
•
UNISYS A Series

ALGOL
Programming
Reference Manual

Volume 1: Basic
Implementation

Release 3.9.0

Priced Item

~epte .nber 19')1

lJ S Am\::r:ca
>J600 0098- 000

• UNISYS A Series
ALGOL
Programming
Reference Manual

Volume 1: Basic
Implementation

Copyright© 1991 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0

Priced Item

September 1991

US America
8600 0098-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be forwarded using the Product Information card at
the back of the manual, or may be addressed directly to Unisys, Product Information, 19 Morgan,
Irvine, CA 92718.

Page Status

Page Issue

iii -000
iv Blank
v through xxxi -000
xxxii Blank
xxxiii -000
xxxiv Blank
xxxv -000
xxxvi Blank
1-1 through 1-6 -000
2-1 through 2-14 -000
3-1 through 3-123 -000
3-124 Blank
4-1 through 4-172 -000
5-1 through 5-76 -000
6-1 through 6-46 -000
7-1 through 7-7 -000
7-8 Blank
8-1 through 8-20 -000
9-1 through 9-108 -000
A-1 through A-4 -000
B-1 through B-10 -000
C-1 through C-20 -000
D-1 through D-8 -000
Glossary-1 through 12 -000
Bibliography-1 through 2 -000
lndex-1 through 26 -000

Unisys uses an 11-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit (y) designates an update level. For example,
the first release of a document has a suffix of-000. A suffix of-130 designates the
third update to revision 1. The third digit (z) is used to indicate an errata for a particular
level and is not reflected in the page status summary.

8600 0098-000 iii

iv 8600 0098-000

About This Manual

Purpose

Scope

This language reference manual provides the programmer with information on the
language components, declarations, statements, expressions, and program units of
Unisys Extended ALGOL.

Unisys Extended ALGOL is a high-level, structured programming language designed for
A Series systems. Unisys Extended ALGOL has provisions for communication between
programs and input/output (I/0) devices, the editing of data, and the implementation of
diagnostic facilities for program debugging.

The fundamental constituents of ALGOL are the language components. These are the
building blocks of the language and include, among other things, letters, digits, and
special characters such as the semicolon (;).

At a level of complexity higher than llµiguage components are declarations, statements,
and expressions. These are the building blocks of ALGOL programs. A declaration
associates identifiers with specific properties. For example, an identifier can be
associated with the properties of a real number. A statement indicates an operation to
be performed, such as the assignment of a numerical value to an array element or the
transfer of program flow to a location in the program out of the normal sequence. An
expression describes operations that are performed on specified quantities and return a
value. For example, the expression SQRT(lOO) returns 10.0, the square root of 100.

At the highest level are program units. A program unit is any group of ALGOL
constructs that can be compiled as a whole by the ALGOL compiler. An ALGOL
program is, by definition, a program unit.

To assist application programmers in using ALGOL, the programming reference material
is divided into two volumes. Volume 1 contains the Unisys Extended ALGOL developed
for general use. Volume 2 contains extensions to ALGOL that are intended for specific
products.

Audience
This manual is intended for the applications programmer or systems analyst who is
experienced in developing, maintaining, and reading ALGOL programs.

8600 0098-000 v

About This Manual

Prerequisites
To use this manual, a programmer should be familiar with the general concepts of
ALGOL programming or of another high-level structured programming language, such
as Pascal.

How to Use This Manual
This manual contains reference information for each ALGOL feature, which can be
accessed either through the index or the table of contents. Cross references are
provided within each section. Declarations, statements, expressions, functions, and
compiler control options are each presented in alphabetical order within their sections.

This manual also describes the language components and programs units of Unisys
Extended ALGOL. Unless otherwise stated, the word ALGOL refers to Unisys
Extended ALGOL.

Organization

vi

The earlier sections describe the fundamentals of ALGOL: the structure of programs
and the basic components of the language. The middle chapters describe the major
constructs of ALGOL: declarations, statements, and expressions. The later chapters
describe topics related to compiling ALGOL programs, and interfaces between ALGOL
and other facilities such as libraries. The appendixes contain reference information
about reserved words and about the format used internally to store data.

The manual contains the following sections and appendixes, supplemented by a glossary,
a bibliography, and an index.

Section 1. Program Structure

This section defines the basic structure of an ALGOL program and the scope of
variables.

Section 2. Language Components

This section defines the most elemental constructs in the ALGOL language.

Section 3. Declarations

This section defines the constructs that establish data structures in an ALGOL program
and associate identifiers with those data structures. These constructs are ordered
alphabetically by declaration name.

Section 4. Statements

This section defines the constructs that describe operations to be performed in an
ALGOL. program. These constructs are ordered alphabetically by statement name;

8600 0098-000

About This Manual

Section 5. Expressions and Functions

This section defines the constructs used to describe operations that are performed on
specified quantities and return a value. The first part of the section describes the types
of expressions. These types are ordered alphabetically by expression name. The second
part of the section describes functions that are intrinsic to ALGOL. These functions are
ordered alphabetically by their names.

Section 6. Compiling Programs

This section describes the various input and output files used by the ALGOL compiler
and the compiler control options that control the compiler's processing of ALGOL source
input.

Section 7. Compile-Time Facility

This section describes how ALGOL source data can be compiled conditionally and
iteratively.

Section 8. Library Facility

This section describes library creation, use, sharing, and initiation.

Section 9. Internationalization

This section includes a general introduction to internationalization concepts and a
summary of CENTRALSUPPORT library procedures. Each internationalization
function entry point, with its parameters and results, is presented in alphabetical order.
A list of error messages and values ends the section.

Appendix A. Run-Time Format-Error Messages

This appendix interprets the error numbers given at run time when an error occurs in a
READ or WRITE statement.

Appendix B. Reserved Words

This appendix lists the identifiers that need not be declared in an ALGOL program
before they are used, if they appear in recognized contexts.

Appendix C. Data Representation

This appendix describes the internal form of the various operands, the descriptor, the
pointer, and the various character sets.

Appendix D. Understanding Railroad Diagrams

This appendix describes how to read and understand the various elements of railroad, or
syntax, diagrams that appear in the manual.

8600 0098-000 vii

About This Manual

Related Product Information

viii

A Series ALGOL Programming Reference Manual, Volume 2: Product
Interfaces (form 8600 0734)

This manual describes the extensions to the Extended ALGOL language that allow
application programs to use the Advanced Data Dictionary System (ADDS), the
Communications Management System (COMS), the Data Management System II
(DMSII), the Screen Design Facility Plus (SDF Plus), or the Semantic Information
Manager (SIM). This manual is written for programmers who are familiar with Extended
ALGOL programming language concepts and terms.

A Series ALGOL Test and Debug System (TADS) Programming Guide
(form 1169539)

This guide describes the features of ALGOL TADS, an interactive tool used for testing
and debugging ALGOL programs and libraries. ALGOL TADS allows the programmer
to monitor and control the execution of programs under test and examine the data at any
given point during program execution. This guide is written for programmers who are
familiar with ALGOL programming language concepts and terms.

A Series Binder Programming Reference Manual (form 8600 0304)

This manual describes the functions and applications of the Binder, an efficiency tool that
reduces the need to recompile an entire program when only a portion of the program
has been modified. This manual is written for programmers who are familiar with
programming language concepts and terms.

A Series CANDE Operations Reference Manual (form 8600 1500)

This manual describes how CANDE operates to allow generalized file preparation and
updating in an interactive, terminal-oriented environment. This manual is written for a
wide range of computer users who work with text and program files.

A Series Distributed Systems Service (DSS) Operations Guide
(form 8600 0122)

This guide describes the capabilities and features ofDSS Services. It is intended for
system operators, system administrators, and general computer users.

A Series Editor Operations Guide (form 8600 0551)

This guide describes the operation of the Editor, an interactive tool for creating
and modifying text and program files. This guide is written for experienced and
inexperienced users who are responsible for creating and maintaining text and program
files.

A Series File Attributes Programming Reference Manual (form 8600 0064).
Formerly A Series 1/0 Subsystem Programming Reference Manual

This manual contains information about each file attribute and each direct 1/0 buffer
attribute. The manual is written for programmers and operations personnel who need
to understand the functionality of a given attribute. The A Series 110 Subsystem
Programming Guide is a companion manual.

8600 0098-000

About This Manual

A Series 1/0 Subsystem Programming Guide (form 8600 0056). Formerly
A Series 1/0 Subsystem Programming Reference Manual

This guide contains information about how to program for various types of peripheral
files and how to program for interprocess communication, using port files. This guide is
written for programmers who need to understand how to describe the characteristics of
a file in a program. The A Series File Attributes Programming Reference Manual is a
companion manual

A Series Menu-Assisted Resource Control (MARC) Operations Guide
(form 8600 0403)

This guide provides an overview of MARC, a description of the menu structure, and
information on how to use help text, commands, security features, and Communications
Management System (COMS) windows from MARC. The guide also explains how to
run programs from MARC, how to customize MARC to meet user needs, and how to
use MARC in a multinational environment. This guide is written for a wide audience,
ranging from experienced system administrators to end users with no previous
knowledge of MARC or A Series systems.

A Series Message Translation Utility (MSGTRANS) Operations Guide
(form 8600 0106). Formerly A Series Message Translation Utility Operations
Guide

This guide describes how to use the Message Translation Utility (MSGTRANS) to
translate compiled program messages from any natural language to any other natural
language. It provides complete instructions for running and using the screen and batch
interfaces ofMSGTRANS. This guide is written for programmers and translators who
create and translate program messages in a Multilingual System (MLS) environment.

A Series MultiLingual System (MLS) Administration, Operations, and
Programming Guide (form 8600 0288)

This guide describes how to use the MLS environment, which encompasses many Unisys
products. The MLS environment includes a collection of operating system features,
productivity tools, utilities, and compiler extensions. The guide explains how these
products are used to create application systems tailored to meet the needs of users in
a multilingual or multicultural business environment. It explains, for example, the
procedures for translating system and application output messages, help text, and
user interface screens from one natural language to one or more other languages; for
instance, from English to French and Spanish. This guide is written for international
vendors, branch systems personnel, system managers, programmers, and customers who
wish to create customized application systems.

A Series System Architecture Reference Manual, Volume 2 (form 5014954)

This manual describes and defines the architecture used in A Series data processing
system products. It describes operating system concepts and requirements. It is written
for personnel developing programs to run on A Series systems.

A Series System Commands Operations Reference Manual (form 8600 0395)

This manual gives a complete description of the system commands used to control
system resources and work flow. This manual is written for systems operators and.
administrators.

8600 0098-000 ix

About This Manual

x

A Series System Software Utilities Operations Reference Manual
(form 8600 0460)

This manual provides information on the system utilities, such as DCSTATUS,
FILECOPY, and DUMP ALL. This manual is written for applications programmers and
operators.

A Series Task Attributes Programming Reference Manual (form 8600 0502)

This manual describes all the task attributes available on A Series systems. It also gives
examples of statements for reading and assigning task attributes in various programming
languages.

A Series Work Flow Language (WFL) Programming Reference Manual (form
86001047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who
have some experience with programming in a block-structured language such as ALGOL
and who know how to create and edit files using CANDE or the Editor.

8600 0098-000

Contents

About This Manual . v

Section 1. Program Structure

Program Unit . 1-1
Elements of an ALGOL Program . 1-2
Scope . 1-4

Local Identifiers . 1-5
Global Identifiers . 1-5

Section 2. Language Components

Basic Symbol . 2-1
Identifier . 2-4
Number... 2-5

Number Ranges . 2-6
Compiler Number Conversion 2-7
Exponents . 2-7

Remark... 2-7
String Literal . 2-9

Character Size . 2-12
String Code . 2-12
String Length . 2-13
BCL Strings . 2-13
ASCII Strings . 2-13
Quotation Mark. 2-13
Dollar Sign . 2-14

Section 3. Declarations

ARRAY Declaration . 3-1
LONG Arrays . 3-1
OWN Arrays . 3-2
Identifiers . 3-2
Array Class . 3-3
Bound Pair List . 3-4

Original and Referred Arrays 3-5
Dimensionality . 3-5

Array Row Equivalence . 3-5
Array Row . 3-6
Row Selector . 3-7

Examples of ARRAY Declarations 3-7
ARRAY REFERENCE Declaration. 3-8

Identifiers . 3-9

8600 0098-000 xi

Contents

Lower Bounds . 3-9
Examples of ARRAY REFERENCE Declarations. 3-9

BOOLEAN Declaration . 3-10
Equation Part . 3-10
Boolean Simple Variable Values 3-10
Examples of BOOLEAN Declarations 3-11

COMPLEX Declaration . 3-11
Complex Variables. 3-11
Examples of COMPLEX Declarations 3-12

DEFINE Declaration . 3-12
Formal Symbol Part . 3-13
Define Invocation . 3-13
Examples of DEFINE Declarations 3-17

DIRECT ARRAY Declaration . 3-17
Declaring Direct Arrays . 3-18
Examples of DIRECT ARRAY Declarations 3-18

DOUBLE Declaration . 3-19
Declaration of Simple Variables. 3-19
Examples of DOUBLE Declarations 3-19

DUMP Declaration . 3-20
Control Part . 3-20

Label Identifier . 3-21
Label Identifier with Label Counter Modulus 3-21
Label Identifier with Dump Parameters 3-21
Label Identifiers with Label Counter Modulus and

Dump Parameters . 3-21
Form of Output . 3-22
Examples of DUMP Declarations 3-22

EVENT and EVENT ARRAY Declarations 3-23
Event Designator : . . 3-24
Examples of EVENT and EVENT ARRAY Declarations . 3-25

EXPORT Declaration. 3-25
Library Entry Point Types and Parameters. 3-26
Conditions in Which Errors Can Occur 3-27
Examples of EXPORT Declarations 3-28

FILE Declaration . 3-28
Identifiers . 3-29
Attribute Specifications . 3-29
Examples of FILE Declarations 3-30

FORMAT Declaration . 3-31
In-Out Part . 3-31
Format Part . 3-31

Simple String Literal . 3-33
Repeat Part . 3-34

Editing Phrases . 3-35
Variable Editing Phrases. 3-36
Editing Phrase Letters 3-37

A and C Editing Phrase Letters 3-37
D Editing Phrase Letter 3-40
E Editing Phrase Letter 3-42
F Editing Phrase Letter 3-42
G Editing Phrase Letter 3-43

xii 8600 0098--000

Contents

H and K Editing Phrase Letters 3-43
I Editing Phrase Letter 3-46
J Editing Phrase Letter. 3-47
L Editing Phrase Letter 3-48
0 Editing Phrase Letter 3-49
R Editing Phrase Letter 3-50
S Editing Phrase Letter 3-51
T Editing Phrase Letter 3-52
U Editing Phrase Letter 3-53
V Editing Phrase Letter 3-54
X Editing Phrase Letter 3-55
Z Editing Phrase Letter 3-55

Editing Modifiers . 3-56
P Editing Modifier . 3-56
$ Editing Modifier . 3-56

Examples of FORMAT Declarations 3-57
FORWARD REFERENCE Declaration . 3-57

Order of Referencing . 3-58
Examples of FORWARD REFERENCE Declarations . . . 3-58

INTEGER Declaration ; . . 3-58
Equation Part . 3-59
Examples of INTEGER Declarations. 3-59

INTERRUPT Declaration . 3-60
Interrupting a Program . 3-60
Examples of INTERRUPT Declarations. 3-61

LABEL Declaration . 3-61
Using Label Identifiers . 3-61
Examples of LABEL Declarations. 3-62

LIBRARY Declaration . 3-62
Library Attribute Specifications.. 3-63
Examples of LIBRARY Declarations 3-64

LIST Declaration . 3-65
List Elements . 3-65
Examples of LIST Declarations 3-66

MONITOR Declaration . 3-67
Monitor Elements . 3-67

Monitor Element as a Simple Variable 3-68
Monitor Element as a Label Identifier 3-68
Monitor Element as an Array Identifier 3-69

Examples of MONITOR Declarations 3-69
OUTPUTMESSAGE ARRAY Declaration 3-70

Output Message . 3-71
Translators' Help Text . 3-73
Examples of OUTPUTMESSAGE ARRAY Declarations . 3-73

PICTURE Declaration . 3-74
String Literals . 3-75
Introduction . 3-76
Introduction Codes . 3-76
Characters Used by Picture Symbols 3-77
Flip-Flops Used by Picture Symbols. 3-77
Character Fields . 3-77
Picture Skip Characters . 3-78

8600 0098-000 xiii

Contents

xiv

Control Characters
Single Picture Characters
Picture Characters
Examples of PICTURE Declarations

POINTER Declaration
OWN Pointers
Lex Level Restriction Part
Examples of POINTER Declarations

PROCEDURE Declaration
Identifiers
Formal Parameter Part
Specification

Procedure Reference Array Specification
Procedure Body
Dynamic Procedure Specification
Library Entry Point Specification

Allowed Formal and Actual Parameters
Parameter Matching

Array Parameters
Procedure Reference Array Parameters
Procedure Parameters
Simple Variable Parameters
String Parameters ,
File Parameters
Other Types of Parameters

Examples of PROCEDURE Declarations
PROCEDURE REFERENCE ARRAY Declaration

Placement of Procedure Reference Arrays
Example of PROCEDURE REFERENCE ARRAY

Declaration
REAL Declaration

Declaration of Simple Variables
Examples of REAL Declarations

SIMPLE VARIABLE Declaration
STRING Declaration

STRING Type
Examples of STRING Declarations

STRING ARRAY Declaration
String Array Type
Examples of STRING ARRAY Declarations

SWITCH FILE Declaration
Switch File List
Example of SWITCH FILE Declaration

SWITCH FORMAT Declaration
Switch Format List
Examples of SWITCH FORMAT Declarations

SWITCH LABEL Declaration
Switch Label List
Examples of SWITCH LABEL Declarations

SWITCH LIST Declaration
List Designator
Example of SWITCH LIST Declaration

3-78
3-78
3-79
3-81
3-83
3-83
3-83
3-84
3-86
3-87
3-87
3-89
3-91
3-91
3-92
3-92
3-93
3-93
3-93
3-95
3-95
3-96
3-98
3-98
3-98
3-99

3-101
3-102

3-103
3-103
3-103
3-104
3-105
3-105
3-106
3-106
3-107
3-107
3-107
3-108
3-108
3-109
3-109
3-110
3-110
3-111
3-111
3-112
3-112
3-112
3-113

8600 0098-000

Section 4.

Contents

TASK and TASK ARRAY Declarations 3-113
3-114
3-114
3-115
3-115
3-116
3-117
3-118
3-118
3-119
3-120
3-121
3-122
3-123

Task and Task Array Designator
Examples of TASK and TASK ARRAY Declarations

TRANSLATETABLE Declaration
Translation Specifier
Translate Table Indexing
Examples of TRANSLATETABLE Declarations

TRUTHSET Declaration
Membership Expression
Truth Set Test
Examples of TRUTHSET Declarations

VALUE ARRAY Declaration
Constants
Example of VALUE ARRAY Declaration

Statements

ACCEPT Statement. 4-1
ACCEPT Parameters . 4-1
Examples of ACCEPT Statement 4-2

ASSIGNMENT Statement . 4-3
Arithmetic Assignment. 4-3

Arithmetic Variable . 4-4
Arithmetic Type Transfer Variable 4-4
Arithmetic Attribute . 4-6
Arithmetic Update Assignment 4-7
Examples of Arithmetic Assignment. 4-8

Array Reference Assignment 4-8
Array Reference Variable 4-8
Array Designator . 4-9
Examples of Array Reference Assignment 4-10

Boolean Assignment . 4-10
Boolean Variables . 4-10
Boolean Attributes. 4-11
Boolean Update Assignment. 4-12
Examples of Boolean Assignment 4-12

Complex Assignment . 4-12
Complex Update Assignment 4-13
Examples of Complex Assignment 4-13

Mnemonic Attribute Assignment 4-13
Pointer Assignment . 4-14

Pointer Variable . 4-14
Examples of Pointer Assignment 4-14

Procedure Reference Array Assignment 4-15
Procedure Reference Array Element. 4-15
Example of Procedure Reference Array Assignment 4-16

String Assignment . 4-16
String Concatenation Operator 4-17
Examples of String Assignment 4-17

Task Assignment. 4-18
ATTACH Statement.... 4-19

8600 0098-000 xv

Contents

Attachment of Interrupts . 4-19
Examples of ATTACH Statement 4-19

AWAITOPEN Statement . 4-20
PARTICIPATE Option . 4-21
CONNECTTIMELIMIT Option 4-21
Examples of AWAITOPEN Statement.. 4-21

CALL Statement. 4-22
Coroutines . 4-22
Example of CALL Statement 4-23

CANCEL Statement . 4-23
Delinking a Library from a Program 4-23
Example of CANCEL Statement 4-24

CASE Statement . 4-24
Unnumbered Statement List 4-24
Numbered Statement List . 4-25
Examples of CASE Statement 4-26

CAUSE Statement . 4-26
Causes of Events . 4-26
Examples of CAUSE Statement 4-27

CAUSEANDRESET Statement . 4-27
Relationship to CAUSE Statement. 4-27
Examples of CAUSEANDRESET Statement. 4-28

CHANGEFILE Statement. 4-28
Directory Element . 4-29
Example of CHANGEFILE Statement 4-30

CHECKPOINT Statement . 4-30
Disposition Option . 4-31
Restarting a Job . 4-32
Locking . 4-34
Rerunning Programs . 4-35
Example of CHECKPOINT Statement. 4-35

CLOSE Statement . 4-35
CLOSE Options . 4-36
PORT CLOSE Option . 4-37
Examples of CLOSE Statement 4-38

CONTINUE Statement . 4-39
Coroutines . 4-39
Examples of CONTINUE Statement 4-40

DEALLOCATE Statement. 4-40
Deallocation with Arrays . 4-40
Examples of DEALLOCATE Statement 4-41

DETACH Statement . 4-41
Detaching Interrupts . 4-41
Example of DETACH Statement 4-41

DISABLE Statement . 4-42
Disabling Interrupts . 4-42
Examples of DISABLE Statement 4-42

DISPLAY Statement . . • . 4-42
Pointer and String Expressions 4-43
Examples of DISPLAY Statement. 4-43

DO Statement . 4-43
Evaluation of Boolean Expression 4-43

xvi 8600 0098-000

Contents

Examples of DO Statement. 4-44
ENABLE Statement . 4-44

Enabling Interrupts . 4-44
Examples of ENABLE Statement 4-45

ERASE Statement . 4-45
EVENT Statement . 4-46
EXCHANGE Statement . 4-46

Conditions for Execution of the EXCHANGE Statement 4-47
Examples of EXCHANGE Statement 4-47

FILL Statement . 4-47
Initialization . 4-48
Examples of FILL Statement. 4-48

FIX Statement . 4-49
FIX Statement as a Boolean Function. 4-49
Examples of FIX Statement. 4-49

FOR Statement . 4-50
Forms of the FOR Statement 4-51

FOR-DO Loop. 4-51
FOR-STEP-UNTIL Loop 4-51
FOR-STEP-WHILE Loop. 4-52
FOR-WHILE Loop . 4-53

Examples of FOR Statement 4-54
FREE Statement. 4-55

FREE Statement as a Boolean Function 4-55
Examples of FREE Statement 4-55

FREEZE Statement . 4-56
FREEZE Statements in Library Procedures 4-56
Examples of FREEZE Statement 4-57

GO TO Statement... 4-57
Bad GO TO . 4-58
Examples of GO TO Statement 4-58

1/0 Statement . 4-58
Normal 1/0 . 4-59
Direct 1/0 . 4-59

IF Statement . 4-61
Forms of the IF Statement . 4-61
Examples of IF Statement. 4-62

INTERRUPT Statement........ 4-63
INVOCATION Statement . 4-63
LIBERATE Statement . 4-63

Execution of Implicit CAUSE Statement 4-64
Examples of LIBERATE Statement. 4-64

LOCK Statement . 4-64
Lock Options . 4-64
Examples of LOCK Statement 4-65

MERGE Statement . 4-65
Merge Options . 4-65
Example of MERGE Statement 4-66

MESSAGESEARCHER Statement . 4-66
Finding a Requested Message 4-67
MESSAGESEARCHER Statement as an Arithmetic

Function . 4-67

8600 0098-000 xvii

Contents

Example of MESSAGESEARCHER Statement 4-68
MLSACCEPT Statement . 4-68

MLSACCEPT Used for Data Input 4-68
MLSACCEPT Used as a Boolean Function 4-69
Additional MLSACCEPT Options 4-69
Example of MLSACCEPT Statement 4-69

MLSDISPLAY Statement . 4-70
MLSTRANSLATE Statement . 4-71

MLSTRANSLATE Options... 4-71
MLSTRANSLATE as an Arithmetic Function 4-72

MULTIPLE ATTRIBUTE ASSIGNMENT Statement 4-73
Assignment of Values. 4-73
Examples of MULTIPLE ATTRIBUTE ASSIGNMENT

Statement . 4-73
ON Statement . 4-74

Enabling ON Statements . 4-74
Fault List . 4-74
Fault Information Part . 4-75
Fault Stack History . 4-76
Fault Action . 4-77
Disabling ON Statement. 4-77
Examples of ON Statement. 4-78

OPENm~eme~........... .. 4-79
OPEN Options . 4-79
Examples of OPEN Statement. 4-80

POINTER Statement. 4-81
POINTER Statement Options 4-81
Temporary Storage . 4-81

Stack-Source-Pointer . 4-82
Stack-Destination-Pointer. 4-82
Stack-Auxiliary-Pointer. 4-82
Stack-Integer-Counter 4-83
Stack-Test-Character . 4-83
Stack-Source-Operand 4-83

PROCEDURE INVOCATION Statement.. 4-83
Calling Procedures with Parameters. 4-84
Examples of PROCEDURE INVOCATION Statement . . 4-85

PROCEDURE REFERENCE ARRAY Statement 4-85
Using Procedure Reference Arrays 4-85
Example of PROCEDURE REFERENCE ARRAY

Statement . 4-86
PROCESS Statement . 4-87

Initiation of an Asynchronous Process 4-87
Critical Block . 4-87
Examples of PROCESS Statement 4-88

PROCURE Statement . 4-88
Testing the Available State . 4-88
Sharing Resources Among Programs 4-89
Examples of PROCURE Statement 4-89

PROGRAMDUMP Statement . 4--89
PROGRAM DUMP Options . 4-90
Programdump Destination Options 4--91

xviii 8600 0098-000

8600 0098-000

Contents

Relation to OPTION Task Attribute
Retrieval of Binding Information
Examples of PROGRAMDUMP Statement

READ Statement
File Part
1/0 Option or Carriage Control
Subfile Specification
Core-to-Core Part
Core-to-Core Blocking Part
Format and List Part

Formatted Read
Binary Read
Array Row Read

Action Labels or Finished Event
Data Format for Free-field Input

Free-field Data Format
Fields

Unquoted String
Number
Quoted String
Hex String
Slash (/)
Asterisk (*)
Examples of Fields

Examples of READ Statement
REMOVEFILE Statement

Directory Element
REMOVEFILE Statement as a Boolean Function
Family Substitution
Example of REMOVEFILE Statement

REPLACE Statement
Source Part List
Source Part Combinations
String Literal Source Parts

<string literal>
<string literal> FOR <arithmetic expression> ..
<string literal> FOR <arithmetic expression>

WORDS
Arithmetic Expression Source Parts

<arithmetic expression>
<arithmetic expression> FOR <arithmetic

expression>
<arithmetic expression> FOR <arithmetic

expression> WORDS
<arithmetic expression> FOR <arithmetic

expression> DIGITS
<arithmetic expression> FOR* DIGITS
<arithmetic expression> FOR <arithmetic

expression> SDIGITS
<arithmetic expression> FOR* SDIGITS
<arithmetic expression> FOR <count part>

NUMERIC

4-92
4-92
4-92
4-93
4-94
4-94
4-95
4-96
4-97
4-98
4-98
4-99

4-100
4-101
4-102
4-102
4-103
4-103
4-103
4-104
4-104
4-104
4-104
4-104
4-106
4-107
4-107
4-107
4-107
4-107
4-108
4-108
4-111
4-111
4-112
4-113

4-114
4-115
4-115

4-116

4-116

4-117
4-118

4-118
4-119

4-119

xix

Contents

xx

<arithmetic expression> FOR* NUMERIC
Pointer Expression (<source>) Source Parts

<source> FOR <arithmetic expression>
<source> FOR <arithmetic expression> WORDS
<source> FOR <arithmetic expression> WITH

<translate table>
<intrinsic translate table>
<translate table identifier>
<subscripted variable>

<source> WITH <picture identifier>
Source Parts with Boolean Conditions

<source> WHILE <relational operator>
<arithmetic expression>

<source> UNTIL <relational operator>
<arithmetic expression>

<source> WHILE IN <truth set table>
<source> UNTIL IN <truth set table>
<source> FOR <count part> WHILE <relational

operator> <arithmetic expression>
<source> FOR <count part> UNTIL <relational

operator> <arithmetic expression>
<source> FOR <count part> WHILE IN <truth

set table>
<source> FOR <count part> UNTIL IN <truth

set table>
Other Source Parts

<pointer-valued attribute>
<string expression>

Examples of REPLACE Statement
REPLACE FAMILY-CHANGE Statement

Specification of Valid Stations
Examples of REPLACE FAMILY-CHANGE Statement ..

REPLACE POINTER-VALUED ATTRIBUTE Statement
Specification of the Simple Source
Examples of REPLACE POINTER-VALUED ATTRIBUTE

Statement
RESET Statement

WAIT and WAITANDRESET Statements
Examples of RESET Statement

RESIZE Statement
Array Row Resize Parameters
Special Array Resize Parameters

Multidimensional Array Designator
Event Array Designator
String Array Designator · .

Run-Time Error Messages
Examples of RESIZE Statement

RESPOND Statement
RESPOND Statement Options
Examples of RESPOND Statement

REWIND Statement
Effects on Designated Files
Example of REWIND Statement

4-120
4-121
4-121
4-121

4-122
4-122
4-122
4-123
4-123
4-123

4-124

4-124
4-125
4-125

4-125

4-126

4-126

4-127
4-127
4-127
4-128
4-128
4-129
4-130
4-130
4-130
4-131

4-132
4-132
4-133
4-133
4-133
4-134
4-136
4-137
4-137
4-137
4-137
4-138
4-139
4-140
4-140
4-141
4-141
4-141

8600 0098-000

8600 0098-000

Contents

RUN Statement
Initiating Procedures
Examples of RUN Statement

SCAN Statement
Scan Part Combinations
Scan Parts Without Count Parts

WHILE <relational operator> <arithmetic
expression>

UNTIL <relational operator> <arithmetic
expression>

WHILE IN <truth set table>
UNTIL IN <truth set table>

Scan Parts with Count Parts
FOR <count part> WHILE <relational operator>

<arithmetic expression>
FOR <count part> UNTIL <relational operator>

<arithmetic expression>
FOR <count part> WHILE IN <truth set table>
FOR <count part> UNTIL IN <truth set table> .

Examples of SCAN Statement
SEEK Statement

SEEK Statement as a Boolean Function
Example of SEEK Statement.

SET Statement
SET Statement Options
Examples of SET Statement

SORT Statement
Output Option
Input Option
Number of Tapes
Compare Procedure
Record Length
Size Specifications
Restart Specifications
Arrays in Sort Procedures
Examples of SORT Statement

SPACE Statement
SPACE Statement as a Boolean Function
Examples of SPACE Statement

SWAP Statement
Variable Type Matching
Example of SWAP Statement

THRU Statement
Value of the Arithmetic Expression
Examples of THRU Statement

WAIT Statement
WAIT Statement Options
Examples of WAIT Statement

WAITANDRESET Statement
WAITANDRESET Statement as an Arithmetic Function
Examples of WAITANDRESET Statement

WHEN Statement

4-141
4-142
4-142
4-143
4-143
4-144

4-144

4-144
4-144
4-144
4-145

4-145

4-145
4-145
4-146
4-146
4-146
4-147
4-147
4-147
4-147
4-148
4-148
4-148
4-149
4-150
4-150
4-151
4-151
4-152
4-154
4-154
4-155
4-155
4-155
4-156
4-156
4-156
4-158
4-158
4-158
4-159
4-159
4-160
4-161
4-161
4-162
4-162

xxi

Contents

Section 5.

xx ii

Characteristics of the Time Option
Examples of WHEN Statement

WHILE Statement
Execution of the WHILE Statement
Examples of WHILE Statement

WRITE Statement
Write File Part
< 1/0 option or carriage control>
Write Subfile Specification
Format and List Part

Formatted Write
Binary Write
Array Row Write
Free-Field Part
Example of Free-Field Part

Action Labels or Finished Event
Examples of WRITE Statement

ZIP Statement
ZIP WITH <array row>
ZIP WITH <file designator>•...
Examples of ZIP Statement

Expressions and Functions

4-162
4-163
4-163
4-163
4-164
4-164
4-165
4-165
4-166
4-167
4-167
4-167
4-168
4-169
4-170
4-170
4-171
4-171
4-172
4-172
4-172

Expressions . 5-1
Arithmetic Expression . 5-2

Precision of Arithmetic Expressions 5-2
Arithmetic Operators . 5-3

Precedence of Arithmetic Operators 5-4
Types of Resulting Values 5-5

Arithmetic Primaries . 5-6
Bit Manipulation Expression 5-8

Concatenation Expression 5-8
Partial Word Expression 5-11

Boolean Expression . 5-12
Operators in Boolean Expressions 5-12

Logical Operators 5-13
IS and ISNT Operators 5-13
Relational Operators 5-14

Precedence in Boolean Expressions 5-14
Boolean Primaries. 5-15

Boolean Value. 5-16
Arithmetic Relation 5-16
Complex Relation • 5-16
String Relation • 5-17
Pointer Relation 5-17
String Expression Relation 5-18
Table Membership. 5-19

Case Expression • . 5-20
Complex Expression . 5-21
Conditional Expression • 5-23

8600 0098-000

Contents

Designational Expression . 5-24
Function Expression. 5-25

Arithmetic Function Designator 5-26
Boolean Function Designator 5-26
Complex Function Designator 5-26
Pointer Function Designator 5-27
String Function Designator 5-27

Pointer Expression . 5-27
String Expression . 5-30

Intrinsic Functions . 5-33
Intrinsic Names by Type Returned 5-33

Arithmetic Intrinsic Names. 5-33
Boolean Intrinsic Names 5-36
Complex Intrinsic Names 5-36
Pointer Intrinsic Names 5-36
String Intrinsic Names 5-36

Intrinsic Function Descriptions 5-37
ABS Function . 5-37
ACCEPT Statement . 5-37
ARCCOS Function . 5-37
ARCSIN Function . 5-37
ARCTAN Function . 5-37
ARCTAN2 Function . 5-37
ARRAYSEARCH Function 5-38
ATANH Functio'n . 5-39
AVAILABLE Function . 5-39
BOOLEAN Function . 5-39
CABS Function . 5-39
CCOS Function . 5-39
CEXP Function . 5-39
CHANGEFILE Statement 5-39
CHECKPOINT Statement 5-40
CHECKSUM Function 5-40
CLN Function . 5-40
CLOSE Statement . 5-40
COMPILETIME Function 5-40
COMPLEX Function . 5-41
CONJUGATE Function 5-41
COS Function . 5-41
COSH Function . 5-41
COTAN Function . 5-41
CSIN Function . 5-41
CSQRT Function . 5-42
DABS Function . 5-42
DALPHA Function . 5-42
DAND Function. 5-42
DARCCOS Function . 5-42
DARCSIN Function . 5-43
DARCTAN Function . 5-43
DARCTAN2 Function . 5-43
DCOS Function... 5-43
DCOSH Function... 5-43

8600 0098-000 xxiii

Contents

DECIMAL Function . 5-43
DELINKLIBRARY Function 5-44
DELTA Function . 5-44
DEQV Function . 5-44
DERF Function . 5-45
DERFC Function . 5-45
DEXP Function . 5-45
DGAMMA Function . 5-45
DIMP Function . 5-45
DINTEGER Function . 5-46
DINTEGERT Function 5-46
DLGAMMA Function . 5-46
DLN Function . 5-46
DLOG Function . 5-47
DMAX Function. 5-47
DMIN Function . 5-47
DNABS Function. 5-47
DNORMALIZE Function 5-47
DNOT Function. 5-47
DOR Function . 5-48
DOUBLE Function. 5-48
DROP Function . 5-48
DSCALELEFT Function 5-49
DSCALERIGHT Function 5-49
DSCALERIGHTT Function 5-50
DSIN Function . 5-50
DSINH Function . 5-50
DSQRT. Function . 5-50
DTAN Function . 5-50
DTANH Function . 5-50
ENTIER Function . 5-51
ERF Function . 5-51
ERFC Function . 5-51
EXP Function . 5-52
FIRST Function . 5-52
FIRSTONE Function . 5-52
FIRSTWORD Function 5-52
FIX Statement . 5-53
FREE Statement . 5-53
GAMMA Function . 5-53
HAPPENED Function. 5-53
HEAD Function . 5-53
IMAG Function . 5-54
INTEGER Function . 5-54
INTEGERT Function . 5-55
LENGTH Function . 5-55
LINENUMBER Function 5-55
LINKLIBRARY Function 5-55
LISTLOOKUP Function. 5-57
LN Function . 5-57
LNGAMMA Function . 5-57
LOG Function . 5-58

xx iv 8600 0098-000

Contents

MASKSEARCH Function 5-58
MAX Function . 5-58
MESSAGESEARCHER Statement 5-58
MIN Function . 5-58
M LSACCEPT Statement 5-59
MLSTRANSLATE Statement 5-59
NABS Function . 5-59
NORMALIZE Function 5-59
OFFSET Function . 5-59
ONES Function . 5-59
OPEN Statement. 5-60
POINTER Function . 5-60
POT Function . 5-61
PROCESSID Function 5-62
RANDOM Function .. 5-62
READ Statement . 5-62
READLOCK Function . 5-62
REAL Function . 5-63
REMAININGCHARS Function 5-63
REMOVEFILE Statement 5-64
REPEAT Function . 5-64
SCALELEFT Function . 5-64
SCALERIGHT Function 5-65
SCALERIGHTF Function 5-65
SCALERIGHTI Function 5-65
SECONDWORD Function.. 5-66
SEEK Statement . 5-66
SETACTUALNAME Function 5-66
SIGN Function . 5-67
SIN Function . 5-67
SINGLE Function . 5-67
SINH Function . 5-67
SIZE Function . 5-68
SPACE Statement . 5-68
SQRT Function . 5-68
STRING Function . 5-68
TAIL Function . 5-70
TAKE Function . 5-71
TAN Function . 5-71
TANH Function. 5-71
TIME Function . 5-71
TRANSLATE Function 5-75
VALUE Function . 5-75
WAIT Statement . 5-76
WAITANDRESET Statement 5-76
WRITE Statement. 5-76

Section 6. Compiling Programs

Files Used by the Compiler . 6-1
Input Files . 6-3

8600 0098-000 xxv

Contents

CARD File . • 6-3
SOURCE File . 6-3
INCLUDE Files . 6-4
HOST File . 6-4
INFO File . 6-4

Output Files . 6-4
CODE File . 6-4
NEWSOURCE File. 6-5
LINE File . 6-5
ERRORS File . 6-5
XREFFILE File. 6-6
INFO File . 6-6

Source Record Format . 6-6
Compiler Control Options . 6-7

Compiler Control Records. 6-7
Option Descriptions . 6-12

ASCII Option. 6-12
AUTOBIND Option . 6-13
BCL Option . 6-14
BEGINSEGMENT Option 6-14
BIND Option. 6-15
BINDER Option . 6-15
CHECK Option . 6-15
CODE Option . 6-16
DONTBIND Option . 6-:16
DUMPINFO Option . 6-16
ENDSEGMENT Option 6-17
ERRLIST Option . 6-17
EXTERNAL Option . 6-17
FORMAT Option . 6-18
GO TO Option . 6-18
HOST Option . 6-18
INCLNEW Option . 6-19
INCLSEQ Option . 6-19
INCLUDE Option.. 6-19
INITIALIZE Option. 6-21
INSTALLATION Option......... 6-21
INTRINSICS Option........ 6-21
LEVEL Option . 6-22
LIBRARY Option . 6-22
LIMIT Option or ERRORLIMIT Option 6-22
LINEINFO Option . 6-23
LIST Option . 6-23
LISTDELETED Option 6-23
LISTINCL Option.. 6-24
LISTOMITTED Option 6-24
LISTP Option . 6-24
LOADINFO Option . 6-24
MAKEHOST Option . 6-26
MCP Option . 6-28
MERGE Option . 6-28
NEW Option.......................... 6-29

xxvi 8600 0098-000

Contents

NEWSEQERR Option... 6-29
NOBCL Option . 6-29
NOBINDINFO Option. 6-30
NOSTACKARRAYS Option 6-30
NOXREFLIST Option . 6-30
OLDRESIZE Option . 6-31
OMIT Option . 6-31
OPTIMIZE Option . 6-31
PAGE Option . 6-31
PARAMCH ECK Option 6-32
PURGE Option . 6-32
SEGDESCABOVE Option 6-32
SEGS Option . 6-32
SEPCOMP Option . 6-33
SEQ Option . 6-34
SEQERR Option . 6-35
SEQUENCE BASE Option. 6-35
SEQUENCE INCREMENT Option 6-35
SHARING Option . 6-35

DONTCARE . 6-36
PRIVATE . 6-36
SHAREDBYALL 6-36
SHAREDBYRUNUNIT 6-36

SINGLE Option . 6-36
STACK Option. 6-37
STATISTICS Option . 6-37
STOP Option . 6-38
TADS Option . 6-38
TARGET Option . 6-39
TIME Option. 6-41
USE Option . 6-41
USER Option . 6-41
VERSION Option . 6-42
VOID Option . 6-43
VOIDT Option . 6-43
WARNSUPR Option . 6-43
WRITEAFTER Option . 6-44
XDECS Option . 6-44
XREF Option. 6-44
XREFFILES Option . 6-46
XREFS Option . 6-46
$ Option . 6-46

Section 7. Compile-Time Facility

Compile-Time Variable . 7-1
Compile-Time Identifier. 7-2
Compile-Time Statements . 7-2

BEGIN Statement . 7-3
DEFINE Statement . 7-3
FOR Statement. 7-3

8600 0098-000 xxvii

Contents

IF Statement. 7-4
INVOKE Statement . 7-4
LET Statement . 7-4
THRU Statement . 7-5
WHILE Statement.. 7-5

Extension to the Define Declaration . 7-5
Compile-Time Compiler Control Options 7-6

CTLIST Option . 7-6
CTMON Option . 7-6
CTTRACE Option . 7-6
LISTSKIP Option . 7-6

Section 8. Library Facility

Operating the Components of the Library Facility 8-1
Library Programs. 8-1
Calling Programs . 8-2
Library Directories and Templates 8-2
Library Initiation ; 8-3
Linkage Provisions. 8-4
Discontinuing Linkage . 8-5
Error Handling . 8-5

Creating Libraries . 8-6
Referencing Libraries . 8-7

Library Attributes . 8-7
Entry Point Type Matching . 8-10
Parameter Passing. 8-11

Library Examples . 8-12
Library: OBJECT/FILEMANAGER/LIB. 8-12
Calling Program #1 . 8-14
Library: OBJECT/SAMPLE/LIBRARY 8-15
Library: OBJECT/SAMPLE/DYNAMICLIB 8-16
Calling Program #2 . 8-18
Library: MCPSUPPORT . 8-19

Section 9. Internationalization

Accessing the Internationalization Features. 9-1
Using the Ccsversion, Language, and Convention

Default Settings . 9-2
Understanding the Hierarchy for Default Settings 9-3

Understanding the Components of the MLS Environment. 9-3
Coded Character Sets and Ccsversions 9-4

Mapping Tables . 9-5
Data Classes . 9-6
Text Comparisons . 9-6

Providing Support for Natural Languages 9-7
Creating Messages for an Application Program 9-8
Creating Multilingual Messages for Translation . . 9-8

xxviii 8600 0098-000

Contents

Providing Support for Business and Cultural
Conventions . 9-9

Using the Date and Time Features. 9-9
Using the Numeric and Currency Features 9-10
Using the Page Size Formatting Features 9-11

Summary of CENTRALSUPPORT Library Procedures. 9-11
Library Calls . 9-21
Parameter Categories. 9-22

Input Parameters. 9-22
Input Parameters with Type Values 9-22
Output Parameters . 9-23
Result . 9-23

Procedure Descriptions . 9-23
CCSINFO . 9-24
CCSTOCCS TRANS TABLE 9-27

- -
CCSTOCCS TRANS TABLE ALT 9-28 - - -
CCSTOCCS TRANS TEXT . 9-30 - -
CCSVSN NAMES NUMS. 9-32

- -
CENTRALSTATUS.......................... 9-34
CNV ADD . 9-35
CNV CONVERTCURRENCY STAR 9-38

- -
CNV CONVERTDATE STAR. 9-39

- -
CNV CONVERTNUMERIC STAR 9-41 - -
CNV CONVERTTIME STAR 9-42

- -
CNV CURRENCYEDIT. 9-44
CNV CURRENCYEDITTMP 9-45
CNV DELETE.. 9-47
CNV DISPLAYMODEL . 9-48
CNV FORMATDATE 9-50
CNV FORMATDATETMP..................... 9-51
CNV FORMATTIME . 9-53
CNV FORMATTIMETMP . 9-54
CNV FORMSIZE . 9-56
CNV INFO . 9-57
CNV MODIFY............................. 9-60
CNV NAM ES . 9-63
CNV SYMBOLS . 9-64
CNV SYSTEMDATETIME..................... 9-68
CNV SYSTEMDATETIMETMP 9-70
CNV TEMPLATE . 9-72
CNV VALIDATENAME....................... 9-74
COMPARE TEXT USING ORDER INFO 9-75 - - - -
GET CS MSG. 9-77
MCP BOUND LANGUAGES 9-79 - -
VALIDATE NAME RETURN NUM 9-80 - - -
VALIDATE NUM RETURN NAME 9-82 - - -
VSNCOMPARE TEXT . 9-83
VSNESCAPEMENT. 9-85
VSNGETORDERINGFOR ONE TEXT. 9-88
VSNINFO . 9-90
VSNINSPECT TEXT........................ 9-94
VSNORDERING INFO....................... 9-96

8600 0098-000 xxix

Contents

xxx

VSNTRANSTABLE
VSNTRANS TEXT
VSNTRUTHSET

Explanation of Error Values

Appendix A. Run-Time Format-Error Messages

9-98
9-100
9-102
9-104

Free-field Input . A-1
Formatted Output. A-1
Formatted Input . A-2

Appendix B. Reserved Words

Reserved Words List . B-2
Reserved Words by Type . B-6

Type 1 Reserved Words . B-6
Type 2 Reserved Words . B-7
Type 3 Reserved Words . B-10

Appendix C. Data Representation

Field Notation . C-1
Character Representation . C-1

Character Values and Graphics C-4
Default Character Type. C-12
Signs of Numeric Fields . C-14

One-Word Operand. C-14
Real Operand . C-14
Integer Operand . C-15
Boolean Operand . C-16

Two-Word Operand . C-17
Double-Precision Operand . C-17
Complex Operand . C-19

Type Coercion of One-Word and Two-Word Operands C-19
Data Descriptors and Pointer . C-20

Appendix D. Understanding Railroad Diagrams

What Are Railroad Diagrams? . D-1
Constants and Variables . D-2
Constraints. D-2

Following the Paths of a Railroad Diagram D-5
Railro~d Diagram Examples with Sample Input D-6

Glossary . 1

8600 0098-000

Contents

Bibliography. 1

Index . 1

8600 0098-000 xxxi

xxxii 8600 0098-000

Figures

3-1.
3-2.

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.

5-1.
5-2.
5-3.
5-4.

6-1.

8-1.

C-1.
C-2.
C-3.
C-4.
C-5.
C-6.
C-7.
C-8.
C-9.
C-10.

D-1.

8600 0098-000

Translate Table Indexing
Truth Set Test

DO-UNTIL Loop
FOR-DO Loop -.............................. .
FOR-STEP-UNTIL Loop
FOR-STEP-WHILE Loop
FOR-WHILE Loop
THRU Loop .. .
WHILE-DO Loop

Exponentiation: Meaning of Y**Z
Mathematical Notation
Types of Values Resulting from Arithmetic Operations
Results of Logical Operators

Compiler Files

Parameter Passing Rules

Field Notation, [28:5]
EBCDIC Characters (8-bit Fields)
ASCII Characters (8-bit Fields)
BCL Characters (6-bit Fields)
Hexadecimal Characters (4-bit Fields)
Real Operand
Integer Operand
Boolean Operand
First Word, Double Precision Operand
Second Word, Double Precision Operand

Railroad Constraints

3-117
3-120

4-44
4-51
4-52
4-53
4-54

4-158
4-163

5-4
5-5
5-6

5-13

6-2

8-11

C-1
C-2
C-3
C-3
C-4

C-14
C-15
C-16
C-17
C-18

D-5

xxxiii

xxxiv 8600 0098-000

Tables

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.

9-1.
9-2.

8600 0098-000

Array Parameters
Procedure Reference Array Parameters
Procedure Parameters
Simple Variable Parameters
String Parameters
File Parameters .. .
Other Types of Parameters

Functional Grouping of CENTRALSUPPORT Library Procedures
Error Results for Internationalization

3-93
3-95
3-96
3-97
3-98
3-98
3-99

9-12
9-105

xxxv

xxxvi 8600 0098-000

Section 1
Program Structure

Program Unit
A program unit is a group of ALGOL constructs that can be compiled as a whole. The
following diagram shows the elements that can be included in an ALGOL program.

<program unit>

<block> .
<compound statement~ J
<level 2 procedure;:___J

1-------~~~ <separate ~r~- - .
<global part V~CUUIC--------c;

<block>

- BEGIN -<declaration 1 ist>- ; -<statement 1 ist>- END ------1

<declaration list>

<statement list>

__L<state~ent>-'----------------------i

<compound statement>

- BEGIN -<statement 1 ist>- END ---------------1

<level 2 procedure>

-<procedure decl arati on>---------------------i

<global part>

- [-<declaration list>-] _______________ ___,

<separate procedure>

-<procedure decl arati on>---------------------i

8600 0098-000 1-1

Program Structure

Elements of an ALGOL Program

1-2

The simplest valid ALGOL program is a BEGIN/END pair. The BEGIN/END pair
can enclose a list of declarations, a list of modules, or a list of statements. If the
BEGIN/END pair is preceded by a procedure heading, the entire program is a procedure,
which can be typed or untyped and can have one or more parameters.

Program units can be blocks, compound statements, level 2 procedures, or separate
procedures that have a lexical (lex) level of three or greater and that can have global
declarations.

A block is a statement that groups one or more declarations and statements into a logical
unit by using a BEGIN/END pair. A compound statement is a statement that groups
one or more statements into a logical unit by using a BEGIN/END pair. A compound
statement is a block without any declarations.

The definitions of a compound statement and a block are recursive: both compound
statements and blocks are made, in part, of statements. A statement can itself be a
compound statement or a block.

The structures of compound statements and blocks are illustrated in the following:

Compound Statements

BEGIN
<statement>;
<statement>;

<statement>;
END

BEGIN
<statement>;
<statement>;
BEGIN

<declaration>;
BEGIN

<statement>;
<statement>;

END;
END;
<statement>;

END

8600 0098-000

Program Structure

Blocks

BEGIN
<declaration>;
<declaration>;

<declaration>;
<statement>;
<statement>;

<statement>;
END

BEGIN
<declaration>;
<declaration>;
<statement>;
BEGIN

<declaration>;
<statement>;

END;
BEGIN

<statement>;
<statement>;
<statement>;

END;
END

A program unit that is a separate procedure is typically bound to a host program to
produce a more complete program.

The <global part> construct allows global identifiers to be referenced within a separate
procedure. Any program unit that has a global part is valid only for binding to a host.

A program unit can be preceded, but not followed, by a remark.

A compound statement is executed in-line and does not require a procedure entrance
and exit. A block, however, is executed like a procedure and requires a procedure
entrance and exit. Entering a block requires extra processor resources; entering a
compound statement does not.

Examples

Compound Statement

BEGIN
DISPLAY("HI THERE");
DISPLAY ("THAT'S ALL FOLKS");

END.

Block

BEGIN
REAL X;
x := 100;

END.

8600 0098-000 1-3

Program Structure

Scope

1-4

Level 2 Procedure

PROCEDURE S;
BEGIN

REAL X;
X := SQRT(4956);

END.

Separate Procedure with Global Part

[REAL S;
ARRAY B [0: 255] ;
FILE LINE;]

REAL PROCEDURE Q;
BEGIN

Q := S*B[4];
WRITE(LINE,/,"DONE");

END.

According to the syntax, the last statement of a block or compound statement is not
followed by a semicolon (;). However, in the above examples (and throughout this
manual), the last statement is always followed by a semicolon. This is valid because the
statement before the END is the null statement.

The scope of an identifier is the portion of an ALGOL program in which the identifier can
successfully be used to denote its corresponding values and characteristics.

In one part of an ALGOL program, an identifier can be used to denote one set of values
and characteristics, while in another part of the program, the same identifier can be used
to denote a different set of values and characteristics.

For example, in one block the identifier EXAMPLE_ ID ENT can be declared as a REAL
variable. That is, the identifier can be used to store single-precision, floating-point
arithmetic values. Such an identifier could be assigned the value 3.14159. In another
block of the same program, EXAMPLE_ ID ENT can be declared as a STRING
variable. In this block, EXAMPLE_ ID ENT could be assigned the value ALGOL IS A
HIGH-LEVEL, BLOCK-STRUCTURED LANGUAGE.

Although EXAMPLE_ ID ENT can be of type real and of type string in the same program,
within a specific block EXAMPLE_ ID ENT has only one type associated with it. In
general, the scope of an identifier is always such that within a given block, the identifier
has associated with it at most one set of values and characteristics.

The scope of an identifier is described by rules that define which parts of the program
are included by the scope, which parts of the program are excluded by the scope, and the
requirements for uniqueness placed on the choice of identifiers. These general rules are
described as follows.

8600 0098-000

Program Structure

Local Identifiers

An identifier that is declared within a block is referred to as local to that block. The
value or values associated with that identifier inside the block are not associated with
that identifier outside the block. In other words, on entry to a block, the values of local
identifiers are undefined; on exit from the block, the values of local identifiers are lost.
An identifier that is local to a block is global to blocks occurring within the block. When a
block is exited, identifiers that are global to that block do not lose the values associated
with them. The properties of global identifiers are described more completely below.

Global Identifiers

An identifier that appears within a block and that is not declared within the block, but
is declared in an outer block, is referred to as global to that block. A global identifier
retains its values and characteristics as the blocks to which it is global are entered and
exited.

As the following program illustrates, an identifier can be local to one block but global to
another block.

BEGIN
FILE PRTR(KIND =PRINTER);
REAL A;
A := 4.2 @ -1; % FIRST STATEMENT OF OUTER BLOCK
BEGIN

LIST L1 (A);
INTEGER A;
LIST L2 (A);
A := 3; % FIRST STATEMENT OF INNER BLOCK
WRITE (PRTR, *I. Ll) ;
WRITE (PRTR, */, L2);

END; % OF INNER BLOCK
A := A*A;
WRITE (PRTR, */,A);

END. % OF PROGRAM

In the preceding example, the identifier A that is declared REAL is global to the inner
block. The A declared as type INTEGER in the inner block is local to the inner block, so
when the inner block is exited, the integer A and its value, 3, are lost. Within the scope
of integer A, a reference to A is a reference to the integer A, not to the global, real A At
the time the declaration for list Ll is compiled, the declaration for local A has not been
seen, so list Ll contains the global, real A However, the list L2 contains the local, integer
A The A referenced in the outer block is the A that was declared REAL and assigned
the value 4.2@ -1. The result of the first WRITE statement is A= 0.42. The result
of the second WRITE statement is A= 3. The result of the third WRITE statement is
A= 0.1764, which equals 4.2 @ -1 * 4.2 @ -1.

Global identifiers are used in inner blocks for the following reasons:

• To carry values that have been calculated in an outer block into the inner block

• To carry a value calculated inside the block to an outer block

8600 0098-000 1-5

Program Structure

• To preserve a value calculated within a block for use in a later entry to the same
block

• To transmit a value from one block to another block that does not contain and is not
contained by the first block

1-6 8600 0098-000

Section 2
Language Components

Language components are the building blocks of ALGOL. They consist of basic symbols,
such as digits and letters, and symbol constructs, which are those groups of basic symbols
that are recognized by the ALGOL compiler.

<language component>

---r-<basic symbol>
L.<symbol construct

<symbol construct>

1
<~efin~ ~nvocat§ion
<1 dent i f1 er>>---------1
<number>
<remark>,._-------<
<reserved word
<string literal

Basic symbols, identifiers, numbers, remarks, and string literals are described under
separate headings in this section.

Because the define invocation is closely linked to the DEFINE declaration, the define
invocation is explained under "DEFINE Declaration" in Section 3, "Declarations."

Reserved words are described and listed in Appendix B, "Reserved Words."

Basic Symbol

<basic symbol>

-e1etteG
digit
delimiter

<letter>

Any one of the uppercase (capital) letters A through Z.

<digit>

Any one of the Arabic numerals 0 through 9.

8600 0098-000 2-1

Language Components

<delimiter>

brackeg
operator
space

<bracket>

<parameter delimiter>

-)"<letter string>"(--------------------1

2-2

<letter string>

Any character string not containing a quotation mark (").

<operator>

l arithmetic operator
l ogi cal operator>------1
rel ati onal operator'>-...-------<
1:~;09 coocatooat;oo opocatoc~

<arithmetic operator>

**

<logical operator>

1"}j AND
OR
!
EQV
IMP

J
I

8600 0098-000

Language Components

<relational operator>

t <string relational operator>
IS -----------1
ISNT -----------'

<string relational operator>

<string concatenation operator>

----,-- CAT
L !!

<space>

rt------~

__i_<si ngl e space>,.._._------------------------<

<single space>

One blank character.

Only uppercase letters are permitted. Lowercase letters are specifically disallowed.
Individual letters do not have particular meanings except as used in pictures and
formats.

Digits are used to form numbers, identifiers, and string literals.

Delimiters include operators, spaces, and brackets. An important function of these
elements is to delimit the various entities that make up a program. Each delimiter
has a fixed meaning, which, if not obvious, is explained in this manual in the syntax of
appropriate constructs. Basic symbols that are words, such as some delimiters and
operators, are reserved for specific use in the Janguage. A complete list of these words,
called reserved words, and details of the applicable restrictions are given in Appendix B,
"Reserved Words."

Reserved words and basic symbols are used, together with variables and numbers, to
form expressions, statements, and declarations. Because some of these constructs place
programmer-defined identifiers next.to delimiters composed of letters, these identifiers
and delimiters must be separated. Therefore, a space must separate any two Janguage
components of the following forms:

8600 0098-000 2-3

Language Components

• Delimiter composed of letters

• Identifier

• Boolean value

• Unsigned number

Aside from these requirements, the use of a space between any two language
components is optional. The meanings of the two language components are not affected
by the presence or absence of the space.

Identifier

2-4

<identifier>

-<letter>

LL162\1,,.~ <digit

Identifiers have no intrinsic meaning. They are names for variables, arrays, procedures,
and so forth. An identifier must start with a letter, which can be followed by any
combination of letters, digits, and underscore characters (_).

The scopes of identifiers are described in Section 1, "Program Structure."

Examples

Valid Identifiers

A
I
BS
YSQUARE
EQUITY
RETURN RATE
D2R271GL
TEST 1

Invalid Identifiers

1776

2BAD

$

X-Y

NET GAINS

NO.

TEST

BEGIN

Reason

Does not begin with a letter.

Does not begin with a letter.

$ is not an allowed character.

"-" is not an allowed character.

Blank spaces are not allowed.

"." is not an allowed character.

Does not begin with a letter.

Reserved word.

8600 0098-000

Language Components

Number

<number>

<unsigned number>------------------<
L<si gn:.-J

<sign>

<unsigned number>

---r-<decimal number>
l_ L:<exponent part>=j

<exponent part>--------~

<decimal number>

1<unsigned integer:
~<~ecimal fraction>~

<decimal fraction;>----------~

<unsigned integer>

___r:<digit>·~-------------------------;

<decimal fraction>

- . -<unsigned i nteger>---------------------1

<exponent part>

- @ ~L:-@-J~<i nteger>

<integer>

<unsigned i nteger>-------------------t
L<si gn:.-J

No space can appear within a decimal number. All numbers that do not contain the
double-precision exponent delimiter "@@" are considered to be single-precision
numbers.

Examples

Unsigned Integers

5

69

Decimal Fractions

. 5

.69

Decimal Numbers

69 .

.546

continued

8600 0098-000 2-5

Language Components

continued

Unsigned Integers

Integers

1776

-62256

+548

Valid Numbers

0
+545627657893
1. 75@-46
-4.31468
-@2
.375

Invalid Numbers

50 00.5@8 8

1,505,278

@63.4

1.667E-01 0

Number Ranges

Decimal Fractions Decimal Numbers

.013 3.98

25

Exponent Parts Unsigned Numbers

@8 99.44

@-06 @-11

@+54 1354.543@48

@@16 .1864@4

Reason

Blank spaces are not allowed.

Commas are not allowed.

Exponent part must be an integer.

E is not allowed for exponent part.

The sets of numbers that can be represented in ALGOL are symmetrical with respect to
zero; that is, the negative number corresponding to any valid positive number can also be
expressed in the language and the object program.

The largest and smallest integers and numbers that can be represented are as follows
(decimal versions are approximate):

• Any integer between plus and minus 549755813887 = 8**13 - 1 =
4"007FFFFFFFFF", inclusive, can be represented in integer form.

• For single-precision numbers:

The largest, positive, normalized, single-precision number that can be
represented is 4.31359146674@68 = (8**13 - 1) * 8**63 = 4"1FFFFFFFFFFF".

The smallest, positive, normalized, single-precision number that can be
represented is 8.75811540204@-47 = 8**(-51) = 4"3F9000000000".

• Zero and numbers with absolute values between the largest and smallest values
given above can be represented as single-precision real numbers.

2-6 8600 0098-000

Language Components

• For double-precision numbers:

The largest, positive, normalized, double-precision number that can be
represented is 1.94882838205028079124467@@29603 = (8**13 - 8**(-13)) *
8**32767 = 4"1FFFFFFFFFFFFFFFFFFFFFFF".

The smallest, positive, normalized, double-precision number that can be
represented is 1.9385458571375858335564@@-29581 = 8**(-32755) =
4"3F9000000000FF8000000000".

• Zero and numbers with absolute values between the largest and smallest values
given above can be represented as double-precision numbers.

Compiler Number Conversion

The ALGOL compiler can convert into internal format a maximum of 24 significant
decimal digits of mantissa in double precision. The effective exponent, which is the
explicit exponent value following the"@@" sign minus the number of digits to the right
of the decimal point, must be less than 29604 in absolute value. For example, the final
fractional zero cannot be specified in the smallest, positive, normalized, double-precision
number shown above: -29581 - (23 fractional digits) = -29604. Leading zeros are not
counted in determining the number of significant digits. For example, 0.0002 has one
significant digit, but 1.0002 has five significant digits.

The compiler accepts any value that can be represented in double precision (not more
than 24 significant decimal digits) as an unsigned number. If this unsigned number does
not contain an exponent part with"@@" (specifying a double-precision value), then the
single-precision representation of that value is used. If the value represented by the
significant digits of such an unsigned number, when disregarding the placement of the
decimal point, is greater than 549755813887, then some precision is lost if the unsigned
number is converted to single precision.

Exponents

The exponent part is a scale factor expressed as an integer power of 10. The exponent
part@@ <integer> signifies that the entire number is a double-precision value.

If the form of the unsigned number used includes only an exponent part, a decimal
number of 1 is assumed. For example, @-11 is interpreted as l@-11.

Remark

<remark>

t <end remark>
<comment remar~
<escape remark

8600 0098-000 2-7

Language Components

2-8

<end remark>

Any sequence ofletters, digits, and spaces not containing the reserved words END,
ELSE, or UNTIL.

<comment remark>

- COMMENT -<comment characters>-; ----------------i

<comment characters>

Any sequence of EBCDIC characters not containing a semicolon(;).

<escape remark>

- % -<escape text;;>---------------------;

<escape text>

Any sequence of EBCDIC characters.

Remarks are provided as methods of inserting program documentation throughout an
ALGOL source file.

The end remark can follow the language component END. The compiler recognizes the
termination of the end remark when it encounters one of the reserved words END,
ELSE, or UNTIL, or any nonalphabetic, nonnumeric EBCDIC character. Defines are not
expanded within an end remark.

The comment remark is delimited by the word COMMENT at the beginning and a
semicolon (;) at the end. The comment remark can appear between any two language
components except within editing specifications.

Because remarks, string literals, and define invocations are language components, a
comment remark is not recognized within a string literal, a define invocation, or another
remark. Comment remarks can contain the dollar sign ($), but the comment remark
must not contain a dollar sign as the first nonblank character on a source record. If a
dollar sign is the first nonblank character on a source record, the compiler interprets the
source record as a compiler control record.

The percent sign (%) preceding escape text in an escape remark can follow any language
component that is not contained in editing specifications. The escape remark begins
with the percent sign and extends to the beginning of the sequence number field of the
record. The compiler does not examine the escape remark. When the percent sign that
precedes an escape remark is encountered, the compiler skips immediately to the next
record of the source file before continuing the compilation.

8600 0098-000

Language Components

Examples

The following program illustrates some syntactically correct uses of the remark.

BEGIN
FILE F(KIND=PRINTER COMMENT;);
FORMAT COMMENT; FMT COMMENT; (A4,I6);
PROCEDURE P(X,COMMENT;Y,Z);

REAL X,Y COMMENT; ,Z; % PERCENT SIGN CAN BE USED HERE
X := Y + COMMENT; Z; % HERE TOO

IF COMMENT; 7 > 5 THEN
WRITE(F,<"OK">);

IF 4 COMMENT; > 2 THEN
WRITE(F,<"OK">);

IF 8 > 5 THEN
WRITE COMMENT;(F,<"OK">);

END OF PROGRAM.

The following program illustrates some invalid uses of the remark.

BEGIN
FILE F(KIND=PRINTER);
FORMAT FMT(13,F10.3 COMMENT; ,A4);
ARRAY A[0:99];
REAL X;
FORMAT ("ABC", % CANNOT BE USED. "DEE");
WRITE(F,<"INVALID USE" COMMENT;>);
REPLACE POINTER(A) BY "ABCD COMMENT; EFGHIJ";
X := "AB,COMMENT;C";
COMMENT CANNOT BE USED HERE COMMENT; EITHER;

END.

String Literal

<string literal>

r~----------,
--L<simple string literal>-'------------------j

<simple string literal>

<binary code>- 11 -<binary string>- 11 -----------<~
<quaternary code>- " -<quaternary string>- 11 -

<octal code>- 11 -<octal string>- " --------;
<hexadecimal code>- 11 -<hexadecimal string>- 11 -

1-------~" -<EBCDIC string>- 11 -----<
<EBCDIC code
<BCL code>- 11 -<BCL string>- 11 -------;

<ASCII code>- 11 -<ASCII string>- 11 ----~

8600 0098-000 2-9

Language Components

2-10

<binary code>

1 ~~--------------------------!
10
12
120
13
130
14
140
16
160
17
170
18
180

<binary string>

--s=~~...L-----------------------1

<quaternary code>

<quaternary string>

<octal code>

1 ~0
36
360

<octal string>

---.C:octal character>>-'----------------------1

8600 0098-000

Language Components

<octal character>

0 ~------------------------~
1
2
3
4
5
6
7

<hexadecimal code>

1li·l
480

<hexadecimal string>

___L---------~
<hexadecimal character>·~-----------------1

<hexadecimal character>

0 ~------------------------~
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

<EBCDIC code>

-C~0

<EBCDIC string>

-,------,-r:----------------------.
~ :: ~ any <EBCDIC character> except quotation mark

<EBCDIC character>

Any one of the 256 possible EBCDIC characters.

8600 0098-000 2-11

Language Components

<BCL code>

< BCL string>

-<EBCDIC string>----------------------1

<ASCII code>

<ASCII string>

~ any <ASCII character> except quotation mark

<ASCII character>

Any one of the 128 possible ASCII characters.

Character Size

Strings can be composed of binary (1-bit) characters, quaternary (2-bit) characters, octal
(3-bit) characters, hexadecimal (4-bit) charaoters, BCL (6-bit) characters, ASCII (7-bit
in 8-bit format) characters, or EBCDIC (8-bit) characters. The word formats of various
character types are described under "Character Representation" in Appendix C "Data
Representation."

String Code

2-12

The string code determines the interpretation of the characters between the quotation
marks (") of a string literal. The string code specifies the character set and, for strings
of less than 48 bits, the justification. The first digit of the string code specifies the
character set in which the source string is written. The next nonzero digit (if any)
specifies the internal character size of the string to be created by the compiler. If no
nonzero digit is specified, the internal size is the same as the source size. If the internal
size is different from the source size, the length of the string must be an integral number
of internal characters. For example, the string literal 48"ClC2C3C4" is an EBCDIC
string expressed in terms of hexadecimal characters.

If the string literal contains fewer than 48 bits, a trailing zero in the string code specifies
that the string literal is to be left-justified within the word and that trailing zeros are to
fill out the remainder of the word.

If the string literal contains fewer than 48 bits, the absence of a trailing zero in the string
code specifies that the string literal is to be right-justified within the word and that
leading zeros are to fill out the remainder of the word.

8600 0098-000

Language Components

If the string literal contains 48 or more bits, the presence or absence of a trailing zero in
the string code has no effect.

If the string code is not specified, the source string and the internal representation of
the string are of the default character type. For more information, refer to "Default
Character Type" in Appendix C, "Data Representation."

String Length

The maximum length permitted for a simple string literal is 256 characters; the
maximum length permitted for a string literal is 4095 characters. However, when a
string literal is used as an arithmetic primary, it must not exceed 48 bits in length.

Internally, a string literal of 48 bits or less is represented in the object code as an 8-bit,
16-bit, or 48-bit literal. A string literal more than 48 bits long is stored in a pool array
created by the compiler. An internal pointer carries the character size and address of the
string within the pool array.

BCL Strings

BCL strings can contain any EBCDIC character. However, any EBCDIC character that
does not have a BCL equivalent is translated by the compiler into a BCL question mark
(36"14").

Note: The BCL data type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor, such as a BCL string literal more than 96 bits long,
causes the program to get a compile-time warning message.

ASCII Strings

The ASCII string code can be used only with ASCII strings composed entirely of
characters that have corresponding EBCDIC graphics. This is because the compiler
recognizes only ASCII characters that have corresponding EBCDIC graphics.

The compiler translates each ASCII character into an 8-bit character. The rightmost
seven bits are the ASCII representation of that character; the leftmost bit is 0.

ASCII characters that are not in the EBCDIC character set must be written as a
hexadecimal string in which each pair of hexadecimal characters represents the internal
code of one ASCII character, right-justified with a leading 0 bit.

Quotation Mark

The quotation mark (") can appear only as the first character of a simple string literal.
Strings with internal quotation marks must be broken into separate simple strings
by using three quotation marks in succession. For example, the string literal '"'ABC"
represents the string "ABC, and the string literal "A111"'BC" represents the string A"BC.

8600 0098-000 2-13

Language Components

Dollar Sign

2-14

String literals can contain the dollar sign($). The dollar sign must not be the first
nonblank character on a source record. If a dollar sign is the first nonblank character on
a source record, the compiler interprets the source record as a compiler control record.

8600 0098-000

Section 3
Declarations

A declaration associates certain characteristics and structures with an identifier. In
an ALGOL program, every identifier must be declared before it is used. The compiler
ensures that subsequent usage of an identifier in a program is consistent with its
declaration.

In this section, the ALGOL declarations are listed and discussed in alphabetical order. In
many cases, the entire syntax diagram for a declaration is divided into smaller segments,
and each segment is discussed in turn. Each declaration is accompanied by examples of
its use.

ARRAY Declaration
An ARRAY declaration declares one or more identifiers to represent arrays of specified
fixed dimensions. After an array has been declared in an ARRAY declaration, values
can be stored in and retrieved from the elements of the array by the use of subscripted
variables, which contain the array identifier and a subscript list.

<array declaration>

-~--~~--~~-----~ ARRAY ---------
[LONG J [OWN J [<array class>]

f- '

., <identif~ [-<bound pair list>-] -,--~-------;
<array row equivalence>---------'

LONG Arrays

The LONG specification affects only array rows. It specifies that the array is not to be
paged regardless of its length. The length of most LONG arrays is limited by the length
of an overlay row that the operating system has been configured to use. Attempting to
allocate, or to use the RESIZE statement to create, an array larger than the limit causes
termination of the program at run time.

Normally, an array row longer than a certain threshold is automatically subdivided, or
segmented, at run time into pages. Each page is of a fixed length, except the last, which
can be shorter. The page size is a property of the machine on which the program is run;
it is always a power of two and is never less than 256 words. The paging threshold is
maintained by the operating system on which the program is run. The operating system
enforces a limit on the size of a LONG array; the maximum length of an array is 2**20-1
words, and it is never less than max(page_size,1024) words.

The array size at which an array row is automatically paged can be changed with the
system command SEGARRAYSTART. For more information on the SEGARRAYSTART

8600 0098-000 3-1

Declarations

command, see the A Series System Commands Operations Reference Manual. Arrays
smaller than 1024 words are never paged.

When LONG specification is designated, the maximum size of an array row is
determined by the overlay row size of the system, which is specified at cold-start time.

OWN Arrays

If an OWN array is declared, the array and its contents are retained on exit from the
block in which the array is declared and are available on subsequent reentry into the
block.

OWN arrays are allocated only once, regardless of the number of times entry is made
into the block in which the array is declared. If the OWN array is declared with
variable bounds, these bounds are evaluated once when the array is allocated, and the
affected dimension retains these bounds for the remainder of the program execution.
For information on resizing the array, refer to "RESIZE Statement" in Section 4,
"Statements."

An OWN array remains unreferenced from the time the program begins execution until
the first execution of a statement that references the array is encountered. Once such a
statement is encountered, the array is referenced, or touched for the remainder of the
program execution.

An array that is not an OWN array remains unreferenced from the time the program
enters the block in which the array is declared until the first execution of a statement
that refers to the array. Once such a statement is encountered, the array is touched
until the program exits the block.

Arrays not declared as OWN arrays are deallocated on exit from the block in which they
are declared and are reallocated on every entry into the block in which the arrays are
declared.

Identifiers

3-2

<array identifier>

An identifier that is associated with an array in an ARRAY declaration.

<character array identifier>

An array identifier, array reference identifier, direct array identifier, or value array
identifier that is declared with a character type.

<word array identifier>

An array identifier, array reference identifier, direct array identifier, or value array
identifier that is declared with a word type.

8600 0098-000

Declarations

Array Class

<array class>

----,<word type
L_<character type>

<word type>

1 BOOLEM COMPLEX
DOUBLE
INTEGER
REAL

<character type>

Arrays declared in the same ARRAY declaration are of the same array class. If the
array class is omitted, a REAL array is assumed. Arrays not declared with a character
type are called word arrays. Arrays declared with a character type are called character
arrays. Word and character arrays can be passed as parameters and used as array rows.
Character arrays can be used as simple pointer expressions.

For character arrays, the actual storage area allocated is the number of whole words
sufficient to contain the specified number of characters. The last portion of the
last word in the storage area can be referenced by using pointer operations, even if
this portion is beyond the valid subscript range. For example, if array A is declared
EBCDIC ARRAY A[0:3], the characters corresponding to A[4] and A[5] can be
referenced by using a pointer operation.

Note: The BCL character type is not supported on all A Series systems.
The appearance of a BCL construct that can cause the creation of a
BCL descriptor, such as a BCL array, causes the program to get a
compile-time warning message.

Element Width

The element width of an array is the number of bits used to contain each element of the
array. The element width is determined by the array class, as follows:

Array Class

DOUBLE, COMPLEX

INTEGER, REAL,
BOOLEAN

EBCDIC, ASCII

BCL

HEX

8600 0098-000

Element Width

96 bits (double word)

48 bits (single word)

8 bits (6 characters per word)

6 bits (8 characters per word)

4 bits (12 characters per word)

3-3

Declarations

Within the operating system, arrays are manipulated by means of descriptors; each
descriptor specifies an element width appropriate to the array class. Single-word and
double-word descriptors are used for word arrays; 4-bit, 6-bit, and 8-bit descriptors are
used for character arrays.

Note: 6-bit descriptors (BCL) are not currently supported.

Because complex and double array elements are composed of two 48-bit words, the two
words are allocated contiguously. The layout of a complex array is as follows: the real
part of the first element, the imaginary part of the first element, the real part of the
second element, the imaginary part of the second element, and so on. Similarly, the
layout of a double array is as follows: the first word of the first element, the second word
of the first element, the first word of the second element, the second word of the second
element, and so on.

For information on the internal representation of double and complex operands, refer to
"Two-Word Operand" in Appendix C, "Data Representation."

Bound Pair List

3-4

<bound pair list>

<bound pair>

-<lower bound>- -<upper bound;;>------------------<

<lower bound>

-<arithmetic expression>-------------------;

<upper bound>

-<arithmetic expression>-------------------;

The subscript bounds for an array are given in the first bound pair list following the
array identifier. The bound pair list gives the lower and upper bounds of all dimensions,
in order from left to right. In all cases, upper bounds must not be less than their
associated lower bounds.

Arithmetic expressions used as array dimension bounds are evaluated once (from left
to right) on entering the block in which the array is declared. These expressions can
depend only on values that are global to that block or passed in as actual parameters.
The results of the arithmetic expressions are evaluated as integers. Arrays declared in
the outermost block must use constant bounds or constant expression bounds.

The maximum value of lower bound is 131,071; the minimum value of lower bound is
-131,071.

8600 0098-000

Declarations

Original and Referred Arrays

Every array identifier that is declared with a bound pair list is an original array, which is
distinct from all other original arrays.

There are three other ways to associate an identifier with an array: array row
equivalence, array reference assignment, and array specification in a PROCEDURE
declaration. In each of these cases, the identifier refers to the same data as an original
array. Such an identifier is called a referred array. An array row equivalence or array
reference assignment can cause an array identifier of one array class to refer to data in
an original array of another array class.

Dimensionality

The dimensionality (number of dimensions) of an original array is the number of bound
pairs in the bound pair list with which the array is declared. Arrays cannot have more
than 16 dimensions.

The size (number of elements) of each dimension of an array declared with a particular
bound pair is given by the following expression:

<upper bound> - <lower bound> + 1

The maximum size of a dimension is 2**20-1 elements.

Array Row Equivalence

<array row equivalence>

-<identifier>- [-<lower bound>-] - =-<array row>------1

An array row equivalence causes the declared array identifier to refer to the same data
as the specified array row. That array row can be an original array or another referred
array. The declared identifier is an equivalent array.

The size of the declared array is determined by the size and element width of the array
row and the element width for the array class of this declaration. For example, assume
that Sa and Wa are the size and element width of the array row, and that Wea is the
element width for the equivalent array. The size of the equivalent array, Sea, is then the
following:

Sea := (Sa * Wa) DIV Wea

Because of the truncation implicit in the DIV operation, Sea * Wea might be less than
Sa * Wa. In this case, indexing the equivalent array by Sea + <lower bound> causes
an invalid index fault. Nevertheless, pointer operations that use the equivalent array
can access the entire area of memory allocated to the original array to which the array
identifier ultimately refers; the memory area can hold more than Sea elements of width
Wea.

8600 0098-000 3-5

Declarations

The array row equivalence enables the program to reference the same array row with
two or more identifiers. Each identifier can reference the same data with different
type, character type, or lower bound specifications. For example, in the following
program, both I[2] and R[O] contain the value 25.0 after the assignment ![2]: = 25.234 is
executed. However, after the assignment R[O]: = 25.234 is executed, both I[2] and R[O]
contain the value 25.234.

BEGIN
REAL ARRAY R[0:9];
INTEGER ARRAY I [2]

I [2] : = 25. 234;
R[0] := 25.234;

END.

R; % Array row equivalence. The INTEGER
% array I refers to the same data as
% the REAL array R.

The array row equivalence part cannot appear in an ARRAY declaration that declares an
OWN array. For example, the following declaration is invalid:

OWN ARRAY A[0] = B

An array declared with an array row equivalence part is an OWN array if and only if the
array to which it is equated is an OWN array.

Note: There are subtle restrictions on the correct declaration and use of an
array row equivalence in which the array row of the declaration is
a row of an array reference, because the default state of an array
reference variable is uninitialized.

If the array reference is one-dimensional and has the same element width as the new
array, then the two identifiers become synonyms. Whenever the array reference variable
is assigned a value, the equivalent array describes the same data.

If the array reference is multidimensional and/or has a different element width than the
new array, the array row equivalence is established from the value of the array reference
variable at the time the program enters the block containing the array row equivalence
declaration. Later assignments to the array reference variable do not affect the array
row equivalence. Therefore, in order for the declaration to be useful, the array reference
variable must have been declared and initialized in a scope global to the block declaring
the array row equivalence.

Array Row

3-6

<array row>

--r-<one-dimensional array name
L-<array name>--<row selector

An array row is a one-dimensional array designator.

8600 0098-000

Declarations

<one-dimensional array name>

An <array name> whose identifier was declared with one dimension.

<array name>

1<array identifier>
<direct array identifier
<array reference identi~
<value array identifier

Row Selector

<row selector>

- [~<subscript>- , =imJ
*-]--------------!

<subscript>

-<arithmetic expressi on>---------------------i

A row selector is the limiting case of a subarray selector, with only one asterisk.

Examples of ARRAY Declarations

The following example declares DOG, a four-dimensional array made up of
6 * 26 * 7 * 13 = 14196 integer elements:

INTEGER ARRAY DOG[0:5,0:25,1:7,4:16]

The following example declares STUB, a one-dimensional OWN array made up of 10 real
elements:

OWN REAL ARRAY STUB[0:9]

The following example declares two real arrays: GROUP_ REAL, which is a
one-dimensional array, and CAD, which is a two-dimensional array:

REAL ARRAY GROUP_REAL[0:17], CAD[400:500,1:50]

The following example declares the EBCDIC array GROUP_ EBCDIC. Array row
equivalence causes GROUP_ EBCDIC to refer to the same data as the previously
declared real array GROUP_ REAL. Note that the element width of GROUP_ REAL is
48 bits, whereas the element width of GROUP_ EBCDIC is 8 bits. This means that a
reference to a single element in GROUP REAL refers to 48 bits, and a reference to a
single element in GROUP _EBCDIC refers to 8 bits.

EBCDIC ARRAY GROUP_EBCDIC[0] = GROUP_REAL[*]

8600 0098-000 3-7

Declarations

The following example declares XRAY, a one-dimensional array. Because no array class
is specified, the array class XRAY is of type REAL. The lower bound is the integerized
value of X + Y + Z, and the upper bound is the integerized value of 3 *A + B.

ARRAY XRAY[X+Y+Z:3*A+B]

The following example declares BIG_ ARRAY, a one-dimensional array made up of 10,000
Boolean elements. Because BIG_ ARRAY is declared a LONG array, the array is not
paged (segmented). Because it is not paged, the array occupies 10,000 contiguous words
in memory.

LONG BOOLEAN ARRAY BIG_ARRAY[0:9999]

The following example declares SEGARRAY, a one-dimensional array made up of 50,001
real elements. Because SEGARRAY is not declared a LONG array and the array row is
longer than 1024 words, SEGARRAY is automatically divided at run time into segments
that are 256 words long.

ARRAY SEGARRAY[0:50000]

The following example declares C, a two-dimensional array made up of 3 * 61 = 183
complex elements. Note that the element width ofa complex array is 96 bits (two
words).

COMPLEX ARRAY C[0:2,0:60]

ARRAY REFERENCE Declaration
An ARRAY REFERENCE declaration is used to establish an array reference variable.
The array reference assignment statement can then be used to assign an array or part of
an array to this variable.

<array reference declaration>

ARRAY - REFERENCE-------->
L DIRECT _J L<array cl ass:.-1

~tif~ [~lower bounds>-] ~--------___,
Following an array reference assignment, any subsequent use of the array reference
identifier acts as a reference to the array assigned to it. For more information on array
reference assignment, see "Array Reference Assignment" in Section 4, "Statements."

If the array class is not specified as COMPLEX, the array reference variable can be
declared as DIRECT. This declaration enables the array reference variable to be used in
direct I/O operations.

Note: The BCL data type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor, such as a BCL array reference, causes the program to get a
compile-time warning message.

3-8 8600 0098-000

Declarations

If an array class is not specified, a REAL array is assumed.

Identifiers

<array reference identifier>

An identifier that is associated with an array reference in an ARRAY REFERENCE
declaration.

<direct array reference identifier>

An identifier that is associated with an array reference that is declared as DIRECT in an
ARRAY REFERENCE declaration.

Lower Bounds

<lower bounds>

[<- •
<constant arithmetic expression>~--------------1

The number of dimensions of the array reference variable is determined by the number
oflower bounds in its declaration. No more than 16 dimensions are allowed. For more
information on lower bounds, see "ARRAY Declaration" earlier in this section.

The initial state of an array reference variable is uninitialized. Any attempt to use an
uninitialized array reference variable as an array results in a fault at run time.

Examples of ARRAY REFERENCE Declarations

The following example declares REF ARRAY, an array reference variable with a lower
bound of 3. Because an array class is not specified, REF ARRAY is a real array reference
variable.

ARRAY REFERENCE REFARRAY[3]

The following example declares DIRREFARRAY, a direct, real array reference variable
with a lower bound equal to the value of N. Because this array reference variable is
declared to be DIRECT, it can be used in direct I/0 operations.

DIRECT ARRAY REFERENCE DIRREFARRAY[N]

The following example declares two complex array reference variables. CREFl is a
one-dimensional array reference variable with a lower bound of 0 (zero), and CREF2 is
three-dimensional with lower bounds of 0, 10, and 10.

COMPLEX ARRAY REFERENCE CREF1[0], CREF2[0,10,10]

8600 0098-000 3-9

Declarations

BOOLEAN Declaration
A BOOLEAN declaration declares simple variables that can have Boolean values of
TRUE or FALSE.

<Boolean declaration>

L _J BOOLEAN r <i denti fi er>.,._-1~~----------<
OWN -----C::<equation part>-1

A simple variable declared with the OWN specification retains its value when the
program exits the block in which the variable is declared. The value of that variable is
again available when the program reenters the block in which the variable is declared.

<Boolean identifier>

An identifier that is associated with the BOOLEAN data type in a BOOLEAN
declaration.

Equation Part

<equation part>

-<i denti fi er>- = -<i denti fi er·>----------------1

The equation part causes the simple variable being declared to have the same address as
the simple variable associated with the second identifier. This action is called address
equation. An identifier can be address-equated only to a previously declared local
identifier or to a global identifier. The first identifier must not have been previously
declared within the block of the equation part. An equation part is not allowed in the
global part of a program.

Address equation is allowed only among INTEGER, REAL, and BOOLEAN variables.
Because both identifiers of the equation part have the same address, altering the value
of either variable affects the value of both variables. For more information, see "Type
Coercion of One-Word and Two-Word Operands" in Appendix C, "Data Representation."

The OWN specification has no effect on an address-equated identifier. The first
identifier of an equation part is declared with the OWN specification only if the second
identifier of the equation part is also declared with the OWN specification.

Boolean Simple Variable Values

3-10

The TRUE or FALSE value of a Boolean simple variable and the value of any other
Boolean operand depend only on the low-order bit (bit zero) of the word. Each of the
48 bits of a Boolean simple variable contains a Boolean value that can be interrogated or
altered by using the partial word part or concatenation.

When a Boolean simple variable is allocated, it is initialized to FALSE, a 48-bit word with
all bits equal to 0 (zero).

8600 0098-000

Declarations

Refer to Appendix C, "Data Representation," for additional information on the internal
structure of a Boolean operand as implemented on A Series systems.

Examples of BOOLEAN Declarations

The following example declares BOOL as a Boolean simple variable.

BOOLEAN BOOL

The following example declares DONE and ENDOFIT as Boolean simple variables.
Because they are declared as OWN, these simple variables retain their values when the
program exits the block in which the simple variables are declared.

OWN BOOLEAN DONE, ENDOFIT

The following example declares FLAG and BINT as Boolean simple variables, and
address-equates BINT to the previously declared simple variable INTGR. The variables
BINT and INTGR share the same address.

BOOLEAN FLAG, BINT = INTGR

COMPLEX Declaration
A COMPLEX declaration declares a simple variable that can have complex values.

<complex declaration>

L _J COMPLEX _L<identif~ ~--------------1
OWN

<complex identifier>

An <identifier> that is associated with the COMPLEX data type in a COMPLEX
declaration.

Complex Variables

Complex variables allow for the storage and manipulation of complex values in a
program. The interpretation of complex values is the usual mathematical one. The real
and imaginary parts of complex values are always stored separately as single-precision
real values.

Because a real value is a complex value with an imaginary part equal to 0 (zero), the set
of real values is a subset of the set of complex values. Therefore, arithmetic values can
be assigned to complex variables, but complex values cannot be assigned to arithmetic
variables.

8600 0098-000 3-11

Declarations

A simple variable declared to be OWN retains its value when the program exits the block
in which it is declared. The value of that variable is again available when the program
reenters the block in which the variable is declared.

Refer to Appendix C, "Data Representation," for additional information on the internal
structure of a complex operand as implemented on A Series systems.

Examples of COMPLEX Declarations

The following example declares Cl and C2 as complex simple variables.

COMPLEX Cl, C2

The following example declares CURRENT, VOLTAGE, and AMP as complex simple
variables. Because they are declared as OWN, these simple variables retain their values
when the program exits the block in which the simple variables are declared.

OWN COMPLEX CURRENT, VOLTAGE, AMP

DEFINE Declaration

3-12

The DEFINE declaration causes the compiler to save the specified text until the
associated define identifier is encountered in a define invocation. At that point, the
saved text is retrieved and compiled as if the text were located at the position of the
define invocation.

<define declaration>

- DEFINE __[<definit~>--'-------------------1

<definition>

-<identifier> =-<text>- II -------1
[<formal symbol part>J

<define identifier>

An identifier that is associated with text in a DEFINE declaration.

<text>

Any sequence of valid characters not including a free number sign(#) character.

Text is bracketed on the left by the equal sign (=) and on the right by the number
sign (#). The equal sign is said to be matched with the number sign. The text can be
any sequence of characters not containing a free number sign. A free number sign is one
that is not in a string literal, not in a remark, and not matched with an equal sign in a
define declaration within the text. The compiler interprets the first free number sign
as signaling the end of the text. That is, the first free number sign is matched with the
equal sign that started the text.

8600 0098-000

Declarations

Compiler control records occurring within the text are processed normally if the dollar
sign ($) is in column 1 or 2. If the dollar sign is in column 3 or beyond, a syntax error is
generated whenever the define is invoked.

Formal Symbol Part

<formal symbol part>

<formal symbol>

-<i denti fi er;;;>-----------------------1

A define has two forms: simple and parametric. These forms are readily differentiated
because parametric defines have a series of parameters (called formal symbols) enclosed
in matching parentheses or brackets. The parentheses and the brackets have identical
meanings.

The formal symbols constitute the essential part of a parametric define. Formal symbols
function similarly to the formal parameters of a PROCEDURE declaration. When a
parametric define is invoked, wherever formal symbols appear in the text, a substitution
of the corresponding closed text of the define invocation is made before that part of the
text is compiled. References to formal symbols cannot appear outside the text of the
corresponding parametric define. No more than nine formal symbols are allowed in a
parametric.define.

Define Invocation

A define invocation causes a define identifier to be replaced by the text associated with
the define identifier.

<define invocation>

-<define i denti fi er>;>-...,---------.-------------1
C::<actual text part>=l

<actual text part>

I (~<actual't;,ct>=J_)
[__ [--1:.:<actual't;,ct>=J_]

The parentheses and the brackets have identical meanings. These symbols are used
when a parametric define is invoked.

8600 0098-000 3-13

Declarations

3-14

<actual text>

Program text that cannot contain mismatched or unmatched parentheses, brackets, or
quotation marks, or any comma outside of these bracketing symbols.

The invocation of a parametric define causes the actual text to be substituted into the
positions in the text designated by the proper formal symbol.

The actual text need not be simple. As an example, assume you are using the following
DEFINE declaration:

DEFINE FORJ(A,B,C) = FOR J := A STEP B UNTIL C #

For this declaration, the following applies:

Define Invocation Expands to

FORJ(0,8*3,MAX(X,Y,Z)) FOR J := 0 STEP 8*3 UNTIL MAX(X,Y,Z)

The actual text can be empty in a define invocation. In this case, all occurrences of the
corresponding formal symbol in the text are replaced by no text. For example, assume
you are using the following DEFINE declaration:

DEFINE F(M, N) = M + N #

For this declaration, the following applies:

Define Invocation

R := F(, l);

R:=F(2,);

Expands to

R := +l;

R:=2+;

Syntactically Correct

Yes

No

A define identifier cannot be invoked as a part, rather than the whole, of a language
component such as a string literal or a number. For example, assume you are using the
following declarations:

EBCDIC STRING S;
DEFINE EBCDIC STR = 8 #;

For these declarations, the following two statements are not interpreted by the compiler
to be equivalent:

Statement

S: = EBCDIC_STR"A8C";

S := 8"A8C";

Syntactically Correct

No

Yes

The invocation of define EBCDIC_STR is interpreted by the compiler as a whole
language component, specifically a number, and not as an EBCDIC code preceding a
quoted EBCDIC string. Thus, it appears that a number is being assigned to a string
variable, which is illegal, and the compiler flags the statement with a syntax error.

8600 0098-000

Declarations

AB a further example, assume you are using the following declarations:

REAL R;
DEFINE ITEM = 15 #;

For these declarations, the following applies:

Statement

R :=ITEM;

R := ITEM.30;

Legal

Yes

No, because it is equal to R: = (15).30;, which is illegal.

In the following instances, the appearance of a define identifier does not cause the define
to be expanded:

• Defines are not expanded in an end remark, a comment remark, or an escape
remark.

• Defines are not expanded within quoted strings. For example, assume you are using
the following declaration:

DEFINE ONE = THE FIRST #;

For this declaration, the string ONE WEEK is not equivalent to the string THE
FIRST WEEK.

• Defines are not expanded within identifiers. For example, assume you are using the
following declaration:

DEFINE A = PREFIX #;

For this declaration, the identifiers A_ B and ABC are not expanded to PREFIX_ B
and PREFIXBC.

• Define identifiers are not always expanded when they occur in declarations. If
the define identifier occurs in a position where an identifier can appear, the define
identifier is not expanded. If the define identifier occurs in a position where an
identifier is not expected, the define identifier is expanded. The following examples
illustrate this rule:

DEFINE A = ARRAY #;
A B[0:10]; % A is expanded.
REAL A 8[0:10]; % A can be interpreted as an identifier

% in a REAL declaration. A is not
% expanded. A syntax error results.

EBCDIC A 8[0:10]; % A is expanded.

• A define identifier is not expanded either in the format part of a FORMAT
declaration or in the editing specifications of a READ statement or WRITE
statement. Furthermore, if a FORMAT declaration or editing specifications are
located within the text of a parametric define, they cannot reference the formal
symbols of that define.

8600 0098-000 3-15

Declarations

3-16

• A define identifier is not expanded when used in place of a file or task attribute
mnemonic. Refer to the A Series File Attributes Programming Reference Manual
for file attribute mnemonics and the A Series Work Flow Language (WFL)
Programming Reference Manual for task attribute mnemonics. In the following
example, the define identifiers are not expanded in the FILE declaration or in the
VALUE function:

DEFINE NEVERUSED = NEWTASK #,
PRINTER = REMOTE #;

FILE F(KIND =PRINTER); % INTERPRETED AS PRINTER,
% NOT REMOTE

T.STATUS .- VALUE(NEVERUSED); % INTERPRETED AS NEVERUSED,
% NOT NEWTASK

If the ALGOL compiler encounters a syntax error while compiling the combination of the
text, actual text part, and formal symbol part at the occurrence of a define invocation,
some or all of the expanded define is given along with the appropriate error message.

To avoid problems with expanding a define, particularly when an expression is passed
in as actual text, each occurrence of a formal symbol in the text of a parametric define
should be enclosed in parentheses. For example, consider the following program:

BEGIN
BOOLEAN BOOL;
DEFINE

LOGICl(A,B) = A AND B #,
LOGIC2(A,B) = (A) AND (B) #;

BOOL := LOGICl(TRUE OR TRUE, FALSE); % INVOCATION OF LOGICl
BOOL := LOGIC2(TRUE OR TRUE, FALSE); % INVOCATION OF LOGIC2

END.

The assignment of a value to BOOL differs, depending on whether you invoke LOGICl
or LOGIC2, as shown in the following table:

Invocation

LOGICl

LOGIC2

Evaluates As

BOOL :=TRUE OR (TRUE AND FALSE);

BOOL := (TRUE OR TRUE) AND (FALSE);

Value Assigned to BOOL

TRUE

FALSE

Passing an updating expression to a parametric define should be done cautiously.
Multiple uses of the corresponding formal symbol cause multiple updates. For example,
assume you are using the following DEFINE declaration:

DEFINE Q(E) = E + 2 * E #

For this declaration, the following applies:

Define Invocation Expands to

Q(X := X + 1) x := x + 1 + 2 * x := x + 1

8600 0098-000

Declarations

Examples of DEFINE Declarations

The following example declares BLANKIT as a define identifier:

DEFINE BLANKIT = REPLACE POINTER(LINEOUT) BY 11 11 FOR 22 WORDS #

Where BLANKIT appears as an allowable define invocation, it is expanded to the
following when the program is compiled:

REPLACE POINTER(LINEOUT) BY II II FOR 22 WORDS #

The following example declares SEC as a define identifier with a formal symbol X:

DEFINE SEC(X) = 1 / COS(X) #

If SEC(N) appears as an allowable define invocation, it is expanded to the following when
the program is compiled:

1 I COS(N)

The following example declares LENGTH as a define identifier with two formal symbols,
XandY:

DEFINE LENGTH(X,Y) = SQRT(X**2 + Y**2)#

IfLENGTH(3,4) appears as an allowable define invocation, it is expanded to the
following when the program is compiled:

SQRT(3**2 + 4**2)

DIRECT ARRAY Declaration
A DIRECT ARRAY declaration declares arrays that can be used in direct I/O operations.

<direct array declaration>

- DIRECT ARRAY ---------7
L OWN _J L<array cl ass;...J

r-;:=identif~ [_:bound pair list>-]~~-------< ~rect array row equivalence>;>------~

<direct array identifier>

An identifier that is associated with a direct array in a DIRECT ARRAY declaration.

<direct array row equivalence>

-<identifier>- [-<lower bound>-] - = -<direct array row>;>-----1

8600 0098-000 3-17

Declarations

<direct array row>

----,--<one-dimensional direct array name>
L_<direct array name>--<row selector

<one-dimensional direct array name>

A direct array name whose identifier is declared with one dimension.

<direct array name>

----,-<direct array identifier>
L_<direct array reference identifier:.--1

Declaring Direct Arrays

A direct array can be a word array or a character array. Direct arrays of type COMPLEX
are not allowed.

Note: The BCL character type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor, such as a direct BCL array, causes the program to get a
compile-time warning message.

A direct array can be used in any way that a nondirect array can be used. However,
arbitrary use of direct arrays instead of normal arrays can seriously degrade overall
system efficiency.

The dimensionality of a direct array is the number of bound pairs in its declaration. No
more than 16 dimensions are allowed.

Note: There are subtle restrictions on the correct declaration and use
of a direct array row equivalence in which the array row of the
declaration is a row of an array reference, because the default state of
a direct array reference variable is uninitialized.

For more information on the OWN specification, array class, bound pair list, lower
bound, and row selector, see "ARRAY Declaration" earlier in this section. For
information on the direct array reference identifier, see "ARRAY REFERENCE
Declaration" earlier in this section.

A direct array has attributes that can be programmatically interrogated and altered
before, during, and after an actual 1/0 operation that uses the array.

Because a direct array can be used in performing direct 1/0 operations, a direct array is
automatically unpaged (nonsegmented). For more information on direct 1/0 operations,
see "1/0 Statement" in Section 4, "Statements."

Examples of DIRECT ARRAY Declarations

3-18

The following example declares DIRARY, a one-dimensional direct array. Because no
array class is specified, the array class of DIRARY is of type REAL.

8600 0098-000

Declarations

DIRECT ARRAY DIRARY[0:29]

The following example declares the direct integer array DIREQV ARAY. Array row
equivalence causes the array DIREQV ARAY to refer to the same data as the previously
declared direct real array DIRARY.

DIRECT INTEGER ARRAY DIREQVARAY[5] DIRARY

DOUBLE Declaration
A DOUBLE declaration declares simple variables that can have double-precision values
(that is, 96-bit arithmetic entities).

<double declaration>

L _J DOUBLE _L<i dent i fJ;:J>--'----------------4
OWN

<double identifier>

An identifier that is associated with the DOUBLE data type in a DOUBLE declaration.

Declaration of Simple Variables

A simple variable declared to be OWN retains its value when the program exits the
block in which the variable is declared. That value is again available when the program
reenters the block in which the variable is declared.

When a double-precision simple variable is allocated, it is initialized to a double-precision
0 (zero), which is two 48-bit words with all bits equal to zero. Refer to Appendix
C, "Data Representation," for additional information on the internal structure of a
double-precision operand as implemented on A Series systems.

Examples of DOUBLE Declarations

The following example declares DUEL, a double-precision simple variable.

DOUBLE DUBL

The following example declares three double-precision variables: BIGNUMBER,
GIGUNDOUS, and DUBLPRECISION.

DOUBLE BIGNUMBER, GIGUNDOUS, DUBLPRECISION

8600 0098-000 3-19

Declarations

DUMP Declaration
The DUMP declaration allows the display of the values of selected items during the
execution of a program.

<dump declaration>

~ ---~· ------....
- DUMP _c:<file identifier>-- (-<dump list>--) -<control part~

<dump list>

~ .
<simple variable>~
<array identifier
<label identifier

The file identifier specifies the name of the file to which the displayed information is to
be written, and the dump list specifies the items whose values are to be displayed. The
following types of variables and arrays must not appear in the dump list:

• Arrays with multiple dimensions

• Character arrays

• String variables

• String arrays

Control Part

3-20

<control part>

-<label identifier> I
[<label counter modulus>=J [<dump parameters>=J

<label counter modulus>

- : -<unsigned i nteger>--------------------i

<dump parameters>

- (L<l abel counter>=J [<bounds part>=J

<label counter>

-<simple vari abl e,;;>-----------------------1

<bounds part>

L , -<lower limit> L : . :::J
, -<upper 11m1t--i

, - , :-<upper limit>;>-------~

8600 0098-000

Declarations

<lower limit>

-<arithmetic expression>-----------------~

<upper limit>

-<arithmetic expression>-----------------~

The control part determines when the items are to be displayed. The control part can be
just a label identifier or it can have a combination of components.

Label Identifier

If the control part is simply a label identifier, the items in the dump list are dumped
each time program execution encounters the statement labeled by the specified label
identifier.

Label Identifier with Label Counter Modulus

If a label counter modulus appears, the items in the dump list are dumped every
<label counter modulus> times that the statement labeled by the label identifier is
encountered. For example, if N is the label counter modulus and E is the number of
times that the labeled statement has been encountered, then the items in the dump list
are dumped whenever E MOD N is equal to 0 (zero).

Label Identifier with Dump Parameters

Dump parameters are used to restrict the dumping to a specified range of encounters.
All three parameters (the label counter, the lower limit, and the upper limit) are optional.

If a label counter is given, this variable is used to count the number of times that
the labeled statement has been encountered. The specified variable is incremented
automatically each time the labeled statement is encountered; changing the value of this
variable elsewhere in the program affects the dumping process.

The items in the dump list are dumped when the number of times the labeled statement
is encountered (or the value of the label counter variable, if specified) is greater than or
equal to the lower limit and less than or equal to the upper limit. If the lower limit is not
specified, it has a default value of 0 (zero). If the upper limit is not specified, it has a
default value of infinity (no limit).

Label Identifiers with Label Counter Modulus and Dump Parameters

When both a label counter modulus and dump parameters are specified, both the
modulus check and the range check are performed. The items in the dump list are
dumped when all the following conditions are true for the number of times that the
labeled statement has been encountered (or the value of the label counter variable, if
specified):

8600 0098-000 3-21

Declarations

• The number is greater than or equal to the lower limit and less than or equal to the
upper limit.

• The number is evenly divisible by the label counter modulus.

Form of Output

The information produced when a dump occurs depends on the declared types of the
items to be dumped. When a dump occurs, the 1-character to 6-character symbolic name
of each item in the dump list is produced, along with the following information:

For dumped simple variables,

• If the simple variable is of type REAL or DOUBLE, a real value is printed - for
example, R = .10000000000 or DUBL = 0.0.

• If the simple variable is of type INTEGER, an integer value is printed - for example,
I= 2.

• If the simple variable is of type BOOLEAN, the Boolean value is printed- for
example, BOOL = .FALSE ..

• If the simple variable is of type COMPLEX, it is printed as a pair of numbers.
The format consists of a left parenthesis, the real part in REAL format, a comma,
the imaginary part in REAL format, and a right parenthesis - for example,
COMP= (3.0000000000, 5.0000000000).

For dumped arrays,

• If the array is of type REAL, each element is printed as if the value were operated on
by an R editing phrase. For more information, see "FORMAT Declaration."

• If the array is of type BOOLEAN, the value of each element is shown as .TRUE. or
.FALSE ..

• If the array is of type INTEGER, each element is printed as an integer value.

• If the array is of type COMPLEX, each element is printed in the form used
for complex variables - for example, CA = (2.0000000000, 3.0000000000),
(5.0000000000, 7. 0000000000).

A dumped label shows the number of times execution control has passed the specified
label - for example, L2 = 3.

Examples of DUMP Declarations

3-22

The following example dumps the value of variable A to a file named FYLE each time the
statement labeled LBL is encountered during execution of the program.

DUMP FYLE (A) LBL

The following example dumps the values of I, INFO, and INDX to a file named PRNTR
when the statement labeled NEXT is encountered. A label counter, DMPCOUNT,
counts the number of times the statement labeled NEXT is encountered. Dumps occur

8600 0098-000

Declarations

until the value ofDMPCOUNT exceeds DPHIGH. Note that when a label counter is
specified, the counter can also be altered elsewhere in the program.

DUMP PRNTR (I,INFO,INDX) NEXT (DMPCOUNT, ,DPHIGH)

The following example dumps the values ofX, Y, ARRAYV; and COUNTER to a file
named FID. Because a label counter modulus of 3 is specified, a dump of these items
occurs only every third time the label LOUP is encountered during execution of the
program.

DUMP FID (X,Y,ARRAYV,COUNTER) LOUP : 3

The following example dumps the values of A, B, LBLl, and ARRAYV to a file named
LP. Because a label counter modulus of 5 is specified, a dump of these items occurs
only every fifth time the label AGAIN is encountered during execution of the program.
Dumps are further restricted to those times when the label counter T ALY has a value
between 20 and 50, inclusive. Because the dump occurs each time TALY MOD 5 = 0,
dumps occur when TALY has the values 20, 25, 30, 35, 40, 45, and 50. Note that TALY
can be altered elsewhere in the program.

DUMP LP (A,B,LBLl,ARRAYV) AGAIN : 5 (TALY,20,50)

EVENT and EVENT ARRAY Declarations
An event provides a means to synchronize simultaneously executing processes. An event
can be used either to indicate the completion of an activity (for example, the completion
of a direct 1/0 read or write operation) or as an interlock between participating programs
over the use of a shared resource.

<event declaration>

- EVENT _L<i denti fi er>~-------------------<

<event identifier>

An identifier that is associated with an event in an EVENT declaration.

<event array declaration>

- EVENT - ARRAY ll<identit~ [-<bound pair list>-]~
<event array identifier>

An identifier that is associated with an event array in an EVENT ARRAY declaration.

An event array is an array whose elements are events. An event array can have no more
than 16 dimensions.

8600 0098-000 3-23

Declarations

Events can be used synchronously by explicitly testing the state of an event at various
programmer-defined points during execution, or the events can be used asynchronously
by using the software interrupt facility.

Events have two Boolean characteristics, happened and available. Each characteristic
can be either TRUE or FALSE. Language constructs such as the SET, RESET, and
CAUSE statements can be used to change the happened state of an event. The
HAPPENED. function returns the value of the happened state of an event. The FIX,
FREE, and LIBERATE statements can be used to change the available state of an event.
The AVAILABLE function returns the available state of an event.

The initial available state of an event is TRUE (available), and the initial happened
state of an event is FALSE (not happened). For more information on events, refer to
"Event Statement" in Section 4, "Statements." For more information on interrupts,
refer to "INTERRUPT Declaration" later in this section. For more information on the
AVAILABLE function and the HAPPENED function, see Section 5, "Expressions and
Functions."

Event Designator

3-24

An event designator represents a single event. An event array designator represents an
array of events.

<event designator>

1<event identifier

<event array identifier>-- [_L:<subsc;i;;t:J-]
<event-valued file attribute>-----------<
<event-va 1 ued task attribute>--------~

<event-valued file attribute>

-<file designator>-- . -<event-valued file attribute name>------J

<event-valued file attribute name>

ALGOL supports all file attributes and file attribute values described in the A Series File
Attributes Programming Reference Manual.

<event-valued task attribute>

-<task designator>-- . -<event-va 1 ued task attribute name>------J

<event-valued task attribute name>

---,-- EXCEPTIONEVENT
L ACCEPTEVENT

8600 0098-000

Declarations

<event array designator>

-<event array identifier>
L.<subarray selector:--J

Examples of EVENT and EVENT ARRAY Declarations

The following example declares an event, FILEA.

EVENT FILEA

The following example declares an event array, SW APPEE, which can store up to six
events.

EVENT ARRAY SWAPPEE[0:5]

EXPORT Declaration
The EXPORT declaration declares procedures in a library program to be entry points
into that library. A procedure that is declared as an entry point into a library can be
accessed by programs external to the library.

<export declaration>

- EXPORT _L<export object speci fi ca ti on>
L.<export options:--J

<export object specification>

-,-<procedure i denti fi er>>-------~----------'~
1-<procedure reference array identifier:--J

~ [AS -<EBCDIC string l iteral:>:J

<export options>

- (- LINKCLASS - = -r ~ROTECTED -,-)
L<1 nteger>-------1

<EBCDIC string literal>

--'~-----~ 11 -<EBCDIC string>- 11 ~-'----------1
EBCDIC code
48 --,- 11 -<hexadecimal string>- 11

480 _J

28 --,- 11 -<quaternary string>- 11

280 _J

18 --,- 11 -<binary string>- 11

180 _J

All procedures to be exported must be declared before the appearance of the EXPORT
declaration and must be declared in the same block as the EXPORT declaration.

8600 0098-000 3-25

Declarations

To provide a library object with a security leve~ the object can be exported with a linkage
class assigned to it. The linkage class of the user program, which is assigned by the
system, is matched to the linkage class of the exported object on a per object basis to
determine if visibility is allowed to the calling program. The PROTECTED linkage class
provides the highest level of security. The values 0 through 15 can be assigned. The
default linkage class is 0, which provides the lowest level of security.

A procedure reference array can be exported. Any type or parameters allowed for an
exported procedure can be reference by an exported procedure reference array.

A program becomes a library by exporting procedures and then executing a FREEZE
statement. The code file for that program contains a structure called a library directory,
which describes the library and its entry points. The directory's description of an entry
point includes the entry point's name, a description of the procedure's type, if any, and
descriptions of its parameters.

When a program calls a library entry point, the description of the entry point in the
library template of the calling program is compared to the description of the entry point
of the same name in the library directory of the library. If the called entry point does not
exist in the library or if the two entry point descriptions are not compatible, a run-time
error is given and the calling program is terminated.

The name given to an exported entry point in a library directory is the procedure
identifier from the EXPORT declaration, unless an AS clause appears, in which case the
name is given by the EBCDIC string literal.

The EBCDIC string literal in the AS clause cannot contain any leading, trailing, or
embedded blanks and must be a valid identifier. A valid identifier is defined to be
any sequence of characters beginning with a letter and consisting ofletters, digits,
hyphens(-), and underscores(_).

Library Entry Point Types and Parameters

A library entry point can be any of the following:

• ASCII string procedure

• Boolean procedure

• Complex procedure

• Double procedure

• EBCDIC string procedure

• Hexadecimal string procedure

• Integer procedure

• Real procedure

• Untyped procedure

The parameters to a library entry point can be any of the following types:

3-26 8600 0098--000

Declarations

• ASCII character array

• ASCII string variable or array

• Boolean variable or array

• Complex variable or array

• Double variable or array

• EBCDIC character array

• EBCDIC string variable or array

• Event variable or array

• File

• Hexadecimal character array

• Hexadecimal string variable or array

• Integer variable or array

• Pointer

• Real variable or array

• Task variable or array

A parameter to a library entry point can also be a formal procedure with the above
restrictions on its type and parameters. The formal procedure must be fully specified,
that is, the <formal parameter specifier> construct of the PROCEDURE declaration
must be used.

Conditions in Which Errors Can Occur

A library can export a procedure that is declared to be an entry point in yet another
library. When a program calls this entry point, the template of the library to which the
procedure is declared to belong is searched for an entry point with the same name as
that of the called entry point in the directory for this library. For example, assume the
following declarations have been compiled:

LIBRARY L;
PROCEDURE LIBPROC; LIBRARY L;
EXPORT LIBPROC;

When another program calls entry point LIBPROC of this library, the template for
library L is searched for an entry point named LIBPROC. When found, the entry point
LIBPROC of library L is then called.

On the other hand, assume the following declarations have been compiled:

LIBRARY L;
PROCEDURE LIBPROC; LIBRARY L;
EXPORT LIBPROC AS "P";

Another program calls entry point P of this library, and the template for library L is
searched for an entry point named P. If it is found, that entry point is called. If that

8600 0098-000 3-27

Declarations

entry point is not found, a run-time error is given and the calling program is terminated.
In either case, procedure LIBPROC of library L is not executed. For more information
on libraries, refer to Section 8, "Library Facility."

A library entry point must not declare any OWN arrays. An attempt to execute a library
entry point that declares an OWN array results in a run-time error.

If a library exports a procedure reference array, a program importing that procedure
reference array can access the procedures in that library. A program cannot assign
into an element of an imported procedure reference array. If such an assignment is
attempted, a compile-time or run-time error occurs.

Programs that export procedure reference arrays cannot be used for binding.

Examples of EXPORT Declarations

The following example declares the procedure EXPROC as an entry point in a library
program.

EXPORT EXPROC

The following example declares the procedure PROCl as an entry point in a library
program.

The name exported for this procedure is LIBPROC3; consequently, a program calls
PROCl in this library by using the name LIBPROC3.

EXPORT PROCl AS "LIBPROC3"

The following example declares the procedure reference arrays PRAl and PRA2 and the
procedure PROCID as entry points in a library program. The procedure reference array
PRA2 is exported with the name PROCREF; consequently, a program must use the
name PROCREF to call PRA2.

EXPORT PRAl, PROCID, PRA2 AS "PROCREF"

FILE Declaration

3-28

A FILE declaration associates a file identifier with a file and assigns values to the file
attributes of the file.

<file declaration>

L DIRECT J FI LE

r+-- •
?-!...<identifier>

[_ (~<attribute specifications>--) _J

8600 0098-000

Declarations

Identifiers

<file identifier>

An identifier that is associated with a file in a FILE declaration.

<direct file identifier>

An identifier that is associated with a file declared as DIRECT in a FILE declaration.

If DIRECT is specified, the file is declared as a direct file to be used for direct I/0.

Attribute Specifications

<attribute specifications>

4~ <arithmetic attribute 0 specification>
<Boolean attribute specification>-------<
<pointer attribute specification>-------<
<translate-table attribute specification

7
[(-<attribute parameter 1 i st>-) J

<arithmetic attribute specification>

-<arithmetic-valued file attribute name>- = ---------

?_,--<arithmetic expression>
!_<mnemonic file attribute value>

<Boolean attribute specification>

-<Boo 1ean-va1 ued fi 1 e attribute name>--r------------.,-___, L =-<Boolean expression>]

<pointer attribute specification>

-<pointer-valued file attribute name>-= -,--<pointer expression>---.-----i
t_<stri ng 1itera1 :----J '

<translate-table attribute specification>

-<translate-table-valued file attribute name>-=-------

?_,--<translate table identifier
!_<intrinsic translate table

<attribute parameter list>

8600 0098-000 3-29

Declarations

<arithmetic-valued file attribute name>
<Boolean-valued file attribute name>
<pointer-valued file attribute name>
<translate-table-valued file attribute name>
<mnemonic file attribute value>

ALGOL supports all file attributes and file attribute values described in the A Series File
Attributes Programming Reference Manual.

The attributes for a particular file need not be specified in the FILE declaration.
Attributes can be assigned values by using an appropriate assignment statement, the
multiple attribute assignment statement, a compile-time or run-time file equation, or the
I/0 subsystem, which is the default option. Refer to the A Series Work Flow Language
(WFL) Programming Reference Manual for the file equation syntax.

Although the syntax allows more than one file identifier to precede the optional attribute
specifications, only the identifier immediately before the attribute specifications is
assigned the specified file attribute values. The other identifiers are assigned default file
attribute values.

For example, the result of the following declaration is that the KIND attribute of file C
is assigned the value DISK, and the KIND attributes of files A and B are assigned the
default value for the KIND attribute, which might or might not be the value DISK.

FILE A,B,C(KIND=DISK)

For more information on file attributes and their default values, refer to the A Series
File Attributes Programming Reference Manual.

A Boolean-valued file attribute whose name appears in a Boolean attribute specification
without the = <Boolean expression > part is assigned the value TRUE.

A translate table identifier assigned to a translate-table-valued file attribute name must
have been declared previously and must reference the first (or only) translate table
declared in that particular TRANSLATETABLE declaration.

Attribute parameters are allowed in FILE declarations and MULTIPLE ATTRIBUTE
ASSIGNMENT statements. In a FILE declaration, the attribute specifications cannot
reference the file identifier of the file being declared. For example, the following is not
valid:

FILE F(MAXRECSIZE=90, BLOCKSIZE=F.MAXRECSIZE*10)

Examples of FILE Declarations

The following example declares a file named F.

FILE F

3-30 8600 0098-000

Declarations

The following example declares a file named NEWFILE. This FILE declaration is
the first step in creating a new disk file with the title DATA on a pack named PACK
Synchronized output, which is useful for auditing and recovery, will be performed.

FILE NEWFILE(KIND=DISK, MAXRECSIZE=14, BLOCKSIZE=420, NEWFILE,
FILEUSE=OUT, AREAS=20, AREASIZE=450, SYNCHRONIZE=OUT,
TITLE="DATA ON PACK.");

The following example declares a file, SCREEN_ OUTPUT, to be a remote file. Typically,
using this declaration in conjunction with a WRITE statement allows a program to write
to a computer terminal.

FILE SCREEN_OUTPUT(KIND=REMOTE)

FORMAT Declaration

A FORMAT declaration associates a format identifier with a set of editing specifications.
These editing specifications can then be used in READ and WRITE statements.

<format declaration>

- FORMAT -<in-out part~<format' p;;:t:J,._~----------1

In-Out Part

The in-out part affects the processing of simple string literals appearing in the editing
specifications. If the in-out part ofa FORMAT declaration is designated as OUT or
unspecified (in which case OUT is assumed), simple string literals appearing in the
editing specifications of the format are read-only. If the in-out part is designated as IN,
such simple string literals are read-write. For more information, refer to "Simple String
Literal" later in this section.

<in-out part>

Format Part

<format part>

-<identifier>-,- (-<editing specifications>--)
[__ < -<editing specifications>-- >

<format identifier>

An identifier associated with a set of editing specifications in a FORMAT declaration.

8600 0098-000 3-31

Declarations

3-32

<editing specifications>

--.--....-'--.-·<simple string literal;;>-------------.~..-.
f------~~<edi ting phrase>-----------1

<repeat part (~<editing specifications>--)

<repeat part>

---i::=<~nsigned integer>

The editing specifications that appear in FORMAT declarations can be used in READ
and WRITE statements to format, respectively, the input and output data.

Define identifiers, remarks, and formal symbols of parametric defines cannot be used in
formats.

A format identifier can be referenced in a READ statement, WRITE statement, or
SWITCH FORMAT declaration. In general, a list is referenced in READ and WRITE
statements to indicate a series of data items, specified by the list, along with the
formatting action, specified by the format, to be performed on each of the data items.

Editing phrases in the editing specifications are separated by a comma (,), a slash (/),
or a series of slashes. A slash indicates the end of a record. On input, any remaining
characters in the current record are ignored when a slash is encountered in the editing
specifications. On output, the construction of the current record is terminated and any
subsequent output is placed in the next output record when a slash is found in the
editing specifications. Multiple slashes can be used to skip several records of input or
to generate several blank records on output. The final right parenthesis or right angle
bracket (>) of the editing specifications also indicates the end of the current record.

A carriage control action occurs each time a slash appears in the editing specifications. If
a core-to-core part is specified in the file part of a READ statement, a slash is ignored.

Example of Editing Specifications

BEGIN
FILE READER (KIND=READER),

LINE (KIND=PRINTER);
REAL A,B;
FORMAT FMT(I2,/,I2);
READ(READER,FMT,A,B);
WRITE(LINE,FMT,A,B);
WRITE(LINE [SKIP 1],FMT,A,B);

END.

8600 0098-000

Assume that the following two input records are used:

1234
5678

Declarations

Using these two input records, this program produces the following output:

12
56
12

56

[skip to channel 1]

If all editing specifications have been used before the list of data items is exhausted, a
carriage control action occurs, and the editing specifications are reused. If the list of data
items is exhausted before all the editing specifications have been used, the I/0 operation
is complete and the remaining editing specifications are ignored.

Simple String Literal

The presence of a simple string literal in the editing specifications indicates that the
characters enclosed in quotation marks are to be used as the data. A simple string literal
does not require a corresponding list element.

To enable more efficient handling of string literals in formats, 1-bit, 2-bit, and 7-bit
strings are not allowed. The lengths of 3-bit and 4-bit strings must be a multiple of 2,
to facilitate packing into 6-bit or 8-bit characters, respectively. BCL string literals are
encoded as BCL characters, not as EBCDIC characters.

If no string code appears in a string literal, the default character type is used. The
default character type can be designated by the compiler control options ASCII and
BCL. If no such compiler control option is used, the default character type is EBCDIC.
For more information, refer to "Default Character Type" in Appendix C, "Data
Representation."

8600 0098-000 3-33

Declarations

Example of Simple String Literal

Assume you are using the following statements:

WRITE(LINE,<4"C1C2",8"ABC">);
$ SET BCL
WRITE(LINE,<3"646566",6"HIJ">);

These statements produce the following output:

ABABC
UVWHIJ

When a simple string literal appears in editing specifications, only the first digit of the
string code is used; if a second or third digit appears, a warning is given at compilation
time.

Simple string literals appearing in editing specifications can be read-only or read/write,
depending on the in-out part specified in the FORMAT declaration. If the in-out part is
IN, simple string literals appearing in the editing specifications are read-write, and the
format can be used in both READ statements and WRITE statements. When a format
used in a READ statement is declared with an in-out part of IN and contains a simple
string literal in the editing specifications, then data is read into the memory location of
the simple string literal over the original value.

The number of characters read always equals the length of the simple string literal as
it is defined in the FORMAT declaration. When the format is used in a subsequent
WRITE statement, the new data is written to the output record. If the ·in-out part
is OUT or unspecified (in which case OUT is assumed), any simple string literals
appearing in the editing specifications are read-only. Any attempt to change the value of
a read-only simple string literal by using that format in a READ statement results in a
run-time error.

Repeat Part

3-34

The repeat part indicates the number of times an editing phrase or editing specifications
are repeated. If the repeat part is unspecified, a value of 1 is assumed. A repeat part
value greater than 4029 results in a syntax error.

Editing specifications and their correspondillg repeat parts can be nested. For example,
assume you are using the following WRITE statement:

WRITE(F,<2(2(213))>,INT1,INT2,INT3,INT4,INT5,INT6,INT7,INT8)

The first repeat part indicates that the editing specifications (2(2I3)) are to be repeated
twice, the second repeat part indicates that the editing specifications (2I3) are to be
repeated twice, and the third repeat part specifies that the editing phrase I3 is to be
repeated twice, causing the editing phrase I3 to be used a total of eight times.

8600 0098-000

The following examples show the correct syntax of repeat parts:

3F10.4

3(A6/)

3(3A6,3(/I12)/)

Editing Phrases

<editing phrase>

G
0
A
c
H
K
L
T
x

~

~<fiold width>

u
v ::.J L<fi el d width> [•

<decimal places>
s -<scale factor

iting modifier>_J
D ~fiold width~

t- E
t- F
t- R

<ed

r- I :=i-<field width
r- J
~ Z -<field width> L

<field width>

-----c=<~nsigned integer>

<decimal places>

-----c=<~nsigned integer>

<scale factor>

<editing modifier>

. <decimal places> -i

< . decimal places > __,

-l

-LC~i~= ; _],_.._I ------------------<

8600 0098-000

Declarations

3-35

Declarations

Field Width

The field width specifies, in characters, the width of the field to be read or written.
Because the field width specifies the entire length of the field to be used, if the < decimal
places> variable is also specified, the field width value must allow for the number of
decimal places requested plus one for the decimal point. Any field width value greater
than 4029 results in a syntax error. Field width is covered further in the discussions of
the individual editing phrase letters.

Decimal Places

The decimal places value specifies the number of characters following the decimal point
in the field that are to be read or written. On input, the < decimal places> variable can
be overridden by an explicit decimal point. A decimal places value greater than 4029
results in a syntax error. The decimal places value is covered further in the discussions
of the individual editing phrase letters.

Variable Editing Phrases

3-36

A variable editing phrase is one that is not fully specified at compilation time. The
format is processed from left to right at run time. If the letter V is encountered in an
editing phrase, the next list element is accessed to provide an editing phrase letter.
For more information, refer to "V Editing Phrase Letter" later in this section. If an
asterisk (*) is encountered as the repeat part, field width, decimal places, or scale factor,
then the next list element is accessed to provide an integer value for that specification.
In addition to the list elements to be read or written, the I/0 list must contain one
list element for each V editing phrase letter and asterisk encountered in the editing
specifications. The WRITE statements in the following examples use asterisks as both
repeat parts and field widths to produce varying I editing phrases.

Examples of Variable Editing Phrases

WRITE(F, <I*>, IWIDTH, A);
WRITE(F, <3I*>, IWIDTH, A, B, C);
WRITE(F, <3(I*)>, IWIDTHl, A, IWIDTH2, B, IWIDTH3, C);

IREPEATl := l;
IREPEAT2 := 2;
WRITE(F, <2(Xl,*I*)>, IREPEATl, IWIDTHl, A,

IREPEAT2, IWIDTH2, B, C);

When an asterisk is used as the repeat part, the number of repetitions performed
depends on the value supplied by the list element. If the value of the list element is
greater than 0 (zero), that number of repetitions is performed; if the value is equal to
0, an unlimited number of repetitions are performed. If the value is less than 0, no
repetitions are performed, and control passes to the next editing phrase.

When an asterisk is used for the field width of an editing phrase, the actual width of
the field depends on the value supplied by the list element. If the value of the list
element is greater than 0 (zero), that value is used as the width of the field. Ifthe value
of the list element is less than or equal to 0, no editing is performed, the list elements

8600 0098-000

Declarations

corresponding to the editing phrase are skipped, and control passes to the next editing
phrase.

Editing Phrase Letters

Every valid path through the editing phrase syntax requires an editing phrase letter
that specifies how the data being read or written is to be edited. The editing phrase
letters are as follows: A, C, D, E, F, G, H, I, J, K, L, 0, R, S, T, U, V, X, or Z. An editing
phrase that contains the editing phrase letter A is called an A editing phrase, an editing
phrase that contains the editing phrase letter C is called a C editing phrase, and so
on. Descriptions of the editing specified by each editing phrase letter are arranged in
alphabetical order in the following paragraphs.

For ease of explanation, lowercase letters are used hereafter to refer to the values for
the repeat part, field width, and decimal places as follows:

Letter

w

d

Meaning

<repeat part>

<field width>

<decimal places>

A list element of type COMPLEX is always edited as if it were two list elements of type
REAL.

In the examples in the following sections, the lowercase letter b is used to denote a blank
character.

A and C Editing Phrase Letters

The editing phrase letters A and C are used when reading or writing alphanumeric data.
Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, BOOLEAN,
POINTER, and STRING.

When A is used, characters are read from, or written to, the word starting at the
rightmost position. If C is used, the starting character position is the leftmost one.

The default character type applies to list elements other than pointers. For more
information, refer to "Default Character Type" in Appendix C, "Data Representation."
The default character type allows BCL data to be read from or written to an EBCDIC file
(and vice versa) with any translation necessary to preserve character data.

For example, assume you are using the following program:

BEGIN
FILE F(KIND=PRINTER, INTMODE=EBCDIC);
WRITE(F, <A3>, 8"ABC");
$ SET BCL
WRITE(F, <A3>, 6"ABC");

END.

8600 0098-000 3-37

Declarations

3-38

This program produces the following output:

ABC
ABC

In the explanations of the editing phrase letters A and C, the letter Q is used.

The value of Q is derived from the following table:

Default Character Type

BCL EBCDIC

Single Precision 8 6

Double Precision 16 12

If the list element is of the following form, then the value of the arithmetic expression is
used as the value of Q:

<pointer expression> FOR <arithmetic expression>

On input, w characters are transferred from the input record to the pointer-designated
location or string variable. On output, w characters are transferred from the
pointer-designated location or string variable to the output record. The character size
used is that of the pointer or string variable.

Input

On input, the editing phrase letters A and C specify that w characters of data are to be
read from the input record and assigned to the corresponding list element.

For the editing phrase letter A, if w is greater than or equal to Q, the rightmost Q
characters of the input field are transferred to the list element. If w is less than Q, then
w characters of the input field are transferred right-justified to the list element. The
unused high-order bits of the list element are set to 0 (zero).

The action specified by the editing phrase letter C is identical to that specified by the
editing phrase letter A except that characters are read to the leftmost portion of the
word.

The following are input examples for the A and C editing phrase letters:

8600 0098-000

Declarations

Default Character Editing
Type External String Phrase Internal Value

8-bit ABCDEFGHIJKL A9 8"DEFGHI"

6-bit ABCDEFGHIJKL A9 6"BCDEFGHI"

8-bit AbCbEbGblbK A4 4"0000"8"AbCb"

6-bit ABCDEFGHIJKL A4 6"0000ABCD"

6-bit or 8-bit ABCDEFGHIJKL Al2 ABCDEFG H IJ KL
(pointer as list element)

8-bit ABCDEFGHIJKL A12 4"0000"8"ABCDEFG H IJ KL"
(8-bit pointer FOR 14)

6-bit ABCDEFGHIJKL Al2 6"JKL"
(6-bit pointer FOR 3)

8-bit ABCDEFGHIJKL C9 8"DEFGHI"

6-bit ABCDEFGHIJKL C9 6"BCDEFGHI"

8-bit ABCD C4 8"ABCD"4"0000"

6-bit ABCDEFGHIJKL C4 6"ABCDOOOO"

8-bit ABCDEFGHIJKL Cl2 8"ABCDEFG HIJ KL"4"0000"
(8-bit pointer FOR 14)

6-bit ABCDEFGHIJKL C12 6"JKL"
(6-bit pointer FOR 3)

The editing phrase letters A and C do not round values before assigning them to a list
element. Therefore, a list element of type INTEGER is not necessarily assigned an
integer value. If w is greater than 4, the exponent field of the list element is affected;
the result can be a noninteger value. The data representations ofreal and integer
operands are discussed in Appendix C, "Data Representation."

Output

On output, the editing phrase letters A and C specify that the value of the corresponding
list element is to be written as a character string to an output field that is w characters
wide.

For the editing phrase letter A, if w is greater than or equal to Q and the list element is
not a pointer expression, the Q characters of the list element are written right-justified
with blank fill to the output field. If w is less than Q, the rightmost w characters of the
list element are written to the output field. If the character size is 8 bits and any of the
character fields in the word contain bit patterns that do not correspond to an EBCDIC
graphic, then question marks (?) are written to those positions.

The action specified by the editing phrase letter C is identical to that specified by the
editing phrase letter A except that characters are written from the leftmost portion of
the list element.

8600 0098-000 3-39

Declarations

The following are output examples for the A and C editing phrase letters:

Default Character Editing
Type External String Phrase Internal Value

8-bit 8"DEFGHI" A9 bbbDEFGHI

6-bit 6"BCDEFGHI" A9 bBCDEFGHI

8-bit 4"0000000000"8"A" A4 ???A

6-bit 6"0000ABCD" A4 ABCD

8-bit 8"ABCDEFG" All bbbbABCDEFG
(8-bit pointer FOR 7)

6-bit 6"ABCDEFG" A4 DEFG
(6-bit pointer FOR 7)

8-bit 8"DEFGHI" C9 bbbDEFGHI

6-bit 6"BCDEFGHI" C9 bBCDEFGHI

8-bit 8"ABCD"4"0000" C5 ABCD?

6-bit 6"ABCDOOOO" C4 ABCD

8-bit 8"ABCDEFG" Cll bbbbABCDEFG
(8-bit pointer FOR 7)

6-bit 6"ABCDEFG" C4 ABCD
(6-bit pointer FOR 7)

D Editing Phrase Letter

3-40

The editing phrase letter D is used for reading or writing floating-point values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

The editing phrase letter D specifies that w characters of input data are to be read,
converted to a real value, and assigned to the corresponding list element. The input
data must be in the form of a data number; otherwise, a data error is returned. A data
number is defined syntactically as follows:

<data number>

<decimal number>
L<sign~ L L<data exponent part>j

<data exponent part>,...--------~

8600 0098-000

Declarations

<data exponent part>

~ ~ =r-<integer>

<sign>--<unsigned integer~
The position of the decimal point in the internal value is determined by its position in
the input data or by the value of d. If a decimal point appears in the input data, that
position is used for the internal value. If no decimal point appears in the input data, one
is assumed to bed places to the left of the D, E, at sign(@), plus sign (+),or minus sign
(-) indicating the beginning of the exponent field. If no decimal point appears in the
input data and an exponent is not present, a decimal point is assumed to be d places to
the left of the right edge of the input field.

For example, if the editing phrase D7.2 is used to read the data number 10005.0, the
resulting internal value is 10005.0. However, if the same editing phrase is used to read
the data number 10005, the resulting internal value is 100.05.

The value ofw must be greater than or equal to the value of d. Blanks are interpreted
as zeros.

The following are input examples for the D editing phrase letter:

External String Editing Phrase Internal Value

bbbbbb2 5046 011.4 +2.5046

bbbbb25.046 011.4 +25.046

-bb25046E-3 011.4 -0.0025046

-bbb25046-3 011.4 -0.0025046

bb250.460-3 011.4 +0.25046

bbb250.46-3 011.4 +0.25046

b-b25.04678 011.4 -25.04678

Output

On output, the editing phrase letter D specifies that the value of the corresponding
list element is to be converted to a string of characters that expresses the value in
exponential notation. The string is written right-justified with blank fill to a field w
characters wide. The value of the mantissa is rounded to the number of decimal places
specified by d before it is written.

The value of w must be greater than or equal to d + 7. This width allows for a
4-character exponent part, a decimal point, a digit preceding the decimal point, and a
sign. If w is less than d + 7, the field is filled with asterisks (*).

The editing phrase letter D always uses four or seven characters to represent the
exponent of the list element being written. The magnitude of the exponent determines
in which syntactic form the exponent is expressed:

8600 0098-000 3-41

Declarations

Magnitude of Exponent

4-character

4-character

7 -character

Form

O+xx or D-XX (where ABS(XX) < = 99)

+XXX or -XXX (where 100 < = ABS(XXX) < = 999)

O+XXXXX or D-XXXXX (where 1000 < = ABS(XXXXX) < =
99999)

The following are output examples for the D editing phrase letter:

Internal Value Editing Phrase External String

+36.7929 013.5 bb3.679290+01

-36.7929 012.5 -3.679290+01

-36.7929 011.5 ***********

+36.7929 010.5 **********

1.234@@-73 014.5 bbbl .234000-73

-789@@1234 015.3 bb-7.8900+01236

6.54@@321 09.2 b6.54+321

E Editing Phrase Letter

The action specified by the editing phrase letter E is identical to that specified by the
editing phrase letter D except that the letter E, when used for output, indicates the
beginning of the exponent in the output string.

The following are output examples for the E editing phrase letter:

Internal Value

+36.7929

-36.7929

Editing Phrase

E13.5

E12.5

External String

bb3.67929Eb01

-3.67929Eb01

F Editing Phrase Letter

3-42

The editing phrase letter F is used when reading or writing floating-point values. Valid
list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the action specified by the editing phrase letter F is identical to that specified
by the editing phrase letter D.

8600 0098-000

Declarations

Output

On output, the editing phrase letter F specifies that the value of the corresponding
list element is to be converted to a string of characters that expresses the value in
simple decimal notation. The string is written right-justified with blank fill to a field
w characters wide. The value of the list element is rounded to the number of decimal
places specified by d before it is written.

The value of w must be greater than or equal to d + 1. When a program writes negative
values, w must also allow for the minus sign(-). The field contains asterisks(*) if the
value to be written requires a field wider than w characters.

The following are output examples for the F editing phrase letter:

Internal Value Editing Phrase External String

+36.7929 F7.3 b36.793

+36.7934 F9.3 bbb36.793

-0.0316 F6.3 -0.032

0.0 F6.4 0.0000

0.0 F6.2 bb0.00

+579.645 F6.2 579.65

+579.645 F4.2 ****

-579.645 F6.2 ******

G Editing Phrase Letter

If used to read a BCL file, the editing phrase letter G specifies that eight 6-bit characters
of the input data are to be skipped. If used to write to a BCL file, the editing phrase
letter G specifies that eight BCL zeros are to be written to the output record.

If used to read an EBCDIC file, the editing phrase letter G specifies that six 8-bit
characters of the input data are to be skipped. If used to write to an EBCDIC file, the
editing phrase letter G specifies that six EBCDIC zeros are to be written to the output
record.

H and K Editing Phrase Letters

The editing phrase letters H and K are used when reading or writing hexadecimal and
octal values, respectively. Valid list elements are of type INTEGER, REAL, DOUBLE,
COMPLEX, and BOOLEAN.

In the following explanation of the H and K editing phrase letters, the letter Q is used.
The value of Q is derived from the following table:

8600 0098-000 3-43

Declarations

3-44

Editing Phrase Letter

H K

Single Precision 12 16

Double Precision 24 32

Input

The editing phrase letter H specifies that w characters of input data are to be read,
converted to a hexadecimal value, and assigned to the corresponding list element.
The editing phrase letter K specifies that w characters of input data are to be read,
converted to an octal value, and assigned to the corresponding list element. When
the letter H is specified, the input data must consist of only characters from the set of
hexadecimal characters, the blank, or the minus sign(-). When K is specified, the input
data must consist of only characters from the set of octal characters, the blank, or the
minus sign (-). If other characters are used, a data error is returned. Leading, trailing,
and embedded blanks are interpreted as zeros. If a minus sign appears in the input
string, the value 1 is assigned to bit 46 of the list element (bit 46 of the first word of a
double-precision list element).

If w is less than or equal to Q, the value is stored right-justified in the storage location.
Both words of a double-precision variable are included. Unused high-order bits are set to
0 (zero). Ifw is greater than Q, the leftmost w - Q characters must be blanks, zeros, or
minus signs; otherwise, a data error is returned.

The following are input examples for the H and K editing phrase letters:

Editing
External String Phrase Internal Value

6F H2 4"00000000006F"

lFFFFFFFFFFF H12 4"1 FFFFFFFFFFF"

-16 H3 4"400000000016"

1234b568 H8 4"000012340568"

FFCb H4 4"00000000FFCO"

OOC1C2C3C4C5C6 H14 4"Cl C2C3C4C5C6"

-ABCD H5 4"40000000000000000000ABCD"
(double precision)

123456789ABCDEF H15 4"000000000123456789ABCDEF"
(double precision)

continued

8600 0098-000

Declarations

continued

Editing
External String Phrase Internal Value

16 K2 3"0000000000000016"

1777777777777777 K16 3"1777777777777777".

-16 K3 3"2000000000000016"

1234b56 K7 3"0000000001234056"

77b K3 3"0000000000000770"

-567 K4 3"20000000000000000000000000000567"
(double precision)

1234567654321234567 K19 3"00000000000001234567654321234567"
(double precision)

Output

On output, the editing phrase letter H specifies that the value of the corresponding list
element is to be converted to a string of hexadecimal characters. The editing phrase
letter K specifies that the value of the corresponding list element is to be converted to a
string of octal characters. The output string is written right-justified with blank fill to
a field w characters wide. If w is less than Q, only the contents of the rightmost w * 4
bits (when His used) or w * 3 bits (when K is used) of the list element are converted. A
double-precision list element is treated as 96 contiguous bits. The output string does not
contain an explicit sign.

The following are output examples for the H and K editing phrase letters:

Editing
Internal Value Phrase External Value

4"0000E5551010" H5 51010

4"0000E5551010" H12 OOOOE5551010

4"0000E5551010" H16 bbbbOOOOE5551010

8 11 123456" H12 F1F2F3F4F5F6

4"000000000000000012345678 H4 5678
(double precision)

8"123456789bbb" H24 F1F2F3F4F5F6F7F8F9404040
(double precision)

3"0005677701234445" K5 34445

continued

8600 0098-000 3-45

Declarations

continued

Internal Value

3"0005677701234445"

3"0005677701234445"

3"0000000000000000000000001234567"

(double precision)

Editing
Phrase

K16

K18

K4

External Value

0005677701234445

bb0005677701234445

4567

I Editing Phrase Letter

3-46

The editing phrase letter I is used when reading or writing integer values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

The editing phrase letter I specifies that w characters of input data are to be read,
converted to an integer value, and assigned to the corresponding list element. The
data must be in the form of an ALGOL integer; otherwise, a data error is returned.
Blank characters are interpreted as zeros. The magnitude of the value that can be read
depends on the type of the list element.

The following are input examples for the I editing phrase letter:

External String Editing Phrase Internal Value

567 13 +567

bb-329 16 -329

-bbbb27 17 -27

27bbb 15 +27000

b-bb234 17 -234

Output

On output, the editing phrase letter I specifies that the value of the corresponding list
element is to be converted to a character string in the form of an ALGOL integer. The
string is written right-justified with blank fill to a field w characters wide. The value of
the list element is rounded to an integer before it is written as output data.

Negative values are written with a minus sign(-); nonnegative values are written
without a sign.

8600 0098-000

Declarations

If the value of the list element requires a field larger than w, then w asterisks(*) are
written.

The following are output examples for the I editing phrase letter:

Internal Value Editing Phrase External String

+23 14 bb23

-79 14 b-79

+67486 15 67486

-67486 15 *****
+978 11 *
0 13 bbO

+3.6 12 b4

J Editing Phrase Letter

The editing phrase letter J is used when reading or writing integer values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the action specified by the editing phrase letter J is identical to that specified
by the editing phrase letter I.

Output

On output, the editing phrase letter J specifies that the value of the corresponding list
element is to be converted to a character string in the form of an ALGOL integer. The
string is written to a field equal in width to the length of the string. The value of the list
element is rounded to an integer before it is written.

Negative values are written with a minus sign(-); nonnegative values are written
without a sign.

If w is less than the number of characters required to express the value of the list
element, w asterisks (*) are written.

The following are output examples for the J editing phrase letter:

8600 0098-000 3-47

Declarations

Internal Value Editing Phrase External String

+23 J5 23

-23 J5 -23

+233 J3 233

-233 J3 ***
0 J3 0

3.14, -12 2J10 3-12

L Editing Phrase Letter

3-48

The editing phrase letter L is used when reading or writing Boolean values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

The editing phrase letter L specifies that w characters of input data are to be read,
converted to one of the Boolean values TRUE or FALSE, and assigned to the
corresponding list element. If the first nonblank character of the input data is the letter
T, then bit 0 (zero) of the list element is assigned the value 1; otherwise, bit 0 is assigned
the value 0 (zero). All other bits in the list element are assigned the value 0 (zero). An
all-blank field yields the value FALSE. If the list element is a double-precision variable,
the first word is assigned a value according to the rules just described, and the second
word is set to 0 (zero).

The following are input examples for the L editing phrase letter:

External String Editing Phrase Internal Value

T L1 TRUE (4"000000000001")

bbF L3 FALSE (4"000000000000")

bbbTRU L6 TRUE (4"000000000001")

b L1 FALSE (4"000000000000")

T L1 TRUE (4"000000000001000000000000")
(double precision)

Output

On output, the editing phrase letter L specifies that TRUE is to be written to the output
record if bit 0 (zero) of the corresponding list element equals 1, and the letter L specifies
that FALSE is to be written if bit 0 (zero) of the corresponding list element equals the

8600 0098-000

Declarations

number 0. Ifw is less than 5, the first w characters of TRUE or FALSE are written. If
w is greater than 4, TRUE or FALSE is written right-justified with blank fill.

The following are output examples for the L editing phrase letter:

Internal Value

0

1

2

3

4

0 Editing Phrase Letter

Editing Phrase

L6

L5

L4

L3

L2

External String

bFALSE

bTRUE

FALS

TRU

FA

The editing phrase letter 0 is used when data is to be read or written without editing.
Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, BOOLEAN,
and POINTER.

In the following explanation of the editing phrase letter 0, the letter Q is used. The
value of Q is derived from the following table:

Precision Pointers

Single Double 4-bit 6-bit 8-bit

BCL 8 16 12 8 6

EBCDIC 6 12 12 8 6

Input

The editing phrase letter 0 specifies that the input data is to be assigned to the
corresponding list element without editing. Q characters of input data are read, unless
the corresponding list element is of the following form:

<pointer expression> FOR <arithmetic expression>

When the list element is of this form, the value of Q and the value of the arithmetic
expression are compared, and the lesser value is the number of characters read.

8600 0098-000 3-49

Declarations

Output

On output, the editing phrase letter 0 writes the value of the list element as an
unedited string of characters. Q characters are written to the output record unless the
corresponding list element is of the following form:

<pointer expression> FOR <arithmetic expression>

When the list element is of this form, the value of Q and the value of the arithmetic
expression are compared, and the lesser value is the number of characters written.

Example of Input and Output

The following example shows the use of the editing phrase letter 0:

BEGIN
FILE TD(KIND=REMOTE,MYUSE=IO);
REAL R;
READ(TD, <O>, R);
WRITE(TD, <O>, R);

END.

Input and output data for this example are as follows:

Input

A

ABCDEFGH

Output

A

ABC DEF

R Editing Phrase Letter

3-50

The editing phrase letter R is used when reading or writing real values and can be used
with the editing phrase letter S. Valid list elements are of type INTEGER, REAL,
DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the action specified by the editing phrase letter R is identical to that specified
by the editing phrase letter D except when the letter R is immediately preceded by an S
editing phrase.

Output

On output, the editing phrase letter R specifies that the value of the corresponding list
element is to be converted to a string that expresses the value in either simple decimal
or exponential notation.

In general, if w is greater than or equal to the number of characters required to express
the value of the list element using simple decimal notation, then simple decimal notation
is used. If w is less than the number of characters required to express the value using
simple decimal notation and greater than or equal to the number of characters required

8600 0098-000

Declarations

to express the value using exponential notation, then exponential notation is used. If w
is less than the number of characters required to express the value using exponential
notation, the field is filled with asterisks (*).

Examples of Input and Output

List Element Editing
External Input String Type Phrase External Output String

-.333333bb REAL Rl0.4 bbb-0.3333

-.333333bb DOUBLE Rl0.4 bbb-0.3333

-.333333bb INTEGER Rl0.4 bbbb0.0000

3333.333E2 DOUBLE Rl0.4 3.33330+05

3333.333E2 INTEGER Rl0.4 3.3333E+05

-.333bbbbb REAL Rl0.9 **********

-.333bbbbb INTEGER Rl0.9 .000000000

333.333E2b DOUBLE Rl0.4 3.3333D+22

bbbbbbbbbbbbbl .23012 REAL R20.4 bb1230000000000.0000

bbbbbbbbbbl.23D 12345 DOUBLE R20.4 bbbbbbbl .2300D+ 12345

bbbb4.3@68 REAL Rl0.4 4.3000E+68

S Editing Phrase Letter

The editing phrase letter S is used with an R editing phrase to provide a scale factor.

If the next editing phrase in the editing specifications does not contain the editing phrase
letter R, the S editing phrase is ignored. When more than one S editing phrase appears
in the editing specifications, each subsequent S editing phrase takes precedence over the
preceding one.

Input

On input, the value of the input data corresponding to the subsequent R editing phrase
is divided by the following number before the input data value is assigned to the list
element:

10 ** <seal e factor>

The following are input examples for the S editing phrase letter:

8600 0098-000 3-51

Declarations

External String Editing Specifications Internal Value

bbbblOOOO. S2,R10.2 100.0

bbbbbb5.41 Sl,Rl0.2 0.541

bbbbbb05.5 Sl,Rl0.2 0.55

bbb5.01521 S-1,Rl0.2 50.1521

bbbbbbb541 Sl,Rl0.2 0.541

Output

On output, the value of the list element corresponding to the subsequent R editing
phrase is multiplied by the following number before the list element value is written to
the output field:

10 ** <scale factor>

The following are output examples for the S editing phrase letter:

Internal Value

100.0

0.54

0.0056

1.55

Editing Specifications

S2,R10.2

Sl,Rl0.2

Sl,Rl0.2

S-1,Rl0.2

External String

bbl0000.00

bbbbbb5.40

bbbbbb0.06

bbbbbb0.16

T Editing Phrase Letter

3-52

The editing phrase letter T specifies that the buffer pointer is to be moved to character
position w of the input or output record. The value ofw must be greater than 0 (zero); if
w is equal to 0, the buff er pointer is moved to the first character position in the record.
No list element corresponds to this editing phrase letter.

Input Examples

External String

012345678910111213

012345678910111213

Editing
Specifications

T13,13

Tl,14

Internal Value

111

123

continued

8600 0098-000

continued

External String

012345678910111213

ABCDEFGHIJKLMNOPQR

Output Example

BEGIN
FILE DCOM(KIND=REMOTE,MYUSE=IO);
ARRAY A[0:9];

Editing
Specifications

Tl5,14

T8,A6

Declarations

Internal Value

1213

HIJKLM

WRITE(DCOM, <Tll,I3,Tl,I3>, 123, 456); % WRITE STATEMENT 1
WRITE(DCOM, <T4,A3, Tl,A2>, "ABC", "DE"); % WRITE STATEMENT 2

END.

This program produces the following output:

WRITE statement 1: b456bbbbbb123
WRITE statement 2: DEbABC

U Editing Phrase Letter

The editing phrase letter U specifies that output data is to be edited as best suits the
type of the corresponding list element. Valid list elements are of type INTEGER, REAL,
DOUBLE, COMPLEX, and BOOLEAN, STRING, POINTER.

Input

The editing phrase letter U is not implemented for input.

Output

On output, real, integer, and double-precision list elements are written using a format
that combines readability with maximum numerical significance. Boolean values are
written as Tor F and occupy one character position in the record. String literals are
treated as real values. If the number of characters required to express the list element
is greater than the number left in the current record, the output is placed in the next
record.

If w is specified and the number of characters required to express the list element is
greater than w, the field is filled with asterisks (*).

If d is specified and d is greater than w, then d - w leading blanks are inserted in the
value that is written to the list element before the field is written.

8600 0098-000 3-53

Declarations

Thus, when the editing phrase letter U is used, the number of characters actually
written cannot be less than d and can be greater than w.

The following are output examples for the U editing phrase letter:

Internal Value Editing Phrase External String

-123.4567 u -123.4567

789 u 789

l.5@@275 UlO l.50+275

1234567 U5 1.2+6

1 Ul0.4 bbbl

123.456 Ul0.4 123.456

1 U5.8 bbbbbbbl

123.456 U5.8 bbbl23.5

V Editing Phrase Letter

3-54

The editing phrase letter V allows the type of editing to be specified at run time. The
rightmost character of the first word of the next list element (or, if the list element is a
pointer, the character pointed at) provides the editing phrase letter to be used to edit
the data. Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX,
BOOLEAN, and POINTER.

The editing phrase letter extracted from the list element is a 6-bit character if the
default character type is BCL; otherwise, the letter is an 8-bit character.

Example of V Editing Phrase Letter

In the following program, FMTl in the first READ statement evaluates to RS.2 and
corresponds to the list element A; FMT2 in the WRITE statement evaluates to 2A6 and
corresponds to the list elements A and I; and FMT3 in the second READ statement
evaluates to 2El0.4 and corresponds to the list elements A and B.

8600 0098--000

Declarations

REAL A,B;
INTEGER I;

FORMAT FMT1(V8.2),
FMT2(2V*),
FMT3(*V*.*);

READ (KARO. FMTl. II R" ,A) ;
B := 4"Cl";
WRITE(LINE,FMT2,B,6,A,I);
I := 4"C5";
READ(KARD,FMT3,2,I,10,4,A,B);

For more information, see "Variable Editing Phrases" earlier in this section.

X Editing Phrase Letter

On input, the editing phrase letter X specifies that w characters of input are to be
skipped. On output, the editing phrase letter X specifies that w blanks are to be written.
No list element corresponds to this editing phrase letter.

Z Editing Phrase Letter

The editing phrase letter Z is used when reading or writing real values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the editing phrase letter Z selects one of the editing phrase letters D, I, or L to
specify the editing action, depending on the type of the corresponding list element, as
shown in the following table:

Type

REAL or DOUBLE

INTEGER

BOOLEAN

Output

Editing Phrase

Dw.d

lw

Lw

The output string has a length of w characters regardless of the value or type of the list
element being written. For Boolean list elements, Lw is used. For integer list elements,

8600 0098-000 3-55

Declarations

Iw is used. For real or double-precision list elements, editing with D, E, or F editing
phrase letters is performed depending on the type of the list element and the magnitude
of its value.

The following are output examples for the Z editing phrase letter:

Internal Value Editing Phrase External String

1.23@@250 Zl2.6 1.230000+250

1 Z5.1 bbbbl

12345 Z5.l 12345

12 Z8.7 bbbbbb12

12345.678 Zl0.4 l.2346E+04

12 Zl0.4 bbbbbbbbl2

12345678 Z6 ******
1234 Z6 bb1234

Editing Modifiers

Editing modifiers can be used to modify the editing performed by the editing phrase
letters D, E, F, I, J, R, and Z. Editing modifiers are valid only for output.

P Editing Modifier

The P editing modifier specifies that a comma (,) is to be inserted immediately to the left
of every third digit left of the decimal point.

$ Editing Modifier

3-56

The $ editing modifier specifies that a dollar sign ($) is to be inserted immediately to the
left of the output string.

Examples of P and$ Editing Modifiers

Internal Value Editing Phrase External String

17.347 $F10.2 bbbb$17.35

-1234567 PllO -1,234,567

-1234567 P$Z15.2 bbbb$-1,234,567

1234567.11111 PF15.5 1,234,567.11111

continued

8600 0098-000

Declarations

continued

Internal Value

1234567.1234

1234567.1234

Editing Phrase

$PR15.5

$PR15.0

Examples of FORMAT Declarations

External String

bbb$1.23457E+06

bbbb$ l ,234,567.

The following examples illustrate the FORMAT declaration syntax:

FORMAT HDG("THIS REPORT SHOULD BE MAILED TO ROOM W-252")

FORMAT IN EDIT(X4, 216, 5E9.2, 3F5.1, X4)

FORMAT IN Fl(A6, 5(X3, 2El0.2, 2F6.1)),
F2(A6, G, A6)

FORMAT OUT FORMl (X56, "HEADING", X57),
FORM2(X10, 4A6 I X7, 5A6 I X2, 5A6)

FORMAT FMTl (*I*)

FORMAT FMT2(*V*.*)

FORWARD REFERENCE Declaration
The FORWARD REFERENCE declaration enables the ALGOL compiler to handle
situations in which two procedures, two interrupts, or two switch labels make references
to each other. Normally, a procedure, interrupt, or switch label must be declared before
it can be used in a program. However, if two such entities make reference to each other,
regardless of which procedure, interrupt, or switch label is declared first, the body of the
procedure, interrupt, or switch label contains a reference to an undeclared entity.

The FORWARD REFERENCE declaration enables the compiler to recognize such
entities before they have been declared in full. When a procedure is declared in full, the
declaration must match the FORWARD REFERENCE declaration in its type. Also, if
there are parameters, these must also match the FORWARD REFERENCE declaration
in number and type.

<forward reference declaration>

forward interrupt declaration~
forward procedure declaration

<forward switch label declaration

8600 0098-000 3-57

Declarations

<forward interrupt declaration>

- INTERRUPT -<interrupt identifier>- ; - FORWARD --------<

<forward procedure declaration>

--------~PROCEDURE -<procedure heading>--;---
L_<procedure type>_J

~- FORWARD ------------------------;

<forward switch label declaration>

- SWITCH -<switch label identifier>- FORWARD ----------1

Order of Referencing

Assume two procedures, PROC _ONE and PROC _TWO, make references to each other,
and PROC _ONE appears before PROC _TWO in the source code. Before PROC _ONE is
declared, the following FORWARD REFERENCE declaration must appear:

PROCEDURE PROC_TWO; FORWARD

When PROC _ONE calls PROC _TWO, the compiler recognizes the second procedure.
Later in the program, the second procedure, PROC _TWO, is declared in full.

Similar methods are used for mutually referencing interrupts and mutually referencing
switch labels.

Examples of FORWARD REFERENCE Declarations

The following example declares a forward reference to a switch label named SELECT.
Later in the program, SELECT must be declared in full.

SWITCH SELECT FORWARD

The following example declares a forward reference to an integer procedure named
SUM. Later in the program, SUM must be declared in full, and its parameters must be
the same in number and type as in this FORWARD REFERENCE declaration.

INTEGER PROCEDURE SUM(A,B,C);
VALUE A,B;
INTEGER A,B;
REAL C;
FORWARD

INTEGER Declaration

3-58

An INTEGER declaration declares simple variables that can have integer values, that is,
arithmetic values that have exponents of 0 (zero) and no fractional parts.

8600 0098-000

Declarations

<integer declaration>

LOWN J

<integer identifier>

An identifier that is associated with the INTEGER data type in an INTEGER
declaration.

A simple variable declared to be OWN retains its value when the program exits the block
in which the variable is declared, and that value is again available when the program
reenters the block in which the variable is declared.

When an arithmetic value is assigned to an integer simple variable, the value is rounded
to an integer, if possible, before it is stored in the simple variable.

When an integer simple variable is allocated, it is initialized to 0 (zero) (a 48-bit word
with all bits equal to zero).

See Appendix C, "Data Representation," for additional information on the internal
structure of an integer operand as implemented on A Series systems.

Equation Part

The equation part causes the simple variable being declared to have the same address as
the simple variable associated with the second identifier. This action is called address
equation. An identifier can be address-equated only to a previously declared local
identifier or to a global identifier. The first identifier must not have been previously
declared within the block of the equation part. An equation part is not allowed in the
global part of a program.

Address equation is allowed only between INTEGER, REAL, and BOOLEAN variables.
Because both identifiers of the equation part have the same address, altering the value
of either variable affects the value of both variables. For more information, see "Type
Coercion of One-Word and Two-Word Operands" in Appendix C, "Data Representation."

The OWN specification has no effect on an address-equated identifier. The first
identifier of an equation part is OWN only if the second identifier of the equation part is
OWN.

Examples of INTEGER Declarations

The following example declares INDEX as an integer simple variable.

INTEGER INDEX

The following example declares COUNT, VAL, and NOEXPONENT as integer simple
variables.

8600 0098-000 3-59

Declarations

INTEGER COUNT,VAL,NOEXPONENT

The following example declares SA VEV AL UE and MAX as integer simple variables.
Because they are declared to be OWN, these simple variables retain their values when
the program exits the block in which the simple variables are declared.

OWN INTEGER SAVEVALUE,MAX

The following example declares INT and CAL as integer simple variables, and
address-equates INT to the previously declared simple variable BOOL. The variables
INT and BOOL share the same address.

INTEGER INT = BOOL, CAL

INTERRUPT Declaration
The INTERRUPT declaration declares an interrupt and associates an unlabeled
statement with it.

<interrupt declaration>

- INTERRUPT -<identifier>- ; -<unlabeled statement,,_ _____ _,

<interrupt identifier>

An identifier that is associated with an interrupt in an INTERRUPT declaration.

Interrupting a Program

3-60

An interrupt provides a method of forcing a process to depart from its current point
of control and to execute the unlabeled statement that the INTERRUPT declaration
associates with the interrupt.

After executing the unlabeled statement associated with an interrupt, a program usually
returns to its previous point of control. However, the program does not return to this
point if a GO TO statement is executed within the unlabeled statement and the specified
designational expression references a statement outside of the unlabeled statement.

Once an interrupt is declared, it is enabled until it is explicitly disabled with the
DISABLE statement. The DISABLE statement can temporarily render the associated
interrupt ineffective. The ENABLE statement is used to reenable a disabled interrupt.

For an interrupt to be used, the interrupt identifier must be attached to an event
through the ATTACH statement. An interrupt can be detached from an event through
the DETACH statement.

An INTERRUPT declaration can be thought of as describing an unlabeled statement,
which can be a block, that is automatically entered on the occurrence (CAUSE) of an
event. The operating system ensures that when a program is executing the unlabeled

8600 0098-000

Declarations

statement associated with an interrupt, all other interrupts are queued until the
program exits the unlabeled statement.

For more information, refer to "ATTACH Statement," "DETACH Statement,"
"DISABLE Statement," and "ENABLE Statement" in Section 4, "Statements."

Examples of INTERRUPT Declarations

The following example declares ERR to be an interrupt and associates with it the
statement GO TO ABORT.

INTERRUPT ERR; GO TO ABORT

The following example dee1ares BLOCKl to be an interrupt. When BLOCKl is invoked,
two messages are displayed. Because a GO TO statement does not occur within the
declaration, after the interrupt code is executed, the program continues from the point
at which the interrupt occurred.

INTERRUPT BLOCKl;
BEGIN
DISPLAY("ERROR");
DISPLAY(" INTERRUPT BLOCKl OCCURRED");
END

LABEL Declaration
A LABEL declaration declares each identifier in the declaration to be a label.

<label declaration>

- LABEL _L<identif~>-~------------------1

<label identifier>

An identifier that is associated with a label in a LABEL declaration.

Using Label Identifiers

Label identifiers can be used as the targets of GO TO statements and as labels in READ
and WRITE statements.

A label identifier must appear in a LABEL declaration within the innermost block in
which the label identifier is used to label a statement.

8600 0098-000 3-61

Declarations

Examples of LABEL Declarations

The following example declares ST ART as a label.

LABEL START

The following example declares ENTER, EXIT, START, and LOOP as labels.

LABEL ENTER,EXIT,START,LOOP

LIBRARY Declaration

3-62

The LIBRARY declaration declares a library identifier and specifies values for the library
attributes associated with the library. The library identifier can be used by a program to
access entry points in the library.

<library declaration>

r~ •
- LIBRARY ___i_<library specification>>-~-------------;

<library specification>

-<identifier>
L_ {<library attribute specifications>) _J

~·-,-c-<-11-.b-r-ar_y_o_b_j-ec_t_d_e_c_la_r_a-ti_o_n_l_i-st-:>:J---.---------------;

<library identifier>

An identifier that is associated with a library in a LIBRARY declaration.

The LIBRARY declaration appears in a program that accesses a library. The LIBRARY
declaration can be used to assign values to the library attributes of a library. In a
program that calls a library, the library identifier also appears in the PROCEDURE
declarations for the library entry points.

Libraries can be declared in any block of a user program. The library and its entry
points are valid within the scope of the block; when the block is exited, the linkage to the
library is broken, and the count of the library users is decremented.

Section 8, "Library Facility," contains extended examples of libraries and programs that
use libraries, as well as information about library attributes, library linkage, and library
usage in general.

Programs that declare procedure reference arrays as library objects cannot be used for
binding.

8600 0098-000

Library Attribute Specifications

<library attribute specifications>

__t=:<string or pointer library' attribute specification>.,..~~-----<
-------C<mnemoni c library attribute speci fi cation>.,..---~

<string or pointer library attribute specification>

-<string- or pointer-valued library attribute name>-=-----

,_<EBCDIC string literal >----------------------1

<string- or pointer-valued library attribute name>

1 FUNCTION~NAME INTNAME
LIBPARAMETER
TITLE----'

<mnemonic library attribute specification>

-<mnemonic-valued library attribute name>-=---------

'-<mnemonic library attribute value>---------------i

<mnemonic-valued library attribute name>

- LIBACCESS ---------------------<

<mnemonic library attribute value>

BYFUNCTION --.----------------------i
L BYTITLE .::...=!

[BYINITIATOR _J

<library object declaration list>

Declarations

- [L1ibrary object declaration> I '
[_<library object attributes~

<library object declaration>

-<procedure reference array declaration,,.._ ___________ ,

<library object attributes>

- (- ACTUALNAME - =-<EBCDIC string literal>-) -------1

The FUNCTIONNAME attribute specifies the system function name used to find the
object code file for the library. For example, GENERALSUPPORT is a system library
function name.

8600 0098-000 3-63

Declarations

When a value is assigned to the TITLE attribute, the EBCDIC string literal must be
a properly formed file title as defined in the A Series Work Flow Language (WFL)
Programming Reference Manual, and must have a period (.) as its last nonblank
character within the quotation marks.

When a value is assigned to the INTNAME attribute, the EBCDIC string literal can have
leading blanks and must have a period as its last character. The sequence of characters
beginning with the first nonblank character up to, but not including, the next blank or
period constitutes the INTNAME and must be a valid identifier. A valid identifier is
defined to be any sequence of characters beginning with a letter and consisting of letters,
digits, hyphens(-), and underscores(_). Blanks can be present between the INTNAME
and the period.

Specification of the TITLE and INTNAME attributes is optional; by default, the library
identifier being declared is used for the TITLE and INTNAME. If the INTNAME is
given and the TITLE is not, the INTNAME is also used for the TITLE.

The EBCDIC string literal assigned to the LIBP ARAMETER attribute is used as a
parameter to a selection procedure during dynamic library linkage.

For information on LIBACCESS, see Section 8, "Library Facility."

A PROCEDURE REFERENCE ARRAY declaration that appears in a LIBRARY
declaration can be either the local or the global form of the declaration; that is, either
NULL or EXTERNAL can appear at the end of the declaration. However, only the lower
bound is required. If an upper bound is given, it is ignored. The procedure reference
array is said to be imported from the library.

The handling of a procedure reference array that is declared to be a library object is
comparable to the handling of a procedure that is declared to be a library entry point.
For more information, see "PROCEDURE Declaration" later in this section.

Examples of LIBRARY Declarations

3-64

The following example declares a reference to the library LIB that is to be referenced by
the title OBJECT/LIBRARY.

LIBRARY LIB (TITLE="OBJECT /LIBRARY. II);

The following example declares a reference to the library L, from which the procedure
reference array REFID is to be imported. The procedure reference array is exported
from the library as PROCREF.

LIBRARY L [PROCEDURE REFERENCE ARRAY REFID [0] (I);
VALUE I; INTEGER I;
EXTERNAL (ACTUALNAME=" PROCREF")] ;

The following example declares a reference to the library LIB, from which the procedure
reference arrays PAl and P A2 are imported.

8600 0098-000

LIBRARY LIB [REAL PROCEDURE REFERENCE ARRAY PA1[0:10];
NULL;

LIST Declaration

PROCEDURE REFERENCE ARRAY PA2[0:3,0:10](R,B);
REAL R;
BOOLEAN B;
NULL] ;

Declarations

A LIST declaration associates an ordered set of list elements with a list identifier. The
list identifier is used in a READ statement or WRITE statement to indicate which
entities are to be read or written.

<list declaration>

- LIST _r:<identifier>-- (L <l i ~t el ement>l)
L * _J

<list identifier>

An identifier that is associated with a set of list elements in a LIST declaration.

Although the syntax of the READ statement and WRITE statement allows the list
elements to be listed within the statement itself, a LIST declaration provides a way to
associate a list identifier with a specific group of list elements.

A simple complex expression or complex value appearing in a list is considered to be a
pair of real values: the first value is the real part of the complex value, and the second is
the imaginary part.

List Elements

<list element>

ithmetic expression~
olean expression""
mplex expression""

string ex
array row

[Llis
DO -<lis
iteration
if clause

<case head

8600 0098-000

xpression""
L FOR -<arithmetic express i on>-1

press ion~

t e i e;;;t;:J_]
t element>-- UNTIL -<Boolean expression>-----i
clause>--<list element""

>--<list element""
L ELSE -<list element>-1

>-- _L-<-.-.~
11 st element

-I

3-65

Declarations

<iteration clause>

t FOR -<variable>-- := _L:<for list'element>=l- DO
THRU -<arithmetic expression>-- DO --------1
WHILE -<Boolean expression>-- DO--------'

List elements of the following form enable the user to specify the number of characters
to be read to or written from the pointer-specified location:

<pointer expression> FOR <arithmetic expression>

An array row appearing in a list is interpreted as a sequence of variables of the same
type as that of the array. A complex array row is considered to be a real array row
containing the real and imaginary parts of the complex values in the following order: the
real part of the first element, the imaginary part of the first element, the real part of the
second element, the imaginary part of the second element, and so on.

A string variable is a valid list element for editing phrase letters A, C, and U and for
free-field formatting. For more information on free-field formatting, see "READ
Statement" in Section 4, "Statements."

A string variable acts in the same manner as <pointer expression> FOR < arith
metic expression > when used with the A, C, and U editing phrases. For more
information about the A, C, and U editing phrases, refer to "FORMAT Declaration"
earlier in this section.

Asterisks (*) prefixed to list elements have meaning only for free-field output; they are
ignored for other types ofI/0 operations. An asterisk prefixed to a list element causes
the text of the list element and an equal sign (=) to be written to the left of the edited
value of the list element.

Examples of LIST Declarations

3-66

The following example declares Ll as a list identifier for the list consisting ofX, Y, the
array row A[4, *],and B[2], B[3], B[4], and B[5].

LIST Ll (X,Y,A[4,*],FOR I := 2 STEP 1 UNTIL 5 DO B[I])

This list identifier might appear in a WRITE statement such as the following:

WRITE (LP_OUT,//,Ll);

The following example declares ANSWERS and RESULTS as two list identifiers with
associated list elements.

LIST ANSWERS (P + Q,Z,SQRT(R)),
RESULTS (Xl,X2,X3,X4/2)

The following example declares LIST3 as a list identifier with an associated list consisting
of nested FOR clauses indexing array A. This list identifier can be used in a READ
statement to read the specified elements of array A.

8600 0098-000

LIST LIST3 (FOR I := 0 STEP 1 UNTIL 10 DO
FOR J := 0,3,6 DO

A[I,J])

MONITOR Declaration

Declarations

The MONITOR declaration designates items to be monitored during execution of the
program and the method by which the items are monitored. The MONITOR declaration
is used when diagnostic information is needed.

<monitor declaration>

- MONITOR -----------------------7

~ .
~ <file identifier>>---~ (_t<monitor ~lement>l)

<procedure identifier:.-l

Each time an identifier designated as a monitor element is used in one of the ways
described in this section, the identifier and its current value are written to the file or
passed as parameters to the procedure specified in the MONITOR declaration.

The monitor action does not occur within procedures that are declared before the
MONITOR declaration is encountered. Monitoring of a variable in the monitor list does
not occur if this identifier is passed as an actual parameter to a call-by-name formal
parameter that is modified within the procedure. In addition, the control variable in a
FOR statement cannot be monitored. The monitor action does not occur when a value
changes as the result of a READ statement or a REPLACE statement.

When a procedure identifier is specified in the MONITOR declaration, printing of the
monitor element must be performed by the procedure. Also, the monitoring procedure
performs the specified operations depending on the values passed to it.

For a debugging feature, refer to "TADS Option" in Section 6, "Compiling Programs."

Monitor Elements

<monitor element>

E<simple variable>
subscripted vari~
label identifier

<array identifier

The diagnostic information produced depends on the forms of the monitor elements.
When the LINEINFO compiler control option is TRUE and a file identifier is specified
in the MONITOR declaration, a stack number, an at sign (@), a code address, and a
sequence number are printed in front of the symbolic name of the monitor element
(for example, 0143 @003:0003:4 (00007000)). Diagnostic information is given for the
specified monitor elements as follows:

8600 0098-000 3-67

Declarations

• If the monitor element is a simple variable or a subscripted variable, the symbolic
name and the previous and new values of the variable are printed (for example,
B =0:=13).

• If the monitor element is a label identifier, the symbolic name of the label is shown
(for example, LABEL L).

• If the monitor element is an array identifier, the symbolic name of the array, the
subscript of the element, and the previous and new values of the changed array
element are printed (for example, A[12] = 0: = 12).

If the monitor element is to be assigned a value, this assignment must be done by the
monitoring procedure. This value also can be assigned to the procedure value to be
used, for example, in evaluating the remainder of an expression in which the assignment
is embedded. In the example under "Monitor Element as an Array Identifier," the
assignment statement NAME:= MON:= VAL; allows the subsequent use of the value
assigned to the monitor element.

Monitor Element as a Simple Variable

When the monitor element is a simple variable, the format of the monitoring procedure
must be as follows:

REAL PROCEDURE MON(NAME,VAL,SPELL);

The procedure must be of the same type as the monitor elements. The procedure must
have three parameters:

• The first parameter, NAME, is a call-by-name parameter of the same type as the
monitor element. The parameter NAME is passed a reference to the monitor
element, and it is normally used to store the value of the second parameter, VAL.

• The second parameter, VAL, is also of the same type as the monitor element, but it is
a call-by-value parameter and is passed the new value to be assigned to the monitor
element.

• The third parameter, SPELL, must be a call-by-value real variable that is passed the
name of the monitor element as a string of characters. Only the first six characters
of the symbolic name are passed to this formal parameter. If the symbolic name is
less than six characters long, it is left-justified, and trailing blanks are added, up to
six characters.

Monitor Element as a Label Identifier

3-68

When the monitor element is a label identifier, the format of the monitoring procedure
must be as follows:

PROCEDURE MON(SPELL);

The procedure must be untyped and must have only one parameter. This parameter is a
call-by-value real variable that is passed the first six characters of the symbolic name. If
the symbolic name is less than six characters long, it is left-justified, and trailing blanks

8600 0098-000

Declarations

are added, up to six characters. The monitoring procedure could compare this name to
the symbolic names in the monitor list in order to identify a particular label.

Monitor Element as an Array Identifier

When the monitor element is an array identifier, the declaration of the monitoring
procedure must be as follows:

REAL PROCEDURE MON(Dl, ••• ,Dn,NAME,VAL,SPELL);

The parameters Dl through Dn of the procedure are index parameters that are passed
the subscripts for each dimension of the array element that is modified. There must
be as many index parameters as the array has dimensions. Each index parameter is a
call-by-value integer. The last three parameters are the same as in the simple variable
form, except that NAME and VAL are simple variables of the same type as the array.

The value being assigned to the array element also can be assigned to the procedure
value to be used, for example, in evaluating the remainder of an expression that contains
the array element.

The following procedure can be used to monitor a two-dimensional real array so that the
values in the array never become negative:

REAL PROCEDURE MON(Dl,D2,NAME,VAL,SPELL);
VALUE Dl,D2,VAL,SPELL;
REAL NAME, VAL;
REAL SPELL;
INTEGER Dl,D2;

BEGIN
IF VAL < 0 THEN

GO TO ERROREXIT; % BAD GO TO
NAME := MON := VAL; % RETURN VALUE FOR FURTHER USE
END;

The following statements are equivalent to each other, where A is monitored by MON.
A is a two-dimensional array declared in the same program where the monitoring
procedure MON is declared. The first assignment statement assigns 4 to A[I,J], as does
the second statement because inside the procedure MON the fourth parameter (VAL) is
assigned to the 3rd parameter (NAME).

B := A[l,J] := 4;

B := MON(l,J,A[l,J] ,4,"A");

Examples of MONITOR Declarations

The following example declares the simple variable A to be a monitor element. When A
is used, monitoring information on A is written to file FYLE.

MONITOR FYLE (A)

8600 0098-000 3-69

Declarations

In the following program, simple variable I, array MONl, subscripted variable MON2[1],
and label FINISH are monitored.

100 BEGIN

300 FILE TERMOUT(KIND=REMOTE);
400 INTEGER I;
500 LABEL FINISH;
600 ARRAY MON1[0:3],
700 MON2[0:3];
800 MONITOR TERMOUT (I,MON1,MON2[1],FINISH);
900
1000 I := 27;
1100 MONl [0] : = I;
1200 MON2[0] := 23;
1300 MON2[1] := MON1[0] * 2;
1400 GO TO FINISH;
1500 FINISH:
1600 END.

When the program is executed, the following output is written to the terminal:

0148 @ 003:000E:4 (00001000) I =0:=27
0148 @ 003:0013:4 (00001100) MONl [0]=0:=27
0148 @ 003:0020:4 (00001300) MON2 [1]=0:=54
0148 @ 003:0024:4 (00001500) LABEL FINISH

(4"00000000001B")
(4"00000000001B")
(4"000000000036")

OUTPUTMESSAGE ARRAY Declaration

3-70

An OUTPUTMESSAGE ARRAY declaration declares output message arrays. An
output message array contains output messages to be used by the MultiLingual System
(MLS). For a description of how to use these arrays, refer to "MESSAGESEARCHER
Statement" in Section 4, "Statements."

<output message array declaration>
f- .

- OUTPUTMESSAGE - ARRAY _[<output mes;age array>~~--------1

<output message array>

-<identifier>- (

Lt<output mes;age part;=J

<output message array identifier>

An identifier that is associated with an output message array in an OUTPUTMESSAGE
ARRAY declaration.

8600 0098-000

Declarations

<output message part>

-<language name> '
[_<translators' help text~ [_<ccsversion name~

,_ (-.----------..-

LL<output ~essage:iJ
<language name>

-<letter>

Lt/16\L<lette:;=J
<digit

<ccsversion name>

-<letter>

LL/16\L<lette:;=J
<digit

<translator's help text>

- <-<EBCDIC string constant>-> ---------------1

The OUTPUTMESSAGE ARRAY declaration is part of the ALGOL interface to the
MultiLingual System (MLS), which enables the user to access system messages in
various natural languages, that is languages used by humans rather than machines.

Each output message array identifier must be unique throughout the entire program.
This requirement is an exception to the description of the scope of identifiers given in
Section 1, "Program Structure."

The ccsversion name identifies the ccsversion to be associated with the messages
contained in the output message array. This information is used during translation
of the declared output messages by the MLSTRANSLATE statement to provide
case-insensitivity. If unspecified, the associated ccsversion becomes the internationalized
system default collating sequence.

Output Message

<output message>

[_<translators' help text~
<output message number,,,_ ______ ,

f-

?·-.-------------..- = ~<output message segment>-,>--.-~--1
~translators' help text~ -----C::<translators' help text>-1

<output message number>

-<unsigned integer'>-----------------------1

8600 0098-000 3-71

Declarations

3-72

<output message segment>

1<EBCDIC string constant
<hexadecimal string constant
<output message parameter,,,,_ _ __,

<~utput message case expression
EMPTY -------------'

<output message parameter>

- < -<output message parameter number>-------------

~'-r--------------------------.----1

, ~DECIMALPOINTISCOMMA

/1\- DECIMALPOINTIS -<p~nctuation 1 iteral>--~~~
/1\- THOUSANDSEPARATORIS -<punctuation literal

<output message parameter number>

-<unsigned integer>-----------------------1

<output message case expression>

- CASE - < -<output message parameter number>- > - OF - BEGIN ~~

~Loutput message case part>>--'!~[--]~ END -----------1

<output message case part>

~output message parameter value>-r-
-------C/1\- ELSE---------~

-'-----------~

~·-r~-~--<-~-~-!~-~-i-am-t~-~-~-~g-~-e-f-~9-~-:-~-i;JJJ---.-----------------1

<output message parameter value>

<EBCDIC string constant
hexadecimal string constant
EMPTY --------~

An output message number must be less than 8 digits long. For each output message
part, the output message number must uniquely identify an output message. For
example, a number is assigned to one and only one output message segment, and each
output message segment has only one number assigned to it.

An output message parameter number represents a parameter to be substituted into
the message when the MESSAGESEARCHER statement is executed. The number
identifies which parameter is to be substituted. The output message parameters are
numbered consecutively from 1 through n, where n is the number of parameters in the
output message.

8600 0098-000

Declarations

DECIMALPOINTISCOMMA indicates that any decimal point (.) appearing in the
preceding output message parameter number is changed to a decimal comma(,). In
addition, all commas are changed to decimal points. DECIMALPOINTIS <punctuation
literal> causes any decimal points appearing in the parameter value to be changed to
the specified character. THOUSANDSEP ARATORIS <punctuation literal> causes any
commas appearing in the parameter value to be changed to the specified character.

A slash (j) causes both a carriage return character (48"0D") and a line feed character
(48"25") to be inserted into the completed output message.

If an output message case expression does not contain an ELSE clause and no case exists
for the value of the output message parameter, then the result of the output message
case expression is a null string and an error result is returned with the completed output
message. The program requesting the output message can determine whether or not
the partially formed output message should be used.

When multiple output message parts occur within the same output message array, they
define the same output messages for different languages. Multiple output message
arrays can be used to define different groups of output messages.

Defines are expanded within an OUTPUTMESSAGE ARRAY declaration.

Translators' Help Text

The translators' help text is displayed by the Message Translation Utility (MSGTRANS)
when an output message is being translated. For more information on the MSGTRANS,
refer to the A Series Message Translation Utility (MSGTRANS) Operations Guide. The
translators' help text can occur before or after an output message segment or an output
message number. If translators' help text needs to appear with all output messages
in the language, then the translators' help text is placed after the language name and
before the left parenthesis.

Examples of OUTPUTMESSAGE ARRAY Declarations

In the following example, the output message array ERRORS shows an
OUTPUTMESSAGE ARRAY declaration with the same output messages in two
languages. The language of the user and the output message number determine the
output message that is selected from this array.

OUTPUTMESSAGE ARRAY ERRORS (
ENGLISH (

8600 0098-000

10 = "POSITIVE INTEGER EXPECTED.",
20 = "TOO MANY PARAMETERS."

) '
FRANCAIS (

10 = "DEMANDE UN ENTIER POSITIF.",
20 = "TROP DE PARAMETRES."

)) ;

3-73

Declarations

In the following example, the output message array SUMMARY shows an
OUTPUTMESSAGE ARRAY declaration with parameters. The first parameter value
is not used as part of the message, but rather to select among case alternatives. The
second and third parameters are conditionally inserted into the message, based on the
value of the first parameter. Note that both the second and third parameters are not
necessarily used. When the message is given in the language FRANCAIS, decimal points
in the values of parameters 2 and 3 are changed to decimal commas.

OUTPUTMESSAGE ARRAY SUMMARY (
ENGLISH (

100 =
"THIS PROGRAM IS TO BE EXECUTED WITH "
CASE <1> OF

BEGIN
II 1": II MAX PROCESS ING TIME II <2> II SEC. II.
11 211 : "MAX 1/0 TIME II <3> II SEC.",
"3": "MAX PROCESSING TIME II <2> II SEC •• MAX II

II 1/0 TIME II <3> II SEC. II

END
).

FRANCAIS (
100 =

"CE PROGRAMME DOIT S' EXECUTER EN MOINS DE "
CASE <1> OF

BEGIN
"l": <2, DECIMALPOINTISCOMMA>

II SEC. DE CALCUL. II.
11 2 11 : <3, DECIMALPOINTISCOMMA>" SEC. D'E/S.",
"3": <2, DECIMALPOINTISCOMMA>

END
)) ;

II SEC. DE CALCUL OU II

<3, DECIMALPOINTISCOMMA> " SEC. D'E/S."

PICTURE Declaration

3-74

The PICTURE declaration declares pictures that are used in REPLACE statements to
perform general editing of characters.

<picture declaration>

- PICTURE _L<identifier>- (~<picture>-) ~---------<

<picture identifier>

An identifier that is associated with a picture in a PICTURE declaration.

8600 0098-000

Declarations

<picture>

r~------~
___l_<pi cture symbol >-'-----------------------1

<picture symbol>

<i ntroducti on>·-------------1 1<string literal>

<picture skip> 1
'-<repeat pa rt val u e.,,,.,.__--<

<control character>----------<
<single picture character;>--------1
<picture character> 1

L<repeat part value>_J

l

A picture is used in a REPLACE statement to perform generalized editing functions as
characters are transferred from a source location to a destination. The following editing
operations can be performed:

• Unconditional character moves

• Moves of characters with leading 0 (zero) editing

• Moves of characters with leading 0 (zero) editing and floating character insertion

• Moves of characters with conditional character insertion

• Moves of characters with unconditional character insertion

• Moves of only the numeric parts of characters

• Forward and reverse skips of source characters

• Forward skips of destination characters

• Insertion of an overpunch sign on the previous character

A picture consists of a named string of picture symbols enclosed in parentheses. The
picture symbols specify the editing to be performed and can be combined in any order to
perform a wide range of editing functions.

One value array, also called an edit table, is generated for each PICTURE declaration;
therefore, for run-time efficiency, all pictures should be collected under a single
PICTURE declaration.

String Literals

If a string literal appears in a picture, the string is inserted into the destination. If
the destination is EBCDIC, the string is inserted unchanged. If the destination is
hexadecimal, only the numeric fields of the string characters are inserted into the
destination.

8600 0098-000 3-75

Declarations

Introduction

<introduction>

--,-<introduction code>--<new character>

L._ 4 ~<introduction code~/2\-<hexadecimal character~
<introduction code>

<new character>

1<letter>
<di gi t>>-------d--l
<single space>
<special new character

<special new character>

Any of the following special characters:

[J + - I
> < = % & * @
$ II

Introduction Codes

3-76

The introduction codes can be used to change the implicit characters used by some of the
picture symbols. The <introduction> construct specifies the new character to be used.
If two hexadecimal characters are used to specify the new character, they are assumed to
represent a single EBCDIC character.

Introduction
Code

B

c

M

N

p

u

Action

Specifies the zero character to be used by D, E, F, and Z. The default
zero character is the blank character.

Specifies the nonzero character to be used by D. The default nonzero
character is the comma (,).

Specifies the minus character to be used by E, R, and S. The default
minus character is the hyphen (-).

Specifies the insert character to be used by I. The default insert character
is the period (.).

Specifies the plus character to be used by E, R, and S. The default plus
character is the plus sign(+).

Specifies the dollar character to be used by F and J. The default dollar
character is the dollar sign ($).

8600 0098-000

Declarations

Characters Used by Picture Symbols

Certain picture symbols implicitly define characters to be inserted into the destination.
These characters are referred to as the insert character, zero character, nonzero
character, minus character, plus character, and dollar character.

The insert character is the character inserted into the destination by the picture
symbol I. It is, by default, the period (.), and it can be changed by the introduction
codeN.

The zero character is used by the picture symbol D, and by the picture symbols E, F,
and Z for leading zero replacement. It is, by default, the blank character, and it can be
changed by the introduction code B.

The nonzero character is used by the picture symbol D. It is, by default, the comma(,),
and it can be changed by the introduction code C.

The minus character is used by the picture symbols E, R, and S. The default minus
character is the hyphen(-), and it can be changed by the introduction code M.

The plus character is used by the picture symbols E, R, and S. The default plus character
is the plus sign (+) , and it can be changed by the introduction code P.

The dollar character is used by the picture symbols F and J. The default dollar character
is the dollar sign($), and it can be changed by the introduction code U.

Flip-Flops Used by Picture Symbols

Two hardware flip-flops affect the operation of certain picture symbols: the float flip-flop
(FLTF) and the external sign flip-flop (EXTF).

The value ofFLTF affects the function performed by the picture symbols D, E, F, J, R,
and Z. FLTF is set to 0 (zero) at the beginning of every picture. The picture symbols
E, F, and Z can change the value of FLTF to 1, and the picture symbols J, R, and D
unconditionally assign the number 0 to FLTF.

The value of EXTF affects the function performed by the picture symbols E, F, J, Q,
R, and S. EXTF is not assigned a value by the REPLACE statement that is using the
picture; EXTF remains in the state in which it was left after the most recent operation
that affected it. For example, a REPLACE statement of the following form sets EXTF
to reflect the sign of the first arithmetic expression: the number 1 if the arithmetic
expression is positive, and the number zero if it is negative.

REPLACE <destination> BY <arithmetic expression>
FOR <arithmetic expression> DIGITS

Character Fields

Pictures can act on both EBCDIC and hexadecimal characters. In the descriptions of the
picture symbols, the term numeric field is used to mean either an entire hexadecimal

8600 0098-000 3-77

Declarations

character or the rightmost four bits of an EBCDIC character. The term zone field is used
to mean the leftmost four bits of an EBCDIC character.

Picture Skip Characters

<picture skip characters>

<repeat part value>

- (-<unsigned integer>-) -----------------1

The picture skip characters are described in the following table. If a repeat part value
is given with the picture symbol, then this unsigned integer indicates the number of
characters that are to be skipped in the source. If no repeat part value is given, one
character is skipped in the source.

Character

>

<

Action

The source pointer is skipped forward (to the right) the specified number
of characters.

The source pointer is skipped backward (to the left) the specified number
of characters.

Control Characters

<control character>

The control characters are described in the following table.

Character

Q

Action

If the value of EXTF is 1, a 4"D" character is inserted into the zone field
of the preceding destination character. If the value of EXTF is 0, the
destination character is not altered. The destination pointer must be
EBCDIC, and it is left pointing to the same character that it was pointing
to before the Q action was taken.

FLTF is unconditionally assigned the value 0.

Single Picture Characters

<single picture character>

The single picture characters are described in the following table.

3-78 8600 0098-000

Character

J

R

s

Picture Characters

<picture character>

Declarations

Action

If the value of FLTF is 0, the dollar character is inserted into the
destination. If the value of FLTF is 1, no character is inserted, and the
destination pointer is not advanced. FLTF is then assigned the value 0. If
the destination is hexadecimal, only the numeric field of the dollar
character is inserted.

If the values of FLTF and EXTF are 0, the plus character is inserted into
the destination. If FLTF is 0 and EXTF is 1, the minus character is
inserted into the destination. If FLTF is 1, no character is inserted, and
the destination pointer is not advanced. FLTF is then assigned the value
0. If the destination is hexadecimal, only the numeric field of the plus or
minus character is inserted.

If EXTF is 1, the minus character is inserted into the destination;
otherwise, the plus character is inserted into the destination. The
destination must be EBCDIC.

A ~~~~~~~~~~~~~~~~~~~~~~~~~~
D
E
F
I
x
z
9

The picture characters are described in the following table. If a repeat part value
is given with the picture symbol, then the unsigned integer in the repeat part value
specifies the number of characters to be skipped, inserted, or transferred from the
source to the destination. If no repeat part value is given, one character is skipped,
inserted, or transferred from the source to the destination.

Character

A

D

8600 0098-000

Action

The specified number of characters are transferred from the source to the
destination. If the destination is hexadecimal, only the numeric fields of
the characters are transferred.

If the value of FLTF is 0, the specified number of zero characters are
inserted into the destination. If FLTF is 1, the specified number of
nonzero characters are inserted into the destination. If the destination is
hexadecimal, only the numeric field of the zero or nonzero character is
inserted.

continued

3-79

Declarations

3-80

continued

Character

E

F

x

z

9

Action

For the specified number of source characters, the following action takes
place. While the value of FLTF is 0 and the numeric field of the source
character is 4"0", the zero character is inserted into the destination. If
the destination is hexadecimal, only the numeric field of the zero
character is inserted. If the value of FLTF is 0 and the numeric field of
the source character is not equal to 4"0", several things happen. If EXTF
is 0, the plus character is inserted into the destination. If EXTF is 1, the
minus character is inserted into the destination. If the destination is
hexadecimal, only the numeric field of the plus or minus character is
inserted. The numeric field of the source character is transferred to the
destination, with a zone field of 4"F" if the destination is EBCDIC. FLTF is
assigned a value of 1. While FLTF is 1, the numeric field of the source
character is transferred to the destination, with a zone field of 4"F" if the
destination is EBCDIC.

For the specified number of source characters, the following action takes
place. While the value of FLTF is 0 and the numeric field of the source
character is 4"0", the zero character is inserted into the destination. If
the destination is hexadecimal, only the numeric field of the zero
character is inserted. If FLTF is O and the numeric field of the source
character is not equal to 4"0", several things can happen. The dollar
character is inserted into the destination. If the destination is
hexadecimal, only the numeric field of the dollar character is inserted.
The numeric field of the source character is transferred to the
destination, with a zone field of 4"F" if the destination is EBCDIC. FLTF is
assigned a value of 1. While FLTF is 1, the numeric field of the source
character is transferred to the destination, with a zone field of 4"F" if the
destination is EBCDIC.

The specified number of insert characters are inserted into the
destination. If the destination is hexadecimal, only the numeric field of
the insert character is inserted.

The destination pointer is skipped forward (to the right) the specified
number of characters.

For the specified number of source characters, the following action takes
place. While ·the value of FLTF is 0 and the numeric field of the source
character is 4"0", the zero character is inserted into the destination. If
the destination is hexadecimal, only the numeric field of the zero
character is inserted. If the value of FLTF is 0 and the numeric field of
the source character is not equal to 4"0", the numeric field of the source
character is transferred to the destination, with a zone field of 4"F" if the
destination is EBCDIC. FLTF is assigned a value of 1. While FLTF is 1,
the numeric field of the source character is transferred to the destination,
with a zone field of 4"F" if the destination is EBCDIC.

If the source and destination are both EBCDIC, the numeric fields of the
specified number of characters are transferred from the source to the
destination with zone fields of 4"F". If the source and destination are
both hexadecimal, the specified number of characters are transferred
from the source to the destination.

8600 0098-000

Declarations

Examples of PICTURE Declarations

The following picture transfers five characters from the source to the destination:

PICTURE NUM (ZZZZ9)

The first four characters are transferred with leading zero replacement; that is, leading
zeros are transferred to the destination as the zero character, which is a blank character
by default. The fifth character is not replaced by the zero character. If the source and
destination are EBCDIC, digits are transferred as digits, but other characters have
their zone field replaced by 411F11 , turning them into digits. Ifthe source and destination
are hexadecimal, only the numeric field of the zero character is transferred to replace
leading zeros. The following table gives some sample results of this picture.

Source Destination

8"00000" 8" O"

8"00500" 8" 500"

8"00356" 8" 356"

8"0ABCD" 8" 1234"

4"00000" 4"00000"

4"00500" 4"00500"

4"00356" 4"00356"

4"0ABCD" 4"0ABCD"

The following picture transfers nine characters from the source to the destination and
inserts one character into the destination, yielding 10 characters in the destination:

PICTURE USECS (ZZZI999999)

The first three characters from the source are transferred to the destination with
leading zero replacement. Then the insert character, which is a period (.) by default, is
inserted into the destination. Six characters are then transferred from the source to the
destination with no leading zero replacement. The following table gives some sample
results of this picture.

Source

8"000000000"

8"356000012"

8"005123400"

8"150000376"

Destination

8 11 .000000"

8"356.000012"

8" 5.123400"

8 11 150.00037611

The following picture transfers six characters from the source:

PICTURE TIMENOW (N: " " 9(2) I 9(2) I 9(2))

The introduction code N causes the insert character to be the colon(:). The string
literal 11 11 causes the blank character to be inserted into the destination. The first
and second source characters are transferred to the destination without leading zero

8600 0098-000 3-81

Declarations

3-82

replacement, the insert character is inserted into the destination, the third and fourth
source characters are transferred to the destination, the insert character is inserted, and
the fifth and sixth source characters are transferred to the destination. The destination
receives a total of nine characters. The following table gives some sample results of this
picture.

Source

8"000000"

8"123456"

8"000523"

8"150007"

Destination

8" 00:00:00"

8" 12:34:56"

8" 00:05:23"

8" 15:00:07"

The following picture transfers 11 characters from the source to the destination,
formatting the information into a table:

PICTURE TABLE ("1983 = " F(4) X(2) "1984 = " :F(4) X(2)
"CHANGE = " :E(3) "%")

First, the string 1983 = is inserted into the destination. Then four characters are
transferred from the source to the destination, with leading zero replacement and a
dollar sign ($) inserted in front of the first nonzero character. Then the destination
pointer is advanced two characters, and the string 1984 = is inserted into the
destination. The colon(:) control character causes leading zero replacement to be
restored. Four characters are transferred from the source to the destination with
leading zero replacement and a dollar sign ($) inserted in front of the first nonzero
character. The destination pointer is advanced two characters, and the string
CHANGE = is inserted into the destination. Again, the colon is used to restore
leading zero replacement. Then three characters are transferred from the source to
the destination with leading zero replacement and a plus sign (+) or a minus sign (-)
inserted in front of the first nonzero character, depending on the value of EXTF. Finally,
the string % is inserted into the destination. A total of 42 destination characters are
produced by this picture.

The following table gives some sample results of this picture. In the table, it is assumed
that the destination area was filled with blanks before the picture was used, and that
EXTF was properly set up to reflect the sign of the change value.

Source

8"00035000420020"

8"00110003680235"

8"02246021060006"

8"00089000350061"

Destination

8"1983 = $35 1984 = $42 CHANGE= +20%"

8"1983 = $110 1984 = $368 CHANGE= +235%"

8"1983 = $2246 1984 = $2106 CHANGE= -6%"

8"1983 = $89 1984 = $35 CHANGE= -61%"

8600 0098-000

Declarations

POINTER Declaration

The POINTER declaration declares a pointer. A pointer can represent the address of a
character position in a one-dimensional array or an array row. Therefore, the point is
said to point to a character position.

<pointer declaration>

L OWN J POINTER

r~ •
~___i__<i dentifi er> [

<lex level restriction part~

<pointer identifier>

An identifier that is associated with a pointer in a POINTER declaration.

The POINTER declaration establishes each identifier in the list as a pointer identifier.

The following declaration, for example, declares PTS, PTD, SOURCE, and DEST to be
pointers:

POINTER PTS,PTD,SOURCE,DEST

Pointers are initialized through the use of a pointer assignment statement or the update
pointer construct. Any attempt to use a pointer before it is initialized results in a fault at
run time.

OWN Pointers

A pointer declared to be OWN retains its value when the program exits the block in
which the pointer is declared, and that value is again available when the program
reenters the block in which the pointer is declared.

OWN pointers can be assigned only to global arrays or OWN arrays declared within the
scope of the pointer. This restriction applies because the pointer is not deallocated when
the block in which it is declared is exited. If an OWN pointer were assigned to a local
array, then when the block in which the pointer is declared is reentered, the pointer
could contain a reference to an array that has been deallocated.

Lex Level Restriction Part

<lex level restriction part>

~ FOR -,-<pointer identifier>i
L<array identifier>---1

A global pointer pointing to a local array would access an invalid portion of memory if the
local array is deallocated. To avoid this situation, any construct that could result in a

8600 0098-000 3-83

Declarations

pointer pointing to an array declared at a higher lexical (lex) level than that at which the
pointer is declared is disallowed by the compiler. Such an assignment is called an up-level
pointer assignment.

An explicit up-level pointer assignment such as the following results in a syntax error,
because the locally declared array LOCALARRAY might be deallocated, leaving the
global pointer GLOBALPOINTER pointing at an invalid memory location:

GLOBALPOINTER := POINTER(LOCALARRAY)

A potential up-level pointer assignment such as the following also results in a syntax
error, because the local pointer LOCALPOINTER can point to a locally declared array:

GLOBALPOINTER := LOCALPOINTER

Of course, LOCALPOINTER can point to an array declared at a lex level equal to or less
than that at which GLOBALPOINTER is declared (in which case up-level assignment
would not occur). However, because there is no way for the compiler to determine where
LOCALPOINTER will be pointing when the assignment is executed, such potential
up-level pointer assignments are not allowed.

The lex level restriction part causes assignments to the declared pointer to be restricted
so that the pointer can be used to assign values to pointers declared at lower lex levels.
The lex level restriction part specifies that, for up-level pointer assignment checking, the
compiler is to treat the pointer being declared as if it were declared at the same lex level
as the pointer or array whose identifier follows the FOR. For example, the following
declaration declares a pointer LOCALPOINTER that can point only to arrays declared at
lex levels equal to or less than the lex level at which GLOBALPOINTER is declared:

POINTER LOCALPOINTER FOR GLOBALPOINTER

Because assignments to LOCALPOINTER are restricted by the lex level restriction part
in the_preceding declaration, an assignment such as the following one cannot result in an
up-level pointer assignment, and therefore is allowed by the compiler:

GLOBALPOINTER := LOCALPOINTER

The lex level restriction part is not allowed in the formal parameter part or the global
part of a PROCEDURE declaration.

Examples of POINTER Declarations

3-84

In the following example, program 1 and program 2 are nearly identical. The
only difference is found in the POINTER declaration at line 1000. In program 1,
LOCALPOINTER is declared without a lex level restriction part, and the potential
up-level pointer assignment at line 1200 of program 1 causes a syntax error. In
program 2, LOCALPOINTER is declared with the lex level restriction part FOR
GLOBALARRAY2, so the pointer assignment at line 1200 of program 2 cannot be an
up-level pointer assignment and does not cause a syntax error. However, the restrictions
imposed by the lex level restriction part cause a syntax error at line 1300 of program 2,
where no error occurred in program 1.

8600 0098-000

Declarations

100 %%
200 %%%%%%%%%%%%%% PROGRAM 1 %%%%%%%%%%%%%%%
300 %%
400 BEGIN
500 POINTER GLOBALPOINTER;
600 ARRAY GLOBALARRAYl,
700 GLOBALARRAY2[0:9];
800 GLOBALPOINTER := POINTER(GLOBALARRAYl);
900 BEGIN

1000
1100
1200
1300

POINTER LOCALPOINTER;
ARRAY LOCALARRAY[0:9];
GLOBALPOINTER := LOCALPOINTER;
LOCALPOINTER := POINTER(LOCALARRAY);

1400 END;
1500 END.

100 %%
200 %%%%%%%%%%%%%% PROGRAM 2 %%%%%%%%%%%%%%%
300 %%
400 BEGIN
500 POINTER GLOBALPOINTER;
600 ARRAY GLOBALARRAYl,
700 GLOBALARRAY2[0:9];
800 GLOBALPOINTER := POINTER(GLOBALARRAYl);

% LEX LEVEL 2

% LEX LEVEL 3

% SYNTAX ERROR

% LEX LEVEL 2

900 BEGIN % LEX LEVEL 3
1000 POINTER LOCALPOINTER FOR GLOBALARRAY2;
1100 ARRAY LOCALARRAY[0:9];
1200 GLOBALPOINTER := LOCALPOINTER;
1300 LOCALPOINTER := POINTER(LOCALARRAY); % SYNTAX ERROR
1400 END;
1500 END.

As the following example illustrates, a call-by-name form.al pointer parameter cannot
be assigned the value of any pointer other than itself, because there is no way for the
compiler to determine the lex level of the actual pointer parameter passed to the
call-by-name formal pointer parameter.

8600 0098-000 3-85

Declarations

BEGIN
POINTER Pl, P2;
ARRAY A[0:9];
PROCEDURE P(PTRA, PTRB);
POINTER PTRA, PTRB;

BEGIN
PTRA := PTRA + 3;
REPLACE PTRA:PTRA BY PTRB:PTRB FOR 5;
PTRA := PTRB;
PTRA := P2;
PTRB := POINTER(A);
REPLACE PTRA:PTRB BY "X";
END;

P2 := POINTER(A);
P(Pl, P2);

END.

% LEX LEVEL 2

% OK
% OK
% SYNTAX ERROR
% SYNTAX ERROR
% SYNTAX ERROR
% SYNTAX ERROR

As the following example illustrates, to prevent up-level pointer assignments that can
result from separate compilation of procedures with global parts, a pointer declared in
the global part cannot be assigned the value of any pointer other than itself.

[POINTER PTRA,PTRB;]
PROCEDURE P;

BEGIN
ARRAY A[0:9];
PTRA := PTRA + 2;
PTRA := POINTER(A);

PTRA := PTRB;

END.

% OK
% SYNTAX ERROR -- THIS IS AN
% UP-LEVEL POINTER ASSIGNMENT.
% SYNTAX ERROR -- THE LEX LEVELS
%
%
%

OF PTRA AND PTRB ARE NOT KNOWN,
SO THIS IS A POTENTIAL UP-LEVEL
POINTER ASSIGNMENT.

PROCEDURE Declaration

3-86

A PROCEDURE declaration defines a procedure and associates a procedure identifier
with it. The procedure can then be invoked by using the procedure identifier.

<procedure declaration>

~------~ PROCEDURE -<procedure heading>- ; ---
'--<procedure type~

-+-<procedure body~---------------------1

<procedure type>

t <type>
1------~ STRING _J

<string type>=J

8600 0098-000

Declarations

<procedure heading>

-<identifier> [
<formal parameter part~

A procedure becomes a function by preceding the word PROCEDURE with a procedure
type and by assigning a value (the result to be returned by the procedure) to the
procedure identifier somewhere within the procedure body. This kind of procedure
is referred to in ALGOL as a typed procedure. For examples of typed procedures,
see procedures RESULT, HEXPROC, MATCH, and MUCHO under "Examples of
PROCEDURE Declaration" later in this section. A typed procedure can be used either
as a statement or as a function. When used as a statement, the returned result is
automatically discarded.

If the <string type> variable is not specified in the <procedure type> construct in the
declaration of a string procedure, then the string procedure is of the default character
type. The default character type can be designated by the compiler control options
ASCII and BCL. If no such compiler control option is used, the default character type is
EBCDIC. For more information, refer to "Default Character Type" in Appendix C, "Data
Representation."

Identifiers

<procedure identifier>

An identifier that is associated with a procedure in a PROCEDURE declaration.

<string procedure identifier>

An identifier that is associated with a procedure that is declared a string procedure in a
PROCEDURE declaration.

Formal Parameter Part

<formal parameter part>

- (-<formal parameter list>-) - ; -,.--------.-----
L._<value part~

~ [+-<speci fi ~a~>---'----------------1
L._<reference part~

<reference part>

- REFERENCE _[<identif~ ; -----------------i

8600 0098-000 3-87

Declarations

3-88

<formal parameter list>

_[< [<-<parameter delimiter>=J
<formal parameter>>-------J'--------------------l

<formal parameter>

-<identifi er>--------------------------i

<value part>

- VALUE __[<identif~; ------------------1

The formal parameter part lists the items to be passed in as parameters when the
procedure is invoked. A formal parameter part is optional. Every formal parameter for a
procedure must appear in a specification.

For maximum efficiency, as many formal parameters as possible should be call-by-value,
and each specified lower bound should have a value of 0 (zero).

The formal parameter specifier causes the compiler to generate more efficient code
for passing procedures as parameters. When a procedure is declared FORMAL, the
compiler checks the parameters of the actual procedure passed to it at compilation time;
otherwise, the parameters are checked at run time. If FORMAL is specified, the formal
procedure is called a fully specified formal procedure.

To ensure that a parameter is passed call-by-reference, the parameter name must
appear in the <reference part> of the parameter description. Constants and arithmetic
expressions cannot be passed to parameters whose name appears in the reference part.

If a formal parameter is call-by-reference and the actual parameter being passed to it is
itself a parameter and is call-by-name, then evaluation of the call-by-name parameter
is done in order to generate the call-by-reference parameter. This ensures that any
expressions evaluated due to an accidental entry generated for the call-by-name
parameter are evaluated only once for the call-by-reference parameter.

The value part specifies which formal parameters are to be call-by-value. When a
formal parameter is call-by-value, the formal parameter is assigned the value of the
corresponding actual parameter when the procedure is invoked. Thereafter, the formal
parameter is handled as a variable that is local to the procedure body. That is, any
change made to the value of a call-by-value formal parameter has no effect outside the
procedure body.

For more information on <parameter delimiter> , see Section 2, "Language
Components."

Only arithmetic, Boolean, complex, designational, pointer, and string expressions can be
passed as actual parameters to call-by-value formal parameters. These expressions are
evaluated once before entry into the procedure body.

Formal parameters not listed in the vaJue part are call-by-name, except for string
parameters and file parameters. Wherever a call-by-name formal parameter appears in

8600 0098-000

Declarations

the procedure body, the form.al parameter is, in effect, replaced by the actual parameter
itself and not by the value of the actual parameter. A call-by-name formal parameter is
essentially global to the procedure body, because any change made to its value within the
procedure body also changes the value of the corresponding actual parameter outside the
procedure body. If the formal parameter is a complex call-by-name parameter and the
actual parameter is not of type COMPLEX, an assignment within the procedure body to
the formal parameter causes the program to discontinue with a fault.

An expression can be passed as an actual parameter to a call-by-name formal parameter.
This situation results in a thunk, or accidental entry. A thunk is a compiler-generated
typed procedure that calculates and returns the value of the expression each time the
formal parameter is used. This situation can be time-consuming if the formal parameter
is repeatedly referenced. In addition, a fault occurs if an attempt is made to store into
that parameter.

The default mode of passing a string is call-by-reference instead of call-by-name. Any
string expression can be passed to a call-by-reference string formal parameter. When
a string variable or a subscripted string variable is passed as an actual parameter to a
call-by-reference string formal parameter, a reference to the actual string is passed. If
the value of the formal parameter is changed within the procedure body, the actual string
is also changed.

If any other form of string expression is passed as an actual parameter to a
call-by-reference string formal parameter, the string expression is evaluated once at
the time the expression is passed, and a reference to the value of the expression is
passed to the called procedure. This value can be altered by the called procedure.
However, any change in the value of the formal parameter within the procedure body
has no effect outside the procedure body. A string expression cannot be passed as an
actual parameter to a call-by-name parameter of a procedure in a PROCESS or CALL
statement.

Specification

<specification>

E<speci fi er~<i denti f~
<procedure specificati~~~ ~
array specification>
procedure reference array specification

8600 0098-000 3-89

Declarations

3-90

<specifier>

EVENT ------~~----------------i
1------.- FILE -----1

DIRECT
FORMAT --------i
LABEL ---------1
LIST ---------<
PICTURE -------1
POINTER -------1

1-------~ STRING
string type
SWITCH --------1

t---------.- SWITCH FILE
DIRECT
SWITCH FORMAT ------1
SWITCH LIST -----1
TASK ---------1

<type>---------'

<procedure specification>

-,.---------~ PROCEDURE -<i denti fi er>----------?
c=<procedure type>=!

?~----------------------------l
[_<formal parameter specifier>=!

<formal parameter specifier>

--i::::<i~rmal parameter part>=!
- FORMAL -------------1

<array specification>

-~-------ARRAY __L<identif~-~------------>?
L.<a rray type:.-J

?- [-<lower bound list>-]

<array type>

<string type
TASK ------~

<lower bound list>

__L<speci fi ed 1 ~wer bound> ------------------1

<specified lower bound>

L!nteger> I

8600 0098-000

Declarations

An array specification must be provided for every formal array. The array specification
indicates the number of dimensions in the formal array and indicates the lower bound for
each dimension.

If the specified lower bound is an integer, then the corresponding dimension of the
formal array equals that integer. An asterisk (*) used as a specified lower bound
indicates that the corresponding dimension of the formal array has a lower bound that is
passed to the procedure with the actual array.

Array rows that are passed as actual parameters to procedures have their subscripts
evaluated at the time of the procedure call, rather than at the time the corresponding
formal array is referenced.

Procedure Reference Array Specification

<procedure reference array specification>

-~------~ PROCEDURE - REFERENCE - ARRAY -<identifier>-7
lM<procedure type>~

7- [-<lower bound list>-] -<formal parameter specifier>-----<

A procedure reference array specification must have a formal parameter specifier.

If a program is a procedure, parameters can be passed to it. If the procedure is
initiated through CANDE (which passes only one parameter, a quoted string), then the
formal parameter must be declared as a real array with an asterisk lower bound. If
the procedure is initiated through Work Flow Language (WFL), a formal parameter
for a string actual parameter must be declared as a real array with an asterisk lower
bound. Both CANDE and WFL pass strings as arrays. For more information, refer to
the EXECUTE command in the A Series CANDE Operations Reference Manual and the
RUN statement in the A Series Work Flow Language (WFL) Programming Reference
Manual. When the program is initiated, the array is allocated the minimum number of
words needed to contain the string plus at least one null character (48"00"), which is
appended to the end of the string.

Procedure Body

<procedure body>

1<unlabeled statement>
EXTERNAL ---------~--1

<dynamic procedure specification
<library entry point specification

Procedures can be called recursively; that is, inside the procedure body, a procedure can
invoke itself.

The procedure body EXTERNAL is used to declare a procedure that is to be bound in to
the program (as opposed to actually appearing within the program) or that is an external
code file to be invoked. An attempt to invoke a procedure that is declared external but

8600 0098-000 3-91

Declarations

has not been bound in nor associated with an external code file results in a run-time
error.

Dynamic Procedure Specification

<dynamic procedure specification>

- BY CALLING -<selection procedure identifier...------------<

<selection procedure identifier>

-<procedure i denti fi er>--------------------1

A dynamic procedure specification is used in a library program to declare a procedure
that is to be exported dynamically. Such a procedure is also called a by-calling procedure.
For more information on by-calling procedures, refer to Section 8, "Library Facility."
The by-calling procedure cannot be declared FORWARD and cannot be a separately
compiled procedure. Also, the by-calling procedure cannot be referenced directly in the
library program that declares it.

A selection procedure identifier must specify an untyped procedure with two parameters.
The first parameter must be a call-by-value EBCDIC string. The second parameter
must be a fully specified untyped procedure with one parameter that is a task. When
the operating system invokes this selection procedure, the task variable passed to its
procedure parameter must already be associated with a library that has been processed
using this task variable.

Library Entry Point Specification

""3-92

<library entry point specification>

- LIBRARY -<library identifier>---------------7

7 c= (- ACTUALNAME - = - <EBCDIC string literal> -) :J

A library entry point specification declares a procedure to be an entry point in the library
known to this program by the library identifier. The procedure cannot be declared
FORWARD or EXTERNAL.

If a program declares a library and entry points in that library, the object code file
for the program contains a structure called a library template, which describes the
library and its declared entry points. Each declared library has one template. The
template description of an entry point includes the entry point name, a description of the
procedure type, and descriptions of the entry point parameters.

When a library entry point is called, the entry point description in the library template of
the calling program is compared to the entry point description of the same name in the
library directory associated with the referenced library. Refer to "EXPORT Declaration"
earlier in this section for a discussion of library directories. If the entry point does not
exist in the library or if the two entry point descriptions are not compatible, then a
run-time error is given and the program is terminated.

8600 0098-000

Declarations

The name given for an entry point in a library template is the procedure identifier in
the entry point declaration, unless an ACTUALNAME clause appears, in which case
the name is given by the EBCDIC string literal. The EBCDIC string literal in the
ACTUALNAME clause must not contain any leading, trailing, or embedded blanks and
must be a valid identifier, that is, any sequence of characters beginning with a letter and
consisting of letters, digits, hyphens(-), and underscores(_).

Allowed Formal and Actual Parameters

All parameters can be declared to be call-by-name or, in the case of strings,
call-by-reference. The following types of parameters also can be declared to be
call-by-value:

• ASCII string

• Boolean simple variable

• complex simple variable

• double simple variable

• EBCDIC string

• hexadecimal string

• integer simple variable

• label

• pointer

• real simple variable

• string

Parameter Matching

Array Parameters

If a formal parameter is an array, the actual parameter passed to that formal array must
be an array designator that has the same number of dimensions as the formal array.

The types of actual arrays that can be passed to formal arrays are listed in Table 3-1.

Table 3-1. Array Parameters

Formal Parameters Allowed Actual Parameters

ASCII array ASCII array
ASCII value array

ASCII string array ASCII string array

continued

8600 0098-000 3-93

Declarations

3-94

Formal Parameters

BCL array

Boolean array

Complex array

Direct ASCII array

Direct BCL array

Direct Boolean array

Direct double array

Direct EBCDIC array

Direct hexadecimal array

Direct integer array

Direct real array

Double array

EBCDIC array

EBCDIC string array

Event array

Hexadecimal array

Hexadecimal string array

Integer array
Real array

Task array

Table 3-1. Array Parameters (cont.)

Allowed Actual Parameters

BCL array
BCL value array

Boolean array
Direct Boolean array
Boolean value array

Complex array
Complex value array

Direct ASCII array

Direct BCL array

Direct Boolean array

Direct double array

Direct EBCDIC array

Direct hexadecimal array

Direct integer array

Direct real array

Double array
Direct double array
Double value array

EBCDIC array
EBCDIC value array

EBCDIC string array

Event array

Hexadecimal array
Hexadecimal value array

Hexadecimal string array

Integer array
Real array
Direct integer array
Direct real array
Integer value array
Real value array

Task array

8600 0098-000

Declarations

Procedure Reference Array Parameters

If a formal parameter is a procedure reference array, the actual parameter passed to that
formal procedure reference array must be a procedure reference array designator that
has the same number of dimensions as the formal procedure reference array.

The following must also be true:

• The actual procedure reference array designator must have the same number of
parameters as the formal procedure reference array.

• Each parameter of the actual procedure reference array designator must have the
same type as the corresponding parameter in the formal procedure reference array.

• Each parameter of the actual procedure reference array designator must be passed
in the same manner (call-by-name or call-by-value) as the corresponding parameter
in the formal procedure reference array.

The types of procedure reference array designators that can be passed to formal
procedure reference arrays are listed in Table 3-2.

Table 3-2. Procedure Reference Array Parameters

Formal Parameter

ASCII string procedure reference array

Boolean procedure reference array

Complex procedure reference array

Double procedure reference array

EBCDIC procedure reference array

Hexadecimal procedure reference array

Integer procedure reference array

Real procedure reference array

Untyped procedure reference array

Procedure Parameters

Allowed Actual Parameters

ASCII string procedure reference array
designator

Boolean procedure reference array designator

Complex procedure reference array designator

Double procedure reference array designator

EBCDIC procedure reference array designator

Hexadecimal procedure reference array
designator

Integer procedure reference array designator

Real procedure reference array designator

Untyped procedure reference array designator

If a formal parameter is a procedure, the actual parameter passed to that formal
procedure must be the identifier of a procedure for which the following is true:

• The actual procedure has the same number of parameters as the formal procedure.

• Each parameter of the actual procedure must have the same type as the
corresponding parameter in the formal procedure.

8600 0098-000 3-95

Declarations

• Each parameter of the actual procedure must be passed in the same manner
(call-by-name or call-by-value) as the corresponding parameter in the formal
procedure.

The types of the procedures that can be passed to formal procedures are listed in
Table 3-3.

Table 3-3. Procedure Parameters

Formal Parameter Allowed Actual Parameters

ASCII string procedure ASCII string procedure
ASCII string procedure reference array element

Boolean procedure Boolean procedure
Boolean procedure reference array element

Complex procedure Complex procedure
Complex procedure reference array element

Double procedure Double procedure
Double procedure reference array element

EBCDIC string procedure EBCDIC string procedure
EBCDIC string procedure reference array element

Hexadecimal string procedure Hexadecimal string procedure
Hexadecimal string procedure reference array element

Integer procedure Integer procedure
Integer procedure reference array element

Real procedure Real procedure
Real procedure reference array element

Untyped procedure Untyped procedure
Untyped procedure reference array element

Simple Variable Parameters

3-96

The types of actual parameters that can be passed to formal parameters that are simple
variables are listed in Table 3-4.

8600 0098-000

Table 3-4. Simple Variable Parameters

Formal Parameter

Boolean simple variable
(call-by-name or call-by-value)

Complex simple variable
(call-by-name or call-by-value)

Double simple variable
(call-by-name)

Double simple variable
(call-by-value)

Integer simple variable
Real simple variable
(call-by-name)

Integer simple variable
Real simple variable
(call-by-value)

8600 0098-000

Allowed Actual Parameters

Boolean identifier
Boolean procedure identifier
Boolean expression

Complex identifier
Double identifier
Integer identifier
Real identifier
Complex procedure identifier
Double procedure identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single or double precision)
Complex expression

Double identifier
Double procedure identifier
Arithmetic expression
(double precision only)

Double identifier
Integer identifier
Real identifier
Double procedure identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single or double precision)

Integer identifier
Real identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single precision only)

Double identifier
Integer identifier
Real identifier
Double procedure identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single or double precision)

Declarations

3-97

Declarations

String Parameters

The types of actual parameters that can be passed to form.al parameters that are strings
are listed in Table 3-5.

Table 3-5. String Parameters

Formal Parameter

ASCII string
(call-by-reference or call-by-value)

EBCDIC string
(call-by-reference or call-by-value)

Hexadecimal string
(call-by-reference or call-by-value)

Allowed Actual Parameters

ASCII string identifier
ASCII string procedure identifier
ASCII string expression

EBCDIC string identifier
EBCDIC string procedure identifier
EBCDIC string expression

Hexadecimal string identifier
Hexadecimal string procedure identifier
Hexadecimal string expression

File Parameters

The types of actual parameters that can be passed to formal parameters that are files are
listed in Table 3-6.

Formal Parameter

Direct file

Direct switch file

File

Switch file

Table 3-6. File Parameters

Allowed Actual Parameters

Direct file identifier
Subscripted direct switch file identifier

Direct switch file identifier

File identifier
Subscripted switch file identifier

SWitch file identifier

Other Types of Parameters

3-98

The types of actual parameters that can be passed to form.al parameters that are not
arrays, procedures, simple variables, strings, or files are listed in Table 3-7.

8600 0098-000

Declarations

Table 3-7. Other Types of Parameters

Formal Parameter Allowed Actual Parameters

Event Event identifier
An element of an event array
File identifier.event-valued file attribute name
Subscripted switch file identifier.event-valued file attribute name

Format

Label
(call-by-name)
(call-by-value)

List

Picture

Pointer (call-by-name)

Pointer (call-by-value)

Switch label

Switch format

Switch list

Task

Format identifier
Subscripted switch format identifier

Label identifier
Subscripted switch identifier
Designational expression

List identifier
Subscripted switch list identifier

Picture identifier

Pointer identifier

Pointer identifier
Pointer expression

Switch label identifier

Switch format identifier

Switch list identifier

Any task designator

Examples of PROCEDURE Declarations

The following examples show how the procedure body of a procedure can vary in
complexity from a simple unlabeled statement to a block.

The following example declares SIMPL to be an untyped procedure with no parameters.
The body of SIMPL is a single statement.

PROCEDURE SIMPL;
x := x + 1

The following example declares TUFFER to be an untyped procedure with one
parameter, PARAM, which is a call-by-value real variable. The body ofTUFFER consists
of a single statement.

PROCEDURE TUFFER(PARAM);
VALUE PARAM;
REAL PARAM;

X := X + PARAM

8600 0098-000 3-99

Declarations

3-100

In the following example, procedure RESULT is a typed procedure that returns a real
value. The value to be returned is assigned to the procedure identifier by the following
assignment:

RESULT := X + PARAM;

RESULT has two parameters, a call-by-name real variable and a file.

REAL PROCEDURE RESULT(PARAM,FYLEIN);
REAL PARAM;
FI LE FY LEIN;

BEGIN

RESULT := X + PARAM;

END

The following example declares HEXPROC to be a typed procedure that returns a
hexadecimal string value. The value to be returned is assigned to the procedure
identifier in the assignment that makes up the body of HEXPROC.

HEX STRING PROCEDURE HEXPROC;
HEXPROC := 4"123"

The following example declares MATCH to be a typed procedure that returns a Boolean
value. MATCH has three parameters that are all call-by-value integer variables.

BOOLEAN PROCEDURE MATCH(A,B,C);
VALUE A,B,C;
INTEGER A,B,C;

MATCH := A=B OR A=C OR B=C

The following example is a FORWARD PROCEDURE declaration for the procedure
FURTHERON. For more information, refer to "FORWARD REFERENCE Declaration"
earlier in this section.

PROCEDURE FURTHERON;
FORWARD

The following example declares MUCHO to be a double-precision procedure with three
parameters. DBL! is a call-by-name double-precision variable, DBL2 is a call-by-value
double-precision variable, and BOOL is a call-by-value Boolean variable. The body of
MUCHO is a block.

8600 0098-000

DOUBLE PROCEDURE MUCHO(DBL1,DBL2,BOOL);
VALUE DBL2,BOOL;
DOUBLE DBL1,DBL2;
BOOLEAN BOOL;

BEGIN
REAL LOCALX,LOCALY;

MUCHO := DOUBLE(LOCALX,LOCALY);
END OF MUCHO

Deel a rations

The following example declares GETDATA to be a by-calling procedure. The selection
procedure is SELECTDATASOURCE. GETDATA has one parameter, a one-dimensional
real array, A, with an asterisk lower bound, meaning that the lower bound is to be passed
as a parameter.

PROCEDURE GETDATA(A);
ARRAY A[*];

BY CALLING SELECTDATASOURCE

% BY-CALLING PROCEDURE

The following example declares NUMRECORDS to be an entry point in the library
DATAHANDLER. The entry point is exported from DATAHANDLER with the name
COUNTRECS, but will be called NUMRECORDS in this program.

INTEGER PROCEDURE NUMRECORDS(TYPE); % LIBRARY ENTRY POINT
VALUE TYPE;
INTEGER TYPE;

LIBRARY DATAHANDLER (ACTUALNAME="COUNTRECS")

PROCEDURE REFERENCE ARRAY Declaration
The PROCEDURE REFERENCE ARRAY declaration declares a procedure reference
array, which is a structure that allows a group of like procedures to be treated as a
single entity. A procedure in the group can be invoked by referencing an element of the
procedure reference array.

<procedure reference array declaration>

~local procedure reference array declaration>
'-<global procedure reference array declaration~

<local procedure reference array declaration>

[>J PROCEDURE - REFERENCE - ARRAY -<identifier>--+
<procedure type ,

-+-- [-<bound pair list>-] ~-----------,--- ; - NULL -l
~formal parameter part~

8600 0098-000 3-101

Declarations

<procedure reference array identifier>

An identifier that is associated with a procedure reference array in a PROCEDURE
REFERENCE ARRAY declaration.

<global procedure reference array declaration>

L I PROCEDURE - REFERENCE - ARRAY -<identifier>-~
<procedure type>-1

-+-- [-r<bound pair list>---,-]
L<lower bound list:.-J lm<formal parameter part>=J

---~

-+-- EXTERNAL -----------------------1

<procedure reference array designator>

-<procedure reference array identifier>
L<subarray selector:..J

<procedure reference array row>

-<procedure reference array identifier>
L<row selector:..J

<procedure reference array element>

-<procedure reference array identifier>- [___t:subsc~i;rt;J-] ----1

Placement of Procedure Reference Arrays

3-102

A procedure reference array is an array of references to procedures of identical type and
parameters. An element of a procedure reference array can appear in the following
places:

• On either side of a procedure reference array assignment.

• As a primary in an expression, if the procedure reference array has a type associated
with it.

• In a PROCEDURE REFERENCE ARRAY statement.

• As a formal or actual parameter.

• As an object exported by, or imported from, a library in a LIBRARY declaration. For
more information, see "LIBRARY Declaration" earlier in this section.

Before an element of a procedure reference array can be used as a parameter, as a
primary, or in a PROCEDURE REFERENCE ARRAY statement, it must be initialized
in a procedure reference array assignment. A procedure assigned to the element must
have had its parameters declared explicitly.

A procedure reference array can appear in the formal parameter part of a PROCEDURE
declaration or of another PROCEDURE REFERENCE ARRAY declaration. A formal
parameter that is a procedure reference array must be declared FORMAL so that all of
its parameters are checked at compilation time.

8600 0098-000

Declarations

A procedure reference array element can be passed as an actual parameter to a formal
procedure that is of the same type and that has the same parameter descriptions.

A local PROCEDURE REFERENCE ARRAY declaration cannot appear in the global
part of a program unit. A global PROCEDURE REFERENCE ARRAY declaration can
appear in the global part of a program unit or in a LIBRARY declaration.

Example of PROCEDURE REFERENCE ARRAY Declaration

The following example declares a 10-element procedure reference array, each element
of which references a procedure of type INTEGER with two parameters. The first
parameter is a call-by-value integer simple variable, and the second is an untyped
procedure reference array with a lower bound of 0 (zero) and no parameters.

INTEGER PROCEDURE REFERENCE ARRAY REFARRAY[l:l0] (Q,R);

VALUE Q;
INTEGER Q;
PROCEDURE REFERENCE ARRAY R[0] ();

FORMAL;

NULL

REAL Declaration
A REAL declaration declares simple variables that can have real values, that is,
arithmetic values that have exponents and fractional parts.

<real declaration>

<real identifier>

An identifier that is associated with the REAL data type in a REAL declaration.

Declaration of Simple Variables

A simple variable declared to be OWN retains its value when the program exits the block
in which the variable is declared, and that value is again available when the program
reenters the block in which the variable is declared.

The equation part causes the simple variable being declared to have the same address as
the simple variable associated with the second identifier.

For more information on <equation part>, see "BOOLEAN Declaration" earlier in this
section.

8600 0098-000 3-103

Declarations

This action is called address equation. An identifier can be address-equated only to a
previously declared local identifier or to a global identifier. The first identifier must not
have been previously declared within the block of the equation part. An equation part is
not allowed in the global part of a program unit.

Address equation is allowed only between integer, real, and Boolean variables. Because
both identifiers of the equation part have the same address, altering the value of either
variable affects the value of both variables. For more information, see "Type Coercion of
One-Word and Two-Word Operands" in Appendix C, "Data Representation."

The OWN specification has no effect on an address-equated identifier. The first
identifier of an equation part is OWN only if the second identifier of the equation part is
OWN.

If a real or integer value is assigned to a real variable, it is stored as is into the variable.
If a double-precision value is assigned to a real variable, it is rounded to single precision
before it is stored in the variable.

When a real simple variable is allocated, it is initialized to 0 (zero), which is a 48-bit word
with all bits equal to 0.

See Appendix C, "Data Representation," for additional information on the internal
structure of a real operand as implemented on A Series systems.

Examples of REAL Declarations

3-104

The following example declares INDX, X, Y, and TOT AL as real variables.

REAL INDX,X,Y,TOTAL

The following example declares CALC, INDEX, and V ALU as real variables. CALC is
address-equated to the simple variable BOOL, and VAL U is address-equated to the
simple variable INTR. According to this declaration, CALC and BOOL share the same
address, and V ALU and INTR share the same address.

REAL CALC = BOOL, INDEX, VALU = INTR

The following example declares DISTANCE and REALINDEX as real variables. Because
these variables are declared to be OWN, the variables retain their values when the
program exits the block in which they are declared.

OWN REAL DISTANCE, REALINDEX

8600 0098-000

Declarations

SIMPLE VARIABLE Declaration
A SIMPLE VARIABLE declaration declares simple variables that can be used in a
manner appropriate to the specified type.

<simple variable declaration>

1Booloan doola•at~
complex declaration
double declaration
integer declaration

<real declaration

Type-transfer functions can be used, as can the equation part construct, to perform
operations on a variable other than those that are valid for the type of the variable.

Each type of simple variable is used as follows:

Type

BOOLEAN

COMPLEX

DOUBLE

INTEGER

REAL

Meaning/Description

Boolean values. A Boolean variable is a one-word variable in which the
Boolean value (TRUE or FALSE) depends on the low-order bit (bit zero) of
the word. The use of partial word parts and concatenation enables all 48
bits to be tested or manipulated as needed.

Complex values. A complex variable consists of two real variables in which
the first variable contains the real part and the second variable contains the
imaginary part.

Double-precision arithmetic values. A double-precision variable is a
two-word variable.

Integer arithmetic values. An integer value is one that has an exponent of
O (zero) and no fractional part. Integer variables are one-word variables.

Real arithmetic values. A real value is one that can have an exponent and a
fractional part. Real variables are one-word variables.

See Appendix C, "Data Representation," for more information regarding the internal
structure of each type of simple variable as implemented on A Series systems.

STRING Declaration
A STRING declaration declares simple variables to be strings. Strings allow storage and
manipulation of character strings in a program.

<string declaration>

STRING _[<i denti f~ ~-----------<
L.<string type~

8600 0098-000 3-105

Declarations

<string type>

ASCII ---.~~~~~~~~~~~~~~~~~~~~~--i
L EBCDIC

[HEX

<string identifier>

An identifier that is associated with the STRING data type in a STRING declaration.

STRING Type

The type STRING is a structured data type that contains characters of only one
character type.

A string has two components: contents and length. No trailing blanks or null characters
are added to a string; therefore the length of a string is exactly the number of characters
stored in the string. The maximum string length allowed is 2**16-2 characters.

All strings declared in a STRING declaration are of the same string type. If no string
type is specified in the STRING declaration, then the default character type is used.
If the default character type in this case is BCL, a syntax error is given. The default
character type can be designated by the compiler control options ASCII and BCL. If
no such compiler control option is designated, the default character type is EBCDIC.
For more information, refer to "Default Character Type" in Appendix C, "Data
Representation."

The number of strings that can be declared in a program is limited by the operating
system to 500. If this limit is exceeded, the message STRING POOL EXCEEDED is
given.

Examples of STRING Declarations

3-106

The following example declares Sl, S2, and S3 as string simple variables of string type
ASCII. Sl, S2, and S3 contain ASCII characters.

ASCII STRING Sl,S2,S3

The following example declares S5, 86, S 7, and SS as string simple variables of string
type EBCDIC. These strings contain EBCDIC characters.

EBCDIC STRING S5,S6,S7,S8

The following example declares 89 as a string simple variable. Because no string type is
specified, the default character type is used. This character type is EBCDIC unless the
compiler control option ASCII is TRUE, in which case the string type is ASCII, or the
compiler control option BCL is TRUE, in which case the string type is BCL. If the default
character type is BCL, this declaration is given a syntax error.

STRING S9

8600 0098-000

Declarations

STRING ARRAY Declaration
A STRING ARRAY declaration declares string arrays. A string array is an array that has
string elements.

<string array declaration>

I 1 STRING - ARRAY
1-<string type>--1

~identif~ [-:bound pair list>-] --'---------1

<string array identifier>

An identifier that is associated with a string array in a STRING ARRAY declaration.

<string array designator>

-<string array identifier>
L.<subarray selector:..J

String Array Type

All string arrays declared in a STRING ARRAY declaration are of the same string type.
If no string type is specified, the default character type is used. If the default character
type in this case is BCL, a syntax error is given. The default character type can be
designated by the compiler control options ASCII and BCL. If no such compiler control
option is used, the default character type is EBCDIC. For more information, refer to
"Default Character Type" in Appendix C, "Data Representation."

The restrictions that apply to arrays also apply to string arrays. For more information on
bound pair lists, subarray selectors, and arrays, see "ARRAY Declaration" earlier in this
section.

Examples of STRING ARRAY Declarations

The following example declares SA, SB, and SC as one-dimensional arrays of strings,
each with a lower bound of 0 and an upper bound of 10. Because no string type is
specified, the default character type is used. This character type is EBCDIC unless the
compiler control option ASCII is TRUE, in which case the string type is ASCII, or the
compiler control option BCL is TRUE, in which case the string type is BCL. If the default
character type is BCL, this declaration is given a syntax error.

STRING ARRAY SA,SB,SC[0:10]

The following example declares ESA, ESB, and ESC as arrays of strings. The string type
is EBCDIC, so each is an array of EBCDIC strings. ESA is one-dimensional and has a
lower bound of 1 and an upper bound of 15. Arrays ESB and ESC are two-dimensional
arrays with lower bounds of 0 and upper bounds of 10 for both dimensions.

8600 0098-000 3-107

Declarations

EBCDIC STRING ARRAY ESA[1:15], ESB, ESC[0:10, 0:10]

SWITCH Fl LE Declaration
A SWITCH FILE declaration associates an identifier with a list of file designators. Any
of these file designators can later be referenced by using the identifier and a number
corresponding to the position of the file designator in the list.

<switch file declaration>

[W DIRECT.:) SWITCH - FILE -<identifier>-- :=

~-<switch file 1 i st~-------------------i

<switch file identifier>

An identifier that is associated with a switch file list in a SWITCH FILE declaration.

<direct switch file identifier>

An identifier that is associated with a switch file list in a DIRECT SWITCH FILE
declaration.

<switch file list>

r+-- •
--1--<fi le designator>~-------------------1

<file designator>

Efile identifier>
direct file identifier>>--------------11
switch file identifier> ---~ [-<subscript>--] _J
direct switch file identifier,._]

Switch File List

3-108

An integer index is associated with each file designator in the switch file list. The
indexes are 0, 1, 2, and so on through N-1, where N is the number of file designators in
the list. These indexes are obtained by counting the file designators in order of their
appearance in the list. A file designator in the list can be referenced by subscripting
the switch file identifier with a subscript whose value is equal to the index of the file
designator.

If a subscript to a switch file identifier yields a value outside the range of the switch file
list (that is, less than 0 or greater than N-1), a fault occurs at run time.

Any subscripts in the switch file list are evaluated at the time of the SWITCH FILE
declaration.

8600 0098-000

Declarations

A switch file can reference itself in the switch file list, in which case a stack overflow
might occur when the program is executed. For example, assume a switch file is declared
as the following:

SWITCH FILE SF := Fl, F2, SF[N]

If N equals 2, the subscripted switch file identifier SF[N] references itself indefinitely.

The switch file list of a switch file that is not designated as DIBECT can contain only
file designators that are not DIBECT, and the switch file list of a switch file that is
designated DIRECT can contain only file designators that are DIRECT.

Example of SWITCH FILE Declaration

The following example declares CHOOSEUNIT to be a switch file identifier with
a list of three file designators. CHOOSEUNIT[O] evaluates to file CARDO UT,
CHOOSEUNIT[l] evaluates to file TAPEOUT, and CHOOSEUNIT[2] evaluates to file
PRINTOUT.

SWITCH FILE CHOOSEUNIT :=
CARDOUT,
TAPEOUT,
PRINTOUT;

WRITE(CHOOSEUNIT[0], 14, A[*]); % WRITES TO CARDOUT
WRITE(CHOOSEUNIT[l], 14, A[*]); % WRITES TO TAPEOUT
WRITE(CHOOSEUNIT[2], 14, A[*]); % WRITES TO PRINTOUT

SWITCH FORMAT Declaration
A SWITCH FORMAT declaration associates an identifier with a list of items
representing editing specifications. Any of these items and the associated editing
specifications can later be referenced by using the identifier and a number corresponding
to the position of the item in the list.

<switch format declaration>

- SWITCH - FORMAT -<identifier>- := -<switch fonnat list>~------1

<switch format identifier>

An identifier that is associated with a switch format list in a SWITCH FORMAT
declaration.

<switch format list>

__L<switch form~t segment>~.....__----------------l

8600 0098-000 3-109

Declarations

<switch format segment>

T format designator>
(w<editing specifications>--) _J
< --<editing specifications>-- > =1

<format designator>

----r-<format identifier> .
L<switch format identifier>-- [w<subscript>--] J

Switch Format List

An integer index is associated with each switch format segment in the switch format
list. The indexes are 0, 1, 2, and so on through N-1, where N is the number of switch
format segments in the list. These indexes are obtained by counting the switch format
segments in order of their appearance in the list. A switch format segment in the list can
be referenced by subscripting the switch format identifier with a subscript whose value is
equal to the index of the switch format segment.

If a subscript to a switch format identifier yields a value outside the range of the switch
format list (that is, less than 0 or greater than N-1), a fault occurs at run time.

Any subscripts in the switch format list are evaluated at the time the subscripted switch
format identifier is encountered.

A switch format can reference itself in the switch format list, in which case a stack
overflow might occur when the program is executed. For example, assume a switch
format is declared as the following:

SWITCH FORMAT SF := FMTl, FMT2, SF[N]

IfN equals 2, the subscripted switch format identifier SF[N] references itself
indefinitely.

A simple string literal in a SWITCH FORMAT declaration is always read-only if the
switch format segment in which it appears consists of editing specifications rather than a
format designator.

Examples of SWITCH FORMAT Declarations

3-110

The following example declares SF to be a switch format identifier with a switch format
list of four sets of editing specifications. The editing specifications (X78, 12), for example,
can be referenced as SF[2].

SWITCH FORMAT SF:= (A6, 3I4, I2, X60), % 0
(I4, X2, 2I4, 3I2), % 1
(X78, I2), % 2
(X2) % 3

8600 0098-000

Declarations

The following example declares SWHFT to be a switch format identifier with a switch
format list of three format designators. SWHFT[O] evaluates to format FMTl,
SWHFT[l] to FMT2, and SWHFT[2] to FMT3.

SWITCH FORMAT SWHFT := FMT1,FMT2,FMT3

SWITCH LABEL Declaration
A SWITCH LABEL declaration associates an identifier with a list of designational
expressions, which are expressions that evaluate to labels. Any of these designational
expressions can later be referenced by using the identifier and a number corresponding
to the position of the designational expression in the list.

<switch label declaration>

- SWITCH -<i dent i fi er>- : = -<switch label l i st;;>------------1

<switch label identifier>

An identifier that is associated with a switch label list in a SWITCH LABEL declaration.

<switch label list>

__[<desi gnat i ona i expressi on>>--'-----------------l

Switch Label List

An integer index is associated with each designational expression in the switch label list.
The indexes are 1, 2, 3, and so on through N, where N is the number of designational
expressions in the list. These indexes are obtained by counting the designational
expressions in order of their appearance in the list. A designational expression in the list
can be referenced by subscripting the switch label identifier with a subscript whose value
is equal to the index of the designational expression.

Note that the indexing of a switch label list begins at 1.

If a subscript to a switch label identifier yields a value outside the range of the switch
label list (that is, less than 1 or greater than N), the statement using the switch label is
not executed, and control proceeds to the next statement. Typically, the next statement
is a specification of some form of error handling.

The designational expressions in a switch label list are evaluated at the time the
subscripted switch label identifier is encountered.

A switch label can reference itself in the switch label list, in which case a stack overflow
might occur when the program is executed. For example, assume a switch label is
declared as the following:

SWITCH SW := Ll, L2, L3, SW[N]

8600 0098-000 3-111

Declarations

If N equals 4, the designational expression SW[N] references itself indefinitely.

Examples of SWITCH LABEL Declarations

The following example declares CHOOSEPATH to be a switch label identifier with labels
Ll, L2, L3, and L4 in the switch label list. CHOOSEPATH[l] evaluates to label Ll,
CHOOSEPATH[2] to L2, and so on.

SWITCH CHOOSEPATH := Ll,L2,L3,L4

The following example declares SELECT to be a switch label identifier with labels
START and ERRORl and designational expression CHOOSEPATH[2] in the switch
label list. Note that from the previous SWITCH LABEL declaration, CHOOSEPATH[2]
evaluates to L2; therefore, SELECT[3] evaluates to L2.

SWITCH SELECT := START, % 1
ERRORl, % 2
CHOOSEPATH[2] % 3

SWITCH LIST Declaration
A SWITCH LIST declaration associates an identifier with a list of list designators. Any
of these list designators can later be referenced by using the identifier and a number
corresponding to the position of the list designator in the list.

<switch list declaration>

r~ •
- SWITCH - LIST -<i dent i fi er>- : = -L<l i st designator>-> -'------1

<switch list identifier>

An identifier that is associated with a list of list designators in a SWITCH LIST
declaration.

<list designator>

-,-<list identifier>
L..:switch list identifier>- [-<subscript>-] _J

List Designator

3-112

An integer index is associated with each list designator in the declaration. The indexes
are 0, 1, 2, and so on through N-1, where N is the number of list designators in the
declaration. These indexes are obtained by counting the list designators in order of
their appearance in the declaration. Any of these list designators can be referenced by
subscripting the switch list identifier with a subscript whose value is equal to the index of
the list designator.

8600 0098-000

Declarations

If a subscript to a switch list identifier yields a value outside the range of the list of list
designators (that is, less than 0 or greater than N-1), a fault occurs at run time.

Any subscripts in the list of list designators are evaluated at the time the subscripted
switch list identifier is encountered.

A switch list can reference itself in the list of list designators, in which case a stack
overflow might occur when the program is executed. For example, assume a switch list is
declared as the following:

SWITCH LIST SL := Ll, L2, SL[N]

If N equals 2, the subscripted switch list identifier SL[N] references itself indefinitely.

Example of SWITCH LIST Declaration

The following example declares NUMV ARIABLES to be a switch list identifier and
associates four list designators with it. NUMV ARIABLES[O] evaluates to the list
NOV ARS, NUMV ARIABLES[l] evaluates to ONEV AR, and so on.

SWITCH LIST NUMVARIABLES := NOVARS, % 0
ONEVAR, % 1
TWOVARS, % 2
THREEVARS % 3

TASK and TASK ARRAY Declarations
The TASK and TASK ARRAY declarations are used to declare tasks and task arrays,
which can then be associated with a process or coroutine. Task attributes can be used to
control or to contain information about the process or coroutine.

<task declaration>

- TASK ~tif~,._~-----------------1

<task identifier>

An identifier that is associated with a task in a TASK declaration.

<task array declaration>

- TASK - ARRAY _[t<identif~ [_:bound pair list>-] --'---l

<task array identifier>

An identifier that is associated with a task array in a TASK ARRAY declaration.

8600 0098-000 3-113

Declarations

A task array is an array whose elements are tasks. A task array can have no more than
15 dimensions.

Task and Task Array Designator

<task designator>

1<task identifier

<task array identifier>-
MYSELF -----------------1
MYJOB -----------------'

~·~Lt--.-~-<-t-a-sk---v-al_u_e_d_t_a-sk-a-tt_r_i-bu_t_e_n_a_m_e>=LJ-~---------i

<task-valued task attribute name>

---,- EXCEPTIONTASK I
L PARTNER --~-

<task array designator>

-<task array identifier>
L.<subarray selector~

A task designator represents a single task. A task array designator represents an array
of tasks. MYSELF is the task designator for the currently. running program. MY JOB is
the task designator for the currently running job.

When a process or coroutine is invoked, a task can be associated with it. For example,
a task designator can appear in a CALL statement, PROCESS statement, or RUN
statement. Task attributes can be assigned values by the program to control the process
or coroutine, and the program can interrogate the values of task attributes as the
process or coroutine executes.

Attributes associated with a task designator can be assigned values or interrogated in a
program by specifying the task designator and the appropriate task attribute names in
assignment statements.

For information on processes and coroutines, see "CALL Statement," "PROCESS
Statement," and "RUN Statement" in Section 4, "Statements." For more information
on assigning and interrogating task attributes, see the <arithmetic task attribute>
construct under "Arithmetic Assignment," the <Boolean task attribute> construct
under "Boolean Assignment" and "Task Assignment" in Section 4, "Statements."

Examples of TASK and TASK ARRAY Declarations

The following example declares PROCESSTASK to be a task identifier.

TASK PROCESSTASK

3-114 8600 0098-000

Declarations

The following example declares CHILDREN as a one-dimensional task array with a
lower bound ofO (zero) and an upper bound of LIM. The CHILDREN task array might
be used to store the tasks associated with a group of processes and coroutines initiated
by a program.

TASK ARRAY CHILDREN[0:LIM]

TRANSLATETABLE Declaration
The TRANSLATETABLE declaration defines one or more translate tables. Used in a
REPLACE statement, a translate table indicates translations to be performed from one
group of characters to another group of characters.

<translate table declaration>

_t .
- TRANSLATETABLE <translate table element>,._.. ________ __,

<translate table element>

-<identifier>- (_t<translation' specifier>:l) --------1

<translate table identifier>

An identifier that is associated with a group of one or more translation specifiers in a
TRANSLATETABLE declaration.

Translation Specifier

<translation specifier>

--,-<source characters>- TO -<destination characters>
L<translate table identifier>>-------------'

<source characters>

~string literal
L<character set

<character set>

1 ~Ik=J
EBCDIC
HEX

<destination characters>

string literal>
character set> ;J

<special destination character

8600 0098-000 3-115

Declarations

<special destination character>

A string literal that is 1 character long.

Specifying a character set is equivalent to specifying all the characters in that set, in
ascending binary sequence. The length of a character set is equal to the total number of
characters in the set.

A string literal specifies all the characters in the string literal. The length of a string
literal is equal to the number of characters in the string literal in terms of the largest
character size specified by the string literal.

A translation specifier is enclosed in parentheses, and each succeeding translation
specifier overrides the previous translation specifiers.

Within a single translate table, all source character sizes and all destination character
sizes must be the same, although the character sizes of the source and destination parts
need not be the same.

The number of destination characters must equal the number of source characters,
unless the special destination character is used or unless a character set is used for both
the source characters and the destination characters. If the special destination character
is used, all the source characters are translated to the special destination character.

Every translate table has a default base in which all source characters are translated to
characters with all bits equal to 0 (zero). This means that all source characters that
do not appear in the TRANSLATETABLE declaration are translated to the character
whose binary representation had.all bits equal to 0 (zero).

The use of a character set for both the source and destination parts invokes a standard
table from the operating system and provides a way of obtaining a legitimate base on
which additional translation specifiers can be used, if desired, to override certain parts of
the standard table. The use of a translate table identifier as a translation specifier can
also be used to provide a base.

When string literals of equal length are used for the source and destination parts,
translation is based on the corresponding positions of the source and destination
characters, from left to right.

Translate Table Indexing

3-116

The size of a translate table is determined by the size of the source characters (the
characters to be translated): 4-bit characters require a 4-word table; 6-bit characters
require a 16-word table; 7-bit and 8-bit characters require a 64-word table. A translate
table is a one-dimensional read-only array.

Each word in a translate table (Figure 3-1) has its low-order 32 bits divided into four
8-bit fields, numbered 0 to 3 from left to right. The high-order 16 bits are all zeros.

When a character is to be translated, the binary representation of the character is
divided into two parts: a word index and a field index. The field index consists of the

8600 0098-000

Declarations

two low-order bits; the word index consists of the remaining high-order bits. The word
index designates the word in the translate table in which the field index designates the
character into which the source character is to be translated.

The diagram below shows indexing for the translation of a to A that would result from
the following declaration:

TRANSLATETABLE UPCASE (EBCDIC TO EBCDIC,

7

1

6 5 4 3

"abcdefghi j klmnopqrstuvwxyz" to
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

2 1

0 0 0 0 0 0 1
Binary .representation of
character to be translated:
(EBCDIC)

WORD INDEX

EMPTY
(47:16]

FIELD INDEX

FIELD 0
(31 :8]

Binary .representation of
new value for

FIELD 1
(23 :8]

FIELD 2
(15:8]

FIELD 3
(7:8]

47 43 39 35 1 31 027 1 23 019 1 15 Ou 1 7 0 3

46 42 38 34 030 026 1 22 018 l 14 Orn 1 6 0 2

45 41 37 33 029 025 021 017 013 1 9 0 5 1 1

44 40 36 32 028 024 020 l 15 012 0 8 0 4 1 0

Figure 3-1. Translate Table Indexing

Examples of TRANSLATETABLE Declarations

The following example translates the letters L to G, E to 0, A to L, and D to D. All other
characters are translated to the character whose binary representation has all bits equal
to 0 (zero). Both the source and the destination characters are of the default character
type.

TRANSLATETABLE ALCHEMY ("LEAD" TO "GOLD")

The following example translates all EBCDIC characters to themselves except for the
lowercase letters, which it translates to uppercase letters.

8600 0098-000 3-117

Declarations

TRANSLATETABLE UPCASE (EBCDIC TO EBCDIC,
"abcdefghijklmnopqrstuvwxyz" TO
"ABCDEFGHIJKLMNOPQRSTUVWXYZ")

The following example translates all EBCDIC characters to themselves except for the
left parenthesis((), which is translated to the left square bracket([).

TRANSLATETABLE PAREN_TO_BRACKET (EBCDIC TO EBCDIC, 8 11 (" TO 8 11 [")

The following example translates all EBCDIC characters to themselves except for the
digits, which it translates to periods(.).

TRANSLATETABLE NUMBERS_TO_PERIODS (EBCDIC TO EBCDIC,
"0123456789" TO ".")

TRUTHSET Declaration
The TRUTHSET declaration associates an identifier with a set of characters. From the
characters in a TRUTHSET declaration, the compiler builds a truth set table, which is
used in a truth set test to determine whether a given character is a member of that
group of characters. The identifier can then be used in a SCAN statement to scan while
or until any character in the truth set occurs.

The identifier also can appear as a condition in a REPLACE statement, so that
replacement takes place while or until any character in the truth set occurs.

<truth set declaration>

- TRUTHSET Lidentifier>- (-<memb~rship expression>-) -'------1

<truth set identifier>

An identifier that is associated with a membership expression in a TRUTHSET
declaration.

Membership Expression

3-118

<membership expression>

~= E~~ J C~!:~
<membership primary> --------------1

NOT

8600 0098-000

Declarations

<membership primary>

1<string literal~
<truth set identifier·>------1

(~<membership expression>--) -
ALPHA -----------i
ALPHA6 -----------;
ALPHA? -----------;
ALPHAS ---------~

All membership primaries of a membership expression must be of the same character
size (4-bit, 6-bit, 7-bit, or S-bit); this character size determines the type of the truth
set. The character size of a string literal is determined by the maximum character size
indicated by its component string codes. For more information, refer to "String Literal"
in Section 2, "Language Components."

A membership expression is evaluated according to the normal rules of precedence
for Boolean operators. This precedence is described under "Boolean Expression" in
Section 5, "Expressions and Functions."

ALPHA, ALPHA6, ALPHA 7, and ALPHAS are intrinsic truth sets defined as follows:

Truth Set

ALPHA6
Definition

A truth set that contains the BCL digits and uppercase letters

A truth set that contains the ASCII digits and uppercase letters

A truth set that contains the EBCDIC digits and uppercase letters

ALPHA?

ALPHAS

ALPHA A truth set that contains the digits and uppercase letters of the default
character type

If a default character type is not explicitly specified by the compiler control options
ASCII or BCL, then the default character type is EBCDIC, and ALPHA is the same as
ALPHAS. If the ASCII compiler control option is TRUE, then ALPHA is the same as
ALPHA7. If the BCL compiler control option is TRUE, then ALPHA is the same as
ALPHA6.

Note: The BCL data type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a
BCL descriptor, such as the ALPHA6 intrinsic truth set, causes the
program to get a compile-time warning message.

Truth Set Test

From the characters in a TRUTHSET declaration, the compiler builds a truth set table,
which is used in a truth set test to determine whether a given character is a member of
that group of characters.

All truth sets declared by a single TRUTHSET declaration are stored in a single
read-only array. Separate TRUTHSET declarations produce separate read-only arrays.

A truth set test references a bit in the read-only array containing the truth set by
dividing the binary representation of the character being tested into two parts: the
low-order five bits are used as a bit index, and the three high-order bits are used as a

8600 0098-000 3-119

Declarations

word index. If the size of the source character is smaller than eight bits, high-order zero
bits are inserted to make an 8-bit character before the indexing algorithm is used.

The word index selects a particular word in the truth set table. The bit index is then
subtracted from 31, and the result is used to reference one of the low-order 32 bits in the
selected word. If the bit selected by the following expression is equal to 1, the character
is a member of the truth set:

TABLE[CHAR.[7:3]].[(31-CHAR.[4:5]):1]

Figure 3-2 shows an example of a truth set test. In this example, the referenced bit (13)
is equal to 1; therefore, the test character is a member of the truth set.

7 6 5

1 1 1

' A v
WORD INDEX

/

47

46

45

44

4 3 2 1

1 0 0 1

v
BIT INDEX =

EMPTY
[47:16]

43

42

41

40

31-18 = 13

"'Y_

39 35 031

38 34 030

37 33 129

36 32 128

0

0

/

1 27

126

125

124

Binary .representation of
the character: (EBCDIC)

[31 :32]

'
1 23 019 115 111 1 7 0 3

1 22 018 114 110 1 6 0 2

021 017 r.tl 1 9 0 5 0 1

020 016 112 1 8 0 4 0 0

Figure 3-2. Truth Set Test

Examples of TRUTHSET Declarations

3-120

The following example declares T to be a truth set with membership equal to that of
ALPHA ALPHA consists of all uppercase letters and the digits 0 through 9, in the
default character set.

TRUTHSET T(ALPHA)

The following example declares Z to be a truth set with membership of ALPHAS and the
hyphen(-).

TRUTHSET Z(ALPHA8 OR "-")

8600 0098-000

Declarations

The following example declares NUMBERS to be a truth set with a membership of the
digits 0 through 9 in the default character set.

TRUTHSET NUMBERS("0123478956")

The following example declares LETTERS to be a truth set with a membership of
ALPHA but not the digits 0 through 9; that is, consisting of the uppercase letters in the
default character set.

TRUTHSET LETTERS(ALPHA AND NOT NUMBERS)

The following example declares three truth sets:

• HEXN, with a membership of the hexadecimal characters 1, 2, and 3

• BCLN, with a membership of the BCL characters 1, 2, and 3

• ASCN, with a membership of the ASCII characters 1, 2, and 3

TRUTHSET HEXN(4"123"), BCLN(6"123"), ASCN(7"123")

VALUE ARRAY Declaration
AV ALUE ARRAY declaration declares a read-only, one-dimensional array of constants.

<value array declaration>

VALUE - ARRAY ---------·
L LONG _J L<array cl ass~

J<identifier>- (-<~onstant list>-) ~----------1

<value array identifier>

An identifier that is associated with a value array in a VALUE ARRAY declaration.

A value array is a one-dimensional, read-only array. An element of a value array is
referenced in the same manner as for any other array; tha,t is, through a subscripted
variable or by using a pointer. However, an attempt to store a value into a value array is
flagged with a compile-time or run-time error.

The lower bound of a value array is 0 (zero).

Normally, a value array longer than 1024 words is automatically paged (segmented) at
run time into segments 256 words long. LONG specifies that the value array is not to be
paged, regardless of its length.

If no array class appears in a VALUE ARRAY declaration, a REAL array is assumed.

8600 0098-000 3-121

Declarations

Note: The BCL data type is not supported on all A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor, such as a BCL value array, causes the program to get a
compile-time warning message.

Constants

3-122

<constant list>

_[~-
<constant>--"~------------------------i

<constant>

1<Boolean value>
<number> ~
<constant expression>
<string 1 iteral>-------------1
<unsigned integer>-- (~<constant list>--)

<constant expression>

An arithmetic, Boolean, or complex expression that can be entirely evaluated at
compilation time.

Each constant initializes an integral number of words. The number of words initialized
depends on the type of the array and the kind of constant.

Single-precision numbers, single-precision expressions, Boolean values, and Boolean
expressions initialize one word in value arrays other than double or complex value
arrays. In double value arrays, this word is extended with a second word of 0 (zero). In
complex value arrays, this word is normalized and then extended with an imaginary part
ofO (zero).

Double-precision numbers and expressions are stored unchanged in two words in double
value arrays. In complex value arrays, the value is rounded and normalized to single
precision and then extended with an imaginary part ofO (zero). For other types of value
arrays, the second word of the double-precision value is dropped and the first word
initializes one word of the array.

Complex expressions can appear only in complex value arrays, and they initialize two
words of the array.

String literals more than 48 bits long initialize as many words as are needed to contain
the string and are left-justified with trailing zeros inserted in the last word, if necessary.
In complex and double value arrays, long string literals can initialize an odd number of
words, causing the following constant to start in the middle of a two-word element of the
array.

String literals less than or equal to 48 bits long are right-justified within one word with
leading zeros, if necessary. This word initializes one word in value arrays other than

8600 0098-000

Declarations

double or complex value arrays. In double value arrays, this word is extended with a
second word ofO (zero). In complex value arrays, this word is normalized and then
extended with an imaginary part ofO (zero).

The <unsigned integer> (<constant list>) form of constant causes the values within
the parentheses to be repeated the number of times specified by the unsigned integer.

The operating system overlays value arrays more efficiently than other arrays because
value arrays need not be written to disk when their space in memory is relinquished.

The maximum size of an unpaged value array is 4095 words; the maximum size of a
paged value array is 32, 767 words.

Example of VALUE ARRAY Declaration

The following example declares DAYS to be a value array of real elements. DAYS
stores the names of the days of the week, one day name in each two words. The string
FRIDAY, for example, is stored in DAY[S] and DAY[9], and can be retrieved by assigning
a pointer to DAY[S] and using the pointer.

VALUE ARRAY DAYS ("MONDAY
"WEDNESDAY
"FRIDAY
"SUNDAY

8600 0098-000

II. "TUESDAY
II "THURSDAY
II. "SATURDAY
II)

II

•
II

•
II

•

3-123

3-124 8600 0098-000

Section 4
Statements

Statements are the active elements of an ALGOL program. They indicate an operation
to be performed. Statements are normally executed in the order in which they appear
in the program. This sequential flow of execution can be altered by a statement that
transfers control to another program location. Note that a statement can be null or
empty.

In this section, the ALGOL statements are listed and discussed in alphabetical order. In
many cases, portions of the syntax of a statement are discussed before moving on to the
next syntax segment.

The syntax for any statement is recursive: a statement can be a block or a compound
statement, each of which, in turn, can include statements. For a description of the
syntax of <block> and <compound statement>, see Section 1, "Program Structure."

Statements can be labeled or unlabeled. A <labeled statement> is of the following
form:

-<label identifier>- : -<statement>--------------1

An <unlabeled statement> is any statement that does not contain a label identifier.

ACCEPT Statement
The ACCEPT statement causes the display of a specified message on the Operator
Display Terminal (ODT).

<accept statement>

- ACCEPT - (1<pointer expression> ~
<string vari ab 1 e> -------<
<subscripted string variable

ACCEPT Parameters

The message displayed on the ODT is designated by the parameter to the ACCEPT
statement. If the parameter is a pointer expression, then the characters to which the
pointer expression points are displayed on the ODT. The pointer expression must point
to EBCDIC characters, and the message to be displayed must be terminated by the
EBCDIC null character (48"00"). Following display of the characters, the program is
suspended until a response is entered at the ODT. The response is placed, left-justified,
with leading blanks discarded and with an EBCDIC null character added at the end, into
the location to which the pointer expression points, and the program continues execution
with the statement following the ACCEPT statement.

8600 0098-000 4-1

Statements

If the parameter to the ACCEPT statement is a string variable or subscripted string
variable, then the contents of the specified string are displayed on the ODT. The string
variable or subscripted string variable must be of type EBCDIC. Following the display of
the characters, the program is suspended until a response is entered at the ODT. The
response is placed in the string variable or subscripted string variable, and the program
continues execution with the statement following the ACCEPT statement.

The ACCEPT statement can be used as a Boolean function. If a response is not
available, the value of the ACCEPT statement is FALSE. If a response is available, the
value of the ACCEPT statement is TRUE, and the response is placed in the specified
location. The program continues execution regardless of the value returned by the
ACCEPT statement.

No more than 430 characters can be displayed by the ACCEPT statement. No more
than 960 characters can be accepted as a response.

The response to the ACCEPT statement can be entered before the actual execution of
that statement. The response can be entered using the AX (Accept) system command.
For more information, ref er to the A Series System Commands Operations Reference
Manual.

Examples of ACCEPT Statement

4-2

The following example displays the string of EBCDIC characters in the array Z, from the
beginning of the array to the EBCDIC null character (48"00).

ACCEPT(POINTER(Z,8))

The following example displays the contents of string STR on the ODT. If a response is
available, the string "THANK YOU." is displayed. Ifno response is available, the string
"PLEASE REENTER." is displayed.

IF ACCEPT(STR) THEN
DISPLAY("THANK YOU.")

ELSE
DISPLAY(" PLEASE REENTER.")

8600 0098-000

Statements

ASSIGNMENT Statement
The ASSIGNMENT statement causes the item on the right of the assignment operator
(: =) to be evaluated and the resulting value to be assigned to the item on the left of the
assignment operator.

<assignment statement>

<arithmetic assi
<array reference
Boolean assignm
complex assignm
nemonic attrib

<pointer assignm
procedure refer
string assignme

<task assignment

gnment'
assignment

ent""
ent""
ute assignment'
ent
ence array assignment>-
nt"" ..,,

The action of an ASSIGNMENT statement is as follows:

• The location of the target is determined.

• The item following the assignment operator (: =) is evaluated.

• The resulting value is assigned to the target.

1

The various forms of the ASSIGNMENT statement are called assignments instead
of statements because they can appear both as statements and in expressions. For
example, the following is a statement when it stands alone:

A := A + 1

However, the same construct can be used in an expression, such as in the following:

IF (A := A + 1) > 100 THEN <statement>

Too many arithmetic, Boolean, complex, pointer, or string assignments in one statement
can cause a stack overflow fault in the compiler. The fault can be avoided by breaking
the statement into several separate statements, each containing fewer assignments,
or by increasing the maximum stack size for the program by using the task attribute
STACKLIMIT.

Arithmetic Assignment

An arithmetic assignment assigns the value of the arithmetic expression on the right side
of the assignment operator(:=) to the arithmetic target on the left side.

8600 0098-000 4-3

Statements

<arithmetic assignment>

1arithmetic variable> r
L-<partial word part>-J

arithmetic type transfer variable> ~
arithmetic attribute>;.---------~

~ :=--<arithmetic expression
L_<arithmetic update assignment

Arithmetic Variable

The attribute error number returned from the operating system can be captured in the
arithmetic variable.

<arithmetic variable>
-<variable.,._ _____________________ __,

<variable>

~simple variable>
L_<subscripted variable:.-1

<simple variable>

--<i denti fi er>------------------------1

<subscripted variable>

-<arral' name>- [_t<subsc~i;rt:l-] -------------;

If the <arithmetic variable> <partial word part> syntax or the <arithmetic
attribute> syntax appears in a statement with multiple assignments, then it must
appear as the leftmost target in the statement. The following examples illustrate this
rule.

Allowed Not Allowed

X.[7:81 := Y := 1 Y := X.[7:8) := 1

Fl.MAXRECSIZE := RECLNGTH := 30 RECLNGTH := Fl.MAXRECSIZE := 30

An <arithmetic variable> <partial word part> assignment leaves the remainder of
the arithmetic variable unchanged, despite any possible side effects, such as embedded
assignments, in the arithmetic expression.

Arithmetic Type Transfer Variable

<arithmetic type transfer variable>

t DOUBLg-E (--<variable>)
INTEGER L...,partial word part:.-1 ' I
REAL L_ -, --<partial word part~

4-4 8600 0098-000

Statements

If the declared type of the target item to the left of the assignment operator (: =) and
the type of the value to be assigned to it are different, then the appropriate implicit type
conversion is performed according to the following rules:

• If the left side is of type INTEGER and the expression value is of type REAL, then
the value is rounded to an integer before it is stored.

• If the left side is of type INTEGER and the expression value is of type DOUBLE,
then the value is rounded to a single-precision integer before it is stored.

• If the left side is of type REAL and the expression value is of type INTEGER, then
the value is stored unchanged.

• If the left side is of type REAL and the expression value is of type DOUBLE, then
the value is rounded to single precision before it is stored.

• If the left side is of type DOUBLE and the expression value is of type INTEGER or
REAL, then the value is converted to double precision by appending a second word of
zero (all bits equal to zero) before it is stored.

The use of an arithmetic type transfer variable causes the value on the right side of the
assignment operator to be stored unchanged into the variable on the left side, regardless
of type. However, if an attempt is made to assign a double-precision value into a
single-precision variable by using the DOUBLE form of the construct, only the first word
of the double-precision value is stored unchanged into the single-precision variable.
For more information, see "Type Coercion of One-Word and Two-Word Operands" in
Appendix C, "Data Representation."

If more than one assignment operator appears in a single assignment (for example,
A:= B: = C: = 1.414), assignment of values is executed from right to left. If, during
this process, a value is converted to another type so that it can be assigned, then it
remains in that converted form following that assignment; that is, the value does not
resume its original form. For example, assume you are executing the following program:

BEGIN
DOUBLE DBLl, DBL2;
REAL RELl, REL2;
INTEGER INTI;
DBL2:= REL2:= INTI:= RELl:= DBLl:= 1.414213562373095048801@@0;

END.

In this program, the variables are assigned the following values:

DBLl = 1.414213562373095048801
RELl = 1.41421356237
INTI = 1
REL2 = 1.0
DBL2 = 1.0

8600 0098-000 4-5

Statements

Arithmetic Attribute

4-6

<arithmetic attribute>

arithmetic file attribute!
arithmetic direct array attribute>-j
arithmetic task attribute-------~

<arithmetic file attribute>

-<file designator>
L.<attribute parameter specification~

---~

-+-<arithmetic-valued file attribute name,>------------~

> L: (-<arithmetic variable>--) :J

<attribute parameter specification>

- (-<attribute parameter list>--)

<attribute parameter list>

r~ '
__L<arithmeti c expression>>--'------------------1

<arithmetic direct array attribute>

-<direct array row>-- . ------------------~

-+-<arithmetic-valued direct array attribute name,>-----------1

<arithmetic-valued direct array attribute name>

ALGOL supports all direct array attributes and direct array attribute values described in
the A Series File Attributes Programming Reference Manual.

<arithmetic task attribute>

-<task designator>-- . -<arithmetic-valued task attribute name>,_ __ _,

<arithmetic-valued task attribute name>

ALGOL supports all task attributes of type real and integer described in the A Series
Task Attributes Programming Reference Manual.

8600 0098-000

Statements

Arithmetic Update Assignment

<arithmetic update assignment>

-<update symbols>
l-.carithmetic operator>--<arithmetic expression~

<update symbols>

- := - * ------------------------;

The arithmetic update assignment is a shorthand form of assignment that can be used
when the arithmetic target on the left side of the assignment operator also appears in
the arithmetic expression on the right side of the operator. The arithmetic update
assignment form can be specified only following an arithmetic target that does not
contain a partial word part. The asterisk (*) represents a duplication of the item to the
left of the assignment operator. For example, the same results are produced by the
following two assignments:

A := * + 1

A := A + 1

The target item is not reevaluated at the appearance of the asterisk. Hence, if I equals
zero initially, the following applies:

Assignment Equivalent Not Equivalent

B[I := I + ll := * + 1 B[l] := B[l] + 1 B[l] := B[2] + 1

If the item to the left of the assignment operator is a subscripted variable, it cannot
reference a value array.

If an expression is used as a subscript to a variable, the subscript is evaluated first. In
the following example, the expression used as a subscript [I+ 2] is evaluated first:

A[l+2] := I := 10

8600 0098-000 4-7

Statements

Examples of Arithmetic Assignment

VAL := 7

A[4,5]. (30:4] := X

FYLE.AREAS := 50

FYLE(5).AREAS := 10

FYLE.SYNCHRONIZE := VALUE{OUT)

DIRARAY.IOCW := 4"1030"

TSK.COREESTIMATE := 10000

NEWARRAY[I] := * + OLDARRAY[I]

ONE := SIN(X := 3)**2 + COS(X)**2

DISTANCE := SQRT(X**2 + Y**2 + 2**2)

Array Reference Assignment

<array reference assignment>

-<array reference variable>- :=-<array designator>--------1

An array reference assignment associates a variable, called an array reference variable,
with an array or a portion of an array. The array reference variable can then be used to
reference the array or array portion.

An array reference assignment generates a copy descriptor of an array or array row.

Typical uses of an array reference assignment include the following:

• To perform more efficiently arithmetic operations on multidimensional arrays (for
example, by extracting a particular row to avoid repeated indexing to the same row)

• For concurrent, but different, uses of the same array (for example, for storing values
of type REAL into an array that is originally declared as Boolean)

Array Reference Variable

<array reference variable>

-<array reference i denti fi er>-----------------1

The array reference variable cannot be global to the array designator.

4-8 8600 0098-000

Statements

If the array reference variable is declared as DIRECT, then only an array designator for a
direct array can be assigned to it. However, a nondirect array reference variable can be
assigned an array designator for either a direct or a nondirect array.

The dimensionality of the array reference variable and the array designator must be
the same. If both are multidimensional, then the array classes must be compatible.
INTEGER, REAL, and BOOLEAN types are compatible with each other. Other array
classes are compatible only with themselves. If the array reference identifier and the
array designator are both one-dimensional, then they can have any array class.

The size of each dimension of a multidimensional array reference variable is the
same as the size of the corresponding dimension of the array designator. The size of
a one-dimensional array reference variable is determined by the size and element
width of the array designator and the element width for the array class with which the
array reference variable was declared. Let Sa and Wa be the size and element width,
respectively, of the array designator, and let Wr be the element width for the array
reference variable. The size of the array reference variable, Sr, is then the following:

Sr := (Sa * Wa) DIV Wr

Because of the truncation implicit in the DIV operation, Sr * Wr might be less than
Sa * Wa. In this case, indexing the array reference variable by S + LB, where LB is the
lower bound in the ARRAY REFERENCE declaration, causes an invalid index fault.
Nevertheless, pointer operations using the array reference variable can access the entire
area of memory allocated to the original array to which the array designator ultimately
refers; the memory area may hold more than Sr elements of width Wr.

Array Designator

<array designator>

-<array name>
L_<subarray selector:.-!

<subarray selector>

The array designator indicates the array or array portion to be associated with the
array reference variable. Following an array reference assignment, the array reference
variable becomes a referred array, describing the same data as the array designator,
which can itself be an original array or another referred array.

A subarray selector selects part of an array by specifying subscripts for high-order
dimensions ~d leaving others unspecified. The unspecified dimensions are indicated by
an asterisk (*). The dimensionality of the subarray is the number of asterisks in the
subarray selector.

The total number of subscripts and asterisks in a subarray selector must equal the
dimensionality of the array identifier to which the subarray selector is suffixed. In

8600 0098-000 4-9

Statements

the case of no subscripts, the number of asterisks equals that dimensionality, and the
subarray is the whole array. In all other cases, the subarray selector specifies a subarray
of reduced dimensionality.

For example, assume you are using the following declarations:

ARRAY A[0:9,1:40,0:99];
INTEGER I,J; % (ASSUME 0 <= I <= 9 AND 1 <= J <= 40)

For these declarations, the following applies:

A and A[*,*,*]

A[l,*,*l

A[l,J,*]

Denote the entire three-dimensional array.

Denotes one of the 10 two-dimensional arrays that constitute A.

Denotes one of the 40 one-dimensional arrays (array rows) that
constitute A[I, *, *], and one of the 400 one-dimensional arrays that
constitute A.

If the array designator is an uninitialized array reference variable, the array reference
assignment causes the target array reference variable to become uninitialized.

Examples of Array Reference Assignment

BOOLARRAY := REELARRAY

EBCDICARAY := INPUTARAY[*]

SUBARRAY := BIGARRAY[N,*,*]

ARAYROW := MULTIDIMARAY[l,J,K,*]

Boolean Assignment

A Boolean assignment assigns the value of the Boolean expression on the right side of
the assignment operator (: =) to the Boolean target on the left side.

<Boolean assignment>

1<Boolean variable> L
<partial word part~

<Boolean type transfer variable>
<Boolean attribute>>------------'

?_,- := ~<Boolean expression
L.<Boolean update assignment

Boolean Variables

<Boolean variable>

A <variable> of type Boolean.

4-10 8600 0098-000

Statements

<Boolean type transfer variable>

- BOOLEAN - (-<variable> t I :J)

<partial word part>-J
} -<partial word part

If the <Boolean variable> <partial word part> syntax or the <Boolean attribute>
syntax appears in a statement with multiple assignments, then it must appear as the
leftmost target in the statement. The following examples illustrate this rule.

Allowed

X.[7:8] := Y := FALSE

Fl.OPEN:= OPENED:= FALSE

Not Allowed

Y := X.[7:8] :=FALSE

OPENED:= Fl.OPEN:= FALSE

A <Boolean variable> <partial word part> assignment leaves the remainder of
the Boolean variable unchanged, despite any possible side effects, such as embedded
assignments, in the Boolean expression.

Boolean Attributes

<Boolean attribute>

Boolean file attribute~
Boolean direct array attribute>-j
Boolean task attribute>-------'

<Boolean file attribute>

-<file designator>
[_<attribute parameter specification:..J

---~

~-<Boolean-valued file attribute name>-------------~

~·--.-[-(---<-a-r1-.t-h-me_t_i_c_v_a_r_i-ab_l_e_>---)-J~---------------i

The attribute error number returned from the operating system can be captured in the
<arithmetic variable> .

<Boolean direct array attribute>

-<direct array row>- . ------------------..-.

~-<Boolean-valued direct array attribute name·7------------<

<Boolean-valued direct array attribute name>

ALGOL supports all direct array attributes and direct array attribute values described in
the A Series File Attributes Programming Reference Manual.

<Boolean task attribute>

-<task designator>- . -<Boolean-valued task attribute name>>-----<

8600 0098-000 4-11

Statements

<Boolean-valued task attribute name>

--,- LOCKED
L TADS

Boolean Update Assignment

<Boolean update assignment>

-<update symbo 1 s> I
L.<Boolean operator>-<simple Boolean expression:..J

The Boolean update assignment is a shorthand form of assignment that can be used
when the Boolean target on the left side of the assignment operator (: =) also appears
in the Boolean expression on the right side of the operator. The Boolean update
assignment form can be specified only following a Boolean target that does not contain
a partial word part. The asterisk (*) represents a duplication of the item to the left of
the assignment operator. For example, the following two assignments produce the same
results:

B := * AND BOOL

B := B AND BOOL

The target item is not reevaluated at the appearance of the asterisk.

If the item to the left of.the assignment operator is a subscripted variable, it cannot
reference a value array.

Examples of Boolean Assignment

BOOL := TRUE

BOOLARRAY[N].[30:1] := Q <VAL

HIGHER := PTR > PTS FOR 6

TAUTOLOGY := * OR TRUE

Complex Assignment

4-12

A complex assignment assigns the value of the complex expression on the right side of
the assignment operator (: =) to the complex variable on the left side.

<complex assignment>

-<complex variable>-,- :=-<complex expression>>=J
L.<complex update assignment

8600 0098-000

Statements

<complex variable>

-<vari abl e>-------------------------1

Complex Update Assignment

<complex update assignment>

-<update symbol s> I
~complex operator>-<simple complex expression~

The complex update assignment is a shorthand form of assignment that can be used
when the complex variable on the left side of the assignment operator (: =) also appears
in the complex expression on the right side of the operator. The asterisk (*) represents
a duplication of the variable to the left of the assignment operator. For example, the
following two assignments produce the same results:

C := * + COMPLEX(3,4)

C := C + COMPLEX(3,4)

The target variable is not reevaluated at the appearance of the asterisk.

If the item to the left of the assignment operator is a subscripted variable, it cannot
reference a value array.

Examples of Complex Assignment

Cl := COMPLEX(B,1.5)

C2 := * + Cl/2

Mnemonic Attribute Assignment

A mnemonic attribute assignment assigns a value to the mnemonic-valued library
attribute LIBACCESS.

Ref er to "Library Attributes" in Section 8, "Library Facility," for a description of the
library attribute LIBACCESS.

<mnemonic attribute assignment>

-<mnemonic attribute>- := - VALUE -

~nemonic attribute value>-) ----------------1

<mnemonic attribute>

-<mnemonic library attribute>-------------------1

8600 0098-000 4-13

Statements

<mnemonic library attribute>

-<library identifier>-.----------------~

~-<mnemonic-valued library attribute name>------------1

<mnemonic attribute value>

-<mnemonic library attribute value>---------------1

The following are examples of Mnemonic Attribute Assignment:

L.LIBACCESS := VALUE(BYTITLE)

L.LIBACCESS := VALUE(BYFUNCTION)

Pointer Assignment

A pointer assignment assigns the pointer on the left side of the assignment operator (: =)
to point to the location in an array indicated by the expression on the right side of the
assignment operator. Such a pointer is then considered initialized and can be used in the
REPLACE and SCAN statements for character manipulation.

<pointer assignment>

-<pointer variable>-,- := -<pointer expression>;J
L_<pointer update assignment

<pointer variable>

-<pointer i denti fi er>----------------------1

<pointer update assignment>

-<update symbols> L . 1
<ski p>--l

Pointer Variable

A pointer assignment causes the creation of a pointer variable, or copy descriptor, to
an array. The pointer variable can be set up with the needed character size by using
the POINTER function syntax. For more information, see "POINTER Function" in
Section 5, "Expressions and Functions."

Examples of Pointer Assignment

4-14

The following example assigns a pointer named PTS to point to the EBCDIC
character in the EBCDIC array EBCDICARAY identified by the subscripted variable
EBCDICARAY[5].

PTS := EBCDICARAY[5]

8600 0098-000

Statements

The following example assigns a pointer named PTR to point to the leftmost character
position in the first element of the real array REALARAY.

PTR := POINTER(REALARAY)

The following example assigns the pointer PINFO to point to the 17th character position
after the character position pointed to by the pointer PTR.

PINFO := PTR + 17

The following example assigns the pointer POUT to point to the leftmost character
position in the array element identified by INSTUFF[N]. The 4 following the comma
indicates that POUT is a hexadecimal pointer and thus points to hexadecimal characters.

POUT:= POINTER(INSTUFF[N],4)

Procedure Reference Array Assignment

A procedure reference array assignment associates a procedure reference with a
procedure reference array element. The element can then be used to refer to the
procedure.

<procedure reference array assignment>

-<procedure reference array element>- := -----------~

~ NULL ------------.--------------__, 1<procedure identifier> ~
<procedure reference array element~

Procedure Reference Array Element

If NULL is specified and there is an environment called NULL, then a reference to the
procedure called NULL is assigned. If NULL is specified and there is no environment
called NULL, then a NULL value is assigned to the procedure reference array element.
When a NULL reference is assigned, the previous contents are overwritten with a tag
0 (zero) word. If the procedure reference array element is invoked while it is NULL, a
program interrupt occurs.

The procedure reference array element on the left side of the assignment operator (: =)
and the procedure or procedure reference array element on the right side must be of the
same type and have the same parameter descriptions.

The procedure reference array on the left side of the assignment operator cannot
be global to the procedure or procedure reference array on the right side. If the
procedure reference array element on the left side of the assignment operator is a formal
parameter, a procedure reference array element on the right side can only be another
element of the same procedure reference array that appears on the left side.

A procedure reference array that is declared to be part of a library cannot appear on the
left side of a procedure reference array assignment. An attempt to assign into such a
procedure reference array results in an error at compilation time or at run time.

8600 0098-000 4-15

Statements

If the procedure reference array element on the right side of the assignment operator
is uninitialized, then a later attempt to use the statement on the left side results in an
error.

Example of Procedure Reference Array Assignment

In the following example, P and Q are REAL procedures and RA is a REAL procedure
reference array. Neither P, Q, nor RA have parameters. The program sample assigns
references to elements one through four of the procedure reference array RA.

BEGIN
REAL PROCEDURE P;

BEGIN
REAL A;
A := T * T;
p := A;
END;

REAL PROCEDURE Q;
BEGIN
INTEGER A;
A := T * T * T;
IF A > 0 THEN

Q :=A
ELSE

Q := -1;
END;

REAL PROCEDURE REFERENCE ARRAY RA[1:10];

RA[l]
RA[2]
RA[3]
RA[4]

END.

NULL;
:= P;
:= Q;

%RA[l] CONTAINS A REFERENCE TO PROCEDURE P

:= NULL; %RA[3]
:= RA[3]; %RA[4]

CONTAINS A NULL VALUE
CONTAINS A REFERENCE TO RA[3]

String Assignment

4-16

A string assignment assigns the string that results from evaluation of the string
expression on the right side of the assignment operator (: =) to the string target on the
left side.

8600 0098-000

<string assignment>

-,-<string designator>>'------~:=----------~
L<string-valued library attribute~

~ ~string designator>- := iJ
> <string expression> -.-----1

L. *--<string concatenation operator~
L.<string-val ued library attribute>>-------------'

<string designator>

1<string identifier>

<string array identifier>- [~c~i~] ~
<string procedure i denti fi er.,._>---------~

Statements

The result of the expression on the right side of the assignment operator (: =) must be a
string of the same character type as the declared type of the string designator on the left
side.

Embedded assignment is not allowed. For example, the following is not allowed:

Sl := DROP(S2 := "ABC", 2)

Assignment can be made to a string procedure identifier only within the body of that
string procedure.

String Concatenation Operator

The * <string concatenation operator> form is a shorthand form of assignment that
can be used when the string designator on the left side of the assignment operator also
appears in the expression on the right side of the operator. The asterisk (*) represents a
duplication of the item to the left of the assignment operator. For example, the following
two assignments produce the same results:

S := * CAT "ABC"

S := S CAT "ABC"

Examples of String Assignment

The following example assigns the EBCDIC string ABCD123 to the string variable STRI.

STRI := 8"ABCD123"

The following example assigns the string 1234 (of the default character type) to both of
the string variables 82 and Sl.

Sl := S2 := "1234"

8600 0098-000 4-17

Statements

The following example concatenates the string INPUT onto the end of the string stored
in SOUTl, and then assigns the result to both of the string variables SOUTl and sour.

SOUT := SOUTl := * CAT "INPUT"

The following example concatenates the string ABC onto the end of the string stored in
SOU'r, and this string is then concatenated onto the end of the string stored in SOUT.
The resulting string is assigned to the string variable sour.

SOUT := * 11 SOUT 11 "ABC"

Task Assignment

4-18

A task assignment associates the task designator on the right side of the assignment
operator (: =) with the task indicated by the expression on the left side.

<task assignment>

~<task designator>-- . ~<task-valued task attribute name>~ := ~~7

7-<task designator'>--------------------'

For information on task designator and task-valued task attribute name, see "TASK and
TASK ARRAY Declarations" in Section 3, "Declarations."

The PARTNER task attribute is used in conjunction with the CONTINUE statement.

The following are examples of Task Assignment:

The following example assigns the task TASKIT to the EXCEPTIONTASK attribute of
TI SKIT.

TISKIT.EXCEPTIONTASK := TASKIT

The following example assigns the task identified by the task array element
TASKARAY[N] to the EXCEPTIONTASK attribute ofTSK.

TSK.EXCEPTIONTASK := TASKARAY[N]

The following example assigns the task COHORT to the PARTNER attribute of
TASKVARB.

TASKVARB.PARTNER := COHORT

The following example assigns the task identified by the task array element
COWORKERS[INDX] to the PARTNER attribute of MYSELF.

MYSELF.PARTNER := COWORKERS[INDX]

The following example assigns the task that is the PARTNER attribute of the task
MYSELF.PARTNER to the task that is the EXCEPTIONTASK attribute of the task
MYSELF.PARTNER.

8600 0098-000

Statements

MYSELF.PARTNER.EXCEPTIONTASK := MYSELF.PARTNER.PARTNER

ATTACH Statement
The ATTACH statement associates an interrupt with an event so that when the event
is caused, the program is interrupted, and the interrupt code is placed in execution,
provided that the interrupt is enabled.

<attach statement>

- ATTACH -<interrupt identifier>- TO -<event designator;;;>-----<

Attachment of Interrupts

Although different interrupts can be simultaneously attached to the same event, a
particular interrupt can be attached to only a single event at any one time. For this
reason, if, at attach time, the interrupt is found to be already attached to an event, then
it is automatically detached from the old event and attached to the new event. Any
pending invocations of the interrupt are lost.

An interrupt can be attached to an event that is declared in a different block. For
example, a local interrupt can be attached to a formal event. Such an attachment can
cause compile-time or run-time up-level attach errors if the block containing the event
can be exited before the block that contains the interrupt is exited.

Event-valued file attributes are allowed. If the file is declared (or specified as a formal
parameter) at least as global as the interrupt, then run-time checking can be bypassed.

However, the operating system can prevent some attachments at run time. For example,
the INPUTEVENT of a remote file is available only after the file has been opened with
an OPEN statement. In the operating system, run-time verification that an interrupt is
not declared more global than the event always fails for attribute events. This causes
a task fatal UP LEVEL ATTACH error. Therefore, a formal parameter event whose
actual parameter is a file attribute cannot be attached nor can an attribute of a formal
parameter file be attached to a global interrupt.

Examples of ATTACH Statement

The following example attaches the interrupt THEPHONE to the event THEBELL.
When THEBELL is caused, the code associated with THEPHONE begins executing.

ATTACH THEPHONE TO THEBELL

The following example attaches the interrupt ANSWERHI to the event
MYSELEEXCEPTIONEVENT. Whenever the task MYSELF undergoes a change in
status, the EXCEPTIONEVENT attribute is caused, and the code associated with
ANSWERHI begins executing.

ATTACH ANSWERHI TO MYSELF.EXCEPTIONEVENT

8600 0098-000 4-19

Statements

AWAITOPEN Statement

4-20

The AW AITOPEN statement is used to await a request for dialog establishment.
Information on networks that support this function can be found in the A Series l/0
Subsystem Programming Guide.

<awaitopen statement>

- AWAITOPEN - (-<awaitopen file part>) --1
~awaitopen options~

<awaitopen file part>

-<file designator>
L [SUBFILE ...-subfile index>-] _J

<awaitopen options>

~~-------------,-------------~~ L , -<awaitopen control option~
~..-.[~.-_~-PA_R_T_IC-I-PA_T_E~[~~~~~~-,-~~~~~~~~~~~~

=,--TRUE
L FALSE

~ L , -<connecttimelimit option>J

<awaitopen control option>

tAVAI~
DONTWAIT
WAIT

<connecttimelimit option>

- CONNECTTIMELIMIT - =-<arithmetic expression.----------1

The AWAITOPEN statement can be used only when the kind of the file designator is
PORT and only when the SERVICE attribute for the port is set to a network type that
supports this feature.

The subfile index, if present, specifies the subfile that is waiting for dialog establishment.

The AWAITOPEN statement can be used as an arithmetic function. It returns the same
values as the file attribute AVAILABLE. For a description of these values refer to the
A Series File Attributes Programming Reference Manual,. If the result of this statement
is not interrogated by the program, the program terminates when the awaitopen action
fails.

The control options AVAILABLE, DONTWAIT, and WAIT are described in the A Series
l/0 Subsystem Programming Guide. The control option is used to indicate when control
should be returned to the program. If a control option is not specified, WAIT is assumed.

8600 0098-000

Statements

PARTICIPATE Option

The PARTICIPATE option is used to indicate that the program specifies the option
of accepting or rejecting offers, through the RESPOND statement, when the subfile
is matched to an incoming dialog request. Specifying PARTICIPATE is equivalent to
specifying PARTICIPATE = TRUE. Upon notification of a matching dialog request,
through CHANGEEVENT and FILESTATE attributes, the program can interrogate the
value of attributes, read open userdata, and negotiate the value of negotiable attributes.
The p~ogram can then reject or accept an incoming dialog request. For more information
on FILESTATE and CHANGEEVENT attributes, see the A Series File Attributes
Programming Reference Manual. If the PARTICIPATE option is not included, a default
value of FALSE is assumed, and any offer is unconditionally accepted.

CONNECTTIMELIMIT Option

The CONNECTTIMELIMIT option can be used to specify the maximum amount of
time, in minutes, that the system will allow for a successful match with a corresponding
endpoint. The default for this option is an unlimited wait. If the amount specified is
negative, an error result is returned. If the value is zero, there is no time limit on the
wait. If the value is not a single-precision integer, it is integerized. If the FILESTATE of
the port file does not change to an OPENED or OPENRESPONSEPLEASE file state
within the time specified, the AWAITOPEN fails and an implicit CLOSE ABORT is
performed on the subfile.

Examples of AWAITOPEN Statement

The following example indicates that the program is being used to await dialog
establishment on all subfiles of the port file FILEID.

AWAITOPEN (FILEID [SUBFILE 0])

The following example indicates that the program is being used to await dialog
establishment on subfile I of the port file FILEID.

AWAITOPEN (FILEID [SUBFILE I])

The following example indicates that the program is being used to await dialog
establishment on subfile 1 of port file FILEID. Control is not returned to the program
until the subfile is matched. In addition, the participate option is used to indicate that
the program can accept or reject any offers through the RESPOND statement.

AWAITOPEN (FILEID [SUBFILE 1], WAIT, PARTICIPATE=TRUE)

The following example indicates that the program is being used to await dialog
establishment on subfile N of port file FILEID. The maximum amount of time to wait for
a successful match is set to the result of the arithmetic expression (X * 60 + 3).

AWAITOPEN (FILEID [SUBFILE NJ, CONNECTTIMELIMIT=(X * 60 + 3))

8600 0098-000 4-21

Statements

CALL Statement
The CALL statement initiates a procedure as a coroutine.

<call statement>

- CALL -<procedure identifier>
L.<actual parameter part~

,_ [-<task designator>-]

Coroutines

4-22

Initiation of a coroutine consists of setting up a separate stack, passing any parameters
(call-by-name or call-by-value), and beginning the execution of the procedure.

Processing of the initiating program, called the initiator or the primary coroutine, is
suspended.

The called procedure, referred to as the secondary coroutine, cannot be a typed
procedure. If the procedure identifier is a system supplied process, such as an intrinsic,
the library GENERALSUPPORT must be declared using a library entry point
specification. The procedure identifier must be declared in the program or the syntax
error, PROCEDURE MUST BE USER DECLARED, results. The actual parameter
part must agree in number and type with the formal parameter part in the declaration of
the procedure; otherwise, a run-time error occurs.

The task designator associates a task with the coroutine at initiation; the values
of the task attributes of that task, such as COREESTIMATE, STACKSIZE, and
DECLAREDPRIORITY, can be used to control the execution of the coroutine. For
more information about assigning values to task attributes, refer to <arithmetic task
attribute> under "Arithmetic Assignment," <Boolean task attribute> under "Boolean
Assignment," and "Task Assignment" earlier in this section.

Every coroutine has a partner task to which control can be passed by using the
CONTINUE statement. The partner task of the secondary coroutine is the initiator by
default but can be changed by assignment to the task-valued task attribute PARTNER
of the task designator. Local variables and call-by-value parameters of the secondary
coroutine retain their values as control is passed to or from the coroutine.

The critical block, described in "PROCESS Statement" later in this section, in the
initiator cannot be exited until the secondary coroutine is terminated. Any attempt
by the initiator to exit that block before the secondary coroutine is terminated causes
the initiator and all tasks it has initiated through CALL or PROCESS statements to be
terminated.

A secondary coroutine is terminated by exiting its own outermost block or by execution
in the initiator of the following statement, where the task designator specifies the task
associated with the secondary coroutine to be terminated:

<task designator>.STATUS := VALUE(TERMINATED)

8600 0098-000

Statements

Note: The CALL statement causes the initiation of a separate stack as
a coroutine. Because of the cost involved, a coroutine should be
established once and then used through CONTINUE statements.
If a CALL statement is used to invoke a procedure, overall system
efficiency is severely degraded. A string expression cannot be passed
as an actual parameter to a call-by-name parameter of a procedure in
a CALL statement.

Example of CALL Statement

The following example initiates as a coroutine the procedure COROOTEEN, and passes
the parameters X, Y, 7, andX + Y + Z. COROOTEEN has the task designator T
associated with it.

CALL COROOTEEN(X, Y, 7, X + Y + Z) [T]

CANCEL Statement
The CANCEL statement can be used to delink a library from a program and cause the
library program to thaw (or unfreeze) and resume running as a regular program.

<cancel statement>

- CANCEL - (-<library identifier>-) ------------1

Delinking a Library from a Program

Normally, a library is linked to a program when the program calls one of the library's
entry points or the LINKLIBRARY intrinsic, and the library is delinked from the
program when the block in which the library is declared is exited. The CANCEL
statement can be used to delink a library before it would normally be delinked.

When a library is canceled, all users of the library are delinked from the library, and
the library thaws and resumes running as a regular program regardless of whether it
is temporary or permanent. Refer to "FREEZE Statement" later in this section for a
discussion of temporary and permanent libraries.

After a program has canceled a library, the program can again link to a new instance of
the library as if for the first time.

Only libraries whose SHARING compiler control option is specified as PRN ATE or
SHAREDBYRUNUNIT can be canceled. If an attempt is made to cancel a library that is
not PRN ATE or SHAREDBYRUNUNIT, a run-time message is given and the library is
delinked as if DELINKLIBRARY was called.

To delink a program from a library without affecting any other users of the library,
use the DELINKLIBRARY function. For more information, see "DELINKLIBRARY
Function" in Section 5, "Expressions and Functions."

8600 0098-000 4-23

Statements

For more information on libraries, refer to Section 8, "Library Facility."

Example of CANCEL Statement

The following example delinks the library LIB from the program.

CANCEL(LIB)

CASE Statement
The CASE statement provides a means of dynamically selecting one of many alternative
statements.

<case statement>

-<case head>-<case body>------------------<

<case head>

- CASE -<arithmetic expression>- OF ---------------1

<case body>

- BEGIN ~<statement list>
L_<numbered statement list~

<numbered statement list>

END --------------i

r~ • ----~
-L<numbered statement group>>---'------------------1

<numbered statement group>

-<number 1 i st>-<statement 1 i st>------------------1

<number list>

~

~<constant arithmetic expression>-r"
--i::::: ELSE ------------'

Unnumbered Statement List

4-24

If the case body contains an unnumbered statement list, then the statement to be
executed is selected in the following manner:

8600 0098-000

Statements

• The arithmetic expression in the case head is evaluated. If the resulting value is not
an integer, it is integerized by rounding.

• The integer value is used as an index into the list of statements in the case body.
The N statements in the case body are numbered 0 to N-1. The statement
corresponding to the index value is the statement executed. If the index value is less
than zero or greater than N-1, the program is discontinued with a fault.

Numbered Statement List

If the case body contains a numbered statement list, then the statement list to be
executed is selected in the following manner:

• The arithmetic expression in the case head is evaluated. If the resulting value is not
an integer, it is integerized by rounding.

• If the integer value is equal to one of the statement numbers, the statement list
associated with the number is executed.

If the integer value is not equal to any of the statement numbers, then an invalid
index fault occurs unless the word ELSE appears in a number list in the CASE
statement, in which case control is transferred to the statement list following ELSE.

The statement numbers given by the constant arithmetic expressions in the number list
must lie in the range 0 to 1023, inclusive. The word ELSE can appear only once in a
CASE statement.

8600 0098-000 4-25

Statements

Examples of CASE Statement

CASE I OF
BEGIN

J := 1; % STATEMENT 0
J := 20; % STATEMENT 1
BEGIN % STATEMENT 2

J := 3;
K := 0;

END;
J := 4; % STATEMENT 3

END;

CASE I OF
BEGIN

1:
2:
5:
7:

3:
4:
20:

J := 3;
Q := J-1;

J := 4;
ELSE:

GO TO BADCASEVALUE;
END;

CAUSE Statement
The CAUSE statement activates all tasks that are waiting on the specified event.

<cause statement>

- CAUSE - (-<event designator>-) -------------1

Ca uses of Events

4-26

Normally, the CAUSE statement also sets the happened state of the event to TRUE
(happened). For an explanation of exceptions to this condition, see "W AITANDRESET
Statement" later in this section ..

If an enabled interrupt is attached to the event, each cause of the event results in one
execution of the interrupt code.

Activating a task does not necessarily place the task into immediate execution.
Activating a task consists of delinking the task from an event queue (each event has its
own queue) and linking that task in priority order into a system queue called the ready
queue.

8600 0098-000

Statements

The ready queue is a queue of all tasks that are capable of running. Tasks are taken out
of the ready queue either when a processor is assigned to the task or when the task
must wait for an operation (such as an 1/0 operation) to complete or for an event to be
caused. A task is placed in execution only when it is the top item in the ready queue and
a processor is available.

When a program causes a happened event, the CAUSE statement is ignored (a no-op
is caused); the system does not remember every cause unless an interrupt is attached
to the event. For more information on events, see "EVENT Statement" later in this
section.

Examples of CAUSE Statement

The following example activates the tasks waiting for the event EVNT.

CAUSE(EVNT)

The following example activates the tasks waiting for the event identified by
EVNTARAY[INDX].

CAUSE(EVNTARAY[INDX])

The following example activates the tasks waiting for a change in the status of the task
TSK.

CAUSE(TSK.EXCEPTIONEVENT)

CAUSEANDRESET Statement
The CAUSEANDRESET statement activates all tasks that are waiting on the specified
event and sets the happened state of the event to FALSE (not happened).

<causeandreset statement>

- CAUSEANDRESET - (-<event designator>-) -----------i

Relationship to CAUSE Statement

This statement differs from the CAUSE statement in that the happened state of the
event is set to FALSE (not happened).

For further information on the relationship between the CAUSEANDRESET statement
and events see the discussion in "CAUSE Statement" earlier in this section.

8600 0098-000 4-27

Statements

Examples of CAUSEANDRESET Statement

The following example activates the tasks waiting for the event EVNT, and sets the
happened state of EVNT to FALSE (not happened).

CAUSEANDRESET(EVNT)

The following example activates the tasks waiting for the event identified by
EVNTARAY[INDX], and sets the happened state of that event to FALSE (not
happened).

CAUSEANDRESET(EVNTARAY[INDX])

The following example activates the tasks waiting for a change in the status of the
task TSK, and sets the happened state of TSK.EXCEPTIONEVENT to FALSE (not
happened).

CAUSEANDRESET(TSK.EXCEPTIONEVENT)

CHANGEFILE Statement

4-28

The CHANGEFILE statement changes the names of files without opening them.

<changefile statement>

~ CHANGEFILE ~ (~<directory element>-- • ~<directory element>----'

,_) ---------------'----------------;

The CHANGEFILE statement returns a value ofTRUE ifan error occurs. Error
numbers, stored in field [39:20) of the result, correspond to the causes of failure as
follows:

Value

10

20

30

Meaning

The first directory element is in error.

The second directory element is in error.

File names have not been changed.

File names and directory names must be specified in EBCDIC and must be followed by a
period. All errors in the names are detected at run time.

If a family substitution specification is in effect, the CHANGEFILE statement affects
only the substitute family, not the alternate family.

If a directory name is specified as the source, the names of the files in that directory are
changed according to the following rules:

8600 0098-000

Statements

• If the specified target directory is a new directory, then the names of all the files in
the source directory are changed.

• If the specified target directory is not a new directory, then only files that
do not have corresponding names in the target directory are changed. For
example, the first column below shows file names that exist before the statement
CHANGEFILE(''A. ", ''B. ·~ is executed, and the second column shows the file names
resulting from execution of the statement.

Existing Files Resulting Files

N8/C 8/8/C

N8/D N8/D

NC/C 8/C/C

8/8/D 8/8/D

8/C/D 8/C/D

Note that because the file name B/B/D already exists, the file name NB/D is not
changed.

• A directory element of the form <file name> I= affects only files in that directory.
It does not affect a file named <file name>.

Directory Element

<directory element>

t <pointer express::Jion
<array row>,,_ ___ _,
<string literal>

A directory element is a file name, a directory name, or both a file name and a
directory name. A directory name references a group of files. For example, the
following files are all in the directory named JAMES. The first six files are in the
directory named (JAMES)OBJECT, and the first five files are in the directory named
(JAMES)OBJECT/TEST. Note that (JAMES)OBJECT/TEST/PRIMES is both a file
name and a directory name.

(JAMES)OBJECT/TEST/COMM
(JAMES) OBJECT/TEST/SORT
(JAMES) OBJECT/TEST/PRIMES
(JAMES)OBJECT/TEST/PRIMES/1
(JAMES)OBJECT/TEST/PRIMES/2
(JAMES)OBJECT/LIBRARYl
(JAMES)MEMO

In the CHANGEFILE statement, the second directory element, the target, designates
the name to which the first directory element, the source, is to be changed. If the change
applies to files on pack, and a family substitution specification is not in effect (either
by default through the USERDATA file or by specification in either CANDE or WFL),
the target must include ON <family name> , and the source must not include a family
name. If a family substitution specification is in effect, ON <family name> is not

8600 0098-000 4-29

Statements

required; if ON <family name> does not appear, the family substitution specification is
used to determine the family on which the files reside.

Example of CHANGEFILE Statement

The following program changes NB to CID and then removes C/D.

BEGIN
ARRAY OLD, NEW[0:44];
BOOLEAN B;
REPLACE POINTER(OLD) BY 8"A/B.";
REPLACE POINTER(NEW) BY 8"C/D.";
IF B := CHANGEFILE(OLD,NEW) THEN

DISPLAY("CHANGEFILE ERROR");
IF B := REMOVEFILE(8"C/D.") THEN

DISPLAY("REMOVEFILE ERROR");
END.

CHECKPOINT Statement

4-30

The CHECKPOINT statement writes to a disk file the complete state of the job at a
specified point. Using the disk file, the job can later be restarted from this point.

<checkpoint statement>

- CHECKPOINT - (-<device>- , -<disposition>-) -------1

<device>

The checkpoint/restart facility can protect a program against the disruptive effects of
unexpected interruptions during the program's execution. If a halt/load or other system
interruption occurs, ajob is restarted either before the initiation of the task that was
interrupted or, if the operator permits, at the last checkpoint, whichever is more recent.
Checkpoint information can also be retained after successful runs to permit restarting
jobs to correct bad data situations.

The device options determine the medium to be used for the checkpoint files.

The CHECKPOINT statement can be used as a Boolean function. An attempted
checkpoint returns a value with the following information:

[0: 1]
[10: 10]
[25: 12]
[46: 1]

= Exception bit
= Completion code

Checkpoint number
Restart flag (1 = restart)

8600 0098-000

Statements

In response to the request for a completion code, a program can receive a variety of
messages. See "Restarting a Job" later in this section for a list of the completion codes
and messages.

Disposition Option

<disposition>

L ~~~~E---.---------------------1

The disposition option PURGE causes all checkpoint files to be removed at successful
termination of the job and protects the job against system failures. The LOCK option
causes all checkpoint files to be saved indefinitely and can be used to restart ajob even if
it has terminated normally.

When a checkpoint is invoked, the following files are created:

• The checkpoint file, CPI< JN> I< CPN > , where <JN> is a four-digit job number
and < CPN > is a three-digit checkpoint number. If the PURGE option has been
specified, the checkpoint number is always zero, and each succeeding checkpoint
with PURGE removes the previous file. If the LOCK option is used, the checkpoint
number starts with a value of 1 for the first checkpoint and is incremented by 1 for
each succeeding checkpoint with LOCK If the two types are mixed within a job, the
LOCK checkpoints use the ascending numbers and the PURGE checkpoints use 0
(zero), leaving files 0 through Nat the completion of the job.

• Temporary files, CPI< JN> IT< FN >, where < FN > is a three-digit file number
beginning with 1 and incremented by 1 for each temporary disk or system resource
pack file.

• The job file, CPI< JN> /JOBFILE. This file is created under the LOCK option only.

The LOCK and PURGE options are also effective when the task terminates. If the task
terminates abnormally and the last checkpoint has used the PURGE option, then the
checkpoint file (numbered zero) is changed to have the next sequential checkpoint
number, and the job file is created (if necessary). If the job terminates normally and only
PURGE checkpoints have been taken, the CPI< JN> directory is removed.

8600 0098-000 4-31

Statements

Restarting a Job

4-32

Ajob can be restarted in two ways:

• After a halt/load. The system automatically attempts to restart any job that was
active at the time of a halt/load. If a checkpoint has been invoked during the
execution of the interrupted task, then the operator is given a message requiring
a response to determine whether the job should be restarted. The operator can
respond with the system command OK (to restart at the last checkpoint), DS (to
prevent a restart), or QT (to prevent a restart but save the files for later restart if
the job was a checkpoint with PURGE).

• By a Work Flow Language (WFL) RERUN statement. A WFL job can be restarted
programmatically by use of the WFL RERUN statement.

The following conditions can inhibit a successful restart:

• An invalid usercode

• Recompilation of the program since the checkpoint

• The operating system has changed since the checkpoint. The restart fails if the
creation time stamp of the operating system that created the checkpoint file does not
match the creation time stamp of the current operating system.

• Intrinsics after the checkpoint that are different from the intrinsics before the
checkpoint

The messages in the following list can appear as the result of an attempt to restart.

Restart Messages

RESTART PENDING (RSVP)

MISSING CHECKPOINT FILE

IO ERROR DURING RESTART

USERCODE NO LONGER VALID

OPERATOR DSED RESTART

OPERATOR QTED RESTART

MISSING CODE FILE

NOT ABLE TO RESTART

INVALID JOB FILE

RESTART AS CP/nnnn

MISSING JOB FILE

8600 0098-000

Statements

FILE POSITIONING ERROR

WRONG JOB FI LE

WRONG CODE FILE

BAD CHECKPOINT FILE

BAD STACK NUMBER

WRONG MCP

The following can inhibit a successful checkpoint/restart:

• Direct I/0 (direct arrays or files)

• Datacomm I/0 (open datacomm files)

• Open Data Management System II (DMSII) sets

• The task being checkpointed must have no tasks initiated through CALL or
PROCESS statements, it must have been initiated by a WFLjob, and this WFLjob
must not have initiated other tasks that are also running.

• ODT files

• Duplicated files

• Output directly to a printer or card punch (backup files are acceptable)

• Checkpoints taken inside sort input or output procedures. The sort intrinsic
provides its own restart capability; for more information, see "SORT Statement"
later in this section.

• Checkpoints taken in a compile-and-go program

If a job that produces printer backup files is restarted, the backup files can already have
been printed and removed, and on restart the job requests the missing backup files. In
this situation, when the backup files are requested, the operator must respond with the
system command OF (Optional File). A new backup file is created. Output preceding
the checkpoint is not re-created.

The messages in the following table can appear as the result of a checkpoint/restart.
Error conditions can be handled in a program by checking for them by completion code
number and instructing the program to handle the result.

Checkpoint Message

CHECKPOINT#nn

INVALID AREA IN STACK

SYSTEM ERROR

BAD IPC ENVIRONMENT

NO USER DISK FOR CP FILE

10 ERROR DURING CHECKPOINT

8600 0098-000

Completion Code

0

1

2

3

4

5

continued

4-33

Statements

Locking

4-34

continued

Checkpoint Message

ROWS IN CP FILE > 1024

DIRECT FILE NOT ALLOWED

TOO MANY TEMPORARY DISK FILES

PAPER TAPE FILE NOT ALLOWED

DUPLICATED FILE NOT ALLOWED

CON FILE NOT ALLOWED

CARD PUNCH FILE NOT ALLOWED

OPEN REVERSED TAPE FILE NOT ALLOWED

DISKHEADER IN STACK

DMS AREA IN STACK

DIRECT ARRAY IN STACK

DIRECT DOPE VECTOR IN STACK

SUBSPACE IN STACK

STACK MARK

SORT AREA IN STACK

REMOTE FILE NOT ALLOWED

ILLEGAL CONSTRUCT

BDBASE ILLEGAL

TEMP FILE ON NAMED PACK

Completion Code

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

For jobs that take a large number of checkpoints with LOCK, the checkpoint number
counts up to 999 and then recycles to 1 (leaving zero undisturbed). When this recycling
occurs, previous checkpoint files are lost as new ones using the same numbers are
created.

If a temporary disk file is open at a checkpoint, it is locked under the CP directory. If
it is subsequently locked by the program, the name is changed to the current file title.
At restart time, the file is sought only under the CP directory, resulting in a no-file
condition. To avoid this condition, an files that are to be locked eventually should be
opened with the file attribute PROTECTION assigned the value SA VE. To remove the
file, it must be closed with PURGE. True temporary files, which are never locked, do not
have this problem. All data files must be on the same medium as at the checkpoint, but
need not be on the same units or the same locations on disk or disk pack. They must
retain the same characteristics, such as blocking. The checkpoint/restart system makes
no attempt to restore the contents of a file to their state at the time of the checkpoint;
the file is merely repositioned. At this time, volume numbers are not verified.

Note: CANDE and remote job entry (RJE) cannot be used to run a program
with checkpoints. The checkpoints are ignored if used.

8600 0098-000

Statements

Rerunning Programs

If a rerun is initiated and the job number is in use by another job, a new job number is
supplied, and the CPI< JN> directory node is changed to reflect the new job number.

If a rerun is initiated and the PROCESSID function is used, the value returned by the
function can be different for the restarted job. Refer to "PROCESSID Function" in
Section 5, "Expressions and Functions," for more information.

When a job is restarted at some checkpoint before the last, subsequent checkpoints
taken from the restarted job continue in numerical sequence from the checkpoint used
for the restart. Previous higher numbered checkpoints are lost.

Example of CHECKPOINT Statement

BOOL := CHECKPOINT(DISK,PURGE)

CLOSE Statement
The CLOSE statement breaks the link between a logical file declared in the program and
its associated physical file, which is the actual file data is sent to or from. For port files, it
is used to close dialogs between processes.

<close statement>

- CLOSE - (-<close file part>
L_ , -<close options;..J

<close file part>

!<file designator>
L_ L_ [- SUBFILE -<subfile index>-]

<task designator>- . -<file-valued task attribute name:]

<subfile index>

-<arithmetic expressi on;>-------------------l

The CLOSE statement can be used as an arithmetic function. For information about
results returned, see the A Series File Attributes Programming Reference Manual.

When no CLOSE option is specified, the CLOSE statement closes the file, depending on
the kind of file, as follows:

Card Output File

A card containing an ending label is punched. The file must be labeled.

8600 0098-000 4-35

Statements

Line Printer File

The printer is skipped to channel 1, an ending label is printed, and the printer is again
skipped to channel 1. The file must be labeled.

Unlabeled Tape Output File

A double tape mark is written after the last block on the tape, and the tape is rewound.

Labeled Tape Output File

A tape mark is written after the last block on the tape; then an ending label is written
followed by a double tape mark, and the tape is rewound.

Disk File

If the file is a temporary file, the disk space is returned to the system.

For all types of files, the I/0 unit and the buffer areas are released to the system.

The < subfile index> syntax is used to specify the subfile to be closed.

CLOSE Options

4-36

<close options>

If the asterisk (*) is used and the file is a tape file, the I/0 unit remains under program
control, and the tape is not rewound. This construct is used to create multifile reels.

When the asterisk is used on multifile input tapes and the value of the LABEL file
attribute is STANDARD, the CLOSE statement closes the file as follows:

• If the value of the DIRECTION file attribute is FORWARD, the tape is positioned
forward to a point just following the ending label of the file.

• If the value of the DIRECTION file attribute is REVERSE, the tape is positioned to
a point just in front of the beginning label for the file.

• If the end-of-file branch of a READ statement or WRITE statement has been taken,
the CLOSE statement does not position the file.

The close action performed on a single-file reel is the same as that performed on a
multifile reel. The next I/0 operation performed on the file must be done in the direction
opposite to that of the prior 1/0 operations; otherwise, an end-of-file error is returned.

8600 0098-000

Statements

When the asterisk is used and the LABEL file attribute does not have the value
STANDARD, the tape is spaced beyond the tape mark (on input), or a tape mark
is written going forward (on output). The essential difference is that if LABEL is
OMITTEDEOF, labels are not spaced over, but if LABEL is STANDARD, labels are
spaced over.

The CRUNCH option is meaningful only for disk files. It causes the unused portion of
the last row of disk space, beyond the end-of-file indicator, to be returned to the system.
The file cannot be expanded but can be written inside of the end-of-file limit.

If the LOCK option is used, the file is closed. If the file is a tape file, it is rewound, and a
system message is printed that notifies the operator that the reel must be saved. The
tape unit is made inaccessible to the system until the operator readies it manually. If the
file is a disk file, it is kept as a permanent file on disk. The file buffer areas are returned
to the system.

If the PURGE option is used, the file is closed, purged, and released to the system. If the
file is a permanent disk file, it is removed from the disk directory, and the disk space is
returned to the system.

If the REEL option is used, the file must be a multireel tape file. The current reel is
closed, and the next reel is opened. This option is provided primarily for use with direct
tape files, for which the system does not automatically perform reel switching.

If the REWIND option is specified, the file is closed. If the file is a paper tape or
magnetic tape file, it is rewound. For disk files, the record pointer is reset to the first
record of the file. The file buffer areas are returned to the system, and the I/0 unit (or
disk file) remains under program control. For paper tape files, the REWIND option can
be used only on input.

All forms of the CLOSE statement that are not appropriate for the type of unit assigned
to the file are equivalent to using the REWIND option. For example, when the asterisk
or the REEL option is specified for a disk file, the result is the same as when the
REWIND option is specified for a disk file.

A CLOSE statement that leaves the disk file under program control is referred to as a
close with retention. For example, a CLOSE statement that designates a disk file and
the asterisk option or the REWIND option is a close with retention.

PORT CLOSE Option

<port close option>

r/1\- • - DONTWAIT -------.-~---------..-.
------r=/1\- • -<closedisposition option>J

C: • -<associateddata option>J

8600 0098-000 4-37

Statements

<closec:lisposition option>

- CLOSEDISPOSITION - = -,- ABORT
L ORDERLY

<associateddata option>

- ASSOCIATEDDATALENGTH - = -<arithmetic expression>- , -----.

~1 ASSOCIATEDDATA - = 1<array row>
<subscripted varia~le
<pointer expression

ASSOCIATEDDATA - = -<string expression

The PORT CLOSE option is meaningful only for files for which the KIND file attribute
has the value PORT.

The control option DONTW AIT is used to indicate that control should be returned to
the program as soon as possible. If DONTW AIT is not specified, WAIT is assumed and
control is returned when processing of the CLOSE statement is complete. Refer to the
A Series 110 Subsystem Programming Guide for more information on control options.

The CLOSEDISPOSITION = ORDERLY option and ASSOCIATEDDATA option are
meaningful only for certain port file services. The CLOSEDISPOSITION = ABORT
terminates a dialog immediately. A CLOSEDISPOSITION = ORDERLY steps the
subfile through an orderly termination procedure that involves handshaking between
the two programs. If the file is a port file and the CLOSEDISPOSITION option is
not specified, the ABORT operation is assumed. With an ABORT termination, the
processes must go through their own handshake procedure to ensure no data loss. The
ASSOCIATEDDATA option can be used to send associated data with the subfile close.
If a string expression is specified, the length is calculated automatically and used as the
ASSOCIATEDDATALENGTH value. Otherwise, the ASSOCIATEDDATALENGTH
option specifies how many characters are to be sent. If the ASSOCIATEDDATA
value is of type HEX, the ASSOCIATEDDATALENGTH option indicates the
number of HEX characters, otherwise the number of EBCDIC characters. If the
ASSOCIATEDDATALENGTH value is not a single precision integer it is integerized.

Examples of CLOSE Statement

4-38

In the following example, if FILEID is a temporary disk file, this statement closes the file
and returns the disk space to the system.

CLOSE (FI LEID)

The following example closes FILEID and, assuming FILEID is a tape file, positions the
tape according to the description under "CLOSE Options" earlier in this section.

CLOSE (Fl LEID,*)

The following example closes, purges, and releases FILEID to the system. If FILEID is a
permanent disk file, it is removed from the disk directory and the disk space is returned
to the system.

CLOSE(FILEID,PURGE)

8600 0098-000

Statements

In the following example, assuming FILEID is a multireel tape file, the current reel is
closed, and the next reel is opened.

CLOSE(FILEID,REEL)

The following example closes FILEID and, assuming FILEID is a disk file, returns to the
system the unused portion of the last row ofFILEID.

CLOSE(FILEID,CRUNCH)

The following example requests an orderly close on subfile 1 of port file FILEID.
Control is returned to the program as soon as the close has been checked for semantic
consistency, because the DONTW AIT port close option is included.

CLOSE (FILEID [SUBFILE 1], CLOSEDISPOSITION =ORDERLY, DONTWAIT)

The following example requests a close of subfile 1 of port file FILEID. Since the
< closedisposition option> is not specified, a CLOSEDISPOSITION ABORT operation is
performed. Since the <control option> is not specified, WAIT is assumed, and control
is not returned to the file until the close is complete.

The information specified in the < associateddata option> is sent to the correspondent
program during the close process. The length need not be specified because a string
expression is being used.

CLOSE (FILEID [SUBFILE 1], ASSOCIATEDDATA = STRNG)

The following example requests a close of subfile 1 of port file FILEID. During the close
process, 14 characters of data are taken, beginning at the location pointed to by PTR,
and are sent to the correspondent process as associated data.

CLOSE (FILEID [SUBFILE 1], ASSOCIATEDDATALENGTH = 14,
ASSOCIATEDDATA = PTR)

CONTINUE Statement
The CONTINUE statement causes control to pass from the program in which the
statement appears to a coroutine.

<continue statement>

- CONTINUE ---.--------------.-----------;
c= (~task designator>--) :J

Coroutines

A coroutine is a procedure that is initiated as a separate task by using a CALL
statement. The caller is referred to as the primary coroutine and the called procedure as
the secondary coroutine.

8600 0098-000 4-39

Statements

Because the execution of CONTINUE statements causes control to alternate between
primary and secondary coroutines, processing always continues at the point where it last
terminated.

The secondary coroutine uses the CONTINUE statement form without the task
designator to pass control back to its partner task, which is the primary coroutine by
default. The task designator is used by the primary coroutine to pass control to the
secondary coroutine associated with that task designator by the CALL statement. For
more information, refer to "CALL Statement" earlier in this section.

Examples of CONTINUE Statement

The following example passes control from this program, a secondary coroutine, to its
partner task, which is, by default, the primary coroutine.

CONTINUE

The following example passes control to the coroutine associated with the task TSK.

CONTINUE (TSK)

DEALLOCATE Statement
The DEALLOCATE statement causes the contents of the specified array row or
procedure reference array row to be discarded and the memory area to be returned to
the system.

Note: The DEALLOCATE statement cannot be used for task arrays.

<deallocate statement>

- DEALLOCATE - (,-<array row>
L._<procedure reference array row:.-J

Deallocation with Arrays

4-40

When an array row or procedure reference array row is deallocated, it is made not
present (all data is lost). When the array row or procedure reference array row is used
again, it is made present, and each element is reinitialized to 0 (zero) if it is an array row
and to the uninitialized state if it is a procedure reference array row.

Array rows of paged (segmented) arrays and event arrays cannot be deallocated by using
the DEALLOCATE statement.

When a procedure reference array is imported from a library, it cannot be deallocated
using the DEALLOCATE Statement. An attempt to deallocate an imported procedure
reference array results in a compile-time or run-time error.

8600 0098-000

Statements

Examples of DEALLOCATE Statement

The following example discards the contents of ARAY and returns the memory area to
the system. Note that ARAY must be a one-dimensional array or a syntax error results.

DEALLOCATE(ARAY)

The following example discards the contents of the row MATRIXARY[INDX, *] and
returns the memory area to the system.

DEALLOCATE(MATRIXARY[INDX,*])

The following example discards the contents of the procedure reference array row
PROCARRAY[l, *] and returns the memory area to the system.

DEALLOCATE(PROCARRAY[l,*])

DETACH Statement
The DETACH statement severs the association of an interrupt with an event.

<detach statement>

- DETACH -<interrupt identifier,;>------------------<

Detaching Interrupts

Any pending invocations of a detached interrupt are discarded. Detaching an interrupt
that is not attached to an event is essentially a no-operation; no error occurs.

The enabled/disabled condition of an interrupt is not changed by a DETACH statement.
When an interrupt is attached after it has been detached, the enabled/disabled condition
of the interrupt is the same as it was before it was detached. For more information, see
"ATTACH Statement," "DISABLE Statement," and "ENABLE Statement" in this
section and "INTERRUPT Declaration" in Section 3, "Declarations."

Example of DETACH Statement

The following example severs the association between the interrupt THEPHONE and
the event it is attached to.

DETACH THEPHONE

8600 0098-000 4-41

Statements

DISABLE Statement
The DISABLE statement prevents interrupt code from being executed.

<disable statement>

- DISABLE
L:<interrupt identifier~

Disabling Interrupts

A DISABLE statement that does not specify an interrupt identifier is ref erred to as a
general disable. A general disable has the effect of disabling all the interrupts for the
task. The interrupts whose associated events are caused are placed in an interrupt
queue for the task.

If the DISABLE statement specifies an interrupt identifier, only that interrupt is
disabled. The system queues these interrupts until the interrupt is enabled.

Interrupts are queued to ensure that none are lost during the time they are attached.
Queuing continues until the appropriate EN ABLE statement is executed.

Disabling or enabling an interrupt is not affected by whether or not the interrupt is
attached to an event.

For more information, see "ATTACH Statement," "DETACH Statement," and
"ENABLE Statement" in this section and "INTERRUPT Declaration" in Section 3,
"Declarations."

Examples of DISABLE Statement

The following example is a general disable; it disables all interrupts.

DISABLE

The following example disables the interrupt named THEPHONE.

DISABLE THEPHONE

DISPLAY Statement

4-42

The DISPLAY statement causes the specified message to be displayed on the Operator
Display Terminal (ODT) and to be printed in the job summary of the program.

<display statement>

- DISPLAY - (-,-<poi~ter expres~ion>-,-)
L_<str1ng express1on:>---J

8600 0098-000

Statements

Pointer and String Expressions

The message to be displayed is specified by the pointer expression or the string
expression. If the parameter to the DISPLAY statement is a pointer expression,
execution of the DISPLAY statement causes the characters to which the pointer
expression points to be displayed on the ODT. The pointer expression must point to
EBCDIC characters and the message to be displayed must be terminated by a null
character (48"00").

If the parameter to the DISPLAY statement is a string expression, execution of the
DISPLAY statement causes the contents of the string specified by the string expression
to be displayed on the ODT. The string expression must be of type EBCDIC.

Display messages from programs run in CANDE appear on the user's terminal if the
MESSAGES option of the CANDE SO command has been specified.

A maximum of 430 characters can be displayed.

Examples of DISPLAY Statement

The following example displays the EBCDIC characters stored in array Q, from the
beginning of the array to the EBCDIC null character (48"00).

DISPLAY(POINTER(Q,8))

The following example displays the string created by concatenating VALUE IS and the
stringSTR.

DISPLAY("VALUE IS " CAT STR)

The following example displays the string stored in the string variable
MESSAGESTRING.

DISPLAY(MESSAGESTRING)

DO Statement
The DO statement causes a statement to be executed until a specified condition is met.

<do statement>

- DO -<statement>- UNTIL -<Boolean expression>---------;

Evaluation of Boolean Expression

The statement following DO is executed. The Boolean expression is evaluated, and if it
is FALSE, the statement is executed again and the Boolean expression is reevaluated.
This sequence of operations continues until the value of the Boolean expression is
TRUE. At that time, control passes to the statement following the DO statement.

8600 0098-000 4-43

Statements

Note that both <block> and <compound statement> are statements and can be
substituted for <statement> .

Figure 4-1 illustrates the DO-UNTIL loop.

ENTER
LOOP

EXECUTE
STATEMENT

Figure 4--1. DO-UNTIL Loop

YES TERMINATE
LOOP

Examples of DO Statement

DO
BEGIN
PTR := *-4;
CTR := *+4;
END

UNTIL PTR IN LOOKEDFOR

DO
J := J/2

UNTIL BUF[J] < JOB

ENABLE Statement
The ENABLE statement allows interrupt code to be executed.

<enable statement>

- ENABLE --r-----------.--------------1
c=<interrupt identifier:>:J

Enabling Interrupts

4-44

Previously disabled interrupts can be enabled with the ENABLE statement. If the event
associated with the interrupt is caused after an interrupt has been enabled, then the
interrupt code is executed.

An ENABLE statement that does not specify an interrupt identifier is referred to as a
general enable and causes the system to look for, and place in execution, all interrupts
that are in the interrupt queue of the task.

8600 0098-000

Statements

Ifthe ENABLE statement specifies an interrupt identifier, only that interrupt is enabled.
The system executes all occurrences of the interrupt in the interrupt queue.

Disabling or enabling an interrupt is not affected by whether or not the interrupt is
attached to an event.

For more information, refer to "ATTACH Statement," "DETACH Statement," and
"DISABLE Statement" earlier in this section and to "INTERRUPT Declaration" in
Section 3, "Declarations."

Examples of ENABLE Statement

The following example is a general enable: it enables all previously disabled interrupts.

ENABLE

The following example enables the interrupt named THEPHONE.

ENABLE THEPHONE

ERASE Statement
The ERASE statement removes all records from a file, leaving the attributes of the
file unchanged where possible. The LASTRECORD attribute is set to -1 and all
data are lost. For more information on file attributes, see the A Series File Attributes
Programming Reference Manual.

<erase statement>

- ERASE - (-<file designator>-) --------------;

The ERASE statement can be used as a Boolean primary. When it is used in this way, it
returns one of the following enumerated results if an error has occurred:

NOTCLOSERETAINED
VALIDONLYFORDISK
DUPLICATEDFILENOTALLOWED
NODISKHEADER
SECURITYERROR
NOTONLYUSEROFFILE
INTERCHANGEFILENOTALLOWED
IADFILENOTALLOWED

In using the ERASE statement, the following requirements must be met:

• The file specified in the ERASE statement must be a local file or a File Transfer,
Access, and Management (FTAM) foreign file and the KIND attribute must be
disk or pack. For more information on FTAM, see the A Series 110 Subsystem
Programming Guide.

• The file must be closed with retention.

8600 0098-000 4-45

Statements

• The open count of the file must be 1.

• The PERMITTEDACTIONS attribute must permit the erase.

• The user must have access to the file.

The user process is discontinued if an error occurs when the ERASE statement is not
used as a Boolean primary.

EVENT Statement
Events have two Boolean characteristics, happened and available. Each characteristic
can be in one of two states: TRUE or FALSE. These states can be changed using event
statements.

<event statement>

cause stateme
<causeandreset
fix statement

<free statemen
<liberate stat
<procure state
reset stateme

<set statement
<wait statemen
<waitandreset

nt _J
I

statement>-1 .,.
t
ement
ment
nt""

t
statement>--l

The happened and available states of an event can be interrogated using the
HAPPENED function and the AVAILABLE function. For more information, see
"AVAILABLE Function" and "HAPPENED Function" in Section 5, "Expressions and
Functions."

EXCHANGE Statement

4-46

The EXCHANGE statement is used to exchange rows between two disk files.

<exchange statement>

- EXCHANGE - (-<file designator>- [-<row/ copy numbers>-] ~

~- • -<file designator>- [-<row/copy numbers>-] -) ------i

<row/copy numbers>

-<row number>
[_ • -<copy number~

<row number>

-<arithmetic expressi oni>---------------------1

8600 0098-000

Statements

<copy number>

-<arithmetic expression>---------------------1

Conditions for Execution of the EXCHANGE Statement

The two disk files must be closed when the EXCHANGE statement is executed, the two
rows must be the same size, the specified row numbers and the specified copy numbers
must be valid, and the two files cannot be code files of any kind.

Row numbers begin with zero and copy numbers begin with 1. If there are copies of the
file and a copy number is specified, then only the rows of that copy are exchanged.

For the exchange to take place, the referenced files must be closed with retention. For
more information, see "CLOSE Statement" earlier in this section.

If the system detects an error, the exchange is not performed and the program resumes
execution with the next statement. After the program uses the EXCHANGE statement,
the row addresses should be checked by using file attributes to ensure that the exchange
was successfully completed.

Examples of EXCHANGE Statement

The following example exchanges the contents of row ROW6 ofFILEl with the contents
of row ROWO of FILE2.

EXCHANGE(FILE1[ROW6],FILE2[ROW0])

The following example exchanges row I of MASTERFYLE with row J of
REBUILTFYLE.

EXCHANGE(MASTERFYLE[l],REBUILTFYLE[J])

Fl LL Statement
The FILL statement fills an array row with specified values. The FILL statement cannot
be used with character arrays.

<fill statement>

- FILL -<array row>- WITH -<value list>---------------1

<value list>

.-L<initi al' v~>--'---------------------1

8600 0098-000 4-47

Statements

<initial value>

t <number>
<string literal>
<unsigned integer>-- (~<value list>--) ~

Initialization

Each initial value initializes an integral number of words. The number of words
initialized depends on the type of the array and the kind of initial value.

Single-precision numbers initialize one word in arrays other than double or complex
arrays. In double arrays, this word is extended with a second word ofO (zero). In
complex arrays, this word is normalized and then extended with an imaginary part of 0
(zero).

Double-precision numbers are stored unchanged in two words in double arrays. In
complex arrays, the value is round~d and normalized to single precision and then
extended with an imaginary part ofO (zero). For other types of arrays, the second word
of the double-precision value is dropped and the first word initializes one word of the
array.

String literals more than 48 bits long initialize as many words as are needed to contain
the string and are left-justified with trailing zeros inserted in the last word, if necessary.
In complex and double arrays, long string literals can initialize an odd number of words,
causing the following initial value to start in the middle of a two-word element of the
array.

String literals less than or equal to 48 bits long are right-justified within one word with
leading zeros, if necessary. This word initializes one word in arrays other than double or
complex arrays. In double arrays, this word is extended with a second word of 0 (zero).
In complex arrays, this word is normalized and then extended with an imaginary part of
0 (zero).

An initial value of the form <unsigned integer> (<value list>) causes the values in the
value list to be repeated the number of times specified by the unsigned integer.

If the value list contains more values than will fit in the array row, filling stops when the
array row is full.

If the value list contains fewer values than the array row can hold, the remainder of the
array row is left unchanged.

The length of the value list cannot exceed 4095 48-bit words.

Examples of FILL Statement

4-48

The following example fills the first 250 words of the one-dimensional array MATRIX
with zeros.

FILL MATRIX[*] WITH 250(0)

8600 0098-000

Statements

The following example fills the designated row of array GROUP with the value .25, the
string ALGOL right-justified with leading zeroes, the character " right-justified with
leading zeros, and with the string LONGER STRING, which fills two words and part of a
third word. Trailing zeros fill the rest of the third word.

FILL GROUP[l,*] WITH .25, "ALGOL", 111111 , "LONGER STRING"

FIX Statement
The FIX statement examines the available state of an event. After the FIX statement
executes, the available state of the designated event is always FALSE (not available).

<fix statement>

- FIX - (-<event designator>-)---------------<

FIX Statement as a Boolean Function

The FIX statement can be used as a Boolean function. If the available state of the
specified event is TRUE (available), the event is procured, the state is set to FALSE (not
available), and FALSE is returned as the value of the function. If the available state of
the specified event is FALSE (not available), the FIX statement returns TRUE, and the
available state is left unchanged.

The FIX statement is sometimes referred to as the conditional procure function.

When the FIX statement has finished execution, the available state of the event is
FALSE (not available).

Examples of FIX Statement

The following example examines the available state of the event EVNT.

FIX(EVNT)

The following example examines the available state of the event designated by
EVENTARRAY[INDEX].

FIX(EVENTARRAY[INDEX])

The following example examines the available state of event FILELOCK and stores in
GOTIT a value indicating this state.

IF GOTIT := FIX(FILELOCK) THEN •••

The following example examines the available state of the task's EXCEPTIONEVENT.

FIX(MYSELF.EXCEPTIONEVENT)

8600 0098-000 4-49

Statements

FOR Statement

4-50

The FOR statement constructs a loop consisting of one or more statements that are
executed a specified number of times.

<for statement>

- FOR -<variable>-:= _L<for list 0 element>::l DO -<statement>---j

<for list element>

-<initial part>
~iteration part~

<initial part>

-<arithmetic expressi on>---------------------l

<iteration part>

L STEP <arithmetic expression>--,--- UNTIL <arithmetic expression>
L_ WHILE <Boolean expression>

WHILE <Boolean expression> ----------------'

The number of times a FOR loop is traversed is determined by a variable, called the
control variable, which is initialized when the FOR statement is first entered, and which
can be updated during each iteration of the loop.

The action of a FOR statement can be described by isolating the following three distinct
steps:

• Assignment of a value to the control variable

• Test of the limiting condition

• Execution of the statement following DO

Each type of <for list element> syntax specifies a different process. However, all of .
these processes have one property in common: the initial value assigned to the control
variable is that of the arithmetic expression in the <initial part> construct.

The <for list element> construct establishes which values are assigned to the control
variable and which test to make of the control variable to determine whether or not the
statement following DO is executed. When a for-list element is exhausted, the next
for-list element, if any, is evaluated, progressing from left to right. When all for-list
elements have been used, the FOR statement is considered completed, and execution
continues with the statement following the FOR statement. The statement following
DO can transfer control outside the FOR statement, in which case some for-list elements
might not have been exhausted before the FOR statement is exited.

8600 0098-000

Statements

Forms of the FOR Statement

In the following discussion of the various forms of the FOR statement, the letter V
stands for the control variable; AEXPl, AEXP2, ... are arithmetic expressions; BEXP is a
Boolean expression; and Sl is a statement.

FOR-DO Loop

Assume that a for-list element consists of only an initial part, such as the following:

FOR V := AEXPl, AEXP2, ••. DO

In this case that for-list element designates only one value to be assigned to the control
variable. Because no limiting condition is present, no test is made. After assignment
of the arithmetic expression to the control variable, the statement following DO is
executed, and the for-list element is considered exhausted.

Figure 4-2 illustrates the FOR-DO loop.

SET INDEX
ENTER ----;.... TO INITIAL
LOOP VALUE

FOR-STEP-UNTIL Loop

EXECUTE
STATEMENT

SET INDEX
TO SECOND

VALUE

EXECUTE
STATEMENT

Figure 4-2. FOR-DO Loop

r

I
_J

SET INDEX
TO FINAL

VALUE

EXECUTE
STATEMENT

TERMINATE
LOOP

Assume a for-list element is of the form <initial part> STEP <arithmetic expression>
UNTIL <arithmetic expression > ", such as the following:

FOR V := AEXPl STEP AEXP2 UNTIL AEXP3 DO

In this case, a new value is assigned to the control variable V before each execution of
the statement following DO. First, the initial value, that of AEXPl, is assigned to the
control variable. After each execution of the statement following DO, the assignment

8600 0098-000 4-51

Statements

V: = V + AEXP2 is performed. Both AEXP2 and AEXP3 are reevaluated each time
through the loop.

A test is made immediately after each assignment of a value to V to determine whether
or not the value ofV has passed the value of AEXP3. Whether AEXP3 is an upper or a
lower limit depends on the sign of AEXP2; AEXP3 is an upper limit if AEXP2 is positive
and a lower limit if AEXP2 is negative. If AEXP3 is an upper limit, then V has passed
AEXP3 when the expression V LEQ AEXP3 is no longer TRUE. If AEXP3 is a lower
limit, then V has passed AEXP3 when the expression V GEQ AEXP3 is no longer TRUE.
IfV has not passed AEXP3, the statement following DO is executed; otherwise, the
for-list element is exhausted. Figure 4-3 illustrates the FOR-STEP-UNTIL loop.

ENTER
LOOP

SET INDEX
TO INITIAL

VALUE
PASSED LIMIT

VALUE

TERMINATE
LOOP

NO EXECUTE
STATEMENT

Figure 4-3. FOR-STEP-UNTIL Loop

INCREMENT
INDEX

FOR-STEP-WHILE Loop

4-52

Assume a for-list element is of the form <initial part> STEP <arithmetic expression>
WHILE <Boolean expression >, such as the following:

FOR V := AEXPl STEP AEXP2 WHILE BEXP DO

In this case a new value is assigned to the control variable V before each execution of the
statement following DO. First, the initial value, that of AEXPl, is assigned to the control
variable. After each execution of the statement following DO, the assignment V: =
V + AEXP2 is performed. AEXP2 is reevaluated each time through the loop. After
each assignment to V, the Boolean expression BEXP is evaluated and, if BEXP is TRUE,
the statement following DO is executed. If BEXP is FALSE, this for-list element is
exhausted. Figure 4-4 illustrates the FOR-STEP-WHILE loop.

8600 0098-000

Statements

ENTER
LOOP

SET INDEX
TO INITIAL

VALUE

FOR-WHILE Loop

TERMINATE
LOOP

EXECUTE
STATEMENT

Figure ~. FOR-STEP-WHILE Loop

INCREMENT
INDEX

Assume the for-list element is of the form <initial part> WHILE <Boolean
expression> , such as the following:

FOR V := AEXPl WHILE BEXP DO

In this case the control variable Vis assigned the value of AEXPl before each execution
of the statement following DO. AEXPl is reevaluated for each assignment to V. After
each assignment to V, the Boolean expression BEXP is evaluated. If the value of BEXP
is TRUE, the statement following DO is executed. If the value of BEXP is FALSE, this
for-list element is exhausted. For example, in the following FOR statement ifV had the
value zero before execution of this statement, Sl would be executed five times:

FOR V := V + 1 WHILE V LEQ 5 DO
Sl;

Figure 4-5 illustrates the FOR-WHILE loop.

8600 0098-000 4-53

Statements

ENTER
LOOP

ASSIGN VALUE
TO CONTROLLED

VARIABLE

BOOLEAN
EXPRESSION

TRUE

TERMINATE
LOOP

YES

Figure 4-5. FOR-WHILE Loop

EXECUTE
STATEMENT

Examples of FOR Statement

4-54

The following example executes the statement following DO just once, with I assigned
zero.

FOR I := 0 DO

The following example assigns 1 to elements 0 through 255 of array LOOKEDFOR.

FOR J := 0 STEP 1 UNTIL 255 DO
LOOKEDFOR[J] := 1

The following example assigns ITEM to elements 0, 1, 2, 5, 10, 15, 16, and 37 of array
BUF.

FOR INDEX := 0, 1, 2, 10, 15, 37, 5, 16 DO
BUF[INDEX] := ITEM

The following example calls FETCH repeatedly, passing the values 0, 1, 2, 3, 4, 5, 29, and
the values of (47 + 3 * X) where X = 0, 1, 2, and so on, as long as (47 + 3 * X) is less
than LIM.

FOR X := 0 STEP 1 UNTIL 5, 29, 47 STEP 3 UNTIL LIM DO
FETCH(X)

The following example calls PANHANDLE and assigns to NEXT values equal to BEG,
BEG + AMT, BEG + 2* AMT, and so on, as long as DONE is FALSE.

FOR NEXT := BEG STEP AMT WHILE NOT DONE DO
PANHANDLE

8600 0098-000

Statements

The following example increments TARGET by the value IX + 7 as long as TARGET is
less than or equal to RANGE.

FOR N := IX + 7 WHILE TARGET LEQ RANGE DO
TARGET := * + N

FREE Statement
The FREE statement sets the available state of the specified event to TRUE (available).

<free statement>

- FREE - (-<event designator>-) ---------------1

FREE Statement as a Boolean Function

The FREE statement can be used as a Boolean function that returns FALSE if the
available state of the event is already TRUE (available) and TRUE ifthe available state
of the event is FALSE (not available). In either case, the available state of the event is
unconditionally set to TRUE (available).

The FREE statement does not activate any task attempting to procure the event, nor
does it activate any task waiting on the event.

Examples of FREE Statement

The following example sets the available state of the event EVNT to TRUE (available).

FREE(EVNT)

The following example sets the available state of the event designated by
EVNTARAY[INDX] to TRUE (available).

FREE(EVNTARAY[INDX])

The following example assigns to W ASPROCURED a value indicating the available
state of the event FYLELOCK, and sets the available state of FYLELOCK to TRUE
(available).

IF WASPROCURED := FREE(FYLELOCK) THEN •••

8600 0098-000 4-55

Statements

FREEZE Statement
The FREEZE statement changes the running program into a library.

<freeze statement>

- FREEZE - (1 PERMANENT ----------~
TEMPORARY ~
CONTROL - , -<procedure identifier~

For more information on <procedure identifier> , see "PROCEDURE Declaration" in
Section 3, "Declarations."

FREEZE Statements in Library Procedures

4-56

At least one EXPORT declaration must appear in the same block as the FREEZE
statement. The procedures affected by a FREEZE statement are the procedures that
appear in EXPORT declarations in the same block as the FREEZE statement. After the
FREEZE statement is executed, these procedures are library entry points.

The PERMANENT and TEMPORARY specifications of the FREEZE statement
control the permanence of the library. A permanent library remains available until it is
discontinued. A temporary library remains available as long as there are users of the
library. A temporary library that is no longer in use unfreezes (thaws) and resumes
running as a regular program. However, a temporary library does not unfreeze until it
has been referenced at least once. When a library unfreezes, it cannot execute another
FREEZE statement in an attempt to become a library again.

The CONTROL specification of the FREEZE statement controls the nature of the
freeze. The program is set up as a permanent library, but after the freeze operation has
been performed, control is transferred to the specified procedure, known as the control
procedure. The procedure must be untyped and must have no parameters.

Once the control procedure is in control, the library can keep track of the number of its
users through the task attribute LIBRARYUSERS.

The library can unfreeze itself by changing the task attribute STATUS to
V ALUE(GOINGAWAY). After this change, the library is equivalent to a thawing library.
When the control procedure is exited, the library unfreezes if there are no users. If
there are users, the library becomes an ordinary library, and a warning message is
issued.

Because a library program initially runs as a regular program, the flow of execution
can be such that the execution of a FREEZE statement is conditional and can occur
anywhere in the outer block of the program.

If a calling program causes a library to be initiated and this library does not execute
a FREEZE statement (if, for example, it was not a library program and thus had no
FREEZE statement), then the attempted linkage to the library entry points cannot be
made, and the calling program is discontinued. For more information on libraries, refer
to Section 8, "Library Facility."

8600 0098-000

Statements

Examples of FREEZE Statement

The following example transfers control to procedure Z after the freeze operation is
completed. Procedure Z is untyped and has no parameters. The task attribute STATUS
is changed to VALUE(GOINGAWAY) so that the library can unfreeze itself. Once the
control procedure is exited, if there are no users, the library unfreezes. If there are
users, the library becomes an ordinary library, and a warning message is issued.

BEGIN
PROCEDURE X(A,B);

%Procedure
PROCEDURE Y(P,Q);

%Procedure
PROCEDURE Z;
BEGIN %Control procedure - untyped

MYSELF.STATUS := VALUE(GOINGAWAY);
WHILE MYSELF.LIBRARYUSERS GTR 0 DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT);

END;
EXPORT X, Y;

FREEZE(CONTROL,Z);

END.

to be exported

to be exported

and no parameters

The following example transfers control to the procedure CTRL _PROCEDURE after the
freeze operation is completed.

FREEZE(CONTROL,CTRL_PROCEDURE)

GO TO Statement
The GO TO statement transfers control to the statement in the program with the
specified label.

<go to statement>

- GO [TO :J <designational expression

The value of the designational expression specifies the label to which control is
transferred.

Because labels must be declared in the innermost block in which they occur as statement
labels, a GO TO statement cannot lead from outside a block to a point inside that block.
Each block must be entered at the BEGIN so that the declarations associated with that
block are invoked. For more information on labels, refer to "LABEL Declaration" in
Section 3, "Declarations."

8600 0098-000 4-57

Statements

Bad GO TO

A bad GO TO occurs when a GO TO statement in an inner block transfers control to a
label that is global to that block. A necessary side effect of a bad GO TO is that the block
in which it occurs is exited abruptly and local variables are deallocated immediately.

A bad GO TO requires cutting back the lexical (lex) level to a more global block. To
perform a bad GO TO, the operating system is invoked to cut back the stack and discard
any locally declared items that occupy memory space outside of the stack, sometimes
referred to as nonstack items, such as files, arrays, and interrupts.

Examples of GO TO Statement

In the following example, control is transferred to the statement with the label LABELl.

GO TO LABELl

In the following example, control is transferred to the statement with the label LABEL2.

GO LABEL2

In the following example, control is transferred to the statement with the label
designated by the subscripted switch label identifier SELECTIT[INDX].

GO TO SELECTIT[INDX]

In the following example, ifK is equal to 1, control is transferred to the statement with
the label designated by the subscripted switch label identifier SELECT[2]. Otherwise
control is transferred to the statement with the label ST ART.

GO TO IF K=l THEN SELECT[2] ELSE START

1/0 Statement

4-58

An I/0 statement causes information to be exchanged between a program and a
peripheral device, and allows the programmer to perform certain control functions.

< 1/0 statement>

<accept statement>---.--------------------1
<close statement
<display statement
<lock statement
<open statement
<read statement

rewind statement
seek statement
space statement
write statement

8600 0098-000

Statements

ALGOL I/0 is handled by a part of the operating system called the I/0 subsystem.
For more information on the I/O subsystem, refer to the A Series l/0 Subsystem
Programming Guide.

The ACCEPT statement and DISPLAY statement are unique in that the file to or
from which data is transferred need not be specified. For more information, refer to
"ACCEPT Statement" and "DISPLAY Statement" earlier in this section.

The remaining I/0 statements reference a file that must be declared by the program.
For more information, refer to "FILE Declaration" in Section 3, "Declarations."

Two distinct methods of I/0 are available. The first and typical method is referred to
as normal I/0; the second method is called direct I/0. The major differences between
normal I/0 and direct I/0 have to do with buffering, the overlap of program execution,
and the overlap of I/0 operations. Their effect on a particular I/O statement is presented
in the description of the statement.

Normal 1/0

Normal I/O is indicated when direct files and direct arrays are not used. Normal I/0
includes many automatic facilities provided by the operating system, such as the
following:

• Buffering: the automatic overlap of program processing and I/O traffic to and from
the peripheral units

• Blocking: more than one logical record per physical block

• Translation as needed between the character set of the unit and that required by the
program

The amount of buffering between the I/0 statements and program execution depends on
the number of buffers allocated for the file. Refer to "FILE Declaration" in Section 3,
"Declarations," for information on how to specify the number of buffers.

In normal I/0, a READ statement causes the automatic testing of the availability of the
needed record. The program is suspended in the READ statement until the record is
actually available for use.

In normal I/O, a WRITE statement transfers the specified data to a buffer; the program
is immediately released to begin execution of the next statement. If all the buffers are
full when the WRITE statement is executed, the program is suspended until a buffer is
available.

Direct 1/0

Direct I/0 is indicated when direct files and direct arrays are used.

Direct I/O allows more direct control of the actual I/O operations. In certain situations,
avoiding suspension of the program is desirable. In other situations, nonstandard

8600 0098-000 4-59

Statements

4-60

1/0 operations and masking of certain types of error conditions which could arise are
desirable.

When direct I/0 is used, the program is responsible for the buffering, blocking, and
translation.

The syntax for a direct read or direct write operation employs the <arithmetic
expression>, <array row> form of <format and list part> . An event designator is the
onJy allowable form of action labels or finished event for direct 1/0. The value of the
arithmetic expression has the following meaning:

Field

[16:17]

[19:3]

Contains

Number of words to be transferred

Number of trailing characters to be transferred

The array row is called the 1/0 area of the user. A direct array identifier must be used
for the <array name> part in the array row construct. Thus, the following statement
could be used to perform a direct read of 10 words from file FID into direct array A using
the event EVT as the finished event:

READ (FID, 10, A[*]) [EVT]

The operating system establishes a relationship between the 1/0 area and the finished
event, if one is specified. Before any subsequent use of the I/0 area can be made in
the program, either for calculations or for further 1/0, the direct 1/0 operation must be
finished. The finished event can be inspected by one of the following methods:

• By using the HAPPENED function

• By obtaining the value of the STATE file attribute using the WAIT statement as a
Boolean function and specifying a direct array row as a parameter

• By using the WAIT statement on the event to deactivate the process until the event
is caused

Once the operation has been completed, the happened state of the event should be set
to FALSE (not happened) before reusing it. Refer to "WAIT Statement" later in this
section for more information.·

The finished event can be associated with a direct array row that is declared in a
different block. For example, a formal event can be associated with a local array. Such
an association can cause compile-time or run-time up-level event errors ifthe block
containing the finished event can be exited before the block that contains the direct
array is exited.

In direct 1/0, the 1/0 operations analogous to the SPACE and REWIND statements are
performed as if they were read or write operations, except that the IOCW direct array
attribute is specifically assigned the proper hardware instructions for the operation.

When performing direct 1/0 with the SPACE operation, the device's spacing limitation
overrides any user-specified spacing. In the case of a line printer, this limitation is two.

8600 0098-000

Statements

IF Statement
The IF statement causes a statement to be executed or not executed based on the value
of a Boolean expression.

<if statement>

-<if cl ause>-<statement>>--,----------,------------i
lm ELSE -<statement>J

<if clause>

- IF -<Boolean expression>- THEN--------------;

Forms of the IF Statement

Assume the IF statement you are using is of the following form:

IF BEXP THEN Sl

If the value of the Boolean expression BEXP is TRUE, the statement Sl is executed. If
BEXP is FALSE, then Sl is not executed. In either case, execution continues with the
statement following the IF statement.

Assume the IF statement you are using is of the following form:

IF BEXP THEN Sl ELSE S2

If the value of BEXP is TRUE, the statement Sl is executed and the statement S2 is
ignored. If the value ofBEXP is FALSE, then the statement S2 is executed, and Sl
is ignored. In either case, execution continues with the statement following the IF
statement.

Note that both block statements and compound statements can be substituted for
< statement> in the IF statement.

IF statements can be nested; that is, the statements following the reserved words THEN
or ELSE (or both) can also be IF statements.

When IF statements are nested, the correct correspondence between the reserved words
THEN and ELSE must be maintained. The compiler matches the innermost THEN
to the first ELSE that follows it and that yields a syntactically correct IF statement.
Consider the following IF statement:

IF BEXPl THEN IF BEXP2 THEN S2 ELSE Sl

The ELSE is paired with the innermost THEN, which is the THEN following BEXP2, as
illustrated in the following:

8600 0098-000 4-61

Statements

IF BEXPl THEN
IF BEXP2 THEN

S2
ELSE

Sl

If the program pairs the ELSE with the THEN following BEXPl, the inner IF statement
must be made a compound statement by using BEGIN and END as follows:

IF BEXPl THEN
BEGIN
IF BEXP2 THEN

S2
END

ELSE
Sl

A GO TO statement can lead to a labeled statement within an IF statement. The
subsequent action is equivalent to the action that would result if the IF statement were
entered at the beginning and evaluation of the Boolean expression caused execution of
the labeled statement.

Examples of IF Statement

4-62

In the following example, if ALLDONE is TRUE, control is transferred to the statement
with the label A WAY. If ALLDONE is FALSE, the statement following the IF statement
is executed.

IF ALLDONE THEN
GO AWAY

In the following example, ifthe value ofX is greater than the value of LIMIT, procedure
ERROR is called. If the value ofX is less than or equal to the value of LIMIT, the
value of X is incremented by 1. In either case, execution continues with the statement
following the IF statement.

IF X > LIMIT THEN
ERROR

ELSE
x := * + 1

8600 0098-000

Statements

INTERRUPT Statement
Interrupts provide a way to interrupt a process when a specific event occurs. Interrupt
statements allow interrupts to be attached to and detached from events, and allow
interrupts to be enabled and disabled.

<interrupt statement>

Eattaoh •tatome"t~
detach statement
disable statement

<enable statement

The ATTACH statement is used to associate an interrupt with an event.

The DETACH statement is used to sever the association between an interrupt and the
event to which it is attached.

The ENABLE statement and DISABLE statement are used to explicitly enable and
disable, respectively, an interrupt.

For more information on interrupts, refer to "INTERRUPT Declaration" in Section 3,
"Declarations."

INVOCATION Statement
An INVOCATION statement causes a previously declared procedure to be executed as a
subroutine, an asynchronous process, a coroutine, or an independent program.

<invocation statement>

1<call statement>
<procedure invocation statement~
<process statement>>---------j----1
<run statement>:>-------~

The CALL statement invokes a procedure to execute as a coroutine. The PROCEDURE
INVOCATION statement invokes a procedure to execute as a subroutine. The
PROCESS statement invokes a procedure to run as an asynchronous process. The RUN
statement invokes a procedure to run as an independent program.

With the exception of the PROCEDURE INVOCATION statement, a separate stack is
initiated and the specified procedure cannot be a typed procedure.

With the exception of the RUN statement, parameters can be call-by-name or
call-by-value. All parameters passed in the RUN statement must be call-by-value.

LIBERATE Statement
The LIBERATE statement activates all tasks waiting on the specified event. It can also
change the happened state of the event to TRUE (happened).

8600 0098-000 4-63

Statements

<liberate statement>

- LIBERATE - (-<event designator>-) ------------l

Execution of Implicit CAUSE Statement

The LIBERATE statement causes the execution of an implicit CAUSE statement for the
specified event. This implicit CAUSE statement can result in a change to the happened
state of the event, if the waiting tasks have used the WAITANDRESET statement. For
more information, refer to "CAUSE Statement" and "WAITANDRESET Statement" in
this section. The available state of the event is set to TRUE (available).

Although all waiting tasks are activated, they are linked into the ready queue in
priority order. At that point, all tasks that were waiting to procure the event are in the
ready queue in priority order. For more information about procuring events, refer to
"PROCURE Statement" later in this section.

Examples of LIBERATE Statement

The following example causes the event ANEVENT and sets its available state to TRUE
(available).

LIBERATE(ANEVENT)

The following example causes the event designated by EVENTARRAY[INDEX] and sets
its available state to TRUE (available).

LIBERATE(EVENTARRAY[INDEX])

LOCK Statement
The LOCK statement causes the specified file to be closed.

<lock statement>

- LOCK - (-<file designator>) -----1
L_ , -<lock option~

<lock option>

Lock Options

4-64

If the specified file is a tape file, it is rewound and the tape unit is made inaccessible to
the system until the operator readies it again. If the file is a disk file, it is retained as a
permanent file on disk. The file buffer areas are returned to the system.

8600 0098-000

Statements

A LOCK statement with a lock option performs the same action as a CLOSE statement
that specifies CRUNCH. Whether CRUNCH or an asterisk (*) appears as the lock
option, the action of the LOCK statement is the same. The file must be a disk file. The
unused portion of the last row of disk space, beyond the end-of-file indicator, is returned
to the system. The disk file can no longer be expanded without being copied into a new
file; however, data can be written to existing records.

Examples of LOCK Statement

In the following example, ifFILEA is a disk file it is retained as a permanent file.

LOCK(FILEA)

In the following example, the unused portion of the last row of disk file FYLE is returned
to the system.

LOCK(FYLE,CRUNCH)

In the following example, the unused portion of the last row of disk file FYLE is returned
to the system.

LOCK(FYLE, *)

MERGE Statement
The MERGE statement causes data in the specified files to be combined and returned.

<merge statement>

- MERGE - (-<output option>- , -<compare procedure>- , ---

~-<record length>- , -<merging option list>-) ----------<

<merging option list>

rt-· '
-L<mergi ng option>-'---------------------1

<merging option>

-<input option;;>----------------------<

Merge Options

The compare procedure determines the manner in which the data is combined. The
output option specifies how the data is to be returned from the merge operation.

The merging option list must contain between two and eight input options, inclusive,
which must be files or Boolean procedures.

8600 0098-000 4-65

Statements

Example of MERGE Statement

The following example merges records from files INl and IN2 according to a scheme
given in compare procedure COMP. The merged result is written to file LINEOUT. The
records ofINl and IN2 have a maximum record size of 14.

MERGE(LINEOUT,COMP,14,IN1,IN2)

MESSAGESEARCHER Statement

4-66

The MESSAGESEARCHER statement returns a completed output message based on
the information passed to it.

<messagesearcher statement>

- MESSAGESEARCHER - (-<output message array identifier~ [~

~ [J <arithmetic expression~] - , -~
<language specification~ ,

~-<result pointer~ , -<result length ~

> ~ , -<parameter element>=lJ

<language specification>

~string expression>
L_<pointer expression~ FOR -<arithmetic expression,._j

<result pointer>

-<pointer expression>----------------------1

<result length>

-<vari abl e>-------------------------1

<parameter element>

---r-<string expression>
L..cpointer expression~ FOR -<arithmetic expression,._j

The output message array identifier indicates the output message array from which the
output message is to be obtained. For more information on output message arrays, see
"OUTPUTMESSAGE ARRAY Declaration" in Section 3, "Declarations."

The language specification indicates the preferred language for the requested output
message. The language specification must not have a trailing dot.

The arithmetic expression within the square brackets ([]) indicates the output message
number of the message that is to be completed. The arithmetic expression cannot be a
double-precision value.

8600 0098-000

Statements

The result pointer is a call-by-value EBCDIC pointer that points to where the completed
output message is to be stored. An EBCDIC null character (48"00") is placed after
the last character of the message. The null character is not included in the returned
message length.

The result length is an integer or real variable that is assigned the length of the returned
output message, not connting the null character that is appended at the end.

Finding a Requested Message

Each parameter element contains the actual value of a parameter that was specified in
the declaration of the requested output message. The first parameter element refers to
parameter < 1 > , the second to parameter < 2 >, and so on.

The following method is used to find the requested message so that it can be completed.

First, an initial language in which to search for the message must be selected. If a
language specification is given as a parameter to the MESSAGESEARCHER statement,
that language is selected; otherwise, the language in the language specification of the
task requesting the message is used. If the task does not have a language specification,
the system default language is used.

If the requested message cannot be fonnd in the initial language and the initial language
is not the system default language, the message is searched for in the system default
language. If the message still cannot be fonnd, then the message is searched for in
the languages that exist in the specified output message array, beginning with the
first language, the second language, and so on. If none of the languages in the output
message array contains the message, an error message that specifies the message
number is produced in place of the message.

MESSAGESEARCHER Statement as an Arithmetic Function

The MESSAGESEARCHER statement can be used as an arithmetic fnnction that
returns an integer result indicating whether or not the message was successfully fonnd
and formatted. The possible values for this result are as follows:

Value Meaning

1 The message is not in the requested language; it is in MYSELF.LANGUAGE or
SYSTEMLANGUAG E.

0 The message was found and formatted as requested.

-1 Too few parameters were specified.

-2 No matching <output message case part> was found.

-3 The message is in the first available language.

-4 The array row referenced by the result pointer is too small.

-5 The message was not found.

-6 The version of the output message array is incompatible with th version of the
operating system.

continued

8600 0098--000 4-67

Statements

continued

Value Meaning

-7 The output message array is in error.

-8 A fault occurred while obtaining the output message.

-9 The length passed with a parameter is too long.

-11 The result pointer has a type that is not valid for the MESSAGESEARCHER
statement.

Example of MESSAGESEARCHER Statement

In the following example, the value of RTN, the returned integer, notes whether or not
the message was successfully found and formatted. ERRORS is the output message
array identifier. The language specification is ENGLISH. POSINTX is the arithmetic
expression. MSG is the result pointer and MSG_ LEN is the result length.

RTN := MESSAGESEARCHER (ERRORS ["ENGLISH", POSINTX], MSG, MSG_LEN);

MLSACCEPT Statement
The MLSACCEPT statement either displays or prints a message and causes the
program to wait for input, or it returns a Boolean value indicating whether or not a
message is waiting for the program.

<MLSaccept statement>

- MLSACCEPT - (-<output message array identifier>- [------t

-+ L _J <arithmetic expression>-] - , ---+
<language specification>- ,

-+~poi~ter ex~ression>- , -<arithmetic variable>--r- ,
<string varubl e>>------------1--1
subscripted string variable>>---------'

-+-,-<integer ~ariable>i LL :JJ
L<real variable--.! ~-· --------~

, -<parameter element ·

MLSACCEPT Used for Data Input

4-68

When the MLSACCEPT statement is used for data input, it displays a message and
causes the program to wait for input. The message that is displayed is in the output
message array defined by the output message array identifier.

The input text can be entered at an Operator Display Terminal (ODT) or at a user
terminal. If the input text is entered from a user terminal, the user must use the mix
number of the task and be logged on to the usercode that originated the job.

The input text is placed in the specified pointer expression, string variable, or
subscripted string variable. It is placed left-justified with leading blanks discarded.

8600 0098-000

Statements

The integer or real variable returns the length, in characters, of the input text. No
translation is performed on the input text. The program continues execution with the
statement following the MLSACCEPT statement.

MLSACCEPT Used as a Boolean Function

The MLSACCEPT statement can be used as a Boolean function to determine whether
or not a message was entered before the MLSACCEPT statement was executed. If a
message was entered, the result returned by the MLSACCEPT statement is TRUE and
the message is placed in the pointer expression, string variable, or subscripted string
variable. If no message was entered, the result is FALSE. In either case, the program
does not wait for input.

Additional MLSACCEPT Options

The language specification defines the language to be used for messages that are
displayed or printed.

The arithmetic expression indicates the output message number of the message to be
displayed or printed. It cannot be a double-precision value.

The arithmetic variable is an integer or real variable that is assigned the length of the
returned response.

Each parameter element contains the actual value of a parameter that was specified in
the declaration of the requested output message. The first parameter element refers to
parameter 1, the second to parameter 2, and so on.

No more than 430 characters can be displayed or printed. A maximum of 960 characters
can be accepted as input. The input response can be entered before the MLSACCEPT
statement is executed.

For additional information on output messages, refer to "MESSAGESEARCHER
Statement" earlier in this section.

Example of MLSACCEPT Statement

In the following example, the message number POSINDX from output message array
ERRORS is displayed in the ENGLISH language. The program waits to accept an input
which, when received, is placed in INPT for length specified by INPT _LEN.

MLSACCEPT (ERRORS ["ENGLISH", POSINDX] INPT, INPT_LEN);

8600 0098-000 4-69

Statements

MLSDISPLAY Statement

4-70

The MLSDISPLAY statement displays a message on the Operator Display Terminal
(ODT) and prints the message in the job summary listing.

<MLSdisplay statement>

- MLSDISPLAY - (-<output message array identifier~ [7

7 <arithmetic expression~] 7

L_<language specification~ , _J

7 [i , -<parameter element>=Jj

MLSDISPLAY Options

The MLSDISPLAY statement displays the specified message on the ODT and prints the
message between the beginning-of-task (BOT) and end-of-task (EOT) messages on the
job summary listing. If the program that invokes the statement was started with either
the CANDE RUN or START command, and if the MESSAGES option is currently set to
TRUE for the session, the text is also displayed on the user's terminal.

The output message array identifier indicates the output message array that contains
the message to be displayed.

The language specification defines the language to be used for messages displayed on the
user's terminal.

The arithmetic expression indicates the message number of the output message to be
displayed. It cannot be a double-precision value.

Each parameter element contains the actual value of a parameter that was specified in
the declaration of the requested output message. The first parameter element refers to
parameter 1, the second to parameter 2, and so on.

No more than 430 characters can be displayed.

For additional information on output messages, refer to "MESSAGESEARCHER
Statement" earlier in this section.

8600 0098-000

Statements

MLSTRANSLATE Statement
The MLSTRANSLATE statement returns an integer value indicating whether or not the
message was successfully found in both the input and output languages. The translated
message is returned to the caller using a pointer parameter.

<mlstranslate statement>

- MLSTRANSLATE - (--<output message array identifier>--
____ ,,

' L _J <output language>--] - , -------+
<input language>-- ,

-+-<input message>-- , -<result message number>-- , --<result message>-+

,_) -----------------------------!

<input language>
<output language>

--<language speci fi ca ti on>--------------------i

<input message>

---r-<string expression>
L_<pointer expression>-- FOR --<arithmetic expression~

<result message number>

-<arithmetic vari abl e>---------------------i

<result message>

-,-<result pointer>-- , --<result length>
~string primary>->----------'

<result pointer>

-<pointer expressi on>---------------------1

<result length>

-<arithmetic variable>---------------------i

MLSTRANSLATE Options

A message that is used with the MLSTRANSLATE statement must not contain
parameters.

The output message array identifier indicates the output message array from which the
translated message is to be obtained.

The input language indicates the language from which the message is being translated.
If no input language is specified, the language of the task is used as the input language.

8600 0098-000 4-71

Statements

If the input message does not exist in the task language, the system language is used as
the input language. If the input message is still not found, an error is returned. The
input language must not have a trailing period.

The output language indicates the language into which the message is to be translated.
The output language must not have a trailing period.

The input message contains the text to be translated. For the translation to be
successful, the input message must be the same as the message contained in the output
message array, including blanks. However, the translation is not case-sensitive.

The result message number is an integer or real variable that is assigned the message
array index corresponding to the message looked up. This value can be used to acquire
text in the language understood by the program through a MESSAGESEARCHER call.

The result message can be either a pointer/length pair of variables or a string variable,
providing flexibility for the destination of the translated message.

The result pointer is a call-by-value EBCDIC pointer that points to where the translated
message is to be stored. An EBCDIC null character (48"00") is placed after the last
character of the message. The null character is not included in the returned message
length.

The result length is an integer or real variable that is assigned the length of the returned
output message, not counting the null character that is placed at the end.

MLSTRANSLATE as an Arithmetic Function

4-72

The MLSTRANSLATE statement can be used as an arithmetic function that returns an
integer result indicating whether or not the message was successfully found in both the
input and output languages. The possible values for this result are as follows:

Value Meaning

1 The message is not in the requested language. It is in MYSELF.LANGUAGE or
SYSTEM LANGUAGE.

0 The message was found and returned as requested.

-1 The message was not found in the <input language>.

-2 The message was not found in the <output language>.

-3 The requested <output language> does not exist for this output message array.

-4 The array row referenced by the <result pointer> is too small.

-5 The message was not found in any language tried.

-6 The version of the output message array is incompatible with the version of the
operating system.

-7 The output message array is corrupted: cannot obtain output message number
<num>.

-8 A fault occurred while obtaining the output message.

continued

8600 0098-000

Statements

continued

Value Meaning

-9 The length passed with a parameter is too long.

-11 The <result pointer> has a type that is not valid for the MLSTRANSLATE
statement.

-12 The version of the output message array cannot be used for message
translation.

-13 The ccsversion of the input or output language messages is invalid.

MULTIPLE ATTRIBUTE ASSIGNMENT Statement

The multiple attribute assignment statement is used to assign values at run time to one
or more attributes of a specified file.

<multiple attribute assignment statement>

~<file identifier>~ (~<attribute specifications>~)

Assignment of Values

If the name of a Boolean file attribute in the attribute specifications is not followed by an
equal sign (=) and a value, it is assigned a value of TRUE; that is, the following attribute
specifications have the same effect as each other:

DEPENDENTSPECS,KIND = DISK

DEPENDENTSPECS = TRUE,KIND = DISK

An assignment specified in a MULTIPLE ATTRIBUTE ASSIGNMENT statement
occurs at run time and overrides any assignment made to the attribute in a FILE
declaration or through file equation.

One intrinsic call is generated to assign all attributes, except when a pointer-valued file
attribute name is assigned a pointer expression. In this case, the compiler generates a
separate intrinsic call for the pointer-valued attribute assignment.

Examples of MULTIPLE ATTRIBUTE ASSIGNMENT Statement

In the following example, at run time the BUFFERS attribute of file AFILE is assigned
the value 3, the INTMODE attribute is assigned EBCDIC, and the KIND attribute is set
to DISK.

AFILE(BUFFERS = 3,INTMODE = EBCDIC,KIND = DISK)

In the following example, at run time the TITLE attribute of file LINE is assigned the
value pointed to by pointer P, and the INTNAME attribute is assigned the value pointed
to by pointer Q.

8600 0098-000 4-73

Statements

LINE(TITLE = P,INTNAME Q)

ON Statement
The ON statement is used to enable or disable an interrupt for one or more fault
conditions.

<on statement>

---,--<enabling on statement
t_<disabling on statement

Enabling ON Statements

<enabling on statement>

- ON -<fault list> L 1 L :.
<fault information part>-J

'-<fault acti on;;.-----------------------1

The two forms of enabling ON statements are the implicit call and the implicit branch.
The implicit call form causes the fault termination of the block in which it appears. The
implicit branch form permits the block in which it appears to continue to run.

Once an interrupt is enabled, it remains enabled until one of the following conditions
occurs:

• The procedure or block that contains the ON statement is exited.

• The interrupt is explicitly disabled.

• A new interrupt is enabled for the same fault condition.

Whenever the block that contains an ON statement is exited, the interrupt status
(enabled or disabled) for that fault condition reverts to the status it had just before the
block was entered.

No call on the block exit intrinsic is required to deactivate the armed faults for a block.

Each execution of an ON statement adds one stack cell to the block in which it is used.

Fault List

4-74

<fault list>

rf--- OR
.l.<fault name,,._..-----------------------1

8600 0098-000

<fault name>

ANYFAULT ----~------------------1
ASSERTIONFAILURE
EXPONENTOVERFLOW
EXPONENTUNDERFLOW
INTEGEROVERFLOW
INV ALI DADD RESS
INVALIDINDEX -----<

INVALIDOP ------<

INVALIDPROGRAMWORD
LOOP --------i
MEMORYPARITY -----<

MEMORYPROTECT _ ____,
PROGRAMMEDOPERATOR
SCANPARITY -----1

STRINGPROTECT ----1

ZERODIVIDE ---~

Statements

The fault list allows several fault interrupts to be enabled (armed) or disabled (disarmed)
at the same time. When it is used to enable several interrupts, they all use the same
fault action if any of the faults occur. The occurrence of any one of the faults in the
fault list is sufficient to cause transfer of control to the fault action. The fault name
ANYFAULT is used to enable or disable all faults.

Fault Information Part

<fault information part>

- [1<fault stack history>]
L. : -<fault number~

: -<fault number>>---------::J~

The fault information part provides access to the stack history at the time of the
occurrence of the fault and to the number corresponding to the fault kind. The fault
number is assigned one of the following values when the corresponding fault occurs:

Value Fault

1 ZERODIVIDE

2 EXPON ENTOVERFLOW

3 EXPON ENTU N DERFLOW

4 INVALIDINDEX

5 INTEGEROVERFLOW

7 MEMORYPROTECT

8 INVALIDOP

9 LOOP

10 MEMORYPARITY

11 SCAN PARITY

12 INVALIDADDRESS

14 STRING PROTECT

15 PROGRAMMEDOPERATOR

16 ASSERTIONFAILU RE

continued

8600 0098-000 4-75

Statements

continued

Value Fault

18 INVALIDPROGRAMWORD

Fault Stack History

4-76

<fault stack history>

---r-<array row>
[_<pointer expression:.-J

<fault number>

t <Boolean varia~
<integer variable
<real variable

If the fault stack history option is used, a string of EBCDIC characters representing
the stack history is stored into the array row or the array specified by the pointer
expression. The stack history information is always stored as EBCDIC characters
regardless of the character type of the array row or pointer expression.

The format of the stack history is either of the following:

SSS:AAAA:Y,;SSS:AAAA:Y,; ••• ,;SSS:AAAA:Y.

SSS:AAAA:Y;(DDDDDDDD),; ••• ,;SSS:AAAA:Y;(DDDDDDDD).

In these formats, the following applies:

EBCDIC Characters

SSS

AAAA

y

Meaning

A code segment number

A code word address

A code syllable number

A blank space 1

DDDDDDDD A sequence number (present only if the compiler control
option LINEINFO was TRUE during program compilation)

One of these entries is generated for each activation record in the stack when the fault
is encountered. Each entry is followed by a comma (,), and the last complete entry
is terminated by a period(.). Ifthe user-specified array is sufficiently long, the entire
stack history is stored. If it is not long enough, then only a portion of the stack history
is stored, with the last complete entry in the array terminated by a period. The code
segment number field, SSS, is expanded to four characters, SSSS, for segment numbers
greater than 4095; that is, for segment numbers whose hexadecimal representation
requires four characters.

The array row or pointer expression that makes up the fault stack history and the
variable that makes up the fault number are evaluated once when the ON statement is

8600 0098-000

Statements

executed, and not at the time the fault occurs. Thus, in the following ON statement,
array row A[I, *] is determined by the value of I at the execution of the ON statement
and not when a ZERODIVIDE fault actually occurs. This determination is also true for
the variables B[J] and J.

ON ZERODIVIDE[A[l,*]:B[J]]: GO TO ERROR HANDLING

Fault Action

<fault action>

-<statement.;;>-----------------------1

The form of the ON statement that includes a comma, instead of a colon (:), before the
fault action is the implicit call form. With this form of ON statement, when a specified
fault occurs, the program calls the fault action statement as a procedure. If the fault
action statement does a bad GO TO, the fault condition is discarded and the program
continues running.

When a bad GO TO branches to a label outside the block in which the fault occurred, the
block is terminated. When it branches out of the fault action statement into the block in
which the fault occurred, the block continues to run.

If the fault action statement exits without doing a bad GO TO, the fault condition for
which the fault action statement was called still exists. If an ON statement is enabled
for that condition in a more global block, then control is passed to that ON statement;
otherwise, the program is discontinued as a result of that fault.

A GO TO statement cannot be executed from outside the fault action statement to
a label inside the fault action statement. Undefined results occur when a GO TO
statement specifies a label passed as a parameter (a formal label).

The form of the ON statement that includes a colon, instead of a comma, before the
fault action is the implicit branch form of the ON statement. With this form of ON
statement, the program branches to the statement given as the fault action when a
specified fault occurs. The fault condition is discarded, as though it had never happened,
and the program continues execution at the first statement of the fault action. When
there is no branch out of the fault action statement, the program fl.ow continues with the
next statement following it. When the ON statement is in the block in which the fault
occurred, it permits that block to continue to run.

Disabling ON Statement

<disabling on statement>

- ON -<fault l ist>------------------------1

The disabling ON statement disables or disarms the interrupts corresponding to the
fault names in the fault list. This has the same effect as if none of those interrupts
had been enabled in the block in which it appears. It has no effect, however, on any

8600 0098-000 4-77

Statements

interrupts that were enabled by ON statements in more global blocks, once this block is
exited.

Note: Excessive arming and disarming of faults within a single activation
of the block can cause the stack limit of the program to be exceeded
and the program to be terminated.

Examples of ON Statement

4-78

In the following example, if either a divide-by-zero fault or an invalid index fault occurs
at run time, the fault condition is discarded and control transfers to the compound
statement in this ON statement. The stack history information is written to the
array row FAULTARRAY, and the fault number of the fault that occurred is stored in
FAULTNO.

ON ZERODIVIDE OR INVALIDINDEX [FAULTARRAY:FAULTNO]:
BEGIN
REPLACE FAULTARRAY[8] BY FAULTNO FOR * DIGITS;
WRITE(LINE, 22, FAULTARRAY);
REPLACE FAULTARRAY BY 11 11 FOR 22 WORDS;
CASE FAULTNO OF

BEGIN
1: DIVISOR := 1;
4: INDEX := 100;
END;

GO BACK;
END

In the following example, if either of the specified faults occurs at run time, the fault
condition is discarded and control is transferred to the assignment statement in the ON
statement. After execution of the assignment statement, execution continues with the
statement following the ON statement.

ON MEMORYPROTECT OR LOOP: Q := 2

The following example disables the interrupt associated with the exponent underflow
fault.

ON EXPONENTUNDERFLOW % Disabling ON Statement

In the following example, if any fault occurs, the statement HANDLEF AULTS(Z) is
called as a procedure. The stack history information is written to the location indicated
by the pointer expression POINTR + 2, and the fault number of the fault that occurred
is stored in Z.

ON ANYFAULT [POINTR + 2:Z], HANDLEFAULTS(Z)

8600 0098-000

OPEN Statement
The OPEN statement causes the referenced file or subfile to be opened.

<open statement>

- OPEN - (-<open file part>
~open options~

<open file part>

-cfile designator>
L_ [- SUBFILE -<subfile index>--]

task designator>-- • -<file-valued task attribute name~

Statements

The OPEN statement can be used as an arithmetic function. For information on the
values returned, see the A Series File Attributes Programming Reference Manual.

The subfile index specifies the subfile to be opened. For more information on the subfile
index, see "CLOSE Statement" earlier in this section. For more information on the file
designator, see "SWITCH FILE Declaration" in Section 3, "Declarations." For more
information on the task designator, see "TASK and TASK ARRAY Declarations" in
Section 3, "Declarations."

OPEN Options

<open options>

L • -<open control option:>:J L • -<associateddata option:>:J

~~L~.--<~c-o-n-ne_c_t_t-im_e_l-im_i_t_o_p_t-io_n_:>:J~~~~~~~~~~~~~--1

<open control option>

1 ~~~~~~8LE AVAILATEND
DON TWAIT
OFFER
WAIT----'

If no open control option is specified, the WAIT option is assumed. Any control option
can be used with any type of file. However, DONTW AIT and OFFER are meaningful
only for port files. For other kinds of files, DONTW AIT and OFFER are ignored and
an OPEN with WAIT is performed. With the open control options, the default for the
position parameter is ATFRONT. For the control options WAIT and AVAILABLE, the
position parameter can be set to ATEND by using the ATEND option for WAIT and the
AV AILATEND option for AVAILABLE.

The ASSOCIATEDDATA option and CONNECTTIMELIMIT option are meaningful
only for port files. The ASSOCIATEDDATA option can be used to send associated data
with the OPEN request. If a string expression is specified, the length is automatically

8600 0098-000 4-79

Statements

calculated and used as the ASSOCIATEDDATALENGTH value. Otherwise, the
ASSOCIATEDDATALENGTH option specifies the number of characters to be sent.
If the ASSOCIATEDDATA value is of type HEX, the ASSOCIATEDDATALENGTH
option indicates the number of HEX characters, otherwise the number of EBCDIC
characters. If the ASSOCIATEDDATALENGTH value is not a single-precision
integer, it is integerized. The ASSOCIATEDDATA option is valid only for certain
port file services. For more information on the ASSOCIATEDDATA option and
CONNECTTIMELIMIT option, see "CLOSE Statement" earlier in this section.

The CONNECTTIMELIMIT option can be used to specify the maximum amount of time
(in minutes) that the system will allow for a successful OPEN operation on the subfile.
The default value for this option is to wait indefinitely. If the value specified is negative,
an error result is returned. A value of zero indicates that no time limit is placed on the
wait. If the value is not a single-precision integer, it is integerized.

Examples of OPEN Statement

4-80

The following example opens file FILEID. Execution of the program is suspended until
FILEID is open.

OPEN (Fl LEID)

The following example opens subfile I of port file FILEID and offers it for matching.
Control is returned to the program when it is determined whether the host can be
reached.

OPEN(FILEID[SUBFILE !],OFFER)

The following example opens subfile I of port file FILEID and a dialog request is sent.
The program is suspended until dialog establishment is complete.

OPEN(FILEID[SUBFILE l],WAIT)

The following example opens subfile I of port file FILEID. The AVAILABLE control
option is a nonpreferred way of verifying OPEN WAIT with AV AILABLEONLY
= TRUE. When AV AILABLEONLY = TRUE, the OPEN attempt fails if the
correspondent endpoint cannot be reached immediately. If dialog can currently be
established, the subfile is opened, the result returned by the OPEN statement is 1, and
PROCESSOPEN is called; otherwise, an error result is returned and PROCESSOPEN is
not called.

IF OPEN(FILEID[SUBFILE !],AVAILABLE)= 1 THEN PROCESSOPEN

The following example opens subfile 1 of port file FILEID. The program is suspended
until a dialog is established or until T minutes have elapsed.

OPEN (FILEID [SUBFILE 1], WAIT, CONNECTTIMELIMIT = T)

The following example opens subfile 1 of port file FILEID. When the dialog request is
sent, the information "MYDATA" is sent to the correspondent process as associated data.

8600 0098-000

Statements

OPEN (FILEID [SUBFILE 1], ASSOCIATEDDATA = "MYDATA")

The following example opens subfile I of port file FILEID. Control returns to the
program as soon as the open process has begun, because the DONTW AIT option
is included. When a matching subfile is found, 14 characters of information are
taken, beginning at the location pointed to by PTR; the 14 characters are sent to the
correspondent process as associated data.

OPEN (FILEID [SUBFILE I], DONTWAIT, ASSOCIATEDDATALENGTH = 14,
ASSOCIATEDDATA = PTR)

POINTER Statement
Pointer statements are used to examine, transfer, and edit character data stored in
arrays.

<pointer statement>

1<replace statement
<replace family-change statement~-----<
<replace pointer-valued attribute statement
<scan statement>-------------'

POINTER Statement Options

The REPLACE statement can be used to move character data into an array row. Within
a single REPLACE statement, the character data to be moved can be taken from
several sources. Each of these sources can be one of several different types. A source
can be another array row, a string literal, the value of an arithmetic expression, the
value of a string expression, or the value of a pointer-valued attribute. Furthermore,
as the character data is moved from a source to the destination, the characters can be
translated or edited. Also, an arithmetic expression source can be treated as a binary
value and converted into the equivalent decimal number expressed as a string of numeric
characters.

The REPLACE FAMILY-CHANGE statement is the language construct provided to add
datacomm stations to or remove datacomm stations from a family of stations.

The REPLACE POINTER-VALUED ATTRIBUTE statement is the language construct
provided to assign character data to pointer-valued file and task attributes.

The SCAN statement can be used to examine character data located in an array row.

POINTER statements process character data from left to right.

Temporary Storage

Many of the operations performed by POINTER statements require the use of
temporary storage for intermediate results. In describing the actions of a POINTER
statement, a discussion of how this temporary storage is initialized, changed, and

8600 0098-000 4-81

Statements

disposed of is necessary. These discussions use the following names for these temporary
storage locations:

• Stack-source-pointer

• Stack-destination-pointer

• Stack-auxiliary-pointer

• Stack-integer-counter

• Stack-test-character

• Stack-source-operand

The prefix, stack, denotes that none of these parameters correspond to any program
variables. They exist only until execution of the POINTER statement is completed.

The stack-source-pointer, the stack-destination-pointer, and the stack-auxiliary-pointer
have the same internal structure as a pointer variable that can be declared in a program.
These temporary storage locations are initialized either from pointer expressions in the
pointer statement or from previous corresponding temporary storage locations.

Stack-Source-Pointer

The initial value of the stack-source-pointer points to the first source character to be
used by the associated operation. As the execution of the instruction progresses, the
stack-source-pointer is modified to point to each successive source character. When the
operation is complete, the stack-source-pointer points to the first unprocessed character
in the source data (the process is determined by the particular form of the POINTER
statement). This final value can be stored into a pointer variable, or it can be discarded.

Stack-Destination-Pointer

The initial value of the stack-destination-pointer points to the first destination
character position to be used by the associated operation. As the execution of the
operation progresses, the stack-destination-pointer is modified to point to each
successive destination character position. When the operation is complete, the
stack-destination-pointer points to the first unfilled character position in the destination.
If more than one source is to be processed, the stack-destination-pointer value
corresponding to the completed processing of one element in the source list is used as the
initial value for the subsequent source. If no more sources are to be processed, this final
value can be stored into a pointer variable, or it can be discarded.

Stack-Auxiliary-Pointer

4-82

The initial value of the stack-auxiliary-pointer points to the first entry in a table of data
to be used by the operation in its execution. This table can be a translate table if the
operation to be performed is extracting characters from the source data, translating the
characters to different characters (possibly containing a different number of bits per
character), and storing the translated characters in the destination. This table can be
a truth set describing a particular set of characters if the operation to be performed

8600 0098-000

Statements

requires a membership test. Finally, this table can be a picture: a table that contains
instructions of a special type describing how the source data is to be edited before being
stored in the destination.

Stack-Integer-Counter

The stack-integer-counter, when required by a POINTER statement, is initialized
by an arithmetic expression supplied in the POINTER statement. The value of this
arithmetic expression is integerized before it is used. The stack-integer-counter has
different meanings depending on the type of POINTER statement involved. In some
cases, the number of characters in a source string to be processed is dictated solely by
this parameter. The number of numeric characters to be placed in the destination while
converting the value of an arithmetic expression to character form is also dictated by the
stack-integer-counter.

In some forms of the POINTER statement, two controlling factors exist that dictate how
many characters are to be processed from a source string. One factor depends on the
source data and is called a condition. The other factor is a maximum count contained in
the stack-integer-counter and is provided by an arithmetic expression in the POINTER
statement. For example, with such a POINTER statement, the following instructions
could be written: Translate characters from the source string to the destination until
either 14 characters have been transferred or a period is encountered in the source
string, whichever comes first. The final value of the stack-integer-counter is available for
storage, or it is discarded.

Stack-Test-Character

The stack-test-character is initialized by an arithmetic expression usually, but
not necessarily, of the form of a single-character string, such as B. Although the
stack-test-character parameter is one entire word of memory that contains the
single-precision value of the arithmetic expression, only the rightmost character position
of the word is used. When a condition employing a relational operator is used in a
POINTER statement, the stack-test-character must contain the character against which
the individual characters in the source string are to be compared.

Stack-Source-Operand

The stack-source-operand is used when the source data is given by the value of an
arithmetic expression rather than a value located in an array row into which the
stack-source-pointer points. The stack-source-operand is initialized by the arithmetic
expression.

PROCEDURE INVOCATION Statement
A procedure invocation statement causes a previously declared procedure to be executed
as a subroutine.

8600 0098-000 4-83

Statements

<procedure invocation statement>

-<procedure i denti fi er> [
<actual parameter part~

<actual parameter part>

_[--C::::<parameter delimiter>J
- (actual parameter>>------'-

When a procedure is invoked, program control is transferred from the point of the
PROCEDURE INVOCATION statement to the referenced procedure. When the
procedure is completed, program control is transferred back to the statement following
the PROCEDURE INVOCATION statement, unless a bad GO TO is executed in the
referenced procedure. Bad GO TO statements are described in "GO TO Statement"
earlier in this section.

A typed procedure returns a value. However, when a typed procedure is used in a
PROCEDURE INVOCATION statement, this value is discarded.

Calling Procedures with Parameters

4-84

<actual parameter>

gnator>
ay designator
e i dent i fi er"'
tch file identifier"'
gnator
y designator

<expression
<array desi
<string arr
<direct fil
<direct swi
<event desi
<event arra
<file desig
<switch fi l
<format des
<switch for
<label iden
<switch lab
<list desig
<switch lis
picture id

<procedure
<procedure
<procedure
<task desig

nator"-
e identifier"-
ignator
mat identifier
tifier
el identifier>
nator"'
t identifier"'
entifier
identifier"-
reference array designator>-1
reference array element>---j
nator
desi nator <task array g

J
I

The actual parameter part of a procedure invocation statement must have the same
number of entries as the formal parameter list in the declaration of the procedure.
Correspondence between the actual parameters and formal parameters is obtained
by matching the parameters that occur in the same relative position in the two lists.
Corresponding formal and actual parameters must be of compatible types. Parameters
can be call-by-name or call-by-value.

For more information on procedures and formal parameters, refer to "PROCEDURE
Declaration" in Section 3, "Declarations."

8600 0098-000

Statements

If a formal parameter is a call-by-name INTEGER or REAL simple variable, then the
actual parameter can be either an INTEGER or a REAL expression; no type conversion
is performed. If a formal parameter is a call-by-value INTEGER, REAL, or DOUBLE
simple variable, then the actual parameter can be either an INTEGER, a REAL, or
a DOUBLE expression, and automatic type conversion is performed on the actual
parameter at the time the procedure is invoked.

If the formal parameter of a nonformal procedure is a simple variable of type
COMPLEX, then the corresponding actual parameter can be of type INTEGER, REAL,
DOUBLE, or COMPLEX. However, if the COMPLEX formal parameter is call-by-name
and the corresponding actual parameter is not of type COMPLEX, an assignment to that
formal parameter within the procedure body causes the program to be discontinued with
a fault.

The types of actual and formal parameters must match exactly for all cases not
mentioned above. For more information, see "Type Coercion of One-Word and
Two-Word Operands" in Appendix C, "Data Representation."

Examples of PROCEDURE INVOCATION Statement

The following example invokes the procedure SIMPL, which has no parameters.

SIMPL

The following example invokes the procedure HEAVY and passes it four parameters: X,
Y, the array row A[*], and the expression SQRT(BINGO +BASE).

HEAVY(X,Y,A[*],SQRT(BINGO+BASE))

PROCEDURE REFERENCE ARRAY Statement
A PROCEDURE REFERENCE ARRAY statement causes the procedure referenced
by the specified procedure reference array element to be executed as a procedure
invocation.

<procedure reference array statement>

-<procedure reference array element>
'-<actual parameter part:.-1

Using Procedure Reference Arrays

If the procedure reference array element has not been assigned a procedure reference in
a procedure reference array assignment, the program is terminated with the message
INVALID STACK ARGUMENT.

When a typed procedure reference array is used in a PROCEDURE REFERENCE
ARRAY statement, the value returned by the procedure reference array element is
discarded.

8600 0098-000 4-85

Statements

The actual parameter part of a PROCEDURE REFERENCE ARRAY statement must
have the same number of entries as the formal parameter list in the declaration of the
procedure reference array. The formal and actual parameters are compared in the
manner in which the formal and actual parameters are compared in a PROCEDURE
INVOCATION statement. For more information on formal parameters and procedure
reference array elements, see "PROCEDURE REFERENCE ARRAY Declaration" in
Section 3, "Declarations."

Invoking a procedure through a procedure reference array element in a PROCEDURE
REFERENCE ARRAY statement is equivalent to invoking the procedure directly in a
PROCEDURE INVOCATION statement. For more information, see "PROCEDURE
INVOCATION Statement" earlier in this section.

Example of PROCEDURE REFERENCE ARRAY Statement

4-86

The following example assigns a reference to procedure SW APP ER into the first element
of procedure reference array PROCARRAY and then invokes SWAPPER through
PROCARRAY.

BEGIN

REAL
SORTl,
SORT2;

PROCEDURE REFERENCE ARRAY PROCARRAY[0:9] (A,B);
REAL A,B;
NULL;

PROCEDURE SWAPPER(X,Y);

BEGIN
X ·=· Y;
END;

REAL X, Y;

PROCARRAY[0] := SWAPPER;
READ(MYFILE,*,SORT1,SORT2);
IF SORT2 > SORTl THEN

PROCARRAY[0] (SORT1,SORT2);
END.

8600 0098-000

Statements

PROCESS Statement
The PROCESS statement initiates a procedure as an asynchronous process.

<process statement>

- PROCESS -<procedure i denti fi er>·~---------~--
c=<actua l parameter part:>:J

~- [-<task designator>-]

Initiation of an Asynchronous Process

Initiation of an asynchronous process consists of setting up a separate stack for the
process, passing any parameters (call-by-name or call-by-value), and beginning the
execution of the procedure. The initiating program continues execution, and both the
initiating program and the initiated procedure run in parallel.

The specified procedure cannot be a typed procedure.

If the procedure identifier is a system supplied process, such as an intrinsic, the library
GENERALSUPPORT must be declared using a library entry point specification. The
procedure identifier must be declared in the program or the syntax error PROCEDURE
MUST BE USER DECLARED results.

The actual parameter part must agree in number and type with the formal parameter
part in the declaration of the procedure; otherwise, a run-time error occurs.

The task designator associates a task with the process at initiation; the values
of the task attributes of that task, such as COREESTIMATE, STACKSIZE, and
DECLARED PRIORITY, can be used to control execution of the process. For information
about assigning values to task attributes, refer to "Task Assignment," <arithmetic
task attribute> under "Arithmetic Assignment," and <Boolean task attribute> under
"Boolean Assignment" earlier in this section. Many task attributes can be interrogated
while the process is running.

Critical Block

An asynchronous process depends on its initiator for global variables and call-by-name
actual parameters. Thus, for each process, a critical block is present in the initiator that
cannot be exited until the process is terminated. The critical block is the block of highest
lexical level that contains one or more of the following items:

• The declaration of the procedure itself

• The declarations of the actual parameters passed to the call-by-name formal
parameters

• The declaration of the task designator

• Any compiler-generated code for evaluating arithmetic expressions passed to
call-by-name parameters

8600 0098-000 4-87

Statements

The critical block can be the block that contains the PROCESS statement, the outer
block of the program, or a block in between. An attempt by the initiator to exit the
critical block before the process is terminated causes the initiator and all tasks it has
initiated through CALL or PROCESS statements to be terminated.

A process is terminated by exiting its own outermost block or by execution in the
initiator of the following statement where the task designator specifies the task
associated with the process to be terminated:

<task designator>.STATUS := VALUE(TERMINATED)

Note: A processed procedure must not declare an OWN array or reference
another procedure that declares an OWN array. An attempt to do so
results in a run-time error. A string expression cannot be passed as
an actual parameter to a call-by-name parameter of a procedure in a
PROCESS statement.

Examples of PROCESS Statement

In the following example, the procedure AGENT, which has no parameters, is invoked as
an asynchronous process. The task TSK is associated with the process.

PROCESS AGENT [TSK]

In the following example, the procedure ACHILD is invoked as an asynchronous process
and passed the three parameters OUTARRAY, YOUREVENT[INDX], and COUNT. The
task designated by TSKARAY[INDX] is associated with the process.

PROCESS ACHILD(OUTARRAY,YOUREVENT[INDX],COUNT) [TSKARAY[INDX]]

PROCURE Statement
The PROCURE statement tests the available state of an event.

<procure statement>

- PROCURE - (-<event designator>-) --------------1

Testing the Available State

4-88

If the available state of the event is FALSE (not available), the program is suspended
and put in the procure list until some other task executes the LIBERATE statement for
that event. If the available state of the event is TRUE (available), the available state is
set to FALSE (not available), and the program continues execution with the statement
following the PROCURE statement.

8600 0098-000

Statements

Sharing Resources Among Programs

The PROCURE statement provides a means for different programs to share resources.
For example, a convention could be established that a certain shared resource that is
available for use by more than one program is not to be used by a program unless that
program has procured the event that is used as the interlock. When the program has
completed its use of the resource, it should execute a LIBERATE statement on the
event.

Examples of PROCURE Statement

In the following example, if the available state ofEVNT is TRUE (available), EVNT is
procured by setting its available state to FALSE (not available). Otherwise, the program
is suspended until EVNT is made available.

PROCURE (EVNT)

In the following example, if the available state of the event designated by
EVNTARAY[INDX] is TRUE (available), then that event is procured by setting its
available state to FALSE (not available). Otherwise, the program is suspended until the
event designated by EVNTARAY[INDX] is made available.

PROCURE(EVNTARAY[INDX])

PROGRAMDUMP Statement
The PROGRAMDUMP statement can be used to generate a program dump. After the
dump is taken, the program continues and executes the next statement.

A program dump is an expanded listing of the internal stack as it existed when the dump
was requested. Several options are available to specify which items of the stack are to be
included in the dump.

<programdump statement>

- PROGRAMDUMP -,------------------.------1

[(~programdump ~ption) J
arithmetic expression
programdump destination

The information produced by the PROGRAMDUMP statement is written to the
file specified by the TASKFILE task attribute of the program, unless the TODISK
destination option is specified. See the discussion of the TO DISK destination option
later in this section.

8600 0098-000 4-89

Statements

PROGRAMDUMP Options

4-90

<programdump option>

y
vs

ARRA
ARRA
PRES
PRES
BASE
CODE
DBS
FILE
FILE
LIBRA
PRIV

ENTARRAY ----1
ENTARRAYS -

s
RIES

ATELIBRARIES --1
ALL

J
·1

The information included in the dump depends on the options specified. If no program
dump options are specified, the stack is dumped according to the specifications in the
task attribute OPTION of the program. The following table describes the results of
specifying each program dump option:

Option

ARRAY or ARRAYS

PRESENTARRAY or
PRESENTARRAYS

BASE

CODE

DBS

FILE or FILES

LIBRARIES

PRIVATELIBRARIES

ALL

Result

Causes the contents of all arrays declared in the program to be
dumped.

Causes only the arrays in the present state (at the time the program
dump is taken) to be dumped. If the ARRAY or ARRAYS program
dump option is set along with the PRESENTARRAY or
PRESENTARRAYS program dump option, all arrays will be dumped.

Causes the base of the stack to be dumped. The operating system
uses a portion of each stack to contain various words needed to
control, identify, and log the program. If the TODISK option is also
specified, the base of the stack and the program information block
(PIB) are always dumped for any stack dumped.

Causes segment dictionary information to be included in the dump.
The actual code is dumped only for segments that have been
referenced by the program when the program dump occurs. Value
arrays in the segment dictionary are dumped when both the CODE
option and either the ARRAY or ARRAYS option are specified ..

Causes the output of database stacks to be dumped.

Causes information about each file declared in the program to be
dumped. For each file, each word of the file information block (FIB)
is separately named and, in some cases, analyzed.

Causes the stacks of all libraries that are being used by the program
to be dumped.

Causes the stacks of all private libraries that are being used by the
program to be dumped.

Equivalent to specifying all the other options. The ALL option has no
effect on the program dump destination. If the TODISK or
TOPRINTER destination options are needed, they must be explicitly
mentioned.

8600 0098-000

Statements

If the arithmetic expression option is used, the value in the arithmetic expression
corresponds to the bit values in the OPTION word. The value of the expression is
interpreted as follows:

Value Meaning

The base of the user stack is dumped.

Array contents are dumped.

The segment dictionary is dumped.

Files are dumped.

Present array contents are dumped.

Database stacks are dumped.

[7:1] = 1

[8:1] = 1

[9:1] = 1

[10:1] = 1

[11:1] = 1

[15:1] = 1

[19:1] = 1

[20:1] = 1

[23:1] = 1

[24:1] = 1

Stacks for libraries that the program is linked to are dumped.

Stacks for private libraries are dumped.

Destination of the dump is the printer.

Destination of the dump is the disk.

Programdump Destination Options

< programdump destination>

L i~~~i~T-ER-.------------------------1

When the TODISK option is specified and a program dump is taken, a disk file is
created in a format acceptable to DUMP ANALYZER. The listing normally produced by
PROGRAMDUMP is suppressed.

The program dump file name is as follows. The portion of the task name included in the
program dump file name is limited to eight nodes. The date format is YYMMDD, and the
time format is HHMMSS.

PDUMP/<task name>/<date>/<time>/<mix number>

In a program dump to disk, the base of the stack and the PIB are always dumped. All
other program dump option settings work the way they work in a dump to the printer.

If the TO DISK option and the TO PRINTER option are set, a program dump to the
printer is taken after the disk file program dump has been produced. The two dumps
might not be identical because the dump to disk has some side effects that might change
the contents of memory.

The current destination option can be overridden by either destination option.

The default destination option is TOPRINTER.

8600 0098-000 4-91

Statements

Relation to OPTION Task Attribute

Options specified in the PROGRAMDUMP statement apply only to the program dump
taken at that time and temporarily override the values specified in the OPTION word of
the program. The bits of the OPTION word are set with the OPTION task attribute for
the program. Refer to the A Series Task Attributes Programming Reference Manual for
information about the OPTION task attribute.

A program dump taken with the PROGRAMDUMP statement has an advantage over a
program dump taken with the OPTION task attribute. A program dump can be taken
with the OPTION task attribute only upon a fault or discontinue condition. A program
dump taken with the PROGRAMDUMP statement can be taken at any time, and the
program can continue after the dump is taken. For example, the PROGRAMDUMP
statement might be useful as part of an ON statement, within an INTERRUPT
statement, or within a piece of newly developed code.

The PROGRAMDUMP statement displays identifier name and compiler class
information along with the stack variables when binding information (bindinfo) is
present in the code file. ALGOL generates binding information by default unless the
program is compiled with the compiler control option NOBINDINFO set to TRUE.

Retrieval of Binding Information

When the BEGINSEGMENT and ENDSEGMENT compiler control options are used, a
situation can occur where the binding information cannot be retrieved. This situation is
related to two factors:

• Two or more variables have the same address. Normally there is no conflict when
this happens because the addresses relate to different code segments.

• Procedures that are encountered between a BEGINSEGMENT and
ENDSEGMENT option are placed in the same code segment.

When these two conditions occur, and multiple variables have the same address within
the same code segment, the compiler cannot retrieve the binding information for those
variables.

Diagnostic and debugging information also can be written to the TASKFILE so that the
program dump and the information can be coordinated.

Examples of PROGRAMDUMP Statement

4-92

The following example analyzes and prints the program stack according to the value of
the OPTION task attribute of the program.

PROGRAMDUMP

The following example analyzes and prints the basic information plus the contents of all
arrays.

PROGRAMDUMP(ARRAYS)

8600 0098-000

Statements

The following example analyzes and prints the contents of arrays, value arrays, the base
of the stack, the segment dictionary, referenced code segments, and files.

PROGRAMDUMP(ARRAYS,BASE,CODE,FILE)

The following example analyzes the maximum amount of information about the program
stack. The program dump is written to the printer.

PROGRAMDUMP(ALL,TOPRINTER)

The following example analyzes and prints the program stack according to the value of
DUMPPARAM.

PROGRAMDUMP(DUMPPARAM)

The following example is equivalent to the statement PROGRAMDUMP(FILES). This
statement analyzes and prints the contents of files of the program.

PROGRAMDUMP(0 & 1 [10:1])

Analyzes the basic information plus the contents of all arrays and data base stacks. The
information is written to a disk file.

PROGRAMDUMP (ARRAYS,DBS,TODISK)

The following example analyzes the information specified in the OPTION word of the
program because no program dump option was specified in the statement. The dump is
written first to the disk file and then to the printer file.

PROGRAMDUMP (TODISK,TOPRINTER)

READ Statement
The READ statement allows data to be read from files and assigned to program
variables.

Note: The syntax of the READ statement and the syntax of the WRITE
statement are nearly identical. Differences in the semantics are
discussed following the syntax for each statement.

<read statement>

- READ - (-<file part>
~format and list part~

_____ ,

'-.-[-<-ac_t_i_on-l-ab_e_l_s_o_r_fi_n_i-sh_e_d_e_v_e-nt->J--.----------------1

The action of the READ statement depends on the form of the <file part> element and
on the form of the <format and list part> element.

The READ statement can be used as a Boolean function. When the read operation fails,
the value TRUE is returned. When the read operation succeeds, the value FALSE is

8600 0098-000 4-93

Statements

returned. The READ statement returns a value identical to that returned by the file
attribute STATE. For more information, refer to the discussion of the STATE attribute
in the A Series File Attributes Programming Reference Manual.

File Part

<file part>

L<file designator>
~<1/0 option or carriage control:.-i

<core-to-core part>-;>---------------~

The file part specifies the location of the data to be read.

The file designator specifies the file to be read. For more information on the file
designator, refer to "SWITCH FILE Declaration" in Section 3, "Declarations."

1/0 Option or Carriage Control

4-94

<1/0 option or carriage control>

- [--r---

LIN
SKI
SPA
STA
STA
TIM
NO
STO
SYN

E
p
CE-
CKER-
TION -
ELIMIT -

p
CHRONIZE

. h Lar1t met1c expression

file s ecification~ <sub p

l , - SYNCHRONIZE _,

~-] ---------------------------1

If the I/O option or carriage control element is not specified, the record currently
addressed by the record pointer is read, and the record pointer is adjusted to point to the
next record in the file.

If the I/O option or carriage control element is invalid for the physical file associated with
the file designator, it is ignored.

If the I/0 option or carriage control element is an arithmetic expression, its value
indicates the zero-relative record number of the record in the file that is to be read. The
record pointer is adjusted to point to the specified record before the read is performed,
and the record pointer is adjusted after the read operation to point to the next record.

Ifthe I/O option or carriage control element is NO, then the record pointer is not
adjusted following the read operation. That is, the record can be read again. This I/O
option or carriage control element has no effect if the KIND attribute of the file being
read is equal to REMOTE.

If the I/O option or carriage control element is of the form [SPACE <arithmetic
expression>], then the number of records specified by the value of the arithmetic

8600 0098-000

Statements

expression are skipped. Spacing is forward if the arithmetic expression has a positive
value and backward if the arithmetic expression has a negative value.

The [TIMELIMIT <arithmetic expression>] construct, which is meaningful only for
remote files, assigns the value of the arithmetic expression to the TIMELIMIT attribute
of the file. Refer to the A Series File Attributes Programming Reference Manual for
information on the TIMELIMIT attribute. The value of this attribute applies to all
subsequent READ and WRITE statements on that file. If the value of the TIMELIMIT
attribute is greater than zero and if no input is received within that number of seconds
(the value can be fractional), then a time-out error is reported.

The [STATION <arithmetic expression>] construct is meaningful only for remote
files. The value of the arithmetic expression is assigned to the LASTSUBFILE attribute
of the file. Refer to the A Series File Attributes Programming Reference Manual for
information on the LASTSUBFILE attribute.

The [SYNCHRONIZE] construct is meaningful for the WRITE statement only.

Subfile Specification

<subfile specification>

---r-<read subfile specification
~rite subfile specification

<read subfile specification>

_t/1\- DONTWAIT '.
--C;1\- SUBFILE [J <index;..J

<result>- :

<result>

-<arithmetic vari abl e>--------------------i

If the file to be read is a port file (a file for which the KIND attribute is equal to PORT),
an array row read containing a subfile specification must be used. For more.information,
refer to "Array Row Read" later in this section.

The subfile specification is meaningful only for port files. It is used to specify the subfile
to be used for the read operation and the type of read operation to be performed.

If the subfile index is used, the value of the subfile index is assigned to the
LASTSUBFILE attribute of the file. It specifies the subfile to be used for the read
operation. If the subfile index is zero, a nonselective read is performed. If the subfile
index is nonzero, then a read from the specified subfile is performed. The result
variable, if any, is assigned the resultant value of the LASTSUBFILE attribute. For
more information on the LASTSUBFILE attribute, refer to the A Series File Attributes
Programming Reference Manual.

If DONTW AIT is specified in a READ statement, and if no input is available, no data is
returned and the program is not suspended.

8600 0098-000 4-95

Statements

Core-to-Core Part

4-96

<core-to-core part>

-<core-to-core file part>
~core-to-core blocking part:.-J

<core-to-core file part>

array row>
pointer expression

<subscripted variab~
If the file part consists of a core-to-core part, then a core-to-core read is performed. A
core-to-core read operation reads from a location in memory, not from a physical device;
therefore, it is much faster than a physical read. Editing is performed exactly as it is
performed when reading from a physical device.

If the core-to-core file part is a hexadecimal, BCL, or EBCDIC array row or pointer,
then the default record siZe (the number of characters considered to be in the record)
depends on the character size of the array row or pointer and is determined by the
actual length of the designated.string.

The maximum size of the core-to-core file part for BCL and hexadecimal arrays is 65,535
words. Core-to-core I/0 on BCL and hexadecimal arrays longer than 65,535 words is
permitted only if the core-to-core file part is indexed far enough into the array such that
the length between that point and the end of the array does not exceed 65,535 words.
If an attempt is made to use an array or array segment more than 65,535 words long, a
run-time error occurs.

For single-precision and double-precision array rows or subscripted variables, the default
record size is computed by multiplying the length of the array row (or remaining length
of the array row when a subscripted variable is used) by the number of characters per
word, where characters per word is derived from the following table:

Default Character Type

BCL EBCDIC

Single Precision 8 6

Double Precision 16 12

8600 0098-000

Statements

Core-to-Core Blocking Part

<core-to-core blocking part>

- (-<core-to-core record size>) -j
L_ • -<core-to-core blocking~

<core-to-core record size>

-<arithmetic expressi on>----------------------1

<core-to-core blocking>

-<arithmetic expression;;>--------------------<

To specify a record size smaller than the default size, a value can be provided for
core-to-core record size. This value is in terms of characters. By supplying a value for
core-to-core blocking, the file can be blocked into more records than the default number,
which is one.

With formatted I/0, if the format requires more records than indicated by the
core-to-core blocking value, a run-time error is given. Also, the format can require
more characters than the core-to-core file part contains; this situation also results in a
run-time error. In such cases, the number of characters indicated in the core-to-core
blocking part (this number is computed by multiplying the core-to-core record size by
the core-to-core blocking) can appear to be large enough to satisfy the form.at, but the
core-to-core blocking part can indicate more characters than the core-to-core file part
actually contains. The core-to-core file part, the core-to-core blocking part, and the
form.at must be compatible or run-time errors occur.

For example, the following statements result in errors:

BEGIN
ARRAY A[0:9];
REAL B,C;
READ (A(80),<T50,A6,I10>,B.C);
WRITE(A(15,3),<X5,I15>,1,2,3);
WRITE(A(20,2),<X5,I15>,1,2,3);

% Example 1
% Example 2
% Example 3

B := II ITEM";
WRITE(A(15,4),<".",X2,A6,I2,X4>,B,1,B,2,B,3,B,4);

END.
% Example 4

The statement labeled "Example l" in the preceding program results in a run-time error
(format error 217), because the form.at requires 65 characters, but the file part (array A)
contains only 60 characters.

The statement labeled "Example 2" results in a run-time error (form.at error 117),
because the form.at requires 20-character records, but 15-character records were
specified in the blocking part.

The statement labeled "Example 3" results in a run-time error (format error 120),
because the three list elements require three repetitions of the format. Thus, three
records are required, but only two records were specified in the blocking part.

8600 0098-000 4-97

Statements

The statement labeled "Example 4" fills array A with the following EBCDIC data
("I" denotes the end of the data):

ITEM 1 ITEM 2 ITEM 3 ITEM 4

Format and List Part

<format and list part>

<format desi gnator>---.----------------,,-----1
, -<list>---------;

< -<editing specifications>-> ~---------1
, -<l i st>---1

* , -<l i St;;>----------;
<free-field part>_J

<list>

<subscripted variable
<pointer expression
<string variable,._---i
<string expression

~- ----i
<l i st ei ement>-1>--'-~-------------------1

<list designator~

<free-field part>

[* J [<number of col umns>J I [I J [<column wi dth>J

<number of columns>

- [-<arithmetic expression>-] ---------------1

<column width>

- [-<arithmetic expression>-] ---------------;

The format and list part element indicates the interpretation of the data in the file and
the variables to which the data is assigned.

If the format and list part element does not appear, the input record is skipped.

Formatted Read

4-98

A READ statement that contains a format designator, editing specifications, or a
free-field part is called a formatted read.

A format designator without a list indicates that the referenced format contains a string
literal into whicP. corresponding characters of the input data are to be placed. The string
literal in the FORMAT declaration is replaced by the string literal in, the input data.

8600 0098-000

Statements

A format designator with a list indicates that the input data is to be edited according to
the specifications of the format and assigned to the variables of the list.

Editing specifications can appear in place of a format designator and have the same effect
as if they had been declared in a FORMAT declaration and had been referenced through
a format designator. For more information, refer to "FORMAT Declaration" in Section
3, "Declarations."

On any formatted I/0 statement (excluding core-to-core I/0), the number of
characters allowed in the record is determined solely by the value of the file attribute
MAXRECSIZE of the file. If the format requires more characters than are contained in
the record, a format error occurs at run time.

The free-field part is discussed under "Data Format for Free-field Input" later in this
section.

Binary Read

A READ statement of the following form is called a binary read:

READ(<file part>,*,<list>)

An asterisk (*) followed by a list specifies that the input data is to be processed as full
words and assigned to the elements of the list without being edited. The number of
words read is determined by the number of elements in the list or the maximum record
size, whichever is smaller.

When data is read into character arrays, only full words are read. If there is a partial
word left at the end of the data, it is ignored. For example, if A is an EBCDIC array and
FILEID contains the string 12345678, the following statement reads only the characters
123456:

READ(FILEID,*,A)

When a string is read into a string variable using a binary READ statement, the first
word read from the record is assumed to specify the length of the string. This word is
evaluated, and the resulting value is the number of characters read beginning with the
next word of the record. The binary WRITE statement automatically writes a word
of length information before the text of each string variable; therefore, the following
WRITE statement can later be read by the following READ statement:

WRITE(F,*,STR,STRARRAY[5] ,STR 11 "ABC")

READ(F,*,STR1,STR2,STRARRAY[0])

For more information, see "Binary Write" under "WRITE Statement" later in this
section.

The results are undefined for binary READ statements that attempt to read data not
containing length information into string variables.

8600 0098-000 4-99

Statements

Array Row Read

4-100

A READ statement of any of the following forms is called an array row read:

READ(<file part>,<arithmetic expression>,<array row>)
READ(<file part>,<arithmetic expression>,<subscripted variable>)
READ(<file part>,<arithmetic expression>,<pointer expression>)
READ(<file part>,<arithmetic expression>,<string variable>)

The first three forms of the array row read specify that input data is to be read without
editing and assigned left-justified to the array specified by the array row, subscripted
variable, or pointer expression. The arithmetic expression specifies the number of words
or the number of characters, depending on the value of the FRAMESIZE attribute
for the file, to be read. Refer to the A Series File Attributes Programming Reference
Manual for information on the FRAMESIZE attribute. The number of words or
characters actually read equals whichever of the following values is smallest:

• The MAXRECSIZE attribute of the file being read

• The length of the array row (or portion of the array to the right of where the pointer
expression points or to the right of the element specified by the subscripted variable)

• The absolute value of the arithmetic expression

A READ statement of the following form specifies that input data is to be read without
editing and assigned to the string variable:

READ (<file part>,<arithmetic expression>,<string variable>)

The number of characters read is the smaller of the value of the MAXRECSIZE attribute
of the file being read or of the absolute value of the arithmetic expression. The value of
the arithmetic expression always specifies the number of characters (not words) to be
read.

The following is an example of an array row read:

BEGIN
FI LE IN (TITLE="TEST.", UNITS=CHARACTERS, MAXRECSIZE=20);
STRING S 1 , S2;
READ(IN,15,Sl); % READS 15 CHARACTERS INTO Sl
READ(IN,50,S2); % READS 20 CHARACTERS INTO S2

END.

8600 0098-000

Action Labels or Finished Event

<action labels or finished event>

<parity error label> ~-----------1
<data error label>

<data error label> -----------i

~-] -------------------------~

<eof label>

-<designational expressi on>------------------i

<parity error label>

-<designational expressi on>------------------i

<data error label>

-<designational expressi on>------------------i

Statements

The action labels or finished event element provides a means of transferring control
from a READ statement, WRITE statement, or SP ACE statement when exception
conditions occur. A branch to the eoflabel takes place when an end-of-file condition
occurs. A branch to the parity error label takes place if an irrecoverable parity error is
encountered. A branch to the data error label takes place if a conflict exists between
the format and the data. If the appropriate label is not provided when an exception
condition occurs, the program is terminated.

The [< event designator>] syntax can be used only for direct I/0. The event is caused
when the I/0 operation is finished. For more information, refer to "Direct I/0" under
"I/0 Statement" earlier in this section.

Exception conditions occurring during a READ statement can also be handled without
the use of the action labels or finished event syntax. The READ statement can be
used as a Boolean function, and the value returned can be tested to determine if any
exception conditions exist. For more information, refer to the discussion of the STATE
attribute in the A Series File Attributes Programming Reference Manual. When
exception conditions are handled in this manner, the action labels or finished event
syntax cannot be used. The user assumes all responsibility for handling exception
conditions. Core-to-core I/O statements of the following forms cannot be used with the
action labels or finished event syntax and cannot be used as Boolean functions.

READ(<array row>,<arithmetic expression>,<array row>)
WRITE(<array row>,<arithmetic expression>,<array row>)

Attempting to do either results in a syntax error.

8600 0098-000 4-101

Statements

Data Format for Free-field Input

The use of a free-field part element in a READ statement allows input to be performed
with editing but without using editing specifications. The appropriate format is selected
automatically.

On input, only the simplest forms of the free-field part, a single slash(/) or double
slash(//), can be used. These formats allow input from records in the form of free-field
data records. A single slash indicates that data items are delimited by a comma; a double
slash indicates that data items are delimited by one or more blanks.

Free-field Data Format

4-102

The format of a free-field input data record is as follows:

~<field>:>-------~-------------------1
---------r=<explicit delimiter>=J

<field>

l unquoted stringi>------~<field del imiter»---------1
number,._ ________ __,
quoted string <commentary
hex string
1------t
*----~

<unquoted string>

Any string not containing an < explicit delimiter> .

<quoted string>

- <EBCDIC string> ---------------------t

<hex string>

- 4" -<hexadecimal string>- " -----------------i

<commentary>

Any string not containing an <explicit delimiter> .

<field delimiter>

-,---<explicit delimiter>
L<end-of-record>,._-~

<explicit delimiter>

Comma (,) for the single-slash forin or one or more blanks for the double-slash form. An
empty record is not considered an explicit delimiter.

8600 0098-000

Fields

Statements

<end-of-record>

The end of the input record.

Each record of free-field input data must be in the form described above.

Empty records are ignored. The commentary option is ignored.

Each field except the slash is associated with the list element to which it corresponds by
position.

The single-slash format interprets a field that contains only a comma or a comma
preceded by blanks as a null field. Such a field is skipped along with its associated list
element, which is left unaltered.

The different types of fields are described in the following paragraphs.

Unquoted String

Number

If an unquoted string is read into a list element of type string or pointer, all characters
preceding the explicit delimiter (including quotation marks if present) are transferred to
the list element. The end-of-record is not recognized as a delimiter.

If an unquoted string is read into a list element of type string, characters are read until
an explicit delimiter is detected or until the maximum string length (2**5 - 2) is reached.

If an unquoted string is read into a list element of type pointer, characters are read until
an explicit delimiter is detected or until the end of the array is reached.

If an unquoted string is read into a list element of type Boolean, the value TRUE is
assigned to the list element if the first character of the string is T. If the first character is
not the letter T, the value FALSE is assigned to the list element. The unquoted string is
read until a field delimiter is detected.

If an unquoted string is read into a list element of any type other than string, pointer, or
Boolean, it is treated as commentary.

A number that is represented as an integer is treated as type INTEGER unless it is
larger than the largest allowable integer, in which case it is treated as type REAL.
Numbers that contain a decimal fraction are treated as type REAL. However, when the
list element is double precision, results are treated as type DOUBLE. When the field
delimiter is a comma, blanks within numbers are ignored.

Complex values are divided into real and imaginary values. When a complex variable
or complex subscripted variable appears in the list of a free-field READ statement,

8600 0098-000 4-103

Statements

two fields are necessary to complete the read operation. The value in the first field is
assigned to the real part, and the value in the second field is assigned to the imaginary
part.

Quoted String

Hex String

A quoted string of any length can be read into single-precision or double-precision list
elements. Each single-precision EBCDIC or BCL list element receives six characters or
eight characters, respectively (12 or 16 characters, respectively, for double-precision list
elements), until either the list or the string is exhausted. If the number of characters
in the string is not a multiple of six (for EBCDIC) or eight (for BCL), then the last list
element receives the remaining characters of the string. The string characters are
stored, right-justified, in the list elements.

A hexadecimal string can be read into a single-precision or double-precision list element.
If fewer than 12 hexadecimal digits are read into a single-precision variable (or fewer
than 24 hexadecimal digits into a double-precision variable), the string is stored
right-justified in the variable. If a minus sign precedes the string (for example, -4"A"),

· bit 46 of the resulting value is complemented.

Slash(/)

The slash field causes the remainder of the current buffer to be ignored. The buff er
following the slash is considered the beginning of a new field. The slash is a field by itself
and must not be placed ·within another field or between a field and its explicit delimiter.

Asterisk (*)

The asterisk field terminates the READ statement. The program continues with the
statement following the READ statement. The list element corresponding to the
asterisk remains unchanged, as do any subsequent elements in the list.

Examples of Fields

1,

2.5, / anything to the right of a slash is ignored

2.48@ -20, / blanks are ignored if using single-slash editing

3 4 / two data elements if the delimiter is a blank

3,4, / two data elements if the delimiter is a comma

"THIS IS A QUOTED SfRING"

4-104 8600 0098-000

THIS IS AN UNQUOTED STRING AND THE DELIMITER IS A COMMA, 123

THIS-IS-AN-UNQUOTED-STRING-AND-THE-DELIMITER-IS-A-BLANK 456

2.5 ANY COMMENT OR NOTE NOT CONTAINING A COMMA,

4"AB" I A HEX STRING

-4"40000000000A" / BIT 46 IS COMPLEMENTED, THE RESULT = +10

,,, /null fields; the three corresponding list elements are
/ skipped with no alteration to their contents.

4, ,5 /null field is ignored

* THIS DATA RECORD TERMINATES THE READ STATEMENT

8600 0098-000

Statements

4-105

Statements

Examples of READ Statement

4-106

READ(FILEID)

READ(FILEID,FMT)

READ(FILEID,FMT,LISTID)

READ(FILEID,*,LISTID)

READ(SPOFILE,FMT,A,B,C)

READ(SPOFILE,/,SIZE,LENGTH,MASS)

READ(FILEID,FMT,7,2,A,B,C,ARAY[A],B+C,F)

READ(FILEID,/,J,FOR I := 0 STEP 1 UNTIL J DO ARRY[I])

READ(FILEID,*,A,B,C,FOR A := B*A STEP C UNTIL J DO ARY[!])

READ(SWFILEID[IF X > N THEN X+N ELSE 0],25,ARRY[2,*])

READ(FILEID,/,SWLISTID[I])

READ(FILEID,FMT,SWLISTID[I])

READ(SPOFILE,SWFMT[16],A,B,C)

READ(FILEID,50,STR)

READ (FI LEID,/, L,M, N ,ARRY [2]) [EOFL]

READ(FILEID[3] [NO]) [:PARL]

READ (SWFI LEID [14] [NO] , FMT ,A+EXP (B) ,ARRY [I ,J, *]) [: PARSWL[M]]

READ (FI LEID [NO] ,SWFMT [6+J] , LISTID) [EOFSWL [Q*3] : : DATAERRORL]

READ (SW FI LEID [A+B], * ,SWLISTID[2+H/K]) [EOFL: PARL]

READ(FILEID[NO]) [EOFSWL[I]:PARSWL[J]]

READ(FYLE) [EOFL:PARL:DATAERRL]

READ (DIRFYLE) [EVNT]

READ(DIRFYLE,30,DIRARAY) [EVNT]

8600 0098-000

Statements

REMOVEFILE Statement
The REMOVEFILE statement removes files without opening them.

< removefile statement>

- REMOVEFILE - (-<directory element>-) ------------i

Directory Element

The syntax and semantics of the directory element appear under "CHANGEFILE
Statement" earlier in this section.

If the directory element is a directory name, all files in that directory are removed. If the
directory element is both a file name and a directory name, that file and all files in the
directory are removed.

A directory element of the form <file name> I= removes only files in that directory. It
does not remove a file named <file name>.

If a pointer expression is used as a directory. element, it must point to an array that
contains the name of the file or directory to be removed.

REMOVEFILE Statement as a Boolean Function

The REMOVEFILE statement can be used as a Boolean function, in which case it
returns a value of TRUE if an error occurs. The value in field [39:20] of the result
defines the failure as follows:

Value

10

30

Family Substitution

Meaning

File name or directory name is in error.

Files have not been removed.

Family substitution is used if the task has an active family specification and the family
name involved in the REMOVEFILE statement is the target family name that the
FAMILY specification substitutes.

If a family substitution specification is in effect, the REMOVEFILE statement affects
only the substitute family, not the alternate family.

Example of REMOVEFILE Statement

The following statement removes the file MYTEST and, if the remove is successful,
assigns FALSE to the variable BOOL.

BOOL := REMOVEFILE("MYTEST ON PACKFOUR. ")

8600 0098-000 4-107

Statements

REPLACE Statement
The REPLACE statement causes character data from one or more sources to be stored
in a designated portion of an array row.

<replace statement>

- REPLACE -<destination>- BY -<source part list>---------t

<destination>

<pointer expression;;>------------<
L_<update pointer~

<update pointer>

-<pointer variable>-

The REPLACE statement stores character data from one or more data sources into
a designated portion of an array row. The array row and the starting character
position within the array row are both determined by the pointer expression
part of the destination syntax. The value of this pointer expression initializes the
stack-destination-pointer. As each character is moved into the destination array row, the
stack-destination-pointer is correspondingly incremented one character position. When
the last character has been stored in the destination array row, the corresponding final
value of the stack-destination-pointer is stored in the pointer variable of the update
pointer, if specified; otherwise, it is discarded. For more information on temporary
storage locations, see "POINTER statement" earlier in this section.

Source Part List

4-108

<source part list>

<source part>

string literal

<arithmeti_c exp

<di git convert

~

L<unit count"
ression

~unit count>-1
part~

t part.,,
sfer part"·

numeric conver
<source>-<tran
<translate part
<pointer-valued
<string express n

attribute
i 0 ,.,.

<unit count>

- FOR -<arithmetic expression> [WORDS J

_J
·1

8600 0098-000

<digit convert part>

-<arithmetic expression>-- FOR L<:rithmetic expression>

~---,- DIGITS
L SDIGITS

<numeric convert part>

--<arithmetic expression>-- FOR L<;ount part>--r- NUMERIC

<count part>

L_<residual count:.-1
<arithmetic expression.,_ _________ __,

<residual count>

-<simple variable>--

<source>

<pointer expression>----------------1
L_<update pointer:.-1

<transfer part>

L<unit count>
~WITH -<picture identifier>:j

<scan part>>---------'

<scan part>

-~--------~<condition>---------------j
C:. FOR -<count part>~

<condition>

--,- WHILE --,--,---<relational operator>--<arithmetic expression>
L UNTIL _J LIN -<truth set table>;>----------~

<truth set table> 1<subscripted variable'
truth set identifier>
ALPHA ---------<
ALPHA6 ------1
ALPHA? _____ __,
ALPHAS --------'

<translate part>

J
I

-<source>-- FOR -<arithmetic expression>-- WITH -<translate table>--4

8600 0098-000

Statements

4-109

Statements

4-110

<translate table>

t subscripted variable>
translate table identifie~

<intrinsic translate table

<intrinsic translate table>

ASCI ITOBCL ---...---------------------1
ASCI ITO EBCDIC
ASCIITOHEX
BCLTOASCII
BCL TO EBCDIC
BCLTOHEX
EBCDICTOASCII
EBCDICTOBCL
EBCDICTOHEX
HEXTOASCII
HEXTOBCL
HEXTOEBCDIC

The source part list consists of one or more source parts. Each source part specifies
source data and the processing to be performed on the data. All the data specified by a
single source part is processed by a single method, but the various source parts of the
source part list can specify a variety of processing methods.

With certain forms of the source part, provisions are made to store the final value of the
stack-source-pointer. With several source parts in a single REPLACE statement, several
final values for the stack-source-pointer arise. Corresponding to these final values
are values of the stack-destination-pointer. These latter values are not accessible to
the programmer but serve as the initial values of the stack-destination-pointer for the
processing of the next source part.

The syntactic construct < source> is the same construct encountered in the SCAN
statement. The source construct contains a pointer expression that initializes the
stack-source-pointer to a particular character position in an array row. The character
size associated with this pointer expression must be the same as that associated with the
pointer expression that initialized the stack-destination-pointer. If the update pointer
option for the source is present, the pointer variable specified by the update pointer is
assigned the final value of the stack-source-pointer for this source part.

The stack-source-pointer and the stack-destination-pointer can both reference the same
array during a REPLACE statement. However, if the stack-source-pointer references
a character position between the initial position of the stack-destination-pointer and
its current position, the result is undefined. For example, the following REPLACE
statement produces an undefined result:

REPLACE POINTER(A)+6 BY POINTER(A) FOR 12

On the other hand, the following REPLACE statement produces a well-defined result:

REPLACE POINTER(A) BY POINTER(A) FOR 12

8600 0098-000

Statements

Source Part Combinations

The form.al syntax of the source part can be reduced to the following combinations:

<string literal>
<string literal> FOR <arithmetic expression>

FOR <arithmetic expression> WORDS

<arithmetic expression>
<arithmetic expression> FOR <arithmetic expression>

FOR <arithmetic expression> WORDS
FOR <arithmetic expression> DIGITS
FOR * DIGITS
FOR <arithmetic expression> SDIGITS
FOR * SDIGITS
FOR <count part> NUMERIC
FOR * NUMERIC

<source> FOR <arithmetic expression>
FOR <arithmetic expression> WORDS
FOR <arithmetic expression> WITH <translate table>

<source> WITH <picture identifier>

<source> WHILE <relational operator> <arithmetic expression>
UNTIL <relational operator> <arithmetic expression>
WHILE IN <truth set table>
UNTIL IN <truth set table>

<source> FOR <count part> WHILE <relational operator>
<arithmetic express ion>

<source> FOR <count part> UNTIL <relational operator>
<arithmetic expression>

<source> FOR <count part> WHILE IN <truth set table>
FOR <count pa rt> UNTIL IN <truth set table>

<pointer-valued attribute>

<string expression>

Each of these combinations is discussed in turn in the sections that follow. In all
examples, P and Q are 8-bit pointers and the default character type is EBCDIC.

String Literal Source Parts

A string literal of 96 bits or less is a short string literal. A short string literal is evaluated
at compilation time and stored, left-justified, in a one-word or two-word operand.
Character size information is discarded.

8600 0098-000 4-111

Statements

A string literal of more than 96 bits is a long string literal. A long string literal is
evaluated at compilation time and stored in a portion of an array called a pool array. The
character size and address of the string literal are stored in a pointer called a pool array
pointer.

The compiler calculates the number of characters in a string literal in terms of the
largest character size specified by the string literal. The following are calculations for
various string literals:

String Literal

4"Cl"

8"AB"

48"01"

4"0l""A"

Number of Characters

2

2

1

2 (if the default character type is EBCDIC)

<string literal>

4-112

If the source part is a short string literal, it is processed as follows:

1. At compilation time, the number of characters in the string is calculated.

2. At run time, the string literal is stored, left-justified with zero fill, in a one- or
two-word stack-source-operand.

3. The stack-integer-counter is assigned the value for the string length calculated at
compilation time (see step 1).

4. Characters are copied from the stack-source-operand to the destination specified
by the stack-destination-pointer. The stack-integer-counter specifies the number
of characters copied, and the stack-destination-pointer specifies the character size.
If the destination is specified by a non-character array row or array element, the
character size is eight bits.

If the source part is a long string literal, it is processed as follows:

1. At compilation time, the number of characters in the string is calculated.

2. At run time, the stack-source-pointer is assigned the value of the pool array pointer
to the long string literal, which includes the character size and address.

3. The character sizes of the stack-source-pointer and the stack-destination-pointer are
compared. If they are not equal, the program is discontinued with a fault.

4. The stack-integer-counter is assigned the value for the string length calculated at
compilation time (see step 1).

5. The number of characters specified by the stack-integer-counter are copied from the
pool array to the destination specified by the stack-destination-pointer.

Examples of <string literal>

In the following example, the three EBCDIC characters ABC are copied to the
destination pointed to by P.

8600 0098-000

Statements

REPLACE P BY "ABC"

In the following example, the 20-character EBCDIC string is copied to the destination
pointed to by P. At the end of the statement, P is left pointing to the first character
position after the last character copied.

REPLACE P:P BY "A MUCH LONGER STRING"

In the following example, because the source, a string literal, is only four 4-bit characters
long, it is evaluated as a single word; the character size is not retained. Because
the destination is an 8-bit pointer, and four characters are to be replaced, four 8-bit
characters are copied to the destination. At the end of the statement, the destination
contains 4"12340000", which are the leftmost 32 bits of the stack-source-operand
4" 123400000000".

REPLACE P BY 4"1234"

<string literal> FOR <arithmetic expression>

If the source part is a short string literal, it is processed as follows:

1. At compilation time, the string literal is stored in a one- or two-word operand. If
the string literal is less than or equal to 48 bits long, it is stored, left-justified, and
repeated for fill in a one-word operand. If the string literal is more than 48 bits long,
it is stored, left-justified with zero fill, in a two-word operand.

2. At run time, this operand is assigned to the stack-source-operand.

3. If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

4. The number of characters specified by the stack-integer-counter are copied to the
destination specified by the stack-destination-pointer. If the stack-source-operand
contains fewer than the specified number of characters, it is reused as many times
as necessary. The character size is specified by the stack-destination-pointer. If the
destination is specified by a non-character array row or array element, the character
size is eight bits.

In the following examples, the first column shows a source part, and the second column
shows the resulting string. A question mark (?) represents a null character.

Source Part Result

"A" FOR 20 AAAAAAAAAAAAAAAAAAAA

"AB" FOR 20 ABABABABABABABABABAB

"ABC" FOR 20 ABCABCABCABCABCABCAB

"ABCD" FOR 20 ABCDABABCDABABCDABAB

"ABCDEF" FOR 20 ABCDEFABCDEFABCDEFAB

"ABCDEFGH" FOR 20 ABCDEFGH???? ABCDEFGH

If the source part is a long string literal, it is processed as follows:

8600 0098-000 4-113

Statements

1. The stack-source-pointer is assigned the value of the pool array pointer to the long
string literal, which includes the character size and address.

2. The character sizes of the stack-source-pointer and the stack-destination-pointer are
compared. If they are not equal, the program is discontinued with a fault.

3. If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

4. The number of characters specified by the stack-integer-counter are copied to the
destination specified by the stack-destination-pointer.

The <string literal> FOR <arithmetic expression > syntax is undefined for a long
string literal if the integerized value of the arithmetic expression is greater than the
length of the string literal in characters. For example, the result of the following
statement is undefined:

REPLACE POINTER(A) BY "ABCDEFGHIJKLMNO" FOR 30

<string literal> FOR <arithmetic expression> WORDS

4-114

If the source part is a short string literal, it is processed as follows:

1. At compilation time, the string literal is stored in a one- or two-word operand. If the
string literal is less than or equal to 48 bits long, is stored, left-justified and repeated
for fill, in a one-word operand. If the string literal is more than 48 bits long, it is
stored, left-justified with zero fill, in a two-word operand.

2. At run time, this operand is assigned to the stack-source-operand.

3. If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

4. The stack-destination-pointer is moved forward, if necessary, to the nearest word
boundary.

5. The number of words specified by the stack-integer-counter are copied from the
stack-source-operand to the destination specified by the stack-destination-pointer. If
the stack-source-operand contains fewer than the specified number of words, it is
reused as often as necessary.

In the following examples, the first column shows a source part, and the second column
shows the resulting string. A question mark (?) represents a null character.

Source Part

"ABCD" FOR 2 WORDS

"ABCDEFGH" FOR 2 WORDS

"ABCDEFGH" FOR 3 WORDS

Result

ABCDABABCDAB

ABCDEFGH????

ABCDEFG H???? ABCDEF

If the source part is a long string literal, it is processed as follows:

8600 0098-000

Statements

1. The stack-source-pointer is assigned the value of the pool array pointer to the long
string literal, which includes the character size and address.

2. The character sizes of the stack-source-pointer and the stack-destination-pointer are
compared. If they are not equal, the program is discontinued with a fault.

3. If the arithmetic expression yields zero or a positive value, this value is rounded to
an integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

4. The stack-destination-pointer is moved forward, if necessary, to the nearest word
boundary.

5. The number of words specified by the stack-integer-counter are copied from the
stack-source-operand to the destination indicated by the stack-destination-pointer.

The <string literal> FOR <arithmetic expression> WORDS syntax is undefined for
a long string literal if the integerized value of the arithmetic expression is greater than
the length of the string literal in 48-bit words. For example, the result of the following
statement is undefined:

REPLACE POINTER(A) BY "ABCDEFGHIJKLMNO" FOR 6 WORDS

Arithm~tic Expression Source Parts

When a string literal is to be interpreted as an arithmetic expression, it must be enclosed
in parentheses. Without the parentheses, the compiler interprets it as a string literal
and generates code or issues syntax errors accordingly. For example the following is an
invalid statement and results in a syntax error:

REPLACE POINTER(A) BY "A" FOR 3 DIGITS

On the other hand, the following statement is valid:

REPLACE POINTER(A) BY ("A") FOR 3 DIGITS

<arithmetic expression>

A source part of this form is processed as follows:

1. The arithmetic expression is evaluated and assigned to a one-word
stack-source-operand.

2. The stack-source-operand is copied once to the destination specified by the
stack-destination-pointer.

The character size of the stack-destination-pointer is irrelevant. This means that it
is not used to determine the default <unit count> , the number of characters to be
transferred. In the absence of a specified unit count part, a default is established based
on a full word of the default character bit size. The default character bit size is eight,
unless otherwise established by the <ASCII option> or < BCL option> compiler
control options.

8600 0098-000 4-115

Statements

Examples of Arithmetic Expression

In the following examples, the first column shows a REPLACE statement, and the
second column shows, in hexadecimal format, the resulting string.

Statement

REPLACE P BY 7.5

REPLACE P BY 3

REPLACE P BY 1.68@@2

REPLACE P BY ("A")

Result

267800000000

000000000003

248540000000

OOOOOOOOOOCl

<arithmetic expression> FOR <arithmetic expression>

A source part of this form is processed as follows:

1. The first arithmetic expression is evaluated and assigned to a one-word
stack-source-operand.

2. If evaluation of the second arithmetic expression yields a positive value, this value
is rounded to an integer, if necessary, and assigned to the stack-integer-counter;
otherwise, zero is assigned to the stack-integer-counter.

3. The number of characters specified by the stack-integer-counter are copied from the
stack-source-operand to the destination specified by the stack-destination-pointer.
If the stack-source-operand contains fewer than the specified number of
characters, it is reused as often as necessary. The character size is specified by the
stack-destination-pointer. If the destination is specified by a non-character array
row or array element, the character size is eight bits.

Examples of <arithmetic expression> FOR <arithmetic expression>

The following example copies the character 48110011 to P. The stack-source-operand is
41100000000000311 , and the leftmost character of this operand is copied to P.

REPLACE P BY 3 FOR 1

The following example copies the character 48110311 to P.

REPLACE P BY (3).[7:48] FOR 1

The following example copies the EBCDIC character A to P.

REPLACE P BY ("A"). [7:48] FOR 1

<arithmetic expression> FOR <arithmetic expression> WORDS

A source part of this form is processed as follows:

4-116 8600 0098-000

Statements

1. If the evaluation of the first arithmetic expression yields a double-precision value,
this double-precision value is assigned to a two-word stack-source-operand.
Otherwise, the value of the first arithmetic expression is assigned to a one-word
stack-source-operand.

2. If evaluation of the second arithmetic expression yields a positive value, this value
is rounded to an integer, if necessary, and assigned to the stack-integer-counter;
otherwise, zero is assigned to the stack-integer-counter.

3. The stack-destination-pointer is moved forward, if necessary, to the nearest word
boundary.

4. The number of words specified by the stack-integer-counter is copied from the
stack-source-operand to the destination specified by the stack-destination-pointer.
If the stack-source-operand is double-precision, it is copied to the destination
one word at a time (first word first, second word second) with TAGs. If the
stack-integer-counter specifies more than one word (when the stack-source-operand
is single precision) or more than two words (when the stack-source-operand is
double precision), then the stack-source-operand is reused until the number of
words specified by the stack-integer-counter has been copied.

Example of <arithmetic expression> FOR <arithmetic expression> WORDS

The following example copies a single-precision zero into every element of array A.

REPLACE POINTER(A) BY 0 FOR SIZE(A) WORDS

<arithmetic expression> FOR <arithmetic expression> DIGITS

A source part of this form is processed as follows:

1. The absolute value of the first arithmetic expression is rounded to an integer value,
if necessary, and assigned to the stack-source-operand.

2. If evaluation of the second arithmetic expression yields a positive value, this value
is rounded to an integer, if necessary, and assigned to the stack-integer-counter;
otherwise, zero is assigned to the stack-integer-counter.

3. A string of 12 hexadecimal characters that represents the decimal value of the
stack-source-operand is generated. If the value of stack-source-operand can be
expressed in fewer than 12 digits, the string is filled on the left with zeros.

4. The N rightmost hexadecimal characters, where N is the number specified by the
stack-integer-counter, are copied from this hexadecimal string to the destination. If
the character size of the stack-destination-pointer is four bits, the characters are
copied without change; if it is six or eight bits, the appropriate zone field is supplied.

If the value of the stack-integer-counter is greater than 12, the program is discontinued
with a fault.

8600 0098-000 4-117

Statements

Examples of <arithmetic expression> FOR <arithmetic expression>
DIGITS

In the following examples, the first column shows the source part, the second column
shows the resulting string when the destination is an 8-bit pointer, and the third column
shows the resulting string when the destination is a 4-bit pointer.

Source Part

1234 FOR 6 DIGITS

7.5 FOR 3 DIGITS

-10 FOR 3 DIGITS

1234 FOR 3 DIGITS

8-Bit Destination

8"001234"

8"008"

8"010"

8"234"

4-Bit Destination

4"001234"

4"008"

4"010"

4"234"

<arithmetic expression> FOR* DIGITS

This source part functions similarly to a source part of the following form except that the
stack-integer-counter is assigned a value equal to the minimum number of characters
required to express accurately the value of the stack-source-operand.

<arithmetic expression> FOR <arithmetic expression> DIGITS

Examples of <arithmetic expression> FOR * DIGITS

In the following examples, the first column shows the source part, the second column
shows the resulting string when the destination is an 8-bit pointer, and the third column
shows the resulting string when the destination is a 4-bit pointer.

Source Part

1234 FOR* DIGITS

7.5 FOR* DICllTS

-10 FOR* DIGITS

8-Bit Destination

8"1234"

811811

8"10"

4-Bit Destination

4"1234"

4"8"

4"10"

<arithmetic expression> FOR <arithmetic expression> SDIGITS

4-118

This source part functions similarly to a source part of the following form except that the
sign of the first arithmetic expression is also recorded.

<arithmetic expression> FOR <arithmetic expression> DIGITS

If the character size of the stack-destination-pointer is four bits, then a 4"D" (1"1101")
character, indicating a negative value, or a 4"C" (1"1100") character, indicating a positive
value, is copied before the first digit. If the character size is eight bits, the zone field
of the rightmost digit is changed to 1"1101" for negative values or 1"1100" for positive
values.

When the character size of the stack-destination-pointer is four bits, the 4"C" or 4"D"
character, indicating the sign of the value, is not counted as a digit.

8600 0098-000

Statements

For example, the statement REPLACE POINTER(A,4) BY -123 FOR 3 SDIGITS yields
D123. Four, not three, characters are copied to the destination.

Strings produced by this form of source part can later be converted to an integer value
with the correct sign using the INTEGER function. For example, the statement in the
above example could be followed by the following statement, after which integer I would
contain the value -123:

I := INTEGER(POINTER(A,4),3)

Examples of <arithmetic expression> FOR < arithmetic expression>
SDIGITS

In the following examples, the first column shows the source part, the second column
shows the resulting string when the destination is an 8-bit pointer, and the third column
shows the resulting string when the destination is a 4-bit pointer.

Source Part

1234 FOR 6 SDIGITS

-1234 FOR 6 SDIGITS

8-Bit Destination

4"FOFOF1 F2 F3C4"

4"FOFOF1 F2F3D4"

<arithmetic expression> FOR* SDIGITS

4-Bit Destination

4"C001234"

4"D001234"

This source part functions similarly to a source part of the following form, except that
the stack-integer-counter is assigned a value equal to the minimum number of characters
required to express accurately the value of the stack-source-operand:

<arithmetic expression> FOR <arithmetic expression> SDIGITS

Examples of <arithmetic expression> FOR * DIGITS

In the following examples, the first column shows the source part, the second column
shows the resulting string when the destination is an 8-bit pointer, and the third column
shows the resulting string when the destination is a 4-bit pointer.

Source Part

1234 FOR* SDIGITS

-1234 FOR* SDIGITS

8-Bit Destination

4"F1F2F3C4"

4"Fl F2F3D4"

<arithmetic expression> FOR <count part> NUMERIC

A source part of this form is processed as follows:

8600 0098-000

4-Bit Destination

4"Cl234"

4"Dl234"

4-119

Statements

1. If the arithmetic expression in the count part yields a positive value, this value
is rounded to an integer, if necessary, and assigned to the stack-integer-counter;
otherwise, zero is assigned to the stack-integer-counter.

2. The first arithmetic expression is evaluated, and an internal procedure is called.
This procedure generates an EBCDIC character string representing the decimal
value of the arithmetic expression as precisely and concisely as possible given the
field width specified by the stack-integer-counter.

3. If the character size of the stack-destination-pointer is eight bits, the string is copied
to the destination without translation. If the character size is six bits, the string
is copied with EBCDIC-to-BCL translation. If the character size is four bits, the
program is discontinued with a fault.

If a residual count does not appear in the count part, the string is copied to the
destination, right-justified with blank fill, in a field with a width equal to the value of the
stack-integer-counter. If a residual count does appear in the count part, the string is
copied to the destination, left-justified, and the simple variable is assigned the difference
between the initial value of the stack-integer-counter and the number of characters
copied.

The form of the decimal representation is determined by the operand type (single or
double precision), whether or not the operand value is an integer, the magnitude of the
operand, the number of significant digits in its decimal representation, and the field
width. The basic rule is that the number is represented as compactly as possible using
integer, simple decimal, or exponential notation, as appropriate.

For example, the following source parts generate the decimal representations shown:

Source Part

12345678 FOR 8 NUMERIC

12345678 FOR 6 NUMERIC

123/100 FOR N:6 NUMERIC

Decimal Representation

12345678

1.23+7

1.23 (N := 2)

<arithmetic expression> FOR* NUMERIC

4-120

This source part functions similarly to a source part of the following form except that no
maximum field width is specified: ·

<arithmetic expression> FOR <count part> NUMERIC

Thus, the internal procedure that generates the string is allowed to use as many as 36
characters to represent the decimal value of the arithmetic expression.

For example, the following source parts generate the decimal representations shown:

Source Part

123 FOR* NUMERIC

1/3 FOR* NUMERIC

Decimal Representation

123

0.3333333333333333333333

8600 0098-000

Statements

Pointer Expression (<source>) Source Parts

<source> FOR <arithmetic expression>

A source part of this form is processed as follows:

1. The pointer expression in the source is evaluated and assigned to the
stack-source-pointer.

2. If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

3. The character sizes of the stack-source-pointer and the stack-destination-pointer
are compared. If they are not equal, the program is discontinued with a fault. If
both the source and the destination are specified by non-character array rows
or array elements, the character size of both the stack-source-pointer and the
stack-destination-pointer is eight bits.

4. The number of characters specified by the stack-integer-counter are copied from the
location specified by the stack-source-pointer to the destination specified by the
stack-destination-pointer.

Example of <source> FOR <arithmetic expression>

In the following example, the 20 EBCDIC characters pointed to by Q are copied to the
location pointed to by P.

REPLACE P BY Q FOR 20

<source> FOR <arithmetic expression> WORDS

A source part of this form is processed as follows:

1. The pointer expression in the source is evaluated and assigned to the
stack-source-pointer.

2. If the arithmetic expression yields a positive value, this value is rounded to an
integer, if necessary, and assigned to the stack-integer-counter; otherwise, zero is
assigned to the stack-integer-counter.

3. The stack-source-pointer and the stack-destination-pointer are moved forward, if
necessary, to the nearest word boundary.

4. The number of 48-bit words specified by the stack-integer-counter are copied from
the location specified by the stack-source-pointer to the destination specified by the
stack-destination-pointer.

The character sizes of the source and destination pointer expressions are irrelevant.

8600 0098-000 4-121

Statements

Example of <source> FOR <arithmetic expression> WORDS

Both P and Q are advanced to the nearest word boundary, if necessary, and 20 words are
copied from the location pointed to by Q to the location pointed to by P.

REPLACE P BY Q FOR 20 WORDS

<source> FOR <arithmetic expression> WITH <translate table>

This construct retrieves characters from a source location, translates each character
(through the use of the specified translate table) into a possibly different character with
a possibly different cruiracter size, and stores each resulting character in the location
indicated by the stack-destination-pointer.

The value of the pointer expression in the source points to the first character
to be translated. The stack-source-pointer is initialized to this value. The
stack-destination-pointer and the stack-source-pointer need not have the same character
size. Instead, the stack-source-pointer must have a character size equal to that of the
characters being translated, and the stack-destination-pointer must have a character size
equal to that of the resulting translated characters.

The value of the arithmetic expression indicates the number of characters to be
translated and written to the destination. This value is integerized, if necessary, and
assigned to the stack-integer-counter. The stack-auxiliary-pointer is initialized to point
to the first character of the first word of the translate table, and its character size is
absent. Normally, when a pointer is used and its character size is absent, a default value
of six or eight is used, depending on the default character type. However, the character
size of the pointer used to initialize the stack-auxiliary-pointer is irrelevant. The
translate table is not examined sequentially (one character at a time); instead, the data
in the table is accessed by special indexing techniques implemented in the hardware, as
follows:

<intrinsic translate table>

If the translate table is of this form, the stack-auxiliary-pointer is initialized to point to
the appropriate intrinsic translate table. The function of each translate table can be
deduced from its name. For example, the HEXTOEBCDIC table is used to translate
characters from hexadecimal to EBCDIC.

<translate table identifier>

4-122

If the translate table is of this form, a translate table must have been declared in a
TRANSLATETABLE declaration. For a detailed discussion regarding the construction
ofa translate table, refer to "TRANSLATETABLE Declaration" in Section 3,
"Declarations."

8600 0098-000

Statements

<subscripted variable>

If the translate table is of this form, the programmer is responsible for creating a
properly structured translate table that is contained entirely in the array row and
begins with the word in the array row indicated by the subscripted variable. From the
subscripted variable to the end of the array row there must be enough words for the
entire translate table: 4, 16, or 64 words, depending on whether the character type is 4
bit, 6 bit, or 7 or 8 bit, respectively. If there are not enough words for the translate table,
an invalid index error can result at run time. For more information on translate table
indexing, refer to "Translate Table Indexing" under "TRANSLATETABLE Declaration"
in Section 3, "Declarations."

Examples of <source> FOR <arithmetic expression> WITH <translate
table>

REPLACE POINTER(B,4) BY POINTER(A,8) FOR 20 WITH EBCDICTOHEX

A = 8"0123456789ABCDEFGHIJ"
B = 4"0123456789ABCDEFFFFF"

REPLACE POINTER(B,7) BY POINTER(A,8) FOR 14 WITH EBCDICTOASCII

A = 4"F0FlF2F3F4F5F6F7F8F9ClC2C3C4"
B = 4"3031323334353637383941424344"

REPLACE POINTER(B,8) BY POINTER(A,4) FOR 12 WITH HEXTOEBCDIC

A = 8"012345" = 4"F0FlF2F3F4F5"
B = 8"F0F1F2F3F4F5"

<source> WITH <picture identifier>

The character data specified by the source (which must be a pointer) is processed under
control of the picture specified by the picture identifier. The source and destination
pointers must be 4-bit, 8-bit, or word-oriented. If the source is a word-oriented pointer,
it is changed to a 4-bit pointer if the destination is a 4-bit pointer; otherwise, it is
changed to an 8-bit pointer. If the destination is a word-oriented pointer, it is changed to
a 4-bit pointer if the source is a 4-bit pointer; otherwise, it is changed to an 8-bit pointer.
If neither the source nor the destination pointer is a word-oriented pointer, the source
and destination pointers must either both be 4-bit pointers or both be 8-bit pointers.
Details regarding the formation and action of pictures are described under "PICTURE
Declaration" in Section 3, "Declarations."

Source Parts with Boolean Conditions

The next eight forms of the source part copy characters from the source to the
destination until a source character fails or passes the specified test. The number of
characters copied can also be limited by an optional count part. For more information on
the use of these Boolean conditions, refer to "SCAN Statement" later in this section.

8600 0098-000 4-123

Statements

In the source parts containing a condition of either of the following forms the source
characters are tested against bits [7:8], [5:6], or [3:4] of the arithmetic expression,
depending on the character size of the source:

WHILE <relational operator> <arithmetic expression>
UNTIL <relational operator> <arithmetic expression>

In all cases, the stack-source-pointer is left pointing to the character that failed or passed
the test.

The count part consists of an arithmetic expression and, optionally, a residual count. The
value of the arithmetic expression specifies the maximum number of characters to be
copied. The residual count, when it appears, is a simple variable in which is stored the
difference between the value of the arithmetic expression and the number of source-part
characters copied.

<source> WHILE <relational operator> <arithmetic expression>

The stack-source-pointer is initialized to the source pointer. Characters are then copied
from the source to the destination as long as source characters pass the test.

A paged (segmented) array error fault could occur at run time if all of the following
conditions occur:

• The stack-destination-pointer references the first character beyond the end of the
destination array.

• The stack-source-pointer references the first character to fail the test.

• The stack-integer-counter is nonzero.

Example of <source> WHILE <relational operator> <arithmetic
expression>

REPLACE P BY Q WHILE NEQ

Q = II LONG STRING"
P = "LONG"

II II

<source> UNTIL <relational operator> <arithmetic expression>

The stack-source-pointer is initialized to the source pointer. Characters are then copied
from the source to the destination until a source character passes the test.

A paged (segmented) array error fault could occur at run time if all of the following
conditions occur:

• The stack-destination-pointer references the first character beyond the end of the
destination array.

• The stack-source-pointer references the first character to pass the test.

• The stack-integer-counter is nonzero.

4-124 8600 0098-000

Statements

Example of <source> UNTIL <relational operator> <arithmetic
expression>

REPLACE P BY Q UNTIL = II II

Q = "FI LE/TITLE ON PACK. XXX"
p = II Fl LE/TITLE ON PACK"

<source> WHILE IN <truth set table>

The stack-source-pointer is initialized to the source pointer. Characters are then copied
from the source to the destination as long as the source characters are members of the
truth set. For further information on truth sets, see "TRUTHSET Declaration" in
Section 3, "Declarations."

Example of <source> WHILE IN <truth set table>

REPLACE P BY Q WHILE IN ALPHAS

Q = "ABCD1234.56"
P = "ABCD1234"

<source> UNTIL IN <truth set table>

The stack-source-pointer is initialized to the source pointer. Characters are then copied
from the source to the destination until a source character is encountered that is a
member of the truth set. For further information on truth sets, see "TRUTHSET
Declaration" in Section 3, "Declarations."

Example of <source> UNTIL IN <truth set table>

REPLACE P BY Q UNTIL IN ALPHAS

Q = II *,$1234"
p = II * ,$"

<source> FOR <count part> WHILE <relational operator> <arithmetic
expression>

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter
is initialized to the value of the arithmetic expression in the count part. Characters
are then copied from the source to the destination and the stack-integer-counter is
decremented for each character copied as long as the stack-integer-counter is not zero
and the source characters pass the test.

A paged (segmented) array error fault could occur at run time if all of the following
conditions occur:

8600 0098-000 4-125

Statements

• The stack-destination-pointer references the first character beyond the end of the
destination array.

• The stack-source-pointer references the first character to fail the test.

• The stack-integer-counter is nonzero.

Example of <source> FOR <count part> WHILE <relational operator>
<arithmetic expression>

REPLACE p BY Q FOR N:ll WHILE NEQ II II

Q = "LONG STRING"
P = "LONG" (and N = 7)

<source> FOR <count part> UNTIL <relational operator> <arithmetic
expression>

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter
is initialized to the value of the arithmetic expression in the count part. Characters
are then copied from the source to the destination and the stack-integer-counter is
decremented for each character copied until either the stack-integer-counter is zero or a
source character passes the test.

A paged (segmented) array error fault could occur at run time if all of the following
conditions occur:

• The stack-destination-pointer references the first character beyond the end of the
destination array.

• The stack-source-pointer references the first character to pass the test.

• The stack-integer-counter is nonzero.

Example of <source> FOR <count part> UNTIL <relational operator>
<arithmetic expression>

REPLACE P BY Q FOR N:22 UNTIL= 11 • 11

Q "FILE/TITLE ON PACK.XXX"
P = "FILE/TITLE ON PACK" (and N = 4)

<source> FOR <count part> WHILE IN <truth set table>

4-126

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter
is initialized to the value of the arithmetic expression in the count part. Characters
are then copied from the source to the destination and the stack-integer-counter is
decremented for each character copied as long as the stack-integer-counter is not zero
and the source characters are members of the truth set. For further information on
truth sets, see "TRUTHSET Declaration" in Section 3, "Declarations."

8600 0098-000

Statements

Example of <source> FOR <count part> WHILE IN <truth set table>

REPLACE P BY Q FOR N:ll WHILE IN ALPHAS

Q "ABCD1234.56"
P = "ABCD1234" (and N = 3)

<source> FOR <count part> UNTIL IN <truth set table>

The stack-source-pointer is initialized to the source pointer. The stack-integer-counter
is initialized to the value of the arithmetic expression in the count part. Characters
are then copied from the source to the destination and the stack-integer-counter is
decremented for each character copied until either the stack-integer-counter is zero or a
source character is a member of the truth set. For further information on truth sets, see
"TRUTHSET Declaration" in Section 3, "Declarations."

Example of <source> FOR <count part> UNTIL IN <truth set table>

REPLACE P BY Q FOR N:10 UNTIL IN ALPHAS

Q = " *,$1234"
P = " *,$" (and N = 4)

Other Source Parts

<pointer-valued attribute>

The string of characters that forms the value of the pointer-valued attribute is copied
to the location indicated by the stack-destination-pointer. The string of characters
is formatted in the destination array row in a form suitable to serve in a replace
pointer-valued attribute statement that assigns a value to the same attribute. The
character string ends with an EBCDIC period (8"."). For example, if Pis a pointer
identifier and Fl and F2 are file identifiers, then the following sequence of statements is
valid:

REPLACE P BY Fl.TITLE;
REPLACE F2.TITLE BY P;

All pointer-valued attributes have a character size of eight bits. At run time, if the
destination pointer does not also have a character size of eight bits, the program is
discontinued with a fault.

If a pointer-valued attribute appears as the source part in a REPLACE statement, a
call is made on an operating system procedure to perform this part of the REPLACE
statement.

8600 0098-000 4-127

Statements

<string expression>

When a string expression appears as the source part in a REPLACE statement, it is
evaluated and stored in a pool array. The stack-source-pointer is initialized to point
to the first character of the string in the pool array. The entire string is copied to the
destination.

Example of String Expression

The following example copies the EBCDIC string ABCDEFG to the location pointed to
byP.

STR := 11 ABCDEFG 11 ;

REPLACE P BY STR;

Examples of REPLACE Statement

REPLACE PTR BY 11 A11

REPLACE PTR:PTR BY 11 * 11 FOR 75

REPLACE PTR BY ITEM

REPLACE PTR BY (4 11 03 11). [7:48] FOR 1

REPLACE PTR BY II II FOR N WORDS

REPLACE PTR:PTR BY PST FOR 18

REPLACE PTR BY PST:PST FOR NUM WORDS

REPLACE PTR BY PINFO WITH PIC

REPLACE PTR:PTR BY PST WHILE NEQ II II

REPLACE PTR BY PST WHILE IN ALPHA

REPLACE P BY X FOR * DIGITS

REPLACE P BY X FOR 50 NUMERIC

REPLACE P BY X FOR * NUMERIC

REPLACE PTR BY PST WHILE IN MYTRUTHTABLE

REPLACE PTR BY PST UNTIL = II. II

REPLACE PTR:PTR BY PST:PST UNTIL IN ALPHAS

REPLACE PTR BY PST FOR THELENGTH WHILE > "0"

4-128 8600 0098--000

Statements

REPLACE PTR BY PST FOR LEFT:25 WHILE IN ACCEPTABLE

REPLACE PTR BY PST FOR 120 UNTIL NEQ 11 11

REPLACE PTR BY PST FOR M:N UNTIL IN ALPHA

REPLACE PTR:PTR BY SUMTOTAL FOR 6 DIGITS, II II

REPLACE PTR BY FYLE.TITLE

REPLACE PTR BY PST:PST FOR L WITH XLATTABLE

REPLACE PTR BY STR

REPLACE PTR BY SARRAY[4,J]

REPLACE p BY Sl I I S2

REPLACE P BY PTR:PTR FOR 10

REPLACE p BY TAKE(S,2) I I SA[4]

REPLACE P BY HEAD(S,ALPHA)

REPLACE FAMILY-CHANGE Statement
The REPLACE FAMILY-CHANGE statement adds stations to, or deletes stations from,
the family of an open, remote file.

<replace family-change statement>

- REPLACE --<family designator~ BY -<up or down~<simple source>--j

<family designator>

-<file designator~ • - FAMILY ---------------1

<up or down>

<simple source>

---r-<string literal>
L.<pointer expression~

The file designator specifies the file whose FAMILY file attribute is to be changed. For
more information on the file designator, see "SWITCH FILE Declaration" in Section
3, "Declarations." If a station is to be added to the family, <up or down> is * + . If a
station is to be deleted from the family, <up or down> is *-. The simple source specifies

8600 0098-000 4-129

Statements

the title of the station involved. Because the simple source is a value for a pointer-valued
attribute, its value must end with a period (.). For more specific information, refer to
"REPLACE POINTER-VALUED A'PI'RIBUTE Statement" later in this section.

Specification of Valid Stations

If the simple source does not reference a valid station title, as specified for the current
network in the Network Definition Language II (NDLID description, then the
REPLACE FAMILY-CHANGE statement has the following effects:

• <file designator> .FAMILY is unchanged.

• <file designator> .ATTERR is given the value TRUE, and <file designa
tor> .ATTYPE is set to the appropriate value.

• An appropriate error message is displayed on the Operator Display Terminal (ODT).

• The program continues.

If <up or down> is *- and the simple source specifies a valid station as defined by the
current NDLII description, but the specified station is not currently a member of the
family, then the REPLACE FAMILY-CHANGE statement makes no change to the
specified family. No error condition is indicated (such a situation is not considered to be
an error) and control passes to the next statement of the program.

If, after execution of a REPLACE FAMILY-CHANGE statement, the remote file is
closed with release and later reopened, the family reverts to its NDLII-specified value.
However, if the remote file is closed with retention and later reopened, the family retains
its changed value.

When the REPLACE FAMILY-CHANGE statement is executed, a call is made on an
operating system procedure to perform the desired function.

Examples of REPLACE FAMILY-CHANGE Statement

The following example adds the station with the title "ACCT7" to the family of the
remote file NETWORK.

REPLACE NETWORK. FAMILY BY *+ "ACCT?."

The following example deletes the station with the title given by the pointer
STATIONNAMEPTR from the family of the remote file DATACOLLECTORS.

REPLACE DATACOLLECTORS.FAMILY BY *- STATIONNAMEPTR

REPLACE POINTER-VALUED ATTRIBUTE Statement

4-130

The REPLACE POINTER-VALUED ATTRIBUTE statement changes the value of a
pointer-valued attribute.

8600 0098-000

<replace pointer-valued attribute statement>

- REPLACE -<pointer-valued attribute>- BY----------·-+

-+-,-<simple source>
L_<pointer-valued attribute~

<pointer -valued attribute>

C<pointer-valued file attributea
pointer-valued task attribute
string-valued library attribute

<pointer-valued file attribute>

-<file designator>
L_<attribute parameter specification~

----t

-+-<pointer-valued file attribute name>--------------+

-+ L (-<arithmetic variable>-) J

Statements

The attribute error number returned from the operating system can be captured in the
<arithmetic variable> .

<pointer-valued task attribute>

-<task designator>- . -<pointer-valued task attribute name>------1

<pointer-valued task attribute name>

1 ACCESSCODE
BACKUPPRE3FIX
CHARGECODE
FILECARDS
NAME ----1

USERCODE

<string-valued library attribute>

-<library identifier>- • -<string-valued library attribute name>---j

When the REPLACE POINTER-VALUED ATTRIBUTE statement is executed, a call is
made on an operating system procedure to perform the desired function.

Specification of the Simple Source

The simple source specifies the string of characters that is to become the new value of
the pointer-valued attribute.

If the simple source is a string literal, the last character of the string literal must be a
period (.). The effective part of the string literal is terminated by the first period in the
string. A maximum string length is associated with each pointer-valued attribute. If the
effective part of the string literal has a string length that is greater than the maximum
length allowed for the pointer-valued attribute, then the new value of the pointer-valued
attribute is the value of the string literal truncated on the right to the required length.

8600 0098-000 4-131

Statements

If the simple source is a pointer expression, the pointer expression must point to the
string of characters that is to become the new value of the pointer-valued attribute.
Starting with the first character pointed to by the pointer expression, characters are
copied as the new value of the pointer-valued attribute until a period is encountered, the
maximum number of characters for the attribute are copied, or the end of the array row
is encountered. The last case results in a run-time error.

If a pointer-valued task attribute is used as the destination and the source is a
pointer-valued attribute, the source attribute and the destination attribute must be the
same attribute. If a pointer-valued file attribute is used as the destination, the source
must be a simple source. If a string-valued library attribute is used as the destination,
the source can be either a simple source or another string-valued library attribute.

Examples of REPLACE POINTER-VALUED ATTRIBUTE Statement

In the following example, the TITLE attribute of file FYLE is assigned
"MASTER/PAYROLL.".

REPLACE FYLE. TITLE BY "MASTER/PAYROLL."

In the following example, the NAME attribute of the task TSK is assigned
"SECOND/STACK.".

REPLACE TSK.NAME BY "SECOND/STACK."

In the following example, the NAME attribute of task Tis assigned the value of the
NAME attribute of task TS.

REPLACE T.NAME BY TS.NAME

In the following example, the NAME attribute of the task TSK is assigned the value of
the NAME attribute of the task T.P ARTNER.

REPLACE TSK.NAME BY T.PARTNER.NAME

In the following example, the INTNAME attribute of library Lis assigned "INTLIB.".

REPLACE L. INTNAME BY II INTLIB. II

In the following example, the TITLE attribute of library LIB_ A is assigned the value of
the TITLE attribute library LIB_ B.

REPLACE LIB A.TITLE BY LIB B.TITLE

RESET Statement

4-132

The RESET statement sets the happened state of the designated event to FALSE (not
happened).

8600 0098-000

Statements

<reset statement>

- RESET - (-<event designator>-) -------------l

The RESET statement does not change the status of any tasks waiting on the event.

WAIT and WAITANDRESET Statements

If a RESET statement is used after a WAIT statement to restore the happened state of
an event to FALSE (not happened), a period of time exists during which another task
could cause the event. For this reason, a WAITANDRESET statement might be more
useful than a WAIT statement followed by a RESET statement.

Examples of RESET Statement

The following example sets the happened state of the event EVNT to FALSE (not
happened).

RESET(EVNT)

The following example sets the happened state of the event designated by
EVNTARAY[INDX] to FALSE (not happened).

RESET(EVNTARAY[INDX])

RESIZE Statement
The RESIZE statement modifies the size of the designated array row, subarray, or array.

Note: The RESIZE statement cannot be used for task arrays.

<resize statement>

- RESIZE - (-,-<array row resize parameters> >=J
L_<special array resize parameters

The RESIZE statement changes the upper bounds of the appropriate dimensions of an
array. The resize parameters designate the array row or rows to be changed and the
new sizes of those rows.

Note that if the RESIZE statement is used on other than the highest-order dimension of
an array, the array can contain subarrays of different sizes.

When the initial size of an array is to be chosen dynamically by a program, the most
efficient technique is to declare the array with a variable upper bound, the bound being a
global variable or a parameter computed before the procedure or block is entered.

Note: When a procedure reference array is imported from a library, it
cannot be deallocated using the DEALLOCATE statement. An
attempt to deallocate an imported procedure reference array results in
a compile-time or run-time error.

8600 0098-000 4-133

Statements

There are two forms of the RESIZE statement: the <array row resize parameters>
form and the < special array resize parameters> form.

Array Row Resize Parameters

4-134

<array row resize parameters>

-,<array row> , -<new size>·-------~
t_<procedure reference array row>_J

-+ L . 1 RETAIN~
DISCARD
PAGED

<new size>

-<arithmetic expression>--------------------'

In this form of RESIZE statement, the first parameter is an array row, a one-dimensional
array whose elements are of some array class: BOOLEAN, COMPLEX, DOUBLE,
INTEGER, REAL, or a character type.

The RESIZE statement causes the size of the designated row to be modified as specified
by the new size. The resize options have the following effects:

Option

DISCARD

RETAIN

PAGED

Effect

The current contents of the array row are discarded; the new contents of the
array row are undefined.

As much of the current information in the array row is retained as fits in the
new size. If the new size is smaller than the old, data in the lost elements is
discarded. If the new size is larger, the data in the new elements is undefined.

The resized array is to be a paged (segmented) array. The new paged array is
considered to be touched (referenced) after the resize is complete. PAGED
also implies RETAIN. PAGED is not valid for a procedure reference array row
because a procedure reference array cannot be segmented.

If no third parameter appears, DISCARD is assumed.

RETAIN is typically used for an array being employed as a stack. When the array is not
large enough to accept a push of the next entry, the array can be enlarged without losing
the data already present. If no data has been assigned to the array, or if the old data is
no longer relevant, DISCARD is more efficient for the resize of an array row.

It is possible to resize a referenced paged array if the system is running the operating
system. An array is referenced, or touched, if a statement referring to the array has
been executed in the block. An array row is paged if its declared length exceeds the
array segmentation start size, unless it is declared LONG or DIRECT. The array
segmentation start size is typically 1024 words. The start size can be displayed or set
with the system comm.and SEGARRAYSTART. Note that ifan array is initially declared

8600 0098-000

Statements

shorter than the array segmentation start size, then it is unpaged, and resizing it larger
without using the PAGED option does not cause it to become paged.

An array that is initially declared to be shorter than the array segmentation start size
and is, therefore, an unpaged array can be resized to become a paged array by using the
PAGED option. The new paged array is considered to be touched after the resize is
complete.

The PAGED option is useful in cases where the desired size of a paged array is not
known at the time the array is declared. The PAGED option offers an alternative
to declaring an array larger than the array segmentation start size and avoiding
references to the array until the desired size is known. The PAGED option achieves
the same results and makes errors less likely. The only restriction on the use of the
PAGED option is that the new size of the resized array must be larger than the array
segmentation start size.

If the new array row size is less than the old, any pointer variable that now points
beyond the end of the array row is set to the uninitialized state.

The value of the new size is integerized with rounding, if necessary, to specify a new size,
Sn, which is interpreted as a number of elements for the resized array row. If the array
row is an original array, then its size is changed to Sn. If the array row is a referred
array and the original array has a different element size, the original array is resized to
have just enough elements to hold Sn elements of the referred array row.

When an original array is resized, any referred arrays with element widths different
from those of the original array are assigned the size they would have had if the original
array had been declared at its new size and the referred array had been created from the
original by array equivalence or array reference assignment.

When a resize of a referred array causes a resize of an original array, the size calculations
are performed with the element widths Wn for the resized referred array and Wo for the
original array. The new size of the original array, So, is the following:

So := (Sn * Wn + Wo - 1) DIV Wo

So * Wo can exceed Sn * Wn. The new size, Sr, of any referred array with element width
Wr that is based on the resized original array is the following:

Sr := (So * Wo) DIV Wr

Wr is equal to Wn for the explicitly resized referred array, and the net calculation is the
following, which can exceed Sn.

Sr := (((Sn * Wn + Wo - 1) DIV Wo) * Wo) DIV Wn

The explicitly resized array row can be slightly larger than requested, if the original
array has a wider element width. For example, if arrays RA and EA are declared as
follows then EA contains 36 elements:

REAL ARRAY RA[0:5];
EBCDIC ARRAY EA[0] = RA;

8600 0098-000 4-135

Statements

If the statement RESIZE(EA,50,RETAIN) is executed, the original array, RA, is resized
to a new size of 9 words, calculated from the following:

So = (50 * 8 + 48 - 1) DIV 48 = 9

The actual new size of the referred array, EA, is then 54, calculated from the following:

Sr = (9 * 48) DIV 8 = 54

Because the second calculation truncates, Sr * Wr can be less than So * Wo, just as with
array row equivalence or array reference assignment.

For example, consider the following statement, where H is a hexadecimal array row:

RESIZE(H,29,DISCARD)

The following table shows the size assigned to referred arrays for several combinations of
referred and original classes. The diagonal of the table shows the size assigned to each
original.

Referred

Original Hexadecimal EBCDIC Real Double

Hex 29 14 2 1

EBCDIC 30 15 2 1

Real 36 18 3 1

Double 48 24 4 2

Special Array Resize Parameters

4-136

<special array resize parameters>

t<rnultidimensiona~ array designator>--r- , --<new size>-- ,
<event array des1gnator>>-----1--1
<string array designator>>----~

7- RETAIN -------------------------1

In this form of RESIZE statement, the first parameter is an array whose elements do not
have an array class. Events and strings are special classes of objects. A multidimensional
array can be considered an array of arrays.

The RESIZE statement sets the size of the parameter array to the new size, unless
the new size is less than the existing size, in which case the RESIZE statement is
ignored and the warning message ATTEMPTED DOWNWARD RESIZE IGNORED is
generated.

8600 0098-000

Statements

If the first parameter includes a subarray selector, the dimension corresponding to the
first asterisk (*) is changed; otherwise, the first dimension of the designated array is
changed. Whenever a higher-order dimension of an array is enlarged, new subarrays are
created with the same dimensions as in the original ARRAY declaration. Any existing
subarrays are unaffected by the resize operation. For example, given the declaration
DOUBLE ARRAY A[1:2,0:5,-4:4] the statement RESIZE(A[l,*,*],8,RETAIN) increases
the size of A[l, *, *] from 6 to 8 (new bound pair = 0:7). The statement causes array
rows A[l,6, *] and A[l, 7, *] to be established as one-dimensional double arrays of size 9,
even if all existing rows of A had already been resized to some other size.

Multidimensional Array Designator

A multidimensional array designator is an array designator or a procedure reference
array designator with dimensionality greater than one; that is, a multidimensional array
name or procedure reference array identifier, optionally suffixed by a subarray selector
with at least two asterisks(*).

If the array to be resized is specified by a multidimensional array designator, then the
new subarrays have the same type as the original array; their contents are undefined.

Event Array Designator

If the array to be resized is specified by an event array designator, then enlarging the
low-order dimension creates new events with the happened state equal to FALSE (not
happened) and the available state equal to TRUE (available); existing elements are
unaffected.

String Array Designator

If the array to be resized is specified by a string array designator, then enlarging the
low-order dimension creates new empty strings; existing elements are unaffected.

Run-Time Error Messages

When an illegal resize is attempted on an array, one of the following messages is
displayed at run time:

BAD RESIZE/DEALLOCATE - NOT AN ARRAY

An attempt was made to resize something that is not an array, such as an uninitialized
array reference.

BAD RESIZE/DEALLOCATE -ARRAY NOT MULTI-DIMENSIONAL

An attempt was made to resize a one-dimensional array when a multidimensioned array
was expected.

8600 0098-000 4-137

Statements

BAD RESIZE/DEALLOCATE - RESIZING IMMOVABLE INSTACK ARRAY

An attempt was made to resize an immovable instack array.

BAD RESIZE/DEALLOCATE - RESIZING READONLY ARRAY

An attempt was made to resize a value array.

ILLEGAL DOWNWARD RESIZE ON A PAGED ARRAY

An attempt was made to resize a paged array to a length smaller than its initial length.
A segmented array that has been referenced can be resized only on a system that runs
the operating system.

RESIZE ABORTED - INSUFFICIENT MEMORY

The job performing the resize has been terminated because there is insufficient memory
to complete the resize.

BAD RESIZE/DEALLOCATE - RESIZE PAGED TO INVALID LENGTH

An attempt was made to resize a long array and make it a paged array where the new
size is not greater than the current size.

Examples of RESIZE Statement

4-138

In the following example, the size of one-dimensional array A is changed to NEWSZ, and
the previous contents of A are discarded.

RESIZE(A,NEWSZ,DISCARD)

In the following example, the size of one-dimensional array ARAY is changed to NEWSZ,
and ARAY is changed to a paged array. The contents of ARAY are retained.

RESIZE(ARAY,NEWSZ,PAGED)

In the following example, the size of one-dimensional array INPUTDATA is changed
to equal the value of the MAXRECSIZE attribute of file F. The previous contents of
INPUTDATA are discarded.

RESIZE(INPUTDATA,F.MAXRECSIZE,DISCARD)

In the following example, the size of the specified row of array A is changed to 5, and the
previous contents of that row are discarded. The other rows of A are not affected.

RESIZE(A[2,*],5,DISCARD)

In the following example, the size of one-dimensional array A is increased by 100
elements, and the previous contents of A are retained.

8600 0098-000

Statements

RESIZE(A,SIZE(A)+l00,RETAIN)

In the following example, the size of the one-dimensional event array EVENTARRAYis
changed to 20, and the previous contents of the array are retained. Note that RETAIN
must be specified for event arrays.

RESIZE(EVENTARRAY,20,RETAIN)

In the following example, the size of the second dimension of array STUFF is changed to
M. New array rows are created for the new size of the second dimension. The previous
contents of the array are retained.

RESIZE(STUFF[l,*,*],M,RETAIN)

In the following example, the size of the specified row of array STUFF is changed to N,
and the previous contents of that row are retained.

RESIZE(STUFF[I,J,*],N,RETAIN) % RESIZE an array row

RESPOND Statement

The RESPOND statement is used to enable a program to issue a positive or negative
response to an offer for subfile dialog establishment or a request for orderly termination.
Networks that support this function can be found in the A Series J/0 Subsystem
Programming Guide. The program is notified ofrequests for dialog establishment or
termination through the CHANGEEVENT and FILESTATE attributes.

<respond statement>

~ RESPOND ~ (~<respond file part>-- , ~<respond options>-) ~

<respond file part>

-<file designator>
[_ [SUBFILE -<subfile index>~] _J

<respond options>

-<respondtype option> [
~<associateddata option~

< respondtype option>

~ RESPONDTYPE - = 1 ACCEPTOPEN
REJECTOPEN
ACCEPTCLOSE

The RESPOND statement can be used only when the KIND of the file designator is
PORT and only when the SERVICE file attribute is set to a network type that supports
this feature.

8600 0098-000 4-139

Statements

RESPOND Statement Options

The subfile index, if present, specifies the subfile to which the RESPOND statement
applies. If 0 (zero) is specified, the RESPOND is invoked on all subfiles in a FILESTATE
that are awaiting a response.

The RESPONDTYPE option indicates the type of the response. The type of the
response must be consistent with the FILESTATE. The ACCEPTOPEN and
ACCEPTCLOSE options indicate that a positive response is to be generated and issued
for an open indication or close indication received from the correspondent application.
The REJECTOPEN option indicate that a negative response is to be generated and
issued for an open indication.

The ASSOCIATEDDATA option can be used to send associated data to the
correspondent endpoint with the response. If a string expression is used,
the length of the expression is calculated automatically and used for the
ASSOCIATEDDATALENGTH value. Otherwise, the ASSOCIATEDDATALENGTH
option indicates how many characters are to be sent as the ASSOCIATEDDATA value.

If the ASSOCIATEDDATA value is of type HEX, the ASSOCIATEDDATALENGTH
option indicates the number of HEX characters, otherwise the number of EBCDIC
characters. If the ASSOCIATEDDATALENGTH is not a single-precision integer it is
integerized.

The RESPOND statement can be used as an arithmetic function. It returns the same
values as the file attribute AVAILABLE. For a description of these values, see the
A Series File Attributes Programming Reference Manual. If the result of this statement
is not interrogated by the program, the program terminates if the respond action fails.

Examples of RESPOND Statement

4-140

The following program responds affirmatively to a request to close from the
correspondent endpoint for the subfile of port file FILEID.

RESPOND (FILEID, RESPONDTYPE = ACCEPTCLOSE)

The following program responds to an offer for subfile I on port file FILEID by accepting
the offer.

RESPOND (FILEID [SUBFILE I], RESPONDTYPE = ACCEPTOPEN)

The following program responds to an offer for subfile 1 on port file FILEID by rejecting
the offer. The associated data that is stored in the string STR is sent with the response.

RESPOND (FILEID [SUBFILE 1], RESPONDTYPE = REJECTOPEN,
ASSOCIATEDDATA =STR)

The following program responds to an offer for subfile I on port file FILEID by accepting
the offer. Twelve characters of associated data are taken from the array RA, beginning
at index 0, and are sent with the response.

8600 0098-000

RESPOND (FILEID [SUBFILE I], RESPONDTYPE = ACCEPTOPEN,
ASSOCIATEDDATALENGTH = 12, ASSOCIATEDDATA = RA [0])

REWIND Statement

Statements

The REWIND statement causes the designated file to be closed and the file buffer areas
to be returned to the system.

<rewind statement>

- REWIND - (-<file designator>-) ----------------<

Effects on Designated Files

If the file is a paper tape or magnetic tape file, it is rewound. For disk files, the record
pointer is set to the first record of the file. For more information on the file designator
option, see "SWITCH FILE Declaration" in Section 3, "Declarations."

Card reader, card punch, and line printer units are released from program control.
When the REWIND statement is used for a magnetic tape file that is positioned past the
first reel of a multireel file, the second and subsequent reels are released from program
control. Other kinds of units remain under program control.

For paper tape files, the REWIND statement can be used only on input.

For random access files, if the file is to be reused immediately, the statement
SEEK(<file designator>[O]) positions the file at its first record while avoiding the
overhead of closing the file and then reopening it. For more information, refer to "SEEK
Statement" later in this section.

Example of REWIND Statement

In the following example, if FILEA is a disk file, the file is closed and the record pointer
is set to the first record of the file. If FILEA is a magnetic tape file, the file is closed and
the tape is rewound.

REWIND (FI LEA)

RUN Statement
The RUN statement initiates a procedure as an independent program.

<run statement>

- RUN -<procedure identifier>
L..<actual parameter part~

-+- [-<task designator>-] ------------------1

8600 0098-000 4-141

Statements

Initiating Procedures

Initiation of a procedure as an independent program consists of setting up a separate
stack, passing any parameters (call-by-value only), and beginning the execution
of the initiated procedure. For more information on the procedure identifier, see
"PROCEDURE Declaration" in Section 3, "Declarations."

The initiating program continues execution, and both the initiated procedure and the
initiating program run in parallel. The initiated procedure must be compiled separately
and declared EXTERNAL in the initiating program.

A procedure initiated by a RUN statement, as opposed to a PROCESS statement,
is independent of the initiating program. No critical block exists for the initiated
procedure, and the initiating program can finish processing while the external procedure
continues running.

The contents of the designated task are copied by the operating system so that
the initiated procedure has its own task variable. Before initiation, the values
of the task attributes of the task, such as COREESTIMATE, STACKSIZE, and
DECLARED PRIORITY, can be used to control the execution of the procedure. For
information about assigning values to task attributes, refer to <arithmetic task
attribute> under "Arithmetic Assignment," <Boolean task attribute> under
"Boolean Assignment," and "Task Assignment" earlier in this section. For information
about the task designator, see "TASK and TASK ARRAY Declarations" in Section 3,
"Declarations."

Because array and file parameters cannot be call-by-value, procedures with array or file
parameters cannot be invoked with a RUN statement. Also, a procedure that has a
pointer or string as a parameter, whether or not it is specified as call-by-value, cannot be
invoked with a RUN statement.

If the procedure identifier is a system supplied process, such as an intrinsic, the library
GENERALSUPPORT must be declared using a library entry point specification. The
procedure identifier must be declared in the program or the syntax error PROCEDURE
MUST BE USER DECLARED results.

Examples of RUN Statement

4-142

The following example invokes procedure SIMPL, which has no parameters, as an
independent program. The task TSK is copied by the operating system for SIMPL to
use as its task variable.

RUN SIMPL [TSK]

The following example invokes procedure DOOER as an independent program, passing
the four parameters X, Y, Z, and the string literal "ABCD". Though the value "ABCD"
appears as a string literal, it is passed to a call-by-value REAL parameter. The task
designated by TSKARRAY[INDEX] is used by DOOER as its task variable.

RUN DOOER(X, Y ,Z, "ABCD") [TSKARRAY[INDEX]]

8600 0098-000

Statements

SCAN Statement
The SCAN statement examines a contiguous portion of character data in an array row,
one character at a time, in a left-to-right direction.

<scan statement>

- SCAN -<source>-<scan part>-----------------1

For more information on < source> and <scan part>, see "REPLACE Statement"
earlier in this section.

The source is always a pointer expression, and at the completion of the SCAN statement
the final value of the stack-source-pointer can be stored in a pointer variable.

The scan part is basically a testing operation that determines when the SCAN statement
is to stop. The scan part can specify that scanning is to stop after a given number of
source characters, or when a source character fails or passes a specified test.

The count part is used in a scan part when a limited number of source characters are
to be scanned. A residual count can be used, in which case the value of the remaining
count is stored in the specified simple arithmetic variable at the completion of the SCAN
statement.

The relational operator in the condition option specifies the comparison to be made
between the arithmetic expression and the source characters. The arithmetic expression
can be of any valid form, but most often takes the form of a one-character string literal.

Before the scan operation begins, the arithmetic expression in the condition option is
evaluated and the value of bits [7:8], [5:6], or [3:4] (depending on the character size of
the source pointer) of the arithmetic expression is assigned to the stack-source-operand.

Scan Part Combinations

The formal syntax of the <scan part> can be reduced to the following combinations:

WHILE <relational operator> <arithmetic expression>
UNTIL <relational operator> <arithmetic expression>

WHILE IN <truth set table>
UNTIL IN <truth set table>

FOR <count part> WHILE <relational operator> <arithmetic expression>
FOR <count part> UNTIL <relational operator> <arithmetic expression>

FOR <count part> WHILE IN <truth set table>
FOR <count part> UNTIL IN <truth set table>

Each of these combinations is discussed in the following separate sections. Because
all combinations of the SCAN statement begin with <source>, each description of

8600 0098-000 4-143

Statements

a combination begins with the assumption that the stack-source-pointer has been
initialized to the source pointer.

The scan parts that contain a count part examine, or scan, source characters until either
the number of characters specified by the arithmetic expression in the count part have
been examined or a source character fails or passes the test specified by the condition
syntax. The scan parts that do not contain a count part examine source characters
until either a source character fails or passes the test specified by the condition syntax
or the end of the array is reached. If the end of the array is reached, the program is
discontinued with a paged (segmented) array error.

Scan Parts Without Count Parts

WHILE <relational operator> <arithmetic expression>

Characters are scanned as long as they pass the test. For example, the following
statement scans the characters pointed to by P as long as a period (.) is not encountered:

SCAN P WHILE NEQ II II

UNTIL < relationa I operator> <arithmetic expression>

Characters are scanned until a source character passes the test. For example, the
following statement scans the characters pointed to by P until a blank character is
encountered:

SCAN P:P UNTIL = " "

P is updated to point to the blank character that passed the test.

WHILE IN <truth set table>

Characters are scanned as long as they are members of the truth set. For example, the
following statement scans the characters pointed to by P as long as they are members of
the truth set ALPHAS:

SCAN P:P WHILE IN ALPHAS

P is updated to point to the first character that is not a member of ALPHAS.

UNTIL IN <truth set table>

4-144

Characters are scanned until a source character is found that is a member of the truth
set. For example, the following statement scans the characters pointed to by P until a
member of the truth set ALPHAS is encountered:

SCAN P:P UNTIL IN ALPHAS

8600 0098-000

Statements

P is updated to point to the first character that is a member of ALPHAS.

Scan Parts with Count Parts

FOR <count part> WHILE <relational operator> <arithmetic expression>

The stack-integer-counter is initialized to the value of the arithmetic expression in the
count part. Characters are then scanned and the stack-integer-counter is decremented
for each character as long as the stack-integer-counter is not zero and a source character
passes the test. For example, the following statement scans the first 20 characters
pointed to by P as long as a period (.) is not encountered:

SCAN P FOR N:20 WHILE NEQ 11 • 11

Because N reflects how many of the 20 characters have yet to be scanned, it can be used
to determine whether a period was encountered and, if so, where the period is.

FOR <count part> UNTIL <relational operator> <arithmetic expression>

The stack-integer-counter is initialized to the value of the arithmetic expression in the
count part. Characters are then scanned and the stack-integer-counter is decremented
for each character until either the stack-integer-counter is zero or a source character
passes the test. For example, the following statement scans the first N characters
pointed to by P until the first nonblank character is encountered:

SCAN P:P FOR N:N UNTIL NEQ II II

If, when the statement is invoked, the value of N is the number of characters between P
and the end of the array row, then because both P and N are updated in this statement,
at the completion of the statement, N gives the number of characters between the
updated P and the end of the array row.

FOR <count part> WHILE IN <truth set table>

The stack-integer-counter is initialized to the value of the arithmetic expression in the
count part. Characters are then scanned and the stack-integer-counter is decremented
for each character as long as the stack-integer-counter is not zero and source characters
are members of the truth set. For further information on truth sets, see "TRUTHSET
Declaration" in Section 3, "Declarations."

For example, the following statement scans the first 20 characters pointed to by P as
long as they are members of the truth set ALPHAS:

SCAN P:P FOR N:20 WHILE IN ALPHAS

P is updated to point to the first character that is not a member of ALPHAS, or, if all
of the 20 characters scanned are members of ALPHAS, to the character that is 20
characters beyond the initial position of P. N is assigned the number of characters yet to
be scanned.

8600 0098-000 4-145

Statements

FOR <count part> UNTIL IN <truth set table>

The stack-integer-counter is initialized to the value of the arithmetic expression in the
count part. Characters are then scanned and the stack-integer-counter is decremented
for each character until either the stack-integer-counter is zero or a source character is
a member of the truth set. For further information on truth sets, see "TRUTHSET
Declaration" in Section 3, "Declarations."

For example, the following statement scans the first 20 characters pointed to by P until a
member of the truth set ALPHAS is encountered:

SCAN P:P FOR 20 UNTIL IN ALPHAS

P is updated to point to the first character that is a member of ALPHAS, or, if nope
of the 20 characters scanned are members of ALPHAS, to the character that is 20
characters beyond the initial position of P.

Examples of SCAN Statement

SCAN PTR WHILE = II II

SCAN PTR UNTIL NEQ 4S 11 00"

SCAN PTR:PTR WHILE IN ALPHA

SCAN PTR UNTIL IN ALPHAS

SCAN PTR:PTR WHILE IN ACCEPTABLE[0]

SCAN PTR FOR 50 WHILE > 11 Z11

SCAN PTR:PTR FOR X:S0 UNTIL = II II

SCAN PTR FOR RMNOR:960 WHILE NEQ 4S 11 l0 11

SCAN PTR:PTR FOR ZED:ZED WHILE IN ALPHAS

SCAN PTR FOR S0 UNTIL IN GOODSTUFF[5]

SEEK Statement

4-146

The SEEK statement positions the record pointer for the designated file at the specified
record. This record is read or written by the next serial I/O operation.

<seek statement>

- SEEK - (-<file designator>- [-<record number>-] -) __ __,

8600 0098-000

Statements

<record number>

-<arithmetic express i on>-------------------1

A serial I/O operation is a READ statement or WRITE statement that does not include a
record number in the record number or carriage control part. The SEEK statement does
not affect any nonserial I/0 statements. The value of the record pointer is not saved
when the file is closed.

SEEK Statement as a Boolean Function

The SEEK statement can be used as a Boolean function. When the statement fails,
the value TRUE is returned. When the statement is successful, the value FALSE is
returned. Specifically, the SEEK statement returns a value identical to that returned by
the file attribute STATE. For more information, refer to the discussion of the STATE
attribute in the A Series File Attributes Programming Reference Manual.

The file designator must not reference a direct file or a direct switch file.

When the record number is less than one, the record pointer points at the first record.

Example of SEEK Statement

The following example positions the record pointer of file FILEA to record number
X+2*Y.

SEEK(FILEA[X+2*Y])

SET Statement
The SET statement sets the happened state of the designated event to TRUE
(happened).

<set statement>

- SET - (-<event designator>-) ____________ _____,

SET Statement Options

For more information on the event designator, see "EVENT and EVENT ARRAY
Declarations" in Section 3, "Declarations." The SET statement does not activate any
tasks waiting on the event.

To set the happened state of an event to TRUE (happened) and activate the tasks
waiting on the event, use the CAUSE statement. For more information, see "CAUSE
Statement" earlier in this section.

8600 0098-000 4-147

Statements

Examples of SET Statement

The following example sets the happened state of EVNT to TRUE (happened).

SET(EVNT)

The following example sets the happened state of the event designated by
EVNTARAY[INDX] to TRUE (happened).

SET(EVNTARAY[INDX])

SORT Statement
The SORT statement invokes the sort intrinsic, which provides a means for designated
data to be sorted and placed in a file or returned to a procedure.

<sort statement>

- SORT - (-<output option>- • -<input option>- • ------~

~-<number of tapes>- • -<compare procedure>- • -<record length~

> L<size specifications>J) [<restart specifications>J

The data to be sorted is indicated by the input option. The output option indicates
where the sorted data is to be placed. The order in which the data is sorted is
determined by the compare procedure.

Output Option

4-148

<output option>

---r-<file designator
L.._<output procedure

<output procedure>

-<procedure i denti fi er>--------------------1

If a file designator is specified as the output option, the sort intrinsic writes the sorted
output to this file. When sorting is completed, the sort intrinsic closes the file. If the file
is a disk file for which the file attribute SA VEF ACTOR has a nonzero value, it is closed
and locked. The output file must not be open when it is passed to the sort intrinsic by
the program.

If an output procedure is specified as the output option, the sort intrinsic calls the output
procedure once for each sorted record and once to allow end-of-output action. This
procedure must be untyped, must not be declared EXTERNAL, and must have two
parameters. The first parameter must be a call-by-value Boolean variable, and the
second parameter must be a one-dimensional array with a lower bound of zero. The
Boolean parameter is FALSE as long as the second parameter contains a sorted record.

8600 0098-000

Statements

When all records are returned, the first parameter is TRUE and the second parameter
must not be accessed.

The following is an example of an output procedure:

PROCEDURE OUTPROC(B,A);
VALUE B;
BOOLEAN B;
ARRAY A[0];

Input Option

BEGIN
IF B THEN

CLOSE(FILEID,PURGE)
ELSE

WRITE(FILEID,RECSIZE,A[*]);
END OUTPROC;

<input option>

-,-<file designator>
L<i nput procedure

<input procedure>

-<procedure i denti fi er>-------------------<

If a file designator is used as the input option, the file supplies input records to the sort
intrinsic. This file is closed after the last record is read. Disk files are closed with regular
close action, and non-disk files are closed with release action. The input file must not be
open when it is passed to the sort intrinsic by the program. The input file cannot be a
file that is declared to be DIRECT.

If an input procedure is used as the input option, the procedure is called to furnish input
records to the sort intrinsic. The input procedure must be a Boolean procedure, must
not be declared EXTERNAL, and must have a one-dimensional array with a lower bound
of zero as its only parameter. This procedure, on each call, either inserts the next record
to be sorted into its array parameter or returns the value TRUE, which indicates the end
of the input data.

When TRUE is returned by the input procedure, the sort intrinsic does not use the
contents of the array parameter and does not call the input procedure again.

The following is an example of an input procedure that can be used when sorting N
elements of array Q:

8600 0098-000 4-149

Statements

BOOLEAN PROCEDURE INPROC(A);
ARRAY A[0];

BEGIN
N := *-1;
IF N GEQ 0 THEN

A[0] := Q[N]
ELSE

INPROC := TRUE;
END INPROC;

Note: The sort intrinsic maintains a logical record structure in memory.
Be careful not to exceed the length of the record when manipulating
records; data corruption might occur.

Number of Tapes

<number of tapes>

-<arithmetic expressi on>,-------------------1

The value of <number of tapes> specifies the number of tape files that can be used, if
necessary, in the sorting process. If the value of the arithmetic expression is zero, no
tapes are used. If the value of the arithmetic expression is between 1 and 3, inclusive,
three tapes are used. If the value of the arithmetic expression is between 3 and 8, the
specified number of tapes are used. If the value of the arithmetic expression is 8 or
more, a maximum of eight tapes are used.

Compare Procedure

4-150

<compare procedure>

-<procedure i denti fi er,,,_ ________________ ____,

The compare procedure is called by the sort intrinsic to apply the appropriate sort
criteria to a pair of input records. The procedure must be a Boolean procedure, must
not be declared EXTERNAL, and must have exactly two parameters. Each of the
parameters must be a one-dimensional array with a lower bound of zero. Every time two
input records are to be compared, the sort intrinsic calls the compare procedure and
passes the two records to the compare procedure through the array parameters. If the
compare procedure returns TRUE, the record passed to the first array precedes, in the
sorted output, the record passed to the second array. If the compare procedure returns
FALSE, the record passed to the second array precedes the record passed to the first
array.

The following is an example of a compare procedure that can be used to sort arithmetic
data in ascending sequence:

8600 0098-000

BOOLEAN PROCEDURE CMP(A,B);
ARRAY A,B[0];

BEGIN
CMP := A[0] < B[0];
END CMP;

Statements

For alphanumeric comparisons, the following compare procedure can be used to sort data
in ascending sequence:

BOOLEAN PROCEDURE CMP(A,B);
ARRAY A,B[0];

BEGIN
CMP := POINTER(A) LSS POINTER(B) FOR 6;
END CMP;

The CMP procedures above return TRUE ifthe value in A[O] compares as less than the
value in B[O] and return FALSE ifthe value in A[O] compares as greater than or equal to
the value in B[O]. Therefore, if A[O] is less than B[O], the content of array A is passed to
the output file or procedure before the content of array B, and if A[O] is greater than or
equal to B[O], the content of array Bis passed to the output file or procedure before the
content of array A. If either of these compare procedures is used, word zero of the input
records is considered to be the key on which sorting is done.

For the actual comparison, a string relation can be used to compare a string from each
record (according to the EBCDIC collating sequence), or an arithmetic relation can be
used to compare an arithmetic value from each record. The comparison can be done on
one or more fields, called keys, from each record or on the entire record. The manner in
which the comparison is done is specified entirely by the programmer.

Record Length

<record length>

-<arithmetic expressi on>·--------------------1

The record length specifies the length, in words or characters (depending on whether
the array parameters of the procedure are word or character arrays, respectively) of
the largest item that is to be sorted. If the value of the arithmetic expression is not
a positive integer, the largest integer that is not greater than the absolute value of
the expression is used; for example, a record length of 12 is used if the expression
has a value of-12.995. If the value of the arithmetic expression is zero, the program
terminates.

Size Specifications

<size specifications>

- , -<memory size> [

8600 0098-000

--r-<disk s!ze~
L<pack s1ze

4-151

Statements

<memory size>

-<arithmetic expressi on;>---------------------1

<disk size>

-<arithmetic expression;>---------------------1

<pack size>

- PACK--.------------.-----------------i
LO<arithmetic expression>=J

The size specifications allow the programmer to specify the maximum amount of main
memory and disk storage to be used by the sort intrinsic.

The memory size specifies the maximum amount, in words, of main memory that is to be
used. If the memory size is unspecified, a value of 12,000 is assumed.

The disk size specifies the maximum amount, in words, of disk storage that can be used.
If the disk size is unspecified, a value of 600,000 is assumed.

If the pack size is specified, temporary files created by the sort intrinsic have PACK,
instead of DISK, as the value of their FAMILYNAME attribute. For an explanation
of the F AMIL YNAME attribute, refer to the A Series File Attributes Programming
Reference Manual. If the arithmetic expression option does not appear in the pack size
element, a value of 600,000 words is assumed.

Restart Specifications

4-152

<restart specifications>

- [- RESTART - =-<arithmetic expression>-] ---------1

The restart specifications allow the sort intrinsic to resume processing at the most recent
checkpoint after discontinuation of a program. The program must provide logic to
restore and maintain variables, arrays, files, pointers, and so forth, which are defined for,
and by, the program. In other words, the program must provide the means to restore
everything that is necessary for the program to continue from the point of interruption.
The restart capability is implemented only for disk sorts.

The sort intrinsic inspects the least significant (rightmost) five bits of the value of the
arithmetic expression in the restart specifications to determine the course of action it
is to take. To control the sort, these bits can be set by the program. The meanings of
these bits are explained in the following table.

8600 0098-000

Statements

Bit Value Description

0 1 The program is restarting a previous sort. The sort intrinsic tries
to open its two disk files and obtain restart information. If it is
successful in obtaining this information, the sort intrinsic tries
to continue from the most recent restart point.

0 0 The sort is starting from the beginning. If the sort is restartable,
and previous sort files with identical titles exist, they are
removed and replaced by new sort files.

1 1 The program is requesting a restartable sort. The sort intrinsic
saves its two internal files and can be restarted on program
request. If bit 2 is 1, bit 1 is set to 1 by default

1 0 A normal sort is requested, and no sort files are saved (unless
bit 2 is 1, which sets bit 1 to 1 by default).

2 1 The program is requesting a restartable sort and desires
extensive error recovery from 1/0 errors. If bit 2 is 1, the sort
intrinsic attempts to backtrack and remerge strings, as
necessary, when 1/0 errors occur during the accessing of either
of the two sort files. To use this option, the program must
provide at least three times as much disk space as required to
contain the input data. If less disk space is provided, the sort
intrinsic emits an error message, changes to restartable-only
mode, and continues the sort without further use of
backtracking capability.

2 0 Recovery from internal errors is not requested.

3 Bit 3 has meaning only if a restartable sort is requested. The
use of this option controls the sort during the stringing phase as
the user input is being read by the sort intrinsic. Use of this bit
determines how the sort restarts (when a restart is requested)
only if the restart occurs while the sort is in the stringing phase.

3 1 The program requires that the sort restart at the beginning of
the user input. This restart is the equivalent of starting an
entirely new sort. In case the restarted sort passes from the
stringing phase into the merge phase, it continues from the
merge phase. This bit can be set to 1 during a restart, even if it
is not 1 initially. Once setto 1, it cannot be set to 0 by
subsequent restarts.

3 0 The program requires the ability to restart at the last restart
point that occurred during the stringing phase. If the sort is still
in the stringing phase, it skips over the records already
processed and continues from the last restart point. If the sort
is in the merge phase, it continues from the last merge phase
restart point. If bit 3 is 0, the sort is normally less efficient
because more strings are created during the stringing phase.

4 This bit is reserved for expansion and is not currently used by
the sort intrinsic.

8600 0098-000 4-153

Statements

Arrays in Sort Procedures

The array parameters used by the input procedure, output procedure, and compare
procedure must be similarly specified. For example, if one procedure declares its
array parameter as an EBCDIC array, then all must declare their array parameters as
EBCDIC arrays.

When character arrays are used in the procedures passed to the sort intrinsic, the record
length parameter is interpreted as a length in characters.

When a pointer expression is used to assign a value to a sort procedure on a non-ASD
system, and the pointer expression points out of the array, it does not cause a segment
array error at run time. This means that you must keep track of the end of the array
within the program to assure the validity of the procedure.

For more detailed information about the sort intrinsic, refer to "SORT" in the A Series
System Software Utilities Operations Reference Manual.

SORT Mode

The combination of the disk size and number of tapes determines the sort mode as
follows:

Number of Tapes

NEQ 0

NEQ 0

0

0

Disk Size

0

NEQ 0

NEQO

0

Examples of SORT Statement

Sort Mode

Tape Only

Integrated-Tape-Disk (ITD}

Disk Only

Core Only

The following example sorts the records of file FILEIN according to compare procedure
COMP ARE and writes the sorted data to file FILEOUT. Three tapes are used in the sort
and the record length is 10.

SORT(FILEOUT,FILEIN,3,COMPARE,10)

The following example sorts the records provided by procedure INPROC according to
compare procedure COMPARER, and writes sorted data out according to procedure
OUTPROC. The number of tapes is given by NUMOFTAPES, and the record size is
given by DSKSZ. A restart specification is given by P ARAM.

SORT(OUTPROC,INPROC,NUMOFTAPES,COMPARER,DSKSZ) [RESTART PARAM]

4-154 8600 0098-000

Statements

SPACE Statement
The SPACE statement is used to bypass records in a file without reading those records.

<space statement>

~SPACE~ (--<file designator>-- , ~<arithmetic expression>--) ~~

~~[-<-ac_t_i-on~l-ab_e_l_s_o_r~fi_n_i-sh_e_d_e_v_e-nt->J~~~~~~~~~~~~____,

The value of the arithmetic expression determines the number of records to be spaced
and the direction of the spacing. If the value of the arithmetic expression is positive, the
records are spaced in a forward direction; if it is negative, the records are spaced in the
reverse direction.

SPACE Statement as a Boolean Function

The SP ACE statement can be used as a Boolean function. When the statement fails,
the value TRUE is returned. When the statement is successful, the value FALSE is
returned. The SP ACE statement returns a value identical to that returned by the file
attribute STATE. For more information, refer to the discussion of the STATE attribute
in the A Series File Attributes Programming Reference Manual.

The file designator must not reference a direct file or a direct switch file. For more
information on the file designator see "SWITCH FILE Declaration" in Section 3,
"Declarations."

Examples of SPACE Statement

The following example spaces file FYLE forward 50 records:

SPACE(FYLE,50)

The following example spaces file FILEID a number of records and a direction given by
the value of N. If an end-of-file condition occurs, the program continues execution with
the statement associated with the label LEOF.

SPACE(FILEID,N) [LEOF]

The following example spaces file FILEID backward 3 records. A value is assigned to B
indicating the success or failure of the spacing. If an end-of-file condition occurs, the
program continues execution with the statement associated with the label LEOF.

B := SPACE(FILEID,-3) [LEOF]

8600 0098-000 4-155

Statements

SWAP Statement
The SW AP statement assigns the value of the variable on the right side of the swap
operator(:=:) to the variable on the left side of the swap operator, and assigns the value
of the variable on the left side of the swap operator to the variable on the right side of
the swap operator.

<swap statement>

1<integer variable>- :=: -<integer variable~
<real variable>- :=: -<real variable">-----------1
<double variable>- :=: -<double variable">------------i
<Boolean variable>- :=: -<Boolean variable>---------;
<complex variable>- :=: -<complex variable'>;.---------1
<array reference variable>- :=: -<array reference variable>-i
<pointer variable>- :=: -<pointer variable>------~

<integer variable>

A variable of type INTEGER.

<real variable>

A variable of type REAL.

<double variable>

A variable of type DOUBLE.

Variable Type Matching

The declared types of the variables on either side of the swap operator (: = :) must be
the same. Partial word swaps are not permitted.

Descriptions of the processes of an assignment are found under "ASSIGNMENT
Statement" earlier in this section.

Example of SWAP Statement

This example program uses the SW AP statement to sort a real array.

4-156 8600 0098-000

BEGIN
FI LE REM (KIND=DISK, TITLE=" SORT /OUT.", PROTECTION=SAVE) ;
BOOLEAN SWAP_DONE;
INTEGER I,J;
DEFINE LASTONE = 5;;
INTEGER ARRAY ARY[0:LASTONE];

PROCEDURE SORTER;
BEGIN

BOOLEAN PROCEDURE NEED_TO_SWAP(A,B);
VALUE A,B;
INTEGER A,B;

BEGIN
IF (A < B) THEN

NEED TO SWAP := TRUE
ELSE

NEED TO SWAP := FALSE;
END NEED_TO_SWAP;

SWAP_DONE :=TRUE;
FOR I := 0 STEP 1 WHILE (I < LASTONE AND SWAP DONE) DO

BEGIN
SWAP_DONE := FALSE;
FOR J := l+l STEP 1 UNTIL LASTONE DO

IF (NEED_TO_SWAP(ARY[l],ARY[J])) THEN
BEGIN
SWAP_DONE :=TRUE;
ARY[I] :=: ARY[J];
END;

END FORLOOP;
END SORTER;

ARY [0] : = SAM";
ARY[l] := AL";
ARY [2] : = HAL";
ARY [3] : = BOB";
ARY [4] : = TOM";
ARY [5] : = SID";
SORTER;
FOR I := 0 STEP 1 UNTIL LASTONE DO

WRITE(REM,<A6>,ARY[I]);
END.

8600 0098-000

Statements

4-157

Statements

THRU Statement
The THRU statement executes a statement a specified number of times.

<thru statement>

- THRU -<arithmetic expression>- DO -<statement>--------1

Value of the Arithmetic Expression

The absolute value of the arithmetic expression is evaluated and rounded to an integer,
if necessary. This value determines the number of times the statement following DO is
executed. The upper limit of this value is 2**39 -1. Figure 4-6 illustrates the THRU
loop.

ENTER
LOOP

STORE INITIAL
VALUE OF

REPEAT INDEX

TERMINATE
LOOP

EXECUTE
STATEMENT

Figure 4-6. THRU Loop

DECREMENT
INDEX BY 1

Examples of THRU Statement

4-158

In the following example, the statement LOADCHAR is executed 255 times.

THRU 255 DO
LOADCHAR

In the following example, the REAL function is evaluated, the value is assigned to MAXI,
and the statement SKIP! is executed MAXI times.

THRU MAXI := REAL(PTR,3) DO
SKI Pl

8600 0098-000

Statements

WAIT Statement
The WAIT statement suspends a program until a designated condition occurs. The
program can be suspended until a given length of time elapses, an event is caused, a
previously initiated direct 1/0 statement is finished, or a software interrupt occurs.

<wait statement>

- WAIT
L (,--<wait parameter l i s t>-r-) _J

L.<direct array row~

<wait parameter list>

L (-<time>-)
L , -<event list>~

<event list>>------------'

<time>

-<arithmetic expression>------------------;

<event list>

rt- •
___L_<event desi gnator>>-~------------------1

WAIT Statement Options

If the WAIT statement consists solely of WAIT, an operating system procedure is called
that suspends the program until an attached and enabled interrupt is invoked as a result
of the associated event being caused. For more information, refer to "INTERRUPT
Declaration" in Section 3, "Declarations." This form of the WAIT statement cannot be
used as a function.

When a statement of the form WAIT(< event designator>) is executed, the event is
examined to determine whether its happened state is TRUE (happened) or FALSE
(not happened). If the happened state of the event is TRUE, the program continues
executing with the next statement. If the happened state of the event is FALSE, the
program is suspended until the event is caused.

When a statement of the form WAIT((< time>)) is executed, execution of the program is
suspended for <time> seconds. Refer to "WHEN Statement" later in this section for a
discussion of <time> .

When the statement includes event designators in the wait parameter list, the program
is suspended until any one event in the event list is caused or until <time> seconds, if
specified, have elapsed.

The WAIT(< wait parameter list>) form can be used as an arithmetic function
that returns an integer value, starting at 1, that represents the position in the wait
parameter list of the item that caused the program to be activated. For example, in

8600 0098-000 4-159

Statements

the following statement the value of T is 1 if elapsed time caused the program to be
activated:

T := WAIT((.001),El,E2)

In the following statement the value of T is 2 if a cause operation on event E2 activated
the program:

T := WAIT(El,E2,E3)

Only one parameter activates the program.

The WAIT statement with a wait parameter list and the WAITANDRESET statement
are identical, except for the state to which the caused event is set during the cause
process. If a program is waiting on an event because of the WAIT statement, then the
happened state of the event is set to TRUE (happened). If a program is waiting on an
event because ofa WAITANDRESET statement, then the happened state of the event is
set to FALSE (not happened).

The form WAIT(< direct array row >) is one of the ways in which a program can
determine if a previously initiated direct 1/0 statement has finished. This form can be
used as a Boolean function. When the 1/0 statement fails, the value TRUE is returned.
When the statement is successful, the value FALSE is returned. Specifically, this form
of the WAIT statement returns a value similar to that returned by the file attribute
IORESULT, with certain exceptions. Refer to the discussion of the IORESULT
attribute in the A Series File Attributes Programming Reference Manual.

Examples of WAIT Statement

4-160

In the following example, if the happened state of event EVNT is TRUE (happened), the
program continues with the next statement. Otherwise, the program is suspended until
EVNT is caused, and the happened state of EVNT is set to TRUE (happened).

WAIT(EVNT)

In the following example, if the happened state of event EVNTl, EVNT2, or EVNT3 is
TRUE (happened), the program continues with the next statement. Otherwise, the
program is suspended until one of the events EVNTl, EVNT2, or EVNT3 is caused, and
the happened state of that event is set to TRUE (happened).

WAIT(EVNT1,EVNT2,EVNT3)

In the following example, if the happened state of WAKEUP or GOAWAY is TRUE
(happened), the program continues with the next statement. Otherwise, the program is
suspended until NAPTIME seconds have elapsed or until event WAKEUP or GOA WAY
is caused. If WAKEUP or GOAWAY is caused, its happened state is set to TRUE
(happened). The value stored in X is 1, 2, or 3, indicating which of the three items
reactivated the program.

X := WAIT((NAPTIME),WAKEUP,GOAWAY)

8600 0098-000

Statements

In the following example, if DffiINPUT is a direct array row, the program is suspended
until the direct I/O operation associated with DffiINPUT is completed. If the I/0
operation fails, the value TRUE is assigned to RSLT. If the operation is successful, the
value FALSE is assigned to RSLT.

RSLT := WAIT(DIRINPUT)

In the following example, the program is suspended until an attached and enabled
interrupt is invoked as a result of the associated event being caused.

WAIT

WAITANDRESET Statement
The WAITANDRESET statement suspends a program until a designated condition
occurs.

<waitandreset statement>

- WAITANDRESET - (-<wait parameter list>-) ---------i

The WAITANDRESET statement and the WAIT statement with a wait parameter list
are identical, except for the state to which the caused event is set during the cause
process. If a program is waiting on an event because of a WAIT AND RESET statement,
then the happened state of the event is set to FALSE (not happened). If a program is
waiting on an event because of the WAIT statement, then the happened state of the
event is set to TRUE (happened).

WAITANDRESET Statement as an Arithmetic Function

The WAITANDRESET statement can be used as an arithmetic function that returns an
integer value, starting at 1, that represents the position in the wait parameter list of the
item that caused the program to be activated. For example, in the following statement
the value of T is 1 if elapsed time caused the program to be activated:

T := WAITANDRESET((.001),El,E2)

In the following statement the value of T is 2 if a cause operation on event E2 activated
the program:

T := WAITANDRESET(El,E2,E3)

Only one parameter activates the program.

Note that the < direct array row> syntax is not allowed as a parameter to the
WAITANDRESET statement.

8600 0098-000 4-161

Statements

Examples of WAITANDRESET Statement

·•

In the following example, if the happened state of event EVNT is TRUE (happened), the
program continues with the next statement. Otherwise, the program is suspended until
EVNT is caused, and the happened state ofEVNT is set to FALSE (not happened).

WAITANDRESET(EVNT)

In the following example, if the happened state of event EVNTl, EVNT2, or the event
designated by EVNTARAY[INDX] is TRUE (happened), the program continues with the
next statement. Otherwise, the program is suspended until one of the three events is
caused, and the happened state of that event is set to FALSE (not happened).

WAITANDRESET(EVNT1,EVNT2,EVNTARAY(INDX])

In the following example, if the happened state of event FINI or GOA WAY is TRUE
(happened), the program continues with the next statement. Otherwise, the program
is suspended until .5 second has elapsed or until event FINI or GOAWAYis caused. If
FINI or GOA WAY is caused, its happened state is set to FALSE (not happened).

WAITANDRESET((.5),FINI,GOAWAY)

In the following example, if the happened state of event WAKEUP or LOOKAROUND
is TRUE (happened), the program continues with the next statement. Otherwise, the
program is suspended until SLEEPMAX seconds have elapsed or until event WAKEUP
or LOOKAROUND is caused. The value stored in REASON is 1, 2, or 3, indicating
which of the three items reactivated the program. If WAKEUP or LOOKAROUND is
caused, its happened state is set to FALSE (not happened).

REASON := WAITANDRESET((SLEEPMAX),WAKEUP,LOOKAROUND)

WHEN Statement
The WHEN statement suspends processing of a program for the specified number of
seconds.

<when statement>

- WHEN - (-<time>-) -----------------i

Characteristics of the Time Option

4-162

Program processing is suspended for <time> seconds. The value of <time> need not
be an integer. If <time> is a double-precision value, it is rounded to single precision.
If <time> is less than approximately 0.0000023, the program resumes execution
immediately. If <time> is larger than this value, then the number of seconds that
the program is suspended is the smaller of <time> and (2**32-1)*2.4 microseconds
(approximately 2.86 hours).

8600 0098-000

Statements

Depending on the amount of multiprocessing being performed and the priorities of other
programs in execution, the actual time that a program is suspended can vary widely with
respect to <time> but is at least <time> seconds.

Examples of WHEN Statement

In the following example, the program is suspended for 10 seconds.

WHEN (10)

In the following example the program is suspended for 2 * Y + Z seconds.

WHEN(2*Y+Z)

WHILE Statement
The WHILE statement executes a statement as long as a specified condition is met.

<while statement>

- WHILE -<Boolean expression>- DO -<statement>----------;

Execution of the WHILE Statement

The iterative WHILE statement is executed as follows: the Boolean expression is
evaluated and, if the result is TRUE, the statement following DO is executed. This
sequence of events continues until the value of the Boolean expression is FALSE or until
the statement following DO transfers control outside the WHILE statement. Figure 4-7
illustrates the WHILE-DO loop.

8600 0098-000

ENTER
LOOP

BOOLEAN
EXPRESSION

TRUE

TERMINATE
LOOP

YES EXECUTE
STATEMENT

Figure 4-7. WHILE-DO Loop

4-163

Statements

Examples of WHILE Statement

In the following example, as long as INDX is less than or equal to MAXV AL, the value of
X is incremented by the value A[INDX].

WHILE INDX LEQ MAXVAL DO
X := *+A[INDX];

In the following example, as long as J is less than LIMIT, the compound statement is
executed. Contiguous elements of array SU are assigned the values of the elements of
array SV AL UES with the same indexes.

WHILE J LSS LIMIT DO
BEGIN
SU[J] := SVALUES[J];
J := *+1;
END;

WRITE Statement

4-164

The WRITE statement causes data to be transferred from various program variables to a
file.

Note: The syntax of the WRITE statement and the syntax of the READ
statement are nearly identical. Differences in the syntax are
discussed separately under each statement. See the "READ
Statement" earlier in this section for a more detailed breakdown
of those syntactic elements of the WRITE statement that are not
discussed here.

<write statement>

- WRITE - (-<write file part>
L<format and list part>_J

---7

7--r-[-<-ac_t_i_on-l-ab_e_l_s_o_r_fi_n_i-sh_e_d_e_v_e_nt_>_J~------------i

The action of the WRITE statement depends on the form of the <write file part>
element and on the form of the <format and list part> element.

The WRITE statement can be used as a Boolean function. When the write operation
fails, the value TRUE is returned. When the write operation succeeds, the value FALSE
is returned. Specifically, the WRITE statement returns a value identical to that returned
by the file attribute STATE. For more information, refer to the discussion of the STATE
attribute in the A Series File Attributes Programming Reference Manual.

For BNA Host Services, error results for WRITE statements are reported one WRITE
statement after the WRITE statement that reuses the buffer that originally had the
error. That is, the error is reported one buffer later than normal. Normally, error
results are reported exactly at the WRITE statement that reuses the buffer having the
error.

8600 0098-000

Statements

WRITE statements that do not contain format designators or editing specifications
provide a faster output operation than those that specify' that data is to be edited.

Write File Part

<write file part>

--,-<file part>
t_<task designator>-- • ~<file-valued task attribute name~

The write file part indicates where the data is to be written.

< 1/0 option or carriage control>

If the < I/0 option or carriage control> element is [LINE <arithmetic expression>]
and the file is a printer file, then the printer spaces forward to the specified line before
printing. The PAGESIZE file attribute of the file must be nonzero. Because the default
action for ALGOL is to print before carriage action, a subsequent WRITE statement can
overprint the line.

The [SKIP <arithmetic expression>] construct causes the printer to skip to the
channel indicated by the value of the arithmetic expression after printing the current
record. The LINENUM file attribute of the file is reinitialized to 1 when [SKIP 1] is
used.

The [SPACE <arithmetic expression>] construct causes the printer to space the
number of lines specified by the arithmetic expression after printing the current record,
or before printing the current record if the WRITEAFTER compiler control option
is set. For nonbinary writes, the default of single-spacing is equivalent to [SP ACE
1]. Overprinting can be achieved with [SPACE O]. For binary writes, a carriage
control is done before the SP ACE carriage control option is evaluated. The default of
single-spacing is equivalent to [SPACE O], and overprinting is not possible. On other
types of devices, this construct causes the number of records specified by the value of the
arithmetic expression to be spaced.

For disk files the [SPACE <arithmetic expression>] construct works in the following
manner. A WRITE statement that is not a binary write spaces before writing. The
disk file might be extended as a result. A binary write spaces after writing unless the
WRITEAFTER compiler control option is used to indicate that spacing should take
place before writing. The file cannot be extended. The effect of this construct is not
necessarily the same as a WRITE statement following or preceding a SP ACE operation.

If the specified file is a remote file, the [STOP] construct causes the normal line feed and
carriage return action to be omitted.

The [STACKER <arithmetic expression>] construct allows pocket selection for card
punch files. Valid values for the arithmetic expression are 0 and 1: 0 selects the normal
pocket, and 1 selects the alternative pocket.

The [SYNCHRONIZE] construct enforces synchronization between the logical and
physical file. Synchronization means that output must be written to physical file

8600 0098-000 4-165

Statements

before the program initiating the output can resume execution. The SYNCHRONIZE
file attribute designates the synchronization for all output records, and the
[SYNCHRONIZE] construct overrides the specified synchronization for the record
being written. The [SYNCHRONIZE] construct is available for use by disk files with
FILEORGANIZATION = NOTRESTRICTED or for tape files, and is not available for
use with port files.

The [TIMELIMIT <arithmetic expression>] construct is meaningful only for remote
files. The write operation is terminated with a timelimit error if the buffer is not
available within the number of seconds specified by the value of the arithmetic
expression.

The [STATION <arithmetic expression>] construct is meaningful only for remote files.
It assigns the value of the arithmetic expression to the LASTSUBFILE file attribute of
the file.

For more information on the FILEORGANIZATION, LASTSUBFILE, LINENUM,
PAGESIZE, or SYNCHRONIZE attribute, refer to the A Series File Attributes
Programming Reference Manual.

On output to the printer, the [NO] construct causes the line feed after a write to be
suppressed.

Write Subfile Specification

4-166

<write subfile specification>

/1\- DONTWAIT '
/1\- URGENT ----------~-i
I 1 \- SUB FI LE L _J <i ndex:.-J

<result>- :

<file-valued task attribute name>

- TASKFILE -----------------------1

If the file to be written is a port file (a file for which the KIND attribute is equal to
PORT), an array row write containing a subfile specification must be used. Refer to
"Array Row Write" later in this section.

The subfile specification is meaningful only for port files. It is used to specify the subfile
to be used for the write operation and the type of write operation to be performed.

If a subfile index is used, the value of the subfile index is assigned to the LASTSUBFILE
attribute of the file. It specifies the subfile to be used for the write operation. For a
WRITE statement, if the subfile index is zero, a broadcast write is performed. If the
subfile index is nonzero, then a write to the specified subfile is performed. The result
variable, if specified, is assigned the resultant value of the LASTSUBFILE attribute.

For more hiformation on the LASTSUBFILE file attribute, refer to the A Series File
Attributes Programming Reference Manual.

8600 0098-000

Statements

If DONTW AIT is specified and no buffer is available, the program is not suspended.

The URGENT clause is meaningful only when the Transmission Control
Protocol/Internet Protocol (TCP /IP) is being used. This clause sets the urgent indication
associated with the data. For more information on TCP/IP, refer to the A Series
Distributed Systems Service (DSS) Operations Guide.

If the URGENT clause is used for port subfiles that have the SERVICE attribute set to
BNANATIVESERVICE, then the BADWRITEOPTION (43) write error is returned in
field [26:10] of the write result and the STATE attribute. The error bit [O:l] is set also
in the write result and the STATE attribute.

<core-to-core part>
<core-to-core file part>
<core-to-core blocking part>

Refer to "READ Statement" earlier in this section for a discussion of these constructs.

Format and List Part

For the syntax of <format and list part>, see "READ Statement" earlier in this section.
The format and list part element indicates which variables contain the data and how the
data is to be interpreted.

If the format and list part element is omitted in a WRITE statement, a logically empty
record is written. The actual output is device-dependent. Printers and card punches
interpret this as a blank record; disks and tapes interpret this as a record with undefined
contents.

Formatted Write

A WRITE statement that contains a format designator, editing specifications, or a
free-field part is called a formatted write.

A format designator without a list indicates that the referenced format contains one or
more string literals that constitute the entire output of the WRITE statement.

A format designator with a list indicates that the variables in the list are to be written in
the format described by the referenced format.

Editing specifications can appear in place of a format designator and have the same effect
as if they had been declared in a FORMAT declaration and had been referenced through
a format designator. For more information, refer to "FORMAT Declaration" in Section
3, "Declarations."

Binary Write

A WRITE statement of the following form is called a binary write:

WRITE(<write file part>,*,<list>)

8600 0098-000 4-167

Statements

A binary WRITE statement can be used to write variables to a file in an internal form
that can later be read with a binary READ statement.

An asterisk (*) followed by a list specifies that the elements in the list are to be
processed as full words and are to be written without being edited. The number of
words written is determined by the number of elements in the list or the maximum
record size, whichever is smaller. When unblocked records are used, the block size is the
maximum record size.

In a binary write, when the record number or carriage control element is LINE, SKIP,
STACKER, STATION, TIMELIMIT, or STOP, it is ignored and treated as a serial binary
write. If the carriage control element is SP ACE, the number of lines specified plus one
is spaced after writing the current record. The extra space occurs because in a binary
write normal carriage control is performed first and then any extra spacing is done.

When writing a character array, only full words are written. If there is a partial word left
at the end of the array, it is ignored. For example, if A is an EBCDIC array that contains
the characters 12345678, the following statement writes only the characters 123456:

WRITE(FILEID,*,A)

When a string variable occurs in the list of a binary WRITE statement, a word containing
the string length is written to the file before the contents of the string are written. This
feature allows the program to write string information that can later be read through
a binary READ statement. For more information, see "Binary Read" under "READ
Statement" earlier in this section.

Array Row Write

4-168

A WRITE statement of any of the following forms is called an array row write:

WRITE(<write file part>,<arithmetic expression>,<array row>)
WRITE(<write file part>,<arithmetic expression>,

<subscripted variable>)
WRITE(<write file part>,<arithmetic expression>,

<pointer expression>)
WRITE(<write file part>,<arithmetic expression>,<string variable>)

The first three forms of the array row write specify that the elements of the designated
array row, subscripted variable, or item referenced by the pointer expression are to
be processed as full words and are to be written without being edited. The number of
words written is determined by the smallest of the following:

• The number of elements in the array row, subscripted variable, or item referenced
by the pointer expression

• The maximum record length

• The absolute value of the arithmetic expression

If the FILETYPE attribute if the file has a value of 6, then the maximum record length is
ignored and records span block boundaries. When unblocked records are used, the block

8600 0098-000

Statements

size is the maximum record size. If the UNITS attribute equals CHARACTERS and the
INTMODE attribute does not equal SINGLE, then all counts represent characters, not
words.

A WRITE statement of the following form specifies that the characters in the string
variable are to be written without being edited:

WRITE(<write file part>,<arithmetic expression>,<string variable>)

The number of characters written is determined by the maximum record size, the
absolute value of the arithmetic expression, or the length of the string, whichever is
smallest. If the UNITS attribute equals CHARACTERS and the INTMODE attribute
does not equal SINGLE, then all counts represent characters, not words.

A WRITE statement of the following form is not an array row write:

WRITE (<write file part>,<arithmetic expression>,<string literal>)

This kind of statement can have unexpected results because the number of words or
characters written is determined by the arithmetic expression and the UNITS attribute
of the file part. If the arithmetic expression in the units of the file is greater than the
length of the string literal, unexpected output can occur. Use a formatted write of the
following form to write a string literal:

WRITE(<file part>,<" <string literal> ">)

Free-Field Part

The free-field part allows output to be performed with editing but without using editing
specifications. The appropriate format is selected automatically, but variations of the
free-field part give the programmer some control over the form of the output.

On output, each value is edited into an appropriate format. An edited item is never split
across a record boundary. If the record is too short to hold the representation of the
item, a string of pound signs(#) is written in place of the item.

When a complex expression appears in the list of a free-field WRITE statement, two
values are written. The first value corresponds to the real part, and the second value
corresponds to the imaginary part.

Data items are normally separated by a comma and a space(,). If the free-field part
contains two slashes, data items are separated by two spaces.

If the optional asterisk (*) is used, the name of the data item and an equal sign (=) are
written to the left of the value of the data item. If the data item is not a variable, then
the expression is written as the name of the data item.

If the free-field part includes the <number of columns> and <column width>
elements, each list element is written in a separate column. This process is controlled by
two column factors: the number of columns per record (r) and the width of each column
(w), where w is measured in characters. Both rand ware integerized, if necessary.

8600 0098-000 4-169

Statements

If r is 0 (zero), the nwnber of colwnns per record is determined from the value of w and
the record length. If w is 0, the width of each column is determined from the value of
rand the record length. If both rand ware 0, the output has no column structure. If
r and w are such that r columns of w characters cannot fit on one record, adjustments
are made to both rand w. The width of a column does not include the two-character
delimiter; therefore, r*(w + 2) must be less than or equal to the length of the record.

Example of Free-Field Part

BEGIN
FILE DCOM(KIND=REMOTE,MAXRECSIZE=12,MYUSE=I0)i
INTEGER I;
REAL R;
DOUBLE D;
STRING S;
I : = 25;
R := 1002459;
D := 25@@5;
S := "string";
WRITE(DCOM,*/, I, R, D, S, I+R, R-D, Sii" ABCDE", 7.2);

END.

The following output results when this program is executed:

1=25, R=1002459.0, D=2.5D+6, S=string, I+R=1002484.0, R-D=-1497541.0,
SI I" ABCDE"=string ABCDE, <CNST>=7.2,

Additional information about 1/0 operations can be found under "1/0 Statement" and
"READ Statement" earlier in this section.

Action Labels or Finished Event

4-170

This construct provides a means of transferring program control from a READ
statement, WRITE statement, or SP ACE statement when exception conditions occur
(for normal 1/0) or when the 1/0 is complete (for direct 1/0). Exception conditions
can also be handled by using the WRITE statement as a Boolean function. For more
information, refer to "READ Statement" earlier in this section.

8600 0098-000

Examples of WRITE Statement

WRITE (FI LEID)

WRITE(SPOFILE,FMT,LISTID)

WRITE(FILEID[NO],FMT)

WRITE(SPOFILE,10,ARRY[3,*])

WRITE(SWFILEID[0],X+Y-Z,ARRY[X,I,*])

WRITE(SPOFILE,/,LISTID)

WRITE(FILEID,FMT,LISTID)

WRITE(SWFILEID[3] [PAGE])

WRITE(FILEID,/,A,B,C)

WRITE(FILEID,SWFMT[A*I])

WRITE(FILEID,*,LISTID)

WRITE(FILEID[5+I],/,SWLISTID[4])

WRITE(FILEID,/,LISTID)

WRITE(FILEID,*,A,B,C)

WRITE (FI LEID, FMT ,A, B, C, D+SIN (X)) [: PARL]

WRITE(FILEID, FMT, LISTID) [:PARSWL[M]]

WRITE(SWFILEID[l] ,SWFMT[2],SWLISTID[3]) [:PARSWL[4]]

WRITE (DIRFYLE, 30, DIRARAY) [EVNT]

WRITE(MYSELF.TASKFILE,<"ABOVE DUMP BEFORE TRANSACTION">)

WRITE(OUT,10,Sl 11 S2)

WRITE(OUT,<2A10>,TAKE(Sl,2),Sl I I "ABC")

WRITE(OUT[5,SYNCHRONIZE],30,ARRAYNAME)

ZIP Statement

Statements

The ZIP statement causes the Work Flow Language (WFL) compiler to begin compiling
the designated source code.

8600 0098-000 4-171

Statements

<zip statement>

- ZIP - WITH -,<array row> >J
L<file designator

The ZIP statement passes to the WFL compiler the source code in the array row or in
the file referenced by the file designator. The source code in the array row or file must
be valid WFL source input; otherwise, it is not executed. WFL syntax requirements are
described in the A Series Work Flow Language (WFL) Programming Reference Manual.

The EXCEPTIONEVENT is caused for a user program when the program executes a
ZIP statement.

ZIP WITH <array row>

The array row can be a BCL or EBCDIC array row or a row of a word array. If the array
row is a word array, the character type of the contents of the array row is the default
character type. For more information, refer to "Default Character Type" in Appendix
C, "Data Representation." The array row is processed as one record, but it can include
more than 72 characters. A semicolon (;) is used to separate statements within the array
row. Only one question mark character can appear in the array row.

WFL examines the contents of the array row for correct syntax, and if errors occur it
reports this fact to the Operator Display Terminal (ODT). Ifno errors are detected, the
compiled job is run. In either case, program control passes to the next statement in the
program.

ZIP WITH <file designator>

When this form of the ZIP statement is executed, the file referenced by the file
designator is passed to the WFL compiler. The file is compiled in the same manner as
any other WFL source file. If the source compiles without syntax errors, it is executed,
and control passes to the statement following the ZIP statement. If syntax errors occur
when the source is compiled, the WFL job is not executed, and control passes to the
statement following the ZIP statement.

On execution of a ZIP statement, control of the file referenced by the file designator is
passed to the operating system.

Examples of ZIP Statement

In the following example, the WFL source input in array ARAY is compiled and executed.

ZIP WITH ARAY

In the following example, the WFL source input in file FYLE is compiled and executed.

ZIP WITH FYLE

4-172 8600 0098-000

Section 5
Expressions and Functions

This section contains two main parts: one for expressions and one for intrinsic functions.
In each part, the expressions or functions are presented in alphabetical order.

Expressions
An expression describes how a value can be obtained by applying specified operations to
designated operands or primaries.

<expression>

<arithmetic express i on;>-----,.----------------1
<bit manipulation expression
<Boolean expression>-----1
<case expression-------;
<comp lex expression>------<
<condi ti onal expressi on;>-----1
<designational expression>
<function express i on>-----1
<poi nter expression>------<
<string expression>----~

The evaluation of each expression returns a different value, as follows:

Expression

Arithmetic

Boolean

Complex

Designational

Pointer

String

Value

Numerical

Boolean (TRUE or FALSE)

Complex: a real numerical part and an imaginary numerical part

Label

A value that can be used to reference a character position in an
array row

A value that is an EBCDIC, ASCII, or hexadecimal string

A bit manipulation expression operates on bits within words and makes it possible to
build the contents of a word from groups of bits contained in other words.

Case expressions and conditional expressions allow one of several alternative expressions
to be chosen for evaluation based on a selection value.

A function expression is a call on a typed procedure. The procedure can be declared in
the program or it can be an intrinsic which is a typed procedure that is a predefined
part of the ALGOL language. Intrinsic functions exist that are predefined arithmetic
expressions, predefined Boolean expressions, predefined complex expressions,
predefined pointer expressions, and predefined string expressions. For example,

8600 0098-000 5-1

Expressions and Functions

SQRT(< arithmetic expression >) is a function expression that returns the square
root of the value of <arithmetic expression> construct. Because the SQRT returns a
numeric value, it is an arithmetic function, a predefined arithmetic expression.

Note: Expressions that are very large or deeply nested can cause the
compiler to receive a stack overflow fault. The fault can be avoided by
breaking very large or deeply nested expressions into several separate
expressions or by increasing the maximum stack size by using the
task attribute STACKLIMIT.

Arithmetic Expression

Arithmetic expressions perform specified operations on designated arithmetic primaries
to return numerical values.

<arithmetic expression>

--,-<simple arithmetic expression>
L_<conditional arithmetic expression~

<simple arithmetic expression>

r~- <arithmetic operator>
--.E-+-j...,..--'-'-·<arithmet i c primary>-----'-----------------1

The evaluation of a conditional arithmetic expression is described in "Conditional
Expression" later in this section.

Precision of Arithmetic Expressions

5-2

The value of an arithmetic expression can be expressed in single or double precision,
depending on the precision of its constituents or, in the case of MUX, on the operator
involved. The value of an arithmetic expression is double precision if any variable,
function, or number of which it is composed is of type DOUBLE, or if two primaries
are combined by the double-precision operator MUX. The MUX operator allows a
double-precision result to be obtained from the multiplication of two single-precision
arithmetic primaries.

The value of a case expression is double precision if any expression in its arithmetic
expression list is of type DOUBLE. Likewise, the value of a conditional arithmetic
expression is double precision if either arithmetic expression is double precision. In
either case, single-precision arithmetic expressions are converted to double precision,
when necessary.

8600 0098-000

Expressions and Functions

Arithmetic Operators

<arithmetic operator>

**

The operators + , -, *, and I have the conventional mathematical meaning of addition,
subtraction, multiplication, and division, respectively. No two operators can be adjacent,
and implied multiplication is not allowed.

The TIMES operator also denotes multiplication.

The DIV operator denotes integer division. It has the following mathematical meaning:

Y DIV Z = SIGN(Y/Z) * ENTIER(ABS(Y/Z))

The MOD operator denotes remainder division. If Z is greater than or equal to 1, MOD
has the following meaning:

Y MOD Z = Y - (Z * (Y DIV Z))

If Z is less than 1, the MOD operator produces undefined results.

The MUX: operator multiplies either single-precision or double-precision arithmetic
primaries, and yields a double-precision result.

The ** operator denotes exponentiation. The semantics of the exponentiation operator
depend on the types and values of the primaries involved. Figure 5-1 explains the
various meanings ofY**Z.

8600 0098-000 5-3

Expressions and Functions

Integer Real

z > 0 z = 0 z < 0 z > 0 z = 0

y > 0 Note 1 1 Note 2 Note 3 1

y < 0 Note 1 1 Note 2 Note 4 1

y = 0 0 Note 4 Note 4 0 Note 4

LEGEND

Note 1: Y**Z = Y*Y*Y ... *Y (Z times)
Note 2: Y**Z =Reciprocal of Y*Y*Y .•• *Y (ABS(Z) times)
Note 3: Y**Z = EXP(Z*LN(Y))
Note 4: Value of the expression is undefined.

Figure 5-1. Exponentiation: Meaning of Y**Z

z < 0

Note 3

Note 4

Note 4

Precedence of Arithmetic Operators

5-4

The sequence in which the operations of an arithmetic expression are performed is
determined by the precedence of the operators involved. The order of precedence is as
follows:

1. ** (highest precedence)

2. *, /, MOD, DIV, MUX, TIMES

3. +,-

Operators with the same precedence are applied in their order of appearance in an
expression, from left to right.

The precedence of the assignment operator (: =) is as follows:

1. An expression to the right of an assignment operator is evaluated before the
assignment.

2. The assignment is done before the evaluation of an expression involving the variable
that is the target of the assignment.

Parentheses can be used in normal mathematical fashion to override the defined order of
precedence. An expression in parentheses is evaluated by itself, and the resulting value
is subsequently combined with the other elements of the expression. In the following
expression, for example, the addition is performed before the division because of the
parentheses:

(X+l)/Y

8600 0098-000

Expressions and Functions

In the following expression, 1 is first divided by Y and then the result is added to X:

X+l/Y

For information on the order of evaluation of subscripts, see "Arithmetic Update
Assignment" in Section 4, "Statements."

Figure 5-2 illustrates how mathematical notation can be translated to an ALGOL
arithmetic expression.

Mathematica 1 Equivalent
Expression ALGOL Express ion

A X B A * B

B
A+ - A + B/2

2

x + 1
----- (X ~ 1)/Y

y

2
D + E
----- (D + E**2)/(2 * A)

2A

3 4 * (X +Y) ** 3 4(X + Y)

M - N

-6 (M - N)/(M + N) ** (P + 5@-6)
P+5x10

(M + N)

Figure 5-2. Mathematical Notation

Types of Resulting Values

The type of the value resulting from an arithmetic operation depends on the arithmetic
operator and the types of the primaries being combined, except when the resulting
value is undefined. Figure 5-3 describes the types of quantities that result from various
combinations of arithmetic primaries.

8600 0098-000 5-5

Expressions and Functions

Operand Operand +
on on - I DIV MOD ** MUX

Left Right *

INTEGER INTEGER Note 3 REAL INTEGER INTEGER Note 1 DOUBLE
INTEGER REAL REAL REAL INTEGER REAL Note 2 DOUBLE
INTEGER DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE Note 2 DOUBLE

REAL INTEGER REAL REAL INTEGER REAL Note 2 DOUBLE
REAL REAL REAL REAL INTEGER REAL Note 2 DOUBLE
REAL DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

DOUBLE (any) DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Note 1: If the operand on the right is negative or the absolute
value of the result is greater than or equal to 2**39,
REAL; otherwise, INTEGER

Note 2: If the operand on the right is zero, INTEGER; otherwise,
REAL

Note 3: If the absolute value of the result is less than 2**39,
INTEGER; otherwise, REAL

Figure 5-3. Types of Values Resulting from Arithmetic Operations

The type of an arithmetic case expression or a conditional arithmetic expression
is DOUBLE if any of its constituent expressions are of type DOUBLE. For more
information, refer to "Precision of Arithmetic Expressions" earlier in this section. If the
conditional arithmetic expression or arithmetic case expression contains only expressions
of type INTEGER and REAL, its type is REAL. A conditional arithmetic expression or
arithmetic case expression is of type INTEGER only if all its constituent expressions are
of type INTEGER.

Arithmetic Primaries

5-6

<arithmetic primary>

§unsigned number'
arithmetic concatenation expression>----------1
string literal >------------------1
arithmetic variable>-- :=~<arithmetic expression>-
arithmetic operand~ 1

L-<partial word part,'>------'

<arithmetic operand>

1arithmetic variable
update symbols

arithmetic function designator>------1
(-<arithmetic expression>--) ----1

arithmetic case expression>--------1
<arithmetic attribute:>-------~

J
I

8600 0098-000

Expressions and Functions

<arithmetic case expression>

-<case head>- (_L<arithmetic ~xpression>=L) ----------l

<conditional arithmetic expression>

-<if clause>-<arithmetic expression>- ELSE ---------~

'-<arithmetic expression>--------------------1

<constant arithmetic expression>

An arithmetic expression that can be fully evaluated at compilation time.

The items on which arithmetic operators act are called arithmetic primaries.

A variable or.function designator used as an arithmetic primary in an arithmetic
expression must be of an arithmetic type: INTEGER, REAL, or DOUBLE.

An attribute used as an arithmetic primary must have a type that is INTEGER, REAL,
or DOUBLE. For information on file attribute and direct array attribute types, see the
A Series File Attributes Programming Reference Manual. The arithmetic-valued task
attributes are described in "Arithmetic Assignment" in Section 4, "Statements."

The length of a string literal used as an arithmetic primary must not exceed 48 bits. A
string literal used as an arithmetic primary is interpreted as either type REAL or type
INTEGER, depending on its value.

The arithmetic concatenation expression is described in "Concatenation Expression"
later in this section.

The partial word part is described in "Partial Word Expression" later in this section.

The evaluation of an arithmetic case expression is described in "Case Expression" later
in this section.

Examples of Arithmetic Primaries

Valid

5.678

x := * + 3

(14 + 3.142)

MABEL

R&3[1:2]

Y.[30:4]

"ABCD"

SQRTCX)

CASE I OF (5,15,17)

8600 0098-000

Invalid

X:= * := y

+DCB

B-A

-CA+ B)

TRUE

continued

5-7

Expressions and Functions

continued

Valid

FYLE.MAXRECSIZE

Invalid

Bit Manipulation Expression

Bit manipulation expressions provide a means of isolating a field of one or more bits from
a word, and these expressions allow words to be constructed form fields of one or more
bits from other words.

<bit manipulation expression>

--,-<concatenation expression
i_<partial word expression

Concatenation Expression

5-8

The concatenation expression forms a primary from selected parts of two or more
primaries.

<concatenation expression>

--,--<arithmetic concatenation express~
L.<Boolean concatenation expression

<arithmetic concatenation expression>

--<arithmetic primary>-- & --<arithmetic expression>--<concatenation>--j

<Boolean concatenation expression>

-<Boolean primary>-- & -<Boolean expression>--<concatenation>>----l

A concatenation expression is formed by taking a specified part of the bit pattern of an
expression value and copying it into the specified portion of a primary. The rest of the
destination primary is not changed by this operation.

Note that only arithmetic expressions can be concatenated with arithmetic primaries,
and only Boolean expressions can be concatenated with Boolean primaries.

Because the concatenation expression is a primary and the syntax for a concatenation
expression is of the form <primary> & <expression> <concatenation>,
concatenation expressions of the following form are allowed:

<primary> & <expression> <concatenation>
& <expression> <concatenation>

& <expression> <concatenation>

8600 0098-000

Expressions and Functions

If, as in the preceding example more than one concatenation term is used in a
concatenation expression, then these terms are evaluated from left to right.

Concatenation

<concatenation>

- [-<left bit to>-

<left bit to>

-,---------~<number of bits>-~
[<left bit from>- : J

-<arithmetic expressi on>---------------------1

<left bit from>

-<arithmetic expressi on>--------------------1

<number of bits>

-<arithmetic expressi on>---------------------1

The concatenation construct describes the location in the expression of the field to be
copied and the location in the destination primary where the field is to be copied.

The <left bit to> element defines the leftmost bit location of the field in the destination
word. The <left bit from> element defines the leftmost bit location of the field in the
source word. The <number of bits> element specifies the length of the field to be
copied from the source to the destination.

If the [<left bit to>: <left bit from >: <number of bits>] form is used, the field of bits to
be copied starts at <left bit from> in the source word and is <number of bits> long.

If the [<left bit to>: <number of bits>] form is used, then the field of bits to be copied
from the source word starts at bit number (<number of bits> -1) and extends through
bit 0. That is, the source field is assumed to be the low-order <number of bits> bits in
the source word.

The values of the <left bit to> and <left bit from> elements must lie within the range
0 through 4 7, where bit 0 is the rightmost, or least significant, bit in the word.

The value of the number of bits must lie within the range 1 through 48. If the value of
the number of bits exceeds the number of bits to the right of the starting bit in either
the source or destination words, these fields wrap around and are continued at bit 47,
the leftmost bit, of the same word.

If, through the use of variables, the ranges for the <left bit to> , <left bit from> , or
<number of bits> elements are exceeded, then the program is discontinued with a
fault. If 0 is used as the number of bits, no bits are copied.

8600 0098-000 5-9

Expressions and Functions

5-10

Because a concatenation expression is a primary, when it appears as an operand in a
larger expression, the concatenation expression is evaluated before any other operation
is executed. The following is an example of a concatenation expression evaluation:

Expression Evaluated as

2**4 & 1 [0:0:1) 2**(4 & 1 [0:0:1)) = 2**5 = 32

The expression is not evaluated as the following:

(2**4) & 1 (0:0: 1] = 16 & 1 [li'J:li'J: 1] = 17

Examples of Concatenation Expression

Assume that the real variables X, Y, and Z have the following values:

X = 32767 = 4"000001i'Jli'J07FFF"
y = 1024 = 4"1i'Jli'Jli'Jli'Jli'Jli'Jli'J01i'J41i'Jli'J"
z = 1 = 4" li'Jli'Jli'Jli'Jli'Jli'Jli'Jli'J01i'Jli'J 1"

Given these values, the following are examples of arithmetic concatenation expressions
and their values:

Expression Value

x & y [47:11:4) 4"400000007FFF"

x & y [47:12) 4"400000007FFF"

y & x [39:20) 4"0007FFF00400"

y & z [46:1) 4"400000000400"

0 & y [11:11) 4"000000000800"

0 & x [23:48) 4"007FFFOOOOOO"

x & y [39:12) & z [47:1) 4"804000007FFF"

y & x [19:15:8) 4"00000007F400"

Assume that the elements of the real array INFO contain information about the data in a
file. Each element of INFO contains a record number in the field [19:20], and the length
of the data in that record is in field [39:20]. That is, each element of INFO stores the
location and length of a record in the data file. Let N be a variable that contains a record
number, and let L be a variable that contains the length of that record. The following
declarations and assignment statement can be used to store a value into an element of
INFO.

DEFINE
REC_NUMF = (19:20]# 1

LENGTHF = (39:20]#i

INFO[I] := 0 & N REC_NUMF
& L LENGTHFi

8600 0098-000

Expressions and Functions

Partial Word Expression

A partial word expression isolates the value of a field of one or more bits of a specified
word.

<partial word expression>

--,-<arithmetic operand>-,-<partial word part
L<Boo lean operand>--l

<partial word part>

- . - [-<left bit>- : -<number of bits>-] ---------1

<left bit>

-<arithmetic expression>--------------------1

The <partial word part> construct describes the location in the operand of the field to
be isolated. The isolated field is copied to the low order (rightmost) field of a word of all
zeros.

The <left bit> element defines the leftmost bit location of the field in the source word.
The value of the left bit must lie within the range 0 through 47, where bit 0 is the
rightmost, or least significant, bit in the word.

The <number of bits> element specifies the length of the field. The value of the
number of bits must lie within the range 1 through 48. If the value of the number of bits
exceeds the number of bits to the right of the left bit in the source word, the field wraps
around and is continued at bit 4 7, the leftmost bit, of the same word.

If, through the use of variables, these ranges are exceeded, the program is discontinued
with a fault. If 0 is used for the number of bits, no bits are copied.

Examples of Partial Word Expression

Assume that real variables X, Y, and Z have the following values:

X = 32767 = 4"000000007FFF"
y = 1024 = 4"000000000400"
z = 2 = 411 000000000002 11

Given these values, the following are examples of arithmetic partial word expressions
and their values:

Expression

X.[5:6]

Y.[11:4]

Z.[19:481

X.[23:241

X.[23:201

8600 0098-000

Value

4"00000000003F"

4"000000000004"

4"000040000000"

4"000000007FFF"

4"0000000007FF"

5-11

Expressions and Functions

Using the INFO array example from "Concatenation Expression" earlier in this section,
the following assignments could be used to extract information from INFO.

N := INFO[I].REC NUMF;
L := INFO[I].LENGTHF;

Boolean Expression

Boolean expressions are expressions that return logical values by applying specified
operations to designated Boolean primaries.

<Boolean expression>

--,-<simple Boolean expression>
'-<conditional Boolean expression~

<simple Boolean expression>

__[~- <Boolean operator>
<Boolean primary>----'-------------------1

<Boolean operator>

1~~ EQV
IMP
!

The evaluation of a conditional Boolean expression is described in "Conditional
Expression" later in this section.

Operators in Boolean Expressions

5-12

The following table lists the operators that can be used in Boolean expressions,
along with their meanings. When two operators are listed on the same line, they are
equivalent to each other.

Operator Meaning

NOT A Logical NOT

AND Logical AND

OR! Logical inclusive OR

IMP Logical implication

EQV Logical equivalence

IS Identical to

ISNT Not identical to

EQL = Equal to

NEQ "'= Not equal to

continued

8600 0098-000

Expressions and Functions

continued

Operator

GTR >

GEQ >=

LSS <

LEQ <=

Logical Operators

Meaning

Greater than

Greater than or equal to

Less than

Less than or equal to

The values returned by the logical operators are defined in Figure 5-4.

Operand A Operand B NOT A A AND B A OR B A imp B

TRUE TRUE FALSE TRUE TRUE TRUE
TRUE FALSE FALSE FALSE TRUE FALSE

FALSE TRUE TRUE FALSE TRUE TRUE
FALSE FALSE TRUE FALSE FALSE TRUE

Figure 5-4. Results of Logical Operators

A EQV B

TRUE
FALSE
FALSE
FALSE

The Boolean operations defined in this table are performed on all 48 bits of the Boolean
primaries on a bit-by-bit basis. For example, the constant TRUE (4"000000000001")
does not have the same bit pattern as the Boolean expression NOT FALSE, because
NOT complements all 48 bits of the constant FALSE (4"000000000000"), generating
4"FFFFFFFFFFFF". Even so, the constant TRUE and the Boolean expression NOT
FALSE have the same Boolean value of TRUE because the Boolean value of a Boolean
primary is based upon the value of the low-order bit (bit 0) of the Boolean primary (O is
FALSE; lisTRUE).

Note: Exception: When NOT operates on an arithmetic relation, the
low-order bit (bit zero) is complemented; however, the other 47 bits are
not necessarily complemented. For example, if X = Y evaluates to
TRUE, then NOT(X = Y) evaluates to FALSE, not necessarily to
NOT TRUE as would be expected.

IS and ISNT Operators

The IS relational operator performs a bit-for-bit comparison on its two operands. The
operator returns the value TRUE if the corresponding bits of each operand are the same.
The ISNT operator is the negation of the IS operator.

If the IS operator is used to compare a double-precision arithmetic quantity to a
single-precision (integer or real) arithmetic quantity, the result is always FALSE.

The IS operator differs from the EQL or = operator, which does an arithmetic
comparison of its operands. Two operands caµ have the same arithmetic value with

8600 0098-000 5-13

Expressions and Functions

different bit patterns. Thus, the following pairs yield the value TRUE when compared
with the EQL or = operator, but yield the value FALSE when compared with the IS
operator:

• +o and-0

• A normalized number and the same number not in normalized format

• A number with an exponent of + 0 and the same number with an exponent of -0

• A number with bit 4 7 = 0 and the same number with bit 4 7 = 1

Relational Operators

The action of the relational operators GTR, >, GEQ, > =, LSS, <, LEQ, < =, EQL, =,
NEQ, and A = depends on the kinds of items being compared. For more information,
refer to "Arithmetic Relation," "Complex Relation," "String Relation," "Pointer
Relation," and "String Expression Relation" later in this section.

Precedence in Boolean Expressions

5-14

The components of Boolean expressions are evaluated in the following order:

1. All arithmetic, complex, pointer, and string expressions are evaluated.

2. All relations, table memberships, and assignments are evaluated.

3. Logical operators are then applied.

The order of precedence of the logical operators is as follows:

1. NOT (highest precedence)

2. AND

3. OR,!

4. IMP

5. EQV

Operators with the same precedence are applied in their order of appearance in an
expression, from left to right.

The precedence of the assignment operator (: =) is as follows:

1. A primary to the right of an assignment operator is evaluated before the
assignment.

2. The assignment is done before the evaluation of an expression involving the variable
that is the target of the assignment.

Parentheses can be used in normal mathematical fashion to override the defined order of
precedence. An expression in parentheses is evaluated by itself, and the resulting value
is subsequently combined with the other elements of the expression. In the following

8600 0098-000

Expressions and Functions

expression, for example, the OR is performed before the AND operator because of the
parentheses:

X AND (Y OR Z)

In the following expression the AND is performed before the OR:

X AND Y OR Z

For information on the order of evaluation of subscripts, see "Arithmetic Update
Assignment" in Section 4, "Statements."

Boolean Primaries

<Boolean primary>

-~--~~·<Boolean value
<Boolean opera

<Boolean varia

<arithmetic re
<Boolean conca
<complex relat
<string relati
<pointer relat
<string expres
<arithmetic ta
<pointer table

<Boolean operand>

nd"
-C:-<partial word part

ble>-c= :=-<Boolean primary>-
<update symbols

lat ion"
tenation expression"
ion
on,,
ion'-
sion relation"
ble membership
membershi > p

<Boolean function designator> 1<Boolean variable

(-<Boolean expression>--)
<Boo 1 ean case express i on>-----1
<Boolean attribute>----~

<Boolean case expression>

-<case head>-- (_L:-<B_o_o_l_ea_n_e~pression;J_)

<conditional Boolean expression>

-l

-<if clause>--<Boolean expression>-- ELSE -<Boolean expression>>-----1

The Boolean concatenation expression is described in "Concatenation Expression"
earlier in this section.

The partial word part is described in "Partial Word Expression" earlier in this section.

The evaluation of a Boolean case expression is described in "Case Expression" later in
this section.

8600 0098-000 5-15

Expressions and Functions

Boolean Value

<Boolean value>

L ~~~~E----.----------------------i

The Boolean value TRUE is represented internally as a 48-bit word containing
4"000000000001", and the Boolean value FALSE is represented internally as a 48-bit
word containing 4"000000000000".

Arithmetic Relation

<arithmetic relation>

-<arithmetic expression>-<relational operator;>-----------

-+-<ari thmeti c expressi on;>--------------------i

<relational operator>

t <string relational operator>
IS -------~---1
ISNT -------~

<string relational operator>

An arithmetic relation performs an arithmetic comparison of the values of two arithmetic
expressions. The value of the relation is either TRUE or FALSE.

Complex Relation

<complex relation>

-<comp 1 ex express ion>-<comp 1 ex equality operator,,.._--------t

-+-<compl ex expressi on,.,._--------------------1

5-16 8600 0098--000

Expressions and Functions

<complex equality operator>

1 ~Qtl
NEQ
"=

A complex relation performs a comparison between the values of two complex
expressions. Because one of the forms of a complex expression is an arithmetic
expression, the complex relation can also be used to compare a complex value and an
arithmetic value. In a complex relation, the only allowed relational operators are = ,
EQL, A =, and NEQ.

String Relation

<string relation>

-<pointer part>-<re 1 at i ona 1 operator'::>-------------~

~-,-<pointer part>- FOR -<arithmetic expression> ~
L<stri ng 1itera1 >>-..-----------------1

L. FOR -<arithmetic expression

<pointer part>

<pointer expression::>------------<
L.<update pointer:.-J

The string relation syntax causes a comparison to be performed between two character
strings referenced by two pointer expressions, or between the character string
referenced by a pointer expression and a string literal. The character strings are
compared according to the EBCDIC collating sequence. The arithmetic expression
specifies the number of characters to be compared (the repeat count). If a string literal
follows the relational operator and a repeat count has been specified, then the string
literal is concatenated with itself, if necessary, to form a 48-bit literal. The comparison is
repeated until the repeat count is exhausted. If no repeat count is specified, the string
characters are compared once.

Pointer Relation

<pointer relation>

-<pointer express i on>-<equa 1 i ty operator>-<poi nter expressi on>>---1

<equality operator>

1
EQL-~----------------------<

~~
8600 0098-000 5-17

Expressions and Functions

A pointer relation determines whether two pointer expressions refer to the same
character position in the same array row. If the character sizes of the two pointer
expressions are unequal, the comparison always yields the value FALSE.

A pointer relation should not be confused with a string relation. A string relation
compares the character strings referenced by pointer expressions. A pointer relation
compares the pointer expressions themselves. For example, assume that pointers Pl
and P2 are initialized as follows:

POINTER Pl,P2;
REAL ARRAY A,B[0:1];
Pl := POINTER(A,8);
P2 := POINTER(B,8);
REPLACE Pl BY "A";
REPLACE P2 BY "A";

Given these initializations, the following string relation has a value of TRUE:

Pl EQL P2 FOR 1

The following pointer relation has a value of FALSE because Pl refers to array A and P2
refers to array B:

Pl EQL P2

String Expression Relation

<string expression relation>

-<string expression>-<string relational operator,.._ ______ _,..

~string expression-----------------------1

The string expression relation compares two string expressions according to the collating
sequence of the character type of the string expressions. Only string expressions of the
same character type can be compared.

Two strings are equal only if the lengths of the two strings are equal and if every
character in one string is equal to the corresponding character in the other string. Two
null strings are equal.

One string is strictly greater than a second string only if at least one of the following
conditions is true:

• The leftmost character in the first string that is not equal to the corresponding
character in the second string compares as greater than the corresponding character
in the second string.

• The length of the first string is greater than the length of the second string, and the
two strings compare as equal for the length of the second string.

5-18 8600 0098-000

Expressions and Functions

Whenever two string literals can be compared as two arithmetic primaries, they are
so compared. For example, the following Boolean expression yields a value of FALSE,
because the two quoted strings are treated as two arithmetic primaries:

"B" >·"AA"

However, if the two string literals "B" and "AA" are assigned to two string variables T and
S, respectively, then the following Boolean expression yields a value of TRUE, because
the first character of T is greater than the first character of S:

T > S

For example, if a string Sl is assigned the value "AAB12+ ",then all of the following
comparisons are TRUE:

Sl EQL TAKE(Sl,6)
Sl NEQ HEAD(Sl,ALPHA)
Sl GTR HEAD(Sl,ALPHA)
Sl LSS DROP(Sl,3)
Sl LSS DROP(Sl,1)

Table Membership

<arithmetic table membership>

-<arithmetic expression>- IN -'-<truth set table>-----------t

<pointer table membership>

-<pointer expression>- IN -<truth set table>-----------·'

'-L-Fo_R_-'-< __ a_r1-.t-h-me_t_i_c_e_x_pr_e_s_s-io_n_:>:J _____________ ____.

The table membership constructs allow testing to determine whether a character is
a member of a truth set. The character can be either a character in a string literal
or a character in an array row referenced by a pointer expression. In a pointer table
membership primary, the FOR <arithmetic expression> part applies the membership
test to the first arithmetic expression characters to which the pointer expression points.

The subscripted variable form of the truth set table construct allows several truth
set tables to be contained in one array row. The value of the subscript indicates the
beginning of the desired table within the array row. For a description of truth sets, refer
to "TRUTHSET Declaration" in Section 3, "Declarations."

Examples of Boolean Expression

Valid

TRUE

BOOL

B.[11:11

8600 0098-000

Invalid

SQRT(X)

5.67

-X

continued

5-19

Expressions and Functions

continued

Valid

B :=TRUE

Bl:=* AND 82

CSIN(Cl) = CSIN(C2)

X>Y

NOTB

R=3

PTR = "ABCD"

Pl< P2 FOR 20

Sl S2 = S3

HAPPENED(E)

CASE I OF (81, TRUE, X=Y)

NOT FYLE.OPEN

Pl= P2

BOOL & TRUE [19:1]

X IN ALPHAS

Pl IN ALPHAS FOR 6

Invalid

R +TRUE

CSIN(Cl) > CSIN(C2)

Pl> P2

Sl IS "ABCD"

Case Expression

5-20

Case expressions provide a means of selecting one expression form a list of expressions
for evaluation.

<case expression>

l arithmetic case expression>
Boolean case expression;--~-1
complex case expression
de~ignational case e~pression
pointer case express1on.,._----~

In a case expression, the list of expressions must be composed of expressions of the same
kind: for example, all arithmetic expressions or all Boolean expressions. The expression
to be evaluated is selected as follows:

1. The arithmetic expression in the case head is evaluated and rounded by an integer
value, if necessary.

2. This value is used as an index into the expression list. The component expressions
of the expression list are numbered sequentially from 0 through N-1, where N is the
number of expressions in the list.

3. The expression selected by the index is evaluated, and its value is the value of the
case expression.

8600 0098-000

Expressions and Functions

If the value of the index lies outside the range 0 through N-1, the program is
discontinued with a fault.

The type of an arithmetic case expression is DOUBLE if any of its constituent
expressions is of type DOUBLE; in this case1 any constituent expression that is not
of type DOUBLE is extended to double precision. The type of an arithmetic case
expression is INTEGER if and only if all of its constituent expressions are of type
INTEGER. Otherwise, an arithmetic case expression is of type REAL.

Examples of Case Expression

CASE N OF (2, 20, 100, 37)

CASE X. [27:2] OF (TRUE, FALSE, TRUE, TRUE)

CASE I OF (Cl, C2, COMPLEX(X,Y))

CASE TSTS[INDEX] OF (LBLl, LBL2, AGAIN, NEXT, MORE)

CASE CHAR.SZF OF (PTR, PTS, POINTER(A), PTEMP, POLO)

Complex Expression

Complex expressions are expressions that return complex values (arithmetic values
that consist of a real part and an imaginary part) by applying specified operations to
designated complex primaries.

<complex expression>

arithmetic expression>
simple complex expression>
conditional complex expression;J

<simple complex expression>

r+- <complex operator>
~complex primary>---...L..-----------------1

<complex operator>

<complex primary>

---r-<arithmetic primary~
L<complex operand> · ~

** --<arithmetic primar;

8600 0098-000 5-21

Expressions and Functions

5-22

<complex operand>

1complex variable
:= -<complex primary

<update symbo 1 s>-----1
comp 1 ex function des i gnator·>--------1
(-<complex expression>-) ---------1
complex case expression>-------~

<complex case expression>

-<case head>- (_[<complex e~pression>=L) ________ ____,

<conditional complex expression>

-<if clause>-<complex expression>- ELSE -<complex expression>>----;

The imaginary part of a complex value can be equal to zero. Therefore, an arithmetic
expression is, whenever necessary, considered to be the real part of a complex expression
with a zero imaginary part. No automatic type conversion from complex to arithmetic
exists.

The sequence in which the operations of a complex expression are performed is
determined by the precedence of the operators involved. The order of precedence is as
follows:

1. •, I (highest precedence)

2. +,-

Operators with the same precedence are applied in their order of appearance in an
expression, from left to right.

The precedence of the assignment operator (: =) is as follows:

1. A primary to the right of an assignment operator is evaluated before the
assignment.

2. The assignment is done before the evaluation of an expression involving the variable
that is the target of the assignment.

For information on the order of evaluation of subscripts, see "Arithmetic Update
Assignment" in Section 4, "Statements."

Parentheses can be used in normal mathematical fashion to override the defined order of
precedence. An expression in parentheses is evaluated by itself, and the resulting value
is subsequently combined with the other elements of the expression. In the following
expression, for example, the addition is performed before the division because of the
parentheses:

(C2 + Cl)/C2

In the following expression, Cl is first divided by C2 and then the result is added to C2.

8600 0098-000

Expressions and Functions

C2 + Cl/C2

The evaluation of a conditional complex expression is described in "Conditional
Expression" later in this section.

The evaluation of a complex case expression is described in "Case Expression" earlier in
this section.

Examples of Complex Expression

Cl

Cl+3

Cl ** X

Cl := COMPLEX(X,Y)

Cl := * - C2

CABS(Cl)

(COMPLEX(R,S) * CCON)

CASE I OF (Cl, C2, CLN(C2))

IF BOOL THEN Cl ELSE CONJUGATE(Cl)

Conditional Expression

Conditional expressions are expressions the return one of two possible values, depending
upon a specified condition.

<conditional expression>

l conditional arithmetic expression>
conditional Boolean expression;--~-i
conditional complex expression
cond!t!onal de~ignational e~pression
cond1t1onal pornter express1on~----~

Conditional expressions are of the following form:

IF <Boolean expression> THEN <expression> ELSE <expression>

Either the first or the second expression is selected for evaluation, depending on the
value of the Boolean expression. The two alternative expressions must be of the same
kind: for example, two arithmetic expressions or two Boolean expressions.

The expression to be evaluated is selected as follows:

8600 0098-000 5-23

Expressions and Functions

1. The Boolean expression following IF is evaluated.

2. If the resulting value is TRUE, the expression following THEN is evaluated, and the
expression following ELSE is ignored.

3. If the resulting value is FALSE, the expression, following THEN is ignored, and the
expression following ELSE is evaluated.

If either of the two expressions is itself a conditional expression, the process is repeated
until an unconditional expression is selected for evaluation.

The type of a conditional arithmetic expression is DOUBLE if either of its constituent
expressions is of type DOUBLE; in this case, a constituent expression that is not of
type DOUBLE is extended to double precision. The type of a conditional arithmetic
expression is INTEGER if and only if both of its constituent expressions are of type
INTEGER. Otherwise, a conditional arithmetic expression is of type REAL.

Examples of Conditional Expression

IF BOOL THEN 47 ELSE 95

IF A = B THEN BOOL ELSE FALSE

IF NOT BOOL THEN Cl ELSE C2

IF ALLDONE THEN EOJLBL ELSE NEXTLBL

IF CHAR.SZF = 8 THEN PTRINEBCDIC ELSE PTRINHEX

Designational Expression

5-24

Designational expressions are expressions that return a value that is a label.

<designational expression>

---r::::<label designator>
C:<designational case expression> ;J

<conditional designational expression

<label designator>

---r-<label identifier>
L-<switch label identifier>- [--<subscript>-] mJ

<designational case expression>

--<case head>- (Ldesignationai expression;:::L) ---------1

8600 0098-000

Expressions and Functions

<conditional designational expression>

-<if clause>-<designational expression>- ELSE-------

~designational expression--------------------1

If a designational expression is a label identifier, then the value of the expression is that
label.

If a designational expression is a subscripted switch label identifier, then the numerical
value of the subscript designates one of the elements in the switch label list. The value
of the subscript is rounded, if necessary, to an integer. This value is used as an index into
the switch label list. The entries of the list are numbered sequentially from 1 through N,
where N is the number of entries in the list. The entry corresponding to the value of the
subscript is selected. If the value of the subscript is outside the range of the switch label
list, program control continues to the next statement without any error indication. For
more information about the switch label list, refer to "SWITCH LABEL Declaration" in
Section 3, "Declarations."

The evaluation of a designational case expression is described in "Case Expression"
earlier in this section.

The evaluation of a conditional designational expression is described in "Conditional
Expression" earlier in this section.

Examples of Designational Expression

END LABEL

CHOOSELABEL[I+2]

CASE X OF (GOTDATA, GOTERR, GOTREAL, GOTCHANGE, ESCAPE)

IF K = 1 THEN SELECT[2] ELSE START

Function Expression

A function expression is an expression that returns a single value that is the result of
invoking a procedure. The procedure can be declared in the program, or it can be an
intrinsic procedure.

<function expression>

l •r;thmet;c '""ct;oo de,;gn~
Boolean function designator
complex function designator
pointer function designator
string function designator

The two kinds of functions are predefined, or intrinsic, functions which are part of the
ALGOL language, and programmer-defined functions, which are typed procedures that
are declared in the program.

8600 0098-000 5-25

Expressions and Functions

The intrinsic functions are described later in this section in "Intrinsic Functions."

Arithmetic Function Designator

An arithmetic function designator specifies a function that returns an arithmetic value: a
value of type INTEGER, REAL, or DOUBLE.

<arithmetic function designator>

procedure identifier>
arithmetic intrinsic name> J L<actual parameter part:.-1

<procedure reference array element

<arithmetic intrinsic name>

Any of the names listed under "Arithmetic Intrinsic Names" later in this section.

The procedure specified by the procedure identifier or the procedure reference array
element must be of type INTEGER, REAL, or DOUBLE.

Boolean Function Designator

A Boolean function designator specifies a function that returns a Boolean value (a value
of TRUE or FALSE).

<Boolean function designator>

t <procedure identifier>
<Boolean intrinsic name> . J L<actual parameter part:.-l
<procedure reference array element

<Boolean intrinsic name>

Any of the names listed under "Boolean Intrinsic Names" later in this section.

The procedure specified by the procedure identifier or the procedure reference array
element must be of type BOOLEAN.

Complex Function Designator

5-26

A complex function designator specifies a function that returns a complex value: a value
with a real part and an imaginary part.

<complex function designator>

t:procedure identifier>
complex intrinsic name> J L<actual parameter part:.-l
procedure reference array element

The procedure specified by the procedure identifier or the procedure reference array
element must be of type COMPLEX.

8600 0098-000

Expressions and Functions

Pointer Function Designator

A pointer function designator specifies a function that returns a pointer value: a value
that can be used to refer to a character position in an array row.

<pointer function designator>

-<pointer i ntri ns i c name>-<actua l parameter part~--------<

Unlike the other function designators, the syntax for pointer function designator does
not allow a procedure identifier as part of the syntax. There is no PROCEDURE
declaration that allows declaring a procedure of type POINTER.

String Function Designator

A string function designator specifies a function that returns a string value: a
hexadecimal string, an ASCII string, or an EBCDIC string.

<string function designator>

<string procedure identifier>
string intrinsic name> J L<actual parameter part~
procedure reference array element

<string intrinsic name>

Any of the names listed under "String Intrinsic Names" later in this section.

The procedure reference array element must designate a procedure declared with a type
of HEX STRING, ASCII STRING, or EBCDIC STRING.

Pointer Expression

A pointer expression is an expression that returns a value that is a pointer, which can be
used to reference a character position in an array row.

<pointer expression>

~simple pointer expression>
L..:conditional pointer expression~

<simple pointer expression>

1pointer primary>
skip

pointer assignmen~
<character array part~

8600 0098-000 5-27

Expressions and Functions

5-28

<pointer primary>

1 pointer identifier>
(--<pointer expression>--)
pointer case expression>

<pointer function designator~
<pointer case expression>

--<case head>-- (_[<pointer e~pression>=L) -----------t

<skip>

--C:: ~~arithmetic primary

<character array part>

---r-<character array row>

'-<character array name>-- [~c~i;rt>=l] J
<character array row>

An array row whose identifier is declared with a character type.

<character array name>

An array name whose identifier is declared with a character type.

<conditional pointer expression>

--<if clause>--<pointer expression>-- ELSE -<pointer expression>>---1

A pointer must be initialized before it can be used; otherwise, a run-time error occurs. A
pointer can be initialized in the following ways:

• By the use of a pointer assignment

• By the appearance of an update pointer in any of the following:

A REPLACE statement

A SCAN statement

A string relation in a Boolean expression

The DINTEGER function

The DOUBLE function

The INTEGER function

When a one-dimensional array designator is used as a pointer expression, it references
the beginning of the array, no matter what its lower bounds are.

8600 0098-000

Expressions and Functions

The evaluation of a conditional pointer expression is described in "Conditional
Expression" earlier in this section.

A one-dimensional array designator or a fully subscripted variable can be interpreted as
a pointer primary whenever context determines that no conflict exists with other valid
constructs (for example, when a pointer expression is required). This syntax can be used
for such constructs as the following, where A and B are one-dimensional arrays:

REPLACE A BY B FOR 10 WORDS

The evaluation of a pointer case expression is described in "Case Expression" earlier in
this section.

If the skip construct is used, the value of the arithmetic primary determines the
adjustment to the value of the pointer primary. If N is the value of the arithmetic
primary, the pointer is adjusted as follows:

• IfN is less than or equal to 0, the pointer is not adjusted.

• IfN is greater than 0, then the pointer is adjusted N characters to the right
when the skip construct specifies"+", or N characters to the left if it specifies"-".
Skipping to the right is defined as incrementing the value of the character index.
Skipping to the left is defined as decrementing this value.

If the adjustment to the value of the pointer primary is given by the value of an
arithmetic expression, note that the arithmetic expression must be enclosed in
parentheses. For example, the following expression is invalid and generates a
compile-time error:

PTR + X*Y

The expression is written correctly as follows:

PTR + (X*Y)

The use of a pointer expression to skip up and down an array for more than a few
words is expensive. Each word of the array is accessed in order to ensure that no
memory-protected words are encountered. For pointer moves of more than a few words,
it is faster to reindex the array and use the POINTER function for word arrays, or to
reindex the array for character arrays.

8600 0098-000 5-29

Expressions and Functions

Examples of Pointer Expression

PTR

PTS+l5

PTR := POINTER(A)

(PTEMP + (X*Y))

HEXARAY

HEXARAY[N]

CASE VAL OF (PTR,PTS,PTEMP,PSORCE)

POINTER(INF0,8)

READLOCK(PTR,POLD)

IF BOOL THEN Pl ELSE POINTER(A)

String Expression

5-30

A string expression is an expression that returns a value that is a hexadecimal string,
EBCDIC string, or ASCII string.

<string expression>

-<string primary,._-------------------~

~ [t<string concatenation operator>--<stri ng prirnary>J]

<string concatenation operator>

---,- CAT
L !!

<string primary>

l string constant
string variable>--------1
subscripted string variable>----i
string function designator·,,_ _ _,
string-valued library attribute
(-<string expression>--)

8600 0098-000

Expressions and Functions

<string constant>

EEMPTY
EBCDIC string constant>r-d-t
ASCII string constant>
hexadecimal string constant

<EBCDIC string constant>

EMPTY8 ------..,.-----------------1
---C:<EBCDIC string literal):]

<ASCII string constant>

EMPTY7 ---------------~--------1

ASCII code
47 --, 11 -<hexadecimal string>- 11

470 _J

27 --, 11 --<quaternary string>- 11

270 _J

17 --, 11 --<binary string>- 11

170 _J

<hexadecimal string constant>

4 --, 11 --<hexadecimal string>- 11

40 _J

24 --, 11 --<quaternary string>- 11

240 _J

14--, 11 -<binary string>- 11

140 _J

<string variable>

--<string i dentifier·~--------------------1

<subscripted string variable>

-<string array identifier>- [~c~i;rt>OJ-] ---------1

<string-valued library attribute>

-<library identifier>- • --<string-valued library attribute name>-----1

<constant string expression>

A string expression that can be fully evaluated at compilation time.

In the syntax for EBCDIC string constant, ASCII string constant, and hexadecimal
string constant, the string codes determine the interpretation of the characters between
the quotation marks (11) and have no effect on the justification of a string. A string is
always left-justified; therefore, any 0 (zero) in a string code is ignored.

8600 0098-000 5-31

Expressions and Functions

5-32

The <EBCDIC code> construct is optional in an EBCDIC string constant containing
an EBCDIC string only if the default character type is EBCDIC. The <ASCII code>
construct is optional in an ASCII string constant containing an ASCII string only if
the default character type is ASCII. For more information, refer to "String Code" in
Section 2, "Language Components," and "Default Character Type" in Appendix C,
"Data Representation."

The reserved words EMPTY8, EMPTY7, and EMPTY4 represent null strings of the
character types EBCDIC, ASCII, and hexadecimal, respectively. The reserved word
EMPTY represents a null string of the default character type.

For more information about string-valued library attributes, refer to "Library
Attributes" in Section 8, "Library Facility."

String Concatenation

The operators CAT and 11 are used to concatenate two strings. The concatenation of
two strings yields a new string whose length is the sum of the lengths of the two original
strings, and whose value is formed by joining a copy of the second string immediately
onto the end of a copy of the first string.

Only strings of the same character type can be concatenated.

If more than one string primary is used in a concatenation operation, the string
primaries are evaluated from left to right.

No more than 256 characters can appear between one pair of quotation marks in a
string constant; however, as many as 4095 characters can appear in an EBCDIC string
constant, ASCII string constant, or hexadecimal string constant.

8600 0098-000

Expressions and Functions

Examples of String Expression

8"ABCD123" % result = ABCD123

""WHY"48"6F"""" % result = "WHY?"

EMPTY8 % result =

S2 11 S3

"AC" II S2 II "123"

SI I I TRANSLATE(S2,HEXTOEBCDIC)

HEAD (S ,ALPHA)

TAIL(S,NOT "-")

REPEAT("ABC" ,3)

STRING(256,*)

TAKE(S,2)

DROP(TAKE(S,4),2)

TRANSLATE(S,HEXTOEBCDIC)

Intrinsic Functions
Intrinsic functions are typed procedures that are predefined in the ALGOL language;
that is, intrinsic functions can be used without being declared.

Intrinsic Names by Type Returned

The intrinsic functions of ALGOL return values of type INTEGER, REAL, DOUBLE,
BOOLEAN, COMPLEX, POINTER, and STRING.

Arithmetic Intrinsic Names

The following intrinsic functions return arithmetic values that is, (values of type
INTEGER, REAL, and DOUBLE).

Alphabetical Listing of Arithmetic Intrinsic Functions

The type of the value each function returns, INTEGER, REAL, or DOUBLE, is indicated
by I, R, or D, respectively, following the name of the function.

ABS CR) ARCCOS (R) ARCSIN (R)

continued

8600 0098-000 5-33

Expressions and Functions

continued

ARCTAN (R) ARCTAN2 (R) ARRAYSEARCH (I)

ATANH (R) CABS (R) CHECKSUM (R)

CLOSE (I) COMPILETIME (R) COS (R)

GOSH (R) COTAN (R) DABS (D)

DALPHA CD) DAND (D) DARCCOS (D)

DARCSIN (D) DARCTAN (D) DARCTAN2 (D)

DCOS (D) DCOSH (D) DECIMAL (D)

DELTA (I) DEQV (D) DERF (D)

DERFC (D) DEXP (D) DGAMMA (D)

DIMP (D) DINTEGER (D) DLGAMMA (D)

DELINKLIBRARY (I) DLN (0) DLOG (D)

DMAX (D) DMIN (D) DNABS (D)

DNOT (D) DOR (D) DOUBLE (D)

DSCALELEFT (D) DSCALERIGHT (D) DSCALERIGHTT (D)

DSIN (D) DSINH (D) DSQRT (D)

DTAN (D) DTANH (0) ENTIER (I)

ERF (R) ERFC (R) EXP (R)

FIRST (R) FIRSTONE (I) FIRSTWORD (R)

GAMMA CR) IMAG (R) INTEGER (I)

INTEGERT (I) LENGTH (I) LINENUMBER (I)

LINKLIBRARY (I) LISTLOOKUP (I) LN (R)

LNGAMMA (R) LOG (R) MASKSEARCH (I)

MAX (R) MESSAGESEARCHER (I) MIN (R)

MLSTRANSLATE (I) NABS (R) NORMALIZE (R)

OFFSET (I) ONES (I) OPEN (I)

POTC (D) POTH (0) POTL (D)

PROCESSID (I) RANDOM (R) READLOCK (R)

REAL (R) REMAININGCHARS (I) SCALELEFT (I)

SCALERIGHT (I) SCALERIGHTF (R) SCALERIGHTT (I)

SECONDWORD (R) SETACTUALNAME (I) SIGN (I)

SIN (R) SINGLE (R) SINH CR)

SIZE (I) SQRT (R) TAN CR)

TANH (R) TIME (R) VALUE (I)

WAIT (I) WAITANORESET (I)

5-34 8600 0098-000

Expressions and Functions

Arithmetic Intrinsic Functions by Type of Value Returned

Intrinsic Functions Returning Values of Type INTEGER

ARRAYSEARCH CLOSE

DELTA ENTIER

INTEGER INTEGERT

LINENUMBER LINKLIBRARY

MASKSEARCH MESSAGESEARCHER

OFFSET ONES

PROCESSID REMAININGCHARS

SCALERIGHT SCALERIGHTI

SIGN SIZE

WAIT WAITANDRESET

Intrinsic Functions Returning Values of Type REAL

ABS ARCCOS

ARCTAN ARCTAN2

CABS CHECKSUM

cos COSH

ERF ERFC

FIRST FIRSTWORD

IMAG LN

LOG MAX

NABS NORMALIZE

READ LOCK REAL

SECONDWORD SIN

SINH SQRT

TANH TIME

Intrinsic Functions Returning Values of Type DOUBLE

DABS DALPHA

DARCCOS DARCSIN

DARCTAN2 DCOS

DECIMAL DEQV

DE RFC DEXP

DIMP DINTEGER

DLN DLOG

DMIN DNA BS

8600 0098-000

DELI N KU BRARY

FIRSTONE

LENGTH

LISTLOOKUP

MLSTRANSLATE

OPEN

SCALE LEFT

SETACTUALNAM E

VALUE

ARCS IN

ATANH

COMPILETIME

COTAN

EXP

GAMMA

LNGAMMA

MIN

RANDOM

SCALERIGHTF

SINGLE

TAN

DANO

DARCTAN

DCOSH

DERF

DGAMMA

DLGAMMA

DMAX

DNOT

continued

5-35

Expressions and Functions

continued

DOR

DSCALERIGHT

DSINH

DTANH

POTL

Boolean Intrinsic Names

DOUBLE

DSCALERIGHIT

DSQRT

POTC

DSCALELEFT

DSIN

DTAN

POTH

The following intrinsic functions return values of type BOOLEAN:

ACCEPT AVAILABLE BOOLEAN

CHANGEFILE CHECKPOINT FIX

FREE HAPPENED MLSACCEPT

READ LOCK READ REMOVEFILE

SEEK SPACE WAIT

WRITE

Complex Intrinsic Names

The fallowing intrinsic functions return values of type COMPLEX:

ccos
CLN

CONJUGATE

CSQRT

Pointer Intrinsic Names

CEXP

COMPLEX

CSIN

The following intrinsic functions return values of type POINTER:

POINTER READLOCK

String Intrinsic Names

The following intrinsic functions return values of type STRING: .

5-36

DROP

REPEAT

STRING4

STRINGS

TAKE

HEAD

STRING

STRING?

TAIL

TRANSLATE

8600 0098-000

Expressions and Functions

Intrinsic Function Descriptions

For arithmetic intrinsic functions, all arithmetic parameters are assumed to be
call-by-value. For a further description of some of the arithmetic intrinsic functions,
refer to the A Series System Software Utilities Operations Reference Manual.

ABS Function
- ABS - (-<arithmetic expression>-) -------------1

The ABS function returns, as a real value, the absolute value of the specified arithmetic
expression.

ACCEPT Statement

The ACCEPT statement returns a Boolean value. For more information, refer to
"ACCEPT Statement" in Section 4, "Statements."

ARCCOS Function
- ARCCOS - (-<arithmetic expression>-) -----------1

The ARCCOS function returns, as a real value, the principal value of the arccosine (in
radians) of the specified arithmetic expression. The arithmetic expression is greater
than -1 and less than 1. If the value of the arithmetic expression is not in this range, a
run-time error occurs.

ARCSIN Function
- ARCSIN - (-<arithmetic expression>-) ------------<

The ARCSIN function returns, as a real value, the principal value of the arcsine (in
radians) of the specified arithmetic expression. The arithmetic expression is greater
than -1 and less than 1. If the value of the arithmetic expression is not in this range, a
run-time error occurs.

ARCTAN Function
- ARCTAN - (-<arithmetic expression>-) -----------1

The ARCTAN function returns, as a real value, the principal value of the arctangent (in
radians) of the specified arithmetic expression. ·

ARCTAN2 Function
- ARCTAN2 - (-<arithmetic expression>- • _________ __,

-+-<arithmetic expression>-) -----------------1

The ARCTAN2 function returns, as a real value, the arctangent (in radians) of the
following:

8600 0098-000 5-37

Expressions and Functions

first <arithmetic expression>/ second <arithmetic expression>

The returned value is adjusted according to the following formuJas so that the value falls
in the range (-pi to +pi).

In the following equations, let X be the value of the first arithmetic expression, and let Y
be the value of the second arithmetic expression. If Y is greater than 0, then

ARCTAN2(X,Y) = ARCTAN(X/Y)

If Y equals 0, then

ARCTAN2(X,Y) = SIGN(X) * pi I 2

If Y is less than 0, then

ARCTAN2(X,Y) = ARCTAN(X/Y) + SIGN(X) *pi

ARRA YSEARCH Function

5-38

- ARRAYSEARCH - (-<arithmetic expression>- • _______ ___,

-+-<arithmetic expression>- • ~<array row> ~
L..<subscripted variable>-l

The ARRAYSEARCH function searches for a specific value within an array. The first
arithmetic expression is the value being searched for (the target value). The second
arithmetic expression is the mask to be used in the search. The third parameter is a row
or subscripted variable of an array of type INTEGER, REAL, BOOLEAN, or COMPLEX.
For information on the subscripted variable, see "Arithmetic Assignment" in Section 4,
"Statements."

If the third parameter is an array row, the search begins with the last element of the
specified array row; otherwise, the search begins with the element specified by the
subscripted variable. Each element, in turn, is retrieved and the Boolean operation
AND is performed using the value of the mask and the element as the operators. The
Boolean operation AND is also performed on the target value. The results of these
two operations are then compared with each other, using the IS operator. For more
information on the IS operator, see "IS and ISNT Operators" earlier in this section.

If the comparison yields the value TRUE, the function returns an integer value equal to
the difference between the subscript of the element where the value is found and the
subscript of the first element in the array. If the comparison yields the value FALSE, the
subscript of the element to be retrieved is decremented by 1, and the search continues
until either a match is found or the first element of the array has been examined. If
no match is found, -1 is returned. For information on <array row>, see "ARRAY
Declaration" in Section 3, "Declarations."

The ARRAYSEARCH function can be used on paged (segmented) arrays and unpaged
(unsegmented) arrays.

8600 0098-000

Expressions and Functions

ATANH Function
- ATANH - (-<arithmetic expression>-) ------------<

The ATANH function returns, as a real value, the hyperbolic arctangent of the specified
arithmetic expression.

AVAILABLE Function
- AVAILABLE - (-<event designator>-) -----------1

The AVAILABLE function is a Boolean function that returns the value TRUE if the
available state of the specified event is TRUE (available) and returns the value FALSE if
the available state is FALSE (not available).

BOOLEAN Function
- BOOLEAN - (-<arithmetic expression>-) ------------1

The BOOLEAN function returns the value of the arithmetic expression as a Boolean
value. If the arithmetic expression is double precision, its value is first truncated to
single precision.

CABS Function
- CABS - (-<complex expression>-) -------~----1

The CABS function returns, as a real value, the absolute value of the specified complex
expression.

CCOS Function
- CCOS - (-<complex expression>-) ------------1

The CCOS function returns, as a complex value, the complex cosine of the specified
complex expression.

CEXP Function
- CEXP - (-<complex expression>-) ------------1

The CEXP function returns the following as a complex value, where e is the base of the
natural logarithms:

e ** <complex expression>

CHANGEFILE Statement

The CHANGEFILE statement returns a Boolean value. For more information, refer to
"CHANGEFILE Statement" in Section 4, "Statements."

8600 0098-000 5-39

Expressions and Functions

CHECKPOINT Statement

The CHECKPOINT statement returns a Boolean value. For more information, refer to
"CHECKPOINT Statement" in Section 4, "Statements."

CHECKSUM Function
- CHECKSUM - (-<array row>- , -<starting index>- , -----·

-t-<ending index>-) ---------------------1

<starting index>

-<arithmetic expressi on:>-------------------i

<ending index>

-<arithmetic expression...--------------------<

The CHECKSUM function returns, as a real value, a hash function of all bits in the
words of the array row beginning with the word indexed by the < starting index> and
up to, but not including, the word indexed by the < ending index> . Both the starting
index and ending index are rounded to an integer value before they are used to index
the array row. The value of this function can be used to verify the integrity of data
being transferred or stored. The array row must be single precision and unpaged
(unsegmented).

CLN Function
- CLN - (-<complex expression>-) ___________ __,

The CLN function returns, as a complex value, the natural logarithm of the specified
complex expression.

CLOSE Statement

The CLOSE statement returns an integer value. For more information, refer to
"CLOSE Statement" in Section 4, "Statements."

COMPILETIME Function

5-40

- COMPILETIME - (-<constant arithmetic expression>-) ------1

The COMPILETIME function obtains various system time values at compilation time,
for use by the object program. The form of the value returned by the COMPILETIME
function is the same as that returned by the TIME function for the same argument. The
compiler computes the returned value by using the TIME function at compilation time.
For more information, refer to "TIME Function" later in this section.

COMPILETIME(20) returns, in integer form, the program version number as set by the
most recent VERSION compiler control option.

8600 0098-000

Expressions and Functions

COMPILETIME(21) returns, in integer form, the program cycle number as set by the
most recent VERSION compiler control option.

COMPILETIME(22) returns, in integer form, the program patch number as set by the
most recent VERSION compiler control option.

COMPLEX Function
- COMPLEX - (-<arithmetic expression>-- , -----------t
~-<arithmetic expression>--) -----------------i

The COMPLEX function returns the following as a complex value, where i is the square
root of-1:

first <arithmetic expression>+ i * second <arithmetic expression>

The arithmetic expressions are first rounded to single precision, if necessary.

CONJUGATE Function
- CONJUGATE - (-<complex expression>--) ------------;

The CONJUGATE function returns, as a complex value, the complex conjugate of the
specified complex expression.

COS Function
- COS - (-<arithmetic expression>--) -------------;

The COS function returns, as a real value, the cosine of an angle of <arithmetic
expression> radians.

COSH Function
- COSH - (-<arithmetic expression>--) __________ _,

The COSH function returns, as a real value, the hyperbolic cosine of the specified
arithmetic expression.

COTAN Function
- COTAN - (-<arithmetic expression>--) -----------t

The COTAN function returns, as a real value, the cotangent of an angle of <arithmetic
expression> radians.

CSIN Function
- CSIN - (-<complex expression>--) -------------1

8600 0098--000 5-41

Expressions and Functions

The CSIN function returns, as a complex value, the complex sine of the specified
complex expression.

CSQRT Function
- CSQRT - (-<complex expression>-) -------------t

The CSQRT function returns, as a complex value, the square root of the specified
complex expression.

DABS Function
- DABS - (-<arithmetic expression>-) __________ __,

The DABS function returns, as a double-precision value, the absolute value of the
specified arithmetic expression.

DALPHA Function
- DALPHA - (-<pointer expression>- • -<arithmetic expression~

+-)---------------------~----t

The DALPHA function returns, as a double-precision value, a bit image of the string
of <arithmetic expression> characters starting with the character indicated by the
specified pointer expression.

DAND Function
- DANO - (-<arithmetic expression>- • -<arithmetic expression~

+-)---------------------------!

The DAND function returns the following as a double-precision value:

first <arithmetic expression> AND second <arithmetic expression>

The arithmetic expressions are first extended to double precision, if necessary, and the
AND operation is performed on all 96 bits.

DARCCOS Function

5-42

- DARCCOS - (-<arithmet_ic expression>-)-----------<

The DARCCOS function returns, as a double-precision value, the principal value of the
arccosine (in radians) of the specified arithmetic expression, the arithmetic expression is
greater than -1 and less than 1. If the value of the arithmetic expression is not in this
range, a run-time error occurs.

8600 0098-000

Expressions and Functions

DARCSIN Function
- DARCSIN - (-<arithmetic expression>-) -----------1

The DARCSIN function returns, as a double-precision value, the principal value of the
arcsine (in radians) of the specified arithmetic expression, the arithmetic expression is
greater than -1 and less than 1. If the value of the arithmetic expression is not in this
range, a run-time error occurs.

DARCTAN Function
- DARCTAN - (-<arithmetic expression>-) ------------1

The DARCTAN function returns, as a double-precision value, the principal value of the
arctangent (in radians) of the specified arithmetic expression.

DARCTAN2 Function
- DARCTAN2 - (-<arithmetic expression>- , --------

'-<arithmetic expression>-)

The DARCTAN2 function returns, as a double-precision value, the principal value of the
arctangent (in radians) of the following:

first <arithmetic expression> / second <arithmetic expression>

DCOS Function
- DCOS - (-<arithmetic expression>-) -----------1

The DCOS function returns, as a double-precision value, the cosine of an angle of
<arithmetic expression> radians.

DCOSH Function
- DCOSH - (-<arithmetic expression>-) ------------<

The DCOSH function returns, as a double-precision value, the hyperbolic cosine of the
specified arithmetic expression.

DECIMAL Function
- DECIMAL - (-<string expression>-)---------------<

The DECIMAL function returns the double-precision value represented by the string
expression. The string expression must yield a valid number on evaluation. For more
information on the <number> construct, see Section 2, "Language Components." For
example, the assignment D : = DECIMAL(STR); is valid for the following strings:

8600 0098-000 5-43

Expressions and Functions

STR = "+5497823"
STR = "1.75@--46"
STR = "--4.31468"
STR = "@2"
STR = "+549"!!"7823"

However, the program is receives a run-time error for the following strings:

STR = "50 00."
STR = "1,505,278,00"
STR = "1@2.5"
STR = ".573"!!"5.82"

DELINKLIBRARY Function
- DELINKLIBRARY - (-<library identifier>-) ---------;

The DELINKLIBRARY function unlinks the program from the library program specified
by the library identifier. The DELINKLIBRARY function affects only the linkage
between the program and the indicated library; other programs using the library
program are not affected. This function returns an integer value that indicates success
or failure and the reason for failure. The values returned by the function can be
interpreted as follows:

Value Meaning

1 The library has been unlinked from the program.

O The library was not linked to the program.

-1 The library structure could not be accessed; a system fault has occurred.

DELTA Function
- DELTA - (-<pointer expression>- • -<pointer expression>-) ---i

The DELTA function returns, as an integer value, the number of characters between
the character position referenced by the first pointer expression and the character
position referenced by the second pointer expression. The value is calculated as follows:
the character position referenced by the first pointer expression is subtracted from the
character position referenced by the second pointer expression.

For a function that returns the number of characters between the character position
referenced by a pointer expression and the beginning of the array row, see "OFFSET
Function" Jater in this section. For a function that returns the number of characters
between the character position referenced by a pointer expression and the end of the
array row, see "REMAININGCHARS Function" Jater in this section.

DEQV Function

5-44

- DEQV - (-<arithmetic expression>- • -<arithmetic expression>---+

~>

8600 0098-000

Expressions and Functions

The DEQV function returns the following as a double-precision value:

first <arithmetic expression> EQV second <arithmetic expression>

Both arithmetic expressions are first extended to double precision, if necessary, and the
EQV operation is performed on all 96 bits.

DERF Function
- DERF - (-<arithmetic expression>--)

The DERF function returns, as a double-precision value, the value of the
standard error function at the specified arithmetic expression. For any valid N,
DERF(-N) = -DERF(N).

DERFC Function
- DERFC - (-<arithmetic expression>-) ------------<

The DERFC function returns, as a double-precision value, the complement of the value
of the standard error function at the specified arithmetic expression. For any valid N,
DERFC(N) = 1-DERF(N).

DEXP Function
- DEXP - (-<arithmetic expression>--) --------------i

The DEXP function returns the following as a double-precision value, where e is the base
of the natural logarithms:

e ** <arithmetic expression>

DGAMMA Function
- DGAMMA - (-<arithmetic expression>--)

The DGAMMA function returns, as a double-precision value, the value of the gamma
function at the specified arithmetic expression.

DIMP Function
- DIMP - (-<arithmetic expression>-- , -<arithmetic expression>---?

?-)

The DIMP function returns the following as a double-precision value:

first <arithmetic expression> IMP second <arithmetic expression>

Both arithmetic expressions are first extended to double precision, if necessary, and the
IMP operation is performed on all 96 bits.

8600 0098-000 5-45

Expressions and Functions

DINTEGER Function

The DINTEGER function has two forms, each of which returns a double-precision value.

The following form of DINTEGER function returns the value of the arithmetic
expression as a double-precision integer value. Specifically, the function returns the
following:

- DINTEGER - (-<arithmetic expression,,_ __________ _,

The following form of the DINTEGER function returns the decimal value represented by
the string of characters indicated by the pointer expression, as a double-precision integer
value. The absolute value of the integer value to be returned must be less than or equal
to 3.0223145903657293676543@@23.

The arithmetic expression specifies the length of the string of characters and must have
a value, when rounded to an integer, less than 24. If the rounded value of the arithmetic
expression is 24 or greater, the program is terminated with a fault. If the length is 0
(zero), a result of 0 is returned.

A zone field configuration of 1"1101" in the least significant character position causes
the result of the function to be negative. With 4-bit characters, a 1"1101" in the most
significant character position results in a negative value.

The state of the pointer expression when the count is exhausted can be preserved by
using the update pointer construct.

DOUBLE(ENTIER(<arithmetic expression>+ 0.5))

- DINTEGER - (<pointer expression>- , ---
l_<update pointer:.-l

?-<arithmetic expression>-) ------------------1

DINTEGERT Function
- DINTEGERT - (-<arithmetic expression>-) ----------t

The DINTEGERT function returns the value of the arithmetic expression integerized
with truncation to a double-precision integer value.

DLGAMMA Function
- DLGAMMA - (-<arithmetic expression>-) -------------1

The DLGAMMA function returns, as a double-precision value, the natural logarithm of
the gamma function at the specified arithmetic expression.

DLN Function
- DLN - (-<arithmetic expression>-)

5-46 8600 0098-000

Expressions and Functions

The DLN function returns, as a double-precision value, the natural logarithm of the
specified arithmetic expression.

DLOG Function
- DLOG - (-<arithmetic expression>-) -------------1

The DLOG function returns, as a double-precision value, the base-10 logarithm of the
specified arithmetic expression.

DMAX Function

- DMAX - (_t<arithmetic ~xpression>=L) -----------<

The DMAX function returns, as a double-precision value, the maximum of the values of
all the specified arithmetic expressions.

DMIN Function

- DMIN - (_t<arithmetic ~xpression>=L) -----------1

The DMIN function returns, as a double-precision value, the minimum of the values of all
the specified arithmetic expressions.

DNABS Function
- DNABS - (-<arithmetic expression>-) ------------1

The DNABS function returns, as a double-precision value, the negative of the absolute
value of the specified arithmetic expression.

DNORMALIZE Function
- DNORMALIZE - (-<arithmetic expression>-) ----------;

The DNORMALIZE function returns, as a double-precision value, the normalized form
of the specified arithmetic expression. For more information on normalized format, refer
to "Double-Precision Operand" in Appendix C, "Data Representation."

DNOT Function
- DNOT - (-<arithmetic expression>-)

The DNOT function returns, as a double-precision value, the logical complement of the
value of the specified arithmetic expression. The arithmetic expression is first extended
to double precision, if necessary, and the NOT operation is performed on all 96 bits.

8600 0098-000 5-47

Expressions and Functions

DOR Function
- DOR - (--<arithmetic expression>-- • -<arithmetic expression~

~-) ----------------------------!

The DOR function returns the following as a double-precision value:

first <arithmetic expression> OR second <arithmetic expression>

Both arithmetic expressions are first extended to double precision, if. necessary, and the
OR operation is performed on all 96 bits.

DOUBLE Function

The DOUBLE function has three forms, each of which returns a double-precision value.

The following form of the DOUBLE function returns the value of the arithmetic
expression extended to a double-precision value.

- DOUBLE - (-<arithmetic expression>--) -------------1

The following form of the DOUBLE function returns a double-precision value in which
the first word is equal to the value of the first arithmetic expression and the second word
is equal to the value of the second arithmetic expression. The arithmetic expressions are
first truncated to single precision, if. necessary.

- DOUBLE - (~<arithmetic expression>-- • -<arithmetic expression~

~-) ----------------------------!

The following form of the DOUBLE function returns, as a double-precision value, the
decimal value represented by the string of characters starting with the character pointed
to by the pointer expression.

A zone field configuration of 1"1101" in the least significant character position causes
the result of the function to be negative. With 4-bit characters, a 1"1101" in the most
significant character position results in a negative value.

The state of the pointer expression when the count is exhausted can be preserved by the
use of the <update pointer> construct.

- DOUBLE - (<pointer expression>-- • ---~
~update pointer~

-arithmetic expression>--) -----------------1

DROP Function

5-48

- DROP - (-<string expression>-- • -<arithmetic expression>--) --1

The DROP function returns a string with a value equal to the value of the string
expression with the first arithmetic expression characters deleted. The value of
the arithmetic expression is rounded to an integer, if. necessary. An error occurs
if. the rounded value of the arithmetic expression is greater than the number of

8600 0098-000

Expressions and Functions

characters in the string expression or less than 0 (zero). If the rounded value of the
arithmetic expression is 0, the result is the same as the value of the string expression.
If the rounded value of the arithmetic expression is equal to the length of the string
expression, the result is the null string.

The DROP function and the TAKE function are complementary functions. This means
that for any string expression S and any arithmetic expression A in the range 0 < = A
< = LENGTH(S), the following relation is always TRUE:

S = TAKE(S,A) CAT DROP(S,A)

For more information, see "TAKE Function" later in this section.

Examples of DROP Function

In the following examples, string S has a length of 6 and contains 8"ABCDEF".

DROP(S,2) = 8"CDEF"

DROP(TAKE(S,4),2) = B"CD"

DROP(S,6) = the null string

DSCALELEFT Function
- DSCALELEFT - (-<arithmetic expression>- • ----------t
~arithmetic expression>-) -----------------i

The DSCALELEFT function returns the following as a double-precision value The
second arithmetic expression, rounded to an integer, has a value in the range 0 to 12.

first <arithmetic expression>*(10 ** second <arithmetic expression>)

The DSCALELEFT function is undefined when the integerized value of the second
arithmetic expression is less than 0 or greater than 12.

DSCALERIGHT Function
- DSCALERIGHT - (-<arithmetic expression>-.-------~

~-<arithmetic expression>-)

The DSCALERIGHT function returns, as a double-precision value, the rounded result of
the following, where the second arithmetic expression, rounded to an integer, has a value
in the range 0 to 12:

first <arithmetic expression>/(10 ** second <arithmetic expression>)

A run-time error occurs if the integerized value of the second arithmetic expression is
less than 0 or greater than 12.

8600 0098-000 5-49

Expressions and Functions

DSCALERIGHTT Function
- DSCALERIGHTT - (-<arithmetic expression>- • ---------t
?-<arithmetic expression>-) -------------------1

The DSCALERIGHTT function returns, as a double-precision value, the truncated result
of the following, where the second arithmetic expression, rounded to an integer, has a
value in the range 0 to 12:

first <arithmetic expression>/(10 ** second <arithmetic expression>)

A run-time error occurs if the integerized value of the second arithmetic expression is
less than 0 or greater than 12.

DSIN Function
- DSIN - (-<arithmetic expression>-) --------------1

The DSIN function returns, as a double-precision value, the sin.e of an angle of
<arithmetic expression> radians.

DSINH Function
- DSINH - (-<arithmetic expression>-) ------------1

The DSINH function returns, as a double-precision value, the hyperbolic sine of the
specified arithmetic expression.

DSQRT Function
- DSQRT - (-<arithmetic expression>-) ----------

The DSQRT function returns, as a double-precision value, the square root of the
specified arithmetic expression. The value of the arithmetic expression must be greater
than or equal to 0.

DTAN Function
- DTAN - (-<arithmetic expression>-)----------......

The DTAN function returns, as a double-precision value, the tangent of an angle of
<arithmetic expression> radians.

DTANH Function

5-50

- DTANH - (-<arithmetic expression>-) -----------t

The DTANH function returns, as a double-precision value, the hyperbolic tangent of the
specified arithmetic expression.

8600 0098-000

Expressions and Functions

ENTIER Function
- ENTIER - (-<arithmetic expression>-) -------------<

The ENTIER function returns the largest integer that is not greater than the value of
the arithmetic expression.

Because of the limitations of finite representation arithmetic, the ENTIER function
erroneously returns 0, rather than -1, for negative numbers of small magnitude.
For a single-precision expression, the threshold is-0.5 * 8**-13 (approximately
-9.09E-13). This number correctly yields -1, whereas the next smaller (in magnitude)
single-precision number incorrectly yields 0. For a double-precision expression,
the threshold can differ on various systems because of different algorithms for
double-precision rounding, but it is in the vicinity of -8**-26 (approximately-3.31E-24).

The ENTIER function returns an incorrect result for single-precision, negative integers
less than or equal to-(8**32). The result of the function for an integer expression
should be equal to the value of the expression. However, ENTIER(-68719476736)
returns a value of -68719476737.

The ENTIER function is not a simple truncation function, as illustrated by the examples.
For a simple truncation function, see "INTEGERT Function" later in this section.

Examples of ENTIER Function

ENTIER(2.6) 2

ENTIER(3.1) 3

ENTIER(-0.01) = -1

ENTIER(-3.4) -4

ENTIER(-1.8) -2

ERF Function
- ERF - (-<arithmetic expression>-)

The ERF function returns, as a real value, the value of the standard error function at the
specified arithmetic expression. For any valid N, ERF(-N) = -ERF(N).

ERFC Function
- ERFC - (-<arithmetic expression>-) -------------1

The ERFC function returns, as a real value, the complement of the value of the standard
error function at the specified arithmetic expression. For any valid N, ERFC(N) =

1-ERF(N).

8600 0098-000 5-51

Expressions and Functions

EXP Function
- EXP - (-<arithmetic expression>-) --------------l

The EXP function returns the following as a real value, where e is the base of the natural
logarithms:

e ** <arithmetic expression>

FIRST Function
- FIRST - (-<string expression>-) -------------1

The FIRST function returns, as a real value, the ordinal position in the EBCDIC, ASCII,
or hexadecimal collating sequence of the first character in the string expression. This
function returns an ordinal position in the EBCDIC collating sequence ifthe string
expression is EBCDIC, returns an ordinal position in the ASCII collating sequence ifthe
string expression is ASCII, and returns an ordinal position in the hexadecimal collating
sequence ifthe string expression is hexadecimal. A run-time error occurs if the string
expression is the null string.

Examples of FIRST Function

FIRST("ABC") = 193 (4"Cl")

FIRST(7"NNXX") = 78 (4"4E")

FIRST(4"F1F2") = 15 (4"0F")

FIRSTONE Function
- FIRSTONE - (-<arithmetic expression>-) -----------1

The FIRSTONE function returns, as an integer value, the bit number plus 1 of the
leftmost nonzero bit in the value of the arithmetic expression. The FIRSTONE function
returns the number 0 if all the bits are 0. If the expression is double. precision, only the
first word of its value is examined.

FIRSTWORD Function

5-52

- FIRSTWORD - (-<arithmetic expression> ~
[_ • -<real variable~

+-)---------------------------1

The FIRSTWORD function returns, as a real value, the first word of the double-precision
arithmetic expression. The arithmetic expression is first extended to double precision,
if necessary. If the real variable parameter is specified, the second word of the
double-precision arithmetic expression is stored in the variable.

8600 0098-000

Expressions and Functions

FIX Statement

The FIX statement returns a Boolean value. For more information, refer to "FIX
Statement" in Section 4, "Statements."

FREE Statement

The FREE statement returns a Boolean value. For more information, refer to "FREE
Statement" in Section 4, "Statements."

GAMMA Function
- GAMMA - (-<arithmetic expression>-) -----------l

The GAMMA function returns, as a real value, the value of the gamma function at the
specified arithmetic expression.

HAPPENED Function
- HAPPENED - (-<event designator>-)

The HAPPENED function is a Boolean function that returns the value TRUE if the
happened state of the specified event is TRUE (happened) and returns the value F ALBE
if the happened state is F ALBE (not happened

HEAD Function
- HEAD - (-<string expression>- , -<string character set>-) ---j

<string character set>

~string constant
L NOT _J truth set table

The HEAD function returns a string whose value consists of the leftmost characters of
the string expression up to, but not including, the first character that is not a member of
the string character set. If the first character of the string expression is not a member
of the string character set, the null string is returned. If all characters of the string
expression are members of the string character set, the entire string expression is
returned.

The string character set must be of the same character type as the string expression. If
a truth set table is used, it must not be composed of characters of different character
types. The option NOT indicates a string character set made up of all characters that
are not specified in the string constant or truth set table, but that are of the same
character type as the string expression.

The HEAD function and the TAIL function are complementary functions. This means
that for any string expression S and any string character set C, the following relation is
always TRUE:

8600 0098-000 5-53

Expressions and Functions

S = HEAD(S,C) CAT TAIL(S,C)

For more information, see "TAIL Function" later in this section.

Examples of HEAD Function

In the following examples, Sis a string oflength 9 that contains 8"ABC/1-2 + 3".

HEAD(S,NOT "/") = 8"ABC"

HEAD(S,ALPHA) = 8"ABC"

HEAD(S, "123") = the null string

IMAG Function
- IMAG - (-<complex expression>-) -------------1

The !MAG function returns, as a real value, the imaginary part of the specified complex
expression.

For a function that returns the real part of a complex expression, see "REAL Function"
later in this section.

INTEGER Function

5-54

The INTEGER function has two forms, each of which returns an integer value.

- INTEGER - (-<arithmetic expression>-) ------------1

This form of the INTEGER function returns the value of the arithmetic expression
integerized with rounding. Specifically, it returns the following:

ENTIER(<arithmetic expression>+ 0.5)

- INTEGER - (<pointer expression>- , __ __,
~update pointer~

-+-<arithmetic expression>-) ------------------1

This form of the INTEGER function returns, as an integer value, the decimal value
represented by the string of characters starting with the character pointed to by the
pointer expression. The absolute value of the integer value to be returned must be less
than or equal to 549755813887.

The arithmetic expression specifies the length of the string of characters and must, when
rounded to an integer, have a value less than 24. If the rounded value of the arithmetic
expression is 24 or greater, the program is terminated with a fault. If the length is 0
(zero), a result ofO is returned.

A zone field configuration of 1"1101" in the least significant character position causes
the result of the function to be negative. With 4-bit characters, a 1"1101" in the most
significant character position results in a negative value.

8600 0098-000

Expressions and Functions

When the pointer expression is a hexadecimal pointer, or a hexadecimal array, if the
character in the most significant character position is not in the range 0 through 9, the
character is assumed to be a sign. Accordingly, the number of characters processed
is one greater than that specified by the arithmetic expression. Note that this extra
character affects the value of the update pointer.

If the string of characters is all 1"11111111" (48"F") for 8 characters or 1"1111" (4"F") for
4-bit characters, the string is treated as though it were a sequence of nines. Note that in
the 4-bit character case, the first character is treated as a sign (positive) and the rules
previously described are followed.

Other than the preceding special cases, if the numeric field of each character in the
string of characters contains anything other than a digit, the results are undefined and
can vary.

The state of the pointer expression when the count is exhausted can be preserved by the
use of the <update pointer> construct.

INTEGERT Function
- INTEGERT - (-<arithmetic expression>-) ----------<

The INTEGERT function returns the value of the arithmetic expression integerized with
truncation.

The INTEGERT function does not necessarily return the same value as the ENTIER
function. For example, the function INTEGERT(-1.2) returns the value-1, but the
function ENTIER(-1.2) returns the value -2.

LENGTH Function
- LENGTH - (-<string expression>-) -------------1

The LENGTH function returns, as an integer value, the number of characters in the
string that results from evaluation of the string expression. The null string has a length
ofO.

LINENUMBER Function
- LINENUMBER ---------------------1

The LINENUMBER function returns, as an integer value, the sequence number of the
source file record on which it appears.

LINKLIBRARY Function
- LINKLIBRARY - (-<library identifier>-) -----------t

The LINKLIBRARY function determines whether or not the program is currently linked
to or is capable of being linked to the library program specified by the library identifier.
Results indicating a successful link.age are returned by the LINKLIBRARY function if

8600 0098-000 5-55

Expressions and Functions

5-56

the program is presently linked to the library or if the program is capable of being linked,
in which case the LINKLIBRARY function performs the linkage. If the program cannot
be linked to the library, the function returns a result indicating the reason for the failure.
In any case, the program continues to execute; that is, the use of the LINKLIBRARY
function prevents the termination or suspension of a program upon an unsuccessful
attempt to link to a library.

During the linkage process, an attempt is made to link to evecy entcy point exported
from the library whose name matches an entcy point declared in the program. Only
those names that match are checked for correct function type, number of parameters,
and parameter types. Therefore, the LINKLIBRARY function does not check that evecy
entcy point declared in the program is also exported from the library.

The values returned by the LINKLIBRARY function can be interpreted as follows:

Value Meaning

2 Successful linkage was made to the library, but not all entry points were provided.

1 Successful linkage was made to the library, and all entry points were provided.

0 The program was already linked to the specified library at the time of the
LINKLIBRARY call.

-1 The library code file is missing.

-2 The family size of a process running in Swapper was exceeded during the attempt
to link to the library.

-3 A by-calling procedure specified more than one library task.

-4 The library is not a system library.

-5 No library objects were available for linkage. This can be due to any of the
following: library does not provide the object, object is not visible from the user, an
entrypoint is missing, no entrypoints in the program are provided by the library, or
parameters are mismatched.

-6 The library was terminated, canceled, or thawed before being frozen; therefore, the
library was not successfully initiated.

-7 An invalid circular chain of library linkages was detected.

-8 A by-calling procedure never specified a library task.

-9 A bad task was passed by a by-calling library procedure.

-10 A library feature that was used is not implemented.

-11 The library template contained an illegal provision type.

-12 The library template level is obsolete. This program must be recompiled.

-13 The library directory level is incompatible with the library template level. The older
program must be recompiled.

-14 The program cannot link to a system library.

continued

8600 0098-000

Expressions and Functions

continued

Value Meaning

-15 The library was not initiated for one of the following reasons:

• A task array for a by-calling library was not decla.red in the library stack.

• There was an attempt to link to a file that is not a code file.

• The code file is not a library code file.

• The file structure is incompatible with the current release.

-16 This program is not authorized to use this library procedure.

-17 The library is not visible to the program attempting to link to the library.

LISTLOOKUP Function
- LISTLOOKUP - (-<arithmetic expression>-- • -<array row>-- • ~
~<arithmetic expression>--) _______________ _,

The LISTLOOKUP function causes a linked list of words to be searched and returns, as
an integer value, an index into the list as follows:

1. The array row is indexed by the value of the second arithmetic expression and the
word is extracted. Each word contains a value (in field [4 7:28]) and a link (in field
[19:20]) to the next word of the linked list.

2. If the value in the extracted word is greater than or equal to the value of the first
arithmetic expression, the operation stops, and the index of the word whose link
points to the extracted word is returned by the function.

3. If the value in the extracted word is less than the value of the first arithmetic
expression, the link of the extracted word is used as an index into the array row, a
new word is extracted, and the process is repeated.

A word with a link of 0 terminates the search. The value of a word is tested only if the
link field is nonzero. If the linked list is exhausted, that is, (if a word with a link of 0 is
encountered), a value of -1 is returned by the LISTLOOKUP function.

LN Function
- LN - (-<arithmetic expression>--) -------------i

The LN function returns, as a real value, the natural logarithm of the specified
arithmetic expression.

LNGAMMA Function
- LNGAf+IA - (-<arithmetic expression>--) _________ _,

The LNGAMMA function returns, as a real value, the natural logarithm of the gamma
function at the specified arithmetic expression.

8600 0098-000 5-57

Expressions and Functions

LOG Function
- LOG - (-<arithmetic expression>-) -------------1

The LOG function returns, as a real value, the base-10 logarithm of the specified
arithmetic expression.

MASKSEARCH Function
- MASKSEARCH - (-<arithmetic expression>-.--------

~-<arithmetic expression>- • ~array row> ~
1-<subscripted variable>-1

The MASKSEARCH function performs the same operations as the ARRAYSEARCH
function, except that it is intended for use only with unpaged (unsegmented) arrays.

If the third parameter to the MASKSEARCH function is an array row or a subscripted
variable of a paged (segmented) array, then a warning message is given at run time.
This warning message is given only the first time the statement containing the
MASKSEARCH function is executed.

If the third parameter is an array row of a paged array, execution of the MASKSEARCH
function causes a fault.

If the third parameter is a subscripted variable of a paged array, then no fault is
generated at run time, but the results can be unexpected. The MASKSEARCH function
searches only the 256-word segment containing the specified array element. If the target
value is found in that array segment, the index relative to the beginning of the segment
is returned. If the target is not found in that segment, -1 is returned.

MAX Function

- MAX - (__t<ari thmet i c ~xpress i on>=L) ------------1

The MAX function returns, as a real value, the maximum of the values of all the specified
arithmetic expressions.

MESSAGESEARCHER Statement

The MESSAGESEARCHER statement returns an integer value. For more information,
refer to "MESSAGESEARCHER Statement" in Section 4, "Statements."

MIN Function

5-58

- MIN - (__t<arithmetic ~xpression>=L) -----------1

The MIN function returns, as a real value, the minimum of the values of all the specified
arithmetic expressions.

8600 0098-000

Expressions and Functions

M LSACCEPT Statement

The MLSACCEPT statement returns a Boolean value. For more information, refer to
"MLSACCEPT Statement" in Section 4, "Statements."

MLSTRANSLATE Statement

The MLSTRANSLATE statement returns an integer value. For more information, refer
to "MLSTRANSLATE Statement" in Section 4, "Statements."

NABS Function
- NABS - (-<arithmetic expression>-) -------------<

The NABS function returns, as a real value, the negative of the absolute value of the
specified arithmetic expression.

NORMALIZE Function
- NORMALIZE - (-<arithmetic expression>-) -----------1

The NORMALIZE function returns, as a real value, the value of the arithmetic
expression, normalized and rounded to a single-precision operand. For more
information on the normalized format, refer to "Real Operand" in Appendix C, "Data
Representation."

OFFSET Function
- OFFSET - (-<pointer expression>-) -----------i

The OFFSET function returns, as an integer value, the number of characters between
the character position referenced by the pointer expression and the beginning of the
array row, not including the character designated by the pointer expression. The
function value is in terms of the character size of the pointer expression. If it is a
word pointer, the value returned is given in terms of 8-bit characters. If the pointer
expression points to a paged (segmented) array, the OFFSET function returns the total
offset from the beginning of the first segment of the row.

For a function that returns the number of characters between the character
position referenced by a pointer expression and the end of the array row, see
"REMAININGCHARS Function" later in this section.

ONES Function
- ONES - (-<arithmetic expression>-) ------------1

The ONES function returns, as an integer value, the number of nonzero bits in the value
of the arithmetic expression. If the arithmetic expression is double precision, all 96 bits
of its value are examined.

8600 0098-000 5-59

Expressions and Functions

OPEN Statement

The OPEN statement returns an integer value. For more information, refer to "OPEN
Statement" in Section 4, "Statements."

POINTER Function
- POINTER - (-r<array row>

L_<subscripted variable~

~ [• L<ch~racter ~ize>=J
<po1nter pr1mary~

<character size>

The POINTER function generates a pointer to the specified location.

If the first parameter is an array row, the pointer references the first character of the
first word of the specified array row. If the first parameter is a subscripted variable, the
pointer references the first character of the array element specified by the subscripted
variable.

If the second parameter is not given, the character size of the pointer is 6 or 8 bits,
depending on the default character type. For more information on the default character
type, refer to "Default Character Type" in Appendix C, "Data Representation."

If the second parameter is a character size of 4, 6, or 8, the character size of the pointer
being generated is 4 bits, 6 bits, or 8 bits, respectively. If the second parameter is a
character size of7, the character size of the pointer is 8 bits. If the second parameter
is a character size of 0, the pointer is word-oriented, rather than character-oriented.
In addition, the pointer is single precision if the array it points to is single precision
(INTEGER, REAL, or BOOLEAN), and the pointer is double precision if the array is
double precision (DOUBLE or COMPLEX).

If a pointer primary is given as the second parameter, the character size of that pointer
primary is used for the character size of the pointer being generated.

Note: The BCL data type is not supported on A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor, such as a 6-bit pointer, generates compile-time warning
messages for the program.

5-60 8600 0098-000

Expressions and Functions

Examples of POINTER Function

BEGIN
ARRAY Al,A2[0:9];
POINTER Pl,P2,P3,P4,P5;
Pl := POINTER(Al);
P2 := POINTER(Al[9]);
P3 := POINTER(Al,4);
P4 := POINTER(A2[6],P3);
$ SET BCL
PS:= POINTER(Al); % LAST STATEMENT

END.

Execution of this program has the following results:

Pl This pointer has a character size of 8 bits (the default character type is EBCDIC when
Pl is assigned) and points to the first 8-bit character of the first element of array Al.

P2 This pointer has a character size of 8 bits and points to the first 8-bit character of
element 9 of array Al.

P3 This pointer has a character size of 4 bits and points to the first 4-bit character of the
first element of array Al.

P4 This pointer has a character size of 4 bits and points to the first 4-bit character of
element 6 of array A2.

P5 This pointer has a character size of 6 bits (when P5 is assigned, the default character
type is BCL) and points to the first 6-bit character of the first element of array Al.

POT Function

t POTL j [~<arithmetic expression>--]
POTC
POTH

The POT (Power of Ten) functions-POTL Oow), POTC (center), and POTH (high),
together provide the following value from three tables that are double-precision,
read-only arrays:

10 ** <arithmetic expression>

Each of the POT functions is defined only for integer values of the arithmetic
expressions that fall in the range 0 through 29604. The complete value of
10 ** <arithmetic expression> can be computed using the following arithmetic
expression:

POTL[<arithmetic expression>.[5:6]]

* POTC[<arithmetic expression>.[11:6]]

* POTH[<arithmetic expression>.[14:3]]

8600 0098-000 5-61

Expressions and Functions

Examples of POT Function

RESULT:= POTL[X]; % WHERE X < 64

DEFINE POT(T) = (POTL[T.[5.6]] * POTC[T.[11:6]] * POTH[T.[14:3]])#;
ONEDIVTENTOI := 1 / POT(I);

PROCESSID Function
- PROCESSID -----------------------1

The positive integer value uniquely identifies the process executing the function.

The PROCESSID function returns a value that remains unique to that process for
the duration of its execution. However, the value is not guaranteed to be the same on
every invocation of the PROCESSID function. For example, upon restarting from a
checkpoint, the value of the PROCESSID function can have changed. Also, after a
process terminates, its PROCESSID value can be assigned to a new process.

RANDOM Function
- RANDOM - (-<arithmetic variable>--)

The RANDOM function returns, as a real value, a random number that is greater than
or equal to 0 and less than 1. The arithmetic variable is a call-by-name parameter, and
its value is changed each time the function is referenced. A compile-time or run-time
error occurs ff the parameter is not a single-precision arithmetic variable. An integer
overflow error occurs ff the integerized value of the arithmetic variable is not in the
range [(-2**39) + 1] through [(2**39) -1].

READ Statement

The READ statement returns a Boolean value. For more information, refer to "READ
Statement" in Section 4, "Statements."

READLOCK Function

5-62

Taking only one memory cycle, the READ LOCK function stores the value of the specified
expression in the designated variable and returns the previous contents of the variable.

The READLOCK function has three forms. One form returns a real value, one form
returns a Boolean value, and one form returns a pointer. The following form of the
READ LOCK function stores the value of the arithmetic expression in the arithmetic
variable and returns the previous contents of the variable as a real value. Both the
variable and the expression must be single precision.

- READLOCK - (-<arithmetic expression>-- , -<arithmetic variable>-?

+-)--------------------------!

8600 0098-000

Expressions and Functions

The following form of the READ LOCK function stores the value of the Boolean
expression in the Boolean variable and returns the previous contents of the variable as a
Boolean value.

- READLOCK - (--<Boolean expression>-- , --<Boolean variable>--) -----j

The following form of the READ LOCK function stores the value of the pointer
expression in the pointer variable and returns the previous contents of the variable as a
pointer value.

- READLOCK - (-<pointer expression>-- , --<pointer variable>--) -----j

REAL Function

The REAL function has four forms, each of which returns a real value. The following
form of the REAL function returns the value of the arithmetic expression rounded to a
single-precision, real value.

- REAL - (-<arithmetic expression>--) -------------1

The following form of the REAL function returns the value of the Boolean expression as
a real value. All bits of the Boolean expression are used.

- REAL - (-<Boolean expression>--) -------------1

The following form of the REAL function returns, as a real value, the real part of the
specified complex expression.

- REAL - (-<complex expression>--) -------------1

For a function that returns the imaginary part of a complex expression, see "IMAG
Function" earlier in this section. The following form of the REAL function returns, as a
real value, the string of <arithmetic expression> characters starting with the character
indicated by the pointer expression.

- REAL - (--<pointer expression>-- , -<arithmetic expression>--) -j

If the arithmetic expression indicates a string of characters that is less than or equal to
48 bits long, this string is right-justified in one word with leading zeros, if necessary,
and this word is returned as the function result. If the arithmetic expression indicates
a string of characters more than 48 bits long but less than or equal to 96 bits long, this
string is right-justified with leading zeros, if necessary, in a two-word operand. Then only
the first word is returned as the function result. If the arithmetic expression indicates a
string of characters more than 96 bits long, a run-time error occurs.

REMAININGCHARS Function
- REMAININGCHARS - (--<pointer expression>--) ---------1

The REMAININGCHARS function returns, as an integer value, the number of
characters between the character position referenced by the pointer expression and
the end of the array row, including the character designated by the pointer expression.
The returned value is in terms of the character size of the pointer expression. Ifthe
pointer expression is a word pointer, the value returned is in terms of 8-bit characters If

8600 0098-000 5-63

Expressions and Functions

the pointer expression points to a paged (segmented) the array, REMAININGCHARS
function returns gives the number of characters left in the entire array row.

For a function that returns the number of characters between the character position
referenced by a pointer expression and the beginning of the array row, see "OFFSET
Function" earlier in this section.

REMOVEFILE Statement

The REMOVEFILE statement returns a Boolean value. For more information, refer to
"REMOVEFILE Statement" in Section 4, "Statements."

REPEAT Function
- REPEAT - (--<string expression>-- , -<arithmetic expression~7

7-) ---------------------------1

The REPEAT function returns a string according to the following rules:

• If the arithmetic expression equals 0, the result of the REPEAT function is the null
string.

• If the arithmetic expression is greater than 0, the result of the REPEAT function
is the same as if <arithmetic expression> occurrences of the value of the string
expression were all concatenated together.

• If the arithmetic expression is less than 0, the result of the REPEAT function is
either a compile-time or a run-time error.

The value of the arithmetic expression is rounded to an integer, if necessary, before it is
used as the repeat count.

Examples of REPEAT Function

REPEAT("ABC",3) = "ABCABCABC"

REPEAT("WON'T WORK",0) = the null string

SCALELEFT Function

5-64

- SCALELEFT - (-<arithmetic expression>-- , --------

'-<arithmetic expression>--) ----------------;

The SCALELEFT function returns the following as an integer value, where the second
arithmetic expression, rounded to an integer, has a value in the range 0 to 12:

first <arithmetic expression>*(10 ** second <arithmetic expression>)

The SCALELEFT function is undefined when the integerized value of the second
arithmetic expression is less than 0 or greater than 12.

8600 0098-000

Expressions and Functions

SCALERIGHT Function
- SCALERIGHT - (-<arithmetic expression>- , --------

-?-<arithmetic expression>-) -----------------i

The SCALERIGHT function returns, as an integer value, the rounded result of the
following, where the second arithmetic expression, rounded to an integer, has a value in
the range 0 to 12:

first <arithmetic expression>/(10 ** second <arithmetic expression>)

A run-time error occurs if the integerized value of the second arithmetic expression is
less than 0 or greater than 12.

SCALERIGHTF Function
- SCALERIGHTF - (-<arithmetic expression>- , --------

-?-<arithmetic expression>-) -----------------1

The SCALERIGHTF function returns, as a real value, a left-justified, packed decimal
(4-bit decimal) number representing the following, where the second arithmetic
expression, rounded to an integer, has a value in the range 0 to 12:

first <arithmetic expression> MOD (10 ** second <arithmetic expression>)

A run-time error occurs if the integerized value of the second arithmetic expression is
less than 0 or greater than 12.

The number of significant digits returned by the function is equal to the integerized
value of the second arithmetic expression. The external sign flip-flop (EXTF) is set
to reflect the sign of the first arithmetic expression for use with the editing phrases
specified in a PICTURE declaration.

Examples of SCALERIGHTF Function

SCALERIGHTF(1234,4) = 4"123400000000"

SCALERIGHTF(12345678, 12) = 4"000012345678"

SCALERIGHTT Function
- SCALERIGHTT - (-<arithmetic expression>- , --------·

-?-<arithmetic expression>-) -----------------i

The SCALERIGHTT function returns, as an integer value, the truncated result of the
following, where the second arithmetic expression, rounded to an integer, has a value in
the range 0 to 12:

first <arithmetic expression>/(10 ** second <arithmetic expression>)

8600 0098-000 5-65

Expressions and Functions

A run-time error occurs if the integerized value of the second arithmetic expression is
less than 0 or greater than 12.

SECONDWORD Function
- SECONDWORD - (-<arithmetic expression>-) ----------1

The SECONDWORD function returns, as a real value, the second word of the
double-precision arithmetic expression. The arithmetic expression is first extended to
double precision, if necessary.

For a function that returns the first word of a double-precision arithmetic expression, see
"FIRSTWORD Function" earlier in this section.

SEEK Statement

The SEEK statement returns a Boolean value. For more information, refer to "SEEK
Statement" in Section 4, "Statements."

SETACTUALNAME Function

5-66

- SETACTUALNAME - (-<library entry point identifier>- , ___ __,

7-<pointer expression>-) -------------------i

<library entry point identifier>

A procedure identifier declared with a. library entry point specification.

The SETACTUALNAME function determines whether or not the ACTUALNAME of
the library entry point specified by the library entry point identifier can be changed
to the name specified the pointer expression. The function then makes the change,
if it is possible. The Results of a successful change are returned upon completing
the ACTUALNAME change; otherwise, results indicating the reason for failure are
returned.

The ACTUALNAME of an entry point of a linked library cannot be modified. Therefore,
a linked library must be delinked before the SETACTUALNAME function can be called
to change the ACTUALNAME of any of its entry points. The function can be called to
modify an entry point of a library that has not yet been linked.

Starting with the first character pointed to by the pointer expression, characters are
included as the new entry point name until a period is encountered, the maximum
allowable number of characters is included, or the end of the array row is encountered.
The last case results in an error condition.

The SETACTUALNAME function returns the following integer values:

8600 0098-000

Expressions and Functions

Value Meaning

1 A successful change was made to the ACTUALNAME of the entry point.

0 The new ACTUALNAME is the same as the current ACTUALNAME of the entry
point.

-1 The library is linked. The library must be delinked before the SETACTUALNAME
function is called.

-2 The library entry point identifier is not currently in an accessible library template.

-3 A parameter error occurred in the SETACTUALNAME function.

Example of SETACTUALNAME Function

The following example changes the ACTUALNAME of the library entry point EP2 to
"ENTRYPOINT2", if possible:

REPLACE NEWEPNAME BY "ENTRYPOINT2.";
SETACTUALNAME(EP2,NEWEPNAME);

SIGN Function
~SIGN - (~<arithmetic expression>--)

The SIGN function returns the integer 1 if the value of the arithmetic expression is
greater than 0, returns the integer 0 if the value of the arithmetic expression is equal to
0, and returns the integer -1 if the value of the arithmetic expression is less than 0.

SIN Function
~SIN~ (~<arithmetic expression>~)

The SIN function returns, as a real value, the sine of an angle of <arithmetic
expression> radians.

SINGLE Function
- SINGLE - (-<arithmetic expression>--)

The SINGLE function returns, as a real value, the value of the arithmetic expression
normalized and truncated to single precision.

SINH Function
- SINH - (-<arithmetic expression>--) -------------;

The SINH function returns, as a real value, the hyperbolic sine of the specified
arithmetic expression.

8600 0098-000 5-67

Expressions and Functions

SIZE Function
- SIZE - (]array designator>)

<event array identifier>>-----j--1
<pointer identifier>
<procedure reference array designator

The SIZE(< array designator>), the SIZE(< event array identifier>), and the
SIZE(<procedure reference array designator>) form of the SIZE function return, as
an integer value, the size of one dimension of the specified array expressed in elements.
The element size of a procedure reference array designator is always some number
of words. If the array designator is an array name or the procedure reference array
designator is a procedure reference array identifier, the SIZE function returns the size
of the first dimension of the specified array. If the array designator or the procedure
reference array designator contains a subarray selector, the SIZE function returns the
size of the dimension that corresponds to the first asterisk (*) subscript.

The SIZE(<pointer identifier>) form of the SIZE function returns, as an integer value,
the character size of the specified pointer. If the character size of the pointer is 4, 6, or
8 bits, the value returned is 4, 6, or 8, respectively. If the pointer is word-oriented, the
value returned is 0 or 2, depending on whether the pointer is single precision or double
precision, respectively. If the pointer is uninitialized, the SIZE function returns 0. See
"POINTER Function" earlier in this section for a discussion of character size.

Note: The SIZE function cannot be used for task arrays.

SPACE Statement

The SPACE statement returns a Boolean value. For more information, refer to "SPACE
Statement" in Section 4, "Statements."

SQRT Function
- SQRT - (-<arithmetic expression>-)

The SQRT function returns, as a real value, the square root of the arithmetic expression.
The value of the arithmetic expression must be greater than or equal to 0.

STRING Function

5-68

1 STRING J (
STRING4
STRING?
STRINGS

'-,-<pointer expression>- , -<arithmetic expression
i_<arithmetic expression>- , L<:rithmetic expression

The STRING function returns a string value. The function STRING4 returns a
hexadecimal string, the function STRING7 returns an ASCII string, and the function
STRINGS returns an EBCDIC string. The function STRING returns a string of the
default character type. For more information on the default character type, see "Default
Character Type" in Appendix C, "Data Representation."

8600 0098-000

Expressions and Functions

If the first parameter to the STRING function is a pointer expression, the STRING
function converts the string of characters designated by the pointer expression into a
string. The number of characters converted is indicated by the value of the arithmetic
expression rounded to an integer, if necessary. If this rounded value is less than 0,
a compile-time or run-time error occurs. If the rounded value is 0, the null string is
returned.

If the first parameter to the STRING function is an arithmetic expression, the STRING
function returns a string consisting of a decimal representation of the value of that
arithmetic expression. If the second parameter is also an arithmetic expression, then
the value of this expression, rounded to an integer, specifies the length of the resulting
string. If the value of the second arithmetic expression is less than 0, a compile-time
or run-time error occurs. If this value is equal to 0, the null string is returned. If the
second parameter is an asterisk (*), the resulting string is exactly long enough to
represent the value of the arithmetic expression with no blanks. If the value of the first
arithmetic expression is 0 and the second parameter is an asterisk, the resulting string is
one character long.

When the STRING function is to return an ASCII or EBCDIC string and the first
parameter is an arithmetic expression, its value is converted into the most efficient
form, depending on the length specified by the second parameter. If both parameters
are arithmetic expressions and the rounded value of the second parameter is greater
than the minimum number of characters needed to represent the first parameter,
leading blanks are inserted in the resulting string. If both parameters are arithmetic
expressions and the rounded value of the second parameter is less than the number
of characters needed to represent the first parameter, then a string of all asterisks is
returned.

For the function STRING4, when the first parameter is an arithmetic expression, only
the integer portion of the value of this expression is converted. If both parameters to
STRING4 are arithmetic expressions and the rounded value N of the second parameter
is less than the number of characters needed to represent the first parameter, then the
rightmost N digits of the converted value of the first parameter are returned. If both
parameters to STRING4 are arithmetic expressions and the rounded value of the second
parameter is greater than the number of characters needed to represent the converted
value of the first parameter, then leading zeros are inserted into the resulting string.

8600 0098-000 5-69

Expressions and Functions

Examples of STRING Function

STRING (P ,20)

STRING(POINTER(A),N-3)

STRING(256,*) = 8"256"

STRING(-335.25,8) = 8" -335.25"

STRING(4.78@-2,5) = 8".0478"

STRING(555000,1) = 8"*"

STRING(456.789,7) = 8"456.789"

STRING4(123.456,8) = 4"00000123"

STRING4(12345678,4) = 4"5678"

TAIL Function

5-70

~ TAIL ~ (~<string expression>-- , ~<string character set>--) ---j

The TAIL function returns a string whose value consists of the rightmost characters
of the string expression beginning with the first character that is not a member of the
string character set. If all characters in the string expression are members of the string
character set, the null string is returned. If the first character of the string expression is
not a member of the string character set, the entire string expression is returned.

The string character set must be of the same character type as the string expression.
For an explanation of the string character set, see "HEAD Function" earlier in this
section.

The TAIL function and the HEAD function are complementary functions. This means
that for any string expression S and any string character set C, the following relation is
always TRUE:

S = HEAD(S,C) CAT TAIL(S,C)

For additional information, see "HEAD Function" earlier in this section.

Examples of TAIL Function

In the following examples, S is a string of length 9 that contains S"ABC/1-2 + 3".

TAIL(S,NOT "--") = 8"--2+3"

TAIL(DROP(S,7), "+--") = 8"3"

8600 0098-000

Expressions and Functions

TAKE Function
- TAKE - (-<string expression>-- • -<arithmetic expression>--) --1

The TAKE function returns a string whose value is equal to the first <arithmetic
expression> characters taken from the value of the string expression. The value of
the arithmetic expression is rounded to an integer, if necessary. An error occurs if the
rounded value of the arithmetic expression is greater than the number of characters
in the string expression or less than O(zero). If the rounded value of the arithmetic
expression is 0, the result is the null string. If the rounded value of the arithmetic
expression is equal to the length of the string expression, the result is the same as the
value of the string expression.

The TAKE function and the DROP function are complementary functions. This means
that for any string expression S and any arithmetic expression A in the range 0 < = A
< = LENGTH(S), the following relation is always true:

S = TAKE(S,A) CAT DROP(S,A)

For additional information, see "DROP Function" earlier in this section.

Examples of TAKE Function

In the following examples, string S has a length of 6 and contains 8"ABCDEF".

TAKE(S,2) 8"AB"

TAKE(S,4) 8"ABCD"

TAKE(DROP(S,2) ,2) = 8"CD"

TAN Function
- TAN - (-<arithmetic expression>--) --------------<

The TAN function returns, as a real value, the tangent of an angle of <arithmetic
expression> radians.

TANH Function
- TANH - (-<arithmetic expression>--)

The TANH function returns, as a real value, the hyperbolic tangent of the specified
arithmetic expression.

TIME Function
- TIME - (-<arithmetic expression>--)

The TIME function makes various system time values available. The value of the
arithmetic expression is rounded to an integer, if necessary, before being used. The

8600 0098-000 5-71

Expressions and Functions

5-72

results returned for different values of the integerized arithmetic expression are given in
the following table. If the integerized value of the arithmetic expression is not one of the
values listed in the table, the TIME function returns the value 0 (zero).

Parameter Result Returned

0

1

2

3

4

5

6

The current date in BCL characters in the format 6"YYDDD", where YY is the
year and DOD is the day of the year.

The time of day, in 60ths of a second, as an integer value.

The elapsed processor time of the program, in 60ths of a second, as an integer
value.

The elapsed 1/0 time of the program, in 60ths of a second, as an integer value.

The value of a 6-bit clock that increments 60 times per second.

The month, day, and year as six BCL characters, right-justified, in the format
6"00MMDDYY".

The time and date (a timestamp) in the following form:

0 & (JULIANDATE-70000) [47:16] & (TIME(ll) DIV 16) [31:32]

Note: The timestamp encoding is not a simple real numeric value, therefore
arithmetic relational operators cannot be used to compare timestamps
accurately. For simple tests of equality or inequality, the IS or ISNT
operators are appropriate. For testing relations, the timestamp
values must be treated as unsigned 48-bit integers.

The following Boolean expression correctly computes the truth of the
proposition that Tl is less (earlier) than T2, assuming that Tl and
T2 are real variables containing timestamp values:

DOUBLE(l,Tl) < DOUBLE(l,T2)

Parameter Result Returned

7

9

10

11

The current date and time in the following form:

[47:12] Year 0900-1999)

[35:06] Month 0-12)

[29:06] Day 0-31)

[23:06] Hour (0-23)

[17:06] Minute (0-59)

[11 :06] Second (0-59)

[05:06] Day of the week (0 = Sunday, 1 = Monday, and so on)

The current time in EBCDIC characters in the format 8"HHMMSS", where HH is
the hour, MM is the minute, and SS is the second.

The same value as TIME(O), except that the time is expressed in EBCDIC
characters in the format 8"YYDDD".

The same value as TIMEO), except that the time is expressed in multiples of
2.4 microseconds.

continued

8600 0098-000

continued

Parameter

12

13

14

15

16

23

24

25

26

27

28

29

30

31

32

8600 0098-000

Expressions and Functions

Result Returned

The same value as TIME(2), except that the time is expressed in multiples of
2.4 microseconds.

The same value as TIME(3), except that the time is expressed in multiples of
2.4 microseconds.

The time elapsed since the last halt/load expressed in multiples of 2.4
microseconds.

The current date in EBCDIC characters in the format 8"MMDDYY''.

The same value as TIME(6).

The system identification information in the following format:

[31:08] ASD system flag

0 - Non-ASD system

1 - Non-ASD system

2 - ASD system

[23:16] System serial number

[07:08] Type of machine DIV 100

If the system type is not of the form B XXOO, this field contains the number
zero.

The system type as a real value containing six EBCDIC characters. The name is
left-justified with blank fill.

The compiler target, for example TARGET = LEVEL 0.

The microcode version.

The number of initial presence bits taken on a stack.

The amount of time taken to process the initial presence bits.

The number of other bits taken on a stack.

The amount of time taken to process the other bits.

The following MCP information is returned:

[47:16] mark level of software release

[31:16] cycle number

[15:16] patch number

Offset from Universal Time CUT>, in the form of direction, hours, minutes, and
the one-character military-style mnemonic, if the offset matches one, encoded
in partial word fields.

The format is as follows:

TZ_VALIDF = [47:01](1 if time zone valid)

TZ_DIRECTIONF = [46:01] (which direction?)

TZ_SUBV = 0 CUT -offset= LT)

continued

5-73

Expressions and Functions

5-74

continued

Parameter

33

34

36

Result Returned

TZ_ADDV = 1 CUT+ offset= LT)

(not used) = [45:021 (not used)

TZ_CUSTOMF = [43:011 (1 if custom time zone)

(not used) = [42:031 (not used)

TZ_HOURSF = [39:08] (hours offset 0-24)

TZ_MINUTESF = [31:08] (minutes offset 0-59)

TZ_MNEMONICF = [23:08] (military mnemonic)

(not used) = [15:041 (not used)

TZ_NUMBERF = [11:121 (if predefined, number)

If a predefined time zone is configured, its number is also returned. This allows
programs to use the exported (unprotected) intrinsic MESSAGESEARCHER to
obtain the time zone abbreviation or name. The message number of the who
field CWHOF) is 80. The which field CWHICHF) is 1 for the time zone name, 2
for the time zone abbreviation. The message requires one parameter, the time
zone number.

The military mnemonic is a single letter that identifies 25 time zones with
integral hours offset values from -12 to + 12 hours, including zero hours. The
letters used are A through M for -1 through -12. The letter J is not used. The
letters N through Yare used for +1 through +12. The letter Z is used for zero.

Offset from UT as a four-digit signed integer for use by programs written in
languages in which it is difficult to manipulate bits. The format is
+ /- HHMM. Note that if no time zone is configured, the value 9999 is
returned.

Time zone abbreviation in left-justified blank-filled EBCDIC characters. If no
time zone is configured, six nulls are returned. If a standard time zone is
configured its abbreviation is returned in the task or system language.

HalVload time in TIME(6) format.

TIME (50) through TIME (59) provide the same values as those in TIME (0) through
TIME (9), but in Universal Time. TIME (53), TIME (54), AND TIME (58) are not
currently in use.

Note: If no time zone is configured, the following values are returned:

TIME Specified Value Returned

TIME (50) TIME (10)

TIME (51) TIME (1)

TIME (52) TIME (11)

TIME (55) TIME (15)

TIME (56) TIME (16)

TIME (57) TIME (7)

continued

8600 0098-000

Expressions and Functions

continued

TIME Specified Value Returned

TIME (59) TIME (9)

TRANSLATE Function
- TRANSLATE - (-<string expression>-- • -<translate table>--) ------1

The TRANSLATE function returns a string of the same length as the string expression;
each character of the string expression is translated according to the designated
translate table.

The translate table can be a translate table identifier declared in the program or one of
the intrinsic translate tables. The use of a subscripted variable as a translate table is not
allowed in the TRANSLATE function.

Examples of TRANSLATE Function

TRANSLATE(S,HEXTOEBCDIC)

TRANSLATE(TAKE(S,10),MYTT)

VALUE Function
- VALUE - <mnemonic file attribute value

<arithmetic-valued file attrib
<Boolean-valued file attribute
<pointer-valued file attribute
<translate-table-valued file a
<mnemonic task attribute value
<arithmetic-valued task attrib
<Boolean-valued task attribute
<event-valued task attribute n
<file-valued task attribute na
<pointer-valued task attribute
<task-valued task attribute na
<mnemonic library attribute va

<mnemonic task attribute value>

'>-

ute name"-
name"
name

ttribute name>-1
'>-

ute name"
name>

ame
me

name>
me.,
1 ue.,

A valid mnemonic name for a value of a task attribute.

If a mnemonic file attribute value, mnemonic library attribute value, or mnemonic
task attribute value is specified, the VALUE function returns the integer value that
corresponds to that mnemonic attribute value. If an attribute name is specified, the
VALUE function returns the attribute number that corresponds to that attribute name.

For more information on file attribute names and mnemonic file attribute values, refer
to the A Series File Attributes Programming Reference Manual. For more information
on task attributes and their values, refer to the A Series Task Attributes Programming
Reference Manual.

8600 0098-000 5-75

Expressions and Functions

Examples of VALUE Function

F.KIND := VALUE(DISK)

F.INTMODE := VALUE(EBCDIC)

T.STATUS := VALUE(TERMINATED)

WAIT Statement

Depending on the form used, the WAIT statement returns no value, a Boolean value,
or an integer value. For more information, refer to "WAIT Statement" in Section 4,
"Statements."

WAITANDRESET Statement

The W AITANDRESET statement returns an integer value. For more information, refer
to "WAITANDRESET Statement" in Section 4, "Statements."

WRITE Statement

5-76

The WRITE statement returns a Boolean value. For more information, refer to "WRITE
Statement" in Section 4, "Statements."

8600 0098-000

Section 6
Compiling Programs

This section presents information outside of the ALGOL language. This information is
necessary to compile and run an ALGOL program. The section describes the files used
by the ALGOL compiler when it compiles a program, the format of a source record, and
compiler control options.

Files Used by the Compiler
When the ALGOL compiler compiles a program, it requires, at minimum, one input file
that contains the source code to be compiled. If the compile is successful, the compiler
produces, at minimum, one output file that contains executable object code.

Through the use of compiler control options, the compiler can be directed to use
additional input files and to produce additional output files. Among the optional input
files that can be used are files containing source code that is to be merged or inserted
into the required source code file, and files containing information needed to perform
separate compilation and binding. Among the optional output files that can be produced
are a printer listing of the program, a cross-reference file, an updated source file,
an error message file, and a file containing information needed for future separate
compilation.

Figure 6-1 lists the logical input and output files used by the ALGOL compiler. Each
file is listed with values for the INTNAME, KIND, INTMODE, MAXRECSIZE,
BLOCKSIZE, and FILETYPE attributes. Some or all of the attributes for these files can
be changed, using compiler file equation, when the compiler is initiated. For information
on file attributes refer to the A Series File Attributes Programming Reference Manual.
For information about compiler file equation, see the A Series Work Flow Language
(WFL) Programming Reference Manual.

8600 0098-000 6-1

Compiling Programs

COMPILER INPUT FILES

Decsription INITNAME Inti at ion KIND INITMODE MAXRECSIZE BLDCKSIZE DEPENDENT
SPECS

PRIMARY WFL READER Taken from Taken from

INPUT FILE
CARD

CANOE DISK
EBCDIC physical physical TRUE

file file

OPTIONAL WFL AND
Taken from Taken from

SECONDARY SOURCE*
CAN DE

DISK EBCDIC physical physical TRUE
INPUT FILE file file

OPTIONAL
SOURCE FI LES (INC LUO Ed WFL AND

Taken from Taken from
INPUT BY $ DISK EBCDIC phys.ical physical TRUE
INCLUDE COMPILER

files) CAN DE file file
CONTROL OPTIONS

OPTIONAL WFL AND
OBJECT FILE HOST

CANOE
DISK SINGLE 30 words 270 words TRUE

INPUT

OPTIONAL WFL AND
Taken from Taken from

INFO FI LE
INFO CANOE DISK SINGLE phys.ical physical TRUE

file file

COMPILER OUTPUT FILES

Decsription INITNAME Intiation KIND INITMODE MAXRECSIZE BLOCKSIZE FILETYPE

OBJECT CODE CODE WFL AND DISK SINGLE 30 words 270 words --FILE CAN DE

OPTIONAL WFL AND
UPDATED NEWSOURCE"i DISK EBCDIC 15 words 420 words --
SYMBOLIC FILE

CAN DE

OPTIONAL WFL AND
LINE PRINTER LINE PRINTER EBCDIC 22 words 22 words --
LISTING

CAN DE

OPTIONAL WFL AND PRINTER
ERROR MESSAGE ERRORS* EBCDIC 12 words 12 words
FILE CAN DE REMOTE

OPTIONAL WFL AND
CROSS-REFERENCE XREFFILE CAN DE DISK EBCDIC 510 words 510 words 0
FILE

OPTIONAL
INFO

WFL AND
DISK SINGLE 256 words 2560 words 0

INFO FILE CAN DE

Figure 6-1. Compiler Files

* The following synonyms can be used:

6-2 8600 0098-000

Compiling Programs

File Name

SOURCE

NEWSOURCE

ERRORS

Input Files

Synonym

TAPE

NEWTAPE

ERRORFILE

The input files used by the compiler consist of the following:

• CARD, the required source code file

• SOURCE or TAPE, a source code file that can be merged with CARD

• INCLUDE files, source code files that can be inserted into CARD or TAPE

• HOST, information used for separate compilation and binding

• INFO, information used for separate compilation

The EXTMODE attribute (the character type of the physical file) of these input files
can be EBCDIC, ASCII, or BCL. The MAXRECSIZE attribute of these input files must
be large enough to accommodate at least 72 characters. Because the values of the
MAXRECSIZE and BLOCKSIZE attributes for these files are taken from the physical
file (since DEPENDENTSPECS = TRUE), these two attributes do not require explicit
assignment.

CARD File

The CARD file supplies the primary source input to the compiler and must be present
for each compilation. If the compiler is initiated from the Work Flow Language (WFL)
and compiler file equation is not applied to the CARD file, the file is assumed to be a card
reader file. If the compiler is initiated through CANDE and compiler file equation is not
applied to the CARD file, the file is assumed to be a disk file.

SOURCE File

The synonym TAPE can be used in place of SOURCE.

The SOURCE file supplies secondary source input to the compiler. Its presence is
optional. If you do not file-equate either SOURCE or TAPE, the compiler attempts to
open a file with the name TAPE, and if it does not find one, it attempts to open a file
named SOURCE. The file is assumed to be a disk file regardless of whether the compiler
is initiated from WFL or CANDE.

When this file is present and the MERGE option is TRUE, records from the TAPE file
are merged with those of the CARD file on the basis of sequence numbers. If a record
from the CARD file and a record from the TAPE file have the same sequence number,
the record from the CARD file is compiled and the TAPE record is ignored. For more
information on the MERGE option, see "MERGE Option" later in this section.

8600 0098-000 6-3

Compiling Programs

INCLUDE Files

INCLUDE files provide source input to the compiler in addition to that supplied
by the CARD and SOURCE (or TAPE) files. An INCLUDE file is used only if an
INCLUDE compiler control option appears in the source input being compiled. For more
information on the INCLUDE option, see "INCLUDE Option" later in this section.

HOST File

The HOST file provides the compiler with information that allows it to separately
compile and bind to a host program only procedures that are being changed. This
process is called a SEPCO:MP and the HOST file is used if the SEPCOMP compiler
control option is TRUE. The HOST file is a special object code file, created by a previous
compile when the MAKEHOST compiler control option was TRUE. The HOST file
contains information about the outer block environment of the program and the
environments of selected procedures. For more information on the SEPCOMP and
MAKEHOST options, see "SEPCOMP Option" and "MAKEHOST Option" later in this
section.

INFO File

The INFO file contains the contents of variables and tables used in the compiler, saved
from a previous compile. This file is used for separate compilation of procedures. It is
created by the DUMPINFO compiler control option and is used as an input file by the
LOADINFO compiler control option. For more information on the DUMPINFO and
LOADINFO options, see "DUMPINFO Option" and "LOADINFO Option" later in this
section.

Output Files

The output files produced by the compiler consist of the following:

• CODE: the object code file

• NEWSOURCE or NEWTAPE: the updated source code file

• LINE: the printer listing of the program

• ERRORS or ERRORFILE: the error message file

• XREFFILE: cross-reference information

• INFO: information used for separate compilation

CODE File

6-4

The CODE file is produced unconditionally and contains the executable object code
produced by the compiler. This file is either stored permanently, executed and then
discarded, or discarded, depending on the specifications in the WFL or CANDE
COMPILE statement that initiated the compiler, and on whether or not syntax errors
occurred during the compilation. For more information on the WFL and CANDE

8600 0098-000

Compiling Programs

COMPILE statements, refer to the A Series Work Flow Language (WFL) Programming
Reference Manual and the A Series CANDE Operations Reference Manual.

NEWSOURCE File

The synonym NEWSOURCE can be used in place of NEWTAPE.

The NEWSOURCE file is produced only if the NEW compiler control option is TRUE.
The NEWSOURCE file is an updated source file that consists of the source input from
the CARD file, the SOURCE (or TAPE) file, and (if the INCLNEW compiler control
option is TRUE) the included files that were actually compiled. If either NEWSOURCE
or NEWTAPE are not file equated, a disk file is created with the name NEWSOURCE.
For more information on the NEW and INCLNEW options, see "New Option" and
"INCLNEW Option" later in this section.

LINE File

The LINE file is produced if either of the compiler control options LIST or TIME is
TRUE. If compiler file equation is not applied to the LINE file, it is a printer file.

The contents and format of the LINE file depend on the values of the following compiler
control options:

CODE FORMAT

LISTDELETED LISTINCL

LISTOMITIED LISTP

MAP PAGE

SEGS SINGLE

STACK TIME

The LINE file always contains at least the following information:

• The title of the source file CARD used as input to the compiler

• Code segmentation information

• Error messages and error count, if syntax errors occur

• Summary information about the compile, such as the number of lines read and the
size of the object code file

For more information about the compiler control options that affect the LINE file, see
"Option Descriptions" later in this section.

ERRORS File

The synonym ERRORFILE can be used in place of ERRORS.

The ERRORS file is produced only if the ERRLIST compiler control option is TRUE.
If either ERRORS or ERRORFILE are not equated, the file is created with the title

8600 0098-000 6-5

Compiling Programs

ERRORS. It is a printer file if the compile is initiated through WFL, and a remote file if
the compile is initiated through CANDE. If no syntax errors occur during compilation,
no ERRORS file is produced, regardless of the value of the ERR.LIST option. For more
information on the ERR.LIST option, see "ERRLIST Option" later in this section.

For every syntax error that occurs during compilation, two records are written to the
ERRORFILE file. The first record is a copy of the source record that contains the error.
The second record contains the sequence number of that source record (if the source
record was sequenced) and the error message.

XREFFILE File

When either of the compiler control options XREF or XREFFILES is TRUE, the
compiler saves raw cross-reference information in the XREFFILE file. The contents of
the file are affected by the compiler control options XDECS and XREFS. Before this
information can be printed or read by SYSTEM/INTERACTIVEXREF or the Editor, it
must be analyzed by SYSTEMJXREF ANALYZER. The XREFFILE file is given the file
name XREF/ <code file name>, where <code file name> is the file name of the object
code file being produced. For more information about the cross-reference options, see
"Option Descriptions" later in this section.

INFO File

The INFO file contains the contents of variables and tables used in the compiler. It is
intended for use in separate compilations of procedures. This file is created by the
DUMPINFO compiler control option, and it is used as an input file by the LOADINFO
compiler control option.

Source Record Format

6-6

The records of a source code file read by the ALGOL compiler can be any size greater
than or equal to 72 characters.

Assume that the character positions (called columns) of a source record are numbered
from 1 to n, where n is the size of the record in characters. The compiler divides each
source record as follows:

• The data in columns 1 through 72 is assumed to be ALGOL source language as
defined in this manual. Any characters that appear beyond column 72 are not
compiled as source language constructs.

• Characters in columns 73 through 80 of a record are treated as a sequence number,
which is optional.

• Any information beyond column 80 is ignored.

The column in which an ALGOL construct begins is not significant, unless the source
record is a compiler control record or the construct continues beyond column 72. For
more information on compiler control records, refer to "Compiler Control Records" later
in this section. The data in columns 1 through 72 is treated as a continuous stream from

8600 0098-000

Compiling Programs

record to record. In other words, no delimiters are implied at the end of a record, and
string literals, identifiers, and all other valid ALGOL constructs can be continued from
column 72 of one record to column 1 of the succeeding record.

Compiler Control Options
Compiler control options provide the programmer with the means to control many
aspects of the compilation of an ALGOL program. These options can instruct the
compiler to use optional input files or to produce optional output files. In addition to
other things, the options can do all of the following:

• Affect the contents of the printer listing

• Designate the target computer for which code is to be produced

• Set the default character type

• Cause the compiler to perform separate compilation

• Invoke the Binder

• Invoke debugging features

• Exclude source records

• Set a limit on the number of syntax errors the program can get

• Resequence source records

• Check that sequence numbers are in order

• Control code file segmentation

• Flag BCL constructs

Compiler Control Records

Compiler control options are included in an ALGOL program by using special source
records called compiler control records.

<compiler control record>

$
L$$ f--------,

<option phrase
<dumpinfo option
<loadinfo option
<include option

<binder commando>----------~

~-<escape remark;>-----------------------<

8600 0098-000 6-7

Compiling Programs

6-8

<option phrase>

SET Boolean option
POP innnediate option
RESET va 1 ue opt ion>---'

SET Laoo 1 ean option>-,.------------.-_.__.
= --<option expression

<Boolean option>

A <Boolean option> can be any of the following:

<ASCII option>

< BCL option>

<code option>

<errlist option>

<format option>

<inclseq option>

<intrinsics option>

<lineinfo option>

<listdeleted option>

<listincl option>

< listp option>

<map option>

<merge option>

< newseqerr option>

<nobindinfo option>

<noxreflist option>

<omit option>

<rangecheck option>

<sepcomp option>

<sequence option>

<single option>

<statistics option>

<TADS option>

<user option>

<voidt option>

<writeafter option>

<autobind option>

<check option>

<delete option>

<errorlist option>

<inclnew option>

<installation option>

<library option>

<list option>

<listdollar option>

<listomitted option>

<makehost option>

<MCP option>

<new option>

< noBCL option>

<nostackarrays option>

<oldresize option>

<optimize option>

<segs option>

<seq option>

<seqerr option>

<stack option>

<strings option>

<time option>

<void option>

<warnsupr option>

<xdecs option>

continued

8600 0098-000

Compiling Programs

continued

<xref option>

<xreffiles option>

<immediate option>

Ebeginsegment o~ti~n
endsegment opt1on
go to option>>-----1
page option>>-----'

<value option>

<dictionary o
<level option
<limit option
<segdescabove
sequence bas
sequence inc

<sharing opti
<status optio
<target optio

pt ion"
~

...
option

e option
rement option>-!
on'
n"
n'

version optio n""

<option expression>

<Xrefs option>

<$option>

4

lE~;-n
option pri;ryj>-'----------------------1

<option primary>

user option>
TRUE ~ FALSE

C ~option expression>--)

<binder command>

<bind option.-----r--------------------;
<bi nder opt i on.-----t
external option
host option>----1
initialize option
purge opt i on.-------1
stop option>----1
use option>-----'

Compiler control records are submitted to the ALGOL compiler as part of the source
input and are distinguished from other constructs by the dollar sign ($) that must begin
every compiler control record.

Compiler control records with the $ in column 1 but not in column 2 affect only the
current compilation and are not saved in the NEWSOURCE file, if there is one.

8600 0098-000 6-9

Compiling Programs

6-10

Compiler control records with the $$ in columns 1 and 2, or a blank in column 1 and a
$ in column 2, are considered permanent compiler control records and are saved in the
NEWSOURCE file, ifthere is one.

A compiler control record can contain the following:

• Boolean options

• Value options

• Immediate options

• Special options

• Binder commands

A Boolean option is one that is either enabled (TRUE) or disabled (FALSE). When
enabled, it causes the compiler to apply an associated function to all subsequent
processing until the option is disabled.

A value option causes the compiler to store a value associated with a given function.

An immediate option causes the compiler to perform immediately a function that is not
applied to subsequent processing.

The special options (the DUMPINFO option, the LOADINFO option, and the INCLUDE
option), like the immediate options, cause the compiler to perform immediately a
function that is not applied to subsequent processing. However, they are not grouped
with the immediate options because of special syntactic requirements.

Binder commands are passed directly to the Binder program. For more information
on Binder statements and control options, refer to the A Series Binder Programming
Reference Manual.

The keywords SET, RESET, and POP affect the value of Boolean options. Each Boolean
option has an associated stack in which the current value and up to 46 previous values of
the option are saved. The management of this stack of values is as follows:

1. If the first keyword to the left of a Boolean option in a compiler control record is
SET or RESET, the current value of the option is pushed onto the stack and the
option is assigned a value of TRUE or FALSE, respectively. In other words, the
option is assigned a new value, and the previous value is saved in the stack.

2. If the first keyword to the left of a Boolean option in a compiler control record is
POP, the current value of the option is discarded and the previous value is removed
from the top of the stack and assigned to the option.

3. If a Boolean option is not preceded in a compiler control record by any keyword,
then the following actions occur:

a. All resettable standard Boolean options are assigned a value of FALSE and all
previous values in their stacks are discarded.

b. The Boolean options appearing in the compiler control record with no preceding
keyword are assigned a value of TRUE.

8600 0098-000

Compiling Programs

The following is a list of the resettable standard Boolean options that are affected when a
Boolean option appears in a compiler control record without a preceding keyword:

ASCII

BCL

CODE

FORMAT

INCLSEQ

INTRINSICS

LISTDELETED

LISTINCL

MAKEHOST Of the first
syntactic item has not been
seen)

NEW

NOXREFLIST

OPTIMIZE

SEQ

SEQERR

STATISTICS

TIME

VOIDT

WRITEAFTER

XREFFILES

$

AUTOBIND (if SEPCOMP is FALSE)

CHECK

DELETE

INCLNEW

INSTALLATION

LIST

LISTDOLLAR

LISTP

MAP

NEWSEQERR

OMIT

SEGS

SEQUENCE

STACK

STRINGS

VOID

WARNSUPR

XREF

XREFS

A compiler control record that consists of only an initial $ (a $ followed by all blanks)
has no effect unless it is in the CARD file, the MERGE option is TRUE, and a record is
present in the secondary input file TAPE that has the same sequence number as this
compiler control record. When these three conditions are met, then that TAPE record is
ignored.

In an <option expression>, the Boolean operators have the same precedence as
they do in Boolean expressions; that is, NOT and "' are equivalent and have the
highest precedence, followed by AND, OR, IMP, and EQV, in that order. The <option
primary> "*"represents the current value of the Boolean option whose value is being
assigned. For example, the following compiler control record causes records from both
the CARD and TAPE files to be ignored if either the OMIT option is TRUE or the user
option DEBUGCODE is TRUE.

$ SET OMIT = * OR DEBUGCODE

8600 0098-000 6-11

Compiling Programs

Examples

The following compiler control record assigns a value of TRUE to the LIST option,
MERGE option, and NEW option, and assigns a value of FALSE to the SINGLE option.
The previous value of each of these options is saved in the corresponding stack.

$ SET LIST MERGE NEW RESET SINGLE

The followiqg compiler control record invokes the immediate option PAGE, causing the
compiler to skip the printer listing to the top of the next page (if the LIST option is
TRUE). Because the PAGE option is not a Boolean option, the action described above for
Boolean options not preceded by a keyword does not occur.

$ PAGE

The following compiler control record assigns a value of TRUE to the LISTP option,
assigns the value 135000 to the sequence base option, and returns the LIST option to its
most recent previous value.

$ SET LISTP 135000 POP LIST

The following compiler control record assigns FALSE to all resettable standard Boolean
options and discards all previous values in their stacks, assigns the value TRUE to the
LISTP option, and returns the USER option MYOPTION to its most recent previous
value. The stack for MYOPTION is unaffected by the purge of the stacks for the
standard resettable Boolean options, because it is not a standard option.

$ LISTP POP MYOPTION

Option Descriptions

The remainder of this section describes the individual compiler control options.

ASCII Option

6-12

(Type: Boolean, Default value: FALSE)

STRINGS = ASCII is a synonym that can be used for the ASCII option. When TRUE,
the ASCII option sets the default character type to ASCII. For more information, refer
to "Default Character Type" in Appendix C, "Data Representation."

If the BCL option is TRUE and the ASCII option is assigned the value TRUE, a syntax
error is given.

8600 0098--000

Compiling Programs

AUTOBIND Option

- AUTOBIND ------------------------1

(Type: Boolean, Default value: FALSE)

If TRUE, the AUTO BIND option causes the processes of compilation and program
binding to be combined into one job. During compilation, the compiler produces a
set of instructions to be passed to the Binder program. In most cases, these Binder
instructions are sufficient. If additional Binder instructions are required, the ALGOL
<binder command> syntax can be used.

The AUTOBIND option can be assigned a value at any time during compilation.
However, for the following reasons, it should be assigned a value only once, at the
beginning of compilation:

• The value of the AUTO BIND option is significant only at the end of compilation. For
example, if four procedures are being compiled, the first three with the AUTO BIND
option FALSE and the last with the AUTO BIND option TRUE, the Binder attempts
to bind all four procedures to the specified host.

• When the AUTO BIND option is FALSE, compile-and-go on a separate procedure is
not executed. If the AUTO BIND option is TRUE throughout compilation, execution
of the resulting program takes place after binding.

In ALGOL, an outer block or a separate procedure compiled at lexical (lex) level two can
serve as a host for binding. Separate ALGOL procedures compiled at lex level three (the
default level) or higher can be bound into a host. Any number of separate procedures,
but only one host, can be compiled in one job. The host must be the last program unit
compiled. If an appropriate host file is compiled with the AUTOBIND option equal to
TRUE, it is assumed to be the host for binding. This assumption cannot be overridden
by file equation or by use of the HOST option. If no eligible host is being compiled, a
host must be specified, either by file equation of the compiler file HOST or by use of the
HOST option.

The object code file of any procedure compiled at lex level three or higher with the
AUTOBIND option equal to TRUE is marked as nonexecutable. To be executed,
the procedure must be bound into a host file by the Binder program or invoked by a
PROCESS or CALL statement.

Object code files of any procedures compiled at lex level three or higher are purged after
being bound into a host by the AUTOBIND option. To be retained, such a code file must
be referenced specifically in either a BIND option or an EXTERNAL option.

If the TADS option is TRUE when the AUTOBIND option is assigned the value TRUE,
then the AUTO BIND option is left equal to FALSE and a warning message is given.

The process of binding might be permitted by the compiler, even if there are syntax
errors in the compilation. This can occur, for example, when the host file is compiled
successfully, even though none of the separate procedures succeeded. In another
example, there is no host file in the compilation, but at least one of the separate
procedures compiles.

8600 0098-000 6-13

Compiling Programs

BCL Option

(Type: Boolean, Default value: FALSE)

When TRUE, the BCL option sets the default character type to BCL. For more
information, refer to "Default Character Type" in Appendix C, "Data Representation."

If the ASCII option is TRUE when the BCL option is assigned the value TRUE, a syntax
error is given.

Note: The BCL data type is not supported on aU A Series systems. The
appearance of a BCL construct that can cause the creation of a BCL
descriptor, such as the BCL option, causes the program to get a
compile-time warning message.

BEGINSEGMENT Option

6-14

- BEGINSEGMENT ----------------------<

(Type: immediate)

The BEGINSEGMENT option and the ENDSEGMENT option allow the programmer to
control code file segmentation. Procedures encountered between a BEGINSEGMENT
option and an ENDSEGMENT option are placed in the same code segment, which is
called a user segment because it is user-controlled instead of compiler-controlled.

The BEGINSEGMENT option must appear before the declaration of the first procedure
to be included fu the user segment. The ENDSEGMENT option must appear after the
last source record of the last procedure to be included in the user segment.

A procedure cannot be split across user segments. The first procedure in the user
segment must be one for which the compiler would normally generate a segment; that
is, it must have local declarations. External procedures cannot be declared in a user
segment.

Declarations of global items other than procedures within a user segment can result in
those items not being initialized. This could cause the program to get a fault at run
time. Declarations of global items other than procedures should be placed outside user
segments.

User segments can be nested; that is, a BEGINSEGMENT option can appear in a user
segment. In this case, an ENDSEGMENT option applies to the user segment currently
being compiled.

If a BEGINSEGMENT option appears before the beginning of a separately compiled
procedure, an ENDSEGMENT option is assumed at the end of the procedure, even if
none appears. The driver procedure created for procedures compiled at lexical level
three is always in a different code segment.

8600 0098-000

Compiling Programs

The segment information in the printer listing is modified for user segments. User
segments are numbered consecutively in a program, beginning with 1; that is, the first
user segment is USERSEGMENTl, the second user segment is USERSEGMENT2, and
so forth. The code segment number of each user segment is printed at its beginning;
the length of each user segment is printed at its end. Procedures or blocks whose
segmentation is overridden by user segmentation are printed out as being in that user
segment.

Forward procedure declarations are not affected by user segmentation.

If more than one BEGINSEGMENT option appears before a procedure, the warning
message EXTRA BEGINSEGMENT IGNORED is printed. If an ENDSEGMENT
option appears and there has been no BEGINSEGMENT option, the warning message
EXTRA ENDSEGMENT IGNORED is printed.

The BEGINSEGMENT option and ENDSEGMENT option allow the programmer to
reduce presence-bit overhead by grouping frequently called procedures and infrequently
called procedures in separate segments.

BIND Option

- BIND -<text>---------------------1

(Type: Binder command)

During autobinding, the BIND option is passed directly to the Binder program for
analysis. The format and function of this option are the same as those of the Binder
BIND statement and are described in the A Series Binder Programming Reference
Manual.

BINDER Option

- BINDER -<text>----------------------1

(Type: Binder command)

During autobinding, the text in the BINDER option is passed directly to the Binder
program for analysis. The format and function of <text> are the same as those of the
Binder control options and are described in the A Series Binder Programming Reference
Manual.

CHECK Option

-CHECK-------------------------1

(Type: Boolean, Default value: FALSE)

When TRUE, the CHECK option causes an error to be given if the sequence number on
a record of the SOURCE or NEWSOURCE file is not strictly greater than the sequence
number of the preceding record. If a sequence error occurs in the SOURCE file, the
word SEQERR, followed by the sequence number of the previous source record, is

8600 0098-000 6-15

Compiling Programs

printed at the right side of the source record on the printer listing. If a sequence error
occurs in the NEWTAPE file, the message NEWTAPE SEQ ERROR, followed by the
sequence number of the previous source record, is printed on the listing and the message
NEWTAPE SEQ ERR is displayed on the Operator Display Terminal (ODT). In the
ERRORS file, the sequence number of the record that caused the sequence error and
the sequence number of the previous source record appear on the line following the
source record.

If the NEW option is FALSE and resequencing is occurring, the old sequence number is
the sequence number that is checked.

CODE Option

(Type: Boolean, Default value: FALSE)

If both the LIST option and the CODE option are TRUE, the printer listing includes
the compiler-generated object code. If the LIST option is TRUE but the CODE option
is FALSE, the printer listing does not include the object code. The value of the CODE
option is ignored if the LIST option is FALSE.

DONTBIND Option

- DONTBIND -<text>-------------------~

During autobinding, the DONTBIND option is passed directly to the Binder program for
analysis. The DONTBIND option directs the Binder not to bind a specified subprogram
(procedure). In addition, the DONTBIND option can be used to suppress the binding
of all external references declared by a program. The format and function of the
DONTBIND option are the same as those of the Binder DONTBIND statement.
For information about the DONTBIND statement, refer to the A Series Binder
Programming Reference Manual.

DUMPINFO Option

6-16

- DUMPINFO --.----------.--------------1
~file specification>OJ

<file specification>

C<title>
internal file ~
name and title

<title>

A quoted string containing a file title.

8600 0098-000

Compiling Programs

<internal file name>

-<i denti fi er:>------------------------<

<name and title>

-<internal file name>-= -<title:>----------------<

(Type: special)

The DUMPINFO option is described with the LOADINFO option in this section.

ENDSEGMENT Option

- ENDSEGMENT ----------------------<

(Type: immediate)

The ENDSEGMENT option is described with the BEGINSEGMENT option in this
section.

ERRLIST Option

L: ~~~6~~Is-T----.----------------------;

(Type: Boolean, Default value: TRUE for CANDE-originated compiles,
FALSE otherwise)

ERRORLIST is a synonym that can be used for the ERRLIST option. The ERRORLIST
synonym should not be used if code is to be run through SYSTEMJP ATCH.

When TRUE, the ERRLIST option causes syntax error information to be written to the
ERRORS file. When a syntax error is detected in the source input, the source record
that contains the error, an error message, and the syntactical item where the error
occurred are written on two lines in the ERRORS file. This option is provided primarily
for use when the compiler is invoked at a terminal by CANDE, but it can be used
regardless of the manner in which the compiler is invoked. When the compiler is invoked
from CANDE, the default value of the ERRLIST option is TRUE, and the ERRORS file
is automatically equated to the remote device from which the compiler was invoked.

EXTERNAL Option

- EXTERNAL -<text;;>---------------------1

(Type: Binder command)

During autobinding, the EXTERNAL option is passed directly to the Binder program
for analysis. The format and function of this option are the same as those of the
Binder EXTERNAL statement and are described in the A Series Binder Programming
Reference Manual.

8600 0098-000 6-17

Compiling Programs

FORMAT Option

(Type: Boolean, Default value: FALSE)

If both the LIST option and the FORMAT option are TRUE, then to aid readability of
the printer listing, several blank lines are inserted after each procedure. If the LIST
option is TRUE but the FORMAT option is FALSE, no blank lines are inserted after
procedures. If the LIST option is FALSE, the value of the FORMAT option is ignored.

GO TO Option

- GO ~[-T-0-J.....-.<sequence number

<sequence number>

L/8\-<di gi t>,....I ___________________ _...

(Type: immediate)

The GO TO option is used to reposition the secondary source input file TAPE. This
option is intended for use with disk files and does not work on tape files.

The <sequence number> construct specifies a sequence number appearing on a record
in· the TAPE file. The GO TO option causes the TAPE file to be repositioned so that
the next record from this file used by the compiler is the first record with a sequence
number greater than or equal to the specified sequence number. The TAPE file must be
properly sequenced in ascending order; that is, the sequence number on each record in
the file must be strictly greater than the sequence number on the preceding record. The
specified sequence number can be greater than or less than the sequence number of the
record on which the option appears.

This option cannot appear within a DEFINE declaration or in included source input.

HOST Option

6-18

- HOST -<text.----------------------<

(Type: Binder command)

During autobinding, the HOST option is passed directly to the Binder program for
analysis. The format and function of this option are the same as those of the Binder
HOST statement and are described in the A Series Binder Programming Reference
Manual.

8600 0098-000

Compiling Programs

INCLNEW Option

- INCLNEW -----------------------1

(Type: Boolean, Default value: FALSE)

If both the NEW option and the INCLNEWoption are TRUE, included source input is
written to the NEWTAPE file. If the NEW option is TRUE but the INCLNEW option is
FALSE, included source input is not written to the NEWTAPE file. If the NEW option is
FALSE, the value of the INCLNEW option is ignor.ed.

INCLSEQ Option

- INCLSEQ -----------------------1

(Type: Boolean, Default value: FALSE)

If both the SEQ option and the INCLSEQ option are TRUE, included source input
is resequenced. If the SEQ option is TRUE but the INCLSEQ option is FALSE,
included source input is not resequenced. If the SEQ option is FALSE, the value of the
INCLSEQ option is ignored.

INCLUDE Option

- INCLUDE ---.----------.-..-----------r---~-+
L_<file specification~ L_<start specification~

-+ L<stop speci fi cat i on>J

<start specification>

* -----~-----------------~ ~sequence number>J

<stop specification>

---i:= TO~<sequence number

(Type: special)

The INCLUDE option causes the compiler to accept source language input from files
other than the CARD and TAPE files. The included records are compiled in place of the
record on which the INCLUDE option appears. The included records can themselves
contain INCLUDE options; in this way, included source input can be nested up to five
levels deep.

The <file specification> construct specifies the file from which source input is to be
included. If the <title> form is used, the quoted string specifies the TITLE attribute
of the file. The <internal file name> form provides an internal file name that can
be associated with an actual file through file equation. The <name and title> form
provides both an internal file name available for file equation and a title to be used if the
internal file name is not file-equated.

8600 0098-000 6-19

Compiling Programs

6-20

If the < file specification> construct is not used, the same file as that specified in the
previous INCLUDE option at the same level of nesting is used. Therefore, the first
INCLUDE option at any of the five possible levels of nesting must contain the <file
specification> construct.

The <start specification> construct specifies the record of the included file at which
inclusion is to start. If the <sequence number> form is specified, inclusion begins with
the first record with a sequence number greater than or equal to the specified sequence
number. If the asterisk (*) form of <start specification> is used, inclusion begins at the
point where it left off the last time inclusion took place from this file at the same level
of nesting. If the <start specification> construct is not used, inclusion begins with the
first record of the file.

The < stop specification> construct specifies the record after which inclusion is to stop.
If the < stop specification> construct is not used, inclusion ends after the last record of
the file.

Source files suitable for use by the INCLUDE option can be produced by the compiler by
using the NEW option.

Files declared globally in Work Flow Language (WFL) jobs should not be used as
INCLUDE files.

The INCLUDE option must be the last option appearing on a compiler control record.

Examples

The following example instructs the compiler to accept as input all records from the file
indicated by the internal name FILES, with a sequence number greater than or equal to
00001000 and less than or equal to 09000000.

$ INCLUDE FILES 00001000 - 09000000

The following example instructs the compiler to accept as input a portion of the file
accessed by the last INCLUDE option at this level of nesting. The records to be included
are all records that follow the last record included by that preceding INCLUDE option.
If, for example, the preceding INCLUDE option was the one in the first example above,
the file that is accessed is FILES, and the records that are included are all the records
with a sequence number greater than 09000000.

$ INCLUDE *

The following example instructs the compiler to accept as input a portion of the file with
the title SOURCE/XYZ. The included records are all records of the file with a sequence
number less than or equal to 00000900.

$ INCLUDE "SOURCE/XYZ. 11 - 900

The following example instructs the compiler to accept as input all records of either
the file to which the internal name INCL was file-equated or, if the INCL file was not
file-equated, the file SYMBOL/ALGOL/INCLUDEl.

8600 0098-000

Compiling Programs

$ INCLUDE INCL = "SYMBOL/ALGOL/INCLUDE!."

INITIALIZE Option
- INITIALIZE -<text,,_ _________________ __,

(Type: Binder command)

During autobinding, the INITIALIZE option is passed directly to the Binder program
for analysis. The format and function of this option are the same as those of the
Binder INITIALIZE statement and are described in the A Series Binder Programming
Reference Manual.

INSTALLATION Option

- INSTALLATION -.------------.---------___,
c=<installation number list>=J

<installation number list>

_[r ~;- J
<installation number> '

- -<installation number:.-J

<installation number>

-<unsigned integer;:.---------------------1

(Type: Boolean, Default value: FALSE)

When TRUE, the INSTALLATION option causes the compiler to recognize one or more
groups of installation intrinsics so that they can be referenced in an ALGOL program.
This option must be assigned a value before the first syntactic item in a program.
Assigning a value to this option at any other time has no effect.

An installation number must be an unsigned integer between 1and2047, inclusive.
Each installation number in an installation number list must be strictly greater than the
preceding installation number in that list. Installation numbers larger than 204 7 are
treated as if they were equal to 2047.

An INSTALLATION option with no installation number list is equivalent to one with an
installation number list of 100 through 204 7.

INTRINSICS Option

- INTRINSICS -----------------------1

(Type: Boolean, Default value: FALSE)

When TRUE, the INTRINSICS option causes separately compiled procedures to be
compiled at lexical (lex) level two and allows a <global part> construct to appear before

8600 0098-000 6-21

Compiling Programs

the procedures. These procedures can then be used as installation intrinsics. A <global
part> is not normally allowed when compiling separate procedures at lex level two.

The title of the object code file generated for a procedure when the INTRINSICS option
is TRUE is the same as if the procedure were compiled at lex level three. Thus, the
separate procedures being compiled can be bound into the intrinsics. When the Binder
program is used to bind procedures into the intrinsics, the INTRINSICS option must be
assigned the value TRUE before the first source statement.

LEVEL Option

- LEVEL -<outer 1 evel >'-------------------1

<outer level>

-<unsigned integer>--------------------i

(Type: value, Default value: 2 for programs, 3 for separately compiled procedures)

The LEVEL option allows the programmer to override the lexical (lex) levels assigned
by the compiler. This feature is needed when compiling separate procedures for binding
to a host program. The < outer level> construct specifies the lex level at which
compilation is to begin.

The LEVEL option must appear before the first syntactic item in a program.

LIBRARY Option

(Type: Boolean, Default value: TRUE for CANDE-originated compiles and when the
SEPCOMP option is TRUE, FALSE otherwise)

When compiling multiple separate procedures (such as intrinsics), assigning TRUE to
the LIBRARY option improves the efficiency of the binding. When TRUE, this option
causes all object code from this compilation to be put in one file, which is marked as a
multiprocedure code file. If the LIBRARY option is FALSE, each separate procedure
produces its own object code file.

The LIBRARY option must appear before the first syntactic item in a program.

The LIBRARY option is unrelated to the library facility described in Section 8, "Library
Facility."

LIMIT Option or ERRORLIMIT Option

6-22

---,- LIMIT J [J <error 1 imit
L_ ERRORLIMIT =

8600 0098-000

Compiling Programs

<error limit>

-<unsigned integer,,,_ _________________ __,

(Type: value, Default value: 10 for CANDE-originated compiles, 150 otherwise)

The LIMIT option allows the programmer to specify the number of compile-time errors
that can occur before the compilation is terminated because of excessive errors.

A limit of 0 indicates that the program is not to be terminated for excessive errors. If,
when the LIMIT option is assigned a value, the number of syntax errors already equals
or exceeds that value, then the program is immediately terminated.

LINEINFO Option

- LINEINFO ----------------------;

(Type: Boolean, Default value: TRUE for CANDE-originated compiles,
FALSE otherwise)

When TRUE, the LINEINFO option causes the compiler to associate sequence number
information with the object code. This information is then displayed in the event of a
run-time error. A larger code file is generated if the LINEINFO option is TRUE than if
it is FALSE.

LIST Option

- LIST------------------------1

(Type: Boolean, Default value: FALSE for CANDE-originated compiles,
TRUE otherwise)

When TRUE, the LIST option causes source input from the CARD and TAPE files and
other information to be printed on the compiler LINE file.

When a value is assigned to the LIST option, the same value is assigned to the SEGS
, option.

LISTDELETED Option

- LISTDELETED ---------------------l

(Type: Boolean, Default value: FALSE)

When both the LIST option and the LISTDELETED option are TRUE, the printer
listing includes records from the secondary input file TAPE that are replaced, voided,
or deleted during the compilation. The word REPLACED appears to the right of the
source records replaced by a record from the primary input file, CARD; the word VOIDT
appears if the record is voided from the TAPE file by the VOIDT option; and the word
DELETED appears ifthe record is deleted by a compiler control record that consists of a
dollar sign ($) followed by all blanks.

8600 0098-000 6-23

Compiling Programs

If the LIST option is TRUE but the LISTDELETED option is FALSE, records from the
TAPE file that are replaced, voided, or deleted are not written to the printer listing. If
the LIST option is FALSE, the value of the LISTDELETED option is ignored.

LISTINCL Option

- LISTINCL ---------------------1

(Type: Boolean, Default value: FALSE)

When both the LIST option and the LISTINCL option are TRUE, source records
included by using the INCLUDE option are written to the printer listing. If the LIST
option is TRUE but the LISTINCL option is FALSE, the included records are not
written to the printer listing. If the LIST option is FALSE, the value of the LISTINCL
option is ignored.

LISTOMITTED Option

- LISTOMITTED -------------------___,

(Type: Boolean, Default value: TRUE)

When both the LIST option and the LISTOMITTED option are TRUE, source records
omitted by the OMIT option are written to the printer listing. In the listing, the word
OMIT appears next to the sequence number of each omitted record. If the LIST option
is TRUE but the LISTOMITTED option is FALSE, omitted records are not written to
the printer listing. If the LIST option is FALSE, the value of the LISTOMITTED option
is ignored.

LISTP Option

- LISTP ----------------------1

(Type: Boolean, Default value: FALSE)

When TRUE, the LISTP option causes records from the primary source input file,
CARD, to be written to the printer listing. Because these records are also written when
the LIST option is TRUE, the LISTP option is effective only when the LIST option is
FALSE.

LOADINFO Option

6-24

- LOADINFO
~file specification~

(Type: special)

The DUMPINFO option and the LOADINFO option make it possible for the contents
of certain simple variables and arrays of the compiler to be saved in a disk file and
subsequently reloaded for separate compilation.

8600 0098-000

Compiling Programs

The <file specification> construct specifies the file to be created by the DUMPINFO
option or loaded by the LOADINFO option. If the <title> form is used, the quoted
string specifies the TITLE attribute of the file. The <internal file name> form
provides an internal file name that can be associated with an actual file by file equation.
The <name and title> form provides both an internal file name available for file
equation and a title to be used if the internal file name is not file-equated. If the <file
specification> construct is not used, the default INFO file or the file that is file-equated
to the INFO file is used.

These options are used in conjunction with separate compilation of procedures.
Typically, all global declarations are compiled, and then the DUMPINFO option is used
to dump information about the global declarations from the compiler to the file INFO.
When the separate procedures are to be compiled, the file INFO, containing information
about all of the global declarations, is read in by the LOADINFO option before the
procedures are compiled. When the XREF option or XREFFILES option is set, the
cross-reference information available at the time of a DUMPINFO is saved. If the option
is set when a LOADINFO is done, that cross-reference information will be loaded and
available for use with any new cross-reference information created in the separate
compilation of procedures. For example, consider the following programs:

Program 1

BEGIN
<global declarations>

$ DUMPINFO
END.

Program2

%%% LOAD THE GLOBALS
[
$ LOADINFO

<additional global declarations>
]
<separate PROCEDURE declarations>

Each time a loadinfo operation is done, the old information in the affected variables
and tables of the compiler is discarded. Thus, compiling different portions of the
same program, even if they are in different environments, can be done in the same
compilation.

The loadinfo operation changes all items in the INFO file to globals and all procedures
already compiled to forward PROCEDURE declarations. Thus, an INFO file created by
a DUMPINFO operation that is done immediately before a PROCEDURE declaration in
a normal compilation is suitable for loading global declarations when that procedure is to
be compiled separately.

When two or more items with the same identifier are declared at different lexical (lex)
levels, a separate compilation can access only the last declaration seen before the
loadinfo operation occurred.

8600 0098-000 6-25

Compiling Programs

If the release level of the compiler that performs the dumpinfo operation to create an
INFO file and the release level of the compiler that performs the loadinfo operation on
that file are not the same, a syntax error is given, and the compilation is discontinued. If
a loadinfo operation is attempted and the file specified as the INFO file is not in fact an
INFO file, or the INFO file was created by a compiler for a different language, a syntax
error is given and the compilation is discontinued.

The DUMPINFO option and LOADINFO option must be the last options appearing on a
compiler control record.

MAKEHOST Option

6-26

- MAKE HOST - (__l;envi ro~m~) --------------1

<environment>

r~- OF
--1--<procedure i denti fi er>>-~------------------1

(Type: Boolean, Default value: FALSE)

Given only the source code and object code of a host program to be changed and the
patches to change it, the SEPCOMP facility of he compiler can separately compile and
bind to the host program only the procedures that are being changed. This method,
which is particularly useful for large programs, requires that information not normally
collected and saved during the compilation of the host program be saved. When TRUE,
the MAKEHOST option causes this information to be saved when compiling a program
or a procedure at lexical Oex) level two.

If the MAKEHOST option is TRUE, information is saved in the object code file of the
program about the symbolic file used or created by the compilation, the sequence ranges
of all procedures declared in the outer block of the program, and the global declarations.
The saving of the outer block environment enables lex-level-three procedures to be
compiled separately within this environment.

The information saved about the items declared in an environment describes all of the
items in that environment. There is no information about the relative order of the
declarations and therefore which items are visible from which procedures. Thus, a
SEPCOMP of a patch is not necessarily equivalent to a full compile of that patch. For
example, consider the following host program:

BEGIN
REAL X;
PROCEDURE P;

BEGIN
REAL R;
R := X + 5;
END P;

REAL ARRAY A[0:4];
P;

END.

8600 0098-000

Compiling Programs

If a patch replaces the statement R : = X + 5; by the statement R : = X + A[2]; a full
compile with the patch fails with a syntax error on the assignment to R, because array A
has not yet been declared. A SEPCOMP of the patch, however, is successful, because
the environment information saved for the outer block describes A as well as X and P.

Additional environments can be saved, if desired, so that procedures at lex levels
greater than three can be replaced. The list of environments can extend across several
source records. Environments must be fully qualified through the outermost level of a
PROCEDURE declaration, except that for a program that is a procedure, the name of
that procedure must not appear. A procedure that is specified as an environment must
contain a local declaration. If a specified environment does not contain a local declaration
or if it is never found during the course of compilation, the compiler gives a syntax error
containing the name of the environment. Environments can appear in any order, without
regard to the actual block structure of the host program.

Source records that are inserted into a program using the INCLUDE option are not
included in the environment information saved by the MAKEHOST option. This
information is not saved because sequence numbers on included records can duplicate
sequence numbers occurring in the rest of the program.

The information necessary to make a program into a host program includes the
information saved for the Binder program when the NO BIND INFO option is FALSE;
therefore, an error is given if both the NOBINDINFO option and the MAKEHOST
option are TRUE.

When a host program is being created, the NEW option should be set to TRUE if any
changes are made to the host program. The default title of the source file is saved in
the host file for use during a SEPCOMP. If the host is being created as the result of a
SEPCOMP, the title of the SOURCE file is saved. If the compilation is not a SEPCOMP
but the NEW option is TRUE, the title ofJhe NEWSOURCE file is saved. IfNEW is
FALSE but MERGE is TRUE, the title of the SOURCE file is saved. Otherwise, the title
of the CARD file is saved.

The MAKEHOST option must appear before the first syntactic item in a program.

Examples

When the following program is compiled, information about the global environment
is saved in the object code file for the program. If a patch is made to the body of
procedure INNER, then during the SEPCOMP process, all of procedure Pl is recompiled
and bound to the host program. If, however, the MAKEHOST option was$ SET
MAKEHOST (Pl) then the local environment of Pl is also saved in the object code file of
the program. A SEPCOMP of a patch to the body of procedure INNER would cause only
INNER to be recompiled and bound to the host program.

8600 0098-000 6-27

Compiling Programs

BEGIN
ARRAY A[0:9];
PROCEDURE Pl;

BEGIN
BOOLEAN B;
PROCEDURE INNER;

BEGIN
REAL R;
IF B THEN

R := * + A[2];

END INNER;

END Pl;
PROCEDURE P2;

BEGIN

END P2;

END.

In the following example, the second compiler control option overrides the first, saving
the environment of procedures P ASSONE, :i? ASSTWO, and WRAPUP OF P ASSTWO in
addition to the global environment.

$SET MAKEHOST
$SET MAKEHOST (PASSONE, PASSTWO, WRAPUP OF PASSTWO)

MCP Option
~MCP~~~~~~~~~~~~~~~~~~~~~~--1

(Type: Boolean, Default value: FALSE)

When TRUE, the MCP option causes all value arrays, translate tables, truth sets, and
constant pools to be allocated at lexical (lex) level two.

The MCP ·option cannot be assigned a value after the appearance of the first syntactical
item in a program.

MERGE Option

6-28

(Type: Boolean, Default value: FALSE)

When TRUE, the MERGE option causes the primary source input file, CARD, to be
merged with a secondary source input file, TAPE, to form the input to the compiler. If
matching sequence numbers occur, the record from CARD overrides the record from
TAPE. If the MERGE option is FALSE, only primary source input is used, and the TAPE
file is ignored.

8600 0098-000

Compiling Programs

The total input to the compiler when the MERGE option is TRUE consists of all records
from the CARD file, all records from the TAPE file that do not have sequence numbers
identical to those on records in the CARD file, and all records inserted by INCLUDE
options. Records in the CARD file also override INCLUDE options in the TAPE file if
matching sequence numbers are encountered.

NEW Option

-NEW~----------------------i

(Type: Boolean, Default value: FALSE)

When the NEW option is TRUE, the source input to the compiler from the CARD file
is written to the updated source output file NEWTAPE. If the MERGE option is also
TRUE, then the merged source input from the CARD and TAPE files is written to
NEWTAPE. The format of the file written to NEWTAPE is such that it can later be used
as input to the compiler.

Records included in the source input by the INCLUDE option are written to the
NEWTAPE file only if the INCLNEW option is also TRUE. Compiler control records are
written to the NEWTAPE file only ifthe initial dollar sign($) does not appear in column
1.

The NEWTAPE file is created whether or not syntax errors occur in the source input.

If the MAKEHOST option is TRUE and the first syntactic item has been compiled, any
attempt to assign a value to the NEW option results in a syntax error.

NEWSEQERR Option

- NEWSEQERR ---------------------1

(Type: Boolean, Default value: FALSE)

When TRUE, the NEWSEQERR option causes an error to be given if the sequence
number on a record of the NEWTAPE file is not strictly greater than the sequence
number of the preceding record. If sequence errors occur and the NEWSEQERR option
is TRUE, the NEWTAPE file is not locked, the message NEWTAPE NOT LOCKED
is displayed on the Operator Display Terminal (ODT), and the message NEWTAPE
NOT LOCKED <numberoferrors> NEWTAPE SEQUENCE ERRORS is printed on
the printer listing. The NEWSEQERR option is effective even if the CHECK option is
FALSE.

NOBCL Option

-NOBCL-----------------------1

(Type: Boolean, Default value: FALSE)

When TRUE, the NOBCL option causes a syntax error to be given whenever a BCL
construct that may lead to the creation of a BCL descriptor is encountered This option

8600 0098-000 6-29

Compiling Programs

is intended to aid in the elimination of BCL constructs from a program so that the
program can run on non-BCL systems.

NOBINDINFO Option

- NOBINDINFO -----------------------<

(Type: Boolean, Default value: FALSE)

When TRUE, the NOBINDINFO option prevents information needed by the Binder
program from being written to the object code file. The resulting object code file can be
executed, but it cannot be used as an input file to the Binder program. Object code files
that do not contain binding information (bindinfo) are smaller than object code files that
contain bindinfo.

The Binder program cannot bind object code files that contain the timing code necessary
for statistics; therefore, if the NOBINDINFO option is FALSE when the STATISTICS
option is assigned the value TRUE, the NOBINDINFO option is assigned the value
TRUE and a warning message is given. If the STATISTICS option is TRUE when the
NO BIND INFO option is assigned the value FALSE, a syntax error is given.

If the MAKEHOST option is TRUE when the NOBINDINFO option is assigned the
value TRUE, a syntax error is given.

NOSTACKARRA VS Option

- NOSTACKARRAYS ------------------___,

(Type: Boolean, Default value: FALSE)

When TRUE, the NOSTACKARRAYS option prevents arrays from being allocated
within the stack.

When the NOSTACKARRAYS option is FALSE, the data from certain arrays is allocated
within the stack. Such arrays are referred to as in-stack arrays, and can be accessed
slightly faster than an array whose data area is allocated in memory.

NOXREFLIST Option

6-30

- NOXREFLIST ----------------------1

(Type: Boolean, Default value: FALSE)

When TRUE, the NOXREFLIST option prevents the SYSTEMJXREFANALyzER
program from being initiated by the compiler when cross-reference information is being
saved (that is, when either the XREF option or the XREFFILES option is TRUE).
Instead, the file XREF/ <code file name>, where <code file name> is the name of the
object code file generated by the compiler, remains on disk. SYSTEM/XREF ANAL yzER
can be run later using the file XREF/ <code file name> as input. The NOXREFLIST
option has no effect if both the XREF option and the XREFFILES option are FALSE.

8600 0098-000

Compiling Programs

For more information on cross-referencing, refer to the description of the XREF option
later in this section.

OLDRESIZE Option

- OLDRESIZE ------------------------i

(Type: Boolean, Default value: FALSE)

The OLD RESIZE option, which affected the semantics of the RESIZE statement, no
longer has any effect. Any compiler control record that assigns the value TRUE to the
OLD RESIZE option causes a syntax error to be given. Any other appearance of the
OLD RESIZE option in a compiler control record causes a warning message to be given.

OMIT Option

- OMIT ------------------------<

(Type: Boolean, Default value: FALSE)

When TRUE, the OMIT option causes records from the CARD file (and, if the MERGE
option is TRUE, from the TAPE file) to be ignored (not compiled). If both the LIST
option and the LISTOMITTED option are TRUE, then in the printer listing, the word
OMIT appears next to the sequence number of each omitted record. When the OMIT
option is TRUE, compiler control records with the initial dollar sign ($) in either column
1 or column 2 are recognized, but compiler control records with the $ in columns 3
through 72, inclusive, are ignored.

OPTIMIZE Option

- OPTIMIZE ----------------------1

(Type: Boolean, Default value: FALSE)

When TRUE, the OPTIMIZE option causes additional analysis of Boolean expressions to
be performed, and object code is generated to permit early termination of the expression
evaluation. Any portion of the Boolean expression that could cause side effects is always
evaluated.

PAGE Option

- PAGE------------------------1

(Type: immediate)

When the LIST option is TRUE and the PAGE option appears, the printer listing is
spaced to the top of the next page.

8600 0098-000 6-31

Compiling Programs

PARAMCHECK Option

- PARAMCHECK -----------------------1

When TRUE, the P ARAMCHECK option causes the compiler to report, as a syntax
error, the redeclaration of a formal parameter of a procedure, within the outer block
of the procedure. This permits the user to see where a formal parameter has been
rendered inaccessible to the procedure.

PURGE Option

- PURGE -<text---------------------~

(Type: Binder command)

During autobinding, the PURGE option is passed directly to the Binder program for
analysis. The format and function of this option are the same as those of the Binder
PURGE statement and are described in the A Series Binder Programming Reference
Manual.

SEGDESCABOVE Option

- SEGDESCABOVE -.---------.----------------1
[_<unsigned integer>OJ

(Type: value, Default value: none)

The SEGDESCABOVE option is used when compiling large programs that may have
difficulty in addressing the segment dictionary.

When a host program is compiled, this option causes all code segment descriptors to be
allocated starting at the word in the Dl stack specified by the unsigned integer. The
unsigned integer must be in the range 4 to 4095, inclusive. If the option is used after the
first syntactic item has been compiled, the given value is added to the current size of the
Dl stack. The Binder program preserves the segdescabove specification. Care should be
taken when using this option, because unused Dl stack locations below the code segment
descriptors occupy save memory when the program is running.

This option is intended to be used when compiling host files and is ignored when
separate procedures are compiled.

SEGS Option

6-32

- SEGS -------------------------1

(Type: Boolean, Default value: FALSE for CANDE-originated compiles,
TRUE otherwise)

If both the LIST option and the SEGS option are TRUE, the printer listing will contain
beginning and ending segment messages. Assigning a value to the LIST option assigns
the same value to the SEGS option. However, to suppress the segment messages, the

8600 0098-000

Compiling Programs

SEGS option can be assigned the value FALSE even though the LIST option is TRUE.
When the value of the LIST option is FALSE, the value of the SEGS option is ignored.

SEPCOMP Option

- SEPCOMP ~---~--------------------1
L<title>J

(Type: Boolean, Default value: FALSE)

When TRUE, the SEPCOMP option invokes the automatic separate compilation and
binding facility, called the SEPCOMP facility.

The title of the host program can be specified either by using the <title> syntax of
the SEPCOMP option or by file-equating the HOST file of the compiler. The <title>
specification takes precedence over file equation. The title of the default source file
is stored in the host program, but this title can be overridden by file equation of the
compiler file TAPE.

Compiler control records with blank sequence numbers are accepted following the
compiler control record that assigns TRUE to the SEPCOMP option and before the first
patch record. A patch record is a source record with a nonblank sequence number; at
least one patch record is required in a SEPCOMP. Sequence number errors among patch
records are not allowed. The SEPCOMP option examines the patch records, decides
which procedures of the host program must be recompiled, and generates Binder input
for binding these procedures to the host program. The SEPCOMP option always tries to
compile procedures at the highest possible lexical Oex) level. Therefore, the number of
extra environments specified when making a host program affects the choices available
to the SEPCOMP option.

When TRUE, the SEPCOMP option assigns TRUE to both the AUTOBIND option and
the LIBRARY option, causing all procedures to be compiled into one multiprocedure code
file (a temporary file used by the Binder program). Explicitly assigning FALSE to the
AUTOBIND option prevents the Binder from being called and causes the object code file
to be locked on disk if the LIBRARY option is TRUE. Explicitly assigning FALSE to the
LIBRARY option causes each procedure compiled to be put in a separate, permanent
object code file. Binding still occurs, but at a somewhat slower rate.

If procedures are put in separate code files, the titles of the code files are determined in
the standard way, with the procedure name replacing the last identifier from the title
on the compile statement that invoked the compiler. Procedures compiled at lex level
four and higher have the name of their environment in the code file name also. In the
following example, when two lex-level-four procedures are compiled having the same
name but different environments, two code files are produced (titledA/PASSONE/Q
andA!PASSTWO/Q) in addition to the new host file titled A/HOST, assuming that
P ASSONE and P ASSTWO were specified as extra environments when A/HOST was
made.

8600 0098-000

% PATCH CARD TO Q OF PASSONE
% PATCH CARD TO Q OF PASSTWO

<sequence number>
<sequence number>

6-33

Compiling Programs

The special information associated with a host program is always copied by the Binder
to the object code file of the new program so it can be used as a host. This information
is not updated by either the Binder or the compiler during the SEPCOMP process.
Following a SEPCOMP, this information can inaccurately reflect the actual structure and
content of the host program with which it is associated.

Because the arrangement of data in a bound code file differs from that of an unbound
code file, binding to a bound host is faster than binding to an unbound host. For this
reason, assigning TRUE to the AUTO BIND option when compiling a host program can
be advantageous, because it causes the Binder to be invoked.

If the release level of the compiler that creates the host code file and the release level
of the compiler that is attempting a SEPCOMP to that file are not the same, a syntax
error is given and the compilation is discontinued. If the code file specified as the host
program was not compiled with the MAKEHOST option equal to TRUE, or if the host
program was compiled by a compiler for a different language, a syntax error is given and
the compilation is discontinued.

The SEPCOMP option automatically assigns values to several other compiler control
options in order to simplify operation. The MERGE option is unavailable for use while
the SEPCOMP option is TRUE. Assigning TRUE to the MERGE option before assigning
TRUE to the SEPCOMP option is not allowed because it destroys the default file
equation of the source file to be used for the patches.

If the TADS option is TRUE when the SEPCOMP option is assigned the value TRUE,
the value of the SEPCOMP option is left equal to FALSE and a warning message is
given. The SEPCOMP option cannot be assigned a value after the first syntactic item
of a program has been compiled. Multiple SEPCOMP option settings are not allowed
because, when first assigned TRUE, the SEPCOMP option initiates preprocessing of the
source input from the CARD file.

For more information on the SEPCOMP facility, refer to "MAKEHOST Option" earlier
in this section.

SEQ Option

6-34

L ~~~U-EN_C_E--r---------------------i

(Type: Boolean, Default value: FALSE)

SEQUENCE is a synonym that can be used for the SEQ option. The SEQUENCE
synonym should not be used if the code is to be run through SYSTEM/PATCH.

When TRUE, the SEQ option causes the printer listing and the updated source file,
NEWTAPE, to contain new sequence numbers. These new sequence numbers are
determined by the current values of the sequence base option and the sequence
increment option.

This option is effective only when the LIST option or NEW option is TRUE. The
sequence numbers that appear on the records in these files when the SEQ option is

8600 0098-000

Compiling Programs

FALSE are identical to the sequence numbers on the corresponding records in the input
files.

The sequence base option and the sequence increment option are described in this
section.

SEQERR Option

- SEQERR -----------------------1

(Type: Boolean, Default value: FALSE)

When TRUE, the SEQERR option causes an error to be given if the sequence number
on a record of the TAPE file is not strictly greater than the sequence number of the
preceding record. If sequence errors occur and the SEQERR option is TRUE, the
object code file is not locked, the message CODE FILE NOT LOCKED is displayed on
the Operator Display Terminal (ODT), and the message CODE FILE NOT LOCKED
<number of errors> TAPE SEQUENCE ERRORS is printed on the printer listing.
The SEQERR option is effective even when the CHECK option is FALSE.

SEQUENCE BASE Option

_t:/8\-<di gi t>>--'-'-----------~--------f

(Type: value, Default value: 1000)

The SEQUENCE BASE option specifies the sequence number that is to be assigned
to the next record when the SEQ option is TRUE. After each record is resequenced,
the value of the SEQUENCE BASE option is increased by the value of the sequence
increment option.

SEQUENCE INCREMENT Option

- + _t/8\-<digit>>---'-'-~-----------------l

(Type: value, Default value: 1000)

The value of the SEQUENCE INCREMENT Option is used to increment the value of
the sequence base option when records are resequenced because the SEQ option is
TRUE.

SHARING Option

- SHARING - = 1 DONTCARE ~ PRIVATE ____ __,
SHAREDBYALL
SHAREDBYRUNUNIT

(Type: value, Default value: DONTCARE)

8600 0098-000 6-35

Compiling Programs

The SHARING option is used in a library program to specify how other programs are to
share the library.

DONTCARE

PRIVATE

If the SHARING option has the value DONTCARE, the operating system determines
the sharing, and it is unknown to all users invoking the library. DONTCARE is the
default value of the SHARING option.

If the SHARING option has the value PRIVATE, a separate instance of the library
is started for each invocation of the library. Any changes made to global items in the
library by a block that invoked the library apply only to that user of the library.

SHAREDBYALL

If the SHARING option has the value SHAREDBYALL, all invocations of the library
share the same instance of the library. Any changes made to global items in the library
by a block that has invoked the library apply to all users of that library.

SHAREDBYRUNUNIT

A run unit consists of a program and all libraries that are initiated either directly or
indirectly by that program. A program, in this context, does not include either a library
that is not frozen or any tasks that are initiated by the program (that is, a process family
is not a run unit). If the SHARING option has the value SHAREDBYRUNUNIT, all
invocations of a library within a run unit share the same instance of the library.

Note that a library is its own run unit until it freezes. For example, program P initiates
library A and, before library A freezes, it in turn initiates library B. Now library B is in
library A's run unit, not in program P's run unit. Had library A initiated library B after
freezing, both library A and library B would be in program P's run unit.

The SHARING option must appear before the first syntactic item in the program.

SINGLE Option

6-36

- SINGLE ---------------------""-i

(Type: Boolean, Default value: TRUE if the compiler was compiled with the
DOUBLESPACE compiler-generation option equal to FALSE, FALSE otherwise)

When TRUE, the SINGLE option causes the printer listing to be single-spaced. When
FALSE, the SINGLE option causes the printer listing to be double-spaced.

8600 0098-000

STACK Option

---r- STACK
L MAP

(Type: Boolean, Default value: FALSE)

MAP is a synonym that can be used for the STACK option.

Compiling Programs

If both the LIST option and the STACK option are TRUE, the printer listing includes
the relative stack addresses, in the form of address couples, for all program variables. If
the LIST option is TRUE but the STACK option is FALSE, the printer listing does not
contain these address couples. The value of the STACK option is ignored if the LIST
option is FALSE.

STATISTICS Option

- STATISTICS ~--------------~------1

L (IE L LABELS a::?-) J
~ ~~~E~ PBITS

(Type: Boolean, Default value: FALSE)

When TRUE, the STATISTICS option causes timing statistics to be gathered. The
option is examined at the beginning of each procedure or block and, if it is TRUE at that
time, timing statistics are gathered for that procedure or block. Although the value of
the option can be altered at any time, only its value at the beginning of procedures and
blocks is significant in determining whether timings are made.

The Binder program cannot bind object code files that contain the timing code necessary
for statistics; therefore, if the NOBINDINFO option is FALSE when the STATISTICS
option is assigned the value TRUE, the NOBINDINFO option is assigned the value
TRUE and a warning message is given. If the STATISTICS option is TRUE when the
NOBINDINFO option is assigned the value FALSE, a syntax error is given.

If statistics are taken for a procedure or block, the frequency of execution of that
procedure or block is measured, along with the length of time spent in that procedure
or block. When the program is completed for any reason, including both normal and
abnormal termination, the statistics of the executing task are printed out to the
TASKFILE.

On the statistics output listing, an asterisk (*) indicates that doubt exists about the
timing for the specific procedure whose name precedes the asterisk. In addition, timings
are invalid for any procedure or block that is resumed by a bad GO TO.

Statistics on presence bit actions can be accumulated by specifying SET PBITS as the
statistics option. The PBITS option can be SET and RESET in various places in the
program.

For each block where PBITS is invoked, the statistics report contains the first 25
characters of the identifiers, the processor time accumulated for the block, the number

8600 0098-000 6-37

Compiling Programs

of times the block is executed, the average processor time, and the number of initial and
other presence bit operations.

If the PBITS option is not specified, the presence bit statistics are not accumulated. The
statistics report contains the first six characters of the identifier, the processor time
accumulated for the block, the number of times the block is entered, and the average
time spent per entry.

Using the STATISTICS option, especially when PBITS is specified, can significantly
increase the amount of code generated for each specified block. This, in turn, can cause a
SEGMENT TOO LARGE error. To avoid this error, reduce the amount of code enclosed
by each BEGINSEGMENT/ENDSEGMENT pair. Or, if the program segmentation is
not user-controlled, force part of the block into a new segment by enclosing that part
of the code in a block. For more information on program segmentation, refer to the
BEGINSEGMENT option earlier in this section.

For any procedure or block that has statistics gathered, the timings can be broken down
to the label level within that procedure or block by using the LABELS syntax. The word
LABELS can be preceded by SET or RESET; if both are omitted, SET is assumed. For
example, the following begins timing of label breakpoints:

$ SET STATISTICS (LABELS)

The following ends timing of label breakpoints:

$ SET STATISTICS (RESET LABELS)

The words SET or RESET inside the parentheses affect only the LABELS specification.

STOP Option

- STOP -<text;>------------------------<

(Type: Binder command)

During autobinding, the STOP option is passed directly to the Binder program for
analysis. The format and function of this option are the same as those of the Binder
STOP statement and are described in the A Series Binder Programming Reference
Manual.

TADS Option

6-38

- TADS --,...--------------------.-------;

L c r,1\- FREQUENCY • > J
------C::/1\- REMOTE -<file identifier~

(Type: Boolean, Default value: FALSE)

When the TADS option is TRUE, special debugging code and tables are generated as
part of the object code file. The tables are generated to support the symbolic debugging
environment of the ALGOL Test and Debug System (TADS). For more information

8600 0098-000

Compiling Programs

on ALGOL TADS, refer to the A Series ALGOL Test and Debug System (TADS)
Programming Guide.

The FREQUENCY option causes additional code and tables to be generated for coverage
and frequency analysis. This option must be specified if either the TADS FREQUENCY
command or the TADS COVERAGE command is to be used to determine the number
of times individual statements have been executed or which statements have not been
executed.

The REMOTE option allows TADS to share a remote file with the program being tested.
Sharing a file might be necessary, because only one remote input file can be open for each
station. A remote file shared with TADS cannot be explicitly opened by the program or
an OPEN ERROR results and a FILE NOT CLOSED error message is displayed. If
specified, the <file identifier> must correspond to a file identifier declared in a FILE
declaration occurring later in the outer block of the program. The file must have the
attributes KIND equal to REMOTE, UNITS equal to CHARACTERS, and FILEUSE
equal to IO. The MAXRECSIZE attribute must not be less than 72. The file must not be
declared to be a direct file.

If the AUTO BIND option, the MAKEHOST option, or the SEPCOMP option is TRUE
when the TADS option is assigned the value TRUE, then the TADS option is assigned
the value FALSE and a warning message is given. Programs compiled with the TADS
option equal to TRUE cannot assign TRUE to the MAKEHOST option, the AUTOBIND
option, or the SEPCOMP option, and they cannot be used as input files to the Binder
program.

The interaction between the outer lexicographical level and the TADS option is as
follows:

• If the LEVEL option has not been encountered when the TADS option is set to
TRUE, the outer lexicographical level of the program is set to 2 and the code file
produced contains TADS code.

• If the LEVEL option is not equal to 2 when the TADS option is set to TRUE,
the TADS option is assigned the value FALSE and the warning message TADS
CANNOT BE SET WITH A LEVEL > 2 is given. The code file produced does not
contain TADS code.

• If the TADS option is TRUE when the LEVEL option is assigned a value not equal to
2, the warning message A LEVEL > 2 IS INVALID WHEN TADS IS SET is given,
the LEVEL option is ignored, and the code file produced contains TADS code.

The TADS option must appear before the first syntactic item in a program.

TARGET Option

The TARGET option generates code suited for a specific computer system or group of
systems and should be used to specifY all machines on which the code file needs to run.
The generated code file can be used on all the machines specified in the TARGET option.

8600 0098-000 6-39

Compiling Programs

- TARGET - =-<primary identifier,;;>-------------~

~ [.
lm (-<secondary identifier>--) mJ

<primary identifier>

-<target identifier,>---------------------1

<secondary identifier>

-<target i denti fi er';;>---------------------i

<target identifier>

THIS-~-----------------------1

ALL
A17
A16
A15
A12
AHJ
A9
A6
A5
A4
A3
A2
Al
MICROA
87900
87000
LEVEL4
LEVEL2
LEVELl
LEVEL0

(Type: Value, Default value: installation-defined)

The code file generated is optimized for the machine or group of machines identified by
the primary identifier, subject to the compatibility constraints of the machine or group of
machines identified by the secondary identifier. That is, the code file is optimized for the
machine or machines listed as the primary identifier, but no operator is generated that is
not supported by all the machines listed as secondary identifiers.

The various target identifiers work in the following ways:

• A target identifier that names a specific machine (for example, A4) optimizes a code
file to be run on that machine so that the code file receives the characteristics for
that machine.

• The THIS identifier is a synonym for the target identifier of the machine on which
the code file is compiled.

• The ALL identifier indicates that the code file must be able to be run on all currently
supported machines. Note that the code generated when TARGET is equal to ALL
changes as older machines are no longer supported and/or new ones are added.
LEVELO is presently a synonym for ALL.

6-40 8600 0098-000

Compiling Programs

• B7000 is a synonym for B7900.

• The LEVEL! identifier encompasses the A9 and AlO target identifiers. LEVEL!
code files also run on LEVEL2 machines.

• The LEVEL2 identifier encompasses the MICROA, Al, A2, A3, A4, A5, A6, A12,
A15, and Al 7 target identifiers. LEVEL2 code files also run on LEVEL! machines.

• The LEVEL4 identifier encompasses the A16 target identifier. Unless a secondary
target identifier other than A16 of LEVEL4 is specified, code files compiled with a
primary target identifier of either A16 or LEVEL4 might not run on machines other
than the A16.

The generated code can be run on any computer that is code compatible with the
specified family.

The TARGET option must appear before the first record that is not a compiler control
record in the source program.

The default TARGET option is installation defined. For information on the way an
installation defines the default target computer family, refer to the A Series System
Commands Operations Reference Manual.

TIME Option

(Type: Boolean, Default value: FALSE)

When TRUE, the TIME option causes trailer information, such as the number of errors,
the number of code segments, and the compilation time, to be printed on the printer
listing. Because this trailer information is also printed when the LIST option is TRUE,
the value of the TIME option is effective only when the LIST option is FALSE.

USE Option

- USE -<text>----------------------1

(Type: Binder command)

During autobinding, the USE option is passed directly to the Binder program for
analysis. The format and function of this option are the same as those of the Binder
USE statement and are described in the A Series Binder Programming Reference
Manual.

USER Option

-<i denti fi er';;>----------------------1

(Type: Boolean, Default value: FALSE)

8600 0098-000 6-41

Compiling Programs

If an identifier on a compiler control record is not recognized as one of the predefined
options, it is considered to be a user option. A user option can be manipulated exactly
like any other Boolean option; that is, it can be assigned values by using the SET,
RESET, and POP keywords. In addition, it can be used in option expressions to assign
values to standard Boolean options or to other user options.

VERSION Option

6-42

---,--<replace version
L<append version

<replace version>

- VERSION -<version increment>- • --<cycle increment~-----·-+

-t L . -<patch number>J

<version increment>

-<digit>-<di git>-----------------------1

<cycle increment>

-<digit>-<di git>-<di git~-----------------1

<patch number>

--<digit>-<digit>-<digit>-<digit~---------------1

<append version>

- VERSION - + -<version increment>- . - + -<cycle increment>-----+

) L . -<patch number>J

(Type: value, Default value: 00.000.0000)

The VERSION option allows the user to specify an initial version number for a program,
replace an existing version number, or append to an existing version number.

If the NEW option is TRUE, a VERSION option appears in the TAPE file, and the
CARD file contains a <replace version> or <append version> , then the VERSION
option record in the NEWTAPE file is updated with the version, cycle, and patch
number in the last VERSION option record in the CARD file. The sequence number of
the VERSION option in the CARD file must be less than the sequence number of the
VERSION option in the TAPE file.

The functions COMPILETIME(20), COMPILETIME(21), and COMPILETIME(22)
allow a programmer to access the current version, cycle, and patch numbers,
respectively. For more information, see "COMPILETIME Function" in Section 5,
"Expressions and Functions."

8600 0098-000

Compiling Programs

Examples

The following example sets the current version to 25.010.0010.

$ VERSION 25.010.0010

The following example increments the current version by 01 in the version increment,
by 001 in the cycle increment, and assigns 0010 to the patch number. For example, if
the existing version is 25.010.0005 and this VERSION option is compiled, the resulting
version is 26.011.0010.

$ VERSION +01.+001.010

VOID Option

- VOID -----------------------___,

(Type: Boolean, Default value: FALSE)

When TRUE, the VOID option causes all source input other than compiler control
records from both the TAPE and CARD files to be ignored by the compiler until the
VOID option is assigned the value FALSE. The ignored source input is neither listed nor
included in the updated source file, regardless of the values of the LIST option and the
NEW option. Once the VOID option is assigned TRUE, it can be assigned FALSE only
by a compiler control record in the CARD file.

VOIDT Option
L ~~[~iE _____________________ __,

(Type: Boolean, Default value: FALSE)

DELETE is a synonym that can be used for the VOIDT option.

If the MERGE option is TRUE and the VOIDT option is TRUE, all source input from
the TAPE file is ignored by the compiler until the VOIDT option is assigned the value
FALSE. Therefore, while the VO IDT option is TRUE, only primary source input from
the file CARD is compiled. The ignored input is neither listed nor included in the
updated source file, regardless of the values of the LIST option and the NEW option.
Once the VO IDT option is assigned TRUE, it can be assigned FALSE only by a compiler
control record in the CARD file. If the MERGE option is FALSE, the value of the
VOIDT option is ignored.

WARNSUPR Option

- WARNSUPR ------------------------t

(Type: Boolean, Default value: FALSE)

When TRUE, the W ARNSUPR option prevents warning messages from being given.

8600 0098-000 6-43

Compiling Programs

WRITEAFTER Option

- WRITEAFTER ----------------------1

(Type: Boolean, Default value: FALSE)

The WRITEAFTER option provides the ability to designate whether carriage control
is performed before or after a write operation. The option can be assigned values
repeatedly in order to select before-write or after-write carriage control for individual
files and JJO statements.

Normally in ALGOL, carriage control is performed following a write operation.

Carriage control is done before a particular write operation if the WRITEAFTER option
is TRUE when the 1/0 statement is compiled or if the JJO statement explicitly references
a file whose declaration was compiled when the WRITEAFTER was TRUE.

For disk files, notwithstanding any value of the WRITEAFTER option, the carriage
control action is always taken before a nonbinary write operation.

The WRITEAFTER option does not apply to direct files or direct 1/0 statements.

XDECS Option

- XDECS ------------------------1

(Type: Boolean, Default value: TRUE if either the XREF option or the XREFFILES
option is TRUE, FALSE otherwise)

When the compiler is saving cross-reference information because the XREF option or the
XREFFILES option is TRUE, only identifiers declared while the XDECS option is TRUE
are included in the cross-reference information. This option is assigned TRUE when the
XREF option or the XREFFILES option is assigned TRUE and can be assigned a value
as many times as desired. If the XDECS option is assigned the value TRUE and both
the XREF option.and the XREFFILES option are FALSE, the XDECS option is assigned
FALSE and a syntax error is given.

For more information on cross-referencing, ref er to "XREF Option" later in this section.

XREF Option

-XREF~------.--------------------1
L<l i newi dth>=J

<linewidth>

An integer between 72 and 160.

(Type: Boolean, Default value: FALSE)

6-44 8600 0098-000

Compiling Programs

Depending on the values of several related compiler control options, the compiler
optionally generates cross-reference information containing an alphabetized list of
identifiers that appear in the program and, for each identifier, the type of the item
named by that identifier, the sequence number of the source input record on which the
identifier is declared, the sequence numbers of the input records on which the identifier
is referenced, and other relevant information. The following factors can be controlled
through the use of compiler control options:

• Whether or not the compiler saves cross-reference information as it is processing the
source input

• Which identifiers and which references to these identifiers are cross-referenced

• Whether or not the SYSTEM/XREFANALYZER program is initiated automatically
by the compiler

• If SYSTEM/XREF ANALYZER is automatically initiated, whether it is to produce
printed output, disk files suitable for input to SYSTEM/INTERACTIVEXREF and
the Editor, or both

The compiler saves cross-reference information if either the XREF option or the
XREFFILES option or both options are TRUE. This information is discarded if any
syntax errors occur during compilation. If used, these options should be assigned TRUE
before any source input has been processed. Once assigned TRUE, these options cannot
be assigned FALSE.

The identifiers and their references to be cross-referenced can be selected by the
XDECS option and the XREFS option, respectively. Neither of these options can be used
if cross-reference information is not being saved by the compiler (that is, if both the
XREF option and the XREFFILES option are FALSE).

When the compiler is saving cross-reference information, this information is
written to a disk file in raw form. Before this information can be printed or
read by SYSTEM/INTERACTIVEXREF and the Editor, it must be analyzed by
SYSTEM/XREFANALYZER. If the NOXREFLIST option is FALSE, the compiler
automatically initiates SYSTEM/XREFANALYZER to process the raw cross-reference
file. If the NOXREFLIST option is TRUE, SYSTEM/XREFANALYZER is not initiated,
and the compiler's raw file is left on disk with the title "XREF/ <code file name>", where
<code file name> is the name of the object code file produced by the compiler; this file
can be analyzed at a later time by running SYSTEM/XREF ANALYZER directly.

If the compiler initiates SYSTEM/XREFANALYZER (that is, ifthe NOXREFLIST
option is FALSE), the program produces either a printed listing or a pair of disk files
suitable for the Editor and SYSTEM/INTERACTIVEXREF. If the XREF option is
TRUE, a listing is produced. If the XREFFILES option is TRUE, the pair of disk
files is produced; these files are titled XREFFILES/ < code file name> /XREFS and
XREFFILES/ <code file name> /XDECS. If both the XREF option and the XREFFILES
option are TRUE, both a listing and the disk files are produced.

The line width, in characters, of the listing produced by SYSTEM/XREF ANALYZER can
be specified by the < linewidth > construct. If not specified, the line width is 132.

User options are included in the cross-reference information.

8600 0098-000 6-45

Compiling Programs

XREFFILES Option

- XREFFILES -------------------------0

(Type: Boolean, Default value: FALSE)

When TRUE, the XREFFILES option causes cross-reference information to be
saved by the compiler and causes the SYSTEMJXREF ANALYZER program, if it
is initiated by the compiler, to produce files that can be used by the Editor and
SYSTEM/INTERACTIVEXREF. These files have the titles XREFFILES/ < code file
name> /XDECS and XREFFILES/ <code file name> /XREFS, where <code file name>
is the name of the object code file that the compiler is generating.

For more information on cross-referencing, refer to "XREF Option" earlier in this
section.

XREFS Option

$Option

6-46

- XREFS -----------------------~

(Type: Boolean, Default value: TRUE if either the XREF option or the XREFFILES
option is TRUE, FALSE otherwise)

When the compiler is saving cross-reference information because the XREF option or the
XREFFILES option is TRUE, only identifier references that are encountered while the
XREFS option is TRUE are included in the cross-reference information. This option is
assigned TRUE when the XREF option or the XREFFILES option is assigned TRUE,
and it can be assigned a value as many times as desired. If the XREFS option is assigned
the value TRUE when both the XREF option and the XREFFILES option are FALSE,
then the XREFS option is assigned FALSE and a syntax error is given.

For more information on cross-referencing, refer to "XREF Option" earlier in this
section.

(Type: Boolean, Default value: FALSE)

If both the LIST option and the $ option are TRUE, the printer listing includes all
compiler control records. If the LIST option is true but the $ option is FALSE, only
compiler records with a double dollar sign($$) appear in the printer listing. If the LIST
option is FALSE, the value of the $ option is ignored.

LISTDOLLAR is a synonym that can be used for the $ option. The use of$ causes the
compiler to issue a warning because the $ option will be deimplemented in a future
release. The $ option is no longer allowed in column 2.

8600 0098-000

Section 7
Compile-Time Facility

The compile-time facility is used to conditionally and iteratively compile ALGOL
source data. This section describes the declaration and use of compile-time variables,
compile-time identifiers, compile-time statements, an extension to the DEFINE
declaration, and compiler control options that pertain to the compile-time facility.

The compile-time facility is available in DCALGOL, BDMSALGOL, and DMALGOL.

Compile-Time Variable

<compile-time variable declaration>

- NUMBER __t:<i denti fi er> E
:=-<starting value~
[-<vector length~] _J

<number identifier>

An <identifier> that is associated with a compile-time variable in a compile-time
variable declaration.

<starting value>

-<compile-time arithmetic expression>---------------1

<compile-time arithmetic expression>

Any <arithmetic expression> that can be fully evaluated at compile time. A
compile-time arithmetic expression consists of constants and <compile-time variable> s.

<vector length>

-<compile-time arithmetic expression>---------------1

<compile-time variable>

-<number identifier>--------------------...

> L [-<compile-time arithmetic expression>-] J

An identifier declared in a compile-time variable declaration is a number variable, or an
arithmetic compile-time variable. A compile-time variable represents a single-precision

8600 0098--000 7-1

Compile-Time Facility

arithmetic value. It can be used wherever an arithmetic value is allowed and represents
the value most recently assigned to it. The value of a compile-time variable can be
changed at any time during compilation by using the compile-time 'LET statement. A
compile-time variable can be declared with a starting value; if a starting value is not
explicitly declared, the starting value is zero.

If a compile-time variable is declared with a vector length, a vector, or array, of
compile-time variables is created. When an identifier declared in this way is used, it
must be subscripted by a compile-time arithmetic expression with a value in the range
0 through (vector length- 1). The value of the vector length must be in the range 1 to
1023.

Compile-Time Identifier

<compile-time identifier>

-<identifier>- ' -<number identifier,._ __________ _,

A compile-time identifier can appear anywhere an identifier can be used, including
declarations. No blank characters can appear between the identifier and the apostrophe
('). The created identifier consists of the identifier, followed by an apostrophe, followed
by numeric characters corresponding to the value of the number identifier, with leading
zeros suppressed.

Com pi le-Ti me Statements

7-2

<compile-time statement>

<compile-time begin statement>--.----------------1
<compile-time define statement
<compile-time for statement
<compile-time if statement
<compile-time invoke statement
<compile-time let statement
<compile-time thru statement
<compile-time while statement

Compile-time statements begin with an apostrophe ('), which distinguishes them from
other ALGOL constructs. They are recognized at a very primitive level in the compiler
and can, therefore, appear almost anywhere (for example, between any two ALGOL
language components).

The compile-time statements are intended to provide a method for altering the normal
flow of compilation, primarily by conditional and iterative compilation.

Compile-time statements are terminated in the same manner as ALGOL statements.

Note that through the use of compile-time variables, a compile-time arithmetic or
Boolean expression can be fully evaluated at compilation time and yet not have the same
value each time it is evaluated.

8600 0098-000

Compile-Time Facility

BEGIN Statement

<compile-time begin statement>

- 'BEGIN -<compile-time text>- 'END -<end remark>--------1

<compile-time text>

Any ALGOL source text, including any complete compile-time statement.

A 'BEGIN statement delimits a portion of ALGOL source text. It is normally used in
conjunction with 'FOR statements, 'IF statements, and 'THRU statements. If the
'BEGIN statement is executed, the compiler processes all the delimited text; otherwise,
the compiler skips (ignores) the text. Anything following the 'END up to the first special
character, END, ELSE, 'END, 'ELSE, or UNTIL is considered to be an <end remark>
and is ignored.

DEFINE Statement

<compile-time define statement>

- 'DEFINE -<identifier>-= -<compile-time statement>----------4

<compile-time define identifier>

An <identifier> that is associated with a compile-time statement in a compile-time
define statement.

The 'DEFINE statement declares an identifier to represent a compile-time statement.

The compile-time statement is processed when it is referenced by the identifier in a
subsequent 'INVOKE statement.

FOR Statement

<compile-time for statement>

- 'FOR -<number identifier>-:= --------------7

7-<compile-time arithmetic expression>- STEP ----------7

7-<compile-time arithmetic expression>- UNTIL 7

7-<compile-time arithmetic expression>- DO -<compile-time statement>-j

The 'FOR statement provides iterative compilation of ALGOL source input. The value
of the compile-time arithmetic expression following STEP can be positive or negative but
must not be equal to zero.

The action of this statement is similar to that of the non-compile-time FOR statement.
One exception is that the compile-time arithmetic expressions following STEP and

8600 0098-000 7-3

Compile-Time Facility

UNTIL are evaluated only once, at the beginning of the 'FOR statement, and are not
reevaluated, even though their compile-time components can change value.

IF Statement

<compile-time if statement>

- 'IF -<compile-time Boolean expression>-- THEN--------·?

-+-<compile-time statement>
'-- 'ELSE -<compile-time statement~

<compile-time Boolean expression>

Any <Boolean expression> that can be fully evaluated at compilation time. A
compile-time Boolean expression consists of constants and <compile-time variable> s.

The 'IF statement provides conditional compilation of ALGOL source input.

If the value of the compile-time Boolean expression is TRUE, then the compile-time
statement following THEN is processed; if it is FALSE, the compile-time statement
following 'ELSE is processed, if present. In either case, compilation continues with the
statement following the 'IF statement.

INVOKE Statement

<compile-time invoke statement>

- 'INVOKE -<compile-time define identifier·>-----------1

The 'INVOKE statement causes the compile-time statement previously associated with
the compile-time define identifier in a 'DEFINE statement to be processed.

LET Statement

7-4

<compile-time let statement>

- 'LET -<compile-time variable>-- := ------------~

?-<compile-time arithmetic expression>--------------1

The 'LET statement is used to modify the value of a compile-time variable. If the
compile-time variable was declared using the <vector length> construct, it must be
subscripted by a compile-time arithmetic expression with a value in the range 0 to
(vector length- 1).

8600 0098-000

Compile-Time Facility

TH RU Statement

<compile-time thru statement>

- 'THRU -<compile-time arithmetic expression>- DO-------

7-<compi le-time statement:>------------------<

The 'THRU statement provides iterative compilation of ALGOL source input. The
compile-time arithmetic expression must have a value greater than or equal to zero.

The compile-time statement following DO is processed <compile-time arithmetic
expression> times. If this value is zero, the 'THRU statement is skipped.

WHILE Statement

<compile-time while statement>

- 'WHILE -<compile-time Boolean expression>- DO --------

7-<compile-time statement>--------------------l

The 'WHILE statement provides iterative compilation of ALGOL source input. The
compile-time Boolean expression is evaluated at the beginning of the statement. If it is
TRUE, the compile-time statement is processed, the compile-time Boolean expression
is evaluated again, and this sequence is repeated. Whenever the compile-time Boolean
expression is FALSE, the 'WHILE statement is finished, and compilation continues with
the following statement.

Extension to the Define Declaration
The following extension to the DEFINE declaration is available when using the
compile-time facility.

<definition>

-<identifier> L =: __ -,--<compile-time text>-7
L<formal symbol part~ ..J

7- ; --------------------------!

If a define identifier is declared using the assignment operator (: =), then any
compile-time statements in the compile-time text are evaluated once at the time of, and
in the scope of, the DEFINE declaration. Otherwise, the compile-time items in the
compile-time text are evaluated on each invocation of the define identifier.

Compile-time text does not include the compile-time DEFINE statement, when used as
the <definition> in a DEFINE declaration. A compile-time DEFINE statement cannot
be embedded within an ordinary DEFINE declaration.

8600 0098-000 7-5

Compile-Time Facility

Compile-Time Compiler Control Options
The following compiler control options are available only in the compile-time facility. For
more information on compiler control options and the printer listing file of the compiler,
see Section 6, "Compiling Programs."

CTLIST Option
- CTLIST -------------------------1

(Type: Boolean, Default value: FALSE)

If both the LIST option and the CTLIST option are TRUE, all input records processed
are written to the printer listing. In particular, during iterative compile-time statements,
input records that are compiled repeatedly are listed repeatedly. These input records are
identified by an asterisk (*)just to the left of the sequence number. If the LIST option is
TRUE but the CTLIST option is FALSE, input records are written to the printer listing
only the first time they are compiled. The value of the CTLIST option is ignored if the
LIST option is FALSE.

CTMON Option
- CTMON -------------------------;

(Type: Boolean, Default value: FALSE)

If both the LIST option and the CTMON option are TRUE, all assignments to
compile-time variables are monitored and written to the printer listing. The current
value of a compile-time variable when it is referenced and the new value when it is
changed are listed. If the LIST option is TRUE and the CTMON option is FALSE, this
monitor information does not appear in the printer listing. The value of the CTMON
option is ignored if the LIST option is FALSE.

CTTRACE Option
-CTTRACE-----------------------1

(Type: Boolean, Default value: FALSE)

If both the LIST option and the CTTRACE option are TRUE, values of certain
expressions that are components of compile-time statements are written to the
printer listing. If the LIST option is TRUE and the CTTRACE option is FALSE, this
information does not appear in the printer listing. The value of the CTTRACE option is
ignored if the LIST option is FALSE.

LISTSKIP Option
- LISTSKIP ------------------------1

(Type: Boolean, Default value: TRUE)

7-6 8600 0098-000

Compile-Time Facility

If both the LIST option and the LISTSKIP option are TRUE, all records are written to
the printer listing whether or not they are skipped. Skipped records are denoted in
the listing by the word SKIP to the right of the sequence number. If the LIST option
is TRUE and the LISTSKIP option is FALSE, source records that are skipped by the
compile-time facility are not written to the printer listing. The value of the LISTSKIP
option is ignored if the LIST option is FALSE.

8600 0098-000 7-7

7-8 8600 0098-000

Section 8
Library Facility

The library facility is a feature that can be used to structure processes. A library is a
program containing one or more library objects that can be accessed by other programs,
which are referred to as calling programs. A library object is an object that is shared
by a library and one or more user programs and is exported from the library using an
export declaration. Exported procedures are called entry points into the library. Unlike
a regular program, which is always entered at the beginning, a library can be entered at
any entry point.

Libraries provide all the benefits of procedures plus the added advantages that they can
be reused and shared by a number of programs. Consolidating logically related functions
into a library can make programming easier and program structure more visible. A call
on a procedure in a library is equivalent to a call on a procedure in the calling program.

Libraries offer the following improvements over binding:

• Interlanguage communication is significantly improved.

• Standard packages of functions, such as plotting and statistics, need not be copied
into any calling programs.

Libraries off er the following improvements over installation intrinsics:

• A library can have its own global files, databases, transaction bases, and so on.

• Libraries can contain initialization and termination code.

• Libraries can themselves call other lil;lraries.

• Individual users can create their own libraries without possessing special privileges.

• Libraries can be written in more languages than can the installation intrinsics.

• More than one version of a library can be in use at a time.

Operating the Components of the Library Facility
The components of the library facility can be used to perform a variety of tasks.
Following are descriptions of the library facility components and the features they off er.

Library Programs

A library program specifies entry points (procedures) for use by calling programs. It
makes use of EXPORT declarations and FREEZE statements. A procedure in a library
is specified to be an entry point by appearing in an EXPORT declaration. A library
program becomes a library after execution of a FREEZE statement. ·

8600 0098-000 8-1

Library Facility

Calling Programs

A calling program calls entry points provided by a library. It uses LIBRARY declarations
and PROCEDURE declarations that contain the <library entry point specification>
construct.

A library can itself function as a calling program and can call other libraries. A
library cannot reference itself, but circular references are allowed with the following
restrictions:

• A circular linkage can be made only if all libraries are frozen and at least one of the
libraries was frozen TEMPORARY or PERMANENT at the time it linked to its
neighbor in the circle.

• A circular reference of indirectly provided objects is not allowed. An indirectly
provided object is an object imported from another library and then exported.

Library Directories and Templates

The directory and the template are date structures built by the compilers. They contain
the information used by the operating system to match entry points in a library with
entry points declared in a calling program.

When a program exports entry points and contains a FREEZE statement, the object
code file for that program contains a library directory. One directory exists for each
block that contains an EXPORT declaration. After a library freezes (executes a
FREEZE statement), only one directory is in effect until the library program finishes
executing.

A library directory contains a description of all the entry points in the library. This
description includes the following information:

• The name of the entry point

• The type of the entry point

• A description of the entry point parameters

• Information on how the entry point is provided. For more information, see "Linkage
Provisions" later in this section.

When a program declares a library and entry points in that library, the object code file for
the program contains a library template that describes the library and the declared entry
points. One template exists for each library declared in the calling program. A template
contains the following information:

• A description of the attributes of the library

• A description of all the entry points of the library that are declared by the program.
Each description includes the following information:

The name of the entry point

The type of the entry point

8-2 8600 0098-000

Library Facility

A description of the entry point parameters

The SETACTUALNAME function can be used to change the name of an entry point in
an unlinked library template. For more information, refer to "SETACTUALNAME
Function" in Section 5, "Expressions and Functions."

Library Initiation

On the first call on an entry point of a library or at an explicit linkage request, the calling
program is suspended. The description of the entry point in the library template of the
calling program is compared to the description of the entry point with the same name in
the library directory associated with the referenced library.

If the entry point does not exist in the library, or if the two entry point descriptions are
not compatible, a run-time error is given and the calling program is terminated. If the
entry point exists and the two entry point descriptions are compatible, the operating
system automatically initiates the library program (if it has not already been initiated).
The library program runs normally until it executes a FREEZE statement, which makes
the entry points available. All of the entry points of the library that are declared in the
calling program are linked to the calling program, and the calling program resumes
execution.

If a calling program declares an entry point that does not exist in the library, no error
is generated when the library is initiated; however, a subsequent call on that entry
point causes a MISSING ENTRY POINT run-time error, and the calling program is
terminated.

A library can be specified to be permanent or temporary. A permanent library remains
available until it is terminated either by the Operator Display Terminal (ODT)
commands DS (Discontinue) or THAW, or by execution of a CANCEL statement. A
temporary library remains available as long as users of the library remain. A temporary
library that is no longer in use unfreezes and resumes running as a regular program.

The PERMANENT or TEMPORARY specifications of the FREEZE statement
control the duration of a library. Any running program that executes a FREEZE
statement becomes a library. When a library is initiated by explicitly running the
library program instead of by calling an entry point, the FREEZE statement should
specify PERMANENT. If TEMPORARY is specified, the library immediately unfreezes
because it has no users. After a library unfreezes, it must not execute another FREEZE
statement in an attempt to become a library again.

The CONTROL specification of the FREEZE statement controls the nature of the
freeze. The program is set up as a permanent library, but after the freeze operation has
been performed, control is transferred to the specified procedure, known as the control
procedure. The control procedure must be untyped and must have no parameters.

Once the control procedure is in control, the library can keep track of the number of its
users through the task attribute LIBRARYUSERS. The library can unfreeze itself by
changing the task attribute STATUS to V ALUE(GOINGAWAY). After this change,
the library is equivalent to a thawing library. When the control procedure is exited,

8600 0098-000 8-3

Library Facility

the library unfreezes if there are no users. If there are users, the library becomes an
ordinary library, and a warning message is issued.

Because a library program initially runs as a regular program, the flow of execution
can be such that the execution of a FREEZE statement is conditional and can occur
anywhere in the program.

If a calling program causes a library program to be initiated and the library program
terminates without executing a FREEZE statement (for example, because it was not
actually a library program and, thus, had no FREEZE statement), the attempted linkage
to the library entry points cannot be made, and the calling program is terminated.

Linkage to a library can be requested explicitly by using the LINKLIBRARY function.
For more information, see "LINKLIBRARY Function" in Section 5, "Expressions and
Functions."

Linkage Provisions

8-4

Entry points declared in a calling program are linked to corresponding entry points
provided by a library in one of three ways:

• Directly

• Indirectly

• Dynamically

The library program specifies the form of linkage. Indirect and dynamic linkages allow
linkage to be established to libraries other than the library specified by the calling
program. The calling program can control the library invocation to which it is linked only
by specifying the object code file title or the function name of the library or, for dynamic
linkage, by specifying the LIBP ARAMETER library attribute. Depending on the value of
the LIBACCESS library attribute, the TITLE attribute or FUNCTIONNAME attribute
is used to specify the object code file title of the library. For more information about
library attributes, see "Library Attributes" later in this section.

Direct linkage occurs when the library program contains the procedure that is named in
the EXPORT declaration of the library.

Indirect linkage occurs when the library program exports a procedure that is declared as
an entry point of another library. The operating system then attempts to link the calling
program to this second library, which can provide the entry point directly, indirectly, or
dynamically.

Dynamic linkage allows a library program to determine at link time which library task
the calling program will be linked to. The library program must provide a selection
procedure that accepts the value of the LIBP ARAMETER library attribute as a
parameter. Based on the value of LIBP ARAMETER, the selection procedure selects and
initiates a library task. The selection procedure must also accept, as a second parameter,
a procedure. This procedure, which is provided by the operating system to verify that
the library task is valid and complete, must be called before the selection procedure is
exited. The operating system calls the selection procedure at link time. For a more

8600 0098-000

Library Facility

detailed explanation and examples of libraries that provide dynamic linkage, see "Library
Examples" later in this section.

The restrictions on the complexity of indirect and dynamic linkages are as follows:

• Eventually, a library must provide the entry point directly.

• The chain of referenced libraries must never become circular.

Discontinuing Linkage

A program can delink from a library program by using either the CANCEL statement or
the DELINKLIBRARY function.

The CANCEL statement causes the library program to unfreeze and resume running
as a regular program. The CANCEL statement can be used only on PRIVATE and
SHAREDBYRUNUNIT libraries.

The DELINKLIBRARY function affects only the linkage between the program executing
the DELINKLIBRARY function and the specified library. Any other programs linked
to the specified library are not affected. For more information, see "DELINKLIBRARY
Function" in Section 5, "Expressions and Functions."

Error Handling

Any fault caused and ignored by a procedure in a library that is invoked by a calling
program is treated as a fault in the calling program. If ignored by the calling program,
this fault causes the calling program to be terminated but has no effect on the status of
the library.

If a library program faults or is otherwise terminated before executing a FREEZE
statement, then all calling programs that are waiting to link to that library program are
also terminated.

If a library is terminated while calling programs are linked to it, those calling programs
are also terminated. ·

The first call on an entry point in a library causes library linkage to be made. In this
phase, an attempt is made to locate and establish links to all entry points declared by the
calling program. If an entry point declared in the calling program does not exist in the
library, its linkage cannot be established, and any subsequent calls to that entry point
result in a MISSING ENTRY POINT error. This error continues to occur whenever a
calling program links to that instance of the library and calls that entry point.· Thus, it is
advisable to remove that instance of the library (by either a THAW or DS (Discontinue)
ODT command) and initiate a correct version of the library. For more information, refer
to the A Series System Commands Operations Reference Manual. for a description of
these commands.

8600 0098-000 8-5

Library Facility

Creating Libraries

8-6

A library program is created by using the EXPORT declaration to declare procedures to
be exported as entry points, and by using the FREEZE statement. The duration of a
library program following initiation is controlled by the TEMPORARY or PERMANENT
specification of the FREEZE statement. The allowed sharing of a library program is
controlled by the SHARING compiler control option.

Users of a library can be restricted through the normal file access features provided
by the system. The allowed simultaneous usage of a library can be specified by the
creator of the library at compilation time through the SHARING compiler control option.
The library sharing can be PRIVATE, SHAREDBYALL, SHAREDBYRUNUNIT, or
DONTCARE.

PRIVATE

A separate instance of the library is started for each invocation of the library. Any
changes made to global items in the library by the program unit (block, procedure, or
external task) invoking the library apply only to that particular calling program.

SHAREDBYALL

All invocations of the library share the same instance of the library. Any changes made
to global items in the library by a program unit that has invoked the library apply to all
users of that library.

SHAREDBYRUNUNIT

A run unit consists of a program and all libraries that are called, either directly or
indirectly, by that program. A program, in this context, excludes both a library that is
not frozen and any tasks that are initiated by the program (that is, a process family is not
a run unit). All invocations of a library within a run unit share the same instance of the
library.

Note that a library is its own run unit until it freezes. For example, program P initiates
library A and, before library A freezes, it in turn initiates library B. Now library B is in
library A's run unit, not in program P's run unit. Had library A initiated library B after
freezing, both library A and library B would be in program P's run unit.

DONTCARE

The operating system determines the sharing. This determination is unknown to all
users invoking the library.

The default value of the SHARING compiler control option is DONTCARE.

8600 0098-000

Library Facility

Referencing Libraries
To use a library, the calling program does the following:

• Declares the library in a LIBRARY declaration, specifying the attributes of the
library

• Declares the entry points of the library in PROCEDURE declarations with library
entry point specification parts

When an entry point is invoked or at an explicit linkage request, the operating system
automatically creates the library linkage. If the library program has not already been
initiated, the operating system initiates it; then, when the library is frozen, the operating
system links the library to the calling program. The operating system attempts to make
linkages to all entry points referenced in a library at the time that the library is first
invoked.

The LINKLIBRARY function can be used to determine whether or not the calling
program is currently linked to, or is capable of being linked to, a particular library
program. If the calling program is not currently linked but is capable of being linked, the
linkage is performed. During the linkage process, an attempt is made to link to every
entry point exported from the library whose name matches an entry point declared in
the calling program. Only those names that match are checked for correct function type,
number of parameters, and parameter types. Therefore, the LINKLIBRARY function
does not check that every entry point declared in the calling program is also exported
from the library. For more information, see "LINKLIBRARY Function" in Section 5,
"Expressions and Functions."

The CANCEL statement and the DELINKLIBRARY function can be used to terminate
the linkage between a calling program and a library. The CANCEL statement causes the
library to unfreeze and resume running as a regular program regardless of whether it is
temporary or permanent. Only PRN ATE libraries or SHAREDBYRUNUNIT libraries
can be canceled. The DELINKLIBRARY function has no effect on any other users
of the library. For more information, see "DELINKLIBRARY Function" in Section 5,
"Expressions and Functions."

The SETACTUALNAME function determines whether or not the name of a particular
library entry point can be changed in the template to a particular character string and,
if possible, makes the change. The name of an entry point of a linked library cannot be
modified. Therefore, a linked library must be delinked before the SETACTUALNAME
function can be called to change the name of any of its entry points. For more
information, see "SETACTUALNAME Function" in Section 5, "Expressions and
Functions."

Library Attributes

Libraries, like files, have attributes that can be assigned values and tested
programmatically.

The calling program can change library attributes dynamically; however, since the
operating system ignores any changes made to library attributes of linked libraries,

8600 0098-000 8-7

Library Facility

these changes must not be made while the program is linked to the library. Any library
attribute changes must be made before the calling program has linked to the library or
after the library has been delinked from the program.

The pointer-valued and string-valued attributes can be used both as string or pointer
primary attributes and as string or pointer expressions. For example, the following
attributes are available:

LIB.TITLE :=<EBCDIC literal>;

LIB.INTNAME := <string variable>;

REPLACE POINTER BY LIB.TITLE;

REPLACE LIB.TITLE BY <EBCDIC literal>;

REPLACE LIB.INTNAME BY <string variable>;

REPLACE LIB.FUNCTIONNAME BY <pointer> FOR <length>;

The following paragraphs describe the library attributes. The first line of each
description tells whether the attribute can be read or written or both, and gives the type
and the default value, if any.

FUNCTIONNAME

(Read/Write, EBCDIC pointer-valued)

FUNCTIONNAME specifies the system function name used to find the target object
code file for the library. For more information, refer to the LIBACCESS attribute in this
section.

INTNAME

(Read/Write, EBCDIC pointer-valued)

INTNAME specifies the internal identifier for the library.

LIBACCESS

{Read/Write, mnemonic-valued, Default value: BYTITLE)

LIBACCESS specifies the way a library object code file is accessed when a library is
called. LIBACCESS has one of the following mnemonic values:

• BYTITLE.

The TITLE attribute of the library is used to locate the object code file.

• BYFUNCTION.

8-8 8600 0098-000

Library Facility

The value of the FUNCTIONNAME attribute of the library is used to access the
operating system library function table, and the object code file associated with that
FUNCTIONNAME is used.

• BYINITIATOR.

The object code file that initially caused the library to freeze is used. Note that
BYINITIATOR causes a circular linkage between two libraries.

LIBPARAMETER

(Read/Write, EBCDIC string-valued)

LIBP ARAMETER is used to transmit information from the calling program to the
selection procedures of libraries that provide entry points dynamically.

TITLE

(Read/Write, EBCDIC pointer-valued)

TITLE specifies the object code file title of the library. For more information, refer to
"LIBACCESS" earlier in this section.

Example 1 of Library Attributes

The following program shows the use of the LIBACCESS, TITLE, and
FUNCTIONNAME library attributes.

BEGIN
% LIBRARYl, DECLARED BELOW, IS NOT A SUPPORT LIBRARY. ITS LIBACCESS
% ATTRIBUTE, SET TO BYTITLE, INDICATES THAT THE TITLE ATTRIBUTE
% IS USED TO LOCATE THE LIBRARY'S CODE FILE.

LIBRARY LIBRARYl (TITLE="OBJECT /LIBRARYl.", LIBACCESS=BYTITLE);
REAL PROCEDURE PROCl;

LIBRARY LIBRARYl;
REAL PROCEDURE PROC2;

LIBRARY LIBRARYl;
REAL PROCEDURE PROC3;

LIBRARY LIBRARYl;

% THE LIBRARY DECLARED BELOW IS A SUPPORT LIBRARY. ITS LIBACCESS
% ATTRIBUTE, SET TO BYFUNCTION, INDICATES THAT THE FUNCTIONNAME
% ATTRIBUTE OF THE LIBRARY IS LOOKED UP IN THE MCP LIBRARY FUNCTION
% TABLE, AND THE CODE FILE ASSOCIATED WITH THE FUNCTIONNAME,
% SYSTEMLIB, IS USED.

LIBRARY LI BRARY2 (FUNCTION NAME= 11 SYSTEM LIB. 11 , LI BACCESS=BYFUNCTI ON) ;
PROCEDURE SYSTEMLIBPROC;

LIBRARY LIBRARY2;
% EXECUTABLE STATEMENTS FOLLOW.

END.

8600 0098-000 8-9

Library Facility

Example 2 of Library Attributes

Family substitution can occur when the library is linked by title. In this situation, it is
desirable to link by function to an initialized library or to control the family substitution
as shown in the following program sample.

% THE FOLLOWING SEQUENCE LINKS A LIBRARY TO A CODE FILE ON "DISK"
% WHEN FAMILY SUBSTITUTION KEEPS THE LIBRARY FROM LINKING.

REPLACE POINTER(SAVFAM[0],8) BY MYSELF.FAMILY;
REPLACE MYSELF.FAMILY BY 11 • 11 ;

LINKLIBRARY(LIBl);
REPLACE MYSELF.FAMILY BY POINTER(SAVEFAM[0],8);

For information on the FAMILY attribute, see the A Series Task Attributes
Programming Reference Manual.

Entry Point Type Matching

Library entry points can be either typed or untyped, and they can have parameters.
Type matching is performed on entry points during library linkage. If the description of
an entry point in the template does not match the description of the entry point in the
directory, the linkage is not made, and the calling program is terminated. Matching is
based on several factors: the procedure type, the number of parameters, the parameter
types, and the ways in which the parameters are passed. Parameters are passed as
call-by-value, call-by-reference, or call-by-name.

An ALGOL library entry point can be any of the following:

• ASCII string procedure

• Boolean procedure

• Complex procedure

• Double procedure

• EBCDIC string procedure

• Hexadecimal string procedure

• Integer procedure

• Real procedure

• Untyped procedure

The parameters of an ALGOL library entry point can be any of the following:

• Boolean variable, array, or direct array

• Double variable, array, or direct array

• Real variable, array, or direct array

• Integer variable, array, or direct array

8-10 8600 0098-000

Library Facility

• Complex variable or array

• EBCDIC string variable or array

• ASCII string variable or array

• Hexadecimal string variable or array

• EBCDIC character array or direct array

• ASCII character array or direct array

• Hexadecimal character array or direct array

• Event variable or array

• Task variable or array

• File or direct file

• Pointer

• A fully-specified procedure (declared using FORMAL) with the above restrictions on
its possible parameters and type

Parameter Passing

If a library program declares a parameter to be call-by-name, the calling program can
declare the parameter to be call-by-name, call-by-reference, or call-by-value. If a library
program declares a parameter to be call-by-reference, the calling program can declare
the parameter to be call-by-name, call-by-reference, or call-by-value. If a library program
declares a parameter to be call-by-value, the calling program can declare the parameter
only to be call-by-value.

Figure 8-1 illustrates the parameter passing rules.

Library Calling
Program Program

Name Reference Value

Name x x x
Reference x x x

Value x

Figure 8-1. Parameter Passing Rules

In ALGOL programs, parameters are declared to be either call-by-value or call-by-name.
In ALGOL library programs, parameters to entry points that are declared to be
call-by-value are described in the directory as call-by-value; parameters declared to
be call-by-name are described in the directory as call-by-reference, except for formal
procedures and Boolean, complex, double, integer, and real variables, which are
described in the directory as call-by-name.

8600 0098-000 8-11

Library Facility

In ALGOL calling programs, parameters to entry points that are declared to be
call-by-value are described in the template as call-by-value; parameters declared to be
call-by-name are described in the template as call-by-reference, except for Boolean,
complex, double, integer, and real variables, which are described in the template as
call-by-name.

An array parameter in ALGOL that is declared with any of its lower bounds as an
asterisk (*) lower bound is described in the template or directory as N + 1 parameters,
where N is the number of dimensions of the formal array. The first parameter is the
array itself, followed by the N lower bounds described as call-by-value integer variables.

Library Examples
This section gives examples of libraries and calling programs that call these libraries.

Library: OBJECT/FILEMANAGER/LIB

8-12

The following library program illustrates dynamic linkage. This library provides a set
of file management routines. The users of this library assign the title of the file to be
used to the LIBP ARAMETER attribute. LIBP ARAMETER is then used at link time to
determine to which library task the user is to be linked.

$ SHARING = PRIVATE

BEGIN
TASK ARRAY LIBTASKS[0:10]; % PROVIDES UP TO 11 DIFFERENT LIBRARY

% TASKS
STRING ARRAY FILETITLES[0:10]; % LIBPARAMETER FOR EACH OF THE TASKS

PROCEDURE FILEMANAGER(TASKINDEX);
VALUE TASKINDEX;
INTEGER TASKINDEX;

BEGIN
PROCEDURE READFILE;

BEGIN

END READFILE;
PROCEDURE WRITEFILE;

BEGIN

END WRITEFILE;

EXPORT READFILE,WRITEFILE;
FREEZE(TEMPORARY);
FILETITLES[TASKINDEX] := 11 • 11 ;

8600 0098-000

Library Facility

END FILEMANAGER;

PROCEDURE SELECTION(USERSFILE,MCPCHECK);
VALUE USERSFILE;
EBCDIC STRING USERSFILE;
PROCEDURE MCPCHECK(T); TASK T; FORMAL;

BEGIN
INTEGER TASKINDEX;
BOOLEAN FOUND;
% LOOK AT ALL THE FILETITLES, CHECKING TO SEE IF A LIBRARY TASK
% HAS ALREADY BEEN INITIATED FOR FILE TITLE USERSFILE.

WHILE NOT FOUND AND (TASKINDEX LEQ 10) DO
BEGIN
IF FILETITLES[TASKINDEX] = USERSFILE THEN

FOUND := TRUE
ELSE

TASKINDEX := *+l;
END;

IF NOT FOUND THEN
BEGIN
% A LIBRARY TASK DOES NOT EXIST FOR THIS FILE TITLE.
WHILE NOT FOUND DO % FIND AN UNUSED TASK

BEGIN
TASKINDEX := 0;
WHILE NOT FOUND AND (TASKINDEX LEQ 10) DO

IF LIBTASKS[TASKINDEX].STATUS LEQ 0 THEN
FOUND : = TRUE

ELSE
TASKINDEX := *+l;

IF NOT FOUND THEN
% WAIT A SECOND AND MAYBE A LIBRARY TASK WILL GO TO EOT.
WAIT((l));

END;

PROCESS FILEMANAGER(TASKINDEX) [LIBTASKS[TASKINDEX]];
WHILE LIBTASKS[TASKINDEX].STATUS NEQ VALUE(FROZEN) DO

WAIT((1));
FILETITLES[TASKINDEX] := USERSFILE;
END;

MCPCHECK(LIBTASKS[TASKINDEX]);
END SELECTION;

PROCEDURE READFILE;
BY CALLING SELECTION;

PROCEDURE WRITEFILE;
BY CALLING SELECTION;

EXPORT READFILE,WRITEFILE;

8600 0098-000 8-13

Library Facility

FREEZE(TEMPORARY);
END.

At library linkage time, the procedure SELECTION is invoked. SELECTION accepts
two parameters, USERSFILE and MCPCHECK.

USERSFILE is passed the value of the LIBP ARAMETER attribute, which was assigned
a value by the calling program. The SELECTION procedure checks to see if a library
task has been initiated for the file specified by USERSFILE. If it has, then the calling
program is linked to that task. If no library task exists for that file, then a new library
task is initiated and the calling program is linked to it.

Only one call is made on the SELECTION procedure per linkage; that is, all links to
entry points in this library are resolved during linkage. Therefore, any changes made to
any library attributes after linkage is made are ignored. The attributes can be changed if
the library is delinked.

MCPCHECK is a procedure that is provided by the operating system and must be called
before exiting the SELECTION procedure. The parameter to MCPCHECK is the task
variable of the library task to which the calling program is to be linked. MCPCHECK
verifies that the task is valid and complete. The actual library linkage is not performed
until SELECTION has been exited.

Calling Program #1

8-14

The following calling program invokes the dynamic library
OBJECT/FILEMANAGER/LIB previously described. In this example, the user has
set the LIBP ARAMETER attribute to MYFILE, which is the name of the file to be
accessed. At library linkage time, which occurs during the call on READFILE, the library
procedure SELECTION is invoked. All links to the library's entry points are resolved
during linkage. Changes to the library attributes are ignored after linkage is made.
However, the program can delink from the library and change the library attributes
before any relinking.

8600 0098-000

BEGIN
LIBRARY L (TITLE="OBJECT/FILEMANAGER/LIB.");
PROCEDURE READFILE;

LIBRARY L;
PROCEDURE WRITEFILE;

LIBRARY L;

L.LIBPARAMETER := "MYFILE";

READFILE; % LINKAGE IS MADE

CANCEL(L); % LINKAGE IS BROKEN

Library Facility

L.LIBPARAMETER := "OTHERFILE"; % LIBPARAMETER CAN BE CHANGED
% BECAUSE THE LIBRARY HAS BEEN
% CANCELED.

WRITEFILE;

END.

Library: OBJECT/SAMPLE/LIBRARY

% LINKAGE IS MADE AGAIN AND NEW
% VALUE OF LIBPARAMETER IS USED

The following ALGOL library, compiled as OBJECT/SAMPLE/LIBRARY, provides its
entry points directly.

BEGIN
ARRAY MSG[0:120];

INTEGER PROCEDURE FACT(N);
INTEGER N;

BEGIN
IF N LSS 1 THEN

FACT := 1
ELSE

FACT:= N * FACT(N - 1);
END; % OF FACT

PROCEDURE DATEANDTIME(TOARRAY,WHERE);
ARRAY TOARRAY[*];
INTEGER WHERE;

BEGIN
REAL T;
POINTER PTR;

T := TIME(?);
PTR := POINTER(TOARRAY,8) + WHERE;
CASE T. [5:6] OF

BEGIN

8600 0098-000 8-15

Library Facility

li'J: REPLACE PTR:PTR BY "SUNDAY, ";
1: REPLACE PTR:PTR BY "MONDAY, ";
2: REPLACE PTR: PTR BY II TUESDAY. II;

3: REPLACE PTR:PTR BY "WEDNESDAY, ";
4: REPLACE PTR:PTR BY "THURSDAY,";
5: REPLACE PTR: PTR BY II FRIDAY. II;

6: REPLACE PTR:PTR BY "SATURDAY, ";
END;

REPLACE PTR BY T. [35:6] FOR 2 DIGITS, 11 - 11 ,

T. [29:6] FOR 2 DIGITS, 11 - 11 ,

T.[47:12] FOR 4 DIGITS, ", ",
T. [23:6] FOR 2 DIGITS, II: 11 ,

T.[17:6] FOR 2 DIGITS,":",
T. [11: 6] FOR 2 DIGITS;

END; % OF DATEANDTIME

EXPORT FACT ,DATEANDTIME AS "DAYTIME";
REPLACE POINTER(MSG,8) BY

" - SAMPLE LIBRARY STARTED",
II II FOR 94;

DATEANDTIME(MSG,61i'J);
DISPLAY(MSG);
FREEZE(TEMPORARY);
REPLACE POINTER(MSG,8)+19 BY "ENDED ";
DATEANDTIME(MSG,61i'J);
DISPLAY(MSG);

END.

In this library program, two procedures are exported, making them entry points that can
be called by calling programs. The two procedures, FACT and DATEANDTIME, are
contained within the library program, so they are provided directly.

In the EXPORT declaration, the procedure DATEANDTIME is given the name
DAYTIME in an AS clause. In the directory built for this library, the name of this entry
point will be DAYTIME. Calling programs must use the name DAYTIME to call this
entry point.

Library: OBJECT/SAMPLE/DYNAMICLIB

8-16

The following ALGOL library, compiled as OBJECT/SAMPLE/DYNAMICLIB,
illustrates dynamic and indirect library linkage. This library references the library
OBJECT/SAMPLE/LIBRARY previously described.

BEGIN
TASK LIB1TASK,LIB2TASK;
LIBRARY SAM LIB (TITLE="OBJECT /SAMPLE/LIBRARY. II);

% ENTRY POINT PROVIDED INDIRECTLY
INTEGER PROCEDURE FACT(N);
INTEGER N;

LIBRARY SAMLIB;

8600 0098-000

% POSSIBLY CALLED BY THE SELECTION PROCEDURE
PROCEDURE DYNLIBl;

BEGIN % PRINTS DATE WITH TIME
LIBRARY SAMLIB(TITLE="OBJECT/SAMPLE/LIBRARY. ");
% ENTRY POINT PROVIDED INDIRECTLY
PROCEDURE DAYTIME(TOARRAY,WHERE);
ARRAY TOARRAY[*];
INTEGER WHERE;

LIBRARY SAMLIB;

EXPORT DAYTIME;
FREEZE(TEMPORARY);
END; % OF DYNLIBl

% POSSIBLY CALLED BY THE SELECTION PROCEDURE
PROCEDURE DYNLIB2;

BEGIN % PRINTS DATE WITHOUT TIME.
% ENTRY POINT PROVIDED DIRECTLY
PROCEDURE DAYTIME(TOARRAY,WHERE);
ARRAY TOARRAY[*];
INTEGER WHERE;

BEGIN
REAL T;
T := TIME(?);
REPLACE POINTER(TOARRAY,8) +WHERE

BY T. [35:6] FOR 2 DIGITS, 11 - 11 ,

T.[29:6] FOR 2 DIGITS, "-",
T.[47:12] FOR 4 DIGITS;

END; % OF DAYTIME

EXPORT DAYTIME;
FREEZE(TEMPORARY);
END; % OF DYNLIB2

% THE SELECTION PROCEDURE
PROCEDURE THESELECTIONPROC(LIBPARSTR,NAMINGPROC);
VALUE LIBPARSTR;
EBCDIC STRING LIBPARSTR;
PROCEDURE NAMINGPROC(LIBTASK); TASK LIBTASK; FORMAL;

8600 0098-000

BEGIN
IF LIBPARSTR EQL "WITH TIME" THEN

BEGIN
IF LIBlTASK.STATUS NEQ VALUE(FROZEN) THEN

PROCESS DYNLIBl [LIBlTASK];
NAMINGPROC(LIBlTASK);
DISPLAY(" *** CALLING DYNLIBl 11);

END
ELSE

BEGIN
IF LIB2TASK.STATUS NEQ VALUE(FROZEN) THEN

Library Facility

8-17

Library Facility

PROCESS DYNLIB2 [LIB2TASK];
NAMINGPROC(LIB2TASK);
DISPLAY(" *** CALLING DYNLIB2 ");
END;

END; % OF THE SELECTION PROCEDURE

% ENTRY POINT PROVIDED DYNAMICALLY
PROCEDURE DAYTIME(TOARRAY,WHERE);
ARRAY TOARRAY[*];
INTEGER WHERE;

BY CALLING THESELECTIONPROC;

EXPORT FACT, % PROVIDED INDIRECTLY
DAYTIME; % PROVIDED DYNAMICALLY

FREEZE(TEMPORARY);
END.

Calling Program #2

8-18

The following calling program invokes OBJECT/SAMPLE/DYNAMICLIB, the library
described previously.

BEGIN
LIBRARY MY LIB (TITLE= 11 0BJECT /SAMPLE/DYNAMIC LIB. II);
INTEGER PROCEDURE FAKTORIAL(N);
INTEGER N;

LIBRARY MYLIB(ACTUALNAME="FACT");

PROCEDURE DAYTIME(A,W);
ARRAY A[*];
INTEGER W;

LIBRARY MYLIB;

REAL T;
ARRAY DATIME[0:120];

MY LIB. LIBPARAMETER := "WITH TIME";
REPLACE POINTER(DATIME[0],8) BY

II 13 FACTORIAL IS II.
FAKTORIAL(13) FOR 12 DIGITS,
II II •

•
DAYTIME(DATIME[*],40);
DISPLAY(DATIME[0]);

END.

In this program, the declaration of the library entry point F AKTORIAL specifies that the
ACTUALNAME of the entry point is FACT. In the template built for the library MYLIB,
the name of this entry point is FACT, so for link.age to occur, the directory of the library
OBJECT/SAMPLE/DYNAMICLIB must contain an entry point named FACT. However,
within the program, the entry point is referred to as F AKTORIAL.

8600 0098-000

Library Facility

Library: MCPSUPPORT

The following example provides a possible structure on which to build an ALGOL
program using the EVENT_ STATUS entry point of the MCPSUPPORT library.

The EVENT_ STATUS function is exported from the operating system as an
unprotected REAL function that, when given an event, returns the following
information. All undefined bits are zero.

Bits

[42:39]

[3: 2]

[1: 1]

[0: 1]

Meaning

Lock owner, if event is unavailable

Event usage:

0 = Normal event

1 = Event reserved for use by operating system

2 = Interrupt attached to event

3 = Event reserved for use by operating system

Event unavailable (procured)

Event happened (caused)

Using the EVENT_ STATUS function is the only safe means of finding the owner of an
event. The value returned in the Lock Owner field is the same kind of value that is
returned by the PROCESSID function. In fact, if the task that owns the lock referenced
the PROCESSID function, the value returned would be the same as the value in the
Lock Owner field. UNSAFE NEWP programs that manipulate events directly should be
avoided since different systems use varying event formats.

BEGIN
TASK TASKA, TASKB;
REAL STACKA, STACKB, EVSTATUS;
EVENT XYZ_LOCK;

%THE FOLLOWING DECLARATIONS MAKE IT POSSIBLE TO USE THE EVENT STATUS
%FUNCTION IN AN ALGOL PROGRAM. NOTE THAT THE LIBACCESS ATTRIBUTE IS
%EQUAL TO BYFUNCTION.

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);

REAL PROCEDURE EVENT STATUS (EV);
EVENT EV;
LIBRARY MCPSUPPORT;

% THE FIELDS FOR EVENT STATUS RESULT ARE:

DEFINE ES_OWNERSTACKF = [18:15] ;,
ES_EVENTUSAGEF = [3:2] ;,
ES_UNAVAILABLEF = [1:1] ;,
ES_HAPPENEDF = [0:1] ;;

PROCEDURE A;

8600 0098-000 8-19

Library Facility

8-20

BEGIN
STACKA:= PROCESSID;

PROCURE(XYZ_LOCK);

LIBERATE(XYZ_LOCK);
END;

PROCEDURE B;
BEGIN

STACKS:= PROCESSID;

PROCURE(XYZ_LOCK);

LIBERATE(XYZ_LOCK);
END;

PROCESS A [TASKA];
PROCESS B [TASKS];

EVSTATUS:= EVENT_STATUS(XYZ_LOCK);
IF EVSTATUS.ES OWNERSTACKF = STACKA THEN

BEGIN
% XYZ LOCK WAS OWNED BY TASKA AT THE TIME
% THE EVENT STATUS CALL WAS MADE.

END
ELSE

IF EVSTATUS.ES OWNERSTACKF = STACKS THEN
BEGIN
% XYZ LOCK WAS OWNED BY TASKS AT THE TIME
% THE EVENT STATUS CALL WAS MADE.

END;

WHILE (TASKA.STATUS > VALUE(TERMINATED))
AND (TASKS.STATUS > VALUE(TERMINATED)) DO

WAITANDRESET(MYSELF.EXCEPTIONEVENT);
END.

8600 0098-000

Section 9
Internationalization

Internationalization refers to the Unisys software, firmware, and hardware features that
enable you to develop and run application systems that can be customized to meet the
needs of a specific language, culture, or business environment. The internationalization
features provide support for several character sets, different international business and
cultural conventions, extensions to data communications protocols, and the ability to use
one or more natural languages concurrently.

This section describes the internationalization features you can use to customize an
application for the language and conventions of a particular locality. Using these features
to write or modify an application is termed localization. The MultiLingual System
(MLS) environment enables you to localize your applications. Some of the localization
methods included in the MLS environment include translating messages to another
language, choosing a particular character set to be used for data processing, and defining
date, time, number, and currency formats for a particular business application.

In addition to the information described in this section, refer to the A Series
MultiLingual System (MLS)Administration, Operations, and Programming Guide for
information. The MLS Guide provides definitions for, and detailed information about,
the ccsversions, character sets, languages, and conventions provided by Unisys. It also
provides procedures for setting system values for the internationalization features.

The system requires a Mark 3.9 or later operating system to use many of the features
in the MLS environment. Programs that use the internationalization features might
not compile or run on earlier operating systems. All programs that ran on the previous
release will continue to run. Refer to the MLS Guide for additional information about
MLS environment installation requirements.

Accessing the Internationalization Features
You can use the following two methods separately or together to localize your programs.
Both of these methods are fully described later in this section.

• ALGOL provides language syntax that eases localization of your program. For
example, picture clauses can be used to specify currency symbols.

• The system provides a system library, CENTRALSUPPORT, that contains
procedures for localizing a program. The procedures can be accessed through
calls. When a call occurs, input parameters describe the type of information that
is needed or the action that is to be performed. Output parameters are returned
with the result of the procedure call. For example, a program can call the procedure
CNV _FORMATTIME to format the time according to the language and convention
specified in a program.

8600 0098-000 9-1

Internationalization

A program must designate that it uses internationalization features; otherwise, it will
not access them. A program is not affected by the features described in this section
unless a program specifically invokes them. Any programs that already exist and do not
make use of internationalization features are not affected by the features.

Using the Ccsversion, Language, and Convention Default Settings

9-2

The program can choose the specific ccsversion, language, and convention default
settings that it needs by setting the input parameters. The system also has default
settings for the internationalization features. The default settings can be accessed by
the program. See "Understanding the Hierarchy for Default Settings" later in this
section for information on the available levels and on the features supported at each
level.

The current default settings for the system can be determined by using one of the
following two methods:

• The program calls the CENTRALSTATUS procedure in the CENTRALSUPPORT
library.

• A system administrator, a privileged user, or a user who is allowed to use the system
console can use MARC menus and screens or the SYSTEMOPTIONS system
command. Refer to the MLS Guide or the A Series Menu-Assisted Resource Control
(MARC) Operations Guide for the instructions to display the default ccsversion,
language, or convention with MARC.

The system default settings provided by Unisys are as follows:

Feature

Ccsversion

Language

Convention

Default

ASeriesNative

English

ASeriesNative

Before you can change the default settings for localization, you must consider consider
the feature and the level at which the feature is defined. As an example, the ccsversion
can be changed only at the system operations level. A program can avoid making specific
settings by taking advantage of the default settings. For example, if the system-defined
ccsversion is France, the language is Francais, and the convention is FranceListing, the
program can use those default settings without coding the settings within the program.
A program can use the default settings with the use of predefined values as input
parameters. These parameters tell the procedure to use the current default setting. See
"Input Parameters" later in this section for specific information on those parameters.

8600 0098-000

Internationalization

Understanding the Hierarchy for Default Settings

The default settings for the internationalization features can be established at the
following levels:

Task

Session

User code

System

Established at task initiation

Handled by MARC or CAN DE commands or by programs
which support sessioning

Established in the USERDATAFILE file

Established with a system or MARC command

There is a priority associated with these levels. A setting at the task level overrides
a setting at the session level. A setting at the session level overrides a setting at the
usercode level. A setting at the usercode level overrides a setting at the system level,
and so on. A default language and convention can be established at any level, but the
default ccsversion can be established only at the system level.

Two task attributes enable you to change the language, the convention, or both. These
attributes are the LANGUAGE and the CONVENTION task attributes. By using these
attributes, you have the option to select from among multiple languages and conventions
when running a program. Information on the use of task attributes is provided in the
A Series Task Attributes Programming Reference Manual.

The LANGUAGE task attribute establishes the language used by a program at run
time. The CONVENTION task attribute establishes the convention used by a program
at run time. For example, an international bank might have a program to print bank
statements for customers in different countries. This program could have a general
routine to format dates, times, currency, and numerics according to the selected
conventions. To print a bank statement for a French customer, this program could
set the CONVENTION task attribute to FranceBureautique and process the general
routine. For a customer in Sweden, the program could set the CONVENTION task
attribute to Sweden and process the general routine.

As you code your program you can use the defaults in both the source code and the calls
to the CENTRALSUPPORT library, or you can use the settings of your choice. The task
level and system level are probably the most useful levels for your program. Because the
language and convention features have task attributes defined, you can access or set
these task attributes in your program.

Understanding the Components of the MLS
Environment

The following four components of the MLS environment support different languages and
cultures:

• Coded character sets

• Ccsversions

• Languages

8600 0098-000 9-3

Internationalization

• Conventions

The following paragraphs describe the function of each of these components.

Coded Character Sets and Ccsversions

9-4

A coded character set is a set of rules that establishes a character set and the one-to-one
relationship between the characters of the set and their code values. The same
character set can exist with different encodings. For example, the LATINl-based
character set can be encoded in an International Organization for Standardization (ISO)
format or an EBCDIC format. Coded character sets are defined in theMLS Guide.
A coded character set name or number is given to each unique coded character set
definition.

A coded character set name or number can also be used to set the INTMODE or
EXTMODE file attribute values for a file. For more information on how to use
the INTMODE and EXTMODE file attributes, see the A Series File Attributes
Programming Reference Manual.

A ccsversion is a collection of information necessary to apply a coded character set in a
given country, language, or line of business. This information includes the processing
requirements such as data classes, lowercase-to-uppercase mapping, ordering of
characters, and the presentation set and escapement rules necessary for output. A
ccsversion name and number is given to each unique group of information. A ccsversion
name or number can also be used to set the CCSVERSION file attribute for a file. For
more information, refer to the A Series File Attributes Programming Reference Manual.

Each A Series system includes a data file, SYSTEM/CCSFILE, containing all coded
character sets and ccsversions that are supported on the system. You cannot choose a
coded character set directly, but by choosing a ccsversion, you implicitly designate the
default coded character set for your system.

Data can be entered and manipulated in only one coded character set and ccsversion at
a time. Although there are many ccsversions which can be accessed, there is only one
ccsversion active for the entire system at one time. This is called the system default
ccsversion. See "Using the Ccsversion, Language, and Convention Default Settings" and
"Understanding the Hierarchy for Default Settings" earlier in this section.

Several ways exist to determine which coded character sets and ccsversions are available
on your system.

• Look in the MLS Guide. Your system might have a subset of the ones defined in
that guide.

• Use the MARC menus and screens or the system command SYSTEMOPTIONS.
Refer to the MLS Guide or the A Series System Commands Operations Reference
Manual.

• Call the CCSVSN _NAMES_ NUMS procedure.

You might want to refer to the MLS Guide for a complete understanding of ccsversions
and the relationship of a coded character set and a ccsversion.

8600 0098-000

Internationalization

All coded character set and ccsversion information on your system can be
accessed by calling CENTRALSUPPORT library procedures. To call these
CENTRALSUPPORT library procedures, an ALGOL program should first include
a file provided by Unisys that declares all the library procedures. This file is called
*SYMBOL/INTL/ALGOL/PROPERTIES. The procedures can then be used in
the program. The file also contains DEFINES for some input parameters and
DEFINES for the results returned from the procedures. The method for including
*SYMBOL/INTL/ALGOL/PROPERTIES in your ALGOL program is shown in each of
the CENTRALSUPPORT library procedures detailed later in this section. If the file is
not included, any library procedure that is used must be declared individually in the
program.

Many of the procedures require the specification of a coded character set or
ccsversion as an input parameter. A program can choose a specific coded character
set or ccsversion by calling the procedures using the name or number of the coded
character set or the ccsversion as an input parameter. For example, by calling the
VSNORDERING_INFO procedure with the ccsversion name ASeriesNative, then calling
the VSNORDERING_INFO procedure again with the ccsversion name SWISS your
program could access data in the ASeriesNative ccsversion and then access data in
the SWISS ccsversion. A program can also use the system default setting by using
predefined values as input parameters. See "Input Parameters" later in this section for
specific information about those parameters.

Mapping Tables

A mapping table is used to map one group of characters to another group of characters or
another representation of the original characters. Many CENTRALSUPPORT library
procedures store coded character set and ccsversion information in ALGOL translate
tables as a way of defining, processing, and mapping data. For example, a translate table
can exist to translate lowercase characters to uppercase characters.

The internationalization procedures provide you with access to translate tables that
apply to data specified in coded character sets or specified ccsversions. These translate
tables are as follows:

• Mapping data from one coded character set to another coded character set

• Mapping data from lowercase to uppercase characters

• Mapping data from uppercase to lowercase characters

• Mapping data from alternative numeric digits defined in a ccsversion to numeric
digits defined in U.S. EBCDIC

• Mapping data from numeric digits in U.S. EBCDIC to alternative numeric digits
defined in a ccsversion

• Mapping characters to their escapement values

You must use procedures from the CENTRALSUPPORT library to access these
translate tables or to process data using these tables. For example, you use the
CCSTOCCS _TRANS_ TEXT procedure to translate data from one coded character set
to another coded character set. You use the VSNTRANS _TEXT procedure to map
lowercase data to uppercase.

8600 0098-000 9-5

I nternationa I ization

See the MLS Guide for definitions of mapping tables for each coded character set and
ccsversion.

Data Classes

A data class is a group of characters sharing common attributes such as alphabetic, upon
which membership tests can be made. A truth set is a method of storing the declared set
of characters upon which membership tests can be made. Many CENTRALSUPPORT
library procedures store ccsversion information in ALGOL truth set tables as a way to
define ccsversion data classes.

The internationalization features provide you with access to truth sets that apply to a
ccsversion. These truth sets are as follows:

• Ccsversion alphabetic

• Ccsversion numeric

• Ccsversion graphics

• Ccsversion spaces

• Ccsversion lowercase

• Ccsversion uppercase

The alphabetic truth set contains those characters that are considered to be alphabetic
for a specified ccsversion. The numeric truth set contains those characters that are
considered to be numbers for a specified ccsversion, and so on.

You can use procedures from the CENTRALSUPPORT library to access these
truth sets or to process data using these truth sets. For example, if a program
manipulates an employee identification number such as 555962364, it might then need
to verify that the text is all numeric. The program can call the VSNINSPECT _TEXT
CENTRALSUPPORT library procedure to compare the text to the numeric truth set.
This procedure returns the information that the text is or is not all numeric.

Refer to the MLS Guide for definitions of ccsversions and data classes.

Text Comparisons

9-6

A text comparison can be required for sorting text, or for comparing relationships
between two pieces of text.

The traditional method for handling text comparisons is based on a strict binary
comparison of the character values. The binary method of comparison is not meaningful
when used for sorting text if the binary ordering of the coded characters does not match
the ordering sequence of the alphabet of the language. This situation is the case for
most coded character sets.

Because the binary method is not sufficient for all usage requirements, Unisys supports
the definitions of two other levels of ordering.

8600 0098-000

I nternationa I ization

The first level is called Ordering. Each character gets an ordering sequence value (OSV).
An OSV is an integer from 0 through 255, assigned to each code position in a character
set. The OSV signifies a relative ordering value of a character. An OSV of 0 indicates
that the character comes before a character with an OSV of 1. More than one character
can be assigned the same OSV.

The second level is called Collating. Each character gets an OSV and a priority sequence
value (PSV). A PSV is an integer from 1to15 that is assigned to each code position in a
character set. The PSV is a relative priority value within each OSV. Each character with
a unique OSV has a PSV of 1; however, if 2 characters have the same OSV, they will have
different PSV s for additional differentiation.

In comparing two strings of data, a comparison which uses only 1 level, the Ordering
level, is called an equivalent comparison. A comparison which utilizes both levels,
Ordering and Collating, is called a logical comparison.

You can use the following three types of text comparisons by calling the procedures of
the CENTRALSUPPORT library.

Order Type

Binary

Equivalent

Logical

Explanation

A comparison based on the hexadecimal code values of the characters

A comparison based on the ordering sequence values (OSVs) of the
characters

A comparison based on the OSVs plus the priority sequence values
(PSVs) of the characters

In addition to the three types of ordering, Unisys also supports the following two types of
character substitution.

Substitution

Many to One

One to Many

Explanation

A predetermined string of up to three characters can be
ordered as if it were one character, assigning it a single OSV
and PSV pair. Even if a character is part of a predetermined
string of characters that are ordered as a single value, the
character still has an OSV and a PSV pair assigned to it to
allow for cases in which the character appears in other
strings or individually. For example, in Spanish, the letter
pair ch is ordered as if it were a single letter, different from
either c or h, and ordering between c and d.

A single character can generate a string of two or three OSV
and PSV pairs. For example, the f3 (the German sharp S)
character is ordered as though it were ss.

For a description of how the characters in each ccsversion are ordered and how text
comparisons work, see the MLS Guide.

Providing Support for Natural Languages

The natural language feature enables users of an application program to communicate
with the computer system in their natural language. A natural language is a human
language in contrast to a computer programming language.

8600 0098-000 9-7

Internationalization

A program must be written in the subset of the standard EBCDIC character set defined
by the ALGOL language. Only the contents of string literals, data items with variable
character data, or comments can be in a character set other than that subset.

If a program interacts with a user, has a user interface with screens or forms, displays
messages or accepts user input, then those aspects of the program should be in the
natural language of the user. For example, French would be the natural language of
a person from France. Refer to the MLS Guide for a list of user interfaces, including
screens or forms, that can be localized. The following text explains how to develop an
ALGOL application program which supports messages in the natural language of the
user.

Although you can use many natural languages , one is defined as the default for the
entire system. You can override this default and access texts in another language, as
long as they have been translated and identified to the system.

Creating Messages for an Application Program

In the MLS environment, the messages handled by your application program are
grouped into the following categories:

Message
Category

Output message

Input message

Explanation

A message that an application program displays to the user. Some
examples of output messages are error messages and prompts for input.
An output message is localized so that it can be displayed in the
language of the user.

A message received by an interactive program either from a user or from
another program in response to a prompt for input. The input message
might be in a language that the program cannot recognize. In this case,
the message must be translated so that it can be understood by the
program.

If you develop input and output messages within an output message array, you make the
localization process easier. When messages are in an output message array, a translator
can use the MSGTRANS utility to localize the messages into one or more natural
languages. The MSGTRANS utility finds all output message arrays in a program and
presents them to a translator for translation. If messages are not in output message
arrays, a translator searches the source file for each message and then translates the
message.

An output message array contains output messages to be used by the MLS environment.
See "OUTPUTMESSAGE ARRAY Declaration" in Section 3, "Declarations."

Creating Multilingual Messages for Translation

The following are guidelines for creating messages that can be multilingual:

9-8 8600 0098-000

Internationalization

• Put all output messages in output message arrays.

• Allow more space for translated messages. Because the English language is more
compact than many other natural languages, a message in English generally becomes
about 33 percent longer after it is translated into another language. For example, if
a program can display an SO-character message, an English message should be only
60 characters long so that the translated message can expand by one-third and not
exceed the maximum display size.

• Accept or display any messages in the application program using the MLSACCEPT
statement or the MLSDISPLAY statement. For more information, see Section 4,
"Statements."

• Use complete sentences for messages because phrases are difficult to translate
accurately.

• Do not use abbreviations because they also are difficult to translate.

Providing Support for Business and Cultural Conventions

The business and cultural features enable users of an application program to display
and receive data according to local conventions. A convention consists of formatting
instructions for date, time, numeric, currency, and page size.

Unisys provides standard convention definitions for many formatting styles. For
example, some of the conventions are Denmark, Italy, Turkey, and UnitedKingdoml.
These convention definitions contain information to create formats for time, date,
numbers, currency, and page size required by a particular locality.

Each A Series system includes a data file named *SYSTEM/CONVENTIONS that
contains all the convention definitions supported on the system. Although you can use
many conventions, only one default convention is defined as the default for the entire
system. This convention is called the system default convention. You can override this
default and you can access all the conventions by calling the CENTRALSUPPORT
library procedures. To display the names of the conventions available on the host
computer, use the CNV _NAMES CENTRALSUPPORT library procedure. The MLS
Guide provides complete information on all of the conventions supplied by Unisys.

If none of the conventions provided by Unisys meet your needs, you can define a new
convention. You must use a template to define a convention. A template is a group of
predefined control characters that describe the components for date, time, numeric, or
currency. For example, the data item 02251990 and the template !Oo!/!dd!/!yyyy! produce
the formatted date, 02/25/1990. To use some of the CENTRALSUPPORT library
procedures, you must understand how templates are defined. The MLS Guide describes
how to define and use a template.

Using the Date and Time Features

Date and time features are provided by the ALGOL programming language and by
several CENTRALSUPPORT library procedures.

8600 0098-000 9-9

Internationalization

The ALGOL programming language has date and time features for standard use.
The TIME function provides system date and time with various formats, for example
YYDDD, MMDDYY, or HHMMSS. For more information, see "TIME function" in
Section 5, "Expressions and Functions."

Date and time punctuation can be specified in the PICTURE clause through string
literals. For example:

PICTURE PDATE(99"/"99"/"99),
PICTURE PTIME(99":"99":"99),

For more information, see "PICTURE Declaration" in Section 3, "Declarations."

The ALGOL date and time features do not use the convention features for
internationalization. The ALGOL internationalization features are limited in
internationalizing programs. The user can call the CENTRALSUPPORT library
procedures to format date and time items. The following types of procedures are
available to format the date and time:

Procedure Type

Convention

Template

System

Description

You supply the convention name and the value for the date
or time. The procedure returns the date or time value in the
format used by the convention. All the conventions are
described in the MLS Guide.

You supply the following: the format that you want for the
date or time in a template parameter; the value for the date
or time. You must use predefined control characters to
create the template. These control characters are described
in theMLS Guide.

The system supplies the date and time. There is a procedure
that formats the system date, the system time, or both
according to a convention and a procedure that formats the
system date, the system time, or both according to a
template that you supply.

You can use the CNV _SYSTEMDATETIME procedure to display the system date
and time according to the convention and language you choose. If you designate the
ASeriesNative convention and the ENGLISH language, the date and time can be
displayed as follows:

9:25 AM Monday, July 4, 1988

If you designate the FranceListing convention and the French language, the same date
and time can be displayed as follows:

9h25, lundi 4 juillet 1988

Using the Numeric and Currency Features

9-10

Numeric and currency features are provided by the ALGOL programming language and
by several CENTRALSUPPORT library procedures.

8600 0098-000

Internationalization

The ALGOL programming language has numeric and currency features for standard use.
ALGOL also provides the introduction codes that can be used to specify the thousands
separator, the decimal sign, and a single character currency symbol in the PICTURE
clause. For example:

PICTURE PAMOUNT(C/ N, U#, FFFDZZ9I99)

declares"/" as the thousands separator,"," as the decimal sign, and"#" as the currency
symbol for P AMOUNT.

For more information, see "PICTURE Declaration" in Section 3, "Declarations."

ALGOL provides a DECIMALPOINTISCOMMA option for messages in output message
arrays. This enables the user to replace commas with periods and periods with commas
in message parameters. For more information, see "OUTPUTMESSAGE ARRAY
Declaration" in Section 3, "Declarations."

In addition to using the features in ALGOL, you can call the CENTRALSUPPORT
library procedures to inquire about numeric symbols or to format currency amounts.
All numeric or currency symbols can be retrieved with a CENTRALSUPPORT library
call. Monetary amounts in real number form can be formatted according to different
conventions.

You can use the CNV _ CURRENCYEDIT procedure to format a monetary value
according to the convention you choose. If you designate the Greece convention, the
monetary amount 12345.67 is formatted as DR.12 345,67.

Using the Page Size Formatting Features

The CNV _ FORMSIZE CENTRALSUPPORT procedure enables you to retrieve default
lines-per-page and characters-per-line values for a specified convention.

For example, the Nether lands convention definition specifies 70 lines as the default page
length and 82 characters as the default page width, while the Zimbabwe convention
definition specifies 66 lines as the default page length and 132 characters as the default
page width.

Summary of CENTRALSUPPORT Library Procedures
The CENTRALSUPPORT library procedures are integer-valued functions. The
procedures return values in the output parameters and the functional result. The
results returned by each procedure can be checked using standard programming
practices. The results are useful in deciding if an error has occurred. The error results
and their meanings are presented in the description of each procedure and at the end of
this section.

The CENTRALSUPPORT library procedures are called by application programs and
system software. An application program can call the CENTRALSUPPORT library
procedures to perform the following tasks:

8600 0098-000 9-11

Internationalization

• Determine the default settings on the host computer.

• Identify and validate character sets and ccsversions.

• Obtain information about a coded character set or a ccsversion.

• Check data against ccsversion data classes.

• Translate data using ccsversion mapping tables.

• Compare data.

• Manipulate text.

• Translate characters using ccsversion escapement.

• Obtain information about the convention contents.

• Add, modify and delete conventions.

• Format date and time.

• Format monetary and numeric data.

• Obtain default characteristics for hardcopy output.

Table 9-1 lists the CENTRALSUPPORT library procedures according to the tasks the
procedures perform and describes the purpose of each procedure.

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures

Procedure Name Purpose

Identifying the Available Coded Character
Sets and Ccsversions

CCSVSN NAMES NUMS - -

CENTRALSTATUS

VALIDATE_NAME_RETURN_NUM

VALIDATE NUM RETURN NAME - - -

9-12

Returns the names and numbers of all coded character
sets or all ccsversions available on the host computer. The
names and numbers are listed in two arrays. These arrays
are ordered so that the names in the names array
correspond to the numbers in the numbers array.

Obtains the values of the default settings for
internationalization features on the host computer. This
procedure returns the names of the default ccsversion,
language, and convention. It also returns the number of
the default ccsversion.

Verifies that a designated coded character set or ccsversion
name is valid on the host computer. If the coded character
set or ccsversion is valid, the procedure returns the
corresponding number for the designated coded character
set or ccsversion.

Verifies that the designated coded character set or
ccsversion number is valid on the host computer. If the
coded character set or ccsversion is valid, the procedure
returns the name of the coded character set or ccsversion.

continued

8600 0098-000

I nternationa I ization

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.)

Procedure Name

Obtaining Coded Character Set and
Ccsversion Information

CCSINFO

VSNINFO

Mapping Data from One Coded Character
Set to Another

CCSTOCCS TRANS TABLE - -

CCSTOCCS TRANS TABLE ALT - - -

CCSTOCCS TRANS TEXT - -

8600 0098-000

Purpose

Provides basic information about a designated coded
character set, including the number of bits per character (8
or 16), the coding format (for example, ISO or EBCDIC),
and the space character.

Returns the following information for a designated
ccsversion:

• The number of the base character set to which the
ccsversion applies

• The escapement information

• The characters in the spaces data class for the
ccsversion

• The array sizes required by the other ccsversion
elements

Returns a translation table used to translate data appearing
in one designated character set to another designated
character set. The result is a one-to-one mapping of the
characters.

Returns a coded character set to coded character set
translate table. The procedure provides an alternative to
CCSTOCCS TRANS TABLE. - -
Translates data from one character set to another character
set by using a translate table. Characters are translated
using a one-to-one mapping between the two character
sets.

continued

9-13

I nternationa I ization

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.)

Procedure Name

Processing Data According to a Ccsversion

VSNINSPECT TEXT

VSNTRANSTABLE

9-14

Purpose

Compares the input text to a designated ccsversion truth
set to determine whether the characters in the text are in
the truth set. This procedure can be used to determine if
characters are in one of the following data classes:

• Alphabetic

• Lowercase

• Numeric

• Presentation

• Spaces

• Uppercase

Returns a translation table for a designated ccsversion. The
type of translation table requested depends on the task to
be performed.

Translation tables can be requested to perform the
following tasks:

• Translate lowercase letters to uppercase letters.

• Translate uppercase letters to lowercase letters.

• Translate any digits 0 through 9 to any alternate digits
(that is, one-to-one mapping of 0 through 9 to another
representation for those digits).

• Translate alternate digits to 0 through 9.

• Translate characters to their character escapement
direction value.

continued

8600 0098-000

Internationalization

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.)

Procedure Name

VSNTRANS _TEXT

VSNTRUTHSET

Comparing and Sorting Text

COMPARE TEXT USING ORDER INFO - - - -

8600 0098-000

Purpose

Translates data using a designated ccsversion translate
table. The type of table used determines the type of
translation done. All translation is a one-to-one mapping of
the characters.

This procedure can be used to perform the following types
of translations:

• Lowercase to uppercase characters

• Uppercase to lowercase characters

• The digits 0 through 9 to alternate digits

• Alternate digits to the digits 0 through 9

• Characters to their character escapement direction
value

Returns a truth set for the designated ccsversion. The truth
set contains the characters in a given data class for the
ccsversion. Truth sets are available for the following data
classes:

• Alphabetic

• Lowercase

• Numeric

• Presentation

• Space

• Uppercase

Compares two strings by using the ordering information
returned by the VSNORDERING_INFO procedure. One of
the following comparison methods can be chosen:

• Equivalent comparison

This method is based on the ordering sequence values
of the characters.

• Logical comparison

This method is based on the ordering sequence values
and the priority sequence values of the characters.

continued

9-15

Internationalization

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.)

Procedure Name

VSNCOMPARE TEXT

VSNGETORDERINGFOR ONE TEXT

VSNORDERING INFO

Positioning Characters

VSNESCAPEMENT

Determining the Available Natural
Languages

MCP _BOUND_LANGUAGES

Accessing CENTRALSUPPORT Library
Messages

GET CS MSG

9-16

Purpose

Compares two strings by using one of three comparison
methods for a designated ccsversion. You can select one of
the following comparison methods:

• Binary comparison, which is based on the binary
values of the characters

• Equivalent comparison, which is based on the
Ordering Sequence Values (OSVs) of the characters

• Logical comparison, which is based on the OSVs and
Priority Sequence Values (PSVs) of the characters

Returns the ordering information for the input text. The
ordering information determines how the input text is
collated. It includes the ordering and priority sequence
values of the characters and any substitution of characters
to be made when the input text is sorted.

One of the following types of ordering information can be
chosen:

• Equivalent ordering information, which comprises only
the ordering sequence values

• Logical ordering information, which comprises the
ordering sequence values followed by the priority
sequence values

Returns the ordering information for a designated
ccsversion. The ordering information determines the way in
which data is collated for the ccsversion. It includes the
ordering and priority sequence values of the characters and
any substitution of characters to be made when the
designated ccsversion ordering is applied to a string of text.

Rearranges the input text according to the escapement
rules of the ccsversion.

Returns the names of the languages that are currently
bound to the MCP.

Returns the text of a CENTRALSUPPORT message
associated with the designated error number.

continued

8600 0098-000

Internationalization

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.)

Procedure Name

Identifying the Available Convention
Definitions

CENTRALSTATUS

CNV NAMES

CNV VALIDATENAME

Obtaining Information About Conventions

CNV INFO

CNV SYMBOLS

8600 0098-000

Purpose

Obtains the values of the default settings for
internationalization features on the host computer. This
procedure returns the names of the default ccsversion,
language, and convention. It also returns the number of
the default ccsversion.

Returns the names of the conventions available on the host
computer.

Indicates whether a designated convention name is
currently defined on the host computer.

Returns a description of all the elements defined in a
designated convention.

Returns the numeric and monetary symbols defined for a
designated convention. The symbols in the convention are

• Numeric positive symbol

• Numeric negative symbol

• Numeric thousands separator symbol

• Numeric decimal symbol

• Numeric left enclosure symbol

• Numeric right enclosure symbol

• Numeric grouping specifications

• International currency notation

• Monetary positive symbol

• Monetary negative symbol

• Currency symbol

• Monetary thousands separator symbol

• Monetary decimal symbol

• Monetary left enclosure symbol

• Monetary right enclosure symbol

• Monetary grouping specifications

continued

9-17

Internationalization

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.)

Procedure Name

CNV _TEMPLATE

Formatting Dates According to a
Convention

CNV CONVERTDATE

CNV DISPLAYMODEL

~NV FORMATDATE

CNV FORMATDATETMP

9-18

Purpose

Returns the requested template for a designated
convention. The template can be obtained for the
following:

• Long date format

• Short date format

• Numeric date format

• Long time format

• Numeric time format

• Monetary format

• Numeric format

Converts a formatted numeric date passed as a parameter
to the procedure to the format YYYYMMDD. The numeric
date must be formatted according to the numeric date
format template defined in the designated convention.

Returns either the date or time display model defined for a
designated convention. The components for the model are
translated to the designated language.

Formats a numeric date passed as a parameter to the
procedure according to a designated convention and
language. The date can be formatted using the long, short,
or numeric date format defined in the convention.

Formats a numeric date passed as a parameter to the
procedure according to a template and language passed as
parameters of the procedure.

continued·

8600 0098-000

Internationalization

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.)

Procedure Name

CNV _SYSTEM DATETI ME

CNV SYSTEMDATETIMETMP

8600 0098-000

Purpose

Returns the system date and/or time formatted according to
the designated convention and language. The following
types of templates can be chosen:

• Long date and long time

• Long date and numeric time

• Short date and long time

• Short date and numeric time

• Numeric date and long time

• Numeric date and numeric time

• Long date only

• Short date only

• Long time only

• Numeric time only

Returns the system date and/or time in the designated
language, formatted according to a template passed as a
parameter to this procedure.

continued

9-19

Internationalization

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.)

Procedure Name

Formatting Times According to a
Convention

CNV CONVERTTIME

CNV DISPLAYMODEL

CNV FORMATTIME

CNV FORMATTIMETMP

CNV SYSTEMDATETIME

CNV _ SYSTEMDATETIMETM P

Formatting Numeric Data According to a
Convention

CNV _ CONVERTNUMERIC

9-20

Purpose

Converts a formatted numeric time passed as a parameter
to the procedure to the format HHMMSS. The numeric
time must be formatted according to the numeric time
format template defined in the designated convention.

Returns either the date or time display model defined for a
designated convention. The components for the model are
translated to the designated language.

Formats a time passed as a parameter to the procedure
according to a designated convention and language. The
time can be formatted using the long or numeric time
format defined in the convention.

Formats a time passed as a parameter to the procedure
according to a template and language passed as
parameters of the procedure.

Returns the system date and/or time formatted according to
the designated convention and language. The following
types of templates can be chosen:

• Long date and long time

• Long date and numeric time

• Short date and long time

• Short date and numeric time

• Numeric date and long time

• Numeric date and numeric time

• Long date only

• Short date only

• Long ti me only

• Numeric time only

Returns the system date and/or time in the designated
language, formatted according to a template passed as a
parameter to this procedure.

Converts a string containing digits and numeric symbols to
a real number.

continued

8600 0098-000

I nternationa I ization

Table 9-1. Functional Grouping of CENTRALSUPPORT Library Procedures (cont.)

Procedure Name

Formatting Monetary Data According to a
Convention

CNV CONVERTCURRENCY

CNV CURRENCYEDIT

CNV CURRENCYEDITIMP

Determining the Default Page Length and
Width

CNV FORMSIZE

Adding, Modifying, and Deleting
Conventions

CNV ADD

CNV DELETE

CNV MODIFY

Library Calls

Purpose

Converts a string containing digits and monetary symbols to
a real number.

Formats a monetary value passed as a parameter to the
procedure according to the monetary formatting template
defined in the designated convention.

Formats a monetary value passed as a parameter to the
procedure according to a template also passed as a
parameter.

Returns the default lines-per-page and characters-per-line
values from a designated convention for formatting printer
output.

Adds a new convention to the *SYSTEM/CONVENTIONS
file. The new definition goes into effect immediately.

Deletes an existing convention from the
SYSTEM/CONVENTIONS file. i:he convention is deleted
after the next halVload. Only conventions that have been
created by a user can be deleted. The standard
conventions that Unisys provides cannot be deleted.

Modifies an existing convention in the
*SYSTEM/CONVENTIONS file. The modified set becomes
effective after the next halVload. Only conventions that
have been created by a user can be modified. The
standard conventions that Unisys provides cannot be
modified.

The procedures in the CENTRALSUPPORT library can be accessed by using the
following steps:

1. Use the INCLUDE compiler control option to include the file
*SYMBOL/INTL/ALGOL/PROPERTIES in a program. By using the INCLUDE
option you can also include only portions of the file.

2. Call the procedure.

8600 0098-000 9-21

Internationalization

An example of the call syntax necessary to invoke the CENTRALSUPPORT library is
provided in the description of each procedure later in this section.

For general information about using library procedures, refer to Section 8, "Library
Facility."

For information about the INCLUDE compiler control option, refer to Section 6,
"Compiling Programs."

Parameter Categories

The CENTRALSUPPORT library procedures return output parameters and procedure
result values. The parameter types are further described on the following pages.

Input Parameters

In many cases, the input parameter requires the program to supply the ccsversion
name or number, the language name, or the convention name. This information can be
obtained in the following ways:

• The MLS Guide describes all the possible ccsversions, languages, and conventions
that Unisys provides. However, the system on which the program is running might
have only a subset of these. There can also be customized conventions that are not
listed in the MLS Guide. These can be identified by the next two options.

• A system administrator, a privileged user, or a person allowed to use the system
console can use MARC menus and screens to list the options that exist on the
system. The SYSTEMOPTIONS command can be used. For more information on
the SYSTEMOPTIONS command, see the A Series System Commands Operations
Reference Manual. The MLS Guide provides additional instructions needed to
obtain this information.

• Procedures can be called in the CENTRALSUPPORT library that can return this
information. If an application is being written to be used on another system, these
library procedures can be used to verify that the ccsversion, language, or convention
specified by the user is valid on that system.

For any procedure that accepts a ccsversion number as an input parameter, you can
specify a-2 (or the constant value CCSVSNNOTSPECIFIEDV) as input to indicate that
the system default value should be used. For any procedure that accepts a ccsversion
name as an input parameter, you can specify all blanks or all zeros as inputs to indicate
that the system default value should be used. For any procedure that accepts a language
or convention name as an input parameter, you can specify all blanks or all zeros as
inputs to indicate that the task attribute should be used. If the task attribute is not
available, the CENTRALSUPPORT library searches down the hierarchy until a usable
value is found.

Input Parameters with Type Values

9-22

Many of the CENTRALSUPPORT procedures have a parameter that indicates the
type of information to be applied or returned by the procedure. The values in these

8600 0098-000

I nternationa I ization

parameters are referred to as type values. The values are common across all procedures
of the library. The values used in the convention (CNV) procedures are common across
all CNV procedures. The values used in the coded character set and ccsversion (VSN)
procedures are common across all CCS and VSN procedures. The INCLUDE file
contains DEFINES that map these constant integer type values to an identifier that can
be used in your program.

For example, the TYP parameter is used in a number of procedures to indicate the
type of date or time formatting to be used. The type value indicates the type of format
to be used. For example, a value of 3 indicates the long time format. The DEFINE is
CS LTIMEV.

Output Parameters

Result

These parameters contain the results of the procedure. For example, the DEST
parameter of the CCSTOCCS _TRANS_ TEXT procedure contains the translated text
produced by the procedure. In the examples for each procedure described later in this
section, not all output variables are printed. Representative output is shown.

All the library procedures return an integer that indicates whether an error
occurred during the execution of the procedure. A returned value ofCS_DATAOKV
(1) or CS_FALSEV (1001) means that no error occurred. However, the
CNV _ V ALIDATENAME and VSNCOMP ARE_ TEXT procedures are exceptions to this
rule. For these procedures, the returned value can be 0 (zero), 1, or another value.
A returned value of 0 means that no error occurred and the condition is FALSE. A
returned value of 1 means that no error occurred and the condition is TRUE. Any other
value means that an error occurred.

Each procedure lists the values that can be returned by that procedure. The meanings
of these values are explained at the end of this section. These results can be used to call
the GET_ CS_ MSG procedure and to display the error that occurred, or error routines
can be coded to handle the possible errors.

Refer to "GET_ CS_ MSG" later in this section for more information about using that
procedure.

The INCLUDE file contains DEFINES that map each integer result into a define
identifier to be used by your program.

Procedure Descriptions
The following pages describe the procedures in the CENTRALSUPPORT library that an
ALGOL program can access.

The procedures are listed in alphabetical order. Each description includes a general
overview of the procedure, an example showing how to call the procedure, and a
description of the parameters used in the example.

8600 0098-000 9-23

I nternationa I ization

These procedures are found in the CENTRALSUPPORT library specification file
*SYMBOL/INTL/ALGOL/PROPERTIES, provided by Unisys. The file contains library
name specifications, library subroutine specifications, library parameter specifications,
library name declarations for type values, and error message values.

CCSINFO

9-24

This procedure provides basic information about a designated coded character set,
including the number of bits per character (8 or 16) and the coding format (for example,
ASCII or EBCDIC).

This procedure can be used to determine the code format for a file that has its
INTMODE set to a character set name. See the MLS Guide for a list of coded character
sets available.

Example

This example calls the procedure CCSINFO to get information about the LatinlEBCDIC
coded character set. The MLS Guide contains the information that the coded character
set number for LatinlEBCDIC is 12. This number can also be retrieved by calling
VALIDATE NAME RETURN NUM with the name LatinlEBCDIC. - - -

BEGIN

$ INCLUDE INTL=" SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CCSINFO. ");

ARRAY CCS_ARY[0:4]
,LINEOUT[0:14];

INTEGER CCS NUM
,RESULT;

CCS_NUM := 12; % LatinlEBCDIC CCS
RESULT:= CCSINFO(CCS_NUM, CCS_ARY);
WRITE(OUT ,<"RESULT = II ,J4>,RESULT);
IF RESULT EQL cs_DATAOKV THEN .

BEGIN
REPLACE LINEOUT BY II II FOR 80;
WRITE(OUT,80,LINEOUT);
WRITE(OUT,<"Field Meaning
WRITE(OUT,< 11 -------------
WRITE(OUT ,<11# of bits per character

CCS _ARY [0]) ;
WRITE(OUT,<"Repertoire Number

CCS _ARY [l]) ;
WRITE(OUT,<"Encoding Number

CCS_ARY[2]);
WRITE (OUT, <"Coding Format

CCS_ARY[3]);
WRITE(OUT,<"Space Character (hexadecimal)

Location

[0]

[1]

[2]

[3]

[4]

Value">);
----- .. >);

",J3>,

",J3>,

",J3>,

",J3>,

",H12>,

8600 0098-000

CCS_ARY[4]);
END;

CLOSE(OUT,LOCK);
END.

Output

RESULT = 1

Field Meaning

of bits per character
Repertoire number
Encoding number

Internationalization

Location Value

8
26
1

Coding format
Space character (hexadecimal)

[0]
[1]
[2]
[3]
[4]

3
404040404040

In this call, the parameters have the following meanings:

CCS _NUM is an integer passed to the procedure. It contains the number of the coded
character set about which information is requested. This coded character set number is
the same as the values for INTMODE/EXTMODE of files.

CCS _ARY is a real array returned by the procedure. It contains information about a
coded character set from the character set and ccsversion file. The layout for return
information in CCS ARY is as follows:

word [0] number of bits per character

word [1] repertoire number

word[2] endcoding number

word [3] code format

ISO = 1
ASERIESEBCDIC 2
STDEBCDIC 3
BTOS = 4
PC 5

word[4] space character

word[5] extension facilities

word[5].[47:02] ISO extension facilities
% 0 means NONE
% 1 means UNISYS01
% 2 means non-UNISYS01

If word[S].[47:02] = 1 (UNISYS01) then

8600 0098-000 9-25

I nternationa I ization

9-26

word[5]. [45:01] % 0 means undefined Gl set
% 1 means defined Gl set

If word[5].[45:01] = 1 (defined) then

word[5].[44:01] % 0 means unregistered
% 1 means registered

word[5].[43:04] % reserved

word[5] .[39:08] % number of characters (94 or 96)
in Gl set

If word[5].[44:01] 1 (registered) then

word [5]. [31: 16] % reserved

word[5].[15:16] % number of characters in final byte:
final byte starts at word 6

If word[5].[47:02] = 2 (non-UNISYS01) then

word [5] • [45: 30]

word [5] • [15: 16]

% reserved

% number of characters in the escape
sequence: characters in the escape
sequence begin at word 6

Note: Extension facilities are the escape sequences in an ISO environment
that are used to specifY the code sets (such as CO, Cl, GO, Gl) from
which ISO builds coded character sets. The escape sequences are
defined in ISO standard 2022, titled Information Processing-ISO
7-Bit and 8-Bit Coded Character Sets - Code-extension Techniques.

The recommended array size without escape sequences is 5 words. In all other cases, the
recommended size is 30 words.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV(l002)

CS _BAD_ ARRAY_ DESCRIPTIONV (3000)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

8600 0098-000

Internationalization

CCSTOCCS TRANS TABLE

This procedure returns a translation table used to translate data appearing in one
designated coded character set to another designated coded character set. The result is
a one-to-one mapping of the characters.

When an application program performs a high volume of translations, this procedure
can be used in combination with the TRANS_TEXT_USING_TTABLE procedure
instead of calling the CCSTOCCS _TRANS_ TEXT procedure. The translation table from
CCSTOCCS_TRANS_TABLE can be retained in working memory. The translation table
is then passed as a parameter to TRANS_TEXT_USING_TTABLE. Because the table is
stored in working memory it does not have to be retrieved each time it is to be used.

Example

This example reads input from a text file. The data in this input file is in an international
coded character set, but that coded character set is unknown until the EXTMODE of the
file is interrogated. The EXTMODE contains the coded character set number of the file.
For this example, assume the data in the input file is encoded in LatinlEBCDIC, with
a coded character set number of 12. The data is translated from the LatinlEBCDIC
coded character set to the LatinlISO coded character set and then displayed to the
terminal (remote file). The MLS Guide can be used to determine that the coded
character set number for LatinlISO is 13. This number can also be retrieved by calling
VALIDATE NAME RETURN NUM with the name LatinlISO. - - -

BEGIN

$ INCLUDE INTL=" SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CCSTOCCS_ T _TABLE.");

FI LE INFI LE (TITLE=" ALGOL/CCSTOCCS_ T _ TABLE/INFI LE.", FILEUSE=IN,
DEPENDENTSPECS=TRUE);

ARRAY TTABLE_ARY[0:63]
,REC[0:14]
,TRANSREC[0:14];

INTEGER CCSNUMFROM
,CCSNUMTO
,RESULT;

OPEN (IN FI LE) ;
CCSNUMFROM := INFILE.EXTMODE; %capture the ccs number
CCSNUMTO := 13; %Latin1ISO
RESULT:= CCSTOCCS_TRANS_TABLE(CCSNUMFROM, CCSNUMTO, TTABLE_ARY);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

8600 0098-000

BEGIN
WHILE NOT READ(INFILE, 15, REC) DO

BEGIN
REPLACE POINTER(TRANSREC) BY POINTER(REC) FOR 90 WITH

TTABLE_ARY[0];

9-27

I nternationa I ization

END
ELSE

WRITE(OUT, 15, TRANSREC);
END;

WRITE(OUT ,<"ERROR IN CREATING TRANSLATE TABLE">);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1

In this call, the parameters have the following meanings:

CCSNUMFROM is an integer passed to the procedure. It contains the number of the
coded character set that you are translating from.

CCSNUMTO is an integer passed to the procedure. It contains the number of the coded
character set that you are translating to.

TT ABLE_ ARY is a 64-word ALGOL translate table array in which the translate table is
returned. For more information, see "TRANSLATETABLE Declaration" in Section 3,
"Declarations."

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV (1002)

CCSTOCCS TRANS TABLE ALT

9-28

This procedure returns a coded character set to coded character set translate table. This
procedure offers an alternative to the ALGOL translate table.

Example

This example gets the LatinlEBCDIC coded character set to LatinlISO coded character
set translate table. The variable EXP AND is set to CS_ EXP AND_ HEXV. Therefore,
an index into TTABLE _ARY represents the hexadecimal code value of a source
character, and the character at that index in the array is the destination character.
The MLS Guide can be used to determine that the coded character set number for
LatinlEBCDIC is 12 and the LatinlISO is 13. These numbers can also be retrieved by
calling VALIDATE_ NAME_ RETURN_ NUM with the coded character set names.

8600 0098-000

Internationalization

BEGIN

$ INCLUDE INTL= 11 SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE= 11 0UT /ALGOL/CCSTOCCS_T _TABLE/ALT. 11);

EBCDIC ARRAY TTABLE_ARY[0:255];
INTEGER CCSNUMFROM

,CCSNUMTO
,RESULT;

CCSNUMFROM := 12;
CCSNUMTO := 13;
RESULT := CCSTOCCS_TRANS_TABLE_ALT(CCSNUMFROM,CCSNUMTO,CS_EXPAND_HEXV,

TTABLE_ARY);
WRITE(OUT,< 11 RESULT = 11 ,J4>,RESULT);
CLOSE(OUT,LOCK);
END.

Output

RESULT = 1

In this call, the parameters have the following meanings:

CCSNUMFROM is an integer passed to the procedure. It contains the number of the
coded character that you are translating from.

CCSNUMTO is an integer passed to the procedure. It contains the number of the coded
character set that you are translating to.

CS _EXP AND _HEXV is an integer that represents the value of the translate table form.
It is one of two values:

Type Value

0

1

Value Name

CS EXPAND HEXV - -
CS EXPAND HEXTOEBCDICV - -

Description

Do not expand

Expand

TTABLE_ARY is an EBCDIC array returned from the procedure. TTABLE_ARY
contains a translate table in one of two forms, depending on whether
CS EXP AND HEXV or CS EXP AND HEXTOEBCDICV has been chosen. For either - - - -
choice, the arrays are character oriented. If CS_ EXP AND_ HEXV is chosen, then the
return array is 256 characters. The index into the array 0 through 255 represents
the hex code of a source character, and the character at that index in the array is the
destination character.

For example, in a standard EBCDIC to ASCII translate table, the 0 through 255 index
represents the EBCDIC characters, while the ASCII codes are stored in the array at the
proper index.

8600 0098-000 9-29

I nternationa I ization

If CS_ EXP AND_ HEXTOEBCDICV is chosen, then the return array still represents 256
characters, but it is represented by 512 bytes. The destination characters are expanded
from hex to their representation in EBCDIC.

For example, if 00, 01, 02 in the FROM set translates to 04, 6F, 83 in the TO set, then
the first six array elements in the TTABLE_ARY will be FOF4 F6C6 F8F3.

The recommended array size is 256 characters if CS_ EXP AND_ HEXV is chosen. If
CS_ EXP AND_ HEXTOEBCDICV is chosen, the recommended array size is 512.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV (3002)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_TYPE_CODEV (3006)

CS_DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV(1002)

CCSTOCCS TRANS TEXT

9-30

This procedure translates data specified in one coded character set to another coded
character set by using a translation table. Characters are translated using a one-to-one
mapping between two character sets.

For example, a program might translate text from the LATINlEBCDIC coded character
set to the LATINllSO coded character set. Refer to the MLS Guide for a list of the
coded character set numbers that are available as inputs to this procedure.

Although there are many character set numbers, there is not a mapping table between
every combination of coded character sets. The procedure returns an error indicating
the data was not found if you pass two valid coded character set numbers for a table that
does not exist. See the MLS Guide for the mapping tables available as input to this
procedure.

Example

This example takes a string encoded in the LatinlEBCDIC coded character set
and translates it to the LatinllSO coded character set. The MLS Guide can
be used to determine that the coded character set number for LatinlEBCDIC
is 12 and for LatinllSO is 13. These numbers can also be retrieved by calling
VALIDATE NAME RETURN NUM with the coded character set names. - - -

BEGIN

$ INCLUDE INTL=" SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

8600 0098-000

Internationalization

DEFINE SOURCE START = 0 #
,DEST_START = 0 #
,TRANS_LEN = SIZE(SOURCE) #;

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=I0 1 FILETYPE=0 1 NEWFILE 1

MAXRECSIZE=80,TITLE="OUT/ALGOL/CCSTOCCS_T_TEXT.");
EBCDIC ARRAY SOURCE[0:6]

,DEST[0:6];
INTEGER CCSNUMFROM

,CCSNUMTO
,RESULT;

CCSNUMFROM := 12; %Latin1EBCDIC
CCSNUMTO := 13; %Latin1ISO
REPLACE SOURCE[0] BY "pafiuelo" FOR TRANS_LEN;

RESULT := CCSTOCCS_TRANS_TEXT(CCSNUMFROM, CCSNUMTO, SOURCE,
SOURCE_START, DEST, DEST_START, TRANS_LEN);

WRITE(OUT ,<"RESULT = 11
1 J4> 1 RESULT);

IF RESULT EQL CS_DATAOKV THEN
WRITE(OUT, <"DEST = 11

1 A7> 1 DEST);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1
DEST = pafiuelo

In this call, the parameters have the following meanings:

CCSNUMFROM is an integer passed to the procedure. It contains the number of the
coded character set that you are translating from. The coded character sets and their
numbers are described in the MLS Guide.

CCSNUMTO is an integer passed to the procedure. It contains the number of the coded
character set that you are translating to. The coded character sets and their numbers
are described in the MLS Guide.

SOURCE is an EBCDIC array containing the text to translate.

SOURCE_START is an integer that specifies the offset (0 relative) where the translation
starts.

DEST is an EBCDIC array in which the translated text is returned.

DEST_START is an integer that specifies the offset (0 relative) where the output text is
stored.

TRANS_ LEN is an integer that specifies the number of characters in SOURCE to
translate, beginning at SOURCE_ ST ART.

8600 0098-000 9-31

I nternationa I ization

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV(1002)

CCSVSN NAMES NUMS

9-32

This procedure returns a list of coded character set names and numbers or a list of
ccsversion names and numbers that are available on the system. The user can specify
the type of list as either a ccsversion or a coded character set. The names and numbers
are listed in two arrays. These arrays are ordered so that the names in the names array
correspond to the numbers in the numbers array.

This procedure might be used to create a menu that lists the ccsversions on the host
computer from which a user can choose. It might also be used to verify that the
ccsversion to be used by a program is available on the host computer.

Example

This example returns a list of available ccsversion names and numbers on a system. This
is an arbitrary list of three ccsversions and might not be the same on every system.

BEGIN

$ INCLUDE INTL= 11 SYMBOL/INTL/ALGOL/PROPERTIES. 11 10000000 - 49999999

DEFINE MAX_NAME_LEN = 17 #;

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE= 11 0UT/ALGOL/CCSVSNNAMESNUMS. 11);

EBCDIC ARRAY NAMES_ARY[0 :(20*MAX_NAME_LEN) - 1]; %holds 20 names
INTEGER ARRAY NUMS_ARY[0:19]; %holds 20 numbers
ARRAY LINEOUT[0:14];
INTEGER TOTAL

'I
,RESULT;

RESULT := CCSVSN_NAMES_NUMS(CS_CCSVERSIONV, TOTAL, NAMES_ARY,
NUMS_ARY);

WRITE(OUT,< 11 RESULT = 11 ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
REPLACE LINEOUT BY II II FOR 80;
WRITE(OUT, 80, LINEOUT);

8600 0098-000

Internationalization

WRITE(OUT, <"CCSVERSION NAME", T24, "CCSVERSION NUMBER">);
WRITE(OUT, <11

11

, T24, 11

11 >);
FOR I := 0 STEP 1 UNTIL TOTAL-1 DO

WRITE(OUT, <A17,T24,X8,J4>, NAMES_ARY[l*17], NUMS_ARY[I]);
END;

CLOSE(OUT,LOCK);
END.

Output

RESULT = 1

CCSVERSION NAME

ASERIESNATIVE
SWISS
SWEDISHl

CCSVERSION NUMBER

0
64
99

In this call, the parameters have the following meanings:

CS_ CCSVERSIONV represents an integer that requests the names and numbers of the
ccsversions. This is one of two types of information that can be returned in the output
parameters:

Value Value Name

0 CS CHARACTERSETV

1 CS CCSVERSIONV

Meaning

Return the names and numbers of the coded
character sets

Return the names and numbers of the ccsversions

TOT AL is an integer returned by the procedure that contains the number of coded
character set or ccsversion entries that exist.

NAMES_ ARY is an EBCDIC array returned by the procedure. Each entry contains the
name of a coded character set or ccsversion defined in the SYSTEM/CCSFILE. Each
name takes 17 EBCDIC characters. The size of NAMES ARY should be 17 times the
number of convention names you might have on the system. The MLS Guide names all
the coded character sets and ccsversions.

NUMS _ARY is an array of integers returned by the procedure that contains the coded
character set or ccsversion numbers. NUMS ARY contains all the coded character set or
ccsversion numbers defined in file SYSTEM/CCSFILE. Each element in NUMS _ARY
corresponds to an element in NAMES_ARY. Each number uses one element of
NUMS _ARY. The MLS Guide gives all the numbers for the coded character sets and
ccsversions.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001) CS_BAD_ARRAY_DESCRIPTIONV (3000)

continued

8600 0098-000 9-33

Internationalization

continued

cs_ BAD_ TYPE_ COD EV (3006)

CS_FAULTV (1001)

cs_ DATAOKV (1)

CS_SOFTERRV(1002)

CENTRALSTATUS

9-34

This procedure returns the name and number of the system default ccsversion, the name
of the system default convention, and the name of the system default language.

This procedure might be used to provide a means for application users to inquire about
the default settings on the host computer.

Example

This example returns the current values for the system default ccsversion, language, and
convention. These are arbitrary system values and might not be the same on every
system.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CENTRALSTATUS. ");

EBCDIC ARRAY SYS_INF0[0:50];
INTEGER ARRAY CONTROL_INF0[0:7];
ARRAY LINEOUT[0:14];
INTEGER RESULT;

RESULT:= CENTRALSTATUS(SYS_INFO, CONTROL_INFO);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
REPLACE LINEOUT BY II II FOR 80;
WRITE(OUT,80,LINEOUT);
WRITE(OUT,<"SYSTEM DEFAULTS">);
WRITE(OUT,< 11

11 >);

WRITE(OUT ,<"CCSVERSION: II' Tl8,Al7>,SYS INFO [0]);
WRITE (OUT,<" LANGUAGE:", Tl8,Al7>,SYS_INFO [17]);
WRITE(OUT,<"CONVENTION:",Tl8,A17>,SYS_INF0[34]);
WRITE(OUT,80,LINEOUT);
WRITE(OUT,<"CONTROL ARRAY">);
WRITE(OUT ,<"FIELD MEANING", T40," LOCATION", T52, "VALUE">);
WRITE(OUT,< 11 ------------- 11 ,T40, 11

11 ,T52, 11

11 >);

WRITE (OUT, <"SYSTEM DEFAULT CCSVERSION NUMBER", T43," [0] 11 , T54 ,J4>,
CONTROL_INF0[0]);

END;

8600 0098-000

Internationalization

CLOSE(OUT,LOCK);
END.

Output

RESULT = 1

SYSTEM DEFAULTS

CCSVERSION:
LANGUAGE:
CONVENTION:

ASERIESNATIVE
ENGLISH
ASERIESNATIVE

CONTROL ARRAY FIELD MEANING

SYSTEM DEFAULT CCSVERSION NUMBER

LOCATION

[0]

In this call, the parameters have the following meanings:

VALUE

0

SYS_INFO is an EBCDIC array returned by the procedure. It contains the system
default ccsversion, language, and convention name in that order. Each name is 17
characters long. Names shorter than 17 characters are padded on the right with blanks.
SYS INFO should 51 characters to hold 3 names of 17 characters each.

CPNTROL_INFO is an integer array returned by the procedure. It should be 8 words
long. It contains the following information:

Location

Word[O]

Word[l] through [7]

Information

System default ccsversion number

Reserved

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_DATAOKV (1)

CS_SOFTERRV(1002)

CNV ADD

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_FAULTV (1001)

CNV _ADD adds a new convention to the *SYSTEM/CONVENTIONS file. The new
definition is available immediately.

8600 0098-000 9-35

Internationalization

9-36

Example

This example adds a new convention definition named Utopia to the
SYSTEM/CONVENTIONS file.

BEGIN

$ INCLUDE INTL=" SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CNVADD. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

ARRAY ADD_ARY[0:62];
EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - l];
INTEGER RESULT;

REPLACE CNV NAME BY "UTOPIA";
ADD_ARY[0] := 12; % Maximum digits
ADD_ARY[l] := 2; % #of fractional digits
ADD_ARY[2] := 2; % #of international frac digits
REPLACE POINTER(ADD_ARY[3]) BY "!UTA!";
REPLACE POINTER(ADD_ARY[5]) BY "'W!, !N! !D!, !Y!";
REPLACE POINTER(ADD_ARY[13]) BY !lW!, !lN! !D!, !Y!";
REPLACE POINTER(ADD_ARY[21]) BY !00!/!0D!/!Y!";
REPLACE POINTER(ADD_ARY[25]) BY !0T!:!0M!:!0S!.!PPPP!";
REPLACE POINTER(ADD_ARY[33]) BY !0T!:!0M!:!0S!";
REPLACE POINTER(ADD_ARY[37]) BY !C[$] N[-]T[, :0,3] D[.]#!";
REPLACE POINTER(ADD_ARY[45]) BY !N[-]T[,:0,3]D[.]#!";
ADD_ARY[61] := 66;
ADD_ARY[62] := 132;
RESULT:= CNV_ADD(CNV_NAME, ADD_ARY);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1

In this call, the parameters have the following meanings:

CNV_NAME is an EBCDIC array passed to the procedure. It contains the name of the
convention to be added to the conventions file. If this parameter contains all blanks or
zeros, the procedure uses the hierarchy to determine the convention to be used. Refer
to the MLS Guide for the list of convention names and an explanation of the hierarchy.

ADD_ ARY is a real array passed to the procedure. It contains the convention definition
to be added to conventions in memory and to the *SYSTEM/CONVENTIONS file in use.
For the procedure to work, all fields in ADD_ ARY must contain data, or an appropriate
error result is returned. Data in ADD_ ARY is passed in fields as follows:

8600 0098-000

I nternationa I ization

Field Meaning Word

Maximum integer digits 0

Maximum decimal digits 1

Maximum international decimal digits 2

International currency notation 3

Long date template 5

Short date template 13

Numeric date template 21

Long time template 25

Numeric time template 33

Monetary template 37

Numeric template 45

Lines per page 61

Characters per line 62

The international currency notation field contains the international currency notation
defined for the convention. The international currency notation is surrounded by a pair
of matching delimiters that are not part of the notation. Any blanks inside the delimiters
are significant and are treated as any other character. For example, the international
currency notation for the ASERIESNATIVE convention is "USD "; the trailing blank is
significant and the quotation marks are delimiters.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_ALT_FRAC_DIGITSV (3017)

CS_BAD_CPLV (3028)

CS_BAD_FRACDIGITSV (3016)

CS_BAD_LPPV(3027)

CS_BAD_MAXDIGITSV (3015)

CS _BAD_ N DATETEM PV (3020)

CS_BAD_NUMTEMPV (3024)

CS_CNV_EXISTS_ERRV (3014)

cs_ CONVENTION _NOT _FOU N DY (2002)

CS_FAULTV (1001)

CS_SOFTERRV(1002)

8600 0098-000

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_DATA_LENV (3002)

CS_BAD_LDATETEMPV (3018)

CS_BAD_LTIMETEMPV (3021)

CS_BAD_MONTEMPV (3023)

CS_BAD_NTIMETEMPV (3022)

CS_BAD_SDATETEMPV (3019)

cs_ CNVFI LE_ NOTPRESENTV (3037)

cs_ DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

9-37

I nternationa I ization

CNV CONVERTCURRENCY STAR

9-38

This procedure converts a string containing digits and monetary symbols to a real
number.

Example

This example converts an EBCDIC string containing digits and monetary symbols to a
real number. The ASERIESNATIVE ccsversion is used.

BEGIN

$ INCLUDE INTL= 11 *SYMBOL/INTL/ ALGOL/PROPERTIES. 11 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE= 11 0UT/ALGOL/CNVCONVERTCURSTAR. 11);

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], CC_ARY[0:9];
INTEGER VSN_NUM, CC_ARY_SIZE, CNV_NAME_SIZE, RESULT;
REAL AMT;

VSN_NUM := 0;
REPLACE CC ARY BY 11 $12,345.67 11 ;

REPLACE CNV_NAME BY 11 ASERIESNATIVE 11 ;

CC_ARY_SIZE := SIZE(CC_ARY);
CNV_NAME_SIZE := SIZE(CNV_NAME);
RESULT := CNV_CONVERTCURRENCY_STAR(VSN_NUM, CC_ARY, CC_ARY_SIZE,

CNV_NAME, CNV_NAME_SIZE, AMT);
WRITE(OUT,< 11 RESULT = 11 ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE (OUT, <11 AMT = 11 , FB. 2>, AMT) ;
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1
AMT = 12345.67

In this call, the parameters have the following meanings:

VSN _ NUM is l;lil integer passed to the procedure. It contains the number of the
ccsversion that was in effect when the input string was created. If the input string
contains alternate digits, then they will be translated to their corresponding 0-9
numbers. Refer to the MLS Guide for a list of the ccsversion numbers. The values
allowed for VSN _ NUM and the meanings of the values are as follows:

8600 0098-000

Internationalization

Value

Greater than or equal to O

-2

Meaning

Use the specified ccsversion number.

Use the system default ccsversion. If the system default
ccsversion is not available, an error is returned.

CC_ ARY is an EBCDIC array that contains the input string of digits and monetary
symbols.

CC_ARY_SIZE is an integer that contains the total number of bytes in CC_ARY.

CNV _NAME is an EBCDIC array that is passed to the procedure. It contains the name
of the convention to be used to format the input string. If this parameter contains all
blanks or zeros, the procedure uses the hierarchy to determine the convention to be
used. Refer to theMLS Guide for the list of convention names and an explanation of the
hierarchy.

CNV _NAME_ SIZE is an integer that contains the total number of bytes in CNV _NAME.

AMT is a real number that is returned by the procedure. It contains the converted real
number.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CNV CONVERTDATE STAR

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_INPUTVALV (3035)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV (1001)

CS_SOFTERRV(l002)

This procedure converts a formatted numeric date passed as a parameter to the
procedure to the format YYYYMMDD. The numeric date must be formatted according to
the numeric date format template defined in the designated convention set.

Example

This example converts a date from ASERIESNATIVE numeric form to standard input
form. The ASERIESNATIVE ccsversion is used.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

8600 0098-000 9-39

Internationalization

9-40

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/CNVCONVERTDATSTAR.");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], CD_ARY[0:9], DATE_ARY[0:7];
INTEGER VSN_NUM, CD_ARY_SIZE, CNV_NAME_SIZE, DATE_ARY_SIZE, RESULT;

VSN_NUM := 0;
REPLACE CD ARY BY "09/15/1990";
REPLACE CNV_NAME BY "ASERIESNATIVE";
CD_ARY_SIZE := SIZE(CD_ARY);
CNV_NAME_SIZE := SIZE(CNV_NAME);
DATE_ARY_SIZE := SIZE(DATE_ARY);
RESULT := CNV_CONVERTDATE_STAR(VSN_NUM, CD_ARY, CD_ARY_SIZE,

CNV_NAME, CNV_NAME_SIZE,
DATE_ARY, DATE_ARY_SIZE);

WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT ,<"DATE_ARY = ",C8>,DATE_ARY);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1
DATE ARY = 19900915

In this call, the parameters have the following meanings:

VSN _ NUM is an integer passed to the procedure. It contains the ccsversion number
that was in effect when date was formatted. If the input string contains alternate digits,
then they will be translated to their corresponding 0-9 numbers. Refer to the MLS
Guide for a list of the ccsversion numbers. The values allowed for VSN NUM and the
meanings of the values are as follows:

Value

Greater than or equal to 0

-2

Meaning

Use the specified ccsversion number.

Use the system default ccsversion. If the system default
ccsversion is not available, an error is returned.

CD_ ARY is an EBCDIC array passed to the procedure. It contains the formatted date.

CD_ ARY_ SIZE is an integer that contains the total number of bytes in CD_ ARY.

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name of the
convention from which the date formatting templates are retrieved.

CNV _NAME_ SIZE is an integer that contains the total number of bytes in CNV _NAME.

DATE_ ARY is an EBCDIC array returned by the procedure. It contains the converted
date in.the form YYYYMMDD.

8600 0098-000

Internationalization

DATE_ARY_SIZE is an integer that contains the total number of bytes in DATE_ARY.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_BAD_TEMPCHARV (3011)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CNV CONVERTNUMERIC STAR

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BADDATEINPUTV (3012)

CS_BAD_TYPE_CODEV (3006)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV (1001)

CS_SOFTERRV (1002)

This procedure converts a string containing digits and numeric symbols to a real number.

Example

This example converts an EBCDIC string containing digits and numeric symbols to a real
number. The ASERIESNATIVE ccsversion is used.

BEGIN

$ INCLUDE INTL= 11 *SYMBOL/INTL/ ALGOL/PROPERTIES. 11 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE= 11 0UT /ALGOL/CNVCONVERTNUMSTAR. 11);

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], CC_ARY[0:9];
INTEGER VSN_NUM, cc_ARY_SIZE, CNV_NAME_SIZE, RESULT;
REAL AMT;

VSN_NUM := 0;
REPLACE CC_ARY BY 11 12,345.67 11 ;

REPLACE CNV_NAME BY "ASERIESNATIVE 11 ;

CC_ARY_SIZE := SIZE(CC_ARY);
CNV_NAME_SIZE := SIZE(CNV_NAME);
RESULT := CNV_CONVERTNUMERIC_STAR(VSN_NUM, CC_ARY, CC_ARY_SIZE,

CNV_NAME, CNV_NAME_SIZE, AMT);
WRITE(OUT ,<"RESULT = II ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT 1 <11 AMT = 11 ,FS.2>,AMT);
CLOSE(OUT,LOCK);

END.

8600 0098-000 9-41

Internationalization

Output

RESULT = 1
AMT = 12345.67

In this call, the parameters have the following meanings:

VSN _ NUM is an integer that is passed to the procedure. It contains the number
of the ccsversion that was in effect when the input string was created. If the input
string contains alternate digits, then they will be translated to their corresponding 0-9
numbers. Refer to the MLS Guide for a list of the ccsversion numbers. The values
allowed for VSN _ NUM and the meanings of the values are as follows:

Value

Greater than or equal to 0

-2

Meaning

Use the specified ccsversion number.

Use the system default ccsversion. If the
system default ccsversion is not available, an
error is retu med.

CC_ ARY is an EBCDIC array that is passed to the procedure. It contains the string of
digits and numeric symbols to be converted.

CC_ARY_SIZE is an integer that contains the total number of bytes in CC_ARY.

CNV _NAME is an EBCDIC array that is passed to the procedure. It contains the name
of the convention to be used to format the input string.

CNV _NAME_ SIZE is an integer that contains the total number of bytes in CNV _NAME.

AMT is a result returned by the procedure. It contains the converted real number.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_INPUTVALV (3035)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV (1001)

CS_SOFTERRV (1002)

CNV CONVERTTIME STAR

9-42

This procedure converts a formatted numeric time passed as a parameter to the
procedure to the format HHMMSS. The numeric time must be formatted according to
the numeric time format template defined in the designated convention.

8600 0098-000

Internationalization

Example

This example converts a time from ASERIESNATIVE numeric form to standard input
form. The ASERIESNATIVE ccsversion is used.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CNVCONVERTTIMSTAR. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], CT_ARY[0:7], TIME_ARY[0:5];
INTEGER VSN_NUM, CT_ARY_SIZE, CNV_NAME_SIZE, TIME_ARY_SIZE, RESULT;

VSN_NUM := 0;
REPLACE CT ARY BY "11:49:58";
REPLACE CNV_NAME BY "ASERIESNATIVE";
CT_ARY_SIZE := SIZE(CT_ARY);
CNV_NAME_SIZE := SIZE(CNV_NAME);
TIME_ARY_SIZE := SIZE(TIME_ARY);
RESULT := CNV_CONVERTTIME_STAR(VSN_NUM, CT_ARY, CT_ARY_SIZE,

CNV_NAME, CNV_NAME_SIZE,
TIME_ARY, TIME_ARY_SIZE);

WRITE(OUT ,<"RESULT II ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT,<"TIME_ARY = ",C6>,TIME_ARY);
CLOSE(OUT,LOCK);

END.

Output

RESULT 1
TIME ARY = 114958

In this call, the parameters have the following meanings:

VSN _ NUM is an integer passed to the procedure. It contains the ccsversion number
that was in effect when the time was formatted. If the input string contains alternate
digits, then they will be translated to their corresponding 0-9 numbers. Refer to the
MLS Guide for a list of the ccsversion numbers. The values allowed for VSN NUM and
the meanings of the values are as follows:

Value

Greater than or equal to 0

-2

Meaning

Use the specified ccsversion number.

Use the system default ccsversion. If the
system default ccsversion is not available, an
error is returned.

CT_ ARY is an EBCDIC array passed to the procedure. It contains the formatted time.

8600 0098-000 9-43

Internationalization

CT_ ARY_ SIZE is an integer that contains the total number of bytes in CT_ ARY.

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name of
the convention that was used to form.at the input time. If this parameter contains all
blanks or zeros, the procedure uses the hierarchy to determine the convention to be
used. Refer to the MLS Guide for the list of convention names and an explanation of the
hierarchy.

CNV _NAME_ SIZE is an integer that contains the total number of bytes in CNV _NAME.

TIME_ ARY is an EBCDIC array returned by the procedure. It contains the converted
time in the form HHMMSS.

TIME_ARY_SIZE is an integer that contains the total number of bytes in TIME_ARY.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV (3002)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BADTIMEINPUTV (3013)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV (1001)

CS_SOFTERRV (1002)

CNV CURRENCYEDIT

9-44

This procedure converts a real number that represents a currency value to a formatted
monetary string. The string contains the currency value with formatting symbols
included. The formatting performed by the procedure is done according to the
convention specified. The MLS Guide describes all the conventions and the type of
currency formatting associated with each convention.

The procedure might be used to print a report with the numeric and currency formats
for the Costa Rican convention (e.g. CRC 89.99) or for the Norway convention (e.g.
NKR89.99).

Example

The following example converts a real number and edits monetary symbols from
convention Denmark into an EBCDIC string.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/CNVCUREDIT.");

8600 0098-000

I nternationa I ization

DEFINE MAX NAME LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], CE_ARY[0:29];
INTEGER CE_LEN, RESULT;
REAL AMT;

AMT := 12345.67;
REPLACE CNV_NAME BY "DENMARK";
RESULT:= CNV_CURRENCYEDIT(AMT, CNV_NAME, CE_LEN, CE_ARY);
WRITE(OUT ,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT ,<"CE_ARY = II ,C30>,CE_ARY);
CLOSE(OUT, LOCK);

END.

Output

RESULT 1
CE ARY Kr.12.345,67

In this call, the parameters have the following meanings:

AMT is a real number passed to the procedure. It contains the value of the currency.

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name of
the convention to be used to format the currency value. If this parameter contains all
blanks or zeros, the procedure uses the hierarchy to determine the convention to be
used. Refer to the MLS Guide for the list of convention names and an explanation of the
hierarchy.

CE_ LEN is an integer returned by the procedure. It contains the number of characters
in CE ARY

CE_ ARY is an EBCDIC array returned by the procedure. It contains the formatted
value.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_FAULTV (1001)

CNV CURRENCYEDITTMP

CS_BAD_DATA_LENV(3002)

cs_ DATAOKV (1)

CS_SOFTERRV (1002)

This procedure receives a real number and formats it to represent a currency value
according to the template specified in the TEMP_ ARY parameter. The template can
be retrieved for any convention from the CNV _TEMPLATE procedure. It can also be

8600 0098-000 9-45

I nternationa I ization

9-46

created by the user. CE_ ARY contains the formatted currency value. The MLS Guide
describes the symbols used to create a template.

Example

This example converts a real number and edits in numeric symbols which are passed in
as a monetary template. The currency symbol is retrieved from the monetary template
in the ASERIESNATIVE convention and edited into the EBCDIC string.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ ALGOL/PROPERTIES. 11 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE= 11 0UT/ALGOL/CNVCUREDITTMP. 11);

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], CE_ARY[0:29],
TMP _ARY[0:47];

INTEGER CE_LEN, RESULT;
REAL AMT;

AMT := 12345.67;
REPLACE CNV_NAME BY "ASERIESNATIVE";
REPLACE TMP_ARY BY "!CN[-]T[,:0,3]D[.]#! 11 ;

RESULT := CNV_CURRENCYEDITTMP(AMT, TMP_ARY, CNV_NAME, CE_LEN, CE_ARY);
WRITE(OUT,<"RESULT = 11 ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT ,<"CE_ARY = II ,C30>,CE_ARY);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1
CE_ARY = $12,345.67

In this call, the parameters have the following meanings:

AMT is a real number passed to the procedure. It contains the value of the currency.

TMP _ARY is an EBCDIC array passed to the procedure. It contains the formatting
templatt:: u ·ed to format the currency value.

CNV _NAME is an EBCDIC array passed to the procedu.l'e. It contains the name of
the convention to be used. When a caller-supplied monetary template (in TMP _ARY)
contains one or more control characters in simple form (control character without a
symbol definition enclosed in square brackets ([]) following it), symbols associated with
those control characters are retrieved from the monetary template in the convention
specified by CNV _NAME.

8600 0098-000

I nternationa I ization

For example, if a caller-provided monetary template is !N[-]CT[,:0,3]D[.]#I and
CNV _NAME contains Sweden, then the local currency symbol is retrieved from the
monetary template in Sweden convention and the amount 12345.67 is edited into a
formatted string as Kr.12,134.67.

CE_ LEN is an integer returned by the procedure. It contains the length of the
formatted value in the output array.

CE_ ARY is an EBCDIC array returned by the procedure. It contains the formatted
monetary value.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_DATAOKV (1)

CS_SOFTERRV (1002)

CNV DELETE

CS_BAD_DATA_LENV (3002)

CS_FAULTV (1001)

This procedure deletes an existing convention definition from the
*SYSTEM/CONVENTIONS file. The convention is deleted after the next halt/load.

Note that this procedure can be used to delete only conventions that have been created
by a user. Unisys-provided convention sets cannot be deleted.

Example

This example deletes a convention named Utopia from the conventions file.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/CNVDELETE.");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1];
INTEGER RESULT;

REPLACE CNV_NAME BY "UTOPIA";
RESULT := CNV_DELETE(CNV_NAME);
WRITE{OUT ,<"RESULT = ",J4>,RESULT);
CLOSE{OUT,LOCK);

END.

8600 0098-000 9-47

Internationalization

Output

RESULT = 1

In this call, the parameters have the following meanings:

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name of the
convention to be deleted from the conventions file.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_ARRAY_DESCRIPTIONV (3000)

cs_ CNVFILE _ NOTPRESENTV (3037)

CS_DATAOKV (1)

CS _Fl LE_ ACCESS_ ER RO RV (1000)

CNV DISPLAYMODEL

CS_BAD_DATA_LENV(3002)

CS_CNV_NOTAVAILV (3036)

CS_FAULTV (1001)

CS_SOFTERRV (1002)

This procedure returns a display model for either the numeric date or the numeric time,
whichever one is requested in the TYP parameter. A display model is a format that
can be displayed to the user to show the form of the requested input. For example,
YY/DD/MM is a display model that shows a user that the date must be entered in that
form. The procedure creates the display model according to the convention and language
specified.

Example

This example obtains a date display model from the ASERIESNATIVE convention. The
display model is translated to English and returned in DM _ARY.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=llJ,NEWFILE,
MAXRECSIZE=811J, TITLE="OUT /ALGOL/CNVDSPMODEL. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[llJ:MAX_NAME_LEN - 1], DM_ARY[0:9],
LANG_NAME[llJ:MAX_NAME_LEN - 1];

INTEGER DM_LEN, RESULT;

REPLACE CNV_NAME BY "ASERIESNATIVE";
REPLACE LANG_NAME BY "ENGLISH";
RESULT := CNV_DISPLAYMODEL(CS_DATE_DISPLAYMODELV, CNV_NAME, LANG_NAME,

DM_LEN, DM_ARY);
WRITE(OUT ,<"RESULT = II ,J4>,RESULT);

9-48 8600 0098-000

I nternationa I ization

IF RESULT EQL CS_DATAOKV THEN
WRITE(OUT ,<"DM_ARY = ",Cl0>,DM_ARY);

CLOSE(OUT,LOCK);
END.

Output

RESULT = 1
DM_ARY = rrmi/dd/yyyy

In this call, the parameters have the following meanings:

CS_DATE_DISPLAYMODELV represents an integer that requests that the display
model for the numeric date be returned. It is one of two display model options:

Value

0

1

Value Name

CS DATE DISPLAYMODELV

CS TIME DISPLAYMODELV

Meaning

The display model is for a numeric date.

The display model is for a numeric time.

CNV_NAME is an EBCDIC array passed to the procedure. It contains the name of the
convention from which the date or time model is retrieved. If this parameter contains
all blanks or zeros, the procedure uses the hierarchy to determine the convention to be
used. Refer to the MLS Guide for the list of convention names and the explanation of
the hierarchy.

LANG_ NAME is an EBCDIC array passed to the procedure. It contains the language
name to be used in formatting the date or time. If this parameter contains all blanks or
zeros, the procedure uses the hierarchy to determine the language to be used. Refer to
the MLS Guide for information about determining the valid language names and an
explanation of the hierarchy.

DM _LEN is an integer that contains the number of characters in DM _ARY.

DM _ARY is an EBCDIC array returned to the procedure. It contains the requested
display model.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_FAULTV (1001)

CS_SOFTERRV (1002)

8600 0098-000

CS _BAD_ ARRAY_ DESCRI PTIONV (3000)

CS_BAD_TYPE_CODEV(3006)

CS_DATAOKV (1)

CS_LANGUAGE_NOT_FOUNDV (2001)

9-49

I nternationa I ization

CNV FORMATDATE

9-50

This procedure formats a date, specified in DATE_ ARY, according to the convention
specified in CNV _NAME. The formatted date is returned in FD_ ARY in the language
specified byLANG_NAME.

Example

This example formats the date in numeric form using the Netherlands convention. The
system default Janguage is specified.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CNVFMTDATE. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], DATE_ARY[0:7], FD_ARY[0:9],
LANG_NAME[0:MAX_NAME_LEN - 1];

INTEGER FD_LEN, RESULT;

REPLACE DATE_ARY BY "17760704";
REPLACE CNV_NAME BY "NETHERLANDS";
RESULT := CNV_FORMATDATE(CS_NDATEV, DATE_ARY, CNV_NAME, LANG_NAME,

FD_LEN, FD_ARY);
WRITE(OUT ,<"RESULT = ",J4>,RESULT);
IF RESULT EQL cs_DATAOKV THEN

WRITE(OUT,<"FD_ARY = ",Cl0>,FD_ARY);
CLOSE (OUT, LOCK);

END.

Output

RESULT = 1
FD ARY= 4.7.76

In this call, the parameters have the following meanings:

CS_ NDATEV represents an integer that requests a numeric date format to be returned.
It is one of three date format options:

Value

0

1

2

Value Name

CS LDATEV

CS SDATEV

CS_NDATEV

Meaning

Use the long date format.

Use the short date format.

Use the numeric date format.

8600 0098-000

Internationalization

DATE_ ARY is an EBCDIC array passed to the procedure. It contains the date to be
formatted. The date must be in the form YYYYMMDD, left justified. The fields of the
array have fixed positions. Blanks or zeros must be used in any fields that are omitted.

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name of
the convention to be used to edit the date value. The maximum length of each name is
17 characters. If this par~eter contains all blanks or zeros, the procedure uses the
hierarchy to determine the convention to be used. Refer to the MLS Guide for the list of
convention names and the explanation of the hierarchy.

LANG_NAME is an EBCDIC array passed to the procedure. It contains the language
to be used in formatting the date. The maximum length of each name is 17 characters.
If this parameter contains all blanks or zeros, the procedure uses the hierarchy to
determine the language to be used. Refer to the MLS Guide for information about
determining the valid language names on the system and an explanation of the hierarchy.

FD_ LEN is an integer returned by the procedure. It contains the length of the
formatted date.

FD_ ARY is an EBCDIC array returned by the procedure that contains the formatted
date.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENVC3002)

CS_BAD_TYPE_CODEV(3006)

CS_DATAOKV (1)

CS_FIELD_TRUNCATEDV (2003)

CS_SOFTERRV (1002)

CNV FORMATDATETMP

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BADDATEINPUTV (3012)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_FAULTV (1001)

CS_LANGUAGE_NOT_FOUNDV (2001)

This procedure formats a date, specified in DATE_ ARY, according to a template,
specified in TMP _ARY. The template can be retrieved for any convention from the
CNV _TEMPLATE procedure. It can also be created by the user. The formatted date is
returned in the language specified in LANG_NAME.

Example

This example formats a date using a template provided by the calling program. The
formatted date is translated into English and returned in FD_ ARY. The date consists of
an unabridged name of a day of the week, an abbreviated month name, a numeric day of
the month, a day of the month suffix "rd", and a numeric year.

8600 0098-000 9-51

I nternationa I ization

9-52

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CNVFMTDATETMP. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY TMP_ARY[0:47], DATE_ARY[0:7], FD_ARY[0:44],
LANG_NAME[0:MAX_NAME_LEN - 1];

INTEGER FD_LEN, RESULT;

REPLACE DATE_ARY BY "19901003";
REPLACE TMP_ARY BY "!W!, !lN!. !DE!, !YYYY!";
REPLACE LANG_NAME BY "ENGLISH";
RESULT := CNV_FORMATDATETMP(DATE_ARY, TMP_ARY, LANG_NAME,

FD_LEN, FD_ARY);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT ,<"FD_ARY = ",C45>,FD_ARY);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1
FD_ARY = Wednesday, Oct. 3rd, 1990

In this call, the parameters have the following meanings:

DATE_ ARY is an EBCDIC array passed to the procedure. It contains the date to be
formatted. The date must be in the form YYYYMMDD. The fields of the array have
fixed positions. Blanks or zeros must be used in any fields that are omitted.

TMP _ARY is an EBCDIC array passed to the procedure. It contains the template used
to format the date. The template must use the control characters described in the MLS
Guide.

LANG_ NAME is an EBCDIC array passed to the procedure. It contains the language
to be used in formatting the date. Refer to the MLS Guide for information about
determining the valid language names on the system on which the user program is
running.

FD_ LEN is an integer returned by the procedure. It contains the length of the
formatted date.

FD_ ARY is an EBCDIC array returned by the procedure. It contains the formatted
date.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result

8600 0098-000

I nternationa I ization

values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_ BAD_ DATA_ LENY (3002)

CS_BAD_TEMPCHARV (3011)

CS_DATAOKV (1)

CS_FIELD_TRUNCATEDV (2003)

CS_SOFTERRV(1002)

CNV FORMATTIME

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BADDATEINPUTV (3012)

CS_BAD_TEMPLENV (3030)

CS_FAULTV (1001)

CS_LANGUAGE_NOT_FOUNDV (2001)

This procedure formats a user-supplied time and identifies the kind of template to be
retrieved from the named convention and used to format time. The formatted time is
returned in the user-specified language.

Example

This example formats the time in numeric form using the Belgium convention. The
formatted time is returned in FT ARY.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CNVFMTTIME. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], FT_ARY[0:7],
LANG_NAME[0:MAX_NAME_LEN - 1], TIME_ARY[0:9];

INTEGER FT_LEN, RESULT;

REPLACE TIME_ARY BY "114958";
REPLACE LANG_NAME BY "ENGLISH";
REPLACE CNV_NAME BY "BELGIUM";
RESULT := CNV_FORMATTIME(CS_NTIMEV, TIME_ARY, CNV_NAME, LANG_NAME,

FT_LEN, FT_ARY);
WRITE(OUT ,<"RESULT = II ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE (OUT,<" FT_ ARY = ",CS>, FT_ ARY) ;
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1
FT ARY = 11:49:58

8600 0098-000 9-53

I nternationa I ization

In this call, the parameters have the following meanings:

CS_ NTIMEV represents an integer that requests the numeric time format be returned.
It is one of two options:

Value

3

4

Value Name

CS LTIMEV

CS NTIMEV

Meaning

Use the long time format.

Use the numeric time format.

TIME_ ARY is an EBCDIC array passed to the procedure. It contains the time to be
formatted in the form HHMMSS, left justified. The fields of the array have fixed
positions. Blanks or zeros must be used in any fields that are omitted.

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name of the
convention to be used to edit the time value. If this parameter contains all blanks or
zeros, the procedure uses the hierarchy to determine the convention to be used. Refer
to the MLS Guide for the list of convention names and the explanation of the hierarchy.

LANG_NAME is an EBCDIC array passed to the procedure. It contains the language
to be used in formatting the time. If this parameter contains all blanks or zeros, the
procedure uses the hierarchy to determine the language to be used. Refer to the MLS
Guide for information about determining the valid language names on the system being
used and the explanation of the hierarchy.

FT_ LEN is an integer that contains the length of FT_ ARY.

FT_ ARY is an EBCDIC array returned by the procedure. It contains the time value
formatted according to the specified convention and language.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV (3002)

CS_BADTIMEINPUTV (3013)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_FAULTV (1001)

CS_LANGUAGE_NOT_FOUNDV (2001)

cs_BAD_ARRAY_DESCRIPTIONV (3000)

cs_ BAD_ TEM PC HARV (3011)

CS_BAD_TYPE_CODEV(3006)

CS_DATAOKV (1)

CS _FIELD_ TRUNCATEDV (2003)

CS_SOFTERRV(1002)

CNV FORMATTIMETMP

9-54

This procedure formats a time value, specified in TIME_ ARY, according to a template,
specified by TMP _ARY. The template can be retrieved for any convention from the
CNV _TEMPLATE procedure. It can also be created by the user. The formatted time is
returned in the language specified in LANG_ NAME.

8600 0098-000

Internationalization

Example

This example formats a caller-supplied time, using a template also passed in by the
calling program. Alphabetic time components are translated into English and returned
inFT ARY.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/CNVFMTTIMETMP.");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY TMP_ARY[0:47], FT_ARY[0:44], TIME_ARY[0:9],
LANG_NAME[0:MAX_NAME_LEN - 1];

INTEGER FT_LEN, RESULT;

REPLACE TIME_ARY BY "114958";
REPLACE TMP ARY BY "!T! !I! !M! !K! !S! !R!";
REPLACE LANG_NAME BY "ENGLISH";
RESULT := CNV_FORMATTIMETMP(TIME_ARY, TMP_ARY, LANG_NAME,

FT_LEN, FT_ARY);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE (OUT'<" FT _ARY = II ,C45>, FT _ARY);
CLOSE(OUT, LOCK); .

END.

Output

RESULT = 1
FT ARY = 11 hours 49 minutes 58 seconds

In this call, the parameters have the following meanings:

TIME_ ARY is an EBCDIC array passed to the procedure. It contains the time to be
formatted in the form HHMMSSPPPP. The partial seconds field, PPPP, is optional. The
fields of the array have fixed positions. Blanks or zeros must be used in any fields that
are omitted.

TMP _ARY is an EBCDIC array passed to the procedure in which the template to be
used to format the time is specified. Refer to the MLS Guide for information about
creating a template.

LANG_ NAME is an EBCDIC array passed to the procedure. It contains the language
to be used in formatting the time. If this parameter contains all blanks or zeros, the
procedure uses the hierarchy to determine the language to be used. Ref er to the MLS
Guide for information about determining the valid language names on the system that is
used by the program and the explanation of the hierarchy.

8600 0098-000 9-55

Internationalization

FI'_LEN is an integer returned by the procedure. It contains the length of the
formatted time.

FI'_ ARY is an EBCDIC array returned by the procedure. It contains the time value
formatted according to the specified template and language.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred duringthe execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_BAD_TEMPLENV (3030)

CS_DATAOKV (1)

CS_FIELD _ TRUNCATEDV (2003)

CS_SOFTERRV (1002)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_TEMPCHARV (3011)

CS_BADTIMEINPUTV (3013)

CS_FAULTV (1001)

CS_LANGUAGE_NOT_FOUNDV (2001)

CNV FORMSIZE

9-56

This procedure returns the default lines per page and default characters per line values
from the specified convention. Each convention provides values for these items to be
used by default with printed output.

Example

This example obtains default lines per page and characters per line from the Denmark
convention.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES. 11 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CNVFORMSIZE. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1];
INTEGER LPP, CPL, RESULT;

REPLACE CNV_NAME BY "DENMARK";
RESULT := CNV_FORMSIZE(CNV_NAME, LPP, CPL);
WRITE(OUT ,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
WRITE(OUT,<"Lines per Page = ",J2>,LPP);
WRITE(OUT ,<"Characters per Line = ",J2>,CPL);

END;

8600 0098-000

Internationalization

CLOSE (OUT, LOCK);
END.

Output

RESULT = 1
Lines per Page = 70
Characters per Line = 82

In this call, the parameters have the following meanings:

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name of
the convention to be used to specify the printer form default sizes. If this parameter
contains all blanks or zeros, the procedure uses the hierarchy to determine the
convention to be used. Refer to the MLS Guide for the list of convention names and the
explanation of the hierarchy.

LPP is an integer returned by the procedure. It contains the number of lines allowed
per page for the specified convention.

CPL is an integer returned by the procedure. It contains the number of characters
allowed per line for the specified convention.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_DATAOKV (1)

CS_SOFTERRV (1002)

CNV INFO

CS_CONVENTION_NOT_FOUNDV (2002)

CS_FAULTV (1001)

This procedure returns the definition of the specified convention. The definition can be
retrieved from memory or from the *SYSTEM/CONVENTIONS file.

Example

This example retrieves the UnitedKingdoml convention definition from the
*SYSTEM/CONVENTIONS file and returns it in INFO _ARY.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT/ALGOL/CNVINFO. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

8600 0098-000 9-57

I nternationa I ization

9-58

ARRAY LINEOUT[0:14], INFO_ARY[0:62], ALTCURRENCY[0:2],
LONGDATETMP[0:9];

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1];
INTEGER INFO_LEN, RESULT;

REPLACE CNV_NAME BY 11 UNITEDKINGDOMl II;
RESULT:= CNV_INFO(CS_CNVFILE_INFOV, CNV_NAME, INFO_LEN, INFO_ARY);
WRITE(OUT,< 11 RESULT = 11 ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
REPLACE LINEOUT BY II II FOR 80;
WRITE(OUT,80,LINEOUT);
WRITE(OUT,< 11 Field Meaning
WRITE(OUT,< 11 ------------
WRITE(OUT,<11Max. Integer Digits

INFO_ARY [0]);
WRITE(OUT,< 11 Max. Fractional Digits

INFO_ARY[l]);
WRITE(OUT,< 11 Max. International Fractional

Digits INFO_ARY[2]);
WRITE(OUT,<11 International Currency Notation

POINTER(INFO_ARY[3]));
WRITE(OUT,<"Long Date Template

POINTER(INFO_ARY[5]));
WRITE(OUT,<"Short Date Template

POINTER(INFO_ARY[13]));
WRITE(OUT,<"Numeric Date Template

POINTER(INFO ARY[21]));
WRITE(OUT,<"Long Time Template

POINTER(INFO_ARY[25]));
WRITE(OUT,<"Numeric Time Template

POINTER(INFO_ARY[33]));
WRITE(OUT,<"Monetary Template

POINTER(INFO_ARY[37]));
WRITE(OUT,<"Numeric Template

POINTER(INFO ARY[45]));
WRITE(OUT,<"Reserved

POINTER(INFO ARY[53]));
WRITE(OUT ,<"Lines per Page

INFO_ARY[61]);
WRITE(OUT,<"Characters per Line

INFO_ARY[62]);
END;
CLOSE(OUT,LOCK);

END.

Location Value">);
-------- _____ 11>);

[0] ",J3>,

[1] ",J3>,

[2] ",J3>,

[3 :4] ",C12>,

[5: 12] 11 ,C24>,

[13:20] 11 ,C24>,

[21: 24] ",C24>,

[25: 32] ",C24>,

[33:36] 11 ,C24>,

[37:44] ",C24>,

[45:52] ",C24>,

[53: 60] ",C24>,

[61] II> J3> >

[62] 11,J3>,

8600 0098-000

Output

RESULT = 1

Field Meaning

Max. Integer Digits
Max. Fractional Digits
Max. International Fractional

Digits
International Currency Notation
Long Date Template
Short Date Template
Numeric Date Template
Long Time Template
Numeric Time Template
Monetary Template
Numeric Template
Reserved
Lines per Page
Characters per Line

Internationalization

Location Value

[0]
[1]
[2]

[3:4]
[5: 12]
[13:20]
[21:24]
[25:32]
[33:36]
[37 :44]
[45:52]
[53 :60]
[61]
[62]

12
2
2

11$ II

'W!, !DE! !N!, !YYYY!
D! !lN! !0Y!
D ! • !00 ! • ! 0Y !
H!: !0M!: !0S!. !PP! !A!
H!: !OM!
C[$]T[,:0,3]D[.]#N[-J !

. T[, :0,3]D[.]#N[-J !

70
82

In this call, the parameters have the following meanings:

CS_ CNVFILE _ INFOV represents an integer that requests that convention information
be retrieved from the file in use, *SYSTEM/CONVENTIONS. It is one of two options:

Value

0

1

Value Name

CS CNVMEM INFOV - -

CS CNVFILE INFOV - -

Type of Information Returned

Convention information is retrieved from
the memory (current working set).

Convention information is retrieved from
the file in use (*SYSTEM/CONVENTIONS).

Two copies of convention information reside on the system. One copy is in memory and
is stored in the CENTRALSUPPORT library during initialization. The other copy is on
disk and is stored in the *SYSTEM/CONVENTIONS file.

CNV _NAME is an EBCDIC array that contains the name of the convention set for which
a definition is requested. If this parameter contains all blanks or zeros, the procedure
uses the hierarchy to determine the convention to be used. Refer to the MLS Guide for
the list of convention names and the explanation of the hierarchy.

INFO_ LEN is an integer that contains the number of characters in INFO_ ARY.

INFO_ ARY is a real array passed to the procedure. It contains the convention definition
to be added to conventions in memory and to the *SYSTEM/CONVENTIONS file in use.
For the procedure to work, all fields in INFO_ ARY must contain data, or an appropriate
error result is returned. Data in INFO_ ARY is passed in fields as follows:

8600 0098-000 9-59

Internationalization

Field Meaning Word

Maximum integer digits 0

Maximum decimal digits 1

Maximum international decimal digits 2

International currency notation 3

Long date template 5

Short date template 13

Numeric date template 21

Long time template 25

Numeric time template 33

Monetary template 37

Numeric template 45

Lines per page 61

Characters per line 62

The international currency notation field contains the international currency notation
defined for the convention. The international currency notation is surrounded by a pair
of matching delimiters that are not part of the symbol. Any blanks inside the delimiters
are significant and are treated as any other character. For example, the international
currency notation for the ASERIESNATIVE convention is "USD ";the trailing blank is
significant and the quotation marks are delimiters.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV (3002)

CS_DATAOKV (1)

CS_INCOMPLETE_DATAV (2004)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_FAULTV (1001)

CS_SOFTERRV(1002)

CNV MODIFY

9-60

This procedure modifies an existing convention in the *SYSTEM/CONVENTIONS file.
The modified set becomes effective after the next halt/load.

Note that this procedure can be used to modify only conventions that have been created
by a user. The Unisys-provided conventions cannot be modified.

8600 0098-000

I nternationa I ization

Example

This example modifies the short date and monetary templates in a convention named
Utopia.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/CNVMODIFY.");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention

DEFINE
SHORTDATETEMP
MONETARYTEMP

ARRAY MOD_ARY[0:62];

= 5#;
= 9#;

% name

% MODMASK bit position
% MODMASK bit position

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1];
INTEGER RESULT;
REAL MODMASK;

REPLACE CNV_NAME BY "UTOPIA";
MODMASK := 0 & 1 [SHORTDATETEMP:l] % set bits to show what fields

& 1 [MONETARYTEMP:l]; % contain data in MOD_ARY
REPLACE POINTER(MOD_ARY[13]) BY "!lW!, !lN! !DE!, !YYYY!";
REPLACE POINTER(MOD_ARY[37]) BY "!N[-]C[UTA]T[.:0,3]0[,]#!";
RESULT := CNV_MODIFY(CNV_NAME, MODMASK, MOD_ARY);
WRITE(OUT ,<"RESULT = ",J4>,RESULT);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1

In this call, the parameters have the following meanings:

CNV _NAME is an EBCDIC array that is passed to the procedure. It contains the name
of the convention to be modified. If this parameter contains all blanks or zeros, the
procedure uses the hierarchy to determine the convention to be used. Refer to the MLS
Guide for the list of convention names and the explanation of the hierarchy.

MODMASK is a real number that is passed to the procedure. It provides a mask that
indicates the fields to be modified in the specified convention.

Any or all bits in positions 0 through 12 can be set to indicate which fields should be
modified. Each bit is associated with a unique field in MOD_ ARY. If the bit is equal to
1, then the data in the corresponding field in MOD_ ARY is validated and stored in the
designated convention. Bit 0 in MOD MASK corresponds to the first field in MOD_ ARY,
bit 1 to field 2, and so on.

8600 0098-000 9-61

Internationalization

9-62

MOD_ ARY is a real array passed to the procedure. It contains the convention definition
to be added to conventions in memory and to the *SYSTEM/CONVENTIONS file in use.
For the procedure to work, all fields in MOD_ ARY must contain data, or an appropriate
error result is returned. Data in MOD_ ARY is passed in fields as follows:

Field Meaning Word

Maximum integer digits 0

Maximum decimal digits 1

Maximum international decimal digits 2

International currency notation 3

Long date template 5

Short date template 13

Numeric date template 21

Long time template 25

Numeric time template 33

Monetary template 37

Numeric template 45

Lines per page 61

Characters per line 62

The international currency notation field contains the international currency notation
defined for the convention. The international currency notation is surrounded by a pair
of matching delimiters that are not part of the notation. Any blanks inside the delimiters
are significant and are treated as any other character. For example, the international
currency notation for the ASERIESNATIVE convention is "USD ";the trailing blank is
significant and the quotation marks are delimiters.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_ALT_FRAC_DIGITSV (3017)

CS_BAD_CPLV (3028)

CS_BAD_FRACDIGITSV (3016)

CS_BAD_LPPV(3027)

CS_BAD_MAXDIGITSV (3015)

CS_BAD_NTIMETEMPV (3022)

CS_BAD_NUMTEMPV (3024)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_CNV_NOTAVAILV (3036)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_DATA_LENV(3002)

CS_BAD_LDATETEMPV(3018)

CS_BAD_LTIMETEMPV (3021)

CS_BAD_NDATETEMPV (3020)

CS_BAD_MONTEMPV (3023)

CS_BAD_SDATETEMPV (3019)

cs_ CNVFI LE_ NOTPRESENTV (3037)

cs_ DATAOKV (1)

continued

8600 0098-000

Internationalization

continued

CS_DEL_PERMANENT_CNV_ERRV (3040)

CS_FILE_ACCESS_ERRORV (1000)

CNV NAMES

CS_FAULTV (1001)

CS_SOFTERRV(1002)

This procedure returns a list of convention names and the total number of conventions
that are available on the system. This list includes any conventions that are defined.

Example

This example obtains the names of conventions currently available on the system. The
result shows an arbitrary list of selected convention names.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/CNVNAMES.");

DEFINE MAX_NUM_NAMES = 45#, % Maximum number of names
MAX_NAME_LEN = 17#; % Maximum length of convention

% name
ARRAY LINEOUT[0:14];
EBCDIC ARRAY NAMES_ARY[0:MAX_NUM_NAMES*MAX_NAME_LEN - 1];
INTEGER I, RESULT, TOTAL;

RESULT:= CNV_NAMES(TOTAL, NAMES_ARY);
WRITE(OUT ,<"RESULT = II ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
REPLACE LINEOUT BY II II FOR 80;
WRITE(OUT,80,LINEOUT);
WRITE(OUT,<"Convention Names">);
WRITE(OUT,< 11 ---------------- 11 >);
WHILE I <= TOTAL DO

BEGIN
WRITE(OUT,<C17>,NAMES_ARY[I*17]);
I := * + 1;

END;
END;
CLOSE (OUT, LOCK);

END.

Output

RESULT = 1

8600 0098-000 9-63

Internationalization

Convention Names

ASERIESNATIVE
Netherlands
Denmark
UnitedKingdoml
Turkey
Norway
Sweden
Greece
Francelisting
FranceBureautique
EuropeanStandard

In this call, the parameters have the following meanings:

TOT AL is an integer returned by the procedure. It contains the total number of
conventions that reside on the system being used.

NAMES_ ARY is an EBCDIC array returned by the procedure. It contains the
convention definition names. Each name uses one element of NAMES ARY. Each name
can be up to 17 characters long and is left justified in the field. Any parts of the array
that are not used are filled with blanks.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_FAULTV (1001)

CS_DATAOKV (1)

CNV SYMBOLS

9-64

This procedure returns a list of numeric and monetary symbols defined for a specified
convention.

SYMLEN _ARY and SYM _ARY are parallel arrays. Each entry in SYMLEN _ARY
specifies the length of the symbol (in characters) in the corresponding entry in
SYM _ARY. If an entry in SYMLEN _ARY is 0 (zero), it indicates that the symbol is not
defined and the corresponding entry in SYM _ARY is filled with blanks. If an entry in
SYMLEN_ARY is not 0 (zero), but the corresponding entry in SYM_ARY is all blanks,
then the number of blanks specified by the SYMLEN _ARY entry constitutes the symbol.

The monetary and numeric symbols defined in the monetary and numeric templates for a
convention are returned in fixed-length fields in SYM _ARY. Each field is 12 bytes long,
except where noted.

The following table shows the symbols that are returned in SYM _ARY and the offset of
the field in which the symbol is returned for the monetary symbols:

8600 0098-000

Internationalization

Monetary Symbol Offset in Bytes

International currency 0
notation

National currency symbol 12

Thousands separator 24

Decimal symbol 36

Positive sign 48

Negative sign 60

Left enclosure 72

Right enclosure 84

The following table shows the symbols that are returned and the offset of the field in
which the symbol is returned for the numeric symbols:

Numeric Symbol Offset in Bytes

Thousands separator 96

Decimal symbol 108

Positive sign 120

Negative sign 132

Left enclosure 144

Right enclosure 156

Monetary grouping 168

Numeric grouping 192

The monetary and numeric groupings each occupy two adjacent fields (24 bytes) in
SYM _ARY. The monetary and numeric groupings, when present, are character strings
consisting of unsigned integers separated by commas. The integers specify the number
of digits in each group. They appear exactly as they are declared in the monetary and
numeric templates, including embedded commas.

The following table shows the offset in bytes of the fields in the record
SYMLEN _ARRAY, which contain the symbol lengths for the monetary and numeric
symbols.

Offset Contains Length of

0 International currency notation

1 National currency symbol

2 Monetary thousands separator

3 Monetary decimal symbol

4 Monetary positive symbol

5 Monetary negative symbol

continued

8600 0098-000 9-65

Internationalization

9-66

continued

Offset

6

7

8

9

10

11

12

13

14

15

Example

Contains Length of

Monetary left enclosure symbol

Monetary right enclosure symbol

Numeric thousands separator

Numeric decimal symbol

Numeric positive symbol

Numeric negative symbol

Numeric left enclosure symbol

Numeric right enclosure symbol

Monetary grouping

Numeric grouping

This example obtains monetary and numeric symbols, monetary and numeric grouping
specifications, and the international currency notation defined for the Norway
convention.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/CNVSYMBOLS.");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

ARRAY LINEOUT[0:14];
EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], SYM_ARY[0:215];
INTEGER ARRAY SYMLEN_ARY[0:16];
INTEGER RESULT, TOTAL;

REPLACE CNV_NAME BY "NORWAY";
RESULT := CNV_SYMBOLS(CNV_NAME, TOTAL, SYMLEN_ARY, SYM_ARY);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
REPLACE LINEOUT BY II II FOR 80;
WRITE(OUT,80,LINEOUT);
WRITE(OUT,<"Field Meaning

"Convention Symbols">);
WRITE(OUT,< 11

··------------------''>);

Symbo 1 s Length

WRITE(OUT ,<"International Currency Notation: ",J4,"
II ,C12>,SYMLEN_ARY [0] ,SYM_ARY [0]);

II

•
II

•
II

8600 0098-000

WRITE(OUT,<"National Currency Symbol: ",J4,"
II II ,C12>,SYMLEN_ARY [1] ,SYM_ARY[1*12]);

WRITE(OUT,<"Monetary Thousands Separator: ",J4,"
II II ,C12>,SYMLEN_ARY [2] ,SYM_ARY [2*12]);

WRITE(OUT ,<"Monetary Decimal Symbol: ",J4,"
II II ,C12>,SYMLEN_ARY [3] ,SYM_ARY[3*12]);

WRITE(OUT,<"Monetary Positive Symbol: 11 ,J4,"
II II ,C12>,SYMLEN_ARY [4] ,SYM_ARY[4*12]);

WRITE(OUT,<"Monetary Negative Symbol: 11 ,J4,"
II II ,Cl2>,SYMLEN_ARY [5] ,SYM_ARY [5*12]);

WRITE (OUT ,<"Monetary Left Enclosure Symbol: 11 ,J4,"
II II ,C12>,SYMLEN_ARY [6] ,SYM_ARY[6*12]);

WRITE(OUT,<"Monetary Right Enclosure Symbol: ",J4,"
II ,C12>,SYMLEN_ARY [7] ,SYM_ARY [7*12]);

WRITE(OUT,<"Numeric Thousands Separator: 11 ,J4,"
II ,C12>,SYMLEN_ARY [8] ,SYM_ARY [8*12]);

WRITE (OUT,<" Numeric Decimal Symbol : 11 , J4,"
II II ,C12>,SYMLEN_ARY [9] ,SYM_ARY[9*12]);

WRITE(OUT,<"Numeric Positive Symbol: 11 ,J4,"
II ,Cl2>,SYMLEN_ARY [10] ,SYM~ARY[10*12]);

WRITE(OUT ,<"Numeric Negative Symbol: 11 ,J4,"
II ,Cl2>,SYMLEN_ARY[ll] ,SYM_ARY [11 *12]);

WRITE(OUT,<11 Numeric Left Enclosure Symbol: 11 ,J4,"
11 ,C12>,SYMLEN_ARY[12] ,SYM_ARY[12*12]);

WRITE(OUT,<"Numeric Right Enclosure Symbol: 11 ,J4,"
11 ,C12>,SYMLEN_ARY[13] ,SYM_ARY[13*12]);

WRITE (OUT, <"Monetary Grouping Specification: 11 ,J4,"
II ,C24>,SYMLEN_ARY[14] ,SYM_ARY[14*12]);

WRITE(OUT,<"Numeric Grouping Specification: ",J4,"
II II ,C24>,SYMLEN_ARY[15] ,SYM_ARY[16*12]);

END;
CLOSE(OUT ,LOCK);

END.

Output

RESULT = 1

Internationalization

II

II

•
II

II

•
II

•
II

•
II

•
II

•
II

•
II

•
II

•
II

•
II

•
II

•
II

•

Field Meaning Symbols Length Convention Symbols

International Currency Notation: 3
National Currency Symbol: 3
Monetary Thousands Separator: 1
Monetary Decimal Symbol: 1
Monetary Positive Symbol: 0
Monetary Negative Symbol: 1
Monetary Left Enclosure Symbol: 0
Monetary Right Enclosure Symbol: 0
Numeric Thousands Separator: 1
Numeric Decimal Symbol: 1
Numeric Positive Symbol: 0
Numeric Negative Symbol: 1

8600 0098-000

NKR
KR.

9-67

Internationalization

Numeric Left Enclosure Symbol: 0
Numeric Right Enclosure Symbol: 0
Monetary Grouping Specification: 1
Numeric Grouping Specification: 1

3
3

In this call, the parameters have the following meanings:

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name
of the convention to be used to retrieve the monetary and numeric symbols. If this
parameter contains all blanks or zeros, the procedure uses the hierarchy to determine
the convention to be used. Refer to the MLS Guide for the list of convention names and
the explanation of the hierarchy.

TOT AL is an integer returned by the procedure. It contains the total number of symbols
returned.

SYMLEN _ARY is an integer returned by the procedure. It contains the lengths of all
symbols being returned in SYMBOLS.

SYM_ ARY is an EBCDIC array returned by the procedure. Each element of the array
contains blanks or a symbol defined in the monetary and numeric template for the
specified convention. The corresponding entry in SYMLEN _ARY contains the length of
each symbol.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_DATAOKV (1)

CS_INCOMPLETE_DATAV (2004)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_FAULTV (1001)

CS_SOFTERRV(1002)

CNV SYSTEMDATETIME

9-68

This procedure obtains the current system date and time and formats them according
to the specified convention. Date and time components are translated to the natural
language designated in LANG_NAME. The system computes both the date and time
from the result of a single TIME(6) function call. Thus, the possibility that the date and
time are split across midnight does not exist.

Example

This example formats system date and time according to formatting definitions
in the ASERIESNATIVE convention. The form of date and time is specified by
CS_LDATENTIMEV (long date and numeric time). Formatted date and time are
translated to English and returned in SDT _ARY.

BEGIN

8600 0098-000

I nternationa I ization

$ INCLUDE INTL="*SYMBOL/INTL/ ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CNVSYSDATETIME. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV NAME[0:MAX NAME LEN - 1], SOT ARY[0:59], - - - -
LANG_NAME[0:MAX_NAME_LEN - 1];

INTEGER DATE_LEN, RESULT, SDT_LEN;

REPLACE CNV_NAME BY "ASERIESNATIVE";
REPLACE LANG_NAME BY "ENGLISH";
RESULT := CNV_SYSTEMDATETIME(CS_LDATENTIMEV, CNV_NAME, LANG_NAME,

DATE_LEN, SDT_LEN, SDT_ARY);
WRITE(OUT ,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT,<"SDT_ARY = ",C60>,SDT_ARY);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1
SOT ARY = Friday, November 9, 1990 10:31:30

In this call, the parameters have the following meanings:

CS_ LDATENTIMEV represents an integer that requests the long date and time format
to be returned. It is one of eleven options:

Value Value Name Meaning

0 CS LDATEV Use the long date format.

1 CS SDATEV Use the short date format.

2 CS NDATEV Use the numeric date format.

3 CS LTIMEV Use the long time format.

4 CS_NTIMEV Use the numeric time format.

5 CS_LDATELTIMEV Use the long date and long time format.

6 CS LDATENTIMEV Use the long date and numeric time format.

7 CS SDATELTIMEV Use the short date and long time format.

8 CS SDATENTIMEV Use the short date and numeric time format.

9 CS NDATELTIMEV Use the numeric date and long time format.

10 CS NDATENTIMEV Use the numeric date and numeric time format.
,

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name of the
convention to be used to edit the date and time value. If this parameter contains all
blanks or zeros, the procedure uses the hierarchy to determine the convention to be

8600 0098-000 9-69

Internationalization

used. Refer to the MLS Guide for the list of convention names and the explanation of
the hierarchy.

LANG_NAME is an EBCDIC array passed to the procedure. It contains the language
to be used in formatting the date and time value. If this parameter contains all blanks
or zeros, the procedure uses the hierarchy to determine the language to be used. Refer
to the MLS Guide for information about determining the valid language names on the
system being used and the explanation of the hierarchy.

DATE_LEN is an integer returned by the procedure. It specifies the length of the
formatted date portion of the date and/or time. If this parameter is 0 (zero), there is no
formatted date in the output. If both date and time are presented in the output, the
formatted date is separated from the formatted time by a blank. The extra character is
reflected in the length of the formatted date.

SDT _LEN is an integer returned by the procedure that specifies the total length of the
formatted date and/or time.

SDT _ARY is an EBCDIC array returned by the procedure that contains the formatted
date and/or time. The recommended size of this array is 96 characters.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_TYPE_CODEV (3006)

cs_ DATAOKV (1)

CS_FIELD_TRUNCATEDV (2003)

CS_LANGUAGE_NOT_FOUNDV (2001)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_ CONVENTION_ NOT _FOU N DV (2002)

CS_FAULTV (1001)

CS_INCOMPLETE_DATAV (2004)

CS_SOFTERRV (1002)

CNV SYSTEMDATETIMETMP

9-70

This procedure obtains the system date and time and formats them according to a
template and language supplied by the program. The template can be retrieved for any
convention from the CNV _TEMPLATE procedure. It can also be created by the user.
The system obtains the date and time from a single TIME(6) function call to avoid the
possibility of splitting the date and time across a day boundary.

Example

This example formats system date and time according to a template provided by the
calling program in TEMP_ ARY. The formatted date and time are translated to English
and returned in SDT _ARY. DTEMP _LEN is set to the length of date template in
TEMP_ARY.

8600 0098-000

Internationalization

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CNVSYSDATETIMETMP. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY TEMP_ARY[0:47], SDT_ARY[0:59],
LANG_NAME[0:MAX_NAME_LEN - 1];

INTEGER DATE_LEN, DTEMP_LEN, RESULT, SDT_LEN;
POINTER PTR;

REPLACE PTR:TEMP_ARY BY "!W!, !N! !D!, !YYYY! 11 ; % Long date template
DTEMP_LEN := OFFSET(PTR);
REPLACE PTR BY "!0T!:!0M!:!0S!"; % Numeric time template
REPLACE LANG_NAME BY "ENGLISH";
RESULT := CNV_SYSTEMDATETIMETMP(TEMP_ARY, LANG_NAME, DTEMP_LEN,

DATE_LEN, SDT_LEN, SDT_ARY);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT,<"SDT_ARY = ",C60>,SDT_ARY);
CLOSE(OUT,LOCK);

END.

Output

RESULT 1
SDT ARY = Friday, November 9, 1990 10:31:44

In this call, the parameters have the following meanings:

TEMP _ARY is an EBCDIC array passed to the procedure. It contains the template, left
justified. If both date and time templates are present, the date template must appear
first.

LANG_NAME is an EBCDIC array passed to the procedure. It contains the language
to be used in formatting the date and time value. If this parameter contains all blanks
or zeros, the procedure uses the hierarchy to determine the language to be used. Refer
to the MLS Guide for information about determining the valid language names on the
system being used and the explanation of the hierarchy.

DTEMP _LEN is an integer passed to the procedure. It specifies the length of the date
template in TEMP _ARY. IfDTEMP _LEN is 0 (zero), there is no date template in
TEMP_ ARY. If both a date and time template are specified , then the date template
must appear first in TEMP_ ARY. The date and time are formatted if both date and time
templates are present. The date is formatted if only the date template is present, and
the time is formatted if only the time template is present.

DATE_LEN is an integer returned by the procedure that contains the length of the
formatted date portion of date and time. This parameter is 0 (zero) if there is no
formatted date in the output. If both the date and time are presented in the output, the

8600 0098-000 9-71

Internationalization

formatted date is separated from the formatted time by a blank. The extra character is
reflected in the length of the formatted date.

SDT _LEN is an integer returned by the procedure that contains the length of the
formatted date and time.

SDT _ARY is an EBCDIC array returned by the procedure. It contains the formatted
date and/or time.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV (3002)

cs_ DATAOKV (1)

CS _FIELD_ TRUNCATEDV (2003)

CS_SOFTERRV (1002)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_TEMPCHARV (3011)

CS_FAULTV (1001)

CS_LANGUAGE_NOT_FOUNDV (2001)

CNV TEMPLATE

9-72

This procedure returns the requested type of formatting template retrieved from the
convention that is specified in CNV NAME. ·

This procedure might be used to improve the performance of programs. By retrieving
and storing a template to be used in many places, the performance of a program can be
improved by eliminating the calls to the CENTRALSUPPORT library.

Example

The following retrieves a monetary editing template from the convention Turkey. The
template is returned in TMP _ARY.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/CNVTEMPLATE. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1], TMP_ARY[0:47];
INTEGER TMP_LEN, RESULT;

REPLACE CNV_NAME BY "TURKEY";
RESULT:= CNV_TEMPLATE(CS_MONETARY_TEMPV, CNV_NAME, TMP_LEN, TMP_ARY);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

8600 0098-000

I nternationa I ization

WRITE(OUT,<"TMP_ARY = ",C48>,TMP_ARY);
CLOSE(OUT,LOCK);

END.

Output

RESULT 1
TMP ARY= !T[.:0,3]D[,]#N[-J~[T] !

In this call, the parameters have the following meanings:

CS_ MONET ARY_ TEMPV represents an integer that requests the type of template to
be returned. It is one of seven options:

Value Value Name Template to be Retrieved

0 CS_LONGDATE_TEMPV Long date

1 CS SHORTDATE TEMPV Short date - -

2 CS NUMDATE TEMPV Numeric date - -
3 CS_LONGTIME_TEMPV Long time

4 CS_NUMTIME_TEMPV Numeric time

5 CS MONETARY TEMPV Monetary - -
6 CS_NUMERIC_TEMPV Numeric

CNV _NAME is an EBCDIC array passed to the procedure that contains the name of the
convention that is specified. If this parameter contains all blanks or zeros, the procedure
uses the hierarchy to determine the convention to be used. Refer to the MLS Guide for
the list of convention names and the explanation of the hierarchy.

TMP _LEN is an integer returned from the procedure that contains the number of
characters in TMP ARY.

TMP _ARY is an EBCDIC array returned by the procedure that contains the the
requested template.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_CONVENTION_NOT_FOUNDV (2002)

CS_PAULTV (1001)

8600 0098-000

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_TYPE_CODEV(3006)

CS_DATAOKV (1)

CS_SOFTERRV(1002)

9-73

Internationalization

CNV VALIDATENAME

9-74

This procedure returns a value in RESULT that indicates whether or not the convention
name specified in CNV _NAME is currently defined on the system.

This procedure might be used to ensure that a convention used as an input parameter
exists on the system on which the program is running.

Example

This example determines whether or not a convention named Sweden is currently
available to CENTRALSUPPORT.

BEGIN

$ INCLUDE INTL="*SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,MYUSE=IO,FILETYPE=liJ,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/VALIDATENAME. ");

DEFINE MAX_NAME_LEN = 17#; % Maximum length of convention
% name

EBCDIC ARRAY CNV_NAME[0:MAX_NAME_LEN - 1];
INTEGER RESULT;

REPLACE CNV_NAME BY "SWEDEN";
RESULT:= CNV VALIDATENAME(CNV NAME); - -
WRITE(OUT ,<"RESULT = II ,J4>,RESULT);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1

In this call, the parameters have the following meanings:

CNV _NAME is an EBCDIC array passed to the procedure. It contains the name of the
convention to be checked. If this parameter contains all blanks or nulls, the RESULT
parameter returns a value of 0 (zero) or FALSE. Refer to the MLS Guide for the list of
convention names and the explanation of the hierarchy.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

Value

0

1

Condition-Name

CS_DATAOKV

CS_FALSEV

Meaning

The convention name is valid.

The convention name is not valid.

8600 0098-000

I nternationa I ization

COMPARE TEXT USING ORDER INFO

This procedure compares two strings using the ordering information returned by
VSNORDERING_INFO. A starting position can be given for each piece of text,
along with the compare relationship to be checked. One of the following methods of
comparison can be chosen:

• Equivalent comparison, which is based on the ordering sequence values of characters

• Logical comparison, which is based on the ordering sequence values and the priority
sequence values of characters.

Example

This example compares two strings using the CanadaEBCDIC ccsversion. The compare
relation is CS_ CMPEQLV (=) to determine if one string is equal to another, using a
logical comparison. The ORDER_ ARY is obtained by calling the VSNORDERING _INFO
procedure. This call obtains the ORDER_ ARY for the CanadaEBCDIC ccsversion. The
MLS Guide can be used to determine that the ccsversion number for CanadaEBCDIC is
74. This number can also be retrieved by callingVALIDATE_NAME_RETURN_NUM
with the name CanadaEBCDIC.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/COMP _TEXT_ORD_INF. ");

EBCDIC ARRAY TEXT1[0:4]
, TEXT2 [0: 4] ;

REAL ARRAY ORDER_ARY[0:255];
POINTER P TEXTl

,P_TEXT2;
INTEGER COMPARE LEN

,VSN_NUM
,RESULT;

VSN_NUM := 74; % Canada EBCDIC
RESULT:= VSNORDERING_INFO(VSN_NUM, ORDER_ARY);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
COMPARE_LEN := MIN(SIZE(TEXTl), SIZE(TEXT2));
P_TEXTl := TEXT1[0];
P_TEXT2 := TEXT2[0];
REPLACE TEXTl BY "hotel";
REPLACE TEXT2 BY "hOtel";

RESULT := COMPARE_TEXT_USING_ORDER_INFO(P_TEXTl, P_TEXT2,
COMPARE_LEN, CS_CMPEQLV, CS_LOGICALV, ORDER_ARY);

WRITE(OUT ,<"RESULT = ",J4>,RESULT);
END;

CLOSE(OUT,LOCK);

8600 0098-000 9-75

Internationalization

9-76

END.

Output

RESULT = 0 % The strings are not equal

In this call, the parameters have the following meanings:

P _ TEXTl is a POINTER array passed to the procedure. It contains the first string to be
compared.

P _ TEXT2 is a POINTER array passed to the procedure. It contains the other string to
be compared.

COMP ARE_ LEN is an integer passed to the procedure. It designates the number
of characters to be compared. If COMP ARE_ LEN is larger than the number of
characters in the strings, then the procedure might be comparing invalid data. The
value of COMP ARE_ LEN should not exceed the bounds of either the PTEXTl array or
the PTEXT2 array. The strings should be of equal size or padded with blanks up to
COMP ARE _LEN. If all pairs of characters compare equally through the last pair, the
strings are considered equal. The first pair of unequal characters to be encountered is
compared to determine their relative ordering. The string that contains the character
with the higher ordering (higher OSV and PSV) is considered to be the greater string.
If, because of substitution, the strings become of unequal size, the comparison proceeds
as if the shorter string had been expanded by blanks on the right to make it equal in size
to the longer string.

CS_ CMPEQLV represents an integer that compares TEXTl to TEXT2. This is one of 6
compare relation options:

Parameter Value Value Name What the Comparison Is to Determine

0 CS CMPLSSV TEXT! is less than TEXT2.

1 CS_CMPLEQV TEXT! is less than or equal to TEXT2.

2 CS_CMPEQLV TEXT! is equal to TEXT2.

3 CS CMPGTRV TEXT! is greater than TEXT2.

4 CS_CMPGEQV TEXT! is greater than or equal to TEXT2.

5 CS_CMPNEQV TEXT! is not equal to TEXT2.

CS_LOGICALVrepresents an integer that specifies a logical comparison. It is one of two
options:

Value

1

2

Value Name

CS_ EQUIVALENTV

CS LOGICALV

Description

Perform an equivalent comparison.

Perform a logical comparison.

ORDER_ ARY is a REAL array passed to the procedure. It contains the ordering
information to be used to compare the strings. Ordering information can be
obtained using the VSNORDERING_INFO procedure. Unisys recommends that

8600 0098--000

Internationalization

the size of this array be 256 words. The layout ofORDER_ARY can be found in the
VSNORDERING_INFO procedure later in this section.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_ BAD_ TYPE_ COD EV (3006)

CS_FALSEV (0)

CS_SOFTERRV (1002)

GET CS MSG

CS_BAD_DATA_LENV(3002)

CS_DATAOKV (1)

CS_FAULTV (1001)

This procedure returns error message text specified by the error number in NUM and in
the language designated in LANG_NAME. The desired length of the return message can
be specified in the MSG_ LEN parameter. If the returned text is shorter than the length
specified, the procedure pads the remaining portion of the record with blanks.

An entire message consists of the following three parts:

• The header, which comprises the first 80 characters of the message returned in the
MSG parameter. The text in the header provides the error number and a concise
text description.

• The short description, which comprises the second 80 characters of the message
returned in the MSG parameter. If space is a consideration, the description of the
error can be limited to the header and short description.

• The long description, which comprises the remaining characters of the message
returned in the MSG parameter. The long description provides a complete
explanation of the error that was returned.

Part or all of the message text can be returned. Note that the header part starts at
MSG[O], the short description at MSG[80], and the long description at MSG[160]. For
example, if MSG_ LEN is specified to be equal to 200 characters, then MSG would
contain the header message padded with blanks to 80, if necessary, followed by the short
description padded with blanks to 160, if necessary, followed by 40 characters of the long
description.

The requested message length should be at least 80 characters, equal to one line of text.
Anything less results in an incomplete message. Unisys recommends using either a
length of 80, 160, or 999. The value of 999 causes the entire message to be returned.

This procedure might be used to retrieve the text of an error message so that it can be
displayed by a program.

8600 0098-000 9-77

I nternationa I ization

9-78

Example

This example illustrates how to get the message text associated with
a CENTRALSUPPORT error message. Assume that the sample call
to VALIDATE NAME RETURN NUM returns error number 3004 - - -
(CS_NO_NUM_FOUNDV). When an error is returned this example gets the first 160
characters (2 lines) of the message text for that error.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/GET_CS_MSG.");

EBCDIC ARRAY CCSVSNNAME[0:17]
,LANG[0:17]
,MSG[0:159];

INTEGER MSG LEN
,NUM
,RESULTl
,RESULT2;

REPLACE CCSVSNNAME[0] BY "BADNAME" FOR 7;
RESULTl:= VALIDATE_NAME_RETURN_NUM(CS_CHARACTER_SETV,CCSVSNNAME, NUM);
WRITE(OUT ,<"RESULT FROM VALIDATE_NAME_RETURN_NUM = ",J4>,RESULT1);
IF RESULTl NEQ CS_DATAOKV THEN

BEGIN
MSG_LEN := 160;
RESULT2 := GET_CS_MSG(RESULTl, LANG, MSG, MSG_LEN);
WRITE(OUT ,<"RESULT FROM GETCSMSG = ",J4>,RESULT2);
WRITE(OUT,<"MSG =">);
WRITE(OUT,<A80>,MSG[0]);
WRITE(OUT,<A80>,MSG[80]);
END;

CLOSE(OUT,LOCK);
END.

Output

RESULT FROM VALIDATE NAME RETURN NUM = 3004 - - -
RESULT FROM GETCSMSG = 1
MSG =
>>> CENTRALSUPPORT INTERFACE ERROR (#3004) <<<
INVALID CHARACTER SET OR CCSVERSION NAME

In this call, the parameters have the following meanings:

RESULT! is an integer passed by reference to the procedure. It specifies an error that
was returned by a library procedure. The error numbers and their meanings are listed
at the end of this section.

8600 0098-000

I nternationa I ization

LANG is an EBCDIC array passed to the procedure. It specifies the language to be used
for the message text. If this parameter contains all blanks or zeros, the procedure uses
the default language hierarchy to determine the language to be used. Refer to the MLS
Guide for details about determining the valid language names on the system and for the
explanation of the hierarchy.

MSG is an EBCDIC array returned by the procedure. It contains the message text
associated with the error number specified.

MSG_ LEN in an integer passed to the procedure. For input, it specifies the maximum
length of the message to be returned. It also contains an update value as an output
parameter. IfMSG_LEN is equal to 0 (zero), one line of text (80 characters) is returned.
IfMSG_LEN is between 1 and 79, then only a partial message is returned. MSG_LEN
should not be greater than the size of the MSG array. Recommended values for
MSG_ LEN are 80, 160, or a large number, such as 999, that returns all of the message.
For output, MSG_ LEN specifies the actual length of the message returned by the
procedure.

RESULT2 is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

MCP BOUND LANGUAGES

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_DATAOKV (1)

CS_INCOMPLETE_DATAV (2004)

CS_SOFTERRV (1002)

This procedure returns the names of the languages that are currently bound to the MCP.
For information about binding a language to the operating system, see the MLS Guide.

Example

This example returns the languages bound by the operating system. Assume for this
example that the bound languages are English and German.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/MCP _BOUND_LANG. ");

EBCDIC ARRAY LANGUAGES_ARY[0:84];
ARRAY LINEOUT[0:14];
INTEGER TOTAL

8600 0098-000

,I
,RESULT;

9-79

Internationalization

RESULT:= MCP_BOUND_LANGUAGES(TOTAL, LANGUAGES_ARY);
WRITE(OUT ,<"RESULT = II ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
REPLACE LINEOUT BY II II FOR 80;
WRITE(OUT,80,LINEOUT);
WRITE(OUT ,<"LANGUAGES">);
WRITE{OUT,< 11 --------- 11 >);
FOR I := 0 STEP 1 UNTIL TOTAL-1 DO

WRITE(OUT,17,LANGUAGES_ARY[I*17]);
END;

CLOSE{OUT,LOCK);
END.

Output

RESULT = 1

LANGUAGES

ENGLISH
GERMAN

In this call, the parameters have the following meanings:

TOTAL is an integer returned by the procedure. It contains the total number of
languages bound to the MCP.

LANGUAGES_ARY is an EBCDIC array returned by the procedure. It contains
the names of the languages bound to the MCP. The maximum length of each name
is 17 characters, and the names are left justified. For any name that is less than 17
characters, the field is filled on the right with blanks. Unisys recommends that the size
of the array be 84 characters; an array of that size holds 5 names.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_DATAOKV (1)

CS_SOFTERRV(1002)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_FAULTV (1001)

VALIDATE NAME RETURN NUM

9-80

This procedure checks a coded character set or ccsversion name to determine if it resides
in the SYSTEM/CCSFILE file. A coded character set or ccsversion in CCSVSN _TYPE is
designated to be checked, and a name is supplied in NAME_ ARY. The procedure returns
the number of the given character set or ccsversion in mm.

8600 0098-000

Internationalization

This procedure might be used to obtain the ccsversion number needed as a parameter in
other CENTRALSUPPORT library procedures.

Example

This example checks to see if a ccsversion named CanadaGP is valid. Assume for this
example that CanadaGP is valid and its associated number is 75.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/VAL_NAME_RET_NUM.");

EBCDIC ARRAY NAME_ARY[0:17];
INTEGER NUM

,RESULT;

REPLACE NAME_ARY[0] BY "CANADAGP";
RESULT := VALIDATE_NAME_RETURN_NUM(CS_CCSVERSIONV, NAME_ARY, NUM);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT,<"NUM = ",J4>,NUM);
CLOSE(OUT,LOCK);

END.

Output

RESULT 1
NUM 75

In this call, the parameters have the following meanings:

CS_ CCSVERSIONV represents an integer that requests a ccsversion number be
returned. It is one of two options:

Value

0

1

Value Name

CS CHARACTER SETV - -
CS CCSVERSIONV

Meaning

Return a coded character set number.

Return a ccsversion number.

NAME_ ARY is an EBCDIC array passed to the procedure. It contains the coded
character set or ccsversion name for which a number is being requested. The name
can be up to 17 characters long. If this parameter contains zeros or blanks and the
first parameter is CS_ CCSVERSIONY, the procedure validates the system defined
ccsversion. If there is no system default, the procedure returns an error in RESULT.

NUM is an integer returned by the procedure. It contains the specified coded character
set or ccsversion number.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result

8600 0098-000 9-81

Internationalization

values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_TYPE_CODEV(3006)

CS_FAULTV (1001)

CS_SOFTERRV(1002)

CS_BAD_DATA_LENV(3002)

CS_DATAOKV (1)

CS_NO_NAME_FOUNDV (3004)

VALIDATE NUM RETURN NAME

9-82

This procedure checks the number of the coded character set or ccsversion to determine
if it resides in the SYSTEM/CCSFILE file. A coded character set or ccsversion is
designated to be checked and a number in NUM is supplied. The procedure returns the
name of the given coded character set or ccsversion number. Refer to the MLS Guide
for the list of numbers for coded character sets and ccsversions.

This procedure might be used to display to the application user the name of the coded
character set or the ccsversion being used.

Example

This example checks to see if a ccsversion number 75 is valid. Assume for this example
that 75 is valid and its associated name is CanadaGP.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE= 11 0UT /ALGOL/VAL_NUM_RET_NAME. 11);

EBCDIC ARRAY NAME_ARY[0:17];
INTEGER NUM

,RESULT;

NUM := 75;
RESULT:= VALIDATE_NUM_RETURN_NAME(CS_CCSVERSIONV, NUM, NAME_ARY);
WRITE(OUT ,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT ,<"NAME = ",Al8>,NAME_ARY);
CLOSE (OUT, LOCK) ;

END.

Output

RESULT = 1
NAME = CANADAGP

In this call, the parameters have the following meanings:

8600 0098-000

Internationalization

CS_ CCSVERSIONV represents an integer that requests the ccsversion number be
returned. It is one of two options:

Value

0

1

Value Name

CS_CHARACTER_SETV

CS CCSVERSIONV

Meaning

Return a coded character set name.

Return a ccsversion name.

NUM is an integer passed to the procedure. It contains the number for the coded
character set or ccsversion for which the name is being requested. The value -2
indicates that the system default ccsversion is being validated. Refer to the MLS Guide
for more information about the hierarchy.

NAME_ ARY is an EBCDIC array returned by the procedure. It contains the coded
character set or ccsversion name. The maximum length of the name is 17 characters.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_TYPE_CODEV(3006)

CS_FAULTV (1001)

CS_SOFTERRV (1002)

VSNCOM PARE TEXT

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_DATAOKV (1)

CS_NO_NUM_FOUNDV (3003)

This procedure compares two strings, TEXTl and TEXT2, using a binary, equivalent or
logical comparison, specified in ORD_ TYPE. The starting position for the comparison is
specified for each record, along with the compare relationship to be checked.

A binary comparison is based on the hexadecimal code values of the characters.
An equivalent comparison is based on the ordering sequence values (OSVs) of the
characters. A logical comparison is based on the OSV s plus the priority sequence values
(PSVs). These OSVs and PSVs are retrieved from the SYSTEM/CCSFILE based on the
ccsversion.

Example

This example compares two strings using the CanadaEBCDIC ccsversion. The compare
relation is CS_ CMPEQLV(=) to determine if one string is equal to another, using a
logical comparison. The MLS Guide can be used to determine that the ccsversion
number for CanadaEBCDIC is 74. This number can also be retrieved by calling
V ALIDATE_NAME_RETURN _NUM with the name CanadaEBCDIC.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

8600 0098-000 9-83

Internationalization

9-84

DEFINE TEXTl_START = 0 #
,TEXT2_START = 0 #;

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/VSNCOMPARE_TEXT. ");

EBCDIC ARRAY TEXT1[0:4]
,TEXT2[0:4];

INTEGER COMPARE LEN
,VSN_NUM
,RESULT;

VSN_NUM := 74;
COMPARE_LEN := MIN(SIZE(TEXTl), SIZE(TEXT2));
REPLACE TEXTl BY "hotel";
REPLACE TEXT2 BY "hOtel";
RESULT := VSNCOMPARE_TEXT(VSN_NUM, TEXTl, TEXTl_START, TEXT2,

TEXT2_START, COMPARE_LEN, cs_CMPEQLV, CS_LOGICALV);
WRITE(OUT ,<"RESULT = ",J4>,RESULT);
CLOSE(OUT,LOCK);

END.

output

RESULT = 0

In this call, the parameters have the following meanings:

VSN _ NUM is an integer passed to the procedure. It contains the number of the
ccsversion that is used to compare TEXTl and TEXT2. The number can be obtained by
ref erring to the MLS Guide. The following shows the valid values:

• If the number is greater than or equal to 0 (zero), then the number designates a
ccsversion

• If the number is -2, the procedure uses the system default ccsversion. If the system
default ccsversion is not available, the procedure returns an error in RESULT.

TEXTl is an EBCDIC array passed to the procedure. It contains the first text to be
compared.

TEXTl_START is an integer passed to the procedure. It contains the byte offset
(0 relative) ofTEXTl where the comparison starts.

TEXT2 is a record passed to the procedure. It contains the last text to be compared.

TEXT2_START is an integer passed to the procedure. It contains the byte offset
(0 relative) ofTEXT2 where the comparison starts.

COMP ARE_ LEN is an integer passed to the procedure. It designates the number
of characters to be compared. If COMP ARE_ LEN is larger than the number of
characters in the strings, then the procedure might be comparing invalid data. The
value of COMP ARE_ LEN should not exceed the bounds of either the TEXTl array

8600 0098-000

Internationalization

or the TEXT2 array. The strings should be of equal size or padded with blanks up to
COMP ARE_ LEN. If all pairs of characters compare equally through the last pair, the
strings are considered equal. The first pair of unequal characters to be encountered is
compared to determine their relative ordering. The string that contains the character
with the higher ordering (higher OSV and PSV) is considered to be the greater string. If
because of substitution the strings become of unequal size, the comparison proceeds as if
the shorter string had been expanded by blanks on the right to make it equal in size to
the longer string.

CS_ CMPEQLV represents an integer that indicates that TEXTl is equal to TEXT2. It
is one of six comparison options:

Value Value Name Meaning

0 CS CMPLSSV TEXTl is less than TEXT2.

1 CS CMPLEQV TEXTl is less than or equal to TEXT2.

2 CS CMPEQLV TEXTl is equal to TEXT2.

3 CS CMPGTRV TEXTl is greater than TEXT2.

4 CS CMPGEQV TEXTl is greater than or equal to TEXT2.

5 CS CMPNEQV TEXTl is not equal to TEXT2.

CS_LOGICALV represents an integer that indicates that a logical comparison is to be
done. It is one of two options:

Value

1

2

Value Name

CS_EQUIVALENTV

CS LOGICALV

Meaning

Perform an equivalent comparison.

Perform a logical comparison.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_TYPE_CODEV (3006)

CS_FALSEV (0)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV(1002)

VSNESCAPEMENT

CS_DATAOKV (1)

CS_FAULTV(1001)

CS_NO_NUM_FOUNDV (3003)

This procedure takes the input text and rearranges it according to the escapement rules
of the ccsversion. Both the character advance direction and the character escapement
direction are used. If the character advance direction is positive, then the starting
position for the text is the leftmost position in the DEST parameter. If the character
advance direction is negative, then the starting position for the text is the rightmost
position in the DEST parameter. From that point on, the character advance direction

8600 0098-000 9-85

Internationalization

value and the character escapement direction values, in combination, control where each
character should be placed in relation to the previous character.

Example

This example takes the string ABCDEFG and rearranges it according to the escapement
rules of the ccsversion. Assume for this example a ccsversion number of 999 with
a character advance direction (CAD) of plus (+, left to right) and with the following
character escapements:

Character

A

B

c

D

E

F

G

BEGIN

Escapement

+

+

+

blank

Meaning

Left to right

Right to left

Right to left

Right to left

Left to right

Left to right

Use CAD value

$ INCLUDE INTL=" SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

DEFINE SOURCE START = 0 #
,DEST_START = 0 #;

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/VSNESCAPEMENT. ");

EBCDIC ARRAY SOURCE[0:6]
,DEST[0:6];

INTEGER VSN NUM
, TRANS_LEN
,RESULT;

VSN_NUM := 999;
REPLACE SOURCE [0] BY "ABCDEFG" FOR 7;
TRANS_LEN := 7;
RESULT := VSNESCAPEMENT(VSN_NUM, SOURCE, SOURCE_START, DEST,

TRANS LEN);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT,<"DEST = ",A7>,DEST);
CLOSE(OUT,LOCK);

END.

9-86 8600 0098-000

Internationalization

Output

RESULT = 1
DEST = ADCBEFG

In this call, the parameters have the following meanings:

VSN_NUM is an integer passed by reference to the procedure. It specifies the
ccsversion to be used. The ccsversion contains the escapement rules. The following are
the values allowed for VSN NUM:

Value Meaning

Greater than or
equal to 0

Specifies a ccsversion. The numbers of the ccsversions are listed in the
MLSGuide.

-2 Specifies the system default ccsversion. If the system default
ccsversion is not available, an error is returned.

SOURCE is an EBCDIC array passed to the procedure. It contains the text to be
arranged according to the escapement rules.

SOURCE_START is an integer passed to the procedure. It specifies the starting
position in SOURCE (0 relative) for the arranging of text by escapement rules to begin.

DEST is an EBCDIC array returned by the procedure. It contains the resulting text
after the escapement rules have been applied.

TRANS_ LEN is an integer passed to the procedure. It specifies the number of
characters to arrange according to the escapement rules.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred duringthe execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_BAD_ARRAY_DESCRIPTIONV (3000)

cs_ DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV(1002)

8600 0098-000

CS_BAD_DATA_LENV(3002)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

9-87

Internationalization

VSNGETORDERINGFOR ONE TEXT

9-88

This procedure returns the ordering information for the input text. The ordering
information determines how the input text is collated. It includes the ordering and
priority sequence values of the characters and any substitution of characters to be made
when the input text is sorted. One of the following types of ordering information can be
chosen:

• Equivalent ordering information, which comprises only the ordering sequence values
(OSVs)

• Logical ordering information, which comprises the OSV s followed by the priority
sequence values (PSVs)

Example

This example obtains the ordering sequence values and priority sequence values for
an input text string. The ccsversion is CanadaEBCDIC. The MLS Guide can be used
to determine that the ccsversion number for CanadaEBCDIC is 74. This number
can also be retrieved by calling VALIDATE_ NAME_ RETURN _NUM with the name
CanadaEBCDIC. This example requests logical ordering information, so that both the
OSV s and PSV s are returned. This example allows for maximum substitution, so the
parameter MAX_ OSVS is equal to (!TEXT_ LEN * 3) and TOTAL _STORAGE is equal to
INTEGER<MAX _ OSV/2).

BEGIN

$ INCLUDE INTL=" SYMBOL/INTL/ALGOL/PROPERTIES." 101?Jl?J01?Jl?J0 - 49999999

DEFINE SOURCE_START = 0 #
,DEST_START = 0 #;

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=l?J,NEWFILE,
MAXRECSIZE=81?J, TITLE="OUT /ALGOL/VSNGETORD_ONE_TEX. ");

EBCDIC ARRAY SOURCE[l?J:25]
,DEST[l?J:25];

INTEGER VSN NUM
,ITEXT_LEN
,MAX_OSVS
,TOTAL_STORAGE
, RESULT;

VSN_NUM := 74;
ITEXT_LEN := 5;
MAX_OSVS := ITEXT_LEN * 3;
TOTAL_STORAGE := MAX_OSVS + INTEGER(MAX_OSVS/2);
REPLACE SOURCE[0] BY "ABCrelE";
RESULT := VSNGETORDERINGFOR ONE TEXT(VSN NUM, SOURCE, SOURCE START, - - - -ITEXT_LEN, DEST, DEST_START, MAX_OSVS, TOTAL_STORAGE,

CS_LOGICALV);
WRITE(OUT ,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

8600 0098-000

I nternationa I ization

WRITE(OUT,<"DEST = ",A25>,DEST);
CLOSE (OUT, LOCK) ;

END.

Output

RESULT = 1
DEST = 414243414541 450000000000 000000111221 100000000000

VSN _ NUM is an integer passed to the procedure. It contains the number of the
ccsversion that is used.

SOURCE is an array passed to the procedure. It contains the text for which the
ordering information is requested.

SOURCE_START is an integer passed to the procedure. It contains the offset of the
location where the source text is to begin.

ITEXT_LEN is an integer passed to the procedure. It contains the length of the source
text.

DEST is a result returned by the procedure. It contains the ordering information for the
source text.

DEST_START is an integer returned by the procedure. It designates the starting offset
at which the result values are placed.

MAX_ OSVS is an integer passed to the procedure. It designates the maximum number
of bytes to be used to store the ordering sequence values.

The value of MAX_ OSVS should be at least the length of the input text, but it might
need to be greater to allow for substitution. The maximum substitution length is 3
bytes; therefore, to allow for substitution for every character, the value of MAX_ OSVS is
as follows:

<length of source text in bytes> * 3

If the number of ordering sequence values returned is less than MAX_ OSVS, then the
array row is padded with the ordering sequence value for blank.

TOTAL_STORAGE is an integer passed by the procedure. It defines the maximum
number of bytes needed to store the complete ordering information for the text.
If equivalent ordering information is requested, TOTAL_STORAGE is equal to
MAX_ OSVS. If logical ordering information is requested, space must be provided for the
four-bit priority values in addition to the space allowed for the OSVs. Each OSV has
one PSV , and one byte can hold two PSV s. Therefore, the space allowed for PSV s is
MAXOSVS/2, and the value ofTOTAL_STORAGE is as follows:

MAXOSVS + (MAXOSVS/2)

When the ordering information is returned by the procedure, all the OSV s are listed
first, followed by all the PSVs. ·

8600 0098-000 9-89

lnternationa lization

CS_ LOGICAL V represents an integer that requests logical ordering information. It is
one of two options:

Parameter Value

1

2

Value Name

CS_EQUIVALENTV

CS LOGICALV

Type of Information Returned

Ordering sequence values only

Priority sequence values only

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_BAD_TYPE_CODEV(3006)

CS_FALSEV (0)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV (1002)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_ BAD_ TEXT _PARAMV (3008)

cs_ DATAOKV (1)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

VSNINFO

9-90

This procedure returns the following information for a designated ccsversion:

• The number of the base coded character set to which the ccsversion applies

• The escapement information

• The space characters used for the ccsversion

• The array sizes required by the ccsversion translate tables and sets

Example

This example calls the procedure VSNINFO to get information about the system default
ccsversion. For this example assume the system default ccsversion in Norway (71).

BEGIN

$ INCLUDE INTL= 11 SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE=" OUT /ALGOL/VSNINFO. 11);

ARRAY VSN_ARY[0:7]
,LINEOUT[0:14];

INTEGER VSN NUM
,I
,RESULT;

FORMAT FORM1(A31,T41,All?J,T55,J2)

8600 0098-000

Internationalization

, FORM2 (" SPACE CHARACTER[",11,"] (HEX)",T41,A5,J2,A3,T55,H2);

VSN_NUM := CS_VSN_NOT_SPECIFIEDV;
RESULT:= VSNINFO(VSN_NUM, VSN_ARY);
WRITE(OUT ,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
REPLACE LINEOUT BY II II FOR 80;
WRITE(OUT,80,LINEOUT);
WRITE(OUT ,<"VSN ARRAY">);
WRITE (OUT,<" FIELD MEANING", T40, "LOCATION", T53, "VALUE">);
WRITE(OUT,<"-------------",T40,"-----~--",T53,"-----">);
WRITE (OUT, FORMl, "BASE CHARACTER SET NUMBER ",

II [0] II. VSN_ARY[0]);
WRITE (OUT, FORMl 1 "TEXT LINE ORIENTATION

"[1] ", VSN_ARY[l]);
WRITE(OUT, FORMl, "LINE ADVANCE DIRECTION

"[2] ", VSN_ARY[2]);
WRITE(OUT, FORMl, "CHARACTER ADVANCE DIRECTION

"[3] ", VSN_ARY[3]);
WRITE (OUT, FORMl, "NUMBER OF SPACES CHARACTERS

II [4]. [47 :8] II. VSN_ARY[4]. [47 :8]);
FOR I := 1 STEP 1 UNTIL VSN_ARY[4]. [47:8] DO

II

II

•
II

•
II

•

WRITE (OUT. FORM2. I. II [4]. [" ,47-I*8, II :8] II. VSN_ARY[4]. [47-I*8:8]);
WRITE(OUT, FORMl, "SIZE OF SPACES IN TRUTHS ET ",

II [5]. [47 :8] II. VSN_ARY[5]. [47 :8]);
WRITE(OUT, FORMl, "SIZE OF ALPHA TRUTHSET

II [5]. [39:8] ", VSN_ARY[5]. [39:8]);
WRITE(OUT, FORMl, "SIZE OF NUMERIC TRUTHSET

II [5]. [31 :8] II. VSN_ARY[5]. [31 :8]);

II

•
II

•

WRITE(OUT, FORMl, "SIZE OF PRESENTATION TRUTHSET ",
II [5]. [23:8]", VSN_ARY[5]. [23:8]);

WRITE(OUT, FORMl, "SIZE OF LOWER TRUTHS ET
II [5]. [15 :8] II. VSN_ARY[5]. [15 :8]);

WRITE(OUT, FORMl, "SIZE OF UPPER TRUTHSET
"[5].[7:8] ", VSN_ARY[5].[7:8]);

WRITE(OUT, FORMl, "UNUSED
II [6]. [47:8]", VSN_ARY[6]. [47:8]);

II

•
II

•
II

•

WRITE (OUT, FORMl, "SIZE OF ESCAPEMENT TRANS TABLE ",
II [6]. [39:8]", VSN_ARY[6]. [39:8]);

WRITE(OUT, FORMl, "SIZE OF LOWTOUP TRANS TABLE
II [6]. [31:8]", VSN_ARY[6]. [31:8]);

WRITE(OUT, FORMl, "SIZE OF UPTOLOW TRANS TABLE
"[6].[23:8]", VSN ARY[6].[23:8]);

II

II

•

•

WRITE(OUT, FORMl, "SIZE OF NUMTOAL TDIG TRANS TABLE",
II [6] • [15 :8] II. VSN_ARY [6] • [15 :8]);

WRITE(OUT, FORMl, "SIZE OF ALTDIGTONUM TRANS TABLE",
II [6] • [7 :8] II. VSN_ARY [6] • [7 :8]);

WRITE (OUT, FORMl, "SIZE OF OSV TRANS TABLE
"[7].[47:8]", VSN ARY[7].[47:8]);

WRITE(OUT, FORMl, "SIZE OF PSV TRANS TABLE
II [7] • [39 :8] II. VSN_ARY [7] • [39 :8]) ;

8600 0098-000

II

•
II

•

9-91

Internationalization

9-92

WRITE(OUT, FORMl, "SIZE OF SUBSTCHAR TRANS TABLE ",
II [7]. [31 :8] II' VSN_ARY [7] • [31 :8]);

WRITE(OUT, FORMl, "SIZE OF SUBSTSEQ TRANS TABLE
II [7]. [23 :8] II' VSN_ARY [7] • [23 :8]);

WRITE(OUT, FORMl, "SIZE OF SUBSTOSV TRANS TABLE
II [7]. [15:8] ", VSN_ARY[7]. [15:8]);

WRITE(OUT, FORMl, "SIZE OF SUBSTPSV TRANS TABLE
"[7].[7:8] ", VSN_ARY[7].[7:8]);

END;
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1

VSN ARRAY
FIELD MEANING

BASE CHARACTER SET NUMBER
TEXT LINE ORIENTATION
LINE ADVANCE DIRECTION
CHARACTER ADVANCE DIRECTION
NUMBER OF SPACES CHARACTERS

SPACE CHARACTER[l] (HEX)
SIZE OF SPACES IN TRUTHSET
SIZE OF ALPHA TRUTHSET
SIZE OF NUMERIC TRUTHSET
SIZE OF PRESENTATION TRUTHSET
SIZE OF LOWER TRUTHSET
SIZE OF UPPER TRUTHSET
UNUSED
SIZE OF ESCAPEMENT TRANS TABLE
SIZE OF LOWTOUP TRANS TABLE
SIZE OF UPTOLOW TRANS TABLE
SIZE OF NUMTOALTDIG TRANS TABLE
SIZE OF ALTDIGTONUM TRANS TABLE
SIZE OF OSV TRANS TABLE
SIZE OF PSV TRANS TABLE
SIZE OF SUBSTCHAR TRANS TABLE
SIZE OF SUBSTSEQ TRANS TABLE
SIZE OF SUBSTOSV TRANS TABLE
SIZE OF SUBSTPSV TRANS TABLE

LOCATION

[0]
[1]
[2]
[3]
[4].[47:8]
[4]. [39:8]
[5].[47:8]
[5] • [39 :8]
[5] • [31 :8]
[5]. [23:8]
[5]. [15:8]
[5].[7:8]
[6].[47:8]
[6] • [39 :8]
[6]. [31:8]
[6] • [23 :8]
[6] • [15 :8]
[6] • [7 :8]
[7]. [47:8]
[7] • [39 :8]
[7] • [31 :8]
[7]. [23:8]
[7]. [15:8]
[7] • [7 :8]

In this call, the parameters have the following meanings:

II

•
II

'
II

'

VALUE

4
0
0
0
1
40
8
8
8
8
8
8
0
64
64
64
0
0
64
64
0
0
0
0

VSN _ NUM is an integer passed to the procedure. It contains the ccsversion number for
which information is requested.

VSN _ARY is an array returned by the procedure. It contains the ccsversion information,
as follows:

8600 0098-000

Location

WORDO

WORD 1

WORD2

WORD3

WORD4

WORD 5.[47:08]

WORD 5.[39:08]

WORD 5.[31:08]

WORD 5.[23:08]

WORD 5.[15:08]

WORD 5.[07 :08]

WORD 6.[47:08]

WORD 6.[39:08]

WORD 6.[31:08]

WORD 6.[23:08]

WORD 6.[15:08]

WORD 6.[07:08]

WORD 7.[47:08]

WORD 7 .[39:08]

WORD 7.[31:08]

WORD 7 .[23:08]

WORD 7.[15:08]

WORD 7.[07:08]

Information Contained

Base coded character set number.

Text line orientation.

Line advance direction.

Character advance direction.

Internationalization

Space characters. The first byte is the number of space
characters; the actual characters follow.

Size of SPACES truth set.

Size of ALPHA truth set.

Size of NUMERIC truth set.

Size of PRESENTATION truth set.

Size of LOWER truth set.

Size of UPPER truth set.

This location is unused.

Size of ESCAPEMENT translation table.

Size of LOWTOUP translation table.

Size of UPTOLOW translation table.

Size of NUMTOALTDIG translation table.

Size of ALTDIGTONUM translation table.

Size of OSV translation table.

Size of PSV translation table.

Size of SUBSTCHAR translation table.

Size of SUBSTSEQ translation table.

Size of SUBSTOSV translation table.

Size of SUBSTPSV translation table.

Unisys recommends that the size of VSN _ARY be 8 words.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV(1002)

8600 0098-000

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

9-93

I nternationa I ization

VSNINSPECT TEXT

9-94

This procedure searches specified text for characters that are present or not present
in a requested truth set. The SCANNED_ CHARS parameter is an integer that
represents the number of characters that were searched when the criteria specified in
the FLAG parameter were met. If SCANNED_ CHARS is equal to INSPECT_ LEN,
then all the characters were searched, but none met the criteria. Otherwise, adding the
TEXT_ ST ART value to the SCANNED_ CHARS value gives the location of the character,
from the start of the array, that met the search criteria.

Example

This example examines a record that contains two fields, a name and a phone
number. The name is verified to contain only alphabetic characters as defined
by the France ccsversion. The MLS Guide can be used to determine that the
ccsversion number for France is 35. This number can also be retrieved by calling
VALIDATE NAME RETURN NUM with the name France. - - -

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

DEFINE IDNUMLEN = 10 #
,NAMELEN = 30 #
,TEXT_START = 0 #
,INSPECT_LEN = IDNUMLEN #;

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/VSNINSPECT_TEXT. ");

EBCDIC ARRAY TEXT[0:NAMELEN+IDNUMLEN];
INTEGER SCANNED CHARS

,RESULT
,VSN_NUM;

REPLACE TEXT [0] BY "777 5961089John A 1 an Smith
VSN_NUM := 35;

"· •

RESULT := VSNINSPECT_TEXT(VSN_NUM, TEXT, TEXT_START, INSPECT_LEN,
CS_NUMERICSV, CS_NOTINTSETV, SCANNED_CHARS);

WRITE(OUT ,<"RESULT = II ,J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

BEGIN
WRITE(OUT,<"SCANNED CHARACTERS= ",J4>,SCANNED_CHARS);
IF SCANNED_CHARS NEQ IDNUMLEN THEN

WRITE(OUT ,<"ERROR - INVALID ID, BAD CHARACTER FOUND">);
END;

CLOSE(OUT,LOCK);
END.

8600 0098-000

Internationalization

Output

RESULT = 1
SCANNED CHARACTERS = 10

In this call, the parameters have the following meanings:

VSN _ NUM is an integer passed to the procedure. It specifies the ccsversion to be used.
The ccsversion contains the rules for applying a truth set. The following are the values
allowed for VSN NUM:

Value Meaning

Greater than or
equal to 0

Specifies a ccsversion. The numbers of the ccsversions are listed in the
MLSGuide.

-2 Specifies the system default ccsversion. If the system default
ccsversion is not available, an error is returned.

TEXT is an EBCDIC array passed to the procedure. The array is then searched using
the requested truth set.

TEXT_START is an integer passed to the procedure. It contains the byte offset
(0 relative) in TEXT where the search starts.

INSPECT_ LEN is an integer passed to the procedure. It specifies the number of
characters to be searched beginning at TEXT_ START. In other words, it specifies that
maximum length of the search.

CS_ NUMERICSV represents an integer that indicates that a numeric truth set be used
for the search. It is one of six options:

Value

12

13

14

15

16

17

Sample Data Name

CS ALPHAV

CS NUMERICSV

CS PRESENTATIONV

CS SPACESV

CS LOWERCASEV

CS UPPERCASEV

Meaning

Alphabetic truth set. It identifies the characters
defined as alphabetic in the specified ccsversion.

Numeric truth set. It identifies the characters
defined as numeric in the specified ccsversion.

Presentation truth set. It identifies the characters
in the ccsversion that can be represented on a
presentation device, for example a printer.

Spaces truth set. It identifies the characters
defined as space in the specified ccsversion.

Lowercase truth set. It identifies the characters
defined as lowercase alphabetic in the ccsversion.

Uppercase truth set. It identifies the characters
defined as uppercase alphabetic in the ccsversion.

A ccsversion is not required to have a definition for each of these truth sets. Some
of the truth sets are' optional. Options 16 and 17 are not required. A result of
CS_DATA_NOT_FOUNDV (4002) might be returned if the truth set has not been
defined for the ccsversion. The input text remains unchanged.

8600 0098-000 9-95

I nternationa I ization

CS _NOTINTSETV represents an integer that indicates the type of search to be
performed. It is one of two options:

Value Sample Data Name

0 CS NOTINTSETV

1 CS INTSETV

Meaning

Search TEXT until a character is found that is not
in the requested truth set.

Search TEXT until a character is found that is in
the requested truth set.

SCANNED_ CHARS is an integer returned by the procedure. It contains the number of
characters that were scanned when the search criteria were met.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_FLAGV(3007)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV 0001)

CS_NO_NUM_FOUNDV (3003)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_TYPE_CODEV(3006)

cs_ DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

cs_ SOFTERRV (1002)

VSNORDERING INFO

9-96

This procedure returns the ordering information for a designated ccsversion. The
ordering information determines the way in which data is collated for the ccsversion. It
includes the ordering and priority sequence values of the characters and any substitution
of characters to be made when the designated ccsversion ordering is applied to a string of
text.

The table obtained with this procedure might be used with the
COMPARE_TEXT_USING_ORDER_INFO procedure. Because the table is stored
in working memory, it does not have to be retrieved each time it is used. Using this
combination of procedures in place of a general call to the VSNCOMP ARE_ TEXT
procedure can improve the performance of an application program that performs a high
volume of translations.

Example

This example gets the ordering information for the CanadaEBCDIC ccsversion. The
ordering information is returned in ORDER.:.. ARY. The MLS Guide can be used to
determine that the ccsversion number for CanadaEBCDIC is 74. This number can
also be retrieved by calling VALIDATE _NAME _RETURN_ NUM with the name
CanadaEBCDIC.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES." lllJllJllJllJllJllJllJ - 49999999

8600 0098-000

I nternationa I ization

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/VSNORDERING_INFO. ");

ARRAY ORDER_ARY[0:255];
INTEGER VSN NUM

,RESULT;

VSN_NUM := 74;
RESULT:= VSNORDERING_INFO(VSN_NUM, ORDER_ARY);
WRITE(OUT ,<"RESULT = ",J4>, RESULT);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1

In this call, the parameters have the following meanings:

VSN _ NUM is an integer passed to the procedure. It contains the number of the
ccsversion for which ordering information is requested.

ORDER_ ARY is an array returned from the procedure. It contains the ordering
information for the ccsversion. The first two words of the array are size words. Word 1
is not used at this time. Word 0 contains the following information:

Word Offset Information Contained

Word 0 [47:08] Size of ordering ttable in words (always 64)

Word 0 [39:08] Size of priority ttable in words (always 64)

Word 0 [31 :08] Size of substitution characters truth set in words (may be
greater than or equal to 0 words)

Word O [23:08] Size of substitution sequences array in words (may be
greater than or equal to 0 words)

WordO [15:08] Size of substitution ordering array in words (may be greater
than or equal to O words)

WordO [07:08] Size of substitution priority array in words (may be greater
than or equal to 0 words)

ORDER_ ARY also contains the following components in order:

1. Ordering translate table

64-word ALGOL translate table. Translates each character to its ordering sequence
value.

2. Priority translate table

64-word ALGOL translate table. Translates each character to its priority sequence
value.

3. Substitution characters truth set

8600 0098-000 9-97

Internationalization

An ALGOL truth set that contains all the characters that are part of any
substitution sequence, many to one or one to many.

4. Substitution sequences array

A real array. Each word contains one of the substitution sequences, right justified.
For example, if ch is a substitution sequence, then it is stored as 0000008388.

5. Substitution ordering array

A real array, parallel to substitution sequences array. For each substitution
sequence, the ordering sequence values for that sequence are stored in the
corresponding word along with the length (left-justified). The form.at of the word
is [4 7:08] number of ordering sequence values. This must be greater than or
equal to 1, or less than or equal to 3. The next [47:08] bytes contain the OSVs
left-justified. For example, suppose a withe is substituted by the OSVs 129 and 133.
The substitution ordering word will appear as 028185000000. The elements of the
substitution ordering word have the following meanings:

02

81

85

6. Substitution priority array

TwoOSVs

The OSV 129

TheOSV 133

A real array. Each word contains the priority sequence values corresponding to the
substitution ordering array. The word format of this array is exactly the same as the
word format of the substitution ordering array.

Unisys recommends that the ~ize of this array be 256 words.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_ DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV (1002)

VSNTRANSTABLE

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

This procedure returns a translation table for a designated ccsversion. The type of
translation table requested depends on the task to be performed.

Translation tables can be used to perform the following tasks:

• Translate lowercase letters to uppercase letters.

• Translate uppercase letters to lowercase letters.

9-98 8600 0098-000

Internationalization

• Translate any digits 0 through 9 to any alternative digits (that is, one-to-one mapping
of 0 through 9 to another representation for those digits).

• Translate alternative digits to 0 through 9.

• Determine the escapement direction for each character.

The translation table from VSNTRANSTABLE can be retained in working memory.
This translation table can then be used with the REPLACE syntax. This improves
performance over a call to VSNTRANS _TEXT. This process can improve performance of
an application program that performs a high volume of translations. Because the table is
stored in working memory, it does not have to be retrieved each time it is to be used.

Example

This example gets the uppercase to lowercase translate table for the CanadaEBCDIC
ccsversion. The translate table is returned in the TTABLE ARY. The MLS Guide can be
used to determine that the ccsversion number for CanadaEBCDIC is 74. This number
can also be retrieved by calling VALIDATE_ NAME_ RETURN_ NUM with the name
CanadaEBCDIC.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES. II 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80,TITLE="OUT/ALGOL/VSNTRANS_TABLE.");

ARRAY TTABLE_ARY[0:63];
INTEGER VSN NUM

,RESULT;

VSN_NUM := 74;
RESULT := VSNTRANSTABLE(VSN_NUM, cs_UPTOLOWCASEV, TTABLE_ARY);
WRITE(OUT ,<"RESULT = II ,J4>, RESULT);
CLOSE(OUT,LOCK);

END.

Output

RESULT = 1

In this call, the parameters have the following meanings:

VSN_NUM is an integer passed to the procedure. It designates the number of the
ccsversion from which the translation table is to be retrieved.

CS_ UPTOLOWCASEV represents an integer that requests the translation of uppercase
characters to lowercase. It is one of five options:

8600 0098-000 9-99

Internationalization

Parameter
Value Value Name Translation Task

5 CS NUMTOALTDIGV Numeric characters to alternative digits

6 CS ALTDIGTONUMV Alternative digits to numeric characters

7 CS LOWTOUPCASEV Lowercase characters to uppercase
characters

8 CS UPTOLO\.VCASEV Uppercase characters to lowercase
characters

9 CS ESCMENTPERCHARV Escapement direction for each character

A ccsversion is not required to have a definition for each of these tables. Some
of the tables are optional. Options 5, 6, 7, and 8 are not required. A result of
CS_DATA_NOT_FOUNDV (4002) might be returned if the table has not been defined
for the ccsversion.

TTABLE_ARY is an array returned from the procedure. It contains the translate table.
The size of this array must be at least 64 words.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_TYPE_CODEV(3006)

CS_DATA_NOT_FOUNDV (4002)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV (1002)

VSNTRANS TEXT

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_DATAOKV (1)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

This procedure applies a translate table, specified by TT ABLE_ TYPE, to the source text
and places the result into DEST. The same array can be used for both the source and
destination text.

There are five translate table types available. These types include the following:

• Numeric to alternate digits

• Alternate digits to numeric

• Lowercase to uppercase

• Uppercase to lowercase

• Escapement direction for each character

9-100 8600 0098-000

Internationalization

Example

This example translates a string in lowercase letters to uppercase letters using the
CanadaEBCDIC ccsversion. The MLS Guide can be used to determine that the
ccsversion number for CanadaEBCDIC is 74. This number can also be retrieved by
calling VALIDATE_ NAME_ RETURN_ NUM with the name CanadaEBCDIC.

BEGIN

$ INCLUDE INTL="SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

DEFINE SOURCE START = 0 #
,DEST_START = 0 #;

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/VSNTRANS_TEXT. ");

EBCDIC ARRAY SOURCE[0:6]
, DEST [0: 6] ;

INTEGER VSN NUM
, TRANS_LEN
,RESULT;

REPLACE SOURCE BY "prean";
VSN_NUM := 74;
TRANS_LEN := 4;
RESULT := VSNTRANS_TEXT(VSN_NUM, SOURCE, SOURCE_START, DEST,

DEST_START, TRANS_LEN, CS_LOWTOUPCASEV);
WRITE(OUT,<"RESULT = ",J4>,RESULT);
IF RESULT EQL CS_DATAOKV THEN

WRITE(OUT,<"DEST = ",A7>,DEST);
CLOSE (OUT, LOCK);

END.

Output

RESULT = 1
DEST = PJEAN

In this call, the parameters have the following meanings:

VSN _NUM is an integer passed to the procedure. It contains the number of the
ccsversion to be used. The ccsversion contains the rules for translation of text. Refer to
the MLS Guide for a list of the ccsversion numbers. The values allowed for VSN NUM
and the meanings of the values are as follows:

Value

Greater than or equal to 0

-2

Meaning

Use the specified ccsversion number.

Use the system default ccsversion. If the system default
ccsversion is not available, an error is returned.

SOURCE is an EBCDIC array passed to the procedure. It contains the data to translate.

8600 0098-000 9-101

Internationalization

SOURCE_START is an integer passed to the procedure. It contains the byte offset
(0 relative) of SOURCE where translation starts.

DEST is an EBCDIC array returned by the procedure. It contains the translated text.
DEST must be at least as large as DEST_START and TRANS_LEN.

DEST_START is an integer returned by the procedure. It indicates the starting offset
location where translated text should be placed.

TRANS_ LEN is an integer passed to the procedure. It contains the number of
characters to translate, beginning at SOURCE_ START.

CS_ LOWTOUPCASEV represents an integer that requests the translation of all
lowercase characters to uppercase. It is one of five options:

Value Sample Data Name Meaning

5 CS NUMTOALTDIGV Translate numbers 0 through 9 to alternate digits
specified in the ccsversion.

6 CS ALTDIGTONUMV Translate alternate digits to numbers 0 through 9.

7 CS LOWTOUPCASEV Translate all characters from lowercase to
uppercase.

8 CS UPTOLOVllCASEV Translate all characters from uppercase to
lowercase.

9 CS ESCMENTPERCHARV Translate a character to its escapement value.

A ccsversion is not required to have a definition for each of these tables. Some
of the tables are optional. Options 5, 6, 7, and 8 are not required. A result of
CS_DATA_NOT_FOUNDV (4002) might be returned if the table has not been defined
for the ccsversion. The input text remains the unchanged.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_DATA_LENV(3002)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_BAD_TYPE_CODEV(3006)

cs_ DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV(1002)

VSNTRUTHSET

9-102

This procedure returns a truth set for the designated ccsversion. The truth set contains
the characters in a given data class for the ccsversion. Truth sets are available for the
following data classes:

8600 0098-000

I nternationa I ization

• Alphabetic

• Numeric

• Space

• Presentation (The characters that can be displayed or printed on a presentation
device)

The truth set from VSNTRUTHSET can be retained in working memory. This truth set
can then be used with the SCAN statement. This improves performance over a call to
VSNINSPECT _TEXT. Because the table is stored in working memory, it does not have
to be retrieved each time it is to be used. This process can improve performance of an
application program that performs a high volume of translations.

Example

This example gets the numeric data class truth set for the CanadaEBCDIC ccsversion.
The truth set is returned in the TSET ARY. The MLS Guide can be used to determine
that the ccsversion number for Canad.aEBCDIC is 74. This number can also be retrieved
by calling VALIDATE_ NAME_ RETURN_ NUM with the name Canad.aEBCDIC.

BEGIN

$ INCLUDE INTL=" SYMBOL/INTL/ALGOL/PROPERTIES." 10000000 - 49999999

FILE OUT(KIND=DISK,UNITS=CHARACTERS,FILEUSE=IO,FILETYPE=0,NEWFILE,
MAXRECSIZE=80, TITLE="OUT /ALGOL/VSNTRUTH_SET. ");

ARRAY TSET_ARY[0:7];
INTEGER VSN NUM

,RESULT;

VSN_NUM := 74;
RESULT := VSNTRUTHSET(VSN_NUM, CS_NUMERICSV, TSET_ARY);
WRITE(OUT ,<"RESULT = ",J4>, RESULT);
CLOSE (OUT, LOCK);

END.

Output

RESULT = 1

In this call, the parameters have the following meanings:

VSN _ NUM is an integer passed to the procedure. It contains the number of the
ccsversion from which the truth set is to be retrieved. The ccsversion contains the rules
for translation of text. Refer to the MLS Guide for a list of ccsversion numbers. The
values allowed for VSN _ NUM and the meanings of the values are as follows:

8600 0098-000 9-103

Internationalization

Value

Greater than or equal to 0

-2

Meaning

Use the specified ccsversion number.

Use the system default ccsversion. If the system default
ccsversion is not available, an error is returned.

CS_ NUMERICSV represents an integer that indicates the type of truth set to be
returned. Ii is one of six options:

Parameter
Value Value Name Truth Set Returned

12 CS ALPHAV Alphabetic characters

13 CS NUMERICSV Numeric characters

14 CS_DISPLAYV Displayable characters

15 CS SPACESV Space characters

16 CS_LOWERCASEV Lowercase characters

17 CS UPPERCASEV Uppercase characters

A ccsversion is not required to have a definition for each of these truth sets. Some
of the truth sets are optional. Options 16 and 17 are not required~ A result of
CS_DATA_NOT_FOUNDV (4002) might be returned if the truth set has not been
defined for the ccsversion.

TSET _ARY is an array returned from the procedure. It contains the truth set table.
Unisys recommends that the size of this array be 8 words.

RESULT is an integer returned by the procedure. It indicates whether or not an error
occurred during the execution of the procedure. An explanation of the error result
values and messages can be found at the end of this section. Possible values returned by
this procedure are:

CS_ARRAY_TOO_SMALLV (3001)

CS_BAD_TYPE_CODEV(3006)

CS_ DATAOKV (1)

CS_FILE_ACCESS_ERRORV (1000)

CS_SOFTERRV (1002)

CS_BAD_ARRAY_DESCRIPTIONV (3000)

CS_DATA_NOT_FOUNDV (4002)

CS_FAULTV (1001)

CS_NO_NUM_FOUNDV (3003)

Explanation of Error Values

9-104

All of the procedures in the CENTRALSUPPORT library return integer results to
indicate the success or failure of the procedure.

The range 1 through 999 indicates that the procedure call completed successfully.

The range 1000 through 1999 consists of error messages caused by a Unisys software
error.

8600 0098-000

Internationalization

Values from 2000 through 2999 contain error messages in which the caller passed invalid
data to a procedure, but the CENTRALSUPPORT library was able to return some valid
data.

Values from 3000 through 3999 contain error messages in which the caller passed invalid
data to a CENTRALSUPPORT procedure, and the CENTRALSUPPORT library was
unable to return any valid data.

Values from 4000 through 4999 contain error messages in which the caller passed data
for which the CENTRALSUPPORT library could find no return information. The
CENTRALSUPPORT library completed the request, but no data was returned.

Table 9-2 lists the possible error results, their values, and the specific description part
of the message. For a list of the complete error messages and for information about
corrective action to be taken if an error occurs, see the MLS Guide.

Table 9-2. Error Results for Internationalization

Result

CS ARRAY TOO SMALLV - - -

CS BAD ALT FRAC DIGITSV - - - -

CS BAD ARRAY DESCRIPTIONV - - -

·cs BAD CPLV

CS BAD DATA LENY - - -

CS BADDATEINPUTV

CS BAD FLAGV

CS BAD FRACDIGITSV

CS BAD HEXCODEV

CS BAD INPUTVALV

CS BAD LDATETEMPV

8600 0098-000

Value

3001

3017

3000

3028

3002

3012

3007

3016

3042

3035

3018

Specific Description

The output array size is smaller than the
length of the data it is supposed to
contain.

The international-fractional-digits value
is either missing or out of range.

A parameter was incorrectly specified as
less than or equal to 0 (zero).

The characters-per-line value is either
missing or it is out of range.

At least one array length is invalid or the
offset + length is greater than the size
of the array.

Date component specifies a value out of
range.

The flag specified is out of acceptable
range.

The fractional digits value is either
missing or out of range.

An invalid character was encountered in
a hex value representing a symbol in a
monetary or numeric template.

The input value did not contain digits or
an expected symbol was missing.

The long date template is either missing
or contains invalid information.

continued

9-105

Internationalization

Table 9-2. Error Results for Internationalization (cont.)

Result

CS BAD LPPV

CS_BAD_LTIMETEMPV

CS BAD MAXDIGITSV

CS BAD MINDIGITSV

CS BAD MONTEMPV

CS BAD NDATETEMPV

CS BAD NTIMETEMPV

CS BAD NUMTEMPV

CS BAD PRECISIONV

CS BAD SDATETEMPV

cs_ BAD_ TEMPCHARV

CS_ BAD_ TEMPLENV

CS BAD TEXT PARAMV - - -

CS BADTIMEINPUTV

CS_BAD_TYPE_CODEV

CS CNV EXISTS ERRV - - -

CS CNVFILE NOTPRESENTV - -

9-106

Value

3027

3021

3015

3032

3023

3020

3022

3024

3038

3019

3011

3030

3008

3013

3006

3014

3037

Specific Description

The lines-per-page value is either
missing or it is out of range.

The long time template is either missing
or it contains invalid information.

The maximum digits value is either
missing or out of range.

The mindigits field in a ''t" control
character in a monetary or numeric
template is out of range.

The monetary template is either missing
or it contains invalid information.

The numeric date template is either
missing or contains invalid information.

The numeric time template is either
missing or contains invalid information.

The numeric template is either missing
or it contains invalid information.

The "PRECISION" parameter value is out
of range.

The short date template is either
missing or it contains invalid
information.

An invalid control character was
detected in the template.

An invalid template length value was
encountered.

The space for OSVs or total storage
allocated in OUTPUT is not big enough
for OSVs and/or PSVs.

TIME component specifies a value out
of range.

The type code specified is out of the
acceptable range.

An attempt was made to add a new
convention with the name of an existing
convention.

A standard convention definition cannot
be added, modified, or deleted.

continued

8600 0098-000

Internationalization

Table 9-2. Error Results for Internationalization (cont.)

Result

CS CNV NOTAVAILV

CS CONVENTION NOT FOUNDV - - -

CS DATA NOT FOUNDV - - -

CS DATAOKV

CS DEL PERMANENT CNV ERRV - - - -

CS FALSEV

CS FAULTV

CS FIELD TRUNCATEDV - -

CS FILE ACCESS ERRORV - - -

CS INCOMPLETE DATAV - -

CS LANGUAGE NOT FOUNDV - - -

CS MISSING RBRACKETV - -

CS_MISSING_TCCOLONV

CS MUTUAL EXCLUSIVEV - -

8600 0098-000

Value

3036

2002

4002

1

3040

0

1001

2003

1000

2004

2001

3033

3034

3031

Specific Description

Specified convention does not exist and
cannot be retrieved, modified or
deleted.

The data is not in the requested
convention; it is in
MYSELF.CONVENTION or the SYSTEM
CONVENTION.

The requested data was not found.

Your request has been processed.

The named convention is a standard
convention and cannot be modified or
deleted.

Your request has been processed.

An unexpected fault occurred in
CENTRALSUPPORT. Your request
cannot be processed at this time.

The date or time component was too
long and was truncated.

An error occurred while accessing the
SYSTEM/CCSFILE or the
SYSTEM/CONVENTIONS file.

Only partial data is being returned.
There was insufficient space in the
output array.

The data is not in the requested
language. It is in MYSELF.LANGUAGE
or the SYSTEM LANGUAGE or the first
available LANGUAGE.

A right bracket "]" is required to
terminate a "t" control character symbol
definition list.

An expected colon ":" is missing from
the "t" control character in a monetary
or numeric template.

A mutually exclusive combination of
control characters has been
encountered in a monetary or numeric
template.

continued

9-107

lnternationa lization

Table 9-2. Error Results for Internationalization (cont.)

9-108

Result

CS NO ALTCURR DELIMV - - -

CS_NO_CNVNAMEV

CS_NO_HEXCODE_DELIMV

CS_NO_MSGNUM_FOUNDV

CS NO NAME FOUNDV - - -
CS NO NUM FOUNDV - - -
CS _REQSYM BOLV

CS SOFTERRV

Value

3043

3039

3041

3005

3004

3003

3029

1002

Specific Description

The international currency notation is
missing a required terminating delimiter.

A required convention name was not
provided.

A hexadecimal value representing a
symbol in a monetary or numeric
template is missing a required delimiter.

The requested number was not found.

The requested name was not found.

The requested number was not found.

A required symbol in either the
monetary or the numeric template is
missing.

A CENTRALSUPPORT software error
was detected. Your request cannot be
processed at this time.

8600 0098-000

Appendix A
Run-Time Format-Error Messages

Free-field Input
The meanings of the format-error numbers pertaining to free-field input are given in the
following table.

Number

400

416

420

442

443

444

462

467

473

484

Formatted Output

Error Message

An error occurred on free-field input.

Evaluation of a list element caused an 1/0 action on the current file.

Input from the <core-to-core file part> required more records than
allowed by the <core-to-core blocking part>.

The input data corresponding to a single-precision list element consisted
of a hexadecimal string of more than 12 significant digits.

The input data contained a hexadecimal string containing
nonhexadecimal characters.

The input data corresponding to a double-precision list element consisted
of a hexadecimal string of more than 24 significant digits.

The next list element was a pointer, and the corresponding input data
consisted of a quoted string that had been only partially assigned.

The input data contained a value greater than the maximum value
allowed for the corresponding list element.

The input data contained a string with no trailing quotation mark
character.

An expression was used as a list element on input.

The meanings of the format-error numbers pertaining to formatted output are given in
the following table.

Number

100

102

103

8600 0098-000

Error Message

An error occurred on formatted output.

The editing phrase letter was V, and the data specified by the list element
did not produce an A, C, D, E, F, G, H, I, J, K, L, 0, P, R, S, T, U, X, or Z in
the appropriate character position.

The editing phrase was of the form rV, and the resulting specifier required a
<field width>.

continued

A-1

Run-Time Format-Error Messages

continued

Number

104

105

106

107

109

110

111

113

114

116

117

120

131

132

133

163

Error Message

The editing phrase was of the form rV, and the resulting specifier required a
<field width> and <decimal places>.

The editing phrase was of the form Fw.d, and d was less than zero.

The editing phrase used was Fw.d, and d was less than zero.

The editing phrase used was Ew.d or Dw.d, and d was less than zero.

The editing phrase used was Zw, and the corresponding list element was
not of type INTEGER or BOOLEAN.

The type of the input data was not compatible with the type of the
corresponding list element.

The editing phrase was of the form Zw.d. The phrase chosen to edit the
output was Ew.d, but d was less than zero.

The editing phrase used was Ew.d or Dw.d, and w was less than or equal to
d.

The value of a dynamic word part was greater than the maximum
allowable integer (549,755,813,887).

Evaluation of a list element caused an VO action on the current file
(recursive VO).

An attempt was made to write a number of characters greater than the
record size.

Output to the <core-to-core file part> required more records than allowed
by the <core-to-core blocking part>.

The value of a dynamic r part was greater than the maximum allowable real
value (4.31359146673 * 10**68).

The value of a dynamic w part was greater than the maximum allowable
integer (549,755,813,887).

The value of a dynamic d part was greater than the maximum allowable
integer (549,755,813,887).

The record size was not large enough to allow the free-field write specified.

Formatted Input

A-2

The meanings of the format-error numbers pertaining to formatted input are given in
the following table.

Number

200

202

Error Message

An error occurred on formatted input.

The editing phrase letter was V, and the data specified by the list element
did not produce an A, C, D, E, F, G, H, I, J, K, L, 0, P, R, S, T, U, X, or Zin
the appropriate character position.

continued

8600 0098-000

continued

Number

203

204

205

206

207

209

210

213

214

216

217

218

220

231

232

233

250

271

281

284

285

8600 0098-000

Run-Time Format-Error Messages

Error Message

The editing phrase was of the form rV, and the resulting specifier required a
<field width>.

The editing phrase was of the form rV, and the resulting specifier required a
<field width> and <decimal places>.

The editing phrase was of the form rVw, and the resulting specifier required
<decimal places>.

The editing phrase used was Fw.d, and d was less than zero.

The editing phrase used was Ew.d or Dw.d, and d was less than zero.

The editing phrase used was Zw, and the corresponding list element was
not of type INTEGER or BOOLEAN.

The type of a list element was incompatible with the corresponding editing
phrase.

The editing phrase used was Ew.d or Dw.d, and w was less than or equal to
d.

The value of a dynamic word part was greater than the maximum
allowable integer (549,755,813,887).

Evaluation of a list element caused an 1/0 action on the current file
(recursive 1/0).

An attempt was made to read a number of characters greater than the
record size.

The editing phrase letter was Hor K, but the input data contained
nonblank, nonhexadecimal characters or nonblank, nonoctal characters,
respectively.

Input from the <core-to-core file part> required more records than allowed
by the <core-to-core blocking part>.

The value of a dynamic r part was greater than the maximum allowable real
value (4.31359146673 * 10**68).

The value of a dynamic w part was greater than the maximum allowable
integer (549,755,813,887).

The value of a dynamic d part was greater than the maximum allowable
integer (549,755,813,887).

Input was attempted using a U editing phrase.

Input was attempted using a $ or P format modifier.

The input data was invalid for an I editing phrase.

An expression was used as a list element on input.

The list element was of type REAL, but the corresponding input data
contained a value greater than the maximum allowable real value
(4.31359146673 * 10**68).

continued

A-3

Run-Time Format-Error Messages

A-4

continued

Number

286

291

292

293

294

295

Error Message

The list element was of type INTEGER or BOOLEAN, but the input data
contained a value greater than the maximum allowable integer
(549,755,813,887).

The input data corresponding to a numeric editing phrase contained a
nondigit character in the exponent part following at least one valid digit.

The input data corresponding to a numeric editing phrase contained more
than one sign in the exponent part.

The input data corresponding to a numeric editing phrase contained an
invalid character after ~he exponent sign and before the exponent value.

The input data corresponding to a numeric editing phrase contained an
invalid character after the decimal point.

The input data corresponding to a numeric editing phrase contained more
than one sign in the mantissa.

8600 0098-000

Appendix B
Reserved Words

A reserved word in Extended ALGOL has the same syntax as an identifier. The reserved
words are divided into three types.

A reserved word of type 1 can never be declared as an identifier; that is, it has a
predefined meaning that cannot be changed. For example, because LIST is a type 1
reserved word, the following declaration is flagged with a syntax error:

ARRAY LIST[0:999]

A reserved word of type 2 can be redeclared as an identifier; it then loses its predefined
meaning in the scope of that declaration. For example, because IN is a type 2 reserved
word, the following declaration is legal:

FILE IN(KIND = READER)

However, in the scope of the declaration, the following statement is flagged with a syntax
error on the word IN:

SCAN P WHILE IN ALPHA

If a type 2 reserved word is used as a variable in a program but it is not declared as
a variable, then the error message that results is not the expected UNDECLARED
IDENTIFIER. Instead, it might be NO STATEMENT CAN START WITH THIS.

A reserved word of type 3 is context-sensitive. It can be redeclared as an identifier,
and if it is used where the syntax calls for that reserved word, it carries the predefined
meaning; otherwise, it carries the user-declared meaning. The different meanings for
the type 3 reserved word STATUS are illustrated in the following example.

BEGIN
TASK T;
REAL STATUS;
% IN THE NEXT STATEMENT, "STATUS" IS A REAL VARIABLE
STATUS := 4.5;
% IN THE NEXT STATEMENT, "STATUS" IS A TASK ATTRIBUTE
IF T.STATUS = VALUE(TERMINATED) THEN

% IN THE NEXT STATEMENT, "STATUS" IS A REAL VARIABLE
STATUS := 10.0;

END.

8600 0098-000 8-1

Reserved Words

Type 3 reserved words include the following:

• File attribute names

• Task attribute names

• Library attribute names

• Direct array attribute names

• Mnemonics for attribute values

All file attributes, direct array attributes, and mnemonics described in the A Series File
Attributes Programming Reference Manual are type 3 reserved words in ALGOL.

Reserved Words List

B-2

The following is an alphabetical list of reserved words for Extended ALGOL. The
number in parentheses following each word indicates the type of the reserved word. For
example, FOR (1) indicates that FOR is a type 1 reserved word.

ABORTIRANSACTION (2) ABS(2) ACCEPT(2)

ACTUALNAM E(3) AFTER(2) ALL (2)

ALPHA(l) ALPHA6(3) ALPHA7(3)

ALPHA8(3) AND(2) ANYFAULT(3)

APPLYINSERT (2) APPLYMODIFY (2) ARCCOS (2)

ARCSIN (2) ARCTAN (2) ARCTAN2 (2)

ARRAY(l) ARRAYS(3) ARRAYSEARCH (2)

AS(3) ASCII (2) ASCI ITOBCL(3)

ASCllTOEBCDIC(3) ASCI ITOHEX(3) ATANH (2)

ATIACH (2) AVAILABLE (2) BACKUPPREFIX (3)

BASE (3) BCL (2) BCLTOASCll (3)

BCLTOEBCDIC (3) BCLTOHEX (3) BEFORE(2)

BEGIN(l) BOOLEAN(l) BY (2)

BYFUNCTION(3) BYTITLE(3) CABS (2)

CALL (2) CALLING (2) CANCEL (2)

CANCELTRPOINT (2) CASE (2) CAT (2)

CAUSE (2) CAUSEANDRESET (2) ccos (2)

CEXP (2) CHANGEFILE (2) CHARGECODE (3)

CLASS (3) CHECKPOINT (2) CHECKSUM (2)

CLN (2) CLOSE (2) CODE(3)

COMMENT(l) COMPILETIME (2) COMPILETYPE (3)

COM~LEX (2) CONJUGATE (2) CONTROL (3)

CONTINUE(!) COREESTIMATE (3) cos (2)

continued

8600 0098-000

Reserved Words

continued

COSH (2) COTAN (2) CRUNCH(3)

CSIN (2) CSQRT (2) CURRENT (2)

DABS (2) DALPHA (2) DAND (2)

DARCCOS (2) DARCSIN (2) DARCTAN (2)

DARCTAN2 (2) DBS(3) DCOS (2)

DCOSH (2) DEALLOCATE (2) DECIMAL (2)

DECIMALPOINTISCOMMA(3) DECLAREDPRIORITY(3) DEFINE (2)

DELINKLIBRARY (2) DELTA (2) DEQV (2)

DERF (2) DERFC (2) DETACH (2)

DEXP (2) DGAMMA(2) DICTIONARY (2)

DIGITS (2) DIMP (2) DINTEGER (2)

DIRECT(!) DISABLE (2) DISCARD(3)

DISK(3) DISKPACK(3) DISPLAY (2)

DIV (2) DLGAMMA (2) DLN (2)

DLOG (2) DONTWAIT (2) DMABS (2)

DMAVG (2) DMAX (2) DMCHR (2)

DMCONTAINS (2) DMCOUNT (2) DMEQUIV (2)

DMEXCEPTIONINFO (2) DMEXCEPTIONMSG (2) DMEXCLUDES (2)

DMEXITS (2) DMEXT (2) DMFUNCTION (2)

DMIN (2) DMISA (2) DMLENGTH (2)

DMMATCH (2) DMMAX (2) DMMIN (2)

DMNEXTEXCEPTION (2) DMPOS (2) DMPRED (2)

DMRECORD(2) DMROUND (2) DMRPT (2)

DMSQRT (2) DMSUCC (2) DMSUM (2)

DMTRUNC (2) DMUPDATECOUNT (2) DNABS (2)

DNORMALIZE (2) DNOT (2) DO(l)

DOR (2) DOUBLE(l) DROP (2)

DSCALELEFT (2) DSCALERIGHT (2) DSCALERIGHTT (2)

DSIN (2) DSINH (2) DSQRT (2)

DTAN (2) DTANH (2) DUMP (2)

EBCDIC (2) EBCDICTOASCll (3) EBCDICTOBCL (3)

EBCDICTOHEX (3) EGl(2) ELAPSEDTIME(3)

ELSE(l) EMl(2) EMPTY (2)

EMPTY4 (2) EMPTY7 (2) EMPTY8 (2)

continued

8600 0098-000 8-3

Reserved Words

continued

ENABLE (2) END(l) ENTIER (2)

ENTITY (2) EQL (2) EQV(2)

ERF (2) ERFC (2) ESl(2)

EVENT(l) EXCEPTIONEVENT(3) EXCEPTIONTASK(3)

EXCHANGE (2) EXCLUDE (2) EXITS (2)

EXP (2) EXPON ENTOVERFLOW(3) EXPONENTUNDERFLOW(3)

EXPORT (2) EXTERNAL (2) FALSE(l)

FAMILY(3) FILE(l) FILECARDS(3)

FILES(3) FILL (2) FIRST (2)

FIRSTONE(2) FIRSTWORD (2) FIX (2)

FOR(l) FORMAL (2) FORMAT(l)

FORWARD (2) FUNCTION NAM E(3) FREE (2)

FREEZE (2) GAMMA (2) GEQ (2)

GO(l) GTR (2) HAPPENED (2)

HEAD (2) HEX (2) HEXTOASCll (3)

HEXTOBCL (3) HEXTOEBCDIC (3) HISTORY(3)

IF(l) IMAG (2) IMP (2)

IN (2) INCLUDE (2) INITIATOR(3)

INPUTHEADER(2) INTEGER(l) I NTEG EROVERFLOW(3)

INTEGERT (2) INTERRUPT (2) INTNAME(3)

INVALIDADDRESS(3) INVALIDINDEX(3) INVALIDOP(3)

INVALIDPROGRAMWORD(3) IS (2) ISNT (2)

INVERSE (2) ISYS (2) JOBNUMBER(3)

LABEL(l) LB (2) LENGTH (2)

LEQ (2) LIBACCESS(3) LIBERATE (2)

LIBPARAMETER(3) LIBRARIES(3) LIBRARY (2)

LINE (2) LINENUMBER (2) LINKLIBRARY (2)

LIST(l) LISTLOOKUP (2) LN (2)

LNGAMMA (2) LOCK (2) LOCKED (3)

LOG (2) LONG(l) LOOP(3)

LSS (2) MASKSEARCH (2) MAX (2)

MAXCARDS (3) MAXIOTIME (3) MAXLINES (3)

MAXPROCTIME (3) MEMORYPARITY(3) MEMORYPROTECT(3)

MERGE (2) MESSAGECOUNT(2) MESSAGESEARCHER (2)

continued

B-4 8600 0098-000

Reserved Words

continued

MIN (2) MLSACCEPT(2) MLSDISPLAY(2)

MOD (2) MODIFY (2) MONITOR (2)

MUX (2) MY JOB (2) MYSELF (2)

NABS (2) NAME (3) NEQ (2)

NO (2) NOCR(2) NOLF(2)

NONE (2) NORMALIZE (2) NOT (2)

NULL(3) NUMERIC (2) OF (2)

OFFER(3) OFFSET (2) ON (2)

ONES (2) OPEN (2) OPTION (3)

OR (2) ORDER (2) ORGUNIT (3)

OUT(3) OUTPUTHEADER(2) OUTPUTMESSAGE (2)

OWN(l) PACK(3) PAGED(3)

PARTNER(3) PERMANENT(3) PICTURE (2)

POINTER(l) POTC (2) POTH (2)

POTL (2) PRIVATELIBRARIES(3) PROCEDURE(l)

PROCESS (2) PROCESSID (2) PROCESSIOTIME (3)

PROCESSTIME (3) PROCURE (2) PROGRAMDUMP (2)

PROGRAMMEDOPERATOR(3) PURGE (2) QUERY (2)

RANDOM (2) RB (2) READ (2)

READLOCK (2) REAL(l) RECEIVE(2)

RECORD(2) REEL(3) REFERENCE(l)

REMAININGCHARS (2) REMOVEFILE (2) REPEAT (2)

REPLACE (2) RESET (2) RESIZE (2)

RESTART (3) RETAIN(3) RETRIEVE (2)

REWIND (2) RUN (2) SAVETRPOINT (2)

SCALELEFT (2) SCALERIGHT (2) SCALERIGHTF (2)

SCALERIGHTI (2) SCAN (2) SCANPARITY(3)

SDIGITS (2) SECONDWORD (2) SEEK (2)

SELECT (2) SEND(2) SET (2)

SETACTUALNAM E(2) SETIOCHILD (2) SETIOPARENT (2)

SIBS(3) SIGN (2) SIN (2)

SINGLE (2) SINH (2) SIZE (2)

SKIP (2) SOME (2) SORT (2)

SPACE (2) SQRT (2) STACKER (2)

continued

8600 0098-000 B-5

Reserved Words

continued

STACKNO (3) STACKSIZE (3) STARTINSERT (2)

STARTMODIFY (2) STARTTIME (3) STATION (2)

STATUS (3) STEP(l) STOP (2)

STOPPOINT (3) STRING (2) STRINGPROTECT(3)

STRING4 (2) STRING7 (2) STRINGS (2)

SUBFILE (2) SUBROLE (2) SWITCH(l)

SYNCHRONIZE(3) TADS(3) TAIL (2)

TAKE (2) TAN (2) TANH (2)

TARGETTIME (3) TASK(l) TASKATTERR (3)

TASKFILE(3) TASKVALUE (3) TERMINAL(2)

THEN(l) THRU (2) TIME (2)

TIMELIMIT (2) TIMES (2) TITLE(3)

TO (2) TRANSITIVE (2) TRANSLATE (2)

TRANSLATETABLE(l) TRUE(l) TRUTHSET(l)

URGENT(3) USERCOD~(3) WAIT (2)

WAITANDRESET (2) WHEN (2) WITH (2)

WORDS (2) WRITE (2) TYPE (2)

UNTIL(l) USING (2) VALUE(l)

WHERE (2) WHILE(l) ZERODIVIDE(3)

ZIP(l)

Reserved Words by Type

Type 1 Reserved Words
ALPHA ARRAY BEGIN

BOOLEAN COMMENT CONTINUE

DIRECT DO DOUBLE

ELSE END EVENT

FALSE FILE FOR

FORMAT GO IF

INTEGER LABEL LIST

LONG OWN POINTER

PROCEDURE REAL REFERENCE

STEP SWITCH TASK

continued

8-6 8600 0098-000

Reserved Words

continued

THEN TRANSLATETABLE TRUE

TRUTHS ET UNTIL VALUE

WHILE ZIP

Type 2 Reserved Words
ABORTTRANSACTION ABS ACCEPT

AFTER ALL AND

APPLYINSERT APPLYMODIFY ARCCOS

ARCSIN ARCTAN ARCTAN2

ARRAYSEARCH ASCII ATANH

ATTACH AVAILABLE BCL

BEFORE BY CABS

CALL CALLING CANCEL

CANCELTRPOINT CASE CAT

CAUSE CAUSEANDRESET ccos
CEXP CHANGEFILE CHECKPOINT

CHECKSUM CLN CLOSE

COMPILETIME COMPLEX CONJUGATE

cos COSH COTAN

CSIN CSQRT CURRENT

DABS DALPHA DAND

DARCCOS DARCSIN DARCTAN

DARCTAN2 DCOS DCOSH

DEALLOCATE DECIMAL DEFINE

DELINKLIBRARY DELTA DEQV

DERF DERFC DETACH

DEXP DGAMMA DICTIONARY

DIGITS DIMP DINTEGER

DISABLE DISCARD DISPLAY

DIV DLGAMMA DLN

DLOG DMABS DMAVG

DMAX DMCHR DMCONTAINS

DMCOUNT DMEQUIV DMEXCEPTIONINFO

DMEXCEPTIONMSG DMEXCLUDES DMEXITS

DMEXT DMFUNCTION DMIN

continued

8600 0098-000 8-7

Reserved Words

continued

DMISA DMLENGTH DMMATCH

DMMAX DMMIN DMNEXTEXCEPTION

DMPOS DMPRED DMRECORD

DMROUND DMRPT DMSQRT

DMSUCC DMSUM DMTRUNC

DMUPDATECOUNT DNABS DNORMALIZE

DNOT DONTWAIT DOR

DROP DSCALELEFT DSCALERIGHT

DSCALERIGHTI DSIN DSINH

DSQRT DTAN DTANH

DUMP EBCDIC EGI

EMI EMPTY EMPTY4

EMPTY7 EMPTY8 ENABLE

ENTIER ENTITY EQL

ERF ERFC ESI

EXCLUDE EXITS EXCHANGE

EXP EQV EXPORT

EXTERNAL FILL FIRST

FIRSTONE FIRSTWORD FIX

FORMAL FORWARD FREE

FREEZE GAMMA GEQ

GTR HAPPENED HEAD

HEX IMAG IMP

IN INCLUDE INPUTHEADER

INTEGERT INTERRUPT INVERSE

IS ISNT ISYS

LB LENGTH LEQ

LIBERATE LIBRARY LINE

LINEN UMBER LINKLIBRARY LISTLOOKUP

LN LNGAMMA LOCK

LOG LSS MASKSEARCH

MAX MERGE MESSAGECOUNT

M ESSAG ESEARCHER MIN MLSACCEPT

MLSDISPLAY MOD MODIFY

MONITOR MUX MY JOB

continued

B-8 8600 0098-000

Reserved Words

continued

MYSELF NABS NEQ

NO NOCR NOLF

NONE NORMALIZE NOT

NUMERIC OF OFFSET

ON ONES OPEN

OR ORDER OUTPUTHEADER

OUTPUTM ESSAG E PICTURE POTC

POTH POTL PROCESS

PROCESSID PROCURE PROGRAMDUMP

PURGE QUERY RANDOM

RB READ READ LOCK

RECEIVE RECORD REMAIN I NG CHARS

REMOVEFILE REPEAT REPLACE

RESET RESIZE REWIND

RUN RETRIEVE SAVETRPOINT

SELECT SEND SETIOCHILD

SETIOPARENT SOME STARTINSERT

STARTMODIFY SUBROLE TERMINAL

TRANSITIVE TYPE USING

WHERE SCALE LEFT SCALERIGHT

SCALERIGHTF SCALERIGHTI SCAN

SDIGITS SECONDWORD SEEK

SET SETACTUALNAME SIGN

SIN SINGLE SINH

SIZE SKIP SORT

SPACE SQRT STACKER

STATION STOP STRING

STRING4 STRING? STRINGS

SUBFILE TAIL TAKE

TAN TANH THRU

TIME TIMELIMIT TIMES

TO TRANSLATE WAIT

WAITANDRESET WHEN WITH

WORDS WRITE

8600 0098-000 B-9

Reserved Words

Type 3 Reserved Words
ACTUALNAME ALPHA6 ALPHA7

ALPHAS ANYFAULT ARRAYS

AS ASCllTOBCL ASCI ITOEBCDIC

ASCllTOHEX BACKUPPREFIX BASE

BCLTOASCll BCLTOEBCDIC BCLTOHEX

BYTITLE BYFUNCTION CHARGECODE

CLASS CODE COMPILETYPE

CONTROL COREESTIMATE CRUNCH

DBS DECIMALPOINTISCOMMA DECLAREDPRIORITY

DISK DISK PACK EBCDICTOASCI I

EBCDICTOBCL EBCDICTOHEX ELAPSEDTIME

EXCEPTION EVENT EXCEPTIONTASK EXPONENTOVERFLOW

EXPON ENTU N DER FLOW FAMILY FILECARDS

FILES FUNCTION NAME HEXTOASCll

HEXTOBCL HEXTOEBCDIC HISTORY

INITIATOR I NTEG EROVERFLOW INTNAME

INVALIDADDRESS INVALIDINDEX INVALIDOP

INVALIDPROGRAMWORD JOBNUMBER LIBACCESS

LIBPARAMETER LIBRARIES LOCKED

LOOP MEMORYPARITY MEMORYPROTECT

MAXCARDS MAXIOTIME MAXLINES

MAXPROCTIME NAME NULL

OFFER OPTION ORGUNIT

OUT PACK PAGED

PARTNER PERMANENT PRIVATELIBRARIES

PROCESSIOTIME PROCESSTIME PROGRAMMEDOPERATOR

REEL RESTART RETAIN

SCAN PARITY SIBS STACKNO

STACKSIZE STARTIIME STATUS

STOP POINT STRING PROTECT SUBSPACES

SYNCHRONIZE TADS TARGETIIME

TASKATIERR TASKFILE TASKVALUE

TEMPORARY TITLE TYPE

URGENT USERCODE ZERODIVIDE

B-10 8600 0098-000

Appendix C
Data Representation

Field Notation
The notation[m:n] is used in this manual to describe fields within data words. The 48
accessible bits of a data word are considered to be numbered, with the leftmost bit
numbered as bit 47 and the rightmost bit numbered as bit 0. In the notation [m:n], m
denotes the number of the leftmost bit of the field being described, and n denotes the
number of bits in the field. For example, the field indicated by the shaded area in Figure
C-1 (bits 28 through 24) is described as [28:5].

47 43 39 35 23 19 15 11 7 3

46 42 38 34 22 18 14 6 2

45 41 37 33 21 17 13 9 5

44 40 36 32 16 12 8 4

Figure C-1. Field Notation, [28:51

All data words have a field associated with them that is called the tag of the word.
The tag identifies the type of the data word; that is, whether the word is an operand,
descriptor, and so on. The tag is not accessible to ALGOL programs.

Hexadecimal format is used extensively in this manual to indicate word contents.
This format is particularly suited to describe the value of a data word, because each
hexadecimal digit indicates the contents of a 4-bit field. Such fields can be visualized as
the columns in Figure C-1.

Character Representation
Characters are stored in fields of one, two, three, four, six, or eight bits. In the table
below, the Character Type column lists the valid ALGOL character types. The Field Size
and Bits Used columns show the field size in bits and the number of bits within that
field, respectively, that are used for storing each type of character. The Valid Constructs
column shows the character-oriented ALGOL constructs that are used to manipulate
eacp. character type.

8600 0098-000 C-1

Data Representation

C-2

Character Type Field Size Bits Used Valid Constructs

EBCDIC 8 8 Pointer, character array,
string, string literal

ASCII 8 7 Pointer, character array,
string, string literal

BCL 6 6 Pointer, character array,
string literal

Hexadecimal (HEX) 4 4 Pointer, character array,
string, string literal

Octal 3 3 String literal

Quaternary 2 2 String literal

Binary 1 1 String literal

Figures C-2 through C-5 illustrate how the various character types are stored within a
data word.

47 43

46 42

45 41

44 40

'----v--J
MOST

SIGNIFICANT

CHARACTER

39 35 31 27 23 19 15 11

38 34 30 26 22 18 14 10

37 33 29 25 21 17 13 9

36 32 28 24 20 16 12 8

Figure C-2. EBCDIC Characters (8-bit Fields)

7 3

6 2

5 1

4 0

'----v--J
LEAST

SIGNIFICANT

CHARACTER

Figure C-3 shows that ASCII characters, which are 7-bit characters, are stored in 8-bit
fields (as are EBCDIC characters). The zeros shown for bits 7, 15, 23, 31, 39, and 4 7
indicate that these bits are 0 when ASCII characters are stored.

8600 0098-000

8600 0098-000

047 43

46 42

45 41

44 40

'--y--/
MOST

SIGNIFICANT
CHARACTER

MOST
SIGNIFICANT

CHARACTER
0

~

47 43

46 42

45 41

44 40

Data Representation

039 35 031 27 023 19 015

38 34 30 26 22 18 14

37 33 29 25 21 17 13

36 32 28 24 20 16 12

Figure C-3. ASCII Characters (8-bit Fields)

2

11

10

9

8

07 3

6 2

5 1

4 0

'--y--/
LEAST

SIGNIFICANT
CHARACTER

6

~ ~

39 35 31 27 23 19 15

38 34 30 26 22 18 14

37 33 29 25 21 17 13

36 32 28 24 20 16 12

'--y--/ '--y--/
3 5

Figure C-4. BCL Characters (6-bit Fields)

11

10

9

8

7 3

6 2

5 1

4 0

'--y--/
7

LEAST
SIGNIFICANT

CHARACTER

C-3

Data Representation

47

46

45

44

'--y--J
MOST

SIGNIFICANT
CHARACTER

1 2

43 39

42 38

41 37

40 36

3 4 5

35 31 27

34 30 26

33 29 25

32 28 24

6 7 8

23 19 15

22 18 14

21 17 13

20 16 12

9

11

10

9

8

10 11

7 3

6 2

5 1

4 0

'--y--J
LEAST

SIGNIFICANT
CHARACTER

Figure C-5. Hexadecimal Characters (4-bit Fields)

Character Values and Graphics

The following is a list of the 256 EBCDIC values represented in binary, octal, decimal,
and hexadecimal formats. The corresponding BCL, ASCII, and EBCDIC graphics (as
they appear when printed using an EBCDIC96 print train) are also shown. In the
EBCDIC column, corresponding standard mnemonics appear for some nonprintable
EBCDIC values.

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

00000000 000 0 00 0 NUL NUL

00000001 001 1 01 1 SOH SOH

00000010 002 2 02 2 STX STX

00000011 003 3 03 3 ETX ETX

00000100 004 4 04 4 EQT

00000101 005 5 05 5 ENQ HT

00000110 006 6 06 6 ACK

00000111 007 7 07 7 BEL DEL

00001000 010 8 08 8 BS

00001001 011 9 09 9 HT

00001010 012 10 OA LF

00001011 013 11 OB @ VT VT

00001100 014 12 OC ? FF FF

00001101 015 13 OD CR CR

continued

8600 0098-000

Data Representation

continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

00001110 016 14 OE > so so
00001111 017 15 OF SI SI

00010000 020 16 10 + DLE DLE

00010001 021 17 11 A DCl DCl

00010010 022 18 12 B DC2 DC2

00010011 023 19 13 c DC3 DC3

00010100 024 20 14 D DC4

00010101 025 21 15 E NAK NL

00010110 026 22 16 F SYN BS

00010111 027 23 17 G ETB

00011000 030 24 18 H CAN CAN

00011001 031 25 19 EM EM

00011010 032 26 lA SUB

00011011 033 27 lB ESC

00011100 034 28 lC & FS FS

00011101 035 29 1D GS GS

00011110 036 30 lE < RS RS

00011111 037 31 lF us us
00100000 040 32 20 } SP

00100001 041 33 21 J

00100010 042 34 22 K

00100011 043 35 23 L

00100100 044 36 24 M $

00100101 045 37 25 N % LF

00100110 046 38 26 0 & ETB

00100111 047 39 27 p ESC

00101000 050 40 28 Q

00101001 051 41 29 R

00101010 052 42 2A $ *
00101011 053 43 2B * +
00101100 054 44 2C

00101101 055 45 2D ENQ

00101110 056 46 2E ACK

continued

8600 0098-000 C-5

Data Representation

continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

00101111 057 47 2F A I BEL

00110000 060 48 30 0

00110001 061 49 31 I 1

00110010 062 50 32 s 2 SYN

00110011 063 51 33 T 3

00110100 064 52 34 u 4

00110101 065 53 35 v 5

00110110 066 54 36 w 6

00110111 067 55 37 x 7 EOT

00111000 070 56 38 y 8

00111001 071 57 39 z 9

00111010 072 58 3A

00111011 073 59 3B %

00111100 074 60 3C < DC4

00111101 075 61 30 NAK

00111110 076 62 3E >

00111111 077 63 3F ? SUB

01000000 100 64 40 @ SP
(blank)

01000001 101 65 41 A

01000010 102 66 42 B

01000011 103 67 43 c
01000100 104 68 44 D

01000101 105 69 45 E

01000110 106 70 46 F

01000111 107 71 47 G

01001000 110 72 48 H

01001001 111 73 49

01001010 112 74 4A J

01001011 113 75 4B K

01001100 114 76 4C L <

01001101 115 77 40 M

01001110 116 78 4E N +
01001111 117 79 4F 0

continued

C-6 8600 0098-000

Data Representation

continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

01010000 120 80 50 p &

01010001 121 81 51 Q

01010010 122 82 52 R

01010011 123 83 53 s
01010100 124 84 54 T

01010101 125 85 55 u
01010110 126 86 56 v
01010111 127 87 57 w
01011000 130 88 58 x
01011001 131 89 59 y

01011010 132 90 5A z
01011011 133 91 5B [$

01011100 134 92 5C \ *
01011101 135 93 5D

01011110 136 94 5E

01011111 137 95 5F

01100000 140 96 60

01100001 141 97 61 a I

01100010 142 98 62 b

01100011 143 99 63 c

01100100 144 100 64 d

01100101 145 101 65 e

01100110 146 102 66

01100111 147 103 67 g

01101000 150 104 68 h

01101001 151 105 69

01101010 152 106 6A

01101011 153 107 6B k

01101100 154 108 6C %

01101101 155 109 6D m

01101110 156 llO 6E n >

OllOllll 157 lll 6F 0 ?

continued

8600 0098-000 C-7

Data Representation

continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

01110000 160 112 70 p

01110001 161 113 71 q

01110010 162 114 72

01110011 163 115 73 s

01110100 164 116 74

01110101 165 117 75 u

01110110 166 llS 76 v

01110111 167 119 77 w

01111000 170 120 7S x

01111001 171 121 79 y

01111010 172 122 7A z

01111011 173 123 78 {

01111100 174 124 7C I @

01111101 175 125 7D }

01111110 176 126 7E

01111111 177 127 7F DEL

10000000 200 12S so
10000001 201 129 Sl a

10000010 202 130 S2 b

10000011 203 131 S3 c

10000100 204 132 S4 d

10000101 205 133 S5 e

10000110 206 134 S6

10000111 207 135 S7 g

10001000 210 136 SS h

10001001 211 137 S9

10001010 212 13S SA

10001011 213 139 S8

10001100 214 140 SC

10001101 215 141 SD

10001110 216 142 SE

10001111 217 143 SF

10010000 220 144 90

continued

C-8 8600 0098-000

Data Representation

continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

10010001 221 145 91

10010010 222 146 92 k

10010011 223 147 93

10010100 224 148 94 m

10010101 225 149 95 n

10010110 226 150 96 0

10010111 227 151 97 p

10011000 230 152 98 q

10011001 231 153 99

10011010 232 154 9A

10011011 233 155 9B

10011100 234 156 9C

10011101 235 157 9D

10011110 236 158 9E

10011111 237 159 9F

10100000 240 160 AO

10100001 241 161 Al

10100010 242 162 A2 s

10100011 243 163 A3

10100100 244 164 A4 u

10100101 245 165 A5 v

10100110 246 166 A6 w

10100111 247 167 A7 x

10101000 250 168 AB y

10101001 251 169 A9 z

10101010 252 170 AA

10101011 253 171 AB

10101100 254 172 AC

10101101 255 173 AD

10101110 256 174 AE

10101111 257 175 AF

10110000 260 176 BO

10110001 261 177 Bl

continued

8600 0098-000 C-9

Data Representation

continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

10110010 262 178 B2

10110011 263 179 B3

10110100 264 180 B4

10110101 265 181 B5

10110110 266 182 B6

10110111 267 183 B7

10111000 270 184 B8

10111001 271 185 B9

10111010 272 186 BA

10111011 273 187 BB

10111100 274 188 BC

10111101 275 189 BD

10111110 276 190 BE

10111111 277 191 BF

11000000 300 192 co {

11000001 301 193 Cl A

11000010 302 194 C2 B

11000011 303 195 C3 c
11000100 304 196 C4 D

11000101 305 197 C5 E

11000110 306 198 C6 F

11000111 307 199 C7 G

11001000 310 200 C8 H

11001001 311 201 C9

11001010 312 202 CA

11001011 313 203 CB

11001100 314 204 cc
11001101 315 205 CD

11001110 316 206 CE

11001111 317 207 CF

11010000 320 208 DO }

11010001 321 209 Dl J

11010010 322 210 D2 K

continued

C-10 8600 0098-000

Data Representation

continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

11010011 323 211 D3 L

11010100 324 212 D4 M

11010101 325 213 D5 N

11010110 326 214 D6 0

11010111 327 215 D7 p

11011000 330 216 D8 Q

11011001 331 217 D9 R

11011010 332 218 DA

11011011 333 219 DB

11011100 334 220 DC

11011101 335 221 DD

11011110 336 222 DE

11011111 337 223 DF

11100000 340 224 EO \

11100001 341 225 El

11100010 342 226 E2 s
11100011 343 227 E3 T

11100100 344 228 E4 u
11100101 345 229 E5 v
11100110 346 230 E6 w
11100111 347 231 E7 x
11101000 350 232 E8 y

11101001 351 233 E9 z
11101010 352 234 EA

11101011 353 235 EB

11101100 354 236 EC

11101101 355 237 ED

11101110 356 238 EE

11101111 357 239 EF

11110000 360 240 FO 0

11110001 361 241 Fl 1

11110010 362 242 F2 2

11110011 363 243 F3 3

continued

8600 0098-000 C-11

Data Representation

continued

Binary Octal Decimal Hexadecimal BCL ASCII EBCDIC

11110100 364 244 F4 4

11110101 365 245 F5 5

11110110 366 246 F6 6

11110111 367 247 F7 7

11111000 370 248 F8 8

11111001 371 249 F9 9

11111010 372 250 FA

11111011 373 251 FB

11111100 374 252 FC

11111101 375 253 FD

11111110 376 254 FE

11111111 377 255 FF

Default Character Type

C-12

The default character type is the character type assumed by pointers, string variables,
string literals, and so on when a character type is not explicitly specified. The default
character type is also used as the default value of the INTMODE file attribute. For more
information on INTMODE, refer to the A Series File Attributes Programming Reference
Manual.

Two compiler control options affect the default character type: the ASCII option and
the BCL option. For more information, refer to "ASCII Option" and "BCL Option" in
Section 6 "Compiling Programs." If the ASCII option is TRUE, the default character
type is ASCII. If the BCL option is TRUE, the default character type is BCL. If neither
the ASCII option nor the BCL option is TRUE, the default character type is EBCDIC.

Free-field and formatted I/O generate either EBCDIC or BCL data depending on the
default character type. If the default character type is BCL, BCL data is generated. If
the default character type is EBCDIC or ASCII, EBCDIC data is generated.

The example programs below demonstrate the effects of different default character
types.

8600 0098-000

Data Representation

Examples

%%% PROGRAM 1 %%%
BEGIN
% OPTION RECORD

FILE F(KIND=DISK,NEWFILE=TRUE);
ARRAY A[0:9];
POINTER P;
STRING S; % DECLARATION OF S
OPEN (F);
P := POINTER(A);
S := "ABC"; % STRING ASSIGNMENT

END.

If this example is compiled and executed as is, the default character type is EBCDIC.
Thus, the INTMODE attribute of file F is EBCDIC, the character size of pointer P is
eight bits, the string type of string S is EBCDIC, and, after the string assignment is
executed, S contains the EBCDIC string ABC.

If% OPTION RECORD on the third line is replaced by the compiler control record$
SET ASCII, and the program is compiled and executed, the default character type is
ASCII. Thus, the INTMODE of file F is ASCII, the character size of pointer P is eight
bits, the string type of string S is ASCII, and, after the string assignment is executed, S
contains the ASCII string ABC.

If program 1 is compiled after % OPTION RECORD is replaced by the compiler control
record$ SET BCL, the default character type is BCL and the program is flagged with
two syntax errors: one on the declaration of string S and one on the string assignment,
because string variables cannot be of type BCL.

%%% PROGRAM 2 %%%
BEGIN
$ SET BCL

FILE F(KIND=DISK,NEWFILE=TRUE);
ARRAY A[0:9];
POINTER P;
OPEN(F);
P := POINTER(A);
REPLACE P BY "ABC"; % REPLACE STATEMENT

END.

Program 2 contains the compiler control record$ SET BCL and has no string constructs.
It compiles without error. If program 2 is compiled and executed, the default character
type is BCL. Thus, the INTMODE of file Fis BCL, the character size of pointer Pis six
bits, and, after the REPLACE statement is executed, P references the BCL characters
ABC stored in array A

Program 2 is flagged with a warning message when it is compiled, because the BCL
character type is not supported on all A Series systems.

8600 0098-000 C-13

Data Representation

Signs of Numeric Fields

Certain operations in ALGOL require an indication of a numeric sign in character data.
The sign of a numeric field is represented as follows:

8-bit characters

6-bit characters

4-bit digits

The sign is in the zone field of the least significant character (field
[7:4) of the character). A bit configuration of 1"1101" (4"0")
indicates a negative number; any other bit configuration indicates a
positive number.

The sign is in the zone field of the least significant character (field
[5:2) of the character). A bit configuration of 1"10" indicates a
negative number; any other bit configuration indicates a positive
number.

The sign is carried as a separate digit, and it is the most significant
digit of the field. A bit configuration of 1"1101" (4"0") indicates a
negative number; any other bit configuration indicates a positive
number.

One-Word Operand
Real, integer, and Boolean operands each require one word of storage.

Real Operand

C-14

The internal structure of a real operand is illustrated in Figure C-6.

~d
47 E 43 39

~
x
p

46 0 42

E
n --I Mantissa e

45 n 41
t --I

44 40

LEGEND

Field Use

Tag
[47: 1]

[46:1]

[45:1]

[44:6]

[38:39]

c
Not used
Sign of mantissa:

Sign of exponent:

Exponent
Mantissa

1 "' negative
0 "' positive
1 "' negative
0 "' positive

Figure C-6. Real ·operand

8600 0098-000

Data Representation

Real (single-precision, floating-point) values are represented internally in
signed-magnitude, mantissa-and-exponent notation. The sign of the mantissa is
contained in bit 46, and the sign of the exponent is contained in bit 45. A minus sign is
denoted by a 1 in the appropriate sign bit. The magnitude of the exponent is contained
in field [44:6]; hence, the maximum absolute value of an exponent in a real operand is
2**6-1 = 63. The magnitude of the mantissa is contained in field [38:39]; hence, the
maximum absolute value of a mantissa in a real operand is 2**39-1. There is an implied
radix point to the right of bit zero.

The value represented by a real operand can be obtained by the following formula:

(mantissa) * 8**(exponent)

Certain operations, such as the NORMALIZE function, return a normalized real operand
as their result. A normalized real operand is a real operand in which the leftmost octade
(3-bit field) of the mantissa is nonzero. For example, the real value 0.5, in normalized
form, is represented internally as 4"26COOOOOOOOO". In this example, the mantissa is
4 * 8*20 and the exponent is -13.

Integer Operand

The internal structure of an integer operand is illustrated in Figure C-7.

n~~d 0
47 43

~J~n 0
46 42

n~~d 0
45 41

0 0
44 40

LEGEND

Field

Tag
[47: 1]

[46: 1]

[45: 1]

[44:6]

[38:39]

0
39

Magnitude

Use

0

Not used
Sign: 1 = negative

0 = positive
Not used
0

Magnitude

Figure C-7. Integer Operand

Integer values are represented internally in signed-magnitude notation. The sign of the
value is denoted by bit 46 of the data word. A minus sign is denoted by a 1 in bit 46. The

8600 0098-000 C-15

Data Representation

magnitude of the value is stored in field [38:39]. The maximum absolute value of an
integer operand is 2**39-1. There is an implied radix point to the right of bit zero.

For example, the internal representation of the integer 10 is

4"0000000001iJ0A"

The internal representation of -10 is

4"4000000001iJ0A"

The internal representation of 99,999,999,999 is

4"00174876E7FF"

The following internal representation represents the decimal value 549, 755,813,887 (the
maximum value an integer operand can contain). A larger value would have to be stored
in a real operand or a double-precision operand.

4" 007 FFFFFFFFF"

Note that the internal format of an integer operand is the same as the internal format of
a real operand with an exponent of zero.

Boolean Operand

C-16

The internal structure of a Boolean operand is illustrated in Figure C-8.

v 47 v 43

v 46 v 42

v 45 v 41

v 44 v 40

LEGEND

Field

Tag
[47 :47]

[liJ: 1]

v 39

v 38

v 37

v 36

v 35 v 31 v 27 v 23 v 19 v 15 v 11 v 7 v 3

v 34 v 30 v 26 v 22 v 18 v 14 v 10 v6 V2

v 33 v 29 v 25 v 21 v 17 v 13 V9 Vs V1

v 32 v 28 v 24 v 20 v 16 v 12 v 8 V4~

Use

0

Any .bit or field within this field can be
referenced as a Boolean value using the <partial
word part> or <concatenation> constructs.
The Boolean value of the operand as a whole.

Figure C-8. Boolean Operand

8600 0098-000

Data Representation

Boolean operations are performed on a bit-by-bit basis on all 48 bits of a Boolean
operand. The one exception is the NOT operation performed on an arithmetic relation,
where NOT is performed on the low-order bit (bit zero), but not necessarily on the other
4 7 bits. However, when a Boolean operand is referenced as a whole, only the low-order
bit (bit zero) is significant (0 is FALSE, 1 is TRUE).

In Figure C-8, the shaded V's indicate that each bit of the entire 48-bit Boolean operand
can be used to store an individual Boolean value. The individual bits can be referenced
by using the <partial word part> and <concatenation> constructs.

Two-Word Operand
Double-precision and complex operands each require two words of storage.

Double-Precision Operand

The internal structure of a double-precision operand is illustrated in Figures C-9 and
C-10.

8600 0098-000

Least
Significant

Part

Most
Significant

Part
~---~~~~~~~-A~~~~~~~~~~~,

I O~~d
47 E 43 39

x
M p

46 0 42
n- Mantissa E e

45 n 41
I--- t-

44 40

LEGEND

Field Use

Tag
[47: 1]

[46: 1]

[45: 1]

[44:6]

[38:39]

2

Not used
Sign of mantissa: 1 = negative

.0 = positive
Sign of exponent: 1 = negative

.0 = positive
Least significant portion of the exponent
Most significant portion of the mantissa

Figure C-9. First Word, Double Precision Operand

C-17

Data Representation

E
x
p
0
n
e
n
t

Most
Si gni fl cant

Part

47 43

46 42

45 41

44 40

LEGEND

Field

Tag
[47:9]

[39 :39]

39J

Use

2

Least
Significant

Part

Mantissa

Most significant portion of the exponent
Least significant portion of the ma·ntissa

Figure C-10. Second Word, Double Precision Operand

Double-precision values are represented internally in signed-magnitude,
mantissa-and-exponent notation. The sign of the mantissa is contained in bit 46 of the
first data word, and the sign of the exponent is contained in bit 45 of the first data word.
A minus sign is denoted by a 1 in the appropriate sign bit.

The magnitude of the exponent of a double-precision operand is contained in a total of 15
bits. The most significant nine of these 15 bits are contained in field [4 7:9] of the second
data word. The least significant six of these 15 bits are contained in field [44:6] of the
first data word.

The magnitude of the mantissa of a double-precision operand is represented by a total of
78 bits. The most significant 39 bits are contained in field [38:39] of the first data word.
The least significant 39 bits are contained in field [38:39] of the second data word There
is an implied radix point to the right of bit zero of the first data word; that is, between
the most significant and least significant parts of the mantissa.

The value represented by a double-precision operand can be obtained by the following
formula:

(MM+ LM * 8**(-13)) * 8**(ME * 2**6 + LE)

where

• MM is the most significant part of the mantissa.

• LM is the least significant part of the mantissa.

C-18 8600 0098-000

Data Representation

• ME is the most significant part of the exponent.

• LE is the least significant part of the exponent.

Some operations return a normalized double-precision operand as their result. A
normalized double-precision operand is a double-precision operand in which the
leftmost octade (3-bit field) of the full 78-bit mantissa is nonzero. For example, the
double-precision value l@@O, in normalized form, is represented internally as

4"261000000000", 4"000000000000"

In this example, the mantissa is 1 * 8*

and the exponent is -12.

Complex Operand

A complex operand requires two words of storage. The first word contains the real
part of the complex value; the second word contains the imaginary part. The internal
structure of both the real and imaginary parts of the complex value is identical to the
internal structure of a real operand. For more information, refer to "Real Operand"
earlier in this appendix.

Type Coercion of One-Word and Two-Word Operands
Because the internal representation of Boolean, complex, double precision, integer, and
both normalized and nonnormalized real variables are all different, coercing a variable
from one type to another must be done with care. Certain system software, such as
intrinsics and operating system procedures, expect input parameters to be in a particular
format, and if the expected bit pattern of a variable has been altered through type
coercion, this software will not work correctly.

Type coercion can be effected through the following:

• Address equation between Boolean, integer, and real variables.

• Using a type transfer variable on the left side of an arithmetic or Boolean
assignment.

• Using a type-transfer function such as the INTEGER function.

• Using a call-by-name parameter (for example, by passing a real variable to a
call-by-name integer parameter).

The following is an example of address equation:

8600 0098-000 C-19

Data Representation

BEGIN
BOOLEAN B;
INTEGER I = B;
REAL R = B;
B := TRUE;
B := NOT TRUE;

I := 3;
R := 3;
R := 3.0;
I := 4/3;

END.

% B = TRUE,
% B = FALSE,
%
% B = TRUE,
% B = TRUE,
% B = FALSE,
% B = TRUE,

I = 1, R =1.0
I = Invalid or 0,
R = (-7.0064 E-46)
I = 3, R = 3 .0
I = 3, R = 3.0
I = Invalid, 2 E37, or 3, R = 3.0
I = 1, R = 1.0

Data Descriptors and Pointer

C-20

An unindexed data descriptor is the mechanism used on A Series systems to represent
the contents of an array. An indexed data descriptor is used to reference one element of
a word array. A pointer references one character within a word or character array. For
more information on the structures of descriptors and pointers, see the A Series System
Architecture Reference Manual, Volume 2.

8600 0098-000

Appendix D
Understanding Railroad Diagrams

What Are Railroad Diagrams?
Railroad diagrams are diagrams that show you the rules for putting words and symbols
together into commands and statements that the computer can understand. These
diagrams consist of a series of paths that show the allowable structure, constants, and
variables for a command or a statement. Paths show the order in which the command or
statement is constructed. Paths are represented by horizontal and vertical lines. Many
railroad diagrams have a number of different paths you can take to get to the end of the
diagram. For example:

- REMOVE E j
SOURCE
OBJECT

If you follow this railroad diagram from left to right, you will discover three acceptable
commands. These commands are

• REMOVE

• REMOVE SOURCE

• REMOVE OBJECT

If all railroad diagrams were this simple, this explanation could end here. However,
because the allowed ways of communicating with the computer can be complex, railroad
diagrams sometimes must also be complex.

Regardless of the level of complexity, all railroad diagrams are visual representations of
commands and statements. Railroad diagrams are intended to

• Show the mandatory items.

• Show the user-selected items.

• Present the order in which the items must appear.

• Show the number of times an item can be repeated.

• Show the necessary punctuation.

To familiarize you with railroad diagrams, this explanation describes the elements of the
diagrams and provides examples.

Some of the actual railroad diagrams you will encounter might be more complex.
However, all railroad diagrams, simple or complex, follow the same basic rules. They

8600 0098-000 D-1

Understanding Railroad Diagrams

all consist of paths that represent the allowable structure, constants, and variables for
commands and statements.

By following railroad diagrams, you can easily understand the correct syntax for
commands and statements. Once you become proficient in the use of railroad notation,
the diagrams serve as quick references to the commands and statements.

Constants and Variables

A constant is an item that cannot be altered. You must enter the constant as it appears
in the diagram, either in full or as an allowable abbreviation. If a constant is partially
underlined, you can abbreviate the constant by entering only the underlined letters. In
addition to the underlined letters, any of the remaining letters can be entered. If no part
of the constant is underlined, the constant cannot be abbreviated. Constants can be
recognized by the fact that they are never enclosed in angle brackets (< >) and are in
uppercase letters.

A variable is an item that represents data. You can replace the variable with data that
meets the requirements of the particular command or statement. When replacing a
variable with data, you must follow the rules defined for the particular command or
statement. Variables appear in railroad diagrams enclosed in angle brackets.

In the following example, BEGIN and END are constants while <statement list> is a
variable. The constant BEGIN can be abbreviated since it is partially underlined. Valid
abbreviations for BEGIN are BE, BEG, and BEGI.

- REGIN -<statement list>- END -----------------i

Constraints

D-2

Constraints are used in a railroad diagram to control progression through the diagram.
Constraints consist of symbols and unique railroad diagram line paths. They include

• Vertical bars

• Percent signs

• Right arrows

• Required items

• User-selected items

• Loops

• Bridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (I) represents the end of a railroad diagram and indicates the
command or statement can be followed by another command or statement.

8600 0098-000

Understanding Railroad Diagrams

- SECONDWORD - (-<arithmetic expression>-) ----------<

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the
command or statement must be on a line by itself.

- STOP ------------,-------------->tr

Right Arrow

The right arrow symbol (>) is used when the railroad diagram is too long to fit on one
line and must continue on the next. A right arrow appears at the end of the first line,
and another right arrow appears at the beginning of the next line.

- SCALERIGHT - (-<arithmetic expression>- , ----------.

~-<arithmetic expression>-) ------------------<

Required Items

A required item can be either a constant, a variable, or punctuation. A required item
appears as a single entry, by itself or with other items, on a horizontal line. Required
items can also exist on horizontal lines within alternate paths or nested (lower-level)
diagrams. If the path you are following contains a required item, you must enter the
item in the command or statement; the required item cannot be omitted.

In the following example, the word EVENT is a required constant and <identifier> is a
required variable:

- EVENT -<identifier<>--------------------;

User-Selected Items

User-selected items appear one below the other in a vertical list. You can choose any one
of the items from the list. If the list also contains an empty path (solid line), none of
the choices are required. A user-selected item can be either a constant, a variable, or
punctuation. In the following railroad diagram, either the plus sign (+) or the minus
sign (-) can be entered before the required variable <arithmetic expression>, or the
symbols can be disregarded because the diagram also contains an empty path.

E ~ j <arithmetic expression

8600 0098-000 0-3

Understanding Railroad Diagrams

D-4

Loop

A loop represents an item or group of items that you can repeat. A loop can span all or
part of a railroad diagram. It always consists of at least two horizontal lines, one below
the other, connected on both sides by vertical lines. The top line is a right-to-left path
that contains information about repeating the loop.

Some loops include a return character. A return character is a character- often a
comma (,) or semicolon (;) - required before each repetition of a loop. If there is no
return character, the items must be separated by one or more blank spaces.

__L<field ~a~,.__..~~~~~~~~~~~~~~~~~~~--1

Bridge

Sometimes a loop also includes a bridge, which is used to show the maximum number of
times the loop can be repeated. The bridge can precede the contents of the loop, or it
can precede the return character (if any) on the upper line of the loop.

The bridge determines the number of times you can cross that point in the diagram. The
bridge is an integer enclosed in sloping lines (/ \). Not all loops have bridges. Those that
do not can be repeated any number of times until all valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two
times. In the second bridge example, you can enter LINKAGE or RUNTIME no more
than three times.

__L/2\,-- LINKAGE -_J...--'--------------------i
L RUNTIME

In some bridges an asterisk (*) follows the number. The asterisk means that you must
cross that point in the diagram at least once. The maximum number of times that you
can cross that point is indicated by the number in the bridge.

r-/2*\- LiNKAGE-,.._._ II-------------------<
---C RUNTIME _____J

In the previous bridge example, you must enter LINKAGE at least once but no more
than twice, and you can enter RUNTIME any number of times.

The following figure shows the types of constraints used in railroad diagrams.

8600 0098-000

Understanding Railroad Diagrams

SYMBOL/PATH EXPLANATION

Vertical bar. Indicates that the
J comma·nd or stateme·nt can be fo 11 owed I

by .another command or statement.

Percent sign. Indicates that the
o/o comma·nd or statement must be on a

line by .itself.

> Right arrow. Indicates that the

>
diagram ·occupies more than one
line.

Required items. Indicates the
-< required >-- constants, variables, and

punctuation that must be entered
in a comma·nd or stateme·nt.

User-selected i terns·. Indicates the

[YNE: j i terns· that appear one below the
other in a vertical list. You
select which item ·or items· to include.

1< I A loop. Indicates an i tern ·or group
of i terns· that can be repeated.

_t~
A bridge. Indicates the maximum
number of times a loop can be
repeated.

Figure D-1. Railroad Constraints

Following the Paths of a Railroad Diagram
The paths of a railroad diagram lead you through the command or statement from
beginning to end. Some railroad diagrams have only one path, while others have several
alternate paths. The following railroad diagram indicates there is only one path that
requires the constant LINKAGE and the variable <linkage mnemonic> :

- LINKAGE -<linkage mnemonic;;>--------------------1

Alternate paths provide choices in the construction of commands and statements.
Alternate paths are provided by loops, user-selected items, or a combination of both.
More complex railroad diagrams can consist of many alternate paths, or nested
(lower-level) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate
paths. The top path includes an ampersand (&) and the constants (that are

8600 0098-000 D-5

Understanding Railroad Diagrams

user-selected items) in the vertical list. These constants are within a loop that can be
repeated any number of times until all options have been selected. The first alternate
path requires the ampersand and the required constant ADDRESS. The second
alternate path requires the ampersand followed by the required constant ALTER and
the required variable <new value> .

•
- & IYPE -~~-~---------------1

ASCII
.B.CL
QECIMAL
.EBCDIC
H.EX
QCTAL

8.!!DRESS -----1
ALTER -<new value

Railroad Diagram Examples with Sample Input

0-6

The following examples show five railroad diagrams and possible command and
statement constructions based on the paths of these diagrams.

Example 1

<lock statement>

- LOCK - (- <file identifier> -) --------------<

Sample Input

LOCK (FILE4)

Example2

<open statement>

Explanation

LOCK is a constant and cannot be altered. Because no part
of the word is underlined, the entire word must be entered.

The parentheses are required punctuation, and FILE4 is a
sample file identifier.

- OPEN <database name>--------------1
L INQUIRY~
L UPDATE _J

Sample Input Explanation

OPEN DATABASE! The constant OPEN is followed by the variable DATABASE!,
which is a database name.

The railroad diagram shows two user-selected items,
INQUIRY and UPDATE. However, because there is an empty
path (solid line), these entries are not required.

continued

8600 0098-000

continued

Sample Input

OPEN INQUIRY DATABASE!

OPEN UPDATE DATABASE!

Exam.plea

<generate statement>

Understanding Railroad Diagrams

Explanation

The constant OPEN is followed by the user-selected constant
INQUIRY and the variable DATABASE!.

The constant OPEN is followed by the user-selected constant
UPDATE and the variable DATABASE I.

~ GENERATE ~<subset~ = ~ NULL
L<subset>-.---------<

Sample Input

GENERATE Z = NULL

GENERATE Z = X

GENERATE Z = X AND B

GENERATE Z = X + B

8600 0098-000

AN~D <subset
OR
+

Explanation

The GENERATE constant is followed by the variable Z, an
equal sign(=), and the user-selected constant NULL.

The GENERATE constant is followed by the variable Z, an
equal sign, and the user-selected variable X.

The GENERATE constant is followed by the variable Z, an
equal sign, the user-selected variable X, the AND command
(from the list of user-selected items in the nested path), and
a third variable, B.

The GENERATE constant is followed by the variable Z, an
equal sign, the user-selected variable X, the plus sign (from
the list of user-selected items in the nested path), and a third
variable, B.

D-7

Understanding Railroad Diagrams

D-8

Example4

<entity reference declaration>

- ENTITY REFERENCE -.L:entHy ref ID>- (-<cl ass ID>-) ~-------1

Sample Input

ENTITY REFERENCE ADVISORl (INSTRUCTOR)

ENTITY REFERENCE ADVISORl (INSTRUCTOR),
ADVISOR2 (ASST_INSTRUCTOR)

Example 5

Explanation

The required item ENTITY
REFERENCE is followed by the
variable ADVISOR! and the variable
INSTRUCTOR. The parentheses are
required.

Because the diagram contains a
loop, the pair of variables can be
repeated any number of times.

- PS - MODIFY -------------------?

TI<request number>--·-------""T-'-...------?
<request number>- - -<request number

ALL~----------------i
.EXCEPTIONS ---------~

.
~-,.---...--<:o·fi 1 e attribute phrase;;>--,-~

1---~1print modifier phrase

Sample Input

PS MODIFY 11159

PS MODIFY 11159,11160,11163

PS MOD 11159-11161 DESTINATION=
"LP7"

PS MOD ALL EXCEPTIONS

Explanation

The constants PS and MODIFY are followed
by the variable 11159, which is a request
number.

Because the diagram contains a loop, the
variable 11159 can be followed by a comma,
the variable 11160, another comma, and the
final variable 11163.

The constants PS and MODIFY are followed
by the user-selected variables
11159-11161, which are request numbers,
and the user-selected variable DESTINATION
= "LP7", which is a file attribute phrase.
Note that the constant MODIFY has been
abbreviated to its minimum allowable form.

The constants PS and MODIFY are followed
by the user-selected constants ALL and
EXCEPTIONS.

8600 0098-000

Glossary

A
accidental entry

See thunk.

actual segment descriptor (ASD)
A pointer to the location of a data or code item in memory or on a disk.

address couple
A representation of the address of an item in a program. An address couple consists
of two numbers: the first number is a lexical level, and the second number is a
displacement (offset) within that lexical level.

address equation

array

ASCII

ASD

The process of declaring an identifier to have the same address as a previously declared
identifier.

An ordered collection of a fixed number of common elements under one name, each
element having the same data type. Access for each element is through an index to the
common name.

American Standard Code for Information Interchange. A standard 7-bit or 8-bit
information code used to represent alphanumeric characters, control characters, and
graphic characters on a computer system.

See actual segment descriptor.

asynchronous process
A process that executes in parallel with its initiator.

B
bad GOTO

BCL

In ALGOL and NEWP, a GO TO statement in an inner block that transfers control to
a label that is global to that block. The block in which a bad GO TO occurs is exited
abruptly and local variables are deallocated immediately.

See Burroughs Common Language.

Burroughs Common Language (BCL)
An obsolete code using 6-bit character representation.

8600 0098-000 Glossary-1

Glossary

byname
Pertaining to one method of passing a parameter to a procedure. The system substitutes
the actual parameter wherever the formal parameter is mentioned in the procedure
body. Any assignments to the actual parameter immediately change the value of the
formal parameter, and vice versa. Synonym for call-by-name.

by reference

by value

c

Pertaining to one method of passing a parameter to a procedure. The system evaluates
the location of the actual parameter and replaces the formal parameter with a reference
to that location. Any change made to the formal parameter affects the actual parameter,
and vice versa. Synonym for call-by-reference.

Pertaining to one method of passing a parameter to a procedure. A copy of the value of
the actual parameter is assigned to the formal parameter, which is thereafter handled as
a variable that is local to the procedure body. Any change made to the value of a by-value
formal parameter has no effect outside the procedure body. Synonym for call-by-value.

call-by-name
Pertaining to one method of passing a parameter to a procedure. The system substitutes
the actual parameter wherever the formal parameter is mentioned in the procedure
body. Any assignments to the actual parameter immediately change the value of the
formal parameter, and vice versa. Synonym for by name.

call-by-reference
Pertaining to one method of passing a parameter to a procedure. The system evaluates
the location of the actual parameter and replaces the formal parameter with a reference
to that location. Any change made to the formal parameter affects the actual parameter,
and vice versa. Synonym for by reference.

call-by-value

CANDE

Pertaining to one method of passing a parameter to a procedure. A copy of the value of
the actual parameter is assigned to the formal parameter, which is thereafter handled
as a variable that is local to the procedure body. Any change made to the value of a
call-by-value formal parameter has no effect outside the procedure body. Synonym for by
value.

See Command and Edit.

ccsversion
The instructions for the application of a coded character set, including information about
the way in which data is presented, collated, and cased.

character array

Glossary-2

In ALGOL, an array whose elements are ASCII, EBCDIC, or hexadecimal characters.
Contrast with word array.

8600 0098-000

Glossary

code segment descriptor
A descriptor that references a code segment. An operating system uses code segment
descriptors to obtain segments of an object code file as needed during execution of a
program.

code segment dictionary
A memory structure that is associated with a process and that indexes the memory
addresses of the various segments of program code used by that process. The same code
segment dictionary can be shared by more than one process, provided that each process
is an instance of the same procedure. A code segment dictionary is also referred to as
the Dl stack.

coded character set
A character set in which each character is assigned a code value.

collating sequence
A set of rules establishing the order in which items will be arranged in a set. Common
collating sequences are alphabetical order and numerical order with, often, additional
rules for dealing with symbols, punctuation, and spaces.

Command and Edit (CANDE)
A time-sharing message control system (MCS) that enables a user to create and edit
files, and develop, test, and execute programs interactively.

control variable
The variable that controls the repetitive execution of instructions in a loop.

copy descriptor
A duplicate of a mom descriptor except the copy bit is set to 1. A copy descriptor is
derived from a mom descriptor, and multiple copy descriptors can reference the same
data segment.

coroutine
One of a group of processes that exist simultaneously, but take turns executing, so that
only one of the processes is executing at any given time. The coroutine that is currently
executing is called the active coroutine and the others are called continuable coroutines.

critical block

D

For a dependent process, the block of the highest lexical level that includes the
declaration of any critical objects used by the dependent process. The process that is
executing the critical block is called the parent of the dependent process. If the parent
exits the critical block while the dependent process is in use, the parent is discontinued,
and the dependent process also is discontinued.

Data Management System II (DMSII)
A specialized system software package used to describe a database and maintain the
relationships among the data elements in the database.

8600 0098-000 Glossary-3

Glossary

descriptor

DMSll

Dl stack

A computer word of a particular format that is used to reference data segments and code
segments in memory or on a disk.

See Data Management System II.

See code segment dictionary.

D2 stack (D[2] stack)

E
EBCDIC

(1) A stack initiated for each executing program that is used for storage of items
allocated at lexical level 2. The D2 stack is also referred to as the working stack.

(2) In the transaction processing system (TPS), data and procedures that are global to a
particular transaction base reside in the D2 stack of the transaction library, which is also
referred to as the <transaction base name> /CODE/HOSTLIB stack.

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256
graphic and control characters that are the native character set of most mainframe
systems.

entry point
A procedure or function that is a library object.

equivalent array
In ALGOL, an array that is declared to refer to the same data as another array.

escapement
The direction in which the active position is to advance after a character is displayed or
printed.

external sign flip-flop (EXTF)

EXTF

F
fault

FIB

Glossary-4

A flip-flop that is assigned values by, and affects the actions of, certain hardware
operators. The state of EXTF reflects information about the signs of numeric quantities.

See external sign flip-flop.

An error encountered by a hardware operator.

See file information block.

8600 0098-000

Glossary

:file equation
A mechanism for specifying the values of file attributes when a program is compiled or
executed. A file equation implicitly assigns a value to the FILECARDS task attribute.

:file information block (FIB)
A data structure in an object code file that contains information describing a file.

:float :flip-flop (FL TF)

FLTF

A flip-flop that is assigned values by, and a:ff ects the actions of, certain hardware
operators. The state ofFLTF reflects information about the insertion of floating
characters into character strings.

See float flip-flop.

fully specified formal procedure

G

In ALGOL, a procedure parameter (formal procedure) whose declaration includes the
word FORMAL. With such procedures, the compiler checks the parameters of the actual
procedure passed to it at compilation time.

global identifier

H
halt/load

Within a given block of an ALGOL, NEWP, or Pascal program, an identifier that is
declared in an outer block. A global identifier retains its values and characteristics as the
blocks to which it is global are entered and exited.

A system-initialization procedure that temporarily halts the system and loads the
operating system from a disk to main memory.

host program
A program to which separately compiled procedures can be bound by the Binder program
or by using the SEPCOMP facility.

International Standards Organization (ISO)
A division of the United Nations under which the Consultative Committee on
International Telegraphy and Telephony (CCITT) operates. The ISO was established in
194 7 to promote the development of standards to facilitate international trade, and to
develop mutual cooperation in areas of intellectual, scientific, technological, and economic
activity.

internationalization
The software, firmware, and hardware features that enable users to customize products
or accommodate the needs of a specific language, culture, or line of business.

8600 0098-000 Glossary-5

Glossary

1/0 control word (IOCW)

IOCW

ISO

L
lex level

The area in the 1/0 control block (IOCB) where information about the 1/0 operation to
be performed resides.

See 1/0 control word.

See International Standards Organization.

See lexical level.

lexical level (lex level)

library

(1) A nwnber that indicates the relative level of an addressing space within the stack of
an executing program. Lexical levels range from 0 through either 15 or 31, depending
on the computer family. A lower lexical level indicates a more global addressing space.
(2) A measure of how many other blocks a block is nested within. The outer block of a
program has a lex level of 2 or 3, depending on whether the program has a procedure
heading. Each block has a lex level one higher than the block it is nested within.

(1) A collection of one or more named routines or entry points that are stored in a file
and can be called by other programs. (2) A program that exports objects for use by user
programs.

library object
An object that is shared by a library and one or more user programs.

local identifier
An identifier that is declared within a given block of a program. The value or values
associated with that identifier inside the block are not associated with that identifier
outside the block.

localization
The act of adapting a system or product so that it complies with the standards and
functional requirements of a particular locality of line of business.

logical comparison
A comparison of two character strings based on the ordering sequence values and the
priority sequence values of the characters.

logical ordering

Glossary-6

The sorting of character strings based on the ordering sequence values and the priority
sequence values of the characters.

8600 0098-000

Glossary

M
Master Control Program (MCP)

An operating system on A Series and B 7900 systems. The MCP controls the operational
environment of the system by performing job selection, memory management, peripheral
management, virtual memory management, dynamic subroutine linkage, and logging of
errors and system utilization.

Master Control Program/Advanced Systems (MCP/AS)

MCP

MCP/AS

MLS

An operating system on A Series and B 7900 systems that supports Actual Segment
Descriptor (ASD) memory architecture. The MCP/AS controls the operational
environment of the system by performing job selection, memory management, peripheral
management, virtual memory management, dynamic subroutine linkage, and logging of
errors and system utilization.

See Master Control Program.

SeeMaster Control Program/Advanced Systems.

See MultiLingual System.

mom descriptor
The original descriptor for a data segment. For a given data segment in memory, there is
one mom descriptor and there can be many copy descriptors. A mom descriptor is a data
descriptor that has 0 (zero) in the copy bit.

MultiLingual system (MLS)

N

A system for developing and accessing output messages, online help text, and menu
screens in different natural languages, such as English, French, and Spanish.

natural language
A language written or spoken by humans.

NDLII
See Network Definition Language II.

Network Definition Language II (NDLII)

0
ODT

The Unisys language used to describe the physical, logical, and functional characteristics
of the data communications subsystem to network support processors (NSPs), line
support processors (LSPs), and data communications data link processors (DCDLPs).

See operator display terminal.

8600 0098-000 Glossary-7

Glossary

operator display terminal (ODT)
(1) A terminal or other device that is connected to the system in such a way that it
can communicate directly with the operating system. The ODT allows operations
personnel to accomplish system operations functions through either of two operating
modes: system command mode or data comm mode. (2) The name given to the system
control terminal (SCT) when it is used as an ODT. (3) A system control terminal (SCT)
configured for direct communication with the operating system. The ODT is used
primarily by operations personnel for entering commands that control and direct the
system and its resources. (4) See also system control terminal (SCT).

ordering sequence value (OSV)
An integer value between 1 and 255 that is assigned to each code position in a coded
character set and represents a relative ordering value. An ordering value of 0 signifies
the lowest ranking in the coded character set and an ordering value that is greater than
all other ordering values signifies the highest ranking. More than one code position can
be assigned the same ordering value.

original array

osv

p

In ALGOL, an array that is declared with a bound pair list. Each original array is distinct
from all other original arrays.

See ordering sequence value.

paged array

PIB

An array that is automatically divided (paged or segmented) at run time into smaller
segments.

See program information block (PIB).

primary coroutine
A program that initiates a procedure as a coroutine.

priority sequence value (PSV)

process

Glossary-8

An integer value between 1 and 15 that is assigned to each code position in a coded
character set and represents a relative priority within an ordering sequence value
(OSV). Each code position that has a unique ordering value is assigned a priority value of
1. For code positions with the same OSV, a priority value of 1 signifies the lowest ranking
in the OSV, and a priority value which is greater than all other priority values signifies
the highest ranking.

(1) The execution of a program or of a procedure that was initiated. The process has
its own process stack and process information block (PIB). It also has a code segment
dictionary, which can be shared with other processes that are executions of the same
program or procedure. (2) A software application; that is, any activity or systematic
sequence of operations that produces a specified result.

8600 0098-000

Glossary

program information block (PIB)

PSV

R

A memory structure that is associated with each process stack and code segment
dictionary. The PIB contains control information that is visible only to the operating
system. The PIB for a process stack also contains a reference to a task attribute block
(TAB).

See priority sequence value.

ready queue (READYQ)

READYQ

A list, maintained by the operating system, of the processes that are waiting for service
from a processor.

See ready queue.

referred array
In ALGOL, an array identifier that refers to data in another array through array row
equivalence, array reference assignment, or array specification in a PROCEDURE
declaration.

remote job entry (RJE)
A Unisys message control system (MCS) that allows jobs, data, and control commands to
be sent to a central system from a remote card reader; RJE also allows output of data
from the central system to be sent to remote peripherals .

. reserved word

RJE

s

A word that has special meaning within a programming language and that generally
cannot be redefined or redeclared by the programmer.

See remote job entry.

save memory

scope

SCT

An area of memory that cannot be overlaid as long as the item with which it is associated
is allocated.

(1) Those portions of a program or programs that can contain statements that access
a particular object. (2) In ALGOL or NEWP, the portion of a program in which an
identifier can be used successfully to denote its corresponding values and characteristics.

See system control terminal.

8600 0098-000 Glossary-9

Glossary

secondary coroutine
A procedure initiated as a coroutine by a program.

segment dictionary
See code segment dictionary.

segmented array
See paged array.

separately compiled procedure (SEPCOMP)
In ALGOL, a procedure that is compiled on its own, rather than as part of a program, so
that the procedure can be bound into a host program.

SEPCOMP

stack

See separately compiled procedure.

A region of memory used to store data items in a particular order, usually on a last-in,
first-out basis. Synonym for process stack.

subroutine
A self-contained section of a program to which program control is transferred when the
subroutine is invoked and that transfers control back to the point of invocation when it is
exited.

substitution
(1) A predetermined string of up to 3 characters that can be ordered as if the string were
1 character. The ordered character string is assigned a single ordering sequence value
(OSV) and a single priority sequence value (PSV). For example, in Spanish the letter
pair ch is ordered as if it were a single letter, different from either c or h and ordered
between c and d. (2) A single character that can be used to generate a string of two or
three OSV s and PSV s. For example, the German sharp s is ordered as though it were
ss.

system control terminal (SCT)

T
TAB

(1) A terminal or other device that is connected to the system in such a way that it
can communicate directly with the maintenance processor. An SCT can operate in
maintenance mode or in operator display terminal (ODT) mode. On some systems, the
SCT also provides a remote support mode. (2) A terminal used to enter information.
An SCT can be used three ways: as an operator display terminal (ODT) to interface
with the operating system, as a maintenance display terminal (MDT) to interface with
the maintenance subsystem, or as a remote display terminal (RDT) to interface with
remote support. The windows providing these uses are available once the automatic
initialization sequence has finished.

See task attribute block.

Glossary-10 8600 0098-000

task

Glossary

(1) A dependent process. (2) A single, complete unit of work performed by the system,
such as compiling or executing a program or copying a file from one disk to another.
Tasks are initiated by a job, by another task, or directly by a user. See also process.

task attribute block (TAB)

TCP/IP

thunk

A memory structure that stores the values of task attributes associated with a given task
variable. Prior to the Mark 3.9 system software release, this information was part of the
process information block (PIB).

See Transmission Control Protocol/Internet Protocol.

A compiler-generated procedure that calculates and returns the value of a constant or
expression passed to a call-by-name formal parameter. The thunk is executed each time
the formal parameter is used. A thunk is also referred to as an accidental entry.

touched array
An array for which memory has been allocated by the operating system.

Transmission Control Protocol/Internet Protocol (TCP/IP)

truth set

u

A family of protocols that were originally developed for use in a Department of Defense
network, and which have been widely adopted as standard protocols for multivendor
networks. The applications protocols typically supported by TCP /IP are File Transfer
Protocol (FTP), Simple Mail Transfer Protocol (SMTP), and Telnet.

A declared set of characters upon which membership tests can be made.

unpaged array
An array that is not automatically divided (paged or segmented) at run time into smaller
segments. Arrays smaller than 1024 words are always unpaged.

unsegmented array
See unpaged array.

up-level event
In ALGOL, the situation that arises when either of the following is true: (1) The block
containing an event is exited before the block containing the interrupt attached to the
event is exited. (2) The block containing the finished event for a direct I/0 statement is
exited before the block containing the direct array is exited.

up-level pointer assignment
In ALGOL, any construct that could result in a pointer pointing to an array declared
at a higher lexical level than that at which the pointer is declared. Such a construct is
disallowed by the compiler, because the array can be deallocated, leaving the pointer
pointing to an invalid portion of memory.

8600 0098-000 Glossary-11

Glossary

w
WFL

word

See Work Flow Language.

A unit of computer memory. On A Series and B 7900 systems, a word consists of 48 bits
used for storage plus tag bits used to indicate how the word is interpreted.

word array
IIi ALGOL, an array whose elements are single- or double-precision operands. Contrast
with character array.

Work Flow Language (WFL)
The Unisys language used on A Series systems for constructing jobs that compile and
run programs. WFL includes variables, expressions, and flow-of-control statements that
offer the programmer a wide range of capabilities with regard to task control.

working stack
See D2 stack.

z
zone field

The high order, or most significant, four bits of a byte.

Glossary-12 8600 0098-000

Bibliography

A Series ALGOL Programming Reference Manual, Volume 2: Product Interfaces
(form 8600 0734). Unisys Corporation.

A Series ALGOL Test and Debug System (TADS) Programming Guide (form 1169539).
Unisys Corporation.

A Series Binder Programming Reference Manual (form 8600 0304). Unisys
Corporation.

A Series CANDE Operations Reference Manual (form 8600 1500). Unisys
Corporation.

A Series Distributed Systems Service (DSS) Operations Guide (form 8600 0122). Unisys
Corporation.

A Series Editor Operations Guide (form 8600 0551). Unisys Corporation.

A Series File Attributes Programming Reference Manual (form 8600 0064). Unisys
Corporation. Formerly A Series 1/0 Subsystem Programming Reference
Manual.

A Series 110 Subsystem Programming Guide (form 8600 0056-000). Unisys
Corporation. Formerly A Series 1/0 Subsystem Programming Reference
Manual.

A Series Menu-Assisted Resource Control (MARC) Operations Guide (form 8600 0403).
Unisys Corporation.

A Series Message Translation Utilit:y (MSGTRANS) Operations Guide
(form 8600 0106). Unisys Corporation. Formerly A Series Message Translation
Utilit:y Operations Guide.

A Series MultiLingual System (MLS) Administration, Operations, and Programming
Guide (form 8600 0288). Unisys Corporation.

A Series System Architecture Reference Manual, Volume 2 (form 5014954). Unisys
Corporation.

A Series System Commands Operations Reference Manual (form 8600 0395). Unisys
Corporation.

A Series System Software Utilities Operations Reference Manual (form 8600 0460).
Unisys Corporation.

A Series Task Attributes Programming Reference Manual (form 8600 0502). Unisys
Corporation.

8600 0098-000 Bibliography-I

Bibliography

A Series Work Flow Language (WFL) Programming Reference Manual
(form 8600 1047). Unisys Corporation.

Information Processing-ISO 7-Bit and 8-Bit Coded Character Sets - Code-extension
Techniques. Geneva: International Organization for Standardization, 1986.

Bibliography-2 8600 0098-000

Index

A

<abs function> , 5-3 7
<accept statement> , 4-1
ACCEPTCLOSE, 4-139
ACCEPTOPEN, 4-139
accidental entry (thunk), 3-89
<action labels or finished event>, 4-101

semantics, 4-101
<actual parameter part> , 4-84
<actual parameter> , 4-84
<actual text part> , 3-13
<actual text>, 3-14
ACTUALNAME option of LIBRARY

declaration, 3-93
addition, 5-3
address equation, 3-10
ALPHA, 3-119
ALPHA6, 3-119
ALPHA7, 3-119
ALPHAS; 3-119
AND, 5-12
ANYFAULT fault (ON statement example),

4-78
<append version>, 6-42
< arccos function> , 5-37
< arcsin function> , 5-37
< arctan function> , 5-37
< arctan2 function>, 5-37
<arithmetic assignment> , 4-4
<arithmetic attribute specification> , 3-29
<arithmetic attribute>, 4-6
<arithmetic case expression> , 5-7
<arithmetic concatenation expression> , 5-8
<arithmetic direct array attribute>, 4-6
<arithmetic expression>, 5-2

precision of, 5-2
<arithmetic file attribute>, 4-6
<arithmetic function designator>, 5-26
<arithmetic intrinsic name> , 5-26

alphabetical listing of, 5-33
<arithmetic operand>, 5-6
<arithmetic operator>, 5-3

8600 0098-000

arithmetic operators, 5-3
DIV, 5-3
MOD, 5-3
MUX, 5-3
precedence of, 5-4
TIMES, 5-3
+, -, *, /, 5-3
**, 5-3

arithmetic primaries, 5-6
strings used as, 5-7

<arithmetic primary> , 5-6
<arithmetic relation> , 5-16
<arithmetic table membership> , 5-19
<arithmetic task attribute> , 4-6
<arithmetic type transfer variable>, 4-5
<arithmetic update assignment>, 4-7
<arithmetic variable>, 4-4
arithmetic-valued attributes

assigning values
arithmetic assignment target

<arithmetic attribute>, 4-6
FILE declaration, 3-28
multiple attribute assignment

statement, 4-73
interrogating

arithmetic operand <arithmetic
attribute>, 5-6

VALUE function, 5-75
<arithmetic-valued direct array attribute

name>, 4-6
<arithmetic-valued file attribute name> ,

3-30
<arithmetic-valued task attribute name> ,

4-6
array

allocation, 3-2
array class, 3-3
array reference, 3-8
array reference assignment, 4-8

lndex-1

Index

array row, 3-6
array row equivalence, 3-5
array row read, 4-100
array row write, 4-168
bits per element, 3-3
bound pair list, 3-4
character array, 3-3
declarations

ARRAY, 3-1
ARRAY REFERENCE, 3-8
DIRECT ARRAY, 3-17
STRING ARRAY, 3-107
VALUE ARRAY, 3-121

default type, 3-3
descriptor, 3-4
dimensions, 3-5
direct array, 3-1 7
dumping declared arrays, 4-90
element width, 3-3
equivalent, 3-5
functions

ARRAYSEARCH, 5-38
CHECKSUM, 5-40
LISTLOOKUP, 5-57
MASKSEARCH, 5-58
SIZE, 5-68

in sort procedures, 4-154
long (unpaged), 3-1
lower and upper bounds, 3-4
NOSTACKARRAYS compiler control

option, 6-30
original, 3-5
OWN,3-2
paged (segmented), 3-1
referenced (touched), 3-2
referred, 3-5
resizing referenced unpaged

(unsegmented) arrays, 4-134
row selector, 3-7
statements

DEALLOCATE,4-40
FILL, 4-47
RESIZE, 4-133

string array, 3-107
subarray selector, 4-9
unpaged (unsegmented), 3-1
value array, 3-121
word array, 3-3
ZIP WITH array, 4-172

<array class>, 3-3
<array declaration> , 3-1
<array designator> , 4-9

lndex-2

for SIZE function, 5-68
<array identifier> , 3-2
<array name>, 3-7
array parameters, 3-91, 3-93
<array reference assignment> , 4-8
<array reference declaration> , 3-8
< array reference identifier>, 3-9
<array reference variable> , 4-8
<array row equivalence>, 3-5
array row read, 4-100
<array row resize parameters> , 4-134
array row write, 4-168
< array row>, 3-6

in LIST declaration, 3-66
<array specification>, 3-90
<array type> , 3-90
arrays of strings, 3-107
< arraysearch function> , 5-38
<ASCII character> , 2-12
<ASCII code> , 2-12
<ASCII option>, 6-12
<ASCII string constant> , 5-31
<ASCII string>, 2-12
assignment statement

multiple attribute assignment statement,
4-73

ASSIGNMENT statement, 4-3
arithmetic assignment, 4-3
array reference assignment, 4-8
Boolean assignment, 4-10
complex assignment, 4-12
mnemonic attribute assignment, 4-13
pointer assignment, 4-14
string assignment, 4-16
SW AP statement, 4-156
task assignment, 4-18

<assignment statement> , 4-3
< associateddata option>, 4-37, 4-79
< atanh function> , 5-39
ATEND option, 4-79
<attach statement> , 4-19
attribute handling

assigning arithmetic-valued attributes
arithmetic assignment target

<arithmetic attribute>, 4-6
FILE declaration, 3-28
multiple attribute assignment

statement, 4-73
assigning Boolean-valued attributes

Boolean assignment target <Boolean
attribute> , 4-11

FILE declaration, 3-28

8600 0098-000

multiple attribute assignment
statement, 4-73

assigning pointer-valued attributes
FILE declaration, 3-28
multiple attribute assignment

statement, 4-73
replace family-change statement, 4-129
replace pointer-valued attribute

statement, 4-130
assigning string-valued attributes

LIBRARY declaration, 3-62
string assignment target < string-valued

library attribute>, 4-17
assigning task-valued attributes

task assignment, 4-18
assigning the LIBACCESS library

attribute
LIBRARY declaration, 3-62
mnemonic attribute assignment, 4-13

assigning translate-table-valued attributes
FILE declaration, 3-28
multiple attribute assignment

statement, 4-73
interrogating arithmetic-valued attributes

arithmetic operand <arithmetic
attribute> , 5-6

interrogating Boolean-valued attributes
Boolean operand <Boolean attribute>,

5-15
interrogating event-valued attributes

<event designator>, 3-24
interrogating pointer-valued attributes

REPLACE statement source part
<pointer-valued attribute> , 4-108,
4-127

interrogating string-valued attributes
string primary <string-valued library

attribute>, 5-30
interrogating task-valued attributes

<task designator>, 3-114
VALUE function, 5-75

<attribute parameter list>, 4-6
<attribute parameter specification>, 4-6
<attribute specifications> , 3-29
< autobind option>, 6-13
AVAILABLE control option, 4-20
<available function>, 5-39
AVAILABLE option, 4-79
AVAILATEND option, 4-79
< awaitopen control option>

AVAILABLE, 4-20
DONTWAIT, 4-20

8600 0098-000

WAIT, 4-20
< awaitopen options>, 4-20
< awaitopen statement>, 4-20

B

bad GO TO, 4-58
<basic symbol>, 2-1
<BCLcode>, 2-12
<BCL option>, 6-14
< BCL string> , 2-12
BDMSALGOL

compile-time facility in, 7-1
< beginsegment option>, 6-14
<binary code> , 2-10
binary read, 4-99
<binary string>, 2-10
binary write, 4-167
<bind option> , 6-15
<binder command>, 6-9
<binder option>, 6-15
binding

AUTOBIND option, 6-13
BIND option, 6-15
BINDER option, 6-15
DONTBIND option, 6-16
DUMPINFO option, 6-16
EXTERNAL option, 6-17
HOST option, 6-18
INITIALIZE option, 6-21
INTRINSICS option, 6-21
LEVEL option, 6-22
LIBRARY option, 6-22
LOADINFO option, 6-24
PURGE option, 6-32
STOP option, 6-38
USE option, 6-41

bit manipulation, 5-8
concatenation expression, 5-8
partial word expression, 5-11

<bit manipulation expression>, 5-8
< block>' 1-1
blocking, 4-59
<Boolean assignment>, 4-10

Index

<Boolean attribute specification> , 3-29
<Boolean attribute>, 4-11
<Boolean case expression> , 5-15
<Boolean concatenation expression> , 5-8
Boolean data type

Boolean array declaration, 3-1
Boolean array reference declaration, 3-8

lndex-3

Index

Boolean assignment, 4-10
BOOLEAN declaration, 3-10
Boolean expression, 5-12
Boolean functions

ACCEPT statement, 4-2
AVAILABLE function, 5-39
BOOLEAN function, 5-39
CHANGEFILE statement, 4-28
CHECKPOINT statement, 4-30
FIX statement, 4-49
FREE statement, 4-55
HAPPENED function, 5-53
READ statement, 4-93
READLOCK function, 5-63
REMOVEFILE statement, 4-107
SEEK statement, 4-147
SPACE statement, 4-155
WAIT statement, 4-160
WRITE statement, 4-164

Boolean operand internal structure, C-16
Boolean procedure declaration, 3-86
Boolean value array declaration, 3-121
direct Boolean array declaration, 3-17
functions with Boolean parameters

READLOCK function, 5-63
functions with Boolean parameters REAL

function, 5-63
intrinsic functions returning values of type

BOOLEAN, 5-36
width of Boolean array elements, 3-3

< Boolean declaration>, 3-10
<Boolean direct array attribute> , 4-11
<Boolean expression>, 5-12
<Boolean file attribute>, 4-11
<Boolean function designator> , 5-26
<Boolean function> , 5-39
<Boolean identifier> , 3-10
<Boolean intrinsic name>, 5-26

alphabetical listing of, 5-36
Boolean operand internal structure, C-16
<Boolean operand>, 5-15
<Boolean operator>, 5-12
Boolean operators, 5-12

precedence of, 5-14
<Boolean option>, 6-9
Boolean primaries, 5-15
<Boolean primary>, 5-15
<Boolean task attribute>, 4-11
<Boolean type transfer variable>, 4-ll
<Boolean update assignment>, 4-12
<Boolean value>, 5-16
<Boolean variable>, 4-10

lndex-4

for <fault number>, 4-76
Boolean-valued attributes

assigning values
Boolean assignment target <Boolean

attribute>, 4-11
FILE declaration, 3-28
multiple attribute assignment

statement, 4-73
interrogating

Boolean operand <Boolean attribute>,
5-15

VALUE function, 5-75
<Boolean-valued direct array attribute

name>,4-11
<Boolean-valued file attribute name> , 3-30
<Boolean-valued task attribute name>,

4-12
<bound pair list>, 3-4
bound pair lists in array declarations, 3-4
<bound pair> , 3-4
< bounds part> , 3-20
<bracket>, 2-2
buffering, 4-59
by-calling procedure, 3-92
BYFUNCTION library access value, 8-8
BYINITIATOR library access value, 8-9
BYTITLE library access value, 8-8

c
<cabs function>, 5-39
<call statement>, 4-22
call-by-name parameters, 3-88
call-by-reference parameters, 3-89
call-by-value parameters, 3-88
calling procedures with parameters, 4-84
<cancel statement>, 4-23
CARD file, 6-3
<case body>, 4-24
<case expression>, 5-20
<case head>, 4-24
<case statement>, 4-24
CAT, 5-32
<cause statement>, 4-26
< causeandreset statement>, 4-27
< ccos function>, 5-39
CCS, (See coded character set)
CCSINFO procedure, 9-24
CCSTOCCS _TRANS_ TABLE procedure,

9-27

8600 0098-000

CCSTOCCS TRANS TABLE ALT - - -
procedure,9-28

CCSTOCCS _TRANS_ TEXT procedure, 9-30
ccsversion

definition of, 9-4
selecting, 9-4

< ccsversion name>, 3-71
CCSVSN _NAMES_ NUMS procedure, 9-32
CENTRALSTATUS procedure, 9-34
CENTRALSUPPORT library call, 9-21
CENTRALSUPPORT library procedures,

9-11
< cexp function> , 5-39
< changefile statement> , 4-28
character array, 3-3
<character array identifier>, 3-2
<character array name> , 5-28
<character array part> , 5-28
<character array row> , 5-28
character set, 9-1, 9-4

designating, 9-5
<character set> , 3-115
<character size> , 5-60
character string manipulation

ASCII collating sequence, C-4
ASCII option, 6-12
BCL collating sequence, C-4
BCL option, 6-14
character array, 3-3
default character type, C-12
DELTA function, 5-44
DOUBLE function, 5-48
EBCDIC collating sequence, C-4
INTEGER function, 5-54
internal representation of characters, C-1
intrinsic functions returning values of type

POINTER, 5-36
OFFSET function, 5-59
PICTURE declaration, 3-74
pointer assignment, 4-14
POINTER declaration, 3-83
pointer expression, 5-27
POINTER function, 5-60
pointer relation, 5-17
READLOCK function, 5-63
REAL function, 5-63
REMAININGCHARS function, 5-63
REPLACE statement, 4-108
SCAN statement, 4-143
SIZE function, 5-68
string literal, 2-9
string relation, 5-17

8600 0098-000

Index

TRANSLATETABLE declaration, 3-115
TRUTHSET declaration, 3-118

<character type>, 3-3
<check option> , 6-15
checkpoint, 4-30

checkpoint/restart messages, 4-33
effect on the PROCESSID function, 5-62
with the sort intrinsic, 4-152

<checkpoint statement> , 4-30
<checksum function> , 5-40
< cln function> , 5-40
<close file part> , 4-35
<close options>

CRUNCH, 4-36
LOCK, 4-36
PURGE,4-36
REEL, 4-36
REWIND, 4-36

<close statement> , 4-35
close with retention, 4-37
< closedisposition option> , 4-37
CNV _ADD procedure, 9-35
CNV CONVERTCURRENCY STAR - -

procedure,9-38
CNV _ CONVERTDATE _STAR procedure,

9-39
CNV CONVERTNUMERIC STAR - -

procedure,9-41
CNV _ CONVERTTIME _STAR procedure,

9-42
CNV _ CURRENCYEDIT procedure, 9-44
CNV _ CURRENCYEDITTMP procedure,

9-45
CNV _DELETE procedure, 9-4 7
CNV _ DISPLAYMODEL procedure, 9-48
CNV _ FORMATDATE procedure, 9-50
CNV _ FORMATDATETMP procedure, 9-51
CNV _ FORMATTIME procedure, 9-53
CNV _ FORMATTIMETMP procedure, 9-54
CNV _ FORMSIZE procedure, 9-56
CNV _INFO procedure, 9-57
CNV _MODIFY procedure, 9-60
CNV _NAMES procedure, 9-63
CNV _SYMBOLS procedure, 9-64
CNV_SYSTEMDATETIME procedure, 9-68
CNV _ SYSTEMDATETIMETMP procedure,

9-70
CNV _TEMPLATE procedure, 9-72
CNV _ V ALIDATENAME procedure, 9-74
CODE file, 6-4
code optimization

BEGINSEGMENT option, 6-14

lndex-5

Index

ENDSEGMENT option, 6-17
OPTIMIZE option, 6-31
TARGET option, 6-40

<code option>, 6-16
code-compatible families, 6-41
coded character set, 9-4

selecting, 9-4
<column width>, 4-98
<comment characters>, 2-8
<comment remark>, 2-8
<commentary>, 4-102
<compare procedure> , 4-150
COMPARE TEXT USING ORDER INFO - - - -

procedure, 9-75
comparing text

for internationalization, 9-7
compile-time facility

<compile-time arithmetic expression>,
7-1

<compile-time begin statement>, 7-3
<compile-time Boolean expression>, 7-4
compile-time compiler control options, 7-6

CTLIST option, 7-6
CTMON option, 7-6
C'ITRACE option, 7-6
LISTSKIP option, 7-6

<compile-time define identifier> , 7-3
< compile-time define statement> , 7-3
<compile-time for statement>, 7-3
<compile-time identifier>, 7-2
<compile-time if statement>, 7-4
< compile-time invoke stateme_!lt >, 7-4
< compile-time let statement>, 7-4
< compile-time statement>, 7-2
<compile-time text>, 7-3
< compile-time thru statement>, 7-5
<compile-time variable declaration>, 7-1
<compile-time variable>, 7-1
<compile-time while statement>, 7-5
< ctlist option>, 7-6
< ctmon option>, 7-6
< cttrace option>, 7-6
< definition>, 7-5
< listskip option>, 7-6
< number identifier>, 7-1
<starting value>, 7-1
<vector length>, 7-1

compiler control options, 6-12
ASCII option, 6-12
AUTOBIND option, 6-13
BCL option, 6-14
BEGINSEGMENT option, 6-14

lndex-6

BIND option, 6-15
BINDER option, 6-15
CHECK option, 6-15
CODE option, 6-16
DONTBIND option, 6-16
DUMPINFO option, 6-16
ENDSEGMENT option, 6-17
ERRLIST option, 6-17
ERRORLIMIT option, 6-23
EXTERNAL option, 6-17
FORMAT option, 6-18
GO TO option, 6-18
HOST option, 6-18
INCLNEW option, 6-19
INCLSEQ option, 6-19
INCLUDE option, 6-19
INITIALIZE option, 6-21
INSTALLATION option, 6-21
INTRINSICS option, 6-21
LEVEL option, 6-22
LIBRARY option, 6-22
LIMIT option, 6-23
LINEINFO option, 6-23
LIST option, 6-23
LISTDELETED option, 6-23
LISTOMI'ITED option, 6-24
LISTP option, 6-24
LOADINFO option, 6-24
MAKEHOST option, 6-26
MCP option, 6-28
MERGE option, 6-28
NEW option, 6-29
NEWSEQERR option, 6-29
NOBCL option, 6-29
NOBINDINFO option, 6-30
NOSTACKARRAYS option, 6-30
NOXREFLIST option, 6-30
OLDRESIZE option, 6-31
OMIT option, 6-31
OPTIMIZE option, 6-31
PAGE option, 6-31
P ARAMCHECK option, 6-32
PURGE option, 6-32
SEGDESCABOVE option, 6-32
SEGS option, 6-32
SEPCOMP option, 6-33
SEQ option, 6-34
SEQERR option, 6-35
sequence base option, 6-35
sequence increment option, 6-35
SHARING option, 6-35
SINGLE option, 6-36

8600 0098-000

STACK option, 6-37
STATISTICS option, 6-37
STOP option, 6-38
TADS option, 6-38
TARGET option, 6-40
TIME option, 6-41
USE option, 6-41
user option, 6-41
VERSION option, 6-42
VOID option, 6-43
VOIDT option, 6-43
W ARNSUPR option, 6-43
WRITEAFTER option, 6-44
XDECS option, 6-44
XREF option, 6-44
XREFFILES option, 6-46
XREFS option, 6-46
$ option, 6-46

Compiler control options
LISTINCL option, 6-24

<compiler control record> , 6-7
compiler input files, 6-3
compiler output files, 6-4
< compiletime function>, 5-40
<complex assignment>, 4-13
<complex case expression>, 5-22
complex data type

complex array declaration, 3-1
complex array reference declaration, 3-8
complex assignment, 4-12
COMPLEX declaration, 3-11
complex expression, 5-21
complex functions

CCOS function, 5-39
CEXP function, 5-39
CLN function, 5-40
COMPLEX function, 5-41
CONJUGATE function, 5-41
CSIN function, 5-42
CSQRT function, 5-42

complex operand internal structure, C-19
complex procedure declaration, 3-86
complex relation, 5-16
complex value array declaration, 3-121
functions with complex parameters

CABS function, 5-39
functions with complex parameters !MAG

function, 5-54
functions with complex parameters REAL

function, 5-63
intrinsic functions returning values of type

COMPLEX, 5-36

8600 0098-000

Index

width of complex array elements, 3-3
<complex declaration>, 3-11
<complex equality operator>, 5-17
<complex expression>, 5-21
<complex function designator>, 5-26
<complex function>, 5-41
<complex identifier>, 3-11
<complex intrinsic name> , 5-26

alphabetical listing of, 5-36
complex operand internal structure, C-19
<complex operand>, 5-22
<complex operator>, 5-21
<complex primary> , 5-22
<complex relation> , 5-17
<complex update assignment>, 4-13
<complex variable>, 4-13
<compound statement> , 1-1
<concatenation expression>, 5-8
<concatenation>, 5-9
<condition> , 4-109
<conditional arithmetic expression> , 5-7
<conditional Boolean expression>, 5-15
<conditional complex expression>, 5-22
<conditional designational expression> ,

5-25
<conditional expression>'· 5-23
<conditional pointer expression>, 5-28
<conjugate function>, 5-41
< connecttimelimit option> , 4-20
<constant arithmetic expression> , 5-7
<constant expression> , 3-122
<constant list> , 3-122
<constant string expression>, 5-31
<constant>, 3-122
contents of printer listing

CODE option, 6-16
FORMAT option, 6-18
LIST option, 6-23
LISTDELETED option, 6-23
LISTINCL option, 6-24
LISTOMITTED option, 6-24
LISTP option, 6-24
PAGE option, 6-31
SEGS option, 6-32
SINGLE option, 6-36
STACK option, 6-37
TIME option, 6-41
W ARNSUPR option, 6-43

<continue statement>, 4-39
<control character>, 3-78
<control part>, 3-20
CONVENTION task attribute, 9-3

lndex-7

Index

conventions
for localization, establishing, 9-3

<copy number>, 4-4 7
<core-to-core blocking part>, 4-97
<core-to-core blocking>, 4-97
<core-to-core file part> , 4-96
<core-to-core part>, 4-96
<core-to-core record size> , 4-97
<cos function> , 5-41
< cosh function> , 5-41
< cotan function> , 5-41
<count part> , 4-109
creating multilingual messages, guidelines for,

9-8
critical block, 4-87
cross reference, 6-44

NOXREFLIST option, 6-30
XDECS option, 6-44
XREF option, 6-44
XREFFILE file, 6-6
XREFFILES option, 6-46
XREFS option, 6-46

CRUNCH <close option>, 4-36
< csin function>, 5-42
< csqrt function>, 5-42
<cycle increment>, 6-42

D

< dabs function> , 5-42
< dalpha function>, 5-42
< dand function>, 5-42
< darccos function>, 5-42
< darcsin function>, 5-43
< darctan function>, 5-43
< darctan2 function>, 5-43
data class, definition of, 9-6
data communications protocols, international,

9-1
data descriptors

internal structure, C-20
<data error label>, 4-101
< data exponent part> , 3-41
data number, 3-40
DCALGOL

compile-time facility in, 7-1
< dcos function>, 5-43
< dcosh function>, 5-43
<deallocate statement> , 4-40
<decimal fraction>, 2-5
< Jei:.::k'l!ru function>, 5-43

index-8

<decimal number>, 2-5
<decimal places>, 3-35
<declaration list>, 1-1
default

settings for localization, 9-2
default character type, C-12
default settings

for internationalization, 9-2
<define declaration>, 3-12
<define identifier> , 3-12
<define invocation>, 3-13
<definition>, 3-12

extension in the compile-time facility, 7-5
<delimiter>, 2-2
< delinklibrary function> , 5-44
< delta function> , 5-44
< deqv function>, 5-45
< derf function>, 5-45
< derfc function>, 5-45
<designational case expression>, 5-25
<designational expression> , 5-24
<destination characters>, 3-115
<destination>, 4-108
<detach statement>, 4-41
<device> , 4-30
< dexp function>, 5-45
< dgamma function>, 5-45
diagnostic tools

DUMP declaration, 3-20
MONITOR declaration, 3-67
PROGRAMDUMP statement, 4-89
STATISTICS option, 6-37
TADS option, 6-38

<digit convert part>, 4-109
<digit>, 2-1
dimensionality of arrays, 3-5
< dimp function>, 5-45
< dinteger function>, 5-46
< dintegert function>, 5-46
<direct array declaration> , 3-17
< direct array identifier>, 3-17
<direct array name>, 3-18
< direct array reference identifier>, 3-9
<direct array row equivalence>, 3-17
<direct array row>, 3-18
< direct file identifier> , 3-29
direct I/O, 4-59
<direct switch file identifier>, 3-108
<directory element>, 4-29
< disable statement> , 4-42
·<disabling on statement>, 4-77
<disk size> , 4-152

8600 0098-000

<display statement>, 4-42
<disposition>, 4-30
DN, 5-3
division, 5-3
< dlgamma function>, 5-46
<din function>, 5-4 7
< dlog function> , 5-4 7
DMALGOL

compile-time facility in, 7-1
< dmax function>, 5-4 7
< dmin function>, 5-4 7
< dnabs function>, 5-4 7
< dnormalize function>, 5-4 7
< dnot function>, 5-4 7
<do statement> , 4-43
< dontbind option>, 6-16
DONTW AIT control option, 4-20
DONTWAIT option, 4-79
< dor function>, 5-48
double data type

arithmetic assignment, 4-3
arithmetic expression, 5-2
arithmetic relation, 5-16
direct double array declaration, 3-17
double array declaration, 3-1
double array reference declaration, 3-8
DOUBLE declaration, 3-19
double functions

DABS function, 5-42
DAND function, 5-42
DARCCOS function, 5-42
DARCSIN function, 5-43
DARCTAN function, 5-43
DARCTAN2 function, 5-43
DCOS function, 5-43
DCOSH function, 5-43
DECIMAL function, 5-43
DEQV function, 5-45
DERF function, 5-45
DERFC function, 5-45
DEXP function, 5-45
DGAMMA function, 5-45
DIMP function, 5-45
DINTEGER function, 5-46
DLGAMMA function, 5-46
DLN function, 5-4 7
DLOG function, 5-4 7
DMAX function, 5-4 7
DMIN function, 5-4 7
DNABS function, 5-4 7
DNORMALIZE function, 5-4 7
DNOT function, 5-4 7

8600 0098-000

DOR function, 5-48
DOUBLE function, 5-48
DSCALELEFT function, 5-49
DSCALERIGHT function, 5-49
DSCALERIGHTT function, 5-50
DSIN function, 5-50
DSINH function, 5-50
DSQRT function, 5-50
DTAN function, 5-50
DT ANH function, 5-50
<pot function>, 5-61
POTC function, 5-61
POTH function, 5-61
POTL function, 5-61

Index

double procedure declaration, 3-86
double value array declaration, 3-121
double-precision operand internal

structure, C-17
intrinsic functions returning values of type

DOUBLE, 5-35
width of double array elements, 3-3

< double declaration> , 3-19
< double function> , 5-48
< double identifier>, 3-19
<double variable>, 4-156
double-precision operand internal structure,

C-17
<drop function>, 5-48
DS (Discontinue) ODT command, 8-5
< dscaleleft function> , 5-49
< dscaleright function>, 5-49
< dscalerightt function> , 5-50
< dsin function> , 5-50
< dsinh function>, 5-50
< dsqrt function>, 5-50
< dtan function>, 5-50
< dtanh function> , 5-50
dump, (See < programdump statement>)
<dump declaration>, 3-20
<dump list>, 3-20
<dump parameters>, 3-20
< dumpinfo option>, 6-16
<dynamic procedure specification>, 3-92

E

<EBCDIC character>, 2-11
<EBCDIC code>, 2-11
<EBCDIC string constant> , 5-31
<EBCDIC string literal>, 3-25
<EBCDIC string>, 2-11

lndex-9

Index

< editing modifier>, 3-36
editing phrase

A editing phrase letter, 3-37
using pointers and string variables, 3-38

C editing phrase letter, 3-37
using pointers and string variables, 3-38

D editing phrase letter, 3-40
decimal places, 3-36
E editing phrase letter, 3-42
editing modifiers, 3-56
F editing phrase letter, 3-42
field width, 3-36
G editing phrase letter, 3-43
H editing phrase letter, 3-43
I editing phrase letter, 3-46
J editing phrase letter, 3-4 7
K editing phrase letter, 3-43
L editing phrase letter, 3-48
multiple editing phrases, 3-32
0 editing phrase letter, 3-49
P editing modifier, 3-56
R editing phrase letter, 3-50
repetition of, 3-34
S editing phrase letter, 3-51
simple string literal, 3-33
T editing phrase letter, 3-52
U editing phrase letter, 3-53
V editing phrase letter, 3-54
variable editing phrases, 3-36
X editing phrase letter, 3-55
Z editing phrase letter, 3-55
$ editing modifier, 3-56

< editing phrase>, 3-35
<editing specifications> , 3-32
EMPTY, 5-32
EMPTY6, 5-32
EMPTY7, 5-32
EMPTY8, 5-32
< enable statement> , 4-44
<enabling on statement>, 4-7 4
<end remark>, 2-8
<end-of-record>, 4-103
<ending index> , 5-40
< endsegment option> , 6-17
<entier function>, 5-51
entry point, (See library)
<environment> , 6-26
<eoflabel>, 4-101
<equality operator>, 5-18
< equation part>, 3-10
equivalent data comparison

in internationalization, 9-7

lndex-10

EQV, 5-12
ERASE statement, 4-45
< erffunction > , 5-51
< erfc function>, 5-51
<err list option>, 6-17
error handling for libraries, 8-5
< error limit> , 6-23
error messages

for formatted input, A-2
for formatted output, A-1
for free-field input, A-1

error values
for CENTRALSUPPORT procedures,

9-104
<error limit option>, 6-23
ERRORS file, 6-5
<escape remark>, 2-8
< escape text> , 2-8
<event array declaration>, 3-23
< event array designator>, 3-25
< event array identifier> , 3-23

for SIZE function, 5-68
< event declaration> , 3-23
< event designator> , 3-24
event handling

ATTACH statement, 4-19
AVAILABLE function, 5-39
CAUSE statement, 4-26
CAUSEANDRESET statement, 4-27
DETACH statement, 4-41
EVENT ARRAY declaration, 3-23
EVENT declaration, 3-23
EVENT_STATUS function, 8-19
FIX statement, 4-49
FREE statement, 4-55
HAPPENED function, 5-53
LIBERATE statement, 4-63
PROCURE statement, 4-88
RESET statement, 4-132
SET statement, 4-147
up-level event

in ATTACH statement, 4-19
in direct 1/0, 4-60

WAIT statement, 4-159
WAITANDRESET statement, 4-161

< event identifier> , 3-23
< event list> , 4-159
<event statement> , 4-46
event-valued attributes, (See event

handling)
interrogating

<event designator>, 3-24

8600 0098-000

< event-valued file attribute name>, 3-24
<event-valued file attribute>, 3-24
<event-valued task attribute name>, 3-25
<event-valued task attribute> , 3-24
EVENT_STATUS function, 8-19
<exchange statement>, 4-46
<exp function>, 5-52
<explicit delimiter>, 4-102
<exponent part> , 2-5
exponentiation, 5-3
EXPONENTUNDERFLOW fault (ON

statement example), 4-78
< export declaration> , 3-25, 8-1
< export object specification> , 3-25
<export options>, 3-25
< expression> , 5-1
< external option>, 6-17

F

<family designator> , 4-129
family substitution, controlling for library

linkage,8-10
<fault action> , 4-77
<fault information part> , 4-75
<fault list>, 4-75
<fault name>, 4-75
<fault number>, 4-76
<fault stack history>, 4-76
<field delimiter> , 4-102
field notation, C-1
<field width>, 3-35
<field>, 4-102
<file declaration> , 3-28
<file designator> , 3-108
file handling, (See I/0)
<file identifier>, 3-29
file parameters, 3-98
<file part> , 4-94

semantics, 4-94
< file specification> , 6-16
<file-valued task attribute name>, 4-166
<fill statement>, 4-4 7
<first function>, 5-52
< firstone function>, 5-52
< firstword function>, 5-52
<fix statement>, 4-49
<for list element>, 4-50
<for statement>, 4-50
<formal parameter list>, 3-88
<formal parameter part>, 3-88

8600 0098-000

<formal parameter specifier> , 3-90
<formal parameter>, 3-88
formal parameters, 3-93
<formal symbol part>, 3-13
<formal symbol>, 3-13
<format and list part>, 4-98

Index

semantics for READ statement, 4-98
semantics for WRITE statement, 4-167

<format declaration>, 3-31
<format designator> , 3-110
<format identifier> , 3-31
<format option>, 6-18
<format part>, 3-31
format-error messages

formatted input, A-2
formatted output, A-1
free-field input, A-1

formatted input format-error messages, A-2
formatted output format-error messages, A-1
formatted read, 4-98
formatted write, 4-167
<forward interrupt declaration>, 3-58
<forward procedure declaration>, 3-58
<forward reference declaration>, 3-58
<forward switch label declaration>, 3-58
<free statement> , 4-55
free-field data format, 4-102
free-field data record, 4-102
free-field input format-error messages, A-1
<free-field part> , 4-98
<freeze statement>, 4-56
fully-specified formal procedure, 3-88
<function expression> , 5-25
FUNCTIONNAME library attribute, (See

library)
functions, 5-33

ABS function, 5-37
ACCEPT statement, 4-2
ARCCOS function, 5-37
ARCSIN function, 5-37
ARCTAN function, 5-37
ARCTAN2 function, 5-37
ARRAYSEARCH function, 5-38
ATANH function, 5-39
AVAILABLE function, 5-39
BOOLEAN function, 5-39
CABS function, 5-39
CCOS function, 5-39
CEXP function, 5-39
CHANGEFILE statement, 4-28
CHECKPOINT statement, 4-30
CHECKSUM function, 5-40

lndex-11

Index

CLN function, 5-40
CLOSE statement, 4-35
COMPILETIME function, 5-40
COMPLEX function, 5-41
CONJUGATE function, 5-41
COS function, 5-41
COSH function, 5-41
COTAN function, 5-41
CSIN function, 5-42
CSQRT function, 5-42
DABS function, 5-42
DALPHA function, 5-42
DAND function, 5-42
DARCCOS function, 5-42
DARCSIN function, 5-43
DARCTAN function, 5-43
DARCTAN2 function, 5-43
DCOS function, 5-43
DCOSH function, 5-43
DECIMAL function, 5-43
DELINKLIBRARY function, 5-44
DELTA function, 5-44
DEQV function, 5-45
DERF function, 5-45
DERFC function, 5-45
DEXP function, 5-45
DGAMMA function, 5-45
DIMP function, 5-45
DINTEGER function, 5-46
DINTEGERT function, 5-46
DLGAMMA function, 5-46
DLN function, 5-4 7
DLOG function, 5-4 7
DMAX function, 5-4 7
DMIN function, 5-4 7
DNABS function, 5-4 7
DNORMALIZE function, 5-4 7
DNOT function, 5-4 7
DOR function, 5-48
DOUBLE function, 5-48
DROP function, 5-48
DSCALELEFT function, 5-49
DSCALERIGHT function, 5-49
DSCALERIGHTT function, 5-50
DSIN function, 5-50
DSINH function, 5-50
DSQRT function, 5-50
DTAN function, 5-50
DTANH function, 5-50
ENTIER function, 5-51
ERF function, 5-51
ERFC function, 5-51

lndex-12

EVENT_STATUS,8-19
EXP function, 5-52
FIRST function, 5-52
FIRSTONE function, 5-52
FIRSTWORD function, 5-52
FIX statement, 4-49
FREE statement, 4-55
GAMMA function, 5-53
HAPPENED function, 5-53
HEAD function, 5-53
IMAG function, 5-54
INTEGER function, 5-54
INTEGERT function, 5-55
intrinsic functions returning values of type

BOOLEAN., 5-36
intrinsic functions returning values of type

COMPLEX., 5-36
intrinsic functions returning values of type

DOUBLE, 5-35
intrinsic functions returning values of type

INTEGER, 5-35
intrinsic functions returning values of type

POINTER, 5-36
intrinsic functions returning values of type

REAL, 5-35
intrinsic functions returning values of type

STRING, 5-36
LENGTH function, 5-55
LINENUMBER function, 5-55
LINKLIBRARY function, 5-55
LISTLOOKUP function, 5-57
LN function, 5-57
LNGAMMA function, 5-57
LOG function, 5-58
MASKSEARCH function, 5-58
MAX function, 5-58
MESSAGESEARCHER statement, 4-67
MIN function, 5-58
NABS function, 5-59
NORMALIZE function, 5-59
OFFSET function, 5-59
ONES function, 5-59
OPEN statement, 4-79
POINTER function, 5-60
<pot function>, 5-61
POTC function, 5-61
POTH function, 5-61
POTL function, 5-61
PROCESSID function, 5-62
RANDOM function, 5-62
READ statement, 4-93
READLOCK function, 5-63

8600 0098-000

G

REAL function, 5-63
REMAININGCHARS function, 5-63
REMOVEFILE statement, 4-107
REPEAT function, 5-64
SCALELEFT function, 5-64
SCALERIGHT function, 5-65
SCALERIGHTF function, 5-65
SCALERIGHTT function, 5-65
SECONDWORD function, 5-66
SEEK statement, 4 -14 7
SETACTUALNAME function, 5-66
SIGN function, 5-67
SIN function, 5-67
SINGLE function, 5-67
SINH function, 5-67
SIZE function, 5-68
SPACE statement, 4-155
SQRT function, 5-68
STRING function, 5-68
STRING4 function, 5-68
STRING7 function, 5-68
STRINGS function, 5-68
TAIL function, 5-70
TAKE function, 5-71
TAN function, 5-71
TANH function, 5-71
TIME function, 5-71
TRANSLATE function, 5-75
VALUE function, 5-75
WAIT statement, 4-159
WAITANDRESET statement, 4-161
WRITE statement, 4-164

<gamma function> , 5-53
GET_CS_MSG procedure, 9-77
global identifiers, 1-5
<global part>, 1-1
<global procedure reference array

declaration>, 3-101
<go to option> , 6-18
<go to statement>, 4-57

H

<happened function> , 5-53
<head function>, 5-53
<hex string>, 4-102

8600 0098-000

< hexadecimal character> , 2-11
<hexadecimal code> , 2-11
<hexadecimal string constant>, 5-31 .
<hexadecimal string> , 2-11

Index

hexadecimal strings in free-field data records,
4-104

HOST file, 6-4
<host option> , 6-18

I/0
ACCEPT statement, 4-1
DIRECT ARRAY declaration, 3-17
direct I/0

array reference variable use with, 3-8
checkpoint/restart inhibition with, 4-33
event use with, 3-23
file declaration for, 3-29
general information for, 4-59
READ statement with, 4-101
WAIT statement with, 4-159

DISPLAY statement, 4-42
file handling

CHANGEFILE statement, 4-28
CLOSE statement, 4-35
EXCHANGE statement, 4-46
FILE declaration, 3-28
LOCK statement, 4-64
MERGE statement, 4-65
multiple attribute assignment

statement, 4-73
OPEN statement, 4-79
REMOVEFILE statement, 4-107
REWIND statement, 4-141
SEEK statement, 4-146
SPACE statement, 4-155
SWITCH FILE declaration, 3-108

formatting
FORMAT declaration, 3-31
free-field data format, 4-102
LIST declaration, 3-65
run-time format-error messages, A-1
SWITCH FORMAT declaration, 3-109
SWITCH LIST declaration, 3-112

1/0 statement, 4-58
normal 1/0, 4-59
READ statement, 4-93
serial I/O operation, 4-147
synchronized output, (See synchronized

output)

lndex-13

Index

WRITE statement, 4-164
WRlTEAFTER option, 6-44

< 1/0 option or carriage control>, 4-94
< 1/0 statement>, 4-59
<identifier>, 2-4
<if clause>, 4-61
<if statement>, 4-61
< imag function>, 5-54
<immediate option> , 6-9
IMP, 5-12
<in-out part>, 3-31
< inclnew option>, 6-19
< inclseq option> , 6-19
INCLUDE compiler control option, 9-21
INCLUDE files, 6-4
<include option>, 6-19
INFO file, 6-4, 6-6
<initial part> , 4-50
<initial value> , 4-48
<initialize option> , 6-21
initialized pointer, 3-83
<input option>, 4-149
input parameters

for library procedures, 9-22
<input procedure> , 4-149
<installation number list>, 6-21
<installation number> , 6-21
<installation option>, 6-21
integer data type

arithmetic assignment, 4-3
arithmetic expression, 5-2
arithmetic relation, 5-16
direct integer array declaration, 3-17
functions for manipulating integer

expressions
DINTEGER function, 5-46
DOUBLE function, 5-48
NORMALIZE function, 5-59

integer array declaration, 3-1
integer array reference declaration, 3-8
INTEGER declaration, 3-58
integer functions

ARRAYSEARCH function, 5-38
CLOSE statement, 4-35
DELINKLIBRARY function, 5-44
DELTA function, 5-44
ENTIER function, 5-51
FIRSTONE function, 5-52
INTEGER function, 5-54
INTEGERT function, 5-55
LENGTH function, 5-55
LINENUMBER function, 5-55

lndex-14

LINKLIBRARY function, 5-55
LISTLOOKUP function, 5-57
MASKSEARCH function, 5-58
MESSAGESEARCHER statement,

4-67
OFFSET function, 5-59
ONES function, 5-59
OPEN statement, 4-79
PROCESSID function, 5-62
REMAININGCHARS function, 5-63
SCALELEFT function, 5-64
SCALERIGHT function, 5-65
SCALERIGHTT function, 5-65
SETACTUALNAME function, 5-66
SIGN function, 5-67
SIZE function, 5-68
VALUE function, 5-75
WAIT statement, 4-159
WAITANDRESET statement, 4-161

integer operand internal structure, C-15
integer procedure declaration, 3-86
integer value array declaration, 3-121
intrinsic functions returning values of type

INTEGER, 5-35
width of integer array elements, 3-3

<integer declaration> , 3-59
<integer function>, 5-54
<integer identifier>, 3-59
integer operand internal structure, C-15
<integer variable>, 4-156

for <fault number>, 4-76
<integer>, 2-5
< integert function>, 5-55
<internal file name>, 6-17
internationalization, 9-1

ccsversion selection, 9-4
ccsversions, 9-4
coded character sets, 9-4
comparingtext,9-7
data classes, 9-6
defaultsettings,changing,9-2
equivalent comparison of data, 9-7
hierarchy, 9-2
logical data comparison, 9-7
message creation in application program,

9-8
multilingual message creation, 9-8
ordering sequence value (OSV), 9-7
output message arrays, 9-8
positioning, 9-7
priority sequence value (PSV), 9-7
translate tables, 9-5

8600 0098-000

accessing, 9-5
truth sets, 9-6

<interrupt declaration>, 3-60
interrupt handling

ATTACH statement, 4-19
DETACH statement, 4-41
DISABLE statement, 4-42
ENABLE statement, 4-44
INTERRUPT declaration, 3-60
interrupt statement, 4-63
ON statement, 4-74

<interrupt identifier> , 3-60
<interrupt statement> , 4-63
INTNAME library attribute, (See library)
<intrinsic translate table> , 4-110
<intrinsics option>, 6-21
<introduction code>, 3-76
<introduction> , 3-76
INV ALIDINDEX fault (ON statement

example), 4-78
<invocation statement>, 4-63
invoking defines, 3-13
IS, 5-13
ISNT, 5-13
<iteration clause> , 3-66
<iteration part>, 4-50

J

job and task control

L

CALL statement, 4-22
CHECKPOINT statement, 4-30
CONTINUE statement, 4-39
PROCEDURE declaration, 3-86
PROCESS statement, 4-87
PROCESSID function, 5-62
RUN statement, 4-141
TASK ARRAY declaration, 3-113
task assignment, 4-18
TASK declaration, 3-113
ZIP statement, 4-171

<label counter modulus> , 3-20
<label counter>, 3-20
<label declaration>, 3-61
<label designator>, 5-24
<label identifier>, 3-61

8600 0098-000

<labeled statement>, 4-1
language

run-time, establishing, 9-3
<language component>, 2-1
<language name>, 3-71
<language specification>, 4-66
LANGUAGE task attribute, 9-3
< left bit from>, 5-9
<left bit to>, 5-9
<left bit>, 5-11
<length function> , 5-55
length of string literals, 4-112
<letter string>, 2-2
<letter>, 2-1
<level option> , 6-22
<level 2 procedure>, 1-1

Index

<lex level restriction part> , 3-83
LIBACCESS library attribute, (See library)

assigning values
LIBRARY declaration, 3-62
mnemonic attribute assignment, 4-13

using family substitution with, 8-10
<liberate statement>, 4-64 ·
LIBP ARAMETER library attribute, (See

library)
library

ACTUALNAME option of LIBRARY
declaration, 3-93

assigning values to LIBACCESS library
attribute, 3-62, 4-13

assigning values to string-valued library
attributes, 3-62, 4-16

attributes, 8-7
defined, 8-9
in declaration, 3-64
in linkage, 8-4

calling programs, 8-2
circular chain, 5-56, 8-2
creating libraries, 8-6
declarations

EXPORT, 3-25
LIBRARY, 3-62
PROCEDURE, 3-86

delinking,8-5
description of libraries, 8-1
direct linkage, 8-4
dumping, 4-90
duration, 8-3
dynamic linkage, 8-4
entry points

allowed parameters, 3-26
allowed types, 3-26

lndex-15

Index

at initiation, 8-3
declaring in calling program, 3-92
declaring in library program, 3-25
defined,8-1
for MCPSUPPORT library (example),

8-19
matching types, 8-10
passing parameters, 8-11

error handling, 8-5
exapiples

calling programs, 8-14, 8-18
directlinkage,8-15
dynamiclinkage,8-16
indirect linkage, 8-16
MCPSUPPORT library; 8-19

functional description of libraries, 8-1
functions

DELINKLIBRARY, 5-44, 8-5
EVENT_STATUS, 8-19
LINKLIBRARY, 5-55, 8-7
SETACTUALNAME, 5-66, 8-7

indirect linkage, 8-4
initiation, 8-3
interrogating string-valued library

attributes, 5-30
library directories, 8-2
library object, 8-1
library programs, 8-1
library templates, 8-2
linkage provisions, 8-4, 8-10
nature of freeze, 8-3
parameter passing rules, 8-11
permanent specification, 8-3
referencing libraries, 8-7
restricting use, 8-6
SHARING option

DONTCARE, 6-35, 8-6
PRNATE, 6-35, 8-6
SHAREDBYALL, 6-35, 8-6
SHAREDBYRUNUNIT, 6-35, 8-6

statements
CANCEL, 4-23, 8-5
FREEZE, 4-56

temporary specification, 8-3
< library attribute specifications > , 3-63
library call

for CENTRALSUPPORT, 9-21
<library declaration> , 3-62
<library entry point identifier> , 5-66
< library entry point specification> , 3-92
library entry points, (See library)
<library identifier> , 3-62

lndex-16

<library object attributes> , 3-63
<library object declaration list>, 3-63
<library object declaration>, 3-63
library objects, (See library)
<library option>, 6-22
library procedures

CENTRALSUPPORT, 9-11
input parameters, 9-22
output parameters, 9-23
result, 9-23

< library specification> , 3-62
<limit option> , 6-23
LINE file, 6-5
< lineinf o option> , 6-23
< linenumber function> , 5-55
< linewidth > , 6-44
LINKCLASS, 3-25
<link.library function> , 5-55, 8-7
< list declaration> , 3-65
< list designator> , 3-112
<list element> , 3-66
< list identifier > , 3-65
<list option> , 6-23
<list> , 4-98
< listdeleted option> , 6-23
< listincl option> , 6-24
< listlookup function>, 5-57
< listomitted option>, 6-24
< listp option> , 6-24
<In function> , 5-57
< lngamma function>, 5-57
< loadinfo option> , 6-24
local identifiers, 1-5
<local procedure reference array

declaration> , 3-101
localization, 9-1

establishing conventions for, 9-3
LOCK <close option>, 4-36
<lock option>, 4-64
<lock statement> , 4-64
<log function> , 5-58
logical data comparison

in internationalization, 9-7
<logical operator> , 2-3
logical operators, 5-13

AND, 5-12
EQV, 5-12
IMP, 5-12
NOT, 5-12
OR, 5-12
precedence of, 5-14
results of, 5-13

8600 0098-000

long (unpaged) arrays, 3-1
LOOP fault (ON statement example), 4-78
<lower bound list>, 3-90
<lower bound> , 3-4
<lower bounds>, 3-9
<lower limit>, 3-21

M

< makehost option> , 6-26
< masksearch function>, 5-58
<max function> , 5-58
<MCP option>, 6-28
MCP _BOUND_ LANGUAGES procedure,

9-79
MCPSUPPORT library, 8-19
<membership expression>, 3-119
<membership primary> , 3-119
<memory size> , 4-152
MEMORYPROTECT fault (ON statement

example), 4-78
<merge option> , 6-28
<merge statement> , 4-65
<merging option list>, 4-65
<merging option>, 4-65
messages, multilingual

creation for application program, 9-8
< messagesearcher statement>, 4-66
<min function>, 5-58
MLS, (See MultiLingual System (MLS),

MultiLingual System (MLS))
< MLSaccept statement> , 4-68
< MLSdisplay statement> , 4-70
<mnemonic attribute assignment>, 4-13
<mnemonic attribute value>, 4-14
<mnemonic attribute>, 4-13
<mnemonic file attribute value>, 3-30
<mnemonic library attribute specification> ,

3-63
<mnemonic library attribute value>, 3-63
<mnemonic library attribute>, 4-14
<mnemonic task attribute value>, 5-75
<mnemonic-valued library attribute name>,

3-63
MOD, 5-3
<monitor declaration>, 3-67
<monitor element>, 3-67
<multidimensional array designator>, 4-137
MultiLingual System (MLS), 9-1

MESSAGESEARCHER statement, 4-66

8600 0098-000

Index

OUTPUTMESSAGE ARRAY declaration,
3-70

<multiple attribute assignment statement>,
4-73

multiplication, 5-3
MUX,5-3

N

<nabs function> , 5-59
<name and title>, 6-17
natural language, 9-1, 9-7
<new character>, 3-76
<new option>, 6-29
<new size>, 4-134
< newseqerr option> , 6-29
NEWSOURCE file, 6-5
NEWTAPE file, (See NEWSOURCE file)
< noBCL option> , 6-29
< nobindinfo option> , 6-30
normal I/O, 4-59
<normalize function> , 5-59
normalized form

double precision, C-19
single precision, C-15

< nostackarrays option>, 6-30
NOT, 5-12
< noxreflist option>, 6-30
null statement, 4-1
<number list>, 4-24
<number of bits>, 5-9
<number of columns>, 4-98
<number of tapes>, 4-150
<number>, 2-5
<numbered statement group> , 4-24
<numbered statement list> , 4-24
numbers

compiler conversion, 2-7
exponents, 2-7
in free-field data records, 4-103
ranges in ALGOL, 2-6

<numeric convert part>, 4-109
numeric sign, C-14

0

<octal character> , 2-11
<octal code>, 2-10
<octal string>, 2-10

lndex-17

Index

OFFER option, 4-79
<offset function>, 5-59
<oldresize option>, ~1
<omit option>, 6-31
<on statement>, 4-74
<one-dimensional array name>, 3-7
<one-dimensional direct array name>, 3-18
one-word operands

type coercion, C-19
<ones function>, 5-59
<open control option>, 4-79
<open file part>, 4-79
<open options>, 4-79
<open statement> , 4-79
operands

type coercion of one-word and two-word
operands, C-19

<operator>, 2-2
<optimize option>, ~1
optimizing code

BEGINSEGMENT option, 6-14
ENDSEGMENT option, 6-17
OPTIMIZE option, 6-31
TARGET option, 6-40

<option expression>, 6-9
<option phrase> , 6-8
< option primary>, 6-9
OR, 5-12
ordering sequence value (OSV)

in internationalization, 9-7
OSV, (See ordering sequence value (OSV))
<outer level>, 6-22
<output message array declaration> , 3-70
<output message array identifier>, 3-70
<output message array>, 3-70
<output message case expression>, 3-72
<output message case part>, 3-72
<output message number>, 3-71
<output message parameter number>, 3-72
<output message parameter value>, 3-72
<output message parameter> , 3-72
<output message part>, 3-71
<output message segment>, 3-72
<output message>, 3-71
<output option>, 4-148
output parameters

for library procedures, 9-23
<output procedure>, 4-148
OWN

arrays, 3-2
pointers, 3-83
simple variables, 3-59

lndex-18

p

<pack size>, 4-152
PAGE option, 6-31
paged (segmented) arrays, 3-1
PARAMCHECK option, ~2
<parameter delimiter>, 2-2
<parameter element>, 4-66, 4-70
parameters

array parameters, 3-91, 3-93
array specification, 3-91
call-by-name, 3-88
call-by-reference, 3-89
call-by-value, 3-88
complex call-by-name parameters, 3-89
event parameters, 3-98
file parameters, 3-98
format parameters, 3-98

- label parameters, 3-98
list parameters, 3-98
parameters that can be call-by-value, 3-93
passing parameters to CANDE-initiated

procedures,3-91
passing parameters to procedures, 4-84
passing parameters to WFL-initiated

procedures, 3-91
picture parameters, 3-98
pointer parameters, 3-98
procedure parameters, 3-95
procedure reference array parameters,

3-95
restrictions on call-by-name pointer

parameters,3-85
simple variable parameters, 3-96
string parameters, 3-98
task parameters, 3-98

<parity error label>, 4-101
<partial word expression>, 5-11
<partial word part>, 5-11
<participate option>, 4-20
<patch number>, 6-42
<picture character> , 3-79
<picture declaration>, 3-74
<picture identifier>, 3-74
<picture skip>, 3-78
<picture symbol>, 3-75
<picture>, 3-75
pictures

character fields affected by picture
symbols, 3-77

characters used by picture symbols, 3-77
controlcharacters,3-78

8600 0098-000

effects of hardware flip-flops on picture
symbols, 3-77

in REPLACE statement, 4-123
introduction codes, 3-76
picture characters, 3-79
picture skip characters, 3-78
single picture characters, 3-78
string literals in pictures, 3-75

<pointer assignment>, 4-14
<pointer attribute specification>, 3-29
<pointer case expression> , 5-28
<pointer declaration> , 3-83
<pointer expression> , 5-27
<pointer function designator>, 5-27
<pointer function> , 5-60
pointer handling, (See character string

manipulation)
<pointer identifier>, 3-83

for SIZE function, 5-68
<pointer intrinsic name>, 5-27

alphabetical listing of, 5-36
<pointer part> , 5-17
<pointer primary>, 5-28
<pointer relation> , 5-17
<pointer statement>, 4-81
<pointer table membership>, 5-19
<pointer update assignment>, 4-14
<pointer variable>, 4-14
<pointer-valued attribute>, 4-131
pointer-valued attributes

assigning values
FILE declaration, 3-28
multiple attribute assignment

statement, 4-73
replace family-change statement, 4-129
replace pointer-valued attribute

statement, 4-130
interrogating

REPLACE statement source part
<pointer-valued attribute>, 4-108,
4-127

library attributes, 8-8
VALUE function, 5-75

<pointer-valued file attribute name>, 3-30
<pointer-valued file attribute>, 4-131
<pointer-valued library attribute name>,

3-63
<pointer-valued task attribute name>,

4-131
<pointer-valued task attribute>, 4-131
pointers

functions with pointer parameters

8600 0098-000

DELTA function, 5-44
DOUBLE function, 5-48
INTEGER function, 5-54
OFFSET function, 5-59
READLOCK function, 5-63

Index

REAL function, 5-63
REMAININGCHARS function, 5-63
SIZE function, 5-68
STRING function, 5-68

initialized, 3-83
internal structure, C-20
intrinsic functions returning values of type

POINTER, 5-36
lexical level restrictions, 3-83
OWN, 3-83
pointer assignment, 4-14
POINTER declaration, 3-83
pointer expression, 5-27
pointer functions

POINTER function, 5-60
READLOCK function, 5-63

pointer relation, 5-17
string relation, 5-17
up-level pointer assignment, 3-83

pool array, 4-112
pool array pointer, 4-112
<port close option>, 4-37
<pot function> , 5-61
POTC, 5-61
POTH, 5-61
POTL, 5-61
precedence

of arithmetic operators, 5-4
of Boolean operators, 5-14

precision of arithmetic expressions, 5-2
primary coroutine, 4-22
<primary identifier>, 6-40
priority sequence value (PSV)

in internationalization, 9-7
procedure

as a function, 3-87
by-calling, 3-92
external, 3-91
'form.al, 3-88
formal parameters, 3-88
forward procedure declaration, 3-57
initiated through CANDE or WFL, 3-91
library entry points, 3-92
parameters

allowed, 3-93
array, 3-91, 3-93
call-by-name, 3-88

lndex-19

Index

call-by-reference, 3-89
call-by-value, 3-88
file, 3-98
procedure,3-95
simple variable, 3-96
string, 3-98

passing parameters to, 4-84
PROCEDURE declaration, 3-86
reference array, (See procedure reference

array)
selection procedure, 3-92
statements

CALL, 4-22
CONTINUE, 4-39
procedure invocation, 4-83
PROCESS, 4-87
RUN, 4-141

<procedure body>, 3-91
<procedure declaration> , 3-86
<procedure heading> , 3-87
<procedure identifier> , 3-87
<procedure invocation statement> , 4-84
procedure reference array

assignment, 4-15
declaration, 3-101
parameters,3-95
specification, 3-91
statement, 4-85

< procedure reference array assignment>,
4-15

< procedure reference array declaration> ,
3-101

<procedure reference array designator> ,
3-102

for SIZE function, 5-68
<procedure reference array element> ,

3-102,4-15
<procedure reference array identifier>,

3-91,3-102,4-15
<procedure reference array row> , 3-102
<procedure reference array specification> ,

3-91
<procedure reference array statement> ,

4-85
<procedure specification>, 3-90
< procedure type> , 3-87
<process statement>, 4-87
< processid function>, 5-62
<procure statement> , 4-88
program interrupt

invoking null procedure reference array
element, 4-15

lndex-20

<program unit> , 1-1
< programdump destination>, 4-91
< programdump option> , 4-89
< programdump statement> , 4-89
protected linkage class, 3-25
protocols, data communications,

international, 9-1
PSV, (See priority sequence value (PSV))
PURGE <close option>, 4-36
<purge option> , 6-32

Q

< quaternary code> , 2-10
<quaternary string>, 2-10
< quoted string> , 4-102
quoted strings in free-field data records,

4-104

R

Railroad diagrams, explanation of, D-1
<random function> , 5-62
range of numbers, 2-6
READ statement

array row read, 4-100
binary read, 4-99
formatted read, 4-98
free-field data format, 4-102
free-field data record

hexadecimal strings, 4-104
numbers, 4-103
quoted strings, 4-104
unquoted strings, 4-103

< read statement> , 4-93
<read subfile specification>, 4-95
< readlock function> , 5-63
ready queue, 4-27
real data type

arithmetic assignment, 4-3
arithmetic expression, 5-2
arithmetic relation, 5-16
direct real array declaration, 3-17
functions for manipulating real expressions

DINTEGER function, 5-46
DOUBLE function, 5-48
ENTIER function, 5-51
INTEGER function, 5-54
NORMALIZE function, 5-59

8600 0098-000

intrinsic functions returning values of type
REAL, 5-35

real array declaration, 3-1
real array reference declaration, 3-8
REAL declaration, 3-103
real functions

ABS function, 5--37
ARCCOS function, 5--37
ARCSIN function, 5--37
ARCTAN function, 5-37
ARCTAN2 function, 5--37
ATANH function, 5-39
CABS function, 5-39
CHECKSUM function, 5-40
COMPILETIME function, 5-40
COS function, 5-41
COSH function, 5-41
COTAN function, 5-41
ERF function, 5-51
ERFC function, 5-51
EXP function, 5-52
FIRST function, 5-52
FIRSTWORD function, 5-52
GAMMA function, 5-53
IMAG function, 5-54
LN function, 5-57
LNGAMMAfunction, 5-57
LOG function, 5-58
MAX function, 5-58
MIN function, 5--58
NABS function, 5-59
NORMALIZE function, 5--59
RANDOM function, 5-62
READLOCK function, 5-63
REAL function, 5-63
SCALERIGHTF function, 5-65
SECONDWORD function, 5-66
SIN function, 5--67
SINGLE function, 5--67
SINH function, 5--67
SQRT function, 5-68
TAN function, 5--71
TANH function, 5--71
TIME function, 5--71

real operand internal structure, C-14
real procedure declaration, 3-86
real value array declaration, 3-121
width of real array elements, 3-3

<real declaration> , 3-103
<real function> , 5-63
<real identifier>, 3-103
real operand internal structure, C-14

8600 0098-000

<real variable> , 4-156
for <fault number>, 4-76

<record length>, 4-151
<record number>, 4-14 7
REEL <close option> , 4-36
REJECTOPEN, 4-139
<relational operator> , 5-16
< remainingchars function> , 5-63
<remark>, 2-8
< removefile statement>, 4-107
<repeat function> , 5-64
<repeat part value> , 3-78
<repeat part> , 3-32

Index

<replace family-change statement> , 4-129
<replace pointer-valued attribute

statement>, 4-131
REPLACE statement

short and long string literals, 4-111
string literals interpreted as arithmetic

expressions, 4-115
<replace statement> , 4-108
<replace version>, 6-42
<reserved word> , B-1
reserved words, B-2

type 1, B-6
type2, B-7
type 3, B-10

<reset statement>, 4-133
resettable standard Boolean options, 6-11
<residual count>, 4-109
<resize statement>, 4-133
<respond file part> , 4-139
<respond options>, 4-139
RESPOND statement, 4-139
<respond statement> , 4-139
< respondtype option>, 4-139
<restart specifications>, 4-152
result

for library procedures, 9-23
<result length> , 4-66
<result pointer>, 4-66
<result>, 4-95
REWIND <close option>, 4-36
<rewind statement>, 4-141
<row number>, 4-4 7
<row selector> , 3-7
<row/copy numbers>, 4-46
<run statement>, 4-141

lndex-21

Index

s
<scale factor>, 3-35
< scaleleft function> , 5-64
< scaleright function>, 5-65
< scalerightf function>, 5-65
< scalerightt function>, 5-65
<scan part>, 4-109
<scan statement>, 4-143
scope, 1-4

global identifiers, 1-5
local identifiers, 1-5

secondary coroutine, 4-22
<secondary identifier>, 6-40
< secondword function>, 5-66
security of library object, 3-26
< seek statement>, 4-14 7
< segdescabove option>, 6-32
< segs option>, 6-32
<selection procedure identifier>, 3-92
<separate procedure>, 1-1
SEPCOMP facility

MAKEHOST option, 6-26
SEPCOMP option, 6-33

< sepcomp option>, 6-33
<seq option>, 6-34
<seqerr option>, 6-35
<sequence base option>, 6-35
< sequence increment option> , 6-35
<sequence number>, 6-18 .
serial I/0, 4-147
<set statement> , 4-14 7
< setactualname function>, 5-66
<sharing option>, 6-35
short and long string literals, 4-111
<sign function>, 5-67
<sign>, 2-5
signs of numeric fields, C-14
<simple arithmetic expression>, 5-2
<simple Boolean expression>, 5-12
<simple complex expression>, 5-21
<simple pointer expression>, 5-28
<simple source>, 4-129
<simple variable declaration>, 3-105
simple variable parameters, 3-96
<simple variable>, 4-4
<sin function>, 5-67
<single function>, 5-67
<single option>, 6-36
<single picture character>, 3-78
<single space> , 2-3
< sinh function>, 5-67

lndex-22

<size function>, 5-68
<size specifications>, 4-151
<skip> , 5-28
<sort statement>, 4-148
<source characters>, 3-115
SOURCE file, 6-3
<source part list> , 4-108
<source part>, 4-108
<source>, 4-109
<space statement>, 4-155
<space>, 2-3
< special array resize parameters>, 4-136
<special destination character>, 3-116
<special new character>, 3-76
<specification> , 3-89
<specified lower bound>, 3-91
<specifier>, 3-90
<sqrt function>, 5-68
<stack option>, 6-37
<start specification>, 6-19
<starting index>, 5-40
<statement list> , 1-1
<statement>, 4-1
<statistics option>, 6-37
<stop option>, 6-38
<stop specification> , 6-19
<string array declaration>, 3-107
<string array designator>, 3-107
<string array identifier>, 3-107
<string assignment> , 4-17
<string character set> , 5-53
string code, 2-12
string concatenation, 5-32
<string concatenation operator>, 5-30
<string constant>, 5-31
string data type

functions with string parameters
DECIMAL function, 5-43
DROP function, 5-48
FIRST function, 5-52
HEAD function, 5-53
LENGTH function, 5-55
REPEAT function, 5-64
TAIL function, 5-70
TAKE function, 5-71
TRANSLATE function, 5-75

intrinsic functions returning values of type
STRING, 5-36

STRING ARRAY declaration, 3-107
string assignment, 4-16
string concatenation, 5-32
STRING declaration, 3-105

8600 0098-000

string expression, 5-30
string expression relation, 5-18
string functions

DROP function, 5-4S
HEAD function, 5-53
REPEAT function, 5-64
STRING function, 5-6S
STRING4 function, 5-6S
STRING7 function, 5-6S
STRINGS function, 5-6S
TAIL function, 5-70
TAKE function, 5-71
TRANSLATE function, 5-75

string parameters in procedures, 3-9S
STRING PROCEDURE declaration, 3-S6

< string declaration>, 3-105
< string designator> , 4-17
string expression

in REPLACE statement, 4-12S
< string expression relation> , 5-lS
< string expression>, 5-30
<string function designator>, 5-27
<string function>, 5-6S
<string identifier>, 3-106
< string intrinsic name>, 5-27

alphabetical listing of, 5-36
string literal

as an arithmetic primary, 5-7
ASCII string, 2-13
BCL string, 2-13
binary string, 2-10
character size, 2-12
default character type, C-12
dollar signs in strings, 2-14
EBCDIC string, 2-11
hexadecimal string, 2-11
in editing specifications, 3-31, 3-33
in pictures, 3-75
in REPLACE statement source parts,

4-111
interpreted as arithmetic expression in

REPLACE statement, 4-115
maximum length of, 2-13
octal string, 2-10
pool array, 2-13
quaternary string, 2-10
quotation marks in strings, 2-13
string code, 2-12
string length, 4-111

<string literal>, 2-9
string manipulation, (See character string

manipulation)

8600 0098-000

<string or pointer library attribute
specification>, 3-63

string parameters, 3-98
<string primary>, 5-30
<string procedure identifier>, 3-S7
< string relation> , 5-17
< string relational operator>, 5-16
string type, 3-106
<string type>, 3-106
<string variable> , 5-31
string-valued attributes

assigning values
LIBRARY declaration, 3-62

Index

string assignment target <string-valued
library attribute>, 4-17

interrogating
string primary <string-valued library

attribute>, 5-30
library attributes, 8-S

<string-valued library attribute name>,
3-63

<string-valued library attribute>, 5-31
STRING4, 5-6S
STRING7, 5-6S
STRINGS, 5-68
< subarray selector>, 4-9
<subfile index>, 4-35
subfile specification

URGENT clause, 4-166
<subfile specification>, 4-95
< subscript>, 3-7
< subscripted string variable>, 5-31
<subscripted variable> , 4-4
subtraction, 5-3
< swap statement> , 4-156
<switch file declaration>, 3-lOS
< switch file identifier>, 3-lOS
< switch file list> , 3-lOS
<switch format declaration>, 3-109
<switch format identifier>, 3-109
< switch format list>, 3-109
< switch format segment> , 3-110
< switch label declaration> , 3-111
<switch label identifier>, 3-111
< switch label list>, 3-111
< switch list declaration>, 3-112
<switch list identifier>, 3-112
<symbol construct>, 2-1
synchronized output

explanation, 4-165
setting file attribute (example), 3-31, 4-8
syntax for WRITE statement, 4-94

lndex-23

Index

using WRITE statement (example), 4-166
SYSTEWCCSFILE data file, 9-4

T

<TADS option>, 6-38
<tail function>, 5-70
<take function>, 5-71
<tan function> , 5-71
< tanh function> , 5-71
<target option> , 6-40
<task array declaration>, 3-113
<task array designator>, 3-114
<task array identifier> , 3-113
<task assignment>, 4-18
<task declaration> , 3-113
<task designator>, 3-114
<task identifier> , 3-113
task-valued attributes, (See job and task

control)
assigning values

task assignment, 4-18
interrogating

<task designator>, 3-114
<task-valued task attribute name>, 3-114
TCP /IP, (See Transmission Control

Protocol/Internet Protocol)
<text>, 3-12
THAW (Thaw Frozen Library) ODT

command, 8-5
< thru statement>, 4-158
thunk, 3-89
<time function>, 5-71
<time option>, 6-41
<time>, 4-159
TIMES, 5-3
TITLE library attribute, (See library)
<title>, ~16
touched array, 3-2
<transfer part>, 4-109
<translate function>, 5-75
<translate part>, 4-109
translate table

definition of, 9-5
for internationalization, 9-5
in REPLACE statement, 4-122

<translate table declaration>, 3-115
<translate table element>, 3-115
<translate table identifier>, 3-115
<translate table>, 4-110

lndex-24

<translate-table attribute specification>,
3-29

translate-table-valued attributes
assigning values

FILE declaration, 3-28
multiple attribute assignment

statement, 4-73
VALUE function,5-75

<translate-table-valued file attribute
name>, 3-30

<translation specifier>, 3-115
<translator's help text>, 3-71
Transmission Control Protoco]/lntemet

Protocol, 4-167
truth set

definition of, 9-6
<truth set declaration>, 3-118
<truth set identifier> , 3-118
truth set table

in Boolean expressions, 5-19
in REPLACE statement, 4-125, 4-126
in SCAN statement, 4-144, 4-145

<truth set table> , 4-109
two-word operands

type coercion, C-19
type coercion

of one-word and two-word operands, C-19
type declarations

BOOLEAN, 3-10
COMPLEX, 3-11
DOUBLE, 3-19
INTEGER, 3-58
POINTER, 3-83
PROCEDURE REFERENCE ARRAY,

3-101
REAL, 3-103
STRING, 3-105

type transfer functions
BOOLEAN function, 5-39
COMPLEX function, 5-41
DECIMAL function, 5-43
DINTEGER function, 5-46
DOUBLE function, 5-48
ENTIER function, 5-51
FIRST function, 5-52
FIRSTWORD function, 5-52
IMAG function, 5-54
INTEGER function, 5-54
INTEGERT function, 5-55
REAL function, 5-63
SECONDWORD function, 5-66
SINGLE function, 5-67

8600 0098-000

STRING function, 5-68
types resulting from arithmetic operations,

5-5

u
uninitialized pointer, 3-83
<unit count> , 4-108
<unlabeled statement>, 4-1
unpaged (long) arrays, 3-1
<unquoted string> , 4-102
unquoted strings in free-field data records,

4-103
unsegmented arrays, (See unpaged (long)

arrays)
<unsigned integer>, 2-5
<unsigned number>, 2-5
<up or down>, 4-129
up-level event

in ATTACH statement, 4-19
in direct 1/0, 4-60

up-level pointer assignment, 3-83
<update pointer>, 4-108
<update symbols> , 4-7
<upper bound>, 3-4
< upper limit> , 3-21
URGENT clause, 4-166
<use option> , 6-41
<user option>, 6-41

v
VALIDATE_ NAME_RETURN _NUM

procedure,9-80
VALIDATE_ NUM _RETURN_ NAME

procedure,9-82
<value array declaration>, 3-121
<value array identifier> , 3-121
<value function>, 5-75
<value list>, 4-48
<value option>, 6-9
<value part> , 3-88
<variable>, 4-4
<version increment>, 6-42
<version option>, 6-42
<void option>, 6-43
< voidt option>, 6-43
VSNCOMP ARE_ TEXT procedure, 9-83
VSNESCAPEMENT procedure, 9-85

8600 0098-000

Index

VSNGETORDERINGFOR_ONE_TEXT
procedure,9-88

VSNINFO procedure, 9-90
VSNINSPECT _TEXT procedure, 9-94
VSNORDERING_INFO procedure, 9-96
VSNTRANS _TEXT procedure, 9-100
VSNTRANSTABLE procedure, 9-98
VSNTRUTHSET procedure, 9-102

w
WAIT control option, 4-20
WAIT option, 4-79
<wait parameter list> , 4-159
<wait statement>, 4-159
< waitandreset statement> , 4-161
< warnsupr option> , 6-43
<when statement> , 4-162
<while statement> , 4-163
width of array elements, 3-3
word array, 3-3
< word array identifier>, 3-2
<word type> , 3-3
<write file part>, 4-165

semantics, 4-165
WRITE statement

array row write, 4-168
binary write, 4-167
formatted write, 4-167
synchronized output, (See synchronized

output)
<write statement> , 4-164
<write subfile specification>, 4-166
< writeafter option>, 6-44

x
< xdecs option>, 6-44
< xref option>, 6-44
XREFFILE file, 6-6
< xreffiles option>, 6-46
< xrefs option>, 6-46

z
ZERODIVIDE fault (ON statement example),

4-78
ZIP

lndex-25

Index

with array, 4-172
with file, 4-172

<zip statement>, 4-172

**(exponentiation operator), 5-3
I (OR), 5-12
11 (string concatenation operator), 5-32
< $ option>, 6-46

lndex-26 8600 0098-000

I
I

Help Us To Help You
Publication Title

Document Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We
will use them to improve the quality of your Product Information. Please check type of
suggestion:

0 Addition 0 Deletion 0 Revision

Recommended Change (Please identify affected pages)

Name Telephone Number

Title Company

Address (Street, City, State, Zip)

1----------------------------

1

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

Help Us To Help You
Publication Title

Document Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We
will use them to improve the quality of your Product Information. Please check type of
suggestion:

0 Addition 0 Deletion 0 Revision

Recommended Change (Please identify affected pages)

Name Telephone Number

Title Company

Address (Street, City, State, Zip)

1----------------------------

1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Help Us To Help You
Publication Title

Document Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We
will use them to improve the quality of your Product Information. Please check type of
suggestion:

0 Addition 0 Deletion 0 Revision

Recommended Change (Please identify affected pages)

Name Telephone Number

Title Company

Address (Street, City, State, Zip)

BUSINESS REPLY MAIL
First Class Permit No. Bl 7

Postage Will Be Peid By Addressee

Unisys Corporation
ATTN: Product Information
19 Morgan
Irvine, CA 92718-9958 USA

Detroit, Ml 48232

11.1 1.11 ••• 1 ... 111 •• 1.1.1 .. 1.1 ... 1.1.1 •• 1 ... 1.11

No Postage
necessary
if mailed in the
United States

'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

----------------------------,

BUSINESS REPLY MAIL
First Class Permit No. 817

Postage Will Be Peid By Addressee

Unisys Corporation
ATTN: Product Information
19 Morgan
Irvine, CA 92718-9958 USA

Detroit, Ml 48232

11.1 .. I I 1.11. I I 1. I I 111, I I , I 1 I 11 I 1 I 11 I 1.1, I 11 I 1 11 I 1 I I

No Postage
necessary
if mailed in the
United States

I
I ----------------------------,

BUSINESS REPLY MAIL
First Class Permit No. 817

Postage Will Be Peid By Addressee

Unisys Corporation
ATTN: Product Information
19 Morgan
Irvine, CA 92718-9958 USA

Detroit, Ml 48232

11, 1. I II 1. 11. , I I • II 111. I I , I , 1 ... I , 1 ... 1.1. I •• 1. II 1.11

No Postage
necessary
if mailed in the
United States

I
I
I
I
I
I
I
I

I llllll lllll lllll lllll lllll lllli lllll lllll llll llllll lllll lllll llll llll
86000098- 000

