DATATRON 220

BURROUGHS CORPORATION

Copyright (C) 1957
Burroughs Corporation

table Of CONTENTS

ARITHMETIC Page
Addition CAD, CAA, ADD, ADA, ADL 1
Subtraction CSU, CSA, SUB, SUA 1Multiplication
MUL 1
Division DIV 2
Miscellaneous RND 2
Floating Point FAD, FAA, FSU, FSA, FMU, FDV 2
MANIPULATION, INFORMATION TRANSFER
Shifting
Loading
Storing
Transfer in storage
Clearing
Editing
DECISION MAKING
Comparing CFA, CFR 5
Branching BUN, BOF, BRP, BSA 5
BCH, BCL, BCE, BCU 5, 6
BFA, BFR, BCS 6
Control HLT, NOP 6
INSTRUCTION MODIFICATION, TALLYING
7IBB, DBB
IFL, DFL, DLB 7
INPUT-OUTPUT
Magnetic tape
Paper tape
Cardatron
Control Console
SRA, SRT, SRS 3
SLA, SLT, SLS 3
LDR, LDB, LBC, LSA 3, 4
STA, STR, STB, STP 4
RTF 4
CLA, CLR, CLB, CLL 4
EXT 4
MTS, MFS, MTC, MFC 8
MRD, MRR 8
MIW, MIR, MOW, MOR 8, 9
MPF, MPB, MPE, MLS, MRW, MDA 9
MIB, MIE 9
PRD, PRB, PRI, PWR, PWI 10
CRD, CWR, CRF, CWF, CRI, CWI 10,11
KAD, SPO 11

INSTRUCTION FORMAT:

Digit positions 1,2,3 and 4 comprise what are called control digits; these specify different modes of execution, as defined in the summary. The operation code occupies digit positions 5 and 6 . Digit positions $7,8,9$ and 0 usually represent an address in storage; but they are sometimes used for other purposes.

DEFINITIONS OF TERMS AND SYMBOLS:

\pm : sign digit. If the sign digit is an odd integer, automatic B-register address-modification will occur.
sL: define the boundaries of a partial-word field : s designates the digit position of the low-order digit; L designates the number of digits in the partial-word field.
f: partial-word designator. If $f=0$, the entire word is specified; if $f=1$, the partial-word field defined by sL is specified.
aaaa: address of storage location.
i: not relevant to the execution of the instruction.
v : variation designator.

ARITHMETIC

CAD
10

Replace the contents of the A register by the contents of aaaa.

CAA

CLEAR, ADD ABSOLUTE

Replace the contents of the A register by the absolute value of the contents of aaaa.

ADD
12

Add the contents of aaaa to the contents of the A register. The sum appears in the A register.

ADA

Add the absolute value of the contents of aaaa to the contents of the A register. The sum appears in the A register.

ADL

Add the contents of the A register to the contents of aaaa. The sum appears in aaaa.

CSU

Replace the contents of the A register by the negative of the contents of aaaa.

CSA
CLEAR, SUBTRACT ABSOLUTE

Replace the contents of the A register by the negative of the absolute value of the contents of aaaa.

SUB

Subtract the contents of aaaa from the contents of the A register. The difference appears in the A register.

SUA
13

SUBTRACT ABSOLUTE

Subtract the absolute value of the contents of aaaa from the contents of the A register. The difference appears in the A register.

MUL

Multiply the contents of aaaa by the contents of the A register. The ten low-order digits of the product appear in the R register; the high-order digits are in the A register.

DIV

DIVIDE

The contents of the R register are the ten loworder digits of the dividend; the contents of the A register are the high-order digits of the dividend. Divide the dividend by the contents of aaaa. The quotient appears in the A register, the remainder in the R register.

RND
16

If the high-order digit in the R register is greater than or equal to 5 , add 1 to the contents of the A register.

FAD
22

Add the floating-point number in aaaa to the floating-point number in the A register. The floatingpoint sum appears in the A register.

FAA

FLOATING ADD ABSOLUTE

Add the absolute value of the floating-point number in aaaa to the floating-point number in the A register. The floating-point sum appears in the A register.

FLOATING SUBTRACT

Subtract the floating-point number in aaaa from the floating-point number in the A register. The floatingpoint difference appears in the A register.

FSA
23

FLOATING SUBTRACT ABSOLUTE

Subtract the absolute value of the floating-point number in aaaa from the floating-point number in the A register. The floating-point difference appears in the A register.

FMU
FLOATING MULTIPLY

Multiply the floating-point number in aaaa by the floating-point number in the A register. The low-order digits of the floating-point product appear in the R register; the high-order digits are in the A register.

FDV

The contents of the R register are the low-order digits of the floating-point dividend; the high-order digits are in the A register. Divide the floating-point dividend by the floating-point number in aaaa. The floating-point quotient appears in the A register.

MANIPULATION, INFORMATION TRANSFER

SHIFT RIGHT A

Shift the contents of the A register, excluding the sign digit, nn positions to the right. Digits shifted out of the A register are lost; as each digit is shifted out, a highorder zero is entered in the A register.

SRT
48
SHIFT RIGHT A AND R

Shift the contents of the A and R registers, together, but excluding the sign digits, nn positions to the right. Digits shifted out of the low-order position of the R register are lost; as each digit is shifted out, a highorder zero is entered in the A register. The sign of the \mathbf{R} register is changed to the sign of the A register.

SRS
48
SHIFT RIGHT A WITH SIGN

Shift the contents of the A register, including the sign digit, nn positions to the right. Digits shifted out of the low-order position of the A register are lost; as each digit is shifted out, a zero is entered in the sign-digit position.

SLA

49

Shift the contents of the A register, excluding the sign digit, nn positions to the left. This is a circulating shift: as each digit is shifted out of the high-order position, it enters the low-order position of the A register.

SLT
SHIFT LEFT A AND R

Shift the contents of the A and R registers, together, but excluding the sign digits, nn positions to the left. This is a circulating shift: as each digit is shifted out of the high-order position of the A register, it enters the low-order position of the R register. The sign of the A register is changed to the sign of the R register.

SLS

49
SHIFT LEFT A WITH SIGN

Shift the contents of the A register, including the sign digit, nn positions to the left. This is a circulating shift: as each digit is shifted out of the sign-digit position, it enters the low-order position of the A register.

LDR

Replace the contents of the R register by the contents of aaaa.

LDB
42

Replace the contents of the B register by the four low-order digits of aaaa.

LBC

42
LOAD B COMPLEMENT

Replace the contents of the B register by the 10's complement of the number which is the content of the four low-order digit positions of aaaa.

LSA
LOAD SIGN A

Replace the sign digit of the A register by n.

STA
STORE A

| \pm | s, L | f | 0 | 4,0 | a, a, a, a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Replace the contents of the specified partial-word field in aaaa, or the contents of the entire word, by the contents of the corresponding field in the A register.

STR
STORE R

Replace the contents of the specified partial-word field in aaaa, or the contents of the entire word, by the contents of the corresponding field in the R register.

STB 40
STORE B

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline \pm & \mathrm{s}, \mathrm{~L} & \mathrm{f} & 2 & 4 & 0 & \alpha_{1}, \alpha_{1}, \\
\hline
\end{array}
$$

Replace the contents of the specified partial-word field in aaaa by the contents of the corresponding field in the B register.

STP
44

Replace the address portion of aaaa by the contents of the P register, increased by 1.

Transfer the contents of $n n$ consecutivelyaddressed locations, beginning with the one whose address is aaaa, to the nn consecutively-addressed locations beginning with the one whose address is in the B register.

CLA

45
CLEAR A

Replace every digit in the A register by 0 .

CLR

45
CLEAR R

Replace every digit in the R register by 0 .

CLB
45
CLEAR B

Replace every digit in the B register by 0 .

CLL
CLEAR LOCATION

Replace every digit in aaaa by 0 .

EXT

EXTRACT

For each digit in aaaa that is an even integer, the corresponding digit in the A register is replaced by zero.

DECISION MAKING

CFA

18
COMPARE FIELD A

Compare the contents of the specified partialword field in aaaa, or the contents of the entire word, with the corresponding field in the A register. According as the contents of the field in the A register are greater than, equal to, or less than the contents of the corresponding field in aaaa, set the COMPARISON Indicator to HIGH, EQUAL, or LOW.

CFR

18
COMPARE FIELD R

Compare the contents of the specified partialword field in aaaa, or the contents of the entire word, with the corresponding field in the R register. According as the contents of the field in the R register are greater than, equal to, or less than the contents of the corresponding field in aaaa, set the COMPARISON Indicator to HIGH, EQUAL, or LOW.

BUN
BRANCH, UNCONDITIONALLY

Transfer control to the instruction in aaaa.

BOF
BRANCH, OVERFLOW

If the OVERFLOW Indicator is on, transfer control to the instruction in aaaa; if not, control continues in sequence.

BRP
BRANCH, REPEAT

If the REPEAT Indicator is on, transfer control to the instruction in aaaa; if not, control continues in sequence.

BRANCH, SIGN A

If the sign digit in the A register equals n, transfer control to the instruction in aaa; if not, control continues in sequence.

BCH

BRANCH, COMPARISON HIGH

If the COMPARISON Indicator is HIGH, transfer control to the instruction in aaaa; if not, control continues in sequence.

BCL
BRANCH, COMPARISON LOW

If the COMPARISON Indicator is LOW, transfer control to the instruction in aaaa; if not, control continues in sequence.

BCE
BRANCH, COMPARISON EQUAL

If the COMPARISON Indicator is EQUAL, transfer control to the instruction in aaaa; if not, control continues in sequence.

BCU
BRANCH, COMPARISON UNEQUAL

If the COMPARISON Indicator is HIGH or LOW, transfer control to the instruction in aaaa; if not, control continues in sequence.

BFA

Beginning with the low-order digit of the specified partial-word field in the A register, successively higherorder digits are compared alternately with the low-order and high-order digit of nn. If equality is found, transfer control to the instruction in aaaa; if not, control continues in sequence.

BFR

BRANCH, FIELD R

Beginning with the low-order digit of the specified partial-word field in the R register, successively higherorder digits are compared alternately with the low-order and high-order digit of nn. If equality is found, transfer control to the instruction in aaa; if not, control continues in sequence.

BCS
BRANCH, CONTROL SWITCH

If PROGRAM CONTROL SWITCH u is on, transfer control to the instruction in aaaa; if not, control continues in sequence.

HLT
00
HALT

Stop all operation.

NOP

Do nothing: proceed immediately to the next instruction in sequence.

INSTRUCTION MODIFICATION, TALLYING

IBB
INCREASE B, BRANCH

Increase the contents of the B register by nnnn. If overflow occurs, control continues in sequence; if not, transfer control to the instruction in aaaa.

DBB

21

Decrease the contents of the B register by nnnn. If underflow occurs, control continues in sequence; if not, transfer control to the instruction in aaaa.

IFL
INCREASE FIELD LOCATION

Increase the contents of the specified partial-word field in aaaa by nn. If overflow occurs, set the OVERFLOW Indicator on.

DFL
DECREASE FIELD LOCATION

Decrease the contents of the specified partial-word field in aaaa by nn. If underflow occurs, set the REPEAT Indicator off; if not, set the REPEAT Indicator on.

DLB

DECREASE FIELD LOCATION, LOAD B

Decrease the contents of the specified partial-word field in aaaa by nn. If underflow occurs, set the REPEAT Indicator off; if not, set the REPEAT Indicator on. In either case, load the B register with the modified partialword field.

MAGNETIC TAPE

MTS

MAGNETIC-TAPE SEARCH

$$
\pm=0 \text { or } 1:
$$

Search on unit u, lane hh, for the block whose first word is identical with the word in aaaa.

Searching is done independently of Computer control.

MFS
 MAGNETIC-TAPE FIELD SEARCH

$\pm=4$ or 5 :
The boundaries of a partial-word field are specified in the B register. Search on unit u, lane $h h$, for the block the specified part of whose first word is identical with the corresponding part of the word in aaaa.

Searching is done independently of Computer control.

MTC

$$
\pm=0 \text { or } 1:
$$

Select unit u , lane hh. Scan in the forward direction for the block whose $\mathrm{k}^{\text {th }}$ word is identical with the word in aaaa.

Scanning is done independently of Computer control.
MFC

MAGNETIC-TAPE FIELD SCAN

$$
\pm=4 \text { or } 5:
$$

The boundaries of a partial-word field are specified in the B register. Select unit u , lane hh. Scan in the forward direction for the block the specified part of whose $k^{\text {th }}$ word is identical with the corresponding part of the word in aaaa.

Scanning is done independently of Computer control.

MRD

MAGNETIC-TAPE READ

Read n blocks from unit u into consecutivelyaddressed locations beginning with aaaa. B-register address-modification of designated input can be programmed. Automatic transfer of control occurs when an end-of-file control block is sensed. Parity is checked with automatic re-trial if an error is detected.

MRR
MAGNETIC-TAPE READ, RECORD

Read n blocks-including prefaces-from unit u into consecutively-addressed locations beginning with aaaa. B-register address-modification of designated input can be programmed. Automatic transfer of control occurs when an end-of-file control block is sensed. Parity is checked with automatic re-trial if an error is detected.

MIW
MAGNETIC-TAPE INITIAL WRITE

Write on "clean" (i.e., just edited) tape on unit u. Write n blocks, each kk words long, from consecutivelyaddressed locations beginning with the word in aaaa. The preface word, which contains the number kk, is written just before the first data word of the block.

If magnetic end-of-tape is sensed, turn on END-OF-TAPE Indicator.

MIR 55
MAGNETIC-TAPE INITIAL WRITE, RECORD

Write on "clean" tape on unit u; write n blockswith preface words-beginning with the preface word in location aaaa; take words from consecutively-addressed locations thereafter.

If magnetic end-of-tape is sensed, turn on END-OF-TAPE Indicator.

MOW

MAGNETIC-TAPE OVERWRITE

Overwrite n blocks on unit u, each block kk words long; take words from consecutively-addressed locations beginning with the word in aaaa.

MOR

MAGNETIC-TAPE OVERWRITE, RECORD

Overwrite n blocks on unit u beginning with the preface word in location aaaa; take words from consecu-tively-addressed locations thereafter.

MPF
MAGNETIC-TAPE POSITION, FORWARD

Move tape on unit u, in the forward direction, past n blocks.

This operation is executed independently of Computer control.

MPB

MAGNETIC-TAPE POSITION, BACKWARD

Move tape on unit u, in the backward direction, past n blocks.

This operation is executed independently of Computer control.

MPE

MAGNETIC-TAPE POSITION AT END OF INFORMATION

Move tape on unit u to the "end of information." Stop prepared to (initial) write the next block.

This operation is executed independently of Computer control.

MLS
MAGNETIC-TAPE LANE SELECT

On unit u, select the read-write head specified by hh. There is no tape movement.

This operation is executed independently of Computer control.

MRW
50
MAGNETIC-TAPE REWIND

Rewind unit u. Select lane hh at completion of rewind.

Rewinding occurs independently of Computer and Magnetic-Tape Control Unit control.

MDA
MAGNETIC-TAPE REWIND, DE-ACTIVATE

Rewind unit u. Select lane hh at completion of rewind and set interlocks which cause alarm if unit is referred to before interlocks are reset manually.

Rewinding occurs independently of Computer and Magnetic-Tape Control Unit control.

MIB

MAGNETIC-TAPE INTERROGATE, BRANCH

If unit u is ready, transfer control to the instruction in aaaa; otherwise, control continues in sequence.

MIE
MAGNETIC-TAPE INTERROGATE END-OF-TAPE, BRANCH

If the END-OF-TAPE Indicator on unit u is on, transfer control to the instruction in aaaa; otherwise, control continues in sequence.

PAPER TAPE
PRD
03
PAPER-TAPE READ

Read $n n$ words, from unit u, into consecutivelyaddressed locations beginning with aaaa. Automatic alphanumeric translation is provided. B-register addressmodification of designated input can be programmed. A control word in paper tape permits overriding of $n n$.

PRB

04

PAPER-TAPE READ, BRANCH

Read from unit u, the words from paper tape going into consecutively-addressed locations beginning with aaaa. Continue reading until a control word in paper tape is encountered: execute the instruction which is the control word. Automatic alphanumeric translation is provided. B-register address-modification of designated input can be programmed.

PRI

PAPER-TAPE READ, INVERSE FORMAT

(Certain business machines punch sign digit last: this is "inverse format.")

Read from unit u; read nn words into consecu-tively-addressed locations beginning with aaaa. B-register address-modification of designated input can be programmed. A control word in paper tape permits overriding of nn .

PWR
PAPER-TAPE WRITE

Punch, or print, nn words from consecutivelyaddressed locations, beginning with the contents of aaaa, using punch or printer u , respectively.

PAPER-TAPE WRITE INTERROGATE, BRANCH

If punch or printer unit u is ready, transfer control to the instruction in aaaa; otherwise, control continues in sequence.

CARDATRON

CRD
60
CARD READ

Transfer the contents of the buffer of input unit u into consecutively-addressed locations, beginning with aaaa. The information is edited automatically by the format band selected by a punch in the card whose contents are in the buffer. B-register address-modification of designated input can be programmed. If r is odd, the next card is not read into the buffer.

Transfer of information from the next card to the buffer is independent of Computer control. That is, reloading of the buffer is accomplished automatically under Cardatron control.

CWR
61

Transfer to the buffer of output unit u, words from consecutively-addressed locations beginning with aaaa. Edit the information using format band f .

Print one line, or punch one card, with the contents of the buffer, controlling the punch or printer as specified by c.

Printing or punching is independent of Computer control.

CARD READ, FORMAT LOAD

Load format band f, input unit u, with the editing control-stream occupying the 29 consecutively-addressed locations beginning with aaaa.

CARD WRITE, FORMAT LOAD

\pm	u	i	i	f	6,3	a_{1}	α,

Load format band f, output unit u, with the editing control-stream occupying the 29 consecutively-addressed locations beginning with aaaa.

CRI
CARD READ INTERROGATE, BRANCH

If input unit u is ready, transfer control to the instruction in aaaa; otherwise, control continues in sequence.

CWI

CARD WRITE INTERROGATE, BRANCH	\pm	u	i	i	i	6	5	a_{1}	α	α	α

If output unit u is ready, transfer control to the instruction in aaaa; otherwise, control continues in sequence.

KAD
08

KEYBOARD ADD

Activate the Console keyboard. The number entered on the keyboard is added to the contents of the A register. The sum appears in the A register.

SPO
SUPERVISORY PRINT-OUT

Print, on the Supervisory Printer, nn words from consecutively-addressed locations beginning with the contents of aaaa. Alphanumeric translation is automatic.

