
BURROUGHS
A REPRESENTATION OF ALGOL FOR USE WITH

i\LGEBR~f\IC
THE BURROUGHS 220 DATA-PROCESSING SYSTEM

COMPILER

a reference manual

BULLETIN 220-21011-D

January 1961

BURROUGHS

ALGEBRAIC

Sales Technical Services

EQ_UIPMENT & SYSTEMS

~1ARKETING DIVISION

BURROUGHS CORPORATION
Detroit 3 2, Michigan

Copyright 1961

by the BURROUGHS Corporation

This manual may be reproduced either in whole or
in part with prior permission of the publisher.

CARDA TRON is a registered trade-mark of the
BURROUGHS Corporation.

SECOND PRINTING

MONOTYPE COMPOSITION ~ PRINTED IN USA

table of contents

I. INTRODUCTION VI. BASIC CONTROL STATEMENTS

ELEMENTS OF THE COMPILER LANGUAGE TRANSFER OF CONTROL 6-1 II.
The GO TO Statement

CHARACTERS 2-1 The SWITCH Statement
Scientific Character Set and Hollerith Equivalents TERMINATION OF COMPUTATION 6-1 Metalinguistic Symbols

The STOP Statement
IDENTIFIERS 2-1 CLAUSES 6-2
QUANTITIES 2-2 CONDITIONAL EXECUTION 6-2
VARIABLES 2-2 The IF Statement
CONSTANTS 2-2 The Alternative Statement

Integer Constants CONTROL OF ITERATIONS 6-4
Floating-point Constants The UNTIL Statement
Boolean Constants The FO!t Ste.te!!!e!!.t

EVALUATED FUNCTIONS 2-3

Ill. EXPRESSIONS VII. SUBPROGRAMS

ARITHMETIC EXPRESSIONS 3-1 SUBROUTINES 7-1

Omission of the Multiplication Sign The SUBROUTINE Declaration

The Type of an Arithmetic Expression The RETURN Statement

Arithmetic Combinations of Integers The ENTER Statement

BOOLEAN EXPRESSIONS 3-2 FUNCTIONS 7-2

Boolean Operations The FUNCTION Declaration

Relational Operators Intrinsic Functions

Construction of Boolean Expressions PROCEDURES 7-3
Precedence of Boolean Operations Arguments of Procedures

Functions Used as Arguments
IV. STATEMENTS FUNCTIONS DEFINED BY PROCEDURES 7-4

THE ASSIGNMENT STATEMENT 4-1 The Procedure-Call Statement
Arithmetic Assignment Statements Machine-Language Procedures
Generalized Assignment Statement Declaration of Procedures

THE GRAMMAR OF STATEMENTS 4-2 The List of Parameters
Compound Statements Independence of Declared Procedures
Statement Labels Declarations within Procedures

Parameters of Value and Name v. BASIC DECLARATIONS Construction of Procedures
DECLARATIONS OF TYPE 5-1 Examples of PROCEDURE Declarations

Construction of Declarations of Type EXTERNAL Declarations
The Use of Prefixes
Declaration by Default VIII. INPUT-OUTPUT TECHNIQUES

THE ARRAY DECLARATION 5-2 INPUT OF INFORMATION 8-1
Construction of ARRAY Declarations The INPUT Declaration
Filling an Array Input Procedures

THE COMMENT DECLARATION 5-3 The READ Procedure
THE FINISH DECLARATION 5-3 Preparation of Data Cards

Ht

BURROUGHS ALGEBRAIC COMPILER

Table of Contents (continued)

INPUT-OUTPUT TECHNIQUES (continued)
APPENDIX D. TRANSLITERATION RULES

OUTPUT OF INFORMATION 8-2
The OUTPUT Declaration APPENDIX E. CONSTRUCTION OF MACHINE-
Output Procedures LANGUAGE PROGRAMS
The WRITE Procedure LINKAGE TO PROCEDURES E-1

CONSTRUCTION OF FORMATS 8-3 PARAMETERS OF PROCEDURES E-2
The FORMAT Declaration

RELOCATION CONVENTIONS E-2 Repeat Phrases
Editing Phrases USE OF EQUIVALENCE CARDS E-2
Alphanumeric Insertion Phrase MAGNETIC-TAPE OPERATIONS E-3
Activation Phrases PREPARATION OF EXTERNAL PROGRAMS E-3

IX. OVERLAY TECHNIQUES LIBRARY PROCEDURES E-4

THE SEGMENT DECLARATION 9-1 THE ERROR-MESSAGE PROCEDURE E-5
THE OVERLAY STATEMENT 9-2 INPUT-OUTPUT PROCEDURES E-5

x. DIAGNOSTIC FACILITIES THE FORMAT DECLARATION E-7

ERROR MESSAGES DURING COMPILATION 10-1 APPENDIX F. LIBRARY PROCEDURES
THE MONITOR DECLARATION 10-3 SPECIMEN DESCRIPTION F-2

Symbolic Memory Printout
FLOAT F-3 Statement Monitoring at Object Time

ERROR MESSAGES FROM LIBRARY FIX F-4
PROCEDURES 10-4 FX*FX F-5

LISTING OF THE COMPILED PROGRAM 10-4 FL*FX F-6

XI. PROGRAMS IN ALGOL FL*FL F-7

EXAMPLES OF PROGRAMS FX*FL F-8

Harmonic-Boundary Values 11-1 SQRT F-9
Survey Traverse Calculations 11-2 EXP F-10
Optical Ray-Tracing 11-3 LOG F-11
Householder Reduction 11-4 SIN F-12
Crout 's Method 11-4 cos F-13

APPENDIX A. OPERATING INSTRUCTIONS TAN F-14
PREPARATION OF SYMBOLIC DECKS A-1 ENTIRE F-15
COMPILING A PROGRAM A-1 ARCSIN F-16
OPERATION OF THE FINISH STATEMENT A-2 ARCCOS F-17
DEFERRED EXECUTION OF A COMPILED ARCTAN F-18

PROGRAM A-2
SINH F-19

DUMPING A COMPILED PROGRAM A-2
COSH F-20

DUPLICATING THE COMPILER-SYSTEM TAPE A-2
TANH F-21

LIBRARY MAINTENANCE A-2
ROM XX F-22

APPENDIX B. UST OF RESERVED IDENTIFIERS READ F-23

APPENDIX C. SYNTACTICAL DESCRIPTION OF THE WRITE F-24

COMPILER LANGUAGE INDEX 1-1

SYSTEM REQUIREMENTS

ORGANIZATION
OF THE MANUAL

ADDITIONAL COPIES

THIS BOOK IS INTENDED as a reference manual in the
use of the BURROUGHS ALGEBRAIC COMPILER. The

BURROUGHS ALGEBRAIC COMPILER is a hardware repre
sentation of ALGOL; it accepts symbolic programs and
produces machine-language programs for the BURROUGHS
220 Electronic Data Processing System. A full descrip
tion of the evolution and present status of ALGOL is
available elsewhere. t
This compiler utilizes a BuRROUGHS 220 consisting of at
least the following components: 5,000 words of core
storage, CARDATRON,® with one input and one output
(LINE PRINTER) station, and two magnetic-tape storage
units.

The compiler itself consists of approximately 3,500 in
structions and 2, 000 words of stored tables.

The compiler reads the symbolic program from punched
cards and prints out a copy on the LINE PRINTER. This
listing includes a count of the cells used by the compiled
program, together with any diagnostic messages to the
programer. The machine-language representation of the
compiled programiswrittenon magnetic tape at approxi
mately 500 instructions per minute. When all the sym
bolic cards have been processed, routines are copied
from the compiler library onto the output tape, along
with an appropriate loading routine. At the programer's
option, the output tape may also include diagnostic rou
tines tailored to the particular program which has been
compiled. Provision is made for the inclusion in the com
piled program of machine-language routines. At the end
of compilation, the compiled program may be loaded
and executed immediately.

The text of this reference manual consists principally of
definitions and rules for the use of the compiler, exam
ples of these rules, and some sample programs. A set of

t See Communications of the ACM, vol. l, no. 12, pp. 8-22; and
vol. 3, no. 5, pp. 299-313.

I . . .

introduction

appendices summarizes the text and lists some details
on the operation of the program, of the contents of the
library, etc.

Whenever a term i~ defined, it is italicized in the defin
ing sentence. References in the index to definitions are
also italicized. Script letters are used in the text to de ...
note generic representations; for example, 8 is used to
represent an expression and S to represent a statement.
(In APPENDIX D, in accordance with ALGOL representa
tion, some Greek letters have been employed.) For the
most part, other symbols represent themselves.

The examples, which have been used quite liberally,
have been employed for 'definitions by example' in only
those few cases where a formal description has proved
particularly unwieldy.

BURROUGHS CORPORATION is pleased to work closely with
the Subcommittee on ALGOL of CUE (Cooperating
Users' Exchange) in the task of maintaining this and
other literature concerning the BURROUGHS ALGEBRAIC
COMPILER.

Although every effort has been made to publish this
manual without errors, success in such an endeavor is
seldom completely attained. Constructive criticisms of
the contents of this manual will be appreciated by the
authors and publishers. Please address them to:

MANAGER, AUTOMATIC PROGRAMING

Burroughs Corporation
460 Sierra Madre Villa
Pasadena, California, USA

Additional copies of this manual may be obtained
from your BURROUGHS CORPORATION representative.

1-1

CHARACTER SETS

IDENTIFIERS

QUANTITIES

VARIABLES

CONSTANTS

CHARACTERS

THE BURROUGHS ALGEBRAIC COMPILER employs a
character set which is commonly available as a var

iant of the usual Hollerith code. t These characters are:

Sdsntifk
Character set

Hol:erlth

Equivalents

THE ROMAN ALPHABET
A, B, ... , Z A, B, ... , Z

THE ARABIC NUMERALS
0, 1, ... , 9 0, 1, ... , 9

SPECIAL CHARACTERS

+

I
*

(space)

&
- or@

3
D

' $
I
*

(space)

In addition, some multiples of characters are given
meaning as though they constituted a single character:

ellipsis

** base-10 scale factor appended

t All of the examples in this manual are printed with the scientific
character set. If card equipment with FORTRAN characters is
used, these same characters will be printed, with the exception
of the semicolon (;), which will print as a dollar sign ($). (The
type wheel is variation 'F'.) Card equipment with 'standard'
characters will print in Hollerith equivalents.

t See page 10-3 for restriction on the length of identifiers to be
monitored.

II ...

elements of the
compiler language

From these characters statements are constructed which
are translated by the compiler into the form suitable for
execution by the BURROUGHS 220.

Metalinguistic Symbols

In addition to the script letters used in the text, some
symbols will be employed with metalinguistic signifi
cance. These symbols include:

SYMBOL

0
p

0

I

IDENTIFIERS

SIGNIFICANCE

f ~s eq?iv~lent t~
l nas tne torm ot

ellipsis

brackets

relational operator

arithmetic operator

or

space

The fundamental construct of the compiler language is
the identifier. Identifiers are used to name the various
things which make up a program, for example, variables,
functions, labels, subroutines, etc. An identifier is com
posed of a string of letters, or letters and digits, not ex
ceeding 50 characters in length. t The first character of
an identifier must be a letter; no special characters (in
cluding spaces) may be embedded within an identifier.

In addition, a few identifiers are reserved for special use
as operators, punctuation marks, and as names of li
brary functions.

These reserved identifiers may not be used l>y the prOfjramer
in any context other than that set down in this manual. A
list of the reserved identifiers is given in APPENDIX B.
Any other identifiers may be used at will.

2-1

BURROUGHS ALGEBRAIC COMPILER

EXAMPLES:

z
GAMMA
SN2Nl
SIERRAMADREVILLAAVENUE
A374
YOUNGLADYOFCHICHESTER540
RUNGEKUTTAGILL

QUANTITIES

The BURROUGHS Algebraic Compiler is concerned with
the manipulation of three types of quantities: Floating
point quantities, integer quantities, and Boolean quantities.

Floating-point quantities are numbers which may have
both an integral and a fractional part. They are used to
represent the class of real numbers to an accuracy of
eight significant digits, the maximum permitted by the
word length of the BURROUGHS 220. The magnitude of a
floating-point quantity must be less than 1050• Any float
ing-point quantity which is smaller in magnitude than
0.1 x io-50 is represented by zero.

Integer quantities are those numbers which do not have
a fractional part, and which represent the class of inte
gers which can be expressed in the word length of the
BuRROUGHS 220, i.e., integer quantities must be smaller
than 1010 in magnitude.

Boolean quantities represent truth values. The only val
ues for Boolean quantities are one, meaning true, and
zero, meaning false.

A program may contain quantities of any or all of these
three types. The programer assigns the types of the
variables, evaluated functions, and expressions which
appear in his program. (See CHAPTER V.) The type of a
constant depends upon context and form.

VARIABLES

Variables treated by this compiler are of two kinds
simple variables and variables with subscripts. A simple
variable represents a single quantity and is denoted by
an identifier; a variable with subscripts represents a single
element of an array and is denoted by the identifier
which names the array, followed by a subscript list en
closed in parentheses. The list consists of arithmetic
expressions separated by commas.

EXAMPLES:

Simple Variables

x
ALPHA
Cl3

Variables with Subscripts

A(l,J)
M(I + 1, J + 1)
V(F(P + 1), 12 + Q)
Z(W(T), X(T), Y(T), Z(T))
C{13}

The expressions (see CHAPTER III) which make up the
subscripts of a variable with subscripts may be of any
complexity. Even floating-point values are allowed, in
which case the floating-point number is truncated-the
fractional part dropped-to an integer. Each subscript
must have a value which is not less than unity and not
greater than the maximum specified for that array by
the ARRAY declaration (see CHAPTER V). The number
of subscript expressions must equal the number of di
mensions of the array.

Whether a variable represents a floating-point, integer,
or Boolean quantity is determined by the 'declaration of
type' described in CHAPTER V.

CONSTANTS

Integer Constants

Integer constants are represented by a string of digits.
A maximum of ten significant digits is allowed. Leading
zeros are ignored. Spaces may not be imbedded within
an integer.

EXAMPLES:

0
17

16384
2111

Floating-Point Constants

Floating-point constants are represented by a string of
digits which contains '.'-a decimal point. The decimal
point may not appear at the beginning or end of the string;
it must be imbedded within it. A floating-point constant
may contain a maximum of eight significant digits. Lead
ing zeros are not counted toward this maximum.

EXAMPLES:

3.1415927
43.0
0.0000617 4205

If desired, a scale factor may be appended to a floating
point constant to indicate that it is to be multiplied by
the indicated power of 10. Tpis scale factor is written as
two asterisks followed perhaps by a '+' or ' - ' sign and
then by an integer. The integer specifies the power of 10
to be used, and is limited to a two-digit number. The
magnitude of such a floating-point number must not
exceed 0.99999999 x 1049•

ELEMENTS OF THE COMPILER LANGUAGE

EXAMPLES:

2.6**5 means 2.6 X 105 or 260,000
1.7**-3 means 1.7 x 10-3 or 0.0017

A third option allows a floating-point number to be
written as an integer followed by a scale factor.

EXAMPLE:

3**+4

This is precisely equivalent to writing 3.0**+ 4 or
30,000.0. Note that a scale factor alone may not be used
to specify a floating-point number-it is not valid to use
- 2 to indicate 10-2 ; it must be written 1-2 or
l.0**-2, etc.

Boolean Constants

Only two Boolean constants are allowed: Zero (written
as 0) meansfalse, and one (written as 1) means true.

EVALUATED FUNCTIONS

The compiler allows the use of a wide variety of func
tions. In this section we will consider only the simplest
form of functional notation in order to provide a basis
for the next chapter. (CHAPTER VIII contains a complete

description of the use of functions and the manner in
which they are defined.) For the moment we will assume
that a function acts on one or more quantities called
arguments and produces a single quantity as a result.
This resulting quantity is called an evaluated function.

GENERAL FORM:

where !J is an identifier which names the function and
81 through Sq are expressions which are the arguments
of the function.

EXAMPLES:

SIN{X)
SQRT(B*2-4.A.C)
HYPERGEOM{A,B,C,Zi
LOG(SIN(THETA-ALPHA/2))
PEIRCE(P,Q)

The type of a function depends on the manner in which
the function was defined. The type required for each of
the arguments is also determined by the definition of
the function. It is the programer' s responsibility to en
sure that each of the arguments is of the proper type.

2-3

ARITHMETIC EXPRESSIONS

BOOLEAN EXPRESSIONS

ARITHMETIC RELATIONS

T HE COMPILER deals with two kinds of expressions:
Arithmetic expressions (those having numerical val

ues) and Boolean expressions (those having truth val
ues). This chapter describes the manner in which these
expressions may be combined to produce new expres
sions. Expressions must be well formed in accordance
with mathematical convention and with the rules set
forth below.

ARITHMETIC EXPRESSIONS
Arithmetic quantities are combined by means of the
operations + - · / and *. The symbol * is used to denote
exponentiation, that is, B*2 has the meaning B2. In ad
dition to these five symbols, parentheses are employed
to indicate that a specific order of evaluation is to be
followed rather than the conventional order of evalua
tion. To be explicit, it is assumed-in the absence of
parentheses to indicate otherwise-that exponentiation
is performed before multiplication, multiplication before
division, and division before addition and before sub
traction. Convention in writing algebraic expressions
suggests this ordering rather than that of assigning equal
precedence to multiplication (•)t and division(/). As is
customary in mathematical literature, the expressions
A/B/C and A *B*C are regarded as ambiguous. Pa
rentheses should be used to express the exact meaning
desired.
A variable, a constant, or an evaluated function of float
ing or integer type will in itself constitute an arithmetic
expression. Furthermore, if S1 and S2 are any arithmetic
expressions and S3 is an arithmetic expression the first
character of which is not a + or - , then each of the
following combinations is also an arithmetic expression:

81 ·S2 S1 + Sa
81/S2 81 - Sa
81*S2 +Sa
(81) -83
t Represented on card equipment as a decimal point(.).

III ...

• expressions

If S1 and S2 are both constants, the programer must
write (81)-(82), to avoid conflict with the notation for
constants.

EXAMPLES:

x + Y*2
C.SI N (N.3.1415927.F)
ARCTAN(HORIZ/VERTL) - ALPHA
(-B + SQRT(B*2 - 4.A.C))/2.A
(Z13*-3 + Z14*-3)/-17.2
I\ II • 1 I , 1 \ I\ 11 , 1 1 \ 1\111 \
n\I T J. 1 .J T J.J - n\I T J. 1J.I/ Y \.JI

Omission of the Multiplication Sign

In certain instances the '· ' representing multiplication
may be omitted. In general, this omission is possible
wherever the lack of a '·' will not result in ambiguity.

More specifically, suppose that:

f1 is an identifier specifying a simple variable, an array,
or a function;

'O is an identifier specifying a simple variable;
fil is any constant; and

is the symbol for is equivalent to; then-

)S "') • g
'O ("' "l) -(

)fil "') • fil

fil ("' fil -(
)(--)-(
filf1 "' fil • g

EXAMPLES:

4A.C
3(A + B)(A - B)
TAN (2X)ALPHA
2SIN(X)COS(X)

3-1

BURROUGHS ALGEBRAIC COMPILER

The Type of an Arithmetic Expression

The type of an arithmetic expression is determined by the
types of its constituents. Suppose that Si and 8; are in
tegral expressions and that Bx and Sy are floating-point
expressions. Further, take o to mean any of the arith
metic operations: + - · I or *. Then,

Bi o 8; is an integral expression, and

ei o Bu }
Bx o 8; are floating-point expressions.
Bx o By

In general, if either expression is floating-point, then the
result of combining them will be floating-point; if both
expressions are integral, then the combination is also
integral.

When mixed values are combined by the operations
+ - · and J , the compiler provides the program to
convert the integral value to its corresponding floating
point form. The actual computation is done in floating
point. Exponentiation is usually performed by a routine
taken from the library of the compiler. Separate entries
to this routine are provided for each of the four com
binations of integral an'1 floating-point values.

If in a mixed combination the integer is a constant, the
necessary conversion is performed at the time of com
pilation, resulting in no loss of efficiency in the object
program. For example, if Xis a floating-point variable,
the expression X + 1 will be compiled as though the user
had written X + 1.0.

Arithmetic Combinations of Integers

As mentioned in CHAPTER II, integers may be no more
than ten digits in length. In all arithmetic operations,
digits are dropped from the most significant end of the
answer to produce a ten-digit result. Thus

(734981) · (1000000) yields 4981000000;
5000000001 + 5000000001 yields 2.

Division of integers is unrounded. Thus,

3/2 yields l; 7 /11 yields O; 41/3 yields 13.

Division by zero is undefined.

BOOLEAN EXPRESSIONS

Boolean quantities may be combined by means of oper
ations to form Boolean expressions in a manner entirely
analogous to the combination of arithmetic quantities by
arithmetic operations. Boolean expressions are again
true or false, depending entirely on the truth values of
the quantities entering into the expression and the defi
nitions of the Boolean operations combining them.

3-2

Relational Operators

Another class of Boolean expressions is comprised of
those which result from a test on arithmetic expressions.
These are termed arithmetic relations, and consist of two
arithmetic expressions and a relational operator. The
latter is an operator in the sense that it performs a trans
form on the comparison to produce a truth value. Such
a truth value may be used either to effect a change of
program control, or (if the relation is enclosed in paren
theses) to produce a Boolean value true or false.

GENERAL FORMS:

First form:

81 p 82

where 81 and 82 are arithmetic expressions, and p is a
relational operator. This relation has the value true if
B1 does indeed stand in the relation p to 82; it is other
wise false. It is used only in control statements; (see
IF, UNTIL, and EITHER IF).

Second form:

(81 p 82)

This produces the Boolean value one (true) if 81 p 82

is true, and produces the value zero (false) otherwise.
Since the result is Boolean, it may be combined with
any of the other Boolean operators _previously dis
cussed. The relational operators employed in this com
piler are GTR, GEQ, EQL, LEQ, LSS, and NEQ. Their
significance is indicated in the following table.

EXPRESSION t

81 GTR 82

81 GEQ 82

81 EQL 82

81 LEQ 82

81 LSS 82

81 NEQ 82

CONVENTIONAL
MATHEMATICAL

NOTATION

81 > 82

81 ~ 82

81 = 82

81 ~ 82

81 < 82

81 ~ 82

MEANING
greater than
greater than or equal to
equal to
less than or equal to
less than
not equal to

t Spaces are required to the left and right of the relational
operator.

Within the context of this compiler, two numbers are
equal if the quantities which are their internal machine
representations are identical. Note, first, with regard to
floating-point quantities, if A- B EQL 0, it is not neces
sarily the case that A EQL B; and second, that zeros are
equal to each other regardless of sign.

EXAMPLES:

(X NEQ 0)
(ABS(L - LPRIME) LSS EPSILON)
(T GTR TMAX)

EXPRESSIONS

The compiler permits arithmetic operations to be per
formed on quantities which are not of the same type. In
similar fashion, relational operators may be used to
compare quantities which are not of the same type. If a
floating-point quantity is to be compared to an integral
quantity, the integer will be converted to its corre
sponding floating-point form prior to the comparison.
If the integer is a constant, the conversion occurs
during compilation.

Boolean Operations

The Boolean operations which are accepted by the com
piler are NOT, AND, OR, IMPL, and EQIV. These op
erations are called negation, conjunction, disjunction,
implication, and equivalence, and are defined as follows
(P and Q are Boolean quantities) :

The expression NOT P is true whenever P itself is
false; it is false whenever Pis true.

The expression P AND Q is true if and only if both P
and Q are true. If either P or Q is false, then P AND
Q is also false.

The expression P OR Q is true if either P or Q or both
are true. P OR Q is false only when both P and Q are
false.

The expression P IMPL Q is true whenever either Q is
true or both P and Q are false. If P is true and Q is
false, then P IMPL Q is false.

The expression P EQ IV Q is true if P and Q are both
true or both/ alse. If either P is true and Q is false or
P isfalse and Q is true, then P EQIV Q isfalse.

These definitions are summarized in the following table,
in accordance with this representation of ALGOL.

p Q NOTP PANDQ PORQ PIMPLQ PEQIVQ

false false true false false true true

true true false true true true true

true false false false true false false

false true true false true true false

Construction of Boolean Expressions

Any variable, constant, or evaluated function will itself
coi{stitute a Boolean expression, if it is of Boolean type.

In addition, if 61 p 82 is an arithmetic relation, and ffi 1
and ffi2 are any Boolean expressions, then each of the
following is also a Boolean expression:

(61 p 82)

NOT ffi1

ffi1 AND ffi2

ffi1 OR ffi2

ffi1 EQIV ffi2

ffi1 IMPL ffi2

(ffii)

Precedence of Boolean Operations

Conventions for the order of precedence of Boolean
operations are not so well established as are those for
arithmetic operations. However, we shall assume the
following order, which is apparently the most common:

Unless indicated otherwise by the use of parentheses, NOT
will be executed before AND; AND will be executed before
OR; OR will be executed before IMPL; and IMPL will be

· executed before EQIV.

The expression P IMPL Q IMPL R is ambiguous; par
entheses should be used to express the exact meaning
desired.

EXAMPLES:

NOT(P AND Q) OR R IMPL P OR NOT Q
NOT (NOT P} EQIV P

P IMPL P OR U AND V
(P OR Q) AND NOT (P AND Q)
(A LEQ X) AND (X LEQ B)
(ERROR LSS TOLERANCE) OR (N GTR 40)
RANDS OR (F(Z) EQL 4)
(M.N(R - 2) + 4 LSS TAN (BETA - ALPHA)) OR FLAG
(U.SINH(M) GTR M7) EQIV (V.COSH(M} GTR M12)

Any Boolean expression may appear in an arithmetic
expression, where it will in all respects behave as if it
were an integer taking on the values zero or one. In
such a case, Boolean operations will be executed prior
to arithmetic operations, unless parentheses have been
used to specify otherwise.

EXAMPLES:

G - 0.3N.(D LSS 300)
A+ V.NOT Bl OR B2

3-3

ASSIGNMENT ST A TEMENTS

GRAMMAR OF STATEMENTS

COMPOUND STATEMENTS

ST A TEMENT LABELS

THE sl,atement, S, is the fundamental unit of expres
sion in the description of an algorithm. Most of

what follows in this manual deals with the formation of
statements and their interrelation to form larger con
structs. Statements may be divided into two classes
the operational statement and the declarative statement.
Operational statements specify something that the object
program is lo do. Declarative statements give information
to the compiler about the program being compiled. After
this chapter, the word 'statement' will usually be em
ployed to mean an operational statement; a declarative
st::i_teme!!t will the!! be ~al!ed. a declaration. However,
for the present, 'statement' will stand for either sort.

The first part of this chapter discusses one particular
kind of operational statement-the assignment state
ment. The last part of the chapter deals with the gram
mar of statements in general, using assignment state
ments for examples.

THE ASSIGNMENT STATEMENT

The assignment statement specifies an expression which
is to be evaluated and a variable· which is to have the
resulting value assigned to it.

GENERAL FORM:

co = e
where "lJ is a variable and 8 is an expression. Note that
the symbol = is used in a special sense in this compiler
to signify the process of substitution. Thus X = X + 1
means 'using the current value of the variable X, eval
uate the expression X + 1, and assign the result as the
new value of X.' Although X = X + 1 is not a valid
equation, it is a well-formed operational statement, and
the compiler will carry out the indicated substitution.
Thus the following valid algebraic expression

X*2 = Y + 2,

IV ...

statements

has no meaning to the compiler, whiJe

X =SQRT (K)

is a valid statement, and can be evaluated by a compiled
program, which then assigns the value of fK to the
variabie X.

Arithmetic Assignment Statements

If the variable "lJ in "lJ = e is of integer or floating-point
type, then we have an arithmetic assignment statement.
If "lJ is an integer and e is floating-point, then the value
of c; wiii be converted to integer form (truncating any
fractional part) before the assignment is made. If \J is
floating-point and 8 is integral, then the value of 8 will
be converted to the corresponding floating-point num
ber. If e is Bqolean, it is treated as if it were integral.

EXAMPLES:

R = (-8 + SQRT(8*2 - 4A.C))/2A
FUNG= Y(I) + (Y(I + 1) - Y(l))(ARG - X(l))/(X(I + 1) - X(I))
U = X.COS(THETA) + Y.SIN(THETA)
OMEGA = 1/SQRT(l.C)
E = M.C*2
P(N) = ((2N - l).P(N - 1) - (N - 1).P(N - 2))/N
C(l,J) = C(l,J) + A(l,K).B(K,J)

Boolean Assignment Statements

If the "lJ in "lJ = e is a Boolean variable, we then have a
Boolean assignment statement. In this case, the expres
sion e must be Boolean.

EXAMPLES:

FLAG= (SWITCH4 OR SWITCH5) AND FLAGPRIME
TEST= (X NEQ 0) AND (Y NEQ 0)
M(l,J) = M{l,J) OR K(l,K) AND K{J,K)
TOGGLE3 = TOGGLE4 AND TAG OR (U LSS V)

4-1

BURROUGHS ALGEBRAIC COMPILER

Generalized Assignment Statement

GENERAL FORM:

If it is desired to assign the same value to a number of
variables, it can be accomplished in a single statement
by employing this generalized form.

Note that if the list of variables to which a value is being
assigned is of mixed type, then conversion of type will
be performed; e.g., assume X, Y, and Sare floating, and
I is integer. Then the statement

X=l=Y=S

will cause S to be truncated to an integer before storing
into I, and this truncated result floated before storing
into X. Thus, in this example, X = I = Y = S, X = Y
=I = S, and I= X = Y =Smay all give different results
when S is floating.

EXAMPLES:

v = x = y = 15.302
A(I) = B(I) = Z = 0

THE GRAMMAR OF STATEMENTS

This section discusses certain definitions and rules of the
compiler language which have to do with the writing of
statements. The basic rule of the grammar of state
ments is that statements must be separated by semicolons.

Even though a statement ends on a given line and the
next statement begins on the next line, the separating
semicolon must be indicated. The end of a line has no
meaning as punctuation.

GENERAL FORM:

,.,.,., S;S,.,.,.,

where the symbol S represents any statement. Unless
otherwise indicated, statements are performed one after
the other in the sequence in which they are written. As
many statements as desired may be written on a line
(subject of course to the physical limitations of the in
put medium), or a statement may use as many lines as
are required for its expression.

EXAMPLE:

W =A+ B; X =A - B; Y = A.B; Z = A/B

Compound Statements

It is frequently desirable to group several statements
together to form a larger construct which is to be con
sidered as a single statement. Such a construct is called
a compound statement.

GENERAL FORM:

BEGIN S1; S2; ,.,.,.,; Sn END

where S1 through Sn are statements. The words BEGIN
and END serve as opening and closing 'statement pa
rentheses.' Indeed, the symbols '(' and ')' may be sub
stituted for the words BEGIN and END with no
change in meaning.

Throughout this description of the compiler, unless the
contrary is specifically stated, the word 'statement' and
the symbol S should be construed to mean either a sim
ple or a compound statement.

Certain other constructs involving the grouping of sev
eral statements automatically constitute compound
statements. These will be discussed further in their pro
per context in CHAPTER V.

EXAMPLES:

BEGIN U = -B/2A; V = SQRT(U*2 - C/A);
Rl = U + V; R2 = U - V END

BEGINS= SIN(THETA); C = COS(THETA);
XI = C.X + S.Y; ETA= -S.X + C.Y END

(S = A(l,J); A{l,J) = A(J,I); A(J,I) = S)

Statement Labels

It is often necessary to attach a name to a statement.
This name is called a statement label£. A statement label
may consist of an identifier or of an integer. (Leading
zeros of an integer used as a statement label are without
meaning to the compiler-the statement labels 13 and
013 are in all ways equivalent.)

GENERAL FORMS:

Firslform:

d .. s

Second form:

mr .. s

where d is an identifier, mr is an integer, and Sis any
statement.

EXAMPLES:

START..SUM = 0
LEGENDRE..P(N) = ((2N - 1) P(N - 1) - (N-l)P(N - 2))/N
ROTATE..BEGIN S = SIN(THETA); C = COS(THETA);
XI= C.X + S.Y; ETA= -S.Y + C.Y END
27..BETA = ARCTAN(HORIZ/VERTL) - ALPHA

When labeling a compound statement, the programer
may repeat the statement label after the word END.
This may be done for readability of the print-out pro
duced during compilation; the compiler itself makes no
use of the information.

STATEMENTS

GENERAL FORM:

EXAMPLES:

ROOTS .. BEGIN U = -B/2A; V = SQRT(B*2 - 4.A.C)/2A;
RI= U + V; R2 = U - VEND ROOTS

In those cases where it is necessary during the running
of a program to transfer from a point in a BEGIN NW
END clause to a point just before the word END, a
labeled dummy statement is employed. This statement
label, which does not in itself produce any action, takes
the form of an identifier followed by two perjods, direct
ly preceding the word END which terminates the group
of statements. An example of this is shown on page 6-5,
SEARCH OF A RECTANGULAR GAME FOR A SADDLE POINT.

GENERAL FORM:

BEGIN S1; S2; NW; Sn; £~.END

It is sometimes necessary to introduce a section of ma
chine-language coding into the compiled program, which
will then act in all respects like a statement. To do this,
one employs the declarator EXTERNAL STATE
MENT in the program.

GENERAL FORM:

EXTERNAL STATEMENT£

The identifier£ serves as the label of the EXTERNAL
STATEMENT.

The definition of the statement, i.e., the machine-lan
guage program itself, appears after the FINISH declara
tor of the symbolic program. (See APPENDIX E, Con
siruciion of Machine-Language Programs).

4-3

TYPE

ARRAY

COMMENT

FINISH

T HE DECLARATIONS OF TYPE-FLOATING, REAL,
INTEGER, and BOOLEAN are defined in this

chapter, together with the ARRAY, COMMENT, and
FINISH declarations. These do not exhaust the entire
set of declarations available to the programer; however,
the others constitute separate. subjects in themselves
and are therefore reserved for later chapters.

Declarations determine how the compiled program will
treat certain of its elements. It is thus necessary to pre
cede the use of an element with such a declaration.

DECLARATIONS OF TYPE

Declarations of type are used to indicate that a specified
set of identifiers represent quantities of a given type
(floating-point, integer, or Boolean). By the use of pre
fixes, entire classes of identifiers are declared to be of a
given type. In addition, it is possible to declare that a
variable not appearing in any declaration of type is of a
given type.

Construction of Declarations of Type

GENERAL FORM:

FLOATING
..-..-..,

3£ --

REAL 3£.J - ' '. (__

INTEGER 3£
BOOLEAN 3£

where 3£ is a type list to be defined below. These state
ments declare the identifiers given in 3£ to be of float
ing-point, integer, and Boolean types. (FLOATING and
REAL produce equivalent results in the compiler.) A
type list consists of a sequence of entries separated by
commas. Possible entries include identifiers, identifiers
followed by blank subscripts, and prefixes.

EXAMPLE:

INTEGER I, J, K, L, Z, GCD(,), TABLE()

v ...

basic declarations

(Note that the use of a pair of parentheses following an
identifier in a declaration of type has no effect on the
compiled program; they are there only for the conven
ience of the programer.)

EXAMPLE:

BOOLEAN {SWl, SW2, FLAG, TOGGLE(,,))

The Use of Prefixes

If desired, one may put a prefix into a type list rather
than use an identifle~. A p;eftx consists ~{an identifier
followed by three periods. The maximum number of
characters is five, for an identifier used for this purpose.

GENERAL FORM:

!1 •••

EXAMPLE:

MQR4 ...

The appearance of this prefix in a declaration of type
means that any variable, function, or array, the identi
fier of which has MQR4 as its first four characters, and
which is not otherwise declared, is of the specified type.

It is possible for prefixes to introduce apparent ambi
guities. Consider, for example,

FLOATING ABCD, AB4; INTEGER AB ... ;
BOOLEAN ABC ...

What are the types of AB13, ABCD, ABCDEF, AB4,
and ABS? The rule governing this situation is: Unless
specifically indicated in a type list, an identifier is matched
against the longest applicable prefix. Thus, the above
identifiers are of integer, floating, Boolean, floating, and
integer types, respectively.

5-1

BURROUGHS ALGEBRAIC COMPILER

Declaration by Default

The word OTHER WISE may be written in lieu of a
type list. This form indicates that any name of a vari
able, array, or function not specifically declared and not
matching any of the prefixes is to be of the type denoted
by this declaration. If no such statement is given, any
undeclared variable, array, or function will be assumed
to be floating-point. This construction may be called
declaration by default.

EXAMPLES:

BOOLEAN SW, P,Q,R; FLOATING X,Y,Z,F();
INTEGER OTHERWISE

INTEGER I, J, K, N, M ... , G; BOOLEAN OTHERWISE

To repeat the remark made in the introduction of this
chapter: The type of an identifier must be declared before
that identifier is used in any other statement. If an identi-
fier is used prior to a declaration of type it is declared, by
default, as FLOATING.

THE ARRAY DECLARATION

The ARRAY declaration provides a means of referring
to a collection of numbers by the use of a single identi
fier, and at the same time specifies to the compiler the
structure which is to be imposed on this collection.

Arrays in this compiler are restricted to those of rec
tangular construction in n-dimensional space.

If the identifier of an array is declared in a declaration
of type, then that declaration of type must precede the
ARRAY declaration.

Construction of ARRAY Declarations

An array must have been described by an ARRAY de
claration prior to the use of any variable with subscripts
which represents an element of that array.

GENERAL FORM:

ARRAY £9, £9, ,.,...,, £9

where £fl's are list items of the array declarator list.
These list items take on two general forms:

First form:
9 (~i, ,.,...,, ~q)

Second form:
9 (~i, ~. ~q) = (mr, mr, mr, ,.,...,, mr)
Both of these forms declare fl to be an array of q dimen
sions. Each dimension contains the number of elements
given by the corresponding value of~; hence the value
of ~ is the maximum which a corresponding subscript
expression may assume.

The second form is used to set initial values for the ele
ments of the array at load time; see Filling an Array,
below.

EXAMPLE:

ARRAY (M(3,4), CHAR (6,6,6), VECTOR (100))

This declaration reserves twelve cells in storage for the
two-dimensional array M, 216 cells for the three-dimen
sional array CHAR, and 100 cells for the one-dimen
sional array VECTOR.

At the programer's option, the list of arrays being de
clared may be enclosed in parentheses to improve the
readability of the symbolic program. Such use of these
parentheses will have no effect on the compilation.

Filling an Array

An item in an ARRAY declaration may have appended
to it a list of values to be assigned at the beginning of
computation to the elements of the array. Referring
to the second form, above:

Second form:

n (~i, ~, ~q) = (mr,mr,mr, ,.,...,, mr)
The quantities mr are constants (with their respective
signs) which are placed in the positions of the array 9.

(The compiler will, if necessary, convert these constants
at the time the program is compiled to agree in type
with that of the identifier 9.)

EXAMPLE:

ARRAY Q(3,2) = (7.3, 9.1, 4, 127.3, +4.19, -2.2)

Assuming Q has been previously declared to be floating,
this declaration will cause the matrix Q(I, J)

[

7.3 9.1]
4.0 127.3
4.19 -2.2

to be available in memory when the compiled program
is loaded.

It is not necessary to fill up the entire array in this
manner. Cells to which no constant is assigned are
cleared to zero at the time the program is loaded from
tape.

Referring again to the second form above, the con
stants mr are placed in the array 9 in the following order:

The first subscript is (1, 1, ... , l, 1). For each succeeding
value of mr the rightmost subscript is advanced by one.
After the rightmost subscript reaches its maximum
value, ~q, it is reset to one, and at the same time the
subscript to its left is advanced by one.

In similar fashion, the other subscripts are advanced,
the subscript in the (i - l)th position being increased by
one at the same time that the ith subscript is reset.

BASIC DECLARATIONS

These cycles continue until all data have been stored, or
until all subscripts have reached their respective maxi
mum values.

Assuming an array A(ni, n2, ... , nq-h nq), this results in
the following sequence of subscripts:

CYCLE SUBSCRIPT

1, l, ... , 1, 1
l, l, ... , 1, 2

First

l, 1, ... , 1, nq

1, 1, ... , 2, 1
1, l, ... , 2, 2

Second

1, 1, ... , 2, nq

Third l, l, ... , 3, l

ni, n2, ... , nq-1 - l, 1
ni, n2, ... , nq-1 - l, 2

(n1 • n2· ... • nq-1 - l)th

ni, n2, ... , nq-1, 1
ni, n2, ... , llq-h 2

THE COMMENT DECLARATION

The COMMENT declaration allows the programf'r to
include any clarifying remarks, identifying symbols, etc.,
in the printed compilation. The COMMENT declara
tion does not appear as part of the compiled program,
and has no effect on the program; it merely sets apart
any string of characters for printing as part of the com
piiation. Since the comment extends to the next semi
colon, a semicolon obviously cannot be used within the
string of characters.

GENERAL FORM:

COMMENTS:

where s,. is any string of characters not containing a
semicolon.

EXAMPLE:

COMMENT SMOOTH FIELD DATA AND REDUCE TO
STANDARD FORM

There is one restriction on the use of the COMMENT
declaration. It must not be the last statement of a compound
statement; that is, a COMMENT statement must not
be terminated by an 'END' or a ')'. Only a ';' may
follow the comment.

THE FINISH DECLARATION

The FINISH declaration defines the end of the program
being compiled, and terminates the compilation. A
DT1'.TTCTT .J __ l ___ .._~-- ------'- ------ __ -'-'-- l __ .._ _..__.._ _______ .._
J.' J.1 'I J.uJ.J. Uet;ICU i:1L1Ull 111u;:,1., i:tppei:tl i:t;:, Llle li:t;:,t, ;:,t,i:1Le111e11L

in any program and may appear nowhere else in the
program. The semicolon following a FINISH declara
tion is essential; it may not be omitted.

GENERAL FORM:

FINISH;

EXAMPLE:

FINISH;

(See page A-2 for the manner in which the compiler
treats the FINISH declaration.)

5-3

TRANSFER OF CONTROL

TERMINATION OF COMPUTATION

CONDITIONAL EXECUTION

T HIS CHAPTER deals with the means of expressing the
'flow of control' of an algorithm which has been de

scribed in compiler language. The order of evaluation of
equations is as important to the description of an algo
rithm as are the equations themselves. Experience has
shown that there is a relatively small number of con
structions which commonly appear in the description of
algorithms. This group of constructions has been in
cluded in the compiler language.

The basic control statements provide the abilities:

First, to transfer control to another part of the problem
(the GO TO and SWITCH statements);

second, to terminate computation (the STOP statement);

third, to execute statements contingent on given criteria
(the IF and alternative statements); and

fourth, to control iterative processes (the FOR and
UNTIL statements).

TRANSFER OF CONTROL

The GO TO Statement

The GO TO statement provides the ability to transfer
control from one part of the compiled program to another.

GENERAL FORM:

GOTO£

where £ is a statement label.

The statement with the label £ will be executed imme
diately after the GO TO statement. The word TO is
redundant and may be omitted.

EXAMPLES:

GO TO START
GO A16
GO TO 14
GO POGO

VI ...

basic control
statements

The SWITCH Statement

An extension oi the GO TO statement is provided by
the SWITCH statement. The SWITCH statement uses
the value of an expression to determine transfer of con
trol to one of a list of several statement labels.

GENERAL FORM:

SWITCH s, (£i, £2, £a, _.._, £n)

where 8 is an arithmetical expression and £1 through
£n are statement labels.

The action of a SWTTC:H statement is aR follows:

Let i equal the integral part of the expression 8; then,

If i = 0, the SWITCH statement has no effect, and con
trol continues in sequence.

If I i I ~ n, then a transfer of control is made to the
statement the label of which is in the ith position in the
list.

If I i I ~ n + 1, then the action of the SWITCH state
ment is undefined.

EXAMPLES:

SWITCH Y + 2, (Al, A2, A3)

If Y + 2 = 0, no transfer occurs.
If Y + 2 = l, transfer to the statement labeled AL
If Y + 2 = 2, transfer to the statement labeled A2.
If Y + 2 = 3, transfer to the statement labeled A3.

SWITCH 31 + J, {XA, XB, XC, YA, YB, YC)
SWITCH MOD(K,4) + 1, (ALPHA, BETA, GAMMA, DELTA)

TERMINATION OF COMPUTATION

The STOP Statement

The STOP statement serves to indicate the end of opera
tion or a temporary halt in a compiled program. (Com
putation is resumed with the next statement in sequence

6-1

BURROUGHS ALGEBRAIC COMPILER

when the START lever is depressed.) If desired, a STOP
statement may be accompanied by an expression the
value of which is displayed in the A register when the
computer stops.

GENERAL FORMS:

First form:
STOP

Second form:
STOPS

where e is any expression.

In the case of the first form, the computer stops with the
contents of the A register undefined; in the case of the
second form, the value of the expression e is found in
the A register.

EXAMPLES:

STOP
STOP 4241535362
STOP ANSWER(J)

CLAUSES

The GO TO, SWITCH, and STOP statements discussed
thus far are by themselves complete statements and de
pend in no way on other statements to complete their
meaning. The remainder of this chapter will discuss
statements which bear an analogy to the dependent
clauses of a natural language. In all cases, these clauses
affect the behavior of the statement (or compound
statement) which follows them.

A construction consisting of one or more clauses e fol
lowed by a statement S,

is in itself a compound statement, requiring no addi
tional punctuation.

Of course, if a clause is to affect the behavior of several
statements, those statements must be grouped together
as a compound statement:

e; BEGIN S1; S2; Sa; ,.,..., ; Sn END

Examples of these constructions will be given in context
below.

CONDITIONAL EXECUTION

The IF Statement

The IF statement provides the means of indicating that
the next statement in sequence is to be conditionally
executed.

GENERAL FORMS:

First form:
IF ill; s

6-2

where ill is a Boolean expression-a 'condition'-and S

is any statement.

Second form:

IF 81 p 82; s
where 81 and 82 are arithmetical expressions, p is a
relational operation, and S is any statement.

The action of the IF statement is described graphically
by means of the following flow chart:

First form:

T

s

' • I

•
t

F

If the Boolean expression ffi is true, the statement S is
executed; if ffi is false, S is skipped over. In either case,
control continues in sequence following S.

EXAMPLES:

IF (X*2 GTR 7); STOP
IF (I EQL J); A(l,J) = 1
IF (M NEQ 0) OR (N NEQ 0); GO TO LAST
IF P EQIV R OR P EQIV S; K = B(J)
IF (X LEQ 0) AND FLAG; X = ABS(X)
IF U ORV AND (X LSS 2.4); BEGIN U = O;

V = O; GO TO REPEAT END

Second form:

The most common form of condition which appears in
an algorithm is a simple relation between the magnitudes
of two arithmetical quantities. While this situation is
certainly provided for under the first form (see the first
two examples above), the slightly more concise second
form is also allowed. In those cases where the second
form is applicable and is used, the result will be the
compilation of a significantly more efficient object pro
gram. The use of the second form is recommended
wherever possible.

BASIC CONTROL STATEMENTS

EXAMPLES:

IF X*2 GTR 7; STOP

IF I EQL J; A(l,J) = 1

IF I EQL IX; SWITCH IX, (A,B,C)

IF ABS(TERM) LSS EPSILON; GO OUT

IF TGL4; IF Z GTR X + Y*2 - 4; BEGIN Z = Y - l;
X = Y/(U + Y); GO LOOP4 END

The Alternative Statement

An extended form of the IF statement is provided by
the alternative statement. A sequence of conditions is
examined-in order-until one is found which is satis
fied. A statement associated with that particular condi
tion is then executed; the remainder of the alternatives
are ignored. An option is provided for indicating a state
ment to be executed in the event that none of the se
quence of conditions is satisfied.

GENERAL FORMS:

Firslform:

EITHER IF ffi1; S1; OR IF ffi2; S2; ,......, ;
OR IF ffin; Sn END

Second form:

EITHER IF ffi1; S1; OR IF ffi2; S2;,......,;
OR IF ffin; Sn; OTHERWISE; Sn+I

Thi:> follow-1n0' flour "h~-rh1 w-111 Q&>-rv&> to &>vnl~1n th&>Q<> hxro - --- ----- · · ---o --- ·· ----- -- ·· --- --- · - -- -··r-~-- ---~~- - ·· -
statements more precisely. For the first form we have:

F

F

For the second form we have:

F

F

F

Any of the conditions marked ffi may be replaced by the
simpler form, 81 p 82, whenever desired.

In the case of the second form, no OR IF clauses need be
used. If no OR IF clauses are used, the alternative
statement becomes

EITHER IF ffi; S1; OTHERWISE; S2

which expresses the very common construction:

T F

6-3

BURROUGHS ALGEBRAIC COMPILER

EXAMPLE:

COMMENT EVALUATE POLYNOMIAL
USING RECURSION RELATION EMPLOYING PREVIOUS
VALUES WHEN POSSIBLE. N IS ORDER OF POLYNOMIAL
AND XIS ARGUMENT;
EITHER IF N EQL O; BEGIN M = 1.0**40;
PNl = 1.0 END;
OR IF N EQL 1; BEGIN M = 3; Z = X + X;
R = X + Z; PN2 = 1; PNl = X END;
OR IF (X + X EQL Z) AND (N GEQ M - 1);
GO TO RECURSE;
OTHERWISE; BEGIN PN2 = 1; PNl = X;
Z = X + X; R = X + Z; M = 3;
RECURSE.. BEGIN N = N + 1; FORM= (M, 1, N);
BEGIN R = R + Z; PN = (R.PNl - (M - l)PN2)/M;
PN2 = PNl; PNl = PN END END RECURSE END;
POLYNOMIAL= PNl

CONTROL OF ITERATIONS

The UNTIL Statement

The UNTIL statement is used primarily to provide con
trol of iterative processes where escape from the loop
depends upon a result calculated within the loop.

GENERAL FORMS:

Firslform:

UNTIL CB; s

Second form:

UNTIL 81 p 82; s
where CB is any Boolean expression, 81 p 82 is an arith
metic relation, and S is any statement or statement
group.

The action of the UNTIL statement is described graph
ically by means of the following flow chart:

T

6-4

First form:

The statement S is executed repetitively until the Bool
ean condition is satisfied; control then continues in
sequence. If CB is satisfied initially, Swill not be executed
at all.

EXAMPLES:

COMMENT TABLE LOOK-UP;
I= 1; UNTIL T(I) GEQ ARGMT; I= I+ 1

UNTIL (L - LPRIME LSS TOLERANCE) AND
(V LSS 0.01); BEGIN V = V*2; LPRIME = L;
L = ITER (L,V) END

COMMENT SUM SERIES FOR E*-X;
N = 2; E = 1; T = 1; UNTIL (ABS(T) LSS 1**-6) OR

(N GTR 30); BEGIN T = -T.X/N; E = E + T;
N = N + 1 END

Second form:

As in the case of the IF statement, the UNTIL state
ment is provided with an alternate form to produce a
more efficient object program in those cases where the
condition to be tested consists of a simple relation be
tween two arithmetic quantities.

EXAMPLES:

COMMENT SEARCH FOR ROOT OF F() ;
FA= F(A); UNTIL ABS (B - A) LSS EPS;
BEGIN U =(A+ B)/2; EITHER IF FA.F(U) GTR O; A= U;
OTHERWISE; B = U END

COMMENT ITERATED TRAPEZOIDAL INTEGRATION;
H = (B - A); I= (F(A) + F(B))/2; J = O;
UNTIL I - 2J LSS 0.003H;

BEGIN Q = H; J = I; H = H/2; X =A+ H;
UNTIL X GTR B;
BEGIN I= I+ F(X); X = X + Q END END

The FOR Statement

The FOR statement finds its principal use in the control
of an iteration where the statement or statement group
to be iterated involves a variable (the induction vari
able) which must take on a succession of values. It is
also used to cause a statement to be executed a prede
termined number of times.

GENERAL FORM:

FOR "l) = s.c; s

where "l) is a variable, fJ.C is an iteration list, and Sis any
statement or statement group.

The iteration list describes the sequence of values that
the variable "l) is to assume. The statement S will be exe
cuted for each of these values. After the iteration list has
been exhausted, the statement following S will be
executed.

BASIC CONTROL STATEMENTS

The most common form that an iteration assumes is a
triplet of expressions separated by commas and enclosed
in parentheses.

First form:
(Sr, Bs, BT)

where Sr, Bs, and BT are arithmetical expressions.

In this case, the FOR statement takes on the form:

FOR 'D = (Sr, Bs, BT); S

If the first character of 88 is not a minus sign, then the
form is equivalent to the simpler statements:

'D = a =Br;£ .. IF ct LEQ Br;

BEGIN s; 'D =a= 'D + Bs; GO TO£ END

where a represents the value of the induction variable
'D.

CV= Gr

s

In the case that the first character of Bs is a minus sign,
the FOR statement is equivalent to:

'D = a = Br; £ .. IF a GEQ BT;

BEGINS; 'D =a= 'D + Bs; GO TO£ END

and the preceding flow chart holds if we replace > by
<,and:::; by~.

Note that ifthe test fails initially (i.e., Sr > Br in the first
case, or 81 < BT in the second), the triplet is considered
vacuous, and the statement S will not be executed at all.

On exit from the FOR statement, the value of the induc
tion variable 'D is that which it has when the test first
failed. In consequence, the use of a GO or a GO TO

statement to transfer to any labeled statement included
in the statement S within such a FOR statement may
produce anomalous results.

EXAMPLES:

COMMENT EVALUATE INNER PRODUCT OF U() AND V();
DOT= O; FOR I= (1,1,N);
DOT= DOT+ U(!).V(!)

COMMENT SEARCH RECTANGULAR GAME FOR
SADDLE POINT;

FOR I = (1,1,M); BEGIN L = O;
FOR J = (1,1,N); IF A(l,J) GTR L;

BEGIN L = A(l,J); T = J END;
FORK= (1,1,M); IF A(K,T) LSS L; GO AGAIN;
GO FOUND; AGAIN .. END; GO NONE

COMMENT SOLVE EQUATIONS A(N X {N + 1)) FOR X() ;
FORK= (N + 1, -1, l); BEGIN

FOR I= (1,1,N); X(I) = A(l,1);
FOR J = (2,1,K); BEGIN

D = A(l,J)/X(l);
FOR I = (2J,N); A(I - 1, J - 1) = A(l,J) - X(l).D;
A(N,J) = D END END

The second form that an iteration list may assume is a
list of expressions separated by commas.

Second form:

Si, 82, Sa, NW' Bq

In this case, the FOR statement appears as

FOR 'D = Si, 82, Sa, NW' Sq; S

The behavior of this statement may be clarified by the
following flow chart:

CV= Gi

Execute

s

Execute

s

6-5

BURROUGHS ALGEBRAIC COMPILER

That is, the variable 'O is successively given the values
of Si, E2, and so on through Sq. The statement Sis exe
cuted once for each value which 'O assumes.

EXAMPLES:

FOR PRIME = 2,3,5,7,ll,13,17; s
FOR X = 0, 0.1, 0.5, 1.0, 5.0, 10.0; s
Third form:

The third form of an iteration list is actually a combina
tion of the first two: triplets of expressions which ap
pear in the first form may be used as members of the
list of the second form. The sequence of values which
results is the expected one.

6-6

EXAMPLES:

FOR Z = (0,1,10), (15,5,50), (100,50,1000), 5000,10000; s

This statement would cause S to be executed for Z = 0,
l, 2, ... , 9, 10, 15, 20, 25, ... , 50, 100, 150, 200, 250, ... ,
900, 950, 1000, 5000, and 10000.

FOR I = (1,1,N); FOR J = (1,1,I - 1), (I + 1,1,N);
A(l,J) = A(l,J)/A(l,I)

This statement will divide off-diagonal elements of each
row of matrix A(,) by the diagonal element of that row.
Note that the first triplet of the second FOR clause is
vacuous when I = 1; the second is vacuous when I = N.

SUBROUTINES

FUNCTIONS

!NTR!NS!C FUNCTIONS

PROCEDURES

EXTERNAL PROCEDURES

ONE OF THE MOST IMPORTANT aspects of the stored
program computing device is its ability to treat

subprograms which may be executed from any point in
the main program. The compiler language includes sev
eral methods of defining subprograms, each of which has
its particular field of application.

The declarations SUBROUTINE, FUNCTION, and
PROCEDURE will be discussed, as well as the ENTER
statement, the RETURN statement, a variation of the
assignment statement, and the procedure-call statement.
Thn.cu"'I. rl.n..nln n+;AY'\O nT'lrl C1f-n+o..-nn'1"lrif-~ no 'Y\Onnl;n fA +J...o.

.L. .J..J.VO'\..J \A.\..l'-..1.J.U.1.tA.lJ..1.V.1...J.i.:1 tA..J..L~ OU'-A.U\..1.1..1...1..V.J...l.lJO U.I.'-' t''-"V\.A..1..1.tA..J. UV U.1...1.\..I

definition and use of subprograms.

SUBROUTINES

The form of the subprogram which is conceptually the
simplest consists merely of a compound statement,
which may be executed on demand from any part of the
remainder of the program without the necessity of re
writing the actual compound statement each time its
particular effect is desired. For our purposes here, such
a compound statement will be called a subroutine.

The SUBROUTINE Declaration

The SUBROUTINE declaration states that the follow
ing compound statement represents a subroutine.

GENERAL FORM:

where fl is an identifier and S1 through Sn are the state
ments which define the effect of the subroutine. The
identifier becomes the subroutine label. In such a case,
d is not a statement label in the usual sense although it
may-at the programer' s option-follow the word END,
as may a label of any compound statement.

All the identifiers which appear in a subroutine have
precisely the same meanings as those assigned to them

VII ...

subprograms

outside the subroutine. This is what is meant when a
subroutine is said to be dependent on the program in
which it is defined.

The RETURN Statement

The compound statement which defines the subroutine
is executed starting with its first component statement.
One (or more) of the statements S1 through Sn which
compose the subroutine and which follow the SUB
ROUTINE declaration must be a RETURN statement.
Computation within the subroutine proceeds until a
RETURN statement is encountered .

GENERAL FORM:
RETURN

The RETURN statement causes control again to be re
sumed in sequence at that point at which the subroutine
was called. The RETURN statement is the only manner
in which an exit from the subroutine may be effected.
'Running off the end' of a subroutine will produce anom
alous results.

A subroutine need not be defined prior to its use. Sub
routines may be defined within other subroutines.

EXAMPLE:
SUBROUTINE EVALUATE; BEGIN U = O; V = O;

FOR I= (1,1,N); FOR J = (1,1,N); BEGIN W = O;
FOR K = (1,1,N); W = W + X(l,K).Y(K,J); IF I EQL J;
W = W - 1; U = U + ABS(W); V = MAX(V,ABS(W)) END;
U = U/N*2; RETURN END EVALUATE

The ENTER Statement

The ENTER statement is used to initiate the execution
of a subroutine (to call a subroutine).

GENERAL FORM:

ENTER !1

where d is the label of a subroutine.

7-1

BURROUGHS ALGEBRAIC COMPILER

EXAMPLE:

SUBROUTINE CHEBYSHEV;
BEGIN EITHER IF N EQL O; (M = 1.0**40; PNl = 1.0);
OR IF N EQLl; (M = 2; Z = X + X; PN2=1; PNl = X);
OR IF (X + X EQL Z) AND (N GEQ M); ENTER RECURSE;
OTHERWISE; BEGIN PN2 = 1; PNl = X; Z = X + X; M = 2;

ENTER RECURSE END;
CHEBY = PNl; RETURN;
SUBROUTINE RECURSE;
BEGIN FORM= (M,1,N);
BEGIN PN = Z.PNl - PN2; PN2 = PNl; PNl = PN END:

RETURN END END CHEBYSHEV

FUNCTIONS

Another sort of subprogram is that resulting from the
FUNCTION declaration. The reader should keep in
mind that the FUNCTION declaration is only one of
several ways in which functions are made available to
the program being compiled.

The FUNCTION Declaration

The FUNCTION declaration serves to define those
functions of a particularly simple and common kind,
which may be expressed by means of a single expression.
A function must be declared before it is used.

GENERAL FORM:

where ~ is an identifier which is to be the name of the
function, CP1 through CPn are identifiers which serve as
the parameters of the function, and S is the expression
which defines the function.

Any well-formed expression S involving the identifiers
CP i and any other identifiers appearing in the program
may be used. Identifiers used as parameters of a FUNC
TION declaration are independent of identifiers used
elsewhere in the program, even though the identifiers used
as parameters are spelled in exactly the same way as the
identifiers used in the program. (This is subject to the
provision that there is no conflict between the declara
tions of type for the identifiers used in the main program
and the desired type for those identifiers, spelled in the
same way, which are used as parameters.) The compiler
treats all other identifiers appearing in S as if they were
part of the main program.

The types (integer, floating, Boolean) of the parameters
and the type of the value of the function itself are deter
mined by the declarations of type in the same manner
as are other identifiers.

7-2

EXAMPLES:

FUNCTION ROOT (A,B,C) = (-B + SQRT(B*2 - 4A.C))/2A
FUNCTION NORM (X,Y) = SQRT((U.X*2 + V.Y*2)/(U + V))
FUNCTION NEGEXP(Z) = (1 + Z(0.2507213 + Z(0.0292732

+ 0.0038278Z)))*-4
FUNCTION ARCSINH(S) = LOG(S + SQRT(S*2 + 1))
FUNCTION STROKE(P,Q) = NOT (P AND Q)

Functions may be declared inside of subroutines.

Intrinsic Functions

There is a small group of functions called intrinsic f unc
tions, the definitions of which are a part of the compiler.
Each of the intrinsic functions is discussed in turn and a
tabular summary of them is given below.

MOD (Si, S2)

The function MOD requires two integer arguments.
The value of the function is the integer obtained as the
remainder when the first argument is divided by the
second.

MAX (Si, , Sq) and MIN (Si, , Sq)

The functions MAX and MIN must have two or more
arguments. The value of the function MAX will be the
value of the largest of its arguments (algebraically);
the value of the function MIN will be the value of the
smallest of its arguments (algebraically).

The arguments may be either integer or floating-point
expressions. If all of the arguments are integers, then
the value of the function will be an integer. If any of
the arguments is floating-point, then the result will also
be floating-point.

SIGN (s)

The function SIGN has a single argument. If this argu
ment is positive, the result will be + 1; if zero, the
result is also zero; if negative, the result is -1. The
result of the SIGN function will be of the same type as
that of its argument.

ABS (S)

The function ABS has a single argument. The result of
the ABS function will be the absolute value of the
argument and will be of the same type as its argument.

PCS (S)

The function PCS is used for interrogating the PROGRAM
CONTROL SWITCHES. Its value is Boolean in type and is
true if the indicated PROGRAM CONTROL SWITCH is ON
and false if OFF. The units digit of the argument of
the PCS function indicates which of the PROGRA:\1 CON
TROL SWITCHES, 0 through 9, is to be interrogated. The
argument may be either integral or floating-point. (If
the MONITOR declaration is employed, the use of
PCS(O) may be restricted. See page 10-3.)

SUBPROGRAMS

INTRINSIC FUNCTIONS

Name and Description Type of Function

Integral

Same as arguments

Same as arguments

{

1, x > 0
SIGN (X) = 0, X = 0

-1, x < 0

Same as argument

ABS (X) =Ix I Same as argument

PCS (N) Boolean

PROCEDURES

A procedure is a closed independent routine which may
be executed as a subprogram. This independence makes
procedures extremely important features of this com
piler. A procedure may be written and checked out
independently, a collection of these procedures then
being retained as a repository of computing techniques.
The flexibility built into the argument structure of
procedures allows a specific procedure to be tailored to
a variety of situations.

Arguments of Procedures

Whenever a procedure is used, a list of arguments is
specified. These arguments may be grouped into three
categories: Input arguments, output arguments, and
program-reference arguments. Some of these categories
may be missing, depending of course upon the specific
procedure used.

An input argument may be an expression or an array.

t These constructs are discussed at length on pages 8-3ff.

Type of Argument(s) Example

Integral X1 = 100;

X2 = 7.

Integral or
floating-point

Integral or
floating-point

Integral or

floating-point

Integral or

floating-point

Integral or
fl,..,.n+;..,.,... ...,.,..,.;..,.+
.1..1.VUlJ.1..1..1.6-.t'V.1...l..l.lJ

A = l; B = 14; C = 6.

Y =MAX (A, B, C)
y = 14.

A = 0.1; B = 14.0; C = 6.1.
Y =MIN (A, B, C)
y = 0.1.

If X = 34, SIGN (X) = +l.
If X = 0, SIGN (X) = 0.

If X = -15, SIGN (X) = -1.

If X = -45.67, ABS (X) = 45.67.

If X = +19, ABS (X) = 19.

If PROGRAM CONTROL SWITCH 3 is ON,

Dl'Q.I~\ _ 1
.L '-"U\UJ - .Lo

If OFF, PCS(3) = 0.

An output argument may be a simple variable, a vari
able with subscripts, or an array. A program-reference
argument may be a statement label, subroutine label,
input label, output label, or format label, t any function
defined by a FUNCTION declaration, or any other
procedure.

It is important to distinguish between an array and an
element of an array. A variable with subscripts is an
element of an array-it represents a single quantity. An
array, however, represents a collection of quantities.
When an array is indicated as an argument of a pro
cedure, the procedure is concerned with this entire
collection of quantities.

Suppose that the two-dimensional array named M is to
be an argument. The notation used for this argument is
M (,) , the two empty subscript positions indicating
that M is two-dimensional. It is also possible to spec
ify that a portion of some array be given to a procedure
as an argument. For example, if a procedure requires
that a certain argument be a one-dimensional array, the

7-3

BURROUGHS ALGEBRAIC COMPILER

array could be chosen as the (I + l)th row of M(,) by
writing M(I + 1,). The single empty subscript position
indicates a one-dimensioP..al array. In similar fashion,
the (L - 2K)th column of M would be written as
M(,L - 2K). In general, the name of an array fol
lowed by a subscript list which contains empty sub
script positions specifies an array with dimensions equal
to the number of empty subscript positions. This holds
whether or not some of the subscripts are specified.

To specify a program-reference argument which is to be
a label, or the name of a subroutine, input-data set,
output-data set, or format list, it is necessary only to
write the desired identifier. A function or procedure is
specified by writing the name of the function or proce
dure followed by a pair of parentheses, for example
TANH().

Note that we now have a distinction between a function
and an evaluated function. An evaluated function has
its arguments specified; it represents the quantity ob
tained by applying the definition of the function to
those arguments, and is thus an expression. A function,
however, represents only the definition.

Functions Used As Arguments

Any function-library, external, or declared-may be
used directly as a program-reference argument, with the
exception of the intrinsic functions, listed on page 7-2.
The exclusion of these intrinsic functions as program
reference arguments was intentional, since the com
piler cannot treat this case directly. If a procedure
requires a function as one of its arguments, and the
user desires to specify it as an intrinsic function, that
intrinsic function may be renamed by the use of the
FUNCTION declaration. For example, if ABS() is to
be the function specified, write

FUNCTION F(X) = ABS(X)

and give the procedure F() for its argument.

No provision has been made in the compiler for using a
function the arguments of which have been in part spec
ified and in part left empty. This situation causes little
inconvenience, however, since the FUNCTION declara
tion may be used in lieu of such a feature. For example,
assume that a function of two arguments Q(X, Y) is
available and that it is desired to specify, as an argu
ment to a procedure, that function of one argument Y
which is defined by always setting X to (A - B)*3. If
the declaration

FUNCTION QPRIME(Y) = Q((A - 8)*3,Y)

is included in the symbolic program, then using the ar
gument QPRIME() will produce the desired results.

The entry to a procedure is specified as follows:

GENERAL FORMS:

Firsljorm: <:P (.EHt; ea; CP<Ra)
where <:P is the name of the procedure being called;

9 a is the list of input arguments;
ea is the list of output arguments; and

<:P<Ra is the list of program-reference arguments.

Any but not all of the argument lists may be missing,
resulting in the following alternative forms:

Secondform: <:P (9a)
Third form: <:P (9a; ea)
Fourlhform: <:P (da; ; <:P<Ra)
Fifth form: <:P (; ea)
Sixth form: <:P (; ea; <:P<Rct)
Seventh form : <:P (; ; <:P ma)

FUNCTIONS DEFINED BY PROCEDURES

Some procedures define functions-that is, the proce
dure with a given set of arguments represents a quantity.
This is the extended form of the evaluated function
mentioned in CHAPTER II. As an example of this sort
of construction, suppose a procedure is available to
perform definite integration, such as the following:

SIMPS (A,B, EPSILON; ; F())

where

A and B are the limits of integration;

EPSILON is the maximum tolerable error in the result;
and

F() is the function to be integrated.

The value associated with the procedure is the value of
the definite integral indicated.

Now suppose that we wish to evaluate the equation:

Then the assignment statement

J = 4SQRT (SIMPS (X - Y, X + Y, 1**-6; ; G3())*3)

would suffice.

The Procedure-Call Statement

Rather than evaluating a function, a procedure may be
constructed so that it performs a complete operation in
itself. Such a procedure is called an 'extension.' All
the input-output operations executed by a compiled
program are of this kind.

SUBPROGRAMS

As an example of such a procedure, suppose that a pro
cedure called INVERT has been defined to evaluate the
inverse and also to calculate the determinant of a given
matrix. The arguments of this procedure are to be:

Input: The order of and the name of the matrix,
the determinant and inverse of which are
to be evaluated;

Output:

Program
rejerence:

The array which is to receive the inverse
and the variable which is to receive the
computed value of the determinant;

A statement label to which transfer is to
be made if the matrix is singular.

The user would then write:

INVERT (N, A(,); B(,), D; ERROR4)

to set D to the value of the determinant of N X N ma
trix A(,) and to set B equal to the inverse of the matrix
A. A transfer to the statement labeled ERROR4 will oc
cur if A(,) is singular. This procedure call constitutes a
complete (operational) statement in itself. Such a state
ment is called a procedure-call statement.

As a second example, suppose that a vector of data
points is to be treated by a least-squares smoothing
process. Suppose a procedure called SMOOTH is
available. The programer might write:

SMOOTH (K, X(); Y())

where the input parameters are first, the number of data
points K, and second, the name X() of the vector con
taining them, while the output parameter Y () is the
name of the vector to receive the computed results.

Machine-language Procedures

There are three sources by which a procedure may be
made available to a compiled program:

First, the procedure may be taken from a magnetic-tape
library of machine-language programs which define pro
cedures. These are called library procedures.

Second, a machine-language program deck defining a
procedure may be included with the cards containing
the symbolic program. These are called external proce
dures.

Third, a procedure may be defined in the compiler lan
guage. Since library procedures and external procedures
are written in the internal language of the BURROUGHS
220, any features of the computer for which no direct
provision is made in the compiler language may be made
available to a compiled program-for example, input
output equipment, multiple-precision arithmetic, detec
tion of overflow, etc. In addition, the library contains
a selection of commonly used procedures to e;aluate the

elementary functions. While many of these functions
may be expressed in the compiler language, the conven
ience of having these procedures 'on call' without the
programer directly providing their definitions makes
their inclusion in the library worthwhile.

APPENDIX E describes the preparation of library and
external procedures; APPENDIX F describes the library
procedures currently available.

Declaration of Procedures

Procedures may be made available to the compiled pro
gram by means of the PROCEDURE declaration.

GENERAL FORM:

PROCEDURE CP (~ £CP ~);
BEGIN S1; S2; NW; Sn; END

where CP is an identifier which names the procedure be
ing declared; the s's are the statements and declara
tions making up the definition of the procedure; and £CP
is the list of parameters to be used by the procedure.
As an alternative form, END may be followed by the
name of the procedure and then by a pair of parentheses.

The list of Parameters

The list of parameters of the procedure declaration con
sists of identifiers and punctuation marks, these identi
fiers serving as names of the various parameters.

lnout parameters reoresentin!! inout amuments which
ar~ va;iables or expr .. essions m'"'ust .. be si~ply identifiers.
Input parameters which represent arrays must be iden
tifiers followed by pairs of parentheses, perhaps contain
ing commas. The number of empty subscript positions
within the pair of parentheses specifies the number of di
mensions of the array. Output parameters have the same
form as input parameters and represent output variables
or output arrays. Program-reference parameters which
may be used include identifiers representing labels
(statement, subroutine, segment, input, output, or for
mat labels) or identifiers, each followed by a pair of pa
rentheses representing functions or other procedures.

The list of parameters of a PROCEDURE declaration
takes the same general form as the list of arguments of
a procedure call. Let fJCP, 0CP, and CP<RCP represent input,
output, and program-reference parameters respectively.
Then the list of parameters may assume the following
configurations:

First:
Second:
Third:
Fourth:
Fifth:
Sixth:
Seventh:

(dCP; 0CP; CP<RCP)
(dCP)
(dCP; 0CP)
(.<JCP; ; CP<RCP)
(; ea>)
(; 0CP; CP<RCP)
(; ; CP<RCP)

7-5

BURROUGHS ALGEBRAIC COMPILER

Independence of Declared Procedures

The compound statement defining a procedure is written
in terms of the identifiers appearing in the list of param
eters of the PROCEDURE declaration, together with
any other identifiers required.

The definition of a procedure should be considered as a
symbolic program which is independent of the program
in which the declaration occurs; that is, all identifiers
appearing within a PROCEDURE declaration are de
fined only in terms of the declaration itself. Identifiers
spelled identically both inside and outside of any partic
ular PROCEDURE declaration are in no way associ
ated. There is one exception to this rule: Af ler a proce
dure is declared, the identifier which names it is recognized
as such throughout the subsequent program except where it
is used as a dummy parameter for another declaration of
a procedure or function. Indeed, the definition of a pro
cedure might be construed as adding another feature to
the compiler language, since the name of a procedure
is recognized throughout the program just as are the
reserved words FOR, GEQ, etc.

Declarations with Procedures

The procedure definition must contain a sufficient num
ber of declarations to describe the identifiers appearing
either as parameters or in any other form within that
definition. Parameters which represent arrays, functions,
or other procedures are identified as such by the punc
tuation associated with them in the list of parameters.
For example, if W(, ,) appears as an input or output
parameter, W should not appear in an ARRAY declara
tion within the PROCEDURE declaration. However,
any parameters which represent quantities within the
PROCEDURE declaration must have their types speci
fied, either explicitly within a type declaration, by pre
fixes, or by default. (See CHAPTER V.) These declara
tions have no force outside the PROCEDURE declara
tion. A parameter representing a label of one sort or
another is identified as such by its inclusion in the
program-reference portion of the list of parameters
without a trailing pair of parentheses, this constituting
a sufficient identification for labels.

Parameters of Value and Name

It is necessary to distinguish two classes of parameters,
parameters of value and parameters of name.

Parameters of value are variables within the procedure.
These variables will be set to the values of their corres
ponding arguments whenever the procedure is called.
Any change in them occurring within the procedure (for
example, appearing as the left-hand member of an as
signment statement) will have no effect on the variable
or variables which make up the corresponding argument.

7-6

On the other hand, parameters of name are associated
with their corresponding arguments in all respects. For
example, if PAR is a parameter of name for a certain
PROCEDURE declaration and, for some call of that
procedure, ARG is the corresponding argument, then
the effect is exactly as though the identifier ARG were
substituted for the identifier PAR throughout the PRO
CEDURE declaration.

Input variables (or expressions) are parameters of value.
Input arrays, all output parameters, and all program
reference parameters are parameters of name. (There is
thus no real distinction between an array indicated as
an input or as an output parameter.)

Construction of Procedures

As mentioned earlier, a procedure is an independent pro
gram complete with its own declarations and statements.
This program is contained within the BEGIN'""END
pair noted in the general form. The program defining
the procedure is entered at the first statement following
the BEGIN and continues in accordance with the se
quence specified. As with the SUBROUTINE declara
tion, a RETURN statement must be included at each
exit point of the procedure to return control to the point
directly following the procedure call.

A procedure which is to serve as a function must include
a procedure-assignment statement.

GENERAL FoRM:

<P()=S

where <Pis the name of the procedure being declared and
S is an expression. The effect of this statement is to as
sign the value of e to the procedure. Immediately after
this statement is executed, a RETURN statement must
be executed.

Whenever a procedure-assignment statement is used,
the type of the procedure is determined from the dec
larations of type within the PROCEDURE declaration.

FUNCTION and SUBROUTINE declarations may ap
pear within a PROCEDURE declaration. However, one
PROCEDURE declaration may not appear within an
other procedure.

If a SUBROUTINE declaration appears within a PRO
CEDURE declaration, a RETURN statement within
the subroutine causes an exit from the subroutine, not
from the procedure.

Procedures must be declared prior lo their first use.

SUBPROGRAMS

Examples of PROCEDURE Declarations

As a first example, we shall construct a procedure to
perform linear interpolation of a tabular function of one
variable, V. The parameters of the procedure will be two
vectors, X () and Y (), representing the independent
and dependent variables, a value of the independent
variable, an integer N representing the number of en
tries in the table, and finally a statement label, RANGE,
to which transfer is made in the event that V <X(l) or
V:2::X(N). This procedure is to be used as a function, the
value of which is the result of the interpolation.

EXAMPLE:

PROCEDURE INTERP (X(), Y(), V, N; ; RANGE); BEGIN
INTEGER I, N;
IF (V LSS X(l)) OR (V GTR X(N)) ; GO TO RANGE;
l = 1; UNTIL V LEQ X(I}; I = I + 1;
INTERP() = Y(I - 1) + {Y{I - 1) - Y{I)) {V - X{I - 1))/
(X(I - 1) - X{I)); RETURN END INTERP{}

As another example, we shall construct the integration
procedure using Simpson's Rule mentioned earlier in
this chapter.

PROCEDURE SIMPS {A,B,EPSILON; ; F{)) ; BEGIN
K = L = F{A} + F{B); H = B - A;
GO TO ITER; UNTIL ABS{ {K - 2M)/K) LSS EPSILON;
BEGIN ITER .. Q = H/2; S = O; M = K;
FOR X = {A+ Q,H,B) ; S = S + F{X);
K = L + 4S ; L = {L + 2S)/2; H = Q END;
SIMPS{) = K.Q/3; RETURN END SIMPS{)

A procedure for multiplication of square matrices:

PROCEDURE MATRIMULT {N, A(,), B{,); C{,)) ; BEGIN
INTEGER I ,J ,K,N;
FOR I.= (1,1,N); FOR J = (1,1,N); BEGIN

S = O; FORK= (1,1,N); S = S + A{l,K).B{K,J};
C(l,J) =SEND; RETURN END

(Note, in calling this procedure, that the matrix C must
be different from A and B.)

The following procedure solves a set of n equations in n
unknowns.

COMMENT SOLVE EQUATIONS WITH SELECTION
OF BEST PIVOTAL ROW;

PROCEDURE JORDAN (N,A(,); X()) ;
BEGIN INTEGER l,J,K,L,N;
FORK= (N + 1, -1, 1); BEGIN D = O;

FOR I = (2,1,K}; IF ABS {A(I - 1,1)) GTR D;
BEGIN L =I - 1; D =ABS (A{L, 1)) END;

IF L - 1 NEQ O;
FOR J = (1,1,K); BEGIN D = A(~ 1J);

A(l,J) = A(l,J); A(l,J) = D END;
FOR I = (1,1,N); X{I) = A(l,1);
FOR J = (2,1,K); BEGIN D = A(l,J)/X{l);

FOR I = (2,1,N); A{I - 1, J - 1) = A(l,J) - X(l).D;
A{N,J-1) = D END END; RETURN END JORDAN{)

External Declaration

By the use of this declaration, a programer may define
a statement or a procedure in terms of machine lan
guage and include it in a compiled program.

GENERAL FORMS:

First form:

EXTERNAL STATEMENT £

where£ is the label of an external statement.

The first form declares the program represented by £
to be a statement which will behave similarly to any
other active statement in the language. The label of this
statement will be £.

Second form:

EXTERNAL PROCEDURE£ {<P17,.,...,,<Pn);

{ ~NTEGER
BOOLEAN
FLOATING £
REAL

where£ is the label of the external procedure, and <Pi,
NW' (p n is a list of parameters.

Both forms tell the compiler that a machine-language
program to define £ follows after the FINISH card
(See APPENDIX E).

The second form defines the program represented by £
to be a procedure which will behave like any other pro
cedure in the language. Note that if the procedure is to
define a function~ then its declaration of type mu.8t fol
low it immediately.

EXAMPLES:

First form:

EITHER IF V GTR NMAX; BEGIN EXTERNAL STATEMENT
ERROR; GO RESET END; OR IF K LSS EPS; GO ERROR END

Second form:

EXTERNAL PROCEDURE COMPLEXMULT {A, B, C, D; X, Y);
FLOATING COMPLEXMULT; SREAL = O; SIMAG = O;
FOR I= (1,1,10); BEGIN COMPLEXMULT (AREAL{I),
AIMAG(I), BREAL{I), BIMAG(I); TREAL, TIMAG);
SREAL = SREAL + TREAL; SIMAG = SIMAG + TIMAG END
EXTERNAL PROCEDURE SPERR{; ;FRDEC);
IF V GTR NMAX; SPERR{;;NERR)

PROCEDURE MATRIMULT (M, N, P, A(), B(), ROW, COLUMN,
OUTTAPE; C()); BEGIN INTEGER OTHERWISE;
FLOATING A, B, C; EXTERNAL PROCEDURE REWIND {U);
EXTERNAL PROCEDURE MAGREAD (N, U, A{));
EXTERNAL PROCEDURE MAGWRITE (N, U, A()) ;
REWIND (ROW); REWIND (COLUMN); REWIND (OUTTAPE);
FOR I = {1, 1, M); BEGIN MAGREAD (P, ROW, A{)} ;
FOR J = (1, 1,N); BEGIN MAGREAD {P, COLUMN, B(}} ;
BEGINS= O; FORK= {1, 1, P); S = S + A{K) B{K);
C (J) = S; REWIND (COLUMN) END;
MAGWRITE {N, OUTTAPE, C{)) END; RETURN END

7-7 .

INPUT

PREPARATION OF DAT A CARDS

OUTPUT

FORMAT

EDITING

T HIS CHAPTER DISCUSSES those features of the com
piler relating to communication of information be

tween the computer and the input-output equipment.
In general, the compiler input-output operations are
accomplished by means of machine-language procedures
(either external procedures or library procedures). Three
declarations are provided to aid in the input-output
processes-the INPUT, OUTPUT, and FORMAT
declarations.

1i..ll'H l"I" -I'" 1 .. 11'"-ftl.l .l"l"l- ... 1
11"ru1 vr 11"rv~mA11v1"'

The INPUT Declaration

The INPUT declaration associates with identifiers the
ordered sets of numbers which a:re to be read into the
computer as units. These sets of numbers will be called
input-data sets and the identifiers are termed the input
data-set labels.

GENERAL FORM:

INPUT (S(~S), _, S(~S))

where each S is the identifier declared to be the name of
the corresponding input-data set ~S. As explained pre
viously (page 5-1) the parentheses around the list of
input data-set labels in the above declaration are in
cluded at the programer's option. Input-data sets con
sist of a set of list elements separated by commas. The
simplest of these sets is merely a list of variables.

First form:

where each "O may be either a simple variable or a vari
able with subscripts.

VIII ...

input-output
techniques

EXAMPLE:

INPUT DATA! (X,Y,Z), DATA2 (P(I), Q(I))

This declaration defines DATAl to be the set of varia
bles X, Y, and Z (in that order) and DATA2 to be the
set P(I) and Q(I), using the current value of I for the
subscript.

The next list element to be considered is termed the
iterated variable.

"'---- J .J' ____ -
ui:;;<;unu J urut ~

FOR "01 = S.£; _;FOR "Ok= S.£; "O

where FOR "01 = S.£ through FOR "Ok = S.£ are FOR
clauses which control the iteration of the variable
(with subscripts) "O. One or more of these FOR clauses
may precede "O.

EXAMPLE:

INPUT (VECTOR(FOR L = (1,1,F); Z(L)),
MATRIX (FOR I = (1,1,N); FOR J = (1,1,M); E(l,J)))

This declaration defines VECTOR to be the name of the
input-data set consisting of the variables

Z(l), Z(2), Z(3), _, Z(F - 1), Z(F),

and MA TRIX to be the name of the input-data set con
sisting of the variables

E(l,l), E(l,2), __,, E(l,M), E(2,l), __,, E(N,M).

Note that the values for F, M, and N must have been
assigned elsewhere in the program.

The remaining forms of the input-data set consist of
combinations of the first and second forms. In the first
form any "O may be repiaced by any input-data set and
still be a valid data set. In the second form, the 'O may

8-1

BURROUGHS ALGEBRAIC COMPILER

be replaced by any data set enclosed in parentheses and
still be a valid data set. In this case, all of the enclosed
data set is iterated. These parentheses may be replaced
by BEGIN and END if desired.

Third form:

:DS, :DS, NW' :DS

Fourth form:
FOR "01 = £1.C; NW; FOR 'lh = d.C; (:DS)

The data-set lists given by the third and fourth forms
may of course be used as data-set lists within their own
definitions, thus providing for a very high degree of
flexibility.

EXAMPLES:

INPUT EQUATIONS (N, FOR I= (1,1,N);
(FOR J = (1,1,N); M(l,J), C(I)))

This data set consists of the variables N, M(l,l),
M(l,2), ... , M(l,N), C(l), M(2,1), ... , M(2,N); C(2),
M(3,l), ... , M(N,N), and C(N).

Note that as soon as a variable (in this case N) has
been read into the computer, it is immediately available
for use in a FOR clause or within a subscript expression.

Input Procedures

A machine-language procedure is employed to obtain
numbers from the input medium. The name of an input
data-set list usually will appear as a program-reference
parameter of an input procedure.

A READ procedure used very frequently is given below.

There is an important feature of all input procedures
which should be noted, so that caution may be exercised
in their use. Any FOR clause with an INPUT declaration
a.ff eels the tialue of the variable being stepped in exactly the
same manner as a FOR clause controlling a statement.
Thus if an input procedure is contained within the scope
of a FOR clause and the INPUT declaration to which
it refers contains a FOR clause, the variables stepped by
the two iterations must be di.ff erent. This also applies to
the output procedures described later in this chapter.

The READ Procedure

The READ procedure provides card input for compiled
programs. It may be called in either of two ways:

GENERAL FORMS:

First form:
READ (; ; g:n.c)

Second form:

READ (; s; .9':D.C)

t As opposed to the representation used for constants in the
symbolic program, the decimal point may also appear on data
cards at either end of the string.

8-2

where d:D.C represents the name of some input data-set
list and S is a Boolean variable.

The effect of this procedure is to read a card and scan it
for information. As numbers are found, they are placed
in storage according to the specifications of .9':D.C. Suffi
cient cards are read to supply all the numbers requested
by d:D.C; if the entries on the last card read are not re
quested, they are lost. It is possible to mark a card as
being a sentinel card. If the second form was used, the
Boolean variable S is set to one when a sentinel card is
found and the input process is terminated; S is other
wise set to zero. Using the first form will cause the word
SENTINEL to be ignored.

Preparation of Data Cards

Data cards are punched with a digit five in column
1; the remainder of the card is available for data. An
integer is punched as a string of no more than ten
contiguous digits, preceded by an optional + or - .
Floating-point numbers are punched as a string of
digits containing a decimal point. t

No more than eight significant digits may appear in a
floating-point number. Leading zeros are not significant;
trailing zeros are. A sign may precede the number. A
scale factor (power of ten) may be attached to a floating
point number by following the number with a ',' (not
'**'),an optional sign, and a two-digit integer.

At least one blank column must separate the numbers
on a card. A number may not be broken between suc
cessive cards.

Alphanumeric input information is punched on a card
bracketed with semicolons; consequently the character
';' may not be used within the alphanumeric informa
tion itself. For example, if columns 13 through 41 of a
card are to be entered alphanumerically (six words)
then a ';' should be punched in columns 12 and 42.

Alphanumeric information, in the form of integers, may
be stored in the computer. One integer, ten digits in
length, is stored in the computer for every five consecu
tive characters of alphanumeric information. The inter
nal representation is two digits per alphanumeric
character as described in APPENDIX C of Operational
Characteristics of the BuRROUGHS 220 Electronic Data
Processing System. If the number of columns of alpha
numeric information is not a multiple of five, the last
integer formed will have zeros appended. The characters
read from the card will be justified left in this word.

An asterisk will cause all information to its right on the
card to be ignored (if the asterisk is not within an alpha
numeric string).

INPUT-OUTPUT TECHNIQUES

EXAMPLES:

1
37

-4724
+ 0394

3.0
-.9

+ 3.1416
8.

-2.99,9
32.4,-13

+ 7.2,+2

) . I are mtegers

) I are floating-point numbers

}
are floating-point numbers with
scale factor

; THE GOAT OF HOGAN ; is an alphanumeric entry

A sentinel card is identified by punching the word
SENTINEL starting at column 2 and followed by a
blank column:

COLUMNS

1
2- 9

10
11-

ENTRY

5
SENTINEL

(optional)

OUTPUT OF INFORMATION

The OUTPUT Declaration

The OUTPUT declaration associates with identifiers
the ordered sets of expressions which are to be written
out of the computer as groups. These sets of expressions
are called output-data sets and the identifiers are termed
output data-set labe~.

GENERAL FORM:

OUTPUT (s (~S), _,,, s (~S))

where each fl is the identifier declared to be the name of
the corresponding output-data set :DS. (See page 5-2 for
the explanation of the use of the outside parentheses.)
Output-data sets are constructed in a manner precisely
analogous to input-data sets with the following exception:
Although only values of variables may be read into the
computer, the value of any expression may be written out.
Thus wherever a variable has been specified in the descrip
tion of an input-data set, the reader may substitute an
expression in an output-data set.

EXAMPLE:

OUTPUT RESULTS ((R - 1) (S - 1), N(R), N(S), 8.4)

t These formats are not to be confused with the format bands
used in the BURROUGHS CARDATRON®.

Output Procedures

A machine-language procedure is employed to transmit
numbers to the output medium. The name of an output
data set appears as the program-reference parameter
of an output procedure.

The \A/RITE Piocedvie

The WRITE procedure provides for writing the edited
output of a compiled program on the LINE PRINTER.
the CARD PUNCH, or the SUPERVISORY PRINTER.

First form:

WRITE (; ; DS, if .c 1)

Second form:

WRITE (; ; g: £2)

where :DS is the name of an output-data set and g: £1 and
g: £2 are the names of format strings.

The effect of the first form is to produce as an output the
numbers specified by the output-data set ~S in accord
ance with the format specified by g: £1. The second form
is used to write the headings indicated by the format
string 5=£2.

The format strings mentioned are described in the next
section.

CONSTRUCTION OF FORMATS

The FORMAT Declaration

The FORMAT declaration has been designed specifi
cally for use with the WRITE procedure, and serves to
attach names to strings of characters called formals, the
latter describing the appearance of the output page or
card. Such a name is then used as a parameter by the
WRITE procedure.

GENERAL FORM:

FORMAT (S(5=S), f1(5=S), ,_,, f1(5=S))

where the g:s's are formats and the s's are the names of
those formats;t(outside parentheses are again optional).

The format consists of a sequence of phrases which are
separated by commas and perhaps grouped by paren
theses. These phrases occur in two forms:

First form:

rLw.d

Second form:

as

8-3

BURROUGHS ALGEBRAIC COMPILER

In the first form, the symbols r, w, and d represent inte
gers and L represents a letter. The integers r or d or
both are sometimes omitted, reducing the first form to
Lw.d, rLw, or Lw in these cases.

The integer r specifies the number of times a phrase is
to be repeated. If r is omitted, the phrase is executed
once. Phrases of the first form are divided into two
classes-editing phrases and activation phrases.

In the second form of a phrase, as represents any se
quence of characters which does not contain an '*'. This
phrase is used for placing alphanumeric titles or other
indicative information in the output line. It is called the
alphanumeric-insertion phrase.

Repeat Phrases

A list of phrases may be placed in parentheses to con
stitute a compound phrase. These parentheses may be
nested to any depth.

Definite-Repeat Phrase:
r(5S)

Indefinite-Repeat Phrase:
(5S)

where :JS is a format string. The definite-repeat phrase
uses the format string r times in succession; the indefi
nite-repeat phrase uses the format string repeatedly un
til there are no more variables to print.

An entire format string is treated as if it were enclosed
in parentheses specifying indefinite repeat. The inter
pretation of a format is terminated when there are no
more variables to print and the right parenthesis of an
indefinite repeat is encountered. If there are fewer vari
ables to print than are called for, the I, X, F, S, and A
phrases are interpreted as blank-insertion phrases, Bw,
to fill in the remaining spaces.

EXAMPLES:

3(5F15.8,WO)
TITLE,W3,(5111,WO)

The first example is equivalent to:
5F15.8,W0,5F15.8,W0,5Fl5.8,WO

The second example will print a line which reads
TITLE

and will then print a series of lines, each line consist
ing of five integer variables, until no more variables are
available from the OUTPUT declaration. If the number
of variables to be printed is not a multiple of five, a suf
ficient number of blanks will be inserted to finish out
the line.

8-4

Editing Phrases

A numeric editing phrase specifies how a number is to be
edited. There are six such phrases:

lw The I phrase specifies that an integer is to be
printed (or punched) in a field w columns wide.
The integer will be normalized right in that field
and will have its leading zeros suppressed. If the
integer being edited is negative, a ' - ' (minus
sign) precedes it. The value of w must be suffi
ciently large to accommodate the largest integer
to be encountered together with any possible
minus sign.

Xw.d The X phrase specifies that a floating-point num
ber is to be truncated to d places following the
decimal point and printed in a field w columns
wide. The value w must be sufficiently large to
accommodate the largest number to be printed
along with its decimal point and any possible
minus sign.

Fw.d The F phrase specifies that a floating-point num
ber is to be truncated to d significant digits and
printed (or punched) in floating-point form as
follows:

A'-' (if the number is negative), a'.', d digits,
a ', ', a ' - ' (if the power of 10 associated with the
number is negative), and two digits representing
that power of 10. Thus to accommodate negative
numbers w ~ d + 6.

Sw.d The S phrase specifies that a floating-point num
ber is to be truncated to d digits and printed (or
punched) in a field w columns wide. A decimal
point will be inserted at the appropriate position
to cause the printing (or punching) of d signifi
cant digits if possible. If a number is less than
0.1, zeros will be inserted between the decimal
point (which will appear at the extreme left) and
any significant digits printed, punched, or typed.

Aw The A phrase allows integers to be printed (or
punched) in their alphanumeric equivalents. A
single A phrase will produce, as an output, w
characters, five characters of alphanumeric in
formation being translated from each ten-digit
integer. If w is not a multiple of five, the least
significant portion of the last integer will be
ignored.

If in any case the field width w which has been specified
is less than the width required by the output informa
tion, or if there are undefined conditions in the format
specifications, an asterisk will be printed in the corres
ponding field.

Bw The phrase Bw will cause w blank columns to be
inserted in the edited line.

INPUT-OUTPUT TECHNIQUES

EXAMPLES:

We list here several phrases and a typical result of the
editing they specify. In each example the first of the two
lines indicates the result of the editing process, where
the symbol #indicates an editing space. The line directly
below each example shows the equivalent line as printed.

PHRASE RESULT

417 #####13#-72431####342######0
13 -72431 342 0

3X5.2 ##.13#-.52#1.74
.13 -.52 1.74

Xl2.10 #.0000000015
.0000000015

Fl0.3 ##.472,-03
.472,-03

3Fl2.4 ##-.3942, 07###.4311,-03###.0000, 00
-.3942, 07 .4311,-03 .0000, 00

5S9.5 ###3427.1##-32.993##- .10206###13788.###.00014
3427.l -32.993 -.10206 13788. .00014

A12 The use of this phrase, in conjunction with

485659624543484562634559005741
will result in the printout

HORSECHESTER

Alphanumeric Insertion Phrase

The phrase *<XS* inserts the characters comprising the
string as into the line being edited.

EXAMPLES:

PIPE DIAMETER
TRANSCONDUCTANCE-MICROMHOS
HIGH - LOW - CLOSE - NET CHG.
DURCHSCHLAGFESTIGKEIT - VOLT

Activation Phrases

An activation phrase specifies that the line described by
the preceding phrases is to be sent to the output device.

Whenever a line is written out in this manner, the image
in memory of the line is reset to blanks. Thus, if an
activation phrase is repeated, only the first execution
nroduces anv nrinted results: the reoeat merelv nrovides
..1. .,, J. , .1 .J .I.

vertical spacing. Four activation phrases are provided:

W w The W phrase provides for output on the LINE
PRINTER. The value of w specifies the 'c-digit' to
be used for printer control. If w is omitted, it is
assumed to be zero. If the control panel is wired
as specified in BuRROUGHS CORPORATION TECH
NICAL BULLETIN No. 17, Control Panel Wiring
for Type 407 with BURROUGHS 205 or 220 CARD
A TRON®, w is interpreted as follows:

w RESULT

0 Single space before printing
1 Eject page after printing
2 Single space before and after printing
3 Eject page before printing
4 Double space before printing
5 Skip to channel 2 before printing
6 Double space before printing, single space

after printing
7 Skip to channel 3 before printing

P The P phrase specifies that the edited line is to
be punched into a card. Note that, with the ex
ception of the A phrase, the edited form of the
numbers is compatible with the requirements for
input-data cards. Thus the output cards pro
duced by the WRITE procedure may be used for
input to the computer under control of a READ
procedure.

Cw The action of the C phrase combines those of the
W and P phrases. Only the first 80 columns of
the edited line will be punched.

Tw The T phrase specifies that the edited line is to
be typed on the SUPERVISORY PRINTER. The val
ue of w specifies the number of carriage returns
to be executed prior to typing.

8-5

SEGMENTATION

OVERLAYS

T HE USE OF STORAGE OVERLAYS, though not essential
for a majority oi problems, is required whenever a

program is too large for the amount of available storage.
In such a case the program is coded in segments; these
segments are then called into memory as a sequence of
overlays under control of a master routine.

To illustrate this graphically:

PARTl

MASTER

PART2

PART3

i-11------ Storage Capacity --------4

Here MASTER is the name of the master routine and
PARTI, PART2, and PART3 are the names of the
segments. The lengths of the horizontal lines may be
taken as proportional to the number of instructions in
the master routine and in the various segments. It will
be noticed that in this case only sufficient storage capac
city for MASTER and PART 3 is required.

Each of the segments may in turn have subsegments.
All of these segments then become the master routines
for the control of their respective subsegments. For example:

PROGA
PARTl

PRO GB

MASTER PROGC

PART2 PROGD

PRO GE

PART3

IX ...

overlay techniques

The master for PARTI, PART2, and PART3 thus is
MASTER; the master for PROGC, PROGD, and
PR OGE is P ART2, etc.

THE SEGMENT DECLARATION

The SEGMENT declaration is used to indicate the
division of the program into segments.

GENERAL FoRM:

SEGMENT g; BEGIN s,_; s~; ~; S,. END

where 9 is an identifier which serves as the name of the
segment (segment label) and S1 through Sn are the state
ments which make up the segment. If desired the seg
ment label may follow the word END as is the case with
any other compound statement.

For example, the segmentation diagramed above would
be written as:

MASTER.. MN MN MN MN MN;

SEGMENT PARTI; BEGINMN~MNMNl'W;

SEGMENT PROGA; BEGIN MN MNEND PROGA;

SEGMENT PROGB; BEGINMNMNEND PROGB

END PARTI;

SEGMENT PART2; BEGIN..-MNMNMNMN;

SEGMENT PROGC; BEGINMNMNEND PROGC;

SEGMENT PROGD; BEGIN ,......,,.,.,END PROGD;

SEGMENT PROGE; BEGINMN""'END PROGE

END PART2;

SEGMENT PART3; BEGIN MNMNEND PART3

9-1

BURROUGHS ALGEBRAIC COMPILER

THE OVERLAY STATEMENT

The OVERLAY statement is used to call a segment of
the compiled program into storage.

GENERAL FORM:

OVERLAY f1

where dis the segment label of the segment to be called.
There are three rules governing the use of the OVER
LAY statement:

First: Any segment may be overlaid only by a seg
ment of the same immediate master.

Second: The OVERLAY statement which calls a seg
ment into storage must appear in the master
routine corresponding to the segment being
called. Otherwise, segments may be called in as
many times as the user wishes, in any order.

Third: The OVERLAY statement does not by itself
produce a transfer to the segment being called.
Such a transfer must be provided for separately
by the user. The segment label may not be used
as a statement label for effecting this transfer.

9-2

EXAMPLE:

BOOLEANS; REAL A, B; INTEGER OTHERWISE;
ARRAY A(200);
RD .. READ(;S;INDAT); IFS; BEGIN OVERLAY SENTINEL;
N = N + 1; GO TO START END; N = N + 1; OVERLAY ZERO;
GO STARTP;
INPUT INDAT (B, C, FOR I= (1, 1, 200); A(I));
FORMAT FR (15, 5F20.8, WO);

SEGMENT ZERO; BEGIN STARTP ..
FOR I = (1, 10, 200); WRITE (;; FR, OUTP); GO TO RD;
OUTPUT OUTP (I, FOR J =(I, 2, I+ 8);
SIN (COS(LOG(A(J))))) END ZERO;

SEGMENT SENTINEL; START..BEGIN FOR I= (1, 10, N -10);
WRITE (;; FR, OUT); WRITE (;; FRR, OUTR);
STOP 0757007250; GO RD;
OUTPUT OUT(I, FOR J = (I, 2, I + 8); A(J));
OUTR(I, FOR J =(I, S, I+ MOD(N, 10) - 2); A(J)),
FORMAT FRR (*I=*, 14, 5(*G(I) = *, F14.6), WO, W3)

END SENTINEL; FINISH;

ERROR MESSAGES

MONITORING

MEMORY PRINTOUT

x . . .

diagnostic
facilities

T HE COMPILER has been equipped with a set of diag
nostic aids. Some of these are operative at the time

of compilation, others at the time the object program is
runo These aids take the form of error messages con
cerning the symbolic program, a symbolic snapshot f ea
ture, a symbolic memory printout, and messages on the
LINE PRINTER produced by machine-language proce
dures when unsuitable arguments are presented to
them. A listing of the compiled program may also be
obtained as a desperation tactic.

ERROR MESSAGES DUR!NG CON~P!LAT!ON

While compilation is in progress, a copy of the original
symbolic program is written on the LINE PRINTER. If the
compiler detects an error in the program, a message is
also written on the printer. Whenever an error is detec
ted, the compiler attempts to continue processing the
symbolic program. Since the compilation technique of
necessity depends on the syntax of the symbolic program
for its classification of identifiers and statements, an
error in syntax may well produce a misclassification. If
the remainder of the symbolic program is processed with
the compiler in such a 'confused' state about the charac
teristics of the program, a proliferation of error mes
sages may result.

If things get altogether out of hand, the compiler may
even come to a disorderly stop. Although such genera
tion of spurious error messages is unfortunate, it has
been considered preferable to attempt to continue proc
essing, in order to discover as many errors as possible in
a single pass rather than to force the compiler to aban
don the compilation after the first error is detected.

The programer himself must make the distinction be
tween genuine errors and those introduced by previous
errors. However, it should not be assumed that all er
rors in syntax will produce error messages.

No usable compiler can provide error messages which
explicitly describe every possible syntactical error. How
ever, sufficient information usually is gained from the
error message to permit straightforward correction of
the program.

The following is a partial list of error messages and some
suggestions as to their possible cause.

COMPILER CAPACITY EXCEEDED

The internal storage capacity of the compiler has been
P.Yh:rn~t.P.cl _ ThP. ~omnilP.r ~tom: with rf'. = 0000007777 ------ ---------- ---- -----r---- ---r- ------ - - - - - - - - - · · --

CONSTANT OUT OF RANGE

A constant too large for the internal representation of
the BURROUGHS 220 was either written in the symbolic
program or was formed when the compiler combined
constants arithmetically.

DUPLICATE PROCEDURE NAME

The identifier assigned as the name of a procedure by a
PROCEDURE declaration (or the name of a function
by a FUNCTION declaration) has appeared in another
context in the program.

DUPLICATE STATEMENT LABEL

An identifier has been employed in another context in
the program. (Note that this may be the result of calling
a function or procedure before it has been declared.)

EXTRA OPERAND

This error message may arise from a wide variety of
causes. Check for omitted commas, semicolons, or other
punctuation; for proper spelling of reserved identifiers,
and for a space imbedded within an identifier; or for the
omission of a space between contiguous identifiers.

10-1

BURROUGHS ALGEBRAIC COMPILER

EXTERNAL PROGRAM NOT DECLARED

The external procedure or external statement declared
on some name card was not declared within the sym
bolic program.

EXTRA LEFT PARENTHESIS

This error message may occur only at the end of proc
essing the symbolic program. It is usually caused by the
inclusion of a spurious 'BEGIN' or'(' or by the omis
sion of a required 'END' or ') '. Errors in the syntax of
FOR or alternative statements, or in any of the declara
tions, may also introduce unwanted left parentheses
into the program even though the programer did not
explicitly write them.

EXTRA RIGHT PARENTHESIS

This error is usually caused by the inclusion of a spu
rious 'END' or')' or by the omission of a required
'BEGIN' or '('. As with the extra left parenthesis,
check on the syntax of control statements and declara
tions. The compiler tries to recover from this error by
introducing a left parenthesis to match the right paren
thesis in question. If the right parenthesis was merely
misplaced, this will produce the message EXTRA LEFT
PARENTHESIS at the end of compilation.

IMPROPER ARGUMENT OF MOD FUNCTION

The arguments of the intrinsic function MOD must be
of integer type.

IMPROPER ARRAY DECLARATION

An error in syntax has occurred in an ARRAY declara
tion. Check in particular to see that all of the dimen
sions are specified as integer constants.

IMPROPER ASSIGNMENT STATEMENT

An expression or a constant has occurred to the left of
' ' an =.

IMPROPER BOOLEAN OPERAND

An attempt has been made to use a floating-point quan
tity as a Boolean operand. The compiler cannot detect
integer quantities used as Boolean operands.

IMPROPER CHARACTER PAIR

Two successive characters (omitting spaces) have oc
curred which are meaningless, for example, '+)', '=*',
or ',;'. The compiler will ignore the second of these
characters and continue scanning.

IMPROPER CHECK SUM

A failure has occurred in the magnetic-tape system. The
compiler will reread the bad tape block repeatedly in an
attempt to bring in the information correctly.

10-2

IMPROPER EMPTY SUBSCRIPT POSITION

One of the character pairs '(,' ',,' ',)' or ' ()' has oc
curred in the wrong context.

IMPROPER FUNCTION ARGUMENT

An expression has been written as an output or program
reference argument; a label, function name, or proce
dure name has been used as an input or output argu
ment; or an array has been used as a program-reference
argument in a procedure call.

IMPROPER INPUT DECLARATION

An expression or constant has been used as a quantity
to be read in.

IMPROPER RELATION OPERATOR

One of the arithmetic relational operators has occurred
in the wrong context.

IMPROPER SCALE FACTOR

An attempt has been made to use a scale factor which
is not an integer constant.

IMPROPER STATEMENT LABEL

An identifier has been used as a label, in conflict with
previous context.

IMPROPER SUBSCRIPT

Either too many or too few subscripts have been asso
ciated with an array.

IMPROPER VARIABLE SYMBOL

An identifier has been used as a variable, in conflict
with previous context which implied that it was not a
variable.

MISPLACED ARITHMETIC OPERATION

One of the symbols + - · / or * has been used in
the wrong context.

MISPLACED DECIMAL POINT

The symbol . has been used in the wrong context.

MISSING OPERAND

A misplaced operand may result in the error messages
MISSING OPERAND and EXTRA OPERAND ap
pearing in the printout of the compilation. The com
piler expected an operand and could not find it. Check
the formation of identifiers and the syntax of control
statements.

MISSING NAME CARD

The first card of either an external procedure or an ex
ternal statement was not a name card.

DIAGNOSTIC FACILITIES

UNDEFINED LABEL -£

The label £ was not defined within the symbolic pro
gram. Only the first five characters of £ will be printed
ifit was an identifier. An integer is printed in its entirety.

PREFIX PROCEDURE NOT DEFINED

The procedure used as a prefix on an equivalence card
was not declared within the symbolic program.

MISSING FINISH PSEUDO-OP

The machine-language deck of an external program was
not terminated by a pseudo-operation for FINISH.

MISSING FINISH CARD

The FINISH card required after the last machine
language deck was not present.

MISSING FIELD ON HEADER CARD

A name card or equivalence card of an external program
was incorrect.

THE MONITOR DECLARATION

At the programer's option, the compiler may be directed
to produce on the LINE PRINTER the results of assign
ment statements executed at object time. The MON
ITOR declaration· specifies the particular variables to
be monitored.

GENERAL FORM:

MONITOR ml£

where mi£ is a monitor iist which contains identifiers
separated by commas. The monitor list may be enclosed
in parentheses if desired. These identifiers specify the
variables to be monitored. Specifically, the monitor list
may consist of:

Nam es of simple variables;

Names of arrays (optionally followed by a pair of pa
rentheses);

Names of procedures (optionally followed by a pair of
parentheses); and

Statement, subroutine, or segment labels.

Names of simple variables or arrays specify that the
compiler is to print the result of any assignment state
ment which assigns a new value to the listed simple vari
able or variable with subscripts. Names of procedures or
labels of statements, subroutines, or segments specify
portions of the compiled program. Any assignment state
ment within the named portion is monitored, regardless
of whether the identifier on the left side of the assignment
statement had been specifically named in the monitor list.

Whenever an assignment statement is monitored, the
computer will print the first five characters of the iden
tifiers which have been assigned, followed by the value
currently computed for those identifiers. In the case of

a variable with subscripts, the current values of the sub
scripts are not shown. The particular element of the
array being monitored should be determined by moni
toring the subscripts themselves.

EXAMPLE:

MONITOR K, L, AL), VECTOR

Thie::. rli:>f'l!lr!ltt"n TYllO'ht f'!ln'1.i:> thi:> nr1nt"nt •
~~··~ ~~~·~~~VA'-'AA AAAAb~AV ~~~~~vu~ y~AAAV'-'~V•

K
L
A
L
A
L
A

=

VECTO =

0000000001
0000000001
.3794284100, 00
0000000002
.1230000000, 04
0000000003
.9347281800,-01
0000000064

MONITOR declarations must precede all statements
of the symbolic program. Depressing PROGRAM CONTROL
SWITCH 0 will inhibit the monitoring action at run time.

Symbolic Memory Printout

Whenever a MONITOR declaration appears in a pro
gram, the compiler provides for a symbolic storage
dump of the portion of memory reserved for the storage
of variables, as well as for the monitoring just described.

The LINE PRINTER produces this listing under the
headings:

VARIABLE IN PROGRAM

The label message appears as

LAST LABEL PASSED WAS£

followed by a listing under the headings:

VALUE

LABEL IN PROGRAM NUMBER OF TIMES EXECUTED

If a program contains a MONITOR declaration, a
storage printout can be obtained when the program
stops by depressing the RESET-TRANSFER switch. De
pressing the START switch after the printout resumes
computation.

If the programer desires to use the storage printout
feature without monitoring either specific variables or
portions of the program, he may write as the first state
ment of his program the MONITOR declaration, omit
ting the monitor list.

Statement Monitoring at Obiect Time

Provision has been made to allow the programer to
monitor the control sequence of labeled statements and
to obtain a symbolic memory dump at specified points
within the program during the running of the object pro
gram. This is accomplished with the use of statement
monitoring control cards which immediately precede
the data cards (see APPENDIX A, Operating Instructions).

10-3

BURROUGHS ALGEBRAIC COMPILER

These cards have the form:

COLUMNS

1
2-80

CONTENTS

5
MONITOR £ NW;

where £ is the list comprised of the names of labels, or
names of labels followed by a parenthesized number,
each separated by commas.

EXAMPLE:

MONITOR F, BIG(50), START(l);

If the statement monitoring command precedes the data
for a given symbolic program, the first five characters of
every label of every labeled statement will be printed
out on the LINE PRINTER as the statement is encoun
tered. Also, if the name of some label appears in the list,
then a symbolic memory dump will occur on the LINE
PRINTER immediately before every execution of that
statement or only on the nth time the statement is en
countered if it is followed by the number n in paren
theses. Thus, in the previous example, as every labeled
statement is encountered, the first five characters of its
name are printed on the LINE PRINTER; in addition,
every time the label F, the 50th time the label BIG, and
the first time the label START is encountered, a sym
bolic memory dump will be given on the LINE PRINTER.

ERROR MESSAGES FROM LIBRARY PROCEDURES

Errors in library procedures which occur are indicated
by error messages on the LINE PRINTER. In the follow
ing, CP is the name of the procedure in which the error
occurred, £is the first five characters of the label of the
last labeled statement passed in the program, and nnnn
is the number of times this statement has been executed.
(However, if the identifier for £ is an integer, it will be
printed in its entirety.) An error message will always
contain the first portion of the message, e.g.,

RESULT OUT OF RANGE IN CP

If a MONITOR statement has been given, the message
will also contain £(nnnn). Note that the error produced
may have occurred in an unlabeled statement, exe
cuted after the last labeled statement was passed.

RESULT OUT OF RANGE IN CP -£ (nnnn)

FIXED POINT Result I R I 2:: 1010

FLOATING POINT I R I 2:: 0.99999999 x 1049

RESULT UNDEFINED FOR CP -£ (nnnn)

An attempt has been made to determine log x for x
::::; 0; to determine tf-X, etc.

RESULT ILL-DEFINED FOR CP -£ (nnnn)

An attempt has been made to determine sin x for I x I 2::
107, etc.

10-4

ARITHMETIC OVERFLOW CP -£ (nnnn)

In some statement previous to the execution of £, an
attempt has been made to divide by zero; or to deter
mine one of the following:

FIXED POINT R = I X1 ± X2 I > 1010

FLOATING POINT R = I X1 ± X2 I > 0.99999999 x 1049

FLOATING POINT R = I X1 • X2 I > 0.99999999 x 1049

FLOATING POINT R = I X1 I X2 I > 0.99999999 x 1049

LISTING OF THE COMPILED PROGRAM

The programer can obtain a machine-language listing of
the program being compiled by depressing PROGRA:\I
CONTROL SWITCH 2 at compiling time. The use of this
feature reduces compiling speed to approximately one
third of normal. This feature has been included as a
diagnostic technique for use only when other methods
have been exhausted.

In addition to the usual listing of the symbolic program
on the LINE PRINTER, the use of this feature produces
output of the form: T B A L llll s bbbb pp aaaa

where

T

BAL

llll

is the type of line (see below);

are relocation-control digits for the
bbbb aaaa, and llll fields respectively;

is the location associated with this line;
and

s bbbb pp aaaa is a machine-language word.

The storage allotted for the object program is divided
into two portions, either of which can be relocated in
dependently. One of these portions consists of those
cells which are allotted to simple and array variables,
constants, and temporary storage. The other portion
consists of those cells which contain the actual instruc
tions produced by the compiler and by the machine
language procedures.

The control field bbbb, the address field aaaa, and the
location llll may each be relocated relative to either por
tion of storage, or may be specified as being absolute.
The relocation digits 0, l, and 2 specify that a field is to
be absolute, relative to the variable region, or relative
to the instruction region respectively.

The relocation constant for the instructions is 0000. The
relocation constant for the variables is printed out at
the end of compilation, as described on page A-1.

If the indicator T for the type of line is zero, the entire
word will be stored in the cell in relative position llll;
if T is one, only the address portion will be stored. This
is the technique used to provide references to labels, the
relative locations of which are not yet known when they
are referred to in the symbolic program.

ORGANIZATION OF PROGRAMS

HARMONIC-BOUNDARY VALUES

SURVEY TRAVERSE CALCULATIONS

OPTICAL RAY-TRACING

HOUSEHOLDER REDUCTION

CROUT'S METHOD

T HE OVER-ALL ORGANIZATION of programs written in
this representation of ALGOL is a matter which the

rules leave larg~ly to the preference of the individual
program er. However, there are rules of precedence
which must be observed regarding the interrelations
among certain deciarations and statements. Below is a
summary of such rules, arranged in the form of a sug
gested program outline.

MONITOR declaration-appears only if one or more
variables or statements are to be monitored, or if the
programer wishes to provide for the possibility of a
memory dump (see page 10-3); it must be the first de
claration (other than a COMMENT declaration) of the
symbolic program.

Declarations of type-declare the types of any identi
fiers which are not floating-point (see CHAPTER V); they
must precede use of the identifier in a statement.

ARRAY declarations-reserve storage for multidimen
sional arrays of data; they must precede use of any
variable which is an element of an array.

PROCEDURE and FUNCTION declarations (sym
bolic and external)-make specific subprograms avail
able to the compiler; they must appear prior to the first
use of the subprograms.

Operational statements-Assignment statements and
control statements.

INPUT and OUTPUT declarations-may appear any
where in the symbolic program.

FORMAT declarations-may appear anywhere in the
symbolic program.

FINISH declaration-must appear at the end of the
symbolic program.

XI ...

programs in algol

Machine-language programs-may be used in con
junction with a symbolic program. The latter must
contain definitions of all the machine-language pro
grams so used. These programs are included after the
FINISH declaration of the symbolic program, and must
themselves be terminated by a second FINISH state
ment.

COMMENT declarations-affect neither the compi
lation nor the object program, and may appear any
where.

EXAMPLES OF PROGRAMS

The following complete programs are presented as illus
trations of the rules delineated in this manual.

J. G. Herriot, of Stanford University, has written the
following program to determine an approximation of
harmonic-boundary values, using orthonormal func
tions.

COMMENT THIS PROGRAM FIRST CONSTRUCTS A SET OF
ORTHONORMAL FUNCTIONS AND THEN USES THEM TO
FIND AN APPROXIMATION TO THE SOLUTION OF A
HARMONIC BOUNDARY-VALUE PROBLEM;

COMMENT WE FIRST CONSTRUCT THE ORTHONORMAL
FUNCTIONS;

INTEGER l,J, K, L, M, N, NU, TH;
ARRAY R(29), HFN(29), DSUM(24), HFCN(5), HFCEN(6),
FA{25,25), A(25,25), B(25,25), HA(47), HAA(24);

INPUT DATA (FOR I= (1,1,29); R(I)), DIMEN(N);
OUTPUT FRESULTS (FOR I= (1,1,N); FOR J = (1,1,N); FA(l,J)),

ARESULTS (FOR I= (1,1,N); FOR J = (1,1,N); A(l,J)),
BRESULTS (FOR I= (1,1,N); FOR J = (1,1,N); B(l,J)),
COEFFS (FOR NU = (4,4,N - 1); HA (2NU - 1)),
HFNRES (FOR K = (1,1,29); HFN(K)),

CRES(CONST), HFCNRES (TH 1 FORK= (U 15); HFNC(K}L
HFCENRES (TH, FOR K = (1,1,6); HFCEN(K));

11-1

BURROUGHS ALGEBRAIC COMPILER

FORMAT VECTOR (B8,6F16.8,WO),
FTITLE (B48,*FRESULTS,FA(l,J)*,W3,W2),
ATITLE (B48,*ARESULTS,A(l,J)*,W3,W2),
COEFTITLE (B30,*HA(8NU - 1)*,W2),
BDYVALUES (B42,*PRELIMINARY BOUNDARY VALUES*, W3,

W2),
CBDYVALUES (B43,*CORRECTED BOUNDARY VALUES*,W2),
CONTITLE (B50,*CONSTANT*,W2),
TABLE (B8,12,B6,6Fl6.8,WO),
TABLEHEAD (B40, *THE VALUES OF H(RHO,TH) IN B*, W3,

W2),
TABLELI NE (B13,*RHO*,B6,*0.5*,Bl3,*l.0*,B13,*l.5*,Bl3,
2.0,Bl3,*2.5*,B13,*3.0*,WO),
TABLETH (B8,*TH*,WO);

START .. READ (;;DATA); RDIM .. READ (;;DIMEN);
FOR I = (1,1,N); FOR J = (1,4,N);

BEGIN L =I - J; K = I + J;
SUM = R (l}*K + l.5.R(18}*K.COS(0.59341195.L)

+ 0.5.R(29)*K.COS(0.78539816.L);
FOR M = (2,1,17);
SUM = SUM + 2.0.R(M)*K.COS((M - 1).0.034906585.L);
FOR M = (19,1,28);
SUM= SUM+ R(M}*K.COS((0.59341195 + (M - 18)

.0.017453293).L);
FA(l,J) = (8.0/K).0.017453293.SUM END;

WRITE (; ;FTITLE);

WRITE (;; FRESULTS, VECTOR);
FOR J = (1,1,N); B(l,J} = FA(l,J);
FOR I = (2,1,N);

BEGIN FOR J = (1,1,1 - 1);
B(l,J) = -B(J,l)/B(J,J);

FOR J = {1,1,N);
BEGIN B(l,J} = FA(l,J);

FORK= (1,1,I - 1);
B(l,J} = B(l,J) + B(l,K).B(K,J) END;

FOR J = (1,1,1 - 1);
B(l,J} = B(l,J).SQRT(B(J,J)/B(l,I)) END;

FOR I = (1,1,N}; B(l,I) = 1.0/(SQRT(B(l,l)).I);

WRITE (; ;BTITLE);

WRITE (; ;BRESULTS, VECTOR);

FOR I = (1,1,N}; FOR J = (1,1,N); A(l,J) = 0;
A(l,1) = B(l,l);

FOR I = (2,1,N);
BEGIN FOR J = (1,1,1 - 1);

BEGIN A(l,J} = O;
FORK= (J,1,1 - 1};
A(l,J} = A(l,J) + B(l,K).A(K,J) END;

A(l,I} = B(l,I) END; WRITE (;;ATITLE);
WRITE (; ;ARESULTS, VECTOR);
COMMENT NOW CONSTRUCT THE APPROXIMATION TO
THE SOLUTION;

FOR J = (4,4,N - 1);
BEGIN DSUM(J) = O;

11-2

FOR M = (1,1,17),
DSUM(J) = DSUM(J) + (R(M)*2 + R(M + 1)*2).
(R(M + l)*J.SIN(M.0.034906585.J}
-R{M}*J.SI N((M - 1).0.034906585.J)};

FOR M = (18,1,28);
DSUM(J} = DSUM(J} + (R(M}*2 + R(M + 1)*2.{R(M + 1)

*J.SIN((0.59341195 + (M - 17).0.017453293).J}
- R(M)*J.SIN((0.59341195 + (M - 18).0.017453293)

.J)) END;
FOR NU= (4,4,N - 1); BEGIN HA(2NU - 1) = O;

FOR J = (4,4,NU};
HA(2NU - 1) = HA(2NU - 1) + A(NU,J).DSUM(J);
HA(2NU - 1) = 4.0.HA(2NU - 1) END;

WRITE(; ;COEFTITLE);
WRITE (; ;COEFFS, VECTOR);
FOR J = (4,4,N - 1); BEGIN HAA(J) = O;

FOR NU = (J,4,N - 1);
HAA(J) = HAA(J) + HA(2NU - l).A(NU,J) END;

FORM= (1,1,18); BEGIN HFN(M) = O;
FOR J = (4,4,N - 1);
HFN(M) = HFN(M) + HAA(J).R(M)*J.COS((M - 1)

.0.034906585.J) END;
FORM= (19,1,29); BEGIN HFN(M) = O;
FOR J = (4,4,N - 1);

HFN(M) = HFN(M) + HAA(J).R(M)*J.COS((0.59341195
+ (M - 18).0.017453293).J) END;

WRITE (; ;BDYV ALU ES};
WRITE (;;HFNRES, VECTOR);
AVT = O;
FORM = (1,1,29); AVT = AVT + R(M)*2 - HFN(M};

CONST= AVT/29.0; WRITE (;;CONTITLE);
WRITE (;;GRES, VECTOR);

FORM= (1,1,29); HFN(M} =CONST+ HFN(M);
WRITE (; ;CBDYVALUES};
WRITE (;;HFNRES, VECTOR);
FOR I = (1,1,5); BEGIN TH = 5.(1 - 1);

FOR J = (1,1,5);
BEGIN HFCN(J) =CONST;
FOR M = (4,4,N - 1);
HFCN(J) = HFCN(J) + HAA(M).(0.5.J}*M.
COS((I - 1).0.087266463.M) END;

WRITE(; ;TABLEHEAD);
WRITE(; ;TABLELI NE);
WRITE(; ;TABLETH};

WRITE (;;HFCNRES, TABLE) END;
FOR I = (6,1,10); BEGIN TH = 5.(1 - 1);

FOR J = (1,1,6);
BEGIN HFCEN(J) =CONST;
FOR M = (4,4,N - 1);
HFCEN(J) = HFCEN(J) + HAA(M).(0.5.J)*M.COS((I - 1)

.0.087266463.M} END;
WRITE (; ;HFCENRES, TABLE) END;
STOP 1234;
GO TO RDIM;

FINISH;

PROGRAMS IN ALGOL

The program which follows is one for survey traverse
calculations.

COMMENT SURVEY TRAVERSE CALCULATIONS;
INTEGER I, J, K, SURVEY, D(), M(), S(), Q(), N;
FUNCTION LENGTH(X,Y) = SQRT(X*2 + Y*2);
ARRAY D(200),M(200), S(200), Q(200}, MD(200), NS(200),

EW(200L CNS(201L CEW(201);
START .. READ (;;!DENT); TMD = O; TNS = O; TEW= O;

FOR I= (1,1,N); BEGIN
READ (;;STATION); IF I NEQ K; STOP K;
Z = (60(60D(I) + M(I)) + S(l))/6.48**5;
SWITCH Q(I), (QUAD I, QUAD2, QUAD3, QUAD4);
QUADI.. Z = 0.5 - Z; GO TO ANGLE;
QUAD2 .. Z = 1.5 + Z; GO TO ANGLE;
QUAD3 .. Z = 0.5 + Z; GO TO ANGLE;
QUAD4 .. Z = 1.5 - Z;
ANGLE.. ALPHA= 3.1415927Z;
NS(I) = MD(l)SIN(ALPHA); TNS = TNS + NS(I);
EW(I) = MD(l)COS(ALPHA); TEW= TEW+ EW(I);
TMD = TMD + MD(I) END;
ERROR = LENGTH (TNS, TEW); WRITE (;;TITLE, Fl);
NSC = -TNS/TMD; EWCF = - TEW/TMD; TCD = O;

TCNS = O; TCEW = O;
FOR I= (1,1,N); BEGIN
CNS(I) = NS(I) + MD(l).NSCF; TCNS = TCNS + CNS(I);
CEW(I) = EW(I) + MD(l).EWCF; TCEW = TCEW + CEW(I);
CD= LENGTH(CNS(I), CEW(I)); TCD = TCD +CD;
WR!TE (; ;ANSWERS,rn FNO;
CNS(N + 1) = CNS(l); CEW(N + 1) = CEW(l); SUM= O;
FOR I= (1,1,N); SUM= SUM+ (CNS(I + 1) - CNS{I))

(CEW(I + 1) + CEW(I));
SQFT = ABS(SUM)/2; ACRES= SQFT /43560;
WRITE (;;TOTALS, F3); GO TO START;
INPUT IDENT(SURVEY, N), STATION(K,D(I), M(K), S(I),

Q(I), MD(I));
OUTPUT TITLE(SURVEY, N, ERROR),
ANSWERS (I, D(I), M(I), S(I), Q(I), MD(I), CD, CNS(I), CEW(I)),
TOTALS (TMD, TCD, TCNS, TCEW, SQFT, ACRES);
FORMAT Fl(*SURVEY*, 18, B5, *NUMBER OF LEGS*, 15,

CLOSURE ERROR, X9.2, WI, *LEG*, B
5, *ANGLE*, B7, *MEASURED*, B5, *CORRECTED*, B3,

NORTH-SOUTH EAST-WEST, W6, *NO. DD
MM SS Q DISTANCE DISTANCE DISPLACEMENT

DISPLACEMENT*, 2W), F2,(13, 15, 213, 12, 4Xl3.2, W),
F3(B6, *TOTALS*, B4, 4Xl3.2,W4, *AREA OF TRAVERSE*,

X13.2,*SQUARE FEET*,
X13.2,*ACRES*, W6);
FINISH;
123456 4
1 45 01 30 2 1000.00
2 46 13 24 4 2003.69
3 43 12 02 3 995.28
4 45 25 17 1 2001.64

The following program for optical ray-tracing was writ
ten by R. Mitchell.
COMMENT OPTICAL TRACE PROGRAM, R. F. MITCHELL,

VIDYA 1;
INTEGER M,J,K,JA,JB;
ARRAY A(4),B(4),C(4);
A(l) = _:260.0; A(3l"= -600.0; A{4) = 0.0;
ARRAYG(6} = (25.0,50.0,75.0,100.0,125.0,l50.0);
C(l) = 1.0; C(2) = 3.436; C(3) = 1.0; C(4) = -1.0;
B(2) = 339.75; B(3) = 1.0; B(4) = 0.0;
ARRAY Bl (6) = (5.5,5.75,6.0,6.25,6.75,7.0);
FOR JB = (1,1,6); BEGIN B(l) =Bl (JB);
A(2) = A(l) - Bl(JB)(l.0 - l.0/C(2).C(2));
WRITE (; ;PARAM,F6);
OUTPUT PARAM (FOR K = (1,1,4); (A(K),B(K),C(K)));
FORMAT F6(W3,11(3F20.8,W4));
FOR M = (1,1,6); BEGIN Hl = G(M);
WRITE(; ;GVALU,Fl);
OUTPUT GVALU(Hl);
FORMAT Fl (810,*G*,X20.8,W6);
SUMO= 0.0; E = 0.0; P = Hl;
FOR J = {l,1,3); BEGIN
RI= P/A(J);
IF ABS{Rl) GTR 0.95; GO TO PRINT;
I= ARCSIN(Rl);
R2 =RI. C(J)/C(J + 1);
IF ABS(R2) GTR 0.95; GO TO PRINT;
IP= ARCSIN(R2);
E=E+ I - IP;
1-1? - Atl ..i. 1\~INfl=' +I\· ··- .. ,_ . -1-···,- . .. ,,
R3 = SIN(E);
IF R3 = SIN(E);
IF R3 EQL 0.0; R3 = l.0**-20;
DL = (H2 - Hl)/R3;
DU = DL.C(J + 1);
SUMO = SUMO+ DU;
HI = H2;
WRITE(; ;EDH,F2);
OUTPUT EDH(E,DU,Hl);
FORMAT F2(B5,*E*,Xl5.8,B10,*D*,Xl5.8,B10,*H*,Xl5.8,W4);
IF (PCS(l)); BEGIN
WRITE (; ;ALL,F5);
OUTPUT ALL(Rl,R2,l,I P,E,H2,R3,DL,DU,P);
FORMAT F5(2(5F12.5,W4)) END;
P = A(J).R2 - R3(A(J + 1) - A(J) + B(J)) END;
L = A(3)(1.0 + R2/R3);
SUMO = SUMO - DU;
WRITE (; ;LSUMD,F3);
OUTPUT LSUMD(L,SUMD);
FORMAT F3(Bl0,*L*,X20.8,Bl0,*SUMD*,X20.8,W6,W4) END

END; STOP;
PRI NT..WRITE (; ;ERROR,F);
OUTPUT ERROR(Rl,R2,A(J),C(J + l),P);
FORMAT F (*Rl *,X9.4, B4,*R2* ,X9.4, 84,*A* ,X9.4, 84,*C* ,X9.6,

B4,*P*,X9.4,Wl);
STOP; FINISH;

11-3

BURROUGHS ALGEBRAIC COMPILER

The short program which follows is for a reduction of a
square matrix to tridiagonal form, using the method of
Householder.

COMMENT HOUSEHOLDER REDUCTION TO TRIDIAGONAL
FORM;

INTEGER I, J, K, L, R, N; ARRAY A (50,50), X(50), P(50);
N = 5;
IN .. READ(;;ELEMENT); IF I NEQ O; BEGIN A(l,J) = Q;

GO TO IN END;
FOR R = (1,1,N - 1); BEGIN WRITE (;;AOUT, AF); L = R + 1;
S = O; FOR J = (L,l,N); S = S + A(R,J)*2;

S = SIGN (A(R,L))/2SQRT(S);
WRITE (;;BOUT, BF);
X(L) = SQRT(0.5 + A(R,L).S); S = S/X(L);
FOR J = (R + 2,1,N); X(J) = S.A(R,J);
FOR J = (R,1,N); BEGIN S = O; FOR K = (L,1,N);
S = S + A(MIN(J,K), MAX(J,K)).X(K); P(J) =SEND;
S = O; FOR J = (L,1,N); S = S + K(J).P(J);
FORJ = (L,1,N); P(J) = P(J) - S.X(J);
FOR J = (L,1,N); FORK= (J,1,N); A(J,K) = A(J,K) - 2(X(J).

P(K) + X(K).P(J)) END;
WRITE (; ;AOUT, AF); STOP; GO TO IN;
INPUT ELEMENT (l,J,Q); OUTPUT AOUT (A(R,R)),

BOUT (-0.5/S);
FORMAT AF(BlO, Xl0.5, W), BF(B40, Xl0.5,W);
FINISH;

The program below has been written by G. Forsythe,
of Stanford University. It solves a set of linear equa
tions of the form Ay = B, using Crout's method with
interchanges.

COMMENT FORSYTHE PROGRAM;
PROCEDURE PRODUCT (;N, A(), P, E);
BEGIN
COMMENT THIS FORMS THE PRODUCT OF ARBITRARY FLOAT-

ING NUMBERS A(I),
FOR I = (1,1,N). EXPONENT OVERFLOW OR UNDERFLOW IS
PREVENTED. THE ANSWER ISP TIMES lO*E, WHERE E IS 0
IF POSSIBLE. IF E NEQ 0, THEN WE NORMALIZE P SO THAT
0.1 LEQ ABS(P} LSS 1.0;

INTEGER E, F, I, K, N;
Q = l.0**-10; F = 10;
FOR I = (1,1,N);
BEGIN IF A(I) EQL 0.0;

BEGIN P = 0.0; E = O; RETURN END;
IF ABS(A(I)) LEQ 1.0;
BEGIN F = F - 20; Q = Q.(10.0*20) END;
Q = Q.A(I}; X = ABS(Q);
FOR K = (-10,1,10), (-11, -1, -41), (11,1,41);
IF ((10.0*K LEQ X) AND (X LSS 10.0*(K + 1))) ;

BEGIN Q = Q.(10.0*(-10 - K)) ; F = F + K + 10; GO TO 1
END;

1.. END;

1 1 II
..L .i.-·r

IF (((-40) LEQ F) AND (F LEQ 58));
BEGIN P = (Q.(10.0*9)).(10.0*(F - 9)); E = O; RETURN

END;
P = Q.(10.0*~}; E = F - 9; RETURN END PRODUCT ();

PROCEDURE I NNERPRODUCT (S,F,U(), V()) ;
BEGIN COMMENT THIS FORMS THE INNER PRODUCT OF THE

VECTORS U(I) AND V(I) FOR I= (S,1,F);
INTEGER I, S, F; SUM= 0.0;
FOR I = (S,1,F); SUM =SUM + U(l).V(I);
INNERPRODUCT() =SUM; RETURN END INNERPRODUCT();

PROCEDURE CROUT4(;N, A(,), B(), Y(), PIVOT(), DET, EX7;
SINGULAR, IP());
BEGIN COMMENT THIS IS CROUTS METHOD WITH INTE
CHANGES, TO SOLVE AV= BAND OBTAIN THE TRIANGULAR
DECOMPOSITION. IP() STANDS FOR AN INNER PRODUCT
ROUTINE THAT MUST BE AVAILABLE WHEN CROUT4() IS
CALLED. ALSO, PRODUCT () MUST BE AVAILABLE. THE
DETERMINANT OF A IS COMPUTED IN THE FORM DET TIMES
10*EX7, WHERE EX7 IS 0 IF POSSIBLE. IF EX7 NEQ 0, THEN
WE NORMALIZE DET WITH 0.1 LEQ ABS(DET) LSS 1;
INTEGER K, I, J, IMAX, N, PIVOT; INTEGER EX7; INT= 1.0;
FORK= (1,1,N);
BEGIN TEMP= O; FOR I= (K,1,N);

BEGIN A(l,K) = A(l,K) - IP(l, K - 1, A(I,), A(,K));
IF ABS(A(l,K)) GTR TEMP;
BEGIN TEMP= ABS(A(l,K)); IMAX= I END END;
PIVOT(K) = IMAX;

COMMENT WE HAVE FOUND THAT A(IMAX,K) IS THE LARGEST
PIVOT IN COL K. NOW WE INTERCHANGE ROWS KAND IMAX;
IF IMAX NEQ K; BEGIN INT= -INT; FOR J = (1,1,N);

BEGIN TEMP= A(K,J); A(K,J) = A(IMAX,J);
A(IMAX,J) =TEMP END;
TEMP = B(K); B(K} = B(IMAX); B(IMAX) =TEMP END;

COMMENT NOW FOR THE ELIMINATION;
IF A(K,K) EQL 0.0;
BEGIN DET = 0.0; EX7 = O; GO TO SINGULAR END;

FOR I = (K + 1,1,N);
BEGIN XX= A(l,K); XV= A(K,K); X = 1.0; X = X.X;

A(l,K) =XX/XV END;
FOR J = (K + 1,1,N); A(K,J) = A(K,J) - IP(l, K - 1, A(K,),

A(,J));
B(K) = B(K} - IP(l, K - 1, A(K,), B()) END;
FOR I= (1,1,N); Y(I) = A(l,I);
PRODUCT(; N, Y(), DET, EX7); DET =INT. DET;

COMMENT NOW FOR THE BACK SUBSTITUTION;
FORK= (N,-1,1);
BEGIN XX= B(K) - IP(K + 1, N, A(K,), Y()) ; XV= A(K,K);

X = 1.0; X = X.X; Y(K) =XX/XV END; RETURN END CROUT4
() ;

PROCEDURE SOLV2(; N, B(,), C(), PIVOT(), Z(); IP());
BEGIN
COMMENT IT IS ASSUMED THAT A MATRIX A HAS ALREADY
BEEN TRANSFORMED INTO B BY CROUT, BUT THAT A NEW
COLUMN C HAS NOT BEEN PROCESSED. SOLV2() SOLVES
THE SYSTEM BZ = C. AN INNERPRODUCT PROCEDURE MUST
BE USED WITH SOLV2{ } ;

PROGRAMS IN ALGOL

INTEGER K, N, PIVOT;
FOR K = (1,1,N);
BEGIN TEMP= C(PIVOT(K)); C(PIVOT(K)) = C(K);
C(K) =TEMP; C(K) = C(K) - IP(l, K - 1, B(K,), C());

END;
FOR K = (N, -1, 1); Z(K) = (C(K) - IP(K + 1, N, B(K,),

Z()))/B(K,K);
RETURN END SOLV2() ;

COMMENT FORSYTHE TEST CROUT USi69 EXT 2274;
FORMAT FRMTFL(WO, (6Fl9.8, WO));
FORMAT FRMTFX(WO, (6119, WO));
INTEGER PIVOT () ; INTEGER EX; INTEGER I, J, N;
ARRAY A(70,70), 8(70), Y(70), C(70), PIVOT(70);
INPUT DATA(N, FOR I = (1,1,N); (FOR J = (1,1,N); A(l,J),

8(1))) ;
INPUTVECTOR(N, FOR I= (U,N); C{I} };
START.. READ(; ; DAT A); READ(; ; VECTOR); OUTPUT ORDER

(N);
OUTPUT DATAO (FOR I = (1,1,N); (FOR J = (1,1,N); A(l,J),

8(1))) ;
OUTPUT VECTORO (FOR I= (1,1,N); C(I));

WRITE (; ; ORDER, FRMTFX);
WRITE(; ; DATAO, FRMTFL);
WRITE (; ; ORDER, FRMTFX);
WRITE (; ; VECTORO; FRMTFL);
CROUT4 (; N, A(,), 8(), Y(), PIVOT(), DET, EX;

SINGULAR, INNERPRODUCT());
WRITE(;; DATAO, FRMTFL);
OUTPUT ANSWER (FOR I = (1,1,N); Y(I)) ;
OUTPUT PIVOTO (N, FOR I= (1,1,N); PIVOT (I));
OUTPUT DETO (OET);
OUTPUT EXPO (EX);
WRITE (; ; PIVOTO, FRMTFX);
WRITE (; ; ANSWER, FRMTFL);
WRITE (; ; DETO, FRMTFL);
WRITE (; ; EXPO, FRMTFX};
SOLV2 (; N, A(,), C(), PIVOT(), Y(} ; INNERPRODUCT{)) ;
WRITE (; ; VECTORO, FRMTFL);
WRITE (; ; ANSWER, FRMTFU;
GO TO START; SINGULAR .. WRITE (;; FRMTSI);
FORMAT FRMTSI (WO, *SINGULAR*, WO); GO TO START;

FINISH;

11-5

T HIS APPENDIX CONTAINS the information required
for the maintenance and operation of the compiler.

It is assumed that the user is in possession of the mag
netic-tape reel containing the compiler, and of the card
decks containing the following routines: COMPILER CALL
OUT, COMPILED PROGRAM CALLOUT, DUMP CALLOUT 7

COMPILER DUPLICATION CALLOUT, and LIBRARY PROC
ESSOR CALLOUT.

The compiler system is contained on a reel of magnetic
tape which is to be mounted on TAPE STORAGE UNIT 2
whenever it is used. This tape contains the compiler
routine proper, the libarary routines, and a collection of
routines which should be useful in maintaining the
compiler and compiled programs.

For the most part, the compiler system is controlled by
means of decks of cards which load the desired routines
from the compiler tape and then transfer control to
these routines. These decks are termed 'callout decks.'
Any callout deck is read by placing it in the CARD REA
DER (INPUT UNIT 1) and executing a CARD READ
command: 0 1000 60 xxxx. (The address xxxx is irrele
vant.) These decks need no blank cards preceding or
following them except as specifically noted below.

Preparation of Symbolic Decks

Decks of symbolic compiler language are punched with
the digit two in column 1 of each card. The state
ments to be compiled occupy columns 2 through 72.

The symbolic deck is constructed by assembling the fol
lowing card deck:

First: The COMPILER CALLOUT deck;

Second: The ALGOL statements;

Third: External machine-language programs (if any);

APPENDIX A

• operating
instructions

Fourth: STATEMENT MONITORING CONTROL cards (if
any; see CHAPTER X, Diagnostic Facilities);

Fijth: Input data cards (if any), and

Sixth: Two blank cards, or any number of 'reject'
cards (i.e., cards with the digit seven punched
in column 1).

Compiling a Program

Mount a scratch tape which has been preblocked into
100-word blocks on both lanes, designate the tape unit
=-- ,, ' ___ .J --1~--- !.i. !- --·------ _ __ ... ___ 01 LL ______ __l~-
Cl1' .L, ClllU p1ctt;t; IL 111 V\'fl.L.Lr. 1'LdLU1:!J • .£ ldt;t; Lllt; 1:!JJ111UVllt;

deck (as described above) in the CARD READER and exe
cute a CRD (0 1000 60 xxxx). The compiler will read
cards and produce a copy of them on the LINE PRINTER
(OUTPUT UNIT 2) along with any error messages result
ing from the compilation. Meanwhile, the compiled pro
gram is written on the tape on TAPE STORAGE UNIT 1.
After compilation is complete, the following two mes
sages are produced on the LINE PRINTER:

COMPILED PROGRAM ENDS AT mmmm

NEXT AVAILABLE CELL IS nnnn

where mmmm and nnnn are absolute addresses. The
variables for the program are stored in memory between
the end of the compiled program (mmmm) and the next
available cell (nnnn).

In addition to the above cell-count message, the A
register will display either:

0 K (0757 00 7250)

provided that no error messages were produced, or

xx (0525 00 5250)

in the event that the compiler detected errors.

If the compilation has been properly completed, depres
sing the START switch will load and execute the program.

A-1

BURROUGHS ALGEBRAIC COMPILER

Operation of the FINISH Statement

When the compiler encounters the FINISH declaration,
it writes a HALT instruction followed by a CARD
READ instruction at the end of the object-language
program, adds the library procedures and then stops
compilation. Depressing the START key then initiates
execution of the object program. Upon completion of
this object-language program, pressing the START key
executes the CARD READ instruction, as the first
step in the compilation of another card deck.

If the programer wishes to avoid this sequence of
events, he should precede the FINISH declaration in
his symbolic program with a STOP statement, followed
by a statement which transfers control back to the
desired point in his program. (See CHAPTER VI.)

Deferred Execution of a Compiler Program

If desired, the magnetic tape containing the compiled
program may be remounted on TAPE STORAGE UNIT 1 at
some later time and the program loaded and run. This is
accomplished by placing the deck composed of:

First: The COMPILED PROGRAM CALLOUT cards;
Second: STATEMENT MONITORING CONTROL cards (if

any; see CHAPTER X);

Third: Input data (if any); and
Fourth: Two blank cards, or any number of 'reject'

cards (i.e., cards with the digit seven punched
in column 1).

Dumping a Compiled Program

After a program has been checked out, the compiled
program may be converted to cards by placing the deck
marked DUMP CALLOUT in the CARD READER and execu
ting a CRD instruction. The program is punched (on
OUTPUT UNIT 1) with a suitable loader. The resulting
deck, followed by any data cards, if required, and two
blank cards, may be placed in the CARD READER and the
program run by executing a CRD instruction.

This facility is not available for compiled programs
which have used the MONITOR or SEGMENT
OVERLA Y features of the compiler.

Duplicating the Compiler-System Tape

It is occasionally desirable to duplicate the compiler
tape. To do so, mount on TAPE STORAGE UNIT 1 a tape
which has been preblocked with at least 200 blocks of
100 words each on the even lane, and place it in WRITE
status. Place the deck marked COMPILER DUPLICATION
CALLOUT in the CARD READER and execute a CRD
instruction. The compiler program, the service routines,
and the entire library will be copied from TAPE STORAGE
UNIT 2 to TAPE STORAGE UNIT 1, and the compiler will
stop with 7777 00 7777 in the C register. Depressing the
START button will cause a card to be read.

A-2

Library Maintenance

This section describes the method for placing library
procedures on the compiler-system tape. The individual
decks which make up the library procedures are de
scribed in detail in APPENDIX E, Construction of Ma
chine-Language Programs.

Mount the compiler-system tape reel on TAPE STORAGE
UNIT 1, and place the unit in NOT WRITE status. On
TAPE STORAGE UNIT 2, mount a preblocked tape with
at least 200 blocks of 100 words each on the even lane.
Put the latter unit in WRITE status. Place the deck
marked LIBRARY PROCESSOR CALLOUT in the CARD READ
ER, followed by the desired library procedure decks, a
card with the digit two in column 1, and the word
FINISH punched on it, followed by two blank cards.
Execute a CRD instruction.

If the library processor detects an error, it.will produce
one of the following error messages on the SUPERVISORY
PRINTER.

INCORRECT PUNCTUATION

The ',' on a name card, or the '=' on an equivalence
card, was replaced by some other special character, or
was missing.

EQUIVALENCE NUMBER TOO LARGE

More than two digits have been given.

MISPLACED NAME CARD

A second name card has appeared prior to the pseudo
operation for FINISH in the machine-language deck of
the first.

SEQUENCE ERROR

The addresses of instructions in the machine-language
deck being processed are not in the proper order.

MISSING EQUIVALENT

A machine-language instruction with a sign digit of five
or six did not have an equivalence card to define its
digits sL = 82.

The computer will stop with rC displaying 7310 00 0137
after any of the above errors. The processing must then
be started over from the beginning.

The message

LIBRARY PROCESSING COMPLETE

is typed out on the SUPERVISORY PRINTER and the com
puter halts upon completion of updating the library.
The new compiler tape on TAPE STORAGE UNIT 2 will
then have the processed decks in its library. Depressing
the START key will execute a CRD instruction. The
library processor routine replaces the entire library
with a new one each time it is run. This is no inconveni
ence as even a large library requires only relatively
small numbers of cards.

The list below includes all those identifiers to which the
compiler attaches a fixed meaning. These identifiers have
been mentioned separately throughout this manual, but
are listed here for quick reference. A reserved identifier
may not be used by the programer for any purpose other
than its function as employed by the compiler. Jn addi-
lion to this list, the names of all the functions in the library
should be considered as reserved identifiers.

ABS BOOLEAN ENTER
AND COMMENT EQIV
ARRAY EITHER EllL
BEGIN END EXTERNAL

APPENDiX B

iist of reserved
identifiers

FINISH LEQ PCS
FLOATING LSS PROCEDURE
FOR MAX REAL
FORMAT MIN RETURN
FUNCTION MOD SEGMENT
GEQ MONITOR SIGN
GO NEQ STATEMENT
GTR NOT STOP
IF OR SUBROUTINE
IMPL OTHERWISE SWITCH
INPUT OUTPUT TO
INTEGER OVERLAY UNTIL

B-1

FORM OF DEFINITIONS

This appendix lists the syntactical definitions which are
provided for reference purposes. While it is not the in
tent to express here every rule possible for the construc
tion of symbolic programs, these definitions should
serve to answer many questions which arise concerning
the language.

The definitions given here are expressed in a notation
which is particularly well suited for syntactical descrip
tion. A definition has the general form:

Thing being defined ~ definition

(the symbol ~ being read as 00s the form of).

The symbols < and) are used as brackets which enclose
a construction defined elsewhere. The symbol I is to be
read as or. Other symbols represent themselves.

APPENDIX c

syntactical
description of the
compiler language

For example, the definition:

scale factor ~ **(integer constant) I
**+(integer constant) I **-(integer constant)

is to be interpreted as meaning: A scale factor con
sists of two asterisks perhaps followed by a + or - sign
and then fallowed by an integer constant.

Syntactical definitions are recursive, that is, the defini
tion may be applied over and over again. For example,

integer constant "' (digit) I
(integer constant) (integer constant)

would indicate that an integer constant consists of a
string of digits.

It is impossible in these definitions to give the restric
tions on the definition. For the latter, it will be necessary
to refer to the relevant portion of the text; e.g., an inte
ger is restricted to a maximum of ten digits (in this
case, a result of the word length of the BURROUGHS 220).

letter ~ AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

digit ~ Ojlj213l4l5l617l8l9

identifier ~ (letter) I (identifier) (letter) I (identifier) (digit)

integer constant ~ (digit) I (integer constant) (integer constant)

basic floating-point constant ~ (integer constant) . (integer constant)

scale factor ~ **(integer constant) I **+(integer constant) I **-(integer constant)

floating-point constant ~

(basic floating-point constant) I
(basic floating-point constant) (scale factor) I

(integer) (scale factor)

C-1

BURROUGHS ALGEBRAIC COMPILER

arithmetic constant ,....., (integer constant) I (floating-point constant)

Boolean constant ,....., 0 I 1

constant ,....., (arithmetic constant) I (Boolean constant)

signed constant ,.....,

(arithmetic constant) I +(arithmetic constant) I -(arithmetic constant)

simple variable ,....., (identifier)

subscript list ,...., (arithmetic expression) I (subscript list), (subscript list)

variable with subscripts ,....., (array identifier) ((subscript list))

variable ,....., (simple variable) I (variable with subscripts)

arithmetic variable ,....., (variable)

Boolean variable ,....., (variable)

label ,....., (identifier) I (integer)

simple argument list ""' (expression) I (simple argument list), (simple argument list)

argument-subscript list ""'

(empty) I
(arithmetic expression) I
(argument-subscript list), (argument-subscript list)

argument array ,....., (array identifier) ((argument-subscript list))

input-argument list ,....,

(expression) I
(argument array) I
(input argument list), (input argument list)

input-argument portion ""' (empty) I (input-argument list)

output-argument list ""'

(variable) I
(argument array) I
(output-argument list), (output-argument list)

output-argument portion ""' (empty) I (output-argument list)

program reference-argument list ,.....,

(label) I
(procedure identifier) () I
(function identifier) () I
(program reference-argument list), (program reference-argument list)

program reference-argument portion ,....., (program reference-argument list)

argument list ,.....,

(input-argument portion) I
(input-argument portion); (output-argument portion) I
(input-argulllent portion); (output-argument portion); (program reference-argument portion)

f'.-2

SYNTACTICAL DESCRIPTION OF THE COMPILER LANGUAGE

evaluated function rv

(function identifier) ((simple argument list)) I

(procedure identifier) ((argument list))

arithmetic-evaluated function rv (evaluated function)

Boolean evaluated function rv (evaluated function)

arithmetic operation rv + 1-1 ·I *I /I·+ 1 ·-1 *+I*- I/+ I/-

basic arithmetic expression rv

(arithmetic constant) I
(arithmetic variable) I
(arithmetic evaluated function) I
(basic arithmetic expression) (arithmetic operation) (basic arithmetic expression) I
((arithmetic expression))

arithmetic expression rv

(basic arithmetic expression) I
+(basic arithmetic expression} I
-(basic arithmetic expression)

relational operation rv GTR I GEQ I EQL I NEQ I LEQ I LSS

arithmetic relation rv (arithmetic expression) (relational operation) (arithmetic expression)

u.ni:u) Buuleau uperaiion rv NOT

binary Boolean operation rv AND I OR I EQIV I IMPL

Boolean expression rv

(Boolean constant) I
(Boolean variable) I
(Boolean evaluated function) I
((arithmetic relation)) I
(unary Boolean operation) (Boolean expression) I
(Boolean expression) (binary Boolean operation) (Boolean expression) I

((Boolean expression))

expression rv (arithmetic expression) I (Boolean expression)

condition ,...., (arithmetic relation) I (Boolean expression)

program rv (statement list); FINISH;

statement ,...., (operational statement) I (declaration)

statement list ,....,

(operational statement) I
(statement); (statement list) I
(statement list); (statement)

C-3

operational statement ""'

(assignment statement} I
(go statement) I
(enter statement) I
(return statement) I
(stop statement} I
(switch statement} I
(overlay statement) I
(clause); (operational statement} I
(alternative statement) I
(compound statement} I
(procedure-call statement) I
(labeled dummy statement} I
(labeled operational statement)

BURROUGHS ALGEBRAIC COMPILER

arithmetic assignment statement ""' (arithmetic variable) = (arithmetic expression} I

(arithmetic variable) = (arithmetic assignment statement)

Boolean assignment statement ""' (Boolean variable) = (Boolean expression) I

(Boolean variable) = (Boolean assignment statement)

procedure-assignment statement ,..., (procedure identifier) () = (expression)

assignment statement ,...,

(arithmetic assignment statement) I
(Boolean assignment statement) I
(procedure-assignment statement)

go statement ""' GO (statement label) I GO TO (statement label)

enter statement ""' ENTER (subroutine label}

return statement "' RETURN

stop statement "' STOP I STOP (expression}

switch list "' (statement label) I (switch list), (switch list}

switch statement "' SWITCH (expression), ((switch list})

overlay statement "' OVERLAY (segment label)

clause ,..., (if clause) I (until clause) I (for clause}

if clause ,..., IF (condition)

until clause "' UNTIL (condition)

for clause ,..., FOR (arithmetic variable) = (iteration list}

iteration list ,...,

(arithmetic expression} I
((arithmetic expression), (arithmetic expression), (arithmetic expression)) l
(iteration list), (iteration list)

C-4

SYNTACTICAL DESCRIPTION OF THE COMPILER LANGUAGE

ending "' END I) I END (label) I END (procedure identifier) (

alternative statement head "'

EITHER (if clause); (operational statement) I
(alternative statement head); OR (if clause); (operational statement)

alternative statement tail ,...., (ending) I; OTHERWISE; (operational statement)

alternative statement "' (alternative statement head) (alternative statement tail)

procedure-call statement "' (procedure identifier) ((argument list))

compound statement "'

BEGIN (statement list) (ending) I
((statement list) (ending)

statement label ,..., (label)

labeled dummy statement ,..., (statement label) ..

labeled operational statement "' (statement label) .. (operational statement)

declaration "'

(type declaration) !
(array declaration) I
(comment declaration) I
(subroutine declaration) I
(function declaration) I
(nrocedure declaration) I

•..a. I I

(segment declaration) I
(input declaration) I
(output declaration) I
(format declaration) I
(monitor declaration) I
(external declaration)

type name'"" FLOATING I INTEGER I BOOLEAN I REAL

type-list element '""

(simple variable) I
(array identifier) I
(array identifier) () I
(function identifier) I
(function identifier) () I
(identifier) ...

type list '"" (type-list element) I (type list), (type list)

type declaration "'

(type name) (type list) I
(type name) OTHERWISE!
(type name) ((type list))

C-5

integer list "'

{integer constant} \

{integer list}, {integer list}

array identifier "' {identifier)

BURROUGHS ALGEBRAIC COMPILER

basic array-list element "' {array identifier) ({integer list))

constant list "'

{signed constant) \

{constant list}, (constant list)

array list "'

{basic array-list element) \

(basic array-list element) = ((constant list)) \

(array list), {array list)

array declaration "'

ARRAY {array list) \

ARRAY ((array list))

comment declaration "'"' COMMENT (any set of characters not containing a semicolon)

subroutine label ,..., (label}

subroutine declaration "'

SUBROUTINE {subroutine label); (compound statement)

function identifier "' (identifier)

simple parameter list "'"'

{identifier) \

(simple parameter list), (simple parameter list)

function declaration "'"'

FUNCTION (function identifier) ((simple parameter list)) = (expression)

parameter-subscript list "'

{empty) I
{parameter-subscript list}, {parameter-subscript list)

parameter array "" {identifier) (parameter-subscript list)

procedure identifier "' {identifier}

input-parameter list ,...,

(identifier} I
{parameter array) \

{input-parameter list), {input-parameter list)

input-parameter portion ,..., (empty) \ (input-parameter list}

C-6

output-parameter list ""'

{identifier) I
(parameter array) l

SYNTACTICAL DESCRIPTION OF THE COMPILER LANGUAGE

(output-parameter list), (output-parameter list)

output-parameter portion ""' (empty) I (output-parameter list)

program reference-parameter iist ""'

(identifier) I
(identifier) () I
(program reference-parameter list), (program reference-parameter list)

program reference-parameter portion ""' (program reference-parameter list)

parameter list ""'

(input-parameter portion) I
(input-parameter portion); (output-parameter portion) I
(input-parameter portion); {output-parameter portion); (program reference-parameter portion)

procedure declaration ""'

PROCEDURE (procedure identifier) ((parameter list)); (compound statement)

segment label ""' (Jabel)

segment declaration ""'

SEGMENT (segment label); (compound statement)

input label ""' (label)

input-data list ""'

{variable} I
{for clause); {input-data list) I
(for clause); ({input-data list)) I
(input-data list), (input-data list)

input list ""'

{input label) ((input-data list)) I
(input list), (input list)

input declaration ""'

INPUT (input list) I
INPUT ((input list))

output label ""' {label)

output-data list ""'

(expression) I
{for clause); {output-data list) I
{for clause); ((output-data list)) I
(output-data list), {output-data list)

C-7

output list ""

(output label) ((output-data list)) I
(output list}, (output list}

output declaration ""

OUTPUT (output list} I
OUTPUT ((output list})

basic format phrase ""

(letter) I
(letter) (integer constant) I

BURROUGHS ALGEBRAIC COMPILER

(letter} (integer constant).(integer constant)

format phrase ""

*(any string of characters not containing an *)* I
(basic format phrase) I
(integer constant) (basic format phrase)

format-phrase list ""

(format phrase) I
(format-phrase list), (format-phrase list) I
((format-phrase list)) I
(integer constant} ((format-phrase list))

format label "" (label) I (integer)

format list ""

(format label) ((format list)) I
(format list), (format list)

format declaration ""

FORMAT (format list) I
FORMAT ((format list})

monitor declaration ""

MONITOR I
MONITOR (type list) I
MONITOR ((type list))

(external declaration) ""

EXTERNAL PROCEDURE (procedure identifier) ((parameter list)) I
EXTERNAL PROCEDURE (procedure identifier) ((parameter list)); (type name) (procedure identifier) I
EXTERN AL ST A TEMENT (label)

C-8

THIS APPENDIX presents a summary of equivalences
between the elements of the BURROUGHS Algebraic

Compiler language; and the elements of ALGOL; the in-

t See Communications of the ACM, vol. l, no. 12, pp. 8-22; and
vol. 3, no. 5, pp. 299-313.

Reference Language

1. BASIC SYMBOLS

a. Non-delimiters

(1) Letters A..-Z
a,,_z

(2) Digits 0 ,,_ 9

b. Delimiters

(1) Operators

Arithmetic +

x

I
Relational <

~

~

>
~

APPENDIX D

transliteration
rules

ternational algebraic language. It is this latter language
which is used for the publication of programs written in
the former. Transliteration of programs for the BUR
ROUGHS Algebraic Compiler into ALGOL requires a
thorough familiarity with ALGOL, the details of which
are available in the literature. t

Burroughs Language

A.._Z
A.._Z

0..-9

+

The multiplication sign may be
omitted in certain instances.
It is represented on card equipment
as a decimal point (.).

I
LSS
LEQ
EQL
GEQ
GTR
NEQ

D-1

D-2

BURROUGHS ALGEBRAIC COMPILER

1. BASIC SYMBOLS (continued)

b. Delimiters (continued)

(1) Operators (continued)

Logical

Sequential

(2) Separators

(3) Brackets

.....,
v

/\

(:::>)
Logical implication - no
equivalent in the reference
language.

go to
(no equivalent)
do
return
stop
(no equivalent)

for

if
or

if either

or if
(no equivalent)

(not required)

10

begin
end
(

)

[

]

NOT
OR
AND
EQIV
IMPL

GOTO
SWITCH
(no equivalent)
RETURN
STOP
FINISH
FOR
IF
OR
EITHER IF
OR IF
UNTIL

(space)
Spaces must be used to separate
contiguous identifiers or an identifier
followed by a constant. Spaces may
not be embedded within an identifier
or a constant.

On standard keypunch equipment,
the semicolon is represented by $
(dollar sign.)

(See PROCEDURES)
(no equivalent)
Related to the DO statement
in the reference language.

**
Power of 10.

BEGIN
END
(

)

(

)

TRANSLITERATION RULES

1. BASIC SYMBOLS (continued}

b. Delimiters (continued)

(3) Brackets (continued)

(4) Declarators

2. EXPRESSIONS

i
l

type

array
function
comment
procedure
(no equivalent)
(no equivalent)
(no equivalent)
(no equivalent)
switch

*(

)
(Parentheses may be emitted
in certain instances.)

INTEGER, BOOLEAN,
FLOATING, REAL
ARRAY
FUNCTION
COMMENT
PROCEDURE
SUBROUTINE
INPUT
OUTPUT
FORMAT
(no equivalent)
See SWITCH statement.

Most expressions are self-evident, except those noted below:

a. Numbers G.G1o±G g.g**±g

b. Simple Variables
c. Variables with

Subscripts
d. Functions
e. Arithmetic
· Expressions

f. Boolean
Expressions

3. STATEMENTS

a. Assignment
b. Go to
c. Switch
d. If
e. Until

,., r. {\
u. tJ•V

.G o.g
IOG l**g

I 9

l[C] s(e)

l(R) S(<R)

(See Arithmetic Operators, above).

El*(E2)
(Parentheses may be omitted
in certain instances.)

(See Relational Operators, above).

V :=E
go to D
(no equivalent)

if B
(no equivalent)

1) = 8

GO TOD

SWITCH 8, (~i, ~2, """'' ~n)

IF ffi
UNTIL e

D-3

D-4

BURROUGHS ALGEBRAIC COMPILER

3. STATEMENTS (continued)

f. For

g. Alternative

h. Stop

i. Finish

j. Return

k. Procedure

I. Subroutines

m.Do

4. DECLARATIONS

a. Type

b. Array

c. Functions

d. Comment

e. Procedure

f. Subroutines

g. Input

h. Output

i. Format

for V := C
for V := Ei,
(E.,) Ee,,

if either Bi,

~1; or if B2,

~2; NW end

stop

(no equivalent)

return

l(Pi, Pi, ,,_,, Pi)

=:(Po, Po, NVV' Po)

(no equivalent)

do Li, L2

(S ... -+ I, NW!

S ... -+I)

type (I, I, , I)

(no equivalent)

array (I, I, ,,_,,
l[C:C'], I, I, ,_)
(no equivalent)

l(R) := E

comment S;

FOR V = e
FOR V = (Sj,, 8,,, Se.)

EITHER IF ffi1; S1; OR IF ffi2;

S2 END
EITHER IFffi1; S1; OR IFffi2; S2;

OTHERWISE; Sn

STOP

FINISH

RETURN

d(<Pi, <Pi, """'' <Pi;

<P 0! <PO! NW! <P 0;

<Pr, <P ri MN' <Pr)

ENTER 9

(no equivalent)

BOOLEAN 9, 9(,), d...

INTEGER 9, 9(,), L.

FLOATING 9, 9(,), d...

REAL 9, 9(,), 9 ...

(type) OTHERWISE

ARRAY 9; (ei),

ARRAY 9; (:r>i) = (ei),

FUNCTION 9(<R) = e
COMMENTS;

procedure l(P;) =:(Po), PROCEDURE d(<Pi; <Po; <Pr);

l(Pi) =: (Po), MN NW NW• BEGIN Si END

l(Pi) =: (Po) A; A;

IVW NW '""; A begin ~; ~;

~;~end

(no equivalent) SUBROUTINE 9; (Si)

(no equivalent) INPUT (s i (:r>S))

(no equivalent) OUTPUT (9 i (:r>s)i)

(no equivalent) FORMAT (di (:JS);)

PROGRAMS WRITTEN IN MACHINE-LANGUAGE-whether
for use as external programs, as external state

ments, or as library procedures-are prepared similarly,
and the techniques and conventions required ior their
construction are listed below.

LINKAGE TO PROCEDURES

Ulhan tl.a ,..,...,.;1,. l;nlr<> tn <::>n·u n.,..rv>arln.,.a tl.o ;n<>f.,..,,.._
y y,,, '"'"'~.t' "VA ~~ '-'"' ~AA J .t'A"''-''-'~~A"V' .,....._...,_A~UA ~"V

tions executed are:

0000 STP aaaa
nnOO BUN aaaa

where aaaa is the location of the first cell of the proce
dure and the value of nn is one less than the number of
parameters given to the procedure.

Since the address fields of both the STP and the BUN
instructions are the same, it is necessary that the first
instruction of the procedure be a NOP. This NOP is of
the form

aaaa: bbbb NOP xxxx

where xxxx will be replaced when the STP instruction
is executed, and bbbb is the address where the first
parameter is to be stored. Each succeeding parameter
will then be stored in sequence following the address
bbbb.

Suppose now that Pi, and P2, ... ,Pm are the addresses
of those parameters which are to be given to the proce
dure. The compiler will in effect produce the following
program:

APPENDIX E

construction of
machine-language
programs

CODE

0 0000 CAD P1

0 4400 DLB aaaa
1 0000 ST A 0000
0 0000 CAD P2
1 0000 STA 0001

0 0000 CAD P m-1

1 0000 STA (m - 2)

0 0000 CAD Pm
0 0000 STP aaaa
0 nnOO BUN aaaa

REMARKS

P2 ~ bbbb + 1

p m-1 ~ bbbb + m - 2

Pm ~rA

(nn = m - 1)

Notice that the control :(ield of the NOP instruction
which heads the procedure provides the address used
to determine the location in which to store parameters.
The last parameter is always left in the A register. In
particular, if a procedure has only one parameter, it will
be found in rA.

When constructing machine-language procedures, the
bbbb field may be either located within the procedure

< code itself (the control field of an instruction may be re
located-see Relocation Conventions) or it may be abso
lute. The absolute addresses available for this purpose
are 0100 through 0199. A word of caution concerning the
use of any of these absolute addresses for bbbb is neces
sary. The memory area 0100 through 0199 is used as a
buffer area by input-output procedures. If it is possible
that a procedure be executed by linkage (perhaps sev
eral times removed) from the program compiled by an
OUTPUT declaration, then a conflict will result if that
procedure uses the buffer area for its parameters.

E-1

BURROUGHS ALGEBRAIC COMPILER

PARAMETERS OF PROCEDURES

As discussed in CHAPTER VII, parameters may be con
sidered as being either values or identifiers. Input vari
ables or expressions are values; the procedure thus re
ceives the actual value of the variable or expression
given as a parameter. Output variables are identifiers.
When an output variable is indicated, the address of
that variable is given to the procedure in the 04-field.

All program-reference parameters are also identifiers;
the procedure receives, in the 04-field, the address of
the parameter to which reference is made.

In the case of arrays the situation is somewhat more
complex. Whenever an array is written as a parameter
(either as input or output) several parameters are given
to the procedure. This set of parameters consists of a
base address and values corresponding to each empty
subscript position, which we will call m, µi, µ2, ... , µk,

respectively. The address of an element A(ni, n2, ... , nk)

is then given by

m + (((... ((n1µ1 + n2)µ2 + n3) ... + nk)µk.

As an example, consider the three-dimensional array
M (, , 5, , 7) which is used as a parameter to a given pro
cedure. The parameters supplied to this procedure
would be m, µi, µ2 and µ 3. The procedure could then cal
culate the address of the element M(ni, n2, 5, n3, 7) by

m + ((nJ.J.L1 + n2)µ2 + n3)µ3.

RELOCATION CONVENTIONS

All machine-language programs are written relative to
location 0000. The compiler will relocate the program so
that it occupies storage starting at some other cell. The
address of this cell is called the relocation base. This
relocation is controlled by the sign digit of the machine
language commands.

Sign Digit of Zero, One, Two, or Three

Instructions with signs of zero, one, two, or three are
not altered in any way.

Sign Digit of Four

Instructions with a sign digit of four are not allowed
except for the following:

If the operation code is 00 (sL = 62), advance the
location counter by the amount specified in the address
field. This instruction behaves in a manner analogous to
a pseudo-operation code in an assembler and allows the
programer to reserve blocks of memory relative to the
beginning of the routine.

E-2

If the operation code is 30, the compiler will insert an
unconditional transfer to the statement immediately
following the declarator which defined the external state
ment. This instruction is similar to the RETURN op
eration of the symbolic language and may be used any
number of times within an external statement.

If the operation code is 99, the end of this machine
language program is indicated.

Sign Digit of Five or Six

Instructions with a sign digit of five or six have their
address field located relative to some identifier defined
within the ALGOL program. The control field is unaltered.
The sign is set to one if the original sign was five, and
to zero if it was six.

Sign Digit of Seven

Instructions with a sign digit of seven have their control
field (sL = 44) relocated with respect to the first instruc
tion of the program. The address field is not altered and
the sign of the instruction is set to zero.

An instruction with a sign of seven and an operation
code of 01 (NOP) is often used as the first instruction of
an external or library procedure when it is desired to
locate the parameters to the procedure within the
routine itself.

Sign Digit of Eight

Instructions with a sign digit of eight have their address
fields (sL = 04) relocated with respect to the first in
struction of the program. The control field is not altered
and the sign of the instruction is set to zero.

Sign Digit of Nine

Instructions with a sign digit of nine have their address
fields relocated with respect to the first instruction of
the program. The control field is not altered and the sign
of the instruction is set to one.

USE OF EQUIVALENCE CARDS

It is possible in a machine-language program to refer to
any identifier defined within the symbolic program, as
well as to any library procedure. Every identifier to
which it is desired to refer is assigned a unique two
digit equivalent, mm, by means of an equivalence card
preceding the machine-language deck. (See APPENDIX F
for the list of subroutine names). This card has the digit
two in column 1, an arbitrary number of spaces, an iden
tifier, an equal sign, and a two-digit number (leading
zeros may be omitted) which is assigned to the identi
fier, e.g.:

CONSTRUCTION OF MACHINE-LANGUAGE PROGRAMS

COLUMNS

1
5- 9

or:
1
7-19

CONTENTS

2
SIN=3

2
SUMSQUARES=56

If the identifier is defined ·within a procedure, then it
must be preceded by a prefix which is the name of the pro
cedure enclosed in parentheses. Thus the equivalence card
for label START within the procedure SIMPSON
might appear as:

COLUMNS

1
4-20

CONTENTS

2
(SIMPSON)START=l3

The address field of any instruction within a machine
language program which has a sign of five or six; i.e.:

will be replaced by kk, plus the address of the identifier
corresponding to mm.

For example, suppose that the instructions

6 0000 44 0300
6 0001 30 0301
5 0001 23 0341

are included within a machine-language program and
that the equivalence card with the following entries:

COLUMNS

1
4- 8

CONTENTS

2
SIN=3

has preceded this program. Now assume that the compi
ler has assigned the cells 2856 - 2904 to the SIN routine.
These instructions would then appear in the final pro
gram as:

0 0000 44 2856
0 0001 30 2857
1 0001 23 2897

If the identifier is that of an array, then the following
method must be used to address a specific element
within the array:

Assume that the array A has been defined previously by
the declaration:

ARRAY A(µi, µ2, ... , µk)

then the address of the element A(ni, n2, ... , nk) is given
by m + (((... (n1 µ2 + n2)µ3 + n3) ... + nk-i)µk + nk.
(Note that µ 1 is not used in the calculation).

A value of m is assigned to each array identifier by the
compiler. Thus if the array M had been defined by the
statement:

ARRAY M (15, 4, 6)

and the following coding was preceded by the equiva
lence card with the entries:

COLUMNS
1
6- 9

CONTENTS
2
M=59

the value of the element M(ni, n2, n 3) would be put into
the A register.

OPERATION
LOCATION AND ADDRESS REMARKS
0107 8 0000 10 0132 CAD n1
0108 8 0000 14 0130 MUL µ2
0109 0 0001 49 0010 SLT 10
0110 8 0000 12 0133 ADD n2
0111 8 0000 14 0131 MUL µ3
0112 0 0001 49 0010 SLT 10
0113 8 0000 12 0134 ADD ll3

0114 8 0000 40 0135 STA temp
0115 8 0000 42 0135 LDB temp
0116 5 0000 10 5900 -CAD m

0103 0 0000 00 0004 µ2
0131 0 0000 00 0006 µ3
0132 0 0000 00 (n1) n1
0133 0 0000 00 (n2) n2
0134 0 0000 00 (n3) ll3
0135 0 0000 00 0000 temp

It has been assumed that the compiler assigned the
value 3900 to m for the array M in the above example.

MAGNETIC-TAPE OPERATIONS

In order to allow the use of the MAGNETic-T APE FIELD
SEARCH (MFS) and MAGNETIC-TAPE FIELD ScAN
(MFC) commands, the following conventions have been
employed:

The pseudo-operation codes 90 and 91 have been intro
duced for use by the programer, when referring to the
MFS and MFC commands, respectively.

If the address field of the field search or scan is to he
absolute, then the sign of the instruction must be four
or five.

If the address field is relative to the first line of the sub
routine, the sign must be eight or nine.

E-3

BURROUGHS ALGEBRAIC COMPILER

If the address field is relative to some identifier, the
sign must be six or seven.

The signs of five, seven, and nine indicate B-modifica
tion is to be performed.

PREPARATION OF EXTERNAL PROGRAMS

As discussed in CHAPTER VII, it is necessary, when us
ing external programs, to have an EXTERNAL decla
rator in the body of the symbolic program. The defini
tion of the program itself follows the FINISH statement
of the symbolic statement.

This deck must contain:

First: THE NAME CARD

'Name' cards have a two in column 1, followed by the
name of the statement or procedure, a comma, and the
type (INTEGER, BOOLEAN, FLOATING, or REAL).
The use of a comma followed by the type is necessary
only in the case of a procedure which behaves as a func
tion, i.e., has a value associated with its name which is
left in the A register.

Second: THE EQUIV ALEN CE CARDS

'Equivalence' cards have a two in column 1, an identi
fier, an equal sign, and two digits. These cards are used
only when necessary to refer explicitly to other identi
fiers in the program.

Third: THE INSTRUCTION CARDS

'Instruction' cards define the program in machine lan
guage, and have the following format:

COLUMNS CARD ENTRY

1- 2 60
3 The number of instructions on this card
4 - 10 Any identification, serial numbers, etc., that

the user desires
11 - 14 These columns are ignored.
15 - 25 The first instruction
26 - 36 The second instruction
37 - 47 The third instruction
48 - 58 The fourth instruction
59 - 69 The fifth instruction
70 - 80 The sixth instruction

As many of these cards as required are used. The final
card of this program must have as its last instruction the
FINISH pseudo-operation code: 4 0000 99 0000.

All the EXTERNAL programs declared in the sym
bolic program follow one after the other. Following the
final external deck, another symbolic card must appear
with the word FINISH on it. This defines the end of the
program (symbolic statements and machine-language)
to the compiler; it is in addition to the FINISH state
ment of the symbolic program.

E-4

EXAMPLE:
Suppose we wish to define a procedure to detect an over
flow condition. In the symbolic deck, prior to the use of
this procedure, we would have the declaration:

EXTERNAL PROCEDURE OVERFLOW (; ; L)

Following the FINISH statement, the following deck
would appear:
CARD
NO.

1
2

3
EXAMPLE:

ENTRIES
2 OVERFLOW
606 0 0000 00 0000

2 FINISH

0 0000 01 9999
8 0410 40 0002
0 0000 31 9999
8 0000 42 0000
1 0000 30 0000
4 0000 99 0000

Suppose that an external procedure is to be defined for
the complex multiplication:

(A + iB)(C + iD) ~ (X + iY)

In the symbolic program, the following declaration
would appear:

EXTERNAL PROCEDURE CMPMULT(A ,B, C, D; X, Y); REAL
CMPMULT;

After the FINISH statement would be the following
deck:

CARD
NO. ENTRIES

1 2 CMPMULT, REAL
2 606 0 0000 01 0000 7 0020 01 9999

8 0410 40 0017
8 0000 41 0024
8 0411 40 0010
8 0000 10 0020
8 0000 24 0022

3 606 0 0000 02 0006 8 0000 40 0024
8 0000 11 0021
8 0000 24 0023
8 0000 22 0024
0 0000 40 9999
8 0000 10 0020

4 606 0 0000 03 0012 8 0000 24 0023
8 0000 40 0024
8 0000 10 0021
8 0000 24 0022
8 0000 22 0024
0 0000 40 9999

5 604 0 0000 04 0018 8 0000 42 0000
1 0000 30 0000
4 0000 00 0005
1: 0000 99 0000

CONSTRUCTION OF MACHINE-LANGUAGE PROGRAMS

Suppose that an external procedure which will allow key
board input of a single item of data is to be defined.
The declaration

EXTERNAL PROCEDURE KEVIN(; X)

appears in the symbolic program. The card deck which
follows the FINISH statement in the symbolic program
would be:

CARD
NO. ENTRIES

1
2

3

4

2
606

602

2

KEY IN
0 0000 01 0000

0 0000 02 0006

FINISH

0 0000 01 9999
8 0410 40 0004
0 0007 45 0000
0 0000 08 0000
0 0000 40 9999
8 0000 42 0000
1 0000 30 0000
4 0000 99 0000

If it was desired to use the keyboard to enter a variable
ALPHA, it could be written as a statement. In the sym
bolic program, the declaration:

EXTERNAL STATEMENT KEVIN

would appear. Following the FINISH statement would
be the deck:

NO. ENTRIES

1 2 KEYIN
2 2 ALPHA=33
3 605 0 0000 00 0000

LIBRARY PROCEDURES

0 0007 45 0000
0 0000 08 0000
6 0000 40 3300
4 0000 30 0000
4 0000 99 0000

Library procedure decks are prepared in a manner iden
tical to that for external procedures, i.e., a name card
followed by equivalence cards, followed by the machine
language program. Following the final deck is again a
card with the word FINISH. The method of loading
these decks onto the tape is discussed in APPENDIX A,
Operating Instructions.

EXAMPLE:

A possible library procedure for the inverse-cosine func
tion is reproduced here as an example. This procedure
uses the relation:

arccos x = arcsin (-x) + ~

A reference must be made to the ARCSIN procedure.
We shall assume also that cell 0047, relative to the
ARCSIN procedure, is availabie for temporary storage
and that cell 0033 contains the constant 7r /2.

CARD
NO. ENTRIES

1
2
3

4

2
2
606

603

ARCCOS, REAL
ARCSIN=21
0 0000 01 0000

0 0000 02 0006

0 0000 01 9999
6 0000 40 2147
6 0000 11 2147
6 0000 44 2100
6 0000 30 2100
6 0000 22 2133
8 0000 42 0000
1 0000 30 0000
4 0000 99 0000

THE ERROR-MESSAGE PROCEDURE

The error-message procedure controls the printing of
the following types of error indication on the LINE

PRINTER.

RESULT OUT OF RANGE IN a> - £(nnnn)

RESULT UNDEFINED FOR a> - £(nnnn)

RESULT ILL-DEFINED FOR a> - £(nnnn)

ARiTiiiViETiC OVERFLOW - £(nnnn)

where (Pis the label of the procedure which caused the
printing. If a MONITOR statement has been given,
£(nnnn) will also be printed, where £ is the first five
characters of the label of the last labeled statement
which has been executed, and nnnn is the number of
times this statement has been executed.

Any machine-language program may use this procedure
to give error indications, provided the following con
ventions are adhered to:

The name (P is in the R register, in alphanumeric form,
upon entrance to the error message procedure. (In the
case of arithmetic overflow, (P is ignored.)

Upon entrance, the exit line is in the B register.

Control is transferred to locations 0000, 0007, 0014, or
0021, relative to the beginning address of the error-mes
sage procedure, to cause printing of any of the error
indications listed above in their respective order.

EXAMPLE:

To illustrate the use of the error-message procedure,
consider the library procedure ARCCOS. The relation

E-5

BURROUGHS ALGEBRAIC COMPILER

7r •
cos-1 x = - - sm-1 x

2

is used for calculation and hence an entry must be made
to the ARCSIN routine. Also, since cos-1 xis undefined
for I x I > 1, an entry must be provided to the error
message procedure.

CARD
NO. ENTRIES REMARKS

1 2 AHCCOS, REAL
2 2 ARCSIN=l
3 2 ERROR=l3
4 606 0 0000 01 0000 0 0000 01 0000

8 0010 18 0012
8 0000 42 0000 Load B with

exit line
8 0000 41 0013 Load R with

name 'ACOS'
6 0000 34 1311 If Ix I > 1,

print undefined
8 0000 40 0015 error message

5 606 0 0000 02 0006 8 0000 11 0015
6 0000 44 0100 Get sin-1 (-x).
6 0000 30 0101
8 0000 22 0014
8 0000 42 0000
1 0000 30 0000 Exit

6 605 0 0000 03 0012 0 5110 00 0000 1.0
2 4143 56 6200 'ACOS'
0 5115 70 7963 7r/2
0 0000 00 0000 Temporary

storage
4 0000 99 0000 End of

procedure

INPUT-OUTPUT PROCEDURES

External programs for specialized forms of input and
output will often be employed. It is necessary in these
cases to describe the coding produced by the compiler
when an INPUT, OUTPUT, or FORMAT declaration
is given.

The prime function of the program produced from either
an INPUT or OUTPUT declaration is to form a link
between those quantities which have been determined
at compilation time (i.e., the addresses representing ar
rays, variables, expressions, etc.) and those quantities
which are known only when the compiled program is
executed (i.e., quantities either to be read from, or writ
ten on, various input or output media). The programs
must thus be produced without reference to the routines
which will use them.

When the name of an INPUT or OUTPUT declaration
is given to a procedure (either a library procedure such
as READ or WRITE, or some EXTERN AL procedure)
it is in the program-reference field, and thus an address
can be assigned to it. It is to this address that the input
or output program will refer to determine an 'exit' ad
dress to which the program may transfer control. The
input-output program, in turn, leaves its own return

E-6

address in the B register. The A register is used to trans
mit the actual data. An OUTPUT declaration will put
data to be transmitted to output media in the A regis
ter. An INPUT declaration will store data from the A
register.

When all the relevant data have been transmitted-the
input-output string having been exhausted-the sign of
the A register will be loaded with the digit nine, which
serves as a termination flag. Nole that no information
should be transmitted until an entry has been made to the
INPUT or OUTPUT declaration. If these strings were
vacuous, the A register would be loaded immediately
with the termination flag, but it is necessary to enter
the routine to obtain this information.

Some examples should make this clearer. Suppose we
have the following INPUT declaration:

INPUT DATA (A, I, 0(1), B)

Let us assume that the variables A, I, 0(1), and B have
been assigned cells 3701, 3702, 2008 + I, and 3703, re
spectively, and that the coding generated by the com
piler for this INPUT declaration starts at cell 0956.

LOCA- OPERA-

TION TION ADDRESS REMARKS

0956 0 0000 30 0000
0957 0 0000 42 0957 first entry
0958 0 0002 20 0956
0959 0 0000 40 3701 second entry (A)
0960 0 0000 42 0960
0961 0 0002 20 0956
0962 0 0000 40 3702 third entry (I)
0963 0 0000 42 0963
0964 0 0002 20 0956
0965 0 0000 42 3702 fourth entry (0(1))
0966 1 0000 40 2008
0967 0 0000 42 0967
0968 0 0002 20 0956
0969 0 0000 40 3703 fifth en try (B)
0970 0 0009 43 0000 termination flag
0971 0 0000 30 0956

The following is a keyboard-input external procedure
which could use this INPUT declaration.

The procedure-call in the symbolic program would be:

KEVIN(; ; DATA)

Thus only one parameter (in rA) is supplied to the ex
ternal procedure. This parameter is the address of the
input string DAT A. In this particular case rA would
contain 0 0000 01 0956.

CONSTRUCTION OF MACHINE-LANGUAGE PROGRAMS

CARD

NO. ENTRIES

1 2 KEY IN

2 606 0 0000 01 0000 0 0000 01 0000
8 0410 40 0004
8 0410 40 0005
8 0401 26 0005
0 0000 44 9999
0 0000 30 9999

3 606 0 0000 02 0006 8 0009 33 0011
8 0412 40 0005

0 0001 45 0000
0 0000 08 0000
8 0000 30 0005
8 0000 42 0000

4 602 0 0000 03 0012 1 0000 30 0000
4 0000 99 0000

As an example of an OUTPUT declaration consider the
statement:

OUTPUT DATB (A, I, X{I), B + A*2)

Assume that the compiler has assigned the cells 3095,
3096, 3097, and 2106 + I to the variables A, I, B, and
X(I), respectively, and that the coding for this output
statement starts at 1159.

The coding wouid then appear as

LOCA- OPERA-

TION TION ADDRESS REMARKS

1159 0 0000 30
1160 0 0000 10
1161 0 0000 42
1162 0 0002 20
1163 0 0000 10
1164 0 0000 42
1165 0 0002 20
1166 0 0000 42
1167 1 0000 10
1168 0 0000 42
1169 0 0002 20

1170 0 0000 10

1171 0 0000 24
1172 0 0000 22
1173 0 0000 42
1174 0 0002 20
1175 0 0009 33
1176 0 0000 30

0000
3095 first entry (A)
1161

1159
3096 second entry (I)
1164

1159
3096 third entry (X (I))

2106

1168
1159
3095 fourth entry

(B + A*2)

3095
3097
1173
1159
0000 fifth entry
1159 termination signal

The following describes an external procedure which
uses this declarator, and which will transmit the infor
mation to the SUPERVISORY PRINTER as output (in in
teger format).

The symbolic procedure-call might be, for example:
SPO (; ; DATB)

Thus only one parameter (in rA) would be supplied to
the external procedure. This parameter is the address of
the output string DATB and, in this particular case,
would be 0 0000 00 1159.

CARD

NO.

1
2

3

1

ENTRIES

2 SPO
606 0 0000 01 0000 0 0000 01 0000

8 0410 40 0004
8 0000 42 0004
8 9999 21 0004
0 0000 44 0000
l 0000 30 0000

606 0 0000 02 0006 8 0009 33 0010

8 0000 40 0012
8 0010 09 0012
8 0000 30 0004
8 0000 42 0000
1 0000 30 0000

602 JI (\{\{\(\ {\{\ {\{\{\ 1
-r VVVV VV VVV.L 0 0000 03 0012
4 0000 99 0000

THE FORMAT DECLARATION

The compiler does not produce a program for a FOR
MA T declaration. It does a certain amount of pre
processing of the string language, and inserts this into
the program. This preprocessing consists mainly of
breaking the string up into phrases, word-by-word. The
sign of the word determines the intepretation of the
phrase.

PHRASE FORMAT

ct

nnnct

ctwww

nnnctwww

ctwww.dd

nnnctwww.dd

WORD FORMAT

0 nnn ct www dd

where ct is any alphabetic character, nnn is a three
digit numeric field, www is a three-digit numeric field,
and dd is a two-digit numeric field.

nnn(

1 000 000 aaaa

1 000 nnn aaaa

E-7

BURROUGHS ALGEBRAIC COMPILER

This word corresponds to a parenthesis pair. The word
appears in the phrase list at a point corresponding to
the right parenthesis. The digits nnn are the repeat
digits preceding the corresponding left parenthesis. (A
zero implies an indefinite repeat.) The address of the
word corresponding to the phrase following the left
parenthesis is aaaa.

* aaaaa * 2aaaaa

This word corresponds to five characters of an alpha
numeric string lying between asterisks.

3aaaaa

This is the termination word of an alphanumeric string.
One of the a's will be an * (internal machine code: 14)
showing the exact point of termination of the string.
Spaces not within an alphanumeric string are ignored.

Consider the FORMAT declaration:

FORMAT F(5Fl4.8, *F(X) = *, 2(3Al3, 15), WO, (5110, P))

E-R

and assume that the compiler assigns the cell 1894 to
the first phrase in F. The following would then be pro
duced. (The symbol# is used here to indicate a space):

ADDRESS

1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904

PHRASE

0 005 46 014 08
2 00 46 24 77 04
3 00 33 00 14 00
0 003 41 013 00
0 000 49 005 00
1 000 002 1897
0 000 66 000 00
0 005 49 010 00
0 000 57 000 00
1 000 000 1901
1 000 000 1894

REMARKS

5Fl4.8
#F(X)
#=#*
3A.13
15
2(
WO
5110
p
(5110)
F()

Although there is a well-defined interpretation of these
phrases as far as the WRITE procedure is concerned,
the programer is at liberty to employ these phrases in
an external program, which will interpret them in any
way desired.

APPENDIX F

library procedures

In order to make alterations to the library procedures
listed below, or to incorporate additional procedures in
the library, it is necessary to follow the instructions
given in APPENDIX A. Maintaining the library in this
manner requires that the user. be in possession of both
the LIBRARY PROCESSOR CALLOUT deck and the appro-

priate library-procedure decks. The preparation of the
latter is discussed in APPENDIX E, page E-5.

A description of these library procedures is given in the
following pages, preceded by a specimen page showing
the format of these descriptions.

The compiler tape contains the following library of procedures:

LIBRARY

PROCEDURE

NAMES

FLOAT
FIX
FX*FX
FL*FX
FL*FL
FX*FL
SQRT
EXP
LOG
SIN
cos
TAN
ENTIRE
ARCCOS
ARCSIN
ARCTAN
SINH
COSH
TANH
ROMXX
READ
WRITE
ERROR

DESCRIPTION

Converts an integer to a floating-point number.
Truncates a floating-point number to an integer.

Power routines

Square-root function
ex
In x
sin x
cos x
tan x
Greatest integer [x]
cos-1 x
sin-1 x
tan-1 x
sinh x
cosh x
tanh x
(I - x2)!
Input
Output
Library error-message procedure (See page E-Sf.)

F-1

(NAME)

FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL UsE

REMARKS

F-2

BURROUGHS ALGEBRAIC COMPILER

The generic form used by the programer in his ALGOL pro
gram, the italicized letters indicating the input arguments
for the procedures.

Specifies the type of argument required for the procedure.

Defines the type of the result produced by the procedure.

Outlines the operation carried out by the procedure.

Self-explanatory

Lists all error messages which will be printed out for the
given procedure.

This is shown as the error message itself, followed by two
blank columns, a hyphen, the first five characters of£ (the
label of the last labelled statement which has been executed),
and (nnnn), the number of times this statement has been
executed.

If no MONITOR statement precedes the program, or no
labelled statement has been executed, blank columns will
appear in place of oC and (nnnn).

Explains conditions to be met in order to use these proce
dures with external machine-language procedures. The name
given here is to be used on equivalence cards in external
programs. (See page E-2.)

Self-explanatory

FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

Ex TERN AL u SE

REMARKS

LIBRARY PROCEDURES

FLOAT

FLOAT (x)

x is integral.

FLOAT (x) is floating-point.

Converts the argument x into its corresponding floating
point form, as defined under AccuRACY.

Exact for I x I < 108, otherwise the result is truncated to
eight significant digits.

None

xis in rA. On entry to the procedure, the exit from the sub
routine must be stored in the 04 field of the first line of the
procedure. Result of the procedure FLOAT (x) is in rA. Use
FLOAT on equivalence cards.

F-3

FIX

FORM

ARGUMENT

RESULT

DESCRIPTION

AccuRACY

ERROR MESSAGE

ExTERNAL UsE

REMARKS

F-4

BURROUGHS ALGEBRAIC COMPILER

FIX (x)

x is floating-point.

FIX (x) is integral.

Truncates the argument x into its corresponding integral
form. Any fractional part is lost.

RESULT OUT OF RANGE IN FIX -£(nnnn)
This print-out will result if I x I ;:::: 1010•

xis in rA. Use FIX on equivalence cards.

FORM

ARGUMENTS

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGES

EXTERNAL UsE

REMARKS

LIBRARY PROCEDURES

A*B

A and B are integers.

The result, AB, is an integer.

The result is exact.

POWER
ROUTINE

FXFX

RESULT OUT OF RANGE IN FXFX -£(nnnn)
This printout will result if IA Bl ~ 1010•

RESULT UNDEFINED FOR FXFX -£ (nnnn)
This printout will result if A = 0 and B ~ 0.

A is in rA; B is in rR. Use FX*FX on equivalence cards.

This routine is automatically included in the compiled pro
gram as required. It is never called explicitly as a procedure.

F-5

F-6

POWER

ROUTINE

FLFX

FORM

ARGUMENTS

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGES

EXTERNAL UsE

REMARKS

BURROUGHS ALGEBRAIC COMPILER

A*B

A is floating-point; B is integral.

The result, A 8 , is floating-point.

The result, A8 , has a maximum error oflog2 Bin the eighth
significant digit.

RESULT OUT OF RANGE IN FLFX -£(nnnn)
This printout will result if\A 8

1 > 0.99999999 X 1049
•

RESULT UNDEFINED FOR FLFX -£(nnnn)
This printout will result if A = 0 and B ~ 0.

A is in rA; Bis in rR. Use FL*FX on equivalence cards.

This routine is automatically included in the compiled pro
gram as required. It is never called explicitly as a procedure.

FORM

ARGUMENTS

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGES

ExTERNAL UsE

REMARKS

LIBRARY PROCEDURES

A*B

A is floating-point; Bis floating-point.

The result, AB, is floating-point.

POWER
ROUTINE

FLFL

The error is, in general, less than 8 in the eighth significant
digit. However, since the error is a function of the magnitude
of AB, the maximum error is 3 in the sixth significant digit.

RESULT OUT OF RANGE IN FLFL -£(nnnn)
This printout will result iflABI > 0.99999999 x 1049•

RESULT UNDEFINED FOR FLFL -£(nnnn)
This printout will result if A = 0 and B ::; 0, or if A < 0
and B is non-integral.

A is in r A; B is in r R. Use FL *FL on equivalence cards.

This routine is automatically included in the compiled pro
gram as required. It is never called explicitly as a procedure.
Note that the error messages for this routine are identical
to those which can occur in the power routine FXFL.

F-7

F-8

POWER

ROUTINE

FXFL

FORM

ARGUMENTS

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGES

EXTERNAL UsE

REMARKS

BURROUGHS ALGEBRAIC COMPILER

A*B

A is integral; B is floating-point.

The result, AB, is floating-point.

The error is, in general, less than 8 in the eighth significant
digit. However, since the error is a function of the magnitude
of AB, the maximum error is 3 in the sixth significant digit.

RESULT OUT OF RANGE IN FLFL -£(nnnn)
This printout will result if I AB I > 0.99999999X 1049•

RESULT UNDEFINED FOR FLFL -£(nnnn)
This printout will result if A = 0 and B :::; 0,
or if A < 0 and B is non-integral.

A is in rA; Bis in rR. Use FX*FL on equivalence cards.

This routine is automatically included in the compiled pro
gram as required. It is never called explicitly as a procedure.

Note that the name of the power routine FLFL occurs in
correctly in the error messages for this routine.

FORM

ARGUMENT

RESULT

DESCR!PT!ON

ACCURACY

ERROR MESSAGE

EXTERNAL UsE

REMARKS

LIBRARY PROCEDURES

SQRT

SQRT (x)

x is floating-point.

SQRT (x) is floating-point.

SQRT (x) is the square root of x.

The maximum error is 2 in the eighth significant digit.

RESULT UNDEFINED FOR SQRT -£(nnnn)
This printout will result if x < 0.

xis in rA. Use SQRT on equivalence cards.

F-9

EXP
FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL USE

REMARKS

BURROUGHS ALGEBRAIC COMPILER

EXP (x)

x is floating-point.

EXP (x) is floating-point.

EXP (x) computes the exponential function ex.

Let E be the error in the eighth significant digit, then
for I x I < 100, E :::;; 3;
for 100 :::;; I xj < 112.82666, E :::;; 6.

RESULT OUT OF RANGE IN EXP -£(nnnn)
This printout will result if x ~ 112.82666.

xis in rA. Use EXP on equivalence cards.

FOR._M:

.ARGUMENT

RESULT

DESCRIPTION

AccuRACY

ERROR MESSAGE

EXTERNAL USE

REMARKS

LIBRARY PROCEDURES

LOG

LOG (x)

x is floating-point .

LOG (x) is floating-point.

LOG (x) is the natural logarithm, In x.

The maximum error is 3 in the eighth significant digit

RESULT UNDEFINED FOR LOG -£(nnnn)
This printout will result if x ~ 0.

xis in rA. Use LOG on equivalence cards.

F-11

SIN

FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL u SE

REMARKS

F-12

BURROUGHS ALGEBRAIC COMPILER

SIN (x)

x is in radians, and is floating-point.

SIN (x) is floating-point.

SIN (x) computes the sine function.

The maximum error is 4 in the eighth significant digit.

RESULT ILL-DEFINED FOR SIN -J:,(nnnn)
This printout will result if I x I 2: 107•

xis in rA. Use SIN on equivalence cards.

FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL UsE

REMARKS

LIBRARY PROCEDURES

cos
COS (x)

xis in radians, and is floating-point.

COS (x) is floating-point.

COS (x) computes the cosine function.

The maximum error is 4 in the eighth significant digit.

RESULT ILL-DEFINED FOR COS -£(nnnn)
This printout will result if I x I ~ 107•

xis in rA. Use COS on equivalence cards.

F-13

TAN
FoRM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL u SE

REMARKS

F-14

BURROUGHS ALGEBRAIC COMPILER

TAN (x)

x is in radians, and is floating-point.

TAN (x) is floating-point.

TAN (x) computes the tangent function.

The maximum error is 9 in the eighth significant digit.

RESULT UNDEFINED FOR TAN -£(nnnn)
This printout will result if cos x = 0.

RESULT ILL-DEFINED FOR TAN -£(nnnn)
This printout will result if I x I 2:: 107

•

xis in rA. Use TAN on equivalence cards.

FoRM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGES

ExTERNAL UsE

REMARKS

LIBRARY PROCEDURES

ENTIRE

ENTIRE (x)

x is floating-point.

ENTIRE (x) is floating-point.

ENTIRE (x) computes the function normally denoted by
[x] ; it is defmed to be the largest integer not greater than x.

None

xis in rA. Use ENTIRE on equivalence cards.

F-15

ARCS IN

FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

ExTERNAL UsE

REMARKS

F-16

BURROUGHS ALGEBRAIC COMPILER

ARCSIN (x)

xis floating-point.

ARCSIN (x) is in radians, and is floating-point.

ARCSIN (x) computes the inverse-sine function. The prin
cipal range is [-1(' /2, 1r /2].

The maximum error is 7 in the eighth significant digit.

RESULT UNDEFINED FOR ASIN -£(nnnn)
This printout will result if I x I > 1.

xis in rA. Use ARCSIN on equivalence cards.

FoRM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL UsE

REMARKS

LIBRARY PROCEDURES

ARCCOS

ARCCOS (x)

x is floating-point.

ARCCOS (x) is in radians, and is floating-point.

ARCCOS (x) computes the inverse-cosine function. The
principal range is [O, 7r].

Over most of interval [O, l] the maximum error will be 9 in
the eighth significant digit.

RESULT UNDEFINED FOR ACOS -£(nnnn)
This printout will result if I x I > 1.

xis in rA. Use ARCCOS on equivalence cards.

F-17

ARCTAN

FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL USE

REMARKS

F-18

BURROUGHS ALGEBRAIC COMPILER

ARCTAN (x)

x is floating-point.

ARCTAN (x) is in radians, and is floating-point.

ARCTAN (x) computes the inverse-tangent function. The
principal range is [-1r /2, 1r /2].

The maximum error is 4 in the eighth significant digit.

None

xis in rA. Use ARCTAN on equivalence cards.

FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL UsE

REMARKS

LIBRARY PROCEDURES

SINH

SINH (x)

x is floating-point.

SINH (x) is floating-point.

SINH (x) computes the hyperbolic-sine function.

Let e be the error in the eighth significant digit; then
if I x I < 100, E :::;; 7;
if 100 :::;; I x I :::;; 112.82666, E :::;; 13.

RESULT OUT OF RANGE IN SINH -.£(nnnn)
This printout will result if I x I ~ 112.82666.

xis in rA. Use SINH on equivalence cards.

F-19

GOSH
FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL UsE

REMARKS

F-20

BURROUGHS ALGEBRAIC COMPILER

COSH (x)

x is floating-point.

COSH (x) is floating-point.

COSH (x) computes the hyperbolic-cosine function.

Let Ebe the error in the eighth significant digit; then
for I x I < 100, E ~ 7.
for 100 ~ I x I ~ 112.82666, E ~ 13.

RESULT OUT OF RANGE IN COSH -£(nnnn)
This printout will result if I x I ~ 112.826666.

x is in r A. Use COSH on equivalence cards.

FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

Elm.OR MESSAGE

EXTERNAL UsE

REMARKS

LIBRARY PROCEDURES

TANH

TANH (x)

x is floating-point.

TANH (x) is floating-point.

TANH (x) calculates the hyperbolic-tangent function.

Let e be the error in the eighth significant digit; then
for I x I < 100, e ~ 10;
for I x I ~ 100, the result is exact.

None

xis in rA. Use TANH on equivalence cards.

F-21

ROM XX

FORM

ARGUMENT

RESULT

DESCRIPTION

ACCURACY

ERROR MESSAGE

EXTERNAL u SE

REMARKS

F-22

BURROUGHS ALGEBRAIC COMPILER

ROMXX (x)

x is floating-point.

ROMXX (x) is floating-point.

ROMXX computes the function (1 - x2)
1•

The maximum error is 1 in the eighth significant digit.

RESULT UNDEFINED FOR ROMXX -£(nnnn)
This printout will result if I x I > 1.

x is in rA. Use ROMXX on equivalence cards.

In order to obtain accuracy for x near unity, double-preci
sion arithmetic is used.
Note that (x2 - 1)1 = x·ROMXX (1.0/x).

FORMS

ARGUMENTS

RESULT

DEFINITIONS

ACCURACY

LIBRARY PROCEDURES

First form:
READ (;; INDEC)
Second form:
READ (; s; INDEC)

READ

IND EC is an identifier declared to be the name of an input
data set.
S is a Boolean variable.

First form:
Read in the data set INDEC from the CARD READER.
Second form:
Same as the first form, but in addition, if the word SENTI
NEL is encountered (other than in an alphanumeric entry),
terminate the input process and set S to one. If not, set
S to zero.

ERROR MESSAGE None

r< -- - - ("1 __ - -------- D: __ _, p ____ -
\....ALLl.Nli OJ<;(.lUJ<;l~t..:J<; r inn J urui.

CAD
STP

0 0000 BUN
Second form:

0 0100

CAD
DLB

STA
CAD
STP
BUN

(Address of INDEC)
READ
READ

(Address of S)
READ, sL = 44

nn = 00
-0

(Address of INDEC)
READ
READ

REMARKS For further details, see CHAPTER VIII and APPENDIX E.

F-23

F-24

WRITE

FORMS

ARGUMENTS

RESULT

DESCRIPTIONS

ACCURACY

BURROUGHS ALGEBRAIC COMPILER

First form:
WRITE (; ; OUTSEC, FRMTDEC).
Second form:
WRITE (;; FRMTDEC)

OUTDEC is an identifier declared to he the name of an
output-data set. FRMTDEC is an identifier declared to be
the name of a format string.

First form:
Print the data set OUTDEC as output on the LINE PRINTER,
the CARD PUNCH, or the SUPERVISORY PRINTER according to
the format FRMTDEC.
Second form:
Print headings as output on the LINE PRINTER, the CARD
PUNCH, or the SUPERVISORY PRINTER as given by the format
FRMTDEC.

ERROR MESSAGE None

CALLING SEQUENCE First form:

0 0000
0 0100

CAD
DLB

STA
CAD
STP
BUN

Second form:
CAD
STP

0 0000 BUN

(Address of OUTDEC)
WRITE sL = 44

nn = 00
-0

(Address of FRMTDEC)
WRITE
WRITE

(Address of FRMTDEC)
WRITE
WRITE

REMARKS For further details, see CHAPTER VIII and APPENDIX E.

[References to definitions of terms are in
italics.]

ABS (intrinsic function), 7-2
Activation phrases (for output), 8-5
Addition (+), arithmetic operation, 3-1
ALGOL transliteration, APPENDIX D
Alphanumeric input, :rules for, 8-2
Alphanumeric output, editing for, 8-5
Alternative (EITHER IF) statement, 6-3
AND (Boolean operation), 3-2
Arguments, of functions, 2-3
Arithmetic expressions, 3-1
Arithmetic relations, 3-2
ARRAY declaration, 5-2
Arrays, method of filling, 5-2
Assignment statement, 4-1
Asterisk, 2-1

in alphanumeric insertion phrase,
on data cards, 8-2 [8-5, E-8
for exponentiation, 3-1
printing of, 8-4

Asterisks, 2-1
for floating-point scale factor, 2-2

BEGIN (statement parenthesis), 4-2
Blanks, insertion in output line, 8-4
BOOLEAN declaration (of type), 5-1
Boolean operations, 3-2

in arithmetic expressions, 3-3
Boolean quantities, 2-2

C--0.igit, for printer control, 8-5
Callout decks, A-1
Card format,

data cards, 8-2
equivalence cards, E-2
external procedure, APPENDIX E
SENTINEL cards, 8-3
source deck, A-1

Cell-count message, A-1
Character set used by compiler, 2-1
Commas,

in subscript lists, 2-2, 5-2
in type lists, 5-1

COMMENT declaration, 5-3
COMPILED PROGRAM CALLOUT deck, A-2
Compiled program listing, 10-4
COMPILER CALLOUT deck, A-1

index

COMPILER DUPLICATION CALLOUT deck, A-2
Compiler language,

ALGOL transliteration of' APPENDIX D
characters used in, 2-1
syntax of, APPENDIX C

Compiler-system tape,
duplication of, A-2
use of, A-1

Compound statements, 4-2
Conditional control, 6-2
Constants (Boolean, floating-point, and

integer), 2-2
Control statements,

for iteration, 6-4
for termination of computation, 6-1
f,.... +•n~~f.,. (,...f ""~+.,..,.) \ /:.._ 1 '7 _ l
.L'-'.L U.L'-A.L.&U.L'-'&. \.'-'.&. ..__,.._,.&..&.U.L'-'&/' 'V' .&.' a JI...

Data cards, preparation of, 8-2
Debugging (see Diagnostic Aids)
Decimal point, 2-2

card-equipment symbol for multi
plication, D-1

Declarations of type, 5-1
by default, 5-2
restrictions upon, 7-2

Diagnostic aids
error messages

during compilation, 10-1
during library maintenance, A-2
during object run (from library

procedures), 10-4
memory dump,

manual, 10-3
program-controlled, 10-3

object program
listing of, 10-4
monitoring of, 10-3
punching of, A-2

Division (/), arithmetic operation, 3-1
Dollar sign, print for semicolon, 2-1
Dummy statement, labeled, use of, 4-3
DUMP CALLOUT deck, A-2
Dump, storage, 10-3
Duplicating the compiler tape, A-2

Editing phrases (for output), 8-4
EITHER IF (alternative) statement, 6-3
END (statement parenthesis), 4-2
ENTER statement, 7-1
EQIV (Boolean operation), 3-2

EQL (arithmetic relation), 3-3
Equality sign, as symbol for substitution,

4-1
Equivalence cards, E-2
Error messages,

during compilation, 10-1
during library maintenance, A-2
during object run (from library pro-

cedures), 10-4
Error message procedure, E-5
Evaluated functions, 2-3
Exponentiation (*), arithmetic operation,

3-1
Expressions, CHAPTER Ill,

arithmetic, 3-1
u,...,...1~~~ 'l <>

;r~~<l:·3_3---
EXTERN AL PROCEDURE

declaration, 7-7, E-4
External procedures, 7-5
External programs, preparation of,

APPENDIX E
EXTERNAL STATEMENT

declaration, 4-3, 7 ;_ 7

FINISH declaration, 5-3
operation of, A-2

Fixed-point (integer) quantities, 2-2
FLOATING declaration, 5-1

by default, 5-2
Floating-point quantities, ~-2
FOR statement, 6-4
FORMAT declaration, 8-3, E-7
Formats, for output, 8-3
FUNCTION declaration, 7-2
Functions, declared and intrinsic, 7-2

defined by procedures, 7-4
evaluated, 2-3

GEQ (arithmetic relation), 3-3
GO statement, 6-1
GO TO statement, 6-1
GTR (arithmetic relation), 3-3

Identifiers, 2-1
reserved, list of, APPENDIX B

IF statement, 6-2
IMPL (Boolean operation), 3-2

1-1

Index (continued)

Induction variable, 6-4
Input cards, preparation of, 8-2
Input-data sets, 8-1
Input data-set labels, 8-1
INPUT declaration, 8-1
Input-output procedures, E-6
Input-output techniques, 8-1
INTEGER declaration, 5-1
Integer quantities, 2-2
Intrinsic functions, 7-2
Iterated variable, 8-1
Iteration, control of, 6-4

Labels,
for input-data sets, 8-1
for output-data sets, 8-2
for statements, 4-2

Leading zeros, 2.:..2
LEQ (arithmetic relation), 3-3
Library maintenance, A-2, E-5
LIBRARY PROCESSOR CALLOUT deck, A-2
Library procedures, 7-5

adding to compiler tape, A-2, E-5
description of, APPENDIX F
list of, F-1

Linkage to machine-language
procedures, E-1

Listing
of object program, 10-4
of symbolic program, 10-1

List of parameters, in procedure
declaration, 7-5

Logical (Boolean) operations, 3-2
LSS (arithmetic relation), 3-3

Machine-language procedures, 7-5,
APPENDIX E

Magnetic-tape operations, use of, E-3
MAX (intrinsic function), 7-2
Memory dump, 10-3
Metalinguistic symbols, 2-1
MIN (intrinsic function), 7-2
Mixed (floating and fixed) arithmetic, 3-2
MOD (intrinsic function), 7-2
MONITOR declaration, 10-3
Monitoring (of object program),

control sequence, 10-3
variables, 10-3

Multiplication (•), arithmetic
operation, 3-1

Multiplication sign,
decimal point equivalent of,
omission of, 3-1

NEQ (arithmetic relation), 3-3
NOT (Boolean operation), 3-2

Object program,
cell-count message, A-1
listing of, 10-4
monitoring of, 10-3
punching of, A-2

Operational statements, 4-1
Operations, CHAPTER III

arithmetic, 3-1
Boolean, 3-2
rules of precedence for sequencing,

3-1, 3-3
OR (Boolean operation), 3-2
OTHERWISE, used in alternative

statements, 6-3

1-2

BURROUGHS ALGEBRAIC COMPILER

Output-data sets, 8-3
Output data-set labels, 8-3
OUTPUT declaration, 8-3
OVERLAY statement, 9-2
Overlay techniques, 9-1

Page-eject control, 8-5
Parameters,

lists of, 7-5
of name, 7-6
of value, 7-6

Parentheses,
in place of BEGIN, 4-2
in place of END, 4-2
optional use of, 5-1, 8-1, 8-3
in parameter lists, 7 -5
printing equivalents of, 2-1
use to indicate precedence, 3-1

PCS (intrinsic function), 7-2
Phrases,

activation, 8-5
alphanumeric insertion, 8-5
editing, 8-4
format, 8-3
format repeat, 8-4

Power routines, APPENDIX F
Precedence rules,

arithmetic, 3-1
Boolean, 3-3

Prefixes, use of, 5-1
Preparing data cards, 8-2
Printed characters, 2-1
Procedure-assignment statement, 7-6
Procedure-call statement, 7-4
PROCEDURE declaration, 7-5
Procedures, 7-3

construction of, 7-6
declarations in, 7-6.
examples of, 7-7
external, 7-4
functions defined by, 7-4
input-output, APPENDIX E
library, 7-4, APPENDIX F
linkage to, E-1
machine-language, 7-5
parameter lists in, 7-5, E-2

Program deck (see source deck)
Punching-out object deck, A-2

READ procedure, 8-2
REAL declaration, 5-1
Relational operator, 3-2
Relations, arithmetic, 3-3
Relocation

conventions, E-2
digits, 10-4, A-1

Reserved words, 2-1
list of, APPENDIX B

RETURN statement, 7-1

Sample programs, CHAPTER XI
Scale factors in floating-point

constants, 2-2
SEGMENT declaration, 9-1
Segment label, 9-1
Semicolon,

on data cards, 8-2
in FINISH declaration, 5-3
printing equivalent of, 2-1
in READ procedure, 8-2
statement separator, 4-2
in WRITE procedure, 8-3

Sentinel card, 8-2
format, 8-3
in READ procedure, 8-2

Sentinel declaration, 8-2
SIGN (intrinsic function), 7-2
Simple variables, 2-2
Source deck, preparation and use of, A-1
Spaces, 2-1, 3-3
Spacing control, for printing, 8-5
Special characters, equivalents for

printing, 2-1
STATEMENT MONITORING CONTROL

cards, 10-3, A-1
Statements, 4-1

alternative, 6-3
assignment, 4-1

arithmetic, 4-1
Boolean, 4-1
generalized, 4-2

compound, 4-2
control, 4-1, CHAPTER VI
declarative, 4-1, CHAPTER V
dummy, 4-3
labels for, 4-2
monitoring of, 10-3, A-1
procedure-assignment, 7-6
procedure-call, 7-4

STOP statement, 6-1
Subroutine, 7-1
Subroutine call (see ENTER statement)
SUBROUTINE declaration, 7-1
Subroutine exit (see RETURN

statement)
Subscripts, variables with, 2-2
Subtraction (-), arithmetic operation,

3-1
SWITCH statement, 6-1
Symbolic deck (see source deck)
Symbolic storage dump, 10-3
Syntax of compiler language,

APPENDIX C

Tape (see magnetic-tape operations)
TO (see GO TO)
Transfer of control, conditional,

alternative statement, 6-3
FOR statement, 6-4
IF statement, 6-2
SWITCH statements, 6-1
UNTIL statement, 6-4

Transfer of control, unconditional,
ENTER statement, 7-1
GO (or GO TO) statement, 6-1
RETURN statement, 7-1

Type,
of arithmetic assignment statements,

4-1
of arithmetic expressions, 3-2

Type declarations, 5-1
by def a ult, 5-2
restrictions upon, 7 -2

Type lists, 5-1

UNTIL statement, 6-4

Variable,
induction, 6-4
iterated, 8-1

Variables,
simple, 2-2
use in iterations, 6-4
with subscripts, 2-2, 5-2

WRITE procedure, 8-3

BULLETIN 220-21011-D

Burroughs Corporation

Detroit 32, Michigan

In Canada: Burroughs Business Machines Ltd., Toronto, Ontario

2-2-6 PRINTED IN U.S.A.

	000
	001
	002
	003
	004
	01-01
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	A-01
	A-02
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	F-22
	F-23
	F-24
	Index-01
	Index-02
	xBack

