
2
es AN

—L +o INTRODUCTION
; TOCODING

BURROUGHS

| og

vRA

‘

ry

.

oo ELECTRONIC DATA PROCESSING SYSTEMS

Bulletin 5019
December, 1958

AN

INTRODUCTION

TO CODING

THE

BURROUGHS

220)
ELECTRONIC DATA PROCESSING SYSTEMS

Burroughs Corporation
ELEC eee ATA PiVISION
PASE ee RA LIFORNIA

Copyright© 1958, by

THE BURROUGHS CORPORATION

All rights reserved

Printed in the United States of America

Chapter

1

2

TABLE OF CONTENTS

INTRODUCTION

Title

© 6 016 Oe oe 6 Be Ale Oe ey 66h 8 Oe 6 9: 6 61 6 6 0 ike 2 88 © 0 bit 8 et ee 0 2 8

A DIGITAL COMBUDER SYSDEME 08...

General 5...
Basic Elements of
Coding... 233: a COMpULCIBOYSLCMN 6 sn ee

ce 4 6 6 ee 6k ee ww 4 ie 66 6 6 8 ey 6 6s 0 4 8 65 0 0 8 0 6 8 0 8 ob Owe pce 8 4

Hopms olslnstruchtOns 449 ee ee
Word Concept . .

Stored Program .

Address Concept
Registers

NOs ew 8 le. 6 6 6 ane © 6s 6.606 0 100 6 Se 6 6 00 6 6 et 6 0 8 we e ee 8 6 18

Sees 6 0t 4 be es 5 One 6 6 & 6 0 6 66 8) 60 bes 4.4 9. 0)0. 9 0 06 212 69: 0.9 0.6 9 00 <0

AN INTRODUGTION TO*THE BURROUGHS 220 ... 0% fico tak a

General... 2... oie ae weet ea a ee et et ete ee et ere ee ee ee ee ee Pe ee ee ee ee ee

ata eCOCessIne; SECON: 6.6. a. hie ce oa es
ImpueOutput Secon, 8 5). cs i ec a ees
Symbolic: Notation of Instructions 2.6...2..55...-50..20.55.5. .
Word Concept ..
Instruction: Kormat. 41.0.3... 4
Registers
Operation Cycle
Input-Output Media.2 2 93 ee.

STARTING 1O CODE THE BURROWCHS 2200.62. 5...: 2.2 te

ipprosening the brOoplene | ee Se eee
Rapeqlapes oystent Ge 6 ee ie Ie.
AGdionsandesubtractionelmstructions == 6 6.6666 6.2 ei be ee bee.
Halt Instruction
partial Wouem@)eeaton se ee ee ee

ayle Pama Word! Uninet 96 5 ao ese ee
Concannon Ovenilowy oso cos ge6 50 bo ee te ee een eee en
Bearer ayer (inaa@e oni (Contig) oa oh ee 5 gee ee ee ey er
Sample Problem

REARRANGING INEORMATION FOR COMPUTATION0....-.-
Shitting, 27.
Unpacking —

ard Dist: Wemolbinon (2.5 o¢he ones sr cr er oe
Multiplication ..
Clearing Registers
Division -. =
Scaling....
Sample Problems

ama] LOCANDIES oo 0 4k e oe ee re ee te

USING THEPBURROUGHS.220 TO MAKE DECISIONS2:2.5552..
Steps in Makino Wecimionemee i ee
Setting Up Computer WreisiOns ee. ©. oe
Decision-Makine Operationsot the Burroughs 220... . 0. ee
Sample Problems

Page

1-1

2-1

2-1
2-2
2-3
2-4
2-4
2-4
2-4
2-4,

3-1

3-1
3-1
3-1
3-1
3-1
3-2
3-3
3-5
3-5

4-1

4-1
4-1
4-2
4-4,

4-4
4-5
4-6
4-6
4-7

5-1

5-1
5-2
5-3
5-3
5-4
5-4
5-5
5-6

6-1

6-1
6-1
6-2
6-6

ili

Copyright© 1958, by

THE BURROUGHS CORPORATION

All rights reserved

Printed in the United States of America

Chapter

1

2

TABLE OF CONTENTS

INTRODUCTION

Title

© 6 016 Oe oe 6 Be Ale Oe ey 66h 8 Oe 6 9: 6 61 6 6 0 ike 2 88 © 0 bit 8 et ee 0 2 8

A DIGITAL COMBUDER SYSDEME 08...

General 5...
Basic Elements of
Coding... 233: a COMpULCIBOYSLCMN 6 sn ee

ce 4 6 6 ee 6k ee ww 4 ie 66 6 6 8 ey 6 6s 0 4 8 65 0 0 8 0 6 8 0 8 ob Owe pce 8 4

Hopms olslnstruchtOns 449 ee ee
Word Concept . .

Stored Program .

Address Concept
Registers

NOs ew 8 le. 6 6 6 ane © 6s 6.606 0 100 6 Se 6 6 00 6 6 et 6 0 8 we e ee 8 6 18

Sees 6 0t 4 be es 5 One 6 6 & 6 0 6 66 8) 60 bes 4.4 9. 0)0. 9 0 06 212 69: 0.9 0.6 9 00 <0

AN INTRODUGTION TO*THE BURROUGHS 220 ... 0% fico tak a

General... 2... oie ae weet ea a ee et et ete ee et ere ee ee ee ee ee Pe ee ee ee ee ee

ata eCOCessIne; SECON: 6.6. a. hie ce oa es
ImpueOutput Secon, 8 5). cs i ec a ees
Symbolic: Notation of Instructions 2.6...2..55...-50..20.55.5. .
Word Concept ..
Instruction: Kormat. 41.0.3... 4
Registers
Operation Cycle
Input-Output Media.2 2 93 ee.

STARTING 1O CODE THE BURROWCHS 2200.62. 5...: 2.2 te

ipprosening the brOoplene | ee Se eee
Rapeqlapes oystent Ge 6 ee ie Ie.
AGdionsandesubtractionelmstructions == 6 6.6666 6.2 ei be ee bee.
Halt Instruction
partial Wouem@)eeaton se ee ee ee

ayle Pama Word! Uninet 96 5 ao ese ee
Concannon Ovenilowy oso cos ge6 50 bo ee te ee een eee en
Bearer ayer (inaa@e oni (Contig) oa oh ee 5 gee ee ee ey er
Sample Problem

REARRANGING INEORMATION FOR COMPUTATION0....-.-
Shitting, 27.
Unpacking —

ard Dist: Wemolbinon (2.5 o¢he ones sr cr er oe
Multiplication ..
Clearing Registers
Division -. =
Scaling....
Sample Problems

ama] LOCANDIES oo 0 4k e oe ee re ee te

USING THEPBURROUGHS.220 TO MAKE DECISIONS2:2.5552..
Steps in Makino Wecimionemee i ee
Setting Up Computer WreisiOns ee. ©. oe
Decision-Makine Operationsot the Burroughs 220... . 0. ee
Sample Problems

Page

1-1

2-1

2-1
2-2
2-3
2-4
2-4
2-4
2-4
2-4,

3-1

3-1
3-1
3-1
3-1
3-1
3-2
3-3
3-5
3-5

4-1

4-1
4-1
4-2
4-4,

4-4
4-5
4-6
4-6
4-7

5-1

5-1
5-2
5-3
5-3
5-4
5-4
5-5
5-6

6-1

6-1
6-1
6-2
6-6

ili

TABLE OF CONTENTS (Cont) |

The Buffer Drum
Information Flow
Sample Instructions

THE MAGNETIC-TAPE SYSTEM

Auxiliary Storage
System Characteristics
Sample Instructions

12

 Interpreters

Generators
Compilers
Other Programming Aids

hapt
Chapter Title Page i al

ft AUTOMATIC REPETITION OF PROGRAM SEGMENTS 7-1 |

ee re 7-1

EXdboiese Bon concn 2 es Ere 7-1

ee te eet entens 7-1

Inerescime andelecteacing Ficld Contents- eseeee cece ce nctines 7-2

IPReRCHEE 5 oe ee eee cre 7-4

Sivayolio Pucislioen os oS 5 ee Ss Oe ec reerca 7-4,

Table
8 USC TB DR UEC STEVDLER 5G r 8-1 |

vanceer er 8-1

(Camel Jieser ea 5 oc oy a oe eo 8-1 5-1

Cole jive ER CSE{fI 6 a G5 Geoseateries aaa mre naire a 8-1 5-2

UP Vieiiscier Sciatic.) 96 6 Gey ene es ice ce 8-3 71
Wlositivw vq 2 eof 9 38 0) ih: nh en ea en eer aire ae 8-6
Sebiyvle Piro leec 5 6 60s lee ra are 8-7 8-1

8-2

ET 9-1 | 8-3

itanererneetnommatone Within Gore Storage 2... ee ee eee 9-1 10-1

ee te ce ee ew ee tenes 9-2 10-2

[Pitopcitve OMNES 5 og eG cee Se eon 9-3 i

rrr Terre 10-1 |

Gers a i le tee ee ewe eee 10-1 | Figure
AMET 10-1 2-1
Degas 10-1 9.2
login re P pnt Suh oo a 10-1 2.3

APPENDICES
Title

A. How Information istRepresenica: 2 os os 8 ss i
B. How Intormationsisstore@s = i ee ee ss
C.. Burroughs 220Recsteta ec 5 ok PE Es es
D: | Input-Outprta ee osc ioe ee es
Es« Index-to Instructions Weseribed in Vhis Handbook°.....-.%0. 05 fe 4s

Title

SoluttonstosSampleweroblem <2... . Seis hoes oe ae
Sarmplemocnlinominonlem@NO:
anplesscd neeeromeml INO 2.6. so ee

Solutionvtovsample Problem 104.2... tae no ee ee

Examples of Decrease B, Branch and Increase B, Branch Instructions
Examples of Decrease Field Location, Load B Instruction+...00-
Sample Use of Overilow anaaUnderilow. 43. 6 es. ee oe

ixamples of Ulostine Multiply =) ep ts ee ks
Examples of Bloating Wivide 35 9p es oy le Cie Sines Ge as

Title

Payroll Job repanaOne ee eee te ee ee

Harnings IMecorc ance With WUStEMCHONS . 20: ..- 2... es cee pe ee ee ee ee eee
Hilements ob a GumpureteoytcMl ss ee ee te eee tate tee
Contron Gonsclesrintermoumcieand Photoreader . 2). 2. ccs: ck be ee os bee ae

(Gfainwolte (Creyiinvey! (Rivet gy ae ee ee ee ee
AX. eral SETI 2 yo 8 6 oe pue S ee een Oe ee a rere eer

(Elise ios Deenstennir) iye S125)0) ek Ge eR I erg err
Commuter VeemionsMeminee Sens . 8 ce we ke eect tte es

Bixamples 0: b-teeisten maduress ModitiCaLION 226. ee bi eee ee oe ee
B Register Acdrcsssroditieation of Control Word .. 2. 26. 6. ck eee oe eee eee

B Register Address \louiucation of Instruction 2... 2... 0. oe. cae ve eee
Whility Bilis iWeb ee te ee te

[jicaijunys OQOseNOe oo ol 2 ee i eres ee pe
Gardatron Syste ie ee tee eee ees
Gard atrom: Wosemee ge ee et ea ee ee ee

Inventony dle oimlomomletuatice. 2) 1S a
Decimal Digie wemrese tao ee es wee

Mapnetic Gore ange assagiaicd Wales 6. eee te ee es es
Decade or Ones emia cs ia ee
Eleven Decades or One Word

Page

A-l
A-l
A-2
A-2
A-7

Page

4-7

5-6
5-6

7-4

8-4,

8-5
8-7

10-3
10-4

Page

2-2
2-2
2-3

3-2
3-3
3-4

6-2
6-3

8-2
8-6
8-7

9-3

11-2
11-3
11-4

12-2

A-1

A-1
A-1
8-2

TABLE OF CONTENTS (Cont) |

The Buffer Drum
Information Flow
Sample Instructions

THE MAGNETIC-TAPE SYSTEM

Auxiliary Storage
System Characteristics
Sample Instructions

12

 Interpreters

Generators
Compilers
Other Programming Aids

hapt
Chapter Title Page i al

ft AUTOMATIC REPETITION OF PROGRAM SEGMENTS 7-1 |

ee re 7-1

EXdboiese Bon concn 2 es Ere 7-1

ee te eet entens 7-1

Inerescime andelecteacing Ficld Contents- eseeee cece ce nctines 7-2

IPReRCHEE 5 oe ee eee cre 7-4

Sivayolio Pucislioen os oS 5 ee Ss Oe ec reerca 7-4,

Table
8 USC TB DR UEC STEVDLER 5G r 8-1 |

vanceer er 8-1

(Camel Jieser ea 5 oc oy a oe eo 8-1 5-1

Cole jive ER CSE{fI 6 a G5 Geoseateries aaa mre naire a 8-1 5-2

UP Vieiiscier Sciatic.) 96 6 Gey ene es ice ce 8-3 71
Wlositivw vq 2 eof 9 38 0) ih: nh en ea en eer aire ae 8-6
Sebiyvle Piro leec 5 6 60s lee ra are 8-7 8-1

8-2

ET 9-1 | 8-3

itanererneetnommatone Within Gore Storage 2... ee ee eee 9-1 10-1

ee te ce ee ew ee tenes 9-2 10-2

[Pitopcitve OMNES 5 og eG cee Se eon 9-3 i

rrr Terre 10-1 |

Gers a i le tee ee ewe eee 10-1 | Figure
AMET 10-1 2-1
Degas 10-1 9.2
login re P pnt Suh oo a 10-1 2.3

APPENDICES
Title

A. How Information istRepresenica: 2 os os 8 ss i
B. How Intormationsisstore@s = i ee ee ss
C.. Burroughs 220Recsteta ec 5 ok PE Es es
D: | Input-Outprta ee osc ioe ee es
Es« Index-to Instructions Weseribed in Vhis Handbook°.....-.%0. 05 fe 4s

Title

SoluttonstosSampleweroblem <2... . Seis hoes oe ae
Sarmplemocnlinominonlem@NO:
anplesscd neeeromeml INO 2.6. so ee

Solutionvtovsample Problem 104.2... tae no ee ee

Examples of Decrease B, Branch and Increase B, Branch Instructions
Examples of Decrease Field Location, Load B Instruction+...00-
Sample Use of Overilow anaaUnderilow. 43. 6 es. ee oe

ixamples of Ulostine Multiply =) ep ts ee ks
Examples of Bloating Wivide 35 9p es oy le Cie Sines Ge as

Title

Payroll Job repanaOne ee eee te ee ee

Harnings IMecorc ance With WUStEMCHONS . 20: ..- 2... es cee pe ee ee ee ee eee
Hilements ob a GumpureteoytcMl ss ee ee te eee tate tee
Contron Gonsclesrintermoumcieand Photoreader . 2). 2. ccs: ck be ee os bee ae

(Gfainwolte (Creyiinvey! (Rivet gy ae ee ee ee ee
AX. eral SETI 2 yo 8 6 oe pue S ee een Oe ee a rere eer

(Elise ios Deenstennir) iye S125)0) ek Ge eR I erg err
Commuter VeemionsMeminee Sens . 8 ce we ke eect tte es

Bixamples 0: b-teeisten maduress ModitiCaLION 226. ee bi eee ee oe ee
B Register Acdrcsssroditieation of Control Word .. 2. 26. 6. ck eee oe eee eee

B Register Address \louiucation of Instruction 2... 2... 0. oe. cae ve eee
Whility Bilis iWeb ee te ee te

[jicaijunys OQOseNOe oo ol 2 ee i eres ee pe
Gardatron Syste ie ee tee eee ees
Gard atrom: Wosemee ge ee et ea ee ee ee

Inventony dle oimlomomletuatice. 2) 1S a
Decimal Digie wemrese tao ee es wee

Mapnetic Gore ange assagiaicd Wales 6. eee te ee es es
Decade or Ones emia cs ia ee
Eleven Decades or One Word

Page

A-l
A-l
A-2
A-2
A-7

Page

4-7

5-6
5-6

7-4

8-4,

8-5
8-7

10-3
10-4

Page

2-2
2-2
2-3

3-2
3-3
3-4

6-2
6-3

8-2
8-6
8-7

9-3

11-2
11-3
11-4

12-2

A-1

A-1
A-1
8-2

Figure

C-1

D-1
D-2
D-3
D-4
D-5
D-6
D-7
D-8
D-9

LIST OF FIGURES (Cont)
Title Page

The A Register Display of + 7321 46 5063 1... cece eee eee eee eee A-2

Dee ee tee ener nene A-2

(Cail (Colinenns oo ee 0 A-3

Candi ows 0. oe oo 65 0 ee ee ae oe ec ner A-3

EI enn A-4

Be tte e teens A-4

Numeric and Alphabetic Character Punching-.--- 6s esses eee eeees A-4

IpancnedaVineemanceietai ards 2... 1 ee et ete eee A-5

ee a A-6

De ee eee ee teens A-6

This volume in the Burroughs Electronic Data Processing
Library is intended to serve as a textbook in introductory
coding courses for the Burroughs 220 Electronic Data
Processing System. It was written expressly to introduce
the novice to a many faceted art, the art of conversing
with electronic computing equipment of the so-called
stored-program type.

For our purposes it is desirable to distinguish between a

coder and a programmer in the following way:

A programmer is the analyst who states a proposed
solution to a problem in any language which is con-
venient.

A coder converts this statement of a proposed solution
to a problem to a language which is meaningful to the
computing system assigned to solve the problem.

Although it often happens that the programmer and the
coder are the same person, the analytical aspects of the
communications problem will be mentioned only rather
briefly in any of the short courses conducted by repre-
sentatives of the Burroughs Corporation. This is not to
deny the importance of programming; rather, it is to
emphasize the need for critical and competent analysis:
implicit in our definition of analysis is the requirement
for defining the problem to be solved. It is clear that
some problem is defined by the statement of a proposed
solution. It is the programmer’s responsibility to ensure
that it is the problem which will be solved.

The preceding paragraph is intended to emphasize what
this book is not—what it makes no pretense of being. If
the coder is to be analyst as well, textbooks for his edu-
cation in that specialty must be sought elsewhere. In this
book there will be found only a brief discussion to indi-
cate the nature and magnitude of the programmer’s task.

Preparing lists of instructions for the computing system
which will solve the problem specified by the programmer
is the responsibility of the coder. It is the purpose of this
book to introduce the novice coder to that aspect of the
art which is particularly concerned with instructions to
the machine. The emphasis is on “introduction” and
“art”: this textbook and its related publications—for
example, Operational Characteristics of the Burroughs
220 and The Compleat Programmer—are intended to
provide the background from which professional skills can

Introduction

be developed. Such skills can be fully developed, however,
only by practice and application. Usually this occurs on
the job.

The classroom environment provides training in the nat-
ural language of the Burroughs 220. At the same time
training can also be provided in one or more of the
languages which the 220 has been compelled to learn in
order to make it easier for human beings to communicate
with it. These imposed languages are the so-called auto-
matic coding or automatic programming facilities which
have been devised by Burroughs and other users of the
equipment.

In this book an introduction to the notions of automatic
coding—that is, the preparation of instruction lists with
the help of the computer—is to be found in Chapter 13.
It should be noted here that there are several different
classes of such coding aids. Some of them are designed
for use by the occasional coder—an engineer, say, who
relatively infrequently wants to prepare problems for solu-
tion. Some simplify the regular job of the professional
coder.

Finally, something needs to be said about the presentation
of information on the Cardatron and Magnetic Tape Sys-
tems. Each is relatively extensive and complex, requiring
that a substantial amount of information be assimilated
before it can be used as it would be in “real life.” The
quantity of information required is approximately that
contained in the relevant sections of Operational Charac-
teristics of the Burroughs 220. Because that book will be
used as a supplementary text in introductory courses, it
was decided not to reproduce the sections on Cardatron
and magnetic tape here. Instead, Chapter 11 describes the
Cardatron System briefly and includes some sample in-
structions. Chapter 12 does the same for magnetic tape.

The authors and the publishers would appreciate construc-
tive criticism of the contents of this book whether it re-
lates to errors in fact or to the manner of presentation.
Such remarks or requests for further information should
be addressed to:

Manager, Publications & Training
ElectroData Division
Burroughs Corporation
460 Sierra Madre Villa Avenue
Pasadena, California

1-1

Figure

C-1

D-1
D-2
D-3
D-4
D-5
D-6
D-7
D-8
D-9

LIST OF FIGURES (Cont)
Title Page

The A Register Display of + 7321 46 5063 1... cece eee eee eee eee A-2

Dee ee tee ener nene A-2

(Cail (Colinenns oo ee 0 A-3

Candi ows 0. oe oo 65 0 ee ee ae oe ec ner A-3

EI enn A-4

Be tte e teens A-4

Numeric and Alphabetic Character Punching-.--- 6s esses eee eeees A-4

IpancnedaVineemanceietai ards 2... 1 ee et ete eee A-5

ee a A-6

De ee eee ee teens A-6

This volume in the Burroughs Electronic Data Processing
Library is intended to serve as a textbook in introductory
coding courses for the Burroughs 220 Electronic Data
Processing System. It was written expressly to introduce
the novice to a many faceted art, the art of conversing
with electronic computing equipment of the so-called
stored-program type.

For our purposes it is desirable to distinguish between a

coder and a programmer in the following way:

A programmer is the analyst who states a proposed
solution to a problem in any language which is con-
venient.

A coder converts this statement of a proposed solution
to a problem to a language which is meaningful to the
computing system assigned to solve the problem.

Although it often happens that the programmer and the
coder are the same person, the analytical aspects of the
communications problem will be mentioned only rather
briefly in any of the short courses conducted by repre-
sentatives of the Burroughs Corporation. This is not to
deny the importance of programming; rather, it is to
emphasize the need for critical and competent analysis:
implicit in our definition of analysis is the requirement
for defining the problem to be solved. It is clear that
some problem is defined by the statement of a proposed
solution. It is the programmer’s responsibility to ensure
that it is the problem which will be solved.

The preceding paragraph is intended to emphasize what
this book is not—what it makes no pretense of being. If
the coder is to be analyst as well, textbooks for his edu-
cation in that specialty must be sought elsewhere. In this
book there will be found only a brief discussion to indi-
cate the nature and magnitude of the programmer’s task.

Preparing lists of instructions for the computing system
which will solve the problem specified by the programmer
is the responsibility of the coder. It is the purpose of this
book to introduce the novice coder to that aspect of the
art which is particularly concerned with instructions to
the machine. The emphasis is on “introduction” and
“art”: this textbook and its related publications—for
example, Operational Characteristics of the Burroughs
220 and The Compleat Programmer—are intended to
provide the background from which professional skills can

Introduction

be developed. Such skills can be fully developed, however,
only by practice and application. Usually this occurs on
the job.

The classroom environment provides training in the nat-
ural language of the Burroughs 220. At the same time
training can also be provided in one or more of the
languages which the 220 has been compelled to learn in
order to make it easier for human beings to communicate
with it. These imposed languages are the so-called auto-
matic coding or automatic programming facilities which
have been devised by Burroughs and other users of the
equipment.

In this book an introduction to the notions of automatic
coding—that is, the preparation of instruction lists with
the help of the computer—is to be found in Chapter 13.
It should be noted here that there are several different
classes of such coding aids. Some of them are designed
for use by the occasional coder—an engineer, say, who
relatively infrequently wants to prepare problems for solu-
tion. Some simplify the regular job of the professional
coder.

Finally, something needs to be said about the presentation
of information on the Cardatron and Magnetic Tape Sys-
tems. Each is relatively extensive and complex, requiring
that a substantial amount of information be assimilated
before it can be used as it would be in “real life.” The
quantity of information required is approximately that
contained in the relevant sections of Operational Charac-
teristics of the Burroughs 220. Because that book will be
used as a supplementary text in introductory courses, it
was decided not to reproduce the sections on Cardatron
and magnetic tape here. Instead, Chapter 11 describes the
Cardatron System briefly and includes some sample in-
structions. Chapter 12 does the same for magnetic tape.

The authors and the publishers would appreciate construc-
tive criticism of the contents of this book whether it re-
lates to errors in fact or to the manner of presentation.
Such remarks or requests for further information should
be addressed to:

Manager, Publications & Training
ElectroData Division
Burroughs Corporation
460 Sierra Madre Villa Avenue
Pasadena, California

1-1

GENERAL
Electronic digital computers are now established as useful
—and sometimes indispensable—aids to organizations en-

gaged in a wide range of business and scientific pursuits.

One of the most impressive characteristics of digital com-

puters is their operating speed. In discussing computer
speeds, it is necessary to use words for divisions of a

second: millisecond, for a thousandth of a second, and
microsecond, for a millionth of a second.

It takes a desk-size computer, for example, 50 milliseconds
to add two numbers together. But a computer such as the

Burroughs 220 takes only about 200 microseconds (or 0.2
milliseconds) to add the same two numbers. During the
time it takes to read these two paragraphs, the Burroughs
220 could sum about 150,000 such numbers. This is the
order of speed to be considered during a detailed discus-
sion of a computing system.

Although these computing systems are complex—both in
construction and operation—the difficulties of under-
standing them are similar to those encountered when one
approaches any unfamiliar subject. Much of their com-
plexity can be reduced to a combination of simple prin-
ciples. And these principles can be illustrated by familiar
things and ideas.

Let us take a look at these automatic, electronic, data-
processing systems to see how the elements of such a sys-

tem and the role played by each element in the system
can be illustrated by an analogy.

Suppose that the supervisor of a payroll department asks
a new clerk to figure out how much each person in the
office has earned for the past week. The clerk is given
the time card and earnings record card for each em-
ployee, a desk calculator, a pencil, a typewriter, and a

list of instructions telling him what to do.

We will discuss this problem in its simplest form: we will
consider the preparation of a paycheck for a single em-
ployee. The clerk needs to know hours worked, rate of
pay, and what deductions—such as withholding tax—are
to be subtracted from the employee’s gross pay. We will
assume that the employee works exactly 40 hours and
thus is not entitled to overtime pay. Also, we will concen-
trate on the computing portion of the job.

Before he starts the job. the clerk copies the date and the
hours worked from the employee’s time card into speci-
fied columns on the employee’s earnings record card (Fig.
2-1). He then copies the hourly pay and the rate of

A Digital Computer System

deductions in percentage form from the previous week.
(For our problem, we assume there have been no recent
changes.)

The list of step-by-step instructions which the clerk uses
reads as follows:

1. Multiply hours by rate to get gross pay.

2. Record gross pay in the column specified.

3. Multiply gross pay by rate of deductions to get the
amount.

4. Record the dollar amount of deductions in the col-
umn specified.

5. Subtract the dollar amount of deductions from gross
pay to get net pay.

6. Record net pay in the column specified.

These instructions could be stated more concisely by tak-
ing advantage of the format of the earnings record card
used by the clerk as a work sheet. Since the columns are
numbered, why not abbreviate the instructions by using
column numbers? If this were done, the instructions
would look like this:

1. Multiply the number in column | by the number in
column 2.

2. Record the product in column 4.

3. Multiply the number in column 4 by the number in
column 3.

|. Record this product in column 5.

5. Subtract the number in column 5 from the number
in column 4.

6. Record the answer in column 6.

These instructions could be stated even more concisely if
we used the column numbers to represent the information
recorded in the columns. If we do this, however, we must
be sure to keep in mind that each column number is only
a label that stands for the information recorded in that
column. Thus when we write the number 1 we mean the
contents of column 1, 2 refers to the contents of column
2, etc., and we mean the numbers in columns | or 2 oppo-
site the current date. We can make one more assumption
for further simplification: since everyone is familiar with
the arithmetic symbols X and —, these symbols can be
substituted for the words they represent. If the word
“column” is left out, the instruction sheet would now
read:

1.1x2=4
23% 4-= 5
3.4-5=6

A Digital Computer System

Jones, J. 1 3 4

055=12=089—46 Week Hours Rate Deduc. Gross
Week Ending Ending { Worked % Pay

9/5 8/1 | 40 1.85 5 74.00
In | Out | In | Out 8/8 40 1.85 5 74.00

— 8/15 40 Lee 5 74.00
| oP” 8/22 | 40 1.85 5 74.00

go T2,0 8/29 | 40 1.85 5 74.00
9/5 40 1.85 5

——_ _ a

Time Card Earnings Record Card

Figure 2-1. Payroll Job Preparation.

These condensed instructions can now be recorded on the
earnings record work sheet (Fig. 2-2).

The clerk is now ready to begin. He is directed to start
with the first instruction. He looks at this instruction to
determine the two numbers to be used (operands) and
the operation to be performed on them.

To execute the instruction, the clerk uses the desk calcu-
lator. First, he enters the operand from column1 into the
keyboard of the desk calculator. When the “multiply”
motor bar is depressed, the two numbers are multiplied
and the product is displayed. He copies the product into
column 4, the column specified by the instruction.

The clerk is directed to execute the instructions in se-

quence. After executing instruction 1, he interprets and
executes instructions 2 and 3 in the same way, recording
the results on the work sheet.

After executing all three instructions, the clerk types the
completed payroll check from the information on the work
sheet.

BASIC ELEMENTS OF A COMPUTER
SYSTEM
Let us review the elements of our analogy and relate them
to the elements of a data processing system.

The outside data from the time card is taken into the
calculation process when the clerk reads it and records it

on the earnings record card. This process:can be called
“input.”

During the calculation process, the information is held
ready and available in the clerk’s mind and on the work
sheet. This can be called “storage.”

The data from the work sheet is processed on the calcu-
lator according to a prescribed procedure. The calculator
can be called the arithmetic element.

The flow and processing of the information proceeds in
an ordered manner under the direction of the clerk. He
can be called the control element.

The processed results are copied from the work sheet onto
the paycheck and returned to the person who delegated
the clerk to perform the operation. This process can be
called “output.”

Input, storage, arithmetic, control, and output—these are
the five basic elements of a computer system. Let us take
a closer look at each of these from the standpoint of their
place in a computing system (Fig. 2-3).

The dotted lines enclose the three elements of the system
which comprise what is commonly known as the computer.
These three elements together form the processing center
of the system where the actual compilation, computation,
and manipulation of data takes place. The control unit
directs the flow of information between storage—where it
is held—and the arithmetic unit, where it is processed.

(1.562) (3 X 4) (4 — 5)
] 2 3 4 5 6

Hours Rate Deduc- Gross Deduc- Net

Week Ending Worked $ tions % Pay tions $ Pay

 _

Figure 2-2. Earnings Record Card with Instructions.

2-2

The input element transmits information from the outside
to the computer. Any of several input devices can be used
to read specially prepared information into the storage
section of the computer.

The storage element provides the means by which infor-
mation received from the outside can be held available to
the computer.

There are two types of storage: internal—or working—
storage and auxiliary storage. Internal storage is used to
store all information necessary for immediate processing.
An internal storage unit must provide rapid access to the
information it contains and it should have a large capacity
—to contain all information needed for immediate prob-
lem solution.

Because there are technical and economic limits to the
size of high-speed internal storage units, information not
currently needed is often stored in larger but slower aux-
iliary devices. Auxiliary storage is almost always included
in a large data processing system.

The arithmetic element is the computing portion of the
system. It is here that the actual work of problem solving
is done. The operations of addition, subtraction, multi-
plication, and division are performed by this unit. No
matter how complicated a mathematical problem may be,
it can be broken down to these four basic operations.

This unit also provides means for comparing one num-
ber to another to determine whether they are equal or
which is the greater. The result of such a comparison
allows the computer to choose among several specified
series of further operations.

The control element does just what its name implies—it
controls the operation of the computer during the com-
plete process of problem solution. This element directs the
sequence of operation, interprets the operations to be
performed, initiates the action which performs the opera-
tions, and activates the input and output devices.

The output element transmits processed results from the
computer to the outside. Output devices accept informa-
tion from computer storage and reproduce it in a con-
venient form for normal use.

Now let us refer to parts of our analogy to illustrate some
of the concepts of computer operation and computer
usage.

CODING
A computer, like the clerk in our analogy, must be told
what to do. It does only what it is told to do—nothing
more, nothing less.

There is, however, a problem of communication with a
computer, much like the language barrier between two
persons who speak different languages. The language of
a person who wishes to communicate with a computer
must first be translated into the language of the computer.
The language of the problems to be solved is mathematics,
or English statements of decisions to be made; the lan-
guage of computers is simple arithmetic and elementary
choices.

A Digital Computer System

| Storage

| iY

|

|

|

|

|

Control +

|

|

|

|

|

 VvInput Output

Arithmetic

| reat

|

|

Figure 2-3. Elements of a Computer System.

There are two steps in the process of translating human
language to the language of a computer.

The first is illustrated in the three forms assumed by the
instructions in our analogy: the problem in written state-
ment form was analyzed in terms of simple arithmetic.
Any problem in mathematics or written statement form
must be analyzed in terms of the basic ‘operations com-
prising the computer language.

Secondly, the user must consider how the computer can
be told to solve his analyzed problem with the limited
vocabulary available: most computers have a vocabulary
of from 20 to 70 instructions. This part of the translation
—putting the problem to be solved into words the com-
puter can understand—is called coding.

Coding a computer application of some length and detail
for problem solution is not a simple matter. Consider, for
example, trying to translate an extensive work, such as

the Bible, into a language with a vocabulary of only 800
words. It might take several paragraphs to explain one
word not included in the vocabulary. A computer vocabu-
lary does not include such phrases as “calculate net pay”
or “evaluate function.” Therefore, a coder must build
such an operation using only the words—called instruc-
tions—that have meaning for the computer.

The end result of building the operation is a list of in-
structions called a code or program—an orderly explana-
tion to the computer of each individual operation it is to
perform. A computer code is similar in form and purpose
to the step-by-step list of instructions given to the clerk
in our analogy.

The list of instructions comprising a computer vocabulary
usually includes the four basic arithmetic operations,
operations providing the ability to make elementary
choices, operations governing the transfer of data between
sections of the computer, operations governing input and
output equipment, and various other more complex opera-
tions which are used frequently enough to justify their
inclusion.

2-3

A Digital Computer System

Jones, J. 1 3 4

055=12=089—46 Week Hours Rate Deduc. Gross
Week Ending Ending { Worked % Pay

9/5 8/1 | 40 1.85 5 74.00
In | Out | In | Out 8/8 40 1.85 5 74.00

— 8/15 40 Lee 5 74.00
| oP” 8/22 | 40 1.85 5 74.00

go T2,0 8/29 | 40 1.85 5 74.00
9/5 40 1.85 5

——_ _ a

Time Card Earnings Record Card

Figure 2-1. Payroll Job Preparation.

These condensed instructions can now be recorded on the
earnings record work sheet (Fig. 2-2).

The clerk is now ready to begin. He is directed to start
with the first instruction. He looks at this instruction to
determine the two numbers to be used (operands) and
the operation to be performed on them.

To execute the instruction, the clerk uses the desk calcu-
lator. First, he enters the operand from column1 into the
keyboard of the desk calculator. When the “multiply”
motor bar is depressed, the two numbers are multiplied
and the product is displayed. He copies the product into
column 4, the column specified by the instruction.

The clerk is directed to execute the instructions in se-

quence. After executing instruction 1, he interprets and
executes instructions 2 and 3 in the same way, recording
the results on the work sheet.

After executing all three instructions, the clerk types the
completed payroll check from the information on the work
sheet.

BASIC ELEMENTS OF A COMPUTER
SYSTEM
Let us review the elements of our analogy and relate them
to the elements of a data processing system.

The outside data from the time card is taken into the
calculation process when the clerk reads it and records it

on the earnings record card. This process:can be called
“input.”

During the calculation process, the information is held
ready and available in the clerk’s mind and on the work
sheet. This can be called “storage.”

The data from the work sheet is processed on the calcu-
lator according to a prescribed procedure. The calculator
can be called the arithmetic element.

The flow and processing of the information proceeds in
an ordered manner under the direction of the clerk. He
can be called the control element.

The processed results are copied from the work sheet onto
the paycheck and returned to the person who delegated
the clerk to perform the operation. This process can be
called “output.”

Input, storage, arithmetic, control, and output—these are
the five basic elements of a computer system. Let us take
a closer look at each of these from the standpoint of their
place in a computing system (Fig. 2-3).

The dotted lines enclose the three elements of the system
which comprise what is commonly known as the computer.
These three elements together form the processing center
of the system where the actual compilation, computation,
and manipulation of data takes place. The control unit
directs the flow of information between storage—where it
is held—and the arithmetic unit, where it is processed.

(1.562) (3 X 4) (4 — 5)
] 2 3 4 5 6

Hours Rate Deduc- Gross Deduc- Net

Week Ending Worked $ tions % Pay tions $ Pay

 _

Figure 2-2. Earnings Record Card with Instructions.

2-2

The input element transmits information from the outside
to the computer. Any of several input devices can be used
to read specially prepared information into the storage
section of the computer.

The storage element provides the means by which infor-
mation received from the outside can be held available to
the computer.

There are two types of storage: internal—or working—
storage and auxiliary storage. Internal storage is used to
store all information necessary for immediate processing.
An internal storage unit must provide rapid access to the
information it contains and it should have a large capacity
—to contain all information needed for immediate prob-
lem solution.

Because there are technical and economic limits to the
size of high-speed internal storage units, information not
currently needed is often stored in larger but slower aux-
iliary devices. Auxiliary storage is almost always included
in a large data processing system.

The arithmetic element is the computing portion of the
system. It is here that the actual work of problem solving
is done. The operations of addition, subtraction, multi-
plication, and division are performed by this unit. No
matter how complicated a mathematical problem may be,
it can be broken down to these four basic operations.

This unit also provides means for comparing one num-
ber to another to determine whether they are equal or
which is the greater. The result of such a comparison
allows the computer to choose among several specified
series of further operations.

The control element does just what its name implies—it
controls the operation of the computer during the com-
plete process of problem solution. This element directs the
sequence of operation, interprets the operations to be
performed, initiates the action which performs the opera-
tions, and activates the input and output devices.

The output element transmits processed results from the
computer to the outside. Output devices accept informa-
tion from computer storage and reproduce it in a con-
venient form for normal use.

Now let us refer to parts of our analogy to illustrate some
of the concepts of computer operation and computer
usage.

CODING
A computer, like the clerk in our analogy, must be told
what to do. It does only what it is told to do—nothing
more, nothing less.

There is, however, a problem of communication with a
computer, much like the language barrier between two
persons who speak different languages. The language of
a person who wishes to communicate with a computer
must first be translated into the language of the computer.
The language of the problems to be solved is mathematics,
or English statements of decisions to be made; the lan-
guage of computers is simple arithmetic and elementary
choices.

A Digital Computer System

| Storage

| iY

|

|

|

|

|

Control +

|

|

|

|

|

 VvInput Output

Arithmetic

| reat

|

|

Figure 2-3. Elements of a Computer System.

There are two steps in the process of translating human
language to the language of a computer.

The first is illustrated in the three forms assumed by the
instructions in our analogy: the problem in written state-
ment form was analyzed in terms of simple arithmetic.
Any problem in mathematics or written statement form
must be analyzed in terms of the basic ‘operations com-
prising the computer language.

Secondly, the user must consider how the computer can
be told to solve his analyzed problem with the limited
vocabulary available: most computers have a vocabulary
of from 20 to 70 instructions. This part of the translation
—putting the problem to be solved into words the com-
puter can understand—is called coding.

Coding a computer application of some length and detail
for problem solution is not a simple matter. Consider, for
example, trying to translate an extensive work, such as

the Bible, into a language with a vocabulary of only 800
words. It might take several paragraphs to explain one
word not included in the vocabulary. A computer vocabu-
lary does not include such phrases as “calculate net pay”
or “evaluate function.” Therefore, a coder must build
such an operation using only the words—called instruc-
tions—that have meaning for the computer.

The end result of building the operation is a list of in-
structions called a code or program—an orderly explana-
tion to the computer of each individual operation it is to
perform. A computer code is similar in form and purpose
to the step-by-step list of instructions given to the clerk
in our analogy.

The list of instructions comprising a computer vocabulary
usually includes the four basic arithmetic operations,
operations providing the ability to make elementary
choices, operations governing the transfer of data between
sections of the computer, operations governing input and
output equipment, and various other more complex opera-
tions which are used frequently enough to justify their
inclusion.

2-3

A Digital Computer System

FORMS OF INSTRUCTIONS
In the analogy, the instructions were in the following
form:

l. 1 X 2 = 4 (gross pay)
2. 3 X 4 = 5 (dollar amount of deductions)
3. 4 — 5 = 6 (net pay)

One reason we could reduce them to this form is because

the clerk could look at the symbol X and interpret it to
mean multiply. He has been trained to interpret X to
mean multiply.

A computer cannot be trained in the sense that a clerk
can. But the computer is designed to accept a specific
symbolic notation as representing a specific operation. A
computer might be designed to interpret only numeric
forms. In this case, each instruction in the computer vo-
cabulary would be assigned a numeric notation. These

numeric notations would be used when preparing instruc-
tions for input to the computer. For example, the opera-
tion multiply could be assigned the numeric notation 14.

The computer would automatically interpret this notation
as meaning to multiply.

WORD CONCEPT
Digital computers handle information in units consisting
of a fixed number of digits—a length of 10 to 12 decimal
digits is most frequently used. Since these units may rep-
resent not only numeric quantities but also coded nu-
meric instructions and alphabetic data, it is convenient to
refer to them as “words.” This provides a common term
for all types of information handled by a computer.

STORED PROGRAM
In the analogy, the condensed instructions were recorded
on the earnings record work sheet with the data. Although
the instructions were recorded in the same manner as the
data, they were interpreted as instructions by the clerk
who controlled the operation. The earnings record work
sheet provided storage for data and instructions alike.

A stored-program computer operates on the same prin-
ciple. It accepts the data to be processed and the instruc-
tions which process the data from the outside, and writes
them both in storage in the same manner. To execute the
program formed by the instructions, the computer locates
each instruction in turn—either sequentially or in an
order specified by the code—looks at it, and operates as

the instruction directs on the information the instruction
specifies. An instruction word is identified as such—that
is, as different from a data word—by the control element:
the clerk in our analogy, or the control unit in the com-
puter operation.

ADDRESS CONCEPT
Now the question arises of how to keep track of individual
words in storage; how to locate an instruction to be exe-
cuted, an item of data to be processed, or a place to store
data or an instruction.

Recall that in our analogy the data was uniquely identi-
fied by numbers 1 through 6. These numbers indicated

2-4

the column in which the number would be found—the
number in that column opposite the current date. Thus
each piece of data had a specific location on the earnings
record card—the storage element of the analogy:

eae
Contents of Contents of Result to be
Column 1 Column 2 Contents of

Column 4

This is the principle by which words of information are
identified and located in computer storage. Each word of
information—data or instruction—which enters a com-
puter is written in storage in a specific location identified
by a unique number, called an address.

Just as the number in the location on the earnings record
card which is identified by 1 is completely different from
1, so are the contents of a location in computer storage

completely different from the address which identifies the

location. The addresses of locations play an inactive part
in any operation—that of a directive for placement and

location of the pieces of data or instructions. The con-

tents of the location play the active part: they can be

either the instructions which process the data or the data
to be processed.

When the clerk wants to perform an operation on a num-
ber in a specific location, he keys that number into the
desk calculator. The number now appears in two places,

in the desk calculator and in its original location on the
earnings record card. The same thing occurs in computer
storage. When a number is taken from storage and sent
to the arithmetic unit for some operation on it, a copy of
the number remains in the location.

If the clerk chose to write a number into a location on
the earnings record card which already contained a num-
ber, he would have to erase the number written there first.
In computer storage, when a number is written into a

location, any number previously written there is auto-
matically erased.

REGISTERS

When the clerk in our analogy performed calculations on
the desk calculator, he keyed the operands into the desk
calculator before depressing the designated motor bar.
Thus the keyboard of the desk calculator provided tem-
porary storage for the operands.

In computers there are certain one-word locations sepa-
rate from the internal storage unit which provide tempo-
rary storage for operands and control words in computer
operations. These locations are called registers: a register
stores an operand or a control word while or until it is
used.

The general description given in this chapter would apply
to any stored-program digital computing system. Chapter
3 begins the discussion of the Burroughs 220.

An Introduction to the Burroughs 220
GENERAL
The Burroughs 220 electronic data processing system is
the kind of computer system described in Chapter 2. It
is a general-purpose computing system—one that is suit-
able for both scientific and business applications and it
can be expanded to fit the nature of the job to be done.
The purpose of this chapter is to describe this system in
more detail—to introduce the parts of the system and ex-
plain their function.

As a system, the Burroughs 220 is comprised of several
units. These units may be thought of as (1) those included
in the data-processing section of the system and (2) those
concerned with input and output.

DATA-PROCESSING SECTION
The data-processing section—or the computer section—of
the Burroughs 220 consists of the following three units:

1. Data Processor: the arithmetic unit that performs
the arithmetic and comparing operations and manip-
ulates words of information.

2. Core Storage: the unit that provides the internal (or
working) storage for the system.

3. Memory Control: the unit that controls the transfer
of information between working storage and the
Data Processor.

The Control Console (Fig. 3-1) is a separate unit that,
because of its function, is an integral part of the data-
processing section. It is equipped with operation controls
(start button, stop button, etc.) and indicators for the
whole system. Its main function is to provide for manual
monitoring of system operations.

INPUT-OUTPUT SECTION
The Burroughs 220 system is designed to permit the in-
clusion of the following input and output units.

1. Photoreader: a photo-electric input device that reads
into core storage information that has been punched
into paper tape (Fig. 3-1).

2. Character-at-a-Time Printer: an output printing de-
vice that types information transferred directly from
core storage.

3. Paper-Tape Punch: an electromechanical output de-
vice that punches into paper tape information trans-
ferred directly from core storage.

4. Cardatron: an electronic system that links the com-
puter to input and output card machines and line
printers. It accepts input information from punched
cards, translates the information to the representa-
tion used in the Burroughs 220", edits the informa-
tion to conform to the Burroughs 220 word length
and format, and transmits it to core storage?. The
Cardatron® also receives output information from
core storage, translates it to card machine represen-
tation, edits it to conform to a specified output for-
mat, and transmits it to a line printer or card punch.

5. Magnetic Tape Storage Devices: electromechanical
devices that read from—and record on—magnetic
tape used by the system for auxiliary storage. These
devices accept information from core storage and
write it onto magnetic tape; they can also read
information on magnetic tape and transmit it to
core storage.

6. Manual Keyboard: a ten-key manually operated
numeric keyboard associated with the Control Con-
sole. The keyboard is used to enter a few words at
a time into core storage or to alter register contents
(Fig. 3-1).

SYMBOLIC NOTATION OF INSTRUCTIONS
The Burroughs 220 is designed to use instructions in
numeric form. Each operation in its vocabulary is as-
signed a numeric code: for example, in the Burroughs
220 the multiply operation is assigned the numeric opera-
tion code 14.

WORD CONCEPT
A Burroughs 220 word is 11 decimal digits in length. Ten
decimal digits represent data or an instruction; the
eleventh is the sign-digit position:

Digit Positions |} 1] 2}3]4]5|617/819]0

Computer Word

To identify individual digits within a word, the digit
positions of the word are uniquely numbered from left to
right, excluding the sign-digit position; the sign digit is
represented by the symbol +.

*Appendix A is a description of how information is represented in the Burroughs 220.

*Appendix B is a description of how information is stored in the Burroughs 220.

*Trademark of the Burroughs Corporation.

3-1

A Digital Computer System

FORMS OF INSTRUCTIONS
In the analogy, the instructions were in the following
form:

l. 1 X 2 = 4 (gross pay)
2. 3 X 4 = 5 (dollar amount of deductions)
3. 4 — 5 = 6 (net pay)

One reason we could reduce them to this form is because

the clerk could look at the symbol X and interpret it to
mean multiply. He has been trained to interpret X to
mean multiply.

A computer cannot be trained in the sense that a clerk
can. But the computer is designed to accept a specific
symbolic notation as representing a specific operation. A
computer might be designed to interpret only numeric
forms. In this case, each instruction in the computer vo-
cabulary would be assigned a numeric notation. These

numeric notations would be used when preparing instruc-
tions for input to the computer. For example, the opera-
tion multiply could be assigned the numeric notation 14.

The computer would automatically interpret this notation
as meaning to multiply.

WORD CONCEPT
Digital computers handle information in units consisting
of a fixed number of digits—a length of 10 to 12 decimal
digits is most frequently used. Since these units may rep-
resent not only numeric quantities but also coded nu-
meric instructions and alphabetic data, it is convenient to
refer to them as “words.” This provides a common term
for all types of information handled by a computer.

STORED PROGRAM
In the analogy, the condensed instructions were recorded
on the earnings record work sheet with the data. Although
the instructions were recorded in the same manner as the
data, they were interpreted as instructions by the clerk
who controlled the operation. The earnings record work
sheet provided storage for data and instructions alike.

A stored-program computer operates on the same prin-
ciple. It accepts the data to be processed and the instruc-
tions which process the data from the outside, and writes
them both in storage in the same manner. To execute the
program formed by the instructions, the computer locates
each instruction in turn—either sequentially or in an
order specified by the code—looks at it, and operates as

the instruction directs on the information the instruction
specifies. An instruction word is identified as such—that
is, as different from a data word—by the control element:
the clerk in our analogy, or the control unit in the com-
puter operation.

ADDRESS CONCEPT
Now the question arises of how to keep track of individual
words in storage; how to locate an instruction to be exe-
cuted, an item of data to be processed, or a place to store
data or an instruction.

Recall that in our analogy the data was uniquely identi-
fied by numbers 1 through 6. These numbers indicated

2-4

the column in which the number would be found—the
number in that column opposite the current date. Thus
each piece of data had a specific location on the earnings
record card—the storage element of the analogy:

eae
Contents of Contents of Result to be
Column 1 Column 2 Contents of

Column 4

This is the principle by which words of information are
identified and located in computer storage. Each word of
information—data or instruction—which enters a com-
puter is written in storage in a specific location identified
by a unique number, called an address.

Just as the number in the location on the earnings record
card which is identified by 1 is completely different from
1, so are the contents of a location in computer storage

completely different from the address which identifies the

location. The addresses of locations play an inactive part
in any operation—that of a directive for placement and

location of the pieces of data or instructions. The con-

tents of the location play the active part: they can be

either the instructions which process the data or the data
to be processed.

When the clerk wants to perform an operation on a num-
ber in a specific location, he keys that number into the
desk calculator. The number now appears in two places,

in the desk calculator and in its original location on the
earnings record card. The same thing occurs in computer
storage. When a number is taken from storage and sent
to the arithmetic unit for some operation on it, a copy of
the number remains in the location.

If the clerk chose to write a number into a location on
the earnings record card which already contained a num-
ber, he would have to erase the number written there first.
In computer storage, when a number is written into a

location, any number previously written there is auto-
matically erased.

REGISTERS

When the clerk in our analogy performed calculations on
the desk calculator, he keyed the operands into the desk
calculator before depressing the designated motor bar.
Thus the keyboard of the desk calculator provided tem-
porary storage for the operands.

In computers there are certain one-word locations sepa-
rate from the internal storage unit which provide tempo-
rary storage for operands and control words in computer
operations. These locations are called registers: a register
stores an operand or a control word while or until it is
used.

The general description given in this chapter would apply
to any stored-program digital computing system. Chapter
3 begins the discussion of the Burroughs 220.

An Introduction to the Burroughs 220
GENERAL
The Burroughs 220 electronic data processing system is
the kind of computer system described in Chapter 2. It
is a general-purpose computing system—one that is suit-
able for both scientific and business applications and it
can be expanded to fit the nature of the job to be done.
The purpose of this chapter is to describe this system in
more detail—to introduce the parts of the system and ex-
plain their function.

As a system, the Burroughs 220 is comprised of several
units. These units may be thought of as (1) those included
in the data-processing section of the system and (2) those
concerned with input and output.

DATA-PROCESSING SECTION
The data-processing section—or the computer section—of
the Burroughs 220 consists of the following three units:

1. Data Processor: the arithmetic unit that performs
the arithmetic and comparing operations and manip-
ulates words of information.

2. Core Storage: the unit that provides the internal (or
working) storage for the system.

3. Memory Control: the unit that controls the transfer
of information between working storage and the
Data Processor.

The Control Console (Fig. 3-1) is a separate unit that,
because of its function, is an integral part of the data-
processing section. It is equipped with operation controls
(start button, stop button, etc.) and indicators for the
whole system. Its main function is to provide for manual
monitoring of system operations.

INPUT-OUTPUT SECTION
The Burroughs 220 system is designed to permit the in-
clusion of the following input and output units.

1. Photoreader: a photo-electric input device that reads
into core storage information that has been punched
into paper tape (Fig. 3-1).

2. Character-at-a-Time Printer: an output printing de-
vice that types information transferred directly from
core storage.

3. Paper-Tape Punch: an electromechanical output de-
vice that punches into paper tape information trans-
ferred directly from core storage.

4. Cardatron: an electronic system that links the com-
puter to input and output card machines and line
printers. It accepts input information from punched
cards, translates the information to the representa-
tion used in the Burroughs 220", edits the informa-
tion to conform to the Burroughs 220 word length
and format, and transmits it to core storage?. The
Cardatron® also receives output information from
core storage, translates it to card machine represen-
tation, edits it to conform to a specified output for-
mat, and transmits it to a line printer or card punch.

5. Magnetic Tape Storage Devices: electromechanical
devices that read from—and record on—magnetic
tape used by the system for auxiliary storage. These
devices accept information from core storage and
write it onto magnetic tape; they can also read
information on magnetic tape and transmit it to
core storage.

6. Manual Keyboard: a ten-key manually operated
numeric keyboard associated with the Control Con-
sole. The keyboard is used to enter a few words at
a time into core storage or to alter register contents
(Fig. 3-1).

SYMBOLIC NOTATION OF INSTRUCTIONS
The Burroughs 220 is designed to use instructions in
numeric form. Each operation in its vocabulary is as-
signed a numeric code: for example, in the Burroughs
220 the multiply operation is assigned the numeric opera-
tion code 14.

WORD CONCEPT
A Burroughs 220 word is 11 decimal digits in length. Ten
decimal digits represent data or an instruction; the
eleventh is the sign-digit position:

Digit Positions |} 1] 2}3]4]5|617/819]0

Computer Word

To identify individual digits within a word, the digit
positions of the word are uniquely numbered from left to
right, excluding the sign-digit position; the sign digit is
represented by the symbol +.

*Appendix A is a description of how information is represented in the Burroughs 220.

*Appendix B is a description of how information is stored in the Burroughs 220.

*Trademark of the Burroughs Corporation.

3-1

An Introduction to the Burroughs 220

Control Console

Printer
Photoreader

Figure 3-1. Control Console Printer, Punch, and Photoreader

The leftmost digit position is referred to as the sign-digit
position; the next digit position is called the first digit
position; the next digit position is called the second digit
position and so forth. The last or rightmost digit position
—although numbered 0—is called the tenth digit position.
The first digit position may also be referred to as the
high-order digit of the word; the tenth digit position may
be referred to as the low-order digit position of the word.

The sign-digit position is used to designate the algebraic
sign of numeric words; that is, it tells whether the word
is plus or minus. A0 in the sign-digit position represents
a plus sign; a | denotes a minus sign.

The sign digit of instruction words has no algebraic sig-
nificance; it is used for control purposes. (This use will
be discussed under the topic of B Register in this chapter
and in more detail in Chapter 8.)

The 11 decimal digits comprising a Burroughs 220 word
can represent an instruction word or a data word. The
control unit in the data-processing section of the system
determines how the word is interpreted. For example,
the word 0 4259 10 4955 can represent the number
+ 4,259,104,955 or it can represent the instruction “clear
the A register and insert the contents of storage location
4955 into the A register.”

A data word may also represent alphanumeric informa-
tion. In the Burroughs 220, the alphanumeric code is a

two-digit code; that is, a single alphanumeric character
is represented by a pair of adjacent decimal digits. Thus
a single computer word can represent a maximum of five
alphanumeric characters.

The alphanumeric code must be a two-digit code because

the number of alphabetic, numeric, and special characters
to be represented exceeds ten. A single digit position in
the Burroughs 220 could represent only ten different
characters—each having a code 0 through 9.

3-2

In the Burroughs 220 alphanumeric code system, special
characters are assigned a code from 00 through 30,
alphabetic characters are assigned a code from 40 through
69, and numeric characters are assigned a code from 80
through 89.

To illustrate, the following is a sample section number
representing section 7—51 in the Marketing Department:

+ 54 87 20 85 81

M7— 5 1

INSTRUCTION FORMAT
So far we have considered the nature of an instruction,
the function it performs in a program, and how it is
stored. Now let us consider in detail the instruction for-
mat of the Burroughs 220.

The Burroughs 220 uses a single-address instruction code;
that is, one instruction per word, one address per instruc-
tion. Each instruction word may refer to one and only
one storage address.

Since instructions are, in general, executed in the sequence
in which they are stored in the Burroughs 220, the ad-
dress of the next instruction to be executed need not be
specified in a 220 instruction. For example, if the instruc-
tions of a four-step program were stored in locations 1000,
1001, 1002, and 1003, the instruction in location 1001
would automatically be executed after the instruction in
location 1000; the instruction in location 1002 would
automatically be executed after the instruction in location
1001, ete.

In the single-address instruction code employed by the
220, the location of only one operand in an arithmetic
operation is specified by the instruction; the other oper-
and is always the contents of a specific register. A sepa-
rate instruction is needed to store the result.

An instruction word is divided into three parts (excluding

the sign digit): the address, the operation code, and the
control digits.

Digit Positions: =... 1.2.3 4.25 6 °7°6.9.0
Sign | Control Digits | Op Code} Address

Pep J LST)
Instruction Word

The four low-order digit positions of an instruction word
store the address part of the instruction. In cases where
the contents of a specific location are to be used during
the execution of an instruction, these four digits specify
the address of that location. Otherwise, as in the case of
a manipulation instruction where no data from storage is
used, the address part is irrelevant; it may sometimes be
used to specify some other quantity, such as a specific
constant.

Digit positions 5 and 6 store the operation code—the
numeric equivalent of the operation specified; for ex-
ample, 14 is the numeric equivalent of the MULTIPLY
instruction.

Digit positions 1 through 4 store what are called control
digits. These digits are used to designate special proper-
ties or variations of the instruction.

REGISTERS

The Burroughs 220 uses electronic registers for temporary
storage of instructions or data words brought from core
storage to be used in a Data Processor operation. A word
is stored in a register while or until it is used. Registers
are also used to store information necessary for control

PROGRAM CONTROL SWITCHES:

DD | GER GE PSS | ee

An Introduction to the Burroughs 220

of computer operation. During computer operation, the
contents of the individual registers are displayed on the
control panel (Fig. 3-2) of the Control Console. (Appen-
dix C is a description of how information is stored in a
register and how the register contents are displayed.)

Each of the registers in the Burroughs 220 has a specific
name and function; a description of the registers asso-
ciated with the computing portion of the system follows.

THE A REGISTER

This register contains 1] decimal digit positions: ten
digits for the instruction or data word and one digit for
the sign. This register is used to store one of the operands
in an arithmetic operation and to store an instruction or
data word to be manipulated under program control. It
also acts as an accumulator; that is, the results of most
operations appear in this register.

THE R REGISTER

This register contains 11 decimal digit positions: ten
digits plus sign-digit position. This register is primarily
an extension of the A register, as shown in Fig. 3-3.

THE D REGISTER
This register contains 11 decimal digit positions: ten
digits plus sign-digit position. In operations involving
two operands, the operand whose address is specified by
the instruction is brought from core storage and placed
in the D register before the operation begins. When an
instruction word is brought from core storage and sent
to the C register for execution, a copy of the instruction
as it appeared in core storage is contained in the D reg-
ister.

Figure 3-2. Console Control Panel

 3-3

An Introduction to the Burroughs 220

Control Console

Printer
Photoreader

Figure 3-1. Control Console Printer, Punch, and Photoreader

The leftmost digit position is referred to as the sign-digit
position; the next digit position is called the first digit
position; the next digit position is called the second digit
position and so forth. The last or rightmost digit position
—although numbered 0—is called the tenth digit position.
The first digit position may also be referred to as the
high-order digit of the word; the tenth digit position may
be referred to as the low-order digit position of the word.

The sign-digit position is used to designate the algebraic
sign of numeric words; that is, it tells whether the word
is plus or minus. A0 in the sign-digit position represents
a plus sign; a | denotes a minus sign.

The sign digit of instruction words has no algebraic sig-
nificance; it is used for control purposes. (This use will
be discussed under the topic of B Register in this chapter
and in more detail in Chapter 8.)

The 11 decimal digits comprising a Burroughs 220 word
can represent an instruction word or a data word. The
control unit in the data-processing section of the system
determines how the word is interpreted. For example,
the word 0 4259 10 4955 can represent the number
+ 4,259,104,955 or it can represent the instruction “clear
the A register and insert the contents of storage location
4955 into the A register.”

A data word may also represent alphanumeric informa-
tion. In the Burroughs 220, the alphanumeric code is a

two-digit code; that is, a single alphanumeric character
is represented by a pair of adjacent decimal digits. Thus
a single computer word can represent a maximum of five
alphanumeric characters.

The alphanumeric code must be a two-digit code because

the number of alphabetic, numeric, and special characters
to be represented exceeds ten. A single digit position in
the Burroughs 220 could represent only ten different
characters—each having a code 0 through 9.

3-2

In the Burroughs 220 alphanumeric code system, special
characters are assigned a code from 00 through 30,
alphabetic characters are assigned a code from 40 through
69, and numeric characters are assigned a code from 80
through 89.

To illustrate, the following is a sample section number
representing section 7—51 in the Marketing Department:

+ 54 87 20 85 81

M7— 5 1

INSTRUCTION FORMAT
So far we have considered the nature of an instruction,
the function it performs in a program, and how it is
stored. Now let us consider in detail the instruction for-
mat of the Burroughs 220.

The Burroughs 220 uses a single-address instruction code;
that is, one instruction per word, one address per instruc-
tion. Each instruction word may refer to one and only
one storage address.

Since instructions are, in general, executed in the sequence
in which they are stored in the Burroughs 220, the ad-
dress of the next instruction to be executed need not be
specified in a 220 instruction. For example, if the instruc-
tions of a four-step program were stored in locations 1000,
1001, 1002, and 1003, the instruction in location 1001
would automatically be executed after the instruction in
location 1000; the instruction in location 1002 would
automatically be executed after the instruction in location
1001, ete.

In the single-address instruction code employed by the
220, the location of only one operand in an arithmetic
operation is specified by the instruction; the other oper-
and is always the contents of a specific register. A sepa-
rate instruction is needed to store the result.

An instruction word is divided into three parts (excluding

the sign digit): the address, the operation code, and the
control digits.

Digit Positions: =... 1.2.3 4.25 6 °7°6.9.0
Sign | Control Digits | Op Code} Address

Pep J LST)
Instruction Word

The four low-order digit positions of an instruction word
store the address part of the instruction. In cases where
the contents of a specific location are to be used during
the execution of an instruction, these four digits specify
the address of that location. Otherwise, as in the case of
a manipulation instruction where no data from storage is
used, the address part is irrelevant; it may sometimes be
used to specify some other quantity, such as a specific
constant.

Digit positions 5 and 6 store the operation code—the
numeric equivalent of the operation specified; for ex-
ample, 14 is the numeric equivalent of the MULTIPLY
instruction.

Digit positions 1 through 4 store what are called control
digits. These digits are used to designate special proper-
ties or variations of the instruction.

REGISTERS

The Burroughs 220 uses electronic registers for temporary
storage of instructions or data words brought from core
storage to be used in a Data Processor operation. A word
is stored in a register while or until it is used. Registers
are also used to store information necessary for control

PROGRAM CONTROL SWITCHES:

DD | GER GE PSS | ee

An Introduction to the Burroughs 220

of computer operation. During computer operation, the
contents of the individual registers are displayed on the
control panel (Fig. 3-2) of the Control Console. (Appen-
dix C is a description of how information is stored in a
register and how the register contents are displayed.)

Each of the registers in the Burroughs 220 has a specific
name and function; a description of the registers asso-
ciated with the computing portion of the system follows.

THE A REGISTER

This register contains 1] decimal digit positions: ten
digits for the instruction or data word and one digit for
the sign. This register is used to store one of the operands
in an arithmetic operation and to store an instruction or
data word to be manipulated under program control. It
also acts as an accumulator; that is, the results of most
operations appear in this register.

THE R REGISTER

This register contains 11 decimal digit positions: ten
digits plus sign-digit position. This register is primarily
an extension of the A register, as shown in Fig. 3-3.

THE D REGISTER
This register contains 11 decimal digit positions: ten
digits plus sign-digit position. In operations involving
two operands, the operand whose address is specified by
the instruction is brought from core storage and placed
in the D register before the operation begins. When an
instruction word is brought from core storage and sent
to the C register for execution, a copy of the instruction
as it appeared in core storage is contained in the D reg-
ister.

Figure 3-2. Console Control Panel

 3-3

An Introduction to the Burroughs 220

20-Digit Product
A.i >

Lo} f2{s}s}s}s}a]3j2i1] [os 7f]s|sfo]z]e]s]9 |

20-Digit Dividend
IKE

 Ve

[0 }6}6}3}9|4/4Jo]6 8/2

CPEPEERERED|

A Register R Register

Figure 3-3. A and R Registers

THE B REGISTER
This register contains four decimal digit positions: it
does not have a sign-digit position. The primary function
of the B register is to provide for address modification;
that is, when so specified in the sign-digit position of an
instruction brought from core storage for execution, the
number contained in the B register is added to the address
portion of the same instruction as it is sent to the C reg-
ister for interpretation and execution. Thus, when exe-
cuted, the modified copy of the instruction will reference
a storage location that is different from the one refer-
enced by the unmodified copy retained in core storage
and in the D register.

For example: Suppose an instruction in core storage has
1000 as its address. Let us suppose also that the B register
contains 0500. If the instruction brought from storage
indicates that B register address modification is to take
place, the contents of the B register are added to the
address of the instruction (1000 + 0500). When exe-
cuted, the instruction will reference location 1500 rather
than location 1000. This function of the B register, plus
other functions, such as tallying or counting, will be
discussed in Chapter 8.

THE C REGISTER
This register contains 10 decimal digit positions; it does
not have a sign-digit position. Any word that enters the
C register is interpreted as an instruction and executed.

It is convenient to regard the C register as being divided
into three parts:

1. The four high-order digit positions (digit positions
1, 2. 3, and 4) of the C register contain the control
digits of the instruction.

2. Digit positions 5 and 6 contain the operation code.

3. The four low-order digit positions (digit positions
7, 8. 9, and 10) of the C register contain the ad-
dress part of the instruction.

The sign digit—used for control purposes in an instruc-
tion word—is not contained in the C register. The sig-

Digit Positions 1° 2 3.4 8 6 278-7 0

Control Digits |Op Code Address

Ed | ede
C Register

3-4

nificance of this digit is checked in the D register where
a copy of it remains.

THE P REGISTER

This register contains four decimal digit positions; it
does not have a sign-digit position. The P register con-
trols the sequential operation of the computer; it contains
the address of the location from which the next instruction
will be taken for execution.

For example, if the instruction to be executed next were
in location 0500, the P register would contain 0500. After
this instruction is taken from location 0500 and sent to
the C register for execution, the contents of the P register
are increased by one. The next instruction will be taken
from location 0501.

This sequential operation mode can be interrupted by a

transfer-control instruction. Such an instruction causes

the contents of the P register to be replaced by the ad-
dress portion of the transfer-control instruction. The next
instruction would be taken from that address. To illus-
trate: in the previous example, when the instruction in
location 0500 was sent to the C register for execution,
the P register contained 0501, the address of the next
instruction in sequence to be executed. If, however, the
instruction in location 0500 had been a transfer-control
instruction, the address specified by that instruction
would have been placed in the P register. The next in-
struction executed would not have been the instruction in
location 0501; instead, it would be the instruction in the
location whose address was specified by the transfer-
control instruction.

Location of Instruc- Transfer Control P Register
tion in C Register Instruction

0498 NO 0499

0499 NO 0500

0500 YES Address specified
by transfer-con-
trol instruction.

The next instruction to enter the C register would be the
instruction in the location whose address is in the P reg-
ister—that specified by the transfer-control instruction.

THE S REGISTER

This register contains four decimal digit positions; it
does not have a sign-digit position. The S register is used

by an operator for checking out (debugging) a program
on the computer.

THE IB REGISTER

This register contains ten decimal digit positions plus
sign-digit position. It is located in the Memory Control
Unit and is used as a buffer between core storage and the
control and arithmetic units; that is, instructions and
data going to the A, R, D, or C registers from core stor-
age first pass through this register.

THE E REGISTER

This register contains four decimal digit positions; it

does not have a sign-digit position. Located in the Mem-
ory Control Unjt, it is used for control purposes: the
E register will always contain the address of the core
storage location to which access is being made under
computer or manual control. Although the E register is
not in the arithmetic unit, a copy of its contents appears
on the Control Console.

OPERATION CYCLE
Whenever the Burroughs 220 seeks and locates an instruc-
tion in core storage, transfers it to the C register, and
then performs the action specified by the instruction, it
has performed the basic cycle of computer operation. This
cycle—referred to as the operation cycle—has two phases:
the first is called the fetch phase; the second is called the
execute phase. During the fetch phase, the instruction is
brought from core storage to the C register; during the
execute phase, the instruction just fetched is executed.

One might picture the operation cycle as following a
pattern like a figure eight:

<——— Starting Point

Execute
Phase

An Introduction to the Burroughs 220

That is, the computer begins its operation with. the fetch
phase. As soon as it has completed the fetch phase, it
enters the execute phase. When it completes the execute
phase, it re-enters the fetch phase, and so forth. Thus,
during normal operation, the fetch and execute phases are
performed alternately.

A description of what occurs during the execute phase of
each instruction appears in subsequent sections of this
book.

INPUT-OUTPUT MEDIA

The input-output equipment mentioned at the beginning
of this chapter uses various media (punched paper tape,
magnetic tape, punched cards) from which information to
be transmitted to core storage is obtained and on which
information transmitted from core storage is recorded. In
addition, the output from core storage may be printed.

During input preparation, data and instructions are re-
corded on a selected medium and presented to a compat-
ible input device for transmission to core storage. During
output, information is presented to an output device which
records it on a compatible output medium. (Appendix D
is a description of the input-output media employed by
the Burroughs 220.)

3-5

An Introduction to the Burroughs 220

20-Digit Product
A.i >

Lo} f2{s}s}s}s}a]3j2i1] [os 7f]s|sfo]z]e]s]9 |

20-Digit Dividend
IKE

 Ve

[0 }6}6}3}9|4/4Jo]6 8/2

CPEPEERERED|

A Register R Register

Figure 3-3. A and R Registers

THE B REGISTER
This register contains four decimal digit positions: it
does not have a sign-digit position. The primary function
of the B register is to provide for address modification;
that is, when so specified in the sign-digit position of an
instruction brought from core storage for execution, the
number contained in the B register is added to the address
portion of the same instruction as it is sent to the C reg-
ister for interpretation and execution. Thus, when exe-
cuted, the modified copy of the instruction will reference
a storage location that is different from the one refer-
enced by the unmodified copy retained in core storage
and in the D register.

For example: Suppose an instruction in core storage has
1000 as its address. Let us suppose also that the B register
contains 0500. If the instruction brought from storage
indicates that B register address modification is to take
place, the contents of the B register are added to the
address of the instruction (1000 + 0500). When exe-
cuted, the instruction will reference location 1500 rather
than location 1000. This function of the B register, plus
other functions, such as tallying or counting, will be
discussed in Chapter 8.

THE C REGISTER
This register contains 10 decimal digit positions; it does
not have a sign-digit position. Any word that enters the
C register is interpreted as an instruction and executed.

It is convenient to regard the C register as being divided
into three parts:

1. The four high-order digit positions (digit positions
1, 2. 3, and 4) of the C register contain the control
digits of the instruction.

2. Digit positions 5 and 6 contain the operation code.

3. The four low-order digit positions (digit positions
7, 8. 9, and 10) of the C register contain the ad-
dress part of the instruction.

The sign digit—used for control purposes in an instruc-
tion word—is not contained in the C register. The sig-

Digit Positions 1° 2 3.4 8 6 278-7 0

Control Digits |Op Code Address

Ed | ede
C Register

3-4

nificance of this digit is checked in the D register where
a copy of it remains.

THE P REGISTER

This register contains four decimal digit positions; it
does not have a sign-digit position. The P register con-
trols the sequential operation of the computer; it contains
the address of the location from which the next instruction
will be taken for execution.

For example, if the instruction to be executed next were
in location 0500, the P register would contain 0500. After
this instruction is taken from location 0500 and sent to
the C register for execution, the contents of the P register
are increased by one. The next instruction will be taken
from location 0501.

This sequential operation mode can be interrupted by a

transfer-control instruction. Such an instruction causes

the contents of the P register to be replaced by the ad-
dress portion of the transfer-control instruction. The next
instruction would be taken from that address. To illus-
trate: in the previous example, when the instruction in
location 0500 was sent to the C register for execution,
the P register contained 0501, the address of the next
instruction in sequence to be executed. If, however, the
instruction in location 0500 had been a transfer-control
instruction, the address specified by that instruction
would have been placed in the P register. The next in-
struction executed would not have been the instruction in
location 0501; instead, it would be the instruction in the
location whose address was specified by the transfer-
control instruction.

Location of Instruc- Transfer Control P Register
tion in C Register Instruction

0498 NO 0499

0499 NO 0500

0500 YES Address specified
by transfer-con-
trol instruction.

The next instruction to enter the C register would be the
instruction in the location whose address is in the P reg-
ister—that specified by the transfer-control instruction.

THE S REGISTER

This register contains four decimal digit positions; it
does not have a sign-digit position. The S register is used

by an operator for checking out (debugging) a program
on the computer.

THE IB REGISTER

This register contains ten decimal digit positions plus
sign-digit position. It is located in the Memory Control
Unit and is used as a buffer between core storage and the
control and arithmetic units; that is, instructions and
data going to the A, R, D, or C registers from core stor-
age first pass through this register.

THE E REGISTER

This register contains four decimal digit positions; it

does not have a sign-digit position. Located in the Mem-
ory Control Unjt, it is used for control purposes: the
E register will always contain the address of the core
storage location to which access is being made under
computer or manual control. Although the E register is
not in the arithmetic unit, a copy of its contents appears
on the Control Console.

OPERATION CYCLE
Whenever the Burroughs 220 seeks and locates an instruc-
tion in core storage, transfers it to the C register, and
then performs the action specified by the instruction, it
has performed the basic cycle of computer operation. This
cycle—referred to as the operation cycle—has two phases:
the first is called the fetch phase; the second is called the
execute phase. During the fetch phase, the instruction is
brought from core storage to the C register; during the
execute phase, the instruction just fetched is executed.

One might picture the operation cycle as following a
pattern like a figure eight:

<——— Starting Point

Execute
Phase

An Introduction to the Burroughs 220

That is, the computer begins its operation with. the fetch
phase. As soon as it has completed the fetch phase, it
enters the execute phase. When it completes the execute
phase, it re-enters the fetch phase, and so forth. Thus,
during normal operation, the fetch and execute phases are
performed alternately.

A description of what occurs during the execute phase of
each instruction appears in subsequent sections of this
book.

INPUT-OUTPUT MEDIA

The input-output equipment mentioned at the beginning
of this chapter uses various media (punched paper tape,
magnetic tape, punched cards) from which information to
be transmitted to core storage is obtained and on which
information transmitted from core storage is recorded. In
addition, the output from core storage may be printed.

During input preparation, data and instructions are re-
corded on a selected medium and presented to a compat-
ible input device for transmission to core storage. During
output, information is presented to an output device which
records it on a compatible output medium. (Appendix D
is a description of the input-output media employed by
the Burroughs 220.)

3-5

Starting to Code the Burroughs 220
APPROACHING THE PROBLEM
In starting to code the Burroughs 220, three parts of a
data-processing problem must be considered: input, proc-
essing, and output.

INPUT

An input medium must be decided upon by which data
and instructions can be entered into the computer. The
numeric and alphanumeric information—representing the
data to be processed and the instructions that perform the
processing—may be punched into cards or paper tape, or
may be stored on magnetic tape. They can then be read
into core storage. During this phase of the coding opera-
tion, a decision must be made as to where the data and
instructions will be stored; that is, into what locations of
core storage they will be placed.

PROCESSING

The processing phase is the internal computing phase; the
stored instructions are used to manipulate and process the
stored data.

OUTPUT

Some means must be decided upon by which the processed
results may be made available for use. This may be ac-
complished by printing out the processed data, punching
it into cards or paper tape, or storing it on magnetic tape.

These three phases may be shown as:

Input —>| Processing
 v Output

To illustrate, let us take a simple example problem. As-
sume that we have two quantities, x and y. We want to
enter them into the computer, add them together to ob-
tain their sum, z, and print out that sum. We have decided
to enter the data—x and y—into locations 0001 and 0002.
When the sum is computed it will be temporarily stored
in location 0100, prior to being printed out. The instruc-
tions that we have written to process the data will be
stored in locations 1995 through 1999. Punched paper
tape has been selected as the input medium to read the
data and instructions into the computer.

For the sample problem, storage layout will look like this:

Storage
Location

0000 Not used

0001 Quantity x —e

0002 Quantity y f°"
Locations 0003 through 0099 not used

for this problem.

Contents of Location

0100 Storage location for z (computed result) .

Locations 0101 through 1994 not used
for this problem.

1995 Instruction 1

1996 Instruction 2

1997 Instruction 3

1998 Instruction 4
1999 Instruction 5

When the data and instructions have been stored, the
computer will be directed to execute the instructions start-
ing with the one in location 1995.

The instructions will direct the computer to do the fol-
lowing:

Instruction 1. Clear the A register. Take quantity x
from location 0001 and place it in the
A register.

Instruction 2. Take quantity y from location 0002
and add it to quantity x in A register;
the sum z will appear in the A register.

Instruction 3. Take the sum z from the A register and
store it in location 0100.

Instruction 4. Print the sum.

Instruction 5. Halt the operation.

These instructions will be explained in detail later.

PAPER-TAPE SYSTEM
The Paper-Tape System and two of its instructions will
be discussed as an, example of input-output media.t The
various arithmetic, manipulation, and decision-making
instructions will be discussed in this and subsequent
chapters.

The Burroughs 220 uses paper tape as one of its input-
output media. The paper-tape input equipment for the
Burroughs 220 is a photoelectric reader. The paper-tape

*For a detailed description of the paper-tape system and the remaining paper-tape instructions, consult Operational Characteristics of the
Burroughs 220, Bulletin 5020.

4-1

Starting to Code the Burroughs 220

output equipment is a paper-tape punch; a character-at-
a-time printer may be substituted for a paper-tape punch.
Up to ten paper-tape photoreaders and up to ten high-
speed paper-tape punches or character-at-a-time printers
may be included in the Paper-Tape System of the Bur-
roughs 220. However, only one input or output unit may
be referenced at a time by any one instruction.

On input, the computer can be directed to read either a

specified number of words or all the words contained on

a length of punched paper tape. Or it can read an un-
specified portion of the total words by interspersing the
input information on the tape with control words. On

output, the coder must specify the number of words to
be punched or printed.

CONTROL WORDS
As a general rule, instruction words with a 6 or 7 in the

sign-digit position are recognized by the computer as

control words. Whether receiving input information from
punched paper tape or punched cards, the computer can

distinguish these words from other input words if it is
directed to do so. It is also possible to ignore 6 and 7

sign digits in punched paper tape and punched-card input
operations.

If the computer has been directed to recognize control
words, a control word is never sent to storage; instead, it
is sent to the C register and executed. Otherwise, a con-
trol word is read into storage like any other input word.

Same samples of control words are:
1. A PAPER-TAPE READ instruction with a 6 or a 7

in the sign-digit position might be punched into
paper tape preceding the information to be read
into core storage. As a control word it would be

sent to the C register and executed—thus causing
the information following it on the paper tape to be
read into core storage starting with the location
specified in the address portion of the control word.

2. A control word might be punched into the paper
tape in the middle of the input information which,
when sent to the C register, would halt the reading
operation.

3. A control word might be punched into the paper
tape at the end of the input information which,
when sent to the C register, would halt the reading
operation and transfer control to the first location
of a program just read in, so that computation could
begin.

The use and purpose of control words will be further
clarified for the reader in connection with the descriptions
of the paper-tape and Cardatron instructions. (Control
blocks perform the same functions with magnetic tape.
Refer to Chapter 11. For more complete details, refer to
Operational Characteristics of the Burroughs 220.)

Descriptions of the two paper-tape instructions selected as

examples follow.

PAPER-TAPE READ (03) = u nn v PRD aaaa?

= If the sign digit is odd, automatic B register ad-

dress modification occurs.

u Designates the unit from which the information is
to be read.

nn Number of words to be read.

v = 0 Read nn words; control words are not recognized
as such.

vy = 1 Read nn words or read until a control word is en-

countered; control words are recognized as such.

v = 8 B register address modification of specified input
or will occur.

v=9

1. “Read nn words from unit u into consecutively ad-

dressed locations beginning with location aaaa.”

2. The PAPER-TAPE READ instruction selects the

particular photoreader from which the information
is to be read. Any one of 10 photoreaders can be

selected by coding a digit from 1 through 0 in the
“u” digit position of the instruction; a 1 specifies
unit 1, a 0 specifies unit 10.

PAPER-TAPE WRITE (06) + u nn 0 PWR aaaa

+ Ifthe sign digit is odd, automatic B register address

modification occurs.

u___ Designates the unit by which the information is to be

printed or punched.

nn Number of words to be printed or punched.

0 Not relevant to the execution of this instruction.

1. “Print or punch nn words on unit u, taking the
words from consecutively addressed locations begin-
ning with location aaaa.”

2. The PAPER-TAPE WRITE instruction selects the
particular punch or character-at-a-time printer to
which the information is to be transferred for
punching or printing. Any one of ten units may be

selected by coding a 1 through0 in the u digit posi-
tion of the instruction; a 1 specifies unit 1, a 0

specifies unit 10.

ADDITION AND SUBTRACTION
INSTRUCTIONS

CLEAR ADD (10) + 0000 CAD aaaa

1. “Replace the entire contents of the A register by the

contents of storage location aaaa.”

2. If the sign digit is odd, automatic B register address
modification occurs.

2The coder writes the instruction as shown: -++ u nny PRD aaaa, but on input preparation, the mnemonic operation code must be replaced
by the numeric: + u nn vy 03 aaaa.

4-2

Examples:

A Register Contents of A Register
Before CAD Location aaaa After CAD

OT VAL
0 4976 00 3872

0 1234 56 7890

0 0000 38 7421

0 1234 56 7890

0 0000 38 7421

ADD (12) = 0000 ADD aaaa

1. “Add the contents of location aaaa to the contents
of the A register.”

2. The resulting ten-digit sum replaces the contents of
the A register. The sign of the A register is set ac-
cording to the rules for algebraic addition. Excep-
tion: If the result of the addition is zero, the sign of
the result is the sign of the A register before execu-
tion of the ADD instruction.

3. If the sum exceeds the capacity of the A register,
overflow occurs and the overflow indicator is turned
on. (See discussion on overflow later in this chap-
ter.)

4. If the sign digit is odd, automatic B register address
modification occurs.

Starting to Code the Burroughs 220

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register
Before CSU Location aaaa After CSU

0 7689 00 0322 0 1234 56 7890 1 1234 56 7890

1 0000 00 0000 1 9336 44 7890 0 9336 44 7890

0 0000 00 0044 1 0000 00 0893 0 0000 00 0893

SUBTRACT (13) =+ 0000 SUB aaaa

1. “Subtract the contents of aaaa from the contents of
the A register.”

2. The difference replaces the original contents of the
A register.

3. The sign of the result is set according to the rules of
algebraic subtraction. Exception: If the result of the
subtraction is zero, the sign of the result is the sign
of the A register before execution of SUBTRACT.

4. The overflow indicator is turned on if the result of
the subtraction exceeds the capacity of the A register.

5. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

A Register Contents of A Register Overflow
Before ADD Location aaaa After ADD Indicator

QO F111 FE Vit 0 4444 44 4444 3 0 5555 55 5555 OFF
0 1111 11 0 1234 56 7890 0 2345 67 9001 OFF
0 4343 33 5757 1 4343 33 5757 0 0000 00 0000 OFF
0 8604 30 0000 0 1703 00 0000 0 0307 30 0000 ON

ADD TO LOCATION (19)

1. “Add the contents of the A register to the contents
of location aaaa.”

+ 0000 ADL aaaa

Examples:

Contents of Contents of Overflow
A Register Contents of A Register Indicator

Before SUB Location aaaa After SUB

0 0000 00 0333 0 0000 00 0011 0 0000 00 0322 OFF
1 0000 00 0333 0 0000 00 0011 1 0000 00 0344 OFF
1 0000 00 0333 1 0000 00 0011 1 0000 00 0322 OFF
1 4244 58 7890 0 8000 00 0000 1 2244 58 7890 ON
0.333333 3333 1 6666 66 6667 0 0000 00 0000 ON

2. The sum appears in location aaaa.

3. The sign digit of the word in location aaaa is pro-
duced according to the rules of algebraic addition.

4. If the sum exceeds the capacity of location aaaa,
overflow occurs and the overflow indicator is turned
on.

5. If the sign digit is odd, automatic B register address
modification occurs.

Examples:

Contents of Contents of
Location aaaa Contents of Location aaaa Overflow
Before ADL A Register After ADL Indicator

0 4444 44 4444 0 0000 11 1111 0 4444 55 5555 OFF
0 0000 00 0015 1 0000 00 0025 1 0000 00 0010 OFF
0 8910 00 4136 =0 1120 00 1221 0 0030 00 5357 ON

CLEAR SUBTRACT (11) + 0000 CSU aaaa

1. “Replace the entire contents of the A register by the
contents of location aaaa.”

2. The sign of the word in aaaa is reversed before it
enters the A register, that is, if the word has a posi-
tive sign, it will appear in the A register with a nega-
tive sign. If the sign was negative, it will be positive
when it enters the A register.

CLEAR ADD ABSOLUTE (10) =+ 0001 CAA aaaa

1. “Replace the entire contents of the A register by the
absolute value of the contents of location aaaa.”

2. The sign of the word from storage is treated as
though it were positive regardless of its actual sign.

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register

Before CAA Location aaaa After CAA

0 1234 56 7890 1 4320 00 9001 0 4320 00 9001

1 8000 08 8000 0 1111 11 1111 Oo Pier Gla:

ADD ABSOLUTE (12) + 0001 ADA aaaa

1. “Add the absolute value of the contents of aaaa to
the contents of the A register.”

2. The resultant ten-digit sum replaces the contents of
the A register. The sign of the A register is set ac-

cording to the rules for algebraic addition. Excep-
tion: If the result of the addition is zero, the sign of
the result is the sign of the A register before execu-
tion of the ADA instruction.

4-3

Starting to Code the Burroughs 220

output equipment is a paper-tape punch; a character-at-
a-time printer may be substituted for a paper-tape punch.
Up to ten paper-tape photoreaders and up to ten high-
speed paper-tape punches or character-at-a-time printers
may be included in the Paper-Tape System of the Bur-
roughs 220. However, only one input or output unit may
be referenced at a time by any one instruction.

On input, the computer can be directed to read either a

specified number of words or all the words contained on

a length of punched paper tape. Or it can read an un-
specified portion of the total words by interspersing the
input information on the tape with control words. On

output, the coder must specify the number of words to
be punched or printed.

CONTROL WORDS
As a general rule, instruction words with a 6 or 7 in the

sign-digit position are recognized by the computer as

control words. Whether receiving input information from
punched paper tape or punched cards, the computer can

distinguish these words from other input words if it is
directed to do so. It is also possible to ignore 6 and 7

sign digits in punched paper tape and punched-card input
operations.

If the computer has been directed to recognize control
words, a control word is never sent to storage; instead, it
is sent to the C register and executed. Otherwise, a con-
trol word is read into storage like any other input word.

Same samples of control words are:
1. A PAPER-TAPE READ instruction with a 6 or a 7

in the sign-digit position might be punched into
paper tape preceding the information to be read
into core storage. As a control word it would be

sent to the C register and executed—thus causing
the information following it on the paper tape to be
read into core storage starting with the location
specified in the address portion of the control word.

2. A control word might be punched into the paper
tape in the middle of the input information which,
when sent to the C register, would halt the reading
operation.

3. A control word might be punched into the paper
tape at the end of the input information which,
when sent to the C register, would halt the reading
operation and transfer control to the first location
of a program just read in, so that computation could
begin.

The use and purpose of control words will be further
clarified for the reader in connection with the descriptions
of the paper-tape and Cardatron instructions. (Control
blocks perform the same functions with magnetic tape.
Refer to Chapter 11. For more complete details, refer to
Operational Characteristics of the Burroughs 220.)

Descriptions of the two paper-tape instructions selected as

examples follow.

PAPER-TAPE READ (03) = u nn v PRD aaaa?

= If the sign digit is odd, automatic B register ad-

dress modification occurs.

u Designates the unit from which the information is
to be read.

nn Number of words to be read.

v = 0 Read nn words; control words are not recognized
as such.

vy = 1 Read nn words or read until a control word is en-

countered; control words are recognized as such.

v = 8 B register address modification of specified input
or will occur.

v=9

1. “Read nn words from unit u into consecutively ad-

dressed locations beginning with location aaaa.”

2. The PAPER-TAPE READ instruction selects the

particular photoreader from which the information
is to be read. Any one of 10 photoreaders can be

selected by coding a digit from 1 through 0 in the
“u” digit position of the instruction; a 1 specifies
unit 1, a 0 specifies unit 10.

PAPER-TAPE WRITE (06) + u nn 0 PWR aaaa

+ Ifthe sign digit is odd, automatic B register address

modification occurs.

u___ Designates the unit by which the information is to be

printed or punched.

nn Number of words to be printed or punched.

0 Not relevant to the execution of this instruction.

1. “Print or punch nn words on unit u, taking the
words from consecutively addressed locations begin-
ning with location aaaa.”

2. The PAPER-TAPE WRITE instruction selects the
particular punch or character-at-a-time printer to
which the information is to be transferred for
punching or printing. Any one of ten units may be

selected by coding a 1 through0 in the u digit posi-
tion of the instruction; a 1 specifies unit 1, a 0

specifies unit 10.

ADDITION AND SUBTRACTION
INSTRUCTIONS

CLEAR ADD (10) + 0000 CAD aaaa

1. “Replace the entire contents of the A register by the

contents of storage location aaaa.”

2. If the sign digit is odd, automatic B register address
modification occurs.

2The coder writes the instruction as shown: -++ u nny PRD aaaa, but on input preparation, the mnemonic operation code must be replaced
by the numeric: + u nn vy 03 aaaa.

4-2

Examples:

A Register Contents of A Register
Before CAD Location aaaa After CAD

OT VAL
0 4976 00 3872

0 1234 56 7890

0 0000 38 7421

0 1234 56 7890

0 0000 38 7421

ADD (12) = 0000 ADD aaaa

1. “Add the contents of location aaaa to the contents
of the A register.”

2. The resulting ten-digit sum replaces the contents of
the A register. The sign of the A register is set ac-
cording to the rules for algebraic addition. Excep-
tion: If the result of the addition is zero, the sign of
the result is the sign of the A register before execu-
tion of the ADD instruction.

3. If the sum exceeds the capacity of the A register,
overflow occurs and the overflow indicator is turned
on. (See discussion on overflow later in this chap-
ter.)

4. If the sign digit is odd, automatic B register address
modification occurs.

Starting to Code the Burroughs 220

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register
Before CSU Location aaaa After CSU

0 7689 00 0322 0 1234 56 7890 1 1234 56 7890

1 0000 00 0000 1 9336 44 7890 0 9336 44 7890

0 0000 00 0044 1 0000 00 0893 0 0000 00 0893

SUBTRACT (13) =+ 0000 SUB aaaa

1. “Subtract the contents of aaaa from the contents of
the A register.”

2. The difference replaces the original contents of the
A register.

3. The sign of the result is set according to the rules of
algebraic subtraction. Exception: If the result of the
subtraction is zero, the sign of the result is the sign
of the A register before execution of SUBTRACT.

4. The overflow indicator is turned on if the result of
the subtraction exceeds the capacity of the A register.

5. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

A Register Contents of A Register Overflow
Before ADD Location aaaa After ADD Indicator

QO F111 FE Vit 0 4444 44 4444 3 0 5555 55 5555 OFF
0 1111 11 0 1234 56 7890 0 2345 67 9001 OFF
0 4343 33 5757 1 4343 33 5757 0 0000 00 0000 OFF
0 8604 30 0000 0 1703 00 0000 0 0307 30 0000 ON

ADD TO LOCATION (19)

1. “Add the contents of the A register to the contents
of location aaaa.”

+ 0000 ADL aaaa

Examples:

Contents of Contents of Overflow
A Register Contents of A Register Indicator

Before SUB Location aaaa After SUB

0 0000 00 0333 0 0000 00 0011 0 0000 00 0322 OFF
1 0000 00 0333 0 0000 00 0011 1 0000 00 0344 OFF
1 0000 00 0333 1 0000 00 0011 1 0000 00 0322 OFF
1 4244 58 7890 0 8000 00 0000 1 2244 58 7890 ON
0.333333 3333 1 6666 66 6667 0 0000 00 0000 ON

2. The sum appears in location aaaa.

3. The sign digit of the word in location aaaa is pro-
duced according to the rules of algebraic addition.

4. If the sum exceeds the capacity of location aaaa,
overflow occurs and the overflow indicator is turned
on.

5. If the sign digit is odd, automatic B register address
modification occurs.

Examples:

Contents of Contents of
Location aaaa Contents of Location aaaa Overflow
Before ADL A Register After ADL Indicator

0 4444 44 4444 0 0000 11 1111 0 4444 55 5555 OFF
0 0000 00 0015 1 0000 00 0025 1 0000 00 0010 OFF
0 8910 00 4136 =0 1120 00 1221 0 0030 00 5357 ON

CLEAR SUBTRACT (11) + 0000 CSU aaaa

1. “Replace the entire contents of the A register by the
contents of location aaaa.”

2. The sign of the word in aaaa is reversed before it
enters the A register, that is, if the word has a posi-
tive sign, it will appear in the A register with a nega-
tive sign. If the sign was negative, it will be positive
when it enters the A register.

CLEAR ADD ABSOLUTE (10) =+ 0001 CAA aaaa

1. “Replace the entire contents of the A register by the
absolute value of the contents of location aaaa.”

2. The sign of the word from storage is treated as
though it were positive regardless of its actual sign.

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register

Before CAA Location aaaa After CAA

0 1234 56 7890 1 4320 00 9001 0 4320 00 9001

1 8000 08 8000 0 1111 11 1111 Oo Pier Gla:

ADD ABSOLUTE (12) + 0001 ADA aaaa

1. “Add the absolute value of the contents of aaaa to
the contents of the A register.”

2. The resultant ten-digit sum replaces the contents of
the A register. The sign of the A register is set ac-

cording to the rules for algebraic addition. Excep-
tion: If the result of the addition is zero, the sign of
the result is the sign of the A register before execu-
tion of the ADA instruction.

4-3

Starting to Code the Burroughs 220

3. If the sum exceeds the capacity of the A register,
overflow occurs and the overflow indicator is turned
on.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register Overflow

Before ADA Location aaaa After ADA Indicator

0 0000 00 0088 0 0000 00 0012 0 0000 00 0100 OFF

1 0000 00 0099 =. 1: 0000 00 0012 ~—1 +0000 00 0087 OFF
0 8000 00 2345 1 3220 00 0249 0 1220 00 2594 ON

0 6231 11 4890 1 3900 00 0000 =: 0: 0131 11 4890 ON

1 0006 66 0004 0 0006 66 0004 1 0000 00 0000 OFF

CLEAR SUBTRACT ABSOLUTE (11)
+ 0001 CSA aaaa

1. “Replace the contents of the A register with the con-
tents of location aaaa; the sign of the A register will
be negative.”

2. The sign of the word in aaaa is disregarded.

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register

Before CSA Location aaaa After CSA

0 0000 45 6300 0 0084 93 7000 1 0084 93 7000

De EE LTT

SUBTRACT ABSOLUTE (13)

1 5678 12 3450 1 5678 12 3450

+ 0001 SUA aaaa

1. “Subtract the absolute value of the word in location
aaaa from the contents of the A register.”

2. The sign of the word in location aaaa is treated as

positive regardless of its actual value.

3. The ten-digit difference replaces the contents of the
A register.

4. The sign of the result is set according to the rules
for algebraic subtraction. Exception: If the result of
the subtraction is zero, the sign of the result is the

 sign of the A register before execution of SUA.

5. If the result of subtraction exceeds the capacity of
the A register, the overflow indicator is turned on.

6. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register Overflow

Before SUA Location aaaa After SUA Indicator

0 0000 00 0000 «0 0000 00 8809 1 0000 00 8809 OFF

1 0000 00 0888 1 0000 00 0008 ~=1 0000 00 0896 OFF

1 8070 38 0000 0 0007 66 0049 1 8078 04 0049 OFF

1 9999 99 9999 = 0.: 0000 00 0001 1 0000 00 0000 ON

1 8004 48 0000 1 8700 00 0000 =: 1 -:6704 48 0000 ON

4.4,

HALT INSTRUCTION

Even the shortest and simplest programs must include a

HALT instruction.

HALT (00) = 0000 HLT 0000

1. “Stop operation of the computer.”

2. If the operator depresses the START button, after
the HALT instruction has been executed, the com-
puter will fetch and execute the contents of the loca-
tion immediately following the HALT.

3. When the HALT instruction is executed, the contents
of the A, R, C and B registers are undisturbed.

4. A program usually contains several HALT instruc-
tions. Since the address portion of this instruction is
not used to reference a storage location, it may be

used to assist the programmer in identifying HALT
instructions. For example, he can identify the fol-
lowing halts by examining the contents of the C reg-

ister displayed on the Console control panel:

0000 00 0001 = Halt No. 1

0000 00 0002 Halt No. 2

0000 00 0003 = Halt No. 3

5. If the sign digit of the instruction is odd, automatic
B register modification of the four, low-order digits
occurs.

PARTIAL-WORD OPERATION

Instructions normally refer to the entire word in a register
or in storage. Some operations, however, allow the coder

to specify either an entire word or any digit or set of
adjacent digits (field) in a word.

The digit or digits referenced by this type of instruction
are called partial-word fields, and this type of machine
operation is called a partial-word operation.

The four high-order or control digits of partial-word in-
structions are used to specify the following:

1. Total-word or partial-word operation, that is,

whether the entire word or only a part of the word
will be operated upon.

2. The size and location of the partial-word field within
the word, if partial-word operation is indicated.

A partial-word field is defined in the Burroughs 220

by the letters sL: s specifies the rightmost—low-
order—digit of the partial-word field; L specifies
the number of digits in the field. In other words, the
field is determined by starting at digit-position s

and counting left L digit positions.

3. The variation of the instruction to be executed in
cases where two instructions have the same opera-
tion code. (For example, the STORE A and STORE
R instructions both have the numeric operation code
40. STORE A is distinguished from STORE R by
having a 0 in digit-position 4, the variation-digit
position, while STORE R has a 1 in this position.)

SAMPLE PARTIAL-WORD INSTRUCTIONS
STORE A (40) +s Lf0 STA aaaa

If f = 1 Partial-word operation.

If f = 0 Total-word operation.

If f = 0, sL not relevant.

If f = 1, s specifies rightmost digit position of the par-
tial-word field, L specifies number of adjacent digits in
the partial-word field.

If the sign digit is odd, automatic B register address modi-
fication occurs.

1. “Store the specified field of the A register in the cor-
responding field in location aaaa.”

2. If f = 0, the STORE A instruction replaces the en-
tire contents of location aaaa by the entire contents
of the A register.

3. If f = 1, the sL digits specify the partial-word
field. Since partial-word operations reference only
a specified field, the remaining digits of the word in
location aaaa are unaltered.

4. Execution of STORE A does not alter the contents of
the A register.

5. Any individual digit except the sign digit can be
treated as a separate field. The sign digit must be
referenced in conjunction with at least one adjoining
digit.

Examples:

Contents of location aaaa before STA is executed: 0 9999 99 9999

Contents of
A Register Before
and After STA Is

Contents of
Location aaaa

After Execution
Instruction Executed of STA

0 0000 STA aaaa 0.2222 227 72 02222) 22 2222

0 0300 STA aaaa 0 0000 12 3456 0 0000 12 3456

0 0310 STA aaaa 0 0000 12 3456 0 9999 99 9456
0 6210 STA aaaa 0: 3333 43: Sona 0 9999 33 9999

0 0010 STA aaaa 0 4400 44 0044 0 4400 44 0044

0 3410 STA aaaa 1 5432 15 8765 1 5439 99 9999

STORE R (40) +s Lf 1 STR aaaa

If f = 1, partial-word operation.

If f = 0, total-word operation.

If f = 0, sL not relevant.

If f = 1, s designates rightmost digit position of the
partial-word field, L specifies the number of adjacent
digits in the partial-word field.

If the sign digit is odd, automatic B register address mod-
ification occurs.

1. “Store the specified field of the R register in the
corresponding field of location aaaa.”

2. If f = 0, the STORER instruction replaces the en-

Starting to Code the Burroughs 220

tire contents of location aaaa by the entire contents
of the R register.

3. If f = 1, the sL digits specify the partial-word field.
Since partial-word operations reference only a speci-
fied field, the remaining digits of the word in loca-
tion aaaa are unaltered.

4. Execution of STORE R does not alter the contents of
the R register.

5. Any individual digit except the sign digit can be
treated as a separate field. The sign digit must be
referenced in conjunction with at least one adjoining
digit.

Examples:

Contents of location aaaa before STR is executed: 0 1111 11 1111

Contents of
R Register Before

Contents of
Location aaaa

and After STR is After Execution
Instruction Executed of STR

0 0001 STR aaaa 0 9999 99 9999 0 9999 99 9999
0 3211 STR aaaa 0 5346 70 6434 0 1341 11 1111

Consider the following short program as an example of
some of the instructions that have been described.?

This Week

Gross in location 0200

Tax in location 0201

Given: Year to Date

Gross in location 0100

Tax in location 0101

FICA in location 0102 FICA in location 0202

Insurance in location Insurance in location
0103 0203

Net in location 0104

Find net pay (net = gross—tax—FICA—insurance) for
this week; store in location 0204. Update year to date.
Start program in location 0000.

0000 CAD 0200
OOOL SUB. .0201
0002 SUB 0202
0003 SUB 0203
0004 STA 0204
0005 ADL 0104
0006 CAD 0200

Calculate net pay this week.

Store net pay this week.
Update net pay.

0007 ADD _ 0100 > Update gross.
0008 ~=STA 0100
0009 CAD 0201
0010 ADD 0101 > Update tax.
OO. STA. — 010]
0012 CAD 0202
0013 ADD 0102 > Update FICA.
0014 STA 0102
O0LS.=:CAD ...0203

0016 ADD _ 0103
OOL/.. STA, 0103
0018 HLT 0000

Update insurance.

Halt operation.

“The reader should be aware that the sample problems are not always realistic; in many of them, more instructions appear than would be
used by an experienced coder. The examples were chosen for simplicity and for the purpose of introducing new instructions gradually.

4-5

Starting to Code the Burroughs 220

3. If the sum exceeds the capacity of the A register,
overflow occurs and the overflow indicator is turned
on.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register Overflow

Before ADA Location aaaa After ADA Indicator

0 0000 00 0088 0 0000 00 0012 0 0000 00 0100 OFF

1 0000 00 0099 =. 1: 0000 00 0012 ~—1 +0000 00 0087 OFF
0 8000 00 2345 1 3220 00 0249 0 1220 00 2594 ON

0 6231 11 4890 1 3900 00 0000 =: 0: 0131 11 4890 ON

1 0006 66 0004 0 0006 66 0004 1 0000 00 0000 OFF

CLEAR SUBTRACT ABSOLUTE (11)
+ 0001 CSA aaaa

1. “Replace the contents of the A register with the con-
tents of location aaaa; the sign of the A register will
be negative.”

2. The sign of the word in aaaa is disregarded.

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register

Before CSA Location aaaa After CSA

0 0000 45 6300 0 0084 93 7000 1 0084 93 7000

De EE LTT

SUBTRACT ABSOLUTE (13)

1 5678 12 3450 1 5678 12 3450

+ 0001 SUA aaaa

1. “Subtract the absolute value of the word in location
aaaa from the contents of the A register.”

2. The sign of the word in location aaaa is treated as

positive regardless of its actual value.

3. The ten-digit difference replaces the contents of the
A register.

4. The sign of the result is set according to the rules
for algebraic subtraction. Exception: If the result of
the subtraction is zero, the sign of the result is the

 sign of the A register before execution of SUA.

5. If the result of subtraction exceeds the capacity of
the A register, the overflow indicator is turned on.

6. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of Contents of
A Register Contents of A Register Overflow

Before SUA Location aaaa After SUA Indicator

0 0000 00 0000 «0 0000 00 8809 1 0000 00 8809 OFF

1 0000 00 0888 1 0000 00 0008 ~=1 0000 00 0896 OFF

1 8070 38 0000 0 0007 66 0049 1 8078 04 0049 OFF

1 9999 99 9999 = 0.: 0000 00 0001 1 0000 00 0000 ON

1 8004 48 0000 1 8700 00 0000 =: 1 -:6704 48 0000 ON

4.4,

HALT INSTRUCTION

Even the shortest and simplest programs must include a

HALT instruction.

HALT (00) = 0000 HLT 0000

1. “Stop operation of the computer.”

2. If the operator depresses the START button, after
the HALT instruction has been executed, the com-
puter will fetch and execute the contents of the loca-
tion immediately following the HALT.

3. When the HALT instruction is executed, the contents
of the A, R, C and B registers are undisturbed.

4. A program usually contains several HALT instruc-
tions. Since the address portion of this instruction is
not used to reference a storage location, it may be

used to assist the programmer in identifying HALT
instructions. For example, he can identify the fol-
lowing halts by examining the contents of the C reg-

ister displayed on the Console control panel:

0000 00 0001 = Halt No. 1

0000 00 0002 Halt No. 2

0000 00 0003 = Halt No. 3

5. If the sign digit of the instruction is odd, automatic
B register modification of the four, low-order digits
occurs.

PARTIAL-WORD OPERATION

Instructions normally refer to the entire word in a register
or in storage. Some operations, however, allow the coder

to specify either an entire word or any digit or set of
adjacent digits (field) in a word.

The digit or digits referenced by this type of instruction
are called partial-word fields, and this type of machine
operation is called a partial-word operation.

The four high-order or control digits of partial-word in-
structions are used to specify the following:

1. Total-word or partial-word operation, that is,

whether the entire word or only a part of the word
will be operated upon.

2. The size and location of the partial-word field within
the word, if partial-word operation is indicated.

A partial-word field is defined in the Burroughs 220

by the letters sL: s specifies the rightmost—low-
order—digit of the partial-word field; L specifies
the number of digits in the field. In other words, the
field is determined by starting at digit-position s

and counting left L digit positions.

3. The variation of the instruction to be executed in
cases where two instructions have the same opera-
tion code. (For example, the STORE A and STORE
R instructions both have the numeric operation code
40. STORE A is distinguished from STORE R by
having a 0 in digit-position 4, the variation-digit
position, while STORE R has a 1 in this position.)

SAMPLE PARTIAL-WORD INSTRUCTIONS
STORE A (40) +s Lf0 STA aaaa

If f = 1 Partial-word operation.

If f = 0 Total-word operation.

If f = 0, sL not relevant.

If f = 1, s specifies rightmost digit position of the par-
tial-word field, L specifies number of adjacent digits in
the partial-word field.

If the sign digit is odd, automatic B register address modi-
fication occurs.

1. “Store the specified field of the A register in the cor-
responding field in location aaaa.”

2. If f = 0, the STORE A instruction replaces the en-
tire contents of location aaaa by the entire contents
of the A register.

3. If f = 1, the sL digits specify the partial-word
field. Since partial-word operations reference only
a specified field, the remaining digits of the word in
location aaaa are unaltered.

4. Execution of STORE A does not alter the contents of
the A register.

5. Any individual digit except the sign digit can be
treated as a separate field. The sign digit must be
referenced in conjunction with at least one adjoining
digit.

Examples:

Contents of location aaaa before STA is executed: 0 9999 99 9999

Contents of
A Register Before
and After STA Is

Contents of
Location aaaa

After Execution
Instruction Executed of STA

0 0000 STA aaaa 0.2222 227 72 02222) 22 2222

0 0300 STA aaaa 0 0000 12 3456 0 0000 12 3456

0 0310 STA aaaa 0 0000 12 3456 0 9999 99 9456
0 6210 STA aaaa 0: 3333 43: Sona 0 9999 33 9999

0 0010 STA aaaa 0 4400 44 0044 0 4400 44 0044

0 3410 STA aaaa 1 5432 15 8765 1 5439 99 9999

STORE R (40) +s Lf 1 STR aaaa

If f = 1, partial-word operation.

If f = 0, total-word operation.

If f = 0, sL not relevant.

If f = 1, s designates rightmost digit position of the
partial-word field, L specifies the number of adjacent
digits in the partial-word field.

If the sign digit is odd, automatic B register address mod-
ification occurs.

1. “Store the specified field of the R register in the
corresponding field of location aaaa.”

2. If f = 0, the STORER instruction replaces the en-

Starting to Code the Burroughs 220

tire contents of location aaaa by the entire contents
of the R register.

3. If f = 1, the sL digits specify the partial-word field.
Since partial-word operations reference only a speci-
fied field, the remaining digits of the word in loca-
tion aaaa are unaltered.

4. Execution of STORE R does not alter the contents of
the R register.

5. Any individual digit except the sign digit can be
treated as a separate field. The sign digit must be
referenced in conjunction with at least one adjoining
digit.

Examples:

Contents of location aaaa before STR is executed: 0 1111 11 1111

Contents of
R Register Before

Contents of
Location aaaa

and After STR is After Execution
Instruction Executed of STR

0 0001 STR aaaa 0 9999 99 9999 0 9999 99 9999
0 3211 STR aaaa 0 5346 70 6434 0 1341 11 1111

Consider the following short program as an example of
some of the instructions that have been described.?

This Week

Gross in location 0200

Tax in location 0201

Given: Year to Date

Gross in location 0100

Tax in location 0101

FICA in location 0102 FICA in location 0202

Insurance in location Insurance in location
0103 0203

Net in location 0104

Find net pay (net = gross—tax—FICA—insurance) for
this week; store in location 0204. Update year to date.
Start program in location 0000.

0000 CAD 0200
OOOL SUB. .0201
0002 SUB 0202
0003 SUB 0203
0004 STA 0204
0005 ADL 0104
0006 CAD 0200

Calculate net pay this week.

Store net pay this week.
Update net pay.

0007 ADD _ 0100 > Update gross.
0008 ~=STA 0100
0009 CAD 0201
0010 ADD 0101 > Update tax.
OO. STA. — 010]
0012 CAD 0202
0013 ADD 0102 > Update FICA.
0014 STA 0102
O0LS.=:CAD ...0203

0016 ADD _ 0103
OOL/.. STA, 0103
0018 HLT 0000

Update insurance.

Halt operation.

“The reader should be aware that the sample problems are not always realistic; in many of them, more instructions appear than would be
used by an experienced coder. The examples were chosen for simplicity and for the purpose of introducing new instructions gradually.

4-5

Starting to Code the Burroughs 220

CONCEPT OF OVERFLOW

A Burroughs 220 word is always the same size: it must

contain 10 decimal digits plus a sign digit to be accept-

able to the computer.

Although two stored numbers meet this word-size require-

ment, their sum may exceed this size, just as in everyday

arithmetic the sum of two 10-digit numbers may produce

an 11-digit result. For example:

8432 16 7431

+ 1843 16 7142

10275 33 4573

Sucha result is too large to be inserted in the A register.

The 11th or high-order digit, generated by the “carry
one,” creates a number that exceeds the register capacity.

Because the A register has room for only the 10 low-

order digits of the result, the high-order digit is lost. The

largest number that can be stored in the computer is

9999 99 9999: the sum of two words of this magnitude

will equal 1 8888 88 8888. Thus the lost digit is always

a le

Such an occurrence—creation of a number too large to

be contained in the A register—is referred to as overflow.

Examples:

Appearance of
Arithmetic Operation A Register Overflow

8000 00 0000

(Gr) 1000 00 0000

9000 00 0000 0 9000 00 0000 NO

9000 00 0000

(Gr) 3000 00 0000

2000 00 0000 0 2000 00 0000 YES

4841 99 9978

(Ge) 5168 00 9122

0 0010 00 9100 YES
pa] 0010 00 9100

9841 99 9978
0168 00 9122i+

+

++

+

$+

+

FF

i

C)
+ 1 0010 00 9100 0 0010 00 9100 YES

The computer indicates overflow by turning on the over-

flow indicator. The computer will stop when overflow

occurs, unless the overflow indicator is turned off by the

program.

When the possibility of overflow is anticipated, a

BRANCH ON OVERFLOW instruction must be inserted

in the program immediately following the instruction that

may cause the overflow. If overflow occurs, the BRANCH

ON OVERFLOW instruction will turn off the overflow

indicator, preventing the computer from stopping, and

causing a transfer of control to an alternate location. If
overflow does not occur, the BRANCH ON OVERFLOW
instruction is executed but no branch occurs; program

control continues in sequence.

4-6

Recognition of an overflow condition when it occurs is

a valuable programming aid. Use of this technique is

discussed in Chapter 7 under Tallying and Address Modi-

fication.

BRANCHING (TRANSFER OF CONTROL)

Normal Burroughs 220 operation calls for sequential exe-

cution of program instructions from successively ad-

dressed storage locations. Situations arise, however, where

interruptions of this sequence are necessary. Branching

instructions are then used.

A branching instruction can cause program control to be

transferred to the instruction in the location specified by

its address. That is, the next instruction to be fetched

after a branch is not the one following the branching

instruction, but the one in the location specified by the

address part of the branching instruction. Sequential

operation is resumed at the point to which control is

transferred. For example:

BRANCH UNCONDITIONALLY (30)

+ 0000 BUN aaaa

1. “Transfer control to the instruction in location

aaaa.”

2. Sequential operation resumes after the branch.

3. If the sign digit of the instruction is odd, automatic

B register address modification occurs.

Example:

Location Instruction

1000 0 0000 CAD 2225

1001 0 0000 ADD 1500

1002 0 0000 STA 1550

1003 0 0000 BUN 3000

1004. 0 1000 PRB 1000

On the BUN instruction, control is transferred to location

3000, and the next instruction is taken from that location.

BRANCH ON OVERFLOW (31) + 0000 BOF aaaa

1. “If the overflow indicator is on, turn it off and trans-

fer control to location aaaa; take the next instruc-

tion from location aaaa.” (If the overflow indicator
is off, control continues in sequence.)

2. Sequential operation resumes after the branch.

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Example:

Location Instruction

1000 0 0000 CAD 2225

1001 0 0000 ADD 1500

1002 0 0000 BOF 3000

1003 0 0000 STA 1550

1004. 0 0000 HLT 1111

On the BOF instruction, if adding the contents of location
1500 to the A register produces overflow, transfer control
to location 3000. If overflow does not occur, continue in
sequence; take-the next instruction from location 1003.

SAMPLE PROBLEM
INPUT

Using punched paper tape as the input medium, read the
data words A, B, C, and D into locations 0250 through
0253. Read the instructions into locations 0500 through
0510.

Starting to Code the Burroughs 220

PROCESSING

Add A to B; check for overflow. If overflow occurs, halt
the processing operation. If no overflow occurs, store the
result, X, in location 0254. Then add C and D to the sum
in the A register. Store the final result, Y, in location
0255.

OUTPUT

Use the character-at-a-time printer to print out the final
result. Refer to Table 4-1 for solution to problem.

Table 4-1.
Solution to Sample Problem.

Storage Program on Storage Program on
Location Paper Tape Remarks Location Paper Tape Remarks

6 1000 PRB 0250 | Control instruction: 0503 0 0000 STA 0254 | No overflow.
read data into core Store X.
storage. Goe ne Ott 0504. 0 0000 BUN 0506 | To C and D routine.

025] 1 1200 80 0000 Quantity B. 0505 0 0000 HLT 0001 j Overflow halt.

0252 | 0 0000 00 0008 | Quantity C. 0506 | 0 0000 ADD 0252 | (A +B) +C
0253 0 0088 00 9999 Quantity D. 0507 0 0000 ADD 0253 | (A+B+C)+D
0254. 0 0000 00 0000 Sum X. 0508 0 0000 STA 0255 | Store Y.

0255 | 0 0000 00 0000 Sum Y. 0509 | 0 1010 PWR 0255 | Print out final re-

6 1000 PRB 0500 | Control instruction: sult Y.

read ee 0510 0 0000 HLT 0002 | Program complete;
into core storage. halt operation

0500 | 0 0000 CAD 0250 | A rA S caad 6 0000 BUN 0500 | Control instruction:
x ne Ue data and instruc-
eae tions read in;

0501 0 0000 ADD 0251 |A + B penance .
0502 0 0000 BOF 0505 | If overflow, halt. be executed.

4-7

Starting to Code the Burroughs 220

CONCEPT OF OVERFLOW

A Burroughs 220 word is always the same size: it must

contain 10 decimal digits plus a sign digit to be accept-

able to the computer.

Although two stored numbers meet this word-size require-

ment, their sum may exceed this size, just as in everyday

arithmetic the sum of two 10-digit numbers may produce

an 11-digit result. For example:

8432 16 7431

+ 1843 16 7142

10275 33 4573

Sucha result is too large to be inserted in the A register.

The 11th or high-order digit, generated by the “carry
one,” creates a number that exceeds the register capacity.

Because the A register has room for only the 10 low-

order digits of the result, the high-order digit is lost. The

largest number that can be stored in the computer is

9999 99 9999: the sum of two words of this magnitude

will equal 1 8888 88 8888. Thus the lost digit is always

a le

Such an occurrence—creation of a number too large to

be contained in the A register—is referred to as overflow.

Examples:

Appearance of
Arithmetic Operation A Register Overflow

8000 00 0000

(Gr) 1000 00 0000

9000 00 0000 0 9000 00 0000 NO

9000 00 0000

(Gr) 3000 00 0000

2000 00 0000 0 2000 00 0000 YES

4841 99 9978

(Ge) 5168 00 9122

0 0010 00 9100 YES
pa] 0010 00 9100

9841 99 9978
0168 00 9122i+

+

++

+

$+

+

FF

i

C)
+ 1 0010 00 9100 0 0010 00 9100 YES

The computer indicates overflow by turning on the over-

flow indicator. The computer will stop when overflow

occurs, unless the overflow indicator is turned off by the

program.

When the possibility of overflow is anticipated, a

BRANCH ON OVERFLOW instruction must be inserted

in the program immediately following the instruction that

may cause the overflow. If overflow occurs, the BRANCH

ON OVERFLOW instruction will turn off the overflow

indicator, preventing the computer from stopping, and

causing a transfer of control to an alternate location. If
overflow does not occur, the BRANCH ON OVERFLOW
instruction is executed but no branch occurs; program

control continues in sequence.

4-6

Recognition of an overflow condition when it occurs is

a valuable programming aid. Use of this technique is

discussed in Chapter 7 under Tallying and Address Modi-

fication.

BRANCHING (TRANSFER OF CONTROL)

Normal Burroughs 220 operation calls for sequential exe-

cution of program instructions from successively ad-

dressed storage locations. Situations arise, however, where

interruptions of this sequence are necessary. Branching

instructions are then used.

A branching instruction can cause program control to be

transferred to the instruction in the location specified by

its address. That is, the next instruction to be fetched

after a branch is not the one following the branching

instruction, but the one in the location specified by the

address part of the branching instruction. Sequential

operation is resumed at the point to which control is

transferred. For example:

BRANCH UNCONDITIONALLY (30)

+ 0000 BUN aaaa

1. “Transfer control to the instruction in location

aaaa.”

2. Sequential operation resumes after the branch.

3. If the sign digit of the instruction is odd, automatic

B register address modification occurs.

Example:

Location Instruction

1000 0 0000 CAD 2225

1001 0 0000 ADD 1500

1002 0 0000 STA 1550

1003 0 0000 BUN 3000

1004. 0 1000 PRB 1000

On the BUN instruction, control is transferred to location

3000, and the next instruction is taken from that location.

BRANCH ON OVERFLOW (31) + 0000 BOF aaaa

1. “If the overflow indicator is on, turn it off and trans-

fer control to location aaaa; take the next instruc-

tion from location aaaa.” (If the overflow indicator
is off, control continues in sequence.)

2. Sequential operation resumes after the branch.

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Example:

Location Instruction

1000 0 0000 CAD 2225

1001 0 0000 ADD 1500

1002 0 0000 BOF 3000

1003 0 0000 STA 1550

1004. 0 0000 HLT 1111

On the BOF instruction, if adding the contents of location
1500 to the A register produces overflow, transfer control
to location 3000. If overflow does not occur, continue in
sequence; take-the next instruction from location 1003.

SAMPLE PROBLEM
INPUT

Using punched paper tape as the input medium, read the
data words A, B, C, and D into locations 0250 through
0253. Read the instructions into locations 0500 through
0510.

Starting to Code the Burroughs 220

PROCESSING

Add A to B; check for overflow. If overflow occurs, halt
the processing operation. If no overflow occurs, store the
result, X, in location 0254. Then add C and D to the sum
in the A register. Store the final result, Y, in location
0255.

OUTPUT

Use the character-at-a-time printer to print out the final
result. Refer to Table 4-1 for solution to problem.

Table 4-1.
Solution to Sample Problem.

Storage Program on Storage Program on
Location Paper Tape Remarks Location Paper Tape Remarks

6 1000 PRB 0250 | Control instruction: 0503 0 0000 STA 0254 | No overflow.
read data into core Store X.
storage. Goe ne Ott 0504. 0 0000 BUN 0506 | To C and D routine.

025] 1 1200 80 0000 Quantity B. 0505 0 0000 HLT 0001 j Overflow halt.

0252 | 0 0000 00 0008 | Quantity C. 0506 | 0 0000 ADD 0252 | (A +B) +C
0253 0 0088 00 9999 Quantity D. 0507 0 0000 ADD 0253 | (A+B+C)+D
0254. 0 0000 00 0000 Sum X. 0508 0 0000 STA 0255 | Store Y.

0255 | 0 0000 00 0000 Sum Y. 0509 | 0 1010 PWR 0255 | Print out final re-

6 1000 PRB 0500 | Control instruction: sult Y.

read ee 0510 0 0000 HLT 0002 | Program complete;
into core storage. halt operation

0500 | 0 0000 CAD 0250 | A rA S caad 6 0000 BUN 0500 | Control instruction:
x ne Ue data and instruc-
eae tions read in;

0501 0 0000 ADD 0251 |A + B penance .
0502 0 0000 BOF 0505 | If overflow, halt. be executed.

4-7

Rearranging Information for Computation

SHIFTING
The coder will often find it useful to rearrange the con-
tents of the A register and the R register, or both. The
Burroughs 220 provides shifting instructions for this pur-
pose, which allow the coder to move the digits contained
in these registers to the left or to the right of their initial
register positions.

SHIFT RIGHT A (48) + 0000 SRA 00nn

1. “Shift the contents of the A register, excluding the
contents of the sign-digit position, nn digit positions
to the right.”

2. Digits shifted out of the low-order end of the A reg-
ister are lost; as each digit leaves the A register, a

0 enters digit position 1 of the A register, until the
register is filled from the left with nn 0s.

3. The R register is not affected by this instruction.
4. If the sign digit of the instruction is odd, automatic

B register modification of the four low-order digits
of the instruction occurs.

Examples:
Contents of A and R Registers

Before Execution of SRA Instruction

A Register
1 7133 41 9821

R Register

1 4792 06 4910

Contents of A and R Registers
After Execution of SRA Instruction

Instruction A Register R Register

0 0000 SRA 0006 1 0000 00 7133 1 4792 06 4910
0 0000 SRA 0010 1 0000 00 0000 1 4792 06 4910

SHIFT LEFT A (49) + 0000 SLA 00nn

1. “Shift the contents of the A register, excluding the
contents of the sign-digit position, nn digit positions
to the left.”

2. This is a circulating shift; as each digit is shifted
out of digit position 1 of the A register, it enters the
low-order digit position of the A register.

3. The R register is not affected by this instruction.

4. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Examples:
Contents of A and R Registers

Before Execution of SLA Instruction

A Register
1 7144 51 9821

R Register

1 4692 06 4910

Contents of A and R Registers
After Execution of SLA Instruction

Instruction
0 0000 SLA 0006

0 0000 SLA 0010

A Register
1 9821 71 4451

1 7144 51 9821

R Register
1 4792 06 4910

1 4792 06 4910

SHIFT RIGHT A AND R (48) + 0001 SRT 0Onn

1. “Shift the contents of the A register and the R regis-
ter, excluding the contents of the sign-digit positions
of both registers, nn digit positions to the right.”

2. When using this instruction, the A and R registers
are considered as one register holding a 20-digit
number.

3. This is not a circulating shift; digits shifted out of
the low-order digit position of the R register are
lost. As each digit leaves the right end of the R reg-
ister, a 0 enters digit position 1 of the A register,
until the registers are filled from the left with nn 0’s.
The number of digits to be shifted (nn) must always
be 19 or less.

4. The contents of the sign-digit positions of the A and
R registers are not shifted with the other digits dur-
ing the execution of this instruction. The sign digit
of the R register is replaced by the sign digit of the
A register; the sign digit of the A register remains
the same.

5. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Examples:
Contents of A and R Registers

Before Execution of SRT Instruction

R Register
0 4125 78 6439

A Register
1 8376 63 7429

Contents of A and R Registers
After Execution of SRT Instruction

Instruction A Register R Register

0 0001 SRT 0004 1 0000 83 7663 1 7429 41 2578

0 0001 SRT 0010 1 0000 00 0000 1 8376 63 7429

SHIFT LEFT A AND R (49) + 0001 SLT 00nn

1. “Shift the contents of the A register and the R regis-
ter, excluding the contents of the sign-digit positions
of both registers, nn digit positions to the left.”

2. When using this instruction, the A and R registers
are considered as one register holding a 20-digit
number.

5-1

Rearranging Information for Computation

3. This is a circulating shift; as each digit is shifted

out of digit position 1 in the A register, it enters

the low-order digit position of the R register.

4. The contents of the sign-digit positions of the A and

R registers are not shifted with the other digits. The

sign digit of the A register is replaced by the sign

digit of the R register; the sign of the R register

remains the same.

5. If the sign digit of the instruction is odd, automatic

B register modification of the four low-order digits
of the instruction occurs.

Examples:
Contents of A and R Registers

Before Execution of SLT Instruction

R Register

0 4125 78 6439
A Register

1 8376 63 7429

Contents of A and R Registers
After Execution of SLT Instruction

Instruction A Register R Register

0 0001 SLT 0006 0 7429 41 2578 0 6439 83 7663

0 0001 SLT 0010 0 4125 78 6439 0 8376 63 7429

SHIFT RIGHT A WITH SIGN (48)
+ 0002 SRS 00nn

1. “Shift the contents of the A register, including theg &

contents of the sign-digit position, nn digit positions

to the right.”

2. The execution of this instruction does not result in
the recirculating of digits. Instead, digits shifted out

of the low-order digit position of the A register are

lost; as each digit leaves the A register, a 0 enters

the A register through the sign-digit position.

3. The R register is not affected by this instruction.

4. If the sign digit of the instruction is odd, automatic

B register modification of the four low-order digits
of the instruction occurs.

Examples:
Contents of A and R Registers

Before Execution of SRS Instruction

R Register
1 4976 20 4193

A Register
0 9823 86 7149

Contents of A and R Registers
After Execution of SRS Instruction

Instruction A Register R Register

0 0002 SRS 9005 0 0000 98 2386 1 4976 20 4193

0 0002 SRS 0010 0 0000 00 0000 1 4976 20 4193

SHIFT LEFT A WITH SIGN (49)
+ 0002 SLS 00nn

1. “Shift the contents of the A register, including the

contents of the sign-digit position, nn digit positions

to the left.”

2. This is a circulating shift; as each digit is shifted

out of the sign-digit position in the A register, it
enters the low-order digit position of the A register.

3. The R register is not affected by this instruction.

5-2

4. If the sign digit of the instruction is odd, automatic

B register modification of the four low-order digits

of the instruction occurs.

Examples:
Contents of A and R Registers

Before Execution of SLS Instruction

R Register

1 4976 20 4193
A Register

0 9823 86 7149

Contents of A and R Registers
After Execution of SLS Instruction

A Register

6 7149 09 8238

9 0982 38 6714

R Register

1 4976 20 4193

1 4976 20 4193

Instruction

0 0002 SLS 0005

0 0002 SLS 0010

UNPACKING
A data word may be so constructed by the coder that it
contains two or more kinds of information. This technique

of storing different kinds of items in a single data word

is referred to as “packing” a word. Suppose that location

1520 contains 0 4736 00 1756 where: 4736 is an employee

number and 1756 is the employee’s hourly rate of pay

($1.756).

When the packed word is brought out of core storage, it
is necessary to “unpack” or separate the various types of

information before each item may be used individually.

The shifting instructions provide one means by which the

coder may unpacka data word. By shifting the informa-

tion not immediately needed into the R register, for ex-

ample, he is able to isolate the specific data needed for

immediate calculations. For example: location 3500 con-

tains 0 0450 01 6000 where: 4500 denotes year-to-date

charity deductions ($45.00) and 16000 the year-to-date

insurance deductions ($160.00). To unpack this informa-

tion, the contents of the A andR registers could be shifted

right so that the A register contains only the year-to-date

charity deductions (0001 SRT 0005). The R register now

contains the year-to-date insurance deductions:

R Register

0 1600 00 0000
A Register

0 0000 00 4500

When the information in the A register—charity deduc-

tions—has been used, the A register can be cleared (set

to zero). (See CLEAR A instruction later in this chap-

ter.) The contents of the R register are shifted back into

the A register:

A Register

0 0000 01 6000

R Register

0 0000 00 0000

Now the year-to-date insurance information is available

for use by the program.

LOADING THE R REGISTER

The LOADR instruction, generally used for temporarily

storing information when the A register contains infor-
mation that cannot be destroyed, can be used in unpack-

ing a data word. With this instruction the packed word

can be brought directly into the R register. Then the

various types of information can be separated. Those

———

digits representing a specific kind of information can be

shifted as a unit into the A register. The remaining seg-

ments of the data word can be retained in the R register
until needed.

LOAD R (41) = 0000 LDR aaaa

1. “Replace the contents of the R register by the con-

tents of location aaaa.”

2. Execution of this instruction does not alter the con-

tents of location aaaa.

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of R Register Before Execution of LDR Instruction:
0 0943 20 0055

Contents of
R Register

After Execution
Contents of of LDR

Instruction Location aaaa Instruction

0 0000 LDR aaaa 0 0000 01 0001 0 0000 01 0001

0 0000 LDR aaaa

EXTRACTING

Another instruction used to unpack or select specific
digits of information contained in a Burroughs 220 word
is the EXTRACT instruction. The characteristics of this
instruction are as follows:

EXTRACT (17) = 0000 EXT aaaa

1. “Extract specified digits from the word in the A reg-

ister by changing each digit, including the sign
digit, to zero, if the corresponding digit position of
the word in location aaaa contains an even digit.”

1 4321 70 8963 1 4321 70 8963

2. A digit in the A register remains unchanged if the
digit in the corresponding digit position of the word
in location aaaa is odd.

3. In most programs, when the EXTRACT instruction
is used, a constant has been stored in location aaaa

containing a predetermined combination of 0’s and

l’s. This number is referred to as an extract con-

stant.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Example:

Location 1002 could contain the word 0 7463 24 9128. If
the coder wants to retain only the four middle digits of
the word, he could store in location 1025 the extract con-

stant 0 0001 11 1000. The following steps accomplish the

desired extraction:
Contents of

Instruction A Register Remarks

0 0000 CAD 1002 0 7463 24 9128 Only desired digits of word

0 0000 EXT 1025 0 0003 24 9000 remain in A register.

SIGN-DIGIT MANIPULATION
There are occasions when the coder may wish to change

the sign digit of a word in the A register. The following
instruction provides this facility.

Rearranging Information for Computation

LOAD SIGN A (43) + 000n LSA 0000

1. “Replace the contents of the sign-digit position of
the A register by n.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Examples:

Contents of Contents of
A Register A Register

Before Execution After Execution

Instruction of Instruction of Instruction

0 0001 LSA 0000
0 0000 LSA 0000

0 4321 56 0789
1 4321 56 0789

1 4321 56 0789
0 4321 56 0789

MULTIPLICATION
MULTIPLY (14) + 0000 MUL aaaa

1. “Multiply the contents of location aaaa by the con-

tents of the A register. Insert the 20-digit product in
the A and R registers.”

2. The ten low-order digits of the product replace the

contents of the R register. (Note that this will de-

stroy any information that has previously been

stored in the R register.) The ten high-order digits
of the product replace the contents of the A register.

The sign of the product is inserted in the sign-digit
positions of both the A andR registers.

3. The sign of the product is the algebraic result of the

operation.

4. If the multiplier and multiplicand are not positioned

properly, the high-order digits of the product could

appear in the R register. (Refer to discussion of
scaling.) If this occurs, the product must be shifted
into the A register before it can be used in further
calculations.

5. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

The following examples illustrate the multiply operation,

showing positioning of the product in the A register, the

R register, or both.

Example 1.

Problem: Multiply the contents of location aaaa by the contents of
the A register: 0 0000 03 3333

Contents of the A and R Registers
After the Execution of the

Multiply Instruction

0 0000 00 0000 0 0000 06 6666

0 0000 00 0000 0 0666 66 0000

1 0000 06 6666 1 0000 00 0000

Multiplicandin
Location aaaa

0 0000 00 0002

0 0000 02 0000

1 0200 00 0000

Example 2.

Problem: Multiply the contents of location aaaa by the contents of
the A register: 1 0440 00 0000

Contents of the A and R Registers
After the Execution of the

Multiply Instruction
Multiplicand in
Location aaaa

0 0033 30 0000 0 0001 45 6200 0 0000 00 0000

1 0000 01 1111 1 0000 00 0488 1 8840 00 0000

Or Ft 0 0048 88 8888 0 8840 00 0000

5-3

Rearranging Information for Computation

3. This is a circulating shift; as each digit is shifted

out of digit position 1 in the A register, it enters

the low-order digit position of the R register.

4. The contents of the sign-digit positions of the A and

R registers are not shifted with the other digits. The

sign digit of the A register is replaced by the sign

digit of the R register; the sign of the R register

remains the same.

5. If the sign digit of the instruction is odd, automatic

B register modification of the four low-order digits
of the instruction occurs.

Examples:
Contents of A and R Registers

Before Execution of SLT Instruction

R Register

0 4125 78 6439
A Register

1 8376 63 7429

Contents of A and R Registers
After Execution of SLT Instruction

Instruction A Register R Register

0 0001 SLT 0006 0 7429 41 2578 0 6439 83 7663

0 0001 SLT 0010 0 4125 78 6439 0 8376 63 7429

SHIFT RIGHT A WITH SIGN (48)
+ 0002 SRS 00nn

1. “Shift the contents of the A register, including theg &

contents of the sign-digit position, nn digit positions

to the right.”

2. The execution of this instruction does not result in
the recirculating of digits. Instead, digits shifted out

of the low-order digit position of the A register are

lost; as each digit leaves the A register, a 0 enters

the A register through the sign-digit position.

3. The R register is not affected by this instruction.

4. If the sign digit of the instruction is odd, automatic

B register modification of the four low-order digits
of the instruction occurs.

Examples:
Contents of A and R Registers

Before Execution of SRS Instruction

R Register
1 4976 20 4193

A Register
0 9823 86 7149

Contents of A and R Registers
After Execution of SRS Instruction

Instruction A Register R Register

0 0002 SRS 9005 0 0000 98 2386 1 4976 20 4193

0 0002 SRS 0010 0 0000 00 0000 1 4976 20 4193

SHIFT LEFT A WITH SIGN (49)
+ 0002 SLS 00nn

1. “Shift the contents of the A register, including the

contents of the sign-digit position, nn digit positions

to the left.”

2. This is a circulating shift; as each digit is shifted

out of the sign-digit position in the A register, it
enters the low-order digit position of the A register.

3. The R register is not affected by this instruction.

5-2

4. If the sign digit of the instruction is odd, automatic

B register modification of the four low-order digits

of the instruction occurs.

Examples:
Contents of A and R Registers

Before Execution of SLS Instruction

R Register

1 4976 20 4193
A Register

0 9823 86 7149

Contents of A and R Registers
After Execution of SLS Instruction

A Register

6 7149 09 8238

9 0982 38 6714

R Register

1 4976 20 4193

1 4976 20 4193

Instruction

0 0002 SLS 0005

0 0002 SLS 0010

UNPACKING
A data word may be so constructed by the coder that it
contains two or more kinds of information. This technique

of storing different kinds of items in a single data word

is referred to as “packing” a word. Suppose that location

1520 contains 0 4736 00 1756 where: 4736 is an employee

number and 1756 is the employee’s hourly rate of pay

($1.756).

When the packed word is brought out of core storage, it
is necessary to “unpack” or separate the various types of

information before each item may be used individually.

The shifting instructions provide one means by which the

coder may unpacka data word. By shifting the informa-

tion not immediately needed into the R register, for ex-

ample, he is able to isolate the specific data needed for

immediate calculations. For example: location 3500 con-

tains 0 0450 01 6000 where: 4500 denotes year-to-date

charity deductions ($45.00) and 16000 the year-to-date

insurance deductions ($160.00). To unpack this informa-

tion, the contents of the A andR registers could be shifted

right so that the A register contains only the year-to-date

charity deductions (0001 SRT 0005). The R register now

contains the year-to-date insurance deductions:

R Register

0 1600 00 0000
A Register

0 0000 00 4500

When the information in the A register—charity deduc-

tions—has been used, the A register can be cleared (set

to zero). (See CLEAR A instruction later in this chap-

ter.) The contents of the R register are shifted back into

the A register:

A Register

0 0000 01 6000

R Register

0 0000 00 0000

Now the year-to-date insurance information is available

for use by the program.

LOADING THE R REGISTER

The LOADR instruction, generally used for temporarily

storing information when the A register contains infor-
mation that cannot be destroyed, can be used in unpack-

ing a data word. With this instruction the packed word

can be brought directly into the R register. Then the

various types of information can be separated. Those

———

digits representing a specific kind of information can be

shifted as a unit into the A register. The remaining seg-

ments of the data word can be retained in the R register
until needed.

LOAD R (41) = 0000 LDR aaaa

1. “Replace the contents of the R register by the con-

tents of location aaaa.”

2. Execution of this instruction does not alter the con-

tents of location aaaa.

3. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of R Register Before Execution of LDR Instruction:
0 0943 20 0055

Contents of
R Register

After Execution
Contents of of LDR

Instruction Location aaaa Instruction

0 0000 LDR aaaa 0 0000 01 0001 0 0000 01 0001

0 0000 LDR aaaa

EXTRACTING

Another instruction used to unpack or select specific
digits of information contained in a Burroughs 220 word
is the EXTRACT instruction. The characteristics of this
instruction are as follows:

EXTRACT (17) = 0000 EXT aaaa

1. “Extract specified digits from the word in the A reg-

ister by changing each digit, including the sign
digit, to zero, if the corresponding digit position of
the word in location aaaa contains an even digit.”

1 4321 70 8963 1 4321 70 8963

2. A digit in the A register remains unchanged if the
digit in the corresponding digit position of the word
in location aaaa is odd.

3. In most programs, when the EXTRACT instruction
is used, a constant has been stored in location aaaa

containing a predetermined combination of 0’s and

l’s. This number is referred to as an extract con-

stant.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Example:

Location 1002 could contain the word 0 7463 24 9128. If
the coder wants to retain only the four middle digits of
the word, he could store in location 1025 the extract con-

stant 0 0001 11 1000. The following steps accomplish the

desired extraction:
Contents of

Instruction A Register Remarks

0 0000 CAD 1002 0 7463 24 9128 Only desired digits of word

0 0000 EXT 1025 0 0003 24 9000 remain in A register.

SIGN-DIGIT MANIPULATION
There are occasions when the coder may wish to change

the sign digit of a word in the A register. The following
instruction provides this facility.

Rearranging Information for Computation

LOAD SIGN A (43) + 000n LSA 0000

1. “Replace the contents of the sign-digit position of
the A register by n.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Examples:

Contents of Contents of
A Register A Register

Before Execution After Execution

Instruction of Instruction of Instruction

0 0001 LSA 0000
0 0000 LSA 0000

0 4321 56 0789
1 4321 56 0789

1 4321 56 0789
0 4321 56 0789

MULTIPLICATION
MULTIPLY (14) + 0000 MUL aaaa

1. “Multiply the contents of location aaaa by the con-

tents of the A register. Insert the 20-digit product in
the A and R registers.”

2. The ten low-order digits of the product replace the

contents of the R register. (Note that this will de-

stroy any information that has previously been

stored in the R register.) The ten high-order digits
of the product replace the contents of the A register.

The sign of the product is inserted in the sign-digit
positions of both the A andR registers.

3. The sign of the product is the algebraic result of the

operation.

4. If the multiplier and multiplicand are not positioned

properly, the high-order digits of the product could

appear in the R register. (Refer to discussion of
scaling.) If this occurs, the product must be shifted
into the A register before it can be used in further
calculations.

5. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

The following examples illustrate the multiply operation,

showing positioning of the product in the A register, the

R register, or both.

Example 1.

Problem: Multiply the contents of location aaaa by the contents of
the A register: 0 0000 03 3333

Contents of the A and R Registers
After the Execution of the

Multiply Instruction

0 0000 00 0000 0 0000 06 6666

0 0000 00 0000 0 0666 66 0000

1 0000 06 6666 1 0000 00 0000

Multiplicandin
Location aaaa

0 0000 00 0002

0 0000 02 0000

1 0200 00 0000

Example 2.

Problem: Multiply the contents of location aaaa by the contents of
the A register: 1 0440 00 0000

Contents of the A and R Registers
After the Execution of the

Multiply Instruction
Multiplicand in
Location aaaa

0 0033 30 0000 0 0001 45 6200 0 0000 00 0000

1 0000 01 1111 1 0000 00 0488 1 8840 00 0000

Or Ft 0 0048 88 8888 0 8840 00 0000

5-3

Rearranging Information for Computation

ROUND (16) + 0000 RND 0000

1. “Increase the absolute value of the number in the
A register by + 0000 00 0001, if the high-order
digit of the R register is 5 or greater, and clear the
R register. If the high-order digit of the R register
is less than 5, leave the A register unaltered and
clear the R register.”

2. Overflow is possible if the A register contains all 9’s
before the execution of the instruction and the high-
order digit of the R register is 5 or greater.

3. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Example:

Multiply 1.432 by 43. Round the product to two decimal places.
Assume: location 2001 contains 0 0000 00 1432

location 2010 contains 0 0000 00 0043

Instructions A Register R Register
0 0000 CAD 2010 0 0000 00 0043 0 0000 00 0000
0 0000 MUL 2001 0 0000 00 0000 0 0000 06 1576
0 0001 SLT 0009 0 0000 00 6157 0 6000 00 0000
0 0000 RND 0000 0 0000 00 6158 0 0000 00 0000
0 0000 HLT 0000 0 0000 00 6158 0 0000 00 0000

Product: 61.58

CLEARING REGISTERS AND LOCATIONS
There are many occasions when the coder wants to clear
(set to zero) the A or the R register (or both), or a
storage location. The following instructions perform the
clearing function.

CLEAR A (45) + 0001 CLA 0000

1. “Replace every digit, including the sign digit, in the
A register with 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Example:

Contents of A and R Registers
Before Execution of CLA Instruction

A Register
1 7432 89 6577

R Register
1 4571 22 1665

Contents of A and R Registers
After Execution of CLA Instruction

A Register
0 0000 00 0000

Instruction
0 0001 CLA 0000

R Register
1 4571 22 1665

CLEAR R (45) + 0002 CLR 0000

1. “Replace every digit, including the sign digit, in the
R register with 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

5-4

Example:

Contents of A and R Registers
Before Execution of CLR Instruction

A Register
1 7432 89 6577

R Register
1 4571 22 1665

Contents of A and R Registers
After Execution of CLR Instruction

Instruction
0 0002 CLR 0000

A Register
1 7432 89 6577

R Register
0 0000 00 0000

CLEAR A AND R (45) + 0003 CAR 0000

1. “Replace every digit, including the sign digit, of the
A and R registers with 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Example:

Contents of A and R Registers
Before Execution of CAR Instruction

A Register
1 7432 89 6577

R Register
1 4571 22 1665

Contents of A and R Registers
After Execution of CAR Instruction

A Register
0 0000 00 0000

R Register
0 0000 00 0000

Instruction
0 0003 CAR 0000

CLEAR LOCATION (46) = 0000 CLL aaaa

1. “Replace every digit, including the sign digit, of
location aaaa with 0.”

2. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Example:

Contents of location 2250 before execution of CLL instruction:
1 4376 52 8997

Contents of Location 2250
After Execution of CLL Instruction

Location 2250

0 0000 00 0000

Instruction
0 0000 CLL 2250

DIVISION
DIVIDE (15) + 0000 DIV aaaa

1. “Divide the 20-digit contents of the combined A and
R registers by the contents of location aaaa.”

2. If the absolute value of the divisor (the number in
location aaaa) is greater than the absolute value of
the portion of the dividend in the A register, the
division is performed. Upon completion of the di-
vide operation, the A register will contain the 10-
digit quotient and the R register will contain the
true (undivided) remainder. The sign of the quo-
tient will be the algebraic result of the operation.
The sign of the remainder will be the same as the
sign of the dividend.

a

3. If the absolute value of the divisor is less than or
equal to the absolute value of the portion of the
dividend in the A register, division will not occur
because the result would exceed the capacity of the
A register. Instead, the overflow indicator will be
turned on, and the execution of the instruction will
terminate, leaving the contents of the A and R regis-
ters unaltered.

4. Since the dividend is considered by the computer to
be a 20-digit number contained in the A and R reg-
isters, the R register must be cleared before a divide
operation, if the 10 low-order digits of the problem
dividend are zeros.

5. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Example 1.

Location 1000 contains 0 0000 00 0300

Location 1001 contains 1 0000 00 0064

Instructions A Register R Register
0 0000 CAD 1001 1 0000 00 0064 0 0000 00 0000

0 0000 DIV 1000 1 2133 33 3333 1 0000 00 0100

The answer will be—.2133 33 3333, with an undivided remainder
of 100.

Example 2.

Location 0500 contains 1 0000 00 0002
Location 0501 contains 0 0000 00 0004

Instructions A Register R Register
0 0000 CAD 0501 0 0000 00 0004 0 0000 00 0000

0 0000 DIV 0500 0 0000 00 0004 0 0000 00 0000

Dividing 4 by 2 produces the number 2, which exceeds the capacity
of the A register (see following section on scaling). Therefore:
the overflow indicator is turned on. Execution of the instruction
is terminated.

SCALING

In fixed-point arithmetic’, the operations of addition, sub-
traction, division, and multiplication are performed as if
the numbers in the Burroughs 220 had a decimal point—
the so-called machine decimal point—in a fixed location
in a word. The machine decimal point is located between
the sign-digit position and the high-order digit position
of each word.

Because the machine decimal point and the problem deci-
mal point seldom coincide, the coder must keep track of
the problem decimal point during arithmetic operations.
As an example of this, a word will be processed by the
computer as 0 0014 63 4210 even though to the coder it
may represent the value 1463.4210. This problem of ac-

counting for the decimal point in an arithmetic result is
referred to as bookkeeping the decimal point, or scaling.

Rearranging Information for Computation

To help the coder determine the location of the problem
decimal point with respect to the machine decimal point,
the concept of scale factor has been developed. This con-
cept states that:

1. If the problem decimal point is located to the right
of the machine decimal point, the number is said to
have a negative scale factor.

2. If the problem decimal point is located to the left
of the machine decimal point, the number is said to
have a positive scale factor.

3. The value of the scale factor is equal to the number
of digit positions between the machine decimal point
and the problem decimal point.

Examples (where the machine decimal point is repre-
sented ,):

+ , 123.450000? has a scale factor of —3.

— , 000123.4500 hasa scale factor of —6.

+1234.5 , 0000 00 0000 has a scale factor of +1.
.12345 , 0000 00 0000 has a scale factor of +5.

In keeping with the scale factor concept, the following
rules are suggested to help the coder keep track of the
decimal point.

RULE 1

In addition and subtraction, the number in the A register
(first operand) and the number in core storage (second

operand) must have the same scale factor. This is a

familiar practice in everyday arithmetic: lining up the
decimal points before adding two numbers or subtracting
one number from another number. For example:

First Operand Second Operand Remarks

0, 0000 14 3.291 0, 0000 00 5.371 Each has a scale factor of
si.

0, 0045.00 0000 0, 0017.00 0000 _~— Each has a scale factor of
—4,

0, 46.13 00 0000 0, 15.54 00 0000 Each has a scale factor of
=2.

RULE 2

In multiplication, the scale factor of the product is the
sum of the scale factor of the multiplier and the scale

factor of the multiplicand. For example:

Multiplicand

0 , 12.00 00 0000

0 ,.0000 00 013.0

Multiplier

0 , 12.00 00 0000

0 , 13.00 00 0000

Product
0 0000 00 0000

0 9.000 00 0000

0, 0144.00 0000

0, 0000 00 0016

The Burroughs 220 also provides for floating-point arithmetic to keep track of the problem decimal point automatically. See Chapter 10.

The machine decimal point will be denoted by the symbol, ; the problem decimal point will be denoted by the conventional period.

5-5

Rearranging Information for Computation

ROUND (16) + 0000 RND 0000

1. “Increase the absolute value of the number in the
A register by + 0000 00 0001, if the high-order
digit of the R register is 5 or greater, and clear the
R register. If the high-order digit of the R register
is less than 5, leave the A register unaltered and
clear the R register.”

2. Overflow is possible if the A register contains all 9’s
before the execution of the instruction and the high-
order digit of the R register is 5 or greater.

3. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Example:

Multiply 1.432 by 43. Round the product to two decimal places.
Assume: location 2001 contains 0 0000 00 1432

location 2010 contains 0 0000 00 0043

Instructions A Register R Register
0 0000 CAD 2010 0 0000 00 0043 0 0000 00 0000
0 0000 MUL 2001 0 0000 00 0000 0 0000 06 1576
0 0001 SLT 0009 0 0000 00 6157 0 6000 00 0000
0 0000 RND 0000 0 0000 00 6158 0 0000 00 0000
0 0000 HLT 0000 0 0000 00 6158 0 0000 00 0000

Product: 61.58

CLEARING REGISTERS AND LOCATIONS
There are many occasions when the coder wants to clear
(set to zero) the A or the R register (or both), or a
storage location. The following instructions perform the
clearing function.

CLEAR A (45) + 0001 CLA 0000

1. “Replace every digit, including the sign digit, in the
A register with 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Example:

Contents of A and R Registers
Before Execution of CLA Instruction

A Register
1 7432 89 6577

R Register
1 4571 22 1665

Contents of A and R Registers
After Execution of CLA Instruction

A Register
0 0000 00 0000

Instruction
0 0001 CLA 0000

R Register
1 4571 22 1665

CLEAR R (45) + 0002 CLR 0000

1. “Replace every digit, including the sign digit, in the
R register with 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

5-4

Example:

Contents of A and R Registers
Before Execution of CLR Instruction

A Register
1 7432 89 6577

R Register
1 4571 22 1665

Contents of A and R Registers
After Execution of CLR Instruction

Instruction
0 0002 CLR 0000

A Register
1 7432 89 6577

R Register
0 0000 00 0000

CLEAR A AND R (45) + 0003 CAR 0000

1. “Replace every digit, including the sign digit, of the
A and R registers with 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

Example:

Contents of A and R Registers
Before Execution of CAR Instruction

A Register
1 7432 89 6577

R Register
1 4571 22 1665

Contents of A and R Registers
After Execution of CAR Instruction

A Register
0 0000 00 0000

R Register
0 0000 00 0000

Instruction
0 0003 CAR 0000

CLEAR LOCATION (46) = 0000 CLL aaaa

1. “Replace every digit, including the sign digit, of
location aaaa with 0.”

2. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Example:

Contents of location 2250 before execution of CLL instruction:
1 4376 52 8997

Contents of Location 2250
After Execution of CLL Instruction

Location 2250

0 0000 00 0000

Instruction
0 0000 CLL 2250

DIVISION
DIVIDE (15) + 0000 DIV aaaa

1. “Divide the 20-digit contents of the combined A and
R registers by the contents of location aaaa.”

2. If the absolute value of the divisor (the number in
location aaaa) is greater than the absolute value of
the portion of the dividend in the A register, the
division is performed. Upon completion of the di-
vide operation, the A register will contain the 10-
digit quotient and the R register will contain the
true (undivided) remainder. The sign of the quo-
tient will be the algebraic result of the operation.
The sign of the remainder will be the same as the
sign of the dividend.

a

3. If the absolute value of the divisor is less than or
equal to the absolute value of the portion of the
dividend in the A register, division will not occur
because the result would exceed the capacity of the
A register. Instead, the overflow indicator will be
turned on, and the execution of the instruction will
terminate, leaving the contents of the A and R regis-
ters unaltered.

4. Since the dividend is considered by the computer to
be a 20-digit number contained in the A and R reg-
isters, the R register must be cleared before a divide
operation, if the 10 low-order digits of the problem
dividend are zeros.

5. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Example 1.

Location 1000 contains 0 0000 00 0300

Location 1001 contains 1 0000 00 0064

Instructions A Register R Register
0 0000 CAD 1001 1 0000 00 0064 0 0000 00 0000

0 0000 DIV 1000 1 2133 33 3333 1 0000 00 0100

The answer will be—.2133 33 3333, with an undivided remainder
of 100.

Example 2.

Location 0500 contains 1 0000 00 0002
Location 0501 contains 0 0000 00 0004

Instructions A Register R Register
0 0000 CAD 0501 0 0000 00 0004 0 0000 00 0000

0 0000 DIV 0500 0 0000 00 0004 0 0000 00 0000

Dividing 4 by 2 produces the number 2, which exceeds the capacity
of the A register (see following section on scaling). Therefore:
the overflow indicator is turned on. Execution of the instruction
is terminated.

SCALING

In fixed-point arithmetic’, the operations of addition, sub-
traction, division, and multiplication are performed as if
the numbers in the Burroughs 220 had a decimal point—
the so-called machine decimal point—in a fixed location
in a word. The machine decimal point is located between
the sign-digit position and the high-order digit position
of each word.

Because the machine decimal point and the problem deci-
mal point seldom coincide, the coder must keep track of
the problem decimal point during arithmetic operations.
As an example of this, a word will be processed by the
computer as 0 0014 63 4210 even though to the coder it
may represent the value 1463.4210. This problem of ac-

counting for the decimal point in an arithmetic result is
referred to as bookkeeping the decimal point, or scaling.

Rearranging Information for Computation

To help the coder determine the location of the problem
decimal point with respect to the machine decimal point,
the concept of scale factor has been developed. This con-
cept states that:

1. If the problem decimal point is located to the right
of the machine decimal point, the number is said to
have a negative scale factor.

2. If the problem decimal point is located to the left
of the machine decimal point, the number is said to
have a positive scale factor.

3. The value of the scale factor is equal to the number
of digit positions between the machine decimal point
and the problem decimal point.

Examples (where the machine decimal point is repre-
sented ,):

+ , 123.450000? has a scale factor of —3.

— , 000123.4500 hasa scale factor of —6.

+1234.5 , 0000 00 0000 has a scale factor of +1.
.12345 , 0000 00 0000 has a scale factor of +5.

In keeping with the scale factor concept, the following
rules are suggested to help the coder keep track of the
decimal point.

RULE 1

In addition and subtraction, the number in the A register
(first operand) and the number in core storage (second

operand) must have the same scale factor. This is a

familiar practice in everyday arithmetic: lining up the
decimal points before adding two numbers or subtracting
one number from another number. For example:

First Operand Second Operand Remarks

0, 0000 14 3.291 0, 0000 00 5.371 Each has a scale factor of
si.

0, 0045.00 0000 0, 0017.00 0000 _~— Each has a scale factor of
—4,

0, 46.13 00 0000 0, 15.54 00 0000 Each has a scale factor of
=2.

RULE 2

In multiplication, the scale factor of the product is the
sum of the scale factor of the multiplier and the scale

factor of the multiplicand. For example:

Multiplicand

0 , 12.00 00 0000

0 ,.0000 00 013.0

Multiplier

0 , 12.00 00 0000

0 , 13.00 00 0000

Product
0 0000 00 0000

0 9.000 00 0000

0, 0144.00 0000

0, 0000 00 0016

The Burroughs 220 also provides for floating-point arithmetic to keep track of the problem decimal point automatically. See Chapter 10.

The machine decimal point will be denoted by the symbol, ; the problem decimal point will be denoted by the conventional period.

5-5

Rearranging Information for Computation

RULE 3

In division, the scale factor of the divisor is subtracted
from the scale factor of the dividend to obtain the scale

factor of the quotient. For example:

Dividend

0, 9000 16.9000 0 0000 00 0000

0, 9000 00 0016 0 9.000 00 0000

Divisor Quotient

0, 0013.00 0000
0, 013.0 00 0000

0, 01.30 00 0000
0, 0000 00 13.00

As a final example, suppose that it is desired to calculate
an employee’s gross earnings during a pay period. It is
known that his rate is in the form r.rr, and that hours
worked are in the form hh.h. It is desired to calculate
gross earnings rounded to the nearest cent. The problem

Table 5-1
Sample Scaling Problem No. 1

Location Contents Remarks

2001 0 000X X.X X000 Rate.

2002 0 000X X.X X000 Hours worked.

Given information above, find gross earnings to nearest
cent. Store result in location 2003. Begin program in
location 1000.

Instruction Scale Factor

First Method

1000 CAD 2001 oa)

1001 MUL 2002 10
1002. “SEL 0002 —8

1003 RND 0000 =3
1004 STA 2003 eo

Second Method

1000 CAD = 2001 ==0)

1001 SLA 0002 8)
1002 MUL 2002 3
1003 RND 0000 =
1004 STA 2003 =a)

Result: Location 2003 contains 0 0000 0(X) XX.XX,
gross earnings.

5-6

is to store “rate” and “hours worked” to produce the
product in the desired form. Thus:

pay = rate X hours
= + 000r.rr 0000 X OOhh. h0 0000

+ 0000 00 pp.pp p000 00 0000

(a scale factor of —8)

ll

The desired result (obtaining a scale factor of —8) could
also be achieved in other ways; for example:

+ 0000 r.r r000 X + Ohh.h 00 0000
as well as

+ Or.rr 00 0000 X + 0000 hh. h000
yield the same result.

SAMPLE PROBLEMS
Refer to Tables 5-1 and 5-2 for sample scaling problems.

Table 5-2
Sample Scaling Problem No. 2

Location Contents Scale Factor

1000 90 —10

1001 82 =—10

1002 93 —10

1003 65 —10

1004. 75 —10

1005 80 —10

3000 6 2

Given the information above, find the average, correct to

one decimal, of the six numbers stored in locations 1000

through 1005. Store the answer in location 1006. Start the

program in location 2000.

Instruction Remarks

2000 CAR 0000

2001 CAD 1000

2002 ADD 1001

2003 ADD 1002 ta
2004 ADD 1003 oadnareones
2005 ADD 1004 :

2006 ADD = 1005

2007 DIV 3000 Find average.

2008 SRT 0001 Scale factor of —9.

2009 RND_ 0000 Round to one decimal.

2010 STA 1006 Store result.

2011 HLT -0000

O-—>A and R registers.

First number >rA.

Halt operation.

—————

Using the Burroughs 220 to Make Decisions

STEPS IN MAKING DECISIONS

One of the frequent clerical functions necessary in the
manual processing of data is to sort information by some
characteristic before further processing.

This is the case when an accounts payable clerk looks at
each of a stack of vendor invoices to find those that must
be paid on a specific date. He examines the date on each
invoice, putting those with the specified date aside. When
all of the invoices have been examined, those put aside
may be processed further and checks prepared for the
vendors represented by the invoices.

This task, like other sorting tasks, can be broken down
into a sequence of steps. Let us consider the example of
a clerk who must examine three numbers to determine
which is the smallest.

Assuming that no two of the three numbers are equal, the
steps for this job might be as follows:

1. He looks at the first number.

2. He then looks at the second number.

3. He remembers the first number and decides which
of the numbers is the smaller. He disregards the
larger.

4. He looks at the third number.

5. He remembers the smaller number from the first
comparison, and decides which of the numbers now
being compared is the smaller. He disregards the
larger.

6. He is then able to post the smallest number to a

special report.

This process is graphically portrayed in the flow chart
shown in Fig. 6-1.

The reader will note from the sequence of steps illustrated
that the basic operation is twofold:

1. Examining data for specific properties;

2. Deciding what action to take as the result of the
examination; i.e., performing an operation if the
specific properties are present, or rejecting the orig-
inal data and examining another piece of data if the
specific properties are absent.

The Burroughs 220 can:

1. Examine data;

2. Make a “decision” as to the course of action to be
taken (as the result of the examination).

SETTING UP COMPUTER DECISIONS

The decision-making operations of the computer are pre-
determined by the coder. In his program, he must pro-
vide the possible alternate courses of action and the cri-
teria to determine which alternative is to be taken. De-
cision-making situations can usually be reduced by the
coder to a set of comparisons: one number is compared
to another number and a “larger than,” “equal to,” or
“smaller than” situation is set up within the computer
depending on the results of the comparison. This provides
the basis for the selection of a course of action to be

taken. The coder may so code his program that the com-
puter takes the proper course of action for any of the
possible results of the comparison.

If the problem of examining three numbers to determine
the smallest were applied to the computer, the coder might
write his program as follows:

Step in
Program Instruction To Computer

Step 1 | Compare first number with second number.

Step 2 —_Interrogate computer. If first number smaller,
go to next step. If second number smaller, go
to step 9.

Step 3. Compare first number with third number.

Step4 If first number smaller, go to next step. If
third number smaller, go to step 7.

Step 5 —_ Store first number as smallest number.

Step 6 Halt computer operation.

Step 7 Store third number as smallest number.

Step8 — Halt computer operation.

Step9 | Compare second number with third number.

Step 10 If second number smaller, go to next step. If
third number smaller, go back to step 7.

Step 11 Store second number as smallest number.

Step 12 Halt computer operation.

The reader will note that the computer may or may not
go through all the steps listed. And it may or may not
take the steps in the order listed. This illustrates the prin-
ciple that the coder must always foresee every alternative
that may be required. See Fig. 6-2 for a flow chart of
this program.

The coder may use the decision-making ability of the com-
puter to select particular items from extremely large vol-
umes of data in order to perform specific operations on

6-1

Rearranging Information for Computation

RULE 3

In division, the scale factor of the divisor is subtracted
from the scale factor of the dividend to obtain the scale

factor of the quotient. For example:

Dividend

0, 9000 16.9000 0 0000 00 0000

0, 9000 00 0016 0 9.000 00 0000

Divisor Quotient

0, 0013.00 0000
0, 013.0 00 0000

0, 01.30 00 0000
0, 0000 00 13.00

As a final example, suppose that it is desired to calculate
an employee’s gross earnings during a pay period. It is
known that his rate is in the form r.rr, and that hours
worked are in the form hh.h. It is desired to calculate
gross earnings rounded to the nearest cent. The problem

Table 5-1
Sample Scaling Problem No. 1

Location Contents Remarks

2001 0 000X X.X X000 Rate.

2002 0 000X X.X X000 Hours worked.

Given information above, find gross earnings to nearest
cent. Store result in location 2003. Begin program in
location 1000.

Instruction Scale Factor

First Method

1000 CAD 2001 oa)

1001 MUL 2002 10
1002. “SEL 0002 —8

1003 RND 0000 =3
1004 STA 2003 eo

Second Method

1000 CAD = 2001 ==0)

1001 SLA 0002 8)
1002 MUL 2002 3
1003 RND 0000 =
1004 STA 2003 =a)

Result: Location 2003 contains 0 0000 0(X) XX.XX,
gross earnings.

5-6

is to store “rate” and “hours worked” to produce the
product in the desired form. Thus:

pay = rate X hours
= + 000r.rr 0000 X OOhh. h0 0000

+ 0000 00 pp.pp p000 00 0000

(a scale factor of —8)

ll

The desired result (obtaining a scale factor of —8) could
also be achieved in other ways; for example:

+ 0000 r.r r000 X + Ohh.h 00 0000
as well as

+ Or.rr 00 0000 X + 0000 hh. h000
yield the same result.

SAMPLE PROBLEMS
Refer to Tables 5-1 and 5-2 for sample scaling problems.

Table 5-2
Sample Scaling Problem No. 2

Location Contents Scale Factor

1000 90 —10

1001 82 =—10

1002 93 —10

1003 65 —10

1004. 75 —10

1005 80 —10

3000 6 2

Given the information above, find the average, correct to

one decimal, of the six numbers stored in locations 1000

through 1005. Store the answer in location 1006. Start the

program in location 2000.

Instruction Remarks

2000 CAR 0000

2001 CAD 1000

2002 ADD 1001

2003 ADD 1002 ta
2004 ADD 1003 oadnareones
2005 ADD 1004 :

2006 ADD = 1005

2007 DIV 3000 Find average.

2008 SRT 0001 Scale factor of —9.

2009 RND_ 0000 Round to one decimal.

2010 STA 1006 Store result.

2011 HLT -0000

O-—>A and R registers.

First number >rA.

Halt operation.

—————

Using the Burroughs 220 to Make Decisions

STEPS IN MAKING DECISIONS

One of the frequent clerical functions necessary in the
manual processing of data is to sort information by some
characteristic before further processing.

This is the case when an accounts payable clerk looks at
each of a stack of vendor invoices to find those that must
be paid on a specific date. He examines the date on each
invoice, putting those with the specified date aside. When
all of the invoices have been examined, those put aside
may be processed further and checks prepared for the
vendors represented by the invoices.

This task, like other sorting tasks, can be broken down
into a sequence of steps. Let us consider the example of
a clerk who must examine three numbers to determine
which is the smallest.

Assuming that no two of the three numbers are equal, the
steps for this job might be as follows:

1. He looks at the first number.

2. He then looks at the second number.

3. He remembers the first number and decides which
of the numbers is the smaller. He disregards the
larger.

4. He looks at the third number.

5. He remembers the smaller number from the first
comparison, and decides which of the numbers now
being compared is the smaller. He disregards the
larger.

6. He is then able to post the smallest number to a

special report.

This process is graphically portrayed in the flow chart
shown in Fig. 6-1.

The reader will note from the sequence of steps illustrated
that the basic operation is twofold:

1. Examining data for specific properties;

2. Deciding what action to take as the result of the
examination; i.e., performing an operation if the
specific properties are present, or rejecting the orig-
inal data and examining another piece of data if the
specific properties are absent.

The Burroughs 220 can:

1. Examine data;

2. Make a “decision” as to the course of action to be
taken (as the result of the examination).

SETTING UP COMPUTER DECISIONS

The decision-making operations of the computer are pre-
determined by the coder. In his program, he must pro-
vide the possible alternate courses of action and the cri-
teria to determine which alternative is to be taken. De-
cision-making situations can usually be reduced by the
coder to a set of comparisons: one number is compared
to another number and a “larger than,” “equal to,” or
“smaller than” situation is set up within the computer
depending on the results of the comparison. This provides
the basis for the selection of a course of action to be

taken. The coder may so code his program that the com-
puter takes the proper course of action for any of the
possible results of the comparison.

If the problem of examining three numbers to determine
the smallest were applied to the computer, the coder might
write his program as follows:

Step in
Program Instruction To Computer

Step 1 | Compare first number with second number.

Step 2 —_Interrogate computer. If first number smaller,
go to next step. If second number smaller, go
to step 9.

Step 3. Compare first number with third number.

Step4 If first number smaller, go to next step. If
third number smaller, go to step 7.

Step 5 —_ Store first number as smallest number.

Step 6 Halt computer operation.

Step 7 Store third number as smallest number.

Step8 — Halt computer operation.

Step9 | Compare second number with third number.

Step 10 If second number smaller, go to next step. If
third number smaller, go back to step 7.

Step 11 Store second number as smallest number.

Step 12 Halt computer operation.

The reader will note that the computer may or may not
go through all the steps listed. And it may or may not
take the steps in the order listed. This illustrates the prin-
ciple that the coder must always foresee every alternative
that may be required. See Fig. 6-2 for a flow chart of
this program.

The coder may use the decision-making ability of the com-
puter to select particular items from extremely large vol-
umes of data in order to perform specific operations on

6-1

Using the Burroughs 220 to Make Decisions

Compare the first
number with the
second number.

|

Compare the
second number

with the
third number.

Is the first NO
smaller than
the second?

Is the Post the third
second number number to the
smaller than special report.
the third?

| YES

Compare the first
number with the

third number.

|YES

Post the second
number to the
special report.

Is the first
number smaller
than the third

number?

Post the third
number to the
special report.

Post the first
number to the
special report.

Figure 6-1. Clerk’s Decision-Making Steps

the selected items. For example, inventory balances for
2000 items could be examined by the computer to deter-
mine if any of the 2000 items has been depleted to its
reorder point of 250. Those items that had reached the
reorder point could be reordered automatically. This task

might be accomplished by writing a program to have the
computer do the following:

1. Compare a constant of 250 to each inventory bal-
ance.

2. If an equal-to or greater-than condition exists as a

result of the comparison, transfer control to a re-
order routine; if a smaller-than condition exists,
examine the next inventory balance.

Thus the computer can automatically select one of several

program paths without stopping or without the necessity

of additional instructions.

DECISION-MAKING OPERATIONS OF
THE BURROUGHS 220
Whena decision-making operation is required in a pro-

gram, the coder must first think of setting up a decision-

making condition within the computer. This usually con-

sists of a comparison of two words, two fields, or two

digits. Based upon the result of such a comparison, a

transfer of program control may occur. For example: if

the comparison shows the two quantities compared to be

equal, a transfer may occur; or if the comparison shows

one quantity to be larger than the other, a transfer may
occur. A separate branching instruction or a special trans-
fer-of-control feature built into the comparison instruc-
tion determines which sequence of instructions is to be

followed in accordance with the outcome of the particular
comparison in the program.

Such is the case when the contents of the A or R register
are compared with a word in storage. (Either the entire
words are compared or specified partial-word fields.) A
transfer of control may be effected, based upon the result
of the comparison. For this operation, two instructions
are needed: one to make the comparison and one to trans-

fer control. One or more branching instructions following
the comparison in the program are specified to cause a

transfer of control on certain results of the comparison.

On any result other than the ones specified, the branch-

ing instruction causes program control to continue in
sequence.

There are other methods of incorporating a decision-

making operation into a program. One of these methods

requires the use of a tally. This method can be used when

the number of times a loop must be repeated is known in
advance. (A loop is a repetition of part of a program.)

The results of the comparison may be observed on the comparison indicator, on the Console.

6-2

Using the Burroughs 220 to Make Decisions

Connector
#1

Step 7 Step 8

Store third
number as Halt

NO smallest. Program

Step 9 Step 10

Compare second Is secondnear ak number smaller

third number. than third
number?

NO Step 11 Step 12

YES Store second
number as Halt

Step 1 Step Pica%'] smallest. Program

Is the first

Compare the first
number with the
second number.

number smaller
than second

number?

 Go to

NO

YES
Step 3 Step 4

Compare first Is first
 number with

third number.

YES

number smaller
than third number?

connector
#1

Step 7

Step 5 Step 6

 Store first Halt
number as nicnesseiin

smallest. 9

Figure 6-2. Computer Decision-Making Steps

At the beginning of each repetition, a tally (number) in
storage can be reduced or increased by 1, and then tested
by a conditional-transfer instruction. The tally is selected
so that when the final iteration has been performed, a «

predetermined condition will exist in the computer—as a

result of the final increase or decrease of the tally—
causing the conditional-transfer instruction to transfer
program control. (An example of the predetermined con-
dition mentioned above is overflow; an example of a

conditional-transfer instruction is BRANCH ON OVER-
FLOW. Overflow and BRANCH ON OVERFLOW are
described in Chapter 4.)

Two other methods require only a single instruction for
the decision-making operation. These methods are ex-
amples of the special transfer-of-control feature built into
a comparison instruction.

The sign digit of a word in the A register may be com-
pared with a specified digit of the instruction being exe-
cuted. When the digits compared are equal, control is
transferred to a program path designated by the address
portion of the instruction.

A transfer of control may also occur witha single instruc-
tion when one or more adjacent digits in a specified field
of the A or R register are compared with one or two digits
specified by the instruction being executed. As with the
previous comparison, if the digits compared are equal,
program control is transferred to a program path desig-
nated by the address partion of the instruction.

In either case, when the numbers compared are not equal,
the program continues in sequence. The following Bur-
roughs 220 instructions perform the operations described.

6-3

Using the Burroughs 220 to Make Decisions

Compare the first
number with the
second number.

|

Compare the
second number

with the
third number.

Is the first NO
smaller than
the second?

Is the Post the third
second number number to the
smaller than special report.
the third?

| YES

Compare the first
number with the

third number.

|YES

Post the second
number to the
special report.

Is the first
number smaller
than the third

number?

Post the third
number to the
special report.

Post the first
number to the
special report.

Figure 6-1. Clerk’s Decision-Making Steps

the selected items. For example, inventory balances for
2000 items could be examined by the computer to deter-
mine if any of the 2000 items has been depleted to its
reorder point of 250. Those items that had reached the
reorder point could be reordered automatically. This task

might be accomplished by writing a program to have the
computer do the following:

1. Compare a constant of 250 to each inventory bal-
ance.

2. If an equal-to or greater-than condition exists as a

result of the comparison, transfer control to a re-
order routine; if a smaller-than condition exists,
examine the next inventory balance.

Thus the computer can automatically select one of several

program paths without stopping or without the necessity

of additional instructions.

DECISION-MAKING OPERATIONS OF
THE BURROUGHS 220
Whena decision-making operation is required in a pro-

gram, the coder must first think of setting up a decision-

making condition within the computer. This usually con-

sists of a comparison of two words, two fields, or two

digits. Based upon the result of such a comparison, a

transfer of program control may occur. For example: if

the comparison shows the two quantities compared to be

equal, a transfer may occur; or if the comparison shows

one quantity to be larger than the other, a transfer may
occur. A separate branching instruction or a special trans-
fer-of-control feature built into the comparison instruc-
tion determines which sequence of instructions is to be

followed in accordance with the outcome of the particular
comparison in the program.

Such is the case when the contents of the A or R register
are compared with a word in storage. (Either the entire
words are compared or specified partial-word fields.) A
transfer of control may be effected, based upon the result
of the comparison. For this operation, two instructions
are needed: one to make the comparison and one to trans-

fer control. One or more branching instructions following
the comparison in the program are specified to cause a

transfer of control on certain results of the comparison.

On any result other than the ones specified, the branch-

ing instruction causes program control to continue in
sequence.

There are other methods of incorporating a decision-

making operation into a program. One of these methods

requires the use of a tally. This method can be used when

the number of times a loop must be repeated is known in
advance. (A loop is a repetition of part of a program.)

The results of the comparison may be observed on the comparison indicator, on the Console.

6-2

Using the Burroughs 220 to Make Decisions

Connector
#1

Step 7 Step 8

Store third
number as Halt

NO smallest. Program

Step 9 Step 10

Compare second Is secondnear ak number smaller

third number. than third
number?

NO Step 11 Step 12

YES Store second
number as Halt

Step 1 Step Pica%'] smallest. Program

Is the first

Compare the first
number with the
second number.

number smaller
than second

number?

 Go to

NO

YES
Step 3 Step 4

Compare first Is first
 number with

third number.

YES

number smaller
than third number?

connector
#1

Step 7

Step 5 Step 6

 Store first Halt
number as nicnesseiin

smallest. 9

Figure 6-2. Computer Decision-Making Steps

At the beginning of each repetition, a tally (number) in
storage can be reduced or increased by 1, and then tested
by a conditional-transfer instruction. The tally is selected
so that when the final iteration has been performed, a «

predetermined condition will exist in the computer—as a

result of the final increase or decrease of the tally—
causing the conditional-transfer instruction to transfer
program control. (An example of the predetermined con-
dition mentioned above is overflow; an example of a

conditional-transfer instruction is BRANCH ON OVER-
FLOW. Overflow and BRANCH ON OVERFLOW are
described in Chapter 4.)

Two other methods require only a single instruction for
the decision-making operation. These methods are ex-
amples of the special transfer-of-control feature built into
a comparison instruction.

The sign digit of a word in the A register may be com-
pared with a specified digit of the instruction being exe-
cuted. When the digits compared are equal, control is
transferred to a program path designated by the address
portion of the instruction.

A transfer of control may also occur witha single instruc-
tion when one or more adjacent digits in a specified field
of the A or R register are compared with one or two digits
specified by the instruction being executed. As with the
previous comparison, if the digits compared are equal,
program control is transferred to a program path desig-
nated by the address partion of the instruction.

In either case, when the numbers compared are not equal,
the program continues in sequence. The following Bur-
roughs 220 instructions perform the operations described.

6-3

Using the Burroughs 220 to Make Decisions

COMPARE FIELD A (18) + s L f 0 CFA aaaa

If f = 0, the entire word in the A register will be com-
pared with the entire word in location aaaa, and digits s

andL are not relevant.

If £ = 1, a partial-word field of the word in the A regis-
ter will be compared with the corresponding field in loca-
tion aaaa, and s designates the rightmost digit of the
partial-word field. L specifies the number of adjacent
digits in the partial-word field.

If the sign digit is odd, automatic B register address modi-
fication occurs.

1. “Compare the contents of the specified field of the
word in the A register with the corresponding field
in location aaaa. Set the comparison indicator to:

a. HIGH if the contents of the specified field of the
word in the A register are greater than the corre-
sponding field of the word in location aaaa.

b. EQUAL if the contents of the specified field of
the word in the A register are equal to the corre-
sponding field of the word in location aaaa.

c. LOW if the contents of the specified field of the
word in the A register are less than the correspond-
ing field of the word in location aaaa.”

2. If the sign-digit positions of the words to be com-
pared are not included in the field specified, the
comparison is considered to be made with respect to
the absolute value of each field.

3. If the words to be compared are numeric, and their
respective sign-digit positions are included in the
fields specified, then the comparison is algebraic,
and the following rule of comparison may be used:
1, 9999 99 9999 is less than 1, 1111 11 1111,
which is less than 0, 1111 11 1111, which is less
than 0, 9999 99 9999,

COMPARE FIELD R (18) ~=s © fi CER aaaa

If f = 0, the entire word in the R register will be com-
pared with the entire word in location aaaa. Digits s and
L are not relevant.

If f = 1, a partial-word field of the word in the R register
will be compared with the corresponding field in location
aaaa, and s designates the rightmost digit of the partial-
word field. L specifies the number of adjacent digits in
the partial-word field.

If the sign digit is odd, automatic B register address modi-
fication occurs.

1. “Compare the contents of the specified field of the
word in the R register with the corresponding field
of the word in location aaaa. Set the comparison
indicator to:

a. HIGH if the contents of the specified field of the
word in the R register are greater than the corre-
sponding field of the word in location aaaa.

b. EQUAL if the contents of the specified field of the

word in the R register are equal to the correspond-
ing field of the word in location aaaa.

c. LOW if the contents of the specified field of the
word in the R register are less than the correspond-
ing field of the word in location aaaa.”

2. If the sign-digit positions of the words to be com-
pared are not included in the fields specified, then
the comparison is considered to be made with re-
spect to the absolute value of each field.

3. If the words to be compared are numeric, and their
respective sign-digit positions are included in the
fields specified, then the comparison is algebraic,
and the following rule of comparison may be used:
1, 9999 99 9999 is less than 1, 1111 11 1a;
which is less than 0, 1111 11 1111, which is less

than 0 , 9999 99 9999.

BRANCH COMPARISON HIGH (34)
+ 0000 BCH aaaa

1. “Transfer control to location aaaa if the comparison
indicator is set to HIGH; take the next instruction
from location aaaa.” If the comparison indicator is
set to LOW or EQUAL, control continues in se-

quence.

2. The comparison indicator is set by the instructions
just described: COMPARE FIELD A or COMPARE

3. The state of the comparison indicator is not dis-
turbed by the execution of the BRANCH COMPARI.
SON HIGH instruction. Its setting remains the same

until another COMPARE FIELD A or COMPARE
FIELD R instruction is executed.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of A Register: 0 0000 01 2100
Contents of location 1000: 0 0000 00 3200

No. Instructions Remarks
1 0 7210 CFA 1000 Comparison Indicator set to HIGH.

(Contents of specified field of rA are
greater than the contents of corre-
sponding field of location 1000.)

0 0000 BCH aaaa_ Transfer control to location aaaa.

2 0 8210 CFA 1000 Comparison Indicator set to LOW. (Con-
tents of specified field of rA less than
contents of corresponding field of
location 1000.)

0 0000 BCH aaaa Continue in sequence.

BRANCH COMPARISON LOW (34)
+ 0001 BCL aaaa

1. “Transfer control to location aaaa if the comparison
indicator is set to LOW; take the next instruction
from location aaaa.” If the comparison indicator is
set to HIGH or EQUAL, control continues in se-

quence.

The comparison indicator is set by COMPARE
FIELD A or COMPARE FIELD R.

3. The state of the comparison indicator is not dis-
turbed by the execution of the BRANCH COMPARI-

)

SON LOW instruction. Its setting remains the same
until another COMPARE FIELD A or COMPARE
FIELD R instruction is executed.

4, If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of A Register: 0 0150 00 0000
Contents of Location 1000: 0 0250 00 0000

No. Instructions Remarks

1 0 4310 CFA 1000 Comparison Indicator set to LOW. (Con-
tents of specified field of rA less than
contents of corresponding field of
location 1000.)

0 0000 BCL aaaa_ Transfer control to location aaaa.
2 0 4210 CFA 1000 Comparison Indicator set to EQUAL.

(Contents of specified field of rA
equal to contents of corresponding
field of location 1000.)

0 0000 BCL aaaa Continue in sequence.

BRANCH COMPARISON UNEQUAL (35)
+ 0001 BCU aaaa

1. “Transfer control to location aaaa if the comparison
indicator is set to HIGH or LOW: take the next in-
struction from location aaaa.” If the comparison
indicator is set to EQUAL, control continues in
sequence.

2. The comparison indicator is set by the instructions
COMPARE FIELD A or COMPARE FIELD R.

3. The state of the comparison indicator is not dis-
turbed by the execution of the BRANCH COMPARI-
SON UNEQUAL instruction. Its setting remains the
same until another COMPARE FIELD A or COM-
PARE FIELDR instruction is executed.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of A register: 0 0402 31 0800

Contents of Location 1000: 0 0180 31 0200

No. Instructions Remarks

1 0 2210 CFA 1000 Comparison Indicator set to HIGH.
(Contents of specified field of rA
greater than contents of correspond-
ing field of location 1000.)

0 0000 BCU aaaa_ Transfer control to location aaaa.
2 0 6210 CFA 1000 Comparison Indicator set to EQUAL.

(Contents of specified field of rA
equal to contents of corresponding
field of location 1000.)

0 0000 BCU aaaa Continue in sequence.

3 0 4210 CFA 1000 Comparison Indicator set to LOW. (Con-
tents of specified field of rA less than
contents of corresponding field of
location 1000.)

0 0000 BCU aaaa_ Transfer control to location aaaa.

BRANCH COMPARISON EQUAL (35)
+ 0000 BCE aaaa

1. “Transfer control to location aaaa if the comparison
indicator is set to EQUAL: take the next instruction

Using the Burroughs 220 to Make Decisions

from location aaaa.” If the comparison indicator is
set to HIGH or LOW, control continues in sequence.

2. The comparison indicator is set by the instructions
COMPARE FIELD A or COMPARE FIELD R.

3. The state of the comparison indicator is not dis-
turbed by the execution of the BRANCH COMPARI-
SON EQUAL instruction. Its setting remains the
same until another COMPARE FIELD A or COM-
PARE FIELDR instruction is executed.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of A Register: 0 0010 00 0001

Contents of Location 1000: 0 0010 00 0010

No. Instruction Remarks

1 0 0410 CFA 1000 Comparison Indicator set to LOW. (Con-
tents of specified field of rA less than
contents of corresponding field of
location 1000.)

0 0000 BCE aaaa Continue in sequence.

2 0 4410 CFA 1000 Comparison Indicator set to EQUAL.
(Contents of specified field of rA
equal to contents of corresponding
field of location 1000.)

0 0000 BCE aaaa__ Transfer control to location aaaa.

BRANCH FIELD A (36) + s L nn BFA aaaa

If the sign digit is odd, automatic B register address
modification occurs.

s designates the rightmost digit of the partial-word field.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used as a basis for comparison.

1. “Compare nn with successively higher-order pairs of
digits of the specified partial-word field in the A reg-
ister; begin the comparison with the rightmost pair
of digits of the specified partial-word field.
“Transfer control to location aaaa if the comparison
of digits in the A register to nn produces equality;
take the next instruction from location aaaa.” Con-
trol continues in sequence if any digit comparison
produces inequality.

2. The initial comparison concerns the digit in the
A register specified by s. Subsequent comparisons
concern digits to the left of s. The order of com-
parison is as follows:

a. The low-order digit of nn is compared with the
low-order digit of the partial-word field.
b. The high-order digit of nn is compared with the
next higher-order digit of the partial-word field.
c. The low-order digit of nn is compared with the
next higher-order digit of the partial-word field, and
so forth.

3. If s and L both equal 0, nn will be compared with
the five adjacent pairs of digits of the A register;
the sign digit will not be included in the comparison.

6-5

Using the Burroughs 220 to Make Decisions

COMPARE FIELD A (18) + s L f 0 CFA aaaa

If f = 0, the entire word in the A register will be com-
pared with the entire word in location aaaa, and digits s

andL are not relevant.

If £ = 1, a partial-word field of the word in the A regis-
ter will be compared with the corresponding field in loca-
tion aaaa, and s designates the rightmost digit of the
partial-word field. L specifies the number of adjacent
digits in the partial-word field.

If the sign digit is odd, automatic B register address modi-
fication occurs.

1. “Compare the contents of the specified field of the
word in the A register with the corresponding field
in location aaaa. Set the comparison indicator to:

a. HIGH if the contents of the specified field of the
word in the A register are greater than the corre-
sponding field of the word in location aaaa.

b. EQUAL if the contents of the specified field of
the word in the A register are equal to the corre-
sponding field of the word in location aaaa.

c. LOW if the contents of the specified field of the
word in the A register are less than the correspond-
ing field of the word in location aaaa.”

2. If the sign-digit positions of the words to be com-
pared are not included in the field specified, the
comparison is considered to be made with respect to
the absolute value of each field.

3. If the words to be compared are numeric, and their
respective sign-digit positions are included in the
fields specified, then the comparison is algebraic,
and the following rule of comparison may be used:
1, 9999 99 9999 is less than 1, 1111 11 1111,
which is less than 0, 1111 11 1111, which is less
than 0, 9999 99 9999,

COMPARE FIELD R (18) ~=s © fi CER aaaa

If f = 0, the entire word in the R register will be com-
pared with the entire word in location aaaa. Digits s and
L are not relevant.

If f = 1, a partial-word field of the word in the R register
will be compared with the corresponding field in location
aaaa, and s designates the rightmost digit of the partial-
word field. L specifies the number of adjacent digits in
the partial-word field.

If the sign digit is odd, automatic B register address modi-
fication occurs.

1. “Compare the contents of the specified field of the
word in the R register with the corresponding field
of the word in location aaaa. Set the comparison
indicator to:

a. HIGH if the contents of the specified field of the
word in the R register are greater than the corre-
sponding field of the word in location aaaa.

b. EQUAL if the contents of the specified field of the

word in the R register are equal to the correspond-
ing field of the word in location aaaa.

c. LOW if the contents of the specified field of the
word in the R register are less than the correspond-
ing field of the word in location aaaa.”

2. If the sign-digit positions of the words to be com-
pared are not included in the fields specified, then
the comparison is considered to be made with re-
spect to the absolute value of each field.

3. If the words to be compared are numeric, and their
respective sign-digit positions are included in the
fields specified, then the comparison is algebraic,
and the following rule of comparison may be used:
1, 9999 99 9999 is less than 1, 1111 11 1a;
which is less than 0, 1111 11 1111, which is less

than 0 , 9999 99 9999.

BRANCH COMPARISON HIGH (34)
+ 0000 BCH aaaa

1. “Transfer control to location aaaa if the comparison
indicator is set to HIGH; take the next instruction
from location aaaa.” If the comparison indicator is
set to LOW or EQUAL, control continues in se-

quence.

2. The comparison indicator is set by the instructions
just described: COMPARE FIELD A or COMPARE

3. The state of the comparison indicator is not dis-
turbed by the execution of the BRANCH COMPARI.
SON HIGH instruction. Its setting remains the same

until another COMPARE FIELD A or COMPARE
FIELD R instruction is executed.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of A Register: 0 0000 01 2100
Contents of location 1000: 0 0000 00 3200

No. Instructions Remarks
1 0 7210 CFA 1000 Comparison Indicator set to HIGH.

(Contents of specified field of rA are
greater than the contents of corre-
sponding field of location 1000.)

0 0000 BCH aaaa_ Transfer control to location aaaa.

2 0 8210 CFA 1000 Comparison Indicator set to LOW. (Con-
tents of specified field of rA less than
contents of corresponding field of
location 1000.)

0 0000 BCH aaaa Continue in sequence.

BRANCH COMPARISON LOW (34)
+ 0001 BCL aaaa

1. “Transfer control to location aaaa if the comparison
indicator is set to LOW; take the next instruction
from location aaaa.” If the comparison indicator is
set to HIGH or EQUAL, control continues in se-

quence.

The comparison indicator is set by COMPARE
FIELD A or COMPARE FIELD R.

3. The state of the comparison indicator is not dis-
turbed by the execution of the BRANCH COMPARI-

)

SON LOW instruction. Its setting remains the same
until another COMPARE FIELD A or COMPARE
FIELD R instruction is executed.

4, If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of A Register: 0 0150 00 0000
Contents of Location 1000: 0 0250 00 0000

No. Instructions Remarks

1 0 4310 CFA 1000 Comparison Indicator set to LOW. (Con-
tents of specified field of rA less than
contents of corresponding field of
location 1000.)

0 0000 BCL aaaa_ Transfer control to location aaaa.
2 0 4210 CFA 1000 Comparison Indicator set to EQUAL.

(Contents of specified field of rA
equal to contents of corresponding
field of location 1000.)

0 0000 BCL aaaa Continue in sequence.

BRANCH COMPARISON UNEQUAL (35)
+ 0001 BCU aaaa

1. “Transfer control to location aaaa if the comparison
indicator is set to HIGH or LOW: take the next in-
struction from location aaaa.” If the comparison
indicator is set to EQUAL, control continues in
sequence.

2. The comparison indicator is set by the instructions
COMPARE FIELD A or COMPARE FIELD R.

3. The state of the comparison indicator is not dis-
turbed by the execution of the BRANCH COMPARI-
SON UNEQUAL instruction. Its setting remains the
same until another COMPARE FIELD A or COM-
PARE FIELDR instruction is executed.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of A register: 0 0402 31 0800

Contents of Location 1000: 0 0180 31 0200

No. Instructions Remarks

1 0 2210 CFA 1000 Comparison Indicator set to HIGH.
(Contents of specified field of rA
greater than contents of correspond-
ing field of location 1000.)

0 0000 BCU aaaa_ Transfer control to location aaaa.
2 0 6210 CFA 1000 Comparison Indicator set to EQUAL.

(Contents of specified field of rA
equal to contents of corresponding
field of location 1000.)

0 0000 BCU aaaa Continue in sequence.

3 0 4210 CFA 1000 Comparison Indicator set to LOW. (Con-
tents of specified field of rA less than
contents of corresponding field of
location 1000.)

0 0000 BCU aaaa_ Transfer control to location aaaa.

BRANCH COMPARISON EQUAL (35)
+ 0000 BCE aaaa

1. “Transfer control to location aaaa if the comparison
indicator is set to EQUAL: take the next instruction

Using the Burroughs 220 to Make Decisions

from location aaaa.” If the comparison indicator is
set to HIGH or LOW, control continues in sequence.

2. The comparison indicator is set by the instructions
COMPARE FIELD A or COMPARE FIELD R.

3. The state of the comparison indicator is not dis-
turbed by the execution of the BRANCH COMPARI-
SON EQUAL instruction. Its setting remains the
same until another COMPARE FIELD A or COM-
PARE FIELDR instruction is executed.

4. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Contents of A Register: 0 0010 00 0001

Contents of Location 1000: 0 0010 00 0010

No. Instruction Remarks

1 0 0410 CFA 1000 Comparison Indicator set to LOW. (Con-
tents of specified field of rA less than
contents of corresponding field of
location 1000.)

0 0000 BCE aaaa Continue in sequence.

2 0 4410 CFA 1000 Comparison Indicator set to EQUAL.
(Contents of specified field of rA
equal to contents of corresponding
field of location 1000.)

0 0000 BCE aaaa__ Transfer control to location aaaa.

BRANCH FIELD A (36) + s L nn BFA aaaa

If the sign digit is odd, automatic B register address
modification occurs.

s designates the rightmost digit of the partial-word field.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used as a basis for comparison.

1. “Compare nn with successively higher-order pairs of
digits of the specified partial-word field in the A reg-
ister; begin the comparison with the rightmost pair
of digits of the specified partial-word field.
“Transfer control to location aaaa if the comparison
of digits in the A register to nn produces equality;
take the next instruction from location aaaa.” Con-
trol continues in sequence if any digit comparison
produces inequality.

2. The initial comparison concerns the digit in the
A register specified by s. Subsequent comparisons
concern digits to the left of s. The order of com-
parison is as follows:

a. The low-order digit of nn is compared with the
low-order digit of the partial-word field.
b. The high-order digit of nn is compared with the
next higher-order digit of the partial-word field.
c. The low-order digit of nn is compared with the
next higher-order digit of the partial-word field, and
so forth.

3. If s and L both equal 0, nn will be compared with
the five adjacent pairs of digits of the A register;
the sign digit will not be included in the comparison.

6-5

Using the Burroughs 220 to Make Decisions

4. If sL specifies a one-digit field, the digit specified
will be compared with the low-order digit of nn.

5. If sL specifies an odd field length, the odd digit—
the high-order digit—of the field specified will be
compared with the low-order digit of nn.

Examples:

Contents of
Instruction A Register Remarks

0 0000 BFA aaaa_ 1 0000 00 0000 Transfer control to location
aaaa.

0 0000 BFA aaaa_ 1 0000 00 1000 Continue in sequence.

0 0499 BFA aaaa 0 0000 00 9999 Transfer control to location
aaaa.

0 1210 BFA aaaa 1 0000 00 0000‘ Transfer control to location
aaaa.

BRANCH FIELD R (37) + s L nn BFR aaaa

If the sign digit is odd, automatic B register address modi-
fication occurs.

s designates the rightmost digit of the partial-word field.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used as a basis for comparison.

1. “Compare nn with successively higher-order pairs of
digits of the specified partial-word field in the R reg-
ister; begin the comparison with the rightmost pair
of digits of the specified partial-word field.
“Transfer control to location aaaa if the alternate
comparison of digits in the R register to nn pro-
duces equality; take the next instruction from loca-
tion aaaa.” Control continues in sequence if any
digit comparison produces inequality.

2. The initial comparison concerns the digit in the
R register specified by s. Subsequent comparisons
concern digits to the left of s. The order of com-
parison is as follows:
a. The low-order digit of nn is compared with the
low-order digit of the partial-word field.
b. The high-order digit of nn is compared with the
next higher-order digit of the partial-word field.
c. The low-order digit of nn is compared with the
next higher-order digit of the partial-word field, and
so forth.

3. If s and L both equal 0, nn will be compared with
the five adjacent pairs of digits of the R register;
the sign digit will not be included in the comparison.

4. If sL specifies a one-digit field, the digit specified
will be compared with the low-order digit of nn.

5. If sL specifies an odd field length, the odd digit—
the high-order digit—of the field specified will be
compared with the low-order digit of nn.

Examples:

Contents of
Instruction R Register Remarks

0 0400 BFR aaaa 0 1234 56 1000 Continue in sequence.

6-6

Contents of
Instruction R Register Remarks

0 6264 BFR aaaa 0 0000 64 2050 =‘ Transfer control to location
aaaa.

0 3301 BFR aaaa_ 0 1010 47 1051 Transfer control to location
aaaa.

BRANCH SIGN A (33) = 000n BSA aaaa

1. “Compare the sign digit of the word in the A regis-
ter with n. Transfer control to location aaaa if the
comparison produces equality; take the next in-
struction from location aaaa.” If the comparison
produces inequality, control continues in sequence.

2. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:
Contents of

Instruction A Register Remarks

0 0001 BSA aaaa_ 1 1234 56 7890 Transfer control to location
aaaa.

0 0000 BSA aaaa_ 1 1234 56 7890 Continue in sequence.

SAMPLE PROBLEMS
1. Compare the automobile part description found in

location 2000 and the six high-order digit positions
of location 2001 with the corresponding digit posi-
tions of the words in locations 3000 and 3001. If
any digits compared are unequal, halt the operation;
if all are equal, transfer program control to a routine
beginning in location 1000. Start the program in
location 3050.

Location Instruction

3050 0 0000 CAD 2000

3051 0 0000 CFA 3000

3052 0 0001 BCU 3057

3053 0 0000 CAD 2001

3054 0 6610 CFA 3001

3055 0 0001 BCU 3057

3056 0 0000 BUN 1000

3057 0 0000 HLT 0000

2. Compare the two numbers in locations 1000 and
1050.

If 1000 is greater than 1050, transfer control to
3000.

If 1000 is less than 1050, transfer control to 3050.

If 1000 is equal to 1050, and they are equal to
zero, transfer control to 3060.

If 1000 is equal to 1050, and they are not equal
to zero, transfer control to 3010.

Start the program in location 2000.

Location Instruction

2000 0 0000 CAD 1000

2001 0 0000 CFA 1050

2002 0 0000 BCH 3000

2003 0 0001 BCL 3050

2004. 0 0000 BFA 3060

2005 0 0000 BUN 3010

Automatic Repetition of Program Segments

LOOPING
Suppose the coder wants to sum 12 numbers stored in 12
consecutive storage locations. One way to do this would
be to bring the first number into the A register and follow
this with 11 ADD instructions—one for each of the re-
maining numbers to be added. For example, assuming
that the 12 numbers to be added are stored in locations
1000 through 1011, the program would appear as follows:

2050 0 0000 CAD 1000 First number—>rA.
2051 0 0000 ADD 1001 |
2052 0 0000 ADD 1002

2053 0 0000 ADD 1003

2054 0 0000 ADD 1004

2055 0 0000 ADD 1005

2056 0 0000 ADD 1006 »>Sum remaining numbers.

2057 0 0000 ADD 1007 c
2058 0 0000 ADD 1008

2059 0 0000 ADD 1009

2060 0 0000 ADD 1010

2061 0 0000 ADD 1011 J

2062 0 0000 HLT 0000 Halt operation.

The reader will notice that the 11 ADD instructions differ
in one respect only: the low-order digit of each address
increases by one. Therefore, by using the first ADD in-
struction 11] times, and increasing the address by one each
time, the same result may be obtained.

This way of summing the 12 numbers is called looping.
A loop is a segment of a program which is repeated sev-

eral times: often the address portions of some of the
instructions are altered between repetitions. Using a loop
for the example above, we would bring the first of the
12 numbers into the A register and follow this by a single
ADD instruction, the address of which is increased by one
before each repetition. For example:

2050 0 0000 CAD 1000

2051 0 0000 ADD 1001 Add 12 numbers.

2052 0 0000 STA 1000

2053. +0 0000 CAD 2051

2054 0 0000 ADD 2057 ? Increase address by 1.

2055 0 0000 STA 2051

2056 0 0000 BUN 2050 Return for next iteration.
2057 0 0000 00 0001 Constant for increasing

address.

ADDRESS MODIFICATION
Alteration of the address part of an instruction is called
address modification. The address part of an instruction
is altered so that the instruction will reference a different
location in storage each time it is executed. This is pos-
sible because a stored-program computer can perform
arithmetic operations on instructions as well as data.

As explained in Chapter 3, data and instructions are
stored in the same way. Instructions are recognized as

instructions only when selected and interpreted as such by
the control unit. A word interpreted as an instruction at
one point in a program may be processed by other in-
structions—just as if it were a data word—at another
point in the same program. Thus the computer can be
coded to alter its own instructions.

LOOP TESTING

The example of adding 12 numbers using address modi-
fication within a loop makes it apparent that some way
must be devised to tell the machine when to stop. The
program as outlined would not stop after the contents of
the specified 12 locations had been summed; the com-
puter would continue to sum the contents of all the re-
maining locations in core storage.

Therefore, an exit must be provided for every loop. A
record must be kept of the number of times the loop has
been executed, so that the loop can be terminated after
the last desired iteration. This can be done in any of
several ways.

INCREASING A TALLY

Add 1 to the contents of a location reserved for tallying
each time the loop is executed; compare the tally each
time through the loop to a constant that is equal to the
desired number of iterations. When the comparison is
equal, a branch instruction transfers control from the
loop. For example, suppose a coder wishes a particular
loop to be repeated 20 times. Following is a sample loop
tally and exit routine:

1000 0 0000 CAD 2050 |
1001

> Main part of loop.

 1010

7-1

Using the Burroughs 220 to Make Decisions

4. If sL specifies a one-digit field, the digit specified
will be compared with the low-order digit of nn.

5. If sL specifies an odd field length, the odd digit—
the high-order digit—of the field specified will be
compared with the low-order digit of nn.

Examples:

Contents of
Instruction A Register Remarks

0 0000 BFA aaaa_ 1 0000 00 0000 Transfer control to location
aaaa.

0 0000 BFA aaaa_ 1 0000 00 1000 Continue in sequence.

0 0499 BFA aaaa 0 0000 00 9999 Transfer control to location
aaaa.

0 1210 BFA aaaa 1 0000 00 0000‘ Transfer control to location
aaaa.

BRANCH FIELD R (37) + s L nn BFR aaaa

If the sign digit is odd, automatic B register address modi-
fication occurs.

s designates the rightmost digit of the partial-word field.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used as a basis for comparison.

1. “Compare nn with successively higher-order pairs of
digits of the specified partial-word field in the R reg-
ister; begin the comparison with the rightmost pair
of digits of the specified partial-word field.
“Transfer control to location aaaa if the alternate
comparison of digits in the R register to nn pro-
duces equality; take the next instruction from loca-
tion aaaa.” Control continues in sequence if any
digit comparison produces inequality.

2. The initial comparison concerns the digit in the
R register specified by s. Subsequent comparisons
concern digits to the left of s. The order of com-
parison is as follows:
a. The low-order digit of nn is compared with the
low-order digit of the partial-word field.
b. The high-order digit of nn is compared with the
next higher-order digit of the partial-word field.
c. The low-order digit of nn is compared with the
next higher-order digit of the partial-word field, and
so forth.

3. If s and L both equal 0, nn will be compared with
the five adjacent pairs of digits of the R register;
the sign digit will not be included in the comparison.

4. If sL specifies a one-digit field, the digit specified
will be compared with the low-order digit of nn.

5. If sL specifies an odd field length, the odd digit—
the high-order digit—of the field specified will be
compared with the low-order digit of nn.

Examples:

Contents of
Instruction R Register Remarks

0 0400 BFR aaaa 0 1234 56 1000 Continue in sequence.

6-6

Contents of
Instruction R Register Remarks

0 6264 BFR aaaa 0 0000 64 2050 =‘ Transfer control to location
aaaa.

0 3301 BFR aaaa_ 0 1010 47 1051 Transfer control to location
aaaa.

BRANCH SIGN A (33) = 000n BSA aaaa

1. “Compare the sign digit of the word in the A regis-
ter with n. Transfer control to location aaaa if the
comparison produces equality; take the next in-
struction from location aaaa.” If the comparison
produces inequality, control continues in sequence.

2. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:
Contents of

Instruction A Register Remarks

0 0001 BSA aaaa_ 1 1234 56 7890 Transfer control to location
aaaa.

0 0000 BSA aaaa_ 1 1234 56 7890 Continue in sequence.

SAMPLE PROBLEMS
1. Compare the automobile part description found in

location 2000 and the six high-order digit positions
of location 2001 with the corresponding digit posi-
tions of the words in locations 3000 and 3001. If
any digits compared are unequal, halt the operation;
if all are equal, transfer program control to a routine
beginning in location 1000. Start the program in
location 3050.

Location Instruction

3050 0 0000 CAD 2000

3051 0 0000 CFA 3000

3052 0 0001 BCU 3057

3053 0 0000 CAD 2001

3054 0 6610 CFA 3001

3055 0 0001 BCU 3057

3056 0 0000 BUN 1000

3057 0 0000 HLT 0000

2. Compare the two numbers in locations 1000 and
1050.

If 1000 is greater than 1050, transfer control to
3000.

If 1000 is less than 1050, transfer control to 3050.

If 1000 is equal to 1050, and they are equal to
zero, transfer control to 3060.

If 1000 is equal to 1050, and they are not equal
to zero, transfer control to 3010.

Start the program in location 2000.

Location Instruction

2000 0 0000 CAD 1000

2001 0 0000 CFA 1050

2002 0 0000 BCH 3000

2003 0 0001 BCL 3050

2004. 0 0000 BFA 3060

2005 0 0000 BUN 3010

Automatic Repetition of Program Segments

LOOPING
Suppose the coder wants to sum 12 numbers stored in 12
consecutive storage locations. One way to do this would
be to bring the first number into the A register and follow
this with 11 ADD instructions—one for each of the re-
maining numbers to be added. For example, assuming
that the 12 numbers to be added are stored in locations
1000 through 1011, the program would appear as follows:

2050 0 0000 CAD 1000 First number—>rA.
2051 0 0000 ADD 1001 |
2052 0 0000 ADD 1002

2053 0 0000 ADD 1003

2054 0 0000 ADD 1004

2055 0 0000 ADD 1005

2056 0 0000 ADD 1006 »>Sum remaining numbers.

2057 0 0000 ADD 1007 c
2058 0 0000 ADD 1008

2059 0 0000 ADD 1009

2060 0 0000 ADD 1010

2061 0 0000 ADD 1011 J

2062 0 0000 HLT 0000 Halt operation.

The reader will notice that the 11 ADD instructions differ
in one respect only: the low-order digit of each address
increases by one. Therefore, by using the first ADD in-
struction 11] times, and increasing the address by one each
time, the same result may be obtained.

This way of summing the 12 numbers is called looping.
A loop is a segment of a program which is repeated sev-

eral times: often the address portions of some of the
instructions are altered between repetitions. Using a loop
for the example above, we would bring the first of the
12 numbers into the A register and follow this by a single
ADD instruction, the address of which is increased by one
before each repetition. For example:

2050 0 0000 CAD 1000

2051 0 0000 ADD 1001 Add 12 numbers.

2052 0 0000 STA 1000

2053. +0 0000 CAD 2051

2054 0 0000 ADD 2057 ? Increase address by 1.

2055 0 0000 STA 2051

2056 0 0000 BUN 2050 Return for next iteration.
2057 0 0000 00 0001 Constant for increasing

address.

ADDRESS MODIFICATION
Alteration of the address part of an instruction is called
address modification. The address part of an instruction
is altered so that the instruction will reference a different
location in storage each time it is executed. This is pos-
sible because a stored-program computer can perform
arithmetic operations on instructions as well as data.

As explained in Chapter 3, data and instructions are
stored in the same way. Instructions are recognized as

instructions only when selected and interpreted as such by
the control unit. A word interpreted as an instruction at
one point in a program may be processed by other in-
structions—just as if it were a data word—at another
point in the same program. Thus the computer can be
coded to alter its own instructions.

LOOP TESTING

The example of adding 12 numbers using address modi-
fication within a loop makes it apparent that some way
must be devised to tell the machine when to stop. The
program as outlined would not stop after the contents of
the specified 12 locations had been summed; the com-
puter would continue to sum the contents of all the re-
maining locations in core storage.

Therefore, an exit must be provided for every loop. A
record must be kept of the number of times the loop has
been executed, so that the loop can be terminated after
the last desired iteration. This can be done in any of
several ways.

INCREASING A TALLY

Add 1 to the contents of a location reserved for tallying
each time the loop is executed; compare the tally each
time through the loop to a constant that is equal to the
desired number of iterations. When the comparison is
equal, a branch instruction transfers control from the
loop. For example, suppose a coder wishes a particular
loop to be repeated 20 times. Following is a sample loop
tally and exit routine:

1000 0 0000 CAD 2050 |
1001

> Main part of loop.

 1010

7-1

Automatic Repetition of Program Segments

1011... 0 0000-GAD 1018
1012. 0 0000 ADD 1020 Increase tally.
1013. 0 0000 STA 1018
1014 +0 0000 CFA 1019 Test for last iteration.
1015 0 0000 BCE 1017 Exit after last iteration.
1016 0 0000 BUN 1000 Return for next iteration.
1017 0 0000 HLT 0000 Halt operation.
1018 0 0000 00 0000 Tally.
1019 0 0000 00 0020 Constant.
1020 0 0000 00 0001 Constant.

DECREASING A TALLY

Subtract 1 each time through the loop froma tally that is
initially equal to the desired number of iterations; test
for zero condition. When the tally equals zero, the itera-
tions are completed and a branch instruction transfers
control from the loop. For example, suppose a coder
wishes to repeat a loop 20 times. Following is another
sample loop tally and exit routine.

1000 0 0000 CAD 2050)
1001

> Main part of loop.

1010 J
I0ll 0 0000 CAD 1017

1012. 0 0000 SUB 1018 > Decrease tally.
1013° 0 0000 STA 1017

1014 0 0000 BFA 1016 Exit after last iteration.
1015 0 0000 BUN 1000 Return for next iteration.
1016 0 0000 HLT 0000 Halt operation.
1017. 0 0000 00 0020 Tally.
1018 0 0000 00 0001 Constant.

INCREASING A TALLY TO CAUSE OVERFLOW

Each time through a loop, add 1 to a word reserved for
tallying. The word is chosen so that overflow occurs on
the last iteration. The exit instruction, BRANCH ON
OVERFLOW, immediately follows the instruction which
performs the tallying. For example, suppose a coder
wishes a loop to be repeated 20 times. Following is a

third sample loop tally and exit routine.

1000 0 0000 CAD 2050

1001

Main part of loop.

1010

7-2

1011 0 0000 CAD 1017

1012 0 0000 ADL ie
1013. +0 0000 BOF 1015 Exit after last iteration.
1014 0 0000 BUN 1000 Return for next iteration.
1015 0 0000 HLT 0000 Halt operation.

1016 0 8000 00 0000 Tally.
10)7- 0 0100: .00 0000 Constant.

The INCREASE FIELD LOCATION instruction is very
useful for this method of loop tallying and exiting.

DECREASING A TALLY TO CAUSE
FIELD UNDERFLOW

A fourth method of tallying and loop exiting will be dis-
cussed with the DECREASE FIELD LOCATION instruc-
tion in the next section of this chapter.

TIME FOR LOOPING

It should be noted that although the use of a loop de-
creases the number of steps in a code, and therefore the
number of storage locations required, it also increases
the execution time of the code. The time is increased
because the computer must execute one or several extra
instructions (the loop tally and exit instructions) each
time through a loop. On the other hand, if the instructions
of the loop were coded in straight sequence, as our 11

ADD instructions at the beginning of this chapter, there
would be no need for the extra loop tally and exit in-
structions.

INCREASING AND DECREASING
FIELD CONTENTS

INCREASE FIELD LOCATION (26)
+ sLnn IFL aaaa

If the sign digit is odd, automatic B register address mod-
ification occurs.

Increase tally.

s designates the rightmost digit of the partial-word field.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used to increase the specified field.

1. “Increase the specified partial-word field of location
aaaa by nn. If overflow occurs, that is, if the result
exceeds the capacity of the specified partial-word
field, the overflow indicator is turned on.”

2. If the sign-digit position of the word in location aaaa
is included in the specified partial-word field, it does
not have sign significance; instead, it has numeric
significance, and is treated in the same manner as

the other ten digits of the word.

Examples:

Contents of Contents of
Location aaaa Location aaaa

Before Execution After Execution Overflow
Instruction of Instruction of Instruction Indicator

0 0202 IFL aaaa 0 0000 00 0012 0 0000 00 0014 OFF
0 6314 IFL aaaa 0 2973 43 9216 0 2973 57 9216 OFF
0 6220 IFL aaaa 0 0002 90 2400 0 0002 10 2400 ON

In tallying a loop, it is sometimes useful to set upa tally
that can be counted down. To do this, the coder must use
a tally equal to the number of repetitions wanted. This
tally can be counted down 1 each time through the loop,
leading to an automatic exit from the loop when the count
is completed. With this method, the coder can check the
tally at any time and see exactly how many iterations re-
main to be performed.

The following instruction is very useful in this method of
tallying for a loop exit, as well as in other operations such
as modifying instruction and/or data words in storage.

DECREASE FIELD LOCATION (27)
+ sLnn DFL aaaa

If the sign digit is odd, automatic B register address mod-
ification occurs.

s designates the rightmost digit of the partial-word field
of location aaaa.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used to decreased specified field.

1. “Decrease the specified partial-word field of the
word in location aaaa by nn.” For example:

Contents of Contents of
Location aaaa Location aaaa

Before Execution After Execution
Instruction of Instruction of Instruction

0 0202 DFL aaaa 0 0000 00 0012 0 0000 00 0010

0 6240 DFL aaaa 0 2093 40 0912 0 2093 00 0912

0 0001 DFL aaaa 0 4000 00 0001 0 4000 00 0000

2. If a field of the word in location aaaa is decreased
through zero, the tens complement of the true alge-
braic result is obtained. For example:

Contents of Contents of
Location aaaa Location aaaa

Before Execution After Execution
Instruction of Instruction of Instruction

A. 0 4405 DFL aaaa 0 0000 10 6002 0 9995 10 6002

B. 0 6212 DFL aaaa 0 0000 10 6002 0 0000 98 6002

C. 0 1203 DFL aaaa 0 1013 04 6002 9 8013 04 6002

In example A, the algebraic result of subtracting 5 from
0000 would be —5; in example B, the algebraic result of
subtracting 12 from 10 would be —2. However, a special
kind of arithmetic is used with the DECREASE FIELD
LOCATION instruction—one without algebraic sign sig-
nificance. Thus the result in example A was 9995, the
tens complement of 5, and the result in example B was
98, the tens complement of 2.

In example C, the sign digit of the word in location aaaa
was included in the partial-word field which was de-
creased through zero. With the DECREASE FIELD LO-

Automatic Repetition of Program Segments

CATION instruction the sign digit does not have algebraic
significance; instead it has numeric significance. For ex-
ample, the digit 1 in the sign-digit position of a word
would be treated as the number 1, not as specifying a
negative quantity. Thus the result of subtracting 03 from
01 in example C was 98, the tens complement of 2.

3. Decreasing a specified field through zero creates a
condition in the Burroughs 220 called field under-
flow'.

4. If field underflow occurs, the repeat indicator? is
turned off. If field underflow does not occur, the
repeat indicator is turned on.

Examples:

Contents of Contents of
Location aaaa Location aaaa

Before Execution After Execution Repeat
Instruction of Instruction of Instruction Indicator

0 0202 DFL aaaa 0 0000 00 0002 0 0000 00 0000 ON
0 0201 DFL aaaa 0 0000 00 0000 0 0000 00 0099 OFF
0 4101 DFL aaaa 0 1234 56 7890 0 1233 56 7890 ON
0 6214 DFL aaaa 0 2973 43 9216 0 2973 29 9216 ON
0 6220 DFL aaaa 0 0002 10 2400 0 0002 90 2400 OFF
0 1232 DFL aaaa 0 5236 47 8888 7 3236 47 8888 OFF

BRANCH, REPEAT (32) + 0000 BRP aaaa

1. “Transfer control to location aaaa if the repeat indi-
cator is on; take the next instruction from location
aaaa.” If the repeat indicator is off, control con-
tinues in sequence.

2. The setting of the repeat indicator is not disturbed
by the execution of a BRANCH, REPEAT instruc-
tion. If it is on, it stays on until a field underflow
condition occurs. If it is off, it remains off until it
is turned on by a DECREASE FIELD LOCATION
or a DECREASE FIELD LOCATION, LOAD B
instruction.

3. If the sign digit is odd, automatic B register address
modification occurs.

Returning to the example given at the beginning of this
chapter, the following is a sample loop tally and exit
routine using the DECREASE FIELD LOCATION and
BRANCH, REPEAT instructions. Assume that the 12
numbers are stored in locations 1000 through 1011, and
that the program begins in location 2050.

2050 0 0000 CAD 1000

2051 0 0000 ADD 1001

2052 0 0000 STA 1000

2053 0 0000 CAD 2058

2054 0 0000 ADL 2051

2055 0 2201 DFL 2056 Tally.

Sum 12 numbers.

Modify address.

‘This kind of underflow is not to be confused with the exponent underflow discussed in Chapter 10 (floating point).
*The repeat indicator is an electronic device which can be interrogated by a BRANCH REPEAT instruction to determine whether an
iteration will be repeated. It is turned on or off by either of two instructions:

DECREASE FIELD LOCATION
DECREASE FIELD LOCATION, LOAD B

7-3

Automatic Repetition of Program Segments

1011... 0 0000-GAD 1018
1012. 0 0000 ADD 1020 Increase tally.
1013. 0 0000 STA 1018
1014 +0 0000 CFA 1019 Test for last iteration.
1015 0 0000 BCE 1017 Exit after last iteration.
1016 0 0000 BUN 1000 Return for next iteration.
1017 0 0000 HLT 0000 Halt operation.
1018 0 0000 00 0000 Tally.
1019 0 0000 00 0020 Constant.
1020 0 0000 00 0001 Constant.

DECREASING A TALLY

Subtract 1 each time through the loop froma tally that is
initially equal to the desired number of iterations; test
for zero condition. When the tally equals zero, the itera-
tions are completed and a branch instruction transfers
control from the loop. For example, suppose a coder
wishes to repeat a loop 20 times. Following is another
sample loop tally and exit routine.

1000 0 0000 CAD 2050)
1001

> Main part of loop.

1010 J
I0ll 0 0000 CAD 1017

1012. 0 0000 SUB 1018 > Decrease tally.
1013° 0 0000 STA 1017

1014 0 0000 BFA 1016 Exit after last iteration.
1015 0 0000 BUN 1000 Return for next iteration.
1016 0 0000 HLT 0000 Halt operation.
1017. 0 0000 00 0020 Tally.
1018 0 0000 00 0001 Constant.

INCREASING A TALLY TO CAUSE OVERFLOW

Each time through a loop, add 1 to a word reserved for
tallying. The word is chosen so that overflow occurs on
the last iteration. The exit instruction, BRANCH ON
OVERFLOW, immediately follows the instruction which
performs the tallying. For example, suppose a coder
wishes a loop to be repeated 20 times. Following is a

third sample loop tally and exit routine.

1000 0 0000 CAD 2050

1001

Main part of loop.

1010

7-2

1011 0 0000 CAD 1017

1012 0 0000 ADL ie
1013. +0 0000 BOF 1015 Exit after last iteration.
1014 0 0000 BUN 1000 Return for next iteration.
1015 0 0000 HLT 0000 Halt operation.

1016 0 8000 00 0000 Tally.
10)7- 0 0100: .00 0000 Constant.

The INCREASE FIELD LOCATION instruction is very
useful for this method of loop tallying and exiting.

DECREASING A TALLY TO CAUSE
FIELD UNDERFLOW

A fourth method of tallying and loop exiting will be dis-
cussed with the DECREASE FIELD LOCATION instruc-
tion in the next section of this chapter.

TIME FOR LOOPING

It should be noted that although the use of a loop de-
creases the number of steps in a code, and therefore the
number of storage locations required, it also increases
the execution time of the code. The time is increased
because the computer must execute one or several extra
instructions (the loop tally and exit instructions) each
time through a loop. On the other hand, if the instructions
of the loop were coded in straight sequence, as our 11

ADD instructions at the beginning of this chapter, there
would be no need for the extra loop tally and exit in-
structions.

INCREASING AND DECREASING
FIELD CONTENTS

INCREASE FIELD LOCATION (26)
+ sLnn IFL aaaa

If the sign digit is odd, automatic B register address mod-
ification occurs.

Increase tally.

s designates the rightmost digit of the partial-word field.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used to increase the specified field.

1. “Increase the specified partial-word field of location
aaaa by nn. If overflow occurs, that is, if the result
exceeds the capacity of the specified partial-word
field, the overflow indicator is turned on.”

2. If the sign-digit position of the word in location aaaa
is included in the specified partial-word field, it does
not have sign significance; instead, it has numeric
significance, and is treated in the same manner as

the other ten digits of the word.

Examples:

Contents of Contents of
Location aaaa Location aaaa

Before Execution After Execution Overflow
Instruction of Instruction of Instruction Indicator

0 0202 IFL aaaa 0 0000 00 0012 0 0000 00 0014 OFF
0 6314 IFL aaaa 0 2973 43 9216 0 2973 57 9216 OFF
0 6220 IFL aaaa 0 0002 90 2400 0 0002 10 2400 ON

In tallying a loop, it is sometimes useful to set upa tally
that can be counted down. To do this, the coder must use
a tally equal to the number of repetitions wanted. This
tally can be counted down 1 each time through the loop,
leading to an automatic exit from the loop when the count
is completed. With this method, the coder can check the
tally at any time and see exactly how many iterations re-
main to be performed.

The following instruction is very useful in this method of
tallying for a loop exit, as well as in other operations such
as modifying instruction and/or data words in storage.

DECREASE FIELD LOCATION (27)
+ sLnn DFL aaaa

If the sign digit is odd, automatic B register address mod-
ification occurs.

s designates the rightmost digit of the partial-word field
of location aaaa.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used to decreased specified field.

1. “Decrease the specified partial-word field of the
word in location aaaa by nn.” For example:

Contents of Contents of
Location aaaa Location aaaa

Before Execution After Execution
Instruction of Instruction of Instruction

0 0202 DFL aaaa 0 0000 00 0012 0 0000 00 0010

0 6240 DFL aaaa 0 2093 40 0912 0 2093 00 0912

0 0001 DFL aaaa 0 4000 00 0001 0 4000 00 0000

2. If a field of the word in location aaaa is decreased
through zero, the tens complement of the true alge-
braic result is obtained. For example:

Contents of Contents of
Location aaaa Location aaaa

Before Execution After Execution
Instruction of Instruction of Instruction

A. 0 4405 DFL aaaa 0 0000 10 6002 0 9995 10 6002

B. 0 6212 DFL aaaa 0 0000 10 6002 0 0000 98 6002

C. 0 1203 DFL aaaa 0 1013 04 6002 9 8013 04 6002

In example A, the algebraic result of subtracting 5 from
0000 would be —5; in example B, the algebraic result of
subtracting 12 from 10 would be —2. However, a special
kind of arithmetic is used with the DECREASE FIELD
LOCATION instruction—one without algebraic sign sig-
nificance. Thus the result in example A was 9995, the
tens complement of 5, and the result in example B was
98, the tens complement of 2.

In example C, the sign digit of the word in location aaaa
was included in the partial-word field which was de-
creased through zero. With the DECREASE FIELD LO-

Automatic Repetition of Program Segments

CATION instruction the sign digit does not have algebraic
significance; instead it has numeric significance. For ex-
ample, the digit 1 in the sign-digit position of a word
would be treated as the number 1, not as specifying a
negative quantity. Thus the result of subtracting 03 from
01 in example C was 98, the tens complement of 2.

3. Decreasing a specified field through zero creates a
condition in the Burroughs 220 called field under-
flow'.

4. If field underflow occurs, the repeat indicator? is
turned off. If field underflow does not occur, the
repeat indicator is turned on.

Examples:

Contents of Contents of
Location aaaa Location aaaa

Before Execution After Execution Repeat
Instruction of Instruction of Instruction Indicator

0 0202 DFL aaaa 0 0000 00 0002 0 0000 00 0000 ON
0 0201 DFL aaaa 0 0000 00 0000 0 0000 00 0099 OFF
0 4101 DFL aaaa 0 1234 56 7890 0 1233 56 7890 ON
0 6214 DFL aaaa 0 2973 43 9216 0 2973 29 9216 ON
0 6220 DFL aaaa 0 0002 10 2400 0 0002 90 2400 OFF
0 1232 DFL aaaa 0 5236 47 8888 7 3236 47 8888 OFF

BRANCH, REPEAT (32) + 0000 BRP aaaa

1. “Transfer control to location aaaa if the repeat indi-
cator is on; take the next instruction from location
aaaa.” If the repeat indicator is off, control con-
tinues in sequence.

2. The setting of the repeat indicator is not disturbed
by the execution of a BRANCH, REPEAT instruc-
tion. If it is on, it stays on until a field underflow
condition occurs. If it is off, it remains off until it
is turned on by a DECREASE FIELD LOCATION
or a DECREASE FIELD LOCATION, LOAD B
instruction.

3. If the sign digit is odd, automatic B register address
modification occurs.

Returning to the example given at the beginning of this
chapter, the following is a sample loop tally and exit
routine using the DECREASE FIELD LOCATION and
BRANCH, REPEAT instructions. Assume that the 12
numbers are stored in locations 1000 through 1011, and
that the program begins in location 2050.

2050 0 0000 CAD 1000

2051 0 0000 ADD 1001

2052 0 0000 STA 1000

2053 0 0000 CAD 2058

2054 0 0000 ADL 2051

2055 0 2201 DFL 2056 Tally.

Sum 12 numbers.

Modify address.

‘This kind of underflow is not to be confused with the exponent underflow discussed in Chapter 10 (floating point).
*The repeat indicator is an electronic device which can be interrogated by a BRANCH REPEAT instruction to determine whether an
iteration will be repeated. It is turned on or off by either of two instructions:

DECREASE FIELD LOCATION
DECREASE FIELD LOCATION, LOAD B

7-3

Automatic Repetition of Program Segments

2056 0 1000 BRP 2050 Test for exit.

2057 0 0000 HLT 0000 Halt operation.

2058 0 0000 00 0001 Constant.

PRESETTING

After all or part of a program has been executed by the
computer, various instruction or data words in storage
have been modified. For example, tally locations may
have been referenced by the program, in which case they
will contain a portion of, or a completed, tally.

At this point, it may be found necessary to trace a part
of the executed program to locate a coding error, check
specific program operations, verify subtotals, etc. To do
this, it is first necessary to restore each of the modified
instruction or data words to its original status.

This may be accomplished by appendinga list of instruc-
tion and data words to the program to restore the pro-
gram, thus avoiding the inconvenience of reloading it.
The data words are the original contents of the locations
which will later contain modified contents. The instruc-
tions provide for replacing the modified words with the
original ones. For example: Assume that the instructions
in locations 1000 and 1010 of the program have been
modified during the initial running of the program, and
location 1035 has been used for a tally. The program
could be written as follows:

Location Instruction Remarks

0900 ~=0 0000 CAD 0907 Entry point.
0901 0 0000 STA 1000

0902 ~=0 0000 CAD 0908

0903. =0 0000 STA 1010

0904. 0 0000 CAD 0909

0905 0 0000 STA 1035

0906 0 0000 BUN 1000 To main program.

0907 0 9950 10 3000

0908 0 0000 13 2060 Prestored words.

0909 0 0000 00 0000

Prestore instructions.

Locations 0910 through
0999 not used.

1000 0 9950 CAD 3000 Start main program.

7-4

Whenever it is necessary to repeat the section of the pro-
gram beginning with location 1000, control is trans-
ferred to location 0900. This restores the contents of
locations 1000, 1010, and 1035 before the section of the
program beginning with location 1000 is carried out.

Location 0900 serves as an entry point to the presetting
portion of the program. Many coders place these entry
or “restart” points at several locations within their pro-
grams. When a specific portion of the program must be
re-executed, program control can be transferred to the
restart point of that particular segment from any place in
the program.

SAMPLE PROBLEM
Sum the 20 numbers stored in locations 0130 through
0149. Store the result in location 0150. Start the program
in location 0010. The solution is shown in Table 7-1.

Table 7-1
Solution to Sample Problem

Location Instruction Remarks

First Method

0010 0 0001 CLA 0000 | ClearA register.
0011 0 8000 ADD 0130 | Sum numbers.

0012 0 0101 IFL 0011 | Modify address.

0013 0 2201 IFL 0011| Tally for loop exit.
0014 0 0000 BOF 0016 | Loop exit on overflow.
0015 0 0000 BUN 0011 | Return for next iteration.
0016 0 0000 STA 0150 | Store sum.

0017 0 0000 HLT 0000 | Halt operation.

Second Method

0010 0 0001 CLA 0000 | Clear A register.
0011 0 1900 ADD 0149 | Sum numbers.
0012 0 0101 DFL 0011 | Modify address.

0013 0 2201 DFL 0011 | Tally for loop exit.
0014. 0 0000 BRP 0011 | Return for next iteration,

if no field underflow.
0015 0 0000 STA 0150 | If field underflow, store

sum.

0016 0 0000 HLT 0000 | Halt operation.

FUNCTION

The Burroughs 220 provides a means for automatic ad-

dress modification—the B register. The basic function of
the B register is to allow the automatic modification of
instructions without actually changing their form in core
storage. This is done by adding the contents of the B reg-
ister to the address of an instruction, during the fetch
phase, as the copy of the instruction is transferred to the
C register. This is simpler and faster than modifying
instructions in the A register or in storage; the program
is speeded up and the number of programming steps

reduced.

Because of its accessibility, the B register is also very
valuable in operations involving tallying or counting, and
in operations where it is necessary to store an address
for later referencing in the program.

GENERAL DESCRIPTION

The B register is a four-digit-position register with no
sign-digit position. Its primary purpose is to provide for
automatic address modification.

As each instruction is received in the IB register from
core storage, it is checked to determine if B register ad-

dress modification is to take place. The sign-digit position
of the instruction is the key in this determination. If the
sign digit of the instruction is odd (1 is generally used),
the address part of the instruction is increased by the
contents of the B register, as it passes through the adder*
from the IB register to the C register. The instruction in
the C register, as modified by the contents of the B regis-
ter, is then executed. (See Fig. 8-1, examples 1 and 2.)

If a carry-one condition occurs when the address part of
the instruction is increased by the contents of the B reg-
ister, the 1 is ignored. Thus the operation code of the
instruction cannot be altered by this occurrence. (See

Fig. 8-1, example 3.)

If the sign digit of the instruction in the IB register is
even, B register address modification will not occur. It
is important to note that instructions with odd digits in
the sign position remain unaltered in storage: they are
only temporarily modified by the B register immediately
before execution. Thus the same instruction may be exe-

cuted many times in a program, being temporarily modi-
fied each time by a different number in the B register.

Using the B Register

Simultaneously with the transfer of the modified instruc-
tion to the C register, the original instruction is trans-
ferred to the D register. The word in the D register—an
exact copy of the instruction as it appears in storage—is
used for checking purposes.

CODING WITH THE B REGISTER

The B register must be set to a specific value before its
use is required by the program. The Burroughs 220 pro-
vides loading instructions to set the B register to the
value of specified digits of a word in memory.

The coder may increase or decrease a number in the
B register—a number which has just been loaded or a

number from a previous setting—by a specified amount.
This ability to count the B register up or down is pro-
vided by two instructions: INCREASE B, BRANCH and
DECREASE B, BRANCH. Each of these instructions is
actually two instructions in one. They increase or de-

crease the contents of the B register and they also act as

transfer-control instructions. If overflow does not occur
as the result of an INCREASE B, BRANCH instruction
or field underflow does not occur as a result of a DE-
CREASE B, BRANCH instruction, program control is
transferred to the location specified by the address por-
tion of the instruction. If, however, either overflow or
field underflow occurs, program control continues in
sequence.

TALLYING

The coder often finds it necessary to keep a tally: for
example, in loop testing and exiting as described in
Chapter 6. He may load the B register with any four
digits, then increase or decrease the contents of the regis-
ter in specified increments each time through the loop.
The program will automatically branch back to the begin-
ning of the loop each time it passes the INCREASE B,
BRANCH or DECREASE B, BRANCH instruction until
an overflow or field underflow condition occurs.

When either condition occurs, the program will resume
sequential operation and therefore will exit from the loop.

ADDRESS MODIFICATION

The address portion of an instruction may be modified by
the contents of the B register as the instruction is fetched
from core storage and brought to the C register for
execution.

*The adder is an electronic device that can form the sum of two decimal digits. Thus, the digits of a sum are formed one at a time in the
adder and shifted serially into the specified register.

8-1

Automatic Repetition of Program Segments

2056 0 1000 BRP 2050 Test for exit.

2057 0 0000 HLT 0000 Halt operation.

2058 0 0000 00 0001 Constant.

PRESETTING

After all or part of a program has been executed by the
computer, various instruction or data words in storage
have been modified. For example, tally locations may
have been referenced by the program, in which case they
will contain a portion of, or a completed, tally.

At this point, it may be found necessary to trace a part
of the executed program to locate a coding error, check
specific program operations, verify subtotals, etc. To do
this, it is first necessary to restore each of the modified
instruction or data words to its original status.

This may be accomplished by appendinga list of instruc-
tion and data words to the program to restore the pro-
gram, thus avoiding the inconvenience of reloading it.
The data words are the original contents of the locations
which will later contain modified contents. The instruc-
tions provide for replacing the modified words with the
original ones. For example: Assume that the instructions
in locations 1000 and 1010 of the program have been
modified during the initial running of the program, and
location 1035 has been used for a tally. The program
could be written as follows:

Location Instruction Remarks

0900 ~=0 0000 CAD 0907 Entry point.
0901 0 0000 STA 1000

0902 ~=0 0000 CAD 0908

0903. =0 0000 STA 1010

0904. 0 0000 CAD 0909

0905 0 0000 STA 1035

0906 0 0000 BUN 1000 To main program.

0907 0 9950 10 3000

0908 0 0000 13 2060 Prestored words.

0909 0 0000 00 0000

Prestore instructions.

Locations 0910 through
0999 not used.

1000 0 9950 CAD 3000 Start main program.

7-4

Whenever it is necessary to repeat the section of the pro-
gram beginning with location 1000, control is trans-
ferred to location 0900. This restores the contents of
locations 1000, 1010, and 1035 before the section of the
program beginning with location 1000 is carried out.

Location 0900 serves as an entry point to the presetting
portion of the program. Many coders place these entry
or “restart” points at several locations within their pro-
grams. When a specific portion of the program must be
re-executed, program control can be transferred to the
restart point of that particular segment from any place in
the program.

SAMPLE PROBLEM
Sum the 20 numbers stored in locations 0130 through
0149. Store the result in location 0150. Start the program
in location 0010. The solution is shown in Table 7-1.

Table 7-1
Solution to Sample Problem

Location Instruction Remarks

First Method

0010 0 0001 CLA 0000 | ClearA register.
0011 0 8000 ADD 0130 | Sum numbers.

0012 0 0101 IFL 0011 | Modify address.

0013 0 2201 IFL 0011| Tally for loop exit.
0014 0 0000 BOF 0016 | Loop exit on overflow.
0015 0 0000 BUN 0011 | Return for next iteration.
0016 0 0000 STA 0150 | Store sum.

0017 0 0000 HLT 0000 | Halt operation.

Second Method

0010 0 0001 CLA 0000 | Clear A register.
0011 0 1900 ADD 0149 | Sum numbers.
0012 0 0101 DFL 0011 | Modify address.

0013 0 2201 DFL 0011 | Tally for loop exit.
0014. 0 0000 BRP 0011 | Return for next iteration,

if no field underflow.
0015 0 0000 STA 0150 | If field underflow, store

sum.

0016 0 0000 HLT 0000 | Halt operation.

FUNCTION

The Burroughs 220 provides a means for automatic ad-

dress modification—the B register. The basic function of
the B register is to allow the automatic modification of
instructions without actually changing their form in core
storage. This is done by adding the contents of the B reg-
ister to the address of an instruction, during the fetch
phase, as the copy of the instruction is transferred to the
C register. This is simpler and faster than modifying
instructions in the A register or in storage; the program
is speeded up and the number of programming steps

reduced.

Because of its accessibility, the B register is also very
valuable in operations involving tallying or counting, and
in operations where it is necessary to store an address
for later referencing in the program.

GENERAL DESCRIPTION

The B register is a four-digit-position register with no
sign-digit position. Its primary purpose is to provide for
automatic address modification.

As each instruction is received in the IB register from
core storage, it is checked to determine if B register ad-

dress modification is to take place. The sign-digit position
of the instruction is the key in this determination. If the
sign digit of the instruction is odd (1 is generally used),
the address part of the instruction is increased by the
contents of the B register, as it passes through the adder*
from the IB register to the C register. The instruction in
the C register, as modified by the contents of the B regis-
ter, is then executed. (See Fig. 8-1, examples 1 and 2.)

If a carry-one condition occurs when the address part of
the instruction is increased by the contents of the B reg-
ister, the 1 is ignored. Thus the operation code of the
instruction cannot be altered by this occurrence. (See

Fig. 8-1, example 3.)

If the sign digit of the instruction in the IB register is
even, B register address modification will not occur. It
is important to note that instructions with odd digits in
the sign position remain unaltered in storage: they are
only temporarily modified by the B register immediately
before execution. Thus the same instruction may be exe-

cuted many times in a program, being temporarily modi-
fied each time by a different number in the B register.

Using the B Register

Simultaneously with the transfer of the modified instruc-
tion to the C register, the original instruction is trans-
ferred to the D register. The word in the D register—an
exact copy of the instruction as it appears in storage—is
used for checking purposes.

CODING WITH THE B REGISTER

The B register must be set to a specific value before its
use is required by the program. The Burroughs 220 pro-
vides loading instructions to set the B register to the
value of specified digits of a word in memory.

The coder may increase or decrease a number in the
B register—a number which has just been loaded or a

number from a previous setting—by a specified amount.
This ability to count the B register up or down is pro-
vided by two instructions: INCREASE B, BRANCH and
DECREASE B, BRANCH. Each of these instructions is
actually two instructions in one. They increase or de-

crease the contents of the B register and they also act as

transfer-control instructions. If overflow does not occur
as the result of an INCREASE B, BRANCH instruction
or field underflow does not occur as a result of a DE-
CREASE B, BRANCH instruction, program control is
transferred to the location specified by the address por-
tion of the instruction. If, however, either overflow or
field underflow occurs, program control continues in
sequence.

TALLYING

The coder often finds it necessary to keep a tally: for
example, in loop testing and exiting as described in
Chapter 6. He may load the B register with any four
digits, then increase or decrease the contents of the regis-
ter in specified increments each time through the loop.
The program will automatically branch back to the begin-
ning of the loop each time it passes the INCREASE B,
BRANCH or DECREASE B, BRANCH instruction until
an overflow or field underflow condition occurs.

When either condition occurs, the program will resume
sequential operation and therefore will exit from the loop.

ADDRESS MODIFICATION

The address portion of an instruction may be modified by
the contents of the B register as the instruction is fetched
from core storage and brought to the C register for
execution.

*The adder is an electronic device that can form the sum of two decimal digits. Thus, the digits of a sum are formed one at a time in the
adder and shifted serially into the specified register.

8-1

Using the B Register

Example 1

B Register Address Modification

STORAGE

y yey Wy Vdd
0000/10)1000

Information Buffer
Register

B Register

Example 2

No B Register Address Modification

STORAGE

Vidi Li Lid

Vv

Vv

0;0000 1.0.0.0

Information Buffer
Register

B Register

Example 3
B Register Address Modification
With A “Carry One’ Condition

STORAGE

| HLL Lt Wy

Vv

Adder

 re

1}o000}7 0/1000)
D Register

0:0,.0:0:11,0:)1.3.55

C Register

Vv

110000 G 625.5

Information Buffer
Register

Adder

—> of oooolioliooo}

 Y0:0'0'071'1-071'1'0°0°0

C Register

 0235555

B Register

Adder

vtpoooolroloess)
D Register

 0000;10}0010

C Register

Figure 8-1. Examples of B Register Address Modification

There is often a need to modify several instructions in a

loop each time the loop is executed. Since the B register
can be counted up or down, tallying a loop may take place
while the addresses of instructions within the loop are
altered by the addition of the contents of the B register.

Thus a different B register setting modifies the instruc-
tions each time through the loop until an exit condition
(as the result of overflow or field underflow) takes place.

B REGISTER INSTRUCTIONS

LOAD B (42) = 0000 LDB aaaa

1. “Replace the contents of the B register by the four
low-order digits of the word in location aaaa.”

2. The four low-order digits of the word in location
aaaa are usually stored as a constant to be used

specifically for the B register. However, if the ad-

dress portion of an instruction is not used for ad-

dressing purposes, it may be utilized (e.g., ROUND,
HALT, CLEAR A, etc.).

3. If the sign digit is odd, automatic B register address
modification occurs.

Examples:

Contents of B register before execution of LDB: 5555

Contents of Contents of B Register
Location aaaa Instruction After Execution of LDB

0 0000 00 0250 0 0000 LDB aaaa 0250

0 0086 43 6000 0 0000 LDB aaaa 6000

1 4323 03 3002 0 0000 LDB aaaa 3002

LOAD B COMPLEMENT (42) -£ 0001 LBC aaaa

1. “Replace the contents of the B register by the tens
complement of the number that is stored in the four
low-order digit positions of the word in location

”aaaa.

2. To obtain the tens complement of a number for use

in the B register, four digits are subtracted from
10,000. The execution of this instruction causes the
four low-order digits of the word in location aaaa to
be automatically subtracted from 10,000. For example:

Contents of
Contents of Complement B Register After

Location aaaa Operation Execution of LBC

0 0000 00 2310 10,000 — 2310 = 7690

0 0000 16 0004 10,000 — 0004 = 9996

0 9510 10 0000 10,000 — 0000 = 0000

0 0000 00 9982 10,000 — 9982 = 0018

0 0000 00 0150 10,000 — 0150 = 9850

3. The four low-order digits of the word in location
aaaa are usually stored as a constant to be used

specifically for the loading of the B register. How-
ever, if the address portion of an instruction is not
used for addressing purposes, it may be utilized.

4. If the sign digit is odd, automatic B register address
modification occurs.

Sometimes the coder may wish to use the B register to
count up instead of down. This may be necessary to ref-

Using the B Register

erence locations in ascending order. Loading the B regis-
ter with the number of iterations to be made and increas-
ing B each time through the loop may not suffice because

after the last iteration has been completed, the contents
of B may not reach 9999 to produce an overflow condi-
tion when increased once more. Therefore the transfer of
control would not occur. It is in such cases that the LOAD
B COMPLEMENT instruction is useful.

Take, for example, a program in which it is necessary to
add a specified quantity to each of the 54 numbers stored
in locations 0500 through 0553, in that order. The B reg-

ister may be used to tally for a loop exit. The coder can

load the B register with the tens complement of 54 (the
number of locations affected), or 9946. He will then write
his first CLEAR ADD instruction with an address of
0554, representing the address of the first location plus
the number of locations. This instruction would have a 1

in the sign-digit position so that its address portion would
be B modified.

The first time through the loop, the contents of the B reg-

ister are added to the address portion of the instruction,
producing a five-digit number (0554 + 9946 = 10500).
The leftmost 1 is deleted by the computer so that the
instruction brought to the C register is CLEAR ADD
0500.

After the execution of the CLEAR ADD instruction, the
B register is increased by 1 by an INCREASE B,

BRANCH instruction. Thus, the second time through the

loop, the modified instruction will be CLEAR ADD 0501
(0554 + 9947 = 10501). The contents of the next-to-
last location (0553) will be brought to the A register
when the B register contains 9999 (0554 + 9999 =
10553). The last INCREASE B, BRANCH instruction,
when the register contains 9999, will take the register to
zero causing an overflow in the B register and therefore
an exit from the loop.

DECREASE B, BRANCH (21) = nnnn DBB aaaa

1. “Decrease the contents of the B register by nnnn.
If field underflow does not occur, transfer control
to location aaaa; take the next instruction from
aaaa.” If field underflow occurs, control continues
in sequence.

2. If the sign digit is odd, automatic B register address
modification occurs.

3. For examples of instruction, refer to Table 8-1.

INCREASE B, BRANCH (20) = nnnn IBB aaaa

1. “Increase the contents of the B register by nnnn. If
overflow does not occur, transfer control to location
aaaa; take the next instruction from aaaa.” If over-
flow occurs, control continues in sequence.

2. Overflow in the B register does NOT turn on the
overflow indicator.

3. If the sign digit is odd, automatic B register address
modification occurs.

4. Refer to Table 8-1 for examples of instruction.

8-3

Using the B Register

Example 1

B Register Address Modification

STORAGE

y yey Wy Vdd
0000/10)1000

Information Buffer
Register

B Register

Example 2

No B Register Address Modification

STORAGE

Vidi Li Lid

Vv

Vv

0;0000 1.0.0.0

Information Buffer
Register

B Register

Example 3
B Register Address Modification
With A “Carry One’ Condition

STORAGE

| HLL Lt Wy

Vv

Adder

 re

1}o000}7 0/1000)
D Register

0:0,.0:0:11,0:)1.3.55

C Register

Vv

110000 G 625.5

Information Buffer
Register

Adder

—> of oooolioliooo}

 Y0:0'0'071'1-071'1'0°0°0

C Register

 0235555

B Register

Adder

vtpoooolroloess)
D Register

 0000;10}0010

C Register

Figure 8-1. Examples of B Register Address Modification

There is often a need to modify several instructions in a

loop each time the loop is executed. Since the B register
can be counted up or down, tallying a loop may take place
while the addresses of instructions within the loop are
altered by the addition of the contents of the B register.

Thus a different B register setting modifies the instruc-
tions each time through the loop until an exit condition
(as the result of overflow or field underflow) takes place.

B REGISTER INSTRUCTIONS

LOAD B (42) = 0000 LDB aaaa

1. “Replace the contents of the B register by the four
low-order digits of the word in location aaaa.”

2. The four low-order digits of the word in location
aaaa are usually stored as a constant to be used

specifically for the B register. However, if the ad-

dress portion of an instruction is not used for ad-

dressing purposes, it may be utilized (e.g., ROUND,
HALT, CLEAR A, etc.).

3. If the sign digit is odd, automatic B register address
modification occurs.

Examples:

Contents of B register before execution of LDB: 5555

Contents of Contents of B Register
Location aaaa Instruction After Execution of LDB

0 0000 00 0250 0 0000 LDB aaaa 0250

0 0086 43 6000 0 0000 LDB aaaa 6000

1 4323 03 3002 0 0000 LDB aaaa 3002

LOAD B COMPLEMENT (42) -£ 0001 LBC aaaa

1. “Replace the contents of the B register by the tens
complement of the number that is stored in the four
low-order digit positions of the word in location

”aaaa.

2. To obtain the tens complement of a number for use

in the B register, four digits are subtracted from
10,000. The execution of this instruction causes the
four low-order digits of the word in location aaaa to
be automatically subtracted from 10,000. For example:

Contents of
Contents of Complement B Register After

Location aaaa Operation Execution of LBC

0 0000 00 2310 10,000 — 2310 = 7690

0 0000 16 0004 10,000 — 0004 = 9996

0 9510 10 0000 10,000 — 0000 = 0000

0 0000 00 9982 10,000 — 9982 = 0018

0 0000 00 0150 10,000 — 0150 = 9850

3. The four low-order digits of the word in location
aaaa are usually stored as a constant to be used

specifically for the loading of the B register. How-
ever, if the address portion of an instruction is not
used for addressing purposes, it may be utilized.

4. If the sign digit is odd, automatic B register address
modification occurs.

Sometimes the coder may wish to use the B register to
count up instead of down. This may be necessary to ref-

Using the B Register

erence locations in ascending order. Loading the B regis-
ter with the number of iterations to be made and increas-
ing B each time through the loop may not suffice because

after the last iteration has been completed, the contents
of B may not reach 9999 to produce an overflow condi-
tion when increased once more. Therefore the transfer of
control would not occur. It is in such cases that the LOAD
B COMPLEMENT instruction is useful.

Take, for example, a program in which it is necessary to
add a specified quantity to each of the 54 numbers stored
in locations 0500 through 0553, in that order. The B reg-

ister may be used to tally for a loop exit. The coder can

load the B register with the tens complement of 54 (the
number of locations affected), or 9946. He will then write
his first CLEAR ADD instruction with an address of
0554, representing the address of the first location plus
the number of locations. This instruction would have a 1

in the sign-digit position so that its address portion would
be B modified.

The first time through the loop, the contents of the B reg-

ister are added to the address portion of the instruction,
producing a five-digit number (0554 + 9946 = 10500).
The leftmost 1 is deleted by the computer so that the
instruction brought to the C register is CLEAR ADD
0500.

After the execution of the CLEAR ADD instruction, the
B register is increased by 1 by an INCREASE B,

BRANCH instruction. Thus, the second time through the

loop, the modified instruction will be CLEAR ADD 0501
(0554 + 9947 = 10501). The contents of the next-to-
last location (0553) will be brought to the A register
when the B register contains 9999 (0554 + 9999 =
10553). The last INCREASE B, BRANCH instruction,
when the register contains 9999, will take the register to
zero causing an overflow in the B register and therefore
an exit from the loop.

DECREASE B, BRANCH (21) = nnnn DBB aaaa

1. “Decrease the contents of the B register by nnnn.
If field underflow does not occur, transfer control
to location aaaa; take the next instruction from
aaaa.” If field underflow occurs, control continues
in sequence.

2. If the sign digit is odd, automatic B register address
modification occurs.

3. For examples of instruction, refer to Table 8-1.

INCREASE B, BRANCH (20) = nnnn IBB aaaa

1. “Increase the contents of the B register by nnnn. If
overflow does not occur, transfer control to location
aaaa; take the next instruction from aaaa.” If over-
flow occurs, control continues in sequence.

2. Overflow in the B register does NOT turn on the
overflow indicator.

3. If the sign digit is odd, automatic B register address
modification occurs.

4. Refer to Table 8-1 for examples of instruction.

8-3

Using the B Register

Table 8-1. Examples of Decrease B, Branch and Increase B, Branch Instructions

Using the B Register

Table 8-2. Examples of Decrease Field Location, Load B Instruction

Contents of B Register | Contents of B Register
Before Execution After Execution

Location Instruction of Instruction of Instruction Remarks

Decrease B, Branch

0412 0002 DBB 0396 0006 0004. No field underflow; transfer
control to location 0396.

0412 0005 DBB 0396 0002 9997 Field underflow occurred;
control continues in sequence.

0100 0001 DBB 0400 0001 0000 No field underflow; transfer
control to location 0400.

0100 0001 DBB 0400 0000 9999 Field underflow occurred;
control continues in sequence.

Increase B, Branch

0100 0001 IBB 0396 9984, 9985 No overflow; transfer control
to location 0396.

0100 0001 IBB 2330 9999 0000 Overflow occurred; control
continues in sequence.

0412 0005 IBB 0396 9997 0002 Overflow occurred; control
continues in sequence.

STORE B (40) = sLf2 STB aaaa

If the sign digit is odd, automatic B register address mod-
ification occurs.

If f = 1, partial-word operation will take place; s desig-
nates the rightmost digit of the partial-word field. L speci-
fies the number of digits in the partial-word field.

If f = 0, total-word operation will take place; sL not
relevant.

1. “Store the specified field of the B register in the

4. Execution of the STOREB instruction does not alter
the contents of the B register.

5. Any individual digit except the sign digit can be
treated as a separate field. The sign digit must be
referenced in conjunction with at least one adjoin-
ing digit.

Examples:

Contents of location aaaa before STB is executed: 0 3333 33 3333

Contents of

Contents of Contents of Contents of Contents of
Location aaaa B Register Location aaaa B Register

Before Execution | Before Execution | After Execution | After Execution Repeat

Instruction of Instruction of Instruction of Instruction of Instruction Indicator

0 0402 DLB aaaa 0 1223 49 0148 0010 0 1223 49 0146 0146 ON

0 8205 DLB aaaa 0 3946 25 2014 9999 0 3946 25 1514 1500 ON

0 3310 DLB aaaa 0 0050 40 2222 0150 0 9950 40 2222 9950 OFF

0 6650 DLB aaaa 0 1255 00 9753 0000 0 1254 50.9753 1254 ON

2. Note that this is the only case where the B register Examples:
can be loaded with the contents of any partial-word ge Macaw ‘A cal Be ees

field in a word—not just the four low-order digits.

3. If the sign-digit position of location aaaa is in-
cluded in the specified partial-word field, it does not
have sign significance; instead it has numeric sig-

nificance.

4. It is not necessary to follow this instruction immedi-
ately with a BRANCH REPEAT instruction. Several

other instructions may separate the two instructions,
since the repeat indicator, when turned on, remains
on until a field underflow condition occurs.

5. If the L digit of the instruction is less than 4, the

digits of the specified partial-word field replace the
high-order digits of the B register. If the L digit of
the instruction is greater than 4, the four high-order
digits of the partial-word field replace the entire
contents of the B register.

After Execution
of Instruction

0 0000 00 0000 0000

0 0000 00 0000 0000

Before Execution
of Instruction

1 1234 56 7890 8989

0 4000 00 0001 5050

CLEAR R AND B (45) + 0006 CRB 0000

1. “Replace every digit in the R and B registers by 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
occurs.

Examples:

Rand B Registers
Before Execution

of Instruction

1 1234 56 7890 8989

R and B Registers
After Execution
of Instruction

0 0000 00 0000 0000
| corresponding field of location aaaa.” Location aaaa

6. For examples of instruction, refer to Table 8-2.
The B register is treated as if it were 11 digits I ; Concent of After STB 0 3204 00 0000 6001 0 0000 00 0000 0000

long: nstruction B Register Is Executed

0 0002 STB aaaa 9810 0 0000 00 9810 CLEAR B (45) =+ 0004 CLB 0000 CLEAR A, R, AND B (45) = 0007 CLT 0000

woes aoe ae 0 4412 STB aaaa 9810 9 0000 33 3333 1. “Replace every digit in the B register by 0.” 1. “Replace every digit in the A, R, and B registers

pmnchid a oe foe = 2. If the sign digit of the instruction is odd, automatic yg Or1000 00 O O} BRegister

If any of the first six digit positions are refer-
enced by sL, 0’s will be stored in the correspond-
ing digit positions of the word in location aaaa.

2. Iff =0
The STORE B instruction replaces the four low-
order digits of the word in location aaaa by the
contents of the B register. The four high-order digits
of the word in location aaaa are replaced by zeros.

3. f= 1

The sL digits specify the partial-word field in the
B register which replaces the corresponding field of
the word in location aaaa. Those digits not included
in the field specified by sL are unaltered.

8-4

DECREASE FIELD LOCATION, LOAD B (28)
+ sLnn DLB aaaa

If the sign digit is odd, automatic B register address mod-
ification occurs.

s designates the rightmost digit of the partial-word field.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used to decrease the specified partial-word field.

1. “Decrease the specified partial-word field of location
aaaa by nn and load the B register with the modi-
fied partial-word field. If field underflow occurs,
turn off the repeat indicator. If field underflow does
not occur, turn on the repeat indicator.

B register modification of the four low-order digits
occurs.

Examples:

B Register
After Execution
of Instruction

B Register
Before Execution

of Instruction

0000 0000

0005 0000

8989 0000

CLEAR A AND B (45) -=+ 0005 CAB 0000

1. “Replace every digit in the A andB registers by 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
occurs.

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
occurs.

Examples:

A, R, and B Registers Before Execution
of Instruction

A R B

1 1234 56 7890 1 3214 67 1321 9914.

0 4321 98 1001 0 9786 33 4122 4003

A, R, and B Registers After Execution
of Instruction

A R B

0 0000 00 0000 0 0000 00 0000 0000

0 0000 00 0000 0 0000 00 0000 0000

8-5

Using the B Register

Table 8-1. Examples of Decrease B, Branch and Increase B, Branch Instructions

Using the B Register

Table 8-2. Examples of Decrease Field Location, Load B Instruction

Contents of B Register | Contents of B Register
Before Execution After Execution

Location Instruction of Instruction of Instruction Remarks

Decrease B, Branch

0412 0002 DBB 0396 0006 0004. No field underflow; transfer
control to location 0396.

0412 0005 DBB 0396 0002 9997 Field underflow occurred;
control continues in sequence.

0100 0001 DBB 0400 0001 0000 No field underflow; transfer
control to location 0400.

0100 0001 DBB 0400 0000 9999 Field underflow occurred;
control continues in sequence.

Increase B, Branch

0100 0001 IBB 0396 9984, 9985 No overflow; transfer control
to location 0396.

0100 0001 IBB 2330 9999 0000 Overflow occurred; control
continues in sequence.

0412 0005 IBB 0396 9997 0002 Overflow occurred; control
continues in sequence.

STORE B (40) = sLf2 STB aaaa

If the sign digit is odd, automatic B register address mod-
ification occurs.

If f = 1, partial-word operation will take place; s desig-
nates the rightmost digit of the partial-word field. L speci-
fies the number of digits in the partial-word field.

If f = 0, total-word operation will take place; sL not
relevant.

1. “Store the specified field of the B register in the

4. Execution of the STOREB instruction does not alter
the contents of the B register.

5. Any individual digit except the sign digit can be
treated as a separate field. The sign digit must be
referenced in conjunction with at least one adjoin-
ing digit.

Examples:

Contents of location aaaa before STB is executed: 0 3333 33 3333

Contents of

Contents of Contents of Contents of Contents of
Location aaaa B Register Location aaaa B Register

Before Execution | Before Execution | After Execution | After Execution Repeat

Instruction of Instruction of Instruction of Instruction of Instruction Indicator

0 0402 DLB aaaa 0 1223 49 0148 0010 0 1223 49 0146 0146 ON

0 8205 DLB aaaa 0 3946 25 2014 9999 0 3946 25 1514 1500 ON

0 3310 DLB aaaa 0 0050 40 2222 0150 0 9950 40 2222 9950 OFF

0 6650 DLB aaaa 0 1255 00 9753 0000 0 1254 50.9753 1254 ON

2. Note that this is the only case where the B register Examples:
can be loaded with the contents of any partial-word ge Macaw ‘A cal Be ees

field in a word—not just the four low-order digits.

3. If the sign-digit position of location aaaa is in-
cluded in the specified partial-word field, it does not
have sign significance; instead it has numeric sig-

nificance.

4. It is not necessary to follow this instruction immedi-
ately with a BRANCH REPEAT instruction. Several

other instructions may separate the two instructions,
since the repeat indicator, when turned on, remains
on until a field underflow condition occurs.

5. If the L digit of the instruction is less than 4, the

digits of the specified partial-word field replace the
high-order digits of the B register. If the L digit of
the instruction is greater than 4, the four high-order
digits of the partial-word field replace the entire
contents of the B register.

After Execution
of Instruction

0 0000 00 0000 0000

0 0000 00 0000 0000

Before Execution
of Instruction

1 1234 56 7890 8989

0 4000 00 0001 5050

CLEAR R AND B (45) + 0006 CRB 0000

1. “Replace every digit in the R and B registers by 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
occurs.

Examples:

Rand B Registers
Before Execution

of Instruction

1 1234 56 7890 8989

R and B Registers
After Execution
of Instruction

0 0000 00 0000 0000
| corresponding field of location aaaa.” Location aaaa

6. For examples of instruction, refer to Table 8-2.
The B register is treated as if it were 11 digits I ; Concent of After STB 0 3204 00 0000 6001 0 0000 00 0000 0000

long: nstruction B Register Is Executed

0 0002 STB aaaa 9810 0 0000 00 9810 CLEAR B (45) =+ 0004 CLB 0000 CLEAR A, R, AND B (45) = 0007 CLT 0000

woes aoe ae 0 4412 STB aaaa 9810 9 0000 33 3333 1. “Replace every digit in the B register by 0.” 1. “Replace every digit in the A, R, and B registers

pmnchid a oe foe = 2. If the sign digit of the instruction is odd, automatic yg Or1000 00 O O} BRegister

If any of the first six digit positions are refer-
enced by sL, 0’s will be stored in the correspond-
ing digit positions of the word in location aaaa.

2. Iff =0
The STORE B instruction replaces the four low-
order digits of the word in location aaaa by the
contents of the B register. The four high-order digits
of the word in location aaaa are replaced by zeros.

3. f= 1

The sL digits specify the partial-word field in the
B register which replaces the corresponding field of
the word in location aaaa. Those digits not included
in the field specified by sL are unaltered.

8-4

DECREASE FIELD LOCATION, LOAD B (28)
+ sLnn DLB aaaa

If the sign digit is odd, automatic B register address mod-
ification occurs.

s designates the rightmost digit of the partial-word field.

L specifies the number of adjacent digits in the partial-
word field.

nn: digits used to decrease the specified partial-word field.

1. “Decrease the specified partial-word field of location
aaaa by nn and load the B register with the modi-
fied partial-word field. If field underflow occurs,
turn off the repeat indicator. If field underflow does
not occur, turn on the repeat indicator.

B register modification of the four low-order digits
occurs.

Examples:

B Register
After Execution
of Instruction

B Register
Before Execution

of Instruction

0000 0000

0005 0000

8989 0000

CLEAR A AND B (45) -=+ 0005 CAB 0000

1. “Replace every digit in the A andB registers by 0.”

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
occurs.

2. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
occurs.

Examples:

A, R, and B Registers Before Execution
of Instruction

A R B

1 1234 56 7890 1 3214 67 1321 9914.

0 4321 98 1001 0 9786 33 4122 4003

A, R, and B Registers After Execution
of Instruction

A R B

0 0000 00 0000 0 0000 00 0000 0000

0 0000 00 0000 0 0000 00 0000 0000

8-5

Using the B Register
D Register

Lz} 108 }o3]0000 F—

Adder

Vv

Vv

C Register

B Register

11 0s}o3|3050 }

Figure 8-2. B Register Address Modification of Control Word

FLOATING IN A PROGRAM
A coder often wants to make use of standard, existing
routines to perform auxiliary functions. For example,

after running his main program on the computer, he may

need a routine to simplify checking for program errors or
to print or punch specified sections of the program and/or
data generated by it. Or he may want to use routines with
his program for evaluating standard mathematical func-
tions, such as square root or logarithms.

Since these routines are used only occasionally and with
programs of different sizes, it is desirable to be able to
read such a routine into any core storage locations not
being used by the main program. For example, if 4000

words of storage were available and locations 0000

through 2999 were used for the main program and con-

stants, the coder would have locations 3000 through 3999

available for storing and executing any auxiliary routine.
A routine designed to use any set of the available locations
is one that can be “floated in.” Such a program always

makes use of “relative addressing.”

Relative addressing consists of writing a routine on the

assumption that it may be stored in any group of storage

locations; the specific locations are assigned by means of
B register address modification as the routine is loaded.

Because specific storage locations will be assigned on in-
put, the coder can use any consecutive locations when he

writes the routine. However, for ease of referencing and

for uniformity, the coder will usually begin a relatively
coded routine as though it would start in location 0000.

The assignment of specific locations is made by use of
the B register for address modification on input. The use

of a 1 in the sign-digit position of a word to cause B reg-

ister address modification during the fetch phase, just
prior to execution of the instruction, has been described.
For B register address modification of an instruction dur-
ing input, other digits? are used in the sign-digit position.
These digits fall into two categories:

1. A sign digit which specifies B register address modi-
fication of a control word in which this digit appears.

2. A sign digit in an instruction which specifies B reg-
ister address modification of the instruction as it is
loaded.

FIRST CATEGORY

This digit which calls for B register address modification
of the word in which it appears performs the dual function
of notifying the computer to send the control word to the
C register for execution, first adding the contents of the
B register to the address portion. For the purpose of
floating in a program, the control words of interest are
the input instructions punched in paper tape or cards.
For example: A 7 in the sign-digit position of a PAPER
TAPE READ instruction notifies the computer to add the
contents of the B register to the address portion of the
instruction and send it to the C register; the words fol-
lowing the instruction on paper tape are loaded into core
storage beginning with the location specified by the modi-
fied address. See Fig. 8-2.

The ten-word routine (indicated by digit positions 2 and
3 in the D andC registers) would be loaded into locations
3050 through 3059. The 8 in the variation digit position
of the instruction notifies the computer that designated
input is to be B register address modified as it is read
into storage.

SECOND CATEGORY

In this case, the digits notify the computer to add the
contents of the B register to the address portion of the
instruction as it passes from the D register through the
adder on its way to storage. These digits also tell the
computer whether this instruction should be stored with
a 0 or a l in the sign digit position. For example: if
previously specified by an 8 or a 9 in the variation-digit
position of the PAPER TAPE READ instruction, an 8
or a 9 in the sign-digit position of a word being loaded
from paper tape notifies the computer that the address
portion of the word is to be B modified as it goes into
storage. If an 8 is used, it is changed to a 0 before the

Although paper-tape instructions are used as examples in the discussion following, the digits described are the same for Cardatron instruc-&

tions.

8-6

D Register

810000 rofooo9}

Adder

B Register

3050

D Register

9}o000]10; 0009p
Adder

 Vv

Using the B Register

IB Register

0000/10,/3059

a aate
STORAGE

IB Register

Li foooo}io[3059)

 ash

B Register

CLITUL LU
STORAGE

Figure 8-3. B Register Address Modification of Instruction

word is stored; if a 9 is used, it is changed to a 1 before
the word is stored (Fig. 8-3).

SAMPLE PROBLEMS

Assume that the coder wants to use the first method
shown in Table 8-3 as an auxiliary routine; he would
like to read it into core storage beginning in location
1010. He would first set the B register to 1000. The pro-
gram would appear on paper tape as follows:

7 1069 PRD 0010

0 0003 CAR 0020

8 0001 LBC 0010

1 0000 ADD 0150

8 0001 IBB 0012

0 0000 STA 0150

0 0000 HLT 0000

The program in storage would appear as follows:

1010 0 0003 CAR 0020

1011 0 0001 LBC 1010

1012 1 0000 ADD 0150

1013 0 0001 IBB 1012

1014 0 0000 STA 0150

1015 0 0000 HLT 0000

Table 8-3. Sample Use of
Overflow and Underflow

Clear the A and R registers. Sum the 20 numbers stored
in locations 0130 through 0149. Store the result in loca-
tion 0150. Start the program in location 0010.

Instruction Remarks

First Method

0010 0 0003 CAR 0020 | Clear A and R registers.

0011 0 0000 LBC 0010 | 9980 —>rb.
0012 1 0000 ADD 0150 | Sum the 20 numbers.
0013 0 0001 IBB 0012 | If no overflow in B register

return for next iteration.
0014 0 0000 STA 0150 | If overflow, store sum.

0015 0 0000 HLT 0000 | Halt operation.

Second Method

0010 0 0003 CAR 0019 | Clear A and R registers.
0011 0 0000 LDB 0010 | 0019 —+rb.
0012 1 0000 ADD 0130 | Sum the 20 numbers.
0013 0 0001 DBB 0012 If no field underflow in B

register, return for next
iteration.

0014 0 0000 STA 0150 | If field underflow, store
sum.

0015 0 0000 HLT 0000 | Halt operation.

8-7

Using the B Register
D Register

Lz} 108 }o3]0000 F—

Adder

Vv

Vv

C Register

B Register

11 0s}o3|3050 }

Figure 8-2. B Register Address Modification of Control Word

FLOATING IN A PROGRAM
A coder often wants to make use of standard, existing
routines to perform auxiliary functions. For example,

after running his main program on the computer, he may

need a routine to simplify checking for program errors or
to print or punch specified sections of the program and/or
data generated by it. Or he may want to use routines with
his program for evaluating standard mathematical func-
tions, such as square root or logarithms.

Since these routines are used only occasionally and with
programs of different sizes, it is desirable to be able to
read such a routine into any core storage locations not
being used by the main program. For example, if 4000

words of storage were available and locations 0000

through 2999 were used for the main program and con-

stants, the coder would have locations 3000 through 3999

available for storing and executing any auxiliary routine.
A routine designed to use any set of the available locations
is one that can be “floated in.” Such a program always

makes use of “relative addressing.”

Relative addressing consists of writing a routine on the

assumption that it may be stored in any group of storage

locations; the specific locations are assigned by means of
B register address modification as the routine is loaded.

Because specific storage locations will be assigned on in-
put, the coder can use any consecutive locations when he

writes the routine. However, for ease of referencing and

for uniformity, the coder will usually begin a relatively
coded routine as though it would start in location 0000.

The assignment of specific locations is made by use of
the B register for address modification on input. The use

of a 1 in the sign-digit position of a word to cause B reg-

ister address modification during the fetch phase, just
prior to execution of the instruction, has been described.
For B register address modification of an instruction dur-
ing input, other digits? are used in the sign-digit position.
These digits fall into two categories:

1. A sign digit which specifies B register address modi-
fication of a control word in which this digit appears.

2. A sign digit in an instruction which specifies B reg-
ister address modification of the instruction as it is
loaded.

FIRST CATEGORY

This digit which calls for B register address modification
of the word in which it appears performs the dual function
of notifying the computer to send the control word to the
C register for execution, first adding the contents of the
B register to the address portion. For the purpose of
floating in a program, the control words of interest are
the input instructions punched in paper tape or cards.
For example: A 7 in the sign-digit position of a PAPER
TAPE READ instruction notifies the computer to add the
contents of the B register to the address portion of the
instruction and send it to the C register; the words fol-
lowing the instruction on paper tape are loaded into core
storage beginning with the location specified by the modi-
fied address. See Fig. 8-2.

The ten-word routine (indicated by digit positions 2 and
3 in the D andC registers) would be loaded into locations
3050 through 3059. The 8 in the variation digit position
of the instruction notifies the computer that designated
input is to be B register address modified as it is read
into storage.

SECOND CATEGORY

In this case, the digits notify the computer to add the
contents of the B register to the address portion of the
instruction as it passes from the D register through the
adder on its way to storage. These digits also tell the
computer whether this instruction should be stored with
a 0 or a l in the sign digit position. For example: if
previously specified by an 8 or a 9 in the variation-digit
position of the PAPER TAPE READ instruction, an 8
or a 9 in the sign-digit position of a word being loaded
from paper tape notifies the computer that the address
portion of the word is to be B modified as it goes into
storage. If an 8 is used, it is changed to a 0 before the

Although paper-tape instructions are used as examples in the discussion following, the digits described are the same for Cardatron instruc-&

tions.

8-6

D Register

810000 rofooo9}

Adder

B Register

3050

D Register

9}o000]10; 0009p
Adder

 Vv

Using the B Register

IB Register

0000/10,/3059

a aate
STORAGE

IB Register

Li foooo}io[3059)

 ash

B Register

CLITUL LU
STORAGE

Figure 8-3. B Register Address Modification of Instruction

word is stored; if a 9 is used, it is changed to a 1 before
the word is stored (Fig. 8-3).

SAMPLE PROBLEMS

Assume that the coder wants to use the first method
shown in Table 8-3 as an auxiliary routine; he would
like to read it into core storage beginning in location
1010. He would first set the B register to 1000. The pro-
gram would appear on paper tape as follows:

7 1069 PRD 0010

0 0003 CAR 0020

8 0001 LBC 0010

1 0000 ADD 0150

8 0001 IBB 0012

0 0000 STA 0150

0 0000 HLT 0000

The program in storage would appear as follows:

1010 0 0003 CAR 0020

1011 0 0001 LBC 1010

1012 1 0000 ADD 0150

1013 0 0001 IBB 1012

1014 0 0000 STA 0150

1015 0 0000 HLT 0000

Table 8-3. Sample Use of
Overflow and Underflow

Clear the A and R registers. Sum the 20 numbers stored
in locations 0130 through 0149. Store the result in loca-
tion 0150. Start the program in location 0010.

Instruction Remarks

First Method

0010 0 0003 CAR 0020 | Clear A and R registers.

0011 0 0000 LBC 0010 | 9980 —>rb.
0012 1 0000 ADD 0150 | Sum the 20 numbers.
0013 0 0001 IBB 0012 | If no overflow in B register

return for next iteration.
0014 0 0000 STA 0150 | If overflow, store sum.

0015 0 0000 HLT 0000 | Halt operation.

Second Method

0010 0 0003 CAR 0019 | Clear A and R registers.
0011 0 0000 LDB 0010 | 0019 —+rb.
0012 1 0000 ADD 0130 | Sum the 20 numbers.
0013 0 0001 DBB 0012 If no field underflow in B

register, return for next
iteration.

0014 0 0000 STA 0150 | If field underflow, store
sum.

0015 0 0000 HLT 0000 | Halt operation.

8-7

TRANSFERRING INFORMATION WITHIN
CORE STORAGE

The transfer of information between core storage and
input-output media was discussed in Chapter 3. Now let
us consider the transfer of information from one part of
storage to another part of storage.

A storage-to-storage transfer consists of relocating the
contents of a specified number of consecutive core stor-
age locations. The information is transferred to the same
number of consecutive core storage locations at another
place in storage. Storage-to-storage transfers are useful
in any type of multiple-word record or data rearrange-
ments.

With the CLEAR ADD and STORE A instructions, a

single word can be brought into the A register, then
stored in a different location. The LOAD R and STORE
R instructions could also be used for this purpose. How-
ever, using this method for storage-to-storage transfers of
large volumes of information would be a slow and tedious
process.

This method could be simplified by using address modi-
fication within a loop, but it would be even slower. For
example, by means of an address-modified CLEAR ADD
instruction followed by an address-modified STORE A
instruction, the contents of consecutive storage locations
can be brought into the A register one by one and stored
in turn in consecutive locations elsewhere in storage.

The address portions of the CLEAR ADD and STORE A
instructions may be modified either by an arithmetic oper-
ation or by the B register, depending on the particular
program or the preference of the coder. In either case,
the operation would be set up in a loop, thus requiring
some tallying and testing arrangement by which program
control would exit from the loop after the contents of the
specified number of locations had been relocated.

For example: transfer the contents of locations 2000
through 2010 to locations 2040 through 2050. Use the
B register for address modification. Start the program in
location 1000. Halt the operation after the transfer.

Remarks

0010 —>rB.

Contents of 2000-2010
are transferred to
2040-2050.

Location Instruction

1000 0 0000 LDB 1004

1001 1 0000 CAD 2000

1002 1 0000 STA 2040

Further Coding Techniques

Instruction Remarks

1003 0 0001 DBB 1001

Location

Repeat loop until over-
flow occurs.

1004 0 0000 HLT 0010 Halt operation.

The Burroughs 220 provides a much more convenient
means—a special instruction—for large and rapid stor-
age-to-storage transfers. By using this single instruction,
RECORD TRANSFER, the contents of up to 100 consecu-
tive storage locations can be relocated. The words are
transferred one at a time from the initial locations to the
specified new locations. Since RECORD TRANSFER re-
quires that the address of the first location to which the
information is to be transferred be specified in the B reg-
ister, RECORD TRANSFER must be preceded by an in-
struction for loading the B register, unless it had been
previously set to the desired value.

For example: transfer the contents of locations 2000
through 2010 to locations 2040 through 2050. Use the
RECORD TRANSFER instruction. Start the program in
location 1000. Halt the operation after the transfer.

Remarks

2040—>rB.
Transfer information.

Instruction

1000 0 0000 LDB 1002

1001 0 0110 RTF 2000

1002 0 0000 HLT 2040

Location

Halt operation.

This program does the following:

r 2000 —> 2040
2001 —> 2041
2002 —> 2042
2003—> 2043
2004—> 2044.

2005 —> 2045
2006 —> 2046
2007 —> 2047
2008—> 2048
2009 —> 2049

\ 2010—> 2050

Contents of <

RECORD TRANSFER (29) + 0 nn O RTF aaaa

If the sign digit is odd, automatic B register address
modification occurs.

0, not relevant to the execution of this instruction.

nn: number of words to be relocated.

0, not relevant to the execution of this instruction.

9-1

Further Coding Techniques

1. “Relocate the contents of nn consecutive storage
locations, beginning with location aaaa.”

2. The specified words are transferred one at a time to
the nn consecutive storage locations beginning with
the location whose address is in the B register.

3. If nn = 00, 100 consecutive words will be trans-
ferred; if nn = 01, one word will be transferred.

4. After the execution of a RECORD TRANSFER in-
struction:

a. The B register will contain the address of the
last location filled plus 1, that is, the address of the
next location to be filled.

b. The address part of the instruction in the C regis-
ter will be equal to the address of the last location
from which a word was transferred plus 1, that is,
the address of the next location from which a word
will be transferred.

SUBROUTINES

When writing a large program, the coder often finds that
a certain group or sequence of instructions must be re-
peated several times at different points in the program.
This group of instructions will perform a single well-
defined function. For example, there may be many points
in the program where a group of numbers must be sorted,
the square root of a number found, or a FICA tax deter-
mined. It is usually not practical to write the necessary
instructions in the main program every time the operation
is needed. Instead, the required sequence of instructions
may be written once—as a subprogram to the main pro-
gram. Then control may be transferred to the subpro-
gram, or subroutine, each time it is needed. The desired
standard sequence of operations is performed and control
returned to the main program.

Typical programs may use dozens of subroutines. In fact,
some subroutines are used so frequently that they have
been written as separate programs, i.e., coded indepen-
dently from any specific main program. Such subroutines
can be filed in a reference library.

Since subroutines are generally not placed in the body of
the program, but are stored separately from the main
program and entered by a transfer-control instruction,
there must be an instruction in the subroutine to transfer
control back to the main program. Such an exit instruc-
tion from a subroutine must transfer to different locations
at different times. Thus, the exit instruction cannot be a
fixed instruction in the subroutine; instead it must be
altered depending on the circumstances of the exit.

This process of transferring control between the main
program and a subroutine is referred to as linkage, or
linking the subroutine to the program.

Most frequently, control must be transferred from a sub-
routine back to the point in the program at which the
normal program sequence was interrupted. The following

9-2

instruction is very useful in this type of program-sub-
routine linkage:

STORE P (44) + 0000 STP aaaa

1. “Replace the address portion of location aaaa by
the contents of the P ‘register, increased by one.”

2. Normally, the P register contains the address of the
location from which the next instruction will be
taken (i.e., the contents of P is 1 greater than the
address of the instruction being executed). For
example:

Location Instruction Contents of P Register

1000 0 0000 CAD 2000 1001

2025 0 0000 STA 0100 2026

4073. 0 0000 SUB 0335 4074.

3. When a STOREP instruction is executed, the con-
tents of the P register plus 1, or the address of the
location two addresses beyond that of the STORE P
instruction, is stored. The STORE P instruction
rarely stands by itself; it is usually followed by an
instruction that transfers control to a subroutine.
Because STOREP is followed by a transfer control
instruction, the re-entry point into the main program
is two addresses beyond the STORE P address. For
example:

Location Instruction Remarks

1000 0 0000 STP 0200 Location 0200 =
0000 00 1002.

Transfer to sub-
routine begin-
ing in location
3000.

Re-entry point
into main
routine.

1001 0 0000 BUN 3000

1002. ~=0 0000 CAD 3500

4, Although the address stored is two addresses be-
yond the location of the STORE P instruction, the
contents of the P register remain 1 greater than the
address of the instruction being executed. For ex-
ample:

Contents of Address Stored by
Location Instruction P Register Store P Instruction

1000 0 0000 STP 2000 1001 1002

2025 0 0000 STP 0100 2026 2027

4073 0 0000 STP 0335 4074 4075

A way to set up a subroutine exit is to store the contents
of the P register in the address portion of the word in the
first location of the subroutine. This location will have a

30 already stored in its fifth and sixth digit positions
(0 0000 30 0000). When the contents of the P register
are thus stored, the contents of the location become an
instruction (BUN) that transfers control to the re-entry
location of the main program.

Example:

Location

0500

0501

0502

0503

0504,

2000

2001

2025

Further Coding Techniques

Check Set program

code Commercial? \,vES switch if Perform 0)ak not already computations.

NO

Restore program
switch to original |_|

setting unless
already set.

OQ _ Fesientia [gate
Billing Ne account.

ESS

Gyaa Commercial
Billing

Figure 9-1. Utility Billing Flow Chart

PROGRAM SWITCHES
Instruction Remarks A program switch, as discussed in this chapter, is an

0 0000 ADD 1000

0 0000 STA 1500

0 0000 STP 2000

0 0000 BUN 2001

0 0000 CAD 1001

0 0000 30 (0000)

0 0000 CAD 0550

0 0000 30 2000

Part of main program.

Store P -— 1 in first
location of sub-
routine.

Transfer control to
subroutine.

Re-entry point into
main program.

Main program.

Instruction for re-entry
to main program.

Becomes
0 0000 30 0504.

when STP instruc-
tion executed.

First instruction of
subroutine.

Subroutine.

Last step of subrou-
tine. Transfer con-
trol to re-entry
instruction.

instruction within the program that can be altered by
the program to cause the computer to take one of several
alternate courses of action.
Assume that as the result of a test within the computer,
a decision is made as to a future course of action. At
this time, the instruction being used for a switch would
be altered by the program so that when this instruction
is reached it will cause control to be transferred to the
desired location. If in the course of the program this in-
struction is altered, the program switch is said to be set.
To illustrate this concept, take the following example.
Consider the customer accounting problem of a public
utility, where accounts must be identified as either resi-
dential or commercial. Both types of accounts are proc-
essed in the same manner, but different billing routines
are used once the initial processing is completed. To
determine the type of account, an identification code must
be used. This code is a specific digit in the high-order
digit position of one word in the account record. For
example, a 1 may be used to designate a residential ac-
count and a 2 for a commercial account. When the
identification is made, a program switch is set (an instruc-
tion altered) so that when the computations for the
account have been completed, the proper billing routine is
carried out. The flow chart in Figure 9-1 and the follow-
ing coding illustrate this example.

This program was written assuming an account record is
stored beginning with location 2000.

9-3

Further Coding Techniques

1. “Relocate the contents of nn consecutive storage
locations, beginning with location aaaa.”

2. The specified words are transferred one at a time to
the nn consecutive storage locations beginning with
the location whose address is in the B register.

3. If nn = 00, 100 consecutive words will be trans-
ferred; if nn = 01, one word will be transferred.

4. After the execution of a RECORD TRANSFER in-
struction:

a. The B register will contain the address of the
last location filled plus 1, that is, the address of the
next location to be filled.

b. The address part of the instruction in the C regis-
ter will be equal to the address of the last location
from which a word was transferred plus 1, that is,
the address of the next location from which a word
will be transferred.

SUBROUTINES

When writing a large program, the coder often finds that
a certain group or sequence of instructions must be re-
peated several times at different points in the program.
This group of instructions will perform a single well-
defined function. For example, there may be many points
in the program where a group of numbers must be sorted,
the square root of a number found, or a FICA tax deter-
mined. It is usually not practical to write the necessary
instructions in the main program every time the operation
is needed. Instead, the required sequence of instructions
may be written once—as a subprogram to the main pro-
gram. Then control may be transferred to the subpro-
gram, or subroutine, each time it is needed. The desired
standard sequence of operations is performed and control
returned to the main program.

Typical programs may use dozens of subroutines. In fact,
some subroutines are used so frequently that they have
been written as separate programs, i.e., coded indepen-
dently from any specific main program. Such subroutines
can be filed in a reference library.

Since subroutines are generally not placed in the body of
the program, but are stored separately from the main
program and entered by a transfer-control instruction,
there must be an instruction in the subroutine to transfer
control back to the main program. Such an exit instruc-
tion from a subroutine must transfer to different locations
at different times. Thus, the exit instruction cannot be a
fixed instruction in the subroutine; instead it must be
altered depending on the circumstances of the exit.

This process of transferring control between the main
program and a subroutine is referred to as linkage, or
linking the subroutine to the program.

Most frequently, control must be transferred from a sub-
routine back to the point in the program at which the
normal program sequence was interrupted. The following

9-2

instruction is very useful in this type of program-sub-
routine linkage:

STORE P (44) + 0000 STP aaaa

1. “Replace the address portion of location aaaa by
the contents of the P ‘register, increased by one.”

2. Normally, the P register contains the address of the
location from which the next instruction will be
taken (i.e., the contents of P is 1 greater than the
address of the instruction being executed). For
example:

Location Instruction Contents of P Register

1000 0 0000 CAD 2000 1001

2025 0 0000 STA 0100 2026

4073. 0 0000 SUB 0335 4074.

3. When a STOREP instruction is executed, the con-
tents of the P register plus 1, or the address of the
location two addresses beyond that of the STORE P
instruction, is stored. The STORE P instruction
rarely stands by itself; it is usually followed by an
instruction that transfers control to a subroutine.
Because STOREP is followed by a transfer control
instruction, the re-entry point into the main program
is two addresses beyond the STORE P address. For
example:

Location Instruction Remarks

1000 0 0000 STP 0200 Location 0200 =
0000 00 1002.

Transfer to sub-
routine begin-
ing in location
3000.

Re-entry point
into main
routine.

1001 0 0000 BUN 3000

1002. ~=0 0000 CAD 3500

4, Although the address stored is two addresses be-
yond the location of the STORE P instruction, the
contents of the P register remain 1 greater than the
address of the instruction being executed. For ex-
ample:

Contents of Address Stored by
Location Instruction P Register Store P Instruction

1000 0 0000 STP 2000 1001 1002

2025 0 0000 STP 0100 2026 2027

4073 0 0000 STP 0335 4074 4075

A way to set up a subroutine exit is to store the contents
of the P register in the address portion of the word in the
first location of the subroutine. This location will have a

30 already stored in its fifth and sixth digit positions
(0 0000 30 0000). When the contents of the P register
are thus stored, the contents of the location become an
instruction (BUN) that transfers control to the re-entry
location of the main program.

Example:

Location

0500

0501

0502

0503

0504,

2000

2001

2025

Further Coding Techniques

Check Set program

code Commercial? \,vES switch if Perform 0)ak not already computations.

NO

Restore program
switch to original |_|

setting unless
already set.

OQ _ Fesientia [gate
Billing Ne account.

ESS

Gyaa Commercial
Billing

Figure 9-1. Utility Billing Flow Chart

PROGRAM SWITCHES
Instruction Remarks A program switch, as discussed in this chapter, is an

0 0000 ADD 1000

0 0000 STA 1500

0 0000 STP 2000

0 0000 BUN 2001

0 0000 CAD 1001

0 0000 30 (0000)

0 0000 CAD 0550

0 0000 30 2000

Part of main program.

Store P -— 1 in first
location of sub-
routine.

Transfer control to
subroutine.

Re-entry point into
main program.

Main program.

Instruction for re-entry
to main program.

Becomes
0 0000 30 0504.

when STP instruc-
tion executed.

First instruction of
subroutine.

Subroutine.

Last step of subrou-
tine. Transfer con-
trol to re-entry
instruction.

instruction within the program that can be altered by
the program to cause the computer to take one of several
alternate courses of action.
Assume that as the result of a test within the computer,
a decision is made as to a future course of action. At
this time, the instruction being used for a switch would
be altered by the program so that when this instruction
is reached it will cause control to be transferred to the
desired location. If in the course of the program this in-
struction is altered, the program switch is said to be set.
To illustrate this concept, take the following example.
Consider the customer accounting problem of a public
utility, where accounts must be identified as either resi-
dential or commercial. Both types of accounts are proc-
essed in the same manner, but different billing routines
are used once the initial processing is completed. To
determine the type of account, an identification code must
be used. This code is a specific digit in the high-order
digit position of one word in the account record. For
example, a 1 may be used to designate a residential ac-
count and a 2 for a commercial account. When the
identification is made, a program switch is set (an instruc-
tion altered) so that when the computations for the
account have been completed, the proper billing routine is
carried out. The flow chart in Figure 9-1 and the follow-
ing coding illustrate this example.

This program was written assuming an account record is
stored beginning with location 2000.

9-3

Further Coding Techniques

Instruction Remarks

1000 0 0000 CAD 2000

Location

Identification word
—>rA.

1001 O 1101 BFA 1006
fer control if the
high-order digit is a

1 (residential).

1002. 0 0000 CAD 1044,

1003 0 0265 BFA 1009 — Switch set; transfer
control.

1004 0 6220 IFL 1044 Switch not set; set
switch.

1005 0 0000 BUN 1009

1006 0 0000 CAD 1044

1007 0 0245 BFA 1009

Transfer control.
Program switch —>rA.
Switch at original set-

ting; transfer control.

1008 0 6220 DFL 1044. Switch not at original
setting; restore
switch.

1009 0 0000 CAD 2000

Perform computations.

1044 0 0000 BUN (1065)
1045 0 0000 MUL 2040

Program switch.

Billing routine for
commercial account.

1064 0 0000 BUN 1084 Transfer control to
address modification
routine.

Check code digit; trans-

Program switch —>rA.

Location Instruction Remarks
1065 0 0000 MUL 2050

Billing routine for
residential account.

1084 0 0000 CAD 1000 Address modification
routine to prepare
program for next

rer eee iteration.
1094. 0 0000 BUN 1000 Transfer control to

read in next account.

The NO OPERATION (NOP) instruction is frequently
used as a program switch. The execution of this instruc-
tion results in no action at all, as the operation code and
specified address are ignored by the computer. However,
it becomes a program switch by alteration of the opera-
tion code and sometimes the address.

NO OPERATION (01) = 0000 NOP 0000

1. “Perform no operation.”
2. At the time the operation code is sensed in the exe-

cute phase, the execution of the instruction is com-
plete. The computer proceeds to fetch the next in-
struction.

3. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

If used as a program switch, the NO OPERATION in-
struction is often modified to become a branch uncondi-
tionally instruction. In such a situation, the coder stores
a NOP instruction with an address that will be used when
the operation code is changed from 01 (NOP) to 30
(BUN).

 Focese

GENERAL

Chapter 5 discussed the problem of decimal scaling of
numbers to be entered into the computer and manipulated
by it. The process is time-consuming and painstaking
work when many numbers ef widely varying values are
involved.

Thus it would seem desirable to have some way of auto-
matically indicating to the computer the location of the
decimal point of a number in storage. Why not take ad-
vantage of the manipulating facility provided by a variant
of scientific notation? This consists of writing a number
as a value between 0.1 and 1.0 times a power of ten. To
illustrate:

4332.8019 is written 0.43328019 X 10*

.00043328019 is written 0.43328019 xX 10-°
12.3456789 is written 0.123456789 X 10°

12345678 is written 0.12345678 X 108

With scientific notation as a basis, there is a way of
automatically indicating to the computer the location of
the decimal point of a number in storage, and instructing
the computer to take account of the placement of this
decimal point in all arithmetic operations. Such a system
is said to operate in floating-point arithmetic as distin-
guished from fixed-point arithmetic.

There are two methods of handling floating-point opera-
tions: this facility may be designed into the circuitry of
the computer or special subroutines may be devised. The
Burroughs 220 has the automatic floating-point feature
built in.

In floating-point operation, the power of ten, called the
exponent, of a number in scientific notation is stored with
an eight-digit number, called the mantissa. This combina-
tion of exponent and so-called mantissa forms a “float-
ing-point number.” Although other arrangements are used
in some other computers, in the Burroughs 220 the coded
exponent of a floating-point number is stored in the two
most significant (high-order) digit positions of a word
and the mantissa is stored in the eight least significant
(low-order) digit positions of the same word. The sign
of the word is the sign of the mantissa.

MANTISSA

In general, the mantissa of a number in standard float-
ing-point form must be normalized—that is, the most
significant digit must be a digit other than zero. The
one exception to this is the number zero_ itself,

Floating Point

=+- 00 0000 0000. All floating-point operations automat-
ically leave the mantissa of the result in a normalized
form, that is, within the range .10000000 to .99999999.
(The decimal point of the mantissa is assumed to precede
the first digit. For example, consider the number
12345678: its so-called mantissa would be .12345678. The
complete number would be .12345678 X 108 in scientific
notation.)

EXPONENT

The two-digit coded exponent of a floating-point number
is formed by adding 50 to the exponent of the number in
scientific notation. Thus a number in floating-point form
will be within the range of 10**® to 10-°! with the coded
exponent ranging from 00 to 99. For example:

Floating-Point
Representation

+49 9324 5660

+55 8306 7459

Scientific
Notation

+.932456601 x 107

+.8306745911 xX 10°

Number

+ .0932456601

+ 83067.45911

+ .00004832101 + .4832101 x. 107% +46 4832 1010

— 600003298 —.600003298 x 10° —50 6000 0330

— 123456789 —.123456789 x 10° —59 1234 5679

— .0000000000091 =—91 X 10: —39 9100 0000

+ 0000000000 + 0000000000 +00 0000 0000

Note that as the result of a floating-point arithmetic oper-
ation, overflow can occur. In addition and subtraction,
arithmetic overflow occurs when the operation causes
overflow from the high-order digit of the mantissa into
a 99 exponent, thus creating an exponent greater than 99.
In multiplication and division, exponent overflow occurs
when an exponent greater than 99 is generated by the
operation (during normalization of the result). In both
cases, the overflow indicator is turned on.

If an exponent less than 00 should be generated by an
arithmetic operation, exponent underflow will occur and
the arithmetic registers (A and R) will be cleared.

FLOATING-POINT INSTRUCTIONS

The Burroughs 220 provides the following instructions to
handle floating-point arithmetic operations.

FLOATING ADD (22) =+ 0000 FAD aaaa

1. “Add the contents of location aaaa to the contents
of the A register.”

2. Both the contents of the A register and the contents
of location aaaa are treated like floating-point
numbers.

3. The sum is in the A register in floating-point form

10-1

Further Coding Techniques

Instruction Remarks

1000 0 0000 CAD 2000

Location

Identification word
—>rA.

1001 O 1101 BFA 1006
fer control if the
high-order digit is a

1 (residential).

1002. 0 0000 CAD 1044,

1003 0 0265 BFA 1009 — Switch set; transfer
control.

1004 0 6220 IFL 1044 Switch not set; set
switch.

1005 0 0000 BUN 1009

1006 0 0000 CAD 1044

1007 0 0245 BFA 1009

Transfer control.
Program switch —>rA.
Switch at original set-

ting; transfer control.

1008 0 6220 DFL 1044. Switch not at original
setting; restore
switch.

1009 0 0000 CAD 2000

Perform computations.

1044 0 0000 BUN (1065)
1045 0 0000 MUL 2040

Program switch.

Billing routine for
commercial account.

1064 0 0000 BUN 1084 Transfer control to
address modification
routine.

Check code digit; trans-

Program switch —>rA.

Location Instruction Remarks
1065 0 0000 MUL 2050

Billing routine for
residential account.

1084 0 0000 CAD 1000 Address modification
routine to prepare
program for next

rer eee iteration.
1094. 0 0000 BUN 1000 Transfer control to

read in next account.

The NO OPERATION (NOP) instruction is frequently
used as a program switch. The execution of this instruc-
tion results in no action at all, as the operation code and
specified address are ignored by the computer. However,
it becomes a program switch by alteration of the opera-
tion code and sometimes the address.

NO OPERATION (01) = 0000 NOP 0000

1. “Perform no operation.”
2. At the time the operation code is sensed in the exe-

cute phase, the execution of the instruction is com-
plete. The computer proceeds to fetch the next in-
struction.

3. If the sign digit of the instruction is odd, automatic
B register modification of the four low-order digits
of the instruction occurs.

If used as a program switch, the NO OPERATION in-
struction is often modified to become a branch uncondi-
tionally instruction. In such a situation, the coder stores
a NOP instruction with an address that will be used when
the operation code is changed from 01 (NOP) to 30
(BUN).

 Focese

GENERAL

Chapter 5 discussed the problem of decimal scaling of
numbers to be entered into the computer and manipulated
by it. The process is time-consuming and painstaking
work when many numbers ef widely varying values are
involved.

Thus it would seem desirable to have some way of auto-
matically indicating to the computer the location of the
decimal point of a number in storage. Why not take ad-
vantage of the manipulating facility provided by a variant
of scientific notation? This consists of writing a number
as a value between 0.1 and 1.0 times a power of ten. To
illustrate:

4332.8019 is written 0.43328019 X 10*

.00043328019 is written 0.43328019 xX 10-°
12.3456789 is written 0.123456789 X 10°

12345678 is written 0.12345678 X 108

With scientific notation as a basis, there is a way of
automatically indicating to the computer the location of
the decimal point of a number in storage, and instructing
the computer to take account of the placement of this
decimal point in all arithmetic operations. Such a system
is said to operate in floating-point arithmetic as distin-
guished from fixed-point arithmetic.

There are two methods of handling floating-point opera-
tions: this facility may be designed into the circuitry of
the computer or special subroutines may be devised. The
Burroughs 220 has the automatic floating-point feature
built in.

In floating-point operation, the power of ten, called the
exponent, of a number in scientific notation is stored with
an eight-digit number, called the mantissa. This combina-
tion of exponent and so-called mantissa forms a “float-
ing-point number.” Although other arrangements are used
in some other computers, in the Burroughs 220 the coded
exponent of a floating-point number is stored in the two
most significant (high-order) digit positions of a word
and the mantissa is stored in the eight least significant
(low-order) digit positions of the same word. The sign
of the word is the sign of the mantissa.

MANTISSA

In general, the mantissa of a number in standard float-
ing-point form must be normalized—that is, the most
significant digit must be a digit other than zero. The
one exception to this is the number zero_ itself,

Floating Point

=+- 00 0000 0000. All floating-point operations automat-
ically leave the mantissa of the result in a normalized
form, that is, within the range .10000000 to .99999999.
(The decimal point of the mantissa is assumed to precede
the first digit. For example, consider the number
12345678: its so-called mantissa would be .12345678. The
complete number would be .12345678 X 108 in scientific
notation.)

EXPONENT

The two-digit coded exponent of a floating-point number
is formed by adding 50 to the exponent of the number in
scientific notation. Thus a number in floating-point form
will be within the range of 10**® to 10-°! with the coded
exponent ranging from 00 to 99. For example:

Floating-Point
Representation

+49 9324 5660

+55 8306 7459

Scientific
Notation

+.932456601 x 107

+.8306745911 xX 10°

Number

+ .0932456601

+ 83067.45911

+ .00004832101 + .4832101 x. 107% +46 4832 1010

— 600003298 —.600003298 x 10° —50 6000 0330

— 123456789 —.123456789 x 10° —59 1234 5679

— .0000000000091 =—91 X 10: —39 9100 0000

+ 0000000000 + 0000000000 +00 0000 0000

Note that as the result of a floating-point arithmetic oper-
ation, overflow can occur. In addition and subtraction,
arithmetic overflow occurs when the operation causes
overflow from the high-order digit of the mantissa into
a 99 exponent, thus creating an exponent greater than 99.
In multiplication and division, exponent overflow occurs
when an exponent greater than 99 is generated by the
operation (during normalization of the result). In both
cases, the overflow indicator is turned on.

If an exponent less than 00 should be generated by an
arithmetic operation, exponent underflow will occur and
the arithmetic registers (A and R) will be cleared.

FLOATING-POINT INSTRUCTIONS

The Burroughs 220 provides the following instructions to
handle floating-point arithmetic operations.

FLOATING ADD (22) =+ 0000 FAD aaaa

1. “Add the contents of location aaaa to the contents
of the A register.”

2. Both the contents of the A register and the contents
of location aaaa are treated like floating-point
numbers.

3. The sum is in the A register in floating-point form

10-1

Floating Point

—the mantissa normalized and the exponent prop- Operand
Location Operation Address Remarkserly adjusted.

. If, as a result of the execution of this instruction:
a. The coded exponent would exceed 99, arithmetic
overflow occurs and the Overflow Indicator is
turned on.

b. The coded exponent would be smaller than 00,
exponent underflow occurs and the A and R regis-
ters are cleared; no other indication is given.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Operand

1001 FAA 3000 Add in floating-point arithmetic
the absolute value of the con-
tents of location 3000.

1002 STA 4000 Store the sum in location 4000.

Location Operation Address Remarks

Contents of
A Register

After Execution
of Instruction Contents of Sum in Overflow

in 1000 Location 3000 A Register Indicator
0 5086 00 0000 =0 5014 00 0000 ~=—0: 51 :1000 0000 OFF
0 9980 00 0000 ~=—1 9920 00 0000 = 0:01 +0000 0000 ON
0 6244 00 0000 1 6022 00 0000 0 62 4422 0000 OFF
0 4860 00 0009 ~=1 5020 00 0000 ~=—:0: 50-2060 0000 OFF
1 4030 00 0000 1 4120 00 0000 0 41 1700 0000 OFF

1000 CAD 2050 Clear the A register and load it
with the first number to be
added.

Add in floating-point arithmetic
the contents of location 3000.

1001 FAD 3000

1002 STA 4000 Store the sum in location 4000.

Contents of
A Register

After Execution
of Instruction Contents of Sum in Overflow

in 1000 Location 3000 A Register Indicator

0 5022 00 0000 =0 5044 00 0000 = 0:50 6600 0000 OFF
0 7090 00 0000 =0 5230 00 0000 = 0: 70-9000 0000 OFF
1 3081 00 0000 0 3081 00 0000 ~=1 00 0000 0000 OFF
0 9990 00 0000 =0 9910 00 0000 =:0:01 «+0000 0000 ON
0 5390 00 0000 0 5310 00 0000 ~=0 54 1000 0000 OFF
1 5120 00 0000 0 4920 00 0000 ~=—1:«51:1980 0000 OFF
1 9990 00 0000 ~=1 9920 00 0000 ~=— 1:01 ‘1000 0000 ON

FLOATING ADD ABSOLUTE (22)
+ 0001 FAA aaaa

1. “Add the absolute value of the contents of location
aaaa to the contents of the A register.”

2. Both the contents of the A register and the contents
of location aaaa are treated like floating-point
numbers.

3. The sum is in the A register in floating-point form
—the mantissa normalized and the exponent prop-
erly adjusted.

4. If as a result of the execution of this instruction:
a. The coded exponent would exceed 99, arithmetic
overflow occurs and the Overflow Indicator is
turned on.

0 9980 00 0000

FLOATING SUBTRACT (23)

1

2:

1 9940 00 0000 =0 01 2000 0000 OFF

+ 0000 FSU aaaa

“Subtract the contents of location aaaa from the
contents of the A register.”
Both the contents of location aaaa and the contents
of the A register are treated like floating-point
numbers.

. The difference is in the A register in floating-point
form—the mantissa normalized and the exponent
properly adjusted.
If, as a result of the execution of this instruction:
a. The coded exponent would exceed 99, arithmetic
overflow occurs and the Overflow Indicator is
turned on.

b. The coded exponent would be smaller than 00,
exponent underflow occurs and the A and R regis-
ters are cleared; no other indication is given.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Location

1000 CAD 2050

Operand
Operation Address Remarks

Clear the A register and load it
with the minuend.

Location

b. The coded exponent would be smaller than 00,
exponent underflow occurs and the A and R regis-
ters are cleared; no other indication is given.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Operand
Operation Address

1000 CAD 2050

Remarks

Clear the A register and load it
with the first number to be
added.

1001 FSU 3000 Subtract in floating-point arith-
metic the contents of location
3000.

1002 STA 4000 Store the difference in location
4000.

Contents of
A Register

After Execution
of Instruction Contents of Difference in Overflow

in 1000 Location 3000 A Register Indicator
0 5039 00 0000 =0 4940 00 0000 = 0: 50 3500 0000 OFF
0 5240 00 0000 ~=1 5040 00 0000 ~=— 0: 50 4040 0000 OFF
1 9990 00 0000 0 9920 00 0000 1 01 1000 0000 ON
1 4020 00 0000 ~=1 3030 00 0000 ~—1 40 2000 0000 OFF
1 7060 00 0000 1 7060 00 0000 ~—1:00 0000 0000 OFF

FLOATING SUBTRACT ABSOLUTE (23)
+ 0001 FSA aaaa

1. “Subtract the absolute value of the contents of loca-
tion aaaa from the contents of the A register.”

2. Both the contents of location aaaa and the contents FLOATING MULTIPLY (24)
of the A register are treated like floating-point

Floating Point

+ 0000 FMU aaaa

numbers.

3. The difference is in the A register in floating-point

1. “Multiply the contents of location aaaa by the con-
tents of the A register.”

form—the mantissa normalized and the exponent 2. Both the contents of the A register and the contents
properly adjusted.

. If, as a result of the execution of this instruction:
a. The coded exponent would exceed 99, arithmetic
overflow occurs and the Overflow Indicator is
turned on.

b. The coded exponent would be smaller than 00,
exponent underflow occurs and the A and R regis-
ters are cleared; no other indication is given.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Operand
Location Operation Address Remarks

1000 CAD 2050 Clear the A register and load it
with the minuend.

1001 FSA 3000 Subtract in floating-point arith-
metic the absolute value of the
contents of location 3000.

1002 STA 4000 Store the difference in location
4000.

Contents of
A Register

After Execution
of Instruction Contents of Difference in Overflow

in 1000 Location 3000 A Register Indicator

0 5060 00 0000 ~=— 11: 5020 00 0000 =:0: 50 4000 0000 OFF

0 6230 00 0000 ~=1 6040 00 0000 ~=——0.: 62-2960 0000 OFF
1 3912 34 5678 1 4012 34 5678 1 40 1358 0245 OFF
0 9990 00 0000 =.0: 9990 00 0000 ~=— 0:00: 0000 0000 OFF

1 9980 00 0000 ~=1_: 9920 00 0000 ~— 1:01 0000 0000 ON

of location aaaa are treated like floating-point
numbers.

. The product is in floating-point form. The two-digit
coded exponent and the eight high-order digits of
the mantissa are in the A register. The remaining
seven or eight digits of the mantissa are in the high-
order digit positions of the R register—the last two
or three digit positions of the R register being
cleared to zero. The sign of the product appears in
the sign-digit positions of both the A and the R
registers.

. If, as a result of the execution of this instruction:

a. Exponent overflow occurs, the Overflow Indicator
is turned on.

b. Exponent underflow occurs, the A and R regis-
ters are cleared; no other indication is given.

. If the mantissa of the operand in the A register, or
the mantissa of the operand in location aaaa, is not
normalized—that is, if either mantissa has a high-
order digit of 0—the operation is terminated and
the A and R registers are cleared: the product is
assumed to be zero.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples: Refer to table 10-1.

Table 10-1. Examples of Floating Multiply

Given:
Operand

Location Operation Address Remarks

1000 CAD 2050 Clear the A register and load it with the multiplier.
1001 FMU 3000 Multiply in floating-point arithmetic by the contents of

location 3000.

1002 STA 4000 Store the product in location 4000.

Contents of A Register
After Execution of Contents of Product in the Overflow
Instruction in 1000 Location 3000 A and R Registers Indicator

0 7580 00 0000 0 8020 00 0000 0 0080 00 0000 0 0000 00 0000 ON

0 5060 00 0000 0 5030 00 0000 0 5018 00 0000 0 0000 00 0000 OFF
0 3020 00 0000 0 6020 00 0000 0 3940 00 0000 0 0000 00 0000 OFF

1 5112 34 5678 0 5120 00 0000 1 5124 69 1356 1 0000 00 0000 OFF

Ora levee lela. 0 5222-27, 2222 0 5324 69 1357 0 5308 64 2000 OFF
0 6002 00 0000 0 5520 00 0000 0 0000 00 0000 0 0000 00 0000 OFF

but
operation

terminated

10-3

Floating Point

—the mantissa normalized and the exponent prop- Operand
Location Operation Address Remarkserly adjusted.

. If, as a result of the execution of this instruction:
a. The coded exponent would exceed 99, arithmetic
overflow occurs and the Overflow Indicator is
turned on.

b. The coded exponent would be smaller than 00,
exponent underflow occurs and the A and R regis-
ters are cleared; no other indication is given.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Operand

1001 FAA 3000 Add in floating-point arithmetic
the absolute value of the con-
tents of location 3000.

1002 STA 4000 Store the sum in location 4000.

Location Operation Address Remarks

Contents of
A Register

After Execution
of Instruction Contents of Sum in Overflow

in 1000 Location 3000 A Register Indicator
0 5086 00 0000 =0 5014 00 0000 ~=—0: 51 :1000 0000 OFF
0 9980 00 0000 ~=—1 9920 00 0000 = 0:01 +0000 0000 ON
0 6244 00 0000 1 6022 00 0000 0 62 4422 0000 OFF
0 4860 00 0009 ~=1 5020 00 0000 ~=—:0: 50-2060 0000 OFF
1 4030 00 0000 1 4120 00 0000 0 41 1700 0000 OFF

1000 CAD 2050 Clear the A register and load it
with the first number to be
added.

Add in floating-point arithmetic
the contents of location 3000.

1001 FAD 3000

1002 STA 4000 Store the sum in location 4000.

Contents of
A Register

After Execution
of Instruction Contents of Sum in Overflow

in 1000 Location 3000 A Register Indicator

0 5022 00 0000 =0 5044 00 0000 = 0:50 6600 0000 OFF
0 7090 00 0000 =0 5230 00 0000 = 0: 70-9000 0000 OFF
1 3081 00 0000 0 3081 00 0000 ~=1 00 0000 0000 OFF
0 9990 00 0000 =0 9910 00 0000 =:0:01 «+0000 0000 ON
0 5390 00 0000 0 5310 00 0000 ~=0 54 1000 0000 OFF
1 5120 00 0000 0 4920 00 0000 ~=—1:«51:1980 0000 OFF
1 9990 00 0000 ~=1 9920 00 0000 ~=— 1:01 ‘1000 0000 ON

FLOATING ADD ABSOLUTE (22)
+ 0001 FAA aaaa

1. “Add the absolute value of the contents of location
aaaa to the contents of the A register.”

2. Both the contents of the A register and the contents
of location aaaa are treated like floating-point
numbers.

3. The sum is in the A register in floating-point form
—the mantissa normalized and the exponent prop-
erly adjusted.

4. If as a result of the execution of this instruction:
a. The coded exponent would exceed 99, arithmetic
overflow occurs and the Overflow Indicator is
turned on.

0 9980 00 0000

FLOATING SUBTRACT (23)

1

2:

1 9940 00 0000 =0 01 2000 0000 OFF

+ 0000 FSU aaaa

“Subtract the contents of location aaaa from the
contents of the A register.”
Both the contents of location aaaa and the contents
of the A register are treated like floating-point
numbers.

. The difference is in the A register in floating-point
form—the mantissa normalized and the exponent
properly adjusted.
If, as a result of the execution of this instruction:
a. The coded exponent would exceed 99, arithmetic
overflow occurs and the Overflow Indicator is
turned on.

b. The coded exponent would be smaller than 00,
exponent underflow occurs and the A and R regis-
ters are cleared; no other indication is given.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Location

1000 CAD 2050

Operand
Operation Address Remarks

Clear the A register and load it
with the minuend.

Location

b. The coded exponent would be smaller than 00,
exponent underflow occurs and the A and R regis-
ters are cleared; no other indication is given.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Operand
Operation Address

1000 CAD 2050

Remarks

Clear the A register and load it
with the first number to be
added.

1001 FSU 3000 Subtract in floating-point arith-
metic the contents of location
3000.

1002 STA 4000 Store the difference in location
4000.

Contents of
A Register

After Execution
of Instruction Contents of Difference in Overflow

in 1000 Location 3000 A Register Indicator
0 5039 00 0000 =0 4940 00 0000 = 0: 50 3500 0000 OFF
0 5240 00 0000 ~=1 5040 00 0000 ~=— 0: 50 4040 0000 OFF
1 9990 00 0000 0 9920 00 0000 1 01 1000 0000 ON
1 4020 00 0000 ~=1 3030 00 0000 ~—1 40 2000 0000 OFF
1 7060 00 0000 1 7060 00 0000 ~—1:00 0000 0000 OFF

FLOATING SUBTRACT ABSOLUTE (23)
+ 0001 FSA aaaa

1. “Subtract the absolute value of the contents of loca-
tion aaaa from the contents of the A register.”

2. Both the contents of location aaaa and the contents FLOATING MULTIPLY (24)
of the A register are treated like floating-point

Floating Point

+ 0000 FMU aaaa

numbers.

3. The difference is in the A register in floating-point

1. “Multiply the contents of location aaaa by the con-
tents of the A register.”

form—the mantissa normalized and the exponent 2. Both the contents of the A register and the contents
properly adjusted.

. If, as a result of the execution of this instruction:
a. The coded exponent would exceed 99, arithmetic
overflow occurs and the Overflow Indicator is
turned on.

b. The coded exponent would be smaller than 00,
exponent underflow occurs and the A and R regis-
ters are cleared; no other indication is given.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples:

Operand
Location Operation Address Remarks

1000 CAD 2050 Clear the A register and load it
with the minuend.

1001 FSA 3000 Subtract in floating-point arith-
metic the absolute value of the
contents of location 3000.

1002 STA 4000 Store the difference in location
4000.

Contents of
A Register

After Execution
of Instruction Contents of Difference in Overflow

in 1000 Location 3000 A Register Indicator

0 5060 00 0000 ~=— 11: 5020 00 0000 =:0: 50 4000 0000 OFF

0 6230 00 0000 ~=1 6040 00 0000 ~=——0.: 62-2960 0000 OFF
1 3912 34 5678 1 4012 34 5678 1 40 1358 0245 OFF
0 9990 00 0000 =.0: 9990 00 0000 ~=— 0:00: 0000 0000 OFF

1 9980 00 0000 ~=1_: 9920 00 0000 ~— 1:01 0000 0000 ON

of location aaaa are treated like floating-point
numbers.

. The product is in floating-point form. The two-digit
coded exponent and the eight high-order digits of
the mantissa are in the A register. The remaining
seven or eight digits of the mantissa are in the high-
order digit positions of the R register—the last two
or three digit positions of the R register being
cleared to zero. The sign of the product appears in
the sign-digit positions of both the A and the R
registers.

. If, as a result of the execution of this instruction:

a. Exponent overflow occurs, the Overflow Indicator
is turned on.

b. Exponent underflow occurs, the A and R regis-
ters are cleared; no other indication is given.

. If the mantissa of the operand in the A register, or
the mantissa of the operand in location aaaa, is not
normalized—that is, if either mantissa has a high-
order digit of 0—the operation is terminated and
the A and R registers are cleared: the product is
assumed to be zero.

. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples: Refer to table 10-1.

Table 10-1. Examples of Floating Multiply

Given:
Operand

Location Operation Address Remarks

1000 CAD 2050 Clear the A register and load it with the multiplier.
1001 FMU 3000 Multiply in floating-point arithmetic by the contents of

location 3000.

1002 STA 4000 Store the product in location 4000.

Contents of A Register
After Execution of Contents of Product in the Overflow
Instruction in 1000 Location 3000 A and R Registers Indicator

0 7580 00 0000 0 8020 00 0000 0 0080 00 0000 0 0000 00 0000 ON

0 5060 00 0000 0 5030 00 0000 0 5018 00 0000 0 0000 00 0000 OFF
0 3020 00 0000 0 6020 00 0000 0 3940 00 0000 0 0000 00 0000 OFF

1 5112 34 5678 0 5120 00 0000 1 5124 69 1356 1 0000 00 0000 OFF

Ora levee lela. 0 5222-27, 2222 0 5324 69 1357 0 5308 64 2000 OFF
0 6002 00 0000 0 5520 00 0000 0 0000 00 0000 0 0000 00 0000 OFF

but
operation

terminated

10-3

Floating Point

FLOATING DIVIDE (25) + 0000 FDV aaaa

1. “Divide the contents of the combined A and R regis-
ters by the contents of location aaaa.” The exponent
and the eight high-order digits of the mantissa of
the dividend are in the A register. The eight low-
order digits of the mantissa of the dividend are in
the high-order digit positions of the R register.

2. Both the dividend in the A and R registers and the
divisor in location aaaa are treated like floating-
point numbers.

3. The quotient is in floating-point form. The two-
digit coded exponent and the eight high-order digits
of the mantissa are placed in the A register. The
one or two low-order digits of the mantissa are in
the high-order digit positions of the R register.

4. The remainder is in the low-order digit positions of
the R register.

5. If, as a result of the execution of this instruction:
a. Exponent overflow would occur, the overflow
indicator is turned on.

b. Exponent underflow would occur, the A and R
registers are cleared; no other indication is given.

6. If the mantissa of the dividend is not normalized—
that is, if the high-order digit is 0—but the mantissa
of the divisor is normalized, the operation is termi-
nated and the A and R registers are cleared: the
dividend is assumed to be zero.

7. If the mantissa of the divisor is not normalized, it
is assumed that the divisor is zero. The operation is
terminated and the overflow indicator turned on.

8. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples: Refer to table 10-2.

Table 10-2. Examples of Floating Divide
Given:

Operand
Location Operation Address

1000 CER 0000

1001 CAD 2050

1002 FDV 3000

1003 STA 4000

Remarks

Clear the R register.

Clear the A register and load it with the
dividend.

Divide in floating-point arithmetic by the
contents of location 3000.

Store the quotient in location 4000.

Contents of A Register
After Execution of
Instruction in 1001

Contents of
Location 3000

Quotient and Remainder Overflow
in the A and R Registers Indicator

0 5280 00 0000

0 2060 00 0000

0 5040 00 0000

0 2004 00 0000

0 5040 00 0000

0 9020 00 0000

0 5040 00 0000

0 5030 00 0000

0 5030 00 0000

0 5030 00 0000

0 5003 00 0000

0 2010 00 0000

0 5320 00 0000 0 0000 00 0000 OFF

0 2120 00 0000 0 0000 00 0000 OFF
0 5113 33 3333 0 3300 10 0000 OFF

0 0000 00 0000 0 0000 00 0000 OFF

0 5040 00 0000 0 0000 00 0000 ON

0 0020 00 0000 0 0000 00 0000 ON

As shown above, the R register should be cleared before FLOATING DIVIDE unless a 16-digit dividend is to be used.
To illustrate:

Dividend in Contents of A and R Registers Overflow
A and R Registers Divisor After FDV Indicator

0 5288 88 8888 0 8888 88 8888 0 5640 00 0000 0 4722 22 2222 0 2200 08 8888 OFF
0 5033 33 3333 0 3333 33 3333 0 5060 00 0000 0 5055 55 5555 0 5003 33 3333 OFF

10-4

GENERAL

Punched cards are an important input-output medium of
the Burroughs 220 Data Processing System. When they
are used, standard electro-mechanical punched card equip-
ment is required to read information on the cards, to
punch processed or computed information into cards, and

to print processed information. Certain difficulties would
be encountered if the punched-card equipment had to
communicate directly with the computer. These difficulties
arise from the differences in the mode of operation of the

computer and the punched-card and printing devices and

involve speeds, codes, and word length.

COMMUNICATION PROBLEMS

SPEEDS

The computer is much faster in operation than the card-

handling machines and line printers. If information were

accepted by the computer directly from a card device, the

computer would be forced to wait while the information
was being read by the card machine, thereby reducing the

over-all operating speed of the computer.

CODES

The code used with punched cards allows both numeric
and alphanumeric characters to be represented bya single

card column. For straight numeric words there is no prob-
lem of code difference. However, any character—alpha-
betic, numeric, or special—in an alphanumeric word must
be represented in the Burroughs 220 by a two-digit code.

Thus information in punched card format may be in a

form that is not acceptable to the Burroughs 220.

WORD LENGTH

The computer is limited to receiving information in fixed
words of 10 digits plus sign digit, but information re-

corded in punched cards may be in fields of any length.
Therefore, information from punched cards must some-

how be grouped into words of a specific length in order
to be compatible with either the computer fixed-word
length or a specified partial-word length.

The Cardatron System! was designed to eliminate such
difficulties; it enables the Burroughs 220 to handle appli-
cations which deal with masses of punched-card input and
printed-report and punched-card output. This system pro-

The Cardatron System

vides a flexible means of linking standard punched-card
machines and line printers to the computer.

The Cardatron System resolves the differences between
punched-card equipment and the computer as follows:

THE PROBLEM OF SPEED DIFFERENCE

The Cardatron System relieves the computer of the neces-
sity of waiting while punched cards move through the card
devices. To permit the computer to operate independently
of the card machines, the Cardatron System uses a small
magnetic drum—called the buffer—as an intermediate
storage device. Each card machine is attached to a Carda-
tron Input Unit or a Cardatron Output Unit which con-
tains one of these magnetic drums. The card machine
communicates not with the computer but with the buffer
of the associated Input or Output Unit. The Input Unit
receives the information from the card-reading device and
holds it until the computer calls for it. The Output Unit
accepts information from the computer and holds it until
a line printer is ready to print a line of information or
until a card punch is ready to punch information into
a card.

The action of the Input and Output Units is governed by
the Cardatron Control Unit. The Control Unit synchro-
nizes a single Input or Output Unit with the computer
until the transfer of information to or from the computer
is made. It then releases that unit from the computer and
synchronizes it or another unit with the associated card
device. An Input Unit will accept new information from
the associated card-reading device; an Output Unit will
transmit information to the associated punching or print-
ing device. Thus the computer has no direct contact with
the card machines, and, since the buffer drums in the In-
put and Output Units operate at computer speed, the time
that the computer is tied up with these units, during
transfer of information, is minimized. This arrangement—
isolating the computer from direct association with a card
device—is called buffering: the computer is buffered from
the card machine by an intermediate unit (Fig. 11-1).

PROBLEM OF CODE DIFFERENCE

The translation of an alphanumeric character into its two-
digit code on input, and the translation of a two-digit
coded alphanumeric character on output, is handled by
a special translator in the Cardatron Control Unit. The

For a detailed description of the Cardatron System and a complete list of the Cardatron instructions, refer to Operational Characteristics
of the Burroughs 220, Bulletin 5020.

11-1

Floating Point

FLOATING DIVIDE (25) + 0000 FDV aaaa

1. “Divide the contents of the combined A and R regis-
ters by the contents of location aaaa.” The exponent
and the eight high-order digits of the mantissa of
the dividend are in the A register. The eight low-
order digits of the mantissa of the dividend are in
the high-order digit positions of the R register.

2. Both the dividend in the A and R registers and the
divisor in location aaaa are treated like floating-
point numbers.

3. The quotient is in floating-point form. The two-
digit coded exponent and the eight high-order digits
of the mantissa are placed in the A register. The
one or two low-order digits of the mantissa are in
the high-order digit positions of the R register.

4. The remainder is in the low-order digit positions of
the R register.

5. If, as a result of the execution of this instruction:
a. Exponent overflow would occur, the overflow
indicator is turned on.

b. Exponent underflow would occur, the A and R
registers are cleared; no other indication is given.

6. If the mantissa of the dividend is not normalized—
that is, if the high-order digit is 0—but the mantissa
of the divisor is normalized, the operation is termi-
nated and the A and R registers are cleared: the
dividend is assumed to be zero.

7. If the mantissa of the divisor is not normalized, it
is assumed that the divisor is zero. The operation is
terminated and the overflow indicator turned on.

8. If the sign digit of the instruction is odd, automatic
B register address modification occurs.

Examples: Refer to table 10-2.

Table 10-2. Examples of Floating Divide
Given:

Operand
Location Operation Address

1000 CER 0000

1001 CAD 2050

1002 FDV 3000

1003 STA 4000

Remarks

Clear the R register.

Clear the A register and load it with the
dividend.

Divide in floating-point arithmetic by the
contents of location 3000.

Store the quotient in location 4000.

Contents of A Register
After Execution of
Instruction in 1001

Contents of
Location 3000

Quotient and Remainder Overflow
in the A and R Registers Indicator

0 5280 00 0000

0 2060 00 0000

0 5040 00 0000

0 2004 00 0000

0 5040 00 0000

0 9020 00 0000

0 5040 00 0000

0 5030 00 0000

0 5030 00 0000

0 5030 00 0000

0 5003 00 0000

0 2010 00 0000

0 5320 00 0000 0 0000 00 0000 OFF

0 2120 00 0000 0 0000 00 0000 OFF
0 5113 33 3333 0 3300 10 0000 OFF

0 0000 00 0000 0 0000 00 0000 OFF

0 5040 00 0000 0 0000 00 0000 ON

0 0020 00 0000 0 0000 00 0000 ON

As shown above, the R register should be cleared before FLOATING DIVIDE unless a 16-digit dividend is to be used.
To illustrate:

Dividend in Contents of A and R Registers Overflow
A and R Registers Divisor After FDV Indicator

0 5288 88 8888 0 8888 88 8888 0 5640 00 0000 0 4722 22 2222 0 2200 08 8888 OFF
0 5033 33 3333 0 3333 33 3333 0 5060 00 0000 0 5055 55 5555 0 5003 33 3333 OFF

10-4

GENERAL

Punched cards are an important input-output medium of
the Burroughs 220 Data Processing System. When they
are used, standard electro-mechanical punched card equip-
ment is required to read information on the cards, to
punch processed or computed information into cards, and

to print processed information. Certain difficulties would
be encountered if the punched-card equipment had to
communicate directly with the computer. These difficulties
arise from the differences in the mode of operation of the

computer and the punched-card and printing devices and

involve speeds, codes, and word length.

COMMUNICATION PROBLEMS

SPEEDS

The computer is much faster in operation than the card-

handling machines and line printers. If information were

accepted by the computer directly from a card device, the

computer would be forced to wait while the information
was being read by the card machine, thereby reducing the

over-all operating speed of the computer.

CODES

The code used with punched cards allows both numeric
and alphanumeric characters to be represented bya single

card column. For straight numeric words there is no prob-
lem of code difference. However, any character—alpha-
betic, numeric, or special—in an alphanumeric word must
be represented in the Burroughs 220 by a two-digit code.

Thus information in punched card format may be in a

form that is not acceptable to the Burroughs 220.

WORD LENGTH

The computer is limited to receiving information in fixed
words of 10 digits plus sign digit, but information re-

corded in punched cards may be in fields of any length.
Therefore, information from punched cards must some-

how be grouped into words of a specific length in order
to be compatible with either the computer fixed-word
length or a specified partial-word length.

The Cardatron System! was designed to eliminate such
difficulties; it enables the Burroughs 220 to handle appli-
cations which deal with masses of punched-card input and
printed-report and punched-card output. This system pro-

The Cardatron System

vides a flexible means of linking standard punched-card
machines and line printers to the computer.

The Cardatron System resolves the differences between
punched-card equipment and the computer as follows:

THE PROBLEM OF SPEED DIFFERENCE

The Cardatron System relieves the computer of the neces-
sity of waiting while punched cards move through the card
devices. To permit the computer to operate independently
of the card machines, the Cardatron System uses a small
magnetic drum—called the buffer—as an intermediate
storage device. Each card machine is attached to a Carda-
tron Input Unit or a Cardatron Output Unit which con-
tains one of these magnetic drums. The card machine
communicates not with the computer but with the buffer
of the associated Input or Output Unit. The Input Unit
receives the information from the card-reading device and
holds it until the computer calls for it. The Output Unit
accepts information from the computer and holds it until
a line printer is ready to print a line of information or
until a card punch is ready to punch information into
a card.

The action of the Input and Output Units is governed by
the Cardatron Control Unit. The Control Unit synchro-
nizes a single Input or Output Unit with the computer
until the transfer of information to or from the computer
is made. It then releases that unit from the computer and
synchronizes it or another unit with the associated card
device. An Input Unit will accept new information from
the associated card-reading device; an Output Unit will
transmit information to the associated punching or print-
ing device. Thus the computer has no direct contact with
the card machines, and, since the buffer drums in the In-
put and Output Units operate at computer speed, the time
that the computer is tied up with these units, during
transfer of information, is minimized. This arrangement—
isolating the computer from direct association with a card
device—is called buffering: the computer is buffered from
the card machine by an intermediate unit (Fig. 11-1).

PROBLEM OF CODE DIFFERENCE

The translation of an alphanumeric character into its two-
digit code on input, and the translation of a two-digit
coded alphanumeric character on output, is handled by
a special translator in the Cardatron Control Unit. The

For a detailed description of the Cardatron System and a complete list of the Cardatron instructions, refer to Operational Characteristics
of the Burroughs 220, Bulletin 5020.

11-1

The Cardatron System

Cardatron
Card Reader Input ed

Unit

SELLE AS Cardatron
Control Computer

Unit

Cardatron
Card Punch Output < <

Line Unit
Printer

Figure 11-1. Buffering Operation

Cardatron Control Unit is notified to make the necessary
translations by certain format digits in the format band
selected by the incoming card or in the instruction causing
the printing or punching of outgoing information.

PROBLEM OF WORD LENGTH

Compression or expansion of variable-length punched-card
fields into fixed-length computer words is accomplished
by the Cardatron System. Each Cardatron Input Unit
stores format digits which control the grouping of infor-
mation into computer words; each Cardatron Output Unit
stores format digits which control the regrouping of in-
formation from the computer into variable-length card
fields.

A set of format digits—sometimes called an editing con-
trol stream—is assembled for each type of card to be

read or punched, or page to be printed. These sets of
format digits need not be the same for input and output;
information can be read from cards with one type of
format and information can be punched or printed with
entirely different formats.

Each Input Unit and each Output Unit can store five sets

of format digits. On input, a sixth editing control stream
can be selected by means of a toggle. This editing control
stream is for straight numeric format.

Because of the translating and format-control functions of
the Cardatron System, information on punched cards need
not be entered in a special form for computer input, nor
is the computer restricted to handling numeric informa-
tion. Also, the buffering function increases the speed of
punched-card data handling.

The Cardatron System is built around the Cardatron Con-
trol Unit. The Control Unit controls any combination of
Input and Output Units up to a maximum of seven. For
example, a full Cardatron System might consist of a

Cardatron Control Unit, three Input Units connected to
three card reading devices, and four Output Units con-
nected to three line printers and a card punch (Fig. 11-2).

11-2

In addition, the Cardatron Control Unit provides the
information pathway between the Cardatron Input and
Output Units and the computer.

THE BUFFER DRUM
Each Input and Output Unit has a magnetic drum—called
a buffer drum—to store information. Each drum has an
oxide coating on its surface similar to that on magnetic
tape; on this surface spots are magnetized to represent
information. The surface of the drum is divided into sev-
eral channels or bands which run around it: one infor-
mation band and five format bands (Fig. 11-3).

INFORMATION BAND

The information band stores the contents of one punched
card or line of edited information. Information on the
information band is ready either to be read into the com-
puter or transmitted to a card punch or line printer; all
necessary code translations and word-length adjustments
have already been made.

FORMAT BANDS

For each digit position on the information band, there
is a corresponding digit position on each of the format
bands. Specific format digits are written in these format-
band positions; each of these digits is an instruction to
the Cardatron telling it what to do with the corresponding
digit of the information band. The digits of the format
band instruct the Cardatron how to edit every column of
the card. In addition, format digits may be included that
insert either zeros or blank spaces for scaling or separat-
ing data. The format digits edit the information from
punched cards or computer words, group the information
into computer words for input, and spread it into card
fields for output. There are special instructions in the
Burroughs 220 vocabulary for loading format digits onto
a specified format band.

Each format band on an input buffer drum contains the
digits for editing one type of input card. Each format
band on an output buffer drum contains the digits for

Input
Units Control o*

Units osoo"
a PCs

[==]
3 8oq)

The Cardatron System

Burroughs
— 220

Output

Card Punch

 Card Readers

Line Printers

Figure 11-2. Cardatron System

producing one card or one printed line of information in
a given format. Since each buffer drum has five format
bands, any Input Unit can accept cards of up to six dis-
tinct formats (five plus the numeric) and any Output Unit
can group information into any of five distinct formats.

On input, the format band that is to control a particular
card is selected by a control punch in the card itself. On
output, a format band is specified by a digit in the con-
trol portion of a CARD WRITE instruction. The digits
0, 1, 2, and 3 are used for format control.

INFORMATION FLOW

INPUT
The input operation of the Cardatron System—that is, the
reading of information from punched cards into the com-

puter—occurs in two steps: card to buffer drum, and
drum to core storage.

PHASE 1. During the first phase, the Input Unit is syn-
chronized with the card-reading device. At this time, one
card is read by the card device, and the information con-
tained on the card is recorded on the information band
of the Input Unit buffer drum. The information stays on
the buffer drum until the computer is ready to use it. As
the information is transferred from the card reader to the
buffer drum, either zeros or blanks can be automatically
inserted and part of the conversion from punched-card
code to computer code takes place, also automatically.

PHASE 2. When a CARD READ instruction is executed
by the computer, the contents of the information band are
transferred to a set of consecutively addressed locations in

11-3

The Cardatron System

Cardatron
Card Reader Input ed

Unit

SELLE AS Cardatron
Control Computer

Unit

Cardatron
Card Punch Output < <

Line Unit
Printer

Figure 11-1. Buffering Operation

Cardatron Control Unit is notified to make the necessary
translations by certain format digits in the format band
selected by the incoming card or in the instruction causing
the printing or punching of outgoing information.

PROBLEM OF WORD LENGTH

Compression or expansion of variable-length punched-card
fields into fixed-length computer words is accomplished
by the Cardatron System. Each Cardatron Input Unit
stores format digits which control the grouping of infor-
mation into computer words; each Cardatron Output Unit
stores format digits which control the regrouping of in-
formation from the computer into variable-length card
fields.

A set of format digits—sometimes called an editing con-
trol stream—is assembled for each type of card to be

read or punched, or page to be printed. These sets of
format digits need not be the same for input and output;
information can be read from cards with one type of
format and information can be punched or printed with
entirely different formats.

Each Input Unit and each Output Unit can store five sets

of format digits. On input, a sixth editing control stream
can be selected by means of a toggle. This editing control
stream is for straight numeric format.

Because of the translating and format-control functions of
the Cardatron System, information on punched cards need
not be entered in a special form for computer input, nor
is the computer restricted to handling numeric informa-
tion. Also, the buffering function increases the speed of
punched-card data handling.

The Cardatron System is built around the Cardatron Con-
trol Unit. The Control Unit controls any combination of
Input and Output Units up to a maximum of seven. For
example, a full Cardatron System might consist of a

Cardatron Control Unit, three Input Units connected to
three card reading devices, and four Output Units con-
nected to three line printers and a card punch (Fig. 11-2).

11-2

In addition, the Cardatron Control Unit provides the
information pathway between the Cardatron Input and
Output Units and the computer.

THE BUFFER DRUM
Each Input and Output Unit has a magnetic drum—called
a buffer drum—to store information. Each drum has an
oxide coating on its surface similar to that on magnetic
tape; on this surface spots are magnetized to represent
information. The surface of the drum is divided into sev-
eral channels or bands which run around it: one infor-
mation band and five format bands (Fig. 11-3).

INFORMATION BAND

The information band stores the contents of one punched
card or line of edited information. Information on the
information band is ready either to be read into the com-
puter or transmitted to a card punch or line printer; all
necessary code translations and word-length adjustments
have already been made.

FORMAT BANDS

For each digit position on the information band, there
is a corresponding digit position on each of the format
bands. Specific format digits are written in these format-
band positions; each of these digits is an instruction to
the Cardatron telling it what to do with the corresponding
digit of the information band. The digits of the format
band instruct the Cardatron how to edit every column of
the card. In addition, format digits may be included that
insert either zeros or blank spaces for scaling or separat-
ing data. The format digits edit the information from
punched cards or computer words, group the information
into computer words for input, and spread it into card
fields for output. There are special instructions in the
Burroughs 220 vocabulary for loading format digits onto
a specified format band.

Each format band on an input buffer drum contains the
digits for editing one type of input card. Each format
band on an output buffer drum contains the digits for

Input
Units Control o*

Units osoo"
a PCs

[==]
3 8oq)

The Cardatron System

Burroughs
— 220

Output

Card Punch

 Card Readers

Line Printers

Figure 11-2. Cardatron System

producing one card or one printed line of information in
a given format. Since each buffer drum has five format
bands, any Input Unit can accept cards of up to six dis-
tinct formats (five plus the numeric) and any Output Unit
can group information into any of five distinct formats.

On input, the format band that is to control a particular
card is selected by a control punch in the card itself. On
output, a format band is specified by a digit in the con-
trol portion of a CARD WRITE instruction. The digits
0, 1, 2, and 3 are used for format control.

INFORMATION FLOW

INPUT
The input operation of the Cardatron System—that is, the
reading of information from punched cards into the com-

puter—occurs in two steps: card to buffer drum, and
drum to core storage.

PHASE 1. During the first phase, the Input Unit is syn-
chronized with the card-reading device. At this time, one
card is read by the card device, and the information con-
tained on the card is recorded on the information band
of the Input Unit buffer drum. The information stays on
the buffer drum until the computer is ready to use it. As
the information is transferred from the card reader to the
buffer drum, either zeros or blanks can be automatically
inserted and part of the conversion from punched-card
code to computer code takes place, also automatically.

PHASE 2. When a CARD READ instruction is executed
by the computer, the contents of the information band are
transferred to a set of consecutively addressed locations in

11-3

The Cardatron System

/

Information a cial
Band Format Bands

Figure 11-3. Cardatron Buffer Drum

core storage. As the transfer occurs, the final editing and
conversion to computer code takes place automatically.
When the information band is emptied, the Cardatron
Control Unit disconnects the Input Unit from the com-
puter. As soon as the Input Unit is free, it begins to ac-
cept information from the next card being read by the
card reader.

OUTPUT

The output operation, like the input operation, occurs in
two parts.

PHASE 1. When a CARD WRITE instruction is executed,
information is transferred from core storage to the infor-
mation band of the Output Unit buffer drum. As the
transfer occurs, zeros or blanks can be automatically
inserted and part of the conversion from computer code
to punched-card code takes place, also automatically.

PHASE 2. When the information band in the buffer drum
is filled, the Output Unit is disconnected from the com-
puter, and the Output Unit is synchronized with the asso-
ciated card machine. The contents of the information band
are transferred to a card machine or line printer for
punching or printing. After completion of the punching
or printing, the Output Unit is disconnected from the card
machine or line printer. It then waits for more signals
from the Cardatron Control Unit.

SAMPLE INSTRUCTIONS
Following are the descriptions of the two Cardatron in-
structions selected as examples.

CARD READ (60) + u0OvrCRD aaaa

If the sign digit is odd, automatic B register address
modification occurs.

u: designates the Cardatron Input Unit from which the
information will be read.

0: not relevant to the execution of this instruction.

If v = 1, control words will not be recognized as such.

If v

If r = 1, no B register address modification of input; re-
load lockout? will be imposed.

0, control words will be recognized as such.

If r = 9, designated input will be B register address mod-
ified; reload lockout will be imposed.

If r = 0, no B register address modification of input.

If r = 8, designated input will be B register address mod-
ified.

1. “Read the words from the information band in Input
Unit u into core storage.” The first 11 digits, com-
prising the first word, are stored in location aaaa;
the next 1] digits are stored in location aaaa—1; the
third 11 digits are stored in location aaaa—2; and so
forth.

2. The information was edited by the format digits on
the format band selected by the card, and then trans-
ferred to the information band.

CARD WRITE (61) + u0OcfCWR aaaa

If the sign digit is odd, automatic B register address
modification occurs.

u: designates the Output Unit which will accept the infor-
mation to be written.

0: not relevant to the execution of this instruction.

c: has to do with additional control of the line printer
such as spacing and skipping; not relevant to the reader’s
understanding of this instruction.

f: designates the format band containing format digits
for editing the output information.

If f is even, the suppress-12 mode® of printing or punch-
ing is selected; if f is odd, the suppress-12 mode is not
selected.

1. “Write the contents of up to 29 core storage loca-
tions onto the information band in Output Unit u.”
The contents of location aaaa are the first to be
written; the contents of location aaaa— 1 are the sec-

ond to be written; the contents of location aaaa—2
are written next; and so forth.

2. The total number of digits transferred from core
storage to the information band depends on the con-
figuration of the digits of format band f.

*If reload lockout is imposed, the contents of the next card will not be read onto the information band; that is, transfer of the information is
inhibited.

°*The suppress-12 mode has to do with overpunching the sign digits of numeric words. A detailed description of this operation is included in
Operational Characteristics of the Burroughs 220, Bulletin 5020.

11-4

AUXILIARY STORAGE

It has not yet proved technically or economically feasible
to build a high-speed internal storage unit with the ca-

pacity for the large volume of data and instructions neces-

sary for all applications which one computer might handle.
All the data required for an inventory file of thousands
of automobile parts, for example—or all the coefficients
required for a large matrix inversion—need not be read-
ily available at all times. Nor is it necessary to have the
programs for several applications in working storage at
the same time. Indeed, some applications may require
programs so long that only a portion of the program will
be stored internally at any given time.

In each of these situations there is a need for some type
of auxiliary storage for large volumes of information. Such
auxiliary storage need not provide the high-speed access

required of the more expensive internal storage units and
thus can store large volumes of information economically.

The Burroughs 220 system provides large-capacity auxil-
iary storage in the Magnetic-Tape System. The compo-
nents of this auxiliary storage system are a Magnetic-Tape
Control Unit, Magnetic-Tape Storage Units, and Datafiles'.

SYSTEM CHARACTERISTICS

The operation of the Magnetic-Tape System? is always
initiated by the computer program. The Magnetic-Tape
Control Unit houses the components for directing mag-
netic-tape operations once they have been initiated by
instructions from the computer. Thus the computer com-
municates with the Magnetic-Tape Control Unit, which in
turn relays the messages to the tape-handling units.

A Magnetic-Tape Storage Unit stores information on reels
containing up to 3500 feet of tape with aecapacity of up
to approximately 1,400,000 11-digit words. The Datafile
contains 50 lengths of magnetic tape, each 250 feet in
length, and each hanging freely in its own bin. A single
Datafile can store up to approximately 5,000,000 11-digit
words. Each Burroughs 220 system can include up to ten
Datafiles and Magnetic-Tape Storage Units in any com-
bination.

Information is recorded on magnetic tape in separate
units called blocks. A block is a group of words between

*Trademark of the Burroughs Corporation.

The Magnetic-Tape System

two inter-block gaps. Block lengths may vary from 10 to
100 words in increments of one word; no two adjacent
blocks need be the same length. ;

The term record denotes a unit of problem information.
It is possible to have several records, such as employees’
earning records, within one block. Alternatively, one
record might occupy more than one block. A group of
records in adjacent blocks, all containing similar infor-
mation, would make upa file.

SAMPLE APPLICATION

Suppose that an automobile manufacturer has an inven-
tory of 5,000 automobile parts which must be kept cur-
rent. In applying the Burroughs 220 Data-Processing
System to this job, the inventory file, consisting of the
individual parts records, would be recorded on magnetic
tape. Each part record would contain such relevant infor-
mation as the part number, balance on hand, reorder
point, etc. The program for this job would be designed
to call for individual records from magnetic tape, bring
them up to date, and then return them to magnetic tape.

In order to construct the inventory file and maintain it in
a current status, there are several operations that we must
be able to perform on magnetic tape: we must be able
initially to record the file on magnetic tape, locate a
particular record when it is needed, read the record from
magnetic tape into core storage, and replace the updated
record on magnetic tape. The Burroughs 220 system pro-
vides magnetic-tape instructions for each of these opera-
tions. The file would be written initially onto freshly
edited tape; that is, tape that has been checked for flaws
and on which all flaws have been indicated so that they
will be skipped during writing.

A single instruction could write from one to ten blocks
of the file. The first word of each block is regarded as
its address. This address, like the address of a storage
location, serves as a marker for locating the block. For
ease of locating a block, the blocks written in any one
lane must be recorded in order of increasing address, from
beginning to end of the tape. (Refer to Appendix D for
magnetic-tape format.)

Associated with each block written on the tape is a preface.
The preface does not contain part of the information in

*For a detailed description of the Magnetic-Tape System and a complete list of the magnetic-tape instructions, refer to Operational Charac-
teristics of the Burroughs 220, Bulletin 5020.

12-1

The Cardatron System

/

Information a cial
Band Format Bands

Figure 11-3. Cardatron Buffer Drum

core storage. As the transfer occurs, the final editing and
conversion to computer code takes place automatically.
When the information band is emptied, the Cardatron
Control Unit disconnects the Input Unit from the com-
puter. As soon as the Input Unit is free, it begins to ac-
cept information from the next card being read by the
card reader.

OUTPUT

The output operation, like the input operation, occurs in
two parts.

PHASE 1. When a CARD WRITE instruction is executed,
information is transferred from core storage to the infor-
mation band of the Output Unit buffer drum. As the
transfer occurs, zeros or blanks can be automatically
inserted and part of the conversion from computer code
to punched-card code takes place, also automatically.

PHASE 2. When the information band in the buffer drum
is filled, the Output Unit is disconnected from the com-
puter, and the Output Unit is synchronized with the asso-
ciated card machine. The contents of the information band
are transferred to a card machine or line printer for
punching or printing. After completion of the punching
or printing, the Output Unit is disconnected from the card
machine or line printer. It then waits for more signals
from the Cardatron Control Unit.

SAMPLE INSTRUCTIONS
Following are the descriptions of the two Cardatron in-
structions selected as examples.

CARD READ (60) + u0OvrCRD aaaa

If the sign digit is odd, automatic B register address
modification occurs.

u: designates the Cardatron Input Unit from which the
information will be read.

0: not relevant to the execution of this instruction.

If v = 1, control words will not be recognized as such.

If v

If r = 1, no B register address modification of input; re-
load lockout? will be imposed.

0, control words will be recognized as such.

If r = 9, designated input will be B register address mod-
ified; reload lockout will be imposed.

If r = 0, no B register address modification of input.

If r = 8, designated input will be B register address mod-
ified.

1. “Read the words from the information band in Input
Unit u into core storage.” The first 11 digits, com-
prising the first word, are stored in location aaaa;
the next 1] digits are stored in location aaaa—1; the
third 11 digits are stored in location aaaa—2; and so
forth.

2. The information was edited by the format digits on
the format band selected by the card, and then trans-
ferred to the information band.

CARD WRITE (61) + u0OcfCWR aaaa

If the sign digit is odd, automatic B register address
modification occurs.

u: designates the Output Unit which will accept the infor-
mation to be written.

0: not relevant to the execution of this instruction.

c: has to do with additional control of the line printer
such as spacing and skipping; not relevant to the reader’s
understanding of this instruction.

f: designates the format band containing format digits
for editing the output information.

If f is even, the suppress-12 mode® of printing or punch-
ing is selected; if f is odd, the suppress-12 mode is not
selected.

1. “Write the contents of up to 29 core storage loca-
tions onto the information band in Output Unit u.”
The contents of location aaaa are the first to be
written; the contents of location aaaa— 1 are the sec-

ond to be written; the contents of location aaaa—2
are written next; and so forth.

2. The total number of digits transferred from core
storage to the information band depends on the con-
figuration of the digits of format band f.

*If reload lockout is imposed, the contents of the next card will not be read onto the information band; that is, transfer of the information is
inhibited.

°*The suppress-12 mode has to do with overpunching the sign digits of numeric words. A detailed description of this operation is included in
Operational Characteristics of the Burroughs 220, Bulletin 5020.

11-4

AUXILIARY STORAGE

It has not yet proved technically or economically feasible
to build a high-speed internal storage unit with the ca-

pacity for the large volume of data and instructions neces-

sary for all applications which one computer might handle.
All the data required for an inventory file of thousands
of automobile parts, for example—or all the coefficients
required for a large matrix inversion—need not be read-
ily available at all times. Nor is it necessary to have the
programs for several applications in working storage at
the same time. Indeed, some applications may require
programs so long that only a portion of the program will
be stored internally at any given time.

In each of these situations there is a need for some type
of auxiliary storage for large volumes of information. Such
auxiliary storage need not provide the high-speed access

required of the more expensive internal storage units and
thus can store large volumes of information economically.

The Burroughs 220 system provides large-capacity auxil-
iary storage in the Magnetic-Tape System. The compo-
nents of this auxiliary storage system are a Magnetic-Tape
Control Unit, Magnetic-Tape Storage Units, and Datafiles'.

SYSTEM CHARACTERISTICS

The operation of the Magnetic-Tape System? is always
initiated by the computer program. The Magnetic-Tape
Control Unit houses the components for directing mag-
netic-tape operations once they have been initiated by
instructions from the computer. Thus the computer com-
municates with the Magnetic-Tape Control Unit, which in
turn relays the messages to the tape-handling units.

A Magnetic-Tape Storage Unit stores information on reels
containing up to 3500 feet of tape with aecapacity of up
to approximately 1,400,000 11-digit words. The Datafile
contains 50 lengths of magnetic tape, each 250 feet in
length, and each hanging freely in its own bin. A single
Datafile can store up to approximately 5,000,000 11-digit
words. Each Burroughs 220 system can include up to ten
Datafiles and Magnetic-Tape Storage Units in any com-
bination.

Information is recorded on magnetic tape in separate
units called blocks. A block is a group of words between

*Trademark of the Burroughs Corporation.

The Magnetic-Tape System

two inter-block gaps. Block lengths may vary from 10 to
100 words in increments of one word; no two adjacent
blocks need be the same length. ;

The term record denotes a unit of problem information.
It is possible to have several records, such as employees’
earning records, within one block. Alternatively, one
record might occupy more than one block. A group of
records in adjacent blocks, all containing similar infor-
mation, would make upa file.

SAMPLE APPLICATION

Suppose that an automobile manufacturer has an inven-
tory of 5,000 automobile parts which must be kept cur-
rent. In applying the Burroughs 220 Data-Processing
System to this job, the inventory file, consisting of the
individual parts records, would be recorded on magnetic
tape. Each part record would contain such relevant infor-
mation as the part number, balance on hand, reorder
point, etc. The program for this job would be designed
to call for individual records from magnetic tape, bring
them up to date, and then return them to magnetic tape.

In order to construct the inventory file and maintain it in
a current status, there are several operations that we must
be able to perform on magnetic tape: we must be able
initially to record the file on magnetic tape, locate a
particular record when it is needed, read the record from
magnetic tape into core storage, and replace the updated
record on magnetic tape. The Burroughs 220 system pro-
vides magnetic-tape instructions for each of these opera-
tions. The file would be written initially onto freshly
edited tape; that is, tape that has been checked for flaws
and on which all flaws have been indicated so that they
will be skipped during writing.

A single instruction could write from one to ten blocks
of the file. The first word of each block is regarded as
its address. This address, like the address of a storage
location, serves as a marker for locating the block. For
ease of locating a block, the blocks written in any one
lane must be recorded in order of increasing address, from
beginning to end of the tape. (Refer to Appendix D for
magnetic-tape format.)

Associated with each block written on the tape is a preface.
The preface does not contain part of the information in

*For a detailed description of the Magnetic-Tape System and a complete list of the magnetic-tape instructions, refer to Operational Charac-
teristics of the Burroughs 220, Bulletin 5020.

12-1

The Magnetic-Tape System

Begin File —— Identification Block

Inter-blk Gap \

Ist Record

Inter-Blk Gap poaeye
ened sccets Preface

2nd Record ~~~ Address

Inter-Blk Gap |

File

 Inter-Blk Gap /
4,999th Record oe
Inter-Blk Gap

5,000th Record ~~

Inter-blk Gap

End File

| Control Block

Figure 12-1. Inventory File of Automobile Parts

the block but is a word immediately preceding the block:
it indicates the number of words in the block.

The inventory file would be bounded by unique blocks.
The block at the beginning of the file is an identification
block: it would tell the computer that this is the inventory
file of 5,000 automobile parts. The block at the end of
the file is called a control block: it would serve to notify
the tape control unit if the end of the file is reached dur-
ing an operation on the file. This block can contain infor-
mation pertinent to the file for checking purposes: it
might contain such information as control totals, the
number of blocks in the file, etc. (Fig. 12-1 shows the
inventory file, using one-block records.)

If the program to handle the daily inventory updating
operation were already in core storage, this program
would activate the tape control unit to locate the records—
one at a time—for the parts used that day, read these
records into core storage and update the balance on hand
for each. If the balance on hand has fallen below the
reorder point this information is printed out before the
record is replaced on magnetic tape.

SEARCHING AND SCANNING. The question arises of
how an individual parts record can be located in a file.
There are two methods of locating a particular block on
Burroughs 220 magnetic tape.

The first method is called searching. An instruction in
the program can tell the tape control unit to search for
the block with the address it specifies. The address speci-

12-2

fied by the instruction is called the search key. The search-
ing operation consists of automatically comparing the
search key with the first word of each block ina file until
an equal comparison is obtained.

The second method of locating a particular block is called
scanning. An instruction in the program can tell the tape
control unit to scan all of the blocks in a file for those
belonging to the category it specifies. The category speci-
fied by the instruction is called the scan key. Any one of
the first ten words of a block may be used to designate a
specific category; this word is called the category code.
The scanning operation consists of automatically compar-
ing the scan key with the word of each block which
contains the category code until an equal comparison is
obtained. For example, from the automobile parts inven-
tory file we may wish to examine the records of all types
of windshield wipers.

The search and scan operations can be partial-word opera-
tions: a partial-word search or scan key can be specified
by the program. The tape control unit would then search
or scan for the partial-word address or partial-word cate-
gory code specified.

Once a search or scan operation has been initiated by the
program in core storage, the tape control unit can carry
on the operation independently of the computer.

SELECTIVE UPDATING. When a specified part record
has been located in the file, it must be read into core
storage before the updating process can begin. A single
instruction in the program can read from one to ten
blocks into core storage, starting with the location whose
address is specified by the instruction.

The reading operation is one instance where the preface
of a block is utilized. If the blocks to be read are all the
same length, one type of reading operation takes place
which does not necessarily include the preface: the first
word read and sent to core storage is the address of the
first block. (The preface could be read in, but there is
no need for it.) The address is written in the location
specified by the reading instruction—succeeding words of
the first block and all following specified blocks are writ-
ten into consecutively addressed locations following the
location containing the address of the first block.

If the blocks to be read are of different lengths, another
type of reading operation takes place: the first word read
and sent to core storage is the preface of the first block.
In this case, the preface of each block must be read into
core storage immediately preceding the address of the
block so that the proper number of storage locations for
the words of the block may be allocated.

After the part record has been updated in core storage,
the block or blocks containing the record must be re-
corded in the original position on the tape; that is, the
updated record must be written over the old record. Before
overwriting begins, the preface is checked. This is to
insure against overwriting a block with a different num-
ber of words and is a check that the updated block is
being written in the proper place.

Overwriting the updated record on magnetic tape com-
pletes the daily updating process. The method we have
described is a selective updating process: individual rec-
ords are selected, located, and updated.

TOTAL UPDATING. A total-update operation consists of
reading each block of a file into core storage, updating
it, then writing it onto a second tape. Thus after the
operation there are two copies of the file: the original
file and the new, updated one.

For example, in the automobile manufacturing industry,
a new year brings a new model automobile containing
many new parts. Also, a new year may bring the discon-
tinuation of a number of parts that had previously been
stocked. Therefore, the parts inventory must be brought
up to date totally by inserting a record for each new part
and deleting the records of all outdated parts.

Assume that the manufacturer has decided to have a large
yearly inventory-file maintenance program run, during
which the insertions and deletions are made to the file.
The program to handle this yearly run would be designed
to search for the first record of the file and read that
record and each subsequent record of the file in turn into
core storage. In core storage the program would check
each record to see if it is to be deleted or if there is to be
an insertion in the file between the previous record and
the record being checked.

If the record is to be deleted, it simply is not written onto
the new tape—the next record is read into core storage to
be checked. If there is to be an insertion in the file, the
new record to be inserted is written onto the new tape—
the record in storage is then written onto the new tape
immediately following the insertion.

MAGNETIC-TAPE OPERATION. Since blocks are re-
corded on magnetic tape in order of increasing address,
many blocks may have to be passed on the tape before
a particular record is located. This time-consuming opera-
tion has been alleviated by the use of two parallel lanes
on Burroughs 220 tape and 100 parallel lanes in the Data-
file. By means of a single instruction, the read-write head
may be positioned in a particular lane, ready to perform
operations on the blocks in that lane (Appendix D). This
is done without moving the tape.

Other instructions provide means of positioning magnetic
tape, interrogating tape-handling units to determine if
they are ready for use, rewinding reels of magnetic tape,
etc., under program control. These features of the Bur-
roughs 220 Magnetic-Tape System augment the flexibility
and efficiency of the system.

SAMPLE INSTRUCTIONS
Following are descriptions of two magnetic-tape instruc-
tions selected as examples.

*Tbid.

The Magnetic-Tape System

MAGNETIC-TAPE READ (52)
+ un Ov MRD aaaa
If the sign digit is odd, automatic B register address
modification occurs.

u designates the tape-handling unit from which the infor-
mation will be read.

n specifies the number of blocks to be read: n = 1 means
read one block, n = 0 means read the maximum of ten
blocks.

0: not relevant to the execution of this instruction.

v = 8 or 9: designated input will be B register address
modified.

1. “Read into core storage n blocks from magnetic-tape-
handling-unit u.” The first word of the first block
read is stored in location aaaa. The remaining words
of that block and the words of the following blocks
are stored in consecutively addressed locations be-
ginning with location aaaat+1.

2. The lane from which the blocks of information are
read is the lane specified by the last magnetic-tape
instruction referring to a specific lane.

3. A control block will be recognized as such if encoun-
tered during the execution of this instruction.*

4. An end-of-tape block will be recognized as such if
encountered during the execution of this instruction.®

MAGNETIC-TAPE SCAN (51)
ee yo hk MUG aaaa

If the sign digit is odd, automatic B register address
modification occurs.

If the sign digit is 4 or 5, another variation of the instruc-
tion is executed.

u designates the tape-handling unit.

hh: if u is a Tape Storage Unit, lane 0 is selected if hh is
even and lane1 is selected if hh is odd. If u is a Datafile,
lane hh is selected.

k specifies the word of the block which contains the cate-
gory code.

1. “Scan the lane specified by hh for a block whose
category code in the kth word is equal to the scan
key which is stored in location aaaa.”

2. When a block whose category code is equal to the
scan key is found, the scanning operation terminates
with the read-write head positioned to read the
sought-for block.

3. Once this instruction has been initiated by the com-
puter, the scanning operation is carried out under
control of the Magnetic-Tape Control Unit, indepen-
dently of the computer.

12-3

The Magnetic-Tape System

Begin File —— Identification Block

Inter-blk Gap \

Ist Record

Inter-Blk Gap poaeye
ened sccets Preface

2nd Record ~~~ Address

Inter-Blk Gap |

File

 Inter-Blk Gap /
4,999th Record oe
Inter-Blk Gap

5,000th Record ~~

Inter-blk Gap

End File

| Control Block

Figure 12-1. Inventory File of Automobile Parts

the block but is a word immediately preceding the block:
it indicates the number of words in the block.

The inventory file would be bounded by unique blocks.
The block at the beginning of the file is an identification
block: it would tell the computer that this is the inventory
file of 5,000 automobile parts. The block at the end of
the file is called a control block: it would serve to notify
the tape control unit if the end of the file is reached dur-
ing an operation on the file. This block can contain infor-
mation pertinent to the file for checking purposes: it
might contain such information as control totals, the
number of blocks in the file, etc. (Fig. 12-1 shows the
inventory file, using one-block records.)

If the program to handle the daily inventory updating
operation were already in core storage, this program
would activate the tape control unit to locate the records—
one at a time—for the parts used that day, read these
records into core storage and update the balance on hand
for each. If the balance on hand has fallen below the
reorder point this information is printed out before the
record is replaced on magnetic tape.

SEARCHING AND SCANNING. The question arises of
how an individual parts record can be located in a file.
There are two methods of locating a particular block on
Burroughs 220 magnetic tape.

The first method is called searching. An instruction in
the program can tell the tape control unit to search for
the block with the address it specifies. The address speci-

12-2

fied by the instruction is called the search key. The search-
ing operation consists of automatically comparing the
search key with the first word of each block ina file until
an equal comparison is obtained.

The second method of locating a particular block is called
scanning. An instruction in the program can tell the tape
control unit to scan all of the blocks in a file for those
belonging to the category it specifies. The category speci-
fied by the instruction is called the scan key. Any one of
the first ten words of a block may be used to designate a
specific category; this word is called the category code.
The scanning operation consists of automatically compar-
ing the scan key with the word of each block which
contains the category code until an equal comparison is
obtained. For example, from the automobile parts inven-
tory file we may wish to examine the records of all types
of windshield wipers.

The search and scan operations can be partial-word opera-
tions: a partial-word search or scan key can be specified
by the program. The tape control unit would then search
or scan for the partial-word address or partial-word cate-
gory code specified.

Once a search or scan operation has been initiated by the
program in core storage, the tape control unit can carry
on the operation independently of the computer.

SELECTIVE UPDATING. When a specified part record
has been located in the file, it must be read into core
storage before the updating process can begin. A single
instruction in the program can read from one to ten
blocks into core storage, starting with the location whose
address is specified by the instruction.

The reading operation is one instance where the preface
of a block is utilized. If the blocks to be read are all the
same length, one type of reading operation takes place
which does not necessarily include the preface: the first
word read and sent to core storage is the address of the
first block. (The preface could be read in, but there is
no need for it.) The address is written in the location
specified by the reading instruction—succeeding words of
the first block and all following specified blocks are writ-
ten into consecutively addressed locations following the
location containing the address of the first block.

If the blocks to be read are of different lengths, another
type of reading operation takes place: the first word read
and sent to core storage is the preface of the first block.
In this case, the preface of each block must be read into
core storage immediately preceding the address of the
block so that the proper number of storage locations for
the words of the block may be allocated.

After the part record has been updated in core storage,
the block or blocks containing the record must be re-
corded in the original position on the tape; that is, the
updated record must be written over the old record. Before
overwriting begins, the preface is checked. This is to
insure against overwriting a block with a different num-
ber of words and is a check that the updated block is
being written in the proper place.

Overwriting the updated record on magnetic tape com-
pletes the daily updating process. The method we have
described is a selective updating process: individual rec-
ords are selected, located, and updated.

TOTAL UPDATING. A total-update operation consists of
reading each block of a file into core storage, updating
it, then writing it onto a second tape. Thus after the
operation there are two copies of the file: the original
file and the new, updated one.

For example, in the automobile manufacturing industry,
a new year brings a new model automobile containing
many new parts. Also, a new year may bring the discon-
tinuation of a number of parts that had previously been
stocked. Therefore, the parts inventory must be brought
up to date totally by inserting a record for each new part
and deleting the records of all outdated parts.

Assume that the manufacturer has decided to have a large
yearly inventory-file maintenance program run, during
which the insertions and deletions are made to the file.
The program to handle this yearly run would be designed
to search for the first record of the file and read that
record and each subsequent record of the file in turn into
core storage. In core storage the program would check
each record to see if it is to be deleted or if there is to be
an insertion in the file between the previous record and
the record being checked.

If the record is to be deleted, it simply is not written onto
the new tape—the next record is read into core storage to
be checked. If there is to be an insertion in the file, the
new record to be inserted is written onto the new tape—
the record in storage is then written onto the new tape
immediately following the insertion.

MAGNETIC-TAPE OPERATION. Since blocks are re-
corded on magnetic tape in order of increasing address,
many blocks may have to be passed on the tape before
a particular record is located. This time-consuming opera-
tion has been alleviated by the use of two parallel lanes
on Burroughs 220 tape and 100 parallel lanes in the Data-
file. By means of a single instruction, the read-write head
may be positioned in a particular lane, ready to perform
operations on the blocks in that lane (Appendix D). This
is done without moving the tape.

Other instructions provide means of positioning magnetic
tape, interrogating tape-handling units to determine if
they are ready for use, rewinding reels of magnetic tape,
etc., under program control. These features of the Bur-
roughs 220 Magnetic-Tape System augment the flexibility
and efficiency of the system.

SAMPLE INSTRUCTIONS
Following are descriptions of two magnetic-tape instruc-
tions selected as examples.

*Tbid.

The Magnetic-Tape System

MAGNETIC-TAPE READ (52)
+ un Ov MRD aaaa
If the sign digit is odd, automatic B register address
modification occurs.

u designates the tape-handling unit from which the infor-
mation will be read.

n specifies the number of blocks to be read: n = 1 means
read one block, n = 0 means read the maximum of ten
blocks.

0: not relevant to the execution of this instruction.

v = 8 or 9: designated input will be B register address
modified.

1. “Read into core storage n blocks from magnetic-tape-
handling-unit u.” The first word of the first block
read is stored in location aaaa. The remaining words
of that block and the words of the following blocks
are stored in consecutively addressed locations be-
ginning with location aaaat+1.

2. The lane from which the blocks of information are
read is the lane specified by the last magnetic-tape
instruction referring to a specific lane.

3. A control block will be recognized as such if encoun-
tered during the execution of this instruction.*

4. An end-of-tape block will be recognized as such if
encountered during the execution of this instruction.®

MAGNETIC-TAPE SCAN (51)
ee yo hk MUG aaaa

If the sign digit is odd, automatic B register address
modification occurs.

If the sign digit is 4 or 5, another variation of the instruc-
tion is executed.

u designates the tape-handling unit.

hh: if u is a Tape Storage Unit, lane 0 is selected if hh is
even and lane1 is selected if hh is odd. If u is a Datafile,
lane hh is selected.

k specifies the word of the block which contains the cate-
gory code.

1. “Scan the lane specified by hh for a block whose
category code in the kth word is equal to the scan
key which is stored in location aaaa.”

2. When a block whose category code is equal to the
scan key is found, the scanning operation terminates
with the read-write head positioned to read the
sought-for block.

3. Once this instruction has been initiated by the com-
puter, the scanning operation is carried out under
control of the Magnetic-Tape Control Unit, indepen-
dently of the computer.

12-3

An Introduction to Automatic Coding

GENERAL

The preceding chapters have discussed the art of coding
using the instructions of the Burroughs 220 vocabulary.

Such “machine-language” coding is the basic language
for communicating with a computer system. However,
there are now ways to simplify the job of coding—meth-
ods that make use of the computer itself to help in pre-
paring programs. The several kinds of special programs
that can be used to produce final programs have their
own names and terminology; in general, they are all re-
ferred to as “automatic coding.”

The classes of automatic coding schemes that will be men-
tioned in this chapter are assemblers, interpreters, gener-
ators, and compilers. Each class has a fairly well-defined
purpose, but the programs within a class may differ widely
in details. One compiler, for example, may be quite dif-
ferent from another, and compilers include both assembly
routines and generators.

Before describing these four different kinds of programs,
we should consider what purposes they are meant to serve
and why and how they evolved.

When the management of an organization decides to
acquire a computing system, they usually have one or
both of two goals in mind: to do certain jobs faster and
at less cost, or to take on jobs that otherwise could not
be done at all.

The computer in a scientific installation, for example,
would be used to reduce the time and the cost of complex
computations. It would also make possible the solving of
problems of such length and complexity that they could
not even be undertaken without the computer.

A business application would be designed to speed up the
handling of paper work, such as that involved in billing
and inventory control. The management might also be
able to take advantage of the speed of the computer to
use the information assembled for the application to pre-
pare special reports not otherwise feasible.

In either kind of application, the computing system must
be supported by an immense amount of coding, especially
during the early stages of installation. To reduce the time
required for this coding, the user is likely to consider
automatic coding. He can make use of existing routines
from the computer manufacturer; he will also consider
writing routines suited to his own special purposes. These
“service routines” will require the investment of program-
ming and coding time—an investment that will pay divi-

dends later by saving both coding and computer time.
The routines would include automonitors—programs that
trace other programs and show, in printed form, a record
of instructions executed and the results of their execution.
Special routines that standardize the form and procedure
of input and output operations, for example, can be devel-
oped and later become a part of more complex and com-
prehensive programs.

ASSEMBLERS

One of these major programs is the assembler. An assem-
bly routine can eliminate many of the coder’s difficulties.
Consider, for example, the problem of inserting and
deleting instructions in a section of a program that was
thought to be completed.

The reader will recall that the instructions in the sample
programs in this handbook are stored in consecutive loca-
tions in core storage. Yet the coder cannot know in ad-
vance—when he’s working on a long program—exactly
where every instruction and data word should be stored.
He may, for example, realize while he’s working on the
fifth page of his coding sheets that he should have in-
cluded another instruction on the first page. He may have
forgotten it then, or he may not have realized until now
that it would be required.

How is he to insert it at this stage? He started his pro-
gram with location 0000 and he has used every location
in sequence through 0100. To make an insertion in, say,
location 0010 he would have to move every instruction
from 0011 through 0100 to the location with the next
higher address. But if he does this he has created new
problems. Instructions regularly refer to other instruc-
tions and, since some of those referred to have been
moved, the locations specified by the address portions of
some instructions will also have to be changed. Therefore
the assembler will include a means of avoiding these
problems entirely; it will allow the use of symbolic ad-
dressing. Instead of coding the usual way, using actual
(absolute) locations, the coder will be able to use sym-
bolic addresses and the assembler will assign the absolute
addresses.

How the symbolic addresses look will depend on the de-
sign of the assembler. They could be either alphabetic or
numeric. One approach is to use numeric symbolic ad-
dresses in such a way that off-line card sorting can be
used to reduce computer time in’ assigning absolute ad-
dresses. Another approach is to use extra digits when
needed. Suppose, for example, that the coder has just

13-1

An Introduction to Automatic Coding

finished writing an instruction for location 0100 when he
decides he would like to insert an instruction in location
0010. All he need do is put the new instruction on the
next line of his coding form and assign it location 0010.1;
the assembly routine will insert it in the proper place—
right after location 0010—and assign the absolute ad-
dresses, for the instructions that follow, in sequence. Even
if the coder wanted to insert more than ten instructions
between 0010 and 0011, he need only add another digit:
0010.11.

Symbolic addresses written this way would be called rela-
tive to zero. That is, the assembly routine would assign
absolute addresses beginning with the first location in
storage—0000. Symbolic addresses can also be made
relative to other starting points; thus they can be grouped
into regions. One region might be used for all constants,
another for temporary storage, and so forth. Each region
can be assigned a number and the coder will preface each
entry in his program with its proper region. When the
program is assembled, absolute addresses will be assigned
beginning with the first location of each region.

Regions are especially useful when a long and complex
program is to be written. The work can be divided into
logical segments so that several coders can work at the
same time, each on a different segment. The assembly
routine will fit the sections together.

Another problem that the assembly routine can solve
easily concerns the use of alphabetic operation codes. We
have seen that it is simpler to use these mnemonic opera-
tion codes than the numeric codes they stand for. But
these alphabetic characters must be translated to numbers
—either by the coder or keypunch operator—before the
computer understands them. By including in the assem-
bler a table of corresponding alphabetic and numeric
operation codes, the assembler itself can look them up
and do the translating. Thus the coder is relieved of
another chore.

When the assembly routine is completed and in use, it
will produce a final (object) program that can be used
at once or stored for later use. The object program can
be recorded on cards, magnetic tape, or paper tape.

These are some of the features of a typical assembler.
Many others could be added, such as checking facilities.
An assembly routine might include, for example, means
for checking all magnetic-tape instructions to see that the
coder has included a digit to designate the tape unit to be
used. This digit could be checked to see that it is not
larger than the total number of tape units available to the
system. These refinements, however—like the basic fea-
tures of the assembler—are determined by the nature of
the computer system and its application.

STAR 1

Star 1, an assembly routine used with the Burroughs 220,
includes many of the characteristics described and other
features.

It allows the coder to use either symbolic notation or
machine language and will accept both paper-tape and

13-2

punched-card input. Certain kinds of errors are recog-
nized and an indication printed for the use of the opera-
tor. They include: input out of sequence, improper opera-
tion codes, storage overflow, improper field designation,
etc.

Both printed and punched-card output are produced by
the Star 1 routine, providing a complete record of the
original symbolic input as well as the final assembled
program.

INTERPRETERS

Interpretive routines are used to convert programs from
one language to another and to execute the new program
as it is produced. The language they recognize may be
artificial—constructed for a special purpose—or it may be
the machine language of another computer.

It is possible, for example, to make up a vocabulary of
instructions for a hypothetical computer that would be
very simple to program. Then an interpreter could be
written to execute instructions written in this artificial
language.

There is seldom a direct correspondence between an
instruction to be interpreted and the machine language
resulting from the interpretation: one original instruction
may require several in the language of the computer being
used. Unlike an assembler, an interpreter executes the
final program as it is prepared; this object program is
not recorded for future use. Therefore the complete inter-
pretation must be done again each time the program
is run.

THE BURROUGHS 205-220 SIMULATOR

An interpretive routine devised to accept the machine
language of one computer and translate it to that of an-
other is called a simulator.

One of the simulators available for the Burroughs 220
accepts the machine language of the Burroughs 205. A
discussion of this simulator will illustrate the value of
interpretive routines.

The 205-220 simulator was written to simplify the change-
over of a computer installation from a Burroughs 205 to
the larger Burroughs 220 system.

Such a simulator makes it possible to install the new com-
puter without the necessity of first recoding all existing
programs. With the simulator, programs written for the
205 can be run immediately on the 220. This procedure,
of course, does not take full advantage of the much higher
computation speed of the larger system. But it does allow
the data-processing operation to continue with minimum
interruption. Detailed coding can begin where the greatest
advantage in speed can be realized, probably with sub-
routines. It is possible that those programs that are rarely
used might never be recoded.

The simulator translates each Burroughs 205 instruction
into one or more 220 instructions and executes the result-
ing instructions fast enough to maintain the regular oper-
ating speed of the smaller computer. However, the fact
that in these circumstances the 220 operates no faster than

the 205 illustrates the main weakness of interpretive
routines, since the computation speed of the 220 is
approximately ten times that of the 205.

While the simulator is operating a switch on the Console
can be set to monitor the program. When the switch is
set, a printer produces a printed record for each instruc-
tion simulated, showing its location, the instruction itself,
and the contents of the simulated A, R, and B registers.
The monitoring feature is used only occasionally, when
the operator wants to check a portion of the program.

Interpretive routines are, in general, declining in popu-
larity. They are still used regularly for simulation, but
their other main purpose, providing a simpler language
for the coder’s use, is better served by compiling tech-
niques. Compilers will be discussed later in this chapter.

GENERATORS
A generator is a program that producesa section of cod-
ing for a specific purpose. Generators may be included in
assemblers and compilers, but they are also often written
as separate programs.

The generating program is set up to allow the insertion
of quantities to determine the details of the object pro-
gram. Thus a generator written to produce search rou-
tines, for example, can generate an enormous variety of
routines with details depending on the specifications—
number of items, number of words per item, etc.

The routines produced by a generator may be used im-
mediately or they may be stored as subroutines on mag-
netic tape or punched cards for future use.

A BINARY SEARCH GENERATOR
A generator has been written for the Burroughs 220 to
produce binary search programs. The method of search-
ing is called binary because each comparison of a refer-
ence with the key of a record in storage divides the
number of keys still to be checked into two parts and
eliminates one of the parts from further consideration.

The operator designates the parameters to be used by the
generating routine; these values can be set up in the A
and R registers from the Console control panel. For
example, the four low-order digits of the A register rep-
resent the number of items in the table, digit positions 4,
5, and 6 represent the number of words in each item, and
so forth. Other digit positions are used to designate such
values as the length of record keys and the total words of
storage available.

The routine checks for unreasonable values; if the num-
ber of items specified, for example, is 0 or 1, an error
stop will occur.

Less than one second is required for the generator rou-
tine to produce a search program. The generated pro-
gram may then be used immediately or punched into
cards for later use.

COMPILERS
The compiler is the most comprehensive type of auto-
matic coding system. It is designed to provide the person

An Introduction to Automatic Coding

who originally poses the problem to be solved with a
special language that is easy to learn, convenient to use,
and acceptable to the computer.

In the brief history of computer installations, most of the
coding has been done by specialists—not by the engineers,
scientists or businessmen who originated the problems.
Sometimes this situation has been a matter of policy.
Even when it was not, those who originated the problems
were not likely to have both the time and the detailed
knowledge of computer techniques essential to efficient
coding. Thus they had to explain to the coders exactly
what they wanted to do. And, since their problems are
specialized and arise in widely different areas, communi-
cation is difficult; the coder cannot be expected to be
acquainted with the subject matter of every area of an
organization.

Compilers have been developed to eliminate these diffi-
culties. The problem can be stated in the symbolic nota-
tion—the “problem-oriented” language; the computer is
used to produce the final machine-language program.

A compiler consists of two distinct parts: a system of
symbolic notation and the machine-language routine that
translates this notation and produces the final program.

We are most concerned here with the special notation and
the over-all procedure from problem to object program.
The compiler routine that does the translating will not
be discussed in detail; it is a machine-language program
and therefore similar to those suggested in other chap-
ters—although extremely long, complex, and ingenious.

COMPILER NOTATION
Symbolic notation of various kinds has already been
introduced in this handbook. The machine-language in-
structions themselves are a form of symbolic notation;
the number 12, for example, can represent the phrase,
“Add a number from storage to the contents of the A
register.”” And the digit 1 in the sign position of a word
can mean, “This is a negative quantity.”

Compiler symbolic notation, however, is different in that
the symbols are related directly to the problem and only
indirectly to the computer. Standard English words are
used, as well as combinations of numbers, letters, and
special characters. Words such as “PRINT” or “HALT”
might be used; arithmetic operations could be shown by
the conventional +, —, X, and +; parentheses could be
used, just as in algebra, to group expressions.

The compiler language allows these symbols to be grouped
into “statements.” There are two general classifications of
compiler statements: arithmetic and logical.

Arithmetic statements describe the basic arithmetic opera-
tions to be done and define the data to be used in doing
them.

Logical statements describe the sequence of operations.
As in regular coding, this sequence may be complicated.
A series of operations may be repeated a number of times,
depending on the result of tests; a choice of one of several
branches to further series of operations is made, depend-
ing on the outcome of comparisons. Therefore, compilers

13-3

An Introduction to Automatic Coding

finished writing an instruction for location 0100 when he
decides he would like to insert an instruction in location
0010. All he need do is put the new instruction on the
next line of his coding form and assign it location 0010.1;
the assembly routine will insert it in the proper place—
right after location 0010—and assign the absolute ad-
dresses, for the instructions that follow, in sequence. Even
if the coder wanted to insert more than ten instructions
between 0010 and 0011, he need only add another digit:
0010.11.

Symbolic addresses written this way would be called rela-
tive to zero. That is, the assembly routine would assign
absolute addresses beginning with the first location in
storage—0000. Symbolic addresses can also be made
relative to other starting points; thus they can be grouped
into regions. One region might be used for all constants,
another for temporary storage, and so forth. Each region
can be assigned a number and the coder will preface each
entry in his program with its proper region. When the
program is assembled, absolute addresses will be assigned
beginning with the first location of each region.

Regions are especially useful when a long and complex
program is to be written. The work can be divided into
logical segments so that several coders can work at the
same time, each on a different segment. The assembly
routine will fit the sections together.

Another problem that the assembly routine can solve
easily concerns the use of alphabetic operation codes. We
have seen that it is simpler to use these mnemonic opera-
tion codes than the numeric codes they stand for. But
these alphabetic characters must be translated to numbers
—either by the coder or keypunch operator—before the
computer understands them. By including in the assem-
bler a table of corresponding alphabetic and numeric
operation codes, the assembler itself can look them up
and do the translating. Thus the coder is relieved of
another chore.

When the assembly routine is completed and in use, it
will produce a final (object) program that can be used
at once or stored for later use. The object program can
be recorded on cards, magnetic tape, or paper tape.

These are some of the features of a typical assembler.
Many others could be added, such as checking facilities.
An assembly routine might include, for example, means
for checking all magnetic-tape instructions to see that the
coder has included a digit to designate the tape unit to be
used. This digit could be checked to see that it is not
larger than the total number of tape units available to the
system. These refinements, however—like the basic fea-
tures of the assembler—are determined by the nature of
the computer system and its application.

STAR 1

Star 1, an assembly routine used with the Burroughs 220,
includes many of the characteristics described and other
features.

It allows the coder to use either symbolic notation or
machine language and will accept both paper-tape and

13-2

punched-card input. Certain kinds of errors are recog-
nized and an indication printed for the use of the opera-
tor. They include: input out of sequence, improper opera-
tion codes, storage overflow, improper field designation,
etc.

Both printed and punched-card output are produced by
the Star 1 routine, providing a complete record of the
original symbolic input as well as the final assembled
program.

INTERPRETERS

Interpretive routines are used to convert programs from
one language to another and to execute the new program
as it is produced. The language they recognize may be
artificial—constructed for a special purpose—or it may be
the machine language of another computer.

It is possible, for example, to make up a vocabulary of
instructions for a hypothetical computer that would be
very simple to program. Then an interpreter could be
written to execute instructions written in this artificial
language.

There is seldom a direct correspondence between an
instruction to be interpreted and the machine language
resulting from the interpretation: one original instruction
may require several in the language of the computer being
used. Unlike an assembler, an interpreter executes the
final program as it is prepared; this object program is
not recorded for future use. Therefore the complete inter-
pretation must be done again each time the program
is run.

THE BURROUGHS 205-220 SIMULATOR

An interpretive routine devised to accept the machine
language of one computer and translate it to that of an-
other is called a simulator.

One of the simulators available for the Burroughs 220
accepts the machine language of the Burroughs 205. A
discussion of this simulator will illustrate the value of
interpretive routines.

The 205-220 simulator was written to simplify the change-
over of a computer installation from a Burroughs 205 to
the larger Burroughs 220 system.

Such a simulator makes it possible to install the new com-
puter without the necessity of first recoding all existing
programs. With the simulator, programs written for the
205 can be run immediately on the 220. This procedure,
of course, does not take full advantage of the much higher
computation speed of the larger system. But it does allow
the data-processing operation to continue with minimum
interruption. Detailed coding can begin where the greatest
advantage in speed can be realized, probably with sub-
routines. It is possible that those programs that are rarely
used might never be recoded.

The simulator translates each Burroughs 205 instruction
into one or more 220 instructions and executes the result-
ing instructions fast enough to maintain the regular oper-
ating speed of the smaller computer. However, the fact
that in these circumstances the 220 operates no faster than

the 205 illustrates the main weakness of interpretive
routines, since the computation speed of the 220 is
approximately ten times that of the 205.

While the simulator is operating a switch on the Console
can be set to monitor the program. When the switch is
set, a printer produces a printed record for each instruc-
tion simulated, showing its location, the instruction itself,
and the contents of the simulated A, R, and B registers.
The monitoring feature is used only occasionally, when
the operator wants to check a portion of the program.

Interpretive routines are, in general, declining in popu-
larity. They are still used regularly for simulation, but
their other main purpose, providing a simpler language
for the coder’s use, is better served by compiling tech-
niques. Compilers will be discussed later in this chapter.

GENERATORS
A generator is a program that producesa section of cod-
ing for a specific purpose. Generators may be included in
assemblers and compilers, but they are also often written
as separate programs.

The generating program is set up to allow the insertion
of quantities to determine the details of the object pro-
gram. Thus a generator written to produce search rou-
tines, for example, can generate an enormous variety of
routines with details depending on the specifications—
number of items, number of words per item, etc.

The routines produced by a generator may be used im-
mediately or they may be stored as subroutines on mag-
netic tape or punched cards for future use.

A BINARY SEARCH GENERATOR
A generator has been written for the Burroughs 220 to
produce binary search programs. The method of search-
ing is called binary because each comparison of a refer-
ence with the key of a record in storage divides the
number of keys still to be checked into two parts and
eliminates one of the parts from further consideration.

The operator designates the parameters to be used by the
generating routine; these values can be set up in the A
and R registers from the Console control panel. For
example, the four low-order digits of the A register rep-
resent the number of items in the table, digit positions 4,
5, and 6 represent the number of words in each item, and
so forth. Other digit positions are used to designate such
values as the length of record keys and the total words of
storage available.

The routine checks for unreasonable values; if the num-
ber of items specified, for example, is 0 or 1, an error
stop will occur.

Less than one second is required for the generator rou-
tine to produce a search program. The generated pro-
gram may then be used immediately or punched into
cards for later use.

COMPILERS
The compiler is the most comprehensive type of auto-
matic coding system. It is designed to provide the person

An Introduction to Automatic Coding

who originally poses the problem to be solved with a
special language that is easy to learn, convenient to use,
and acceptable to the computer.

In the brief history of computer installations, most of the
coding has been done by specialists—not by the engineers,
scientists or businessmen who originated the problems.
Sometimes this situation has been a matter of policy.
Even when it was not, those who originated the problems
were not likely to have both the time and the detailed
knowledge of computer techniques essential to efficient
coding. Thus they had to explain to the coders exactly
what they wanted to do. And, since their problems are
specialized and arise in widely different areas, communi-
cation is difficult; the coder cannot be expected to be
acquainted with the subject matter of every area of an
organization.

Compilers have been developed to eliminate these diffi-
culties. The problem can be stated in the symbolic nota-
tion—the “problem-oriented” language; the computer is
used to produce the final machine-language program.

A compiler consists of two distinct parts: a system of
symbolic notation and the machine-language routine that
translates this notation and produces the final program.

We are most concerned here with the special notation and
the over-all procedure from problem to object program.
The compiler routine that does the translating will not
be discussed in detail; it is a machine-language program
and therefore similar to those suggested in other chap-
ters—although extremely long, complex, and ingenious.

COMPILER NOTATION
Symbolic notation of various kinds has already been
introduced in this handbook. The machine-language in-
structions themselves are a form of symbolic notation;
the number 12, for example, can represent the phrase,
“Add a number from storage to the contents of the A
register.”” And the digit 1 in the sign position of a word
can mean, “This is a negative quantity.”

Compiler symbolic notation, however, is different in that
the symbols are related directly to the problem and only
indirectly to the computer. Standard English words are
used, as well as combinations of numbers, letters, and
special characters. Words such as “PRINT” or “HALT”
might be used; arithmetic operations could be shown by
the conventional +, —, X, and +; parentheses could be
used, just as in algebra, to group expressions.

The compiler language allows these symbols to be grouped
into “statements.” There are two general classifications of
compiler statements: arithmetic and logical.

Arithmetic statements describe the basic arithmetic opera-
tions to be done and define the data to be used in doing
them.

Logical statements describe the sequence of operations.
As in regular coding, this sequence may be complicated.
A series of operations may be repeated a number of times,
depending on the result of tests; a choice of one of several
branches to further series of operations is made, depend-
ing on the outcome of comparisons. Therefore, compilers

13-3

An Introduction to Automatic Coding

supply several kinds of logical statements for the user to
choose from according to his needs; he may use each
kind during the course of preparing his program.

To see how these logical statements might be used, con-
sider the problem of transferring control, as discussed in
the sections on looping and branching. In Burroughs 220
language, the coder chooses an instruction that calls for
transferring control to a given location by specifying the
operation code, control digits, and the address of the
location to be next in sequence. His choice depends on
knowledge of what the results will be after a previous
instruction is executed—such as overflow, comparison
high, etc.

In compiler notation, he would have written a series of
statements, each with an identification number or letter.
To transfer control, he might only have to write “GO TO
25.” The compiler routine would assign the instructions
with the proper addresses, operation codes, and control
digits to effect the transfer.

USING A COMPILER
Whether a compiler is to be used or not, the first few
steps of preparing a problem for solution by the computer
are the same.

The problem must first be stated mathematically or log-
ically. Then the general method of solution must be
chosen and the problem defined in terms of the method.

At this point, the person who poses the problem might
want to consult the staff of the computing center and
decide, with their help, whether a compiler should be
used. If, for example, the problem is one that will recur
frequently with only minor changes, machine-language
coding might be practical. Usually a program coded di-
rectly is more efficient; it saves computer time at the
expense of coding time. (This difference in efficiency,
however, may soon disappear as compiling techniques are
further refined.) The decision would probably be made
at this point, before flow-charting, because the nature of
the compiler may influence the preparation of the flow
chart.

13-4

The next step will be the preparation of the statement
program in the symbolic notation of the compiler being
used. When this is completed, the originator of the prob-
lem has, in effect, completed the programming.

Keypunch operators prepare the cards (or paper tape)
from the statement program forms used by the originator.
The keypunching, of course, must be done with extreme
care; every period, comma, or other symbol will have a

special meaning to the compiling routine.

The cards will then be given to the computer operator for
compilation. The compiling routine will first check for
invalid input—such as unacceptable combinations of sym-

bols. If some are found, the portion of the statement

program in error will be re-examined for keypunching
and logical errors and new cards punched in the correct
form.

Compiling will then begin and the object program will be

produced.

As a final check, before entering the data and running
the object program, a test problem that uses all possible
branches may be run and the results compared to the
known answer of the test problem.

The object program is then ready for use.

OTHER PROGRAMMING AIDS
Automatic coding methods are constantly being developed

by both manufacturers and users of the equipment.

Routines available for the Burroughs 220 include, for
example, tracing or monitoring programs used for check-

ing out programs. Standard routines are provided for
loading punched cards, subroutines for mathematical
functions; such subroutines can be referred to by a pro-
gram and included as parts of assemblers and compilers.

Present developments in automatic coding are toward the

writing of compilers with a symbolic notation approach-

ing more and more closely the language used to state

problems—mathematics for scientific applications, Eng-

lish for the use of business.

A. HOW INFORMATION IS REPRESENTED
IN THE BURROUGHS 220

The Burroughs 220, like most digital computers, employs

the binary number system for representation of informa-
tion within the computer. This number system is built
around only two digits, zero and one.

The reason for employing the binary number system is
that a binary digit is so simple to represent physically,
using a two-state device.

Groups of the two-state devices—each device representing
one binary digit—are used to represent one decimal digit.
Each two-state device within the group is assigned a spe-

cific value. The device is equal to its assigned value when
it is in an on state. In its other state—off—it has a value
of zero.

The Burroughs 220 has four devices per group: they are
assigned the values 8, 4, 2, 1, respectively. Since the
decimal digit tepresented by a group is the sum of the
assigned values of the devices in an on state, this config-
uration could represent any number from 0 through 15.

However, the Burroughs 220 uses the configuration to
represent only the numbers 0 through 9 so that each
group will represent just one decimal digit. The group of
two-state devices representing a single decimal digit is
called a decade.

This system of representing information is called the
8-4-2-1 binary-coded decimal system. (See Fig. A-1 for
the various combinations of binary digits which represent
the numbers 0 through 9.)

Digit
8 4 y) 1 Represented

Off Off Off Off 0

Off Off Off On]

Off Off On Off 2

Off Off On On 3

Off On Off Off 4

Off On Off On 5

Off On On Off 6

Off On On On 7

On Off Off Off 8

On Off Off On 9

Figure A-1. Decimal Digit Representation

Appendices

To represent a Burroughs 220 word—that is, 11 decimal
digits—11 decades are required. Let us consider the data
word + 4532 98 7604 (using 0 to represent the off state,
1 to represent on) :

VAHUB ct 4:50: 3 2.9 8 7 6 0 4

8 0730.00 0.1-1..0 0 0 0

4 Oeil 0 0,0 0 Fb 0

2 OFO 0-1 1 0.0 1a 0 0

1 OmO1 1-0 1 0 10 02.0

B. HOW INFORMATION IS STORED IN THE
BURROUGHS 220

The internal storage unit of the Burroughs 220 consists
of a network of magnetic cores. A magnetic core is a small
ring of ferro-magnetic material used as a two-state storage
device. It can be magnetized in either one direction or the
other: when magnetized in one direction, it is, logically
speaking, “on”; magnetized in the opposite direction, it
is “off” and stores a zero. In order to be magnetized in
a specific direction, a core must be pulsed by a current
from each of two wires, as shown in Fig. B-1. The repre-
sentation is logical rather than electronic.

For 1

v

For 1—> -©)- For 0

t
For 0

Figure B-1. Magnetic Core and Associated Wires

Thus we see that magnetic cores store information as it
is represented—according to the rules of the binary num-
ber system. Each core stores one binary digit (1 or 0) of
a binary-coded decimal digit. Four cores form a decade
or one decimal digit (Fig. B-2).

8

4

2

]

Figure B-2. Decade, or One Decimal Digit

A-1

An Introduction to Automatic Coding

supply several kinds of logical statements for the user to
choose from according to his needs; he may use each
kind during the course of preparing his program.

To see how these logical statements might be used, con-
sider the problem of transferring control, as discussed in
the sections on looping and branching. In Burroughs 220
language, the coder chooses an instruction that calls for
transferring control to a given location by specifying the
operation code, control digits, and the address of the
location to be next in sequence. His choice depends on
knowledge of what the results will be after a previous
instruction is executed—such as overflow, comparison
high, etc.

In compiler notation, he would have written a series of
statements, each with an identification number or letter.
To transfer control, he might only have to write “GO TO
25.” The compiler routine would assign the instructions
with the proper addresses, operation codes, and control
digits to effect the transfer.

USING A COMPILER
Whether a compiler is to be used or not, the first few
steps of preparing a problem for solution by the computer
are the same.

The problem must first be stated mathematically or log-
ically. Then the general method of solution must be
chosen and the problem defined in terms of the method.

At this point, the person who poses the problem might
want to consult the staff of the computing center and
decide, with their help, whether a compiler should be
used. If, for example, the problem is one that will recur
frequently with only minor changes, machine-language
coding might be practical. Usually a program coded di-
rectly is more efficient; it saves computer time at the
expense of coding time. (This difference in efficiency,
however, may soon disappear as compiling techniques are
further refined.) The decision would probably be made
at this point, before flow-charting, because the nature of
the compiler may influence the preparation of the flow
chart.

13-4

The next step will be the preparation of the statement
program in the symbolic notation of the compiler being
used. When this is completed, the originator of the prob-
lem has, in effect, completed the programming.

Keypunch operators prepare the cards (or paper tape)
from the statement program forms used by the originator.
The keypunching, of course, must be done with extreme
care; every period, comma, or other symbol will have a

special meaning to the compiling routine.

The cards will then be given to the computer operator for
compilation. The compiling routine will first check for
invalid input—such as unacceptable combinations of sym-

bols. If some are found, the portion of the statement

program in error will be re-examined for keypunching
and logical errors and new cards punched in the correct
form.

Compiling will then begin and the object program will be

produced.

As a final check, before entering the data and running
the object program, a test problem that uses all possible
branches may be run and the results compared to the
known answer of the test problem.

The object program is then ready for use.

OTHER PROGRAMMING AIDS
Automatic coding methods are constantly being developed

by both manufacturers and users of the equipment.

Routines available for the Burroughs 220 include, for
example, tracing or monitoring programs used for check-

ing out programs. Standard routines are provided for
loading punched cards, subroutines for mathematical
functions; such subroutines can be referred to by a pro-
gram and included as parts of assemblers and compilers.

Present developments in automatic coding are toward the

writing of compilers with a symbolic notation approach-

ing more and more closely the language used to state

problems—mathematics for scientific applications, Eng-

lish for the use of business.

A. HOW INFORMATION IS REPRESENTED
IN THE BURROUGHS 220

The Burroughs 220, like most digital computers, employs

the binary number system for representation of informa-
tion within the computer. This number system is built
around only two digits, zero and one.

The reason for employing the binary number system is
that a binary digit is so simple to represent physically,
using a two-state device.

Groups of the two-state devices—each device representing
one binary digit—are used to represent one decimal digit.
Each two-state device within the group is assigned a spe-

cific value. The device is equal to its assigned value when
it is in an on state. In its other state—off—it has a value
of zero.

The Burroughs 220 has four devices per group: they are
assigned the values 8, 4, 2, 1, respectively. Since the
decimal digit tepresented by a group is the sum of the
assigned values of the devices in an on state, this config-
uration could represent any number from 0 through 15.

However, the Burroughs 220 uses the configuration to
represent only the numbers 0 through 9 so that each
group will represent just one decimal digit. The group of
two-state devices representing a single decimal digit is
called a decade.

This system of representing information is called the
8-4-2-1 binary-coded decimal system. (See Fig. A-1 for
the various combinations of binary digits which represent
the numbers 0 through 9.)

Digit
8 4 y) 1 Represented

Off Off Off Off 0

Off Off Off On]

Off Off On Off 2

Off Off On On 3

Off On Off Off 4

Off On Off On 5

Off On On Off 6

Off On On On 7

On Off Off Off 8

On Off Off On 9

Figure A-1. Decimal Digit Representation

Appendices

To represent a Burroughs 220 word—that is, 11 decimal
digits—11 decades are required. Let us consider the data
word + 4532 98 7604 (using 0 to represent the off state,
1 to represent on) :

VAHUB ct 4:50: 3 2.9 8 7 6 0 4

8 0730.00 0.1-1..0 0 0 0

4 Oeil 0 0,0 0 Fb 0

2 OFO 0-1 1 0.0 1a 0 0

1 OmO1 1-0 1 0 10 02.0

B. HOW INFORMATION IS STORED IN THE
BURROUGHS 220

The internal storage unit of the Burroughs 220 consists
of a network of magnetic cores. A magnetic core is a small
ring of ferro-magnetic material used as a two-state storage
device. It can be magnetized in either one direction or the
other: when magnetized in one direction, it is, logically
speaking, “on”; magnetized in the opposite direction, it
is “off” and stores a zero. In order to be magnetized in
a specific direction, a core must be pulsed by a current
from each of two wires, as shown in Fig. B-1. The repre-
sentation is logical rather than electronic.

For 1

v

For 1—> -©)- For 0

t
For 0

Figure B-1. Magnetic Core and Associated Wires

Thus we see that magnetic cores store information as it
is represented—according to the rules of the binary num-
ber system. Each core stores one binary digit (1 or 0) of
a binary-coded decimal digit. Four cores form a decade
or one decimal digit (Fig. B-2).

8

4

2

]

Figure B-2. Decade, or One Decimal Digit

A-1

ee ee ee ee

8 Line DS ;
4 Line b®999098

2 Line aaa

1 Line 6)

5595599:
Beooooe

te
Figure B-3. Eleven Decades or One Word

A core is equal to its assigned value only when it is mag-

netized in the positive direction; otherwise it is equal to

zero.

Forty-four cores store 44 binary digits and form 11 dec-

ades or one Burroughs 220 word oe B-3). The internal
storage unit of the Bava 220is capable of storing up

to 10,000 words.

C. BURROUGHS 220 REGISTERS

HOW INFORMATION IS STORED

Registers are made up of electronic circuits called toggles

or “flip-flops.” These are two-state devices that are fede
up of two vacuum tubes. Depending upon which of the

tubes current flows through at a given time, the toggle iis

eitherin a “high” or a “low” state. If a toggleis in the

high state, it is on or stores its assigned value; in the low
state it stores a zero.

These toggles are grouped into four-toggle decades; they

represent the binary values 8, 4, 2, 1, respectively. Each

decade can represent any decimal digit, 0 through 9.

HOW REGISTER CONTENTS ARE DISPLAYED

Register contents are displayed on the control panel of
the control console during computer operation. A small

neon indicator is provided for each toggle in a register.
The neon indicator is turned on for the high state of the

corresponding toggle; it is off for the low state.

Four neon indicators represent a four-toggle decade. Each

neon indicator in the decade row has an assigned value:
from top to bottom their values are 8, 4, 2, and 1, respec-

tively.

Groups of neon indicator decades make up the various
register displays in the Burroughs 220 system. Each group

Figure C-1. The A Register Display of + 7321 46 5063

A-2

represents the contents of a specific register or group of
toggles. The number + 7321 46 5063 in the A register
would appear on the control panel of the Control Console
as shown in Fig. C-1.

D. INPUT-OUTPUT MEDIA

PUNCHED PAPER TAPE
Punched paper tape is a specially treated strip of paper
7/8 inch wide in which a pattern of holes is punched.
Numbers and letters are represented by a combination of
the holes and blank spaces at each position along the
length of the tape. The pattern of these holes and spaces

in a particular row signifies a particular decimal digit or
character.

The holes are punched in seven parallel channels along
the length of the tape (Fig. D-1). These channels are
functionally divided into three sections:

qa8 X Channel t

Section 0 Channel \
Checkin :a { Parity Channel

8 Channel
a

Sprocket /‘
POS se ceneee eee

4 Channel he

2 Channel \
1 Channel +

Figure D-1. Paper-Tape Structure

1. The zone section, consisting of two channels. These

are designated as the X and 0 channels.

2. The checking section, consisting of one channel. This
channel, called the parity-check channel, is used for
checking purposes only.

3. The numeric section, consisting of four channels
with assigned binary values of 8, 4, 2, and 1, respec-

tively (thereby making a binary decade).

The paper tape also contains a continuous line of smaller
holes running down the center. These are sprocket holes,
used for control or timing purposes.

Digits are represented by one or more punches in the

numeric section; letters of the alphabet and special char-

acters by a combination of zone and numeric punches.

The mechanism used to enter into the computer the infor-
mation punched into paper tape is a photoelectric reader.

After a reel of punched paper tape has been mounted onto

this photoreader, and the photoreader is activated, a servo-

mechanism will drive the tape reels—moving the tape past

a group of photo cells. Light is projected through the
holes in the paper tape to form images of the holes on

the photo cells. Each of these cells is connected to an
amplifier which gives an input signal when a hole is read
and no signal when there is a space.

The information read from paper tape is transmitted to
core storage through a translator where the paper-tape
code is translated into computer representation.

Information from core storage can be punched into paper
tape. Each digit of information is sent through a trans-
lator where it is translated from computer representation
to punched-paper-tape code. Then each digit is transmit-
ted to a paper-tape punching device.

Appendices

PUNCHED CARDS

The standard punched card contains 80 columns and 12

rows. The columns are numbered 1 through 80 (Fig.
D-2); the rows are numbered 0 through 9 (Fig. D-3).
Two additional rows appear as blank areas on the card
(Fig. D-4).
The row just above the 0 row has several names. A punch
in this row is called an 11 punch, an X punch, a zone

punch, an overpunch, a control punch, or a minus-sign
punch. The 11 punch or X punch is the most widely used

term.

The top row also has several names: 12, R, high zone,

plus-sign, etc. The 12 or R row, however, is the term most
commonly used.

The 80 columns can be grouped into fields. A field is
defined as one or more columns on the card containing
a unit of information, for example, name field, amount
field, identification field, description field, etc. (Fig. D-5).

When used with the Burroughs 220, a card will often be

marked off in 10- or 11-column fields for computer words.
If a 10-column field is used, an 11 or X punch can be

punched over a numeric punch to denote a minus sign;

Figure D-2. Card Columns

Goa vygoa vesSeet a
AAA TENA

Figure D-3. Card Rows

ee ee ee ee

8 Line DS ;
4 Line b®999098

2 Line aaa

1 Line 6)

5595599:
Beooooe

te
Figure B-3. Eleven Decades or One Word

A core is equal to its assigned value only when it is mag-

netized in the positive direction; otherwise it is equal to

zero.

Forty-four cores store 44 binary digits and form 11 dec-

ades or one Burroughs 220 word oe B-3). The internal
storage unit of the Bava 220is capable of storing up

to 10,000 words.

C. BURROUGHS 220 REGISTERS

HOW INFORMATION IS STORED

Registers are made up of electronic circuits called toggles

or “flip-flops.” These are two-state devices that are fede
up of two vacuum tubes. Depending upon which of the

tubes current flows through at a given time, the toggle iis

eitherin a “high” or a “low” state. If a toggleis in the

high state, it is on or stores its assigned value; in the low
state it stores a zero.

These toggles are grouped into four-toggle decades; they

represent the binary values 8, 4, 2, 1, respectively. Each

decade can represent any decimal digit, 0 through 9.

HOW REGISTER CONTENTS ARE DISPLAYED

Register contents are displayed on the control panel of
the control console during computer operation. A small

neon indicator is provided for each toggle in a register.
The neon indicator is turned on for the high state of the

corresponding toggle; it is off for the low state.

Four neon indicators represent a four-toggle decade. Each

neon indicator in the decade row has an assigned value:
from top to bottom their values are 8, 4, 2, and 1, respec-

tively.

Groups of neon indicator decades make up the various
register displays in the Burroughs 220 system. Each group

Figure C-1. The A Register Display of + 7321 46 5063

A-2

represents the contents of a specific register or group of
toggles. The number + 7321 46 5063 in the A register
would appear on the control panel of the Control Console
as shown in Fig. C-1.

D. INPUT-OUTPUT MEDIA

PUNCHED PAPER TAPE
Punched paper tape is a specially treated strip of paper
7/8 inch wide in which a pattern of holes is punched.
Numbers and letters are represented by a combination of
the holes and blank spaces at each position along the
length of the tape. The pattern of these holes and spaces

in a particular row signifies a particular decimal digit or
character.

The holes are punched in seven parallel channels along
the length of the tape (Fig. D-1). These channels are
functionally divided into three sections:

qa8 X Channel t

Section 0 Channel \
Checkin :a { Parity Channel

8 Channel
a

Sprocket /‘
POS se ceneee eee

4 Channel he

2 Channel \
1 Channel +

Figure D-1. Paper-Tape Structure

1. The zone section, consisting of two channels. These

are designated as the X and 0 channels.

2. The checking section, consisting of one channel. This
channel, called the parity-check channel, is used for
checking purposes only.

3. The numeric section, consisting of four channels
with assigned binary values of 8, 4, 2, and 1, respec-

tively (thereby making a binary decade).

The paper tape also contains a continuous line of smaller
holes running down the center. These are sprocket holes,
used for control or timing purposes.

Digits are represented by one or more punches in the

numeric section; letters of the alphabet and special char-

acters by a combination of zone and numeric punches.

The mechanism used to enter into the computer the infor-
mation punched into paper tape is a photoelectric reader.

After a reel of punched paper tape has been mounted onto

this photoreader, and the photoreader is activated, a servo-

mechanism will drive the tape reels—moving the tape past

a group of photo cells. Light is projected through the
holes in the paper tape to form images of the holes on

the photo cells. Each of these cells is connected to an
amplifier which gives an input signal when a hole is read
and no signal when there is a space.

The information read from paper tape is transmitted to
core storage through a translator where the paper-tape
code is translated into computer representation.

Information from core storage can be punched into paper
tape. Each digit of information is sent through a trans-
lator where it is translated from computer representation
to punched-paper-tape code. Then each digit is transmit-
ted to a paper-tape punching device.

Appendices

PUNCHED CARDS

The standard punched card contains 80 columns and 12

rows. The columns are numbered 1 through 80 (Fig.
D-2); the rows are numbered 0 through 9 (Fig. D-3).
Two additional rows appear as blank areas on the card
(Fig. D-4).
The row just above the 0 row has several names. A punch
in this row is called an 11 punch, an X punch, a zone

punch, an overpunch, a control punch, or a minus-sign
punch. The 11 punch or X punch is the most widely used

term.

The top row also has several names: 12, R, high zone,

plus-sign, etc. The 12 or R row, however, is the term most
commonly used.

The 80 columns can be grouped into fields. A field is
defined as one or more columns on the card containing
a unit of information, for example, name field, amount
field, identification field, description field, etc. (Fig. D-5).

When used with the Burroughs 220, a card will often be

marked off in 10- or 11-column fields for computer words.
If a 10-column field is used, an 11 or X punch can be

punched over a numeric punch to denote a minus sign;

Figure D-2. Card Columns

Goa vygoa vesSeet a
AAA TENA

Figure D-3. Card Rows

Appendices

jx Row

11 Row

00000000000000000000090000000000000000000000000000000000000002000000000000000000
12.34 § 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 77 2B 79 30 3 32 33 34 35 3 37 38 29-40 41 47 43 44 45 46 47 4B 49 30 51 S291 54 SS 56 $7 58 59 EO G1 62 63 G4 65 G6 G7 G8 69 70 71 72 73 74:75 76 17 78 13 00

Piatti da eA a ett

91222222722720222202222227222022

33333333333333333333333393339333333333333333393333333333333333333393333333333333333

444464444444644444444446444464446444464444464446444444444464444644444444444444444444444444

55555 SSS SSS TSS SSS SST SST TTS H SHH HS HFSS SS SSSSSSFSSS SS SSS SSSS5555555555555555555

BEGEESEBGBE EEE EEE EE EE GFF EE EEF F FEES F FEE EEEFFFK GEE E EFFEC EE EFFEC GCE EE EEE G6GG GG GGEGE

Tiida at a ee TTA Ta ae 0D ed) VA I dad

BEBBRRRKKKKGRKKKHKGKKGHHFHSKKKHHHHKKHHHHSGHHRGHHHHHKGGHHKEHHHHBKGHGHHBB8HGHEBS BEB

9999999 99999999999999999999999999999999999099999999999999999999995 a 3 9

as 2 we 713.141516 $7 16 15 20 24 22 23 Zé 25 26 27 M624 30 31323 37 56 49-4041 42 $3.44 45 45 47 48 49 UG 51 52 53 54 55 56 2! 58 59 GO GI 62 63 64 05 66 67 68.69 10.71 12 13 747

y AMOUNT

0000000000000
28 29:30 31:37 33.495 16:978 29:3

Pe ets Dt tet Ui

22222222222222

3333333333333

4444444444444

D.H.00i000000.05 00'S

BEGG6G6G6EG6GEEE6

td Pe 1 1d

88888888888888

ee gd 9 4.9.9 9.9 979.99
28 09-9)31 32 33 38.35 36 37:38 29.40

Figure D-5. Example of Fields

0123456789 ABCDEFG HIJKLMNOPQRS TUVWXYZ

7 PTT
Poooooooc00 000% 0000000000 NM RERAR
42:34 5 6 7 BM 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3! 32-33 4-35 36 37 38 39-40 41 42 43 44 45 46 47 48 49:50 51 52 53 54 55 56 57 5B 59 60.61 62 63 G4 G5 66 67 G8 69 70 71 72 73 74 75 76 77 7879 80

T PRRSRRERED EEE RER EREE EERE REE REE RREE ORRRERERRREEROR) [REEREERD [REREEERERRREEEE

229§22H22 22222282 2222228 2222222

3339)3333333393333333339333333333333393339999333999933399933993339993333939339993

SAAAMA AAA GS 44444446 444444444444545454444444444 8884444 HB 4 a
55555955H55555555N05555555N5555

SESSEEPSSSSSFSESEGESSSESSSESSSSSES ESSE SSSESSSSSSSSSSSSSCSSOBPSSSSSECSMSSSSCCOBGSS

TAEEEE] LRALEERA EER RA EER ERRREE ERRREEREOREERRERRRERRRRERERER) (RROREEE) COEEEEE) EEL

GURRSGESPS SSS ESAS SESS SSSR SSLSSSBSSSEROEBRSESRH SERS SSS RSESSEBSMSSSSESSENS 58580898

asssooagagaggsagaaggagaaagagagggsgggaggagaggag AEE) CEEEEEEE EEC EEE EL |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39-40 41 42 43 60 61 62 63 64 65 66 67 G8 69 7071 12 73 74 75 76 77 78 79 80

9999 9:99
ies eo

ABCDEFGHI JKLMNOPQRS TUVWXYZ0123456789

Figure D-6. Numeric and Alphabetic Character Punching

the lack of such a punch is considered a plus sign. If an

1l-column field is used, a 1 punch in the first column of
a field can denote a minus sign; a zero punch or a blank

can denote a plus sign.

It should be noted that only the 0 through 9 rows are

required for numeric operations. However, alphabetic

A-4

characters are represented by a combination of zone and
numeric punches. Letters A through I are represented by
numeric punches | through 9 and a zone punch of 12;
letters J through R are represented by an 11 punch and
numeric punches 1 through 9; letters S through Z are
represented by the 0 punch and numeric punches 2
through 9 (Fig. D-6).

Se

Still other combinations of zone and numeric punches
represent special characters and symbols, such as #, %,
= etc.?

Note that the upper right-hand corner of the card shown
in Fig. D-5 has been cut off. This is for identification
purposes. As an example, a master card may havea left-
hand corner cut and the detail cards a right-hand corner

After information has been punched into cards, that infor-
mation must be entered into the computer from a card
reader via the Cardatron System.

Once the cards have been loaded and fed: into the read
stations, the card reader is activated by the computer and
the cards fed from the hopper. Each card passes over a
metal drum or contact roll and under a row of metal read
brushes. There is one brush for each of the 80 columns in
a card. As each row of the card passes under the row of

Appendices

metal brushes, wherever a hole has been puncheda sensing
brush comes in contact with the metal drum or roller.
Contact with the drum causes an electrical impulse. These
impulses are recognized by the card reader as the values
represented in the card and are transmitted to the Carda-
tron Input Unit. Here they are translated into information
acceptable to the computer. From the Input Unit, the in-
formation is sent to the computer by way of the Control
Unit.

A master card usually contains lead information for the
group of detail cards that follow it (Fig. D-7). For exam-
ple, a master card might contain a man’s name, clock
number, rate of pay, social security number, etc. The de-
tail cards would contain the numbers of the jobs on which
he worked and the hours he worked on each job, etc.

First, the cards are loaded into a hopper or loading recep-
tacle on the card reader. With some card readers the
cards are loaded so that the 9 row of the card deck is read
first; with others, the 12 row is read first.

MAGNETIC TAPE

Master Cards

00000000000000000000090000000000000000000000000000000000000009000000000000000000
1.2.3.4 S$ 6 7 B ¥ 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29-30-31 32 33 34 35 BG 37 3B 39 40 41 42 43 44 45 46 47 48 49 50 51 S27 53 SH 55 56 57 SB 59 G0 61 62 63 64 65 66 G7 68 69 70 71 72 73 74 75 76 7) 78 79 80

ae) RRREREREROEE)() (RREE) () SER) SERRE) (RURRREOR) (ROR R ROR O RRO R CRORE EERE RRR RREE

222222222222222222222Bh222222222222222H222222222 22222222222222222222222222222222

333333333339333333333933B3339M3333333399333933993899339399339933939993939939939933

nN PVVVEVUTUROSTENT) () (OVYERCOUUCOOUEEOY COCUCeEre) (OCCU erreerrrererrreerrererred
55555550)555559f555555555555M55555555555559555555555955555555555555555555555555555

sPocBoccccscccccccccccsssccccccccccscscspssssscGG5ssS5SS55555555555 55555555555

EERELEEREEEELESEREEREERELEEREEEREEREEEERE)LORREREEE! LOREEREREERRERER RE RREREE EE)

AY) DEECCCEEEEE Ucn) CEeeeee) (OPEC eeeeeeen

99
2x

999999999999999999999999999999999999999 99999999999999999999999 99999999999nis 5
1 10 1h $2 13.1415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 32 34 35 36 37 IB 39 40 41 424344 45 45 47 43 49 50 51 57 S3 S455 36 57 58 59 GO EI G2 63 64 65 66 67 G8 69 70.71 127314

9 9
‘ 013

ctv

28:9
2455

| oy a ot

 76 17 78 7980

Figure D-7. Punched Master and Detail Cards

When information stored within the computer is to be

punched out on cards, it is transferred to the Cardatron
Control Unit and then to the Output Unit. Here the infor-
mation is translated into punched-card code. Then, as each

blank card moves through the punching device, the infor-
mation pertaining to a specific row in the card is trans-
mitted to the card punch. The punch magnets within the
device are activated, and all positions that are to be

punched in a given row are punched simultaneously.

The magnetic tape used with the Burroughs 220 Magnetic
Tape System is similar in operation and in form to the
magnetic tape used in home recorders. The tape is a plastic
strip, one side of which is coated with a magnetic oxide.

The tape can be considered as having provision for re-

cording two lanes of information, parallel to one another,
along the length of each tape. Each lane is divided into

AS

u—
Detail Cards

A-5

Appendices

jx Row

11 Row

00000000000000000000090000000000000000000000000000000000000002000000000000000000
12.34 § 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 77 2B 79 30 3 32 33 34 35 3 37 38 29-40 41 47 43 44 45 46 47 4B 49 30 51 S291 54 SS 56 $7 58 59 EO G1 62 63 G4 65 G6 G7 G8 69 70 71 72 73 74:75 76 17 78 13 00

Piatti da eA a ett

91222222722720222202222227222022

33333333333333333333333393339333333333333333393333333333333333333393333333333333333

444464444444644444444446444464446444464444464446444444444464444644444444444444444444444444

55555 SSS SSS TSS SSS SST SST TTS H SHH HS HFSS SS SSSSSSFSSS SS SSS SSSS5555555555555555555

BEGEESEBGBE EEE EEE EE EE GFF EE EEF F FEES F FEE EEEFFFK GEE E EFFEC EE EFFEC GCE EE EEE G6GG GG GGEGE

Tiida at a ee TTA Ta ae 0D ed) VA I dad

BEBBRRRKKKKGRKKKHKGKKGHHFHSKKKHHHHKKHHHHSGHHRGHHHHHKGGHHKEHHHHBKGHGHHBB8HGHEBS BEB

9999999 99999999999999999999999999999999999099999999999999999999995 a 3 9

as 2 we 713.141516 $7 16 15 20 24 22 23 Zé 25 26 27 M624 30 31323 37 56 49-4041 42 $3.44 45 45 47 48 49 UG 51 52 53 54 55 56 2! 58 59 GO GI 62 63 64 05 66 67 68.69 10.71 12 13 747

y AMOUNT

0000000000000
28 29:30 31:37 33.495 16:978 29:3

Pe ets Dt tet Ui

22222222222222

3333333333333

4444444444444

D.H.00i000000.05 00'S

BEGG6G6G6EG6GEEE6

td Pe 1 1d

88888888888888

ee gd 9 4.9.9 9.9 979.99
28 09-9)31 32 33 38.35 36 37:38 29.40

Figure D-5. Example of Fields

0123456789 ABCDEFG HIJKLMNOPQRS TUVWXYZ

7 PTT
Poooooooc00 000% 0000000000 NM RERAR
42:34 5 6 7 BM 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3! 32-33 4-35 36 37 38 39-40 41 42 43 44 45 46 47 48 49:50 51 52 53 54 55 56 57 5B 59 60.61 62 63 G4 G5 66 67 G8 69 70 71 72 73 74 75 76 77 7879 80

T PRRSRRERED EEE RER EREE EERE REE REE RREE ORRRERERRREEROR) [REEREERD [REREEERERRREEEE

229§22H22 22222282 2222228 2222222

3339)3333333393333333339333333333333393339999333999933399933993339993333939339993

SAAAMA AAA GS 44444446 444444444444545454444444444 8884444 HB 4 a
55555955H55555555N05555555N5555

SESSEEPSSSSSFSESEGESSSESSSESSSSSES ESSE SSSESSSSSSSSSSSSSCSSOBPSSSSSECSMSSSSCCOBGSS

TAEEEE] LRALEERA EER RA EER ERRREE ERRREEREOREERRERRRERRRRERERER) (RROREEE) COEEEEE) EEL

GURRSGESPS SSS ESAS SESS SSSR SSLSSSBSSSEROEBRSESRH SERS SSS RSESSEBSMSSSSESSENS 58580898

asssooagagaggsagaaggagaaagagagggsgggaggagaggag AEE) CEEEEEEE EEC EEE EL |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39-40 41 42 43 60 61 62 63 64 65 66 67 G8 69 7071 12 73 74 75 76 77 78 79 80

9999 9:99
ies eo

ABCDEFGHI JKLMNOPQRS TUVWXYZ0123456789

Figure D-6. Numeric and Alphabetic Character Punching

the lack of such a punch is considered a plus sign. If an

1l-column field is used, a 1 punch in the first column of
a field can denote a minus sign; a zero punch or a blank

can denote a plus sign.

It should be noted that only the 0 through 9 rows are

required for numeric operations. However, alphabetic

A-4

characters are represented by a combination of zone and
numeric punches. Letters A through I are represented by
numeric punches | through 9 and a zone punch of 12;
letters J through R are represented by an 11 punch and
numeric punches 1 through 9; letters S through Z are
represented by the 0 punch and numeric punches 2
through 9 (Fig. D-6).

Se

Still other combinations of zone and numeric punches
represent special characters and symbols, such as #, %,
= etc.?

Note that the upper right-hand corner of the card shown
in Fig. D-5 has been cut off. This is for identification
purposes. As an example, a master card may havea left-
hand corner cut and the detail cards a right-hand corner

After information has been punched into cards, that infor-
mation must be entered into the computer from a card
reader via the Cardatron System.

Once the cards have been loaded and fed: into the read
stations, the card reader is activated by the computer and
the cards fed from the hopper. Each card passes over a
metal drum or contact roll and under a row of metal read
brushes. There is one brush for each of the 80 columns in
a card. As each row of the card passes under the row of

Appendices

metal brushes, wherever a hole has been puncheda sensing
brush comes in contact with the metal drum or roller.
Contact with the drum causes an electrical impulse. These
impulses are recognized by the card reader as the values
represented in the card and are transmitted to the Carda-
tron Input Unit. Here they are translated into information
acceptable to the computer. From the Input Unit, the in-
formation is sent to the computer by way of the Control
Unit.

A master card usually contains lead information for the
group of detail cards that follow it (Fig. D-7). For exam-
ple, a master card might contain a man’s name, clock
number, rate of pay, social security number, etc. The de-
tail cards would contain the numbers of the jobs on which
he worked and the hours he worked on each job, etc.

First, the cards are loaded into a hopper or loading recep-
tacle on the card reader. With some card readers the
cards are loaded so that the 9 row of the card deck is read
first; with others, the 12 row is read first.

MAGNETIC TAPE

Master Cards

00000000000000000000090000000000000000000000000000000000000009000000000000000000
1.2.3.4 S$ 6 7 B ¥ 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29-30-31 32 33 34 35 BG 37 3B 39 40 41 42 43 44 45 46 47 48 49 50 51 S27 53 SH 55 56 57 SB 59 G0 61 62 63 64 65 66 G7 68 69 70 71 72 73 74 75 76 7) 78 79 80

ae) RRREREREROEE)() (RREE) () SER) SERRE) (RURRREOR) (ROR R ROR O RRO R CRORE EERE RRR RREE

222222222222222222222Bh222222222222222H222222222 22222222222222222222222222222222

333333333339333333333933B3339M3333333399333933993899339399339933939993939939939933

nN PVVVEVUTUROSTENT) () (OVYERCOUUCOOUEEOY COCUCeEre) (OCCU erreerrrererrreerrererred
55555550)555559f555555555555M55555555555559555555555955555555555555555555555555555

sPocBoccccscccccccccccsssccccccccccscscspssssscGG5ssS5SS55555555555 55555555555

EERELEEREEEELESEREEREERELEEREEEREEREEEERE)LORREREEE! LOREEREREERRERER RE RREREE EE)

AY) DEECCCEEEEE Ucn) CEeeeee) (OPEC eeeeeeen

99
2x

999999999999999999999999999999999999999 99999999999999999999999 99999999999nis 5
1 10 1h $2 13.1415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 32 34 35 36 37 IB 39 40 41 424344 45 45 47 43 49 50 51 57 S3 S455 36 57 58 59 GO EI G2 63 64 65 66 67 G8 69 70.71 127314

9 9
‘ 013

ctv

28:9
2455

| oy a ot

 76 17 78 7980

Figure D-7. Punched Master and Detail Cards

When information stored within the computer is to be

punched out on cards, it is transferred to the Cardatron
Control Unit and then to the Output Unit. Here the infor-
mation is translated into punched-card code. Then, as each

blank card moves through the punching device, the infor-
mation pertaining to a specific row in the card is trans-
mitted to the card punch. The punch magnets within the
device are activated, and all positions that are to be

punched in a given row are punched simultaneously.

The magnetic tape used with the Burroughs 220 Magnetic
Tape System is similar in operation and in form to the
magnetic tape used in home recorders. The tape is a plastic
strip, one side of which is coated with a magnetic oxide.

The tape can be considered as having provision for re-

cording two lanes of information, parallel to one another,
along the length of each tape. Each lane is divided into

AS

u—
Detail Cards

A-5

Appendices

channels: channels 1 through 4 are used to record the
binary digits 8, 4, 2, 1; channel 5 is used as a checking
channel; and channel 6 is used for control purposes
(Fig. D-8).

Control —

Check
Lane 8

1 4
2
]

Control
Check

Lane 8
2

4
Zz

]

Figure D-8. Magnetic-Tape Structure

The binary digits in each channel are represented by
magnetized spots placed or “written” on the tape surface.
Utilizing two-state logic, a magnetized spot on the tape
surface represents an on state, a non-magnetized spot
represents an off state.

Words of information are written onto magnetic tape by
special electromagnets called read-write heads. To write
information onto the tape, the write head magnetizes
spots on the tape as it passes by at high speed. To read
information from magnetic tape, the read head senses the
magnetized areas on the tape.

A-6

Words of information on magnetic tape are laid out in
blocks. A block is defined as a group of words recorded
serially without intervening blank spaces; a block may
also be described as the information recorded between
these blank spaces or inter-block gaps (Fig. D-9).

Inter-Block Gap

Information Information
Lane | Block Block

Lane 2

Figure D-9. Magnetic-Tape Blocks

PRINTED OUTPUT

Fanfold paper forms are used as output media by the
character-at-a-time printer of the paper tape input-output
system and by the line-at-a-time printer of the Cardatron
input-output system.

For the character-at-a-time printer, information is taken
from core storage, translated and printed out on the paper
inserted in the printer. For the line printer, information
from core storage is transmitted through the Cardatron
for translation, to the line printer where it is printed out
on the paper inserted in that printer.

E. INDEX TO INSTRUCTIONS DESCRIBED IN THIS HANDBOOK

Note

For an explanation of instructions not included in this
handbook, see Operational Characteristics of the Bur-
roughs 220, Bulletin 5020.

Instruction and Mnemonic Operation Code

Page

ADD (ADD) 24305 ee ee ee)

ADD ABSOLUTE) (ADA). 2. ais ss tiie 4-3

ADD TO LOCATION (ADE) ee, i ea st Acs

BRANCH, COMPARISON EQUAL (BCH) 7... te 6-5

BRANCH, GOMPRARISON HIGH GB@H) 33... .2.... 8. eae 6. 6-4

BRANCH, COMPARISON OW (BG ste. |, sw ag. 6-4.

BRANCH, COMPARTSON UNHOUAIT (BCU). 6 os hs: 6-5
BRANCH, FIRED: As (BIA) es es ei i es 65
BRANCH. FIRED RUB) i ee. 6-6

BRANCH. OVERELOW (BOE) a ee 4-6
BRANCH. REPHAT (BH) 0 es TES

BRANCH, SIGN A CBSA) ee. ws 6-6

BRANCH: UNGONDITIONABEY (BUN) =... 0 see ee 4-6

GARD READ (CRD). i 11-4
CARD WRITE (CWR) =. = = Ce ee 11-4
GEEAR A (CLA) 2) ee 5-4
GLEAR A, B (CAB) 2 ee i 8-5

GLEAR. ADD. (CAD) 23 i os 4-2
CLEAR, ADD. ABSOLUTE (GAA) i oe 4-3
CLEAR: A, R (GAR) 3. es 5-4,

GLEAR A; Ro °B (GEL) 7 8 Se he 8-5
CLEAR: B (CLB) 323 re ee, 8-5
CLEAR LOCATION (CLE) 8 see 5-4
CLEAR R (CER) > 8 5-4
CLEAR RB (GRE) 2 8 ew 8-5
CLEAR, SUBPRAGT (CSU) = ee ee 4-3
CLEAR. SUBTRAGT ABS@UUEE (Gs eee ce 4-4,

GOMPARE EIEED A (CHA) ee ee 6-4.

COMPARE PIBED Ry (Citi i ee ee 6-4.

DECREASE B, BRANGHRGDBEs ee ee 8-3
DECREASE FIRED EOGMIION (We kw ee ee 1-3
DECREASE FIEBED LOCATION. Wem Gb DEB) . 5... ee lee 8-4.

DIVIDE (DIV). ie ee ees 5-4
EXTRACT (RN) 5-3
FLOATING ADD. (HA i eek 10-1
FLOATING ADD ABSOUGTE fin de eee eee 10-2
FLOATING DIVIDE (Hip ee 10-4.

FLOATING MUBDIBEY (Pye) ee ee 10-3
FLOATING SUBPRAGT ti eee 10-2
FLOATING SUBTRAG@T ABoOUUME ESA) (eee ee ee ees 10-2
HALT (HED) i ee ck: 4-4,

INGREASE B. BHAUNG@Ee Git ee. eae eR
INCREASE FRBED VOGAMNONEEE se el bei 7-2
LOAD: B GDB) 8 8 i 8-3
LOAD B COMPEEMENG UG) ed ee 8-3
LOAD R GEDR\] 3 ee a re 5-3
LOAD: SIGN ASR ee oe 5-3
MAGNE TIC (ABH Rin AsO SNR ee eee 123
MAGNETICAVABE SGA CVING@ ee ee 12-3

Appendices

A-7

Appendices

channels: channels 1 through 4 are used to record the
binary digits 8, 4, 2, 1; channel 5 is used as a checking
channel; and channel 6 is used for control purposes
(Fig. D-8).

Control —

Check
Lane 8

1 4
2
]

Control
Check

Lane 8
2

4
Zz

]

Figure D-8. Magnetic-Tape Structure

The binary digits in each channel are represented by
magnetized spots placed or “written” on the tape surface.
Utilizing two-state logic, a magnetized spot on the tape
surface represents an on state, a non-magnetized spot
represents an off state.

Words of information are written onto magnetic tape by
special electromagnets called read-write heads. To write
information onto the tape, the write head magnetizes
spots on the tape as it passes by at high speed. To read
information from magnetic tape, the read head senses the
magnetized areas on the tape.

A-6

Words of information on magnetic tape are laid out in
blocks. A block is defined as a group of words recorded
serially without intervening blank spaces; a block may
also be described as the information recorded between
these blank spaces or inter-block gaps (Fig. D-9).

Inter-Block Gap

Information Information
Lane | Block Block

Lane 2

Figure D-9. Magnetic-Tape Blocks

PRINTED OUTPUT

Fanfold paper forms are used as output media by the
character-at-a-time printer of the paper tape input-output
system and by the line-at-a-time printer of the Cardatron
input-output system.

For the character-at-a-time printer, information is taken
from core storage, translated and printed out on the paper
inserted in the printer. For the line printer, information
from core storage is transmitted through the Cardatron
for translation, to the line printer where it is printed out
on the paper inserted in that printer.

E. INDEX TO INSTRUCTIONS DESCRIBED IN THIS HANDBOOK

Note

For an explanation of instructions not included in this
handbook, see Operational Characteristics of the Bur-
roughs 220, Bulletin 5020.

Instruction and Mnemonic Operation Code

Page

ADD (ADD) 24305 ee ee ee)

ADD ABSOLUTE) (ADA). 2. ais ss tiie 4-3

ADD TO LOCATION (ADE) ee, i ea st Acs

BRANCH, COMPARISON EQUAL (BCH) 7... te 6-5

BRANCH, GOMPRARISON HIGH GB@H) 33... .2.... 8. eae 6. 6-4

BRANCH, COMPARISON OW (BG ste. |, sw ag. 6-4.

BRANCH, COMPARTSON UNHOUAIT (BCU). 6 os hs: 6-5
BRANCH, FIRED: As (BIA) es es ei i es 65
BRANCH. FIRED RUB) i ee. 6-6

BRANCH. OVERELOW (BOE) a ee 4-6
BRANCH. REPHAT (BH) 0 es TES

BRANCH, SIGN A CBSA) ee. ws 6-6

BRANCH: UNGONDITIONABEY (BUN) =... 0 see ee 4-6

GARD READ (CRD). i 11-4
CARD WRITE (CWR) =. = = Ce ee 11-4
GEEAR A (CLA) 2) ee 5-4
GLEAR A, B (CAB) 2 ee i 8-5

GLEAR. ADD. (CAD) 23 i os 4-2
CLEAR, ADD. ABSOLUTE (GAA) i oe 4-3
CLEAR: A, R (GAR) 3. es 5-4,

GLEAR A; Ro °B (GEL) 7 8 Se he 8-5
CLEAR: B (CLB) 323 re ee, 8-5
CLEAR LOCATION (CLE) 8 see 5-4
CLEAR R (CER) > 8 5-4
CLEAR RB (GRE) 2 8 ew 8-5
CLEAR, SUBPRAGT (CSU) = ee ee 4-3
CLEAR. SUBTRAGT ABS@UUEE (Gs eee ce 4-4,

GOMPARE EIEED A (CHA) ee ee 6-4.

COMPARE PIBED Ry (Citi i ee ee 6-4.

DECREASE B, BRANGHRGDBEs ee ee 8-3
DECREASE FIRED EOGMIION (We kw ee ee 1-3
DECREASE FIEBED LOCATION. Wem Gb DEB) . 5... ee lee 8-4.

DIVIDE (DIV). ie ee ees 5-4
EXTRACT (RN) 5-3
FLOATING ADD. (HA i eek 10-1
FLOATING ADD ABSOUGTE fin de eee eee 10-2
FLOATING DIVIDE (Hip ee 10-4.

FLOATING MUBDIBEY (Pye) ee ee 10-3
FLOATING SUBPRAGT ti eee 10-2
FLOATING SUBTRAG@T ABoOUUME ESA) (eee ee ee ees 10-2
HALT (HED) i ee ck: 4-4,

INGREASE B. BHAUNG@Ee Git ee. eae eR
INCREASE FRBED VOGAMNONEEE se el bei 7-2
LOAD: B GDB) 8 8 i 8-3
LOAD B COMPEEMENG UG) ed ee 8-3
LOAD R GEDR\] 3 ee a re 5-3
LOAD: SIGN ASR ee oe 5-3
MAGNE TIC (ABH Rin AsO SNR ee eee 123
MAGNETICAVABE SGA CVING@ ee ee 12-3

Appendices

A-7

Appendices

A-8

Page

ga ek ig hb bs ea cs nc 5-3
I 9-4.
ee 4-2
ence cent we erect aces 4-2
I re ee ee 9-1
I SR Se ee 5-4
REN 5-1
ee ee ee ea ee eetris ig... 5-1
Oe ee tcl (SES)... ce cece 5-2
ON ee 5-1
ee RT) wc ee ee cece ee ks 5-1
epee ION (SKS) 2... ee tees 5-2
i eee cnt v etpete ns cstccas 4-5
ccc ees accesccveuas 8-4
I re 9-2
eee 4-5
a 4-3
I UA) i ccc eee cette cas 4-4

