

BURROUGHS SCIENTIFIC PROCESSOR

CONTROL PROGRAM

SSP BURROUGHS SCIENTIFIC PROCESSOR

CONTENTS

Page

ABSTRACT D-v

1. BACKGROUND D-l

2. FUNCTIONAL REQUIREMENTS D-3

3. FUNCTIONAL CHARACTERISTICS D-5

Computational Envelope D-5
Functional Distribution D-6
Monoprogramming D-6
Planned Overlay D-6
Integra ted Job Flow D-6

4. JOB FLOW D-7

5. WORK FLOW LANGUAGE D-ll

6. SCHEDULING AND OPERATOR CONTROL D-15

7. FILE MEMORY ALLOCATION D-17

8. PROCESSOR MEMORY ALLOCATION D-19

9. SUMMARY D-23

D-iii

~~p ~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR

BSP BURROUGHS SCIENTIFIC PROCESSOR

ABSTRACT

The control program for the Burroughs Scientific Processor exploits functional
distribution to provide a full-featured batch and time-sharing operating system
for general-purpose and interaction-intensive computing~ while providing an
efficient monoprogramming environment for high-speed~ parallel~ numerical
computation. Efficiency is obtained by incorporating physical 110 functions into
the I/O controller and performing most scheduling functions on the separate sys
tem manager. The inefficiency of demand-paged virtual memory is avoided while
retaining its user convenience by providing static memory allocation and overlay
coupled with a sophisticated linker that estimates working sets via source program
analysis. Finally~ the scientific environment is integrated into a general purpose
system via Burroughs high-level job control language and multiclass priority
scheduling system.

D-v

~~p ~~~~~~~~~~~~~~~~~~~~-BURROUGHSSCIENTIFICPROCESSOR

SSP BURROUGHS SCIENTIFIC PROCESSOR

1. BACKGROUND

The development of the Master Control Program (MCP) for the Burroughs B 5000
in 1961 marked the beginning of the present generation of operating systems, pro
viding as it did full support for multiprocessing, virtual memory, time-sharing,
and a host of other system and user conveniences that have since become common
place throughout the industry. But even as the mainstream of computing moves
in the direction of the multiuser, short response time environment, there remains
a growing backlog of scientific applications for which the fundamental throughput
limitation, now and for the foreseeable future, is raw arithmetic speed. This
latter environment is the domain of the supercomputer - the high-speed number
cruncher whose productivity is measured simply as the number of floating-point
arithmetic operations performed per unit time. For such applications, even a
supercomputer strains to support even one program at a time, and the typical
general-purpose operating system, with its concommitant overhead, is as likely
to reduce system throughput as to enhance it.

Against this background, the Burroughs Scientific Processor (BSP) debuts as
Burroughs first commercial entry into the supercomputer marketplace. But the
BSP is not Burroughs first parallel supercomputer. Burroughs engineered and
constructed the ILLIAC IV - one of the fastest machines ever delivered - and more
recently built the PEPE system hardware under subcontract to Systems Develop
ment Corporation.

The BSP is not merely a supercomputer. Integrated as it is with a Burroughs
conventional, large-scale system as a host, the BSP system represents a total
system solution and offers an exceptional arithmetic capability within a fully
featured, general-purpose computing environment.

D-1


~~~ ~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 



BSP BURROUGHS SCIENTIFIC"PROCESSOR 

2. FUNCTIONAL REQUIREMENTS 

The functional requirements for BSP system control software can best be under
stood in terms of the typical scientific supercomputer workload. 

First, supercomputer programs are long-running. Supercomputers are typically 
dedicated to a few production codes that would run for many hours on present
generation large-scale computers. This contrasts with large numbers of short 
jobs characteristic of a general-purpose scientific or engineering environment. 
Thus" the environment dictates that a supercomputer achieve maximum perfor
mance on a single program, rather than just some average throughput over a mix 
of programs. 

Second, supercomputer programs require large amounts of main memory but only 
moderate amounts of secondary memory. A typical data base is a large array 
representing a large matrix or a grid of points in physical space. Data base sizes 
may reach millions or tens of millions of words, but rarely require hundreds of 
millions. Data are usually accessed in a regular pattern" with a complete com
putation requiring many passes of the array. On a single pass" however, the 
instantaneous "working set" of references may span a large cross-section of the 
array, with only a few references per individual datum. Thus, it may be desirable 
to contain the entire array in main memory; alternatively, cross-sections of the 
array can be streamed through the main memory from secondary storage. This 
contrasts with many data processing applications which have very large, randomly 
accessed data bases, but require relatively little main memory to process a 
single transaction. Thus, the environment dictates large main memory capacities, 
backed up by a secondary storage about an order of magnitude larger with a very 
high, effective, sequential transfer rate. 

D-3 



~~~ ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

D-4

The BSP system software, no less than the hardware, contributes to and benefits
from this total system approach. The host system Master Control Program is
as comprehensive in function as any operating system in the industry, being the
culmination of nearly two decades of operating system development. Coupled
with the MCP is the system software for the BSP proper, whose main objective
is to convert the hardware number-crunching payload - expressed in tens of
floating-point operations per microsecond - into a proportional system throughput
measurable in trillions of arithmetic operations per day.

The main system software contribution to computational throughput is, para
doxically, minimizing the software presence.

Traditional sources of macroscopic delays to programs have been input-output
operations and state-switching arising from multiuser, interactive environments.
The input-output delays are minimized by a hardware approach tha t combines
charge-coupled device (CCD) technology, which provides superior device perfor
mance characteristics, with a sophisticated file controller that totally eliminates
operating system software overhead for routine block transfer operations. State
switching delays are minimized by providing a separate environment - the general
purpose host processor - for multiuser, interaction intensive activities such as
program preparation, editing, and compiling, thus allowing arithmetic -intensive
production programs undisturbed exploitation of the high-speed computational
resources of the BSP proper.

p

BURROUGHS SCIENTIFIC PROCESSOR

FAULT-TOLERANT FEATURES

BSP ------------- ---------------.----- BURROUGHS SCIENTIFIC PROCESSOR

3. FUNCTIONAL CHARACTERISTICS

Based on the workload considerations discussed in section 2" the basic tenet of
the BSP design is to provide continuous execution of suitable scientific programs
at the rated processor speed. To this end" the file memory (FM) device provides
access time and transfer rates sufficient to sustain fully overlapped sequential
I/O at a computation-to-I/O ratio as low as 10:1" and provides capacity to contain
all files required by a typical program on this high-performance device. The
goal of BSP system software is to support this hardware approach for scientific
programs while integrating it into the overall philosophy of the Burroughs large
scale system.

COMPUTATIONAL ENVELOPE

A characteristic feature of the BSP approach to fast and efficient scientific com
putation is the concept of the computational envelope. By this" we mean that a
scientific task" once started" runs to completion within the high-performance
computational and I/O environment of the BSP without requiring intervention of
or access to the much slower system manager processor or its I/O devices. In
particular" all ESP FORTRAN program and data files are normally fully contained
within file memory while the program is in operation; input and output files are
copied to or from file memory before the task is started or after it completes"
respectively. (Means are provided" however" to access exceptionally large files
which cannot be fully contained on file memory.)

D-5

~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR

D-6

FUNCTIONAL DISTRIBUTION

A primary requirement for system software on a number-cruncher, particularly a
parallel computer on which control software runs at relatively slow scalar speeds,
is simply to stay out of the way. Consequently, many system tunctions contributing
to software overhead on conventional systems have been removed from the computa
tional envelope or incorporated into hardware for asynchronous execution. For
example, several operating system functions are off-loaded to the system manager,
including low-speed peripheral spooling, permanent file catalog management, file
copy between file memory and the system manager, work-flow (job control language)
interpretation and much of job scheduling and operator console support.

Control program overhead for block-level IIO operations (read and write) has been
completely eliminated by performing the necessary functions in the file memory con
troller, including priority request queueing, access rights verification, logical-to
physical address translation, error retry, and completion notification.

MONOPROGRAMMING

Since the BSP is designed for continuous running of single programs, the BSP system
software is likewise oriented to efficient processing of one program at a time, as
opposed to reliance upon multiprogramming to achieve high throughput. Neverthe
less, the need for smooth transition between tasks and priority service to urgent tasks
is recognized and supported. Accordingly a number of BSP programs, with their
data files, may be queued on file memory; they will be run to completion in priority
sequence. Furthermore, particularly urgent programs, such as short debug runs,
may preempt a running task.

PLANNED OVERLAY

The BSP hardware does not provide virtual memory. Accordingly, programs too
large to be memory-contained must be statically divided into overlays. The BSP
linker supports this capability by analyzing program control flow and dividing the
program into overlays consistent with a specified maximum memory size. Linker
generated modifications to the subroutine-calling sequence invoke the overlay
supervisor, so no special providions for overlay are required in the FORTRAN
source program.

INTEGRATED JOB FLOW

Although the BSP and its system manager function internally as independent
asynchronous processors, a user views the total system as an integrated whole.
There is a single, job control language - Burroughs Work Flow Language (WFL) -
for describing job sequences involving both the system manager and the BSP,
into which BSP functions have been integrated in a natural and consistent way.
A single operator console manager permits the entire system and its scheduling
policies to be monitored or controlled from any operator console terminal.

1 I

8 S P ~~~~---- ---~--- -----~-----~--- -------------~---~--- BURROUGHS SCIENTI Fie PROCESSOR

4. JOB FLOW

Figure 1 illustrates a typical job flow. (Numbers in the text are keyed to the
figures.) A typical session begins with a user logging on at a remote terminal
connected to the system manager's data communication network (1). The user
then interactively creates new programs and data files, or modified previously
stored files, using the Burroughs large systems Command and Edit Language
(CANDE) (2). (Programs can also be submitted via a local card reader (3)).
When all program and data file updating is complete" the user initiates the
necessary sequence of compilation" file copy" and program execution tasks to
carry out his particular computation by starting a job. A job is itself a program
which the user would have previously written using the Burroughs Work Flow
Language (4), which invokes various system and user programs in specified se
quence and defines the system resources and files required for each. Starting a
job causes the WFL program to be compiled into executable code (5). Once the
job is started, the user continues with other work while awaiting completion
and results.

In the meantime" the system manager Master Control Program (MCP) queues the
job (6) and" based on the job's priority and resource requirements, begins its
execution (7).

A typical job begins with a ESP FORTRAN compilation (8) (or several compilations
running concurrently), followed by execution of the ESP linker (9) to bind these
and previously compiled subroutines into a single executable program. Concurrent
ly" input data files for the ESP program are copied to the BSP file memory from
permanent storage on the system manager (10). All of these activities take place
on the system manager" while other work unrelated to the job is in progress on
the ESP.

D-7

~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR

(8)

D-8

SYSTEM MANAGER

PROGRAM
SOURCE

(9)

COMPILE

PROGRAM
CODE

SCIENTIFIC PROCESSOR

(2) (16) (3)

COMMAND
AND
EDIT

SPOOL ~----I~ LOCAL USER

WORK
FLOW

COMPILER

(6)

JOB
SCHEDULER

(7)

JOB
EXECUTION

JOB
QUEUE

L--_,....------J- - - - - - I

(11)

BSP
RUN

TASK
EXECUTE

I

(15) ,

(12)

B 7800
RUN

TASK
INITIATE

Figure 1. Typical BSP Job Flow

(10)

FILE
COpy I.t

BSP BURROUCJHS SCIENTIFIC PROCESSOR

When these activities finish" the system manager" responding to a single Work
Flow Language statement" initiates the BSP program (11). The program and card
image input files are automatically copied to file memory" and the BSP task is
queued by priority for execution on the BSP (12). The task begins as soon as all
higher priority BSP tasks have completed (immediately if it has preemptive
priority over a lower priority running task) and runs to completion (unless pre
empted) (13). When the task completes" the BSP sends timing and performance
information to the system manager. The system manager MCP automatically
copies printer and punch spool files from file memory to the system manager"
and resumes execution of the job.

The next tasks in a typical job will copy permanent output files from the file
memory to system manager permanent file storage (14). Finally" data editing
or analysis routines may be performeci on the system manager (15). When the
job completes" the systern manager MCP will automatically spool bulk hard copy
output to appropriate peripherals" and print a job summary listing giving job
accounting information" resource utilization" and performance statistics (16).

Figure 2 illustrates the organization of the MCP functions invoked via the job flow
process. The MCP consists of four major components: the Work Flow Language
compiler (7)" the controller which perfornls scheduling and console management
(2)" the system manager MCP proper (3)" and the BSP MCP (4). (The first three
of these components run on the system manager.) The BSP MCP implements two
major functions: task scheduling and loading (5)" and file memory management
(6). The I/O subsystem functions (7) logically form a third function of the BSP
lVICP" but are physically rcaliz ed largely by hard"ware.

D-9

tj
I

I--'

o

WFL
STATEMENTS

AND DATA

/

/
/

/
/

/
/

/

CLOSE OF II ~
(1) i JOB FILE i / v",'" " ,,~

r " ..,~,~ ,F "'-
WFL (

COMPILER

/ SPO CONTROL
/ CARDS

/
/

JOBFORMATTER
AND

PRINT BACKUP

JOB
SUMMARY

AND
PRINTOUT

SETSTATUS/
JOBSTARTER

COMPUTATIONAL ENVELOPE r--------------------
I

I
I L ___________________ _

Figure 2. Job Flow, System Viewpoint

OJ
CJ)
-U

OJ
C
:xl
:xl
o
C
C)
I
en
en
(")

m
Z
-f
"Tl

(")

-0
:xl
o
(")
m
en
en
o
:0

BSP BURR()UCJHS SCIENTI fie PROCESSOR

5. WORK FLOW LANGUAGE

The Burroughs \Vork Flow Language (WFL) is a high level, ALGOL-like language
for describing the particular sequence of program executions that constitute a job.
A partial list of WFL statements and their associated functions is given in Table 1.

Table 1. Representative Work Flow Language Commands

Statement

JOB

USER

CLASS

BEGIN ... END JOB

SUBROUTINE ... BEGIN ... END

IF ... THEN ... ELSE

WHILE ... DO

RUN

Identify a job

Provide accounting and security
identifica tion

Classify a job for default resource
assignment and scheduling

Delimit a job

Identify and delimit a subroutine

Conditional construct

Looping construct

Initiate a synchronous program
execution

D-l1

BSP BURROUGHS SCIENTIFIC PROCESSOR

D-12

Table 1. (Cont'd)

Statement

PROCESS WAIT

COMPILE ... AND GO

COpy

DATA ... ?

RESTARTI SPRESTART

FILE

COREl PRIORITY I SPTIMEI
JOB RESOURCE I etc.

Initiate an asynchronous program execu
tion wait for asynchronous program
completion

Initiate a standard compilerl optionally
followed by execution of the compiled
program

Initiate the standard file copy utility

Delimit an in -line data file

Designate a restart point for resumption
after system fa ilure

Identify files used by a program

Job or program resource requirements
(See also Table 2.)

Figure 3 illustrates a typical Work Flow Language program for a simple "compile
and go" run. In this example l the CLASS statement indicates that this job will
operate with default resources (file memorYI processor time l priority) previously
established by the installation for that class of job. The input data is included with
the job sourcel and the printer output will be handled automatically. Thusl for
this simple situationl only a minimum number of work flow statements is required.

Figure 4 illustrates the Work Flow Language necessary to execute a more complex
job such as the one discussed earlier in section 4. This illustrates the power of
the Work Flow Language to specify resource requirementsl compilation and linking
sequencesl data file copy operationsl and error restart points.

B S P--- ------------------------- -- -------- BURROUGHS SCIENTIFIC PROCESSOR

?

?

*

JOB JOB/NAME:

USER USERCODE/PASSWORD;

CLASS 1;

COMPILE SAMPLE/PROGRAM VFORTRAN AND GO;

FMDATA; % (delimit a data file for file memory) *

MISC DATA FOR PROGRAM

END JOB

Text following % is commentary, not part of the Work Flow Language

Figure 3. Typical Work Flow Language Program,
Simple "Compile and Go" Run

D-13


~~~ ~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

1000 ? JOB SAMPLE/PROGRAMS 
1100 USER USERCODE/PASSWORD; 
1200 CORE = 25000; (% system manager memory requirement) 

1300 JOB R ESOU RCE (F I LEM EM=2000000); 
1400 PRIORITY = 80 
1500 BEGIN 
1600 COMPILE SUB/PHYSICS VFORTRAN TO LIBRARY; 
1700 VFORTRAN FILE TAPE = SOURCE/PHYSICS ON OURPACK; 
1800 DATA CARD; 
1900 
2000 SOURCE PROGRAM PATCHES 
2100 
2200 ? 
2300 LINK WEATHER/CODE LINKER; 
2400 DATA CARD; 
2500 $ LINK SUB/PHYSICS 
2600 
2700 OTHER LINKER CONTROL CARD 
2800 
2900 ? 
3000 ON SPRESTART GO COPYFI LES; 
3100 COPYFILES: 
3200 COpy WEATHER/CODE TO FILEMEM; 
3300 COpy INPUT/ATMOSPHERE FROM OURPACK(PACK) TO FILEMEM; 
3400 RUN WEATHER/CODE; 
3500 SPTIME = 30; 
3600 FILE FILE10 = INPUT/ATMOSPHERE ON FILEMEM; 
3700 FILE FILE11 = OUTPUT/ATMOSPHERE ON FILEMEM; 
3800 FMDATA FILES; 
3900 
4000 MISC DATA FOR PROGRAM 
4100 
4200 ? 
4300 COpy OUTPUT/ATMOSPHERE FROM FILEMEM TO OURPACK(PACK); 
4400 ? END JOB 

Figure 4. Typical Work Flow Language Program, Complex Job 

D-14 



BSP ~~-~-~-~ --------------------------~----~------------ BURROUGHS SCIENTI FIC PROCESSOR 

6. SCHEDULING AND OPERATOR CONTROL 

The system manager control program has been designed to provide fully automatic 
system schedulingl including the BSP I within policies established by the installa
tion manager. On the other handl status monitoring and operator intervention 
can be maintained at multiple locations via local or remote operator display ter
minalsl each individually programmed to provide the desired status information 
and to accept selected commands. 

System scheduling is implemented via a multiclass priority queue mechanisml 
coupled to automatic spooling for collecting jobs from or disseminating them to 
local peripherals or remote terminals. By this mechanisml the installation 
manager may designate various classes of jobsl each with particular default and 
maximum resource requirements. For examplel the installation could designate 
a high priority class for shortl small jobs and a lower priority class for large or 
lengthy jobs. The mechanism also allows an installation to collect and queue 
certain classes of jobs during the day for later execution at night. Table 2 lists 
selected criteria that may be used to establish job classes. 

BSP tasks in particular are normally initiated in priority sequence and then run 
to completion. Howeverl the installation may designate a certain class of job 
which may preempt a lower-priority BSP taskl causing it to be automatically 
rolled back to file memory and resumed when the preempting job finishes. This 
mechanism provides fast turnaround for urgent work while preserving the basic 
efficiency of balanced monoprogramming environment. 

Although the system schedule makes routine operator scheduling decisions un
necessary, the operator can override the scheduler in exceptional circumstances. 
A full repertoire of status displays and control commands is available. 

D-15 



~~p ~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

D-16 

Table 2. Typical Job Scheduling Attributes 

Attribute 

PRIORITY 

PROCESSTIME 

10 TIME 

ELAPSEDLIMIT 

LINES 

CARDS 

DISKLIMIT 

JOBRESOURCE 

SPTIME 

Description 

Priority for processing time 

Processor execution time limit 

Input-output time limit 

Elapsed "wall-clock" time limit 

Lines printed limit 

Cards punched limit 

Disk space utilization limit 

File memory utilization limit 

BSP execution time limit 

,,., 



BSP BURROUGHS SCIENTI Fie PROCESSOR 

7. FILE MEMORY ALLOCATION 

The file memory (FM) is one of the BSP's most precious resources. Since very 
large capacities are uneconomical with the present state-of-the-art, particular 
effort was invested to provide efficient space allocation so the file memory could 
serve as both file storage for an active program and a staging area for previous 
or future tasks. 

The allocation algorithm selected is a modification of the Banker's algorithm 
made famous by Edsgar Dijkstra, now a Burroughs Research Fellow. The objec
tive of this policy is to make the file memory available to as many requestors as 
possible without exposing the system to over-commitment, thus requiring a costly 
rollback of some file in order to make enough file memory available for a running 
program to complete. This is possible if each job, before making any requests, 
informs the allocator of the maximum FM usage for that job; the Work Flow Lan
guage provides for this limit. The Banker's algorithm, then, can allow files for 
several jobs to be staged to file memory, reserving only enough additional space 
to satisfy the working storage requirements of one job at a time, yet guaranteeing 
that each job in turn will have sufficient working storage. 

D-17 



BSP BURROUGHS SCIENTIFIC PROCESSOR 

D-18 

Figure 5. Typical Program Structure for Overlay 

1 
3 

5 6 
12 13 
17 

7 
14 
15 

All phases are coresident with O. . . . 
Phase 2 IS coresident With 0 and 1. 
Phase 8 is coresident with 2, 3, 4. 
Phase 16 is coresident with 9, 10. 
The longest path is: 0 - 3 - 9 - 16. 

0 

4 

9 

10 11 

"'----

Figure 6. Typical Overlay Memory Map 

2 

8 



BSP BURROUGHS SCIENTIFIC PROCESSOR 

8. PROCESSOR MEMORY ALLOCATION 

The philosophy of processor memory allocation is to minimize interference with 
scientific computation due to memory unavailability. The hardware provides for 
exceptionally large memory capacities - up to 8 million words. Memory inter
ference is minimized by providing separate array data and program instruction 
memories. The monoprogramming philosophy makes the maximum memory 
available to an individual program. N evertheless~ software must provide for 
occasions when the total size of a program exceeds processor memory space. 

The memory overlay scheme for the ESP has been designed to provide most of 
the user convenience of a virtual memory environment~ while providing the 
efficiency of a planned overlay environment. To this end~ a separate software 
component~ called the linker ~ is provided. The linker binds one or more com
piled FORTRAN subprograms with referenced library routines into a single load 
module. In addition~ the linker analyzes the cross-references to subroutines~ 
common blocks and IIO units to determine which blocks need be coresident and 
which can overlay each other. (Figure 5 illustrates a typical program graph. ) 
Given a maximum memory availability~ the linker will then partition the load 
module into overlay phases. (Figure 6 illustrates the overlay phases for the 
structure represented in Figure 5.) The linker also inserts calls to the overlay 
supervisor preceding initial interphase references. Thus~ a static overlay 
structure is produced with no user modification whatever to the FORTRAN source 
program. If the user wishes to override the linker' s algorithm~ he may specify 
an explicit overlay structure via control cards to the linker; this still requires 
no change to the FORTRAN source. 

The memory allocation patterns provided by the linker include provision for auto
matic allocation of local variable space~ including dynamically specified array 
dimensions~ and provision for SAVE memory~ so values computed by one invoca
tion can be retained for the next invocation. The linker also exploits hardware 

D-19 



tj 
I 

I:\:J 
o 

'"" 

ADDRESS 
o 

L 
r 

SYSTEM .... ", 

BASE 
REGISTER 

I 

I 
IrE 
I 

USE R PARTITION , -

I 

LIMIT 
REGISTER 

USER PARTITION 

READ - WRITE 

SYSTEM 

I 
I 

I 
I 

;,. 
I 

i 

ADDRESS 
MAX 

--' 
~I 

,.. 

READ ONLY ------,..: I 
~ I 

BASE + 
(A) 

I I 
'-rE GLOBAL DATA AREA ~IE LOCAL DATA AREA 
I I 

I I 

t t t 
USER READ (B) (C) 
ONLY BOUNDARY 

~ LOCAL DATA AREA ~ 
I 

I 
~ LOCAL SPACE OF 

~ LOCAL DATA 
I CURRENT SUBPROGRAM 

OF PRIOR I AND SUBSEQUENT 
SUBPROGRAMS ~ SUBPROG RAMS 

j 

ORIGINAL 
LOCAL BASE 

I 
I 
I 

t 
LOCAL BASE AFTER 
SUBPROGRAM ENTRY 

Figure 7. Typical Memory Segmentation~ Control Memory 

7 

~ 

j 

LIMIT 

~ 

Llrv IT 

CD 
CJ) 
"1J 

OJ 
C 
:0 
:0 
o 
C 
G> 
I 
en 
en 
(') 

m 
Z 
-f 
"T1 

(') 

"'tJ 
:0 
o 
(') 
m 
en en 
o 
:0 



B S P --~------------------------------------~--------- ----- - ------------------ - --- BURROUGHS SCI ENTI F IC PROCESSOR 

memory protection, whereby base and limit registers are provided to prevent 
references outside the the problem program's space, or to prevent modification 
of read-only information such as executable code and constants. This is accom
plished by subdividing each overlay into segments according to class of memory 
required. Figure 7 illustrates a segmentation pattern for control memory; the 
corresponding pattern for parallel memory is similar to that of the read-write 
user partition. 

The overlay loader is invoked by the ESP presence semaphore mechanism. Each 
phase is assigned to a unique hardware presence semaphore, which can be efficiently 
tested by special instructions. The linker inserts such a test instruction preceding 
each call or 110 reference to a subroutine or 110 unit in another possibly nonresident 
phase. If the phase is not present" the test will cause an interrupt invoking the ESP 
overlay loader software, which will load the phase (possibly first writing out SAVE 
data to be overlayed), set the presence semaphore and then allow the program to 
resume. Presence tests for a present phase will allow the program to continue 
without an interrupt. 

The ESP overlay mechanism thus eliminates much of the overhead associated 
with conventional demand-paged systems by pregrouping related routines (working 
sets), thus nliniInizing the number of presence faults and the access time to locate 
individual pages. Finally, it should be noted that the superior access times of 
the CCD file memory further minimize the delay for overlay loading. 

The ESP loader also assists in reducing delays of interprogram transition. If 
the running program does not require all of processor memory: a subsequent 
program will be preloaded into the available space. 

D-21 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

l I 



BSP BURROUGHS SCIENTI Fie PROCESSOR 

9. SUMMARY 

The Master Control Program for the BSP provides a fully integrated and unified 
user interface to a functionally distributed system. In so doing" it provides a 
new level of convenience for the supercomputer installation" which heretofore 
was often forced to contend with ad hoc interfaces or commit extensively to in
installation -develop ed operating system software. 

The BSP MCP also reaffirms a commitment to efficiency and system balance. 
By carefully distributing functions" the MCP is able to provide user convenience 
where it is most needed" as in program development" while retaining the efficiency 
of low software overhead in the time-critical domain of scientific program execution. 

Finally" the BSP MCP heralds a new trend in hardware-software tradeoff" in that 
a significant "operating system" function" so-called physical I/O" has been com
pletely off-loaded into the input-output controller. 

Together" these developments demonstrate the synergistic effect of a combined 
hardware-software-systems approach to a particular problem" such as in this 
instance" the problem of ultra high-speed numerical computation. 

D-23 



~~~ ~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 


-

J

Burroughs Corporation m
61391 2/78 Printed in U. S. A.

	Control_Program_01
	Control_Program_02
	Control_Program_03

