r-———+"——-1
| BUG S |
L.._...,.._*._...__.I

The Brown University Graphics Systemt?

The brown Univeusity Graphics Project
Division Qf Applied Mathematics
Box F
Brown University

Providence, Rhode Island 02912

June 1975

Printed: Novenber 28, 1975

1This Research 1is being supported by the National Science
Foundation Grant GJ-41539, the Office of Naval Research, Contract
N0OOO14-75-C-2427, and the Brown University Division of Applied
¥athematics; Principal Investigator Andries van Dan.

1 Overview

Tha SIMALE is a processing elzment of the BUGS systen
capable of performing 2 varied and complex repetoire of graphics
operations for the user. Its high sp=eed ~gives BUGS the
parformance typical of graphics systems employing special purposs
hardware but none of the inherent inflexibility. Although anyone
could program the SINALE to me=st the needs of his application, it
is presumed most users will us2 a standard s=2t of SIMALE graphics
operations embedded within a higher 1level 1langquage. The
discussion that follows, tharefore, is intended for the more
serious user.2 SIMALE Compon=nts

The SIMALE's architecture departs radically from the more
traditional ones of the Meta #4A and Meta 4B in several respects.
These departures were dictated by the special nature of the
graphics operations it performs. Speed, flexibility, simplicity,
reliability, and cost were all important design considerations
affacting its architecture.

The most noticable features of the SIMALE are its abundances
of processors, stores, and data buses (se2 figure 1) . The SINALE
has four parallel processors, quadrupling its effective speed,
and unfortunately making it difficult to understand and program.
2.1 SIMALE Stores

The SIMALE has four general types of stores; two in the
control and two in the processing units.

CONTROL STORE: This is a fully readable/writeable store
in the control unit and is used primarily to hold
instructions. It <consists of 2856, 16-bit words
organized into two, 128-word pages which are
loaded by the Meta 4B during execution of the ETC
instruction. Control storage locations mray ba read
or written under SIMALE program control, although

the addressing mechanism makes doing so difficult,

CONTROL REGISTERS: The SIMALE makes heavy use of
residual control; a technique wvhere the loading of
special control registers determines the nature of
subsequent op2rations. The control unit has five
such registers; +the CounT Register (CTR)}, the
Memory Rddress Register (MAR), the Enable and Bus
Control Register (EBCR), the Request Code Register
(RCR), and the ALU Function Register (AUFR). These
registers control such things as program looping,
the sources and destinations during data
transfers, and the operands and operations
performed by the four processors. Their existence
groatly increases the vpower of the SIMALE's small

-1 -

A

FIG | — SIMALE ARCHITECTURE

DATA BUS

C . E 3
— | PROC. 1| d PROC. 2| T} PROC. 3 “}J PROC. 4
< MEMORY [* « MEMORY [~ | || MEMCRY ™ e~ MEMORY 7
__ TARRY: 4 16 %15 by TN - flx g
A REG 1ol (A REG s " e-[A_REG ' I -[A_REG = I
I o N X o B B S et o QM
sl l IR .. PTG E SN, o JRRPOPY L(I — €/\;,l
‘i (B A 19 | [ZREcE}-S | [BAE s |) GECI g
E.._'i i a = ¥ ol g @ E
+ Ly g . A
| ALU ALy }, ALU ;_.*LL ALy R
!
8
INTERFACE/
CONTROL| address DEBUG
STORAGE | | 10 UNIT
asente | elAGERle>
(2 pnq::;;} la :
' JEECR > Lo cables

cond;tions >>

control INESqu.

AND
S EQUINCE

LOGIC

= =41

i : | { T \ i
R»"‘}ZD §\ \\ !

DECODE | - ! '

, o G I

:

"'""'"“"1

instruction set while avoiding a more expensive
and inefficient "horizontal" architecture.

PROCESSOR MEMORY: Each processor possesses sixteen,
18-bit words of memory used as a "scratch-pad" to
hold less freguently wused opsrands. The memories
are addrescsad by the MAR <control register. All
operand stores in the SIMALE are 18 bits to
provide the precision necessary tc aveoid overflow
problems arising during certain graphics
operations., The eighte2en bits of these stores are
labeled (X0), (X1), (D)}s (1) seee,s {15) to emphasize
their positional relationship with the sixteen
bits of control storage and the Meta UB.,

PROCESSOR REGISTERS: In addition to the sixteen memory
locations, each processor has three 18-bit
reqgisters; the A, Q, and B registers. Two of these
regqisters are shiftable and all are used for
intermediate results and frequently used data

during computations. 2.2 SIMALE Processors

rocessing units: one processes
and data.

INSTRUCTION PROCESSOR: All instructions in the SIMALE
are processed by the control unit. The execution
of an instruction can cause activity on all of the
four operand processors simultaneously. This
parallel execution 0f instructions makes the
SINALE an efficient nachine for graphical
operations., :

OPERAND PROCESSORS: Each of the processing units has an
18-bit ALU (Arithmetic/Logic Unit) which selects
operands from among the various stores and
performs an arithmetical or logical operation upon
them, The AUFR control ra2gister determines the
operations performed by the ALU'S., The results are
made available on the F~busas where they can be
coplied into a store or tested by subsequent
instructions.2.3 The Data Bus

The SIMALE transfers data among its various processing units
and the Meta 4B via a bidirectional 18-bit data bus; the Z-bus,
During a data transfer, one of eight sources and one of seven
destinations are selected by the EBCR control register. Among
them are the Meta 4B, control storage, thes low order byte of the
current instruction, and the processor F-busss. 16~bit sources
{such as th2 Meta 4B and control storage) have their signs
extended onto th=2 bus. When the instruction register is source,

- -

bits (8-15) of the «current instruction are copied onto the
corresponding bits of the Z-bus and the rest are forced to z=ero.
An additional data path serves to pass command, status, and
debugging information between the Meta 4B and the SIMALE's
control unit.3 THE SIMALE INSTRUCTION SET

The SIMALE has sixteen instructions, all of ‘which are
16-bits long., Almost all instructions are divided into three
fields; an operation code in bits (0-3), a modifier or data field
in bits(4~7), and an address field in bits{8-15). While most
SIMALE instructions are simple register 1loads, they can be
difficult to understand because several things modify their
behavior, '

Pirst, the loading of residual control registers determines
the operation of subsequent instructions. For example, the
setting of the AUFR register might instruct the ALU's to perform
addition on the B and Q registers., If an instruction then loaded
the A registers, they would contain the result of this addition.
But for other settings of control registers, thils sane
instruction could =zero the A register, perform a logical OR'ing
of two registers, or complets a data transfer with the Meta U4B.
In addition, many of the control registers are cn top of stacks
and can assume different values on different levels of program
execution!?

Besides being affected by residual control registers, the
execution itself of many instructions is conditional. Condition
codes referenced by these instructions test one of sixteen
conditions throughout the SIWALE and nodify execution behavior
according to the result. See Section 3.4 for a further
explanation of the condition codes.

In the instruction descriptions +that follow, upper case
symnbols are predefined by the SIMALFE assenbler to the hexadecimal
values annotated (#hex value) and optional symbols are enclosed
in braces. All symbols are delimited by either blanks or commas.
To produce object code, the assembler simply OF's together the
values of the symbols appearing on a line of code. For more
detail, sae the SIMALE Assembler Manual. 3.1 Processor
Instructions

Instructions with operation codes 8 through 15 affect the
operand stores of the four processors., All interpret bits (4-7) as
a condition code and bits (8-15) as a branch address unless the
condition code specified ©pre-empts taking this branch., The EBCR
control reqister enables the processors, and no action is ever
taken by a disabled processor or by a processor which is not a
bus destination during a data transfer (see the YFER condition
code) . :

Hrite Memory from F-bus on condition

WM <condition code>[,<label>]
L]] T 1
l 8 | CC | ADDRESS |
i 1 1 1
4] 4 8 1s

Load Q0 register from F-bus on condition

L.Q <condition code>[,<label>]
L 3 T T 1
| B | CC | ADDEESS |
i 1 i s |
0 & 8 1S5

Load A register from F-bus on condition

LA <condition code>[,<label>]
r T T -
| € t CC | ADDRESS i
1 A 1]
0 8 8 15

load B register from F-bus on condition

LB <condition code>[,<label>]
¥ T LB 1
| F | CC | RADDRESS |
i L 1 3
0 4 8 15

For these instructions, each enabled processor takes the
local value of the condition code specified and if true, copies
the current ALU output from the F-bus into the specified 18-bhit
store. In the <case of a ¥rite Hemory instruction, the exact
memory location written is specified by the Memory Address
Register (MAR).

Unless modified by the condition code, sxecution resumes at
the address specified by <label>.

Left SHift Q register, entering condition value

LSHQ <condition code>[,<label>]
r T T 1
!l 9 | €C | ADDRESS |
L 1 1 SRR 1
0 4 8 ' . 15

Right SHift Q register, entering condition valu=s

RSHO <condition codel[,<label>]
Ll 1 T R

{ A | CC |} ADDRESS |

1 H 1 . |

0 4 8 15

Left SHift B register, entering condition value
LSHB <condition code>f ,<label>]
T T T N]

! D | CC | ADDRESS |

L 1 i]

0 4 8 1s

Right SHift B register, entering condition value
RSHB <condition code>[,<labeal>]

r

T i
| E | CC | ADDRESS |
1 1 1
0 'Y 8

15
For these instructions, each enabled processor shifts the
specified register ona position in the specified direction,
entering the local valus of the condition code into the enptied

end bit position.

Unless modified by the condition code, execution resumes at
the address specified by <label>. 3.2 Control Register
Instructions

The following instructions, with operation codes 2 through
6, load and modify the residual control registers.

Load Memory Address Register with inmmediate

LMAR <data>[,<label>]
T T T - 1
| 4 | DATA] ADDRESS |
1 1 P | H
0 4 8 1s

This instruction takes the data specified in bits(4-7) and
loads it into the U-bit Memory Address Register (MAR),

Execution resumes at the address specified by <label>,

. The MAR is a control register whose contents selects one of
the sixteen locations in the processor mnemories., It sits atop a
io=-level stack in which the current value of the UAR ved

- TE T J cu —~— e
ma 'y a2 DA YTy

-5-

by a CALL instruction and from which the MAR may be restored by a
RETURN instruction.

The MAR <can be incremented by a MODR instruction (see
Section 3.3).

Load CounT Reqgister with immediate

LCTR <data>[,<label>]
r T T - 1
1 5 | DATA| ADDRESS |
1 L i | i |
0 4 a 15

This instruction takes the data specified in bits (4-7) and
loads it into the 4-bit Coun? Register (CTR).

Execution resunes at the address specified by <label>.

The CTR 1is a <control register used to control program
looping, It sits atop a 16-level stack in which the current value
of the CTR may be saved by a CALL instruction or from which the
CTR may be restor=d by a RETURN instruction,

The CTR can bs decremented and tested by the CounT (CT) and
Not Coun® (NCT) condition codes (see Section 3.4).

load ALU Function Register with imnmediate

LAUFR <function>[,INV I ,RND] ,+1]
)) T T T L T 1
| 2 ISTIS2JIIRICIPUNC |}
1 = 1 1 > E 1 3 |
4] 4 6 8 9 10 15

This instruction takes the immediate data specified in
bits(4~15) and loads it into the 12-bit ALU function register,

Execution resumes at the next sequential instruction.

The ALU function register is a control resgister selecting
the operand stores and the operation performed by the ALU's of
the processors. There are several fields within the register. The
5-bit field 1in bits(11-15) selects one of thirty-two arithmetic
or boolean operations performed upon the two source stores
selected by the fields in bits(4-7). A description of all
thirty-two furctions «can be found in the SIMALE hardware

Princiles of Operation manual; those currantly defined for the
assembler are:

<function>:
F=<s1> (#0000): This copies s1 onto the F-bus,

F=<s1> OR <s2> (#0001): This 1logically OR's the
two sources,

F=<s1> OF_NOT <s2> (#0002): This OR's s1 with the
comnplament of s2.

F= ONES (#0003): This sets the F-bus to all ones.

F=<s1> AND <s2> (#0004): This AND's the two
sources.,

F=<s1> INOR <s2> (#0036): This 1is the complement
of the exclusive OR of the two sources,

F=<s1> AND_NOT <s2> (#2008): This AND's s1 with
the corplement of s2.

F=<s1> YOR <s2> (#0009): This ¥XOR's s1 with s2.
F= NOT <s52> (#¥000A)z: This complements sZ.
F=<s1> NAND <s2> (#000B): This NAND's s1 and s2.

F= ZEROS (#000C): This sets +the PF-bus to all
Zeros.

F={s1> NOR <s2> (#000E): This NORS s1 with s2.

F=<s1> +0 (#201C): This adds =zero plus the carry
in to s1.

F= NEG_ONE (#0013): This s2ts the PF-bus to all
ones plus the carry in.

F=<s1> MINUS <s2> (#0016): This sets the F-bus to
s1 ninus s2 minus one plus the carry in.

F={s1> PLUS <s2> (#0019): This sets the F-bus to
st plus s2 plus the carry in.

F=<s1> TIMES_2 (#001C): This sats the F-bus to s1
left shift=d one place.

F=<s1> -1 (#001Fr): This sets the F~-bus to s1 minus
~one plus the carry in.

<s1>

<s2>>

: The first operand source for the above functions
is selected by bits(4,5). the possible sources
re:

o

F=MEM (#0000): The memory
F=A (#0400): The A register
F=0 (#0800): TheIQ register
F=B (#0C00): The B register
: The second operahd source for the above
functions is selected by bits(6,7). The possible
sSources are:
MEM (#0020): The memory
A (#0100): The A register
Q (#0200): The Q register

B (#0300): The B register

INV (#0280): Bit (8) is the invert bit (I) and inverts

the carry in and function bits(12-15) seen by
processors 2 and 3. This has the effect of making
the ALU's of vprocessors 2 and 3 perform the
complenent of the function performed on processors
0 and 1. Thus it 1is possible, for exanple, to do
addition on procassors 0 and 1 and at the same
time do subtraction on processors 2 and 3.

RND (#20u40): Bit(9) is the round bit (R} and if set,

the carry in to any processor that has right
shifted a one bit out of its B register is
inverted, This prevents roundoff errors during
certain operations.

+1 (#0020): Bit(19) is the carry bit (C) into the ALU's

during arithmetic operations., It may be inverted
either by the round or the invert bkits and has the
effect of adding one to the results of arithmetic
opesrations.

Load Enable, Bus Control Register
with immediate

LEBCR {enable or request><bus src><bus dst>
1] T LB 1 4 & B S |
] 3 |IEN/RC|E|SEC |DST |
i 1 .1 1]
] 4 9 10 13 15

This instruction takes +the immediate data specified in
bits (4-15) and loads it dinto the Enable and Bus Control Register
{EBCR}) .

Execution resumes at tha next sequential address.

The EBCR 1is a control register which deals with enabling
processors and with data transfers on +the Z-bus. The LEBCR
instruction does not actually perform a data transfer but rather
determines what transfer will be performed by the IFER condition
code,

<enable> : W®When a LEBCR instruction is executed with
bit (%) (E) set, bits(4-7) are loaded into a 4-bit
enable register each bit of which enablies one of
the processors. Usually all processors are left
enabled, but when not, disabled processors are
unaffacted by instructions and cannot be tested by
condition codes, The HMODR instruction can rotaté
right the enable bits one place., The enable
register bits are:

PO {#0840): enables Processor 0
P1 (#0440): enables Processor 1
P2 (#0240): enables Processor 2
P3 (#0140): enables Processor 3
ALL (#0TF0O0) : enables Procaessors 0-3.

<{request> : When a'LEBCR instruction is executed and
bit(9) (E) 1is off, bits(4-8) are loaded into the
5-bit Request Code Register, This register is used
by the SIMALE to request an oparation of the kKeta
4B. ¥hen an ZFER condition code causes the SIMALE

to pause for I/0 with the Meta 4, the
Q-interpreter exanmines the request code register

and the CTR, It then performs the requasted
5 operation, sometimes using. the CTR as a modifier.
Only sixteen of the thirty-two rossible request

codes are currently irplemented in the Meta UB
firmware, and requesting illegal codes causes a
SIMALE interrupt . The possible request codes are:

QUIT (#0000): <causes *ermination of the current
ETC instruction.

INTERRUPT (#00870): causes a SIMALE interrupt, then
guits.

NEYXT_BLOCK (#2010): causes the termination of the
current ETC block and resumes execution at
the next block.

NEYT_SUB_BLCCK (#0180): causes termination of the
current ETC sub=-block and resumes execution
at the next sub-block.

GOTO_PAGE (#02007): The SIMALE gives the Meta UB a
SIMALE initialization halfword via the Z-bus.
The Meta 4B then loads the requested control
store page if npecessary and starts SIMALE
execution at the requested lccation. This is
an inter-virtual page jump (see Section 16.3
of the Meta 4B manual).

GET_DATA (#£28C): causes the Meta UB to get the
CTR number of halfwords from the current
sub-block and give them one at a time to the
SIMALE via the Z~-bus. If the CTR is zero, an
interrupt is caused and execution is halted.

SET_VG_KODE (#0300): causes the Meta 4B to issue a
mode order to the VG which it reads from the
SIMALE Z-bhus,

SEND_VG_DATA (%#7380): causes the Meta 4B to send
the VG the CTR numher of halfwords from the
SIMALE Z-bus., If the CTR is zero, an
interrupt is caused and execution is halted.

GET_REG (#0400) , PUT_REG (#0480), GET_LS (#0500),
PUT LS (#0580), GET_HNS (#0609), PUT_MS
(£0680), GET_VG_REG (#0700), PUT_VG_REG
(#0782): 21l of these request codes cause the
Heta 43 to read an address from the SIMALE's
Z-bus, It then transfars the CTR number of
halfwords to or from the specified stores
(ie. user REGisters, Local Stcre, Main Store,
or VG REGisters). If +the CT'R is zero, an

-10-

<bus

interrupt is caused and execution is halted.

src>: Bits (10-12) of the EBCR select the Z-bus
source, They sit atop a 16-lavel stack in which
they may be saved by a CALL instruction and fronm
which thay may be rastored by a RETURN
Anstructlon., The bus source pits’ may be
incremaented by the MODR instruction., Possible
sources are:

FROM_M4 (#0000): Meta 4 is source

FROM_CS (#0008): Control Stora is source

FROM_TR (#0010): The low order byte of the
instruction is source

FROM_ALL (#09218): The TF-buses of all processors
are OR-ed togesthar and are the source

FROM_PO (#2020): The F-bus of Processor 0 1is
source

FROM_P1 (#0028): The F-bus of Processor 1 is
source

FROM_P2 (#0030): The F-~bus of Processor 2 is
source ,

FROM_P3 (#0038): The F-bus of Processor 3 is

<bus

source

dst>: Bits (13-15) of +the EBCR select the Z-bus
destipnation, As with the bus source field, the bus
destination bits are atop a 16-level stack and may
be incremented by the MODR instruction. possible
destinations are:

TO_M4 (%#0000): Meta 4B is the destination

TO_CS (#0001): Control Store is the destination.
Bits (8-15) of +the instruction invoking the
data transfer (ie., specifying xfer) is the
address of the 1location lcaded from the
Z-bus.

TO_ALL (#2003): The Z-bus contents is copied onto

the F-busas of all processors, which are not
bus source, regardless of the AUFR setting.

-11-

TO_PO (#0004): The 7Z-bus is copied onto processor
0's F-bus, if not bus source.

TO_P1 (#0705): the 2Z-bus is copied onto processor
1's F-bus, if not bus source, '

TO_P2 (#0006): the Z-bus is copied onto processor
2's F-bus, if not bus source,

TO_P3 (#0007): the <Z-bus is copied onto processor
3ts F-bus, if not bus source.

MOoDify Registers

MODR [MAR][, ENABLE][,SRC Y ,DST][<,1label>]
L B T T -1
I 6 | MASK| ADDERESS |
i L 1 J
I [+] 4 8 15

The Modify Registers instruction uses bits(4-7) as a mask to
determine which of four control registers to modify as follows:

MAR (#0800)s TIf bhit(l) is set, +the Memorv Address
Register is incremented,

ENABLE (#0400): If bit(5) is set, the Enable field of
the EBCR bits(4-7), is rotated right ore position.
EBCR bit (7) is entered into EBCR bit (4) when this
is done.

SRC (#0200): If bit(s) is set, th2 source field of the
EBCR is incremented if the source specified is one

of the ©processors, Processor 3 wraps around to
Processor 0.

DST (#0102): If bit(7) is set, the Destination field of
the EBCR is incremented if +the destination
specified is one of the processors. Processor 3
wraps around to processor ¢. 3.3 Flow of Control
Instructions '

The SIMALE has three instructions which alter the flow of

control in programs. A1l of them interpret bhits(8-15) as an
address., These instructions are:

-12-

BRanch on condition true

BR <condition code>[<,label>]
r ¥ T L
i 1] CC { ADDRESS |}
i 1 i 1
) 4 8 15

The Branch instruction tests the global value of the
condition code specified (see Saction 3.4). If it is true,
execution resumes at the address spacified by <label>, otherwise
execution resumes at the next sequential instruction.

CALL subroutinas i
CELL [MARI ,CTRI ,SRC][,DST [<,label>]

T 1
MASK] ADDRESS |
i

7

P o
P T

8 1s

The call instruction saves the next szquential address in a
16-leval stack internal to +the control unit. This serves as 1link
information used by the RETURN instruction.

Execution is resumed at the address specified by <label>.

The CALL instruction also affects those ccntrol registers
that are- on stacks. The values of these control registers are
constantly being copied into the present level of their stacks.
When a CALL is executed, the stack frame pointer is incremented,
accessing the next level of the stacks, then bits(4-7) determine
the subsequent setting of these control registers as follows:

~MAR (#080C): If bit(4) is set, the Hemory hddress
Register's current value 7remains unchanged., If
bit (4) is not set, the MAR is loaded from the new
stack 1level and thus assumes the value it had
previous to the last RETURN .

CTR (#0400): If bit(5) is set, the Count Register
remains unchanged, If not set, the CTR assumes its
pravious value.

SRC (#0200): If bit(6) is set, tha source field of the
EBCR remains unchanged. If not set, it assumes its
previous value.

DST (#0100): If bit(7) is set, the destination field of

\ the EBCP remains unchanged. If not set, it assumes
its previous value, '

-13=~

RETURN from subroutine on condition true,

RETURN <condition code>[<,labeal>]
1] T T L | I

{ 0 | CC | ADDRESS |

i i 1 - 3]

[4] 4 8 15

The RETURN instruction tests the global value of the
condition cods specified. If it is true, the stack frame pointer
is decremented and the control registers are restored to their
values previous to the last CALL dinstruction. Execution is
resumad at the saved address, If the condition code is not true,
execution 1is resumed at the address specified by <label>., 3.4
Condition Codes

The SIMALT conditional instructions specify a condition code
in bits(4-7). All codeas select one of sixteen conditions tested
in five ©places; in the control unit, and in each of the four
processors, The value tested in the control unit is called the
global value, and the values tested in the processors are called
the local values., In many casas, the global value is simply the
logical OR'ing of the four local values. Disabled bprocessors nake
no contribution to the glcbal values so obtained.

Four of the condition <cod2s can mnodify the operation of
processor-type instructions. This modification usually involves
invoking special cycle sesquences or altering where execution is
resumaed upon completion, The condition codes are:

FALSE (#0000): - This doesn't modify instruction
seguencing

local value: alvways false
global value: always false

TRUE (#2100): This doesn't modify instruction
sequencing

local value: always true
global value: always true

TREJ (#0220): This is a windowing rejection test for a
line wvhose end point window coordinates are in the
A and Q registers., If both of these registers are
negative on any one processor, then the line is
absolutely outside the window. TREJ doesn't modify
instruction sequencing.

] Iy

local wvalue: (A(¥0Q) AND Q(¥0)) from all enabled
processors OR'd together

global value: same as local value.

REJ (#0300): This 1is a windowing rejection test for a

line whose window coordinate end points are in the
A register and on the F-bus. If both ars negative
on any one processor, the 1line is absolutely
outside the window., REJ doesn't modify instruction
sequencing.,

local value: (A(X¥0) AND F(X0)) from all enabled
processors 0OR'd together

global value: same as local value

DELAY (#0400): This inserts a one cycle delay before

ZFER

the execution of a processor instruction to aid
fixing possible program timing problens.

local value: always true
glohal value: 2lways true

(#0500) 2 ¥hen referenced by a processor
instruction, Y¥FER triggers a several cycle
sequence causing a data transfer along the Z-bus,
The transfer is from the source to the destination
as specified in the EBCR. If the Meta 4B is
involvad, the SIMALE pausas until the Meta U can
signal the transfer is complete, Only those
processors which are destinations can be affected
by an instruction specifying ¥FER, and only those
which are sources pay attention to the setting of
the AUFR during the transfer.

Exacution is always resumed at the next sequential
instruction.

local value: always true

global value: always true

CT (#0600): The CounT condition code always causes the

CTR to be decrementad, 1If it 1is specified by a
processor instruction, and +the CTR was one bhafore
being dscremented, execution is forced to resume
at the next sequential instructicn; otherwise it
resumes at the address spacified. This gives
processor instructiouns -a BCT abillity.

_15-

local value: always true

global valu=: CTR not =1 (i.e. goes false when
the count is exhausted)

NCT (#0700): The ¥Not Count condition code always causes

couT

the CTR to pe decremented, If it is specified by a
processor instruction, and the CTER was one before
being decremented, execution is forced to resune
at the next sequential instruction; otherwise it
resumes at the address specified, This gives
processor type instructions a BCT ability.

local value: always false

global value: CTR =1 {i.e., goes true when the
count is exhausted)

(#0800) = This doesn't nodify instruction
sequencing.

local value: Carry QOUT from ALU bit(¥0)

glnbal value: carry out from all enabled
processors OR'd togethar,

NF(X0) (#0900): This doesn't modify instructions

LSIG

saquencing,

local value: the complement of the sign bit of the
- FP=bus

global value: NF(X0)'s of all enabled processors
OR'd together

(#0A00) : This doesn't nodify instruction
sequencing. LSIG is a test for left significance
of a processor's B register (i.e., either its left
most two bits are different or it is all ones or
zZeros)

local value: (B(X0) XOR B(X1)) OR (B NOT MIXED)

global value: LSIG!'s of all enabled processors
OR'd together,

BM (#0B20): This doesn't modify instruction sequancing.

B mixed is a test for a processor's B register not
being all ones or all zesros,

L Pt | T R . 2 oo A
10C&alL Valiue: B register wmix=d

-16-

global wvalue: BM of all enabled processors OR'd
together,

0 (X0) (%0C0D), Q(15) (#0D00), B(X0) (#0ECOQ),
B{15) (#0F0D0D): These ‘don't nodify instruction
sequencing they are used to test the end bits of
tha B and Q register, '
local value: the bit specified

‘qlobal value: the Dbit specified of all enabled
processors are QOR'd together.

-17-

