
Burroughs

BURROUGHS SCIENTIFIC PROCESSOR

PARALLELISM - THE DESIGN STRATEGY FOR THE BSP

SSP -~------------------ BURROUGHS SCI ENTI F IC PROCESSOR

AN OVERVIEW

BSP Objective
BSP System
BSP Key Features
BSP Organization
BSP Characteristics

CONTENTS

Parallel Processor
Conflict-free Memory Access
Vector Performance
Performance Optimization

File Memory
Vectorizing FORTRAN Compiler

BSP Design
BSP Superiority

IN PERSPECTIVE

The BSP - ANew Approach
Linear Vectors
A Different Kind of Supercomputer

System Manager
Overlapped Instruction Mode
Linear Vector Approach to Parallelism
Scalar Operations
BSP Approach to Scalars

The BSP Design
110 Subsystem
Computational Envelope
File Memory

Summary

PARALLEL ARCHITECTURE

Parallelism
Templates
Arithmetic Elements
Conflict-free Memory Access
Parallel Processor Control Unit
Scalar Processing Unit
BSP Software

Page

A-l

A-l
A-2
A-3
A-3
A-4
A-4
A-4
A-5
A-5
A-6
A-6
A-7
A-7

A-9

A-9
A-l0
A-ll
A-ll
A-ll
A-12
A-13
A-14
A-15
A-15
A-16
A-16
A-17

A-19

A-19
A-~H

A-22
A-25
A-27
A-29
A-30

A-iii


~~~ ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFIC PROCESSOR 



SSP H U R H () U ( 1 H .(~ ;-; C lEN T IF! C PH () CESS 0 R 

BURROUGHS SCIENTIFIC PROCESSOR 

PARALLEL ARCHITECTURE 

PARALLELISM 

The capability of the Burroughs Scientific Processor (BSP) to sustain high 
processing rates is achieved via unique parallel designs. The BSP comprises 
multiple processors arranged to operate in parallel. The combined potential 
of multiple processors is brought to bear on large computational applications. 

Figure 3 illustrates the overall architecture of the Burroughs Scientific Processor 
(BSP). Four types of parallelism are featured within this architecture; that is, 
four different classes of computation occur simultaneously. They are: 

1. The arithmetic performed by the 16 arithmetic elements (AE's), 

2. Memory fetches and stores, and the transmission of data 
between memory and the AE' s, 

3. Indexing, vector length, and loop control computations in the 
parallel processor control unit, 

4. The generation of linear vector operation descriptions, which 
takes place in the scalar processor unit (SPU). 

The BSP is analogous to an efficiently operated business. The SPU and its control 
memory are the executive suite. The executive's instructions are passed to the 
administrative clerks in the parallel processor control unit. This unit then does 
the bookkeeping and keeps all the major components of the business as busy and 
as efficient as possible. 

A-19 



~~p ~~~~~~~~~~~~~~~~~~~~-BURROUGHSSC'ENT'F'CPROCESSOR 

A-20 

DATA AND PROGRAM 
FI LE TRANSFERS 
(1.5 M BYTES/SEC) 

MCPAND 
MAINTENANCE 
COMMUNICATIONS 

CONTROL UNIT 

CONTROL PROCESSOR 
MEMORY 

(256 K WORDS) 

SCALAR 
PROCESSOR 

CONTROL 
AND • 

MAl NTENANCE 
UNIT 

I 

PARALLEL PROCESSOR 
CONTROL UNIT 

FILE MEMORY 

FI LE STORAGE UNIT 
(4 - 64 M WORDS) 

FILE MEMORY 
CONTROLLER 

75 M BYTE/SEC 

--

-" 

----ao 

PARALLEL PROCESSOR 

PARALLEL MEMORY 
(0.5 - 8 M WOR OS) 

100 M WORDS/SEC 

ALIGNMENT NETWORK 

100 M WORDS/SEC 

16 PARALLEL 
ARITHMETIC ELEMENTS 

(50 MILLION FLOATING-POINT 
OPERATIONS PER SECOND) 

Figure 3. BSP Block Diagram 

11 



BSP BlJRROU(;HS SCIENTI Fie PROCESSOR 

A fallout from the use of CCD' s is excellent reliability. While disc errors are 
likely to be multiple-bit errorsl CCD errors l with proper partitioningl are 
typically single bitsl andl thereforel easily corrected and bypassed using Hamming 
codes. The BSP file memory features single-error correctionl double-error de­
tection (SEC I DED) with all storage and data paths. 

The maximum size file memory available on the BSP is 67 1 108 1 864 words 
(nominally 64 million wordsl where a "million" is 220). The smallest file memory 
size is 4 million words. In certain circumstances l some files may overflow file 
memory. For this reasonl an additional file attribute is providedl allowing the 
user to specify that a file is to be "chaptered"l with only one chapter available on 
file memory at any given time. The operating system automatically transfers 
chapters between the file memory and the discs on the system manager when the 
user "releases" a given chapter. The operating system assumes that such files 
are sequential and it double-buffers the chapters l unless the user asks for a 
chapter out of sequence. 

SUMMARY 

Figure 1 shows the BSP connected to a B 7800 or a B 7700 system manager and 
illustrates that the BSP is the realization of the computational envelope (Figure 2). 
The high-speed 110 transfers occur inside the BSP between main memory and file 
memory. New jobs are staged to the file memorYI and output from finished jobs is 
staged to the system manager from the file memory. 

Figure 1 also shows some specialized communication paths between the BSP and 
the system manager. These are used for operating system communicationsl for 
performance loggingl for hardware error loggingl and for maintenance and diagnos­
tic purposes. 

The connection to the B 7700 or B 7800 is through a standard 110 port. Hencel if 
a B 7700 owner wished to attach a BSPI he would install the BSPI connect the cables 
to a B 7700 110 processorl recompile the operating system with the BSP option setl 
and go. 

It is evident from the way in which the ESP is connected to the system managerl 
and the arguments upon which the computational envelope approach is basedl that 
normal job flow through the ESP is first-in/first-out. Howeverl priority overrides 
are provided. These are primarily for job debug purposesl because the system 
manager will be providing the text editingl compilingl file managementl etc. I that 
constitute the usual time-sharing load on a scientific processing system. 

The file memory controller is the key to fast file memory responsel user controll 
low operating system overheadl and file security. On a file-open command by a 
userl the operating system in the BSP is invoked. This system determines the 
user's access rights to the file and then sets status bits in the file memory con­
troller to correspond with these access rights. Subsequent references to the file 
by the user are done with in-line code in user model since the file memory 

A-17 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-IS 

controller will not respond to an improper request. There are two potential 
"users"J the current job running on the BSPJ and the system manager. Both are 
treated in essentially the sarne way. AlthoughJ in the case of dealings with the 
system managerJ the BSP operating system will also have to manage file memory 
space allocations before it responds to a system manager request and space 
deallocation after the system manager has removed a file from file memory. The 
file memory is paged and file references are logical addressesJ which the file 
memory controller translates to physical addresses. HenceJ a file need not 
occupy contiguous pages in file memory. 

-- MODE RATE SPEED I/O --TO/FROM BACKING STORAGE 

. - -- f- - --1 

COMPUTATIONAL ENVELOPE 

PROBLEM SECONDARY 
STORAGE 

(FI LE MEMORY) 

.-
I 
I 
I 

CONTROL 
I 

I 
I 
I , 

SCIENTIFIC PROCESSOR 
MAIN MEMORY 

HIGH-SPEED 
I/O 

Figure 2. Scientific Problem I/O Characteristics 



BSP ------------------~-------- -------------------------- BUR R 0 U G HS SC I E NT I Fie P R OC E SSO R 

processed with reasonable efficiency. The idea is that a conversion may be done 
in manageable stages" with useful effect for one's efforts at each stage. 

In summary" the BSP approach was to design a more general vector processor" 
and to forego the very fast scalar hardware. Is the science of parallelism too 
young for such a design? No one can say for sure. But the next few years should 
be revealing. 

THE BSP DESIGN 

The major BSP design elements include the system manager" 110 subsystem" 
parallel main memory" arithmetic elements" and scalar processor" parallel 
processor control" and the control and maintenance processor. Also included are 
BSP software" job flow" and the various user interfaces. 

I/O Subsystem 

In scientific computations" the dominant I/O patterns differ radically from those 
in the business data processing arena. With business data processing" small 
numbers of operations are performed on a very large data base. Also" the amount 
of main memory required to efficiently process a business data job is relatively 
small. Hence" in business data processing" I/O becomes a bottleneck" because 
of the limited number of operations performed on data while it resides in main 
memory. But" short of placing the entire database in Inain rneTIlory" a given job 
does not demand too much memory to execute with adequate efficiency. This is 
an ideal environment for fostering multiprogramming. Many problems may reside 
in main memory at once. A few will be in an active state; the rest will be waiting 
in I/O. 

The situation is quite different in the case of scientific computations. A given job 
usually requires a large amount of memory before it can execute efficiently. With 
present processor speeds and memory sizes" the larger bread-and-butter jobs 
execute best if each one has main memory to itself. In the case of many scientific 
jobs" some of the data on secondary storage is best regarded as an overflow of 
main memory - this data is what would not fit in main memory" but the programmer 
really wishes it were there. Hence" this overflow data is quite tightly coupled to 
the processing of data in TIlain nlenlory" and the programmer may want to exercise 
a great degree of control over the I/O process. 

Compare such a situation with business data processing. In business data process­
ing" the programmer is delighted to have sophisticated operating systems doLYlg his 
I/O for him. And he is not concerned if the operating system is trying to optimize 
110 for all the jobs in the mix. The scientific programmer resents such a situation. 
He wants as much memory as he can get" and then he wants direct control over I/O 
whenever feasible. For this reason" and due to details of particular hardware sys­
tems" many scientific programmers have reported spending the bulk of their pro­
gramming effort trying to optimize 1/ O. 

A-15 



~~p ~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-16 

Such a state of affairs is unfortunate~ because the overall flow of the high-speed 
I/O in most scientific problems is very simple. If the scientific programmer 
were not simultaneously battling an operating system~ as well as often inadequate 
I/O devices~ he could describe his I/O needs with a few simple statements. 

In contrast with these difficulties~ the scientific programmer has certain advantages 
which are irrelevant to the commercial programmer. For example" his file sizes 
are relatively small. Of course~ immense file sizes may be a consideration in 
both cases for large problems. In general~ however~ scientific problems require 
much smaller files. Also~ the scientific problem performs more operations on 
each data word it retrieves from secondary storage. 

Further~ the scientific problem programmer can typically state the flow of 1/ O. 
That is~ the high-speed I/O flow is not usually data-dependent. In other words~ 
efficient double-buffering I/O schemes are normally applicable. 

computational Envelope 

How did all this affect BSP I/O design? The BSP design is based on the premise 
that the high -speed I/O and storage requirements be specified in what is called the 
computational envelope. The performance of the secondary I/O subsystem is de­
signed to be sufficient to support the processor and main memory. This performance 
is completely under user control. Finally~ for simplicity~ a single 1/ 0 device~ 
rather than a hierarchy~ is used for this secondary storage system. (See Figure 2. ) 

Although the scientific problem program makes more extensive use of I/O data 
than does the business data program~ the speed of present supercomputers is so 
great that no conventional I/O device can support them. Also~ the access times 
associated with conventional devices are much too long. Because access time is 
a discontinuity that must be smoothed in I/O opera tions~ slow access times imply 
large I/O buffers. If~ at the same time~ the transfer rate must be increased~ then 
the buffers must be still larger. For many problems simulated in designing the 
BSP~ cache buffer sizes would have approached half a million words~ if disc 
technology were used for the secondary storage. 

File Memory 

Hence~ the BSP secondary storage~ called file memory~ is based on semiconductor 
technology - 64-bit charge-coupled device (CCD) technology~ to be specific. The 
results are average latencies well under one millisecond and sustainable transfer 
rates over 60 megabytes per second. Buffer sizes are reasonable and optimum 
performance is attained with simple standard FORTRAN statements. In other 
words~ straightforward programming gets all the performance there is to get~ 
and this performance is adequate to the task. 

I .~ I 



SSP BURROUGHS SCIENTIFIC PROCESSOR 

The BSP's memory system handles problem 2. The solution to problem 3 may be 
inferred from the reference already made to the very high level instruction set in 
the BSP. This same instruction set is part of the solution to problem 4. The 
needed high system utilization rate implied by problem 1 is gained in part by the 
parallel processor control unit, which is described later. And the BSP does take 
advantage of the emerging science of parallelism to help it gain an unusual speed 
on linear recurrences. 

Due to what has become known as the "scalar problem", there is a substantial 
difficulty implicit in the simultaneous solution to problems 1, 4, and 6. The 
problem is easily described, but difficult to resolve. For example, imagine a 
linear vector processor that could process vectors at infinite speed, but could 
process scalars no faster than one operation every microsecond. Then, if the 
total problem comprised 90% vector and 100/0 scalar processing, the vectors would 
be done in no time at all, but the scalars would be done one operation per micro­
second. Because only 10% of the problem would be scalars" one operation per 
microsecond would be divided by O. 1 to obtain an overall speed of 10 operations 
per microsecond on the example problem. 

This is not especially fast because users now want at least 20 floating-point opera­
tions per microsecond. Yet the example is not unreasonable, because many vector 
machines" with maximum speeds over 50 floating-point operations per microsecond, 
have a difficult time sustaining 10 floating-point operations per microsecond. 

Scalar Operations 

Before discussing potential solutions to the problem of how to do scalars fast" it 
is beneficial to first explain what a scalar operation entails. This, however, is 
no simple task. First of all, some apparent scalars are not evident. For example, 
the memory indexing hardware on most vector computers fetches the entire linear 
vector, based only on some simple information such as start of vector, address 
difference between vector elements, and length of vector. Similarly, the execution 
of the vector operation is the same as executing an inner loop of a program. This 
means that many indexing operations, and much of the loop overhead present in an 
ordinary scalar machine, are eliminated as a result of the basic idea of the linear 
vector processor. 

But certainly, some work rernains, for exarnple, generation of the simple vector 
descriptors referred to previously. Is this a sequence of scalar operations? Per­
haps it is. On some vector machines, nothing else can happen while a vector is 
processed. The instruction processor can be busy retrieving a description of the 
neAi: vector operation., vT/hile the present vector operation is executing. On the BSP, 
the SPU can describe and queue a sequence of vector operations, while a given 
vector operation executes. Vector setup operations are countable scalars on some 
machines, while on other machines, setups are counted only if they can not be over­
lapped with a vector operation already executing. 

A-13 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-14 

There are other situations in which machines are difficult to compare directly. 
For example l on the BSP the DO loop: 

DO I = 21 N 
A(I) = C(I) ~:~ A(I-l) + B (I) 

END DO 

is executed in parallel l with a maximum speed well over 10 operations per micro­
second. On other vector machines l this common construct must be executed as a 
scalar sequence. And l if it is to execute rapidlYI the vector machine must also 
contain a very fast scalar processor. 

BSP Approach to Scalars 

This is where the BSP parts company with the other recent vector machines. To 
solve this recurrence l and some other problemsJ conventional wisdomJ at presentJ 
says a fast scalar processor must be included in the design. 

But there are three major problems with this viewpoint. The first is that the fast 
scalar processor may be a high cost item. The second problem is more insidiousJ 
but probably more severe. To the extent that the compiler must choose between 
the use of the scalar hardware and vector hardwareJ the compiler has the job of 
compiling to two machines. This is probably sufficiently difficult that the compiler 
will be unable to generate object code for all the parallelism it has found. For 
example l if the scalar code is intimately dependent on the vector codeJ or vice 
versaJ either the hardware must have extremely clever synchronizing mechanisms 
to tie the processors togetherJ or the compiler must decide that some mixed code 
will arbitrarily be categoriz ed as all being of one type. 

The third problem is also insidiousJ and possiblYJ the most costly. This problem 
is that the arbitrary inclusion of a fast scalar processorJ to solve a problem in an 
ad hoc waYJ almost guarantees that a successor machine from the same manu­
facturer will require a substantial reconversion effort. The successor machine is 
not likely to retain the structure of its predecessor. 

For these reasons l although the BSP FORTRAN compiler will use the SPU for 
selected scalar operationsJ the ESP compiler is likely to treat a tloating-point scalar 
as a vector of length one - or to treat a sequence of floating-point scalars as a non­
linear vector operation sequence. This enables the ESP to forego the mixed blessing 
of the ultra-fast scalar unit. It allows the compiler to concentrate on capitalizing 
on detected parallelism. And it guarantees upward compatibility with a successor 
machine l recompilation being the maximum conversion penalty. 

This approach also permits a smooth initial conversion to the ESP. In the beginningJ 
a conversion may leave an undesirable amount of scalars. Eut l with uniform treat­
ment of operandsJ a scalar does not have to be made part of a vector of length 100 
to be processed efficiently. If it becomes part of a vector of length 3J then it is 
processed three times as fast as before. Vectors of length on the order of 10 are 

(",:, 
! 



BSP BURROUGHS SCIENTIFIC PROCESSOR 

A DIFFERENT KIND OF SUPERCOMPUTER 

So far, this section has attempted to explain the basic rationale behind the current 
crop of supercomputers, namely, the linear vector. And, further, because of 
this basic rationale, the use of parallel arithmetic elements in the BSP and in the 
ILLIAC IV does not cause them to be fundamentally very different from the pipeline­
based supercomputers. However, one important difference has been identified, 
that is, from the beginning, the BSP was intended to be paired with another processor, 
namely, the Burroughs B 7700/B 7800. 

System Manager 

In this respect, the BSP is somewhat akin to the IBM 3838 signal data processor. 
The IBM 3838, however, only executes functions or subroutines passed to it by its 
manager, whereas the BSP executes either entire programs or substantial portions 
of programs. Thus, the prime motivation for attaching an IBM 3838 to its manager 
is to enhance the power of the manager by off-loading. The basic motivation for 
attaching the BSP to a system manager, on the other hand, is to free the BSP for 
concentrating on processing large computational problems. A second motivation 
is to create a total system that features application and throughput capabilities not 
economically feasible with a single specialized processor. 

Overlapped Instruction Mode 

The BSP differs from its supercomputer alternatives in another important respect. 
Its instruction processor is loosely coupled to the parallel arithmetic elements. 
The approach is a generalizetion of the overlapped instruction execution mode in 
ILLIAC IV. ILLIAC IV runs more than twice as fast in the overlapped mode than 
in a nonoverlapped mode. 

In order to achieve this overlap, the BSP has a queue between the instruction 
processor and the unit that drives the arithmetic elements. The queue is comparable 
to the ILLIAC IV implementation. In contrast, however, it contains hardware fea­
tures that check for out-of-bound array references and optimize the choice between 
inner and outer FORTRAN DO loops. The latter feature facilitates such functions 
as the Fast Fourier Transform (FFT), which has an inner loop whose length is de­
creasing, while the next outer loop's length is increasing. In the ESP, this loop 
length optimization maintains a 256-point (or larger) FFT running at over 75% of 
maximum machine speed. This is because all vectors will be of length 16 or more 
(and hence efficient on 16 AE's), even though the programmer wrote a structure that 
implied vector lengths of 8, 4, 2, and 1 in the final FFT stages. 

The BSP's ability to run fully overlapped surpasses the ILLIAC IV's ability to run 
fully overlapped. Whereas the ILLIAC IV's instruction processor must call on 
the parallel section for instruction storage and for some arithmetic operations, the 
BSP's instruction processor, called the scalar processing unit (SPU), has full 
arithmetic capability. The SPU is also equipped with local memory called control 

A-I1 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-12 

memory (CM), which is used for storage of indexing parameters, and vector 
descriptors. In total, these features further the overlap implementation between 
vector instruction processing and vector instruction execution introduced with the 
ILLIAC IV. 

Linear Vector Approach to Parallelism 

The last basic difference between the ESP and supercomputer alternatives is 
perhaps the most controversial. It stems from the ESP's timing in the evolution 
of linear vector-based supercomputers. 

In designing the ESP, some experience had been accumulated relative to the ways 
in which the linear vector approach to parallelism could be applied to real world 
problems. In this respect, it is not unreasonable to assert that the ESP is the 
forerunner of a second generation of supercomputers. 

What substantiation is there for this rather strong assertion? The following is a 
list of some ideas or problems that were understood when the ESP design started: 

1. Maximum speed is not nearly as important as sustainable 
speed. 

2. A one-dimensional memory - one that is efficient only for linear 
vectors whose elements are packed adjacent to one another - is 
not sufficiently general. 

3. Assembly language level programming is almost incompatible with 
linear vector programming. Even the set of FORTRAN primitives 
cannot directly express many simple linear vector constructs. 
If the programmer is to think effectively about his problem at the 
linear vector level, he must be insulated from concern with machine 
details. 

4. It is possible to construct FORTRAN program analyzers which find 
a large percentage of the intrinsic parallelism in programs. How­
ever, if the target machine structure is not simple and general at a 
high level, an analyzer cannot create useful object code from the 
parallelism it has found. 

5. Although the use of parallelism still has many vestiges of black art 
practice, a science is beginning to emerge. In particular, linear 
recurrence relations are now known to be susceptible to parallelism. 

6. Conversion to a linear vector machine should be accomplished 
once. Any new design should consider the future, so the user 
will not confront difficulties converting to a successor machine. 

\ I 



BSP --~--------------~-------- BU R ROUG HS SCI ENTI F I CPR OCESSO R 

BURROUGHS SCIENTIFIC PROCESSOR 

IN PERSPECTIVE 

THE BSP - A NEW APPROACH 

Early in 1973, Burroughs assembled a select team to design a commercial super­
computer. In 1977, the team's efforts resulted in the Burroughs Scientific Processor 
(BSP) - a product that presents a new approach to large-scale computational proc­
essing. This section places the ESP in perspective, discusses its more interesting 
features, and describes various design trade-offs. 

The BSP uses a large-scale Burroughs B 7700/B 7800 general-purpose computer 
as a system manager. As a result, the global structure of the BSP itself is 
simple. It consists of an instruction processor, a set of parallel arithmetic 
elements, a main memory, an instruction or control memory, and a single 1/0 
device (Figure 1). 

This 110 device is called file memory. It is controlled by the BSP's instruction 
processor. It functions as a high-speed 110 device for programs running on the 
BSP and as a staging point for lower-speed 110 going to or coming from the system 
manager. 

The BSP parallel processor has 16 parallel arithmetic elements (AE's) driven in 
lock-step by a single instruction stream. Hence, the BSP is a single-instruction, 
multiple-data stream (SIMD) architecture. In this respect, it is comparable with 
other large pipeline or parallel scientific processors. 

A-9 



~~p ~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-10 

LINEAR VECTORS 

Single-instruction~ multiple-data stream (SIMD) machines were designed to process 
"linear vectors". A vector is an operand consisting of a series of numbers or values. 
A linear vector is a vector that is mapped into storage in a linear fashion; the ad­
dresses of the constituents differ by a constant. Such vectors are the most elemen­
tary vectors that can be formed by looping structures in programming languages 
(00 loops~ etc.). Linear vectors are naturally generated when programming language 
array element index expressions are linear functions of loop parameters. 

It is this latter fact that has caused the SIMD architecture to emerge as the front­
runner in attempts to gain increased scientific processing speed through parallelism. 
That is~ once parallelism is selected~ it must be noted that the bulk of scientific 
processing involves processing contained within looping structures. The simplest 
array element describable in looping structures is a single quantity~ a scalar. 
However~ parallelism requires operations on more than one object at once. This 
being so" the simplest data type susceptible to parallelism is the linear vector. 

The linear vector has two significant advantages relative to other parallel operands. 
First" it is straightforward to design hardware that will efficiently fetch linear 
vectors from memory" under the control of a simple vector descriptor. The second 
advantage is that" inside a loop structure" the same operation is specified between 
all the consecutive element pairs of a pair of vector operands. Together" these 
two advantages imply that" while operations between linear vectors can be done 
using parallel hardware" the control of such operations can be from a single in­
struction using a simple data descriptor. Consequently" the relatively simple SIMD 
architecture provides sufficient control capability to exploit this particular kind of 
parallelism. 

The SIMD architecture has previously appeared in several forms: 64 processing 
elements" with their private memories" driven by a single instruction processor 
in the ILLIAC IV; sets of pipelines" each performing a part of an arithmetic opera­
tion" as in the CDC STAR" TI ASC" and CRA Y -1. Regardless of the nature and 
method of implementation" however" all of these machines" including the BSP" 
have been designed to function optimally with linear vectors as operands. Hence" 
it is reasonable to categorize all of them as linear vector machines" or" more 
commonly" vector machines. 

Because the linear vector is the basic programming entity" the BSP's instruction 
set is designed around the concept of linear vectors of arbitrary length. The 
granularity in vector operations" caused by the fact that 16 arithmetic elements 
do 16 identical things at once" as well as the need to properly manipulate vectors 
whose lengths are not integer multiples of 16" is handled automatically by the 
control hardware. The BSP FORTRAN compiler is unaware that there are 16 
AE's. The compiler simply deals with vectors and issues vector instructions. 

1"'1 



B S p------------------~-------------.-~.------------------------- -- SUR ROUGHS SCI EN T I Fie PROCESSOR 

SSP DESIGN . . . meets the specific requirements of large-scale scientific processing 

What are these requirements? First, the performance level of supercomputers 
requires some type of concurrent computational capability. Second, the bulk 
of operations characterizing scientific computation are floating-point numerical 
operations, indexing and branching. Third, many large codes have execution 
times best measured in terms of hours; some require days. Fourth, a key 
characteristic of scientific programs (and one that distinguishes them from 
commercial business codes) is that they generate and regenerate their own data 
bases, often in a very regular way. This feature confines high-speed 110 to an 
envelope containing the floating-point processor and a fast secondary store. 
Fifth, the scientific marketplace is FORTRAN -dominated with codes involving 
man-years of preparation and tens of thousands of source statements. 

The BSP has been designed to meet all these requirements. 

SSP SUPERIORITY is based on several significant advantages over other systems in the 
supercomputer class 

Clearly, the BSP is a superior performer. It is competitively priced. The 
machine derives its performance capabilities from a number of considerations. 
The BSP is a total system, combining a most advanced general-purpose processor 
with a floating-point system of exceptional speed. Its design philosophy is such 
that extensibility is an integral part of it. 

Another significant feature of the BSP is its reliability. The system has been 
constructed from standard BCML circuits and packages. All paths to and from 
memory are equipped with error-correcting capability (SECDED). In addition, 
there is residue checking on all arithmetic operation, instruction retry, and an 
extensive set of on-line system device diagnostics. 

Because of these features offered by the BSP, Burroughs can expand its market 
potential and extend its competitive range. 

A-7 



B 7800/B 7700 SYSTEM MANAGER 

CENTRAL 
P R OC ESSO R ... --=-__ --I-=~ INPUT/OUTPUT 

PROCESSOR 
_ 1.5M BYTES/SECOND 

DATA AND CODE FILES 

~""'----'''''----'r-----'~ 

~7; 
, -...., 

r'--___ -~ 

PE RIPHERALS 

NETWORKS 

, , , 

, , , , 

'" 

SCI ENTI FIC PROCESSOR 

-
CHARGE-COUPLED DEVICE 

(CCD) 
FILE MEMORY 

(4 - 64M WORDS) 

l\ 

INSTRUCTION 
OR CONTROL t"""-- ... 

75M BYTES/SECOND 

PARALLEL PROCESSOR 

MAIN MEMORY 

MEMORY 
......,- y (0.5 - 8M WORDS) 

(256K WORDS) 

~ 
.~ 

~ n, 

- -- ARITHMETIC INSTRUCTION --
PROCESSOR 14---· ELEMENTS 

Figure 1. BSP System Block Diagram 

ro 
CJ) 
1) 

OJ 
C 
:D 
:D 
o 
C 
G) 
I 
en 
en 
(") 

m 
Z 
-I 
"TI 

(") 

-0 
:D 
o 
(") 
m 
en en 
o 
:D 



BSP BURROUGHS SCIENTIFIC PROCESSOR 

Vector Performance 

The parallel architecture equips the BSP with an outstanding performance 
capability. A commonly used figure of merit in scientific computations is the 
number of million floating-point operations per second (MOPS). For vector 
lengths greater than 16 1 the system has the performance potential of 50 MOPS. 

Performance Optimization 

The BSP has three particular hardware and software design features that influence 
performance. 

First, the BSP is equipped with the capability of handling recurrences. The sys­
tem can detect and transform expressions of the form: 

A(I) = A(I -1) >:' B(I) 

This is a particularly useful capability because such expressions appear to be 
scalar in nature. 

Second, the indexing hardware on the system is able to reorder DO LOOPs. This 
is important because long vector computations are more efficiently processed 
than short vector computations. For example, the expression, 

DO 4 I = I, 70 

00 4 J = 1, 5 

4 A (I, J) = B (II J) >:' C (II J) 

as it appears here consists of 70 computations on vectors of length 5. But there 
are no reasons (data dependencies l special sequencing) why these loops could not 
be inverted to: 

DO 4 J = 11 5 

DO 4 I 

4 A (II J) 

11 70 

B (II J) >:' C (II J ) 

so that there are now five computations on vectors of length 70. 

Finally, the system has the capability to handle conditional statements in parallel 
by using "bit" vectors. These are sequences of ones and zeros that can be used 
to mask out unwanted results. 

A-5 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-6 

FILE MEMORY 

One of the truly significant innovations in the BSP is the file memory. It serves 
as the secondary storage system for the parallel processor memory, and is 
important because of the greatly enhanced performance capability it gives the BSP. 

On most systems (even supercomputers), secondary storage is provided by discs. 
In supercomputers this can be a problem because the rate at which information 
can be transferred from secondary storage to main memory is simply not matched 
to the tremendous processing capability of the CPU. In fact, for several classes 
of problems where the program and data spill out of main memory onto discs, 
overall system performance can be very seriously degraded. 

The most important feature about the file memory for BSP performance is that 
it sustains a transfer rate to parallel memory of 10 M words/ second, complement­
ing the processing capability of the AE' s well and providing system balance. 

VECTORIZING FORTRAN COMPILER 

One of the very strongest assets of the BSP is its software. The BSP is the first 
supercomputer developed as a total system, and that concept extends to BSP 
software. The BSP is provided with a mature operating system (the MCP) and a 
vectorizing FORTRAN compiler. 

What does vectorizing mean? It is merely the recognition of computational 
sequences that can be done simultaneously. 

On a serial or scalar processor, the sequence of computations 

DO 10 I = 1, 100 

10 A(I) = B(I) + C(I) ,:~ D(I) 

would be done one at a time. 

In examining a code, the vectorizing compiler recognizes that such sequences 
can be done simultaneously. It is, therefore, a means of converting scalar or 
sequential programs into parallel programs. 

Users will also be able to program in FORTRAN exclusively. No assembly 
language programming will be necessary to achieve the performance of the BSP. 

For new program development, the language will also be equipped with vector 
extensions that will allow for the introduction of parallel computing concepts from 
the beginning. 

, \ 

I ~ 

I \ 

I ' 



BSP ~ ... --~-----~------- BURROUGHS SCI ENTI Fie P.ROCESSOR 

BSP KEY FEATURES include a system manager, the SSP elements, and a vectorizing FO RTRAN 
compiler 

The system manager is responsible for overall ESP job scheduling and control. 
Through it, program preparation and data input and output are accomplished. It 
serves as the device for interactive program preparation and debugging and pro­
vides archival storage. 

The control processor portion of the BSP is a high-speed, asynchronous unit that 
controls the parallel processor and performs scheduling, file allocation, and 1/0 
management. It is characterized by an 80-nanosecond cycle time (12. 5-megaHertz 
clock) and is equipped with 262K words of 4K MOS memory with an access time 
of 145 nanoseconds. The control processor also serves to interface the BSP with 
maintenance and diagnostic devices. 

Programs to be run on the BSP are compiled on the system manager using a 
vectorizing FORTRAN compiler, which is a significant part of the system software. 
It is used to maximize the efficiency of the BSP across a wide spectrum of scientific 
applic at ions. 

SSP ORGANIZATION ... consists of three basic units: control unit, parallel processor, file memory 

The control vnit is made up of a "scalar" processor unit that handles setup of 
vector operations for the parallel processor, 262 K words of memory in which 
the program to be executed is stored, a parallel processor control unit that sets 
up vector calculations" and a control and maintenance unit that is used to inter­
face the maintenance features of the system manager to the BSP. 

The parallel processor is made up to 16 arithmetic elements (AEs) connected to 
a parallel processor memory by means of alignment network. The network is a 
cross-bar switch that connects the parallel memory banks to the AEs and is used 
to guarantee conflict-free memory access. 

The BSP is completed by the file memory that consists of charge-coupled device 
(CCD) storage media and a file memory control unit. 

A-3 



~~p ~~~~~~~~~~~~~~~~~~~~~SURROUGHSSCIENTIFICPROCESSOR 

A-4 

SSP CHARACTERISTICS . . . include the parallel processor, file memory, and vectorizing "FORTRAN 
compiler" 

PARALLEL PROCESSOR 

The parallel processor portion of the BSP is designed to perform "vector" 
oriented computations at a very high rate. The BSP itself is a single instruction 
stream/ multiple data stream computing device. The high execution rate is 
achieved by partitioning computations onto the 16 arithmetic elements of the 
parallel processor. 

Consider the following FORTRAN statement: 

DO 10 I = 1" 1000 

A(I) = B(I) + C(I) ':< D(I). 

The sequence of computations performed is: 

A(l) 

A(2) 

A(N) 

B(l) + C(l) ':< D(l) 

B(2) + C(2) ':< D(2) 

B(N) + C(N) ':< D(N). 

Quite obviously" there is no dependence in these expressions of A(N) on (N-1). 
That is" the computations are independent of one another. There is" therefore" 
no reason not to perform these computations simultaneously. That is" if there 
were an ensemble of arithmetic elements (AE1" AE 2" AE " etc.) then at the 
same time that A(l) was being computed in AE1" A(2) courd be computed in AE2" 
A(N) in AEn" and so forth. This is the basic idea behind the computational 
philosophy of the BSP. What makes the philosophy truly usable is that large 
classes of scientific problems exhibit this type of computational concurrency. 

Conflict-free Memory Access 

One of the key reasons the BSP is able to sustain such tremendous computation 
rates is the conflict-free memory access. The system is designed so that the 
number of memory banks is relatively prime to the number of processing ele­
ments. With this design decision" it is possible to map data into the parallel 
memory so that rows" columns" diagonals (in fact" any sequence of elements in 
a two-dimensional array that are regularly spaced) can be accessed at full 
memory bandwidth. This situation contrasts with other supercomputers in which 
only rows or columns or diagonals can be accessed at the full rate. 



SSP 

SSP OBJECTIVE 

·~~SURROUGHS SCIENTIFIC PROCESSOR 

BURROUGHS SCIENTIFIC PROCESSOR 

AN OVERVIEW 

to extend Burroughs product excellence into the domain of very high-speed 
scientific computing 

Traditionally" Burroughs has been very strong in covering the entire spectrum of 
general-purpose data processing, from the B 80 to the B 7800. With the BSP" 
Burroughs is complementing these general-purpose capabilities with a most in­
novative and powerful scientific system. 

The demands of large-scale scientific processing impose vigorous requirements 
on the machine that supports it. The BSP has been designed to meet and surpass 
these requirements. In particular" the BSP is a very high-performance system. 
It is in the "supercomputer" class of machines and will deliver floating-point re­
sults up to 50 X 106 operations per second. In contrast with other currently avail­
able supercomputers" the BSP is a total system. It combines the general-purpose 
processing capability of a Burroughs large-scale or very large-scale system with 
exceptional floating-point capability. 

Burroughs has chosen to build the scientific processor from a new circuit family, 
BCML (Burroughs Current Mode Logic). As a result" the BSP enjoys high reli­
ability" availability and maintainability and is exceptionally cost-effective. 

Finally" there is a large degree of extensibility inherent in the BSP design. The 
system has an impressive potential for modular growth. 

A-l 



~~p ~~~~~~~~~~~~~~~~~~~~~SURROUGHSSCIENTIFICPROCESSOR 

A-2 

SSP SYSTEM . . . consists of the system manager and the scientific processor 

The system manager (typicallYJ a E 7800) schedules and allocates tasks to the 
scientific processor. It supports networking and data communications and has a 
complete set of peripherals (printersJ disks J tapes) that can be extended to in­
clude archival storage. 

The scientific processor consists of the control processorJ the parallel pro­
cessorJ and the file memory. 

There are three basic models of the ESP. For the user who already has a E 7700 
or E 7800 J there is the basic ESP. For other usersJ the basic configurations are 
the ESP/7811 and ESP/7821. 

• Easic ESP - 16 arithmetic elementsJ 524K words of parallel 
processor memorYJ a control processor with 262K 
words of memorYJ and 4 M words of file memory. 

• ESP /7811 - a ESP with a E 7811 system manager. The E 7800 

• 

has one central processorJ one I/O processorJ one 
maintenance processorJ and an operator display 
console with dual displays. 

ESP /7821 - a ESP with a E 7821 system manager. The E 7821 
has two central processors l two I/O processorsJ one 
maintenance processor l and an operator display con­
sole with dual displays. Dual ESP interface adapters 
provide a connection between the ESP and both E 7800 
I/O processors. However l only one interface adapter 
is active at anyone time; the other is used for backup 
or system reconfigura tion. 



SSP BURROUC;HS SCIENTI Fie PROCESSOR 

TEMPLATES 

The problem of keeping the AE' s~ the alignment network~ and the memory simul­
taneously busy is interesting. Collectively, these global elements form a pipeline. 
That is~ data is first fetched from memory, transmitted to the AE' s over the 
alignment network, processed by the AE' s~ transmitted back to memory, and 
stored. In total, this is a five-step process~ executed with four major elements 
(memory, input alignment network, AE's and output alignment network). The 
parallel processor control unit keeps these system elements as busy as possible 
relying on precoded microinstructions called "templates". 

A template is a description of an entire sequence of operations that a group of 
associated sets of 16 numbers follows. For example~ such a group of sets of 
numbers could be the addition of 16 elements of "A" to 16 elements of "E" to form 
16 elements of "e". In other words, one template can be used to control 16 arith­
metic operations which can be done simultaneously by the 16 AE' s~ plus all the 
associated memory and data transmission operations. 

The problem that the parallel processor control unit must solve is the interleaving 
of one such set of operations, or template, with the next set. In general, one 
template will not be identical to the one that follows it. For example, a succeeding 
template may be generating the first 16 elements of Z = Q ':( R + P, while the 
forerunner template is doing the last 16 (or less) elements of e = A + E. 

The reason for wanting to interleave dissimilar types of templates is that, if it is 
not done~ then the pipeline formed by memory~ the alignInent networks~ and the 
AE's must be emptied between the completion of one vector operation and the 
start of the next. If this were to happen~ then the ESP would suffer from the same 
vector startup problem that has plagued other pipeline machines. The manifesta­
tion of this problem to the user is that the machine is inefficient for operation on 
short vectors because of the startup idle time. 

Given that a template is a microsequence specified at system design time~ the 
job of the parallel processor control unit is substantially simplified. Instead of 
having to efficiently interleave the control of several dissimilar units, the 
parallel processor control unit simply has to select the next stored sequence. 
ESP templates can be characterized satisfactorily by two numbers. One number 
specifies the clock count between a template's last fetch from memory and its 
last store into memory. In other words~ the ternplate leaves this many memory 
clocks available for the next template. The other number is the number of 
memory clocks the template needs at its beginning. This number must be less 
than or equal to the number of clocks left by the preceding template. 

For example~ let a template be T1 (2, 3). This means the template needs two 
contiguous memory clocks to start up, and it leaves three contiguous memory 
clocks between its last fetch from memory and its last store into memory. If 
another template is T2 (3, 5), then the sequence Tl (2, 3) followed by T2 (3~ 5) 
would have complete overlap between T 1 and T2~ with no wasted cycles. If one 
used the sequence Tl (2~ 3) followed by another T1 (2~ 3)~ there would be one 

A-21 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-22 

clock lost in the interface between the two templates. And" of course" if a T 1 
(2" 3) is followed by a T3 (4" 2) there are four wasted clocks" because 4 is not 
less than or equal to 3. In the ESP" an adequate number of template choices 
exists so that the average time lost between two dissimilar templates is small. 

Template control entails the selection between templates already in control 
storage. The criterion of the selection is optimized efficiency of the system. 
Clearly" the power of the processor required to make this selection is miniscule 
compared with the power required to attempt dynamically to optimize system 
utilization. 

There is an extra bonus attributable to using templates in the parallel processor 
control. This is the ability to implement retry on vector operations. Upon detec­
tion of a noncorrectable error" the control lets the last successful template finish" 
resets any partially started templates back to the start point" and retries the tem­
plate which failed. The ESP is the only supercomputer that features vector operation 
retry. 

A problem can occur in a system that has this much overlap. The problem is 
called a vector "hazard". For example" if A = E + C is followed by Q = A ~:( R" 
then the elements of A must be stored by the first statement before they are used 
in the second. If the vector operations are long" no problem exists. If they are 
short" it may be necessary to hold up the second operation until the first has 
finished" even though this costs some lost cycles. The parallel processor control 
unit in the ESP automatically detects and solves this problem situation. The tem­
plate control processor adopts a different strategy in this case. Instead of maxi­
mizing overlap" it selects templates which minimize time lost between operations. 

ARITHMETIC ELEMENTS 

All 16 arithmetic elements (AE' s) in the parallel processor are identical. The set 
of 16 is driven from a single microsequence" in keeping with the SIMD nature of 
the machine. 

Each arithmetic element is quite soft" in the sense that only the most primitive 
operators are hardwired. The control word is over 100 bits wide. In part" this 
large control word width is due to direct access to primitive functions; it is large 
because the arithmetic element has an unusual range of processing capability. 
That is" besides being a floating point machine" the AE has substantial nonnumeric 
capability. A comprehensive set of field manipulation and editing operators is 
available. Additionally, a spec ial set of operators is available specifically for 
FORTRAN format conversion. While the ESP is marked as a floating-point 
number processor" in actuality" with its charge-coupled device (CCD) file memory" 
exceptionally large main memory" and versatile AE' s" it may well represent the 
largest available nonnumeric processor. 



BSP BURROUGHS SCIENTIFIC PROCESSOR 

Floatirlg point add, subtract, and multiply each take two memory clocks in an AE. 
The use of two clocks enables memory bandwidth to be balanced exactly with AE 
bandwidth for triadic operations. A triadic operation is defined as having three 
operands and one result. Evidently, this does result in balance, because the 
four memory clocks required to handle the operands and result are balanced by 
the four clocks required by the two arithmetic operations, which convert three 
operands into one result. 

The ESP memory system cycle time is 160 nanoseconds. The AE cycle time is 
the same. In this day of cycle times much shorter than 160 nanoseconds, it is 
reasonable to wonder at such a long cycle time. 

A shorter AE clock would have allowed more effective utilization of AE parts be­
cause they would have been used more often per operation. However, offsetting 
factors were the high level of integration in the ECL circuits, and the desire for 
ease of manufacturing and straightforward maintenance through absence of need 
to fine tune the clock signal. To some extent, accumulated gate delays at the level 
of integration required a long clock (although certainly not as long as 160 nano­
seconds), but primarily the level of integration made the long clock affordable. 
The extra ICs did not substantially impact total system size. 

Floating-point divide is implemented by generating the reciprocal in a Newton­
Raphson iteration. The square root is performed in the hardware as well. It is 
also implemented via the Newton-Raphson algorithm. ROMs exist in each AE to 
give the first approximations for the divide and square root iterations. One ad­
vantage of using parallel AE 1 s, instead of pipeline ilTlplenlentation, is the relative 
ease with which a full-length divide and square root can be generated. 

The single-precision, floating-point format is 48 bits long. It has 36 bits of 
significant exponent and 10 bits of binary exponent. This gives a range of 10 ± 307 
and about 11 decimal digits of precision. The floating point arithmetic is done 
using guard bits and effi-cient rounding algorithms. Even for large problems, it 
is rare for more precision to be needed. Double precision is available, however, 
should added precision be required. 

The AE has double-length accumulators and double length-registers in key places. 
This permits direct implementation of double-precision operators in the hardware. 
The AE also permits software implementations of triple-precision, etc. 

Note that with 16 AE's, each generating an add, subtract, or multiply in 320 nano­
seconds, and with parallel-processor control fully overlapped, the maximum speed 
of the ESP is 50 million floating-point operations per second. While sustained 
operation at this 111axinlunl speed will be infrequent, it should be evident tha t over­
all design philosophy has been to produce a machine which can sustain a reasonable 
fraction of its maximum operation rate. 

A-23 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-24 

4 X 5 ARRAY 

°11 °12 °13 °14 °15 

°21 °22 °23 °24 °25 

n 

°31 °32 °33 °34 °35 

°41 °42 °43 °44 °45 

STAN DARD FORTRAN COLU MNWISE MAPPING 

ARRAY ELEM ENTS 

M EMORY ADDRESS o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

= ° 
LINEAR VECTOR COMPONENTS ARE SEPARATED BY A CONSTANT ADDRESS DISTANCE d. FOR EXAMPLE, 
COLU M NS HAVE Q. = 1, ROWS HAVE ~ = n, FORWARD DIAGONALS HAVE Q. = n + 1, ETC.. -

Figure 4. Standard Array Memory Mapping Features 

M = THE NUMBER OF MEMORY BANKS 

N = THE NUM BER OF ARITHMETIC ELEMENTS 

CHOOSE M TO BE A PRIME NUMBER. 

CHOOSE N ~ M. 

TH EN, FOR ADDRESS a: 

MEMORY MODULE NUMBER: p. =I~ 1M 

OFFSET IN THE MODULE: i l~l 

FOR EXAMPLE. IF M=7, N=6, THE 4X5 ARRAY IS MAPPED: 

ARRAY ELEMENTS 

° = 
p.= 

i = 

o 1 

o 1 

o 0 

2 

2 

o 

3 

3 
o 

4 

4 

o 

5 

5 
o 

6 

6 

7 

o 
8 9 

2 

10 11 

3 4 

1 

12 13 14 15 

5 6 0 1 
2 2 2 2 

Figure 5. The BSP Memory Mapping Algorithm 

16 17 

2 3 
2 2 

18 19 

4 5 

3 3 



BSP 8URFiOUC,HS SCif:::i\nIFIC PROCESSOR 

CONFLICT-FREE MEMORY ACCESS 

A unique feature of the BSP is its memory system which delivers a useful 
operand to each AE, per each memory cycle. That is, the distance in memory 
between elements of a vector need not be unity. Therefore, DO loops may con­
tain nonunity increments, or the program may access rows, columns, or diagonals 
of matrices without penalty. 

This kind of memory capability has not been available before with memory parts 
of modest speed. Supercomputer designers have elected either to use memories 
with severe access restrictions, or have used expensive fast memory parts to 
attain a degree of conflict-free access through bandwidth overkill. 

The hardware techniques used to ensure conflict-free access are a prime number 
of memory ports" full crossbar switches between the memory ports and the AE's, 
and special memory index generation along with crossbar switch tag generation. 

The index and tag generators compute the proper addresses for a particular 
address pattern. This address pattern is the one used by orthodox serial computers. 
That is, each higher memory address refers to the "next" word in memory. With 
this pattern, the parallel memory is completely compatible with all the constructs 
of present programming languages. In particular, FORTRAN EQUIVALENCE, 
COMMON, and array parameter passing can be implemented in the same way as 
on a conventional computer. 

As an example, consider Figure 4. This shows a 4 by 5 matrix mapped column­
wise into the memory of a serial machine. For purposes of illustration, assume 
a 6 AE, 7 memory bank parallel machine. (The BSP has 1 7 memory banks.) The 
index and tag equations are shown in Figure 5. The index is the floor of the integer 
quotient of the address ~ divided by the number of AE' s. Thus, the index will re­
main constant for a cycle equal to the number of AE' s; then it will jump by one 
value. On the other hand, the tag (or memory bank number in which the value 
associated with address ~ is stored) will be ~ modulo the number of memory banks. 

Hence the tags will be repeated cycles of the same values, with no value repeating 
in one cycle, and the length of the cycle equal to the number of memory banks. 
As long as the number of AE' s is less than or equal to the number of memory banks" 
the sequence of tag values will cause a different memory bank to be connected to 
each AE. Thus, each AE may receive or send a unique value. The particular 
storage pattern produced in this 6 AE, 7 memory bank system for the 4 by 5 
example array is shown in Figure 6. Figure 7 shows index and tag calculations 
for the second row of the array. 

Note that the equations yield an AE centrist vantage point. That is, the first 
logical element of the vector goes to the first AE, etc. There is nothing special 
about this approach beyond a certain confort in thinking. The important point is 
the following: As long as the same set of equations is always applied to the data, 
from the first time it comes in as I/O onward" then the storage pattern is com­
pletely invisible to the user. This applies to program dumps, etc., as well be­
cause the hardware always obeys the same rules. 

A-25 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-26 

o 2 3 4 5 6 =p. 

o 
0 1 2 3 4 5 [>< °11 °21 °31 °41 °'2 °22 

7 8 9 10 11 [X 6 

°42 °13 °23 °33 °43 Q32 

i = 

14 15 16 17 [X 12 13 

°34 °44 °15 °25 °14 °24 

21 22 23 [X 18 19 20 

°35 °45 

2 

3 

28 29 [X 24 25 26 27 
4 

35 [X 30 31 32 33 34 

5 

:"-. ./ ----- -
NOTE THAT FOR I q IfL = 0, ALL ADDRESSES ARE IN TH E SAM E M EMORY BAN K. 

OTHERWISE, THERE IS NO CONFLICT AT ALL FOR A LINEAR VECTOR. 

Figure 6. The Physical Mapping of the Example Case 

IF ROW 2 IS WANTED, THEN: 

START ADDRESS IS 1 . 

SKIP DISTANCE d IS 4. 

fL=11I 7 , 151 7 , 1917 ' 1131 7 ' 11717 ' 

= 1, 5, 2, 6, 3 

=l~J ' l~J ' lU l~J ' ll;J 
= 0, 0, 1 , 2, 2 

REFER TO FIGURE 4 TO SEE THAT ARRAY ELEMENTS 0,1,2,3,4 

RECEIVE 02"022,023,024,025 RE SPECTIVELY. 

Figure 7. Index and Tag Calculations Used to Fetch Row 2 in the Example 



BSP 

The unused memory cells are the result of having one less AE than there are 
memory banks. For the example case, this is not a useful occurrence. For the 
real BSP, with 16 AE' sand 1 7 memory banks, divis ion by 16 is much simpler 
and faster than division by 1 7. However, one then pays the penalty of supplying 
some extra memory to reach a given usable size. 

Note that conflict does occur if the addresses are separated by an integer multiple 
of the number of memory banks. In this case, all the values one wants are in the 
same memory bank. For the BSP, this means that skip distances of 1 7, 34, 51, 
etc., should be avoided. In practice, 51 is a likely problem skip. This is be­
cause it is the skip of a forward diagonal of a matrix with column length 50. If 
conflict occurs in the BSP, the arithmetic is performed correctly, but at 1/16 the 
normal speed. The system logs the occurrence of conflicts and their impact on 
the total running time. This information is given to the programmer for corrective 
action, if the impact was significant. 

BSP memory reliability has been mentioned. Diagnosibility is also an important 
feature. Instead of placing the Hamming code generators, detectors, and correctors 
on the memories, as is usual, they are placed at the AE' s. This way the entire 
loop, from the AE's to the memory and back again, is Hamming code corrected. 
A side benefit of the conflict-free access hardware is that control information can 
be buried in the Hamming code in such a way that failing control elements can easily 
be detected and identified. Hence, not only are memory elements and data paths 
checked in the BSP design, but control logic is checked as well. 

PARALLEL PROCESSOR CONTROL UNIT 

Many of the functions of the parallel processor control unit have been mentioned. 
The unit is essentially a pipe, with each stage concerned with translating or check­
ing input instructions into accurate control signals for the parallel processor. 

The first stage in this pipeline is called the vector input and validation unit (VIVU). 
The vector and array instructions, assembled by the SPU, are inserted at this 
point. The VIVU assembles a sequence of such instructions into a single global 
description of an operation defined over a set of program arrays. It also esta­
blishes the relationship between this operation and the one before, to guard 
against vector hazards. 

The form of instruction inserted by the SPU into the VIVU is interesting. In 
keeping with Burroughs policy of designing standard product computers as language 
processors, it was determined early in the BSP design cycle that the machine would 
pi~ocess assignn1.ent stateITlents. ArithlTIetic assignment statements are the basic 
ingredient to most numerical processing. The templates are memory-to-memory 
entities, because assignment statements are memory-to-memory statements. 

In the case of Burroughs stack machines, such as the B 7800, the source language 
translates almost directly into object language with little need for run-time process­
ing to aid in the description of the object language. Hence, in the B 7800 this run­
time processing is automatically invoked in the hardware. 

A-27 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-28 

It was not possible to take the same approach with the BSP. The most general 
BSP parallel processor construct is a sequence of vectors, essentially a nested 
pair of DO loops. Because in the general case, all of the parameters used to 
describe an operation could be run-time variables, so much language processing 
is involved that it makes no sense to try to do it in automatic hardware. For 
example, parametrized descriptors of operations on sets of vectors, where the 
parameters are computed at run time, involve a great deal of run-time processing 
to convert the parametrized source language into object code. 

This general consideration defines the need for the SPU as well as the point in 
the processing sequence at which the SPU passes instructions to the parallel 
processor control unit. This point is where run-time source language processing 
ceases, and all subsequent vector operation processing can be done in a uniform 
way. From a language point of view, this point is the time at which actual para­
meters can be inserted into a formal assignment statement. 

This is, consider the triadic formal assignment statement 

RBV , Z = A OP 1 B OP 2 C, OBV ; 

where Z, A, B, and C are vector descriptors, oPl and oP2 are operators, and 
OBV /RBV are the optional operand and result bit vector descriptors. 

The executing this operation, the SPU issues the following sequence to the parallel 
processor control unit: 

VFORM 
OBV 
RBV 

VOPERAND 
VOPERAND 
VOPERAND 
VRESULT 

A 
B 
C 
Z 

The information in the VFORM instruction will name the actual operators to be 
used, designate the level of loop nesting, indicate presence of bit vectors, etc. 
The OBV and RBV descriptors will give a start address and a length. The starting 
addresses are not referenced to an array, because bit vectors are not FORTRAN 
concepts. However, the vector operand and result descriptors give the start of 
the vector relative to an array location, the location of the array, the volume of 
the array, the skip distance in the location of the array, the volume of the array, 
the skip distance in memory between vector elements, and the optional skip dis­
tance between the start of vectors in a nested loop pair. Some consideration 
should convince the reader that this is the point where run-time language process­
ing has ceased. The remaining processing, for example, array bounds checking, 
will be constant for all operations. Hence, it is seen that the BSP is a FORTRAN 
language processor. 



SSP 

After the VIVU has processed the vector form and its associated operand and re-
sult descriptors~ the finished package description is stored in the template 
descriptor mernory (TDM). The TDM functions as a queue J thereby permitting 
many vector forms to be present in it at once. The template control unit (TeD) 
fetches information from the TDM~ updates it~ and stores the updated information 
back in the TDM. The function of the TeU is to drive the parallel processor. It 
does this by selecting an appropriate template and then using the address informa­
tion in the TDM to generate tags and indices for the quantities dealt with by the 
template. Because a template normally processes sets of 16 elements~ the TeD 
normally updates addresses by 16 and stores the new addresses back into the TDM. 
However~ for a memory conflict case~ or compress/ expand/ merge operations~ the 
TeD adds the correct updating number to addresses before restoring them to the TDM. 

For retry~ checkpointing~ and arithmetic fault identification~ the TDM also contains 
a copy of the original vector form~ as received from the VIVD. The program­
address counter value of the instruction which issued the vector form is also stored 
in the TDM. In the case of program termination due to arithmetic faults~ the pro­
grammer is given the index of the first operand pair causing a fault in a vector form~ 
the nature of the fault~ the line number of the associated source statement~ and the 
calling sequence used to reach that statement. 

If the TeD is processing the last template of a vector form~ there will generally 
not be sets of 16 elements involved. This is because the last template will require 
only enough elements to process the vector length specified by the program. For 
this caseJ the TeD will pad the partial lengths out to 16 using "nUll" operands. 
The null operands are genera ted by the input alignment network aid have the follow­
ing properties in the AE IS: 

operand .... 41---- "null" (operator) operand 

operand "'4~-- operand (operator) "nUll" 

Also~ memory bank will refuse to store a null. Hence~ "nUll" times 1 equals 1~ 
"null" plus I equals 1. AndJ of courseJ two nulls produce a null. SOl a vector 
that is not an integer multiple of 16 is padded out with a quantity which results in 
no improper stores occurring. But the null is more than that. For example~ in 
a sum reduction~ where numbers are being transmitted between AE I s~ the correct 
sums are formed because the nulls do not intrude into the result. The same is 
true for a product reductionJ or for a reduction using "maximum" or "minimum" 
as the operator~ in which case a search is occurring. 

SCALAR PROCESSING UNIT 

The SPU is a conventional~ register-oriented processor in most respects. It 
operates on an 80-nanosecond cycle. It has 16 48-bit~ general-purpose registers~ 
a full complement of numeric and nonnumeric operators and an instruction processor 
which includes content-addressable~ memory-controlled~ in-bufferJ looping 

A-29 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

A-30 

capability. The unusual features of the SPU relate to subroutine entry and to in­
structions issued to the parallel processor control unit. 

In addition to the 16 general purpose registers l there are 16 120-bit vector data 
buffers (VDB's). The 120-bit width is the maximum width of any parallel processor 
control unit instruction. If a vector instruction or descriptor has been completely 
assembled at compile timel then it will be fetched from control memory into a VDB. 
From therel a single clock will be sent into the VIVU input buffer. If some run-time 
vector instruction or vector descriptor processing is necessarYI then as many as 
four of the general-purpose registers can be referenced to insert fields into the 
120-bit wide VIVU input buffer. This data will overwrite the associated fields in 
the 120-bit word coming from the VDB set. This facility permits the formation of 
skeletal descriptors at compile timel with the expectation that missing fields will 
be filled in at run time. It also permits a compile-time-generated descriptor to 
be overwritten at run timel which can be used to optimize VDB usage and memory 
references. 

The SPU uses a push-down stack for subroutine linkage. The data which goes on 
the stack is the return address and a register address translation table. The 48-
bit and 120-bit registers are referred to via an address translation unit. This 
capability assists in parameter passing and in the minimization of register saves 
and restores during subroutine entry and exit. 

A second stack is maintained for the SPU executive state. Control memory is 
divided into the executive areal user read/ write areal and user read-only area. 
The user stack is at one end of the user read/ write area. 

BSP SOFTWARE 

Wherever possiblel the BSP takes advantage of existing B 7700/B 7800 software. 
Necessary additional items are a small operating system to run on the SPUI a 
BSP compiler and the associated linkage editor and intrinsic functions l and the 
diagnostic package. 

Perhaps the most interesting aspect of the SPU operating system is its facility 
for staying out of the way. For examplel I/O is done in user model and assuming 
I/O is overlapped by computationsl the SPU spends less than a microsecond in 
managing a transfer. Overlay management and chaptered file management are the 
major operating system functions performed for a running program. The hardware 
assists in overlay management by allowing presence bits to be assigned to each 
phase of a program. Hencel the operating system is dropped into automaticallYI 
if and only if the program attempts to enter a routine in a phase which is not 
present. 

The FORTRAN compiler has a number of interesting features. The most important 
is the vectorization pass over the programl which converts serial FORTRAN into 
vector constructs. The BSP vectorization pass is a more complete parallel analysis 

\ .! 



SSP BURROUGHS SCIENTIFIC PROCESSOR 

of a program than has been previously inserted into product compilers. The 
usual approach has been to attempt to vectorize only loops which did not contain 
branches or cyclic dependencies. The BSP vectorizer issues vector instructions 
even for branching cases" as long as the branch paths depend on vectors which 
are known at branch time. The vectorizer also detects cyclic dependencies. If 
an analysis of the dependency shows it is equivalent to a linear recurrence" then 
appropriate vector instructions are issued. 

These types of parallelism are the most frequent which can be detected using 
rigorously defined algorithms. There are some important cases" such as when 
a user has undertaken to manage indices" for which only ad hoc vectoriza tion 
techniques are known. These will be vectorized as well" but clear-cut statements 
about the extent of vectorization are not possible. 

The FORTRAN compiler also contains the facility to directly express vector and 
array constructs. Assignment statements like A = A + 1" where A is an array" 
are permitted. Index expressions are permitted on array identifiers. For 
example,ll if A is a 3-dimensional array" then A (10:50:2" 6" 1:10) would refer 
to a 21 by 10 array which is a subspace of A. Clearly" this reference need only 
generate a descriptor" which is pushed into the VIVU queue. No actual subset of 
A is generated as a temporary. 

An interesting special feature of the compiler is a source code regenerator. This 
regenerator creates standard FORTRAN statements. Hence" a programmer can 
indulge in the use of array extensions" but retain full compatibility with standard 
FORrl'RAN. 

Because of the way in which the B 7700/B 7800 is connected to the BSP" it is 
possible to use standard B 7700/B 7800 terminals or network connections to run 
BSP diagnostics. A field engineer can invoke a sequence of routines which will 
result in a printout of suspect IC locations. He can quickly replace the suspect 
IC's and bring the BSP back up again" if it is down. This idea is extended to the 
ability to use BSP development engineers on-line in the diagnostic process. Thus" 
the field engineer and the customer have excellent assurance of prompt system 
recovery. 

A -31 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 


