

BULLETIN E175A

.

Electro 101

| Advanced
Programming

Copyright © 1957

Burroughs Corporation

The ELEctTRoDATA 101 Desk Size Electronic Computer incorporates many of the

features found in larger general purpose computers, and yet it is easy to program and

operate. Many people with no prior computer experience have become skillful pro-

grammers after a few days’ instruction.

This manual contains the information necessary to program the E101. It is used

as a text in the Programming Courses conducted for E101 users.

Part I describes in detail the function of each command in the E101’s instruction

language, and tells how to operate the computer. Sample forms used in programming

and operating are included.

Part II covers the use of the optional features which are available as adjuncts to

the E101 (the 220-word memory, the tape input unit, etc.).

Part III is entitled “Programming Aids.” It contains information on scaling, de-

bugging, timing and checking circuitry. A list of some of the subroutines (available to

all E101 users) is included.

In Part IV you will find a discussion of programming strategy along with some

valuable programming tricks or techniques.

Throughout this manual are sample programs to illustrate the text, and practice

problems to test your grasp of material. In the Appendix are answers to the practice

problems, and a summarized instruction list for quick reference.

Many E101 users contributed helpful suggestions for improving the Preliminary

Edition of the Programming Manual. ELECTRODATA wishes to thank all who thus as-

sisted in producing this manual in its present form.

If you have never programmeda digital computer before, you may find it helpful

to read You Can Program the ELeEcTRODatTA J/01 before starting this manual. It
explains in elementary terms just what programming is, and covers the rudiments

of the E101.

TABLE OF CONTENTS

PART |

PROGRAMMING INSTRUCTIONS FOR THE E101

Progrdim: Stordge = 6 le ee

E101 Programming ImstnUctions:. ©.2 1... .-. 3... ee tie es
Address Modification: =) 06 es 8

Sample Programs: 5
Practice Problomse = te ee

@perating the ElOl go a
Programming GOnMS 66.66 i ee et i

PART Il

OPTIONAL ADJUNCTS TO THE E101

Punched Tdpe Input Unit.) 2. si

Punched Tape Output Unit... 0.0... ee

Expanded Memory... 0.5255. a

Accumulator Setting of Eand F Switches......-....-2.........+-.-..+.
The ViSWitch 030.

PART Ill
PROGRAMMING AIDS

Decimal Point scaling... 30.80
Debugging: 3. ks
Timing 2...es ee ee

Ghecking GircUltry «73. a

Programming and Operating Errors. 2... se cece eee tte teens
Machine Maltunction.. 3 42). a

Checking: Input Data... 25

Programs Available to E101 Users........... 0.0 eee e ee eeccc eet

Standard Operating Routines cs ieee ec cee ee eetnee

PART IV

PROGRAMMING STRATEGY

General: i
Input-Outputldeds:. =. i. 3 i ee

Hogicdl SUDROUIINES 668

Special Information on Basic Instructions 0.0... 66 eee eee eee eee

Algebraic Manipulduons... 6... Gt i

APPENDIX

Practice Problem:Solutionss<3. ss i ee es

Gomplete List of Instructions...) 0.2 6-51 ee eee eee

Copyright © 1957

Burroughs Corporation

The ELEctTRoDATA 101 Desk Size Electronic Computer incorporates many of the

features found in larger general purpose computers, and yet it is easy to program and

operate. Many people with no prior computer experience have become skillful pro-

grammers after a few days’ instruction.

This manual contains the information necessary to program the E101. It is used

as a text in the Programming Courses conducted for E101 users.

Part I describes in detail the function of each command in the E101’s instruction

language, and tells how to operate the computer. Sample forms used in programming

and operating are included.

Part II covers the use of the optional features which are available as adjuncts to

the E101 (the 220-word memory, the tape input unit, etc.).

Part III is entitled “Programming Aids.” It contains information on scaling, de-

bugging, timing and checking circuitry. A list of some of the subroutines (available to

all E101 users) is included.

In Part IV you will find a discussion of programming strategy along with some

valuable programming tricks or techniques.

Throughout this manual are sample programs to illustrate the text, and practice

problems to test your grasp of material. In the Appendix are answers to the practice

problems, and a summarized instruction list for quick reference.

Many E101 users contributed helpful suggestions for improving the Preliminary

Edition of the Programming Manual. ELECTRODATA wishes to thank all who thus as-

sisted in producing this manual in its present form.

If you have never programmeda digital computer before, you may find it helpful

to read You Can Program the ELeEcTRODatTA J/01 before starting this manual. It
explains in elementary terms just what programming is, and covers the rudiments

of the E101.

TABLE OF CONTENTS

PART |

PROGRAMMING INSTRUCTIONS FOR THE E101

Progrdim: Stordge = 6 le ee

E101 Programming ImstnUctions:. ©.2 1... .-. 3... ee tie es
Address Modification: =) 06 es 8

Sample Programs: 5
Practice Problomse = te ee

@perating the ElOl go a
Programming GOnMS 66.66 i ee et i

PART Il

OPTIONAL ADJUNCTS TO THE E101

Punched Tdpe Input Unit.) 2. si

Punched Tape Output Unit... 0.0... ee

Expanded Memory... 0.5255. a

Accumulator Setting of Eand F Switches......-....-2.........+-.-..+.
The ViSWitch 030.

PART Ill
PROGRAMMING AIDS

Decimal Point scaling... 30.80
Debugging: 3. ks
Timing 2...es ee ee

Ghecking GircUltry «73. a

Programming and Operating Errors. 2... se cece eee tte teens
Machine Maltunction.. 3 42). a

Checking: Input Data... 25

Programs Available to E101 Users........... 0.0 eee e ee eeccc eet

Standard Operating Routines cs ieee ec cee ee eetnee

PART IV

PROGRAMMING STRATEGY

General: i
Input-Outputldeds:. =. i. 3 i ee

Hogicdl SUDROUIINES 668

Special Information on Basic Instructions 0.0... 66 eee eee eee eee

Algebraic Manipulduons... 6... Gt i

APPENDIX

Practice Problem:Solutionss<3. ss i ee es

Gomplete List of Instructions...) 0.2 6-51 ee eee eee

P

R
IN

T
E

R

D
R

U
M

M
E

M
O

R
Y

M

A
G

N
E

T
IC

C
O

M
P

U
T

IN
G

C
O

M
P

O
N

E
N

T
S

P
A

N
E

L

O
P

E
R

A
T

O
R

’S

C
O

N
T

R
O

L

K
E

Y
B

O
A

R
D

O
P

T
IO

N
A

L

P
A

P
E

R
-

T
A

P
E

R
E

A
D

E
R

P
IN

B
O

A
R

D
P

R
O

G
R

A
M

T
H

E

E
LE

C
T

R
O

D
A

T
A

101

E
LE

C
T

R
O

N
IC

C
O

M
P

U
T

E
R

P
A

R
T

|

P
R

O
G

R
A

M
M

IN
G

IN
S

T
R

U
C

T
IO

N
S

F
O

R
T

H
E

B
A

S
IC

E
101

P
R

O
G

R
A

M
S

T
O

R
A

G
E

IN
T

H
E

E
101

T
he

program
of

the
E

LE
C

T
R

O
D

A
T

A
101

is
externally

stored
in

rem
ovable

pinboards.
T

he
m

achine
instructions

are
selected

by
the

positions
of

pins
in

the
pinboards.

T
here

are
positions

for
8

pinboards
num

bered
from

1
to

8,
each

w
ith

16
steps

num
bered

from
0

to
15.

S
-R

S
R

M
A

B
R

P
U

C
S

H
T

M
 O

123gse780E
x

a
*

01234507
Q

pw
N

anueE
rY

ny
°

7

.
7

&
9

2
8

®

=
S

ee+
saw

n-o

S
eevevroen-o

23‘ry¢?rya10
a

F
oR

T
he

illustration
above

show
s

a
typicalpinboard.

E
ach

instruction
in

the
program

is
selected

by
the

pins
placed

in
a

single
horizontal

row
of

holes
of

the
pinboard.

T
he

first
instruction

(step
0)

is
W

4
8

w
hich

m
eans,

“W
rite

the
num

bernow
in

the
accum

ulatorinto
m

em
ory

address
48.”

N
otice

that
there

are
three

pins—
one

in
each

area
of

the
pinboard.

T
he

pin
in

A
rea

1
selects

the
operation,

w
hile

the
pins

in
A

reas
2

and
3

select
the

tens
and

units
digits,

respectively,
of

the
m

em
ory

address.
T

he
instructions

for
a

program
are

usually
m

arked
(w

ith
a

pencilorink
stam

p)
on

pre-punched
paper

tem
-

plates;then
the

tem
plates

are
laid

over
the

pinboards
and

the
pins

dropped
in

place.
T

his
technique

provides
a

perm
anent

file
copy

of
the

program
,

w
hich

can
be

re-
pinned

in
a

few
m

inutes,
and

virtually
elim

inates
pinning

errors.

E
101

D
A

T
A

F
LO

W

T
he

E
101

D
ata

F
low

D
iagram

,
as

the
nam

e
im

plies,
show

s
how

data
flow

s
betw

een
the

various
parts

of
the

com
puter.

It
is

not
m

eant
to

be
a

com
plete

com
puter

block
diagram

,
as

no
m

ention
is

m
ade

of
the

pinboard
program

w
hich

controls
the

flow
of

data
as

w
ell

as
all

arithm
etic

operations.
It

is
helpful

to
keep

a
picture

of
the

D
ata

F
low

D
iagram

in
m

ind
w

hen
learning

the
pro-

gram
m

ing
instructions.

M
E

M
O

R
Y

100
or 220

12-digit
num

bers
&

sign

t
t

K
E

Y
B

O
A

R
D

A
C

C
U

M
U

LA
T

O
R

P
R

IN
T

E
R

11
digits

12
digits

&
sign

12
digits

&
sign

B
.

R
E

G
IS

T
E

R

for X
, +

11
digits

&
sign

IN
P

U
T

T
he

keyboard
is

the
m

eans
ofinput

on
the

basic
E

101.
It

is
an

11-colum
n

fullkeyboard—
the

sam
e

type
as

used

on
autom

atic
accounting

m
achines

or
desk

calculators.
P

unched
tape

m
ay

be
used

as
an

alternative
m

eans
of

input
(a

description
of

the
characteristics

of
the

tape
in-

put unit
is

included
in

P
artIT

).

A
C

C
U

M
U

LA
T

O
R

A
s

indicated
in

the
data

flow
diagram

,the
accum

ulator
is

the
centralclearing-house:

allkeyboard
entries

go
into

it,
allresults

are
printed

from
it,

and
the

m
em

ory
is

loaded
from

it
and

read
into

it.
T

ransfer
ofinform

ation
from

the
accum

ulator to
the

m
em

ory, printer,or
B

R
egister

leaves
the

num
berin

the
accum

ulator.It
rem

ains
there

untilit
is

erased
by

an
arithm

etic
operation

or
by

another
num

ber
com

ing
into

the
accum

ulatorfrom
the

keyboard
or

m
em

-
ory.

T
he

capacity
of

the
accum

ulator
is

12
decim

aldigits
plus

sign.
T

he
decim

alpoint
is

located
eleven

places
from

the
right

(betw
een

the
first

and
second

digits
on

the
left).

O
U

T
P

U
T

T
he

output
unit

of
the

E
101

is
a

very
flexible

sem
i-

ganged
printer

that
prints

the
full

12-digit
num

ber
in

the
accum

ulator in
one

operation.
T

he
flexibility

ofthe
print-

er
enables

reports
to

be
prepared

in
alm

ost
any

desired
form

.
T

he
printer

is
equipped

w
ith

a
carriage

control
panel

that
determ

ines
in

w
hat

form
reports

w
ill

be
printed.

T
he

control
panel

is
set

up
in

accordance
w

ith
custom

ers’specifications
by

an
E

LE
C

T
R

O
D

aT
aA

field
engi-

neer,
m

aking
it

unnecessary
for

the
program

m
er

to
pro-

gram
form

atcontrol.
A

n
optionaltape

punch
provides

an
additional

m
eans

of
output.

(A
description

of
the

tape
outputunit

is
included

in
P

artII.)

M
E

M
O

R
Y

T
he

E
101

has
a

m
agnetic

drum
m

em
ory

w
ith

100

m
em

ory
locations

num
bered

from
00

to
99;

the
capacity

of
each

location
is

12
decim

al
digits

plus
sign.

T
he

m
em

ory
is

used
for

the
storage

of
num

erical
data

only
(the

program
is

externally
stored

in
the

pinboards).
T

ransfer
of

inform
ation

from
a

m
em

ory
address

to
the

accum
ulator

leaves
the

num
ber

in
the

m
em

ory,
w

here
it

rem
ains

untilit
is

erased
by

another
num

ber
w

ritten
into

that
address

(from
the

accum
ulator,

or
as

a
result

of
a

division).
A

220-w
ord

m
em

ory
is

available
as

an
option-

al
feature

(a
description

of
the

220-w
ord

m
em

ory
ad-

junct
appears

in
P

artIT
).

PRINTER

DRUM

MEMORY

 MAGNETIC

COMPUTING

COMPONENTS

PANEL

OPERATOR’S

CONTROL

KEYBOARD

OPTIONAL

PAPER-
TAPE

READER

PINBOARD PROGRAM

THE

ELECTRODATA

101

ELECTRONIC

COMPUTER

PART |

PROGRAMMING INSTRUCTIONS FOR THE BASIC E101

PROGRAM STORAGE IN THE E101

The program of the ELECTRODATA 101 is externally
stored in removable pinboards. The machine instructions
are selected by the positions of pins in the pinboards.
There are positions for 8 pinboards numbered from 1 to
8, each with 16 steps numbered from0 to 15.

S-RSRMABRPUCSHTM O123gse780Ex
a *

01234507 QpwNanueErY ny° 7

.
7

&9 2
8®

=See+sawn-o

Seevevroen-o

2
3‘
ry
¢
?
ry
a

10
a

FoR

The illustration above shows a typical pinboard. Each
instruction in the program is selected by the pins placed
in a single horizontal row of holes of the pinboard. The
first instruction (step 0) is W 4 8 which means, “Write
the number now in the accumulator into memory address
48.” Notice that there are three pins—one in each area
of the pinboard. The pin in Area 1 selects the operation,
while the pins in Areas 2 and3 select the tens and units
digits, respectively, of the memory address.

The instructions for a program are usually marked
(with a pencil or ink stamp) on pre-punched paper tem-
plates; then the templates are laid over the pinboards and
the pins dropped in place. This technique provides a

permanent file copy of the program, which can be re-
pinned in a few minutes, and virtually eliminates pinning
errors.

E101 DATA FLOW

The E101 Data Flow Diagram, as the name implies,
shows how data flows between the various parts of the
computer. It is not meant to be a complete computer
block diagram, as no mention is made of the pinboard
program which controls the flow of data as well as all
arithmetic operations. It is helpful to keep a picture of
the Data Flow Diagram in mind when learning the pro-
gramming instructions.

MEMORY

100 or 220 12-digit numbers & sign

t t

KEYBOARD ACCUMULATOR PRINTER

11 digits 12 digits & sign 12 digits & sign

B. REGISTER

for X, + 11 digits & sign

INPUT

The keyboard is the means of input on the basic E101.
It is an 1 1-column full keyboard—the same type as used

on automatic accounting machines or desk calculators.
Punched tape may be used as an alternative means of
input (a description of the characteristics of the tape in-
put unit is included in Part IT).

ACCUMULATOR

As indicated in the data flow diagram, the accumulator
is the central clearing-house: all keyboard entries go into
it, all results are printed from it, and the memory is loaded
from it and read into it. Transfer of information from the
accumulator to the memory, printer, or B Register leaves
the number in the accumulator. It remains there until it is

erased by an arithmetic operation or by another number
coming into the accumulator from the keyboard or mem-
ory. The capacity of the accumulator is 12 decimal digits
plus sign. The decimal point is located eleven places from
the right (between the first and second digits on the left).

OUTPUT

The output unit of the E101 is a very flexible semi-
ganged printer that prints the full 12-digit number in the
accumulator in one operation. The flexibility of the print-
er enables reports to be prepared in almost any desired
form. The printer is equipped with a carriage control
panel that determines in what form reports will be
printed. The control panel is set up in accordance with
customers’ specifications by an ELECTRODaTaA field engi-
neer, making it unnecessary for the programmer to pro-
gram format control. An optional tape punch provides an
additional means of output. (A description of the tape
output unit is included in Part II.)

MEMORY

The E101 has a magnetic drum memory with 100

memory locations numbered from 00 to 99; the
capacity of each location is 12 decimal digits plus sign.
The memory is used for the storage of numerical data
only (the program is externally stored in the pinboards).
Transfer of information from a memory address to the
accumulator leaves the number in the memory, where it
remains until it is erased by another number written into
that address (from the accumulator, or as a result of a

division). A 220-word memory is available as an option-
al feature (a description of the 220-word memory ad-
junct appears in Part IT).

B REGISTER

The B Register is an additional data storage location,
used for a multiplicand or a divisor. Once a number is
transferred into the B Register, it remains there until it is
erased by another number coming into the B Register
from the accumulator.
NOTE: The B Register, like the keyboard, holds an 11-
digit number while the memory, accumulator, and printer
each hold 12-digit numbers. As will be explained later,
the B Register is limited to 11 digits in order to prevent
the loss of significant figures in multiplication. The key-
board is limited to 11 digits in accordance with the cus-
tomary procedure of having one less digit in the keyboard
than in the accumulator. In both cases, the 11 digits cor-
respond to the I1 least significant (right hand) digits of
the accumulator, the printed number, or a memory lo-
cation.

E101 PROGRAMMING INSTRUCTIONS
This section contains detailed descriptive information

on the programming instructions for the basic E101. It is
generally helpful to refer to the data flow diagram on p. 1

when learning the instructions, especially K, W, R, B,
and P.

Most instructions consist of three characters corres-
ponding to the three areas of the pinboard. The address
portion of the instruction is designated as “ab,” “a”
standing for the tens digit of the memory address and “b”
for the units digit.
NOTE: Sometimes the programmer will mistakenly call
for an instruction which generates an overflow. When
this occurs, one of the E101’s internal checking circuits
halts the program and lights the ALARM signal. For a
detailed description of the ALARM condition, and what
the operator must do to continue computation, see the
section on Checking Circuitry beginning on page 21.

PROGRAMMING INSTRUCTIONS
FOR THE BASIC E101

PINBOARD

fats OPERATION CARRIED OUT

K|—|— Keyboard—Halt the program, and light the
KEYBOARD signal. When one of the four
motor bars is depressed,
(a) transfer the number in the keyboard into

the 11 least significant (right hand) digit
positions in the accumulator, making the
most significant (leftmost) digit zero;

(b) if the minus bar is depressed, make the
number negative;

(c) print the number in the present carriage
position; and

(d) move the carriage to the next printing
postition, depending upon which one of
the four motor bars has been depressed.

K|/—]|0 Keyboard Non-Print—Same as “K” except do
not print the number in the keyboard.

PINBOARD
AREA

1 [2 {3 OPERATION CARRIED OUT

W|a|b Write—Write the contents of the accumulator

2

into memory address “a b” after first erasing
old contents of “a b”. Accumulator remains
unchanged.

b Read—Read the contents of memory address
“a b” into the accumulator after first erasing
old contents of accumulator. “a b” remains
unchanged.

— B Transfer—Transfer the contents of the ac-
cumulator into the B Register after first eras-
ing old contents of B Register. Accumulator
remains unchanged.

NOTE: The capacity of the B Register is 11

digits. If the number transferring from the
accumulator to the B Register exceeds 11

digits, i.e., exceeds 0.999 999 999 99, the
E101 alarms. This is a safeguard built into
the machine to prevent loss of significant
digits in multiplication. In multiplication, the
number in the B Register (<1.0 X 10°) is
multiplied by the number in a specified me-
mory address (which can be as large as

9.999 999 999 99 X 10°) leaving the answer
in the accumulator which, like the memory,
has a capacity for 12 digits or a number as
large as 9.999 999 999 99 X 10°. Since the
number in the B Register is less than 1.0 in
absolute value, the product cannot possibly
exceed 9.999 999 999 99 X 10°. If this safe-
guard were not built into the E101, the E101
might be called upon to multiply a number
such as 4.000 000 000 00 in the B Register
by a number such as 9.000 000 000 00
in the memory resulting in a product of
36.000 000 000 00. Since the accumulator
has capacity for 12 digits with the decimal
point 11 places from the right, the “3” in the
answer would be lost.

— Print—Print contents of the accumulator, using
motor bar “a”. The pin for “a” is set at 1, 2,
3, or 4, depending on the carriage motion de-
sired after printing has occurred. If no pin is
inserted for “a” in a P instruction, or if a
number which is not 1, 3, or 4 is pinned for
“a”, the printer will automatically activate
motor bar 2. (As in the case of a keyboard
entry, the choice of motor bar depends on
what format is desired. A fuller explanation
of the motor bars is included in the section on
Operating the E101.) The accumulator re-
mains unchanged.

0 Non-Print—Same as “P a” except do not print.
This “dummy print” instruction is used to
move the carriage to another printing posi-
tion, without first printing.

* Print and Halt—Same as “Pa”. The E101
halts after the printing and carriage motion
have occurred. (For a complete description
of the HALT condition, see the section on
Operating the E101.)

_—

PINBOARD
AREAi213 OPERATION CARRIED OUT

+|a]b Add—Add the contents of memory location

“a b” to the contents of the accumulator. The
sum appears in the accumulator; the number
in “a b” remains unchanged.
NOTE: If the sum exceeds the 12-digit ca-
pacity of the accumulator (for example, if
6.000 000 000 00 in “ab” is added to
7.000 000 000 00 in the accumulator, result-
ing in a sum of 13.000 000 000 00), the
E101 alarms, indicating that a “1” has been
lost. The number 3.000 000 000 00 appears
in the accumulator.

b Subtract—Subtract the contents of ‘‘a b” from
the contents of the accumulator. The remain-
der appears in the accumulator; the contents
of “a b” remains unchanged.
NOTE: Here again there is an alarm
if the answer exceeds the 12-digit capac-
ity of the accumulator. (For example
if 6.000 000 000 00 is subtracted from
—8.000 000 000 00 in the accumulator, the
answer —14.000 000 000 00 would appear
in the accumulator as 4.000 000 000 00,—
and the alarm would sound, indicating an
overflow.)

b Multiply — Multiply the contents of the B Regis-
ter by the contents of memory location “a b”.
The product appears in the accumulator; the
contents of the B Register and of memory lo-
cation “ab” remain unchanged. (As previ-
ously explained, in multiplication the number
in the B Register must be less than 1.0 X 10°
in absolute value. In order to prevent error,
an alarm occurs if a “B” instruction calls for
transfer of a number greater than or equal to
1.0 into the B Register. Multiplication is con-
sequently an 11 digit by 12 digit operation.
The most significant 12 digits of the product
appear in the accumulator; round off of the
product does not occur automatically; the
least significant 11 digits are computed but
not retained.)

b Divide—Divide the contents of the accumulator
by the number in the B Register and store the
quotient in memory location “a b”. The un-
divided remainder appears in the accumulator
one place to the left of the divisor; the con-
tents of the B Register remain unchanged.
(An alarm occurs if the absolute value of the
quotient is = 10.0 X 10° resulting in the loss
of significant digits.)

b_ Shift Left— Shift the contents of the accumula-
tor “b” places to the left, filling in zeros from
the right. Pinning O=b=10 selects the num-
ber of places shifted. A10, calling for a

“shift” of 0 places, is a dummy instruction,
used where a filler step is required. If the
third area is left blank, or if any other number
is pinned for “b”, a shift of ten places will oc-

PINBOARD
AREA

1(521-3 OPERATION CARRIED OUT

cur. (This is an off-end shift instruction used
in extracting, scaling, positioning numbers
prior to printing, and zeroizing the accumu-
lator. When a number is shifted out of the
accumulator by an A instruction, the loss of
digits does not cause an alarm.)

A| 2|b Shift Right—Shift the contents of the accumu-
lator “‘b” places to the right, filling in zeros
from the left. (Like A 1 b, A 2 b is an off-end
shift instruction, where an overflow to the
right results in the loss of digits, but does not
cause an alarm.)

— Absolute Value— Make contents of the ac-

cumulator positive (regardless of former
sign).

— Negative of Absolute Value— Make the con-
tents of the accumulator negative (regardless
of former sign).

— Change Sign—Change the sign of the con-
tents of the accumulator.

Halt—Halt the machine. (This instruction is

frequently used to allow the operator to over-
ride the program at strategic points in the
problem. To resume operation, the operator
depresses one of the nine START buttons on
the control panel which are illustrated and
explained in the section on “Operating the
E101.”)

b Unconditional Transfer— Execute the instruc-
tion on pinboard “a”, step “b”. (The uncondi-
tional transfer is used most frequently to
transfer back to the beginning of a loop of in-
structions in order to iterate within the loop—
ie., repeat the instructions. It is also the
standard means of going from the last instruc-
tion in one pinboard to another pinboard. If
the instruction in step 15 of a pinboard is not
an unconditional transfer, the program will go
to the first instruction—step 0—in the same

pinboard.)
b Unconditional Transfer Within a Pinboard—

Execute instruction “b” on the same pinboard.
(This instruction is helpful in the case of any
one-pinboard routine—e.g., loading or clear-
ing—that is used frequently. By pinning a “0”
in the second area instead of a definite pin-
board number, the operator can use the pin-
board in any of the 8 pinboard positions with-
out first changing this pin.)

* Unconditional Transfer to Next Step on Pin-
board “a’’—Execute the instruction on pin-
board “a” immediately following the last in-
struction previously executed in pinboard “a”.

b Conditional Transfer— Execute the instruction
on pinboard “a”, step “b”, if the contents of
the accumulator is negative; if not, continue
with the next step in the program. (Zero is
considered positive. If “a” and “b” are left
blank, the “C-—” will function normally when

B REGISTER

The B Register is an additional data storage location,
used for a multiplicand or a divisor. Once a number is
transferred into the B Register, it remains there until it is
erased by another number coming into the B Register
from the accumulator.
NOTE: The B Register, like the keyboard, holds an 11-
digit number while the memory, accumulator, and printer
each hold 12-digit numbers. As will be explained later,
the B Register is limited to 11 digits in order to prevent
the loss of significant figures in multiplication. The key-
board is limited to 11 digits in accordance with the cus-
tomary procedure of having one less digit in the keyboard
than in the accumulator. In both cases, the 11 digits cor-
respond to the I1 least significant (right hand) digits of
the accumulator, the printed number, or a memory lo-
cation.

E101 PROGRAMMING INSTRUCTIONS
This section contains detailed descriptive information

on the programming instructions for the basic E101. It is
generally helpful to refer to the data flow diagram on p. 1

when learning the instructions, especially K, W, R, B,
and P.

Most instructions consist of three characters corres-
ponding to the three areas of the pinboard. The address
portion of the instruction is designated as “ab,” “a”
standing for the tens digit of the memory address and “b”
for the units digit.
NOTE: Sometimes the programmer will mistakenly call
for an instruction which generates an overflow. When
this occurs, one of the E101’s internal checking circuits
halts the program and lights the ALARM signal. For a
detailed description of the ALARM condition, and what
the operator must do to continue computation, see the
section on Checking Circuitry beginning on page 21.

PROGRAMMING INSTRUCTIONS
FOR THE BASIC E101

PINBOARD

fats OPERATION CARRIED OUT

K|—|— Keyboard—Halt the program, and light the
KEYBOARD signal. When one of the four
motor bars is depressed,
(a) transfer the number in the keyboard into

the 11 least significant (right hand) digit
positions in the accumulator, making the
most significant (leftmost) digit zero;

(b) if the minus bar is depressed, make the
number negative;

(c) print the number in the present carriage
position; and

(d) move the carriage to the next printing
postition, depending upon which one of
the four motor bars has been depressed.

K|/—]|0 Keyboard Non-Print—Same as “K” except do
not print the number in the keyboard.

PINBOARD
AREA

1 [2 {3 OPERATION CARRIED OUT

W|a|b Write—Write the contents of the accumulator

2

into memory address “a b” after first erasing
old contents of “a b”. Accumulator remains
unchanged.

b Read—Read the contents of memory address
“a b” into the accumulator after first erasing
old contents of accumulator. “a b” remains
unchanged.

— B Transfer—Transfer the contents of the ac-
cumulator into the B Register after first eras-
ing old contents of B Register. Accumulator
remains unchanged.

NOTE: The capacity of the B Register is 11

digits. If the number transferring from the
accumulator to the B Register exceeds 11

digits, i.e., exceeds 0.999 999 999 99, the
E101 alarms. This is a safeguard built into
the machine to prevent loss of significant
digits in multiplication. In multiplication, the
number in the B Register (<1.0 X 10°) is
multiplied by the number in a specified me-
mory address (which can be as large as

9.999 999 999 99 X 10°) leaving the answer
in the accumulator which, like the memory,
has a capacity for 12 digits or a number as
large as 9.999 999 999 99 X 10°. Since the
number in the B Register is less than 1.0 in
absolute value, the product cannot possibly
exceed 9.999 999 999 99 X 10°. If this safe-
guard were not built into the E101, the E101
might be called upon to multiply a number
such as 4.000 000 000 00 in the B Register
by a number such as 9.000 000 000 00
in the memory resulting in a product of
36.000 000 000 00. Since the accumulator
has capacity for 12 digits with the decimal
point 11 places from the right, the “3” in the
answer would be lost.

— Print—Print contents of the accumulator, using
motor bar “a”. The pin for “a” is set at 1, 2,
3, or 4, depending on the carriage motion de-
sired after printing has occurred. If no pin is
inserted for “a” in a P instruction, or if a
number which is not 1, 3, or 4 is pinned for
“a”, the printer will automatically activate
motor bar 2. (As in the case of a keyboard
entry, the choice of motor bar depends on
what format is desired. A fuller explanation
of the motor bars is included in the section on
Operating the E101.) The accumulator re-
mains unchanged.

0 Non-Print—Same as “P a” except do not print.
This “dummy print” instruction is used to
move the carriage to another printing posi-
tion, without first printing.

* Print and Halt—Same as “Pa”. The E101
halts after the printing and carriage motion
have occurred. (For a complete description
of the HALT condition, see the section on
Operating the E101.)

_—

PINBOARD
AREAi213 OPERATION CARRIED OUT

+|a]b Add—Add the contents of memory location

“a b” to the contents of the accumulator. The
sum appears in the accumulator; the number
in “a b” remains unchanged.
NOTE: If the sum exceeds the 12-digit ca-
pacity of the accumulator (for example, if
6.000 000 000 00 in “ab” is added to
7.000 000 000 00 in the accumulator, result-
ing in a sum of 13.000 000 000 00), the
E101 alarms, indicating that a “1” has been
lost. The number 3.000 000 000 00 appears
in the accumulator.

b Subtract—Subtract the contents of ‘‘a b” from
the contents of the accumulator. The remain-
der appears in the accumulator; the contents
of “a b” remains unchanged.
NOTE: Here again there is an alarm
if the answer exceeds the 12-digit capac-
ity of the accumulator. (For example
if 6.000 000 000 00 is subtracted from
—8.000 000 000 00 in the accumulator, the
answer —14.000 000 000 00 would appear
in the accumulator as 4.000 000 000 00,—
and the alarm would sound, indicating an
overflow.)

b Multiply — Multiply the contents of the B Regis-
ter by the contents of memory location “a b”.
The product appears in the accumulator; the
contents of the B Register and of memory lo-
cation “ab” remain unchanged. (As previ-
ously explained, in multiplication the number
in the B Register must be less than 1.0 X 10°
in absolute value. In order to prevent error,
an alarm occurs if a “B” instruction calls for
transfer of a number greater than or equal to
1.0 into the B Register. Multiplication is con-
sequently an 11 digit by 12 digit operation.
The most significant 12 digits of the product
appear in the accumulator; round off of the
product does not occur automatically; the
least significant 11 digits are computed but
not retained.)

b Divide—Divide the contents of the accumulator
by the number in the B Register and store the
quotient in memory location “a b”. The un-
divided remainder appears in the accumulator
one place to the left of the divisor; the con-
tents of the B Register remain unchanged.
(An alarm occurs if the absolute value of the
quotient is = 10.0 X 10° resulting in the loss
of significant digits.)

b_ Shift Left— Shift the contents of the accumula-
tor “b” places to the left, filling in zeros from
the right. Pinning O=b=10 selects the num-
ber of places shifted. A10, calling for a

“shift” of 0 places, is a dummy instruction,
used where a filler step is required. If the
third area is left blank, or if any other number
is pinned for “b”, a shift of ten places will oc-

PINBOARD
AREA

1(521-3 OPERATION CARRIED OUT

cur. (This is an off-end shift instruction used
in extracting, scaling, positioning numbers
prior to printing, and zeroizing the accumu-
lator. When a number is shifted out of the
accumulator by an A instruction, the loss of
digits does not cause an alarm.)

A| 2|b Shift Right—Shift the contents of the accumu-
lator “‘b” places to the right, filling in zeros
from the left. (Like A 1 b, A 2 b is an off-end
shift instruction, where an overflow to the
right results in the loss of digits, but does not
cause an alarm.)

— Absolute Value— Make contents of the ac-

cumulator positive (regardless of former
sign).

— Negative of Absolute Value— Make the con-
tents of the accumulator negative (regardless
of former sign).

— Change Sign—Change the sign of the con-
tents of the accumulator.

Halt—Halt the machine. (This instruction is

frequently used to allow the operator to over-
ride the program at strategic points in the
problem. To resume operation, the operator
depresses one of the nine START buttons on
the control panel which are illustrated and
explained in the section on “Operating the
E101.”)

b Unconditional Transfer— Execute the instruc-
tion on pinboard “a”, step “b”. (The uncondi-
tional transfer is used most frequently to
transfer back to the beginning of a loop of in-
structions in order to iterate within the loop—
ie., repeat the instructions. It is also the
standard means of going from the last instruc-
tion in one pinboard to another pinboard. If
the instruction in step 15 of a pinboard is not
an unconditional transfer, the program will go
to the first instruction—step 0—in the same

pinboard.)
b Unconditional Transfer Within a Pinboard—

Execute instruction “b” on the same pinboard.
(This instruction is helpful in the case of any
one-pinboard routine—e.g., loading or clear-
ing—that is used frequently. By pinning a “0”
in the second area instead of a definite pin-
board number, the operator can use the pin-
board in any of the 8 pinboard positions with-
out first changing this pin.)

* Unconditional Transfer to Next Step on Pin-
board “a’’—Execute the instruction on pin-
board “a” immediately following the last in-
struction previously executed in pinboard “a”.

b Conditional Transfer— Execute the instruction
on pinboard “a”, step “b”, if the contents of
the accumulator is negative; if not, continue
with the next step in the program. (Zero is
considered positive. If “a” and “b” are left
blank, the “C-—” will function normally when

PINBOARD
AREA

1 h21 3 OPERATION CARRIED OUT

the contents of the accumulator is positive,
but will stop the program if the accumulator
is negative.)

C} 0| b Same as “C a b” except stay in same pinboard on
transfer.

Cj al* “Samesas {Ca b? except execute the instruction
on pinboard “a” immediately following the
last instruction previously executed in pin-
board “a”.

H| 0|b Home E Switch , These are the automatic ad-
H|1/b HomeF Switch | dress modification instruc-
H|2|b Home E and F tions. Before proceeding with
S|0|b Step E Switch their description (which
S|1]b Step F Switch \ starts on p. 5), an explana-
S|2|b Step E and F tion of the E and F switches

 is given.

ADDRESS MODIFICATION

Automatic Address Modification
Automatic address modification is accomplished in the

E101 by means of the E andF switches, which are two in-
ternal stepping switches. Basically, they are nothing more
than counters. Each one is a 16-position switch that can
count from 0 up through 15.

There are two programming instructions used to con-
trol each switch, one to set it at some initial position, and
another to step it ahead one position at a time. To differ-
entiate between the E and F switches in these instruc-
tions,we use the digit “0” to indicate the E switch and the
digit “1” to indicate the F switch: E = 0, F = 1. Each
switch can be set initially, or “homed,” to any of its 16
positions by the “H” instruction, which is referred to as
the “homing” instruction. “H 0 4” for example, homes

ee es,
14 2 14 2

13 3 13 3

12 4 12 4

11 5 11 5

10 6 10 6
g 7 9 7

$09 S14

the E switch to 4, while “H 1 6” homes the F switch to 6.
Each switch can be stepped ahead one position at a

time and told at what position to stop its counting by the
“S” instruction which is referred to as the “stepping”
instruction. “S 0 9,” for example, steps the E switch once
each time the instruction is executed, stopping when E
passes 9. “S 1 3” steps the F switch one position at a
time stopping whenF passes 3.

ee
14 2

13 3

12 4

T 5

10 6
of!

H04

The “S” instruction stops the counting by means of a
kind of conditional transfer. Recall that in the case of the
unconditional transfer, “U,” the E101 always goes to
whatever program step is pinned along with the “U”
(e.g., U8 12). In the case of the conditional transfer,
“C,” the E101 automatically goes on with the next in-
struction in the program unless the number in the ac-
cumulator is negative. It transfers to the program step
pinned along with the “C” (e.g., C 6 3) if, and only if,
the accumulator is negative.

The “S” instruction is similar to the “C” in that it, too,
is a conditional transfer. But the “S” instruction is more
complex: first it advances the switch one position, then
it looks at the pin in its third area to see if the switch has
just passed the value pinned. As long as the switch has
not just passed the limit pinned at “b,” the program goes
on to the next instruction in the pinboard. However, when
the execution of the “S” instruction steps the switch past
the limit which is pinned, the E101 skips the next instruc-
tion in the program and transfers instead to the instruc-
tion after the next instruction.

The “S” instruction is normally used in a block of steps
which are repeated, called a “loop.” The step after the
“S$” instruction is generally a “U” instruction which
transfers back to the beginning of the loop to repeat the
instructions (or to “iterate”). Each time through the
loop, the “S” instruction steps the E or F switch (depend-
ing on which is called for) one position. The “U” instruc-
tion then takes the E101 back to the beginning of the loop
to repeat the instructions. When E (or F) reaches the
limit that is pinned (for example, when E reaches 9 in the
case of the instruction “S 0 9”), the E101 again proceeds
to the “U” instruction which takes the E101 back to re-
peat the loop. However, the next time the E101 comes to
the “S” instruction, it steps E from 9 to 10; at this point
it skips the “U” instruction and goes on with the rest of
the program.

Although the E and F switches are sometimes used
simply as counters, their most powerful feature is the fact

that the E101 can use the numbers at which the switches
are set as the address in an instruction. In referring to the
switch settings, we use the symbols “E” and “F.” They
can be used singly or in combination. The instruction
“REF,” for example, tells the E101 to read into the ac-
cumulator the number which is stored in the memory
location whose tens digit is to be found at the E switch
setting, and whose units digit is the position of the F
switch. The instruction “W 6 F” tells the E101 to write
the contents of the accumulator into memory location
6 F, where F is the position at which the F switch is set.
While E is generally used in the tens position andF in the
units position, E can be used in either or both positions
(ec WER, ~E8 ROE x BE)

The primary use of the E and F switches is to modify
the addresses of instructions in a program automatically.
The “H” instruction allows us to begin our address se-
quencing where we wish (usually at zero), and the “S”
instruction enables us to advance through the sequence
one step at a time. Although the E andF switches are 16-
position counters, only the first ten positions (0 through
9) are used for automatic address modification. The next
section, “Sample Programs,” contains several illustra-
tions of the use of the E and F switches in automatic ad-
dress modification.

E and F, while generally used to denote an address in
the memory, are not confined to this function. They may
be used in the second and third areas of any instruction
in place of specific numbers. The E101 will automatically
substitute the setting of the switch for the symbol “E” or
“F.” As an example, the instruction, “U E *,” is frequent-
ly used to return from a pinboard containing a subroutine
to the main part of the program. Before transferring to
the subroutine from one of several pinboards, the E
switch is homed to the position corresponding to that
pinboard number. The last instruction in the subroutine,
“UE *,” automatically returns the E101 to the next in-
struction on pinboard E, which is the pinboard from
which the transfer to the subroutine was made. “C E *,”
can be used in a similar fashion.

MANUAL ADDRESS MODIFICATION

Manual address modification is accomplished in the
E101 by means of the X and Y keys on the left side of the
keyboard (illustrated in the section on Operating the
E101). Pinning “X” for “a” or “Y” for “b” in any in-
struction (similar to pinning ““E” or “F’’) sends the E101
to the appropriate keyboard setting of the X or Y keys for
that particular value of ‘a’ or b.”’ One of the principal
uses of the X and Y keys is to allow the operator random
access to any location in the memory.

Just as in the case of the E and F switches, “X” and
“Y” are used primarily for address modification but may
be used with any instruction as variables in the second
and third areas of the pinboard. Remember that there are
ten X and ten Y keys: 00 = XY = 99.

PINBOARD
AREA

LS oe SL

O}b

1|b

Cc

of

ADDRESS MODIFICATION INSTRUCTIONS

Home E Switch—Home the E switch to posi-
tion “b”.

Home F Switch— Home the F switch to posi-
tion: by:

Home E and Move F—Home the E switch to
“b”, advancing F in tandem with E. (This in-
struction advances E and F an equal number
of steps but does not necessarily home them
to the same location unless they were both at
the same location initially.)

Step E Switch—Step the E switch once; then if
the switch setting E # b + 1, execute the next
instruction; if E=b-+ 1, skip the next in-
struction, and instead execute the instruction
after the next instruction. (Since E is a 16-
position switch, if stepped while in position 15,
it will go to its position 0. If b is left blank, the
S instruction will step the switch, but will
never skip the next instruction; that is, in the
absence of a “b” pin, it will always execute
the next instruction.)

Step F Switch—Same, but using F switch.
Step E and F—Same using E and F switches.

Skip the next instruction when E passes “b”.
Execute the instruction pinned in the first area

(for example, W; R, +, —), using the E
switch setting as the tens digit and the F
switch setting as the units digit of the address.

Execute the instruction pinned in the first area,
using the E switch setting as the tens digit of
the address.

Execute the instruction pinned in the first area,
using the E switch setting as the units digit of
the address.

Execute the instruction pinned in the first area,
using the E switch setting as both the tens and
units digits of the address.

Execute the instruction pinned in the first area,
using the F switch setting as the units digit of
the address.

Execute the instruction pinned in the first area
(for example, W, R, +, —), using the key-
board setting for X as the tens digit, and the
keyboard setting for Y as the units digit of the
address.

Execute the instruction pinned in the first area,
using the keyboard setting for X as the tens
digit of the address.

Execute the instruction pinned in the first area,
using the keyboard setting for Y as the units
digit of the address.

Execute the instruction on pinboard E (corre-
sponding to the E switch setting) immediately
following the last instruction previously exe-
cuted there.

Execute the instruction on pinboard E (corre-
sponding to the E switch setting) immediately
following the last instruction previously exe-
cuted there if the contents of the accumulator

PINBOARD
AREA

1 h21 3 OPERATION CARRIED OUT

the contents of the accumulator is positive,
but will stop the program if the accumulator
is negative.)

C} 0| b Same as “C a b” except stay in same pinboard on
transfer.

Cj al* “Samesas {Ca b? except execute the instruction
on pinboard “a” immediately following the
last instruction previously executed in pin-
board “a”.

H| 0|b Home E Switch , These are the automatic ad-
H|1/b HomeF Switch | dress modification instruc-
H|2|b Home E and F tions. Before proceeding with
S|0|b Step E Switch their description (which
S|1]b Step F Switch \ starts on p. 5), an explana-
S|2|b Step E and F tion of the E and F switches

 is given.

ADDRESS MODIFICATION

Automatic Address Modification
Automatic address modification is accomplished in the

E101 by means of the E andF switches, which are two in-
ternal stepping switches. Basically, they are nothing more
than counters. Each one is a 16-position switch that can
count from 0 up through 15.

There are two programming instructions used to con-
trol each switch, one to set it at some initial position, and
another to step it ahead one position at a time. To differ-
entiate between the E and F switches in these instruc-
tions,we use the digit “0” to indicate the E switch and the
digit “1” to indicate the F switch: E = 0, F = 1. Each
switch can be set initially, or “homed,” to any of its 16
positions by the “H” instruction, which is referred to as
the “homing” instruction. “H 0 4” for example, homes

ee es,
14 2 14 2

13 3 13 3

12 4 12 4

11 5 11 5

10 6 10 6
g 7 9 7

$09 S14

the E switch to 4, while “H 1 6” homes the F switch to 6.
Each switch can be stepped ahead one position at a

time and told at what position to stop its counting by the
“S” instruction which is referred to as the “stepping”
instruction. “S 0 9,” for example, steps the E switch once
each time the instruction is executed, stopping when E
passes 9. “S 1 3” steps the F switch one position at a
time stopping whenF passes 3.

ee
14 2

13 3

12 4

T 5

10 6
of!

H04

The “S” instruction stops the counting by means of a
kind of conditional transfer. Recall that in the case of the
unconditional transfer, “U,” the E101 always goes to
whatever program step is pinned along with the “U”
(e.g., U8 12). In the case of the conditional transfer,
“C,” the E101 automatically goes on with the next in-
struction in the program unless the number in the ac-
cumulator is negative. It transfers to the program step
pinned along with the “C” (e.g., C 6 3) if, and only if,
the accumulator is negative.

The “S” instruction is similar to the “C” in that it, too,
is a conditional transfer. But the “S” instruction is more
complex: first it advances the switch one position, then
it looks at the pin in its third area to see if the switch has
just passed the value pinned. As long as the switch has
not just passed the limit pinned at “b,” the program goes
on to the next instruction in the pinboard. However, when
the execution of the “S” instruction steps the switch past
the limit which is pinned, the E101 skips the next instruc-
tion in the program and transfers instead to the instruc-
tion after the next instruction.

The “S” instruction is normally used in a block of steps
which are repeated, called a “loop.” The step after the
“S$” instruction is generally a “U” instruction which
transfers back to the beginning of the loop to repeat the
instructions (or to “iterate”). Each time through the
loop, the “S” instruction steps the E or F switch (depend-
ing on which is called for) one position. The “U” instruc-
tion then takes the E101 back to the beginning of the loop
to repeat the instructions. When E (or F) reaches the
limit that is pinned (for example, when E reaches 9 in the
case of the instruction “S 0 9”), the E101 again proceeds
to the “U” instruction which takes the E101 back to re-
peat the loop. However, the next time the E101 comes to
the “S” instruction, it steps E from 9 to 10; at this point
it skips the “U” instruction and goes on with the rest of
the program.

Although the E and F switches are sometimes used
simply as counters, their most powerful feature is the fact

that the E101 can use the numbers at which the switches
are set as the address in an instruction. In referring to the
switch settings, we use the symbols “E” and “F.” They
can be used singly or in combination. The instruction
“REF,” for example, tells the E101 to read into the ac-
cumulator the number which is stored in the memory
location whose tens digit is to be found at the E switch
setting, and whose units digit is the position of the F
switch. The instruction “W 6 F” tells the E101 to write
the contents of the accumulator into memory location
6 F, where F is the position at which the F switch is set.
While E is generally used in the tens position andF in the
units position, E can be used in either or both positions
(ec WER, ~E8 ROE x BE)

The primary use of the E and F switches is to modify
the addresses of instructions in a program automatically.
The “H” instruction allows us to begin our address se-
quencing where we wish (usually at zero), and the “S”
instruction enables us to advance through the sequence
one step at a time. Although the E andF switches are 16-
position counters, only the first ten positions (0 through
9) are used for automatic address modification. The next
section, “Sample Programs,” contains several illustra-
tions of the use of the E and F switches in automatic ad-
dress modification.

E and F, while generally used to denote an address in
the memory, are not confined to this function. They may
be used in the second and third areas of any instruction
in place of specific numbers. The E101 will automatically
substitute the setting of the switch for the symbol “E” or
“F.” As an example, the instruction, “U E *,” is frequent-
ly used to return from a pinboard containing a subroutine
to the main part of the program. Before transferring to
the subroutine from one of several pinboards, the E
switch is homed to the position corresponding to that
pinboard number. The last instruction in the subroutine,
“UE *,” automatically returns the E101 to the next in-
struction on pinboard E, which is the pinboard from
which the transfer to the subroutine was made. “C E *,”
can be used in a similar fashion.

MANUAL ADDRESS MODIFICATION

Manual address modification is accomplished in the
E101 by means of the X and Y keys on the left side of the
keyboard (illustrated in the section on Operating the
E101). Pinning “X” for “a” or “Y” for “b” in any in-
struction (similar to pinning ““E” or “F’’) sends the E101
to the appropriate keyboard setting of the X or Y keys for
that particular value of ‘a’ or b.”’ One of the principal
uses of the X and Y keys is to allow the operator random
access to any location in the memory.

Just as in the case of the E and F switches, “X” and
“Y” are used primarily for address modification but may
be used with any instruction as variables in the second
and third areas of the pinboard. Remember that there are
ten X and ten Y keys: 00 = XY = 99.

PINBOARD
AREA

LS oe SL

O}b

1|b

Cc

of

ADDRESS MODIFICATION INSTRUCTIONS

Home E Switch—Home the E switch to posi-
tion “b”.

Home F Switch— Home the F switch to posi-
tion: by:

Home E and Move F—Home the E switch to
“b”, advancing F in tandem with E. (This in-
struction advances E and F an equal number
of steps but does not necessarily home them
to the same location unless they were both at
the same location initially.)

Step E Switch—Step the E switch once; then if
the switch setting E # b + 1, execute the next
instruction; if E=b-+ 1, skip the next in-
struction, and instead execute the instruction
after the next instruction. (Since E is a 16-
position switch, if stepped while in position 15,
it will go to its position 0. If b is left blank, the
S instruction will step the switch, but will
never skip the next instruction; that is, in the
absence of a “b” pin, it will always execute
the next instruction.)

Step F Switch—Same, but using F switch.
Step E and F—Same using E and F switches.

Skip the next instruction when E passes “b”.
Execute the instruction pinned in the first area

(for example, W; R, +, —), using the E
switch setting as the tens digit and the F
switch setting as the units digit of the address.

Execute the instruction pinned in the first area,
using the E switch setting as the tens digit of
the address.

Execute the instruction pinned in the first area,
using the E switch setting as the units digit of
the address.

Execute the instruction pinned in the first area,
using the E switch setting as both the tens and
units digits of the address.

Execute the instruction pinned in the first area,
using the F switch setting as the units digit of
the address.

Execute the instruction pinned in the first area
(for example, W, R, +, —), using the key-
board setting for X as the tens digit, and the
keyboard setting for Y as the units digit of the
address.

Execute the instruction pinned in the first area,
using the keyboard setting for X as the tens
digit of the address.

Execute the instruction pinned in the first area,
using the keyboard setting for Y as the units
digit of the address.

Execute the instruction on pinboard E (corre-
sponding to the E switch setting) immediately
following the last instruction previously exe-
cuted there.

Execute the instruction on pinboard E (corre-
sponding to the E switch setting) immediately
following the last instruction previously exe-
cuted there if the contents of the accumulator

is negative. If not, go to the next instruction
in the program.

SAMPLE PROGRAMS

This section contains sample programs which the read-
er can use as a means of reviewing the programming in-
structions given in the preceding section. We have in-
cluded a few “homework” problems at the end for anyone
who wants additional practice. The “answers” can be
found in the Appendix.

SO

Go.

Oy

Oe

Cohn

1) y=ae+b
K Enter a in keyboard
W 0 0| Write a into memory location 00
K Enter b in keyboard
W 0 1 | Write 5 into memory location 01
K Enter x in keyboard
B Store x in B Register
xX 00] Multiply a by x
W O 2 | Write ax into memory location 02
X 0 2 | Multiply ax by x
+ 0 1 | Add bd to ax?

LOS Rest Print ax* + b (using motor bar 1)
U 0 4] Transfer back to step 4 of this pinboard

a
2) VsrxXa ay

01K _| Enter a in keyboard
1) W 0 0 | Write a into memory location 00
2|K Enter x in keyboard
3} W 0 1 | Write x into memory location 01
4;B Store x in B Register
5| X 0 1 | Multiply x by x
6|B Store x? in B Register
7] R 0 O| Read a out of memory location 00 into

accumulator
8 | + 0 2 | Divide a by x; store quotient in memory

location 02
9|R 0 1 | Read x out of memory location 01 into

accumulator

10°] — 022-| Subtract < from x
x

Eg ee | Prntx = = (using motor bar 1)
Pf

——12{U O 2] Transfer back to step 2

3) Clear (i.e., erase contents of) memory locations 14,
16, 23 and 39:

0|R 9 9 | Read contents of memory location 99 into
accumulator

1 | — 9 9 | Subtract contents of memory location 99
from accumulator (leaving zero).

2 |W 1 4 | Write contents of accumulator (zero)
into memory location 14

3 |W 1 6 | Write contents of accumulator into
memory location 16

4 |W 2 3 | Write contents of accumulator into
memory location 23

5 |W 3 9 | Write contents of accumulator into
memory location 39

6} - - - | NOTE: The choice of location 99 in steps 0
and 1 is arbitrary: any location will do
as well.

Another way of programming this problem is as follows:

0} A 2 6] Shift contents of accumulator 6 places to the
right (leaving zeros in the 6 digit positions
at the left).

1} A 2 6] Shift contents of accumulator 6 places to the
right (leaving zeros in all 12 digit posi-
tions).

2) WwW. 14
5 \2W. 1 6
4] W 2 3 Same as above
5| W3 9
Glee a=

Steps 0 and 1 could just as easily have been A 1 6 and
A1 6 (shift left). Still another way of programming this
problem is as follows:

O| K Enter zero in keyboard. (This is done by
touching a motor bar without indexing a

number on the keyboard.)
1|W 14
22 Ww.1 6
Bee Ww: 2.3 Same as above
a iw 3s 9
5: | ae ee

This method uses one less step than the others, but re-
quires operator participation.

4) Print contents of memory locations 40 to 49 without
using the E or F switch:

Pinboard #1

0] R 4 0 | Read contents of memory location 40
into accumulator.

ii 2 Print contents of accumulator using
motor bar 2.

2|R 4 1 | Read contents of 41 into accumulator.
54 P 2 Print.
4|R 4 2 | Read contents of 42 into accumulator.
alee <2 Print.
6!R 4 3 | Read contents of 43 into accumulator.
Pelee 2 Print.
8|R 4 4 | Read contents of 44 into accumulator.
oP 2 Print.

10] R 4 5S | Read contents of 45 into accumulator.
11|-P 2 Print.
12 | R 4 6 | Read contents of 46 into accumulator.
Hee 2 Print.
14|R 4 7 | Read contents of 47 into accumulator.
15 |U 2 O | Transfer to pinboard 2, step 0.

Pinboard #2

OEP -2 Print.
1|R 4 8 | Read contents of 48 into accumulator.
BPD Print.
3 |R 49 | Read contents of 49 into accumulator.ap 2 Print.
Bele. 72

(Total of 21 steps.)

5) Print contents of memory locations 40 to 49 using

F switch.

0]H 1 0] Home the F switch to zero.

1 |R 4 F] Read out contents of memory location 4F
where F is the setting on the F switch.
(The first time through the routine F will
be 0; the next time it will be 1, then 2, etc.)

Z| eRe, Print the contents of accumulator using motor
bar 2.

3|S 1 9] Step the F switch. As long as F doesn’t pass 9,

go to the next instruction; whenF passes 9,

skip the next instruction and go on to in-
struction 5. (The first time through the

routine S 1 9 will step F from 0 to 1; the

next time from 1 to 2, etc.)

4] U O 1] Transfer back to step 1.

(Total of only 5 steps compared to 21 steps in pre-

vious routine.)

6) Load 50 constants into memory locations 00 to 49:

0!|H O 0O| Home the E switch to zero.

—>1{/H 1 0} Home the F switch to zero.

re2)K Enter constant in keyboard.
3|WEF| Write into memory location EF (where

E = setting of E switch and F = setting of
F switch).

4|S 19] Step the F switch; if F #10, go to next in-
struction. When F = 10, skip the next in-
struction and go to step 6. (Each time the

E101 reaches the S19 instruction, F is

increased by 1. Notice that E does not
change as long as the program remains in
the F loop. The first time through the rou-
tine the constant will be written into 00;

the next time in 01, then in 02, etc. After
the 10th constant has been written into 09,

the E101 will skip the U instruction in
step 5 and go on to step 6.)

5 U Transfer back to step 2.

6|S 0 4] Step the E switch once each time the E101

comes to this instruction (once every 10

keyboard entries). After E passes 4, skip

 Oo i)

Ce to instruction 8.

7 Cc, ° Transfer back to step 1 where F switch is

again homed to zero.
(E is homed only at the beginning.)

PRACTICE PROBLEMS

1. Load 10 constants into memory locations 70 to 79 as

follows:
a) without using E or F switch
b) using F switch
c) using E switch

2. Enter a constant through the keyboard and store it in
the B Register. Enter 10 numbers through the key-
board and store them in memory locations 00 to 09.

Divide each one by the constant stored in the B Regis-

ter and store the quotients in memory locations 20 to
29. Do this problem two ways:

a) without using E or F switch
b) using F switch

3. Enter 10 numbers through the keyboard and store

them in-memory locations 80 to 89. As they are en-

tered, accumulate their total in memory location 99.

Print out the final total.
4. Clear memory locations 00 to 39.

Answers
There are sometimes several ways in which a problem

can be programmed. One method suggested for program-
ming each one of the above problems can be found in the

Appendix at the back of the Manual.

OPERATING THE E101

Anyone who has operated a desk calculator or ac-

counting machine can be taught to operate the E101 with
just a few hours of instruction. In some E101 installa-
tions, the computer is operated by personnel with little or
no programming experience. A manual entitled Hand-
book of Operating Instructions for the ELECTRODATA

101 explains in detail how to run problems off on the

machine, and yet assumes no knowledge of programming.
But although the E101 programmer need never be-

come an expert operator, he must be able to debug his
own programs, and to specify clearly to others how his
problems must be run. The more he knows about the

E101’s input, manual control, and output features, the
better will he be able to save program steps and minimize
running time. For these reasons, a thorough reading of
Handbook of Operating Instructions for the ELECTRO-

Data /0/ is recommended. For the purposes of this
Manual, however, the following remarks will suffice.

“FULL PRINT” LEVER

X AND Y
KEYS

: ¥ MINUS BAR

MOTOR BARS

The E101 stops for a keyboard entry at each “K” in-
struction in the program. The operator enters the number
through the 11 column full keyboard as if he were oper-
ating an adding machine. If the number is negative, he

depresses the minus bar at the extreme right of the key-
board. To complete the operation, he touches one of the
four motor bars located on the right of the 11 digits.
Touching the motor bar does three things: puts the num-
ber into the E101 accumulator, prints it on the report (in
red if negative), and moves the carriage to the next print-
ing position. The position to which the carriage moves

depends on which motor bar is touched.

is negative. If not, go to the next instruction
in the program.

SAMPLE PROGRAMS

This section contains sample programs which the read-
er can use as a means of reviewing the programming in-
structions given in the preceding section. We have in-
cluded a few “homework” problems at the end for anyone
who wants additional practice. The “answers” can be
found in the Appendix.

SO

Go.

Oy

Oe

Cohn

1) y=ae+b
K Enter a in keyboard
W 0 0| Write a into memory location 00
K Enter b in keyboard
W 0 1 | Write 5 into memory location 01
K Enter x in keyboard
B Store x in B Register
xX 00] Multiply a by x
W O 2 | Write ax into memory location 02
X 0 2 | Multiply ax by x
+ 0 1 | Add bd to ax?

LOS Rest Print ax* + b (using motor bar 1)
U 0 4] Transfer back to step 4 of this pinboard

a
2) VsrxXa ay

01K _| Enter a in keyboard
1) W 0 0 | Write a into memory location 00
2|K Enter x in keyboard
3} W 0 1 | Write x into memory location 01
4;B Store x in B Register
5| X 0 1 | Multiply x by x
6|B Store x? in B Register
7] R 0 O| Read a out of memory location 00 into

accumulator
8 | + 0 2 | Divide a by x; store quotient in memory

location 02
9|R 0 1 | Read x out of memory location 01 into

accumulator

10°] — 022-| Subtract < from x
x

Eg ee | Prntx = = (using motor bar 1)
Pf

——12{U O 2] Transfer back to step 2

3) Clear (i.e., erase contents of) memory locations 14,
16, 23 and 39:

0|R 9 9 | Read contents of memory location 99 into
accumulator

1 | — 9 9 | Subtract contents of memory location 99
from accumulator (leaving zero).

2 |W 1 4 | Write contents of accumulator (zero)
into memory location 14

3 |W 1 6 | Write contents of accumulator into
memory location 16

4 |W 2 3 | Write contents of accumulator into
memory location 23

5 |W 3 9 | Write contents of accumulator into
memory location 39

6} - - - | NOTE: The choice of location 99 in steps 0
and 1 is arbitrary: any location will do
as well.

Another way of programming this problem is as follows:

0} A 2 6] Shift contents of accumulator 6 places to the
right (leaving zeros in the 6 digit positions
at the left).

1} A 2 6] Shift contents of accumulator 6 places to the
right (leaving zeros in all 12 digit posi-
tions).

2) WwW. 14
5 \2W. 1 6
4] W 2 3 Same as above
5| W3 9
Glee a=

Steps 0 and 1 could just as easily have been A 1 6 and
A1 6 (shift left). Still another way of programming this
problem is as follows:

O| K Enter zero in keyboard. (This is done by
touching a motor bar without indexing a

number on the keyboard.)
1|W 14
22 Ww.1 6
Bee Ww: 2.3 Same as above
a iw 3s 9
5: | ae ee

This method uses one less step than the others, but re-
quires operator participation.

4) Print contents of memory locations 40 to 49 without
using the E or F switch:

Pinboard #1

0] R 4 0 | Read contents of memory location 40
into accumulator.

ii 2 Print contents of accumulator using
motor bar 2.

2|R 4 1 | Read contents of 41 into accumulator.
54 P 2 Print.
4|R 4 2 | Read contents of 42 into accumulator.
alee <2 Print.
6!R 4 3 | Read contents of 43 into accumulator.
Pelee 2 Print.
8|R 4 4 | Read contents of 44 into accumulator.
oP 2 Print.

10] R 4 5S | Read contents of 45 into accumulator.
11|-P 2 Print.
12 | R 4 6 | Read contents of 46 into accumulator.
Hee 2 Print.
14|R 4 7 | Read contents of 47 into accumulator.
15 |U 2 O | Transfer to pinboard 2, step 0.

Pinboard #2

OEP -2 Print.
1|R 4 8 | Read contents of 48 into accumulator.
BPD Print.
3 |R 49 | Read contents of 49 into accumulator.ap 2 Print.
Bele. 72

(Total of 21 steps.)

5) Print contents of memory locations 40 to 49 using

F switch.

0]H 1 0] Home the F switch to zero.

1 |R 4 F] Read out contents of memory location 4F
where F is the setting on the F switch.
(The first time through the routine F will
be 0; the next time it will be 1, then 2, etc.)

Z| eRe, Print the contents of accumulator using motor
bar 2.

3|S 1 9] Step the F switch. As long as F doesn’t pass 9,

go to the next instruction; whenF passes 9,

skip the next instruction and go on to in-
struction 5. (The first time through the

routine S 1 9 will step F from 0 to 1; the

next time from 1 to 2, etc.)

4] U O 1] Transfer back to step 1.

(Total of only 5 steps compared to 21 steps in pre-

vious routine.)

6) Load 50 constants into memory locations 00 to 49:

0!|H O 0O| Home the E switch to zero.

—>1{/H 1 0} Home the F switch to zero.

re2)K Enter constant in keyboard.
3|WEF| Write into memory location EF (where

E = setting of E switch and F = setting of
F switch).

4|S 19] Step the F switch; if F #10, go to next in-
struction. When F = 10, skip the next in-
struction and go to step 6. (Each time the

E101 reaches the S19 instruction, F is

increased by 1. Notice that E does not
change as long as the program remains in
the F loop. The first time through the rou-
tine the constant will be written into 00;

the next time in 01, then in 02, etc. After
the 10th constant has been written into 09,

the E101 will skip the U instruction in
step 5 and go on to step 6.)

5 U Transfer back to step 2.

6|S 0 4] Step the E switch once each time the E101

comes to this instruction (once every 10

keyboard entries). After E passes 4, skip

 Oo i)

Ce to instruction 8.

7 Cc, ° Transfer back to step 1 where F switch is

again homed to zero.
(E is homed only at the beginning.)

PRACTICE PROBLEMS

1. Load 10 constants into memory locations 70 to 79 as

follows:
a) without using E or F switch
b) using F switch
c) using E switch

2. Enter a constant through the keyboard and store it in
the B Register. Enter 10 numbers through the key-
board and store them in memory locations 00 to 09.

Divide each one by the constant stored in the B Regis-

ter and store the quotients in memory locations 20 to
29. Do this problem two ways:

a) without using E or F switch
b) using F switch

3. Enter 10 numbers through the keyboard and store

them in-memory locations 80 to 89. As they are en-

tered, accumulate their total in memory location 99.

Print out the final total.
4. Clear memory locations 00 to 39.

Answers
There are sometimes several ways in which a problem

can be programmed. One method suggested for program-
ming each one of the above problems can be found in the

Appendix at the back of the Manual.

OPERATING THE E101

Anyone who has operated a desk calculator or ac-

counting machine can be taught to operate the E101 with
just a few hours of instruction. In some E101 installa-
tions, the computer is operated by personnel with little or
no programming experience. A manual entitled Hand-
book of Operating Instructions for the ELECTRODATA

101 explains in detail how to run problems off on the

machine, and yet assumes no knowledge of programming.
But although the E101 programmer need never be-

come an expert operator, he must be able to debug his
own programs, and to specify clearly to others how his
problems must be run. The more he knows about the

E101’s input, manual control, and output features, the
better will he be able to save program steps and minimize
running time. For these reasons, a thorough reading of
Handbook of Operating Instructions for the ELECTRO-

Data /0/ is recommended. For the purposes of this
Manual, however, the following remarks will suffice.

“FULL PRINT” LEVER

X AND Y
KEYS

: ¥ MINUS BAR

MOTOR BARS

The E101 stops for a keyboard entry at each “K” in-
struction in the program. The operator enters the number
through the 11 column full keyboard as if he were oper-
ating an adding machine. If the number is negative, he

depresses the minus bar at the extreme right of the key-
board. To complete the operation, he touches one of the
four motor bars located on the right of the 11 digits.
Touching the motor bar does three things: puts the num-
ber into the E101 accumulator, prints it on the report (in
red if negative), and moves the carriage to the next print-
ing position. The position to which the carriage moves

depends on which motor bar is touched.

The operator must use a motor bar every time the
E101 calls for a keyboard entry. The programmer must
not only specify to the operator which motor bars he is to
use, but must also tell the E101 which motor bar to em-
ploy each time it prints out a number from its accumu-
lator.

When a motor bar is activated, the E101 prints. In
general, the carriage motions which occur after printing
are as follows:

MOTOR BAR CARRIAGE MOTION

1 space vertically and return to
left (to column 1)

2 move to next tab stop to the right
3 space vertically
- tab to the right, skipping one or

more columns

These basic functions can be altered to meet the vary-
ing format requirements of each problem: one motor bar
can produce the carriage motion typical of another, the
carriage can be made to move to the left, and so forth. An
interchangeable control panel, which fits into the moving
carriage, is set mechanically to call for four different col-
umnar arrangements, and to override the basic motor bar
functions in those columns where needed. A general pur-
pose control panel is supplied with each E101; it can be
changed, or additional control panels can be kept on hand
for unlimited format flexibility.

As an example of how the motor bars are used, con-
sider a problem in which the operator indexes values of x
through the keyboard and the E101 computes the corres-
ponding values of y and prints them next to the values of
x: we want to end up with two vertical columns, “x” and
“y.” The operator would touch motor bar 2 after enter-
ing each value of x, thereby moving the carriage horizon-
tally to the next column. Wheny has been calculated, the
struction for its print-out would be pinned as P 1 _; this
would print the value of y next to the corresponding value
of x, space vertically and return the carriage to the left so

that it is in position for a new value of x.

ZERO SUPPRESSION

The “Full Print” lever at the back of the keyboard on
the right is used by the operator to suppress zeros in key-
boards entries and printed results when desired. As long
as the lever is in the forward position (marked “Full
Print”) the complete 12-digit number in the accumulator
prints on the report (e.g., 0 000 000 638 20). When the
operator moves the lever to the rear position (away from
the operator), all zeros to the left of the first significant
digit are suppressed (e.g., 638 20).

X AND Y KEYS

The small dark keys in the first two columns on the left
of the keyboard are the X and Y keys used primarily for
manual address modification. When X and Y are pinned

in a program instead of a definite memory address, the
operator determines which memory address the E101
should use by depressing a key in the X column (at the
extreme left) and one in the Y column. The E101 uses

these values in the program wherever X andY are called
for until the operator sets up new values in the X and Y
keys—usually at the time of a keyboard entry or halt in-
struction. The X and Y keys remain set through all key-
board entries and printings; theycan be cleared only from
their own individual clear keys at the top of each column.

START BUTTONS

The E101 has been designed so that computation can

be stopped at any point to allow human judgment to be

brought to bear on the problem where required. At such

points, the operator can decide what part of the problem
the E101 should solve next, enter new numbers, etc.

Trial-and-error problems are especially well-suited to
the E101 because of this feature.

When programming a problem of this nature, the pro-
grammer calls for halt instructions (A —_ * or Pa *) at
strategic points in the problem. When the E101 reaches

a halt instruction, the program stops while the operator
examines the results up to that point and decides what
action to take. To resume operation, the operator touches
one of the nine START buttons on the left of the neon
lights. The first eight buttons are numbered from 1 to 8

and correspond to the eight pinboards. Touching any one
of these buttons sends the E101 to the first instruction on
the corresponding pinboard for its next instruction. The
9th START button, marked “R,” is called the REGU-
LAR START button; it sends the E101 to the next in-
struction in the program following the halt instruction.

As an example of how this feature may be used, an
engineer might be runninga trial-and-error design prob-
lem involving a number of design parameters. By pro-
gramminga halt instruction at the proper place, he can
examine the results at that point and decide whether to
go on with the computation (in which case he would
probably touch the REGULAR START button), wheth-
er to go back to the beginning of the problem and try a
new parameter (in which case he might touch START
button 1) or whether to skip ahead to the final print-out
instructions on the last pinboard (in which case he would
touch START button 8).

E101 CONTROL PANEL

1. ALARM light—lights up when E101 stops under
certain conditions such as accumulator overflow.

2. START buttons 1 to 8—send E101 to first instruc-
tion on pinboards1 to 8 respectively.

3. REGULAR START button:
under PINBOARD control, NORMAL operation,

it restarts the program at the next pinboard step;
under PINBOARD control, SINGLE operation,

=

CHECK CIRCUIT

(1) ALARM LIGHT

ae
“

SeemxO7Oweun-

GBR

=

REGULAR
START BUTTON

STEPPING
(14) SWITCH

INDICATOR
BUTTONS

NORMAL- SINGLE
TOGGLE SWITCH

it executes the next pinboard step;

under MANUAL control, it executes whatever in-
struction has been set up in the Manual Instruc-
tion dial switches.

4. NORMAL/SINGLE toggle switch—in NORMAL
position, E101 executes each pinboard step in se-

quence automatically; in SINGLE position, E101
executes one pinboard instruction at a time; used

to stop automatic computation.
5. PIN/MAN toggle switch—In PIN position, E101

takes its instructions from the pinboards; in MAN
position, E101 executes the instructions set up in
Manual Instruction dials.

6. HALT light—lights up when E101 stops at a halt
instruction or an alarm.

7. KEYBOARD light—lights up when E101 stops at a

keyboard instruction.
8. Neon pinboard and step lights—Indicate pinboard

number (left column) and step number (right col-
umn) of instruction being followed.

INDICATORS

NEON PINBOARD
AND STEP LIGHTS

(9) CLEAR BUTTON

MANUAL INSTRUCTION (1) READY LIGHT
DIALS

#52?
MANUAL INSTRUCTION

Serve (13) WAIT LIGHT

TOGGLE SWITCH

9. CLEAR button—halts the machine, clears the in-
struction flip-flop, and turns on the HALT light,
used to allow operator to re-start computation
after ALARM (it turns off the ALARM light and

gong), or machine standstill.
10. Manual Instruction dials—allow operator to execute

instructions manually, (i.e., independent of the

pinboard).
11. READY light—indicates E101 is ready for opera-

tion.
12. OFF-ON key—turns E101 “on” and “off.”
13. WAIT light—indicates E101 is “on,” but is warm-

ing up.
14. STEPPING SWITCH INDICATOR BUTTONS—

permit operator to read E or F switch positions
from neon step lights when machine has momen-
tarily halted; depressing both E and F buttons to-
gether reads out band switch setting.

15. CHECK CIRCUIT INDICATORS—light up when
circuit malfunction occurs.

The operator must use a motor bar every time the
E101 calls for a keyboard entry. The programmer must
not only specify to the operator which motor bars he is to
use, but must also tell the E101 which motor bar to em-
ploy each time it prints out a number from its accumu-
lator.

When a motor bar is activated, the E101 prints. In
general, the carriage motions which occur after printing
are as follows:

MOTOR BAR CARRIAGE MOTION

1 space vertically and return to
left (to column 1)

2 move to next tab stop to the right
3 space vertically
- tab to the right, skipping one or

more columns

These basic functions can be altered to meet the vary-
ing format requirements of each problem: one motor bar
can produce the carriage motion typical of another, the
carriage can be made to move to the left, and so forth. An
interchangeable control panel, which fits into the moving
carriage, is set mechanically to call for four different col-
umnar arrangements, and to override the basic motor bar
functions in those columns where needed. A general pur-
pose control panel is supplied with each E101; it can be
changed, or additional control panels can be kept on hand
for unlimited format flexibility.

As an example of how the motor bars are used, con-
sider a problem in which the operator indexes values of x
through the keyboard and the E101 computes the corres-
ponding values of y and prints them next to the values of
x: we want to end up with two vertical columns, “x” and
“y.” The operator would touch motor bar 2 after enter-
ing each value of x, thereby moving the carriage horizon-
tally to the next column. Wheny has been calculated, the
struction for its print-out would be pinned as P 1 _; this
would print the value of y next to the corresponding value
of x, space vertically and return the carriage to the left so

that it is in position for a new value of x.

ZERO SUPPRESSION

The “Full Print” lever at the back of the keyboard on
the right is used by the operator to suppress zeros in key-
boards entries and printed results when desired. As long
as the lever is in the forward position (marked “Full
Print”) the complete 12-digit number in the accumulator
prints on the report (e.g., 0 000 000 638 20). When the
operator moves the lever to the rear position (away from
the operator), all zeros to the left of the first significant
digit are suppressed (e.g., 638 20).

X AND Y KEYS

The small dark keys in the first two columns on the left
of the keyboard are the X and Y keys used primarily for
manual address modification. When X and Y are pinned

in a program instead of a definite memory address, the
operator determines which memory address the E101
should use by depressing a key in the X column (at the
extreme left) and one in the Y column. The E101 uses

these values in the program wherever X andY are called
for until the operator sets up new values in the X and Y
keys—usually at the time of a keyboard entry or halt in-
struction. The X and Y keys remain set through all key-
board entries and printings; theycan be cleared only from
their own individual clear keys at the top of each column.

START BUTTONS

The E101 has been designed so that computation can

be stopped at any point to allow human judgment to be

brought to bear on the problem where required. At such

points, the operator can decide what part of the problem
the E101 should solve next, enter new numbers, etc.

Trial-and-error problems are especially well-suited to
the E101 because of this feature.

When programming a problem of this nature, the pro-
grammer calls for halt instructions (A —_ * or Pa *) at
strategic points in the problem. When the E101 reaches

a halt instruction, the program stops while the operator
examines the results up to that point and decides what
action to take. To resume operation, the operator touches
one of the nine START buttons on the left of the neon
lights. The first eight buttons are numbered from 1 to 8

and correspond to the eight pinboards. Touching any one
of these buttons sends the E101 to the first instruction on
the corresponding pinboard for its next instruction. The
9th START button, marked “R,” is called the REGU-
LAR START button; it sends the E101 to the next in-
struction in the program following the halt instruction.

As an example of how this feature may be used, an
engineer might be runninga trial-and-error design prob-
lem involving a number of design parameters. By pro-
gramminga halt instruction at the proper place, he can
examine the results at that point and decide whether to
go on with the computation (in which case he would
probably touch the REGULAR START button), wheth-
er to go back to the beginning of the problem and try a
new parameter (in which case he might touch START
button 1) or whether to skip ahead to the final print-out
instructions on the last pinboard (in which case he would
touch START button 8).

E101 CONTROL PANEL

1. ALARM light—lights up when E101 stops under
certain conditions such as accumulator overflow.

2. START buttons 1 to 8—send E101 to first instruc-
tion on pinboards1 to 8 respectively.

3. REGULAR START button:
under PINBOARD control, NORMAL operation,

it restarts the program at the next pinboard step;
under PINBOARD control, SINGLE operation,

=

CHECK CIRCUIT

(1) ALARM LIGHT

ae
“

SeemxO7Oweun-

GBR

=

REGULAR
START BUTTON

STEPPING
(14) SWITCH

INDICATOR
BUTTONS

NORMAL- SINGLE
TOGGLE SWITCH

it executes the next pinboard step;

under MANUAL control, it executes whatever in-
struction has been set up in the Manual Instruc-
tion dial switches.

4. NORMAL/SINGLE toggle switch—in NORMAL
position, E101 executes each pinboard step in se-

quence automatically; in SINGLE position, E101
executes one pinboard instruction at a time; used

to stop automatic computation.
5. PIN/MAN toggle switch—In PIN position, E101

takes its instructions from the pinboards; in MAN
position, E101 executes the instructions set up in
Manual Instruction dials.

6. HALT light—lights up when E101 stops at a halt
instruction or an alarm.

7. KEYBOARD light—lights up when E101 stops at a

keyboard instruction.
8. Neon pinboard and step lights—Indicate pinboard

number (left column) and step number (right col-
umn) of instruction being followed.

INDICATORS

NEON PINBOARD
AND STEP LIGHTS

(9) CLEAR BUTTON

MANUAL INSTRUCTION (1) READY LIGHT
DIALS

#52?
MANUAL INSTRUCTION

Serve (13) WAIT LIGHT

TOGGLE SWITCH

9. CLEAR button—halts the machine, clears the in-
struction flip-flop, and turns on the HALT light,
used to allow operator to re-start computation
after ALARM (it turns off the ALARM light and

gong), or machine standstill.
10. Manual Instruction dials—allow operator to execute

instructions manually, (i.e., independent of the

pinboard).
11. READY light—indicates E101 is ready for opera-

tion.
12. OFF-ON key—turns E101 “on” and “off.”
13. WAIT light—indicates E101 is “on,” but is warm-

ing up.
14. STEPPING SWITCH INDICATOR BUTTONS—

permit operator to read E or F switch positions
from neon step lights when machine has momen-
tarily halted; depressing both E and F buttons to-
gether reads out band switch setting.

15. CHECK CIRCUIT INDICATORS—light up when
circuit malfunction occurs.

Single Step and Manual Operation
Sometimes, especially when checking out, or debug-

ging, a program, it is helpful to run through the instruc-
tions in the program one step at a time, stopping after
each one before going on to the next. It is also helpful at
times to execute instructions manually that are not called
for in the program. Both of these operations—Single
Step and Manual—can be performed on the E101 with-
out disturbing the pinboard program. The controls used
for these operations are the REGULAR START button,
the toggle switches on the lower left of the control panel,
and the Manual Instruction dials in the center. The three
Manual Instruction dials correspond to the three areas of
the pinboards and can be used to execute manually any
instruction that can be pinned in the pinboards. They are
particularly helpful in printing out intermediate results
not called for in the original program. Because Single
Step and Manual operations are used primarily in debug-
ging a program, they are discussed in detail in the section
on debugging in part III.

PROGRAMMING FORMS

In programming a problem for the E101, it is helpful
to use the forms in this section. The first of these is the
E101 Programming Sheet on which the programmer lists
the instructions. It contains three columns for each pin-
board: one for the instructions, one for scaling factor,
and one for brief descriptive information.

x a o

When the program is complete, the programmer usu-
ally prepares a pre-punched paper template for each pin-
board. Using a pencil or ink stamp, he marks the positions
where the pins are to be placed. (The eraser end of a
pencil inked on a stamp pad does the job nicely.) The
templates are then laid over the pinboards and the pins
dropped in place. The templates serve a dual purpose:
they provide a permanent file copy of the program, which
can be re-pinned in a few minutes, and they virtually
eliminate pjnning errors.

The E101 100-Word Memory Map isa 10 X 10 array
of blocks, one for each memory location. When program-
ming a problem, especially one of any complexity, it is
helpful to record on the memory map what is to be stored
in each memory location. In addition to the actual num-
ber stored, information on scaling, initial clearing, inter-
mediate changes, etc., is often included.

The E101 220-Word Memory Map is used with the
220-word optional expanded memory. It shows the 22 x
10 blocks divided into the various bands.

An essential form filled out by the programmer is the
Operating Instructions Sheet which explains in detail to
any operator exactly what to do when running the prob-
lem. It includes the motor bar to be used with each key-
board entry, the START button to be depressed after
each halt instruction, settings for the X and Y keys, etc.
The Operating Instructions Sheet is indispensable to any-
one attempting to run the problem without assistance
from the person who programmed it originally.

m °o 2345 67 8 9101112131415

2 ee4

pee

® © ©
»>e2o

as
® ®® ® 2 ®

>

@ee@Gc @@e@een »
%

& e e @ ® - oe e ®

>eeeO~

®@ a

a2s o- ® oe @ @ @

e ®@® oy

aS

eee a e

~»
@ ®

'
ate

a
eee -@

eoene9e

ox

2oe

eoovedsesed

2ad @ ® oe

-GPeeveeeveod,

ve
1

23
4

5

ce
7

ibe
9
C)

tal
°oa
<E
<aoa=
oO
uu-
uu

1

W
eo

ogo

Ge

Ceoegege a

Oe

©9e00000 eee ad ®oe ®@ 4

2 oe ee

ee

eee

PSO?

OO

OS

OY

Cm

0e@e0 “@HCKCHOHOHOHOH

OY

“CORO

HOHOLOHOHOOY

eeev,eOGe00

04

c@ee noe 4@00@

eee ene

oe -@ nN -~ee@e

Yeboevodservodeos,

@Srynawenawn=-0o

& ® ® @ @

 CUCArYNMHMRFWNH=

OO

o mn® 2 @eo ®

 CCC

HOC

HCHO,

 ®® ® oe ® e& ®

 ©90200900080ee

50000

OOOO

OY

OO

@

DP
@

@
::

~™@O0200O989OC8

GO

0

o -e¢0 Nn ze>

Problem

E101 100-WORD MEMORY MAP

4

FbY
5

Page No.

£0-1277

E101 100-Word Memory Map

ELECTRODATA 101

Program Sheet

Problem

Programmer

Date

Page No.

 15

 Template
Form P-8 5/56 20M

E101 Programming Sheet

10 11

Single Step and Manual Operation
Sometimes, especially when checking out, or debug-

ging, a program, it is helpful to run through the instruc-
tions in the program one step at a time, stopping after
each one before going on to the next. It is also helpful at
times to execute instructions manually that are not called
for in the program. Both of these operations—Single
Step and Manual—can be performed on the E101 with-
out disturbing the pinboard program. The controls used
for these operations are the REGULAR START button,
the toggle switches on the lower left of the control panel,
and the Manual Instruction dials in the center. The three
Manual Instruction dials correspond to the three areas of
the pinboards and can be used to execute manually any
instruction that can be pinned in the pinboards. They are
particularly helpful in printing out intermediate results
not called for in the original program. Because Single
Step and Manual operations are used primarily in debug-
ging a program, they are discussed in detail in the section
on debugging in part III.

PROGRAMMING FORMS

In programming a problem for the E101, it is helpful
to use the forms in this section. The first of these is the
E101 Programming Sheet on which the programmer lists
the instructions. It contains three columns for each pin-
board: one for the instructions, one for scaling factor,
and one for brief descriptive information.

x a o

When the program is complete, the programmer usu-
ally prepares a pre-punched paper template for each pin-
board. Using a pencil or ink stamp, he marks the positions
where the pins are to be placed. (The eraser end of a
pencil inked on a stamp pad does the job nicely.) The
templates are then laid over the pinboards and the pins
dropped in place. The templates serve a dual purpose:
they provide a permanent file copy of the program, which
can be re-pinned in a few minutes, and they virtually
eliminate pjnning errors.

The E101 100-Word Memory Map isa 10 X 10 array
of blocks, one for each memory location. When program-
ming a problem, especially one of any complexity, it is
helpful to record on the memory map what is to be stored
in each memory location. In addition to the actual num-
ber stored, information on scaling, initial clearing, inter-
mediate changes, etc., is often included.

The E101 220-Word Memory Map is used with the
220-word optional expanded memory. It shows the 22 x
10 blocks divided into the various bands.

An essential form filled out by the programmer is the
Operating Instructions Sheet which explains in detail to
any operator exactly what to do when running the prob-
lem. It includes the motor bar to be used with each key-
board entry, the START button to be depressed after
each halt instruction, settings for the X and Y keys, etc.
The Operating Instructions Sheet is indispensable to any-
one attempting to run the problem without assistance
from the person who programmed it originally.

m °o 2345 67 8 9101112131415

2 ee4

pee

® © ©
»>e2o

as
® ®® ® 2 ®

>

@ee@Gc @@e@een »
%

& e e @ ® - oe e ®

>eeeO~

®@ a

a2s o- ® oe @ @ @

e ®@® oy

aS

eee a e

~»
@ ®

'
ate

a
eee -@

eoene9e

ox

2oe

eoovedsesed

2ad @ ® oe

-GPeeveeeveod,

ve
1

23
4

5

ce
7

ibe
9
C)

tal
°oa
<E
<aoa=
oO
uu-
uu

1

W
eo

ogo

Ge

Ceoegege a

Oe

©9e00000 eee ad ®oe ®@ 4

2 oe ee

ee

eee

PSO?

OO

OS

OY

Cm

0e@e0 “@HCKCHOHOHOHOH

OY

“CORO

HOHOLOHOHOOY

eeev,eOGe00

04

c@ee noe 4@00@

eee ene

oe -@ nN -~ee@e

Yeboevodservodeos,

@Srynawenawn=-0o

& ® ® @ @

 CUCArYNMHMRFWNH=

OO

o mn® 2 @eo ®

 CCC

HOC

HCHO,

 ®® ® oe ® e& ®

 ©90200900080ee

50000

OOOO

OY

OO

@

DP
@

@
::

~™@O0200O989OC8

GO

0

o -e¢0 Nn ze>

Problem

E101 100-WORD MEMORY MAP

4

FbY
5

Page No.

£0-1277

E101 100-Word Memory Map

ELECTRODATA 101

Program Sheet

Problem

Programmer

Date

Page No.

 15

 Template
Form P-8 5/56 20M

E101 Programming Sheet

10 11

O

P
E

R
A

T
IN

G

IN
S

T
R

U
C

T
IO

N
S

S
H

E
E

T

E
LE

C
T

R
O

D
A

T
A

101

M
O

T
O

R

B
A

R

F
S

bfavr
<

5
ba

>
|

«
a2]

w
a)
Z

z
=

T
epe

=
y

4

>ca
S

a
a

w
>

4
W

W

a4
<xoOro)
ng(V

e

>xz
K

k

a
P

<
i

nSa

G
C

E
e

W
w

wZ
z

oQ
be8)

2
z

a
=

2)
w

”
F

r
at

S
a

a
S

s
7)

yA
74

<
age

=
=

)
=

-
i

)w
2

%
=6)fa)

W
w

O
o

4
oot

Z
S

3
ra

a
zw

z
rare

¢
an

aZ
oo

7)
ozw

a
a<

b
=

z
S

a
ara

=
J

uw
lo

=
S

s
m

al
F

he
ro)

oe
5

=
[4

w
u

>
a

7.)

E
D

-1278

1-57

P
A

R
T

Il-O
P

T
IO

N
A

L
A

D
JU

N
C

T
S

T
O

T
H

E
E

101

H
ere

in
P

art II
w

e
discuss

the
optional

adjuncts
to

the

E
101,

em
phasizing

the
additional program

m
ing

instruc-
tions

that
are

involved
in

using
the

adjuncts.

P
U

N
C

H
E

D
T

A
P

E
IN

P
U

T
U

N
IT

T
he

E
101

T
ape

InputU
nit

is
an

optional
accessory

to
the

E
101

for
reading

and
decoding

punched
paper

tape.
B

oth
data

and
program

instructions
can

be
punched

into
the

tape,
thus

providing
a

m
eans

of
autom

atic
data

input,
and

a
supplem

ent
to

the
pinboard

program
.

T
he

T
ape

Input
U

nit
is

housed
in

a
sm

all
cabinet

that
norm

ally
stands

in
front

of
the

E
101

tow
ard

the
left

side.
In

this
position

a
person

sitting
at

the
E

101
can

change
tapes

and
operate

the
T

ape
U

nit
as

conveniently
as

changing
pinboards

on
the

com
puter

itself.
8-C

hannel
tape

is
considered

to
be

standard
w

ith
the

E
101. It

offers
convenience

in
tape

preparation
and

pro-
vides

a
parity-check

channel w
hich

checks
the

reading
of

each
tape

character
into

the
E

101.
5-C

hannel
tape

can
also

be
handled.

T
he

T
ape

Input
U

nit
extends

the
capabilities

of
the

E
101

in
several

w
ays.

F
irst

of
all,

it
supplem

ents
or

re-
places

keyboard
entry

by
providing

an
autom

atic
m

eans

of
loading

constants
into

the
m

em
ory

and
entering

vari-
able

data.
S

econdly, it
augm

ents
the

capacity
of

the
m

em
-

ory
by

m
aking

data
available

in
those

situations
w

here
constants

can
be

used
in

a
fixed

sequence. T
hirdly,it

sup-
plem

ents
the

capacity
of

the
pinboards.

A
nd

fourthly,
it

supplies
data,

constants
and

instructions
from

the
sam

e

tape.
W

hen
the

T
ape

InputU
nit

is
to

be
used

for
autom

atic
entry

ofdata,
the

tape
is

prepared
by

punching
each

num
-

ber
on

tape
in

sequence.
A

num
ber

m
ay

be
of

any
length

betw
een

1
and

12
digits.

T
he

E
101

autom
atically

fills
in

w
ith

zeros
to

m
ake

each
num

ber
a

12-digit
w

ord.
N

otice
that the

tape
unitperm

its
filling

the
entire

12
digits

of
the

accum
ulator

w
hile

keyboard
input

perm
its

filling
11

digits.
T

he
num

ber
is

read
into

the
E

101
accum

ulator
w

ith
the

least
significant

digit
all

the
w

ay
to

the
right

of
the

accum
ulator.

W
hen

the
T

ape
Input

U
nit

is
to

be
used

for
supple-

m
entary

program
steps,

the
tape

is
prepared

using
essen-

tially
the

sam
e

instruction
code

as
used

in
the

pinboards.
T

he
only

difference
is

that
every

tape
instruction

m
ust

consist of
3

characters.
W

here
necessary,“ones”

are
filled

in
(for

exam
ple,

“K
11”

and
“B

11”).
Instruction

tapes
are

frequently
spliced

to
form

a
continuous

loop.
T

he
details

ofpreparing
tapes

for
the

E
101

and
oper-

ating
the

T
ape

Input
U

nit
are

covered
in

a
separate

bro-
chure

devoted
to

the
T

ape
Input

U
nit—

here
w

e
shall

cover only
those

aspects
ofthe

T
ape

InputU
nitthataffect

program
m

ing.
In

program
m

ing
a

problem
that

involves
tape

input,
the

program
m

er
has

available
tw

o
additional

pinboard

13

instructions:
one

for
reading

data
only

into
the

E
101,

and
one

for
reading

instructions
only

or
instructions

m
ixed

w
ith

data.

P
IN

B
O

A
R

D
A

R
E

A
T

A
P

E
IN

P
U

T
IN

S
T

R
U

C
T

IO
N

S
2s

T
|—

|12
T

ape
R

ead—
R

ead
the

next
num

ber
on

tape
into

the
accum

ulator
and

then
continue

w
ith

the
next

pinboard
instruction.

(C
ontrol

re-
m

ains
in

the
pinboards.)

T
|—

|11
T

ape
T

ransfer—
T

ransfer
control

to
tape,

exe-

cuting
each

instruction
on

tape
in

sequence

until
control

is
returned

to
the

pinboards
by

a
“U

”
or

“C
”

instruction
on

tape.
(A

t
any

step
in

the
pinboards

control
can

be
trans-

ferred
to

the
tape.

W
hen

a
data

w
ord

is
en-

countered
am

ong
the

instructions,
it

is
auto-

m
atically

read
into

the
accum

ulator
w

ithout
leaving

tape
control;

no
additional

instruc-
tions

need
be

program
m

ed
for

this
to

occur.
A

fter
reading

in
a

data
w

ord,
the

program
sim

ply
continues

to
execute

the
instructions

on
the

tape.
C

ontrol
is

returned
to

the
pin-

boards
only

by
a

“U
”

or
“C

”
transfer

on
the

tape,
to

any
step

in
any

pinboard.)

P
U

N
C

H
E

D
T

A
P

E
O

U
T

P
U

T
U

N
IT

T
he

E
101

T
ape

O
utput

U
nit

is
a

new
adjunct

to
the

E
101

line.
Its

prim
ary

purpose
is

to
allow

the
E

101
user

to
produce

punched
tape

w
ith

data
or

instructions
for

re-
entry

into
the

E
101

(via
the

T
ape

InputU
nit).

A
lthough

the
T

ape
O

utputU
nit

norm
ally

punches
8-channel

tape,
changing

a
single

encoder
card

converts
it

for
punching

5-channel
tape.

T
his

flexible
unit

can
be

used
in

the
fol-

low
ing

w
ays:

1.itw
ill

punch
into

tape
the

num
ber

in
the

accum
m

u-
lator

(12
digits

w
ith

sign),or
the

num
berin

the
key-

board
(11

digits
w

ith
sign),

w
ith

or
w

ithout
(a)

printing,
(b)

carriage
positioning

controlled
by

any
of

the
4

m
otor

bars,
(c)

zero
suppression

to
the

left;
2.itw

illpunch
instruction

codes
into

tape
as

specified
by

a
pinboard

or
m

anualinstruction.

W
hen

punching
data

w
ords,

including
the

sign,
the

T
ape

O
utput

U
nit

autom
atically

punches
the

necessary
B

egin
W

ord,
and

E
nd

W
ord

sym
bols.N

orm
ally

the
entire

12
digit

num
ber

in
the

accum
ulator

w
ill

be
punched,

how
ever,

the
length

of
the

data
w

ord
punched

can
be

varied
by

m
eans

of
aZ

E
R

O
S

U
P

P
R

E
S

S
C

O
N

T
R

O
L

on
the

T
ape

O
utputU

nit.
W

hen
O

N
,

the
controlw

illinhibit
punching

allthe
zeros

to
the

LE
F

T
of

the
first

significant
digit

of
the

num
ber

in
the

accum
ulator.

T
his

control
operates

independently
of

the
F

U
LL

P
R

IN
T

control
on

the
K

eyboard-P
rinter.

OPERATING

INSTRUCTIONS

SHEET

ELECTRODATA

101

MOTOR

BAR

FSbfavr
<5ba

>| «
a2] w
a)
Zz =Tepe
= y 4

>
ca Sa a
w >4 WW

a4
<x
oO
ro)
ng
(Ve

>

x

zKk

a P
<inSa

GC
Ee
Ww

w
Zz

oQ
be
8)

2 za =2) w”
Fr at
S a
a Ss
7) yA
74 <
age =
=) =- i)
w 2
% =

6)
fa)

Ww
Oo 4 oot

ZS 3ra azw z
rare ¢an

a
Zoo

7) ozwa a<b
= z
S a
a
ra= J

uw lo = Ss
mal Fhe
ro) oe 5 =
[4 wu >
a 7.) ED-1278

1-57

PART Il-OPTIONAL ADJUNCTS TO THE E101

Here in Part II we discuss the optional adjuncts to the

E101, emphasizing the additional programming instruc-
tions that are involved in using the adjuncts.

PUNCHED TAPE INPUT UNIT

The E101 Tape Input Unit is an optional accessory to
the E101 for reading and decoding punched paper tape.
Both data and program instructions can be punched into
the tape, thus providing a means of automatic data input,
and a supplement to the pinboard program. The Tape
Input Unit is housed in a small cabinet that normally
stands in front of the E101 toward the left side. In this
position a person sitting at the E101 can change tapes
and operate the Tape Unit as conveniently as changing
pinboards on the computer itself.

8-Channel tape is considered to be standard with the
E101. It offers convenience in tape preparation and pro-
vides a parity-check channel which checks the reading of
each tape character into the E101. 5-Channel tape can
also be handled.

The Tape Input Unit extends the capabilities of the
E101 in several ways. First of all, it supplements or re-
places keyboard entry by providing an automatic means

of loading constants into the memory and entering vari-
able data. Secondly, it augments the capacity of the mem-
ory by making data available in those situations where
constants can be used ina fixed sequence. Thirdly, it sup-
plements the capacity of the pinboards. And fourthly, it
supplies data, constants and instructions from the same

tape.
When the Tape Input Unit is to be used for automatic

entry of data, the tape is prepared by punching each num-
ber on tape in sequence. A number may be of any length
between 1 and 12 digits. The E101 automatically fills in
with zeros to make each number a 12-digit word. Notice
that the tape unit permits filling the entire 12 digits of the
accumulator while keyboard input permits filling 11

digits. The number is read into the E101 accumulator
with the least significant digit all the way to the right of
the accumulator.

When the Tape Input Unit is to be used for supple-
mentary program steps, the tape is prepared using essen-

tially the same instruction code as used in the pinboards.
The only difference is that every tape instruction must
consist of 3 characters. Where necessary, “ones” are filled
in (for example, “K11” and “B11”). Instruction tapes
are frequently spliced to form a continuous loop.

The details of preparing tapes for the E101 and oper-
ating the Tape Input Unit are covered in a separate bro-
chure devoted to the Tape Input Unit—here we shall
cover only those aspects of the Tape Input Unit that affect
programming.

In programming a problem that involves tape input,
the programmer has available two additional pinboard

13

instructions: one for reading data only into the E101,
and one for reading instructions only or instructions
mixed with data.

PINBOARD
AREA TAPE INPUT INSTRUCTIONS

2s

T |—|12 Tape Read—Read the next number on tape
into the accumulator and then continue with
the next pinboard instruction. (Control re-
mains in the pinboards.)

T |—|11 Tape Transfer— Transfer control to tape, exe-

cuting each instruction on tape in sequence

until control is returned to the pinboards by
a “U” or “C” instruction on tape. (At any
step in the pinboards control can be trans-
ferred to the tape. When a data word is en-

countered among the instructions, it is auto-
matically read into the accumulator without
leaving tape control; no additional instruc-
tions need be programmed for this to occur.
After reading in a data word, the program
simply continues to execute the instructions
on the tape. Control is returned to the pin-
boards only by a “U” or “C” transfer on the
tape, to any step in any pinboard.)

PUNCHED TAPE OUTPUT UNIT

The E101 Tape Output Unit is a new adjunct to the
E101 line. Its primary purpose is to allow the E101 user
to produce punched tape with data or instructions for re-
entry into the E101 (via the Tape Input Unit). Although
the Tape Output Unit normally punches 8-channel tape,
changing a single encoder card converts it for punching
5-channel tape. This flexible unit can be used in the fol-
lowing ways:

1. it will punch into tape the number in the accummu-
lator (12 digits with sign), or the number in the key-
board (11 digits with sign), with or without
(a) printing,
(b) carriage positioning controlled by any of the 4

motor bars,
(c) zero suppression to the left;

2. it will punch instruction codes into tape as specified
by a pinboard or manual instruction.

When punching data words, including the sign, the
Tape Output Unit automatically punches the necessary
Begin Word, and End Word symbols. Normally the entire
12 digit number in the accumulator will be punched,
however, the length of the data word punched can be
varied by means of aZERO SUPPRESS CONTROL on
the Tape Output Unit. When ON, the control will inhibit
punching all the zeros to the LEFT of the first significant
digit of the number in the accumulator. This control
operates independently of the FULL PRINT control on
the Keyboard-Printer.

In using the Punched Tape Input Unit, the program-
mer has available five instructions for punching data from
the accumulator, two instructions for punching the num-
ber which is in the keyboard, and one instruction for
punching instruction codes into the tape. These instruc-
tions are listed in the Appendix on page 37.

EXPANDED MEMORY

The expanded memory adjunct to the E101 provides
for 220 words of data storage instead of the standard 100
(each number consisting of 12 decimal digits plus sign).

The 220-wezd memory may be thought of as consist-
ing of 5 bands on the drum: one permanent or “heart”
band of 60 memory locations, and four “switchable”
bands, each of 40 memory locations, which are selected
by the program as needed. The permanent band is always
available for use at any point in the program; only one of
the four switchable bands, however, can be selected for
use at one time. This may be compared to two storage
cabinets standing side by side, the first with one large
compartment and the second with four separate drawers.
Since there are no drawers to open or close in the first
cabinet, all parts of it can be reached at one time. In the
second cabinet, however, only one drawer is accessible at
any one time. All four drawers, of course, can be used for
storage, but material can be placed in or removed from
only one drawer at a time.

The four 40-word bands are designated 0, 1, 2 and 3.

Each one contains memory addresses 00 to 39. Data,
therefore, can be stored in memory address 23, band 0,
or in memory address 23, band 1, band 2 or band 3. The
memory locations in the heart band are numbered from
40 to 99 without reference to band number.

When programming a problem for the expanded mem-
ory E101, the programmer uses the same instructions as

for the 100-word memory E101: “Wab,”’ Rab,”
“+ ab,” etc. When memory addresses 40 to 99 are called
for, the E101 automatically uses the heart band. When
00 to 39 are called for, it uses the band corresponding to
the setting of the band switch. This is an automatic
switch, called the M switch, similar to the E and F switch-
es. It can be set initially by the instruction “H 3 b” which
homes M to position “b” (0, 1, 2 or 3) and can be
stepped automatically (in the same manner as E and F)
by the instruction “S 3 b,” where “‘b” is the upper limit.

As long as a problem requires no more than
100 memory locations, there is no need to se-

lect one of the four bands; the band selector
switch is always set at one of its four positions,
and which band is being used is irrelevant as
long as the program does not call for a change
in the band switch setting. It follows that any
program which can be run on the 100-word
E101 can be run without change on a 220-
word E101.

14

When utilizing more than 100 locations, the “H 3 b”
and “S 3 b” instructions are used to start in the proper
band and to go from one band to the next.

Obviously, the expanded memory E101 is a more
powerful computing tool than the 100-word machine.
But it is important to recognize that the superiority of the
220-word E101 stems from two quite different sources:
memory capacity and control. While the extra bands on
the drum permit the solution of problems requiring in-
creased storage capacity, the extra band switch provides
a third level of switch control. Experience has shown that
the logical structure of many problems requires the extra
control provided by the M switch of the 220-word ma-
chine, even though the storage requirements are well
within the capacity of the 100-word E101. For example,
when both the sine and cosine of an angle must be com-
puted, a single loop can be used for both jobs, if the con-
stants for the sine and cosine subroutines are stored in the
corresponding memory locations of two of the bands.

PINBOARD
Sree EXPANDED MEMORY INSTRUCTIONS

3

H| 3|b Home Band Switch—Home the band switch to
position “b”; 0 =b 3. (This instruction
may be used similar to “H 0 b” or “H 1 b” to
home the M switch prior to stepping it, or
it may be used merely to select one of the four
40-word bands. “Y” may be pinned in the 3rd
area instead of a definite number, allowing the
operator to select the band manually by means
of the Y keys on the keyboard.)

S|} 3 |b Step Band Switch—Step the band switch once;
if M+b+1, execute the next instruc-
tion. If M = b + 1, skip the next instruction
and execute the instruction after the next in-
struction (0 = b S 3).

H|4\|— Accumulator Setting of E Switch—Increase
the E switch setting by the number in the least
significant digit position of the accumulator.
(Since “H 4” increases the setting of the E
switch, the usual way of homing the E switch
to the least significant digit of the accumulator
is to first home it to zero by the instruction
“H 0 0” and then increase it to the number in
the accumulator by the instruction “H 4.”)

5 |— Accumulator Setting of F Switch—Same using
F switch.

H|6|— Accumulator Setting of E and F—Same using
E and F.

H|7|— Accumulator Setting of Band Switch—Same
using M switch.

Included as standard equipment with the 220-word

memory E101 is the ability to home the band switch and
the E and F switches to a number in the E101 accumu-
lator. This ability to allow the program steps to make use
of numbers in the memory is not available in the basic
E101 except as an optional adjunct (see next section).

E101 220-WORD MEMORY MAP Page No

Problem Programmer

0 3 4 6 8
Band

Band

Band

Band

ED-1276

15

In using the Punched Tape Input Unit, the program-
mer has available five instructions for punching data from
the accumulator, two instructions for punching the num-
ber which is in the keyboard, and one instruction for
punching instruction codes into the tape. These instruc-
tions are listed in the Appendix on page 37.

EXPANDED MEMORY

The expanded memory adjunct to the E101 provides
for 220 words of data storage instead of the standard 100
(each number consisting of 12 decimal digits plus sign).

The 220-wezd memory may be thought of as consist-
ing of 5 bands on the drum: one permanent or “heart”
band of 60 memory locations, and four “switchable”
bands, each of 40 memory locations, which are selected
by the program as needed. The permanent band is always
available for use at any point in the program; only one of
the four switchable bands, however, can be selected for
use at one time. This may be compared to two storage
cabinets standing side by side, the first with one large
compartment and the second with four separate drawers.
Since there are no drawers to open or close in the first
cabinet, all parts of it can be reached at one time. In the
second cabinet, however, only one drawer is accessible at
any one time. All four drawers, of course, can be used for
storage, but material can be placed in or removed from
only one drawer at a time.

The four 40-word bands are designated 0, 1, 2 and 3.

Each one contains memory addresses 00 to 39. Data,
therefore, can be stored in memory address 23, band 0,
or in memory address 23, band 1, band 2 or band 3. The
memory locations in the heart band are numbered from
40 to 99 without reference to band number.

When programming a problem for the expanded mem-
ory E101, the programmer uses the same instructions as

for the 100-word memory E101: “Wab,”’ Rab,”
“+ ab,” etc. When memory addresses 40 to 99 are called
for, the E101 automatically uses the heart band. When
00 to 39 are called for, it uses the band corresponding to
the setting of the band switch. This is an automatic
switch, called the M switch, similar to the E and F switch-
es. It can be set initially by the instruction “H 3 b” which
homes M to position “b” (0, 1, 2 or 3) and can be
stepped automatically (in the same manner as E and F)
by the instruction “S 3 b,” where “‘b” is the upper limit.

As long as a problem requires no more than
100 memory locations, there is no need to se-

lect one of the four bands; the band selector
switch is always set at one of its four positions,
and which band is being used is irrelevant as
long as the program does not call for a change
in the band switch setting. It follows that any
program which can be run on the 100-word
E101 can be run without change on a 220-
word E101.

14

When utilizing more than 100 locations, the “H 3 b”
and “S 3 b” instructions are used to start in the proper
band and to go from one band to the next.

Obviously, the expanded memory E101 is a more
powerful computing tool than the 100-word machine.
But it is important to recognize that the superiority of the
220-word E101 stems from two quite different sources:
memory capacity and control. While the extra bands on
the drum permit the solution of problems requiring in-
creased storage capacity, the extra band switch provides
a third level of switch control. Experience has shown that
the logical structure of many problems requires the extra
control provided by the M switch of the 220-word ma-
chine, even though the storage requirements are well
within the capacity of the 100-word E101. For example,
when both the sine and cosine of an angle must be com-
puted, a single loop can be used for both jobs, if the con-
stants for the sine and cosine subroutines are stored in the
corresponding memory locations of two of the bands.

PINBOARD
Sree EXPANDED MEMORY INSTRUCTIONS

3

H| 3|b Home Band Switch—Home the band switch to
position “b”; 0 =b 3. (This instruction
may be used similar to “H 0 b” or “H 1 b” to
home the M switch prior to stepping it, or
it may be used merely to select one of the four
40-word bands. “Y” may be pinned in the 3rd
area instead of a definite number, allowing the
operator to select the band manually by means
of the Y keys on the keyboard.)

S|} 3 |b Step Band Switch—Step the band switch once;
if M+b+1, execute the next instruc-
tion. If M = b + 1, skip the next instruction
and execute the instruction after the next in-
struction (0 = b S 3).

H|4\|— Accumulator Setting of E Switch—Increase
the E switch setting by the number in the least
significant digit position of the accumulator.
(Since “H 4” increases the setting of the E
switch, the usual way of homing the E switch
to the least significant digit of the accumulator
is to first home it to zero by the instruction
“H 0 0” and then increase it to the number in
the accumulator by the instruction “H 4.”)

5 |— Accumulator Setting of F Switch—Same using
F switch.

H|6|— Accumulator Setting of E and F—Same using
E and F.

H|7|— Accumulator Setting of Band Switch—Same
using M switch.

Included as standard equipment with the 220-word

memory E101 is the ability to home the band switch and
the E and F switches to a number in the E101 accumu-
lator. This ability to allow the program steps to make use
of numbers in the memory is not available in the basic
E101 except as an optional adjunct (see next section).

E101 220-WORD MEMORY MAP Page No

Problem Programmer

0 3 4 6 8
Band

Band

Band

Band

ED-1276

15

ACCUMULATOR SETTING
OF E AND F SWITCHES

As explained in the section on the expanded memory,
the ability to set the E, F and band switches from the least
significant digit of the accumulator is standard with the
220-word memory E101. The same feature (without the
band switch) is available as an optional adjunct to the
100-word machine.

There are a number of places where this feature can be
used to advantage, particularly in those problems where
greater flexibility in the use of the E and F switches is de-
sired. One important use is in distribution, both through
the keyboard and via punched tape.

When distributing data through the keyboard to ran-
dom memory addresses, the programmer has a choice of
having the operator depress X and Y keys to designate
the address, or having the operator index the address in
the two right hand columns of the main keyboard along
with the data. In the latter case, the address would appear
in the accumulator all the way to the right with the units
digit in the least significant place and the tens digit one
place to the left. The F switch can be set to agree with the
units digit of the address immediately. Then the entire
number in the accumulator can be shifted one place to the
right and the E switch set to the tens digit. One advantage
of using this method of random address selection over the
use of X and Y is that the address, which frequently cor-
responds to a code number, prints on the printed report
along with the data. A cipher split can be set up in the
carriage control panel so that there is space between the
number and the address in the desired column.

When data coming in on punched tape is distributed
to random memory addresses, the programmer has a

choice of following each piece of data with a “Wa b”
instruction, or including the address as the right-hand
portion of the number and thereby setting the E and F
switches by means of this special feature. A complete
program for random distribution from tape appears in
Part II. This method is frequently used when the address
corresponds to a code number and thus formsa natural
part of the number itself. Tape preparation is also faster
when the address is included with the number rather than
in a separate “W a b” instruction.

era Instructions for Accumulator Setting
AREA :

1:|25)3 of E and F Switches

H| 4 |— Accumulator Setting of E Switch— Increase
the E switch setting by the number in the least
significant digit of the accumulator. (Since
“H 4” increases the setting of the E switch,
the usual way of homing the E switch to the
least significant digit of the accumulator is to
first home it to zero by the instruction “H 0 0”
and then increase it to the number in the ac-

cumulator by the instruction “H ee)

16

beg Instructions for Accumulator Setting
1 of E and F Switches

H| 5|— Accumulator Setting of F Switch—Same using

F switch.
H|6|— Accumulator Setting of E and F—Same using

E and F.

THE V SWITCH

The V switch is an optional device which can be used

to relieve the operator of certain control responsibilities.
It is helpful in those problems where there is a strict cor-
respondence between the kind of numbers computed and
the positions in which they are printed. The V switch is
located on the keyboard-printer underneath the carriage,
and its settings are controlled by projecting pins located
in the carriage control panel. At any tab stop (columnar
position), V can be set to any of its ten (0-9) values.

The V switch setting is used in the program by pinning
V (located in pinboard area 3) in the desired instruction.
As such, V is simply another 3rd area variable like E, F
and Y, but whose value is a function of carriage position.

For example, if a problem requires keeping sums of
keyboard entries, and the sum of the entries made in col-
umn1 is to be stored in location 85, while the sum of the
entries in column2 is kept in location 89, then the control
panel would be set so that V = 5 in column 1, and V = 9

in column 2. The instructions
K
+ 8V
W 8V

could then be used to make and accumulate keyboard
entries.

The advantage of using V stems from the fact that to
position the carriage in the proper column for each key-
board entry requires a motor bar selection anyway. If the
previous carriage motion was due to a print instruction,
P a _, then the motor bar was selected by the value of a.

If the previous carriage motion was due to a keyboard
entry, then the motor bar was selected by the operator. In
either case, using the V switch eliminates the need of any
further selection. The control required in the instruction
comes from V; the value for V is determined by carriage
position; and carriage position is determined by motor
bar selection.

Without the V switch, XY key settings are usually
employed to effect this kind of control.

PINBOARD
AREA USING THE V SWITCH IN INSTRUCTIONS

fla22|53

—| a} V Using the V setting—Execute the instruction
pinned in the first area of the pinboard using
the carriage control panel setting of “V” in the
third area. Any value for V (0 S V $9) can
be set up in the carriage control panel in any
column position.

NOTE: Since V is set by mechanical pins located only at
tab stop positions, V has no value in between tab stops.
Therefore, an interlock circuit is used to prevent the E101
program from starting after a P or K instruction until the
carriage reaches the next column position. Without the V
switch, the E101 program continues while the carriage is
traveling to its next position.

WA

ACCUMULATOR SETTING
OF E AND F SWITCHES

As explained in the section on the expanded memory,
the ability to set the E, F and band switches from the least
significant digit of the accumulator is standard with the
220-word memory E101. The same feature (without the
band switch) is available as an optional adjunct to the
100-word machine.

There are a number of places where this feature can be
used to advantage, particularly in those problems where
greater flexibility in the use of the E and F switches is de-
sired. One important use is in distribution, both through
the keyboard and via punched tape.

When distributing data through the keyboard to ran-
dom memory addresses, the programmer has a choice of
having the operator depress X and Y keys to designate
the address, or having the operator index the address in
the two right hand columns of the main keyboard along
with the data. In the latter case, the address would appear
in the accumulator all the way to the right with the units
digit in the least significant place and the tens digit one
place to the left. The F switch can be set to agree with the
units digit of the address immediately. Then the entire
number in the accumulator can be shifted one place to the
right and the E switch set to the tens digit. One advantage
of using this method of random address selection over the
use of X and Y is that the address, which frequently cor-
responds to a code number, prints on the printed report
along with the data. A cipher split can be set up in the
carriage control panel so that there is space between the
number and the address in the desired column.

When data coming in on punched tape is distributed
to random memory addresses, the programmer has a

choice of following each piece of data with a “Wa b”
instruction, or including the address as the right-hand
portion of the number and thereby setting the E and F
switches by means of this special feature. A complete
program for random distribution from tape appears in
Part II. This method is frequently used when the address
corresponds to a code number and thus formsa natural
part of the number itself. Tape preparation is also faster
when the address is included with the number rather than
in a separate “W a b” instruction.

era Instructions for Accumulator Setting
AREA :

1:|25)3 of E and F Switches

H| 4 |— Accumulator Setting of E Switch— Increase
the E switch setting by the number in the least
significant digit of the accumulator. (Since
“H 4” increases the setting of the E switch,
the usual way of homing the E switch to the
least significant digit of the accumulator is to
first home it to zero by the instruction “H 0 0”
and then increase it to the number in the ac-

cumulator by the instruction “H ee)

16

beg Instructions for Accumulator Setting
1 of E and F Switches

H| 5|— Accumulator Setting of F Switch—Same using

F switch.
H|6|— Accumulator Setting of E and F—Same using

E and F.

THE V SWITCH

The V switch is an optional device which can be used

to relieve the operator of certain control responsibilities.
It is helpful in those problems where there is a strict cor-
respondence between the kind of numbers computed and
the positions in which they are printed. The V switch is
located on the keyboard-printer underneath the carriage,
and its settings are controlled by projecting pins located
in the carriage control panel. At any tab stop (columnar
position), V can be set to any of its ten (0-9) values.

The V switch setting is used in the program by pinning
V (located in pinboard area 3) in the desired instruction.
As such, V is simply another 3rd area variable like E, F
and Y, but whose value is a function of carriage position.

For example, if a problem requires keeping sums of
keyboard entries, and the sum of the entries made in col-
umn1 is to be stored in location 85, while the sum of the
entries in column2 is kept in location 89, then the control
panel would be set so that V = 5 in column 1, and V = 9

in column 2. The instructions
K
+ 8V
W 8V

could then be used to make and accumulate keyboard
entries.

The advantage of using V stems from the fact that to
position the carriage in the proper column for each key-
board entry requires a motor bar selection anyway. If the
previous carriage motion was due to a print instruction,
P a _, then the motor bar was selected by the value of a.

If the previous carriage motion was due to a keyboard
entry, then the motor bar was selected by the operator. In
either case, using the V switch eliminates the need of any
further selection. The control required in the instruction
comes from V; the value for V is determined by carriage
position; and carriage position is determined by motor
bar selection.

Without the V switch, XY key settings are usually
employed to effect this kind of control.

PINBOARD
AREA USING THE V SWITCH IN INSTRUCTIONS

fla22|53

—| a} V Using the V setting—Execute the instruction
pinned in the first area of the pinboard using
the carriage control panel setting of “V” in the
third area. Any value for V (0 S V $9) can
be set up in the carriage control panel in any
column position.

NOTE: Since V is set by mechanical pins located only at
tab stop positions, V has no value in between tab stops.
Therefore, an interlock circuit is used to prevent the E101
program from starting after a P or K instruction until the
carriage reaches the next column position. Without the V
switch, the E101 program continues while the carriage is
traveling to its next position.

WA

PART Ill PROGRAMMING AIDS

DECIMAL POINT SCALING

The machine decimal point ()) on the E101 is fixed at
the extreme left of the 11-column keyboard. However,
in the accumulator and memory, which have capacity for
12 digits, it is located at the left between the 1st and 2nd
digits (X,XXX XXX XXX XX).

In dealing with problems on the E101, one must dis-
tinguish between the fixed point of the E101 (,) and the
decimal point of the number itself (,). When a number
is entered into the E101, it may or may not be entered
with its decimal point (.) coinciding with the machine
decimal point (,). An exponential type of notation is used
to show the relationship of the actual point with respect
to the machine point. For example, if the number 0.34
is entered in each of the following ways, it is said to be
scaled as follows:

0, 340 000 000 00—scaled x 10°
0, 000 000 000.34—scaled x 10~°
0, 000.340 000 00—scaled x 10-3

. 3, 400 000 000 00—scaled x 10+?

(Notice that in each case the exponent corresponds to the
number of places between the two decimal points. A
negative exponent indicates places to the right, and posi-
tive exponents places to the left, of the machine decimal
point.)

A column is provided on the E101 programming sheet
for keeping track of the scaling factor at each step of a

problem.
Numbers to be added or subtracted must be scaled at

the same power of ten. If they do not appear this way in
the problem, they must be shifted left or right (“A 1 b”
or “A 2 b”) before being added or subtracted.

In multiplication, the exponent of the product is the
sum of exponents of the two factors. Thus if two numbers
each scaled x 10~* are multiplied together, their product
will be scaled x 10~—°. If a uniform scaling is desired, the
product can then be shifted 3 places to the left so that it
will be scaled x 10-3? in alignment with the original
factors.

In division, the exponent of the quotient is the expon-
ent of the dividend less the exponent of the divisor. Thus
if a number scaled xX 10~ is divided by a number also
scaled xX 10—%, the quotient will be scaled x 10°. Here
again the answer can be shifted 3 places, this time to the
right, so that it will be scaled x 10~%, the same as the
dividend and divisor.

In some cases it is advisable to shift one of the terms
before multiplying or dividing to make sure significant
digits are not lost. For example, rather than divide a num-
ber scaled x 10~° by another scaled x 10~* and shift
the answer 3 places to the right so that it also is scaled
x 10-3, it might be better to shift the dividend 3 places
to the right before dividing so that it is scaled x 10-°.

18

The resulting quotient will then be scaled x 10~% without
further shifting.

Care must be taken at all times to prevent the loss of
significant digits. In addition, subtraction, and division
an overflow ALARM results if the answer = 10.0 x 10°.

An overflow to the left cannot occur in multiplication,
due to the location of the decimal point in the B Register.
Significant digits may be unintentionally lost on the right,
however, if care is not taken to have the numbers as far
left in the B Register and memory as necessary.

Examples:

(12 x 10=%) x C2 * 1075)
0, 000 012.000 00 x 0, 000 12.0 000 00

(144 x 107-7)
= 0, 000 000 001 44 OK

(12% 10%) os (12, xX 107°)
0, 000 012.000 00 + OQ, 000 12.0 000 00

= (1 10-*)
0. 1.00 000 000 00 OK

{12 x 10°) x 12 x 10-2)
0, 000 012 000 00 x 0, 000 012.000 00

(144 x 107?)
= 0, 000 000 000 14(4) Digit lost (no ALARM)

G2 x 1022) = (9X 1022)
0, 000 012.000 00 + 0, 000 000 5.00 00

= (2)4, 000 000 000 00
= (24% 10) Digit lost (ALARM)

There are two basic methods of scaling problems on
the E101. The first is to enter all data through the key-
board with the decimal point in a fixed keyboard position
and shift the numbers internally as needed by means of
the Alb and A2b shift instructions. This method is
easy for the operator and provides uniformity of printing.
It is also simple for an inexperienced programmer to use.
A good starting point is to select a fixed keyboard posi-
tion for the decimal point based on the range of the input
data. For example, if the quantities range from xx.xxx
tO XxXXX.Xxx, it might be well to fix the decimal point arbi-
trarily 4 or S places from the left of the keyboard so that
the quantities are scaled by a factor of 10-4 or 107°.
Then as calculations take place, the results can be shifted
left or right as necessary. The programmer sometimes
finds it necessary to revise the position of the fixed
point to avoid loss of significant digits in subsequent
operations, but at least he has a good starting point from
which to work.

The second basic method of scaling is to scale key-
board entries so that, for the most part, each number is
entered with the decimal point where needed. This
method of varying the position of the decimal point re-
quires fewer program instructions than the fixed method
of scaling.

The programmer will find that many problems follow
typical patterns in which there are certain sequences of
operations performed. Generally, a pattern of scaling
can easily be worked out for such problems. As an ex-
ample, consider the polynomial evaluation Cyx® + C5x°
+ Cyx*t + C3x® + Cox? + Cyx + Co which consists of a

series of successive multiplications and additions. If the
values of C and x are such that they can be scaled x 10°
without losing significant digits, there is no scaling in-
volved at all.

If scaling is necessary, either of the two basic methods
can be used. If the fixed keyboard method of scaling is
used, all values of C and x are entered times a power of
ten other than zero with the decimal point in a fixed
keyboard position. The resulting products are therefore
scaled times different powers of ten and must be shifted
before being added. The programmer has a choice of
shifting each term immediately after multiplying or wait-
ing until it is time to add them together. For example, if
x and all values of C are entered scaled x 10~—!, then
Cix* will-be scaled x 10=%, Cx? «10-5, €ix* x 102°,
etc. Before adding them together, they must be shifted
right or left so that all of them are scaled at the same
power of ten.

The other method of scaling this problem is to enter
x scaled at a power of ten other than zero and enter the
constants scaled at varying powers of ten so that when the
constants are multiplied by the powers of x, the resulting
products are all scaled by the same power of ten and can
be added together without shifting. For example, if x is
scaled X 10-1, then x? will be scaled x 10—?, x? x 10-3,
x? x 10-4,x® x 10-5, and x® x 10—®. If the constants are
entered so that Cy is scaled x 10—®, C, x 10-5, Co x
LOQ=5,Gr ¢ LO2* .€1-x 1022-C; x 10—+ and C,-% 102,

the resulting products will all be scaled x 10-°.
The programmer will quickly become familiar with re-

curring patterns such as ee Frequently scaling instruc-
c

tions are not necessary due to the fact that while multipli-
cation shifts the answer to the right, division can be
arranged to compensate by shifting it back to the left.
There are other patterns similar to this where scaling is
not necessary. Care must be taken at all times, however,
to make sure significant digits are not lost.

DEBUGGING

A program can be checked out or debugged on the
E101 in a relatively short time. The process is simplified
by the externally stored program, and the easy-to-operate
control panel. Two features of the control panel that are

REGULAR START

BUTTON

TOGGLE

SWITCHES
MANUAL

INSTRUCTION DIALS

used in debugging are Single Step operation and Manual
control, both of which are described below.

Single Step Operation—Normally the E101 goes auto-
matically from one pinboard instruction to the next with-
out stopping. In checking out a program, it is often help-
ful to execute a single instruction at a time, stopping after
each step before going on to the next. We call this Single
Step operation as opposed to Normal operation. When an
operator wishes to use Single Step operation, he moves
the NORMAL/SINGLE toggle switch from the NOR-
MAL to the SINGLE position. Then he touches the
REGULAR START button which executes a single pin-
board instruction. To execute the next instruction, he
must again touch the REGULAR START button. The
process is continued until the operator returns the toggle
switch to the NORMAL position.

Manual Control—Frequently when checking out a

program—particularly when using Single Step operation
—it is deirable to perform certain operations that have
not been pinned up in the pinboards. This is especially
true where the operator wishes to print out and examine
the contents of the accumulator. The operator can per-
form any instruction he desires at any point in the prob-
lem without affecting the pinboard program by first stop-
ping automatic operation (i.e., calling for SINGLE
operation), and then throwing the E101 out of pinboard
control and into manual control.

To do this, he moves the PiNboard/MANual toggle
switch from the PINboard to the MANual position. Then
he sets the three Manual Instruction Dials to correspond
to the instruction he wants to perform. The three dials
represent the three areas of the pinboard, and any in-
struction that can be pinned in a pinboard can be set up
on the dials. In the case of a print instruction dial 1 should
be set at “P” for “Print,” and dial 2 at-1, 2,3 or-4 de-
pending on which motor bar the programmer wants acti-
vated. In an instruction which consists of only one or two
characters (e.g., A3 _ or B__), the manual switch-
(es) corresponding to the unused character(s) can be ig-
nored. In the case of a manual Print instruction, the units
area switch setting is irrelevant except that a P a O will,
of course, effect a non-print. After the instruction is set
up on the dial, the operator executes it by touching the
REGULAR START button. To continue with the pin-
board program, the operator returns the control toggle
switch to the PINboard position.

PART Ill PROGRAMMING AIDS

DECIMAL POINT SCALING

The machine decimal point ()) on the E101 is fixed at
the extreme left of the 11-column keyboard. However,
in the accumulator and memory, which have capacity for
12 digits, it is located at the left between the 1st and 2nd
digits (X,XXX XXX XXX XX).

In dealing with problems on the E101, one must dis-
tinguish between the fixed point of the E101 (,) and the
decimal point of the number itself (,). When a number
is entered into the E101, it may or may not be entered
with its decimal point (.) coinciding with the machine
decimal point (,). An exponential type of notation is used
to show the relationship of the actual point with respect
to the machine point. For example, if the number 0.34
is entered in each of the following ways, it is said to be
scaled as follows:

0, 340 000 000 00—scaled x 10°
0, 000 000 000.34—scaled x 10~°
0, 000.340 000 00—scaled x 10-3

. 3, 400 000 000 00—scaled x 10+?

(Notice that in each case the exponent corresponds to the
number of places between the two decimal points. A
negative exponent indicates places to the right, and posi-
tive exponents places to the left, of the machine decimal
point.)

A column is provided on the E101 programming sheet
for keeping track of the scaling factor at each step of a

problem.
Numbers to be added or subtracted must be scaled at

the same power of ten. If they do not appear this way in
the problem, they must be shifted left or right (“A 1 b”
or “A 2 b”) before being added or subtracted.

In multiplication, the exponent of the product is the
sum of exponents of the two factors. Thus if two numbers
each scaled x 10~* are multiplied together, their product
will be scaled x 10~—°. If a uniform scaling is desired, the
product can then be shifted 3 places to the left so that it
will be scaled x 10-3? in alignment with the original
factors.

In division, the exponent of the quotient is the expon-
ent of the dividend less the exponent of the divisor. Thus
if a number scaled xX 10~ is divided by a number also
scaled xX 10—%, the quotient will be scaled x 10°. Here
again the answer can be shifted 3 places, this time to the
right, so that it will be scaled x 10~%, the same as the
dividend and divisor.

In some cases it is advisable to shift one of the terms
before multiplying or dividing to make sure significant
digits are not lost. For example, rather than divide a num-
ber scaled x 10~° by another scaled x 10~* and shift
the answer 3 places to the right so that it also is scaled
x 10-3, it might be better to shift the dividend 3 places
to the right before dividing so that it is scaled x 10-°.

18

The resulting quotient will then be scaled x 10~% without
further shifting.

Care must be taken at all times to prevent the loss of
significant digits. In addition, subtraction, and division
an overflow ALARM results if the answer = 10.0 x 10°.

An overflow to the left cannot occur in multiplication,
due to the location of the decimal point in the B Register.
Significant digits may be unintentionally lost on the right,
however, if care is not taken to have the numbers as far
left in the B Register and memory as necessary.

Examples:

(12 x 10=%) x C2 * 1075)
0, 000 012.000 00 x 0, 000 12.0 000 00

(144 x 107-7)
= 0, 000 000 001 44 OK

(12% 10%) os (12, xX 107°)
0, 000 012.000 00 + OQ, 000 12.0 000 00

= (1 10-*)
0. 1.00 000 000 00 OK

{12 x 10°) x 12 x 10-2)
0, 000 012 000 00 x 0, 000 012.000 00

(144 x 107?)
= 0, 000 000 000 14(4) Digit lost (no ALARM)

G2 x 1022) = (9X 1022)
0, 000 012.000 00 + 0, 000 000 5.00 00

= (2)4, 000 000 000 00
= (24% 10) Digit lost (ALARM)

There are two basic methods of scaling problems on
the E101. The first is to enter all data through the key-
board with the decimal point in a fixed keyboard position
and shift the numbers internally as needed by means of
the Alb and A2b shift instructions. This method is
easy for the operator and provides uniformity of printing.
It is also simple for an inexperienced programmer to use.
A good starting point is to select a fixed keyboard posi-
tion for the decimal point based on the range of the input
data. For example, if the quantities range from xx.xxx
tO XxXXX.Xxx, it might be well to fix the decimal point arbi-
trarily 4 or S places from the left of the keyboard so that
the quantities are scaled by a factor of 10-4 or 107°.
Then as calculations take place, the results can be shifted
left or right as necessary. The programmer sometimes
finds it necessary to revise the position of the fixed
point to avoid loss of significant digits in subsequent
operations, but at least he has a good starting point from
which to work.

The second basic method of scaling is to scale key-
board entries so that, for the most part, each number is
entered with the decimal point where needed. This
method of varying the position of the decimal point re-
quires fewer program instructions than the fixed method
of scaling.

The programmer will find that many problems follow
typical patterns in which there are certain sequences of
operations performed. Generally, a pattern of scaling
can easily be worked out for such problems. As an ex-
ample, consider the polynomial evaluation Cyx® + C5x°
+ Cyx*t + C3x® + Cox? + Cyx + Co which consists of a

series of successive multiplications and additions. If the
values of C and x are such that they can be scaled x 10°
without losing significant digits, there is no scaling in-
volved at all.

If scaling is necessary, either of the two basic methods
can be used. If the fixed keyboard method of scaling is
used, all values of C and x are entered times a power of
ten other than zero with the decimal point in a fixed
keyboard position. The resulting products are therefore
scaled times different powers of ten and must be shifted
before being added. The programmer has a choice of
shifting each term immediately after multiplying or wait-
ing until it is time to add them together. For example, if
x and all values of C are entered scaled x 10~—!, then
Cix* will-be scaled x 10=%, Cx? «10-5, €ix* x 102°,
etc. Before adding them together, they must be shifted
right or left so that all of them are scaled at the same
power of ten.

The other method of scaling this problem is to enter
x scaled at a power of ten other than zero and enter the
constants scaled at varying powers of ten so that when the
constants are multiplied by the powers of x, the resulting
products are all scaled by the same power of ten and can
be added together without shifting. For example, if x is
scaled X 10-1, then x? will be scaled x 10—?, x? x 10-3,
x? x 10-4,x® x 10-5, and x® x 10—®. If the constants are
entered so that Cy is scaled x 10—®, C, x 10-5, Co x
LOQ=5,Gr ¢ LO2* .€1-x 1022-C; x 10—+ and C,-% 102,

the resulting products will all be scaled x 10-°.
The programmer will quickly become familiar with re-

curring patterns such as ee Frequently scaling instruc-
c

tions are not necessary due to the fact that while multipli-
cation shifts the answer to the right, division can be
arranged to compensate by shifting it back to the left.
There are other patterns similar to this where scaling is
not necessary. Care must be taken at all times, however,
to make sure significant digits are not lost.

DEBUGGING

A program can be checked out or debugged on the
E101 in a relatively short time. The process is simplified
by the externally stored program, and the easy-to-operate
control panel. Two features of the control panel that are

REGULAR START

BUTTON

TOGGLE

SWITCHES
MANUAL

INSTRUCTION DIALS

used in debugging are Single Step operation and Manual
control, both of which are described below.

Single Step Operation—Normally the E101 goes auto-
matically from one pinboard instruction to the next with-
out stopping. In checking out a program, it is often help-
ful to execute a single instruction at a time, stopping after
each step before going on to the next. We call this Single
Step operation as opposed to Normal operation. When an
operator wishes to use Single Step operation, he moves
the NORMAL/SINGLE toggle switch from the NOR-
MAL to the SINGLE position. Then he touches the
REGULAR START button which executes a single pin-
board instruction. To execute the next instruction, he
must again touch the REGULAR START button. The
process is continued until the operator returns the toggle
switch to the NORMAL position.

Manual Control—Frequently when checking out a

program—particularly when using Single Step operation
—it is deirable to perform certain operations that have
not been pinned up in the pinboards. This is especially
true where the operator wishes to print out and examine
the contents of the accumulator. The operator can per-
form any instruction he desires at any point in the prob-
lem without affecting the pinboard program by first stop-
ping automatic operation (i.e., calling for SINGLE
operation), and then throwing the E101 out of pinboard
control and into manual control.

To do this, he moves the PiNboard/MANual toggle
switch from the PINboard to the MANual position. Then
he sets the three Manual Instruction Dials to correspond
to the instruction he wants to perform. The three dials
represent the three areas of the pinboard, and any in-
struction that can be pinned in a pinboard can be set up
on the dials. In the case of a print instruction dial 1 should
be set at “P” for “Print,” and dial 2 at-1, 2,3 or-4 de-
pending on which motor bar the programmer wants acti-
vated. In an instruction which consists of only one or two
characters (e.g., A3 _ or B__), the manual switch-
(es) corresponding to the unused character(s) can be ig-
nored. In the case of a manual Print instruction, the units
area switch setting is irrelevant except that a P a O will,
of course, effect a non-print. After the instruction is set
up on the dial, the operator executes it by touching the
REGULAR START button. To continue with the pin-
board program, the operator returns the control toggle
switch to the PINboard position.

In summary, there are four aspects of control over the
E101 that facilitate debugging: The first is the externally
stored program that makes it possible for the operator to
alter the program merely by rearranging one or more
pins in the removable pinboards. The second is Single
Step operation which allows the operator to run through
the programa step at a time. Next there is Manual opera-
tion which enables the operator to perform any instruc-
tion he desires without disturbing the pinboard program.
Finally there is the special case of manual operation
whereby the operator can print out the contents of the.
accumulator without affecting the pinboard program.

A step by step procedure for checking out a program
follows. The first step should generally take place not at
the E101 but at the programmer’s desk. It consists of
“running through” the program on paper using sample
data and making a careful record of the intermediate and
final results. This procedure is important, as it can save
considerable time and effort later on. Experienced com-
puter programmers agree that it is foolish to omit this
step in hopes of “short-cutting” the checking-out pro-
cedure, since the steps that follow are much more diffi-
cult and time-consuming without the results of the
“paper” run.

With the pinned-up program and the sample calcula-
tions, the programmer is ready to try out the problem on
the E101. Using the sample data, he runs through the
problem on the E101 and compares the answers with the
pre-calculated results. If, as is frequently the case, the
results do not agree, the programmer must debug, that is
find the source of error in his program.

Basically, debugging involves going through the pro-
grama step at a time and printing out the contents of the
accumulator after each step without disturbing the pin-
board program:

1. Set the Manual Instruction dials to any of
the four print operations: P1, P2, P3 or P4.

2. Set the NORMAL/SINGLE toggle switch
to the SINGLE position. (Leave the second
toggle switch in the PINboard position.)

3. Start the machine at the beginning of the
problem by depressing the appropriate
START button (usually No. 1).

4. Using the same data as before, perform the
first pinboard instruction by depressing the
REGULAR START button (marked
“R”). The neon lights indicate which pro-
gram step has been executed. The entire
process can be followed by reading the in-
structions from a program sheet or directly
from the pin settings in the pinboards.

5. Print out the result of the operation by:
a) Setting the PINboard/MANual toggle

switch to the MAN position and
b) Pressing the REGULAR START

button.

20

This takes the E101 out of pinboard control
and performs whatever instruction has been
set up on the Manual Instruction dials—in
this case, a print operation.

6. Return the E101 to pinboard control by set-
ting the PINboard/MANual toggle switch
back to the PIN position.

7. Perform the next pinboard instruction and
print out the new result by repeating steps

4, 5 and 6 above. Check each result with the
pre-calculated results. Continue until the
error or omission has been located and cor-
rected.

Witha little experience, the programmer will find that
it is not necessary to print out the contents of the ac-
cumulator after every instruction. K and P instructions
print automatically anyway, and W, B, U, C, S, and H
instructions leave the accumulator unchanged. Some pro-
grammers print out results only at selected points in the
program until they narrow down the portion of the pro-
gram where the error is located. Then they print out the
contents of the accumulator after every instruction which
affects the accumulator until the error is tracked down.
When the error is located during the course of the “single
step” operation, it can frequently be corrected in a min-
ute or two by rearranging one or more pins in the pin-
boards.

As the program is checked out, the programmer can
tell which program step is being executed at any given
time by observing the neon pinboard and step lights on
the control panel. The first column of lights, numbered
from 1 to 8, indicates the pinboard number while the
second column, numbered from 0 to 15, indicates the
step number.

These same lights can be made to indicate the positions
of the E and F switches, allowing the programmer to
check his H andS instructions. To determine the E switch
position at any given time, the operator depresses the
button on the left of the control panel marked “E.” While
he holds down the E button, the “step” lights (0 to 15)
will indicate the E switch position. To determine the F
switch position, the operator depresses the button marked
“F.” To determine the band switch setting (on a 220-
word memory E101), he depresses both buttons simul-
taneously. As soon as the operator releases the button
(or buttons), the lights again indicate the step in the pin-
board program.

TIMING
Sometimes programmers want a time appraisal of a

program. The reason might be to evaluate several ap-
proaches to a problem, or to determine whether the prob-
lem is an “economical” one for a computer. The follow-
ing time parameters on various operations, although not
given in complete detail, are sufficient for making good
appraisals:

Addition type instructions (+, —, R, W, B, A)
— 1/20 sec.

Average multiplication or division instruction
—VY% sec.

Average transfer instruction—'2 sec. (vary-
ing with how large a “jump” is involved).

Stepping instruction—1/20 sec.

Average homing instruction—0.3 sec.

Print or Keyboard instruction—0.6 sec.

Iinstruction on tape—3/20 sec. in addition to
time for same instruction on pinboard.

Data entry from tape—20 characters per sec.

Tape output—20 characters per sec.

Unlike larger computing systems, every instruction
on the E101 takes at least two drum revolutions. The
techniques of minimum access programming cannot be
applied to a machine like the E101.

The only place—but a significant one—where time
can be saved by arrangement of the program is the trans-
fer operation. This is because transfers are carried out
by stepping switches. For example, each pinboard is con-
trolled by its own 16-position stepping switch (these
switches are physically the same as the E and F switches,
but they are not accessible via instructions in the pro-
gram). If a pinboard switch is at step 11 and a transfer
operation calls for its going back to step 0, the switch
must step through positions 12, 13, 14 and 15 before
reaching step 0 to execute it.

Which pinboard is in control is also set by a switch,
and the same considerations hold: a transfer to the suc-
ceeding pinboard takes about %4 the time required to
transfer to the previous pinboard

A discussion of the advisability of iterating within a
pinboard, and an example of saving time by eliminating
transfers appear in Part IV.

CHECKING CIRCUITRY

1. General

Like other general purpose digital computers, the
E101 is provided with circuitry whose sole function is to
check the operation of the components which do the com-
puting. When this checking circuitry detects a machine
malfunction, it stops the computation, and signals the
operator accordingly.

Although erroneous results are sometimes caused by
a component failure, they can also occur due to improper
operation or programming of a computer: the operator
may make an entry in the wrong columns of the keyboard,
a pin in the pinboards may be misplaced, the program
steps may generate an overflow, etc. Computers usually
have circuitry which detects certain of these human fail-
ures, also. The overflow alarm on the E101 is an example
of this kind of checking circuit.

These sections are intended to help the E101 user in
quickly diagnosing and correcting the various conditions

21

—internal and external—which may cause the checking
circuits to stop computation.

2. Trouble Symptoms—ALARM Light
The basic trouble signal on the E101 is the ALARM,

whose occurrence is indicated by the following condi-
tions:

a) The machine stops on the instruction being
executed; the HALT light comes on; the
neon pinboard and step lights indicate
where in the program the ALARM oc-
curred.

b) The ALARM light comes on; touching the
CLEAR button will turn off the ALARM
light, permitting the START buttons to
function; if the operator doesn’t touch the
CLEAR button within the first few sec-

onds, a repeating gong sounds.

The condition which caused the ALARM is indicated
by other factors, which will be covered in detail later in
this section.

3. Trouble Symptoms—Machine Standstill

Another symptom of trouble is a computer stop or
standstill, in which the E101 stops, although neither the
ALARM light nor the HALT light comes on. To get the
computer going again the operator usually touches the
CLEAR button (which turns on the HALT light), then
corrects the condition and continues by pressing one of
the START buttons. The various causes of a standstill
are discussed in detail below.

PROGRAMMING AND OPERATING ERRORS

1. The Overflow Alarm
Overflow in the E101 is signalled by the ALARM

condition occurring on one of the following instructions:

a) Ifthe ALARM occurs on a+, —, or + in-
struction, the value of the sum, remainder,
or quotient, respectively, is 2 10 (10 x
LO?):

b) If the ALARM occurs on a B instruction,
it means that the contents of the accumu-
lator is =1-(1-< 16").

In either case, the overflow is due to improper scaling.
If the program has not been checked out, it must be

corrected to compensate for the error.
If the problem has been debugged, examine the entire

pinboard program thoroughly for a pinning error.
If no pinning errors are found, check the scaling of the

numbers entered through the keyboard.
If keyboard entries were made properly, print out the

contents of the memory (or those locations used in the
current problem) and check your stored constants and
initial input values.

In summary, there are four aspects of control over the
E101 that facilitate debugging: The first is the externally
stored program that makes it possible for the operator to
alter the program merely by rearranging one or more
pins in the removable pinboards. The second is Single
Step operation which allows the operator to run through
the programa step at a time. Next there is Manual opera-
tion which enables the operator to perform any instruc-
tion he desires without disturbing the pinboard program.
Finally there is the special case of manual operation
whereby the operator can print out the contents of the.
accumulator without affecting the pinboard program.

A step by step procedure for checking out a program
follows. The first step should generally take place not at
the E101 but at the programmer’s desk. It consists of
“running through” the program on paper using sample
data and making a careful record of the intermediate and
final results. This procedure is important, as it can save
considerable time and effort later on. Experienced com-
puter programmers agree that it is foolish to omit this
step in hopes of “short-cutting” the checking-out pro-
cedure, since the steps that follow are much more diffi-
cult and time-consuming without the results of the
“paper” run.

With the pinned-up program and the sample calcula-
tions, the programmer is ready to try out the problem on
the E101. Using the sample data, he runs through the
problem on the E101 and compares the answers with the
pre-calculated results. If, as is frequently the case, the
results do not agree, the programmer must debug, that is
find the source of error in his program.

Basically, debugging involves going through the pro-
grama step at a time and printing out the contents of the
accumulator after each step without disturbing the pin-
board program:

1. Set the Manual Instruction dials to any of
the four print operations: P1, P2, P3 or P4.

2. Set the NORMAL/SINGLE toggle switch
to the SINGLE position. (Leave the second
toggle switch in the PINboard position.)

3. Start the machine at the beginning of the
problem by depressing the appropriate
START button (usually No. 1).

4. Using the same data as before, perform the
first pinboard instruction by depressing the
REGULAR START button (marked
“R”). The neon lights indicate which pro-
gram step has been executed. The entire
process can be followed by reading the in-
structions from a program sheet or directly
from the pin settings in the pinboards.

5. Print out the result of the operation by:
a) Setting the PINboard/MANual toggle

switch to the MAN position and
b) Pressing the REGULAR START

button.

20

This takes the E101 out of pinboard control
and performs whatever instruction has been
set up on the Manual Instruction dials—in
this case, a print operation.

6. Return the E101 to pinboard control by set-
ting the PINboard/MANual toggle switch
back to the PIN position.

7. Perform the next pinboard instruction and
print out the new result by repeating steps

4, 5 and 6 above. Check each result with the
pre-calculated results. Continue until the
error or omission has been located and cor-
rected.

Witha little experience, the programmer will find that
it is not necessary to print out the contents of the ac-
cumulator after every instruction. K and P instructions
print automatically anyway, and W, B, U, C, S, and H
instructions leave the accumulator unchanged. Some pro-
grammers print out results only at selected points in the
program until they narrow down the portion of the pro-
gram where the error is located. Then they print out the
contents of the accumulator after every instruction which
affects the accumulator until the error is tracked down.
When the error is located during the course of the “single
step” operation, it can frequently be corrected in a min-
ute or two by rearranging one or more pins in the pin-
boards.

As the program is checked out, the programmer can
tell which program step is being executed at any given
time by observing the neon pinboard and step lights on
the control panel. The first column of lights, numbered
from 1 to 8, indicates the pinboard number while the
second column, numbered from 0 to 15, indicates the
step number.

These same lights can be made to indicate the positions
of the E and F switches, allowing the programmer to
check his H andS instructions. To determine the E switch
position at any given time, the operator depresses the
button on the left of the control panel marked “E.” While
he holds down the E button, the “step” lights (0 to 15)
will indicate the E switch position. To determine the F
switch position, the operator depresses the button marked
“F.” To determine the band switch setting (on a 220-
word memory E101), he depresses both buttons simul-
taneously. As soon as the operator releases the button
(or buttons), the lights again indicate the step in the pin-
board program.

TIMING
Sometimes programmers want a time appraisal of a

program. The reason might be to evaluate several ap-
proaches to a problem, or to determine whether the prob-
lem is an “economical” one for a computer. The follow-
ing time parameters on various operations, although not
given in complete detail, are sufficient for making good
appraisals:

Addition type instructions (+, —, R, W, B, A)
— 1/20 sec.

Average multiplication or division instruction
—VY% sec.

Average transfer instruction—'2 sec. (vary-
ing with how large a “jump” is involved).

Stepping instruction—1/20 sec.

Average homing instruction—0.3 sec.

Print or Keyboard instruction—0.6 sec.

Iinstruction on tape—3/20 sec. in addition to
time for same instruction on pinboard.

Data entry from tape—20 characters per sec.

Tape output—20 characters per sec.

Unlike larger computing systems, every instruction
on the E101 takes at least two drum revolutions. The
techniques of minimum access programming cannot be
applied to a machine like the E101.

The only place—but a significant one—where time
can be saved by arrangement of the program is the trans-
fer operation. This is because transfers are carried out
by stepping switches. For example, each pinboard is con-
trolled by its own 16-position stepping switch (these
switches are physically the same as the E and F switches,
but they are not accessible via instructions in the pro-
gram). If a pinboard switch is at step 11 and a transfer
operation calls for its going back to step 0, the switch
must step through positions 12, 13, 14 and 15 before
reaching step 0 to execute it.

Which pinboard is in control is also set by a switch,
and the same considerations hold: a transfer to the suc-
ceeding pinboard takes about %4 the time required to
transfer to the previous pinboard

A discussion of the advisability of iterating within a
pinboard, and an example of saving time by eliminating
transfers appear in Part IV.

CHECKING CIRCUITRY

1. General

Like other general purpose digital computers, the
E101 is provided with circuitry whose sole function is to
check the operation of the components which do the com-
puting. When this checking circuitry detects a machine
malfunction, it stops the computation, and signals the
operator accordingly.

Although erroneous results are sometimes caused by
a component failure, they can also occur due to improper
operation or programming of a computer: the operator
may make an entry in the wrong columns of the keyboard,
a pin in the pinboards may be misplaced, the program
steps may generate an overflow, etc. Computers usually
have circuitry which detects certain of these human fail-
ures, also. The overflow alarm on the E101 is an example
of this kind of checking circuit.

These sections are intended to help the E101 user in
quickly diagnosing and correcting the various conditions

21

—internal and external—which may cause the checking
circuits to stop computation.

2. Trouble Symptoms—ALARM Light
The basic trouble signal on the E101 is the ALARM,

whose occurrence is indicated by the following condi-
tions:

a) The machine stops on the instruction being
executed; the HALT light comes on; the
neon pinboard and step lights indicate
where in the program the ALARM oc-
curred.

b) The ALARM light comes on; touching the
CLEAR button will turn off the ALARM
light, permitting the START buttons to
function; if the operator doesn’t touch the
CLEAR button within the first few sec-

onds, a repeating gong sounds.

The condition which caused the ALARM is indicated
by other factors, which will be covered in detail later in
this section.

3. Trouble Symptoms—Machine Standstill

Another symptom of trouble is a computer stop or
standstill, in which the E101 stops, although neither the
ALARM light nor the HALT light comes on. To get the
computer going again the operator usually touches the
CLEAR button (which turns on the HALT light), then
corrects the condition and continues by pressing one of
the START buttons. The various causes of a standstill
are discussed in detail below.

PROGRAMMING AND OPERATING ERRORS

1. The Overflow Alarm
Overflow in the E101 is signalled by the ALARM

condition occurring on one of the following instructions:

a) Ifthe ALARM occurs on a+, —, or + in-
struction, the value of the sum, remainder,
or quotient, respectively, is 2 10 (10 x
LO?):

b) If the ALARM occurs on a B instruction,
it means that the contents of the accumu-
lator is =1-(1-< 16").

In either case, the overflow is due to improper scaling.
If the program has not been checked out, it must be

corrected to compensate for the error.
If the problem has been debugged, examine the entire

pinboard program thoroughly for a pinning error.
If no pinning errors are found, check the scaling of the

numbers entered through the keyboard.
If keyboard entries were made properly, print out the

contents of the memory (or those locations used in the
current problem) and check your stored constants and
initial input values.

If none of these steps reveals the trouble, repeat the
program leading up to the ALARM; if the ALARM re-
curs, go into SINGLE operation and recheck those in-
structions which generate the number causing the over-
flow. If you cannot isolate the instruction(s) this way,
and the ALARM continues to occur, contact your
ELECTRODATA Field Engineer.

2. Machine Standstill
A machine standstill is the result of an attempt to

operate the E101 without first putting it into proper
operating condition. There are two main causes of a
standstill:

a) Computer not prepared for operation—the
following check list will help correct any
such oversights:
1) Make sure that the READY light is on.

If not, check that both the E101 key
switch and your circuit breaker are on.
If both switches are on, but there is no
READY signal, call your Field Engi-
neer.

2) Make sure that the PINboard/MAN-
ual toggle switch is in the PINboard
position.

3) See that the NORMAL/SINGLE
switch is in the NORMAL position.

4) Check that the right carriage control
panel is in the keyboard-printer; check
the Schedule knob setting; make sure
that the panel is seated correctly in the
carriage; operate the TAB and
RETurn keys on the keyboard-printer
to insure that the carriage is stopped
in one of its tabular column printing
positions.

5) Make sure that the PINBOARD DIS-
CONNECT key in the extreme lower
right-hand corner of the keyboard-
printer in its up, or released, position.

6) Check the position of the PROGRAM
lever in the upper right-hand corner of
the keyboard-printer; it should be for-
ward, in its PROGRAM position.

7) Operate the carriage open-close key to
make sure the front insert is closed.

8) Check keyboard to see that keys are set
in their fully-depressed position; use
Error key to release stuck keys.

b) Attempt to execute an instruction with
missing pin(s).
1) If the missing pin is in the operation

area (#1), just insert the pin. The
E101 will execute the instruction and
continue with the program.

22

2) If area 2 and/or 3 has a pin missing,
touch the CLEAR button, insert the
missing pin(s), execute a MANual
transfer back to the instruction in ques-
tion, return to PINboard control,
NORMAL operation, and touch the
REGULAR START button.

3) If the E101 is sent to an instruction in
a pinboard, and the entire pinboard is
missing, simply insert the pinboard.

4) Note that in memory addresses, a pin
in area 3 placed between b = 10 and
b = 15 will act like a missing pin.

3. Double Pinning
The E101 does not have circuits to check for the inser-

tion of extra pins in an instruction (e.g.,B 715, A39).
It simply ignores such extra pins, and executes the in-
struction as if the redundant pins weren’t there (B__,
A 3_). This feature is sometimes quite useful; to give
the operator the choice, using the X key, of whether or
not to carry out a left shift of 6 places, we could use an
A X 6 instruction. When the operator sets X = 1, the
shift is executed (A 1 6); when the operator sets X = 3,
an absolute value instruction is executed instead
(A,3,-).

But when more than one pin appears in the same area
of an instruction, trouble develops. The effect of a double
pinning is to short the two lines pinned, so that every in-
struction in the pinboards calling for either of the shorted
lines is shorted, too. For example, if the program calls for
an R79 instruction in step 11 of pinboard 8, and the
operator mistakenly double-pins R and U (giving
RU 79), then there is as good a chance of executing a
U79as there is an R79.

Furthermore, any R instruction appearing any-
where in the program is liable to be interpreted
as aU, and any U instruction as an R. Instruc-
tions selected by the manual switches are sub-
ject to the same conditions: a double pin will
disturb any instruction which calls for one of
the shorted lines.

Thus, although there is no circuitry to detect double
pinning directly, the presence of a double pin manifests
itself very quickly. Symptoms are overflow alarms, ma-
chine standstill, skipping or repeating an instruction or
a whole sequence of instructions, inability to leave a pin-
board, or to get out of a loop, inconsistent printing pat-
terns, impossible printed results, failure to load or read
out properly, etc.

When faced with such symptoms, a visual check of the
pinboards will ususally reveal the double pins. If double
pinning cannot be found visually, remove all the pin-
boards, and execute the instruction manually. If the
manual instruction won’t work properly, call the Field
Engineer. If the manual instruction works with the pin-

boards removed, replace the pinboards one at a time,
testing the manual instruction after each replacement. If
trouble recurs, the error is in the last pinboard replaced.

MACHINE MALFUNCTION

1. Print ALARM
The E101 has a print check circuit which translates the

type bar positions into pulses just after printing, and
echoes these pulses back against the number in the ac-
cumulator. If comparison does not occur, the machine
lights the ALARM signal. This is distinguished from an
overflow ALARM by the fact that it occurs on a print
instruction.

When a print ALARM occurs it can be assumed (in
the absence of other ALARMS) that the number in the
accumulator is correct. At worst, the printed results will
contain the incorrect number.

When the printing mechanism fails, it is very often a

temporary condition, which can be remedied by repeated
exercise of the mechanism. Executing several manual
Print instructions often clears up the mechanical diffi-
culty, and printing will continue normally thereafter.

Whether or not the difficulty proves to be tem-
porary, the Field Engineer should always be
notified of the occurrence of a machine mal-
function condition.

2. Pulse Sequence Check

Information is stored on the drum of the E101 in pulse-
coded decimal form. Each digit consists of 9 bits. All 9

magnetic spots oriented one way is a 0, all nine the oppo-
site way is a nine (if the digit is a 5, 5 magnets point one
way, the other 4 point in the opposite direction, etc.).
When the digit is not zero, definite rules apply as to the
position of the non-zero magnets: they must appear in a

dense sequence, and they must be adjacent to the end-
digit control pulse. Any other configuration is forbidden,

BEGIN END
DIGIT DIGIT

L L L it A. iL L L a | i i 0

and indicates a machine malfunction. A condition like a

sudden drastic change in line voltage can cause a pulse
to be lost or picked up. Such an occurrence is checked by
having the initial pulse of each pulse sequence trigger an
independent pulse generator, whose output is gated
against the output of the pulse amplifier tube each clock
time, until the end digit control pulse resets the generator.
Failure of any of these outputs to compare sets the
ALARM circuit, and lights one or both of the amber
lights behind the ALARM signal.

23

When a Pulse Sequence ALARM occurs, the
operator should immediately notify the Field
Engineer. Have available as much information
as possible regarding the state of affairs when
the alarm occurred: the kind and location of
the instruction being executed, the memory
locations involved, the size of the numbers
being manipulated, etc. This information may
enable him to advise you of temporary steps
you can take to continue your computation
while the Field Engineer is on his way to your
installation.

CHECKING INPUT DATA
In using the E101 with keyboard input of data, it is

very important that there be a reliable method of detect-
ing and correcting input errors. Some of the methods
being used successfully by various E101 users are as

follows:

Visual Check
After entering the data, the operator checks visually to

make sure no errors have been made. A variation of this
method which one E101 user has found effective is to
have the data pre-entered by hand or typewriter on the
report with space directly below each number for the
E101 to print. After entering the data through the E101
keyboard, it is a very simple matter to compare the num-
ber printed by the E101 with the pre-printed and hand-
written number directly above it.

Proof Totals
A popular way of checking the accuracy of keyboard

input, particularly in accounting applications, is to have
the E101 total the data and compare the result to a pre-
determined proof total. This operation can be pro-
grammed in the ususal way, or if desired, the data can be
accumulated in the E101 crossfooters and registers.

Correction of Errors
The correction of an input error can be done in a num-

ber of different ways, depending mainly on when the
error is detected. If the operator realizes his mistake
before he touches the motor bar, he can remedy the situa-
tion immediately by depressing the Error key (marked
“E”) at the right of motor bar 2 and re-entering the num-
ber correctly.

If he discovers the error after the motor bar has been
touched, the thing he must determine is whether the num-
ber has merely been stored in the memory or has actually

If none of these steps reveals the trouble, repeat the
program leading up to the ALARM; if the ALARM re-
curs, go into SINGLE operation and recheck those in-
structions which generate the number causing the over-
flow. If you cannot isolate the instruction(s) this way,
and the ALARM continues to occur, contact your
ELECTRODATA Field Engineer.

2. Machine Standstill
A machine standstill is the result of an attempt to

operate the E101 without first putting it into proper
operating condition. There are two main causes of a
standstill:

a) Computer not prepared for operation—the
following check list will help correct any
such oversights:
1) Make sure that the READY light is on.

If not, check that both the E101 key
switch and your circuit breaker are on.
If both switches are on, but there is no
READY signal, call your Field Engi-
neer.

2) Make sure that the PINboard/MAN-
ual toggle switch is in the PINboard
position.

3) See that the NORMAL/SINGLE
switch is in the NORMAL position.

4) Check that the right carriage control
panel is in the keyboard-printer; check
the Schedule knob setting; make sure
that the panel is seated correctly in the
carriage; operate the TAB and
RETurn keys on the keyboard-printer
to insure that the carriage is stopped
in one of its tabular column printing
positions.

5) Make sure that the PINBOARD DIS-
CONNECT key in the extreme lower
right-hand corner of the keyboard-
printer in its up, or released, position.

6) Check the position of the PROGRAM
lever in the upper right-hand corner of
the keyboard-printer; it should be for-
ward, in its PROGRAM position.

7) Operate the carriage open-close key to
make sure the front insert is closed.

8) Check keyboard to see that keys are set
in their fully-depressed position; use
Error key to release stuck keys.

b) Attempt to execute an instruction with
missing pin(s).
1) If the missing pin is in the operation

area (#1), just insert the pin. The
E101 will execute the instruction and
continue with the program.

22

2) If area 2 and/or 3 has a pin missing,
touch the CLEAR button, insert the
missing pin(s), execute a MANual
transfer back to the instruction in ques-
tion, return to PINboard control,
NORMAL operation, and touch the
REGULAR START button.

3) If the E101 is sent to an instruction in
a pinboard, and the entire pinboard is
missing, simply insert the pinboard.

4) Note that in memory addresses, a pin
in area 3 placed between b = 10 and
b = 15 will act like a missing pin.

3. Double Pinning
The E101 does not have circuits to check for the inser-

tion of extra pins in an instruction (e.g.,B 715, A39).
It simply ignores such extra pins, and executes the in-
struction as if the redundant pins weren’t there (B__,
A 3_). This feature is sometimes quite useful; to give
the operator the choice, using the X key, of whether or
not to carry out a left shift of 6 places, we could use an
A X 6 instruction. When the operator sets X = 1, the
shift is executed (A 1 6); when the operator sets X = 3,
an absolute value instruction is executed instead
(A,3,-).

But when more than one pin appears in the same area
of an instruction, trouble develops. The effect of a double
pinning is to short the two lines pinned, so that every in-
struction in the pinboards calling for either of the shorted
lines is shorted, too. For example, if the program calls for
an R79 instruction in step 11 of pinboard 8, and the
operator mistakenly double-pins R and U (giving
RU 79), then there is as good a chance of executing a
U79as there is an R79.

Furthermore, any R instruction appearing any-
where in the program is liable to be interpreted
as aU, and any U instruction as an R. Instruc-
tions selected by the manual switches are sub-
ject to the same conditions: a double pin will
disturb any instruction which calls for one of
the shorted lines.

Thus, although there is no circuitry to detect double
pinning directly, the presence of a double pin manifests
itself very quickly. Symptoms are overflow alarms, ma-
chine standstill, skipping or repeating an instruction or
a whole sequence of instructions, inability to leave a pin-
board, or to get out of a loop, inconsistent printing pat-
terns, impossible printed results, failure to load or read
out properly, etc.

When faced with such symptoms, a visual check of the
pinboards will ususally reveal the double pins. If double
pinning cannot be found visually, remove all the pin-
boards, and execute the instruction manually. If the
manual instruction won’t work properly, call the Field
Engineer. If the manual instruction works with the pin-

boards removed, replace the pinboards one at a time,
testing the manual instruction after each replacement. If
trouble recurs, the error is in the last pinboard replaced.

MACHINE MALFUNCTION

1. Print ALARM
The E101 has a print check circuit which translates the

type bar positions into pulses just after printing, and
echoes these pulses back against the number in the ac-
cumulator. If comparison does not occur, the machine
lights the ALARM signal. This is distinguished from an
overflow ALARM by the fact that it occurs on a print
instruction.

When a print ALARM occurs it can be assumed (in
the absence of other ALARMS) that the number in the
accumulator is correct. At worst, the printed results will
contain the incorrect number.

When the printing mechanism fails, it is very often a

temporary condition, which can be remedied by repeated
exercise of the mechanism. Executing several manual
Print instructions often clears up the mechanical diffi-
culty, and printing will continue normally thereafter.

Whether or not the difficulty proves to be tem-
porary, the Field Engineer should always be
notified of the occurrence of a machine mal-
function condition.

2. Pulse Sequence Check

Information is stored on the drum of the E101 in pulse-
coded decimal form. Each digit consists of 9 bits. All 9

magnetic spots oriented one way is a 0, all nine the oppo-
site way is a nine (if the digit is a 5, 5 magnets point one
way, the other 4 point in the opposite direction, etc.).
When the digit is not zero, definite rules apply as to the
position of the non-zero magnets: they must appear in a

dense sequence, and they must be adjacent to the end-
digit control pulse. Any other configuration is forbidden,

BEGIN END
DIGIT DIGIT

L L L it A. iL L L a | i i 0

and indicates a machine malfunction. A condition like a

sudden drastic change in line voltage can cause a pulse
to be lost or picked up. Such an occurrence is checked by
having the initial pulse of each pulse sequence trigger an
independent pulse generator, whose output is gated
against the output of the pulse amplifier tube each clock
time, until the end digit control pulse resets the generator.
Failure of any of these outputs to compare sets the
ALARM circuit, and lights one or both of the amber
lights behind the ALARM signal.

23

When a Pulse Sequence ALARM occurs, the
operator should immediately notify the Field
Engineer. Have available as much information
as possible regarding the state of affairs when
the alarm occurred: the kind and location of
the instruction being executed, the memory
locations involved, the size of the numbers
being manipulated, etc. This information may
enable him to advise you of temporary steps
you can take to continue your computation
while the Field Engineer is on his way to your
installation.

CHECKING INPUT DATA
In using the E101 with keyboard input of data, it is

very important that there be a reliable method of detect-
ing and correcting input errors. Some of the methods
being used successfully by various E101 users are as

follows:

Visual Check
After entering the data, the operator checks visually to

make sure no errors have been made. A variation of this
method which one E101 user has found effective is to
have the data pre-entered by hand or typewriter on the
report with space directly below each number for the
E101 to print. After entering the data through the E101
keyboard, it is a very simple matter to compare the num-
ber printed by the E101 with the pre-printed and hand-
written number directly above it.

Proof Totals
A popular way of checking the accuracy of keyboard

input, particularly in accounting applications, is to have
the E101 total the data and compare the result to a pre-
determined proof total. This operation can be pro-
grammed in the ususal way, or if desired, the data can be
accumulated in the E101 crossfooters and registers.

Correction of Errors
The correction of an input error can be done in a num-

ber of different ways, depending mainly on when the
error is detected. If the operator realizes his mistake
before he touches the motor bar, he can remedy the situa-
tion immediately by depressing the Error key (marked
“E”) at the right of motor bar 2 and re-entering the num-
ber correctly.

If he discovers the error after the motor bar has been
touched, the thing he must determine is whether the num-
ber has merely been stored in the memory or has actually

been used in calculations. Frequently the error is de-
tected after the number has been stored but before any
calculations have taken place. Having stopped the ma-
chine by throwing the switch to SINGLE operate, the
operator can easily correct the situation by putting the
E101 into MANUAL control, entering the correct num-
ber, and writing it into the appropriate memory location.

If the error is detected after a series of calculations, the
results of the calculations can often be corrected by
means of a “correction program” consisting of pinboard
instructions which replace the incorrect results with cor-
rect ones. Generally, the “correction program” runs
through the same calculations as before using the incor-
rect quantity again but with the sign reversed. This has
the effect of compensating for the results produced by the
wrong numbers. Next the correct data is entered into the
keyboard and the calculations repeated.

PROGRAMS AVAILABLE TO E101 USERS

The programs for basic functions (such as square
roots, logarithms and trigonometric functions) which are
used fregeuntly in scientific, engineering and statistical
computations are generally called “subroutines” for elec-
tronic digital computers. One can, to a considerable ex-
tent, program these computations once and for all and
have them available for use as part of the program in any
problem in which basic functions are required.

For the convenience of our customers we have pro-
grammed the most common of these basic functions and
have compiled the programs into a booklet entitled
Handbook of Subroutines and Subroutine Methods for
the ELECTRODAtTA 101, which is available to all E101
users. A list of the programs included in the subroutine
booklet appears below.

In addition, the ELEcTRODaAtTA Division Applied
Mathematics Department will advise E101 users regard-
ing their larger problems in mathematics, and has avail-
able programs for the “standard” numerical analysis
problems, such as matrix inversion, roots of polynomials,
linear regression, and others.

Subroutines Available to E101 Users

sin u (- =u S —, uinradians)= ae
2 2.

sin u (-90° S u £90° or -Biles es

or degrees) 2 2
=24—=— in radians

sin A (for large angles, A, in radians or degrees)

cos u (- =u S —, uinradians)oe Tv

2 2

cos (—902 =y =
or degrees)

IA \O SoO °fe) |3 us ° .
= at u in radians

cos A (for large angles, A, in radians or degrees)

-or -1 <u< 1, uwinradians)

24

arccos u and arcsin u (“5 = = > or

se - =us as result in radians)
arccos u and arcsin u (0 < u <1, result in radians)
arctan u (—1 <u <1, result in radians)
arctan u (0 <u < 999, result in radians)
(1 =u=1)
€=~(O=7 <10)
10: (0=u=1)
logiou (1 Su 10)
lop. (1 =u = 10)
sinh u (-4.5 Su = 4.5)
cosh u (-4.5 Su S 4.5)
tanhi @-—2, =u =2)

Vu
Multiplication of complex numbers

(a+ bi) (c +di) for -0.9999 =a,b,c,d = 0.9999
Division of complex numbers

(4+>) tor 0.9999 < a,b, c,d $ 0.9999
(c + di)

STANDARD OPERATING ROUTINES

The three most common operating routines are clear-
ing, loading and printing the contents of the memory.
Because these routines are used so frequently, their pro-
grams are given below. In each case the routine is pro-
grammed for the maximum number of memory locations
(100 or 220); the same programs can be used for fewer
operations. The approach in all three cases is based on
programming the given problem in as few steps as pos-
sible. While this is the most popular approach, other
methods (some of which are described in Part IV) may
be used.

The similarity among the three routines is immediately
apparent. Because of this similarity, it is possible to pro-
gram a multipurpose routine that can be used inter-
changeably for all three opeartions merely by moving a
few pins. This routine is also shown below.

1) Clearing Entire Memory
0|R 9 9] Read contents of memory loca-

: : to
tion 99 into accumulator

generate
1 | — 9 9] Subtract contents of memory lo-

zero
cation 99 from accumulator

2|H O 0} HomeE switch to zero
——>3]}H 1 0| Home F switch to zero

4| WEF] Write contents of accumulator (zero) into
memory location E F

5 |S 1 9] Step F switch once each time through routine
until F passes 9; then transfer to step 7.

6} U 0 4] Transfer back to step 4 and repeat routine
with new value for F.

71S 0 91 Step E switch once each time E101 reaches
this step (once every 10 times through rou-
tine); when E = 10, transfer to step 9.

L, U 03 _ Transfer back to step 3 and repeat routine
with new value for E.

2) Loading Entire Memory
0|H O 0] Home E switch to zero.

—>~1{/H 1 0} Home F switch to zero.
K Transfer contents of Keyboard into accumu-

lator when operator touches motor bar.
3 |W EF] Write contents of accumulator into memory

location E F.
4|S 1 9] Step F switch once each time through routine

until F = 10; then transfer to step 6.

5 |U 0 2] Transfer back to step 2 and repeat routine
with new value for F.

6|S 0 9| Step E switch once each time E101 reaches
this step (once every 10 times through rou-
tine); when E = 10, transfer to step 8.

—7 |U 0 1] Transfer back to step 1 and repeat routine
with new value for E.

Si:

Note: When the data to be loaded is on tape, step 2
is T _ 12 instead of K.

3) Printing Contents of Entire Memory
0 |H O 0} HomeE switch to zero.

>I |H 1 0} Home F switch to zero.
2|R EF] Read contents of memory location E F into

accumulator.
36 |.P.,-2:

4;S 19
5 |U 0 2] Same as steps 4 to 7 in loading routine
615-09
71. 0.1i ets

4) Multipurpose Routine for Clearing,
Loading and Printing

By changing steps 4 and 5 for each operation, the fol-
lowing routine can be used for clearing, loading and
printing the entire memory (100 words). Because all
three operations are used frequently, some programmers
find it convenient to keep a multipurpose pinboard
pinned up at all times. It is helpful to have a template
stamped in one color with the exception of steps 4 and 5

which could be stamped in three different colors, repre-
senting the three operations.

0-|-R 9°79

f= 9.9
2 | 1.0.0
3 eb 1-0 CLEAR LOAD PRINT
4 WE F K Roe ce
5 W EF WE Po2
6-9 1.9
71U 04
8);S 09
91-003

10] - - -

25

5) Loading the 220-Word Memory

|

iS

0
co

bon

hos

NS -_

©
W

eS

2.

>

ownoooenm =H

WN

WwW

Ww

o

a
1CVaenaurenmmeE

The above routine will load the 160 locations of the
4 switchable bands of the 220-word memory (00-39 in
bands 0, 1, 2 and 3). The remaining 60 words of the
heartband (40-99) can also be loaded with the same
routine by pinning a U 0 2 in step 11 (after entering the
220th number, the operator would touch the CLEAR
button and then a START button going to the rest of
the program).

6) Loading from Punched Tape Input
Whena data tape has been prepared to use with the

E101, it can be read and loaded using any of the other
loading routines by simply substituting a T _ 12 instruc-
tion for the keyboard instruction given.

When data in random sequence on tape is to be dis-
tributed in the E101 memory, the accumulator setting of
E andF switches can be used effectively. Assume that a

6-digit amount (xxxxxx), followed by its 2-digit classifi-
cation or identification number (ab), appears in each
word on tape:

[xxxxxxab]

The program and its operation would be as follows:

SWITCH
CONTENTS OF SETTINGS

PROGRAM EXPLANATION ACCUMULATOR E | F

e-0| T — 12} read tape word into |OO0Oxxxxxxab Ae?
accumulator

1]H 1 O}home F switch to 0 |OOOOxxxxxxab 21-0
2|H-5. —|add:btoF OOOOxxxxxxab 22D
3}A 2 1]shift accumulator | OOOOOxxxxxxa TAD

right one place
4|H 0 0O}home E switch to 0 |OOOOOxxxxxxa b
5|H 4 —|addatoE OOOOOxxxxxxa b
6|A 2 1 shift accumulator | OOOOOOxxxxxx a {2D

right one place
7\|+ E F | add previous sum to new sum a| b

XXXXXX

8|WE _ F |store new sum in ab new sum al b
-9)U 0 0 | repeat with next new sum a|b

tape word

been used in calculations. Frequently the error is de-
tected after the number has been stored but before any
calculations have taken place. Having stopped the ma-
chine by throwing the switch to SINGLE operate, the
operator can easily correct the situation by putting the
E101 into MANUAL control, entering the correct num-
ber, and writing it into the appropriate memory location.

If the error is detected after a series of calculations, the
results of the calculations can often be corrected by
means of a “correction program” consisting of pinboard
instructions which replace the incorrect results with cor-
rect ones. Generally, the “correction program” runs
through the same calculations as before using the incor-
rect quantity again but with the sign reversed. This has
the effect of compensating for the results produced by the
wrong numbers. Next the correct data is entered into the
keyboard and the calculations repeated.

PROGRAMS AVAILABLE TO E101 USERS

The programs for basic functions (such as square
roots, logarithms and trigonometric functions) which are
used fregeuntly in scientific, engineering and statistical
computations are generally called “subroutines” for elec-
tronic digital computers. One can, to a considerable ex-
tent, program these computations once and for all and
have them available for use as part of the program in any
problem in which basic functions are required.

For the convenience of our customers we have pro-
grammed the most common of these basic functions and
have compiled the programs into a booklet entitled
Handbook of Subroutines and Subroutine Methods for
the ELECTRODAtTA 101, which is available to all E101
users. A list of the programs included in the subroutine
booklet appears below.

In addition, the ELEcTRODaAtTA Division Applied
Mathematics Department will advise E101 users regard-
ing their larger problems in mathematics, and has avail-
able programs for the “standard” numerical analysis
problems, such as matrix inversion, roots of polynomials,
linear regression, and others.

Subroutines Available to E101 Users

sin u (- =u S —, uinradians)= ae
2 2.

sin u (-90° S u £90° or -Biles es

or degrees) 2 2
=24—=— in radians

sin A (for large angles, A, in radians or degrees)

cos u (- =u S —, uinradians)oe Tv

2 2

cos (—902 =y =
or degrees)

IA \O SoO °fe) |3 us ° .
= at u in radians

cos A (for large angles, A, in radians or degrees)

-or -1 <u< 1, uwinradians)

24

arccos u and arcsin u (“5 = = > or

se - =us as result in radians)
arccos u and arcsin u (0 < u <1, result in radians)
arctan u (—1 <u <1, result in radians)
arctan u (0 <u < 999, result in radians)
(1 =u=1)
€=~(O=7 <10)
10: (0=u=1)
logiou (1 Su 10)
lop. (1 =u = 10)
sinh u (-4.5 Su = 4.5)
cosh u (-4.5 Su S 4.5)
tanhi @-—2, =u =2)

Vu
Multiplication of complex numbers

(a+ bi) (c +di) for -0.9999 =a,b,c,d = 0.9999
Division of complex numbers

(4+>) tor 0.9999 < a,b, c,d $ 0.9999
(c + di)

STANDARD OPERATING ROUTINES

The three most common operating routines are clear-
ing, loading and printing the contents of the memory.
Because these routines are used so frequently, their pro-
grams are given below. In each case the routine is pro-
grammed for the maximum number of memory locations
(100 or 220); the same programs can be used for fewer
operations. The approach in all three cases is based on
programming the given problem in as few steps as pos-
sible. While this is the most popular approach, other
methods (some of which are described in Part IV) may
be used.

The similarity among the three routines is immediately
apparent. Because of this similarity, it is possible to pro-
gram a multipurpose routine that can be used inter-
changeably for all three opeartions merely by moving a
few pins. This routine is also shown below.

1) Clearing Entire Memory
0|R 9 9] Read contents of memory loca-

: : to
tion 99 into accumulator

generate
1 | — 9 9] Subtract contents of memory lo-

zero
cation 99 from accumulator

2|H O 0} HomeE switch to zero
——>3]}H 1 0| Home F switch to zero

4| WEF] Write contents of accumulator (zero) into
memory location E F

5 |S 1 9] Step F switch once each time through routine
until F passes 9; then transfer to step 7.

6} U 0 4] Transfer back to step 4 and repeat routine
with new value for F.

71S 0 91 Step E switch once each time E101 reaches
this step (once every 10 times through rou-
tine); when E = 10, transfer to step 9.

L, U 03 _ Transfer back to step 3 and repeat routine
with new value for E.

2) Loading Entire Memory
0|H O 0] Home E switch to zero.

—>~1{/H 1 0} Home F switch to zero.
K Transfer contents of Keyboard into accumu-

lator when operator touches motor bar.
3 |W EF] Write contents of accumulator into memory

location E F.
4|S 1 9] Step F switch once each time through routine

until F = 10; then transfer to step 6.

5 |U 0 2] Transfer back to step 2 and repeat routine
with new value for F.

6|S 0 9| Step E switch once each time E101 reaches
this step (once every 10 times through rou-
tine); when E = 10, transfer to step 8.

—7 |U 0 1] Transfer back to step 1 and repeat routine
with new value for E.

Si:

Note: When the data to be loaded is on tape, step 2
is T _ 12 instead of K.

3) Printing Contents of Entire Memory
0 |H O 0} HomeE switch to zero.

>I |H 1 0} Home F switch to zero.
2|R EF] Read contents of memory location E F into

accumulator.
36 |.P.,-2:

4;S 19
5 |U 0 2] Same as steps 4 to 7 in loading routine
615-09
71. 0.1i ets

4) Multipurpose Routine for Clearing,
Loading and Printing

By changing steps 4 and 5 for each operation, the fol-
lowing routine can be used for clearing, loading and
printing the entire memory (100 words). Because all
three operations are used frequently, some programmers
find it convenient to keep a multipurpose pinboard
pinned up at all times. It is helpful to have a template
stamped in one color with the exception of steps 4 and 5

which could be stamped in three different colors, repre-
senting the three operations.

0-|-R 9°79

f= 9.9
2 | 1.0.0
3 eb 1-0 CLEAR LOAD PRINT
4 WE F K Roe ce
5 W EF WE Po2
6-9 1.9
71U 04
8);S 09
91-003

10] - - -

25

5) Loading the 220-Word Memory

|

iS

0
co

bon

hos

NS -_

©
W

eS

2.

>

ownoooenm =H

WN

WwW

Ww

o

a
1CVaenaurenmmeE

The above routine will load the 160 locations of the
4 switchable bands of the 220-word memory (00-39 in
bands 0, 1, 2 and 3). The remaining 60 words of the
heartband (40-99) can also be loaded with the same
routine by pinning a U 0 2 in step 11 (after entering the
220th number, the operator would touch the CLEAR
button and then a START button going to the rest of
the program).

6) Loading from Punched Tape Input
Whena data tape has been prepared to use with the

E101, it can be read and loaded using any of the other
loading routines by simply substituting a T _ 12 instruc-
tion for the keyboard instruction given.

When data in random sequence on tape is to be dis-
tributed in the E101 memory, the accumulator setting of
E andF switches can be used effectively. Assume that a

6-digit amount (xxxxxx), followed by its 2-digit classifi-
cation or identification number (ab), appears in each
word on tape:

[xxxxxxab]

The program and its operation would be as follows:

SWITCH
CONTENTS OF SETTINGS

PROGRAM EXPLANATION ACCUMULATOR E | F

e-0| T — 12} read tape word into |OO0Oxxxxxxab Ae?
accumulator

1]H 1 O}home F switch to 0 |OOOOxxxxxxab 21-0
2|H-5. —|add:btoF OOOOxxxxxxab 22D
3}A 2 1]shift accumulator | OOOOOxxxxxxa TAD

right one place
4|H 0 0O}home E switch to 0 |OOOOOxxxxxxa b
5|H 4 —|addatoE OOOOOxxxxxxa b
6|A 2 1 shift accumulator | OOOOOOxxxxxx a {2D

right one place
7\|+ E F | add previous sum to new sum a| b

XXXXXX

8|WE _ F |store new sum in ab new sum al b
-9)U 0 0 | repeat with next new sum a|b

tape word

PART IV PROGRAMMING STRATEGY

GENERAL

Programming a problem for an electronic computer
consists of two basic parts: first, determining the proper
approach or strategy and second, coding. With the ELEC-
TRODATA 101, the coding part is quite straightforward
because the E101 program language is so close to the
language of arithmetic itself. Determining what approach
or strategy to use requires somewhat more skill and imag-
ination on the part of the programmer, and is an interest-
ing and challenging experience. The main factors to con-
sider are the nature of the problem and the capacity of
the computer. Each problem and each computer has its
own special features.

The job of the programmer is to fit the problem into the
computer. Where some aspect of the problem exceeds the
capacity of some feature of the machine, the programmer
must try to compensate for this by the use of the ma-
chine’s other features (e.g., if his first approach takes too
long for a solution to be reached, he may use more pro-
gram steps to cut down running time).

In larger computer systems, the main machine limita-
tions are storage capacity (data and program), and oper-
ating speeds. In an externally programmed computer like
the E101, the storage capacities for data and programs
are not interchangeable, and must be considered sepa-

rately: the E101 programmer must fit the stored data into
the drum, the instructions into the pinboards, within the
problem solution time requirements. He can use the 220-
word memory and/or the tape reader to increase data

storage, he can change pinboards, or use instruction
tapes to increase program capacity, etc.

How long is the problem? How often is it going to be

run? These questions are important since they give the

programmer an idea of how much time and effort to
spend on the problem. If it is a relatively short problem
that is going to be run only once or twice, there is not
much point in developing a highly sophisticated approach
that will save running time and perhaps reduce the num-
ber of program steps. On the other hand, it makes sense

to concentrate on programming strategy that will save

running time if the problem is a fairly long one that will
be run many times.

Point of emphasis varies from problem to problem and

from program to program. Oftentimes, the most import-
ant consideration is the reduction of the number of pro-
gramming steps. Sometimes it is “increasing” the size of
the memory. In other cases, it is cutting down the running
time, while in still others, it is ease of operation. In many
problems it is a combination of two or more of these fac-
tors. The most important part of the programmer’s job is

placing the emphasis where it belongs. At all times a

reasonable balance between programming time and run-
ning time should be maintained.

26

Part IV is devoted to programming ideas or techniques
that E101 programmers have found helpful. Some save

on programming space, some running time, and others
on memory space. Many of them are merely means of
using certain instructions (or combinations of instruc-
tions) in a way that is not too obvious. Some of the ideas

presented here were “developed” by our staff of Sales

Representatives, Sales Technical Representatives, and
Mathematical Analysts, while others were contributed by
our customers. Although we are thus depriving you of the
fun of discovering them for yourself, we hope they will
save you time, and make your programming job a more
interesting and profitable one.

The various ideas and techniques discussed here tend
to fall into fairly distinct categories:

A. Input-Output Ideas—The ideas in this section are
commonly used in input-output routines.

B. Logical Subroutines—The programming ideas in-
cluded here are called “logical subroutines” since
they accomplish some frequently needed logical
manipulations. For example, although the E101
program language does not include an equality test
as a single instruction, one can be programmed with
two instructions, as described in this section. This
category also includes such topics as split register
storage and counting.

C. Special Information on Basic Instructions—This
section contains ideas on how some of the basic pro-
gramming instructions can be used in important
ways. Because of the nature of the ideas, they are
better introduced here in a separate section rather
than as part of the concise descriptions given in
Parts I and I.

D. Algebraic Manipulations—Some aspects of ordi-
nary manipulation of algebraic expressions are such
that a particular approach is better for computer
programming than any of the other possible ap-
proaches. Some examples of this idea are given in
this section.

A. INPUT-OUTPUT IDEAS

1.Loading a number of amounts into the
memory where the total number is not
divisible by ten

Using the E or F switch, it takes 5 program steps
to load up to 10 amounts into the memory. Using
both E and F, it takes 8 steps to load 20, 30, 40, etc.,
up to 100 amounts into the memory. A normal way
of loading a number of amounts where the number
is not divisible by 10, for example 37, is to break the
problem into two parts: loading the first 30
amounts, and then the last 7. This would involve 8

steps for the first part, plus 5 for the second, making

a total of 13 program steps. The same problem can
be programmed in just 9 steps by loading the 7

amounts first and then the 30 amounts, leaving the
blank memory locations at the beginning instead of
at the end. The two routines are shown below for
comparison.

1 2
37 Amounts in 37 Amounts in

Memory Locations Memory Locations
00 to 36 03 to 39

0-H 0 0 0 Et 020
al st 1 0 ir tt 3

De KK 2 aks

3: WOE FE 3 OW ESE
AS. 19 42 25°19
» 2 U20.2 DS 0-0-2
62 8.02 6. H=1-0

—7 .U 04 le S033
S.-H 120 8 U2 02

poo 4k

10° 2We3'
Lis 16

—I2 U0O9

Another way of loading a number of amounts
where the number is not divisible by ten is to store
the numbers in a rectangular array. This approach
works whenever the number of amounts being
stored is a number that is not a prime (divisible only
by itself) and can be factored into two parts both
less than 10. If there are 59 amounts, for instance,
this approach cannot be used since 59 is a prime
number. If there are 68 amounts, the approach still
cannot be used, for even though 68 is divisible by 4,
the other factor, 17 (4 x 17 = 68), is larger than
10. An example of a situation where the approach
can be used is in loading 45 amounts (5 x 9 = 45.)
By loading the amounts in 5 rows of 9 each or 9

rows of 5 each, the routine can be programmed in
just 8 steps.

Although the discussion here has dealt with mem-
ory loading, the same basic procedures can be used
in clearing, printing, and performing arithmetic op-
erations: any approach which will load numbers
into the memory for you, will allow you to compute
with those numbers, read them out, etc.

2.Entering an_ indefinite number of
amounts through the keyboard

Some problems call for an indefinite number of
amounts to be entered through the keyboard, each
one used immediately in computation rather than
being stored. An example would be the evaluation
of the polynomial x? — 2x? + 14x where x might be
assigned any number of values. The usual way of
programming such a problem is to form an iterative
loop starting with “K,” followed by the steps in-
volved in the computation, and ending with a “U”

27

that sends the E101 back to the “K” instruction.
This type of loop works very nicely until the oper-
ator reaches the point where there are no more key-
board entries. Since the “U” instruction at the end
of the routine always sends the E101 back to the
“K” instruction, the operator will find the E101
waiting for a keyboard entry, but will have no more
data to enter. The way to get out of the loop and into
the next part of the program is to touch the CLEAR
button. This turns off the KEYBOARD light and
lights the HALT signal. With the E101 in the
HALT condition, the operator can touch the proper
START button which will take the E101 to the
beginning of the pinboard where the rest of the
problem is programmed.

3. Replacing the contents of each memory
location with the contents of the succeed-
ing memory location

Some problems require replacing the contents of
each memory location with the contents of the suc-
ceeding memory location. Using row 5 as an ex-
ample, the program for this operation is as follows:

0O|H 1 O| HomeF to zero
HomeE to one
Read contents of SE.
Write into preceding memory location.
Step E andF together until E passes 9.

Transfer back to read next memory
location.

WNBWN

eK

C“Y¢rr ONWUMNO

B. LOGICAL SUBROUTINES

The ideas included in this section are as follows:

1. Counting using the “C” instruction
2. Counting using the “S” instructions
3. Split register storage
4. Split register storage used in conjunction with X

and Y keys for random access

5. Equality test

1. Counting using the “C” instruction
The “C” instruction is frequently used to keep

count of the number of operations performed. To
illustrate, assume that the instructions in pinboard |
are to be performed 75 times. The numbers 0, 1,

and 75 are stored in three memory locations (as-
sume in this case locations 97, 98 and 99, respec-
tively). Each time the counting routine is repeated,
the “1” in memory location 98 is added to the num-
ber in 97 and the total written back into 97. Then
the 75 stored in memory location 99 is subtracted
from the total. The next instruction is a “C.” If the
answer is negative, indicating the routine has not,
been performed 75 times as yet, the C 1 0 sends the
E101 back to pinboard 1 to repeat the routine. If

PART IV PROGRAMMING STRATEGY

GENERAL

Programming a problem for an electronic computer
consists of two basic parts: first, determining the proper
approach or strategy and second, coding. With the ELEC-
TRODATA 101, the coding part is quite straightforward
because the E101 program language is so close to the
language of arithmetic itself. Determining what approach
or strategy to use requires somewhat more skill and imag-
ination on the part of the programmer, and is an interest-
ing and challenging experience. The main factors to con-
sider are the nature of the problem and the capacity of
the computer. Each problem and each computer has its
own special features.

The job of the programmer is to fit the problem into the
computer. Where some aspect of the problem exceeds the
capacity of some feature of the machine, the programmer
must try to compensate for this by the use of the ma-
chine’s other features (e.g., if his first approach takes too
long for a solution to be reached, he may use more pro-
gram steps to cut down running time).

In larger computer systems, the main machine limita-
tions are storage capacity (data and program), and oper-
ating speeds. In an externally programmed computer like
the E101, the storage capacities for data and programs
are not interchangeable, and must be considered sepa-

rately: the E101 programmer must fit the stored data into
the drum, the instructions into the pinboards, within the
problem solution time requirements. He can use the 220-
word memory and/or the tape reader to increase data

storage, he can change pinboards, or use instruction
tapes to increase program capacity, etc.

How long is the problem? How often is it going to be

run? These questions are important since they give the

programmer an idea of how much time and effort to
spend on the problem. If it is a relatively short problem
that is going to be run only once or twice, there is not
much point in developing a highly sophisticated approach
that will save running time and perhaps reduce the num-
ber of program steps. On the other hand, it makes sense

to concentrate on programming strategy that will save

running time if the problem is a fairly long one that will
be run many times.

Point of emphasis varies from problem to problem and

from program to program. Oftentimes, the most import-
ant consideration is the reduction of the number of pro-
gramming steps. Sometimes it is “increasing” the size of
the memory. In other cases, it is cutting down the running
time, while in still others, it is ease of operation. In many
problems it is a combination of two or more of these fac-
tors. The most important part of the programmer’s job is

placing the emphasis where it belongs. At all times a

reasonable balance between programming time and run-
ning time should be maintained.

26

Part IV is devoted to programming ideas or techniques
that E101 programmers have found helpful. Some save

on programming space, some running time, and others
on memory space. Many of them are merely means of
using certain instructions (or combinations of instruc-
tions) in a way that is not too obvious. Some of the ideas

presented here were “developed” by our staff of Sales

Representatives, Sales Technical Representatives, and
Mathematical Analysts, while others were contributed by
our customers. Although we are thus depriving you of the
fun of discovering them for yourself, we hope they will
save you time, and make your programming job a more
interesting and profitable one.

The various ideas and techniques discussed here tend
to fall into fairly distinct categories:

A. Input-Output Ideas—The ideas in this section are
commonly used in input-output routines.

B. Logical Subroutines—The programming ideas in-
cluded here are called “logical subroutines” since
they accomplish some frequently needed logical
manipulations. For example, although the E101
program language does not include an equality test
as a single instruction, one can be programmed with
two instructions, as described in this section. This
category also includes such topics as split register
storage and counting.

C. Special Information on Basic Instructions—This
section contains ideas on how some of the basic pro-
gramming instructions can be used in important
ways. Because of the nature of the ideas, they are
better introduced here in a separate section rather
than as part of the concise descriptions given in
Parts I and I.

D. Algebraic Manipulations—Some aspects of ordi-
nary manipulation of algebraic expressions are such
that a particular approach is better for computer
programming than any of the other possible ap-
proaches. Some examples of this idea are given in
this section.

A. INPUT-OUTPUT IDEAS

1.Loading a number of amounts into the
memory where the total number is not
divisible by ten

Using the E or F switch, it takes 5 program steps
to load up to 10 amounts into the memory. Using
both E and F, it takes 8 steps to load 20, 30, 40, etc.,
up to 100 amounts into the memory. A normal way
of loading a number of amounts where the number
is not divisible by 10, for example 37, is to break the
problem into two parts: loading the first 30
amounts, and then the last 7. This would involve 8

steps for the first part, plus 5 for the second, making

a total of 13 program steps. The same problem can
be programmed in just 9 steps by loading the 7

amounts first and then the 30 amounts, leaving the
blank memory locations at the beginning instead of
at the end. The two routines are shown below for
comparison.

1 2
37 Amounts in 37 Amounts in

Memory Locations Memory Locations
00 to 36 03 to 39

0-H 0 0 0 Et 020
al st 1 0 ir tt 3

De KK 2 aks

3: WOE FE 3 OW ESE
AS. 19 42 25°19
» 2 U20.2 DS 0-0-2
62 8.02 6. H=1-0

—7 .U 04 le S033
S.-H 120 8 U2 02

poo 4k

10° 2We3'
Lis 16

—I2 U0O9

Another way of loading a number of amounts
where the number is not divisible by ten is to store
the numbers in a rectangular array. This approach
works whenever the number of amounts being
stored is a number that is not a prime (divisible only
by itself) and can be factored into two parts both
less than 10. If there are 59 amounts, for instance,
this approach cannot be used since 59 is a prime
number. If there are 68 amounts, the approach still
cannot be used, for even though 68 is divisible by 4,
the other factor, 17 (4 x 17 = 68), is larger than
10. An example of a situation where the approach
can be used is in loading 45 amounts (5 x 9 = 45.)
By loading the amounts in 5 rows of 9 each or 9

rows of 5 each, the routine can be programmed in
just 8 steps.

Although the discussion here has dealt with mem-
ory loading, the same basic procedures can be used
in clearing, printing, and performing arithmetic op-
erations: any approach which will load numbers
into the memory for you, will allow you to compute
with those numbers, read them out, etc.

2.Entering an_ indefinite number of
amounts through the keyboard

Some problems call for an indefinite number of
amounts to be entered through the keyboard, each
one used immediately in computation rather than
being stored. An example would be the evaluation
of the polynomial x? — 2x? + 14x where x might be
assigned any number of values. The usual way of
programming such a problem is to form an iterative
loop starting with “K,” followed by the steps in-
volved in the computation, and ending with a “U”

27

that sends the E101 back to the “K” instruction.
This type of loop works very nicely until the oper-
ator reaches the point where there are no more key-
board entries. Since the “U” instruction at the end
of the routine always sends the E101 back to the
“K” instruction, the operator will find the E101
waiting for a keyboard entry, but will have no more
data to enter. The way to get out of the loop and into
the next part of the program is to touch the CLEAR
button. This turns off the KEYBOARD light and
lights the HALT signal. With the E101 in the
HALT condition, the operator can touch the proper
START button which will take the E101 to the
beginning of the pinboard where the rest of the
problem is programmed.

3. Replacing the contents of each memory
location with the contents of the succeed-
ing memory location

Some problems require replacing the contents of
each memory location with the contents of the suc-
ceeding memory location. Using row 5 as an ex-
ample, the program for this operation is as follows:

0O|H 1 O| HomeF to zero
HomeE to one
Read contents of SE.
Write into preceding memory location.
Step E andF together until E passes 9.

Transfer back to read next memory
location.

WNBWN

eK

C“Y¢rr ONWUMNO

B. LOGICAL SUBROUTINES

The ideas included in this section are as follows:

1. Counting using the “C” instruction
2. Counting using the “S” instructions
3. Split register storage
4. Split register storage used in conjunction with X

and Y keys for random access

5. Equality test

1. Counting using the “C” instruction
The “C” instruction is frequently used to keep

count of the number of operations performed. To
illustrate, assume that the instructions in pinboard |
are to be performed 75 times. The numbers 0, 1,

and 75 are stored in three memory locations (as-
sume in this case locations 97, 98 and 99, respec-
tively). Each time the counting routine is repeated,
the “1” in memory location 98 is added to the num-
ber in 97 and the total written back into 97. Then
the 75 stored in memory location 99 is subtracted
from the total. The next instruction is a “C.” If the
answer is negative, indicating the routine has not,
been performed 75 times as yet, the C 1 0 sends the
E101 back to pinboard 1 to repeat the routine. If

the answer is positive (or zero) indicating that the
routine has been performed the required number of
times, the “C” instruction goes on to the next step

in the problem, where operation is continued.
The program steps required for the “count and

compare” operation are as follows:

Pinboard Step

1 Oneness ee

15 «U0; 22.0

Z Oe Suc,

1 +98
2 Woy
3°

C10

Another way of programming this problem, start-
ing with 74 in 97 and 1 in 98, is as follows:

Pinboard Step

1 ‘nes ee

15) 0 270
2, O24. Reo

15-798
23 We9 aT

Bute CAs
eA Ueto

5)

In the above case the answer is always positive
until the routine has been performed 75 times. Each
time the E101 reaches the “‘C”’ instruction, it auto-
matically goes on to the next instruction in the pro-
gram, U 1 0, which transfers back to repeat the rou-
tine. After the 75th performance, when the answer
becomes negative, the E101 transfers to step 5 in
pinboard 2. Other variations include starting with
a negative number in 97 and adding “1” to it until
the total, which starts negative, passes through zero
and becomes positive.

2. Counting using the ’S” instruction

Many programmers use the “S 0 b” and “S 1 b”
instructions exclusively for address modification.
While this is their main function, they can also be

used for counting. Since both E and F switches are

16-position counters, either switch can be used to
count up to 16, or together they can be used to count
up to 256.

In the following examples, a given routine is to
be performed the number of times indicated:

28

65 Times 110 Times 96 Times 256 Times

HO 0. | m0 Ho 0
—-H1 1 peH1 1 -pH1 1 pH! O

Routine Routine Routine Routine
to be to be to be to be

repeated repeated repeated repeated

» f 15 Silt S 12 Si 15

U0 32 U0 2 WO 2 U0 2

so 5 S 0 10 SO 8 S 0 15

yo 1 Huo 1uvu0 1 tuo 1

Notice in the first three examples, where we start
with “H 0 1” and “H 1 1,” that the total number of
times the routine is to be performed is equal to m
x n where m = the upper limit of the E switch and

n = the upper limit of the F switch. (For example,
65°—») X 13:5)

When programming for the 220-word memory
E101, the band switch can also be used for counting.
When used in conjunction with the E and F switch-
es, the three switches can count up to 4 x 256,
or 1024.

3. Split register storage

It is sometimes desirable to use split register stor-
age—i.e., to store two or more items in each mem-
ory location. One reason for using split register stor-
age is to keep related information such as code num-
ber and quantity together. The four digit positions
on the right might be used for code number and the

other eight digit positions for quantity. Another im-
portant reason for using split register storage is to
increase the capacity of the memory. A table of 180

6-digit rates or 270 4-digit rates can be stored in 90
memory locations. The only restriction is that all
items stored in one location be of the same sign. This
does not hold true if the quantities are always of
opposite sign or if only one item has a sign and

others (such as code number) are neither positive
or negative. Another way of keeping track of the
sign is to code it in as part of the number—“0O,””’ for
example, standing for “plus” and “1” for “minus.”

When more than one number is stored in a mem-
ory location, the programmer extracts the number
he wants by using shift instructions. To illustrate,
consider the case where 3 4-digit rates are stored in
location 99. Assuming rate 1 is the one on the left,
rate 2 is the one in the center, and rate 3 is the one

on the right, the programmer would call for them
in the program as follows:

99 | 111122223333|
Rate 1 Rate 2 Rate 3
R99 Ro 9:9 Reo.9
Ac. 8 Al14 Aol8

A 2-8 As28

In each case the rate selected would appear all the
way to the right of the accumulator, with zeros in
the other 8 digit positions. The original 12-digit
number would remain in the memory unchanged.

4. Split register storage used in conjunction
with X and Y keys for random access.

The X and Y keys on the left side of the key-
board are frequently used when random access is
made to the memory. The programmer refers to
memory location X Y in the program and has the
operator depress the proper X and Y keys when
running the problem.

When split register storage is used in conjunction
with random access, the programmer must make
provision for selecting not only the proper memory
location but also the proper part of the memory lo-
cation in which the particular number he wants is
stored. He might well be faced with a problem in-
volving 90 memory locations, each storing 3 4-digit
rates. One solution to this problem is to enter a digit
into the keyboard which designates the position of
the rate: (‘‘1” for left, “2” for center; and “3” for
right) at the time the X and Y keys designating the
proper memory location are depressed. Then, by
using the “C” instruction combined with a few sub-
traction instructions, the proper rate can be selected.

To use this approach, a “2” and a “1” are stored
in memory locations 99 and 98 respectively. The
first instruction in the routine is a “K” instruction,
at which point the operator depresses the proper
X and Y keys and enters a 1, 2, or 3 into the key-
board depending on whether he wants rate 1 (on the
left), rate 2 (in the center), or rate 3 (on the right).
The next instruction is —99. It subtracts the “2”
stored in 99 from the 1, 2, or 3 just entered through
the keyboard. The answer will be positive if a 2 or 3

was entered but negative if a 1 (indicating the rate
at the left) was entered. This enables the program-
mer to extract rate 1 by means of a “C” instruction.
In order to extract rate 2 or 3, there might be an-
other subtraction instruction, —98, followed by an-
other “C” instruction. The program for this routine
is as follows:

0 |-K Set X and Y. Entera 1; 2 or 3

for tates “12% °2-”-or, “3” re-
spectively.

If rate 1, acc. will be neg.(12 —1)
If rates 2 or 3, acc. will be pos.

(2—2=0, 3—2=1)
2! C 0111 Transfer to step 11 if rate 1.

Continue with next step if rates
2 or 3

29

3 — 9 8 If rate 2, acc. will be neg.
(C7 1s)

If rate 3, acc. will still be pos.
(1—1=0)

4 |C 0 8 _ Transfer to step 8 if rate 2.
Continue with next step if rate 3

5; RxXY Rate 3—Shift to left; transfer to
6;Al 8 step 12Tela 20; t2

8) RX -Y)1 pate 2—shitt to left; transfer toOAL 4
iiveus
Tio LY, Rate 1—Already at left; con-

tinue with step 12
12 | A 2 8 Shift all the way to right, leaving
1S een eee zeros in the other 8 digit posi-

tions.

5. Equality Test
This is a simple routine for determining whether

two numbers are equal. It is based on the fact that
the E101 always considers zero as positive when
making a conditional transfer. The equality test con-
sists of three instructions: the first step subtracts one
of the two numbers from the other (the order is un-
important); the second instruction is “A 4” which
makes the difference negative; the third instruction
is a “C.” If the difference between the two numbers
is anything but zero, it will be negative as a result of
the A4 instruction and will cause the E101 to trans-
fer to another part of the problem. If the difference
between the two numbers is zero, indicating they are
equal, the E101 will not transfer on the “C” instruc-
tion but will go on to the next instruction in the
program.

This technique of using A 4 and C to distinguish
between zero and non-zero numbers in the accumu-
lator could have been employed in the coded extrac-
tion routine above. Instruction 3 could have been
A4, thus saving memory location 98.

C. SPECIAL INFORMATION ON BASIC IN-
STRUCTIONS

The ideas included in this section are as follows:

1. Use of last instruction on pinboard to go back to
beginning of pinboard.

2. Iterating within a pinboard where possible.
3. Uses of X and Y other than address modification.
4. Subroutine exit.
5. Setting one switch from the other.

1. Use of last instruction on pinboard to go
back to beginning of pinboard

The usual way of going from one pinboard to
another is to have the last step on each pinboard a

the answer is positive (or zero) indicating that the
routine has been performed the required number of
times, the “C” instruction goes on to the next step

in the problem, where operation is continued.
The program steps required for the “count and

compare” operation are as follows:

Pinboard Step

1 Oneness ee

15 «U0; 22.0

Z Oe Suc,

1 +98
2 Woy
3°

C10

Another way of programming this problem, start-
ing with 74 in 97 and 1 in 98, is as follows:

Pinboard Step

1 ‘nes ee

15) 0 270
2, O24. Reo

15-798
23 We9 aT

Bute CAs
eA Ueto

5)

In the above case the answer is always positive
until the routine has been performed 75 times. Each
time the E101 reaches the “‘C”’ instruction, it auto-
matically goes on to the next instruction in the pro-
gram, U 1 0, which transfers back to repeat the rou-
tine. After the 75th performance, when the answer
becomes negative, the E101 transfers to step 5 in
pinboard 2. Other variations include starting with
a negative number in 97 and adding “1” to it until
the total, which starts negative, passes through zero
and becomes positive.

2. Counting using the ’S” instruction

Many programmers use the “S 0 b” and “S 1 b”
instructions exclusively for address modification.
While this is their main function, they can also be

used for counting. Since both E and F switches are

16-position counters, either switch can be used to
count up to 16, or together they can be used to count
up to 256.

In the following examples, a given routine is to
be performed the number of times indicated:

28

65 Times 110 Times 96 Times 256 Times

HO 0. | m0 Ho 0
—-H1 1 peH1 1 -pH1 1 pH! O

Routine Routine Routine Routine
to be to be to be to be

repeated repeated repeated repeated

» f 15 Silt S 12 Si 15

U0 32 U0 2 WO 2 U0 2

so 5 S 0 10 SO 8 S 0 15

yo 1 Huo 1uvu0 1 tuo 1

Notice in the first three examples, where we start
with “H 0 1” and “H 1 1,” that the total number of
times the routine is to be performed is equal to m
x n where m = the upper limit of the E switch and

n = the upper limit of the F switch. (For example,
65°—») X 13:5)

When programming for the 220-word memory
E101, the band switch can also be used for counting.
When used in conjunction with the E and F switch-
es, the three switches can count up to 4 x 256,
or 1024.

3. Split register storage

It is sometimes desirable to use split register stor-
age—i.e., to store two or more items in each mem-
ory location. One reason for using split register stor-
age is to keep related information such as code num-
ber and quantity together. The four digit positions
on the right might be used for code number and the

other eight digit positions for quantity. Another im-
portant reason for using split register storage is to
increase the capacity of the memory. A table of 180

6-digit rates or 270 4-digit rates can be stored in 90
memory locations. The only restriction is that all
items stored in one location be of the same sign. This
does not hold true if the quantities are always of
opposite sign or if only one item has a sign and

others (such as code number) are neither positive
or negative. Another way of keeping track of the
sign is to code it in as part of the number—“0O,””’ for
example, standing for “plus” and “1” for “minus.”

When more than one number is stored in a mem-
ory location, the programmer extracts the number
he wants by using shift instructions. To illustrate,
consider the case where 3 4-digit rates are stored in
location 99. Assuming rate 1 is the one on the left,
rate 2 is the one in the center, and rate 3 is the one

on the right, the programmer would call for them
in the program as follows:

99 | 111122223333|
Rate 1 Rate 2 Rate 3
R99 Ro 9:9 Reo.9
Ac. 8 Al14 Aol8

A 2-8 As28

In each case the rate selected would appear all the
way to the right of the accumulator, with zeros in
the other 8 digit positions. The original 12-digit
number would remain in the memory unchanged.

4. Split register storage used in conjunction
with X and Y keys for random access.

The X and Y keys on the left side of the key-
board are frequently used when random access is
made to the memory. The programmer refers to
memory location X Y in the program and has the
operator depress the proper X and Y keys when
running the problem.

When split register storage is used in conjunction
with random access, the programmer must make
provision for selecting not only the proper memory
location but also the proper part of the memory lo-
cation in which the particular number he wants is
stored. He might well be faced with a problem in-
volving 90 memory locations, each storing 3 4-digit
rates. One solution to this problem is to enter a digit
into the keyboard which designates the position of
the rate: (‘‘1” for left, “2” for center; and “3” for
right) at the time the X and Y keys designating the
proper memory location are depressed. Then, by
using the “C” instruction combined with a few sub-
traction instructions, the proper rate can be selected.

To use this approach, a “2” and a “1” are stored
in memory locations 99 and 98 respectively. The
first instruction in the routine is a “K” instruction,
at which point the operator depresses the proper
X and Y keys and enters a 1, 2, or 3 into the key-
board depending on whether he wants rate 1 (on the
left), rate 2 (in the center), or rate 3 (on the right).
The next instruction is —99. It subtracts the “2”
stored in 99 from the 1, 2, or 3 just entered through
the keyboard. The answer will be positive if a 2 or 3

was entered but negative if a 1 (indicating the rate
at the left) was entered. This enables the program-
mer to extract rate 1 by means of a “C” instruction.
In order to extract rate 2 or 3, there might be an-
other subtraction instruction, —98, followed by an-
other “C” instruction. The program for this routine
is as follows:

0 |-K Set X and Y. Entera 1; 2 or 3

for tates “12% °2-”-or, “3” re-
spectively.

If rate 1, acc. will be neg.(12 —1)
If rates 2 or 3, acc. will be pos.

(2—2=0, 3—2=1)
2! C 0111 Transfer to step 11 if rate 1.

Continue with next step if rates
2 or 3

29

3 — 9 8 If rate 2, acc. will be neg.
(C7 1s)

If rate 3, acc. will still be pos.
(1—1=0)

4 |C 0 8 _ Transfer to step 8 if rate 2.
Continue with next step if rate 3

5; RxXY Rate 3—Shift to left; transfer to
6;Al 8 step 12Tela 20; t2

8) RX -Y)1 pate 2—shitt to left; transfer toOAL 4
iiveus
Tio LY, Rate 1—Already at left; con-

tinue with step 12
12 | A 2 8 Shift all the way to right, leaving
1S een eee zeros in the other 8 digit posi-

tions.

5. Equality Test
This is a simple routine for determining whether

two numbers are equal. It is based on the fact that
the E101 always considers zero as positive when
making a conditional transfer. The equality test con-
sists of three instructions: the first step subtracts one
of the two numbers from the other (the order is un-
important); the second instruction is “A 4” which
makes the difference negative; the third instruction
is a “C.” If the difference between the two numbers
is anything but zero, it will be negative as a result of
the A4 instruction and will cause the E101 to trans-
fer to another part of the problem. If the difference
between the two numbers is zero, indicating they are
equal, the E101 will not transfer on the “C” instruc-
tion but will go on to the next instruction in the
program.

This technique of using A 4 and C to distinguish
between zero and non-zero numbers in the accumu-
lator could have been employed in the coded extrac-
tion routine above. Instruction 3 could have been
A4, thus saving memory location 98.

C. SPECIAL INFORMATION ON BASIC IN-
STRUCTIONS

The ideas included in this section are as follows:

1. Use of last instruction on pinboard to go back to
beginning of pinboard.

2. Iterating within a pinboard where possible.
3. Uses of X and Y other than address modification.
4. Subroutine exit.
5. Setting one switch from the other.

1. Use of last instruction on pinboard to go
back to beginning of pinboard

The usual way of going from one pinboard to
another is to have the last step on each pinboard a

“U” instruction. If step 15 is the last step used and
is not a transfer instruction, the E101 automatically
goes back to the beginning of the same pinboard for
its next instruction. This is because each pinboard
is scanned by a stepping switch. The position after
15 is 0, just as it is on the E and F switches.

There are times when this can be used to advan-
tage. For example, in a successive approximation
routine to obtain the square root of a number, one of
the available programs uses exactly 16 steps, filling
one complete pinboard. The last step on the pin-
board is a “C” instruction. If the approximation to
the square root is sufficiently close at that point, the
number in the accumulator is negative, and the
C _ _ is pinned to go to another pinboard. If, how-

ever, (as is usually the case in the first few itera-
tions) the approximation is not sufficiently close,
the number in the accumulator is positive, and the
E101 goes directly from the “C” instruction pinned
in step 15 to the next instruction, step 0, of the same

pinboard for another iteration, which will bring the
approximation closer to the actual square root.

2.Iterating within a pinboard where pos-
sible

Generally, it takes less time to transfer to a step

in the same pinboard than to a step in a different
pinboard. When the transfer is to the next adjacent
pinboard, the time involved is slight. The slowest
transfer is from a given pinboard to the one preced-
ing it. For example, to transfer from pinboard 4 to
pinboard 3, the machine’s pinboard control stepping
switch must step from position 4 to 5 to 6 to 7 to 8

to 1 to 2, and then to 3. If a transfer such as this oc-
curs only a few times in a problem, the time involved
is negligible.

If, however, it is part of an iterative routine that
is repeated many times in the course of a problem,
the milliseconds can add up to valuable minutes.
For example, consider a 13-step iterative loop start-
ing in pinboard 5 and ending in pinboard 6, that is

repeated ninety or more times. The transfer from
pinboard5 to pinboard 6 takes little time, but each

time the iteration is repeated, it is necessary to
return from pinboard 6 to pinboard 5’for the next
iteration. This involves stepping the pinboard con-
trol switch from position 6 to 7, 8, 1, 2, 3, 4, and
finally to 5—not just once or twice, but ninety or
more times. Since there are only 13 steps in the iter-
ation, it would be better in this case to include all 13

steps in a single pinboard, cutting out unnecessary
transfers to other pinboards and reducing running
time. There are many problems like this one where

running time on the E101 can be substantially re-
duced with a little forethought in programming.

30

3. Uses of X and Y other than address modi-
fication

Although the X and Y keys are generally used for
manual address modification, either as a supplement
to Eand F, or as a means of random access, they are
not limited to this function. X may be pinned in the
second area of the pinboard andY in the third area
in any instruction. Some specific cases where they
have been used to advantage are as follows:
a. Dispatching—U X Y—Using X and Y to denote

pinboard and step number, respectively, in a
transfer instruction, thus allowing the transfer to
be made to any step (between 0 and 9) on any
pinboard by depressing the proper X and Y keys.

b. Shifting—A X 4, A 2 Y, etc.—Pinning X instead
of “1” for left or “2” for right enabling the oper-
ator to select direction of shift (helpful when used
with split register storage). Also, programming
Y instead of a specific number of places to be
shifted (helpful when scaling a problem with
numbers that vary in size over a wide range).

c. Printing—P X _, P 3 Y, etc.—Using X to desig-
nate motor bar number, allowing operator to ex-
ercise a greater control over format. Setting Y =
0 allows operator to suppress printing.

d. Changing Limit of “S” Instructions—S O Y, etc.
—Pinning Y instead of a definite limit in any S

instruction when working with an indefinite or
variable number of amounts.
In addition to the above examples, X has also

been used in special cases in the second area of “‘S”
and ‘“‘H” instructions.

4. Subroutine Exit
66,99The instruction, “U a *,” where “a” is any num-

ber from | to 8, sends the E101 to the step on pin-
board “a” immediately following the last step per-
formed on that pinboard. For example, if the E101
transfers from pinboard 3, step 6, to a subroutine in
pinboard 5 where the last step is U 3 *, at the end of
the subroutine the E101 will return to pinboard 3

and go on with step 7.
This technique works because of the nature of

pinboard scanning: recall that each pinboard is
scanned by its own stepping switch. The execution
of an instruction in a pinboard automatically steps
that pinboard switch to the following instruction.
(This is true even if the instruction executed is a
transfer to some other pinboard.) Thus, each of the
8 pinboard switches is always set at the step follow-
ing the step last executed in that pinboard. Pinning
a “*” in the third area of a transfer instruction sim-
ply uses the present setting of the pinboard switch
selected in the second area.

By modifying this instruction somewhat, making

it “U E *,” greater flexibility can be obtained. It is
very useful where, after transferring to a given sub-
routine from several different pinboards in a prob-
lem, one must return in each case to the pinboard
from which the transfer was made. Before leaving
each pinboard to go into the subroutine, the E
switch is set to agree with the number of that partic-
ular pinboard (e.g., in pinboard 3, H 0 3). The last
step in the subroutine is “UE *,” returning the
E101 to the step following the last step executed on
pinboard “E,” where E was set to designate the pin-
board from which the last transfer was made.

5. Setting one switch from the other

There are times when it is helpful to set one switch
to the setting of the other using the instruction “H
1 E” or “H 0 F.” One place where “H 1 E” can be
used to advantage is in developing a triangular ma-
trix of squares and cross-products with the squares
along the diagonal. Assuming there are nine vari-
ables designated as Xo, %1,..... Xg stored in mem-
ory locations 00 to 08 respectively, their squares
and cross-products can be computed and stored in
the following array with the use of the “H 1 E”
instruction:

0 2. 38. 4s 6? oo

Ae x, xX, x, x, xX, xX x, x,

x2 XX, XX, Aut,

x3 xX, XX,

x3 xyw4 x rad8

X2 |X,X, ae
x2 XX, XX:

XG XX, XX,
€- XWX,

x

0. HAL 0
fe 07

By homing F to Eat the beginning[~2 BR 0 F
of each row, each cross-product is ee og

; x70 FE
developed only once, thus saving 5 WEF
both running time and memory ye
space. The program for this rou-|L7 y 0 4

tine shown at the right. oS Het B
92.5 09

102 U-0 2

31

In this particular problem it works out well to
store the matrix in upper right triangular form. In
some problems it is more convenient to store the
matrix in upper left triangular form or lower left
triangular form.

D. ALGEBRAIC MANIPULATIONS
The ideas included in this section are as follows:

1. Polynomial evaluation.
2. Forced iteration.
3. Programming a problem in linear fashion to save

running time.
4. Multi-purpose subroutine.
5. Angle reduction.
6. Matrix structure.

1. Polynomial evaluation
There is a special type of factoring used in evalu-

ating polynomials that is considered almost stand-
ard with electronic digital computers. Sometimes
referred to as “synthetic division,” it permits the
computer to evaluate the polynomial in a minimum
of program steps consisting of successive multipli-
cations and additions.

To illustrate, consider the series approximation
fore:

x? x3 x4 x? xe Bell x8
e=ltxet+ 2 t+E4+—45454+ —424----

2) Ole 4, Ot 6! ie 8

When carried out to the 9th term, this problem can
be programmed for the E101 in only 10 program
steps provided the special type of factoring is used.

The first step is to multiply the coefficient of the
highest power of x by x:

1
—
8!

Then the coefficient of the second highest power of
x is added and the sum again multiplied by x:

I Ly. 3
rTP ec

Next, the coefficient of the third highest power of x
is added and the sum again multiplied by x:

ai aes ts

Hos “My eae
The process is continued, each time adding the co-
efficient of the next power of x and multiplying the
sum by x. At the end of the iteration, the polynomial
is in the form:

x? a x3 res as x? xs ba x8

ee
The only remaining step is to add “one.”

“U” instruction. If step 15 is the last step used and
is not a transfer instruction, the E101 automatically
goes back to the beginning of the same pinboard for
its next instruction. This is because each pinboard
is scanned by a stepping switch. The position after
15 is 0, just as it is on the E and F switches.

There are times when this can be used to advan-
tage. For example, in a successive approximation
routine to obtain the square root of a number, one of
the available programs uses exactly 16 steps, filling
one complete pinboard. The last step on the pin-
board is a “C” instruction. If the approximation to
the square root is sufficiently close at that point, the
number in the accumulator is negative, and the
C _ _ is pinned to go to another pinboard. If, how-

ever, (as is usually the case in the first few itera-
tions) the approximation is not sufficiently close,
the number in the accumulator is positive, and the
E101 goes directly from the “C” instruction pinned
in step 15 to the next instruction, step 0, of the same

pinboard for another iteration, which will bring the
approximation closer to the actual square root.

2.Iterating within a pinboard where pos-
sible

Generally, it takes less time to transfer to a step

in the same pinboard than to a step in a different
pinboard. When the transfer is to the next adjacent
pinboard, the time involved is slight. The slowest
transfer is from a given pinboard to the one preced-
ing it. For example, to transfer from pinboard 4 to
pinboard 3, the machine’s pinboard control stepping
switch must step from position 4 to 5 to 6 to 7 to 8

to 1 to 2, and then to 3. If a transfer such as this oc-
curs only a few times in a problem, the time involved
is negligible.

If, however, it is part of an iterative routine that
is repeated many times in the course of a problem,
the milliseconds can add up to valuable minutes.
For example, consider a 13-step iterative loop start-
ing in pinboard 5 and ending in pinboard 6, that is

repeated ninety or more times. The transfer from
pinboard5 to pinboard 6 takes little time, but each

time the iteration is repeated, it is necessary to
return from pinboard 6 to pinboard 5’for the next
iteration. This involves stepping the pinboard con-
trol switch from position 6 to 7, 8, 1, 2, 3, 4, and
finally to 5—not just once or twice, but ninety or
more times. Since there are only 13 steps in the iter-
ation, it would be better in this case to include all 13

steps in a single pinboard, cutting out unnecessary
transfers to other pinboards and reducing running
time. There are many problems like this one where

running time on the E101 can be substantially re-
duced with a little forethought in programming.

30

3. Uses of X and Y other than address modi-
fication

Although the X and Y keys are generally used for
manual address modification, either as a supplement
to Eand F, or as a means of random access, they are
not limited to this function. X may be pinned in the
second area of the pinboard andY in the third area
in any instruction. Some specific cases where they
have been used to advantage are as follows:
a. Dispatching—U X Y—Using X and Y to denote

pinboard and step number, respectively, in a
transfer instruction, thus allowing the transfer to
be made to any step (between 0 and 9) on any
pinboard by depressing the proper X and Y keys.

b. Shifting—A X 4, A 2 Y, etc.—Pinning X instead
of “1” for left or “2” for right enabling the oper-
ator to select direction of shift (helpful when used
with split register storage). Also, programming
Y instead of a specific number of places to be
shifted (helpful when scaling a problem with
numbers that vary in size over a wide range).

c. Printing—P X _, P 3 Y, etc.—Using X to desig-
nate motor bar number, allowing operator to ex-
ercise a greater control over format. Setting Y =
0 allows operator to suppress printing.

d. Changing Limit of “S” Instructions—S O Y, etc.
—Pinning Y instead of a definite limit in any S

instruction when working with an indefinite or
variable number of amounts.
In addition to the above examples, X has also

been used in special cases in the second area of “‘S”
and ‘“‘H” instructions.

4. Subroutine Exit
66,99The instruction, “U a *,” where “a” is any num-

ber from | to 8, sends the E101 to the step on pin-
board “a” immediately following the last step per-
formed on that pinboard. For example, if the E101
transfers from pinboard 3, step 6, to a subroutine in
pinboard 5 where the last step is U 3 *, at the end of
the subroutine the E101 will return to pinboard 3

and go on with step 7.
This technique works because of the nature of

pinboard scanning: recall that each pinboard is
scanned by its own stepping switch. The execution
of an instruction in a pinboard automatically steps
that pinboard switch to the following instruction.
(This is true even if the instruction executed is a
transfer to some other pinboard.) Thus, each of the
8 pinboard switches is always set at the step follow-
ing the step last executed in that pinboard. Pinning
a “*” in the third area of a transfer instruction sim-
ply uses the present setting of the pinboard switch
selected in the second area.

By modifying this instruction somewhat, making

it “U E *,” greater flexibility can be obtained. It is
very useful where, after transferring to a given sub-
routine from several different pinboards in a prob-
lem, one must return in each case to the pinboard
from which the transfer was made. Before leaving
each pinboard to go into the subroutine, the E
switch is set to agree with the number of that partic-
ular pinboard (e.g., in pinboard 3, H 0 3). The last
step in the subroutine is “UE *,” returning the
E101 to the step following the last step executed on
pinboard “E,” where E was set to designate the pin-
board from which the last transfer was made.

5. Setting one switch from the other

There are times when it is helpful to set one switch
to the setting of the other using the instruction “H
1 E” or “H 0 F.” One place where “H 1 E” can be
used to advantage is in developing a triangular ma-
trix of squares and cross-products with the squares
along the diagonal. Assuming there are nine vari-
ables designated as Xo, %1,..... Xg stored in mem-
ory locations 00 to 08 respectively, their squares
and cross-products can be computed and stored in
the following array with the use of the “H 1 E”
instruction:

0 2. 38. 4s 6? oo

Ae x, xX, x, x, xX, xX x, x,

x2 XX, XX, Aut,

x3 xX, XX,

x3 xyw4 x rad8

X2 |X,X, ae
x2 XX, XX:

XG XX, XX,
€- XWX,

x

0. HAL 0
fe 07

By homing F to Eat the beginning[~2 BR 0 F
of each row, each cross-product is ee og

; x70 FE
developed only once, thus saving 5 WEF
both running time and memory ye
space. The program for this rou-|L7 y 0 4

tine shown at the right. oS Het B
92.5 09

102 U-0 2

31

In this particular problem it works out well to
store the matrix in upper right triangular form. In
some problems it is more convenient to store the
matrix in upper left triangular form or lower left
triangular form.

D. ALGEBRAIC MANIPULATIONS
The ideas included in this section are as follows:

1. Polynomial evaluation.
2. Forced iteration.
3. Programming a problem in linear fashion to save

running time.
4. Multi-purpose subroutine.
5. Angle reduction.
6. Matrix structure.

1. Polynomial evaluation
There is a special type of factoring used in evalu-

ating polynomials that is considered almost stand-
ard with electronic digital computers. Sometimes
referred to as “synthetic division,” it permits the
computer to evaluate the polynomial in a minimum
of program steps consisting of successive multipli-
cations and additions.

To illustrate, consider the series approximation
fore:

x? x3 x4 x? xe Bell x8
e=ltxet+ 2 t+E4+—45454+ —424----

2) Ole 4, Ot 6! ie 8

When carried out to the 9th term, this problem can
be programmed for the E101 in only 10 program
steps provided the special type of factoring is used.

The first step is to multiply the coefficient of the
highest power of x by x:

1
—
8!

Then the coefficient of the second highest power of
x is added and the sum again multiplied by x:

I Ly. 3
rTP ec

Next, the coefficient of the third highest power of x
is added and the sum again multiplied by x:

ai aes ts

Hos “My eae
The process is continued, each time adding the co-
efficient of the next power of x and multiplying the
sum by x. At the end of the iteration, the polynomial
is in the form:

x? a x3 res as x? xs ba x8

ee
The only remaining step is to add “one.”

The same basic approach is used to evaluate a

polynomial such as the truncated series approxima-
tion for cosine x:

x? xt xs x8

CBS AT op
Instead of multiplying by x each time, x? is used.

2. Forced Iteration
In most cases it is rather obvious when to iterate

in a problem. For instance, no programmer would
consider stretching out in linear fashion the pro-
gram for loading 60 amounts into the memory. By
a simple iterative process the loading can be pro-
grammed in just 8 steps while the same operation
in a non-iterative, linear fashion requires 120 steps
(not counting transfers between pinboards).

Sometimes the situation is not so obvious. At
times a problem with seemingly no apparent pat-
tern of repitition can be forced into iterative form to
save program steps. One problem where a complete
pinboard was saved by using this technique con-
tained the following summations.

yy AY

> y2 Ae

Sy Aw

meee3 Ax

> x2 y Ax

For each set of entry values of x, y,and Ax, yAx
was stored and computed in the B register. x, y, x y,
y” and x? were stored in memory locations 00 to 04
respectively. By setting up an iterative loop multi-
plying the contents of 0 F by the contents of the
B register, summing and storing in 9 F, the summa-
tions were obtained in only a few program steps.
After all values of x, y, and A x had been entered,
another iterative loop multiplied the contents of 9 F
(the summations) by the corresponding coeffi-

1]
22

13 and 14 respectively. In this particular case the
complete problem (of which this-is only a small
part) was programmed in 8 pinboards. This would
not have been possible without forced iteration.

1

cients: 1, eee and l-stored in: 10; 1, 12,

3. Programming in a linear fashion to save
running time

Sometimes the opposite approach is called for—
programming a repetitive type problem in linear
fashion instead of iterating. This approach saves

32

running time since there are fewer operations for
the E101 to perform even though there are more
program steps. The cosine routine when pro-
grammed in an iterative loop uses 12 steps and takes
4 seconds while the same routine in linear fashion
uses 18 steps but takes less than 3 seconds running
time. Sometimes it pays to compromise—iterate
part of a routine but not all of it. For example, in
clearing the entire memory, there are three basic
ways of programming the problem: stretching out
the entire routine linearly without using either
switch, stretching out part of the routine using one
of the two switches, and iterating the entire routine
using both the E and F switches. The first approach
requires 200 steps and can hardly be considered
seriously. The second approach uses 15 program
steps and takes about 8 or 9 seconds of running time.
The third approach, presented in Part II as the
standard one, uses only 9 steps but takes about 80
seconds on the E101. The last two routines appear
below for comparison.

Clearing Clearing
Semi-iterative Iterative

15 Steps, 8 or 9 Seconds 9 Steps, Approx. 80 Secs.

0: GR+9 9 0-9 9
Le 9: 9 i 929
22 1.0 2-2 0 0

—3 WOF a a 10
4 WI1F 4 WEF
5°. W:.2°F [: Sal-9
62 WwW. 3-F 62-0 04
7 W4F 1°: 8-0 9
8> WwW 5 F 8-=-U.0°3
9. W.6F

10, Woe
ll WS8F
123 Wo
13.2.8: 1.9

—14 U0 3

4. Multi-purpose subroutine
Since many mathematical routines are based on

approximating polynomials, it is fairly easy to in-
corporate the programs for several of these routines
into one multi-purpose subroutine. Since the co-
efficients and sometimes the structure of the poly-
nomial itself are likely to differ from one polynomial
to another, both these factors must be taken into
consideration in programming any multi-purpose
subroutine.

The variance in coefficients can be taken care of
by storing the coefficients for each polynomial in a
different row or column of the memory and having
the E101 operate on the appropriate row or
column.

The variance in polynomial structure (i.e., where
one is a polynomial in x, one is a polynomial in x2,

etc.) can be taken care of by usinga forced iteration
technique. The multi-purpose subroutine would ac-
tually be programmed for a polynomial in x with all
terms present: x, x”, x°, x, etc. When used to evalu-
ate a polynomial in x°, zeros would be used as the
coefficients of the missing terms.

An example of a multi-purpose subroutine that
can be used to approximate sine, cosine, arc tangent
and e-“ is given in the Handbook of Subroutines
and Subroutine Methods for the ELECTRODATA
101. In the example given in the subroutine rhanual,
the multi-purpose subroutine is pinned in pinboard
5. In pinboard1 there is a transfer to the subroutine
for a sine approximation; in pinboard 2 there is a

transfer to the subroutine for a cosine approxima-
tion; in pinboard 3 a transfer for an are tangent
approximation; and in pinboard 4 a transfer for an
e—" approximation.

In each case the program calls for returning to
the original pinboard after each subroutine. The
last step in the subroutine therefore is “UE *,”
and the step preceding the transfer instruction in
each of the four pinboards is “H 0 b” where “b” is

the number of the pinboard.
If the coefficients to be used in each approxima-

tion can be stored in a row of the memory whose
number corresponds to the pinboard number from
which the transfer to the pinboard is made, the E
switch can perform a two-fold purpose: it can select
the appropriate coefficients to be used in the sub-
routine, and also select the pinboard to be used in
the subroutine exit instruction “U E *.” The F
switch is then free for iterating within the subrou-
tine. When programmed in this fashion, only 10

steps are required for the subroutine.

5. Angle reduction
In order to arrive at a close approximation to the

sine and cosine of an angle on the E101 in a mini-
mum length of time, the angle must be within a cer-
tain range. The programs given in Handbook of
Subroutines and Subroutine Methods for the ELEC-
TRODATA J0/ limit the range to between

T TvCs and >:

In addition to the standard subroutines, there
are also included in the manual a sine and cosine
subroutine for large angles (up to 100 radians).
The “large angle” routines make use of a quick
method of angle reduction that “reduces” the size

of the angle before determining the sine or cosine.
The procedure is quite simple and requires only a

few more steps than the standard routines: the
angle is first divided by 27 and the integer portion
of the quotient shifted off. Then the sine or cosine
of the remaining decimal portion is determined
using the same basic method as used in the standard

33

routines. Only the constants differ.
The method is based on the trigonometric iden-

tity:
sinA = sin 2x y whereA = 2x N+ 2ry,

where N is an integer.

If 27 y is substituted for A in the sine series

I 1 1

snd=A-> Ae Ae...

3! >! 7
we have:

(27)? cewyt
sin A = (247 y— 31 | »»+ 51 |» -

(2r)'] _
71 ye:

If we leta, = (27)
= (27)?

is oe

(27)°
as = = 5] sel.

thensinA =a,y+a3yit+tasy®tazy' +....

To arrive at y, we divide A by 2z and shift off the
integer portion of the answer:

If A =2aN +27 y,

A
then —- =N+y

Qa

With the integer portion, N, shifted off, the remain-
ing decimal portion is equal to y. Substituting y in
the above sine series, we arrive at the approximation
for sine A. The cosine approximation uses the same
basic approach.
NOTE: In the form in which this routine is given in
Handbook of Subroutines and Subroutine Methods
for the ELECTRODATA J01, the constants a4, ds, etc.

include an expansion factor to improve the accuracy
of the approximation.

6. Matrix structure
In the field of matrix algebra, there are E101 pro-

grams for matrix inversion, solution of simultaneous
equations, computations of eigenvalues, etc. These
programs are written up as separate E101 pam-
phlets and are available from the ELECTRODATA
Division Applied Mathematics Department. It
seems worthwhile calling attention here to how the
E and F switches of the E101 permit a kind of pro-
gramming of matrix calculations that more natural-
ly follows the mathematical character of matrix
algebra than one generally finds in other computers.

For example, consider the simple problem where
an N X N matrix is multiplied by a column vector.
A common way of formally expressing this opera-
tion is as follows:

The same basic approach is used to evaluate a

polynomial such as the truncated series approxima-
tion for cosine x:

x? xt xs x8

CBS AT op
Instead of multiplying by x each time, x? is used.

2. Forced Iteration
In most cases it is rather obvious when to iterate

in a problem. For instance, no programmer would
consider stretching out in linear fashion the pro-
gram for loading 60 amounts into the memory. By
a simple iterative process the loading can be pro-
grammed in just 8 steps while the same operation
in a non-iterative, linear fashion requires 120 steps
(not counting transfers between pinboards).

Sometimes the situation is not so obvious. At
times a problem with seemingly no apparent pat-
tern of repitition can be forced into iterative form to
save program steps. One problem where a complete
pinboard was saved by using this technique con-
tained the following summations.

yy AY

> y2 Ae

Sy Aw

meee3 Ax

> x2 y Ax

For each set of entry values of x, y,and Ax, yAx
was stored and computed in the B register. x, y, x y,
y” and x? were stored in memory locations 00 to 04
respectively. By setting up an iterative loop multi-
plying the contents of 0 F by the contents of the
B register, summing and storing in 9 F, the summa-
tions were obtained in only a few program steps.
After all values of x, y, and A x had been entered,
another iterative loop multiplied the contents of 9 F
(the summations) by the corresponding coeffi-

1]
22

13 and 14 respectively. In this particular case the
complete problem (of which this-is only a small
part) was programmed in 8 pinboards. This would
not have been possible without forced iteration.

1

cients: 1, eee and l-stored in: 10; 1, 12,

3. Programming in a linear fashion to save
running time

Sometimes the opposite approach is called for—
programming a repetitive type problem in linear
fashion instead of iterating. This approach saves

32

running time since there are fewer operations for
the E101 to perform even though there are more
program steps. The cosine routine when pro-
grammed in an iterative loop uses 12 steps and takes
4 seconds while the same routine in linear fashion
uses 18 steps but takes less than 3 seconds running
time. Sometimes it pays to compromise—iterate
part of a routine but not all of it. For example, in
clearing the entire memory, there are three basic
ways of programming the problem: stretching out
the entire routine linearly without using either
switch, stretching out part of the routine using one
of the two switches, and iterating the entire routine
using both the E and F switches. The first approach
requires 200 steps and can hardly be considered
seriously. The second approach uses 15 program
steps and takes about 8 or 9 seconds of running time.
The third approach, presented in Part II as the
standard one, uses only 9 steps but takes about 80
seconds on the E101. The last two routines appear
below for comparison.

Clearing Clearing
Semi-iterative Iterative

15 Steps, 8 or 9 Seconds 9 Steps, Approx. 80 Secs.

0: GR+9 9 0-9 9
Le 9: 9 i 929
22 1.0 2-2 0 0

—3 WOF a a 10
4 WI1F 4 WEF
5°. W:.2°F [: Sal-9
62 WwW. 3-F 62-0 04
7 W4F 1°: 8-0 9
8> WwW 5 F 8-=-U.0°3
9. W.6F

10, Woe
ll WS8F
123 Wo
13.2.8: 1.9

—14 U0 3

4. Multi-purpose subroutine
Since many mathematical routines are based on

approximating polynomials, it is fairly easy to in-
corporate the programs for several of these routines
into one multi-purpose subroutine. Since the co-
efficients and sometimes the structure of the poly-
nomial itself are likely to differ from one polynomial
to another, both these factors must be taken into
consideration in programming any multi-purpose
subroutine.

The variance in coefficients can be taken care of
by storing the coefficients for each polynomial in a
different row or column of the memory and having
the E101 operate on the appropriate row or
column.

The variance in polynomial structure (i.e., where
one is a polynomial in x, one is a polynomial in x2,

etc.) can be taken care of by usinga forced iteration
technique. The multi-purpose subroutine would ac-
tually be programmed for a polynomial in x with all
terms present: x, x”, x°, x, etc. When used to evalu-
ate a polynomial in x°, zeros would be used as the
coefficients of the missing terms.

An example of a multi-purpose subroutine that
can be used to approximate sine, cosine, arc tangent
and e-“ is given in the Handbook of Subroutines
and Subroutine Methods for the ELECTRODATA
101. In the example given in the subroutine rhanual,
the multi-purpose subroutine is pinned in pinboard
5. In pinboard1 there is a transfer to the subroutine
for a sine approximation; in pinboard 2 there is a

transfer to the subroutine for a cosine approxima-
tion; in pinboard 3 a transfer for an are tangent
approximation; and in pinboard 4 a transfer for an
e—" approximation.

In each case the program calls for returning to
the original pinboard after each subroutine. The
last step in the subroutine therefore is “UE *,”
and the step preceding the transfer instruction in
each of the four pinboards is “H 0 b” where “b” is

the number of the pinboard.
If the coefficients to be used in each approxima-

tion can be stored in a row of the memory whose
number corresponds to the pinboard number from
which the transfer to the pinboard is made, the E
switch can perform a two-fold purpose: it can select
the appropriate coefficients to be used in the sub-
routine, and also select the pinboard to be used in
the subroutine exit instruction “U E *.” The F
switch is then free for iterating within the subrou-
tine. When programmed in this fashion, only 10

steps are required for the subroutine.

5. Angle reduction
In order to arrive at a close approximation to the

sine and cosine of an angle on the E101 in a mini-
mum length of time, the angle must be within a cer-
tain range. The programs given in Handbook of
Subroutines and Subroutine Methods for the ELEC-
TRODATA J0/ limit the range to between

T TvCs and >:

In addition to the standard subroutines, there
are also included in the manual a sine and cosine
subroutine for large angles (up to 100 radians).
The “large angle” routines make use of a quick
method of angle reduction that “reduces” the size

of the angle before determining the sine or cosine.
The procedure is quite simple and requires only a

few more steps than the standard routines: the
angle is first divided by 27 and the integer portion
of the quotient shifted off. Then the sine or cosine
of the remaining decimal portion is determined
using the same basic method as used in the standard

33

routines. Only the constants differ.
The method is based on the trigonometric iden-

tity:
sinA = sin 2x y whereA = 2x N+ 2ry,

where N is an integer.

If 27 y is substituted for A in the sine series

I 1 1

snd=A-> Ae Ae...

3! >! 7
we have:

(27)? cewyt
sin A = (247 y— 31 | »»+ 51 |» -

(2r)'] _
71 ye:

If we leta, = (27)
= (27)?

is oe

(27)°
as = = 5] sel.

thensinA =a,y+a3yit+tasy®tazy' +....

To arrive at y, we divide A by 2z and shift off the
integer portion of the answer:

If A =2aN +27 y,

A
then —- =N+y

Qa

With the integer portion, N, shifted off, the remain-
ing decimal portion is equal to y. Substituting y in
the above sine series, we arrive at the approximation
for sine A. The cosine approximation uses the same
basic approach.
NOTE: In the form in which this routine is given in
Handbook of Subroutines and Subroutine Methods
for the ELECTRODATA J01, the constants a4, ds, etc.

include an expansion factor to improve the accuracy
of the approximation.

6. Matrix structure
In the field of matrix algebra, there are E101 pro-

grams for matrix inversion, solution of simultaneous
equations, computations of eigenvalues, etc. These
programs are written up as separate E101 pam-
phlets and are available from the ELECTRODATA
Division Applied Mathematics Department. It
seems worthwhile calling attention here to how the
E and F switches of the E101 permit a kind of pro-
gramming of matrix calculations that more natural-
ly follows the mathematical character of matrix
algebra than one generally finds in other computers.

For example, consider the simple problem where
an N X N matrix is multiplied by a column vector.
A common way of formally expressing this opera-
tion is as follows:

j=N
P= >) (AyB) §=1,2,-7°N

j=1
where:

P; is the product column vector
A,;is the matrix, and
B; is the multiplier column vector

Essentially the character of the E101 program re-
quires only the substitution of ‘““E” and “F,” repre-
senting the E101 switches, for the subscripts “7

and “7”:

F=Y

a > (Agr’ Bp)
F=1

Assuming that B is stored in row zero of the
memory and that each element of the matrix is
stored in the memory location corresponding to its
subscript (for example, As; in location 35), the
problem can be programmed as follows:

34

G ttt 0 4 HomeE to 1
re—1]/H11 HomeF to 1

241 ke. oO

So) oe 0 Clear a location for Pr
4;/WEO
S Ree Ay
6 iB

dex 2078 > (Agr Br)
8|/+E0
9|WEO

103) Sin Step F once (limit of F is Y)
11 U'-0.5
12 P3
1371s 0 Yi Step E once (limit of E isY)

——14 |} U Ol
15 | A : Halt: Problem finished. Py, has

been printed and stored in col-
umn zero.

NOTE: As programmed above, the Y keys are used
to indicate the order of the matrix. An alternative
method is to pin the value of N in the 3rd area of
steps 10 and 13, and change the pin whenever the
program is used for a matrix of a different order.

c

MBwWNr

OO

OMANI

NAUNRWNK

OC

mR

Re

MiwWNrR

©

SCOMAIDABRWNKH

OC

feat

el
pk

ene

aA

BWN

eR

AkhWN

KE

©

P.B. No. 1

aR

GCASEKEKREKREKR

EKER

N

4

—

~~

~

a

~

P.B. No. 1

P.B. No. 1

Adw

CASAL

ER

EA

SAWK

2
pCusKAE

oo.

haem

24
w|

H

>anan

°o

Oo

1

orn

x
me

NO

Pr

OMDNINNPWNKH

OC

ere

ee

eny

nk

wWN

©

APPENDIX

PRACTICE PROBLEM SOLUTIONS

P.B.N. 2

CAs

SA+

SK+

SAL

SAT

=

AR

WNP

©

P.B. No. 3

Wo09
+29

35

*

b. P.B. No.1

Ok

1 B
2 ie

Bk

4° WO
2 = 2.

6 Syaut

1 0-0
SA

P.B. No. 1

Oe)

1 — 9

2D

3 «Hl
4 K
Ss Ws
6 4.9
J We9
8 S 1

9-2 We0
NOs AS

P.B. No. 1

0: Rk 9

1 —9
22 0

Sie delil
4. -W.E[s 5 1

6 U0
dE S20
3 U0
0. A. |

So

owuwtw

*
OO

NO:

Pel

oy

Paae

GoMod

olia

|

tWwWROMOOMWL

Clear mem. loc. 99

\ Clear acc.

j=N
P= >) (AyB) §=1,2,-7°N

j=1
where:

P; is the product column vector
A,;is the matrix, and
B; is the multiplier column vector

Essentially the character of the E101 program re-
quires only the substitution of ‘““E” and “F,” repre-
senting the E101 switches, for the subscripts “7

and “7”:

F=Y

a > (Agr’ Bp)
F=1

Assuming that B is stored in row zero of the
memory and that each element of the matrix is
stored in the memory location corresponding to its
subscript (for example, As; in location 35), the
problem can be programmed as follows:

34

G ttt 0 4 HomeE to 1
re—1]/H11 HomeF to 1

241 ke. oO

So) oe 0 Clear a location for Pr
4;/WEO
S Ree Ay
6 iB

dex 2078 > (Agr Br)
8|/+E0
9|WEO

103) Sin Step F once (limit of F is Y)
11 U'-0.5
12 P3
1371s 0 Yi Step E once (limit of E isY)

——14 |} U Ol
15 | A : Halt: Problem finished. Py, has

been printed and stored in col-
umn zero.

NOTE: As programmed above, the Y keys are used
to indicate the order of the matrix. An alternative
method is to pin the value of N in the 3rd area of
steps 10 and 13, and change the pin whenever the
program is used for a matrix of a different order.

c

MBwWNr

OO

OMANI

NAUNRWNK

OC

mR

Re

MiwWNrR

©

SCOMAIDABRWNKH

OC

feat

el
pk

ene

aA

BWN

eR

AkhWN

KE

©

P.B. No. 1

aR

GCASEKEKREKREKR

EKER

N

4

—

~~

~

a

~

P.B. No. 1

P.B. No. 1

Adw

CASAL

ER

EA

SAWK

2
pCusKAE

oo.

haem

24
w|

H

>anan

°o

Oo

1

orn

x
me

NO

Pr

OMDNINNPWNKH

OC

ere

ee

eny

nk

wWN

©

APPENDIX

PRACTICE PROBLEM SOLUTIONS

P.B.N. 2

CAs

SA+

SK+

SAL

SAT

=

AR

WNP

©

P.B. No. 3

Wo09
+29

35

*

b. P.B. No.1

Ok

1 B
2 ie

Bk

4° WO
2 = 2.

6 Syaut

1 0-0
SA

P.B. No. 1

Oe)

1 — 9

2D

3 «Hl
4 K
Ss Ws
6 4.9
J We9
8 S 1

9-2 We0
NOs AS

P.B. No. 1

0: Rk 9

1 —9
22 0

Sie delil
4. -W.E[s 5 1

6 U0
dE S20
3 U0
0. A. |

So

owuwtw

*
OO

NO:

Pel

oy

Paae

GoMod

olia

|

tWwWROMOOMWL

Clear mem. loc. 99

\ Clear acc.

PINBOARD
AREA

1 2:3
+ialb

—|alb

lea |b

a aD

Re|-at b

Wi alb

Al teb

A| 2] b

Al 3 |=
Aaled [os

Aloe

Beis
1 pases Bee

| ea a ee

U|alb
Ci a7 2b

S120) b

Seb
S216

ELECTRODATA 101 INSTRUCTIONS

Operation Carried Out

Add the contents of memory location ab to the
contents of the accumulator. (a = tens digit of
the memory address, b = units digit of the
memory address.)

Subtract contents of ab from contents of ac-
cumulator.

Multiply the contents of the B register by the
contents of memory location ab (answer is in
the accumulator).

Divide the contents of accumulator by the num-
ber in the B register and store the answer in
memory location ab (remainder left in ac-
cumulator).

Read the contents of memory location ab into
the accumulator (leaving copy in ab).

Write the contents of the accumulator into mem-
ory location ab, leaving copy in accumulator.

Shift the contents of the accumulatorb places to
the left. (b = 10).

Shift the contents of the accumulatorb places to
the right. (b = 10).

Make the contents of the accumulator positive.
Make the contents of the accumulator negative.
Change the sign of the contents of the accumu-

lator.
Halt the machine.
Transfer the contents of the accumulator into

the B register, leaving copy in accumulator.
Transfer the contents of the keyboard into the

accumulator when operator depresses a motor
bar.

Print contents of the accumulator using Motor
Bar “a”, leaving copy in accumulator.”

Unconditionally transfer to pinboard a, step b.*
Conditionally transfer to pinboard a, step b;

i.e., if the contents of the accumulator is nega-
tive execute the transfer; if the contents of the
accumulator is positive execute the next step
in the program.’

Step the E switch once; then if E ~ (b + 1),
execute the next instruction; if E= (b+ 1),
execute the instruction after the next instruc-
tion.

Ez (bo 1)
ee Ob

= (Oars)
gE S 0° =b

Same as above, but using the F switch.
Step E and F switches once; then if E#b + 1,

execute the next instruction; if E=b+1,
execute the instruction after the next instruc-
tion.

36

PINBOARD
AREA Operation Carried out

1 [243

H|}0}b Home the E switch, stopping at position b.
H|1]b Home the F switch, stopping at position b.
H!21!b Home the E switch, stopping at position b, and

advance the F switch the same number of
places as E moves.

Pinning E instead of a definite number for a, or E or F in-
stead of b, sends the machine to the appropriate switch’s
setting for that particular value ofa or b.

Pinning X for a, or Y for b, sends the machine to the appro-
priate keyboard setting of the X or Y keys for that particu-
lar value of a or b.

NOTES: 'Pinning the 0 in level 3 affects a non-print for this
operation.

*Pinning the 0 in level 3 gives a non-print, while
the * gives a print-and-halt.

*Pinning0 in level 2 keeps the transfer (to instruc-
tion b) in the same pinboard, while the * in level
3 transfers to. whatever instruction was last exe-
cuted (in pinboard a) + 1,

TAPE INPUT UNIT INSTRUCTIONS

T |—Jj11 Tape Transfer—Execute the next instruction
on Tape. Follow each instruction on tape in
sequence until control is returned to pinboard
by a “U” or “C” instruction on tape.

T |—|12 Tape Read—Read the next number on tape
into the accumulator and then continue with
the next pinboard instruction.

All instructions on tape require 3 characters, e.g., the B in-
struction on tape would be used as B 1 1. Numbers are of
variable word length, 1-12 digits starting with the most
significant digit. It is therefore necessary to have a begin
word character and an end word character. The minus sign
should precede the digits when present.

220-WORD MEMORY INSTRUCTIONS

H| 3| b Home the M switch (expanded memory band
selector switch) to b. b may have only the val-
ues 0, 1, 2 or 3.

S| 3] b Step — Step the M switch once; then if M #
b + 1, execute the next instruction; if M =
b + 1, execute the instruction after the next
instruction.

H | 4/— Increase the E switch setting by the number in
the least significant digit position of the ac-
cumulator.

H|5|)— Same usingF switch.
H}6}— Same using E and F.
H}|7)— Same using the M switch.

V SWITCH INSTRUCTIONS

In addition to the instructions for the basic computer:

Pinning “V” instead of a definite number for b in the 3rd
area of the pinboard sends the machine to the appropriate
setting for “V” as determined by carriage position.

PUNCHED TAPE OUTPUT INSTRUCTIONS

PUNCHING DATA

PINBOARD
AREA

L213
P| 0} 0 Punch—Punch data stored in the accumulator

with a non-tab, non-print, and non-space of
the Keyboard-Printer.

P| 5|— Print and Punch— Print the contents of the
accumulator, perform Motor Bar 1 carriage
positioning function after printing, and punch
the data on tape."

P| 6|—_ Print and Punch— Same as P 5 except perform
Motor Bar 2 carriage positioning function.*

P| 7|/— Print and Punch—Same as P 5 except per-
form Motor Bar 3 carriage positioning func-
tion.?

P| 8|—_ Print and Punch—Same as P 5 except per-
form Motor Bar 4 carriage positioning func-
tion."

K|0]0 Keyboard Punch—Halt the program and light
the keyboard signal. When the operator
touches a motor bar, transfer the number in
the keyboard to the 11 least significant digits
of the accumulator, and punch the 12-digit
contents of the accumulator into the tape.

K|5|— Keyboard Print and Punch—Halt the pro-

gram and light the KEYBOARD signal.
When the operator touches a motor bar:

(1) the number in the keyboard prints and
is transferred to the 11 least significant
digits of the accumulator;

(2) the 12-digit number in the accumula-
tor is punched into the tape;

(3) and the carriage moves in accordance
with the motor bar action selected by
the operator.

NOTES: 1. a. Pinning a0 in the third level effects a non-
print for this operation.

b. Pinning a * in the third level effects a

computer HALT after the print and
punch operations are completed.

2. Pinninga 0 in the third level effects a non-
print for this operation.

PUNCHING INSTRUCTIONS

The Tape Output Unit is told to punch E101 instruc-
tions into tape by means of an Mab instruction. The “‘b”
pin setting selects the operation code to be punched, the
E switch setting selects the code to be punched in the tens

level, and the F switch setting selects the code to be

punched into the units level.
As is the case when programs are punched into tape on

other tape preparation devices, each tape instruction must
consist of 3 characters. Filler digits (ones) must be used

in instructions with one or two characters (e.g., B11).
The punch instruction operation is coded as follows:

soi aa Punch Instruction—Punch the 3-character
sale: coded computer instruction designated as

M! 0} b follows:

OPERATION

“b” Pin Setting Operation Punched (coded)

0 AE

if eee

2 x
3 ae
4 R
eS W
6 A
i B
8 K
9 P

10 U
ET (c

12 S

iS) H
14 M
15 delete

TENS AREA

E Switch Setting Tens Level Character Punched

0) 0
it 1

2, 2,

5 3

4 4
5 5

6 6

L A

8 8

9 9

10 E
11 tab
12 x
13 carriage-return
14 stop

15 delete

37

PINBOARD
AREA

1 2:3
+ialb

—|alb

lea |b

a aD

Re|-at b

Wi alb

Al teb

A| 2] b

Al 3 |=
Aaled [os

Aloe

Beis
1 pases Bee

| ea a ee

U|alb
Ci a7 2b

S120) b

Seb
S216

ELECTRODATA 101 INSTRUCTIONS

Operation Carried Out

Add the contents of memory location ab to the
contents of the accumulator. (a = tens digit of
the memory address, b = units digit of the
memory address.)

Subtract contents of ab from contents of ac-
cumulator.

Multiply the contents of the B register by the
contents of memory location ab (answer is in
the accumulator).

Divide the contents of accumulator by the num-
ber in the B register and store the answer in
memory location ab (remainder left in ac-
cumulator).

Read the contents of memory location ab into
the accumulator (leaving copy in ab).

Write the contents of the accumulator into mem-
ory location ab, leaving copy in accumulator.

Shift the contents of the accumulatorb places to
the left. (b = 10).

Shift the contents of the accumulatorb places to
the right. (b = 10).

Make the contents of the accumulator positive.
Make the contents of the accumulator negative.
Change the sign of the contents of the accumu-

lator.
Halt the machine.
Transfer the contents of the accumulator into

the B register, leaving copy in accumulator.
Transfer the contents of the keyboard into the

accumulator when operator depresses a motor
bar.

Print contents of the accumulator using Motor
Bar “a”, leaving copy in accumulator.”

Unconditionally transfer to pinboard a, step b.*
Conditionally transfer to pinboard a, step b;

i.e., if the contents of the accumulator is nega-
tive execute the transfer; if the contents of the
accumulator is positive execute the next step
in the program.’

Step the E switch once; then if E ~ (b + 1),
execute the next instruction; if E= (b+ 1),
execute the instruction after the next instruc-
tion.

Ez (bo 1)
ee Ob

= (Oars)
gE S 0° =b

Same as above, but using the F switch.
Step E and F switches once; then if E#b + 1,

execute the next instruction; if E=b+1,
execute the instruction after the next instruc-
tion.

36

PINBOARD
AREA Operation Carried out

1 [243

H|}0}b Home the E switch, stopping at position b.
H|1]b Home the F switch, stopping at position b.
H!21!b Home the E switch, stopping at position b, and

advance the F switch the same number of
places as E moves.

Pinning E instead of a definite number for a, or E or F in-
stead of b, sends the machine to the appropriate switch’s
setting for that particular value ofa or b.

Pinning X for a, or Y for b, sends the machine to the appro-
priate keyboard setting of the X or Y keys for that particu-
lar value of a or b.

NOTES: 'Pinning the 0 in level 3 affects a non-print for this
operation.

*Pinning the 0 in level 3 gives a non-print, while
the * gives a print-and-halt.

*Pinning0 in level 2 keeps the transfer (to instruc-
tion b) in the same pinboard, while the * in level
3 transfers to. whatever instruction was last exe-
cuted (in pinboard a) + 1,

TAPE INPUT UNIT INSTRUCTIONS

T |—Jj11 Tape Transfer—Execute the next instruction
on Tape. Follow each instruction on tape in
sequence until control is returned to pinboard
by a “U” or “C” instruction on tape.

T |—|12 Tape Read—Read the next number on tape
into the accumulator and then continue with
the next pinboard instruction.

All instructions on tape require 3 characters, e.g., the B in-
struction on tape would be used as B 1 1. Numbers are of
variable word length, 1-12 digits starting with the most
significant digit. It is therefore necessary to have a begin
word character and an end word character. The minus sign
should precede the digits when present.

220-WORD MEMORY INSTRUCTIONS

H| 3| b Home the M switch (expanded memory band
selector switch) to b. b may have only the val-
ues 0, 1, 2 or 3.

S| 3] b Step — Step the M switch once; then if M #
b + 1, execute the next instruction; if M =
b + 1, execute the instruction after the next
instruction.

H | 4/— Increase the E switch setting by the number in
the least significant digit position of the ac-
cumulator.

H|5|)— Same usingF switch.
H}6}— Same using E and F.
H}|7)— Same using the M switch.

V SWITCH INSTRUCTIONS

In addition to the instructions for the basic computer:

Pinning “V” instead of a definite number for b in the 3rd
area of the pinboard sends the machine to the appropriate
setting for “V” as determined by carriage position.

PUNCHED TAPE OUTPUT INSTRUCTIONS

PUNCHING DATA

PINBOARD
AREA

L213
P| 0} 0 Punch—Punch data stored in the accumulator

with a non-tab, non-print, and non-space of
the Keyboard-Printer.

P| 5|— Print and Punch— Print the contents of the
accumulator, perform Motor Bar 1 carriage
positioning function after printing, and punch
the data on tape."

P| 6|—_ Print and Punch— Same as P 5 except perform
Motor Bar 2 carriage positioning function.*

P| 7|/— Print and Punch—Same as P 5 except per-
form Motor Bar 3 carriage positioning func-
tion.?

P| 8|—_ Print and Punch—Same as P 5 except per-
form Motor Bar 4 carriage positioning func-
tion."

K|0]0 Keyboard Punch—Halt the program and light
the keyboard signal. When the operator
touches a motor bar, transfer the number in
the keyboard to the 11 least significant digits
of the accumulator, and punch the 12-digit
contents of the accumulator into the tape.

K|5|— Keyboard Print and Punch—Halt the pro-

gram and light the KEYBOARD signal.
When the operator touches a motor bar:

(1) the number in the keyboard prints and
is transferred to the 11 least significant
digits of the accumulator;

(2) the 12-digit number in the accumula-
tor is punched into the tape;

(3) and the carriage moves in accordance
with the motor bar action selected by
the operator.

NOTES: 1. a. Pinning a0 in the third level effects a non-
print for this operation.

b. Pinning a * in the third level effects a

computer HALT after the print and
punch operations are completed.

2. Pinninga 0 in the third level effects a non-
print for this operation.

PUNCHING INSTRUCTIONS

The Tape Output Unit is told to punch E101 instruc-
tions into tape by means of an Mab instruction. The “‘b”
pin setting selects the operation code to be punched, the
E switch setting selects the code to be punched in the tens

level, and the F switch setting selects the code to be

punched into the units level.
As is the case when programs are punched into tape on

other tape preparation devices, each tape instruction must
consist of 3 characters. Filler digits (ones) must be used

in instructions with one or two characters (e.g., B11).
The punch instruction operation is coded as follows:

soi aa Punch Instruction—Punch the 3-character
sale: coded computer instruction designated as

M! 0} b follows:

OPERATION

“b” Pin Setting Operation Punched (coded)

0 AE

if eee

2 x
3 ae
4 R
eS W
6 A
i B
8 K
9 P

10 U
ET (c

12 S

iS) H
14 M
15 delete

TENS AREA

E Switch Setting Tens Level Character Punched

0) 0
it 1

2, 2,

5 3

4 4
5 5

6 6

L A

8 8

9 9

10 E
11 tab
12 x
13 carriage-return
14 stop

15 delete

37

F Switch Setting

CSADMNRWNK

OC

\o

10
1
12
13

14
15

PINBOARD
AREA

HUES
M|1]b

F Switch Setting

10

1
12

13

14
15

UNITS AREA

Units Level Character Punched

OMANNBRWNK

CO

10

ut
12
is
14
ily

Punch Instruction—Same as M 0 b in opera-
tion and tens level character punched. Same

as M 0 b in units level punched except as

follows:
UNITS AREA

Units Level Character Punched

E
F
Ne
*

Vv

delete

38

ElectroData
DIVISION OF BURROUGHS CORPORATION

460 Se ste eA MADRE Vite oA,
PASADENA, CALIFORNIA

BOSTON DETROIT

NEW YORK ' LOS ANGELES

DISTRICT OFFICES PHILADELPHIA SAN FRANCISCO

ROCHESTER SEATTLE

WASHINGTON OTTAWA

CHICAGO MONTREAL

DALLAS TORONTO

Printed in U.S.A.

