% STUDENT is a class ID
% INSTRUCTOR is a class ID
% STU_REC is a DMRECORD ID
% COURSE-REC is a DMRECORD ID
% INQ_TYPE is a DMRECORD TYPE

7-13

Using the Semantic Information Manager (SIM) Interface

Declaring DMRECORDS

7-14

A DMRECORD consists of fields which are used to hold information retrieved
from SIM. References to a field must be fully qualified. The type of the
DMRECORD variable must be compatible with the data to be retrieved.

The DMRECORD hold hidden control information provided by SIM to show which
fields are null and have no current value. The EXISITS function is provided to
determine whether or not a field is marked as being null. The RETRIEVE
statement is used to write data into a DMRECORD variable. All other uses of
DMRECORD variables are read-only. The compiler does not provide any
protection to prevent the user from accessing a DMRECORD variable before a
RETRIEVE has been executed.

A DMRECORD can be bound to other DMRECORDs. Refer to "Binding
Considerations" in this section for more information.

Use the DMRECORD declaration to declare a DMRECORD variable. Use the
DMRECORD type declaration to declare a DMRECORD record structure
description. The DMRECORD type declaration must be used whenever a
DMRECORD is passed as a parameter.

Additional information relating to DMRECORDS is included under "TYPE
Declaration and Invocation for SIM," "Binding Considerations for SIM," "Using
DMRECORDS and Their Fields," "RETRIEVE Statement," and "Referencing
DMRECORD Fields" in this section. Information on the EXISTS function is
included under "DM Boolean Functions" in this section. Related information is
also available under "ALGOL Data Types for ADDS" in Section 2, "Using
Advanced Data Dictionary System (ADDS) Extensions."

Syntax

cDMRECORD declaration>

-.-------- DMRECORD 1 <DMRECORD ID> ------------1
~ <packing spec> ~ ~ <field list> ~

<packing spec>

- UNPACKED

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

<field list>

- (_..._...-.- REAL] <field ID>

BOOLEAN

DOUBLE

INTEGER

<entity reference declaration> ------1

RECORD 1 <field ID> - :field list> _._ __ -l

EBCDIC ARRAY 1 <field ID> - :bound pair>

<DMRECORD ID>

- <identifier> ---------------------------1

<field ID>

1 <identi~i=-1---------------------------l
Additional information relating to the fields of a DMRECORD is included under
"Referencing DMRECORD Fields" in this section. Information on the <class ID>
construct is included under "Declaring a Database" in this section. Information on
the <entity reference declaration> construct is included under "Declaring an
Entity Reference Variable Data Type" in this section.

Explanation

A <packing spec> construct specifies the record packing. The default is
UNPACKED. Unpacked records begin each field on a word boundary, regardless
of where the previous field ends.

The DMRECORD ID is the name within the program of the variable being
declared.

The field list contains the type and field ID of the fields that comprise the
DMRECORD. The fields can be of type Real, Boolean, Double, Integer, Entity
Reference, Record, or EBCDIC array. All types other than Entity Reference and
Record are described in Volume 1. Also consult Volume 1 for a complete
explanation of bound pairs in an array.

Fields of type Record allow nested structured data and are used to hold
compound attributes. A compound attribute has several parts. For example, a
name might be a compound attribute with the first, middle, and last names
comprising the parts. As a result, Record fields are broken down into subfields,

8600 0734-000 7-15

Using the Semantic Information Manager (SIM) Interface

7-16

each one associated with one part of the compound attribute. Note that although
Record fields can be nested, a DMRECORD itself cannot be nested in another
DMRECORD.

Record type fields do not provide generalized records in ALGOL. They can be
declared only as fields within DMRECORDs, and are subject to the same
restrictions as the other field types.

The <field ID> construct is the name of the field. A field and a variable can
share the same name, since context can be used to determine which one is being
referenced.

Additional information relating to DMRECORDS is included under "Declaring an
Entity Reference Variable Data Type," and "Mapping SIM Types into ALGOL" in
this section.

Example

In the example below, a DMRECORD with the name STU-REC is declared.
STU-REC has a nested Record field, a Real field, an EBCDIC array field, and an
Entity Reference field.

DMRECORD STU_REC
(RECORD STU_NAME (EBCDIC ARRAY FIRST [0:50],

LAST [0:50],
MIDDLE [O: 50]) ;

REAL TITLE-CODE;
EBCDIC ARRAY MINOR [0:10];
ENTITY REFERENCE COURSE-TAKING (COURSE));

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Type Declaration and Invocation for SIM

A DMRECORD is a structured data type, consisting of fields, which is used to
hold information retrieved from SIM. The structure is described in a TYPE
declaration. The type of the DMRECORD variable must be compatible with the
data to be retrieved.

The TYPE declaration is used to associate a user-defined name with a
user-defined format. The format can then be used as a data description.
Normally, a declaration creates a structure as a variable. In contrast, the TYPE
declaration does not create a variable; it simply defines a type identifier that can
be used to declare record variables. A type identifier is associated with the
DMRECORD declaration. In effect, the type identifier is the name of a record
structure description.

Only variables that share the same entity description and type are compatible.
The TYPE declaration provides compatibility for the DMRECORDs. Records
described by separate, distinct entities and identical in content are not compatible
if they do not share the same type identifier.

A TYPE declaration must precede a type invocation. The type invocation declares
records that have the structure associated with the type identifier.

Additional information relating to SIM type declarations is included under
"Declaring DMRECORDs," "Referencing DMRECORD Fields," and "Binding
Considerations for SIM" in this section. Related information is also available
under "ALGOL Data Types for ADDS " in Section 2, "Using Advanced Data
Dictionary System (ADDS) Extensions."

Syntax

<DMRECORD type declaration>

- TYPE -.--------.- DMRECORD 1 <DMRECORD type ID> '

~ <packing spec> ~ ~ <field list> ~
<DMRECORD type invocation>

- <DMRECORD type ID> 1 <DMRECO~D ~-....__----------------
<DMRECORD type ID>

- <identifier> ---------------------------!
Additional information relating to the <DMRECORD declaration>, <DMRECORD
ID>, <packing spec>, and <field list> constructs is included under "Declaring
DMRECORDs" in this section. Related information is also available under
"Referencing DMRECORD Fields" in this section.

8600 0734-000 7-17

Using the Semantic Information Manager (SIM) Interface

7-18

Explanation

The <DMRECORD type ID> construct is the user-defined name associated with
the format. In the type invocation, each DMRECORD specified by a DMRECORD
type identifier has the structure defined by the type identifier in the TYPE
declaration. In the DMRECORD type declaration syntax, the DMRECORD type ID
is the name of a DMRECORD structure description.

The <field ID> construct is the name of the field. The names of the fields in a
TYPE declaration must be unique across that specification. However, field names
need not be unique across different TYPE declarations. A field and a variable can
share the same name, since context can be used to determine which one is being
referenced.

Examples

In this example, a TYPE declaration defines the DMRECORD INSTR.._REC_TYPE
as three fields. The first two fields, EMPLOYEa..NO and HDATE, are type
Integer. The third field is an EBCDIC array whose field ID is NAME. There is no
record until the type is invoked and referenced by the DMRECORD identifier.

TYPE DMRECORD INSTR..REC_TYPE
(INTEGER EMPLOYEE-NO, HDATE;
EBCDIC ARRAY NAME [0:10]);

INSTR..REC_TYPE INSTR-REC;

In the example below, the TYPE declaration defines the DMRECORD
STU-REC_TYPE as having a nested Record field, a Real field, an EBCDIC array
field, and an Entity Reference field. The variable STUDENT-RECORD will have
the format described by STU-REC_TYPE. There is no record until the type is
invoked and referenced by the DMRECORD identifier.

TYPE DMRECORD STU_REC_TYPE
(RECORD STU-NAME (EBCDIC ARRAY FIRST [0:50],

LAST [0:50),
MIDDLE (0: 50]);

REAL TITLE-.CODE;
EBCDIC ARRAY MINOR (0:10];
ENTITY REFERENCE COURSE-.TAKING (COURSE));

STU_REC_TYPE STU_RECORD;

In the following example, the DMRECORD COURSE....REC_TYPE is defined as
having three EBCDIC array fields. The variable COURSE-RECORD will have the
format described by COURSE-REC_TYPE. There is no record until the type is
invoked and referenced by the DMRECORD identifier.

TYPE DMRECORD COURSE-.REC_TYPE
(EBCDIC ARRAY COURSE...TITLE [0:100],

COURSE-MAJOR [0:50],
PROFESSOR [0:20]);

COURSE-.REC_TYPE COURSE-.RECORD;

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Referencing DMRECORD Fields

References to a field in a DMRECORD must be fully qualified; all nested field
names must be specified.

Note that DMRECORD variables are basically read-only. Only the RETRIEVE
statement can write to a DMRECORD variable. Therefore, references to the fields
are restricted to read-only instances.

Additional information relating to DMRECORD fields is included under
"RETRIEVE Statement" and "Type Declaration and Invocation for SIM" in this
section.

Syntax

<DM field reference>

- <IJMRECORD Ill> 1. -<field Ill>] r j
r <Subscript> -----1

L <partial word part>

Additional information relating to the <DMRECORD ID> and <field ID>
constructs is included under "Declaring DMRECORDs" in this section.

Explanation

The <DMRECORD ID> construct is the variable for the previously specified
format and type.

The <field ID> construct is the name of a field in the previously specified
format and type. Field names need not be unique across different TYPE
DMRECORD declarations. A field and a variable can share the same name if the
context can be used to determine which one is being referenced. Each reference to
a field must, however, be fully specified.

A <subscript> specification is only allowed for fields of type EBCDIC array.

The <partial word part> syntax is allowed only for fields of type Real, Integer,
and Boolean.

Example

This example references the field PROFESSOR in the DMRECORD variable
COURSE-RECORD.

IF PROF-REC.EMPLOYEE-NO• 12 THEN ...
WHILE COURSE-RECORD.PROFESSOR • "PROFA" DO

8600 0734-000 7-19

Using the Semantic Information Manager (SIM) Interface

Using DMRECORDS and Their Fields

Fields in a DMRECORD can be individually examined. They can be individually
validated through the EXISTS function. However, the fields can be altered only
by SIM. The value in a field can be assigned to variables of compatible types.

Fields can be passed as parameters to procedures. When an individual field is
passed, information about whether the field is null is not passed with the field.

Passing fields of Type Real, Boolean, Double, and Integer

Fields of type Real, Boolean, Double, and Integer can be used as actual
pass-by-value parameters to a formal parameter of the appropriate type.

Passing Fields of Type Entity Reference

Fields of type Entity Reference cannot be passed directly; they can be assigned to
a regular Entity Reference variable which can then be passed.

Passing Fields of Type Record

Fields of type Record cannot be passed directly; however, the fields of the Record
field can be passed individually. For example, if a record contains three EBCDIC
fields, each can be passed separately.

Passing Fields of Type EBCDIC Array

Fields of type EBCDIC array can be passed to a formal parameter that is declared
as an "*"-bounded EBCDIC array. An attempt by the procedure to write into an
actual parameter that is an EBCDIC array field in a DMRECORD results in a
run-time error.

Passing an Entire DMRECORD Variable

7-20

If the formal parameter is declared and invoked through a DMRECORD type
declaration and invocation as having exactly the same format and type as the
actual parameter, then the entire DMRECORD variable can be passed as a
parameter.

The following example shows both the correct and incorrect usage of a
DMRECORD as a parameter.

BEGIN
TYPE STU_REC_TYPE DMRECORD (REAL STU..NUM;

RECORD STU_NAME (EBCDIC ARRAY LAST [0:20];
REAL TITLE..CODE));

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

TYPE INSTR._REC_TYPE DMRECORD (REAL INSTR._NUM);
STU_REC_TYPE STUDENT_RECORD;
INSTR._REC_TYPE INSTR;
PROCEDURE P (X);

STU_REC_TYPE X;
BEGIN
REAL A;
A :• X.STU_NAME.TITLE_CODE;
END; % OF PROCEDURE P

P (STUDENT_RECORD); % LEGAL BECAUSE ACTUAL AND FORMAL ARE
% EXACTLY THE SAME TYPE.

P (INSTR); % ERROR BECAUSE ACTUAL AND FORMAL ARE
% NOT EXACTLY THE SAME TYPE.

END.

Note that two DMRECORD formats, even if they have exactly the same layout,
are not the same; they are considered to be two different types.

Assigning Pointers

Pointers can be assigned to a DMRECORD variable and to a field within a
DMRECORD. Any attempt to replace into a DMRECORD variable through a
pointer results in a run-time error.

Output of Real, Boolean, Double, Integer, and EBCDIC Array Fields

Formatted and regular output of type Real, Boolean, Double, Integer, and EBCDIC
array fields is supported exactly as formatted 1/0 for variables of these types.

Output of Entity Reference and Record Fields

Output of fields of type Entity Reference is not supported in any form because
Entity References are basically pointers into a SIM database and they are only
valid while the program is in transaction state.

Record fields cannot be elements in a write statement. Regular and formatted
output of Record fields is not permitted because they can contain an Entity
Reference field.

Output of DMRECORD Variables

Regular and formatted output of DMRECORD variables is not supported.

8600 0734-000 7-21

Using the Semantic Information Manager (SIM) Interface

Binding Considerations for SIM

A DMRECORD variable can be bound to another DMRECORD variable or to an
"*"-bound EBCDIC array. A DMRECORD can also be bound to any other record
type that can be bound to an "*"-bound EBCDIC array. The Binder program does
not check the record structures for compatibility; therefore, it binds DMRECORD
variables to similarly defined DMRECORDs.

Procedures that have DMRECORD formal parameters can also be bound, but type
checking will not be performed at bind time. The user must ensure that the types
of the formal and actual parameters are identical.

Refer to the Binder Programming Reference Manual for more information.

Impact of How a Variable Is Declared In a Subprogram

How the variable is declared in a subprogram determines what the subprogram
can do with the variable and whether the variable is properly protected against
write access.

• If the subprogram declares the variable as a DMRECORD variable, the
DMRECORD variable can be accessed through the described fields. Functions
such as EXISTS can be used.

• If the subprogram declares the variable as another type of record variable,
the variable can be accessed through the field names of the record. The
semantic rules for that type of record variable are enforced.

• If the subprogram declares the variable as an EBCDIC array, no field-oriented
access can be used. Assignment to the variable is allowed.

Impact of Packing

7-22

The type of packing being used is an important consideration when more than
one language is being bound together. The default packing type is not the same
for every language. For example, the ALGOL default begins each field on a word
boundary while COBOL starts a field immediately after the previous field. It
might be necessary to declare filler fields in the COBOL description of a
DMRECORD in order to have it match an ALGOL DMRECORD correctly.

The type of packing for a DMRECORD is specified in the TYPE DMRECORD
declaration. The default packing is UNPACKED.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Declaring an Entity Reference Variable Data Type
An Entity Reference variable is used to contain an explicit reference to a SIM
database class entity. The variable can be an array. The SIM database containing
the class must be declared prior to the ENTITY REFERENCE declaration.

An Entity Reference variable can be used to compare and assign entity-valued
attribute (EVA) values without having to select and retrieve the entities involved.
For example, you might need to know if the advisor of two selected students is
the same entity. You can retrieve the entity reference value for each student's
advisor and compare them. The entity reference values can also be assigned to
EVAs.

In general, extended attributes are qualified by EV As. An extended attribute can
be immediate to a class which is connected to a perspective class through
intermediary classes. In these cases, chains of EV As are used in the qualification.

Each Entity Reference variable is associated with one specific class. Entity
Reference variables can only be assigned and compared with Entity Reference
variables and EV As associated with the same class. 'fhis data type cannot be
compared with arithmetic or string variables or used in arithmetic or string
expressions.

Entity reference values are only valid in the transaction state in which they are
retrieved. Using an entity reference value outside of transaction state, or in a
different transaction state, will result in a run-time error. Entity References can
be passed as by-name parameters provided the program remains in transaction
state.

Additional information relating to entity reference variables is included under
"Selection Expressions" in this section, particularly in the description of the
CURRENT function.

Syntax

<entity reference declaration>

- ENTITY REFERENCE 1 <entity ref ID>·~(·- <class ID> -) _]...__ ________ _

<entity reference array declaration>

- ENTITY REFERENCE ARRAY 1 <ent ref array ID> - (<Cl:ss ID>) - [<b.p. list>] ~

8600 0734-000 7-·23

Using the Semantic Information Manager (SIM) Interface

7-24

<entity ref ID>

- <identifier> --------------------------1
<entity ref array ID>

- <identifier> ------------------------

Additional information relating to the <class ID> construct is included under
"Declaring a SIM Database" in this section.

Explanation

The constructs <entity ref ID> and <ent ref array ID> identify the variable.

The <class ID> construct specifies the class associated with the Entity
Reference variable.

The <b.p. list> construct designates the bound pair list. The subscript bounds
for an array are given in the first bound pair list following the array identifier.
Refer to Volume 1 for a complete explanation of bound pair lists in an array
declaration.

Examples

In the first example, the Entity Reference variable ADVISOR! references the
class INSTRUCTOR. STUDENT_TRANSCRIPT references the class TRANSCRIPT.

ENTITY REFERENCE ADVISOR! (INSTRUCTOR),
STUDENT-TRANSCRIPT (TRANSCRIPT);

In the second example the Entity Reference variable ADVISORS is an array. Its
class, with a bound pair list, is INSTRUCTOR.

ENTITY REFERENCE ARRAY ADVISORS (INSTRUCTOR) [0:9];

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Using Data Management Functions and Expressions
All data management (DM) functions are forwarded to SIM for complete
evaluation. The arguments of a function can contain references to unretrieved
values in the SIM database. At run time, ALGOL expressions are evaluated to
single values and passed to SIM by value. ALGOL operators, precedence rules,
and type compatibility are expected in all ALGOL expressions.

The DM functions are

• Arithmetic functions

• String functions

• Symbolic functions

• Boolean functions

DM expressions are ALGOL expressions in which the following primaries are
allowed:

• DM functions

• Qualification identification

• Class identification

• Selection expression

• Inverse entity-valued attributes

A DM primary is not allowed in a pointer expression, complex expression, ALGOL
function, or array subscript. Consult Volume 1 for more information on primaries.

The selection expression is used to determine which database entities are
available for retrieval, deletion, or modification. Both global and local selection
expressions are supported. All selection expressions are evaluated according to
ALGOL rules and then sent to SIM.

The ALGOL formats for using SIM functions and the selection expression are
covered in this section. Refer to Volume 1 for a comprehensive explanation of

• Arithmetic expressions and operators

• Boolean expressions and operators

• String expressions

• Relational operators

The InjoExec SIM Programming Guide discusses these concepts as they relate to
SIM.

8600 0734-000 7-25

Using the Semantic Information Manager (SIM) Interface

DM Arithmetic Functions

7-26

The OM arithmetic functions return arithmetic values.

Syntax

<DM arithmetic functions>

DMCOUNT - (1 <qual ID> --r-)
<Cl ass ID> _J

DMAVG r (-<qual ID> -)
DMSUM

DMMIN

DfottAX

DMROUNDJ (- <arithmetic expression> -)

DMTRUNC

DMABS

DMSQRT

DMPOS - (- <str exp> - , - <Str exp> """"L...-------J) -
, - <integer>

SUBROLE - (- <Class ID> -) -------------1
DMLENGTH - (- <String expression> -) --------.....

Additional information relating to the <class ID> construct is included under
"Declaring a SIM Database" in this section. Information on the <qual ID>
construct is included under "Selection Expressions" in this section.

Explanation

The DMCOUNT function accepts a class, a data-valued attribute (OVA), or an
entity-valued attribute (EV A). All other functions accept only a data-valued
attribute.

The <qual ID> construct qualifies a OVA or EVA to the environment to which
the function is attached.

_J

Arithmetic expressions are expressions that return numerical values. String
expressions using the SIM interface return EBCDIC strings and must be constant
string expressions. Their length must be able to be determined at compile time.
Constant string expressions and primaries include string constants, SIM attributes
of type string or symbolic, EBCDIC fields of DMRECORDS, and Advanced Data
Dictionary System (ADDS) structures. String variables and string arrays cannot
be used in SIM expressions.

Refer to Volume 1 of this manual and to the lnfoExec SIM Programming Guide
for a complete discussion of arithmetic and string expressions.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Table 7-2 gives the function keyword and what is returned.

Table 7-2. DM Function Keywords and Values Returned

Keyword V•lue Retumecl

DMABS Absolute Real value of specified arithmetic expression.

OMAVG Average or mean of a collection of numeric values.

DMCOUNT Number of entities in a class or the number of values multivalued
attribute. Can also be used on single-valued attributes.

DMLENGTH Length of string expression.

OMMAX Maximum value from a collection of values.

DMMIN Minimum value from a collection of values.

DMPOS Returns the starting position of the specified occurrence of a
designated string within a string. The string to be searched is
given first, followed by the string to search for.

DMROUND Arithmetic expression rounded to nearest integer.

DMSQRT Nonnegative real number that is square root of arithmetic
expression.

OMS UM

DMTRUNC

SUBROLE

Examples

Sum of all numeric values in a collection.

Integer portion of truncated arithmetic expression.

Used for testing the value of subrole data-valued attributes.

In the first example, the value of the INPUT....AGE is assigned as the value of
CHILDREN....AGE and truncated. Therefore, if INPUT....AGE is 10 years and 2
months (10 and 1/6) or 10 years and 10 months (10 and 5/6), the value of
CHILDREN....AGE is 10. (The fraction is not rounded to the nearest value.)

INSERT PERSON
(ASSIGN (CHILDREN..AGE,DTRUNC(INPUT..AGE));

In the example below, the selection of the minimum value of STUDENT....AGE is
qualified by a Social Security number criteria. Once the value is selected, it is
assigned to SPOUSE....AGE.

MODIFY PERSON

8600 0734-000

(ASSIGN (SPOUSE..AGE,DMMIN(STUDENT..AGE))
WHERE soc_SEC_NO - INPUT_SOCIAL;

7-27

Using the Semantic Information Manager (SIM) Interface

DM String Functions

7-28

DM string functions can take one or more strings as an argument, or produce a
string as the function value, or perform both operations.

Syntax

<OM string functions>

DMEXT - (- <str exp> - , - <integer> - , 1 :integer> J)
OMRPT - (- <str exp> - , - <integer> - } --------1

DMCHR - (1 <hex string' literal> 1 } ---------'
Explanation

String expressions using the SIM interface return EBCDIC strings and must be
constant string expressions. Their length must be able to be determined at
compile time. Constant string expressions and primaries include string constants,
SIM attributes of type string or symbolic, EBCDIC fields of DMRECORDS, and
Advanced Data Dictionary System (ADDS) structures. String variables and string
arrays cannot be used in SIM expressions.

Refer to Volume 1 of this manual for a discussion of string expressions (shown
here as <str exp>), integers, and hexadecimal string literals.

DMEXT returns the substring of the string expression with the specified
beginning and ending positions. (The first integer is the beginning position,· the
second integer is the ending position.) An asterisk (*) as the ending position
indicates the end of the string.

DMRPT returns the specified string a designated number of times.

DMCHR constructs a string that is a concatenation of the EBCDIC characters
represented by the hexadecimal numbers used in the argument.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Examples

In the example below, a substring of NAME, beginning in position 16 and going to
the end of the string, is returned in the variable MIDDLE-NAME.

SELECT STUQ FROM STUDENT
(MIDDLE-NAME• DMEXT(NAME,16,*));

The following example assigns the string NAME to ID_CODE. The string will
appear twice in ID_CODE so that if the string was "MIDDLENAME", ID_CODE
would be assigned "MIDDLENAMEMIDDLENAME".

SELECT INSTRQ FROM INSTRUCTOR
(ID-CODE• DMRPT(NAME,2))

WHERE soc_sEC_NO < A;

Using the perspective class DEPARTMENT, the query DEPTQ selects the name of
the department and the department number if the instructor's name is equivalent
to the hexadecimal string of characters "ABCD".

SELECT DEPTQ FROM DEPARTMENT
(NAME-OF-DEPT> DEPT.NO)
WHERE INSTRUCTOR-EMPLOYED.NAME• DMCHR(4"ClC2C3C4")>

8600 0734-000 7-29

Usin1 the Semantic Information Mana1er (SIM) Interface

DM Symbolic Functions

7-30

DM symbolic functions operate on SIM symbolic types. In ALGOL, a data type of
symbolic is supported as a string (EBCDIC array).

<DM symbolic functions>

1 DMPRED J (-<attribute chain> -)

DMSUCC

Additional information relating to the <attribute chain> construct is included
under "DM Primaries" in this section.

Explanation

The <attribute chain> construct must have as its final element an attribute that
has a type of symbolic.

DMPRED returns the previous symbolic value.

DMSUCC returns the value of the successive symbolic.

Consult Volume 1 of this manual for a detailed explanation of identifiers. Refer
to the l'ft/oE:x:ec SIM Programming Guide for detailed information about symbolic
types and functions.

Additional information is included under "Mapping SIM Types into ALGOL" in
this section.

Esample

In the example below, the query PERSONQ uses the perspective class PERSON to
select the value of NAME if the preceding and successive symbol values are
"SINGLE".

SELECT PERSONQ FROM PERSON (NAME)
WHERE DMPRED(MSTATUS) • "SINGLE" AND
DMSUCC(MSTATUS) • "SINGLE";

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

DM Boolean Functions

DM Boolean functions include relational and Boolean operators.

Syntax

<DM Boolean functions>

DMEXISTS - (1 <MVA qual ID> J)
<SVA qual ID>

EXISTS - (- <DMRECORD field ID> -) ------------

DMMATCH - (- <DM string exp> - , - <pattern> -) ---------1
DMISA - (1 <EVA qual ID> -r- ' - <Class ID> -)

<Cl ass ID> __J

DMEQUIV - (- <DM string exp> - , - <rel op> - , - <DM string exp> -) -

J
I

Additional information relating to the <DMRECORD ID> and <field ID>
constructs is included under "Declaring DMRECORDs" in this section. Information
on the <qual ID> construct is included under "Selection Expressions" in this
section Information on the <class ID> construct is included under "Declaring a
SIM Database".

Explanation

The DMEXISTS and the EXISTS functions are used to determine if an entity
exists. EXISTS also determines whether or not a field is marked as being null.
The functions are TRUE when the operand has a value other than null. The
operand for DMEXISTS is either a qualified multivalued attribute (MV A) or a
qualified single-valued attribute (SV A). The operand for EXISTS is a field within
aDMRECORD.

The DMMATCH function tests whether the DM string expression matches a
specified pattern. It is comparable to the SIM "ISIN" operator. A <pattern>
construct is specified using literal characters plus metacharacters. For more
information, refer to the 111/oExec SIM Programming Guide.

A <DM string exp> construct consists of valid combinations of DM string
functions and constant string expressions. Constant string expressions include
EBCDIC string constants, SIM attributes of type string or symbolic, EBCDIC fields
of DMRECORDS, EBCDIC fields of Advanced Data Dictionary System (ADDS)
structures, and a limited form of the string function. The limited string function
can have only a constant arithmetic expression as its second argument. String
variables and string arrays cannot be used in SIM expressions. Consult Volume 1
of this manual for a detailed explanation of string expressions. Additional
information relating to DM string functions is included under "DM String
Functions" in this section.

8600 0734-000 7-31

Using the Semantic Information Manager (SIM) Interface

7-32

The DMISA function tests whether an entity plays a certain role in a class. The
function is TRUE if the qualified entity-valued attribute (EV A) or the first
designated class is a member of the second designated class.

The DMEQUIV function compares two DM string expressions, using the values of
the characters in a pre-defined ordering sequence. This is called an "equivalent"
string comparison.

Refer to the lfl/ol:uc SIM Programming Guide for more detailed information
about these DM Boolean expressions functions.

Exam.pie

In the example below, the query PERSONQ uses the perspective class PERSON to
select values for NAME and SOC.....SEG....NO. Values are selected if the DMISA
function returns as TRUE.

The next query, STUQ, uses the perspective of the class STUDENT. The values
for NAME and STUDENT_NUM will be returned if DMEXISTS tests as true.

The EXISTS function then determines if the field TRANSCRIPT-RECORD within
the DMRECORD STUDENT-RECORD exists. If it does, the query STUQ uses the
perspective class STUDENT. to select the SOC.....SEG....NO where the DM string
expression NAME matches the pattern ''JULES VERN''.

SELECT PERSONQ FROM PERSON
(NAME;SOC_SEC_NO)

WHERE DMISA(SPOUSE,STUDENT);
SELECT STUQ FROM STUDENT

(NAME;STUDENT_NUM-STUDENT_NO)
WHERE DMEXISTS(STUDENT_NO);

IF EXISTS(STUDENT_RECORD.TRANSCRIPT_RECORD) THEN
SELECT STUQ FROM STUDENT

(SOC_SEC_NO)
WHERE DMMATCH(NAME,"JULES VERN");

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

DM Primaries

The following primaries can be used to form a DM expression. Consult the section
"Expressions" in Volume 1 for more information on primaries.

Syntax

<DM primaries>

<DM function> ------------.-------------=!
<attribute chain>----------

<qual ID> --------------1
<Class ID> -------------

<local selection expression> ---------1
INVERSE - (- <entity-valued attribute> -) -

<attribute chain>

-....-------,.... <attribute ID> ------------------1
~ <qual ID> - • ~

Additional information relating to the <attribute ID>, <local selection
expression>, and <qual ID> constructs is included under "Selection
Expressions" in this section. Information on the <entity reference ID> construct
is included under "Declaring an Entity Reference Variable Data Type" in this
section. Information on the <DM function> construct is included under "OM
Arithmetic Functions," "DM String Functions," "OM Boolean Functions," and
"DM Symbolic Functions" in this section.

Explanation

A specified entity (SIM database or class) can be a primary.

The local selection expression, which includes several other primary elements,
can be a primary.

The INVERSE function uses an inverse attribute for the specified entity-valued
attribute (EV A). The result of the function can then be used as a primary.

Example

A local selection expression is shown in the following example. It is used as part
of the INCLUDE syntax to further narrow the scope of instructors from
INSTRUCTOILEMPLOYED. The local selection expression uses the class
INSTRUCTOR as the class ID. Only those INSTRUCTOILEMPLOYED who have an
EMP _NO of 1 or 2 are included.

MODIFY DEPARTMENT

8600 0734-000

(INCLUDE (INSTRUCTOR-EMPLOYED,
[INSTRUCTOR WHERE EMP_NO • 1 OR EMP_NO • 2]))

WHERE DEPT_NO • INPUT_DEPTNO;

7-33

Using the Semantic Information Manager (SIM) Interface

Selection Expressions

7-34

A selection expression is used to determine which entities from the SIM database
are eligible for retrieval, deletion, or modification. It is used to identify the set of
entities upon which a query is to operate. It narrows the group of entities in the
perspective class for the scope of the query.

If an entity meets the stated conditions of the selection expression, the query
uses the entity once the entity is retrieved.

A global selection expression applies to the whole query. A local selection
expression applies to only a specific attribute.

The selection expression is a Boolean expression in which DM primaries and
functions are allowed. Both arithmetic and string expressions can be used in a
selection expression. Any part of the selection expression that is strictly ALGOL
is evaluated according to ALGOL rules. The value is then sent to SIM.

In addition, the following can be used in a selection expression:

• Standard arithmetic operators

• Relational operators

• Boolean operators

• Order functions

• Aggregate functions

• Arithmetic functions

• Boolean functions

• Primaries

• String functions

• Symbolic functions

Relational operators test for relationships between values. They produce values
of TRUE, FALSE, or NULL. Boolean operators also produce values of TRUE,
FALSE or NULL. A Boolean null signifies SIM cannot determine if a Boolean
expression is TRUE or FALSE.

SIM also provides DM string relational operators to perform "equivalent" string
operations. Equivalent string operations compare two strings based on the values
of characters in an ordering sequence (instead of the actual binary value of the
characters). The available DM string relational operators include tbe following:

EQV_EQL
EQV_GEQ
EQV_GTR

EQV_LEQ
EQV-1.SS
EQVJlEQ

EQV -1.EQ, EQV -1.SS, EQV _GEQ, and EQV _GTR are only valid for string
operations among ordered types.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

An ordering sequence is a predefined arrangement of members in a character set.
In an ordering sequence, characters c8.n be placed in order based on criteria other
than their binary value. Different characters can be assigned the same ordering
sequence value (for example, the characters "A" and "a").

A collating sequence is a predefined arrangrnent of members in a character set
based on ordering sequence and addtional priority sequence values. Each
character has an ordering sequence value and a priority sequence value. Any
characters that have the same ordering sequence value are assigned differing
priority sequence values. This gives each character a unique combination of
values and determines the character's position in the collating sequence.

Order functions work on attribute values only. Aggregate functions apply to a
collection of values and produce one value.

For a detailed explanation of the use of selection expressions with SIM, consult
the lnfoExec SIM Programming Guide.

Additional information relating to selection expressions is included under
"Declaring an Entity Reference Variable Data Type," "DM Arithmetic Functions,"
"DM String Functions," "DM Symbolic Functions," "DM Boolean Functions," and
"DM Primaries" in this section.

Syntax

<selection expression>

- <OM Boolean expression> ------------------------1

<DM Boolean expression>

<Boolean operator> ---i
OM Boolean primarY>-.-1--'----------------------1

<Boolean primary> ___J

<DM Boolean primary>

1 (-<Selection expression> -)

<entity-valued relation> ---1

<OM Boolean function> -----'

8600 0734-000 7-35

Using the Semantic Information Manager (SIM) Interface

7-36

<entity-valued relation>

<local selection expression> ---..,......, EQjL <EVA qual ID>

INVERSE - (- <EVA> -) t- •

CURRENT - (- <query ID> -) t- NEQ

<entity reference ID> -------1 A•

<class ID> - (- <entity ref ID> -)

CURRENT - (- <query ID> -) ---- -EQj <Class ID>

<entity reference ID>------

<Class ID> - (- <entity ref ID> -) NEQ
A -

equal ID>

--------- equal term> ___________________ ,..

L <Class ID> - . J
equal term>

1 <attribute ID>

<compound selector>

cquant i fi er> - (- cqua l term> -) ---i

<path expression> - . - equal tenn> ---

<attribute ID>

- <identifier> ----------------------------1
cpath expression>

<entity-valued attribute chain> -------...... ------------11
INVERSE - (- <entity-valued attribute chain> -) -

<quantifier> - (- <entity valued qual ten11> -) ---

<transitive expression> -----------1
<local selection expression> ---------1
<class ID> - (- <entity-valued qual tenn> -) ---

<Cal led ref ID> ---------------'

<transitive expression>

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

- TRANSITIVE (<trans arg> --.------------...

~ ENO LEVEL <integer constant> ~
<transitive argument>

- <reflexive path expression> ----------------------1

<quantifier>

1 ALL

SOME

NONE

<local selection expression> -[1 <Class ID>--------.....- WHERE -·<selection expression> -] ~

<entity-valued attribute chain>

INVERSE - (- <EVA ID> -)

<Ca 11 ed ref ID>

- <identifier> ----------------------------1
Additional information relating to DM functions is included under "Using Data
Management Funcions and Expressions," "DM Arithmetic Functions," "DM String
Functions," "DM Symbolic Functions," and "DM Primaries" in this section.

Information on the <entity reference ID> construct is included under "Declaring
an Entity Reference Variable Data Type" in this section. Information on the
<class ID> construct is included under "Declaring a SIM Database" in this
section. Information on the <query ID> construct is included under "Declaring a
Query Data Type" in this section. Information on the <compound spec>
construct is included under "Database Attribute Assignments" in this section.

Explanation

Consult the In/oExec SIM Programming Guide for a discussion of DM Boolean
expressions and functions.

The <Boolean primary> construct within a DM Boolean expression can include
either entity-valued relations or relations made up of DM expressions.

A local selection expression affects specific attributes only. It specifies conditions
under which values for the attribute are chosen. It corresponds to the SIM
"WITH" construct as discussed in the lnfoExec SIM Programming Guide.

The <query ID> identifies a previously declared query.

8600 0734-000 7-37

Using the Semantic Information Manager (SIM) Interface

7-38

The INVERSE function uses an inverse attribute for the specified entity-valued
attribute (EV A).

The CURRENT function should be used inside of transaction state only. It can be
used with both update and retrieval queries. In retrieval queries, you can use the
CURRENT function to view or compare data without acting on it. In update
queries, you can use the CURRENT function to retrieve data and act on it.
Consult the l'Tlfo&:ec SIM Programming Guide for details of the SIM "CURRENT"
function.

The construct <entity reference ID> identifies the previously declared entity
reference variable.

The construct <class ID> identifies a class in the SIM database.

Entity-valued relations are established using operators. The operators for "equal
to" and "not equal to" can be used.

The <qual ID> construct is used to uniquely identify an entity. The syntax can
include the entity's class and SIM database. It always includes qualifying terms.

The <qual term> and <path expression> constructs must evaluate to an entity
value. The final element must point to a class.

An attribute ID identifies an attribute. The attribute can be single- or
multivalued. A compound attribute is an attribute that consists of other
attributes. Each of the attributes in a compound attribute are unique.
Qualification must be used whenever there is ambiguity. The compound selector
is the series o:(identifiers that uniquely identify the attribute.

For quantifiers, the attribute must be multivalued. The valid quantifiers are ALL,
SOME, and NONE. ALL means that each value of the attribute must meet the
condition. SOME means that at least one value must meet the condition. NONE
means that no value can meet the condition.

The <Called ref ID> construct is a SIM reference variable. The SIM "CALLED"
function is used to assign a variable to a set of entities. The function also can be
used in update queries. (Refer to the lfl/o&ec SIM Programming Guide for more
information. The ALGOL uses can be found in this section's discussion of the
SELECT statement.)

The construct <transitive expression> describes a TRANSITIVE function. A
transitive path is used for reflexive attributes. The function returns the
transitive closure of a recursive path expression. Refer to the SETTO statements
in this section and to the l'Tlfo&ec SIM Programming Guide for further
information on the transitive closure facility.

The reflexive path expression is a path expression that originates and ends with
the same class. The END LEVEL syntax specifies a level of recursion to be
included if a complete closure is not performed.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Additional information relating to selection expressions is included under
"SELECT Statement" and "SET TO Statements" in this section.

Examples: Selection Expressions

In the first example, the current query is COURSE-QUERY. If it is a retrieval
query, data from the entity COURSE-TAKING can be retrieved and viewed or
compared. If it is an update query, you can retrieve and then modify the entity.

CURRENT (COURSE..QUERY) • COURSE..TAKING

Below, the attribute COURSE-NO is qualified by the entity-valued attribute
COURSE-TAKING. From this collection, the lowest number of the upper division
courses is compared with UPPEIL.DMSION_COURSE.

DMMIN (COURSE..TAKING.COURSE..NO) >• UPPER....DIVISION_COURSE

The third example of a selection narrows the scope to students that meet two
criteria. (The Boolean "AND" means both conditions must be met.)

STUDENT • STUDENT_ERV AND S_NUM • 1234

Examples: Path Expressions

Shown below, a path consisting of COURSE-TAKEN and COURSE.NO is
established.

COURSE..TAKEN.COURSE...NO

A multiple level path is established by the example below.

INSTRUCTOR.STUDENT_ADVISED.TRANSCRIPT_RECORD.GRADE

In the next examples, the reflexive attribute PREREQUISITES is a circular path.
In the first case, where there is no END LEVEL, it will be applied until all
appropriate data is returned. In the second case, the maximum number of times
the path expression will be applied is three.

TRANSITIVE (PREREQUISITE}
TRANSITIVE (PREREQUISITE END LEVEL 3)

8600 0734-000 7-39

Using the Semantic Information Manager (SIM) Interface

SIM Statements
The following SIM statements are supported through the ALGOL interface. Note
that all statements are valid only when the SIM database has been declared and
opened.

CLOSE
DATABASE ATTRIBUTE ASSIGNMENTS
DELETE
DISCARD
INSERT
MODIFY

OPEN
RETRIEVE
SELECT
SETTOCHILD
SETTOPARENT

In addition, several SIM transaction statements are supported. These statements
allow the user to define when the program is in transaction state.

ABORTTRANSACTION
BEGINTRANSACTION
CANCELTRPOINT

ENDTRANSACTION
SA VETRPOINT

An overview of a transaction, transaction state, transaction points, and COMS's
role in transactions are included here.

All of the above SIM statements, their syntax, and examples are explained in this
section. The statements are presented in al:Jlhabetical order.

Using Transactions

7-40

A transaction is an action that causes a change in the SIM database. Transaction
state is that period of execution time when the SIM database can be updated. The
transaction statements allow SIM to treat two or more query statements as a unit
by grouping the statements within a transaction.

A transaction consists of a series of statements begun by a BEGINTRANSACTION
statement and concluded by an ENDTRANSACTION statement. SIM assigns
transaction points. at the beginning and ending statements. These points are used
to recover data in case of a failure. Intermediate transaction points can be
explicitly created and cancelled using the SA VETRPOINT and CANCELTRPOINT
statements.

Transactions are applied but not actually committed until the
ENDTRANSACTION statement is executed. If an ABORTTRANSACTION
statement is executed before an ENDTRANSACTION statement, none of the
accumulated transactions are applied. Instead, the SIM database returns to the
state before the BEGINTRANSACTION statement was encountered, before the
program entered transaction state. (If the SIM database involved in a transaction
is closed before the transaction is ended, the transaction is automatically
aborted.) With intermediate transaction points you can control how far to back
out and still remain in the transaction state.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

To prevent simultaneous transactions from affecting each other, no updates can
be done outside of transaction state. Any entities selected inside transaction state
are locked; all locks are released at end of transaction. Therefore, while a
program can select and retrieve either in or out of transaction state, it can update
the SIM database only in transaction state. (Refer to the SELECT statement in
this section for more information.)

Entity reference values are only valid within the transaction in which they were
retrieved.

A transaction can update only one database. The database is identified by the
first update or data retrieval operation. Any attempt to update another database
causes an exception to be returned.

In order to provide a recoverable transaction system, SIM and COMS use the
ENDTRANSACTION and ABORTTRANSACTION statements. If one or more COMS
messages constitute a transaction, the name of the COMS header is used with the
ENDTRANSACTION or ABORTTRANSACTION statement and the proper
communication is generated by the compiler. If the system fails while the
program is in transaction state, COMS resubmits the messages which constituted
the transaction when the program is reexecuted.

Note: At any given time, a program can be in transaction state with only one
database. For proper recovery, the name of the database in transaction
state should be the name of the database noted in the COMS Utility.

For more information on programming SIM and COMS together, consult the
lnfoExec SIM Programming Guide.

Additional information relating to COMS extensions is included in Section 3,
"Using Communications Management System (COMS) Features."

8600 0734-000 7-41

Using the Semantic Information Manager (SIM) Interface

ABORTTRANSACTION Statement

7-42

The ABORTTRANSACTION statement cancels all accumulated operations in the
current transaction. The program is taken out of the transaction state and the
SIM database returns to the point before the BEGINTRANSACTION statement
(which initiated the transaction) was executed.

Additional information relating to the ABORTTRANSA TION statement is included
under "Declaring Input and Output Headers" in Section 3, "Using
Communications Management System (COMS) Features."

Syntax

<aborttransaction statement>

- ABORTTRANSACTION

~ <COMS outputheadername> ~
Additional information relating to the <outputheademame> construct is
included under "Declaring Input and Output Headers" in Section 3, "Using
Communications Management System (COMS) Features."

Explanation

The <COMS outputheademame> construct identifies the COMS Output Header.
If the system fails during transaction state, COMS resubmits the message when
the program is reexecuted.

Example

The example shows an abort when there is no COMS message in the transaction.
The second example shows an abort when there is a COMS message in the
transaction.

ABORTTRANSACTION;
ABORTTRANSACTION MYOUTHEADER;

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

SIM BEGINTRANSACTION Statement

The BEGINTRANSACTION statement places the program in transaction state.

At any given time, a program can be in transaction state with only one database.

Syntax

<begintransaction statement>

- BEGINTRANSACTION

L EXCLUSIVE J

L <COllS t nputheadernW> [J
<message area>

Additional information relating to the <inputheademame> construct is included
under "Declaring Input and Output Headers" in Section 3, "Using
Communications Management System (COMS) Features." Information on the
<message area> construct is included under "RECEIVE Statement" in Section 3,
"Using Communications Management System (COMS) Features."

Explanation

The EXCLUSIVE option informs SIM that the program is going to perform a long
or extensive transaction. SIM assigns the program an exclusive transaction state;
that is, a transaction state in which there is no interference from or with other
transaction states.

Using the EXCLUSIVE option is one means of preventing deadlocks. However, the
option can degrade throughput. Never use the option in an online environment.

Consult the l'fl/oExec SIM Programming Guide for more information on the use of
the EXCLUSIVE option.

The <COMS inputheademame> construct identifies the COMS Input Header.

The <message area> construct specifies the variable reserved for the actual
message. Information on the <message area> construct is included under
"Declaring a Message Area" in Section 3, "Using Communications Management
System (COMS) Features."

8600 0734-000 7-43

Using the Semantic Information Manager (SIM) Interface

CANCELTRPOINT Statement

7-44

The CANCELTRPOINT statement prevents a range of accumulated transactions
from being applied. The accumulated operations, from the current point back to
either an intermediate transaction point or the beginning of the transaction, are
not applied. In all cases, the program is left in transaction state.

Additional information relating to accumulated transactions is included under
"SA VETRPOINT Statement" in this section.

Syntax

ccanceltrpoint statement>

- CANCELTRPOINT

~ (- <integer expression> -) ~
Additional information relating to the <integer expression> construct is
included under "SA VETRPOINT Statement" in this section.

Explanation

The <integer expression> construct represents a marker set in a SAVETRPOINT
statement. If an integer expression is specified, all database changes between the
current point and the specified point are not applied. If no integer expression is
specified, all SIM database changes from the beginning of the transaction to the
current point in the transaction are not applied.

Example

In this example, there is an intermediate transaction point with a marker of "1 ".
If an error is detected, the CANCELTRPOINT statement will rollback the
accumulated transactions to the marker.

BEGINTRANSACTION;

SAVETRPOINT (l};

IF ERROR ... THEN CANCELTRPOINT (l};
ENDTRANSACTION;

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

SIM CLOSE Statement

The SIM CLOSE statement closes a previously declared and opened SIM database.
If the SIM database involving a transaction is closed before the transaction is
ended, the transaction is automatically aborted. Any active query is closed.

The SIM CLOSE statement returns a Boolean result. The statement is used as a
usual Boolean expression.

Additional information relating to the CLOSE statement is included under "SIM
OPEN Statement" and "Declaring a SIM Database" in this section.

Syntax

<Close statement>

- CLOSE - <database name> ----------------------1
Additional information relating to the <database name> construct is included
under "Declaring a Database" in Section 4, "Using the Data Management System
II (DMSII) Interface."

Explanation

The named SIM database name must have been declared and opened.

Example

In the example below, the SIM database UNIVDB is closed.

CLOSE UNIVDB;

8600 0734-000 7-45

Using the Semantic Information Manager (SIM) Interface

Database Attribute Assignments

7-46

The database attribute assignment statements (<db attribute assignments>) add
or remove values from attributes. ASSIGN, INCLUDE, and EXCLUDE are used to
assign database attributes.

• As clauses in a single-statement INSERT or MODIFY update

• As statements in a multiple-statement INSERT or MODIFY update

A query variable must be identified and specified for all multiple-statement
INSERT and MODIFY updates. Additional information relating to database
updates is included under "SIM INSERT statement" and "SIM MODIFY
statement" in this section.

Syntax

<assign spec>

- ASSIGN - (- <destination> - , 1 <DM expression>

<local selection expression>

<compound assign spec> __ _,

<include spec>

- INCLUDE - (- <destination> - , --i- <DH expression> J
L. <local selection expression>

<exclude spec>

- EXCLUDE - (- <destination>-..------.-----...-----------...•

~ <limit specification> ~

• [• - <local selection expression> J)
<destination>

1 <single-statement update destination>

<multiple-statement update destination>

<Compound assign spec>

1 ASSIGN - (- <compound spec~ - • - <DM expression> -) -'----------t
<single-statement update destination>

1 <attribute ID>

<compound spec>

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

<multiple-statement update destination>

- <query ID> - . - <attribute ID> -------------------

<Compound spec>

- <record ID> - . - <field ID>--------------------

Additional information on the <field id> construct is included under "Declaring
DMRECORDs" in this section. Information on the <limit specification> construct
is included under "SIM DELETE Statement" in this section. Information on the
<local selection expression> construct is included under "Selection Expression"
in this section. Information on the <record id> construct is included under
"Specifying a Dictionary Record" in Section 2, "Using Advanced Data Dictionary
System (ADDS) Extensions."

Explanation

Database attribute assignments can only update immediate attributes of the
current perspective. The assignment of attributes must be done through assign
statements appropriate for the data type of the attribute. Attributes of other
classes cannot be modified through entity-valued attributes.

ASSIGN updates single-valued attributes (SVAs). Use the <DM expression>
clause for data-valued attributes. For entity-valued attributes, you must use the
<local selection expression> clause. The object of a local selection expression is
restricted to class IDs associated with destinations. Omitted parts are assigned
null values.

The <DM expression> construct must evaluate to an appropriate type for the
destination specified using normal ALGOL coercion. ·

The <compound assign spec> construct must be used when assigning more than
one field of a compound. The <compound spec> construct identifies nested
fields of a compound type attribute.

INCLUDE adds values to multivalued attributes (MV As). Use the <DM
expression> clause for data-valued attributes and the <local selection
expression> clause for entity-valued attributes. The object of a local selection
expression is restricted to class IDs associated with destinations. Use ASSIGN to
add values to single-valued attributes (SV As).

EXCLUDE removes values from both MV As and SV As. The object of a local
selection expression is restricted to destinations for MV As. The optional local
selection expression is not valid when EXCLUDE is used for SVAs.

The <query ID> construct identifies the destination for the SIM database
assignment. It is required with multiple-statement INSERT and MODIFY updates.
The specified query must match the query designated in the START and APPLY
update statements.

All data management (DM) expressions that are valid for the type can be used.
(Refer to the lrifoExec SIM Programming Guide and Volume 1 of this manual for

8600 0734-000 7-47

Using the Semantic Information Manager (SIM) Interface

more information concerning DM expressions in SIM and ALGOL.) The CURRENT
function cannot be used in an assignment except in the selection expression
syntax of a local selection expression.

The limit specification determines the number of values to be excluded. Where
NOLIMIT is specified, all values are removed. Where LIMIT is specified, a
maximum number of values can be designated. If more values are found, an
exception is returned and no values are removed. The default limit is "l ".

Additional information relating to data management expressions is included
under "Using Data Management Functions and Expressions" in this section.

Examples

In the example below, the attribute BIRTHDA TE of the query STUQ is assigned
the value BDATE.

ASSIGN (STUQ.BIRTHDATE ,BOATE);

The next two examples show the syntax that can be used to assign values to
attri.butes.

ASSIGN (SPOUSE.NAME, "HELEN"}; % single-statement update
ASSIGN (STUQ.CHILDREN.NAMLOF_CHILD, "BILLY");% multiple-statement

Shown below is an example of the compound attribute assign construct.

INCLUDE MANAGER
(ASSIGN (CHILDREN,

ASSIGN (CHILDREN.NAMLOF_CHILD,"HARRY"),
ASSIGN (CHILDREN.AGE,16),
ASSIGN (CHILDREN.SEX,"MALE"));

ASSIGN (NAME,"LARRY");
ASSIGN (SOC_SEC_NQ_,99999999));

In this example, the value CLASS-ERV is removed from the multivalued attribute
COURSE-TAKING. And, in the same query, a new value is added to the attribute
COURSE-TAKING. The new value is the course with number 512A.

EXCLUDE (STUQ.COURSLTAKING (NOUMIT), CLASS.-ERV);
INCLUDE (STUQ.COURSLTAKING .[COURSE WITH COURSE-NO m 512A]);

The following example is a multiple-statement modify query and an INSERT
statement. The EXCLUDE destination must be a multivalued entity-valued
attribute. No local selection expression can be used.

INSERT DEPARTMENT
(ASSIGN(DEPT_N0.,4321);
(ASSIGN (NAME-OF _DEPT. "MATHEMATICS");
EXCLUDE(COURSLOFFERED));

STARTMODIFY DEPTQ WHERE OEPT_NO • 4321;
EXCLUDE (DEPTQ.COURSLOFFERED,

[COURSE-OFFERED WHERE TITLE .. "REMEDIAL MATH II"]);
APPLYMODIFY (DEPTQ)

7-48 8600 0734-000

Using the Semantic Information Manager (SIM) Interface

SIM DELETE Statement

The DELETE statement removes entities from the SIM database. All entities from
the class that satisfy the selection expression are deleted. If an entity is deleted
from a class that is a superclass, the entity is deleted from all its subclasses. If an
entity is deleted from a subclass, it does not affect its superclass.

You can use DMUPDATECOUNT to access the number of entities that were
deleted. DMUPDATECOUNT is an exception field of the exception word. If the
delete operation did not get an exception, but no entity was deleted, a warning is
issued. The warning bit in the exception word (bit 1: 1) is turned on.

Additional information relating to the DMUPDATECOUNT exception field is
included under "Exception Handling of SIM Statements" in this section.

Syntax

<delete statement>

- DELETE - <Class ID>

~ <limit specification> ~
- WHERE --+

~ <using clause> ~
.,_ <Selection expression> ----------------------

<limit specification>

- (I LIMIT - <integer expression> J)
L NOLIMIT

Additional information relating to the <class ID> construct is included under
"Declaring a SIM Database" in this section. Information on the <using clause>
construct is included under "SELECT Statement" in this section. Information on
the <selection expression> construct is included under "Selection Expressions"
in this section.

Explanation

The <class ID> construct identifies the class.

The limit specification determines the number of entities to be deleted. With the
NOLIMIT specification, all occurrences are deleted. With the LIMIT specification,
the maximum number of occurrences to delete is designated by the integer
expression. If the actual number of occurrences is greater than the integer
expression, an exception is returned and no deletions are processed. The default
limit is "1 ".

The <using clause> establishes relationships that are used in the selection
criteria. (Refer to the CALLED function in the ln/oE:r:ec SIM Programming Git.id.e
for more information.)

8600 0734-000 7-49

Using the Semantic Information Manager (SIM) Interface

7-50

The WHERE <selection expression> syntax associates a selection expression
with the statement.

Enmples

In the following, all entities of the class INSTRUCTOR are deleted if their rank is
CONTRACT. If one or more entities are deleted, the message "ONE ENTITY
DELETED" is displayed. STATUS would contain the number of entities deleted.

STATUS :• DELETE INSTRUCTOR WHERE RANK• 11CONTRACT11 ;

IF REAL (STATUS).DMUPDATECOUNT > 1 THEN DISPLAY
("ONE ENTITY DELETED");

In the example below, a maximum of 10 members of the class DEPARTMENT can
be deleted. The entities must meet the selection criteria of the PHYSICAL
SCIENCES building.

DELETE DEPARTMENT (LIMIT 10) WHERE BUILDING • "PHYSICAL SCIENCES";

This example deletes entities in the class STUDENT depending on the selection
criteria. TRANSi and TRANS2 are reference identifiers. They are different
occurrences of the multivalued attribute

TRANSCRIPT-RECORD.
DELETE STUDENT USING (TRANS1,TRANS2 •TRANSCRIPT-RECORD)
WHERE TRANSl.SEMESTER •FALL AND TRANS2 •CURRENT (TRANS_QUERY);

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

DISCARD Statement

The discard statement frees the control structure resources associated with a
query. The query is closed but the transaction remains active and the SIM
database remains open.

Syntax

<discard statement>

- DISCARD - (- <query ID> -) --------------------l
Additional information relating to the <query ID> construct is included under
"Declaring a Query Data Type" in this section.

Explanation

The query ID is a currently active query.

Example

GET.....INSTRUCTOR is the currently active query. In this example, the query is
terminated.

DISCARD (GET-INSTRUCTOR);

8600 0734-000 7-51

Using the Semantic Information Manager (SIM) Interface

SIM ENDTRANSACTION Statement

7-52

The SIM ENDTRANSACTION statement takes a program out of transaction state.
All applied transactions are committed once the statement is executed. All queries
using SELECT statements within the transaction state and all nonapplied
multiple-statement queries are closed.

The ENDTRANSACTION statement can be used in conjunction with the COMS
Data Communication Interface (DCI) library.

Additional information relating to the ENDTRANSACTION statement and COMS
is included under "Linking to COMS," "Declaring Input and Output Headers," and
"SEND Statement" in Section 3, "Using Communications Management System
(COMS) Features."

Syntax

<endtransaction statement>

- ENDTRANSACTION

~ <outputheadername with send options> ~
Additional information relating to the <outputheadername with send options>
construct is included under "COMS ENDTRANSACTION Statement" in Section 3,
"Using Communications Management System (COMS) Features."

Explanation

The <outputheademame> construct identifies the COMS Output Header. If the
system fails during transaction state, COMS resubmits the message when the
program is reexecuted.

The send options of the COMS SEND statement can be included in the syntax.

Examples

Three examples are shown below. In the first statement, no COMS message was
included in the transaction. The second statement notes that a COMS message was
included. The last statement illustrates a COMS header ID with SEND.

ENDTRANSACTION;
ENDTRANSACTION MYOUTHEADER;
ENDTRANSACTION MYOUTHEADER [EMI AFTER SKIP 10];

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

SIM INSERT Statement

The INSERT statement inserts new roles for existing entities or new entities with
values for their immediate attributes in the declared and opened SIM database. It
does not allow assignment of values to extended attributes.

An INSERT statement is valid only in transaction state. It can affect only the
specified class, its superclasses, or its inverses.

There are two types of INSERT statements, single and multiple. The
single-statement insert is executed as soon as it is encountered. A
multiple-statement insert is used to mix attribute assignments among other
program statements or to place assignments in other procedures and functions.
All computations must be complete before a multiple-statement update is
processed. Only one type of insert update can be used in the same query.

The single-statement insert is initiated by an INSERT statement. The
multiple-statement insert is initiated by a ST ARTINSERT statement and must be
concluded by an APPLYINSERT statement. The APPL YINSERT statement causes
the SIM database to perform the multiple-statement update.

Additional information relating to the INSERT statement is included under
"Database Attribute Assignments" in this section.

Syntax

<single-statement insert>

- INSERT - <Class ID> -L-------J--- (1 <db attribute; assignment> 1) -i
<Subclass expr>

<Subclass expr>

- FROM - <Class ID> --..-------- WHERE - <selection expression> -----1

L <Using clause> J
<multiple-statement insert>

- STARTINSERT - (- <query ID>---..-------~)

L <subclass expr> J
<apply insert statement>

-APPLYINSERT - (- <query ID> -) ------------------1
Additional information relating to the <class ID> construct is included under
"Declaring a SIM Database" in this section. Information on the <query ID>
construct is included under "Declaring a Query Data Type" in this section.

8600 0734-000 7-53

Using the Semantic Information Manager (SIM) Interface

7-54

Information on the <using clause> construct is included under "SELECT
Statement" in this section. Information on the <selection expression> construct
is included under "Selection Expressions" in this section. Information on the <db
attribute assignments> is included under "Database Attribute Assignments" in
this section.

Explanation

The <class ID> specifies what class is affected by the statement.

If the INSERT syntax does not use a <subclass expr> construct, a new entity
and its role are inserted. If the <subclass expr> construct is used, a role for an
existing entity is inserted.

The FROM/WHERE <selection expression> syntax associates a selection
expression with the statement. The subclass expression allows the programmer to
take an entity which exists in a class and establish the entity as a member of a
subclass in the same generalization hierarchy. The selection expression must
select exactly one entity; otherwise, an error is returned. If the <subclass expr>
construct does not appear, the entity is inserted as a new entity in the subclass
and its superclasses.

The <using clause> establishes relationships that will be used in the selection
criteria. (Refer to the CALLED function in the SIM documentation for more
information.)

The valid SIM database attribute assignments are ASSIGN, INCLUDE, and
EXCLUDE.

For a multiple-statement update, the <query ID> construct associates a query
with the update. The same query is also specified in the SIM database attribute
assignments that are applied. The query ID must be associated with a database
class ID in its declaration.

For STARTINSERT statements, the query ID must refer to a query that has been
associated with a class, not a DMRECORD.

Eu.mples

The example below illustrates a single-statement insert update for the class
STUDENT. The INCLUDE updates the multivalued attribute
MAJOR-DEPARTMENT.

INSERT STUDENT
(ASSIGN (STUDENT_NO, INPUT-HO);
ASSIGN (NAME, INPUT-NAME);
ASSIGN (BIRTHDATE, INPUT-8DATE);
INCLUDE (MAJOR..DEPARTMENT, DEPT-REFERENCE);
ASSIGN (CURRENT..ADDRESS, INPUT_CADDR);
ASSIGN (PERMANENT-ADDRESS, INPUT-PADDR));

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

This example of a multiple-statement insert is used for the query
UPDATE....STU_QUERY. The multivalued attribute COURSE-TAKING and the
single-valued attribute AGE are updated when the APPLYINSERT is executed.

STARTINSERT (UPDATE-STU_QUERY);

INCLUDE (UPDATE-STU_QUERY.COURSE-TAKING, CURRENT(COURSEQ));

ASSIGN (UPDATE-STU_QUERY.AGE, CALCULATE-AGE (INPUT-8DATE));

APPLYINSERT (UPDATE-STU_QUERY);

In the following example, by using the subclass expression, only one entity can be
selected.

INSERT STUDENT FROM INSTRUCTOR WHERE NAME • "DELAWARE"
(ASSIGN (NAME, "DELAWARE"));

8600 0734-000

\..

7-55

Using the Semantic Information Manager (SIM) Interface

SIM MODIFY Statement

7-56

The MODIFY statement changes existing entities in the declared and opened SIM
database. It must have a global selection expression. The number of entries to
modify can be limited.

MODIFY statements are valid only in transaction state. Each can affect only the
specified class.

There are two types of MODIFY statements, single and multiple. The
single-statement modify is executed as soon as it is encountered. A
multiple-statement modify is used to mix attribute assignments among other
program statements or to place assignments in other procedures and functions.
All computations must be complete before a multiple-statement update is
processed.

The single-statement modify is initiated by a MODIFY statement. The
multiple-statement modify is initiated by a ST ARTMODIFY statement and must be
concluded by an APPL YMODIFY statement. The APPLYMODIFY causes the SIM
database system to perform the multiple-statement update.

You can use DMUPDATECOUNT to access the number of entities that were
modified. DMUPDATECOUNT is an exception field of the exception word. If the
modify operation did not get an exception, but no entity was modified, a warning
is issued. The warning bit in the exception word (bit 1: 1) is turned on.

Additional information relating to the SIM MODIFY statement is included under
"Database Attribute Assignments" in this section. Information on the
DMUPDATECOUNT exception field is included under "Exception Handling of SIM
Statements" in this section.

Syntax

<Single-statement modifY>

- MODIFY - <Class ID>--.-----------.---.---------~ (

~ <limit specification> ~ ~ <Using clause> J

~<db attribute; assignment> 1) -------------....---
L WHERE - <selection expression> ~

<multiple-statement modify>

- STARTMODIFY - (--.----------.-<query ID>---.-------..--·

L <limit specification> J L <Using clause>~

• L WHERE - <Selection expression> J

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

<apply modify statement>

- APPLYMODIFY - (- <query ID> -) -------------------1

Additional information relating to the <class ID> construct is included under
"Declaring a SIM Database" in this section. Information on the <limit
specification> construct is included under "SIM DELETE Statement" in this
section. Information on the <db attribute assignments> construct is included
under "Database Attribute Assignments" in this section. Information on the
<using clause> construct is included under "SELECT Statement" in this section.
Information on the <query ID> construct is included under "Declaring a Query
Data Type" in this section. Information on the <selection expression> construct
is included under "Selection Expressions" in this section.

Explanation

The <class ID> specifies what class will be affected by the statement.

A limit specification determines the number of entities to be modified. Where
NOLIMIT is specified, all occurrences are modified. Where LIMIT is specified, all
occurrences to the maximum number designated by an integer expression are
modified. If more occurrences are found (that is, the actual number of
occurrences is greater than the integer expression), an exception is returned. No
modifications are processed. The default limit is "l ".

The <using clause> establishes relationships that are used in the selection
criteria. (Refer to the CALLED function in the l'Tl/oE:&ec SIM Programming Guide
for more information.)

The WHERE <selection expression> syntax associates a selection expression
with the statement. It is not needed for modifying class attributes.

The valid SIM database attribute assignments are ASSIGN, INCLUDE, and
EXCLUDE.

For a multiple-statement update, the <query ID> construct associates a query
with the update. The same query is also specified in the SIM database attribute
assignments that are applied. The query ID must be associated with a database
class ID in its declaration.

For ST ARTMODIFY statements, the query ID must refer to a query that has been
associated with a class, not a DMRECORD.

8600 0734-000 7-57

Using the Semantic Information Manager (SIM) Interface

7-58

Examples

This single-statement MODIFY makes changes to the class STUDENT. When the
student number is the input student number, a value is added to the attributes
MAJOILDEPARTMENT, MINOILDEPARTMENT, and CURRENT....ADDRESS. If
one or more entities are modified, the message "ONE ENTITY MODIFIED" is
displayed. STATUS contains the actual count.

STATUS :• MODIFY STUDENT
(INCLUDE (MAJOR...DEPARTMENT, DEPT-REFERENCE);

INCLUDE (MINOR...DEPARTMENT, MINOR...DEPT_REFERENCE);
ASSIGN (CURRENT-ADDRESS,INPUT_CADDR))

WHERE STUDENT-NO • INPUT-5TU_NO;
IF REAL(STATUS).DMUPDATECOUNT > 1 THEN DISPLAY

("ONE ENTITY MODIFIED");

This multiple-statement MODIFY is associated with the query
UPDATE...STU_QUERY. It is operative only where the major department is
PHYSICS. The database attribute EXCLUDE and INCLUDE assignments are
applied when APPLYMODIFY is executed. There is no limit on the number of
changes that can be applied.

STARTMODIFY ((NOLIMIT) UPDATE-5Tll.QUERY
WHERE MAJOR...DEPARTMENT • "PHYSICS");

EXCLUDE (UPDATE-5TU_QUERY.ADVISOR);
INCLUDE (UPDATE-5TU_QUERY.ADVISOR, CURRENT(INSTRUCTOR_QUERY));

APPLYMODIFY (UPDATE-5TU_QUERY);

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

SIM OPEN Statement

A SIM OPEN statement opens a previously declared SIM database and specifies
the access mode. An OPEN statement must precede all other SIM statements.

The SIM OPEN statement returns a Boolean result. The statement is used as a
usual Boolean expression.

Additional information relating to the SIM OPEN statement is included under
"Declaring a SIM Database" and "SIM CLOSE Statement" in this section.

Syntax

<Open statement>

- OPEN -----..... <database name> ---------------

L INQUIRY 1
L UPDATE J

Additional information relating to the <database name> construct is included
under "Declaring a Database" in Section 4, "Using the Data Management System
II (DMSII) Interface."

Explanation

INQUIRY access is read-only access. No update operations can be performed on
the SIM database. For INQUIRY access, an exception is returned if any of the
following statements are used when the SIM database has been opened:

ABORTTRANSACTION
APPLYINSERT
APPLYMODIFY
BEGINTRANSACTION
CANCELTRPOINT
DELETE

ENDTRANSACTION
INSERT
MODIFY
SAVEINSERT
SAVEMODIFY
SA VETRPOINT

UPDATE access is read/write access. The UPDATE option allows the program to
modify the previously declared data base. An exception is returned if the SIM
database is already open. If an exception is returned, the state of the database is
unchanged.

If neither INQUIRY or UPDATE access is specified, the default access is
UPDATE.

The database name is the name of the previously declared SIM database.

8600 0734-000 7-59

Using the Semantic Information Manager (SIM) Interface

7-60

Examples

Shown below, the SIM database UNIVDB is opened. The access method is
UPDATE. Therefore the database can be modified by the program.

OPEN UPDATE UNIVDB;

In this example, the SIM database TOO~ is opened. The access method is
INQUmY. The access to the database is read only.

OPEN INQUIRY TOOLS;

In the following example, the default access method UPDATE is used when
opening the SIM database ACCOUNTING.

OPEN ACCOUNTING;

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

RETRIEVE Statement

The RETRIEVE statement requests information from the declared and opened SIM
database. It retrieves the query in order to make the entities available to your
program.

Additional information relating to the RETRIEVE statement is included under
"SELECT Statement" and "SETTO Statements" in this section.

Syn tu:

<retrieve statement>

- RETRIEVE - (- <query ID>~-------....

L . - <DMRECORD ID> J
Additional information relating to the <query ID> construct is included under
"Declaring a Query Data Type" in this section. Information on the <DMRECORD
ID> contruct is included under "Declaring DMRECORDS" in this section.

Explanation

The <query ID> construct identifies the query to be retrieved.

The <DMRECORD ID> construct identifies a previously defined DMRECORD. If
a DMRECORD is specified, the attributes associated with the retrieved query
variable are returned into the DMRECORD. The DMRECORD variable must be the
same type as the query variable.

If the retrieval is being used only to establish a current path, do not specify a
DMRECORD. For example, do not specify a DMRECORD if the query ID will be
used as an argument to the CURRENT function.

Additional information relating to the RETRIEVE statement is included in the
description of the CURRENT function under "Selection Expressions" and under
"Type Declaration and Invocation for SIM" in this section.

Examples

The first example demonstrates how a retrieval can be used to establish a current
path. INSTRUCTOILQUERY can be used later as an argument to the CURRENT
function. The query variable INSTRUCTOILQUERY was declared to be
associated with a class ID.

RETRIEVE (INSTRUCTOR-QUERY);

In the second example, the attributes associated with the query STUQ are
retrieved and placed into the DMRECORD STUDENT-RECORD.

RETRIEVE (STUQ, STUDENT_RECORD);

8600 0734-000 7-61

Using the Semantic Information Manager (SIM) Interface

SAVETRPOINT Statement

7-62

The SA VETRPOINT statement creates intermediate transaction points. These
points can be used to specify the extent of a rollback. The intermediate
transaction points can be used to cancel transactions without aborting the entire
transaction.

Additional information relating to accumulated transactions is included under
"CANCELTRPOINT Statement" in this section.

Syntax

<savetrpoint statement>

- SAVETRPOINT - (- <integer expression> -) --------------

Explanation

The integer expression is used as a marker. SIM requires the marker to be a
positive, nonzero value that is unique to the transaction. The integer expression
is assigned to a point in the transaction.

An integer is an arithmetic value that has an exponent of zero and no fractional
part. Refer to Volume 1 for a discussion of integer expressions.

Example

In the example below, an intermediate transaction point is created.

SAVETRPOINT (5);

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

SELECT Statement

The SELECT statement is used to specify what is to be returned from the SIM
database and how it is to be returned. A SELECT statement selects a set of
entities from the perspective class and associates it with the query variable. (The
RETRIEVE statement retrieves the data.) Retrieved data can be presented in a
tabular, structured, or hybrid format.

When and how the SELECT statement is issued determines the action taken.
There are three possible cases:

1. If it is issued within transaction state, all selected entities are locked. No
other user can access the locked entities. This ensures a protected read of
the data. The query is closed automatically at the end of transaction. All
corresponding RETRIEVE statements must be done in transaction state.

2. If issued outside of transaction state, the selected entities are not locked.
Retrieval can be either inside or outside of transaction state; however, in
either case, entities are not locked. Multiple users can access the data
concurrently and there is a risk that the database can change as the data is
updated.

If the selection is done outside of transaction state and the program issues a
RETRIEVE statement inside transaction state, the query is still open when
the program leaves transaction state. The DISCARD statement can be used to
close the query or the query can stay open until the database is closed.

3. If issued outside of transaction state with the SECURED option, the SELECT
statement opens a query outside of transaction state and locks the entities.
A recommended practice is to use the corresponding RETRIEVE statements
within transaction state. The DISCARD statement must be used to close the
query.

The global selection is associated with the perspective class (or classes). The local
selections are associated with particular paths. A subquery selection can be
associated with a local selection.

When a SELECT statement is performed on an already active query, implicit
discard and close operations are performed before the SELECT operation is
executed; that is, the query is closed and then opened again.

Additional information relating to the SELECT statement is included under
"RETRIEVE Statement," "DISCARD Statement," "SIM ENDTRANSACTION
Statement," "Queries," "Selection Expressions," and "Retrieval and Update
Queries" in this section.

8600 0734-000 7-63

Using the Semantic Information Manager (SIM) Interface

7-64

Syntax

<select statement>

- SELECT - <query ID> - FROM !: <perspe:t::-J,... _____ ...,... _____ _..

~ , DISTINCT ~

• [(- <selection bodY> -) J

l ORDER BY (......... _.----------......- <DI expression> 1) J
ASCENDING

DESCENDING

~ WHERE - <Selection expression> ~
<perspective>

BINARY

ORDERING

COLLATING

-...--.-------------......- <class id> -------....... ----

<Called cla:s ref ID> OJ_ •
<Using clause>

<database ID> ---------------------

<Using clause>

- USING - (!: <Using e:emenb 1) -----------------
<Using element>

1 <Called attrf~ute ref ID> 1. -<MVA> ---------------

<Selection body>

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

<attr map> -'----------~----------------l

<subquery sel> -----------1

<attr ~a~ ; _r:: <subquer: sel>

<attr map>

1 <field ID>

~ - - <DM expression> ~

WITH - <path ,,,,..,,;on> - (~ :.~) ~
<Subquery sel>

- SELECT - <query ID> - FROM - <Subquery select domain>----------.....

• [(- <Selection body> -) J
<subquery select domain>

1 <entity-valued qual ID>

INVERSE - (- <entity-valued qual ID> -)

<multivalued data-valued attribute> -----l

<transitive expression> ---------'

Additional information relating to the <class ID> construct is included under
"Declaring a SIM Database" in this section. Information on the <field id>
construct is included under "Declaring DMRECORDs" in this section. Information
on the <query ID> construct is included under "Declaring a Query Data Type"
in this section. Information on the <selection expression>, <transitive
expression>, and <path expression> constructs is included under "Selection
Expressions" in this section.

Explanation

The <query ID> construct identifies the query. One query variable can be used
for several query statements. However, you cannot use the same variable in
several SELECT statements at the same time.

The word "FROM" signifies that the following syntax will give the perspective
class through which SIM associates the query.

8600 0734-000 7-65

Using the Semantic Information Manager (SIM) Interface

The <perspective> construct specifies either a class or database ID. Retrieval
queries can have more than one class in the perspective. When a retrieval query
has more than one class in its perspective, any attributes in the SELECT
statement must be fully qualified to identify the class that they apply to. If the
perspective is a database ID, only one database can appear in the perspective.

All <called> constructs are comparable to the SIM "CALLED" function. The
function is used to assign a variable to a set of entities. Since these reference
variables are not declared in the program, they cannot be referenced beyond the
scope of the SELECT statement. The CALLED function can follow a class name,
as in the perspective clause syntax, but it cannot follow a variable name that was
declared by another CALLED function. Quantifiers cannot be used on variables
created by a CALLED function. (Refer to the l'fl/oExec SIM Programming Guide
for more information on the CALLED function.)

The <called class ref ID> syntax assigns a reference variable to a specific set of
entities identified in the USING clause. Reference variables are specified before
the attribute mapping list to allow for the explicit assignment of reference
variable(s) to an occurrence of a class or multivalued attributes (MV As). The
program can then manipulate different occurrences of the class or MV A in the
mapping list or selection expression.

The DISTINCT option removes any duplicates and selects only a unique set of
data. This option is valid for strictly tabular output only, not for subqueries.

The <selection body> construct is used to map attributes for retrieval and
specify the output format. The mapping constraints are as follows:

• For tabular formatting, do not use the subquery SELECT clause. The compiler
requests tabular form if no subquery SELECT clause is specified; otherwise,
structured formatting is requested.

• For structured formatting, use the subquery SELECT clause. Structured
formatting is a subset of hybrid selection.

• For hybrid formatting, combining structured with tabular formats, use
attribute maps for items to be displayed in a table and the subquery SELECT
clause for items to be displayed in a structured format.

The <attr map> construct determines how the SELECT statement maps data
from the database into DMRECORD fields.

• The <field ID> construct specifies one field of a record identifier.

• The <DM expression> construct identifies the attribute from which data is
taken. If the attribute's name is different than the name used in the <field
ID> construct, the DM expression is used to clearly identify the attribute.

If the DM expression contains an attribute and the perspective of the SELECT
statement contains more than one class, the attribute must be fully qualified
to identify the class it applies to.

The DM expression cannot include the CURRENT function.

• The WITH option enables you to use a path expression in each of the

7-66 8600 0734-000

Using the Semantic Information Manager (SIM) Interface

attribute qualifications of a subsequent <attr map> construct. The path
expression temporarily translates the perspective of the query into another
class of the SIM database.

Refer to the I11/o&ec SIM Programming Guicte for more information on tabular,
structured, and hybrid formatting, as well as the CURRENT and WITH options.

In the attribute mapping list, a SIM attribute with the same name as the
DMRECORD field ID that it will be retrieved into, does not need to be specified.

The <subquery sel> construct identifies and qualifies a query, establishes the
attribute mapping characteristics, and associates a selection expression.

The subquery select domain is one of the following.

• a fully qualified entity-valued attribute (EV A)

• the inverse of a fully qualified EV A

• a transitive expression

• a multivalued data-valued attribute

Consult the I11/o&ec SIM Programming Guicte for a discussion of these terms.

Pay special attention to situations where the multivalued data-valued attribute is
a compound attribute (for example, a record that is made up of several fields). In
this situation, any fields that are used in the selection body of a subquery select
should be fully qualified with the complete compound attribute. If they are not
fully qualified, the compiler cannot accept them as valid DM expressions in the
<attr map> construct.

The ORDER BY option is used to sort output before it is returned.

• The DM expression must be able to be ordered. Unless tabular output is
requested, the DM expression must result in a single value.

• The ASCENDING keyword indicates ascending sort order (from low to high).
This is the default sort order. If more than one sort key is indicated, the
leftmost is the most significant for ordering. Nulls always sort to the end.

• The DESCENDING keyword indicates descending sort order (from high to
low). If more than one sort key is indicated, the leftmost is the most
significant for ordering. Nulls always sort to the end.

• The BINARY keyword indicates that as the retrieved data is sorted, SIM
compares strings based on their binary value. This is the default type of
string comparison when the strings are ASERIESNATIVE (sixteen-bit strings).

• The ORDERING keyword indicates that as the retrieved data is sorted, SIM
compares strings based on the current ordering sequence.

An ordering sequence is a predefined arrangement of members in a character
set. In an ordering sequence, characters can be placed in order based on
criteria other than their binary value. Different characters can be assigned
the same ordering sequence value (for example, the characters "A" and "a").

8600 0734-000 7-67

Using the Semantic Information Manager (SIM) Interface

7-68

• The COLLA TING keyword indicates that as the retrieved data is sorted, SIM
compares strings based on the· current collating sequence. This is the default
type of string comparison when the strings are eight-bit strings (that is, not
ASERIFSNA TIVE strings).

A collating sequence is a predefined arrangment of members in a character
set based on ordering sequence and additional priority sequence values. Each
character has an ordering sequence value and a priority sequence value. Any
characters that have the same ordering sequence value are assigned differing
priority sequence values. This gives each character a unique combination of
values and determines the character's position in the collating sequence.

The WHERE <selection expression> syntax associates a selection expression
with the statement. If the perspective of the SELECT statement contains more
than one class, any attributes in the selection expression must be fully qualified
to identify the class that they apply to.

Additional information relating to the SELECT statement is included under
"Using Data Management Functions and Expressions," "Referencing DMRECORD
Fields," and "Selection Expressions" in this section. Related information is also
available in description of the CURRENT function under "Selection Expressions"
in this section.

Examples

In the first example, the query INSTRUCTOLQUERY uses the perspective class
INSTRUCTOR. The employee number and hire date are selected if the employee
has a salary greater than $20,000. Because of the SECURED option, the selected
entities are locked if this SELECT statement is issued outside transaction state.
Because the DISTINCT option is used, only a unique set of data is selected.
Duplicates are not be selected. The selected data is presented in tabular format
and in ascending order by employee number.

SELECT INSTRUCTOR-QUERY FROM INSTRUCTOR, SECURED, DISTINCT
(EMPLOYEE-NO • EMP_NO;

HDATE • HIRE.JlATE) ORDER BY (ASCENDING EMP_NO)
WHERE SALARY > 20000;

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Below are two ways of coding the same query. The query STUQ uses the
perspective of STUDENT. In this query, all students majoring in drama will be
selected. The report will include their name and minor. In the first case, a
subquery, COURSEQ, is used to select the title of the course and the professor
teaching the course. The subquery will select only courses where the course
number is greater than 300. In the second case no subquery is used.

SELECT STUQ FROM STUDENT
(STU_NAME • NAME;
MINOR• MINOR-DEPARTMENT.NAME-OF-DEPT;
SELECT COURSEQ FROM [COURSE-TAKING WHERE COURSE.N0>300]

(COURSE-TITLE • TITLE;
PROFESSOR• INSTRUCTOR-TEACHING.NAME))

WHERE MAJOR-DEPARTMENT.NAME-OF-DEPT• "DRAMA";
SELECT STUQ FROM STUDENT

(STU_NAME • NAME;
MINOR• MINOR-DEPARTMENT.NAME-OF-DEPT;
WITH [COURSE-TAKING WHERE COURSE.N0>300]

(COURSE-TITLE • TITLE;
PROFESSOR• INSTRUCTOR-TEACHING.NAME))

WHERE MAJOR-DEPARTMENT.NAME-OF_DEPT • "DRAMA";

The following example assumes that the query STU_Q selected an entity, namely
a student, in a pJ,"evious action. The statement can then compare the courses
taken by that student against the prerequisites for a specific class.

SELECT PRE-Q FROM COURSE
WHERE CURRENT (STU_Q) • STUDENT_TAKING;

8600 0734-000 7-69

Using the Semantic Information Manager (SIM) Interface

SETTO Statements

7-70

The SETTO statements alter the value for the expected level in a retrieval query.
The statements are used with the SIM transitive closure facility.

A reflexive attribute is an entity-valued attribute that refers to the same class of
which it is an attribute. The transitive closure facility allows the program to
recursively access a reflexive attribute during a retrieval query. This can be used
to create circular path expressions. The program can specify at what levels of
recursion the transitive retrieval starts and stops.

For tabular output, a reflexive attribute is treated as a multivalued attribute. For
structured output, the reflexive attribute can have different values at each level
of the structure.

By default, a retrieval traverses the same level and then ends. The SETTO
statements can be used to detect and manipulate level changes during traversal.
The level can be adjusted, one level at a time, for the next retrieval.
SETTOP ARENT adjusts the level to the next lower number (the parent level).
SETTOCHILD adjusts the level to the next higher number (the child level). These
levels are then used in a subsequent RETRIEVE statement.

If SETTOP ARENT is used and the current level is not yet exhausted, SIM
abandons further accesses at the current level and returns to the parent level. If
SETTOCHILD is used, SIM accesses the next child level rather than accessing the
next entity at the current level. If there are no entities at the expected level, SIM
returns an error condition on the RETRIEVE statement.

Additional information relating to the SETTO statements is included under
"RETRIEVE Statement" in this section.

Syntax

<Settoparent statement>

- SETIOPARENT - (- <query ID> -) --------------------t
<Settochild statement>

- SETIOCHILD - (- <query ID> -) -------------------1
Explanation

The <query ID> construct identifies the current query.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Examples

In the first example, the current query is INSTR-QUERY. The level is lowered by
one.

SETTOPARENT (INSTR..QUERY);

In this example, the current query is STUQ. The level is raised by one.

SETTOCHILD (STUQ);

8600 0734-000 7-71

Using the Semantic Information Manager (SIM) Interface

Exception Handling of SIM Statements

7-72

When compiling SIM database statements, both the compiler and SIM can detect a
syntax error. In both cases, the error or warning is returned in the normal way.

When executing SIM statements, exceptions can occur. For example, the program
can encounter a fault. Each SIM statement returns a status word. The value of
this word specifies whether an exception has occurred and the nature of the
exception.

If an exception results from a SIM database operation, but the value is not
assigned to an exception variable in the program, the program is terminated. If
the value is assigned, no other indication of the exception is given. The ALGOL
program is responsible for determining the nature of the exception and
responding appropriately.

Consult the JnjoExec SIM Programming Guide for exception categories and
subcategories.

When an exception occurs, the DM exception routines listed below can be called
for further information about the exception.

Syntax

<exception expression>

1 DMEXCEPTIONMSG - (- <REAL array row> - , - <REAL array rOW> -)

DMEXCEPTIONINFO - (- <EBCDIC array rOW> -) ---------1
DMNEXTEXCEPTI ON

<exception variable> - . - <exception field> -------~

<exception field>

1 DMEXCEPTION

DMSUBEXCEPTilll ~
DMMOREEXCEPTIONS

<DMEXCEPTION mnemonic>

DMNOERROR

DMWARNING

DMCOMPLETE

DMFAILED

DMSYSTEM

DMUPDATECOUNT

J
1

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Explanation

The exception word is a Boolean variable. The value is TRUE if the operation
results in an exception; otherwise, it is FALSE.

DMEXCEPTIONMSG is an integer function that translates the current exception
to text in the user language. DMEXCEPTIONMSG requires two REAL array rows.
The first specifies the language of the message. The second contains the actual
message.

The first word of the first REAL array row gives the length of the name of the
language. The name of the language begins in the second word. If zero-length text
is passed in first word, the normal MultiLingual System (Ml.8) selection
conventions are used. Otherwise, the second word must specify a language.

The first word of the second REAL array row gives the number of characters
returned in the error message. The array, beginning in the second word, should be
long enough to receive two lines of 78 characters. This is where the translated
text of the error or exception message is returned.

DMNEXTEXCEPTION is a Boolean function that returns the next exception word
in the function value. It will not return the text corresponding to the returned
exception word. Use DMEXCEPTIONMSG to return the text.

The array returned from DMEXCEPTIONINFO is described by the compiler
predeclared DMEXCEPTIONRECORD structure. DMEXCEPTIONRECORD gives
exception information about the underlying structure of the database where the
exception was encountered.

The layout of DMEXCEPTIONRECORD is

TYPE PACKED DMRECORD DMEXCEPTIONTYPE
(REAL DMSTATUS;
EBCDIC ARRAY DMLUCNAME [0:29];
EBCDIC ARRAY DMVERIFYNAME [0:29];
EBCDIC ARRAY DMDBNAME [0:29];
EBCDIC ARRAY DMSTRUCTURENAME [0:17]);

DMEXCEPTION TYPE DMEXCEPTIONRECORD;

The construct <exception field> can be used to interrogate the DMSTATUS field
of the DMEXCEPTIONRECORD. The DMEXCEPTION field can be compared to the
<DMEXCEPTION mnemonic> to clarify the exception. The DMSUBEXCEPTION
field values are defined in the 111/o&ec SIM Programming Guide. The
DMMOREEXCEPTION field should be used as a pseudo-Boolean to retrieve the
next message.

8600 0734-000 7-73

Using the Semantic Information Manager (SIM) Interface

7-74

DMEXCEPTIONINFO is a Boolean function that returns detailed information
about the current exception. It returns a structure that can be accessed using the
DMEXCEPTIONINFO record field names. Fields of the structure can be
meaningful only with certain exceptions. Referencing a field that has no meaning
produces an unpredictable value. The DMEXCEPTIONINFO record fields are:

DMSTATUS

Contains the DMSII result word for a physical database exception. It is
meaningless for logical database exceptions.

DMSTRUCTURENAME

Contains the name of the DMSII structure on which a physical database
exception was detected. It is meaningless for logical database exceptions.

DMLUCNAME

Contains the name of the SIM logical component on which a physical or
logical database exception was detected.

DMDBNAME

Contains the internal database name upon which a physical or logical
database exception, a verification or constraint exception, or a transaction
exception occurred.

DMVERIFYNAME

Contains the name of the VERIFY which caused the verification exception or
a description of the attribute option which caused the constraint exception.

The DMEXCEPTION mnemonics are used when a major type of exception is
detected to distinguish the exception type. These mnemonics and their
corresponding integer values are explained below.

DMNOERROR ""' 0

Indicates that the last operation was successful (if returned as a result of
the operation) or, when calling DMNEXTEXCEPTION, that no further errors
exist.

DMW ARNING - l

Contains information about occurrences within the system that the user
should be aware of, but which do not affect the results of the operations.
This warning is returned in a result word which is FALSE.

DMCOMPLETE - 2

Contains an indication of the end of a sequence of operations.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

DMFAILED..., 3

Contains reasons for the failure of a query or an operation to complete
properly.

DMSYSTEM ... 4

Contains exceptions detected by the SIM system which are fatal to the user
program and possibly to SIM itself. The program should discontinue
operations against the current database. The current database should be
closed.

DMSUBEXCEPTION is an exception type. It provides more details as to the exact
nature of the exception. It yields a numeric value identifying the subexception of
the major exception. Refer to the In/oExec SIM Programming Guide for the
numeric values and a detailed explanation.

DMMOREEXCEPTIONS is another exception type. It is used to indicate that there
were multiple errors. The errors are returned in descending order of severity,
ascending order of occurrence. Only the last detected error is returned in the
exception word. To access all the errors, use the function DMNEXTEXCEPTION.

DMUPDATECOUNT is not an exception type. It is used to access the number of
entities updated in an update operation. DMUPDATECOUNT is valid only when
used with MODIFY and DELETE statements.

Additional information relating to the exception fields is included under "SIM
MODIFY Statement" and "SIM DELETE Statement" in this section.

Example

Below, the ERRORWORD is a Boolean variable. In the retrieval of PROF_QUERY,
when the sequence of operations is complete, close the input file. If any error
occurs, place the text of the error, in English, into ERRTEXT. Write the content
of the message.

BOOLEAN ERRORWORD;

ERRORWORD :•RETRIEVE (PROf_QUERY);
IF REAL (ERRORWORD).DMERROR THEN

8600 0734-000

IF REAL (ERRORWORD).DMEXCEPTION • DMCOMPLETE THEN
CLOSE (INPUT_FILE)

ELSE
BEGIN

DMEXCEPTIONMSG (ENGLISK_LANG, ERRTEXT[*]);
WRITE (ERRFILE,FMT,ERRTEXT[*]);

END;

7-75

Using the Semantic Information Manager (SIM) Interface

SIM Sample Programs

7-76

Example 1 highlights the use of multiple-statement MODIFY and INSERT updates.
It also illustrates the use of EXCLUDE assignments.

Example 2 demonstrates the hybrid retrieval technique. Some extended attributes
are retrieved in tabular form, and some in structure form.

Example 3 demonstrates the use of transitive closure and the statements
SETTOP ARENT and SETTOCHILD.

Example 4 updates a SIM database by using the features of the COMS
direct-window interface.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Example 1: Using Project-employee Projects

The following program allows you to add or drop projects from a data base. If a
project is dropped, the program completes all related assignments by asking for
ratings. The program then updates the overall-rating of the project employee.

The program uses multiple-statement updates, tabular retrieval, the AVERAGE
function, single-statement updates, the CURRENT function.

BEGIN
SEMANTIC DATABASE PROJECTMANAGER (NAME • PROJEMP)

{EMPLOYEE,MANAGER,PROJ_EMPLOYEE,INTERIM._MANAGER,
PROJECT,DEPARTMENT,ASSIGNMENT,PERSON);

TYPE UNPACKED DMRECORD ASSl_REC_TYPE
{INTEGER ASSl_START_DATE);

ASSl_REC_TYPE ASSl_REC;

QUERY ASSl_Q(ASSl_REC),
PEMP_Q(PROJ_EMPLOYEE);

DEFINE PROJ..ADD •"ADD ",
PROJ_DROP • "DROP";

EBCDIC ARRAY PROJ_INDICATOR[0:3];

INTEGER PROJ_NUM,
SS_NUM,
MSG-LENGTH;

REAL INPUT_RATING;
BOOLEAN QUERY_RESULT;

ARRAY MESSAGE..ARRAY[O:l2],
LANG..ARRAY[O:S];

DEFINE ABORT_GRACEFULLY •
MYSELF.STATUS :• -1;

PROCEDURE PROCESS_THE-MESSAGE;
% -------------------

BEGIN
DMEXCEPTIONMSG(LANG...ARRAY, MESSAGE-ARRAY);
MSG-LENGTH :• MESSAGE.-ARRAY[O];
WRITE{RMT,MSG_LENGTH,POINTER{MESSAGE..ARRAV[l],8));
END PROCESS_THE..MESSAGE;

PROCEDURE PROCESS..AN..ASSIGNMENT;
% ---------------------

BEGIN
QUERY-RESULT :• RETRIEVE(ASSl_Q,ASSl_REC);

8600 0734-000 7-77

Usln1 the Semantic Information Mana1er (SIM) Interface

7-78

WRITE(RMT,<I8,X4,F3.l>,ASSl_REC.ASSl-5TART.J>ATE,INPUT-RATING);
MODIFY ASSIGNMENT

(ASSIGN(RATING,INPUT_RATING))
WHERE ASSIGNMENT• CURRENT (ASSl_Q);

END PROCESS...AN..ASSIGNMENT;

QUERY-RESULT :• OPEN UPDATE PROJECTMANAGER;
IF QUERY-RESULT THEN

BEGIN
PROCESS_THE..MESSAGE;
ABORT-GRACEFULLY;
END;

BEGINTRANSACTION;

READ(RMT,<A4,I6,I6,I6>,PROJ_INDICATOR,PROJ..NUM,SS..NUM,INPUT-RATING);

STARTMODIFY PEMP_Q WHERE SOC-SEC..NO • SS..NUM;

IF PROJ_INDICATOR • PROJ..ADD THEN
INCLUDE(PEMP_Q,CURRENT_PROJECT,

[PROJECT WHERE PROJECT..NUMBER • PROJ..NUM])
ELSE
IF PROJ_INDICATOR • PROJ-DROP THEN

SELECT ASSl_Q FROM ASSIGNMENT
(ASS1-5TART.J>ATE • START.J>ATE)

WHERE
PROJECT-DF.PROJECT_TEAM.SOC-5EC..NO • SS..NUM AND
PROJECT_OF.PROJECT..NUMBER • PROJ..NUM AND
NOT DMEXISTS(RATING);

WHILE NOT QUERY-RESULT DO PROCESS...AN..ASSIGNMENT;

ASSIGN(PEMP-Q.OVERALL..RATING,DMAVG(ASSIGNMENT_RECORD.RATING));
EXCLUDE(PEMP_Q.CURRENT_PROJECT,[PROJECT_TAKING WHERE

APPLYMODIFY(PEMP_Q);
ENDTRANSACTION;

PROJECT..NUMBER • PROJ..NUM]);

QUERY-RESULT:• CLOSE PROJECTMANAGER;

IF REAL(QUERY-RESULT).DMEXCEPTION NEQ DMCOMPLETE THEN
PROCESS_THE..MESSAGE;

END.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Example 2: Archiving Assignments

The following program removes assignments that were completed at least five
years ago from the database and stores those assignments on tape.

The program illustrate hybrid retrieval: the program formats some extended
attributes in tabular form and others in structured form.

BEGIN
SEMANTIC DATABASE PROJEMP:

(EMPLOYEE,MANAGER,PROJ_EMPLOYEE,INTERIM_MANAGER,
PROJECT,DEPARTMENT,ASSIGNMENT,PERSON);

TYPE UNPACKED DMRECORD PEQ_REC_TYPE
(EBCDIC ARRAY PEQ_NAME[O:l9];

INTEGER SOC-5EC_NO;
EBCDIC ARRAY DEPT[O:l9]);

TYPE UNPACKED DMRECORD AQ_REC_TYPE
(INTEGER AQ_START.J>ATE;

INTEGER AQ_END_DATE;
REAL AQ_RATING);

PEQ_REC_TYPE PEQ_REC;
AQ_REC_TYPE AQ_REC;

QUERY PEQ(PEQ_REC),
AQ(AQ_REC);

DEFINE DEADLINE • 010187#;

ARRAY OUT_TEXT[0:26],
LAN6-ARRAY[0:5];

BOOLEAN QUERY-RESULT;

DEFINE ABORT_GRACEFULLY •
MYSELF.STATUS :• -1;

PROCEDURE PROCESS_THE-MESSAGE;
i -------------------

BEGIN
DMEXCEPTIONMSG(LAN6-ARRAY, OUT-TEXT);
MS6-LENGTH :• OUT_TEXT[O];
WRITE(RMT,MS6-LENGTH,POINTER(OUT_TEXT[l],8));
END PROCESS_THE-MESSAGE;

PROCEDURE DO_EMPLOYEE;
i -----------BEGIN

QUERY-RESULT :• RETRIEVE(PEQ,PEQ_REC);

IF NOT QUERY-RESULT THEN

8600 0734-000 7-79

Using the Semantic Information Manager (SIM) Interface

7-80

BEGIN
WRITE(RMT,<A20,X4,Il0,X4,A20>,

PEQ_REC.PEQ_NAME,PEQ_REC.SOC..SEC_NO,PEQ-REC.DEPT);
DO

BEGIN
QUERY-RESULT :• RETRIEVE(AQ,AQ_REC);
IF REAL(QUERY-RESULT) THEN

IF QUERY-RESULT.DMEXCEPTION NEQ DMCOMPLETE THEN
PROCESS_THE-'4ESSAGE;

ELSE
ELSE

BEGIN

END

% Archive the assignment to TAPE
DELETE ASSIGNMENT WHERE ASSIGNMENT• CURRENT(AQ);
END;

UNTIL QUERY-RESULT;
END

ELSE
IF REAL(QUERY-RESULT).DMEXCEPTION NEQ DMCOMPLETE THEN

PROCESS_THE-'4ESSAGE;

END DO-EMPLOYEE;

QUERY-RESULT :• OPEN UPDATE PROJEMP;
IF QUERY-RESULT THEN

BEGIN
PROCESS_THE-'4ESSAGE;
ABORT-GRACEFULLY;
END;

BEGINTRANSACTION;

SELECT PEQ FROM PROJ_EMPLOYEE

DO

(PEQ_NAME • NAME;
% SOC..SEC-HO need not be specified
DEPT • DEPT_IN.DEPT_TITLE;
SELECT AQ FROM ASSIGNMENT-RECORD

(AQ_START-DATE • START-DATE;
AQ_END-DATE • END-DATE;
AQ_RATING • RATING))

WHERE SOME(ASSIGNMENT_RECORD.END-DATE) < DEADLINE;

DO-EMPLOYEE
UNTIL QUERY-RESULT;

ENDTRANSACTION;

CLOSE PROJEMP;

END.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Example 3: Listing Subprojects

The following program lists the subprojects for a specific project, including
subproject of subprojects. The program uses transitive closure and the related set
statements.

BEGIN
SEMANTIC DATABASE PROJEMP:

(EMPLOYEE,MANAGER,PROJ_EMPLOYEE,INTERIM.J4ANAGER,
PROJECT,DEPARTMENT,ASSIGNMENT,PERSON);

TYPE UNPACKED DMRECORD PEQ_REC_TYPE
(EBCDIC ARRAY PQ_TITLE[0:29]);

TYPE UNPACKED DMRECORD SQ_REC_TYPE
(EBCDIC ARRAY SQ_TITLE[0:29]);

PEQ_REC_TYPE PEQ_REC;
SQ_REC-TYPE SQ_REC;

QUERY PEQ(PEQ_REC),
SQ(SQ-REC);

BOOLEAN ALL-DONE, QUERY-RESULT;
INTEGER COUNTER;
ARRAY OUT_TEXT[0:26],

LAN6-ARRAY[0:5];

DEFINE ABORT-GRACEFULLY •
MYSELF.STATUS :• -1;

PROCEDURE PROCESS_THE-MESSAGE;
% -------------------

BEGIN
DMEXCEPTIONMSG(LAN6-ARRAY, OUT_TEXT);
MSG-LENGTH :• OUT_TEXT[O];
WRITE(RMT,MS6-LENGTH,POINTER(OUT_TEXT[l],8));
END PROCESS_THE-MESSAGE;

PROCEDURE GET_SUBPROJECT;
% --------------BEGIN

WRITE(RMT,<A30>,SQ_REC.SQ_TITLE);
SITTOCHILD(SQ};
COUNTER :• * + l;

QUERY-RESULT :• RETRIEVE(SQ,SQ_REC};
IF QUERY-RESULT THEN

8600 0734-000

IF REAL(QUERY_RESULT}.DMEXCEPTION • DMCDMPLETE THEN
DO

BEGIN
SETTOPARENT(SQ);
COUNTER :• *-1;
IF COUNTER LEQ 0 THEN

7-81

U1ln1 the Semantic Information Mana1er (SIM) Interface

7-82

ALLDONE :• TRUE
ELSE

BEGIN
QUERY-RESULT :• RETRIEVE(SQ,SQ..REC);
IF REAL(QUERY..RESULT).DMEXCEPTION NEQ DMCOMPLETE THEN

ALLDONE :• TRUE;
END

END
UNTIL ALL-DONE OR NOT QUERY..RESULT

ELSE
ALLDONE :• TRUE;

END GET-SUBPROJECT;

QUERY..RESULT :• OPEN UPDATE PROJEMP;
IF QUERY..RESULT THEN

BEGIN
PROCESS-THE-MESSAGE;
ABORT-GRACEFULLY;
END;

BEGINTRANSACTION;

SELECT PQ FROM PROJECT
(PQ-TITLE • PROJECT_TITLE;
SELECT SQ FROM TRANSITIVE(SUBPROJECT)

(SQ_TITLE • PROJECT_TITLE));
WHERE PROJECT.PROJECT_TITLE • "Master Project";

QUERY-RESULT :• RETRIEVE(PQ,PQ-REC);
IF QUERY..RESULT THEN

BEGIN
WRITE(RMT,<Al5>,"No such project");
ALLDONE :• TRUE;
END

ELSE
BEGIN
QUERY..RESULT :• RETRIEVE(SQ,SQ_REC);
IF QUERY..RESULT THEN

BEGIN
WRITE(RMT,<Al4>,"No subprojects");
ALL-DONE :• TRUE;
END;

END;
IF NOT ALL-DONE THEN

DO
GET-SUBPROJECT

UNTIL ALL-DONE;

ENDTRANSACTION;
CLOSE PROJEMP;
END.

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

Example 4: Using COMS with a SIM Database

This program, called ONLINESAIL, tracks sailboat races and updates the SIM
database SIMSAILDB by using the following features of the COMS direct-window
interface:

• Declared COMS input and output headers

• Trancodes and Module Function Indexes (MFls)

• Recovery

The direct window, the headers, the trancodes, and an agenda must be defined to
COMS to allow the program to run.

BEGIN
S ON~INESAIL

REAL COMS..STATUS;
TYPE INPUTHEADER COMS-ItL.TYPE (ARRAY CONVERSATION [0:59]);
COMS-ItL.TYPE COMS-IN;
OUTPUTHEADER COMS_OUT;
FILE RMT (KIND-REMOTE);
LIBRARY DCILIBRARY;
SEMANTIC DATABASE SIMSAILDB:

(RACE-CALENDAR, ENTRY);

TYPE DMRECORD RACE-REC-TYPE
(EBCDIC ARRAY RACE-NAME [0:19];

INTEGER RACE-ID;
EBCDIC ARRAY RACE-DATE [0:5],

RACE-TIME [0:3],
RACE-LOCATION [0:19],
RACE-SPONSOR [0:9]);

RACE-REC_TYPE RACE-REC;

TYPE DMRECORD ENTRY-REC-TYPE
(EBCDIC ARRAY ENTRY-80AT_NAME [0:19],

ENTRY-BOAT-ID [0:5];
INTEGER ENTRY-BOAT_RATING;
EBCDIC ARRAY ENTRY-80AT.JtELSMAN [0:19],

ENTRY-AFF_Y_CLUB [0:14];
INTEGER ENTRY-RACE-ID);

ENTRY_REt_TYPE ENTRY-REC;

QUERY ENTQ (ENTRY),
RACEQ (RACE-CALENDAR);

EBCDIC ARRAY SCRATCH [0:255];
ARRAY LANG-ARRAY [0:5];

INTEGER NUM_KEY,
E-RACE,
E-BOAT;

8600 0734-000 7-83

Using the Semantic Information Manager (SIM) Interface

7-84

DEFINE EOT_NOTICE • 99#,
TEXT_LEN • 113 #;

EBCDIC ARRAY MS6-TEXT[O : TEXT_LEN-1];
DEFINE
%
%

MS6-TCODE • MSG_TEXT[O] #,
MS6-FILLER
MSG_CREATE_RACE

MSG_CR...ID - INTEGER(MSG_TEXT[7],6) #,
MSG_CR...NAME • MS6-TEXT[13] #,
MSG_CR...DATE • MS6-TEXT[33] #,
MS6-CR...TIME • MS6-TEXT[39] #,
MS6-CR...LOCATION • MS6-TEXT[43] #,
MS6-CR...SPONSOR • MS6-TEXT[63] #,
FILLER

MS6-ADD_ENTRY REDEFINES MS6-CREATE_RACE
MSG_AE_RACE_ID •INTEGER(MS6-TEXT[7],6) #,
MSG_AE_ID • MS6-TEXT[13] #,
MSG_AE_NAME • MS6-TEXT[l9] #,
MS6-AE-RATING •INTEGER(MS6-TEXT[39],3) #,
MSG_AE_OWNER • MSG_TEXT[43] #,
MS6-AE_CLUB • MS6-TEXT[63] #,
FILLER

MSG_DELETE_ENTRY REDEFINES MS6-CREATE-RACE
MSG_DE_RACE-ID •INTEGER(MS6-TEXT[7],6) #,
MSG_DE_ID • MSG_TEXT[13] #,
FILLER

MSG_STATUS • MS6-TEXT[83] #;

EBCDIC ARRAY WS_FAMILY [0:39];
ARRAY WS_MSG [0:28];

DEFINE MS6-l • WS_MSG [O]#,
MSG_2 • WS_MSG [12]#;

BOOLEAN B;

PROCEDURE SEND_MSG;
% Send the message back to the originating station. Do
% not specify an output agenda. Make sure to test
% the result of the SEND operation.
BEGIN
COMS_OUT.DESTCOUNT :• l;
COMS_QUT.DESTINATIONDESG :• O;
COMS_OUT.STATUSVALUE :• O;
COMS_STATUS :• SEND(COMS_OUT, TEXT_LEN, MSG_TEXT);
IF NOT(COMS_STATUS • 0 OR COMS_STATUS • 92) THEN

DISPLAY("Online Program SEND Err: " !! STRINGS(COMS_STATUS,*));
END SEND_MSG;

PROCEDURE SIM_ERR...RTN;
% Get the error message from SIM. It can be up to 176 bytes.
BEGIN
WRITE(RMT ,<"SIM Error: Race-". 16," Boat•" ,A6>,E-RACE,E-BOAT);
DMEXCEPTIONMSG (LANG-ARRAY, WS-MSG);
WRITE(RMT,78,MSG_l);
WRITE(RMT,78,MS6-2);
END SlM ERR...RTN;

8600 0734-000

Using the Semantic Information Manager (SIM) Interface

PROCEDURE CREATE-RACE;
S Enter a new race in the database.
BEGIN
E-RACE :• MSG..CILID;
B :• BEGINTRANSACTION;
IF B THEN

BEGIN
SIM..ERILRTN;
SEND-HSG;
END

ELSE
BEGIN
B :• INSERT RACE-CALENDAR

(ASSIGN (RACE-NAME, STRING(MSG..CILNAME,20));
ASSIGN (RACE-ID, E-RACE);
ASSIGN (RACE-DATE, STRING(MSG..CILDATE,6));
ASSIGN (RACE-TIME, STRING(MSG..CILTIME,4));
ASSIGN (RACE-LOCATION, STRING(MSG..CILLOCATION,20));
ASSIGN (RACE-SPONSOR, STRING(MSG..CILSPONSOR,10)));

IF B THEN
REPLACE MSG..STATUS BY "Store Error", " " FOR 19

ELSE
REPLACE MSG..STATUS BY "Race Added", " " FOR 20;

B :• ENDTRANSACTION COMS_OUT;
IF B THEN

SIM..ERILRTN
ELSE

SEND.J4SG;
END;

END CREATE-RACE;

PROCEDURE ADD_ENTRY;
S Enter a boat in a race. Check to see if the race exists.
S If a OM error occurs, it indicates a duplicate entry.
BEGIN
NUM..KEY :• MSUE-RACE-ID;
E-RACE :• MSUE-RACE-ID;
E-BOAT :• MSUE-RATING;

SELECT RACEQ FROM RACE-CALENDAR
WHERE RACE-ID • NUM..KEY;

B :•RETRIEVE (RACEQ);
DISCARD (RACEQ};
IF B THEN

BEGIN
REPLACE MSG..STATUS BY "Race Not Found", " " FOR 10;
SEND.J4SG;
END

ELSE
BEGIN
B :• BEGINTRANSACTION;
IF B THEN

SIM..ERILRTN
ELSE

BEGIN

8600 0734-000 1-85
•I

Using the Semantic Information Manager (SIM) Interface

B :• INSERT ENTRY
(ASSIGN (ENTRY_BOAT..NAME, STRING(MSG..AE-NAME,20));
ASSIGN (ENTRY-80AT_ID, STRING(MSG..AE-ID,6));
ASSIGN (ENTRY-BOAT-RATING, E-80AT);
ASSIGN (ENTRY-80AT..HELMSMAN, STRING(MSG..AE-OWNER,20));
ASSIGN (ENTRY-AFF_Y_CLUB, STRING(MSG..AE-CLUB,15));
ASSIGN (ENTRY-RACE-ID, E-RACE));

IF B THEN
BEGIN
SIH-ERILRTN;
REPLACE MSG..STATUS BY "Insert Error", " " FOR 9;
END

ELSE
BEGIN
REPLACE MSG..STATUS BY "Boat Added", " " FOR 18;
B :• ENDTRANSACTION COMS_OUT;
IF B THEN

SIH-ERILRTN;
END;

END;
SEND-MSG;
END;

END ADD-ENTRY;

PROCEDURE DELETE-ENTRY;
% Delete a boat from a race. First check to see if the boat is
% entered. (SIM always returns an OK result so be sure to check.)
% If the boat is entered, delete it.
BEGIN
NUH-KEY :• MSG..DE-RACE-ID;

SELECT ENTQ FROM ENTRY
WHERE ENTRY_RACE-ID • NUM_KEY AND

ENTRY-BOAT-ID• STRING(MSG..DE-ID,6);
B :•RETRIEVE (ENTQ);
DISCARD (ENTQ);
IF B THEN

BEGIN
REPLACE MSG..STATUS BY "Boat Entry Not Found", " " FOR 10;
SEND-MSG;
END

ELSE
BEGIN
B :• BEGINTRANSACTION;
IF B THEN

SIH-ERILRTN
ELSE

BEGIN
B :• DELETE ENTRY WHERE ENTRY_RACE..ID • NUM_KEY AND

ENTRY_BOAT_ID • STRING(MSG..DE-ID,6);
IF B THEN

BEGIN
SIH-ERILRTN;
REPLACE MSG..STATUS BY "Found But Not Deleted", " " FOR 9;
END

ELSE

7-86 8600 0734-000

Using the Semantic Information Manager (SIM) Interface

BEGIN
REPLACE MS6-STATUS BY "Boat Deleted", " " FOR 18;
B :• ENOTRANSACTION COMS_OUT;
IF B THEN

SIM..ERILRTN;
END;

ENO;
SENOJtSG;
END;

ENO DELETE-ENTRY;

PROCEDURE CHECIL.COMS_INPUT_ERRORS;
% Check for COMS control messages.
BEGIN
CASE COMS_STATUS OF

BEGIN
93: REPLACE MSUTATUS BY "MSG Causes Abort, Do Not Retry";

SENDJtSG;
20:

100:
101:
102: REPLACE MSUTATUS BY "Error in STA Attach/Detachment";

SENDJ1SG;
0:

92:
99:
ELSE:;% A good message, recovery message, or EOT notification.

END;
IF COMS_IN.FUNCTIONSTATUS < 0 THEN

BEGIN
REPLACE MSUTATUS BY "Negative Function Code", " " FOR 8;
SEND...MSG;
END;

END CHECK..COMS_INPUT_ERRORS;

PROCEDURE CLOSE._OOWN;
% Close the database.
BEGIN
CLOSE SIMSAILDB;
END;

PROCEDURE PROCESS_TRANSACTION;
% Since the transaction type is based on the function index, make
% sure the function index is within range.
BEGIN
CASE COMS_IN.FUNCTIONINDEX OF

BEGIN
ELSE:BEGIN

REPLACE MSUTATUS BY
"Invalid Trans Code", 11 " FOR 12;

SEND...MSG;
END;

1: CREATE-RACE;
2: ADD-ENTRY;
3: DELETE-ENTRY;

END;

8600 0734-000 7-87

Using the Semantic Information Manager (SIM) Interface

7-88

END PROCESS-TRANSACTION;

PROCEDURE PROCESS_COMS_INPUT;
S Gets the next message from COMS. If the status returned is an
S EOT_NOTICE, go to EOT. Otherwise, make sure that it is a valid
S message before processing it.
BEGIN
REPLACE MSG_TEXT BY II II FOR TEXLLEN;
COMS-5TATUS :• RECEIVE(COMS_IN, MSG_TEXT);
IF COMS-5TATUS NEQ EOT_NOTICE THEN

BEGIN
CHECK..COMS_INPUT_ERRORS;
IF COMS-5TATUS • 0 OR COMS_STATUS • 92 AND

(COMS_IN.FUNCTIONSTATUS NEQ 0) THEN
PROCESS_ TRANSACTION;

END;
END;

REPLACE SCRATCH BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
DCILIBRARY.LIBACCESS :• VALUE(BYTITLE);
OCILIBRARY. TITLE :• STRING(SCRATCH[O] ,256);

B :• OPEN UPDATE SIMSAILDB;
IF B THEN

BEGIN
DMEXCEPTIONMSG(LAN6-ARRAY,W5-MSG);
WRITE(RMT,78,MSG_l);
END;

REPLACE ws_FAMILY BY MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.NAME;
DCILIBRARY.TITLE :• STRING(WS_FAMILY[0],40);
REPLACE ws_FAMILY BY MYSELF.FAMILY;
REPLACE MYSELF.FAMILY BY "DISK• DISK ONLY. 11 ;

ENABLE(COMS-IN, 110NLINE 11);

REPLACE MYSELF.FAMILY BY ws_FAMILY;

DO
PROCESS_COMS_INPUT

UNTIL COMS-5TATUS • EOT_NOTICE;

CLOSE-DOWN;
END.

8600 0734-000

Appendix A
Understanding Railroad Diagrams

What Are Railroad Diagrams?
Railroad diagrams are diagrams that show you the rules for putting words and
symbols together into commands and statements that the computer can
understand. These diagrams consist of a series of paths that show the allowable
structure, constants, and variables for a command or a statement. Paths show the
order in which the command or statement is constructed. Paths are represented
by horizontal and vertical lines. Many railroad diagrams have a number of
different paths you can take to get to the end of the diagram. For example:

- REMOVE t SOURCE j
OBJECT

If you follow this railroad diagram from left to right, you will discover three
acceptable commands. These commands are

• REMOVE

• REMOVE SOURCE

• REMOVE OBJECT

If all railroad diagrams were this simple, this explanation could end here.
However, because the allowed ways of communicating with the computer can be
complex, railroad diagrams sometimes must also be complex.

Regardless of the level of complexity, all railroad diagrams are visual
representations of commands and statements. Railroad diagrams are intended to

• Show the mandatory items.

• Show the user-selected items.

• Present the order in which the items must appear.

• Show the number of times an item can be repeated.

• Show the necessary punctuation.

To familiarize you with railroad diagrams, this explanation describes the
elements of the diagrams and provides examples.

Some of the actual railroad diagrams you will encounter might be more complex.
However, all railroad diagrams, simple or complex, follow the same basic rules.

8600 0734-000 A-1

Understanding Railroad Diagrams

They all consist of paths that represent the allowable structure, constants, and
variables for commands and statements.

By following railroad diagrams, you can easily understand the correct syntax for
commands and statements. Once you become proficient in the use of railroad
notation, the diagrams serve as quick references to the commands and
statements.

Constants and Variables
A constant is an item that cannot be altered. You must enter the constant as it
appears in the diagram, either in full or as an allowable abbreviation. If a
constant is partially underlined, you can abbreviate the constant by entering only
the underlined letters. In addition to the underlined letters, any of the remaining
letters can be entered. If no part of the constant is underlined, the constant
cannot be abbreviated. Constants can be recognized by the fact that they are
never enclosed in angle brackets (< >) and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data
that meets the requirements of the particular command or statement. When
replacing a variable with data, you must follow the rules def"med for the
particular command or statement. Variables appear in railroad diagrams enclosed
in angle brackets (< >).

In the following example, BEGIN and END are constants while <statement list>
is a variable. The constant BEGIN can be abbreviated since it is partially
underlined. Valid abbreviations for BEGIN are BE, BEG, and BEGI.

- BEGIN -<Statement list- END -------------1

Constraints

A-2

Constraints are used in a railroad diagram to control progression through the
diagram. Constraints consist of symbols and unique railroad diagram line paths.
They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops .. Bridges

8600 0734-000

Understanding Railroad Diagrams

A description of each item follows.

Vertical Bar

The vertical bar symbol (I) represents the end of a railroad diagram and indicates
the command or statement can be followed by another command or statement.

- SECONDWORD - (-arittlllletic expression-) --------4

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the
command or statement must be on a line by itself.

- STOP ---------------------1

Right Arrow

The right arrow symbol (>) is used when the railroad diagram is too long to fit
on one line and must continue on the ne:xt. A right arrow appears at the end of
the first line and another right arrow appears at the beginning of the ne:xt line.

- SCALERIGHT - (-arithmetic expression>-,-------->

)-<arithmetic expression>-) ---------------1

Required Items

A required item can be either a constant, a variable, or punctuation. A required
item appears as a single entry, by itself or with other items, on a horizontal line.
Required items can also exist on horizontal lines within alternate paths or nested
(lower-level) diagrams. If the path you are following contains a required item,
you must enter the item in the command or statement; the required item cannot
be omitted.

In the following example, the word EVENT is a required constant and
<identifier> is a required variable:

- EVENT -identifier>------------------1

User-Selected Items

User-selected items appear one below the other in a vertical list. You can choose
any one of the items from the list. If the list also contains an empty path (solid
line), none of the choices are required. A user-selected item can be either a
constant, a variable, or punctuation. In the following railroad diagram, either the
plus sign (+) or minus sign (-) can be entered before the required variable

8600 0734-000 A-3

Understanding Railroad Diagrams

Loop

Bridge

A-4

<arithmetic expression>, or the symbols can be disregarded because the diagram
also contains an empty path.

~thoetic expression

A loop represents an item or group of items that you can repeat. A loop can span
all or part of a railroad diagram. It always consists of at least two horizontal
lines, one below the other, connected on both sides by vertical lines. The top line
is a right-to-left path that contains information about repeating the loop.

Some loops include a return character. A return character is a character---often a
comma (,) or semicolon (;}-required before each repetition of a loop. If there is
no return character, the items must be separated by one or more blank spaces.

l<field v:l:J>-------------------

Sometimes a loop also includes a bridge, which is used to show the maximum
number of times the loop can be repeated. The bridge can precede the contents of
the loop, or it can precede the return character (if any) on the upper line of the
loop.

The bridge determines the number of times you can cross that point in the
diagram. The bridge is an integer enclosed in sloping lines (/\). Not all loops have
bridges. Those that do not can be repeated any number of times until all valid
entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than
two times. In the second bridge example, you can enter LINKAGE or RUNTIME
no more than three times.

_t2T LIN~~-----------
l RUNTI'~; T

{
2'

LINKAGE --J~I ---------------~
RUNTIME

8600 0734-000

>

Understanding Railroad Diagrams

In some bridges an asterisk(*) follows the number. The asterisk means that you
must select one item from the group.

1/1*\/1 L;NKAGE J____..l ___________ ----1

RUNTIME

The following figure illustrates the constraints used in railroad diagrams.

Symbol Explanation

J Vertical bar. Indicates that the command or statement can be followed by another 1

command or statement.

" PJ!!rcent sign. Indicates that the command or statement must be on a line by itself.

> Right arrow. Indicates that the diagram occupies more than one line.

-<required>- Required item. Indicates the constants, variables, and punctuation that must be
entered in a command or statement.

B
User-selected items. You select the item or items to include.

NO

~ I
Loop. Indicates that an item or group of items can be repeated.

-CJ_ Bridge. Indicates the maximum number of times a loop can be repeated.

Following the Paths of a Railroad Diagram
The paths of a railroad diagram lead you through the command or statement
from beginning to end. Some railroad diagrams have only one path, while others
have several alternate paths. The following railroad diagram indicates there is
only one path that requires the constant LINKAGE and the variable <linkage
mnemonic>:

- LINKAGE -<linkage mnemonic>-----------------1

Alternate paths provide choices in the construction of commands and statements.
Alternate paths are provided by loops, user-selected items, or a combination of
both. More complex railroad diagrams can consist of many alternate paths, or
nested (lower-level) diagrams, that show a further level of detail.

For example, the fallowing railroad diagram consists of a top path and two
alternate paths. The top path includes an ampersand(&) and the constants (that

8600 0734-000 A-5

Understandln1 Railroad Diagrams

are user-selected items) in the vertical list. These constants are within a loop that
can be repeated any number of times until all options have been selected. The
first alternate path requires the ampersand followed by the required constant
ADD~. The second alternate path requires the ampersand followed by the
required constant ALTER and the required variable <new value>.

ASCII

BCL

DECIMAL -
EBCDIC -
HEX -
OCTAL -

ADDRESS -----1
ALTER --<new valu

Railroad Diagram Examples with Sample Input

A-6

The following examples show five railroad diagrams and possible command and
statement constructions based on the paths of these diagrams.

Example 1

- LOCK -file identifier>--------------

Sample Input

LOCK (Fl)

LOCK (FILE4)

LOCK is a constant and cannot be altered. Because no part of the word is
underlined, the entire word must be entered. The parentheses are required
punctuation and Fl and FILE4 are sample file identifiers.

Example I

<Open statement>

. - OPEN Bdatabase nuie>

INQUIRY

UPDATE

8600.0734-000

Understanding Railroad Diagrams

Sample Input

OPEN DATABASE!

The constant OPEN is followed by the variable DATABASE!, which is a database
name. The railroad dia@ram shows two user-selected items, INQUIRY and
UPDATE. However, because there is an empty path (solid line), these entries are
not required.

OPEN INQUIRY DATABASE!

The constant OPEN is followed by the user-selected constant INQUIRY and the
variable DATABASE!.

OPEN UPDATE DATABASE!

The constant OPEN is followed by the user-selected constant UPDATE and the
variable DATABASE!.

Esample3

<generate statement>

-- GENERATE --<Subset>-- - .,- NULL

~subset>-r--------1

ANf subset
OR

+

Sample Input

GENERATE Z • NULL

The GENERA TE constant is followed by the variable Z, an equal sign (-), and
the user-selected constant NULL.

GENERATE Z • X

The GENERATE constant is followed by the variable Z, an equal sign, and the
user-selected variable X.

GENERATE Z • X AND B

The GENERA TE constant is followed by the variable Z, an equal sign, the
user-selected variable X, the AND command (from the list of user-selected items
in the nested path), and a third variable, B.

GENERATE Z • X +B

8600 0734-000 A-7

Understanding Railroad Diagrams

A-8

The GENERATE constant is followed by the variable Z, an equal sign, the
user-selectable variable X, the plus sign (from the list of user-selected items in
the nested path), and a third variable, B.

ED.mple4

<entity reference declaration>

- ENTITY REFERENCE !entity ref ID>- (~class ID>-) -'-----1

Sample Input

ENTITY REFERENCE ADVISORl (INSTRUCTOR)

The required item ENTITY REFERENCE is followed by the variable ADVISOR!
and the variable INSTRUCTOR. The parentheses are required.

ENTITY REFERENCE ADVISORl (INSTRUCTOR), ADVISOR2 (ASST_INSTRUCTOR)

This sample illustrates the use of a loop by showing the same input as in the first
sample followed by a comma, the variable ADVISOR2, and the variable
ASST-1NSTRUCTOR. The parentheses are required.

Example 5

- PS-- MODIFY -------------------

___,_ <request number>---------........ ---.----.

<request number>- - - <request numbe

ALL.....--------------------1

EXCEPTIONS --------------'

.........,,...._--fi 1 e attribute phrasll!>-............

1-----.--c1pri nt modifier phrase

Sample Input

PS MODIFY 11159

The constants PS and MODIFY are followed by the variable 11159, which is a
request number.

PS MODIFY 11159,11160,11163

8600 0734-000

Understanding Railroad Diagrams

This sample illustrates the use of a loop by showing the same input as in the first
sample followed by a comma, the variable 11160, another comma, and the final
variable 11163.

PS MODIFY 11159-11161 DESTINATION • "LP7"

The constants PS and MODIFY are followed by the user-selected variables
11159-11161, which are request numbers, and the user-selected variable
DESTINATION - "LP7 ", which is a file attribute phrase.

PS MOD ALL EXCEPTIONS

The constants PS and MODIFY are followed by the user-selected constant ALL
and the user-selected constant EXCEPTIONS. Note that in this sample input, the
constant MODIFY has been abbreviated.

8600 0734-000 A-9

Appendix B
Extended ALGOL Reserved Words

A <reserved word> in Extended ALGOL has the same syntax as an identifier.
The reserved words are divided into three types. In the following explanation,
each type is discussed separately and the reserved words for that specific type
are listed. An alphabetical listing of all reserved words can be found at the end of
this appendix.

Type 1 Reserved Words
Listed below are type 1 reserved words. A reserved word of type 1 can never be
declared as an identifier; that is, it has a predefined meaning that cannot be
changed. For example, because LIST is a type 1 reserved word, the declaration

ARRAY LIST[0:999]

is flagged with a syntax error.

ALPHA FILE REFERENCE
ARRAY FOR STEP
BEGIN FORMAT SWITCH
BOOLEAN GO TASK
COMMENT IF THEN
CONTINUE INTEGER TRANSLATETABLE
DIRECT LABEL TRUE
DO LIST TRUTHSET
DOUBLE LONG UNTIL
ELSE OWN VALUE
END POINTER WHILE
EVENT PROCEDURE ZIP
FALSE REAL

8600 0734-000 B-1

Extended ALGOL Reserved Words

Type 2 Reserved Words

B-2

Listed below are type 2 reserved words. A reserved word of type 2 can be
redeclared as an identifier; it then loses its predefined meaning in the scope of
that declaration. For example, because IN is a type 2 reserved word, the
declaration

FILE IN(KIND • READER)

is legal, but in the scope of the declaration, the statement

SCAN P WHILE IN ALPHA

is flagged with a syntax error on the word "IN".

If a type 2 reserved word is used as a variable in a program but is not declared
as a variable, then the error message that results is not the expected
"UNDECLARED IDENTIFIER". Instead, it might be "NO STATEMENT CAN
START WITH THIS".

ABORTTRANSACTION ccos DERF
ABS CEXP DERFC
ACCEPT CHANGEFILE DETACH
AFTER CHECKPOINT DEXP
ALL CHECKSUM DGAMMA
AND CLN DICTIONARY
APPLYINSERT CLOSE DIGITS
APPLYMODIFY COLLATING DIMP
AR CC OS COMPILETIME DINTEGER
ARCSIN COMPLEX DISABLE
ARCTAN CONJUGATE DISCARD
ARCTAN2 cos DISPLAY
ARRAYSEARCH COSH DIV
ASCII COT AN DLGAMMA
ATANH CSIN DLN
ATTACH CSQRT DLOG
AVAILABLE CURRENT DMABS
BCL DABS DMAVG
BEFORE DAND DMAX
BINARY DARCCOS DMCHR
BREAKPOINT DARCSIN DMCONTAINS
BY DARCTAN DMCOUNT
CABS DARCTAN2 DMEQUIV
CALL DCOS DMEXCEPTIONINFO
CALLING DCOSH DMEXCEPTIONMSG
CANCEL DEALLOCATE DMEXCLUDES
CANCELTRPOINT DECIMAL DMEXISTS
CASE DEFINE DMEXT
CAT DELINKLIBRARY DMFUNCTION
CAUSE DELTA DMIN
CAUSEANDRESET DEQV DMISA

8600.0734-000

Extended ALGOL Reserved Words

DMLENGTH EXP MUX
DMMATCH EXPORT MY JOB
DMMAX EXTERNAL MYSELF
DMMIN FILL NABS
DMNEXTEXCEPTION FIRST NEQ
DMPOS FIRSTONE NO
DMPRED FIRSTWORD NOCR
DMRECORD FIX NOLF
DMRPT FORMAL NONE
DMSQRT FORWARD NORMALIZE
DMSUCC FDMPOS FREE
DMSUM FREEZE NOT
DMTRUNC GAMMA NUMERIC
DMUPDATECOUNT GEQ OF
DNABS GTR OFFSET
DNOT DMSUCC ON
DONTWAIT HAPPENED ONES
DOR HEAD OPEN
DROP HEX OR
DSCALELEFT IMAG ORDER
DSCALERIGHT IMP ORDERING
DSCALERIGHTT IN OUTPUTHEADER
DSIN INCLUDE OUTPUTMESSAGE
DSINH INPUTHEADER PICTURE
DSQRT INTEGERT POTC
DTAN INTERRUPT POTH
DTANH INVERSE POTL
DUMP IS PROCESS
EBCDIC ISNT PROCESSID
EGI LB PROCURE
EMI LENGTH PROGRAMDUMP
EMPTY LEQ LENGTH
EMPTY4 LIBERATE PURGE
EMPTY7 LIBRARY QUERY
EMPTY8 LINE RANDOM
ENABLE LINENUMBER RB
ENTER LINKLIBRARY READ
ENTITY LISTLOOKUP READ LOCK
EQL LN RECEIVE
EQV LNGAMMA RECORD
EQV_EQL LOCK REFERENCE
EQV_GEQ LOG REMAININGCHARS
EQV_GTR I.SS REMOVEFILE
EQV-LEQ MASKSEARCH REPEAT
EQV_LSS MAX REPLACE
EQV_NEQ MERGE RESET
ERF MESSAGECOUNT RESIZE
ERFC MESSAGESEARCHER RETRIEVE
ESI MIN REWIND
EXCHANGE MOD RUN
EXCLUDE MODIFY SA VETRPOINT
EXISTS MONITOR SCALELEFT

8600 0734-000 B-3

Extended ALGOL Reserved Words

SCALERIGHT SOME TANH
SCALERIGHTF SORT TERMINAL
SCALERIGHTT SPACE THRU
SCAN SQRT TIME
SDIGITS STACKER TIMELIMIT
SECONDWORD STARTINSERT TIMES
SEEK STARTMODIFY TO
SELECT STATION TRANSITIVE
SEMANTIC SEND STOP TRANSLATE
SET STRING TYPE
SETACTUALNAME STRING4 USING
SETTOCHILD STRING7 WAIT
SETTOP ARENT STRINGS WAIT AND RESET
SIGN SUBFILE WHEN
SIN SUBROLE WHERE
SINGLE TAIL WITH
SINH TAKE WORDS
SIZE TAN WRITE
SKIP

8-4 8600 0734-000

Extended ALGOL Reserved Words

Type 3 Reserved Words
Listed below are type 3 reserved words. A reserved word of type 3 is
context-sensitive. It can be redeclared as an identifier, and if it is used where the
syntax calls for that reserved word, it carries the predefined meaning; otherwise,
it carries the user-declared meaning. The different meanings for the type 3
reserved word STATUS are illustrated in the following example.

BEGIN
TASK T;
REAL STATUS;
% IN THE NEXT STATEMENT, "STATUS" IS A REAL VARIABLE
STATUS :"' 4.5;
% IN THE NEXT STATEMENT, "STATUS" IS A TASK ATIRIBUTE
IF T.STATUS = VALUE(TERMINATED) THEN

END.

% IN THE NEXT STATEMENT, "STATUS" IS A REAL VARIABLE
STATUS :"" 10.0;

Type 3 reserved words include the following:

• File attribute names

• Task attribute names

• Library attribute names

• Direct array attribute names

• Mnemonics for attribute values

All file attributes, direct array attributes, and mnemonics described in the File
Attributes Programming Reference Manual are type 3 reserved words in ALGOL.
All task attributes and mnemonics described in the Task Attributes Programming
Reference Manual are type 3 reserved words in ALGOL.

ACTUALNAME BYTITLE EXCEPTIONEVENT
ALL CHARGECODE EXCEPTIONT ASK
ALPHA6 CLASS EXPONENTOVERFLOW
ALPHA7 CODE EXPONENTUNDERFLOW
ALPHAS COMPILETYPE FAMILY
ANYFAULT CO REESTIMATE FILECARDS
ARRAYS CRUNCH FILES
AS DBS FUNCTIONNAME
ASCIITOBCL DECIMALPOINTISCOMMA HEXTOASCII
ASCIITOEBCDIC DECLARED PRIORITY HEXTOBCL
ASCIITOHEX DISCARD HEXTOEBCDIC
BACKUPPREFIX DISK HISTORY
BASE DISKPACK INITIATOR
BCLTOASCII EBCDICTOASCII INTEGEROVERFLOW
BCLTOEBCDIC EBCDICTOBCL INTNAME
BCLTOHEX EBCDICTOHEX INV ALID~DDRESS
BYFUNCTION ELAPSEDTIME INV ALIDINDEX

8600 0734-000 B-5

Extended ALGOL Reserved Words

INVALIDOP ORGUNIT STACKSIZE
INV ALIDPROGRAMWORD OUT STARTTIME
JOBNUMBER PACK STATUS
LIBACCESS PAGED STOPPOINT
LIBPARAMETER PARTNER STRING PROTECT
LIBRARIES PERMANENT SUBSPACES
LOCKED PRIV ATELIBRARIES TADS
LOOP PROCESSIOTIME TARGETTIME
MAX CARDS PROCESS TIME TASKATTERR
MAXIOTIME PROGRAMMEDOPERATOR TASKFILE
MAXLINES REEL TASKVALUE
MAXPROCTIME RESTART TEMPORARY
MEMORYPARITY RETAIN TITLE
MEMORYPROTECT SCANPARITY TYPE
NAME SIBS USERCODE
OFFER STACKNO ZERO DIVIDE
OPTION

B-6 8600 0734-000

Extended ALGOL Reserved Words

RESERVED WORDS ALPHABETICAL LISTING
The following is an alphabetical list of reserved words for Extended ALGOL. The
number in parentheses following each word indicates the type of the reserved
word. For example, "FOR (1)" indicates that FOR is a type 1 reserved word.

ABORTTRANSACTION (2)
ABS (2)
ACCEPT (2)
ACTUALNAME (3)

AFTER (2)
ALL (2)
ALL (3)

ALPHA (1)

ALPHA6 (3)
ALPHA7 (3)

ALPHAS (3)
AND (2)
ANYFAULT (3)
APPLYINSERT (2)
APPLYMODIFY (2)
ARCCOS (2)
ARCSIN (2)
ARCTAN (2)
ARCTAN2 (2)
ARRAY (1)

ARRAYS (3)

ARRA YSEARCH (2)
AS (3)

ASCII (2)

ASCIITOBCL (3)

ASCIITOEBCDIC (3)

ASCIITOHEX (3)

ATANH (2)
ATTACH (2)
AVAILABLE (2)
BACKUPPREFIX (3)

BASE (3)

BCL (2)
BCLTOASCII (3)

BCLTOEBCDIC (3)

BCLTOHEX (3)

BEFORE (2)
BEGIN (1)

BINARY (2)
BOOLEAN (1)

BREAKPOINT (2)
BY (2)
BYFUNCTION (3)
BYTITLE (3)
CABS (2)

8600 0734-000

CALL (2)
CALLING (2)
CANCEL (2)
CANCELTRPOINT (2)

CASE (2)
CAT (2)
CAUSE (2)
CAUSEANDRESET (2)
ccos (2)
CEXP (2)
CHANGEFILE (2)

CHARGECODE (3)

CHECKPOINT (2)

CHECKSUM (2)

CLASS (3)

CLN (2)
CLOSE (2)
CODE (3)

COLLA TING (2)
COMMENT (1)

COMPILETIME (2)
COMPILETYPE (3)

COMPLEX (2)
CONJUGATE (2)
CONTINUE (1)

COREESTIMATE (3)
cos (2)

COSH (2)
COTAN (2)
CRUNCH (3)

CSIN (2)
CSQRT (2)
CURRENT (2)
DABS (2)
DAND (2)

DARCCOS (2)
DARCSIN (2)

DARCTAN (2)
DARCT AN2 (2)

DBS (3)

DCOS (2)

DCOSH (2)
DEALLOCATE (2)
DECIMAL (2)
DECIMALPOINTISCOMMA

(3)

DECLAREDPRIORITY (3)
DEFINE (2)

DELINKLIBRARY (2)

DELTA (2)
DEQV (2)

DERF (2)
DERFC (2)
DETACH (2)
DEXP (2)

DGAMMA (2)

DICTIONARY (2)
DIGITS (2)
DIMP (2)
DINTEGER (2)
DIRECT (1)

DISABLE (2)

DISCARD (2)
DISCARD (3)

DISK (3)

DISKP ACK (3)

DISPLAY (2)
DIV (2)

DLGAMMA (2)

DLN (2)
DLOG (2)

DMABS (2)
DMAVG (2)

DMAX (2)
DMCHR (2)

DMCONTAINS (2)

DMCOUNT (2)
DMEQUIV (2)
DMEXCEPTIONINFO (2)

DMEXCEPTIONMSG (2)
DMEXCLUDES (2)

DMEXISTS (2)
DMEXT (2)
DMFUNCTION (2)
DMIN (2)

DMISA (2)
DMLENGTH (2)
DMMATCH (2)
DMMAX (2)
DMMIN (2)

8-7

Extended ALGOL Reserved Words

B-8

DMNEXTEXCEPTION (2)
DMPOS (2)
DMPRED (2)
DMRECORD (2)
DMRPT (2)
DMSQRT (2)
DMSUCC (2)
DMSUM (2)
DMTRUNC(2)
DMUPDATECOUNT (2)
DNABS (2)
DNOT (2)
DO(l)
DONTW AIT (2)
DOR (2)
DOUBLE (1)
DROP (2)
DSCALELEFT (2)
DSCALERIGHT (2)
DSCALERIGHTT (2)
DSIN (2)
DSINH (2)
DSQRT (2)
DTAN (2)
DTANH (2)
DUMP (2)
EBCDIC (2)
EBCDICTOASCII (3)
EBCDICTOBCL (3)
EBCDICTOHEX (3)
EGI (2)
ELAPSEDTIME (3)
ELSE (1)
EMI (2)
EMPTY (2)

EMPTY4 (2)
EMPTY7 (2)
EMPTYS (2)
ENABLE (2)
END (1)

ENTIER (2)
ENTITY (2)
EQL (2)
EQV (2)
EQV_EQL (2)
EQV_GEQ (2)
EQV_GTR (2)
EQV_LEQ (2)
EQV_LSS (2)
EQV_NEQ (2)
ERF (2)
ERFC (2)

ESI (2)
EVENT (1)
EXCEPTIONEVENT (3)
EXCEPTIONTASK (3)
EXCHANGE (2)
EXCLUDE(2)
EXISTS (2)
EXP (2)
EXPONENTOVERFLOW (3)
EXPONENTUNDERFLOW
(3)

EXPORT (2)

EXTERNAL (2)
FALSE (1)
FAMILY (3)
FILE (1)

FILECARDS (3)
FILES (3)
FILL (2)

FIRST (2)
FIRSTONE (2)
FIRSTWORD (2)
FIX (2)

FOR (1)
FORMAL(2)
FORMAT (1)

FORWARD(2)
FREE (2)
FREEZE (2)
FUNCTIONNAME (3)
GAMMA(2)
GEQ (2)
GO (1)
GTR (2)
HAPPENED (2)
HEAD (2)
HEX (2)
HEXTOASCII (3)
HEXTOBCL (3)
HEXTOEBCDIC (3)
HISTORY (3)
IF (1)
IMAG (2)
IMP (2)
IN (2)
INCLUDE (2)
INITIATOR (3)
INPUTHEADER (2)
INTEGER (1)

INTEGEROVERFLOW (3)
INTEGERT (2)
INTERRUPT (2)

INTNAME (3)
INV ALIDADDRESS (3)
INV ALIDINDEX (3)
INVALIOOP (3)

INVALIDPROGRAMWORD
(3)
INVERSE (2)
IS (2)

ISNT (2)
JOBNUMBER (3)
LABEL(l)
LB (2)
LENGTH (2)
LEQ (2)
LIBACCESS (3)
LIBERATE (2)
LIBPARAMETER (3)
LIBRARIES (3)
LIBRARY (2)
LINE (2)
LINENUMBER (2)
LINKLIBRARY (2)
LIST (1)
LISTLOOKUP (2)
LN (2)
LNGAMMA(2)
LOCK (2)
LOCKED (3)
LOG (2)
LONG (1)
LOOP(3)
LSS (2)
MASKSEARCH (2)
MAX (2)
MAXCARDS (3)
MAXIOTIME (3)
MAXLINES (3)
MAXPROCTIME (3)
MEMORYPARITY (3)
MEMORYPROTECT (3)
MERGE(2)
MESSAGECOUNT (2)
MESSAGESEARCHER (2)
MIN (2)
MOD (2)
MODIFY (2)
MONITOR (2)
MUX (2)
MY JOB (2)
MYSELF (2)
NABS (2)
NAME (3)

8600 0734-000

NEQ (2)
NO (2)

NOCR (2)
NOLF (2)

NONE(2)
NORMALIZE (2)
NOT (2)
NUMERIC (2)
OF(2)
OFFER (3)
OFFSET (2)
ON (2)

ONES(2)
OPEN (2)
OPTION (3)
OR (2)

ORDER (2)
ORDERING (2)
ORGUNIT (3)
OUT (3)
OUTPUTHEADER (2)
OUTPUTMESSAGE (2)
OWN (1)

PACK (3)
PAGED(3)
PARTNER (3)
PERMANENT (3)
PICTURE (2)
POINTER (1)
POTC (2)
POTH (2)
POTL (2)
PRIVATELIBRARIES (3)

PROCEDURE (1)
PROCESS (2)
PROCESSID (2)
PROCESSIOTIME (3)
PROCESSTIME (3)
PROCURE(2)
PROGRAMDUMP (2)
PROGRAMMEDOPERATOR
(3)

PURGE (2)
QUERY (2)
RANDOM (2)
RB (2)
READ (2)
READLOCK (2)
REAL (1)
RECEIVE (2)
RECORD (2)

8600.0734-000

Extended ALGOL Reserved Words

REEL (3)
REFERENCE (1)
REFERENCE (2)
REMAININGCHARS (2)
REMOVEFILE (2)
REPEAT (2)
REPLACE (2)
RESET (2)
RESIZE (2)
RESTART (3)
RETAIN (3)
RETRIEVE (2)
REWIND (2)
RUN (2)
SA VETRPOINT (2)
SCALELEFT (2)
SCALERIGHT (2)
SCALERIGHTF (2)
SCALERIGHTT (2)
SCAN (2)
SCANPARITY (3)
SDIGITS (2)
SECONDWORD (2)
SEEK (2)
SELECT (2)
SEND (2)
SET (2)
SETACTUALNAME (2)
SETTOCHILD (2)
SETTOPARENT (2)
SIBS (3)
SIGN (2)
SIN (2)
SINGLE (2)
SINH (2)
SIZE (2)
SKIP (2)
SOME (2)
SORT (2)
SPACE(2)
SQRT (2)
STACKER (2)
STACKNO (3)
STACKSIZE (3)
ST ARTINSERT (2)
STARTMODIFY (2)
STARTTIME (3)
STATION (2)
STATUS (S)
STEP (1)

STOP (2)

STOPPOINT (3)
STRING (2)
STRING4 (2)
STRING7 (2)
STRINGS (2)
STRINGPROTECT (3)
SUBFILE (2)
SUBROLE (2)
SUBSPACES (3)
SWITCH (1)
TADS (3)
TAIL (2)
TAKE (2)
TAN (2)
TANH (2)
T ARGETTIME (3)
TASK (1)
TASKATTERR (3)
TASKFILE (3)
TASKVALUE (3)
TEMPORARY (3)
TERMINAL (2)
THEN (1)
THRU (2)
TIME (2)
TIMELIMIT (2)
TIMES (2)
TITLE (3)
TO (2)
TRANSITIVE (2)
TRANSLATE (2)
TRANSLA TETABLE (1)
TRUE(l)
TRUTHSET (1)
TYPE (2)
TYPE (3)
UNTIL (1)

USERCODE (3)
USING (2)
VALUE (1)
WAIT(2)
WAIT ANDRESET (2)
WHEN (2)
WHERE(2)
WHILE(l)
WITH (2)
WORDS (2)
WRITE (2)
ZERODIVIDE (3)
ZIP (1)

B-9

Extended ALGOL Reserved Words

B-10 8600 0734-000

Glossary

A

abort

access

To terminate an active program or session abnormally and, sometimes, to attempt
to restart it.

(1) To perform an action on an object. Possible actions depend on the type of
object; for example, interrogating or assigning a value to a variable, reading from
or writing to a file, or invoking a procedure.
(2) In Data Management System II (DMSII), a logical index structure that defines
the physical ordering of records in direct, ordered, and random data sets. An
access functions like a set, but no physical file is associated with an access.

access mode
The manner in which records are to be operated on within a file. The two
possible access modes are random and sequential.

Accessroutines
In Data Management System II (DMSII), routines that perform all physical and
logical management of a database and allow many users to access the database
concurrently. Each data management statement that a user language program
executes invokes a portion of the Accessroutines to perform all file management
functions that the statement requires.

accidental entry
See thunk.

active query
In database management, a query that the system can process. All queries
activated within transaction state are deactivated at the end of transaction state.

actual parameter

address

An object or value that is specified in a procedure invocation statement and
passed to a formal parameter.

(1) The identification of a location in storage (memory).
(2) A sequence of bits, a character, or a group of characters that identifies a
network station or a group of stations, a user, or an applieation.
(3) The location of a device in the system configuration.
(4) The identification of the location of a disk sector.

8600 0734-000 Glossary-1

Glossary

address couple
A representation of the address of an item in a program. An address couple
consists of two numbers: the first number is a lexical level, and the second
number is a displacement (offset) within that lexical level.

address equation

ADDS

The process of declaring an identifier to have the same address as a previously
declared identifier.

See Advanced Data Dictionary System.

Advanced Data Dictionary System (ADDS)

agenda

A software product that allows for the centralized definition, storage, and
retrieval of data descriptions.

In the Communications Management System (COMS), an entity used for message
routing that consists of a processing-item list and a destination. An agenda can be
applied to messages that are received or sent by application programs.

aggregation

ALGOL

One type of abstraction. Aggregation is the process of deriving an entity from a
collection of particular attributes. For example, the attributes NAME, AGE, and
ADDR~ can represent an entity called Person.

Algorithmic language. A structured, high-level programming language that
provides the basis for ~he stack architecture of the Unisys A Series systems.
ALGOL was the first block-structured language developed in the 1960s and
served as a basis for such languages as Pascal and Ada. It is still used extensively
on A Series systems, primarily for systems programming.

alpha item
In Data Management System II (DMSII), a data item that stores alphanumeric
information (letters, numbers, special characters, and blanks) as EBCDIC
characters. An alpha item cannot be used in calculations.

alphanumeric character

ancestor

Any character in the computer's character set.

(1) The parent of a particular task, or the parent of any ancestor of the task.
(2) In embedded data sets in the Data Management System II (DMSII)
environment, the owner of a record, the owner of the owner, and so forth.

application software

Glossary-2

Programs written to provide specific functions to solve specific problems for end
users.

8600 0734-000

apply

Glossary

In the Semantic Information Manager (SIM), to update data in the database. The
changed data is not made permanent until an END-TRANSACTION statement is
executed.

arithmetic function

array

A function containing calculations that produce a numeric result based on one or
more records.

An ordered collection of a fixed number of common elements under one name,
each element having the same data type. Access for each element is through an
index to the common name.

ascending order

ASCil

An arrangement of items in which the order progresses consecutively from the
lowest-valued item to the highest-valued item. Contrast with descending order.

American Standard Code for Information Interchange. A standard 7-bi.t or 8-bit
information code used to represent alphanumeric characters, control characters,
and graphic characters on a computer system.

asynchronous process

attribute

A process that executes in parallel with its initiator.

(1) A characteristic or property.
(2) The information that describes a characteristic of an entity.
(3) In the Semantic Information Manager (SIM), a characteristic of entities of a
class or of the class itself. A SIM attribute can be either data-valued or
entity-valued.

audit trail
In Data Management System II (DMSII), a file produced by the Accessroutines
that contains various control records and a sequence of before-update and
after-update record images resulting from changes to the database. The audit
trail is used to recover the database and supply restart information to programs
after a hardware or software failure has occurred.

audited database
In Data Management System II (DMSII) and in the Inf oExec environment, a
database that stores a record of changes (called the audit trail), which can be
used for database recovery if a hardware or software failure occurs.

automatic 11n1.bset
In Data Management System II (DMSII), a subset declared with a condition that
specifies which members of the data set are to be included in the subset. Entries
are automatically inserted into or removed from the subset when records are
added to or deleted from the data set.

8600 0734-000 Glossary-3

Glossary

B
back out

In Data Management System II (DMSII), to undo changes made against a database
and to roll back the progress of one or more transactions to a previously
consistent state.

batch mode
(1) An execution mode in which a group of commands or other input is
transmitted and processed by the computer with no user interaction.
(2) In the Communications Management System (COMS), an execution mode in
which a program running under COMS can do batch-type updates to a database
shared by other transaction processors.
(3) Contrast with interactive mode.

BDMSALGOL

Binder

binding

A Unisys language based on Extended ALGOL that contains extensions for
accessing Data Management System II (DMSII) databases.

A program that enables separately compiled subprograms to be joined with a host
object code file to produce a single object code file.

(1) The process of combining one or more separately compiled subprogram object
code files with a host object code file to produce a single object code :me. This
process is performed by the Binder program.
(2) The process by which distinct occurrences of a name in a query are made to
refer to the same instance of a rt!ference variable during execution of the query.

binding of 1UUDes

bit

blank ftll

block

In the Semantic Information Manager (SIM), the process of using the same
instance of a class or an attribute anywhere that class or attribute appears in a
statement.

The most basic unit of computer information. The word bit is a contraction of
binary digit. A bit can have one of two values: binary 0 (sometimes referred to as
OFF) and binary 1 (sometimes referred to as ON).

(1) To pad with null characters.
(2) To pad with blank characters.

(1) A group of physically adjacent records that can be transferred to or from a
physical device as a group.
(2) A program, or a part of a program, that is treated by the processor as a
discrete unit. Examples are a procedure in ALGOL, a procedure or function in
Pascal, a subroutine or function in FORTRAN, or a complete COBOL program.

Glossary-4 8600 0734-000

Boolean

Glossary

Pertaining to variables, data items, and attributes having a value of TRUE or
FALSE.

Boolean item

byte

c

In Data Management System II (DMSII), a data item that stores information
having a logical value of TRUE or FALSE.

(1) A binary character string operated upon as a unit and usually shorter than a
computer word.
(2) On Unisys A Series systems, a measurable group of 8 consecutive bits having
a single usage. In data communications, a byte is often referred to as a character
or an octet.

call-by-name
Pertaining to one method of passing a parameter to a procedure. The system
substitutes the actual parameter wherever the formal parameter is mentioned in
the procedure body. Any assignments to the actual parameter immediately change
the value of the formal parameter, and vice versa. Synonym for by name.

call-by-reference
Pertaining to one method of passing a parameter to a procedure. The system
evaluates the location of the actual parameter and replaces the formal parameter
with a reference to that location. Any change made to the formal parameter
affects the actual parameter, and vice versa. Synonym for by reference.

call-by-value
Pertaining to one method of passing a parameter to a procedure. A copy of the
value of the actual parameter is assigned to the formal parameter, which is
thereafter handled as a variable that is local to the procedure body. Any change
made to the value of a call-by-value formal parameter has no effect outside the
procedure body. Sunonym for by value.

called program
A program that is the object of a CALL statement and is combined at object time
with the calling program to produce a run unit.

calling program
A program that executes a CALL statement to another program.

CANDE
See Command and Edit.

character
(1) The actual or coded representation of a digit, letter, or special symbol in
display form.
(2) In data communications, 8 contiguous bits (1 byte).
(3) See also octet.

8600 0734-000 Glossary-5

Glossary

character array

class

In ALGOL, an array whose elements are ASCII, EBCDIC, or hexadecimal
characters. Contrast with word array.

In the Semantic Information Manager (SIM), a collection of entities of the same
basic type.

class attribute
In the Semantic Information Manager (SIM), an attribute that describes a class as
a whole, rather than one that describes the entities of a class.

cocle segment descriptor
A descriptor that references a code segment. An operating system uses code
segment descriptors to obtain segments of an object code me as needed during
execution of a program.

Command and Edit (CANDE)

commit

A time-sharing message control system (MCS) that enables a user to create and
edit files, and to develop, test, and execute programs, interactively.

In the Semantic Information Manager (SIM), to record a transaction permanently
in a database and make the results visible to the other users of the database. This
action generally occurs with an END-TRANSACTION statement.

Communications Management System (COMS)
A general message control system (MCS) that controls online environments on
A Series systems. COMS can support the processing of multiprogram transactions,
single-station remote files, and multistation remote mes. See also COMS (Entry),
COMS (Full-Featured), and COMS (Kernel).

compile time

compiler

The time during which a compiler analyzes program text and generates an object
code file.

A computer program that translates instructions written in a source language,
such as COBOL or ALGOL, into machine-executable object code.

compound attribute

COMS

In the Semantic Information Manager (SIM), a data-valued attribute that consists
of elements, called components, that can be accessed individually. The attribute
PHONE.....NUMBER, for example, can be a compound attribute that contains the
components AREA-CODE, PREFIX, and SUFFIX.

See Communications Management System.

COMS Control library
A Communications Management System (COMS) internal library that initiates a
database (DB) library for each database that uses synchronized recovery, and

Glossary-6 8600 0734-000

initiates a transaction processor (TP) library for nondatabase,
transaction-processing programs that do not use synchronized recovery.

Glossary

COMSheaden
In Communications Management System (COMS), part of the communication
structure for routing or descriptive information for the message. There is an
input header for input messages and an output header for output messages.

COMS library
In the Communications Management System (COMS), the library that is created
upon the execution of a FREEZE statement after the SYSTEM/COMS object code
initiates as internal processes the Router library, the Agenda Processor library,
and the COMS Control library. The COMS library contains service functions for
designator conversion, dynamic selection procedures for linking callers to other
libraries within the COMS system, and support for dynamic table changes.

COMS network
A system of interconnected elements consisting of at least one computer system
and one or more stations for which the Communications Management System
(COMS) provides communication and processing control.

COMS transaction trail
A file generated by the transaction processor (TP) library that contains such
information as beginning of job (BOJ) and end of job (EOJ) records. The file
optionally provides a journal of query transactions not associated with any
database, and statistical information on a transaction-by-transaction buis, which
can be used for security and accounting.

COMS Utility
The Communications Management System (COMS) program that defines and
maintains the specifications stored in the COMS configuration file.

COMS window environment
The status of the windows currently available to a given station. The status of a
window can be open, closed, suspended, or disabled.

configuration flle

constant

(1) A table that contains the configuration of a system. The configuration table is
stored in the disk directory of the halt/load family.
(2) In the Communications Management System (CO:MS), a file that contains
descriptions of the tables defined through the COMS Utility program. These
tables contain information on message routing, security, dynamic program
control, and synchronized recovery. This file is also referred to as the COMS
CFILE.

An object whose value is assigned during program compilation and cannot be
changed during program execution.

eonstraet
An element in the structure of a programming language.

8600 0734-000 Glossary-7

Glossary

control me
In Data Management System II (DMSII), a file containing data file coordination
information, audit control information, and dynamic database parameter values.

control item
(1) In Data Management System II (DMSll), a count item, population item, or
record-type item.
(2) In the transaction processing system (TPS), a system-defined item contained
in a transaction record. A control item is maintained by TPS and is read-only in
all programs written in Burroughs Data Management System COBOL
(BDMSCOBOL), Burroughs Data Management System COBOL74 (BDMSCOBOL74),
and Burroughs Data Management System ALGOL (BDMSALGOL). The initial
value of a control item is assigned when a transaction record is created.

control variable
The variable that controls the execution of instructions in a loop.

control word
In the transaction processing system (TPS), the first word of a control item. The
control word is used for integrity checking.

conventions
(1) The standards and accepted procedures that are developed for a particular
system, language, or program.
(2) The agreed-upon formats for presenting date, time, numeric, and monetary
information as well as the default number of lines per page, and the default
number of characters per line.

conversation area
In the Communications Management System (COMS), the user data space in the
header of a message. The conversation area is user defined and can contain
information passed by a program or processing item. When used with a
direct-window interface, this area contains the telephone number to be dialed.

coroutine
One of a group of processes that exist simultaneously, but take turns executing,
so that only one of the processes is executing at any given time. The coroutine
that is currently executing is called the active coroutine, and the others are called
continuable coroutines.

count item
In Data Management System II (DMSII), a control item that contains a
system-maintained count of the number of counted links that ref er to a record.

critical block
For a dependent process, the block of the highest lexical level that includes the
declaration of any critical objects used by the dependent process. The process
that is executing the critical block is called the parent of the dependent process.
If the parent exits the critical block while the dependent process is in use, the
parent is discontinued and the dependent process is also discontinued.

Glossary-8 8600 0734-000

Glossary

current record
(1) The record that is available in the record area associated with a file.
(2) In Data Management System II (DMSII), the actual data set record that a
program is currently referencing. Each data set has a current record, which is
contained in the user work area.

current record pointer
A conceptual entity used to select the next record.

current transaction

D

DASDL

data

In Data Management System II (DMSII), the transaction that is attempting to
update the database at the moment that a transaction-state abort or system
failure occurs.

See Data and Structure Definition Language.

(1) Facts, concepts, or directives in a form that can be communicated and
interpreted.
(2) Input to a computer program or routine that can be manipulated by
arithmetic or logic operations.

Data and Structure Definition Language (DASDL)
In Data Management System II (DMSII), the language used to describe a database
logically and physically, and to specify criteria to ensure the integrity of data
stored in the database. DASDL is the source language that is input to the DASDL
compiler, which creates or updates the database description file from the input.

data COIDJD

See data communications.

data co1D1Dunications (data comm)
The transfer of data between a data source and a data sink (two computers, or a
computer and a terminal) by way of one or more data links, according to
appropriate protocols.

data co1D1Dunications interface (DCI) library
A library that serves as the direct programmatic interface to the Communications
Management System (COMS). Application programs must communicate with
COMS through the DCI library to use agendas, processing items, routing by
trancode, and synchronized recovery.

data definition language (DDL)
A language used to describe data in a database, both as it actually is (in schema)
and as it appears to a particular application (in subschema).

8600 0734-000 Glossary-9

Glossary

data description
The characteristics of a data item in terms of its length, name, context, and so
forth.

data descriptor
An item in a stack that is used to point to a data area outside the stack, such as
an array or a file.

data dictionary
A repository of information about the definition, structure, and usage of data.
The data dictionary does not contain the actual data.

data Independence
In data management, the property that establishes the ability to change the
structural format of a database without requiring changes to or recompilation of
unaffected application programs that use the database.

data item
(1) An element of data.
(2) In Data Management System II (DMSII), a field in a database record or
transaction format that contains a particular type of information.

data management
(1) The operating system function of placing and retrieving data in storage and
protecting its security and integrity.
(2) Data 8.dministration.

Data Management ALGOL (DMALGOL)
A Unisys language based on ALGOL that contains extensions for writing Data
Management System II (DMSII) software and other specialized system programs.

Data Management System Il (DMSll)
A specialized system software package used to describe a database and maintain
the relationships among the data elements in the database.

data manipulation language (DML)

data set

A language used to write expressions that retrieve, store, and update data in a
database.

In Data Management System II (DMSII), a collection of related data records stored
in a file on a random-access storage device. A data set is similar to a conventional
file. It contains data items and has logical and physical properties similar to mes.
However, unlike conventional files, data sets can contain other data sets, sets,
and subsets.

data structure
(1) A regular and characteristic organization of data.
(2) In Reporter III, a collection of records. Access to information in data
structures is specified in the report language by the INPUT statement. Valid data
structures for Reporter III include system files describable in COBOL and Data
Management System II (DMSII) data sets.

Glossary-10 8600 0734-000

Glossary

data type
(1) An interpretation applied to a string of bits. Data types can be classified as
structured or scalar. Structured data types are collections of individual data
items of the same or different data types, such as arrays and records. Scalar data
types include real, integer, double precision, complex, logical (also called
Boolean), character, pointer, and label. Most programming languages provide a
declaration statement or a standard convention to indicate the data type of a
variable.
(2) In the Semantic Information Manager (SIM), a concept that enables allowable
data values to be specified. SIM provides two basic kinds of data types: primitive
and constructor. Primitive data types are predeclared data types that can be
specified in schemas. Constructor data types, which are either compound or
symbolic, allow new data types to be defined in schemas.

data-valued attribute (DVA}
In the Semantic Information Manager (SIM), an attribute that contains data
values for the entities of a class. See also entity-valued attribute.

database (DB}
An integrated, centralized system of data files and program utilities designed to
support an application. The data sets and associated index structures are defined
by a single description. Ideally, all the permanent data pertinent to a particular
application resides in a single database. The database is considered a global
entity that several applications can access and update concurrently.

database (DB} library
See DB library.

database deftnltion
In Data Management System II (DMSII), a description of the logical and physical
structures of a database.

database management system (DBMS}
The software used to store, retrieve, update, report on, and protect data in a
database.

database name
The unique identifier of a particular database. The rules for constructing a
database name are the same as those for constructing a file name.

DB library
The data communications interface (DCI) library for programs that are controlled
by a common database (DB) control program.

DC ALGOL
See Data Communications ALGOL.

DCI library
See data communications interface (DCI) library.

DDL
See data definition language.

8600 0734-000 Glossary-11

Glossary

deadlock
In data management, a situation in which two or moi."e programs have locked
records and are also attempting to lock records held by each other.

declaration
(1) A programming language construct used to identify an object, such as a type
or variable, to the compiler. A declaration can be used to associate a data type
with the object so that the object can be used in a program.
(2) In the Data Management System Il (DMSII) Inquiry program, a general term
used to refer to the texts of DEFINE, GENERATE, and VIRTUAL commands as a
group.

default value

dellmlter

(1) The value automatically given to a variable when no other value has been
assigned.
(2) In the Screen Design Facility (SDF) and SDF Plus, the value placed in a field
when a form is output to the terminal, or when the program value is 0 (zero) or a
blank. Unless otherwise designated, the default value is a blank for alpha fields,
0 for numeric fields, and FALSE for Boolean fields.

A character that indicates the boundary of a field or token.

descending order
An arrangement of items in which the order progresses consecutively from the
highest-valued item to the lowest-valued item. Contrast with ascending order.

description flle
In Data Management System II (DMSII), the file produced by the Data and
Structure Definition Language (DASDL) or Transaction Formatting Language
(TFL) compiler that contains information used when compiling all tailored
software and all DMSII user-language programs for a particular database or
transaction base.

descriptor
A computer word of a particular format that is used to reference data segments
and code segments in memory or on a disk.

destination

dial-out

dial-up

(1) A device to which output is sent.
(2) In COBOL, the symbolic identification of the receiver of a transmission from
a queue.

The process in which a computer calls a terminal or another computer through a
switched telephone network.

The process of, or the equipment or facilities involved in, using a dial or
push-button data set (such as a telephone) to establish a temporary connection
through a switched telephone network. Dial-up is also referred to as dial-in.

Glossary-12 8600 0734-000

Glossary

dlreet data set
In Data Management System II (DMSII), a collection of related data records stored
in a file. These records are maintained in key value order. One unsigned numeric
data item in the record is designated as the key item.

dlreet window
In the Communications Management System (COMS), a type of window that
enables the user to route messages directly to COMS, while using all the COMS
capabilities for preprocessing and postprocessing of messages.

dlreetory

di&abled

(1) A table of contents listing the files contained on a device. The device is
usually a disk or a tape.
(2) A list of file names organized into a hierarchy according to similarities in
their names. File names are grouped in a directory if their first name constants
(and associated usercodes) are identical. These groups are divided into
subdirectories consisting of those file names whose first two name constants are
identical, and so on.
(3) In Data Management System II (DMSII), a file with the layout for each field
of the record that it describes. A directory describes the layout of records within
a file.
(4) In the Advanced Data Dictionary System (ADDS), a unique identifier by
which one or more entities can be grouped.
(5) Special disk files used by the system that include archive directories,
catalogs, and system directories.
(6) The partial name of a disk file up to one of the following terminators: a slash
followed by an equal sign (/-) or a right parenthesis followed by an equal sign
()-).

Referring to a station in which messages from the line it represents are being
ignored by the system.

cli8eonnect

di&jolnt

In data communications, to release or terminate a switched circuit between two
stations.

In Data Management System II (DMSII), pertaining to a data set, set, or subset
when it is not contained in another data set. Contrast with embedded.

DMALGOL
See Data Management ALGOL.

DML
See data manipulation language.

DMSll
See Data Management System II.

8600 0734-000 Glossary-13

Glossary

DMSD recovery
In Data Management System II (DMSII), a database routine that is initiated after
a hardware, software, or operations failure while a database is in the update
mode. DMSII recovery backs out any partially completed transactions by applying
audit-trail images to the database to restore it to its proper state. It also passes
restart information to the programs accessing the database.

DMTEB.MINATE procedure

DVA

E

EBCDIC

EGI

A system-level Data Management System II (DMSII) procedure that a database
processing program can invoke at any time to display a standard, recognizable
error message and to discontinue the program.

See data-valued attribute.

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256
graphic and control characters that are the native character set of most
mainframe systems.

See end-of-group indicator.

embedded

EMI

enabled

(1) Pertaining to structures, such as data sets and records, that are nested within
structures.
(2) In Data Management System II (DMSII), pertaining to a data set, set, or
subset contained within another data set. A record of an embedded structure
must be accessed through the master data set in which it is embedded.
(3) In ALGOL and the Screen Design Facility (SDF), pertaining to a record
contained within a form record library or a field contained within a record.
(4) Contrast 'With disjoint.

See end-of-message indicator.

Referring to a station that is being polled (invited to transmit in a certain order)
and that can communicate with the system.

end-of-group indicator (EGI)
An option indicator that specifies the end of a group of data in a data
communications message.

end-of-message indicator (EMI)
An option indicator that specifies the end of a data communications message.

Glossary-14 8600 0734-000

Glossary

end-of-segment indicator (ESI)

entity

In data communications, an option indicator that specifies the end of a segment
of data in a message.

(1) An item about which information is stored. An entity can be tangible or
intangible and is further defined by attributes, which are the characteristics of
the entity.
(2) In the Communications Management System (COMS), a category of items
within the configuration file.
(3) Any object defined in the Advanced Data Dictionary System (ADDS). To
ADDS, an entity can be a Screen Design Facility (SDF) field, form, or formlibrary;
an attribute or class in a Semantic Information Manager (SIM) database; a data
set, group, or item in a Data Management System II (DMSII) database; or the
entire SIM or DMSII database. Note that the definitions that are stored in
ADDS--objects and their relatiom1hips-are themselves known as entities.
(4) In the Screen Design Facility (SDF), a field, form, or formlibrary about which
information is stored.
(5) In the InfoExec environment, the basic unit of a Semantic Information
Manager (SIM) database. A SIM entity can be any member of a SIM class, such as
an employee, a department, or a project.

entity reference variable
In Semantic Information Manager (SIM) programs, a variable that refers
explicitly to an entity.

entity-valued attribute {EV A)
In the Semantic Information Manager (SIM), an attribute that links an entity to
one or more other entities of the same or another class. Entity-valued attributes
establish relationships between entities. See also data-valued attribute.

entry point
A procedure or function that is a library object.

equivalent array

ESI

EVA

In ALGOL, an array that is declared to ref er to the same data area and point to
the same memory location as another array.

See end-of-segment indicator.

See entity-valued attribute.

exception
(1) In data management, an error result returned to an application program by
the data management software, explaining the reason a requested database
operation was not performed.
(2) In the print system, anything unusual that happens to a print request and
prevents the request from being carried out.

8600 0734-000 Glossary-15

Glossary

execution time
The time during which an object code file is executed. Synonum for run time and,
in COBOL, object time.

expression
A combination of operands and operators that results in the generation of one or
more values.

extension

F

fault

FIB

field

A change in a language that enables it to perform an activity not previously
supported by the language.

An error encountered by a hardware operator.

See file information block.

(1) An area on a screen or form in which data is displayed or entered. The
delimiters of the field can be visible or invisible to the terminal operator.
(2) A consecutive group of bits within a word or a component of a record that
represents a logical piece of data.

field item

rue

In Data Management System II (DMSII), a data item that can contain unsigned
integer or Boolean values.

A named group of related records. See logical file, physical file.

f"tle attribute
An element that describes a characteristic of a file and provides information the
system needs to handle the file. Examples of file attributes are the file title,
record size, number of areas, and date of creation. For disk files, permanent file
attribute values are stored in the disk file header.

rue equation
A mechanism for specifying the values of file attributes when a program is
compiled or executed. A file equation implicitly assigns a value to the
FILECARDS task attribute.

rue information block (FIB)
A data structure in an object code file that contains information describing a file.

form record
(1) A unique structure consisting of field structures that can be grouped under
one name and invoked by a program.

Glossary-16 8600 0734-000

Glossary

(2) In the Screen Design Facility Plus (SDF Plus), an element of a form record
library that represents records of data. Form records describe the format of
messages used to output data from, or to input data to, an SDF Plus form.
Symm:ym for message type.

form record library
(1) A unique structure that consists of form record structures grouped under one
name. The form record library can be either retrieved or invoked by a program.
(2) In the Screen Design Facility Plus (SDF Plus), a collection of form records and
transaction types, and the interrelationship between them.

form record number
In the Screen Design Facility Plus (SDF Plus), the unique number by which
SDF Plus internally references a form record. Synonym for message type number.

formal parameter

format

An object that is declared in a procedure heading and that receives its value from
an actual par8:Meter when the procedure is invoked.

(1) The organization of an array of storage points in memory. Formats, and other
memory structures, make it possible for the Master Control Program (MCP) to
identify and move areas of memory.
(2) The specific arrangement of a set of data.
(3) In the Screen Design Facility Plus (SDF Plus), the component that contains
instructions on how to display data in a field.

tally specified formal procedure

function

G

In ALGOL, a procedure parameter (formal procedure) whose declaration includes
the word FORM.AL. With such procedures, the compiler checks the parameters of
the actual procedure passed to it at compile time.

(1) An assigned purpose, activity, or significance.
(2) A subroutine that returns a value.
(3) See also typed procedure.

global data item
In Data Management System II (DMSll), a data item, group item, or population
item that is not a part of any data set. Global data items generally contain
information such as control totals, hash totals, and populations that apply to the
entire database.

global identifier
Within a given block of an ALGOL, NEWP, or Pascal program, an identifier that
is declared in an outer block. A global identifier retains its values and
characteristics as the blocks to which it is global are entered and exited.

8600 0734-000 Glossary-17

Glossary

global selection expression
An expression that applies to the entire query.

group Item

H

In Data Management System II (DMSII), a collection of data items that can be
viewed as a single data item.

halt/load

header

HLI

host

A system-initialization procedure that temporarily halts the system and loads the
operating system from a disk to main memory.

(1) A data structure that contains information about a disk file, such as the
physical location of the file on the disk and various file attributes. A header is
also referred to as a disk file header.
(2) A sequence of characters preceding the text of a message, containing routing
or other communications-related information.

See host language interface.

An independent system in a network. Each host has its own operating system and
resources and is identified by a hostname.

host language Interface (BLI)
A programmatic interface that enables an application to directly access a
separately bundled software package, such as the Screen Design Facility (SDF),
the Communications Management System (COMS), or the Semantic Information
Manager (SIM). An HLI is accessed through compiler language extensions for the
hosting application.

host program
A program to which separately compiled procedures can be bound by using the
Binder program or by using the SEPCOMP facility.

host system
See host.

hybrid selection
In Semantic Information Manager (SIM) application programs, the process of
requesting information using a combination of tabular selection and structured
selection.

Glossary-18 8600 0734-000

I

1/0

Glossary

Input/output. An operation in which the system reads data from or writes data to
a file on a peripheral device such as a disk drive.

identifier (ID)

import

lnfoExec

(1) A label.
(2) One node of a file name.
(3) In ALGOL, NEWP, and Pascal, the name given to a declared item in a
program.
(4) In the Semantic Information Manager (SIM), a string of up to 30 characters.
The identifier can contain any alphabetic (A through Z, a through z) or numeric
(0 through 9) character; it can also contain hyphens (-) and underscores (_), but
the identifier must start with an alphabetic character. Uppercase and lowercase
characters can be used interchangeably.

To bring in from an outside source and still retain the original significance or
function.

Information Executive. The name of a family of Unisys products that deime,
maintain, retrieve, and update databases.

Information Executive (lntoExec)
See Inf oExec.

initial value
In the transaction processing system (TPS), the value assigned to an item in a
newly created transaction record. An initial value can be declared for each item
in the Transaction Formatting Langtiage (TFL) declaration for the item;
otherwise, TFL assigns the item a default initial value.

initialization
(1) The process of starting a program and giving starting values to variables.
(2) A procedure that makes a system or subsystem available for its intended use.
Important phases of initialization are the recognition of the physical
environment, the identification of the available resources, and the establishment
of the interface with the user. System initialization occurs as part of a halt/load.

input file
(1) Within a program, a file that contains records that the program uses as a
source of data.
(2) In COBOL, a file opened in the input mode.

input header
In the Communications Management System (COMS), a record that enables a
program to receive a message from COMS.

8600 0734-000 Glossary-19

Glossary

inquiry mode
A database mode in which data can be read but not updated.

Installation

integer

A single computer configuration, facility, center, or system consisting of one or
more mainframes and any possible combination of peripheral, communications,
1/0, and other types of support devices.

(1) A whole number.
(2) In COBOL, a numeric literal or a numeric data item that does not include any
character positions to the right of the assumed decimal point.

interactive mode
An execution mode in which each command or item of data is validated and
executed at the time it is entered at a terminal or workstation, allowing the user
to see immediate results and correct errors as they are made. Contrast with batch
mode.

Interactive Productivity (lnterPro)
See InterPro.

interface
(1) A common boundary at which independent systems or diverse groups
interact.
(2) A common boundary defined by common physical interconnection
characteristics, signal characteristics, and functional characteristics of the
interchange circuits.
(3) A concept involving the specifications of the interconnection between two
pieces of equipment that have different functions.
(4) A set of conventions for passing information.
(5) To interact or coordinate smoothly.

interleave
(1) To insert segments of one program into another program so that the two
programs can be executed simultaneously.
(2) The manner in which data is stored on some disk packs and main memory
modules.

internal ftle name

Inter Pro

The name used to declare a logical file in a program. The internal name of a file
is given by the value of its INTNAME file attribute. Work Flow Language (WFL)
file equation statements can reference the file by implicitly or explicitly
specifying an INTNAME value that matches the INTNAME attribute of a file in a
program.

Interactive Productivity. A family of Unisys software facilities used to create
new products and enhance existing products.

Glossary-20 8600 0734-000

Intrinsic

Glossary

A system-supplied program routine for common mathematical and other
operations that is loaded onto the system separately. An intrinsic can be invoked
by the operating system or user programs.

Invocation

Invoke

item

J

(1) The syntax used to initiate execution of software.
(2) The act that transfers control to the start of a specified procedure, initializes
any parameters, and begins the execution of the statements of the procedure.
Invocations are of two kinds: entrances and initiations.

(1) To cause to be executed.
(2) To cause to be brought into main storage.

(1) In Data Management System II (DMSII), a field in a database record that
contains an individual piece of information and can be referenced by name.
(2) In data dictionaries, an entity that can be retrieved directly from the data
dictionary.
(3) An attribute or target attribute expression included in the RETRIEVE clause
of a query.

journal control me
In the transaction processing system (TPS), a control file containing global
information about the journal it resides in, information about users known to the
journal, and response transaction records for each known user.

journal data me

K
key

key item

keyword

In the transaction processing system (TPS), a file within a transaction journal
that contains a serial history of transaction records.

(1) A component of a terminal or computer keyboard that the user presses to
interact with computer programs.
(2) A field used to locate or identify a record in an indexed file.
(3) A field in a record that is used to sort a file.
(4) See al.so key item.

In Data Management System II (DMSII), a data item or group item that serves as
a retrieval key for a set, subset, or access.

(1) A word or group of words that supplies the link between help text and those
screen items for which the information is intended.

8600 0734-000 Glossary-21

Glossary

L

(2) In programming languages, a reserved word that must be present when the
format in which the word appears is used in a source program.
(3) In the Advanced Data Dictionary System (ADDS), an attribute or property for
grouping similar entities under a common name.

language interface

lex level

(1) The means of allowing a programming language to interact.
(2) The protocols and extensions developed for a programming language and
implemented in the compiler.

See lexical level.

lexical level (lex level)

library

link item

literal

(1) A number that indicates the relative level of an addressing space within the
stack of an executing program. Lexical levels range from 0 through either 15 or
31, depending on the computer family. A lower lexical level indicates a more
global addressing space.
(2) A measure of the number of other blocks a block is nested within. The outer
block of a program has a lex level of 2 or 3, depending on whether the program
has a procedure heading. Each block has a lex level one higher than the block it
is nested within.

(1) A collection of one or more named routines or library objects that are stored
in a file and can be accessed by other programs.
(2) A program that exports objects for use by user programs.

In Data Management System II (DMSII), a field that enables one data set record to
refer to another.

A character string whose value is implied by the ordered set of characters that
compose the string.

local identlfler
An identifier that is declared within a given block of a program. The value or
values associated with that identifier inside the block are not associated with
that identif1er outside the block.

local seleetlon expression

lock

In Semantic Information Manager (SIM) programs, a selection expression that
applies only to a specific entity-valued attribute (EV A).

To prevent access to particular data in the database by other users when one
user is accessing it.

Glossary-22 8600 0734-000

Glossary

logical database
In Data Management System II (DMSII), a collection of structures declared in the
Data and Structure Definition Language (DASDL) that provide a view of the
database, enforce structure-level security, and achieve data independence. When
a logical database is declared in DASDL, the data sets, sets, subsets, and remaps
to be included in it are listed.

logical file

M

A file variable declared in a program, which represents the file and its structure
to the program. A logical file has no properties of its own until it is described by
file attributes or associated with a physical file.

manual subset

mapping

master

In Data Management System II (DMSII), a subset that has no condition specifying
which data set records are to be included in the subset. The user must add and
delete manual subset entries, using the INSERT and REMOVE statements.

(1) A transformation from one set to another set.
(2) A correspondence.
(3) A description of the way in which different record types of a database are
associated with one another.
(4) The process of associating Semantic Information Manager (SIM) logical
structures with the underlying Data Management System II (DMSII) physical
structures. Mappings specify how SIM entities are to be represented in the DMSII
database.

In Data Management System II (DMSII), a data set or record that contains one or
more embedded data sets or records. In DMSII, syncmymfor master, parent,
owner.

Master Control Program ~CP)

MCP

MCS

member

An operating system on A Series systems. The MCP controls the operational
environment of the system by performing job selection, memory management,
peripheral management, virtual memory management, dynamic subroutine
linkage, and logging of errors and system utilization.

See Master Control Program.

See message control system.

In Data Management System II (DMSII), a record of a data set.

8600 0734-000 Glossary-23

Glossary

meHage
(1) Any combination of characters and symbols designed to communicate
information from an originator to one or more destinations.
(2) The text sent to the user from a program. A ·message can be either displayed
on the screen or printed.
(3) In data communications, any information-containing data unit, in an ordered
format, sent by means of a communications process to a named network entity or
interface. A message contains the information (text portion) and controls for
routing and handling (header portion).

message area
In the Communications Management System (COMS), an area of the
communication structure in which the message is contained.

message control indicator
A value used to select a type of output for a message.

message control system (MCS)
A program that controls the flow of messages between terminals, application
programs, and the operating system. MCS functions can include message routing,
access control, audit and recovery, system management, and message formatting.

meHage segment
In COBOL, a subdivision of a message. A segment is normally associated with an
end-of-segment indicator.

meHage type
In the Screen Design Facility Plus (SDF Plus), an element of a form record library
that represents records of data. Message types describe the format of messages
used to output data from, or input data to, an SDF Plus form. Synonym for form
record.

message type number
In the Screen Design Facility Plus (SDF Plus), the unique number by which SDF
Plus internally references a message type. Synonym/or form record number.

metadata

MFI

In the Advanced Data Dictionary System (ADDS), data that defines and describes
the data structures of an organization.

See module function index.

See MultiLingual System.

mnemonic
(1) An abbreviation or acronym that is used to assist the human memory.
(2) A programmer-supplied word associated with a specific function name.
(3) A character or group of characters intended to serve as a mnemonic.

Glossary-24 8600 0734-000

modem

Glossary

(4) In the Screen Design Facility Plus (SDF Plus), a character or group of
characters entered into a menu selection field to indicate which menu choice was
selected.

A device placed between a computer system and a telephone line to permit
transmission of digital pulses. Modems. permit computers to communicate with
other computers, terminals, and printers over communication lines. The term
modem is derived from modulator-demodulator.

module function index (MFI)
An integer value that represents a transaction code or group of transaction codes
that are used to route forms or messages.

mom descriptor
The original descriptor for a data segment. For a given data segment in memory,
there is one mom descriptor, but there can be many copy descriptors. A mom
descriptor is a data descriptor that has 0 (zero) in the copy bit.

multilingual system (MLS)
A system for developing and accessing output messages, online help text, and
menu screens in different natural languages, such as English, French, and
Spanish.

multiprogramming
(1) A technique for handling multiple routines or programs concurrently by
overlapping or interleaving their execution, enabling more than one program to
timeshare machine components.
(2) The ability of a single computer system to execute many processes
concurrently.

multivalued attribute (MV A)

MVA

N

In the Semantic Information Manager (SIM), an attribute that assumes several
values for each entity. Contrast with single-valued attribute.

See multivalued attribute.

network support processor (NSP)

node

A data communications subsystem processor that controls the interface between a
host system and the data communications peripherals. The NSP executes the code
generated by the Network Definition Language II (NDLII) compiler for line
control and editor procedures. An NSP can also control line support processors
(18Ps).

(1) A data structure that consists of a list, a set of properties, and a block part.
Either the list or the properties can be absent.

8600 0734-000 Glossary-25

Glossary

NSP

(2) In a data communications network, a point at which one or more functional
units interconnect with data transmission lines.

See network support processor.

null value
In Data Management System II (DMSII), the value contained in an item that does
not contain valid information.

numeric Item

0

In Data Management System II (DMSII), a data item whose description restricts
its contents to a value represented by numeric characters.

object code
The instructions in machine code that are created as a result of compiling source
code.

object code me
A file produced by a compiler when a program is compiled successfully. The file
contains instructions in machine-executable object code.

object prollJ'&Dl

octet

onllne

operand

ordered

A set or group of executable machine-language instructions and other material
designed to interact with data to provide problem solutions. An object program is
generally the machine-language result of the operation of a high-level language
compiler on a source program. See aJso object code file, compiler.

In data communications, 8 contiguous bits (1 byte). See aJso character.

(1) Pertaining to the state of being capable of immediate communication with a
central computer.
(2) Pertaining to the state of being accessible by the operating system.
(3) Pertaining to a disk mounted on a drive that is ready and has not been made
inaccessible to the system with the UR (Unit Reserved), SV (Save), CLOSE (Close
Pack), or FREE (Free Resources) system command, and whose label and system
directory (if it has one) have been read successfully.
(4) In the database environment, pertaining to the state of being available to
users.

I
An entity on which operations are performed.

Pertaining to an item maintained in a user-specified sequence.

Glossary-26 8600 0734-000

Glossary

original array

output

In ALGOL, an array that is declared with a bound pair list. Each original array is
distinct from all other original arrays.

(1) Pertaining to a device, process, or channel that delivers data from a
computer.
(2) Data delivered from a program or device.

output header

owner

p

In the Communications Management System (COMS), a record that enables a
program to send a message to COMS.

See master.

paged array
An array that is automatically divided (paged or segmen;ted) at run time into
smaller segments.

parameter

parent

(1) A quantity or item of information that can be given a different value each
time a process is repeated.
(2) An identifier associated in a special way with a procedure. A parameter is
declared in the procedure heading and is automatically assigned a value when the
procedure is invoked.
(3) An object or value that is passed from an actual parameter and received by a
formal parameter.
(4) An element of a command, statement, or procedure that enables a user to
determine the exact functionality of that command, statement, or procedure. A
parameter can be variable or constant, and required or optional.

A process that owns the critical block of a dependent process. If the parent exits
the critical block before the dependent process terminates, the dependent process
is discontinued.

password

path

A character string associated with a usercode or accesscode in the
USERDATAFILE, and used to identify legitimate users of the system. When
logging on to a message control system (MCS), a user must supply a usercode and
a password.

(1) The route that must be traced from a directory to a subdirectory, or through
a series of subdirectories, to find a file.
(2) In Data Management System Il (DMSil), a specific location within the logical
ordering of a data set, set, subset, or access.

8600 0734-000 Glossary-27

Glossary

pattem matching
A string expression that generates a set of strings from a regular expression. A
string expression can be tested for membership in the set by using an operator.

peripheral
A device used for input, output, or me storage. Examples are magnetic tape
drives, disk drives, printers, or operator display terminals (ODTs). Synonym for
peripheral device.

perspective c:lus
The class from which a query is directed. Any additional classes that are
involved in the query are viewed in relation to the perspective class.

physical database
In Data Management System II (DMSII), an entire database as it is stored on a
disk. Whereas a logical database represents only parts of a database to be used
for limited purposes, a physical database is an entire database.

physical me
A file as it is stored on a particular recording medium such as a disk or a tape.

population

port me

For disjoint data sets in Data Management System II (DMSII), the number of
records in the data set. For embedded data sets, the population is the number of
records in the embedded data set owned by the current master.

A type of file for which file operations occur between a local user process and
another process on the same host or on a remote host that is reachable through a
network. A port file is made up of one or more subfiles, each of which supports
one dialogue.

postprocesslng
The processing done to a message by processing items after an application
program sends out the message.

predeclared ftelds
In the COBOL74 program interface for Communication Management System
(COMS), fields of the communication description (CD) or COMS headers that have
been predeclared for use with COMS.

preproceulng
The processing that the Agenda Processor performs on a message before an
application program receives the message.

primary coroutine

process

A program that initiates a procedure as a coroutine.

(1) The execution of a program or of a procedure that was initiated. The process
has its own process stack and process information block (PIB). It also has a code

Glossary-28 8600 0734-000

Glossary

segment dictionary, which can be shared with other processes that are executions
of the same program or procedure.
(2) A software application; that is, any activity or systematic sequence of
operations that produces a specified result.
(3) In the Advanced Data Dictionary System (ADDS), a structure that models a
logical view of relationships between different parts of a system.

processing item
A procedure, contained in a processing-item library, used for processing a
message.

processing-item library
In the Communications Management System (COMS), a user-written ALGOL
library containing a set of procedures called processing items. A processing-item
library can be called only by the COMS Agenda Processor library to preprocess
and postprocess messages as they are received and sent by programs.

product interface

program

The protocols that exist within a product to allow it to interact with other,
specific products or programming languages.

(1) A specification of the sequence of computational steps that solve a
computational problem. The steps are written (coded) in a particular
programming language.
(2) An object code file.

program element
In a programming language, the arrays, files, labels, procedures, and so forth that
are declared. Declaration ensures that subsequent use of the program element is
consistent.

program interface

protocol

Q

The means used by a programming language to manipulate a product or products,
and produce the desired output. Such means can include protocols, and extensions
or syntax specifically developed and implemented for the activity and language.

A formal set of rules governing the format, timing, sequencing, and error control
of exchanged messages on a data network.

qualification
(1) In Data Management System II (DMSII), the specification of the data set that
owns an item. Qualification is usually used when several data sets contain an
item with the same name.
(2) In the Screen Design Facility (SDF), the specification of the entity that owns
a lower entity; that is, the formlibrary that owns a fo:rm, or the form. that owns a
field.

8600 0734-000 Glossary-29

Glossary

quallfter

query

(3) In the Semantic Information Manager (SIM), the process of particularizing an
attribute to a specific class, or a class to a specific database.

(1) The entity that identifies the location of an item of data in a hierarchical
structure.
(2) A parameter used to provide a unique identification for a data name that
would otherwise be nonunique.

A request to a database to retrieve or update data.

query record description
In Semantic Information Manager (SIM) application programs, that part of the
query declaration that contains the names and descriptions of variables to be
associated with database attributes.

query statement
In Semantic Information Manager (SIM)-application programs, a basic
programming statement that updates or retrieves entities.

query variable

R

RDS

In Semantic Information Manager (SIM) application programs, a variable that
represents the query statement.

See restart data set.

ready queue (READYQ) -·

real item

rebuild

record

A list, maintained by the Master Control Program (MCP), of the processes that
are waiting for service from a processor.

In Data Management System II (DMSll), a data item that stores signed or
unsigned, fractional or whole values in single-precision, floating-point form.

(1) In the disk subsystem, a concept that refers to either of the following: a
family rebuild, in which the system constructs the file access structure table
(FAST) entry for a family by reading its system directory; or a catalog rebuild
(on a cataloging system), in which the system updates the file access structure
table (FAST) entry with information about cataloged f"lles.
(2) In database management, a recovery process in which the entire database is
loaded from one or more sets of dump tapes. The recovery process then applies
the audit trail after-update record images to move the database forward in time.

(1) A group of logically related items of data in a file that are treated as a unit.

Glossary-30 8600 0734-000

Glossary

(2) The data read from or written to a file in one execution of a read or write
statement in a program.

record-level locking
A method of requesting exclusive access to a record; the individual record is
locked instead of the entire block that contains the record.

record-type item

recovery

recursive

In Data Management System II (DMSII), either of the following: a binary integer
value used in conjunction with variable-format data sets to identify the
variable-format part, if any, the record contains; or a control item that contains
the format number for records in variable-format data sets.

(1) In data management, a procedure that is initiated following a hardware,
software, or operations failure while the database is in update mode. Recovery
backs out any partially completed transactions by applying audit-trail images to
the database to restore it to a consistent state. In addition, recovery passes
restart information to the programs accessing the database.
(2) In the Communications Management System (COMS), reconstruction of a
database after a system failure.

(1) Pertaining to a function performed in several stages, each of which (except
the first) uses the output of the previous stage as input.
(2) Pertaining to a procedure or function that calls itself.

referred. array
In ALGOL, an array identifier that refers to data in another array through array
row equivalence, array reference assignment, or array specification in a
PROCEDURE declaration.

retle:dve attribute

remap

In the Semantic Information Manager (SIM), an entity-valued attribute (EVA) that
refers to another entity in the same class. For example, SPOUSE can be a
reflexive attribute of the class Person.

In Data Management System II (DMSII), a logical data set that redef"mes a
physical data set by omitting, reordering, or renaming the items.

remote flle
A file with the KIND attribute specified as REMOTE. A remote file enables object
programs to communicate interactively with a terminal.

remote library
In the transaction processing system (TPS), a module that enables transaction
processing from remote systems in a data communications network. The remote
library is compiled on the host system and then copied to each remote system. A
program on a remote system calls the same entry points that a program on the
host system calls, except that the program on a remote system is actually calling
the remote library.

8600 0734-000 Glossary-31

Glossary

remote system
In a shared resources or BNA environment that is also using the transaction
processing system (TPS), a system (processor) connected to the system that
controls the database.

reran mode
In the transaction processing system (TPS), the state during which TPS resubmits
transactions that have been backed out of the database after a database ABORT
or system halt/load.

restart data set (RDS)
In Data Management System II (DMSII), a data set containing restart records that
application programs can access to recover database information after a system
failure.

restart record
(1) In Data Management System II (DMSII), a record containing user-def'med
information that enables a user program to restart in response to a particular
condition.
(2) In the Communications Management System (COMS), a record containing
information stored by update programs that enables the programs to restart in
response to particular conditions. For each update program, COMS saves restart
records in the transaction trail along with the corresponding images of the input
header and the message data.

retrieval query .

rollback

ran time

ran unit

s

A query used to select and retrieve data from a database.

The recovery of a database or transaction base to a consistent state at an earlier
point in time.

The time during which an object code file or user interface system (UIS) is
executed. Synonym for execution time and, in COBOL, object time.

A set of one or more object programs that functions, at object time, as a unit to
provide problem solutions.

save memory

schema

An area of memory that cannot be overlaid as long as the item with which it is
associated is allocated.

The outline or description of a database. The schema acts as a map for the host
system to use when performing any functions on the database or when accessing
the database.

Glossary-32 8600 0734-000

scope

screen

Glossary

(1) Those portions of a program or programs that can contain statements that
access a particular object.
(2) In ALGOL or NEWP, the portion of a program in which an identifier can be
used successfully to denote its corresponding values and characteristics.

An image that appears on the display area of a terminal or workstation and
performs at least one of the following functions: prompting the user to enter
data, displaying information, or presenting options from which to choose.

secondary coroutine
A procedure initiated as a coroutine by a program.

security category
In the Communications Management System (COMS), a designation that provides
access security for programs, stations, transaction codes, and usercodes. Up to 32
security categories can be defined for an installation.

segmented array
See paged array.

segmented output
The output sent in separate segments or parts. In COBOL74, the use of the WITH
option for the SEND statement can provide either nonsegmented or segmented
output.

selection expression
(1) In Data Management System II (DMSII), the entire complement of selection
criteria used in a FIND, LOCK, or DELETE statement to locate a data set record.
The definition of a selection expression encompasses both the select options
(FIRST, NEXT, LAST, and PRIOR) and all the variations for the key conditions.
(2) An expression used to identify the set of entities upon which a query is to
operate. The expression can be either global or local.

Semantic Information Manager (SIM)
(1) The basis of the InfoExec environment. SIM is a database management system
used to describe and maintain associations among data by means of
subclass-superclass relationships and linking attributes.

separately compiled procedure (SEPCOMP)
In ALGOL, a procedure that is compiled on its own, rather than as part of a
program, so that the procedure can be bound into a host program.

SEPCOMP
See separately compiled procedure.

serial processing
In Data Management System II (DMSII), time-sequential reading or writing of a
record following the one currently being processed.

8600 0734-000 Glossary-33

Glossary

service function

set

An integer procedure of the Communications Management System (COMS) library
that enables the user to access subroutines that can do the following: translate a
designator to a name that represents a COMS entity; translate a name that
represents a COMS entity to a designator; or obtain additional information about
the name or designator passed to the service function.

In Data Management System II (DMSII), a file of indexes that refers to all the
records of a single data set. Sets are automatically maintained by the system. Sets
permit access to the records of a data set in some logical sequence and are
normally used to optimize certain types of retrievals of the data set records.

shared resources environment

SIM

A distributed processing environment in which users share all resources of a
network, including processors, peripherals, terminals, databases, and information.

See Semantic Information Manager.

single-statement update
In Semantic Information Manager (SIM) application programs, an update query
with one statement. An update query can also be a multiple-statement update.

single-valued attribute (SVA)
In the Semantic Information Manager (SIM), an attribute that assumes only one
value for an entity. Contrast with multivalued attribute.

solll'Ce program

stack

state

structure

A program coded in a language that must be translated into machine language
before execution. The translator program is usually a compiler.

A region of memory used to store data items in a particular order, usually on a
last-in, first-out basis. Synonym for process stack.

The condition of one or all the units or elements of a computer system.

(1) In Data Management System II (DMSII), a data set, set, subset, access, or
remap.
(2) In the Advanced Data Dictionary System (ADDS), a hierarchy of entities.

structured selection

subclass

In Semantic Information Manager (SIM) application programs, the process of
requesting information in a hierarchical format.

In the Semantic Inf orrnation Manager (SIM), a more specific subgroup of the
entities in a class. A subclass is a subrole of its parent class or superclass, and

Glossary-34 8600 0734-000

inherits all the attributes of the parent class or superclass. For example,
Employee is a subclass of the superclass Person.

Glossary

subformat

subquery

subrole

See transaction subfonnat.

In the InfoExec environment, a query that exists within another query.

In the Semantic Information Manager (SIM), one of the 12 possible data types
available for a data-valued attribute (DVA). (The others are integer, real,
number, Boolean, symbolic, date, time, character, string, Kanji, and user-defined.)
The attribute of type subrole is used to deime subclasses, and it is a read-only
attribute. For example, the class Person can have a subrole attribute called
PROFESSION that deimes Manager and Employee as subclasses of the class
Person.

subroutine
A self-contained section of a program to which program control is transferred
when the subroutine is invoked and that transfers control back to the point of
invocation when it is exited.

subschema

subscript

subset

A subset of a schema that specifies those facilities of a database that can be
accessed by a particular application program or group of programs.

A number that is an index into an array.

An index structure that is identical to a set, except that the subset need not
contain a record for every record of the data set. A set must index every record
in its associated data set, whereas a subset can index zero, one, several, or all
data set records. A subset might or might not be automatically maintained by
Data Management System II (DMSII).

superclass

SVA

In the Semantic Information Manager (SIM), a class having one or more
subclasses. A superclass, or parent class, is a more generally defined grouping of
all the entities in its subclass or subclasses. For example, Person could be a
superclass of the subclasses Manager and Employee.

See single-valued attribute.

symbol rue
A file that contains a source program.

symbolic
(1) A source program.

8600 0734-000 Glossary-35

Glossary

(2) In the Semantic Information Manager (SIM), a data type that defines a set of
related values. If the order of the values is significant, the symbolic values can be
declared as ordered. The values must be unique SIM identifiers.
(3) See also identifier.

synchronized recovery
In the Communications Management System (COMS), a function that resubmits
incomplete transactions to the database after a transaction-state abort, system
crash, or rollback occurs. This COMS function is called synchronized recovery
because it reprocesses transactions in the same order that they were originally
processed by multiple programs running asynchronously, even if the transactions
were conflicting.

syncpoint

syntax

In Data Management System II (DMSll), a point in time when no program is in a
transaction state.

The rules or grammar of a language.

syntax notation
The graphic depiction of the acceptable format and content of language
components.

SYSTEM/BINDER
See Binder.

T

tabular selection
In Semantic Information Manager (SIM) application programs, the process of
requesting information to produce output in a tablelike form.

tanked messages

tanking

In the Communications Management System (COMS), incoming messages that are
being def erred from display at a station because the associated window is
suspended.

(1) In the transaction processing system (TPS), the operation in which the
transaction processor (TP) library stores transactions in a tank journal and does
not process them against the database. A tank journal can be any transaction
journal except the TRHISTORY journal.
(2) The practice of temporarily storing output messages in a disk file because the
destination station is unavailable. The operating system and the Communications
Management System (COMS) both perform tanking.

target list
A list of attributes used in a query statement.

Glossary-36 8600 0734-000

Glossary

task
(1) A dependent process.
(2) Any process, whether dependent or independent. See a/30 process.

TFL
See Transaction Formatting Language.

throughput

thunk

The total useful information processed during a specified time period.

A compiler-generated procedure that calculates and returns the value of a
constant or expression passed to a call-by-name formal parameter. The thunk is
executed each time the formal parameter is used. A thunk is also referred to as
an accidental entry.

times tamp
An encoded, 48-bit numerical value for the time and date. Various timestamps are
maintained by the system for each disk file. Timestamps note the time and date a
file was created, last altered, and last accessed.

touched array

TPS

traneode

An array for which memory has been allocated by the Master Control Program
(MCP).

See transaction processing system.

See transaction code.

transaction
(1) The transfer of one message from a terminal or host program to a receiving
host program, the processing carried out by the receiving host program, and the
return of an answer to the sender.
(2) In data management, a sequence of operations grouped by a user program
because the operations constitute a single logical change to the database.
(3) In the Screen Design Facility Plus (SDF Plus), the structure that performs the
transfer of the message.

transaction bue
In the transaction processing system (TPS), the software and files that constitute
a TPS interface to a database.

transaction code (traneode)
(1) A sequence of characters included in a message that indicates the agenda to
apply to a message during preprocessing or postprocessing.
(2) In the Communications Management System (COMS), a code that can appear
in a transaction-initiating message header, indicating the processing that is to be
carried· out. This code is used to route the message to the appropriate host
program.

8600 0734-000 Glossary-37

Glossary

transaetlon complle-tbne funetlon
In the transaction processing system (TPS), a function that provides access to
certain properties of transaction record formats that are constant at compile
time.

Transaction Formatting Language (TFL)
The Unisys language used to write source files that are compiled to produce
description files for transaction bases.

transaction Journal
In the transaction processing system (TPS), a collection of one control file and
any number of data files. The transaction journal stores information about
transactions.

transaction library
In the transaction processing system (TPS), a collection of procedures accessed by
user-written programs to process or tank transactions and to read the
transactions back from a transaction journal. The procedures are accessed
through a set of entry points supplied by the transaction library, which is
tailored for a particular transaction base during compilation.

transaction number
In the Screen Design Facility Plus (SDF Plus), the unique number by which
SDF Plus internally references a transaction type.

tranaaction point
A point that is explicitly assigned in a program between a begin transaction
statement and an end transaction statement so that the programmer is able to
cancel or partially cancel a transaction that has not yet completed processing.

transaetlon processing routine
In the transaction processing system (TPS), a routine that can retrieve data from
a Data Management System II (DMSII) database or update a DMSII database. A
transaction processing routine takes a single transaction record as input and
produces a single transaction record as output.

transaetlon processing system (TPS)
A Unisys system that provides methods for processing a high volume of
transactions, keeps track of all input transactions that access the database,
enables the user to batch data for later processing, and enables transactions to be
processed on a database that resides on a remote system.

transaction record
In the transaction processing system (TPS), a structured variable that contains
user-defined data items and system-defined control items for individual
transactions. The user-defined items are similar to the data items in a Data
Management System II (DMSII) data set record or a COBOL 01-level variable. A
transaction record can be passed as a parameter to and from a procedure. It can
also be read from and written to a transaction journal.

Glossary-38 8600 0734-000

Glossary

transaction record format
In the Transaction Formatting Language (TFL), a construct that defines the
format of a single transaction record, including the data items and group items
that can be contained in the record.

transaction state
In Data Management System II (DMSII), the period in a user-language program
between a begin transaction operation and an end transaction operation.

transaction subformat
In the transaction processing system (TPS), the variable part of a transaction
record format.

transaction trail
A file maintained by a Communications Management System (COMS) database
(DB) library that contains a series of time-ordered transactions that can be
reapplied to the database to provide synchronized recovery in the event of a
transaction-state abort, system crash, or rollback. The file can also be used to
provide a journal of both query and update transactions for security auditing,
accounting, and statistical reporting. Each DB library has its own transaction
trail.

transaction type
In the Screen Design Facility Plus (SDF Plus), a group of records in the Advanced
Data Dictionary System (ADDS) data dictionary that describes the format of a
transaction. A transaction type contains a pair of message types: a request
message type and a response message type.

transitive function
In the Semantic Information Manager (SIM), recursive access to a reflexive
attribute or a circular path expression during a retrieval query. Transitive
function is also called transitive closure. Synonym for recursive retrieval.

A generic object that represents a group of similar objects.

typed procedure

u

A procedure that is designed to return a value. Invoking such a procedure is
similar to evaluating an expression. See also function.

unpaged array
An array that is not automatically divided (paged or segmented) at run time into
smaller segments. Arrays smaller than 1024 words are always unpaged.

unsegmented array
See unpaged array.

8600 0734-000 Glossary-39

Glossary

up-level event
In ALGOL, the situation that arises when either of the following is true: the block
containing an event is exited before the block containing the interrupt attached to
the event is exited; or the block containing the finished event for a direct 1/0
statement is exited before the block containing the direct array is exited.

up-level pointer assignment

update

In ALGOL, any construct that could result in a pointer pointing to an array
declared at a higher lexical level than that at which the pointer is declared. Such
a construct is disallowed by the compiler, because the array can be deallocated,
leaving the pointer pointing to an invalid portion of memory.

(1) To delete, insert, or modify information in a database or transaction base.
(2) An alteration to a previously published document, issued when technical
changes to the information in the document are necessary. An update includes
only those pages that have been changed since the last time the document was
published.

update library
In the transaction processing system (TPS), a collection of user-written processing
routines that serve as an interface between the transaction library and a Data
Management System II (DMSII) database. These processing routines can be
written in any of the DMSII user languages: Burroughs Data Management System
ALGOL (BDMSALGOL), Burroughs Data Management System COBOL74
(BDMSCOBOL74), or Burroughs Data Management System COBOL (BDMSCOBOL).
The update library is the only user-written module in TPS that contains the
database declaration and all the code that performs data management statements
against the database.

update mode
A database or file access mode in which data can be inserted, deleted, or
modified.

user work area

usercode

v
variable

In Data Management System II (DMSII), a memory area in a user program where
data records are constructed, accessed, or modified. The Accessroutines maintain
one user work area for each data set or remap invoked by a program.

An identification code used to establish user identity and control security, and to
provide for segregation of files. Usercodes can be applied to every task, job,
session, and file on the system. A valid usercode is identified by an entry in the
USERDATAFILE.

(1) An object in a program whose value can be changed during program
execution.

Glossary-40 8600 0734-000

Glossary

(2) In the Screen Design Facility Plus (SDF Plus), a component of a form that
stores data entered in the fields of the form image or the return value for a menu
or a function key. A variable is also referred to as a display variable.

variable format

version

In Data Management System II (DMSll), a record format that consists of two
parts: a fixed part and a variable-format part. A single record description exists
for the fixed part. The variable-format part can describe several variable parts.
An individual record is constructed by using the fixed part alone, or by joining
the fixed part with one of the variable parts.

(1) In the Advanced Data Dictionary System (ADDS), an optional entry field that
allows variations of an entity.
(2) When running the Screen Design Facility (SDF) with the Advanced Data
Dictionary System (ADDS), an optional entry field on menus and screens that
allows variations of a field, form, or formlibrary.

virtual station (VS)
In data communications, a station declared in Network Definition Language II
(NDLll) for both hosts connected to the same line. Terminal data conveyed
between hosts during terminal transfer uses the device address field of a virtual
station.

virtual terminal (VT)

VT

w
WFL

window

(1) See virtual station.
(2) In the Screen Design Facility Plus (SDF Plus), the standardized presentation
of logical terminal characteristics to an application program.

Virtual terminal. See virtual station.

See Work Flow Language.

(1) In the Communications Management System (COMS) architecture, the concept
that enables a number of program environments to be operated independently
and simultaneously at one station. One of the program environments can be
viewed while the others continue to operate.
(2) In data communications, a flow control mechanism, the size of which is equal
to the number of frames, packets, or messages that can be sent from a
transmitter to a receiver before any reverse acknowledgment is required. At the
data terminal equipment (DTE)/data circuit terminating equipment (DCE)
interface of a logical channel, a window is the maximum number of consecutive
packets that can be transmitted.
(3) A portion of a screen that has been allocated to display the contents of a
specified area of memory.

8600 0734-000 Glossary-41

Glossary

word
A unit of computer memory. On A Series systems, a word consists of 48 bits used
for storage plus tag bits used to indicate how the word is interpreted.

word array
(1) In ALGOL, an array that uses one or two A Series words in each array
element.
(2) Contrast with character array.

Work Flow Language (WFL)

z

A Unisys language used for constructing jobs that compile or run programs on
A Series systems. WFL includes variables, expressions, and flow-of-control
statements that off er the programmer a wide range of capabilities with regard to
task control.

zone field
The high order, or most significant, 4 bits of a byte.

Glossary-42 8600 0734-000

Bibliography

A Series ALGOL Program:m.ing Reference Manual, Volume 1: Basic
Implementation (form 8600 0098). Unisys Corporation.

A Series ALGOL Test and Debug System (TADS) Programming Gu:ide
(form 1169539). Unisys Corporation.

A Series Binder Programming Reference Manual (form 8600 0304). Unisys
Corporation.

A Series CANDE Operations Reference Manual (form 8600 1500). Unisys
Corporation.

A Series Communications Management System (COMS) Capabilities Manual
(form 8600 0627). Unisys Corporation.

A Series Communications Management System (COMS) Configuration Guide
(form 8600 0312). Unisys Corporation.

A Series Communications Management System (COMS) Migration Guide
(form 1185204). Unisys Corporation.

A Series Communications Management System (COMS) Operations Guide
(form 8600 0833). Unisys Corporation.

A Series Communications Management System (COMS) Programming Guide
(form 8600 0650). Unisys Corporation.

A Series Data Base Data Tra"li{er (DBT) Utility User's Guide (form 1180585).
Unisys Corporation.

A Series Data Management Ji'unctional Overview (form 8600 0239). Unisys
Corporation.

A Series DCALGOL Programming Reference Manual (form 8600 0841). Unisys
Corporation.

A Series DMALGOL Programming Reference Manual (form 8600 087 4). Unisys
Corporation.

A Series DMSII Application Program Interfaces Programming Guide
(form 5044225). Unisys Corporation. Formerly A Series DMSII User
Language Interface Programming Guide.

8600 0734-000 Bibliography-1

Bibliography

A Series DMSII Da'ta and Structure Definition Language (DASDL) Programming
Reference Manual (form 8600 0206). Unisys Corporation.

A Series DMSll Inquiry Operations Gu:Ld.e (form 1164036). Unisys Corporation.

A Series DMSII Interpretive Interface Programming Reference Manual
(form 8600 0166). Unisys Corporation.

A Series DMSII Transaction Processing System (TPS) Programming Guide
(form 1164043). Unisys Corporation.

A Series DMSII Utilities Operations Guide (form 8600 0769). Unisys
Corporation.

A Series File Attributes Programming Reference Manual (form 8600 0064).
Unisys Corporation. Formerly A Series 1/0 Subsystem Programming
Reference Manual.

A Series 1/0 Subsystem Programming Guide (form 8600 0066-000). Unisys
Corporation. Formerly A Series 1/0 Subsystem Programming Reference
Manual.

A Series lnfo&ec ADDS Operations Guide (form 8600 0197). Unisys
Corporation.

A Series lnfo&ec Capabilities Manual (form 8600 0264). Unisys Corporation.

A Series lnfo&ec Interactive Query Facility (IQF) Operations Guide
(form 8600 0767). Unisys Corporation.

A Series lnfo&ec Semantic Information Manager (SIM) Programming Guide
(form 1196104). Unisys Corporation.

A Series lnfo&ec Semantic Information Manager (SIM) Technical OvenJiew
(form 1196112). Unisys Corporation.

A Series Pascal Programming Reference Manual, Volume 2: Product Interfaces
(form 8600 1294). Unisys Corporation.

A Series Screen Design Facility Plus (SDF Plus) Capabilities Manual
(form 8600 0270). Unisys Corporation.

A Series Screen Design Facility Plus (SDF Plus) Installation and Operations
Guide (form 8600 0262). Unisys Corporation.

A Series Screen Design Facility Plus (SDF Plus) Technical OvenJiew
(form 8600 0072). Unisys Corporation.

A Series Software Release lns'tallation Guide (form 8600 0981). Unisys
Corporation.

Bibliography-2 8600 0734-000

Bibliography

A Series System Commands Operations Reference Manual (form 8600 0395).
Unisys Corporation.

A Series System Software Utilities Operations Reference Manual
(form 8600 0460). Unisys Corporation.

A Series Systems Functional Overview (form 8600 0353). Unisys Corporation.

A Series Task Attributes Programming Reference Manual (form 8600 0502).
Unisys Corporation.

A Series Task Management Programming Guide (form 8600 0494). Unisys
Corporation.

A Series Work Flow Language (WFL) Programming Reference Manual
(form 8600 1047). Unisys Corporation.

A Series X.25 MCS Operations and Programming Reference Manual
(form 8600 0577). Unisys Corporation.

8600 0734-000 Bibliography-3

Index

A

<aborttransaction statement>, 4-27,
7-42

ABORTTRANSACTION statement
in DMSII, 4-27

example of, 4-27
in SIM, 7-42

ACCESSDAT ABASE entry point, 5-25
Accessroutines, reentrance capability

of, 4-10
ADDS (See Advanced Data Dictionary

System), 1-2
Advanced Data Dictionary System

arrays of fields, 2-6
as seen by ALGOL compilers, 2-1
assignment statements, 2-24

Boolean, 2-26
examples of, 2-25
records in, 2-25
rounding and, 2-25
truncating and, 2-25

binding considerations, 2-23
bit manipulation, 2-6
checking ranges, 2-15
compiler control options, 2-11
description of, 2-1
DICTIONARY ITEM declaration, 2-2,

2-20
example of, 2-20

DICTIONARY option, 2-12
example of, 2-12

DICTIONARY RECORD variables
accessing, 2-23
binding, 2-23
declaring, 2-16, 2-19
example of, 2-17

entities
embedded items, 2-3
passing as parameters, 2-21
records, 2-3
retrieving, 2-3, 2-7

establishing a data dictionary, 2-12

8600 0734-000

Advanced Data Dictionary System (cont.)
establishing a status, 2-13
extension list, 1-2
fields

arrays of, 2-6
default unit size, 2-33
example of, 2-9
qualifying, 2-9
referencing, 2-9
subscripted, 2-9
types of, 2-6
using, 2-6

functions, 2-26
LENGTH, 2-27
OFFSET, 2-28
POINTER, 2-29
RESIZE, 2-30
SIZE, 2-32
UNITS, 2-33

items, 2-3
ALGOL data types for, 2-3
mapping to ALGOL data types, 2-4
passing as parameters, 2-21

LENGTH function, 2-27
mapping data types to ALGOL, 2-3
OFFSET function, 2-28
passing entities as parameters, 2-21
POINTER function, 2-29
RANGECHECK option, 2-15

example, 2-15
RANGECHECK option using in

COMS, 3-2
REPLACE statement, 2-25
RESIZE function, 2-30
restrictions on parameters, 2-2
restrictions on records, 2-2
retrieving data descriptions, 2-2
retrieving entities, 2-2
retrieving item descriptions, 2-2
retrieving record description, 2-2
SCAN statement, 2-25
SIZE function, 2-32
STATUS option, 2-13

lndex-1

Index

Advanced Data Dictionary System (cont.)
STATUS option (cont.)

example of, 2-13
TYPE declaration, 2-18

as substitute for DICTIONARY
RECORD declaration, 2-2

example of, 2-19
using with COMS, 3-2
using with SDF Plus, 6-1
using with SIM, 7-3

AGENDA entity, 3-57
AGENDA field, 3-10, 3-12
aggregate functions, 7-35
AGGREGATE....RESPONSE entity, 3-57
ALGOL Banking Application

Program, 5-44
ALGOL Functions

using with SDF Plus, 6-4
ALGOL reserved words, B-1

alphabetic list - all types, B-7
type 1, B-1
type 2, B-2
type 3, B-5

<alias ID>, 7-6
<alpha item>, 4-77
<alpha item identifier>, 4-23
<alpha item name>, 4-16
<alphanumeric relation>, 4-23
ALREADYACCEPTED field, X.25

COMSRECORD, 3-19
<apply insert statement>, 7-53
<apply modify statement>, 7-57
<arithmetic assignment

statement>, 2-24
<assign spec>, 7-46
ASSIGN statement, 4-28
<assign statement>, 4-28
ASSIGN statement

example of, 4-29
<attr map>, 7-65
<attribute chain>, 7-33
<attribute ID>, 7-36
audience of this manual, vi

B

<base spec>, 5-4
<BDMS close statement>, 4-34
<BDMS free statement>, 4-46
<BDMS identifier>, 4-12
<BDMS lock statement>, 4-55

lndex-2

<BDMS open statement>, 4-58
<BDMS set statement>, 4-71
BDMSALGOL

compiling programs, 4-1
extensions for DMSII, 4-1
extensions for TPS, 1-8

BEGINTRANSACTION statement
effect on input headers, 3-26
in COMS, 3-26

<begintransaction statement>
in COMS, 3-26

BEGINTRANSACTION statement
in DMSII, 4-30

<begintransaction statement>
in DMSII, 4-30

BEGINTRANSACTION statement
in DMSII

example of, 4-32
in SIM, 7-43

<begintransaction statement>
in SIM, 7-43

BEGINTRANSACTION statement
in TPS, 5-30

example of, 6-31
binding considerations

for ADDS, 2-23
for COMS, 3-5, 3-24
for DMSII, 4-85
for SIM, 7-22

<Boolean assignment statement>, 2-24
<Boolean item name>, 4-16
<bound pair list>, 5-8

c
<called ref ID>, 7-37
<canceltrpoint statement>, 4-33, 7-44
CANCELTRPOINT statement

in DMSII, 4-33
example of, 4-33

in SIM, 7-44
example of, 7-44

CAUSE field, X.25 COMSRECORD, 3-19
CLASS field, X.25 COMSRECORD, 3-18
<class ID>, 7-6
<class ID list>, 7-6
<close statement>, 7-45
CLOSE statement

in DMSII, 4-34
example of, 4-35

in SIM, 7-45

8600 0734-000

CLOSETRBASE entry point, 5-20
COMMUNICATIONNUMBER field, X.25

COMSRECORD, 3-18
Communications Management System

ALGOL functions and, 3-2
ALGOL interface to, 3-1
ALGOL type 2 reserved words, 3-2
BEGINTRANSACTION

statement, 3-26
binding considerations, 3-5, 3-24
communicating with, 3-5
COMSRECORD

accessing, 3-23
COMSRECORD declaration, 3-15
COMSSUPPORT library, 3-4

changing attributes of, 3-4
conversation area field, 3-5

accessing, 3-5
declaring input headers, 3-5
declaring output headers, 3-5
default library access, 3-4
DEFINE declaration, 3-59
description of, 3-1
designator data type, 3-13
DISABLE statement, 3-28
ENABLE statement, 3-30
ENDTRANSACTION statement, 3-32

example of, 3-33
entities, 3-57
error handling, 3-40
extensions, 1-4
features, 3-1
header records

declaring, 3-5
headers, 3-5

accessing field, 3-23
binding, 3-5, 3-24
considerations, 3-5
modifying, 3-23
naming, 3-7
passing fields, 3-23
providing compatibility for, 3-7

input header
accessing, 3-23
BEGINTRANSACTION statement

and, 3-26
conversation area field, 3-5
declaring, 3-6
DISABLE statement and, 3-28
ENABLE statement and, 3-30
fields of, 3-9
FUNCTIONSTATUS field, 3-28

8600 0734-000

Communications Management
System (cont.)

input header (cont.)
FUNCTIONSTATUS field

values, 3-40
modifying fields, 3-23
naming, 3-7
passing fields, 3-23

Index

STATUSV ALUE field, 3-26, 3-40
use of, 3-9

installation data, 3-59
integration with DMSII, 4-26
interface to, 3-1
LENGTH function, 3-2
linking to, 3-4
message area, 3-14

declaring, 3-14
using in BEGINTRANSACTION

statement, 3-26
M~SAGECOUNT statement, 3-34
OFFSET function, 3-2
output header

accessing, 3-23
conversation area field, 3-5
declaring, 3-5
modifying fields, 3-23
naming, 3-7
passing fields, 3-23
STATUSV ALUE field values, 3-40
use of, 3-11

POINTER function, 3-2
RANGECHECK option, 3-2
RECEIVE statement, 3-35
R~IZE function, 3-2
sample program, 3-60
SDF Plus and, 6-1
SDF Plus and, 6-14
SEND statement, 3-37
service functions, 3-41
CONVERT_TIM~TAMP, 3-41,

3-44
declaring, 3-42
entities, 3-57
GET_D~IGNATOL
ARRAY_USING_D~IGNATOR, 3-41,
3-45

GET_D~IGNATOL

USING_D~IGNATOR, 3-42,
3-46

GET_D~IGNATOL
USING_NAME, 3-42, 3-47

lndex-3

Index

Communications Management
System (cont.)

service functions (cont.)
GET-1NTEGER....ARRAY_

USING_DESIGNATOR, 3-42,
3-48

GETJNTEGER-USING_
DESIGNATOR, 3-42, 3-49

GET_NAME-USING_
DESIGNATOR, 3-42, 3-50

GET-REAL....ARRAY, 3-42, 3-51
GET...STRING_USING_

DESIGNATOR, 3-42, 3-52
passing values to, 3-57, 3-59
STATION-TABLE-ADD, 3-42,

3-53
STATION_T ABLE-1NITIALIZE, 3-42,

3-54
STATION_T ABLE.._SEARCH, 3-42,

3-55
TEST_DESIGNATOR, 3-42, 3-56
umbrella, 3-41

SIZE function, 3-3
subprograms, 3-24
synchronizing with DMSII, 3-26
TYPE declaration, 3-7
UNITS function, 3-3
updating a DMSII database

with, 3-26
variables in subprograms, 3-24

compiler control options
DATADICTINFO, 4-84
DICTIONARY, 2-11, 2-12

example of, 2-12
in BDMSALGOL, 4-84
LIST, 4-2
LISTDB, 4-2, 4-84
NODMDEFINES, 4-84
RANGECHECK, 2-15

effect of, 2-11, 2-25
STATUS, 2-11, 2-13

example of, 2-13
with ADDS, 2-11

compile-time functions
TPS, 5-18
TRBITS, 5-19
TRBYTES, 5-19
TRDATASIZE, 5-19
TRDIGITS, 5-19
TRFORMAT, 5-19
TROCCURS, 5-19
TRSUBFORMAT, 5-19

lndex-4

<compound assign spec>, 7-46
<compound spec>, 7-47
COMS See Communications Management

System, 3-1
COMS (SeeCommunications Management

System), 1-4
COMSRECORD

accessing fields of, 3-23
declaration, 3-15
INPUTHEADER

format, 3-9
OUTPUTHEADER

format, 3-11
type declaration, 3-16
type invocation, 3-17
X.25

ALREADYACCEPTED field, 3-19
CAUSE field, 3-19
CLASS field, 3-18
COMMUNICATIONNUMBER

field, 3-18
DATA field, 3-22
DATAIDENTIFIER field, 3-19
DATALENGTH field, 3-22
OBIT field, 3-19
DIAGNOSTIC field, 3-19
ENSEMBLE field, 3-21
ENSEMBLELENGTH field, 3-21
FACILITIES field, 3-21
FACILITIESLENGTH field, 3-21
format, 3-18
FUNCTION field, 3-18
LOCALSUBADDRESS field, 3-21
LOCALSUBADDRESSLENGTH

field, 3-20
ORIGINATOR field, 3-19
PHONENUMBER field, 3-22
PHONENUMBERLENGTH

field, 3-21
QBIT field, 3-18
REMOTEADDRESS field, 3-20
REMOTEADDRESSLENGTH

field, 3-20
TRUNCATED field, 3-20
VERSION field, 3-18
'W AITFORCHANNEL field, 3-20

COMSRECORD declaration, 3-15
COMSSUPPORT library, 3-4

changing attributes of, 3-4
control items, 5-17
<conversation area>, 3-6
conversation area field, 3-10, 3-12

8600 0734-000

conversation area field (cont.)
accessing, 3-5
of input header, 3-5
of output header, 3-5

<conversation array declaration>, 3-6
CONVERT_TIMESTAMP service

function, 3-41, 3-44
<count item name>, 4-16
<create statement>, 4-36, 5-9
CREATE statement

in DMSII, 4-36
example of, 4-37

with TPS, 5-9
example of, 5-10

CREATETRUSER entry point, 5-20
CURRENT function, 7-38
CURRENT_USELCOUNT entity, 3-57

D
DASDL Description of the

database, 5-39
DASDL See Data and Structure Definition

Language, 5-39
Data and Structure Definition Language

describing a database, 5-39
remaps and, 4-5

data descriptions
definition of, 2-2

data dictionary extensions (SeeAdvanced
Data Dictionary System), 1-2

DATA field, X.25 COMSRECORD, 3-22
data management expressions, 7-25

forming, 7-33
selection, 7-34

examples of, 7-39
data management functions, 7-25

arithmetic, 7-26
examples of, 7-27

Boolean, 7-31
string, 7-28
symbolic, 7-30

data management primaries, 7-33
Data Management System II

ABORTTRANSACTION
statement, 4-27

·example of, 4-27
ASSIGN statement, 4-28

example of, 4-29
BDMSALGOL extensions, 4-1

8600 0734-000

Data Management System II (cont.)
BEGINTRANSACTION

statement, 4-30

Index

example of, 4-32
CANCELTRPOINT statement, 4-33

example of, 4-33
CLOSE statement, 4-34

example of, 4-35
compiler control options, 4-84
concurrent use of SIM databases

with, 7-5
CREA TE statement, 4-36

example of, 4-37
DATABASE declaration, 4-2, 4-4

examples, 4-6
database identifiers, 4-12

subscripting, 4-13
DATADICTINFO compiler control

option, 4-84
declaring databases, 4-2
DELETE statement, 4-38

example of, 4-39
description of, 4-1
DMTERMINA TE statement, 4-40

example, 4-40
DMTEST function, 4-77

example of, 4-78
ENDTRANSACTION statement, 4-41

example of, 4-43
exception processing, 4-80, 4-82

example of, 4-83
extensions, 1-6
FIND statement, 4-44

example of, 4-25, 4-45
FREE statement, 4-46

example of, 4-47
GENERA TE statement, 4-48

example of, 4-49
GET statement, 4-50

example of, 4-51
INSERT statement, 4-52

example of, 4-53
integration with COMS, 4-26
invoking databases, 4-2
LISTDB compiler control option, 4-84
LOCK statement, 4-54

example of, 4-25, 4-56
mapping, 4-15

alpha from pointer, 4-20
alpha from string literals, 4-21
alpha to pointer, 4-18
Boolean items, 4-18, 4-20

lndex-5

Index

Data Management System II (cont.)
mapping (cont.)

count items, 4-17
field items, 4-17, 4-19
group from pointer, 4-20
group from string literals, 4-21
group to pointer, 4-18
input mappings, 4-16
numeric from arithmetic, 4-20
numeric from pointer, 4-20
numeric from string literals, 4-21
numeric to arithmetic, 4-17
numeric to pointer, 4-18
output mappings, 4-19
population items, 4-17
real items, 4-17, 4-20
record type items, 4-17

naming conventions, 4-12
NODMDEFINES compiler control

option, 4-84
OCCURS clause in, 4-13
OPEN statement, 4-11, 4-68

example of, 4-69
PUT statement, 4-61

example of, 4-62, 4-14
RECREATE statement, 4-63

example of, 4-64
REMOVE statement, 4-66

example of, 4-66
SA VETRPOINT statement, 4-67

example of, 4-67
SECURE statement, 4-68

example of, 4-70
selection expression, 4-22
selection expressions, 4-22
SET statement, 4-71

example of, 4-72
status word, 4-81
STORE statement, 4-74

example of, 4-75
STRUCTURENUMBER function, 4-79

example, 4-79
synchronizing with COMS, 3-26
synchronizing with TPS, 6-29
TPS with, 5-1
transaction state, 4-26
updating a database, 3-26

<data set>, 4-22
<data set name>, 4-3
<data set reference>, 4-3
database

assigning attributes to, 4-10, 7-46

lndex-6

database (cont.)
assigning attributes to, 4--10,
7--46 (cont.)

example of, 7-48
binding, 4-86
declaring in DMSII, 4-2
describing with DASDL, 6-39
describing with TFL, 6-41
equation operations, 4-10
exceptions, 4-80, 4-82

example of, 4-83
identifiers, 4-12

subscripting, 4-13
invoking disjoint, 4-7
invoking logical, 4-8
mapping, 4-15

alpha from pointer, 4-20
alpha from string literals, 4-21
alpha to pointer, 4-18
Boolean items, 4-18, 4-20
count items, 4-17
field items, 4-17, 4-19
group from pointer, 4-20
group from string literals, 4-21
group to pointer, 4-18
input mappings, 4-16
numeric from arithmetic, 4-20
numeric from pointer, 4-20
numeric from string literals, 4-21
numeric to arithmetic, 4-17
numeric to pointer, 4-18
output mappings, 4-19
population items, 4-17, 4-20
record type items, 4-17

naming conventions, 4-12
qualifying items in, 4-14, 6-16
selecting records in, 4-22
separate compilation of, 4-86
status word, 4-81
TITLE attribute, 4-10

<database attribute assignment
statement>, 4-10

<database declaration>, 4-2, 7-5
DATABASE declaration

in DMSII, 4-2, 4-4
example of, 4-6

in SIM, ·7-5
example of, 7-6

DATABASE entity, 3-57
<database identifier>, 4-34
<database name>, 4-3
<database reference>, 4-2, 7-6

8600 0734-000

<database title>, 4-3
DATADICTINFO compiler control

option, 4-84
<datadictinfo option>, 4-84
DATAERROR option, 6-7
DATAIDENTIFIER field, X.25

COMSRECORD, 3-19
DATALENGTH field, X.25

COMSRECORD, 3-22
DATE entity, 3-57
date type

mapping from SIM to ALGOL, 7-7
<db attribute assignments>, 7-46
OBIT field, X.25 COMSRECORD, 3-19
deadlock

exceptions, 4-54, 4-68
preventing, 7-43

occurring during BEGINTRANSACTION
statement, 3-27

declaring a COMSRECORD, 3-15
declaring a COMSRECORD type, 3-16
DEFAULT option, 6-7
DEFINE declaration, 3-59
<delete statement>, 4-38, 7-49
DELETE statement

in DMSII, 4-38
example of, 4-39

in SIM, 7-49
designator data type, 3-13
DESTCOUNT field, 3-11
<destination>, 7-46
DESTINATIONDESG field, 3-12
detanking procedure, 5-57
DEVICE entity, 3-57
DEVICE-LIST entity, 3-57
DIAGNOSTIC field, X.25

COMSRECORD, 3-19
DICTIONARY compiler control

option, 2-12
example of, 2-12
SDF Plus and, 6-4
SIM and, 7-3

<dictionary form record declaration>
in SDF Plus, 6-5

<dictionary ID>, 2-12
DICTIONARY ITEM declaration, 2-2,

2-20
example of, 2-20

<dictionary record declaration>, 2-16
DICTIONARY RECORD variables

accessing, 2-23
binding, 2-23

8600 0734-000

Index

DICTIONARY RECORD variables (cont.)
declaring, 2-16, 2-19
example of, 2-17

DISABLE statement
effect on input headers, 3-28
in COMS, 3-28

<discard statement>, 7-51
DISCARD statement

in SIM, 7-51
<DM arithmetic functions>, 7-26
<DM Boolean expression>, 7-35
<DM Boolean functions>, 7-31
<DM Boolean primary>, 7-35
DM expressions See data management

expressions, 7-25
<DM field reference>, 7-19
DM functions See data management

functions, 7-25
<DM primaries>, 7-33
DM primaries See data management

primaries, 7-33
<DM string functions>, 7-28
<DM symbolic functions>, 7-30
DMABS function, 7-26
OMA VG function, 7-26
DMCHR function, 7-28

example of, 7-29
DMCOUNT function, 7-26
DMDBNAME field of

DMEXCEPTIONINFO
record, 7-7 4

DMEQUIV function, 7-31
<DMEXCEPTION mnemonic>, 7-72
DMEXCEPTION mnemonics, 7-74
DMEXCEPTIONINFO function, 7-7 4
DMEXCEPTIONMSG function, 7-73
DMEXCEPTIONRECORD structure, 7-73
DMEXISTS function, 7-31

example of, 7-32
DMEXT function, 7-28

example of, 7-29
DMISA function, 7-31

example of, 7-32
DMLENGTH function, 7-26
DMLUCNAME field of

DMEXCEPTIONINFO
record, 7-7 4

DMMATCH function, 7-31
example of, 7-32

DMMAX function, 7-26
DMMIN function, 7-26

example of, 7-27

lndex-7

Index

DMNEXTEXCEPTION function, 7-73
DMPOS function, 7-26
DMPRED function, 7-30
DMRECORD, 7-14

as part of a query, 7-9
assigning pointers to, 7-21.
binding considerations, 7-22
declaring, 7-14

example of, 7-16
passing as a parameter, 7-20
passing fields of, 7-20
referencing fields of, 7-19

example of, 7-19
TYPE declaration and, 7-17
use with SIM functions, 7-4

<DMRECORD declaration>, 7-14
<DMRECORD ID>, 7-15
<DMRECORD type declaration>, 7-17
<DMRECORD type ID>, 7-17
<DMRECORD type invocation>, 7-17
DMROUND function, 7-26
DMRPT funetion, 7-28

example of, 7-29
DMSil (See Data Management System

11), 1-6, 4-1
DMSQRT function, . 7-26
DMSTATUS field of DMEXCEPTIONINFO

record, 7-7 4
DMSTRUCTURENAME field of

DMEXCEPTIONINFO
record, 7-7 4

DMSUCC function, 7-30
DMSUM function, 7-26
DMTERMINATE statement, 3-40
<dmterminate statement>, 4-40
DMTERMINATE statement

example of, 4-40
DMTEST function, 4-77
<dmtest function>, 4-77
DMTEST function

example of, 4-78
DMTRUNC function, 7-26

example of, 7-27
DMUPDATECOUNT, 7-75

in MODIFY statement, 7-56
DMVERIFYNAME field of

DMEXCEPTIONINFO
record, 7-7 4

documents related to this manual, ix

lndex-8

E
ENABLE statement

effect on input headers, 3-30
in COMS, 3-30

<endtransaction parameters>, 4-41,
5-32

ENDTRANSACTION statement
in COMS, 3-32

<endtransaction statement>
in COMS, 3-32

ENDTRANSACTION statement
inCOMS

example of, 3-33
in DMSil, 4-41

<endtransaction statement>
in DMSII, 4-41

ENDTRANSACTION statement
in DMSII

example of, 4-43
in SIM, 7-52

<endtransaction statement>
in SIM, 7-52

ENDTRANSACTION statement
in SIM

examples of, 7-52
in TPS, 5-32

example of, 5-32
ENSEMBLE field, X.25

COMSRECORD, 3-21
ENSEMBLELENGTH field, X.25

COMSRECORD, 3-21
Entity qualifiers, 2-7

<directory name>, 2-8
<entity name>, 2-7
example of, 2-8
<status value>, 2-8
using with SDF Plus, 6-5
<version number>, 2-7

<entity ref array ID>, 7-24
<entity ref ID>, 7-24
<entity reference array

declaration>, 7-23
<entity reference declaration>, 7-23
<entity reference ID>, 7-24
entity reference variable, 7-23

example of, 7-24
<entity-valued relation>, 7-36
entry points

example of declaring, 5-37
<exception expression>, 7-72

8600 0734-000

<exception field>, 7-72
<exception handling>, 4-81
exception handling, 7-72
<exception value>, 4-82
<exception variable>, 4-81
<exclude spec>, 7-46
EXISTS function, 7-31
extensions

F

for ADDS, 1-2
for COMS, 1-4
for DMSII, 1-6
for SDF Plus, 1-9
for SIM, 1-10
for TPS, 1-8

FACILITIES field, X.25
COMSRECORD, 3-21

FACILITIESLENGTH field, X.25
COMSRECORD, 3-21

<field ID>, 7-15
<field item identifier>, 4-23
<field item name>, 4-16
<field list>, 7-15
fields of the input header, 3.:..9
fields of the output header, 3-11
FIELDS.CONFIRMFLAG field, 3-12
FIELDS.CONFIRMKEY field, 3-12
FIELDS.TRANSPARENT field, 3-10,

3-12
FIELDS.VTFLAG field, 3-10, 3-11
FIND statement, 4-44
<find statement>, 4-44
FIND statement

example of, 4-25, 4-45
form record libraries, 6-2

invoking, 6-5
form record number attribute, 6-10
form record numbers, 6-3
Form records, 6-2
<format list>, 5-4
<format spec>, 5-4
FREE statement, 4-46

example of, 4-47
FUNCTION field, X.25

COMSRECORD, 3-18
FUNCTIONINDEX field, 3-9
FUNCTIONSTATUS field, 3-9, 3-28

values of, 3-40

8600 0734-000

G
GENERATE statement, 4-48
<generate statement>, 4-48
GENERA TE statement

example of, 4-49
GET statement, 4-50
<get statement>, 4-50
GET statement

Index

example of, 4-51
GET_DESIGNATOIL

ARRAY_USING_DESIGNATOR
service function, 3-41, 3-45

GET_DESIGNATOIL
USING_DESIGNATOR service
function, 3-42, 3-46

GET_DESIGNATOIL USING_NAME
service function, 3-42, 3-47

GET-1NTEGEILARRAY_
USING_DESIGNATOR service
function, 3-42, 3-48

GET-1NTEGEILUSING_ DESIGNATOR
service function, 3-42, 3-49

GET_NAME_USING_ DESIGNATOR
service function, 3-42, 3-50

GET-REAL.....ARRAY service
function, 3-42, 3-51

GET-8TRING_USING_ DESIGNATOR
service function, 3-42, 3-52

<group item name>, 4-16

H
HANDLESTATISTICS entry point, 5-21
<header declaration>, 3-6
<header type declaration>, 3-8

as COMS extension, 3-8
<header type ID>, 3-8
<header type invocation>, 3-8

as COMS extension, 3-8
how to use this manual, vi
hybrid formatting selection, 7-66

I

<include spec>, 7-46
<input assignment>, 4-16
input header

accessing fields of, 3-23

lndex-9

Index

input header (cont.)
BEGINTRANSACTION statement

and, 3-26
conversation area field, 3-6
declaring, 3-6
DISABLE statement and, 3-28
ENABLE statement and, 3-30
fields of, 3-9
FUNCTIONSTATUS field, 3-28

values of, 3-40
modifying, 3-23
naming, 3-7
passing fields of, 3-23
STATUSV ALUE field, 3-26

values of, 3-40
use of, 3-9

<input mapping>, 4-16
<input or output headers>, 3-23
INPUTHEADER format,

COMSRECORD, 3-9
<inputheademame>, 3-6
<insert statement>, 4-62
INSERT statement

in DMSII, 4-62
example of, 4-63

in SIM, 7-63
examples of, 7-64

installation data, 3-69
INSTALLATION-DATA entity, 3-67
<integer expression>, 7-62
<internal name>, 4-2
INVERSE function, 7-38
invoking a COMSRECORD type, 3-17
<item>, 4-71
<item ID>, 2-20
<item name>, 6-13
<item reference>, 6-13

K

<key condition>, 4-22

L

LAST-RESPONSE entity, 3-67
<length function>, 2-27
LENGTH function

in ADDS, 2-27
example of, 2-27

in COMS, 3-2

lndex-10

LENGTH function (cont.)
in SDF Plus, 6-4

. in SIM, 7-4
LIBRARY entity, 3-67
<limit specification>, 7-49
<link item>, 4-23
LIST compiler control option, 4-2
LISTDB compiler control option, 4-2,

4-84
<listdb option>, 4-84
<local selection expression>, 7-37
LOCALSUBADDRESS field, X.26

COMSRECORD, 3-21
LOCALSUBADDRESSLENGTH field, X.26

COMSRECORD, 3-20
LOCK statement, 4-64

example of, 4-26, 4-66
locked records

freeing, 3-27
<logical database name>, 4-3
LOGOFFTRUSER entry point, 6-21
LOGONTRUSER entry point, 6-21
LSN entity, 3-67

M

mapping, 4-16
alpha items

from pointer expressions, 4-20
from string literals, 4-21
to pointer expressions, 4-18

Boolean items, 4-18, 4-20
count items, 4-17
field items, 4-17, 4-19
group items

from pointer expressions, 4-20
from string literals, 4-21
to pointer expressions, 4-18

input mappings, 4-16
numeric items

from arithmetic variables, 4-20
from pointer expressions, 4-20
from string literals, 4-21
to arithmetic variables, 4-17
to pointer expressions, 4-18

output mappings, 4-19
population items, 4-17
real items, 4-17, 4-20
record type items, 4-17
SIM data items, 7-7

MAXIMUM_USEILCOUNT entity, 3-67

8600 0734-000

<message area>, 3-35
message area

declaring, 3-14
defined, 3-14
use in SIM BEGINTRANSACTION

statement, 7-43
using in COMS BEGINTRANSACTION

statement, 3-26
<message control indicator>, 3-37
<message length>, 3-37
MESSAGE....COUNT entity, 3-57
MESSAGECOUNT field, 3-10
MESSAGECOUNT statement, 3-34
<messagecount statement>, 3-34
messages

in SDF Plus
receiving, 6-15
sending, 6-15

metadata, 2-2
<midtransaction parameters>, 5-33
MIDTRANSACTION statement, 5-33

example of, 5-33
MIL.NUMBERS entity, 3-57
MODIFY statement

in DMSII (See LOCK statement), 4-57
in SIM, 7-56

examples of, 7-58
<multiple-statement insert>, 7-53
<multiple-statement modify>, 7-56
<multiple-statement update

destination>, 7-47

N
NEXTINPUTAGENDA field, 3-12
NODMDEFINES compiler control

option, 4-84
<nodmdefines option>, 4-84
<numeric item>, 4-77
<numeric item identifier>, 4-23
<numeric item name>, 4-16
<numeric relation>, 4-23

0
OCCURS clause

in DMSII, 4-13
<offset function>, 2-28
OFFSET function

in ADDS, 2-28

8600 0734-000

OFFSET function (cont.)
in ADDS, 2-28 (cont.)

example of, 2-28
in COMS, 3-2
in SDF Plus, 6-4
inSIM, 7-4

<open statement>, 7-59
OPEN statement

example of, 4-11
in DMSII, 4-58

example of, 4-59
in SIM, 7-59

examples of, 7-60
in TPS, 5-34

example of, 5-35
OPENTRBASE entry point, 5-21
organization of this manual, vii
ORIGINATOR field, X.25

COMSRECORD, 3-19
<output assignment>, 4-19
output header

accessing fields of, 3-23
conversation area field, 3-5
declaring, 3-5
fields of, 3-11
modifying, 3-23
naming, 3-7
passing fields of, 3-23
STATUSV ALUE field, 3-37

values of, 3-40
use of, 3-11

<output mapping>, 4-19
OUTPUTHEADER format,

COMSRECORD, 3-11
<outputheademame>, 3-6
<outputheademame with send

options>, 3-32

p

<packing spec>, 7-14
<path expression>, 7-36
<perspective>, 7-64 I':

Index

PHONENUMBER field; X.25
COMSRECORD, 3-22

PHONENUMBERLENGTH field, X.25
COMSRECORD, 3-21

<pointer function>, 2-29
POINTER function

in ADDS, 2-29
example of, 2-29

lnclex-11

Index

POINTER function (cont.)
in COMS, 3-2
in SDF Plus, 6-4
in SIM, 7-4

<population item name>, 4-16
prerequisites for this manual, vi
PROC~ING..JTEM entity, 3-58
PROCF..C;SING..JTELLIST entity, 3-58
PROCF..C;STRANSACTION entry

point, 5-22
PROC~TRFROMTANK entry

point, 5-21
PROC~TRNORESTART entry

point, 5-22
PROGRAM entity, 3-58
PROGRAMDESG field, 3-9
PURGETRUSER entry point, 5-22
purpose of this manual, v
PUT statement, 4-61
<put statement>, 4-61
PUT statement

example of, 4-62

Q
QBIT field, X.25 COMSRECORD, 3-18
<qual ID>, 7-36
<qual term>, 7-36
<qualification>, 4-14
<quantifier>, 7-37
QUERY declaration, 7-12
<query declaration>, 7-12
QUERY declaration

example o{, 7-13
<query ID>, 7-12
QUEUE...DEPTH entity, 3-58

R
RANGECHECK compiler control

option, 2-15
effect of, 2-11, 2-25
example of, 2-15
in COMS, 3-2
SIM and, 7-3

READFORM statement, 6-6
READTRANSACTION entry point, 5-22
<real item>, 4-77
<real item identifier>, 4-23
<real item name>, 4-16

lndex-12

RECEIVE statement, 3-35
<receive statement>, 3-35
<record assignment statement>, 2-24
<record ID>, 2-16
record type, 2-5
<record type item name>, 4-16
records

default unit size for, 2-33
freeing locked, 3-27
in assignment statements, 2-25
passing as parameters, 2-21

example of, 2-22
referencing, 2-29
restrictions on, 2-2

RECREATE statement, 4-63
<recreate statement>, 4-63
RECREATE statement

example of, 4-64
reflexive attribute, 7-70
related documents, ix
REMOTEADDRESS field, X.25

COMSRECORD, 3-20
REMOTEADDRESSLENGTH field, X.25

COMSRECORD, 3-20
REMOVE statement, 4-65
<remove statement>, 4-65
REMOVE statement

example of, 4-66
REPLACE statement, 2-25
<reserved word>, B-1
reserved words in ALGOL, B-1

alphabetic list - all types, B-7
type 1, B-1
type 2, B-2

for COMS, 3-2
type 3, B-5

<resize function>, 2-30
RESIZE function

in ADDS, 2-30
example of, 2-31

in COMS, 3-2
in SDF Plus, 6-4
in SIM, 7-4

restart area, 3-27
restart data set, 3-27
<restart data set>, 4-31
RESTART field, 3-10
restrictions on records, 2-2
results of using this manual, viii
retrieval queries, 7-10

use in SELECT statements, 7-12
RETRIEVE statement, 7-61

8600 0734-000

<retrieve statement>, 7-61
RETRIEVE statement

examples of, 7-61
RETURNLASTADDRESS entry

point, 5-23
RETURNLASTRESPONSE entry

point, 5-23
RETURNST ARTINFO entry point, 5-23

s
SA VEINPUTTR transaction library

procedure, 5-25
<saveoutput procedure

identifier>, 4-41
SA VERESPONSETR transaction library

procedure, 5-25
<savetrpoint statement>, 4-67, 7-62
SA VETRPOINT statement

in DMSII, 4-67
example of, 4-67

in SIM, 7-62
SCAN statement, 2-25
scope of this manual, v
Screen Design Facility Plus, 6-1

ADDS and, 6-1
ALGOL functions used with, 6-4
COMS and, 6-1, 6-14
<dictionary form record

declaration>, 6-5
DICTIONARY option, 6-4
extensions, 1-9
form record libraries, 6-2

invoking, 6-5
form record number attribute, 6-10
form record numbers, 6-3
form records, 6-2
interface elements, 6-2
LENGTH function, 6-4
OFFSET function, 6-4
POINTER function, 6-4
reading form records, 6-6
RESIZE function, 6-4
sample programs, 6-17
sending and receiving messages, 6-15
sending text messages, 6-16
SIZE function, 6-4
transaction errors, 6-15
transaction number attribute, 6-12
transaction numbers, 6-3
transaction types, 6-3

8600 0734-000

Screen Design Facility Plus (cont.)
UNITS function, 6-4
using COMS input/output

headers, 6-14

Index

writing form records, 6-7
SDFFORMRECNUM field, 3-10, 3-12
SDF Plus See Screen Design Facility

Plus, 6-1
SDFINFO field, 3-10, 3-12
SDFTRANSNUM field, 3-10
SECURE statement, 4-68
<secure statement>, 4-68
SECURE statement

example of, 4-70
SECURITY entity, 3-58
SECURITY_CATEGORY entity, 3-58
SECURITY-CATEGORY-LIST

entity, 3-58
SECURITYDESG field, 3-9
SEEKTRANSACTION entry point, 5-23
SELECT statement, 7-63
<select statement>, 7-64
SELECT statement

examples of, 7-68
<selection body>, 7-64
<selection expression>, 4-22, 7-35
SEMANTIC DAT ABASE declaration See

DAT ABASE declaration, 7-5
Semantic Information Manager, 7-1

ABORTTRANSACTION
statement, 7-42

ADDS extensions and, 7-3
assigning database attributes

example of, 7-48
assigning database attributes in, 7-46
BEGINTRANSACTION

statement, 7-43
binding considerations, 7-22
CANCEL TRPOINT statement, 7-44

example of, 7-44
CLOSE statement, 7-45
concurrent use of DMSII databases

with, 7-5
DATABASE declaration, 7-5

example of, 7-6
declaring a SIM database, 7-5
declaring DMRECORDS, 7-14

example of, 7-16
DELETE statement, 7-49
DICTIONARY option, 7-3
DISCARD statement, 7-51
DM expressions, 7-25

lndex-13

Index

Semantic Information Manager (cont.)
DM expressions (cont.)

forming, 7-33
DM functions, 7-25

arithmetic, 7-26
arithmetic example, 7-27
Boolean, 7-31
string, 7-28
symbolic, 7-30

DM primaries, 7-33
DM selection expression, 7-34

examples of, 7-39
DMEXCEPTION mnemonics, 7-74
ENDTRANSACTION statement, 7-52

example of, 7-52
entity reference variables, 7-23

example of, 7-24
establishing a data dictionary, 2-12
exception handling, 7-72
extensions, 1-10
INSERT statement, 7-53

examples of, 7-54
LENGTH function, 7-4
mapping, 7-7
MODIFY statement, 7-56

examples of, 7-58
OFFSET function, 7-4
OPEN statement, 7-59

examples of, 7-60
packing and, 7-22
POINTER function, 7-4
queries, 7-9

closing, 7-10
creating, 7-9
declaring, 7-12
passing, 7-10
retrieval, 7-10
update, 7-11

QUERY declaration, 7-12
example of, 7-13

RANGECHECK option, 7-3
reflexive attribute, 7-70
reserved words, 7-2
RESIZE function, 7-4
RETRIEVE statement, 7-61

examples of, 7-61
sample programs, 7-76
SA VETRPOINT statement, 7-62
SELECT statement, 7-63

examples of, 7-68
selection expressions, 7-34

example of, 7-39

lndex-14

Semantic Information Manager (cont.)
SETTOCHILD statement, 7-70
SETTOPARENT statement, 7-70
SIZE function, 7-4
subprograms and, 7-22
transaction point, 7-40
transaction state, 7-40
transactions, 7-40
TYPE declaration, 7-17

example of, 7-18
UNITS function, 7-4

<send options>, 3-37
SEND statement, 3-37
<send statement>, 3-37
SEPCOMP facility, 4-86
service functions

CONVERT_TIMESTAMP, 3-41, 3-44
defined, 3-41
entities and, 3-57
GET-DESIGNATOL

ARRAY_USING-DESIGNATOR, 3-41,
3-45

GET-DESIGNATOL
USING-DESIGNATOR, 3-42,
3-46

GET-DESIGNATOL
USING_NAME, 3-42, 3-47

GET-1NTEGELARRAY_
USING-DESIGNATOR, 3-42,
3-48

GET-1NTEGELUSING_
DESIGNATOR, 3-42, 3-49

GET_NAMLUSING_
DESIGNATOR, 3-42, 3-50

GET-REAL.ARRAY, 3-42, 3-51
GET-8TRING_USING_

DESIGNATOR, 3-42, 3-52
passing values to, 3-57, 3-59
STATION-TABLE....ADD, 3-42, 3-53
STATION_TABLE-1NITIALIZE, 3-42,

3-54
STATION_TABL.E.--8EARCH, 3-42,

3-55
TEST-DESIGNATOR, 3-42, 3-56
umbrella, 3-41

<set>, 4-22
<set name>, 4-3
<set part>, 4-3
<set reference>, 4-3
<set selection expression>, 4-22
SET statement, 4-71

example of, 4-72

8600 0734-000

SETTOCHILD statement, 7-70
<settochild statement>, 7 - 70
SETTOP ARENT statement, 7-70
<settoparent statement>, 7 - 70
SIM (See Semantic Information

Manager) , 1-10
SIM See Semantic Information

Manager, 7-1
<single-statement insert>, 7 -53
<single-statement modify>, 7-56
<single-statement update

destination>, 7-46
<size function>, 2-32
SIZE function

in ADDS, 2-32
example of, 2-32

in COMS, 3-3
in SDF Plus, 6-4
in SIM, 7-4

STATION entity, 3-58
STATION field, 3-10
STATION_LIST entity, 3-58
STATION_TABLE....ADD service

function, 3-42, 3-53
STATION_T ABLE....INITIALIZE service

function, 3-42, 3-54
STATION_TABLE....SEARCH service

function, 3-42, 3-55
STATISTICS entity, 3-58
STATUS compiler control option, 2-11,

2-13
example of, 2-13
overriding, 2-8

<status value>, 2-13
STATUSVALUE field

BEGINTRANSACTION statement
and, 3-26

ENDTRANSACTION statement
and, 3-32

of input header, 3-10, 3-26
of Output header, 3-11
values of, 3-40

STORE statement, 4-7 4
<store statement>, 4-75
STORE statement

example of, 4-75
<string-valued database

attribute>, 4-10
structured formatting, 7-66
STRUCTURENUMBER function, 4-79
<structurenumber function>, 4-79
STRUCTURENUMBER function

8600 0734-000

Index

STRUCTURENUMBER function (cont.)
example of, 4-79

subbase, 5-4
<subclass expr>, 7-53
<subformat list>, 5-6
<subformat spec>, 5-6
<subquery select>, 7 -65
SUBROLE function, 7-26
<subscript list>, 5-10
<subscripted BDMS identifier>, 4-13
<subscripted field ID>, 3-23
<subset>, 4-22
SWITCHTRFILE entry point, 5-24
synchronization

TPS and COMS, 1-8
TPS and DMSII, 1-8, 5-29

syncpoint, 4-34

T

TANKTRANSACTION entry point, 5-24
TANKTRNORESTART entry point, 5-24
TEST-DESIGNATOR service

function, 3-42, 3-56
text messages, 6-16
TEXTLENGTH field

of input headers, 3-10
of Output headers, 3-11
use of, 3-14

TFL Description of the Transaction
Base, 5-41

TFL See Transaction Formatting
Language, 5-3

TIME entity, 3-58
TIMEST AMP field, 3-10
TITLE attribute, 4-10
TOGGLES.RETAINTRANSACTIONMODE

field, 3-12
TOGGLES.SETNEXTINPUTAGENDA

field, 3-12
TPS See Transaction Processing

System, 5-1
TRANCODE entity, 3-58
<transaction array ID list>, 5-7
transaction base

declaring, 5-4
examples of, 5-6

invoking a subbase, 5-4
sample program, 5-39

<transaction compile-time function
argument>, 5-18

lndex-15

Index

transaction compile-time functions, 6-18
<transaction compile-time

functions>, 5-18
transaction errors, 6-15
Transaction Formatting Language, 5-3

ALGOL types for, 5-3
describing a database with, 5-41

transaction library
application program

restrictions, 5-20
entry points, 5-20
SA VEINPUTTR procedure, 5-25
SA VERESPONSETR procedure, 6-25
update library

accessing, 5-25
transaction number attribute, 6-12
transaction numbers, 6-3
transaction point, 7-40
Transaction Processing System, 5-1

assigning transaction record
variables, 5-12

BEGINTRANSACTION
statement, 5-30

example of, 6-31
compile-time functions, 5-18
control items, 5-17
data item qualification, 5-15
declaring a subbase, 5-4
declaring a transaction base, 5-4

examples of, 5-6
declaring transaction record

variables, 5-7
example of, 5-8

ENDTRANSACTION statement, 5-32
example of, 5-32

entry points, 5-20
example of declaring, 5-37

extensions, 1-8
interface, 5-1
MIDTRANSACTION statement, 5-33

example of, 5-33
OPEN statement, 6-34

example of, 5-36
passing transaction record

variables, 5-11
synchronizing with DMSII, 5-29
transaction library entry point, 5-20
transaction record formats, 5-9
update library, 5-25
uses and restrictions for transaction

records, 5-11
Transaction Processing System interface

lndex-16

Transaction Processing System
interface (cont.)

Transaction Formatting
Language, 5-3

<transaction record>, 5-9
<transaction record array

declaration>, 5-7
<transaction record declaration>, 5-7
transaction record variables See

transaction records, 5-7
transaction records, 5-7

assigning, 5-12
compiler checks, 5-2
content of variables, 5-9
control items, 5-9, 5-17
copying, 5-12
creating format and subformat, 5-9
data items, 5-13

assigning, 5-14
declaring variables, 5-7

example of, 5-8
restrictions, 5-11
segmentation of, 5-8
valid uses and restrictions, 5-11
variables as parameters, 5-11

transaction state, 4-26, 7 -40
transaction types, 6-3
transactions, 7-40
<transitive argument>, 7-37
<transitive expression>, 7-36
TRBITS compile-time function, 5-19
TRBYTES compile-time function, 5-19
TRDATASIZE compile-time

function, 5-19
TRDIGITS compile-time function, 5-19
TRFORMAT compile-time function, 5-19
TROCCURS compile-time function, 5-19
TRSUBFORMA T compile-time

function, 5-19
TRUNCATED field, X.25

COMSRECORD, 3-20
TRUSERIDSTRING entry point, 5-24
type 1 reserved words, B-1
type 2 reserved words, B-2

for COMS, 3-2
new, 3-2

type 3 reserved words, B-6
TYPE declaration, 2-18

as COMS extension, 3-7
example of, 2-19
in SIM, 7-17

example of, 7-18

8600 0734-000

TYPE declaration (cont.)
using to retrieve structures, 2-2

<type ID>, 2-18
<type invocation>, 2-18

u
umbrella service functions, 3-41
unit size, 2-33
<units function>, 2-33
UNITS function

in ADDS, 2-33
example of, 2-34

in COMS, 3-3
in SDF Plus, 6-4
in SIM, 7-4

update library, 5-25
ACCESSDATABASE entry point

and, 5-25
example of, 5-52
structuring, 5-26
synchronization and, 5-29

update queries, 7-11
use in SELECT statements, 7-12

USERCODE entity, 3-58
USERCODE field, 3-9
<using clause>, 7-64

8600 0734-000

v
VERSION field, X.25

COMSRECORD, 3-18

w
W AITFORCHANNEL field, X.25

COMSRECORD, 3-20
WINDOW entity, 3-58
WINDOW _LIST entity, 3-58
words, reserved, B-1

alphabetic list - all types, B-7
type 1, B-1
type 2, B-2

for COMS, 3-2
type 3, B-5

WRITEFORM statement

x

for SDF Plus, 6-7
sample programs, 6-8

X.25 format, COMSRECORD, 3-18

Index

lndex-17

I llllll lllll lllll lllll lllll lllll lllll lllll llll llllll lllll lllll llll llll
86000734-000

