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PREFACE

In computational problems it is common to find that certain functions (such as

square roots, logarithms, sines, cosines, tangents, etc.) occur either repetitiously in a single
problem or frequently from problem to problem. These functions are basic functions.
Programs for computing these basic functions are generally referred to as “‘subroutines.”’
Because of the frequent occurrence of these basic functions, it becomes expeditious to have

available complete programs of subroutines and, in some cases, even to prepare paper
templates of the programs.

This booklet consists of two sections.

Section I discusses the uses of subroutines in particular problems and presents the
techniques employed in programming them and in extending their range and/or accuracy.

Section II is the main part of the booklet, the chief purpose of which is to con-

solidate in handy reference form some of the more useful subroutines for the Burroughs
E101 Electronic Computer.The section contains the subroutines employed in evaluating
the basic, more useful functions and gives programmed examples of techniques which
increase the utility of the E101.

At the end is added, for further reference, a short bibliography of handbooks con-

taining the series for common functions and of sources for general studies in functional
approximation.
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SECTION |

Uses of, and Techniques for, Subroutines

A. Uses of Subroutines

Some of the various situations which arise in the handling
of subroutines and some programming methods which can

be considered for these situations are: single use of a sub-

routine; multiple use of a subroutine; constant increments;
compound functions; and multi-purpose use of subroutines.

Before control is transferred to the subroutine, one must
be sure that the “starting point’’ requirements given in the
pinboard program for the subroutine have been met.

1. Single Use of a Subroutine

When a subroutine is used only once in the solution
of a problem, there are two procedures, either of which
may be followed:

(a) to incorporate the subroutine as part of the main
program (the sequence of steps in the subroutine
would not be altered, although the steps need not be

located on a single pinboard; the constant required in
the subroutine may be stored in any convenient mem-
ory addresses);
(b) to use a separate pinboard for the subroutine and
one “U”’ instruction to transfer from the main part of
the problem to the subroutine pinboard and a second

“U” instruction to transfer back again.

The first of these two procedures fits the subroutine
into the main part of the problem and, as a result, econ-

omizes programming space and running time. The second

is a bit more flexible and makes better use of pinboards
or templates on hand.

2. Multiple Use of a Subroutine

The multiple use of a subroutine is advisable when
a subroutine is to be used in several places in the solu-
tion of a problem. Each use of the subroutine involves
transfers, first, from the problem to the subroutine and,

then, back to a different part of the problem. The E101,
with the aid of a “subroutine exit instruction,’ has a

simple procedure for handling these transfers.
Each call for the subroutine requires two steps in

the main program:

(a) “H 0b.” (This instruction homes the E switch to
“b,” the “b” being pinned to correspond to the pin-
board to which the program should return after the
use of the subroutine);

(b) “Ua 0.” (This instruction transfers control to the
beginning of the subroutine, the ‘“‘a’”’ being pinned to
correspond to the pinboard which contains the sub-

routine).

Neither of these two instructions affects the contents

of the accumulator.
The transfer back to the appropriate step in the main

program, i.e., the step following the “U a 0” instruction,

is effected by the “subroutine exit instruction,’ “U E *.”
The “U E *” instruction, which occurs as the last step in
the subroutine, transfers control back to pinboard “b”
of the last ‘‘H 0 b” instruction of the main program and

then to the step following the ‘U a 0” instruction on the

same pinboard “‘b.”
To illustrate the procedure, let us assume that we

wish to transfer to the sine subroutine (pinboard 4)
from the main routine, which is first at step 5 of pin-
board 1, later at step 4 of pinboard 2, and finally at step

3 of pinboard 3. After each use of the sine subroutine in
pinboard 4 we must return to the pinboard (1, 2, or 3)
from which the transfer was made.

Specifically, in the illustration below, the multiple
use of the sine subroutine would necessitate initially a

transfer from pinboard 1 (step 6) to the beginning of
the sine subroutine on pinboard 4 (step 0); then from
the end of the sine subroutine on pinboard 4 (step 15)
back to the main routine on pinboard 1 (step 7); later
from pinboard 2 (step 5) to the beginning of the sine

subroutine on pinboard 4 (step 0); then from the end

of the sine subroutine on pinboard 4 (step 15) back to
the main routine on pinboard 2 (step 6); later from pin-
board 3 (step 4) to the beginning of the sine subroutine
on pinboard 4 (step 0); then from the end of the sine

subroutine on pinboard 4 (step 15) back to the main
routine on pinboard 3 (step 5).

Pinboard No.

Step No. 1 2 3 4
 

ine

OMAN

AUYMUBRWNF-R

OO

10   
 

3. Constant Increments

When it is desirable to find a function of a variable
that increases at a constant rate, the “chain formula”
method should be considered. As an example, consider

sinku, and cosku, (used frequently in Fourier Series

and in other applications, k being an integer that steps

from 1 to n). One method would be to use, by means

of two pinboards, the sine and cosine subroutines, shown

on pages 6 to 8.

A better method, however, is the constant-increments

one, which makes use of the chain formulas for sin ku,
and cos kuy:

sin ku, = sin?(((k— 1) + 1 Ju,

= COS Uy sin (k — 1)uy + sin uy cos (k — 1)uy

and

cos ku, = cos [(k — 1) + 1]uy

= COS Uy cos (k — 1)uy — sin uy sin (k — 1)up.

Using these formulas, we can program a subroutine
that computes both sin ku, and cos ku, in less than one

pinboard. The program requires 14 steps and 2 seconds

for each value of k as compared to 26 steps and 8 seconds

required in the two-pinboard method (see page 18).
If only cos ku, is desired, the chain formula,

cos kup = 2 cos (k — 1)uy cos up — cos (k — 2)up,

may be used.

Another example in which the constant-increments

approach may be used is e*%s. Once e%» has been com-

puted, e". can be found very simply for any number of
integral increments merely by adding a few steps to the
program, i.e., by raising e%s to successive integer powers.

The constant-increments approach can be used effec-
tively with other functions whenever the argument of
the function is to be advanced by multiples of an integer.
Because of the word length of the E101 (12 digits),
there is rarely, if ever, a build-up of errors sufficient to
cause trouble in engineering computations.

4. Compound Functions

When a problem involves a compound function,
such as

e"sinu or sinhu + logu,

in which each of the component functions can be ex-

pressed as a power series, there are two possible methods
of attack.

One method is to compute each component function
separately and then find their combined value.

Another, and in some cases a better, method is, first,
to combine the power series of each component function
into a single new power series and, then, to program the
new series. As an example of this method, we can multi-

ply the e" series by the sinu series to arrive at a new
series (see page 19). The program for the e"sinu
series requires only 8 steps and 10 seconds as compared
to 26 steps and 16 seconds required in the two-pinboard
operation.

5. Multi-Purpose Use of Subroutines

When a problem involves several functions, each of
which can be approximated with sufficient accuracy by
a finite polynomial, an economy in the number of pin-
board steps required can be effected by the use of a

multi-purpose subroutine, i.e., one that will suffice for
all the functions involved. Such a multi-purpose sub-

routine for sin u, cos u, arctanu, and e", illustrated on

pages 19-20, requires only 10 steps as contrasted with
the need for 4 pinboards to compute the functions sep-

arately.
Since all four functions can be expressed as poly-

nomials in u, with only the coefficients varying, the same

pinboard steps can be used for the polynomials in u,
with different memory addresses for the coefficients.
The coefficients for each function are stored in a separate

row in the memory, the E switch being used to select the
proper row.

. Techniques for Subroutines

1. Extension of Range and Accuracy

The programs for the subroutines given in Section II
are valid, within the accuracy specified, only for the
indicated range of the argument. Since, however, there

are some problems that involve ranges of the argument
greater than those indicated in the subroutines in Section

II, additional programming can sometimes be used to
cover the extended range.

Problems requiring an extension of range and/or an

increase in accuracy are too varied and numerous, even

to catalogue. Therefore, only general lines of approach

can be indicated.
An example of a subroutine that can be easily ex-

tended in range is the exponential function, e*. The
basic program on page 12 is valid for —1 <u < 1, but
the range can be extended by the use of either of the
following identities:

et = — or 6) — (era
Furthermore, greater accuracy of e" can be obtained if,
for example, e%/* is computed and then raised to the
fourth power.

An identical approach can be employed to extend
the range and/or accuracy of the 10" subroutine.

Another example of a subroutine that may be easily

extended in range is the sinu subroutine, where the
range, —1/2 <u <7/2, may be increased by the use
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The first of these two procedures fits the subroutine
into the main part of the problem and, as a result, econ-
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is a bit more flexible and makes better use of pinboards
or templates on hand.
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The multiple use of a subroutine is advisable when
a subroutine is to be used in several places in the solu-
tion of a problem. Each use of the subroutine involves
transfers, first, from the problem to the subroutine and,

then, back to a different part of the problem. The E101,
with the aid of a “subroutine exit instruction,’ has a

simple procedure for handling these transfers.
Each call for the subroutine requires two steps in

the main program:

(a) “H 0b.” (This instruction homes the E switch to
“b,” the “b” being pinned to correspond to the pin-
board to which the program should return after the
use of the subroutine);

(b) “Ua 0.” (This instruction transfers control to the
beginning of the subroutine, the ‘“‘a’”’ being pinned to
correspond to the pinboard which contains the sub-

routine).

Neither of these two instructions affects the contents

of the accumulator.
The transfer back to the appropriate step in the main

program, i.e., the step following the “U a 0” instruction,

is effected by the “subroutine exit instruction,’ “U E *.”
The “U E *” instruction, which occurs as the last step in
the subroutine, transfers control back to pinboard “b”
of the last ‘‘H 0 b” instruction of the main program and

then to the step following the ‘U a 0” instruction on the

same pinboard “‘b.”
To illustrate the procedure, let us assume that we

wish to transfer to the sine subroutine (pinboard 4)
from the main routine, which is first at step 5 of pin-
board 1, later at step 4 of pinboard 2, and finally at step

3 of pinboard 3. After each use of the sine subroutine in
pinboard 4 we must return to the pinboard (1, 2, or 3)
from which the transfer was made.

Specifically, in the illustration below, the multiple
use of the sine subroutine would necessitate initially a

transfer from pinboard 1 (step 6) to the beginning of
the sine subroutine on pinboard 4 (step 0); then from
the end of the sine subroutine on pinboard 4 (step 15)
back to the main routine on pinboard 1 (step 7); later
from pinboard 2 (step 5) to the beginning of the sine

subroutine on pinboard 4 (step 0); then from the end

of the sine subroutine on pinboard 4 (step 15) back to
the main routine on pinboard 2 (step 6); later from pin-
board 3 (step 4) to the beginning of the sine subroutine
on pinboard 4 (step 0); then from the end of the sine

subroutine on pinboard 4 (step 15) back to the main
routine on pinboard 3 (step 5).
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and cos kuy:

sin ku, = sin?(((k— 1) + 1 Ju,

= COS Uy sin (k — 1)uy + sin uy cos (k — 1)uy

and

cos ku, = cos [(k — 1) + 1]uy

= COS Uy cos (k — 1)uy — sin uy sin (k — 1)up.

Using these formulas, we can program a subroutine
that computes both sin ku, and cos ku, in less than one

pinboard. The program requires 14 steps and 2 seconds

for each value of k as compared to 26 steps and 8 seconds

required in the two-pinboard method (see page 18).
If only cos ku, is desired, the chain formula,

cos kup = 2 cos (k — 1)uy cos up — cos (k — 2)up,

may be used.

Another example in which the constant-increments

approach may be used is e*%s. Once e%» has been com-

puted, e". can be found very simply for any number of
integral increments merely by adding a few steps to the
program, i.e., by raising e%s to successive integer powers.

The constant-increments approach can be used effec-
tively with other functions whenever the argument of
the function is to be advanced by multiples of an integer.
Because of the word length of the E101 (12 digits),
there is rarely, if ever, a build-up of errors sufficient to
cause trouble in engineering computations.

4. Compound Functions

When a problem involves a compound function,
such as

e"sinu or sinhu + logu,

in which each of the component functions can be ex-

pressed as a power series, there are two possible methods
of attack.

One method is to compute each component function
separately and then find their combined value.

Another, and in some cases a better, method is, first,
to combine the power series of each component function
into a single new power series and, then, to program the
new series. As an example of this method, we can multi-

ply the e" series by the sinu series to arrive at a new
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board steps required can be effected by the use of a
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pages 19-20, requires only 10 steps as contrasted with
the need for 4 pinboards to compute the functions sep-

arately.
Since all four functions can be expressed as poly-

nomials in u, with only the coefficients varying, the same

pinboard steps can be used for the polynomials in u,
with different memory addresses for the coefficients.
The coefficients for each function are stored in a separate

row in the memory, the E switch being used to select the
proper row.

. Techniques for Subroutines

1. Extension of Range and Accuracy

The programs for the subroutines given in Section II
are valid, within the accuracy specified, only for the
indicated range of the argument. Since, however, there

are some problems that involve ranges of the argument
greater than those indicated in the subroutines in Section

II, additional programming can sometimes be used to
cover the extended range.

Problems requiring an extension of range and/or an

increase in accuracy are too varied and numerous, even

to catalogue. Therefore, only general lines of approach

can be indicated.
An example of a subroutine that can be easily ex-

tended in range is the exponential function, e*. The
basic program on page 12 is valid for —1 <u < 1, but
the range can be extended by the use of either of the
following identities:

et = — or 6) — (era
Furthermore, greater accuracy of e" can be obtained if,
for example, e%/* is computed and then raised to the
fourth power.

An identical approach can be employed to extend
the range and/or accuracy of the 10" subroutine.

Another example of a subroutine that may be easily

extended in range is the sinu subroutine, where the
range, —1/2 <u <7/2, may be increased by the use



of trigonometric identities, which replace u by an angle
y in the first quadrant:

sinu = sin (z+ y) = cosy,

sinu = sin (7 + y) = — siny,

: : 30
sinu = sin (3% + y) = — cosy,

sinu = sin (27 + y) = siny.

If u is a large angle, a standard procedure is to write

sinu = sin 2a(2 pai [ie !)) .
Qa Jul | 27

ctwhere the symbolism EE

jul ,,means ‘‘the largest integer in Za
T

 

Trigonometric identities can usually be employed to
extend the range of any subroutine for a trigonometric
function. For example, the range for the tan u subroutine
can be significantly extended by use of the following
identity:

ae 2 tana :

1 Stans
In any of the subroutines that use Taylor Series, the

range and/or accuracy may be extended by increasing
the number of terms in the polynomial approximation.
For example, to extend the range of the sin u subroutine,
on page 6, to —7 <u < 7m and retain the accuracy of
+0.000 05, the following polynomial would be used:

2 u? u> u? u? uit uis

me S83 St 7
Many of the subroutines in this booklet use poly-

nomial approximations not derived from Taylor Series.

It is nonetheless true that the range and accuracy of these

subroutines may be extended by increasing the number
of terms in the polynomial approximation. Hence, in
order to aid the user in extending the range and/or
accuracy of these subroutines, references which contain
extensions of the polynomial approximation are given
with each subroutine.

2. Programming

The subroutines in this booklet are based primarily
on polynomial evaluation. The polynomials are written in
terms of u, u2, or (u — a)/(u + a). The general method
for programming such an approximating polynomial,

P(u) = a a;,U;.,

k=0

can best be shown by an example.

Suppose n = 4. Then the polynomial becomes

P(u) = a, + au 4 au? + a,u® + aut,
which may be written as

P(u) = a, + u[a, + u[a, + ufa, + au]]].
This factored expression is the form leading to the most
efficient programs for digital computers because [a, +
a,u] involves merely a, times u, added to a;, which result
becomes the new coefficient of u in [a, + uf[a, + a,u]].
The process can be repeated, and we are thereby able to
evaluate a high-degree polynomial by repeatedly perform-
ing a simple multiplication, followed by a simple addi-
tion.

Now suppose that the a’s and the value of u, for
which the polynomial is to be evaluated, are stored in
memory addresses as follows: a, in 20, a, in 21, a, in 22,

a, in 23, a) in 24, and u in 25; then the original poly-
nominal P(u) can be easily evaluated by employing its

factored form in the following program:

Step Instruction Contents of Accumulator

y ee a4

1 B

2 Ke25 au
3 +21 a, + a,u

4 B

5 25 u[a, + a,u]

6 +22 a, + ula, + a,u]

ys B

8 2.5 u[a, + u[a, + a,u]]

9 + 23 a, + u[a, + u[a, + a,u]]

10 B

11 Ke25 u[a, + u[a, + u[a, + a,u]]]
12 +24 ay + ufa, + ula, + ula, + a,u]]] = P(u)

13 P Print P(u).

The foregoing program is linear (not looped). To
save instruction space we can make use of the “H,” “'S,”
and ‘‘U”’ instructions to form a loop and thereby arrive
at the following shorter program:

Step Instruction Contents of Accumulator

0 R.2..0

1 | Od at step 4, when

2 B F= 1) is:a,--a,u;
3 X25 F = 2, is a, + u[a, + a,u];

4 +2F F =3, isa; +-ula, -+ ula, aul);
5 $14 F=4,isa,-+ u[a, + u[a, + ula, + ,u]]].
6 WU 02
7 P Print P(u).

So far, scaling has been neglected, but now we must

consider the scaling that would be involved in such a

problem. First, we must establish sometrules of notation.

Suppose, for example, that we have a number, say

20, which we want to write in a memory address. If we
enter this number into the machine as .200 000 000 00,
where the decimal is the machine decimal, then we say

that the given number, 20, times 10-?, is in the memory.
If we enter this number, 20, into the machine as

.020 000 000 00, where the decimal is the machine
decimal, then we say that the given number, 20, times
10-°, is in the memory. In general, if we enter a given
number into the E101 in such a way that the machine
decimal is p places to the left of the real decimal, then
we say that the given number times 10-? is in the mem-
ory, B-register, or accumulator, as the case may be.

If, in the evaluation of the polynomial, u times 10
is in the memory, then a,u and a, must be made, by cor-
rectly scaling a, and a;, to agree in their power of 10,

since they are to be added. For example, if a, times 10®

is in the memory, then a, times 10%? must be in the
memory since a,u times 10% will be in the accumulator
and must be added to a;. By following this procedure
we can determine the appropriate power of 10 at which
each of the a’s should be written. (It is obvious that the
printed answer will be of the same power of 10 as the
constant ay.)

Thus, in our example, if u times 10-1 is in the mem-
ory and if the a’s have been stored as follows: a, times
10°, a, times 10-1, a, times 10-*, a, times 10-°, and a,
times 10-4, then all the steps used in evaluating the poly-
nomial can be correctly performed.

Scaled Coefficients Partial Sums

a, times 10° a,u times 10-1

a, times 10-1 [a,u + a,] times 10-1

a, times 10-2 [a,u + a,]u times 10-2

a, times 10-3 [[agu + a,]u- a,] times 10-2

a, times 10-4 [[azu + a,]u- a,]u times 10-3

[[[ayu + a,Ju-+ a,Ju- a,] times 10-3

[[[a,u + a,Ju-+ a,Ju- a,]u times 10-4

P(u) times 10-* =
[{[a,u-+ a,Ju-+-a,Ju + a,Ju- a, times 10-4

It is perhaps most efficient in the programming of
polynomial evaluation to begin the scaling with the co-

efficient of the term involving the highest power of u,
say a,, and then to arrange the scale factors of the other
coefficients,» namely... a;4; 85-3,2ans, 4°; tO. be the
same, respectively, as the scale factors of a,u, a,u2,
Ane +a.



of trigonometric identities, which replace u by an angle
y in the first quadrant:

sinu = sin (z+ y) = cosy,

sinu = sin (7 + y) = — siny,

: : 30
sinu = sin (3% + y) = — cosy,

sinu = sin (27 + y) = siny.

If u is a large angle, a standard procedure is to write

sinu = sin 2a(2 pai [ie !)) .
Qa Jul | 27

ctwhere the symbolism EE

jul ,,means ‘‘the largest integer in Za
T

 

Trigonometric identities can usually be employed to
extend the range of any subroutine for a trigonometric
function. For example, the range for the tan u subroutine
can be significantly extended by use of the following
identity:

ae 2 tana :

1 Stans
In any of the subroutines that use Taylor Series, the

range and/or accuracy may be extended by increasing
the number of terms in the polynomial approximation.
For example, to extend the range of the sin u subroutine,
on page 6, to —7 <u < 7m and retain the accuracy of
+0.000 05, the following polynomial would be used:

2 u? u> u? u? uit uis

me S83 St 7
Many of the subroutines in this booklet use poly-

nomial approximations not derived from Taylor Series.

It is nonetheless true that the range and accuracy of these

subroutines may be extended by increasing the number
of terms in the polynomial approximation. Hence, in
order to aid the user in extending the range and/or
accuracy of these subroutines, references which contain
extensions of the polynomial approximation are given
with each subroutine.

2. Programming

The subroutines in this booklet are based primarily
on polynomial evaluation. The polynomials are written in
terms of u, u2, or (u — a)/(u + a). The general method
for programming such an approximating polynomial,

P(u) = a a;,U;.,

k=0

can best be shown by an example.

Suppose n = 4. Then the polynomial becomes

P(u) = a, + au 4 au? + a,u® + aut,
which may be written as

P(u) = a, + u[a, + u[a, + ufa, + au]]].
This factored expression is the form leading to the most
efficient programs for digital computers because [a, +
a,u] involves merely a, times u, added to a;, which result
becomes the new coefficient of u in [a, + uf[a, + a,u]].
The process can be repeated, and we are thereby able to
evaluate a high-degree polynomial by repeatedly perform-
ing a simple multiplication, followed by a simple addi-
tion.

Now suppose that the a’s and the value of u, for
which the polynomial is to be evaluated, are stored in
memory addresses as follows: a, in 20, a, in 21, a, in 22,

a, in 23, a) in 24, and u in 25; then the original poly-
nominal P(u) can be easily evaluated by employing its

factored form in the following program:

Step Instruction Contents of Accumulator

y ee a4

1 B

2 Ke25 au
3 +21 a, + a,u

4 B

5 25 u[a, + a,u]

6 +22 a, + ula, + a,u]

ys B

8 2.5 u[a, + u[a, + a,u]]

9 + 23 a, + u[a, + u[a, + a,u]]

10 B

11 Ke25 u[a, + u[a, + u[a, + a,u]]]
12 +24 ay + ufa, + ula, + ula, + a,u]]] = P(u)

13 P Print P(u).

The foregoing program is linear (not looped). To
save instruction space we can make use of the “H,” “'S,”
and ‘‘U”’ instructions to form a loop and thereby arrive
at the following shorter program:

Step Instruction Contents of Accumulator

0 R.2..0

1 | Od at step 4, when

2 B F= 1) is:a,--a,u;
3 X25 F = 2, is a, + u[a, + a,u];

4 +2F F =3, isa; +-ula, -+ ula, aul);
5 $14 F=4,isa,-+ u[a, + u[a, + ula, + ,u]]].
6 WU 02
7 P Print P(u).

So far, scaling has been neglected, but now we must

consider the scaling that would be involved in such a

problem. First, we must establish sometrules of notation.

Suppose, for example, that we have a number, say

20, which we want to write in a memory address. If we
enter this number into the machine as .200 000 000 00,
where the decimal is the machine decimal, then we say

that the given number, 20, times 10-?, is in the memory.
If we enter this number, 20, into the machine as

.020 000 000 00, where the decimal is the machine
decimal, then we say that the given number, 20, times
10-°, is in the memory. In general, if we enter a given
number into the E101 in such a way that the machine
decimal is p places to the left of the real decimal, then
we say that the given number times 10-? is in the mem-
ory, B-register, or accumulator, as the case may be.

If, in the evaluation of the polynomial, u times 10
is in the memory, then a,u and a, must be made, by cor-
rectly scaling a, and a;, to agree in their power of 10,

since they are to be added. For example, if a, times 10®

is in the memory, then a, times 10%? must be in the
memory since a,u times 10% will be in the accumulator
and must be added to a;. By following this procedure
we can determine the appropriate power of 10 at which
each of the a’s should be written. (It is obvious that the
printed answer will be of the same power of 10 as the
constant ay.)

Thus, in our example, if u times 10-1 is in the mem-
ory and if the a’s have been stored as follows: a, times
10°, a, times 10-1, a, times 10-*, a, times 10-°, and a,
times 10-4, then all the steps used in evaluating the poly-
nomial can be correctly performed.

Scaled Coefficients Partial Sums

a, times 10° a,u times 10-1

a, times 10-1 [a,u + a,] times 10-1

a, times 10-2 [a,u + a,]u times 10-2

a, times 10-3 [[agu + a,]u- a,] times 10-2

a, times 10-4 [[azu + a,]u- a,]u times 10-3

[[[ayu + a,Ju-+ a,Ju- a,] times 10-3

[[[a,u + a,Ju-+ a,Ju- a,]u times 10-4

P(u) times 10-* =
[{[a,u-+ a,Ju-+-a,Ju + a,Ju- a, times 10-4

It is perhaps most efficient in the programming of
polynomial evaluation to begin the scaling with the co-

efficient of the term involving the highest power of u,
say a,, and then to arrange the scale factors of the other
coefficients,» namely... a;4; 85-3,2ans, 4°; tO. be the
same, respectively, as the scale factors of a,u, a,u2,
Ane +a.



SECTION Il

The Commonly Used Subroutines

A. Preliminary Information

This section contains programs of the more useful sub-

routines and furnishes programmed examples of 3 tech-

niques that increase the utility of the E101.
Approximations by power series or rational functions

have been used. The maximum error indicated for each

program is the absolute difference between the function
and the approximation.

For each subroutine these items have been given: the
range of u (i.e., the independent variable of the function
for which the program is usable), the method by which
the given function is approximated, the constants used and

their number, the number of temporary memory addresses,

the scale factors, the switches used, the time required, and

the detailed pinboard program.
The constants required for each program are shown

exactly as they are stored in the memory, but, if in any

given problem it should be convenient to use memory

addresses other than those suggested, the memory addresses

can be changed, provided the program steps referring to
them are also changed.

The exit instruction back to the main program has been

omitted except in the case of the conditional transfer.
The constants in the subroutines are scaled according to

the scaling techniques discussed in Section I. Changes in
the scaling of these constants should be made with caution.

Emphasis has been placed on economy of program steps

rather than on economy of running time. Program steps

have been saved by the use of “'S’” and ‘‘U” instructions to
iterate the basic steps of each subroutine. Another approach,

that of stretching the program out in a linear fashion, in-
stead of iterating with “S’ and “U,” requires less running
time but more program steps. The linear program for cos u,

for instance, requires 18 steps and 3 seconds as against the
iterative (“‘S” and “U’’) requirement of only 12 steps (a
saving of 6 steps) and 4 seconds (a loss of only 1 second

in time).

B. Subroutines

ae

2:

sinu (—7/2 <u < 7/2, win radians)

sinu-(90° <u < 90° of —7/2 <u < 7/2,0 in
degrees or radians, respectively)

sin A (for large angles, A, in radians or degrees)

. cosu (—7/2 <u < 7/2, u in radians)

* COS Un(=-902 <eu, 902 of 7/2? << 7/2; Win
degrees or radians, respectively)

cos A (for large angles, A, in radians or degrees)

7. tau (7/4 <u<7/2or 1 <u — 1) U in
radians

8. arccosu and arcsin u (0 <u <1, result in radians)

10.

EL.

12.

AS,

14.

15.

16.

Te

18.

1D;

20.

2K.

ae:

23.

24.

2).

arccosu and arcsinu (—1/2 <u < 1/2) or
—YV 2/2 <u< Y 2/2, result in radians)

arctanu (—1 <u <1, result in radians)

arctanu (—1 <u <1, result in radians)

arctanu (0 <u < 999, result in radians)

e (lsu <1)
ce (0 <u < 10)

10° (0<u<1)
loo,,u (i <u < 10)

log,u (1 <u < 10)

log,u (1 <u < 10)

sinhu (—4.5 <u < 45)
coshu (—4.5 <u < 4.5)

tanhu (—2 <u< 2)

Vu
Vu
Multiplication of complex numbers:
(a + bi)(c + di) for —.9999 < a,b,c,d < .9999

Division of complex numbers:

(a + bi)/(c + di) for —.9999 < a,b, c,d < .9999

1. sinu
(u in radians)

Range: —7/2 <u<7/2
Accuracy: Maximum error: +0.000 05

Method: Reference—Taylor Series

5 u? u?

st.oT Gt
sinu = u — s +

Number of Constants: 5

Number of Temporary Memory Addresses: 2

Switches Used: F (4 to 8)

Time on E101: 4 seconds

Special Feature: easier to extend in range and accuracy

than other sine routine on this page.

 

 

 

 

 

Constants:

As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

—1/1! 3 0.198 412 698 41— 94

1/5! 1 0.083 333 333 33 95

—1/3! —1 0.016 666 666 67— 96

1 3 0.001 000 000 00 97

1/9! 5 0.275 573 192 24 98
 

Pinboard Program:

Starting point: u times 10-1 is in the accumulator.

u should be shifted to meet this requirement.

0: W 91

it B
2 ok

3 WwW 92
4 R 98

> 2 14

6---B
Tee ee

8 4G OF

2 S If
10° UZ06
11 B
Pe See

13

14
15

Result:

sin u times 10-* is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

2. sinu
(u in radians or degrees)

Range: —90° <u < 90° or —7/2 =u < 7/2

Accuracy: Maximum error: 0.000 000 1

Method: Reference—ElectroData. See also Hastings, pp.
138-140.

Let x = u/90 or u/7/2
then

4

. ey | 2 i:
sinu = sin 5*= Caxk

k=0

Number of Constants: 7

Number of Temporary Memory Addresses: 2

Switches Used: F (3 to 7)

Time on E101: 4.0 seconds

 

 

 

 

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears In Memory - Memory Address

Co i 0.000 015 148 42 97

Cr —1| 0.000 467 376 56— 93

Cs el 0.007 968 967 93 94

Cs —| 0.064 596 371 11— 95

C1 —1 0.157 079 631 85 96

1/90 2 1.111 111 111 10 98 (for u In degrees)

2/ar 1 6.366 197 720 00 98 (foru In radians)
 

Pinboard Program:

Starting point: u (in degrees) times 10-? or u (in
radians) times 10-1 is in the accumulator. u should be

shifted to meet this requirement.

0 B
1 x 98

2) WwW Ol

5 B
A Oh

5 We 92

Go ke oF,

Yi oles)
8 B

D7 x 2
105 ie oe
Ty S 16

12. .U_ 08

13 B
14 X 91

iS

Result:

sin u times 107 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.



SECTION Il

The Commonly Used Subroutines

A. Preliminary Information

This section contains programs of the more useful sub-

routines and furnishes programmed examples of 3 tech-

niques that increase the utility of the E101.
Approximations by power series or rational functions

have been used. The maximum error indicated for each

program is the absolute difference between the function
and the approximation.

For each subroutine these items have been given: the
range of u (i.e., the independent variable of the function
for which the program is usable), the method by which
the given function is approximated, the constants used and

their number, the number of temporary memory addresses,

the scale factors, the switches used, the time required, and

the detailed pinboard program.
The constants required for each program are shown

exactly as they are stored in the memory, but, if in any

given problem it should be convenient to use memory

addresses other than those suggested, the memory addresses

can be changed, provided the program steps referring to
them are also changed.

The exit instruction back to the main program has been

omitted except in the case of the conditional transfer.
The constants in the subroutines are scaled according to

the scaling techniques discussed in Section I. Changes in
the scaling of these constants should be made with caution.

Emphasis has been placed on economy of program steps

rather than on economy of running time. Program steps

have been saved by the use of “'S’” and ‘‘U” instructions to
iterate the basic steps of each subroutine. Another approach,

that of stretching the program out in a linear fashion, in-
stead of iterating with “S’ and “U,” requires less running
time but more program steps. The linear program for cos u,

for instance, requires 18 steps and 3 seconds as against the
iterative (“‘S” and “U’’) requirement of only 12 steps (a
saving of 6 steps) and 4 seconds (a loss of only 1 second

in time).

B. Subroutines

ae

2:

sinu (—7/2 <u < 7/2, win radians)

sinu-(90° <u < 90° of —7/2 <u < 7/2,0 in
degrees or radians, respectively)

sin A (for large angles, A, in radians or degrees)

. cosu (—7/2 <u < 7/2, u in radians)

* COS Un(=-902 <eu, 902 of 7/2? << 7/2; Win
degrees or radians, respectively)

cos A (for large angles, A, in radians or degrees)

7. tau (7/4 <u<7/2or 1 <u — 1) U in
radians

8. arccosu and arcsin u (0 <u <1, result in radians)

10.

EL.

12.

AS,

14.

15.

16.

Te

18.

1D;

20.

2K.

ae:

23.

24.

2).

arccosu and arcsinu (—1/2 <u < 1/2) or
—YV 2/2 <u< Y 2/2, result in radians)

arctanu (—1 <u <1, result in radians)

arctanu (—1 <u <1, result in radians)

arctanu (0 <u < 999, result in radians)

e (lsu <1)
ce (0 <u < 10)

10° (0<u<1)
loo,,u (i <u < 10)

log,u (1 <u < 10)

log,u (1 <u < 10)

sinhu (—4.5 <u < 45)
coshu (—4.5 <u < 4.5)

tanhu (—2 <u< 2)

Vu
Vu
Multiplication of complex numbers:
(a + bi)(c + di) for —.9999 < a,b,c,d < .9999

Division of complex numbers:

(a + bi)/(c + di) for —.9999 < a,b, c,d < .9999

1. sinu
(u in radians)

Range: —7/2 <u<7/2
Accuracy: Maximum error: +0.000 05

Method: Reference—Taylor Series

5 u? u?

st.oT Gt
sinu = u — s +

Number of Constants: 5

Number of Temporary Memory Addresses: 2

Switches Used: F (4 to 8)

Time on E101: 4 seconds

Special Feature: easier to extend in range and accuracy

than other sine routine on this page.

 

 

 

 

 

Constants:

As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

—1/1! 3 0.198 412 698 41— 94

1/5! 1 0.083 333 333 33 95

—1/3! —1 0.016 666 666 67— 96

1 3 0.001 000 000 00 97

1/9! 5 0.275 573 192 24 98
 

Pinboard Program:

Starting point: u times 10-1 is in the accumulator.

u should be shifted to meet this requirement.

0: W 91

it B
2 ok

3 WwW 92
4 R 98

> 2 14

6---B
Tee ee

8 4G OF

2 S If
10° UZ06
11 B
Pe See

13

14
15

Result:

sin u times 10-* is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

2. sinu
(u in radians or degrees)

Range: —90° <u < 90° or —7/2 =u < 7/2

Accuracy: Maximum error: 0.000 000 1

Method: Reference—ElectroData. See also Hastings, pp.
138-140.

Let x = u/90 or u/7/2
then

4

. ey | 2 i:
sinu = sin 5*= Caxk

k=0

Number of Constants: 7

Number of Temporary Memory Addresses: 2

Switches Used: F (3 to 7)

Time on E101: 4.0 seconds

 

 

 

 

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears In Memory - Memory Address

Co i 0.000 015 148 42 97

Cr —1| 0.000 467 376 56— 93

Cs el 0.007 968 967 93 94

Cs —| 0.064 596 371 11— 95

C1 —1 0.157 079 631 85 96

1/90 2 1.111 111 111 10 98 (for u In degrees)

2/ar 1 6.366 197 720 00 98 (foru In radians)
 

Pinboard Program:

Starting point: u (in degrees) times 10-? or u (in
radians) times 10-1 is in the accumulator. u should be

shifted to meet this requirement.

0 B
1 x 98

2) WwW Ol

5 B
A Oh

5 We 92

Go ke oF,

Yi oles)
8 B

D7 x 2
105 ie oe
Ty S 16

12. .U_ 08

13 B
14 X 91

iS

Result:

sin u times 107 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.



3. sinA
(for large angles)

Range: —10,000° < A < 10,000° or

—100 radians < A < 100 radians

Accuracy: Maximum error: +0.000 000 2

Method: Reference—ElectroData
8

sin 27 u = ) Coie ue?
r=)

2r | A| | 27
Number of Constants: 10

Number of Temporary Memory Addresses: 2

Switches Used: F (1 to 10)
Time on E101: 8 seconds

 

 

 

 

 

 

 

 

 

4. cosu

(u in radians)

Range: —7/2 <u< 7/2

Accuracy: Maximum error: +0.000 05

Method: Reference—Taylor Series

u? us up u
re a uae

Number of Constants: 5

Number of Temporary Memory Addresses: 1

Switches Used: F (4 to 8)

Time on E101: 4 seconds

Special Feature: easier to extend in range and accuracy
than cos routine on p. 8

 

 

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

Ciz mee 0.000 606 752 76 90

Cis —2 0.006 406 975 47— ”
Cis nae 0.037 414 651 35 92

C11 el 0.150 465 962 59— 93

Co ey 0.420 407 965 50 94

C7 ape O67 092 335° 4a 95

Cs —2 0.816 047 826 56 96

Cs pan 0.413 416770 10— 97

C1 co! 0.062 831 849 10 98

1/360 3 2.111 717 777 80 99( for A in degrees)

1/2ar 1 1.591 549 430 00  99(for A in radians)
 

Pinboard Program:
Starting point: A (in degrees) times 10-4 or A (in

radians) times 10-* is in the B register. A should be
shifted to meet this requirement.

OK
1 Aa A12

2 Bea
i) B
4 W 88

> x 88

6 W 89
7 R 90
So ad

0 5
10: 2.2630

11 + 9F
12 S 19

13-809
14 xX 858

15

Result:

sin A times 10-2 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

 

Constants:

As Constant Assumed
Constant Scale Factor Appears in Memory Memory Address

—1/6! 2 0.138 888 888 89— 84

1/4! 0 0.041 666 666 67 85

—1/2! =) 0.005 000 000 00— 86

1 —4 0.000 100 000 00 87

1/8! 4 0.248 015 873 02 88
 

Pinboard Program:

Starting point: u times 10-1 is in the accumulator. u
should be shifted to meet this requirement.

0 W 89
1 B
2 x 89
3 W28D

“4 R 88

5 H 14
6 B

TL 89
8...+ 8F
2 S Az

10... U 06
11

12

13

14

15

Result:

cos u times 10-4 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

5. cosu
(u in radians or degrees)

Range: —90° <u < 90° of —7/2 <u < 7/2

Accuracy: Maximum error: +0.000 000 1

Method: Reference—ElectroData
Let x = u/90 or u/7/2

5

ms
Then cos u = cos hess ) Gx?

k=0

Number of Constants: 7

Number of Temporary Memory Addresses: 1

Switches Used: F (4 to 9)

Time on E101: 4.5 seconds

 

 

 

 

 

 

 

 

Constants:

As Constant Assumed

Constant Scale Factor Appears In Memory Memory Address

1/90 2 1.111 111 111 10 83 for u in degrees)

2/ar 1 6.366 197 720 00 83(foruin radians)

Cs a 0.000 091 785 85 84

Ce =| 0.002 086 279 50— 85

C4 eal 0.025 366 935 70 86

Co —1| 0.123 370 053 81— 87

Co —1 0.100 000 000 00 88

Cio al 0.000 002 388 30— 89
 

Pinboard Program:
Starting point: u (in degrees) times 10-* or u (in

radians) times 10-1 is in the accumulator. u should be

shifted to meet this requirement.

0 b
i Xx 85
2 W 82

3 B
4 X 82

5 WwW 82
6- & 89
7 EA
8 B

9: X82
10° =e oe
Tt S 18

12.. U_08
13

14

15

Result:

cos u times 10-1 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

6. cosA
(for large angles)

Range: —10,000° < A < 10,000° or
—100 radians < A < 100 radians

Accuracy: Maximum error: +0.000 000 7

Method: Reference—ElectroData
8

cos 27 u = Gyo
k=0

ee es
bcp ~~ On | A| 2a

Number of Constants: 10

Number of Temporary Memory Addresses: 1

Switches Used: F (1 to 9)
Time on E101: 7 seconds

 

 

 

 

 

 

 

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

Cis act) 0.001 590 159 38 90

Cia eae 0.015 108 285 .35— 1
Ci2 se 0.077 136 624 40 92

Cio a) 05263: 212 932 60 93

Cs =) 0.602 103 183 15 94

Ce 2 0.854 504 972 05— 95

C4 =) 0.649 388 111 90 96

Co = O97 391 8h: Sle 97

Co a) 0.009 999 998 80 98

1/360 3 2.111 117 777 80 99( for A in degrees)

1/2ar 1 1.591 549 430 00 99(forA in radians)
 

Pinboard Program:
Starting point: A (in degrees) times 10-* or A (in

radians) times 10-? is in the accumulator. A should be

shifted to meet this requirement.

0-= B
Lo xX 99
PA ay N17

5 A
4 B

5 = W899
6 = xX 3)
7 ~W 89
8 Hat
9 = R90

10 “2B

11 39

12 2 Oe

13 S 18

14. U 010
15

Result:

cos A times 10-? is in the accumulator. The result can

then be shifted to meet the requirements of any problem.



3. sinA
(for large angles)

Range: —10,000° < A < 10,000° or

—100 radians < A < 100 radians

Accuracy: Maximum error: +0.000 000 2

Method: Reference—ElectroData
8

sin 27 u = ) Coie ue?
r=)

2r | A| | 27
Number of Constants: 10

Number of Temporary Memory Addresses: 2

Switches Used: F (1 to 10)
Time on E101: 8 seconds

 

 

 

 

 

 

 

 

 

4. cosu

(u in radians)

Range: —7/2 <u< 7/2

Accuracy: Maximum error: +0.000 05

Method: Reference—Taylor Series

u? us up u
re a uae

Number of Constants: 5

Number of Temporary Memory Addresses: 1

Switches Used: F (4 to 8)

Time on E101: 4 seconds

Special Feature: easier to extend in range and accuracy
than cos routine on p. 8

 

 

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

Ciz mee 0.000 606 752 76 90

Cis —2 0.006 406 975 47— ”
Cis nae 0.037 414 651 35 92

C11 el 0.150 465 962 59— 93

Co ey 0.420 407 965 50 94

C7 ape O67 092 335° 4a 95

Cs —2 0.816 047 826 56 96

Cs pan 0.413 416770 10— 97

C1 co! 0.062 831 849 10 98

1/360 3 2.111 717 777 80 99( for A in degrees)

1/2ar 1 1.591 549 430 00  99(for A in radians)
 

Pinboard Program:
Starting point: A (in degrees) times 10-4 or A (in

radians) times 10-* is in the B register. A should be
shifted to meet this requirement.

OK
1 Aa A12

2 Bea
i) B
4 W 88

> x 88

6 W 89
7 R 90
So ad

0 5
10: 2.2630

11 + 9F
12 S 19

13-809
14 xX 858

15

Result:

sin A times 10-2 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

 

Constants:

As Constant Assumed
Constant Scale Factor Appears in Memory Memory Address

—1/6! 2 0.138 888 888 89— 84

1/4! 0 0.041 666 666 67 85

—1/2! =) 0.005 000 000 00— 86

1 —4 0.000 100 000 00 87

1/8! 4 0.248 015 873 02 88
 

Pinboard Program:

Starting point: u times 10-1 is in the accumulator. u
should be shifted to meet this requirement.

0 W 89
1 B
2 x 89
3 W28D

“4 R 88

5 H 14
6 B

TL 89
8...+ 8F
2 S Az

10... U 06
11

12

13

14

15

Result:

cos u times 10-4 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

5. cosu
(u in radians or degrees)

Range: —90° <u < 90° of —7/2 <u < 7/2

Accuracy: Maximum error: +0.000 000 1

Method: Reference—ElectroData
Let x = u/90 or u/7/2

5

ms
Then cos u = cos hess ) Gx?

k=0

Number of Constants: 7

Number of Temporary Memory Addresses: 1

Switches Used: F (4 to 9)

Time on E101: 4.5 seconds

 

 

 

 

 

 

 

 

Constants:

As Constant Assumed

Constant Scale Factor Appears In Memory Memory Address

1/90 2 1.111 111 111 10 83 for u in degrees)

2/ar 1 6.366 197 720 00 83(foruin radians)

Cs a 0.000 091 785 85 84

Ce =| 0.002 086 279 50— 85

C4 eal 0.025 366 935 70 86

Co —1| 0.123 370 053 81— 87

Co —1 0.100 000 000 00 88

Cio al 0.000 002 388 30— 89
 

Pinboard Program:
Starting point: u (in degrees) times 10-* or u (in

radians) times 10-1 is in the accumulator. u should be

shifted to meet this requirement.

0 b
i Xx 85
2 W 82

3 B
4 X 82

5 WwW 82
6- & 89
7 EA
8 B

9: X82
10° =e oe
Tt S 18

12.. U_08
13

14

15

Result:

cos u times 10-1 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

6. cosA
(for large angles)

Range: —10,000° < A < 10,000° or
—100 radians < A < 100 radians

Accuracy: Maximum error: +0.000 000 7

Method: Reference—ElectroData
8

cos 27 u = Gyo
k=0

ee es
bcp ~~ On | A| 2a

Number of Constants: 10

Number of Temporary Memory Addresses: 1

Switches Used: F (1 to 9)
Time on E101: 7 seconds

 

 

 

 

 

 

 

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

Cis act) 0.001 590 159 38 90

Cia eae 0.015 108 285 .35— 1
Ci2 se 0.077 136 624 40 92

Cio a) 05263: 212 932 60 93

Cs =) 0.602 103 183 15 94

Ce 2 0.854 504 972 05— 95

C4 =) 0.649 388 111 90 96

Co = O97 391 8h: Sle 97

Co a) 0.009 999 998 80 98

1/360 3 2.111 117 777 80 99( for A in degrees)

1/2ar 1 1.591 549 430 00 99(forA in radians)
 

Pinboard Program:
Starting point: A (in degrees) times 10-* or A (in

radians) times 10-? is in the accumulator. A should be

shifted to meet this requirement.

0-= B
Lo xX 99
PA ay N17

5 A
4 B

5 = W899
6 = xX 3)
7 ~W 89
8 Hat
9 = R90

10 “2B

11 39

12 2 Oe

13 S 18

14. U 010
15

Result:

cos A times 10-? is in the accumulator. The result can

then be shifted to meet the requirements of any problem.



7. tanu
(u in radians)

Range: “* —7/4<u<7/4
mo —1<u<1

Accuracy: Maximum error: “) +0.000 000 7

(5) 220.000: 2

Method: Reference—Taylor Series

tanu — u + Gu® + coy | cul 4. --- 4 Gu
Number of Constants: 10

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 8)

 

 

 

 

 

 

8. arccos u and arcsin u

(result in radians)

Range: 0<u<1l
Accuracy: Maximum error in either function:

+0.000 000 2

Method: Reference—Hastings, page 162
6

aLCcCOSiU —= bs ot) Vi-—u
k=0

arcsin u = 2/2 — arccosu

Number of Constants: 9 or 10

Number of Temporary Memory Addresses: 3

Switches Used: F (3 to 9)
Time on E101: 17 seconds for arccos u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time on E101: 9 seconds Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

Constants:
*ar/2 —| 0.157 079 632 68 50

As Constant Assumed (necessary only
Constant Scale Factor Appears in Memory Memory Address for arcsin u)

ts 0 0.000 590 027 44 90 “ : eee CLM es 7
= 0 0.001 455 834 38 " wi = ch att .: ; a = Cs 0 0.011 146 229 40— 53

: : C4 0 0.026 899 948 20 54

. : pce let : Cs 0 0.048 802 504 30— 55

C4 0 0.021 869 488 50 94 Co 0 0.088 755 628 60 56

C3 0 0.053 968 253 00 95 G1 0 0.214 585 264 70— 57

Co 0 0.133 <333 -3337 233 96 Co 0 1.570 796 172 80 58

C1 0 O33 300 Jaa 0 97 Ce 0 0.002 295 964 80 59

1 0 1.000 000 000 00 98 Pinboard Program:
Co 0 0.000 239 129 11 99

 

Pinboard Program:

Starting point: u times 10° is in the accumulator. u
should be shifted to meet this requirement.

0 W 89
1 B
2 2x 3
32 8B

Ax 99

5 2 10

G = = OF

1 WwW 88

8 xX 35

9 S47
10 U 06
i 8
12 A 21

13°
14° X 89
ID

Result:

tan u times 10-1 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

Starting point: u times 10° is in the accumulator. u
should be shifted to meet this requirement.

Pinboard 1 Pinboard 2

0. W_ A9 X51
i R59 W 49
2 13 As 12

3 B B
4 ™%X 49 R 49
ot OF + 47
GS 18 x51
i U 03 + 47
8 W 48 S218
9 R 49 U 03

10 A 22 B
dt 5 52 xX 48  (arccosu times 10-7)

12 A 5 eA 5

13 He 10 a te 50

14 B (arcsin u times 10-*)
1B) U 20

Result:

The result (0 < arccosu < 7/2 or O < arcsinu <
a/2) times 10+ is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

*These items necessary only for arcsin u.

9. arccos u and arcsin u

(result in radians)

Range: ® —1/2<u<1/2
 —V2/2 <u< V2/2

Accuracy: Maximum error in either function:
(a) +0.000 000 1

0000: 5

Method: Reference—Langdon, page 13
4

arcsin u = 2 fotaeyb tee

k=0

arccosu = 7/2 — arcsinu

Number of Constants: 5 or 6

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 4)
Time on E101: 5 seconds for arccos u

Special Feature: much shorter over a limited range than
routine on p. 9.

10. arctanu
(result in radians)

Range: —1 <u<l
Accuracy: Maximum error: +0.000 002

Methods: Reference—Hastings, page 135

5

arctanWw — ) Cue
k=0

Number of Constants: 6

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 4)

Time on E101: 6 seconds

 

 

 

 

 

 

 

 

 

 

 

Constants: Constants:
As Constant Assumed As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address Constant Scale Factor Appears in Memory Memory Address

Cr =] 0.003 822 898 56 70 Cr -1 0.011 643 287 00— 90

Cs = 0.007 574 473 31 nN Cs anf 0.019 354 346 00 T

Cs = a = 3 . Cs se 0.033 262 347 00— 9
Le _ :

C ad 0.005 315 614 62 14 = = oe =
ar/) a 0.157 079 632 68 5 C1 a 0.001 172 120 00— 94

(necessary only Co —| 0.005 265 332 00 95
for arccos u)

 

Pinboard Program:
Starting point: u times 10° is in the accumulator. u

should be shifted to meet this requirement.

O° W776
1 B

2 2 x 76

3 Wa
4 R 74

5: = He 10

6 2B

ef ake
Se an 7
94 8 A3

10 U 06
il: B
12 X 76 (arcsinu times 10-*)

*13 AS
*14 + 75 (arccosu times 10-*)

15

Result:

The result (—7/6 < arcsinu < 76 or 7/3 < arc-

cosu < 27/3) times 10 is in the accumulator. The
result can then be shifted to meet the requirements of
any problem.

*These items necessary only for arccos u.

 

Pinboard Program:

Starting point: u times 10° is in the accumulator. u
should be shifted to meet this requirement.

O58
t W956
2 96

32D
4 X 94
Dy aes SP.

6 10

1. we OF

3 9]
9 2 oe

10 S13
Tw 7
12 28

13 X96
14

15

Result:

arctanu times 10-1 is in the accumulator. The result
can then be shifted to meet the requirements of any

problem.



7. tanu
(u in radians)

Range: “* —7/4<u<7/4
mo —1<u<1

Accuracy: Maximum error: “) +0.000 000 7

(5) 220.000: 2

Method: Reference—Taylor Series

tanu — u + Gu® + coy | cul 4. --- 4 Gu
Number of Constants: 10

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 8)

 

 

 

 

 

 

8. arccos u and arcsin u

(result in radians)

Range: 0<u<1l
Accuracy: Maximum error in either function:

+0.000 000 2

Method: Reference—Hastings, page 162
6

aLCcCOSiU —= bs ot) Vi-—u
k=0

arcsin u = 2/2 — arccosu

Number of Constants: 9 or 10

Number of Temporary Memory Addresses: 3

Switches Used: F (3 to 9)
Time on E101: 17 seconds for arccos u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time on E101: 9 seconds Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

Constants:
*ar/2 —| 0.157 079 632 68 50

As Constant Assumed (necessary only
Constant Scale Factor Appears in Memory Memory Address for arcsin u)

ts 0 0.000 590 027 44 90 “ : eee CLM es 7
= 0 0.001 455 834 38 " wi = ch att .: ; a = Cs 0 0.011 146 229 40— 53

: : C4 0 0.026 899 948 20 54

. : pce let : Cs 0 0.048 802 504 30— 55

C4 0 0.021 869 488 50 94 Co 0 0.088 755 628 60 56

C3 0 0.053 968 253 00 95 G1 0 0.214 585 264 70— 57

Co 0 0.133 <333 -3337 233 96 Co 0 1.570 796 172 80 58

C1 0 O33 300 Jaa 0 97 Ce 0 0.002 295 964 80 59

1 0 1.000 000 000 00 98 Pinboard Program:
Co 0 0.000 239 129 11 99

 

Pinboard Program:

Starting point: u times 10° is in the accumulator. u
should be shifted to meet this requirement.

0 W 89
1 B
2 2x 3
32 8B

Ax 99

5 2 10

G = = OF

1 WwW 88

8 xX 35

9 S47
10 U 06
i 8
12 A 21

13°
14° X 89
ID

Result:

tan u times 10-1 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

Starting point: u times 10° is in the accumulator. u
should be shifted to meet this requirement.

Pinboard 1 Pinboard 2

0. W_ A9 X51
i R59 W 49
2 13 As 12

3 B B
4 ™%X 49 R 49
ot OF + 47
GS 18 x51
i U 03 + 47
8 W 48 S218
9 R 49 U 03

10 A 22 B
dt 5 52 xX 48  (arccosu times 10-7)

12 A 5 eA 5

13 He 10 a te 50

14 B (arcsin u times 10-*)
1B) U 20

Result:

The result (0 < arccosu < 7/2 or O < arcsinu <
a/2) times 10+ is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

*These items necessary only for arcsin u.

9. arccos u and arcsin u

(result in radians)

Range: ® —1/2<u<1/2
 —V2/2 <u< V2/2

Accuracy: Maximum error in either function:
(a) +0.000 000 1

0000: 5

Method: Reference—Langdon, page 13
4

arcsin u = 2 fotaeyb tee

k=0

arccosu = 7/2 — arcsinu

Number of Constants: 5 or 6

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 4)
Time on E101: 5 seconds for arccos u

Special Feature: much shorter over a limited range than
routine on p. 9.

10. arctanu
(result in radians)

Range: —1 <u<l
Accuracy: Maximum error: +0.000 002

Methods: Reference—Hastings, page 135

5

arctanWw — ) Cue
k=0

Number of Constants: 6

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 4)

Time on E101: 6 seconds

 

 

 

 

 

 

 

 

 

 

 

Constants: Constants:
As Constant Assumed As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address Constant Scale Factor Appears in Memory Memory Address

Cr =] 0.003 822 898 56 70 Cr -1 0.011 643 287 00— 90

Cs = 0.007 574 473 31 nN Cs anf 0.019 354 346 00 T

Cs = a = 3 . Cs se 0.033 262 347 00— 9
Le _ :

C ad 0.005 315 614 62 14 = = oe =
ar/) a 0.157 079 632 68 5 C1 a 0.001 172 120 00— 94

(necessary only Co —| 0.005 265 332 00 95
for arccos u)

 

Pinboard Program:
Starting point: u times 10° is in the accumulator. u

should be shifted to meet this requirement.

O° W776
1 B

2 2 x 76

3 Wa
4 R 74

5: = He 10

6 2B

ef ake
Se an 7
94 8 A3

10 U 06
il: B
12 X 76 (arcsinu times 10-*)

*13 AS
*14 + 75 (arccosu times 10-*)

15

Result:

The result (—7/6 < arcsinu < 76 or 7/3 < arc-

cosu < 27/3) times 10 is in the accumulator. The
result can then be shifted to meet the requirements of
any problem.

*These items necessary only for arccos u.

 

Pinboard Program:

Starting point: u times 10° is in the accumulator. u
should be shifted to meet this requirement.

O58
t W956
2 96

32D
4 X 94
Dy aes SP.

6 10

1. we OF

3 9]
9 2 oe

10 S13
Tw 7
12 28

13 X96
14

15

Result:

arctanu times 10-1 is in the accumulator. The result
can then be shifted to meet the requirements of any

problem.



 

11. arctanu 12. arctanu
(result in radians) (result in radians)

Range: 0 <u < 999.0
Range: —1 <u<l :

Accuracy: Maximum error: +0.000 09

Accuracy: Maximum error: +£0.000 08 Method: Reference—Hastings, page 133

Method: Reference—Hastings, page 133 8 _— 1\2H
— ; igi arctan u = 7/4 + ye can( 54)

=
k=0

arctanu = ) Cyne
k=0

Number of Constants: 7

Number of Temporary Memory Addresses: 3

Switches Used: F (0 to 4)

Time on E101: 6 seconds

Number of Constants: 5

Number of Temporary Memory Addresses: 3

Special Feature: true for greater range of argument than

Switches Used: F (0 to 4) other routine on this page and the one

 

 

 

 

 

 

 

 

 

on p. 10.

Time on E101: 5 seconds pp ne
As Constant Assumed

Conlin. Constant Scale Factor Appears in Memory Memory Address

As Constant Assumed Cs —1 0.014 627 660 00 80

Constant Scale Factor Appears in Memory Memory Address a 4 0.032 118 190 00— 81

C5 —1 0.014 627 660 00 80 C1 —1 0.099 921 500 00 82

C3 —1 0.032 118 190 00— 81 a/4 —1 0.078 539 800 00 83

C1 —1 0.099 921 500 00 82 2 —3 0.002 000 000 00 84

zero 0 0.000 000 000 00 83 1 —3 0.001 000 000 00 85

C7 al 0.003 899 290 00— 90 Cr —1 0.003 899 290 00— 90

Pinboard Program: Pinboard Program:

Starting point: u times 10° is in the accumulator. u
should be shifted to meet this requirement.

Starting point: u times 10-° is in the accumulator. u
should be shifted to meet this requirement.

O W935 0) a. 8)
1 B 1 B

2... 2 93 2° = 84

3 2W 92 3. + 93
4 Wo91 4°: R 93

B) Fie10 > B

6. 8 6. K 93

Lee SE 7 N91
8 + 8F 8 W 92

9 S13 9 FI -10

10 UW 06 10 B

11 Li OF

12 52 + 8F
13 13 S 13

14 14 U 0:10
5 15

Result: Result:

arctan u times 10-1 is in the accumulator. The result arctan u times 10-1 is in the accumulator. The result

can then be shifted to meet the requirements of any can then be shifted to meet the requirements of any

problem. problem.

11

Range: —1 <u<1

13. ev

Accuracy: Maximum error: +0.000 005

Method: Reference—ElectroData

6

el ) qu
k=0

Number of Constants: 7

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 6)

 

Range: 0 <u< 10

Accuracy: Maximum error: +0.000 03

Method: Reference—Hastings, page 182

et= 7p cat)

Number of Constants: 10

Number of Temporary Memory Addresses: 1

Switches Used: F (0 to 8)

Time on E101: 8 seconds

 

 

 

 

 

 

 

 

 

 

Constants:
Time on E101: 6 seconds As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

esos cr +4 0.012 158 000 00 70

As Constant Assumed Ce 4 0.022 049 330 00 711

Constant Scale Factor Appears in Memory Memory Address me 7) 0.027 728 680 00 -
Cs 1 0.086 805 555 50 60 C4 +1 0.026 697 599 60 73

C4 0 0.041 635 664 70 61 Cs 0 0.020 341 621 28 74

C3 —1 0.016 649 305 60 62 Co —1 0.012 562 628 30 75

Co —2 0.005 000 062 00 63 C1 —2 0.004 998 207 00 716

C1 —3 0.001 000 021 70 64 Co —3 0.001 000 000 00 71

Co —4 0.000 100 000 00 65 1 —6 0.000 001 000 00 78

Co 2 0.143 849 206 30 66 Cs +5 05007 129 530 25 719
 

Pinboard Program:

Starting point: u times 10-1 is in the accumulator.

u should be shifted to meet this requirement.

Result:

e2" times 10-2 is in the accumulator; e" times 107? is

in memory address 68. The results can then be shifted
to meet the requirements of any problem.

0= W 67

1. R66
2 H 410

32. 3B

4 2 X 7367

5 + OF

6 S15
7 03
S = fA a3

9 B

10 W 68
1 xX 68
12

13

14
15

12

Pinboard Program:

Starting point: u times 10 is in the accumulator.

u should be shifted to meet this requirement.

0 —W 89
1 R~79
2:3 ta 10

5 B
A X89
52 + 7E

6 Soy
7 03
8 W 89
9 B

10° X89
aiaE B
12 R 78
43 = 59
14

1
Result:

e" times 10° is in memory address 89. The result
can then be shifted to meet the requirements of any

problem.



 

11. arctanu 12. arctanu
(result in radians) (result in radians)

Range: 0 <u < 999.0
Range: —1 <u<l :

Accuracy: Maximum error: +0.000 09

Accuracy: Maximum error: +£0.000 08 Method: Reference—Hastings, page 133

Method: Reference—Hastings, page 133 8 _— 1\2H
— ; igi arctan u = 7/4 + ye can( 54)

=
k=0

arctanu = ) Cyne
k=0

Number of Constants: 7

Number of Temporary Memory Addresses: 3

Switches Used: F (0 to 4)

Time on E101: 6 seconds

Number of Constants: 5

Number of Temporary Memory Addresses: 3

Special Feature: true for greater range of argument than

Switches Used: F (0 to 4) other routine on this page and the one

 

 

 

 

 

 

 

 

 

on p. 10.

Time on E101: 5 seconds pp ne
As Constant Assumed

Conlin. Constant Scale Factor Appears in Memory Memory Address

As Constant Assumed Cs —1 0.014 627 660 00 80

Constant Scale Factor Appears in Memory Memory Address a 4 0.032 118 190 00— 81

C5 —1 0.014 627 660 00 80 C1 —1 0.099 921 500 00 82

C3 —1 0.032 118 190 00— 81 a/4 —1 0.078 539 800 00 83

C1 —1 0.099 921 500 00 82 2 —3 0.002 000 000 00 84

zero 0 0.000 000 000 00 83 1 —3 0.001 000 000 00 85

C7 al 0.003 899 290 00— 90 Cr —1 0.003 899 290 00— 90

Pinboard Program: Pinboard Program:

Starting point: u times 10° is in the accumulator. u
should be shifted to meet this requirement.

Starting point: u times 10-° is in the accumulator. u
should be shifted to meet this requirement.

O W935 0) a. 8)
1 B 1 B

2... 2 93 2° = 84

3 2W 92 3. + 93
4 Wo91 4°: R 93

B) Fie10 > B

6. 8 6. K 93

Lee SE 7 N91
8 + 8F 8 W 92

9 S13 9 FI -10

10 UW 06 10 B

11 Li OF

12 52 + 8F
13 13 S 13

14 14 U 0:10
5 15

Result: Result:

arctan u times 10-1 is in the accumulator. The result arctan u times 10-1 is in the accumulator. The result

can then be shifted to meet the requirements of any can then be shifted to meet the requirements of any

problem. problem.

11

Range: —1 <u<1

13. ev

Accuracy: Maximum error: +0.000 005

Method: Reference—ElectroData

6

el ) qu
k=0

Number of Constants: 7

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 6)

 

Range: 0 <u< 10

Accuracy: Maximum error: +0.000 03

Method: Reference—Hastings, page 182

et= 7p cat)

Number of Constants: 10

Number of Temporary Memory Addresses: 1

Switches Used: F (0 to 8)

Time on E101: 8 seconds

 

 

 

 

 

 

 

 

 

 

Constants:
Time on E101: 6 seconds As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

esos cr +4 0.012 158 000 00 70

As Constant Assumed Ce 4 0.022 049 330 00 711

Constant Scale Factor Appears in Memory Memory Address me 7) 0.027 728 680 00 -
Cs 1 0.086 805 555 50 60 C4 +1 0.026 697 599 60 73

C4 0 0.041 635 664 70 61 Cs 0 0.020 341 621 28 74

C3 —1 0.016 649 305 60 62 Co —1 0.012 562 628 30 75

Co —2 0.005 000 062 00 63 C1 —2 0.004 998 207 00 716

C1 —3 0.001 000 021 70 64 Co —3 0.001 000 000 00 71

Co —4 0.000 100 000 00 65 1 —6 0.000 001 000 00 78

Co 2 0.143 849 206 30 66 Cs +5 05007 129 530 25 719
 

Pinboard Program:

Starting point: u times 10-1 is in the accumulator.

u should be shifted to meet this requirement.

Result:

e2" times 10-2 is in the accumulator; e" times 107? is

in memory address 68. The results can then be shifted
to meet the requirements of any problem.

0= W 67

1. R66
2 H 410

32. 3B

4 2 X 7367

5 + OF

6 S15
7 03
S = fA a3

9 B

10 W 68
1 xX 68
12

13

14
15

12

Pinboard Program:

Starting point: u times 10 is in the accumulator.

u should be shifted to meet this requirement.

0 —W 89
1 R~79
2:3 ta 10

5 B
A X89
52 + 7E

6 Soy
7 03
8 W 89
9 B

10° X89
aiaE B
12 R 78
43 = 59
14

1
Result:

e" times 10° is in memory address 89. The result
can then be shifted to meet the requirements of any

problem.



15. “10°

Range: 0<u<1

Accuracy: Maximum error: +0.000 000 05

Method: Reference—Hastings, page 144

10° = [1 ou eu a cu?

Number of Constants: 8

Number of Temporary Memory Addresses: 1

Switches Used: F (2 to 8)

Time on E101: 7 seconds

 

16. logio U

Range: 1 <u< 10

Accuracy: Maximum error: +0.000 05

Method: Reference—Hastings, page 126

4 naepee V 10\ 2k+1

10 /; = 2k+1 (; ae V 2

Number of Constants: 6

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 3)

Time on E101: 5 seconds

17. tog, U

Range: 1 <u < 10

Accuracy: Maximum error: +0.000 05

Method: Reference—Hastings, page 126

baieog. u = M O19 U

ut. u — V10\2"4

Number of Constants: 6

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 3)

Time on E101: 5 seconds

18. log, u

Range: 1 <u < 10

Accuracy: Maximum error: +0.000 000 003

Method: Reference—Langdon, page 10
6

log, u = log.c + Ey Caves.) wuere
ao

i
- UG

Number of Constants: 10

 

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 6)

Time on E101: 10 seconds

Special Feature: increased accuracy over other log routine
on this page.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constants:

As Constant Assumed Constants:
Constant Scale Factor Appears in Memory Memory Address

As Constant Assumed
Cr 0 0.000 932 642 67 90 Constant Scale Factor Appears in Memory Memory Address

Ce 0 0.002 554 917 9% 1 Cs —1 0.025 432 750 00 50

Cs 0 0.017 421 119 88 92 C3 —1 0.027 738 390 00 60

C4 0 0.072 951 736 66 93 C1 =| 0.086 902 860 00 61

Cs 0 0.254 393 574 84 94 1/2 —| 0.050 000 000 00 62

Co 0 0.662 730 884 29 95 V0 4 0.003 162 278 00 63

C1 0 (51. 292, 776: 03 96 2V 10 —3 0.006 324 556 00 64

1 0 1.000 000 000 00 97
 

Pinboard Program:

Starting point: u times 10° is in the accumulator.
u should be shifted to meet this requirement.

@) Et Az

if B
2X 90

5 oe ol
4 W 98

> x 98

6 2 ok
7 aye iLy/

8 U 04
9 W 98

10 = A 21

11 B
12: 98

13

14
15

Result:

10" times 10-1 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

Pinboard Program:

Starting point: u times 10° is in the accumulator.

u should be shifted to meet this requirement.

0 4. 63
1 B
2. 2 5364
5 = 2
A R52
5 = 3B

6 = X52
7 W511
S.-H 10

0-2 BD

10 = XX 5F
fl = + GF

12 S 12

13. -U 09
14
15

Result:

log,,u times 10-1 is in the accumulator. The result
can then be shifted to meet the requirements of any

problem.

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constants: Constants:
As Constant Assumed As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address Constant Scale Factor Appears in Memory Memory Address

Cs/M 1 0.058 561 070 00 50 C11 =) 0.000 572 283 27 80

¢3/M a 0.063 870 000 00 60 Co ood 0.002 503 410 93 81

170M yy 0.115 129 260 00 62 2 a sk I I ea ¢ =
V 10 <4 0.003 162 278 00 63 = : oe .Vi : rere rae : C1 =) 0.020 000 000 37 85

: loge ¢ =) 0.011 512 925 46 86

fe =) 0.031 622 77
Pinboard Program: billie -

2c =) 0.063 245 553 20 88

The program is the same as that for log,, u. Cis —2 0.004 105 970 44 89
 

Pinboard Program:
Starting point: u times 10-* is in the accumulator.

u should be shifted to meet this requirement.

Pinboard 1 Pinboard 2

0) = 37 0 B
af B 1 x 99
2 — 88 2 + 86
3 99 BS

4 R 99 4
5 B 5

6: x 99 6

ype | 7

8 H: 10 8

9 R 89 2
10 W 98 10

ie Xx. 98 11

12 + 8F 12

13 S15 13

14 U0 10 14

15 U 20 ile)

Result:

log,u times 10~* is in the accumulator. The result
can then be shifted to meet the requirements of any

problem.



15. “10°

Range: 0<u<1

Accuracy: Maximum error: +0.000 000 05

Method: Reference—Hastings, page 144

10° = [1 ou eu a cu?

Number of Constants: 8

Number of Temporary Memory Addresses: 1

Switches Used: F (2 to 8)

Time on E101: 7 seconds

 

16. logio U

Range: 1 <u< 10

Accuracy: Maximum error: +0.000 05

Method: Reference—Hastings, page 126

4 naepee V 10\ 2k+1

10 /; = 2k+1 (; ae V 2

Number of Constants: 6

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 3)

Time on E101: 5 seconds

17. tog, U

Range: 1 <u < 10

Accuracy: Maximum error: +0.000 05

Method: Reference—Hastings, page 126

baieog. u = M O19 U

ut. u — V10\2"4

Number of Constants: 6

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 3)

Time on E101: 5 seconds

18. log, u

Range: 1 <u < 10

Accuracy: Maximum error: +0.000 000 003

Method: Reference—Langdon, page 10
6

log, u = log.c + Ey Caves.) wuere
ao

i
- UG

Number of Constants: 10

 

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 6)

Time on E101: 10 seconds

Special Feature: increased accuracy over other log routine
on this page.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constants:

As Constant Assumed Constants:
Constant Scale Factor Appears in Memory Memory Address

As Constant Assumed
Cr 0 0.000 932 642 67 90 Constant Scale Factor Appears in Memory Memory Address

Ce 0 0.002 554 917 9% 1 Cs —1 0.025 432 750 00 50

Cs 0 0.017 421 119 88 92 C3 —1 0.027 738 390 00 60

C4 0 0.072 951 736 66 93 C1 =| 0.086 902 860 00 61

Cs 0 0.254 393 574 84 94 1/2 —| 0.050 000 000 00 62

Co 0 0.662 730 884 29 95 V0 4 0.003 162 278 00 63

C1 0 (51. 292, 776: 03 96 2V 10 —3 0.006 324 556 00 64

1 0 1.000 000 000 00 97
 

Pinboard Program:

Starting point: u times 10° is in the accumulator.
u should be shifted to meet this requirement.

@) Et Az

if B
2X 90

5 oe ol
4 W 98

> x 98

6 2 ok
7 aye iLy/

8 U 04
9 W 98

10 = A 21

11 B
12: 98

13

14
15

Result:

10" times 10-1 is in the accumulator. The result can

then be shifted to meet the requirements of any problem.

Pinboard Program:

Starting point: u times 10° is in the accumulator.

u should be shifted to meet this requirement.

0 4. 63
1 B
2. 2 5364
5 = 2
A R52
5 = 3B

6 = X52
7 W511
S.-H 10

0-2 BD

10 = XX 5F
fl = + GF

12 S 12

13. -U 09
14
15

Result:

log,,u times 10-1 is in the accumulator. The result
can then be shifted to meet the requirements of any

problem.

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constants: Constants:
As Constant Assumed As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address Constant Scale Factor Appears in Memory Memory Address

Cs/M 1 0.058 561 070 00 50 C11 =) 0.000 572 283 27 80

¢3/M a 0.063 870 000 00 60 Co ood 0.002 503 410 93 81

170M yy 0.115 129 260 00 62 2 a sk I I ea ¢ =
V 10 <4 0.003 162 278 00 63 = : oe .Vi : rere rae : C1 =) 0.020 000 000 37 85

: loge ¢ =) 0.011 512 925 46 86

fe =) 0.031 622 77
Pinboard Program: billie -

2c =) 0.063 245 553 20 88

The program is the same as that for log,, u. Cis —2 0.004 105 970 44 89
 

Pinboard Program:
Starting point: u times 10-* is in the accumulator.

u should be shifted to meet this requirement.

Pinboard 1 Pinboard 2

0) = 37 0 B
af B 1 x 99
2 — 88 2 + 86
3 99 BS

4 R 99 4
5 B 5

6: x 99 6

ype | 7

8 H: 10 8

9 R 89 2
10 W 98 10

ie Xx. 98 11

12 + 8F 12

13 S15 13

14 U0 10 14

15 U 20 ile)

Result:

log,u times 10~* is in the accumulator. The result
can then be shifted to meet the requirements of any

problem.



19. sinhu

Range: —4.5 <u < 45
Accuracy: Maximum error: +0.000 05

Method: Reference—Taylor Series

u3 u> y2n-1
— ee

where n = 11

Number of Constants: 11

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 9)

Time on E101: 10 seconds

20. coshu

Range: —4.5 <u < 4.5

Accuracy: Maximum error: +0.000 05

Method: Reference—Taylor Series

= u2 ut y2n
cshu=1+ 5+ 4+ + Gayl?

where n = 10

Number of Constants: 11

Number of Temporary Memory Addresses: 1

Switches Used: F (1 to 10)

Time on E101: 9 seconds

 

 

 

 

 

 

 

 

 

 

 

Constants: Constants:
As Constant Assumed As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address Constant Scale Factor Appears in Memory Memory Address

1/21! 17 0.001 957 294 11 69 1 4 0.000 100 000 00 69

1/19! 15 0.008 220 635 25 70 1/20! 16 0.004 110 317 62 70

1/17! 13 0.028 114 572 54 11 1/18! 14 0.015 619 206 97 11

1/15! 11 0.076 471 637 32 12 1/16! 12 0.047 794 773 32 12

1/13! 9 0.160 590 438 38 23 1/14! 10 0.114 707 455 98 73

1/11! 7 0.250 521 083 85 14 1/12! 8 0.208 767 569 88 14

1/9! 5 02215573 192-24 15 1/10! 6 0.275.513. 192: 24 75

1/7! 3 0.198 412 698 41 16 1/8! 4 0.248 015 873 02 76

1/5! 1 0.083 333 333 33 11 1/6! 2 0.138 888 888 89 11

1/3! —1| 0.016 666 666 67 78 1/4! 0 0.041 666 666 67 78

1 3 0.001 000 000 00 19 1/2! —2 0.005 000 000 00 19
 

Pinboard Program:

Starting point: u times 10+ is in the accumulator.
u should be shifted to meet this requirement.

0 B
1 EW 68

2 x 68

3. B
4° 3669
5 HO
6. oe
7 NEG
8 x G7

9 S 18

10° =< WU 06
SB ee 1)
12.2 B
13 Xx 68

14
15

Result:

sinhu times 10-* is in the accumulator. The result
can then be shifted to meet the requirements of any
problem.

15

Pinboard Program:

Starting point: u times 10-1 is in the accumulator.
u should be shifted to meet this requirement.

OB
1 W 68

2 x68
3 -B

4° XK 710

5 HAL
6 7E

LW 68

8. x 68

9 S 19
10. =U 06

11 + 69

12

13

14

15

Result:

coshu times 10-4 is in the accumulator. The result
can then be shifted to meet the requirements of any
problem.

21. tanhu

Range: —~2 <u < 2

Accuracy: Maximum error: 0.000 8

Method: Reference—ElectroData

 

 

 

a c+ .245= —___—_ h —————tanh u dad’ where d - b:

e— p+ .105,b— a*.anda — .10u

Number of Constants: 3

Number of Temporary Memory Addresses: 3

Switches Used: none

Time on E101: 1.9 seconds

Constants:

As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

105 0 0.105 000 000 00 00

245 0 0.245 000 000 00 01

100 0 0.100 000 000 00 02
 

Pinboard Program:

Starting point: u times 10+ is in the accumulator.

u should be shifted to meet this requirement.

0 = B
1 W 03

2 eK 03

3 W 04
4 + 00

5 270

6 +01
TE et)
8 . R 04

os -B

10 * OD

11 + 02

12 B
13° R03
14 + 05

15

Result:

tanh u times 10° is in memory address 05. The result
can then be shifted to meet the requirements of any
problem.

16

22, Nu
(see note below)

Range: Unrestricted, provided u times 10™ is scaled so

that n is an even integer and u times 10 is less

than 1.

Accuracy: Maximum error in Y u times 10-*/? is less than
+0.000 000 000 01, if b = 6 in step 9.

Method: Newton approximation:

ur u
2 Xj

Number of Constants: 1

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 6)

Time on E101: 1.17 seconds per iteration

Special Feature: fewer program steps than routine on

p. 17.

Constants:
As Constant Assumed

Appears in Memory Memory Address

0.500 000 000 00 90

Constant Scale Factor

1/2 0

 

Pinboard Program:
Starting point: u times 10-" is in the accumulator.

u should be shifted to meet this requirement.

0 B
1 0
22 eon
gab Ne

4 R91
De ce

6 a 90
ieee
8 B

od Sb
10.2 U: 04
11

12

13
14
16)

Result:

Vu times 10-*/? is in the accumulator and in the B
register.

Note: u times 10 must be scaled and placed in the ac-

cumulator before control is transferred to the sub-routine.
If the leading digit of u times 10 is the first or

second digit after the machine decimal point, then 7 iter-
ations (obtained by setting “b’ = 6 in step 9) will give
the accuracy specified above.

Study of the range of numbers whose square roots
are to be taken will give some indication of the number
of iterations required to achieve the desired accuracy; the
“b” of step 9 can be pinned accordingly.



19. sinhu

Range: —4.5 <u < 45
Accuracy: Maximum error: +0.000 05

Method: Reference—Taylor Series

u3 u> y2n-1
— ee

where n = 11

Number of Constants: 11

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 9)

Time on E101: 10 seconds

20. coshu

Range: —4.5 <u < 4.5

Accuracy: Maximum error: +0.000 05

Method: Reference—Taylor Series

= u2 ut y2n
cshu=1+ 5+ 4+ + Gayl?

where n = 10

Number of Constants: 11

Number of Temporary Memory Addresses: 1

Switches Used: F (1 to 10)

Time on E101: 9 seconds

 

 

 

 

 

 

 

 

 

 

 

Constants: Constants:
As Constant Assumed As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address Constant Scale Factor Appears in Memory Memory Address

1/21! 17 0.001 957 294 11 69 1 4 0.000 100 000 00 69

1/19! 15 0.008 220 635 25 70 1/20! 16 0.004 110 317 62 70

1/17! 13 0.028 114 572 54 11 1/18! 14 0.015 619 206 97 11

1/15! 11 0.076 471 637 32 12 1/16! 12 0.047 794 773 32 12

1/13! 9 0.160 590 438 38 23 1/14! 10 0.114 707 455 98 73

1/11! 7 0.250 521 083 85 14 1/12! 8 0.208 767 569 88 14

1/9! 5 02215573 192-24 15 1/10! 6 0.275.513. 192: 24 75

1/7! 3 0.198 412 698 41 16 1/8! 4 0.248 015 873 02 76

1/5! 1 0.083 333 333 33 11 1/6! 2 0.138 888 888 89 11

1/3! —1| 0.016 666 666 67 78 1/4! 0 0.041 666 666 67 78

1 3 0.001 000 000 00 19 1/2! —2 0.005 000 000 00 19
 

Pinboard Program:

Starting point: u times 10+ is in the accumulator.
u should be shifted to meet this requirement.

0 B
1 EW 68

2 x 68

3. B
4° 3669
5 HO
6. oe
7 NEG
8 x G7

9 S 18

10° =< WU 06
SB ee 1)
12.2 B
13 Xx 68

14
15

Result:

sinhu times 10-* is in the accumulator. The result
can then be shifted to meet the requirements of any
problem.

15

Pinboard Program:

Starting point: u times 10-1 is in the accumulator.
u should be shifted to meet this requirement.

OB
1 W 68

2 x68
3 -B

4° XK 710

5 HAL
6 7E

LW 68

8. x 68

9 S 19
10. =U 06

11 + 69

12

13

14

15

Result:

coshu times 10-4 is in the accumulator. The result
can then be shifted to meet the requirements of any
problem.

21. tanhu

Range: —~2 <u < 2

Accuracy: Maximum error: 0.000 8

Method: Reference—ElectroData

 

 

 

a c+ .245= —___—_ h —————tanh u dad’ where d - b:

e— p+ .105,b— a*.anda — .10u

Number of Constants: 3

Number of Temporary Memory Addresses: 3

Switches Used: none

Time on E101: 1.9 seconds

Constants:

As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

105 0 0.105 000 000 00 00

245 0 0.245 000 000 00 01

100 0 0.100 000 000 00 02
 

Pinboard Program:

Starting point: u times 10+ is in the accumulator.

u should be shifted to meet this requirement.

0 = B
1 W 03

2 eK 03

3 W 04
4 + 00

5 270

6 +01
TE et)
8 . R 04

os -B

10 * OD

11 + 02

12 B
13° R03
14 + 05

15

Result:

tanh u times 10° is in memory address 05. The result
can then be shifted to meet the requirements of any
problem.

16

22, Nu
(see note below)

Range: Unrestricted, provided u times 10™ is scaled so

that n is an even integer and u times 10 is less

than 1.

Accuracy: Maximum error in Y u times 10-*/? is less than
+0.000 000 000 01, if b = 6 in step 9.

Method: Newton approximation:

ur u
2 Xj

Number of Constants: 1

Number of Temporary Memory Addresses: 2

Switches Used: F (0 to 6)

Time on E101: 1.17 seconds per iteration

Special Feature: fewer program steps than routine on

p. 17.

Constants:
As Constant Assumed

Appears in Memory Memory Address

0.500 000 000 00 90

Constant Scale Factor

1/2 0

 

Pinboard Program:
Starting point: u times 10-" is in the accumulator.

u should be shifted to meet this requirement.

0 B
1 0
22 eon
gab Ne

4 R91
De ce

6 a 90
ieee
8 B

od Sb
10.2 U: 04
11

12

13
14
16)

Result:

Vu times 10-*/? is in the accumulator and in the B
register.

Note: u times 10 must be scaled and placed in the ac-

cumulator before control is transferred to the sub-routine.
If the leading digit of u times 10 is the first or

second digit after the machine decimal point, then 7 iter-
ations (obtained by setting “b’ = 6 in step 9) will give
the accuracy specified above.

Study of the range of numbers whose square roots
are to be taken will give some indication of the number
of iterations required to achieve the desired accuracy; the
“b” of step 9 can be pinned accordingly.



23. Niu

(see note below)

Range: Unrestricted, provided u times 10™ is scaled so

that n is an even integer and u times 10- is less

than 1.

Accuracy: Maximum error in Yu is 5 in the least signifi-
cant digit of the accumulator.

Method: Newton approximation:

iL uXi = > (« a6 =)
i

Xiaa = Vu when | x; — x;,,|< 0.000 000 000 05

Number of Constants: 1

Number of Temporary Memory Addresses: 3

Switches Used: none

Time on E101: 6 seconds

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

1/2 0 0.500 000 000 00 90

Pinboard Program:

Starting point: u times 10-" is in the accumulator.
u should be shifted to meet this requirement.

O- B
be xX 90
Z W 91

3 ROL
4 + 92

5 X90
6 a 92

hese EST:

8 5B

oS = 22
10 om
11 A A

12 A 24
13 C 03
14 R 93

15

Result:

Vu times 10-*/? is in the accumulator, in the B
register, and in memory address 93.

Note: u times 10° must be scaled and placed in the ac-

cumulator before control is transferred to the subroutine.
If the leading digit of u times 10 is the first or

second digit after the machine decimal point, then a good
first approximation to Yu times 10-*/2 is obtained, and
consequently the sequence of approximations converges

very rapidly.

24. Multiplication of complex numbers

Range: u + vi = (a + bi)(c + di)

— 90) = od ee

Accuracy: Depends on the accuracy of a, b, c, and d aed
on the scale factors at which these numbers are

entered.

Method: (a + bi)(c + di) = (ac— bd) + (ad + bc)i

Number of Constants: 4

Number of Temporary Memory Addresses: 2

Switches Used: none

Time on E101: 2 seconds

 

Constants:

As Constant Assumed
Constant Scale Factor Appears in Memory Memory Address

a Both a and b must be entered with the 20
b same scale factor; similarly, c and d 21

c must be entered with the same scale 22

d factor. 23

Pinboard Program:

Starting point: a,b, c,andd in the assumed memory
addresses.

0 Re
1 B
2 x 25

32 WwW 24
4 XK 22

5 = W 25

6 R 20

Zs B
8. 3 >
> a 2)

10 W 20

11 me 22

2 — 24
13> W221
14

15

Result:

The real part of the result, (ac — bd), is stored in
memory address 21 and in the accumulator. The imag-
inary part of the result, (ad + bc), is stored in memory
address 20.

25. Division of complex numbers

Range: u + vi = (a + bi)/(c + di)

— .9999 < a,b, c,d < .9999

Accuracy: Depends on the accuracy of a, b, c, and d and
on the scale factors at which these numbers are

entered.

a+bi act+tbd , bo—ad.
Method: ne ate ae 

Number of Constants: 4

Number of Temporary Memory Addresses: 2

Switches Used: none

Time on E101: 4.5 seconds

 

Constants:

As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

a Both a and b must be entered with the 20
b same scale factor; similarly, ¢ and d 21

(3 must be entered with the same scale Hy

—d factor. 23

Pinboard Program:

Starting point: a, b, c, and —d in assumed memory
addresses.

Pinboard 1 Pinboard 2

0 R 21 R 22

1 B B
Z XxX 23 xe DD

3 WW 24 W 24
4 x 22 R 23

5 Ww 25 B
6 R 20 x23
VE B + 24

3. x 23 B

9 a 2) R20
10 W 20 + 20
TT «22 Rei
ue, — 24 at

13 We, 21

14a We 20)

15

Result:

The real part of the result, (ac + bd)/(c? + d?), is

stored in memory address 21. The imaginary part,
(be — ad) /(c? + d?), is stored in memory address 20.

C. Techniques Which Increase the Utility of the E101

1. Example of Constant Increments Approach
sin ku, and cos ku, for unit increments of k

2. Example of Compound Functions Approach
C2 si

3. Example of Multi-purpose Approach

1. Example of Constant Increments Approach
sin ku, and cos ku, for unit increments of k

Range: All u, and k within the limits of the E101.

Accuracy: Depends on the number of increments used. An
example of the maximum error to be expected

is as follows: uy = .04 radians; number of in-
crements = 160; maximum error of +2 X 10-7,

assuming sin uy and cos uy are accurate to 10-19.

Method:
sin kup = cos ug sin (kK — 1)u,

+ simu, cos (k— 1)uy

cos ku, = cos uy cos (k — 1)uy

— sin uy sin (k — 1)up

Number of Constants: 4

Number of Temporary Memory Addresses: 2

Switches Used: none

Time on E101: 2 seconds for each k

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

sino 0 0.000 000 000 00 40

sin Uo 0 sin Uo times 10° 4]

COS Uo 0 COS Uo times 10° 42

cos 0 0 1.000 000 000 00 43
 

Pinboard Program:
Starting point: sin 0, sin ug, cos 0, and cos uy times

10° are in assumed memory addresses.

Oo R 4i1

i B
2

3 W 44
4 X 40
5.2 W455
6 AR 42

1 3B

8 xX 40

9 + 44
10 W 40
it x 43
12 — 45
13 W 43
14

1
Result:

sin ku, times 10° appears in memory address 40;
cos ku, times 10°, in memory address 43.



23. Niu

(see note below)

Range: Unrestricted, provided u times 10™ is scaled so

that n is an even integer and u times 10- is less

than 1.

Accuracy: Maximum error in Yu is 5 in the least signifi-
cant digit of the accumulator.

Method: Newton approximation:

iL uXi = > (« a6 =)
i

Xiaa = Vu when | x; — x;,,|< 0.000 000 000 05

Number of Constants: 1

Number of Temporary Memory Addresses: 3

Switches Used: none

Time on E101: 6 seconds

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

1/2 0 0.500 000 000 00 90

Pinboard Program:

Starting point: u times 10-" is in the accumulator.
u should be shifted to meet this requirement.

O- B
be xX 90
Z W 91

3 ROL
4 + 92

5 X90
6 a 92

hese EST:

8 5B

oS = 22
10 om
11 A A

12 A 24
13 C 03
14 R 93

15

Result:

Vu times 10-*/? is in the accumulator, in the B
register, and in memory address 93.

Note: u times 10° must be scaled and placed in the ac-

cumulator before control is transferred to the subroutine.
If the leading digit of u times 10 is the first or

second digit after the machine decimal point, then a good
first approximation to Yu times 10-*/2 is obtained, and
consequently the sequence of approximations converges

very rapidly.

24. Multiplication of complex numbers

Range: u + vi = (a + bi)(c + di)

— 90) = od ee

Accuracy: Depends on the accuracy of a, b, c, and d aed
on the scale factors at which these numbers are

entered.

Method: (a + bi)(c + di) = (ac— bd) + (ad + bc)i

Number of Constants: 4

Number of Temporary Memory Addresses: 2

Switches Used: none

Time on E101: 2 seconds

 

Constants:

As Constant Assumed
Constant Scale Factor Appears in Memory Memory Address

a Both a and b must be entered with the 20
b same scale factor; similarly, c and d 21

c must be entered with the same scale 22

d factor. 23

Pinboard Program:

Starting point: a,b, c,andd in the assumed memory
addresses.

0 Re
1 B
2 x 25

32 WwW 24
4 XK 22

5 = W 25

6 R 20

Zs B
8. 3 >
> a 2)

10 W 20

11 me 22

2 — 24
13> W221
14

15

Result:

The real part of the result, (ac — bd), is stored in
memory address 21 and in the accumulator. The imag-
inary part of the result, (ad + bc), is stored in memory
address 20.

25. Division of complex numbers

Range: u + vi = (a + bi)/(c + di)

— .9999 < a,b, c,d < .9999

Accuracy: Depends on the accuracy of a, b, c, and d and
on the scale factors at which these numbers are

entered.

a+bi act+tbd , bo—ad.
Method: ne ate ae 

Number of Constants: 4

Number of Temporary Memory Addresses: 2

Switches Used: none

Time on E101: 4.5 seconds

 

Constants:

As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

a Both a and b must be entered with the 20
b same scale factor; similarly, ¢ and d 21

(3 must be entered with the same scale Hy

—d factor. 23

Pinboard Program:

Starting point: a, b, c, and —d in assumed memory
addresses.

Pinboard 1 Pinboard 2

0 R 21 R 22

1 B B
Z XxX 23 xe DD

3 WW 24 W 24
4 x 22 R 23

5 Ww 25 B
6 R 20 x23
VE B + 24

3. x 23 B

9 a 2) R20
10 W 20 + 20
TT «22 Rei
ue, — 24 at

13 We, 21

14a We 20)

15

Result:

The real part of the result, (ac + bd)/(c? + d?), is

stored in memory address 21. The imaginary part,
(be — ad) /(c? + d?), is stored in memory address 20.

C. Techniques Which Increase the Utility of the E101

1. Example of Constant Increments Approach
sin ku, and cos ku, for unit increments of k

2. Example of Compound Functions Approach
C2 si

3. Example of Multi-purpose Approach

1. Example of Constant Increments Approach
sin ku, and cos ku, for unit increments of k

Range: All u, and k within the limits of the E101.

Accuracy: Depends on the number of increments used. An
example of the maximum error to be expected

is as follows: uy = .04 radians; number of in-
crements = 160; maximum error of +2 X 10-7,

assuming sin uy and cos uy are accurate to 10-19.

Method:
sin kup = cos ug sin (kK — 1)u,

+ simu, cos (k— 1)uy

cos ku, = cos uy cos (k — 1)uy

— sin uy sin (k — 1)up

Number of Constants: 4

Number of Temporary Memory Addresses: 2

Switches Used: none

Time on E101: 2 seconds for each k

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

sino 0 0.000 000 000 00 40

sin Uo 0 sin Uo times 10° 4]

COS Uo 0 COS Uo times 10° 42

cos 0 0 1.000 000 000 00 43
 

Pinboard Program:
Starting point: sin 0, sin ug, cos 0, and cos uy times

10° are in assumed memory addresses.

Oo R 4i1

i B
2

3 W 44
4 X 40
5.2 W455
6 AR 42

1 3B

8 xX 40

9 + 44
10 W 40
it x 43
12 — 45
13 W 43
14

1
Result:

sin ku, times 10° appears in memory address 40;
cos ku, times 10°, in memory address 43.



2. Example of Compound Functions Approach
e" sin u

Range: —2 <u.<.2
Accuracy: Maximum error: +0.000 1

Method: Reference—Taylor Series

e'sinu=utut+ Sut + out — Sus

8 iL

+ a ye -+ anyi
Number of Constants: 11

Number of Temporary Memory Addresses: 1

Switches Used: F (0 to 10)

Time on E101: 10 seconds

 

 

 

 

 

 

 

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

32/10! 5 0.881 834 215 04 30

16/9! 4 0.440 917 107 52 31

0 0 0.000 000 000 00 32

—8/7! 2 0.158 730 158 72— 33

—8/6! 1 0.111 111 111 1 34

—4/5! 0 0.033 333 333 32— 35

0 0 0.000 000 000 00 36

2/3! —2 0.003 333> 333" 335 37

1 —3 0.001 000 000 00 38

1 —4 0.000 100 000 00 39

32/11! 6 0.801 667 468 48 49
 

Pinboard Program:
Starting point: u times 10+ is in the accumulator.

u should be shifted to meet this requirement.

C5
1 x 49
2 0)
ee ape oe
4 W 48

5 XxX 48
6 S 19

ae ULES
8

os

10

it
12

13

14
15

Result:
e" sinu times 10-° is in the accumulator. The result

can then be shifted to meet the requirements of any

problem.
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3. Example of Multi-Purpose Approach

This program, initially mentioned on page 2 of Section I,
is an example of a multi-purpose subroutine that can be

used to compute sin u, cos u, arctan u, and e-*. It is assumed

here that these four functions occur in one problem. The

illustration shows how to arrange the memory and how to

transfer into, and out of, the multi-purpose subroutine.

Further, the illustration assumes that sin u is to be called

for in pinboard 1; cos u in pinboard 2; arctan u in pinboard

4; and e in pinboard 6.

Constants:

The constants for sin u are stored in row 1 of the mem-

ory; the constants for cosu are stored in row 2 of the

memory; the constants for arctan u are stored in row 4 of
the memory; and the constants for e" are stored in row 6

of the memory. It is important to note that the number of
the row in which the constants for a particular function are

stored is the same as the number of the pinboard in which

the function is called for.

MEMORY*.

0 1 2 3 4 5 6 7 8 9
 

0

14 6 -1f6 4 14l 6 -ieto°ta4
ee, ee ee ee
3

ee ee

5

§ ee

*For range, accuracy, scale factor, time on E101, and con-

stants as they appear in memory, of sin u, see page 6; of
cos u, see pages 7 and 8; of arctan u, see pages 10 and 11;

and of e~", see page 12.

Program:

The program for the multi-purpose subroutine is shown

in pinboard 8. We assume, of course, that each time we

enter the subroutine, u has been properly scaled and placed

in the accumulator.

Just as in any multiple use of a subroutine, the E switch

is homed to the number of the pinboard to which the

control is to return when the subroutine has ended. But,

because of the arrangement of the memory, as designated

above, the E switch is also used to reference the proper

row of constants. The F switch is then used to iterate along

the chosen row.

Pinboard No.

 

1 2 s

Step No.

0

1

2

3

4

5

6

7 H01

8 U80

9 (sin u)

10

11

12

13

14

15   
   
HO4

U80

(arctan u)

   

This program is an illustration of a technique. Other polynomial approximations may,
of course, be adapted to the same general procedure. However, one word of advice may
be in order: it is perhaps most convenient first to arrange the memory and then adapt the
program to exit from the proper pinboards, rather than to arrange the memory to corte-
spond to the program exits.
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2. Example of Compound Functions Approach
e" sin u

Range: —2 <u.<.2
Accuracy: Maximum error: +0.000 1

Method: Reference—Taylor Series

e'sinu=utut+ Sut + out — Sus

8 iL

+ a ye -+ anyi
Number of Constants: 11

Number of Temporary Memory Addresses: 1

Switches Used: F (0 to 10)

Time on E101: 10 seconds

 

 

 

 

 

 

 

 

 

 

 

Constants:
As Constant Assumed

Constant Scale Factor Appears in Memory Memory Address

32/10! 5 0.881 834 215 04 30

16/9! 4 0.440 917 107 52 31

0 0 0.000 000 000 00 32

—8/7! 2 0.158 730 158 72— 33

—8/6! 1 0.111 111 111 1 34

—4/5! 0 0.033 333 333 32— 35

0 0 0.000 000 000 00 36

2/3! —2 0.003 333> 333" 335 37

1 —3 0.001 000 000 00 38

1 —4 0.000 100 000 00 39

32/11! 6 0.801 667 468 48 49
 

Pinboard Program:
Starting point: u times 10+ is in the accumulator.

u should be shifted to meet this requirement.

C5
1 x 49
2 0)
ee ape oe
4 W 48

5 XxX 48
6 S 19

ae ULES
8

os

10

it
12

13

14
15

Result:
e" sinu times 10-° is in the accumulator. The result

can then be shifted to meet the requirements of any

problem.
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3. Example of Multi-Purpose Approach

This program, initially mentioned on page 2 of Section I,
is an example of a multi-purpose subroutine that can be

used to compute sin u, cos u, arctan u, and e-*. It is assumed

here that these four functions occur in one problem. The

illustration shows how to arrange the memory and how to

transfer into, and out of, the multi-purpose subroutine.

Further, the illustration assumes that sin u is to be called

for in pinboard 1; cos u in pinboard 2; arctan u in pinboard

4; and e in pinboard 6.

Constants:

The constants for sin u are stored in row 1 of the mem-

ory; the constants for cosu are stored in row 2 of the

memory; the constants for arctan u are stored in row 4 of
the memory; and the constants for e" are stored in row 6

of the memory. It is important to note that the number of
the row in which the constants for a particular function are

stored is the same as the number of the pinboard in which

the function is called for.

MEMORY*.

0 1 2 3 4 5 6 7 8 9
 

0

14 6 -1f6 4 14l 6 -ieto°ta4
ee, ee ee ee
3

ee ee

5

§ ee

*For range, accuracy, scale factor, time on E101, and con-

stants as they appear in memory, of sin u, see page 6; of
cos u, see pages 7 and 8; of arctan u, see pages 10 and 11;

and of e~", see page 12.

Program:

The program for the multi-purpose subroutine is shown

in pinboard 8. We assume, of course, that each time we

enter the subroutine, u has been properly scaled and placed

in the accumulator.

Just as in any multiple use of a subroutine, the E switch

is homed to the number of the pinboard to which the

control is to return when the subroutine has ended. But,

because of the arrangement of the memory, as designated

above, the E switch is also used to reference the proper

row of constants. The F switch is then used to iterate along

the chosen row.

Pinboard No.

 

1 2 s

Step No.

0

1

2

3

4

5

6

7 H01

8 U80

9 (sin u)

10

11

12

13

14

15   
   
HO4

U80

(arctan u)

   

This program is an illustration of a technique. Other polynomial approximations may,
of course, be adapted to the same general procedure. However, one word of advice may
be in order: it is perhaps most convenient first to arrange the memory and then adapt the
program to exit from the proper pinboards, rather than to arrange the memory to corte-
spond to the program exits.
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